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Three models relating to the epidemiology of beet virus yellows are 
discussed and compared. The descriptive model of WATSON et al. (Ann. 
Appl. Biol. 81, 181-198, 1975) predicts final virus yellows incidence on 
the basis of weather data. HARRINGTON et al. (Ann. Appl. Biol. 114, 
459-469, 1989) revised this model, incorporating biological variables in 
the regression equation. A second model, described by WATSON and HEALY 
(Ann. Appl. Biol. 40, 38-59, 1953), calculates the time-course of a 
virus yellows epidemic on the basis of aphid catches. This analytical 
model is based on a set of strongly simplifying assumptions concerning 
the movement of the vector and the transmission of virus. The third 
model simulates the development of foci of beet yellows virus on the 
basis of a detailed description of the behaviour of individual vectors. 
This model is used to study the importance of the various processes 
underlying virus spread. 

Trois modeles ayant trait a l'epidemiologie des virus de la jaunisse 
sent discutes et compares. Le modele descriptif de WATSON et al. (Ann. 
Appl. Biol. 81, 181-198, 1975) predit l'incidence finale des virus de la 
jaunisse a partir des donnees meteorologiques. Ce modele a ete revise 
par HARRINGTON et al. (Ann. Appl. Biol. 114, 459-469, 1989) qui ont 
introduit des variables biologiques dans l'equation de regression. Le 
deuxieme modele, decrit par WATSON et HEALY (Ann. Appl. Biol. 40, 38-59, 
1953) calcule la dynamique temporelle d'une epidemie de jaunisse a 
partir des prises de pucerons. Ce modele analytique fait des hypotheses 
fortement simplificatrices quant au deplacement des vecteurs et a la 
transmission des virus. Le troisieme modele simule le developpement des 
taches de jaunisse de la betterave, a partir d'une description detaille 
du comportement des vecteurs individuals. Ce modele est utilise pour 
etudier l'importance relative des divers processus intervenant dans la 
dispersion des virus. 
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Zuaammenfasaung 

Drei MoQelle der Epidemiologie von Vergilbungsviren in Zuckerrliben 
werden beschrieben und verglichen. Das beschreibende Modell von WATSON 
et al. (Ann. Appl. Biol. 81, 181-198, 1975) macht eine Voraussage tiber 
die finale Vergilbungsinzidenz eines Jahres auf Grund des vorhergehenden 
Winterwetters. HARRINGTON et al. (Ann. Appl. Biol. 114, 459-469, 1989) 
passten dieses Model an und introduzierten biologische Variabelen in die 
Regressionsvergleichung. Das zweite Modell, beschrieben von WATSON et 
HEALY (Ann. Appl. Biol. 40, 38-59, 1953) berechnet den Zeitverlauf einer 
Vergilbungsepidemie auf Grund von Vektorfangen. Dieses analytische 
Modell basiert auf stark simplifizierende Annahmen tiber das Verhalten 
des Vektors und die Transmission des Virus. Das dritte Modell simuliert 
die Verbreitung von Vergilbungsviren auf Grund einer detaillierten 
Beschreibung des Verhaltens der einzelnen Vektoren. Das Modell erklart 
die Entwicklung von Vergilbungsherden im Gewachs. Es wird angewand urn 
den Belang der verschiedenen Prozesse, die der Verbreitung unterliegen, 
zu untersuchen. 

INTRODUCTION 

Virus yellows is an economically important disease of sugarbeet, Beta 

vulgaris, throughout the world, causing maximum yield losses of about 
50% (DUFFUS, 1973; HEIJBROEK, 1988a,b; SMITH, 1988; VAN DER WERF, 1988). 
The disease can be caused by three different viruses: beet yellows virus 
(BYV), beet mild yellowing virus (BMYV) and beet western yellows virus 
(BWYV). These viruses can occur singly or together in a plant. The green 
peach aphid, Myzus persicae is the most efficient vector and the only 
one of practical importance (WATSON et al., 1951; BJORLING, 1952; 
HEATHCOTE, 1966). BYV is a closterovirus (BAR-JOSEPH et al., 1979) while 
BMYV and BWYV are both luteoviruses (DUFFUS, 1973; DUFFUS and RUSSELL, 
1975). BMYV is only reported from Europe whereas BYV and BWYV occur 
worldwide. Strikingly, most BWYV strains from Europe do not infect 
sugarbeet (SMITH and HINCKES, 1985) whereas most strains from other 
continents do (DUFFUS, 1973) . The taxonomy of luteoviruses is still 
problematic (ROCHOW and DUFFUS, 1981; WATERHOUSE et al., 1988). 

