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Preface 

Them~imulation programs in the early days of modelling were relatively small and easy to 

undM~and.Theamoo~~~~~n~~~-~~-n~da~~~dm~~-~~­
existing knowledge simply had not yet been put into the model. By including more and more 

information into existing simulation models, often much of the original structure was retained 

leading to unstructured programs that were error prone. With the advent of structured and 

modular programming, many people realized that this provides a way out. 

A general programming language like FORTRAN leaves the user an enormous amount of 

freedom. A simulation program which is structured and modular in the technical sense is not 

automatically a readable and adaptable model. Many different solutions to problems as task 

definition, initialization and time control are possible and they are not equally clear. We have 

tried to give simple solutions to a series of problems known to everyone writing crop growth 

simulation models in FORTRAN. The basis of this report is a classification of subprograms 

according to their function in a simulation model. Writing a simulation model, a clear insight in 

these matters is very useful. 

Through our experience with models we are convinced that the spin-off from structured and 

modular programming can be increased considerably by adopting standard solutions. After 

lengthy discussions, and taking into account pro's and con's of a particular solution we 

decided to write down our conclusions in this report. 

This report is not meant as a guide for writing neat, syntactically correct FORTRAN programs. 

There are very good books serving, that purpose and you may find some in the list of 

references. Writing a modular simulation model using the guidelines we provide in this report 

may speed up program writing, reduce errors and stimulate the exchange of subprograms 

among scientists. We hope this report contributes to the improvement of simulation models. 

1Janie{ van 1(raafingen ana tj(f,es 1?.flppo{at 

---------'----1 
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Eentoenemoodaantal sim~e-mGdellen maakt gebfYlk van FORTRAN sub·~o~PK.rO~Y.Q~-~-«ra;um-Himl+laa~·s---\.ol-l-f~is>----------+ 

helemaal geschreven in modulair opgezet FORTRAN. Er bestaat echter geen overeen- ... -----~ 
stemming over de wijze waarop subprogramma's gebruikt moeten worden. Dit rapport geeft 

aanwijzingen, richtlijnen en oplossingen voor problemen bij het ontwikkelen van modellen. In 

de eerste twee hoofdstukken worden de voordelen besproken van modulair programmeren 

en wordt een klassifikatie gegeven van subprogramma's. In de hoofdstukken 3-9, worden 

oplossingen gegeven voor problemen die bij het schrijven van subprogramma's optreden. In 

hoofdstuk 10 wordt een eenvoudig gewasgroeimodel besproken. Hoofdstuk 11 handelt 

over het compileren en linken van programma's. In hoofdstuk 12 worden voorbeelden van 

subprogramma's gegeven die volgens de in dit rapport gegeven richtlijnen zijn geschreven. 

Summary 

A growing number of simulation models has incorporated FORTRAN subprograms or is 

written entirely in modular FORTRAN. There is however no concensus on how to use 

subprograms. This report provides hints, guidelines and solutions to problems that occur 

during model development. In the first two chapters, the advantages of modular programming 

and the different types of subprograms that can be recognized are discussed (Chapter 1 and 

2). In the Chapters 3-9, hints are given and solutions presented to problems that normally 

arise during subprogram writing such as file handling and initialization. In Chapter 10, a very 

simple FORTRAN crop growth simulation program is discussed. Chapter 11 deals with 

compilation and linking. In Chapter 12 examples are given of subprograms that have been 

written according to the guidelines of the report. 

; 
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-------:--==--==--======~AdLtaa-!Hrg:J£et=mmedel is born as a small model. Initially only few processes are modelled During 

development of the model_, processes and interrelations are included. Often additions 

describing new aspects are dispersed throughout the program. In this way the description of 

subprocesses may easily become inaccessible for anyone but the author. The more the 

program structure deviates from th.e structure of the system, the harder it becomes to 

understand the program. This practice results in a vicious circle, existing programs lack a 

structure and are unsuitable to extract parts from, as a consequence everybody starts from 

scratch which in turn leads to yet another model of bad design. The formulation of well­

defined subprograms and the use of a few conventions is a way to overcome this difficulty. 

Advantages of the use of subprograms are : 

- transportability with respect to other computers, models, programming languages, 

- accessibility of the information for the author (improvements are simple to introduce), and 

other users, 

- subprograms can be maintained and tested individually, 

- simplification of the development of large models by making use of well-documented 

existing subprograms, 

- speed of execution (PC) is improved and computer costs (VAX) are reduced since 

subprograms need no repeated compilation, 

- students who have a limited amount of time, may work on the description of a subprocess 

without having to deal with the text of a large model. 

To fully benefit from the use of subprograms, in this report some guidelines are proposed. 

Some topics are general, like declaration of variable type or the use of comment lines, and 

others are typical for simulation models, like initialization. Subprograms are classified 

according to their function in a simulation model. This classification makes it easier to 

recognize the different parts of a simulation program. 

. 

; 
. 

i 
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____ 2_CJas_s_ific_ati_o_n_o_f_a_ubpmgrams:----------------
I 

S8MMAR¥ - st.Jt>programs ate classified-accordingJo_their_iunetiOJOIEl:j_t_,;====================--==--=---=-::J-1 

I. Service routines I 

II. Generation of driving variables, 

Ill. Rate calculations, 

IV. Fast subprocess description, 

V. Simulating subprograms, 

- subprograms can only call other subprograms with equal or lower 

number. 

Subprograms may be classified with respect to their function within a simulation model. Five 

classes of subprograms are distinguished. In order of increasing complexity these are: 

I. Service routines 

Service routines are independent of the described system. They are used to perform well 

defined tasks such as linear interpolation (see Example I, Chapter 12), generation of random 

numbers, curve-fitting, sorting of data, calculation of the roots of a function etc. This type of 

function will often appear in libraries. 

II. Generation of driving variables 

Driving variables are variables that are part of the system but are not determined by the 

system. In other words, these variables are input of the simulation program and their time 

dependence is not simulated but prescribed. Weather variables (e.g. radiation, temperature), 

sometimes groundwater table or leaf area index may be driving variables. Examples of this 

type of routines are: 

- reading weather data from file, 

- estimation of hourly temperatures from daily maximum and minimum (see Example II, 

Chapter 12), 

- reading irrigation data from file, 

This type of subprogram creates an 'environment' for the actual simulation. 

IU;=R-ate=ealeut-attofrs:=-~======================== 

Rates of change are determined by the state of the system and its parameters. Thus, state 

variables and parameters are input for this type of subprogram and one or more rates of 
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-===========::---:::::-eJcaatlettlation of the C02_ assimilatien rate ef_~J:>-~~-1'!_ _ _,_ ___________ _ 

- flow rate of water between adjacent soil layers, 

- evapotranspiration rate of water from soil and crop (see Example Ill, Chapter 12), 

- suction rate of aphids, 

- number of predated aphids by ground beetles, 

- mineralization rate of organic nitrogen. 

IV. Fast subprocess description 

A fast subprocess is always in equilibrium from the point of view of the main process. It may be 

convenient to calculate the equilibrium state in a subprogram. In that way the subprocess can 

be described independent of the main process described in the calling program. 

About the calculation method nothing can be said in general. Sometimes equations can be 

solved algebraically. Sometimes an iterative procedure has to be used to find the equilibrium 

state. In complicated situations it may be necessary to simulate time course of the process 

until equilibrium is reached. 

Contrary to the next type of subprogram (simulating subprograms), the subprocess time is not 

controlled by the calling program. The subprocess is assumed to be so fast that only 

equilibrium states are needed. So even in case a (local) subprocess time occurs explicitly in 

the subprogram, it runs freely until equilibrium is reached. 

Examples are: 

- stomatal behavior responding to C02 and humidity, 

- generation of an average wind profile in the crop while the crop is simulated with a time step 

of one day. 

v·. Simulating subprograms 

Writing a simulation model in FORTRAN one is tempted to write a main program. There is an 

initial section in which initial calculations are carried out, initial settings are done, input files 

opened etc. The central part of the model is the integration loop in which rates of change are 

calculated and integrated to find the new state variables. Possibly a terminal section is 

executed after finishing the integration. 

There is however, no good reason for writing a simulation model as a main program. One 

could equally well write a subroutine in which the above described sections are all present. A 

call to this subroutine causes the execution of the simulation model. 

