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1 INTRODUCTION 

The fall or settling velocity of grain particles figures prominently in all 

sediment transport problems and although the concept is straight forward its 

precise evaluation or calculation is not. For implementation in computer 

models an adequate describtion of the fall velocity is required. In this 

note governing equations are presented to predict the fall velocity for 

laminar and turbulent motion and for the transition region. In addition 

simple power functions are used to express the relation between the drag 

coefficient and the particle Reynolds number. The latter relation is needed 

to obtain a direct solution for the fall velocity. 

2 FALL VELOCITY OF A SPHERE 

The fall velocity of a grain particle is a function of size, shape and 

density of the particle and viscosity of the fluid. It also depends on the 

extent of the fluid in which it falls, on the number of particles falling 

and on the level of turbulence intensity. Falling under influence of 

gravity, the particle will reach a constant velocity, the terminal velocity, 

when the drag force equals the submerged weight of the particle. For 

spherical particles the submerged weight is expressed as: 

G = (Ps - Pw> • \ * °3 • S <X> 

where, 

G - submerged weight [M L T"2] 

ps = density of sediment [M L"^] 

pw - density of water [M L"'] 

D = particle diameter [L] 

g = acceleration due to gravity [L T"^] 

The frictional drag force equals : 

FD - CD • \ * D2 • £^L (2) 



where, 

FD - drag force [M L T'2] 

Cj) - drag coefficient [1] 

w = particle fall velocity [L T"^] 

From Equation 1 and 2 the terminal fall velocity can be calculated as: 

W2 . * 1 g D E^lM ( 3 ) 
3 C D Pw 

The value of Cp depends on the Reynolds number of the settling particle: 

Re - ?—» (4) 

where, 

Re = Reynolds number [1] 

v = kinematic viscosity [1/ T"-*-] 

The relation between Cj) and Re holds three regions. For laminar flow the 

frictional resistance is only due to viscous forces and Cp varies inverse 

proportional to Re. 

CD = g (5) 

for Re < 0.5 and approximately for up to 1.0. At high Reynolds numbers the 

flow of water takes place under fully developed turbulent conditions. 

Compared with the eddying resistance the viscous forces are negligible and 

Cj) is approximately constant, or 

CD = 0.40 (6) 

for Re > 2000, and up to 105. 

For the transition zone an exact formula for Cj) cannot be given but for 

Reynolds numbers below 10^ (including the laminar flow region) a good 

approximation that can be used is (Huisman, 1973): 

24 . 3 
CD = Re- + j R e - + 0 - 3 4 (7) 



3 FALL VELOCITY OF GRAINS 

So far a single spherical particle is considered in a fluid of infinite 

extent. For non-spherical particles with regular shape a correlation with 

the drag coefficient and a shape factor can be obtained. The shape factor is 

expressed as the ratio of the surface area of a sphere of the same volume as 

the particle to the actual surface area of the particle, and is also called 

"degree of true sphericity" 

tf 
AsN (8) 

where 

f = shape factor 

As - surface area of spherical particle 

A S N = surface area of nonspherical particle 

[1] 

[L2] 

[L2] 

Graf (1971) shows graphs of the settling velocity for various regular 

shapes, together with an average for irregular quartz grains (Figure 1). 
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Figure 1 Settling velocity versus particle diameter [After Graf et al. 

(1966)]. 



In case of a shape factor of 0.670 (tetahedron) the drag coefficient can be 

calculated as 

CD « i (») 

for the laminar region and 

CD = 2.00 (10) 

in case of turbulent motion. 

Expressions for the fall velocity from which the drag coefficient can be 

derived are given by Raudkivi (1976) and Van Rijn (1985) for laminar and 

turbulent motion while Zanke (1977) proposed an equation for the transition 

zone. Raudkivi also defines the transition zone by a number of points. The 

equations given by Raudkivi are: 

w ~ 663 D2 (11) 

where w is in mm/s and D in mm for D < 0.15 mm, and 

w « 135.5 D V 2 (12) 

for D > 1.50 mm (Both equations at 20°C). If meter instead of millimeter is 

used as unit, and for comparitive and dimensional reasons the relative 

density, acceleration due to gravity and kinematic viscosity is 

incorporated, these Equations become: 

1 Ag D2 

w — a (D < 0.15 mm) (13) 
24.42 v 

and 

w - 1.057 (AgD)1/2 (D > 1.5 mm) (14) 

respectively, with 

A _ PH - Pw (15) 
Pv 

where, 



A = relatively density [1] 

From Equation (3) and (13) it can be derived that in this case for laminar 

motion: 

