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ABSTRACT 

The solution of equations of continuity and motion for overland 
flow, whether analytical or numerical, requires specification of 
initial and boundary conditions. A laboratory experiment was carried 
out to evaluate the influence of upstream boundary conditions on 
overland flow, under rainfall. The experiments were conducted in an 
impermeable plane surface using a rainfall simulator. Results of this 
study show the importance of considering, for gentle slopes, other 
upstream boundary conditions rather than the most frequently used 
h(0,t)-0 for t > 0, where h(x,t) is the flow depth as function of 
position x and time t. 

The method of characteristics is used to solve the kinematic 
wave equations for overland flow on an impermeable plane under time 
dependent upper boundary conditions. An application is worked out for 
a cascade of two planes. Typical characteristic contour plots and 
hydrographs of discharge and depth of flow are presented. 

NOTATION 

The following symbols are used in this report: 

C 
Cl 
C2 

C3 
C4 

D 

Di 
f 
h(x,t) 
L 
L* 
m 
P 
q 
Q 
Qo 
QL 
R 
s 
t 
T 
TR 

u 
x 
a 
ß 

constant 
parameter 
parameter 
parameter 
parameter 
backwater distance 
domain i of characteristic map 
Darcy-Weisbach friction factor 
flow depth function of x and t 
lenght measured along the plane 
horizontal length of application of rainfall 
parameter for the type of flow 
rainfall per unit area of the plane 
volumetric water flux per unit plane width 
discharge 
discharge at x-0 
discharge at x-L 
effective rainfall rate 
slope gradient 
time 
water temperature 
duration of effective rainfall 
mean overland flow velocity 
distance along the plane (x=0 is defined as the 
upslope limit of the applied vertical rainfall) 
hydraulic coefficient 
surface tension contact angle 

m/s) 
m) 
-) 
m) 
s/m) 
m) 
-) 
-) 
m) 
m) 
m) 
-) 
m/s) 
m2/s) 
1/s) 
1/s) 
1/s) 
m/s) 
-) 
s) 
°C) 
s) 
m/s) 

m) 
-) 
degrees) 





1. INTRODUCTION 

The solution of equations of continuity and motion for overland 
flow, whether analytical or numerical, require specification of 
initial and boundary conditions. 

The upstream boundary condition most frequently used in overland 
flow modelling is h(0,t) - 0 for t > 0 (Fig. la), where h(x,t) is the 
flow depth as function of position x and time t. For vertical 
rainfall and for steep slopes and watersheds this condition is valid, 
but for moderate .to gentle slopes its validity is questionable 
(Singh, 1978). Mathematical tractability is perhaps one reason for 
its use. 

Robertson et al, 1966, Kilinc & Richardson, 1973, and many other 
researchers, assumed an overland flow profile as presented in Fig. 
la. Shen and Li, 1973, carried out experiments on overland flow over 
smooth surfaces caused by a constant base flow and constant rainfall 
rate. They studied the effect of different boundary conditions (one 
is shown in Fig. lb, for a fully supercritical regime). They also 
concluded that the flow regime may change from supercritical to 
subcritical and vice versa under the influence of rainfall. Lima, 
1989, studied the effect of oblique rainfall on the overland flow 
process and verified that the impact of inclined raindrops and the 
shear stress caused by wind (blowing up-slope) at the water surface 
may create a discharge at the upstream boundary of the plane 
(depending strongly on slope, rainfall intensity and wind speed). 
This implies the existence of a non-zero water depth at x-0 (Fig. 
lc). 

A laboratory experiment, described in Chapter 2, was carried out 
to evaluate the influence of upstream boundary conditions on the 
overland flow process for vertical rainfall. Case d (Fig. 1) was 
chosen for the laboratory set-up. It tries to represent saturation 
overland flow (Dunne & Leopold, 1978) where excess rainfall only 
begins at a certain distance from the top of the slope. The 
experiments were carried out on an impermeable plane under the 
conditions described in detail in Chapter 2. In fact Id is a 
particular case of lb (Shen and Li, 1973) with zero inflow discharge, 
Q0, at x-0. 