_ ____ , 
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------------------------------------------------------------~------------------------------.-. : 
_Ihe_use_of . .thjs_kjnd._ol sjmulatjng_subroutines_already~_bas_!:Ustinclaava.ntag.es~Sensitivltv~--~--~==--- . ~ 1 

---==========~a~n~a~ly~s~is'!::, ~fo,~:~:r~in'::"s~t~an~c~e':!:, ~b -~e~co~m~~e_s~-~e~a~s_i~e-=r ~~i-':n_~ce~~---~t~h~e='m~-~~d~-~e~l:!p~a~ra~m~et~e=rs~--~co===-n~c~e=~=-e~d=-c~~~!l=-b~e~~p~~s~s~~=d=--=-~~~-----~~--~~--~-------~ 
to the subroutine as arguments. There are other types of model use that require more than a ~--~-j 
single simulation run. It is always advantageous then to have the simulation model available as 

a subroutine. 

Sofar a call to a simulating subroutine leads to a complete simulation run. The subroutine is 

free running in the sense that the calling program does not control the integration process. 

The simulation goes on until some finish condition is reached. Now suppose one has 

available two models in the form of two subroutines. One model, for instance, simulates crop 

growth as a function of weather data and soil water content. A second model simulates the soil 

water content as a function of weather data and crop condition. The two models may have 

different authors and may originate from different research groups. Improved versions of both 

may appear from time to time. 

The combination of the two subroutines into a single program tends to require a large 

programming effort. Therefore it is worthwhile to consider solutions to this problem that leave 

the different models in their original form as much as possible. 

Clearly the simulation of the whole system consists of the simulation of the two subsystems. 

The two simulating subroutines, however, cannot be left free running in this case. The calling 

program needs to control time progress in the two subroutines in order to synchronize the 

two processes taking place. This can be done by switching between the subsystems. Both 

subsystems are simulated for a short, prescribed timestep. This is easy to realize when the 

timesteps of the two submodels are equal. The coupling is then called synchronous. The 

case of unequal timesteps is called asynchronous coupling and is more difficult to handle. 

The solution will depend on the importance of the interaction between the systems. 

Here only synchronous coupling is further discussed. Submodels using equal timesteps are 

coupled by controlling the integration process from a calling program. A 'task' variable is 

passed to the submodels that controls the action that should take place: initialization, 

calculation of rates of change, integration (=return new status) or terminal calculations. In 

doing so, everything can be controlled from a short main program describing the system as a 

whole (See the example in Chapter 12). 

The difference between a free running simulation model and a simulating subroutine coupled 

with others is rather small. Both consist of sections for model initialization, rate calculation etc. , 

=======!:!=ln~a~s~im~ui~SllbJ:QutLne the execution of these sections is controlled from the calling 

program by means of the task control variable. When several well defined submodels are 

coupled, the structure of the program reflects the structure of the system. 
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____ 3_S_ub_p_r_o_g_rams-in FGRTRANr-------------------- 1 

----------- ----------- ~~--- -~----------~- ------~ ~--- --~ --~---- ----~--- --- ----- ----~~--- - ----------- ----- I 

~-============~s~tJt=JMMf\iMtJAU:-~V¥~===::;:::-=nus~e:uprna:u:s~s~edri=klerrnrngth:anay_declarations,_~---

- write the array length as integer variable llxxxx, where xxxx is the first 

part of the array name it belongs to, 

- use COMMON blocks only where they are necessary. 

- use blank SAVE, 

In FORTRAN two different subprogram types exist nl. subroutines and functions. In cases 

where only one calculated result is required from a subprogram, the function type of 

subprogram is chosen (e.g. the LINT function, Example 1, Chapter 12). It is however not 

illegal to use a subroutine if only one calculated result is required. A subprogram is called from 

the calling program which may be the main program or another subprogram. During 

subprogram execution, the execution of the calling program is temporarily suspended. 

Returning from the subprogram, the execution from the calling program resumes. 

FORTRAN subprograms are complete separate programs. They are separately compiled and 

may be separately stored in memory. Main program variables or variables from another 

subprogram are not automatically known. Of course, subprograms cannot work together 

without some form of communication among them. There are two ways to communicate 

variables from one subprogram to another. Subprograms may have arguments (sometimes 

called formal parameters), and subprograms may share variables with other subprograms by 

means of common blocks of memory. This will be discussed in more detail below. 

Local variables 

All variables that are not communicated with other subprograms are called local. Consider: 

SUBROUTINE SUBl 

REAL C 

SAVE 

c = 10. 

RETURN 

END 

SUBROUTINE SUB2 

REAL C 

SAVE 

c = 20. 

RETURN 

END 

I 
I -------! 
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-------1:t:le variablaCJn Sl JB1 will thus not interfere with the variable C in SUB2. This helps to 

----~-~--~- ~ --HAaeFstana-'IJRy-swgwutil:les and -functions-are called_subprograms .. aod __ notlor msJ=a=JJ=.k=e_-~----------] 

subsections or substatements I 

The definition of FORTRAN is such that local variables do not retain their values between 

successive calls. 

Example: 

* variable not saved between calls 

SUBROUTINE SUB1 

INTEGER I 

WRITE (*,*) I 

I = 10 

RETURN 

END 

The variable I is written to the screen without having a value, consequently, the result is 

unpredictable. This is because, following the FORTRAN definition, the value of any type of 

variable is not defined before the first assignment. After the WRITE statement, a value is 

assigned to I. Subsequent calls to the subroutine SUB1 thus gives the following output: 

<unpredictable> 

<Unpredictable> 

<unpredictable> 

etc. 

In order to achieve that, in a subsequent call, I still has this value of 10, I should be 'saved' by 

means of a special SAVE declaration: 

* variable saved between calls 

SUBROUTINE SUB2 

INTEGER I 

SAVE 

WRITE (*,*) I 

I = 10 

END 

This subprogram will now give the following output: 

-- j 



.,.... If 

10 

TU 

10 

etc. 
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Note: With VAX-FORTRAN and Microsoft FORTRAN compilers, variables retain their values 

without SAVE statements. This is however an extension to the standard rule. With MacFortran 

on the Apple Macintosh, local variables only retain their values when using a SAVE statement. 

By means of a SAVE statement without variable names behind the other declarations (a so 

called blank SAVE), all local variables of the subprogram will retain their values. The use of 

blank SAVE is suggested here, even if only a few variables actually need to be saved for the 

following reasons: 

Safety: 

1) if one variable is by accident not listed behind the SAVE statement, the subprogram will 

not work properly, 

2) if subprograms share COMMON blocks among each other, the retaining of variables may 

become unpredictable if they are not saved explicitly by means of a blank SAVE. 

Speed: 

1) subprograms in which only essential variables are saved will run much slower because at 

each call to the subprogram some memory has to be assigned during calculations to hold 

the 'volatile' local variables and released on return to the calling program. In subprograms 

in which all the variables are saved, allocation of memory is done only once during the 

execution of the whole program. 

Arguments 

To understand the function of arguments it is necessary to have some understanding of the 

representation of variables in a compiled program. 

The compiler replaces variable names by memory addresses, e.g. 

A = B * C 

will be translated into: 

Al = A2 * A3 

(Where A1, A2 and A3 stand for the contents of the addresses of the memory locations). 

i 

i 

: 

i 

: 
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As stated previously, local variables in a subprogram are given explicit memory locations 

during subpr~gram compilation. For arguments appearing in an argument list, a different 

approach is followed: its memory location is provided by the calling program. A subprogram 

expects for each of its arguments an actual address provided by the calling program during 

execution. The subprogram does not use copies of the variables in the argument list, as is 

sometimes believed. The subprogram makes use of memory locations declared in the calling 

program and may directly change their contents. 

This has the following implications: 
- Names of variables do not have to be the same. It is advised however to use the same 

variable names in calling program and subprogram whenever possible. 

- The number of arguments in the 'call' should be the same as the number of arguments of 

the subprogram. 
- The variable types should match. Otherwise the location of, for instance an integer variable 

is used by the subprogram as if it contains a real value. The result is unpredictable. 

- If an argument is an array name, only the location of the first element is passed to the 

subroutine. In the subroutine, the array should be dimensioned again to make use of the 

other elements. An error may occur if the subprogram array is declared longer than it actually 

is, the subprogram may then change values of other variables that do not even appear in 

the argument list. As nothing is wrong with the array bounds within the routine, this error is 

hard to find. The programmer is tempted to use this knowledge for tricks that we consider 

very bad programming, e.g. declaring an array X as X(40) in the calling program and as 

X(2,20) in a subprogram. Although this kind of practice is standard FORTRAN the above 

mentioned type of errors will most likely result. 

Array declaration in a subroutine 

A flexible and relatively safe way of handling array-type arguments is the use of passed-length 

declaration: 

SUBROUTINE EXAMPL (X,ILX) 

IMPLICIT REAL (A-Z) 

INTEGER ILX 

DIMENSION X(ILX) 

Both the array and its length are arguments of the subprogram. In the calling program an array 

has to be declared as a local variable in order to reserve memory locations. Close to the actual 

declaration, also the array length should be given its value. Using a variable for the array 

length, one should be aware of value changes due to possible errors in the program code. 

