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Chapter 1 

The diaggregation problem for the Rhine 

1.1 Introduction and problem definition 

To assess the impact of climate change on the discharge of the river Rhine, the 
International Commission for the Hydrology of the Rhine basin (CHR) initiated 
a research project in 1989. The main purpose of the project is to develop a wa­
ter management model for the entire Rhine basin. Using the model the effects 
of changes in climate and land use on both average discharges and extreme 
discharges should be studied. The model must be valid for such changed condi­
tions, and therefore it should have some physical basis. The spatial resolution 
of the model should be accordingly fine. To be able to simulate peak discharges 
accurately, the temporal resolution of the model should be maximum one day. 

It was decided to phase the project, and to start with developing a first set 
of models, following a bottom-up approach as well as following a top-down 
approach. The Rhine basin can be subdivided into three major hydrological 
areas: the Alpine area, the middle mountains and the lowland area. Along the 
bottom-up line, detailed hydrological models with a physical basis are developed 
for representative sub-basins within each of these three areas. These models 
use a daily time step, and they are therefore suitable to analyze the effects 
of changes in climate and land use on both average and extreme discharges. 
Along the top-down approach a rough water balance model for the entire Rhine 
basin is developed. This model can be used to determine the effects of climate 
change on monthly average discharges, but does not provide precise estimations 
of changes in extreme discharges. In combination with empirical relationships 
between monthly discharges and peak flows, the Rhineflow model provides a 
first estimation of the probability of peak flows at the Dutch-German border. 

The efforts that were required in the first phase of the project demonstrate 
that extending the detailed models to the entire Rhine basin will be a very 
time-consuming task. The data requirement is huge, and not all required data 
may be available. Also the effort for the modelling itself will be large. Nev­
ertheless, the floods of December 1993 and January 1995 stressed once again 
that further development of a water management model for the Rhine basin is 
necessary, particularly because as the result of climate change the probability 
of peak flows might increase in the forthcoming century. Already during the 
forthcoming years, a more detailed insight in the effects of changes climate and 



in land use on the Rhine discharge and the consequences for the inherent water 
resources planning processes are needed. Therefore, until the moment that a 
detailed model for the entire basin becomes available, within phase 2 of the 
CHR project "Impact of climate change on the discharge of the river Rhine" 
the gap between coarse and fine hydrological models should be bridged using 
alternative methods. 

In 1994 the Dutch Institute for Inland Water Management and Waste Water 
Treatment (RIZA) has initiated a preliminary study to investigate the possibil­
ities of downscaling the presently available water balance model for the entire 
Rhine basin to the required temporal resolution. For modelling peak flows of the 
Rhine, this is about one day. For this downscaling study, hydrological models 
with different temporal resolutions are required. In the first place, a water bal­
ance model is required to provide discharges at the "coarse" time scale. For this 
purpose, the RHINEFLOW-2 water balance model with a 10-daily time step 
is being developed as a second version of the monthly RHINEFLOW-1 model. 
In addition, detailed models, with a daily time basis are needed to evaluate 
whether the downscaling methods are valid under changed climate conditions. 

The preliminary study indicated two approaches that can be followed to achieve 
results on a daily basis for the Rhine basin. 

1- Using a relatively simple conceptual hydrological model ("event model") to 
simulate runoff with a time step of 1 day in combination with the water balance 
model with a resolution of 10 days (RHINEFLOW-2). This method particularly 
aims at modelling peak discharges: the coarse RHINEFLOW-2 model calculates 
the water balance on a 10-day basis, and it is used to determine the initial 
hydrological conditions in the area. On the basis of these initial conditions, the 
event model calculates daily discharges, using daily weather data. 

2- Statistical techniques of downscaling series of 10-day average discharges cal­
culated by the water balance model RHINEFLOW-2 to the required temporal 
scale of one day. It is impossible to make a perfect, absolute reconstruction at 
the finer scale. So, techniques should be used to derive the (most) important 
statistical characteristics of the finer scale. Once a proper algorithm is avail­
able to perform this statistical disaggregation, it can be used to simulate series 
of discharges at the finer scale. Assuming that the statistical characteristics of 
the disaggregations remain constant, they can also be used to determine the 
changes in discharge at the finer time scale under a different climate, given 
the changes in average discharges at the coarse scale. The detailed hydrological 
models are required to test whether the statistical downscaling provides correct 
results under changed climate conditions. 

1.2 Objectives 

The main objective of the project is to investigate whether statistical techniques 
can be applied for hydrological downscaling in the Rhine basin. For this purpose, 
the statistical properties of discharge series from various different parts of the 



Rhine basin must be analysed first. This is the aim of this study. Of particular 
importance for disaggregating discharge series is the increase of variation that 
is obtained when decreasing aggregation level from 10 days to 1 day. From 
these analyses it is investigated whether rubust relationships between variances 
at different aggregation levels of discharge series can be found, that allow to 
carry out a statistical downscaling of 10-day average discharges simulated by 
the RHINEFLOW-2 model to daily discharges. The downscaling should apply 
to sub-catchments with a size between 5000 and 15000 km2. 

