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Preface 

This report is prepared by the DLO Centre for Agrobiological Research in the framework of 
the development, validation and testing of crop-specific agrometeorological models for yield 
forecasting purposes. It describes the regional validation of the yield model of the Crop 
Growth Monitoring System, which in turn will form part of an Agricultural Information 
System on the European Community. This report describes the regional validation of the yield 
model of the Crop Growth Monitoring System (CGMS). The detailed description of the crop 
growth simulation model and its calibration for European crops are given in other reports. 
The Crop Growth Monitoring System was developed by the DLO Winand Staring Centre on 
behalf of the Institute for Remote Sensing Applications {IRSA) of the Joint Research Centre 
(JRC, lspra-site) of the Commission of the European Community under contract 3965-90-04 ED 
ISP-NL .. Yield Forecasting Models, Part II .. (SC Project 7185), and further elaborated in 
cooperation with the DLO Centre for Agrobiological Research under contract 4436-91-08 ED 
ISP NL .. Crop specific agrometeorological simulation models .. (SC Project 7220, CABO Project 
836). 
This report is a contribution of the DLO Centre for Agrobiological Research (CABO-DLO) to 
the second contract. The overall objective of the second contract was to develop, validate 
and test new or existing crop-specific agro-meteorological simulation models for routine 
quantitative forecasting of national and NUTS-1 yields every 10 days, and for areawise 
qualitative monitoring, every 10 days, of the conditions of the agricultural season over the 
whole of the EC. The model should work for each of the following crops: wheat, barley, oats, 
maize, rice, potato, sugar beet, pulses, soybean, oilseed rape, sunflower, tobacco and cotton. 

This report deals with the validation of regionally aggregated output of a crop growth 
simulation model against official regional agricultural statistics. Concerning the statistical 
validation of the yield model for its use for regional quantitative yield forecasting the 
following specifications were formulated : 

The official statistics include historical yield data available in the CRONOS (national 
yields, series of 15-35 years) and REGIO (regional yields, series of 14 years) data bases of 
the European Statistical Office (Eurostat, Luxembourg). 
The validations have to be carried out at the national and the regional NUTS-1 level. 
The regionally aggregated model output covers the same series of years. 
The time step of the simulation model is one day. 
As the final goal is to forecast yields routinely every ten days, the yield series should be 
analysed as a function of intermediate 10-day model outputs, starting from the 5th ten
day period after planting. 
Technological time trends must be taken into account. 
An evaluation of the precision and stability of independent estimates should be 
included, as well as an analysis of the variability and stability of the regression 
coefficients. 

Most of these requirements could be met, and are reported here. The CGMS system has the 
eapabi!it,' te generatetim&:&Qfiiui over years of regionally aggregated model at •+p11t (e g. 

---- -----oiomaSS)a_t_a ny -give_t1_ --1~0clcl\j-- 0Ut~tne~Se~t~eStrlt~S~a~re~n~ot~a:n~a:_1}iZ~e:_d~ih~th=rs~re~,:iOrt;==a:s~--a:lr-e~a:dy=-th-e-

--------41-0HdatioA-Of--the-modeLoutput-at_bantesLtime_ga~-P-O_o_r_r_esuJtsJhe_possjbJe__re_a_S_OJlS for this ___ _ 
,~~~,,~=~-~-~,===--~:===-=~-==,==--=-~-=,=are=cns-cti"SsecE':JiFrepetTtiorFoftFtrs=arsefiss-ran=t&r=:an=i)=Fe€e~arA1FteFrcaay~J3er'i0as:_weulfrnet'1eac;r=-,--~-==-= 

to a better understanding of the performance of the whole procedure. 
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Although a wealth of information is integrated through the succession of crop modelling, 
regional aggregation, and regression analysis, the available basic information on weather, 
crops, soils, land use and yield statistics was by no means complete. Because of limited 
availability of data, some procedures were simplified, or only a limited validation could be 
carried out. Information on the soil profile available water capacity was lacking, the 
interpolation for historic weather from stations to grid was not operational, statistical 
information was lacking completely for some crops and was not complete for others, and 
information on land use was insufficient (no maps, so no information on location of crops, 

and uncertain weighting of planted area over soils). 
As the CGMS system is designed for the handling of this information, it is expected that more 
accurate crop yields can be simulated by the system once this currently lacking information 
can be taken into account. However, this does not necessarily improve the results of the 
statistical validation procedure because of the unknown inaccuracies in yield figures given by 

official statistics. 

C.A. van Diepen, Project leader. 



Summary 

At the request of the Joint Research Centre of the European Communities, the DLO Winand 
Staring Centre (SC-DLO) in co-operation with the DLO Centre for Agrobiological Research 
(CABO-DLO) in Wageningen the Netherlands, has executed the project: "Development, 
validation and testing of crop specific agrometeorological simulation models". The objective 
of this project is to investigate the possibilities of agro-meteorological simulation models for 
quantitative forecasting of national and regional yields of the main agricultural crops of the 
EC. 

3 

The contribution of the DLO Centre for Agrobiological Research (CABO-DLO) consisted of the 
adaptation of an existing non-specific crop growth simulation model for specific European 
agricultural crops, and the development of a yield forecasting algorithm. For wheat, grain 
maize, barley, rice, sugar beet, potato, field bean, soybean, oilseed rape and sunflower, 
standard values were gathered of model parameters that represent specific crop 
characteristics. These crop parameter values were adapted to regional conditions throughout 
Europe. The effectiveness of using mathematical calibration procedures for optimizing 
parameter values was investigated. As result of this investigation for most crops a more 
simple approach for calibration was followed, namely the manual adaptation of crop 
parameters to limited regional data using general modelling knowledge. 
Simulated regional and national yields were analysed and related to historical official 
statistical yields by means of regression methods. This resulted in the formulation of a 
forecasting algorithm using crop model output of current years for the forecasting of official 
yields. The accuracy of the yield forecasting algorithm was statistically determined and 
compared with the accuracy of forecasting without using a crop growth model. 
In this report, the general methodology of the research at CABO-DLO will be discussed and 
results concerning the accuracy of yield predictions are presented. An extensive description of 
field data sets, cropping calendars and crop parameter values used in the simulation model is 
given in a separate report by Boons-Prins eta/. (1993). 
Over the whole of the EC the accuracy of predicting official NUTS-1 and NUTS-0 yields cannot 
yet be improved by using output of the crop growth model. This may be related to 
limitations in model concepts and to the quality and quantity of the input data available. 
However, also the reliability of the official yield statistics is an important factor. The accuracy 
of the official statistical yields is unknown, making it impossible to separate the effects of 
possibly unrealistic simulation results from errors in the official statistics. 
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1 General introduction 

The Directorate General for Agriculture of the EC requires timely forecasting of agricultural 
production to support the Common Agricultural Policy (CAP). Integration of Community 
statistics has until now been performed by the Statistical Office of the European Community 
(O.S.C.E. or Eurostat) in Luxembourg. Prediction of yields by Eurostat is based on statistical 
methods, using historical data and taking into account time trends and weather indicators. 
The Institute for Remote Sensing Applications (IRSA) of the Joint Research Centre (JRC) of the 
EC, located in lspra, Italy, is in charge of a program to improve agricultural yield forecasts. 
This program is known as the Agriculture Project or MARS project. Within the Agriculture 
Project of the EC, an Advanced System of Information on Agriculture is being developed. 
Three methods are investigated by JRC: conventional surveys, remote sensing, and 
agrometeorological modelling. 
At the request of the JRC, the DLO Winand Staring Centre (SC-DLO) in co-operation with the 
DLO Centre for Agrobiological Research (CABO-DLO) in Wageningen the Netherlands, has 
executed the project: II Development, validation and testing of crop specific 
agrometeorological simulation models II. The objective is in the contract described as "to 
develop, validate and test new or already existing agro-meteorological simulation models for 
10 day routine quantitative forecasting of national and NUTS-1 yields and for 10-day areawise 
(regional), but qualitative monitoring of agricultural season conditions over the whole of the 
EC and for each of the following crops: wheat (spring and winter; hard and soft), barley 
(spring and winter), oats, maize (grain), rice, potato, sugar beet, pulses (human 
consumption), soybean, oilseed rape, sunflower, tobacco and cotton. II 
The project is a logical continuation of the project "Yield Forecasting Models, Part II", 
performed by the DLO Winand Staring Centre in 1991. 

In "Yield Forecasting Models Part II", the DLO Winand Staring Centre has developed a Crop 
Growth Monitoring System (CGMS). This system includes a non-crop specific 
agrometeorological simulation model, linked with a weather system and a Geographical 
Information System (GIS). In the weather system, historic and current daily weather data are 
stored and interpolated to the grid points of a 50 x 50 kilometres mesh over the whole of the 
EC. The weather data are used in the crop growth model and the model results can be 
analysed and visualized with the GIS. In "Yield Forecasting Models, Part II", the crop growth 
simulation model was non-crop specific. In the current project, yields of all main agricultural 
crops of the EC were simulated individually. A yield forecasting algorithm was defined, based 
on comparison between simulation results and historical records of statistical data. 

The contribution of the DLO Centre for Agrobiological Research (CABO-DLO) consisted of the 
adaptation of the crop growth model for crop specific calculations and development of the 
yield forecasting algorithm. For each of the crops, standard values were gathered of 
parameters that represent specific crop characteristics. Insufficient data were available for 
oats, tobacco and cotton and these crops had therefore to be omitted. For the other crops, 
erep parameter 'ii afu«:were adapted to regiooaloonditioo£ throughout E••rope The. 
effectiveness of using stanaarcf ma1:11el1latica rcalioratiOrf prOc~edttres=fo-r~optintizhtg-c__ 

~:::·::==~····=·-~=-~= =·=··==~·-·····~ .• :E!!!:~!!!~~~y.~lu~-~~a~inves~iQi)t~~:-=~!=r~~~lt-~f-t~i~:i~~:-s~--i~~~i~~~o~~.ost_ct~~s_a:~~~=e~=:··=:·:·-
-- --- -----sf~ p l:e-a-pproa~h furca-:tfbrati"OTI;N,iS:lofro;iea~=ri-ameTy-tHi~ -m-an-uaF"a<Ia~tatfeil··al~crep--~----------------- =-

parameters to limited regional data using general modelling knowledge. Crop simulation 
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outputs of the calibrated model were compared with results from independent field trials. 
After CABO-DLO calibrated and validated the model at the point level, SC-DLO calculated 
grid yields for historical weather records with the CGMS and aggregated these yields to 
yearly regional averages. These historical records of simulated regional yields were analysed 
by CABO-DLO and related to historical official statistical yields by means of regression 
methods. This resulted in the formulation of a forecasting algorithm using crop model 
output of the current year for the forecasting of official yields in that year. The accuracy of 
the yield forecasting algorithm was statistically determined and compared with accuracy of 
forecasting without crop model output. This procedure has resulted in the integration of the 
yield forecasting algorithm in the CGMS, allowing yearly forecasts of official yields and 
updating of the forecasting algorithm to data of the most recent years. 

In this report, the general methodology of the research at CABO-DLO will be discussed and 
yield forecasting results presented. A short description of the CGMS of SC-DLO is given in 
Chapter 2 because it is the basis of the calculations at CABO-DLO. The functions and 
parameters of the crop growth model, are shortly explained in Chapter 3, with references to 
more detailed descriptions in other documents. The procedures used for updating crop 
parameters and calibration of the model, being the core activities at CABO-DLO, are given in 
Chapter 4. An extensive description of these activities, together with field data sets and final 
crop parameter values are given in a separate report by Boons-Prins eta/. (1993). The 
development of the yield forecasting algorithm in cooperation with the mathematical 
department of DLO (GLW-DLO) in Wageningen is described in Chapter 5. Some results are 
given in Chapter 6, focussing mainly on the accuracy of the yield predictions. This report ends 
with a discussion of the followed methodology, recommendations for further developments 
and final conclusions 
CABO-DLO has executed the project in the period from 1-1-1992 until31-12-1992. In addition 
to the authors, two more persons were involved in the project at CABO-DLO: W. Stol for 
support on model calibration software and J. Withagen for support on statistical software. 



2 The Crop Growth Monitoring System 

(CGMS) 

2.1 Introduction 

Starting point for crop growth simulation work at CABO-DLO was the Crop Growth 
Monitoring System (CGMS), developed by SC-DLO in the project "Yield Forecasting Models, 
Part II" in 1991 (Bulens eta/., 1993; Hooijer eta/., 1993a, 1993b, 1993c). The CGMS includes a 
Geographical Information System (GIS) and combines components like interpolation 
algorithms, weather data handling procedures, geographic procedures and a crop growth 
simulation model. Within the CGMS a number of digitized maps are stored: 
-the soil map of the EC (1 : 1 million) 
-maps of administrative units within the EC (NUTS-0 and NUTS-1 level) 
-a grid with 1350 cells of 50 x 50 kilometres, covering the whole of the EC (see Appendix 1) 
-a map with weather stations. 
-a terrain map 

With the CGMS, basic data can be analysed and presented. An example of such output is 
shown in Appendix 2, were the precipitation during the period April-July 1992 is presented 
on grid basis as deviation from the long term mean precipitation over this period. 
In this report, we deal with the use of a crop growth simulation model for the calculation of 
potential (with irrigation) and water-limited (without irrigation) crop yields. An explanation 
of the simulation model will be given in Chapter 3. The CGMS provides the basic input data 
for the model. 

2.2. Weather data 

7 

The weather data base DBMETEO is described by Reinds (1991) and van der Drift & van 
Diepen (1992). The data base contains daily weather data of 360 weather stations for 15-30 
historic years, up to 1989. For the current years (from 1990 onwards), daily weather data 
are available for 626 stations. Within one grid cell, weather is assumed to be homogeneous. 
In fact, each grid cell is considered as a unique climatic cell. For the historic years, daily 
weather data within a grid cell are considered equal to the weather data of the most similar 
nearby located weather station. Similarity is defined in terms of distance between station and 
grid centre, corrected for differences in altitude and in distance from the coast. For the 
current years an interpolation procedure is used to determine the daily weather within a grid 
cell (van der Voet eta/., 1993). With this interpolation procedure, for each grid cell an 
optimum number of surrounding weather stations is selected, taking into account distance 
from the station, altitude, distance from the coast, number of stations and climate divisions. 

-~PI.fjlnl_lntl_t(!_S~_I(!etetryoe~tl.•er_stati~~aii)''G¥eat~er~a!vvithiA t~e~~.ll_are eale••lated with 

-maximum air temperature ec) 
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-global radiation (MJ m-2 d-1) 
-vapour pressure (mbar) 
-wind speed m s-1 
- precipitation (mm) 
For a number of stations, the raw data have to be converted, for example the conversion 
from wet bulb temperature to vapour pressure of the air, or the calculation of global 
radiation from sunshine duration (van der Drift & van Diepen, 1992). Furthermore, algorithms 
have been developed for handling of missing values. 

2.3 Crop data 

The type of crop parameters used in the model will be described in Section 3.4 of this report. 
Actual values of the model parameters were collected for individual crops within the 
European Communities and stored in separate files. The values of the crop parameters for 
region-specific varieties as used in this project have been documented by Boons-Prins eta/. 
(1993) for each of the crops considered: wheat, grain maize, barley, rice, sugar beet, potato, 
field bean, soybean, oilseed rape and sunflower. Data on regional cropping calendars are 
also given by Boons-Prins eta/. (1993). 

2.4 Soil map 

Also stored within the CGMS is the EC soil map. This map is used to derive soil parameters for 
the model and to estimate the area where a crop can be cultivated. 

2.4.1 Soil data 

In the crop growth model a number of soil physical soil parameters are needed to calculate 
water-limited yields. In this report it is assumed that all soils are freely draining. For such a 
soil, data are required on maximum rooting depth, total pore space, soil moisture content at 
field capacity and wilting point, subsoil permeability, maximum infiltration rate and the 
surface water storage capacity. In this stage of the project, differences in physical soil 
parameters between soil types are not taken into account. Only one standard soil parameter 
set is used, referring to an average soil (Appendix 4a). The water holding capacity of this soil 
amounts to 0.21 cm3 cm-3 while the soil depth is set at 120 em and the initial soil moisture 
content at field capacity. The actual depth of the layer from which the crop can take up 
water is determined by the rooting depth of the crop. The maximum depth is limited by 
either the maximum rootable depth of the soil or the maximum rooting depth of the crop 
under unrestricted root growth conditions. The crop specific maximum rooting depths used 
are given in Appendix 4b. 
Because only one soil parameter set is used, for the time being within each grid cell yields 
will be calculated for only one weather-soil combination each year, because weather and soil 
data ar@ coni"idtued homogeneotjS=Withiflstbe=cclUa=O=fle*t phase, soil specific physical 
parameters can be used 1:6 intr6ai.Jcesoil~t1'e1:eroget1eity wilnlnagrfcrcell;resultrng=rrr~~-~ 
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2.4.2 Estimation of suitable soils 

A limitation in the present study is the lack of an accurate land use map. The only 
information available is the total area of land used for a specific crop within each NUTS-1 
region. It is not known on which locations within the NUTS-1 region the crops are grown. For 
NUTS-1 regions where a specific crop is cultivated, calculation of crop yields should preferably 
be restricted to soil areas were the crop is actually grown. The soil area where a certain crop 
can be cultivated is estimated by applying land evaluation rules to the soil units of the soil 
map. These rules serve as a sieve to separate suitable and unsuitable soils. The crop growth 
simulation model is for a specific crop only applied to soils that are judged suitable for 
mechanized cultivation of the crop. All soil units that are judged unsuitable for this type of 
farming due to slope, stoniness, texture or drainage conditions (Reinds & van Lanen, 1992), 
are excluded from further crop yield calculations and are not used for the regional 
aggregation of simulated yields. 