There is a nice way to avoid this problem by the PARAMETER statement (see also Chapter 7): 
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------~sJ..,. . ...........uoutput-v.adabte·~c::· --------------------------------1 

Common blocks of memory 

Variables that appear in a COMMON statement undergo a special treatment by the compiler. 

Their addresses are situated in a memory block that may be shared with other subprograms. 

Schematically: 

PROGRAM EX 

REAL A,B,C 

COMMON /EXAMPL/ A,B,C 

CALL SUBl 

STOP 

END 

SUBROUTINE SUBl 

REAL X,Y,Z 

COMMON /EXAMPL/ X,Y,Z 

SAVE 

A= 10. 

Z = A*X+Z 

RETURN 

END 

The variables A, B and C in the calling program are situated in the same memory locations as 

the variables X, Y and Z in the subroutine SUB1. The variable A in SUB1 is local I Note that 

only the start address of the common block of memory is shared among the different 

subprograms. A construction we consider very bad programming is the subdivision of a block 

into variables in different ways by different routines, e.g. a secqnd subroutine using the same 

common block could be: 

SUBROUTINE SUB2 

REAL X,Y 

COMMON /EXAMPL/ A(2) 

SAVE 

X = A(l) +A(2) 

RETURN 

END 
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programs unreadable. It is then hard to trace where the value of a specific variable is changed. [ 

It is strongly recommended to use COMMON blocks for the tasks they are mearlflo-r:---- 1 

necessary communication of variables between subprograms that is hard to accomplish with 

arguments. Do not hesitate to use a long list of arguments for a subprogram fulfilling a 

complicated task. 

The use of COMMON blocks 

Scheme 1 below represents a hierarchical structure of subprograms in which two low level 

subprograms share certain variables. Accomplishing this by means of argument lists leads to 

the inclusion of superfluous arguments in higher level subprograms. It may be much clearer to 

use a COMMON block of variables shared by the low level routines. 

A typical situation when using routines from large numerical libraries such as IMSL, UNPACK, 

ODEPACK and others is given in Scheme 2. A library subroutine ROOTS is used to find roots 

of a user-defined function FUN. The argument list of FUN is prescribed by the supplier of 

ROOTS. There is no way then to communicate (extra) function parameters between A and 

FUN by means of arguments. A COMMON block shared by FUN and A is the solution. 

Scheme 1 Scheme 2 

Library routine 

In most cases COMMON blocks can be kept small. If for instance three pairs of subprograms 

need to communicate, use three small COMMON blocks with a unique name. The three pairs 

of subprograms may then be used and maintained independently. 
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SUMMARY use implicifinitialization witnCOGTCAClNIT;­

or explicit initialization with LOGICAL RESET. 

Many subprograms can only perform their defined task after some form of initialization, e.g. 

reading weather data from file, setting up mathematical functions, reading initial amounts of 

integrals (subprogram type 5) etc. When making reruns of a model, sometimes repeated 

initialization is desired. 

The initialization of a subprogram A is often done by a call to a different subprogram B that 

initializes the data from A. In practice this will need communication of the shared variables 

between the subprograms A and B. This problem will generally be solved by using a 

COMMON block consisting of variables used in both subprograms. In many cases a more 

elegant solution is to program the initialization of A into A itself without using a second 

subprogram B. This can be accomplished by two different methods, that may be called implicit 

and explicit initialization. 

The simplest way is to write a program section that is executed only during the first of several 

subprogram executions (implicit initialization). This is done as follows: 

subprogram A( ..... ) 

declarations 

LOGICAL INIT 

SAVE 

DATA INIT/.FALSE./ 

IF (.NOT.INIT) THEN 

* initialization procedure 

* set initialization flag 

INIT = .TRUE. 

END IF 

* rest of subprogram 

RETURN 

END 

Note that, using this structure, the user of the subprogram has nothing to do with the 

initialization. It is done automatically during the first time the s~bprogram is executed. A 

disadvantage is that initialization can be done only once since it is not controlled by the calling 

• 
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program. This implies that there is no possibility to repeat the initial calculations for a different 

to low level (service) routines. 

To control the initialization of a subprogram in the calling program, a reset parameter has to be 

supplied as an argument of the subprogram (explicit initialization). The subprogram now can 

have more than two states, an initialization state at which variables are set to zero, files are 

opened and closed etc. and no results are returned, a computation state i.e. the normal 

operation state at which the main task is done, and e.g. a terminal state at which summary 

statistics are calculated. 

If there are only two states, the action of the subprogram can be controlled by means of a 

LOGICAL RESET. In case more states are possible the INTEGER IT ASK is recommended. 

The control parameter (RESET or IT ASK) is the first argument in the argument list and invokes 

a reset (=initialization) of the subprogram when its value equals RESET =.TRUE1or ITASK=1, 

any other value will not cause initialization. At any time during simulation, sending 

RESET =.TRUE. or ITASK=1 will cause a reset of the subprogram and no results are 

generated. The subprogram should never change the value of the reset parameter. The 

control of the subprogram is left completely to the calling program. 

In general the following structure can be followed: 

subprogram (RESET, ... , 

........... ) 
LOGICAL RESET 

SAVE 

IF (RESET) THEN 

RETURN 

END IF 

RETURN 

END 

Four examples will be given. In the first example, implicit initialization with a LOGICAL INIT is 

used. A calling program is assumed in which a very large number of function values is 

required, for instance in complicated iteration loops, that has to be combined with a function 

that is costly to evaluate. The program below reduces the number of function evaluations to 

i 

I 

i 
. 

i 

i 

i 

·=======Ae;g~~MAitiaH¥rtf:le&e=29.9==ruastJOO=¥alt!esJS=SaiGuJatefblllQ,aua~td'=an~~~-~====== 

later to calculate required function values by linear interpolation (using the LINT function, see 

Chapter 12, Example 1). 
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1\1 FTiN lX) 

IMPLICIT REAL (A.;.,z) 

PARAMETER (ILBUF=400,XMAX=100.0) 

DIMENSION BUFFER(ILBUF) 

LOGICAL INIT 

SAVE 

DATA INIT/.FALSE./ 

* initialization of buffer with function values 

IF (.NOT.INIT) THEN 

* 

* 

calculate function values between X=O and X=XMAX 

XSTEP = 0.5 * XMAX / FLOAT(ILBUF) 

XLOC = 0.0 

DO 10 I=1,ILBUF,2 

XLOC = XLOC + XSTEP 

BUFFER(!) = XLOC 

costly function evaluation: 

BUFFER ( I+1) 

.10 CONTINUE 

INIT = .TRUE. 

END IF 

* evaluation of function value by linear interpolation 

FUN= LINT (BUFFER,ILBUF,X) 

RETURN 

END 

In a second example a weather file containing radiation and temperature records is opened 

and read at RESET =.TRUE.. Only the relevant statements and parameters for the reset are 

shown. 

SUBROUTINE WEATHR (RESET,IUNIT, 

$ FILE, 

$ IDAY, 

$ TMPA,AVRAD) 

IMPLICIT REAL (A-Z) 

REAL TMPA1(365), AVRAD1(365) 

.LN'l'~G.I!.a-<. IUNIT, IDATA, IDAY 

CHARACTER*(*) FILE 

LOGICAL RESET 

SAVE 

' 
I 
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STATUS='OLD' 

10 READ (IUNIT,' (2F8.2) ',END=100) VAR1,VAR2 

IDATA = IDATA+1 

TMPA1(IDATA) = VAR1 

AVRAD1(IDATA) = VAR2 

GOTO 10 

100 CLOSE (IUNIT) 

RETURN 

END IF 

*-----normal operation 

TMPA = TMPA1(IDAY) 

AVRAD= AVRAD1(IDAY) 

RETURN 

END 

Example for the initialization of an integrating subroutine: 

* 

* 

* 
* 

SUBROUTINE WEIGHT (ITASK, 

WLVI, 

DELT,TIME, 

IMPLICIT REAL (A-Z) 

INTEGER ITASK 

SAVE 

....... ) 

IF (ITASK.EQ.1) THEN 

initialization of state and rate 

WLV = WLVI 

GLV = 0. 

RETURN 

ELSE IF (ITASK.EQ.2) THEN 

calculation of the growth rate 

GLV = ....... . 