1.3 Restrictions 

This study is a follow-up of a preliminary inventory on candidate techniques for 
disaggregation of hydrological data that was carried out on request of the RIZA 
at the Wageningen Agricultural University (Torfs, 1995) 1. The study yielded 
several methods, both classical and new, that can be applied for the downscaling 
problem. Although not all of them are readily available, they seemed promising 
to be tested. The methods identified by Torfs (1995) will be tested for parts of 
the Rhine basin, with special emphasis on the Saar basin. This sub-basin was 
chosen for the following reasons: - it is part of the German Middle Mountain 
area, which comprises an important section of the Rhine basin. - for this area 
both a coarse model (RHINEFLOW-2) and detailed model (Saar model) will 
be available. - its size is about 7000 km2, which is in accordance with the 
requirements of the study - an appropriate database is available 

In this study only statistical methods of univariate (temporal only) processes are 
described, since these already comprise several problems that must be solved. 
Taking into account spatial correlations and covariances, e.g. between discharges 
from different Rhine tributaries, raises problems that are far from being solved 
yet. Only when using conditional simulations based on the coarse scale dis­
charges of a water balance model, a minor spatial correlation is achieved as the 
result of the spatial correlation between discharges in different tributaries at 
the coarse scale. 

1.4 Investigated discharge series 

For this study, discharge series from different gauging stations within the Rhine 
basin were analysed. The stations represent different areas and river stretches: 
the Alpine area (Switzerland), Saar area, stations along the main tributaries 
of the Rhine in central Germany, a series of stations along the Rhine, and the 
Overijsselse Vecht in The Netherlands. The location of these stations is given 
in figure 1.1. The table in figure 1.2 gives more information on these stations. 

1. Torfs, P.J.J.F. (1995), Disaggregation techniques for hydrological use. Wageningen, Dept. 
of Water Resources, Wageningen Agricultural University. 
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Figure 1.1. Map of locations of discharge measurements. 



Figure 1.2. Info table on the measuring stations. 

Swiss part of the Rhine basin 
nr 
18 
63 
22 
61 
44 
62 
54 
37 

station 
Neuhausen 
Rheinfelden 
Andelfingen 

Baden 
Brugg 

Stilli 
Mellingen 

Payerne 

river 
Rhein 
Rhein 
Thur 

Limmat 
Aare 
Aare 

Reuss 
Broye 

upstream area (km2) 
11887 
34550 

1696 
2396 

11750 
17625 
3382 

399 

Middle Rhine and main tributaries 
nr 
82 
107 
223 
306 
327 
544 
124 
178 
183 
298 
250 
396 

station 
Konstanz 

Maxau 
Kaub 

Andernach 
Koeln 
Lobith 

Gundelsheim 
Kleinheubach 

Obernau 
Cochem 

Kalkofen Up 
Schermbeek 

river 
Bodensee 

Rhein 
Rhein 
Rhein 
Rhein 
Rhein 

Neckar 
Main 
Main 

Mosel 
Lahn 
Lippe 

upstream area (km2) 
10922 
50343 

103729 
139795 
144612 
160800 

12360 
21505 
22300 
27100 

5320 
4762 

Saar basin 
nr 

514 

269 
268 
271 
277 

281 
282 
283 

station 
Laneuveville 

Vasperville 
Sarreinsming 

Guedingen 
Fremersdorf 

Hornbach 
Contwig 

Reinheim 
Geislautern 
Nonnweiler 

Lebach 
Nalbach 

Niedaltdorf 

river 
Saar 
Saar 
Saar 
Saar 
Saar 

Schwalb 
Schwarz-bach 

Blies 
Rössel 
Prims 
Theel 
Prims 
Nied 

upstream area (km2) 

1759 

111 
529 

1790 
203 

206 
713 

1332 

Overijsselsche Vecht: lowland Rhine basin 
nr 

-615 
station 

Vechterweerd 
river 

Vecht 
upstream area (km2) 

3779 



Chapter 2 

The techniques 

2.1 Aggregat ion and disaggregation 

2.1.1 Definition of aggregation 

"Aggregation" is defined in Webster as : 

"the collection of units or parts into a mass or whole" 

In this study, the word aggregation wil have a rather restricted meaning. First 
of all, a fixed aggregation length T is choosen. An aggregated time series X^ 
is defined as a discrete time series which gives the mean of the original process 
X over every interval of the form [(n — 1)T, nT]. 

Formally : 

X[T](n)däUnT X(r)dr n = 0 ,1 ,2 , . . . (2.1) 
-l J(n-1)T 

Figure 2.1 shows a time series considered to be characteristic for this study : 
discharge data on a daily basis for the Rhine. 

The point of view taken in this study is that we built up the aggregations 
recursively : at each step we double the aggregation length. 