2.5 Aggregation of simulated yields to regional and 

national level 

The simulated yields are calculated for each suitable land unit, represented by a unique 
combination of soil, grid and administrative region. For historic as well as current years, the 
simulated yields are aggregated over NUTS-1 regions and over countries. Simulated NUTS-1 
yields are the weighted averages of the simulated yields on the land units within a NUTS-1 
region, using the estimated suitable crop area within that region as the weighting factor. 
In a second step, the aggregated simulated yields at NUTS-1 level are further aggregated to 
the country level, using the actual crop areas within each NUTS-1 region according to 
official statistics as the weighting factor. 
Names of NUTS-0 and NUTS-1 levels are given in Appendix 3. 

2.6 Statistical data 

Official statistical data are obtained from the regional data base II REGIO II of Eurostat, 
available in DBASE-4 format. In the Agricultural and Forestry Statistics of REGIO, fresh weight 
yields (tonnes ha-1 ), areas (ha) and production volumes (tonnes) of agricultural crops are 
given at NUTS-0, NUTS-1 and, increasingly erratic, NUTS-2 level. Only NUTS-0 and NUTS-1 data 
are used in this report because NUTS-2 data are too incomplete. Maximally the years 1975-
1990 are covered, the amount of missing data depending on crop type and region. Crops 
listed are wheat, grain maize, barley, rice, sugar beet, potato, oilseed rape and sunflower. 
Therefore, for three crops for which yields are simulated, no statistical data are yet available: 
oats, field bean and soybean. Wheat figures apply to the total of spring, winter, common 
and durum wheat. Barley includes spring as well as winter varieties and potato figures apply 
ta=#re=tm"Of of early'4ln~"VSrieties. -------
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3 The crop growth model WOFOST 

3.1 Introduction 

The crop growth model WOFOST (WOrld FOod STudies) has been developed by the Centre 
for World Food Studies in Wageningen, the Netherlands, in cooperation with the 
Agricultural University and the DLO Centre for Agrobiological Research (van Diepen eta/., 
1988, 1989). More recently the model has been further developed at the DLO Winand Staring 
Centre (Guiking, 1993). The basic principles of the processes underlying the model have been 
treated in detail by van Keulen and Wolf (1986). The model simulates phenological 
development and growth of a field crop from emergence to maturity as determined by the 
crop•s response to environmental conditions. 
WOFOST has been applied in a number of agro-ecological characterisation studies. Recently, 
the DLO Winand Staring Centre has investigated the physical crop production potentials for 
rural areas in the European Communities. In that study, quantitative estimates were provided 
of the yield potentials of grass and major arable crops when grown on land units suitable for 
agricultural use (van Lanen eta/., 1992; de Koning & van Diepen, 1992). Wolf & van Diepen 
(1991) have used WOFOST to investigate effects of possible changes in climate conditions on 
crop production and water use in the Rhine basin. Furthermore Wolf (1993) has investigated 
the effects of climate change on wheat and maize production in the EC using the WOFOST 
model. 

3.2 Structure of the model 

Within the model two production levels are distinguished: potential and water-limited. The 
potential yield is determined by crop genetic properties, solar radiation, temperature regime 
and sowing date, and indicates the production ceiling for crops growing under optimum soil 
moisture conditions throughout. For this production level it is therefore assumed that 
irrigation is applied if necessary to allow unrestricted plant growth. The water-limited yield 
depends on natural water supply and includes effects of water-shortage. Soil physical data 
and (in addition to radiation and temperature) weather data like rain, windspeed and 
humidity of the air are required for the description of the effects of drought stress on plant 
growth. For both potential and water-limited production, nutrient availability, pest, weed 
and disease control and farm management are taken to be optimal. 
The main model can be broadly divided into 2 submodels: the crop growth submodel and the 
soil water submodel. These submodels are connected by means of a relation, describing the 
effect of the soil water status on the transpiration and photosynthesis rate of the crop. 
The simulations are carried out in time steps of one day. WOFOST is integrated in a Fortran 
Simulation Environment (FSE) (van Kraalingen, 1991) and uses a Fortran utility library (TTUTIL) 
with simulation supporting subroutines and functions (Rappoldt & van Kraalingen, 1990). 
Both~=aad:Ul Jill h;we been developed .at~Q-01 Q 



12 

3.3 The crop growth submodel 

Figure 1 illustrates the processes, as described in the crop growth submodel. The amount of 
intercepted light is determined by the level of incoming solar radiation and the leaf area of 
the crop. From the absorbed radiation and the photosynthetic characteristics of single leaves, 
the daily rate of potential gross photosynthesis is calculated. Detailed descriptions of the 
photosynthesis rate calculations in the model have been given in the literature. Spitters eta/. 
(1986) have discussed the separation of diffuse and direct fluxes of global radiation while the 
calculation of assimilation rates from these fluxes is described by Spitters (1986). The 
integration of assimilation rates over the canopy and over the day is performed with the 
Gaussian integration method (Goudriaan, 1986). 

light interception 

r----------------------~--------------~ 

Ta/Tp --~ 

stems 

(alive) 

respectively. 

potential gross 
photosynthesis 

actual gross 
photosynthesis 

crop growth 
(dry matter) 

storage 
organs 
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respiration 

leaves 

(alive) 
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Part of the daily production of assimilates is us~d to provide energy for the maintenance of 
the existing live biomass (maintenance respiration). The remaining carbohydrates are 
partitioned among the major plant organs: roots, leaves, stems and storage organs (van 
Heemst, 1986) and converted into structural plant material such as cellulose, proteins, lignin 
and lipids. In this conversion process some of the weight of carbohydrates is lost as growth 
respiration, in dependence of the composition of the various organs (Penning de Vries eta/., 
1989). The leaf area index of the crop is calculated by multiplying the life leaf weight by the 
specific leaf area. During ageing of the crop, part of the life crop tissue dies due to 
senescence. Leaf mass is subdivided into age classes, and if the temperature sum of a class 
exceeds the crop-specific value during which leaves are functioning, they are assumed to die. 
The crop growth curve and resulting yield are found by integrating the daily dry matter 
increase, partitioned to the plant organs, over the total crop growth period (Figure 2.). 

Total above ground 
dry weight ( tlha ) 
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10 
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Exponential : Linear growth 
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Grains 
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Leaves 
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Decreasing 
growth 

Figure 2. Simulated course of dry weights of the various plant parts for summer wheat growing in 

the Netherlands. (source: Wolf & Van Diepen, 1991). 

Some simulated crop growth processes are influenced by temperature like the maximum rate 
of photosynthesis, and the maintenance respiration. Other processes are steered by the 
development stage: the partitioning of assimilates, the specific leaf area and the death rate 
of crop tissue. Phenological development of a crop can be characterized by the order and 
rate of appearance of vegetative and reproductive plant organs. In the model the 
development rate is a function of ambient temperature, possibly modified by the effect of 
daylength. 

---

crop data file for barley is given in Appendix 5. After sowing of the crop, the time needed 
until emergence has taken place is determined by a temperature sum (TSUMEM) of daily 



14 

average temperatures above a threshold temperature (TBASEM) and with a maximum daily 
increase of the temperature sum of TEFFMX. In order to initiate crop growth, the dry weight 
(TDWI) and leaf area index (LAIEM) of the crop at emergence must be estimated. Growth 
after emergence depends on the photosynthesis rate, though the increase of leaf area during 
juvenile growth may be limited by the maximum relative daily increase of the leaf area index 
(LAI) in dependence of air temperature (RGRLAI}. Phenological development is determined by 
temperature sums: TSUM1 from emergence to anthesis (development stage 1), TSUM2 from 
anthesis to maturity (development stage 2). The increases of temperature sum in dependence 
of the average air temperature is given by function DTSMTB. For some crops, phenological 
development is also influenced by daylength (JDSL), using an optimum (DLO) and critical 
(DLC) daylength. The assimilation parameters describe the response curve of single leaves to 
light: the maximum photosynthesis rate (AMAX) at light saturation and the light use 
efficiency (EFF) under light limiting conditions. AMAX depends on development stage 
(function AMAXTB) and average temperature (function TMPFTB). The gross photosynthesis of 
the canopy can also be limited due to low minimum temperatures (function TMNFTB). Light 
distribution within the canopy is influenced by the leaf angle distribution of the crop, in the 
model accounted for by the extinction coefficient for diffuse visible light (KDIF). The 
maintenance respiration rates (RML, RMO, RMR, RMS) and the growth respiration (CVL, CVO, 
CVR, CVS) of each organ are determined by the composition of the crop tissue. Q10 indicates 
the relation between the maintenance respiration rate and temperature. The partitioning 
functions FRTB, FLTB, FSTB and FOTB distribute the daily dry matter growth between 
different plant organs as function of the development stage. Also depending on 
development stage is the specific leaf area (function SLATB) which serves to calculate leaf 
area from leaf weight, while the life span (SPAN) of the leaves is used for the description of 
leaf death due to ageing. Leaf death due to drought stress is separately determined by the 
maximum relative death rate PERDL. Initial rooting depth (RDI), root growth rate (RRI), 
maximum rooting depth (RDMCR), transpiration characteristics (CFET) and drought sensitivity 
(DEPNR) of the crop are required to describe drought stress. RDRRTB and RDRSTB are the 
relative death rate of roots and stems, respectively, both depending on development stage 
The crop growth submodel model is structured in a way that the growth of different annual 
crops can be simulated by adapting only the crop specific parameters. 

3.5 Soil water status and crop growth 

The potential rate of transpiration of the crop, i.e. the rate of water loss of a crop well 
supplied with water, depends on the leaf area and the evaporative demand of the 
atmosphere, characterized by level of radiation, vapour pressure deficit and wind speed. In 
the model potential transpiration is calculated with the Penman formula (Penman, 1948; 
Frere & Popov, 1979; Berkhout & van Keulen, 1986), for the present project adapted 
according to Choisnel eta/. (1992). 
Under optimal soil moisture conditions, the crop is able to replenish all transpiration losses by 
uptake of water by the root system. However, when the rooted soil is too dry, the 
transpiration rate of the crop is reduced, which leads to a proportional reduction in 

a~if1:16t'fid.L§.·.l"l•eurati~~ee"~ .and.p()tential tr8Mptra00Armu!tiplied with then 
-po-tential photosyntheSTs-:--Yiefas-tne-aauafPh-otosyntnesrs. -- -- --- - ---

:,~::=:E!YJ!L~qvy~t+t~~~~f'l=-~~'J"~~~-Il~=-se!H1t~i;t~~~~~~fl~~A~t~~!i()=-~e~~!er:l~~~~~.--------ana~ ~;ot~ ntlir::tr·~ n·~~iiiti o~~~8-iiw~~11~a:C~ft:~aii-c:rftttii~-s-Oil-m~ofsture-co-nte-nt-(sMc-rJ an~a=fie'RF ----------------~----~--~-----=--

capacity (SMfc) this ratio is 1, allowing potential transpiration. Below the critical soil moisture 
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content actual transpiration is reduced due to drought stress. Under these conditions, actual 
transpiration is linearly related with the soil moisture content. At wilting point {SMwp), 
actual transpiration, and hence crop growth, come to a halt. 
The value of the critical soil moisture content depends on the drought sensitivity of the crop 
and the atmospheric demand {Driessen, 1986). The higher the atmospheric demand, the 
higher the critical soil moisture content. 

Ta/Tp 

SMwp SMcr SMfc 

Figure 3. Relation between soil moisture content and transpiration ratio. Ta and Tp are actual and 

potential transpiration rates, respectively; SMwp, SMcr and SMfc are the soil moisture 

contents at wilting point, critical point and field capacity respectively. 

3.6 The soil water submodel and soil parameters 

The soil is schematized as a system consisting of 2 compartments: the rooted zone and the 
subsoil {Driessen, 1986). For the rooted zone the water balance equation is solved every daily 
timestep. At the upper boundary, processes comprise the infiltration of water from 
precipitation or infiltration, evaporation from the soil surface and uptake of water and 
transpiration by the crop. If rainfall intensity exceeds the infiltration and surface storage 
capacity of the soil, water runs off. Water can be stored in the rooted soil till field capacity is 
reached. Additional water percolates beyond the lower boundary of the rooting zone. 
Artificial drainage and, in case of groundwater influence, capillary rise can be simulated. 
In order to simulate the soil water processes, a number of soil data are needed. For a freely 
draining soil these are maximum rooting depth, total pore space, soil moisture content at 
field capacity and wilting point, subsoil permeability which can be used to simulate a 
stagnating layer, maximum infiltration rate and finally the surface water storage capacity 
{Appendix 4a). If groundwater influence is simulated, a complete water retention curve and 
unsaturated hydraulic conductivity curve are needed. Furthermore the depth of the 
groundwater table must be known and, if drains are present, the depth and capacity of these 
drains~ However, in the present study all ~oils wereconsidered t~ b~ freely draining. 
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4 Calibration of the crop growth model 

4.1 Introduction 

In the project .. Yield Forecasting Models Part II .. , WOFOST only calculated yields of a non
specific standard cereal. In the current project, crop parameters were defined that allow crop
specific calculations for 10 agricultural crops. 
In Section 3.4 was explained which crop specific parameters are needed in WOFOST. Starting 
point in this project were the standard WOFOST crop parameter sets which have been given 
for 22 crops in the WOFOST 4.1 documentation (van Diepen eta/., 1988). The parameter 
values in these sets are based on data collected from the literature by van Heemst (1988). For 
a number of arable crops in the EC (wheat, maize, potato, sugar beet, oilseed rape), the 
parameter sets have been further updated within a study by van Lanen eta/. (1992). For this 
update, data were used from the crop growth model SUCROS, (Spitters eta/., 1989) 
supplemented with results from field trials across Europe. 
For the present project, extensive research was conducted to further adapt the crop 
parameters to regional conditions for a wider range of crops. This has been described in 
detail by Boons-Prins eta/. (1993). A summary of the methodology followed will be given in 
this chapter. Crop parameters concerning crop phenology will be treated separately because 
of their special nature. Then an investigation in the possibilities of mathematical calibration 
will be discussed and finally a short summary of the calibration as eventually performed will 
be given. 

4.2 Crop phenology 

Initiated by the Joint Research Centre, an extensive inventory of agrometeorological aspects 
of all main agricultural crops in the European Communities has been made by a number of 
contractants (Bignon, 1990; Hough, 1990; Russell, 1990; Falisse, 1992; MacKerron, 1992; 
Narciso eta/., 1992). In these publications regional phenological calendars are given. These 
have been used to determine sowing/planting dates for all crops and to estimate 
development rates of the crop in dependence of ambient temperature (Boons-Prins eta/., 
1993). For each crop, the regional long term average sowing/emergence, flowering and 
maturity/harvest dates have been combined with the regional long term average 
temperatures retrieved from the DBMETEO weather data base. This way the regional 
development rates of each crop were calculated, expressed as the temperature sum needed 
from sowing/emergence to flowering (TSUM1) and from flowering to maturity/harvest 
(TSUM2), using crop specific base temperatures for development (Boons-Prins eta/., 1993). 
The regional temperature sums were grouped, this way representing different precocity 
classes. To each NUTS-1 region, a precocity class was allocated, corresponding on average best 
to the local cropping calendar. These precocity classes, for each crop only differing in 
dCYCiopment r;ate \Al@(Q the starting point for further crop parameter calibration.~ 
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4.3 Mathematical calibration 

In Section 4.1 it was explained that the crop parameters needed in the model have been 
derived from the literature. When comparing sources, it becomes clear that different values 
are found for the same parameter, depending on the conditions of the experiment. In other 
words, there is a range of biologically plausible values to choose a parameter from. This 
introduces a source of uncertainty in explanatory agro-ecological models. Subsequent to 
initial choice of parameter values the final values used in a model are often selected on the 
basis of comparison between model output and one or more field datasets. Choosing the 
best parameter values is problematic because there is no way of knowing how good the final 
choice of parameters is relative to other possible choices. A solution to this problem would be 
to use a mathematical algorithm for finding the best combinations of model parameters for a 
given set of field data. There are a number of mathematical approaches to calibration of 
simulation models. 
The calibration program used in this project consists of two calibration algorithms. The first 
one is developed by Price (1979). The second one is the Downhill-Simplex method from 
Neider & Mead (1965) as implemented in Numerical Recipes (Press eta/., 1986). The Price 
algorithm was adapted to the calibration of simulation models by Klepper (1989) and has 
been used in a study by Klepper & Rouse (1991) to demonstrate its applicability to a potato 
crop growth simulation model. The Downhill Simplex method is a faster alternative to the 
Price-method which is a large consumer of computer time due to its thoroughness in 
(random) search. The structure of the two algorithms and the FORTRAN software to use the 
algorithms in combination with a crop growth simulation model, are described by Stol eta/. 
(1992). 
For application of the calibration program it is necessary to identify those model parameters 
that have a large range of uncertainty and to specify this range. The choice of a goodness of 
fit criterium to judge the degree of correspondence between model output and experimental 
data depends on the objectives of the researcher. These objectives dictate which state 
variables will be considered in the study and what goodness of fit function will be chosen. As 
an example, the objective may be to determine whether the model behaves similar to reality 
with respect to biomass production. In this case the dry weights of stems, leaves and storage 
organs might be chosen as state variables to be compared with experimental data. 
The mathematical calibration procedure according to Stol eta/. (1992) was in this project 
applied for wheat (Boons-Prins eta/., 1993). Eight detailed experimental data sets were 
available, five from the Netherlands, two from the United Kingdom and one from Belgium. 
The model parameters under consideration were RGRLAI, AMAXTB, SLATB, SPAN, and the 
partitioning of assimilates between leaves and stems. Goodness of fit was calculated for the 
combined state variables leaf area index, total biomass and grain weight. Eventually the best 
fitting parameter choices differed only slightly from the original data set, reflecting that the 
original set was already the result of a process of improvements through extensive 
comparison with experimental data. Furthermore it turned out that the calibration 
algorithms are more suited for application at the field level than at the regional level because 
calibration on just a few state variables of some experiments, does not necessarily result in a 

.. medel ~liSt at a regional leveL bfowever, +hA most important Hmitation to tbe 
~-~ matflemafica f cafifiration-proceaure~artneleveroYtneEtr ropearrCorrnrn.rniti'es~is~th_e_~~-~ 

--+>eneFm-eu-s-amou-Rt-e-f--e--Xpe-timer+ta.l-dat-a-t-hat-i.s-r:equir-ed-t-O-PeLform-Such.acalibr:ati.on_for ________ _ 
--=-~z=e=-=erF&a9·11~FcrcattoWS:witiTFrFFire='Ee~tKe=fi!J-e=or=Bat~FHeeBe'Cf=are:=ae't2rne~=se-ts=erF<>SServaH0ns:Jer=~·~-== =-·-=·=·=······=·==··"==·-··==--~--

leaf area and dry matter weights of different crop components at various times during the 
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growing season. Because the model describes potential and water-limited crop production as 
explained in Section 3.2, experiments should be conducted under very well controlled 
conditions. At the beginning of the project a questionnaire (see Appendix 6) has been sent to 
a number of researchers within the EC, asking for such data. A number of experimental data 
sets was obtained this way from the United Kingdom, Spain, Italy, Denmark, Belgium, Greece, 
France and the Netherlands (see also acknowledgements). Additionally the agricultural 
research centre ERSA-SMR in Bologna Italy was visited to collect data. Though all data proved 
to be useful, it turned out that within the time frame of this project not enough data would 
become available for a thorough calibration approach. It was therefore decided to use the 
limited amount of data that were available for a more conventional way of adjusting the 
model, described in the next section. 