The importance of yellowing viruses in sugarbeet varies from year to 
year (DUNNING, 1988; HEATHCOTE, 1988), depending on the buildup of a 
virus reservoir over the years and on the weather conditions in specific 
years. These affect the winter survival of aphids and viruses and the 
time of initial infections in the sugarbeet crop. Therefore, the kind of 
chemical control measures needed, if any, varies from year to year, and 
warning services have been set up to advise the growers (DEWAR, 1988). 
Presently, most warning services work on an empirical basis, but their 
advices may in the future be more and more underpinned by the results of 
quantitative models of the epidemiology and yield impact of the viruses. 
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Models are simplified representations of real systems. Distinction is 
made between static and dynamic models and between descriptive and 
explanatory models (DE WIT and RABBINGE, 1989) . Dynamic models describe 
the way in which a system changes over time. They are generally 
formulated as differential or difference equations. Static models have 
.no time-component involved. Descriptive models show the existence of 
relations between elements, but do not explain the relations. 
Explanatory models distinguish two levels of organization: the system 
level and the process level. The behaviour of the system is explained by 
quantifying the underlying processes and relations. 

In this paper a review of existing models in the field of beet virus 
yellows epidemiology is given. First, a descriptive static model for the 
relation between virus yellows incidence and weather conditions, due to 
WATSON et al. (1975) is described. Subsequently a descriptive dynamic 
model for the spread of virus yellows, developed by WATSON and HEALY 
(1953) is discussed. Finally an explanatory dynamic model for the spread 
of beet yellows virus, developed by RIESEBOS (1987), is presented. 

REGRESSION MODELS 

WATSON et al. (1975) derived a regression equation for the prediction of 
virus yellows incidence on the basis of 21 years (1951-1971) of field 
observations: 

y = 100 . [sin ( 110.5- 77 . 10 1og (x1) + x2) ]
2 

(1) 

where 

y Virus yellows incidence (%) at the end of August, 
x1 = the number of frost-days in January, February and March, and 

x2 the mean temperature in April. 

For the years included in WATSON's analysis the formula gives accurate 
predictions (Fig. 1), but only one year with a high virus yellows 
incidence was represented in the data-set. The formula failed to predict 
a later outbreak in 1974 (WATSON et al., 1975). Incidences in 1975 and 
1976 were also significantly underestimated (HEATHCOTE, 1986) . According 
to WATSON et al. (1975) the failure in 1974 was due to the occurrence of 
unusual conditions: 'Local sources of virus will have increased during 
the two previous mild winters, and sugar-beet seed crops in 1974 were 
more heavily infected with yellows than usual .... Also, in 1974 the crop 
was backward and irregular due to drought ... '.These conditions had 
been absent in the years used for the construction of the regression 
equation. 

HARRINGTON et al. (1989) have developed a new regression model to 
forecast the incidence of virus yellows in England. They used data from 
1965 onwards to allow data on the time of flight of M. persicae, as 
determined by the Rothamsted Insect Survey suction traps (MACAULY et 
al., 1988), to be incorporated in the regression equation (2): 
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y = 1 0 0 . [ sin ( 0 . 3 7 arcsin ~ - 25.7 . x2 - 3.125 . X3 + 0. 0092 . (x3)2) t 
where 

y predicted virus yellows incidence (%), 
x1 virus yellows incidence in previous year (%), 

xz number of ground frosts in January and February, and 

x3 day (from 1 January) when the first M. persicae are caught. 

The revised regression model gives a better fit to the high incidences 

in 1974 and 1975 and it is presently used in the British warning system. 
Unfortunately, the data set used by HARRINGTON c.s. has the same 

. shortcoming as that of WATSON et al., namely that few years with high 
incidences are represented. The new regression model can therefore, 
among other reasons, not be relied upon exclusively for vector control 
decisions. Its predictions are compared to other informations, a.o. 
local sources of virus and overwintering sites for aphids, to make a 
final integrated extension decision (HARRINGTON et al., 1989). 

