
Simulation Reports CABO-TT

Subprograms in simulation models

D.W.G. van Kraalingen and C. Rappoldt*

Simulation Report CABO-TT nr. 18

*Author names are in alphabetical order

A joint publication of

Centre for Agrobiological Research (CABO)

Department of Theoretical Production Ecology, Agricultural University

Wageningen 1989

supplementary information on agricultural simulation

models that have been published elsewhere. Knowledge of

those publications will generally be necessary in order to

be able to study this material.

Simulation Reports CABO-IT describe improvements

of simulation models, new applications or translations of the

programs into other computer languages. Manuscripts or

suggestions should be submitted to:
H. van Keulen (CABO) or J. Goudriaan (TPE).

Simulation Reports CABO-IT are issued by CABO and

TPE and they are available on request. Announcements of

new reports will be issued regularly. Addresses of those

who are interested in the announcements will be put on a

mailing list on request.

Address

Simulation Reports CABO-IT

P.O. Box 14
6700 AA Wageningen

Nether lands

Authors affiliation

(Alphabetical order)

D.W.G. van Kraalingen and C.Rappoldt:

Department of Theoretical Production Ecology

P.O. Box 430, 6700 AK Wageningen, The Netherlands

-l
!

Preface

Them~imulation programs in the early days of modelling were relatively small and easy to

undM~and.Theamoo~~~~~n~~~-~~-n~da~~~dm~~-~~
existing knowledge simply had not yet been put into the model. By including more and more

information into existing simulation models, often much of the original structure was retained

leading to unstructured programs that were error prone. With the advent of structured and

modular programming, many people realized that this provides a way out.

A general programming language like FORTRAN leaves the user an enormous amount of

freedom. A simulation program which is structured and modular in the technical sense is not

automatically a readable and adaptable model. Many different solutions to problems as task

definition, initialization and time control are possible and they are not equally clear. We have

tried to give simple solutions to a series of problems known to everyone writing crop growth

simulation models in FORTRAN. The basis of this report is a classification of subprograms

according to their function in a simulation model. Writing a simulation model, a clear insight in

these matters is very useful.

Through our experience with models we are convinced that the spin-off from structured and

modular programming can be increased considerably by adopting standard solutions. After

lengthy discussions, and taking into account pro's and con's of a particular solution we

decided to write down our conclusions in this report.

This report is not meant as a guide for writing neat, syntactically correct FORTRAN programs.

There are very good books serving, that purpose and you may find some in the list of

references. Writing a modular simulation model using the guidelines we provide in this report

may speed up program writing, reduce errors and stimulate the exchange of subprograms

among scientists. We hope this report contributes to the improvement of simulation models.

1Janie{ van 1(raafingen ana tj(f,es 1?.flppo{at

---------'----1
I

__ _j

Contents
I

1 Introduction 3

2 Classification of subprograms 5

3 Subprograms in FORTRAN 9

4 Initialization of subprograms 17

5 Unit numbers and file handling 23

6 Warnings and errors as generated by modules 25

7 Type declarations of functions and variables 27

8 Header and comment lines 29

9 Programming style 31

10 Simulation by Euler integration in FORTRAN 35

11 Execution of programs . 39

12 Examples 43

References and further reading . 54

- 1 -

Eentoenemoodaantal sim~e-mGdellen maakt gebfYlk van FORTRAN sub·~o~PK.rO~Y.Q~-~-«ra;um-Himl+laa~·s---\.ol-l-f~is>----------+

helemaal geschreven in modulair opgezet FORTRAN. Er bestaat echter geen overeen- ... -----~
stemming over de wijze waarop subprogramma's gebruikt moeten worden. Dit rapport geeft

aanwijzingen, richtlijnen en oplossingen voor problemen bij het ontwikkelen van modellen. In

de eerste twee hoofdstukken worden de voordelen besproken van modulair programmeren

en wordt een klassifikatie gegeven van subprogramma's. In de hoofdstukken 3-9, worden

oplossingen gegeven voor problemen die bij het schrijven van subprogramma's optreden. In

hoofdstuk 10 wordt een eenvoudig gewasgroeimodel besproken. Hoofdstuk 11 handelt

over het compileren en linken van programma's. In hoofdstuk 12 worden voorbeelden van

subprogramma's gegeven die volgens de in dit rapport gegeven richtlijnen zijn geschreven.

Summary

A growing number of simulation models has incorporated FORTRAN subprograms or is

written entirely in modular FORTRAN. There is however no concensus on how to use

subprograms. This report provides hints, guidelines and solutions to problems that occur

during model development. In the first two chapters, the advantages of modular programming

and the different types of subprograms that can be recognized are discussed (Chapter 1 and

2). In the Chapters 3-9, hints are given and solutions presented to problems that normally

arise during subprogram writing such as file handling and initialization. In Chapter 10, a very

simple FORTRAN crop growth simulation program is discussed. Chapter 11 deals with

compilation and linking. In Chapter 12 examples are given of subprograms that have been

written according to the guidelines of the report.

;

- 2 -

- 3 -

-------:--==--==--======~AdLtaa-!Hrg:J£et=mmedel is born as a small model. Initially only few processes are modelled During

development of the model_, processes and interrelations are included. Often additions

describing new aspects are dispersed throughout the program. In this way the description of

subprocesses may easily become inaccessible for anyone but the author. The more the

program structure deviates from th.e structure of the system, the harder it becomes to

understand the program. This practice results in a vicious circle, existing programs lack a

structure and are unsuitable to extract parts from, as a consequence everybody starts from

scratch which in turn leads to yet another model of bad design. The formulation of well

defined subprograms and the use of a few conventions is a way to overcome this difficulty.

Advantages of the use of subprograms are :

- transportability with respect to other computers, models, programming languages,

- accessibility of the information for the author (improvements are simple to introduce), and

other users,

- subprograms can be maintained and tested individually,

- simplification of the development of large models by making use of well-documented

existing subprograms,

- speed of execution (PC) is improved and computer costs (VAX) are reduced since

subprograms need no repeated compilation,

- students who have a limited amount of time, may work on the description of a subprocess

without having to deal with the text of a large model.

To fully benefit from the use of subprograms, in this report some guidelines are proposed.

Some topics are general, like declaration of variable type or the use of comment lines, and

others are typical for simulation models, like initialization. Subprograms are classified

according to their function in a simulation model. This classification makes it easier to

recognize the different parts of a simulation program.

.

;
.

i

- 4 -

- 5 -

____ 2_CJas_s_ific_ati_o_n_o_f_a_ubpmgrams:----------------
I

S8MMAR¥ - st.Jt>programs ate classified-accordingJo_their_iunetiOJOIEl:j_t_,;====================--==--=---=-::J-1

I. Service routines I

II. Generation of driving variables,

Ill. Rate calculations,

IV. Fast subprocess description,

V. Simulating subprograms,

- subprograms can only call other subprograms with equal or lower

number.

Subprograms may be classified with respect to their function within a simulation model. Five

classes of subprograms are distinguished. In order of increasing complexity these are:

I. Service routines

Service routines are independent of the described system. They are used to perform well

defined tasks such as linear interpolation (see Example I, Chapter 12), generation of random

numbers, curve-fitting, sorting of data, calculation of the roots of a function etc. This type of

function will often appear in libraries.

II. Generation of driving variables

Driving variables are variables that are part of the system but are not determined by the

system. In other words, these variables are input of the simulation program and their time

dependence is not simulated but prescribed. Weather variables (e.g. radiation, temperature),

sometimes groundwater table or leaf area index may be driving variables. Examples of this

type of routines are:

- reading weather data from file,

- estimation of hourly temperatures from daily maximum and minimum (see Example II,

Chapter 12),

- reading irrigation data from file,

This type of subprogram creates an 'environment' for the actual simulation.

IU;=R-ate=ealeut-attofrs:=-~========================

Rates of change are determined by the state of the system and its parameters. Thus, state

variables and parameters are input for this type of subprogram and one or more rates of

- 6 -

-===========::---:::::-eJcaatlettlation of the C02_ assimilatien rate ef_~J:>-~~-1'!_ _ _,_ ___________ _

- flow rate of water between adjacent soil layers,

- evapotranspiration rate of water from soil and crop (see Example Ill, Chapter 12),

- suction rate of aphids,

- number of predated aphids by ground beetles,

- mineralization rate of organic nitrogen.

IV. Fast subprocess description

A fast subprocess is always in equilibrium from the point of view of the main process. It may be

convenient to calculate the equilibrium state in a subprogram. In that way the subprocess can

be described independent of the main process described in the calling program.

