SOIL HYDRAULIC PROPERTIES IN THE STUDY AREA HUPSELSE BEEK AS OBTAINED FROM THREE DIFFERENT SCALES OF OBSERVATION: AN OVERVIEW

PUBLICATION 78

HYDRAULICA EN
AFVOERHYDROLOGIE
Landbouwuniversiteit

Wageningen

202521

SOIL HYDRAULIC PROPERTIES IN THE STUDY-AREA HUPSELSE BEEK AS OBTAINED FROM THREE DIFFERENT SCALES OF OBSERVATION: AN OVERVIEW

J.W. HOPMANS AND J.N.M. STRICKER

Department of Hydraulics and Catchment Hydrology Agricultural University Wageningen, 1987

LIST OF FIGURES

			page
Figure	1.	Sample locations of sampling scheme 1.	11
Figure	2.	Location of sampling schemes 2 and 3 and the measurement sites of scheme 2.	12
Figure	3.	Sampling locations of sampling scheme 3.	13
Figure	4.	Drying and wetting curves (a) and K(h)-data from sorptivity method (b), when drying (circles) or wetting curve (+) is used for soil 3321.	24
Figure	5.	Drying and wetting curves (a) and K(h)-data from sorptivity method (b), when drying (circles) or wetting curve (+) is used for soil 3331.	25
Figure	6.	Drying curve (a), $K(\theta)$ -data (b) as determined with crust test (circles), sorptivity method (triangles) and hotair method (+) and combined $K(h)$ -data (c), where lines are only fitted through data obtained with crust and hot-air method. Soil 3321.	26
Figure	7.	Drying curve (a), $K(\theta)$ -data (b) as determined with crust test (circles), sorptivity method (triangles) and hotair method (+) and combined $K(h)$ -data (c), where lines are only fitted through data obtained with crust and hot-air method. Soil 3331.	27
Figure	8.	Saturated hydraulic conductivity values of sampling scheme 1 predicted from α , n, and θ_S plotted versus K_S^* .	32

Figure 9.	Fractile diagrams for normal and lognormal distribution of n.	35
Figure 10.	Fractile diagrams for normal and lognormal distribution of α .	36
Figure 11.	Fractile diagrams for normal and lognormal distribution of $\theta_{\mathbf{S}}^{*}.$	37
Figure 12.	Fractile diagrams for normal and lognormal distribution of $\textbf{K}_{S}^{\bigstar}.$	38
Figure 13.	Fraction of samples within the indicated percentage of the maximum error of estimate as a function of bootstrap sample size for θ_s^* A-horizon (a) and K_s^* A and B-horizon (b).	49
Figure 14.	Semi-variograms of θ_S^* for A (a) and B horizon (b). Numbers near symbols indicate number of paired points to calculate semivariance.	51
Figure 15.	Semi-variograms of $^{10}\log K_S^*$ for A (a) and B horizon (b).	53
Figure 16.	Plot of calculated versus predicted scaling factor values for three sampling schemes combined.	62
Figure 17.	Scaled mean water retention curves Hupsel of A and BC-horizon.	65
Figure 18.	Scaled mean hydraulic conductivity curves Hupsel of A and BC-horizon.	66

Figure 19.	Comparison of scale factor values, as calculated from	
	water retention (a-h) and conductivity (a-K) data.	68
Figure 20.	Semi-variogram of scaling factor a for A and B-horizon.	69

LIST OF TABLES

			page
Table	1.	Measurement sites and sampled horizons for sampling scheme 1.	10
Table	2.	Description of soil identification number.	19
Table	3.	Soil physical data for site 333.	20
Table	4.	Format description data file.	21
Table	5.	Regression coefficients and coefficient of determination for prediction of α from n and K_S^* -values $(\alpha = a + b \cdot n + c \cdot n^2 + d \cdot K_S^* + e \cdot K_S^{*2}).$	29
Table	6.	Coefficients of determination for prediction of K_S^* from α , n and θ_S^* .	30
Table	7.	Regression coefficients and coefficients of determination for prediction of K_s^* from α , n and θ_s^* ($K_s^* = a + b \cdot \alpha + c \cdot n + d \cdot \theta_s^* + e \cdot \alpha^2 + f \cdot n^2 + g \cdot \theta_s^{*2}$)	31
Table	8.	Comparison of normal and lognormal distribution functions for α , n θ_S^* and K_S^* .	34
Table	9.	Sum of squares as comparison of three distribution functions.	40
Table	10.	Available replicate values of θ_s^* .	42
Table	11.	Available K _s -values.	43

Table 12.	F, P, and LSD values to test whether location means of $\theta_{\rm S}^{\star}$ are identical.	45
Table 13.	F, P, and LSD values to test whether horizon and sampling scheme means of $\theta_{\rm S}^{\star}$ are identical.	45
Table 14.	F, P, and LSD values to test whether horizon and sampling scheme means of log K_S^{\star} are identical.	47
Table 15.	F, P, and LSD values to test whether location means of log a are identical.	57
Table 16.	Statistics, to test for identical log-transformed means of scale factor values between horizons.	58
Table 17.	Statistics, to test for identical log-transformed means of scale factor values between sampling schemes.	60
Table 18.	Mean and standard deviation of $^{10}\log$ a of A and B-horizon, when all three sampling schemes were combined.	61
Table 19.	Regression and correlation coefficients for prediction of scale factor values from α and n .	61
Table 20.	Parameters of van Genuchten model to describe scaled mean hydraulic functions for A and BC horizon.	67
Table 21.	Semi variance and variance values of θ_s^* , log K_s^* and a for A and B horizon.	70

SOIL HYDRAULIC PROPERTIES IN THE STUDY AREA HUPSELSE BEEK AS OBTAINED FROM THREE DIFFERENT SCALES OF OBSERVATION: AN OVERVIEW

J.W. Hopmans and J.N.M. Stricker

Introduction

Soil properties vary in space. Especially when the area of interest classifies into various soil map units. However, also soils that are seemingly uniform or soils within a soil map unit can vary such that no representative value for a soil property can be found from one or a few samples (Warrick and Nielsen, 1980).

Water balance models and saturated/unsaturated water flow models most often require knowledge of the soil hydraulic properties of the system considered. In the past, one would determine one or a few representative water characteristic curves and hydraulic conductivity functions and use those for the model calculations. More intensive sampling has shown that soil properties can vary much more than we anticipated them to vary. The fact that in many cases water flow models are very sensitive to variation in soil hydraulic properties, therefore, poses a problem. An intensive measurement campaign has been set up in the study-area Hupselse Beek with 2 of the following objectives: (i) to determine the variation of the soil hydraulic properties in the study-area and (ii) to find techniques to describe this variation, so that it can be used as stochastic input in a numerical model to simulate soil-water flow.

The data, pertaining to all the measurements of soil hydraulic properties in the study-area form the basis of this report. Results of statistical analysis of the available soil hydraulic data will be presented in the second part.

Description of Measurement Sites

Soil hydraulic properties were determined for various horizons at three different scales of observation. In the first sampling scheme, seven profiles across the 650 ha study area were examined. These seven sites were chosen in such a way that they included most characteristic profiles and horizons that were classified in the study area. This classification was based on a densily spaced soil survey (1200 points). The seven sites will be referred as sampling scheme 1. Figure 1 shows a 1:25000 map of the Hupselse Beek area with the location of the seven measurement sites. The names of the sites and their respective sampled horizons are listed in Table 1. The results of the soil physical measurements were reported by Wösten et al. (1983).

For the second sampling scheme, an area of 0.5 ha was chosen such that the seven sites within this area were all from the same and most important soil map unit (Hn52-STIBOKA soil map). Each of the seven sites was sampled in duplo at the 10 and 50 cm soil depth. A detailed map of the sub-area with the sampled locations is shown in Figure 2. To the northeast within this sub-area lies site 1 of sampling scheme 1. Brom (1983) reported the soil physical data for this sampling scheme.

Finally, the highest sampling density was achieved in the third sampling scheme, where at six locations triplicate samples were taken within 2 m². This sampling area was located between sites 1 and 7 of sampling scheme 2 (Fig. 2). At each of the six locations, samples were taken at depths of 30, 60 and 90 cm. Figure 2 shows the location of the sampling area, while a schematic view of the sampling strategy of sampling scheme 3 is presented in Figure 3. Booltink (1985) gives a detailed presentation of the measurement techniques and the soil physical data pertaining to the last sampling scheme.

		Sampled horizons					
Site	Name	Soil Water Characteristic Curve	Hydraulic Conductivity Function				
1	Brom pv	A1 B2 C11 C12	B2 C11 C12				
2	Assink pv	A1 B2 C11 C12	B2 C11 C12				
3	Lensink	Aan B2 C11 C12	B2 C11 C12				
4	Assink bl	A1 B2 C11 C12	B2 C11 C12				
5	Ten Barge	A1 B2 C11g D1 D2	B2 C11g D1 D2				
6	Schuurmans	A1 D1	D1				
7	Faaks	Ap C11g D1	C11g D1				

Table 1. Measurement sites and sampled horizons for sampling scheme 1.

Figure 1. Sample locations of sampling scheme 1.

Figure 2. Location of sampling schemes 2 and 3 and the measurement sites of scheme 2.

Figure 3. Sampled locations of sampling scheme 3.

Materials and Methods

Soil water characteristic curves as well as hydraulic conductivity functions were obtained by various techniques.

Stiboka (Wösten et al., 1983; sampling scheme 1) determined soil water characteristic curves by slow evaporation of wet undisturbed samples in the laboratory, in combination with in-situ measurements. In both cases, soil water pressure heads (h) were determined from tensiometer readings, while water contents (θ) were obtained from gravimetric sampling and neutron probe readings, respectively. Hydraulic conductivity (K) values of soil above the water table were measured with the crust-test down to approximately h--50cm (Bouma et al., 1977) and by the sorptivity method (Dirksen, 1979) and the hot-air method (Arya et al., 1975) for lower K-values. The samples contained in PVC-cylinders to be used for the crust-test were also used for the laboratory part of the soil water characteristic curves. Wösten et al (1983) reported very good agreement between the hydraulic conductivity values calculated with the sorptivity and hot-air method.

Brom (1983; sampling scheme 2) used the sandbox apparatus (Stakman et al., 1969) to determine soil water characteristic curves down to a soil water pressure head of approximately -500 cm. Undisturbed soil cores were thereby put on a box filled with sand or kaolien clay, while the desired suction was applied to the sandbox by a hanging water column or a suction pump. A continuous water phase will be established, unless the air-entry value of the soil in the sandbox is smaller than the desired suction in the soil sample. Hydraulic conductivity values as a function of soil water pressure head were again measured by the crust-test, while lower K-values as a function of 0 were determined by both the sorptivity and hot-air method. However, results obtained by the sorptivity method deviated substantially from the K-data as determined with the hot-air method. In addition, there was a poor match between the K-values determined with the crust method at high water content values and the data obtained from the sorptivity method in the lower content range.

Booltink (1985; sampling scheme 3) used the same techniques as Brom (1983). However, after desorption of the soil sample, Booltink also determined the sorption part of the soil water characteristics.

Analysis of so many soil physical data would be easier if the data can be fitted by analytical expressions. Van Genuchten (1978) introduced closed-form analytical expressions for both hydraulic functions. These are:

$$\Theta = \left[\frac{1}{1 + |\alpha h|^{n}}\right]^{m} , \qquad [1]$$

and

$$K_{rel}(\theta) - K/K_s - \Theta^{1/2} \left[1 - (1 - \Theta^{1/m})^m\right]^2$$
, [2]

where

$$\Theta = \frac{\theta - \theta_{r}}{\theta_{s} - \theta_{r}}, \text{ and } m = 1 - (1/n).$$

 $\theta_{\rm r}$ refers to the residual water content for which the slope ${\rm d}\theta/{\rm d}h$ becomes zero, excluding the region near $\theta_{\rm S}$, the saturated water content. ${\rm K_S}$ denotes the saturated hydraulic conductivity. Equations [1] and [2] therefore constitute a 5-parameter model (α , n, $\theta_{\rm S}$, $\theta_{\rm r}$ and ${\rm K_S}$).

Van Genuchten (1978) developed a curve fitting procedure to estimate the parameters $\theta_{\rm T}$, α and n from available water retention data. It is thus assumed that $\theta_{\rm S}$ is known. These parameters together with a measured $K_{\rm S}$ -value can then be used in Equation [2] to describe the hydraulic conductivity function. The described Van Genuchten fitting procedure was used, except that $\theta_{\rm T}$ was not estimated but set equal to zero in all cases. No satisfactory $\theta_{\rm T}$ -value could be estimated as in almost all cases no water retention data were available for the dryer part of the soil water characteristic curves (beyond the inflection point of the curves). Since $\theta_{\rm T}$ is known, van Genuchten's curve fitting program was modified such that instead of $\theta_{\rm T}$, an optimum value for $\theta_{\rm S}$ could be estimated ($\theta_{\rm S}^*$).

However, rather than using a measured $K_{\rm S}\text{-value}$ in Eq. [2], a conductivity value at some intermediate water content was used to obtain an optimum $K_{\rm S}^{\star}\text{-}$

value such that Eq. [2] would match the experimental data points best. In an iterative way successive $K(\theta)$ -combinations were fitted to Van Genuchten's model. The combination that yielded the minimum least squares was assumed to be the optimum hydraulic conductivity function. To reduce the weight of the points at high K-values, the logarithm of K instead of K was used in the optimalization procedure.

Description Datafile

The soil hydraulic data pertaining to all three sampling schemes were combined in one datafile. Each sampled site was given a soil identification number, consisting of four digits. The fourth digit indicates whether the soil physical data for that particular site and horizon are combined (1), or that each replicate is considered separately (digit refers to sample number). Table 2 explains the meaning of each digit. The structure of the data file is shown in Table 3, which lists the data for soil number 3331. The soil identification number is followed by the x, y and z coordinates of the site. X and y are given in meters, while the z-coordinate is expressed in cm depth below the soil surface.

The first two numbers on the next data line refer to the available number of experimentally determined water retention and hydraulic conductivity data. These are followed by a value for α , n, θ_s^* and K_s^* , to be used when one prefers Van Genuchten's analytical expressions (Equation [1] and [2]). The superscript star refers to fitted, rather than measured θ_s and K_s -values. The fitting procedure assumes θ_r to be zero. A K_s^* -value of 99.9999 denotes a missing value. It also indicates that no unsaturated conductivity data are available.

Finally the last two values on the second data line denote α and n for the sorption part of the soil water characteristic. Sorption data were only determined in sampling scheme 3.

The following set of lines contain the experimentally determined $(\theta - h)$ -combinations $(\theta \text{ in cm}^3 \text{ cm}^{-3} \text{ and h in cm})$. The number of data points is defined in the second data line. All the remaining lines refer to hydraulic conductivity data. In general, these data can be divided into three groups. K-data obtained with the crust-test, the sorptivity method and the hot-air method. Each line lists the hydraulic conductivity (cm day⁻¹), the corresponding h (cm) and θ -value, and for K-data determined with the last two methods also the diffusivity value (cm² s⁻¹). Only for sampling scheme 3, the K-data obtained by the sorptivity method were calculated using the

sorption part of the water retention curve. No sorption data were collected for the other 2 schemes.

For sampling schemes 2 and 3, the data file contains also the soil water retention data for the individual samples (3332 and 3338 in Table 3). Since each sample was either used for water retention or conductivity measurements, no K-data are here included. That is, water retention and conductivity data were never determined from the same sample.

The data file can be read by the format descriptions listed in Table 4. The data file is included in the Appendix.

Digit	Description	Possible values
1	sampling scheme	1, 2, 3
2	site number	1, 2, 3, 4, 5, 6, 7
3	depth indication	1, 2, 3, 4, 5
4	sample number	1*, 2, 3, 5, 8

Table 2. Description of soil identification number.

3331	242508.6	453081.9	90.0				1 (070
13	30		2.1261	0.2930	53.5	0.0621	1.6279
0.278	3						
0.262	32						
0.202	63						
0.112	100						
0.066	148						
0.036	331						
0.311	3						
0.292	10						
0.279	32						
0.230	63						
0.172	100					•	
0.144	148						
0.081	331						
272.2200	0			CRUST			
192.8700	10	0.290					
175.3400	14	0.287					
51.6000	24	0.277					
22.4500	18	0.284					
122.4000	19	0.283					
104.3600	2	0.293					
250.6300	0	0.293					
0.0170	204	0.059	0.00110	SORP			
2.5332	72	0.110	0.03300				
19.6759	41	0.150	0.12000				
8.8477	54	0.130	0.07700				
45.0111	28	0.180	0.18000				
0.0007	258	0.051	0.00007	•			
0.0016	210	0.058	0.00011				
0.1272	100	0.091	0.00270	*			
0.5415	85	0.100	0.00900				
62.0486	54	0.130	0.54000				
0.0014	340	0.043	0.00021				
0.0312	162	0.068	0.00140				
1.0747	72	0.110	0.01400				
27.7928	25	0.190	0.10000				
0,9719	73	0.190	0.00690	HAM			
0.9400	87	0.170	0.00770				
0.6579	102	0.150	0.00640				
0.3040	121	0.130	0.00370				
0.0543	145	0.110	0.00087				
0.0188	179	0.090	0.00043				
0.0070	228	0.070	0.00025				
0.0022	313	0.050	0.00015				
2220	242508.8	453082.0	90.0				
3332		0.0146	2.7256	0.2806	53.5		
6 0.278	0 3	0.0146	2.7236	0.2800	ر.در		
0.262	32						
0.202	63						
0.112 0.066	100 148						
0.036	331 242508.6	453081.7	90.0				
3338 7	242308.6	0.0157	1.8078	0.3062	53.5		
0.311	3	0.0137	1.00/0	0,3062			
0.311	10		•		•		
+ +	32						
0.279	63						
0.23	100						
0.172 0.144	148						
0.144	331						
0.001	JJ1						

Table 3. Soil physical data for site 333.

Line/data	Format
1	5x, A5, 3(F10.1)
2	2110, 6F10.4
retention	F10.3, I10
conductivity	F10.4, I10, F10.3, F10.5

Table 4. Format description data file.

Discussion

Diffusivity values D, obtained by the sorptivity and hot-air method, are used to compute hydraulic conductivity values. The two properties are related by:

$$K(\theta) = D(\theta) * C(\theta),$$
 [3]

where $C(\theta)$ denotes the water capacity function or the slope of the water characteristic curve. Using the same characteristic curve one can subsequently determine K(h)-combinations. Therefore, only those conductivity data are presented that correspond to soil water pressure head values equal or larger than for which soil water characteristic curves were determined.