Case d (Fig. 1) is rather difficult to model because: (1) 
resistance coefficients for steady uniform turbulent flow are not 
applicable; at x-0 Q0 may be zero, but there exists a non-zero water 
depth; (2) surface tension phenomena are not negligible on small 
slope gradients (as observed in the laboratory experiments described 
in Chapter 2); (3) the initial flow is not uni-directional as water 
will also flow upslope at x-0; (4) rainfall is space dependent 
(upstream of x-0 rainfall intensity is zero); (5) raindrop impacts on 
the overland flow sheet further complicates the analysis. An 
empirical relation is suggested in Chapter 2. 

In Chapter 3 the method of the characteristics is used to solve 
the kinematic wave equations for overland flow on an impermeable 
plane under time dependent upper boundary conditions. This 
application of the kinematic wave theory is best illustrated for a 
cascade of planes (Kibler and Woolhiser, 1970, 1972), where the 
discharge leaving the downstream boundary of one plane establishes 



the upstream boundary for the next plane. An application is worked 
out for a cascade of two planes. Typical characteristic contour plots 
and hydrographs of discharge and depth of flow are presented. 

i l i i i J l i J 
.,- V". 
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x = L Q L 

Fig. 1 - Upper boundary conditions commonly used for overland flow. 

2. LABORATORY EXPERIMENT ON IMPERVIOUS SURFACE UNDER CONDITIONS OF 
SIMULATED RAINFALL 

2.1. INTRODUCTION 

Under field conditions, overland flow is extremely complex and 
is not readily amenable to analytical treatment or description. In 
order to evaluate the influence of upstream boundary conditions a 
laboratory experiment was undertaken. In this study the following 
simplifications were introduced: 

1. The applied rainfall was vertical, uniformly distributed, of 
constant intensity, and limited to a horizontal length L (along the 
inclined plane from x-0 to x-L; see Fig. 2). 

2. Sufficient time had elapsed for the establishment of 
equilibrium conditions. 

slope. 
3. The surface was an impervious plane with uniform width and 



2.2. LABORATORY SET-UP 

The laboratory experiment was carried out in the Hydraulic 
Laboratory of the Department of Hydraulics & Catchment Hydrology of 
the Agricultural University Wageningen. 

The laboratory set-up (Fig. 2) is mainly composed of two units: 

1. A channel, with an uniform rectangular cross section of 1.02 
m width. The slope of the channel can be adjusted with the aid of a 
jack. The impermeable surface was smooth concrete. 

2. The rainfall simulator consisted of circular plates with 
conveyors to the edges of the plates where the drops are formed. It 
generates a uniformly distributed and time invariant geometrical 
rainfall pattern. Drop shape differed significantly from the 
equilibrium raindrop shape at terminal velocity due to oscillations 
after release from the drop formers and small fall height. The 
equivalent diameter of the drops (defined as the diameter of a 
spherical drop with the same mass) was rather large at the drop 
formers (up to 8 mm). However, most simulated drops broke up in 
falling. 

flowmeter 

-o-m T T T T T T T 
rainfall simulator 

vertical upstream 
splash barrier 

x = L 

•^flume bottom 

Fig. 2 - Layout of the experiment. 

The rainfall intensity was measured with a flowmeter. At steady 
state the rainfall intensity was checked against a volumetric 
discharge measurement (i.e. a weighing drum and a stopwatch). At 
steady state, the water depth at L (h^J and the backwater distance 
measured upwards from x-0 (D) were measured (Fig. 2). The 
experiment was repeated for different combinations of lengths (L -
3.27 and 4.72 m), slopes (S-0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1 and 
4%), and rainfall intensities (ranging from 0.0207 to 0.1528 mm/s). 



2.3. RESULTS 

Primary data collected at steady state for each simulation run 
(defined as the experiment conducted with fixed length, slope and 
rainfall intensity) were (Table 1): length (L), slope (S), rainfall 
intensity (P), water temperature (T), mean depth of flow at flume 
outlet (1IL) , and backwater distance measured upwards from x-0 (D) . 
The measurements were taken after a time long enough to reach 
equilibrium (steady state). 