About the calculation method nothing can be said in general. Sometimes equations can be

solved algebraically. Sometimes an iterative procedure has to be used to find the equilibrium

state. In complicated situations it may be necessary to simulate time course of the process

until equilibrium is reached.

Contrary to the next type of subprogram (simulating subprograms), the subprocess time is not

controlled by the calling program. The subprocess is assumed to be so fast that only

equilibrium states are needed. So even in case a (local) subprocess time occurs explicitly in

the subprogram, it runs freely until equilibrium is reached.

Examples are:

- stomatal behavior responding to C02 and humidity,

- generation of an average wind profile in the crop while the crop is simulated with a time step

of one day.

v·. Simulating subprograms

Writing a simulation model in FORTRAN one is tempted to write a main program. There is an

initial section in which initial calculations are carried out, initial settings are done, input files

opened etc. The central part of the model is the integration loop in which rates of change are

calculated and integrated to find the new state variables. Possibly a terminal section is

executed after finishing the integration.

There is however, no good reason for writing a simulation model as a main program. One

could equally well write a subroutine in which the above described sections are all present. A

call to this subroutine causes the execution of the simulation model.

_ ____ ,

- 7 -

--~------------------------------.-. :
_Ihe_use_of . .thjs_kjnd._ol sjmulatjng_subroutines_already~_bas_!:Ustinclaava.ntag.es~Sensitivltv~--~--~==--- . ~ 1

---==========~a~n~a~ly~s~is'!::, ~fo,~:~:r~in'::"s~t~an~c~e':!:, ~b -~e~co~m~~e_s~-~e~a~s_i~e-=r ~~i-':n_~ce~~---~t~h~e='m~-~~d~-~e~l:!p~a~ra~m~et~e=rs~--~co===-n~c~e=~=-e~d=-c~~~!l=-b~e~~p~~s~s~~=d=--=-~~~-----~~--~~--~-------~
to the subroutine as arguments. There are other types of model use that require more than a ~--~-j
single simulation run. It is always advantageous then to have the simulation model available as

a subroutine.

Sofar a call to a simulating subroutine leads to a complete simulation run. The subroutine is

free running in the sense that the calling program does not control the integration process.

The simulation goes on until some finish condition is reached. Now suppose one has

available two models in the form of two subroutines. One model, for instance, simulates crop

growth as a function of weather data and soil water content. A second model simulates the soil

water content as a function of weather data and crop condition. The two models may have

different authors and may originate from different research groups. Improved versions of both

may appear from time to time.

The combination of the two subroutines into a single program tends to require a large

programming effort. Therefore it is worthwhile to consider solutions to this problem that leave

the different models in their original form as much as possible.

Clearly the simulation of the whole system consists of the simulation of the two subsystems.

The two simulating subroutines, however, cannot be left free running in this case. The calling

program needs to control time progress in the two subroutines in order to synchronize the

two processes taking place. This can be done by switching between the subsystems. Both

subsystems are simulated for a short, prescribed timestep. This is easy to realize when the

timesteps of the two submodels are equal. The coupling is then called synchronous. The

case of unequal timesteps is called asynchronous coupling and is more difficult to handle.

The solution will depend on the importance of the interaction between the systems.

Here only synchronous coupling is further discussed. Submodels using equal timesteps are

coupled by controlling the integration process from a calling program. A 'task' variable is

passed to the submodels that controls the action that should take place: initialization,

calculation of rates of change, integration (=return new status) or terminal calculations. In

doing so, everything can be controlled from a short main program describing the system as a

whole (See the example in Chapter 12).

The difference between a free running simulation model and a simulating subroutine coupled

with others is rather small. Both consist of sections for model initialization, rate calculation etc. ,

=======!:!=ln~a~s~im~ui~SllbJ:QutLne the execution of these sections is controlled from the calling

program by means of the task control variable. When several well defined submodels are

coupled, the structure of the program reflects the structure of the system.

- 8 -

- 9 -

____ 3_S_ub_p_r_o_g_rams-in FGRTRANr-------------------- 1

----------- ----------- ~~--- -~----------~- ------~ ~--- --~ --~---- ----~--- --- ----- ----~~--- - ----------- ----- I

~-============~s~tJt=JMMf\iMtJAU:-~V¥~===::;:::-=nus~e:uprna:u:s~s~edri=klerrnrngth:anay_declarations,_~---

- write the array length as integer variable llxxxx, where xxxx is the first

part of the array name it belongs to,

- use COMMON blocks only where they are necessary.

- use blank SAVE,

In FORTRAN two different subprogram types exist nl. subroutines and functions. In cases

where only one calculated result is required from a subprogram, the function type of

subprogram is chosen (e.g. the LINT function, Example 1, Chapter 12). It is however not

illegal to use a subroutine if only one calculated result is required. A subprogram is called from

the calling program which may be the main program or another subprogram. During

subprogram execution, the execution of the calling program is temporarily suspended.

Returning from the subprogram, the execution from the calling program resumes.

FORTRAN subprograms are complete separate programs. They are separately compiled and

may be separately stored in memory. Main program variables or variables from another

subprogram are not automatically known. Of course, subprograms cannot work together

without some form of communication among them. There are two ways to communicate

variables from one subprogram to another. Subprograms may have arguments (sometimes

called formal parameters), and subprograms may share variables with other subprograms by

means of common blocks of memory. This will be discussed in more detail below.

Local variables

All variables that are not communicated with other subprograms are called local. Consider:

SUBROUTINE SUBl

REAL C

SAVE

c = 10.

RETURN

END

SUBROUTINE SUB2

REAL C

SAVE

c = 20.

RETURN

END

I
I -------!

- 10 -

-------1:t:le variablaCJn Sl JB1 will thus not interfere with the variable C in SUB2. This helps to

----~-~--~- ~ --HAaeFstana-'IJRy-swgwutil:les and -functions-are called_subprograms .. aod __ notlor msJ=a=JJ=.k=e_-~----------]

subsections or substatements I

The definition of FORTRAN is such that local variables do not retain their values between

successive calls.

Example:

* variable not saved between calls

SUBROUTINE SUB1

INTEGER I

WRITE (*,*) I

I = 10

RETURN

END

The variable I is written to the screen without having a value, consequently, the result is

unpredictable. This is because, following the FORTRAN definition, the value of any type of

variable is not defined before the first assignment. After the WRITE statement, a value is

assigned to I. Subsequent calls to the subroutine SUB1 thus gives the following output:

<unpredictable>

<Unpredictable>

<unpredictable>

etc.

In order to achieve that, in a subsequent call, I still has this value of 10, I should be 'saved' by

means of a special SAVE declaration:

* variable saved between calls

SUBROUTINE SUB2

INTEGER I

SAVE

WRITE (*,*) I

I = 10

END

This subprogram will now give the following output:

-- j

.,.... If

10

TU

10

etc.

- 11 -

Note: With VAX-FORTRAN and Microsoft FORTRAN compilers, variables retain their values

without SAVE statements. This is however an extension to the standard rule. With MacFortran

on the Apple Macintosh, local variables only retain their values when using a SAVE statement.

By means of a SAVE statement without variable names behind the other declarations (a so

called blank SAVE), all local variables of the subprogram will retain their values. The use of

blank SAVE is suggested here, even if only a few variables actually need to be saved for the

following reasons:

Safety:

1) if one variable is by accident not listed behind the SAVE statement, the subprogram will

not work properly,

2) if subprograms share COMMON blocks among each other, the retaining of variables may

become unpredictable if they are not saved explicitly by means of a blank SAVE.

Speed:

1) subprograms in which only essential variables are saved will run much slower because at

each call to the subprogram some memory has to be assigned during calculations to hold

the 'volatile' local variables and released on return to the calling program. In subprograms

in which all the variables are saved, allocation of memory is done only once during the

execution of the whole program.

Arguments

To understand the function of arguments it is necessary to have some understanding of the

representation of variables in a compiled program.

The compiler replaces variable names by memory addresses, e.g.

A = B * C

will be translated into:

Al = A2 * A3

(Where A1, A2 and A3 stand for the contents of the addresses of the memory locations).

i

i

:

i

:

- 12 -

As stated previously, local variables in a subprogram are given explicit memory locations

during subpr~gram compilation. For arguments appearing in an argument list, a different

approach is followed: its memory location is provided by the calling program. A subprogram

expects for each of its arguments an actual address provided by the calling program during

execution. The subprogram does not use copies of the variables in the argument list, as is

sometimes believed. The subprogram makes use of memory locations declared in the calling

program and may directly change their contents.

This has the following implications:
- Names of variables do not have to be the same. It is advised however to use the same

variable names in calling program and subprogram whenever possible.

