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1 Introduction  

 

Over the last centuries, with urbanization booming worldwide since the 1800s, the 

majority of cities has become highly dependent on their hinterlands for resource supply 

and waste disposal (Bai, 2007; Girardet, 2003). This has grown to a level that in the near 

future, global crises can be expected as a result of resource constraints and severe 

degradation of agricultural lands and natural habitats (Rockström et al., 2009). Chapter 2 

of this thesis shows, based on literature review, that our current urban un-sustainability is 

rooted in massive resource consumption and waste production beyond natural limits. New 

approaches towards urban resources management in the frame of sustainable development 

are urgently needed. 

 

Sustainable development is defined as development that meets the needs of the present 

without compromising the ability of future generations to meet their own needs (WCED, 

1987). One of the various interpretations is that resource planning and management should 

guarantee reliable resource provision, while maintaining the state of the resource for future 

generations and taking into account potential trade-offs and different scales in space and 

time (Pahl-Wostl, 2007). Urban spatial characteristics, such as urban functions, densities 

and building typology influence urban resource management, i.e. via resource 

consumption and waste production. Since long-term spatial characteristics are largely 

shaped by urban planners, urban planning is a formal and critical link between resource 

management and sustainable development. Innovative urban planning can contribute to 

improve local resources management towards cities with a smaller resource footprint. For 

this, planners need formal information and tools to understand cities and regions as 

environmental systems that are part of regional and global resource networks (Campbell, 

1996, Kennedy et al., 2011). 

 

1.1 Problem definition  

 

Recent urban metabolism studies have provided a comprehensive picture of urban 

resource flows in a given urban area at a certain point in time (Kennedy et al., 2011). 

However, usually the temporal and spatial scales are coarse, i.e. cities are treated as 

homogenous systems and often resource flow is estimated based on yearly averages. 

Coarse scales are appropriate for traditional centralized urban infrastructures, like large 

scale energy and water supply networks. However, emerging decentralized options based 

on resource efficiency saving and local reuse of ‘wastes’ (or secondary resources) require 

a more detailed understanding of urban systems in time and space. In reality, urban 

systems are composed of sub-units, e.g. houses, neighborhoods or industrial parks. These 

sub-units have a related metabolism, in terms of quantity, quality and tempo-spatial 
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distribution of resources use. To make urban metabolism more sustainable, there is a clear 

need to develop tools to evaluate and re-design our urban systems, while making a link 

between (sustainable) resources management and long term urban spatial planning. 

 

It is clear that urban environmental challenges vary among cities. For instance some cities 

face water scarcity meanwhile others face high risk of flooding. Additionally, when 

looking at cities and their internal diversity – e.g. different density, land coverage, 

building types – it can be expected that these environmental challenges also vary within 

the city and have a relation with resources flows. Because urban systems are not static 

entities, special attention should be given to the dynamics of the urban resource flows. The 

urban system itself changes continuously, for instance, seasonal variations may affect the 

land cover, and growth might affect densities and increase the urban heat island effect. 

Additionally, availability of resources depends on geographical location, but also on 

seasonal changes and even on daily/night variations (e.g. sun radiation that influences 

evapotranspiration). Despite the large availability of technologies and options to improve 

resource management in cities, we lack tools to select the most appropriate technology and 

the most suitable scale of management given the characteristics of the resources, the 

resource demands and the local context. 

1.2 Objective  

 

Our hypothesis is that urban systems and their direct peri-urban surroundings can – to a 

large extent – become self-sufficient in resources and can reduce their waste production by 

improving local resource management at the smallest scale possible. We argue that 

coupling of scales is needed to identify key multi-scale interactions and to identify the 

optimal scale(s) of management of different urban flows, as water, energy and materials. 

 

The objective of this research was to test our hypothesis on one urban resource – water – 

to determine the optimal scale(s) of water resource management. To test our hypothesis 

we developed an approach, the so-called Urban Harvest Approach (UHA). In our 

approach, a city is regarded to have multiple potentials in the form of untapped primary 

and secondary resources that can be harvested and (re)used within the urban system. The 

UHA is a multi-scale approach to scan an urban area and its flows, and propose measures 

to improve urban resources management towards self-sustainability by applying demand 

minimization, output minimization (by resource cascading, recycling and recovery), and 

multi-sourcing. This scan provides insight in implications of urban typologies on urban 

flows, elaborates on a balance of primary and secondary resources available within the 

urban area, and calculates the potentials for harvesting those resources taking into account 

spatial and temporal conditions, such as storage and distribution.  
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The urban harvest approach is a systematic approach, which starts from the lowest scale 

possible (building) and scales up to block, neighborhood and city level and takes stock of 

the dynamics and non-linearities of urban resource flows. The approach aims, after a 

baseline assessment, at developing a portfolio of scenarios with measures for improving 

urban metabolism including their optimal scales of application. This information 

facilitates design and management of urban infrastructure and supports urban planning by 

investigating how urban characteristics can be used to improve resource use within cities.  

1.3 Focus of this study  

 

This study focused on urban water metabolism in the Netherlands. In urban areas, water 

supply and wastewater management is a major concern and represents both a risk and an 

opportunity to improve current practices. Nowadays, cities are highly dependent on 

external resources, while overlooking local possibilities of self-producing resources. For 

instance, rain water is seen as a nuisance and as such is removed from cities instead of 

valuing its potential as a local resource to optimize the urban water cycle.  

 

In the last decade, the efficiency of isolated measures on urban water systems has been 

addressed by different researchers (Brodie, 2008, Liaw and Tsai, 2004, Peter-Varbanets et 

al., 2009). Publications reviewing technological approaches for grey water treatment and 

reuse are also available (Li et al., 2009), as well as determinants of residential water 

consumption (Arbués et al., 2003, Jorgensen et al., 2009). However, optimizing water 

quality and yields require information about the varying use and availability of water and 

simultaneous evaluation of the strategies. For this reason, it is important to gain insight 

into the dynamics of the urban water balance.  

 

For the Netherlands, extensive knowledge is available on the natural water balance 

(Schuurmans and Droogers, 2010) and residential water consumption (Blokker et al., 

2010, Foekema and van Thiel, 2011), but the interactions and synergies between natural 

and man-made cycles (piped water, residential consumption and sewer system) are 

unexplored. The Netherlands is one of the countries with largest urbanization and 

additionally with a relative high percentage of land use change (Feranec et al., 2010). With 

increasing problems, such as ground water salinization and higher recurrence of extreme 

events leading to local flooding (Bonte and Zwolsman, 2010), cities should become more 

able to adequately store and use water resources in a sustainable way.  

 

In this thesis we simulated and evaluated the effect of the different water management 

measures following the UHA: minimizing input, minimizing output and multi-sourcing. 

Moreover, “metabolic profiles” are defined to describe the metabolism of the urban area. 
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These metabolic profiles are not only calculated based on the consumption, but also on the 

production of secondary resources and unwanted emissions.  

1.4 Scope of this thesis 

 

Chapter 2 presents a historical review of the urban resources management and urban 

planning and proposes ways for their integration in sustainable development. Exploring 

new options to cope with growing pressures, especially for resource supply, we propose 

that cities may be considered as resources reservoirs and producers of secondary 

resources. Based on the extensive literature overview of chapter 2, we defined two basic 

research questions to be addressed in this thesis:  

 

i) can cities structurally be organized as producers of secondary resources thus 

significantly reducing demands of primary resources? This is addressed in chapters 

3 and 4;  

ii) can reorganized urban water structures contribute to sustainable urban resource 

metabolism and can this be quantified by distinguishing different tempo-spatial 

scales using a dynamic modeling approach? This is addressed in chapters 5-8.   

 

In Chapter 3, we proof our concept by quantifying the potentials to harvest water and 

energy at two different scales for the Netherlands. The results indicate the large potential 

of cities as providers of their own resources. In Chapter 4, we introduce the Urban 

Harvest Approach as a tool for sustainable urban resource planning.  

 

After testing and developing the UHA method on average water data (yearly basis) and in 

steady state. Our further research concentrated on the dynamic modeling approach. The 

aim was to more adequately assess the actual resource potential at different tempo-spatial 

scales.  

 

In Chapters 5-7, we evaluate the potential of improving urban residential water cycles at 

building, block and city scale, respectively, for the Netherlands. Here we also address 

measures that are more effective on centralized level, whereas for many secondary 

resource harvesting and reuse scenarios, decentralized approaches may be more optimal. 

In Chapter 8, we provide a synthesis of the results obtained for the water cycle in the 

Netherlands and provide an outlook for urban resource management in the city of 

tomorrow. Fig. 1 shows a schematic representation of the content of this thesis. 
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Figure 1 Schematic representation of the content of this thesis 
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Chapter 2 
 

Resource management as a key 

factor for sustainable urban planning: 

a review 
 

 

Abstract 

Due to fast urbanization and increasing living standards, the environmental sustainability 

of our global society becomes more and more questionable. In this historical review we 

investigate the role of resources management (RM) and urban planning (UP) and propose 

ways for integration in sustainable development (SD). RM follows the principle of circular 

causation, and we reflect on to what extent RM has been an element for urban planning. 

Since the existence of the first settlements, a close relationship between RM, urbanization 

and technological development has been present. RM followed the demand for urban 

resources like water, energy, and food. In history, RM has been fostered by innovation and 

technology developments and has driven population growth and urbanization. Recent 

massive resource demand, especially in relation to energy and material flows, has altered 

natural ecosystems and has resulted in environmental degradation. UP has developed 

separately in response to different questions. UP followed the demand for improved living 

conditions, often associated to safety, good manufacturing and trading conditions and 

appropriate sanitation and waste management. In history UP has been a developing 

research area, especially since the industrial era and the related strong urbanization at the 

end of the 18
th

 century. UP responded to new emerging problems in urban areas and 

became increasingly complex. Nowadays, UP has to address many objectives that are 

often conflicting, including, the urban sustainability. Our current urban un-sustainability is 

rooted in massive resource consumption and waste production beyond natural limits, and 

the absence of flows from waste to resources. Therefore, sustainable urban development 

requires integration of RM into UP. We propose new ways to this integration. 

 

 

 

 

 
 

 

This chapter has been published as:  

Agudelo-Vera, C.M., Mels, A.R., Keesman, K.J., Rijnaarts, H.H.M., 2011. Resource management as a key 

factor for sustainable urban planning. Journal of Environmental Management 92 (10) 2295-2303. 
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2. Resource management as a key factor for sustainable urban planning 

2.1 Introduction 

For the first time in history more than half of the world population, which is 3.5 billion 

people, are living in urban areas. This urban fraction will increase to almost 60% by 2030 

and 70% by 2050 (ESA-UN, 2007). This large-scale urbanization requires large amounts 

of resources
1
 – energy and materials – to build, feed and fuel cities (Girardet, 2003).  

 

Cities are complex dynamic systems in a continuous state of change. They evolve in 

complex ways due to their size, social structures, economic systems, geopolitical settings, 

and the evolution of technology (Kennedy et al., 2007). Moreover, they require vast 

amounts of resources to function, displaying diverse patterns, agglomeration and intense 

competition for space with other land uses (Batty, 2008).  

 

In the past, the depletion of the nearest and most accessible resources may have become a 

constraint on the growth of cities (Tainter, 2000). However, technological and 

infrastructural innovations have driven the increments on urban inputs and outputs 

(Kennedy et al., 2007; Krausmann et al., 2008, 2009; Monstadt, 2009). On a global scale 

and especially over the past two centuries, resources pressures have increased due to 

industrialism, rapid growth of the world population, urbanization (Tarr, 2002) and 

technological development. For instance, because of the development of advanced 

transport systems, resources can be imported from far away, which has led to a world-

wide and complex resources network. Currently, cities are highly dependent on other cities 

and hinterlands to supply resources and dispose waste (Bai, 2007). Hence, the 

environmental impacts are spread, thus enlarging the ecological (global) footprint of cities 

(McNeill, 2000; Monstadt, 2009; Rees, 1999).  

 

Cities have direct and indirect global impacts on the atmosphere, hydrosphere, geosphere 

and biosphere by extracting large quantities of natural resources, in some cases leading to 

depletion, and disposing of urban waste (Mills, 2007). Global resource extraction has been 

grown steadily, from 40 billion metric tons (Gt) in 1980 to 59 Gt in 2006 (SERI, 2010). 

And global primary energy use has increased from 256 Exa-Joules (EJ) in 1973 to 514 EJ 

in 2008, 81% of that from non-renewable fossils fuels (IEA, 2010). Since the industrial 

revolution, we have paid less and less attention to the carrying capacity of the global 

                                                 
1
 In this paper resources refer to energy and materials. Therefore, “resources” and “energy and materials” are 

used interchangeably. Materials and energy are two different aspects of the same process. Regarding 
materials, earth is a closed system, meanwhile for energy it is an open system due to solar energy input. To 
understand the metabolism of a society it is necessary to consider both because many interdependencies 
exist between them e.g. energy can be used to increase the availability of materials and materials can be 
used to reduce energy flows. Additionally, production of energy for example nuclear power can generate 
hazardous radioactive material (Haberl, 2001; Lior, 2010). 
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ecosystem. Diamond (2005) and Ponting (2007) described how the consequences of 

irreversible damage to the environment can cause the collapse of ecosystems and societies. 

A famous case is Easter Island, where a human society was based in the period 900 - 1700 

AD
2
. Massive environmental degradation due to indiscriminate deforestation of the island 

resulted in lack of essential materials not only for cooking, heating and building dwellings, 

but also to build canoes and nets for fishing. In addition to this, the quality of the soil also 

deteriorated due to erosion. All these factors brought the Easter Island civilization to a 

collapse. The current global human impact is unprecedented. In the past decade became 

widely accepted that continued growth with current utilization rates is unsustainable 

(Arrow et al., 2004). As humankind, we have to realize that the earth, like Easter Island, 

does not has unlimited resources to support human society and its demands (Ponting, 

2007).  

 

In a world of cities, it is becoming more and more clear that sustainable urban 

development is a crucial challenge (Girardet, 2003) and is maybe the most significant 

current and future environmental issue (McDonald and Patterson, 2007). To tackle this 

challenge, it is imperative to understand how urban metabolic systems function (Decker et 

al., 2000; Girardet, 2003). We can affirm that towards sustainable cities, it is crucial to 

manage available resources strategically. Isolated technical solutions are insufficient to 

deal with the complex problems we face today (Pahl-Wostl, 2007). As such, Resource 

Management (RM), as stated in the title, is a key factor for Sustainable Development 

(SD).  

 

Recently, SD is increasingly being used to guide Urban Planning (UP). However, its 

implementation is not immediately apparent, because there has been no general agreement 

on how the concept should be translated into practice (Berke and Conroy, 2000; Jepson, 

2001). UP and SD seem to be parallel activities with the common goal of sustainable 

cities. Both UP and SD refer to future. However, as stated by Hjorth and Bagheri (2006, p. 

78) “Managing the future is a ‘wicked’ problem, meaning that it has no definitive 

formulation and no conclusively ‘best’ solutions and, furthermore, that the problem is 

constantly shifting”. Nevertheless, RM is an essential aspect that should be part of both, 

UP and SD. 

 

The link between UP and SD is currently not strong. There is a significant number of 

articles approaching UP and sustainability in a broader sense and not becoming concrete 

and specific (Jepson, 2001). By investigating urban history, we aim to understand which 

factors have shaped RM and UP. It is important to highlight that UP and RM are different 

                                                 
2
 There is considerably uncertainty about the date that Easter Island was occupied (Diamond, 2005). 
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among regions; this paper refers mainly to UP and RM in the developed world: Europe 

and North America. This paper explored the relationship between urbanization, UP and 

RM reflecting on to what extent RM has been an element for UP. It gives an overview of 

past UP and RM practices, while taking into account the changes that cities have 

experienced over time. In the discussion, the paper also elaborates on the importance of 

urban RM as a key consideration for UP towards SD and how this could be achieved.  

2.2 Defining RM, UP and SD 

Let us start by defining RM, UP and SD in some more detail. As yet, there is no formal 

definition of RM, although definitions for “natural resources management” and 

“integrated resources management” are available. Within the scope of this paper, RM 

refers to the conscious handling of natural resources – energy and materials – and the 

utilization of infrastructure and technology to meet human needs; including extraction, 

transformation, consumption or use and disposal of resources. Hence, RM includes natural 

resources and man-made products.  

 

Planning, in general, aims to achieve an objective, and it proceeds by assembling actions 

into some orderly sequence (Hall, 2002). However, UP has multiple definitions. “UP 

refers to a planning with a spatial or geographical component, in which the general 

objective is to provide for a spatial structure of activities which in some way is better than 

the pattern that would exist without planning” (Hall, 2002, p. 3). Davidson (1996, p. 457) 

states that “UP is (or should be) a tool of urban management that helps to answer the 

questions what?, where?, when?, by whom?, and how?, urban development should take 

place”. Moreover, “UP has been continuously in a state of flux, reacting against what are 

seen as problems in the previous system” (Davidson, 1996, p. 452). Thus, although “UP is 

most often concerned with managing land development at the urban and regional scales, 

the field has broadened enormously since its origins, and now can be said to encompass 

the act of planning for desired future conditions at all scales of endeavor, within public 

and private sectors” (Wheeler, 2004, p. 11). In this paper UP is defined as the sequence of 

activities aimed to manage spatial development at urban and regional scales considering 

sociological, economic, political, technological and environmental aspects. 

 

Likewise, SD has many definitions. Sustainability is a concept with many claims and 

definitions, but it is very difficult to translate into concrete terms (Gunder, 2006; Sahely et 

al., 2005). A major obstacle to the achievement of SD is lack of agreement of the 

conceptual basis. There is an inherent ambiguity of the terms: and the question that arises 

is what can be sustained and developed at the same time? Moreover, for different parties, 

the direct object of sustainability has different meanings (Seiffert and Loch, 2005). Parkin 

(2000) refers to more than two hundred definitions of sustainable development. The most 
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accepted definition comes from the World Commission on Environment and Development 

(WCED) “development that meets the needs of the present without compromising the 

ability of future generations to meet their own needs” (WCED, 1987, p. 8). Within this 

paper we interpret SD as RM that guarantee reliable resource provision for current and 

future generations, taking into account all potential trade-offs and different scales in space 

and time (Pahl-Wostl, 2007). And we recognize that SD is not a fixed state of harmony, 

but a process of change (Reid, 1995).  

 

The relationships between RM, UP and SD is shown in Fig. 1. Although, there is not 

unanimity of definitions of UP and SD, both activities are concerned with improving the 

future. Over history UP and RM have evolved over time and adapted to restrictions given 

by the changing state of cities. Increasing RM has caused increments of urban impact in 

the hinterland. We identify RM as a key factor within UP towards SD. The following 

paragraphs will identify the main factors within RM and UP along city development over 

history. 

 
Figure 1 Relationship between UP, RM and SD, and transition from a linear extraction-disposal 

based RM (now) towards closed cycles based RM (future).  
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2.3 RM and UP over city history 

2.3.1 The beginning of RM and emergence of settlements (8000 BC - 3000 BC) 

The relationship between humans and their environment and natural resources has been in 

continuous change over the years. At the beginning, nomadic communities were basically 

hunters and gatherers. They collected resources in different places, migrating when 

resources became scarce. The energetic metabolism of hunters and gatherers has been 

described as an ‘uncontrolled solar energy system’ (Krausmann et al., 2008).  

 

The first milestone in organized, large scale RM started with the invention of agriculture, 

about 10000 years ago (Grübler, 1998; McNeill, 2000; Ponting, 2007). Ponting (2007) 

refers to agriculture as the most important transition in human history. Many societies 

changed from hunters and gatherers to an agrarian mode of subsistence. Adoption of 

agriculture had two major consequences – settled communities and a steadily rising 

population. Domestication
3
 of plants and animals was a key factor on human domination 

on earth. Domestication and trade of agricultural products enabled division of labor, 

specialization, and faster technological change, which in turn led to further domestication 

(Grübler, 1998; McNeill, 2000). Domestication also affected social dynamics because 

since then, land resources and food were generally seen as a property (Ponting, 2007). 

 

Agriculture also increased human pressure on the environment. Agrarian societies are 

fueled by solar energy and rely on the energy conversion provided by plant biomass 

(Krausmann et al., 2008). Compared with hunter and gatherer societies, the metabolism 

per capita of agrarian societies increased in terms of energy four to six fold and in terms of 

materials four fold (Fischer-Kowalski and Haberl, 1997). With agricultural development - 

plowing, fertilizing, flooding and irrigating - and feeding of animals, humankind caused 

ecological irreversible effects, because domestication improved productivity but involved 

tradeoffs, causing disturbances of natural cycles (Ehrlich, 2009; Kareiva et al., 2007, 

Mays et al., 2007).  

2.3.2 The rise of the cities and empires (3000 BC – 18th century) 

Agricultural production surpluses were a fundamental condition for the emergence of 

cities. Cities can be seen as a human strategy for survival. Cities concentrate population 

and resources, provide opportunities, e.g. jobs and services, but also concentrate problems, 

e.g. pollution (Bugliarello, 2006). With growing population, further RM developments 

were required, settled societies have to transport resources from their vicinities to survive. 

Consequently, complex social and infrastructural systems developed to deliver resources 

                                                 
3
 “Domestication involves the selection of traits that fundamentally alter wild species to become more useful 

to us” (Kareiva et al., 2007 p. 1866). 
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and services to more densely populated areas (Lee, 2006). As a result, early civilizations
4
 

appeared about 3000 BC in Mesopotamia and Egypt, and few hundred years later in the 

Indus Valley, a millennium later in China and another two millennia later in the Americas. 

In Mesopotamia, Uruk became the first city
5
 in the world (Ponting, 2007).  

 

The rise of the first empires, the steady but slow increase in the population and the 

development of trade led to the development of “pre-industrial” cities. They were 

characterized by a surrounded wall, not only for defense but also for political and 

economic control; they also developed water management techniques to guarantee 

survival (Ponting, 2007). Although, there were no formal UP principles at this time, many 

ancient cities were planned, meaning that, their existence and their location were laid 

down consciously (Hall, 2002). Smith (2009) described a combination of planned central 

zones and unplanned residential neighborhoods as the most widespread principle of spatial 

organization in the ancient world. In addition, urban hydraulic systems, such as wells, 

baths and rainwater harvesting, were developed during the Bronze Age in the Indus valley 

and Mesopotamia (ca.2800 – 2100 BC), later it extended to Greece and finally to the 

Romans who inherited and improved these technologies (Mays et al., 2007).  

 

During the following centuries, between 1000 BC and 1000 AD, various states and 

empires rose and fell. For example, in southern Mesopotamia, irrigating the desert soils 

brought prosperity and fostered population growth. However, after a few years of over 

irrigating, saline groundwater rose and ruined the soil; yields declined and after some 

attempts the dynasty finally collapsed (Tainter, 2000). The Indus valley civilization 

collapsed due to soil salinization but also due to deforestation. Deforestation has been, as 

well, a common problem in China, Japan, Greece, Italy, among others in different points 

of history (Ponting, 2007). They are examples of societies and its destructive impact on 

the environment, leading to their own collapse (Ponting, 2007). They demonstrate the 

relevance of RM to guarantee sustainability. Population growth and resources availability 

are an old concern, Greeks were aware that a city should balance its population with its 

resources, and Plato recommended zero population growth for his utopian republic 

(Harrison, 1993). 

 

                                                 
4
 Civilizations are societies that became cohesive states and created organizations, institutions and culture 

(Ponting, 2007).  
5
 Childe (1950) described the following conditions to identify cities from earlier settlements: extensive areas 

densely populated; with specialized division of labor; and social stratification with centralized power, 
therefore, leaders - priests, civil and military leaders and officials - will control surpluses by taxes and regular 
foreign trade. To symbolize the concentration of the social surplus monumental buildings were built. And 
development of writing, early scientific disciplines: arithmetic, geometry and astronomy. And finally the state 
organization based now on residence rather than kinship.  
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The creation of the Roman Empire increased the pressure on the environment due to a 

large food demand (Ponting, 2007). Romans developed complex and large water supply 

systems (Mays et al., 2007) and also consumed enormous quantities of water supplies. 

They also developed a large paved road network system. And the city of Rome even 

developed problems of traffic congestion (Hall, 2002). Unfortunately, after the decay of 

the Roman Empire their knowledge was lost. Therefore, water supply systems, water 

sanitation and public health declined in Europe, low hygienic conditions were common 

and minimum improvements were present regarding city livability. In Europe, this period 

is known as the dark ages (Mays et al., 2007). And it was not until the eighteenth century, 

that formal UP emerged (Hall, 2002). 

 

2.3.3 The industrial and urban revolution (18th and 19th century) – strong 
urbanization and the need for planning  

“Historical evidence suggests that industrialization is a transition process allowing 

populations to overcome scarcity and the sustainability problems of the agrarian socio-

metabolic regime” (Krausmann et al., 2008, p. 642). Industrialization caused changes in 

RM because the constraints from the controlled solar energy system became abolished. 

With fossil fuels and their associated technologies, energy became an abundant resource, 

productivity increased, transportation was fostered, and larger populations could be 

sustained, triggering an extraordinary growth of urban agglomerations. 

 

Even though at the end of the 18
th

 century, not more than three per cent of the world’s 

population lived in cities (Ponting, 2007), concern for increasing scarcity of resources was 

already raised. In his ‘Essay on the Principle of Population’, Malthus (1798) pointed out 

the unbalance between exponential human population growth and the linear food 

production growth. Some decades later, Jevons (1865) described the circular causation of 

RM, stating that economically justified energy-efficiency improvements will increase 

rather than reduce energy consumption. Additionally in 1885 to create awareness of the 

massive flows of resources in cities, Geddes used the concept of urban metabolism and 

established an urban energy and material budget in physical input–output terms (Geddes, 

1885). Unfortunately, Geddes’ approach was not sound at that time (McDonald and 

Patterson, 2007). 

 

Initially, the technological development – inventions in textiles and iron making - caused 

by the Industrial Revolution seemed to disperse industries out of the towns and into the 

open countryside. However, when coal became a principal raw material of industry, 

industry was concentrated where coal supplies were available (Wheeler, 2004). 

Consequently, industrial towns were developed across Europe to provide the energy 
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source for the industrialization (Ponting, 2007). However, due to the fast development, 

growing and overcrowding of these towns did not include UP principles. 

 

Early in the 19
th

 century, in European cities, human excrements were collected in 

cesspools, emptied periodically and reused in agricultural fields (Barles, 2007). However, 

during the industrial revolution and the rapid growth of cities, environmental problems 

related to human excreta overwhelmed city governments. This rapid growth resulted in 

increments on density because public transport systems were nonexistent. Therefore, 

houses were located within walking distance to the work place (Hall, 2002). In addition to 

the removal of human excrements, the procurement of adequate drinking water was one of 

the most important concerns. Due to city growth and overcrowding, the limited water 

supplies became more and more contaminated with sewage and waste. The simplest RM 

approach – dumping wastes in the nearest watercourse and drinking from it too – worked 

only where people were few and water plentiful (McNeill, 2000). Additionally, greater 

mobility induced by trade facilitated the spread of epidemics like Cholera across the world 

(Hall, 2002).  

 

Before the industrial revolution, RM and economic systems were primarily local and 

regional. With the industrial revolution, technological advances in transportation and 

communication established a global economy. In this economy, the main actors were 

Great Britain, Germany and the United states. Consequently, they were the most affected 

by urbanization. As a response to the problems caused by urbanization, formal UP schools 

were developed in these countries (Goff et al., 1994). 

 

Hence, UP emerged as a very direct response and as a critique of unhealthy and polluted 

living conditions caused by the urbanization and industrialization (Fainstein, 2005; 

Watson, 2009). For example, in Britain, after the cholera epidemics of 1831 and 1854, 

British politicians established requirements for the construction of new housing from the 

1870s onwards. The regulations stated that “streets should have a uniform minimum width 

to guarantee a modicum of air and light; each house originally should have a separate 

external lavatory, with access to a back alley running parallel to the street” (Hall, 2002, p. 

17). The same regulations also posed restrictions to the maximal urban density (Hall, 

2002). 

 

The Industrial Revolution dramatically changed RM (McNeill, 2000). The expansion of 

industrial production required large amounts of natural resources. At the same time, new 

technologies facilitated the discovery of new resource deposits and improved accessibility 

and recoverability of the existing resources (Grübler, 1998). In the early 19
th

 century, the 

massive use of coal made large quantities of manufactured steel available, which in turn 
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fostered mining, industrial production, building construction, transport and warfare. These 

developments also gave an unprecedented access to the earth's stores of resources 

(Girardet, 2003). 

 

The exploitation of the earth’s vast, seemingly unlimited, stocks of fossil fuels led to a 

great transition in our societies which became highly dependent on energy use. Before, all 

the forms of energy used by human societies were renewable – human and animal power, 

water, wind and wood (McNeill, 2000; Ponting, 2007). Our current urban metabolic 

problems stem from the industrial revolution which brought about a shift in the use of 

materials from the organic to the inorganic and the change from a solar fuelled economy 

to a fossil fuel based economy (White, 2002). Additionally, industrial societies use three 

to five times as much energy and materials as did agrarian ones (Krausmann et al., 2008). 

 

In cities, further RM was fostered by infrastructure. Infrastructure was designed to extract, 

transform, transport, supply and dispose resource. Consequently, an interactive 

relationship between cities and environment was established, with cities having massive 

effects on the natural environment and the natural environment influencing urban 

configurations (Tarr, 2002). This development of urban infrastructure had two major 

implications. First, infrastructure was and is a driving force for development. Second, 

infrastructure development may in time lead to path dependency
6
.  

 

UP and in particular networking the city was not only a technical task. The 

implementation of these networks also generated a social and cultural process of 

adaptation. Infrastructure development led to fundamental changes in behavioral patterns 

of urban residents regarding RM, in both, their use of resources and disposal of waste. It 

favored the growth of resources use and caused a complete dematerialization of resources 

use, from which the only sensitive issue remaining is the price (Schott, 2004). This also 

implies that, towards an urban SD, a transition of existing infrastructures should take place 

(Monstadt, 2009). 

 

2.3.4 The 20th and 21st century: rapid urban changes 

During the 20
th

 century, the human population quadrupled to almost six billion. Resources 

consumption increased further and for every increase in production there was a 

corresponding increase in the excretion of entropic waste and eco-degradation. By the end 

of the twentieth century, half the world’s land mass had been directly modified for human 

purposes and people were using half the accessible fresh water (McNeill, 2000). Fast 

                                                 
6
 Path dependency means that choices for certain key technologies and systems can limit the future room of 

maneuver for municipal policies and urban development. Changes in the system will imply great expenses, 
inhibiting changes of direction in how cities manage their resources (Schott, 2004), i.e. become a restriction 
for further development and innovation because infrastructure is extremely slow to change (Tarr, 1984). 
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urbanization and consequent land use change had altered ecosystems, destroyed wildlife 

habitats, changed regional climates and released large amounts of carbon into the 

atmosphere (Grübler, 1998). 

 

As the world industrializes and urbanizes, the global flows of energy and materials were 

and are still increasing, (Decker et al., 2000), and a growing mismatch between human 

demand patterns and the capacity of the planet to supply resources and absorb wastes has 

emerged. In addition, during the 20
th

 century, human action put more harmful gases into 

the atmosphere. One major source of pollution was and is the mining, melting, refining, 

and use of heavy metals. When these pollutants become present in soils, they easily enter 

the food chain. In addition to heavy metals, industrialization also generated many other 

types of toxic wastes. Man-made chemicals became into existence after the mid-19
th

 

century but they only acquired environmental significance after the mid-20
th

 (McNeill, 

2000). Moreover, improvements in food production and preservation combined with 

decreasing of transport costs of the railway and steamship era allowed an unprecedented 

expansion of agricultural trade (Grübler, 1998). Between 1950 and 1985, the world 

population doubled and the global food production almost tripled (Goff et al., 1994). 

 

During the 20
th

 century, crude oil and natural gas became the dominant energy sources. 

Cities became highly dependent on electricity, not only because of the spread of electric 

motors for different uses but also because electricity provided light and heat. In the late 

20
th

 century and early 21
st
 century, several carriers, including nuclear energy, and modern 

renewable sources have risen in importance and are expected to play an important role in 

the energy mix of the future (Marcotullio and Lee, 2003; McNeill, 2000). 

 

1901 - 1960: Fertilizers, automobiles and the search for the ideal city 

Early agricultural techniques included a basic RM strategy by recycling of organic wastes 

and minerals in the form of manure and planting nitrogen-fixing legumes to preserve soil 

fertility (Grübler, 1998). Around 1900, the invention of chemical fertilizers allowed for 

tremendous increments in the agriculture production and fostered population growth. The 

impact of chemical fertilizers strongly influenced the choice of crops in and after the 

1950s. Those crops that responded well to fertilizers spread far and wide, replacing those 

that did not. By chemical fertilizer use, food production became dependent on fossil fuels 

that are needed for fertilizer production. Moreover, fertilizers became water pollutants. 

Some estimates indicate that more than 50% of chemical fertilizers applied end up in 

nearby waters (McNeill, 2000).  
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The spread of the automobile strongly influenced the structure of modern cities, leading to 

large investments in road infrastructure and to the development of suburbs and less dense 

cities. New philosophies of road design emerged in the United States and Britain in the 

early 20
th

 century (Hall, 2002). However, making room for cars took a lot of space and 

had a negative impact on urban environment as reflected by lead emissions (McNeill, 

2000). 

 

Some of the pioneers of UP pursued to design the “ideal city”. To mention some, in the 

Anglo-American tradition, one of the most influential thinkers was Ebenezer Howard. His 

“Garden city” concept was proposed in 1898 and reappeared in 1902 in “Garden Cities of 

To-morrow” (Howard, 1902). The garden city concept took the regional polycentrist view 

and included self-contained, self-sufficient communities surrounded by greenbelts. 

Howard’s vision influenced several generations of urban designers in Europe and the 

United States, including contemporary new urbanism movements (Berke, 2008; Miller, 

2002). A new milestone in UP was made by Patrick Geddes, whose book “Cities in 

Evolution” appeared in 1915. He described how technology development and RM in cities 

influenced changes of cities (Geddes, 1915). His main contribution was to include human 

geography as basis of planning and giving planning a logical structure. His method 

became part of the standard sequence of planning: first, the preparation of a survey of the 

region, its characteristics and trends; secondly, an analysis of the survey and thirdly, the 

development of the actual plan (Hall, 2002). Geddes’ approach illustrates that diversity of 

the local context was already acknowledged in UP in the early 20
th

 century. 

 

Also architects like Frank Lloyd Wright in the United States, Raymond Unwin in England, 

and Le Corbusier in France moved far beyond design of individual structures to design 

entire communities and societies (LeGates, 2003). In the early 1930s, Le Corbusier’s 

“Radiant City” took a centrist urban perspective. Le Corbusier developed the idea of a city 

with high local concentrations of people in tall buildings, which would preserve open 

ground space. Uniformity was to be the basis of improving public health and livability. 

Frank Lloyd Wright’s “Broadacre City” took a decentrist suburban view. His idea of 

decentralization was motivated by technological developments like the automobile and 

electricity. In his opinion with these technologies, there was no need of being concentrated 

in urban areas (Berke, 2008). 

1960 - 1990 UP diversification and RM concern 

Up to the 1960s, UP was a local government task focused on exercising control over 

private land use and building design practices, and guiding spatial design of capital 

improvements such as streets, water pipes and sewers (Berke, 2002). During the 1960s, it 

was argued that UP should focus on broad principles rather than on details. Moreover, it 
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should stress the process to reach the goal, rather than present the desired end state in 

detail (Hall, 2002). Between the 1960s and 1970s, cities in the USA and Europe faced 

poverty, racism, and high pollution levels. These problems questioned the efficacy of the 

classic view on UP (Berke, 2002). Moreover, critiques also argued that UP theories did 

not really affect the practice of urban architects and engineers (Hamlin, 2007).  

 

In that same period, RM became high on the public agenda due to problems related to 

environmental degradation and resources scarcity. In 1962, when Rachel Carson published 

her book “Silent Spring”, environmental degradation called the attention of the public and 

of politicians (McNeill, 2000). In 1965 Wolman revised the concept of urban metabolism, 

proposed by Geddes in 1885. In his study ‘A Typical American City’ (Wolman, 1965), 

Wolman called for attention towards the large resources consumption of cities. In 1969, 

McHarg published the book “Design with Nature”, in which, he argued that cities should 

be planned as an integral part of natural systems. He proposed to use ecology to 

understand interactions between people and their environment and to use these as guiding 

principles for UP (McHarg, 1969). In 1968, Hardin published a warning statement on 

resources management in his “Tragedy of the commons” and concluded that “Freedom in 

a commons brings ruin to all” (Hardin, 1968, p. 1244). Also modern Malthusians 

ideologies re-appeared, as in for instance, “The population bomb” (Ehrlich, 1968) and the 

report “Limits to Growth” (Meadows et al., 1972). Both sources basically concluded that 

continuation of the growth trends of the 1970s would lead to a collapse of human society 

because of scarcity of essential resources and food. According to the Club of Rome, this 

collapse could be avoided by establishing a condition of ecological and economic stability 

that should be sustainable far into the future (Meadows et al., 1972). 

 

From the 1970s, in UP new urban forms were promoted as a response to environmental 

concerns. Within these approaches urban planners and designers also strived for a greater 

sense of place and identity. One example is the “compact city concept” that aims for a 

more efficient design by building high densities and mixed uses, especially considering 

energy for transportation. Also containment policies to limit urban growth encouraged 

densification and protection of surrounding natural resources (Watson, 2009). In the 

1980s, communities set out on different development paths as a reaction on unified 

planning approaches. As described by Allmendinger, (2002) the development of UP 

theories has been in a hyperactive state since the early 1980s. These theories showed 

developments in a number of fields, including neo-liberal and public choice perspectives, 

postmodern planning, neo-pragmatism, political economy approaches and collaborative 

planning. New urbanists have revived the pre-1960s’ idea that UP is about big, visionary 

ideas (Berke, 2002). But, it is not until 1987, that the WCED and its report “Our common 

future” placed the issue of SD at the core of urban policy and UP.  
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1990 – Now: Managing cities and resources, methodologies and assessments 

At the end of the 20
th

 century, “empirical evidence suggests that resource consumption 

already exceeds the productive capacity of critical biophysical systems on every continent 

and waste production already breaches the assimilative capacity of many ecosystems at 

every scale” (Rees, 1999, p. 208). As stated by Vitousek et al. (1997, p. 498) “We are 

changing Earth more rapidly that we can understand it”. The scale of pollution 

increasingly surpassed the thresholds at which waters could assimilate wastes. Dilution as 

water pollution control did not work anymore (McNeill, 2000) and growth of flows of 

urban resources caused great problems regarding solid waste.  

 

Initially, RM has been focused on mainly controlling environment deteriorating emissions 

to water, soil and air, the so called end-of-pipe solutions. Later, pollution prevention and 

design for the environment with strategies, such as dematerialization, material substitution 

and recycling have been implemented to minimize environmental impacts (Mihelci et al., 

2003). A noteworthy result of this is the general decline in metal emissions after 1980, a 

consequence of environmental awareness and regulation, and of new technologies with 

better efficiencies in metal removal and reduced waste productions (McNeill, 2000). 