4.4 Calibration with limited data 

As explained in the previous section a mathematical calibration procedure was only executed 
for wheat, mainly due to the limited amount of available experimental data for the other 
crops. Field data were therefore used in combination with modeling experience to find 
coherent crop parameter sets with regional validity for each crop. Crop precocity classes 
(Section 4.2) were the starting point for further refinement of the parameters. Simulation 
results were compared with regional field trial results in order to judge if adaptations were 
needed. Due to uncertainty in crop parameters for local varieties, it was tried to achieve 
satisfying agreement between simulation results and data by changing as few parameters as 
possible. This process of simulation and comparison has been extensively described by Boons
Prins eta/. (1993). In that publication all experimental data are mentioned that have been 
used, together with the different crop precocity classes and crop parameter files. These 
aspects will therefore not be further treated here. 
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5 Yield prediction and statistical 

validation of predictions 

5.1 Introduction 
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The goal of the present study, is to use crop growth simulation results as a basis to provide an 
algorithm allowing quantitative regional yield forecasting. The procedure followed for the 
development and validation of such an algorithm has taken advantage of the experience of 
earlier studies by Palm & Dagnelie (1993) made at the request of the Statistical Office of the 
European Communities to develop methods for yield prediction on the basis of official yield 
statistics and meteorological data. In statistical annual yield series, very often a time trend of 
rising yields can be found. This technological trend is the result of improved farming practices 
like the introduction of new varieties, higher application rates of fertilizers and more 
intensive control of weeds, pests and diseases. Within their prediction model, Palm & 
Dagnelie (1993) have separated the technological time trend from the effect of 
meteorological conditions: 

Oy = f1 (t) + g (m) + e 

in which Oy is the official regional yield, f1 (t) is the component representing the time trend, 
g(m) the component representing meteorological conditions of separate years and e the 
random component. 
Palm & Dagnelie (1993) have investigated several ways to describe the time trend. After 
analysing the results they decided that a simple linear model is sufficient in most cases. A 
quadratic term gives hardly better results for time series from 20 to 30 years. According to 
Swanson & Nyankori (1979) linear time-trends for corn and soybean yields in the United 
States could not be significantly improved by various non-linear trends. 
Assuming a linear trend, the regression model used by Palm & Dagnelie (1993) was: 

i=n 
Oy = a + b * t + _I( c i Wi) + e 

i=1 

in which Oy is the official regional yield, tis the year, Wi is the ith weather variable of a total 
of n variables, 
a, band c are regression parameters and e is the random component. For a case study on 
maize yields in a number of French regions, weather variables used by Palm & Dagnelie 
(1993) were decadal values of evapotranspiration, precipitation, global radiation, and 
maximum, minimum and average temperature. Considering 24 decades from March until 
October, this amounts to a total of 144 variables that are potentially explicative (n=144). 
From these variables. secondary variables have been derived {mainly bv accumulation of basic .. ~ 

- --- '~'--c'~'~=-·--_---_--- valt.Je·sJ=tyacse'd'-'on~agrtinomicl<n'OWiedge7'fOr-example'the-cumufativecglobal-"fadiatien,in,July 

_______ ___(lalLL'ndAugus!.. From the basic and secondary weather variables a subset to be used for 
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procedure has been followed to predict maize yields in France. After evaluation of the results 
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it was concluded that most of the yield variation is described by the trend and that the use of 
weather variables doesn't improve yield prediction, in fact it worsens yield prediction. 

In the present project, yield forecasting with crop growth model output is explored. Within 
the CGMS, calculations with WOFOST are executed per single land unit and subsequently 
aggregated to obtain yields at regional (NUTS-1) and national (NUTS-0) level (see Chapter 2). 
After running the model for a series of historical years, the simulated regional yields and the 
official regional yields figures are used to construct yield prediction rules. 
Using simulation techniques in yield forecasting has for example also been demonstrated by 
Horie eta/. (1992) for rice. In a simulation approach, model output represents the integrated 
effect of weather conditions throughout a growing season on crop growth. It is expected 
that model output has more agronomic significance than individual weather variables. 
The simulated yields can not directly be considered as the final yield forecasts, because 
official yields are in many regions considerably lower than the potential or water-limited 
yields due to sub-optimal cultivation practices. Furthermore, a trend of rising yields can be 
observed in official yields, as explained before. However, it was assumed that at farmers fields 
light, temperature and rainfall are still decisive factors in seasonal yield fluctuations and for 
this reason there should be a relation between simulated and official yields. With the 
simulation model it is tried to predict the deviation from the time trend due to weather 
conditions. 
The development of the prediction rules using crop model indicators, and the accuracy of the 
predictions will be treated in this chapter. In this report, yield prediction for the current 
season is only performed on the basis of simulated final model outputs at the end of the 
season. The ultimate goal of the CGMS system is to enable the Agriculture Project to perform 
every 10 days and on a routine basis crop yield predictions during the course of the growing 
season, which are likely to become more and more reliable as the growing season progresses. 
The results of these predictions will be analyzed in the first operational year of the CGMS. A 
difference with the current approach, is that for preliminary 1 0-day predictions the model 
output choice is more limited, for example grain weight can not be used as model output 
when grains have not yet been formed (see Section 5.2.1). However, the same prediction 
methodology is being used as described in the next Chapter. 
The Fortran software to execute the statistical analysis was designed and written by Jansen 
and Withagen. An explanation of the software and a listing of the source code are given in 
Appendix 7. 

5.2 Prediction rules 

5.2.1 Model indicators 

Official statistics of regional mean yields in tonnes ha-1 fresh weight, are predicted using the 
following model indicators (all dry matter weights): 

P6 sim~lateclpotential graifi#ield {tonnes ha-1~ 
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These model indicators have been obtained by simulation based on representative small scale 
soil and weather data at grid basis, followed by aggregation to regional level (see Chapter 2). 
For some crops, grain yield must be interpreted as storage organ yield, for example tuber 
yield for potatoes and yield of the main root for sugar beets. 
The simulated yields represent production maxima, which can be reached under optimum 
conditions of nutrient supply, weed, pest and disease control, and farm management. The 
potential yield does not account for effects of water shortage and therefore applies to a 
situation with optimum irrigation. The water-limited yield represents maximum yields under 
rain-fed conditions. 
Originally, it was intended to predict yields by solely using the water-limited grain yield (WG) 
as model indicator. Later on, the other three elementary predictors were added. Water 
limited yield, for instance, is inappropriate for a region with a lot of irrigation. For many 
regions it is not clear how large the area under irrigation is and where irrigation is applied 
within the region. Furthermore water-stress can be strongly reduced in case of groundwater 
influence, a factor which was not taken into account in the model. The total biomass model 
indicators were added because these are more robust, being less sensitive to modelling errors 
in the distribution of assimilates. Furthermore, biomass indicators allow 10-day yield 
predictions during the growing season, when grain filling has not yet started or grains are 
still very small. In this report, however, only final yields are considered (see Section 5.1). 

5.2.2 Elementary predictors 

Predictors of mean regional yield are formulated, which are based on official statistical yields 
of past seasons, model indicators of the same past seasons and model indicators of the season 
to predict. The predictor is chosen from the following elementary regional predictors, 
obtained by linear regression of the official regional yield (Oyi) on the year (ti) and on model 
indicators: 

0-predictor: Oy + b * (ti - t ) 

PG-predictor: Oy + b * (tj- t) + c * (PGj- PG) 

WG-predictor: Oy + b * (ti- t) + c * (WGi- WG) 

PB-predictor: Oy + b * (tj- t) + c * (PBi- PB) 

WB-predictor: Oy + b * (tj- t) + c * (WBj- WB) 

Coefficient Oy represents the average official statistical yield (tonnes ha-1) over the years on 
which the regression is based. The technological time trend is accounted for by the term 
b *(ti-t) in which coefficient b is the yearly increase of the official yield (tonnes ha-1). The 
0-predictor, only describing the trend, is already able to account for regional production level 
differences. The other predictors use model indicators PG, WG, PB or WB (see previous 
section) in order to account for seasonal effects due to weather and weather-soil interactions. 

~._. ~~·-~·:-~···--=~--·~~Additionof .. a quadrcaticterm ... (ti~.t.)i_to~the~time~trerl<fllas.be.en.cons&He[e.a_::aas_e_d~onj))e: 
results of Palm & Dagnelie (1993) (see Section 5.1) and additional testing on the REGIO 

====~~=-····-------~=databas.e-=:.of'·-fu..mstat~::ttw~s~~kte~t~~~H~~~!F~~s:§\:!f~ie-.J!~:!~~s~f4be4f!.~~e~sJng_~~~--~:~=-== 
official yields. A smooth trend of any type over a large number of years assumes a continuity 
which might be unrealistic. For that reason it has been decided to base the predictor only on 
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data from the recent past, namely the 9 most recent years. Gradual shifts in the time trend 
are allowed for by the shortness of the time series of 9 years, used to derive the predictor. 
Suboptimal production circumstances are accounted for by the coefficient c, which should lie 
between 0 and 1. 

5.2.3 Full prediction rules 

Unfortunately there are no conclusive a priori arguments for selecting one particular 
elementary predictor for a particular region. Data to support such a choice are not available. 
Simultaneous regression of official statistics on technological trend and all four model 
indicators is unattractive: it is well known that, with limited data, predictions tend to get 
worse with increasing number of explanatory terms. The dilemma was partially resolved by 
selecting for each region separately as predictor the elementary predictor which appears to 
predict most accurately, from the elementary predictors mentioned above. 
The full prediction rule for a region consists of a data-based selection of an elementary 
predictor. Each elementary predictor is fitted to the data currently available. Predictors with a 
negative estimate of care rejected because this would make the use of the simulation model 
unrealistic. A negative value of c would mean that a better than average simulated yield 
would correspond with a worse than average official yield and the other way around. 
In this report, two prediction rules (PO and P5) are investigated and compared: 

-PO uses 0-predictor 
- P5 chooses from: 0-predictor, PG-predictor, WG-predictor, PB-predictor and WB-predictor 

PO is just a regression on the technological trend for each region. P5 compares for each 
region separately which of the 5 predictors mentioned in Section 5.2.2 predicts the data of 
that region most accurately. The criterion of best prediction is described in the next section. 

5.3 Characterization of prediction errors 

In section 5.2.2, 5 yield predictors were introduced. For comparison of predictors, a measure 
for the accuracy of a prediction model must be formulated. The size of the prediction errors, 
is expressed by the Relative Root Mean Squared error (RRMS(e)) as percentage of the mean 
official yield: 

i=k 

~* Lei2 

i=1 
RRMS(e1 ... ek) = -~--- * 100 

Oy 

in which k is the number of predictions that is made, ei is the error of the ith prediction and 
Oy is ta~aA efficial yield of thA predjc+ed years lise of the mean sq11ared error of 

leave-one-out Gackknife) prediction 
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These will be illustrated on the basis of 15 hypothetical historical years with official yields and 
simulated yields. 

Jackknife error estimate of a predictor 

The Jackknife method (also called the leave-one-out method or Allen's PRESS method) can be 
applied to any prediction rule (Allen, 1971). The yield observations of all years, except one, 
are used to construct a predictor which is applied to the year kept out of sight, in order to 
evaluate the prediction error. This is done for each year in turn. Subsequently, one calculates 
for instance the root mean squared prediction error. For a series of 15 years this is 
schematized in Table 5.1 

Table 5.1. Calculation of the jackknife prediction error. 

Years used to derive predictor (14 years out of 15) Year for which yield is 

predicted and prediction error 

assessed 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 

1 3 4 5 6 7 8 9 10 11 12 13 14 15 2 

. . . ... 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Jackknife errors are calculated by keeping data out of sight one after another during the 

construction of the predictor. In this example data of 15 seasons are available. 

Jackknife root mean squared prediction error: \)<<e12 + .... + e152)/15) 

In case the prediction rule consists solely of linear regression, jackknife errors can be very 
easily calculated (Montgomery & Peck, 1982). The jackknife error has also been used by Palm 
& Dagnelie (1993). 

One-year-ahead and two-years-ahead error estimate of a prediction 

In the present study the aim is to predict the future rather than to reconstruct the past. For 
direct application it is therefore important to investigate prediction accuracy for the current 
year. At the end of the growing season, weather data are available for simulation of crop 
yields, but official statistics are not yet available because of delayed data processing. When 
official statistics are not delayed more than one year, a one-year-ahead prediction (OYA) is 
performed. Because occasionally statistics are delayed for two years, two-years-ahead 
prediction (TY A) has also been studied . 
For calculation of the OYA prediction errors, in a series of years the last year should be left 
out and be predicted on the basis of the previous years. In this study, a series of 9 years is 
used to predict the yield for the following year. For a series of 15 years, on the basis of the 
first 9 years the yield of the 1Oth year is predicted and the prediction error assessed. Then the 

- --"--- ---~~--'---'------- =--yie-ld~Gf=tt-.ec~1-c1cth~year=is~pr=ediEted~on=the=basis~oithe~se,cond~to~th_e~tOtb~Y-e-aLe!.eecteJa.~ 

Subsequently, the root mean squared prediction error can be calculated. For the TYA 
___ ,~~,-_,-~_:·--_-=----=-pr_~mctwrrarr=~~t:.ts~r~eeattre=i54e-IJewe~eA-:-=too~-Ba~i-s:~&'f-ttle=f~fS:t=-9=¥-ear+-tbe--¥ier~------·-----~===

the 11th year is predicted etcetera. For a series of 15 years the calculation of the OYA 
prediction error is schematized in Table 5.2. 
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Table 5.2. Calculation of one-year-ahead prediction error. 

Years used to derive predictor (series of 9 years out of Year for which yield is 

15) predicted and prediction error 

assessed 

1 2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 11 

. . . ... 
6 7 8 9 10 11 12 13 14 15 

One-year-ahead (OVA) prediction errors are calculated on the basis of nine preceding 

years. In this example data of 15 seasons are available. 

OVA root mean squared prediction error: \]«e102 + .... + e152)/6) 

5.4 Selection of elementary predictor 

From the 5 elementary predictors, prediction rule PS selects the one that predicts most 
accurately as far as can be seen from the years that are used for the construction of the PS 
prediction. The jackknife prediction error measure of the elementary predictors was taken as 
a suitable selection criterion. In the present system the nine most recent years are used as a 
basis for OYA and TYA prediction, so the corresponding jackknife is obtained by comparing 
over these 9 years the realization in year 1 with the prediction based on year 2-9, etcetera. 
The elementary predictor with the lowest jackknife error over these 9 years is selected in the 
PS prediction rule. 

5.5 Assessment of the performance of PO and P5 

The accuracy of the rules PO and PS was investigated in two ways. First of all, we investigated 
how PO and PS perform in the OYA and TYA predictions, where the 9 most recent years are 
available to construct the predictor. If n years are available in the database we have n-9, 
respectively n-10, occasions to compare prediction with a realization lying one respectively 
two years ahead. 

Additionally, the jackknife prediction error of rule PS was calculated, based on all data 
present for the region. This provides about twice as many, namely n, occasions to compare 
prediction and realization. Therefore it is expected that this latter measure of prediction error 
has better accuracy. Although the jackknife error measure of PS is not directly relevant for 
one and two years ahead prediction, its greater accuracy makes it useful, particularly since 
the jackknife error measure is fully relevant for the investigation of the effect of the use of 
model indicators on prediction precision. In fact the only advantage of the one and two years 
ahead method is that the uncertainty about the time trend, which has its strongest effect at 
the end of the time interval, is duly taken intoaccount. 

-'-'---~'l'ne=jackknife~method~used~to~assess~theqt.Jality~ef-f)redictien'f'ttle,"P-5,weFks~ascfellewsi'-Ea€h--

of then years is predicted on basis of the remaining n-1 years: PS is derived from these n-1 
-----~~==~year'"S~ana=t:rsea=-tO"p-rrenter~tre=ye~ar==l'ef=t=oa:t:~t:re:j-am1nli£e~error=m-easur_e=of=~5~stratdrl=-ooi=::b_e==:--=~-=====~===-==--==--":-~--~----.. =

confused with jackknife error measures of the particular elementary predictors from which PS 
chooses one. By the definition of PS, the jackknife error of the elementary predictor selected 
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by PSis never worse than that of PO on the same n-1 years, but when it comes to assessment 
of the quality of PO and PS, the predictions and realizations in the remaining year are 
compared, and there is no a priori reason why PS should do better in that point. On the one 
hand, PS has the advantage that weather effects are accounted for, by which the systematic 
error in the prediction will become smaller. But on the other hand, PS has the disadvantage 
that the selection of the elementary predictor and the coefficient of the model indicator are 
based entirely on the small number of data available for the determination of the predictor. 
Thus PS is influenced more by measurement errors. It is not clear in advance which of these 
two effects will be the strongest. In fact, it will appear later on that PO predicts about just as 

well asPS. 
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6 Results 

6.1 Introduction 

In this chapter results will be given of the statistical analysis. In the CGMS that will be 
installed at JRC, software is applied in such a way that actual yield predictions for a current 
year are given. This deals with the accuracy of yield predictions at different aggregation 
levels and for different crops. This way it can be evaluated if the use of crop growth 
simulation contributes to improved yield predictions. 
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In Section 6.2 the type of output of the current statistical analysis will be explained on the 
basis of an example. In the next section summarized output will discussed, focussing on a 
comparison of prediction errors when using predictors with or without crop growth model 
indicators. Wheat will be treated as an example crop. Other crops are discussed more briefly. 