It is then easy to derive from the definition a basic recursion formula : 

X[T\n) = I T X{r)dr 
1 J(n-1)T 
l f ,(2n-l)(T/2) /-(2n)(T/2) 

= = / X(r)dr + 
i [J(2n-2)(T/2) J(2n-\)(T/2) 
XVI2X2n) + XVI2\2n-l) 

f^n)(l ft) 
X(r)dT+ / X{T)dr\ 

J(2n-l)(T/2) J 

(2.2) 

2.1.2 Definition of disaggregation 

Disaggregation is the inverse of aggregation. It is thus a technique by which the 
original process is reconstructed out of the aggregated. 

10 
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Figure 2.1: A typical time series : 1024 days of discharges (m3s 1) of the Rhine 
at Andernach 

1000 

Figure 2.2: An aggregation of the Andernach data with T = 50 
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Figure 2.3: The process ^[50] for the Andernach data, the dotted lines are X^ 

and XW 

This disaggregation can be performed if one knows the so called waveietcoeffi-
cients of level N 1 

In general, these coefficients are defined by : 

A t ^ ( t(n-l/2)T rnT ) 
XHn)är\ X(r)dT- X(r)dr\ 71 = 0 , 1 , 2 , . . . 

(2.3) 

If, as will be done in this study, one concentrates on halving the aggregation 
length 2 , recursive formulas can be written : 

X[T]{n) 
XVM(2n - 1) - XVI2\2n) 

With the help of this, the disaggregation step can be written as : 

X[T/2](2n-l) = X^(n) + X[T](n) 

xV/2\2n) = xV\n) - X[T](n) 

(2.4) 

(2.5) 

(2.6) 

2.1.3 High and low filtering and computational aspects 

One can consider aggregation as a kind of sampling of a moving average process : 

J f { T ) ( t ) 4 f X(T)dT 
1 Jt-T 

(2.7) 

1. There is a "wavelet theory" that justifies the use of the name wavelet here. As this theory 
a such is not needed to understand this raport, we refer the interested reader to the preceding 
raport, referenced on page 7 
2. Halving is a basic step in wavelet theory 
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Figure 2.4: The X^ ' -process for the Andernach data 
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Figure 2.5: The X{50}-process for the Andernach data 

Sampling means that one takes only the values of the moving average process 
at certain points : 

X^(n) = X^(nT) (2.8) 

In a similar way, one can consider the wavelet coefficients as a sampling of the 
following continuous version : 

xm^) = f {/rr
T/2*(r) dT - LTI2X{T) dT\ (2"9) 

The moving average process is sometimes called the low filtered process and the 
continuous wavelet coefficient the high filtered process, because they amplify the 
low frequencies and the high frequencies respectively. 

If one does not go down to the continuous underlying process, but stops at a 
certain aggregation level, one can write discrete analoga of the formulas above : 

13 



-400 -200 

Figure 2.6: The fourier transform of the Andernach data, solid line is the real 
component, dotted is the imaginary component 

Xi»*T>(k) = 1 E *<T>(n) 
N 

k-N+l 

Both formulas can also be written as a convolution : 

XlN*THk) = £><">(*-n)X<T>(n) 

X{N*T}(k) = E V> (* - n) X^(n) 

with : 

N 

1 

1 if 0 < k < N 
0 else 
+ 1 if N/2 <k < N 
- 1 if 0 < k < N/2 
0 else 

Convolutions can be calculated with the help of Fourier 3 transforms 

(2.10) 

1 (k-N/2 k ) 

X{N*T}(k) = ^ \ E * { r } ( » ) - E ^{T}(»)[ (2-11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

3. Ofcourse, Fourier techiques can also provide a much more fundamental insight in filtering, 
one can thing of wavelet theory as a kind of time-frequency analysis, where Fourier analysis 
is only a frequency analysis. Wavelet coefficients are thus a analogon of Fourier coefficients. 
We refer for this to the techniqual appendix of the preceding rapport, referenced on page 1.3 
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In all practical situations, one only has a finite number of data (n = 0 , . . . N). 
This gives "starting up" problems, because the formulas 2.10 and 2.11 require 
values "before the first observation" (for n < 0). One way out of this problem 
is to put all data "in a circle", i.e. to take the last data values as the values 
preceding the first. When using this approach the Fourier formulas still hold. 

If one has to do a lot of high and low filtering of the same data series, it pays 
to use the Fourier formulas above (note that one has to calculate !F(X^T^) only 
once). If the number of data is a power of two, one has of course the FFT-
algorithm ("Fast Fourier Transform") to calcultate the necessary transforms. 

2.2 The V R F and M V R F function 

2.2.1 Statistical disaggregation 

In many cases an exact disaggregation is impossible and a statistical disaggre­
gation is the only possibility left. 

For such a disaggregation one needs of course a good probabilistic description 
of the wavelet coefficients. 

In all the analysis that follows, we assume the stochastic processes to be second 
order stationary. 

The mean of aggregation processes and wavelet coefficients (and of the low and 
high filtered process) are trivial : 

E [xW(n)} = E [x{T}(n)] = E [X(n)] = fi (2.18) 

E [x[T](n)] = E [x{T](n)} = 0 (2.19) 

2.2.2 The variance reduction function 

Because the mean is trivial, the variance is the first important characteristic to 
be studied. 

