COMPARISON OF SIMULATED WATER BALANCE FOR ORDINARY AND SCALED SOIL HYDRAULIC CHARACTERISTICS

Dr. M. Cislerova
Dept. of Irrigation and Drainage
Technical University
Prague, Czechoslovakia
1987
Page
CONTENTS
ABSTRACT 1
ACKNOWLEDGEMENT 3
1 INTRODUCTION 5
2 INPUT DATA 7
2.1 Invariant part of the inputs 7
2.2 Options used for the soil hydraulic functions 8
2.3 Options used for the lower boundary condition 9
3 WATER BALANCE AS SIMULATED BY THE MODEL 11
3.1 Description of the modelled water balance components 11
3.2 The discussion of the discharge boundary condition 12
3.3 Effects of the GWL-D relationship determination 14
3.4 A remark about the wet reduction 16
4 FORMATION OF THE SOIL DATA INPUTS FOR PARTICULAR RUNS 16
5 DESCRIPTION OF THE SIMULATED RESULTS 19
5.1 Results at particular locations 19
5.2 Some general effects which appeared for particular locations 24
5.3 Mean results for the group of seven locations 24
6 DISGUSSION OF RESULTS 26
6.1 Effects of α_{h} 27
6.2 Effects of Θ_{S} 28
6.3 Effects of K_{S} 29
7 THE COMPARISON OF DETERMINISTIC AND RANDOMLY GENERATED RESULTS 29
REFERENCES 33
TABLES 35
FIGURES 59
APPENDIX 99

COMFAFISON DF SIMULATED WATER BALANCE FOR OFDINAFY AND SCALED SOIL HYDFALILIC CHAFACTEFISTICS

Milena Cislerova

Abstract

Using the SWATFE model simulations of the summer water balance were done for various combinations of soil hydraulic functions for seven locations of a 0.5 ha area of one soil type in the Hupselse Beek watershed. Eased on van Genuchten's expression for the retention curve three expressions for hydraulic conductivities were tested. Then scaling was used for the description of the soil imputs: at first in a deterministic approach and later for the creation of randomly generated soil data sets. The effects of two lower boundary conditions - the measured groundwater levels and the prescribed outflow rate developed from groundwaterleveldischarge relationship were studied. The groumdwaterleveldischarge relationship used as the lower boundary condition appeared suitable for simulation purposes especially in the stochastic approach. The results of the simulation depend critically on the shape of the assumed soil hydraulic functions. When an approximate mathematical expression for the retention curve is applied together with the prediction of hydraulic conductivities then the estimated values of the retention curve parameters are decisive for the results of the simulations. Ey scaling: certain departures from reality can be introduced. Attention has to be paid to the development of mean scaled curves, since the routine fitting procedure of the retention curve parameters can increase the measured dissimilarity. Comparison was made between the deterministic and the stochastic approaches to the soil hydraulic functions as inputs for the deterministic model of water balance. When the shape of the mean scaled curves is reliable, the stochastic approach seems to be a very convenient tool to cover the effects of the spatial variability of soils within the known distribution of the scaling factors.

Acknowl edgement

This is the report of the work done during my 5 months 5 tay at the Department of Hydraulics and Catchment Hydrology in the Agricultural University at Wageningen, with the financial support of the International Agricultural Centre. It forms a small part of the studies carried out within the frame of the project Spatial variability of hydrological and soil physical characteristics in the Hupselse Eeet: watershed area led by Ir. J.N.M.Stricker. It was done in parallel with the large study produced and presented in a number of papers by Dr.J.W. Hopmans. As mentioned elsewhere in the text, the same tools and part of the same information, including many unpublished results of Jan Hopmans. were used. For me it was a great pleasure and an interesting experience to be allowed to worls together with Han Stricker and Jan Hopmans for a while.

My gratitude for their understanding and kind help belongs also to Ir.Fiet Warmerdam. Dr.Faul Torfss Jacque Cole and other collegues. especially to Annemarie for her patience with the typing.

Many thanks to frof. D. A.kraijenhoff van de Leur, the former head of the Department of. Hyraulics and Catemment Hydrology.

1. Intraduction

With growing attention paid in soil physics during the last decade to the actual field conditions it has appeared that the spatial variability of soil hydraulic properties has much higher significance than was expected. Even within one soil type large variations in soil hydraulic characteristics, represented by the retention curve and the nydraulic conductivities, are usually obtained. The question of great importance is thus how to treat the spatial variability of hydraulic characteristics when the soil water movement is modeled. The target is to get the most reliable and representative answers for any environmental assesments like pollutant transport and nutrient dynamics or any water resources management and hydrological studies.

A large project: which has been in progress since 1983 under the leadership of the Department of Hydraulics and Hydrology of the Agricultural University in Wageningen, is dealing with this problem in the experimental watershed area of the Hupselse Beek. As an adequate tool to describe the spatial variability of soil hydraulic characteristics: scaling was chosen in the final stage of the project for the water balance simulations. From reports already published about the projecty the one of Hopmans and Stricker (1987) contains a complete overview. The complex picture of the seasonal one-dimensional simulation with a stochastic approach to the soil hydraulic characteristics and groundwater levels is in the final report of Hopmans (1987).

Scaling, based on the similar media theory. is considered as one of the efficient methods which allows us to develop a simple relationship between various soil hydraulic retention curves and hydraulic conductivities. The relationship is described by the scaling factors and the mean scaled characteristics. Within the known statistical distributions of scaling factors the stochastic approach can then be used to express the realistic variability of the soil hydraulic characteristics as they input into the water
balance simulation models. On the other hand. by replacing the measured data, or their closest mathematical approximations by the scaled characteristics, we are introducing certain deviations from the measured reality. The objective of this study is to find out how sensitive the results of the soil water flow simulations are to the variations in the shapes of the input soil hydraulic functions, and what are the effects of scaling.

The other aim is a comparison of sets of simulations by means of the deterministic model with deterministically and stochastically treated input soil hydraulic characterietics derived in both cases from the same experimental data.

The SWATFE model (Feddes at al. 1978, Eelmans at al.,1981) was employed for simulation. Based on the numerical solution of Richard's equation this one dimensional finite difference model simulates the vertical transient saturated-unsaturated flow of water through a layered soil profile with the vegetation effects included. With the general boundary conditions and the built-min options which allow the optimization of the irrigation rates or the drainage system developement, this model represents a tool widely used for many practical and theoretical purposes. The version which was used has the soil inputs adapted for scaling (Hopmans, 1986b).

The measured points for the retention curves and the hydraulic conductivities in seven locations within the 9.5 ha area of one soil type (Brom, 1983) were used as the basic data in all the Variations of the soil sets. The data are described in the report of Hopmans and Stricker (1987) under sampling scheme two and represent one soil type only. In the soil profile there is continuous presence of groundwater level all over the area. For simplicity the area included in the study will be called the Earea. The water balance is simulated separately for each of the 7 locations.

In the following chapters at first the basic information about the input data used in the study is presented, then the significance and accuracy of the particular components of the water balance as calculated by the model are looked at. Calculations were done for two types of lower boundary conditions represented by the measured and calculated groundwater-levels. The suitability of both types for the simulation purposes is discussed. The detailed description of the input sets of the ordinary and scaled soil hydraulic functions as they were formed for all the various simulation runs are the content of the mext chapter together with the discussion of their mutual relations.
Then the results of the simulations for particular locations are presented followed by the average results for the area and by a discussion of the results. In the last chapter a comparison is made between the results for deterministicly treated inputs and randomly generated inputs of soil hydraulic functions and these are discussed.
2. Input data

2. 1 Invariant part of the inputs

Some simulations for the area under study have already been done and the results published (van Immerzeel 1985. Hopmans and van Immerzeel 1986). To provide contimuity, the soil profile was described in the same way as in the study of van Immerzeel; also the same season was selected. In the simulatons: the soil profile of the B-area is described by two layers: the upper layer representing the surface horizon A and the lower layer the subsoil BC- horizon. The depth of the upper layer was assumed in all calculations to be 40 cm . The depth of the root zone was also constant at 30 cm . with the Darcian flux calculated at its bottom. The total depth of the profile was soocm in all cases. The original sink term of Feddes (1978) was used. The relatively dry summer season April $15 t$ to September 30 th 1982 was considered, with daily values of precipitations potential tranmpiration and
minimum allowed pressure heads prescribed as the upper boundary condition．Only for this period are the daily groundwater level data at each location of B－area available；their values were taken from van Immerzeel．

2．2 Options used for the soil hydraulic functions

Van Genuchten＇s expressions for the sail hydraulic functions were implemented into SWATRE（Hopmans，1986b）in the form

$$
\begin{aligned}
& \theta-\Theta_{r}
\end{aligned}
$$

$$
\begin{align*}
& \theta_{\mathrm{g}}-\theta_{r} \tag{1}
\end{align*}
$$

and

$$
\begin{equation*}
K=K_{m n}: K_{r} \quad K_{r}=⿴_{1} 1 / 2\left[1-\left(1-⿴_{1} / m\right) m\right] 2 \tag{2}
\end{equation*}
$$

where $\theta_{:} \Theta_{B}, \theta_{r}$ are the volumetric sail water content and its saturated and residual values，and $⿴ 囗 ⿰ 丿 ㇄$ content；
K_{B} and K_{r} are the saturated $[L / T]$ and the relative hydraulic conductivities（dimensionless）：n, x and m are fitting parametersy where $m=1-1 / n$ ．

In each of two layers for each of seven locations in the E－area the soil characteristics were treated separately．Initially，the van Genuchten＇s expression was fitted to the measured retention curve data and represents the ordinary soil retention curve．In connection with this：three different types of hydraulic conductivities were formed．

1）the eye－ball fit through the measured hydraulic conductivity data（van Immerzeel，1986）

2）van Genuchten＇s prediction of relative conductivities
(Kr) in combination with measured saturated hydraulic conductivity values Ks
3) Van Genuchten's prediction of Km in combination with the fitted saturated hydraulic conductivities ke* developed from the unsaturated hydraulic conductivity data (Hopmans and Overmars,1986)

The values of the parameters of the ordinary retention curves are listed in Table 1 . The retention curves and hydraulic conductivities are given in Fig. iasbs to 7a,b,c.

When the soil hydraulic characteristics are described by means of scaling the scaled curves for the i-th location were expressed from mean scaled curves (Hopmans.1786a) through scaling factors $\alpha_{n 1}$ and $\alpha_{k s}$ as

$$
\begin{align*}
& K_{1}=\alpha_{m_{1}}=K_{m} \quad \text { or } \quad K_{1}=\alpha_{k_{1}}=k_{m} \tag{3}\\
& \delta \dot{\theta}_{i} \\
& C\left(h_{1}\right)=\alpha_{n 1} C\left(h_{m}\right), \tag{4}\\
& \text { C }\left(h_{1}\right)=-\cdots \cdots \\
& s h_{k}
\end{align*}
$$

the index m denotes the mean scaled variables and C is water capacity.

The parameters of Equations (1) and (2) for the mean scaled retention curves derived for the B-area are given in Table 2. The values of the scaling factors for particular locations and horizons are given in Table $3 . \quad$ The scaled hydraulic functions are in Figures $1 a, b, d$ to $7 a, b, d$. The four various combinations of scaled curves were formed to study the effects of scaling. Their detailed description is given later.

For the stochastic approach the logmormal distribution of α_{m} and the normal distribution of e_{a} for each layer (Hopmans,1986) were calculated for the B-area. These were required for the Monte Carlo

[^0]
2.3 Options used for the lower boundary condition

Simulations were done for two types of lower boundary conditions:

1) Measured groundwater levels (mGWL)as the input; the fluxes at the bottom of the profile were calculated as output of the model
2) Fluxes derived from the groundwater level-discharge relationship (GWL-D) were taken as the input, then the groundwater levels were calculated (cGWL) as the output

An exponential groundwater level-discharge relationship is built into the SWATRE in the form

$$
\begin{equation*}
q_{t}=A_{a} \cdot \exp \left(B_{a} \cdot G W L\right) \tag{5}
\end{equation*}
$$

q. is the outflow flux at the bottom of the profile in cm/day (negative downwards)
and GWL is the daily depth of the groundwater level in cm (in absolute values).
A_{0} and B_{0} are parameters found by regression analysis from the Hupselse Beek discharge and the measured GWL values. The parameters together with the initial groundwater level for each location are given in Table 5 . In addition there are parameters derived for an arbitrary extreme GWL-D relationship and for the GWL-D of the whole Hupselse Beek area (from Hopmans, 1986c).
3. Water balance as simulated by the model
3. 1 Description of the modelled water balance components

Fieduction, actual evapotranspiration, changes in the water content of the root zone and of the total profile; fluxes at the bottom of both the root zone and the total profile and variations of groundwater level were subjects of interest; Cumulative values for the whole period and in some cases also for a selected period of five days at the end of rather long dry period, were compared.