6.2 Type of output 

A detailed output of the statistical software is shown in Appendix 8. In this example the 
output for NUTS-1 region R22, the Bassin Parisien, is given. The results are based on 15 years 
of available official yields and simulation yields. In Appendix Sa, results are given for 
prediction rule PO, in other words prediction excluding model indicators and solely based on 
the time trend. Over the total period of 15 years, the average official yield is 5.644 tonnes 
ha-1 and the yearly increase of the yield is 0.186 tonnes ha-1 in this region. The t-value of 
6.16, based on all years, indicates that the time trend is clearly significant. The critical value of 
t (5°/o, one-sided) is about 1.8 (for 15 years). Furthermore, the unadjusted and adjusted R2 of 
the regression are given. More important, however, are the estimates of the root mean 
squared prediction errors which are all expressed as percentage of the 15-year mean. The 
jackknife error is based on all 15 years and is estimated at 9.5°/o. The OYA and TY A errors are 

based on 6 and 5 predictions, respectively, using 9 preceding seasons for each prediction as 
explained in Section 5.3. The OYA and TYA errors amount to 12.0% and 14.3°/o, respectively. 
The mean official yield and yield increase of the 9 most recent years available (up to 1990) is 
given, allowing to formulate a predictor based on the last 9 years, which is in this case: 

6.190 + 0.151 * (year-1985) 
Thus, for the year 1991 (i.e. OYA) and 1992 (i.e. TYA), the predicted yields for this region 
using this predictor are 7.096 tonnes ha-1 and 7.247 tonnes ha-1, respectively. 

In Appendix 8b, results are for the same region given for prediction rule P5, choosing the 
best of 5 possible predictors. The mean official yield of the series 'of years is the same of 
course. However, based on all years, the predictor using model indicator 1 (potential grain 
yield) has been selected. The jackknife error of 9.2°/o listed in the output, is the jackknife of 
P5 (see Section 5.5). This error-measure will be used to compare the accuracy of the 
predictions of PO and P5. The t-value of 3.1 (based on all years) indicates that the effect of 
t:asi"~ a model iAdieat~ced46tieR is significant The OVA and rtA errors have also 

----------- ----------- -----oeen~-calcu.faFeC:JcfortnEtfullpreCIIctiocn· rule~fn<:facnrounttcr12:0°/ctartd~t-ttlo/o,~resp~ettlvely; 

---------given-as-;::>er-c~nt-age-ef-the--1-5--Y.e-ar-mean.-Accor:c;ling-tO-tbe-outpu:tr-the-pr_edktoLbased o.....,n._.____ __ _ 

4.528 + 0.125 * (year- 1985) + 0.480 * (ind[1]- 5.187} 
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Like for the prediction based on all15 years, indicator 1 (potential grain yield) has been 
selected in the predictor based on the 9 most recent years available. Suppose that the 
simulated potential grain yield is 9 tonnes ha-1 in 1991 and 8 tonnes ha-1 in 1992, then the 
predicted yield for this region for 1991 (OVA) and 1992 (TVA) would be 7.108 tonnes ha-1 
and 6.753 tonnes ha-1, respectively. 

6.3 Crop specific results 

In this section some selected results will be given for specific crops. For three crops, yields 
were simulated but no official statistics were available: oats, field bean and soybean. For 
these crops no predictions could be made. For the other crops, results are available at NUTS-1 
and NUTS-0 level, but with varying completeness, depending on availability of simulation 
results (weather years) or official yields. Results for Germany only apply to former West 
Germany. 
The type of results presented in Section 6.2 are summarized for the PO and P5 prediction 
rules. These are listed in Appendix 9 and Appendix 10 for NUTS-1 and NUTS-0 level, 
respectively. For each region or country the number of available years and the mean official 
yield over this period is indicated. For the P5 predictor the model indicator of the selected 
predictor based on all years (having the smallest jackknife error) is listed. Indicator 1, 2, 3 and 
4 represent the PG-predictor, WG-predictor, PB-predictor and WB-predictor, respectively (see 
Section 5.2.2). When no indicator is listed, the 0-predictor (only time trend) is selected. When 
a model indicator is listed, also the coefficient and the t-value of the model indicator term 
based on all years is given. Then follow the R2 based on all years, and the relative residual 
error of the regression based on the last nine seasons. The last three columns in Appendix 9 
and 10 give the jackknife, OVA and TVA root mean squared errors as percentage of the mean 
over all years. An asterisk indicates that not enough years are available to allow the 
calculation of a prediction error. For OVA, at least 10 years are needed, and for TVA 11 years. 
The minimum amount of years needed for calculation of the jackknife error was set at 8. 
When less than 8 years are available for a region or a country, no analysis is made and it is 
left out of Appendix 9 and 10. No results can also indicate that the crop is not growing at all 
in that region or country. 

6.3.1 Wheat 

In Table 6.1, an indication is given of the NUTS-1 wheat yield prediction errors with the PO 
prediction rule, in other words, prediction on the basis of only the time trend. A regional 
frequency distribution is given of the jackknife and one-year-ahead root mean squared 
prediction errors. The jackknife error varies for the majority of regions between 5 and 15 °/o. 
The one-year-ahead errors are based on less predictions and are therefore more variable. 
In Appendix 9 it can be seen that in case of the P5 prediction rule, for 26 NUTS-1 regions a 
predictor using a model indicator is selected. All four indicators occur, in 6 regions potential 
grain yield is selected, in 5 regions water-limited grain yield, in 8 regions potential biomass 
aerl in 3 regions wa+er-limi+ed biomass In 31 regions the 0-predictor js chosen using no 

_c modeririakatoi at ·aleTne 't-\laltres-in~Appe11aix9clrraitatec_if~th~e~relatibh~hetwe~errrrrddel 
--incUca-t-Or-and-officiaLy.ield-iS-Significant.-Eot-a-Series-ofJ5-y_ears,_the..criticaLva . .u.h ...... Je._.ooLif'-'t"--1(~5-L.C0Al.._,., _________ _ 
~~=~=~:::orre~si:CJeaJ=rs=aHout=-1=;s~t=n::::most~of=tn-e-cases=twe-moael=inare=a:t=er=wa~s=a'=s:l§n=ifrea~Af_::effe'Et~Me=st==~::7~"=="':====·~·............ ="':··=~=:···==-·" 



important, however, are the prediction errors. A frequency distribution of the prediction 
errors of the full PS prediction rule is given in Table 6.2. 

Table 6.1. Wheat yield prediction for NUTS-1 regions. Frequency distribution of jackknife and one

year-ahead (OYA) root mean squared prediction errors for the PO prediction rule. 

Jackknife errors of PO prediction rule OYA errors of PO prediction rule 

prediction error number of NUTS-1 prediction error number of NUTS-1 
range(%) regions range(%) regions 

0 - 5 0 0 - 5 1 
5 - 10 23 5 - 10 12 

10 - 15 25 10 - 15 18 
15 - 20 2 15 - 20 16 
20 - 25 4 20 - 25 3 

> 25 3 > 25 7 

Table 6.2 Wheat yield prediction for NUTS-1 regions. Frequency distribution of jackknife and one

year-ahead (OYA) root mean squared prediction errors for the P5 prediction rule. 

Jackknife errors of P5 prediction rule OYA errors of P5 prediction rule 

prediction error number of NUTS-1 prediction error number of NUTS-1 
range(%) regions range(%) regions 

0 - 5 0 0 - 5 0 
5 - 10 20 5 - 10 8 

10 - 15 26 10 - 15 21 
15 - 20 4 15 - 20 16 
20 - 25 4 20 - 25 6 

> 25 3 > 25 5 
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In order to compare the performance of PO and PS, the differences between the RRMS errors 
were calculated for each region. A frequency distribution of these differences is shown in 
Table 6.3. A negative value in Table 6.3 means that the prediction error of the PS prediction 
rule is larger than that of the PO prediction rule. For 35 NUTS-1 regions, the difference 
between jackknife error varies from minus one to one percent, which can be interpreted as 
PO and PS being equal. In 16 regions PS predictions are worse than PO predictions, and in 6 
regions PS predictions are better. The one-year-ahead errors show the same pattern. This 
indicates that the use of model indicators does not improve accuracy of NUTS-1 wheat yield 
predictions in comparison with a trend analysis. 
After aggregation to NUTS-0 (country) level, the same analysis can be made. These results are 
shown in Appendix 10. In 7 countries a model indicator is selected in the PS prediction. Each 
of the 4 indicators occurs. In almost all cases the t-value indicates a significant effect of the 
model indicator. 

---~~~-'~'~-~-'-~~--~J Re ditieretis~tf:5lfi"~g_rLQ_ie_~6ar•Cl PS pre~ictiot'1errors_lsfor _ eaclmitou• ·~•g gi11~••.i• •_!a~le · 
6.4. Again a negative value o{predictlo_n_ error means-that th-epredictio-n erTor-of the PS-

-~~--~~:-~~:~~=~=~-=~-.=--~~-==·-~--=-~--·-·~-.~~-.-~-.... ~-. _---,-,~~Je:iS:1ii[Q .. eL.~11~~tllal~~1.tfg=g~g:-~V:~~.(II1 .. ~I:fl~g[]'IT2Sl_Sq~1}1Lie~-~t~~~1~!-ic:>_f}~-=~-~=-= 
are worse than the PO predictions, though the differences aresmall:-OnlyTn-Greec-e, tne-PS- -
predictor seems to be notably successful. 
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Table 6.3. Wheat yield prediction for NUTS-1 regions. Frequency distribution of the differences in 

prediction errors between the PO and P5 prediction rule. Differences given for both 

jackknife and one-year-ahead {OVA) root mean squared prediction error. 

jackknife difference between PO and P5 OVA difference between PO and P5 

prediction error number of NUTS-1 prediction error number of NUTS-1 

range{%) regions range{%) regions 

< -10 0 < -10 2 

-10 - -5 2 -10 - -5 1 

-5 - -1 14 -5 - -1 15 

-1 - 1 35 -1 - 1 31 

1 - 5 6 1 - 5 5 

5 - 10 0 5 - 10 3 

> 10 0 > 10 0 

Table 6.4. Wheat yield prediction for countries. Differences in prediction errors between the PO and 

P5 prediction rule. Differences given for both jackknife and one-year-ahead {OVA) root 

mean squared prediction error. 

jackknife difference between PO and P5 OVA difference between PO and P5 

country difference {%) country difference{%) 

Germany -0.2 Germany -0.5 

France +1.1 France -0.2 

Italy -0.9 Italy -0.7 

Netherlands -0.6 Netherlands -0.1 

Belgium 0 Belgium -1.0 

Luxembourg -0.4 Luxembourg -1.1 

United Kingdom -1.3 United Kingdom -1.2 

Ireland -1.3 Ireland -1.7 

Denmark +0.8 Denmark +0.3 

Greece +3.8 Greece +4.5 

Spain -2.4 Spain -6.8 

6.3.2 Other crops 

Results for wheat have been treated in detail in the previous section. In this section a 
summarized analysis of the results for the other crops is given, focussing on a comparison 
between the PO and PS prediction rule. Basic data are given in Appendix 9 and 10 as 
explained in Section 6.3. At the NUTS-1 level the differences in jackknife and one-year-ahead 
prediction errors of the PO and PS prediction errors are given in Tables 6.5 to 6.11 for the 
crops grain maize, spring barley, rice, sugar beet, potato, oilseed rape and sunflower. 
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Table 6.5. Grain maize yield prediction for NUTS-1 regions. Frequency distribution of the differences 

in prediction errors between the PO and P5 prediction rule. Differences given for both 

jackknife and one-year-ahead (OVA) root mean squared prediction error. 

jackknife difference between PO and P5 OVA difference between PO and P5 

prediction error number of NUTS-1 prediction error number of NUTS-1 

range(%) regions range(%) regions 

< -10 0 < -10 1 

-10 - -5 0 -10 - -5 1 

-5 - -1 12 -5 - -1 13 

-1 - 1 16 -1 - 1 12 

1 - 5 9 1 - 5 8 

5 - 10 0 5 - 10 2 

> 10 0 > 10 0 

Table 6.6. Spring barley yield prediction for NUTS-1 regions. Frequency distribution of the 

differences in prediction errors between the PO and P5 prediction rule. Differences given 

for both jackknife and one-year-ahead (OVA) root mean squared prediction error. 

jackknife difference between PO and P5 OVA difference between PO and P5 

prediction error number of NUTS-1 prediction error number of NUTS-1 

range(%) regions range(%) regions 

< -10 0 < -10 0 

-10 - -5 1 -10 - -5 0 

-5 - -1 9 -5 - -1 16 

-1 - 1 34 -1 - 1 32 

1 - 5 8 1 - 5 5 

5 - 10 5 5 - 10 2 

> 10 0 > 10 2 

Table 6.7. Rice yield prediction for NUTS-1 regions. Frequency distribution of the differences in 

prediction errors between the PO and P5 prediction rule. Differences given for both 

jackknife and one-year-ahead (OVA) root mean squared prediction error. 

jackknife difference between PO and P5 OVA difference between PO and P5 

prediction error number of NUTS-1 prediction error number of NUTS-1 

range(%) regions range(%) regions 

< -10 0 < -10 0 

-10 - -5 0 -10 - -5 0 

-5 - -1 5 -5 - -1 1 

-1 - 1 7 -1 - 1 9 

1 - 5 1 1 - 5 2 

5._ .. _~_.10._ 
-- ---- 0 !:> - lU v 

> 10 0 > 10 0 
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Table 6.8. Sugar beet yield prediction for NUTS-1 regions. Frequency distribution of the differences 

in prediction errors between the PO and P5 prediction rule. Differences given for both 

jackknife and one-year-ahead {OVA) root mean squared prediction error. 

jackknife difference between PO and P5 OVA difference between PO and P5 

prediction error number of NUTS-1 prediction error number of NUTS-1 

range{%) regions range{%) regions 

< -10 0 < -10 0 

-10 - -5 0 -10 - -5 3 

-5 - -1 7 -5 - -1 6 

-1 - 1 23 -1 - 1 21 

1 - 5 5 1 - 5 1 

5 - 10 1 5 - 10 1 

> 10 0 > 10 1 

Table 6.9. Potato yield prediction for NUTS-1 regions. Frequency distribution of the differences in 

prediction errors between the PO and P5 prediction rule. Differences given for both 

jackknife and one-year-ahead {OVA) root mean squared prediction error. 

jackknife difference between PO and P5 OVA difference between PO and P5 

prediction error number of NUTS-1 prediction error number of NUTS-1 

range{%) regions range{%) regions 

< -10 0 < -10 1 

-10 - -5 1 -10 - -5 0 

-5 - -1 8 -5 - -1 6 

-1 - 1 20 -1 - 1 26 

1 - 5 14 1 - 5 5 

5 - 10 3 5 - 10 6 

> 10 0 > 10 1 

Table 6.10. Oilseed rape yield prediction for NUTS-1 regions. Frequency distribution of the differences 

in prediction errors between the PO and P5 prediction rule. Differences given for both 

jackknife and one-year-ahead (OVA) root mean squared prediction error. 

jackknife difference between PO and P5 OVA difference between PO and P5 

prediction error number of NUTS-1 prediction error number of NUTS-1 

range{%) regions range(%) regions 

< -10 0 < -10 0 

-10 - -5 0 -10 - -5 1 

-5 - -1 7 -5 - -1 0 

-1 - 1 18 -1 - 1 22 

1 - 5 1 1 - 5 1 
----- , __ c_5- ---'-~--~~lO-~ -~~_~ -~ ~~ ~~--~0~-~ -~-~~ c_~_~ ~ ___ 5_~ ""__c__tO~---~---~ -----~ __ 0~-- ----- --- -------

> 10 0 > 10 0 
~~ ~ ~~~ ~~~~ ~~ ~~~~ ~~~~ ~ ~ ~ ~ ~~ '~" ,, ~~~ ~~~~~~ ~~ ~~ ~~~ ~ ~~~~~~~~ 
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Table 6.11. Sunflower yield prediction for NUTS-1 regions. Frequency distribution of the differences 

in prediction errors between the PO and P5 prediction rule. Differences given for both 

jackknife and one-year-ahead (OVA) root mean squared prediction error. 

jackknife difference between PO and P5 OVA difference between PO and P5 

prediction error number of NUTS-1 prediction error number of NUTS-1 

range(%) regions range(%) regions 

< -10 1 < -10 3 

-10 - -5 1 -10 - -5 0 

-5 - -1 8 -5 - -1 0 

-1 - 1 5 -1 - 1 6 

1 - 5 1 1 - 5 3 

5 - 10 3 5 - 10 0 

> 10 0 > 10 3 

It can be seen in Tables 6.5 to 6.11 that for most crops in most regions the difference 

between the PO and P5 prediction errors varies from minus one to one percent, indicating 

that the two prediction rules are about equal in accuracy. For some crops (potato, sunflower) 

the P5 prediction rule seems to relatively perform slightly better than for other crops (oilseed 

rape), but over the whole it may be concluded that the P5 predictions are equal to the PO 

predictions. As for wheat, this indicates that over the whole of the EC the use of crop growth 

model indicators does on average not improve the accuracy of NUTS-1 yield prediction in 

comparison with just a simple trend analysis. 