The variance reduction function (or VRF) is defined as the function that gives 
for each aggregation length the variance of the corresponding aggregated (or 
low filtered) process. 

Formally : 
VRF(T) = VAR [ ^ ( n ) ] = VAR [x{T*(n)] (2.20) 

This is a clearly decreasing function. 

2.2.3 The marginal reduction function 

The marginal variance reduction function (or MVRF) is defined as the function 
that gives for each aggregation length the variance of the corresponding wavelet 
coefficients (or high filtered process). 

15 
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Figure 2.7: The VRF function of the Andernach data 

0 10 20 30 40 50 60 70 80 90 100 

Figure 2.8: The MVRF function of the Andernach data 
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Formally : 

MVRF(T) = VAR [x[T](n)] = VAR [x{T}(n)] (2.21) 

There is also a second interpretation of the MVRF function : 

MVRF(T) = VRF(r/2) - VRF(T) (2.22) 

A proof of this second interpretation is found in appendix A 

So the point MVRF(IO) = 100000 4 in figure 2.8 may be interpreted in the 
following two ways : 

1. It is the variance of the process -^[io] that ones has to add/substract 
(according to the formulas 2.5 and 2.6) to -^[10] to obtain X[Sy 

2. It is the difference between the variances of the X^ and ^[io] process 
respectively. 

It is the believe of the authors of this report, that the MVRF function plays a 
central role in the disaggregation analysis. This more so than the VRF function 
(although this is mathematically equivalent) because, as the examples in the 
following paragraph show, the form variations of the MVRF function are much 
more expressive than those of the VRF functions. 

2.2.4 A few characterist ic examples 

A rainfall series 

Figure 2.9 shows rainfall data measured on a very fine timescale : every value 
stands for the average of 10 seconds of rainfall. Rainfall is almost always mea­
sured in a cumulative way, and by that is always an aggregated process. 

Figure 2.10 shows the VRF function of these rainfall data. This VRF function 
does not differ to much in character (for the naked eye at least) from the VRF 
function of the Andernach data (see figure 2.7). 

The MVRF function of these rainfall data, as shown in figure 2.11 differs dra­
matically : the function does not go to zero for small T. Going from left to right, 
the Andernach VRF decreases continuously (after a certain point), the rainfall 
VRF sudenly starts to increase again. 

This also shows, that if the rainfall VRF should only be given for T > N * 10sec, 
as illustrated by figure 2.12 one could have no idea about the variance that is 
hidden in the very small time intervals, and one would be tempted to extrapolate 
in a such a way that it would resemble the Andernach VRF. 

Another consequence from this is that the process is certainly not continuous : 
the variance to be added when going to smaller and smaller scales does not 
decrease, as a should be the case for a continuous process. 

4. To appreciate the large numbers on the y-axis : a variance o f « 100000 m6s 2 corresponds 
to a standard deviation of « 300 m 3 s - 1 . 

17 
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Figure 2.9: The rainfall series 

1000 

20 40 60 80 100 120 140 160 180 

Figure 2.10: The VRF functio of the rainfall series 
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Figure 2.11: The MVRF function of the rainfall series 
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200 

Figure 2.12: A "sampled" MVRF function 

100 200 300 400 

Figure 2.13: The first part of the rainfall series 

500 

A closer look on the first part Figure 2.13 shows only the first part of the 
rainfall data. This part is very irregular. Figure 2.14 shows the MVRF function 
of this first part. Clearly the steep rising when T —> 0 is more pronounced here. 

A closer look on the second part Figure 2.15 shows only the second part of the 
rainfall data. This part is clearly more regular then the first part. Figure 2.16 
shows the MVRF function of this first part. Clearly the steep rising when T —> 0 
is almost not present here, and the MVRF function is resembles more that of 
the Rhine data in figure 2.8. 

Conclusions Clearly the form of the MVRF function found for the Rhine data 
(see figure 2.8) is not the only one possible. 

If the time series consists of different parts, which have different behaviour, the 
MVRF of the combination shows a kind of mixture of both parts, as can be 
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Figure 2.14: The MVRF function of the first part of the rainfall series 

500 

Figure 2.15: The second part of the rainfall series 
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Figure 2.16: The MVRF function of the second part of the rainfall series 

20 



1000 

Figure 2.17: A white noise process 
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Figure 2.18: The MVRF function of the white noise process 

seen from figures 2.11, 2.14 and 2.16. 

White Noise 

Figure 2.17 shows a white noise process : all the dat are independend (Gaus­
sian) variables. The MVRF function of this process -see figure 2.18- shows a 
very characteristic behavriour : the variance to be added to disaggregate keeps 
increasing when ones goes down to smaller and smaller scales. One can show 
that in this case : 

MVRF(T) ~ 1 (2.23) 

Comparing this to the rainfall data, one can conclude that the MVRF as de­
picted in figure 2.11 shows "white noise" behaviour near the origin, which is 
causes by the manifist white noise character of the first part of this data, as 
shown by figure 2.14. 
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Figure 2.19: A fractal process 
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Figure 2.20: The MVRF function of the fractal process 

Pure fractal behaviour 

The standard description of (pure) fractal behaviour (for time series) : 

if one zooms in in time, one sees 
-after rescaling the y-axis-
(statistically) the same time series 

can be translated for the variance by : 

MVRF(T) « Ta (2.24) 

White noise is a special case with a — — 1. Of course, other values for a can 
also be exploited. 

