Crop growth simulation
and statistical validation
for regional yield
forecasting across the
European Community

Simulation Reports CABO-TT, no. 31

G.H.J. de Koning, M.J.W. Jansen, E.R. Boons-Prins,

C.A. van Diepen, FW.T. Penning de Vries

Centre for Agrobiological Research
Wageningen Agricultural University

i 2] JOINT
cabo-dlo RESEARCH

*«+ | CENTRE

))“\\ COMMISSION OF THE EUROPEAN COMMUNITIE! ‘

sc-dlo

May 1993




Crop growth simulation
and statistical validation
for regional yield
forecasting across the
European Community

Simulation Reports CABO-TT, no. 31

G.H.J. de Koning, M.J.W. Jansen, E.R. Boons-Prins,
C.A. van Diepen, F.W.T. Penning de Vries

++, | JOINT
cabo-dlo + »| RESEARCH
+++" | CENTRE

COMMISSION OF THE EUROPEAN COMMUNITIES

SC- dlo

Study carried out on behalf of:

Agricultural Information Systems,

Institute for Remote Sensing Applications,

Joint Research Centre of the Commission of the
European Community

May 1993



Simulation Reports CABO-TT

Simulation Reports CABO-TT is a series giving supplementary information on agricultural
simulation models that have been published elsewhere. Knowledge of those publications will
generally be necessary in order to be able to study this material.

Simulation Reports CABO-TT describe improvements of simulation models, new applications
or translations of the programs into other computer languages. Manuscripts or suggestions
should be submitted to: H. van Keulen (CABO-DLO) or J. Goudriaan (TPE).

Simulation Reports CABO-TT are issued by CABO-DLO and TPE and they are available on
request. Announcements of new reports will be issued regularly. Addresses of those who are
interested in the announcements will be put on a mailing list on request.

The DLO Centre for Agrobiological Research (CABO-DLO) falls under the Agricultural
Research Department (DLO) of the Dutch Ministry of Agriculture, Nature Management and
Fisheries.

The aim of DLO is to generate knowledge and develop expertise for implementing the
agricultural policies of the Dutch government, for strengthening the agricultural industry, for
planning and management of rural areas and for the protection of the environment. At
CABO-DLO experiments and computer models are used in fundamental and strategic research
on plants. The results are used to:

- achieve optimal and sustainable plant production systems;

- find new agricultural products and improve product quality;

- enhance nature and environmental quality in the countryside.

Address:

CABO-DLO

P.O. Box 14

6700 AA Wageningen
The Netherlands

tel. 31.8370.75700
fax. 31.8370.23110
e-mail postkamer@cabo.agro.nl

Authors:

G.H.J. de Koning, DLO Centre for Agrobiological Research (CABO-DLO), P.O. Box 14,
6700 AA Wageningen, the Netherlands.

M.J.W. Jansen, DLO Agricultural Mathematics Group (GLW-DLO), P.O. Box 100,
6700 AC Wageningen, the Netherlands

E.R. Boons-Prins, DLO Centre for Agrobiological Research (CABO-DLO), P.O. Box 14,
6700 AA Wageningen, the Netherlands

C.A.van Diepen, DLO Winand Staring Centre (SC-DLO), P.O. Box 125,

6700 AC Wageningen, the Netherlands

—=e EAMCT-Penning-de-Vries-DLO-Centre for Agrobiological Research (CABQO-DLO), P.O: Box 14,

6700 AA Wageningen, the Netherlands



Contents

page
Preface 1
Summary 3
Acknowledgements 4
1 General introduction 5
2 The Crop Growth Monitoring System (CGMS) 7
2.1 Introduction 7
2.2. Weather data 7
2.3 Crop data 8
2.4 Soilmap 8
2.41 Soil data 8

2.4.2 Estimation of suitable soils 9

2.5 Aggregation of simulated yields to regional and national level 9
2.6 Statistical data 9

3 The crop growth model WOFOST 1
3.1 Introduction 1
3.2  Structure of the model "
3.3 The crop growth submodel 12
3.4 Crop parameters 13
3.5 Soil water status and crop growth 14
3.6 The soil water submodel and soil parameters 15

4 Calibration of the crop growth model 17
4.1 Introduction 17
4.2 Crop phenology 17
4.3 Mathematical calibration 18
4.4 Calibration with limited data 19

5 Yield prediction and statistical validation of predictions 21
5.1 Introduction 21
5.2  Prediction rules 22
5.2.1 Model indicators 22

5.2.2 Elementary predictors 23

5.2.3 Full prediction rules 24

5.3 Characterization of prediction errors 24
5.4 Selection of elementary predictor 26

5 5 Accacemant.of tha ?er«Fnrmanre of P0.and PS 26

6 Results 29
6.1 Introduction 29
6.2 Type of output 29



6.3 Crop specific results
6.3.1 Wheat
6.3.2 Other crops

7 Discussion

7.1 Introduction
7.2  Crop growth model and data
7.3 Statistical analysis

References

Appendix 1. EC-grid. (50 x 50 kilometres)

Appendix 2. Deviation of 1992 rainfall sum

Appendix 3. Nomenclature of Statistical Territorial Units (NUTS)
Appendix 4a. WOFOST soil data file for a medium textured soil
Appendix 4b.Crop specific maximum rooting depths

Appendix 5. WOFOST crop data file for spring barley

Appendix 6. Request for data

Appendix 7a. Program XCL. User guide, input/output

Appendix 7b.Program XCL. Brief description

Appendix 7c. Program XCL. Full listing

Appendix 8a. Example of detailed statistical output. Prediction rule PO
Appendix 8b.Example of detailed statistical output. Prediction rule P5
Appendix 9. Summary output Nuts-1

Appendix 10. Summary output Nuts-0

30
30
32

39

39
39

43

47

49

51

53

53

55

57

59

61

67

83

87

101




Preface

This report is prepared by the DLO Centre for Agrobiological Research in the framework of
the development, validation and testing of crop-specific agrometeorological models for yield
forecasting purposes. It describes the regional validation of the yield model of the Crop
Growth Monitoring System, which in turn will form part of an Agricultural Information
System on the European Community. This report describes the regional validation of the yield
model of the Crop Growth Monitoring System (CGMS). The detailed description of the crop
growth simulation model and its calibration for European crops are given in other reports.
The Crop Growth Monitoring System was developed by the DLO Winand Staring Centre on
behalf of the Institute for Remote Sensing Applications (IRSA) of the Joint Research Centre
(JRC, Ispra-site) of the Commission of the European Community under contract 3965-90-04 ED
ISP-NL "Yield Forecasting Models, Part 11" (SC Project 7185), and further elaborated in
cooperation with the DLO Centre for Agrobiological Research under contract 4436-91-08 ED
ISP NL "Crop specific agrometeorological simulation models" (SC Project 7220, CABO Project
836).

This report is a contribution of the DLO Centre for Agrobiological Research (CABO-DLO) to
the second contract. The overall objective of the second contract was to develop, validate
and test new or existing crop-specific agro-meteorological simulation models for routine
quantitative forecasting of national and NUTS-1 yields every 10 days, and for areawise
qualitative monitoring, every 10 days, of the conditions of the agricultural season over the
whole of the EC. The model should work for each of the following crops: wheat, barley, oats,
maize, rice, potato, sugar beet, pulses, soybean, oilseed rape, sunflower, tobacco and cotton.

This report deals with the validation of regionally aggregated output of a crop growth
simulation model against official regional agricultural statistics. Concerning the statistical
validation of the yield model for its use for regional quantitative yield forecasting the
following specifications were formulated :

- The official statistics include historical yield data available in the CRONOS (national
yields, series of 15-35 years) and REGIO (regional yields, series of 14 years) data bases of
the European Statistical Office (Eurostat, Luxembourg).

- The validations have to be carried out at the national and the regional NUTS-1 level.

- The regionally aggregated model output covers the same series of years.

- The timestep of the simulation model is one day.

- Asthe final goal is to forecast yields routinely every ten days, the yield series should be
analysed as a function of intermediate 10-day model outputs, starting from the 5th ten-
day period after planting.

- Technological time trends must be taken into account.

- An evaluation of the precision and stability of independent estimates should be
included, as well as an analysis of the variability and stability of the regression
coefficients.

Most of these requnrements could be met, and are reported here. The CGMS system has the

ese results'are not’; analyzed inthis report ‘as already the=—— -

f—,‘rr———ayneff»————-—-wahdatton@ﬁh&modeLoutpui at harvest time gave poor results. The pQSSJbJﬁJBiODSiQLIhﬁ ..... B
are discussed. A repetition of this-discussion for all preceding ten day periods would notlead
to a better understanding of the performance of the whole procedure.
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Although a wealth of information is integrated through the succession of crop modelling,
regional aggregation, and regression analysis, the available basic information on weather,
crops, soils, land use and yield statistics was by no means complete. Because of limited
availability of data, some procedures were simplified, or only a limited validation could be
carried out. Information on the soil profile available water capacity was lacking, the
interpolation for historic weather from stations to grid was not operational, statistical
information was lacking completely for some crops and was not complete for others, and
information on land use was insufficient (no maps, so no information on location of crops,
and uncertain weighting of planted area over soils).

As the CGMS system is designed for the handling of this information, it is expected that more
accurate crop yields can be simulated by the system once this currently lacking information
can be taken into account. However, this does not necessarily improve the results of the
statistical validation procedure because of the unknown inaccuracies in yield figures given by
official statistics.

C.A. van Diepen, Project leader.




Summary

At the request of the Joint Research Centre of the European Communities, the DLO Winand
Staring Centre (SC-DLO) in co-operation with the DLO Centre for Agrobiological Research
(CABO-DLO) in Wageningen the Netherlands, has executed the project: "Development,
validation and testing of crop specific agrometeorological simulation models". The objective
of this project is to investigate the possibilities of agro-meteorological simulation models for
quantitative forecasting of national and regional yields of the main agricultural crops of the
EC.

The contribution of the DLO Centre for Agrobiological Research (CABO-DLO) consisted of the
adaptation of an existing non-specific crop growth simulation model for specific European
agricultural crops, and the development of a yield forecasting algorithm. For wheat, grain
maize, barley, rice, sugar beet, potato, field bean, soybean, oilseed rape and sunflower,
standard values were gathered of model parameters that represent specific crop
characteristics. These crop parameter values were adapted to regional conditions throughout
Europe. The effectiveness of using mathematical calibration procedures for optimizing
parameter values was investigated. As result of this investigation for most crops a more
simple approach for calibration was followed, namely the manual adaptation of crop
parameters to limited regional data using general modelling knowledge.

Simulated regional and national yields were analysed and related to historical official
statistical yields by means of regression methods. This resulted in the formulation of a
forecasting algorithm using crop model output of current years for the forecasting of official
yields. The accuracy of the yield forecasting algorithm was statistically determined and
compared with the accuracy of forecasting without using a crop growth model.

In this report, the general methodology of the research at CABO-DLO will be discussed and
results concerning the accuracy of yield predictions are presented. An extensive description of
field data sets, cropping calendars and crop parameter values used in the simulation model is
given in a separate report by Boons-Prins et al. (1993). ,

Over the whole of the EC the accuracy of predicting official NUTS-1 and NUTS-0 yields cannot
yet be improved by using output of the crop growth model. This may be related to
limitations in model concepts and to the quality and quantity of the input data available.
However, also the reliability of the official yield statistics is an important factor. The accuracy
of the official statistical yields is unknown, making it impossible to separate the effects of
possibly unrealistic simulation results from errors in the official statistics.
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1 General introduction

The Directorate General for Agriculture of the EC requires timely forecasting of agricultural
production to support the Common Agricultural Policy (CAP). Integration of Community
statistics has until now been performed by the Statistical Office of the European Community
(O.S.C.E. or Eurostat) in Luxembourg. Prediction of yields by Eurostat is based on statistical
methods, using historical data and taking into account time trends and weather indicators.
The Institute for Remote Sensing Applications (IRSA) of the Joint Research Centre (JRC) of the
EC, located in Ispra, Italy, is in charge of a program to improve agricultural yield forecasts.
This program is known as the Agriculture Project or MARS project. Within the Agriculture
Project of the EC, an Advanced System of Information on Agriculture is being developed.
Three methods are investigated by JRC: conventional surveys, remote sensing, and
agrometeorological modelling.

At the request of the JRC, the DLO Winand Staring Centre (SC-DLO) in co-operation with the
DLO Centre for Agrobiological Research (CABO-DLO) in Wageningen the Netherlands, has
executed the project: "Development, validation and testing of crop specific
agrometeorological simulation models". The objective is in the contract described as "to
develop, validate and test new or already existing agro-meteorological simulation models for
10 day routine quantitative forecasting of national and NUTS-1 yields and for 10-day areawise
(regional), but qualitative monitoring of agricultural season conditions over the whole of the
EC and for each of the following crops: wheat (spring and winter; hard and soft), barley
(spring and winter), oats, maize (grain), rice, potato, sugar beet, pulses (human
consumption), soybean, oilseed rape, sunflower, tobacco and cotton."

The project is a logical continuation of the project "Yield Forecasting Models, Part II",
performed by the DLO Winand Staring Centre in 1991.

In "Yield Forecasting Models Part II*, the DLO Winand Staring Centre has developed a Crop
Growth Monitoring System (CGMS). This system includes a non-crop specific
agrometeorological simulation model, linked with a weather system and a Geographical
Information System (GIS). In the weather system, historic and current daily weather data are
stored and interpolated to the grid points of a 50 x 50 kilometres mesh over the whole of the
EC. The weather data are used in the crop growth model and the model results can be
analysed and visualized with the GIS. In "Yield Forecasting Models, Part II", the crop growth
simulation model was non-crop specific. In the current project, yields of all main agricultural
crops of the EC were simulated individually. A yield forecasting algorithm was defined, based
on comparison between simulation results and historical records of statistical data.

The contribution of the DLO Centre for Agrobiological Research (CABO-DLO) consisted of the
adaptation of the crop growth model for crop specific calculations and development of the
yield forecasting algorithm. For each of the crops, standard values were gathered of
parameters that represent specific crop characteristics. Insufficient data were available for
oats, tobacco and cotton and these crops had therefore to be omitted. For the other crops,

effectlveness of using standard mathematical calibration proceaures for optimizing
parameter-values was-investigated.-Asresult-of this investigation for most crops. amore

simple approach for calibration was followed, namely-the manual adaptation of crop
parameters to limited regional data using general modelling knowledge. Crop simulation



outputs of the calibrated model were compared with results from independent field trials.
After CABO-DLO calibrated and validated the model at the point level, SC-DLO calculated
grid yields for historical weather records with the CGMS and aggregated these yields to
yearly regional averages. These historical records of simulated regional yields were analysed
by CABO-DLO and related to historical official statistical yields by means of regression
methods. This resulted in the formulation of a forecasting algorithm using crop model
output of the current year for the forecasting of official yields in that year. The accuracy of
the yield forecasting algorithm was statistically determined and compared with accuracy of
forecasting without crop model output. This procedure has resulted in the integration of the
yield forecasting algorithm in the CGMS, allowing yearly forecasts of official yields and
updating of the forecasting algorithm to data of the most recent years.

In this report, the general methodology of the research at CABO-DLO will be discussed and
yield forecasting results presented. A short description of the CGMS of SC-DLO is given in
Chapter 2 because it is the basis of the calculations at CABO-DLO. The functions and
parameters of the crop growth model, are shortly explained in Chapter 3, with references to
more detailed descriptions in other documents. The procedures used for updating crop
parameters and calibration of the model, being the core activities at CABO-DLO, are given in
Chapter 4. An extensive description of these activities, together with field data sets and final
crop parameter values are given in a separate report by Boons-Prins et al. (1993). The
development of the yield forecasting algorithm in cooperation with the mathematical
department of DLO (GLW-DLO) in Wageningen is described in Chapter 5. Some results are
given in Chapter 6, focussing mainly on the accuracy of the yield predictions. This report ends
with a discussion of the followed methodology, recommendations for further developments
and final conclusions

CABO-DLO has executed the project in the period from 1-1-1992 until 31-12-1992. In addition
to the authors, two more persons were involved in the project at CABO-DLO: W. Stol for
support on model calibration software and J. Withagen for support on statistical software.




2 The Crop Growth Monitoring System
(CGMS)

2.1 Introduction

Starting point for crop growth simulation work at CABO-DLO was the Crop Growth
Monitoring System (CGMS), developed by SC-DLO in the project "Yield Forecasting Models,
Part II" in 1991 (Bulens et al., 1993; Hooijer et al., 1993a, 1993b, 1993c). The CGMS includes a
Geographical Information System (GIS) and combines components like interpolation
algorithms, weather data handling procedures, geographic procedures and a crop growth
simulation model. Within the CGMS a number of digitized maps are stored:

- the soil map of the EC (1 : 1 million)

- maps of administrative units within the EC (NUTS-0 and NUTS-1 level)

- a grid with 1350 cells of 50 x 50 kilometres, covering the whole of the EC (see Appendix 1)
- a map with weather stations.

- a terrain map

With the CGMS, basic data can be analysed and presented. An example of such output is
shown in Appendix 2, were the precipitation during the period April-July 1992 is presented
on grid basis as deviation from the long term mean precipitation over this period.

In this report, we deal with the use of a crop growth simulation model for the calculation of
potential (with irrigation) and water-limited (without irrigation) crop yields. An explanation
of the simulation model will be given in Chapter 3. The CGMS provides the basic input data
for the model.

2.2. Weather data

The weather data base DBMETEO is described by Reinds (1991) and van der Drift & van
Diepen (1992). The data base contains daily weather data of 360 weather stations for 15-30
historic years, up to 1989. For the current years (from 1990 onwards), daily weather data
are available for 626 stations. Within one grid cell, weather is assumed to be homogeneous.
In fact, each grid cell is considered as a unique climatic cell. For the historic years, daily
weather data within a grid cell are considered equal to the weather data of the most similar
nearby located weather station. Similarity is defined in terms of distance between station and
grid centre, corrected for differences in altitude and in distance from the coast. For the
current years an interpolation procedure is used to determine the daily weather within a grid
cell (van der Voet et al., 1993). With this interpolation procedure, for each grid cell an
optimum number of surrounding weather stations is selected, taking into account distance
from the station, altitude, distance from the coast, number of stations and climate divisions.

From-the=selected-weather-stations- dathv-weathe;

variable- specn‘lc algorithms (van der Voet et al., 1993; Beek, 1991a, 1991b).

hmnl
\9)

A
MUdny vvcault:l Udl.a lICCdCd fUl the-mo

- minimum air temperature (°C)
- maximum air temperature (°C)

data-within-the-cell-are-caleulated.with .
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- global radiation (MJ m~2 d-1)

- vapour pressure (mbar)

- wind speed m s

- precipitation (mm)

For a number of stations, the raw data have to be converted, for example the conversion
from wet bulb temperature to vapour pressure of the air, or the calculation of global
radiation from sunshine duration (van der Drift & van Diepen, 1992). Furthermore, algorithms
have been developed for handling of missing values.

2.3 Crop data

The type of crop parameters used in the model will be described in Section 3.4 of this report.
Actual values of the model parameters were collected for individual crops within the
European Communities and stored in separate files. The values of the crop parameters for
region-specific varieties as used in this project have been documented by Boons-Prins et al.
(1993) for each of the crops considered: wheat, grain maize, barley, rice, sugar beet, potato,
field bean, soybean, oilseed rape and sunflower. Data on regional cropping calendars are
also given by Boons-Prins et al. (1993).

2.4 Soil map

Also stored within the CGMS is the EC soil map. This map is used to derive soil parameters for
the model and to estimate the area where a crop can be cultivated.

2.4.1 Soil data

In the crop growth model a number of soil physical soil parameters are needed to calculate
water-limited yields. In this report it is assumed that all soils are freely draining. For such a
soil, data are required on maximum rooting depth, total pore space, soil moisture content at
field capacity and wilting point, subsoil permeability, maximum infiltration rate and the
surface water storage capacity. In this stage of the project, differences in physical soil
parameters between soil types are not taken into account. Only one standard soil parameter
set is used, referring to an average soil (Appendix 4a). The water holding capacity of this soil
amounts to 0.21 cm3 cm=3 while the soil depth is set at 120 cm and the initial soil moisture
content at field capacity. The actual depth of the layer from which the crop can take up
water is determined by the rooting depth of the crop. The maximum depth is limited by
either the maximum rootable depth of the soil or the maximum rooting depth of the crop
under unrestricted root growth conditions. The crop specific maximum rooting depths used
are given in Appendix 4b.

Because only one soil parameter set is used, for the time being within each grid cell yields
will be calculated for only one weather soil combination each year, because weather and soil

ithin-the cell-in-a-next phase, soil specific physical

parameters-can be used to mtroduce soil-heterogeneity-within-a-grid-cell;-resulting-in

———multiple-runs-within-a-cell for-each-year.——




2.4.2 Estimation of suitable soils

A limitation in the present study is the lack of an accurate land use map. The only
information available is the total area of land used for a specific crop within each NUTS-1
region. It is not known on which locations within the NUTS-1 region the crops are grown. For
NUTS-1 regions where a specific crop is cultivated, calculation of crop yields should preferably
be restricted to soil areas were the crop is actually grown. The soil area where a certain crop
can be cultivated is estimated by applying land evaluation rules to the soil units of the soil
map. These rules serve as a sieve to separate suitable and unsuitable soils. The crop growth
simulation model is for a specific crop only applied to soils that are judged suitable for
mechanized cultivation of the crop. All soil units that are judged unsuitable for this type of
farming due to slope, stoniness, texture or drainage conditions (Reinds & van Lanen, 1992),
are excluded from further crop yield calculations and are not used for the regional
aggregation of simulated yields.

2.5 Aggregation of simulated yields to regional and

national level

The simulated yields are calculated for each suitable land unit, represented by a unique
combination of soil, grid and administrative region. For historic as well as current years, the
simulated yields are aggregated over NUTS-1 regions and over countries. Simulated NUTS-1
yields are the weighted averages of the simulated yields on the land units within a NUTS-1
region, using the estimated suitable crop area within that region as the weighting factor.
In a second step, the aggregated simulated yields at NUTS-1 level are further aggregated to
the country level, using the actual crop areas within each NUTS-1 region according to
official statistics as the weighting factor.

Names of NUTS-0 and NUTS-1 levels are given in Appendix 3.

2.6 Statistical data

Official statistical data are obtained from the regional data base "REGIO" of Eurostat,
available in DBASE-4 format. In the Agricultural and Forestry Statistics of REGIO, fresh weight
yields (tonnes ha"1), areas (ha) and production volumes (tonnes) of agricultural crops are
given at NUTS-0, NUTS-1 and, increasingly erratic, NUTS-2 level. Only NUTS-0 and NUTS-1 data
are used in this report because NUTS-2 data are too incomplete. Maximally the years 1975-
1990 are covered, the amount of missing data depending on crop type and region. Crops
listed are wheat, grain maize, barley, rice, sugar beet, potato, oilseed rape and sunflower.
Therefore, for three crops for which yields are simulated, no statistical data are yet available:
oats, field bean and soybean. Wheat figures apply to the total of spring, winter, common
and durum wheat. Barley includes spring as well as winter varieties and potato figures apply

PRPTY § ERPEG Ry [P 4 L U e

LU Ot O Cartyanidattvat m

Dataare exported from DBASE with a DBASE-procedure and written to crop specific files
contai ield-and-area datafor series-of years.—
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3 The crop growth model WOFOST

3.1 Introduction

The crop growth model WOFOST (WOrld FOod STudies) has been developed by the Centre
for World Food Studies in Wageningen, the Netherlands, in cooperation with the
Agricultural University and the DLO Centre for Agrobiological Research (van Diepen et al.,
1988, 1989). More recently the model has been further developed at the DLO Winand Staring
Centre (Guiking, 1993). The basic principles of the processes underlying the model have been
treated in detail by van Keulen and Wolf (1986). The model simulates phenological
development and growth of a field crop from emergence to maturity as determined by the
crop's response to environmental conditions.

WOFOST has been applied in a number of agro-ecological characterisation studies. Recently,
the DLO Winand Staring Centre has investigated the physical crop production potentials for
rural areas in the European Communities. In that study, quantitative estimates were provided
of the yield potentials of grass and major arable crops when grown on land units suitable for
agricultural use (van Lanen et al., 1992; de Koning & van Diepen, 1992). Wolf & van Diepen
(1991) have used WOFOST to investigate effects of possible changes in climate conditions on
crop production and water use in the Rhine basin. Furthermore Wolf (1993) has investigated
the effects of climate change on wheat and maize production in the EC using the WOFOST
model.

3.2 Structure of the model

Within the model two production levels are distinguished: potential and water-limited. The
potential yield is determined by crop genetic properties, solar radiation, temperature regime
and sowing date, and indicates the production ceiling for crops growing under optimum soil
moisture conditions throughout. For this production level it is therefore assumed that
irrigation is applied if necessary to allow unrestricted plant growth. The water-limited yield
depends on natural water supply and includes effects of water-shortage. Soil physical data
and (in addition to radiation and temperature) weather data like rain, windspeed and
humidity of the air are required for the description of the effects of drought stress on plant
growth. For both potential and water-limited production, nutrient availability, pest, weed
and disease control and farm management are taken to be optimal.

The main model can be broadly divided into 2 submodels: the crop growth submodel and the
soil water submodel. These submodels are connected by means of a relation, describing the
effect of the soil water status on the transpiration and photosynthesis rate of the crop.