In Tables 6.12 to 6.18 the difference between the PO and P5 prediction errors is given at 

country level for each crop separately. In some cases, jackknife errors are available but one

year-ahead errors are missing because the series of years is to short (see Section 6.3). Again, 

one-year-ahead errors are more variable because these are based on less predictions. 

Table 6.12. Maize yield prediction for countries. Differences in prediction errors between the PO and 

P5 prediction rule. Differences given for both jackknife and one-year-ahead (OVA) root 

mean squared prediction error. 

jackknife difference between PO and P5 OVA difference between PO and P5 

country difference(%) country difference(%) 

Germany +1.8 Germany +3.3 

France +1.5 France +3.2 

Italy +0.1 Italy -1.4 

Netherlands +4.3 Netherlands -10.9 

Belgium -3.4 Belgium -3.3 

Greece -1.2 Greece -6.3 

Spain -1.0 Spain -1.7 
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Table 6.13. Spring barley yield prediction for countries. Differences in prediction errors between the 

PO and PS prediction rule. Differences given for both jackknife and one-year-ahead {OYA) 

root mean squared prediction error. 

jackknife difference between PO and PS OYA difference between PO and PS 

country difference{%) country difference{%) 

Germany -0.2 Germany +0.1 

France +1.8 France +1.3 

Italy -2.2 Italy -4.7 

Netherlands +1.0 Netherlands -0.6 

Belgium -1.0 Belgium -1.7 

Luxembourg +4.4 Luxembourg +0.6 

United Kingdom -0.8 United Kingdom -1.0 

Ireland +0.1 Ireland -3.1 

Denmark -0.4 Denmark 0 

Greece -4.4 Greece -17.5 

Spain +8.8 Spain +9.9 

Table 6.14. Rice yield prediction for countries. Differences in prediction errors between the PO and PS 

prediction rule. Differences given for both jackknife and one-year-ahead {OYA) root mean 

squared prediction error. 

jackknife difference between PO and PS OY A difference between PO and PS 

country difference{%) country difference{%) 

France +1.8 France +2.0 

Italy 0 Italy -0.1 

Greece +0.6 Greece * 
Spain -1.7 Spain 0 

Table 6.15. Sugar beet yield prediction for countries. Differences in prediction errors between the PO 

and PS prediction rule. Differences given for both jackknife and one-year-ahead {OYA) 

root mean squared prediction error. 

jackknife difference between PO and PS OYA difference between PO and PS 

country difference{%) country difference{%) 

Germany 0.0 Germany 0 

France +1.6 France -2.4 

Italy +3.1 Italy -4.9 

Netherlands -0.7 Netherlands * 
Belgium -0.3 Belgium -7.7 

Luxembourg 0 Luxembourg 0 

United Kingdom 0 United Kingdom 0 

Ireland~'--~--~--' ---- ----- ~-~....,O.J~~- --------- - ---- --- JreJand -55 

Denmark +1.3 Denmark -1.7 
,.., n'l l":.r,..,..,.,.. * ·::-_ - -·········· ... :.: .. 

- - -

Spain -0.8 Spain 0 
- .......... 
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Table 6.16. Potato yield prediction for countries. Differences in prediction errors between the PO and 

P5 prediction rule. Differences given for both jackknife and one-year-ahead (OVA) root 

mean squared prediction error. 

jackknife difference between PO and PS OVA difference between PO and PS 

country difference (%} country difference(%) 

Germany +1.1 Germany -1.4 

France +1.5 France +9.2 
Italy +0.3 Italy 0 

Netherlands +2.7 Netherlands +0.9 
Belgium +5.3 Belgium +8.1 
Luxembourg +10.0 Luxembourg -10.3 
United Kingdom +2.0 United Kingdom +3.6 
Ireland +1.5 Ireland +3.6 
Denmark -1.9 Denmark +2.3 
Greece +1.8 Greece * 
Spain 0 Spain 0 

Table 6.17. Oilseed rape yield prediction for countries. Differences in prediction errors between the 

PO and P5 prediction rule. Differences given for both jackknife and one-year-ahead (OVA) 

root mean squared prediction error. 

jackknife difference between PO and P5 OVA difference between PO and P5 

country difference (%) country difference(%) 

Germany 0 Germany 0 

France 0 France 0 
Italy -0.1 Italy 0 
Netherlands 0 Netherlands 0 

Belgium 0 Belgium 0 
United Kingdom 0 United Kingdom 0 

Table 6.18. Sunflower yield prediction for countries. Differences in prediction errors between the PO 

and P5 prediction rule. Differences given for both jackknife and one-year-ahead (OVA) 

root mean squared prediction error. 

jackknife difference between PO and P5 OVA difference between PO and P5 

country difference(%) country difference(%) 