- The number of arguments in the 'call' should be the same as the number of arguments of

the subprogram.
- The variable types should match. Otherwise the location of, for instance an integer variable

is used by the subprogram as if it contains a real value. The result is unpredictable.

- If an argument is an array name, only the location of the first element is passed to the

subroutine. In the subroutine, the array should be dimensioned again to make use of the

other elements. An error may occur if the subprogram array is declared longer than it actually

is, the subprogram may then change values of other variables that do not even appear in

the argument list. As nothing is wrong with the array bounds within the routine, this error is

hard to find. The programmer is tempted to use this knowledge for tricks that we consider

very bad programming, e.g. declaring an array X as X(40) in the calling program and as

X(2,20) in a subprogram. Although this kind of practice is standard FORTRAN the above

mentioned type of errors will most likely result.

Array declaration in a subroutine

A flexible and relatively safe way of handling array-type arguments is the use of passed-length

declaration:

SUBROUTINE EXAMPL (X,ILX)

IMPLICIT REAL (A-Z)

INTEGER ILX

DIMENSION X(ILX)

Both the array and its length are arguments of the subprogram. In the calling program an array

has to be declared as a local variable in order to reserve memory locations. Close to the actual

declaration, also the array length should be given its value. Using a variable for the array

length, one should be aware of value changes due to possible errors in the program code.

There is a nice way to avoid this problem by the PARAMETER statement (see also Chapter 7):

- 14 -

------~sJ..,.uoutput-v.adabte·~c::· --------------------------------1

Common blocks of memory

Variables that appear in a COMMON statement undergo a special treatment by the compiler.

Their addresses are situated in a memory block that may be shared with other subprograms.

Schematically:

PROGRAM EX

REAL A,B,C

COMMON /EXAMPL/ A,B,C

CALL SUBl

STOP

END

SUBROUTINE SUBl

REAL X,Y,Z

COMMON /EXAMPL/ X,Y,Z

SAVE

A= 10.

Z = A*X+Z

RETURN

END

The variables A, B and C in the calling program are situated in the same memory locations as

the variables X, Y and Z in the subroutine SUB1. The variable A in SUB1 is local I Note that

only the start address of the common block of memory is shared among the different

subprograms. A construction we consider very bad programming is the subdivision of a block

into variables in different ways by different routines, e.g. a secqnd subroutine using the same

common block could be:

SUBROUTINE SUB2

REAL X,Y

COMMON /EXAMPL/ A(2)

SAVE

X = A(l) +A(2)

RETURN

END

- 15 -

programs unreadable. It is then hard to trace where the value of a specific variable is changed. [

It is strongly recommended to use COMMON blocks for the tasks they are mearlflo-r:---- 1

necessary communication of variables between subprograms that is hard to accomplish with

arguments. Do not hesitate to use a long list of arguments for a subprogram fulfilling a

complicated task.

The use of COMMON blocks

Scheme 1 below represents a hierarchical structure of subprograms in which two low level

subprograms share certain variables. Accomplishing this by means of argument lists leads to

the inclusion of superfluous arguments in higher level subprograms. It may be much clearer to

use a COMMON block of variables shared by the low level routines.

A typical situation when using routines from large numerical libraries such as IMSL, UNPACK,

ODEPACK and others is given in Scheme 2. A library subroutine ROOTS is used to find roots

of a user-defined function FUN. The argument list of FUN is prescribed by the supplier of

ROOTS. There is no way then to communicate (extra) function parameters between A and

FUN by means of arguments. A COMMON block shared by FUN and A is the solution.

Scheme 1 Scheme 2

Library routine

In most cases COMMON blocks can be kept small. If for instance three pairs of subprograms

need to communicate, use three small COMMON blocks with a unique name. The three pairs

of subprograms may then be used and maintained independently.

- 16 -

- 17 -

SUMMARY use implicifinitialization witnCOGTCAClNIT;

or explicit initialization with LOGICAL RESET.

Many subprograms can only perform their defined task after some form of initialization, e.g.

reading weather data from file, setting up mathematical functions, reading initial amounts of

integrals (subprogram type 5) etc. When making reruns of a model, sometimes repeated

initialization is desired.

The initialization of a subprogram A is often done by a call to a different subprogram B that

initializes the data from A. In practice this will need communication of the shared variables

between the subprograms A and B. This problem will generally be solved by using a

COMMON block consisting of variables used in both subprograms. In many cases a more

elegant solution is to program the initialization of A into A itself without using a second

subprogram B. This can be accomplished by two different methods, that may be called implicit

and explicit initialization.

The simplest way is to write a program section that is executed only during the first of several

subprogram executions (implicit initialization). This is done as follows:

subprogram A(.....)

declarations

LOGICAL INIT

SAVE

DATA INIT/.FALSE./

IF (.NOT.INIT) THEN

* initialization procedure

* set initialization flag

INIT = .TRUE.

END IF

* rest of subprogram

RETURN

END

Note that, using this structure, the user of the subprogram has nothing to do with the

initialization. It is done automatically during the first time the s~bprogram is executed. A

disadvantage is that initialization can be done only once since it is not controlled by the calling

•

- 18 -

program. This implies that there is no possibility to repeat the initial calculations for a different

to low level (service) routines.

To control the initialization of a subprogram in the calling program, a reset parameter has to be

supplied as an argument of the subprogram (explicit initialization). The subprogram now can

have more than two states, an initialization state at which variables are set to zero, files are

opened and closed etc. and no results are returned, a computation state i.e. the normal

operation state at which the main task is done, and e.g. a terminal state at which summary

statistics are calculated.

If there are only two states, the action of the subprogram can be controlled by means of a

LOGICAL RESET. In case more states are possible the INTEGER IT ASK is recommended.

The control parameter (RESET or IT ASK) is the first argument in the argument list and invokes

a reset (=initialization) of the subprogram when its value equals RESET =.TRUE1or ITASK=1,

any other value will not cause initialization. At any time during simulation, sending

RESET =.TRUE. or ITASK=1 will cause a reset of the subprogram and no results are

generated. The subprogram should never change the value of the reset parameter. The

control of the subprogram is left completely to the calling program.

In general the following structure can be followed:

subprogram (RESET, ... ,

...........)
LOGICAL RESET

SAVE

IF (RESET) THEN

RETURN

END IF

RETURN

END

Four examples will be given. In the first example, implicit initialization with a LOGICAL INIT is

used. A calling program is assumed in which a very large number of function values is

required, for instance in complicated iteration loops, that has to be combined with a function

that is costly to evaluate. The program below reduces the number of function evaluations to

i

I

i
.

i

i

i

·=======Ae;g~~MAitiaH¥rtf:le&e=29.9==ruastJOO=¥alt!esJS=SaiGuJatefblllQ,aua~td'=an~~~-~======

later to calculate required function values by linear interpolation (using the LINT function, see

Chapter 12, Example 1).

- 19 -

1\1 FTiN lX)

IMPLICIT REAL (A.;.,z)

PARAMETER (ILBUF=400,XMAX=100.0)

DIMENSION BUFFER(ILBUF)

LOGICAL INIT

SAVE

DATA INIT/.FALSE./

* initialization of buffer with function values

IF (.NOT.INIT) THEN

*

*

calculate function values between X=O and X=XMAX

XSTEP = 0.5 * XMAX / FLOAT(ILBUF)

XLOC = 0.0

DO 10 I=1,ILBUF,2

XLOC = XLOC + XSTEP

BUFFER(!) = XLOC

costly function evaluation:

BUFFER (I+1)

.10 CONTINUE

INIT = .TRUE.

END IF

* evaluation of function value by linear interpolation

FUN= LINT (BUFFER,ILBUF,X)

RETURN

END

In a second example a weather file containing radiation and temperature records is opened

and read at RESET =.TRUE.. Only the relevant statements and parameters for the reset are

shown.

SUBROUTINE WEATHR (RESET,IUNIT,

$ FILE,

$ IDAY,

$ TMPA,AVRAD)

IMPLICIT REAL (A-Z)

REAL TMPA1(365), AVRAD1(365)

.LN'l'~G.I!.a-<. IUNIT, IDATA, IDAY

CHARACTER*(*) FILE

LOGICAL RESET

SAVE

'
I

- 20 -

STATUS='OLD'

10 READ (IUNIT,' (2F8.2) ',END=100) VAR1,VAR2

IDATA = IDATA+1

TMPA1(IDATA) = VAR1

AVRAD1(IDATA) = VAR2

GOTO 10

100 CLOSE (IUNIT)

RETURN

END IF

*-----normal operation

TMPA = TMPA1(IDAY)

AVRAD= AVRAD1(IDAY)

RETURN

END

Example for the initialization of an integrating subroutine:

*

*

*
*

SUBROUTINE WEIGHT (ITASK,

WLVI,

DELT,TIME,

IMPLICIT REAL (A-Z)

INTEGER ITASK

SAVE

.......)