Figures 2.19 and 2.20 show a (artificially generated) fractal process and its 
corresponding MVRF function. 
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Figure 2.21: An AR(1) process with a = 0.98 
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Figure 2.22: The MVRF function of the AR(l) process with a = 0.98 

Some AR examples 

The easiest way to artificially model time series with dependencies is to use 
AR(l)-models, discretely : 

X(n) = aX(n- l )+e(n) (2.25) 

where e(n) is white noise. 

Figure 2.21 shows a time series generated with a — 0.98. Figure 2.22 shows the 
corresponding MVRF function. Clearly this function has a form wich is very 
similar to the Andernach data, see figure 2.8. 

Figure 2.23 shows an AR(1) series generated with a = 0.5. The MVRF function 
of this process, as shown in figure 2.24 is a kind of mixture of the preceding AR 
case and the white noise case, the latter being dominant. 
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Figure 2.23: An AR(1) process with a = 0.5 
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Figure 2.24: The MVRF function of the AR(1) process with a = 0.5 
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2.3 U se of V R F and M V R F in d isaggregation 

It should be clear from the above, that the most important part of the MVRF 
function (and the VRF function) is the part near the origin. So a sentence as 
"these two MVRF's have the same form" in the following paragraphs should be 
interpreted as : "these two MVRF's have the same form near the origin". 

2.3.1 Stationarity of VRF and MVRF 

In all calculations above, the stationarity of the time series and in particulary 
the stationarity of the VRF and MVRF functions was tacitely assumed. 

In all practical situations, such a stationarity should be checked. In theory 
the stationarity of the VRF and MVRF functions are a direct consequence 
of the total stationarity of the the underlying time series. However, the total 
stationarity of a data series is never (and cannot be) checked. One usually 
only checks stationarity of the mean and second order moments (variance and 
covariance). Then, an extra check on particular stationarity of the important 
functions VRF and MVRF should explicitly be made. 

Because the VRF and MVRF functions (specially near the origin) are more 
sensitive to extremes then e.g. the mean, one usually needs longer series to test 
stationarity. Calculations of VRF and MVRF functions for 5 year intervals of 
disharges of the Rhine at Lobith did show rather large differences. Changing 
the interval length to 10 years however showed already a greater stationarity. 

Besides trends, periodicity is another source of non-stationarity. For the hydro-
logical series studied here, a different VRF and MVRF for the summer and for 
the winter seasons were calculated and treated seperately afterwards. Specially 
the winter functions were convincingly stationary. 

2.3.2 Stationarity under climate change 

In the paragraph above, the stationarity of the VRF and MVRF of data series 
was discussed. Because the more far reaching aim of the present study is to 
investigate peak discharges under climatic change, one should also consider the 
stationarity of the VRF and MVRF function under this climatic change. 

Such a question can only be answered if one has two time series for the same 
catchment, one before and one after climatic change. To produce such series, 
one needs models that can calculate discharge series under different climatic 
conditions in the same catchment based on physical principles. 

A few preliminary calculations were performed for the Vecht catchment, where 
such a model is available. The results are shown in figures 3.13 and 3.14. These 
calculations show that the VRF and MVRF change under different climatic 
scenarios, buth that the form of the MVRF function is relative stable. 

It is the believe of the authors that the climate changes most dramatically the 
behaviour at larger time scales (e.g. due to change in snowmelt). Changes due to 
higher variability of the rainfall may change the height of the MVRF function, 
but -at least in the Vecht case- much less the form. 
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Figure 2.25: The sampled MVRF of the Andernach data 

2.3.3 Extrapolating VRF and MVRF 

It will seldom be the case that the VRF(T) and MVRF(T) function are avail­
able for the whole range of T's of interest. In many cases one has only partial 
information. 

The most common form of this partial information is that one has only data 
downto a certain aggregation level. E.g. one has only decade values and no 
values on a finer time scale. 

This means that the VRF(T) and MVRF(T) function are only known on a finite 
grid. Formally, if Tmin is the finest scale for which aggregated data are available, 
only VRF(nTmin) and MVRF(nTm,„) for n = 0 ,1 ,2 , . . . can be calculated. 
Figure 2.12 shows such a situation. 

In the case of the RHINEFLOW-2 model, an 10-day aggregation will be avail­
able. The MVRF calculated on basis of these data will give only values on the 
grid T - 20,30,40,.... Figure 2.25 shows the MVRF of the Andernach data 
(see figures 2.1 en 2.8) on the same grid. 

This creates two kind of problems : and interpolation problem (derive values 
between two grid points) and extrapolation problem (derive values for values 
of T smaller then Tm,-n. 