France +0.7 France -17.0 
Italy +2.4 Italy -5.2 

Spain -4.0 Spain 0 

When looking at the jackknife errors at country level, the PS prediction rule does not 
~~~~~~-~~-~~~-~=--~---~~~~-'~,~~~Eo~~ nviAdngly~perJorm~bettecthantheJ?_O .. prediction.ruleLRo.iato_Js_a~crop.lor~wh•-cfiJ>S_seems_,_ 

to be better than PO but over the whole range of crops and countries one may conclude that 

----------~~=-~:~=:=~==~~==-=-=t-he"ttSe='(}k-r~~6del=t@ieat~!~~f!~~!~~~~~~-i~~--!c&_:~~-i~~@fO\I~~eJ:l-~!--=-·: __ .. _-----.---=~=:= 
yield prediction at country level. The same conclusion can be drawn from the one-year-ahead 

prediction errors. 
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Furthermore, there seems to be no geographical pattern. Over the range of crops, there is no 
clear distinction between countries in the possibilities for accurate prediction of their yields. 
It should be realized that yields to be predicted are the official yields according to statistics 
and these are not to be considered .. real .. yields. Official yields are estimates of which the 
accuracy is unknown. This problem will be further elaborated in the next chapter. 

............ ··= 

; 

: 

- =- ·::___ -- -- . =- - = = -= 
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7 Discussion 

7.1 Introduction 

The potential value for yield prediction with the agro-meteorological simulation model 
WOFOST according to the methodology presented in this report, is the speed and consistency 
of the approach across all countries and crops. 
However, from the results presented in Chapter 6, it could be concluded that over the whole 
of the EC the accuracy of predicting official NUTS-1 and NUTS-0 yields can not yet be 
improved by using crop growth model output. In this report only yield prediction based on 
final model outputs at the end of the growing season is considered. The Crop growth 
Monitoring System is also capable of generating 10 day predictions during the growing 
season, on the basis of simulated biomass. However, considering the results given in this 
report it is not likely that these predictions will be more accurate. 
The inaccuracy in predicting official yields using crop growth model indicators may be related 
to limitations in the concepts of the model or the quality and quantity of the available input 
data, but also to the reliability of the yields to be predicted. These are not the real yields 
harvested by the farmers, but the official statistical yields. The accuracy of these official yields 
is unknown and therefore unrealistic simulation results can not be separated from errors in 
official statistics. Aspects concerning the crop growth model and statistical analysis will be 
discussed in this chapter. 

7.2 Crop growth model and data 

The Joint Research Centre has published agrometeorological aspects of a number of 
important agricultural crops of the EC in a series of reports called: Agricultural Information 
System for the European Community (Bignon, 1990; Hough, 1990; Russell, 1990; Falisse, 1992; 
MacKerron, 1992; Narciso eta/., 1992). These reports turned out to be useful in determining 
regional cropping calendars. By combining sowing, emergence, flowering and maturity dates 
with data from the meteo database of SC-DLO, regional crop specific development rates were 
calculated. However, a main cause of variation in crop phenology is altitude. In mountainous 
areas the effect of altitude on cropping calendar will probably be larger than the effect of 
latitude. This has not been taken into account in the reports and can therefore have 
influenced the determination of the right regional development rates within the crop 
growth model. 
Furthermore, in order to be able to calibrate the model to regional conditions, a large 
number of detailed data from field experiments was needed. Preferably, these experiments 
should have been performed for a number of years, and under well controlled conditions 
because the model describes growth under conditions with optimal nutrition and absence of 
pests, weeds and diseases. For the calibration of potential yields, irrigated fields are 
eecessary BasidA phAnologic:al development the mostt•sef••l plant data from experiments 

----C~~-~~~are~welgntsofplarf(organsa·r-variotrs~times~th~roa~gh~ourthe~growirtg~season;ccortrposition--·-of 

----------'f-i-Aa-l-y1e-ld,and-Jeaf-ar-e-a-deve!opm.entJbese-data.are.no:Lgbt.enJntheJ.RC_rep.octs .. _CAB_O_-___ _ 
--~,~~"······ ········---~~"~---====··" ........•. ~ •...... ····~=oE&ilartrieC:Ft<>oi:>taincfatatf1ic{t1g11~an=1nquirY.:fo2a=rn:lmoer=of=-eorrea9u~s=ril=-tne=E"c,=5uflrris''''''=-=-= 

resulted in too few data to allow optimal calibration. This will probably remain a problem. It 
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is worthwhile to further invest whether better results can be obtained in predicting yields at 
the field level. 
Test of the model for yield variability for several crops at a plot level, where experimental 
data for validation were available, confirmed that WOFOST performs better for some crops 
(e.g. field bean and sugar beet) than for others (e.g. wheat and potatoes). It appears that our 
approach, of one model structure (WOFOST) for all crops, and only crop specific data, was 
probably too simplistic. In season calibration of the model with data collected from a number 
of closely monitored fields across Europe might also be necessary. 
Due to the large uncertainty on physical properties of European soils, so far calculations have 
only been performed using a standard soil with the same water holding capacity and without 
groundwater influence for the whole of the EC. This may have influenced the results for 
regions with a relative high proportion of worse than average or better than average soils. 
Furthermore, only one sowing date has been used for each crop in each region. Wetness of 
the soil and temperature conditions, however, influence sowing dates in specific years. 
Because no land use map was available, a qualitative estimation was made of soils suitable 
for crop production within a grid. For more accurate calculations, simulation should only be 
performed for soil/climate combinations where the crop is actually grown. Having better land 
use information, for example by means of remote sensing techniques, would therefore be 
very useful. 
It should be taken in mind that sub-optimal growing conditions as result of nutrient supply, 
weeds, pests and diseases are not described by the model, assuming that these conditions 
mainly determine the average yield level within a region and not so much seasonal yield 
fluctuations. However, these growth factors may still be important causes in seasonal 
fluctuations in official yields as well. More information has therefore to be gathered on the 
separate contributions of weather conditions and other growth factors in the explanation of 
the actual yield level. Furthermore, some effects of weather may influence the crop yield 
indirectly, for example through disease level, nutrient availability or workability of the soil. 

7.3 Statistical analysis 

No official indication of the accuracy of the Eurostat official yields is available. For some crops 
(soybean, field bean and oats) no statistical regional data were available at all. 
National yield forecast in the Netherlands are aggregates of estimates by experts of hectare 
yields of all crops, during and after the growing season in about 60 regions in the country. 
There is no direct measurement of actual yields involved, neither during the season nor 
afterwards. This system of estimating yields was developed early in this century, and still 
satisfies the needs of the central statistical bureau (CBS) quite well at a reasonable cost. The 
average values of yields reported are probably reliable, as several cross checks are performed, 
such as with trade in crop products and their use in industry. However, the cross checks in any 
year cannot be very accurate. Differences of a few percent per year may remain unnoticed for 
the bulk crops and even more so for smaller crops. Such differences lead to adjustments in 
administrative 'national stocks' (source: CBS, pers. comm.). The implication of this method of 
yield estimation in the Netherlands is we that do not have data to accurately test the model 
at the regional level The average vah,esofofficial national yields are probably quite 

--- ·atturate~o-ueforpred·ittloh~ptrrposes~itis-n~etessarytnattheyeartoyea·r-·fltrttuationsare-----

-"~e~=-. =-==s~ia~trse=rre=tnf=G"fm~atffiA=rs:::av:arra~ere=ae·asl-=t'Ae=rrlea:Ssremef'lt-=el"fer-:=(}f2=tf'le=E>rrrEraT=yre:n::r=trgt~r-es~~~--=-:.~=-:.=-:.=-:.=-- --.~~,-:-~~-~: .... ~ =~ 
in the Netherlands as well as in the rest of the EC, a conclusive interpretation of the quality 



41 

of the model based predictions is impossible. The prediction error of official yield figures is 
the sum of the measurement error in the official yields and the error in predicting the true 
yield. The information required to disentangle these two errors is lacking. Possibly, the 
disappointing improvement of prediction accuracy obtained by modelling is partly caused by 
small variation due to weather fluctuations in combination with large variation due to 
measurement errors. In other words by a low signal-to-noise ratio. 
In Appendix 9 and 10 the t-values of the model indicators are given, as explained in Chapter 
6. The variance ratio of the model term is equal to F=t2 were t is the Student statistic. The 
signal-to-noise ratio is estimated by F-1. Often, model terms are included in a predictor 
depending on whether or not F-1 is greater than 1 (see for instance Linhart & Zucchini, 1986). 
This selection procedure provides an alternative to the jackknife which we used to select an 
elementary predictor. 
The following example illustrates the adverse effect of a low signal-to- noise ratio. It shows 
that a model term which is actually present may be quite useless for predictions. 
Let yield figures (y) be randomly generated using the following equation, so that there is no 
doubt that the model indicator influences the yield: 

y = 5000 + 130 * (T- T) + 0.25 * (m- m) + e 

in which e denotes a random measurement error consisting of independent identically 
distributed elements with a mean of zero and a standard deviation of 600 (12%, of the mean 
of y, 5000). The times T range from 1975 to 1989. The values of model indicator m are drawn 
from a normal distribution with a mean of 9000 and a standard deviation of 1000. The 
parameter values chosen are typical values extracted from the regress_ion of wheat grain 
yields. Analysis of this model shows that it happens frequently (roughly in half of the cases) 
that according to the signal-to-noise criterion, predictions only get worse by the inclusion of 
the model indicator in the predictor, although we know for sure in this case that the model 
indicator influences the yield. 
If the cause of bad predictions is really a low signal-to-noise ratio, it may well happen that 
longer series with more accurate measurements will lead to better results within this project. 
Apart from that, better datasets, containing sufficient information about measurement 
accuracy (e.g. duplicate measurements) should be necessary for a better interpretation of the 
current resu Its. 
The problem of the low signal-to-noise ratio may be expected to manifest itself in strongly 
enhanced form in the approach of Palm & Dagnelie (1993), where y is regressed on 10-day 
means of weather data such as temperature, radiation and rainfall during the growing 
season. A large number of candidate regressors is available (see Section 5.1) and by some 
selection procedure a subset is constructed. However, it is to be expected that each individual 
term in the regression is very small, i.e. that each individual signal is very weak. When the 
predictor is entirely based on official statistics, it might well happen that each signal is much 
too weak to be useful for prediction, and that the predictor selected conveys more about the 
particularities of the dataset than about the underlying process. This phenomenon is 
sometimes called •overfitting• (Linhart and Zucchini, 1986). 
Whatever may be the true cause, Palm & Dagnelie (1993) show quite convincingly that each 
of a lar e number of redictors based on raw weather data is worse than the redictor 

---- --- -------- c-~~=igneriRg~weati'lef".~A~majer=methedelegiEai~EGfl€1usiGflc()f~Palm~&c~Dagflelie~(4993}isthatthe

jackknife method provides no adequate criterion of validation. This conclusion sounds quite 
-~---~=-=--::::~~==~ ---~=:_ .. --.·--··----==-=-a.1armm-g:=-since=Ja~ki<-nife=m-etl-tod-s=-ar.e=f-re-quent!y::::m.:erldt"E'l<ltidat~n:=++ow.:e¥_tU't=.t-h-e=:jaekt.:nife-_ ••• -.•.. ==· __ -__ -_____ . ____ . 

used by Palm & Dagnelie (1993) was not the jackknife of the prediction rule (including 
intensive selection) that has been actually applied, but merely the jackknife of the selected 
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regression expression. For a conclusive validation of a prediction rule, the jackknife method 
must also be applied to the full prediction rule and it is then a valuable instrument . 

............. ······ .........................•..••...•.. .... ::_ ........ ······ .....•. ······ 
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Appendix 3. Nomenclature of Statistical Territorial Units (NUTS). 

NUTSO NUTS1 

R1 Deutschland 
R11 Schleswig-Holstein 

R12 Hamburg 

R13 Niedersachen 

R14 Bremen 

R15 Nordrhein-Westfalen 

R16 Hessen 

R17 Rheinland-Pfalz 

R18 Baden-Wurttemberg 

R19 Bayern 

R1A Saarland 

R1B Berlin 

R2 France 
R21 lie de France 

R22 Bassin Parisien 

R23 Nord-Pas-de-Calais 

R24 Est 

R25 Ouest 

R26 Sud-Ouest 

R27 Centre-Est 

R28 Med iterra nee 

R3 ltalia 
R31 Nord Ovest 

R32 Lombardia 

R33 Nord Est 

R34 Emilia-Romagna 

R35 Centro 

R36 Lazio 

R37 Campania 

R38 Abruzzi-Molise 

R39 Sud 

R3A Sicilia 

R3B Sardegna 

R4 Nederland 

R41 Noord-Nederland 

R42 Oost-Nederland 

R45 Zuid-Nederland 

R52 Region Wallone 

R53 Brussel 
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R6 Luxembourg 

R7 United Kingdom 
R71 North 

R72 Yorkshire and Humberside 

R73 East Midlands 

R74 East Anglia 

R75 South East 

R76 South West 

R77 West Midlands 

R78 North West 

R79 Wales 

R7A Scotland 

R7B Northern Ireland 

R8 Ireland 

R9 Danmark 

RA Ellada 
RA1 Voreia Ellada 

RA2 Kentriki Ellada 

RA3 Attiki 

RA4 Nisia 

RB Espana 
RB1 Noroeste 

RB2 Noreste 

RB3 Madrid 

RB4 Centro 

RBS Este 

RB6 Sur 

RC Portugal 
RC1 Continente 

RC2 A~ores 

RC3 Madeira 



Appendix 4a. WOFOST soil data file for a medium textured soil. 

** Moisture data set 2 for texture class 2 (medium) of EC soil map. 
**Minimum data set on soil physics for use in subroutine WATFD, 
** water balance for freely draining soils. 

**soil water retention 

SMW = 0.100 
SMFCF = 0.320 
SMO = 0.430 

CRAIRC = 0.075 

** percolation parameters 
KO 
SOPE 
KSUB 

= 10.0 
= 10.0 

= 10.0 

** soil workability parameters 
SPADS = 0.800 
SPODS 
SPASS 
SPOSS 
DEFLIM 

= 0.040 
= 0.900 
= 0.070 
= 0.000 

I soil moisture content at wilting point [cm3 cm-31 
I soil moisture content at field capacity [cm3 cm-31 
I soil moisture content at saturation [cm3 cm-31 

I critical soil air content for aeration [cm3 cm-3] 

I hydraulic conductivity of saturated soil [em day-1] 
I maximum percolation rate root zone[cm day-1 1 
I maximum percolation rate subsoil [em day-1 1 

I 1st topsoil seepage parameter deep seedbed 
I 2nd topsoil seepage parameter deep seedbed 
I 1st topsoil seepage parameter shallow seedbed 
I 2nd topsoil seepage parameter shallow seedbed 
I required moisture deficit deep seedbed 

Appendix 4b. Crop specific maximum rooting depths. 

wheat: 125 em 
grain maize: 100 em 

barley: 125 em 

rice: 80 em 
sugar beet: 120 em 
potato: 50 em 
field bean: 100 em 
soybean: 120 em 
oilseed rape: 120 em 
sunflower: 150 em 
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Appendix 5. WOFOST crop data file for spring barley 

** emergence 
TBASEM = 0.0 
TEFFMX = 30.0 
TSUMEM = 110. 

**initial 
TDWI = 60.00 
LAIEM = 0.274 
RGRLAI = 0.0075 

** phenology 
IDSL = 0 

DLO = -99.0 
DLC = -99.0 
TSUM1 = 800. 
TSUM2 = 750. 
DTSMTB = 0.00, 

35.00, 
45.00, 

DVSEND = 2.00 

** green area 
SLATB = 0.00, 

0.30, 
0.90, 
1.45, 
2.00, 

SPA = 0.000 
SSA = 0.000 
SPAN = 25. 
TBASE = 0.0 

**assimilation 
KDIF = 0.440 
EFF = 0.40 
AMAXTB = 0.00, 

1.20, 
2.00, 

TM PFTB = 0.00, 
10.00, 
30.00, 
35.00, 

TMNFTB = 0.00, 
3.00, 

0.00, 
35.00, 
35.00 

0.0020, 
0.0035, 
0.0250, 
0.0220, 
0.0220 

35.00, 
35.00, 
5.00 
0.00, 
1.00, 
1.00, 
0.00 
0.00, 
1.00 

! lower threshold temperature for emergence [C0
] 

! maximum efficient temperature for emergence [C0
] 

! temperature sum from sowing to emergence [C0 d] 

! initial total crop dry weight [kg ha-1 1 
! leaf area index at emergence [ha ha-1 1 
! maximum relative increase in LAI [ha ha-1 d-1] 

indicates whether pre-anthesis development depends 
on temperature (=0}, daylength (=1}, or both (=2} 
optimum daylength for development [hr] 
critical daylength (lower threshold} [hr] 
temperature sum from emergence to anthesis [C0 d] 
temperature sum from anthesis to maturity [Cod] 
daily increase in temperature sum 
as function of average temperature [C0

; cod] 

! development stage at harvest (= 2.0 at maturity [-]} 

! specific leaf area 
! as a function of DVS [-; ha kg-1] 

! specific pod area [ha kg-1] 
! specific stem area [ha kg-1] 
! life span of leaves growing at 35 co [d] 
! lower threshold temperature for ageing of leaves [C0

] 

! extinction coefficient for diffuse visible light [-] 
! light-use efficiency single leaf [kg ha-1 hr-1 r1 m2 s] 
! maximum leaf C02 assimilation rate 
! as function of development stage [-; kg ha-1 hr-1 1 

! reduction factor of AMAX 
! as function of av. temp. [Co;-] 

! reduction factor of gross assimilation rate 
! as function of low minimum temperature [C0

; -1 

**conversion of assimilates into biomass 
CVL = 0.720 ! efficiency of conversion into leaves [kg kg-1] 
CVO = 0.740 ! efficiency of conversion into storage org. [kg kg-1 1 
CVR_ _ _ 0 720 __ I efficiency of conversion into roots [kg kg-1 L_::_:__:_::__~ 
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** maintenance respiration 
Q10 = 2.0 
RML = 0.030 
RMO = 0.010 
RMR = 0.010 
RMS = 0.015 
RFSETB = 0.00, 1.00, 

2.00, 1.00 

** partitioning 
FRTB = 0.00, 

0.40, 
1.00, 
2.00, 

FLTB = 0.00, 
0.33, 
0.80, 
1.00, 
1.01, 
2.00, 

FSTB = 0.00, 
0.33, 
0.80, 
1.00, 
1.01, 
2.00, 

FOTB = 0.00, 
0.80, 
1.00, 
1.01, 
2.00, 

** death rates 
PERDL = 0.030 
RDRRTB = 0.00, 

1.50, 
1.5001, 
2.00, 

RDRSTB = 0.00, 
1.50, 
1.5001, 
2.00, 

**water use 
CFET = 1.00 
DEPNR = 4.5 
IAIRDU = 0 

**rooting 
RDI 
RRI 
RDMCR.~ 

= 10. 
= 1.2 

~ ~~·~ j 25. 

0.60, 
0.55, 
0.00, 
0.00 
1.00, 
1.00, 
0.40, 
0.1 0, 
0.00, 
0.00 
0.00, 
0.00, 
0.60, 
0.90, 
0.15, 
0.00 
0.00, 
0.00, 
0.00, 
0.85, 
1.00 

0.000, 
0.000, 
0.020, 
0.020 
0.000, 
0.000, 
0.020, 
0.020 

relative increase in respiration rate per 10 cotemp. incr. [-] 
rei. maintenance resp. rate leaves [kg CH20 kg-1 d-1] 
rei. maintenance resp. rate stor. org. [kg CH20 kg-1 d-1] 
rei. maintenance resp. rate roots [kg CH20 kg-1 d-1] 
rei. maintenance resp. rate stems [kg CH20 kg-1 d-1] 
reduction factor for senescence 
as function of DVS [-; -] 

! fraction of total dry matter to roots 
! as a function of development stage[-; kg kg-1] 

! fraction of above-ground dry matter to leaves 
! as a function of development stage [-; kg kg-1] 

! fraction of above-ground dry matter to stems 
! as a function of development stage[-; kg kg-1] 

! fraction of above-ground dry matter to stora~e organs 
! as a function of development stage [-; kg kg- ] 

! maximum relative death rate of leaves due to water stress 
! relative death rate of stems 
! as a function of development stage [-; kg kg-1 d-1] 

! relative death rate of roots 
! as a function of development stage [-; kg kg-1 d-1] 

! correction factor transpiration rate [-] 
! crop group number for soil water depletion [-] 
! air ducts in roots present (=1) or not (=0) 

! initial rooting depth [em] 
! maximum daily increase in rooting depth [em d-1] 
! maximu.m rooting depth [em] 



Appendix 6. Request for data. 

Dear .. 

Our institute is involved in a project entitled: .. Crop state monitoring on a regional scale in 
the European Communities''. This project is executed in the framework of the "Agriculture 
Project .. of the Joint Research Centre of the EC in lspra, Italy. The purpose of the study is 
forecasting of regional yields of the major crops in the European Communities, using crop 
growth simulation models in combination with real time weather data. 
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In order to calibrate our crop growth simulation models to regional conditions throughout 
the EC, we have an urgent need for crop yields from field experiments that are performed 
under well defined and well controlled conditions, preferably under optimal fertilization and 
proper weed, pest and disease control. Experiments that are performed at one location for a 
series of years are especially valuable, because these allow us to evaluate seasonal effects 
which are of major importance to our study. Relevant data are given in an appendix to this 
letter. Crops under consideration are some of the main field crops that are grown in your 
region. We simulate the following crops: wheat, barley, oats, maize, rice, potato, sugar beet, 
field bean, soybean, oilseed rape and sunflower. We would be very pleased if you could 
provide us with information. If you don't have access to such data, but know a colleague in 
your country who does, we would appreciate it when you forward this letter to him/her. 
References to literature or internal reports are also very helpful for us. We will be able to use 
your information when it reaches us before April. The results of our study will be reported to 
the Joint Research Centre of the EC by the end of 1992 and will be freely available. We will 
not forsake to mention your contributions in the final report. 
At your request we will send you some results of recent research at our institute. With this 
letter some general information and a list of publications is included. 

Thank you very much in advance for your cooperation, sincerely yours, .. 

APPENDIX WITH REQUESTED DATA: 

EXPERIMENT DESCRIPTION 
location name, latitude, longitude, altitude: 
year(s) : 
crop/variety : 
soil type (name, clay content) : 
groundwater availability for crop growth : 

AGRICULTURAL PRACTICES 
sowing rate/plant density : 
nutrient/fertilizer supply: 
level of crop protection: 
occurrence of crop damage or yield limiting factors : 
irrigation rate : 

PHENOLOGY 
dates of sowing, emergence, flowering/heading and maturity/harvest: 

CROP MEASUREMENTS 
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Appendix 7a. Program XCL. User guide, input/output 

Prediction of regional yields based on exclusive regression. Fortran program XCL written by: 
Michie! Jansen, DLO Agricultural Mathematics Group (GLW-DLO). 
Jacques Withagen, DLO Centre for Agrobiological Research (CABO-DLO). 

Input file. 
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The first record of the file is expected to be a general title for that file. This record is skipped. 
The next record should contain a title for the following dataset (region). This title is read 
from the inputfile and printed in the outputfile with the results. The maximum length of this 
title is 30 characters. If a summary output file is requested, only the first six characters of the 
title will be printed in the summary output file. 
The next record contains the number of datarecords of the set. This value is not used by the 
program since the program counts the records until the end-of-data symbol is found. After 
this record the data-records are expected. On each record 6 values should occur separated by 
spaces or a comma. The values are: 

year, 
official yield, 
potential grain yield, 
water-limited grain yield, 
potential biomass, 
water-limited biomass 

(in this order). 
Within each set the same unit must be used (e.g. tons/ha) and years must be given in 
ascending order. Records containing •missing values• are skipped (missing values are denoted 
by an asterix or the value -99). The end of a dataset must be given by a colon ":" (with no 
values on that record). When this end-of-data symbol is found, the program starts 
calculations and prints the results in the outputfile(s). Then the program will search for a next 
dataset (starting with a title for that new set) until the end of file is reached. 

Running the program. 
The program starts by asking the names of the input file and detailed output file (don•t use 
extension II .SUM II as this is used for an eventual summary file). If the output file already exists 
the program gives a warning and asks whether or not you want to overwrite this file. Next 
the program asks how many years you want to use for •one year ahead• and •two year ahead• 
predictions (default= 9). 
Then the program asks if you want a summary output file. The name of this file will be the 
same as that of the detailed output file but with extension II .SUM II. The last question is which 
model indicators you want to be used in the regression calculations. You can choose any 
combination out of the four given model indicators {1= potential grain yield, 2= water
limited grain yield, 3= potential biomass, 4= water-limited biomass) by giving the numbers 1 
to 4 separated by comma•s (default= all), or give the value 0 if you want no indicators to be 
used. Now the program starts calculating and prints the results in the output file(s). Messages 
are also printed on the screen. If the number of observations is less than 8, the dataset will be 

--------------~--OIJtput~file(s)----
----==,==-==-=-=-=-======A.CJe1:atlecf-outp-ut=tiTe=wrl·nre--9enerate=a-=ancrwnen=acsl<eafoFft=~a=stJmma-ry"'oafput=trre:=-An=-:=== 

example of a detailed output file is given in Appendix 8 and explained in Section 6.2. 
Summary output files are give in Appendices 9 and 10 and explained in Section 6.3 
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Appendix 7b. Program XCL. Brief description 

INTRODUCTION 

The program XCL calculates yield predictors for a number of crops in a number of regions. 
The accuracy of the predictors is assessed per crop per region. 

For each crop and each region a dataset is read containing the following columns: 
an ascending series of years, e.g. 1975 ... 1989 
the corresponding official yield statistics 
a number of optional columns containing the corresponding model indicators 
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Various elementary predictors are obtained by linear regression of the official yield figures on 
the vector (1, 1 ... 1) 
a zero-mean linear increase with the year 
at most one zero-mean model indicator 

(from the latter two vectors the mean has been subtracted). 

By assigning weight 1 or 0 to each year, only part of the data can be made available for the 
construction of the predictor. The full predictor is constructed by selecting an elementary 
predictor: from the elementary predictors having a non-negative coefficient for the model 
indicator the one with the smallest jackknife sum of squares on the available data is selected. 
The selected predictor may be the one without model indicator. 

Linear regression producing the elementary predictors is executed by the subroutine LIN REG. 
The best elementary predictor is selected by the subroutine XCLUR. Calling LIN REG for all 
possible optional regressors, and selecting the one that performs best on the data made 
available, XCLUR produces the predictor actually used. The performance of this predictor is 
assessed by comparing prediction and official figures in years that were unavailable for the 
construction of the predictor. 

The next description contain descriptions of the main program XCL, of XCLUR and of LIN REG. 

1. DESCRIPTION OF THE MAIN PROGRAM XCL 

The following integers determine the sizes of the data structures used in the program 

NXl number of obligatory regressors 
MXl maximum number of obligatory regressors 
NX2 number of optional regressors 
MX2 maximum number of optional regressors 
NOBS number of seasons in database for current region 
MOBS maximum number of seasons in database for current region 

YEAR(MOBS) 
OFFIC(MOBS) 

series of years (increasing) 
official statistics 
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W(MOBS) 
FIT(MOBS) 
LEV(MOBS) 
EST(MTERM) 
SE(MTERM) 
VCOV(MTERM,MTERM 
IND(MOBS, MX2) 

X1 (MOBS, MX1) 

X2(MOBS, MX2) 

weights(O or 1) 
regression fit 
regression leverages 
estimates of regression coefficients 
standard errors of these estimates 
variance covariance matrix of these estimates 
has its columns filled with optional regressors (model 
indicators) 
has its columns filled with obligatory regressors (constant 

and zero-mean annual trend) 
has its columns filled with zero-mean optional regressors 

(model indicators) 

Prediction based on all data. 
The calculations start with some initializations: 

MEAN 
TOTSS 
YRMEAN 
INDMEAN(J) 
X1 (I, 1) 
X1(I,2) 
X2(I,J) 
W(I) 

mean of OFFIC 
sum of squares of OFFIC-MEAN 
mean of YEAR 
mean of j-th column of IND 
1. 
YEAR(I) - YRMEAN 
IND(I,J) - INDMEAN(J) 
1. 

Subsequently the predictor is determined as follows: 

CALL XCLUR(NOBS, NX1, NX2, OFFIC, W, X1, X2, 
FIT, LEV, EST, SE, VCOV, RSS, RDF, OUTPUT) 

The jackknife prediction error sum of squares of XCLUR based on all data is estimated in the 

following fragment: 

JSS=O.O 
DO 61 I=1,NOBS 

DO 60 J=1,NOBS 
IF(J.EQ.I) W(J)=O.O 
IF(J.NE.I) W(J)=1.0 

60 CONTINUE 
CALL XCLUR(NOBS, NX1, NX2, OFFIC, W, X1, X2, 

FIT, LEV, EST, SE, VCOV, RSS, RDF, OUTPUT) 

JR=OFFIC(I)-FIT(I) 
JSS = JSS+JR**2 

61 CONTINUE 
JACKKN = 100 * SQRT(JSS/REAL(NOBS)) I MEAN 

Prediction based on last NUSED seasons. 
The calculations start with some initializations: 

MEAN 

INDMEAN(J) 
W(I) 

mean of OFFIC over seasons used 

mean of J-th column of IND over seasons used 
weight: 1. if I in last NUSED seasons, else 0 



X1(I,1) 
X1(I,2) 
X2(I,J) 

1. 
YEAR(I) - YRMEAN 
IND(I,J) - INDMEAN(J) 

Subsequently the predictor is determined: 

CALL XCLUR(NOBS, NX1, NX2, OFFIC, W, X1, X2, 
FIT, LEV, EST, SE, VCOV, RSS, RDF, OUTPUT) 
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The one and two years ahead prediction error sum of squares are estimated as follows. By 
weighting, a moving window of NUSED consecutive seasons is made available for 
construction of a predictor FIT. The value of FIT one and two years ahead of the window is 
compared with OFFIC at those years. The integers FUSED {First USED) and LUSED {Last USED) 

indicate the first 
and last year available for construction of the predictor. 

80 

OYASS=O. 
TYASS=O. 
IF (NOBS.GT.NUSED) THEN 

DO 81 LUSED=NUSED,NOBS-1 
FUSED=LUSED-NUSED+1 
NEXT1=LUSED+1 
NEXT2=LUSED+2 
DO 80 I=1,NOBS 

IF (I.GE.FUSED .AND. I.LE.LUSED) THEN 
W(I) 1.0 

ELSE 
W(I) 0.0 

END IF 
CONTINUE 

CALL XCLUR(NOBS, NX1, NX2, OFFIC, W, X1, X2, 
FIT, LEV, EST, SE, VCOV, RSS, RDF, OUTPUT) 

OYASS = OYASS + (OFFIC(NEXT1)- FIT(NEXT1))**2 

IF (NEXT2.LE.NOBS) 
TYASS = TYASS + (OFFIC(NEXT2)- FIT(NEXT2))**2 

81 CONTINUE 
END IF 

2. DESCRIPTION OF XCLUR 

The subroutine XCLUR has the following arguments: 

INTEGER NOBS in; number of observations 

INTEGER NX1 in; number of obligatory regressors 

INTEGER NX2 in; number of optional regressors 

variable 

REAL X1 (MOBS,MX1) in; obligatory regressors in columns 

REAL LEV(MOBS) out; leverages 

REAL EST(MTERM) out; estimates of regression coefficients 
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REAL SE(MTERM) out; standard deviations of estimates 

REAL VCOV(MTERM,MTERM) out; variance covariance matrix of estimates 

REAL SS 
REAL DF 
INTEGER MES 

out; residual sum of squares 
out; residual degrees of freedom 
in; file receiving error messages and warnings 

Years are made available or unavailable for the construction of the predictor by assigning 
weight 1 or 0. The subroutine performs weighted least squares linear regressions calling 

LINREG (NOBS, NTERM, Y, W, X, FIT, LEV, EST, SE, VCOV, SS, DF, OUT). 

The matrix X is varied: X= X1, and X= (X1, u) with the additional column u assuming the 
values of the various columns of X2. Each X matrix gives a predictor. The best predictor is 
initialized at the value given by regression with X= X1. For the consecutive values of u a 
•current• predictor is constructed. The current predictor will replace the best predictor if the 
coefficient of current regressor u is positive and if the jackknife sum of squares of the current 
predictor is smaller than that of the best predictor on the available years. The jackknife sum 
of squares is calculated in the following way . 

CJACSS = 0 
DO 31 J=1,NOBS 

IF (W(J).NE.O.) THEN 
JR = (OFFIC(J)-CFIT(J))/(1-CLEV(J)) 
CJACSS = CJACSS + JR*JR 

END IF 
31 CONTINUE 

(The prefix ·c stands for •current•, the jackknife residual JR is calculated by means of the 
current leverage, see for instance Montgomery & Peck, 1992.) 
XCLUR has been tested by comparing its results with those of Genstat for a number of 
representative datasets. 

3. DESCRIPTION OF LINREG 

The subroutine LIN REG has the following arguments: 

INTEGER NOBS 
INTEGER NTERM 
REAL Y(MOBS) 
REAL W(MOBS) 
REAL X(MOBS,MTERM) 
REAL FIT(MOBS) 
REAL LEV(MOBS) 
REAL EST(MTERM) 
REAL SE(MTERM) 
REAL VCOV(MTERM,MTERM) 

~REALumu--aF====~~~~ 

INTEGER OUT 

in; number of observations 

in; number of model terms 
in; dependent variable 
in; weights 
in; regressors in columns 
out; fitted values 
out; leverages 
out; estimates of regression coefficients 

out; standard deviations of estimates 
out; variance covariance matrix of estimates 

auc&-;~:t'&s4cdua=l~deg-:t'ees~co,f~fci.'eedom ~~~~~~~~ 

in; file receiving error messages and warnings 

LIN REG performs weighted least squares regression. With respect to its inputs and outputs, 
LIN REG is similar to the Genstat command FIT (Payne & Lane, 1987). The subroutine has been 
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tested by comparing its results with those of Genstat for a number of representative datasets. 
Inputs are the dependent nobs-vector Y, a weight nobs-vector W, and a design-matrix X the 
nterm columns of which are filled with the regressors of length nobs. Output are the nabs
vector of fitted values, FIT; the nobs-vector of leverages, LEV; the nterm-vectors EST and SE 
containing the estimated regression coefficients and their standard deviations; the nterm-by
nterm variance covariance matrix VCOC of the estimates; the residual sum of squares and 
degrees of freedom SS and DF. OUT points to a file for error messages or warnings. The 
inputs and outputs of LINREG are in single precision; internally double precision is used. 

The generalized inverse of the symmetric non-negative definite matrix Xt W X is calculated in 
a way similar to SVDREG in Press et al. (1986). By means of a procedure DJCOBI the matrix is 
brought on the form Xt W X= V D Vt, with V orthogonal and D diagonal. DJCOBI is based on 
JACOBI of Press et al. (1986); the major modification is that DJCOBI works in double precision. 
The generalized inverse is calculated as XTWXINV = (Xt W X)-1 = V DINV Vt, with diagonal 
matrix DINV defined by: if D(l) is above some small tolerance DINV(I) = 1 I D(l), else DINV(I) = 
0. For each instance of DINV(I) = 0, indicating aliased model terms, a warning is issued. 

The subsequent calculations are simple matrix operations (see for instance Montgomery & 
Peck, 1991). 

EST = XTWXINV Xt W Y 
FIT = X EST 
LEV = diag(X XTWXINV Xt W) 
SS = SUM(W(I)*(Y(I)-FIT(I))**2) 
VCOV = XTWXINV SS I DF 
SE = SQRT(diag(VCOV)) 

REFERENCES FOR XCL 

Montgomery, D.C. & Peck, E.A., 1991, Introduction to linear regression analysis, second 
edition, Wiley. 

Payne, R.W. & Lane, P.W. (eds.), 1987, Genstat 5 Reference Manual, Clarendon Press, Oxford. 

Press, W.H. & Flannery, B.P. & Teukolsky, S.A. & Vettering, W.T., 1986, Numerical recipes: the 

art of scientific computing, Cambridge University Press. 
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Appendix 7c. Program XCL. Full listing. 

********************************************************************** 
* Program: XCL 
* Date: 10 May, 1993 
* Version: 1.0 

* 
* Authors: 
* M.J.W. Jansen, DLO Agricultural Mathematics Group (GLW-DLO} 
* J.C.M. Withagen, DLO Centre for Agrobiological Research (CABO-DLO} 

* Address: 
* c/o DLO Centre for Agrobiological Research (CABO-DLO} 
* P.O. Box 14 
* 6700 AA Wageningen 
* The Netherlands 
* Reference: 
* Koning, G.H.J. de, M.J.W. Jansen, E.R. Boons-Prins, C.A. van 
* Diepen & F.W.T. de Penning de Vries, 1993. Crop growth simulation 
* and statistical validation for regional yield forecasting across 
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* the European Communities. Simulation Reports CABO-TT, N0.31, DLO Centre for 
* Agrobiological Research (CABO-DLO}, Wageningen, The Netherlands. 105 pp. 

* Purpose: 
* Construction of a regional crop yield predictor by means of 

* exclusive regression. 
* Assessment of prediction errors (jackknife error, one-year-ahead 
* prediction error, two-years-ahead prediction error}. 
* Library used: 
* TTUTIL (Rappoldt, C., D.W.G. van Kraalingen, 1990. Reference 
* manual of the Fortran utility library TTUTIL with applications. 
* Simulation Reports CABO-TT nr. 20, CABO-DLO Wageningen. 122 pp.} 
* Other subroutines used: 
* DJCOBI: subroutine JACOBI from W. H. Press, B. P. Flannery, S. A. 
* Teukolsky, W. T. Vetterling, Numerical recipes (1st edition} 1986, 
* with some minor modifications (e.g. changing to double precision). 
* Disclaimer: 
* Publication of any work or study based on this software and/or 
* database should include reference to the suppliers. 
* The suppliers disclaim all warranties for fitness, performance 
* or simulation accuracy for any purpose of the supplied software 
* and/or database. The suppliers assume no liability or 
* responsibility to the user or anyone, for loss or damage caused 
* by errors in, or inadequate use of the supplied software and/or 

* database. 

********************************************************************** 

PROGRAM XCL 

* dimensions ------------------------------------------------------- * 

INTEGER MOBS, MTERM, MXl, MX2 
PARAMETER (MOBS=30, MTERM=8, MX1=2, MX2=4) 

* variables and arrays used ---------------------------------~------ *------------------

INTEGER INPUT, OUTPUT, OUTSUM 
INTEGER I, J, IX2, ILEN, INDIC(MX2) 
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INTEGER FUSED, LUSED, NUSED, NEXTl, NEXT2, !START 

REAL 
REAL 
REAL 

REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 

YEAR(MOBS), OFFIC(MOBS), W(MOBS), IND(MOBS,MX2) 
Xl(MOBS,MXl), X2(MOBS,MX2) 
MEAN, YRMEAN, MNUSED, INDMN(MX2) 

FIT(MOBS), LEV(MOBS) 
EST(MTERM), SE(MTERM) 
VCOV(MTERM,MTERM) 
RSS, RDF, JSS, OYASS, TYASS 
RESIDL, JACKKN, OYA, TYA 
TOTSS, JR 
ESTIM, STUD, RSQ 

CHARACTER*30 TMP,TITLE,INFIL,OUTFIL,SUMFIL 
CHARACTER*l CRSUM,DUM 
CHARACTER*8 SELECT 
CHARACTER*? ONEYRA, TWOYRA 

C CHARACTER*21 SELTXT 

LOGICAL EOF 

DATA INPUT,OUTPUT /10,20/ 
DATA NUSED /9/ 
DATA NXl /2/ 
DATA NX2 /4/ 
CRSUM='Y' 

* ask name inputfile and open this file ---------------------------- * 

CALL ENTCHA ('input-file',INFIL) 
CALL FOPEN (INPUT,INFIL, 'OLD',' ') 

* ask name outputfile and open this file --------------------------- * 

CALL ENTCHA ('output-file',OUTFIL) 
CALL FOPEN (OUTPUT,OUTFIL, 'NEW','UNK') 

* ask number of years to be used for predictor --------------------- * 

CALL ENTDIN ('number of seasons to be used for predictor• 
,NUSED,NUSED) 

* ask wether or not to open summary-file --------------------------- * 

CALL ENTDCH ('open summary-file (Y/N) ',CRSUM,CRSUM) 

IF (INDEX('Yy',CRSUM).GT.O) THEN 
CALL EXTENS (OUTFIL, 'SUM',l,SUMFIL) 
OUTSUM=30 
CALL FOPEN (OUTSUM,SUMFIL, 'NEW', 'UNK') 

'NUTS~NGB's~~ME:A:N-s-EIIEeTED~eemFF~~t~~RS(f' , 

OUTSUM=O 
END IF 

RES. JACKKN OYA TYA' 



* read first record (not used) ------------------------------------- * 

READ (INPUT, I (A) 1 ,END=9) TITLE 

* initialize dataset counter --------------------------------------- * 

DATSET=O 

* read title and dummy line ---------------------------------------- * 

1 TITLE(1:30)= 1 

READ (INPUT,• (A) 1 ,END=9) TITLE 
READ (INPUT, I (A) 1 ,END=9) DUM 

* place title at beginning of string ------------------------------- * 

I=ISTART(TITLE) 
J=ILEN(TITLE) 
TMP=TITLE(I:J) 
TITLE=TMP 

* read dataset ----------------------------------------------------- * 

NX2 = MX2 
CALL VDATIN(INPUT,YEAR,OFFIC,IND,MOBS,NOBS,NX2,INDIC,EOF) 

DATSET=DATSET+1 

* test setting •exclude indicator•-option and presence of indicators * 

c IF (NX2.GT.O) THEN 

c SELTXT= 1 (including selection)• 

c ELSE 

c SELTXT= 1 (excluding selection) • 

c END IF 

* and check number of observations ----------------------------------* 
IF (EOF) GOTO 9 
IF (NOBS.LT.8) THEN 

WRITE (OUTPUT, I (1X,A,I3,A,/,1X,A,35X,A) 1
) 

1 *** Error at dataset•,DATSET, 
•: number of observations less than 8 *** 1 

1 *** Going to next dataset•, •*** 1 

WRITE (OUTPUT, I (1X,70A1) 1
) (

1
-

1 ,I=1,70) 
WRITE (*, 1 (1X,A,I3,A,/,1X,A,35X,A) 1

) 

GOTO 1 
END IF 

•*** Error at dataset•,DATSET, 
•: number of observations less than 8 *** 1 

1 *** Going to next dataset•, •*** 1 

------------------------- * 

WRITE (OUTPUT, I (/,/,1X,A,A) 1
) •name I ,TITLE 

* check years (must be increasing) --------------------------------- * 

69 
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DO 10 I=2,NOBS 
IF (YEAR(I-1).GE.YEAR(I)) THEN 

WRITE (OUTPUT,' (1X,A) ') 
'*** Error: seasons not increasing ***' 

WRITE (*,I (1X,A) ') 
'*** Error: seasons not increasing ***' 

STOP 
END IF 

10 CONTINUE 

*calculate means of 'offic', 'year' and 'model' ------------------- * 

MEAN = 0. 
YRMEAN= 0. 
DO 20 I=1,NOBS 

MEAN MEAN + OFFIC(I) 
YRMEAN = YRMEAN + YEAR(I) 

20 CONTINUE 
MEAN MEAN I REAL(NOBS) 
YRMEAN = YRMEAN I REAL(NOBS) 

IF (NX2.GT.O) THEN 
DO 21 I=1,MX2 

INDMN(I)=O. 
21 CONTINUE 

DO 23 I=1,NOBS 
DO 22 J=1,NX2 

INDMN(J) INDMN(J) + IND(I,J) 
22 CONTINUE 
23 CONTINUE 

DO 24 J=1,NX2 
INDMN(J) INDMN(J) I REAL(NOBS) 

24 CONTINUE 
END IF 

* calculate totss of 'offic' --------------------------------------- * 
TOTSS=O. 
DO 30 I=1,NOBS 

TOTSS=TOTSS+ (OFFIC(I)-MEAN)**2 
30 CONTINUE 

* write number of observations and mean(offic) to output ----------- * 

IF (NX2.EQ.O) WRITE (OUTPUT, I (SX,A)') 
•----- no model indicators were included for selection 

WRITE (OUTPUT, • (1X,A,IB)') 'number of seasons=', NOBS 
WRITE (OUTPUT,' (1X,A,FB.3)') 'mean =',MEAN 

* copy values to y-variate and design-matrixces -------------------- * 

* and substract means ---------------------------------------------- * 

40 