IF (ITASK.EQ.1) THEN

initialization of state and rate

WLV = WLVI

GLV = 0.

RETURN

ELSE IF (ITASK.EQ.2) THEN

calculation of the growth rate

GLV =

ELSE IF (ITASK.EQ.3) THEN
new weight is old weight plus the growth during the stime

step

WLV WLV+GLV*DELT

ELSE

END IF

RETURN

END

- 21 -

RESET =.TRUE. a new output file by the name of OUTPUT.DAT is opened and thus, an old

output file is closed and deleted. This means that at tile very first call to tfie routine (also with

RESET =.TRUE.) there are no files to be closed and deleted. The presence of an opened file

thus has to be known. This is done with the logical FOPEN which is given the initial value of

.FALSE. by the DATA statement.

SUBROUTINE OUTPUT (RESET,

IMPLICIT REAL (A-Z)

LOGICAL RESET

CHARACTER*(*) FILE

LOGICAL FOPEN

SAVE

FILE,)

DATA FOPEN /.FALSE./

IF (RESET) THEN

IF (FOPEN) CLOSE (UNIT=99)

OPEN (UNIT=99, FILE=FILE, STATUS='NEW')

FOPEN = .TRUE.

RETURN

END IF

WRITE (9 9 ,)

RETURN

END

- 22 -

- 23 -

Sl:JMM-A:R¥-· --de-net--'eveFRHe-Eiefault-UI"llt-r:'IUrnbers,--------·------ _

- always open files explicitly,

- use file unit numbers of value 40 or higher,

- pass unit numbers as arguments (part of the control line),

- immediately close files if possible,

- do not use TYPE and ACCEPT for screen input and output but READ

and WRITE.

The input and output operations (I/O) from a FORTRAN program (mostly reading and writing to

file or screen) are always done by referencing a unit number. The (integer) value of a unit

number is between 0 and 255. Some unit numbers like 0, 3, 5, 6,13, 14, and 15, may have a

preassigned use. It is considered bad programming practice to overrule preassigned unit

number for purposes other than the default ones (e.g. opening a file in VAX-FORTRAN with

UNIT =5). This may cause problems and overruling the default assignments should thus be

avoided.

In V~X-FORTRAN, files don't have to be opened explicitly. The file is then created or opened

at the first read or write operation. This is however not standard FORTRAN and therefore file

1/0 must be preceded by an OPEN statement.

Unit numbers of files are not local to a module !! In other words, if in a subroutine a file is

opened with UNIT = 40, another subroutine cannot open another file also with UNIT = 40

unless the first one is closed. Modules thus can interfere with each other by referencing the

same units.

Modules can access files in two ways:

1) A file is opened and closed during the same call to the subroutine. This will occur mostly in

situations where data are read from a file. The unit number is thus released at the return

from the module.

2) A file is opened during the first call to the subroutine and remains open during

subsequent calls. This will occur mostly when data are output to a file during simulation.

The unit number thus remains occupied after return from the module.

To avoid interference between modules that use file 1/0, the unit number(s) should be

passed as arguments in the argument list (part of the control line) instead of defined in the

subroutine itself. In that way the calling program keeps control over the used unit numbers.

ne 1nteger varue oftrre---umts----shoutd=t::m=¢-6 or higher se----as=net=t0=0vefftlte=tt:t~fattl,t========

assignments.

In case a subroutine uses unit numbers, this should be indicated in the comment header (see

- 24 -

-------~r.bapteLa), it should also be indicated if the unit number is used only once (the file is opened

~--~~~-, ~at.AR·~GseGii dYriRQ oce,call~ or it the unit nwnberJs,used~at eacb~call---(ffiEflile rem.a1ns 9Qel1).

1/0 operations to the screen

It is often desirable to read and write information from and to the screen. With VAX-FORTRAN

this can be done with the TYPE and ACCEPT statements. These statements however are not

standard FORTRAN and MS-FORTRAN will not recognize them. The standard FORTRAN

aHernatives to TYPE and ACCEPT are READ and WRITE from UNIT=* (see example).

Example:
TYPE '(A)',' How many iterations:'

ACCEPT '(I) ',ITER

should be:
WRITE (*,'(A)') 'How many iterations:'

READ (*,*) ITER

Note: There seems to be no standard FORTRAN way to hold the cursor at the· end of a

question. Depending on the compiler, a dollar($), a backslash sign(\), or nothing at all behind

the A FORMAT is used (e.g. '(A,$)').

i

- 25 -

---~6-Warntngs=am.t=ermrs=as_g_en_e_rate_d_b_y modrt-~uule~s~------- r
------------------~----------- ----- ------ ----- ---------- -------- ---------- -- -- -- -- -- --------- --- ------ ------ -- _1

--==============sQ-i=itJ"MMffMMA~-R:P¥~=-====-=oeur-reA~-rii:is-=iiJnn=-_r;-ea~s~eD-JnR~n.-ll:u-t-1e\i':r_:t"ie:rrtJtfr'pi1itJY.t-vmaruJlJmeRS~-a::rrr'Zl"e_-njrnnn~po~ "'\l:s~s*ibmle:r-_J-----=---------_-__ -_-___ -____ -__ -_____ -__ ----- \
I

errors terminate programs with STOP 'message'

- warnings in case input or output values are improbable,

- warnings return a non-zero IWAR, negative for underflow, positive for

overflow.

In some cases it can be useful to check if the value of an input variable is within a range that

can be handled by the subprogram. Some combinations of input values however may give

wrong results (e.g. A can be less than 1 and B can be less than 1 but not A and Bat the same

time). In some cases it may be useful to check also output variables. In case some variable has

exceeded its input or output range, either a warning or an error will occur, dependent on the

severity.

Errors:
An error occurs when the value of an input or output variable is impossible (e.g. negative soil

moisture content, minimum temperature greater than maximum temperature).

An error should result in the termination of the run by means of a STOP statement (note:

CALL EXIT() is not standard FORTRAN). A message is then displayed on the screen. For

instance:

IF (LAI.LT.O.) STOP 'ERROR in EXAMPL: LAI < 0'

Note: on some machines the message may not be readable since the output screen

disappears on termination of the program. In the source text library TIUTIL (available on disk

on request), a routine is provided to handle this:

IF (LAI.LT.O.) CALL ERROR ('EXAMPL', 'LAI < 0')

Warnings:
A warning occurs when the value of an input variable is very unlikely but not impossible. A

warning however will not terminate the execution~

A warning results in one of the return arguments (IWAR) set to a non-zero value. IWAR is an
======~a~rg~u~m.,.-:e~n:a:ct=;;::o'F"f ;n:;tn=e=J=11701iSF(-se-e-enapters)-arn:t~e tJsed irr1he=ealling=J;)r-0§f-am=t-e---see=if=af1Yf=-======

warnings have occurred. An underflow of the valid range will result in a negative value of

IWAR, an overflow in a positive value of IWAR. The absolute value is different for each variable

and must be documented in the comment header of the subprograms.

- 26 -

'XrtHIOIH

IWAR = 0 ·

IF (LAI.GT.lO.) IWAR 3

I
i

I

;

!

- 27 -

7 Type declarations of functions and variables

SUMMARY

- exclusively use lxxxxx declarations for integer names,

- use the PARAMETER statement to define constants,

In CSMP all variables are REAL by default. In FORTRAN, the variables whose first characters

are I,J,K,L,M,N default to INTEGER, others default to REAL. In dynamic simulation few integer

variables are needed (mostly for counters in DO-loops). To avoid problems in interfacing

CSMP with FORTRAN, all variables in FORTRAN modules are made REAL by the IMPLICIT

REAL (A-Z) statement. However few integers are needed, reading a program is much easier if

integers can be recognized without checking a list of integer declarations. Names of integers

should therefore always begin with an 'I' and explicitly declared INTEGER (see the first

example). For clarity, real variables should never begin with an 'I'.

The declaration of arrays that are used later as arguments in a call needs some special

attention. To enable passed-length declaration in the subprogram, the array length should be

available as a constant or variable. In FORTRAN the PARAMETER statement can be used to

define a fixed constant. (For the PARAMETER statement also see Chapter 3).