For the extrapolation problem, one certainly needs also knowledge of how the 
function VRF and MVRF can behave. Without this, completely wrong con­
clusion can be drawn, as the example of the sampled rainfall MVRF function 
in figure 2.12 showed. This "knowledge of behaviour below Tm m" should come 
from induction based on other, similar time series where information on a lower 
aggregation level is available. 

Suppose e.g. that one has a model that calculates decade discharges under 
different climatic scenarios. In order to say something about the behaviour 
of the VRF and MVRF function below this level, one certainly needs some 
characteric examples of time series below this decade level, e.g. on daily level. 
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Figure 2.26: A possible extrapolation of the sampled MVRF of the sampled 
Andernach MVRF, the dashed line is the "true" MVRF 

Hopefully, one can then derive from this enough "general behaviour" for the 
extrapolation of the VRF and MVRF function in those cases where only decade 
values are available. 

2.3.4 Need for parametric models 

A very concrete way to do that extrapolation would be by means of a parametric 
model. 

The example of figure 2.25 clearly shows the need for such a model. 

Suppose that one could show, based on many characteristic series, that a typical 
behaviour for small T of the MVRF can be described by a simple paramtric 
model : 

MVRF(T)«¥>( r , a i , a 2 , . . . ) for small T (2.26) 

then one could use this parametric model in those cases where only information 
downto Tmin is available to extrapolate from the calculated values the behaviour 
for much smaller T. 

To make a much to simple example : 

Suppose one has convinced one self that for discharges of catchments in the 
Rhine basin a typical behaviour of the MVRF function for small T (say dowto 
a level of 12 hours) is of the form MVRF(T) « Ta + ß. 

Suppose that now that one has for a certain catchment calculated decade values 
(e.g. under a different climate). Them one can calculate the MVRF function 
for values of T = n[days]. Using this, one can try to find an a and ß such that 
Ta + ß fits reasonable throug the most leftwards points of this function, and 
use this parametric form to extrapolate the function downto a level of half a 
day. 
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Figure 2.26 shows a possible extrapolation of the sampled MVRF of the An­
dernach data. 

The crucial point in the above scheme is that one should have a parametrisation 
that fits reasonably all series that are considered to be representative. In the 
present stage of the study, this has yet to be done. 

The parametric models should be able to summarise "the form" of the MVRF 
function in a few parameters. Because it is to be expected that this form (at 
least near the origin) is rather stable, these parameters could be thought then 
to be insensible to climatic change and thus form the basis of the disaggregation 
in different climatic scenario's. 
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Chapter 3 

Application for discharges in the Rhine catchment 

In this section, some pictures will be represented for discharges in the Rhine 
catchments. Data were splitted up in two parts : the summer part (months May 
thorugh October) and the winter part (months November throug april). 

3.1 Difference between summer and winter 

Figures 3.1 and 3.2 show the Rhine at Stilli (Switzerland) respectively for the 
summer and the winter period. The difference in statisticall behaviour of both 
series shows itself clearly in their MVRF functions. The winter MVRF has a 
form very similar to the Andernach case (see figure 2.8. 

Because our main interest lies in the winter period, and because the summer 
MVRF's can differ significantly from the winter ones (and are in general less 
similar), most examples in the rest of the paragraph will be of the winter period. 

3.2 Along the Mosel 

Figure 3.3 shows the Saar in the upper part of its catchment (winters 1978-
1990). 

Figures 3.4 and 3.5 show the Saar at Fremersdorf, i.e. at the end of its catchment 
respectively for the summer and winter (years 1978-1990). Clearly again, the 
summer part has a "non-typical" form. The winter part is more regular, like in 
figure 2.8. 

Figure 3.6 shows the Mosel at Cochem (winters 1978-1990). Here the behaviour 
of the MVRF is very regular. 

3.3 Along the Rhine 

Figure 3.7 shows the Rhine in Neuhausen -just downstream of the Bodensee-
, figure 3.8 at Kaub and figure 3.9 Lobith (all for the winters 1978-1990). 

The MVRF function of the Rhine at Neuhausen is a-typical (the Bodensee 
damps the fluctuations), the MVRF's at Kaub and Lobith show very typical 
behaviour. 

29 



2000 

0 10 20 30 40 50 60 70 80 90 100 

Figure 3.1: The Rhine at Stilli in the summer 
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Figure 3.2: The winter part of the Rhine at Stilli 
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Figure 3.3: The Saar in Laneuveville in winter time 
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Figure 3.4: The Saar at Fremersdorf in the summer 
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Figure 3.5: The Saar at Fremersdorf in the winter 
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Figure 3.6: The Mosel at Cochem in the winter 
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Figure 3.7: The Rhine at Neuhausen in the winter 
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Figure 3.8: The Rhine at Kaub in the winter 
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Figure 3.9: The Rhine at Lobith in the winter 
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Figure 3.10: The Main at Obernau in the winter 

3.4 Some tributaries of the Rhine 

In this section, some other tributaries (other than the Mosel) are presented : 
the Main at Oberanau in figure 3.10, which shows typical winter behaviour, the 
Neckar at Gundelsheim in figure 3.11, which shows a non-so-typical behaviour 
(the Neckar at this place is under influence of a backwater curve of a downstream 
controll), and the Lippe a Schermbeek in figure 3.12, again more typical (all for 
the winters 1980-1992). 