The overland flow sheet observed during the experimental runs, 
both with and without upstream splash barrier, could be divided into 
the following sections (Fig. 3a and 3b): 

(1) Highly disturbed, downslope overland flow with direct impact 
of raindrops and of raindrop splash droplets. Injections of dye both 
in the raindrops and in the overland water sheet were rapidly 
dispersed. 

(2a) Disturbed, mainly radial flow with small circular wave 
formation due to drop impact in section (1). 

(2b) Disturbed, mainly radial flow with small circular wave 
formation due to drop impact in section (1). Direct impact of 
raindroplets also existed. 

(3) Stagnant water (horizontal water surface). After injection 
of dye, no water movement observed (except gradual dye diffusion). 

(4) Adhesive water. Surface tensions in the solid (bottom of the 
flume)-liquid interface with a certain contact angle g. 

(5a) Wetted flume bottom (pre-wetted with a moisted cloth). 

(5b) Wetted flume bottom with scattered water bubbles. 

(6) Air dry flume bottom. 

Rainfall intensity (P) plotted against distance D for a fixed 
slope (S) is strongly subjected to hysteresis due to surface tension 
effects on the flume bottom (Fig. 4). The measuring procedure was as 
follows: (1) start initial rainfall on dry surface; (2) wait until 
equilibrium (steady state) was reached; (3) measure primary data; (4) 
increase or decrease discharge and repeat steps (2) to (4). 
Hysteresis effect was observed to decrease with increasing slope 
gradient. The importance of surface tension and surface wettability 
characteristics with respect to the feasability of scale modelling of 
the rainfall - surface runoff process, on impermeable planes, was 
investigated by Graveto, 1970. 



Table 1 - Primary data collected 

splash run T 
s (water) 

m - 1/s mm cm 

No. date barrier type (water) L* S Q b.L 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

30/3/88 
30/3/88 
30/3/88 
30/3/88 
30/3/88 
30/3/88 
30/3/88 
30/3/88 
30/3/88 
30/3/88 
30/3/88 
30/3/88 
30/3/88 
30/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
31/3/88 
6/4/88 

Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

IN 
IN 
IN 
IN 
IN 
IN 
IN 
IN 
IN 
IN 
DE 
DE 
DE 
DE 
IN 
IN 
IN 
IN 
IN 
DE 
DE 
IN 
IN 
IN 
IN 
IN 
DE 
DE 
IN 
IN 
IN 
IN 
IN 
DE 
DE 
IN 
IN 
IN 
IN 
IN 
DE 
DE 
IN 

15.6 
15.6 
15.6 
15.6 
15.6 
15.6 
15.6 
15.6 
15.6 
15.6 
15.6 
15.6 
15.6 
15.6 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.7 
15.8 

4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 

0.04 
0.04 
0.01 
0.01 
0.01 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.003 
0.003 
0.003 
0.003 
0.003 
0.003 
0.003 
0.004 
0.004 
0.004 
0.004 
0.004 
0.004 
0.004 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.007 
0.007 
0.007 
0.007 
0.007 
0.007 
0.007 
0.001 

0.3 
0.51 
0.1 
0.25 
0.50 
0.1 
0.2 
0.3 
0.4 
0.51 
0.4 
0.3 
0.2 
0.1 
0.1 
0.2 
0.3 
0.4 
0.51 
0.35 
0.09 
0.1 
0.2 
0.3 
0.4 
0.51 
0.3 
0.1 
0.1 
0.2 
0.3 
0.4 
0.51 
0.30 
0.1 
0.1 
0.2 
0.30 
0.40 
0.51 
0.30 
0.10 
0.10 

3 
4 
3 
4 
5.5 
4 
5 
6 
6.5 
7 
6.5 
6 
5 
4.5 
4 
4.5 
5.5 
6 
6 
5.5 
4 
4 
4.5 
5 
5.5 
6 
5 
4 
4 
4.5 
5 
5.5 
6 
5 
4 
3.5 
4 
4.5 
5 
5.5 
4.5 
3.5 
4.5 

0 
0 
0 
0 
0 
10 
14 
30 
43 
54 
52 
52 
52 
52 
0 
5 
9 
15 
35 
30 
5 
0 
3.5 
8 
13 
15 
14 
5 
0 
3 
6 
7 
12 
12 
5 
0 
2.5 
3.5 
6 
9 
7.5 
3 
14 



Table 1 - Primary data collected (cont.) 

splash run 
No. 