Attempts to establish regressions similar to those of WATSON et al. for 
Dutch conditions have been unsuccessful (W. HEIJBROEK, pers. comm.). 
Apparently, the processes underlying the epidemiology of yellowing 
viruses in the Netherlands are so different from those in England that 
they can not be described, using the same correlative approach. Within 
England incidences in different regions are highly correlated (WATSON et 
al., 1975; HARRINGTON et al., 1989). 
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Fig. 1: Predicted versus observed virus yellows incidence in England 
1951 - 1971 (A) and virus yellows incidence versus time (B) 
according to data (WATSON et al., 1975: Table 2) and regression 
model of WATSON et al. (1975). 
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ANALYTICAL MODELS 

Analytical models characterize the structure of a system in one or a few 
equations. Their purpose is to study the relation between system 
structure (characterized by the equations) and system behaviour in a 
general sense. Analytical models are widely applied in theoretical 
ecology (e.g. MAY, 1976; EDELSTEIN-KESHET, 1988). Most analytical models 
are dynamic and descriptive, but as more biological realism is 
introduced they become gradually explanatory. A typical example of a 
descriptive analytical model is provided by the logistic growth rate 
equation in which the absolute rate of increase of a population equals: 

!ill. = r . (1 - H. ) N 
dt K 

relative rate of increase 

where 
r is the relative growth rate at very low population densities, 
N is the population density, and 
K is the maximum population density. 

(3) 

The relative growth rate of the population decreases linearly with the 
number of organisms, N. The equation yields the symmetric S-curve of 
Fig. 2. Logistic equations have been used extensively in plant disease 
epidemiology for descriptive purposes (ZADOKS and SCHEIN, 1979; THRESH, 
1983) . 

K 

lN 
N ~ 

(1 +8 -rx(tii)) 

K ----
2 

0 
Jl time 

Fig. 2: Cumulative logistic growth curve. For the description of the 
increase in incidence of a virus disease in a crop, K equals 1 
(100% infection). The 50%-point, ~, depends on the initial 

incidence and can be solved from No = K 
1 + e r · ~ 
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Only occasionally are analytical models applied for explanation of 
events in the field. MADDEN et al. (1987) give an example. There are at 
least two reasons for this. (1) Because of the simplifying assumptions, 
analytical models do not represent biological systems realistically. (2) 
The par~eters cannot be measured at the level of the individual 
organisms involved. E.g. the carrying capacity, K, in the logistic 
equation depends on environmental factors and is often difficult to 
establish. 

AN ANALYTICAL MODEL OF THE RANDOM SPREAD OF BEET.YELLOWING VIRUSES 

WATSON and HEALY (1953) developed their model from the following set of 
assumptions about the epidemiology of virus yellows in the 1940's: 

1) Virus yellows is spread by winged M. persicae only (BYV and BMYV 

were not yet distinguished in 1953) . 

2) Infected plants are distributed at random over the field (no 

patches) . 

3) Vector aphids originate from outside the field. They have to 

acquire virus from an infected plant within the field before they 

can inoculatel. 

4) Aphids move from plant to plant at random. Every plant has the same 

chance to be visited, irrespective of distance. 

5) The probability of acquisition of virus on an infected plant is 1. 

Aphids retain the virus lifelong. 

6) Aphid flight and virus transmission occur in waves which are 

interspersed at three week intervals. At each wave, all aphids in 

the field make the same number of moves in the field, say t. 

7) Plants infected in preceding waves serve as sources of virus. Thus 

the latency period (time between infection of a plant and 

possibility of acquisition of virus from infected leaves) is 

effectively taken to be 3 weeks. 

B) Plants show symptoms at the next wave, i.e. the incubation period 

is effectively 3 weeks. 

9) Viruliferous aphids deliver virus in a proportion, p, of their 

visits to plants. p is called the inoculation chance. 

10) The number of immigrant aphid vectors per plant, say N, is 

estimated as 0.1 x trap-count, where trap-count is the number of 

winged M. persicae captured on sticky yellow traps exposed for 3 

weeks in the fi~ld, as described by WATSON et al. (1951). 

1 Distinction is made between inoculation and infection, defining 

these terms as follows: Inoculation is delivery of virus to a plant 

and results in infection of the leaf on which the inoculation is 

made. Infection is inoculation of a healthy plant. According to 

these definitions inoculation causes infection of healthy plants 

but has no consequences for plants which have already contracted 

virus. 