Since the soil water characteristic function is hysteretic, so is the diffusivity function $D(\theta)$. There is, therefore, a marked difference between the sorptivity and hot-air method. In the first method, water is absorbed by the soil, while in the latter hot-air method the soil is dried. In principle, $K(\theta)$ and K(h)-data obtained by the two methods can only be combined if both the wetting and drying part of the soil water characteristic are measured $(C_W(\theta))$ and $C_d(\theta)$, where subscripts w and d denote wetting and drying, respectively). No sorption data, however, were measured by either Wösten et al. (1983, sampling scheme 1) or Brom (1983, sampling scheme 2). Wösten et al. (1983) found still good agreement between the two methods, when K was plotted versus h. However, $K(\theta)$ and K(h) data obtained with the sorptivity method by Brom (1983) did in most cases not agree with those determined with the hot-air and crust-method. These K-data were therefore eliminated and are not presented in this report.

Booltink (1985, sampling scheme 3) did measure hysteresis. Examples for two soils are shown in Figure 4 and 5. The same figures also show K(h)-data as obtained with the sorptivity method when the desorption (circles) or sorption part (+) of the soil water characteristic curve is used to convert from diffusivity to conductivity values (Equation [3]). These figures show

that there is a significant hysteresis effect, which should be considered when soils are either wetted or dried to determine conductivity values. It can be seen that the sorptivity method will tend to overestimate K when using the desorption or drying curve. Booltink's diffusivity data to calculate K were indeed treated as being partly obtained during drying (hot-air method) and partly during wetting (sorptivity method).

The resulting $K(\theta)$ and K(h) relationships for the same samples are shown in Figure 6 and 7. The $K(\theta)$ -data are divided into three groups, each group being determined by another method. The data obtained with the crust-test (circles) and hot-air method (+) seem to overlap well.

There is, however, no agreement with the sorptivity method (triangles) at higher water content values. A similar inconsistancy between the sorptivity method and the other two methods was reported by Brom (1983). The sorption data indicate a 1000-fold increase in K with a water content increase of ca. 0.05 (Figure 6b and 7b) in the high conductivity range. This seems very unlikely. A continuous slip on the cam may have resulted in a decreased infiltration rate and therefore in too low water content values. Therefore, the $K(\theta)$ -data from the sorptivity method were not included in the fitting of Van Genuchten's expression (Equation [2]).

Since the K(h)-function is hysteresis dependent, there exists no unique relation between K and h. The fitted curves (van Genuchten) through the K(h)-data in Figure 6c and 7c are desorption curves. The sorption curves would lie below the fitted lines.

Figure 4. Drying and wetting curves (a) and K(h)-data from sorptivity method (b), when drying (circles) or wetting curve (+) is used for soil 3321.

Figure 5. Drying and wetting curves (a) and K(h)-data from sorptivity method (b), when drying (circles) or wetting curve (+) is used for soil 3331.

Drying curve (a), $K(\theta)$ -data (b) as determined with crust test Figure 6. (circles), sorptivity method (triangles) and hot-air method (+) and combined K(h)-data (c), where lines are only fitted through data obtained with crust and hot-air method. Soil 3321.

Figure 7. Drying curve (a), $K(\theta)$ -data (b) as determined with crust test (circles), sorptivity method (triangles) and hot-air method (+) and combined K(h)-data (c), where lines are only fitted through data obtained with crust and hot-air method. Soil 3331.

Some Statistical Analysis

The following section gives some preliminary results from statistical analysis of the available soil physical data. The analysis is by no means complete, but is an indication of what can be done.

1. Multiple regression analysis

Multiple regression analysis was carried out to check if there exists significant correlation amoung α , n (Van Genuchten functions), K_s^* and θ_s^* . High correlation coefficients were obtained when α was regressed against n, n^2 , K_s^* and K_s^{*2} . The results are listed in Table 5. The coefficients of determination (R^2) for sampling scheme 2, 3 and the combination of the two schemes are significantly larger than the other regressed populations. The first sampling scheme pertains to different soil map units, while the other two schemes comprised only one soil map unit.

A similar regression analysis was done for K_S^* being the dependent variable, while including θ_S^* as one of the independent variables. This is more interesting than the previous analysis, since prediction instead of measurement of K_S would reduce the total number of measurements required to quantify the soil physical characteristics. The results are shown in Table 6 and 7. Table 6 lists R^2 values for a stepwise increase in the number of independent variables, while Table 7 lists the regression coefficients when all independent variables are included. Table 6 clearly shows a significant increase of the R^2 values when θ_S^* is included in the regression analysis. The increase in the coefficient of determination with the inclusion of $(\theta_S^*)^2$ may be the result of the quadratic relation between saturated hydraulic conductivity and pore size radius. Figure 8 illustrates how such predicted K_S -values compare with the fitted K_S -values for sampling scheme 1.

Sampl:	ing sch	eme	Regression	n Coefficien	ts		R ² -Value
		a	b	c	d*10 ³	e*10 ⁶	
1	(19)¶	.0978	-0.588	.00825	.150	-0.100	.749
2	(14)	00301	.00690	00036	.291	-0.300	.897
3	(17)	.0696	0522	.0114	.162	-0.300	.863
1+2	(33)	.0511	0291	.00422	.132	-0.100	.639
2+3	(31)	.0301	0221	.00566	.199	-0.200	.819
1+3	(36)	.0662	0372	.00528	.135	-0.100	.709
1+2+3	(50)	.0422	0214	.00307	.125	-0.000	.643

Table 5. Regression coefficients and coefficient of determination for prediction of α from n and K_s^* -values $(\alpha = a + b \cdot n + c \cdot n^2 + d \cdot K_s^* + e \cdot K_s^{*2}).$

independent		R	2-Values	For Samp	ling Sche	me	
parameters	1	2	3	1+2	1+3	2+3	1+2+3
α, n	. 464	. 520	.802	.483	.495	.579	. 500
α , n, θ_s^*	.819	.665	.803	.701	.724	.596	,658
α , n, α^2 , n ² α , n, θ_s^* ,	.773	.557	.827	.652	.711	. 586	.631
α^2 , n^2 , θ_s^{*2}	.974	.792	.878	. 870	.929	. 624	.847

Table 6. Coefficients of determination for prediction of K_S^* from α , n and θ_S^* .

			Regres	sion coef	ficients			R²
Sampling scheme	a*10 ⁻³	b*10 ⁻⁴	c*10 ⁻¹	d*10 ⁻⁴	e*10 ⁻⁴	f	g*10 ⁻⁴	
1	.2586	2.503	40.56	8344	-10.40	-49.43	1.297	.974
2	8.715	.1089	-1299	1.577	4.011	3823	-2.732	.792
3	-1.522	-1.798	-18.49	1.084	42.39	43.51	-1.467	.878
1+2	2.031	1.714	-7.653	-1.326	-7.587	-10.42	1.833	.870
1+3	1.337	2.097	28.19	-1.204	-8.905	-36.15	1.699	.929
2+3	.1459	. 9896	-53.93	. 2575	-3.481	111.0	4536	.624
1+2+3	2.019	1.583	1.348	-1.279	-6.796	5399	1.774	. 847

Table 7. Regression coefficients and coefficients of determination for prediction of K_S^* from α , n and θ_S^* $(K_S^* = a + b \cdot \alpha + c \cdot n + d \cdot \theta_S^* + e \cdot \alpha^2 + f \cdot n^2 + g \cdot \theta_S^{*2})$

Figure 8. Saturated hydraulic conductivity values of sampling scheme 1 predicted from α , n, and θ_s , plotted versus K_s^* .

2. Test for distribution type

The study of soil water flow with spatial variable soil hydraulic properties requires that the distributions of the values of the properties or of the parameters that functionally describe these properties are known. This is true since the soil hydraulic properties will then serve as stochastic input for a computer model to simulate unsaturated water flow. It is, therefore, of interest to find the distribution function of α , n, θ_S^* and K_S^* . In Table 8 a normal and lognormal distribution are compared for these four variables and for the various sampling schemes. In this table, KS denotes the modified distribution-free Kolmogorov-Smirnov Statistic (Stephens, 1974), which is to determine the goodness-of-fit of a hypothetized theoretical distribution with an estimated mean and variance to the empirical distribution function. The KS-statistic is a quantitive measure of the maximum difference between the empirical and hypothetical distribution function, and its value therefore decreases if the 2 distributions are closer together. In the case treated in Table 8, a value below .895 indicates an acceptable fit at the 5% probability level (see Stephens, 1974).

According to Stephens (1974) KS was calculated from $D^*[n^{0.5}-0.01+0.85/n^{0.5}]$, where D^* is the usual Kolmogorov-Smirnov statistic and n the number of observations. Those parameters that are labelled with a star were rejected as being normally or lognormally distributed at the 95% confidence level. In general, K_S^* follows a lognormal and θ_S^* a normal distribution function. One can also observe from the last two columns in Table 8 that the KS-statistic largely decreased in most cases when the data were transformed to a lognormal distribution. Visual inspection of the frequency distributions, (Fig. 9 to 12) would indicate that a lognormal distribution fits the empirical data better for all parameters, except possibly θ_S^* . A similar conclusion was reported by Greminger et al. (1985). Examples of such distributions are shown in Figure 9 through 12 for sampling scheme 1.

	μ		σ		KS	
parameter	normal	lognorm.	normal	lognorm.	normal	lognorm.
Sampling scheme 1						
α (26)	.03440	-3.686	.03405	.8023	1.382*	.652
n (26)	2.011	.6093	1.023	.4008	1.183*	.867
θ_{s}^{\star} (26)	. 3778	9899	.07322	.1829	.741	.594
K _s (19)	236.2	3.614	455.5	2.502	1.554*	.709
Sampling scheme 2						
α (14)	.02264	-4.015	.01756	.6729	.859	.546
n (14)	1.440+	3593+	.1615	.1057	.970*	.898
θ_{s}^{\star} (14)	. 3689	-1.005	.04731	.1327	.451	.538
K_{s}^{*} (14)	116.3	3.709	198.3	1.485	1.291*	.408
Sampling scheme 3						
α (17)	.02382	-3.822	.01076	.4119	1.136*	1.097*
n (17)	1.947	. 6423	.4606	. 2227	1.062*	.963*
θ_{s}^{\star} (17)	.3383+	-1.096+	.05631	.1589	1.097*	1.002*
K _s (17)	94.01	4.066	96.35	1.038	1.473*	.721
Sampling scheme 2 + 3						
α (31)	.0233	-3.909	.01399	. 5443	1.250*	.930*
n (31)	1.718	.5145	.4363	. 2276	1.165*	.874
θ_s^* (31)	.3522	-1.055	.05386	.1523	.748	.634
K_s^* (31)	104.1	3.905	148.7	1.250	1.742*	.531
Sampling scheme 1 + 2 + 3						
α (57)	.02835	-3.807	.02557	.6772	1.576*	.643
n (57)	1.852	.5578	.7685	.3189	1.768*	1.331*
θ_s^* (57)	. 3639	-1.025	.06414	.1686	.727	.627
K _s (50)	154.3	3.794	306.5	1.809	2.233*	. 546

mean is significantly different from sampling scheme 1 at 95% confidence level.

Table 8. Comparison of normal and lognormal distribution functions for α , n, θ_s^* and K_s^* (all sampling depths combined).

^{*} hypothesis that distribution is normal or lognormal is rejected at 95% confidence level (critical region: KS<0.895).

Figure 9. Fractile diagrams for normal and lognormal distribution of n (scheme 1).

Figure 10. Fractile diagrams for normal and lognormal distribution of α (scheme 1).

Figure 11. Fractile diagrams for normal and lognormal distribution of $\theta_{\rm S}$ (scheme 1).

-9.34 -846 ln (0*x) x 10⁻¹ -7.58

-5.81

-10.22

-11.99

-12.87

-11.11

Figure 12. Fractile diagrams for normal and lognormal distribution of $K_{\rm S}$ (scheme 1).

Also the gamma distribution function was considered as a possible distribution function. A comparison of the normal, lognormal and gamma distribution is shown in Table 9, which lists the sum of squares of the difference between the empirical and hypothetical distribution function for all four parameters when all 3 schemes are combined. It is clear from this table that the lognormal distribution is the best possible choice of the three considered (minimum sum of squares).

It is further of interest to know whether the parameters of sampling schemes 1, 2 and 3 are populations of the same normal or lognormal distribution function. The T-test can be used to test for equality of means. It should be noted that the T-test assumes that the samples under consideration are distributed independent. approximately normal and Ιf log-transformed values of the parameters were used in the T-test. independence assumption may not be fulfilled for parameters of the third sampling scheme, since soil samples were taken within an area of only 2 m2. At the 95% confidence level, only the mean of log (n) of sampling scheme 2 and the mean θ_s^* of sampling scheme 3 were significantly different from the respective means of sampling scheme 1 (Table 8).

3. Analysis of variance

Equality of variances between sampling schemes can be tested with the F-test. Comparison of the F-statistic values indicated that there is a significant difference in variance for most parameters. Therefore, the parameters of sampling schemes 1, 2 and 3 have different distribution functions. The F-test also indicated that the variances of all parameters of sampling scheme 2 were significantly smaller than of sampling scheme 1.

	Sum of Squares-Values					
Distribution	α	n	θ's	K*		
Gamma	.4511	. 5452	.0669	. 9097		
Normal	.8367	.8199	.0917	1.628		
Lognormal	. 0645	.3081	.0699	.0634		

Table 9. Sum of squares for comparison of three distribution functions.

Since different soil map units were part of the first sampling schemes this comes as no surprise. However, no such clear difference was found in the variances of sampling schemes 2 and 3, where only the variance of $\log \alpha$ was significantly smaller for the latter sampling scheme. It can furthermore be seen from Table 8 that the variances of n and θ_S^* of sample scheme 3 are larger than of scheme 2. This seems contradictory, since the sampled area of scheme 2 is much larger than of sample scheme 3 (5000 and 2 m², respectively), while both schemes 2 and 3 were part of the same soil map unit.

Sofar, all sampled depths were combined in the analysis. It seems, however, likely that significant differences in soil hydraulic properties will be found between horizons. Further analysis will focus on saturated water content and hydraulic conductivity. Values of these two variables for the various horizons and sampling schemes are listed in Table 10 and 11. Replicates $\theta_{\rm S}^{\star}$ -values were available for scheme 2 and 3, and no experimental $K_{\rm S}$ -data were determined for the A-horizon of scheme 1. No D-horizons were included in the analysis, since these occurred only in 3 sites of scheme 1. The difference of number and type of horizons between scheme 1 and the schemes 2 and 3 is the reason that only the A and B horizon of sampling scheme 1 are listed in Table 10 and 11. For sampling scheme 1 only 4 observations were available from C1- and C2-horizon, which each came from different depths.

Table 10. Available Replicate values of θ_s^{\star}

<u>scheme</u>	<u>location</u>		horizon		
		A	В	C	
1	1	.4003 (10)*	.4207 (35)		
	2	.4200 (10)	.3120 (60)		
	3	.5026 (40)	.3820 (95)		
	4	.3992 (15)	.3410 (50)		
	5	.4011 (15)	.3363 (65)		
	6	.4214 (20)			
	7	.3788 (15)	.3073 (40)		
2	1	.4151 .3901 (10)	.2915 .2676 (50)		
	2	.3776 .3803 (10)	.3595 .3039 (50)		
	3	.4826 .4107 (10)	.3452 .3633 (50)		
	4	.3986 .3841 (10)	.3972 .4107 (50)		
	5	.3888 .3173 (10)	.3305 .3285 (50)		
	6	.4194 .3727 (10)	.2973 .2963 (50)		
	7	.4389 .4120 (10)	.3827 .3676 (50)		
3	1	.4536 (32)	.3973 .3010	.3156 .3469	
			.3623 (64)	.2898 (90)	
	2		.3081 .3195	.3142 .3198	
			(64)	(90)	
	3	.4312 .4222	.3242 .3153	.2806 .3062	
		(35)	.3312 (60)	(90)	
	4	.4075 .4304	.3529 .2735	.2957 .2989	
		(35)	.2907 (60)	.2939 (90)	
	5	.3700 .4400	.2999 .3319	.2687 .2751	
		.3930 (28)	.2862 (59)	.2767 (90)	
	6	.3700 .3639	.2998 .2819	.2880 .2538	
		.4090 (28)	(59)	.2847 (90)	
depth ((cm)				

Table 11. Available K -values.

scheme	location		horizon	
		A	В	С
1	1		25.04	
	2		25.3	
	3		911.0	
	4		24.8	
	5		60.7	
	6	•	• • •	
	7		318.0	
2	1	10.30	3.53	
	2	80.13	9.92	
	3	25.46	695.0	
	4	96.33	420.19	
	5	11.03	138.50	
	6	31.14	19.06	
	7	40.06	47.32	
3	1	280.5	323.4	31.6
	2		73.2	44.9
	3	72.0	70.9	53.5
	4	75.5	62.2	45.5
	5	212.3	18.8	8.1
	6	190.6	18.3	16.9

Since replicate values of θ_S^* were available, the first point of interest was to test whether the location means of θ_S^* for a given sampling scheme and horizon are identical. The method to be used is called analysis of variance (ANOVA). The resulting F-test will provide a means to test whether fixed or random effects of each location are present (Snedecor and Cochran, 1980). Also, ANOVA is based upon the assumptions concerning normality and independency. Values for F, P (critical level), and LSD (least significant difference at 5% critical level) are shown in Table 12. The difference between a specific pair of means is significant at the 5% level if it exceeds LSD (Snedecor and Cochran, 1980). In only 2 out of 5 cases (scheme 2, B-hor., and scheme 3, C-hor.) a significant difference between locations was found. In the other 3 cases the variation between locations was not significantly larger than the within location variation.

Analysis of variance was also used to test whether the mean values of θ_s^* were identical for the different horizons and sampling schemes. The test results are shown in Table 13. When each sampling scheme was treated separately, the mean values of θ_s^* were significantly different for each horizon (Table 13, part A). On the other hand, when each horizon was treated separately, the mean values of θ_s^* were identical for each sampling scheme (Table 13, part B). One can therefore treat the whole population of θ_s^* -values (Table 10) as 3 different sub-populations, one for each horizon. The mean θ_s^* -values for the A, B and C horizons are 0.406, 0.331, and 0.294, while the corresponding standard deviations are 0.0354, 0.0401 and 0.0227, respectively.