 

Some of the current global issues related to RM are the availability of resources such as: 

oil, fresh water, phosphorus, metals; and the disruption of natural cycles, for instance the 

nitrogen and carbon-cycle (Gordon et al., 2006; Rockström et al., 2009). Moreover, energy 

and materials are intertwined, for instance fossil energy and agricultural yields, as modern 

agriculture relies heavily on energy-intensive products such as fertilizers, pesticides and 

machines (Chambers, 2008). 

 

Recently, the relevance of RM within SD has been recognized. And different approaches 

have been developed to study urban complexity and its impacts. Some examples of those 

approaches are Environmental Impact Assessment (EIA), Life Cycle Assessment (LCA) 

and Ecological Footprint (EF). EIA is an environmental tool used to assess the potential 

environmental impact of an activity. It assesses the level of impacts and provides 

recommendations to minimize them (Dincer and Rosen, 2005).  LCA is a tool for 

quantitative assessment of materials, energy flows and environmental impacts of products, 

services and technologies (Krozer and Vis, 1998). LCA examines products ‘‘from cradle-

to-grave’’. EF is based on the fact that many material and energy flows can be converted 

into land-area equivalents. Thus, the EF of a specified population is the area of land 

required to produce the resources consumed, and to assimilate the wastes generated (Rees, 

1999). However, all these approaches have drawbacks, such as the use of aggregation 

methods and the need for extensive data sets. Therefore, currently, combined and hybrid 

methods are being developed, e.g. ECO-LCA (Zhang et al., 2010). 
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From the late 1990s, the notion of SD required that environmental issues were addressed 

at the same time as economic and social issues, and UP was viewed as having a central 

role to play in achieving this (Watson, 2009). LeGates and Stout (2003) gave words to the 

UP complexity by naming some of the issues that planning theory and practice must 

confront in the twenty-first century. The issues he mentioned are: design, economic 

feasibility, decision-making theory, conflict resolution, advocacy, race, class and gender 

equity, and sustainability. Moreover, new agendas in UP are continuously emerging. In 

2009, the journal “progress in planning” published two special issues about emerging 

agendas in UP, showing that UP is an evolving field that should adapt to the current cities’ 

needs. Furthermore, environmental sustainability and climate change concerns have been a 

fundamental source of new ideas and approaches in UP over the last years (Watson, 2009). 

2.4  Discussion: Outlook 

Table 1 summarizes the findings of this paper and includes an overview of the 

development of cities over time, of RM, of innovations in technologies and UP and the 

debates on urban spatial planning. The paper showed that RM, innovation and technology 

diffusion are at the core of the historical changes. The agricultural revolution, an 

innovation in RM, in approximately 8000 BC favored the emergence of cities. The newly 

established cities required storage, transportation and distribution of food, water and 

goods, thus increasing the energy demand. Discovery of new energy carriers foster 

technological innovation that in turn, enhanced population growth, urbanization (Tarr, 

1984) and domestication of entire landscapes and ecosystems (Kareiva et al., 2007), by 

redistributing organisms, energy and materials flows (Alberti et al., 2003).  

 

The historical overview in this paper shows that since the existence of the first settlements, 

a close relationship between RM, urbanization, technological development and some form 

of UP has always been present. The first cities usually had some form of road planning in 

order to facilitate transport. During and after the industrial revolution – an era of many 

new inventions, such as the steam engine, electricity, chemical fertilizer and the 

automobile – urban growth accelerated exponentially and resulted in poor living 

conditions. As a response, various UP schools started to develop in the 1850s. The paper 

showed that urban RM and UP have developed separately in response to different 

questions: the demand for urban resources versus the demand for improved living 

conditions in cities. UP has been a flexible research area since, changing according to new 

emerging problems in urban areas. It developed further with the increasing complexity of 

urban areas. Nowadays, the demands posed on UP are overwhelming with many 

objectives that are sometimes conflicting, including sustainability which has been added in 

recent years.  
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Table 1 Historical overview of world population, changes on resources management (RM) 

and urban planning (UP) Note: Sources for population values are ESA-UN; 1999, 2005a, 

2005b; Marcotullio and Lee, 2003; Modelski, G., 2003;UN-Habitat, 2008 
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Table 1 (Continuation) 
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After the industrial revolution, RM increased and shifted to inorganic materials and to a 

fossil fuel based economy. It is very clear that our current urban un-sustainability is rooted 

in a massive resource consumption and waste production beyond natural supply and 

recycling limits. To guarantee urban sustainability, cities must be planned to foster 

strategic RM. Knowing that the spatial organization of a city and its infrastructure 

influence RM (Alberti et al., 2003), UP for SD needs to go beyond traditional planning 

and strategy making (Bagheri and Hjorth, 2007). As presented in section 2, RM is a key 

component of SD. From that perspective, it is also clear that if SD and UP are to be 

integrated, RM is an important element, if not the key element, to take along. 

 

A remarkable aspect is that, UP pioneers in the 19
th

 century were already thinking about 

the ideal shape of the city from the perspective of managing resources and providing high 

quality of life to inhabitants. Paradoxically, more than a century later, formal links are still 

missing between RM and UP. There is clearly a need to develop a holistic approach to 

evaluate our cities, integrating sustainable RM and UP.  

 

Concluding, there is a need for a comprehensive framework that integrates RM and UP. 

Towards urban sustainability, RM becomes a formal and critical link between UP and SD. 

As stated by Rees (1999, p. 216 ), “Urban planning in the 21
st
 Century should evolve 

towards an ecologically-oriented macro-architecture, fully integrating the design and 

location of energy-and material-efficient buildings and urban infrastructure with overall 

spatial planning further to minimize material throughput”. As a consequence of this, in the 

first place, planners need tools to understand cities and regions as environmental systems 

that are part of regional and global networks (Campbell, 1996). Such tools should be used 

by different stakeholders during UP processes and translated into effective decision 

making. As stated by (Graedel and Klee, 2002, p. 528), “If we are indeed serious about 

sustainability…we can move forward only by converting that fuzzy concept to 

dependable, measurable metrics”. It is our opinion that only by using RM as a formal link 

to integrate UP and SD, we will achieve sustainable urban planning. Sustainable UP 

should aim for low impact cities by integrating RM and UP. 
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Chapter 3 
 

Harvesting urban resources towards 

more resilient cities: proof of concept 
 

 

Abstract 

 

With accelerating global changes, cities have to cope with growing pressures, especially 

for resource supply. Cities may be considered as resources reservoirs and producers of 

secondary resources. This paper introduces the concept of urban harvesting as a 

management tool to change inefficient linear urban resource usage and waste production 

into sustainable urban metabolism. The Urban Harvest concept includes urban metabolism 

and closing urban cycles by harvesting urban resources. The purpose of this study was to 

quantify the potentials to harvest water and energy at different scales. We investigated 

potentials for the Netherlands. Results show that at national scale, potentials can cover up 

to 100% of electricity demand, 55% of heat demand and 52% of tap water demand. At 

neighborhood level, similar percentages were found for energy. Only 43% of water 

demand was achieved, due to fact that treatment measures were not considered. These 

results indicate the large potential of cities as providers of their own resources. Therefore 

urban resources management is a key element of future city design towards more resilient 

cities. 
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3 Harvesting urban resources towards more resilient cities 

3.1 Introduction  

Currently, cities are highly dependent on other cities and hinterlands to supply materials 

and energy, and to dispose waste (Bai, 2007; Cola et al., 2005). This dependency can be 

measured by calculating the ecological footprint of cities. Several ecological footprint 

studies have shown that cities greatly exceed, or overshoot, their bio-capacities by 

typically 15–150 times (Doughty and Hammond, 2004). Cities are not sustainable because 

they do not use resources efficiently. In general, cities have a linear usage of resources and 

waste production, without feedbacks of resources in terms of quantity and quality (Leduc 

et al., 2009). The root of the current urban un-sustainability is the massive resource 

consumption and waste production beyond natural supply and recycling limits. Therefore, 

cities worldwide are facing the challenge to find and implement alternative strategies 

(Cola et al., 2005) towards more sustainable management of urban resources. 

 

“Cities are concentrated centers of production, consumption, and waste disposal that drive 

land change and a host of global environmental problems” (Grimm et al., 2008 p 759). 

Cities are both responsible for, and respond to, changes in biogeochemical cycles (Grimm 

et al., 2008). The current pace of global change is unprecedented. Considering the current 

level and rate of urbanization and growing ecological footprints, the impact of inadequate 

urban resource management has become a global issue. Some of these global issues are 

the availability of the resources such as: oil, fresh water, phosphorus, metals; and the 

disruption of natural cycles, for instance nitrogen and carbon-cycle (Boyle et al., 2010, 

Gordon et al., 2006; Rockström et al., 2009). Therefore, the urban system, as the world’s 

primary sink of resources, turning these into waste, plays a key role to find solutions for 

these global pollution and depletion problems (Xu et al., 2010). By harvesting urban 

resources, global impacts are reduced and the resilience of cities can be improved as well. 

“Resilience is a measure of robustness and buffering capacity of the system to changing 

conditions” (Berkes and Folke, 1998, p. 12).  

 

For a typical city in an average industrialized country, consumptions per capita per year 

are 150-400 GJ for energy, and 15-25 tons for materials (Krausmann et al., 2008). Large 

portions of the flows of wastewater, solid waste, demolished construction materials, etc., 

are exported out of the urban system, while others remain in the system as urban ‘stocks’ 

as internal resource reservoirs (Brunner 2007). Looking at the urban networks some of the 

city outflows and stocks, often called waste, still have a remaining quality or a set of 

potentials that can be harvested and used within the city itself. There are several 

possibilities within cities to harvest resources (Agudelo et al., 2009; Leduc and Rovers, 

2008). In contrast to linear, resource-to-waste systems, cities can also be considered as 

resources reservoirs and producers of secondary resources. This chapter introduces the 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V91-4P5RKKX-3&_user=533256&_coverDate=11%2F12%2F2007&_rdoc=1&_fmt=full&_orig=search&_cdi=5885&_sort=d&_docanchor=&view=c&_acct=C000026798&_version=1&_urlVersion=0&_userid=533256&md5=2753c2e2de94a5914959436a619b1147#bib14


Harvesting urban resources towards more resilient cities 

 

 

41 

 

concept of “urban harvesting” as a management tool towards more resilient cities. The 

potential for harvesting urban water and energy in the Netherlands is explored at two 

different scales: country and neighborhood scale.  

3.2 Urban metabolism  

The concept of metabolism has been adopted from biology. It refers to “physiological 

processes within living things that provide the energy and nutrients required by an 

organism as the conditions of life itself” (Tarr, 2002 p. 511). This concept has been 

adapted for cities as “urban metabolism”. Urban metabolism treats cities as organisms and 

provides an extensive framework for analyzing a city’s input–output relationships with its 

surrounding biophysical environment (McDonald and Patterson, 2007). Urban metabolism 

is a means of quantifying the overall flux – input-transformations and outputs – of 

resources. Urban metabolism can be studied at different scales, including global, country, 

city and household levels. In the last decades, several “urban metabolism” studies have 

provided valuable information about the resources flows through and in cities (Kennedy et 

al., 2007). Moreover, urban metabolism is also being used as basis for sustainable urban 

design and for policy analysis (Kennedy et al., 2011). 

 

3.2.1 Quality losses in the system 

As described by Leduc et al. (2009), we can explain the current urban energy and water 

system as shown in Fig. 1. At the supply side (Fig. 1, left side), different sources provide 

water or energy at different qualities. The urban water or energy network must be fed with 

a certain quality, generally the highest quality demand, e.g. tap water or electricity at given 

voltage. To reach the required network quality, a conversion step to upgrade the original 

quality is necessary, e.g. energy transformers or water purification. Each conversion step 

consumes energy and materials, influencing the efficiency of the system. At the demand 

side (Fig. 1, right side), different activities require different resource qualities. But, 

because the network can provide only a single quality, some of the activities will get a 

higher quality than needed, the “quality surplus” (Qs). Also, when a given activity is 

performed, some remaining quality is left, the “un-used remaining quality” (Qr). To 

minimize losses, Qs and Qr, quality of supply and demand should be matched according 

the “fit for purpose” principle.  

 

3.2.2 Linear Metabolism 

Currently, urban metabolism is mostly linear. For their resources, cities depend on 

hinterlands and other cities to import water, energy and goods, and to export wastes (Bai, 

2007; Cola et al., 2005). Cities use these resources inefficiently and after use, valuable 

remains contained in waste streams, are thrown away (Girardet, 1992), e.g. emissions of 

nutrients to water or energy dissipated as unused heat (see Fig. 2a). Linear metabolism can 

be associated with two main problems. On the one hand, the high rate of resources 
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consumption puts stress on resources availability by depletion; on the other hand, massive 

disposal of waste causes pollution. The urban metabolism is built up of different 

components: water, energy and materials. In general, all of these components are in a 

linear sequence, completely depending on import of high quality resources to function, 

without harvesting and feedbacks in the chain. This we identify as linear metabolism. This 

external dependency and inefficiency makes cities more and more vulnerable (Cola et al., 

2005).  

 

 
Figure 1 Illustration of quality losses within the urban energy and water system (After Leduc et al, 

2009) 

 

In contrast, circular metabolism, that resembles the metabolism of natural ecosystems, has 

a low consumption rate, and includes recycling and reuse of the different urban flows. 

Circular metabolism has less impact on hinterlands and other cities and enhances the 

resilience of cities (see Fig. 2b).  

 

 

 

Figure 2 Linear vs. circular urban metabolism 
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3.2.3 Urban Harvest concept and Urban Harvesting Strategies 

The current challenge towards more resilient cities consists in closing open links between 

sources and demand. However, most of the cities ignore their potential resources. 

Traditional resources management focuses mainly on natural resources. Reijnders (2000) 

categorized natural resources as flux, renewable, and virtually non-renewable. With 

increasing urbanization, secondary resources are important flows to consider. Secondary 

resources are outputs from human activities that can be used as an input to other human 

activities. Examples of secondary resources are grey water or residual heat. Therefore, 

cities can be seen as producers of secondary resources.  

 

Based on the concept of urban metabolism, the Urban Harvest concept has been developed 

to investigate all possible options for harvesting flux, renewable and secondary resources 

to be used within the city itself (Rovers, 2007). The urban harvest concept aims for closing 

the open links towards a circular metabolism (Fig 2b).  Towards closing cycles, the first 

step is to make an inventory of the demand; secondly, to explore options to minimize 

demand; thirdly, to make an inventory of alternative sources; and fourthly, to couple 

supply and demand by harvesting local and renewable resources. To harvest local 

resources, four main harvesting strategies are defined (Agudelo et al., 2009): 

1. multi-sourcing;  

2. cascading;  

3. quality upgrading and recycling;  

4. quality upgrading and closing loops.  

 

Multi-sourcing refers to harvesting primary and secondary resources that are locally 

available and renewable, e.g. harvesting of rain water or solar energy. Cascading refers to 

harvesting remaining qualities of flows, by re-using remaining qualities for lower quality 

demanding purposes (Sirkin and Houten, 1994; van den Dobbelsteen et al., 2007). 

Cascading aims to reduce waste inputs and outputs. Cascading further aims to better 

match qualities of demand with supply, by using low quality flows for low quality demand 

activities, e.g. using wastewater from the shower to flush the toilets or harvesting 

remaining heat in shower water. Quality upgrading and recycling refers to on-site 

treatment for further re-use, e.g. grey water reclamation or using a heat pump to increase 

the temperature. Quality upgrading and closing loops refers to on-site treatment of a 

system which does not have inputs or outputs. However, quality upgrading implies 

resources and energy inputs, and those should be powered by local non-fossil energy and 

sustainable materials. 

 

3.2.4 Urban Harvest as a tool for planning resilient cities 

Cities and their surroundings are systems in constant change. “Urban resilience generally 

refers to the ability of a city or urban system to withstand a wide array of shocks and 
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stresses” (Leichenko, 2011 p 164). We propose resource management as a key factor for 

sustainable urban planning to close open links between sources and demand. The urban 

harvest concept aims to reduce single source dependence by optimizing the demand and 

by harvesting local resources. Using the urban harvest concept, multiple resource linkages 

among functions will result in a flexible network which allows overcoming shock or 

failure of one of the sources. By producing its own resources, an urban area diminishes 

external dependency being less vulnerable to external changes and being able to cope with 

changing conditions.  

 

Harvesting of urban resources requires an inventory of flows in terms of quantity and 

quality. Furthermore, to harvest available resources within a city, it is also important to 

know at what time and at which location the resources are available. The four parameters 

– quantity, quality, location and temporal characteristics – link the field of resources 

management with urban planning practices. To design more sustainable and self-sufficient 

cities, city planners have to take into account those parameters. If a city wants to use the 

remaining energy and water qualities, certain infrastructure and planning changes are 

necessary (Leduc et al., 2009). For instance, to use the remaining heat of an industrial 

process, another function has to have a demand for the remaining quality and quantity at 

the moment it comes available and this has to be located close by. Therefore, 

infrastructure, like piping, needs to be installed to transport the heat from supply to 

demand locations. In case the supply and demand are periodically out of phase, the 

remaining quality should be stored, e.g., in underground water reservoirs such as aquifers. 

By creating storage, cities can reduce the importance of temporal characteristics.  

 

Using remaining qualities efficiently, and keeping track of the described parameters, can 

help cities in their transformation towards more resilient cities. We propose an urban 

harvesting based method, in which supply and demand coupling options and storage are 

explored. Water, energy and materials are intertwined flows in cities, thus special attention 

should be given to those inter-relations. The urban harvest concept can be used for the 

different urban flows, like water, energy and materials. Fig. 3 shows different possibilities 

to couple energy, water and material cycles, taking into account the qualities required and 

linking urban, industrial and agricultural functions. In addition, measures to limit spillage, 

such as measures to reduce household water usage, and insulation of buildings for 

reducing thermal energy demands, are an important part in any sustainability effort. 

 

This chapter only considers two flows - water and energy - at two spatial scales - nation 

and neighborhood - and one temporal scale – average year, to show the applicability of the 

method. But a complete analysis should include material flows as well as other spatial 

scales, e.g. city or regional scale, and other temporal scales, e.g. monthly or weekly. 
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Figure 3 Example of possibilities to couple energy, water and materials. Supply and demand are 

based on resources quality 

 

3.3 Methodology  

Resource consumption patterns in cities are closely linked with land uses, more 

specifically with urban functions. Various functions can be defined such as: residential, 

business, etc. In general, all urban functions need water, energy and materials. Description 

of urban functions can provide an overview of the resource consumption intensity in the 

area in relation to land-use. To give an aerial overview of land-use distribution and urban 

functions and to relate that to the harvesting potential, we used the urban tissue (UT) as 

the functional unit. Leduc and Rovers (2008) defined the UT as a conceptual approach to 

visualize resource demand and resources supply potential of an urban area, in an easy to 

grasp visualization. The UT is a standard unit, 1 hectare that allows identification of the 

different flows within the urban region, like energy, water, food, etc.  

 

The Urban Average Tissue (UrbAT) is the visualization of all the urban functions fitting in 

an average hectare. The UrbAT provides insight in the distribution of functions in an 

urban area, percentage-wise and building-wise: e.g., number and type of houses on the 

tissue. First, the total urban surface of the given area is determined. Then, the area of the 

different urban functions is calculated. After that, all function surfaces are recalculated to 

m² per hectare (Leduc and Rovers, 2008; Rovers 2007). The UrbAT is a way to express 

the typologies of the built environment and can be used as a general benchmark to 

compare the urban harvest potentials with other cities with different typologies (Rovers, 

2007). 

The description and calculations for the urban water and energy tissues are based on the 

UrbAT. The urban energy average tissue, Energy-UrbAT, and the urban water average 

tissue, Water-UrbAT, were developed as a tool for an accounting and planning 

methodology. Energy-UrbAT gives an overview of how much energy, of certain qualities, 

can be captured and converted within the urban area when applying several technologies, 
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and it is described in detail in Leduc and Rovers (2008). Water-UrbAT systematically 

investigates the potentials for multi-sourcing, re-using and cascading water within the 

system and aims for a more efficient water resources use, and it is described in detail in 

Agudelo et al. (2009). 

 

An urban area has a maximum amount of a resource that is available or can be made 

available, collected or captured, within the boundaries of the urban tissue, the Potential 

Urban Harvest (PUH). When capturing and converting this potential, even though the best 

available technologies are applied, there are limited efficiencies and losses. Therefore only 

a percentage of the maximum potential can be harvested. Furthermore, the characteristics 

and typologies of the urban area will provide additional limitations as well as temporal 

patterns of demand and supply. Thus, the real potential that can be harvested, taking into 

consideration technology, urban typology, and temporal characteristics, is called the 

Urban Maximum Technical Harvest, (UMTH). UMTH is calculated as follows: 

UMTH = PUH x Øtech x Øurban x Øtemp . 

In which Øtech, Øurban and Øtemp are reduction factors related to technical efficiency 

restrictions, urban typology restrictions and temporal restrictions, respectively. The 

method to develop the specific tissues for urban water and energy consists of the steps 

(based on Agudelo et al., 2009) as described in Table 1.  

 

Table 1. Method to develop the specific tissues 

Step Action 

Demand inventory Hierarchical quality identification: quantification of water and 

energy use within the urban tissue 

Demand Minimization Identify measures that contribute to lower the demand, focusing 

on technology implementation 

Supply inventory Hierarchical quality identification and quantification of available 

water and energy sources. Identification of hidden flows as new 

water and energy sources and calculation of the PUH 

Optimize coupling of 

Supply– Demand 

Calculation of the UMTH by scenarios development, considering 

restrictions by technology and urban typology. Ensure that the 

quality of the water and energy is as high as required for the use 

but not higher, by implementing multi-sourcing, cascading and 

recycling 

3.4 Results 

This chapter focuses on estimating the potentials to harvest water and energy at two spatial 

scales: country and neighborhood. Minimization was not addressed. Firstly, results of the 

Dutch average case are presented. Secondly, results for a specific neighborhood within the 

Netherlands, a small district in the city of Wageningen are presented. 
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3.4.1 Dutch urban average tissue (UrbAT-NL) 

The distribution of functions in an average urban area in the Netherlands is represented in 

the Dutch Urban Average Tissue
7
 (UrbAT-NL). Fig. 4 shows the UrbAT-NL. 

 

 
Figure 4 Dutch average urban tissue 

Dutch energy average tissue - Energy-UrbAT 

The energy demand of the UrbAT-NL was calculated for different urban functions shown 

in Fig. 4: households (EnergieNed, 2002; SenterNovem, 2007), industries (CBS, 2010a; 

ECN, 2010), and offices, business buildings, care sector facilities, educational facilities, 

hotels and catering industry facilities, and shops (Klinckenberg, 2004). To calculate the 

potentials of the tissue to generate energy, two different qualities of urban energy demand 

were considered: electricity and heat. Those qualities were studied considering several 

technologies: e.g. Photo-Voltaic (PV) cells; Peltier-elements in the roads; and wind 

turbines. Cascading of waste heat is also a potential source, but due to lack of data, we did 

not further study this option. Table 2 shows the results for the studied potentials for the 

UrbAT-NL, for electricity and heat. We calculated the results for two scenarios. 

 

Scenario 1: PV-cells on roofs and facades, half of road surface available for Peltier-

elements, to generate electricity, and other half for RES
®
 (Road Energy Systems), to 

generate heat; and 5 small wind turbines. These measures result in 98% savings due to 

renewable electricity generation and 28% savings due to renewable heat generation. 

Scenario 2: PV-cells on roofs and facades, full road surface available for RES
®
; and 5 

small wind turbines. Results showed that harvesting of local resources can fully supply the 

existing demand and generate a 9% surplus due to renewable electricity generation and 

55% savings due to renewable heat generation.  

                                                 
7
 Total Dutch surface: 4,150,000 ha; Dutch urban surface: 507,020 ha (Leduc et al., 2008). 
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Table 2. Potential energy supply-demand for UrbAT-NL 
 Electricity 

MWh/ha –year 

Heat 

 GJ/ha-year 

Scen. 1 Scen. 2 Scen. 1 Scen. 2 

Current Demand
 a
 450 1800 

Harvest  PV
b 

225
d
 295

e
  

Road 20
 f
  500

 g
 995

 g
 

Wind turbines
 c 

195 195  

Potential Savings 98% 109% 28 % 55 % 

Source: (CBS, 2010a; EnergieNed, 1995, 2001, 2002; Klinckenberg, 2004; SenterNovem, 2007). 
a 
PUH, of solar radiation in the Netherlands is c.a. 1 MWh/m²-year or 10000 MWh/ha-year (Sinke, 2001).

 

b
 Roof and façade area based on Rovers et al., 1997. 

c
 Proven 15 kW-type. Yearly yield is calculated by formula: Eyr = b*A*V

3 
(Leijendeckers and van Arkel, 2002);    

  b (beurskens factor) = 3.7 (Constant), V = 5.5 m/s, A = surface rotor, diameter is 9 m.  
d 
PV-cells with an efficiency of 15 %. 

e
 PV-cells with an efficiency of 20 %. 

f
 Combrink et al., 2004. 

g
 www.roadenergysystems.nl 

Dutch water average tissue - Water-UrbAT 

The water demand of the tissue was calculated for different urban functions: households 

and industries (CBS, 2010b; Foekema et al., 2008). The baseline inventory showed that at 

industry level multi-sourcing is already practiced. Nevertheless, remaining quality of the 

effluent is still lost when diluted in the sewer and transported to the wastewater treatment 

plant. Only a small percentage of industrial water is reused by other companies. 

Furthermore, linkages among industry and residential functions do not exist.  

 

To calculate the potentials of the tissue to generate water, four different qualities of urban 

water demand were considered: tap water, direct ground water, surface water and brackish 

water. For the case of the water cycle, several state-of-the-art technologies allow 

decentralized treatment of rain and grey water for reuse (Li et al., 2009; Peter-Varbanets et 

al., 2009). However, treatment might imply using chemicals, energy and space. To 

calculate the potential harvest, we studied the cases in which only simple treatment is 

required. Two measures were taken into consideration: multi-sourcing by using rain water, 

and cascading of grey water to industries and cascading 10% of industrial water. Table 3 

shows the results for the studied potentials for the UrbAT-NL, for water. Results showed 

that by harvesting rain water 32% of the tap water demand can be fulfilled. Furthermore, 

by combining cascading and recycling tap water demand could be minimized up to 52%.  

3.4.2 Neighborhood scale - urban average tissue 

Analyzing the results for the Water-UrbAT and Energy-UrbAT, we can identify several 

potentials to improve resources management within urban areas. However, to define 

feasible implementations, studies at local scale are necessary. The same methodology as 

for national scale is suitable for neighborhood scale, and it allows comparison among 

different tissues. A specific neighborhood within the Netherlands was selected to calculate 
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the different tissues. This neighborhood is located in the city of Wageningen, Wageningen 

Noordoost, there are in total 15 duplex houses, 30 dwellings, and the average occupancy is 

1.8 people per dwelling (CBS, 2008). Fig. 5 shows the area and its urban function 

distribution and the urban average tissue of the neighborhood. And table 4 shows the 

different functions with their respective areas. 

 

Table 3. Potential water supply-demand for UrbAT-NL, in m3/ha-y 

Current supply sources Tap 

water 

Direct 

ground 

water 

Surface 

water 

Salt-

brackish 

water 

Current demand 2154
 a

 555
 b
 16957

 b
 14562

 b
 

H
a
rv

e
s
t 

 PUH     

Rain water
 
 8840

 c
 688

 d 
 555   

Grey water 622
 e
 436

 f
   186 

Industrial/business 

waste-water
 g
 

3207 
h
   55

 d
 3152

d
 

Potential Savings 52% 100% 0.3% 23% 
a
 Tap water consumption in Netherlands in 2007 was 1088 million m³, of which 72% households (1551 m³ ha

-

1
 y

-1
), 12% small scale business (258 m³ ha

-1
 y

-1
), and 16% (345 m³ ha

-1
 y

-1
) industries (VEWIN, 2008). 

Sources for tap water are groundwater (55%), surface water (39%) and dune and bank filtration (6%).  
b 

Extraction for industrial purposes, from which 95% is for cooling (CBS, 2010b). 
c
 Yearly average rainfall 884 mm -Average 1981 to 2009, (CBS, 2010c).  

d
 Only rainwater harvesting from residential areas, assuming 30% losses, 2732 m³/ha are available.  

  Assuming that rain water is used for laundry machine, only 85 m³/ha is needed. If the tap water used by  
  industry is replaced by rain water, (603 m³/ha) the maximum use of rain water is 688 m³/ha. 
e
 Only considering harvesting of wastewater from the shower (light grey water). 

f  
436 m³/ha-year for toilet flush. 

g
 In 2001, 457 m3/ha-y was already reused within industries (CBS, 2010b). 

h
 Assuming 10% or recycling of each source of water. 

 

 
Figure 5 Visualization of the urban average tissue (UrbAT) for the neighborhood 

 

Neighborhood energy average tissue - Energy-UrbAT 

Following the described methodology, the energy demand and energy sources inventory 

were defined for the average tissue. To quantify the UMTH, we defined two scenarios 

considering electricity and heat. Scenario 1: solar boilers on roof of garages, PV-cells on 
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half of roof surface of built up area, and on half of remaining roof surface of garages; 

Peltier-elements in half of road surface and RES
®

 in other half of road surface. Scenario 2: 

solar boilers on roof of garages; PV-cells on half of roof surface of built up area, and on 

half of remaining roof surface garages and RES
®
 in complete road surface. Table 5 

summarizes the results. Results showed that this neighborhood can provide for its own 

electricity demand, and have a 33% surplus. The heat generation is not enough, but 

scenario two can provide about half of current heat demand. 

 

Table 4. Functions and areas of Neighborhood tissue 

Block description : 30 dwellings Average Tissue (1 ha) – 35 dwellings 

Function Total Area (m²) Area (m²/ha) 

Built up area  1261.1 1474.4 

Roof garages 585.8 684.9 

Private gardens  3138.6 3669.5 

Pedestrian area 1960.0 2291.4 

Road 1329.3 1554.1 

Terraces 278.6 325.8 

Total 8553.4 10000 

 

 

Table 5. Potential energy supply-demand for the neighborhood  

 Electricity, MWh/ha – year Heat, GJ/ha – year 

Scen. 1 Scen. 2 Scen. 1 Scen. 2 

Current demand 
a
 126 2594 

Harvest PV
 b
 149 149   

Road 19  520 1,040 
Solar boilers

 c 
  375 375 

Total  168 149 895 1,415 

Potential Saving 133 % 118 % 35 % 55 % 
a
 Based on Dutch average (SenterNovem, 2007). 

b
 PV-cells with an efficiency of 15 %. 

c
 5 m

2
 per household. 

 

The advantage of the urban tissue is that consumption and harvestable sources within the 

area can be visualized, indicating their amount and location. Fig. 6 shows the demand and 

supply for electricity and heat for the two scenarios studied.
 
Notice that the potential in 

Fig. 6 and 7 refers to the production of energy per m² of the specific urban function. Thus, 

the volume represents the potential of harvesting resources from the average hectare. 

 

Neighborhood water average tissue – Water –UrbAT 

Following the described methodology, the water demand and water sources inventory 

were defined for the average tissue. To quantify the UMTH, we defined two scenarios 

considering three qualities. The first scenario uses the maximum potential of rain water 

that can be collected from the roofs to supply for laundry (Q2) and toilet flushing (Q3). For 
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the remaining demand of toilet flushing, grey water cascading was used. The second 

scenario uses rain water for laundry, and cascading of grey water to supply for toilet 

flushing demand. Table 6 shows the results. Results showed that only 43 % of the total 

household consumption is minimized, even though the potentials are three times the 

demand. In a similar way as for energy, water demand and sources are visualized in Fig. 7. 

 

 
 

 
Figure 6 Visualization of the electricity and heat demand and supply for the neighborhood 

 

 

 

 

 

Figure 7 Visualization of the water consumption and sources in the urban area 

a

b

Scenario 1 – Electricity demand and supply Scenario 2 – Electricity demand and supply

Scenario 1 – Heat demand and supply Scenario 2 – Heat demand and supply

Scenario 1 Scenario 2 
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Table 6. Potential water supply-demand for the neighborhood in m3/ha-y 

Current demand m³/ha-y (Q1) 2940 

  Scenario 1 Scenario 2 

  Q1
 a
 Q2

 b
 Q3

 c
 Q1 

a
 Q2 

b
 Q3 

c
 

Demand per quality
 d

 1688 396 855 1688 396 855 

H
a
rv

e
s
t  PUH       

Rain water 8840
 e

  396 754  396  
Grey water 958 

f
   101   855 

Potential Savings 43%   43%   
a
 Drinking water, personal hygiene & kitchen use. 

b 
Washing clothes. 

c 
Toilet flush . 

d
 Foekema et al., 2008. 

e 
In the complete hectare 8840m³/ha-year, if harvested only in roofs:1303 m³/ha-year. 

f 
Assuming cascading water from shower. 

3.5 Discussion 

In urban areas, provision of resources and disposal of waste is a major concern. This 

represents both a risk and an opportunity to improve current practices to cope with the 

global challenges we currently face. Cities are complex systems with mixed activities and 

functions. This complexity can represent an opportunity to create linkages among different 

functions to use resources more efficiently. These linkages are based on harvesting local 

resources and reusing them locally. By harvesting local resources cities can become less 

dependent. This will further contribute to the ability of cities to cope with changing 

conditions, towards becoming more resilient.  

 

Generally, infrastructural systems are designed individually and not in regional context, 

ignoring linkages among different infrastructural systems (Engel-Yan et al., 2005). By 

isolation of the different flows, urban complexity is simplified and single flow solutions 

may be optimized. And, there is no guarantee that the sum of optimal single flows is equal 

to urban sustainability, due to the dependency or competition of the different flows within 

the city (Leduc et al., 2009). Hence, a traditional sectoral approach for urban resources 

should be replaced by an integrated approach.  

3.5.1 Limitations 

The calculations in this paper focused on harvesting available local resources, but demand 

minimization is another important aspect to reach more resilient cities. A lower demand 

results in less need to harvest resources. Cities can lower the demand by changing 

behavior or by installing certain technologies. Minimization is the first step of the Trias 

Energetica (Duijvestein, 1997) and of the waste management hierarchy (Price and Joseph, 

2000). At building scale, options for minimization are for example improved insulation to 

lower heat demand, or installing water saving appliances.  

 

Temporal characteristics are given by changes in daily, weekly and seasonal demand and 

supply patterns. These temporal variations imply storage to match supply and demand. 
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Currently, at national scale, the electricity network acts as storage to balance the power 

supply, but this can become problematic with increasing renewable suppliers. Therefore, 

new technologies to tackle problems due to temporal disparities between supply and 

demand are being developed and tested, e.g. smart grids. 

 

Spatial limitations are given by the spatial distribution of urban functions. At national 

scale, diversity of functions results in variety of flows allowing multiple combinations to 

match supply and demand. However, this might imply long distance transport from source 

to consumer. At neighborhood scale, spatial limitations are given by the single function; 

low function diversity limits the availability of flows. On the other hand, transport from 

source to consumer is less relevant due to the small scale.  

3.5.2 Findings 

By studying the urban tissue, it is possible to calculate the potential resources that can be 

captured, transformed and (re)used within the city and to study potential linkages between 

functions. We investigated the potential for multi-sourcing and cascading energy and 

water. Results at national scale showed that multi-sourcing by harvesting solar and wind 

power potentials can cover up to 100% of electricity demand and harvesting of heat from 

the roads by using Road Energy Systems can cover up to 55% of heat demand. By 

harvesting rain water from roofs tap water can be reduced up to 32%. Additionally, if at 

residential scale, cascading of light grey water is implemented, and at industrial level 10% 

of the wastewater is cascaded, tap water can be reduced up to 52%. At neighborhood 

scale, similar percentages were found for energy. For tap water, 43% reduction was 

reached, due to the fact that treatment measures were not considered. If quality upgrading 

and recycling, or closing cycles are implemented, larger potentials can be achieved, 

however, it is required to evaluate the additional demands of water, energy or materials. 

 

These results indicate the potential for improvement compared to the current urban 

resources management. The results for electricity and water are promising. However 

integrated resources management should take into account all potential trade-offs and 

different scales in space and time (Pahl-Wostl, 2007). Supply of alternative sources may 

be available at a moment and location with low or no demand.  

 

When comparing the results at national and neighborhood scale, we identified some 

restrictions due to functional diversity. For the studied neighborhood, total electricity 

demand can be supplied by using fewer technologies. At national scale, more functions are 

located on the Average Tissue and then implementation of more technologies is required, 

e.g. wind turbines to generate enough electricity to supply industrial demand. When 

focusing on water at national scale, the variety of functions allows more linkages and 

therefore, more possibilities to reuse waste flows. These results highlight the importance 
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to integrate different scales to achieve maximum benefits, because each resource has a 

different optimal scale for management.  

3.5.3 Implications 

Urban resilience could be reached through an efficient (re-)utilization of local resources. 

Our study shows that there are multiple possibilities to improve current resource use at 

different scales. And a combination of strategies will result in more robust urban systems. 

Moreover, if separation of waste streams is implemented, additional benefits can be 

reached. For instance, by separating urine and fecal matter nutrients can be recovered and 

energy can be generated by anaerobic digestion (de Graaff 2010). Regarding multi-

sourcing, new sources are being explored, for example electricity generation by microbial 

solar cells as part of green roofs (Strik et al., 2011) or producing drinking water by using 

hydrogen fuel cells (Hristovski et al., 2009). For cascading heat at national scale, heat 

from industries or greenhouses can be used for heating households. At neighborhood scale 

several options with a heat exchanger and/or heat pump exist to recover part of the heat 

energy present in the wastewater, either at the household scale, or from the sewer 

(Verstraete and Vlaeminck, 2011). 

 

When harvesting urban resources, special attention must be given to interactions among 

different urban flows. When looking at the potentials, there are competing claims. 

Different resources can be harvested from a specific surface. For instance roofs can be 

used to collect solar energy to generate electricity, or can be used for rain water collection. 

But solutions should be always based on local context. Possibilities for beneficial 

infrastructural linkages are increasing in densely built urban space and provide ample 

synergistic opportunities (Mitchell and Campbell, 2006). For instance green roofs can 

reduce energy consumption and reduce the urban heat island effect (Arnfield, 2003) and 

reduce peak flows during storm events due to retention capacity (Bliss et al., 2009). 

Furthermore, urban infrastructure systems for water, energy, transport, and 

communication are actually dependent systems that rely on each other (Mitchell and 

Campbell, 2006).  