It can be shown mathematically (WATSON and HEALY, 1953) that the listed 
hypotheses result in a single formula relating the incidence of 

yellowed2 plants after three weeks to the present incidence of 
yellowed plants. For simplicity, the formula is split in two parts. The 
first equation (Eq. 4) describes the expected number of inoculations per 
aphid (I), given the inoculation chance (p), the current incidence of 
infection (ko) and the number of plants visited per aphid (t). The 

second equation (Eq. 5) describes the predicted incidence of infection 
after the infection wave (k1 ), on the basis of the present incidence 

of disease (ko), the'average number of aphids per plant (N), and the 

expected number of inoculations per aphid (I), as calculated in the 
first equation. 

I = E- . ( ( 1 - ko)t + ko 
ko 

. t 

k1 ... ko + ( 1 - kQ ) . ( 1 - e - N • I ) . 

where 

I = expected number of inoculations per aphid, 
p - probability of inoculation, 
t the number of plants visited by an aphid 
ko ~ present proportion of infected plants, 

k 1 • predicted future proportion of infected plants, 

N ... average number of ~grant winged M. persicae per plant, 

(4) 

(5) 

The meaning of these formula's is most readily understood by the use of 
nomograms (Figs 3 and 4) . 

Fig. 3 shows that I, the expected number of inoculations per vector, 
increases curvilinearly with ko, the incidence of infected plants. A 

maximum number of inoculations per vector, p. (t-1) is reached when ko 

is 1. When ko is not very low, vectors need at an average few moves, 

namely 1/ko, to encounter an infected plant and acquire virus 3 • 

2 yellowed means showing symptoms of infection with virus yellows. 

3 The expression 1/ko follows from the geometric probability 

distribution, which describes the number of Bernouilli experiments 

needed to obtain the first success. This distribution has an 

expectation value of 1/p where pis the chance on a success. 
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Fig. 3: Relation between I, the expected number of inoculations per 
vector, and ko, the incidence of infected plants according to 

WATSON and HEALY's model, for 4 values of t, the number of 
plants visited per vector: 10 ( - - - ) , 5 ( ---- ) , 2 
( ---- ) , or 1 ( __ ; I ,. 0). The probability of 
inoculation, p, acts as a scaling factor along the Y-axis. 
For simplicity, a value of 1 is taken. 

Therefore, when the number of moves, t, is large, the maximum number of 
inoculations per vector is already approached for small values of ko. 
As a consequence, for large t, small incidences of infection can 
increase quickly, provided that enough vectors are present. 

The model proposed by WATSON and HEALY predicts sharp increases in the 
incidence of infection when the expected number of viruliferous vector 
moves (=inoculations) per plant, N.I, is greater than 1. This is 
illustrated in Fig. 4. Because the disease is assumed to be spread at 
random over the field, and not patch-wise, multiple infections do not 
severely limit the effectiveness of the individual inoculations. 

Predicted epidemics are given in Fig 5. This figure shows the calculated 
course of virus yellows epidemics according to WATSON and HEALY's model 
for an initial proportion of infection of 0.003 (i.e. ± 200 plants/ha) 

and 3 aphid densities, differing by a factor 3. The initial infections 
are made on 20 May (day 140), 10 June (day 161) and 1 July (day 182). 
The aphid population is assumed to start on 20 May, grow exponentially 
to a peak density on 22 July, subsequently collapse and reach a smaller 
autumn peak on 23 September (day 266). This time-course of aphid numbers 
is consistent with observations by WATSON et al. (1951) in the years 
1943 to 1948. Figure 5 shows that the mechanisms of spread postulated by 

WATSON and HEALY result in explosive epidemics. A selection of field 
data for the 1940's was adequately fitted with WATSON and HEALY's model, 
taking a value of 5 for t (WATSON and HEALY, 1953). Further comparisons 
of the model with field data have not been made. Therefore, it is not 
clear whether the strongly simplified representation of the system in 
WATSON and HEALY's model results in inaccurate predictions. 
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Fig. 4: Relation between predicted proportion of yellowed plants, k1, 

and the present incidence, k 0, according to WATSON and HEALY's 

model, for 5 values of t, the number of plants visited per 

vector: 10 ( ), 5 ( ---- ), 3 ( -- ), 2 ( ---- ), 
or 1 ( ; k 1 = ko ) . The number of immigrant aphids per 