Table 12. F, P, and LSD values to test whether location means of θ_s^* are identical.

<u>Scheme</u>	<u>Statistics</u>		<u>Horizon</u>			
	A	В	C			
2	F	1.85	11.88*			
	P	.219	.0023			
	LSD	.075	.042			
3	F	1.99	1.29	3.66*		
	P	.216	.340	.0385		
	LSD	.074	.064	.036		

^{*} F is significant at 5% level.

Table 13. F, P, and LSD values to test whether horizon and sampling scheme means of $\theta_{\rm S}^{\star}$ are identical.

A. Test for identical horizon mean:

<u>Scheme</u>	F	P	LSD
1 (A,B)	12.00*	0.0134	0.048
2 (A,B)	22.60*	<0.0001	0.0265
3 (A,B,C)	85.46*	<0.0001	0.0186
1+2+3	64.45*	<0.0001	0.0212

B. Test for identical sampling scheme mean:

<u> Horizon</u>	F	P	LSD
A	0.94	0.406	0.029
В	2.22	0.128	0.035

* F is significant at 5% level.

Similar tests as for θ_s^* were done for K_s^* . However, no replicate K_s^* -values were available. Since it has already been shown that K_s^* is lognormally distributed (Table 8), a log transformation was first performed to stabilize the variance. The test results are shown in Table 14. Only the means of the log for horizon A of sampling scheme 3 differed significantly from the means of the B and C-horizon. For all practical purposes we may therefore consider all available K_s^* -data as being one population of which the log transformed mean and standard deviation are 1.730 and 0.5608, respectively.

Once it has been decided that the variable in question follows a normal distribution, one can apply traditional Fisher statistics (Snedecor and Cochran, 1980) to determine the minimum sample size required at a chosen level of probability. In doing so, it can be shown that to estimate the mean θ_s^* of the A-horizon with a tolerated error of 0.01 cm³ cm⁻³, you will need 48 samples at the 95% confidence level. Similarly, if one tolerates a deviation of 10 or 50 cm day⁻¹ in the estimated mean of K_s , one would need 1450 and 58 samples, respectively. However, such a method is unsuited when the distribution of the population being sampled is nonnormal or of a unknown form. An alternative may be to use bootstrapping (Dane et al. 1986), a computer intensive method which has been developed recently.

Table 14. F, P and LSD values to test whether horizon and sampling scheme means of log $K_{\bf S}^{\star}$ are identical.

<u>scheme</u>	F	P	LSD	
2 (2 horizons)	0.45	0.5132	0.767	
3 (3 horizons)	5.18*	0.0207	0.489	
2+3 (2 horizons)	0.92	0.4067	0.539	
. Test for identica	al sampling		I CD	
		scheme mean:	LSD	
. Test for identica	al sampling		<u>LSD</u> 0.443	
. Test for identica	al sampling F 11.16*	P		

4. Bootstrapping

The following procedure explains such an application of the bootstrap technique. Bootstrap replicates of size $B=2,\,3,\,\ldots,\,N$ (N is population size) were generated 800 times, and the mean for each replicate calculated. The B random samples are drawn with replacement from the N available observations.

For each value of B, the fraction of the 800 replicates having means within a given percentage of the mean for the N observations is calculated and plotted against the value of B. The intersection point of a curve through the generated points with the horizontal, of which the ordinate is determined by the confidence level, determines the minimum sample size required. Examples for θ_S^* of the A-horizon and K_S^* are shown in Fig. 13 for maximum errors of estimate of 2.5, 5 and 10%.

The results show that the fraction of sample means within the error limits increases with sample size and eventually reaches a plateau beyond little or no additional information is gained. Also a reduction in error limit requires a larger number of observations to estimate the population mean with the same confidence interval. With respect to Fig. 13a, a tolerated error in the mean θ_S^* of 0.01 cm³cm⁻³ corresponds to a maximum error of estimate of 2.5% (open circles in Fig. 13a). Hence, one would need at least an additional 10-15 samples to achieve the required minimum sample size with a confidence level of 95%. A tolerated error in the mean K_S^* of ca. 10 cm day⁻¹ corresponds to a maximum error of estimate of 10% ('+' in Fig. 13b). The 31 samples that were available (A + B horizon) are by far not enough to obtain a reasonable estimate of the population mean of K_S^* .

Figure 13. Fraction of samples within the indicated percentage of the maximum error of estimate as a function of bootstrap sample size for θ_s^* A-horizon (a) and K_s^* (b).

5. Spatial dependency

So far it was assumed in the statistical analysis that the soil properties measured make independent samples. However, it is intuitively felt that a soil at near places tends to be similar, whereas that between two distant places is not. An observation therefor carries some information from its neighborhood. Spatial dependence in a soil property can be expressed in terms of a semivariogram, defined as half the expected squared difference between values of places x and x + h. In the theory of regionalized variables (Journel and Huybregts, 1978) the semivariogram is used to predict values of the soil property at nonsampled places or over small areas within a region, by kriging. Fig. 14 shows the semivariograms for $\theta_{\rm S}^{\star}$ of the A and B horizon. Note that the lag distance between locations h is on a log scale. The lag distances for which the semivariance was calculated increases with a larger distance between the sampled points. The distance before the semivariance reaches a plateau value (sill), the range, is a measure for the distance between points where the soil property is spatially dependent. The range of θ_s^* for both horizons appears to be in the neighborhood of 10 m. There is a larger increase in semivariance for the B-horizon than for the A-horizon before the sill is reached, indicating that the saturated water content values in the B-horizon are more spatially dependent.

Semivariograms for $\log K_S^*$ are shown in Fig. 15. Again it appears that the B-horizon has a larger spatial dependence and that the range for both horizons is again ca. 10 m. McBratney and Webster (1983) showed that if spatial dependence is present, the required sampling effort to predict the value of a property at a specific location will be less, than would have been judged necessary using the classical approach.

Figure 14a. Semi-variogram of θ_s^* for A horizon. Number near symbols indicate number of paired points to calculate semi-variance.

Figure 14b. Semi-variogram of θ_s^* for B-horizon.

Figure 15a. Semi-variogram of $\log K_s^*$ for A-horizon.

Figure 15b. Semi-variogram of log K_S^* for B-horizon.

6. Scaling

Prediction of water movement in spatial variable soils requires knowledge of the spatial variation of the soil hydraulic properties. A measure of such variation can be obtained by scaling, in particular, the scaling of soil water characteristic curves and hydraulic conductivity data. The theory of scaling is based on the similar media concept, introduced by Miller and Miller (1956). Similar media differ only in the scale of their internal microscopic geometries and have therefore equal porosities and equivalent particle and pore-size distributions. The purpose of scaling is to simplify the description of statistical variation of soil hydraulic properties. By this simplification, the pattern of spatial variability is described by a set of scale factors a, of which each a1 relates the soil hydraulic properties at each location, to a representative mean. Spatial variability is then characterized by the distribution of scale factors. Warrick et al. (1977) extended the application of scaling by estimating scale factors relative to the degree of saturation (s), with the result that the assumption of identical porosities can be eliminated. However, scaling should be restricted to soil locations having some reasonable morphological similarity.

Peck et al. (1977) defined a scaling parameter a₁ as being the ratio of the microscopic characteristic length of a soil and the characteristic length of a reference soil, or

$$a_1 = \lambda_1/\bar{\lambda},$$

where $l=1, \ldots, L$ locations. As a result of scaling one can relate the soil water characteristic and hydraulic conductivity function at any location 1 to an average h_m and K_m , $(a_1=1)$ such that

$$h_1 = h_m/a_1 \tag{4}$$

$$K_1 = a_1^2 K_m,$$
 [5]

According to Eq. [4] and [5], the soil water characteristic and hydraulic conductivity curves of similar soils can be reduced to two single curves,

(scaled mean curves) by means of scaling the soil water pressure head and hydraulic conductivity at each degree of saturation s. Validity of the similar media concept requires that the pressure head (a_1-h) and conductivity scale factors (a_1-K) are equal for each location 1.

Hopmans (1987) investigated various scaling methods as used to obtain scaled mean hydraulic curves. Of these methods, the one introduced by Warrick et al. (1977) were found to be applicable to the Hupsel data. Before scaling, the measured water retention data were fitted by the van Genuchten model (Eq. [1] and [2]). When pressure head and conductivity data of all horizons and sampling schemes combined were each scaled independently, a correlation coefficient of 0.87 was found between a1-h and a1-K. In addition, both a1-h and a1-K were found to be lognormally distributed. Therefore, statistical analysis of the scale factors will only focus on a1-h. It will be assumed that a1-h can be used to describe the variability of the conductivity function, according to Eq. [5].

Since replicate water retention curves were determined for sampling schemes 2 and 3, it was first investigated whether the scale factor values between locations for a given sampling scheme and horizon were significantly different. Water retention curves for each scheme and horizon were scaled independently and analysis of variance was used to test the significance of log-transformed scale factor values between locations. The test results are shown in Table 15. In only one case (scheme 3, C-horizon) a significant difference between locations was found.

Analysis of variance was also used to test whether the mean of the log-transformed scale factor values were identical for the different horizons. All available water retention curves were used in the scaling, however, testing was done for each sampling scheme separately. Table 16 shows that no significant differences were found between the horizons of sampling scheme 3. Since the LSD-value was larger than the difference between the mean scale values of horizon B and C, these two horizons were combined and the analysis of variance repeated. There was now no significant difference between the A-horizon and underlying soil for all three sampling schemes.

a . l	6 4		Horizon	
Scheme	Statistics	Α	В	C
2	F	3.88	0.28	
	P	0.0501	0.929	
	LSD	0.4618	0.682	
3	F	2.92	1.05	7.38*
	P	0.117	0.440	0.0039
	LSD	0.245	0.391	0.264

Table 15. F, P and LSD values to test whether location means of \$^{10}\log\$ (a) are identical

Scheme				log mean scale factor values		
	F	P	LSD	A	В	С
1	16.29*	0.0020	0.2467	0.1494	-0.3038	-
2	7.83*	0.0096	0.1327	-0.4567	-0.2761	-
3	3.09	0.0563	0.154	-0.0454	0.1469	0.09816
3@	5.79*	0.0207	0.141	-0.454	0.1225	-

[@] Combination of B and C horizon

Table 16. Statistics, to test for identical log-transformed means of scaling factor values between horizons.

To investigate differences between sampling schemes, the A and underlying horizont (B, and BC horizont for sampling scheme 3) were each scaled independently. Analysis of variance showed that the mean of the log-transformed scaling factors between all three schemes were significantly different for both horizons (Table 17). In general, the standard deviation in log(a) decreased with a smaller sampled area. Only the variance of scheme 3 for the the BC horizont did not follow this general behaviour. Since the samples of schemes 2 and 3 were part of the same soil type, one would expect statistically insignificant differences between schemes 2 and 3, and certainly a decrease in variance when comparing scheme 3 with 2.

Nevertheless, all three sampling schemes were combined and a mean and standard deviation of log(a) was calculated for each horizon. These statistics are listed in Table 18, which also shows that both distributions follow indeed a lognormal distribution (KS<0.895).

When the distribution of scale factor values is used to generate scale factor values (as in Monte Carlo analysis), it is important to notice that the scaled mean hydraulic functions are described with s (degree of saturation) as the independent variable. Also $\theta_{\rm S}$ has a known distribution (page 46). So if there exists a correlation between $\theta_{\rm S}$ and scale factor value, the two variables can not be generated independently of each other. R²-values between $\theta_{\rm S}$ and log(a) were calculated to be 0.0017 and 0.0713, respectively, for the A and B horizon. I.e. $\theta_{\rm S}$ can be drawn independently of log(a).

Since the unscaled water retention data were fitted by the van Genuchten model, it was further investigated if scale factor values could be predicted by the parameters α and n (Eq. [1]). As might be expected, regression resulted in high correlation coefficient values. Table 19 also shows the regression coefficient for each horizon separately, while calculated and predicted scale factor values are compared in Fig. 16. It would further be of interest if scale factors could be predicted from textural data, as was shown by Vauchaud et al. (1986). However, textural analysis was done for only a limited number of soils in Hupsel. In addition textural differences between soils where presumably too small to find any significant correlation.

<u>A-horizon</u>		F	Р	LSD
		15.93*	<0.0001	0.239
-	scheme	<u>и</u> log а	σlog a-	
	1 (7)	-0.1434	0.2993	
	2 (14)	-0.3730	0.2364	
	3 (11)	-0.2302	0.1148	
B(C)-horizo	<u>on</u>	F	Р	LSD
		17.43*	<0.0001	0.179
_	scheme	<u>μ</u> log a		
	1 (6)	0.0472	0.1971	
	2 (14)	-0.3404	0.1530	
	3 (32)	0.0253	0.2174	

Table 17. Statistics to test for identical log-tranformed means of scaling factor values between sampling schemes.

hori	zon	$^{\mu}$ log a	σ log a	KS
A	(32)	-0.1154	0.3430	0.844*
B(C)	(52)	-0.0706	0.2567	0.853*

Table 18. Mean and standard deviation of 10log a of A and B(C)-horizon, when all 3 sampling schemes were combined.

	****	Regres	sion coei	ficient		Coefficient of
<u>A-horizon</u>	b o	ь 1	b 2	b ₃	b ₄	determination R ²
(32)	-5.2638	3.6872	30.3091			0.844
	-0.9265	-2.6866	61.0696	2.1472	-523.091	0.900
BC-horizon	-1.1874	0.9817	8.8800			0.8826
(52)	-2.5713	1.8565	35.7843	-0.1780	-271.346	0.945

Table 19. Regression and correlation coefficients for prediction of scale factor values from α and n; a=b_0+b_1n+b_2 α (+b_3n^2+b_4 α ^2).

Figure 16. Plot of calculated versus predicted scale factor values for 3 sampling schemes combined.

In addition to the water retention curves, also all available conductivity data were scaled for the two horizons separately. The scaled mean water retention curves and hydraulic conductivity functions for both horizons are shown in Fig. 17 and 18, respectively. Van Genuchten's modified curve fitting procedure (RETC) was used to fit both the soil water characteristic and hydraulic conductivity function simultaneously. The fitted parameters to describe the hydraulic functions (Eq. [1] and [2]) are listed in Table 20.

If the soils at the sampled locations of the Hupsel watershed were perfect similar media, then the set of scale factor values calculated from water retention data (a-h) would have been identical to those calculated from conductivity data (a-K). Hence, a plot of a-h versus a-K values should fall along the 1:1-line.

It must be remembered, however, that although the sample replicates were from the same horizon, $\theta(h)$ and $K(\theta)$ were measured from different samples. Given the variation that already existed between the replicates, it should come as no surprise that the a_h - a_K plot (Fig. 19) exhibits a rather wide band. Better agreement between the two scale factor values would have been obtained if the replicate hydraulic properties were combined before scaling (Hopmans, 1987).

Inclusion of spatial dependency of the soil hydraulic properties in 2-dimensional water flow simulation requires knowledge of the spatial structure of the relevant properties in the 2-dimensional plane. Since it is proposed to express the variability of both the water retention curve and the hydraulic conductivity function with the single scaling parameter a₁-h, semivariograms of the scaling factor for both the A and B horizon are necessary. The semi-variograms of both horizons are displayed in Fig. 20. Similarly to the semi-variograms of θ_S^* and $\log K_S^*$ (Fig. 14 and 15), spatial structure is apparent up till a between point distance of ca. 10 meter. Values of the semi-variance and overall variance for Θ_S^* , $\log K_S^*$, and scale factor a are listed in Table 21. The values in this table can be used to derive the appropriate semi-variogram, which is necessary to generate 2-dimensional fields of the parameter in question using for example the nearest neighbor autoregressive model (Smith and Freeze, 1979). To check for

dependence between the calculated a-values in the vertical direction, the correlation coefficient (R) between the scale factor values of the A-horizon and B-horizon for all sampling schemes combined was calculated to be 0.140. I.e., scale factors values between the A and B horizont were virtually independent.

Figure 17. Scaled mean water retention curves Hupsel of A and BC-horizon.

Figure 18. Scaled mean hydraulic conductivity curves Hupsel of A and BC-horizon.

Parameter	Horizon			
	A	ВС		
θ _r	0.00	0.00		
$\theta_{\mathtt{S}}$	0.4024	0.3195		
α	0.01924	0.02043		
n	1.5931	1.8187		
K_s (cm day ⁻¹)	33.7	40.55		

Table 20. Parameters of van Genuchten model to describe scaled mean hydraulic functions for A and BC-horizon.

Figure 19. Comparison of scale factor values, as calculated from water retention (a-h) and conductivity (a-K) data.

Figure 20. Semi-variograms of scale factor values of A and BC-horizon.

Variable	Horizon	Variance	Semi-variance at distance					
			0.125	0.375	0.75	1.5	3	
θ*	A	.125*10-2	.100*10-2	.497*10-3	.757*10-3	.107*10-2	-	
	В	.160*10 ⁻²	.311*10-3	.921*10 ⁻³	.933*10 ⁻³	.120*10-2	.120*10-2	
log Ks	A	0.221	-	-	0.0481	0.107	-	
	В	0.432	-	-	0.103	0.216	-	
a	A	0.461	0.0151	0.127	0.114	0.257	•	
	В	0.329	0.075	0.172	0.196	0.239	0.200	

Semi-variance at distance (m)								
Variable	Horizon	5	6	12	24	48	384	768
θ_{S}	A	.139*10-2	_	.835*10-3	.147*10-2	.136*10-2	.562*10-2	.129*10-2
	В	-	.189*10 ⁻²	.171*10 ⁻²	.108*10 ⁻²	.197*10 ⁻²	.480*10 ⁻²	.805*10 ⁻³
log K _s	A	0.103	-	0.349	0.188	0.228	-	-
	В	0,326	-	0.471	0.433	0.591	0.313	0.259
a	A	0.542	-	0.690	0.322	0.709	0.294	0.272
	В	-	0.380	0.350	0.229	0.372	0.175	0.452

Table 21. Semi variance values of θ_s^* , log K_s^* and a for A and B horizon.