45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

date 

6/4/88 
6/4/88 
6/4/88 
6/4/88 
6/4/88 
6/4/88 
7/4/88 
7/4/88 
7/4/88 
7/4/88 
7/4/88 
7/4/88 
7/4/88 
7/4/88 
7/4/88 
7/4/88 
7/4/88 
7/4/88 
7/4/88 
7/4/88 
8/4/88 

barrier 

Y 
Y 
Y 
Y 
Y 
Y 
N 
N 
N 
N 
N 
N 
N 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

type 

IN 
IN 
IN 
IN 
DE 
DE 
IN 
IN 
IN 
IN 
IN 
DE 
DE 
IN 
IN 
IN 
IN 
IN 
DE 
DE 
IN 

(water) 

°C 

15.8 
15.8 
15.8 
15.8 
15.8 
15.8 
16.0 
16.0 
16.0 
16.0 
16.0 
16.0 
16.0 
16.1 
16.1 
16.1 
16.1 
16.1 
16.1 
16.1 
16.1 

L* 

m 

4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
4.72 
3.27 
3.27 
3.27 
3.27 
3.27 
3.27 
3.27 
3.27 

S 

-

0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 

Q 

1/s 

0.20 
0.30 
0.4 
0.51 
0.3 
0.1 
0.1 
0.2 
0.3 
0.4 
0.5 
0.3 
0.1 
0.1 
0.2 
0.3 
0.4 
0.51 
0.3 
0.1 
0.3 

h L 

mm 

5 
6 
7 
8 
7.5 
5 
4 
5 
6 
6.5 
7 
6 
4.5 
4 
4.5 
5 
6 
6.5 
5 
4.5 
5 

D 

cm 

99 
238 
325 
426 
424 
424 
11 
18 
54 
66 
71 
70 
68 
13 
45 
70 
98 
144 
138 
126 
80 

Remarks : 

No. - experimental run number 
Date - day/month/year 

Splash barrier: 
Y - splash barrier installed at x-0 
N - no splash barrier installed 

Run type: 
IN - run executed for increasing rainfall intensity 
DE — run executed for decreasing rainfall intensity 

(See also Notation for list of symbols) 



raindrops 

splash 
droplets ~^, 

wall drops due to accumulated splash droplets 

vertical upstream splash barrier 

drop formation in the splash barrier 

® 
Splash 

, /aroplets 

flume bottom 

2a , 3 ,4, 5a , 6 (sect.ons) 

flume bottom 

Fig. 3 - Observed sections: a) with splash barrier; b) without 
splash barrier. 

025 

p o 
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0.10 0 S 

| -Û05 Q25-

P 
(mm/s) 

-0.10 

•0.05 

S =0.3 7. 

Dim) 
0.1 0.2 03 04 05 

(l/s) 

ÖS J 

025-

A 

f' ' / S =0.4 7. 

P Q 
(mm/s) (l/s! 

010 

Q05 

D(m) 

P Q 
(mm/s) (l/sl 

Q1 02 0.3 Oi 0.5 
Dim) 

025-

0.10 

O05 

0.5-

0.25-

Q1 02 03 04 05 
D(m) 

0.1 0.2 03 04 05 
Dim) 

0:i 02 0'3 OA 05 
D(m) 

Q 
U/s) 

0.5 

Û25-

S = 1 7. 
and steeper 

01 02 03 04 05 

P 
(mm/s) 

-0.10 

005 

/ increasing rainfall intensity 

/ decreasing rainfall intensify 

Dim) 

Fig. 4 - Hysteresis effect in the P-D relationship. 
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In Fig. 5 the effect of the splash barrier is illustrated. 
Removal of the splash barrier increased D. 