plant, N, is 0.2 in Fig. 3A, 1.0 in Fig. 3B and 5.0 in Fig. 3C, 
respectively. The inoculation chance, p, is 1. 
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Fig. 5: Epidemics of virus yellows predicted by the model of WATSON and 
HEALY (1953) for an initial incidence of infection of 0.003 (i.e. 
± 200 plants/ha) and maximum aphid densities of (A) 1, (B) 3 and 
(C) 9 Myzus persicae per plant. The postulated seasonal courses of 
aphid density for the 3 peak densities 9 ( -- ) , 3 ( - - - ) 

and 1 ( ---- ) are shown in Fig. 4D. In Figs A, B and C, the 
initial infections are made on day 140 (20 May;-------), 161 (10 
June; - ) or 182 (1 July; ---- ) . The inoculation chance, 
p, is 1. 
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A SIMULATION MODEL OF THE DEVELOPMENT OF PATCHES OF BEET YELLOWS VIRUS 

A Poisson distribution of infected plants and aphids over the field, as 
assumed by WATSON and HEALY (1953), has only in few cases been observed 
in the field. Virus yellows occurs more often in patches varying in size 
from 1 to 30 m diameter, depending on the date of primary infection (VAN 
PER WERF, 1988). The different patterns of spread, patchwise and 
scattered, may be related to distinct phases in beet virus yellows 
epidemics (WATSON et al., 1951; VAN PER WERE, 1988): 

(1) Introduction phase. In May or early June, vectors and viruses enter 
the crop and start to multiply. 

(2) Establishment phase. After adjacent plants have made leaf contact 
(early or mid-June) dispersal of wandering aphids is facilitated, 
resulting in incipient patchwise within-field dispersal of vectors 
and virus. 

(3) Dissemination phase. In the course of July, the vector population 
reaches a maximum after which the numbers decrease and the 
individuals disperse due to a combination of factors: decreasing 
nutritional quality of the ageing plants, increased proportion of 
winged offspring, and increased mortality and disturbance due to the 
aggregation and increase in numbers of predators, pathogens and 
parasites. The relatively short-range dispersal by wingless aphids 
probably gives rise to patches whereas the long(er)-range dispersal 
by alatae results in the scattered spreading pattern. 

As WATSON and HEALY's model is valid only in the rare situation of 
random spread, a model must be developed that takes account of the 
patchy nature of the dissemination of yellowing viruses under most 
circumstances. In the following, an explanatory dynamic simulation model 
for the development of beet yellows virus patches in sugarbeet is 
presented. The model gives a much more detailed representation of the 
system than WATSON and HEALY were able to do in 1953. Aim of the model 
is to increase insight in the development of patches by comparing 
simulation results (which reflect our conception of the system) and 
experimental data and by performing a sensitivity and uncertainty 
analysis of the model. Full details of the model are given by RIESEBOS 
(1987) . 

Structure of the model 

The simulation model describes the events occurring in a 12 x 12 m2 

sugarbeet plot with 7.8 plants m- 2 and a time-varying number of aphids. 
The model is object-oriented. Two types of objects are distinguished: 
plants and aphids. Individual plants are defined by 7 attributes: 
1) infection class (%of leaf area infected), 
2) date of infection, 
3) number of aphids on the plant, 
4) number of healthy leaves, 
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5) presence or absence of symptoms, 
6) x-coordinate (row-number), 
7) y-coordinate (position in the row) . 
Some of these attributes are interdependent. The attributes 1, 4 and 5 
can be calculated ftom the date of infection, attribute 2. Attribute 3, 
the number of aphids on a plant, follows from the position of the 
individual aphids. 

Individual aphids are defined by: 
1) age (h), 
2) time elapsed since latest virus acquisition (h), 
3) time since latest walk, 
4) x-coordinate, 
5) y-coordinate, 
6) morph; wingless or winged. 

All plants have the same number of leaves. The area covered by a plant 

is represented by a rectangle of 50 x 25.6 cm2, being the row- and plant 

distance, respectively, for a plant density of 7.8 plants m-2. Aphids 
within the rectangle are •on• the plant. 