References

- Arya, L.M., D.A. Farrell and G.R. Blake (1975). A field study of soil water depletion patterns in presence of growing soybean roots I. Determination of hydraulic properties of the soil. Soil Sci. Soc. Amer. Proc. 39: 424-430.
- Booltink, H. (1985). Bodemfysische eigenschappen op zeer korte afstand in Hupsel. Concept Rapport no. 3.
- Bouma, J. (1977). Soil survey and the study of water movement in unsaturated soil. Soil survey paper 13: 47-52. Soil Survey Institute, Wageningen.
- Brom, A. (1983). Bodemfysisch-, hydrologisch veldonderzoek op een 7-tal locaties in Hupsel in 1982. Concept rapport no. 2. Studiegroep Hupselse Beek.
- Dane, J.H., R.B. Reed and J.W. Hopmans (1986) Estimating soil parameters and sample size by bootstrapping. Soil Sci. Soc. Am. J. 50(2): 283-287.
- Dirksen, C. (1979). Flux-controlled sorptivity measurements to determine soil hydraulic property functions. Soil Sci. Soc. Amer. J. 43: 827-834.
- Genuchten, R. van (1978). Calculating the unsaturated hydraulic conductivity with a new closed-form analytical model. Dept. of Civil Eng. Princeton Univ. Princeton, N.J. 78-WR-08.
- Greminger, P.J., Y.K. Sud and D.R. Nielsen (1985). Spatial variability of field-measured soil-water characteristics. Soil Sci. Soc. Amer. J. 49: 1075-1082.
- Hopmans, J.W. (1987). A comparison of techniques to scale soil hydraulic properties. Manuscript.
- Journel, A.G., and Ch.J. Huybregts (1978). Mining geostatistics. Academic Press.
- McBratney, A.B., and R. Webster (1983). How many observations are needed for regional estimation of soil properties. Soil Science 135(3): 177-183.
- Miller, E.E., and R.D. Miller (1956). Physical theory for capillary flow phenomena. J. App. Physics 27(4): 324-332.
- Peck, A.J., R.J. Luxmoore, and J.L. Stolzy (1977). Effects of spatial variability of soil hydraulic properties in water budget modeling. Water Resour. Res. 13(2): 348-354.
- Smith, L., and R.A. Freeze (1979). Stochastic analysis of steady-state groundwater flow in a bounded domain: 2. Two-dimensional simulations. Water Resour. res. 15(6): 1543-1559.
- Snedecor, G.W., and W.G. Cochran (1980). Statistical methods. The Iowa State University Press.

- Stakman, W.P., G.V. Valk and G.G. van der Harst 1969. Determination of soil moisture retention curves I. Sandbox apparatus. Range pF θ to 2.7. ICW, Wageningen.
- Stephens, M.A. (1974). EDF-statistics for goodness-of-fit and some comparisons. Journal Amer. Stat. Assoc. 69:730-737.
- Vauchaud, G., M. Vauclin, and P. Balabanis (1986). Stochastic approach of soil water flow through the use of scaling factors. Measurement and simulation. Intern. Symp. Water management for Agricultural Development, Athens, 7-11 April 1986.
- Warrick, A.W., and D.R. Nielsen (1980). Spatial variability of soil physical in the field. In: Applications of Soil Physics. Ed. D. Hillel. Academic Press.
- Warrick, A.W., G.J. Mullen, and D.R. Nielsen (1977). Scaling field measured soil hydraulic properties using a similar media concept. Water Resour. Res. 13(2): 355-362.
- Wösten, J.H.M., G.H. Stoffelsen, J.W.M. Jeurissen, A.F. Holst and J. Bouma (1983). Proefgebied Hupselse Beek; regionaal bodemkundig- en bodemfysisch onderzoek. Rapport no. 1706. Stichting voor Bodemkartering, Wageningen.

APPEND	<u>ΙΧ</u>				
1111	242778.8	453068.2	10.0		
18	0	0.0539	1.3478	0.4003	99.9999
.092	383				
0.102	272				
0.130	554				
0.144	634				
0.146	109				
0.164	106				
0.182 .231	286 169				
.231	87				
,232	144				
.265	59				
.275	48				
.276	77				
. 284	43				
.321	14				
.357	13				
.385	5				
. 396	5				
1121	242778.8	453068.2	35.0	0 4007	
11	29	0.0200	1.7501	0.4207	25.04
.110	321				
.148 .173	134 134				
.230	77				
.230	105				
.272	105				
.309	41				
.318	37				
.391	41				
. 398	5				
.438	5				
.0032	332	0.110		SORP	
.0071	237	0.122			
.0115	148	0.148			
.0121	112	0.185			
.0387 .0738	125 121	0.17 0.175			
.0305	109	0.189			
.0501	100	0.2			
.0529	75	0.275			
.1026	124	0.17			
.1957	112	0.185			
.1724	104	0.19			
. 2710	81	0.255			
.192	76	0.275			
.5482	95	0.222			
.7833	95	0.222			
1.182 .5257	89 77	0.24 0.273			
. 5329	62	0.273			
2.159	62	0.29			
4.064	48	0.32			
5.576	29	0.365			
9.479	27	0.37			
10.66	18	0.391		CRUST	
14.75	12	0.408			
24.14	11	0.408			
31.4	9	0.413			
79.85	2 1	0.43			
134.7 1131	242778.8	0.438 453068.2	110.0		
10	5	0.0107	4.4548	.3125	5.30
10	,	0.0107	7.7570		2.00

```
.104
                126
                103
    .168
    .169
                 89
                 89
    .183
    .239
                 80
    .268
                 69
    .283
                 24
    .304
                 26
    .314
                 60
                  5
    .33
                         0.10
                                            SORP
   .1441
                 15
                                            CRUST
                         0.311
 1.115
                 20
                 10
                         0.329
 2.69
                         0.358
 8.774
                  2
10.7
                  1
                         0.358
    1141
          242778.8
                     453068.2
                                    140.0
                        0.0143
                                   5.3812
                                               .3001
                                                        29.0
      9
                  6
    .142
                 72
    .169
                 71
                 70
    .186
    .203
                 63
    .214
                 62
    .222
                 61
    .284
                 33
    .295
                 25
                  5
    .315
                                            SORP
   .7384
                 94
                         0.130
  1.611
                         0.275
                                            CRUST
                 40
14.94
                 25
                         0.296
29.92
102.3
                 11
                         0.315
                  7
                         0.322
205.7
                         0.340
                  1
    1211
           242047.7
                                     10.0
                     454043.6
     15
                        0.0296
                                   1.3751
                                               .4200
                                                        99.9999
                  0
    .157
                741
    .157
                335
    .158
                206
                643
    .163
    .165
                432
    .211
                143
    .235
                 99
                 79
    .261
    .283
                 98
    .285
                 66
    .303
                 85
                 50
    .334
    .342
                 81
    .401
                  5
                  5
    .416
    1221
           242047.7
                      454043.6
                                     25.0
                                                         9.33
     12
                 13
                        0.0142
                                   1.9791
                                                .3594
    .065
                554
    .076
                202
    .079
                395
                340
    .085
    .104
                163
    .144
                164
    .180
                145
    .224
                115
    .234
                 90
    .258
                 62
    .346
                 13
    .365
                  5
                         0.071
                                            SORP
   .0020
                517
```

```
358
                       0.085
  .0060
  .0030
               227
                       0.106
                       0.18
  .009
               151
  .0284
               124
                       0.21
                       0.21
  .096
               124
  .2919
                90
                       0.25
  . 5454
                                          CRUST
                58
                       0.29
 1.014
                37
                       0.315
 5.744
                28
                       0.33
24.75
                 9
                       0.362
59.74
                       0.38
                 3
99.64
                       0.38
                 1
                    454043.6
   1231
         242047.7
                                   60.0
    8
                4
                      0.0146
                                 3.4627
                                            0.3120
                                                      25.3
   .106
                98
   .128
                92
   .133
                82
   .213
                66
   .235
                58
   .258
                46
   .290
                27
   .325
                 5
 2.6920
                30
                        0.281
34.38
                        0.33
                10
39.94
                        0.34
                 5
58.4
                        0.34
                 1
                    454043.6
                                  100.0
   1241
         242047.7
               8
                      0.0292
                                 1.5800
                                            0.3429
                                                      38.5
    11
   .145
               102
   .156
                75
   .162
               109
   .195
               105
                50
   . 20
   .214
                60
   .239
                80
   .272
                50
   .326
                12
   .331
                 5
                 5
   . 34
                        0.18
                                          SORP
  .1005
                98
                       0.19
  .4498
                91
 2.018
                29
                        0.31
                                          CRUST
 4.884
                22
                        0.316
10.15
                 9
                        0.335
                 7
14.75
                        0.338
17.43
                 6
                        0.340
28.3100
                        0.340
                 1
   1311
         242131.1
                    452103.1
                                   40.0
                                            0.5026
                                                      99,9999
     14
                 0
                       0.0432
                                 1.3107
  0.196
               422
   .213
               639
               314
   .217
   .227
               258
               323
   .233
   .273
               132
   .296
                81
   .315
                75
   .334
                69
   .408
                46
   .436
                37
   .446
                15
   .472
                 5
   .503
                                    95.0
         242131.1 452103.1
   1321
```