Example:

IMPLICIT REAL (A-Z)

INTEGER PG0(20), DB

DATA DB /20/

CALL EXAMPL (PGO,DB)

should be (taking into account the recommendations of this chapter):

IMPLICIT REAL (A-Z)

INTEGER IPGO, ILPGO

PARAMETER (ILPG0=20)

DIMENSION IPGO(ILPGO)

CALL EXAMPL (IPGO,ILPGO)

I

'

i
i

i

l

- 28 -

- 29 -

8 Header and comme..LIIncJI.-t_..ILLin~e.uo.s.__ _________________ _
I

SIIMMARY - write ~mment in lowercase characters except FORTR_AN ~~roes, _________ _

- write comment above the statement it refers to,

- write program headers containing at least author name and information

on the arguments,

- write extensive header for library routines.

Different authors tend to write very different amounts of comments in their programs. It seems

therefore rather useless to develop detailed rules for form and content of comment lines. It

should be noted, however, that reading a program written by someone else often means

reading comment lines. This appears to be much easier if comment lines are written in

lowercase characters (except FORTRAN names). Further it is proposed here to write

comment lines always above the statements they refer to. It is useful to divide a (sub)program

into functional blocks of statements by means of open lines. These blocks may or may not

coincide with DO-loops, IF-THEN-ELSE structures etc. A comment line above each functional

block greatly simplifies program reading. Comment lines are coded usually with a 'C' in the first

column. The'*' also is a valid character and improves readability. The exclamation mark 'I'

cannot be used as this character only applies to VAX-FORTRAN.

Somewhat more can be said about the form of a program header above a subprogram. This is

a block of comment lines describing the program. A header is not meant as full

documentation. For a discussion of scientific aspects of the calculations, the subprogram

header may refer to the literature. A subprogram header should contain:

1) the subprogram name,

2) the name of the author,

3) a version number incremented by one each time an improvement is made to the

subprogram, (so that a user can see how many improvements have been made to the

subprogram since he got his copy),

4) a short function description,

4a) optional: known bugs, if a bug in the subprogram has been detected that awaits

improvement,

5) a list of arguments and their meaning,

6) a description of error conditions, the meaning of returned warnings, information on file

access and the names of called subprograms.

Below is a possible form for a full subprogram header. This header is available from the

source-texUibrary TTIIB (a~blELO.D_disk on re_guest}~Somuxample lines' areJncluded

They simplify header writing and should be deleted after use.

I

--I

- 30 -

* Authors: N. Nonsense, I. Irrelevant *
* based on an--earlier version written-by:----- - ----- _____________ '/(_____ _

* Version: n
* Purpose: This subroutine is meant to

* (references to literature if possible)

* ..
* Keywords:Utility, Header,

* (Known Bugs: optional)

*
* FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)

*
*
*
*
*
*
*
*

* name

*
type meaning units class *

*
* RESET

* IUNIT

* FILE

* IWAR

* XXX
* BBB

* ILBBB

* TIME

* DEAD

*

L4

I4

C*

I4

R4

R4

I4

R4

L4

resets the routine when .TRUE.

unit number of used file

file name

output, when .NE.O warning ! ! !

initial value of
calculated during initialization

array length

current time

death flag ...

* FATAL ERROR CHECKS (execution terminated, message) :

* XXX< 0.
* XXXXX1 > XXXXX2

*

C,I

C,I

I

c,o
XXX IN, I

XXX IN,O

I

s T,I

XXX 0

* WARNINGS:

* XXX> 100.

value of IWAR returned

1

* XXXXX2-XXXXX1 > 10.·

* AAA < 2.

*
* SUBROUTINES and FUNCTIONS called

*
* FILE usage :

2

-3

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

--

- 31 -

-==-=-====-=-~=cgcnpuro"Vguroa:awmmmru11nning4s~ttvynle•---------------------------------- +

StJMMARv--- comment-is-written-above-the-statemeAts--,- -------------- --

don't use the exclamation mark 'I',

- comment lines in lower case characters,

- leave space between continuation character and rest of line,

This chapter is meant to give hints to write more readable programs. FORTRAN is a language

that does not force the programmer to write structured programs and it needs some discipline

to write programs that don't discourage other readers to study them.

Flow control statements

Flow control statements specify the order in which the computations are done. They comprise

the skeleton of a program. FORTRAN-77 control structures are DO-loops and IF-THEN-ELSE.

Control structures like DO-WHILE, DO-UNTIL and CASE, are not standard FORTRAN and can

be mimicked by functionally equivalent structures in standard FORTRAN. We recommend the

methods given by the NNI manual (see references) because it provides 1) simple standard

structures and 2) if some time in the future these control structures become part of standard

FORTRAN, these structures are very easy to convert.

Example of DO-WHILE loop:

*-----do while loop
10 IF (TIME.LE.FINTIM) THEN

TIME = TIME+1.

GOTO 10

END IF

Use of logical variables

Sometimes the use of logicals improves the readability of IF statements. Complicated decision

rules are programmed using logical expressions.

Example:

LOGICAL DEAD, YELLOW

- 32 -

IF (.NOT.DEAD .AND. YELLOW) THEN

END IF

Indentation

Indentation can be used to spot DO-loops and IF-THEN-ELSE constructs. An indentation of

three spaces at each level in the program text is sufficient in most cases. Never use tabs in the

program text as the interpretation of tabs by compilers and text editors is not standardized.

Formats

A standard feature of FORTRAN-77 is that FORMAT statements are no longer necessary.

FORMAT strings can be included in the READ of WRITE statements directly. This makes

programs a lot more readable as the line numbers of the FORMAT statements tend to be very

confusing.

Example of old-style FORMAT:

WRITE(20,100) TMIN,TMAX,RAIN

100 FORMAT('Minimum temperature=',F8.2,/,

& 'Maximum temperature=',F8.2,/, 'Rainfall=',F8.2,/)

Can now be written as:

WRITE (20,' (3 (A,F8 .2, /)) ')

& ' Minimum temperature=',TMIN,

& ' Maximum temperature=',TMAX,

& ' Rain=',RAIN

Continuation of lines

Characters beyond column 72 are ignored by the compiler (also not signalled I) and can be

put on a second line, preceded by a continuation character. This continuation character can

be put in the sixth column (preceded by 5 spaces, the use of tabs is not recommended),

Programs can become very confusing when the program texf1stypecfimmediatelyoefima-n1e

continuation character:

the following line:

*234567

can be written (legally) as follows:

*234567

or as:

A= 3.2*B*C*

17.413

*234567
A= 3.2*B*C

**7.413

- 33 -

It would be less confusing if written like this:

*234567
A= 3.2*B*C*

& 7.413

.

- 34 -

- 35 -

----~10-Simulation by Euler integration in FO::.-:.R...::.-T=-=Rc....::.::A~N----------~

Themmprevious chapters dealt with. subprograms meant to be ~ombined with CSMP or

FORTRAN main programs. Since FORTRAN is not a simulation language, some attention

should be given to the structure of a simulation loop. The following sequence shows the

correct order in which the different tasks should be put when using the rectangular integration

method.

state = initial, rate = 0

10 IF (TIME.LE.FINTIM) THEN

integration

generation of driving variables

rate calculations

output of simulation results

TIME = TIME+DELT

GOTO 10

END IF

STOP

The example below shows this sequence for a simple crop growth simulation model. After

initialization of the state variables, the integration statements follow. Tthe first integration is

dummy, since the rates have been set to zero in the initial part of the program. Subsequently,

driving variables and rates are calculated. At this point in the program, the state of the system

and the corresponding rates of change may be sent to an output device. The sequence of

the statements implies that during the first time step the initial state is written to the output

device.

PROGRAM EXAMPL

IMPLICIT REAL (A-Z)

INTEGER IDAY, INT, IWAR

CHARACTER STAT*20

REAL FLVT(4), FSTT(4), FRTT(4)

*-----species parameters

PARAMETER (AMAX=30., EFF=0.45, KDIF=0.7)

PARAMETER (MAINLV=0.025, MAINST=0.015, MAINRT=0.01)

PARAMETER (SLA=0.002)

*-----dry matter distribution functions

DATA FLVT /0.,0.85, 1.,0.45/

DATA FSTT /0.,0.00, 1.,0.40/

*-----initial amounts of state variables

DATA WLV /5./, GLV /0./

DATA WST /0./, GST /0./

- 36 -

..... .,.rn.,.,.,.....rn '"' I ,...,.....rn 1(1 I
JJ.n..J..n. nL'-.J. I ..J • I f '-.:TL'-.J. I v • 1

*-----timer parameters
DATA TIME /120./, FINTIM /200./, DELT /1./

*-----initialization of weather routine

DATA STAT /'WAG'/

10 IF (TIME.LE.FINTIM.AND.DVS.LE.1.) THEN

*-----integration

WLV WLV+GLV*DELT

WST WST+GST*DELT

WRT

DVS

WRT+GRT*DELT

DVS+DVR*DELT

LAI WLV*SLA

*-----driving variable generation and rate calculation

CALL WEATHR (40,IWAR,

&

&

&

TMPA

STAT,1983,NINT(TIME),1,

LONGIE, LATIN, ALTI,
TMIN, TMAX, AVRAD, RAIN, VAP, WIND)

(TMIN+TMAX) I 2.0

CALL ASTRO (TIME,52.,DAYL,SINLD,COSLD)
CALL TOTASS (TIME,DAYL,AMAX,EFF,LAI,AVRAD,SINLD,COSLD,DTGA)

GPHOT = DTGA*30./44.