The model is formulated such that its predictions can be compared to 
results from a field experiment in which the effects of sowing date and 
number of introduced M. persicae on the spread of BYV were studied (VAN 
DER WERF, 198$). In this experiment, three plants in the centre of each 
plot were infected with BYV on 23 June. On these plants 2, 9 or 65 M. 
persicae were released on 25 June. The plants had been sown on either 
18 April (regular) or 20 May (late) . 

Hourly temperature is interpolated along a sine through measured daily 
minimum and maximum temperatures. Plant leaf number, a measure of 
physiological age, is a two-phase linear function of accumulated 
temperature (MILFORD et al., 1985a,b; VANDERWERF, 1988). 

BYV is a semi-persistently transmitted virus. In accordance with this, 
aphids in the model lose the ability to transmit virus at moulting. An 

aphid moults every 36 hours. Essentially following SYLVESTER (1961), the 
retention period (RP) is taken as 12 h after virus acquisition. Based on 
data of SYLVESTER (1956a,b) and of HEATHCOTE and COCKBAIN (1964), the 
acquisition feeding period (AFP), i.e. the feeding time needed for an 
aphid to acquire virus from an infected plant, is set at 2 h, while the 
transmission feeding period (TFP) is estimated as 1 h. Whenever the 
feeding time (which in the model equals the time not spent walking) on a 
given plant (rectangle) equals or exceeds the TFP or AFP without 
interruption, virus acquisition occurs when a non-viruliferous aphid 
feeds on an infectious leaf or transmission occurs when an infectious 
aphid feeds on a healthy plant. M. persicae shows preference for young 
beet leaves (JEPSON, 1983) . Various degrees of aphid preference for 
heart leaves (those smaller than 10% of their final area) were simulated 
(see sensitivity analysis) . 
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Following infection, plants become infectious after a latency period 
(LP) which increases linearly with time, from 4 days in the seedling 
phase to 12 days in old plants having ca. 40 leaves (VANDERWERF, 
1988). Counting from the date of infection, symptoms become apparent 
after the incubation period (IP), which is influenced by plant 
physiological age and temperature. The IP increases from ca. 3 weeks in 
June to 2 months in August (VANDERWERF et al., 1989a). Aphids can 
acquire virus from the infectious leaves on infected plants, 
irrespective of the presence of symptoms. No virus can be acquired from 

a healthy or a latent4 infected plant or on an infectious plant from 
leaves that appeared before the infection date (VANDERWERF et al., 
1989b; ROSEBOOM and PETERS, 1984) . 

Aphid population dynamics is not simulated because insufficient data are 
available to do this with sufficient precision, due to the difficulty of 
quantifying predation and immigration. If a population dynamics module 
were included in the model, it would be impossible to determine whether 
wrong model predictions of virus spread resulted from errors in the 
virus dissemination part of the model or from incorrectly simulated 
population dynamics of the vector. Therefore, the model mimics the 
population development observed in the field experiment. Aphid numbers 
in the model are adjusted to field-counts when the difference exceeds 
10%. Newly added aphids are 0 h old and non-viruliferous, mimicking 
births. They are 'borne' on plants which are already infested by aphids, 
proportional to the number of aphids on the plant. Predated aphids are 
removed at random, assuming that predators do not discriminate between 
aphid instars and cause a fixed relative mortality rate, irrespective of 
aphid density. (This means that predators aggregate in areas with high 
aphid density, their number being proportional to the number of aphids) . 
Winged aphids leave the field. No immigration occurs. 

The form of the aphid age distribution was taken as a criterion to 
determine the rate of predation in the model. With high predation rates 
older life stages are less represented than at low rates of predation. A 
predation rate of 1% per hour gave the best agreement between the 
simulated and observed age distribution. 

The dispersal and feeding behaviour of M. persicae plays a central role 
in the model. Aphid dispersal activity is expressed in the variable P, 

the proportion of aphids walking within an hour. When the number of 
leaves is smaller than 12, P has a small value, 0.025 in accordance 

with the almost complete absence of dispersal in young crops, observed 
in the field (VAN DER WERF, 1988). This is probably due to the high 
nutritional quality of young plants as well as to lack of leaf contact 
between them, which hampers aphid movements between plants. When the 
number of leaves is greater than 12, leaves start to touch and P is 
calculated as: 