15	17	0.0709	1.6050	0.3820	911.0
.059	255				
.072	507				
.073	178				
.076 .079	223 419				
.079	176				
.097	102				
.103	74				
.105	173				
.143	53				
.147	70				
.168 .204	46 43				
.378	5				
.385	5				
.0002	456	0.063		SORP	
.0009	300	0.075			
.0044	187	0.088			
.0106 .0517	143 96	0.097 0.12			
.1863	78	0.12			
1.634	70	0.14			
.7172	60	0.16			
1.586	60	0.16			
1.532	51	0.17			
3.625 6.974	52	0.169 0.19			
11.56	47 45	0.19			
29.38	42	0.21		CRUST	
146.0	9	0.365			
224.9	8	0.378			
460.9	1	0.385			
1331 9	242131.1	452103.1	125.0 2.9558	0.3688	267.0
.030	15 446	0.0349	2.9550	0.3000	367.0
.039	249				
.047	119				
.046	85				
.061	63				
.075 .094	57 56				
.334	56 17				
.359	5				
.0001	272	0.035		SORP	
.0003	157	0.04			
.0046	100	0.05			
.0405 .2562	76 74	0.066 0.065			
1.073	72	0.069			
1.072	65	0.07			
3.766	61	0.11			
6.015	59	0.12			
15.7	56	0.13			
25.32 76.43	52 41	0.14 0.23			
92.45	23	0.32		CRUST	
418.7000	6	0.358		•	
705.0000	1	0.359			
1341	242131.1	452103.1	200.0	0 0000	115 0
15	14	0.0288	1.8752	0.3309	115.0
.070 .074	237 318				
.082	231				
	2.31				

```
100
   .082
   .095
               116
   .144
                69
                78
   .150
   .168
                59
   .177
                69
   .253
                28
   .261
                28
   .265
                41
                 5
   .314
                 9
   .324
                 5
   .330
  .0003
               328
                        0.068
                                           SORP
  .0023
               247
                        0.075
  .0121
               184
                        0.085
  .0857
               127
                        0.1
  . 2405
               106
                        0.11
                94
  .5267
                        0.125
                84
                        0.138
 1.0270
                        0.16
 1.016
                65
 2.818
                65
                        0.16
                        0.22
9.577
                50
                                           CRUST
19.64
                35
                        0.255
25.01
                31
                        0.268
62.32
                 3
                        0.33
87.0700
                        0.33
                 1
                                     15.0
   1411
          241974.2
                     454126.5
                                              0.3992
                                                        99.9999
                       0.0215
                                  1.7478
     10
                  0
   .078
                590
   .086
               416
   .095
                255
   .149
               125
   .182
                118
   .240
                90
   .248
                 69
                 65
   .262
   .392
                  5
   .399
                  5
   1421
          241974.2
                     454126.5
                                     50.0
                                              0.341
                                                        24.8
                       0.0249
                                  1.6168
     12
                  6
   .083
                443
   .087
                477
   .119
                129
   .126
                129
   .152
                124
   .238
                 92
                 58
   .265
   .270
                 26
   .279
                 26
   .331
                 10
   .338
                  5
   .347
                  5
                                            SORP
                          .097
  .0175
                282
                          .120
  .1900
                180
                 43
                          .271
  .2885
                          .330
                                            CRUST
 2.6760
                 10
                  1
                          . 35
 8.617
 8.8660
                  1
                          .35
                                     80.0
          241974.2
                     454126.5
   1431
                                   2.3806
                                              0.3158
                                                         4.9
     22
                       0.0164
                11
   .038
                455
   .086
                110
   .094
                114
   .105
                112
```

```
,116
                101
   .153
                 80
                 97
   .161
   .174
                 84
   .185
                 81
   .206
                 90
   . 206
                 55
   .207
                 70
   .217
                 68
   . 229
                 47
   . 254
                 46
   .271
                 29
   .291
                 28
   .300
                  9
   .317
                  9
                  5
   .324
                  5
   .317
                  5
   .330
  .0001
                395
                         0.050
                                            SORP
  .0003
                269
                         0.06
  .0014
                162
                         0.085
                132
                         0.100
  .006
  .0384
                110
                         0.11
  .3351
                100
                         0.13
.314
4.784
                                            CRUST
                 67
                         0.21
                 10
                         0.312
11.0500
                  8
                         0.32
10.47
                  6
                         0.328
22.44
                         0.332
                  1
   1441
          241974.2
                                    120.0
                     454126.5
                  9
    21
                        0.0201
                                   2.0253
                                               0.33
                                                         12.2
   .028
                454
   .044
                460
   .090
                172
   .114
                 93
                 65
   .132
   .149
                 72
   .158
                 71
   .164
                 89
   .212
                 79
   .225
                 71
   .234
                 65
   .235
                 43
                 70
   .253
   .275
                 26
                 30
   .295
   .316
                 26
                  9
5
   .306
   .311
                  5
   .318
                  9
   .32
                  5
   .328
  .0009
                296
                          .06
                                             SORP
  .005
                186
                          .076
  .0226
                120
                          .10
  .1658
                 91
                          .12
                                            CRUST
  .2679
                 54
                          . 24
 4.429
                  9
                          .32
                  5
 7.609
                          .325
20.54
                  2
                          .33
37.44
                  1
                          .33
                      453355.9
                                      15.0
   1511
          242008.0
                                               0.4011
                                                         99.9999
                  0
                        0.0177
                                   1.4454
    16
   . 142
                427
```

```
.162
                550
    .21
                163
    .217
                164
                225
    . 227
    .265
                116
    .274
                115
    .277
                 84
    .286
                127
    .287
                  83
    .296
                  83
    .338
                  56
                  27
    .366
    .387
                  5
                  9
    .393
                   5
    .406
    1521
           242008.0
                      453355.9
                                      35.0
      20
                 17
                        0.0336
                                   1.6632
                                               0.3936 103.0
    .064
                446
    .104
                532
    .104
                256
    .105
                462
    .128
                104
    .142
                  97
    .149
                  79
    .154
                  92
    .176
                  69
    .182
                  92
    .188
                  91
    .214
                  53
    .224
                  66
                  39
    .263
    .300
                  35
    .312
                  46
                  28
    .352
    .364
                  9
                  5
    .372
    .383
                  5
   .0004
                378
                           .082
                                             SORP
   .001
                297
                           .089
   .0026
                224
                           .096
   .0074
                170
                           .108
   .0214
                           .115
                143
   .0633
                109
                           .13
   .5085
                  92
                           .16
   .6585
                  38
                           .28
  2.493
                  70
                           .19
  1.682
                  37
                           .29
  6.013
                  42
                           .27
  7.505
                                             CRUST
                  32
                           .30
                  12
19.81
                           .356
                           .38
114.9
                  1
143.6
                   1
                           .38
127.8
                           .38
                  1
157.0
                   1
                           .383
           242008.0
                      453355.9
                                      65.0
    1531
                        0.0226
                                    2.2420
                                               0.3363 60.7
      22
                  16
    .021
                469
    .043
                237
    .044
                268
                125
    .071
                125
    .079
    .086
                 98
                394
    .093
                  99
    .096
```

```
.114
                 82
    .115
                 97
    .138
                 97
    .150
                  87
    . 15
                  76
    .165
                  62
    .206
                  61
    .216
                 47
    .246
                  43
    .286
                  26
    .315
                  25
    .321
                   5
                   9
    .327
                   5
    .339
   .0001
                 313
                           .060
                                             SORP
   .001
                 253
                           .07
   .0061
                 208
                           .075
   .0306
                 163
                           .084
                           .095
   .1389
                 134
                 105
                           .112
   .5677
  1.572
                           .12
                 100
  3.087
                  94
                           .13
  1.374
                  65
                           .18
                                             CRUST
  3.368
                  53
                           .22
  5.002
                  53
                           .221
 18.03
                  11
                           .324
 70.26
                   1
                           .335
103.0
                   1
                           .335
76.29
                   1
                           .34
110.8
                   1
                           . 34
                      453355.9
    1541
           242008.0
                                     125.0
     13
                   7
                         0.0286
                                    1.1069
                                               0,4256
                                                           5.40
    .324
                 227
    .333
                 470
    .338
                 213
    . 34
                 97
                 264
    .342
    .343
                 183
    .352
                  96
    .359
                  95
    .386
                  5
                 127
    .404
    .422
                  90
    .435
                   5
                   5
    .443
   .0042
                           .333
                                             HAM
                 343
   .0104
                 149
                           .356
   .0429
                  40
                           .388
   .0519
                  20
                           .401
   .1064
                   7
                           .425
   .0882
                   4
                           .435
                                             CRUST
    .0929
                   1
                           .45
    1551
           242008.0
                      453355.9
                                     160,0
                                                0.4572
                                                           0.028
                   3
                         0.0044
                                    2,1800
       6
    .417
                  72
                   3
    .439
    .46
                   3
    .461
                 102
                 102
    .471
    .496
                  71
    .0222
                  75
                           .45
                                             HAM
                  27
                           .455
    .0104
                                             CRUST
    .0479
                   1
                           . 46
    1611
          241002.6
                      453498.8
                                       20.0
```

```
0.0311
                                   1.3940
                                               0.4214
                                                         99.9999
      27
                 0
    .151
                370
    .163
                300
    .174
                418
    .195
                436
    .195
                138
    .199
                 91
    .203
                194
                164
    .208
    .215
                171
    .223
                 89
                112
    .245
    .252
                  54
    .254
                  88
    .261
                 86
    .30
                 63
    .311
                  83
    .315
                  55
    .316
                  86
    .356
                  43
    .362
                  11
    .377
                  42
    .392
                  27
    .402
                  9
    .402
                   5
    .412
                   5
    .413
                   9
                   5
    .424
           241002.6
                      453498.8
                                      90.0
    1621
     24
                 15
                                    1.0884
                                               0.6108 1823.0
                         0.0955
    .425
                 615
    .436
                350
    .456
                330
    .447
                  63
    .493
                  26
    .503
                  26
    .514
                  83
    .527
                  84
    .522
                  9
    .532
                  31
    .541
                  61
                  27
    .551
    . 554
                  43
    .562
                  25
    .568
                  28
    .578
                  9
    .587
                  25
    .589
                  5
    .592
                  16
    .595
                  25
    .592
                   5
    .605
                   4
    .606
                   4
    .615
                   4
   .0059
                 181
                           .48
                                             HAM
   .0098
                 144
                           .485
   .0332
                  61
                           .52
                  24
   .0802
                           .55
   .2444
                  24
                           .55
                                             CRUST
                           .565
   .9596
                  13
  9.3450
                  15
                           .563
  9.831
                  7
                           .578
 19.55
                  10
                           .57
131.9
                   2
                           .605
```

```
385.7
                           .60
358.4
                   1
                           . 6
425.1
                   1
                           .615
503.8
                   1
                           .615
627.6000
                           .615
                   1
           241593.2
                      454269.7
                                      15.0
    1711
      8
                  0
                        0.0044
                                    1.5447
                                               0.3788
                                                         99.9999
    .264
                 331
    .304
                 89
    .313
                 171
    .327
                 120
    .341
                 85
    .344
                 147
    .364
                  88
    .403
                  87
    1721
           241593.2
                      454269.7
                                     40.0
                                               0.3073 318.0
      11
                  15
                        0.0394
                                    1.6233
     .064
                 394
                  79
     .121
                  75
     .131
     .135
                  96
    .143
                  85
     .176
                  48
     .185
                  48
                  49
     .192
     .201
                  49
     . 295
                   5
     .304
                   5
    .0013
                           .07
                                             HAM
                 317
    .0134
                 239
                           .08
    .0755
                 187
                           .088
    .2154
                 148
                           . 1
    .4488
                 122
                           .11
    .5549
                 108
                           .116
    . 38
                  84
                           .135
  1.064
                  73
                           .155
  2.547
                  67
                           .16
  1.152
                  59
                           .18
  6.815
                  62
                           .17
 18.13
                  40
                           .22
                                             CRUST
                           .286
 15.23
                  12
                           .32
 56.69
                   2
 80.52
                   1
                           .32
           241593.2
                      454269.7
                                      65.0
     1731
                                               0.2528 611.0000
      10
                         0.1698
                                    1.1472
                  14
     .144
                 363
     .153
                 171
     .157
                  62
                  51
     .159
     .174
                  90
     .182
                  37
     .190
                  52
     .198
                  36
     .219
                  35
                   5
     .233
    .0032
                 349
                           .15
                                             HAM
    .0052
                 163
                           .16
    .0186
                           .192
                  63
                           .225
                                             CRUST
    .5288
                  23
  1.391
                           .225
                  21
                           .231
   .7324
                  19
                           .235
   . 9452
                  16
    .5676
                           .235
                  16
                  16
  1,1830
                           .24
```

```
13
                           .241
 2.631
                           . 245
 24.46
                 12
27.42
                 10
                           . 25
207.1
                  1
                           .255
402.2000
                           .255
    2111
           242505.5
                      453069.0
                                     10.0
      12
                 15
                        0.0088
                                   1.3723
                                              0.4025
                                                        10.3010
   0.408
                  1
   0.406
                 10
   0.404
                 32
   0.376
                100
                200
   0.268
   0.260
                501
   0.383
                  1
   0.381
                 10
   0.381
                 32
   0.371
                100
   0.236
                200
   0.221
                501
  1.0000
                 45
                         0.377
                                            CRUST
  1.3000
                 38
                         0.381
 13.0
                 28
                         0.388
 76.0
                         0.4
                  1
  0.0673
                                  0.00160
                139
                         0.320
                                            HAM
  0.0772
                         0.310
                                  0,00202
                161
  0.0658
                185
                         0.300
                                  0.00191
  0.0498
                211
                         0.290
                                  0.00161
  0.0354
                241
                         0.280
                                  0.00129
  0.0249
                274
                         0.270
                                  0.00102
                         0.260
  0.0177
                312
                                  0.00083
  0.0131
                         0.250
                                  0.00070
                355
  0.0121
                405
                         0.240
                                  0.00075
  0.0090
                         0.230
                                  0.00065
                462
  0.0050
                529
                         0,220
                                  0.00042
    2121
           242505.0
                      453069.0
                                      50.0
                        0.0098
                                   1.8508
                                              0.2802
                                                          3.5280
      12
                 26
   0.293
                  1
   0.288
                 10
   0.277
                 32
   0.236
                100
   0.078
                200
   0.074
                501
   0.265
                  1
                 10
   0.265
   0.248
                 32
   0.233
                100
   0.120
                200
   0.117
                501
                                            CRUST
  0.6900
                110
                         0.195
  5.3000
                  66
                         0.237
 80.0000
                  7
                         0.279
 95.0
                  1
                         0.28
                                  0.00423
                                            HAM
  0.3222
                 94
                         0.210
                                  0.00059
  0.0428
                106
                         0.200
  0.0382
                         0.190
                                  0.00057
                118
  0.0193
                132
                         0.180
                                  0.00031
  0.0151
                147
                         0.170
                                  0.00027
                                  0.00033
  0.0170
                163
                         0,160
                181
                         0.150
                                  0.00030
  0.0137
                                  0.00026
  0.0104
                201
                         0,140
                224
                         0.130
                                  0.00025
  0.0085
                                  0.00022
  0.0066
                251
                         0.120
  0.0046
                283
                         0.110
                                  0.00018
                                  0.00255
  0.1938
                 94
                         0,210
```

```
0.200
                                0.00186
0.1337
               106
0.0929
                        0.190
                                 0.00138
               118
 0.0686
                        0.180
                                 0.00111
               132
 0.0518
                                 0.00092
               147
                        0.170
 0.0402
                        0.160
                                 0.00079
               163
 0.0276
               181
                        0.150
                                 0.00061
 0.0189
               201
                        0.140
                                 0.00047
 0.0148
               224
                        0.130
                                 0.00043
 0.0129
               251
                        0.120
                                 0.00043
 0.0113
                                 0.00045
               283
                        0.110
   2211
         242479.0
                    453057.0
                                    10.0
    12
                       0.0146
                                  1.3461
                                                       80.129
                                             0.3781
                11
 0.374
                 1
 0.371
                10
 0.359
                32
  0.328
               100
  0.169
               200
 0.150
               501
 0.375
                1
 0.367
                10
 0.352
                32
 0.286
               100
 0.275
               200
 0.247
               501
1.8000
                        0.333
                                          CRUST
                48
2.8000
                32
                        0.350
29.0
                 6
                        0.37
73.0
                 4
                        0.376
                 3
75.0
                        0.377
 0.0756
                                 0.00329
               256
                        0.230
                                          HAM
 0.0631
                                 0.00324
               297
                        0.220
 0.0114
                                 0.00070
                        0.210
               345
 0.0094
                        0.200
                                 0.00069
               404
 0.0224
                                 0.00201
               474
                        0.190
 0.0189
               560
                        0.180
                                 0.00209
   2221
         242479.0
                    453057.0
                                    50.0
                                                        9.9150
     12
                15
                       0.0090
                                  1.6281
                                             0.3318
  0.358
                 1
  0.352
                10
  0.340
                32
  0.310
               100
  0.160
               200
  0.142
               501
  0.303
                 1
  0.300
                10
  0.289
                32
  0.269
               100
  0.178
               200
  0.139
               501
 2.1000
                80
                        0.280
                                           CRUST
23,0000
                28
                        0.319
37.0
                14
                        0.327
                        0.331
39.0
                 3
                        0.331
40.0
                 1
                                 0.00100
 0.0528
               144
                        0.232
                                          HAM
                        0.222
                                 0.00053
 0.0257
               161
                        0.212
                                 0.00162
 0.0710
               180
 0.0641
               200
                        0.202
                                 0.00162
 0.0161
               223
                        0.192
                                 0.00045
 0.0036
               279
                        0.172
                                 0.00013
 0.0293
               313
                        0.162
                                 0.00124
                                 0.00146
 0.0298
               352
                        0.152
                                 0.00068
 0.0117
               399
                        0.142
                                 0.00000
                        0.132
 0.0001
               454
```

```
2311 242462.0 453050.0
                                   10,0
                      0.0083
                                           0.4463
                                                     25.461
    12
                6
                                 1.2608
 0.482
                1
               10
 0.472
  0.463
               32
  0.432
              100
  0.391
               200
  0.368
               501
  0.413
                1
  0.405
                10
  0.402
                32
               100
  0.367
  0.315
               200
 0.231
               501
                       0.410
                                         CRUST
 0.6900
                66
 1.1000
               46
                       0.422
 2.0000
                35
                       0.428
17.0
                7
                       0.443
18.0
                 6
                       0.444
                                0.00141 HAM
 0.0102
               769
                       0.270
   2321
         242462.0
                                   50.0
                    453050.0
               18
                      0.0388
                                 1.3187
                                           0.3542 695.0
    12
  0.336
                1
  0.327
                10
  0.316
                32
  0.185
               100
               200
  0.175
  0.153
               501
  0.350
                1
  0.348
               10
  0.320
                32
  0.182
               100
  0.179
               200
               501
 0.166
 2.1000
               66
                       0.247
                                         CRUST
 6.6000
                       0.247
                66
 7.3
                66
                       0.247
24.00
                44
                       0.27
73.0
                12
                       0.33
                       0.260
                                0.00364
 0.3546
                                         HAM
                53
 0.5414
                       0.250
                                0.00639
                62
 0.6176
                73
                       0.240
                                0.00853
 0.6283
                86
                       0.230
                                0.01024
 0.6022
               102
                       0.220
                                0.01178
 0.5570
               121
                       0.210
                                0.01317
 0.4162
                       0.200
                                0.01192
               143
 0.2557
                                0.00904
                       0.190
               171
 0.1710
                       0.180
                                0.00753
               205
 0.1062
               248
                       0.170
                                0.00591
 0.0543
                                0.00388
               303
                       0.160
 0.0284
               373
                       0.150
                                0.00264
 0.0176
               466
                       0.140
                                0.00217
                                   10.0
   2411
         242458.0
                    453063.0
                                           0.3910
                                                     96.33
               15
                      0.0377
                                 1.3712
    12
  0.390
                1
  0.374
                10
  0.325
                32
  0.211
               100
  0.179
               200
  0.163
               501
  0.374
                1
                10
  0.369
               32
  0.336
  0.211
               100
```

```
200
 0.153
 0.145
               501
0.4800
                57
                        0.271
                                          CRUST
 1.3000
                53
                        0.277
9.99
                 9
                        0.371
35.0
                 4
                        0.382
                92
                                 0.00450
0.3124
                        0.235
                                          HAM
 0.0954
               106
                                 0.00161
                        0.225
0.0358
               122
                        0.215
                                 0.00071
 0.0219
               140
                        0.205
                                 0.00051
                                 0.00042
 0.0147
               163
                        0.195
                                 0.00044
 0.0131
               189
                        0.185
                                 0.00054
 0.0131
               222
                        0.175
 0.0116
               262
                                 0,00060
                        0.165
 0.0087
               313
                        0.155
                                 0.00056
 0.0067
               376
                        0.145
                                 0.00055
                                 0.00058
 0.0053
               458
                        0.135
         242458.0
   2421
                    453063.0
                                    50.0
                       0.0707
                                  1.3122
                                             0.4033 420.185
     12
                13
  0.387
                 1
  0.358
                10
  0.300
                32
  0.190
               100
               200
  0.182
  0.181
               501
  0.395
                 1
  0.391
                10
  0.305
                32
               100
  0.169
               200
  0.157
  0.141
               501
 1.4000
                23
                        0.315
                                          CRUST
 4.0000
                10
                        0.360
14.0
                        0.384
                 4
52.0
                 1
                        0.399
 0.1795
               100
                                 0.00333
                        0.215
                                          HAM
                                 0.00028
 0.0125
               118
                        0.205
 0.0462
               139
                        0.195
                                 0.00128
 0.0279
               166
                        0.185
                                 0.00096
 0.0177
               200
                        0.175
                                 0.00077
 0.0174
                                 0.00097
               243
                        0.165
 0.0142
                                 0.00103
               298
                        0.155
 0.0107
               370
                        0.145
                                 0.00103
 0.0073
                        0.135
                                 0.00095
               467
   2511
         242475.0
                    453072.0
                                    10.0
     12
                16
                       0.0109
                                  1.5044
                                             0.3529
                                                       11.03
  0.389
                 0
  0.381
                10
  0.357
                32
               100
  0.326
  0.182
               200
  0.171
               501
  0.315
                 1
                10
  0.310
  0.302
                32
  0.285
               100
  0.171
               200
  0.159
               501
 1.8000
                29
                        0.333
                                           CRUST
 6.2000
                16
                        0.345
 6.6
                11
                        0.348
 6.3
                        0.349
                10
25.0
                 7
                        0.35
 0.0242
               152
                        0.240
                                 0.00052 HAM
```

```
0.0333
                       0.230
                                0.00079
               172
0.0384
                       0.220
                                0.00103
               194
0.0339
                       0.210
                                0.00103
               219
0.0294
               247
                       0.200
                                0.00102
0.0311
               279
                       0.190
                                0.00124
0.0278
                       0.180
                                0.00129
               316
0.0196
               360
                       0.170
                                0.00107
0.0177
               412
                       0.160
                                0.00115
                                0.00130
0.0165
               474
                       0.150
0.0107
               549
                                0.00103
                       0.140
   2521
         242475.0
                    453072.0
                                    50.0
     12
                17
                      0.0329
                                  1.4123
                                            0.3315 138.5
  0,323
                 1
                10
  0.318
  0.297
                32
  0.229
               100
  0.183
               200
  0.185
               501
  0.325
                 1
  0.310
                10
  0.284
                32
               100
  0.115
               200
  0.086
  0.071
               501
                                          CRUST
 1.6000
                67
                       0.221
 7.7000
                29
                        0.271
46.0
                11
                        0.311
48.0
                 1
                        0.33
 0.2930
                58
                        0.230
                                0.00291
                                          HAM
                                0.00406
 0.3584
                67
                        0.220
 0.2682
                77
                        0.210
                                0.00349
                                0.00252
 0.1639
                90
                       0.200
                                0.00225
                       0.190
 0.1246
               104
 0.1415
               121
                        0.180
                                0.00304
 0.1479
               142
                        0.170
                                0.00386
 0.1106
               167
                        0.160
                                0.00353
                       0.150
                                0.00243
 0.0613
               198
 0.0311
                                0.00155
               236
                       0.140
 0.0359
               285
                       0.130
                                0.00230
 0.0392
                                0.00330
               349
                       0.120
 0.0264
               434
                        0.110
                                0.00299
         242491.0
   2611
                    453072.0
                                    10.0
                      0.0196
                                  1.3997
                                            0.3955
     12
                24
                                                      31.14
  0.418
                1
  0.413
                10
  0.391
                32
  0.340
               100
  0.210
               200
  0.170
               501
  0.365
                1
  0.355
                10
  0.325
                32
  0.230
               100
  0.180
               200
  0.174
               501
 1.5000
                40
                        0.339
                                          CRUST
 1.6000
                19
                        0.371
 4.8
                 5
                        0.391
94.0
                 1
                        0.395
 0.1275
                39
                        0.340
                                0.00104
                                          HAM
 0.1404
                46
                        0.330
                                0.00122
                                0.00126
 0.1338
                54
                        0.320
                                0.00140
 0.1361
                63
                        0.310
 0.1470
                72
                        0.300
                                0.00165
```

```
0.1559
                 82
                        0,290
                                 0.00193
 0.1553
                 93
                        0.280
                                 0.00213
                                 0.00243
 0.1576
                106
                        0.270
 0.1863
                120
                        0.260
                                 0.00324
 0.1763
                        0.250
                                 0.00347
                136
 0.1092
                155
                        0.240
                                 0.00247
 0.0770
                        0.230
                                 0.00201
                176
 0.0750
                200
                        0.220
                                 0.00227
 0.0672
                228
                        0.210
                                 0.00237
 0.0591
                         0.200
                                 0.00247
                262
 0.0529
                301
                        0.190
                                 0.00262
                                 0.00271
 0.0454
                         0.180
                348
 0.0339
                                 0.00247
                406
                         0.170
 0.0234
                476
                         0.160
                                 0.00211
 0.0168
                563
                         0.150
                                 0.00189
    2621
          242491.0
                     453072.0
                                     50.0
                                             0.2976
                                                       19,063
      12
                 19
                       0.0133
                                  1.6260
   0.299
                 1
   0.296
                 10
   0.279
                 32
   0.214
                100
   0.090
                200
                501
   0.060
   0.296
                  1
   0.287
                 10
   0.267
                 32
   0.227
                100
   0.165
                200
   0.143
                501
  9.2000
                 32
                        0.274
                                           CRUST
 10.9000
                 25
                         0.280
13.0
                 16
                         0,289
104.3
                         0.297
                  1
  0.3882
                 60
                         0.243
                                 0.00433
                                           HAM
 0.3556
                                 0.00417
                 69
                         0.233
 0.2989
                         0.223
                                 0.00377
                 80
                        0.213
 0.2390
                 91
                                 0.00326
 0.1844
                104
                         0.203
                                 0.00277
 0.1676
                117
                         0.193
                                 0.00279
 0.1387
                133
                         0.183
                                 0.00260
 0.1126
                150
                                 0.00239
                         0.173
 0.0893
                         0.163
                                 0.00218
                170
 0.0698
                192
                        0.153
                                 0.00197
 0.0531
                                 0,00177
                219
                        0.143
 0.0401
                251
                        0.133
                                 0.00160
 0.0307
                288
                        0.123
                                 0.00148
 0.0240
                335
                        0.113
                                 0.00143
 0.0194
                393
                        0.103
                                 0.00146
    2711
          242501.0
                     453084.0
                                    10.0
                       0.0264
                                  1.3299
                                             0.4263
                                                       40.062
      12
                 16
  0.440
                 1
   0.425
                 10
   0.389
                 32
   0,332
                100
  0.192
                200
   0.183
                501
   0.402
                  1
   0.394
                 10
   0.373
                 32
                100
   0.257
   0.236
                200
   0.214
                501
                                           CRUST
 0.1700
                110
                        0.285
                        0.359
 2.3000
                 39
```

```
2.55
              36
                     0.361
0.0375
              89
                     0.300
                             0.00052 HAM
0.0439
             101
                     0.290
                             0.00068
0.0432
             116
                     0.280
                             0.00077
0.0409
             132
                     0.270
                             0.00083
                     0.260
0.0329
                             0.00078
             151
                     0.250
                             0.00071
0.0258
             174
0.0243
             199
                     0.240
                             0.00078
                     0.230
                             0.00077
0.0200
             230
0.0132
             266
                     0,220
                             0,00060
0.0075
             309
                     0.210
                             0.00041
             362
                     0.200
                             0.00021
0.0031
0.0017
             426
                     0.190
                             0.00014
0.0019
             504
                     0.180
                             0.00019
  2721 242501.0
                  453084.0
                              50.0
              17
                    0.0161
                              1.4275
                                        0.3740 47.323
   12
 0.380
              1
 0.376
              10
 0.322
              32
              100
 0.291
 0.186
             200
 0.172
              501
 0.365
              1
 0.364
              10
 0.339
              32
 0.300
             100
 0.182
              200
 0,156
              501
4.1000
              29
                     0.341
                                      CRUST
11.0000
              19
                     0.356
12.0
              17
                     0.357
12.0
              15
                     0.36
15.5
              10
                     0.365
                              0.00205
0.1223
              113
                     0.260
             128
                     0.250
                             0.00269
0.1433
0.1870
             146
                     0.240
                             0.00398
                     0.230
                             0.00320
0.1315
             166
0.1038
             188
                     0,220
                             0.00289
0,1105
             214
                     0.210
                             0.00356
0.0827
              244
                     0,200
                              0.00311
0.0535
              280
                     0.190
                             0.00238
0.0342
              322
                     0.180
                             0.00181
                             0.00169
0.0265
             372
                     0.170
0.0257
              433
                     0.160
                             0.00200
                              0.00167
0.0174
              508
                     0.150
   2112 242505.5
                  453069.0
                                 10.0
              0
                    0.0106
                              1.3020
                                         0.4151
                                                  10.3010
    6
 0.408
               1
 0.406
              10
 0.404
              32
              100
 0.376
 0.268
             200
             501
 0.260
                  453069.0
                               10.0
  2113 242505.7
                                        0.3901
              0
                    0.0075
                              1.4578
                                                 10.3010
     6
 0.383
               1
              10
 0.381
 0.381
              32
             100
 0.371
 0.236
             200
             501
 0.221
  2122
        242505.5
                  453069.0
                                50.0
                                                  3.5280
                                        0.2915
    6
             0
                     0.0089
                              2.3711
  0.293
               1
```