The simulations are carried out in time steps of one day. WOFOST is integrated in a Fortran
Simulation Environment (FSE) (van Kraalingen, 1991) and uses a Fortran utility library (TTUTIL)

with simulation supporting subroutines and functions (Rappo!dt & van Kraalingen, 1990).
. IT have.beer eloped-at CABO-DLO
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3.3 The crop growth submodel

Figure 1 illustrates the processes, as described in the crop growth submodel. The amount of
intercepted light is determined by the level of incoming solar radiation and the leaf area of
the crop. From the absorbed radiation and the photosynthetic characteristics of single leaves,
the daily rate of potential gross photosynthesis is calculated. Detailed descriptions of the
photosynthesis rate calculations in the model have been given in the literature. Spitters et al.
(1986) have discussed the separation of diffuse and direct fluxes of global radiation while the
calculation of assimilation rates from these fluxes is described by Spitters (1986). The
integration of assimilation rates over the canopy and over the day is performed with the
Gaussian integration method (Goudriaan, 1986).

leaf
radiation)|———>¢ light interception area

--
: potential gross
:_ photosynthesis
Ta/Tp
actual gross
photosynthesis
maintenance
respiration »
N
crop growth growth
(dry matter) \_ respiration
roots l<—— partitioning
< death (alive)
N\
stems storage leaves
organs
< death| (alive) (alive) (alive) | death
A /

ctual'and-potentialcrop transpiration-rates,

~“Figure 1. Crop growth processes. Ta-and Tp-are
respectively.
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Part of the daily production of assimilates is used to provide energy for the maintenance of
the existing live biomass (maintenance respiration). The remaining carbohydrates are
partitioned among the major plant organs: roots, leaves, stems and storage organs (van
Heemst, 1986) and converted into structural plant material such as cellulose, proteins, lignin
and lipids. In this conversion process some of the weight of carbohydrates is lost as growth
respiration, in dependence of the composition of the various organs (Penning de Vries et al.,
1989). The leaf area index of the crop is calculated by multiplying the life leaf weight by the
specific leaf area. During ageing of the crop, part of the life crop tissue dies due to
senescence. Leaf mass is subdivided into age classes, and if the temperature sum of a class
exceeds the crop-specific value during which leaves are functioning, they are assumed to die.
The crop growth curve and resulting yield are found by integrating the daily dry matter
increase, partitioned to the plant organs, over the total crop growth period (Figure 2.).

Total above ground
dry weight (t/ha)

20
10 [~
Leaves
1
0 '
April - ! ' May ' june ! July IAugust
Exponential | Linear growth : Decreasing
growth : ' growth

Figure 2.  Simulated course of dry weights of the various plant parts for summer wheat growing in
the Netherlands. (source: Wolf & Van Diepen, 1991).

Some simulated crop growth processes are influenced by temperature like the maximum rate
of photosynthesis, and the maintenance respiration. Other processes are steered by the
development stage: the partitioning of assimilates, the specific leaf area and the death rate
of crop tissue. Phenological development of a crop can be characterized by the order and
rate of appearance of vegetative and reproductive plant organs. In the model the
development rate is a function of ambient temperature, possibly modified by the effect of
daylength.

crop data file for barley is given in Appendix 5. After sowing of the crop, the time needed
until emergence has taken place is determined by a temperature sum (TSUMEM) of daily



14

average temperatures above a threshold temperature (TBASEM) and with a maximum daily
increase of the temperature sum of TEFFMX. In order to initiate crop growth, the dry weight
(TDWI) and leaf area index (LAIEM) of the crop at emergence must be estimated. Growth
after emergence depends on the photosynthesis rate, though the increase of leaf area during
juvenile growth may be limited by the maximum relative daily increase of the leaf area index
(LAI) in dependence of air temperature (RGRLAI). Phenological development is determined by
temperature sums: TSUM1 from emergence to anthesis (development stage 1), TSUM2 from
anthesis to maturity (development stage 2). The increases of temperature sum in dependence
of the average air temperature is given by function DTSMTB. For some crops, phenological
development is also influenced by daylength (IDSL), using an optimum (DLO) and critical
(DLC) daylength. The assimilation parameters describe the response curve of single leaves to
light: the maximum photosynthesis rate (AMAX) at light saturation and the light use
efficiency (EFF) under light limiting conditions. AMAX depends on development stage
(function AMAXTB) and average temperature (function TMPFTB). The gross photosynthesis of
the canopy can also be limited due to low minimum temperatures (function TMNFTB). Light
distribution within the canopy is influenced by the leaf angle distribution of the crop, in the
model accounted for by the extinction coefficient for diffuse visible light (KDIF). The
maintenance respiration rates (RML, RMO, RMR, RMS) and the growth respiration (CVL, CVO,
CVR, CVS) of each organ are determined by the composition of the crop tissue. Q10 indicates
the relation between the maintenance respiration rate and temperature. The partitioning
functions FRTB, FLTB, FSTB and FOTB distribute the daily dry matter growth between
different plant organs as function of the development stage. Also depending on
development stage is the specific leaf area (function SLATB) which serves to calculate leaf
area from leaf weight, while the life span (SPAN) of the leaves is used for the description of
leaf death due to ageing. Leaf death due to drought stress is separately determined by the
maximum relative death rate PERDL. Initial rooting depth (RDI), root growth rate (RRI),
maximum rooting depth (RDMCR), transpiration characteristics (CFET) and drought sensitivity
(DEPNR) of the crop are required to describe drought stress. RDRRTB and RDRSTB are the
relative death rate of roots and stems, respectively, both depending on development stage
The crop growth submodel model is structured in a way that the growth of different annual
crops can be simulated by adapting only the crop specific parameters.

3.5 Soil water status and crop growth

The potential rate of transpiration of the crop, i.e. the rate of water loss of a crop well
supplied with water, depends on the leaf area and the evaporative demand of the
atmosphere, characterized by level of radiation, vapour pressure deficit and wind speed. In
the model potential transpiration is calculated with the Penman formula (Penman, 1948;
Frére & Popov, 1979; Berkhout & van Keulen, 1986), for the present project adapted
according to Choisnel et al. (1992).

Under optimal soil moisture conditions, the crop is able to replenish all transpiration losses by
uptake of water by the root system. However, when the rooted soil is too dry, the
transpnratlon rate of the crop is reduced, which leads to a proportlonal reduction in

potentnal photosynthesus ynelds the actual photosynthesss

———Figure-3-shows the relation-between-the soil moisture-content-and-the-ratio-between-actual

and potential transpiration. Between a certain critical soil moisture content (SMcr) and field
capacity (SMfc) this ratio is 1, allowing potential transpiration. Below the critical soil moisture
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content actual transpiration is reduced due to drought stress. Under these conditions, actual
transpiration is linearly related with the soil moisture content. At wilting point (SMwp),
actual transpiration, and hence crop growth, come to a halt.

The value of the critical soil moisture content depends on the drought sensitivity of the crop
and the atmospheric demand (Driessen, 1986). The higher the atmospheric demand, the
higher the critical soil moisture content.

Ta/Tp

SMwp SMer SMfc

Figure 3.  Relation between soil moisture content and transpiration ratio. Ta and Tp are actual and
potential transpiration rates, respectively; SMwp, SMcr and SMfc are the soil moisture
contents at wilting point, critical point and field capacity respectively.

3.6 The soil water submodel and soil parameters

The soil is schematized as a system consisting of 2 compartments: the rooted zone and the
subsoil (Driessen, 1986). For the rooted zone the water balance equation is solved every daily
timestep. At the upper boundary, processes comprise the infiltration of water from
precipitation or infiltration, evaporation from the soil surface and uptake of water and
transpiration by the crop. If rainfall intensity exceeds the infiltration and surface storage
capacity of the soil, water runs off. Water can be stored in the rooted soil till field capacity is
reached. Additional water percolates beyond the lower boundary of the rooting zone.
Artificial drainage and, in case of groundwater influence, capillary rise can be simulated.

In order to simulate the soil water processes, a number of soil data are needed. For a freely
draining soil these are maximum rooting depth, total pore space, soil moisture content at
field capacity and wilting point, subsoil permeability which can be used to simulate a
stagnating layer, maximum infiltration rate and finally the surface water storage capacity
(Appendix 4a). If groundwater influence is simulated, a complete water retention curve and
unsaturated hydraulic conductivity curve are needed. Furthermore the depth of the
groundwater table must be known and, if drains are present, the depth and capacity of these

drains. However, in the present study all soils were considered to be freely draining.
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4 Calibration of the crop growth model

4.1 Introduction

In the project "Yield Forecasting Models Part II*, WOFOST only calculated yields of a non-
specific standard cereal. In the current project, crop parameters were defined that allow crop-
specific calculations for 10 agricultural crops.

In Section 3.4 was explained which crop specific parameters are needed in WOFOST. Starting
point in this project were the standard WOFOST crop parameter sets which have been given
for 22 crops in the WOFOST 4.1 documentation (van Diepen et al., 1988). The parameter
values in these sets are based on data collected from the literature by van Heemst (1988). For
a number of arable crops in the EC (wheat, maize, potato, sugar beet, oilseed rape), the
parameter sets have been further updated within a study by van Lanen et al. (1992). For this
update, data were used from the crop growth model SUCROS, (Spitters et al., 1989)
supplemented with results from field trials across Europe.

For the present project, extensive research was conducted to further adapt the crop
parameters to regional conditions for a wider range of crops. This has been described in
detail by Boons-Prins et al. (1993). A summary of the methodology followed will be given in
this chapter. Crop parameters concerning crop phenology will be treated separately because
of their special nature. Then an investigation in the possibilities of mathematical calibration
will be discussed and finally a short summary of the calibration as eventually performed will
be given.

4.2 Crop phenology

Initiated by the Joint Research Centre, an extensive inventory of agrometeorological aspects
of all main agricultural crops in the European Communities has been made by a number of
contractants (Bignon, 1990; Hough, 1990; Russell, 1990; Falisse, 1992; MacKerron, 1992;
Narciso et al., 1992). In these publications regional phenological calendars are given. These
have been used to determine sowing/planting dates for all crops and to estimate
development rates of the crop in dependence of ambient temperature (Boons-Prins et al.,
1993). For each crop, the regional long term average sowing/emergence, flowering and
maturity/harvest dates have been combined with the regional long term average
temperatures retrieved from the DBMETEO weather data base. This way the regional
development rates of each crop were calculated, expressed as the temperature sum needed
from sowing/emergence to flowering (TSUM1) and from flowering to maturity/harvest
(TSUM2), using crop specific base temperatures for development (Boons-Prins et al., 1993).
The regional temperature sums were grouped, this way representing different precocity
classes. To each NUTS-1 region, a precocity class was allocated, corresponding on average best
to the local croppmg calendar. These precocity classes, for each crop only differing in

m te, v _starting. point for further crop parameter calibration.
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4.3 Mathematical calibration

In Section 4.1 it was explained that the crop parameters needed in the model have been
derived from the literature. When comparing sources, it becomes clear that different values
are found for the same parameter, depending on the conditions of the experiment. In other
words, there is a range of biologically plausible values to choose a parameter from. This
introduces a source of uncertainty in explanatory agro-ecological models. Subsequent to
initial choice of parameter values the final values used in a model are often selected on the
basis of comparison between model output and one or more field datasets. Choosing the
best parameter values is problematic because there is no way of knowing how good the final
choice of parameters is relative to other possible choices. A solution to this problem would be
to use a mathematical algorithm for finding the best combinations of model parameters for a
given set of field data. There are a number of mathematical approaches to calibration of
simulation models.

The calibration program used in this project consists of two calibration algorithms. The first
one is developed by Price (1979). The second one is the Downhill-Simplex method from
Nelder & Mead (1965) as implemented in Numerical Recipes (Press et al., 1986). The Price
algorithm was adapted to the calibration of simulation models by Klepper (1989) and has
been used in a study by Klepper & Rouse (1991) to demonstrate its applicability to a potato
crop growth simulation model. The Downhill Simplex method is a faster alternative to the
Price-method which is a large consumer of computer time due to its thoroughness in
(random) search. The structure of the two algorithms and the FORTRAN software to use the
algorithms in combination with a crop growth simulation model, are described by Stol et al.
(1992).

For application of the calibration program it is necessary to identify those model parameters
that have a large range of uncertainty and to specify this range. The choice of a goodness of
fit criterium to judge the degree of correspondence between model output and experimental
data depends on the objectives of the researcher. These objectives dictate which state
variables will be considered in the study and what goodness of fit function will be chosen. As
an example, the objective may be to determine whether the model behaves similar to reality
with respect to biomass production. In this case the dry weights of stems, leaves and storage
organs might be chosen as state variables to be compared with experimental data.

The mathematical calibration procedure according to Stol et al. (1992) was in this project
applied for wheat (Boons-Prins et al., 1993). Eight detailed experimental data sets were
available, five from the Netherlands, two from the United Kingdom and one from Belgium.
The model parameters under consideration were RGRLAI, AMAXTB, SLATB, SPAN, and the
partitioning of assimilates between leaves and stems. Goodness of fit was calculated for the
combined state variables leaf area index, total biomass and grain weight. Eventually the best
fitting parameter choices differed only slightly from the original data set, reflecting that the
original set was already the result of a process of improvements through extensive
comparison with experimental data. Furthermore it turned out that the calibration
algorithms are more suited for application at the field level than at the regional level because
calibration on just a few state variables of some experiments does not necessarily resultin a

mathematlcal calibration procedure at the level of the European Communities is the
M—enepme&&ameunt—ef—expe—nme«ntal data-that is required-to perform such a calibration for

“enough locations within the EC. The type ‘of data needed are detailed sets of observations of
leaf area and dry matter weights of different crop components at various times during the
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growing season. Because the model describes potential and water-limited crop production as
explained in Section 3.2, experiments should be conducted under very well controlled
conditions. At the beginning of the project a questionnaire (see Appendix 6) has been sent to
a number of researchers within the EC, asking for such data. A number of experimental data
sets was obtained this way from the United Kingdom, Spain, italy, Denmark, Belgium, Greece,
France and the Netherlands (see also acknowledgements). Additionally the agricultural
research centre ERSA-SMR in Bologna Italy was visited to collect data. Though all data proved
to be useful, it turned out that within the time frame of this project not enough data would
become available for a thorough calibration approach. It was therefore decided to use the
limited amount of data that were available for a more conventional way of adjusting the
model, described in the next section.

4.4 Calibration with limited data

As explained in the previous section a mathematical calibration procedure was only executed
for wheat, mainly due to the limited amount of available experimental data for the other
crops. Field data were therefore used in combination with modeling experience to find
coherent crop parameter sets with regional validity for each crop. Crop precocity classes
(Section 4.2) were the starting point for further refinement of the parameters. Simulation
results were compared with regional field trial results in order to judge if adaptations were
needed. Due to uncertainty in crop parameters for local varieties, it was tried to achieve
satisfying agreement between simulation results and data by changing as few parameters as
possible. This process of simulation and comparison has been extensively described by Boons-
Prins et al. (1993). In that publication all experimental data are mentioned that have been
used, together with the different crop precocity classes and crop parameter files. These
aspects will therefore not be further treated here.
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5 Yield prediction and statistical
validation of predictions

5.1 | Introduction

The goal of the present study, is to use crop growth simulation results as a basis to provide an
algorithm allowing quantitative regional yield forecasting. The procedure followed for the
development and validation of such an algorithm has taken advantage of the experience of
earlier studies by Palm & Dagnelie (1993) made at the request of the Statistical Office of the
European Communities to develop methods for yield prediction on the basis of official yield
statistics and meteorological data. In statistical annual yield series, very often a time trend of
rising yields can be found. This technological trend is the result of improved farming practices
like the introduction of new varieties, higher application rates of fertilizers and more
intensive control of weeds, pests and diseases. Within their prediction model, Palm &
Dagnelie (1993) have separated the technological time trend from the effect of
meteorological conditions:

Oy=f1(t) +g(m) + e

in which Oy is the official regional yield, f1(t) is the component representing the time trend,
g(m) the component representing meteorological conditions of separate years and e the
random component.

Palm & Dagnelie (1993) have investigated several ways to describe the time trend. After
analysing the results they decided that a simple linear model is sufficient in most cases. A
quadratic term gives hardly better results for time series from 20 to 30 years. According to
Swanson & Nyankori (1979) linear time-trends for corn and soybean yields in the United
States could not be significantly improved by various non-linear trends.

Assuming a linear trend, the regression model used by Palm & Dagnelie (1993) was:

I=n
Oy=a+b+«t+ Y(ciW)+e
i=1

in which Oy is the official regional yield, t is the year, W; is the ith weather variable of a total
of n variables,

a, b and c are regression parameters and e is the random component. For a case study on
maize yields in a number of French regions, weather variables used by Palm & Dagnelie
(1993) were decadal values of evapotranspiration, precipitation, global radiation, and
maximum, minimum and average temperature. Considering 24 decades from March until
October, this amounts to a total of 144 variables that are potentially explicative (n=144).
From these variables, secondary variables have been derived (mainly by accumulation of basic

and August. From the basic and secondary weather variables a subset to be used for

prediction was selected by significance testing followed by stepwise regression=This———

procedure has been followed to predict maize yields in France. After evaluation of the results



22

it was concluded that most of the yield variation is described by the trend and that the use of
weather variables doesn't improve yield prediction, in fact it worsens yield prediction.

In the present project, yield forecasting with crop growth model output is explored. Within
the CGMS, calculations with WOFOST are executed per single land unit and subsequently
aggregated to obtain yields at regional (NUTS-1) and national (NUTS-0) level (see Chapter 2).
After running the model for a series of historical years, the simulated regional yields and the
official regional yields figures are used to construct yield prediction rules.

Using simulation techniques in yield forecasting has for example also been demonstrated by
Horie et al. (1992) for rice. In a simulation approach, model output represents the integrated
effect of weather conditions throughout a growing season on crop growth. It is expected
that model output has more agronomic significance than individual weather variables.

The simulated yields can not directly be considered as the final yield forecasts, because
official yields are in many regions considerably lower than the potential or water-limited
yields due to sub-optimal cultivation practices. Furthermore, a trend of rising yields can be
observed in official yields, as explained before. However, it was assumed that at farmers fields
light, temperature and rainfall are still decisive factors in seasonal yield fluctuations and for
this reason there should be a relation between simulated and official yields. With the
simulation model it is tried to predict the deviation from the time trend due to weather
conditions.

The development of the prediction rules using crop model indicators, and the accuracy of the
predictions will be treated in this chapter. In this report, yield prediction for the current
season is only performed on the basis of simulated final model outputs at the end of the
season. The ultimate goal of the CGMS system is to enable the Agriculture Project to perform
every 10 days and on a routine basis crop yield predictions during the course of the growing
season, which are likely to become more and more reliable as the growing season progresses.
The results of these predictions will be analyzed in the first operational year of the CGMS. A
difference with the current approach, is that for preliminary 10-day predictions the model
output choice is more limited, for example grain weight can not be used as model output
when grains have not yet been formed (see Section 5.2.1). However, the same prediction
methodology is being used as described in the next Chapter.

The Fortran software to execute the statistical analysis was designed and written by Jansen
and Withagen. An explanation of the software and a listing of the source code are given in
Appendix 7.

5.2 Prediction rules

5.2.1 Model indicators

Official statistics of regional mean yields in tonnes ha™1 fresh weight, are predicted using the
following model indicators (all dry matter weights):

PG . Mﬁfl :}A-}'on-l-;al arainvield.-(tonnes h:\"1\
- I ¥ \ 7
WG : simulated water-limited grain yield (tonnesha™") e
PB : simulated potential-total biomass (tonnes ha™1)

Wb : simulated water-limited total biomass (tonnesha 1y~ —
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These model indicators have been obtained by simulation based on representative small scale
soil and weather data at grid basis, followed by aggregation to regional level (see Chapter 2).
For some crops, grain yield must be interpreted as storage organ yield, for example tuber
yield for potatoes and yield of the main root for sugar beets.

The simulated yields represent production maxima, which can be reached under optimum
conditions of nutrient supply, weed, pest and disease control, and farm management. The
potential yield does not account for effects of water shortage and therefore appliesto a
situation with optimum irrigation. The water-limited yield represents maximum yields under
rain-fed conditions.

Originally, it was intended to predict yields by solely using the water-limited grain yield (WG)
as model indicator. Later on, the other three elementary predictors were added. Water
limited yield, for instance, is inappropriate for a region with a lot of irrigation. For many
regions it is not clear how large the area under irrigation is and where irrigation is applied
within the region. Furthermore water-stress can be strongly reduced in case of groundwater
influence, a factor which was not taken into account in the model. The total biomass model
indicators were added because these are more robust, being less sensitive to modelling errors
in the distribution of assimilates. Furthermore, biomass indicators allow 10-day yield
predictions during the growing season, when grain filling has not yet started or grains are
still very small. In this report, however, only final yields are considered (see Section 5.1).

5.2.2 Elementary predictors

Predictors of mean regional yield are formulated, which are based on official statistical yields
of past seasons, model indicators of the same past seasons and model indicators of the season
to predict. The predictor is chosen from the following elementary regional predictors,
obtained by linear regression of the official regional yield (Oy;) on the year (t;) and on model
indicators:

0-predictor: O_y +b o« (t; - T)

PG-predictor: _(_)7 +b (- T) +C * (PG; - ?5)

WG-predictor: Oy +b  (tj- t) +C * (WGj- WG)

PB-predictor: -67 +b o« (t- -t—) + C » (PB; - _PE)

WB-predictor: —6; +b o« (tj- ?) +c+ (WBj- WB)

Coefficient —(W represents the average official statistical yield (tonnes ha™1) over the years on
which the regression is based. The technological time trend is accounted for by the term

b « (tj- t) in which coefficient b is the yearly increase of the official yield (tonnes ha1). The
0-predictor, only describing the trend, is already able to account for regional production level

differences. The other predictors use model indicators PG, WG, PB or WB (see previous
section) in order to account for seasonal effects due to weather and weather-soil interactions.

—Addition-of-a-quadraticterm (t; -t )% to.the-time trend-has.been considered. Based on the
results of Palm & Dagnelie (1993) (see Section 5.1) and additional testing on the REGIO

e ———database-of Eurostat, it was concluded-that-a-linear trend-is sufficient to-describe-increasing——

official yields. A smooth trend of any type over a large number of years assumes a continuity
which might be unrealistic. For that reason it has been decided to base the predictor only on
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data from the recent past, namely the 9 most recent years. Gradual shifts in the time trend
are allowed for by the shortness of the time series of 9 years, used to derive the predictor.
Suboptimal production circumstances are accounted for by the coefficient ¢, which should lie
between 0 and 1.

5.2.3 Full prediction rules

Unfortunately there are no conclusive a priori arguments for selecting one particular
elementary predictor for a particular region. Data to support such a choice are not available.
Simultaneous regression of official statistics on technological trend and all four model
indicators is unattractive: it is well known that, with limited data, predictions tend to get
worse with increasing number of explanatory terms. The dilemma was partially resolved by
selecting for each region separately as predictor the elementary predictor which appears to
predict most accurately, from the elementary predictors mentioned above.

The full prediction rule for a region consists of a data-based selection of an elementary
predictor. Each elementary predictor is fitted to the data currently available. Predictors with a
negative estimate of c are rejected because this would make the use of the simulation model
unrealistic. A negative value of c would mean that a better than average simulated yield
would correspond with a worse than average official yield and the other way around.

In this report, two prediction rules (PQ and P5) are investigated and compared:

- PO uses 0-predictor
- P5 chooses from: 0-predictor, PG-predictor, WG-predictor, PB-predictor and WB-predictor

PO is just a regression on the technological trend for each region. P5 compares for each
region separately which of the 5 predictors mentioned in Section 5.2.2 predicts the data of
that region most accurately. The criterion of best prediction is described in the next section.

5.3 Characterization of prediction errors

In section 5.2.2, 5 yield predictors were introduced. For comparison of predictors, a measure
for the accuracy of a prediction model must be formulated. The size of the prediction errors,
is expressed by the Relative Root Mean Squared error (RRMS(e)) as percentage of the mean
official yield:

RRMS(eq ... ey) =

predlctaon has for example been descrlbed by Allen‘(1 971) and Wallach & Goffmet (1989):

A RAS AT

Two lnnr~lc of nrndnrhnn_ are-stu :dlod

= onevearahead and two-years ahead prediction
- leave-one-out (jackknife) prediction
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These will be illustrated on the basis of 15 hypothetical historical years with official yields and
simulated yields.

Jackknife error estimate of a predictor

The Jackknife method (also called the leave-one-out method or Allen's PRESS method) can be
applied to any prediction rule (Allen, 1971). The yield observations of all years, except one,
are used to construct a predictor which is applied to the year kept out of sight, in order to
evaluate the prediction error. This is done for each year in turn. Subsequently, one calculates
for instance the root mean squared prediction error. For a series of 15 years this is
schematized in Table 5.1

Table 5.1. Calculation of the jackknife prediction error.

Years used to derive predictor (14 years out of 15) Year for which yield is
predicted and prediction error
assessed

23456789 10 11 12 13 14 15 1

1 3456789 10 11 12 13 14 15 2

123456789 1011 12 13 14 15

Jackknife errors are calculated by keeping data out of sight one after another during the

construction of the predictor. In this example data of 15 seasons are available.

Jackknife root mean squared prediction error: '\/((e12 + .t e152)/1 5

In case the prediction rule consists solely of linear regression, jackknife errors can be very
easily calculated (Montgomery & Peck, 1982). The jackknife error has also been used by Palm
& Dagnelie (1993).