~~~x4~~~1~~=-1. 

X1(I,2) = YEAR(I) - YRMEAN 

DO 40 J=1,NX2 
X2(I,J) = IND(I,J) - INDMN(J) 

CONTINUE 



END IF 
W(I)=1. 

41 CONTINUE 

CALL XCLUR(NOBS, NX1, NX2, OFFIC, W, X1, X2, 
FIT, LEV, EST, SE, VCOV, RSS, RDF, OUTPUT) 

* write parameter-estimates to output ------------------------------ * 

50 

WRITE (OUTPUT, • (I,A,I,A)') • Prediction based on all data•, 
I ============================' 

WRITE (OUTPUT,' (1X,A)') 
• term est se t • 

WRITE (OUTPUT, I (1X,A,2F10.3,F10.2) 1
) 

•constant •, EST(l), SE(l), EST(1)1SE(1) 

WRITE (OUTPUT, I (1X,A,F6.1,A,2F10.3,F10.2) 1
) 

• (year- • , YRMEAN, • ) • , EST ( 2) , SE ( 2) , EST ( 2) I SE ( 2) 

SELECT 
ESTIM 

I I 

0. 
STUD 0. 
IX2 0 
IF(NX2.GT.O) THEN 

DO 50 I = 3,NX1+NX2 
IF (SE(I).GT.O) THEN 

IX2=I-2 
ESTIM = EST(I) 
STUD = EST(I)ISE(I) 
WRITE (SELECT, • (A,Il,A) •) • ind[' ,INDIC(IX2), '] • 
WRITE (OUTPUT, I (1X,A,I1,A,F6.3,A,2F10.3,F10.2) 1

) 

END IF 
CONTINUE 

END IF 

• (ind[',INDIC(IX2), ']-',INDMN(IX2), ') •, 
EST(I), SE(I), STUD 

IF(IX2.EQ.O) WRITE (OUTPUT, I (1X,A) 1
) 

I ( IND [ * ] - * ) * * *' 

* CALCULATE MEAN SQUARE ERRORS ------------------------------------- * 

RSQ=1.0 - RSSITOTSS 
WRITE (OUTPUT, I (1,1X,A,F10.2) 1

) 

'R-squared :I, RSQ 

RESIDL 100.0 * SQRT(RSSIRDF) I MEAN 

JSS=O.O 
DO 61 I=1,NOBS 

:rJt<~<'t~~>~w~eJ'l =o~o 

IF(J.NE.I) W(J)~=~l~·~O ____________ _ 

CALL XCLUR(NOBS, NX1, NX2, OFFIC, W, Xl, X2, 
FIT, LEV, EST, SE, VCOV, RSS, RDF, OUTPUT) 

JR=OFFIC(I)-FIT(I) 
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JSS = JSS+JR**2 
61 CONTINUE 

JACKKN = 100 * SQRT(JSSIREAL(NOBS)) I MEAN 

WRITE (OUTPUT, I (I,1X,A,F8.3,A)') 
- 'Estimated relative root mean squared errors (% of•,mean, ') • 

WRITE (OUTPUT, • (1X,A,F10.1)') •residual 
WRITE (OUTPUT, • (1X,A,F10.1) ') •jackknife 

I I RESIDL 
',JACKKN 

* one and two year ahead estimations ------------------------------- * 

70 

WRITE (OUTPUT,' (I,A,I3,A,I,A) ') 
• Prediction based on last',NUSED, • seasons•, 

I ===================================· 

LUSED=NOBS 
FUSED= LUSED-NUSED+1 
DO 70 I=1,NOBS 

IF (I.GE.FUSED .AND. I.LE.LUSED) THEN 
W(I) 1. 

ELSE 
W(I) 0. 