Actual evapotranspiration (AE), (evap) is one of the most important components in water balance mainly for its practical use. In the growing season it represents the highest contribution to the water balance. Correspondingly it should have the smallest variances. The values of simulated $A E$ are strongly influenced by the sinkterm chosen. Differences between actual and potential evapotranspiration (Epot) are marked as deficit and shown for all cases. Another evaluation of evapotranspiration appears in the reduction [\%] calculated as

$$
\mathrm{red}=\left(1-\Sigma E A / \Sigma E_{p \infty t}\right) * 100
$$

from cumulative actual and cumulative potential evapotranspiration. A disadvantage of this expression is that with the growing sum of cumulative values during the growing season, the day-to-day changes have less influence. For the period of five days an extra value was calculated using sums of five days only.

The two flukes q_{r} and q_{t} are Darcian fluxes. The flux at the bottom of the root zone is grs the cumulative flux through the lower boundary is qt_{t}. An accurate estimate of $\mathrm{qe}_{\mathrm{t}} \mathrm{is}$ important for water management purposes, since it represents an output of the
soil profile water balance. In the model its value depends fundamentally on the type of lower boundary condition. It varies greatly also within one type of lower boundary condition, showing a high dependence on soil hydraulic functions, especially in the case of the measured GWL.

Two quantities: volr and voles are the cumulative changes of water stored in the root zone and whole soil profile. They are calculated from the moisture content distribution and could be essily checked if some soil moisture content measurements mad been done. They have the smallest error due to the chosen model scheme, and are ideal components for comparisons with reality. They represent the depletion of the profile during the season. Again, their values, as simulated by the model, are profoundly affected by the type of lower boundary condition. Volr has a high variation while volt is relatively stable within one type of lower boundary condition as the soil characteristics are changed.
The preassure head h is the average pressure head over the root zone at the end of the calculated period.
3.2 The discussion of the discharge boundary condition

From the seven options of the lower boundary conditions offered in the SWATFE model, the daily measured values of GWL prescribed as inputs is the most commonly used and recommended condition in the case of the presence of GWL in the soil profile. In the case of the randomly generated lower boundary condition inputs, the boundary condition msing the measured GWL could hardly be emplayed. The other possible option is the prescribed GWL-D. flux condition with the calculated GWL. This option was studied mainly because a convenient description of the general lower boundary condition for the stochastic approach was looked for.

The choice of the lower boundary condition in one -dimensional vertical models is questionable. When an exponential groundwater
level-discharge relationship is imposed at the bottom of the profile, the only possible flux is the outflow from the profile. Such a situation could be realistic for modeling larger blocks where the lateral flow smoothes out differences at the bottom layers. However, in the case of a single vertical column, due to water demands caused by evapotranspiration in combination with the conductive properties of the soils of each particular vertical column, the upward flow can take place with the same chance. On the other hand when measured groundwater levels are imposed as the boundary condition, very deformed fluxes can be produced due to slightly incorrect sail characteristics since in each case the boundary condition has to be held. In the ideal case the agreement of the groundwater levels calculated and measured in one vertical column would mean that the description of the soil profile is fair. The comparison of the simulations for both types of lower boundary conditions supplies very interesting material for the analysis of the influence of soil hyoraulic functions. For cases where only simulations with the calculated GWL were done: the agreement with measured values of GWL at the end of calculated period was used as the main measure in judging of the best simulated results.

The construction of the simulation model SWATFE creates two basic sources of discrepancies:
a) When the daily values of GWL measured and calculated are compared: it appears that, after some heavy precipitation, the values of the calculated GWL are not able to follow the sudden increase of the real GWL. Fartly this is caused by the daily mean rainfall as input which has all the peaks which actually cause the GWL increase flattened, and partly it is due to the construction of the simulation model itself. In the model; changes of water level can only happen due to transfer through the soil medium, ignoring that in reality an increase of GWL is governed also by the existence of preferential pathways and by the increase of level of open-water surfaces (channels, etc.). An example is shown
in Figure 8.
b) Because of the iteration process used in the GWL calculation, in the case of a quick fall of GWL when depletion of the profile takes place, the calculated values of GWL oscillate around the value it should achieve. For this reason the daily values can be up to +2.5 cm incorrect. In the five days period example this feature already played a significant role. Also it was causing long calculation times (too many iterations were needed). The effect described can be seen in Figure 9.

Besides the above objections there are problems with the evaluation of the GWL-D relationship itself. In the area under study the only available discharge for the groundwaterleveldischarge relationship was the discharge from whole Hupselse Beek area (approximately 650 ha), of which the B -area only constituted 0.1%. The daily GWLs for each location in the E-area were obtained from a regression analysis of weekly values of each location with Assink data (van Immerzeel, 1985). The data used for the regression analysis were all for EWL deeper than 120 cms since measurements in the E-area started late in the summer. From the regression analysis it was concluded that during the wet extreme the GWLs in the B-area are about 40 cm higher than in Assink (see Figure 10). This is reflected in the GWL-D relationship for the $\mathrm{E}-$ area.

3. 3 Effects of the GWL-D relationship determination

The GWLs of the B-area do not vary much between particular locations. As well as the particular GWL-D for each site the mean GWL-D for all seven locations was tested, together with three variations of the initial water level, the mean and the upper and lower extremes of all seven location. To see the effects of the GWL-D determination, the arbitrary extreme EWL-D relationship and the mean GWL-D of the whole watershed (Hopmans, 1986c) were applied
as well (Figure 11). In all these simulations the mean scaled parameters were used as the soil hydraulic functions.

From the results in Table 6 it is evident that the changes of the initial water level in B-area do not influence much the cumulative actual evapotranspiration and groundwater levels, but effects can be seen in both volumes and fluxes. The influence of an extreme GWL-D relationship is stronger in the changes of outflow flux and the total volume of water content but less in the root zone balance. It hardly changes the modelled actual evapotranspiration but it decreases GWL. The effects of the GWL-D of the whole Hupselse Beek watershed are the same.

The total cumulative discharge in Hupselse Eeek for the period under study is 22 mm . In comparison with the cumulative potential evapotranspiration, which is 448 mm per season, the proportion of the discharge in the total water balance in the studied area is very low, about 5%. The value of the cumulative precipitation is 228 mm . Cumulative fluxes calculated in the model for various groundwaterlevel -discharge relationships were within the range 11-20 mm for particular locations. The extreme relation gave, in combination with mean scaled soil curves, a total of 19.7 mm . The EWL-D derived for the whole Hupselse Eeek: watershed produced 17.0 mm . On the other hand, the combination of mean scaled soil curves and the mean GWL-D for the E-area only resulted in 14.9 mm . The discrepancies which appeared in the calculated GWL due to a changing GWL-D relationship (see Table 6) are within 5 cm at the end of the calculated season, also for the case of the arbitrary extreme GWL-D relationship and one derived for the whole watershed. Dbviously no significant error in the simulated results can be introduced using the lower boundary condition with the calculated GWL. From the interpretation of results presented in later chapters it is evident that the role of soil hydraulic functions is much more important.

3.4. A remark about the wet reduction

As a consequence of the chosen sink term in the simulations with the measured GWL installed as the lower boundary condition, a reduction in the actual evapotranspiration appeared in results due to the wet conditions at the beginning of growing season. It was caused by the daily values of measured GWL which are in extremes higher than the calculated GWL. Additional values of the reduced cumulative actual evapotranspiration and its deficit (marked with * in the tables) were thus calculated by subtracting the reduction due to wet conditions to get comparable results of reduction for both types of lower boundary conditions. Values of reduced reduction are given in Table 7. Wet conditions also influenced all other components of the water balance simulations but the effect cannot be eliminated. This was the reason why, as well as the whole summer season, a period of five days (day 211215) with no rain was also studied in some cases. Fiesults are given in Tables $8-12$ and are not discussed here.
4. Formation of the soil data inputs for particular runs

Simulations were done for two expressions for the retention curves: the ordinary one and the scaled one, in combination with five hydraulic conductivity runs: of which three belong to the ordinary retention curve and two are supplied with the scaled retention curve. Ás already mentioneds from three versions of Mydraulic conductivity used with the ordinary retention curve one case should represent the raw data. The values are taken from the work of van Immerzeel (1986). In the tabless figures and further discussion this case is marked as SET 1. In SET 2 the measured saturated ke values are used with the Mualem-van Genuchten prediction of K to express hydraulic conductivity from parameters of the ordinery retention curve. This expression of hydraulic conductivity is often recommended as a satisfactory alternative when there are no measured data of unsaturated conductivities. SET 3 is again based on van Genuchten's prediction
of K_{r} but in connection with the fitted values of saturated hydraulic conductivity K_{s}. The new value $\mathrm{K}_{\mathrm{s}}{ }^{*}$ is created in such a way that in combination with van Genuchten's prediction of K the developed hydraulic conductivities represent the best fit through the measured unsaturated conductivities (Hopmans and Overmarss 1986). This set was used as the base for the scaling study.

The scaling analysis gives an alternative expression for the soil imputs. It seems very suitable for the description of hydraulic properties of soils in the stochastic approach. Scaling factors san be derived at the basis of the similar media concept, with one scaling factor representing the behaviour of the soil in question. The theory can be used when the scaling factors obtained from retention curves are identical to those obtained from hydraulic conductivity data. When this is not true, the similarity concept of geometrically dissimilar soils can be applied. in such case two sets of scaling factors have to be used, one for the retention curves and one for the hydraulic conductivities. Figure 12 shows the relationship of the α_{n} and α_{n} scaling factors for the $E-$ area. It can be seen that their mutual distribution towards the symmetry axis is rather scattered to prove the fit of the similarity concept. The number of points (seven) is too small to form any significant statistical conclusions. The scatter of the second layer is slightly less. In the form in which the scaling theory is introduced here, the α_{m} scaling factor represents the variations of the oparameter of van Genuchten's expression (Eq.1): the effective water content is the same for all locations (compare Eq. 1 and 3). Two modifications were investigated. In the first: SET on_{m} : the saturated water content was taken as the mean value of θ_{B} from all locations and stayed constant. Thus the scaled retention curves which vary within the limits given by the extreme scaling factors oms reflect only changes in van Genuchten's parameter $x, ~ a s$ can be seen in Fig i3. To describe the variations of the retention curves more generally, the saturated soil moisture contents have to be scaled as well. Thus. in the second modification, SET $\alpha_{m}+\theta_{s}$, the saturated moisture content of
each location was introduced to vary θ_{m}. In SET α_{n} and SET $a_{n}+\theta_{s}$ the hydraulic conductivities were calculated from the values of mean scaled hydraulic conductivities using the α_{n} scaling factor.

As mentioned above, in combination with one scaled retention curve, two cases of hydraulic conductivities can be used, given by the different values of saturated hydraulic conductivity K_{s} for each scaling factor α_{m} and α_{k}. Together with the unchanged k_{r} it means a similar variation in hydraulic conductivities as in the case of SET 2 and SET 3 of ordinary retention curves. Runs which take into account ak were done for both modifications of the θ_{s} approach. For constant θ_{s} the input set is marked SET $\alpha_{n}+\alpha_{k}$ and for varying θ_{0} SET $\alpha_{n}+\alpha_{k}+\theta_{s}$. All ks values are given in Table 13.

Changes of α_{n} together with changes of e_{m} imitate to a certain limited extent also variations of the parameter n of van Genuchten's expression for the retention curve.

For reference in the following discussion the description of all the sets is listed below. Values of the parameters of the ordinary retention curves and the scaling factors vary for each location.

SET	retention curve	hydraulic conductivities	
		K_{r}	K
1	ordinary	eye-balled fit	through data
2	ordinary	ordinary	measured
3	ordinary	ordinary	fitted
α_{n}	scaled α_{n}, constant θ_{0}	mean scaled	scaled α_{m}
$x_{n}+x_{6}$	scaled x_{m}, constant θ_{s}	mean scaled	scaled α_{n}
$\alpha_{n}+\theta_{=}$	scaled α_{n}, variant θ_{s}	mean scaled	scaled x_{m}
$\alpha_{k}+\alpha_{k c}+\theta_{s}$	scaled α_{m}, variant θ_{m}	mean scaled	scaled α_{k}

At each location simulations with the measured GWL as the boundary condition and with GWL-D boundary condition as well were done for SET 1. SET 2, SET \boldsymbol{J}_{3} SET x_{n} and SET $\alpha_{m}+\alpha_{k}$. For SET $\alpha_{m}+\Theta_{s}$ and SET $\alpha_{m}+\alpha_{k c}+\theta_{s}$ only runs with the GWL-D boundary condition were simulated. In the case of ordinary soils the GWL-D derived separately for each location was used. For SET 3 the mean GWL-D was applied as well. For scaled soils only the mean GWL-D was taken.
5. Description of the simulated results

Initially the results of all input combinations will be considered for each particular location. Then means $\boldsymbol{\sigma}_{\mathrm{s}}$ standard deviations σ and coefficients of variation $C V$ for the whole group of seven locations for each imput set will be looked at. For the first reading it is recommended to skip the whole of Chapter 5.

5. 1 Fiesults at particular locations

To understand the fallowing description the tables of results together with figures of soil characteristics and tables of its parameters should be looked at (Figures 1-7 and Tables 14-20). The verbal description is not systematic, it is iust hinting at the most important points. The characteristics of SET $\alpha_{n}+\theta_{s}$ and SET $\alpha_{50}+x_{6 c}+\theta_{s}$ are not plotted. Also their results in each particular location will be discussed later for all location at the same time in the next subchapter.