One-year-ahead and two-years-ahead error estimate of a prediction

In the present study the aim is to predict the future rather than to reconstruct the past. For
direct application it is therefore important to investigate prediction accuracy for the current
year. At the end of the growing season, weather data are available for simulation of crop
yields, but official statistics are not yet available because of delayed data processing. When
official statistics are not delayed more than one year, a one-year-ahead prediction (OYA) is
performed. Because occasionally statistics are delayed for two years, two-years-ahead
prediction (TYA) has also been studied .

For calculation of the OYA prediction errors, in a series of years the last year should be left
out and be predicted on the basis of the previous years. In this study, a series of 9 years is
used to predict the yield for the following year. For a series of 15 years, on the basis of the
first 9 years the yield of the 10th year is predicted and the prediction error assessed. Then the

yield-of-the-11th-year-is-predicted-on-the-basis.of the second.to the 10th year etcetera
Subsequently, the root mean squared prediction error can be calculated. For the TYA

——prediction-ar

-analogous-procedure-is-followed:on-the-basis-of the first 9.years theyieldof

the 11th year is predicted etcetera. For a series of 15 years the calculation of the OYA
prediction error is schematized in Table 5.2.



*”*T he Jackkme ethod used-to-assess-the quality of-prediction-rule P5 works-as-follows-Each
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Table 5.2. Calculation of one-year-ahead prediction error.

Years used to derive predictor (series of 9 years out of Year for which yield is
15) predicted and prediction error
assessed
1234567829 10
23456789 10 11
6 7 89 10 11 12 13 14 15

One-year-ahead (OYA) prediction errors are calculated on the basis of nine preceding

years. In this example data of 15 seasons are available.

OYA root mean squared prediction error: \/ ((em2 + ...+ e152)/6)

5.4 Selection of elementary predictor

From the 5 elementary predictors, prediction rule P5 selects the one that predicts most
accurately as far as can be seen from the years that are used for the construction of the P5
prediction. The jackknife prediction error measure of the elementary predictors was taken as
a suitable selection criterion. In the present system the nine most recent years are used as a
basis for OYA and TYA prediction, so the corresponding jackknife is obtained by comparing
over these 9 years the realization in year 1 with the prediction based on year 2-9, etcetera.
The elementary predictor with the lowest jackknife error over these 9 years is selected in the
P5 prediction rule.

5.5 Assessment of the performance of PO and P5

The accuracy of the rules PO and P5 was investigated in two ways. First of all, we investigated
how P0 and P5 perform in the OYA and TYA predictions, where the 9 most recent years are
available to construct the predictor. If n years are available in the database we have n-9,
respectively n-10, occasions to compare prediction with a realization lying one respectively
two years ahead.

Additionally, the jackknife prediction error of rule P5 was calculated, based on all data
present for the region. This provides about twice as many, namely n, occasions to compare
prediction and realization. Therefore it is expected that this latter measure of prediction error
has better accuracy. Although the jackknife error measure of P5 is not directly relevant for
one and two years ahead prediction, its greater accuracy makes it useful, particularly since
the jackknife error measure is fully relevant for the investigation of the effect of the use of
model indicators on prediction precision. In fact the only advantage of the one and two years
ahead method is that the uncertainty about the time trend, which has its strongest effect at

Lime _interval, is duly taken into account.

of the n years is predicted on basis of the remaining n-1 years: P5 is derived from these n-1

years, and-used-to predict the year leftout-Thejackknife-errormeasure-of P5should-notbe———
confused with jackknife error measures of the particular elementary predictors from which P5
chooses one. By the definition of P5, the jackknife error of the elementary predictor selected
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by P5 is never worse than that of PO on the same n-1 years, but when it comes to assessment
of the quality of PO and P5, the predictions and realizations in the remaining year are
compared, and there is no a priori reason why P5 should do better in that point. On the one
hand, P5 has the advantage that weather effects are accounted for, by which the systematic
error in the prediction will become smaller. But on the other hand, P5 has the disadvantage
that the selection of the elementary predictor and the coefficient of the model indicator are
based entirely on the small number of data available for the determination of the predictor.
Thus P5 is influenced more by measurement errors. It is not clear in advance which of these
two effects will be the strongest. In fact, it will appear later on that PO predicts about just as

well as P5.
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6 Results

6.1 Introduction

In this chapter results will be given of the statistical analysis. In the CGMS that will be
installed at JRC, software is applied in such a way that actual yield predictions for a current
year are given. This deals with the accuracy of yield predictions at different aggregation
levels and for different crops. This way it can be evaluated if the use of crop growth
simulation contributes to improved yield predictions.

In Section 6.2 the type of output of the current statistical analysis will be explained on the
basis of an example. In the next section summarized output will discussed, focussing on a
comparison of prediction errors when using predictors with or without crop growth model
indicators. Wheat will be treated as an example crop. Other crops are discussed more briefly.

6.2 Type of output

A detailed output of the statistical software is shown in Appendix 8. In this example the
output for NUTS-1 region R22, the Bassin Parisien, is given. The results are based on 15 years
of available official yields and simulation yields. In Appendix 8a, results are given for
prediction rule PO, in other words prediction excluding model indicators and solely based on
the time trend. Over the total period of 15 years, the average official yield is 5.644 tonnes
ha ! and the yearly increase of the yield is 0.186 tonnes ha™! in this region. The t-value of
6.16, based on all years, indicates that the time trend is clearly significant. The critical value of
t (5%, one-sided) is about 1.8 (for 15 years). Furthermore, the unadjusted and adjusted R2 of
the regression are given. More important, however, are the estimates of the root mean
squared prediction errors which are all expressed as percentage of the 15-year mean. The
jackknife error is based on all 15 years and is estimated at 9.5%. The OYA and TYA errors are
based on 6 and 5 predictions, respectively, using 9 preceding seasons for each prediction as
explained in Section 5.3. The OYA and TYA errors amount to 12.0% and 14.3%, respectively.
The mean official yield and yield increase of the 9 most recent years available (up to 1990) is
given, allowing to formulate a predictor based on the last 9 years, which is in this case:
6.190 + 0.151 « (year - 1985)

Thus, for the year 1991 (i.e. OYA) and 1992 (i.e. TYA), the predicted yields for this region
using this predictor are 7.096 tonnes ha-1 and 7.247 tonnes ha™1, respectively.

in Appendix 8b, results are for the same region given for prediction rule P5, choosing the
best of 5 possible predictors. The mean official yield of the series “of years is the same of
course. However, based on all years, the predictor using model indicator 1 (potential grain
yield) has been selected. The jackknife error of 9.2% listed in the output, is the jackknife of
P5 (see Section 5.5). This error measure will be used to compare the accuracy of the
predlctnons of P0 and P5 The t-value of 3. 1 (based on all years) indicates that the effect of

been calculated for the full predlctuon rule and amount to 12.0% and 14.3%, respectlvely,

qwenmereentage«eﬁtheJﬁSyeﬂaHnean~Aecord4ng¢o¢herwtput the_predJLtOLbased on__

4.528 + 0.125 « (year - 1985) + 0.480 « (ind[1] - 5.187)
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Like for the prediction based on all 15 years, indicator 1 (potential grain yield) has been
selected in the predictor based on the 9 most recent years available. Suppose that the
simulated potential grain yield is 9 tonnes ha™! in 1991 and 8 tonnes ha"1 in 1992, then the
predicted yield for this region for 1991 (OYA) and 1992 (TYA) would be 7.108 tonnes ha-1
and 6.753 tonnes ha™1, respectively.

6.3 Crop specific results

In this section some selected results will be given for specific crops. For three crops, yields
were simulated but no official statistics were available: oats, field bean and soybean. For
these crops no predictions could be made. For the other crops, results are available at NUTS-1
and NUTS-0 level, but with varying completeness, depending on availability of simulation
results (weather years) or official yields. Results for Germany only apply to former West
Germany.

The type of results presented in Section 6.2 are summarized for the PO and P5 prediction
rules. These are listed in Appendix 9 and Appendix 10 for NUTS-1 and NUTS-0 level,
respectively. For each region or country the number of available years and the mean official
yield over this period is indicated. For the P5 predictor the model indicator of the selected
predictor based on all years (having the smallest jackknife error) is listed. Indicator 1, 2, 3 and
4 represent the PG-predictor, WG-predictor, PB-predictor and WB-predictor, respectively (see
Section 5.2.2). When no indicator is listed, the 0-predictor (only time trend) is selected. When
a model indicator is listed, also the coefficient and the t-value of the model indicator term
based on all years is given. Then follow the R2 based on all years, and the relative residual
error of the regression based on the last nine seasons. The last three columns in Appendix 9
and 10 give the jackknife, OYA and TYA root mean squared errors as percentage of the mean
over all years. An asterisk indicates that not enough years are available to allow the
calculation of a prediction error. For OYA, at least 10 years are needed, and for TYA 11 years.
The minimum amount of years needed for calculation of the jackknife error was set at 8.
When less than 8 years are available for a region or a country, no analysis is made and it is
left out of Appendix 9 and 10. No results can also indicate that the crop is not growing at all
in that region or country.

6.3.1 Wheat

In Table 6.1, an indication is given of the NUTS-1 wheat yield prediction errors with the PO
prediction rule, in other words, prediction on the basis of only the time trend. A regional
frequency distribution is given of the jackknife and one-year-ahead root mean squared
prediction errors. The jackknife error varies for the majority of regions between 5 and 15 %.
The one-year-ahead errors are based on less predictions and are therefore more variable.

In Appendix 9 it can be seen that in case of the P5 prediction rule, for 26 NUTS-1 regions a
predictor using a model indicator is selected. All four indicators occur, in 6 regions potential
graln yleld is selected in 5 reglons water-limited grain yleld in8 reg|ons potential biomass

cnosen ucmn no

model-indicator at all. The ﬁ/alues in Kppend:x 9indicate it the relation between: model

—indicator and-officialy we'd is cmmflranf For a series of 15 years, the critical value of t (5%

~ one-sided) is about 1.8. In most of the cases the modelindicator has a significant effect. Most




important, however, are the prediction errors. A frequency distribution of the prediction

errors of the full P5 prediction rule is given in Table 6.2.

Table 6.1. Wheat yield prediction for NUTS-1 regions. Frequency distribution of jackknife and one-
year-ahead (OYA) root mean squared prediction errors for the PO prediction rule.

Jackknife errors of PO prediction rule OYA errors of PO prediction rule
prediction error number of NUTS-1 prediction error number of NUTS-1

range (%) regions range (%) regions

0 - 5 0 0 - 5 1

5 - 10 23 5 - 10 12

10 - 15 25 10 - 15 18

15 - 20 2 15 - 20 16

20 - 25 4 20 - 25 3

> 25 3 > 25 7

Table 6.2 Wheat yield prediction for NUTS-1 regions. Frequency distribution of jackknife and one-
year-ahead (OYA) root mean squared prediction errors for the P5 prediction rule.

Jackknife errors of P5 prediction rule OYA errors of P5 prediction rule
prediction error number of NUTS-1 prediction error number of NUTS-1

range (%) regions range (%) regions

0 - 5 0 0o - 5 0

5 - 10 20 5 - 10 8

10 - 15 26 10 - 15 21

15 - 20 4 15 - 20 16

20 - 25 4 20 - 25 6

> 25 3 > 25 5

In order to compare the performance of PO and P5, the differences between the RRMS errors
were calculated for each region. A frequency distribution of these differences is shown in
Table 6.3. A negative value in Table 6.3 means that the prediction error of the P5 prediction
rule is larger than that of the PO prediction rule. For 35 NUTS-1 regions, the difference
between jackknife error varies from minus one to one percent, which can be interpreted as
PO and P5 being equal. In 16 regions P5 predictions are worse than PQ predictions, and in 6
regions P5 predictions are better. The one-year-ahead errors show the same pattern. This
indicates that the use of model indicators does not improve accuracy of NUTS-1 wheat yield
predictions in comparison with a trend analysis.

After aggregation to NUTS-0 (country) level, the same analysis can be made. These results are
shown in Appendix 10. In 7 countries a model indicator is selected in the P5 prediction. Each
of the 4 indicators occurs. In almost all cases the t-value indicates a significant effect of the
model indicator.

The differences between the POand"

~ 6.4. Again a negative value of prediction error means that the prediction error of the P5

prediction rule islargerthan that of the PO prediction rule. For most countries P5-predictions———

are worse than the PO predictions, though the differences are small. Only in Greece, the P5
predictor seems to be notably successful.
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Table 6.3. Wheat yield prediction for NUTS-1 regions. Frequency distribution of the differences in
prediction errors between the PO and P5 prediction rule. Differences given for both
jackknife and one-year-ahead (OYA) root mean squared prediction error.

jackknife difference between PO and P5 OYA difference between PO and P5
prediction error number of NUTS-1 prediction error number of NUTS-1
range (%) regions range (%) regions
< -10 0 < -10 2
10 - -5 2 10 - -5 1
5 - 41 14 S5 - -1 15
-1 -1 35 1 -1 31
1 - 5 6 1 - 5 5
5 - 10 0 5 - 10 3
> 10 0 > 10 0

Table 6.4. Wheat yield prediction for countries. Differences in prediction errors between the PO and
P5 prediction rule. Differences given for both jackknife and one-year-ahead (OYA) root
mean squared prediction error.

jackknife difference between PO and P5 OYA difference between PO and P5
country difference (%) country difference (%)
Germany -0.2 Germany -0.5
France +1.1 France -0.2
Italy -0.9 Italy -0.7
Netherlands -0.6 Netherlands -0.1
Belgium 0 Belgium -1.0
Luxembourg -0.4 Luxembourg -1.1
United Kingdom -1.3 United Kingdom -1.2
Ireland -1.3 ireland -1.7
Denmark +0.8 Denmark +0.3
Greece +3.8 Greece +4.5
Spain -2.4 Spain -6.8

6.3.2 Other crops

Results for wheat have been treated in detail in the previous section. In this section a
summarized analysis of the results for the other crops is given, focussing on a comparison
between the PO and P5 prediction rule. Basic data are given in Appendix 9 and 10 as
explained in Section 6.3. At the NUTS-1 level the differences in jackknife and one-year-ahead
prediction errors of the PO and P5 prediction errors are given in Tables 6.5 to 6.11 for the
crops grain maize, spring barley, rice, sugar beet, potato, oilseed rape and sunflower.
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Grain maize yield prediction for NUTS-1 regions. Frequency distribution of the differences
in prediction errors between the P0 and P5 prediction rule. Differences given for both
jackknife and one-year-ahead (OYA) root mean squared prediction error.

jackknife difference between PO and P5 OYA difference between PO and P5
prediction error number of NUTS-1 prediction error number of NUTS-1
range (%) regions range (%) regions
< -10 0 < -10 1
-10 - -5 0 -10 - 5 1
S5 - 1 12 S5 0- A1 13
-1 - 1 16 -1o- 1 12
1 - 5 9 1 - 5 8
5 - 10 0 5 - 10 2
> 10 0 > 10 0
Table 6.6. Spring barley yield prediction for NUTS-1 regions. Frequency distribution of the

differences in prediction errors between the PO and P5 prediction rule. Differences given
for both jackknife and one-year-ahead (OYA) root mean squared prediction error.

jackknife difference between PO and P5 OYA difference between PO and P5
prediction error number of NUTS-1 prediction error number of NUTS-1
range (%) regions range (%) regions
< -10 0 < -10 0
-10 - -5 1 -10 - 5 0
S5 - A 9 S5 -0 16
-1 - 1 34 -1 - 1 32
1 - 5 8 1 - 5 5
5 - 10 5 5 - 10 2
> 10 0 > 10 2
Table 6.7. Rice yield prediction for NUTS-1 regions. Frequency distribution of the differences in

prediction errors between the PO and P5 prediction rule. Differences given for both

jackknife and one-year-ahead (OYA) root mean squared prediction error.

jackknife difference between PO and P5 OYA difference between PO and P5
prediction error number of NUTS-1 prediction error number of NUTS-1
range (%) regions range (%) regions
< -10 0 < -10 0
-10 - -5 0 -10 - -5 0
S5 - A 5 5 o- -1 1
-1 - 1 7 -1 - 1 9
1 - 5 1 1 - 5 2
5 -_10 0 5 - 10 ]
> 10 0 > 10 0
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Table 6.8.

Sugar beet yield prediction for NUTS-1 regions. Frequency distribution of the differences
in prediction errors between the PO and P5 prediction rule. Differences given for both
jackknife and one-year-ahead (OYA) root mean squared prediction error.

jackknife difference between PO and P5 OYA difference between PO and P5
prediction error number of NUTS-1 prediction error number of NUTS-1
range (%) regions range (%) regions
< -10 0 < -10 0
-10 - -5 0 -10 - -5 3
S5 - -1 7 S5 - - 6
-1 -1 23 -1-01 21
1 - 5 5 1 - 5 1
5 - 10 1 5 - 10 1
> 10 0 > 10 1
Table 6.9. Potato yield prediction for NUTS-1 regions. Frequency distribution of the differences in

prediction errors between the PO and P5 prediction rule. Differences given for both

jackknife and one-year-ahead (OYA) root mean squared prediction error.

jackknife difference between PO and P5 OYA difference between PO and P5
prediction error number of NUTS-1 prediction error number of NUTS-1
range (%) regions range (%) regions
< -10 0 < -10 1
-10 - -5 1 -10 - -5 0
5 - A 8 5 - A 6
-1 -1 20 -1- 1 26
1 - 5 14 - 5 5
5 - 10 3 5 - 10 6
> 10 0 > 10 1

Table 6.10. Oilseed rape yield prediction for NUTS-1 regions. Frequency distribution of the differences
in prediction errors between the PO and P5 prediction rule. Differences given for both

jackknife and one-year-ahead (OYA) root mean squared prediction error.

jackknife difference between PO and P5 OYA difference between PO and P5
prediction error number of NUTS-1 prediction error number of NUTS-1
range (%) regions range (%) regions
< -10 0 < -10 0
-10 - -5 0 -10 - -5 1
5 - -1 7 S5 - A 0
11 18 o 22
1 - 5 1 1 - 5 1
5 10 5 10 0
> 10 > 10 0
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Table 6.11. Sunflower yield prediction for NUTS-1 regions. Frequency distribution of the differences
in prediction errors between the PO and P5 prediction rule. Differences given for both
jackknife and one-year-ahead (OYA) root mean squared prediction error.

jackknife difference between PO and P5 OYA difference between PO and P5
prediction error number of NUTS-1 prediction error number of NUTS-1
range (%) regions range (%) regions
< -10 1 < -10 3
-10 - -5 1 -10 - -5 0
S5 - -1 8 S5 - A1 0
-1o- 1 5 -1 - 6
1 - 5 1 1t - 5 3
5 - 10 3 5 - 10 0
> 10 0 > 10 3

It can be seen in Tables 6.5 to 6.11 that for most crops in most regions the difference
between the PO and PS5 prediction errors varies from minus one to one percent, indicating
that the two prediction rules are about equal in accuracy. For some crops (potato, sunflower)
the P5 prediction rule seems to relatively perform slightly better than for other crops (oilseed
rape), but over the whole it may be concluded that the P5 predictions are equal to the PO
predictions. As for wheat, this indicates that over the whole of the EC the use of crop growth
model indicators does on average not improve the accuracy of NUTS-1 yield prediction in
comparison with just a simple trend analysis.

In Tables 6.12 to 6.18 the difference between the PO and P5 prediction errors is given at
country level for each crop separately. In some cases, jackknife errors are available but one-
year-ahead errors are missing because the series of years is to short (see Section 6.3). Again,
one-year-ahead errors are more variable because these are based on less predictions.

Table 6.12. Maize yield prediction for countries. Differences in prediction errors between the PO and
P5 prediction rule. Differences given for both jackknife and one-year-ahead (OYA) root
mean squared prediction error.

jackknife difference between PO and P5 OYA difference between PO and P5
country difference (%) country difference (%)
Germany +1.8 Germany +3.3

France +1.5 France +3.2

Italy +0.1 Italy -1.4
Netherlands +4.3 Netherlands -10.9
Belgium -3.4 Belgium -3.3

Greece -1.2 Greece -6.3

Spain -1.0 Spain -1.7
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Table 6.13. Spring barley yield prediction for countries. Differences in prediction errors between the
PO and P5 prediction rule. Differences given for both jackknife and one-year-ahead (OYA)
root mean squared prediction error.

jackknife difference between PO and P5 OYA difference between PO and PS5
country difference (%) country difference (%)
Germany -0.2 Germany +0.1
France +1.8 France +1.3
italy -2.2 Italy -4.7
Netherlands +1.0 Netherlands -0.6
Belgium -1.0 Belgium -1.7
Luxembourg +4.4 Luxembourg +0.6
United Kingdom -0.8 United Kingdom -1.0
Ireland +0.1 Ireland -3.1
Denmark -0.4 Denmark 0
Greece -4.4 Greece -17.5
Spain +8.8 Spain +9.9

Table 6.14. Rice yield prediction for countries. Differences in prediction errors between the PO and P5
prediction rule. Differences given for both jackknife and one-year-ahead (OYA) root mean

squared prediction error.

jackknife difference between PO and P5 OYA difference between PO and P5
country difference (%) country difference (%)
France +1.8 France +2.0

Italy 0 Italy -0.1

Greece +0.6 Greece *

Spain -1.7 Spain 0

Table 6.15. Sugar beet yield prediction for countries. Differences in prediction errors between the PO
and P5 prediction rule. Differences given for both jackknife and one-year-ahead (OYA)

root mean squared prediction error.

jackknife difference between PO and P5 OYA difference between PO and P5
country difference (%) country difference (%)
Germany 0.0 Germany 0
France +1.6 France -2.4
Italy +3.1 ltaly -4.9
Netherlands -0.7 Netherlands *
Belgium -0.3 Belgium -1.7
Luxembourg 0 Luxembourg 0
United Kingdom 0 United Kingdom 0
Ireland +0.1 _lreland -5.5
Denmark +1.3 Denmark -1.7

| Greece——— 402 Greece. %
Spain -0.8 Spain 0
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Table 6.16. Potato yield prediction for countries. Differences in prediction errors between the PO and
P5 prediction rule. Differences given for both jackknife and one-year-ahead (OYA) root
mean squared prediction error.

jackknife difference between P0 and P5 OYA difference between P0 and P5
country difference (%) country difference (%)
Germany +1.1 Germany -1.4
France +1.5 _ France +9.2
Italy +0.3 Italy 0
Netherlands +2.7 Netherlands +0.9
Belgium +5.3 Belgium +8.1
Luxembourg +10.0 Luxembourg -10.3
United Kingdom +2.0 United Kingdom +3.6
Ireland +1.5 Ireland +3.6
Denmark -1.9 Denmark +2.3
Greece +1.8 Greece *
Spain 0 Spain 0

Table 6.17. Oilseed rape yield prediction for countries. Differences in prediction errors between the
PO and P5 prediction rule. Differences given for both jackknife and one-year-ahead (OYA)
root mean squared prediction error.

jackknife difference between PO and P5 OYA difference between PO and P5

country difference (%) country difference (%)
Germany 0 Germany 0
France 0 France 0
Italy -0.1 Italy 0 |
Netherlands 0 Netherlands 0 |
Belgium 0 Belgium 0

United Kingdom 0 United Kingdom 0

Table 6.18. Sunflower yield prediction for countries. Differences in prediction errors between the PO
and P5 prediction rule. Differences given for both jackknife and one-year-ahead (OYA)
root mean squared prediction error.

jackknife difference between PO and P5 OYA difference between PO and P5
country difference (%) country difference (%)
France +0.7 France -17.0

Italy +2.4 Italy -5.2

Spain -4.0 Spain 0

When looking at the jackknife errors at country level, the P5 prediction rule does not

convincingly-perform better than the P0.prediction rule. Potato is a crop_forwhich P5 seems

to be better than PO but over the whole range of crops and countries one may conclude that

the-use-of crop-model-indicators-does-not-really-contribute-to-significant improvementof-—

yield prediction at country level. The same conclusion can be drawn from the one-year-ahead
prediction errors.
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Furthermore, there seems to be no geographical pattern. Over the range of crops, there is no
clear distinction between countries in the possibilities for accurate prediction of their yields.
It should be realized that yields to be predicted are the official yields according to statistics
and these are not to be considered “real” yields. Official yields are estimates of which the
accuracy is unknown. This problem will be further elaborated in the next chapter.
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7 Discussion

7.1 Introduction

The potential value for yield prediction with the agro-meteorological simulation model
WOFOST according to the methodology presented in this report, is the speed and consistency
of the approach across all countries and crops.

However, from the results presented in Chapter 6, it could be concluded that over the whole
of the EC the accuracy of predicting official NUTS-1 and NUTS-0 yields can not yet be
improved by using crop growth model output. In this report only yield prediction based on
final model outputs at the end of the growing season is considered. The Crop growth
Monitoring System is also capable of generating 10 day predictions during the growing
season, on the basis of simulated biomass. However, considering the results given in this
report it is not likely that these predictions will be more accurate.

The inaccuracy in predicting official yields using crop growth model indicators may be related
to limitations in the concepts of the model or the quality and quantity of the available input
data, but also to the reliability of the yields to be predicted. These are not the real yields
harvested by the farmers, but the official statistical yields. The accuracy of these official yields
is unknown and therefore unrealistic simulation results can not be separated from errors in
official statistics. Aspects concerning the crop growth model and statistical analysis will be
discussed in this chapter.

