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Abstract 

This paper explores multiphase or infill sampling to reduce uncertainty after an 
initial sample has been taken and analysed to produce a map of the probability of 
some hazard. New observations are iteratively added by maximising the global 
expected value of information of the points. This is equivalent to minimisation of 
global misclassification costs. The method accounts for measurement error and 
different costs of type I and type II errors. Constraints imposed by a mobile sensor 
web can be accommodated using cost distances rather than Euclidean distances to 
decide which sensor moves to the next sample location. Calculations become 
demanding when multiple sensors move simultaneously. In that case, a genetic 
algorithm can be used to find sets of suitable new measurement locations. The 
method was implemented using R software for statistical computing and 
contributed libraries and it is demonstrated using a synthetic data set. 
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1   Introduction 

After a major incident such as the recent fire in a chemical factory in Moerdijk 
(January 5, 2011), The Netherlands, authorities have to decide whether or not food 
produced in the vicinity of the accident is suitable for human consumption. Such 
decision making typically relies on information obtained from a small sample, but 
it may improve when non-covered regions are “filled in” by additional sampling 
(Johnson, 1996; Cox et al., 1997) by mobile sensors. The costs of misclassification 
in cases such as depicted above are often unequal for type I and type II errors, with 
the costs of false negatives or “safe” decisions being higher than those of false 
positives. Selection of new sample locations should therefore account for this dif-
ference. At the same time, the costs for visiting new sites may differ between mo-
bile sensors located within the area. For example, sensors situated near a new sam-
ple location need less travelling.  

The method described in this paper involves optimising new sample locations 
based on information obtained from the previous sample. The phenomenon to be 
mapped is considered static within the time frame of the analysis (e.g. surface con-
tamination after an incident). Expected value of information (EVOI) is used for 
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quantifying the suitability of the sample. EVOI expresses the benefit expected from 
data collection prior to actually doing the measurements (De Bruin et al., 2001; de 
Bruin and Hunter, 2003; Back et al., 2007). In contrast to kriging variance (Baume 
et al.) and entropy based methods (Zidek et al., 2000), EVOI is data dependent and 
it can incorporate different misclassification costs for false positives and false nega-
tives. Heuvelink et al. (2010) used a stochastic model of the environmental phe-
nomenon and also accounted for differences between misclassification costs, but 
here a direct Bayesian approach is used that is potentially faster when few samples 
are added per iteration. 

Our aim is to demonstrate and discuss some strategies for using EVOI to add ob-
servations to a previous sample while accounting for constraints imposed by a 
sensor network. 

2   Methods 

2.1   Expected value of information 

EVOI is estimated as the difference between expected costs at the present stage of 
knowledge and expected costs when new information becomes available. Figure 1 
shows a tree with square nodes indicating decisions to place a sensor for measuring 
the phenomenon at some location and decisions about mapping presence or absence 
of the phenomenon using the information at hand. Chance nodes (circles) indicate 
the outcome of random events once a decision has been taken. For example, if a 
sensor is placed, measurement with it may indicate presence (signal) or absence 
( signal ) of the phenomenon. The probability of obtaining a sensor signal at some 
location, Pr(signal) can be computed from sensor properties and the prior probabil-
ity of presence, Pr(present), as follows  (1): 

 )Pr()|Pr(
)Pr()|Pr()Pr(

absentabsentsignal
presentpresentsignalsignal

×
+×=  (1) 

where )|Pr( presentsignal  is the probability that a warning is issued if the phe-
nomenon is present and )|Pr(1)|Pr( absentsignalabsentsignal −=  is the proba-
bility that the sensor correctly gives no signal. These probabilities are given in the 
sensor specifications (i.e. sensitivity and specificity). 

 
Decision making is assumed to be based on Bayes actions, i.e. minimising ex-

pected loss. Accordingly, placing a sensor is sensible if the expected loss of the 
upper branch of Figure 1 is lower than the expected loss of the lower branch. If 
only misclassifications involve costs, the latter is calculated as (2): 
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where min(.) is a function returning the minimum of its arguments and  
costfalse_negative and costfalse_positive are costs of misclassification. The conditional prob-
abilities shown in Figure 1 are calculated with Bayes’ rule, e.g (3): 
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Hence, the expected cost of the upper branch is calculated by (4):  
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Figure 1. Decision tree showing decisions to place a sensor or not and to map presence or 

absence of a phenomenon (e.g. hazard). 