 

Therefore, we still need a better understanding of the complexity of urban systems and of 

how the different urban infrastructure systems interact (Xu et al., 2010). Symbiotic 

relationships within urban areas among different urban functions should be explored to 

create win-win situations and minimize competing claims. Thus, it is crucial to investigate 

those relationships to optimize the overall performance of the city. Recently, increasing 

attention has been given to the interactions among the different urban flows – water, 

energy and nutrients – and land (de Graaff, 2010; Verstraete et al., 2009) This confirms 

the need of integrating resource management with urban planning, aiming to optimize 

linkages among different urban functions. 
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3.5.4 Outlook 

The described Urban Harvest concept relates urban characteristics to water and energy 

harvesting potentials and land use, aiming to foster a re-thinking of our current urban 

water and energy systems. The concept can be extended to materials. The urban harvest 

concept can be used by urban planners and decision makers to understand the urban 

system and the internal flows within the same system, to provide smart, customized 

solutions for existing and new urban areas. The current challenge for resilient cities 

consists in closing open links between sources and demand. Towards urban sustainability, 

it is necessary to change the way we approach problems. “The paradigm of sustainable 

urban metabolism will require profound changes in the ways we conceptualize, plan, and 

manage cities and metropolitan regions” (Beatley, 2007, p. 43).  

 

Resource flows occur at multiple spatial and temporal scales. Each scale is associated with 

boundaries, activities and flows. Inventory and visualization of the activities and flows 

using the urban tissue can help to identify resources “hot spots” and define policies and 

measures to handle those spots. Efficiency of the different measures depends on scale, 

local conditions, urban pattern and characteristics, and technology used. The resilience 

approach recognizes change as inherent part of any system. The challenge from a 

resilience perspective is to learn to live with change and develop the capacity to deal with 

it (Miller et al, 2010). Diversity of function has been shown to increase ecosystems 

resilience, because organisms can substitute each other, thereby compensating for 

disturbance and maintaining the function of the ecosystem (Gunderson and Holling, 

2002). In cities, with a large diversity of functions and with changing conditions inside 

and outside the system, improving resources management by optimizing the demand and 

by harvesting local resources will make urban systems more robust to disturbances.  

3.6 Conclusion 

The Urban Harvest concept aims for a paradigm shift in urban sustainability. Cities, as 

consumers of goods and services and producers of waste, have the ability to transform into 

resilient cities that produce their own renewable energy and harvest their own internal 

resources. In this approach, waste flows are not only key indicators of systems efficiency, 

but may also provide insights into potential infrastructural linkages for a more efficient 

urban metabolism. Our study shows that there are ample options for such linkages among 

various urban resource systems. Towards sustainable urban metabolism, the Urban 

Harvest framework helps to evaluate the different urban flows at different scales and to 

communicate with other urban disciplines, such as urban planning and policy making. In 

aiming for resilient urban areas, it is evident that new approaches in urban resources 

management, such as Urban Harvest and city design and planning, need to be integrated. 
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Chapter 4 
 

The Urban Harvest Approach as an aid 

for Sustainable Urban Resource 

Planning: development of the method 
 

 

Abstract 

 

Now that more than half of the world’s population lives in cities, improving urban resource 

cycles is crucial for sustainable urban development. Currently, cities are highly dependent on 

external supply of water, energy, nutrients and other materials, while local possibilities of 

self-production of such resources are generally overlooked. This chapter describes a novel 

method, the urban harvest approach (UHA), its rationale and the steps towards sustainable 

urban resource planning. UHA is based on the urban metabolism concept. Herein, a city is 

regarded to have multiple potentials in the form of untapped primary and secondary (already 

used) resources that can be utilized. UHA works on the principle that urban systems and their 

direct peri-urban surroundings can become self-sufficient by applying three strategies, 

namely: minimizing demand, minimizing outputs and multi-sourcing. An elaboration of UHA 

for the resource “water” at building scale is also presented in this chapter. A free standing 

house in the Netherlands and a similar house in Australia were studied, with a focus on indoor 

demand. Results showed a 40% demand reduction when water-saving technologies were 

implemented. In both cases, after demand minimization, local resources were sufficient to 

cover the demand by recycling grey water and harvesting rain water. These findings confirm 

that a multiple-measure implementation according to the three different strategies is needed to 

achieve sustainable urban water systems. UHA helps to structure large influences of urban 

context on water and other resource cycles as an aid to urban planners and water managers in 

designing sustainable urban areas. 

 

 

 

 

 

 

 

 

 
 

 

This chapter is accepted for publication in a slightly modified version as:  

Agudelo-Vera, C.M.; Mels, A.R.; Keesman, K.J. Rijnaarts. H.H.M. The Urban Harvest Approach as an aid for 

Sustainable Urban Resource Planning. Journal of Industrial ecology. 
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4 Harvesting urban resources towards more resilient cities 

4.1 Introduction  

The urban system, as the world’s most significant user of resources, currently housing 

more than 50% of the world population, plays a key role towards sustainable development 

(ESA-UN 2007; McDonald and Patterson 2007; Xu et al. 2010). To guarantee global 

sustainability, cities must be planned to foster strategic resource management to integrate 

sustainable resource management and urban spatial planning (Kennedy et al. 2011; Rees 

1999). Current pressures – accelerating urbanization, limiting availability of resources and 

changing climate – force us and provide us opportunities to re-think and redesign urban 

systems towards closed cycles, minimization of impacts and strategic management of 

resources (Agudelo et al. 2009). We face the challenge to develop a socio-technological 

planning and design methodology to identify appropriate solutions and to resolve trade-

offs across various spatial and temporal dimensions (Guest et al. 2009). 

 

4.1.1 Urban Metabolism 

To design sustainable urban resource systems, it is imperative to understand how urban 

metabolic systems function (Decker et al. 2000; Girardet 2003). In the last decades, 

several urban metabolism studies
8
 have provided valuable information about the resource 

flows through and in cities (Kennedy et al., 2011; WWF 2006). As a consequence, 

abundant information regarding urban inputs, outputs, and transformations of materials 

and energy is available (Decker et al. 2000). However, the available information is diffuse 

and methods for quantification are not standardized (Hashimoto and Moriguchi 2004). 

Therefore, conceptual frameworks and models are needed to take up information on 

quality and quantity of urban energy, water and materials flows. Thus, knowledge about 

urban resource system functioning can be structured, built, consolidated, and made 

available in an intelligent way for further use and decision making (Decker et al. 2000; 

Cole 2004). 

 

Current urban metabolism – massive and global – is characterized by linear flows and 

missing linkages among urban and peri-urban production and consumption functions. 

Urban metabolism differs from metabolism of natural ecosystems in different aspects. In 

natural ecosystems, processes are generally cyclic and subsidized by sustainable inputs, 

such as solar energy fluxes and fluxes from organic and biogeochemical storage systems. 

Additionally, wastes are bio (chemically) transformable and feed other parts of the system. 

Therefore systems conserve mass (Kennedy et al., 2011; Kibert et al. 2000). Synergies and 

                                                 
8
 Within the urban metabolism, two different types of resource flows are identified: direct and indirect flows. 

The direct flows are the direct demand of consumers, and the indirect flows are the resources embedded in 
the products. For instance, water is a single resource that is directly fit for consumption. But water production 
implies the use of energy and chemicals used to abstract, produce and transport. All these hidden resources 
are so called indirect flows. 
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production–consumption relationships between organisms are crucial to keep a system in 

equilibrium. This promotes resilience across all scales and promotes efficient use of 

materials by developing cooperative webs of interactions between members of complex 

communities (Kibert et al. 2000). Therefore, towards a sustainable urban system, 

analogies with natural systems should be explored and exploited. 

 

Inspired by natural ecosystems metabolism, urban systems have to be re-designed to re-

use and recycle resource outputs, i.e. wastes. Ideal metabolic systems are based on closed 

loops. In reality, however, according to thermodynamic laws, each metabolic conversion 

has inherent losses, and it requires energy to mitigate these losses. Hence, full 

sustainability can never be achieved for products, without using an extra-global source of 

energy. Fortunately, we have constant inputs of energy from the sun, and, in principle, we 

can empower the used water, nutrients and other materials towards an upgraded quality 

and a renewed functioning in the urban cycles. Like natural ecosystems, we have to learn 

to efficiently and sustainably use this available energy and resources to arrive at (peri-) 

urban systems in equilibrium.  

 

Closing resource cycles is not a new concept. Reports from the nineteenth century already 

described how materials cycles for industrial processes were optimized (Desrochers 2000). 

In the last decade, closing cycles objectives have been present at different scales within 

the built environment, neighborhoods, industrial areas, cities or regions. In parallel, new 

environmental technologies and infrastructure arrangements, contributing to improved 

resource management, are being developed rapidly over the last years (Daigger 2009; 

Gikas and Tchobanoglous 2009; Wolfe 2008). Hence, this evidences the growing interest 

and increasing pressures in urban resource management. 

 

4.1.2 Urban Harvest 

Cities have, from a resource point of view, mainly been seen as resource consumers and 

waste producers. Large portions of the flows of wastewater, solid waste, demolished 

construction materials, etc. are exported out of the urban system, while others remain 

inside as urban ‘stocks’, as internal resource reservoirs (Brunner 2007). Looking at the 

urban networks some of the city outflows and stocks, often called waste, still have a 

remaining quality or a set of potentials that can be harvested and used within the city 

itself. Therefore, cities can be seen as producers of secondary resources which are 

material, water and energy outputs from human activities. Preliminary results have shown 

the large potential of cities as providers of their own resources by harvesting local 

secondary and renewable resources (see Chapter 3). 

 

Current urban resource supply is mainly focused on quantitative provision of resources of 

a single quality. Analyzing the current urban water or energy systems, it becomes apparent 
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that different activities require different resource qualities. However, our current urban 

infrastructure grids tend to provide only one single (generally high) quality, for example 

drinking water or electricity. Therefore, some of the activities will receive a higher quality 

than needed – a quality surplus. After a given activity is performed, the quality of the 

resource deteriorates and a remaining quality is left, the so called, un-used quality. In a 

linear open system with emissions, these remaining qualities will be wasted. In a 

cascading approach, a resource with lower quality – urban outflows and stocks – can still 

be harvested and used as input for a certain activity with a lower quality demand, as 

discussed in Chapter 3. To use resources efficiently, quality optimization is also needed 

for a fit-for-purpose supply. Currently, many societies are shifting from removal 

technologies to consumption reduction and recovery techniques, minimizing use and 

valorizing the resources’ value (Daigger 2009; Guest et al. 2009; Jegatheesan et al. 2009). 

In addition integration of technical solutions and understanding of the urban metabolism is 

needed to deal with the complexity of sustainable urban resource management (Pahl-

Wostl 2007).  

 

Sustainable urban planning should aim for cities with a low resource use impact by 

integrating resource management and urban planning. The Urban Harvest Approach 

(UHA), as presented in this chapter and based on the urban metabolism concept, aims for 

improved resource management by closing urban cycles, applying innovative technologies 

and harvesting urban resources. UHA works on the principle that urban systems can 

minimize their dependency on external resources by strategic management of resources: 

minimizing demand, minimizing outputs and multi-sourcing, which can be characterized 

by the Urban Metabolic Profile (UMP). UHA studies primary and secondary resources 

available within the built environment, and does consider outflows as available secondary 

resources ready to be harvested and be reused in the urban environment and peri-urban 

surroundings. This approach can be developed at different scales: a house, a 

neighborhood, a city quarter, a city, or a city and its surroundings. This chapter 

demonstrates the UHA at the smallest scale “a house” for the resource “water”. The 

applicability to two free standing houses in two different contexts – in the Netherlands and 

in Australia – is shown and measures are tested that yield improvements in the urban 

metabolic profile. 

4.2 Method  

The UHA has been developed to systematically investigate the available options for 

improved urban resource management. UHA integrates closing urban resource cycles by 

applying innovative technologies and harvesting local and renewable urban resources. In 

this approach, waste flows are not only key indicators of systems efficiency, but may also 

provide insights into potential infrastructural linkages for a more efficient urban 

metabolism. Indirect resource flows such as embedded energy or water footprints of 
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products (Hoekstra and Chapagain 2007) are not taken into account in the UHA. Those 

indirect flows can be addressed by improving product design, for example using cradle to 

cradle concepts (Braungart et al. 2007), which is out of the scope of this approach. 

 

In fact, UHA always starts with a baseline assessment, followed by implementation of 

three strategies. The first strategy is to minimize the demand. The other two strategies 

evaluate the potential to harvest resources within urban areas. The second strategy is to 

reduce outputs by cascading, recycling and recovery. The third strategy is to multi-source 

the remaining demand by using renewable and local sources. In the following, these 

strategies will be further explained. 

 

4.2.1 Baseline assessment 

The starting point of the UHA is a baseline study by preparing a mass flow analysis of the 

existing situation. The aim is to identify all the inputs and outputs of a defined urban 

system and to understand the current urban metabolism. The baseline study covers both, a 

demand inventory and an output inventory. The demand inventory quantifies the resource 

demand along with a hierarchical identification of the qualities required for the various 

uses. The output inventory describes the outgoing resource flows, their quantity and 

quality.  

 

4.2.2 Demand minimization  

Demand minimization is a first key activity in the UHA. Current urban consumption is 

generally characterized by a massive demand of resources and the production of huge 

outputs and stocks. As such, the UHA follows sustainable approaches as developed in 

solid waste management, which promotes minimization as the first step in the waste 

management hierarchy. 

 

Demand minimization can be achieved by stimulating changes in human behavior or by 

technology implementation. The UHA focuses on technology implementation to reduce 

resource demands. It starts at the smallest scale possible, preferably the building level. 

After the base line assessment, UHA aims to select the main activities, which consume 

more than 10% of the current demand. Subsequently, technologies are identified that 

contribute to reduce those resource demands.  

 

4.2.3 Output minimization  

The second step in the UHA aims at minimizing outputs. This can be achieved by three 

strategies, recovery, cascading or recycling of the outputs. Cascading and recycling 

strategies refer to single flow analysis, without and with quality upgrading respectively. 

Meanwhile recovering refers to multiple flow analysis. 
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Cascading 

Cascading refers to direct reuse of outputs for a similar purpose, however with a reduced 

quality. In cascading, a resource is being reintroduced in the system at lower quality. By 

cascading, the remaining quality of this resource is used. The baseline provides an 

overview of the outputs and their remaining qualities. These remaining qualities can be 

harvested and matched with the urban activities by using low quality flows for low quality 

demand activities. Examples of cascading are use of low polluted water for non-potable 

activities, or using waste heat of industries to heat households. 

Recycling 

Recycling refers to reuse of a particular resource flow after quality upgrading, which 

generally costs energy. Thus, higher quality resources are being reintroduced upstream 

into the cyclic system. To assess the feasibility for recycling, the baseline study should 

include the same parameters as for cascading. In addition, appropriate technologies for 

recycling have to be selected based on the local context. Within the UHA, preference is 

given to multi-purpose technologies that simultaneously recover other resources. 

Recycling is performed to produce the same or a similar product. Examples of recycling 

are grey water reclamation or using a heat pump to increase the temperature of a flow. 

Recovery 

Recovery refers to the extraction of useful substances from waste flows. Because there is a 

remaining quality, the recovered resource can be reintroduced into the system. Within the 

UHA, recovery refers to extraction of “products” that belong to other flows, for instance 

recovery of nutrients or heat from wastewater flows or recovery of nutrients from a bio-

digester used for biogas production. 

 

4.2.4 Multi-sourcing 

 

After demand and output minimization, there may still be a remaining demand. Within the 

UHA, this will be supplied by using local and renewable sources, such as solar energy and 

rain water. Local resources have the advantage of minimizing transport costs, and 

minimizing external dependence.  

 

The resources harvested by cascading, recycling, recovering and multi-sourcing can be 

reintroduced in the same system or be exported to another system. If re-introduced in the 

same system, they further reduce external inputs. The feasibility to use harvested flows 

does not only require data on quantity and quality, but also on temporal availability, 

spatial implications, impacts on other resource flows and people’s acceptance. To quantify 

the effect of each strategy on the urban metabolism, the so called Urban Metabolic Profile 

(UMP) is introduced. 
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4.2.5 Urban Metabolic Profile 

Current urban systems have two different impacts on the environment. The first is due to 

the extraction of resources, and the second is due to the release of wastes. The urban 

metabolic profile (UMP) provides information regarding the demand of resources and 

production of wastes or secondary resources and as such can be used to evaluate the 

possible combined strategies within UHA at different levels. Fig. 1a shows the variables 

that characterize the UMP. These variables are valid for the different spatial scales: 

building unit, block, neighborhood and city. 

 

In the following, each of the variables is assumed to be larger or equal to zero. Although 

specific reference is made to building unit the same definitions and variables are 

applicable at all mentioned urban scales. As shown in Fig. 1a, a building unit has external, 

usually high quality inputs (Ei) that are related to the Demand (D), which depends on 

occupancy, life style, among other determinants. Cascade (C) refers to resources that are 

directly reused within the building unit, and Recycle (R) is the flow of resources that is 

treated and reintroduced in the building unit. Multisource (M) refers to local sources used 

in the building unit. Storage (S) is the amount of resources that is stored in the building 

unit. Waste exported (We) refers to the wastes produced by the building unit and exported. 

It is important to point out that, within the UHA Total input (Ti), Ti= Ei+C+R+M, can be 

larger than D due to harvesting of local resources and in that case there are possibilities of 

exporting resources. Exported resources (Er) refers to secondary resources that are 

harvested in the building unit and exported. The UHA aims to minimize D, Ei and We and 

maximize C, R and M at building, block and neighborhood level. UMP is done per flow 

(e.g. water, energy, or a given material). Therefore, recovery is not included in the UMP, 

because it refers to other flows. Recovery will be represented as multi-sourcing in the 

metabolic profile of the recovered flow.  

 
Figure 1 a) variables of the Urban Metabolic Profile (UMP) in a building unit; b) Visual 

representation of the UMP dashboard and the four indices: DMI, WOI, SSI and REI. 
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Based on the general mass balance: Storage (s) = Total inputs (Ti) – Total outputs (To) – 

Consumption (Co), at a specific instant in time, the mass balance equation can be written 

as: 

 
  

  
( )    ( )    ( )    ( )       (1) 

 

Consumption (Co) is defined as the process of being consumed, converted to one or more 

different components, or diminished by e.g. decay. Therefore, Co is a fraction of the 

demand that is not available to be harvested.  

 

For the system in Fig. 1a, without explicit reference to the time argument, Ti = Ei + C + R 

+ M and To = C + R + We + Er. Consequently, 

 
  

  
 (        )  (         )        (2) 

 

Defining in (2), the resources harvested Rh as, 

 

MRCRh           (3) 

For a system in equilibrium, thus with dS/dt = 0, total inputs are equal to the sum of total 

outputs and consumption, so that Ei + M = We + Er + Co and thus: 

 

CoErMEiWe          (4) 

 

Since Ti can be larger than D, Er can be expressed as: 

DTiEr            (5) 

 

with Er>0. Then from equation (2), with ds/dt=0, we also obtain that 

CoRCDWe           (6) 

 

and thus, replacing Eq. 6 in Eq. 4:  

ErMRCDEi          (7) 

 

To relate these variables and to evaluate the different measures, the UMP per flow (water, 

nutrients of energy) is calculated. The UMP is described in terms of the demand (D), the 

waste exported (We) and the resources harvested (Rh). Hence, in this chapter, the urban 

metabolism of a given flow is expressed by the four indices: Demand Minimization Index 

(DMI), Waste Output Index (WOI), Self-Sufficiency Index (SSI), Resource Export Index 

(REI) and which are given by: 

http://www.definitions.net/definition/process
http://www.definitions.net/definition/being
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Fig. 1b shows the UMP dashboard. In the UMP dashboard, the demand (D) is projected on 

the horizontal axis. According to equation (9), waste exported (We) has a negative value 

and is represented in the vertical axis (down) and from equation (10) resources harvested 

(Rh) has a positive value and is represented in the vertical axis (up). Notice from Fig. 1b 

that the DMI is the relative change in the horizontal axis, which represents the change in 

the demand taking as reference the conventional demand (D0). D0 represents the demand 

when conventional technologies are implemented, therefore D0 may vary according the 

local context. WOI is the slope between the origin (0, 0) and the point given by demand 

and waste exported (D, We) and SSI is the slope between the origin (0,0) and the point 

given by demand and resources harvested (D, Rh-Er). REI is the ratio of the Exported 

resources (Er) and the demand (D). 

 

Notice from the definitions of WOI and SSI that for a given index and a given demand 

multiple solutions exist, as in each case we have one equation with at least two unknowns. 

For example, if WOI= –1, then from equation (9) it can be derived that Ei=D for 

C=R=M=Er=Co=0. This case represents the conventional “linear metabolism”. This linear 

metabolism can be also obtained, for M=D if Ei=C=R=Er=Co=0; or for Ei+M=D if 

C=R=Er=Co=0. Moreover, WOI=-1 can be obtained, when Ei+M-Er=D, which holds for 

Co=C=R=0. If, furthermore, Er>0: Ei+M>D, which indicates that there are flows passing 

through without being used in the system and that these flows are being exported as 

secondary resources. One of the aims of UHA is to minimize Ei, so that a direct feed-

through from Ei to Er will be avoided. Hence, if Ei > 0 in order to meet the demand D: Er 

= 0. From the definition of Er, so that equation (6) holds, it follows that WOI ≥ -1, that is 

We≤D. In addition, WOI=0 when D=C+R and Co=0 or when C+R=0: D=Co. Notice that 

large values of Co imply lower amount of resource available to be harvested (C and R). 
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Recall that UHA aims to maximize C and R, and to minimize D including Co, so that 

lower values of Co will be preferred. Generalizing, if C=R=Co=0, then WOI = -1; and if 

C>0 or R>0 or Co>0, then WOI > -1. A similar analysis can be applied to equation (10). If, 

for instance, SSI=1 the area is self-sufficient, that is D=Rh if Ei=Er, which may be equal to 

zero. If Ei=Er > 0, it implies, as shown above for WOI, that Ei is passing through without 

being used in the system. If Rh>D, Er=Rh-D and hence, then REI>0, and thus the area can 

export resources. Recalling that the UHA aims to minimize D, Ei and We and maximize C, 

R and M, this provides restrictions to these multiple solutions. Fig. 2 shows the UMPs, 

following the hierarchy of measures proposed by the UHA. It is shown, how different 

strategies influence different indices of the UMP. 

 

To summarize, UHA integrates three strategies: demand minimization, output 

minimization and multi-sourcing; and four levels: building, block, neighborhood and city. 

To evaluate a specific resource management, the UMP has been introduced. The UMP 

consists of DMI, SSI, WOI and REI. UMP facilitates comparison among the different 

urban flows. Moreover, UHA is applicable to different flows as water, energy and 

nutrients within the urban system. 

 

4.2.6 Linkages with planning 

UHA provides guidelines for improved urban resource management by implementation of 

(innovative) environmental technologies, and integration with urban planning. Potential 

harvest and restrictions vary according to the scale. Moreover, different measures can be 

adopted to optimize urban cycles for different spatial and temporal scales (Guest et al. 

2009; Korhonen 2007; Pahl-Wostl 2007). It is important to evaluate different scales to 

achieve maximum benefits, because each resource has a different optimal scale for 

management. Therefore, when addressing different scales simultaneously, the need for 

coordination and thus for planning becomes evident (Pahl-Wostl 2007). 

 

Fig. 3 summarizes the proposed approach to optimize the potential for closing cycles and 

shows the linkages among different urban functions. The UHA starts at the building unit 

because this is where a major part of the urban resource consumption actually takes place. 

At this level, human choices for resource consumption and disposal are made. The 

importance of focus on the building level has been acknowledged over the last decades, 

for example by the introduction of the energy efficiency label and the Leadership in 

Energy and Environmental Design (LEED) certification (Ding 2008).  
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Figure 2 UHA step by step and correspondent changes in the Urban Metabolic Profile (UMP) 

under steady state conditions. 
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Lifetime of assets is an important element of selecting measures for UHA. Typically, 

physical structures of cities have different lifetimes. For example buildings, roads and 

sewers wear out in 50-100 years (Kibert et al. 2000), while technical devices within 

buildings may last for 5-20 years. Thus, in-house and on-site technologies are quicker to 

implement and replace than technologies at larger scale. Moreover, because fewer 

stakeholders are involved in selecting these systems, their implementation can be done at a 

relative short time horizon. Meanwhile, modifications of resource systems at 

neighborhood or central urban level require longer time.  

 
Figure 3 Bottom-up approach proposed by the Urban Harvest Approach to optimize the urban 

metabolism, starting at the lowest scale possible (building) and a subsequent stepwise scaling up 

to block, neighborhood and city level. 

4.3 Applicability of the UHA for urban water flows at building level 

The UHA provides general rules for resource management within the urban environment. 

Since different urban flows have different characteristics and dynamics, in particular the 

applicability for water flows at the building level will be evaluated in the next subsections. 

 

4.3.1 Residential urban water  

When comparing water demand versus actual water demand at the building level, it 

becomes clear that only a small percentage of (high quality) water is used for drinking and 

cooking. The rest is used for other purposes, mainly for personal hygiene and cleaning. 

The latter uses require a lower quality than water that is fit for human consumption. 
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During the various uses, water quality is definitely reduced by each utilization step. As a 

final output, water with lower quality – wastewater – is produced and discharged. 

 

In the following, the consumption term is neglected (Co=0), as mainly the water quality 

deteriorates. After the assessment of the baseline, the UHA starts with demand 

minimization at building level addressing the major uses that consume more than 10% of 

the total demand. Available technologies for water demand reduction include: water 

saving shower heads, water saving taps, low water demand toilets. As a second step, water 

cascading and recycling are considered to reduce outputs. Water can be cascaded directly 

to fulfill activities with lower quality demand. For instance, low polluted grey water can 

be used for toilet flushing. However, the acceptance and technical applicability of this 

practice in developed countries is currently low. Regarding recycling, the state of the art 

technologies allow us to treat any quality of residential waste water to a desired level, 

allowing on-site recycling for different non-potable activities (Li et al. 2009). However, 

treatment implies the use of chemicals, energy and/or space (Makropoulos and Butler, 

2010). Recovery of other products from the water flows, such as nutrients or heat, is also 

feasible, but this does not affect the volume of the water flows at building level. The third 

step is to fulfill the remaining demand by multi-sourcing. In general, there are various 

water sources in the urban environment, as for instance ground water, surface water and 

rain water. The preferred source is determined by the local context. The contribution to the 

total demand should be assessed based on availability, quality, storage and transport 

implications and the influence on the other urban flows. 

 

4.3.2 Applicability of the UHA for urban water flows at building level for a case in the 

Netherlands and a case in Australia: results and discussion 

 

This subsection describes the UHA for water for a standard free standing house in the 

Netherlands and in Australia.  

 

Baseline assessment 

Based on the average information for the Netherlands and for Australia (Melbourne), the 

conventional demand
9
 in liters per person per day (l p

-1
d

-1
) and m³ per household per year 

(m³hh
-1

yr
-1

) was estimated. Subsequently, the activities with largest demand were 

identified. From the baseline, as presented in Table 1, we found similar indoor water 

demand patterns for the two cases. In both cases, the activities with largest water demand 

were shower, toilet flushing and laundry machine.  

                                                 
9
 For the Netherlands, the conventional demand was calculated assuming the less efficient technologies 

installed at home from the survey of Foekema et al, 2008. For Melbourne, the conventional demand was 
assumed as the average of the year 2004.  A survey from 2007 was available; however, due to temporal 
water use restrictions, water demand was low and there is no guaranty that when the restriction is over, the 
low demand is maintained. 
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Demand minimization  

In both cases – water use for shower, toilet flushing and laundry machine – each accounts 

for more than 10% of the total demand. Table 2 shows the available technologies for water 

demand reduction. These technologies have different degrees of water use efficiency.  

 

Table 1 Conventional (Con) and Minimized (Min) water demand in liters per person 
per day (l p-1d-1) and in m³ per household per year (m³ hh-1 y-1) 

Sources: Foekema et al. 2008 and Roberts 2005.  
Recalculated to estimate conventional demand as follows:  
a 

Average duration of shower: 7.9 min (Foekema et al. 2008); demand of conventional douche: 10.1 l/min 
(millieucentraal 2010), frequency 0.8 times per day (Foekema et al. 2008). 
b
 Frequency of toilet use: 6.27 times per day (Foekema et al. 2008). Conventional toilet consumes in average 

9 l per flush. (Kujawa-Roeleveld and Zeeman 2006). 
c
 Conventional laundry 55.4 l/wash, frequency 0.28 times/day (Foekema et al. 2008). 

d 
Average duration of shower: 7.1 min, frequency of showers per day: 0.76 , flow rate: 9.1 l/min, (Roberts 

2005) 
e
 Recalculated: frequency of toilet use: 4.2  times per day. Conventional toilet consumes in average 7.23 l per 

flush (Roberts 2005). 
f
 Frequency 0.28 times/day (Roberts 2005). 

g
 specifications for the different sinks were not available. This value includes kitchen and bathroom sinks.  

 

To provide an overview of the maximum saving potential, vacuum toilets with a demand 

of 0.8 l per flush, a shower with a demand of 6 l/min and a washing machine with a 

demand of 9 l/kg load were considered. For both cases 4 kg/cycle were assumed (Pakula 

and Stamminger 2009). Using the most efficient appliances, the demand minimization was 

48% for the Netherlands – from D0=135 m³hh
-1

y
-1

 to D=70.1 m³hh
-1

y
-1

 – and 49% for 

Australia – from D0=150.9 m³hh
-1

y
-1

 to D=77.7 m³hh
-1

y
-1

 as shown in Table 1. 

 

 

 

 Netherlands (2007) 

hh size: 2.3 people 

Australia – Melbourne (2004) 

hh size 2.7 people 

Activity Demand  

(l p
-1

d
-1

) 

hh. Demand  

(m³ hh
-1 

yr
-1

) 

% of total Demand 

 (l p
-1

d
-1

) 

hh. Demand 

(m³ hh
-1 

yr
-1

) 

% of total 

Con Min Con Min Con Min Con Min Con Min Con Min 

Shower 63.8
a
 37.9 53.6 31.8 40 45 49.1

 d
 32.4 48.4 31.9 32 41 

Toilet flushing 56.4
b
 5.0 47.4 4.2 35 6 30.4

 e
 3.4 30.3 3.3 20 4 

Laundry 

machine 
15.5

 c
 15.5 13.0 13.0 10 19 40.4

 f
 10.2 39.8 10 26 13 

Dish washing, 

machine 

3 2.5 2 4 2.7 2.7 2 3 

Bath 2.5 2.1 2 3 3.2 3.2 2 4 

Kitchen sink 8.8 7.4 5 11       

Bathroom sink 5.3 4.4 3 6       

Dish washing, 

hand 

3.8 3.2 2 5       

Laundry, hand 1.7 1.4 1 2       

Sinks       26.6
g
 26.6 18 34 

Total  160.9 83.5 135 70.1 100 100 152.8 78.8 150.9 77.7 100 100 
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Output Minimization 

Output minimization can be achieved by cascading or recycling. Since, cascading does not 

include any treatment, it is restricted to a few activities. Meanwhile recycling implies 

treatment; therefore, it needs energy and materials. In urban areas, feasibility of the 

measures strongly depends on user acceptance, water usage patterns and availability of 

space. Cascading can for instance be done from shower to toilet. However, after demand 

minimization, toilet flush water demand is only a small percentage of the total demand. 

Consequently, the improvement in the total water balance is not significant, around 5%.  

 

Table 2 Minimization technologies and demands  

Sources: Kujawa-Roeleveld and Zeeman 2006; millieucentraal 2010; AS/NZS 6400:2005, Water efficient 
products – Rating and Labelling, Australian and New Zealand Standard. 
a
 Average of four short and one long flush 

 

Technologies for domestic water recycling were reviewed by Li et al. (2009). Treatment 

will depend mainly on Chemical Oxygen Demand (COD) concentrations: Low strength 

grey water (COD<300 mg/l) e.g. shower water; and high strength grey water 

(COD>300mg/l) e.g. mixed grey water, Table 3.  For our cases, the technology selected 

will affect the Rh, We and therefore the Ei, WOI, SSI and REI. In the case of recycling low 

strength grey water with minimized demand, water from the shower is used for toilet flush 

and laundry machine. For the Netherlands, 31.8 m³hh
-1

y
-1

 from shower is available to 

supply 17.2 m³hh
-1

y
-1

. For Australia this is 31.9 m³hh
-1

y
-1

 and 13.6 m³hh
-1

y
-1

 respectively, 

see table 1. In the case of recycling high strength grey water, for example, water from 

shower and laundry, this can be fully recycled for the same purposes, creating a closed 

loop. This will lead to save 44.8 m³hh
-1

y
-1

 of drinking water in the Dutch case and 41.9 

m³hh
-1

y
-1

 in the Australian case. 

 

 

Appliance Units Rating 

  Rating (Dutch labeling for shower heads) 

  B - D S A Z  

Shower l/min 11.5 – 21.9 8.7-11 6.9 – 8.7 4.2-6.9  

  Toilet type 

  Conventional Low flush 
Two buttons 

Urine 
diverting 

Vacuum  

Toilet l/flush
 
  6 to 12 4 large flush 

2 small flush 
4 to 6 large 

flush 
0.2 small 

flush 

0.8 to 2  

   
Rating (Australian labeling WELS) 

  A AA AAA AAAA AAAAA 

Shower l/min >12 to 15 >9 to 12 >7.5 to 9 >6 to 7.5 <6 

Toilet l/flush
 a
 >5.5 to 6.5 >4 to 5.5 >3.5 to 4 >2.5 to 3.5 <2.5 

       
Washing 
machine 

l/kg 
load 

>28 to 34 >22 to 28 >15 to 22 >9 to 15 <9 
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Multi-sourcing 

For both cases, we investigated the potential of harvesting rainwater, to supply the 

remaining demand. In the Netherlands, the average yearly rainfall is 884 mm and in 

Melbourne 595 mm. For an average house of 60 m² roof area the maximum potential 

production of rainwater per year is for the Netherlands 53 m³hh
-1

y
-1

 and for Australia 36 

m³hh
-1

y
-1

. On the basis of these and above mentioned data (Table 1), the UMP can be 

made (see Fig. 4). Both profiles show that demand minimization (step 1) causes a change 

in the DMI (equation 8) and between classes. Recycling of high strength grey water (step 

2) improves WOI (Eq. 9). Note that multi-sourcing (step 3) will improve the SSI because 

the self-production is increased (Eq. 9); however, the WOI will remain the same (equation 

8), because the output is not minimized. If all three strategies are applied, self-sufficiency 

can be achieved in both cases. Furthermore, in the Dutch case, there are even possibilities 

to export rain water (REI>0).  

 

The UHA presented here is a structured approach to identify the influence of different 

measures for reduction of demand and waste production, and for multi-sourcing within the 

built environment. Furthermore, the proposed methodology to assess UMP (DMI, SSI, 

WOI and REI) provides key information on the urban metabolism. 

 

Looking at the results of the cases studied, SSI=1 implies that 100% of the total water 

demand can be supplied by local means by implementing the strategies described within 

the UHA. The results illustrated that we can see urban areas as reservoirs of resources that 

can be harvested and used to supply urban demands. Therefore, shortcoming of the 

existing resource management becomes evident. By analyzing the different UMP, it also 

becomes clear that implementation of single measures is not enough. In fact, a series of 

measures should be combined to achieve full self-sufficiency (SSI=1), in the hierarchy 

proposed in this chapter, thus first demand minimization, second output minimization and 

finally multi-sourcing. 

 

Table 3 Proposed technologies for recycling of grey water for non-potable uses 
Grey water type Storage + pretreatment Treatment Filtration Disinfection 

Low strength Sedimentation/screening Chemical: 

Coagulation, ion exchange 

Membrane - 

Low strength Sedimentation/screening Chemical: 

Coagulation, ion exchange 

Sand Disinfection 

Medium and high 

strength 

Sedimentation/screening Biological (aerobic) 

RBC, SBR, CW
a
 

Sand Disinfection 

Medium and high 

strength 

Sedimentation/screening Biological (aerobic) 

RBC, SBR, CW
a
 

Membrane - 

Medium and high 

strength 

Sedimentation/screening Membrane bioreactor 

(MBR) 

- - 

Source: Li et al. 2009 
a
RBC: Rotating biological contactor, SBR: sequencing batch reactor, CW: constructed wetland 
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Figure 4 UMPs for the Dutch and Australian case 
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Saving of water and an efficient reutilization of treated water and by-products is crucial. 

Sustainability of domestic water management could be reached through decentralization 

and separation of waste streams. Our study shows that a combination of state-of-the-art 

water saving technology, recycling and use of rain water results in a SSI = 1. Further 

optimization of the urban water cycle at building level can be achieved by increasing 

demand minimization. To increase demand minimization, implementation of water saving 

taps and dishwashers that are more efficient are needed. Moreover, if separation of waste 

streams is implemented, additional benefits can be reached. For instance, by separating 

urine and fecal matter, spread of pollutants can be prevented and nutrients can be 

recovered. Furthermore, if anaerobic digestion is used energy recovery is feasible as well 

(de Graaff 2010). Decentralization may also enhance the involvement of users in the 

prevention of pollution and in the proper functioning of the system. Moreover, regarding 

multi-source, new sources are being explored, for example high quality water generation 

from air.  

4.4 Conclusion 

The described approach relates urban characteristics to water harvesting potentials, thus 

aiming to foster a re-thinking of our current urban water systems. UHA can be used by 

urban planners and decision makers to understand the urban system and the internal flows 

within the same system and provide smart, customized solutions for existing and new 

urban areas. In aiming for sustainable development, it is evident that new approaches in 

urban resource management, such as Urban Harvest, novel city design and planning 

methods, need to be integrated.  

 

Implementation of technology can have also drawbacks such as the rebound effect that is 

out of the scope of this chapter. Moreover, if technology implementation is combined with 

changes in user behavior, urban self-sustainability can be achieved.  

 

The main shortcoming of current resource management in cities is to overlook self-

producing potentials. The UHA proposed in this chapter, highlight that potentials are 

linked to local context and urban typology. Therefore, urban planning can contribute to 

facilitate linkages and synergies for harvesting of local resources towards sustainable 

cities. Further developing and testing for different urban typologies and different local 

context are important steps for future research. Further investigation on the dynamics of 

the flows is also required to evaluate storage implications and provide guidelines for 

design and operation. In addition to the incorporation of flow dynamics, for a flexible 

implementation at for instance block or neighborhood level, on-line estimates of flows and 

device parameters, preferably from a limited number of sensors, are needed, as well (see, 

for instance, Keesman (2011) for an overview of estimation techniques). 
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Chapter 5 
 

Evaluating the potential of improving 
the residential water balance at 
building scale 
 

 

Abstract 

 

Earlier results indicated that, for an average household, self-sufficiency in water supply 

can be achieved by following the Urban harvest Approach (UHA), in a combination of 

demand minimization, cascading and multi-sourcing. To achieve these results, it was 

assumed that all available local resources can be harvested. In reality, however, temporal, 

spatial and location-bound factors pose limitations to this harvest and, thus, to self-

sufficiency. This chapter investigates potential spatial and temporal limitations to harvest 

local water resources at building level for the Netherlands, focusing on indoor demand. 