7.2 Crop growth model and data

The Joint Research Centre has published agrometeorological aspects of a number of
important agricultural crops of the EC in a series of reports called: Agricultural Information
System for the European Community (Bignon, 1990; Hough, 1990; Russell, 1990; Falisse, 1992;
MacKerron, 1992; Narciso et al., 1992). These reports turned out to be useful in determining
regional cropping calendars. By combining sowing, emergence, flowering and maturity dates
with data from the meteo database of SC-DLO, regional crop specific development rates were
calculated. However, a main cause of variation in crop phenology is altitude. In mountainous
areas the effect of altitude on cropping calendar will probably be larger than the effect of
latitude. This has not been taken into account in the reports and can therefore have
influenced the determination of the right regional development rates within the crop
growth model.

Furthermore, in order to be able to calibrate the model to regional conditions, a large
number of detailed data from field experiments was needed. Preferably, these experiments
should have been performed for a number of years, and under well controlled conditions
because the model describes growth under conditions with optimal nutrition and absence of
pests, weeds and diseases. For the calibration of potential yields, irrigated fields are

narnccar\l ;,-,

are welghts ot plant organs-at-various times throughout the growing season, composition of

finalyield,-and-leaf- aﬁeadevelopmenf These data are not mvpn in_ the JRC reports. CABO-

I '7**DLCTha§tned to obtain datathrough-an inquiry to- a number of coueagues inthe EC, butthis  — —
resulted in too few data to allow optimal calibration. This will probably remain a problem. It
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is worthwhile to further invest whether better results can be obtained in predicting yields at
the field level.

Test of the model for yield variability for several crops at a plot level, where experimental
data for validation were available, confirmed that WOFOST performs better for some crops
(e.g. field bean and sugar beet) than for others (e.g. wheat and potatoes). It appears that our
approach, of one model structure (WOFOST) for all crops, and only crop specific data, was
probably too simplistic. In season calibration of the model with data collected from a number
of closely monitored fields across Europe might also be necessary.

Due to the large uncertainty on physical properties of European soils, so far calculations have
only been performed using a standard soil with the same water holding capacity and without
groundwater influence for the whole of the EC. This may have influenced the results for
regions with a relative high proportion of worse than average or better than average soils.
Furthermore, only one sowing date has been used for each crop in each region. Wetness of
the soil and temperature conditions, however, influence sowing dates in specific years.
Because no land use map was available, a qualitative estimation was made of soils suitable
for crop production within a grid. For more accurate calculations, simulation should only be
performed for soil/climate combinations where the crop is actually grown. Having better land
use information, for example by means of remote sensing techniques, would therefore be
very useful.

It should be taken in mind that sub-optimal growing conditions as result of nutrient supply,
weeds, pests and diseases are not described by the model, assuming that these conditions
mainly determine the average yield level within a region and not so much seasonal yield
fluctuations. However, these growth factors may still be important causes in seasonal
fluctuations in official yields as well. More information has therefore to be gathered on the
separate contributions of weather conditions and other growth factors in the explanation of
the actual yield level. Furthermore, some effects of weather may influence the crop yield
indirectly, for example through disease level, nutrient availability or workability of the soil.

7.3 Statistical analysis

No official indication of the accuracy of the Eurostat official yields is available. For some crops
(soybean, field bean and oats) no statistical regional data were available at all.

National yield forecast in the Netherlands are aggregates of estimates by experts of hectare
yields of all crops, during and after the growing season in about 60 regions in the country.
There is no direct measurement of actual yields involved, neither during the season nor
afterwards. This system of estimating yields was developed early in this century, and still
satisfies the needs of the central statistical bureau (CBS) quite well at a reasonable cost. The
average values of yields reported are probably reliable, as several cross checks are performed,
such as with trade in crop products and their use in industry. However, the cross checks in any
year cannot be very accurate. Differences of a few percent per year may remain unnoticed for
the bulk crops and even more so for smaller crops. Such differences lead to adjustments in
administrative 'national stocks' (source: CBS, pers. comm.). The implication of this method of
yield est:matlon in the Netherlands is we that do not have data to accurately test the model
,,o nal vields are m‘nbablv quite

correct

—Because no information is available about the measurement error of the officialyield figares

in the Netherlands as well as in the rest of the EC, a conclusive interpretation of the quality
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of the model based predictions is impossible. The prediction error of official yield figures is
the sum of the measurement error in the official yields and the error in predicting the true
yield. The information required to disentangle these two errors is lacking. Possibly, the
disappointing improvement of prediction accuracy obtained by modelling is partly caused by
small variation due to weather fluctuations in combination with large variation due to
measurement errors. In other words by a low signal-to-noise ratio.

In Appendix 9 and 10 the t-values of the model indicators are given, as explained in Chapter
6. The variance ratio of the model term is equal to F=tZ were t is the Student statistic. The
signal-to-noise ratio is estimated by F-1. Often, model terms are included in a predictor
depending on whether or not F-1 is greater than 1 (see for instance Linhart & Zucchini, 1986).
This selection procedure provides an alternative to the jackknife which we used to select an
elementary predictor.

The following example illustrates the adverse effect of a low signal-to- noise ratio. It shows
that a model term which is actually present may be quite useless for predictions.

Let yield figures (y) be randomly generated using the following equation, so that there is no
doubt that the model indicator influences the yield:

y=5000+130«(T-T)+0.25%(m-m) +e

in which e denotes a random measurement error consisting of independent identically
distributed elements with a mean of zero and a standard deviation of 600 (12% of the mean
of y, 5000). The times T range from 1975 to 1989. The values of model indicator m are drawn
from a normal distribution with a mean of 9000 and a standard deviation of 1000. The
parameter values chosen are typical values extracted from the regression of wheat grain
yields. Analysis of this model shows that it happens frequently (roughly in half of the cases)
that according to the signal-to-noise criterion, predictions only get worse by the inclusion of
the model indicator in the predictor, although we know for sure in this case that the model
indicator influences the yield.

If the cause of bad predictions is really a low signal-to-noise ratio, it may well happen that
longer series with more accurate measurements will lead to better results within this project.
Apart from that, better datasets, containing sufficient information about measurement
accuracy (e.g. duplicate measurements) should be necessary for a better interpretation of the
current results.

The problem of the low signal-to-noise ratio may be expected to manifest itself in strongly
enhanced form in the approach of Palm & Dagnelie (1993), where y is regressed on 10-day
means of weather data such as temperature, radiation and rainfall during the growing
season. A large number of candidate regressors is available (see Section 5.1) and by some
selection procedure a subset is constructed. However, it is to be expected that each individual
term in the regression is very small, i.e. that each individual signal is very weak. When the
predictor is entirely based on official statistics, it might well happen that each signal is much
too weak to be useful for prediction, and that the predictor selected conveys more about the
particularities of the dataset than about the underlying process. This phenomenon is
sometimes called 'overfitting' (Linhart and Zucchini, 1986).

Whatever may be the true cause, Palm & Dagnelie (1993) show quite convincingly that each
of a large number of predictors based on raw weather data is worse than the predictor

ignoring-weather-A-major-methodological-conclusion-of-Palm-&-Dagnelie-(1993)-is-that the————-

jackknife method provides no adequate criterion of validation. This conclusion sounds quite

=atarming-sincesjackknifeemethods-are frequently-usedsin-validation-However;thejackknife—

used by Palm & Dagnelie (1993) was not the jackknife of the prediction rule (including
intensive selection) that has been actually applied, but merely the jackknife of the selected
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regression expression. For a conclusive validation of a prediction rule, the jackknife method
must also be applied to the full prediction rule and it is then a valuable instrument.
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Appendix 3. Nomenclature of Statistical Territorial Units (NUTS).
NUTSO NUTS1

R1 Deutschland
R11 Schleswig-Holstein
R12 Hamburg
R13 Niedersachen
R14 Bremen
R15 Nordrhein-Westfalen
R16 Hessen
R17 Rheinland-Pfalz
R18 Baden-Wirttemberg
R19 Bayern
R1A Saarland

R1B Berlin

R2  France
R21 lle de France
R22 Bassin Parisien
R23 Nord-Pas-de-Calais
R24 Est
R25 Ouest

R26 Sud-Ouest
R27 Centre-Est
R28 Mediterranée

R3 [talia
R31 Nord Ovest
R32 Lombardia
R33 Nord Est

R34 Emilia-Romagna
R35 Centro
R36 Lazio

R37 Campania

R38 Abruzzi-Molise
R39 Sud

R3A Sicilia

R3B Sardegna

R4 Nederland
R41 Noord-Nederland
R42 Oost-Nederland
R45 Zuid-Nederland
R47 \West-Nederland

R51 Viaams Gewest
R52 Region Wallone
R53 Brussel
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R6

R7

R8

R9

RA

RB

RC

Luxembourg

United Kingdom
R71
R72
R73
R74
R75
R76
R77
R78
R79
R7A
R7B

Ireland
Danmark

Ellada
RA1
RA2
RA3
RA4

Espana
RB1
RB2
RB3
RB4
RB5
RB6

Portugal
RC1
RC2
RC3

North

Yorkshire and Humberside

East Midlands
East Anglia
South East
South West
West Midlands
North West
Wales

Scotland
Northern Ireland

Voreia Ellada
Kentriki Ellada
Attiki

Nisia

Noroeste
Noreste
Madrid
Centro
Este

Sur

Continente
Acores
Madeira




Appendix 4a. WOFOST soil data file for a medium textured soil.

** Moisture data set 2 for texture class 2 (medium) of EC soil map.
** Minimum data set on soil physics for use in subroutine WATFD,
** water balance for freely draining soils.

** soil water retention

SMW = 0.100 ! soil moisture content at wilting point [cm3 cm-3]
SMFCF = 0.320 ! soil moisture content at field capacity [em3 em-3]
SMO = 0.430 I soil moisture content at saturation [cm3 cm™3]
CRAIRC = 0.075 ! critical soil air content for aeration [cm3 cm™3]

** percolation parameters

KO = 10.0 ! hydraulic conductivity of saturated soil [cm day'1]
SOPE = 10.0 ! maximum percolation rate root zone[cm day 1]
KSUB = 10.0 ! maximum percolation rate subsoil [cm day‘1]

** soil workability parameters

SPADS = 0.800 ! 1st topsoil seepage parameter deep seedbed
SPODS = 0.040 ! 2nd topsoil seepage parameter deep seedbed
SPASS = 0.900 I 1st topsoil seepage parameter shallow seedbed
SPOSS = 0.070 I 2nd topsoil seepage parameter shallow seedbed
DEFLIM = 0.000 ! required moisture deficit deep seedbed

Appendix 4b. Crop specific maximum rooting depths.

wheat: 125 ¢cm
grain maize: 100 cm
barley: 125 cm
rice: 80 ¢cm
sugar beet: 120 cm
potato: 50 cm
field bean: 100 cm
soybean: 120 cm

oilseed rape: 120 cm
sunflower: 150 cm
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Appendix 5. WOFOST crop data file for spring barley

** emergence

TBASEM = 0.0
TEFFMX = 30.0
TSUMEM = 110.
** jnitial
TDWI = 60.00
LAIEM = 0.274
RGRLAI = 0.0075
** phenolog
IDSL =0
DLO = -99.0
DLC = -99.0
TSUMA1 = 800.
TSUM2 = 750.
DTSMTB = 0.00,
35.00,
45.00,
DVSEND = 2.00
** green area
SLATB = 0.00,
0.30,
0.90,
1.45,
2.00,
SPA = 0.000
SSA = 0.000
SPAN = 25.
TBASE = 0.0
** assimilation
KDIF = 0.440
EFF = 0.40
AMAXTB = 0.00,
1.20,
2.00,
TMPFTB = 0.00,
10.00,
30.00,
35.00,
TMNFTB = 0.00,
3.00,

0.00,
35.00,
35.00

0.0020,
0.0035,
0.0250,
0.0220,
0.0220

35.00,
35.00,
5.00
0.00,
1.00,
1.00,
0.00
0.00,
1.00

! lower threshold temperature for emergence [C°]
! maximum efficient temperature for emergence [C°]
! temperature sum from sowing to emergence [C° d]

! initial total crop dry weight [kg ha™1]
! leaf area index at emergence [ha ha1]
I maximum relative increase in LAl [ha ha! d1]

! indicates whether pre-anthesis development depends
! on temperature (=0), daylength (=1), or both (=2)

! optimum daylength for development [hr]

! critical daylength (lower threshold) [hr]

! temperature sum from emergence to anthesis [C° d]

! temperature sum from anthesis to maturity [C° d]

! daily increase in temperature sum

! as function of average temperature [C°; C° d]

! development stage at harvest (= 2.0 at maturity [-])

1 specific leaf area
! as a function of DVS [-; ha kg'1]

I specific pod area [ha kg™1]

! specific stem area [ha kg™1]

! life span of leaves growing at 35 C° [d]

! lower threshold temperature for ageing of leaves [C°]

! extinction coefficient for diffuse visible light [-]

! light-use efficiency single leaf [kg ha! hr-1 J-1 m2s]
! maximum leaf CO2 assimilation rate

! as function of development stage [-; kg ha™! hr-1]

! reduction factor of AMAX

! as function of av. temp. [C°; -]

! reduction factor of gross assimilation rate
! as function of low minimum temperature [C®; -]

** conversion of assimilates into biomass

! efficiency of conversion into leaves [kg kg™']
! efficiency of conversion into storage org. gkg kg‘1]
| efficiency.of conversion into roots [ka ka~'1

cvL = 0.720
cvo = 0.740
CVR = 0.720
evs = 0690

‘!Leszi‘ei’encyfef:eeﬁversi?oﬁii—nte%tezm—sz{kg&kgﬂ:]ﬂ%- e
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** maintenance respiration

Q10 = 2.0

RML = 0.030

RMO = 0.010

RMR = 0.010

RMS = 0.015

RFSETB = 0.00, 1.00,
2.00, 1.00

** partitioning

FRTB = 0.00, 0.60,
0.40, 0.55,
1.00, 0.00,
2.00, 0.00

FLTB = 0.00, 1.00,
0.33, 1.00,
0.80, 0.40,
1.00, 0.10,
1.01, 0.00,
2.00, 0.00

FSTB = 0.00, 0.00,
0.33, 0.00,
0.80, 0.60,
1.00, 0.90,
1.01, 0.15,
2.00, 0.00

FOTB = 0.00, 0.00,
0.80, 0.00,
1.00, 0.00,
1.01, 0.85,
2.00, 1.00

** death rates

PERDL = 0.030

RDRRTB = 0.00, 0.000,
1.50, 0.000,
1.5001, 0.020,
2.00, 0.020

RDRSTB = 0.00, 0.000,
1.50, 0.000,
1.5001, 0.020,
2.00, 0.020

** water use

CFET = 1.00

DEPNR = 4.5

IAIRDU =0

** rooting

RDI = 10.

RRI = 1.2

RDMCR = 125.

! relative increase in respiration rate per 10 C°temp. incr. [-]
! rel. maintenance resp. rate leaves [kg CH20 kg1 d™1]

! rel. maintenance resp. rate stor. org. [kg CH20 kg'1 d-1]

! rel. maintenance resp. rate roots [kg CH20 kg'1 d1]

! rel. maintenance resp. rate stems [kg CH20 kg"1 d1]

! reduction factor for senescence

! as function of DVS [-; -]

! fraction of total dry matter to roots
! as a function of development stage [-; kg kg™1]

! fraction of above-ground dry matter to leaves
! as a function of development stage [-; kg kg™

! fraction of above-ground dry matter to stems
! as a function of development stage [-; kg kg™1]

! fraction of above-ground dry matter to stora?e organs
! as a function of development stage [-; kg kg™']

! maximum relative death rate of leaves due to water stress
! relative death rate of stems
! as a function of development stage [-; kg kg"l d1]

! relative death rate of roots

! as a function of development stage [-; kg kg™1 d-1]

! correction factor transpiration rate [-]
! crop group number for soil water depletion [-]

-1 air ducts in roots present (=1) or not (=0)

!initial rooting depth [cm]
! maximum daily increase in rooting depth [cm d "

! maximum rooting depth [cm]




57

Appendix 6. Request for data.

Dear ..

Our institute is involved in a project entitled: "Crop state monitoring on a regional scale in
the European Communities". This project is executed in the framework of the "Agriculture
Project" of the Joint Research Centre of the EC in Ispra, Italy. The purpose of the study is
forecasting of regional yields of the major crops in the European Communities, using crop
growth simulation models in combination with real time weather data.

In order to calibrate our crop growth simulation models to regional conditions throughout
the EC, we have an urgent need for crop yields from field experiments that are performed
under well defined and well controlled conditions, preferably under optimal fertilization and
proper weed, pest and disease control. Experiments that are performed at one location for a
series of years are especially valuable, because these allow us to evaluate seasonal effects
which are of major importance to our study. Relevant data are given in an appendix to this
letter. Crops under consideration are some of the main field crops that are grown in your
region. We simulate the following crops: wheat, barley, oats, maize, rice, potato, sugar beet,
field bean, soybean, oilseed rape and sunflower. We would be very pleased if you could
provide us with information. If you don't have access to such data, but know a colleague in
your country who does, we would appreciate it when you forward this letter to him/her.
References to literature or internal reports are also very helpful for us. We will be able to use
your information when it reaches us before April. The results of our study will be reported to
the Joint Research Centre of the EC by the end of 1992 and will be freely available. We will
not forsake to mention your contributions in the final report.

At your request we will send you some results of recent research at our institute. With this
letter some general information and a list of publications is included.

Thank you very much in advance for your cooperation, sincerely yours, ..

APPENDIX WITH REQUESTED DATA:

EXPERIMENT DESCRIPTION

location name, latitude, longitude, altitude:
year(s) :

crop/variety :

soil type (name, clay content) :
groundwater availability for crop growth :

AGRICULTURAL PRACTICES

sowing rate/plant density :

nutrient/fertilizer supply :

level of crop protection:

occurrence of crop damage or yield limiting factors :
irrigation rate :

PHENOLOGY
dates of sowing, emergence, flowering/heading and maturity/harvest:

CROP ME

Y ¢

harvestindex:
light interception during growth (% groundcover or leaf area index)
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Appendix 7a. Program XCL. User guide, input/output

Prediction of regional yields based on exclusive regression. Fortran program XCL written by:
Michiel Jansen, DLO Agricultural Mathematics Group (GLW-DLO).
Jacques Withagen, DLO Centre for Agrobiological Research (CABO-DLO).

input file.
The first record of the file is expected to be a general title for that file. This record is skipped.
The next record should contain a title for the following dataset (region). This title is read
from the inputfile and printed in the outputfile with the results. The maximum length of this
title is 30 characters. If a summary output file is requested, only the first six characters of the
title will be printed in the summary output file.
The next record contains the number of datarecords of the set. This value is not used by the
program since the program counts the records until the end-of-data symbol is found. After
this record the data-records are expected. On each record 6 values should occur separated by
spaces or a comma. The values are:

year,

official yield,

potential grain yield,

water-limited grain yield,

potential biomass,

water-limited biomass
(in this order).
Within each set the same unit must be used (e.g. tons/ha) and years must be given in
ascending order. Records containing 'missing values' are skipped (missing values are denoted
by an asterix or the value -99). The end of a dataset must be given by a colon ":* (with no
values on that record). When this end-of-data symbol is found, the program starts
calculations and prints the results in the outputfile(s). Then the program will search for a next
dataset (starting with a title for that new set) until the end of file is reached.

Running the program.

The program starts by asking the names of the input file and detailed output file (don't use
extension ".SUM" as this is used for an eventual summary file). If the output file already exists
the program gives a warning and asks whether or not you want to overwrite this file. Next
the program asks how many years you want to use for 'one year ahead' and 'two year ahead'
predictions (default = 9).

Then the program asks if you want a summary output file. The name of this file will be the
same as that of the detailed output file but with extension ".SUM". The last question is which
model indicators you want to be used in the regression calculations. You can choose any
combination out of the four given model indicators (1= potential grain yield, 2= water-
limited grain yield, 3= potential biomass, 4= water-limited biomass) by giving the numbers 1
to 4 separated by comma's (default = all), or give the value 0 if you want no indicators to be
used. Now the program starts calculating and prints the results in the output file(s). Messages

are also printed on the screen. If the number of observations is less than 8, the dataset will be
lcinped-and- ) i i i o aset

~ outputfile(s)

A detailed output file will be generated and, when asked for it, a summary output file. An
example of a detailed output file is given in Appendix 8 and explained in Section 6.2.
Summary output files are give in Appendices 9 and 10 and explained in Section 6.3
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Appendix 7b. Program XCL. Brief description

INTRODUCTION

The program XCL calculates yield predictors for a number of crops in a number of regions.
The accuracy of the predictors is assessed per crop per region.

For each crop and each region a dataset is read containing the following columns:
- an ascending series of years, e.g. 1975...1989

- the corresponding official yield statistics

- anumber of optional columns containing the corresponding model indicators

Various elementary predictors are obtained by linear regression of the official yield figures on
- thevector (1,1...1)

- azero-mean linear increase with the year

- at most one zero-mean model indicator

(from the latter two vectors the mean has been subtracted).

By assigning weight 1 or 0 to each year, only part of the data can be made available for the
construction of the predictor. The full predictor is constructed by selecting an elementary
predictor: from the elementary predictors having a non-negative coefficient for the model
indicator the one with the smallest jackknife sum of squares on the available data is selected.
The selected predictor may be the one without model indicator.

Linear regression producing the elementary predictors is executed by the subroutine LINREG.
The best elementary predictor is selected by the subroutine XCLUR. Calling LINREG for all
possible optional regressors, and selecting the one that performs best on the data made
available, XCLUR produces the predictor actually used. The performance of this predictor is
assessed by comparing prediction and official figures in years that were unavailable for the
construction of the predictor.

The next description contain descriptions of the main program XCL, of XCLUR and of LINREG.

1. DESCRIPTION OF THE MAIN PROGRAM XCL

The following integers determine the sizes of the data structures used in the program

NX1 number of obligatory regressors

MX1 maximum number of obligatory regressors

NX2 number of optional regressors

MX2 maximum number of optional regressors

NOBS number of seasons in database for current region

MOBS maximum number of seasons in database for current region

~————————The majordata structures used-in the program-are:

YEAR (MOBS) series of years (increasing)
OFFIC(MOBS) official statistics
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W(MOBS) weights(0 or 1)

FIT(MOBS) regression fit

LEV(MOBS) regression leverages

EST (MTERM) estimates of regression coefficients

SE (MTERM) standard errors of these estimates

VCOV (MTERM, MTERM variance covariance matrix of these estimates

IND(MOBS, MX2) has its columns filled with optional regressors (model
indicators)

X1(MOBS, MX1) has its columns filled with obligatory regressors (constant
and zero-mean annual trend)

X2 (MOBS, MX2) has its columns filled with zero-mean optional regressors

(model indicators)

Prediction based on all data.
The calculations start with some initializations:

MEAN = mean of OFFIC

TOTSS = sum of squares of OFFIC-MEAN
YRMEAN = mean of YEAR

INDMEAN (J) = mean of j-th column of IND
X1(I,1) = 1.

X1(I,2) = YEAR(I) - YRMEAN

X2(I,J) = IND(I,J) - INDMEAN(J)

W(I) = 1.

Subsequently the predictor is determined as follows:

CALL XCLUR(NOBS, NX1, NX2, OFFIC, W, X1, X2,
- FIT, LEV, EST, SE, VCOV, RSS, RDF, OUTPUT)

The jackknife prediction error sum of squares of XCLUR based on all data is estimated in the
following fragment:

JSS=0.0
DO 61 I=1,NOBS
DO 60 J=1,NOBS
IF(J.EQ.I) W(J)=0.0
IF(J.NE.I) W(J)=1.0
60 CONTINUE
CALL XCLUR(NOBS, NX1, NX2, OFFIC, W, X1, X2,
- FIT, LEV, EST, SE, VCOV, RSS, RDF, OUTPUT)
JR=0FFIC(I)-FIT(I)
Jss = JSS+JR¥*2
61 CONTINUE
JACKKN = 100 * SQRT(JSS/REAL(NOBS)) / MEAN

Prediction based on last NUSED seasons.
The calculations start with some initializations:

NUSED = number of seasons used to construct predictor (<=NOBS)

MEAN = mean of OFFIC over seasons used
P8 =—sum-of -squares-of OFFIC-MEAN over seasons used

YRMEAN = mean of YEAR over seasons used

INDMEAN (J) = mean of J-th column of IND over seasons used

W(I) = weight: 1. if I in last NUSED seasons, else 0
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X1(T,1) = 1.
X1(I,2) = YEAR(I) - YRMEAN
X2(1,4J) = IND(I,J) - INDMEAN(J)

Subsequently the predictor is determined:

CALL XCLUR(NOBS, NX1, NX2, OFFIC, W, X1, X2,
- FIT, LEV, EST, SE, VCOV, RSS, RDF, OUTPUT)

The one and two years ahead prediction error sum of squares are estimated as follows. By
weighting, a moving window of NUSED consecutive seasons is made available for
construction of a predictor FIT. The value of FIT one and two years ahead of the window is
compared with OFFIC at those years. The integers FUSED (First USED) and LUSED (Last USED)
indicate the first

and last year available for construction of the predictor.