CD - ^ (16) 

and, similar, for turbulent motion: 

CD = 1.193 (17) 

Van Rijn gives the same formulas as (13) and (14) but uses 18 and 1,1 as 

coefficients meaning that for laminar motion equation (5) is found and for 

tubulent motion: 

CD = 1.102 (18) 

The equation proposed bij Zanke and also used by Van Rijn for 0.1 < D < 1.0 

mm, yields: 

w = 10 V- [{l + 0.01 ^ Î } V 2 - 1] (19) 

Which corresponds to (see also appendix 1): 

cD - I (i + §2] 

This Equation results in a drag coefficient of 26.7/Re for small Reynolds 

number, a Cp value of 28 for Reynolds number equal to 1, and of 1.333 in 

case of high Reynolds numbers. This includes a discontinuity at the boundary 

of the transition region if used in combination with the mentioned equations 

for laminar and turbulent motion. In this way an inadequate description of 

the dependancy of the drag coefficient on the Reynolds number is obtained. 

4 EQUATIONS FOR DRAG COEFFICIENT AND FALL VELOCITY 

To deal with the problem mentioned, for laminar motion at Re < 1 the 

equation for the drag coefficient becomes: 

CD - g (2D 



For turbulent motion at Re > 250 a constant value of 1.15 is taken: 

CD - 1.15 (22) 

The limit of 250 is found using equation (14) with a particle diameter of 

0.15 mm and corresponds to the figures of Graf (1971). 

Adapting an equation like (20) but with different coefficients the formula 

for the transition region would yield: 

CD = 1.042 (1 + 2LJZ) (23) 

The accuracy of the coefficients is for computational reasons only. 

The corresponding equations for the particle fall velocity become for 

laminar motion (Re < 1): 

for turbulent motion (Re > 250): 

w = 1.077 (AgD)V2 (25) 

and for the transition region with 1 < Re < 250 

(see appendix 2): 

with a = 1.077 and ß - 25.87 this results in: 

5 {(l • ̂  • 10-3 â ^ V 2 . ^ w = 12.94 ^ Il + 7.399 • 10"^ ̂ 1 1 / 2 - lk (27) 

A comparison of the particle fall velocity at 20°C, calculated according to 

the different equations is given in table 1. 



Region 

laminar 

transition 

turbulent 

D 

mm 

0.01 

0.02 

0.04 

0.06 

0.08 

0.10 

0.15 

0.20 

0.40 

0.60 

0.80 

1.0 

1.5 

2.0 

4.0 

6.0 

8.0 

10 

20 

Raudkivi 

0.0663 

0.2652 

1.061 

2.387 

4.243 

6.63 

14.8 

20.4 

42.9 

65.2 

87.6 

110.0 

166.0 

190.2 

269.0 

329.5 

380.4 

425.3 

601.5 

w 

mm/s 

Van Rijn 

0.0899 

0.3598 

1.439 

3.238 

5.756 

8.994 

140.0 

171.4 

197.9 

279.9 

342.8 

395.9 

442.6 

625.9 

Zanke 

7.791 

16.24 

25.75 

59.27 

83.29 

102.0 

117.6 

equation (27) 

0.0771 

0.3084 

1.234 

2.775 

4.934 

7.709 

17.25 

26.57 

64.27 

92.00 

113.6 

131.6 

165.0 

193.8 

274.1 

335.7 

387.6 

433.3 

612.7 

Table 1 Comparison of particle fall velocity calculated in different way. 

5 POWER FUNCTIONS FOR THE TRANSITION REGION 

The results in the transition region are not very satisfactory, because a 

too high fall velocity is found, meaning that the drag coefficient is 

underpredicted. To avoid this an Equation like (7) could be tried out, but 



10 

the disadvantage of this formule is that no direct solution for the fall 

velocity can be found when it is substituted in Equation (3). A superior 

method, also suggested by Huisman (1973), is to subdivide the transition 

region and to approximate the drag coefficient by using formulae of the 

type: 

CD = gfp (28) 

Combining equation (3) and (28) yields: 

w2 = — 3 AgD (29) 

which is equivalent to : 

R e 2 _ wfji _ * £ 4 AgDl 

or: 

a 3 v' 

a ReW = \ *$- (31) 

so that: 

w - £ P ? ̂ -i2'ß (32) D [a 3 v2 J 

The upper and lower limit for the use of the different formulae can be based 

on numeric values of the righthand side of equation (31). In this way the 

choice for the right formula can made in advance while this is not possible 

if the boundaries are defined by the Reynolds number. The next equations are 

appropriate to predict the particle fall velocity: 

(Re < 1) 

CD-Ü2 /3 28 < f ^ 2 i < 960.1 (34) 

(1 < Re < 14.17) 
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r 18 

cD - R^I/2 
960 .1 < J ̂ 4 < 6.903 • 104 

- 3 

(14.17 < Re < 245) 

(35) 

CD = 1.15 t ^ - > 6.903 • 104 
,2 ü 

(36) 

(Re > 245) 

The partiele fall velocity calculated according to equation (33) up until 

(36) is given in Table 2, showing very satisfactory results. 