Location 1

Scaled and ordinary retention curves of the first layer are almost identical. K α_{n} are very similar toks, lower near saturation: kow are higher over the whole range. In the second layer the scaled curve shows significantly higher moisture contents in the wet part of the curve and is less sharply e-shaped. Conductivitieskỉ in
the saturated part are more than ten times less than the data.
 follow the course of the raw data. k ar are in whole course slightly lower than $K \alpha_{n}$. In both layers, the unsaturated k2 are higher than the raw data. The saturated fis* is lower than the raw Kes.
Scaled SET x_{n} gives the best agreement between the two lower boundary conditions runs. SET $\alpha_{n}+x_{k}$ is even better in GWi, but much worse in AE. The original conductivity data (SET 1) cause a too high deficit of AE but reasonable GWL. SET 2 (v.G.prediction) has no reduction but the GWL are too deep. SET 3 is between these two as a mean on both sides. $A E$ and GWL. The mean GWL-D causes less deficit of $A E$ and only slightly lower GWL, but there are no important changes.

Ordinary soils have a too high water uptake for mGll. Looking at the $9-h$ and k-h relationships, the obvious reason seems to be the shape of the retention curve of the second 1 ayer.
In this location another eye-ball fit of hydraulic conductivity was used rather than that used in the van Immerzeel work. It is not seen in the picture.

Location 2

The retention curve of the 1 st layer fits quite well the measured data in the saturated part. K2. KS and Kow are almost equal. Kon is less in the whole course, as well as ki, which does not express ideally the raw data. In layer two, both retention curves are almost identical: k are much lower than k2 in the whole run: both are crossing $k i$ in the middle range between $100-10000 \mathrm{~m}$ af h. where Kil are lower. The scaled k are both quite similar. in between k2 and ks.

All sets produce very deep GWL and have as a contrast a very high upward flow for mGWl. Deficits of $A E$ are less than 1 mm per season. The only exception is SET 1 with cGWL, where the deficit is 11.8 mm and GWL decrease only 171.5 cm .

The greatest differences in simulations caused by the soil characteristics appeared in this location. SET 2 (van Genuchten) shows the most reasonable results for both GWL cases, the most reasonable GWL and upward flow, two other real sets go deeper in GWL: both scaled very deep. With the large drop in cGWL corresponds a high upward flow in the case of mGWL. There is an extreme upward flow for the Ecaled curves.
At the top of the profile the highest reduction takes place for SET 2 in both GWL cases. A slight reduction is for SET x_{m} and SET 1, the rest shows no reduction at all.
This location behaves as a lavish profile with no reduction, high upward flow and deep GWL.

Location 4

This location shows the opposite behaviour from that of location J; it behaves as the least conductive location.

In the first layer the scaled retention curve is slightly higher than the ordinary curve in the area near to saturation. K2 are the lowest of all the approximations.
In the second layer the scaled retention curve varies very much from the ordinary one. V.G. k2 are again lowest, K 3 are highest, the fitted Ke* is about nine times higher than the measured one. Eoth scaled ks came back: to the measured value, Ksox being lowest of all. Due to differences in both retention curves, the scaled unsaturated hydraulic conductivities are much higher (encept near to saturation) than all Kı, K2, and Ǩ,

The scaling factor of the second layer is near to 1 , a consequence is that the results of scaled sets for location 4 do not differ much from results of runs in other locationss but are very different in comparison with results of ordinary soil sets at location 4 itself. With the ordinary curves there are very high
reductions: highest in the v.E. case, lowest for fitted E . Frofile produces in the case of mGWL an outflow which is almost ten times higher than the total cumulative discharge of the Hupsel area. On the other hand the decrease of eGWL is too small. The least difference between the results of the two boundary conditions is given for SET 3.

Location 5

The scaled and ordinary retention curves are again very different: in layer one as well as in layer two. Scaled ka of the upper layer are similar to the ks measured, here fitted Ks* causes the lowest estimate of K in the saturated part. K2 are highest in the whole run. The eye-ball fits in both layers are not ideal especially in sturated part. Kom: almost the same askok arevery similar to kJ. For the second layer: v.G. conductivities fo are lowest, except for high $k_{s} *$ also Ks are lower than the eye-ball fit $k 1$. Saturated Ksom and Ksok are lower than Ks* but both scaled unsaturated conductivities, which arepractically equal, in this case give higher values than ke.

Location 5 is the only location which behaves as an "ideal" one. There is a fair agreement between the results of the two boundary condition runs. When SET 1 is used, it supplies the nearest results for the bottom flux, and a small difference between GWL celculated and measured. There is a difference in deficits of AE. For SET 3 more similar results are obtained in evapotranspiration, at the bottom flux and GWL the difference increases. SET 2 supplies the highest gep in the bottom fluxes, but very small difference in EWL. The difference in AE is average.
Results of scaled runs: as could be expected from the shapes of the retention curves, differ very much in the GWL decrease. In the case of mGWL it gives upward flow instead. In evapotranspiration there are not big differences.

Location 6

The retention curves for the upper layer are almost identical; for the lower layer they differ in the saturated part. r2 are highest, with Ke three times higher than Ke*, Ki do not match too well with data neither with both $k 2$ and $k \underset{S}{ } k$ a are almost the same as fis, except for the saturated part, where they are higher. $K \alpha_{k}$ are insignificantly less. For the 1 ower layer. $K 2$ are again highest, the fitted $K_{s} * i s f i v e t i m e s 1 e s s . ~ K i ~ a r e i n ~ s a t u r a t e d ~$ part very low and do not follow the data. Ko are almost identical with K玉, but much higher in the saturated part. k w are almost the same as $k x_{m}$. The results of sets with kin $k 2$ and ks are all different, the fastest conductivities (K2) giving the least deficit and the deepest cGWL, SET 1 gives a modest AE deficit and the nearest fit for mGWL from all three runs. The upward flows in the case of mGWL are corresponding: smallest for SET 1 : biggest for SET 2. Due to the fact that ordinary and scaled retention curves are 50 uniform, except for the saturated part of the second layer, and K 3 and $K \alpha_{n}$ are similarly equal, the difference between the resulte of SET 3 and SET x_{m} reflects the variation of e_{m} of the second layer (0.309for scaled, 0.298 for ordinary retention curve). From the results it can be seen that while the actual evapotranspiration stayed unchanged, the bottom flux of the scaled rum increased. Its cobll are less deep, in GWL the same as for SET 1. Since in the second layer $\alpha_{m} i s$ almost the same as $\alpha_{k s}$ the cGWL for the SET α_{b} rum stayed unchanged from the cGWL of the SET α_{n} run. Fiather surprising is a great increase of reduction in mGWL. for SET w_{r}.

Location 7

In both 1 ayers the ordinary retention curves do not coincide with the scaled curves in the middle and dry part. Differences are greater in the second layer. V.G. $k 2$ are higher than $k 1$ and $k z$ in
the first layer, lower in the second layer, through the whole range, including km. K x_{n} of the first layer are higher than ǩza except for the saturated part, where they differ very little (see $\mathcal{K}_{s} *$ and $K_{\infty}\left(\alpha_{m}\right)$. K x_{k} are in its course the same as ES and are lower near saturation.
Location 7 represents a relatively dry profile with deficits of AE of about 10 mm per season. The GWL decrease is the least for SET 1 but in the case of SET 2 and SET 3 does not vary much. AE deficit is greatest for SET 1 and least for SET 2.
For SET x there $i s l e s s A E$ deficit but the decrease of cGWL is rather big. With the SET x_{b} there is a high upward flow for mGWL. and an increase of reduction.
5. 2 Some general effects which appeared for particular locations

Results of SET $\alpha_{m}+\Theta_{s}$ and SET $\alpha_{n}+\alpha_{k}+\Theta_{s}$ for each location can be described for all locations at once since introducing es into am_{s} runs causes easily explainable effects as well as introducing k_{e} into $\alpha_{m}+\Theta_{\Xi}$ runs. These effects can be taken as a contribution to the general conclusions about simulation behaviour.

In all locations differences between runs of SET 3 with particular GWL-D and runs of SET 3 with mean GWL-D are only negligible in comparison with differences introduced by the change of soil characteristics.
5.3 Mean results for the group of seven locations

The mean results of all combinations calculated for 7 locations are visible in Fig 14. Means of all sets are plotted in order: SET 1, SET 2, SET 3, SET α_{m}, SET $\alpha_{m}+\alpha_{k} ;$ together with their standard deviation plotted as the limit. Flots are done meparately for measured and calculated GWL, in the latter case also the SET 3 with mean GWL-d relationship is added for comparison. Velues of all results are given in Tables 21 and 22.

There is a trend which appears along the series: higher depletion of the profile represented by higher actual evapotranspiration and in the case of the calculated GWL by a higher depletion of the total volume of water and a deeper groundwater recession in sequence raw data - Ks fitted - one scaling factor. For the measured GWL where due to fixed GWL the balance situation is very different, here the total volume of water is increasing, together with the value of upward flow. The set with two scaling factors is showing results which are for all components a step nearer to the results of SET 3 from which scaling factors were derived, the actual evapotranspiration is even less than for SET 3 , but at the bottom part of the profile changes are only small in comparison with the results of the set with one scaling factor only.Introducing e_{s} produces a further decrease of cGWL accompanied in comparison with α_{n} run by higher variance. In $A E$ there is a steep increase of deficit which is almost four times higher than for SET a_{n}, two times higher than for SET $~ S$ and slightly less than for SET 1. Adding $\alpha_{\text {se }}$ as well. the results are similar to those of run $\alpha_{n}+\alpha_{k}$, with only slightly deeper cGWL and slightly less deficit of AE. All scaled runs show the deepest GWL and no combination improves on it.

It can be seen that the mean GWL-D relationship in connection with SET 3 , when compared with results of the runs where the particular GWL-D relationships for each location were used, has a very small effect. Van Genuchten's prediction supplies means which are within those of the SET 1 and SET 3 but they are accompanied by extremely high variances, especially for actual evapotranspiration and calculated GWL, coefficients of variation are $2-3$ times higher than for other sets. The lowest variances are in the results of SET α_{m}, followed by SET $a_{m}+\alpha_{k}$.

As has already been mentioned, the diversity of the final water balance caused by two different boundary conditions is very apparent in Fig. 14. Fewer differences are seen in the actual
evapotranspiration, which is almost equal for SET 1 and SET x_{n} in both cases, for SET 2, SET 3 and SET $\alpha_{m}+\alpha_{k}$ higher for the calculated GWL. For measured GWL the variances are higher. Differences in fluxes vary for each set, for measured GWL with higher variances in the case of ordinary soils and smaller variances in the case of scaled soils. Cumulative water content of the root zone shows less decrease for the measured GWL but higher variance. Easic differences are seen in the cumulative water content and in the bottom flux. For measured GWL less depletion of water for the whole soil profile takes place, together with high upward fluxes. The variability of cumulative water content volt and flux g_{t} is high. Cumulative water contents in the case of the calculated GWL are higher (in absolute value) but less variable. Fluxes qt are negative, also less variable.

When extremely high upward flow appears in the case of the measured GWL installed as the lower boundary condition, for the same soil inputs there is an extreme decrease in the calculated water levels for the GWL-D relationship.

To get the picture about the range of all the simulated results, the extremes of the particular simulations and the average results of defined soil sets and their $C v$ are given in Table 23. The variance in the results for all calculated combinations of soil sets for both types of lower boundary conditions is given in Table 24.
6. Discussion of results

Of the 7 locations under consideration, Location 5 behaves as an "ideal" profile, since for sets of ordinary soils there is an agreement between the measured and calculated GWL. It is the only profile which produces the same outflow in both cases of lower boundary conditions. It produces very similar results for all three sets of ordinary soils, SET 1, SET 2 and SET 3. For all
other locations there are differences between the two lower boundary runs increasing with extreme behaviour at particular locations location 4 is very dry, locations 2 and 3 are very wet): the more extreme the corresponding retention curve in relation to case 5 , the bigger is the difference between the results for both lower boundary conditions. For the runs with scaled hydraulic functions the situation in comparison of the behaviour of a particular location has another character as will be shown later.

The existence of two layers with nonuniform behaviour due to independently varying soil characteristics is the reason why the processes in a particular soil layer cannot always be clearly traced, since there is a combined effect from both layers. In a few extreme cases the other layer has a stronger influence than the one we are looking at. Also the allied influence of all parameters of scil hydraulic functions can be intricate in tracing the effects of particular parameters.

6. 1 Effects of an_{m}

The set of calculations with scaled characteristics and calculated GWL supplies results in which the virtual effect of each layer can be partly seen, since only parameter α_{n} is changing, for the second layer often has values near 1 . This is the reason why so much attention has been paid to this set. In Table 25, the results are classified with decreasing groundwater levels at the end of the calculated period. A number of arbitrary additional simulations for combinations with α_{m} equal to 1 are added. When the influence of scaling factors of both layers is looked at, it is evident that in most cases the scaling factors of the bottom layer have the strongest influence on GWL movement regardless of what the value of the upper layer scaling factor is (Tab.25, cases marked 6-9). However, for example in case 11 (results for location 4), which has the same scaling factor α_{n} for the upper layer as in case 9 , the smaller α_{n} of the second layer
means drastic changes of the whole water balance, including GWL. Only q_{t} stayed unchanged. This means that the role of the upper layer was also governing the GWL movements here.
The actual evapotranspiration seems in a few cases to depend more on the upper layer parameters but the effect is not so straightforward.