OYASS=0.
TYASS=0.
IF (NOBS.GT.NUSED) THEN
DO 81 LUSED=NUSED,NOBS-1
FUSED=LUSED-NUSED+1
NEXT1=LUSED+1
NEXT2=LUSED+2
DO 80 I=1,NOBS
IF (I.GE.FUSED .AND. I.LE.LUSED) THEN

W(I) = 1.0
ELSE
W(I) = 0.0
ENDIF
80 CONTINUE

CALL XCLUR(NOBS, NX1, NX2, OFFIC, W, X1, X2,
- FIT, LEV, EST, SE, VCOV, RSS, RDF, OUTPUT)

OYASS = OYASS + (OFFIC(NEXT1)- FIT(NEXT1))**2
IF (NEXT2.LE.NOBS)
- TYASS = TYASS + (OFFIC(NEXT2)- FIT(NEXT2))**2

81 CONTINUE
ENDIF

2. DESCRIPTION OF XCLUR

The subroutine XCLUR has the following arguments:

number of observations

-
=]

INTEGER NOBS

INTEGER NX1 in; number of obligatory regressors
INTEGER NX2 in; number of optional regressors
REAL Y (MOBS) in; dependent variable

REAL W{MOBS.) in; weights

REAL X1 (MOBS,MX1) in; obligatory regressors in columns
REAL____ X2(MOBS,MX2) — in; optional regressors i

REAL FIT (MOBS) out; fitted values

REAL LEV (MOBS) out; leverages

REAL EST (MTERM) out; estimates of regression coefficients
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REAL SE (MTERM) out; standard deviations of estimates

REAL VCOV (MTERM, MTERM) out; variance covariance matrix of estimates
REAL Ss out; residual sum of squares

REAL DF out; residual degrees of freedom

INTEGER MES in; file receiving error messages and warnings

Years are made available or unavailable for the construction of the predictor by assigning
weight 1 or 0. The subroutine performs weighted least squares linear regressions calling

LINREG (NOBS, NTERM, Y, W, X, FIT, LEV, EST, SE, VCOV, SS, DF, OUT).

The matrix X is varied: X = X1, and X = (X1, u) with the additional column u assuming the
values of the various columns of X2. Each X matrix gives a predictor. The best predictor is
initialized at the value given by regression with X = X1. For the consecutive values of u a
‘current’ predictor is constructed. The current predictor will replace the best predictor if the
coefficient of current regressor u is positive and if the jackknife sum of squares of the current
predictor is smaller than that of the best predictor on the available years. The jackknife sum
of squares is calculated in the following way .

CJACSS = 0
DO 31 J=1,NOBS
IF (W(J).NE.O.) THEN
JR = (OFFIC(J)-CFIT(J))/(1-CLEV(J))
CJACSS = CJACSS + JR*JR
ENDIF
31 CONTINUE

(The prefix 'C' stands for 'current’, the jackknife residual JR is calculated by means of the
current leverage, see for instance Montgomery & Peck, 1992.)

XCLUR has been tested by comparing its results with those of Genstat for a number of
representative datasets.

3. DESCRIPTION OF LINREG

The subroutine LINREG has the following arguments:

INTEGER NOBS in; number of observations

INTEGER NTERM in; number of model terms

REAL Y (MOBS) in; dependent variable

REAL W(MOBS) in; weights

REAL X (MOBS, MTERM) in; regressors in columns

REAL FIT (MOBS) out; fitted values

REAL LEV (MOBS) out; leverages

REAL EST (MTERM) out; estimates of regression coefficients
REAL SE (MTERM) out; standard deviations of estimates

REAL VCOV (MTERM, MTERM) out; variance covariance matrix of estimates
REAL Ss out; residual sum of sqguares

REAT DF outy=—residual-degrees-of-freedom

INTEGER OUT ’ in; file receiving error messages and warnings

LINREG performs weighted least squares regression. With respect to its inputs and outputs,
LINREG is similar to the Genstat command FIT (Payne & Lane, 1987). The subroutine has been
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tested by comparing its results with those of Genstat for a number of representative datasets.
Inputs are the dependent nobs-vector Y, a weight nobs-vector W, and a design-matrix X the
nterm columns of which are filled with the regressors of length nobs. Output are the nobs-
vector of fitted values, FIT; the nobs-vector of leverages, LEV; the nterm-vectors EST and SE
containing the estimated regression coefficients and their standard deviations; the nterm-by-
nterm variance covariance matrix VCOC of the estimates; the residual sum of squares and
degrees of freedom SS and DF. OUT points to a file for error messages or warnings. The
inputs and outputs of LINREG are in single precision; internally double precision is used.

The generalized inverse of the symmetric non-negative definite matrix Xt W X is calculated in
a way similar to SVDREG in Press et al. (1986). By means of a procedure DJCOBI the matrix is
brought on the form Xt W X =V D Vt, with V orthogonal and D diagonal. DJCOBI is based on
JACOBI of Press et al. (1986); the major modification is that DJCOBI works in double precision.
The generalized inverse is calculated as XTWXINV = (Xt W X)-1 = V DINV Vt, with diagonal
matrix DINV defined by: if D(l) is above some small tolerance DINV(l) = 1/ D(l) , else DINV(l) =
0. For each instance of DINV(]) = 0, indicating aliased model terms, a warning is issued.

The subsequent calculations are simple matrix operations (see for instance Montgomery &
Peck, 1991).

EST XTWXINV Xt W Y
FIT = X EST

LEV = diag(X XTWXINV Xt W)

ss = SUM(W(I)*(Y(I)-FIT(I))**2)
VCOV = XTWXINV SS / DF

SE = SQRT (diag(VCOV))

REFERENCES FOR XCL

Montgomery, D.C. & Peck, E.A., 1991, Introduction to linear regression analysis, second
edition, Wiley.

Payne, R.W. & Lane, P.W. (eds.), 1987, Genstat 5 Reference Manual, Clarendon Press, Oxford.

Press, W.H. & Flannery, B.P. & Teukolsky, S.A. & Vettering, W.T., 1986, Numerical recipes: the
art of scientific computing, Cambridge University Press.
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Appendix 7c. Program XCL. Full listing.

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

I X222 2222222 2222222222 2222222222222 R ittt R Rl l )

Program: XCL
Date: 10 May, 1993
Version: 1.0

Authors:
M.J.W. Jansen, DLO Agricultural Mathematics Group (GLW-DLO)
J.C.M. Withagen, DLO Centre for Agrobiological Research (CABO-DLO)
Address:
c/o DLO Centre for Agrobiclogical Research (CABO-DLO)
P.0. Box 14
6700 AA Wageningen
The Netherlands
Reference:
Koning, G.H.J. de, M.J.W. Jansen, E.R. Boons-Prins, C.A. van
Diepen & F.W.T. de Penning de Vries, 1993. Crop growth simulation
and statistical validation for regional yield forecasting across
the European Communities. Simulation Reports CABO-TT, N0.31, DLO Centre for
Agrobiological Research (CABO-DLO), Wageningen, The Netherlands. 105 pp.
Purpose: '
Construction of a regional crop yield predictor by means of
exclusive regression.
Assessment of prediction errors (jackknife error, one-year-ahead
prediction error, two-years-ahead prediction error).
Library used:
TTUTIL (Rappoldt, C., D.W.G. van Kraalingen, 1990. Reference
manual of the Fortran utility library TTUTIL with applications.
Simulation Reports CABO-TT nr. 20, CABO-DLO Wageningen. 122 pp.)
Other subroutines used:
DJCOBI: subroutine JACOBI from W. H. Press, B. P. Flannery, S. A.
Teukolsky, W. T. Vetterling, Numerical recipes (1lst edition) 1986,
with some minor modifications (e.g. changing to double precision).
Disclaimer:
Publication of any work or study based on this software and/or
database should include reference to the suppliers.
The suppliers disclaim all warranties for fitness, performance
or simulation accuracy for any purpose of the supplied software
and/or database. The suppliers assume no liability or
responsibility to the user or anyone, for loss or damage caused
by errors in, or inadequate use of the supplied software and/or

database.
EE 2 XA 22 AR AR A2 R R 2R 22222222222 2222 2222222 222222222222 2 22 2 2t 2 R

PROGRAM XCL
dimensions --------- - -

INTEGER MOBS, MTERM, MX1, MX2
PARAMETER (MOBS=30, MTERM=8, MX1=2, MX2=4)

*

variables and arrays used --—---—-—---- - - mm e *

INTEGER—NOBS, NX1, NX2, DATSET

INTEGER INPUT, OUTPUT, OUTSUM
INTEGER I, J, IX2, ILEN, INDIC(MX2)



INTEGER FUSED, LUSED, NUSED, NEXT1l, NEXT2, ISTART

REAL YEAR(MOBS), OFFIC(MOBS), W(MOBS), IND(MOBS,MX2)
REAL X1(MOBS,MX1), X2 (MOBS,MX2)
REAL MEAN, YRMEAN, MNUSED, INDMN(MX2)

REAL FIT(MOBS), LEV(MOBS)

REAL EST(MTERM), SE(MTERM)

REAL VCOV (MTERM, MTERM)

REAL RSS, RDF, JSS, OYASS, TYASS
REAL RESIDL, JACKKN, OYA, TYA
REAL TOTSS, JR

REAL ESTIM, STUD, RSQ

CHARACTER*30 TMP, TITLE, INFIL,OUTFIL, SUMFIL
CHARACTER*1 CRSUM, DUM

CHARACTER*8 SELECT

CHARACTER*7 ONEYRA, TWOYRA

CHARACTER*21 SELTXT

LOGICAL EOF

DATA INPUT,OUTPUT /10,20/
DATA NUSED /8/

DATA NX1 /2/

DATA NX2 /4/

CRSUM='Y"

ask name inputfile and open this file -----wmmmre e c e c e

CALL ENTCHA ('input-file',INFIL)
CALL FOPEN (INPUT, INFIL,'OLD',"' ‘')

ask name outputfile and open this file -----------cccrrccmmmcn e

CALL ENTCHA ('output-file',OUTFIL)
CALL FOPEN (OUTPUT,OUTFIL, 'NEW', 'UNK')

ask number of years to be used for predictor -----ecceccercrmmaeaao

CALL ENTDIN ('number of seasons to be used for predictor'
- , NUSED, NUSED)

ask wether or not to open summary-file --------emmmmm e
CALL ENTDCH ('open summary-file (Y¥/N)',CRSUM,CRSUM)

IF (INDEX('Yy',CRSUM).GT.0) THEN
CALL EXTENS (OUTFIL,'SUM',1,SUMFIL)
OUTSUM=30
CALL FOPEN (OUTSUM, SUMFIL, 'NEW', 'UNK')
WRITE. (OUTSUM, ' (1X,2A)")

= NUTS NOBS=MEAN“SELECTED“=COEFF t RSQ*5

- ' RES. JACKKN OYA TYA'

ELSE

OUTSUM=0
ENDIF
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* read first record (not used) ~------------meem--—-—-——-m—-o—meee— *

READ (INPUT, '(A)',END=9) TITLE

* initialize dataset counter -------cccomeacrmmm e *
DATSET=0
* read title and dummy line -=--r-mmeeeo—momm e m e *

1 TITLE(1:30)="' '
READ (INPUT, ' (A)',END=9) TITLE
READ (INPUT, ' (A)',END=9) DUM

* place title at beginning of string -------------mmeemmmmcm e *

I=ISTART(TITLE)
J=ILEN(TITLE)
TMP=TITLE(I:J)
TITLE=TMP

* read dataset ----------mmmm e e e - *

NX2 = MX2
CALL VDATIN(INPUT, YEAR, OFFIC,IND,MOBS,NOBS,NX2, INDIC, EOF)
DATSET=DATSET+1

* test setting ‘'exclude indicator'-option and presence of indicators ¥

IF (NX2.GT.0) THEN

SELTXT=' (including selection)'
ELSE

SELTXT="' (excluding selection)'
ENDIF

no0oa0oan

* and check number of observations --------emmocccmcm e *

IF (EOF) GOTO 9
IF (NOBS.LT.8) THEN
WRITE (OUTPUT,'(1X,A,I3,A,/,1X,A,35X,A)")
- '¥%% Error at dataset',6 DATSET,
- ': number of observations less than 8 ¥*¥*!',
- '%¥%% Going to next dataset',6 '¥¥¥!
WRITE (OUTPUT, '(1X,70A1)') ('-',I=1,70)
WRITE (*,'(1X,A,I3,A,/,1X,A,35X,A)"')
- '*#%% Error at dataset', DATSET,
- ': number of observations less than 8 *¥%!,
- '#%¥% Going to next dataset', '¥¥%!
GOTO 1
ENDIF

WRITE (OUTPUT,'(/,/.,1X,A,A)"') = ', TITLE

WRITE. .(*, ' (A,I4,A,A)" ). ' s L TITLE
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10

DO 10 I=2,NOBS
IF (YEAR(I-1).GE.YEAR(I)) THEN
WRITE (OUTPUT, ' (1X,A)")

'*%% Error: seasons not increasing ¥%¥¥!

WRITE (*,'(1X,A)"')

'#%% Brror: seasons not increasing #*¥¥!

STOP

ENDI
CONTINU

F
E

* calculate means of 'offic', ‘'year' and ‘model’ -------------------

20

21

22
23

24

MEAN =
YRMEAN=

0.
0.

DO 20 I=1,NOBS

MEAN

= MEAN + OFFIC(I)

YRMEAN = YRMEAN + YEAR(I)
CONTINUE

MEAN
YRMEAN

MEAN / REAL(NOBS)
YRMEAN / REAL(NOBS)

IF (NX2.GT.0) THEN
DO 21 I=1,MX2
INDMN(I)=0.
CONTINUE
DO 23 I=1,NOBS
DO 22 J=1,NX2

INDMN(J) = INDMN(J) + IND(I,J)

CONTINUE
CONTINUE
DO 24 J=1,NX2

INDMN(J) = INDMN(J) / REAL(NOBS)
CONTINUE

ENDIF

* calculate totss of 'offic' ~----e-mmmmmm e -

30

TOTSS=0

DO 30 I=1,NOBS
TOTSS=TOTSS+ (OFFIC(I)-MEAN)**2
CONTINUE

* write number of observations and mean(offic) to output ---wwee----

IF (NX2.EQ.0) WRITE (OUTPUT, ' (5X,A)')

no model indicators were included for selection -----

WRITE (OUTPUT, ' (1X,A,I8)"') 'number of seasons =', NOBS
WRITE (OUTPUT, '(1X,A,F8.3)') 'mean =', MEAN

* copy values to y-variate and design-matrixces ----------c--cooo-—-
* and substract means ------emm-mmmmmmm e m e m e m e

"

DO 41 I=1,NOBS

"

‘ A\ a
AL D) —="—1%

X1(I,2) = YEAR(I) - YRMEAN

EF-=(NX2--:GT+0)==THEN

40

DO 40 J=1,NX2

X2(I,J) = IND(I,J) - INDMN(J)

CONTINUE



ENDIF
W(I)=1.
41 CONTINUE

CALL XCLUR(NOBS, NX1, NX2, OFFIC, W, X1, X2,
- FIT, LEV, EST, SE, VCOV, RSS, RDF, OUTPUT)

* write parameter-estimates to output ------------------------enooo

WRITE (OUTPUT,'(/,A,/,A)') ' Prediction based on all data',

WRITE (OUTPUT, ' (1X,A)"')

- ‘term est se t!
WRITE (OUTPUT, ' (1X,A,2F10.3,F10.2)"')
- 'constant ', EST(1), SE(1l), EST(1)/SE(1)

WRITE (OUTPUT,'(1X,A,F6.1,A,2F10.3,F10.2)"')
- ' (year-',YRMEAN,') ',EST(2), SE(2), EST(2)/SE(2)

SELECT = ' ‘!
ESTIM = 0.
STUD = 0.
IX2 =0

IF(NX2.GT.0) THEN
DO 50 I = 3,NX1+NX2
IF (SE(I).GT.0) THEN

IX2=I-2
ESTIM = EST(I)
STUD = EST(I)/SE(TI)

WRITE (SELECT,'(A,I1,A)') ' ind[',INDIC(IX2),°'] °'
WRITE (OUTPUT,' (1X,A,I1,A,F6.3,A,2F10.3,F10.2)")
- '(ind[',INDIC(IX2),']-',INDMN(IX2),"')",
- EST(I), SE(I), STUD
ENDIF
50 CONTINUE
ENDIF
IF(IX2.EQ.0) WRITE (OUTPUT, ' (1X,A)"')
- ' (IND[*]- *) * * *

* CALCULATE MEAN SQUARE ERRORS ~---memommmmm e e e e
RSQ=1.0 - RSS/TOTSS
WRITE (OUTPUT,'(/,1X,A,F10.2)"')
- 'R-squared :',RSQ

RESIDL = 100.0 * SQRT(RSS/RDF) / MEAN

Jss=0.0
DO 61 I=1,NOBS

DO..6D. . T=1.. . NORS

IF(J.EQ.I) W(J)=0.0
IF(J.NE.I) W(J)=1.0

60 CONTINUE

CALL XCLUR(NOBS, NX1, NX2, OFFIC, W, X1, X2,
- FIT, LEV, EST, SE, VCOV, RSS, RDF, OUTPUT)

JR=OFFIC(I)-FIT(I)
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Jss = JSS+JR**2

61 CONTINUE

JACKKN = 100 * SQRT(JSS/REAL(NOBS)) / MEAN
WRITE (OUTPUT,'(/,1X,A,F8.3,A)"')
'Estimated relative root mean squared errors (% of',mean,')’

WRITE (OUTPUT, ' (1X,A,F10.1)') 'residual ', RESIDL
WRITE (OUTPUT, ' (1X,A,F10.1)') 'Jackknife '  JACKKN

* one and two year ahead estimations --------------------mmemmmmomm—

70

71

72

73

74
75

WRITE (OUTPUT,'(/,A,I3,A,/,A)")
' Prediction based on last',K NUSED,' seasons',

LUSED=NOBS
FUSED= LUSED-NUSED+1
DO 70 I=1,NOBS
IF (I.GE.FUSED .AND. I.LE.LUSED) THEN
w(I) = 1.
ELSE
W(I) = 0.
ENDIF
CONTINUE

MNUSED = 0.
YRMEAN 0.
TOTSS = 0.
DO 71 I=FUSED, LUSED
MNUSED = MNUSED + OFFIC(I)
YRMEAN = YRMEAN + YEAR(T)
CONTINUE
MNUSED = MNUSED / REAL(NUSED)
YRMEAN = YRMEAN / REAL(NUSED)
DO 72 I=FUSED, LUSED
TOTSS = TOTSS + (OFFIC(I)-MNUSED)**2
CONTINUE

IF (NX2.GT.0) THEN
DO 73 I=1,MX2
INDMN(T)=0.
CONTINUE
DO 75 I=FUSED, LUSED
DO 74 J=1,NX2
INDMN(J) = INDMN(J) + IND(I,J)
CONTINUE
CONTINUE
DO 76 J=1,NX2

G L SR

76

DO 78 I=1,NOBS
X1(I,1) = 1.0
X1(I,2) YEAR(I) - YRMEAN
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78

79

73

IF (NX2.GT.0) THEN
DO 77 J=1,NX2
X2(I,J) = IND(I,J) - INDMN(J)
CONTINUE
ENDIF
CONTINUE

CALL XCLUR(NOBS, NX1, NX2, OFFIC, W, X1, X2,
- FIT, LEV, EST, SE, VCOV, RSS, RDF, OUTPUT)

WRITE (OUTPUT, ' (1X,A)"')

- 'term est se t!
WRITE (OUTPUT,'*' (1X,A,2F10.3,F10.2)"')
- ‘constant ', EST(1), SE(1), EST(1)/SE(1)

WRITE (OUTPUT,'(1X,A,F6.1,A,2F10.3,F10.2)"')
- ' (year-',YRMEAN, ') ', EST(2), SE(2), EST(2)/SE(2)

IX2=0
IF(NX2.GT.0) THEN
DO 79 I=3,NX1+NX2
IF (SE(I).GT.0) THEN
IX2=I-2
WRITE (OUTPUT,'(1X,A,Il1,A,F6.3,A,2F10.3,F10.2)"')
- '(ind[',INDIC(IX2),']-',INDMN(IX2),"')"',
- EST(I), SE(I), EST(I)/SE(I)
ENDIF
CONTINUE
ENDIF
IF(IX2.EQ.0) WRITE (OUTPUT, ' (1X,A)"')
- '(ind[*]- *) * * *!

WRITE (OUTPUT,'(/,1X,A,F10.2)")
- 'R-squared :',1.0-RSS/TOTSS

RESIDL = 100.0 * SQRT(RSS/RDF) / MEAN

WRITE (OUTPUT,'(/,1X,A,F8.3,A)"')
- 'Estimated relative root mean squared errors (% of ',MEAN,')'
WRITE (OUTPUT, ' (1X,A,F10.1)') ‘'residual ', RESIDL

OYASS=0.

TYASS=0.

IF (NOBS.GT.NUSED) THEN

"DO 81 LUSED=NUSED,NOBS-1

FUSED=LUSED-NUSED+1
NEXT1=LUSED+1
NEXT2=LUSED+2
DO 80 I=1,NOBS

IF. (I.GE.FUSED .AND. TI.LE.LUSED) THEN

WED)y—==170
ELSE
W-CT) 0::0
ENDIF
80 CONTINUE
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CALL XCLUR(NOBS, NX1, NX2, OFFIC, W, X1, X2,
- FIT, LEV, EST, SE, VCOV, RSS, RDF, OUTPUT)

OYASS = OYASS + (OFFIC(NEXT1l)- FIT(NEXT1))**2
IF (NEXT2.LE.NOBS)
- TYASS = TYASS + (OFFIC(NEXT2)- FIT(NEXT2))%**2
81 CONTINUE
ENDIF

IF (NOBS.GT.NUSED) THEN
OYA= SQRT (OYASS/REAL(NOBS-NUSED)) / MEAN
WRITE (OUTPUT, ' (1X,A,F10.1,3X,A,I3,A)"')

- ‘one season ahead ' ,0YA*100.,

- ' (based on',NOBS-NUSED,' comparisons)'’
WRITE (ONEYRA, '(F7.1)') OYA*100.

ELSE
WRITE (OUTPUT, '(1X,A)') 'one season ahead * !
WRITE (ONEYRA,'(A)') °* A

endif

IF (NOBS.GT.NUSED+1) THEN
TYA= SQRT(TYASS/REAL(NOBS-NUSED-1)) / MEAN
WRITE (OUTPUT, ' (1X,A,F10.1,3X,A,I3,A)")

- 'two seasons ahead ',TYA¥*100.,

- ' (based on',NOBS-NUSED-1,' comparisons)'
WRITE (TWOYRA,'(F7.1)') TYA*100.

ELSE
WRITE (OUTPUT, ' (1X,A)') 'two seasons ahead !
WRITE (TWOYRA,'(A)') ' A

ENDIF

IF (OUTSUM.GT.O0)

- WRITE (OUTSUM,

- '(1X,A,I5,F7.2,1X,A,1X,F6.3,F6.2,F6.3,1X,2F7.1,2A)")
- TITLE(1:6), NOBS, MEAN, SELECT, ESTIM, STUD,

- RSQ, RESIDL, JACKKN, ONEYRA, TWOYRA

[ 23 S 2 22 222 2 S22 E RS2 222222222 2222222 R AR RN R 2
* end of dataset ---------mmmmmm e e e - -
WRITE (*,'(A,I4,A,A,A)') '+ dataset ',DATSET,' : ',TITLE,

- ! done'
WRITE (OUTPUT, ' (1X,70A1)') ('~',I=1,70)
IF (.NOT.EOF) GOTO 1

9 WRITE (OUTPUT, ' (1X,A)"') '*** end of file #¥*¥!
STOP '*%%* end of datafile #*¥¥!

END
L e T et b T data input *
* records with missing values ('*' or '-99') are skipped
* end-of-data sign ':' (no values on that record)

r of values.

SUBROUTINE VDATIN(INPUT,YEAR,OFFIC,MODEL,

_MOBS, NOBS, NX2, INDIC,EOF). .