In Fig. 6a, D was plotted against slope (S) in linear scales for 
different rainfall intensities (P). For a horizontal surface (S=0), D 
tends to infinity at steady state. In Fig. 6b, ln(D) is plotted 
against 1/S, for the same rainfall intensities. Linear relations have 
been fitted with high regression coefficients. Thus, for a certain 
rainfall intensity, the backwater effect (D) can be estimated as a 
function of S, by: 

D - Ci 
C2/S 

(2.1) 

where C^ (m) and C2 are parameters. C2 can be considered independent 
of slope (S) and rainfall intensity (P) because of the approximately 
parallel lines in Fig. 6b. Values of C^ and C2 are presented in the 
Table of Fig. 6. 

p 
(mm/s) 

0.10-

0.05-

0-

i 

with 
splash 
barrier 

ft//* 

•f*. / 

•*7 ' 

r 1 r 

• 

X 

J 

X 

1 

) 

1 

without 
splash 
barrier 

S = 0.2 7. 
L=4.72m 

ƒ increasing rain, 
fall intensity 

1 decreasing rain. 
T fall intensity 

— i » 

0.25 0.50 Q75 1.00 
D(m) 

Fig. 5 - Effect of the splash barrier in the P-D relationship. 

The plot of ln(C^) against the rainfall intensity (P) results in 
a straight-line relationship, defined by the equation (Fig. 7): 

C4P 
Cl - C3 e 

where C3 (m) and C4 (m/s) are parameters. 

(2.2) 



o 
(m) 

4.0 

3.0-

2.0 

1.0 

© 

© 

© 

curve 

© 

© 

© 

© 

symbol 

• 

X 

• 

o 

Q(l/s 

0.51 

0.40 

0.30 

0.20 

P(mm/s) 

0.106 

0.063 

0.062 

0.042 

equation 
000444 

D=O0548e 

0.00467 
S 

0=0.0333 e 

Q00480 

O=0.0213e s 

0.00441 

D=0.0127e 

r 

0.990 

0.994 

0.994 

0.997 

Ln(D) 

2 -

1 • 

0 . 

-1 -

- 2 • 

-3 -

-4 J 

® 

• ̂ ^^J^^^^^-^ 

1 i • 1 1 

-^^^© 

—> 
1000 1/S 

L = 4.72 m 

(with splash barrier) 

0001 0.002 0.003 0004 0005 

Fig. 6 - Relationship between D and S, for d i f ferent r a i n f a l l 
i n t en s i t i e s and with splash b a r r i e r : a) l i near sca les ; b) ln(D) 
against 1/S. 
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Substituting eq. (2.2) into eq. (2.1) yields an expression for D 
(m) as a function of S and P (m/s): 

D - C3 e 
(C4P + C2/S) 

(2.3) 

The parameters C2, C3 and C4 can be calculated by regression 
techniques applied to laboratory data for each type of surface. In 
these experiments, for the smooth concrete surface, we have: 

C2 - 0.00458; C3 = 0.00502 m; C4 - 22704.7 s/m (2.4) 

In Fig. 8, the Darcy-Weisbach friction factor (f) was plotted 
against D, for measurements with increasing rainfall intensities (P). 
The following expression was used to calculate the Darcy-Weisbach 
friction factor (See Notation for list of symbols and units): 

f=8ghS/U (2.5) 

A strong reduction of the friction factor (f) is observed for 
higher values of D, which is in accordance with an increase of the 
average water depth along the flume. In logarithmic scale the 
relation is approximately a straight line (Fig. 9 ) . A scattered 
picture was found when plotting f against Reynolds number, Re. 