To judge the influence of the α_{n} parameter: the conclusion can be drawn that deeper calculated Gbls are obtained by shifting the scaled retention curve of the second layer up (by smaller x_{m}). Ey shifting the scaled retention curve of the upper layer up: higher actual evapotranspiration can take place (Fiemark: changes of retention curve due to changes of x can be regarded as vertical shifting only when h is taken on a log-scale, on a normal scale the changing of o introduces a slight rotation of the retention curve)。

6.2 Effects of e_{s}

Large effects can be introduced due to changes in em. The differences in saturated soil moisture content are the significant reason for large discrepancies between the results of simulations with real and scaled (x_{m}) soil characteristics. A good example is shown in the results for location b in the comparison of real and scaled runs, where only es of the second layer varies for the scaled retention curve, with the rest of the soil characteristics practically unchanged. Here the decrease of on causes a large fall in the calculated GWL for SET 3 soils. When Θ_{m} is introduced together with $\alpha_{m,}$ cGWL is deeper than in SET $\underset{\sim}{\text { G }}$ but the discrepancy in AE then appears. Comparison of runs x_{n} and om θ_{m} in particular locations indicates a clear negative relationship between the size of es and the decrease of cGWL (see Table 2S). It is evident from the same table that in the first layer there is a general negative dependence of $A E$ on the $s i z e$ of e_{s} for the first layer although in two cases this is not true. It has already been mentioned that variations of the a_{n} and Θ_{m} parameters together
substitute variations of n but mot in the whole range of effects which variations of n itself could introduce.
6. 3 Effects of ks

The effects of k estimation can be studied on three different combinations of mums and are shown in Tables 27, and 28.
The clearest picture is given in the comparison of SET 2 and SET \bar{S} (fitted Ks*) since the greatest differences in hydraulic conductivities arise due to the kw fitted. Looking at the second layer there is apositive relationship between ks and the GWL depth, the increase of k is followed by a deeper GWL in all locations. In the upper layer the melation between k_{m} and the $A E$ deficit is opposite, with higher fis there is less reduction. For two locations this is not true.
In the remaining two comparisons where the change of kis is introduced through ok scaling factors the differences of ke are much smaller, nevertheless the same rules appeared as in the ordinary soil comparison (k2-k3) already described, only with more exceptions (especially in the upper layer on AE effects).
7. The comparison of deterministic and randomly generated results

In Table 29 are the mean results of 36 runs in which the scaling factors α_{m} and the saturated moisture contents θ_{B} of each layer are randomly generated and used then with the mean scaled retention curves to create the soil input sets. These sets represent the stochastic approach to the treatment of soil hydraulic characteristics. Since α_{n} and es are generated from whale distributions of x_{m} and θ g, higher variances can be enpected. Results should correspond to the results of SET $x_{n}+\theta_{z}$ where the sail inputs were built up in the same way fthis means with the scaling factors x_{n} and the original saturated moisture contents θ_{s} in combination with the mean scaled retention curves) and resemble the deterministic approach as well as other sets
discussed in previous chapter. It can be seen that for the randomly generated (FiG) soil inputs, in the results at the end of the calculated seasom a slightly less deep mean GWL appears with less variance, and less mean EA deficit also with smaller variance. When compared with the results of SET 3 which was the base for scaling then the FGG set gives equal mean $A E$ values with nigher variance, but much lower mean cGWL with smaller variance. In comparison with the mean daily value of the mean measured GWL for the B-area at the end of calculated period, the related mean value of cGWL for SET 3 is approximately $\mathcal{S O} \mathrm{cm}$ deeper: for fG set 45 cm deeper (for SET $\alpha_{m}+\theta_{s}$ i 549 cm deeper). There are no measured data to compare $A E$ values.

Since the fig results fit very well with the corresponding results of the deterministic SET $x_{m}+\theta_{m}$, the chosen procedure of Monte Carlo generation of soil parameters within their known distribution (Hopmans.1987) has proved to produce very reliable results. Thus the stochastic treatment of the soil inputs used in the deterministic model can be highly recommended for analysis of the spatial variability effects. A careful choice of combinations of x_{m} and e_{z} at critical confidencelimits of their frequency distributions could keep the number of necessary simulations quite low and still within the safe range of outputs. It would avoid the long computer-time needed to create the large randomly generated set.

In this study, the reason why the results of all the scaled runs including the RG set differ from the results supplied by ordinary soils SET 1, or better from the measured reality in GWL, has to be looked for in the process used for the determination of the scaled retention curves, or in the fitting of the retention curve parameters thmough the measured data, respectively.

The retention curve and the hydraulic conductivity together represent for each soil the strict rule of behaviour. When we want to obtain reliable simulation results from our models this
rule has to be the closest one to the rule which is hidden in the scatter of measured data. The fitting of approximation curves, so important for smooth computing: can introduce departures from the original law. Here the effects of various departures have appeared.

It $i s$ known that van Genuchten"s prediction of hydraulic conductivities in many cases does not give good results in the near saturation part since the decrease of kr is too steep there (van Genuchten and Nielsen 1985. Vogel et al.1985). The similar media concept and van Genuchten's K prediction are both built on the capillary models theory (Miller and Miller 195s. Childs and Collis-George 1953: Erooks and Corey 1964. Van Genuchten 1978). Thus: when conductivities are expressed from the v. G. formulae, and retention curves are similar. also Kr are similar, and only the K_{s} distribution can cause differences in scaled x_{k}. Here, from two sets of K_{B} distribution which were in combination with the ordinary soil under consideration, the original measured K_{s} represent one extreme of the estimated saturated hydraulic conductivity and the fitted k the opposite extreme. It can be seen from a comparison of the scaling factors (see Fig 12) that the dissimilarity was introduced by the extrapolation of the Ke*. The scaling factors of the original ke were not developed but the scatter of this set of kis is apparently much smaller (less variance: see Table 1Ξ) than for the fitted $k_{s} *$. Also the mean cGWL of the run of SET 2 with the original ks is nearer to the mean of the measured GWL. All data here represent one soil type and similarity can be expected. From the point of view of other soil types they should be regarded as homogenous. Nevertheless this was not found, since the parameters of the retention curves, as developed by the routine fitting program, are too diverse for each site. From discussion of the influence of the particular parameters it is evident that a great variation of results can be introduced by little variation in the retention curve parameters. Thus after all it seems more convenient to try to reach more similar effects of hydraulic properties by
evaluating more similar retention curves than by fitting the mew Kes*. Then also the mean scaled retention curve could represent better the whole set of data and would allow the FG results to be closer to reality. There is a question of the number of retention curve and hydraulic conductivity data needed for reliable scaling analysis when one soil type is considered. The best way to determine the mean scaled curve needs to be studied further.

Here only the description of the results and their discussion has been done to document the worl: for purposes of any further use, a more detailed analysis will be reported in a short time. In Apendix there are examples of seasonal courses of water balance components for combinations of soil input sets and lower boundary conditions.

References

Belmans, C., J.G. Wesselingsand F.A. Feddes. 1981. Simulation model of the water balance of a cropped soil providing different types of boundary conditions (SWATFE). Nota 1257. ICW, Staring gebouw, Wageningen.
Erooks: F.H. , and A.T. Corey. 1964. Hydraulic properties of porous media. Hydrol.Fapers 3 , Colorado State University, Fort Collins.

Brom: A. 1983. Eodemfysische eigenschappen op zeer korte afstand in Hupsel. Concept Fiapport no. 3: Wageningen.
Childs, E.C. and N. Collis-George. 1950. The permeability of porous materials. Froc. Fi. Sot., A 201, 302-405
Feddes, F.A., F.J. Kowalik, and H.Zaradny. 1978. Simulation of field water use and erop yield. Simulation Monographs. Fudoc: Wageningen
Genuchten, M.Th. Van. 1978. Calculating the unsaturated hydraulic conductivity with a mew closed-form analytical model. Fes.fiep. 78-WF-OB, Wat. Fies.Frogram, Dept. of Civ.Eng., Frinceton Umiv. Frinceton

Genuchten, M.Th. van., and D.F. Nielsen. 1985. On describing and predicting the hydraulic properties of unsaturated soils. Am. Geophys. z(5): 615-628

Hopmans, J.W. 1986. Fersonal communication
Hopmans: J.W. 1986a. Scaling of soil hydraulic properties: A comparison of techniques. Submitted to SSSAJ
Hopmanss J.W. 1986b. Some major modifications of the model SWATRE. Concept.

Hopmans, J.W. 1986c. Treatment of the groundwater table in the stochestic approach of unsaturated water flow modeling. Concept.

Hopmans: J.W. 1987. Final repport. In work.
Hopmans, J.W., and C.H. van Immerzeel. 1986. Variation in evapotranspiration and capillary rise with changing soil profile characteristics. Conference in Athens.
Hopmans, J.W., and E. Qvermars. 1986. Fresentation and application
of an analytical model to describe soil hydraulic properties. J. of Hydrology.

Hopmans, J.W. and J.N.M. Stricker. 1987. Soil hydraulic properties in the study area Hupselse Eeek as obtained from the different scales of observation: An overview. Fies. Fiep. Dept. of Hydraulics and Catehment Hydrology. Nieuwe kanaal 11, Wageningen.
Immerzeel: C.H. van. 1985. Variatie van de verdamping binmen een bodemkundige eenheid. Fiep. :Dept. of Hydr. and Catch. Hydrol. Wageningen.
Miller: E.E.: and F.D. Miller. 1956. Fhysical theory for capillary flow phenomene. J. App. Fhysics 27(4):324-3.32.

Vogel, T., M. Cislerova, and M. Sir. 1985. Verohodnost neprimeho stanoveni hydraulicke vodivosti pudniho prostredi. Vodohospodarsky casopis Zక: 204-224.

surface layer

location

1
2
3
4
5
6
7
,

4
5
6

7
0.00879
1.373
0.403
0.378
0.446

- 0.03770

1. 346
0.591
0.753
0.395
0.426
76.0
10.3
75.0
80.13
18.0
2. 46
35.0
3. 3
25.0
11.03
94.9
4. 14
91.0
40.06
\emptyset
$\pi \quad 0.00966$
1.3693
0.399

Cぃ\%
56.0
5.0
7.1
subsurface 1 ayer

location

1	0.00984	1.851	0.280
2	0.00898	1.628	0.354
3	0.03880	1.319	0.354
4	0.07070	1.312	0.403
5	0.03290	1.412	0.3 .32
6		0.01330	1.626
7		0.01611	1.427
		0.0272	1.5107
	0	0.0207	0.184
	0	0.0	12.0

\square 76.0
12.0
11.6
surface layer Subsurface layer

θ_{r}	0.0	0.0
Θ_{5}	0.399	0.35
$\alpha[1 / c m]$	0.01743	0.01587
ก	1. 3757	1.6024
K゙sm[m/day]	29.75	45.34

Table 2. Parameters of mean scaled characteristics derived for the B-area
surface 1 ayer subsurface 1 ayer
$\alpha_{n} \quad \alpha_{k:} \quad \alpha_{n} \quad \alpha_{k}$
location

1	0.5007	0.7052	1.2934	0.8168
2	0.7151	1.4179	0.7170	0.7887
3	0.3196	0.6332	0.8369	1.4023
4	2.0356	1.4355	1.1716	0.74 .39
5	1.0347	0.9848	1.1765	1.1719
6	1.2672	1.0177	1.1063	1.0445
7	1.1270	0.8058	0.6985	0.8318
0		1.000	1.000	1.000
σ	0.5284	0.2986	0.2254	0.2081
C	52.8	29.9	22.5	20.8

Table 3. Farameters of scaling factors derived for E-area
surface layer subsurface layer distribution

μ	-0.06615	-0.01182		
	σ	0.26924	0.11125	log-normal
	0.399	0.359	normal	

Table 4. Farameters of α_{m} and θ_{e} distributions for the B-area

A_{0}

E_{0}
GWLeso
GWL - D
of location

1	0.1622	-0.02352	-57.0
2	0.1581	-0.02751	-51.5
3	0.1781	-0.05105	-49.5
4	0.2155	-0.02894	-59.7
5	0.1348	-0.02516	-50.0
6	0.1909	-0.02516	-61.7
7	0.1678	-0.02516	-58.7
ocat.	0.1687	-0.02674	-55.45
xtreme	1.0400	-0.04250	-55.45
5. Beek	0.8525	-0.03592	-78.0

Table 5. Farameters of discharge-groundwaterlevel relationship [cm]

GWL-D
mean
44.31 0.07 $15.79-1.63 \quad-3.08-20.51-49.5-218.4-167$
mean $44.30 \quad 0.08 \quad 16.18-1.35 \quad-2.68-20.14-61.7-219.9-171$
$\operatorname{mean} \quad 44.30 \quad 0.08 \quad 15.99-1.49 \quad-2.88-20.31-55.4-218.9-169$
extreme $\quad 44.29 \quad 0.07 \quad 15.93-1.97-2.93-20.92-55.4-223.1-173$
whole Hupsel 44.27 0.11 $15.84-2.59 \quad-3.00-21.55-55.4-224.1-178$
whole Hupsel $44.24 \quad 0.14 \quad 16.50-1.70 \quad-2.30-20.54-78.0-228.2-194$