0.288	10				
0.277	32				
0.236	100				
0.078	200				
0.074	501				
2123	242505.7	453069.0	50.0		
6	0	0.0105	1.5805	0.2676	3.5280
0.265	1	0.0103	1.5005	0.2070	3.3200
0.265	10				
0.248	32				
0.233	100				
0.120	200				
0.117	501				
2212	242479.0	453057.0	10.0		
6	0	0.0092	1.7024	0.3776	80.129
0.374	1				
0.371	10				
0.359	32				
0.328	100				
0.169	200				
0.150	501				
2213	242479.2	453057.0	10.0		
6	0	0.0417	1.1480	0.3803	80.129
0.375	1				
0.367	10				
0.352	32				
0.286	100				
0.275	200				
0.247	501				
2222	242479.0	453057.0	50.0		
6	0	0.0095	1.6913	0.3595	9.915
0.358	1				
0.352	10				
0.340	32				
0.310	100				
0.160	200				
0.142	501				
2223	242479.2	453057.0	50.0		
6	0	0.0081	1.5812	0.3039	9.915
0.303	1				
0.300	10				
0.289	32				
0.269	100				
0.178	200				
0.139	501				
2312	242462.0	453050.0	10.0		
6	0	0.0198	1.1195	0.4826	25.461
0.482	1	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_,,		,
0.472	10				
0.463	32				
0.432	100				
0.391	200				
0.368	501				
2313	242462.2	453050.0	10.0		
6	0	0.0056	1.4953	0.4107	25.461
0.413	1	0.0000	1.4733	V.710/	23.701
0.413	10				
	32				
0.402					
0.367	100				
0.315	200				
0.231	501 242462.0	453050.0	50.0		
2322 6	242462.0	0.0344	1.3317	0.3452	695.0
0.336	1	0.0344	1.331/	J. J4J2	3,3,0
0.330	T				

0.327	10			
0.316	32			
0.185	100			
0.175	200			
0.153	501			
2323	242462.2	453050.0	50.0	
6	0	0.0433	1.3084	0.3633 695.0
0.350	í	0.0433	1.5004	0.3033 073.0
0.348	10			
0.320	32			
0.320				
	100			
0.179	200			
0.166	501	452062 A	10.0	
2412	242458.0	453063.0	10.0	0.3986 96.33
6	0	0.0493	1.3202	0.3980 90.33
0.390	1			
0.374	10			
0.325	32			
0.211	100			
0.179	200			
0.163	501	/F00/0 0	10.0	
2413	242458.2	453063.0	10.0	0 20/1 06 22
6	0	0.0296	1.4331	0.3841 96.33
0.374	1			
0.369	10	_		
0.336	32	•		
0.211	100			
0.153	200			
0.145	501		70.0	
2422	242458.0	453063.0	50.0	0 0070 100 105
6	0	0.1000	1.2435	0.3972 420.185
0.387	1			
0.358	10			
0.300	32			
0.190	100			·
0.182	200			
0.181	501	1-00-0		
2423	242458.2	453063.0	50.0	0 /107 /00 105
6	0	0.0555	1.3903	0.4107 420.185
0.395	1		•	
0.391	10			
0.305	32			
0.169	100			
0.157	200			
0.141	501	153030 0	10.0	
2512	242475.0	453072.0	10.0	0 2000 11 02
6	0	0.0120	1.5176	0.3888 11.03
0.389	0			
0.381	10			
0.357	32			
0.326	100			
0.182	200			
0.171	501	(52070 0	10.0	
2513	242475.2	453072.0	10.0	0 0170 11 00
6	0	0.0095	1.4908	0.3173 11.03
0.315	1			
0.310	10			
0.302	32			
0.285	100			
0.171	200			
0.159	501	/ 50070 0	E0. 0	
2522	242475.0	453072.0	50.0	0 2205 120 5
6	0	0.0386	1.2282	0.3305 138.5
0.323	1			