Region 

laminar 

transition 

turbulent 

D 

nun 

0.01 

0.02 

0.04 

0.06 

0.08 

0.10 

0.15 

0.20 

0.40 

0.60 

0.80 

1.0 

1.5 

2.0 

w 

mm/s 

0.077 

0.308 

1.234 

2.775 

4.934 

7.709 

13.66 

19.57 

45.15 

67.73 

90.30 

112.9 

167.8 

193.8 

4 AgD3 

3 v2 

1 

2.159-10-2 

1.727-10-1 

1.382 

4.663 

1.105•10+1 

2.159-10+1 

7.285-10+1 

1.727-10+2 

1.382-10+3 

4.663-10+3 

1.105•10+4 

2.159•10+4 

7.285-10+4 

1.727-10+5 

Re 

1 

7.709-10-4 

6.168-10-3 

4.934-10-2 

1.665-10"1 

3.947-10-1 

7.709-10"1 

2.049 

3.914 

1.806-10+1 

4.064-10+1 

7.224-10+1 

1.129-10+2 

2.517-10+2 

3.875-10+2 

cD 

1 

3.632-10+4 

4.540-10+3 

5.675-10+2 

1.681-10+2 

7.094-10+1 

3.632-10+1 

1.736-10+1 

1.127•10+1 

4.236 

2.824 

2.118 

1.694 

1.150 

1.150 

Table 2 Particle fall velocity at 20°C. 

The dependancy of the drag coefficient on the Reynolds number according to 

Equation (33) up until (36) is shown in Figure 2 in comparison to other 

formulae. 
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Figure 2 Drag coefficient versus Reynolds number. 

6 CONCLUDING REMARK 

The foregoing analysis gives an arbitrary solution to the problem of 

calculating the particle fall velocity. A refinement in the constants and 

powers in the proposed formulae can be accomplished by a more comprehensive 

study using additional literature and also experimental data for making a 

least square fit. 
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LIST OF SYMBOLS 

A S N = surface area of nonspherlcal particle 

As - surface area of spherical particle 

CD = drag coefficient 

D = particle diameter 

FQ = drag force 

g = acceleration due to gravity 

G = submerged weight 

Re = Reynolds number 

w = particle fall velocity 

A = relative density 

v = kinematic viscosity 

pw = density of water 

ps = density of sediment 

* — shape factor 

[L2] 

[L2] 

[1] 

[L] 

[M L I"2] 

[L I"2] 

[M L T'2] 

[1] 

[L T"1] 

[1] 

[L2 I'1] 

[M L"3] 

[M L"3] 

[1] 
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APPENDIX 1: Derivation of drag coefficient from different formulas for the 

fall velocity. 

Fall velocity equation: 

" CD 3 
w2 = J- | AgD (1) 

Laminar 

1 AgDs 

w - ^ ^ - (2) 
a v 

<"*«>- "-555 3 (3) 

°D - 1 ab <4) 

Turbulent motion: 

w = £ (AgD)1^ (5) 

- w2 - ß2 AgD (6) 

(1) & (6) - CD - | ^ (7) 

Transi t ion region: 

w = io£{[i + o.oi^i]1/2- i} 

(1) & (8) ^ - 10 <[[l + 0.01 | w2 CD ^ ] 1 / 2 - l } 

1 f 3 "11/2 
^ Re + 1 = | l + 0.01 I CD Re2J 

0.01 Re2 + 0.2 Re - 0.01 | CD Re 

(8) 

(9) 

2 
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Re2 + 20Re - - CD Re2 

CD thi) (10) 
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APPENDIX 2: Derivation of the equation for the fall velocity in the 

transition region. 

Equation for the drag coefficient: 

CD - a (l + f;] (1) 

Equation for the fall velocity: 

1_ 4 
CD 3 

(1) & (2) -> w2 - , Y . > 7 AgD (3) 

w2 = J- | AgD (2) 

w = 

or 

(4) 

w2 + 0 £ w - - | AgD = 0 (5) 
D a Ó 

The relevant solution of equation (5) yields 

I V2 

&•{($* • j f ^ r 

»-ilh^t^r-1} 