4The phytopathological definition of latent is used: infected but 

not yet infectious (ZADOKS and SCHEIN, 1979) . 
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p ~ 0.01 . (65 - -H-) 
2.5 (6) 

where N is the number of leave~ on the plant. P is a decreasing 
function of N to account for aphids spending more time to walking on 
different leaves belonging to the same plant when the plants have more 
leaves. This causes the residence time on older plants to be greater 
than on young plants with more than 12 leaves. 

r 
~ 

---~ 

-b--
TFP 

RP 

Fig. 6: Relational diagram of model of virus spread by Myzus persicae 
in sugarbeet, drawn according to conventions of FORRESTER 
(FORRESTER, 1961; DE WIT and GOUDRIAAN, 1978) . Boxes ( c::J ) 
represent states, solid arrows ( ~ ) represent fluxes 

between states, valves ( ~ ) in the solid arrows denote rates 
while hatched arrows ( ----~ ) pointing to valves denote 
control of rates by state or other variables. Circles or ovals 
denote auxiliary variables. External variables, not influenced 
by the model, are denoted by ~ . 

The linear displacement per hour, D, is a parabolic optimum function of 
aphid age and temperature: 

(7) 
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where A is the age of the aphid in days (0 < A < 50) and T the 

temperature in °C (10 < T < 50). The value of Dmaxr 125 em was 

estimated from data of FERRAR (1968). The walking direction is drawn 
from a uniform distribution over (-~, ~) . 

The main components and relations of the model are summarized in the 
relational diagram of Fig. 6. Runs with the model were made with two 
purposes: (1) to compare simulation results with field data and thus 
study the validity of the described conception of the system, and (2) to 
determine which parameters have the largest effect on model behaviour 
and need to be determined accurately in (new) experimental studies to 
obtain accurate model predictions. 

The model is written in the programming language C (KERNIGHAN and 
RITCHIE, 1978). The time step is one hour. 

Comparison of model results and field data 

Simulation results and field data are compared in Figs. 7A and B, 
respectively, which show the time-course of the number of yellowed 
plants per plot for each of the six treatments. Fair overall agreement 
exists, but the model underestimates virus spread resulting from release 
of two M. persicae in late-sown sugarbeet while it overestimates the 
spread resulting from release of 65 M. persicae in early-sown 
sugarbeet. This suggests that parameters related to plant age are more 
important in reality than they are in our conception of the system, as 
laid down in the present model. 

Yellowed plants per patch Yelow8d planta per patch 

~~--------------------------~ ~ ...---------------------, 
A 

July Aug. July Aug. 

Fig. 7: Comparison of observed (A) and simulated (B) increase of number 
of BYV-infected plants with symptoms, in relation to crop 
sowing date (open symbols: 18 April; solid symbols: 20 May) and 

numbers of Myzus persicae introduced on 25 June: 2 ( 0 , e ) , 9 

( 0 , II ) or 65 ( 1::&. , A ) . Experimental data from VAN DER WERF 
(1988) . 
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Sensitivity analysis 

Sensitivity analysis provides a means to determine the influence of 
model structural components and parameter estimates on the results. Here 
a sensitivity analysis for six parameters is presented (Fig. 8A-F). The 
analysis has been made for late-sown sugarbeet infested with 9 M. 
persicae. For the LP reasonably precise values were available (VAN DER 
WERF, 1988). Thus, Fig. 8A illustrates the large impact of the LP on the 
rate of spread, which confirms results obtained with simpler 

epidemiological models (ZADOKS and SCHEIN, 1979) . 

For the other five parameters, only rough estimates could be derived 
from the literature. Therefore, the Figures 8B-F give an indication of 
the uncertainty in predicted epidemics resulting from the imprecision of 
the parameter estimates in the model. For instance, Fig. 8B shows that 
virus acquisition and transmission times have a considerable effect on 
spread. While several authors have determined feeding times needed for 
the acquisition and transmission of beet viruses under greenhouse 
conditions with several species of test plants, possible influences of 
sugarbeet host plant quality (age) in the field have been neglected. 
Therefore, those studies may have limited relevance for the prediction 
of processes occurring in the field. The topic warrants further study. 
Aphid behaviour, here expressed by two parameters, activity and distance 
covered, has been very little studied, resulting in a considerable 
uncertainty about model predictions (Fig. 8C,D). Predation appears to be 
a particularly important factor in the model (Fig. 8E), indicating that 
it deserves more attention in experimental research. Predation not only 
influences aphid numbers, but it also affects vector longevity and the 
proportion of aphids that live long enough to transmit virus 
successfully. The effect of leaf age preference is relatively small 

(Fig, 8F). 