0.318	10				
0.297	32				
0.229	100				
0.183	200				
0.185	501				
2523	242475.2	453072.0	50.0		
6	0	0.0256	1.8038	0.3285	138.5
0.325	í	******			
	_				
0.310	10				
0.284	32				
0.115	100				
0.086	200				
0.071	501				
2612	242491.0	453072.0	10.0		
6	0	0.0112	1.5673	0.4194	31.14
_	=	0.0112	T.30/3	0.4194	31.14
0.418	1				
0.413	10				
0.391	32				
0.340	100				
0.210	200				
0.170	501				
		4 E 2 O 7 O	10.0		
2613	242491.2	453072.0	10.0		
6	0	0.0375	1.3011	0.3727	31.14
0.365	1				
0.355	10				
0.325	32				
0.230	100				
0.180	200				
0.174	501				
2622	242491.0	453072.0	50.0		
6	0	0.0103	2.2015	0.2973	19.063
0.299	1				
0.296	10				
0.279	32				
0.214	100				
0.090	200				
0.060	501				
2623	242491.2	453072.0	50.0		
6	0	0.0194	1.3377	0,2963	19.063
0.296	i	0.025	_,,,,,,	0,2,00	
0.287	10				
0.267	32				
0.227	100				
0.165	200				
0.143	501				
2712	242501.0	453084.0	10.0		
6	0	0.0179	1.4488	0.4389	40.062
	i	0.0177	2. 1.100	0	
0.440					
0.425	10				
0.389	32				
0.332	100				
0.192	200		•		
0.183	501				
2713	242501.2	453084.0	10.0		
				0 4100	40 060
6	0	0.0392	1.2474	0.4120	40.062
0.402	1				
0.394	10				
0.373	32				
0.257	100				
0.236	200				
0.214	501				
		/E300/ 0	60.0		
2722	242501.0	453084.0	50.0	0 0555	
6	0	0.0242	1.3438	0.3827	47.323
0.380	1				

```
10
  0.376
  0.322
                 32
  0.291
                100
  0.186
                200
   0.172
                501
    2723
          242501.2
                     453084.0
                                     50.0
                                             0.3676
                       0.0119
                                  1.5256
                                                       47.323
       6
                  0
   0.365
                  1
   0.364
                 10
   0.339
                 32
   0.300
                100
   0.182
                200
   0.156
                501
          242507.4
    3111
                     453081.9
                                     32.0
                                                                   0.6200
                                                                              1.1943
                                   1.3483
                                             0.4536 280.5
       6
                 16
                        0.0467
  0.437
                 3
   0.431
                 10
   0.361
                 32
   0.232
                100
   0.221
                158
   0.191
                331
187.8100
                         0.454
                                           CRUST
                  0
161,7700
                         0.452
                  1
127.0800
                         0.449
                  2
                         0.423
  5.3300
                  9
  1.7700
                 37
                         0.339
  0.3000
                 31
                         0.353
  0.7100
                 38
                         0.337
  0.9000
                 31
                         0.353
  0.2200
                 30
                         0.355
  0.2800
                 27
                         0.363
                 28
  0.1700
                         0.360
                                 0.00850
  0.1264
                340
                         0.172
                                           HAM
                         0.152
  0.0342
                488
                                 0.00370
  0.0049
                736
                         0.132
                                 0.00091
  0.0025
               1183
                                 0.00087
                         0.112
  0.0223
               1153
                         0.113
                                 0.00760
          242507.4
    3121
                     453081.9
                                     64.0
                       0.0382
                                             0.3530 323.4
                                                                   0.2476
                                                                              1.3535
     19
                 10
                                  1.5380
   0.399
                  1
   0.395
                  3
   0.333
                 10
   0.330
                 32
   0.208
                100
   0.199
                159
   0.151
                501
   0.300
                  3
   0.289
                 10
   0.250
                 32
   0.138
                100
   0.133
                158
   0.062
                331
   0.357
                  3
   0.341
                 10
   0.248
                 32
                100
   0.096
   0.090
                158
   0.051
                331
                 99
                         0.165
                                 0.01200
  0.8252
  0.0908
                149
                         0.135
                                  0.00230
  0.0191
                204
                         0.115
                                  0.00076
                295
                         0.095
                                  0.00061
  0.0089
                462
                         0.075
                                 0.00058
  0.0043
                                 0.00860
  0.5914
                 99
                         0.165
```

```
0.1882
              129
                       0.145
                                0.00390
0.0349
              174
                       0.125
                                0.00110
0.0153
              244
                       0.105
                                0.00079
0.0070
                                0.00066
                       0.085
              365
   3131
         242507.4
                    453081.9
                                   90.0
                                                                            1.4693
    21
                      0.0171
                                 1.7349
                                            0.3180
                                                                 0.2675
               14
                                                      31.6
 0.314
                1
 0.316
                 3
 0.313
                10
 0.254
                32
 0.168
              100
 0.102
              159
 0.041
               501
 0.348
                 1
 0.344
                 3
 0.347
                10
 0.269
                32
 0.199
               100
 0.164
               159
 0.054
               501
 0.303
                 1
  0.302
                 3
  0.298
                10
  0.250
                32
               100
  0.216
  0.202
               159
 0.045
               501
 0.8137
                68
                       0.223
                                0.00690
                                         HAM
 0.6013
                84
                       0.203
                                0.00600
 0.4851
               103
                       0.183
                                0.00590
 0.2716
               127
                       0.163
                                0.00420
 0.0737
               157
                       0.143
                                0.00150
 0.0165
               199
                       0.123
                                0.00047
                                0.00059
 0.0138
               260
                       0.103
                       0.213
 0.8028
                                0.00730
               75
                                0.00620
 0.6214
                       0.203
                84
 0.5656
                93
                       0.193
                                0.00620
 0.2499
               114
                       0.173
                                0.00340
 0.1077
               141
                       0.153
                                0.00190
 0.0186
              301
                       0.093
                                0.00100
 0.0092
              425
                       0.073
                                0.00087
   3221
         242507,4
                    453081.3
                                   64.0
     13
                21
                      0.0342
                                 1.7389
                                            0.3140
                                                      73.2
                                                                 0.1721
                                                                            1.4683
 0.306
                 1
 0.305
                 3
 0.292
                10
 0.240
                32
 0.105
               100
 0.098
               159
 0.055
               501
                3
 0.311
               10
 0.306
 0.225
                32
               100
 0.106
 0.088
               158
 0.056
               331
                       0.314
                                          CRUST
59.4200
                 0
22.47
                 2
                       0.313
21.2900
                 3
                       0.311
 6,1000
                 6
                       0.306
0.2700
                19
                       0.266
0.1500
                23
                       0.253
2.6000
                25
                       0.247
11.0900
                       0.273
                17
```

```
9.2400
                  7
                         0.304
 8,7600
                  0
                         0.314
 0.8190
                         0.148
                                  0.00750
                 72
 0.5379
                                  0.00680
                 91
                         0.128
 0.2846
                118
                         0.108
                                  0.00530
 0.1220
                158
                         0.088
                                  0.00360
 0.0389
                         0.068
                                  0.00210
                228
 0.0140
                368
                         0.048
                                  0.00170
 0.5961
                 89
                         0.130
                                  0.00730
 0.0736
                114
                         0.110
                                  0.00130
 0.0293
                153
                         0.090
                                  0.00082
 0.0127
                219
                         0.070
                                  0.00064
 0.0052
                         0.050
                                 0.00057
                348
    3231
          242507.4
                     453081.3
                                     90.0
      14
                 39
                        0.0191
                                   1.7602
                                              0.3170
                                                        44.9
                                                                    0.2058
                                                                               1.4443
  0.327
                  1
  0.304
                  3
                 10
   0.298
   0.267
                 32
                100
   0.159
   0.112
                159
   0.058
                501
   0.306
                  1
   0.330
                  3
   0.332
                 10
   0.264
                 32
   0.203
                100
   0,138
                159
   0.051
                501
206.7700
                                            CRUST
                  0
                         0.317
                  2
178.4100
                         0.317
                  6
168.6100
                         0.314
 29.0600
                 30
                         0.276
 9.1000
                 26
                         0.284
 65.5000
                 12
                         0.307
141.2400
                  6
                         0.314
164.8700
                  0
                         0.317
 0.2983
                                  0.00520
                 65
                         0.099
                                            SORP
 0.2137
                 72
                         0.095
                                  0.00430
 8.3700
                 24
                                  0.03800
                         0,150
22.5651
                  7
                         0.230
                                  0.02800
                                 0.02700
 29.7225
                  4
                         0.260
 0.0005
                373
                         0.046
                                  0.00011
 0.0153
                 88
                         0.087
                                  0.00041
 1.6152
                                  0.00480
                 17
                         0.170
 30.9096
                  5
                         0.250
                                  0.03100
 1.0194
                                  0.00740
                 59
                         0.223
                                           HAM
                                 0.00670
 0.7873
                 73
                         0.203
 0.4278
                 89
                                 0.00440
                         0.183
 0.1777
                109
                         0.163
                                  0.00230
                                  0.00006
 0.0036
                135
                         0.143
                         0.113
                                  0.00067
 0.0236
                192
 0.0100
                253
                         0.093
                                  0.00044
 0.0059
                         0.073
                                  0.00045
                354
 0.0020
                545
                         0.053
                                  0.00032
 0.8043
                 55
                         0.230
                                  0.00560
                                  0.00640
 0.7972
                         0.210
                 68
                                 0.00640
 0.6681
                         0.190
                 83
 0.3721
                101
                                  0.00440
                         0.170
                                  0.00240
 0.1559
                125
                         0.150
 1.0380
                 61
                         0.220
                                 0.00770
 0.4591
                 75
                         0.200
                                  0.00400
 0.2628
                 92
                         0.180
                                  0.00280
                                  0.00150
 0.1121
                112
                         0.160
```

```
0.00150
  0.0845
                139
                         0,140
                                 0.00140
  0.0561
                176
                         0,120
  0.0321
                                 0.00120
                229
                         0.100
  0.0178
                312
                         0.080
                                 0.00110
                     453081.9
    3311
          242508.6
                                     35.0
                 27
                        0.0237
                                  1.6635
                                             0.4260
                                                       72.0
                                                                   0.2907
                                                                              1.2703
      13
   0.426
                  3
   0.414
                 10
                 32
   0.364
                 63
   0.316
                100
   0.180
   0.161
                148
                331
   0.141
   0.413
                 3
                 32
   0.359
   0.302
                 63
   0.166
                100
   0.164
                148
   0.143
                331
181.5500
                  0
                         0.426
                                           CRUST
                         0.426
 95.1600
                  1
 43.9200
                  5
                         0.421
                  8
  6.2700
                         0.416
  2.8700
                 23
                         0.376
                 19
 16.0400
                         0.388
 28.5400
                  5
                         0.421
                  0
132,8000
                         0.426
  0.7806
                112
                                 0.00880
                                           HAM
                         0.207
  0.2168
                134
                         0.187
                                 0.00310
  0.0697
                162
                         0.167
                                 0.00130
  0.0126
                200
                         0.147
                                 0.00032
                                 0.00031
  0.0085
                253
                         0,127
                                 0.00020
  0.0036
                332
                         0.107
  0.9768
                 96
                         0.225
                                 0.00910
                         0.205
                                 0.00180
  0.1561
                114
  0.0584
                137
                         0.185
                                 0.00086
  0.0238
                166
                         0.165
                                 0.00046
                                 0.00019
  0.0072
                205
                         0.145
  0.0032
                260
                         0.125
                                 0.00012
                                 0.00006
  0.0011
                341
                         0.105
  0.6243
                114
                         0.205
                                 0.00720
                                 0.00400
  0.2714
                137
                         0.185
  0.1862
                166
                         0.165
                                 0.00360
  0.1174
                205
                         0.145
                                  0.00310
  0.0922
                230.
                         0.135
                                  0.00290
  0.0451
                296
                         0.115
                                  0.00210
    3321
          242508.6
                      453081.9
                                     60.0
                        0.0155
                                   2.2327
                                             0.3230
                                                       70.9
                                                                   0.0629
                                                                              1.5995
      18
                 46
   0.320
                  3
   0.303
                 32
   0.252
                 63
   0.105
                100
   0.074
                148
                331
   0.058
                  3
   0.317
                 32
   0.288
   0,231
                 63
   0.138
                100
   0.069
                148
   0.043
                331
                  3
   0.326
                 32
   0.292
   0.244
                 63
                100
   0.175
```

```
0.144
                148
   0.105
                331
                         0.323
                                            CRUST
154,5000
                  0
                         0.322
160.6800
                  6
155.4800
                  7
                         0.322
 84.5100
                 17
                         0.314
 32,6800
                 23
                         0.306
 88,2300
                 19
                         0.312
                  5
100,7300
                         0.322
                  0
104.3600
                         0.323
                                  0.00130
  0.0190
                228
                         0,065
                                            SORP
                                  0.01700
  0.7735
                109
                         0.100
                                  0.16000
 14.4881
                 68
                         0.130
 44.0716
                 59
                                  0.40000
                         0.140
 97.8254
                 52
                                  0.75000
                         0.150
                                  0.00160
  0.0492
                141
                         0.086
                         0.049
  0.0004
                                  0.00006
                367
  0.0375
                147
                         0.084
                                  0.00130
  1.1703
                 79
                         0.120
                                  0.01600
 18.3263
                                  0.12000
                 46
                         0.160
  5,2886
                 59
                         0.140
                                  0.04800
 19.8535
                 46
                         0.160
                                  0.13000
 10.8456
                 15
                         0.250
                                  0.02600
  0.1090
                167
                         0.078
                                  0.00460
  3.8767
                 79
                         0.120
                                  0.05300
                                  0.02800
  1.6399
                 92
                         0.110
                                  0.12000
 10,8660
                 68
                         0.130
 96.2132
                 46
                                  0.63000
                         0.160
                                  0.98000
177.6343
                 40
                         0.170
  0.9832
                         0.137
                                  0.00990
                116
                                            HAM
  0.1773
                 136
                         0.117
                                  0.00230
  0.0623
                162
                         0.097
                                  0.00110
  0.0153
                199
                         0.077
                                  0.00040
  0.0095
                258
                        0.057
                                  0.00042
                                  0.00036
                370
  0.0038
                         0.037
  1.0655
                109
                         0.145
                                  0.00980
  0.3624
                127
                                  0.00420
                         0.125
  0.1301
                150
                         0.105
                                  0.00200
  0.0441
                 182
                         0.085
                                  0.00097
                                  0.00034
  0.0097
                 230
                         0.065
  0.0034
                 315
                         0.045
                                  0.00023
                         0.155
                                  0.00810
  0.9767
                 101
                                  0.00610
  0.5904
                 118
                         0.135
  0.4362
                                  0.00580
                 138
                         0,115
  0.1806
                 165
                         0.095
                                  0.00330
  0.0400
                 204
                         0.075
                                  0.00110
                                  0.00110
  0.0233
                 266
                         0.055
                                  0.00084
  0.0079
                 388
                         0.035
           242508.6
                      453081.9
                                      90.0
    3331
                                   2.1261
      13
                  30
                        0.0151
                                              0.2930
                                                        53.5
                                                                     0.0621
                                                                                1.6279
   0,278
                   3
                  32
   0.262
   0.202
                  63
                 100
   0.112
   0.066
                 148
   0.036
                 331
   0.311
                   3
                  10
   0.292
   0.279
                  32
   0.230
                  63
                 100
   0.172
                 148
   0.144
   0.081
                 331
272.2200
                         0.293
                                            CRUST
                   0
```

```
192,8700
                 10
                         0,290
175.3400
                         0.287
                 14
 51,6000
                 24
                         0.277
 22.4500
                 18
                         0.284
122.4000
                 19
                         0,283
                  2
104,3600
                         0.293
250,6300
                  0
                         0.293
  0.0170
                204
                         0.059
                                  0.00110
                                           SORP
  2.5332
                 72
                         0,110
                                  0.03300
 19.6759
                                  0.12000
                 41
                         0.150
                         0.130
  8.8477
                 54
                                  0.07700
 45.0111
                 28
                         0.180
                                  0.18000
                258
  0.0007
                         0.051
                                  0.00007
  0.0016
                210
                         0.058
                                  0.00011
  0.1272
                100
                         0.091
                                  0.00270
  0.5415
                 85
                                  0.00900
                         0.100
 62.0486
                         0.130
                                  0.54000
                 54
  0.0014
                340
                         0.043
                                  0.00021
  0.0312
                162
                         0.068
                                  0.00140
 1.0747
                 72
                         0.110
                                  0.01400
 27.7928
                                  0.10000
                 25
                         0.190
 0.9719
                 73
                         0.190
                                  0.00690
                                            HAM
                 87
  0.9400
                                  0.00770
                         0.170
  0.6579
                102
                         0.150
                                  0.00640
  0.3040
                                  0.00370
                121
                         0.130
  0.0543
                145
                         0.110
                                  0,00087
  0.0188
                179
                         0.090
                                  0.00043
 0.0070
                228
                         0.070
                                  0.00025
  0.0022
                313
                         0.050
                                  0,00015
    3411
          242508.6
                      453081.3
                                     35.0
      14
                        0.0235
                                              0.4190
                                                        75.5
                                                                    0.3064
                 25
                                   1.7183
                                                                               1.2670
   0,400
                  3
   0.394
                 10
   0.340
                 32
   0.280
                 63
   0.145
                100
   0.134
                148
   0.117
                331
   0.423
                  3
   0.418
                 10
   0.363
                 32
   0.302
                 63
   0.200
                100
   0.162
                148
   0.134
                331
186.0500
                  0
                         0.419
                                            CRUST
 85.9600
                  3
                         0.417
                         0.409
                  8
 36,7700
 23.9800
                 23
                         0.370
 0.1400
                         0.307
                 45
 13,9900
                 25
                         0.364
 20.6500
                 20
                         0.379
 38.3400
                         0,409
                  8
108.6800
                  0
                         0.419
                                  0.00390
  0.3575
                111
                         0.195
                                            HAM
  0.0940
                                  0.00130
                132
                         0.175
  0.0240
                         0.155
                                  0.00044
                160
  0.0215
                197
                         0.135
                                  0.00054
                                  0.00042
  0.0115
                250
                         0.115
                         0.095
                                  0.00007
  0.0012
                330
 0.1053
                                  0.00160
                         0.168
                141
 0.0323
                172
                         0.148
                                  0.00066
 0.0143
                214
                         0.128
                                  0.00041
 0.0068
                274
                         0.108
                                  0.00029
```

```
0.0035
                368
                         0.088
                                  0.00024
  0.2955
                139
                         0.170
                                  0.00440
                                  0.00420
  0.2133
                168
                         0.150
  0.0980
                209
                                  0.00270
                         0.130
  0.0344
                267
                         0.110
                                  0.00140
  0.0116
                356
                         0.090
                                  0.00076
          242508.6
    3421
                      453081.3
                                     60.0
      21
                 41
                        0.0169
                                   1.9728
                                              0.3060
                                                                    0.0410
                                                        62.2
                                                                               1.7274
   0.351
                  3
   0.346
                 10
   0.306
                 32
   0.241
                 63
   0.124
                100
   0.091
                148
   0.071
                331
   0.280
                  3
   0.268
                 10
   0.254
                 32
   0.205
                 63
   0.157
                100
   0.091
                148
   0.039
                331
   0.290
                  3
                 10
   0.281
   0.258
                 32
   0.211
                 63
   0.174
                100
   0.138
                148
   0.097
                331
110.0700
                         0.306
                                            CRUST
                  0
101.0400
                  8
                         0.303
110.5000
                         0.299
                 13
  3.1300
                 34
                         0.265
 57.9600
                  6
                         0.304
 54.2100
                  6
                         0.304
 98.2300
                         0.306
                  0
 0.0001
                318
                         0.047
                                 0.00001
                                           SORP
 0.0002
                291
                         0.050
                                 0.00002
 0.0007
                         0.058
                                 0.00004
                237
 0.5780
                 94
                         0.110
                                  0.00860
  0.6385
                 94
                         0.110
                                  0.00950
 42.6290
                 72
                         0.130
                                 0.43000
  0.0015
                384
                         0.041
                                  0.00023
                                 0.00190
  0.0404
                193
                         0.067
  0.6819
                         0.093
                                 0.01500
                121
 38.4404
                 64
                         0.140
                                 0.33000
 21.8102
                 72
                         0.130
                                  0.22000
                         0.140
 57.0782
                                 0.49000
                 64
  0.0681
                         0.067
                                 0.00320
                193
 1,3013
                122
                         0.092
                                  0.02900
 11.4251
                 94
                         0.110
                                  0.17000
 25.5179
                 82
                         0.120
                                  0.31000
 57,4996
                 72
                         0.130
                                  0.58000
 44.7029
                 57
                         0.150
                                  0.33000
                                  0,00600
  0.6027
                         0.160
                 98
                                           HAM
                                  0.00540
  0.4328
                         0.140
                117
  0.1271
                142
                         0.120
                                  0.00210
                                  0.00160
  0.0687
                176
                         0.100
  0.0205
                         0.080
                                  0.00074
                227
  0.0047
                309
                         0.060
                                  0.00030
  0.6384
                113
                         0.144
                                  0.00760
                                 0.00540
  0.3451
                137
                         0.124
                         0.104
                                  0.00340
  0.1576
                168
                                  0.00130
 0.0396
                215
                         0.084
```

```
0.0303
                289
                        0.064
                                 0.00170
 0.4914
                126
                        0.132
                                 0.00680
 0.1547
                154
                        0.112
                                 0.00290
                                 0.00099
 0.0361
                194
                        0.092
                        0.072
 0.0151
                254
                                 0.00067
 0.0056
                360
                        0.052
                                 0.00047
                     453081.3
          242508.6
                                     90.0
    3431
                                             0.2960
     21
                 36
                       0.0137
                                  1.7127
                                                       45.5
                                                                   0.1332
                                                                              1.3515
                 3
  0.298
                 10
  0.290
  0.277
                 32
   0.237
                 63
   0.167
                100
   0.113
                148
   0.055
                331
   0.296
                  3
   0.292
                 10
   0.280
                 32
                 63
   0.250
   0.206
                100
   0.180
                148
   0.133
                331
   0.298
                  3
   0.280
                 10
                 32
   0.265
                 63
   0.233
                100
   0.195
                148
   0.172
                331
   0.121
214.7200
                  0
                         0.296
                                           CRUST
135,2900
                  3
                         0.295
141.6200
                  5
                         0.295
 35,2200
                 26
                         0.277
 20.0000
                 30
                         0.273
                         0.292
 92.5400
                 10
 87.5700
                  9
                         0.293
176.9600
                  0
                         0.296
 0.3773
                         0.096
                183
                                 0.02400
                                           SORP
15.5135
                 49
                         0.150
                                 0.18000
  3.4643
                 95
                         0.120
                                 0.09300
                                 0.19000
 16.3754
                 49
                         0.150
 0.0237
                401
                         0.073
                                 0.00430
 1,1165
                123
                         0.110
                                 0.04200
 21.4497
                         0.140
                                 0.32000
                 60
  1.8874
                123
                         0.110
                                 0.07100
  8.0831
                 75
                         0.130
                                 0.16000
172.8419
                         0.180
                 27
                                 1,00000
                 95
                         0.120
10.4302
                                 0.28000
 1.8482
                162
                         0.100
                                 0.10000
  4.2533
                123
                         0.110
                                 0.16000
 43.5698
                 60
                         0.140
                                 0.65000
                 19
                         0.200
                                 1.50000
373.2965
  0.7260
                 94
                         0.200
                                 0.00910
                                           HAM
                                 0.00270
  0.1768
                118
                         0.180
  0.0504
                                 0.00098
                148
                         0.160
  0.0247
                187
                         0.140
                                 0.00064
  0.0166
                241
                         0.120
                                 0.00061
                319
                         0.100
                                 0.00025
  0.0045
                446
  0.0029
                         0.080
                                 0.00027
  0.5368
                                 0.00780
                         0.185
                112
  0.3890
                140
                         0.165
                                 0.00710
  0.2750
                176
                         0.145
                                 0.00660
  0.1132
                226
                         0.125
                                 0.00380
  0.0379
                297
                         0.105
                                 0.00190
```

0.0135	407	0.085	0.00110				
3511	242509.4	453081.9	28.0				
21	16	0.0397	1.5182	0.4000	212.3	0.2841	1.2793
0.363	3						
0.347	10						
0.298	32						
0.215	63						
0.175	100 148						
0.132 0.124	331						
0.124	3						
0.439	10						
0.308	32						
0.231	63						
0.184	100						
0.134	148						
0.122	331						
0.372	10						
0.388	3						
0.324	32						
0.241	63						
0.193	100						
0.146	148						
0.124	331	0.400		antiam			
406.8500	0	0.400		CRUST			
104.3900	7	0.382					
55.7200 18.5000	8 30	0.379 0.301					
6.1800	34	0.301					
0.0600	46	0.261					
0.3100	42	0.270					
13.6800	25	0.316					
30.8000	18	0.341					
55.7500	9	0.375					
193.3800	0	0.400					
0.9800	72	0.217	0.00870	HAM			
0.6007	90	0.197	0.00700				•
0.2021	114	0.177	0.00320				
0.0410	146	0.157	0.00091				
0.0146	265	0.117	0.00076				
3521	242509.4	453081.9	59.0	0 2000	10.0	0.0010	0 0100
21	59 3	0.0169	2.4484	0.3080	18.8	0.0219	2.2183
0.309 0.289	10						
0.267	32						
0.211	63						
0.125	100						
0.061	148						
0.051	331						
0.338	3						
0.320	10						
0.291	32						
0.209	63						
0.126	100						
0.068	148						
0.050 0.291	331 3						
0.291	10						
0.260	32						
0.184	63						
0.127	100						
0.052	148						
0.031	331						
151.9900	0	0.308		CRUST			

```
108.7100
                  8
                         0,307
63.5100
                         0.302
                 15
30.8500
                 28
                         0.282
19.6600
                 35
                         0,267
  0.3300
                 53
                         0.220
  0.5100
                 39
                         0.257
17.2900
                 41
                         0.252
117.0200
                  0
                         0.308
  0.0022
                290
                                  0.00019
                         0.032
                                            SORP
                         0.030
  0.0016
                306
                                  0.00016
  0.0027
                283
                         0.033
                                  0.00022
                                  0.01500
  0.7837
                         0.075
                140
11.8878
                108
                         0.100
                                  0.14000
26.1210
                 98
                         0.110
                                  0.26000
 2.9915
                122
                         0.087
                                  0.04400
41.5898
                 90
                         0.120
                                  0.36000
121.1514
                 77
                         0.140
                                  0.83000
232.8472
                                  1.20000
                 61
                         0.170
                         0.045
  0.0097
                218
                                  0.00046
  0.3866
                140
                         0.075
                                  0.00740
  4.2456
                108
                         0.100
                                  0.05000
 13.0605
                 98
                         0.110
                                  0.13000
  4.1607
                108
                                  0.04900
                         0.100
161,0953
                                  0.99000
                 71
                         0.150
  0.0010
                324
                         0.028
                                  0.00011
  0.0007
                345
                         0.026
                                  0,00009
  0.0056
                                  0.00034
                246
                         0.039
  0.5373
                138
                         0.076
                                  0.01000
                         0.099
                                  0.05900
  4.9284
                109
 12.0559
                 98
                         0.110
                                  0.12000
  4.0428
                                  0.05000
                111
                         0.097
 64.2248
                                  0.44000
                  77
                         0.140
 98.9601
                  61
                         0.170
                                  0.51000
  1.5755
                  67
                         0.185
                                  0.00790
  1.3112
                 76
                         0.165
                                  0.00740
  0.5258
                         0.145
                  87
                                  0.00350
  0.2607
                 99
                         0.125
                                  0.00210
  0.1058
                115
                                  0.00110
                         0.105
  0.0585
                137
                         0.085
                                  0.00085
  0.0359
                         0,065
                                  0.00080
                168
  0.0201
                         0.045
                                  0.00081
                219
  0.7976
                         0.233
                                  0.00350
                 48
  0.6015
                  55
                         0.213
                                  0.00270
                                  0.00140
  0.2919
                  63
                         0.193
  0.0936
                  72
                         0.173
                                  0.00050
  0.0633
                  82
                         0.153
                                  0.00039
  0.0605
                  94
                         0.133
                                  0.00045
  0.0634
                108
                         0.113
                                  0.00059
  0.0294
                         0.083
                                  0.00044
                139
  0.0155
                195
                         0.053
                                  0.00048
                                  0.00700
  1.5757
                  53
                         0.220
  1.0086
                         0.200
                                  0.00470
                  60
  0.5255
                  69
                         0.180
                                  0.00270
                                  0.00210
  0.3615
                 78
                         0.160
  0.3203
                 89
                         0.140
                                  0.00220
                                  0.00190
  0.2213
                103
                         0.120
                                  0.00160
  0.1424
                120
                         0.100
                                  0.00150
  0.0947
                143
                         0.080
    3531
           242509.4
                      453081.9
                                      90.0
                                                                     0.0198
                                                                                2.6245
      21
                 46
                        0.0150
                                   3.0602
                                               0.2740
                                                          8.1
   0.274
                  3
   0.263
                 10
   0.243
                 32
   0.182
                 63
```

```
0.098
                100
   0.047
                148
   0.037
                331
   0.283
                  3
   0.271
                 10
   0.256
                 32
   0,182
                 63
   0.109
                100
   0.028
                148
   0.017
                331
   0.287
                  3
   0.269
                 10
   0.256
                 32
   0.195
                 63
   0.100
                100
   0.041
                148
   0.032
                331
 0.0116
                         0.032
                187
                                  0.00050
                                            SORP
 0.0146
                         0.034
                180
                                  0.00057
 0.9269
                108
                         0.073
                                  0.01100
 32,0057
                 74
                         0.120
                                  0.19000
 57,6140
                 69
                         0.130
                                  0.31000
17.8902
                 80
                         0.110
                                  0.12000
 6.8068
                 89
                         0.095
                                  0.05500
192.0770
                 57
                         0.160
                                  0.84000
138,6676
                 20
                                  0.94000
                         0.260
 0.0062
                130
                         0.056
                                  0.00011
 0.1289
                107
                         0.074
                                  0.00150
 0.0023
                140
                         0,050
                                  0.00005
 0.6090
                 97
                         0.085
                                  0.00580
 31.3079
                 80
                         0.110
                                  0.21000
 48.8509
                 74
                         0.120
                                  0.29000
538,9698
                 69
                         0.130
                                  2,90000
 0.0010
                237
                         0.022
                                  0.00008
                208
 0.0027
                         0.027
                                  0.00015
 0.0315
                         0.040
                                  0.00095
                162
 0.4955
                         0.058
                                  0.00840
                127
 14,2188
                 95
                         0.087
                                  0.13000
 8.8923
                100
                         0.082
                                  0.09000
10.2885
                 98
                         0.084
                                  0.10000
102.2184
                 69
                         0.130
                                  0.55000
153.2043
                         0.160
                                  0.67000
                 57
  0.6863
                         0.250
                                  0.00440
                 35
                                            HAM
  1,1921
                         0.230
                                  0.00580
                 44
  1.5002
                 52
                         0.210
                                  0.00650
  1.7764
                 59
                         0.190
                                  0.00750
 1.8533
                                  0.00810
                 67
                         0.170
 1.6840
                 75
                         0.150
                                  0.00800
 1.4059
                 83
                         0.130
                                  0.00750
 0.8980
                 94
                         0.110
                                  0.00580
 0.4927
                106
                         0.090
                                  0.00400
 1.3026
                 58
                         0.195
                                  0.00550
 0.8353
                         0.175
                                  0.00360
                 65
                         0.155
 0.5177
                                  0.00240
                 73
 0.0948
                         0.135
                                  0.00049
                 81
                         0,210
                                  0.00600
 1.3848
                 52
 0.7106
                 59
                         0.190
                                  0.00300
 0.5720
                 67
                         0.170
                                  0.00250
 0.4421
                 75
                         0.150
                                  0.00210
 0.1162
                 83
                         0.130
                                  0.00062
 0.1037
                 94
                         0.110
                                  0.00067
                         0.090
                                  0.00071
 0.0875
                106
                                  0.00075
 0.0663
                123
                         0.070
          242509.4
                     453081.3
                                     28.0
    3611
```