Table 6. Effects of various groundwater-level discharge relationships in combination with various initial groundwater levels (GWLoo) on the water balance at the end of the calculated period
with wet reduction

SET
location

1	1.2	1.1	1.1	1.3	0.1	0.3
2	1.4	1.5	1.4	0.0	0.0	0.2
3	1.5	1.8	1.5	0.0	0.0	0.0
4	7.0	0.9	4.7	6.7	0.4	4.2
5	1.9	1.9	1.9	0.1	0.1	0.1
6	1.3	0.9	1.9	0.7	0.3	1.5
7	3.1	1.0	2.0	2.3	0.2	1.3

Table 7. Changes in reduction due to wet conditions: measured groundwater levels, whole period [\%]

evap deficit q_{r}	qt	volm	volt	red		
$[c m]$						

10cation

1	1.88	0.16	0.80	-0.01	-1.09	-1.81	-1170	7.8
2	1.99	0.05	1.30	0.	-0.69	-1.94	-489	2.45
3	2.05	0.01	1.56	0.	-0.38	-1.99	-284	0.5
4	1.75	0.29	0.77	-0.02	-0.77	-1.86	-2480	14.2
5	2.01	0.03	1.07	-0.01	-0.94	-2.05	-405	1.5
6	1.85	0.19	0.84	-0.01	-1.00	-1.86	-1600	9.3
7	1.64	0.40	0.78	-0.01	-0.86	-1.70	-2710	19.6
0	1.85	0.19	0.98	-0.0086	-0.90	-1.86		9.4
0	0.15	0.13	0.35	0.0064	0.30	0.15		7.5
0.7	8.20	68.4	3.3 .80	74.50	3.3 .30	8.10		80.0

Table 8. Soils SET s, calculated groundwater level, dry period

Evap deficit	q_{r}	q_{t}	volr volt h	red		
$[c m]$						

location

1	1.98	0.08	1.00	0.21	-0.97	-1.77	-399	2.9
2	2.03	0.01	1.63	0.94	-0.40	-1.11	-193	0.5
3	2.04	0.0	1.82	1.20	-0.23	-0.84	-190	0.0
4	0.94	1.10	0.45	-0.38	-0.50	-1.32	-5380	53.9
5	1.97	0.05	0.78	0.05	-1.00	-1.93	-357	2.5
6	1.87	0.15	0.89	0.24	-1.00	-1.65	-710	7.4
7	1.61	0.43	0.74	0.09	-0.85	-1.49	-2890	21.1
0	1.78	0.26	1.05	0.31	-0.73	-1.46		12.6
5	0.37	0.37	0.46	0.51	0.32	0.38		18.2
CV\%	20.80	142.3	43.30	164.00	44.00	26.00		144.0

Table 9. Soils SET 3: measured groundwater levels: dry period

location

1	2.01	0.03	1.30	0.40	-0.72	-1.61	-377	1.5
2	2.03	0.01	1.41	0.90	-0.62	-1.13	-295	0.5
3	2.03	0.01	1.64	1.18	-0.40	-0.85	-237	0.5
4	1.90	0.14	1.07	0.48	-0.85	-1.46	-1010	4.9
5	2.01	0.03	1.22	0.46	-0.79	-1.55	-421	1.5
6	1.96	0.08	1.08	0.33	-0.88	-1.62	-756	7.4
7	1.99	0.05	1.17	0.60	-0.81	-1.38	-543	2.45
0	2.00	0.05	1.27	0.62	-0.72	-1.41		2.68
σ	0.06	0.04	0.19	0.29	0.15	0.32	2.38	
$C v \%$	2.90	80.0	14.80	46.00	21.00	22.50		89.00

Table 10. Soils SET am, measured groundwater levels, dry period

[cm]	[cm]	$[\mathrm{cm}]$	[cm]	[cm]	[cm]	[cm]

location

1	2.01	0.03	1.21	0.13	-0.80	-1.87	-411	1.5
2	2.04	0.0	1.79	1.25	-0.25	-0.79	-190	0.0
3	2.04	0.0	1.96	1.60	-0.08	-0.43	-152	0.0
4	1.27	0.77	0.68	-1.12	-0.58	-1.14	-4060	32.7
5	2.00	0.04	1.19	0.43	-0.82	-1.56	-462	2.0
6	1.78	0.26	0.87	0.18	-0.92	-1.61	-2010	12.7
7	1.80	0.24	0.91	0.44	-0.90	-1.37	-1820	11.80
0	1.85	0.19	1.23	0.42	-0.62	-1.25		8.57
0	0.26	0.26	0.44	0.81	0.31	0.47		11.00
$v \%$	13.90	136.8	36.10	195.00	48.80	37.20		128.00

Table 11. Soils SET $\alpha_{n}+\alpha_{k}$, measured groundwater levels, dry period

evap deficit	gr volr vole red	qt		
$[c m][c m]$	$[c m]$	$[c m]$	$[c m]$	$[c m][\%]$

SET GWL-D

		0	1.78	0.26	1. 13	O. 34	-0.71	-1.59	12.6
3	mean	σ	0.57	0.57	0.46	0.51	0.30	0.57	18.2
		CV\%	20.8	142. 3	41.6	151.0	42.3	17.3	144.0
		9	1.97	0.05	1.27	0.62	-0.72	-1.37	2.7
x_{n}	mean	σ	0.04	0.04	0.19	0.29	0.15	0.26	2.4
		CV\%	2.20	90.0	14.8	46.0	21.0	19.3	89.0
		¢	1.85	0.19	1.23	0.42	-0.62	-1.25	8.6
$\alpha_{15}+\alpha_{i c}$	mean	σ	0.26	0.26	0.44	0.81	0.31	0.47	11.0
		Cv\%	13.7	134.0	36.1	195.0	48.9	37.2	128.0
		0	1. 88	0.16	1.02	-0.009	-0.85	-1.89	7.9
3	of locat	\%	0.13	0.13	0.29	0.006	0.22	0.11	6.6
		CV\%	6.90	84.4	28.1	74.5	26.4	5.7	ES.
mean	mean		1.78	0.06	1.10	-0.01	-0.88	-1.98	2.9
scal ed									

Table 12. Comparison of average remults; dry period of 5 days

```
saturated hydraulic conductivity [cm/day]
```

origin
measured fitted through am through ak
marked in text
K

used in SETs 1,2
3
$\alpha_{m,}, \alpha_{m}+\theta_{g} \quad \alpha_{n}+\alpha_{k}, \alpha_{n}+\alpha_{n}+\theta_{m}$
surface layer
Iocation

1
2
3
4

5
6
7
959.1
σ
Cv\%
76.6
75.0
18.0
35.0
25. 0
94.0
91.0
29.8
50.3
10.3
7.46
80.13
15.21
3.04
123.3
31.9
47.8
$\Xi 7.8$
38.07
37.95
99.7
73.9
42.06
31.1
subsurface layer
location
1
2
3
4
5
6
7

7
95.0
40.0
73.0
52.0
48.0
110.0
15.5
\emptyset
σ
Cv\%
61.9
30.4
49.0
2.53
9.92
695.0
420.19
138.5
19.06
47.32
190.5
247.1
130.0
75.8
30.25
28.20
89.16
40.40
62.3
49.46
31.37
47.3
20.5
4. 3

Table 13. Values of saturated hydraulic conductivity as used in particular soil sets

	$\begin{aligned} & \text { evap. } \\ & \text { [cm] } \end{aligned}$	def. [cm]	$\begin{aligned} & q_{\mathrm{r}} \\ & {[\mathrm{~cm}]} \end{aligned}$	$\begin{aligned} & q_{t} \\ & {[c m]} \end{aligned}$	$\mathrm{vol}_{\mathrm{r}}$ [cm]	$\begin{gathered} \mathrm{vol}_{\mathrm{t}} \\ {[\mathrm{~cm}]} \end{gathered}$	$\begin{aligned} & \mathrm{h} \\ & {[\mathrm{~cm}]} \end{aligned}$	red $[\%]$	$\begin{aligned} & \mathrm{GWL}_{90} \\ & {[\mathrm{cmm}} \end{aligned}$	$\begin{gathered} \mathrm{GWL}_{273} \\ {[\mathrm{~cm}]} \end{gathered}$	$\triangle G I L$ [cm$]$	evap. [cm]	def. [cm]	Δ def. [cm]
SET	calculated GWL													
1	42.87	1.52	15.23	-1.41	-5.21	-18.86	-947	3.4	57.	-213.7	-156.7			
2	44.37	0.01	16.43	-1.32	-2.48	-20.26	-193	0.0	57.	-262.7	-205.7			
3	43.99	0.39	14.59	-1.40	-3.96	-20.04	-397	0.9	-57.	-232.6	-175.6			
3	44.03	0.35	14.71	-1.11	-3.89	-19.79	-378	0.8	-55.4	-232.3	-176.9			
α_{h}	44.36	0.02	16.85	-1.47	-2.08	-20.04	-162	0.0	-55.4	-208.2	-152.8			
$\alpha_{6} \alpha_{k}$	44.34	0.04	16.70	-1.48	-2.21	-20.03	-173	0.1	-55.4	-203.9	-148.5			
${ }_{6}^{+}+\theta_{s}$	43.89	0.49	14.81	-1.27	-3.65	-19.76	-243	1.1	-55.4	-261.8	-206.3			
${ }_{h}^{+\alpha+\alpha_{k}^{+} \theta_{s}}$	44.31	0.07	16.23	-1.37	-2.65	-20.33	-210	0.1	-55.4	-219.8	-164.4			
	evap.* def.* measured Gw													
1	44.25	0.13	15.20	4.98	-3.21	-13.43	-274	0.3				43.84	0.54	0.41
2	44.38	0.0	16.70	8.40	-1.85	-10.14	-141	0.0				43.97	0.41	0.41
3	44.25	0.13	16.15	5.99	-2.27	-12.43	-191	0.3	-57.	-191.1 -	-123.1	43.85	0.53	0.40
α_{6}	44.35	0.03	16.89	1.98	-1.55	-16.47	-128	0.1				43.88	0.50	0.47
$\alpha_{h}^{+}+\alpha_{k}$	44.25	0.13	16.58	1.11	-1.89	-17.36	-151	0.3				43.90	0.48	0.35

Location 1. The results of the last day (273 rd) of
calculated period. ($*$ values are without wet reduction
in case of measured EWL ; Δ def. $=$ def. - det. $; \mathrm{E}_{\mathrm{pot}}=44.38 \mathrm{~cm}$)

	evap. [cm]	def. [cm]	q_{r} [cm]	$\begin{gathered} q_{t} \\ {[c m]} \end{gathered}$	$\mathrm{vol}_{\mathrm{r}}$ [cm]	vol $_{t}$ [cm]	h [cm]	red [\%]		$\begin{gathered} \mathrm{GWL}_{273} \\ {[\mathrm{~cm}]} \end{gathered}$	$\Delta \mathrm{GWL}$ [cm]	evap. [cm]	def. [cm]	Δ def. [em]
SET	calculated GWL.													
1	43.20	1.18	13.04	-1.12	-4.73	-18.93	-607	2.7	-51.5	-223.0	-171.5			
2	44.35	0.03	16.24	-1.08	-2.68	-20.10	-178	0.1	-51.5	-261.4	-209.9			
3	44.32	0.06	15.96	-1.10	-2.92	-20.11	-200	0.1	-51.5	-252.0	-200.5			
3	44.31	0.07	16.04	-1.16	-2.84	-20.12	-202	0.2	-55.4	-254.4	-199.0			
α_{h}	44.34	0.04	16.23	-1.21	-2.68	-20.03	-175	0.1	- 55.4	-248.0	-192.6			
$\alpha_{t}+\alpha_{k}$	44.35	0.03	16.14	-1.21	-2.79	-20.07	-182	0.1	-55.4	-247.2	-191.8			
$\alpha_{6}+\theta_{s}$	44.34	0.04	16.37	-1.18	-2.54	-20.09	-175	0.1	-55.4	-253.0	-197.6			
$\alpha_{h}^{+}+\alpha_{k}^{+} \theta_{s}$	44.35	0.03	16.27	-1.18	-2.65	-20.10	-183	0.1	-55.4	-251.4	-196.0			
	evap.* def.* measured GWL													
1	44.34	0.04	16.23	9.10	-2.05	-9.18	-138	0.1	-51.5	-173.3-	-121.8	43.71	0.67	0.63
2	44.38	0.00	16.48	9.99	-1.86	-8.35	-119	0.0				43.77	0.61	0.61
3	44.38	0.0	16.44	9.79	-1.90	-8.54	-121	0.0				43.76	0.62	0.62
α_{k}	44.36	0.02	16.45	8.97	-1.83	-9.31	-114	0.0				43.71	0.67	0.65
$\alpha_{n}+\alpha_{k}$	44.29	0.09	16.33	9.1	-2.00	-9.22	-122	0.2				43.76	0.62	0.53