Two building types were studied, a freestanding house (one four-people household) and a 

mid-rise apartment flat (28 two-person households). To be able to model yearly water 

balances, daily patterns considering household occupancy and presence of water using 

appliances were defined per building type. A number of scenarios was defined including 

demand minimization, and light grey water (LGW) recycling potentially combined with 

rainwater harvesting (multi-sourcing) to cater for toilet and laundry water, second quality 

water (DQ2). Results showed that water saving devices may reduce 35% of the 

conventional demand. Recycling of LGW can supply up to 36% of the conventional 

demand (83% - 100% of DQ2) or up to 20% of the minimized demand (100% of DQ2). For 

conventional demand, rainwater harvest may supply approximately 14% of the demand in 

case of the apartment flat and 18% in case of the freestanding house, respectively. To 

harvest these potentials, different system specifications, related to the household type, are 

required. Two constraints to recycle and multi-source were identified, namely i) to meet 

the demand given only by the grey water production and available rainfall; and ii) to 

harvest the potential given by the temporal pattern, and storage and treatment capacities. 

 

 

 

 

 
 

 

This chapter has been submitted for publication in a slightly modified version as:  

Agudelo-Vera, C.M.; Keesman, K.J., Mels, A.R. and Rijnaarts. H.H.M. Evaluating the potential of improving 
the residential water cycle at building level.  
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5 Harvesting urban resources towards more resilient cities 

5.1 Introduction 

In the transition towards more sustainable urban water systems, increasing attention is 

given to self-sufficiency (Rygaard et al., 2011), and to a new planning and design paradigm 

to recover resources from wastewater (Guest et al., 2009). This new paradigm considers the 

role of decentralized systems to address challenges faced by climate variability, population 

growth and urbanization (Makropoulos and Butler, 2010; Sharma et al., 2010) as well as 

structural considerations that involve the form of urban development, patterns of land uses, 

types of land cover in the city, and the effect of lifestyles on water use (Guhathakurta and 

Gober, 2010). 

 

Preliminary results for an average house in the Netherlands and Australia have shown that 

at household level, self-sufficiency can be achieved by following the Urban Harvest 

Approach (UHA): i.e. (i) minimizing demand; (ii) minimizing output; and (iii) multi-

sourcing. These results are valid for an average household, assuming that all the available 

local resources can be harvested. In reality, there are limitations to harvest all the available 

local resources. The main limitations are spatial variations depending on building typology 

(e.g. single houses versus apartment blocks); seasonal and location-bound variations (e.g. 

yearly rain patterns, depending on locations) and temporal variations (demand and supply 

patterns that fluctuate through the day – day/night, within the week –working 

days/weekends, and within the year – seasons). Additionally, low acceptance of alternative 

sources for potable purposes also limits the potential for self-sufficiency. 

 

This chapter focuses on the indoor water balance at building level and investigates the 

spatial and temporal limitations to harvest local water resources in the Netherlands. In this 

study, two building types were selected: a freestanding house and a mid-rise apartment flat. 

Yearly water balances were modeled based on daily time steps using different demand and 

supply patterns. Four demand patterns are defined at household level based on occupancy 

and the presence of water appliances according the building type. An additional pattern is 

evaluated for a flat to consider the effect of aggregating patterns. Different scenarios to 

improve the building water cycle were studied, following the hierarchy of measures 

proposed within the UHA. At first, this chapter introduces variations of the demand pattern 

related to the building type. Based on those variations, the different UHA measures 

(demand minimization, output minimization and multi-sourcing) are investigated (see Fig. 

1). An important objective is to analyze the storage capacity required to match in-house 

demand – supply (grey water recycling) patterns and local water resources (precipitation) 

patterns. By investigating the influence of the building type on the variations of the supply 

and demand patterns and on the efficiency of the different UHA measures, customized 

solutions for design can be given for defined urban areas. Three scales are studied i) the 

subsystem level – collection and treatment of recycled water and harvested rain water; ii) 
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the household level – including all indoor water flows – with a focus on the influence of 

occupancy on the water demand pattern, and iii) the building unit with a specific focus on 

the effect of aggregation of patterns on water balances. Notice that (i) the subsystem can be 

associated with (ii) the household level or with (iii) the building unit level.  
 

 
 

Figure 1 Variables influencing the water cycle at building level. In grey the main variables studied in this 

chapter: building type and demand pattern and rainwater harvesting; relationship with the Urban Harvest 

strategies; and the three study scales (i) subsystem, (ii) household and (iii) building unit level  

5.2 Methodology  

5.2.1 Urban Harvest Approach 

 

Urban harvest steps   

The Urban Harvest Approach (UHA) can be described in three steps: input minimization by 

implementation of more resource efficient technologies; output minimization by cascading 

and recycling of flows
10

; and multi-sourcing
11

 of the remaining demand by harvesting 

local-renewable resources. In this chapter, we used UHA to study the urban water balance 

                                                 
10

 Cascading refers to direct reuse of waste flows, meanwhile recycling includes quality upgrading of the flow 
before reuse. In this chapter, to secure quality standards, we will only consider recycling. Recycled grey water 
will be used to supply non-potable activities. 
11

 Although in the previous chapter, we assumed that rainwater harvesting can be treated for potables use. In 
this chapter, due to low acceptance of alternative sources for potable demand, we assume rainwater 
harvesting to supply non-potable activities. 
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at subsystem, household and building level, and to evaluate the potential for optimization. 

For this, a yearly water balance was prepared for the Netherlands, based on a survey of the 

daily residential in-house demand for the year 2010 (Foekema and van Thiel, 2011) and 

meteorological data from the weather station in Wageningen
12

. 

 

The study scenarios first consider input minimization for the largest flows (i.e. >10% of 

residential water demand). Secondly, wastewater from showering and bathing is assumed to 

be recycled to supply toilet flushing and laundry machine (Fig. 2), based on a quantitative, 

qualitative and temporal assessment (see Appendix A). Wastewater from the shower and 

bath is referred to as light grey water (LGW). LGW is the cleanest fraction of the 

residential wastewater. As a third step, rainwater harvesting is evaluated to supplement 

supply of LGW. Each of these three measures was modeled. In addition, the water balance 

for the subsystem, household and building unit was evaluated for different variables such as 

tank size, treatment capacity, inhabitants per household and roof area. 

 

Because production of LGW and rainwater harvesting are neither simultaneous nor equal in 

quantity with actual demands for toilet flushing and laundry machine, it is necessary to 

introduce storage to balance supply and demand. Additionally, to secure quality standards, 

a treatment unit is required to upgrade water quality. In this chapter (Fig. 2), two storage 

units are considered
13

:   
   , for LGW and   

    for treated LGW and rainwater, and the 

condition   
      

    was used, as a first assessment. To minimize the number of 

variables, a plug-flow reactor (  
   ) was assumed to treat the LGW. Thus, hydraulic 

residence time – RT – and volumetric treatment capacity – k – define the volume of the 

treatment unit,   
    = RT x k. 

 

As mentioned earlier, treated water from the shower and bath (dsho) is used to supply water 

for toilet flushing (dtoi) and the laundry machine (dlau) – see Fig. 2. Therefore, the recycling 

potential can be expressed as: Rpot(t)=dsho(t), and demand for second quality water is 

defined by: DQ2(t)=dtoi(t) + dlau(t).  

 

A general mass balance reads as: Storage = Total inputs (Ti) – Total outputs (To) – 

Consumption (Co). For the system in Fig. 2: Ti = EiQ1+ EiQ2 +Mpot and To = dtap+dlau+ dtoi 

+  
    +  

   . Considering Co=0 (i.e. no loss of water), and ds as the change of the volume 

stored in   
   ,   

    and   
   , at a specific instant in time, the volumetric balance equation 

can be written as: 

)]()()()()([)]()()([ &

2

&

121 tOtOtdtdtdtMtEitEi
dt

ds TSTS

toilautappotQQ 
 

(1) 

                                                 
12

 http://www.climatexchange.nl/projects/bsikme1/haarweg.htm 
13

 The storage units were assumed to be ideal and closed, thus dead storage capacity (initial tank level set to 
zero) and evaporation were excluded in modeling. 
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Defining as objective that the demand condition (D=DQ1+DQ2) is always met gives 

)()()()()( 21 tMtRtEitEitD actactQQ 
      

(2) 

 

Hence, there are two types of demand: potable (DQ1) and non-potable (DQ2). DQ1 represents 

the daily demand of potable water. Potable water is required for kitchen and bathroom taps 

(dtap) and for shower and bath (dsho), thus DQ1= dtap+dsho. Meanwhile DQ2 represents the 

demand for non-potable activities. Non-potable water can be used for toilet flushing (dtoi) 

and laundry machine (dlau), thus DQ2= dlau+dtoi. 

 

 
Figure 2 Schematic representation of the water system at household or building unit including 

subsystem for recycling LGW and harvesting rainwater, focused on indoor demand 
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The UHA focuses on technology implementation and does not consider any changes in 

human behavior. Notice from Fig. 2 that DQ1 is supplied by EiQ1, thus DQ1=EiQ1. Then, DQ1 

can only be minimized by installation of water saving technologies, the first step of the 

UHA. Note also that DQ2 is supplied by EiQ2, Ract and Mact, thus 

 

)()()()( 22 tMtRtEitD actactQQ 
       

(3) 

)()()()( 22 tMtRtDtEi actactQQ 
       

 

One of the objectives of the UHA is to minimize EiQ2. EiQ2 can be minimized by 

implementing water saving technologies (minimizing DQ2), by recycling (maximizing Ract) 

and by multi-sourcing (maximizing Mact), steps 1, 2 and 3 of the UHA. Export of resources 

is set to zero, to avoid flows passing through without being used in the system and being 

exported as secondary resources. Hence, the optimal case is when EiQ2 = 0; Ract+Mact=DQ2.  

Additionally within the UHA, waste exported should be minimized. The waste exported 

(We) of the system can be written as: 

)()()()()()( &

2

&

1 tOtOtdtdtdtWe TSTS

toilautap 
     

(4) 

 

Notice from Fig. 2 that D=DQ1+DQ2 = dtap+dlau+dtoi+dsho. Also note that Rpot = dsho and Ract 

= Rpot -   
   . Thus, We can also be defined as: 

)()()()( &

2 tOtRtDtWe TS

act         (5) 

 

Hence, to minimize We, in addition to minimizing D, the overflows   
    and   

    should 

be minimized resulting in maximized Ract and Mact, such that Ract=Rpot and Mact=Mpot, by a 

proper choice of the storage capacities   
   ,   

    and   
   . Selecting the optimal storage 

capacity involves tradeoffs, because it will directly depend on space availability and cost. 

Moreover, if the storage capacity is small, it will be most of the time full being volumetric 

effective, but leaving easily excess to overflow. If, on the other hand, the storage capacity is 

large then it will be able to capture larger yields. However, it is more difficult to be full or 

empty and then being less volumetric effective. Appendix B contains the model used for 

the subsystem. 

 

Metabolic profile  

To relate these variables and to evaluate the different measures, the so-called “metabolic 

profile” is calculated. The metabolic profile is described in terms of the demand (D), the 

waste exported (We) and the resources harvested (Rh). The metabolic profile is defined by 

four indices, i.e. Demand Minimization Index (DMI), Waste Output Index (WOI) Self- 

Sufficiency Index (SSI), and Resource Export Index (REI) as defined in Chapter 4: 
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Where, Dcon represents the demand when conventional technologies are implemented, while 

D is the actual demand. 
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In this chapter, we do not consider export of resources, therefore, Er=0; REI=0 and 
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The indices DMI, WOI and SSI can be calculated for any given period (e.g. daily, weekly or 

yearly) and, based on data availability, different time steps can be used, as well. The 

metabolic profile can be calculated for a building unit (bu), household (hh) or subsystem 

(ss), where the subsystem is defined as the collection and treatment system for grey and 

rainwater. Since the water from the tap (dtap) is not recycled, SSIbu<1, additionally, SSIss > 

SSIbu because the value of Rh is equal in both cases, but Dbu>Dss as Dbu=DQ1+DQ2=D and 

Dss=DQ2. Thus, we can see that for the same scenario the subsystem has a large SSIss, but an 

overall low SSIbu. This will depend on the ratio DQ2/D. 

 

5.2.2 Residential water demand 

Spatial variations 

Residential water demand is correlated with household size, presence of garden and type 

and number of water appliances (Fox et al., 2009). At household level, the water pattern 

shows a high short-term variation. This high short-term variation, which is due to instant 

demand, is mainly present at “peak hours” and moments in which demand is zero. This 

variation is reduced at a larger spatial scale, in which more households are considered, due 

to aggregation of different patterns. In this case, the pattern is smoothed by reduced peaks 

and usually there is a base flow demand, see table 1. Generally, subsystems (e.g. recycling 

grey water for toilet) are considered the smallest scale for evaluation. To evaluate the 

efficiency of subsystems, the effect on the complete system – in this case in the building 

unit (bu) – needs to be considered, as well. We also compared the water cycle at household 

level to understand the differences provided by number of inhabitants and water appliances. 

Objectives of evaluating at building and at subsystem level are twofold: firstly to 

demonstrate that only results at subsystem level can be incomplete and secondly to show 

the applicability of the UHA for different scales. 
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Table 1 Description of the selected building units  

 Free standing house Mid-rise apartment flat 

 

 
 

Roof area (m²) 60 640 

Occupancy 1 family – 4 people 56 people: 28 apartments x 2 people 

# of  toilets 2 (1 in each floor) 28 (1 per apartment) 

# of laundry machines 1 (in 1
st
 floor) 28 (1 per apartment) 

# of showers/bathtubs 1 (in 2
nd

 floor) 28 showers (1 per apartment) – No bath 

Roof type Pitched Flat 

Grey water system Single house collection Shared collection 

Rainwater collection Single Shared 

Daily pattern demand 

  

 

Two building types were selected, including a free standing house with four occupants (a 

family with two children) and an apartment with two occupants (a couple without children). 

Using information from SenterNovem (2006) on reference houses for Vinex locations in 

the Netherlands, relevant characteristics as shown in Table 1 were defined. The building 

type also influences the number of water appliances, as for instance the number of toilets 

and the presence or absence of a bath. For this study, it is assumed that the apartments with 

two occupants do not have a bathtub.  

 

Seasonal and location bound variations 

Residential water demand is also linked to geographical location. Different countries have 

different per capita water use due to differences in weather, culture, water resources 

availability and socio-economic factors (Fox et al., 2009). With respect to seasonal 

variations, the presence of garden or swimming pools may increase water demand during 

hot and dry periods. In general, during summer the frequency of activities like showering 

increases. However, detailed data are not available. This chapter focused on in-house water 

demand and seasonal effects on water demand were not taken into account. 

 

Temporal variations 

For recycling of grey water, which is a dependent source, it is important to analyze both the 

supply and demand pattern. The characteristics of these variations influence the time step 

(Δt) needed for modeling purposes. For this study, Δt=1 hour was selected. Residential 

water usage pattern may strongly differ because of the wide number of variables involved 

and because of the unpredictable nature of human behavior. Butler and Graham (1995) 

found that the household usage of different water appliances is quasi-random, with 

frequency of use being related to the time of day and with different characteristics (e.g. 
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quantity, quality, temperature). Due to the intermittent use and relatively short duration of 

water activities, the residential water pattern flows are subject to high fluctuation.  

 

Several studies have found a bi-modal distribution for residential water demand with a 

morning and an afternoon peak. For the Netherlands, water demand can be related to 

whether people are at home or not and if they are asleep, getting up or preparing for bed 

(Blokker et al., 2010).  

5.3 Results  

The three strategies proposed by the UHA - demand minimization, output minimization and 

multi-sourcing - were evaluated at different spatial scales. Moreover their effect on DMI, 

SSI and WOI was analyzed. Demand minimization is related to technologies used 

(conventional or water saving devices) and household occupancy. This was evaluated at 

subsystem level and at household level. Output minimization, in this case recycling, is 

related to household occupancy and the number of households connected to the subsystem. 

Thus, recycling is evaluated at subsystem, household and building unit. Finally, multi-

sourcing of rainwater is related to the building, thus it was evaluated at subsystem and 

building level. Table 2 shows an overview of the scenarios, variables and scales studied. 

Recall that for the freestanding house, household and building level are the same. 

 

Table 2 Description of the scenarios, variables and scales studied 

Scenario 

(variables to be studied) 

Subsystem Household Household / 

building 

Building 

unit 

  Two and  

four-pp  

Two-pp Four-pp / 

Freestanding 

Mid-rise flat 

Baseline assessment (sec 5.3.1) X X X  

1.Minimization (sec 5.3.2)                   

(shower, toilet flushing and laundry machine) 

X X X  

2. Recycling (sec 5.3.3)                                

ƒ (k,   
   ,   

    and pattern) 

X X X X 

3. Minimization + Recycling  (sec 5.3.3)            

ƒ (k,   
   ,   

   and pattern) 

X X X  

4. Multi-sourcing (sec 5.3.4)                          

ƒ (k,   
   , pattern, roof area and rainfall)  

X  X X 

5. Recycling + Multi-sourcing (sec 5.3.4)       

ƒ (k,   
   ,   

   , pattern, roof area and 

rainfall) 

X  X X 

 

5.3.1 Baseline – residential demand at household level 

A water use survey, conducted in the Netherlands in 2010, found an average residential 

water demand of 124 l p
-1 

d
-1

 (Foekema and van Thiel, 2011). The activities with largest 
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water demand are shower, toilet flushing and laundry machine. The survey did not report 

important differences between week days and weekend days but it reported on differences 

related to household size. For instance, larger households do laundry more frequent, while 

the total water demand per person is lower. Also, high correlations between households 

with children and bath use were found. Table 3 summarizes the water demand for two 

households, with two and four-people. Although, the demand per person per day are 

similar, the distribution of activities is different. The main difference is the bath, that in the 

four-people household accounts for 9% of the total demand, meanwhile due to our 

assumptions, in the two-people household it is zero. 

 

Table 3 Water demand per person according household occupancy for the 

Netherlands, year 2010 (after Foekema and van Thiel, 2011). 

 2 people 4 people 

Activity Demand 

per time 

[l] 

Usage 

frequency 

[times d
-1

] 

Demand 

[l p
-1

d
-1

] 

% Demand 

per time 

[l] 

Usage 

frequency 

[times d
-1

] 

Demand 

[l p
-1

d
-1

] 

% 

Shower 56.8 0.8 45.5 36.5 68.7 0.7 48.1 40.0 

Toilet 

flushing 
5.75 6.64 38.2 30.6 5.74 5.4 31.0 25.7 

Washing 

machine 
55.6 0.3 16.0 12.9 55.6 0.2 13.3 11.1 

Bath
a
 0 0.00 0.0 0 114.3 0.1 10.3 8.5 

Sink 4 1.42 5.7 4.5 4 1.06 4.2 3.5 

Other - - 5.3 4.3 - - 5.2 4.3 

Dishwashing

(machine) 
18.5 0.3 5.3 4.2 18 0.2 3.9 3.2 

Dishwashing

(hand) 
9.6 0.5 4.4 3.5 8 0.1 1.0 0.9 

Kitchen tap - - 3.2 2.6 - - 2.7 2.2 

Clothes 

washing 

(hand) 

40 0.03 1.1 0.9 40 0.02 0.7 0.6 

Total   124.7    120.4  

a 
For two-people household is assumed to be zero. 

 

The survey also included usage frequency (Table 3) which changes according the 

household size. The usage frequency is important to determine the real daily demand. Fig. 3 

shows the variations of the daily residential water demand over a year, for two and four-

people households based on the data from Foekema and van Thiel, (2011). Fig. 3a and 3b 

shows the variations of the daily water demand. For a two-people household the average 

daily demand per household is 249 l varying from 157 to 347 l hh
-1 

d
-1

. For a four-people 

household the daily average is 481 l hh
-1 

d
-1

 varying from 367 to 610 l hh
-1

d
-1

. For the four-

people household, the demand presents a bi-modal distribution. The second peak in the Fig. 

3b can be explained due to the bath, because it is a non-daily and large demand. 
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Fig. 3c and 3e show the variations over the year, sorted from lowest to highest daily 

variation showing the contribution per activity. In the vertical axis the value for daily 

demand is given, meanwhile in the horizontal axis the number of days is plotted, in total 

365 days. Our focus is on water use for shower, toilet and laundry. Thus, in Fig. 3c and 3e, 

tap water use includes all the other activities. Looking at the total daily demand, it can be 

seen that few days have similar water demand. This variation in the daily water demand 

highlights the importance to investigate the dynamics of the urban water cycle. Isolating the 

demand for shower, toilet flush and laundry machine, and sorting them from lowest to 

highest demand, we obtain Fig. 3d and 3f. Demand and supply are not synchronized. 

Assuming that shower feeds simultaneously DQ2, for a two-people-household only 94 days 

the total demand DQ2 could be supplied, meanwhile for a four-people-hh 321 days the total 

demand DQ2 could be supplied. Additionally, when dsho>DQ2, there will be a surplus. To 

match supply and demand, thus minimizing the surplus, storage is required.  

 

5.3.2 Demand minimization  

For the minimization step, the measures were focused on the activities with the largest 

demand, which are shower, toilet flushing and laundry machine. To provide an overview of 

the maximum saving potential, vacuum toilets with a demand of 0.8 l per flush, a shower 

with a demand of 6 l per minute and a washing machine with a demand of 9 l kg
-1

 and 4 kg 

per cycle were considered (Pakula and Stamminger 2009), see Table 4. Using the most 

efficient water appliances, the demand minimization indices were calculated. For the two-

people household the Dcon= 124.7 l p
-1 

d
-1

 after minimization is D = 79.8 l p
-1 

d
-1

, thus, 

DMIhh = 0.36 (which means a reduction of 36% in water use). For the four-people 

household Dcon= 120.4 l p
-1 

d
-1

 and D=80.1 l p
-1 

d
-1

, thus, DMIhh = 0.34 (for the DMIss see 

table 5). 

 

Table 4 Daily water demand in liters per person after demand minimization 

 2 people 4 people 

Activity Demand 

per time 

[l] 

Usage 

frequency 

[times d
-1

] 

Demand  

[l p
-1

 d
-1

] 

% Demand 

per time 

[l] 

Usage 

frequency 

[times d
-1

] 

Demand 

[l p
-1

 d
-1

] 

% 

Shower 46 0.8 36.5 46 46 0.7 37.0 46 

Toilet 

flushing 
0.8 6.64 5.3 7 0.8 5.4 4.3 5 

Washing 

machine 
45 0.3 13 16 45 0.2 10.8 13 

Bath 0 0.00 0.0 0 114.3 0.1 10.3 13 

Other 

activities  
  25.0 31   17.7 23 

Total     79.8 100     80.1 100 
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Similar to Fig. 3, an overview of the water demand when demand minimization is 

implemented is shown in Fig. 4. Notice from Fig. 4d and 4f that supply from the shower is 

larger than demand from toilet flush and laundry machine. This means that self-

sustainability for the subsystem can be achieved. However, if we consider the overall 

efficiency of the system, larger supply than demand implies that there are overflows, or in 

other words, waste output. 

 

 

Figure 3 Daily demand for a year for two and four-people household based on Foekema and van 

Thiel (2011) water demand and frequency-2010. (a) Overview of variations of the daily water 

demand. (b) Histogram of daily water demand. (c), (e) Overview of the daily household water 

demand per activity, sorted from lowest to highest demand. (d), (f) Overview of activities with the 

largest demand and comparison of potential supply recycled water (shower + bath) and demand 

(toilet + laundry). 
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Figure 4 Overview of yearly distribution of minimized daily demand for two and four-people 

household (as described in Figure 3) 

 

Table 5 shows the maximum potentials for the given scenarios, for steady state. These 

values show the importance of simultaneous evaluation at different scales e.g. household 

and subsystem. For conventional demand at subsystem level, self-sufficiency (SSIss) could 

be achieved or almost achieved. However, at household level SSIhh is lower than 0.4. 

Additionally, looking at the WOI, when minimization is implemented, WOIss > 1, meaning 

that the overall waste of the subsystem is larger than the demand. These scenarios result in 

overflows (wastes) because, even with minimization, the water production from the shower 

is larger than the demand; this can be prevented by re-using this water for other activities, 

or by trying to influence user behavior and reduce shower demand.  
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Table 5 Maximum potentials for the given scenarios, and comparison at subsystem, 

household and building level 
Scenario Subsystem a Household Household / 

building 

Building unit 

  Two-pp  Four-pp Two-pp Four-pp / 

Freestanding 

Mid-rise flat 

Baseline assessment 

[m³ y
-1

] 

 

DQ2=40 

 

 

DQ2=65 D=91
 

Rpot =33
 

 

D=176 

Rpot =85
 

Mpot =48 

D = 2548 

DQ2=1120 

Rpot = 924
 

Mpot = 512 

1.Minimization 

D, DQ2 and Rpot  [m³ y
-1
] 

DMI, SSI, WOI [ - ] 

DQ2=13 

 

DQ2=22 D=58
 

Rpot = 27 

D=117 

Rpot =69
 

D = 1624 

Rpot = 756
 

DMI = 0.68 

SSI = 0 

WOI = -1 

DMI = 0.66 

SSI = 0 

WOI = -1 

DMI = 0.36 

SSI = 0 

WOI = -1 

DMI = 0.34 

SSI = 0 

WOI = -1 

 

2. Recycling
 b
 

 

DMI = 0 

SSI ≤ 0.83 

WOI ≤ -0.17 

DMI = 0 

SSI ≤ 1 

WOI ≤ 0 

DMI = 0 

SSI ≤ 0.36 

WOI ≤ -0.64 

DMI = 0 

SSI ≤ 0.37 

WOI ≤ - 0.63 

DMI = 0 

SSI ≤ 0.36 

WOI ≤ -0.64 

3. Minimization + Recycling 

 

DMI = 0.68 

SSI ≤ 1 

WOI ≤ 0 

DMI = 0.66 

SSI ≤ 1 

WOI ≤ 0 

DMI = 0.36 

SSI ≤ 0.22 

WOI ≤ - 0.78 

DMI = 0.34 

SSI ≤ 0.19 

WOI ≤ -0.81 

 

4. Multi-sourcing
 b
 

 

DMI = 0 

SSI ≤ 0.46 

WOI = -1 

DMI = 0 

SSI ≤ 0.74 

WOI = -1 

 DMI = 0 

SSI ≤ 0.27 

WOI = -1 

DMI = 0 

SSI ≤ 0.20 

WOI = -1 

5. Recycling + Multi-

sourcing 

 

DMI = 0 

SSI ≤ 1 

WOI ≤ -1 

DMI = 0 

SSI ≤ 1 

WOI≤ -1 

 DMI = 0 

SSI ≤ 0.37 

WOI ≤ -0.63 

DMI = 0 

SSI ≤ 0.44 

WOI ≤ -0.56 
a At household or building unit level. 

b Maximum values considering recycling on LGW for toilet flushing and laundry machine.  

 

In reality, only a percentage of the potential can be harvested – the actual harvest – because 

of daily water demand patterns and restrictions given by the storage capacity of the 

subsystem. In the following sub-sections, daily patterns are described per household type 

for both conventional and minimized scenarios. Subsequently, recycling options are 

evaluated over a period of a year with an hourly time step. The first scenarios focus on 

evaluation at household level, while more advanced scenarios consider the effect of 

aggregation of patterns for the mid-rise flat to evaluate the effects at building unit level with 

multiple households.  

 

5.3.3 Output minimization by recycling 

Matching daily demand and supply patterns at household level 

Residential water flows can vary significantly from day to day. Furthermore, daily water 

demand is un-evenly distributed during the day. For instance, for a household the minimum 

hourly flow is zero, and it is likely to be during the night. Therefore, to evaluate the 

efficiency of the measures and to estimate the storage capacity needed, it is important to 

investigate also the daily pattern. Since multiple patterns are present (Blokker et al. 2010), 

in particular one pattern was studied. The characteristics of the studied pattern are that the 

inhabitants shower between 7:00 – 8:00 (morning peak), do their laundry between 17:00 – 

18:00 (afternoon peak) and toilet flushing distributed over the day (excluding night).  
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Type and number of water appliances are important to define the variations in the daily 

pattern. For instance, for a four-people household with two toilets, the toilet flush can be 

simultaneous at peak hours. Thus a four-people household can present a larger peak than a 

two-people household with one toilet. 

 

Fig. 5 shows that actual recycling (Ract) is a function of storage capacity (  
   ,  

          
   ) 

and treatment capacity k; recall that, the volume of the treatment unit is determined by the 

retention time (RT) and the treatment capacity (k);   
    = RT x k. The maximum value for 

Ract is given by the lowest of Rpot or DQ2 values. For minimized flows, a small storage 

capacity is required to harvest all potential. Notice that similar subsystem configuration will 

perform different according occupancy and presence of water saving devices. 

 
Figure 5 Actual recycling (Ract) for two and four-people household, for different k [l d

-1
], different 

strategies and RT = 1 day. S1 and S3 are storage units and S2 the treatment unit. 

 

To visualize the changes in the subsystem, the different subsystem variables were plotted 

for the two households and for two storage capacities: 50 and 150 l. Fig. 6 shows the non-

linear relationship between the variables. Fig. 6 also shows that s1 and s3 depend on k,   
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and the pattern. To evaluate the efficiency of the storage units, the volumetric efficiency 

(VE) was calculated. VE is the yearly average volume stored in the tank divided by the tank 

size, expressed in percentage. Fig. 6 shows that the assumption   
      

    , is not suitable 

for these cases, because it results in a low volumetric efficiency for the storage unit   
   

. 

 
Figure 6 Subsystem behavior for a single apartment (two-people hh) and for the freestanding house 

(four-people hh). For two tank storage capacities   
   =  

   = 50 and 150 l. S1 and S3 storage units and 

S2 treatment unit. s1,s2 and s3 correspond to the average volume in the storage units given in liters and 

the other variables are the total value in m³ for a year, and VE: Volumetric efficiency per storage unit. k 

is given in l d
-1 

per household. 

 
VE v1 VE v2 VE v3   VE v1 VE v2 VE v3 

k=20 80% 100% 4%  k=20 62% 100% 8% 

k=40 62% 100% 8%  k=40 34% 66% 6% 

k=60 44% 87% 10%  k=60 22% 46% 6% 

k=80 34% 66% 6%  k=80 18% 36% 10% 

k=100 28% 54% 4%  k=100 14% 29% 10% 

 1 

 
VE v1 VE v2 VE v3   VE v1 VE v2 VE v3 

k=20 93% 100% 1%  k=20 87% 100% 3% 

k=40 87% 100% 3%  k=40 75% 100% 6% 

k=60 80% 100% 5%  k=60 61% 100% 14% 

k=80 68% 100% 11%  k=80 47% 96% 24% 

k=100 34% 91% 15%  k=100 39% 78% 21% 
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Aggregation factor 

As shown in Table 1 for the mid-rise flat, the most appropriate scale for collection and 

treatment of grey water is at building unit and not at household level. At building level with 

multiple households, the worst case scenario will be when all the households have identical 

demand. However, the probability that multiple households have identical demands is low. 

Thus there is an aggregation pattern. To evaluate how the aggregation of patterns influences 

the water cycle at building unit, the daily pattern was simulated using SIMDEUM (Blokker 

et al. 2010). By simulating 28 apartments with 365 patterns, we found that the morning 

peak is approximately 0.6 m³ h-1, which corresponds to a 12% of the daily demand, see Fig. 

7a. To study the aggregation effect in the mid-rise building, the worst case scenario (wcs) 

was studied as well. The wcs considers simultaneous demand of the 28 apartments, 

following the pattern described in 3.3.1. The demand peaks were estimated, only 

considering the selected activities toilet, laundry and shower. Assuming that all the 

apartments have the same pattern, the morning peak for the flat is 3.5 m³ h-1. Therefore, the 

aggregation factor reduced the morning peak by 80%.  

 

 
Figure 7 aggregation effect (a) one realization for daily pattern for the apartment flat with conventional 

demand for worst case scenario, simulation aggregating patterns using SIMDEUM and maximum design 

peak values. (b). Influence of the pattern on the Ract per building in a year – two daily patterns: worst case 

scenario (wcs), and aggregation (agg).  

 

For design purposes, an aggregation pattern was defined, based on the SIMDEUM 

simulation and assuming a security factor of two for the peaks (see Fig. 7a maximum 

design values). For the morning, the maximum probable flow was defined at 1.2 m³ h-1. 

Again, multiple realizations are possible, only the design pattern is studied to evaluate the 

effect of aggregation versus the worst case scenario. The aggregated pattern was defined as 

follows: to minimize the morning peak – shower, 16% is assumed between 6:00 – 7:00, 

32% between 7:00 – 8:00, 26% between 8:00-9:00, 13% between 9:00-10:00 and 13% 

between 21:00 – 23:00. And for toilet flush, the morning demand was assumed to be four 

times per person and it was distributed between 6:00 and 10:00 following the percentage 
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distribution given by SIMDEUM. To minimize the afternoon peak, the toilet demand was 

distributed homogeneously between 17:00 and 22:00. For laundry, it was revised that the 

sum of toilet and laundry did not exceed the design flow of 0.8 m³ h
-1

, the excess demand is 

allocated in the subsequent hour checking again that the design flow is not exceeded. 

 

Then the aggregation effect was studied using two patterns: (i) worst case pattern and (ii) 

aggregation pattern. Fig. 7b shows that when considering aggregation for small storage 

capacities, actual recycling (Ract) can be up to three times the value of Ract for the wcs 

pattern. Thus, we can conclude that the pattern influences Ract. Patterns with softened peaks 

(aggregation pattern) have larger values of Ract. When there are restrictions due to k, or Rpot, 

(horizontal part of the curves in Fig. 7b), the pattern becomes irrelevant. 

 

5.3.4 Multi-sourcing 

Multi-sourcing refers to the use of local and renewable sources. In this chapter, we focus on 

harvesting rainwater to cater for DQ2. In this study, harvesting of rainwater is done at 

building unit scale. Mpot [l y
-1

] of a roof can be estimated based on the local precipitation – 

P [mm y
-1

], the roof area – A
roof

 [m
2
] and the runoff coefficient – RC [-], as 

Mpot=P·A
roof

·RC. The runoff coefficient is a dimensionless value that estimates the portion 

of rainfall that becomes runoff, taking into account losses due to spillage, leakage, 

catchment surface wetting and evaporation. Typical runoff coefficient values range between 

0.7 and 0.9 (Farreny et al. 2011).  

 

Following UHA, multi-sourcing is used to supply the remaining demand. For the scenarios 

with minimization, recycling of LGW could fully supply DQ2. Thus, to evaluate the 

potential of harvesting rainwater, only the conventional scenarios were studied. Rainwater 

collection can only be done at building unit level. For the apartment flat, the aggregated 

pattern was used. The harvesting potential of rainwater was evaluated for different yearly 

rainfall conditions, measured during the last 25 years. For the average year, the rainfall 

records of the year 2010 (811mm) were used; for a dry year, the year 1996 (573 mm) and 

for the wet year, the year 1998 (1050 mm) were used, respectively. In Fig. 8, three 

scenarios are plotted: i) only recycling, ii) only multi-sourcing, iii) recycling and multi-

sourcing. For the scenarios including recycling, two storage units (  
    and   

   ) and a 

treatment unit (  
   ) are required. For   

   , a treatment capacity of 40 l per person per day 

was assumed, i.e. treatment capacity k=160 l d
-1

 for the freestanding house and k=2240 l d
-1

 

for the mid-rise apartment flat. For only multi-sourcing a single tank is considered (  
   ), 

thus   
   =0. 

 

Fig. 8 shows resources harvested (Rh) per scenario: recycling, multi-sourcing and both. A 

comparison between recycling and multi-sourcing shows that for the same storage capacity, 

recycling is more beneficial. If recycling and multi-sourcing are combined, the maximum 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V73-52GXV76-1&_mathId=mml1&_pii=S0043135411001540&_issn=00431354&_acct=C000026798&_version=1&_userid=533256&md5=c3597f954d82d22306e45ed775095563
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value for Rh is achieved with a smaller storage capacity. The multi-sourcing scenario shows 

that the value of Rh is highly sensitive to yearly variations in precipitation. This sensitivity 

decreases when recycling and multi-sourcing are combined. 

 

 
Figure 8 Comparison of recycling (R) and multi-sourcing (M) measures at building level for the 

conventional demand and sensitivity evaluation to changes in the rainfall pattern. k is given in l d
-1 

per building unit. 

 

5.4 Discussion  

The Urban Harvest Approach (UHA) presented here is a structured approach to identify the 

influence of different measures for reduction of demand and waste production, and for 

multi-sourcing at building unit scale. Furthermore, the proposed methodology to assess the 

metabolic profile (Demand Minimization, Self-Sufficiency and Waste Output Indices), 

provides key information on resource use.  

 

This chapter aimed to test our hypothesis: urban areas as reservoirs of resources that can be 

harvested and used to supply urban demands and to develop improved understanding of 

process dynamics relevant for resources management at different scales. We have studied 

the urban water balance at building level and evaluated implementation of various 

measures: demand minimization, recycling of light grey water and harvesting of rainwater 

to supply non-potable demand. 

 

We studied two household types in the Netherlands, i.e. two and four-people households. 

Although the yearly water demand per person is similar for both households, comparison of 
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the temporal patterns showed that they do not satisfy the superposition principle, meaning 

that the water demand pattern of the four-people households is not two times the pattern of 

the two-people households. This shows that per capita water use is influenced by household 

size and that aggregated temporal patterns are non-linear. Non-linearity is, among others, 

caused by differences in (use frequency of) water appliances related to household size and 

family composition (adults/children).  

 

Results showed, in both cases, that approximately 35% of the conventional demand may be 

reduced by implementing water saving devices (shower, toilet and laundry), indicating that 

demand minimization is a crucial measure towards a more efficient urban water cycle.  

 

To minimize demand and waste flows, in this chapter non-potable demand (DQ2) is 

supplied with local and renewable resources. Results showed that, even when resources are 

available to achieve local self-sufficiency on an average yearly basis, temporal supply-

demand patterns and restrictions given by the spatial scale and building typology, may 

cause that only a percentage of the demand is supplied. Thus, temporal patterns of demand 

and supply should be studied carefully to determine storage requirements and to achieve 

maximum benefits. 

 

Overall, our results show that there are two types of constraints to satisfy water demand 

with local resources at the building level. The first type is related to the availability of local 

resources. In this chapter, constraints to meet DQ2 are caused by disparity between grey 

water production patterns (Rpot) and demand patterns and to limited availability of rain 

water (Mpot) related to local context (i.e. climate, roof areas). The second type follows from 

the first and is caused by practical limitations in harvesting the recycling and multi-

sourcing potentials – Rpot and Mpot. In this chapter, the harvest of Rpot and Mpot are 

constrained by the storage capacities that are required to cater for the mismatch in water 

harvested and demand patterns, which is linked to the availability of space in the building 

unit. 

 

For cases with conventional demand, recycling of light grey water (Rpot) may cover 

approximately 36% of the demand (D), for both households. To reach this percentage, so 

that Ract=Rpot, different variables play a role. For a two-people household, a storage capacity 

of 240 l, and a volumetric treatment capacity of 100 l d
-1

 per hh is required. Meanwhile for 

the four-people household a storage capacity of 360 l and a treatment capacity of 200 l d
-1

 

per hh is required. For the cases with minimized demand, Rpot may cover approximately 

20% of the demand. In this situation, a storage capacity of 120 l is sufficient for both 

households, and treatment capacities of 20 and 40 l d
-1

 per hh for the two and four-people 

hh are required, respectively. When evaluating the effect of aggregation of patterns at flat 

level, for the 28 apartments, with a volumetric treatment capacity of l00 l d
-1

 per hh, a 
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storage capacity of 5.4m³ is required, this means 200 l per household. Thus, aggregation of 

patterns leads to a reduction of 17% in the required storage capacity. 