TEFF = 2.**((TMPA-25.)/10.)

MAINT TEFF*(MAINLV*WLV+MAINST*WST+MAINRT*WRT)

AVASS =MAX (O.,GPHOT-MAINT)

*-----linear interpolation

FLV LINT (FLVT,4,DVS)

FST LINT (FSTT,4,DVS)

FRT LINT (FRTT,4,DVS)

*-----rate calculations

GLV FLV*AVASS/1.4

GST FST*AVASS/1.4

GRT FRT*AVASS/1.4

DVR 0.02*(TMPA-12.)

*-----output during simulation

WRITE (*,*) TIME,IWAR,WLV,WST,WRT,GLV,GST,GRT,GPHOT

*-----time updating and jump to time loop control

:

.

i

j

'

.

1

.

I

i

i

TIME = TIME+DELT

GOTO 10

END IF

STOP 'End of simulation'

END

- 37 -

- 38 -

- 39 -

--1~1=E-.mcutton_o_f_pr_o_gram_s

S8MMAR¥~---use-aFFay-9et:~R9-GI'leGks,

use standard FORTRAN compiler option,

- consider the use of object libraries,

- screen debuggers are useful.

The concept of modular programming can only be fully implemented with some knowledge

about the execution of programs. The execution of a program basically consists of two parts,

compilation and linking. During compilation the program statements of the source text are

translated into instructions of the computer's processor. During compilation, a new file is thus

created called an object file. This file however does not contain all the information needed to

execute the program. For instance the algorithms to compute mathematical functions and

routines that are called and reside in a library (e.g. IMSL, KOMPLOT, or user- defined libraries)

are not yet included in the program. These routines are attached to the object file during the

linker phase, the result being an executable file.

It is not necessary to have all subprograms together in one large source text. Functions and/or

subroutines can be compiled separately. They can then be linked with other routines to give

an executable program or can be put into an object library. During development of a program

or routine, it is advisable to execute the program from the debugger and to have array-bounds

checked continuously during execution.

Standard FORTRAN compilation

Especially with compilers that recognize non-standard extensions of the language, it is

important to not make use of these extensions. The portability of the source text to other

machines is then maximized. Some compilers that are able to recognize extensions can be

instructed to generate warnings on non-standard FORTRAN syntax.

An extremely useful program to check FORTRAN source texts in this respect is FORCHECK

(see references). FORCHECK has much stronger syntax, variable declaration, argument

passing and standard FORTRAN checking capacities than most compilers.

Checks on array bounds

The default compilation of FORTRAN is without checks on the (integer) value of array

---~-1

subscripts. It may lead to unforeseen situations if one is not aware of this. In the example

tfelow,=tn-e~t:Jo~toop=tnat=rs--assu ~"TWd=to=mn=from=t=1 to 1-1 9-is~in=f-aet aR iRfiRite=l~f'lep========

explanation for this is that IA(11) is mapped on the same memory location as I, the counter of

the loop. When IA(11) is made equal to 1, also the counter of the loop is reset to 1.

- 40 -

PROGRAM EXAMPL
--------INTE'GE~R-I~A~(-1-0~)--,-I--,-I-N---------------~-----

IN=--~-

DO 10 I=O,IN

IA(I+1)=1

10 CONTINUE

END

A check on the array subscripts will catch these errors (see your compiler's manual how to

check this).

Execution from a debugger:

The execution phase from a debugger normally brings about a number of extra commands. A

debugger however is a very valuable tool to speed up program development and minimize

the risk of program errors. Programs can be executed line by line with the source text

displayed on the terminal, values of variables can be displayed and changed before the next

program line is executed.

Working with libraries

A library is a set of programs that are kept in a file. Different types of libraries exist e.g. text

libraries and object libraries. In text libraries, normal text files can be stored. In object libraries,

compiled subroutines and functions can be stored. (An object library however cannot contain

text files and vice versa!). Subroutines and functions that are created during program

development and have been tested sufficiently can be put into an object library. The

advantage is that compilation of every routine is not done each time the main program is

compiled which speeds up program development and limits the costs. The routines that are

put into the library are attached to the main program by the linker.

Example session using an object library

The commands in the following example apply to VAX-FORTRAN. With other compilers on

other machines, the commands are different but the procedure is essentially the same.

Assume we have a main program called MAIN.FOR in which a potential evaporation rate is

used. The rate is obtained by a call to the subroutine PENMAN. The program text of the

subroutine PENMAN however is not in MAIN. FOR but in a separate file PENMAN. FOR. It is

our intention to compile PENMAN.FOR and insert the object fife permanently into an existing

object library (MODULE.OLB) from which we will link it to the main program. The handling of

- 41 -

$ FOR'I'RAN/CHECK-BOU:NDS /STANDARD FEWM..1\N _________ _

;compiles PENMAN. FOR with array bound
checks during execution.

$ LIBRARY/OBJECT/INSERT MODULES.OLB PENMAN.OBJ

; insert PENMAN into MODULES.

$ FORTRAN/CHECK=BOUNDS/STANDARD MAIN ;compilation of MAIN.FOR
$ LINK MAIN,MODULES/LIBRARY ;instructs the linker to link MAIN.OBJ with

routines from MODULES.OLB that are
called in MAIN.

$ RUN MAIN ;run MAIN.EXE

- 42 -

- 43 -

Example----'o-f_cmo-dule-t-ype-1

This LINT function is a linear interpolation function. Before returning the interpolated value,

the function checks the ascending order of the X-values, and also if the X-value at which

interpolation is to take place is within the range of the X- values of the data. When this

happens, a message is printed on the screen that interpolation is outside the defined region.

The returned value then is the Y -value of the nearest X-value.

The result from the interpolation is returned to the main program through the name of the

function (LINT).

--
* REAL FUNCTION LINT *
* Authors: Daniel van Kraalingen *
* Version: 1 *
* Purpose: This function is a linear interpolation function. The *
* function does not extrapolate : in case of X below or *
* above the region defined by TABLE, the first *
* respectively the last Y-value is returned and a message *
* is generated. *
* Keywords :Utility, linear interpolation *

* * * FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) *
* name type meaning units class *

*
* LINT

* TABLE

*
* ILTAB

*
* X

*
.*

R4 function name, result of the interpolation

R4 A one-dimensional array with paired

data: x,y,x,y, etc.
I4 The number of elements of the array

TABLE
R4 The value at which interpolation should

take place

* FATAL ERROR CHECKS (execution terminated, message) :

* TABLE(I) < TABLE(I-2) , for I odd

* ILTAB odd

*

0

I

I

I

*
*
*
*
*
*
*
*
*
*
*
*
*

* No WARNINGS using the control variable IWAR are generated since *
* nobody will check IWAR after each LINT call ; instead an X-value *
* below TABLE(1) or above TABLE(ILTAB-1) is reported on screen *
* with a message containing the value of ILTAB and X. Further *
* information on the error is not available within this function. *
* *
* No other SUBROUTINES and FUNCTIONS are called *

FILE's are used

INTEGER I, IUP, ILTAB

DIMENSION TABLE(ILTAB)

SAVE

- 44 -

with WRITE (*, ...) . . .)

* check on odd ILTAB

*

IF (MOD(ILTAB,2) .NE.O) THEN

WRITE (*,'(A, I4/ ,A)')

$ ' ERROR in function LINT: ILTAB=',ILTAB,

$ ' ILTAB must be even ! '

$

$

$

PAUSE ' - Press RETURN to continue -'

STOP

END IF

IUP = 0

DO 10 I=3,ILTAB,2
check on ascending order of X-values in function

IF (TABLE(I) .LE.TABLE(I-2)) THEN

WRITE (*,' (A,I4/,A,I4,A/,A) ')
' X-coordinates not in ascending order at element',I,

' LINT-function contains',ILTAB,' points',

' Run deleted!'