Table 15. Location 2. The results of the last day (273rd) of

	evap. [cm]	def. 〔cm〕	$\begin{aligned} & q_{r} \\ & {[\mathrm{~cm}]} \end{aligned}$	$\begin{gathered} q_{t} \\ {[\mathrm{~cm}]} \end{gathered}$	${ }^{\mathrm{Vol}_{r}}$ [cm]	vol_{t} [cm]	$\begin{gathered} \mathrm{h} \\ {[\mathrm{~cm}]} \end{gathered}$	red [\%]	G_{90} [cm]	$\begin{aligned} & G_{273} \\ & {[\mathrm{~cm}]} \end{aligned}$	ΔG [cm]	evap. [cm]	def. [cm]	$\Delta d e f$. [cm]
SET	calculated GWL													
1	44.31	0.07	17.01	-1.32	-1.88	-20.20	-178	0.1	-49.5	-199.4	-149.4			
2	44.11	0.27	15.60	-1.38	-3.07	-19.91	-339	0.6	-49.5	-189.9	-133.4			
3	44.37	0.01	17.47	-1.30	-1.46	-20.23	-136	0.0	-49.5	-206.9	-157.4			
3	44.36	0.2	17.54	-1.61	-1.40	-20.48	-139	0.0	-55.4	-209.6	-154.2			
α_{h}	44.30	0.08	17.26	-1.09	-1.61	-20.12	-176	0.2	-55.4	-243.7	-188.3			
$\alpha_{h}+\alpha_{k}$	44.36	0.02	17.35	-1.07	-1.58	-20.01	-170	0.0	-55.4	-246.0	-190.6			
$\alpha_{h}^{+\theta_{s}}$	44.37	0.01	17.02	-1.12	-1.92	-20.08	-183	0.0	-55.4	-240.7	-185.3			
$\alpha_{h}+\alpha_{4}^{+2} \theta_{S}$	44.37	0.01	17.18	-1.12	-1.76	-20.06	-170	0.0	-55.4	-240.7	-185.3			
	evap.* def.* measured GWL													
1	44.37	0.01	17.42	6.44	-0.85	-11.83	-100	0.0				43.70	0.68	0.67
2	44.26	0.12	16.21	3.71	-1.97	-14.46	-193	0.3				43.61	0.77	0.65
3	44.38	0	17.31	6.47	-0.97	-11.81	-97	0.0	-49.5	-157.4	-107.9	43.71	0.67	0.67
α_{h}	44.37	0.01	17.52	11.27	-0.62	-6.88	-84	0.0				43.57	0.81	0.80
$\alpha_{4}+\alpha_{k}$	44.38	0.0	17.39	11.35	-0.89	-6.94	-105	0.0				43.71	0.67	0.67

[^1]calculated period. ($*$ values are without wet reduction
in case of measured GWL; Δ def. =def.-def.*; $\left.E_{p o t}=44.38 \mathrm{~cm}\right)$

	evap. [cm]	def. [cm]	$\begin{gathered} q_{r} \\ {[\in m]} \end{gathered}$	$\begin{gathered} q_{t} \\ {[\mathrm{~cm}]} \end{gathered}$	$\begin{aligned} & \mathrm{vol}_{r} \\ & {[\mathrm{~m}]} \end{aligned}$	VOl_{t} [cm]	h [cm]	red [\%3	$\begin{gathered} G_{90} \\ {\left[\varepsilon_{m}\right]} \end{gathered}$	$\begin{aligned} & G_{273} \\ & {[\mathrm{~cm}]} \end{aligned}$	ΔG [cm]	evap. [cm]	def, [cm]	$\Delta d e f$. [cm]
SET	Calculated GWL													
1	42.71	1.67	12.78	-2.48	-4.49	-19.70	-629	3.8	- 59.7	-144.6	-84.9			
2	39.18	5.2	8.85	-2.77	-4.09	-16.51	-2280	11.7	- 59.7	-125.7	-66.0			
3	43.72	0.66	15.31	-2.04	-2.97	-20.28	-195	1.5	-59.7	-157.0	-97.3			
3	43.82	0.56	15.23	-2.48	-3.16	-20.18	-191	1.3	- 55.4	-157.8	-102.4			
α_{h}	44.12	0.26	15.62	-1.72	-3.06	-20.47	-165	0.7	-55.4	-207.6	-152.2			
$\alpha_{4}+\alpha_{t}$	42.52	1.86	13.54	-1.77	-3.56	-18.96	-233	4.2	-55.4	-194.6	-139.2			
$\alpha_{h}+\theta_{s}$	40.85	3.53	11.67	-1.93	-3.75	-17.40	-370	8.0	-55.4	-171.9	-116.4			
$\alpha_{h}+\alpha_{2}+\theta_{s}$	42.88	1.5	-14.26	-1.86	-3.19	-19.37	-194	3.4	-55.4	-184.9	-129.5			
	Evap.* def.* measured GWl													
1	40.66	3.72	9.97	-12.57	-5.03	-27.57	-753	8.3				40.43	3.95	0.23
2	36.73	7.65	5.97	-14.90	-5.06	-25.93	$-1740 \cdot 1$	7.2				36.47	7.91	0.26
3	41.43	2.95	11.45	-10.07	-4.31	-25.83	-623	6.7	-59.7	-175.4	115.7	44.19	3.19	0.24
α_{4}	44.21	0.17	16.29	4.22	-2.26	-14.32	-122	0.4				43.98	0.40	0.23
$\alpha_{1}+\alpha_{6}$	42.52	1.86	13.95	1.62	-2.91	-15.23	-178	4.2				42.28	2.1	0.24

Table 17. Location 4. The results of the last day (273ra) of
calculated period. ($*$ values are without wet reduction
in case of measured GWL: adef. $=d e f .-d e f . * ; E_{\text {get }}=44.38 \mathrm{~cm}$)

	evap. [cm]	def. [cm]	q_{r} [em]	$\begin{gathered} q_{t} \\ {[\mathrm{~cm}]} \end{gathered}$	$\mathrm{vol}_{\mathrm{r}}$ [cm]	$\begin{gathered} \mathrm{vol}_{\mathrm{t}} \\ {[\mathrm{~cm}]} \end{gathered}$	h [cm]	red [\%]	G_{90} [cm]	G_{273} [cm]	ΔG [cm]	evap. [Em$]$	def. [em]	$\Delta d e f$. [cm]
SET	calculated GWL													
1	44.24	0.14	15.56	-1.79	-3.25	-20.62	-207	0.3	-50	-189.5	-139.5			
2	44.30	0.08	15.83	-1.83	-3.82	-20.64	-249	0.2	-50	-178.2	-128.2			
3	44.34	0.04	16.06	-1.77	-2.85	-20.74	-168	0.1	-50	-191.8	-141.8			
3	44.36	0.02	16.60	-1.76	-2.33	-20.6	-144	0.0	-55.4	-197.9	-142.5			
α_{h}	44.30	0.08	16.0	-1.60	-2.88	-20.51	-167	0.2	-55.4	-209.1	-153.7			
$\alpha_{h}^{+}+\alpha_{k}$	44.31	0.07	16.09	-1.60	-2.79	-20.41	-160	0.2	-55.4	-208.3	-152.9			
$\alpha_{n}+\theta_{s}$	44.26	0.12	16.30	-1.54	-2.53	-20.41	-166	0.3	-55.4	-212.0	-156.55			
$\alpha_{h}+\alpha_{k}+\theta_{s}$	44.27	0.11	16.40	-1.53	-2.44	-20.38	-159	0.2	-55.4	-213.1	-157.7			
	evap.*	def.			measur	red GWL								
1	44.12	0.26	14.64	-1.72	-3.25	-19.6	-188	0.6				43.32	1.06	0.80
2	44.19	0.19	13.27	-4.87	-4.71	-22.86	-360	0.4				43.41	0.97	0.78
3	44.32	0.06	15.34	-1.16	-2.74	-19.25	-167	0.1	-50	-183.1-	-133.1	43.52	0.86	0.80
α_{n}	44.35	0.05	15.61	2.27	-2.50	-15.84	-127	0.1				43.54	0.84	0.79
$\alpha_{h}+\alpha_{k}$	44.06	0.32	15.58	2.22	-2.52	-15.80	-129	0.1				43.53	0.85	0.53

[^2]calculated period. (* values are without wet reduction
in case of measured GWL; $\left.\Delta d e f .=d e f .-d e f . * ; E_{p o t}=44.38 \mathrm{~cm}\right)$

SET	calculated GWL													
1	44.29	0.09	14.97	-1.68	-3.79	-20.43	-258	0.4	-61.7	-213.7	-152.0			
2	44.35	0.03	16.11	-1.58	-2.81	-20.40	-164	0.1	-61.7	-237.0	-175.3			
3	43.94	0.44	14.97	-1.63	-3.54	20.05	-239	1.0	-61.7	-222.7	-161.0			
3	44.02	0.36	14.87	-1.48	-3.72	-20.16	-231	0.8	-55.4	-222.4	-167.0			
α_{h}	44.01	0.37	15.35	-1.62	-3.23	-20.24	-190	0.8	-55.4	-207.9	-152.5			
$\alpha_{h}^{+}+\alpha_{k}$	44.06	0.32	15.45	-1.62	-3.18	-20.21	-186	0.7	-55.4	-208.0	-152.6			
$\mathrm{o}_{\mathrm{h}}{ }^{+\theta_{s}}$	43.81	0.57	14.94	-1.55	-3.43	-20.0	-215	1.3	-55.4	-217.2	-161.8			
$\alpha_{h}^{\alpha+\alpha_{k}^{+} \theta_{S}}$	43.88	0.50	15.07	-1.55	-3.38	-20.05	-209	1.1	-55.4	-218.2	-162.8			
	evap.*	def.*			measur	red GWL								
1	44.22	0.16	14.92	0.75	-3.61	-17.78	-251	0.4				43.96	0.42	0.26
2	44.37	0.01	16.37	4.91	-2.32	-13.78	-139	0.0				44.12	0.26	0.25
3	44.07	0.31	15.56	3.29	-2.83	-15.09	-173	0.7	-61.7	-194.8-	-133.1	43.81	0.57	0.26
α_{h}	44.26	0.12	16.16	1.70	-2.41	-16.87	-143	0.3				44.00	0.38	0.26
$\alpha_{h}^{+} \alpha_{k}$	43.73	0.65	15.45	0.85	-2.67	-17.27	-164	1.5				43.55	0.83	0.18

[^3]| | evap.
 [cm] | def.
 [cm] | | $\begin{gathered} \mathrm{q}_{\mathrm{t}} \\ {[\mathrm{~cm}]} \end{gathered}$ | vol_{r}
 [cm] | $\mathrm{vol}_{\mathrm{t}}$
 [cm] | h
 [cm] | red. $[\%]$ | $\begin{array}{cc} & G_{90} \\ & {[\mathrm{~cm}]} \end{array}$ | $\begin{aligned} & \mathrm{G}_{273} \\ & {[\mathrm{~cm}]} \end{aligned}$ | ΔG
 [cm] | evap.
 [cm] [| | Δ def.
 [cm] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SET | calculated GWL | | | | | | | | | | | | | |
| 1 | 43.15 | 1.23 | 13.88 | -1.73 | -3.84 | -19.41 | -323 | 2.8 | -58.7 | -207.7-1 | -149. | | | |
| 2 | 43.91 | 0.47 | 14.71 | -1.78 | -3.77 | -20.34 | -270 | 1.1 | -58.7 | -207.3 -1 | -148.6 | | | |
| 3 | 43.45 | 0.93 | 14.60 | -1.73 | -3.42 | -19.67 | -234 | 2.1 | -58.7 | -210.3 -1 | -151.6 | | | |
| 3 | 43.53 | 0.85 | 14.56 | -1.64 | -3.54 | -19.64 | -230 | 1.9 | -55.4 | -208.4 -1 | -153.0 | | | |
| α_{h} | 44.07 | 0.31 | 15.33 | -1.33 | -3.31 | -19.90 | -201 | 0.7 | -55.4 | -243.8 - 1 | -188.4 | | | |
| $\alpha_{4}+\alpha_{t}$ | 43.30 | 1.08 | 14.20 | -1.34 | -3.67 | -19.29 | -247 | 2.4 | -55.4 | -240.0-1 | -184.6 | | | |
| $\alpha_{h}^{+\theta_{s}}$ | 44.20 | 0.18 | 15.35 | -1.41 | -3.42 | -20.22 | -198 | 0.4 | -55.4 | -238.3 -1 | -182.3 | | | |
| $\alpha_{h}+\alpha_{k}^{+} \theta_{s}$ | 43.68 | 0.70 | 14.47 | -1.42 | -3.78 | -19.60 | -229 | 1.6 | -55.4 | -227.1-1 | -171.7 | | | |
| | evap.* def.* measured GWL | | | | | | | | | | | | | |
| 1 | 43.12 | 1.26 | 13.98 | 0.82 | -3.34 - | -16.50 | -150 | 2.8 | | | 42.74 | $74 \quad 1.64$ | $4 \quad 0.37$ | |
| 2 | 43.85 | 0.53 | 14.36 | -0.36 | -3.70- | -18.43 | -258 1 | 1.2 | | | 43.49 | $\begin{array}{ll} & 0.89\end{array}$ | 9 0.36 | |
| 3 | 43.34 | 1.04 | 14.48 | 1.02 | -3.05 - | -16.51 | -192 2 | 2.3-5 | -58.7-191 | 1.8-133.1 | . 142.96 | $96 \quad 1.42$ | 20.38 | |
| α_{h} | 44.30 | 0.08 | 16.17 | 6.57 | -2.43 - | -11.94 | $\begin{array}{lll}-134 & 0\end{array}$ | 0.2 | | | 43.94 | $4 \quad 0.44$ | $4 \begin{array}{ll}4 & 0.36\end{array}$ | |
| $\alpha_{h}^{+} \alpha_{k}$ | 43.79 | 0.59 | 15.50 | 5.88 | -2.57 - | -12.90 | -153 1 | 1.5 | | | 43.50 | $50 \quad 0.88$ | $8 \quad 0.29$ | |