-1 -

-2 -

-3 -

- 4 -

-5 

Ln(C,) 

0.25x10~4 0.5x10~4 0.75x10"4 l.OxlO"4 (m/s) 

C, = 0.00502e 

(n=4 ; r= 0.999) 

22704.7 P 

Fig. 7 - Relationship between ln(C^) and P. 
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o with splash barrier 

o without splash barrier 

Dim) 

Fig. 8 - The relationship between f and D. 

log(f) 1 

a w i th splash barrier 

o without splash barrier 

log(D) 

Fig. 9 - The relationship between f and D using logarithmic scales. 
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3. KINEMATIC MODELLING OF OVERLAND FLOW USING THE METHOD OF 
CHARACTERISTICS 

3.1 INTRODUCTION 

The kinematic wave theory can be applied whenever the inflow, 
free surface slope and inertia terms are all negligible in 
comparison with those of bottom slope and friction. The friction 
slope is assumed to be equal to the bed slope. In the laboratory 
experiment described in Chapter 2, a region of horizontal water 
surface is created, upstream of x=0, producing therefore a region of 
invalidity in the solution given by the kinematic wave approximation. 

However, the kinematic equations are adequate for general 
application to overland flow studies. The method of characteristics 
solution of kinematic wave problems is well known. Although 
application of this solution is subjected to the computational 
difficulty known as kinematic shock (Kibler & Woolhiser, 1972), the 
method has the advantage of giving an analytical solution. A 
kinematic analytical solution for overland flow under assumed time 
dependent upper boundary conditions is presented for constant 
rainfall rates. An example in given for a simple case of a cascade of 
two planes. 

3.2 THEORY 

3.2.1. BASIC EQUATIONS 

The equation of continuity for shallow water flow may be written 
as (see Notation for list of symbols and units): 

9h/3t + 3q/3x - R (3.1) 

By assuming that the bed slope equals the fricti'on slope 
(kinematic wave assumption) and by using existing open-channel flow 
friction equations we can express the discharge at any point and time 
as a function of the water depth only, as follows: 

m 
q - ah (3.2) 

By using the method of characteristics one can show that along 
the characteristics (Eagleson, 1970), where 

m-1 
dx/dt - amh (3.3) 
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we have: 

dq/dx - R (3.4) 

dh/dt - R 

m-1 
dq/dt - R amh 

m-1 
dh/dx - R/(a mh ) 

(3.5) 

(3.6) 

(3.7) 

To solve overland flow on a sloping plane subject to a uniform 
effective rainfall rate, under time dependent upper boundary 
conditions, the following boundary conditions are assumed (Fig. 10): 

{ 
h(0,t) - C t (variable) 

h(0,t) - C t* (constant) 

0 < t < t* 

t* 4 t 4 TR 
(3.8) 

h(x,0) - 0 

where C, t*, and T R are constants. 

0 ^ x ̂  L (3.9) 

h{0.t) R(t) 

Fig. 10 - Characteristic map for time dependent upper boundary 
conditions and rainfall of infinite duration. 
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3.2.2. CASE I - RAINFALL OF INFINITE DURATION (TR->co) 

The characteristics in the solution domain are shown in Fig. 10. 
The solution domain can be partitioned into 3 domains: D]_, D2, and 
D3. The solutions for these three domains, obtained by integration of 
equations 3.3 to 3.7 under the boundary conditions 3.8 and 3.9, are 
summarized here: 

1.1 Domain D^ 

Domain D^ is bounded by t-=0, x=L and the characteristic issuing 
from the origin: t=t(x,0). The solution is given by: 

R 1/m 
h - [-(X-XQ)] (3.10) 

a 

(l-m)/m X-XQ 1/m 
t - R [ ] (3.11) 

a 

where x0 is a parameter representing the intersection of a 
characteristic with the x-axis (dotted line in Fig. 10). 

Therefore, along such a characteristic: 

h - Rt (3.12) 

1.2 Domain D2 

Domain D2 is bounded by x=0, x-L, the characteristic issuing 
from the origin: t-t(x,0), and the characteristic issuing from time 
t*: t-t(x,t*). The solution is given by: 

m 1/m 
h - [xR/q + (Ct0) ] (3.13) 

m 1/m 
[ xR/ « + (Ct0) ] - (C-R)t0 

t (3.14) 

where tg(2) is a parameter representing the intersection of a 
characteristic with the t-axis (dotted line in Fig. 10). 