PAUSE ' - Press RETURN to continue -'

STOP

END IF
IF (IUP.EQ.O.AND.TABLE(I) .GE.X) IUP I

10 CONTINUE

IF (X.LT.TABLE(1)) THEN

WRITE (*,'(A/A, I4,A/A,G12. 4) ')

$ ' Interpolation below defined region!!',

$ ' LINT-function contains ',ILTAB,' points,',

$ ' Interpolation at X=',X

$

$

LINT TABLE(2)

GOTO 40

END IF

IF (X.GT.TABLE(ILTAB-1)) THEN

WRITE (*,' (A/A,I4,A/A,G12.4) ')

' Interpolation above defined region!!',

' LINT-function contains ',ILTAB,' points,',

LINT= TABLE(ILTAB)

GO TO 40

END IF

*

- 46 -

------~------* ~MAX~<-TMIN3·--~---

SUBROUT::I:NES_and.FUNC'l'IONS called : ER~O~ *
* * FILE usage : none

--

$

REAL FUNCTION TEMP (IWAR,

IMPLICIT REAL (A-Z)

INTEGER IWAR

SAVE

TMAX1,TMIN2,TMAX2,TMIN3,DAYL,HOUR)

PARAMETER (PI=3.14159, TAU=4.)

* errors and warnings

IWAR = 0

*

*

*

*

IF (HOUR.LT.O.) CALL ERROR ('TEMP', 'HOUR< 0')

IF (HOUR.GT.24.) CALL ERROR ('TEMP', 'HOUR> 24')

IF (TMIN2.GT.TMAX2) CALL ERROR ('TEMP', 'TMIN > TMAX')

IF (TMIN2.GT.TMAX1) IWAR +1

$

$

IF (TMAX2.LT.TMIN3) IWAR = -2

SUNRIS

SUNSET

12.-0.S*DAYL

12.+0.5*DAYL

IF (HOUR.LT.SUNRIS) THEN
hour between midnight and sunrise
TSUNST TMIN2+(TMAX1-TMIN2)*SIN(PI*(DAYL/(DAYL+3.)))

NIGHTL

TEMP1

24 .-DAYL
(TMIN2-TSUNST*EXP(-NIGHTL/TAU)+

(TSUNST-TMIN2)*EXP(-(HOUR+24.-SUNSET)/TAU))/

(1.-EXP(-NIGHTL/TAU))

ELSE IF (HOUR.LT.13.5) THEN
hour between sunrise and normal time of TMAX2
TEMP1 = TMIN2+(TMAX2-TMIN2)*SIN(PI*(HOUR-SUNRIS)/(DAYL+3.))

ELSE IF (HOUR.LT.SUNSET) THEN

hour between normal time of TMAX2 and sunset

TEMP1 = TMIN3+(TMAX2-TMIN3)*SIN(PI*(HOUR-SUNRIS)/(DAYL+3.))

ELSE
hour between sunset and midnight
TSUNST TMIN3+(TMAX2-TMIN3)*SIN(PI*(DAYL/(DAYL+3.)))

NIGHTL

TEMP1

24 .-DAYL
(TMIN3-TSUNST*EXP(-NIGHTL/TAU)+

$ (1.-EXP(-NIGHTL/TAU))

END IF

TEMP = TEMP1

- 47 -

K.l:!,;'l'UKN

END

Example of subprogram type 3

--
* SUBROUTINE PENMAN
* Authors: Daniel van Kraalingen

* based on an earlier version written by: Kees van Diepen

* Version: 1
* Purpose: This subroutine calculates potential evaporation

* according to Penman (1948) .

* Keywords:Simulation, potential evapotranspiration

*
* FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time)

* name type meaning units

*
* IWAR I4 output, when .NE.O warning ! ! !

* ELEV R4 Elevation of site

* A R4 Coefficient of Angstrom formula

* B R4 Coefficient of Angstrom formula

* ATMTR R4 Atmospheric transmission

* TMIN R4 Minimum temperature during day

* TMAX R4 Maximum temperature during day

* WIND R4 Average winds peed

* EO R4 Potential evaporation of open water

* ESO R4 Potential evaporation of soil

* ETO R4 Potential evapotranspiration of crop

*
* FATAL ERROR CHECKS (execution terminated, message)

* ATMTR < 0 or ATMTR > 1

* TMIN > TMAX

* WIND < 0

* AVRAD < 0

m

c
c

m/s

cm/d

cm/d

cm/d

* VAP > SVAP * 1.01 (entered vapour pressure > theor. saturated)

*
* WARNINGS

* AVRAD > 40,000,000 J m-2 d-1

* AVRAD < 100,000 J m-2 d-1

*
* SUBROUTINES and FUNCTIONS called

*
* FILE usage : none

value of IWAR returned

1

-1

LIMIT, ERROR

*
*
*
*
*
*
*
*
*

class *
*

c,o *
I *
I *
I *
I *
I *
I *
I *
0 *
0 *
0 *

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

--
SUBROUTINE PENMAN (IWAR,

$ ELEV,A,B,ATMTR,TMIN,TMAX,AVRAD,WIND,VAP,

i

- 48 -

$ EO,ESO,ETO)

IMPLICIT K.l!.iAL {A-Z.)

INTEGER IWAR

*-----Albedo for water surface, soil surface and canopy

PARAMETER (REFCFW 0.05)

PARAMETER (REFCFS

PARAMETER (REFCFC

0.15)

0.25)

*-----Latent heat of evaporation of water (J/kg=J/mm) and

* Stefan Boltzmann constant (J/m2/d/K) Psychrometric

* instrument constant (K-1)

PARAMETER (LHVAP = 2.45 E6)

PARAMETER (STBC 4.9 E-3)

PARAMETER (PSYCON= 0.000662)

*-----errors and warnings on some input variable ranges

IWAR = 0
IF (ATMTR.LT.O .. OR.ATMTR.GT.1.)

& CALL ERROR ('PENMAN', 'ATMTR<O or >1')

IF (TMIN.GT.TMAX) CALL ERROR ('PENMAN', 'TMIN > TMAX')

IF (WIND. LT. 0.) CALL ERROR ('PENMAN', 'WIND < 0')

IF (AVRAD. LT. 0.) CALL ERROR ('PENMAN', 'AVRAD < 0')

IF (AVRAD.LT.100. E3) IWAR=-1

IF (AVRAD.GT.40. E6) IWAR=+1

*-----Mean daily temperature and temperature difference (Celsius)

TMPA (TMIN+TMAX)/2.

TDIF = TMAX-TMIN

*-----Coefficient Bu in wind function, dependent on

* temperature difference

BU = 0.54+0.35*LIMIT(0.,1., (TDIF-12.)/4.)

*-----Barometric pressure (mbar), Psychrometric constant (mbar/K)

PBAR = 1013.*EXP(-0.034*ELEV/(TMPA+273.))

GAMMA = PSYCON*PBAR

*-----Saturated vapour pressure according to equation

* of Goudriaan (1977)
SVAP = 6.11*EXP(17.4*TMPA/(TMPA+239.))

IF (VAP.GT.SVAP*1.01) CALL ERROR ('PENMAN', 'VAP > SVAP')

*-----Derivative of SVAP with respect to temperature, i.e. slope of the

* SVAP-te:mge_ra.tl.lr_€!_ c;u~v:e (IDl:>C!rLKl
DELTA= 239.*17.4*SVAP/(TMPA+239.)**2

- 50 -

-------HJChF+ra+HR§&;-ln~-epresents the OOtJ · . Other st~~--u _____]
- -- -- --- -~-- -~-u---·<taria:bles-d&neHRflt:leAoe "St:.tbpreoess-2- aneh'effiaiA-Ieeal-vaFiables- inside st:tbFetdine MQQEI:::~ . ----- -~- - ~-----J

I

A large subroutine header has been omitted. Also warnings and errors have not been

programmed into this schematic example. Integration could be blocked, for instance, without

previously calculated rates of change .

SUBROUTINE MODELl (ITASK,IOUT,IUNIT,

$ TIME,DELT,

$,Sl)

* Simulates subsystem 1 described with status

* variables STATl and STAT2. Uses Euler integration.