INTEGER INPUT, MOBS, NOBS, NX2, INDIC(4)
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REAL YEAR (MOBS), OFFIC(MOBS), MODEL(MOBS, NX2)
LOGICAL EOF

——————————————————————————————————————————————— local variables *

INTEGER MWORD
PARAMETER (MWORD=10)

INTEGER NWORD, NWSET, IWB(MWORD), IWE(MWORD)
INTEGER I, J, NINDIC, FIRST
REAL VMAG (MWORD)

CHARACTER*80 RECORD
CHARACTER*8 CINDIC

DATA FIRST /1/

EOF = .FALSE.
CINDIC = '1,2,3,4 '
NWSET =0
* ask which model indicators to be used (at first call only) -=-=---- *

10

IF (FIRST.EQ.1l) THEN

WRITE (*,'(1X,A,5(/,10X,A),/)")
‘Modelindicators:',
'l potential grain yield',
‘2 water-limited grain yield',
'3 potential biomass',
'4 water-limited biomass',
'0 no indicators’

CALL ENTDCH ('combination of indicators to be used'

- ,CINDIC, CINDIC)

CALL WORDS (CINDIC,MWORD,' ,',IWB,IWE,NINDIC)
CALL DECREC (CINDIC,NINDIC,VMAG)
IF (NINDIC.GT.0 .AND. VMAG(1l).GT.0.) THEN
DO 10 I=1,NINDIC
INDIC(I)=INT(VMAG(I)+.1)
IF (INDIC(I).GT.4.0R.INDIC(I).LT.0) THEN
WRITE (*,'(1X,A,/)') ‘'*¥%% choise out of range *¥%¥*!'
GOTO 5
ENDIF
CONTINUE
ELSE
NINDIC=0
ENDIF
FIRST=0
ENDIF

NOBS=0

DO 21 I=1,MOBS
CALL GETREC (INPUT, RECORD, EOF)
IF (EOF) RETURN
IF_(INDEX(RECORD,':').GT.0) GOTO 9

TF—(INDEX(RECORD;%*-)~EQ+0~AND+INDEX(RECORD;~99--)-~EQ-0)—THEN
CALL WORDS (RECORD,MWORD,' ,', IWB, IWE, NWORD)

IF-(NWORD--GT-0)--THEN

IF (NWSET.EQ.0) NWSET=NWORD
IF (NWORD.NE.NWSET) THEN
CALL ERROR('reading’,
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20

21

* dimensions

¥ arguments

* local variables and arrays

'inconsistent number of values')
ELSE
NOBS=NOBS+1
CALL DECREC(RECORD, NWORD, VMAG)
YEAR(NOBS) = VMAG(1)
OFFIC(NOBS) = VMAG(2)
IF (NWORD.GT.2 .AND. NINDIC.GT.O0) THEN
DO 20 J=1,NINDIC
MODEL (NOBS, J) = VMAG(INDIC(J)+2)
CONTINUE
ENDIF
ENDIF
ENDIF
ENDIF
CONTINUE

IF (NWSET.GT.2) THEN
NX2=NINDIC

ELSE
NX2=0

ENDIF

RETURN

END

SUBROUTINE LINREG (NOBS, NTERM,
Y, W, X, FIT, LEV,
EST, SE, VCovV, Ss, DF, 0UT)

INTEGER MOBS, MTERM
PARAMETER (MOBS=30, MTERM=5)

INTEGER NOBS,NTERM, OUT

REAL Y(MOBS), W(MOBS), X(MOBS,MTERM)
REAL FIT(MOBS), LEV(MOBS)

REAL EST(MTERM), SE(MTERM)

REAL VCOV (MTERM, MTERM)

REAL SS, DF

INTEGER I,J,K, NROT

DOUBLE PRECISION TOL, DMAX, DMIN, S

DOUBLE PRECISION XTWX (MTERM,MTERM), XTWXIN(MTERM,MTERM)
DOUBLE PRECISION V(MTERM, MTERM)

DOUBLE PRECISION D(MTERM), DINV(MTERM)

REAL R, Z
TOL = 1.0E-7

DF = REAL(NOBS-NTERM)
ss..=.0.0

linreg *

# £i1l matrix xtwx

DO 32 I=1,NTERM
DO 31 J=1,NTERM
S=0.



77

DO 30 K=1,NOBS
8=S+ DBLE( X(K,I) * W(K) * X(X,J) )

30 CONTINUE
XTWX(I,J)=8
31 CONTINUE

32 CONTINUE

* call subroutine jacobi (DJCOBI) from Numerical Recipes ------=---- *
CALL DJCOBI (XTWX,NTERM,MTERM, D,V,NROT)

* check inverse matrix ---------crmmmmmmm e —— e m e

DMAX = 0.
DO 40 I=1,NTERM
IF (D(I).GT.DMAX) DMAX=D(TI)
40 CONTINUE
DMIN = TOL*DMAX

DO 41 I=1,NTERM
IF (D(I).GT.DMIN) THEN
DINV(I) = 1.0/D(I)

ELSE
DINV(I) = 0.0
DF = DF + 1.0

WRITE (OUT,'(/,2(/,1X,A))"') '*** Aljag ***', ‘combination'
WRITE (OUT, ' (1X,10F10.3)') (V(I,J),J=1,NTERM)
WRITE (OUT,'(1X,A)') ‘'constrained to 0.'
ENDIF
41 CONTINUE

DO 52 I=1,NTERM
DO 51 J=1,NTERM
S =10.0
DO 50 K=1,NTERM
S=S+ V(I,K) * DINV(K) * V(J,K)

50 CONTINUE
XTWXIN(I,J)=S
51 CONTINUE

52 CONTINUE

DO 62 I=1,NOBS
S = 0.0
DO 61 J=1,NTERM
DO 60 K=1,NTERM
S=8+ XTWXIN(J,K) * DBLE(X(I,J)*X(I,K)*W(I))

60 CONTINUE
61 CONTINUE
LEV(I)=S

62 CONTINUE

DO .72 T=1,NTERM

S===050

DO 71 J=1,NOBS

DO--7.0-K=1;NTERM-- -

S=S+ XTWXIN(I,K) ¥ DBLE(X(J,K) * W(J) * Y (J))
70 CONTINUE
EST(I)=S
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71 CONTINUE
72 CONTINUE

DO 81 I=1,NOBS
Z =0.0
DO 80 J=1,NTERM
Z = Z+ EST(J) * X(I,Jd)

80 CONTINUE
FIT(I) = 2
R = Y(I)-2
ss = SS+ DBLE(R* W(I) * R)

IF (W(I).EQ.0.) DF=DF-1.
81 CONTINUE

DO 91 I=1,NTERM
DO 90 J=1,NTERM
VCOV(I,J)= XTWXIN(I,J) * DBLE(SS / DF)
90 CONTINUE
SE(I)= REAL(SQRT(VCOV(I,I)))
91 CONTINUE

RETURN
END

e e ittt b b Jacobi *
SUBROUTINE DJCOBI (A, N,NP,D,V,NROT)

INTEGER N, NP, NROT, NMAX
PARAMETER (NMAX=20)
INTEGER IP,IQ,I,J

DOUBLE PRECISION A(NP,NP),D(NP),V(NP,NP),B(NMAX), Z (NMAX)
DOUBLE PRECISION SM, TRESH,G,H,THETA,C,S,T,TAU

DO 12 IP=1,N
DO 11 IQ=1,N
V(IP,IQ)=0.00
11 CONTINUE
V(IP,IP)=1.00
12 CONTINUE
DO 13 IP=1,N
B(IP)=A(IP,IP)
D(IP)=B(IP)
Z(IP)=0.00
13 CONTINUE
NROT=0
DO 24 I=1,50
SM=0.
DO 15 IP=1,N-1
DO 14 IQ=IP+1,N
SM=SM+ABS (A (IP,IQ))
14 CONTINUE
15 CONTINUE

IE.(SM..EQ..0...)RETURN

IF(I.LT.4)THEN

). 2¥SM/N**2

ELSE
TRESH=0.
ENDIF



16

17

18

19

21
22

DO 22
DO
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IP=1,N-1
21 IQ=IP+1,N
G=100.*ABS (A(IP,IQ))
IF((I.GT.4).AND. (ABS(D(IP))+G.EQ.ABS(D(IP)))
.AND. (ABS(D(IQ))+G.EQ.ABS(D(IQ))))THEN
A(IP,IQ)=0.
ELSE IF(ABS(A(IP,IQ)).GT.TRESH)THEN
H=D(IQ)-D(IP)
IF (ABS(H)+G.EQ.ABS (H) ) THEN
T=A(IP,IQ)/H
ELSE
THETA=0.5*H/A(IP,IQ)
T=1./(ABS(THETA)+SQRT(1.+THETA**2))
IF(THETA.LT.0.)T=-T
ENDIF
C=1./SQRT(1.00+T**2)
S=T*C
TAU=S/(1.+C)
H=T*A(IP, IQ)
Z(IP)=Z(IP)-H
Z(IQ)=Z(IQ)+H
D(IP)=D(IP)-H
D(IQ)=D(IQ)+H
A(IP,IQ)=0.
DO 16 J=1,IP-1
G=A(J, IP)
H=A(J,IQ)
A(J,IP)=G-S* (H+G*TAU)
A(J,IQ)=H+S*(G-H*TAU)
CONTINUE
DO 17 J=IP+1,IQ-1
G=A(IP,J)
H=A(J,IQ)
A(IP,J)=G-S* (H+G*TAU)
A(J,IQ)=H+S* (G-H*TAU)
CONTINUE
DO 18 J=IQ+1,N
G=A(IP,J)
H=A(IQ,J)
A(IP,J)=G-S* (H+G*TAU)
A(IQ,J)=H+S* (G-H*TAU)
CONTINUE
DO 19 J=1,N
G=V(J, IP)
H=V(J,IQ)
V(J,IP)=G-S* (H+G*TAU)
"V(J,IQ)=H+S*(G-H*TAU)
CONTINUE
NROT=NROT+1

ENDIF
CONTINUE
CONTINUE

DU 25 .Lr—:.,N

B(IP)=B(IP)+Z(IP)

23
24

D{IP)=B(IP)—

Z(IP)=0.
CONTINUE

CONTINUE
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PAUSE '50 iterations should never happen'
RETURN
END

SUBROUTINE XCLUR (NOBS,NX1,NX2,Y,W,X1,X2,
- FIT, LEV, EST, SE, VCOV, SS, DF, MES)

best linear regression of y

on X1 and at most one of the columns of X2

the best is the minimal-jackknife-ss one over the w!=0
observations from those with nonnegative coefficient for the
X2-term

* X X ¥ %

* dimensions ----------- - *
INTEGER MOBS, MTERM, MX1, MX2
PARAMETER (MOBS=30,MTERM=8,MX1=3,MX2=5)

¥ arguments ------mmm e m e m e m———— - *
INTEGER NOBS, NX1, NX2, MES
REAL Y(MOBS), W(MOBS), X1(MOBS,MX1l), X2 (MOBS,6MX2)
REAL FIT(MOBS), LEV(MOBS), EST(MTERM), SE(MTERM)
REAL VCOV (MTERM, MTERM), SS, DF

* local variables and arrays =----—-—-—-—--—c-mmrcmmmmmommcc e ——mmemm e *
INTEGER BSTFIT, I, J
REAL X (MOBS, MTERM) , CVCOV (MTERM, MTERM) , BVCOV (MTERM, MTERM)

REAL CSsS,CJACSS, CFIT(MOBS),CLEV(MOBS), CEST (MTERM) , CSE (MTERM)
REAL BSS,BJACSS, BFIT(MOBS), BLEV(MOBS), BEST (MTERM) , BSE (MTERM)
REAL JR, CDF, BDF

DO 11 I=1,NOBS
DO 10 J=1,NX1
X(I,J) = X1(i,J)
10 CONTINUE
11 CONTINUE

CALL LINREG(NOBS, NX1, Y, W, X, BFIT, BLEV, BEST,
- BSE, BVCOV, BSS, BDF, MES)

BSTFIT 0
BJACSS 0
DO 20 J=1,NOBS
IF (W(J).NE.O) THEN
JR = (Y(J)-BFIT(J))/(1-BLEV(J))
BJACSS = BJACSS + JR*JR
ENDIF
20 CONTINUE

]

* from X2 take the variate giving the best jackknife ss ------------ *
IF (NX2.GT.0) THEN
DO .32 I=1,NX2

PO=3-0=TF=157NOBS
X(J,NX1+1) = X2(J,I)

CALL LINREG(NOBS, NX1+1, Y, W, X, CFIT, CLEV, CEST,
- CSE, CVCOV, CSS, CDF, MES)
CJACSS = 0



DO 31 J=
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1,NOBS

IF (W(J).NE.O0.) THEN
JR = (Y(J)-CFIT(J))/(1-CLEV(J))
CJACSS = CJACSS + JR*JR

ENDIF
31 CONTINUE
IF (CJACSS.LT.BJACSS .AND. CEST(NX1+1).GT.0.) THEN
BSTFIT = I
CALL EXCRS (BJACSS, CJACSS)
CALL EXCRS(BSS,CSS)
CALL EXCRS (BDF, CDF)
CALL EXCR1 (MOBS,BFIT,CFIT)
CALL EXCR1(MOBS,BLEV,CLEV)
CALL EXCR1 (MTERM, BEST, CEST)
CALL EXCR1(MTERM, BSE, CSE)
CALL EXCR2 (MTERM, MTERM, BVCOV, CVCOV)
ENDIF
32 CONTINUE
ENDIF
* copy results to outputparameters ----------cecmo——mm e *
SS = BSS
DF = BDF
DO 40 I=1,NOBS
FIT(I) = BFIT(I)
LEV(I) = BLEV(I)
40 CONTINUE
DO 41 I=1,NX1
EST(I) = BEST(I)
SE(I) = BSE(I)
41 CONTINUE
IF (NX2.GT.0) THEN
DO 42 I=NX1+1,NX1+NX2
EST(I) = 0.0
SE(I) = 0.0
42 CONTINUE
ENDIF
IF (BSTFIT.NE.O) THEN
EST(NX1+BSTFIT) = BEST(NX1+1)
SE (NX1+BSTFIT) = BSE(NX1+1)
ENDIF
IF (NX2.GT.0) THEN
DO 44 I=1,NX1+NX2
DO 43 J=1,NX1+NX2
VCOV(I,J) = 0.0
43 CONTINUE
44 CONTINUE

ENDIF

DO-46-I=1,NX1

45

DO 45 J=1,NX1
VCOV(I,J) = BVCOV(I,J)

CONTINUE
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46 CONTINUE

IF (BSTFIT.NE.O) THEN
DO 47 I=1,NX1

VCOV (NX1+BSTFIT,I) = BVCOV(NX1+1,I)
47 CONTINUE
DO 48 I=1,NX1
VCOV(I,NX1+BSTFIT) = BVCOV(I,NX1+1)
48 CONTINUE
VCOV (NX1+BSTFIT, NX1+BSTFIT) = BVCOV(NX1l+1l,NX1+1)
ENDIF
RETURN

END

SUBROUTINE EXCRS(V1,V2)
REAL V1,V2,P

P =V1

V1l = V2

V2 = P

RETURN

END

SUBROUTINE EXCR1(N,V1,V2)
INTEGER N, I
REAL V1(N),V2(N),P

DO 10 I=1,N

P = V1(I)
V1(I) = V2(I)
V2(I) = P
10 CONTINUE
RETURN
END

SUBROUTINE EXCR2(N1,N2,V1,V2)
INTEGER N1,N2,I,J
REAL V1(N1,N2),V2(N1,N2),P

DO 11 I=1,N1
DO 10 J=1,N2

P = V1(I,J)
V1(I,J) = V2(I,J)
vV2(I,J) =P
10 CONTINUE
11 CONTINUE
RETURN

END




Appendix 8a.

crop
region name

Example of detailed statistical output. Prediction rule

PO

= wheat
= R22 (Bassin Parisien)

number of seasons = 15

mean

Prediction
term
constant
(year-1982.0)
(ind[*]- *)

R-squared :

= 5.644
n al
est se
5.644 0.130
0.186 0.030
* *
0.74

43.28
6.16

Estimated relative root mean square errors (% of 5.644):

residual :
jackknife :

Prediction
term
constant
(year-1985.0)
(ind[*]-  *)

R-squared :

8.9
9.5
nl ns:

est se
6.190 0.193
0.151 0.075
* *

0.37

32.12
2.02

Estimated relative root mean square errors (% of 5.644):

residual :
one year ahead :

two years ahead :

10.2

12.0 (based on 6 comparisons)
14.3 (based on 5 comparisons)
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Appendix 8b.

crop
region name
number of seasons
mean

Prediction
term
constant
(year-1982.0)
(ind[1]- 8.538)

R-squared:

Example of detailed statistical output. Prediction rule

P5.

=wheat
= R22 (Bassin Parisien)
=15

=5.644
l
est se
5.644 0.101
0.168 0.024
0.331 0.107
0.86

55.80
6.97
3.10

Estimated relative root mean square errors (% of 5.644):

residual:
jackknife:

Prediction
term
constant
(year-1985.0)
(ind[1]- 5.187)

R-squared :

6.9
9.2
! ns:
est se
4,528 0.700
0.125 0.058
0.481 0.198
0.68

6.47
2.15
2.43

Estimated relative root mean square errors (% of 5.644)

residual:
one year ahead:
two years ahead:

7.9

10.2 (based on 6 comparisons)
13.5 (based on 5 comparisons)
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Appendix 9 and 10. Summarized results, explanation of abbreviations.

Two prediction rules are investigated:
PO: no model indicators used
P5: chooses between no model indicator, potential grain yield, water limited grain yield,

potential biomass and water-limited biomass.

Each region or country corresponds to a line in a dataset. The columns contain:

nuts : region or country NUTS-code (see Appendix 3)

nobs : number of years

mean : mean yield over years

sel : indicator selected: [1]= potential grain yield, [2]= water-limited grain yield,
[3]= potential biomass, [4]= water-limited biomass

coef : coefficient of the selected indicator

t : t-value of indicator

rsq : R2 of selected regression based on all years

res : relative root mean squared residual error of selected regression based on last 9
years

jack : relative root mean squared jackknife error of complete prediction rule based on
all years

oya : relative root mean squared one year ahead error of complete prediction rule

tya : relative root mean squared two years ahead error of complete prediction rule

ek : no data available
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Appendix 9. Summary output Nuts-1.
Explanation abbreviations: page 85.

Wheat PO

nuts nobs mean  sel coef t rsq res jack oya tya
R11 15 6.639 0.000 0.00 0.781 63 75 7.7 81
R12 15 6.095 0.000 0.00 0.745 82 83 119 131
R13 15 5.617 0.000 0.00 0.594 12.2 10.6 17.5 19.7
R14 10 5.250 0.000 0.00 0.786 49 5.1 26 ***
R15 15 5679 0.000 0.00 0.821 6.7 7.8 9.0 9.0
R16 15 5.374 0.000 0.00 0.690 78 87 85 77
R17 15 4919 0.000 0.00 0.708 79 96 93 87
R18 15 4918 0.000 0.00 0.765 9.7 79 124 143
R19 15 5.261 0.000 0.00 0813 103 88 135 126
R1A 15 4.580 0.000 0.00 0491 214 21.6 27.8 32.7
R21 15 6.119 0.000 0.00 0.705 11.1 104 12.7 133
R22 15 5.644 0.000 0.00 0.745 10.2 9.5 12.0 143
R23 15 6.178 0.000 0.00 0776 116 9.5 151 144
R24 15 4.850 0.000 0.00 0602 145 123 18.0 184
R25 15 4.731 0.000 0.00 0.731 73 83 86 7.1
R26 15 3.989 0.000 0.00 0541 141 13.1 194 209
R27 15 4.299 0.000 0.00 0.553 134 129 173 157
R28 15 2.959 0.000 0.00 0.274 13.8 125 164 163
R31 15 3.652 0.000 0.00 0.625 115 119 155 13.1
R32 15 4.971 0.000 0.00 0.653 73 75 102 741
R33 15 4.747 0.000 0.00 0.815 42 7.2 7.2 78
R34 15 4.696 0.000 0.00 0.294 7.6 103 121 155
R35 15 2.971 0.000 0.00 0.658 56 66 76 80
R36 15 2.634 0.000 0.00 0.339 11.7 123 153 139
R37 14 2.329 0.000 0.00 0.788 39 81 58 73
R38 14 2.446 0.000 0.00 0.440 84 106 123 134
R39 14 1.919 0.000 0.00 0.001 243 222 285 175
R3A 14 1.685 0.000 0.00 0.003 182 19.7 23.9 25.1
R3B 15 1.475 0.000 0.00 0.032 41.7 350 479 36.6
R41 15 6.129 0.000 0.00 0.552 93 9.3 121 120
R42 15 6.815 0.000 0.00 0.634 86 9.8 127 144
R45 15 6.443 0.000 0.00 0.795 82 93 116 132
R47 14 6.939 0.000 0.00 0.696 84 9.6 12.1 141
R51 15 5.536 0.000 0.00 0.643 152 13.1 19.6 19.3
R52 15 5.543 0.000 0.00 0.773 10.0 9.8 124 136
R53 14 4.981 0.000 0.00 0.755 82 9.1 100 64
R60 15 3.548 0.000 0.00 0595 123 151 10.0 104
R71 14 5944 0.000 0.00 0.594 118 114 156 20.6
R72 14 6.203 0.000 0.00 0680 11.6 106 148 20.8
R73 14 5.995 0.000 0.00 0.607 129 11.7 169 217
R74 14 6.122 0.000 0.00 0502 11.2 11.8 188 23.6
R75 14 5.909 0.000 0.00 0493 105 11.8 155 20.7
R76 14 5.801 0.000 0.00 0.571 80 10.1 11.0 139
R77 14 5.704 0.000 0.00 0.601 9.2 99 121 165
R78 14 5.516 0.000 0.00 0.223 111 126 143 134
R79 14 0.000 0.00 0.307 139 136 81 11.0
R7A 14 0.000 0.00 0.534 114 116 17.1 114
R7B 14 0.000 0.00 0.125 27.8 24.0 34.4 209
R80 15 0.000 0.00 0.740 13.2 116 17.7 216
R0 16 0.000 0.00 0650 109 99 14.4 147
RA1 10 0.000 0.00 0.197 135 135 63 ***
RB1__15 . . 0.576 119 10.8 16.2 18.2
RB2 15 0.000 0.00 0.732 13.6...13.9 . 212 231
RB3 15 0.000 0.00 0.257 21.4 257 30.0 26.8

R4 15 1.663 0000 0.00 0493 217 227 286 294

RBS 15 259 0.000  0.00 0.712 155 14.8 221 236
RB6 15 2.440 0.000 0.00 0.246 30.0 25.6 30.2 22.7
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85.

Wheat P5

nuts nobs mean  sel coef t rsq res jack oya tya
R11 15 6.639 0.000 0.00 0.781 6.3 83 116

R12 15 6.095 0.000 0.00 0.745 82 9.7 16.8 17 2
R13 15 5.617 0.000 0.00 0594 122 106 176 19.7
R14 10 5.250 0.000 0.00 0.786 49 51 26 ***
R15 15 5679 0.000 0.00 0.821 67 82 91 9.0
R16 15 5374 ind[2] 0173 168 0.749 78 90 92 78
R17 15 4919 ind[2] 0.271 355 0.858 79 65 106 4.6
R18 15 4918 ind[3] 0.108 1.07 0.785 9.0 80 11.8 145
R19 15 526t ind[4] 0.129 1.00 0.828 103 9.1 14.1 123
R1IA 15 4580 ind[3] 0342 162 0582 21.1 21.2 299 29.2
R21 15 6.119 ind[1] 0.391 338 0.849 10.8 10.5 9.6
R22 15 5644 ind[1] 0331 3.10 0.858 9.2 10.2 135
R23 15 6.178 0.000 0.00 0776 1 9.5 15.1 1441
R24 15 43850 ind[1] 0336 244 0734 1 13.3 154 16.6
R25 15 4731 ind[3] 0344 348 0.866 63 9.5 10.0
R26 15 3.989 0.000 0.00 0541 1 141 223 26.2
R27 15 4.299 ind[4] 0.106 1.31 0.610 1 148 174 15.6
R28 15 2959 ind[3] 0354 4.15 0.702 87 85 173
R31 15 3.652 0.000 0.00 0625 1 119 155 13.1
R32 15 4.771 0.000 0.00 0.653 75 102 741
R33 15 4.747 0.000 0.00 0.815 72 72 78
R34 15 4.696 0.000 0.00 0.294 10.3 121 15.5
R35 15 2.971 0.000 0.00 0.658 66 7.6 8.0
R36 15 2.634 0.000 0.00 0339 1 123 153 13.9
R37 14 2329 0.000 0.00 0.788 89 58 73
R38 14 2446 0.000 0.00 0.440 1.4 123 13.4
R39 14 1919 ind[2] 0445 330 0498 1 19.2 21.6 16.6
R3A 14 1.685 ind[2] 0.196 194 0.257 1 204 23.1 2741
R3B 15 1.475 0.000 0.00 0.032 4 414 555 52.7
R41 15 6.129 ind[1] 0.351 1.71 0.640 121 12.0

-
N
~
-
-
E-N

R42 15 6.815 ind[1] 0372 1.67 0.703
R45 15 6.443 ind[3] 0.132 1.30 0.820
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R47 14 6.939 ind[1] 0.654 2.75 0.820 12.1 1241

R51 15 5.536 0.000  0.00 0643 1 154 225 145
R52 15 5.543 0.000 0.00 0.773 16.2 12.8 12.1
R53 14 4.981 0.000 0.00 0.755 10.3 13.5 27
R60 15 3.548 ind[2] 0.257 295 0.765 1 15,5 11.1 153
R71 14 5.944 0.000 0.00 0594 1 114 15.6 20.6
R72 14 6.203 0.000  0.00 0.680 1 109 148 20.8
R73 14 5.995 0.000 0.00 0.607 1 123 169 21.7
R74 14 6.122 ind[2] 0376 1.33 0.571 1 126 17.7 22.7
R75 14 5.909 0.000 0.00 0493 1 11.8 16.1 19.7
R76 14 5.801 ind[3] 0.193 1,68  0.659 10.2 121 129
R77 14 5.704 0.000  0.00 0.601 106 133 19.7
R78 14 5.516 0.000  0.00 0223 1 13.7 15.6 15.0
R79 14 5.678 0.000 0.00 0.307 1 15.0 11.5 13.1
R7A 14 6.537 0.000  0.00 0.534 1 116 171 11.4
R7B 14 5.252 0.000 0.00 0.125 2 24.0 34.4 20.9
R80 15 6.018 0.000 0.00 0.740 1 129 19.4 23.6
RO 16 5.954 ind[2] 0.467 238 0.756 9.1 14.1 174
RA1T 10 2664 ind[4] 0.107 194 0477 1 146 10.0 ***
RB1 15 1.641 0.000  0.00 0.576 119 191 227

1 21.7

RB2 15 2.404 Ind[3] 0.214 300 0.847

RB3=——tbeet 17

RB4™15 1.663 a2l 0.172 2.56 0672 12.2

3.1
RB5 15 2.595 ind[3] 0.528 3.93 0.874 105 13.6 18.6 19.6
——RB6--—-15--—-2.440 0.000-—0.00 0.246-—30.0-28.1




89

Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85.