Therefore, along such a characteristic: 

h - Rt + (C-R)t0 (3.15) 
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I.3 Domain D3 

Domain D3 is bounded by x-0, x-L, and the characteristic issuing 
from t*: t=*t(x,t*). The solution is given by: 

xR m 1/m 
h - [~- + (Ct*) ] (3.16) 

m 1/m 
{ xR/a+ (Ct*) } - (Ct*) 

t + t0 (3.17) 

Therefore, along such a characteristic: 

h - R(t-tQ) + Ct* (3.18) 

h(0,t) R(t) 

Fig. 11 - Characteristic map for time dependent upper boundary 
conditions and rainfall of finite duration (TR). 

3.2.3. CASE II - RAINFALL OF FINITE DURATION (TR) 

Depending upon the relative disposition of the boundary 
characteristic, t-t(x,0), the characteristic issuing from tQ=t* , 
t=t(x,t*), and the line t-T^, many cases can be distinguished. Let us 
consider as an example the case where t-Tjj does not intercept the two 
mentioned characteristics separating the three domains. The 
characteristics in the solution domain for this case are shown in 
Fig. 11. The solution domain can be partitioned into 5 sections: D]_, 
D2 D5. The solution for domains D^, D2, and D3 is the same as 
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described in case I. For domains D4 and D5, the following solutions 
are obtained: 

II.4 Domain D4 

Domain D4 is bounded by x-L, t-T^ and the characteristic issuing 
from tQ-TR: t-t(x.TR). The solution is given by: 

m 1/m 
h - [X04R/0C+ (Ct*) ] (3.19) 

(x-XQ4> m (l-m)/m 
t { X04R/01 + (Ct*) } + T R (3.20) 

am 

where X Q 4 is a parameter representing the intersection of a 
characteristic t-t(x,XQ4) with the line t-T^. 

I.5 Domain D5 

Domain D5 is bounded by x-0, x-L and the characteristic issuing 
from T R : t-t(x.TR). The solution is given by: 

h - Ct* (3.21) 

and 
x 1-m 

t (Ct*) + tQ 
am 

(3.22) 

3.3. APPLICATION - CASCADE OF TWO PLANES 

Consider the following cascade of two planes (Fig. 12) 

Rj = 2.73 mm/min 

R2 = 1-67mm/min 

Fig. 12 - Cascade of two planes. 
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P l a n e 1 : m - 1 . 5 P l a n e 2 : m - 1 .5 
« 1 - 5958 m m V V m i n °<2 - 9486.8 mm1/2/mln 
Li - 51 m L2 - 200 m (3 .26) 
Rl - 2.73 mm/min R2 = 1.67 mm/min 

The planes are assumed with unit widths; the rainfall stops at time 
TR. 

The following domains have to be taken into account: D^, Dl2> 
Di3 for plane 1, and D21, D22>•••. D25 for plane 2 (Fig. 13). The 
solution for plane 1 is given by equations 3.10 to 3.20 making C=0. 
For plane 2 the same equations are valid, assuming that, at x^-Lx and 
x2-0, the following relations are true: 

1/m 
h2 - (ai/«2) hi (3.27) 

and 1/m 
C - (c*i/«2) Rl (c~2 mm/min in this example) (3.28) 

However for domain D25 equations 3.21 and 3.22 are not valid 
because besides the ceasing of the rainfall we have to consider the 
recession limb of plane 1 (Figures 13, 14 and 15). 

For plane 1 the solution for domain D13 is given by: 

1/m 
hl - (xoi2Rl/«l> (3.29) 

(xl"x012) [(l-m)/m] 
t { x0i2Rl/ai) + TR (3.30) 

c*]m 

where X Q I 2 is a parameter representing the intersection of a 
characteristic t-t(x,XQi2) with the line t-TR. 