 

For both type of households, when demand minimization is implemented, recycling of light 

grey water covers DQ2, and approximately 20% of D, even resulting in a surplus of treated 

water. This surplus of water can be used for ex-house activities, which are not considered in 

this chapter.  

 

Multi-sourcing was investigated at building level, while assuming conventional water 

demand. The results showed that Mact is largely influenced by the available storage 

capacity. For the freestanding house, although Mpot may cover up to 27% of the demand 

(D), a storage capacity of 1 m³ limits Mact to 14 - 22%. For the apartment flat, Mpot may 

cover up to 20%, however, a storage capacity of 8 m³, (300 l hh
-1

), limits Mact to 10% -16%. 

Combining grey water recycling and multi-sourcing provides a more reliable solution. For 

the freestanding house, a storage capacity of 200 l can supply 37% of the demand (D), 

while for the apartment flat, 1 m³ can supply 38% of the demand (D).  

 

Results of the modeling study showed that dimensioning of the storage capacity requires to 

consider treatment requirements, daily water supply-demand patterns and the presence of 

saving devices, in addition to the physical space available.  

 

Against our hypothesis: “urban areas as reservoirs of resources that can be harvested and 

used to supply urban demands”, we can conclude that urban water demand can indeed 

largely be satisfied by a combination of demand reduction, output minimization and multi-

sourcing. The study shows that building type and household size influence the pattern and 

the efficiency of the different measures. The results show that although implementation of 

single measures is not enough, demand minimization is the significant step to achieve local 

self-sufficiency cycle in residential areas.  

 

This study selected two building types and household sizes. Other urban typologies may 

give different results, due to differences in water demand patterns and local potential for 

recycling and multi-sourcing. Implementation of water saving technologies may have 

rebound effects that are not considered within the scope of this study.  

 

Our results confirm that grey water recycling is feasible and can contribute to sustainable 

water management (Pidou et al., 2007). Treated urban wastewater provides a dependable 

water supply relatively unaffected by periods of drought or low rainfall (EEA, 2009). The 

characteristics and treatments of grey water have been extensively studied by Li et al. 

(2009) and Pidou et al. (2007). They recommend as first step pre-treatment, followed by 

treatment which can be chemical or biological, after that filtration with sand or membranes 
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and finally disinfection. Possibly cheap, robust and low-energy demanding microbial 

quality enhancement technologies, currently under development, may also provide 

solutions for grey water reuse e.g. using fluidized bed electrodes (Racyte et. al, 2011). In 

this study, we assumed that multi-sourcing provides water of secondary quality. Current 

research is, however, exploring decentralized options to produce drinking water, e.g. 

producing drinking water from hydrogen fuel cells (Hristovski et al. 2009). Further studies 

should describe a yet completer urban water cycle including, for instance, 

evapotranspiration, infiltration and other building types such as duplex, or row houses. 

Different scales may have different potentials but at the same time different tradeoffs.  

 

5.5 Conclusions 

 

The Urban Harvest Approach considers urban areas as reservoirs of resources that can be 

harvested and used to satisfy urban demands. As shown in this paper, up to 100% of current 

demand for laundry and toilet water could easily be supplied by local resources. Urban 

characteristics, i.e. household occupancy and building type, influence the demand and 

production of water of secondary quality. This study showed that different building types, 

associated with different occupancies, showed different demands and different temporal 

patterns. This is essential information to design and optimize recycling and multi-sourcing 

measures. Demand minimization is the most effective measure to start reducing the 

dependence of urban environments for external, high quality water resources. Variations in 

daily production and demand patterns of individual flows showed large effects on the 

efficiency of the resources harvested. Additionally, spatial scale is really important; 

different scales might provide a complete different overview of the use of water resources. 

Therefore, different scales should be evaluated simultaneously when optimizing urban 

water flows. Further research is needed to properly understand the complexity of the urban 

water balance and to control the system in real-time. In aiming for sustainable development, 

it is evident that new approaches in urban resources management, such as the Urban 

Harvest Approach, novel city design and planning methods, need to be integrated to 

provide customized solutions for existing and new urban areas.  
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Appendix A 

 

To evaluate the different scenarios, 4 different categories were defined:  

++ very good, + good, – bad, – – very bad. The categories for grey water are described in 

table A1. And the categories to evaluate rainwater are described in table A2. 

 

Table A1 Categories for evaluating grey water flows 

Parameter  Grey water Assessment 

++ + – – – 

Original 
Quality 

Slightly polluted: 
Light grey water 

from shower 
 

From slightly: 
polluted to polluted 

Grey water from 
shower and 

laundry 

Polluted: 
Grey water from shower, 

laundry and bathroom 
taps 

Heavily polluted: 
Total grey water: shower, 

laundry, bathroom and 
kitchen taps 

Quantity 15%> of the total  
demand 

15%<, >10% of the 
total demand 

10%<, >5% of the total  
demand 

5%< of the total demand 

Temporal 6 or 7 days a 
week 

5 or 4 days a week 2 or 3 times a week Less than once a week 

 

Table A2 Categories for evaluation of rainwater 

 Rainwater assessment 

 ++ + – – – 

Original 
Quality

 a
 

Slightly polluted From slightly 
polluted to polluted 

Polluted Heavily polluted 

Quantity
 b 

 
1000 > 1000 - 750  750 - 250  250 <  

Temporal  Evenly 
distributed over 

the year 

Dry winter / dry 
summer 

Dry period longer than 3 
months 

Dry period longer than 6 
months 

a 
Function of the roof material. 

b 
Yearly rainfall in mm/y 

 

For the Netherlands, the assessment is presented in table A3. 

 

Table A3 Evaluation of potential for reuse of the different flows for The Netherlands 

 Grey water Rainwater 

 Bathroom Laundry Kitchen Mixed  

Quality + + + + - - + + 

Quantity + + + - -  + + + 

Temporal + + - + + + + + + 
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Appendix B 

 

Description of the subsystem model. 
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Chapter 6 
 

Evaluating the potential of improving 

the residential water balance at block 

scale 
 

 

 

Abstract 

 

Decentralized systems play a central role in the new paradigm towards sustainable urban 

water management. Planning decentralized systems requires understanding of the influence 

of the urban characteristics such as building type and land cover, on the urban water cycle. 

Previous chapters investigated the implementation of strategies at building unit, concluding 

that the water resource efficiency is larger for multiple households than for single 

households. This chapter studies the potential of improving urban water cycles at city block 

scale. Two different city blocks were analyzed; a low-density city block composed of 

freestanding houses and a high-density block composed of middle-rise apartment flats. 

Seasonal dynamic water balances were investigated for different scenarios, considering 

occupancy, conventional and saving water appliances, as well as percentages of permeable 

and impermeable surfaces as modeling parameters. Results showed significant variations in 

the water cycle due to seasonal variations and block type. Import of drinking water 

represents up to 40% of the total input in the low-density block, and up to 80% of the total 

input, in the high-density block. For the low-density block, 18% input minimization and 

self-sufficiency was achieved. And the waste output index WOI (waste/demand) was 

reduced from 97% to 73%. For the high-density block, 23% input minimization, 18% self-

sufficiency, and WOI reduction from 123% to 104% was achieved. Three main options are 

identified to improve the water cycle at block scale: (i) technology implementation, e.g., 

water saving devices or decentralized wastewater treatment technologies; (ii) modifications 

in the building unit envelope, e.g., green roofs; and (iii) changes in the urban surfaces to 

increase storage capacity by selecting permeable materials.  
 

 

 

 

 

 

This chapter is in preparation as:  

Agudelo-Vera, C.M.; Keesman, K.J., Mels, A.R.; Rijnaarts. H.H.M. Evaluating the potential of improving 
residential water balance at block scale. 
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6 Harvesting urban resources towards more resilient cities 

6.1 Introduction  

Over the last decade a new paradigm for a sustainable urban water management has 

emerged as response to pressures such as population growth, increasing urbanization and 

climate change. In this new paradigm, decentralized systems play a central role (Guest et 

al., 2009, Rygaard et al., 2011). In this study, decentralization refers to on-site technologies 

at building, city block or neighborhood scale. Compared with centralized technologies for 

managing urban water, at city or regional levels; decentralized water infrastructure is 

relatively untried and unproven (Makropoulos and Butler, 2010). Decentralized systems, 

however, have proved to be sustainable options from the point of view of resources use, 

enabling recovery of nutrients and energy, and limiting the spread of pollutants (de Graaff, 

2010; Kujawa-Roeleveld and Zeeman, 2006). Currently, despite the availability of a large 

range of centralized and decentralized technologies, we still lack tools to select the optimal 

scale of management and the most appropriate technology for a given urban context with 

specific building typology, land cover, water use patterns and climatological conditions. 

 

Improving urban residential water cycles requires information about the varying use and 

availability of water. Water demand and water supply are often closely monitored. 

Conversely reliable data on water outflows are less available and highly variable, because 

evapotranspiration, runoff, groundwater recharge and leakage are not well known in most 

cities (Pataki et al., 2011). Moreover, little attention has been given to the way in which 

urban water demand varies across urban areas and how this may be used to shape a new 

approach to the planning, infrastructural design and management of water in an urban 

environment (Troy and Holloway, 2004). These variations in urban water demand are 

typically related to urban characteristics as, e.g. building type, presence of gardens or green 

areas and impermeable surfaces. These variations become highly relevant when planning 

and designing at small spatial scale, for instance at city block scale.  

 

The Urban Harvest Approach (UHA) is a bottom-up approach, starting from the building 

unit to city scale. The UHA encompasses a hierarchy of measures to optimize urban 

resources management. The hierarchy of measures proposed is: i) minimizing demand; ii) 

minimizing output; and iii) multi-sourcing using local and renewable resources. Previous 

chapters investigated the implementation of strategies at building unit, concluding that 

efficiency is larger for building units with multiple households than for building units with 

a single household. This chapter studies the potential of improving urban water cycles at 

city block scale
14

 by taking into account household and building typology and by including 

spatial and temporal climatological factors, such as evapotranspiration and precipitation. 

                                                 
14 A city block is the smallest area that is surrounded by streets. Blocks are the space for buildings within the street pattern of 

a city; they form the basic unit of a city's urban fabric. Blocks may be subdivided into any number of smaller lots or parcels of 
land usually in private ownership, though in some cases, it may be other forms of tenure. 
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In this chapter, two different city blocks were analyzed; a low-density city block composed 

of freestanding houses and a high-density block composed of middle-rise apartment flats. 

Seasonal dynamic water balances were investigated based on hourly time steps for different 

scenarios. The different scenarios to improve the residential water cycle at city block scale 

were studied quantitatively, following the hierarchy of measures proposed within the UHA. 

The scenarios consider occupancy, conventional and saving water appliances, as well as 

percentages of permeable and impermeable surfaces. Due to the high complexity of the 

urban environment and the urban water cycle, it is not realistic to quantify each individual 

point source or sub-area of recharge. Thus, this chapter addresses estimates and provides a 

methodology for a preliminary assessment of the water balance and potential improvements 

at city block scale. 

6.2 The urban water cycle at city block scale 

In urban areas, the water exchanges are much more complex than in natural areas, due to 

the large heterogeneities of surfaces and the introduction of new water collection and 

conveyance systems. Some of the processes, such as urban surface runoff, water infiltration 

through the roads, water storage on artificial surfaces and groundwater infiltration into the 

sewer network are difficult to quantify (Lemonsu et al., 2007). Thus these processes are 

also difficult to optimize because of their complex interrelationships and their dynamic 

behavior. 

 

Often the urban water balance is described by two different approaches. The first approach, 

with a focus on the nature-driven processes, describes the urban water cycle in terms of 

precipitation-evapotranspiration-runoff and infiltration. The second approach, with a focus 

on the man-made water infrastructure, includes the input of water provided by the drinking 

water system and the output via the domestic wastewater stream, but generally it does not 

include recycling and harvesting options.  

 

To bridge the gap between the natural and man-made approach, some linkages to urban 

typology can be made based on the urban transect concept (Duany and Talen, 2002). For 

instance, areas with high percentage of impermeable areas are often located close to the city 

center and related to high densities and high rise buildings. Meanwhile low percentage of 

impermeable areas are often located in the sub-urban area and related to low densities and 

single family houses. In general, high-impermeable urban areas are associated with larger 

runoff, higher population density, higher buildings; and lower infiltration, lower 

evapotranspiration and smaller household size than low-impermeable urban areas. This 

chapter includes the interactions between the natural- and man-driven processes, as well as 

wastewater recycling and rainwater harvesting options. Fig. 1 shows the variables that 

affect the water cycle at city block scale, including the UHA strategies, and their 

relationships. Additionally the linkages between the building unit and the block scale are 
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indicated. The urban water cycle model used in this study is shown in Fig. 2. A general 

volume balance for a dynamic system with actual amount of water stored (s) reads as: 

ds/dt = Inputs – Outputs - Consumption        (1) 

In the next sections, each of these terms will be specified in more detail.  
 

 
Figure 1 Schematic representation of the relationship between the different variables of the water 

cycle at block scale. 

 

Figure 2 Schematic representation of the urban water cycle at block scale. 
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6.2.1 Storage 

The term ds/dt in Eq. (1) is the change in storage per unit of time, in our case the water 

volume. We distinguish between three different types of storage at city block scale: surface 

depression storage, roof storage and storage in tanks/treatment units, see Fig. 2. Surface 

depression storage is the water that is retained in small depressions on the surfaces, 

preventing the water from running off. This water will eventually infiltrate or evaporate. 

Roof storage is the water that is retained at roof surfaces. Roofs capture the precipitation 

and redirect it to the sewer or to a collection tank allowing multi-sourcing (using 

precipitation water in addition to tap water). Appendix A shows the values for storage 

capacities of different surfaces reported in the literature. Tanks and treatment units are man-

made infrastructures to collect and treat water. Thus in Eq. (1), s is the sum of volumes of 

water stored on the different surfaces, on the roofs and in the tanks and treatment units. 

Water stored in the sewer system and in the ground are considered outside the system 

boundary, and not managed at block scale, see Fig. 2. 

 

6.2.2 Inputs and outputs 

There are two main inputs of water in conventional urban systems at block scale: 

precipitation (P) and external input (Ei) – provided by the drinking water network. There 

are two main waste outputs (We) directly related to the inputs; runoff (Ro, excess rainwater 

leaving the area), and domestic wastewater (DWW). These two outputs are collected in 

combined or separated sewers. There are two main alternative inputs at block scale, 

namely, recycled wastewater (Rpot) and harvested rain water (Mpot) from roofs. Runoff from 

the land surfaces is not harvested for further (re-)use due to quality requirements. Runoff is 

often described using the runoff coefficient (RC). RC is defined as the proportion of rainfall 

that contributes to runoff from the surface, RC=Ro/P (Butler and Davies, 2000). The 

appendix A shows typical values for RC.  

 

In urban areas, we consider two types of demand: potable (DQ1) and non-potable (DQ2). DQ1 

represents the daily demand of potable water. Potable water is required for kitchen and 

bathroom taps and for shower and bath. Meanwhile DQ2 represents the demand for non-

potable activities. DQ2 is divided into indoor (   
   ), e.g. toilet and laundry; and outdoor 

(   
   ), e.g. garden irrigation. Thus, using Rpot and Mpot to supply DQ2 will lead to a 

reduction in Ei and in the domestic waste water (DWW).  

 

In this chapter, we focus on water resource management in build infrastructure. Therefore, 

we only consider harvesting of rain water from roofs, and non-harvested water is 

discharged to the sewer. The potential harvest from roofs (    ) is given by      

     
    

      
    

 with           
    

; and if Mpot = 0 (no harvesting), then      
    

 

     
    

. 
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6.2.3 Consumption 

Consumption (Co) in Eq. (1) is defined as the sum of processes that lead to water leaving 

the block system becoming unavailable to be harvested to supply DQ1 or DQ2. At block 

scale, two processes are considered; i) evaporation and evapotranspiration (ET), which has 

also a cooling effect in urban areas and ii) infiltration (I) which recharges subsurface 

groundwater resources, hence, Co = ET + I. 

 

Evaporation is the process occurring along the water-air or soil-air interface by which water 

transforms into water vapor escaping into the atmosphere. And transpiration is the process 

of vaporization of water at the surface of plant leaves after the soil water has been 

transported through the plant. For simplification, transpiration is combined with 

evaporation from water and soil surfaces into evapotranspiration (Marsalek et al., 2008). In 

this paper, ET refers to evaporation from permeable and impermeable surfaces and 

evapotranspiration from green areas. We use the Penman-Monteith method (FAO, 1988) to 

calculate the reference evapotranspiration. And we assumed the reference 

evapotranspiration as potential evapotranspiration (ETpot). The actual evapotranspiration 

(ETact) is determined by the water availability on each of the surfaces and roofs. The stored 

water on the surface “i” is given by s
i
. Then, if         

  :      
       

 ; and if    

     
        

   i
.  

 

Infiltration (I) refers to the process of water passing through the ground surface into the 

pores of the soil, and entering the groundwater system. I depends on soil type, structure and 

compaction, initial moisture content, surface cover and the depth of the water layer in the 

soil (Butler and Davies, 2000). The infiltration rate tends to be high initially, but decreases 

exponentially to a final quasi-steady rate when the upper soil zone becomes saturated. 

Some standard values used to estimate infiltration are presented in Appendix A. In this 

study, infiltration is assumed to be constant over the hourly time step. Infiltration at a given 

time step is a function of the stored water in the permeable surfaces, which infiltrates at the 

maximum rate of the soil infiltration capacity (I ≤ ksoil), both given in mm/h. 

 

The water balance at block scale can be derived from the balances of each of the storage 

units and can be written as: 

 
  

  
                

        
             

                
    

      
    

 

      
                   (2) 

 

Appendix B shows the balances for each unit and the deduction of equation 2. 

 

 



Evaluating the potential of improving the residential water balance at block scale 

 

111 

 

6.2.4 Urban water cycle and the urban harvest approach 

As already mentioned in the Introduction, the Urban Harvest Approach (UHA) consists of 

three steps: (i) input minimization by implementation of more resource efficient 

technology; (ii) output minimization by cascading and recycling of flows
15

; and (iii) multi-

sourcing of the remaining demand by harvesting local-renewable resources. 

 

The UHA focuses on sustainable water management by technology implementation and 

does not consider any changes in human behavior. Fig. 2 shows that DQ1 is supplied by 

EiQ1, thus EiQ1= DQ1. Then, EiQ1 can only be minimized by installation of water saving 

technologies, the first step of the UHA. Besides DQ2 is equal to    
       

    and it is 

supplied by     
   ,     

   , Ract and Mact, thus,         
        

               . Hence, 

     can be expressed as:
 

 

         
        

                        
(3) 

And since D= DQ1+ DQ2, we arrive at 

                              
(4) 

 

One of the objectives of the UHA is to minimize EiQ2. Eq. (3) shows that EiQ2 can be 

minimized by implementing water saving technologies (minimizing DQ2), by recycling 

(maximizing Ract) and by multi-sourcing (maximizing Mact), the three steps of the UHA. 

Export of resources is set to zero, to avoid flows passing through without being used in the 

system and being exported as secondary resources. Thus, the optimal case is when EiQ2 = 0, 

so that Ract+Mact=DQ2.  

 

Additionally within the UHA, waste export should be minimized. The waste exported (We) 

of the system can be written as: 

             
    

               (5) 

From the balance at building unit,             
        . Consequently, 

             
    

        
                 (6) 

 

Hence, to minimize We, three options are identified: i) minimizing indoor demand (DQ1 + 

   
   ) by implementing water saving devices, ii) minimizing runoffs (     

    
    ) by 

replacing impermeable by permeable areas, which will result in larger infiltration and 

evapotranspiration values, and iii) minimizing overflow from the treatment facility resulting 

in Ract + Mact = Rpot +Mpot, by a proper choice of the storage capacity. As the demand and 

the meteorological inputs are time-varying, a proper choice can only be made by dynamic 

modeling of the system. 

                                                 
15

 Cascading refers to direct reuse of waste flows, meanwhile recycling includes quality upgrading of the flow 
before reuse. In this paper, to secure quality standards, we will only consider recycling. 
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To relate the different variables of the water cycle and to evaluate the different measures, 

the so-called “metabolic profile” is calculated. The metabolic profile is described in terms 

of the demand (D=DQ1+DQ2), the waste exported (We) and the resources harvested (Rh). 

The metabolic profile is defined by three indices, i.e. Demand Minimization Index (DMI), 

Waste Output Index (WOI) and Self- Sufficiency Index (SSI), as defined in Chapter 4. The 

DMI is defined as, 

    
                    (    )        ( )

                    (    )
 

∑     
 
   ( )  ( )

∑     ( ) 
   

   (7) 

 

Where Dcon represents the demand when conventional technologies are implemented, while 

D is the actual demand. Furthermore, 

 

      
               (  )

       ( )
 

         
 ∑   

       ( )      
    ( )    ( )    

   ( )      ( )     ( ) 

∑  ( ) 
   

   (8)

 

 

In this chapter, we do not consider export of resources, therefore (Er=0: REI=0) and 

    
                   (  )

       ( )
 

∑      ( )     ( ) 
 
   

∑  ( ) 
   

     (9) 

 

In this study, two block types relevant for the Netherlands were defined to evaluate the 

potential of improving the residential water cycle at that scale. Following the UHA, first, 

we prepared a baseline assessment for selected blocks. The indoor water demand of each of 

the blocks was simulated using the software SIMDEUM
16

 (Blokker et al., 2010). Data from 

the meteorological station in Wageningen
17

, the Netherlands, were used to determine 

precipitation and reference evapotranspiration using the Penman-Monteith equation (FAO, 

1988). Seasonal dynamic water balances were evaluated to gain insight into the temporal 

variations within the year. For the baseline of the conventional system, recycling and multi-

sourcing were set to zero. The sensitivity of the seasonal water balance to two extreme 

values of two critical parameters was evaluated: the soil infiltration capacity, ksoil = 0.1 and 

5 mm/h, and the storage capacity of green areas, S
green

 = 10 and 100 mm. Four cases were 

defined by combining these boundaries. Seasonal variations on the water balance were 

studied; with and without irrigation. When there is no irrigation of green areas    
      

and D = D
ind 

= Ei = DWW, meanwhile for the cases with irrigation    
     ,      

        
    and DWW = D

ind
. Irrigation was set to occur after each 156 hours of dry 

weather, with an amount filling 80% of the storage capacity.  

                                                 
16

 SIMDEUM is a software developed by the water cycle institute (KWR), it simulates daily patterns for different 
household types in The Netherlands. 
17

 http://www.met.wau.nl/haarwegdata/ 
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Secondly, the variation of the water cycle in the green areas was studied for different values 

of ksoil and S
green

. Seasonal variations for the green areas of a low-density block were 

compared for irrigated and non-irrigated conditions. Thirdly, the strategies proposed by the 

UHA, namely demand minimization, output minimization and multi-sourcing, were 

investigated for selected values of ksoil and S
green

 for the two blocks. Four scenarios 

combining the UHA strategies were studied and the metabolic profiles calculated. Here, 

changes in slope are not considered due to the small scale and the case study selected in the 

Netherlands, representing a flat Delta area. 

 

Two different city blocks in The Netherlands were analyzed; a low-density city block 

composed of freestanding houses and a high-density block composed of middle-rise 

apartment flats. Seasonal water balances were investigated based on hourly time steps for 

different scenarios following the hierarchy of measures proposed by the UHA. For the low-

density block, 20% impervious and 80% pervious area was assumed. And for the high-

density block, 80% impervious and 20% pervious area was assumed. Impervious 

percentage refers to roof areas, meanwhile pervious percentage was assumed as green 

areas. Table 1 shows the characteristics of the two block types. 

 

Table 1 General characteristics of the two selected blocks 

  Low-density block High-density block 

Total block area (m²) 2500 2500 

House typology Free standing house Mid-rise apartment flat 

Roof area per building unit (m²) 63 670 

Number of building units per block 8 3 

Number of households per building unit 1
a
 28

b
 

Total block population 32 168 

Density (p/ha) [dwelling/ha] 128 [8] 672 [336] 

Daily water demand indoor per capita (l) 111 105 

Impervious percentage
 c
 20% 80% 

Pervious percentage
 c
 80% 20% 

a 
Household with two adults and two children.  

b
 Household with two adults full time working. 

c
 In this chapter impervious area refers to roof area and pervious areas refers to green areas. 

6.3 Results and Discussion 

6.3.1 Sensitivity analysis  

First a sensitivity analysis was performed considering a conventional situation for the two 

blocks. For that, the indoor water demand of each of the blocks was modeled for a period of 

three months with hourly time steps using the software SIMDEUM (Blokker et al., 2010), 

see Fig. 3. In the Netherlands seasonal changes in indoor water demand can be neglected 

(Foekema and van Thiel, 2011). Thus, the same indoor water demand pattern was used for 

the different seasons.  
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Figure 3 Hourly demand pattern for a season for the two blocks. a. Low-density and b. High-density block 

 

An average year was selected, from March 2007 till March 2008, to evaluate the influence 

of the seasonal variations of the climate related parameters. Firstly, the sensitivity of the 

seasonal water balance to changes in ksoil and S
green

 was evaluated. Four cases were defined 

by combining two extreme values of the soil infiltration capacity, ksoil = 0.1 and 5 mm/h, 

and the storage capacity of green areas, S
green

 = 10 and 100 mm. Fig. 4 shows the seasonal 

balances for the low-density block for non-irrigated and irrigated conditions and for the 

high density block for irrigated conditions. 

 

For the low-density block without irrigation, (   
     ; D=Ei=DWW), the external input 

Ei represents 31-42% of the total inputs (not shown here). Fig. 4a shows, as expected, that 

infiltration I and evapotranspiration ET are mainly influenced by ksoil and by seasonal 

changes in precipitation P and ETpot, meanwhile the influence of S
green

 is lower. Runoff 

(Ro) changes seasonally, with runoff coefficient RC relatively constant, approximately 18% 

of the precipitated water for cases two to four during the whole year. For case one, RC 

varies seasonally from 39 to 55%. For the cases with irrigation, Fig. 4b, Ei can vary 

seasonally from 32 to 75% of the inputs. The maximum value for irrigation is during 

spring, with    
          for case 4. Irrigation combined with large S

green
 enhances ETact, 

mainly during spring and summer. As expected, I increases with increments in the amount 

of water irrigated. 

 

For the high-density block without irrigation, there are no significant variations among the 

cases, mainly because green areas are a small percentage of the total area. Hence, this case 

is not presented in Fig. 4. Runoff coefficient RC is approximately 80% for all the scenarios 

and for the different seasons. For the cases with irrigation, Fig. 4c, the maximum value for 

irrigation is during spring,    
          , which is approximately 10% of the total inputs. 

Due to the high population density and related production of domestic waste water (DWW), 

external input Ei (Ei= DWW) represents between 68 and 80% of the total inputs. For the 

high-density block, infiltration I and the actual evapotranspiration ETact, represent a small 
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percentage of the water balance. For the studied cases the maximum consumption, I + ETact, 

was 15% of the total water budget. 
 

 
Figure 4 Seasonal balances for the two blocks to evaluate the sensitivity of the variables. ksoil = 0.1 

and 5 mm/h; and storage capacity of green areas, S
green

 = 10 and 100 mm 
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It is important to know the soil infiltration capacity ksoil and the green surface area S
green

 

when evaluating the water balance of a block, especially those with a large percentage of 

green areas. A series of dynamic simulations were performed to understand the relationship 

between ETact, I, and S
green

 and irrigation in the green areas for the low-density block. Fig. 5 

shows the results for spring and winter for non-irrigated and irrigated low-density green 

areas, Appendix C shows the yearly overview. Below we discuss the effects on the water 

balance in terms of Infiltration, Evapotranspiration, and Surface runoff. 

 

Infiltration  

I is determined by ksoil and the remaining water stored after evapotranspiration. Fig. 5 

shows that for the cases with no irrigation (   
     ), precipitation will mainly determine 

the infiltration values, changing seasonally from 350 in spring to 570 m³ in summer. If 

there is irrigation, more water will be available and I increases up to 1292 m³ in spring. 

From Fig. 5 it can be concluded that I is proportional to S
green

 and to the number of 

irrigation events during the season. 

 

Evapotranspiration.  

Potential evapotranspiration ETpot is on average 0.08 mm per hour in spring and summer 

and 0.01 mm per hour in autumn and winter. Actual evapotranspiration ETact depends on 

the available water stored in the upper layer of the subsurface. Water stored in green areas, 

infiltrates or evaporates. Thus, if ksoil >> ETpot, the sensitivity to S
green

 is lower. Fig. 5 also 

shows a strongly decreasing change of I and ETact when ksoil is approaching low values 

close to zero. This reduction of I and ETact is compensated by an increment of Ro.  

 

Runoff 

The results show that Ro
green

 can be generally regarded as zero for green areas. Only at very 

low values of ksoil and/or limited storage capacity smaller than a few mm (soil layers of less 

than a few cm thickness on top of low permeable subsurface matrices), runoff becomes 

significant, for the climatic conditions modeled. It is important, however, to recall that we 

neglected soil saturation, since we assumed a constant soil hydraulic conductivity given by 

(ksoil). For heavy precipitation events as under tropical conditions, after a certain value, the 

soil saturates and the subsequent precipitation will become runoff. Hence, for a more 

detailed design under heavy rainfall conditions, it is needed to combine continue–yearly–

balances models with event-based models to evaluate the actual runoff.  

 

6.3.2 Baseline and demand minimization 

Effect of block density on baseline water dynamics  

To further study the water balance of the two blocks, we assumed that S
roof

= 0.25 mm, S
green

 

= 25 mm, ksoil = 0.5 mm/h and that irrigation starts after 156 dry hours, filling 80% of S
green

. 

Fig. 6a and 6b shows the comparison of the water balance for the low- and high-density 

block for the conventional demand. For the low-density block, the external input (Ei) varies 
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seasonally. The average Ei was 455 m³/season, ranging from 374 to 567 m³/season. These 

seasonal variations are due to garden irrigation. In the studied year, spring was a dry season 

and required garden watering, meanwhile, the summer was wet and had a low garden 

irrigation demand (    
   ). Consumption (Co) also varies seasonally, mainly driven by the 

seasonal changes of evapotranspiration. For the studied year, the nature-driven flows have a 

slight predominance on the water balance, P = 2201 m³/y (55% of the inputs) and Co = 

2279 m³/y (57% of We + Co). Meanwhile, the human-driven flows (Ei) are 1821 m³/y 

(45% of the inputs) and We is 1715 m³/y (43% of We + Co). 

 

For the high-density block, Ei shows minor seasonal variations, ranging from 1612 to 1686 

m³/season, because garden irrigation represents only a small percentage of the water 

demand. In this block, Co varies seasonally from 128 to 217 m³/season, reflecting the 

increment in evapotranspiration during spring and summer. For the studied year, 

precipitation (P) was found to be 2201 m³/y (26% of the inputs) and Consumption (Co) 

reached 682 m³/y (8% of We + Co). Meanwhile, the human-driven flows Ei amount to 

6603 m³/y (74% of the inputs) and waste exported We was 8116 m³/y (92% of We + Co). 

This shows that the water cycle of the high-density block is dominated by the human-driven 

flows. 

 

Comparing the water balance of the two blocks, Fig. 6a-b, there are several non-linear 

relationships, as a result of e.g. constraints on the infiltration and storage capacity. 

Although the population in the high-density block is 5.25 times the population in the low-

density block, the yearly demand of the high density block is only 3.6 times higher than in 

the low-density block. Moreover, looking at the total in – and out – flows of the blocks, 

they are approximately 1000 m³/season for the low-density block and 2000 m³/season for 

the high-density block. The waste exported of the high-density block is 4.7 times larger 

than the waste exported of the low-density demand because of the differences in gardening 

irrigation, evapotranspiration, infiltration, and domestic demand. 

 

Demand minimization  

The first strategy in the UHA is demand minimization, focusing on the largest demand at 

household level (Dactivity > 10%). By implementing water saving technologies to reduce 

shower, toilet and laundry demand; the indoor household demand can be reduced up to 23% 

for the two-people household and 25% for the four-people household, see Appendix D. Fig. 

6c and 6d show the effect of demand minimization for the two blocks per season on the 

water balance of the block. Demand minimization reduces Ei, We and the percentage of the 

human-driven flows in the urban water balance.  
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Figure 5 Seasonal simulation for the green areas (2000m²) of the low density block to evaluate the 

sensitivity of the water balance to ksoil = 0.1 – 5 mm/h and, S
green

 = 10 – 100 mm without irrigation 

(left) and with irrigation(right), assuming irrigation after 156 dry hours filling 80% of S
green
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Figure 5 (Continuation) 
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Figure 6 Baseline comparison of the seasonal water balance for the low-density and high-density 

blocks. 6a-b for conventional demand and 6c-d for minimized demand. External input (Ei), 

Precipiation (P), Consumption (Co) and Waste exported (We) 
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Figure 7 Baseline comparison of the seasonal water balance for the low- and high density blocks. 

a-b) Changes in demand (D) and waste exported (We) for conventional (con) and minimized (min) 

demand. c) Changes in the Demand Minimization Index (DMI) for the two blocks and d) Changes in 

the Waste Output Index (WOI) for the two blocks for conventional (con) and minimized (min) 

demand 
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by using the waste output index (WOI). Fig. 7a-b show the reduction on D and We for the 

two blocks. Fig. 7c shows the DMI values for the two blocks. For the low-density block, the 

average DMI is 0.18, varying seasonally from 0.14 to 0.22. For the high density block DMI 

is 0.23 and is constant over the year. This shows that for low dense areas with irrigated 

green areas, it is needed to consider that efficiency of saving measures fluctuates 

seasonally, according to the changes in the demand.  

 

Fig. 7d shows the seasonal variations of the waste output index (WOI) for the two blocks. 

For a conventional system: WOI = –1, which implies that D = Ei = We, and that runoff is 

zero. For WOI > –1, part of the demand was used for garden irrigation and thus infiltrated 

or partly evapo-transpirated. For WOI < –1, runoff is being produced as waste export. 

Although on a yearly basis, WOI > –1 for the low-density block, seasonal WOI shows that 

in summer WOI<–1. This seasonal increment is due to roof runoff during peak rainfall 

events. For the high density block, WOI < –1 over the year, resulting from the low 

percentage of permeable areas. During the summer, WOI = –1.31, which means that a 

runoff equivalent of 30% the block demand becomes waste output. In the scenarios 

considered below, the conventional and minimized demands were included. Fig. 7d also 

shows the variations in WOI if demand minimization is implemented. As WOI is related to 

the demand, with D in the denominator, a reduction in D will result in more negative 

(increase the absolute) value of WOI. The increments in the WOI in Fig. 7d due to demand 

minimization can thus be interpreted as an increment of the relative importance of natural 

driven flows, because the ratio Ro/Dconv> Ro/Dmin. 

 

6.3.3 Harvesting local resources: recycling and multi-sourcing 

For this study, we developed four possible scenarios for improving the sustainable use of 

urban water resources, and performed dynamic model calculations (Table 2). All the 

scenarios considered demand minimization. Demand minimization combined with 

recycling and multi-sourcing was studied. Moreover, changing from conventional to green 

roofs was also investigated. Scenario (Sce) 1 and 2 compare recycling and multi-sourcing 

measures for minimized demand. We considered recycling of light grey water (LGW) from 

shower and harvesting rainwater from roofs to supply toilet flushing and laundry (    
   ) 

and irrigation demands (    
   ). Thus we aim to obtain insight in the contribution of two 

different measures separately in Sce 1 and 2. Additionally, we studied the combination of 

measures, demand minimization combined with LGW recycling and rainwater harvesting 

and with (Sce 3) and without (Sce 4) green roofs. In this way, we can get insight in the 

maximum of sustainable water resource management at block level, and a possible add on 

effect by including green roof storage capacity. Fig. 8 shows the seasonal SSI and WOI for 

the different scenarios and Appendix E provides detailed information on the seasonal water 

balances for the different scenarios. Below we discuss the effects on water resource 

dynamics as studied in the different scenarios. 
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Figure 8 Effect of the implementation of the different scenarios for the low-density (a-b) and high-

density block (c-d) and main factors that influence seasonal variability of SSI and WOI 

 

Effect of demand minimization combined with recycling LGW (Sce 1) and rainwater 

harvesting (Sce 2) in the low-density block: 

Fig. 8a shows the effect of recycling LGW and rain water harvesting for the low-density 

block for conventional demand. SSI and WOI show large seasonal variability. This 

seasonal variability can be explained by different factors affecting the water balance, as 

identified by the small caps letters [a-g]: (a) indicates the seasonal variability of DQ2 /D, 

which represents the maximum value of self-sufficiency that could be achieved, given the 

restriction of only supplying DQ2 with secondary water. This seasonal variability is given by 
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the garden irrigation during the dry seasons. The seasonal variability of SSI is indicated by 

(b) and is due to seasonal variations of Rh and D, since SSI=Rh/D. For instance, for the 

low-density block, in Sce 1, Rh is more or less constant over the seasons. However, due to 

the changing D, SSI changes as well. The unmet DQ2 demand (in percentage of D) as 

indicated by (c) gives an indication of Ei used to supply DQ2 and reflects the restrictions 

given by the storage capacity to temporally match the Rh and DQ2. Similarly other  

differences and variations can be observed in Fig. 8, namely (d) indicates the differences of 

the yield achieved by the different scenarios. For instance, comparing LGW recycling and 

rainwater harvesting, (d) reflects the differences on the temporal pattern; (e) indicates the 

seasonal variations of WOI due to changes on We and D, WOI=We/D; (f) indicates the 

differences of the yield achieved by the LGW recycling and Rainwater harvesting; (g) 

indicates the seasonal changes of the WOI due to green roofs implementation.  

 

Table 2 Overview of the scenarios studied in this paper 

Low-density block = 32 people High-density block = 168 people 

Sce 1. Demand Minimization + Recycling of LGW for DQ2 

25% minimization of      

Rpot = 0.50 *           
    

DQ2 = 0.25 *           
    +     

    

Storage: Two tanks of 0.5 m³ each, (31 l/p)  

Treatment unit: 1.3 m³ (40 l/p d) 

23% minimization of      

Rpot = 0.45 *           
    

DQ2 = 0.18 *           
    +     

    

Storage: Two tanks of 2.6 m³ each, (30 l/p) 

Treatment unit: 6.7 m³ (40 l/p d) 

Sce 2. Demand Minimization + Rain water harvesting for DQ2 

Mpot = Ro
roof

 = 440 m³/y = 38 l/p d 

DQ2 = 0.25 *           
    +     

    

Storage: One tank 3.7 m³, (140 l/p)  

Mpot = Ro
roof

 = 1760 m³/y = 28 l/p d 

DQ2 = 0.18 *           
    +     

    

Storage: One tank of 19.3 m³, (140 l/p) 

Sce 3. Demand Minimization + Recycling of LGW + Rain water harvesting for DQ2 

Mpot = Roroof = 440 m³/y = 38 l/p d 

DQ2 = 0.25 *           
    +     

    

Storage: grey water of 0.5 m³; treated grey water 

and rainwater 2m³ (80 l/p) 

Treatment unit: 1.3 m³, (40 l/p d) 

Mpot = Roroof = 1760 m³/y = 28 l/p d 

DQ2 = 0.18 *           
    +     

    

Storage: Two tanks of 2.6 m³ each, (30 l/p) 

Treatment unit: 6.7 m³ (40 l/p d) 

Sce 4. Demand Minimization + Recycling of LGW + Rain water harvesting for DQ2 + Green roofs 

with a storage capacity of 10 mm.  