3.5 The Vecht under different climates 

For the Vecht catchment, a physical based model that can calculate discharges 
under different climate scenarios is available *. 

Figure 3.13 shows the Vecht (winters 1978-1990) under the present climate. 

1. Parmet &; Bouma, 1995 
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Figure 3.11: The Neckar at Gundelsheim in the winter 
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Figure 3.12: The Lippe at Schermbeek in the winter 
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Figure 3.13: The Vecht in the winter 

Figure 3.14 shows the same Vecht under the rather extreme "UKHI2100 sce­
nario" 2. The range of the discharges almost doubled. The "form" of the two 
MVRF functions is very similar, although the ranges differ by a factor 2. 

2. UKHI (Hulme et al, 1994). This scenario is characterised by a strong increase in winter 
precipitation in the winter half year (up to 45%), and a minor decrease of precipitation in the 
summer period (at most -5%). The annual temperature rise is about 4 degrees Celsius. 
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Figure 3.14: The Vecht in the winter after climate change 
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Chapter 4 

After variance : covariance 

4.1 The MACF and MCCF functions 

After mean and variances, the covariances and the correlations -which can be 
directly calculated from the covariances- are the most important characteristics 
of a time series. 

So, if (and only if) one has succesfully disaggregated the variance, one can try 
to disaggregate the covariance. 

For halving the disaggregation length, one needs the following covariances : 

MACF(T,fc) = COV(x[T]{n),X[T](n + k)) k = 0 ,1,2,.. . (4.1) 

MCCF(T,A;) = COV (x[T](n),X^(n + *)) it = . . . , - 1 , 0 , 1 , . . . (4.2) 

The acronym MACF stands for Marginal Auto Covariance Function and MCCF 
for Marginal Cross Covariance function. 

Technically, it is not difficult to calculate these functions. In general, the same 
procedure as for the MVRF should be followed : 

• first by investigating a lot of characteristic examples, sufficient confidence 
on stationarity should be obtained 

• a simple but convincing parametrisation should be formulated, tried and 
valitated 

4.2 The "all independ" choice 

One can, of course, make a trivial choice for the MACF and MCCF function : 

MACF(T,A;) = 0 for k # 0 (4.3) 

MCCF(r,&) = 0 for all A; (4.4) 

If one accepts this, a disaggregation simulation is relatively easy. To go from T 
to r / 2 : 
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1. one generates independend random (gaussian) variables with mean 0 and 
variance MVCF(T). These form the process -X"[x]> 

2. one uses the disaggregations formulas to calculate Xp/2]-

If needed, this procedure can be repeated. 

The figures 4.1 and 4.2 illistrate the recursive procedure described above. The 
end result is shown in figure 2.19. The indepence makes that the "binary grid-
points" remain visible. The processes generated in this way are thus not station­
ary. In this sense, they have a very unwanted behaviour. They may have however 
the right "extreme" behaviour, or some other correct statistical characteristic. 
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Figure 4.1: The first three stages of the generation process. 
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Figure 4.2: The next three stages of the generation process. 
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Chapter 5 

Conclusions and continuation 

5.1 Conclusions 

1. The MVRF function is the basic first step in disaggregation analysis. 
2. At this stage of the study, the necessary software to calculate the impor­

tant statistics is available in a functional form. 
3. A lot of relevant examples have been calculated. 
4. The examples do not show White Noise (or Fractal Noise) behaviour. 
5. The form of the MVRF for the winter is sufficient stable (for series 

longer than 10 years and for catchments larger than 1000 km2) to draw 
the conclusion that succesful disaggregation of the variance function is 
possible for different catchments from the decade scale downto to the 
day scale. 

6. The form of the MVRF in summer is less stable, certainly for smaller 
catchments. 

7. The strongest decrease of the winter MVRF's is below 10 days. The new 
Rhineflow model will provide us data downto a scale 10 days. This means 
that MVRF constructed with Rhineflow-2 data will stop at day=20. 
The winter-MVRF's show that Rhineflow-2 models pin down the total 
MVRF to an acceptabel precision. 

8. Smaller catchments are in general difficult to model (specially in the 
summer) 

9. A few first examples show that the form of the MVRF is also stable 
under different climates. This should further be investigated 

10. It is relatively easy to simulate disaggregation if the MVRF is known 
and one accepts indepencies. 

5.2 Wha t to do next 

5.2.1 Stability under climate change 

More examples of series on small time scale (day) of the same catchment under 
different climatic conditions should be investigated. The hypothesis wether the 
form of the MVRF(T) for small T is stable should be tested. 
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5.2.2 Proposal for parametrisation 

A parametrisation that is rich enough to fit all the examples considered to be 
representative, small enough to be easily fitted, should be developped. 