Table 20. Location 7. The results of the last day (273rd) of
calculated period. (* values are without wet reduction
in case of measured GWL; $\left.\Delta d e f .=d e f .-d e f . * ; E_{\text {mot }}=4.4 .38 \mathrm{~cm}\right)$

soils GWL-D			evap. def. (cm) (cm)	$\begin{gathered} \mathrm{q}_{\mathrm{r}} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} \mathrm{q}_{\mathrm{t}} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{aligned} & \mathrm{vol}_{\mathrm{r}} \\ & (\mathrm{~cm}) \end{aligned}$	$\begin{aligned} & \mathrm{vol}_{\mathrm{t}} \\ & (\mathrm{~cm}) \end{aligned}$	red (\%)	$\begin{gathered} \mathrm{GWL}_{273} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{aligned} & \hline \mathrm{GGWL} \\ & (\mathrm{~cm}) \end{aligned}$
SET 1	of locat.	$\begin{aligned} & \emptyset \\ & \sigma \\ & \mathrm{Cv} \% \end{aligned}$	43.54 0.84 0.66 0.66 1.50 78.6	$\begin{array}{r} 14.21 \\ 1.59 \\ 11.20 \end{array}$	$\begin{array}{r} -1.65 \\ 0.41 \\ 24.70 \end{array}$	$\begin{array}{r} -3.88 \\ 1.02 \\ 26.00 \end{array}$	$\begin{array}{r} -19.74 \\ 0.65 \\ 3.30 \end{array}$	$\begin{gathered} 1.9 \\ 1.49 \\ 78.6 \end{gathered}$	$\begin{array}{r} -198.8 \\ 24.3 \\ 12.2 \end{array}$	$\begin{array}{r} -143.3 \\ 25.5 \\ 17.8 \end{array}$
SET 2	of locat.	$\begin{aligned} & \mathrm{g} \\ & \sigma \\ & \mathrm{CV} \% \end{aligned}$	43.51 0.87 1.77 1.77 4.00 203.4	$\begin{array}{r} 14.82 \\ 2.49 \\ 16.80 \end{array}$	$\begin{array}{r} -1.68 \\ 0.51 \\ 30.30 \end{array}$	$\begin{array}{r} \hline-3.25 \\ 0.59 \\ 18.20 \end{array}$	$\begin{array}{r} \hline-19.74 \\ 1.35 \\ 6.80 \end{array}$	$\begin{gathered} 2.0 \\ 3.99 \\ 203.0 \end{gathered}$	$\begin{array}{r} -207.9 \\ 46.3 \\ 22.2 \end{array}$	$\begin{array}{r} \hline-152.4 \\ 46.4 \\ 30.5 \end{array}$
SET 3	of locat.	$\begin{aligned} & \% \\ & \sigma \\ & \mathrm{Cv} \% \end{aligned}$	44.02 0.36 0.32 0.32 0.7 88.9	$\begin{gathered} 15.57 \\ 0.95 \\ 6.1 \end{gathered}$	$\begin{gathered} -1.57 \\ 0.30 \\ 18.9 \end{gathered}$	$\begin{array}{r} -3.02 \\ 0.74 \\ 24.40 \end{array}$	$\begin{array}{r} -20.15 \\ 0.30 \\ 1.50 \end{array}$	$\begin{gathered} \hline 0.8 \\ 0.74 \\ 89 \end{gathered}$	$\begin{array}{r} -210.5 \\ 28.2 \\ 13.4 \end{array}$	$\begin{array}{r} -155.0 \\ 29.4 \\ 19.0 \end{array}$
SET 3	mean	$\begin{aligned} & \% \\ & \sigma \\ & \mathrm{Cv} \% \end{aligned}$	$\begin{array}{cc} \hline 44.06 & 0.32 \\ 0.29 & 0.29 \\ 0.6 & 90.6 \\ \hline \end{array}$	$\begin{gathered} 15.65 \\ 1.03 \\ 6.6 \\ \hline \end{gathered}$	$\begin{gathered} -1.61 \\ 0.42 \\ 26.3 \\ \hline \end{gathered}$	$\begin{gathered} -2.98 \\ 0.82 \\ 27.4 \\ \hline \end{gathered}$	$\begin{gathered} \hline-20.24 \\ 0.41 \\ 2.0 \\ \hline \end{gathered}$	$\begin{gathered} 0.7 \\ 0.66 \\ 92.4 \\ \hline \end{gathered}$	$\begin{array}{r} -211.8 \\ 28.0 \\ 13.2 \\ \hline \end{array}$	$\begin{array}{r} \hline-156.4 \\ 28.0 \\ 17.9 \\ \hline \end{array}$
SET α_{0}	mean	5 σ Cv $\%$	$\begin{array}{cc} \hline 44.21 & 0.17 \\ 0.13 & 0.13 \\ 0.3 & 80.0 \\ \hline \end{array}$	$\begin{gathered} 16.09 \\ 0.69 \\ 4.2 \end{gathered}$	$\begin{array}{r} -1.43 \\ 0.22 \\ 15.0 \\ \hline \end{array}$	$\begin{gathered} -2.69 \\ 0.58 \\ 37.1 \\ \hline \end{gathered}$	$\begin{array}{r} \hline-20.22 \\ 0.23 \\ 1.1 \\ \hline \end{array}$	$\begin{gathered} 0.4 \\ 0.31 \\ 80.0 \end{gathered}$	$\begin{array}{r} -224.0 \\ 18.3 \\ 8.1 \\ \hline \end{array}$	$\begin{array}{r} -168.6 \\ 18.3 \\ 10.9 \\ \hline \end{array}$
SET $x_{m}+\alpha_{m}$	mean	\varnothing σ $\mathrm{Cv} \%$	$\begin{array}{cc} \hline 43.89 & 0.49 \\ 0.66 & 0.66 \\ 1.5 & 135.0 \\ \hline \end{array}$	$\begin{gathered} 15.63 \\ 1.25 \\ 8.0 \end{gathered}$	$\begin{array}{r} -1.44 \\ 0.23 \\ 15.9 \end{array}$	$\begin{gathered} -2.83 \\ 0.69 \\ 24.3 \end{gathered}$	$\begin{gathered} 19.89 \\ 0.51 \\ 2.6 \end{gathered}$	$\begin{gathered} 1.1 \\ 1.49 \\ 135.0 \end{gathered}$	$\begin{array}{r} -221.1 \\ 20.7 \\ 9.3 \end{array}$	$\begin{array}{r} -165.7 \\ 20.7 \\ 12.5 \\ \hline \end{array}$
mean scaled	mean		$44.30 \quad 0.08$	15.99	-1.49	-2.88	-20.31	0.2	-218.9	-163.5
SET $\alpha_{m}+\theta_{=}$	mean	0 σ Cv \%	44.69 0.71 1.13 1.17 2.6 165.8	$\begin{gathered} 15.23 \\ 1.58 \\ 10.4 \\ \hline \end{gathered}$	$\begin{gathered} -1.43 \\ 0.25 \\ 17.8 \\ \hline \end{gathered}$	$\begin{array}{r} -3.03 \\ 0.64 \\ 21.2 \\ \hline \end{array}$	$\begin{gathered} -19.73 \\ 0.92 \\ 4.6 \\ \hline \end{gathered}$	$\begin{array}{r} 1.6 \\ 2.5 \\ 164 . \\ \hline \end{array}$	$\begin{array}{r} -228.0 \\ 27.8 \\ 1.22 \\ \hline \end{array}$	$\begin{array}{r} -172.4 \\ 28.2 \\ 16.3 \\ \hline \end{array}$
SET $\alpha_{n}+\alpha_{k}+\theta_{c}$	mean	0 σ Cv \%	43.96 0.42 0.51 0.51 1.2 121.2	$\begin{gathered} 15.70 \\ 1.02 \\ 6.5 \\ \hline \end{gathered}$	$\begin{gathered} -1.33 \\ 0.17 \\ 12.5 \end{gathered}$	$\begin{gathered} -2.84 \\ 0.62 \\ 21.9 \\ \hline \end{gathered}$	$\begin{gathered} -19.98 \\ 0.34 \\ 1.7 \\ \hline \end{gathered}$	$\begin{array}{r} 0.9 \\ 1.2 \\ 124.5 \end{array}$	$\begin{array}{r} -222.2 \\ 19.7 \\ 8.9 \end{array}$	$\begin{array}{r} \hline-166.8 \\ 19.7 \\ 11.8 \end{array}$

Table 21. The average results of 7 locations for particular soil

		evap. (cm)	deficit (cm)	$\mathrm{t}_{\quad}^{\quad \mathrm{q}_{\mathrm{r}}} \underset{(\mathrm{~cm})}{ }$	$\begin{gathered} q_{t} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{aligned} & \mathrm{Vol}_{\mathrm{r}} \\ & (\mathrm{~cm}) \end{aligned}$	$\begin{gathered} \mathrm{vol}_{\mathrm{t}} \\ (\mathrm{~cm}) \end{gathered}$	red (\%)	$\begin{array}{cc} \mathrm{GWL}_{273} & \Delta \mathrm{GWL} \\ (\mathrm{~cm}) & (\mathrm{cm}) \end{array}$	evap.* (cm)	def.* (cm)	red. * (cm)
Soils												
SET 1	\emptyset	43.10	1.28	15.05	1.11	-3.05	-16.56	2.9	-179.4-125.4	43.58	0.81	1.8
	σ	1.15	1.15	2.46	6.57	1.20	5.59	2.61	11.69 .64	1.26	1.25	2.8
	$\mathrm{Cv} \%$	2.60	89.8	16.30	590.00	39.60	33.80	90.0	$6.5 \quad 77$	2.9	154.4	157.0
SET 2	\emptyset	42.69	1.69	14.19	2.00	-3.06	-16.27	3.8	the same as above	43.17	1.21	2.7
	σ	2.55	2.55	3.56	7.94	1.30	5.99	5.7		2.63	2.63	5.9
	Cv \%	5.90	150.9	25.10	398.00	42.20	36.80	151.0		6.1	216.8	217.0
SET 3	\emptyset	43.26	1.12	15.25	2.19	-2.58	-16.27	3.8	the same as above	43.74	0.64	1.44
	σ	0.89	0.89	1.76	6.03	0.96	5.99	5.7		1.00	1.00	2.27
	Cv \%	2.00	79	11.50	275.0	37.20		151.0		2.30	156.3	157.0
SET X_{m}	\emptyset	43.80	1.3	16.44	5.28	-1.93	-13.09	1.3	the same as above	44.31	0.07	0.16
	σ	0.18	0.4	0.56	3.49	0.62	3.56	0.4		0.05	0.05	0.14
	$\mathrm{Cv} \%$	0.40	30.0	3.40	66.00	32.00	27.20	30.0		0.10	79.3	89.0
SET $\alpha_{m}+\alpha_{k}$	\emptyset	43.46	0.92	15.83	4.59	-2.21	-13.43	2.1	the same as above	43.86	0.52	1.09
	σ	0.50	0.50	1.01	3.93	0.63	3.79	1.11		0.59	0.50	1.39
	Cv \%	1.2	54.4	6.40	85.70	28.70	28.20	48.3		1.4	114.1	128.0

Table 22. The average results of 7 locations for particular soil
combinations done for measured GWL, whole period
(* values are without wet reduction)

Extremes of results of particular simulations and of
average results of defined soil sets, exteremes of $C V$
of average results

Soils	GWL	c.\%												
		evap.	def.	evap.*	def.*	red.	red.*	q_{r}	q_{t}	vol_{r}	$\mathrm{Vo1}_{t}$	GWL_{90}	GWL_{273}	$\triangle \mathrm{GIL}$
SET 1	measured	2.60	89.8	2.9	154.4	90.0	157.0	16.30	590.0	39.60	33.80	8.4	13.4	19.0
	GWL-D	1.5	76.6	1.5	76.6	78.6	78.6	11.20	24.70	26.00	3.30	8.4	12.2	17.8
SET 2	measured	5.9	150.9	6.1	216.8	151.0	217.0	25.1	398	42.2	36.80	8.4		
	GWL-D	4	203.4	4	203.4	203.0	203.0	16.80	30.30	18.20	6.80	8.4	22.2	30.5
SET 3	measured	2	125	2.30	156.3	78.0	157.6	11.5	275	37.20	33.70	8.4		
	GWL-D	0.7	88.9	0.7	88.9	89	89	6.10	18.9	24.4	1.50	8.4	13.4	19.0
SET 3	GWL-D	0.6	90.6	0.6	90.6	92.4	92	6.6	26.3	27.4	2.0	0	13.2	17.9
SET ${ }^{\text {a }}$	measured	0.40	28.5	0.10	79.3	30	89	3.4	66	32	27.2	8.4		
	GWL-D	0.3	80.0	0.3	80.0	80.0	80.0	4.2	15.0	37.1	1.1	0	8.1	10.9
	measured	1.2	54.4	1.4	114.1	48.3	128	6.4	85.7	28.7	28.2	8.4		
	GWL-D	1.5	135.0	1.5	135.0	135	135	8.0	15.9	24.3	2.6	- 0	9.3	12.5

The variance of average results for all calculated

combinations of soil sets, both types of lower boundary
conditions compared (* values are without wet reduction)

Table 24.