Idem as in Sce 3. 

LGW: Light Grey Water from shower 

S&T: Storage and Treatment; Storage capacity and treatment rates are based on Chapter 4 DQ2 = toilet, laundry and     
    

One day of retention hydraulic time in the treatment unit was assumed 

 

For the low-density block, variability of DQ2 /D (a) is large, due to our assumption, that 

irrigation occurs within one hour for the whole block. However, no detailed information is 

available to predict real irrigation pattern in urban green areas. Options to reduce (a) are to 

increase the storage capacity of the tanks or modify the irrigation pattern. 
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Comparing seasonal variations of SSI in Fig. 8a, for LGW recycling SSI varies from 0.13 

to 0.21 and for rainwater harvesting from 0.06 to 0.18. The unmet demand is large due to 

temporal variations of garden irrigation and limitations in storage capacity. Similar benefits 

for WOI are achieved by recycling LGW or harvesting rainwater, where WOI varies from -

0.56 to -1.13 for Sce 1 and from -0.61 to -1.14 for Sce 2, see also Appendix E, Table E1. 

Hence, LGW recycling is more effective than rainwater harvesting because LGW 

production has a more constant pattern than precipitation. Thus, for a given storage 

capacity, extreme rainfall events lead to overflows. These overflows can be minimized by 

increasing storage capacity, which will result in higher SSI.  

 

Effect of combined measures: demand minimization + LGW recycling + rainwater 

harvesting (Sce 3) and addition of green roofs (Sce 4) in the low-density block: 

Fig. 8b shows the effect of combining measures. SSI shows that combining LGW recycling 

and rainwater harvesting has only a minor effect in SSI and WOI for the low-density block, 

compared with the results achieved for Sce 1, although the storage capacity of the storage 

tank was increased by 1.5 m³ as presented in Table 3. However, if the measures are 

combined with green roofs, a noticeable reduction in WOI is achieved for the wet season, 

from WOI of –1.11 to –0.94. 

 

Effect of recycling LGW (Sce 1) and rainwater harvesting (Sce 2) for minimized 

demand in the high-density block: 

Fig. 8c shows the effect of LGW recycling and rainwater harvesting for minimized demand. 

Again, LGW recycling can supply a large percentage, 90%, of DQ2 . Meanwhile, rainwater 

harvesting can only supply 67% of DQ2 , with seasonal variations from 40% to 94% . LGW 

recycling shows a larger improvement of the WOI. However, WOI < –1, therefore, 

additional measures are needed to prevent runoff going as waste output.  

 

Effect of combined measures: demand minimization + LGW recycling + rainwater 

harvesting (Sce 3) and addition of green roofs (Sce 4) in the high-density block: 

Fig. 8d shows the effect of combining measures. SSI shows that combining LGW recycling 

and rainwater harvesting has only a minor effect in SSI and WOI for the low-density block, 

compared with the results achieved for Sce 3. However, if the measures are combined with 

green roofs a noticeable reduction in WOI is achieved, e.g. on yearly basis WOI 

becomes -1.04. 

 

Comparing the low-density with the high density block 

Fig. 9 shows an overview of the seasonal variations of the metabolic profiles for the two 

blocks and for the four scenarios. In the Fig. 9 the bar represents the average year value for 

each index, and the lines indicate the maximum and minimum seasonal values obtained for 

the year studied. Comparing the low-density with the high density block, the seasonal 

variations are larger in the low-density block. Comparing the three indices, the WOI has the 
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larger variations up to 40% in the low-density block and up to 10% in the high-density 

block. The variations of the SSI for the low-density block are  due to irrigation demand, 

    
   , which is a seasonal demand. Urban blocks with large irrigated areas have a peak 

demand during dry months. If this demand is averaged over a year, efficiency of a measure 

can be over-estimated. Meanwhile highly dense areas, with a low percentage of irrigated 

areas have a more constant demand pattern. Although, combining LGW recycling with 

rainwater harvesting did not show larger improvements in any of the blocks, for the low-

density block a combination of increasing storage capacity and changes in irrigation can 

improve the SSI and WOI.  

 

For the low-density block, minimizing 25% of the indoor demand results in a reduction 

between 14% - 22% of the total block water demand. This variation is given due to seasonal 

variations of the irrigation demand. The maximum SSI is in summer, 20% for Sce 1. The 

best WOI is –0.48 (Sce 4 - spring), and the worst WOI is –1.14% (Sce 2 - summer). For the 

high-density block, minimizing 23% of the indoor demand results in reduction of 22% of 

the total block water demand, without any significant seasonal variation. The maximum SSI 

that can be achieved is also 20% (Sce 1 -spring). For WOI, the best value was -0.94 and 

achieved for Sce 4 in spring, the worst value of –1.29 was found for Sce 2 and in summer. 

Looking at Rh, grey water recycling offers a constant supply over the year meanwhile 

rainwater has notorious seasonal variations.  

 

This scenario study showed that for both block types, Sce 4 is the best, because fewer 

resources are entering and leaving the system, see Fig. 9. Looking at the indices, the 

metabolism of the block can be evaluated as in Fig. 7-9. SSI values are constrained by DQ2. 

In this study, DQ2 was defined as the sum of toilet, laundry and garden demand. SSI can 

increase if additional activities are included, for instance, car washing or landscaping. If 

WOI < –1, the waste production of the block is not only limited to the domestic demand, 

but there is also runoff being exported as waste. This shows the need of complementary 

measures to improve the overall performance of the block, especially to minimize the waste 

output. For the studied scenarios, if there is a surplus of harvested water (Ract+Mact> D, 

O
S&T

>0), it will be discharged into the sewer system (see Fig. 2). Hence, in practice, there 

is a need for proper control of the recycling and multi-sourcing components. For instance, if 

there is a surplus of treated or multi-sourced water, this could be better used to increase the 

irrigation of green areas. Although, reducing O
S&T

 to    
    will increase the demand, and 

thus decrease DMI. The use of recycled/harvested water also implies that the external input 

    
    does not change. Thus, by using recycled water, less waste output is produced. 

Moreover, irrigation will increase evapotranspiration rates and contributes to cool the area 

in hot seasons. Therefore, enhancing irrigation of green areas by using recycled/harvested 

water is a recommended option to improve the water cycle. Proper control of these flows 
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should avoid over-irrigation that could lead to runoff from green areas. Another option to 

reduce WOI is to export recycled/harvested water to other blocks. 

 

 
Figure 9 Overview of the seasonal variations of the metabolic profiles for the two blocks. a) Low-

density block, b) high-density block. Bars indicate the seasonal average and lines indicates the 

range of variability for the studied year 

 

The set of indicators, DMI, WOI and SSI, describe the metabolism of each of the scenarios. 

As introduced in chapter 4, these indices can also be plotted in a metabolic dashboard. Fig. 

10 shows the representation of the yearly metabolism for each of the scenarios, by plotting 

in the horizontal axis the demand, and in the vertical axis the Rh in the positive direction 

and the We in the negative direction. The arrows indicate the direction towards more 

sustainable systems. The dashboard shows that Sce 4 has the best metabolic profile for both 

blocks, mainly due to reduction on the We. 

 

6.3.4 General discussion 

Implementing the UHA can lead to significant effects in water resource management 

efficiencies by minimizing demand, minimizing outputs and multi-sourcing using local and 

renewable resources at block scale. UHA is an alternative to meet the local water demand 

concentrated at the city level and to reduce urban water inputs from surrounding catchments 

in the region. 

 

Due to the interrelation between infiltration-evapotranspiration and irrigation in the green 

areas, the low-density block has more seasonal variations. This shows the drawbacks of 

making only an average annual water balance. Moreover, large differences are found by 

comparing the low and high-density block. This shows the drawback of using average data 

of urban areas when planning for decentralized systems at block scale. Therefore, measures 

to optimize the urban water cycle at block scale, should be studied separately for specific 

urban typologies and evaluated at least seasonally, as in this study. 
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At building level, mainly technological implementation should be addressed to improve the 

water balance. At the larger block scale, other options are feasible and needed and three 

main options are identified: (i) technology implementation, e.g., water saving devices or 

treatment technologies; (ii) modifications in the building unit envelope, e.g., green roofs; 

and (iii) changes in the urban surfaces to increase subsurface storage capacity by selecting 

permeable materials. Thus, measures at building level could be complemented with 

measures at block level. Temporal multi-scale analysis can help to define the optimal scale 

for management of certain flows. Thus, combining the measures proposed by the UHA with 

other type of measures, e.g. real time flow control, will further optimize the water cycle at 

block scale. As already shown in this chapter, dynamic modeling is needed to understand 

temporal variations and to support water management of drinking water supply and 

wastewater treatment. Further, technology implementation requires a supportive policy 

framework and a trade-off analysis, e.g. to identify rebound effects. 

 

 
Figure 10 Metabolic dashboard to represent the metabolic profiles for the two blocks, for the baseline and the 

four scenarios (indicated by numbers and diamonds) on yearly basis. a) Low- and b) High-density block. 

 

In general, a large storage capacity will guarantee that in case of heavy precipitation, the 

peak runoff can be minimized and delayed in time. Water storage also enhances 

evapotranspiration and infiltration. Moreover, for dry areas or highly dense urban areas, 
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storage of water combined with regular irrigation, can contribute to an increase in 

evapotranspiration, thus naturally cooling down the urban setting. To avoid waste of high 

quality drinking water, irrigation should be supplied by secondary quality water. In this 

case, although demand    
    increases, the other two metabolic indices will show the 

positive effect in the water cycle at block level, i.e. lower WOI and higher SSI.  

 

In countries with low precipitation, and hot climates, water scarcity is an issue and 

management of local resources becomes crucial. Methodologies such as the UHA can 

support planning of more sustainable urban water systems. Optimization of the urban water 

cycle implies different measures in different locations according urban typology, climatic 

conditions and water use. Linkages between urban planning and water management are 

strong. For instance, the choice of the surface materials will directly affect the 

evapotranspiration and infiltration. Moreover, the external inputs, which are a function of 

the demand, are also determined by selection of the building type and the block density. 

High density by itself does not imply a less sustainable water cycle. By avoiding 

impermeable surfaces, and implementing different strategies, such as green roofs, recycling 

and harvesting of rain water, traditional problems of high density areas, e.g. high runoff, 

can be minimized. Thus, urban water managers and urban planners should work together to 

optimize urban water flows. Further research is needed to further investigate the water 

cycle of other urban typologies, e.g. row or duplex houses, and other urban context, e.g. 

different climatic and topographic conditions.  

6.4 Conclusions 

Three main options are identified to improve the water cycle at block level: (i) technology 

implementation; (ii) modifications in the building unit envelope, and (iii) changes in the 

urban surfaces. Looking at the heterogeneity of blocks within a city, no single solution fits 

all the blocks. Generalization of urban areas and yearly water flow averages can cause error 

when planning decentralized water infrastructures. Urban water planning and management 

has to be adaptive and flexible to cope with the stochastically driven dynamics of the urban 

water balance. Moreover, urban water planning requires a multi-scale and time-dependent 

approach to select customized solutions supporting the design of more sustainable urban 

water metabolisms. 
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APPENDIX A – Additional tables with background data 

 

Table A1 Storage capacities according land use. 

Land use S – storage capacity (mm) 

Soil  150 b 

Pervious  2.11 b 

Grass:  1.3 a 

Impervious: 0.59 b  

Pavement:  0.48 a 

Roofs:  0.25 a 
a
(Grimmond et al., 1986); 

b
 (Grimmond et al., 1986) 

 

Table A2 Infiltration rate (Mays, 2011) 

Group Description Minimum infiltration rate (in/h)  

[mm/h] 

A Deep sand, deep loess, aggregated silts 0.3-0.45 [7.62 – 11.43] 

B Clay loams, shallow sandy loam, soils low in 

organic content, and soils usually high in clay 

0.15-0.3 [3.81-7.62] 

C Soils that swell significantly when wet, heavy 

plastic clays, and certain saline soils 

0-0.05 [0-1.27] 

 

Table A3 Typical values of runoff coefficients according surface. 

Surface type Description Runoff coefficient 

C 

Paved High quality paved roads with gullies < 100 m apart 1.00a 

Paved High quality paved roads with gullies > 100 m apart 0.90 a 

Paved Medium quality paved roads 0.85 a 

Paved Poor quality paved roads 0.80 a 

 Asphalt and concrete pavement 0.70-0.95 b 

 residential 0.3-0.7 b 

Roofs  0.75-0.95 b 

Permeable High to medium density housing 0.55-0.45 a 

Permeable Low density housing or industrial areas 0.35 a 

Permeable Open areas 0.00-0.25 a 

Lawns  0.05-0.35 b 
a 
(Loucks et al., 2005), 

b
 (Butler and Davies, 2000) 
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APPENDIX B – Dynamic modeling of components  
B
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Eq. (1) can be defined for each of the storage units as follows: 
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APPENDIX C – Detailed information of the seasonal simulation with and without 

irrigation for green areas in the low-density block 

 

 
Figure C1. Seasonal variations for the green areas of the low-density block. simulation for the 

green areas (2000m²) of the low density block to evaluate the sensitivity of the water balance to ksoil 

= 0.1 – 5 mm/h and, S
green

 = 10 – 100 mm without irrigation 
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APPENDIX C – (Continuation)  

 

 

 
Figure C1. (Continuation)  
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APPENDIX C – (Continuation)  

 

 

 
Figure C2. Seasonal variations for the green areas of the low-density block. simulation for the 

green areas (2000m²) of the low density block to evaluate the sensitivity of the water balance to ksoil 

= 0.1 – 5 mm/h and, S
green

 = 10 – 100 mm with irrigation, assuming irrigation after 156 dry hours 

filling 80% of S
green
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APPENDIX C – (Continuation)  

 

 

 
Figure C2. (Continuation)  
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APPENDIX D – Detailed information of indoor demand for conventional and 

minimized demand 

  

Table D.1 Dutch daily indoor water demand per person in liters according to the 

household size (SIMDEUM) year 2007 and potential minimization of the largest 

demands. 

 Two-people household  

High-density block 

Four-people household 

Low-density block 

 Conventional Minimized Conventional Minimized 

Activity Demand 

(l/p d) 

% Demand 

(l/p d) 

% Demand 

(l/p d) 

% Demand 

(l/p d) 

% 

Shower 42 40 37
a
 50 45 41 37

a
 45 

Toilet flushing 23 22 5
b
 7 20 18 4

b
 5 

Washing machine 14 13 13
c
 18 14 13 11

c
 13 

Bath 2 2 2 3 3 3 3 4 

Sink 4 4 4 6 4 4 4 5 

Dish washing  17 16 17 23 9 8 9 11 

Drinking water 3 3 3 4 2 2 2 2 

Other    0 13 12 13 16 

Total 105 100 81 100 110 100 83 100 

a
 Shower with a demand of 6 l per minute.

  

b
 Vacuum toilets with a demand of 0.8 l per flush. 

c
 Washing machine with a demand of 9 l kg

-1
 and 4 kg per cycle. 
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Figure E1 Water balances per season to evaluate the effect of the UHA strategies 
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Chapter 7 
 

Evaluating the potential of improving 

the water metabolism at city scale 
 

 

 

Abstract 

 

In developed countries, centralized infrastructure is the conventional approach to provide 

potable water to consumers and to transport wastewater and storm water runoff away from 

urban areas. Over the last decade, increasing attention has been given to decentralized 

infrastructures towards improving the urban water balance. However, traditional planning 

and design approaches are not appropriate for the selection of decentralized systems. This 

chapter studies the potential of improving urban water balance at city scale by means of 

decentralized and centralized infrastructure. The city of Wageningen in the Netherlands 

was studied. Yearly water balances were investigated for each of the neighborhoods. 

Neighborhoods were classified according the impact level on the water balance. 

Interactions between spatial scales and the dependence of the system on temporal scales 

were evaluated to gain insight in the effect of different measures on the urban water 

balance. Results showed large potentials to optimize the urban water balance by combining 

decentralized and centralized infrastructure. The decentralized measures included: demand 

minimization, light grey water recycling, rainwater harvesting, green roofs. The tested 

centralized measure was rainwater infiltration. Results showed that demand can be 

minimized by 14% and the city is able to supply 100% of the non-potable water for 

laundry, toilet and irrigation. Moreover, runoff can be completely minimized. And the 

waste output can be reduced to 69% of the demand. Furthermore, infiltration and 

evapotranspiration are enhanced increasing the quality of the urban environment, with 

respect to water retention and flattening peak temperatures in summer. 

 

 
 

 

 

 

 

This chapter is in preparation as:  

Agudelo-Vera, C.M.; Keesman, K.J., Mels, A.R.; Rijnaarts. H.H.M. Evaluating the potential of improving 
residential water balance at city scale. 
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7 Harvesting urban resources towards more resilient cities 

7.1 Introduction  

Cities are complex entities. Each urban area is unique in form and functioning due to 

factors as population density, topography, geology, etc. A city is composed of many 

heterogeneous “patches” with, for instance, different surfaces, land uses and densities of 

infrastructures with green, blue and built elements. Traditional approaches for the design 

of centralized urban infrastructure are top-down approaches. Herein, cities are treated as 

homogeneous entities, in which consumption of resources such as energy, water and 

materials and waste production are based on average urban characteristics, such as, 

average population density and/or household size. Our research shows that generalization 

of urban areas using yearly averages cannot meet tailored approaches to improve 

sustainable resource management (Chapter 6). Simulations showed that a dynamic time 

dependent resource approach at smaller spatial scales is needed especially when 

optimizing resource efficiency of cities. Previous chapters have shown that building and 

block type influence the urban water use and waste water production. Moreover, systems 

dynamics need to be taken into account to properly assess the implementation of a 

measure, as it is determined by the interactions between spatial scales (e.g. saving devices 

at building unit influence the supply of centralized drinking water) and the dependence of 

the system on temporal scales (e.g. day-night or seasonal patterns). The spatial interactions 

and temporal dependencies provide valuable insight in urban flows and their time and 

seasonal fluctuations and allow us to evaluate strengths and weaknesses of centralized or 

decentralized measures for improving resource efficiency. 

 

The Urban Harvest Approach (UHA), as described in Chapter 4, aims to provide 

guidelines for optimizing resource management in cities. UHA encompasses a qualitative, 

dynamic multi-scale analysis of inputs and outputs to select the most appropriate scale for 

interventions that decrease the demand of external resources and the export of waste by 

supporting urban planning and design. The UHA allows coordination of scales for 

technology selection and allows coupling of different urban units and blocks. Coupling 

should not be confused with aggregation. When looking at cities at multiple spatial and 

temporal scales, productive and “resource-hotspot” areas can be identified. This 

information is useful for management, planning and design of urban water at city scale. 

This research studied resource reduction strategies, at different, increasing scales; 

decentralized at household and building unit scale was studied in Chapter 5, block scale 

was studied in Chapter 6, followed by decentralized and centralized approaches at city 

scale in this chapter.  

 

The objective of this chapter is twofold, firstly to test the UHA at city scale and secondly 

to gain insight into the influence of urban heterogeneity on the water balance in residential 

areas. In this chapter, we studied the city of Wageningen in the Netherlands. Yearly water 
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balances for the entire city and for each of its nine neighborhoods were investigated based 

on hourly time steps for different scenarios. The study included a quantitative assessment 

of different scenarios to improve the residential water balance at city scale, following the 

hierarchy of measures proposed within the UHA and with focus on changes in the land 

cover and interactions between neighborhoods and scales. 

7.2 The urban water balance 

 

Fig. 1 shows a schematic representation of the urban water system at city level. A general 

volume balance for a dynamic system with actual amount of water stored (s) reads as: 

ds/dt = Inputs – Outputs - Consumption      (1) 

 

The term ds/dt is the change in storage per unit of time, in our case the water volume. We 

distinguish between five different types of water storage at city scale: surface depression 

storage (s
i
), roof storage (s

roof
), storage in tank/treatment units (s

S&T
), storage in the 

separated storm sewer (s
SS

) system and storage in the combined sewer (s
CS

). Decentralized 

systems (    ) can be implemented at single block level or shared by two or more blocks. 

Although, water is also stored in the subsurface, this storage is considered outside of the 

system boundary, because usually it is managed at regional level. Thus, ds/dt is the change 

in the sum of volumes of water stored in the different subsystems in a small time interval 

and divided by the time interval. 

 

At city level in conventional urban systems, there are two main inputs of water: 

precipitation (P) and external inputs (Ei) – provided by the drinking water network. There 

is one waste output, wastewater (WW). WW is collected and transported to wastewater 

treatment plants. There are two main alternative inputs at city scale, namely, recycled 

wastewater (Rpot) and harvested rain water (Mpot) from roofs. Runoff from the land 

surfaces is not harvested for further (re-)use due to quality requirements of re-used water. 

As described in Chapter 5, we consider two types of residential demand: potable (DQ1) and 

non-potable (DQ2). DQ2 is divided into indoor (   
   ) and outdoor (   

   ). Fig. 1 shows 

that DQ1 is supplied by EiQ1, thus EiQ1= DQ1 and that        
       

   . Rh are the 

resources harvested in the block, that can be used for actual recycling (Ract) and actual 

multi-sourcing (Mact). For an isolated block, if Rh>D, this will result in overflows. 

However, if two or more decentralized systems are coupled, exchange of flows is feasible. 

Thus, if Rh > D, then export of secondary resources is feasible (ErQ2>0), and in this case, 

ErQ2 is a positive output. In case Rh ≤ DQ2, import of secondary resources is feasible 

(    ). Thus,                       , with          
        

   , and 

subsequently EiQ2 can be expressed as: 

                        
     

(2) 
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At city level, three main flows are consumed by ecosystem or natural processes: actual 

evapotranspiration (ETact), infiltration (I) and natural recharge (Nrec). ET has a cooling 

effect in urban areas, I recharges the soil profile and Nrec recharges superficial water 

bodies, hence, Co=ET + I + Nrec. In this study, we use the Penman-Monteith method 

(FAO, 1988) to calculate the reference evapotranspiration. And we assumed the reference 

evapotranspiration as potential evapotranspiration (ETpot). Infiltration is assumed to be 

constant over the hourly time step. Infiltration at a given time step is a function of the 

stored water in the permeable surfaces, and with a maximum rate equal to the soil 

hydraulic conductivity (I ≤ ksoil, both in mm/hr). For more details see Chapter 6. 

 

In this chapter, we focus on water resource management in the built environment. 

Therefore, we only consider harvesting of rain water from roofs, while non-harvested 

water is discharged to the sewer. Runoff from the land surfaces is not harvested for further 

(re-)use due to quality requirements. Runoff is often described using the runoff coefficient 

(RC). RC is defined as the proportion of rainfall that contributes to runoff from the 

surface, RC=Ro/P (Butler and Davies, 2000). If there is a separated storm sewer (SS), the 

runoff (Ro
SS

) will be collected and discharged into superficial water. If there is overflow 

from the separated sewer system (O
SS

), O
SS

 will be discharged into the combined sewer 

(CS). The runoff of the areas connected to the combined sewer (Ro
CS

) is collected together 

with the domestic wastewater (DWW), waste water from industries and business (WWi&b) 

and eventually overflow from decentralized S&T units (O
S&T

). In extreme rainfall events, 

if there is overflow from the combined sewer system (O
CS

), O
CS

 will be discharged into 

surface water. Eq. (1) can be defined for each of the storage units based on Fig. 1. 

Appendix A shows the balances for each unit and the deduction the city water balance: 
  

  
            

    
                                       (3) 

 

7.2.1 The UHA at city level 

As described in Chapter 4, the Urban Harvest Approach (UHA) consists of three steps: (i) 

input minimization by implementation of more resource efficient technology; (ii) output 

minimization by cascading and recycling of flows
18

; and (iii) multi-sourcing of the 

remaining demand by harvesting local-renewable resources. One of the objectives of the 

UHA is to reduce external input EiQ2. Notice from Eq. (2) that EiQ2,i can be minimized by 

reducing non-potable water demand DQ2 and maximizing Rh and  IrQ2 or reducing ErQ2. 

Additionally within the UHA, waste export should be reduced. The waste exported (We) 

of the system is equal to WW. From the balance of the domestic sewer (see Fig. 1), the 

following equality can be derived: 

                                  (4) 

 

                                                 
18

 Cascading refers to direct reuse of waste flows, meanwhile recycling includes quality upgrading of the flow 
before reuse. In this paper, to secure quality standards, we will only consider recycling. 



Evaluating the potential of improving the water metabolism at city scale 

                                        

 

147 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 1
 S

ch
em

a
ti

c 
re

p
re

se
n
ta

ti
o
n
 o

f 
th

e 
u
rb

a
n
 w

a
te

r 
sy

st
em

 a
t 

ci
ty

 l
ev

el
 

City level

Boundary of the urban block

Buildign unit
S

i

L
a

n
d

 s
u

rf
a

c
e

s

D
Q

2

Ii

S
ro

o
f

R
o

o
fs

In
-h

o
u

s
e

 

d
e

m
a

n
d

Rh

D
Q

2
D

Q
1

S
e

p
a

ra
te

d
 s

to
rm

 s
e

w
e

r

D
W

W
S

to
ra

g
e

M
p

o
t

G
ro

u
n

d
 w

a
te

r

in
d

o
u

t

P
ro

o
f

P
i

E
i Q

2

o
u

t
E

T
ro

o
f

E
T

i

R
o

a
c

t 
ro

o
f

R
o

i

E
i Q

1
E

i Q
2

in
d

R
h

Q
2

in
d

F
o

r 
im

p
e

rm
e

a
b

le
 a

re
a

s
: 

Ii , 
D

Q
2
, 
a

n
d

 a
re

 e
q

u
a

l 
to

 z
e

ro
o

u
t

R
h

Q
2

o
u

t

a
c

t
a

c
t

C
o

m
b

in
e

d
 s

e
w

e
r 

S
u

rf
a

c
e

  
w

a
te

r
W

a
s

te
w

a
te

r 
tr

e
a

tm
e

n
t 

p
la

n
t

N
re

c

O
S

S
S

S
S

S
C

S

R
es

o
u

rc
es

 h
ar

ve
st

ed

W
as

te
 

O
u

tp
u

ts

C
o

n
su

m
p

ti
o

n

W
W

Se
p

ar
at

ed Yes

N
o

Ro
SS

Ro
CS

S
to

ra
g

e
 &

 

T
re

a
tm

e
n

t 

S
S

&
T

R
p

o
t O

S
&

T

E
r Q

2

Fl
o

w
 

ex
ch

an
ge

Ir
Q

2

WWi&b

O
C

S

E
i Q

1
i&

b

In
d

u
st

ri
e

s 
&

 b
u

si
n

e
ss

 
(i

&
b

) 

d
e

m
an

d

R
o

p
o

t 
ro

o
f

H
ar

ve
st

ed
Y

e
s

No



Chapter 7            

 

148 

 

Hence, to effectively reduce We, a combination of measures is needed. These measures 

include the implementation of water saving devices at the domestic and industrial waste 

water level (DWW and WWi&b), the choice of optimal storage capacity (OS&T), the 

selection of permeable materials with larger storage capacities (O
SS

 and O
CS

) and the 

disconnection of impermeable surfaces from the domestic sewer system (Ro
CS

 and
 
O

SS
). 

 

To relate the different variables of the water balance and to evaluate the different 

measures, the so-called “metabolic profile” is calculated. The metabolic profile is 

described in terms of the demand (D=DQ1+DQ2), the waste exported (We), the resources 

harvested (Rh) and the exported resources (ErQ2). The metabolic profile is defined by four 

indices, i.e. Demand Minimization Index (DMI), Waste Output Index (WOI), Self- 

Sufficiency Index (SSI), and Resource Export Index (REI), as defined in Chapter 4. 

 

    
                    (    )        ( )

                    (    )
 

      

    
    (5) 

Where, Dcon represents the demand when conventional technologies are implemented, 

while D is the actual demand. 

 

     
               (  )

       ( )
  

  

 
  

                           

 
 (6) 

    
                                    (  )

       ( )
 

              

 
   (7) 

    
                   

       ( )
 

    

 
       (8) 

 

7.2.2 Urban characteristics and the urban water balance 

In literature, impervious surface coverage is used as a key environmental indicator 

(Arnold Jr and Gibbons, 1996; Pauleit and Duhme, 2000). The impermeable coverage 

percentage can be related to the impact level on the water balance in urban areas, as 

discussed in Chapter 6. We developed a diagram to identify the impact level on the water 

balance in urban areas based on the land coverage, see Fig. 2. Three impact levels were 

defined: low, moderate and high. Low, moderate and high are correlated to green, 

pervious and impervious predominant land cover, respectively. Moreover, impermeability, 

density and building type can be related by using the transect concept (Duany and Talen, 

2002), as shown in the horizontal axis in Fig. 2. 

For evaluating the potential harvesting of water in our approach, it is important to consider 

the total impervious area and the disconnected impervious area (DIA). For the purpose of 

water balancing in this chapter, DIA includes only those impervious areas that drain into a 

separated storm sewer. Therefore, an effective runoff coefficient (RCe) is defined as the 

proportion of rainfall that is discharged into the combined sewer and becoming waste 

output. Additional parameters that strongly influence the urban water balance are the soil 



Evaluating the potential of improving the water metabolism at city scale 

                                        

 

149 

 

type and soil compaction degree. Construction activities increase soil compaction and 

change the soil profile. Thus, more intense development results in surfaces with lower 

storage capacities and lower hydraulic conductivity (Brabec et al., 2002).  
 

 

Figure 2 Impact level on the water balance according to land cover.  

 

7.2.3 Case study 

In this chapter, the water system of Wageningen, a city in the Netherlands was chosen as a 

case. Following the UHA, first, we prepared a baseline assessment for each of the 

neighborhoods of the city. The results are obtained for 2007, as for this year most of the 

required data were available. The hourly indoor water demand of each of the 

neighborhoods was simulated using the software SIMDEUM
19

 (Blokker et al., 2010). 

Hourly meteorological data from the meteorological station in Wageningen
20

, the 

Netherlands, were used to determine precipitation and reference evapotranspiration using 

the Penman-Monteith equation (FAO, 1988). As a first step, a calibration of ksoil and S
green

 

and the irrigation pattern at city level was performed. Yearly water balances for the city 

and for each of the nine neighborhoods were modeled. After that, the UHA was 

implemented by simulating three scenarios in each of the neighborhoods and the results 

were evaluated. Scenarios included demand minimization combined with light grey water 

(LGW) recycling, green roofs implementation and rainwater harvesting from roofs. 

Finally, the potential interaction among neighborhoods was investigated by evaluating the 

potential of resource exchange within the city. Moreover, linkages between centralized 

versus decentralized infrastructure were analyzed. 

                                                 
19 SIMDEUM software was developed by the water cycle institute (KWR), it simulates daily patterns for different 
household types in The Netherlands. 
20 http://www.met.wau.nl/haarwegdata/ 
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7.3 Results and discussion 

This section evaluates some decentralized and centralized options to improve the urban 

water balance, focusing on residential demand. In literature, increasing attention is given 

to the dichotomy centralization – decentralization in urban water systems (Libralato et al., 

2012; Makropoulos and Butler, 2010). In practice, one approach cannot exclude the other 

and vice versa. There are several options available for water infrastructure at city level. 

Makropoulos and Butler (2010) provide a summary of the available options. Each type is 

substantially related to the characteristics and volumes of wastewater to be treated, as well 

as to the possibility of flow separation at source (Libralato et al., 2012). Table 1 provides 

information of the location of the city and relevant characteristics of each of the 

neighborhoods. 

 

7.3.1 Model calibration  

In cities, monitoring data on volumes and quality of the water flows is usually limited. 

Moreover, in most cases the monitored flows are sampled with a different frequency. For 

our case study, the following information was available: yearly external water input (Ei) 

provided by the Drinking Water Company, hourly precipitation data (P) and daily inflow 

to the wastewater treatment plant (WW). First, a theoretical water balance was prepared, 

with the known a priori information. Nrec was calculated assuming that 30% of 

impermeable surfaces are disconnected from the domestic sewer system. Consequently, 

the sum of evapotranspiration and infiltration (ET+I) was deduced from the difference of 

the other flows, see Fig. 3. 

 

In this case, both ET and I are unknown in the water balance. One equation with more than 

one unknowns can have an infinite number of solutions because different combinations of 

values can give a similar result. Consequently, more information is needed. For our case 

study, additional assumptions were necessary. Values for potential evapotranspiration 

were assumed based on reference evapotranspiration calculated by using the Penman-

Monteith equations. The model was calibrated using an hourly water balance as described 

in the previous chapter. Using SIMDEUM software, a yearly indoor demand pattern with 

hourly time step was generated. The different variables were calibrated using the daily 

wastewater flow monitored in the Wageningen wastewater treatment plant located in 

Renkum. The calibrated model is shown in Fig. 3. The assumptions mentioned in Fig. 3 

are used for further analysis. A water balance sensitivity analysis towards changes in the 

precipitation and changes in ksoil and S
green

 is shown in appendix B. 
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Figure 3 Theoretical (a) and calibrated (b) model representing the annual water balance for the 

city of Wageningen in 2007. 

 

In urban drainage models, there are many sources of uncertainty that interact non-linearly 

in the modeling process (Deletic et al., 2011). Differences between the theoretical and the 

calibrated water balance can be explained by three main factors: uncertainties in the flows 

(volumes), neglected flows and assumptions in the model. Uncertainties in the data are, for 

example, lack of accuracy of urban evapotranspiration data. Another uncertainty is the 

lack of knowledge about the irrigation patterns of green areas, as well as the daily demand 

patterns of industries and business. Neglected flows are, for instance, the presence of 

leakages in the distribution or in the sewer system and infiltration of groundwater in the 

sewer. Errors related to assumptions in the model are, for instance, simplified infiltration 

processes, the assumption of a constant gravity flow in the sewer
21

 and neglecting 

topographical factors. Moreover, at city level, we assume that the hydraulic conductivity 

ksoil and S
green

 are homogenous. 

 

 

 

                                                 
21

 In reality, water is pumped in certain points of the sewer network. 
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7.3.2 Decentralized measures to improve the urban water balance  

Each neighborhood was classified according the impact level of land cover on the water 

balance, see Fig. 4a-b. Looking at the city of Wageningen as a whole, the water balance 

has a low impact level. However, at neighborhood scale, some “hot-spots” can be 

identified. Hot-spots are defined as areas with large resources demand and large waste 

production. Areas with a high level of impact, e.g. neighborhood 1, are identified as hot-

spots, because they are related to large runoff and high densities. Fig. 4c shows the water 

balance baseline per neighborhood. As expected, the baseline assessment showed 

noticeable differences in the water balance related to the characteristics of the 

neighborhoods. The differences are mainly due to variations in the land cover, 

neighborhood size and density. To facilitate comparison, the water balance per 

neighborhood was recalculated per hectare, (Fig. 4d) and per person, (Fig. 4e). The water 

balance per hectare shows that neighborhood 6 is also a hot-spot. Neighborhood 6 has the 

largest amount of inputs and outputs per hectare (16100 m³-year/ha), almost 30% larger 

than the average value for the city (12500 m³-year/ha). Recalculating the water balance 

per person shows large differences in the demand per person. Especially neighborhood 9 

has a high demand, i.e. the double of the average for the city due to irrigation of green 

areas, while available precipitation per person is approximately 10 times the demand. 

These variations of the water balance within the city suggest that for improving the urban 

water balance, customized solutions should be selected based on neighborhood 

characteristics.  

 

To further investigate the effect of the urban heterogeneities on the water balance, we 

focused on three neighborhoods. The selected neighborhoods were 1, 2 and 9; each one 

with a different impact level. Fig. 5 shows the land cover of the three selected 

neighborhoods. Three scenarios were defined based on results from Chapter 6: LGW 

recycling, green roofs and rainwater harvesting, all combined with demand minimization, 

see Table 2. We investigated the influence of the neighborhood characteristics on the 

efficiency of the scenarios. Fig. 6 shows the results for the three selected neighborhoods 

per hectare. The positive vertical axis represents the inputs, (P and Ei). The negative 

vertical axis represents the exported waste outputs (We) and the consumption (Co). We is 

the sum of WW and O
CS

. And Co is the sum of I and Nrec. Appendix C shows the results 

recalculated per person. 
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Figure 4 (a-b) Classification of each of the neighborhoods according to the level of impact on the 

water balance. c) Baseline water balance for each of the neighborhoods. d) Normalization per 

hectare. e) Normalization per person. Precipitation (P), External input (Ei), Consumption (Co) 

and Waste exported (We) 
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Figure 5 Land cover of the three selected neighborhoods  

 

Table 2 Overview of the scenarios studied in this chapter 

Sce 1. Demand Minimization + Recycling of LGW for      

20% minimization of      and recycling of LGW for toilet, laundry and     
    

Rpot = 0.45 *           
    ; DQ2 = 0.2 *           

    +     
    

Storage: grey water of 5 l per person; treated grey water 20 l per person 

Treatment unit: 40 l per person  – (assumed 1 day hydraulic retention time) 

Sce 2. Demand Minimization + Green roofs  

20% minimization of      + Green roofs with a storage capacity of 10 mm. 

Sce 3. Demand Minimization + Rain water harvesting for      

20% minimization of      and Multi-sourcing rain water for toilet, laundry and     
    

DQ2 = 0.2 *           
    +     

   . One storage tank: 140 l per person 

LGW: Light Grey Water from shower and bath; storage capacity and treatment rates are based on Chapter 6. 

 

The results showed that different measures have different efficiency in each of the 

neighborhoods. For neighborhood 1, which is a hot-spot, the different scenarios showed 

evident reductions in external input (Ei) and waste exported (We). Meanwhile for 

neighborhood 9, there is less room for improvement, due to the already low impact level. 

The results of the dynamic model scenario calculations are discussed below using the 

results of Fig. 6.  