ELSE IF (ITASK.EQ.3) THEN 
new weight is old weight plus the growth during the stime 

step 

WLV WLV+GLV*DELT 

ELSE 

END IF 

RETURN 

END 
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RESET =.TRUE. a new output file by the name of OUTPUT.DAT is opened and thus, an old 

output file is closed and deleted. This means that at tile very first call to tfie routine (also with 

RESET =.TRUE.) there are no files to be closed and deleted. The presence of an opened file 

thus has to be known. This is done with the logical FOPEN which is given the initial value of 

.FALSE. by the DATA statement. 

SUBROUTINE OUTPUT (RESET, 

IMPLICIT REAL (A-Z) 

LOGICAL RESET 

CHARACTER*(*) FILE 

LOGICAL FOPEN 

SAVE 

FILE, .............. ) 

DATA FOPEN /.FALSE./ 

IF (RESET) THEN 

IF (FOPEN) CLOSE (UNIT=99) 

OPEN (UNIT=99, FILE=FILE, STATUS='NEW') 

FOPEN = .TRUE. 

RETURN 

END IF 

WRITE ( 9 9 , . . ... ) . . . . . 

RETURN 

END 
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Sl:JMM-A:R¥-· --de-net--'eveFRHe-Eiefault-UI"llt-r:'IUrnbers,--------·------ _ 

- always open files explicitly, 

- use file unit numbers of value 40 or higher, 

- pass unit numbers as arguments (part of the control line), 

- immediately close files if possible, 

- do not use TYPE and ACCEPT for screen input and output but READ 

and WRITE. 

The input and output operations (I/O) from a FORTRAN program (mostly reading and writing to 

file or screen) are always done by referencing a unit number. The (integer) value of a unit 

number is between 0 and 255. Some unit numbers like 0, 3, 5, 6,13, 14, and 15, may have a 

preassigned use. It is considered bad programming practice to overrule preassigned unit 

number for purposes other than the default ones (e.g. opening a file in VAX-FORTRAN with 

UNIT =5). This may cause problems and overruling the default assignments should thus be 

avoided. 

In V~X-FORTRAN, files don't have to be opened explicitly. The file is then created or opened 

at the first read or write operation. This is however not standard FORTRAN and therefore file 

1/0 must be preceded by an OPEN statement. 

Unit numbers of files are not local to a module !! In other words, if in a subroutine a file is 

opened with UNIT = 40, another subroutine cannot open another file also with UNIT = 40 

unless the first one is closed. Modules thus can interfere with each other by referencing the 

same units. 

Modules can access files in two ways: 

1) A file is opened and closed during the same call to the subroutine. This will occur mostly in 

situations where data are read from a file. The unit number is thus released at the return 

from the module. 

2) A file is opened during the first call to the subroutine and remains open during 

subsequent calls. This will occur mostly when data are output to a file during simulation. 

The unit number thus remains occupied after return from the module. 

To avoid interference between modules that use file 1/0, the unit number(s) should be 

passed as arguments in the argument list (part of the control line) instead of defined in the 

subroutine itself. In that way the calling program keeps control over the used unit numbers. 

ne 1nteger varue oftrre---umts----shoutd=t::m=¢-6 or higher se----as=net=t0=0vefftlte=tt:t~fattl,t======== 

assignments. 

In case a subroutine uses unit numbers, this should be indicated in the comment header (see 
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-------~r.bapteLa), it should also be indicated if the unit number is used only once (the file is opened 

~--~~~-, ~at.AR·~GseGii dYriRQ oce,call~ or it the unit nwnberJs,used~at eacb~call---(ffiEflile rem.a1ns 9Qel1). 

1/0 operations to the screen 

It is often desirable to read and write information from and to the screen. With VAX-FORTRAN 

this can be done with the TYPE and ACCEPT statements. These statements however are not 

standard FORTRAN and MS-FORTRAN will not recognize them. The standard FORTRAN 

aHernatives to TYPE and ACCEPT are READ and WRITE from UNIT=* (see example). 

Example: 
TYPE '(A)',' How many iterations:' 

ACCEPT '(I) ',ITER 

should be: 
WRITE (*,'(A)') 'How many iterations:' 

READ (*,*) ITER 

Note: There seems to be no standard FORTRAN way to hold the cursor at the· end of a 

question. Depending on the compiler, a dollar($), a backslash sign(\), or nothing at all behind 

the A FORMAT is used (e.g. '(A,$)'). 

i 
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---~6-Warntngs=am.t=ermrs=as_g_en_e_rate_d_b_y modrt-~uule~s~------- r 
------------------~----------- ----- ------ ----- ---------- -------- ---------- -- -- -- -- -- --------- --- ------ ------ -- _1 

--==============sQ-i=itJ"MMffMMA~-R:P¥~=-====-=oeur-reA~-rii:is-=iiJnn=-_r;-ea~s~eD-JnR~n.-ll:u-t-1e\i':r_:t"ie:rrtJtfr'pi1itJY.t-vmaruJlJmeRS~-a::rrr'Zl"e_-njrnnn~po~ "'\l:s~s*ibmle:r-_J-----=---------_-__ -_-___ -____ -__ -_____ -__ ----- \ 
I 

errors terminate programs with STOP 'message' 

- warnings in case input or output values are improbable, 

- warnings return a non-zero IWAR, negative for underflow, positive for 

overflow. 

In some cases it can be useful to check if the value of an input variable is within a range that 

can be handled by the subprogram. Some combinations of input values however may give 

wrong results (e.g. A can be less than 1 and B can be less than 1 but not A and Bat the same 

time). In some cases it may be useful to check also output variables. In case some variable has 

exceeded its input or output range, either a warning or an error will occur, dependent on the 

severity. 

Errors: 
An error occurs when the value of an input or output variable is impossible (e.g. negative soil 

moisture content, minimum temperature greater than maximum temperature). 

An error should result in the termination of the run by means of a STOP statement (note: 

CALL EXIT() is not standard FORTRAN). A message is then displayed on the screen. For 

instance: 

IF (LAI.LT.O.) STOP 'ERROR in EXAMPL: LAI < 0' 

Note: on some machines the message may not be readable since the output screen 

disappears on termination of the program. In the source text library TIUTIL (available on disk 

on request), a routine is provided to handle this: 

IF (LAI.LT.O.) CALL ERROR ('EXAMPL', 'LAI < 0') 

Warnings: 
A warning occurs when the value of an input variable is very unlikely but not impossible. A 

warning however will not terminate the execution~ 

A warning results in one of the return arguments (IWAR) set to a non-zero value. IWAR is an 
======~a~rg~u~m.,.-:e~n:a:ct=;;::o'F"f ;n:;tn=e=J=11701iSF(-se-e-enapters)-arn:t~e tJsed irr1he=ealling=J;)r-0§f-am=t-e---see=if=af1Yf=-====== 

warnings have occurred. An underflow of the valid range will result in a negative value of 

IWAR, an overflow in a positive value of IWAR. The absolute value is different for each variable 

and must be documented in the comment header of the subprograms. 
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'XrtHIOIH 

IWAR = 0 · 

IF (LAI.GT.lO.) IWAR 3 

I 
i 

I 

; 

! 
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7 Type declarations of functions and variables 

SUMMARY 

- exclusively use lxxxxx declarations for integer names, 

- use the PARAMETER statement to define constants, 

In CSMP all variables are REAL by default. In FORTRAN, the variables whose first characters 

are I,J,K,L,M,N default to INTEGER, others default to REAL. In dynamic simulation few integer 

variables are needed (mostly for counters in DO-loops). To avoid problems in interfacing 

CSMP with FORTRAN, all variables in FORTRAN modules are made REAL by the IMPLICIT 

REAL (A-Z) statement. However few integers are needed, reading a program is much easier if 

integers can be recognized without checking a list of integer declarations. Names of integers 

should therefore always begin with an 'I' and explicitly declared INTEGER (see the first 

example). For clarity, real variables should never begin with an 'I'. 

The declaration of arrays that are used later as arguments in a call needs some special 

attention. To enable passed-length declaration in the subprogram, the array length should be 

available as a constant or variable. In FORTRAN the PARAMETER statement can be used to 

define a fixed constant. (For the PARAMETER statement also see Chapter 3). 

Example: 

IMPLICIT REAL (A-Z) 

INTEGER PG0(20), DB 

DATA DB /20/ 

CALL EXAMPL (PGO,DB) 

should be (taking into account the recommendations of this chapter): 

IMPLICIT REAL (A-Z) 

INTEGER IPGO, ILPGO 

PARAMETER (ILPG0=20) 

DIMENSION IPGO(ILPGO) 

CALL EXAMPL (IPGO,ILPGO) 

I 

' 

i 
i 

i 

l 
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8 Header and comme..LIIncJI.-t_..ILLin~e.uo.s.__ _________________ _ 
I 

SIIMMARY - write ~mment in lowercase characters except FORTR_AN ~~roes, _________ _ 

- write comment above the statement it refers to, 

- write program headers containing at least author name and information 

on the arguments, 

- write extensive header for library routines. 