* ITASK - input, controls action taking place

* IOUT - input, output control

* IUNIT - input, unit number to be used

* TIME - input, global system time

*
*
*

DELT

Sl

- input, timestep

- output, copy of local status variable STATl

used for coupling with MODEL2

IMPLICIT REAL (A-Z)

* declaration of subroutine arguments

INTEGER ITASK,IOUT,IUNIT

REAL TIME,DELT,Sl

* local variables ; system description

REAL LTIME,STATl,STAT2,RATEl,RATE2

LOGICAL LOUT

*

*

*

*

*

SAVE

IF (ITASK.EQ.l) THEN

initialize system

STATl = 0.0

STAT2 = 1.0

set initial rates to zero

RATEl = 0.0

RATE2 = 0.0

initialize local time

LTIME = TIME

output when enabled

LOUT = IOUT.GT.O

IF (LOUT) THEN

open output

CALL FOPEN (IUNIT, 'MODELl.OUT', 'NEW', 'UNK')

WRITE (IUNIT,' (A/)') 'time, states, rates'

END IF

- 50 -

·~----___,c_na.nge. In that way_S1 r~presents-ttte-e~between the-twe-stt:esystems. O~ate 1

~~-varraoles ao notrnTtn~netr~ooprocess~2~~a,JtJ 'e111ai1 rtocal <;Ja, iabt~;~~i-;,sid:~~~t~b~t~ti~;~MeBE~~~-~=:=~~~=~=~~.=_~=~

A large subroutine header has been omitted. Also warnings and errors have not been

programmed into this schematic example. Integration could be blocked, for instance, without

previously calculated rates of change .

SUBROUTINE MODELl (ITASK,IOUT,IUNIT,

$ TIME,DELT,

$,Sl)

* Simulates subsystem 1 described with status

* variables STATl and STAT2. Uses Euler integration.

* ITASK - input, controls action taking place

* IOUT - input, output control

* IUNIT - input, unit number to be used

* TIME - input, global system time

* DELT - input, timestep
* Sl - output, copy of local status variable STATl

* used for coupling with MODEL2

IMPLICIT REAL (A-Z)

* declaration of subroutine arguments

INTEGER ITASK,IOUT,IUNIT

REAL TIME,DELT,Sl

* local variables ; system description

REAL LTIME,STATl,STAT2,RATEl,RATE2

LOGICAL LOUT

*

*

*

*

*

SAVE

IF (ITASK.EQ.l) THEN

initialize system

STATl = 0.0

STAT2 = 1.0

set initial rates to zero

RATEl = 0.0

RATE2 = 0.0

initialize local time

LTIME = TIME

output when enabled

LOUT = IOUT.GT.O

open output file by call to utility

CALL FOPEN (IUNIT, 'MODELl.OUT', 'NEW', 'UNK')

WRITE (IUNIT,' (A/)') ' time, states, rates'

END IF

*

*

*

*

- 51 -

to global time TIME. That could be checked here.

RATEl = function (LTIME,STATl,STAT2)

RATE2 = function (LTIME,STATl,STAT2)

IF (LOUT)
$ WRITE (IUNIT,*) LTIME,STATl,STAT2,RATEl,RATE2

ELSE IF (ITASK.EQ.3) THEN
integrate ; system status a timestep DELT later

STATl = STATl + RATEl * DELT

STAT2 = STAT2 + RATE2 * DELT

local time increase

LTIME = LTIME + DELT

ELSE IF (ITASK.EQ.4) THEN
terminal calculations (none) ; terminal output

IF (LOUT) WRITE (IUNIT,' (A)') ' simulation halted'

END IF

* The coupling with MODEL2 requires STATl as an output

* variable. So before leaving the routine the local

* status variable STATl is copied to output variable Sl

Sl = STATl

RETURN

END

The layout of MODEL2 is similar. There the input variable S1 is used in the calculation of rates of

change when ITASK is 2. The actual coupling becomes very simple now. The calling program

follows closely the structure proposed in Chapter 10 for Euler integration.

Initialization calls are done with ITASK=1. In the "program" below the value of logical OUT enables

both models to write output to a file (unit numbers 40 and 41).

* initialization ; set initial states and prepare

* for a first (dummy) integration call in which

* no states are changed

TIME 0.0

OUT .TRUE.
CALL MODELl (l,OUT,40,TIME,DELT, ... ,Sl)

CALL MODEL2 (l,OUT,41,TIME,DELT,Sl, ...)

- 52 -

Now the system is prepared for the integration loop. A problem here is that N timesteps require

~~··~·····~ ..•.. ·- ... ·~~· • --· ·-~-- . ---. - --·· • -~····· ·-· ~-~·-·-····~ .•• ·-··-· .J

should be located in such a way that rates of change belong to the current status and not to the I

previous one. A simple solution was used already in Chapter 1 ~Allirst tneintegrafion calls are ··· -· __ I

done, then driving variables and rates of change are calculated. Using such a loop, however, the

first integration call should be a dummy one. No status variables should be changed then, for

instance, by setting rates of change to zero during initialization calls (see MODEL 1 above).

* integration loop
IF (TIME.LE.FINTIM) THEN

* integration ; get system into new status

CALL MODELl (3,0UT,40,TIME,DELT, ... ,Sl)

CALL MODEL2 (3,0UT,4l,TIME,DELT,Sl, ...)

* generation of driving variables

CALL WEATHR (......)

* rates of change for subsystem 1
CALL MODELl (2,0UT,40,TIME,DELT, ... ,Sl)

* rates of change for subsystem 2 using Sl as input

CALL MODEL2 (2,0UT,4l,TIME,DELT,Sl, ...)

* output of combined model

TIME = TIME + DELT

END IF

* terminal section
CALL MODELl (4,0UT,40,TIME,DELT, ... ,Sl)

CALL MODEL2 (4,0UT,4l,TIME,DELT,Sl, ...)

A few further remarks are made now. The example MODEL 1 is kept simple. In practice a few

groups of subroutine arguments will occur. There are (time) control variables like IT ASK, OUT ,

IWAR and DEL T. There are input variables used during initialization only. The initialization call may

produce results as well, certain constants for instance, needed in other modules. And finally the

dynamic calls (ITASK=2,3) will require input and output variables.

In MODEL 1, the status variable STAT1 itself was not returned to the calling program. Instead, its

value was copied into an· argument. That provides an easy way of adapting the program to other

coupling requirements. A subroutine argument can be added or removed without the need to

change the (carefully written) system status declarations etc. Further, checks are possible against

external system changes.

A simulating subroutine may be the top level subroutine of a whole group. Within such a group of

- 53 -

the model. It is important, however, that the top level routine is simple. It should be easy to use for \

people who cannot go fmotl1Efclelruls ofU1e moaer:Preferaoty, ontya-numoe~r-of-c-aus-a-re-to_b_e ___ · -~·---· -i
included in the calling program. Datafiles can be read from the initial section of the model The

need to include common blocks almost certainly leads to erroneous model use.

The integration method used inside each of the two (or more) simulating subroutines does not

need to be the simple Euler method. During the integration call the Runge-Kutta method, for

instance, could be used to simulate the subsystem over a time DEL T. That method involves

repeated rate calculations usually programmed into a separate subroutine. Omission of the first

integration call is easily realized then by means of a logical variable, set during initialization. And

the rate calculations for ITASK=2 are done for the current status of the subsystem. So the

coupling method described above implies only that the interaction (the feedback from the other

subsystems) takes place at regular time intervals.

The above method is easily applicable when all subsystems are simulated with equal timesteps

since there are no specific coupling problems. When the subsystems determine their own, local,

timesteps the coupling timestep can be held fixed when the interaction is weak. Otherwise more

elaborate schemes are required or a complete 'fusion' of the models should be carried out.

- 54 -

Cate, J.A-:ten, ~RRersCiijR, J.W.J., 19138. C~BO FORTRAI\I Rursus f988.

FORCHECK: a FORTRAN verifier and programming aid, Erik, Kruyt, Vagroep Fysiologie and

Fysiologische Fysica. Leiden University. The Netherlands.

Haar, L.G.J. ter, 1983. FORTRAN 77, programmers pocket guide. Nederlands Normalisatie

lnstituut. 47 pp.

Hahn, B.D., Problem solving with FORTRAN-77. Edward Arnold Ltd. London. 247 pp.

Leffelaar, P.A., Wolbeer, E.W. Dierkx, R.T., 1986. Some hints to write more readable

simulation programs by the combined use of CSMP and FORTRAN-subroutines.

Simulation Reports CABO-TT no. 9. 34 pp.

Meissner, L.P., Organick, E.l., 1984. FORTRAN 77, featuring structured programming.

Addison-Wesley publishing company. 500 pp.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., 1986. Numerical Recipes, the

art of scientific computing. Cambridge University Press. 818 pp.

Tiktak, A., Programmeerrichtlijnen voor deterministische, dynamische simulatie-modellen.

Fysisch Geografisch en Bodemkundig Laboratorium. Amsterdam. 24 pp.

Wagener, J.L., 1980. FORTRAN 77, principles of programming. John Wiley & sons. New

York. 370 pp.