 

For demand minimization and LGW recycling (Sce 1), there was a reduction in Ei of 48%, 

46% and 5%, for the neighborhoods 1, 2 and 9, respectively. Meanwhile, We was 

decreased by 19%, 16% and 9% for the neighborhoods 1, 2 and 9, respectively. The 

results showed that efficiency gains of recycling are larger at higher densities. This is due 

0.5 km

Impermeable roofs

Green areas

Permeable

Impermeable pavements
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to the fact that in highly dense areas the water balance is dominated by human-driven 

flows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6 Effect of different scenarios for three neighborhoods, values per hectare for the year 

2007. All the scenarios consider demand minimization 

 

For demand minimization and green roofs implementation (Sce 2), there was a reduction 

in Ei of 18%, 17% and 5%, for the neighborhoods 1, 2 and 9, respectively. Meanwhile, We 

was decreased by 13%, 11% and 10% for the neighborhoods 1, 2 and 9, respectively. For 

this scenario the reduction of Ei is due to demand minimization. Meanwhile, the reduction 

on We is due to the increment in the storage capacity of the roofs, which, minimizes the 

runoff and enhances evapotranspiration. These results also indicate that the contribution of 

demand minimization to a better balance increases with increasing density. Meanwhile, 

green roofs reduced approximately the waste outflow of the neighborhoods by 10%. 
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For demand minimization and rainwater harvesting (Sce 3), there was a reduction in Ei of 

38%, 16% and 5%, for the neighborhoods 1, 2 and 9, respectively. Meanwhile, We was 

decreased by 8%, 7% and 3% for the neighborhoods 1, 2 and 9, respectively. This shows 

that although there is a significant amount of rainwater available, only a percentage can be 

harvested and used to supply DQ2. Restrictions to harvest rainwater are given by the roof 

area, by the temporal variations (peaks) of the rainfall, by the temporal variations of the 

DQ2 and by the restrictions given by the storage capacity (S
S&T

).  

 

Fig. 6 show a difference of one order of magnitude of resources harvested (Rh) per hectare 

for neighborhoods 1 and 9. This indicates that high dense areas can become producers and 

exporters of secondary resources while low dense areas can become importers. The results 

also show that there are significant overflows from the storage units (O
S&T

) in Sce 1 and 3. 

Overflows are resources surpluses. These overflows are important factors to further 

optimize the system. The surpluses could be harvested and exported as secondary 

resources (Er), resulting in We minimization. In Fig. 6, the potential resource export index 

(REIpot) indicates the amount of resources available to be exported.  

 

Comparing the three scenarios, we observed that the efficiency of measures is determined 

by the characteristics of the neighborhoods, i.e. population (or housing) density and land 

coverage. Fig. 7 shows the variability of each of the scenarios, the bars show the average 

value for the city per hectare, and the lines show the variations found in the three studied 

neighborhoods. These results are for a specific year, 2007. Therefore, inter-annual 

variability of precipitation is not considered. 

 

 
Figure 7 Average values per hectare for the city of Wageningen (bars) and the range of variation 

of the studied neighborhoods for the baseline and the three scenarios for the year 2007 
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Fig. 8 shows the metabolic indices for the three neighborhoods and for the three scenarios 

without (a-c) and with (d-f) export of resources. From Fig. 8 (a-b), scenario one is the best 

option for the neighborhoods 1 and 2 because it has the highest SSI and the highest WOI. 

This confirms that recycling is a crucial measure towards improving urban water 

metabolism. Fig. 8c shows small differences in the metabolism of neighborhood 9. If 

resources are exported, REI > 0, there is an improvement in the WOI. Fig. 8 (d-f) shows 

that if export of resources is possible, additional improvements in the metabolic profile are 

achieved. Moreover, we can see that highly dense areas, neighborhood 1 and 2, can export 

treated LGW (Sce 1) or harvested rainwater (Sce 3). Meanwhile for the Neighborhood 9 

only harvested rainwater is valuable to be exported, LGW recycling (Sce 1) only 

represents 5% of the neighborhood demand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Effect of different scenarios for three neighborhoods and for the city, values per hectare 

for the year 2007. All the scenarios consider demand minimization 

 

A large percentage of the waste output of cities is runoff. Runoff coefficient (RC) is often 

related to land use function or to the impermeable percentages degree of the surface. 

Although for the baseline and Sce 1, the average RC for the city is 0.28, RC varies from 

0.11 to 0.58 within the city. Runoff has four pathways, i) being harvested, ii) being 

retained or infiltrated, iii) going to the combined sewer system, or iv) going to a separated 

sewer system. Studies have shown that runoff from urban areas is one of the major causes 

of water quality degradation in surface waters (Hatt et al., 2004). Many Dutch cities have 

already adopted runoff minimization as a measure to improve surface water quality and 
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reduce sewer overflows. Runoff minimization is achieved by harvesting, retaining or 

infiltrating rainwater, as in scenarios two and three, in which RC is reduced. Fig. 9 shows 

the daily wastewater production for the baseline and for the three scenarios. Although 

visible benefits are achieved during dry periods, the measures are not enough to fully 

cancel the high peak flows during heavy rainfall. To reduce these peak flows, 

infrastructure at a larger scale is needed. Special attention should be given to the 

disconnected impermeable areas, because typically a part of the runoff from these areas is 

collected in the combined sewer, effective runoff coefficient (RCe). In the city of 

Wageningen, 70% of the impermeable areas are connected to the combined sewer system. 

In order to minimize RCe, changes in the percentage of connected impermeable areas are 

needed. Connection of impermeable areas to the sewer is often managed at city level. 

Hence, measures at block level should be complemented with measures at city scale. 

 

7.3.3 Centralized measures to improve the urban water balance  

In developed countries, centralized infrastructure is the conventional approach to provide 

potable water to consumers and to transport wastewater and storm water runoff away from 

urban areas. For areas where water resources are scarce, centralized infrastructure can be 

used to improve self-sufficiency, e.g. via large scale wastewater reclamation for non-

potable use, or seawater desalination for potable use (drinkable standard). However, 

wastewater reclamation needs a multi-stage treatment and desalinated water use is 

generally limited to coastal and brackish groundwater containing areas, and it has – at this 

moment – high energy costs and produces residual brine (Makropoulos and Butler, 2010). 

Some more energy efficient and zero liquid discharge desalinization technologies are 

being developed (Rijnaarts et al., 2011). Nevertheless, we argue that decentralized LGW 

recycling and re-use will yield more benefits, because in addition to increasing the self-

sufficiency, it reduces the waste output. 

 

Waste output minimization at city level can be achieved by recycling waste streams (as 

discussed in previous chapters), by increasing consumption coupled to natural outlets  (I, 

ET or Nrec) and by exporting secondary resources (Er). For example, increase of I, ET and 

Nrec can be achieved by increasing surface storage (e.g. increasing green and permeable 

areas percentage) or disconnecting the impermeable areas from the domestic sewer. 

Disconnecting the impermeable areas implies either a large separated sewer system or 

retention and infiltration infrastructures. If urban runoff is collected in the combined sewer 

system, dilution of the domestic water and large peaks will decrease treatment efficiency 

at the wastewater treatment plant. If untreated runoff is discharged into surface water, it 

releases unwanted pollutants into the environment. Therefore, retention and infiltration are 

preferred over increasing sewer capacity. This preference is also reflected in the recent 

developments on sustainable urban drainage systems (SUDS).  
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The storage capacity needed to reduce runoff was investigated for the city of Wageningen. 

To simulate a wet year, the precipitation of 2007 was increased by a factor of 1.1. 

Different storage capacities were assumed by varying the percentage of the total area 

allocated for retention and infiltration from 1% to 10% and varying the storage depth
22

 

from 1 mm to 250 mm. Results shown in Fig. 10 demonstrate that there are several 

options to minimize runoff in a wet year, for instance by allocating 4% of the area for 

infiltration in case the storage depth is 200 mm or 8% of the area with a storage depth of 

100 mm. In both cases runoff approaches a value zero, as indicated in Fig. 10. 

 

Exporting secondary resources (Er) can refer to export between neighborhoods or from the 

city to peri-urban areas. In the case study, there is a mismatch between demand of 

secondary resources and production of secondary resources, because production of LGW 

is larger than DQ2. Resource exchange is a win-win situation because the exporter 

minimizes its waste and the importer minimizes its external input of potable water.  

 

Thus, to optimize the urban water balance a combination of decentralized and centralized 

measures is required. Fig. 11 shows the optimization of the water balance for the city of 

Wageningen for the year 2007. Results showed potential of providing 100% of DQ2, which 

represents 34% of the total demand. Additionally, there is a resource surplus, which can be 

exported to peri-urban areas. By implementing green roofs and harvesting rainwater, runoff is 

reduced from 2710 m³/ha to 910 m³/ha. Therefore, centralized infiltration facilities are feasible to 

manage the remaining runoff.  

 

7.3.4 General discussion 

From the point of view of resource management, a decentralized infrastructure allows to 

implement customized measures for different parts of the city, which can enable exchange 

of flows between neighborhoods. For instance, a high density area can become an exporter 

of secondary resources; meanwhile a low density area can become an importer of 

secondary resources. Moreover, resources surpluses can foster development of new 

functions within the urban area, e.g. urban agriculture, without exerting additional 

pressures on the water balance.  

 

Another option to further improve the urban water balance is to close the water balance of water 

consuming private sector activities, e.g. laundries or car wash facilities, by implementing 

decentralized measures. Decentralized recycling technologies for laundry services have been 

successfully tested. Results showed that by using a membrane bioreactor and reverse osmosis 

treatment, up to 90% of the water demand of the laundry service was recycled on-site (Hoinkis and 

Panten, 2008). Another option at city scale is rainwater utilization using precipitation runoffs from 

traffic surfaces. Nolde, (2007) has shown the feasibility of treatment of rainwater runoff for use in 

                                                 
22

 Storage depth refers to the effective storage depth, therefore the total depth of the infiltration area will be 
given by the porosity of the soil and it will be larger than the storage depth. 



Evaluating the potential of improving the water metabolism at city scale 

                                        

 

161 

 

irrigation or toilet flushing using a substrate filter (aerobic biological treatment) and UV 

disinfection.  

 

Figure 9 Daily wastewater production for the city of Wageningen year 2007 (baseline) 

and for three selected scenarios  

 

 

Figure 10 Storage capacity versus effective runoff at city scale 
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Figure 11 Towards an optimized water balance for the city of Wageningen, year 2007  

 

Since cities are dynamic complex systems, it is important to consider the effect of 

decentralized infrastructure in the overall metabolism of the city in order to avoid negative 

side effects. Multi-scale analysis helps to identify whether problems are being shifted to 

another part of the system. For instance, when rainwater harvesting is implemented, peak 

flows may result in overflow in the treatment and storage unit (  
   ). Such an overflow 

would become a waste output. This negative side effect can be reduced by implementing 

active control devices in the system. By active control, the rainwater collection during 

extreme rainfall events can be disconnected. Therefore the excess water will be collected 

by the separated sewer system or by the retention and infiltration infrastructure. Fig. 12 

shows the proposed arrangement for managing urban runoff.  

 

The results show that significant efficiency improvements in the urban water balance are 

possible by implementing a combination of decentralized measures. Complete 

optimization of the water balance (SSI=1 and WOI=0) is technologically feasible, e.g. 

production of potable water by advanced membrane filtration or indirect wastewater reuse: 

infiltration of treated wastewater for later abstraction (and treatment) for potable use. 

However, implementing these measures implies additional energy consumption at 

decentralized scale, for treatment and pumping. This will require additional energy studies 

to identify optimal scales for treatment and transport. These studies should consider the 

energy consumption in the different steps, from the production of potable water to the 

disposal of the outputs.  
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Figure 12 Proposed arrangement for managing urban runoff  

 

Fig. 13 shows the changes in the indices at city scale for selected measures. These results 
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however it has a larger energy demand than decentralized treatment of LGW or rainwater 

collection. LGW recycling and rainwater harvesting have a low energy demand and have 

positive effects on WOI, SSI and REI. However, for a system optimization they should be 

combined with rain water retention or infiltration. 

 

 
 

Figure 13 Changes in indices at city scale due to selected measures  

 

7.4 Conclusion  

Cities offer a broad range of possibilities to improve the current water resource 

management. Our research shows that by taking a multi-scale approach and taking into 

account the heterogeneities of the different areas (neighborhoods or blocks), tailor made 

approaches result in higher efficiency gains than by taking a city scale approach only, 

based on average neighborhood characteristics. It also increases the portfolio of measures 

to improve urban water metabolism in cities. Moreover, hot-spots in which high efficiency 

gains are possible can be identified to be addressed first. However, not only internal 

characteristics of the city are important, the external environment will also partly 

determine the options. Optimizing the urban water balance requires multiple criteria 

analysis at different scales in which goals and scenarios should be defined per case.  
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Appendix A – Balances for each of the units in the urban system 

The change in the storage in the city is given by Eq. (1). Eq. (1) can be defined for each of 

the storage units based on Fig. 2 as follows: 

For the roofs: 
      

  
            

    
      

    
     (A1) 

 

For the surfaces: 
   

  
         

        
          

            (A2) 

 

For the decentralized storage and treatment: 
     

  
                    (A3) 

 

For the separated storm sewer: 
    

  
                     (A4) 

 

For the domestic or combined sewer: 

    

  
                                  (A5) 

 

In the building unit there is no storage, thus ds/dt = 0, thus 

     
                       (A6) 

 

Assuming no storage in the industries and business, thus ds/dt = 0, thus 

      
                  (A7) 

 

Consequently, after taking into account all these flows, Eq. (1) becomes 

 
  

  
            

    
      

    
         

        
          

           

                                                   

                    
                   (A8) 

 

Simplifying Eq (A7) and considering that                ;      
    

      
    

 

      
 ;      

    
           

    
;                    

    
;             

         ;    
        

        
   ;        

       
    ; Eq. (A8) becomes: 
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Appendix B – Sensitivity analysis 

We performed a series of simulation to evaluate the sensitivity of the water balance to 

variations of different variables. First, we evaluated the sensitivity to changes in the 

precipitation, over the last 25 years a wet year was 1998 with a precipitation of 1050mm 

and a dry year was 1996 with a precipitation of 573. The precipitation of 2007 was 

multiplied by a factor of 1.1 to simulate a wet year and by a factor of 0.58 to simulate a 

dry year. Fig. 1B shows the results. The flows that are more sensitive are infiltration (I) 

and wastewater (WW). 

 
Figure 1B Sensitivity analysis to changes in the precipitation 

 

Second, we evaluated the sensitivity to changes in ksoil and S
green

 values for the year 2007. 

Fig. 2B shows the results. The flows that are more sensitive are Evapotranspiration (ET) 

infiltration (I) and wastewater (WW). This results show the need to measure soil properties 

in order to properly asses the water balance. 

 
Figure 2B Sensitivity analysis to changes in ksoil and S
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Appendix C – Scenario results normalized per person  
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8 Harvesting urban resources towards more resilient cities 

8.1 Introduction  

In our era, human activity is the main driver of global environmental change (Rockström 

et al., 2009). We have reached this stage as a result of a number of simultaneous 

exponential increases, as increasing population, resource and land use, emissions of 

climate-altering gases and economic activity (Gleick, 2010a). Consequently, we are 

causing planetary-scale disruptions of the ecosystems that sustain life (Rockström et al., 

2009). In return, these ecosystem disruptions impose unprecedented stresses on our 

ecosystems, political systems, and economies (Gleick, 2010a). 
 

8.1.1 Urbanization and urban metabolism 

Urbanization and rising living standards are at the core of these global changes. Since the 

existence of the first settlements, management of resources like water, energy and 

materials has been fostered by innovation and technological developments. Changes in 

resource management have driven population growth and urbanization, as described in 

Chapter 2. Most current cities are highly dependent on external supply of water, energy, 

nutrients and other materials. In general, the larger and wealthier a city, the larger the area 

from which resources are drawn (McGranahan and Satterthwaite, 2003). With increasing 

technological development, the local and current impacts of urban resource consumption 

have shifted to larger spatial scales, to other time scales (e.g. by overexploiting a given 

resource) and to other flows (e.g. biofuel production requiring nutrients and water). As a 

result, the scale of resource use and waste generation, resulting from the urban 

metabolism
23

, has major implications for broad ecological sustainability at short and long 

term (McGranahan and Satterthwaite, 2003). 

 

8.1.2 Urban resource planning and management 

Resource consumption and waste production are linked to urban spatial characteristics, 

such as urban functions, densities and building typology. The foundations for these urban 

characteristics are to a large extent defined by urban planners. Consequently, urban 

planners indirectly influence the urban metabolism of the future. Vice versa, urban 

planning can contribute to improve local resources management towards cities with a 

smaller resource footprint. For this, planners need formal information and tools to 

understand cities and regions as environmental systems that are part of regional and global 

resource networks (Campbell, 1996, Kennedy et al., 2011).  
 

Ideally, urban resource planning and management would employ methodologies and tools 

that facilitate systematic assessment of planning options at various temporal and spatial 

scales with the aim to minimize resource import and waste export. Unfortunately, there is 

                                                 
23

 “Urban metabolism is defined as the sum of the technical and socio-economic processes that occur in 
cities, resulting in growth, production of energy, and elimination of waste” Kennedy, C., Cuddihy, J., Engel-
Yan, J., 2007. The changing metabolism of cities. Journal of Industrial Ecology 11(2) 43-59. 
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a lack of understanding and attention on how urban resource management is influenced by 

spatial (from local to regional) and temporal (from daily to yearly patterns) variations. 

Moreover, there are neither multi-scale methods nor indicators to measure the efficiency 

of changes in the urban metabolism.  
 

Recent urban metabolism studies have highlighted the large amount of flows going in and 

out of urban systems (Kennedy et al., 2011). Although urban metabolism studies give a 

complete picture of the urban flows in a given urban area at a certain point in time, usually 

the temporal and spatial scales are coarse. Coarse scales are appropriate for traditional 

centralized urban infrastructures, which are often end-of-pipe solutions. However 

emerging decentralized options require a more detailed understanding of the urban 

processes. Urban systems are composed of several sub-units, e.g. houses or industries. 

Each of these sub-units has a specific urban metabolism, in terms of quantity, quality and 

temporal pattern of resources use, see Fig. 1. Moreover, these sub-units are aggregated at 

different spatial scales, block, neighborhoods, or cities. Our hypothesis is that urban 

systems and their direct peri-urban surroundings can – to a large extent – become self-

sufficient in resources and can reduce their waste production by improving local resource 

management at the smallest scale possible.  
 

In this thesis, we developed and investigated a novel approach, the so-called urban harvest 

approach (UHA), as an assessment and planning tool for changing inefficient linear urban 

resource use and waste production into a sustainable urban metabolism. Herein, a city is 

regarded to have multiple potentials in the form of untapped primary and secondary 

(already used) resources that can be utilized, as shown in Chapter 3. The objective of this 

research was to test our hypothesis on one urban resource – water – by applying the UHA 

at various spatial scales to determine the optimal scale(s) of water resource management, 

taking into account time dependent water flow dynamics by applying a dynamic modeling 

approach and using detailed urban water flow data (Fig. 1).  

8.2 The Urban Harvest Approach (UHA) 

The Urban Harvest Approach (UHA) starts with a baseline assessment, followed by the 

implementation of three strategies. The first strategy is to minimize the demand. The 

second strategy is to reduce outputs by recovery, cascading and recycling. The third 

strategy is to multi-source the remaining demand by using renewable and local sources. As 

indicated in paragraph 8.1.2, the reduction in resource use starts at the smallest scale 

possible, followed by a stepwise scaling up from building to city scale. This approach 

considers cities as the sum of its subsystems and takes into account that there are several 

multi-scale interactions. Fig. 2 shows some multi-scale interactions of the urban water 

cycle as well as some source-sink connections. We argue that coupling of scales is needed 

to identify key multi-scale interactions and to identify the optimal scale(s) of management 

of different urban flows, as water, energy and materials. 
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Figure 1 Hypothesis: reduced urban resource consumption requires optimizing urban metabolism, 

taking dynamic natural and human driven water flow processes into account, starting at the lowest 

scale possible (building) and a subsequent  stepwise scaling up to block, neighbourhood and city 

level.  

 

 
Figure 2 Examples of multi-scale interactions in the urban water cycle 

Chapter 4 describes the UHA in detail. This chapter shows that the UHA allows 

coordination of scales for technology selection and allows coupling of different building 

units and blocks. Moreover, by analyzing the urban metabolism at multiple spatial and 

temporal scales productive and “resource-hotspots” areas can be identified. We proposed 

four indicators to describe and compare the urban metabolism of a given resource at any 
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scale, namely: Demand Minimization Index (DMI), Waste Output Index (WOI), Self- 

Sufficiency Index (SSI) and Resource Export Index (REI).  

 

8.2.1 The Urban Harvest Approach (UHA) applied to urban water cycles 

In the 19
th

 and 20
th

 century, in developed countries the “engineering” approach towards 

urban water management was leading. The predominant focus of water supply planners 

and managers has been on identifying and meeting growing human demands for water. 

Large scale centralized infrastructures are used to move water in both space and time to 

meet current and projected demands (Gleick, 2010b). Current trends, increasing 

population, climate change and local or seasonal limited water resources pose new 

challenges. Many cities worldwide face challenges of water shortages and rapidly 

depleting ground water and reservoir resources while facing challenges of increasing 

volumes of wastewater at the same time. New approaches are needed to improve urban 

water management to meet human and environmental demands for water (Gleick, 2010b).  

 

Climate change will, in many cities, result in more flooding risks. Moreover, in many 

coastal regions, the risk of flooding is aggravated by sea level rise and/or land subsidence. 

Land subsidence is stimulated by groundwater extractions that are often required to avoid 

water shortages. Even in the Netherlands, a country rich in water, high urbanization and 

high living standards increasingly pose pressure on available deep ground water resources. 

Improving the water cycle aimed at lower dependency of these natural sources will reduce 

the effects of climate change and lead to a higher resilience, e.g. with respect to droughts 

(van de Ven et al., 2011). 

8.3 UHA applied to residential urban water in the Netherlands 

Over the last decades, there has been an ongoing discussion over centralization versus 

decentralization of urban water systems (Libralato et al., 2012; Makropoulos and Butler, 

2010). Authors that favor decentralization argue that there are an increasing number of 

approaches to improve the efficiency in use and management of urban water flows at 

building and block level, including low- to high-technological options (see Makropoulos 

and Butler, 2010). 

 

In line with our hypothesis, we argue that “decentralized” systems play a central role in 

new paradigms towards more sustainable urban water management. Planning 

decentralized systems, however, requires thorough understanding of the influence and 

interaction of urban characteristics like, e.g., building type or land cover. Moreover, 

system dynamics need to be taken into account as a result of the interactions between 

spatial scales (e.g. saving devices at building unit influence the dynamic supply of 

centralized drinking water) and the dependence of the system on temporal scales (e.g. day-

night or seasonal patterns, and the related need for implementation of storage tanks). 
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These spatial interactions and temporal dependence provide necessary insights in the 

urban water flows dynamics behavior to assess the applicability and contribution to 

sustainable water use of a given approach or set of technological measures such as grey 

water recovery, treatment and re-use.  

 

In Chapters 5-7, we evaluated the residential water cycle for the Netherlands and the 

potentials for improvement. We considered multiple spatial scales, from building to city 

scale. Different scenarios to improve the residential water cycle were studied by dynamic 

modeling, following the hierarchy of measures and scale proposed in the UHA. 

 

In the Netherlands, the residential water demand is approximately 127 liters per capita 

(Foekema and van Thiel, 2008), of which 40% is used for showering, 30% is used for 

toilet flushing and 12% is used for washing clothes in the laundry machine. As a first 

strategy in UHA, demand minimization by implementation of water saving technologies 

(at the building level) were studied, including water saving toilets, head-showers and 

laundry machines. The second strategy in UHA, output minimization, was studied at the 

building level by optimization of the recycling of wastewater from shower for non-potable 

activities, including toilet flushing, laundry machine and garden watering demands. This 

so called Light Grey Water (LGW), has a low concentration of pollutants, and it has a 

relative constant temporal pattern. Moreover, LGW treatment is feasible at decentralized 

(i.e. building and block) scale. Multi-sourcing, as the third strategy in UHA, was studied 

via harvesting rain water from building roofs to supply for non-potable demand. Fig. 3 

shows the spatial and temporal scales and the main characteristics relevant for urban water 

management that were studied in this thesis. 

 

8.3.1 Urban Water cycle at building unit scale 

In chapter 5, we investigated indoor water metabolism at building level for two building 

types, a freestanding house (one four-people household) and a mid-rise apartment flat (28 

two-person households). It is known that the type of building relates to the total residential 

water demand (House-Peters et al., 2010). The reason is that building types are related to 

occupancy and type of appliances. For instance, families with children more often live in 

free standing houses and have a bathtub compared to families without children. 

Meanwhile couples without children more often live in apartment flats. In apartment flats, 

it is more likely to have a shower than a bathtub, due to space limitations. With respect to 

use dynamics, daily residential water demand is characterized by a morning and evening 

peak. Moreover, these peaks are influenced by the number of households in the building 

unit. 

 

Our reviews showed that implementing water saving devices at building level, focusing on 

the activities with larger water demand, may reduce up to 35% of the conventional  



Sustainable resource metabolism in cities of tomorrow 

 

 

175 

 

 

 

 

 

BuildingNeighborhood or blockCity

Sp
at

ia
l 

Sc
al

e

H
o

u
se

h
o

ld
 s

iz
e

Ex
p

o
rt

 o
f 

d
o

m
es

ti
c 

w
as

te
w

at
er

R
o

o
f 

ar
ea

 a
n

d
 

m
at

er
ia

l

La
n

d
 c

o
ve

r

M
u

lt
ip

le
 h

o
u

se
h

o
ld

s 

P
u

b
lic

 a
re

as
 

m
an

ag
ed

 b
y 

th
e 

m
u

n
ic

ip
al

it
y

M
ix

ed
 la

n
d

 u
se

C
en

tr
al

iz
ed

 
in

fr
as

tr
u

ct
u

re
: 

se
w

er
s,

 W
W

TP

W
as

te
w

at
er

 f
ro

m
 

in
d

u
st

ri
es

 a
n

d
 

b
u

si
n

es
se

s

Te
m

p
o

ra
l a

C
h

ar
ac

te
ri

st
ic

s 
ta

ke
n

 in
to

 a
cc

o
u

n
t 

in
 t

h
is

 s
tu

d
y

Se
as

o
n

al
 p

re
ci

p
it

at
io

n
 

an
d

 e
va

p
o

tr
an

sp
ir

at
io

n

R
ai

n
fa

ll 
va

ri
at

io
n

s

P
re

se
n

ce
 o

f 
ga

rd
en

D
ec

en
tr

al
iz

ed
 

in
fr

as
tr

u
ct

u
re

St
o

ra
ge

 d
ep

re
ss

io
n

  

P
o

te
n

ti
al

 im
p

ro
ve

m
e

n
ts

M
in

im
iz

e 
D

em
an

d
 

H
ar

ve
st

 L
G

W
 a

n
d

 
ra

in
 w

at
er

 

O
p

ti
m

iz
e 

ga
rd

en
 

ir
ri

ga
ti

o
n

Li
fe

 c
yc

le
s 

/
R

e
sp

o
n

si
b

le
 a

ge
n

ts

C
h

an
ge

s 
in

 o
cc

u
p

an
cy

 
an

d
 li

fe
 t

im
e 

o
f 

h
o

u
se

h
o

ld
 d

ev
ic

es
:

1
0

-2
5

 y
ea

rs

B
u

ild
in

g 
ch

an
ge

s:
2

5
-5

0
 y

ea
rs

C
it

y 
ch

an
ge

s:
5

0
-5

0
0

 y
ea

rs
In

fr
as

tr
u

ct
u

re
2

5
-5

0
 y

ea
rs

P
ri

va
te

 o
w

n
ed

P
u

b
lic

 a
n

d
 P

ri
va

te
 

o
w

n
ed

P
u

b
lic

 a
n

d
 P

ri
va

te
 

o
w

n
ed

G
ar

d
en

s 
an

d
 p

ri
va

te
 

gr
ee

n
 m

an
ag

ed
 b

y 
th

e 
co

m
m

u
n

it
y

In
d

o
o

r 
an

d
 o

u
td

o
o

r 
d

em
an

d

Te
ch

n
o

lo
gy

 o
r 

in
fr

as
tr

u
ct

u
re

  i
m

p
le

m
en

ta
ti

o
n

R
es

o
u

rc
e 

ex
ch

an
ge

 
b

et
w

ee
n

 b
lo

ck
s 

o
r 

n
ei

gh
b

o
rh

o
o

d
s

C
h
an

g
es

 i
n
 t

h
e 

u
rb

an
 s

u
rf

ac
es

 

Te
ch

n
o

lo
gy

 im
p

le
m

en
ta

ti
o

n
 +

 R
es

o
u

rc
e 

ex
ch

an
ge

P
ea

k 
h

o
u

r 
d

em
an

d

La
n

d
 c

o
ve

r

D
is

co
n

n
ec

te
d

 
im

p
er

m
ea

b
le

 a
re

as

St
o

ra
ge

 a
t 

d
ec

en
tr

al
iz

ed
 

tr
ea

tm
en

t 
an

d
 s

to
ra

ge
 

sy
st

em

St
o

ra
ge

 a
t 

d
ec

en
tr

al
iz

ed
 

tr
ea

tm
en

t 
sy

st
em

a 
Fo

r 
al

l t
h

e 
sp

at
ia

l s
ca

le
s 

h
o

u
rl

y 
d

em
an

d
 p

at
te

rn
 

an
d

 h
o

u
rl

y 
p

re
ci

p
it

at
io

n
 w

as
 c

o
n

si
d

er
ed

H
ar

ve
st

 r
ec

la
im

ed
 

an
d

 r
ai

n
 w

at
er

In
cr

ea
se

 g
re

en
 a

n
d

 
p

er
m

ea
b

le
 a

re
a 

R
et

en
ti

o
n

 a
n

d
 

in
fi

lt
ra

ti
o

n
 

in
fr

as
tr

u
ct

u
re

H
ar

ve
st

 r
ec

la
im

ed
 

an
d

 r
ai

n
 w

at
er

In
cr

ea
se

 g
re

en
 a

n
d

 
p

er
m

ea
b

le
 a

re
a 

Im
p

le
m

en
t 

gr
ee

n
 

ro
o

fs

P
ea

k 
R

u
n

o
ff

R
es

id
en

ti
al

R
es

id
en

ti
al

P
h

ys
ic

al

P
ea

k 
h

o
u

r 
d

em
an

d

St
o

ra
ge

 d
ep

re
ss

io
n

  

St
o

ra
ge

 a
t 

d
ec

en
tr

al
iz

ed
 

tr
ea

tm
en

t 
sy

st
em

Optimising water metabolism 
starting at the lowest scale possible

F
ig

u
re

 3
 D

es
cr

ip
ti

o
n
 o

f 
th

e 
sc

a
le

, 
sp

a
ti

a
l 

ch
a
ra

ct
er

is
ti

cs
 a

n
d
 t

h
ei

r 
in

fl
u
en

ce
 i

n
 t

h
e 

u
rb

a
n
 w

a
te

r 
cy

cl
e 

in
ve

st
ig

a
te

d
 i

n
 t

h
is

 

th
es

is
. 

(I
m

a
g
es

 s
o
u
rc

e:
 G

o
o
g
le

 M
a
p
s 



Chapter 8            
                                        

 

176 

 

demand. If demand is minimized, 100% of toilet and laundry demands could be catered by 

LGW recycling. If minimization is not implemented, a combination of LGW recycling and 

rainwater harvesting is needed to supply 100% of the conventional toilet and laundry 

demands. Although 100% is achieved in both cases (with and without minimization) 

noticeable differences are found in the storage capacity requirements, which can be a 

limitation in high dense urban areas. Considering the required space per inhabitant 

(including treatment and storage), efficiency is larger for building units with multiple 

households than for building units with a single household. 

 

Overall, our results showed that requirements for external water resources can be reduced 

by 45 - 50% by optimizing water metabolism at the building level. At the same time, 

optimization is hampered by suboptimal dynamics of LGW production and demand for 

non-potable water, requiring relatively large storage volumes at the building level with 

single household. 

 

8.3.2 Urban Water cycle at block scale 

In Chapter 6, two different city blocks were analyzed for climate and water use conditions 

in the Netherlands; a low-density city block composed of freestanding houses with 

gardens and a high-density block composed of mid-rise apartment flats without gardens. 

At block level, outdoor demand was investigated. As outdoor demand we considered 

garden watering. Garden watering has a high seasonal variability and is correlated with 

high residential water demand. Moreover, the presence of a garden is highly related to 

urban characteristics such as, building type or density (Duany and Talen, 2002). Seasonal 

water balances were investigated for different scenarios. Modeling results showed that at 

block level, surface coverage and soil characteristics (for water infiltration), roof area (for 

rainwater harvest potential) and housing density (for water needs per km2) are key 

indicators for estimating the potential to reduce the dependence on external water 

resources and to reduce the export of waste. Import of drinking water represented up to 

40% and 80% of the total input, in the low- and high-density block, respectively. Special 

attention was given to the variations of the runoff coefficient. The results showed large 

seasonal fluctuations in the runoff coefficient, from 18 to 55% for the low-density block. 

Meanwhile for the high-density block, this coefficient was relatively constant over the 

year, approx. 80%. Considering minimization of shower, laundry and toilet demands, 16% 

self-sufficiency can be achieved by recycling LGW. The main changes are found in the 

waste production ratio (waste/demand), see Fig. 4. Looking at the heterogeneity of blocks 

within a city and the temporal variations on garden watering and precipitation pattern, no 

single solution fits all the blocks and some benefits are only seasonal. Consequently, 

generalization of urban areas and yearly averages can cause error when evaluating the 

efficiency of measures.  
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8.3.3 Urban Water cycle at city scale 

In Chapter 7, the total urban water cycle was investigated for the city of Wageningen, 

The Netherlands. At city level, we compared the water cycle “of” the city with the water 

cycle “in” the city. Urban areas are complex dynamic systems. Each one is unique due to 

the combination of physical and socio-economic factors. In this approach, a city is 

composed of heterogeneous “patches” with different building typology, land cover, 

density, etc. Traditional approaches, for the design of centralized urban infrastructure are 

top-down approaches. Herein, cities are treated as homogeneous entities, which generally 

causes introduction of errors in water flows when evaluating the efficiency of measures, as 

shown in section 8.3.2. To study the water balance of the city of Wageningen, we used a 

combination of strategies at different scales. Firstly demand minimization at building 

scale, and then recycling, green roofs and rainwater harvesting at neighborhood level. The 

city of Wageningen has nine neighborhoods. Each of the neighborhoods is composed of 

several heterogeneous blocks. Our results showed a large variability of water metabolism 

which are related to neighborhood characteristics, namely population density, land cover, 

surface storage and soil permeability. Although, Wageningen is a small city, with low 

densities and a large percentage of green areas, hot-spots were identified by studying the 

water metabolism of each of the neighborhoods. This implies that cities require a portfolio 

of measures to improve urban water metabolism according to the neighborhood or block 

characteristics. Moreover, resource hotspots can and should be identified to be addressed 

in early stages of renewed planning and design by using approaches, such as, the UHA. 

The results show that imported potable water could be reduced by 15%, wastewater 

production could be reduced by 50%, and 100% of the non-potable demand could be 

supplied by locally harvested resources. There was a surplus of harvested resources. This 

surplus can be made available for export to peri-urban areas as for instance for use in 

agriculture. 

 

Since improving the urban water cycle is a multi-objective problem
24

, one strategy cannot 

exclude another and vice versa. Moreover, the results show that a combination of 

centralized and decentralized approaches is needed to improve urban water management. 

We identified three key measures to reduce external water demand and waste export: (i) 

technology implementation, e.g., water saving devices or decentralized wastewater 

treatment technologies; (ii) changes in the urban surfaces to increase storage capacity, 

infiltration or evaporation by selecting permeable materials, e.g., green roofs or permeable 

pavements; and (iii) resource exchange between blocks, neighborhoods or export to peri-

urban areas. Table 1 summarizes the results of this thesis and indicates the hierarchy of the 

different measures and the spatial scale feasible to improve urban water metabolism.  

 

                                                 
24

 Minimizing import of resources, minimizing export of waste and optimizing harvest of local resources at 
each scale. 
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The results showed the added value of multi-scale analysis of urban water systems. Single 

scale analysis neglects the connections between scales. For instance, recycling of light 

grey water at building or block level minimizes the morning and evening peaks, and 

reduces the dilution of the domestic wastewater. Meanwhile a centralized infiltration 

infrastructure at city level minimizes seasonal peaks due to rainfall, minimizes the volume 

required for the sewer system, and reduces the dilution of the wastewater in the combined 

sewer system. Fig. 5 shows a schematic representation of the peak reduction effect of the 

different measures. 

 

Our research also showed that studies on urban metabolism at increasing spatial scales 

provides valuable insights in measures that are customized for different parts of the city, 

which can enable exchange resource flows. For instance, a highly dense area may become 

an exporter of secondary resources to an area with a low density. A city can also export 

resources to other cities or to the peri-urban areas. Therefore, not only internal 

characteristics of the city are important, the external environment will also partly 

determine the options. Moreover, resources surplus can foster development of new 

functions within the urban area, e.g. urban agriculture, without exerting additional 

pressures in the water balance. Summarizing, optimizing the water metabolism of a city 

requires multi-scale analysis. 

 
Figure 4 Comparison of the urban water cycle of two urban blocks for conventional and 

minimized demand in the Netherlands; low density – left figure, high density - right figure. 

28 x

0 6 12 18 24

D
e

m
a

n
d

Time 0 6 12 18 24

D
e

m
an

d

Time

110 l/p d 105 l/p d

 

 

8 x 3 x

Conventional Minimized MinimizedConventional
83 l/p d 81 l/p d

 

 

8 x 3 x
 

0.25 ha 0.25 ha

D
ai

ly
 p

at
te

rn

D
ai

ly
 p

at
te

rn

146 146
121 121

  146 146 121 121

2146 2146

1656

1656

28 x

0 6 12 18 24

D
e

m
a

n
d

Time 0 6 12 18 24

D
e

m
an

d

Time

110 l/p d 105 l/p d

 

 

8 x 3 x

Conventional Minimized MinimizedConventional
83 l/p d 81 l/p d

 

 

8 x 3 x
 

0.25 ha 0.25 ha

D
ai

ly
 p

at
te

rn

D
ai

ly
 p

at
te

rn

146 146
121 121

  146 146 121 121

2146 2146

1656

1656

Conventional Minimized Conventional Minimized
110 l/ p d 85 l/ p d 105 l/ p d 80 l/ p d

28 x

0 6 12 18 24

D
e

m
a

n
d

Time 0 6 12 18 24

D
e

m
a

n
d

Time

110 l/p d 105 l/p d

 

 

8 x 3 x

Conventional Minimized MinimizedConventional
83 l/p d 81 l/p d

 

 

8 x 3 x
 

0.25 ha 0.25 ha

D
ai

ly
 p

at
te

rn

D
ai

ly
 p

at
te

rn

146 146
121 121

  146 146 121 121

2146 2146

1656

1656160 160 120 120
2150 2150 1660 1660

0,25ha 0,25ha 0,25ha 0,25ha

1820 1710 1250 1160

Dindoor = 1280 
Doutdoor= 540

Dindoor = 960
Doutdoor = 540

Dindoor = 6450
Doutdoor = 150

Dindoor = 5000
Doutdoor = 150

6600 8120 4190 5700

250 
920

2
2

0
0

200

2080

200 

2080 520 520

160 160

28 x

0 6 12 18 24

D
e

m
a

n
d

Time 0 6 12 18 24

D
e

m
an

d

Time

110 l/p d 105 l/p d

 

 

8 x 3 x

Conventional Minimized MinimizedConventional
83 l/p d 81 l/p d

 

 

8 x 3 x
 

0.25 ha 0.25 ha

D
ai

ly
 p

at
te

rn

D
ai

ly
 p

at
te

rn

146 146
121 121

  146 146 121 121

2146 2146

1656

1656

50 50

In
d

o
o

r 
 d

em
an

d
 

m
³ 

/ 
ye

ar

2
2

0
0

2
2

0
0

2
2

0
0

1 5

1 Storage capacity of treatment and 
storage unit in m³

13 13

13 Soil storage capacity  in m³

W
at

er
 b

al
an

ce
 a

t 
b

lo
ck

 le
ve

l m
³ 

/ 
ye

ar

Note: some values are rounded



Sustainable resource metabolism in cities of tomorrow 

 

 

179 

 

Water use patterns are not evenly distributed over space and time, and thus are affected 

not only by socio-economic, climatic and physical property variables, but also by the 

geographical location of the region and its interactions with other adjacent regions (House-

Peters et al., 2010). High urban densities often are related to a highly disturbed water cycle 

with large runoff coefficients and concentrated resource demand and waste production. 