21	20	0.0367	1.5572	0.3810	190.6	0.3100	1,2824
0.368	3	0.0307	1.3372	0.5010	170.0	0.3100	1,2024
0.328	10						
0.282	32						
0.212	63						
0.173	100						
0.134	148						
0.123	331						
0.361	3						
0.339 0.279	10 32						
0.190	63						
0.147	100						
0.099	148						
0.090	331	•					
0.409	3						
0.382	10						
0.334	32						
0.249 0.195	63 100						
0.193	148						
0.131	331						
180.8700	0	0.381		CRUST			
101.2500	5	0.372					
80.2600	7	0.366					
10.2400	40	0.263					
0.7600	47 50	0.248					
0.0300 0.6700	59 49	0,226 0,244					
0.8000	46	0.250					
21.4500	29	0.292					
24.8400	26	0.301					
123.9600	0	0.381					
0.1652	100	0.176	0.00220	HAM			
0.0915	128	0.156	0.00170				
0.0448 0.0265	166 224	0.136 0.116	0.00120 0.00110				
0.0097	318	0.096	0.00068				
0.0034	488	0.076	0.00046				
0.0537	201	0.123	0.00190				
0.0143	280	0.103	0.00083				
0.0053	416	0.083	0.00056				
3621 14	242509.4 45	453081.3	59.0 2.3654	0.2910	18 3	0.0331	1,8683
0.306	3	0.0139	2.3034	0.2710	10.5	0.0331	1,0005
0.288	10						
0.264	32						
0.191							
0.113	100						
0.067	148						
0.041 0.290	331 3						
0.272	10						
0.259	32						
0.212	63						
0.153	100						
0.066	148						
0.056	331	0 001		CDITOT			
87.4700 83.2600	0 4	0.291 0.291		CRUST			
85.9600	13	0.291					
30.9700	30	0.265					
0.1100	43	0.239					
1.5000	38	0.250					

```
59.3700
                 18
                         0.283
 52.9900
                         0.284
                 17
 68.4300
                         0.291
                 0
                382
  0.0003
                         0.032
                                 0.00005
                                           SORP
  0.0016
                         0.045
                                 0.00012
                256
  0.0317
                149
                         0.071
                                 0.00093
  2.5290
                 86
                         0.110
                                 0.03000
  18.9863
                 68
                         0,130
                                 0.16000
  0.0018
                294
                         0.040
                                 0.00018
  0.0048
                         0.047
                244
                                 0.00034
  0.0899
                151
                         0.070
                                 0.00270
  3.2138
                         0.100
                                 0.04600
                 97
                                 0.28000
 28.3856
                 76
                         0.120
 19.2617
                 76
                         0.120
                                 0.19000
 51.0257
                 68
                         0.130
                                 0.43000
150.8646
                         0.140
                                 1.10000
                 61
1320.9187
                 45
                         0.170
                                 6.80000
   0.0037
                 368
                         0.033
                                 0.00055
  0.1902
                179
                         0.061
                                 0.00770
                         0.120
  12.1653
                 76
                                 0.12000
  0.8891
                 55
                         0.150
                                 0.00570
  8.4299
                 86
                         0.110
                                 0.10000
   9.2729
                 86
                         0.110
                                 0.11000
  11.0358
                 68
                         0.130
                                 0.09300
   0.2915
                 75
                         0.170
                                 0.00180
                                           HAM
   0.0999
                                 0.00071
                         0.150
                 86
                         0.130
                                 0.00091
   0.1053
                100
                                 0.00056
   0.0508
                117
                         0.110
                                 0.00064
   0.0427
                139
                         0.090
   0.0312
                172
                         0.070
                                 0.00071
   0.6726
                 60
                         0.200
                                 0.00360
  0.3938
                         0.180
                 70
                                 0.00230
  0.2741
                 80
                         0.160
                                 0.00180
                         0.140
  0.1917
                 93
                                 0.00150
   0.1444
                108
                         0.120
                                 0.00140
   0.1024
                127
                         0.100
                                 0.00130
   0.0713
                 154
                         0.080
                                 0.00130
   0.0325
                194
                         0.060
                                 0.00095
                                 0.00072
   0.0124
                265
                         0.040
     3631
           242509.4
                      453081.3
                                     90.0
       21
                 51
                        0.0170
                                  2.6120
                                             0.2790
                                                       16.9
                                                                  0.0243
                                                                             2,2608
    0.295
                  3
                 10
    0.276
    0.248
                 32
    0.180
                 63
    0.102
                100
    0.057
                 148
    0.043
                 331
    0.263
                 3
                 10
    0.247
    0.232
                 32
    0.166
                 63
                 100
    0.074
    0.034
                 148
    0.025
                 331
    0.293
                  3
    0.276
                 10
    0.257
                 32
    0.197
                 63
    0.117
                 100
    0.061
                 148
    0.034
                 331
                         0.279
                                           CRUST
 206.6000
                 0
  86,3900
                   6
                         0.279
```

```
73.0000
                         0.277
                 11
 5.9100
                        0.247
                 33
 0.1800
                 43
                         0,223
 0.4700
                 53
                         0.197
 29.2600
                 28
                         0.257
49.0200
                 20
                         0.269
190.9200
                 0
                         0.279
 0.0010
                211
                         0.035
                                 0.00006
                                           SORP
 0.0053
                                 0.00019
                171
                         0.045
 0.0110
                         0.050
                                 0.00033
                157
 0.4021
                110
                         0.076
                                 0.00590
 8.8856
                 78
                         0.110
                                 0.07100
 63.8909
                 61
                         0.140
                                 0.36000
 1.7008
                 95
                         0.089
                                 0.01900
 58.5667
                 61
                         0.140
                                 0.33000
179.0373
                         0,220
                 31
                                 0.67000
  0.0012
                253
                         0.028
                                 0.00010
                                 0.00021
  0.0037
                211
                         0.035
  0.0041
                206
                         0.036
                                 0.00022
 0.2125
                                 0.00420
                         0.064
                128
 1.8863
                102
                         0.083
                                 0.02400
 59.2800
                 66
                         0.130
                                 0.37000
 13.7664
                 78
                         0,110
                                 0.11000
                         0.140
                                 0.42000
 74.5394
                 61
165.6763
                 31
                         0.220
                                 0.62000
                         0.029
  0.0027
                245
                                 0.00021
  0.0004
                377
                         0.017
                                 0.00008
  0.0338
                163
                         0.048
                                 0.00110
                         0.080
  1.1167
                105
                                 0.01500
  0.1156
                139
                         0.058
                                 0.00270
 11.6389
                 78
                         0.110
                                 0.09300
 55.0172
                         0.140
                                 0.31000
                 61
 24,5650
                 71
                         0.120
                                  0.17000
 30,5114
                 40
                         0,190
                                 0.12000
 1.3074
                 49
                         0.205
                                 0.00580
                                           HAM
 1.6384
                 57
                         0.185
                                 0.00750
 1,3336
                 65
                         0.165
                                 0.00660
                                 0.00470
  0.8274
                 75
                         0.145
  0.3292
                 85
                         0,125
                                 0.00220
 0.1193
                 98
                         0.105
                                 0.00100
  1.5557
                 44
                         0.220
                                 0.00700
  0.8996
                 51
                         0.200
                                 0.00400
  0.6665
                         0.180
                                 0.00310
                 59
  0.4865
                 68
                         0.160
                                 0.00250
  0.3754
                 77
                         0.140
                                 0.00220
 0.2700
                 88
                         0.120
                                 0.00190
  0.1445
                         0.100
                                 0.00130
                102
  0.0455
                         0.080
                                 0.00056
                120
  0.0126
                                 0.00024
                147
                         0.060
    3112
          242507.5
                     453082.0
                                     32.0
       6
                  0
                        0.0467
                                   1.3483
                                              0.4536 280.5
   0.437
                  3
   0.431
                 10
   0.361
                 32
   0.232
                100
   0.221
                158
   0.191
                331
          242507.5
    3122
                     453082.0
                                     64.0
                  0
                                              0.3973 323.4
                        0.0650
                                   1.2888
       7
   0,399
                  1
   0.395
                  3
   0.333
                 10
   0.33
                 32
   0.208
                100
```

0.199 0.151 3125 6 0.300	159 501 242507.1 0	453082.0 0.0238	64.0 1.7008	0.3010	323.4
0.289 0.25 0.138 0.133 0.062 3128	10 32 100 158 331 242507.4	453081.7	64.0		
6 0.357 0.341 0.248 0.096	0 3 10 32 100	0.0378	1.8423	0.3623	323.4
0.09 0.051 3132 7 0.314 0.316	158 331 242507.5 0 1	453082.0 0.0212	90.0 1.8265	0.3156	31.6
0.313 0.254 0.168 0.102 0.041	10 32 100 159 501		•		
3135 7 0.348 0.344 0.347	242507.1 0 1 3	453082.0 0.0226	90.0 1.6309	0.3469	31.6
0.269 0.199 0.164 0.054 3138	32 100 159 501 242507.4	453081.7	90.0		
7 0.303 0.302 0.298 0.25	0 1 3 10 32	0.0074	2.2002	0.2898	31.6
0.216 0.202 0.045 3225 7	100 159 501 242507.1 0	453081.4 0.0319	64.0 1.7268	0.3081	73.2
0.306 0.305 0.292 0.24 0.105	1 3 10 32 100				
0.098 0.055 3228 6 0.311	159 501 242507.4 0 3	453081.1 0.0365	64.0 1.7513	0.3195	73.2
0.306 0.225 0.106 0.088 0.056	10 32 100 158 331				
3235 7	242507.1 0	453081.4 0.0221	90.0 1.7413	0.3142	44.9

0.327	1				
0.304	3				
0.298	10				
0.267	32				
0.159	100				
0.112	159				
0.058	501				
3238	242507.4	453081.1	90.0		
7	0	0.0157	1.8151	0.3198	44.9
0.306	i	0.0137	1.0151	0.5170	77.7
0.33	3				
0.332	10				
0.264	32				
0.204	100				
0.203	159				
0.051	501				
3312	242508.8	453082.0	35.0		
7	0	0.0233	1.6737	0.4312	72.0
0.426	3	0.0233	1.0737	0.4312	72.0
0.414	10				
0.364	32				
0.316	63				
0.18	100				
0.161	148				
0.141	331				
3318	242508.6	453081.7	35.0		
5516	242300.0	0.0248	1.6437	0.4222	72.0
0.413	3	0.0248	1.0437	0.4222	72.0
0.413	32				
0.302	63				
0.166	100				
0.164	148				
0.143	331				
3322	242508.8	453082.0	60.0		
5522	0	0.0141	2.9511	0.3242	70.9
0.320	3	0.0141	2.7511	0,3242	,0.5
0.303	32				
0.252	63				
0.105	100				
0.074	148				
0.058	331				
3325		453082.0	60.0		
6	0	0.0143	2.7001	0.3153	70.9
0.317	3	*****			, , , ,
0.288	32				
0.231	63				
0.138	100				
0.069	148				
0.043	331				
3328	242508.6	453081.7	60.0		
6	0	0.0192	1.6815	0.3312	70.9
0.326	3				
0.292	32				
0.244	63				
0.175	100		•		
0.144	148				
0.105	331				
3332	242508.8	453082.0	90.0		
6	0	0.0146	2.7256	0.2806	53.5
0.278	3				
0.262	32				
0.202	63				
0.112	100				
0.066	148				

0.036	331				
3338	242508.6	453081.7	90.0		
				0.3060	E2 E
7	0	0.0157	1.8078	0.3062	53.5
0.311	3				
0.292	10				
0.279	32				
0.23	63				
0.172	100				
0.144	148				
0.081	331				
3412	242508.8	453081.4	0.35		
7	0	0.0237	1.7821	0.4075	75.5
0.400	3				
0.394	10				
0.34	32				
0.28	63				
0.145	100				
0.134	148				
0.117	331				
3418	242508.6	453081.1	35.0		
7				0 4204	7E E
_	0	0.0231	1.6706	0.4304	75.5
0.423	3				
0.418	10				
0.363	32				
0.302	63				
0.2	100				
0.162	148				
0.134	331		44.4		
3422	242508.8	453081.4	60.0		
7	0	0.0185	2.1928	0.3529	62.2
0.351	3				
0.346	10				
0.306	32				
0.241	63				
0.124	100				
0.091	148				
0.071	331				
3425	242508.4	453081.4	60.0		
7	0	0.0130	2.3811	0.2735	62.2
0.28	3	0.0130	2.3022		
0.268	10				
0.254	32				
0.205	63				
0.157	100		•		
0.091	148				
0.039	331		•		
3428	242508.6	453081.1	60.0		
				0 2007	60.0
7	0	0.0189	1.6179	0.2907	62.2
0.29	3				
0.281	10				
0.258	32				
0.211	63				
0.174	100				
	148				
0.138					
0.097	331		 -		
3432	242508.8	453081.4	90.0		
7	0	0.0124	2.2924	0.2957	45.5
0.298	3				
0.290	10				
0.277	32				
0.237	63				
0.167	100				
0.113	148				
0.055	331				
0.000					

3435	_	453081.4	90.0		
7 0.296	0 3	0.0137	1.5393	0.2989	45.5
0.292	10				
0.28	32				
0.25	63				
0.206	100				
0.18 0.133	148 331				
3438	242508.6	453081.1	90.0		
7	0	0.0170	1.5006	0.2939	45.5
0.298	3				
0.28 0.265	10				
0.233	32 63				
0.195	100				
0.172	148				
0.121	331				
3512 7	242509.6	453082.0	28.0	A 2700	010 2
0.363	0 3	0.0358	1.5232	0.3700	212.3
0.347	10				
0.298	32				
0.215	63				
0.175 0.132	100 148				
0.132	331				
3515	242509.2	453082.0	28.0		
7	0	0.0603	1.4667	0.4400	212.3
0.439	3				
0.373 0.308	10 32				
0.231	63				
0.184	100			- •	
0.134	148				
0.122 3518	331 242509.4	453081.7	28.0		
7	242303.4	0.0299	1.5722	0.3930	212.3
0.372	10	3.72.7	_,,_,		
0.388	3				
0.324	32				
0.241 0.193	63 100				
0.146	148				
0.124	331				
3522	242509.6	453082.0	59.0		
7	0 3	0.0158	2.4824	0.2999	18.8
0.309 0.289	10				
0.267	32				
0.211	63				
0.125	100				
0.061	148				
0.051 3525	331 242509.2	453082.0	59.0		
7	0	0.0181	2.3593	0.3319	18.8
0.338	3				
0.32	10				
0.291 0.209	32 63				
0.209	100				
0.068	148				
0.050	331				
3528	242509.4	453081.7	59.0		

7	0	0.0160	2.5981	0.2862	18.8
0.291	3	0,0100	2.3901	0.2002	10.0
0.28	10				
0.26	32				
0.184	63				
0.127	100				
0.052	148				
0.031	331				
3532	242509.6	453082.0	90.0		
7	0	0.0158	2.7589	0.2687	8.1
0.274	3				
0.263	10				
0.243	32				
0.182	63				
0.098	100				
0.047	148				
0.037 3535	331 242509.2	453082.0	90.0		
3333 7	242309.2	0.0147	3.2663	0.2751	8.1
0.283	3	0.0147	3.2003	0.2/31	0.1
0.271	10				
0.256	32				
0.182	63				
0.109	100				
0.028	148				
0.017	331				
3538	242509.4	453081.7	90.0		
7	0	0.0145	3.1589	0.2767	8.1
0.287	3				
0.269	10				
0.256	32				
0.195	63				
0.1	100				
0.041 0.032	148 331				
3612	242509.6	453081.4	28.0		
7	0	0.0481	1.4475	0.3700	190.6
0.368	3	3,3,42	2,41,5	0.0,00	2,0.0
0.328	10				
0.282	32				
0.212	63				
0.173	100				
0.134	148				
0.123	331				
3618	242509.4	453081.1	28.0	0.000	100 (
7	0	0.0341	1.6885	0.3639	190.6
0.361 0.339	3 10				
0.279	32				
0.19	63				
0.147	100				
0.099	148				
0.09	331				
3615	242509.2	453081.4	28.0		
7	0	0.0314	1.5683	0.4090	190.6
0.409	3				
0.382	10				
0.334	32			Y	
0.249	63				
0.195	100				
0.143	148				
0.131 3625	331 242509.2	453081.4	59.0		
3623 7	242309.2	0.0178	2.3751	0.2998	18.3
,	U	0.0178	2.J/JL	0.2330	10.3