No.	$\begin{array}{r} \text { 1. 1ayer } \\ \alpha_{h} \quad \alpha_{k} \end{array}$		$\begin{array}{r} \text { 2. 1ayer } \\ \alpha_{h} \quad \alpha_{k} \end{array}$		evap. (cm)	def. (cm)	$\begin{gathered} q_{r} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{aligned} & \mathrm{q}_{\mathrm{t}} \\ & (\mathrm{~cm}) \end{aligned}$	$\begin{gathered} \mathrm{vol}_{\mathrm{r}} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{array}{r} \mathrm{vol}_{\mathrm{t}} \\ (\mathrm{~cm}) \end{array}$	$\begin{gathered} \mathrm{h} \\ (\mathrm{~cm}) \end{gathered}$	red (\%)	$\begin{aligned} & \mathrm{GWL}_{273} \\ & (\mathrm{~cm}) \end{aligned}$	$\begin{aligned} & \triangle \mathrm{GWL} \\ & (\mathrm{~cm}) \end{aligned}$
1	0.7151	1	0.7170	1	44.34	0.04	16.23	-1.21	-2.68	-20.03	-175	0.1	-248.0	-192.6
2	1.127	1	0.6985	1	44.07	0.31	15.33	-1.33	-3.31	-19.9	-201	0.7	-243.8	-188.4
3	0.3196	1	0.8369	1	44.30	0.08	17.26	-1.09	-1.61	-20.02	-176	0.2	-243.7	-188.3
4	0.5007	1	1	1	44.36	0.02	16.79	-1.29	-2.14	-20.22	-167	0.0	-225.8	-170
5	1	1	1	1	44.30	0.08	15.99	-1.49	-2.88	-20.31	-169	0.2	-218.9	-163.5
6	1.0347	1	1.1763	1	44.30	0.08	16.00	-1.60	-2.88	-20.51	-167	0.2	-209.1	-153.7
7	0.507	1	1.2934	1	44.36	0.02	16.85	-1.47	-2.08	-20.4	-162	0.0	-208.2	-152.8
8	1.2672	1	1.0177	1	44.01	0.37	15.35	-1.62	-3.23	-20.24	-190	0.8	-207.9	-152.5
9	2.0356	1	1.1716	1	44.12	0.26	15.62	-1.72	-3.06	-20.47	-165	0.7	-207.6	-152.2
10	1	1	1.2934	1	43.92	0.45	15.89	-1.65	-3.65	-21.26	-228	1.0	-200.7	-145.3
11	2.0356	1	1	1	40.56	3.82	10.96	-1.72	-4.17	-16.94	-539	8.7	-189.0	-133.6

Location	$\begin{gathered} 1 \\ \text { layer } \\ \theta_{s 1} \end{gathered}$	$\begin{gathered} 2 \\ \text { layer } \\ \theta_{\mathrm{gz}} \end{gathered}$	2 layer			1 layer		
			change of mean $\Theta_{s 2}$	change of decrease of GWL SET $\alpha_{\mathrm{h}}+\theta_{\mathrm{s}}$	$\begin{gathered} \text { change of } \\ \text { decrease } \\ \text { of GWL SET } \\ \alpha_{\mathrm{h}}+\alpha_{\mathrm{k}}+\theta_{\mathrm{s}} \end{gathered}$	change of mean $\Theta_{S 1}$	$\begin{aligned} & \text { change of } \\ & \text { deficit } \\ & \text { of AE SET } \\ & \alpha_{h}+\theta_{S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { change of } \\ & \text { deficit } \\ & \text { of } \mathrm{AE} \text { SET } \\ & \hdashline \alpha_{\mathrm{h}}+\alpha_{\mathrm{k}} \mathrm{o}_{\mathrm{s}} \end{aligned}$
1	0.403	0.280	-	$-1+$	$-1+$	+	$+1+$	+
2	0.387	0.332	-	- +	-1 +	-	0	0
3	0.446	0.354	+	-1 -	-1 -	+	-1	-
4	0.391	0.403	+	-1	-1 -	-	$-1+$	+1.
5	0.353	0.332	-	$-1+$	$-1+$	-	$-1+$	-1 +
6	0.395	0.298	-	$-1+$	-1 +	-	- $1+$	-1 +
7	0.426	0.374	+	-1		+	- 1	-1
mean θ_{s}	0.339	0.339						

* denoted if relation is positive (+) or negative (-)
Table 26. Relative effects of $\theta_{\text {a }}$ changes on calculated GWL and deficit of AE: for SET $\alpha_{m}+\theta_{s}$ in relation to SET $\alpha_{n} ;$ and for SET $\alpha_{n}+\alpha_{k}+\theta_{z}$ in relation to SET $\alpha_{m}+\alpha_{k}=$ Values compared are given in Tables 14 - 20.

Location	1 layer		2 layer		2 layer				1 layer				$\alpha_{k 1}$	$\alpha_{k 2}$
	$K_{s} \alpha_{h}$	$\mathrm{K}_{\mathrm{s}}{ }^{\text {ck }}$	$\mathrm{K}_{s} \alpha_{h}$	$\mathrm{K}_{\mathrm{s}}{ }^{\text {k }}$ k	$\begin{aligned} & \text { change of } \\ & \mathrm{K}_{\mathrm{s}} \alpha_{\mathrm{h}} \end{aligned}$	change of decrease of GWL SET $\alpha_{h}{ }^{+\alpha_{k}}$		change of decrease of GWL $\text { SET } \alpha_{h}+\alpha_{k}+\theta_{s}$	change of $K_{s} \alpha_{h}$	change of deficit of $A E$ SET $\alpha_{h}{ }^{+\alpha_{k}}$	風	change of deficit of AE SET $\alpha_{h}+\alpha_{k}+\theta_{s}$		
1	7.46	14.79	75.8	30.3	$-\quad+$	-	+	-	- -	+	+	-	0.7052	0.8168
2	15.21	59.81	23.3	28.2	$-{ }^{-}$	-	+	-	+ -	-	-	-	1.4179	0.7887
3	3.04	11.93	31.75	89.2	+ +	+	0	0	$-{ }_{-}+$	-	0	0	0.6332	1.4023
4	123.3	61.30	62.23	40.4	- +	-	-	+	$+\quad+$	+	-	-	1.4355	0.9439
5	31.9	28.85	62.7	62.3	+ -	-	+	+	- +	-	+	-	0.9848	1.1719
6	47.8	30.8	55.5	49.5	+ +	+	+	+	+ -	- -	-	-	1.0177	1.0445
7	37.8	19.3	22.1	31.4	- +	-	+		- -	- +	-	+	0.8058	0.8318

Relative effects of K_{k} (through α_{k}) changes on
calculated GWL and deficit of AE: for SET $\alpha_{n}+\alpha_{m}$ in
relation to SET α_{m};
and for SET $\alpha_{n}+\alpha_{k}+\theta_{\mathbf{E}}$ in relation to SET $\alpha_{n}+\theta_{\mathbf{s}}$.
Values compared are given in Tables $14-20$.

* denoted if relation is positive (+) or neaative (-)
Table 28. Relative effects of K changes on calculated GWL and deficit of AE: for SET 3 (fitted K $\mathbf{K}_{\mathbf{*}}$) in relation to SET 2 (measured $K_{\text {a }}$)
Values compared are given in Tables $14-20$.

	GWL-d		evap. (cm)	def. (cm)	$\begin{gathered} \mathrm{q}_{\mathrm{t}} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} \mathrm{GWL}_{273} \\ (\mathrm{~cm}) \end{gathered}$	$\alpha_{\text {h }}$	$\alpha_{\text {h2 }}$	$\theta_{s} 1$	$\theta_{s} 2$
random 3G	mean	\emptyset	44.06	0.32	1.45	-225.6	1.2422	0.9671	0.4001	0.3384
		σ	0.39	0.39	0.22	20.8	0.709	0.241	0.0278	0.0424
		Cv \%	0.9	123.1	15.2	9.2	57.1	24.94	6.95	12.53

Figure 1 - 7. Retention curves and hydraulic conductivities for particular locations 1 - 7

a) retention curves in logihi scale and b) retention curves in normal scale

*	measured points
\ldots	SET 1, SET 2, SET 3
\ldots	SET $\alpha_{m}, \operatorname{SET} \alpha_{m}+\alpha_{k}$
$\ldots-$	SET $\alpha_{m}+\theta_{g}, \operatorname{SET} \alpha_{m}+\alpha_{k}+\theta_{B}$

c) hydraulic conductivities

* measured points	
- - SET 1	
	SET 2
\cdots SET 3	

d) hydraulic conductivities

* measured points
- SET 3 (base for scaling)
- - SET α_{n} SET $\alpha_{n}+\theta_{B}$
\ldots.... SET $x_{h}+\alpha_{k}$, SET $\alpha_{n}+\alpha_{k}+\theta_{B}$

location 1 ordinary ist layer

location 1 ordinary 2nd layer

location 2 ist layer

location 3 ordinary ist layer

location 3 scaled ist layer

location 3 ordinary 2nd layer

location 3 scaled
2nd layer

location 4
2nd layer

lacation 7 ordinary ist layer

location 7 scaled 2nd layer

Figure 8. Comparison of courses of measured and calculated GWL

Figure 9. Example of oscilations of calculated GWL

Figure 10. Relation between measured GWL at Assink and Location 4

ENL-discharge relationship


```
----- mean GWL-D for E-area
.... GWL-D for particular locations of E-area
- _ - arbitrary extreme
+++++ mean GWL-D for whole Hupselse Beek area
```

Figure 11. GWL - discharge relationship

* A-horizon
b
BC-horizon

Figure 12. Relationshin of scaling factors for B-area

Figure 13. The influence of scaling factor α_{n} on the shape of retention curves. The full line is for the mean retention curve
ist layer

2nd layer

Figure 14. Comparison of mean results and standard deviations of the particular components of water balance for all the soil inout sets in combination with both types of the lower boundary condition in order as listed below:

1	SET	1	GWL-D	of	1 oc.	11	SET	1	measured	GWL
2	SET	2	GWL-D	of	100	12	SET	2	measured	GWL
3	SET	3	GWL-D	of	loc	13	SET	5	measured	GWL
4	SET	3		mean	n GWL-D	14	SET	α_{m}	measured	GWL
5	SET	α_{n}		mean	ก GWL-D	15	SET	$\alpha_{n}+\alpha_{k}$	measured	EWL
6	SET	α_{n}	人 α_{k}	mean	n GWL-D					
7	SET	x_{n}	98	mear	n GWL-D					
8	SET		${ }_{k}+$	mean	ก EWL					

Flux from root zone

Flux at the bottom

Appendi: Examples of seasonal courses of components of water balance for combinations of soil input sets and. lower boundary condition

Figure 15. The influence of the lower boundary condition, differences between mGWL as lower boundary condition and two types of GWL-D relationships as lower boundary condition; shown for Location 3 (very wet) and Location 4 (very dry)

Figure $16 . \quad$ The influence of three types of hydraulic conductivities in connection with ordimary retention curve: for both lower boundary conditions for Location 4

Figure 17. The influence of three types of hydraulic conductivities on the calculated GWL for two extreme locations ($3+4$) and for the "ideal" location (5); compared with measured GWL

Figure 18. The influence of three types of hydraulic conductivities in connection with ordinary retention curve for Location 5: calculated GWL.

Figure 19. The influence of scaled soil hydraulic functions on the seasonal courses of components of water balance for two extreme locations, compared with results for SET E; measured GWL

[^0]: generation of scaling factors x_{n} and saturated moisture content θ_{0} to create in combination with the mean scaled curves the set of randomly generated soil inputs for the comparison of the deterministic and stochastic approaches in the last part of the work. The parameters of the distributions used in the random generation of the retention curves for each layer are given in Table 4.

[^1]: Location 3. The results of the last day (273rd) of
 Table 16.

[^2]: Location 5. The results of the last day (273rd) of
 Table 18.

[^3]: Location 6. The results of the last day (273 rd) of calculated period. ($*$ values are without wet reduction
 in case of measured EWL; $\Delta d e f .=d e f .-$ def.*; $E_{\text {pot }}=44.38 \mathrm{~cm}$)
 Table 19.