Fig. 8 (next page): Sensitivity analysis of simulation model of 

patchwise spread of beet yellows virus by Myzus persicae in 

sugarbeet; (A) latency period: 0 ( 0), 4 ( D), 8 (A) or 12 

days ( 0 ) ; (B) virus transmission characteristics: AFP = 2 h 

and TFP = 1 h ( 0 ) or AFP = 6 h and TFP = 4 h ( D ) ; (C) 

proportion of aphids walking per hour (p in Eq. 6) : 20 ( 0 ) , 
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40 ( D ) , 60 ( A ) or 80 ( 0 ) ; (D) walking distance per hour 

( Dmax in Eq. 7) : 7 5 ( 0 ) , 1 0 0 ( D ) , 12 5 ( A ) , 15 0 ( V ) or 

175 em ( <>); (E) predation mortality: 0. 005 ( 0), 0. 01 ( D), 

0. 02 (A), or 0. 04 h- 1 ( 0); and (F) leaf age preference as 

indicated by the factor f in the formula p = min ( 1, f . Y ), 

where p is the proportion of aphids feeding on young leaves and 

Y is the proportion of young leaf area on the plant. ( 0 ) f = 

1, ( D ) f = 2, ( A ) f = 5, and ( <> ) p = 1 . 



V8111owed phlrml pw patch 

~~----------------------~ 
V8111owed phlrml pw patch 

~~----------------------~ 

A 

July Aug. JuJy Aug. 

July Aug. JuJy Aug. Oct. 

F 

July Aug. July Aug. 
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~NCLtiDING REMARKS 

The three models discussed in this paper have different structure, 
different goals and different merits. The regression models of WATSON et 
al. (1975) and HARRINGTON et al. (1989) are purely descriptive, relating 
final virus incidence to weather conditions. Their predictions are very 
useful in the practice of warning systems. The generality is limited, 
however. WATSON et al.'s model was only valid for British conditions, 
and even there it failed in some years. The quality of a regression 
model depends i.a. on the selection of the right in?ependent variables. 
This selection can be made by trial and error, optimizing the fraction 
of variance 'explained' by the model (WATSON et al., 1975; HARRINGTON et 
al., 1989). Explanatory models in conjunction with experiments on 
process and system level can help to gain insight in the system such 
that key factors determining system behaviour can be identified. These 
key factors may then be used in a descriptive model. 

WATSON and HEALY developed their analytical model for random spread to 
obtain support for their hypothesis that virus yellows was mostly spread 
by flying vectors. Model results do not give firm support to this idea 
for 3 reasons: (1) the model is too simplistic as it does not account 
for patchwise spread, (2) insufficient comparisons between model 
calculations and field observations are given, and (3) similar results 
could have been obtained by substituting wingless aphid counts in the 
equations, as numbers of winged and wingless aphids were closely 
correlated. Nevertheless, the model gives an interesting concise 
representation of a virus-vector-host plant relationship that may be 
useful in other systems, e.g. non-persistently transmitted viruses, 
where the assumption of randomness seems more reasonable. 

The patch model of RIESEBOS (1987) is a very useful instrument in 
studies of virus epidemiology. It is more comprehensive in its 
description of the system than any other published model of virus spread 
(MCLEAN et al., 1986). Despite this, some elements in the model are 
crude simplifications of reality, e.g. virus acquisition and 
transmission, and the walking and feeding behaviour of the vector. 
Furthermore the model should be compared with other field data. More 
important than the shortcomings of the model and its validation are the 
shortcomings in our knowledge of the system. This is demonstrated by the 
sensitivity analysis. Variation of the parameters related to walking 
tendency, walking distance and predation rate within the biologically 
plausible range results in a vast variation in predicted system 
dynamics. This variation pinpoints our ignorance of these processes. 
Quantitative knowledge of these processes is needed to understand virus 
yellows epidemiology better, such that warning thresholds and spraying 
advice can be improved. 

Optimization and management models (RABBINGE and ROSSING, 1987; ROSSING, 
1989; DRENTH et al., 1989) have not been discussed because they have not 
been used yet for evaluating and improving decision support systems for 
virus yellows control. When more knowledge of virus yellows epidemiology 
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becomes available, application of these methods is worthwhile. 
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