A this stage of the study, such a parametrisation is not available. 

If no better suggestion is found, parametric forms derived from simple AR (or 
ARMA) models could be tried. 

5.2.3 Simualtion with independencies 

If the preceding two points are sucesfully finished, one can try to stochastically 
disaggregate (i.e. to simulate) by neglecting all dependencies, i.e. by assuming 
MACF = 0 and MCCF = 0. A first description of this technique can be found 
in paragraph 4.2. 

5.2.4 Criteria for evaluation 

Criteria for evaluation should be developped. Certainly at this stage, the mean 
and the variance are correctly simulated. 

A criterium is a statistic that can be calculated on the simulated disaggregated 
series. 

Examples of such statistics are : 

1. high quantiles (e.g. 95% quantile); 
2. duration of level exceedence 
3. return periods for high levels calculated by classical extreme (Gumbel?) 

statistics 
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Appendix A 

Proof of second interpretation of MVRF 

The proof of the "second" interpretaion of the MVRF function goes as follows. 
Using equations 2.2 and 2.4 one can write : 

E [*P1(») X[T](n)} = \ JE [(x™(2n - I))2] - E [(x™(2n))2] } 

this last equality following from stationarity. 

With the help of this, one can show that X^T'(n) and Xm{n) are uncorrelated : 

COV \x^{n) X[T](n)} = E [(x^(n) - fi) X[T](n)} 

= E[x^(n) X[T](n)} - fiE[xlT](n)] 

= 0 (A.l) 

From this, the second interpretation of the MVRF is easily derived : 

VAR [%y2](n)] = VAR [x^(n) + X[T](n) 

= VAR [x[T](n)] + VAR [x[rj(n)] + 2COV [x^(n) X[T](n)] 

= VAR [x[T](n)] + VAR [x[T](n)] 

50 



Appendix B 

An example of a typical set of computations 

All computations were done by mean of c-code. A simple interface was build 
and used to call these functions in different ways. A characteristic examples, 
showing typical behaviour and computations to be performed, follows. In this, 
the following functions are used : 

cent centralises the data, e.g. substracts the mean 
TtoF transforms (with FFT) a time series to its Fourier representation : form 

the time domain to the frequency domain 
FotT performs an inverse Fourier transform (with FFT) : from frequency do­

main to the time domain; 
newf i l generates a filter (see equations 2.14 and 2.15) 
convFF makes the product of two complex series (see formulas 2.16 and 2.17) 
vf calculates the VRF and MVRF function 

gnuf i le = demo.gnu 

newvar(datafilename) = demo.dat 
newvar(months) = 1,12 
newvar(years) = 1941,1943 

the following l i n e s read the data and p lo t them 

newvar(data) = getQdat(datafilename,months,years) 
Op lo t ( da t a , s t r ( o r i g i na l data from,datafilename)) 

c e n t r a l i s e 

data = cent (data) 

calculate and plot the Fourier transform of the data 

newvar(Fdata) = TtoF(@complex(data)) 

©plot(mir(Fdata),'Fourier transform, xmir(@len(Fdata))) 

the filters : 

newvar(fil) = newfil(@len(data),32,low) 
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Splot ( f i l , 'a low f i l t e r ) 
f i l = newfil(@len(data),32,high) 
©plot(fil, 'a high filter) 

rm('fil) 

to filter the data is done by using the Fourier transform of 

the filters : 

low : 

newvar(level) = 32 

newvar(Ffil) = TtoF(newfil(Qlen(data).level,low)) 

newvar(fildata) = FtoT(convFF(Fdata,Ffil)) 

©plot(fildata,de laag gefilterde data) 

high : 

Ffil = TtoF(newfil(@len(data),level,high)) 

fildata = FtoT(convFF(Fdata,Ffil)) 

@plot(fildata.de hoog gefilterde data) 

rm('fildata) 

calculation of the VRF and MVRF functions : 

newvar(datavf) = vf(data,100,low) 

@plot(datavf, 'the VRF function) 

datavf = vf(data,100,high) 

«plot(datavf, 'the MVRF function) 

rm('datavf) 

closegnu 

quit 
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Appendix C 

The fractal generation code 

for ( i=0; Knumlevels; i++) 
•C 

x[ i ] = 0; 
l eve l [ i ] = 2; 
h a l f l e v e l [ i ] = 1; 

for ( j=0; j < i ; j++) 
•C 

leve l [ i ] *= 2; 
p r ev l eve l [ i ] *=2; 

} 
} 

f o r ( i=0 ; Knumdata; i++) 
{ 

fpr intf(fout ,"7.d " , i ) ; 
r e s u l t = 0 .0; 
for ( j = l eve l s - l ; j>= 0; j — ) 

{ 
i f ( i y . l eve l [ j ] == 0) x [ j ] = MVRF[j] * g au s sO ; 
if (i'/.half l eve l [ j ] == 0) x [ j ] = - x [ j ] ; 

r e s u l t += x [ j ] ; 
> 

p r i n t f 07 . f \ i i " , t o t x ) ; 
} 
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