Thus areas with high densities can become easily “hot-spots”. However, in dense areas 

several measures can be taken to address runoff, such as, green roofs, rainwater 

harvesting, retention and infiltration infrastructures. 

 
Figure 5. Schematic representation of the wastewater production in a city and the peak reduction 

due to different measures.  

8.4 Concluding remarks 

In this thesis, we investigated the hypothesis that urban systems and their direct peri-urban 

surroundings can become – to a large extent – self-sufficient and reduce their waste 

production by improving local resource management in a multi-scale approach and 

starting at the smallest scale possible. We developed the urban harvest approach (UHA), 

as an assessment and planning tool to change inefficient linear urban resource use and 

waste production into a more efficient urban metabolism, using less external resources and 

reducing waste production. The described approach relates urban characteristics to 

resource harvesting potentials, aiming to foster a re-thinking of our current urban systems 

by a multi–scale and time dependent dynamic analysis. We tested this approach for urban 

residential water flows in the Netherlands. 
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8.4.1 Applicability of the UHA 

The approach showed to be feasible because it provides a single approach to evaluate the 

urban flows at different spatial and temporal scales. Moreover the metabolic profile 

indices provided detailed information for evaluation and comparison of inputs, outputs, 

storage and consumption within urban areas. The multi-scale approach helps to identify 

interactions between scales and between human- and nature-driven processes, e.g. 

increasing garden watering can increase infiltration and evapotranspiration affecting the 

ground water recharge or the micro-climate. The main limitations are the need of detailed 

data about resource demand patterns and the complexity of some urban processes that are 

still difficult to quantify and model, e.g. urban evapotranspiration. 

 

8.4.2 Strategies to manage urban water metabolism in the city of tomorrow 

The results indicate that cities have a large potential to improve current resource 

management. A key issue to improve resource efficiency is understanding where, when, 

and why we use a certain resource (Gleick, 2010b). For example, the resource water is 

used for different activities. Most of these activities can be catered with less water. 

Demand minimization is foremost the best first step in a strategy towards a more 

sustainable urban metabolism. In addition, the quality surplus in conventional water 

metabolism can be addressed, by transforming the use of high quality potable water for 

activities that do not require that quality, into use of water with a lower quality of water 

for such activities. The second strategy is to minimize the output by cascading, recycling 

and multi-sourcing. By doing this, demand and supply qualities are matched and quality 

surpluses are minimized. The third proposed strategy is multi-sourcing by harvesting local 

renewable resources. As discussed in this thesis, cities should be seen as producers of 

secondary resources.  

 

The cases studied for the Netherlands showed that cities can minimize the domestic water 

demand by 20-30%. They are able to provide up to 100% of the non-potable water by 

implementing decentralized treatment of light grey water (LGW). The optimal scale of 

management for LGW varies from building unit to neighborhood scale, depending on the 

building type, LGW production and non-potable water demand. Rainwater harvesting is 

less recommended to achieve self-sustainability than LGW because of its seasonal and 

inter-annual variability. Due to the high percentage of impermeable areas in cities, 

rainwater runoff becomes a waste output. In our approach, not only self-sufficiency is 

pursued, but also output minimization. The results showed that runoff minimization 

requires a multi-scale approach, including changes from the building unit, e.g. green roofs 

or rainwater harvesting, to the city level, e.g. building retention and infiltration 

infrastructures.  
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The multi-scale approach is also indicative for the time scales in which urban metabolism 

can be altered. Measures at household/building level can be taken at short term. 

Household appliances have a life time of 5-10 years. At the block and city level, not only 

the interdependence of flows is much more complex, but also the number of stakeholders 

involved becomes much larger. In addition, the life time of urban assets (pipes, roads, 

houses) is much longer (typically 30 – 100 years). This implies that changes at these levels 

require much more time compared to building unit level. Increasing the efficiency of 

urban (water) metabolism requires an adaptive approach. We argue that a combination of 

short term and long term measures is required towards transitioning the urban system. 

Short term measures support the transitioning processes at long term because of the 

visibility of results. At the same time a long term vision and strategy is required for the 

larger scales. Within the transitioning strategy, it is important to take into account that 

changes at one scale may influence the efficiency of measures at other scales. For 

instance, if recycling facilities are designed for conventional demand, while in a later stage 

water saving measures are implemented, the efficiency of the recycling unit is likely to 

become compromised. Moreover, with accelerated changes in urban systems and their 

surroundings, adaptive management is needed to periodically revise and adapt strategies 

according emergent pressures, to make sure that the vision and goals of the city are 

achieved.  

 

More drastic re-arrangements could also be proposed to improve self-sufficiency, for 

instance, the implementation of decentralized systems to provide potable water (Peter-

Varbanets et al., 2009). Therefore, small decentralized plants to provide drinking water 

could be combined with a centralized network that delivers water of a non-potable quality. 

 

Our results showed that different water streams can and have to be managed at different 

spatial scales and that a combination of centralized and decentralized measures is needed 

to minimize urban impacts at short and long term. Cities offer a broad range of 

possibilities to improve current water resource management. However, the heterogeneities 

of the different areas, neighborhoods or blocks, should be considered to achieve optimal 

design and management. Technology implementation and infrastructure development 

require a supportive policy framework and a trade-off analysis to identify rebound effects. 

Moreover, it has to be adaptive and flexible to cope with the stochastically driven 

disturbances and non-linear dynamics of the urban water balance. Appropriate time and 

space scales are crucial to understand the changes in the urban water cycle and also to 

identify the influence of the different variables on the overall performance of the system. 

Efficiency of the measures is linked to local context and urban typology. Therefore, urban 

planning can contribute to facilitate harvesting of local resources towards sustainable 

cities of tomorrow.  
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8.5 Outlook 

Relevance of (urban) resource management has increased recently. The European Union 

has selected resource efficiency as one of the seven flagship initiatives for its 2020 

strategy. It aims to bring major economic opportunities, improve productivity, drive down 

costs, and boost competitiveness – while also supporting a low-carbon economy and 

sustainable growth. In a similar spirit, the OECD and the UNEP promote resource 

efficiency in their campaign for “green growth” and a “green economy”
25

. Additionally, 

European projects such as Revisions
26

, or SUME
27

 and Tabula
28

 investigate resource 

management within urban areas.  

 

8.5.1 Data and modeling gaps 

There may be a perception that the urban water budget is well quantified because urban 

water systems are highly engineered and managed (Pataki et al., 2011). However, 

especially for the smaller scales this is not the case, as important flows of water tend to be 

poorly monitored or even unmonitored. Accurate and reliable data on water use are vital 

for evaluating the efficiency of current use, establishing efficiency targets, and evaluating 

performance towards meeting those targets (Gleick, 2010b). In urban areas, in particular, 

two main parameters need to be better monitored: soil compaction and urban 

evapotranspiration.  

 

In our work we found that soil compaction is an important parameter needed to assess 

urban water storage on the surface and infiltration rates. The sensitivity analysis showed 

that variations in soil characteristics influence infiltration, evapotranspiration and runoff 

flows. Recent studies in USA and China have shown a large variability of soil compaction 

in urban sites. Soil compaction is determined by land use, land cover, and age of the 

development. Linking the UHA to hydrology studies using ground water or runoff models 

can provide more insight for urban design. 

 

Water-Energy nexus is another issue, in-door and out-door. Indoor water-energy nexuses 

are given by thermal properties and chemical composition of the flows. Therefore, a more 

detailed inclusion of the water quality in the modeling is required. A complete evaluation 

of the measures should include energy and material balances to investigate options for 

recovery of heat or nutrients and to avoid negative side effects. Outdoor water-energy 

nexuses are given mainly by urban evapotranspiration. Urban Evapotranspiration is a 

function of multiple system parameters that are often not quantified or known for cities. 

Although methodologies based on energy fluxes have been developed, they require a large 

amount of data. Simplified methodologies are needed for cases were data is limited.  

                                                 
25

 http://ec.europa.eu/resource-efficient-europe/. 
26

 http://www.regionalvisions.ac.uk/ReVISIONS/Options.aspx 
27

 http://www.sume.at/ 
28

 http://www.building-typology.eu/existent-concepts/typologies-examples.html 

http://ec.europa.eu/resource-efficient-europe/
http://www.regionalvisions.ac.uk/ReVISIONS/Options.aspx
http://www.sume.at/
http://www.building-typology.eu/existent-concepts/typologies-examples.html
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8.5.2 UHA as a supporting tool in urban planning  

UHA is meant as a tool to support planning processes. UHA could be used by urban 

planners and decision makers to study the urban flows and provide smart, customized 

solutions for existing and new urban areas. The approach allows for comparisons between 

centralized and decentralized measures, helps for a first screening of measures and of hot-

spots of resource demand and waste production. Urban design with a holistic approach 

does not guarantee zero trade-offs among flows, but it allows to identify, to choose and to 

plan in advance the negative indirect effects in and outside the system. 

 

8.5.3 Implications for urban managers and planners 

There is a large degree of heterogeneity in urban water governance, similarly as in the 

biophysical properties of cities that influence the urban water balance. Decision making, 

ownership, design and management of urban infrastructure range from individual home 

owners to private institutions and public agencies. It is very challenging to understand the 

human factor in the water management system, because water supply, wastewater, storm 

water and landscape design are generally handled by separate entities (Pataki et al., 2011). 

A wide variety of tools for making changes are possible, including new technology, 

economic approaches, regulatory requirements, and education. It would be helpful to 

establish incentives for improving water efficiency and reducing wasteful use of water at 

all levels, using a range of financial, regulatory, and educational tools (Gleick, 2010b). 

 

Sustainable urban water management is hindered by the lack of coordination among 

national, regional, local, and non-governmental entities (Gleick, 2010b). Usually, national 

governments have a crucial role in developing guidelines and supporting innovation 

(McGranahan and Satterthwaite, 2003). Local authorities can translate such guidelines into 

regulations, norms and codes for planning and regulating the built environment. For 

example, in the city of Antwerp, Belgium, implementation of green roofs is compulsory 

for new buildings. 

 

Hence, better communication is needed among the different institutions in charge of the 

urban water infrastructure. There is a need for platforms where data can be shared and for 

unification on how data is recorded. When analyzing the complete water system, the 

“real” benefits or trade-offs are identified. This would lead to more systematic analysis of 

the impact of water management strategies. 

 

8.5.4 Increase public awareness  

In this research, human behavioural changes were not considered. To avoid rebound 

effects, we are aware that one of the big challenges is to increase public awareness and 

understanding of sustainable consumption patterns by citizens. One important issue in 

developed countries is promoting the necessary delinking of high standards of living – 
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quality of life – from high levels of resource use and waste generation (McGranahan and 

Satterthwaite, 2003). If citizens are aware of their environmental impact and the benefits 

of implementing new promising technologies, the transition towards more sustainable 

urban systems can be speeded up. 

 

The value of secondary resources like reused water is mainly appreciated in countries 

facing severe water scarcity, e.g., Israel, Australia and Jordan. Other countries face other 

kind of pressures, such as, pollution and salinization of aquifers, resulting in increased 

costs to produce drinking water. Cost increases have shown to be important triggers of 

change towards more sustainable resource systems. Although in dual reticulation systems, 

the risk of cross-connections may exist, efforts should be focused on increasing awareness 

of the benefits of these systems and on building trust by training and informing users and 

technicians about the functioning of the systems.  

 

8.5.5 Need for interdisciplinary linkages 

Increasingly prosperous urban areas almost inevitably draw more heavily on non-

renewable resources and create more waste. For instance, a larger world population will 

result in a larger food demand requiring higher crop yield, and higher water footprints, in 

order to feed the increasing population (Hellegers et. al, 2008). Additionally, depletion of 

the phosphorus resources, increasing urbanization and larger food demand in cities, have 

become hot issues that should be given special attention. Traditional urban infrastructure 

for water supply, waste and wastewater discharge and treatment, and energy networks is 

planned and managed separately, and designed for different time scales. The problems 

facing human society are interconnected. However, these interconnections are still poorly 

understood (Huppes and Ishikawa, 2011). Single-discipline and single-scale analysis are 

insufficient to provide sustainable options, because unplanned trade-offs can appear when 

optimizing a single flow.  

 

The UHA allows (i) evaluating each of the urban flows (water, energy, nutrients, etc.), (ii) 

identifying connections between them, e.g., potential heat recovery from wastewater, and 

(iii) moving from micro- to macro-level, and from building unit to city scale. Within the 

UHA, waste flows are not only key indicators of systems efficiency, but they may also 

provide insights into potential linkages between flows for a more efficient urban 

metabolism. Recovery of nutrients from wastewater is a promising strategy. Moreover, 

new technologies allow harvesting of the thermal energy present in the water flows. 

Verstraete and Vlaeminck (2011) proposed a zero-wastewater approach, in which the 

potential resources in used water are quantified. Economic benefits of harvesting resources 

from wastewater are almost €1 per cubic meter of wastewater. 
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8.5.6 Integrating local models with global and regional climate models 

Frequency and intensity of extreme events are expected to increase with climate change 

(IPCC, 2007). Therefore, climate change impacts should be integrated into all federal and 

state water decisions, planning, and management (Gleick, 2010b). However, climate 

models still remain coarse in space and in time resolution. Most regional model 

simulations are available at daily time scales and from 25 to 50 km (Willems et al., 2012). 

Moreover, global models often use data from nationally aggregated data that can produce 

errors quantifying some hydrological processes. The coupling of feedbacks at multiple 

scales is an emerging issue to understand in order to improve predictions of ecosystem 

responses to climate changes and vice versa (Rietkerk et al., 2011). Local characteristics, 

e.g. micro-climate, can influence global processes, but also urban water managers have to 

start accounting for the challenges posed by changing climate patterns as extreme rainfalls 

and droughts. Therefore, it is crucial to downscale results from global models to urban 

level, to provide managers and politicians at local and regional level of the expected 

changes at the scale of their operations and decision power (Gleick, 2010b). 

 

8.5.7 The way forward  

Cities are drivers of major resources flows. Accelerated changes in cities and hinterland 

pose threats to resource security in cities. At the same time, these threats are opportunities 

for a new and secondary based resource management in sustainable urban resource 

metabolism. Coping with these threats and opportunities is a global challenge with a lot of 

complexity. To address these challenges, we need a temporal and spatial multi-scale 

understanding of resource flows and the dynamics and uncertainties associated with each 

scale. This thesisoses the implementation of local solutions to solve – to a large extent – 

the global challenges humanity faces today. We believe that to solve global resource 

problems and to achieve sustainable resource metabolism in cities of tomorrow, mankind 

has to start today by solving the “metabolic” problems of cities.  
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Summary  

 

Historically, urban resource management has been fostered by innovation and technology 

developments and has driven population growth and urbanization. Current and near future 

global urbanization urges for a reconsideration of the organization and dynamics of 

resources in cities. Chapter 2 presents a historical review of the urban resources 

management and urban planning. The review describes how, with increasing 

infrastructural and technological development, the local impacts of urban consumption has 

been shifted to other tempo-spatial scales. The main conclusion is that our current urban 

un-sustainability is rooted in massive resource consumption and waste production beyond 

natural limits, and the absence of flows from waste to resources. Therefore, sustainable 

urban development requires a new approach based on the integration of novel ways of 

resource management into a design and planning of the urban environment.  

 

With accelerating global changes, cities have to cope with growing pressures, especially 

for resource supply. Our hypothesis is that urban systems and their direct peri-urban 

surroundings can – to a large extent – become self-sufficient in resources. Cities can 

reduce their waste production by a restructuring at the smallest spatial scale possible. 

Cities may be considered as resource reservoirs and producers of secondary resources. To 

proof this concept, we investigated in Chapter 3 the potentials to harvest energy and 

water in the Netherlands – on an average yearly basis. Results showed large potentials to 

meet up to 100% of the electricity demand, 55% of the heat demand and 52% of the tap 

water demand at national scale. However, there are restrictions to harvest these potentials 

due to flow dynamics, urban typology and technological efficiencies. Therefore, to 

estimate the actual harvest potentials, dynamic modeling is required considering 

heterogeneous characteristics of the urban areas at finer temporal and spatial scales. 

 

In Chapter 4, we propose the novel urban harvest approach (UHA), as a tool for 

sustainable urban resource planning. UHA is based on the principle that urban systems 

and their direct peri-urban surroundings can become self-sufficient. UHA starts with a 

baseline assessment, followed by implementation of three strategies. The first strategy is 

to reduce the demand. The second strategy is to reduce outputs by recovery, cascading and 

recycling. The third strategy is to multi-source the remaining demand by using renewable 

and local sources. UHA is a systematic approach, which starts from the building scale and 

scales up to block, neighborhood and city level and takes stock of the dynamics and non-

linearities of urban resource flows. Four indicators describe the urban metabolism of a 

given resource at any of the spatial scales, namely, Demand Minimization Index, Waste 

Output Minimization Index, Self- Sufficiency Index and Export Resources Index. To test 

the UHA and support our hypothesis, we evaluated the urban metabolism for water from 

building unit to city level. Yearly dynamic water balances were modeled for different 

scenarios in the Netherlands. 
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Figure 1 Schematic representation of the content of this thesis 

 

After testing and developing the UHA method on averaged water, spatial scales and yearly 

basis, our further research concentrated on the dynamic modeling approach. The aim was 

to more adequately assess the actual resource potential at different tempo-spatial scales, 

see Fig. 1. 

 

At building level, two building types were selected: a freestanding house and a mid-rise 

apartment flat (Chapter 5). The studied scenarios included: demand minimization, light 

grey water (LGW) recycling and rainwater harvesting (multi-sourcing) to cater for toilet 

and laundry water, second quality water (DQ2). Results showed that water saving devices 

may reduce 35% of the conventional demand. Recycling of LGW can supply up to 20% of 

the minimized demand (100% of DQ2). For conventional demand, rainwater harvest may 

supply approximately 14% and 18% of the apartment flat and of the freestanding house 

demand, respectively. To harvest these potentials, different system specifications, related 

to the household type, are required. Two constraints with respect to recycling and multi-

sourcing were identified. They are related to the demand and to the fraction harvested 

from the potential amount of resources available. Constraints related to the demand are a 

function of the grey water production and available rainfall. Meanwhile, constraints 

related to the fraction harvested are a function of the temporal pattern, and storage and 

treatment capacities. 

 

 

Ch. 1 - Introduction 

Ch. 2- Resource management as a key factor for sustainable urban planning: a 

review 

Ch. 4. Urban Harvest: A Resources Based Approach for Sustainable Urban 

Planning: development of the Method 

Ch. 5 - at building scale Ch. 6 - at block scale Ch. 7 – at city scale 

Ch. 3 – Harvesting urban resources towards more resilient cities: proof of concept  
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Ch. 8 – Sustainable resource metabolism in cities of tomorrow: synthesis, 

concluding remarks and outlook 

Dynamic multi-scale analysis of the potential of improving residential water balances 

in the Netherlands 
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In Chapter 6 seasonal dynamic water balances were investigated at city block level. Two 

city blocks were analyzed: a low-density and a high-density block. The scenarios 

considered demand minimization, LGW recycling and rainwater harvesting to cater for 

demand of second quality water, DQ2. Moreover the implementation of green roofs was 

also analyzed. Results showed major seasonal variations in the water balance of the low-

density block. For the low-density block, 18% input minimization and self-sufficiency was 

achieved. The waste output index, WOI (waste/demand), was reduced from 97% to 73%. 

For the high-density block, 23% input minimization, 18% self-sufficiency, and WOI 

reductions from 123% to 104% were achieved. 

 

In Chapter 7 we investigated the water balance at city scale in terms of a sustainable 

urban water metabolism, with the small city of Wageningen, the Netherlands, as validation 

case. To achieve optimal results, heterogeneities of the different areas (neighborhood) 

should be considered. This implies that cities require a portfolio of measures to improve 

urban water metabolism according to the neighborhood or block characteristics. A 

combination of measures showed a reduction of 14% of the water demand of the city, and 

a self-sufficiency of 34%. Heterogeneities in cities can be seen as opportunities for 

resource exchange. In the studied case, the city has a potential to export a volume of 

secondary water equal to the 37% of its own demand to peri-urban areas. Results showed 

that different resource streams have to be managed at different scales. Moreover, a 

combination of centralized and decentralized measures is needed to minimize urban 

impacts on the natural water cycle. Not only internal characteristics of the city are 

important, the external environment will also partly determine the options. Three options 

are identified to improve the urban water metabolism: (i) technology implementation; (ii) 

changes in the urban surfaces; and (iii) resource exchange. 

 

Evaluating the urban water metabolism requires a multi-scale approach. Moreover, it has 

to be adaptive and flexible to cope with the stochastically driven dynamics of the urban 

water balance. The described UHA relates urban characteristics to water harvesting 

potentials, thus aiming to foster a re-thinking of our current urban water systems. UHA 

can be used by urban planners and decision makers to understand the urban system and its 

internal resources flows and to provide tailored solutions for existing and new urban areas 

(Chapter 8). For supplying the human population in dense urban areas with adequate 

resources such as food, energy and water, urban resource management according UHA 

needs to be extended to the agro-industrial complex. In addition, food, water, nutrient and 

other resource management systems should be considered at regional, river catchment or 

urbanized delta scale in order to fully exploit sustainable resource potentials. 

 

 

 

 



Samenvatting  

 

193 

 

 

 

 

 

 

 

Samenvatting 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Samenvatting 

 

194 

 

Samenvatting  

In het verleden werd het beheer en gebruik van grondstoffen in stedelijke gebieden door 

innovatie en technologische ontwikkelingen gestimuleerd. Dit heeft vervolgens de 

bevolkingsgroei en verstedelijking verder laten toenemen. De wereldwijde verstedelijking 

vraagt nu om een herziening van het beheer van hulpbronnen en grondstoffen in en rondom 

steden. Hoofdstuk 2 geeft van deze ontwikkeling in relatie tot stedelijke planning een 

historisch overzicht. Het beschrijft hoe de lokale effecten van stedelijke consumptie naar andere 

tijd-ruimte schalen zijn verschoven door toenemende infrastructurele en technologische 

ontwikkeling. De belangrijkste conclusie is dat onze huidige stedelijke ontwikkeling inmiddels 

niet duurzaam meer is. Er is een enorm verbruik van hulpbronnen en productie van afval, die de 

natuurlijke grenzen van duurzaamheid overschrijden. Duurzame ontwikkeling vraagt daarom 

om een nieuwe aanpak, gebaseerd op de integratie van nieuwe manieren van beheer van 

grondstoffen in ontwerp en planning van stedelijke gebieden. 

 

Door versnelde wereldwijde veranderingen moeten steden rekening houden met de toenemende 

druk op de aanvoer en schaarste van grondstoffen. Onze hypothese is dat stedelijke systemen en 

hun directe peri-urbane omgeving - voor een groot deel - zelfvoorzienend in grondstoffen 

kunnen worden, en zo hun externe afhankelijkheid van aanvoer van (schaarse) grondstoffen 

kunnen verminderen. Steden kunnen beschouwd worden als producenten van primaire en 

secundaire grondstoffen. Volgens onze hypothese, moet deze zelfvoorziening uitgaan van de 

kleinst mogelijke ruimtelijke schaal. Het bewijs van dit concept hebben we onderzocht in 

hoofdstuk 3. In dit hoofdstuk werden de mogelijkheden om energie en water in Nederland te 

‘oogsten’ geëvalueerd, uitgaande van gemiddelde jaarcijfers. De resultaten op nationale schaal 

laten zien dat het mogelijk is om aan 100% van de elektriciteitsvraag, 55% van de warmtevraag 

en 52% van de watervraag te voldoen. In werkelijkheid zijn er echter beperkingen aan deze 

mogelijkheden tot oogsten als gevolg van de dynamiek in grondstof- en energiestromen, 

stedelijke typologie en technologische (in)efficiëntie. Om de werkelijke oogstpotenties te 

kunnen bepalen is daarom dynamische modellering nodig op relatief fijne tijd- en 

ruimteschalen. 

 

In hoofdstuk 4 stellen wij de Urban Harvest Approach (UHA) voor als instrument voor een 

duurzame planning van stedelijke grondstoffen. UHA is gebaseerd op het principe dat 

stedelijke systemen en hun directe peri-urbane omgeving voor een aantal grondstoffen 

zelfvoorzienend kunnen worden. UHA begint met een basisevaluatie, gevolgd door het 

implementeren van drie strategieën. De eerste strategie is het verminderen van de vraag. De 

tweede strategie is reductie van afval door het herwinnen, cascaderen en recyclen van 

grondstofstromen. De derde strategie is om de resterende vraag te voorzien met verschillende 

hernieuwbare en lokale bronnen (multi-sourcing). UHA is een systematische aanpak, van 

gebouw tot stedelijk niveau. Bovendien houdt UHA rekening met de dynamiek en de niet-

lineariteit van de stedelijke grondstofstromen. Vier indicatoren beschrijven het stedelijke 

metabolisme van een bepaalde hulpbron op elk van de ruimtelijke schalen. Dit zijn: de Demand 

Minimization Index (DMI), Waste Output Index (WOI), Self- Sufficiency Index (SSI) en Export 

Resources Index (ERI). Om de UHA te testen, evalueerden we het stedelijk metabolisme voor 

water op de schaal van gebouwen, huizenblokken, wijken, de buurten en uiteindelijk op 

stadsniveau. Verschillende scenario’s voor jaarlijkse dynamische waterbalansen werden 

gemodelleerd uitgaande van Nederlandse klimaatgegevens. 



Samenvatting  

 

195 

 

Na het testen en ontwikkelen van de UHA-methode voor jaargemiddelde watergegevens en 

vaste ruimtelijke schalen, concentreerde ons verdere onderzoek zich op een dynamische 

modellering-aanpak. Het doel hiervan was om het werkelijke potentieel beter te kunnen 

beoordelen op verschillende tijd-ruimte schalen (Fig. 1). 

 

 
Fig 1. Schematische weergave van de inhoud van dit proefschrift 

 

Op gebouwniveau (hoofdstuk 5) zijn twee typen gebouwen geselecteerd: een vrijstaand huis en 

een appartement. De onderzochte scenario’s bevatten verschillende strategieën zoals het 

minimaliseren van de vraag, en het verkrijgen van secundaire kwaliteit water voor 

toiletspoeling en wasmachinegebruik door recyclen van licht grijs water (LGW) en het 

opvangen van regenwater (multi-sourcing). De resultaten tonen aan dat waterbesparende 

apparatuur 35% van de conventionele vraag kan verminderen. Recyclen van LGW kan 20% 

van de geminimaliseerde vraag leveren (100% van de vraag van water met secundaire 

kwaliteit). Om deze mogelijkheden te benutten, zijn andere systeemspecificaties, gerelateerd 

aan het gebouwtype, nodig. Twee beperkingen met betrekking tot recycling en multi-sourcing 

werden geïdentificeerd. Zij zijn gerelateerd aan  de vraag en de geoogste fractie van het 

aanwezige potentieel. Beperkingen met betrekking tot de vraag zijn gerelateerd aan productie 

van grijswater en de beschikbare neerslag. Verder hangen  beperkingen met betrekking tot de 

geoogste fractie af van het temporele patroon, de opslag en de capaciteiten voor behandeling 

van het water. 

 

 

Ch. 1 - Introduction 

Ch. 2- Resource management as a key factor for sustainable urban planning: a 

review 

Ch. 4. Urban Harvest: A Resources Based Approach for Sustainable Urban 

Planning: development of the Method 

Ch. 5 - at building scale Ch. 6 - at block scale Ch. 7 – at city scale 

Ch. 3 – Harvesting urban resources towards more resilient cities: proof of concept  
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Ch. 8 – Sustainable resource metabolism in cities of tomorrow: synthesis, 

concluding remarks and outlook 

Dynamic multi-scale analysis of the potential of improving residential water balances 

in the Netherlands 
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In hoofdstuk 6 werden seizoensgebonden dynamische waterbalansen onderzocht op het niveau 

van stedelijke huizenblokken. Twee huizenblokken zijn geanalyseerd: één met een lage 

dichtheid en één met een hoge dichtheid. In de scenario’s onderzochten we de minimalisering 

van de vraag van water met drinkwater kwaliteit, en LGW-recycling en de opvang van 

regenwater om te voorzien in de vraag van secundaire kwaliteit water. Bovendien is het gebruik  

van groene daken voor waterretentie ook geanalyseerd. De resultaten tonen grote 

seizoensgebonden variaties in de waterbalans van het huizenblok met lage dichtheid. Voor dit 

type huizenblok werd 18% input-minimalisering en zelfvoorziening bereikt. De Waste Output 

Index, WOI (afval / vraag), werd teruggebracht van 97% naar 73%. Voor het huizenblok met 

hoge dichtheid werd 23% input-minimalisering, 18% zelfvoorziening, en een vermindering in 

WOI van 123% naar 104% bereikt. 

 

In hoofdstuk 7 werd de waterhuishouding op stedelijke schaal onderzocht. Wageningen, een 

kleine Nederlandse stad, werd gebruikt als casus om de resultaten te valideren. De resultaten 

toonden aan dat specifieke karakteristieken van de verschillende gebieden (buurten) in de 

scenario’s moeten worden meegenomen om optimale resultaten te bereiken. Dit houdt in dat 

steden een portfolio aan maatregelen tot hun beschikking moeten hebben om het stedelijk 

water-metabolisme te verbeteren, door juist rekening te houden met de kenmerken van de buurt 

of het huizenblok. Een combinatie van maatregelen leverde een vermindering op van 14% van 

de stedelijke watervraag en een zelfvoorzieningsgraad van 34%. Lokaal bepaalde stedelijke 

karakteristieken kunnen als kansen voor uitwisseling van grondstoffen (waaronder water) 

worden gezien. In de onderzochte gevallen heeft de stad vaak het potentieel om secundair water 

te exporteren. De resultaten tonen ook aan dat de verschillende grondstofstromen op 

verschillende ruimtelijk schalen moeten worden beheerd. Bovendien is een combinatie van 

gecentraliseerde en gedecentraliseerde maatregelen nodig. Verder zijn voor bepaalde 

mogelijkheden niet alleen de interne kenmerken van de stad belangrijk maar ook de externe 

omgeving. Er zijn drie opties geïdentificeerd om de stedelijke waterkringloop te verbeteren: (i) 

technologie implementatie, (ii) veranderingen in de stedelijke oppervlakken, en (iii) grondstof 

uitwisseling door export en import op de diverse ruimtelijke schalen.  

 

Kortom, het evalueren van het stedelijk watermetabolisme vraagt om een dynamische 

benadering op verschillende ruimteschalen. Zo’n benadering is adaptief en flexibel en kan 

omgaan met de stochastisch gedreven dynamiek van de stedelijke waterhuishouding. De 

beschreven UHA verbindt stedelijke kenmerken met mogelijkheden om water te oogsten en her 

te gebruiken, en zo de stedelijke water kringloop te helpen verduurzamen. UHA kan gebruikt 

worden door stedelijke planners en beleidsmakers om het stedelijke systeem en zijn interne 

hulpbronnenstromen te begrijpen en om oplossingen op maat te vinden (hoofdstuk 8). Voor de 

bevoorrading van voldoende hulpbronnen, zoals voedsel, energie en water, in dichtbevolkte 

stedelijke gebieden, is het nodig om, naast UHA voor de stedelijke systemen, een dergelijke 

benadering ook voor agro-industriële complexen mee te nemen. Dit vormt daarom een 

belangrijk punt voor toekomstig onderzoek. Daarnaast moeten voedsel, water, nutriënten en 

andere management systemen voor grondstoffen worden beschouwd op de schaal van de regio, 

het stroomgebied of de verstedelijkte delta om het potentieel van alle duurzame hulpbronnen 

ten volle te benutten. 
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Table of abbreviations 
 
Symbol Definition 

CS Combined sewer 

DIA Disconnected impervious area 

hh Household 

LGW Light grey water 

PUH Potential Urban Harvest 

PV Photovoltaic 

Qr Un-used remaining Quality  

Qs Quality surplus 

RS Resource Management 

SD Sustainable Development 

SS Separated sewer 

Ti Total inputs 

To Total outputs 

UHA Urban Harvest Approach 

UMTH Urban Maximum Technical Harvest 

UP Urban Planning 

UrbAT Urban Average Tissue 

UrbAT-NL Dutch Urban Average Tissue 

UT Urban Tissue 

 
Table of units 

 
Symbol Units 

d Day 

GJ Giga Joule 

h Hour 

ha Hectare 

kg Kilogram 

l Liter 

m Meter 

mg Milligram 

min Minutes 

MWh Megawatt hour 

p Person 

y Year 
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Table of symbols  
 
Symbol Definition and units 

Ai Area of surface i in m² or in ha 

ds/dt Change in storage per unit of time 

D Actual demand in volume per time per unit of study. E.g. (l p
-1 

d
-1
), (m³hh

-1
 y

-1
), (m³ block

-1
 season

-1
) 

Dcon Conventional demand in volume per time per unit of study. E.g. as D 

DQ1 Demand of potable water in volume per time per unit of study. E.g. as D 

DQ2 Demand of non-potable water m³ in volume per time per unit of study. E.g. as D 

   
    Indoor demand of non-potable water m³ in volume per time per unit of study. E.g. as D 

   
    Outdoor demand of non-potable water m³ in volume per time per unit of study. E.g. as D 

DMI Demand Minimization Index [-] 

DWW Domestic wastewater m³ in volume per time per unit of study. E.g. as D 

Ei External input in volume per time per unit of study. E.g. as D 

EiQ1 External input to supply DQ1 for domestic use in volume per time per unit of study. E.g. as D 

    
    External input to supply DQ1 for industries and businesses m³ in volume per time per unit of study. E.g. as D 

    
    External input to supply    

    in volume per time per unit of study. E.g. as D 

    
    External input to supply    

    in volume per time per unit of study. E.g. as D 

ErQ2 Exported resources of secondary quality in volume per time per unit of study. E.g. as D 

ET Evapotranspiration in volume per time per unit of study. E.g. as D. (Optionally can be expressed in mm h
-1
 given a 

specific area where the evapotranspiration occurs) 

     
  Actual Evapotranspiration from surface i in volume per time per unit of study. E.g. as D (Optionally in mm h

-1
 as ET) 

      
Potential Evapotranspiration in volume per time per unit of study. E.g. as D. (Optionally in mm h

-1
 as ET) 

Ii Infiltration through surface i in volume per time per unit of study. E.g. as D. (Optionally in mm h
-1
 as ET)  

IrQ2 Imported resources of secondary quality in volume per time per unit of study. E.g. as D (Optionally in mm h
-1
 as ET) 

k Volumetric treatment capacity in volume per time E.g. as m³ d
-1
 

ksoil Soil hydraulic conductivity mm h
-1
 

Mpot Potential multi-sourcing in volume per time per unit of study. E.g. as D 

Mact Actual multi-sourcing in volume per time per unit of study. E.g. as D 

Nrec Natural recharge in volume per time per unit of study. E.g. as D 

OCS Overflow of the combined sewer system in volume per time per unit of study. E.g. as D 

OS&T Overflow of storage and treatment unit in volume per time per unit of study. E.g. as D 

OSS Overflow of the separated sewer system in volume per time per unit of study. E.g. as D 

Pi Precipitation falling in surface i in volume per time per unit of study . E.g. as D. (Optionally in mm h
-1
 as ET) 

Rpot Potential recycling in volume per time per unit of study. E.g. as D 

Ract Actual recycling in volume per time per unit of study. E.g. as D 

RC Runoff Coefficient [-] 

RCe Effective runoff collected by the combined sewer  [-] 

    
    Resources harvested to supply    

    in volume per time per unit of study. E.g. as D 

REI Resource Export Index [-] 
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    Resources harvested to supply    

    in volume per time per unit of study. E.g. as D 

     
    

 Potential roof runoff m³ in volume per time per unit of study. E.g. as D 

     
    

 Actual roof runoff m³ in volume per time per unit of study. E.g. as D 

Roi Runoff of surface i in volume per time per unit of study. E.g. as D 

RoCS Runoff discharged into the combined sewer system in volume per time per unit of study. E.g. as D 

RoSS Runoff discharged into the separated sewer system in volume per time per unit of study. E.g. as D 

RT Hydraulic residence time [day] 

Sblock Block storage capacity (sum of all storage units) in volume [ m³ ] 

s Actual storage in the block in volume [m³]  

SCS Storage capacity of the combined sewer system in volume E.g. l or m³  

sCS Actual storage in the combined sewer system in volume E.g. l or m³ 

Si Storage capacity of surface i in volume E.g. l or m³. (Optionally can be expressed in mm given a specific area A
i
) 

si Actual storage in surface i in volume E.g. l or m³. (Optionally in mm as in S
i
) 

Sroof Storage capacity of roof surface in volume E.g. l or m³. (Optionally in mm as in S
i
) 

sroof Actual storage in roof in volume E.g. l or m³. (Optionally in mm as in S
i
) 

SS&T Storage capacity of storage and treatment unit in volume E.g. l or m³ 

sS&T Actual storage in storage and treatment unit in volume E.g. l or m³ 

SSS Storage capacity of the separated sewer system in volume [m³]  

sSS Actual storage in the separated sewer system in volume [m³] 

SSI Self-sufficiency Index [-] 

VE Volumetric efficiency [-] 

We Waste exported in volume per time per unit of study. E.g. as D 

WOI Waster Output Index [-] 

WW Wastewater in volume per time per unit of study. E.g. as D 

WWi&b Wastewater from industries and businesses in volume per time per unit of study. E.g. as D 

 
Table of subscripts Table of superscripts 

 

Symbol Definition Symbol Definition 

act Actual block  Block 

con Conventional CS  Combined sewer 

e Effective i&b  Industries and business 

hh household ind  Indoor 

i&b Industries and business out  Outdoor 

pot Potential roof  Roof 

Q1 Quality 1 – Potable water S&T  Storage and treatment 

Q2 Quality 2 – Non-potable water SS  Separated system 

rec Recycled   

ss Sub-systmen   

soil Soil   
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