 
EVOI is the difference between E(costlower) and E(costupper), where lower refers 

to the lower branch of the decision tree and upper to the upper branch. We consider 
the aggregated expected costs of misclassification over the study area and find a 
single optimal sample location as the one that maximises EVOI and thus minimises 
E(costupper). The aggregated costs of misclassification are computed by creating 
maps for both a signal and no signal obtained at the sensor location and multiplying 
the expected costs for these situations with the probability of their occurrence. If 
the locations of two or more observations are to be simultaneously optimised, com-
plexity of the computations increases, since nearby observations are typically con-
ditionally dependent. At the same time the size of the solution space increases sub-
stantially. For example, with two simultaneous observations, four expected cost 
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maps and their probabilities need to be computed for each pair of locations while 
solution space increases by a factor (n-1), with n being the number of potential 
sample locations. This situation was handled using a genetic algorithm. 

2.2   Case study 

A case study was conducted using a synthetic data set constructed by applying a 
threshold at 20 to a Gaussian random field of 100 x 100 grid cells of unit size with 
mean 20 nugget 1 and a spherical structural spatial correlation component with 
range 40 and a partial sill (semivariance) 16.  Sensor data were obtained by sam-
pling the synthetic data and adding random measurement error. The initial sample 
consisted of 16 points on a regular grid. Sensor data were interpolated using indica-
tor kriging. Computations were done in R (Venables et al., 2010)  using the geosta-
tistical package gstat (Pebesma, 2004) and the genetic algorithm implemented in  
the package genalg. 

Three approaches were considered for adding new sample locations to the origi-
nal sample: (1) add single location at a time, move sensor with lowest cost (in this 
case Euclidean distance); (2) add two locations simultaneously and scan only the 
area that can be reached by the sensors within one time step; (3) add two sample 
locations simultaneously, scan the whole area, and move the sensors with lowest 
cost. The costs of misclassification were arbitrarily set at 2 and 3 (no unit) for false 
positives and false negative, respectively. 

3   Results 

Figure 2a shows probabilities of occurrence interpolated from the initial sample 
of 16 sites. Figure 2b shows the map of global EVOI, i.e., EVOI computed after 
aggregating expected misclassification costs for observations made at each grid 
location, separately. The best location thus corresponds to the highest global EVOI. 
Not surprisingly, this occurs between observations differing in value (indicated by 
arrow). 

Probability presence 

(a) 

Global EVOI 

(b) 

Figure 2. Probability map (a) and global EVOI (b) computed from the initial sample of 
16 regularly spaced points. The arrow points to the location having highest global EVOI. 
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Figure 3 shows an example of an optimised sensor configuration after the 17th 
observation has been made (16 initial and 1 infill measurements) on a backdrop of 
the probability of presence of the phenomenon (cf. Figure 2). Euclidean distance 
was used for deciding which sensor to move to the next location, but another cost 
criterion could have been used with only minor modification of the algorithm. 

 
Figure 3. Configuration of initially regularly spaced sensors after two iterations with a single 

observation per step (approach 1). First sensor 2 moved (white arrow) and a measurement 
was taken, next sensor 5 moved (black arrow), but the measurement has not yet been taken.  
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Figure 4. Effect of the way sensor constraints are taken into account on aggregated misclas-
sification costs with two simultaneously moving sensors (approaches 2 and 3). 

 

Figure 4 shows the effect of the two approaches to account for sensor constraints 
described in section 2.2, with two simultaneously moving sensors. Not surprisingly, 

P
robability presence 
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both expected and real misclassification costs were much lower when the full study 
area was scanned in search of the best sample locations. Of course, in the case of 
local sensor neighbourhood scanning, results depend on the start locations chosen. 
Large differences between real costs (normally not known) and expected costs are 
indicative of misspecification of the geostatistical model used for interpolating the 
probability map. 

4   Conclusions 

The Expected value of information (EVOI) approach puts new observations at 
locations that intuitively make sense and it can help deciding when to stop a survey. 
The method accounts for specified misclassification costs; these can be dissimilar 
for different kinds of errors (e.g. false positives or false negatives). Constraining 
potential sample locations to the space that can be travelled by a small set of mobile 
sensors is a bad idea since the sensors may get trapped in some area and may thus 
fail to visit potentially interesting spots. Rather, cost distances can be used for de-
ciding which sensors to move to next globally optimal locations. Genetic algo-
rithms may be useful for optimising the sample locations for multiple sensors mov-
ing simultaneously.  
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