The parameter XQI2 m ay D e eliminated to give an explicit 
expression for hi as a function of x^ and t. 

xi 1-m h^ 
t hx + TR (3.31) 

oqm R^m 

Equation 3.30 at x^-L^ in combination with equation 3.27, gives 
the values of h2 for any time t(j at X2~0 for plane 2. Being h2 
constant along a characteristic, in domain D25 the solution is given 
by: 
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X2 1-Œ 

t h2 + t0 2 

a2m 

(3.32) 

Figure 13 shows the characteristic curves for the two slopes in 
the x-t plane. In this example no shock-wave formation occurs (Kibler 
and Woolhiser, 1970, 1972). Figure 14 and 15 sketch the depth of 
water and discharge hydrographs for various values of x. 
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Fig. 14 - System of hydrographs of depth of overland flow at various 
values of x, for the cascade of two planes. 
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Fig. 15 - System of hydrographs of discharge of overland flow at 
various values of x, for the cascade of two planes. 
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4. CONCLUSIONS 

1) In the laboratory work, under vertical rainfall, it was found that 
a body of nearly stagnant water upstream of x-0 was created for 
gentle slopes (less than 1%). That body of water led to the 
existence of a non-zero water depth at x-0, which consequently, 
radically changes the overland flow process over the slope. The form 
of the f-Re and f-D relations, which are of fundamental importance to 
the mathematical modelling of overland flow, are affected. So, for 
gently sloping impermeable plane surfaces under vertical rainfall, 
care should be take in using h(0,t)-0 for t>0 as a upper boundary 
condition for overland flow. For oblique rainfall under wind blowing 
up-slope there also exists a non-zero water depth at x=0, depending 
strongly on slope, rainfall intensity and wind speed (Lima, 1989). 
Also in this case the condition h(0,t)-0 for t>0 is no longer 
applicable. 

2) As explained in the Introduction, the experiments undertaken in 
Chapter 2 are difficult to simulate with a conceptual model. So, an 
empirical formula relating the backwater effect (D) with the slope 
(S) and the rainfall intensity (P) was suggested (Eq. 2.3). 

3) The role of surface tension, particularly for shallow flows 
shortly after the start of the rainfall requires more experimental 
attention. The hysteresis effect observed is caused by these surface 
tension forces. Additional research could be the study of the effects 
of roughness and surface wettability characteristics (using different 
surface materials or adding to the surface a wetting agent). 

4) The method presented here using characteristics is of easy 
utilization and may serve as a test for finite difference schemes 
designed to solve more difficult problems. Furthermore, the method is 
free of any constraints on the space and time step used. 
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ANNEX - Example of derivation of the equations of Chapter 3. 

Domain D2 (case 1.2) was chosen as an example of derivation of 
the equations for the different domains. The reader can easilly 
obtain the solution for the other domains by proceeding in a similar 
way. 

Domain D2 is bounded by x-0, x=L, the characteristic issuing 
from the origin: t-t(x.O), and the characteristic issuing from time 
t*: t-t(x,t*). integrating equation 3.5, gives: 

t 
h -J R dt + K - R(t - t0) + K (Al) 

t0 

where the constant of .integration K follows from the boundary 
conditions: x-0, t-tg and h(0,tQ) - Ctg (equation 3.8). The value of 
K is: 

K - Ct0 (A2) 

Substituting equation A2 in Al, equation 3.15 is obtained: 

h - Rt + (C-R)t0 (A3-3.15) 

Integration of equation 3.3, yields: 

t m-1 x 
ƒ a mh dt - ƒ dx (A4) 

t0 0 

Subsituting equation A3 in A4 and solving the integral, gives: 

m m 
-a { [Rt + (C-R)t0] - (Ct0) } - x (A5) 
R 

and rearranging equation A5, equation 3.14 is obtained: 

m 1/m 
[ xR/a + (Ct0) ] - (C-R)t0 

t (A6-3.14) 

Substituting equation A3 into equation A5, t can be eliminated 
to give equation 3.13: 

m 1/m 
h - [xR/ot + (Ct0) ] (A7-3.13) 
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