Different authors tend to write very different amounts of comments in their programs. It seems 

therefore rather useless to develop detailed rules for form and content of comment lines. It 

should be noted, however, that reading a program written by someone else often means 

reading comment lines. This appears to be much easier if comment lines are written in 

lowercase characters (except FORTRAN names). Further it is proposed here to write 

comment lines always above the statements they refer to. It is useful to divide a (sub)program 

into functional blocks of statements by means of open lines. These blocks may or may not 

coincide with DO-loops, IF-THEN-ELSE structures etc. A comment line above each functional 

block greatly simplifies program reading. Comment lines are coded usually with a 'C' in the first 

column. The'*' also is a valid character and improves readability. The exclamation mark 'I' 

cannot be used as this character only applies to VAX-FORTRAN. 

Somewhat more can be said about the form of a program header above a subprogram. This is 

a block of comment lines describing the program. A header is not meant as full 

documentation. For a discussion of scientific aspects of the calculations, the subprogram 

header may refer to the literature. A subprogram header should contain: 

1) the subprogram name, 

2) the name of the author, 

3) a version number incremented by one each time an improvement is made to the 

subprogram, (so that a user can see how many improvements have been made to the 

subprogram since he got his copy), 

4) a short function description, 

4a) optional: known bugs, if a bug in the subprogram has been detected that awaits 

improvement, 

5) a list of arguments and their meaning, 

6) a description of error conditions, the meaning of returned warnings, information on file 

access and the names of called subprograms. 

Below is a possible form for a full subprogram header. This header is available from the 

source-texUibrary TTIIB (a~blELO.D_disk on re_guest}~Somuxample lines' areJncluded 

They simplify header writing and should be deleted after use. 

I 

--I 
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* Authors: N. Nonsense, I. Irrelevant * 
* based on an--earlier version written-by:----- - ----- _____________ '/( _____ _ 

* Version: n 
* Purpose: This subroutine is meant to 

* (references to literature if possible) 

* .......................................... 
* Keywords:Utility, Header, 

* (Known Bugs: optional) 

* 
* FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) 

* 
* 
* 
* 
* 
* 
* 
* 

* name 

* 
type meaning units class * 

* 
* RESET 

* IUNIT 

* FILE 

* IWAR 

* XXX 
* BBB 

* ILBBB 

* TIME 

* DEAD 

* 

L4 

I4 

C* 

I4 

R4 

R4 

I4 

R4 

L4 

resets the routine when .TRUE. 

unit number of used file 

file name 

output, when .NE.O warning ! ! ! 

initial value of ...... 
calculated during initialization 

array length 

current time 

death flag ... 

* FATAL ERROR CHECKS (execution terminated, message) : 

* XXX< 0. 
* XXXXX1 > XXXXX2 

* 

C,I 

C,I 

I 

c,o 
XXX IN, I 

XXX IN,O 

I 

s T,I 

XXX 0 

* WARNINGS: 

* XXX> 100. 

value of IWAR returned 

1 

* XXXXX2-XXXXX1 > 10.· 

* AAA < 2. 

* 
* SUBROUTINES and FUNCTIONS called 

* 
* FILE usage : 

2 

-3 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

*----------------------------------------------------------------------* 
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-==-=-====-=-~=cgcnpuro"Vguroa:awmmmru11nning4s~ttvynle•---------------------------------- + 

StJMMARv--- comment-is-written-above-the-statemeAts--,- -------------- --­

don't use the exclamation mark 'I', 

- comment lines in lower case characters, 

- leave space between continuation character and rest of line, 

This chapter is meant to give hints to write more readable programs. FORTRAN is a language 

that does not force the programmer to write structured programs and it needs some discipline 

to write programs that don't discourage other readers to study them. 

Flow control statements 

Flow control statements specify the order in which the computations are done. They comprise 

the skeleton of a program. FORTRAN-77 control structures are DO-loops and IF-THEN-ELSE. 

Control structures like DO-WHILE, DO-UNTIL and CASE, are not standard FORTRAN and can 

be mimicked by functionally equivalent structures in standard FORTRAN. We recommend the 

methods given by the NNI manual (see references) because it provides 1) simple standard 

structures and 2) if some time in the future these control structures become part of standard 

FORTRAN, these structures are very easy to convert. 

Example of DO-WHILE loop: 

*-----do while loop 
10 IF (TIME.LE.FINTIM) THEN 

TIME = TIME+1. 

GOTO 10 

END IF 

Use of logical variables 

Sometimes the use of logicals improves the readability of IF statements. Complicated decision 

rules are programmed using logical expressions. 

Example: 

LOGICAL DEAD, YELLOW 



- 32 -

IF (.NOT.DEAD .AND. YELLOW) THEN 

END IF 

Indentation 

Indentation can be used to spot DO-loops and IF-THEN-ELSE constructs. An indentation of 

three spaces at each level in the program text is sufficient in most cases. Never use tabs in the 

program text as the interpretation of tabs by compilers and text editors is not standardized. 

Formats 

A standard feature of FORTRAN-77 is that FORMAT statements are no longer necessary. 

FORMAT strings can be included in the READ of WRITE statements directly. This makes 

programs a lot more readable as the line numbers of the FORMAT statements tend to be very 

confusing. 

Example of old-style FORMAT: 

WRITE(20,100) TMIN,TMAX,RAIN 

100 FORMAT('Minimum temperature=',F8.2,/, 

& 'Maximum temperature=',F8.2,/, 'Rainfall=',F8.2,/) 

Can now be written as: 

WRITE (20,' (3 (A,F8 .2, /)) ') 

& ' Minimum temperature=',TMIN, 

& ' Maximum temperature=',TMAX, 

& ' Rain=',RAIN 

Continuation of lines 

Characters beyond column 72 are ignored by the compiler (also not signalled I) and can be 

put on a second line, preceded by a continuation character. This continuation character can 

be put in the sixth column (preceded by 5 spaces, the use of tabs is not recommended), 

Programs can become very confusing when the program texf1stypecfimmediatelyoefima-n1e 

continuation character: 



the following line: 

*234567 

can be written (legally) as follows: 

*234567 

or as: 

A= 3.2*B*C* 

17.413 

*234567 
A= 3.2*B*C 

**7.413 

- 33 -

It would be less confusing if written like this: 

*234567 
A= 3.2*B*C* 

& 7.413 

. 
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----~10-Simulation by Euler integration in FO::.-:.R...::.-T=-=Rc....::.::A~N----------~ 

Themmprevious chapters dealt with. subprograms meant to be ~ombined with CSMP or 

FORTRAN main programs. Since FORTRAN is not a simulation language, some attention 

should be given to the structure of a simulation loop. The following sequence shows the 

correct order in which the different tasks should be put when using the rectangular integration 

method. 

state = initial, rate = 0 

10 IF (TIME.LE.FINTIM) THEN 

integration 

generation of driving variables 

rate calculations 

output of simulation results 

TIME = TIME+DELT 

GOTO 10 

END IF 

STOP 

The example below shows this sequence for a simple crop growth simulation model. After 

initialization of the state variables, the integration statements follow. Tthe first integration is 

dummy, since the rates have been set to zero in the initial part of the program. Subsequently, 

driving variables and rates are calculated. At this point in the program, the state of the system 

and the corresponding rates of change may be sent to an output device. The sequence of 

the statements implies that during the first time step the initial state is written to the output 

device. 