Maize PO

nuts nobs mean sel coef t rsq res jack oya tya
R11 13 5.518 0.000 0.00 0.720 96 158 9.8 115
R12 15 5.572 0.000 0.00 0.658 127 114 13.7 1241
R13 15 5.787 0.000 0.00 058 11.5 9.8 142 146
R15 15 6.320 0.000 0.00 0.729 77 72 105 88
R16 15 6.530 0.000 0.00 0.727 58 88 54 6.5
R17 15 5.759 0.000 0.00 0.410 66 11.1 87 109
R18 15 6.319 0.000 0.00 0.284 17.2 16.1 19.0 214
R19 15 6.265 0.000 0.00 0.676 98 9.7 98 93
R1A 15 4.589 0.000 0.00 0.438 255 234 245 228
R21 15 6.541 0.000 0.00 0.588 9.0 134 114 122
R22 15 5.736 0.000 0.00 0.780 68 96 75 74
R23 15 5.898 0.000 0.00 0.667 89 87 108 1141
R24 15 6.874 0.000 0.00 0.804 95 83 82 101
R25 15 5.673 0.000 0.00 0.640 88 128 106 115
R26 15 5.945 0.000 0.00 0.873 59 65 9.1 98
R27 15 5.661 0.000 0.00 0524 136 115 135 174
R28 15 5.423 0.000 0.00 0.839 63 6.1 88 10.0
R31 15 6.407 0.000 0.00 0.517 57 54 77 741
R32 15 7.698 0.000 0.00 0.759 49 49 52 74
R33 15 7.664 0.000 0.00  0.551 69 6.2 83 93
R34 15 7.772 0.000 0.00 0.704 62 55 72 70
R35 15 6.561 0.000 0.00 0.749 55 6.0 80 85
R36 15 5.805 0.000 0.00 0.891 78 6.4 108 10.8
R37 14 4.227 0.000 0.00 0801 13.0 16.0 243 293
R38 14 4.625 0.000 0.00 0.657 87 97 13.0 164
R39 14 2410 0.000 0.00 0.855 81 73 10.1 120
R3A 14 5.001 0.000 0.00 0.859 81 152 99 133
R3B 15 6.563 0.000 0.00 0.001 182 149 215 253
R51 15 6.797 0.000 0.00 0.705 81 89 113 13.0
R52 15 6.531 0.000 0.00 0242 196 164 24.7 176
RA1 10 8.574 0.000 0.00 0438 113 16.0 3.7 ***
RB1 15 2.765 0.000 0.00 0.49 6.7 103 65 79
RB2 15 6.621 0.000 0.00 0397 112 129 16.2 215
RB3 15 7.452 0.000 000 0642 102 85 11.1 115
RB4 15 6.570 0.000 0.00 0378 19.0 179 264 27.8
RB5 15 5.435 0.000 0.00 0.380 93 87 120 116
RB6 15 6.981 0.000 0.00 0.817 94 11.7 9.2 115




90

Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85.

Maize P5

nuts nobs mean  sel coef t rsq res jack oya tya
R11 13 5.518 0.000 0.00 0.720 6.1 158 10.0 10.1
R12 15 5572 ind[2] 0.155 193 0.739 54 133 83 6.7
R13 15 5.787 ind[4] 0.168 265 0.738 63 97 114 10.2
R15 15 6.320 ind[2] 0.241 285 0.838 40 66 83 79
R16 15 6.530 indf2] 0331 364 0.870 39 67 78 7.0
R17 15 5759 ind[2] 0.231 174 0.529 55 13.9 127 19.2
R18 15 6.319 ind[4] 0.406 3.02 0593 104 13.0 152 199
R19 15 6.265 ind[4] 0.191 240 0.781 74 92 85 105
RTA 15 4589 ind[4] 0311 429 0778 124 188 176 175
R21 15 6.541 ind[2] 0.253 4.09 0.828 69 85 17.2 11.8
R22 15 5.736 ind[4] 0.135 348  0.891 67 69 83 103
R23 15 5.898 0.000 0.00 0.667 69 133 87 7.9
R24 15 6.874 ind[4] 0.187 4.69 0.931 48 63 58 83
R25 15 5.673 ind[4] 0.163 5.46  0.897 53 79 81 95
R26 15 5.945 ind[2] 0.069 154 0.894 42 73 83 98
R27 15 5661 ind[2] 0.195 276  0.709 9.1 129 17.9 195
R28 15 5.423 0.000 0.00 0.839 37 74 65 9.1
R31 15 6.407 ind[4] 0.094 176 0.616 57 6.0 9.7 129
R32 15 7.698 ind[4] 0.082 190 0.815 49 48 7.2 10.0
R33 15 7.664 ind[4] 0.166 1.86  0.651 69 78 114 115
R34 15 7.772 ind[3] 0.162 233 0.796 45 58 100 94
R35 15 6.561 0.000 0.00 0.749 55 64 80 85
R36 15 5.805 0.000 0.00 0.891 78 64 113 114
R37 14 4227 ind[4] 0.121 163 0840 13.0 17.0 285 293
R38 14 4.625 ind[4] 0.089 298 0.810 87 79 13.0 16.1
R39 14 2410 ind[3] 0.067 1.79 0.888 7.0 109 113 121
R3A 14 5.001 0.000 0.00 0.859 81 152 9.9 133
R3B 15 6.563 ind[1] 0.404 134 0.131 182 16.4 21.5 253
R51 15 6.797 ind[4] 0.106 1.71 0.762 6.2 11.4 13.6 14.1
R52 15 6.531 ind[3] 0.471 3.14 0585 122 13.8 46.6 47.6
RA1 10 8.574 0.000 0.00 0438 11.3 17.1 3.7 ***
RB1 15 2.765 0.000 0.00 0.49 6.1 103 7.1 9.1
RB2 15 6.621 0.000 0.00 0397 11.2 129 16.2 21.5
RB3 15 7.452 0.000 0.00 0642 102 93 133 127
RB4 15 6.570 0.000 0.00 0378 19.0 20.7 28.1 28.8
RB5 15 5435 ind[3] 0.094 1.08 0.435 93 92 133 136
RB6 15 6.981 0.000 0.00 0.817 9.4 11.7 9.2 115
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85.

Barley PO

nuts nobs mean  sel coef t rsq res jack oya tya
R11 15 5.531 0.000 0.00 0.750 89 86 10.2 101
R12 15 4.987 0.000 0.00 0.801 55 7.0 64 6.3
R13 15 4.539 0.000 0.00 0.744 37 45 54 54
R14 10 4.297 0.000 0.00 0.761 45 45 54 *¥*
R15 15 4.967 0.000 0.00 0.767 6.1 6.1 7.7 6.0
R16 15 4.740 0.000 0.00 0.628 85 87 87 104
R17 15 4.096 0.000 0.00 0.433 9.0 112 74 6.3
R18 15 4.235 0.000 0.00 0.681 9.2 74 119 143
R19 15 4.287 0.000 0.00 0.670 11.8 10.0 15.7 18.0
R1IA 15 3.945 0.000 0.00 0352 100 116 74 7.2
R21 15 5.276 0.000 0.00 0.752 101 9.7 10.1 85
R22 15 4.849 0.000 0.00 0.861 85 75 95 6.2
R23 15 5.764 0.000 0.00 0.738 9.8 9.2 109 82
R24 15 4.063 0.000 0.00 0484 16.2 13.0 16.4 159
R25 15 3.925 0.000 0.00 0.652 134 133 152 144
R26 15 3.449 0.000 0.00 0.650 13.6 109 16.0 134
R27 15 3.534 0.000 0.00 0504 151 146 19.1 18.1
R28 15 3.101 0.000 0.00 0249 105 104 11.2 126
R31 15 3.667 0.000 0.00 0.617 164 15.0 226 17.4
R32 15 4.735 0.000 0.00 0.601 10.8 103 15.6 14.0
R33 15 4.284 0.000 0.00 0725 10.8 109 16.2 20.3
R34 15 4.239 0.000 0.00 0.780 6.9 82 112 136
R35 15 2749 0.000 0.00 0.722 56 82 90 82
R36 15 2.833 0.000 0.00 0.541 9.1 13.1 144 158
R37 14 2326 0.000 0.00 0.731 66 87 98 108
R38 14 2313 0.000 0.00 0.726 7.7 87 135 16.9
R39 14 1971 0.000 0.00 0.129 20.2 185 214 209
R3A 14 1514 0.000 0.00 0.019 186 176 252 2738
R3B 15 1.533 0.000 0.00 0.008 379 32.0 47.2 343
R41 15 4.977 0.000 0.00 0.175 129 115 15.0 183
R42 15 4.883 0.000 0.00 0451 111 95 134 136
R45 15 4.718 0.000 0.00 0.492 9.9 115 121 147
R47 14 5.178 0.000 0.00 0356 145 13.1 17.8 185
R51 15 5.041 0.000 0.00 0.604 10.1 10.1 10.8 9.9
R52 15 5.429 0.000 0.00 0.762 94 87 82 6.7
R53 14 4.843 0.000 0.00 0579 9.2 115 100 64
R60 15 3.333 0.000 0.00 0225 159 172 64 55
R71 14 4.557 0.000 0.00 0398 104 10.1 125 16.7
R72 14 4.851 0.000 0.00 0.677 9.5 84 125 16.8
R73 14 4.656 0.000 0.00 0537 121 122 159 217
R74 14 4.657 0.000 0.00 0.543 87 9.8 140 171
R75 14 4.731 0.000 0.00 0.599 89 108 120 17.7
R76 14 4.587 0.000 0.00 0.559 9.4 104 114 164
R77 14 4.626 0.000 0.00 0.515 121 11.8 157 20.6
R78 14 4.206 0.000 0.00 0.211 11.0 114 122 164
R79 14 4300 0.000 0.00 0.149 11.7 125 151 19.9
R7A 14 4735 0.000 0.00 0.075 68 82 75

R7B 14 4.031 0.000 0.00 0.214 121 109 122 1
R80 15 4.955 0.000 0.00 0.657 7.7 87 9.7

RO 16 4.298
RA1 11 2575
RB1 15 1.663
RB2 15 2.326

bomwbowow
NNOoOoWhUNT=0O

I S v+ 4 06— 1
RB4 15 2.068 0.000 0.00 U'I'IZ Zjl 149 191 ZSU
RB5 15 2253 0.000 0.00 0267 254 234 326 29.0
RB6—15—1.527- ——0:000——0:00——0-117—25.5-26231.5-287
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85.

Barley P5

nuts nobs mean  sel coef t rsq res jack oya tya
R11 15 5.531 0.000 0.00 0.750 89 86 10.2 10.1
R12 15 4.987 0.000 0.00 0.801 55 7.0 64 63
R13 15 4539 ind[4] 0.080 142 0.781 37 47 54 54
R14 10 4.297 0.000 0.00 0.761 45 45 54 ***
R15 15 4.967 ind[4] 0263 287 0.862 54 50 92 64
R16 15 4.740 ind[4] 0475 3.14 0.796 7.2 85 112 938
R17 15 4.096 ind[2] 0464 264 0.642 9.0 119 87 8.1
R18 15 4235 ind[1] 0.443 253 0.792 70 73 113 133
R19 15 4.287 ind[4] 0.408 325 0.825 73 82 16.2 13.6
R1IA 15 3.945 ind[2] 0472 424 0.741 83 99 92 938
R21 15 5.276 ind[2] 0425 343 0.875 69 88 75 49
R22 15 4849 ind[4] 0311 336 0.928 85 66 88 6.1
R23 15 5.764 0.000 0.00 0738 98 92 122 84
R24 15 4.063 ind[2] 0.407 203 0616 146 123 152 124
R25 15 3.925 ind[4] 0.568 5.61 0.904 66 7.6 135 142
R26 15 3.449 ind[3] 0337 3.80 0.841 63 85 17.0 134
R27 15 3,534 ind[2] 0329 157 0588 15.1 182 19.2 15.2
R28 15 3.101 ind[4] 0333 7.14  0.857 32 50 6.5 146
R31 15 3.667 ind[3] 0.197 165 0688 146 16.1 226 174
R32 15 4.735 0.000 0.00 0.601 10.8 103 15.6 14.0
R33 15 4.284 0.000 0.00 0.725 10.8 109 16.2 20.3
R34 15 4.239 0.000 0.00 0.780 69 82 11.2 136
R35 15 2749 ind[4] 0.098 1.08 0.747 56 80 90 82
R36 15 2.833 0.000 0.00 0.541 9.1 13.1 144 158
R37 14 2.326 0.000 0.00 0.731 66 87 9.8 108
R38 14 2313 0.000 0.00 0.726 6.8 95 135 176
R39 14 1971 ind[4] 0237 150 0278 188 193 23.2 286
R3A 14 1514 ind[4] 0268 270 0410 146 17.5 26.1 27.8
R3B 15 1.533 0.000 0.00 0.008 33.6 355 50.2 36.3
R41 15 4977 ind[2] 0.695 235 0436 129 127 158 183
R42 15 4.883 0.000 0.00 0451 111 99 139 153
R45 15 4718 ind[2] 0461 264 0.679 86 99 10.2 1441
R47 14 5.178 ind[1] 0.756 2.00 0528 129 139 17.8 185
R51 15 5.041 ind[1] 0392 1.60 0.673 88 109 112 75
R52 15 5.429 0.000 0.00 0.762 6.0 10.7 103 7.1
R53 14 4.843 0.000 0.00 0579 9.2 125 11.2 5.7
R60O 15 3.333 ind[2] 0572 372 0640 159 128 58 8.2
R71 14 4.557 0.000 0.00 0398 104 10.1 129 17.0
R72 14 4.851 0.000 0.00 0.677 95 89 119 174
R73 14 4.656 0.000 0.00 0537 12.1 122 159 21.7
R74 14 4.657 0.000 0.00 0.543 87 104 14.0 1741
R75 14 4731 0.000 0.00 0.599 89 108 12.0 177
R76 14 4.587 0.000 0.00  0.559 9.4 104 1.4 164
R77 14 4.626 0.000 0.00 0.515 12.1 122 17.2 204
R78 14 4206 ind[1] 0.407 176 038 11.0 128 134 174
R79 14 4.300 0.000 0.00 0.149 11.7 125 15.1 199
R7A 14 4735 0.000 0.00 0.075 6.1 97 78 64
R7B 14 4.031 0.000 0.00 0.214 121 11.5 160 9.8
R80 15 4955 ind[1] 0486 203 0.744 7.7 86 128 105
RO 16 4.298 0.000 000 0.650 119 102 120 94
RA1 11 2575 0.000 0.00 0.028 148 21.7 16.1 233
RB1 15 1.663 0.000 0.00 0.128 94 96 115 117

RB4=15 4:08 lrfp] .l-m/ 4767 .8 8717:517:7-23:2
RB5 15 2.253 ind[4] 0.720 4.27 0.709 145 17.3 21.7 25.4

____RB6__15__1.527 _ind[2]._0.352___3.09 0.50820.0-20.9 34.4 _33.5
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85.

Rice PO

nuts nobs mean  sel coef t rsq res jack oya tya
R28 15 4.421 0.000 0.00 0.609 119 158 13.7 12.2
R31 15 5.612 0.000 0.00 0.238 28 121 39 76
R32 15 5.287 0.000 0.00 0.264 82 116 82 115
R33 15 5.477 0.000 0.00 0412 165 146 21.0 259
R34 15 5.27 0.000 0.00 0.413 67 79 68 39
R35 13 5.048 0.000 0.00 0.591 92 124 63 59
R39 12 4.545 0.000 0.00 0478 22.8 273 554 36.5
R3B 15 5.583 0.000 0.00 0.668 94 85 108 76
RA1 9 6.024 0.000 0.00 0.589 8.1 10.7 *** k%
RB2 15 4.146 0.000 0.00 0.157 194 17.2 26.7 26.2
RB4 15 5.657 0.000 0.00 0229 113 13.2 10.0 123
RB5S 15 6.141 0.000 0.00 0.011 56 59 52 54
RB6 15 6.236 0.000 0.00 0.002 14.1 119 129 158
Rice P5

nuts nobs mean  sel coef t rsq res jack oya tya
R28 15 4.421 ind[1] 0554 235 0.732 9.6 140 116 7.7
R31 15 5.612 0.000 0.00 0.238 28 121 45 83
R32 15 5.287 0.000 0.00 0.264 82 116 8.0 156
R33 15 5.477 0.000 0.00 0.412 125 17.1 20.8 2538
R34 15 5.271 0.000 0.00 0.413 67 79 68 39
R35 13 5.048 0.000 0.00 0.591 9.2 142 67 59
R39 12 4.545 ind[4] 0.463 2.01 0.640 22.8 29.5 51.3 324
R3B 15 5.583 0.000 0.00 0.668 94 9.1 138 115
RA1T 9 6.024 ind[1] 0.695 2.03 0.756 6.8 10.9 *¥* k%
RB2 15 4.146 ind[1] 0.163 0.74 0.194 17.4 185 26.7 26.2
RB4 15 5.657 ind[1] 0409 164 0371 113 142 10.0 123
RB5 15 6.141 0.000 0.00 0.011 56 59 54 55
RB6 15 6.236 0.000 0.00 0.002 141 119 129 158
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85.

Sugar beet PO

nuts nobs mean  sel coef t rsq res jack oya tya
R11 12 40.737 0.000 0.00 0.195 149 140 226 10.2
R12 8 40.835 0.000 0.00 0.290 7.7 82 *¥*  Fk%
R13 12 43.346 0.000 0.00 0.286 99 95 7.1 88
R15 12 48.891 0.000 0.00 0.375 94 94 43 39
R16 12 47.098 0.000 0.00 0.332 64 7.7 31 1.2
R17 12 51.933 0.000 0.00 0.209 77 82 44 15
R18 12 51.558 0.000 0.00 0.275 78 69 16 1.0
R19 12 54.39% 0.000 0.00 0.248 71 84 52 47
R1IA 9 36.418 0.000 0.00 0.005 19.3 21.9 *¥* Fx%
R21 11 55.251 0.000 0.00 0.735 65 118 7.8 22
R22 11 54.726 0.000 0.00 0.877 57 73 45 03
R23 11 50.774 0.000 0.00 0.697 92 93 64 73
R24 11 50.159 0.000 0.00 0.633 68 6.8 6.5 106
R25 11 47.768 0.000 0.00 0.718 77 95 149 15.1
R27 11 54.214 0.000 0.00 0.913 57 59 08 1.2
R31 10 52.345 0.000 0.00 0.134 11.2 11.8 10.3 ***
R32 10 53.078 0.000 0.00 0.359 84 89 3.1 ***
R33 10 53.771 0.000 0.00 0385 11.7 11.9 20.3 ***
R34 10 51.520 0.000 0.00 0.007 85 83 0.2 ***
R35 10 40.800 0.000 0.00 0.209 16.8 169 23 ***
R36 10 47.801 0.000 0.00 0.063 10.0 105 174 ***
R37 10 30.270 0.000 0.00 0.001 254 26.7 36.3 ***
R38 10 45.999 0.000 0.00 0.024 17.1 17.8 103 ***
R39 10 38.531 0.000 0.00 0.048 16.7 17.2 142 ***
R3B 10 41.200 0.000 0.00 0.157 19.4 20.5 12.1 ***
R51 12 51.424 0.000 0.00 0.273 69 84 6.7 47
R52 12 51.694 0.000 0.00 0.367 9.7 10.2 11.0 13.0
R53 11 49.368 0.000 0.00 0.042 39 11.2 49 36
R60 11 45.628 0.000 0.00 0320 263 31.0 30.7 36.9
R80 11 42.507 0.000 0.00 0.004 123 113 69 53
R0 13 44.082 0.000 0.00 0548 115 10.0 124 9.0
RB2 11 39.146 0.000 0.00 0.772 9.1 93 183 187
RB3 11 35.516 0.000 0.00 0.179 7.0 10.0 11.6 8.0
RB4 11 41.587 0.000 0.00 0374 10.8 10.8 14.1 16.1
RB5 9 28.908 0.000 0.00 0235 31.0 32,6 *** **%*
RB6 10 31.697 0.000 000 0573 148 155 258 ***
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85.

Sugar beet P5

nuts nobs mean  sel coef t rsq res jack oya tya
R11 12 40.737 ind[2] 4.058 4.79 0.773 71 88 107 6.2
R12 8 40.835 0.000 0.00 0.290 6.7 103 *** k%
R13 12 43346 0.000 0.00 0.286 84 104 109 8.9
R15 12 48891 ind[2] 2033 198 0.564 7.2 10.2 27 25
R16 12 47.098 ind[2] 1.214 2.04 0544 57 83 35 23
R17 12 51933 ind[4] 1508 2.88  0.589 77 90 39 13
R18 12 51.558 0.000 0.00 0.275 78 69 16 1.0
R19 12 54.3% 0.000 0.00 0.248 73 85 6.0 47
R1IA° 9 36.418 ind[4] 1876 236 0.484 150 23.2 *¥* %%
R21 11 55.251 ind[4] 1.606 5.18  0.939 65 71 84 11.0
R22 11 54726 ind[2] 1.110 258  0.933 57 57 56 7.0
R23 11 50.774 0.000 0.00 0.697 92 93 64 73
R24 11 50.159 0.000 0.00 0.633 68 69 59 102
R25 11 47.768 ind[4] 0943 478 0.927 43 51 74 28
R27 11 54214 0.000 0.00 0913 57 59 08 1.2
R31 10 52345 0.000 0.00 0.134 88 13.5 10.3 ***
R32 10 53.078 0.000 0.00 0.359 84 B89 3.1 #***
R33 10 53.771 ind[3] 3.089 244  0.667 9.3 10.1 242 ***
R34 10 51.520 ind[3] 1959 528 0.801 41 44 65 ***
R35 10 40.800 ind[3] 2607 222 0535 127 163 10.1 ***
R36 10 47.801 0.000 0.00 0.063 100 109 17.4 ***
R37 10 30.270 ind[4] 1377 166 0.283 20.0 30.8 36.3 ***
R38 10 45.999 0.000 0.00 0.024 16.5 21.1 103 ***
R39 10 38.531 ind[4] 1967 280 0550 11.7 17.2 15.6 ***
R3B 10 41.200 0.000 0.00 0.157 194 20.5 12.1 ***
R51 12 51.424 0.000 0.00 0.273 68 84 113 122
R52 12 51.69%4 0.000 0.00 0.367 9.8 109 13.7 17.4
R53 11 49.368 0.000 0.00 0.042 39 11.2 49 36
R60 11 45.628 0.000 0.00 0320 26.3 31.0 30.7 36.9
R80 11 42507 ind[3] 3.098 280  0.498 63 11.2 124 6.1
R0 13 44.082 ind[2] 2130 337 0.788 7.0 109 11.8 144
RB2 11 39.146 ind[2] 1.053 142 0.818 85 10.7 19.0 10.7
RB3 11 35.516 ind[2] 0.847 150 0.359 70 109 116 8.0
RB4 11 41.587 ind[2] 1428 153 0516 108 122 14.1 16.1
RB5 9 28.908 0.000 0.00 0.235 31.0 326 *** *¥*%
RB6 10 31.697 ind[4] 2858 236 0.762 122 155 258 ***
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85.

Potato PO

nuts nobs mean  sel coef t rsq res jack oya tya
R11 11 28.262 0.000 000 0476 169 20.6 16.0 19.5
R12 11 29.635 0.000 0.00 0662 125 143 135 16.6
R13 11 32.588 0.000 0.00 0.763 99 100 63 3.1
R15 11 33.550 0.000 0.00 0.798 82 10.2 13.2 59
R16 11 27.204 0.000 000 0385 153 156 108 1.8
R17 11  26.781 0.000 0.00 0566 11.0 125 29 57
R18 11 27.995 0.000 0.00 0.105 152 150 13.8 133
R19 11 30.495 0.000 0.00 0440 13.0 129 22.2 19.0
R1IA 11 24.535 0.000 0.00 0345 248 26.6 22.7 325
R21 10 32.671 0.000 0.00 0.630 174 214 7.1 ***
R22 10 33.869 0.000 0.00 0720 153 168 3.6 ***
R23 10 38.454 0.000 0.00 0.612 13.1 153 3.2 ***
R24 10 29.962 0.000 0.00 0609 29.4 33.0 729 *¥*
R25 10 24.685 0.000 000 0784 113 133 10.0 ***
R26 10 25.389 0.000 0.00 0.763 15.6 18.6 20.8 ***
R27 10 20.756 0.000 0.00 0523 15.9 20.2 22.0 ***
R28 10 20.208 0.000 0.00 0.827 6.5 7.4 10.0 ***
R31 11 20.090 0.000 0.00 0341 149 145 21.0 186
R32 11 23.390 0.000 000 0378 113 11.6 20.2 26.5
R33 11 26.296 0.000 0.00 0.718 58 59 7.7 65 |
R34 11 27.054 0.000 0.00 0.819 75 76 89 139
R35 11 13.672 0.000 0.00 0377 81 87 152 20.6
R36 11 17.986 0.000 0.00 0.820 79 95 59 041
R37 10 20.328 0.000 0.00 0.042 143 150 63 ***
R38 10 15.375 0.000 0.00 0.689 95 10.5 0.3 ***
R39 10 11.601 0.000 0.00 0.718 9.7 10.0 122 *%**
R3A 11 17.751 0.000 0.00 0.062 283 276 43.6 355
R3B 12 15.323 0.000 0.00 0.129 9.0 11.8 19.2 24.0
R41 12 34779 0.000 0.00 0.495 95 94 78 43
R4A2 12 42473 0.000 0.00 0.798 79 7.2 82 103 |
R45 12 43.502 0.000 0.00 0.697 66 10.2 7.6 12.7
R47 11 39.676 0.000 0.00 0.812 65 64 63 6.0
R51 11 33.128 0.000 0.00 0512 10.0 16.0 145 17.6
R52 11 33.427 0.000 0.00 0.267 134 172 140 1.9
R53 10 29.065 0.000 0.00 0302 205 21.7 9.5 ***
R60 12 27.788 0.000 0.00 0217 19.1 26.3 16.1 184
R7A 9 34.492 0.000 0.00  0.381 6.0 6.4 Fxx k¥k¥
R7B 10 25.783 0.000 0.00 0.073 6.8 64 29 *¥*
R80 11 23.223 0.000 0.00 0.174 13.1 124 134 104
R9O 12 30.993 0.000 0.00 0.789 9.8 120 53 9.7
RB1 10 12.426 0.000 0.00 0333 174 31.6 504 ***
RB2 10 17.859 0.000 0.00 0.597 6.0 21.2 3.2 #***
RB3 10 20.385 0.000 0.00 0.372 1.5 19.9 8.6 ***
RB4 10 16.868 0.000 0.00 0.686 6.9 145 6.7 ***
RB5 10 15.020 0.000 0.00 0.518 46 29.3 153 =
RB6 10 17.034 0.000 0.00 0.590 9.0 288 58 ***
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85.

Potato P5

nuts nobs mean  sel coef
R11 11 28262 ind[4] 1.158
R12 11 29.635 ind[4] 0.856

t rsq res jack oya tya
3
3
R13 11 32588 ind[3] 3347 2.
2
1
3

4 0781 169 145 15.9 .

2 0.867 93 123 140 104
0 0.867 6.7 11.3 108 11.1
3
0

R15 11 33.550 ind[4] 0.701 0.896 46 100 102 1.3
R16 11 27.204 ind[1] 2.196 0576 153 169 99 74
R17 11 26.781 ind[1] 2.098 91 0.851 71 87 73 1.4
R18 11 27.995 0.000 0.00 0.105 152 159 138 133
R19 11 30.495 ind[1] 2169 146 0558 122 133 220 19.7
R1IA 11 24535 ind[1] 3.102 278 0.667 18.6 22.1 27.6 428
R21 10 32671 ind[1] 3.408 395 0.886 104 202 0.7 ***
R22 10 33.869 ind[1] 3.057 4.04 0916 9.1 135 6.8 ***
R23 10 38.454 ind[4] 1.047 3.23 0.844 86 142 1.3 ***
R24 10 29.962 ind[1] 4.407 247 0.791 257 30.8 67.0 ***
R25 10 24.685 ind[1] 1558 3.50 0.921 3.5 111 2.2 ***
R26 10 25.389 ind[3] 1.254 1.52 0.822 13.0 18.8 149 ***
R27 10 20.756 ind[4] 0.552 2.10 0.707 13.8 24.0 13.6 ***
R28 10 20.208 0.000 0.00 0.827 6.5 84 10.0 ***
R31 11 20.090 0.000 0.00 0341 149 145 21.0 186
R32 11 23390 0.000 0.00 0378 113 11.6 20.2 26.5
R33 11 26.296 0.000 0.00 0.718 58 64 7.7 65
R34 11 27.054 ind[2] 0369 248 0.898 63 60 89 139
R35 11 13.672 ind[3] 0437 2.04 0.590 7.1 9.3 152 20.6
R36 11 17.986 0.000 0.00 0.820 79 105 59 0.1
R37 10 20.328 0.000 0.00 0.042 143 157 6.3 ***
R38 10 15375 ind[4] 0.277 1.53 0.767 87 109 0.0 ***
R39 10 11.601 ind[3] 0.556 1.42 0.781 93 10.6 10.7 ***
R3A 11 17.751 0.000 0.00 0.062 283 324 436 355
R3B 12 15323 0.000 0.00 0.129 9.0 127 19.2 24.0
R41 12 34779 ind[4] 0.809 462  0.850 510 61 79 64
R42 12 42473 ind[3] 1.831 245 0.879 50 68 74 103
R45 12 43502 ind[1] 2654 344  0.869 48 84 82 4.2
R47 11 39.676 0.000 0.00 0.812 65 81 63 6.0
R51 11 33.128 ind[1] 4.021 6.24 0.917 48 91 09 22
R52 11 33427 ind[2] 1.063 3.26 0685 113 16.1 151 22.5
R53 10 29.065 ind[1] 3.986 3.95 0.783 115 194 3.6 ***
R60 12 27.788 ind[1] 3.630 3.66 0.685 19.1 16.9 20.1 22.6
R7A° 9 34492 ind[3] 1862 196 0.623 51 6.5 *** k%
R7B 10 25.783 ind[1] 0.749 1.00 0.189 6.7 6.7 28 ***
R80 11 23.223 ind[3] 2.075 247 0531 103 109 9.8 11.7
RO9O 12 30993 ind[2] 0363 124 0.819 98 139 30 7.2
RB1 10 12.426 0.000 0.00 0333 174 31.6 50.4 ***
RB2 10 17.859 0.000 0.00 0.597 6.0 21.2 3.2 ***
RB3 10 20.385 0.000 0.00 0.372 1.3 197 8.6 ***
RB4 10 16.868 0.000 0.00 0.686 6.9 23.7 56.1 ***
RB5 10 15.020 0.000 0.00 0.518 46 29.3 153 ***
RB6 10 17.034 0.000 0.00 0.590 9.0 288 58 ***
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85.

Oilseed rape PO

nuts nobs mean sel coef t rsq res jack oya tya
R11 11 2.921 0.000 0.00 0357 16.6 16.1 17.1 22.2
R12 11 2.674 0.000 000 0379 116 11.6 13.7 187
R13 11 2.603 0.000 0.00 0.902 55 6.1 7.2 3.1
R15 11 2.648 0.000 0.00 0.834 89 85 31 55
R16 11 2.500 0.000 0.00 0.876 68 88 32 18
R17 11 2.452 0.000 0.00 0.753 67 99 39 44
R18 11  2.586 0.000 0.00 0.899 55 59 102 5.2
R19 11 2742 0.000 0.00 0.850 66 7.2 113 122
R1A 11 2.357 0.000 0.00 0636 108 13.0 21.0 25.2
R21 11 2.805 0.000 0.00 0.628 19.6 189 20.6 24.0
R22 11 2.475 0.000 0.00 0674 19.0 188 18.7 23.0
R23 11 2.629 0.000 0.00 0749 15.0 155 7.6 10.9
R24 11 2.565 0.000 0.00 0597 16.7 17.2 134 175
R25 11 2417 0.000 0.00 059 194 203 243 28.0
R26 11 2.205 0.000 0.00 0336 19.0 21.0 19.3 30.3
R27 11 2.243 0.000 0.00 0.225 282 275 274 27.1
R28 11  2.066 0.000 0.00 0390 13.5 140 127 194
R32 8 2.146 0.000 0.00 0.082 36.4 424 *** kxx
R33 10 2.432 0.000 0.00 0.405 125 145 13.8 ***
R35 9 2360 0.000 0.00 0.104 36.5 38.6 *** H*x*
R41 11 3.026 0.000 0.00 0.421 105 108 93 1.8
R42 11 3.190 0.000 0.00 0591 10.2 106 159 225
R45 11 2.611 0.000 0.00 0.001 208 213 221 94
R47 10 2.790 0.000 0.00 0.100 134 13.7 106 ***
R51 11 2.448 0.000 0.00 0.245 13.6 309 249 173

RS2 11 2.836 0000 000 0.150 141 149 7.4 87
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85.

Oilseed rape P5

nuts nobs mean  sel coef t rsq res jack oya tya
R11 11 2921 0.000 0.00 0357 134 19.7 171 222
R12 11 2674 0.000 000 0379 9.4 145 13.7 187
R13 11 2.603 0.000 0.00 0.902 47 61 7.2 341
R15 11 2.648 0.000 0.00 0.834 89 85 31 55
R16 11  2.500 0.000 0.00 0.876 68 88 32 18
R17 11 2.452 0.000 0.00 0.753 67 99 39 44
R18 11 2586 ind[1] 0.110 086 0.908 55 6.2 102 5.2
R19 11 2742 ind[1] 0230 155 0.884 66 6.8 11.3 122
R1A 11 2357 ind[4] 0.078 195 0.754 103 128 21.0 25.2
R21 11 2.805 0.000 0.00 0.628 19.6 189 264 21.9
R22 11 2.475 0.000 0.00 0.674 19.0 188 187 23.0
R23 11 2629 ind[1] 0655 138 0.797 149 168 7.6 109
R24 11 2.565 0.000 0.00 0597 16.7 17.2 134 175
R25 11 2417 0.000 000 059 194 21.7 241 133
R26 11 2.205 0.000 0.00 0336 146 239 193 303
R27 11 2.243 0.000 0.00 0.225 28.2 275 27.4 27.1
R28 11 2.066 ind[1] 0.555 240  0.646 93 122 104 148
R32 8 .2.146 0.000 0.00 0.082 36.4 42.4 *** k%
R33 10 2432 0.000 0.00 0.405 125 17.1 13.8 ***
R35 9 2360 0.000 0.00 0.104 36.5 38.6 *** k¥*
R41 11 3.026 0.000 000 0421 105 108 93 1.8
R42 11 3.190 ind[3] 0.065 1.65 0.695 9.6 12.1 159 225
R45 11 2611 0.000 0.00 0.001 208 213 221 94
R47 10 2.790 0.000 0.00 0.100 13.4 13.7 106 ***
R51 11 2.448 0.000 0.00 0.245 13.6 309 249 173

R52 11 2.836 0000 000 0150 141 149 7.4 87
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85.

Sunfiower PO

nuts nobs mean sel coef t rsq res jack oya tya
R21 10 2.407 0.000 000 0.236 16.6 225 18.9 ***
R22 10 2.174 0.000 000 0.774 105 11.7 9.3 ***
R24 10 2310 0.000 0.00 0.833 135 183 143 ***
R25 10 2.103 0.000 0.00 0485 185 195 219 ***
R26 10 1.961 0.000 0.00 0359 21.8 229 35.1 ***
R27 10 2.230 0.000 0.00 0.801 106 11.5 13.9 ***
R28 10 2.070 0.000 0.00 0.185 11.6 156 25.2 ***
R33 10 2.818 0.000 0.00 0.208 22.7 23.0 28.2 *¥*
R35 10 2.125 0.000 0.00 0.290 157 16.1 8.2 ***
R36 10 2.217 0.000 0.00 0.073 18.0 21.2 16.6 ***
R37 8 2464 0.000 0.00 0.689 222 189 ***x *¥*
R38 9 1.924 0.000 0.00 0.101 20.6 22.4 ***x *¥%
R39 9 1.846 0.000 0.00 0.000 40.0 43.7 *** w%%
R3A 9 0.998 0.000 0.00 0.087 243 257 *** k%%
RB2 10 1.141 0.000 0.00 0.757 129 134 6.5 ***
RB3 10 0.630 0.000 0.00 0.000 309 30.1 163 ***
RB4 10 0.669 0.000 0.00 0.508 16.8 17.6 13.9 ***
RB5 10 1.092 0.000 0.00 0.710 226 22.2 189 ***
RB6 10 0.955 0.000 0.00 0.592 29.4 29.1 27.6 ***
Sunflower P5

nuts nobs mean  sel coef t rsq res jack oya tya
R21 10 2.407 0.000 0.00 0.236 16.6 225 18.9 ***
R22 10 2.174 0.000 0.00 0.774 105 165 37.1 ***
R24 10 2.310 0.000 0.00 0.833 135 20.6 143 ***

R25 10 2.103 ind[4] 0.214 3.79 0831 115 17.5 416 ***
R26 10 1.961 ind[4] 0.309 4.97 0.859 104 152 4.9 ***
R27 10 2230 ind[2] 0.259 5.93 0.967 41 6.0 1.1 ***
R28 10 2.070 ind[2] 0.548 4.18 0.767 6.3 9.3 109 ***

R33 10 2.818 0.000 0.00 0.208 223 24.8 28.2 ***
R35 10 2.125 ind[4] 0.185 1.25 0.419 164 16.9 3.3 ***
R36 10 2217 0.000 0.00 0.073 18.0 22.2 16.6 ***
R37 8 2.464 0.000  0.00 0.689 222 20.2 *** wE%*
R38 9 1.924 0.000 0.00 0.101  20.6 26.4 *** **%
R39 9 1.846 ind[3] 0.823 1.52 0.277 36.7 55.0 *** kxx
R3A 9 0.998 0.000  0.00 0.087 243 28.1 *** kx%k
RB2 10 1.141 ind[2] 0.237 1.49 0.815 129 142 1.6 ***
RB3 10 0.630 0.000  0.00 0.000 309 30.8 16.3 ***
RB4 10 0.669 ind[4] 0.067 2.02 0.690 144 19.2 111 ***
RB5 10 1.092 0.000 0.00 0.710 226 22.2 189 ***

RB6 10 0.955 0000 000 0592 29.4 37.9 586 **+
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Appendix 10. Summary output Nuts-0.
Explanation abbreviations: page 85.

Wheat PO

nuts nobs mean  sel coef t rsq res jack oya tya
R1 15 5.440 0.000 0.00 0.884 61 58 83 65
R2 15 5.200 0.000 0.00 0.788 88 81 103 11.2
R3 15  2.689 0.000 0.00 0.227 69 73 98 86
R4 15 6.651 0.000 0.00 0.699 75 86 108 122
R5 15 5.535 0.000 0.00 0.761 10.6 10.0 128 123
R6 15 3.548 0.000 0.00 059 123 151 10.0 104
R7 15 5.849 0.000 0.00 0654 104 114 156 187
R8 15 6.018 0.000 0.00 0740 132 11.6 17.7 216
R9 16 5.954 0.000 0.00 0.650 109 9.9 144 147
RA 12 2529 0.000 0.00 0.023 13.1 159 109 13.2
RB 15 1.998 0.000 000 0558 186 17.8 255 23.5
Wheat P5

nuts nobs mean  sel coef t rsq res jack oya tya
R1 15  5.440 0.000 0.00 0.884 6.1 60 88 65
R2 15 5200 ind[3] 0.293 263 0.866 7.7 7.0 105 124
R3 15 2.689 0.000 0.00 0.227 69 82 105 97
R4 15 6.651 ind[1] 0383 1.71 0.758 75 9.2 109 113
R5 15 5.535 0.000 000 0761 106 10.0 13.8 9.3
R6 15 3.548 ind[2] 0257 295 0.765 123 155 11.1 153
R7 15 5.849 ind[4] 0.146 127 0694 104 127 16.8 20.2
R8 15 6.018 0.000 0.00 0740 13.2 129 194 236
R9 16 5954 ind[2] 0.467 238 0.756 79 9.1 141 174
RA 12 2529 ind[4] 0.121 284  0.486 9.1 121 6.4 107
RB 15 1998 ind[2] 0.164 190 0660 186 20.2 323 454
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Appendix 10 (continued). Summary output Nuts-0. Explanation abbreviations: page 85.

Maize PO

nuts nobs mean  sel coef t rsq res jack oya tya
R1 15  6.197 0.000 0.00 0.600 10.0 9.5 117 116
R2 10 6.382 0.000 0.00 0.751 49 57 7.0 ***
R3 15 6.897 0.000 0.00 0.837 41 39 47 55
R4 11 4348 0.000 0.00 0.000 30.5 309 9.6 17.2
R5 15 6.743 0.000 0.00 0.687 85 84 103 10.5
RA 11 7613 0.000 0.00 0676 115 16.8 24.6 284
RB 15  5.305 0.000 0.00 0.916 70 64 7.4 95
Maize P5

nuts nobs mean  sel coef t rsq res jack oya tya
R1 15  6.197 ind[4] 0.239 3.08 0.776 56 7.7 84 108
R2 10 6.382 ind[2] 0.165 3.29 0.902 3.0 42 3.8 ***
R3 15 6.897 ind[4] 0.118 257 0.895 27 38 6.1 64
R4 11 4348 ind[1] 1.224 3.35 0.584 219 26.6 20.5 31.4
R5 15 6.743 ind[4] 0.095 1.59 0.741 59 11.8 13.6 10.6
RA 11 7613 ind[4] 0284 1.11 0719 11.3 18.0 30.9 28.6
RB 15 5.305 0.000 0.00 0.916 70 7.4 9.1 1241
Barley PO

nuts nobs mean sel coef t rsq res jack oya tya
R1 15  4.567 0.000 0.00 0.790 62 57 74 75
R2 15  4.396 0.000 0.00 0.842 85 76 99 6.7
R3 15  3.096 0.000 0.00 0.826 73 7.1 11.0 99
R4 15  4.952 0.000 0.00 0387 11.2 103 13.0 15.1
R5 15 5.269 0.000 0.00 0.726 93 91 87 7.0
R6 15 3.333 0.000 0.00 0.225 159 172 64 55
R7 15  4.567 0.000 0.00 0.632 79 86 109 129
R8 15  4.955 0.000 0.00 0.657 77 87 9.7 95
R9 16 4.298 0.000 0.00 0650 119 98 120 94
RA 12 2304 0.000 0.00 0.011 128 144 122 159
RB 15 2.070 0.000 0.00 0.121 215 21.6 28.7 274
Barley P5

nuts nobs mean sel coef t rsq res jack oya tya
R1 15 4,567 ind[4] 0.206 1.93  0.840 62 59 73 741
R2 15 4396 ind[4] 0356 4.31 0.938 85 58 86 56
R3 15  3.096 0.000 0.00 0.826 73 93 157 938
R4 15 4.952 ind[1] 0.634 2.24 0568 11.2 93 13.6 11.6
R5 15 5.269 0.000 0.00 0.726 6.8 10.1 104 54
R6 15  3.333 ind[2] 0572 3.72 0.640 159 128 58 8.2
R7 15  4.567 0.000 0.00 0.632 79 94 119 134
R8 15 4.955 ind[1] 0.486 2.03 0.744 77 8.6 128 10.5
R9 16 4.298 0.000 0.00 0650 119 102 120 94
RA 12 2304 0.000 0.00 0.011 128 188 29.7 154
RB 15 2.070 ind[4] 0.358 5.15 0.726 105 12.8 18.8 25.7
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Appendix 10 (continued). Summary output Nuts-0. Explanation abbreviations: page 85.

Rice PO

nuts nobs mean  sel coef t rsq res jack oya tya
R2 15 4.422 0.000 000 0609 119 158 13.7 123
R3 15 5.483 0.000 0.00 0.287 46 107 47 88
RA 9 5.889 0.000 0.00 0.681 7.6 9.9 *¥k  wwx
RB 15 6.093 0.000 0.00 0.013 53 52 42 49
Rice P5

nuts nobs mean  sel coef t rsq res jack oya tya
R2 15 4422 ind[1] 0.554 235 0.732 9.7 140 1.7 7.7
R3 15 5.483 0.000 0.00 0.287 46 107 48 94
RA 9 5.889 ind[1] 0695 224 0.826 6.0 9.3 *¥* wwx
RB 15 6.093 0.000 0.00 0.013 34 69 42 49

Sugar beet PO

nuts nobs mean  sel coef t rsq res jack oya tya
R1 11 48.857 0.000 0.00 0.327 91 95 63 15
R2 11 54.088 0.000 0.00 0.866 56 73 39 11
R3 10 48.385 0.000 0.00 0.152 93 9.1 42 ***
R4 8 54.799 0.000 0.00 0.139 9.0 11.0 *** ¥«
RS 11 51.466 0.000 0.00 0.353 83 94 58 58
R6 11 45.628 0.000 0.00 0320 263 31.0 30.7 36.9
R7 11 38.095 0.000 0.00 0505 125 144 105 15.7
R8 11 42,507 0.000 0.00 0004 123 113 69 53
R9 12 43.730 0.000 0.00 0546 113 104 104 11.2
RA 8 60.662 0.000 0.00 0.233 5.9 8.5 ww*x kxx
RB 10 37.778 0.000 0.00 0.801 6.6 7.1 128 ***
Sugar beet P5

nuts nobs mean sel coef t rsq res jack oya tya
R1 11 48.857 0.000 0.00 0.327 9.1 95 63 15
R2 11 54.088 ind[2] 1.173 260  0.927 56 57 63 8.0
R3 10 48385 ind[3] 2201 413  0.753 49 6.0 9.1 *¥*,
R4 8 54.799 ind[2] 2993 198 0.518 7.1 117 Fxx wk%
RS 11 51.466 0.000 0.00 0.353 83 9.7 135 58
R6 11 45.628 0.000 0.00 0320 26.3 31.0 30.7 36.9
R7 11 38.095 0.000 0.00 0.505 103 144 105 15.7
R8 11 42507 ind[3] 3.098 280 0.498 6.3 11.2 124 6.1
R9 12 43730 ind[2] 2.285 3.84 0.828 74 9.1 121 130
RA 8 60.662 ind[3] 1.483 197 0.568 5.9 83 ***x K%
RB 10 37.778 0.000 0.00 0.801 59 79 128 ***
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Appendix 10 (continued). Summary output Nuts-0. Explanation abbreviations: page 85.

Potato PO

nuts nobs mean  sel coef t rsq res jack oya tya
R1 11 30.910 0.000 0.00 0.743 88 87 70 68
R2 10 29.998 0.000 000 0.790 125 146 115 ***
R3 11 18.415 0.000 000 0450 10.7 101 88 29
R4 11 37.978 0.000 0.00 0.727 74 76 66 85
R5 11 32.953 0.000 0.00 0.462 88 154 113 122
R6 11 27.405 0.000 0.00 0203 19.2 27.7 109 13.4
R7 11 32.302 0.000 0.00 0.797 70 9.8 115 179
R8 11 23.223 0.000 000 0.174 13.1 124 134 104
R9 12 30.993 0.000 0.00 0.789 9.8 120 53 9.7
RA 8 17.170 0.000 0.00 0.724 59 53 ®%*  wkxk
RB 10 15.049 0.000 0.00 0.534 6.3 229 226 ***
Potato P5

nuts nobs mean  sel coef t rsq res jack oya tya
R1 11 30910 ind[1] 2727 3.51 0.899 48 76 84 120
R2 10 29.998 ind[1] 2322 3.51 0.924 6.2 13.1 23 ***
R3 11 18415 ind[1] 0.705 138 0555 104 98 88 29
R4 11 37978 ind[4] 069 420 0915 43 49 57 03
R5 11 32953 ind[1] 3.655 497 0.868 57 101 32 64
R6 11 27.405 ind[1] 3871 354 0690 19.2 17.7 21.2 0.8
R7 11 32302 ind[4] 0.632 250 0.886 70 78 79 115
R8 11 23.223 ind[3] 2075 247 0531 103 109 9.8 11.7
R9 12 30993 ind[2] 0363 124 0.819 98 139 30 7.2
RA 8 17170 ind[3] 0.677 335 0.915 5.9 3.5 kwk kkw
RB 10 15.049 0.000 0.00 0.534 6.3 229 226 ***
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Appendix 10 (continued). Summary output Nuts-0. Explanation abbreviations: page 85.

Oilseed rape PO

nuts nobs mean sel coef t rsq res jack oya tya
R1 11 2748 0.000 0.00 0.745 84 80 83 116
R2 11 2.455 0.000 0.00 0672 169 17.1 18.1 223
R3 11 2.305 0.000 0.00 0266 14.7 152 9.7 11.4
R4 11 3.089 0.000 0.00 0.649 78 73 69 88
R5 1 2679 0.000 0.00 0374 137 213 58 0.6
R7 11 2.823 0.000 0.00 0.591 12.0 157 18.1 248
Oilseed rape P5

nuts nobs mean  sel coef t rsq res jack oya tya
R1 11 2.748 0.000 0.00 0.745 84 80 83 116
R2 11 2.455 0.000 0.00 0.672 169 17.1 18.1 223
R3 11 2305 ind[1] 0.244 049 0.287 147 153 9.7 114
R4 11 3.089 0.000 0.00 0.649 78 73 69 88
R5 1 2679 0.000 0.00 0374 137 213 58 0.6
R7 11 2.823 0.000 0.00 0.591 12.0 157 18.1 248
Sunflower PO

nuts nobs mean  sel coef t rsq res jack oya tya
R2 10 2.088 0.000 0.00 0.622 146 149 128 ***
R3 10 2.054 0.000 0.00 0.267 16.5 16,5 6.8 ***
RB 10 0.809 0.000 0.00 0.643 21.3 20.9 23.1 ***

Sunflower P5

nuts nobs mean  sel coef t rsq res jack oya tya
R2 10 2.088 ind[4] 0.197 3.22 0.848 9.0 14.2 29.8 ***
R3 10 2.054 ind[4] 0.206 1.68 0.478 15.1 14.1 12.0 ***
RB 10 0.809 ind[4] 0.120 1.65 0.743 194 249 23.1 ***