PROGRAM EXAMPL 

IMPLICIT REAL (A-Z) 

INTEGER IDAY, INT, IWAR 

CHARACTER STAT*20 

REAL FLVT(4), FSTT(4), FRTT(4) 

*-----species parameters 

PARAMETER (AMAX=30., EFF=0.45, KDIF=0.7) 

PARAMETER (MAINLV=0.025, MAINST=0.015, MAINRT=0.01) 

PARAMETER (SLA=0.002) 

*-----dry matter distribution functions 

DATA FLVT /0.,0.85, 1.,0.45/ 

DATA FSTT /0.,0.00, 1.,0.40/ 

*-----initial amounts of state variables 

DATA WLV /5./, GLV /0./ 

DATA WST /0./, GST /0./ 
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..... .,.rn.,. ... .,.,.....rn '"' I ,...,.....rn 1(1 I 
JJ.n..J..n. nL'-.J. I ..J • I f '-.:TL'-.J. I v • 1 

*-----timer parameters 
DATA TIME /120./, FINTIM /200./, DELT /1./ 

*-----initialization of weather routine 

DATA STAT /'WAG'/ 

10 IF (TIME.LE.FINTIM.AND.DVS.LE.1.) THEN 

*-----integration 

WLV WLV+GLV*DELT 

WST WST+GST*DELT 

WRT 

DVS 

WRT+GRT*DELT 

DVS+DVR*DELT 

LAI WLV*SLA 

*-----driving variable generation and rate calculation 

CALL WEATHR (40,IWAR, 

& 

& 

& 

TMPA 

STAT,1983,NINT(TIME),1, 

LONGIE, LATIN, ALTI, 
TMIN, TMAX, AVRAD, RAIN, VAP, WIND) 

(TMIN+TMAX) I 2.0 

CALL ASTRO (TIME,52.,DAYL,SINLD,COSLD) 
CALL TOTASS (TIME,DAYL,AMAX,EFF,LAI,AVRAD,SINLD,COSLD,DTGA) 

GPHOT = DTGA*30./44. 

TEFF = 2.**((TMPA-25.)/10.) 

MAINT TEFF*(MAINLV*WLV+MAINST*WST+MAINRT*WRT) 

AVASS =MAX (O.,GPHOT-MAINT) 

*-----linear interpolation 

FLV LINT (FLVT,4,DVS) 

FST LINT (FSTT,4,DVS) 

FRT LINT (FRTT,4,DVS) 

*-----rate calculations 

GLV FLV*AVASS/1.4 

GST FST*AVASS/1.4 

GRT FRT*AVASS/1.4 

DVR 0.02*(TMPA-12.) 

*-----output during simulation 

WRITE (*,*) TIME,IWAR,WLV,WST,WRT,GLV,GST,GRT,GPHOT 

*-----time updating and jump to time loop control 

: 

. 

i 

j 

' 

. 

1 

. 

I 

i 

i 



TIME = TIME+DELT 

GOTO 10 

END IF 

STOP 'End of simulation' 

END 
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--1~1=E-.mcutton_o_f_pr_o_gram_s 

S8MMAR¥~---use-aFFay-9et:~R9-GI'leGks, 

use standard FORTRAN compiler option, 

- consider the use of object libraries, 

- screen debuggers are useful. 

The concept of modular programming can only be fully implemented with some knowledge 

about the execution of programs. The execution of a program basically consists of two parts, 

compilation and linking. During compilation the program statements of the source text are 

translated into instructions of the computer's processor. During compilation, a new file is thus 

created called an object file. This file however does not contain all the information needed to 

execute the program. For instance the algorithms to compute mathematical functions and 

routines that are called and reside in a library (e.g. IMSL, KOMPLOT, or user- defined libraries) 

are not yet included in the program. These routines are attached to the object file during the 

linker phase, the result being an executable file. 

It is not necessary to have all subprograms together in one large source text. Functions and/or 

subroutines can be compiled separately. They can then be linked with other routines to give 

an executable program or can be put into an object library. During development of a program 

or routine, it is advisable to execute the program from the debugger and to have array-bounds 

checked continuously during execution. 

Standard FORTRAN compilation 

Especially with compilers that recognize non-standard extensions of the language, it is 

important to not make use of these extensions. The portability of the source text to other 

machines is then maximized. Some compilers that are able to recognize extensions can be 

instructed to generate warnings on non-standard FORTRAN syntax. 

An extremely useful program to check FORTRAN source texts in this respect is FORCHECK 

(see references). FORCHECK has much stronger syntax, variable declaration, argument 

passing and standard FORTRAN checking capacities than most compilers. 

Checks on array bounds 

The default compilation of FORTRAN is without checks on the (integer) value of array 

---~-1 

subscripts. It may lead to unforeseen situations if one is not aware of this. In the example 

tfelow,=tn-e~t:Jo~toop=tnat=rs--assu ~"TWd=to=mn=from=t=1 to 1-1 9-is~in=f-aet aR iRfiRite=l~f'lep======== 

explanation for this is that IA(11) is mapped on the same memory location as I, the counter of 

the loop. When IA(11) is made equal to 1, also the counter of the loop is reset to 1. 
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PROGRAM EXAMPL 
--------INTE'GE~R-I~A~(-1-0~)--,-I--,-I-N---------------~-----

IN=--~-

DO 10 I=O,IN 

IA(I+1)=1 

10 CONTINUE 

END 

A check on the array subscripts will catch these errors (see your compiler's manual how to 

check this). 

Execution from a debugger: 

The execution phase from a debugger normally brings about a number of extra commands. A 

debugger however is a very valuable tool to speed up program development and minimize 

the risk of program errors. Programs can be executed line by line with the source text 

displayed on the terminal, values of variables can be displayed and changed before the next 

program line is executed. 

Working with libraries 

A library is a set of programs that are kept in a file. Different types of libraries exist e.g. text 

libraries and object libraries. In text libraries, normal text files can be stored. In object libraries, 

compiled subroutines and functions can be stored. (An object library however cannot contain 

text files and vice versa!). Subroutines and functions that are created during program 

development and have been tested sufficiently can be put into an object library. The 

advantage is that compilation of every routine is not done each time the main program is 

compiled which speeds up program development and limits the costs. The routines that are 

put into the library are attached to the main program by the linker. 

Example session using an object library 

The commands in the following example apply to VAX-FORTRAN. With other compilers on 

other machines, the commands are different but the procedure is essentially the same. 

Assume we have a main program called MAIN.FOR in which a potential evaporation rate is 

used. The rate is obtained by a call to the subroutine PENMAN. The program text of the 

subroutine PENMAN however is not in MAIN. FOR but in a separate file PENMAN. FOR. It is 

our intention to compile PENMAN.FOR and insert the object fife permanently into an existing 

object library (MODULE.OLB) from which we will link it to the main program. The handling of 
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$ FOR'I'RAN/CHECK-BOU:NDS /STANDARD FEWM..1\N _________ _ 

;compiles PENMAN. FOR with array bound 
checks during execution. 

$ LIBRARY/OBJECT/INSERT MODULES.OLB PENMAN.OBJ 

; insert PENMAN into MODULES. 

$ FORTRAN/CHECK=BOUNDS/STANDARD MAIN ;compilation of MAIN.FOR 
$ LINK MAIN,MODULES/LIBRARY ;instructs the linker to link MAIN.OBJ with 

routines from MODULES.OLB that are 
called in MAIN. 

$ RUN MAIN ;run MAIN.EXE 
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Example----'o-f_cmo-dule-t-ype-1 

This LINT function is a linear interpolation function. Before returning the interpolated value, 

the function checks the ascending order of the X-values, and also if the X-value at which 

interpolation is to take place is within the range of the X- values of the data. When this 

happens, a message is printed on the screen that interpolation is outside the defined region. 

The returned value then is the Y -value of the nearest X-value. 

The result from the interpolation is returned to the main program through the name of the 

function (LINT). 

*------------------------------------------------------------------------* 
* REAL FUNCTION LINT * 
* Authors: Daniel van Kraalingen * 
* Version: 1 * 
* Purpose: This function is a linear interpolation function. The * 
* function does not extrapolate : in case of X below or * 
* above the region defined by TABLE, the first * 
* respectively the last Y-value is returned and a message * 
* is generated. * 
* Keywords :Utility, linear interpolation * 

* * * FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) * 
* name type meaning units class * 

* 
* LINT 

* TABLE 

* 
* ILTAB 

* 
* X 

* 
.* 

R4 function name, result of the interpolation 

R4 A one-dimensional array with paired 

data: x,y,x,y, etc. 
I4 The number of elements of the array 

TABLE 
R4 The value at which interpolation should 

take place 

* FATAL ERROR CHECKS (execution terminated, message) : 

* TABLE(I) < TABLE(I-2) , for I odd 

* ILTAB odd 

* 

0 

I 

I 

I 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* No WARNINGS using the control variable IWAR are generated since * 
* nobody will check IWAR after each LINT call ; instead an X-value * 
* below TABLE(1) or above TABLE(ILTAB-1) is reported on screen * 
* with a message containing the value of ILTAB and X. Further * 
* information on the error is not available within this function. * 
* * 
* No other SUBROUTINES and FUNCTIONS are called * 



FILE's are used 

INTEGER I, IUP, ILTAB 

DIMENSION TABLE(ILTAB) 

SAVE 
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with WRITE ( *, ... ) . . . ) 

* check on odd ILTAB 

* 

IF (MOD(ILTAB,2) .NE.O) THEN 

WRITE (*,'(A, I4/ ,A)') 

$ ' ERROR in function LINT: ILTAB=',ILTAB, 

$ ' ILTAB must be even ! ' 

$ 

$ 

$ 

PAUSE ' - Press RETURN to continue -' 

STOP 

END IF 

IUP = 0 

DO 10 I=3,ILTAB,2 
check on ascending order of X-values in function 

IF (TABLE(I) .LE.TABLE(I-2)) THEN 

WRITE (*,' (A,I4/,A,I4,A/,A) ') 
' X-coordinates not in ascending order at element',I, 

' LINT-function contains',ILTAB,' points', 

' Run deleted!' 

PAUSE ' - Press RETURN to continue -' 

STOP 

END IF 
IF (IUP.EQ.O.AND.TABLE(I) .GE.X) IUP I 

10 CONTINUE 

IF (X.LT.TABLE(1)) THEN 

WRITE (*,'(A/A, I4,A/A,G12. 4) ') 

$ ' Interpolation below defined region!!', 

$ ' LINT-function contains ',ILTAB,' points,', 

$ ' Interpolation at X=',X 

$ 

$ 

LINT TABLE(2) 

GOTO 40 

END IF 

IF (X.GT.TABLE(ILTAB-1)) THEN 

WRITE (*,' (A/A,I4,A/A,G12.4) ') 

' Interpolation above defined region!!', 

' LINT-function contains ',ILTAB,' points,', 

LINT= TABLE(ILTAB) 

GO TO 40 

END IF 

* 
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------~------* ~MAX~<-TMIN3·------------------------------------------~---

SUBROUT::I:NES_and.FUNC'l'IONS called : ER~O~ * 
* * FILE usage : none 

*------------------------------------------------------------------------* 

$ 

REAL FUNCTION TEMP (IWAR, 

IMPLICIT REAL (A-Z) 

INTEGER IWAR 

SAVE 

TMAX1,TMIN2,TMAX2,TMIN3,DAYL,HOUR) 

PARAMETER (PI=3.14159, TAU=4.) 

* errors and warnings 

IWAR = 0 

* 

* 

* 

* 

IF (HOUR.LT.O.) CALL ERROR ('TEMP', 'HOUR< 0') 

IF (HOUR.GT.24.) CALL ERROR ('TEMP', 'HOUR> 24') 

IF (TMIN2.GT.TMAX2) CALL ERROR ('TEMP', 'TMIN > TMAX') 

IF (TMIN2.GT.TMAX1) IWAR +1 

$ 

$ 

IF (TMAX2.LT.TMIN3) IWAR = -2 

SUNRIS 

SUNSET 

12.-0.S*DAYL 

12.+0.5*DAYL 

IF (HOUR.LT.SUNRIS) THEN 
hour between midnight and sunrise 
TSUNST TMIN2+(TMAX1-TMIN2)*SIN(PI*(DAYL/(DAYL+3.))) 

NIGHTL 

TEMP1 

24 .-DAYL 
(TMIN2-TSUNST*EXP(-NIGHTL/TAU)+ 

(TSUNST-TMIN2)*EXP(-(HOUR+24.-SUNSET)/TAU))/ 

(1.-EXP(-NIGHTL/TAU)) 

ELSE IF (HOUR.LT.13.5) THEN 
hour between sunrise and normal time of TMAX2 
TEMP1 = TMIN2+(TMAX2-TMIN2)*SIN(PI*(HOUR-SUNRIS)/(DAYL+3.)) 

ELSE IF (HOUR.LT.SUNSET) THEN 

hour between normal time of TMAX2 and sunset 

TEMP1 = TMIN3+(TMAX2-TMIN3)*SIN(PI*(HOUR-SUNRIS)/(DAYL+3.)) 

ELSE 
hour between sunset and midnight 
TSUNST TMIN3+(TMAX2-TMIN3)*SIN(PI*(DAYL/(DAYL+3.))) 

NIGHTL 

TEMP1 

24 .-DAYL 
(TMIN3-TSUNST*EXP(-NIGHTL/TAU)+ 

$ (1.-EXP(-NIGHTL/TAU)) 

END IF 

TEMP = TEMP1 
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K.l:!,;'l'UKN 

END 

Example of subprogram type 3 

*------------------------------------------------------------------------* 
* SUBROUTINE PENMAN 
* Authors: Daniel van Kraalingen 

* based on an earlier version written by: Kees van Diepen 

* Version: 1 
* Purpose: This subroutine calculates potential evaporation 

* according to Penman (1948) . 

* Keywords:Simulation, potential evapotranspiration 

* 
* FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) 

* name type meaning units 

* 
* IWAR I4 output, when .NE.O warning ! ! ! 

* ELEV R4 Elevation of site 

* A R4 Coefficient of Angstrom formula 

* B R4 Coefficient of Angstrom formula 

* ATMTR R4 Atmospheric transmission 

* TMIN R4 Minimum temperature during day 

* TMAX R4 Maximum temperature during day 

* WIND R4 Average winds peed 

* EO R4 Potential evaporation of open water 

* ESO R4 Potential evaporation of soil 

* ETO R4 Potential evapotranspiration of crop 

* 
* FATAL ERROR CHECKS (execution terminated, message) 

* ATMTR < 0 or ATMTR > 1 

* TMIN > TMAX 

* WIND < 0 

* AVRAD < 0 

m 

c 
c 

m/s 

cm/d 

cm/d 

cm/d 

* VAP > SVAP * 1.01 (entered vapour pressure > theor. saturated) 

* 
* WARNINGS 

* AVRAD > 40,000,000 J m-2 d-1 

* AVRAD < 100,000 J m-2 d-1 

* 
* SUBROUTINES and FUNCTIONS called 

* 
* FILE usage : none 

value of IWAR returned 

1 

-1 

LIMIT, ERROR 

* 
* 
* 
* 
* 
* 
* 
* 
* 

class * 
* 

c,o * 
I * 
I * 
I * 
I * 
I * 
I * 
I * 
0 * 
0 * 
0 * 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

*------------------------------------------------------------------------* 
SUBROUTINE PENMAN (IWAR, 

$ ELEV,A,B,ATMTR,TMIN,TMAX,AVRAD,WIND,VAP, 

i 
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$ EO,ESO,ETO) 

IMPLICIT K.l!.iAL {A-Z.) 

INTEGER IWAR 

*-----Albedo for water surface, soil surface and canopy 

PARAMETER (REFCFW 0.05) 

PARAMETER (REFCFS 

PARAMETER (REFCFC 

0.15) 

0.25) 

*-----Latent heat of evaporation of water (J/kg=J/mm) and 

* Stefan Boltzmann constant (J/m2/d/K) Psychrometric 

* instrument constant (K-1) 

PARAMETER (LHVAP = 2.45 E6) 

PARAMETER (STBC 4.9 E-3) 

PARAMETER (PSYCON= 0.000662) 

*-----errors and warnings on some input variable ranges 

IWAR = 0 
IF (ATMTR.LT.O .. OR.ATMTR.GT.1.) 

& CALL ERROR ('PENMAN', 'ATMTR<O or >1') 

IF (TMIN.GT.TMAX) CALL ERROR ('PENMAN', 'TMIN > TMAX') 

IF (WIND. LT. 0.) CALL ERROR ('PENMAN', 'WIND < 0') 

IF (AVRAD. LT. 0.) CALL ERROR ('PENMAN', 'AVRAD < 0') 

IF (AVRAD.LT.100. E3) IWAR=-1 

IF (AVRAD.GT.40. E6) IWAR=+1 

*-----Mean daily temperature and temperature difference (Celsius) 

TMPA (TMIN+TMAX)/2. 

TDIF = TMAX-TMIN 

*-----Coefficient Bu in wind function, dependent on 

* temperature difference 

BU = 0.54+0.35*LIMIT(0.,1., (TDIF-12.)/4.) 

*-----Barometric pressure (mbar), Psychrometric constant (mbar/K) 

PBAR = 1013.*EXP(-0.034*ELEV/(TMPA+273.)) 

GAMMA = PSYCON*PBAR 

*-----Saturated vapour pressure according to equation 

* of Goudriaan (1977) 
SVAP = 6.11*EXP(17.4*TMPA/(TMPA+239.)) 

IF (VAP.GT.SVAP*1.01) CALL ERROR ('PENMAN', 'VAP > SVAP') 

*-----Derivative of SVAP with respect to temperature, i.e. slope of the 

* SVAP-te:mge_ra.tl.lr_€!_ c;u~v:e (IDl:>C!rLKl 
DELTA= 239.*17.4*SVAP/(TMPA+239.)**2 
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-------HJChF+ra+HR§&;-ln~-epresents the OOtJ · . Other st~~--u _____ ] 
- -- -- --- -~-- -~-u---·<taria:bles-d&neHRflt:leAoe "St:.tbpreoess-2- aneh'effiaiA-Ieeal-vaFiables- inside st:tbFetdine MQQEI:::~ . ----- -~- - ~-----J 

I 

A large subroutine header has been omitted. Also warnings and errors have not been 

programmed into this schematic example. Integration could be blocked, for instance, without 

previously calculated rates of change . 

SUBROUTINE MODELl (ITASK,IOUT,IUNIT, 

$ TIME,DELT, 

$ ..... ,Sl) 

* Simulates subsystem 1 described with status 

* variables STATl and STAT2. Uses Euler integration. 

* ITASK - input, controls action taking place 

* IOUT - input, output control 

* IUNIT - input, unit number to be used 

* TIME - input, global system time 

* 
* 
* 

DELT 

Sl 

- input, timestep 

- output, copy of local status variable STATl 

used for coupling with MODEL2 

IMPLICIT REAL (A-Z) 

* declaration of subroutine arguments 

INTEGER ITASK,IOUT,IUNIT 

REAL TIME,DELT,Sl 

* local variables ; system description 

REAL LTIME,STATl,STAT2,RATEl,RATE2 

LOGICAL LOUT 

* 

* 

* 

* 

* 

SAVE 

IF (ITASK.EQ.l) THEN 

initialize system 

STATl = 0.0 

STAT2 = 1.0 

set initial rates to zero 

RATEl = 0.0 

RATE2 = 0.0 

initialize local time 

LTIME = TIME 

output when enabled 

LOUT = IOUT.GT.O 

IF (LOUT) THEN 

open output 

CALL FOPEN (IUNIT, 'MODELl.OUT', 'NEW', 'UNK') 

WRITE (IUNIT,' (A/)') 'time, states, rates' 

END IF 
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·~----___,c_na.nge. In that way_S1 r~presents-ttte-e~between the-twe-stt:esystems. O~ate 1 
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A large subroutine header has been omitted. Also warnings and errors have not been 

programmed into this schematic example. Integration could be blocked, for instance, without 

previously calculated rates of change . 

SUBROUTINE MODELl (ITASK,IOUT,IUNIT, 

$ TIME,DELT, 

$ ..... ,Sl) 

* Simulates subsystem 1 described with status 

* variables STATl and STAT2. Uses Euler integration. 

* ITASK - input, controls action taking place 

* IOUT - input, output control 

* IUNIT - input, unit number to be used 

* TIME - input, global system time 

* DELT - input, timestep 
* Sl - output, copy of local status variable STATl 

* used for coupling with MODEL2 

IMPLICIT REAL (A-Z) 

* declaration of subroutine arguments 

INTEGER ITASK,IOUT,IUNIT 

REAL TIME,DELT,Sl 

* local variables ; system description 

REAL LTIME,STATl,STAT2,RATEl,RATE2 

LOGICAL LOUT 

* 

* 

* 

* 

* 

SAVE 

IF (ITASK.EQ.l) THEN 

initialize system 

STATl = 0.0 

STAT2 = 1.0 

set initial rates to zero 

RATEl = 0.0 

RATE2 = 0.0 

initialize local time 

LTIME = TIME 

output when enabled 

LOUT = IOUT.GT.O 

open output file by call to utility 

CALL FOPEN (IUNIT, 'MODELl.OUT', 'NEW', 'UNK') 

WRITE (IUNIT,' (A/)') ' time, states, rates' 

END IF 



* 

* 

* 

* 
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to global time TIME. That could be checked here. 

RATEl = function (LTIME,STATl,STAT2) 

RATE2 = function (LTIME,STATl,STAT2) 

IF (LOUT) 
$ WRITE (IUNIT,*) LTIME,STATl,STAT2,RATEl,RATE2 

ELSE IF (ITASK.EQ.3) THEN 
integrate ; system status a timestep DELT later 

STATl = STATl + RATEl * DELT 

STAT2 = STAT2 + RATE2 * DELT 

local time increase 

LTIME = LTIME + DELT 

ELSE IF (ITASK.EQ.4) THEN 
terminal calculations (none) ; terminal output 

IF (LOUT) WRITE (IUNIT,' (A)') ' simulation halted' 

END IF 

* The coupling with MODEL2 requires STATl as an output 

* variable. So before leaving the routine the local 

* status variable STATl is copied to output variable Sl 

Sl = STATl 

RETURN 

END 

The layout of MODEL2 is similar. There the input variable S1 is used in the calculation of rates of 

change when ITASK is 2. The actual coupling becomes very simple now. The calling program 

follows closely the structure proposed in Chapter 10 for Euler integration. 

Initialization calls are done with ITASK=1. In the "program" below the value of logical OUT enables 

both models to write output to a file (unit numbers 40 and 41). 

* initialization ; set initial states and prepare 

* for a first (dummy) integration call in which 

* no states are changed 

TIME 0.0 

OUT .TRUE. 
CALL MODELl (l,OUT,40,TIME,DELT, ... ,Sl) 

CALL MODEL2 (l,OUT,41,TIME,DELT,Sl, ... ) 
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Now the system is prepared for the integration loop. A problem here is that N timesteps require 

~~··~·····~ ..•.. ·- ... ·~~· • --· ·-~-- . ---. - --·· • -~····· ·-· ~-~·-·-····~ .•• ·-··-· .J 

should be located in such a way that rates of change belong to the current status and not to the I 

previous one. A simple solution was used already in Chapter 1 ~Allirst tneintegrafion calls are ··· -· __ I 

done, then driving variables and rates of change are calculated. Using such a loop, however, the 

first integration call should be a dummy one. No status variables should be changed then, for 

instance, by setting rates of change to zero during initialization calls (see MODEL 1 above). 

* integration loop 
IF (TIME.LE.FINTIM) THEN 

* integration ; get system into new status 

CALL MODELl (3,0UT,40,TIME,DELT, ... ,Sl) 

CALL MODEL2 (3,0UT,4l,TIME,DELT,Sl, ... ) 

* generation of driving variables 

CALL WEATHR ( ...... ) 

* rates of change for subsystem 1 
CALL MODELl (2,0UT,40,TIME,DELT, ... ,Sl) 

* rates of change for subsystem 2 using Sl as input 

CALL MODEL2 (2,0UT,4l,TIME,DELT,Sl, ... ) 

* output of combined model 

TIME = TIME + DELT 

END IF 

* terminal section 
CALL MODELl (4,0UT,40,TIME,DELT, ... ,Sl) 

CALL MODEL2 (4,0UT,4l,TIME,DELT,Sl, ... ) 

A few further remarks are made now. The example MODEL 1 is kept simple. In practice a few 

groups of subroutine arguments will occur. There are (time) control variables like IT ASK, OUT , 

IWAR and DEL T. There are input variables used during initialization only. The initialization call may 

produce results as well, certain constants for instance, needed in other modules. And finally the 

dynamic calls (ITASK=2,3) will require input and output variables. 

In MODEL 1, the status variable STAT1 itself was not returned to the calling program. Instead, its 

value was copied into an· argument. That provides an easy way of adapting the program to other 

coupling requirements. A subroutine argument can be added or removed without the need to 

change the (carefully written) system status declarations etc. Further, checks are possible against 

external system changes. 

A simulating subroutine may be the top level subroutine of a whole group. Within such a group of 
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the model. It is important, however, that the top level routine is simple. It should be easy to use for \ 

people who cannot go fmotl1Efclelruls ofU1e moaer:Preferaoty, ontya-numoe~r-of-c-aus-a-re-to_b_e ___ · -~·---· -i 
included in the calling program. Datafiles can be read from the initial section of the model The 

need to include common blocks almost certainly leads to erroneous model use. 

The integration method used inside each of the two (or more) simulating subroutines does not 

need to be the simple Euler method. During the integration call the Runge-Kutta method, for 

instance, could be used to simulate the subsystem over a time DEL T. That method involves 

repeated rate calculations usually programmed into a separate subroutine. Omission of the first 

integration call is easily realized then by means of a logical variable, set during initialization. And 

the rate calculations for ITASK=2 are done for the current status of the subsystem. So the 

coupling method described above implies only that the interaction (the feedback from the other 

subsystems) takes place at regular time intervals. 

The above method is easily applicable when all subsystems are simulated with equal timesteps 

since there are no specific coupling problems. When the subsystems determine their own, local, 

timesteps the coupling timestep can be held fixed when the interaction is weak. Otherwise more 

elaborate schemes are required or a complete 'fusion' of the models should be carried out. 
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