END IF 
CONTINUE 

MNUSED 0. 
YRMEAN = o. 
TOTSS = 0. 
DO 71 I=FUSED,LUSED 

MNUSED = MNUSED + OFFIC(I) 
YRMEAN = YRMEAN + YEAR(I) 

71 CONTINUE 
MNUSED 
YRMEAN 

= MNUSED I REAL(NUSED) 
= YRMEAN I REAL(NUSED) 

DO 72 I=FUSED,LUSED 
TOTSS = TOTSS + (OFFIC(I)-MNUSED)**2 

72 CONTINUE 

IF (NX2.GT.O) THEN 
DO 73 I=l,MX2 

INDMN(I)=O. 
73 CONTINUE 

DO 75 I=FUSED,LUSED 
DO 74 J=1,NX2 

INDMN(J) = INDMN(J) + IND(I,J) 
74 CONTINUE 
75 CONTINUE 

DO 76 J=1,NX2 

76 CONTINUE 
END IF 

DO 78 I=1,NOBS 
X1(I,1) 1.0 
X1(I,2) = YEAR(I) - YRMEAN 
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IF (NX2.GT.O) THEN 
DO 77 J=1,NX2 

X2(I,J) = IND(I,J) - INDMN(J) 
CONTINUE 

END IF 
78 CONTINUE 

CALL XCLUR(NOBS, NX1, NX2, OFFIC, W, X1, X2, 
FIT, LEV, EST, SE, VCOV, RSS, RDF, OUTPUT) 

WRITE (OUTPUT,' (1X,A) ') 
•ter.m est se t' 

WRITE (OUTPUT, I (1X,A,2F10.3,F10.2)') 
•constant ', EST(1), SE(1), EST(1)1SE(1) 

WRITE (OUTPUT, I (1X,A,F6.1,A,2F10.3,F10.2) ') 
' (year- ' , YRMEAN, ' ) ' , EST ( 2) , SE ( 2) , EST ( 2) I SE ( 2) 

IX2=0 
IF(NX2.GT.O) THEN 

DO 79 I=3,NX1+NX2 
IF (SE(I).GT.O) THEN 

IX2=I-2 
WRITE (OUTPUT, I (1X,A,I1,A,F6.3,A,2F10.3,F10.2) ') 

• ( ind [ ' , INDIC ( IX2 ) , ' ] - ' , INDMN ( IX2 ) , • ) • , 
EST(!), SE(I), EST(I)ISE(I) 

END IF 
79 CONTINUE 

END IF 
IF(IX2.EQ.O) WRITE (OUTPUT, I (1X,A) 1

) 

• (ind[*]- *) * * 

WRITE (OUTPUT, I (1,1X,A,F10.2)') 
'R-squared :',1.0-RSSITOTSS 

RESIDL = 100.0 * SQRT(RSSIRDF) I MEAN 

WRITE (OUTPUT,' (1,1X,A,F8.3,A)') 

*' 

- 'Estimated relative root mean squared errors (%of ',MEAN,') • 
WRITE (OUTPUT,' (1X,A,F10.1)') 'residual ',RESIDL 

OYASS=O. 
TYASS=O. 
IF (NOBS.GT.NUSED) THEN 

·no 81 LUSED=NUSED,NOBS-1 
FUSED=LUSED-NUSED+1 
NEXT1=LUSED+1 
NEXT2=LUSED+2 
DO 80 I=1,NOBS 

IF . l I GE . FUSED _ AND . I LE. r.IISED) THEN 
w<~1~=~1~o~--~~~-~~~~~--~--~--~~~ 

ELSE 

73 

------------------------------ ------------------------------------------------------------------

80 
END IF 

CONTINUE 



74 

CALL XCLUR(NOBS, NX1, NX2, OFFIC, W, X1, X2, 
FIT, LEV, EST, SE, VCOV, RSS, RDF, OUTPUT) 

OYASS = OYASS + (OFFIC(NEXT1)- FIT(NEXT1))**2 
IF (NEXT2.LE.NOBS) 

TYASS = TYASS + (OFFIC(NEXT2)- FIT(NEXT2))**2 

81 CONTINUE 
END IF 

IF (NOBS.GT.NUSED) THEN 
OYA= SQRT(OYASSIREAL(NOBS-NUSED)) I MEAN 
WRITE (OUTPUT, I (1X,A,F10.1,3X,A,I3,A) 1

) 

•one season ahead •,oYA*100., 
• (based on',NOBS-NUSED, • comparisons)• 

WRITE (ONEYRA, I (F7.1) 1
) OYA*100. 

ELSE 
WRITE (OUTPUT, • (1X,A) •) •one season ahead 
WRITE (ONEYRA, I (A) I) I ***I 

endif 

IF (NOBS.GT.NUSED+1) THEN 
TYA= SQRT(TYASSIREAL(NOBS-NUSED-1)) I MEAN 
WRITE (OUTPUT, I (1X,A,F10.1,3X,A,I3,A) 1

) 

•two seasons ahead •,TYA*100., 
• (based on',NOBS-NUSED-1, • comparisons)• 

WRITE (TWOYRA, I (F7.1) 1
) TYA*100. 

ELSE 
WRITE (OUTPUT, • (1X,A) ') •two seasons ahead 
WRITE (TWOYRA, I (A) 1

) ***' 

END IF 

IF (OUTSUM.GT.O) 
WRITE (OUTSUM, 

I (1X,A,I5,F7.2,1X,A,1X,F6.3,F6.2,F6.3,1X,2F7.1,2A) 1
) 

TITLE(1:6), NOBS, MEAN, SELECT, ESTIM, STUD, 
RSQ, RESIDL, JACKKN, ONEYRA, TWOYRA 

•• 

•• 

********************************************************************** 

* end of dataset --------------------------------------------------- * 
WRITE (*,'(A,I4,A,A,A)') '+dataset ',DATSET,': ',TITLE, 

done• 

WRITE (OUTPUT, I (1X,70A1) 1
) (

1
-

1 ,I=1,70) 
IF (.NOT.EOF) GOTO 1 

9 WRITE (OUTPUT, • (1X,A)') '***end of file***' 
STOP '*** end of datafile ***' 
END 

*-------------------------------------------------------- data input * 
*records with missing values ('*' or •-99') are skipped 
*end-of-data sign • :• (no values on that record) 

SUBROUTINE VDATIN(INPUT,YEAR,OFFIC,MODEL, 

*--------------------------------------------------------- arguments * 
INTEGER INPUT, MOBS, NOBS, NX2, INDIC(4) 



REAL 
LOGICAL 

YEAR(MOBS), OFFIC(MOBS), MODEL(MOBS,NX2) 
EOF 

*--------------------------------------------------- local variables * 
INTEGER MWORD 
PARAMETER (MWORD=10) 

INTEGER 
INTEGER 
REAL 

NWORD, NWSET, IWB(MWORD), IWE(MWORD) 
I, J, NINDIC, FIRST 
VMAG (MWORD) 

CHARACTER*80 RECORD 
CHARACTER*8 CINDIC 

DATA FIRST /1/ 

EOF 
CINDIC 
NWSET 

.FALSE. 
1 1,2,3,4 I 

0 

* ask which model indicators to be used (at first call only) ------- * 

IF (FIRST.EQ.l) THEN 
WRITE (*I I ( lX, A, 5 (I I lOX, A) I/) I ) 

'Modelindicators:', 
'1 potential grain yield', 
'2 water-limited grain yield', 
'3 potential biomass', 
'4 water-limited biomass•, 
'0 no indicators' 

5 CALL ENTDCH ('combination of indicators to be used' 

10 

,CINDIC,CINDIC) 
CALL WORDS (CINDIC,MWORD, I I ',IWB,IWE,NINDIC) 
CALL DECREC (CINDIC,NINDIC,VMAG) 
IF (NINDIC.GT.O .AND. VMAG(l).GT.O.) THEN 

DO 10 I=l,NINDIC 
INDIC(I)=INT(VMAG(I)+.l) 
IF (INDIC(I).GT.4.0R.INDIC(I).LT.O) THEN 

WRITE (*,' (lX,A,/)') '*** choise out of range***' 

GOTO 5 

END IF 
CONTINUE 

ELSE 
NINDIC=O 

END IF 
FIRST=O 

END IF 

NOBS=O 
DO 21 I=l,MOBS 

CALL GETREC (INPUT,RECORD,EOF) 

IF (EOF) RETURN 

75 

~~~~~~~-~~~~r-F~(~:rNDE:'X'(-REe0RD~L*L)~E(l~O~AND.=:FNDEX+REeGRD7 L.-c99cL)-.-cE(:l-.~O~)--l,l1HEN--~-~~-~- ----

CALL WORDS (RECORD,MWORD, I I ',IWB,IWE,NWORD) 

IF (NWSET.EQ.O) NWSET=NWORD 
IF (NWORD.NE.NWSET) THEN 

CALL ERROR('reading', 
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20 

ELSE 
NOBS=NOBS+1 

'inconsistent number of values') 

CALL DECREC{RECORD,NWORD,VMAG) 

YEAR{NOBS) = VMAG{1) 
OFFIC{NOBS) = VMAG{2) 
IF {NWORD.GT.2 .AND. NINDIC.GT.O) THEN 

DO 20 J=1,NINDIC 
MODEL{NOBS,J) = VMAG{INDIC{J)+2) 

CONTINUE 
END IF 

END IF 
END IF 

END IF 
21 CONTINUE 

9 IF {NWSET.GT.2) THEN 

NX2=NINDIC 
ELSE 

NX2=0 
END IF 
RETURN 
END 

* ----------------------------------------------------------- linreg * 
SUBROUTINE LINREG {NOBS, NTERM, 

Y, W, X, FIT, LEV, 
EST, SE, VCOV, SS, DF, OUT) 

* dimensions ------------------------------------------------------- * 
INTEGER MOBS,MTERM 
PARAMETER {MOBS=30, MTERM=5) 

* arguments -------------------------------------------------------- * 
INTEGER NOBS,NTERM, OUT 
REAL Y{MOBS), W{MOBS), X{MOBS,MTERM) 

REAL 
REAL 
REAL 
REAL 

FIT{MOBS), LEV{MOBS) 
EST{MTERM), SE{MTERM) 
VCOV{MTERM,MTERM) 
SS, DF 

* local variables and arrays -------------------------------------- * 
INTEGER I,J,K, NROT 
DOUBLE PRECISION TOL, DMAX, DMIN, S 
DOUBLE PRECISION XTWX{MTERM,MTERM), XTWXIN{MTERM,MTERM) 

DOUBLE PRECISION V{MTERM,MTERM) 
DOUBLE PRECISION D{MTERM), DINV{MTERM) 
REAL R, Z 

TOL 1.0E-7 
DF REAL{NOBS-NTERM) 

* fill matrix xtwx ------------------------------------------------ * 

DO 32 I=1,NTERM 
DO 31 J=1,NTERM 

S=O. 



DO 30 K=1,NOBS 
S=S+ DBLE( X(K,I) * W(K) * X(K,J) ) 

30 CONTINUE 
XTWX(I,J)=S 

31 CONTINUE 
32 CONTINUE 

* call subroutine jacobi (DJCOBI) from Numerical Recipes ----------- * 

CALL DJCOBI (XTWX,NTERM,MTERM,D,V,NROT) 

* check inverse matrix -------------------------------------------- * 

DMAX = 0. 
DO 40 I=1,NTERM 

IF (D(I).GT.DMAX) DMAX=D(I) 
40 CONTINUE 

DMIN = TOL*DMAX 

DO 41 I=1,NTERM 
IF (D(I).GT.DMIN) THEN 

DINV(I) 1.0/D(I) 
ELSE 

DINV(I) 0.0 
DF DF + 1.0 
WRITE (OUT, • (/, 2 (/, 1X, A)) •) • *** Alias *** •, • combination • 
WRITE (OUT, 1 (1X,10F10.3) 1

) (V(I,J),J=1,NTERM) 
WRITE (OUT, I (1X,A) 1

) •constrained to o.• 
END IF 

41 CONTINUE 

50 

DO 52 I=1,NTERM 
DO 51 J=1,NTERM 

s = 0.0 
DO 50 K=1,NTERM 

S=S+ V(I,K) * DINV(K) * V(J,K) 
CONTINUE 
XTWXIN(I,J)=S 

51 CONTINUE 
52 CONTINUE 

DO 62 I=1,NOBS 
s = 0.0 
DO 61 J=1,NTERM 

DO 60 K=1,NTERM 
S=S+ XTWXIN(J,K) * DBLE(X(I,J)*X(I,K)*W(I)) 

60 CONTINUE 
61 CONTINUE 

LEV(I)=S 
62 CONTINUE 

70 

s~:::~e-.~e 

DO 71 J=1,NOBS 

S=S+ XTWXIN(I,K) * DBLE(X(J,K) * W(J) * Y(J)) 
CONTINUE 
EST(I)=S 

77 



78 

71 CONTINUE 
72 CONTINUE 

DO 81 I=1,NOBS 
z = 0.0 
DO 80 J=1,NTERM 

Z = Z+ EST(J) * X(I,J) 
80 CONTINUE 

FIT(I) Z 
R Y(I)-Z 
SS SS+ DBLE(R* W(I) * R) 
IF (W(I).EQ.O.) DF=DF-1. 

81 CONTINUE 

DO 91 I=1,NTERM 
DO 90 J=1,NTERM 

VCOV(I,J)= XTWXIN(I,J) * DBLE(SS / DF) 
90 CONTINUE 

SE(I)= REAL(SQRT(VCOV(I,I))) 
91 CONTINUE 

RETURN 
END 

* ----------------------------------------------------------- Jacobi * 
SUBROUTINE DJCOBI(A,N,NP,D,V,NROT) 

INTEGER 
PARAMETER 

N,NP,NROT,NMAX 
(NMAX=20) 

INTEGER IP,IQ,I,J 
DOUBLE PRECISION A(NP,NP),D(NP),V(NP,NP),B(NMAX),Z(NMAX) 
DOUBLE PRECISION SM,TRESH,G,H,THETA,C,S,T,TAU 

DO 12 IP=1,N 
DO 11 IQ=1,N 

V(IP,IQ)=O.OO 
11 CONTINUE 

V(IP,IP)=1.00 
12 CONTINUE 

DO 13 IP=1,N 
B(IP)=A(IP,IP) 
D(IP)=B(IP) 
Z(IP)=O.OO 

13 CONTINUE 
NROT=O 
DO 24 I=l,50 

SM=O. 
DO 15 IP=l,N-1 

DO 14 IQ=IP+1,N 
SM=SM+ABS(A(IP,IQ)) 

14 CONTINUE 
15 CONTINUE 

IF(I.LT.4)THEN 

ELSE 
TRESH=O. 

END IF 



* 

16 

17 

18 

19 

DO 22 IP=1,N-1 
DO 21 IQ=IP+1,N 

G=100.*ABS(A(IP,IQ)) 
IF((I.GT.4).AND.(ABS(D(IP))+G.EQ.ABS(D(IP))) 

.AND.(ABS(D(IQ))+G.EQ.ABS(D(IQ))))THEN 
A(IP,IQ)=O. 

ELSE IF(ABS(A(IP,IQ)).GT.TRESH)THEN 
H=D(IQ)-D(IP) 
IF(ABS(H)+G.EQ.ABS(H))THEN 
T=A(IP,IQ)/H 

ELSE 
THETA=O.S*H/A(IP,IQ) 
T=1./(ABS(THETA)+SQRT(1.+THETA**2)) 
IF(THETA.LT.O.)T=-T 

END IF 
C=1./SQRT(1.00+T**2) 
S=T*C 
TAU=S/(1.+C) 
H=T*A(IP,IQ) 
Z(IP)=Z(IP)-H 
Z(IQ)=Z(IQ)+H 
D(IP)=D(IP)-H 
D(IQ)=D(IQ)+H 
A(IP,IQ)=O. 
DO 16 J=1,IP-1 

G=A(J,IP) 
H=A(J,IQ) 
A(J,IP)=G-S*(H+G*TAU) 
A(J,IQ)=H+S*(G-H*TAU) 

CONTINUE 
DO 17 J=IP+1,IQ-1 

G=A(IP,J) 
H=A(J,IQ) 
A(IP,J)=G-S*(H+G*TAU) 
A(J,IQ)=H+S*(G-H*TAU) 

CONTINUE 
DO 18 J=IQ+1,N 

G=A(IP,J) 
H=A(IQ,J) 
A(IP,J)=G-S*(H+G*TAU) 
A(IQ,J)=H+S*(G-H*TAU) 

CONTINUE 
DO 19 J=1,N 

G=V(J,IP) 
H=V(J,IQ) 
V(J,IP)=G-S*(H+G*TAU) 
V(J,IQ)=H+S*(G-H*TAU) 

CONTINUE 
NROT=NROT+1 

END IF 
21 CONTINUE 

1JG~2'3~:E-P::c-1--,~N 

B(IP)=B(IP)+Z(IP) 

Z(IP)=O. 
23 CONTINUE 
24 CONTINUE 
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PAUSE •so iterations should never happen• 
RETURN 
END 

SUBROUTINE XCLUR (NOBS,NX1,NX2,Y,W,X1,X2, 
FIT,LEV,EST,SE,VCOV,SS,DF,MES) 

* ------------------------------------------------------------------ * 
* best linear regression of y 
* on X1 and at most one of the columns of X2 
* the best is the minimal-jackknife-as one over the w!=O 
* observations from those with nonnegative coefficient for the 
* X2-term 

* dimensions ------------------------------------------------------- * 
INTEGER MOBS, MTERM, MX1, MX2 
PARAMETER (MOBS=30,MTERM=8,MX1=3,MX2=5) 

* arguments -------------------------------------------------------- * 
INTEGER NOBS, NX1, NX2, MES 
REAL Y(MOBS), W(MOBS), X1(MOBS,MX1), X2(MOBS,MX2) 
REAL 
REAL 

FIT(MOBS), LEV(MOBS), EST(MTERM), SE(MTERM) 
VCOV(MTERM,MTERM), SS, DF 

* local variables and arrays --------------------------------------- * 
INTEGER BSTFIT, I, J 
REAL X(MOBS,MTERM),CVCOV(MTERM,MTERM),BVCOV(MTERM,MTERM) 
REAL 
REAL 
REAL 

CSS,CJACSS,CFIT(MOBS),CLEV(MOBS),CEST(MTERM),CSE(MTERM) 
BSS,BJACSS,BFIT(MOBS),BLEV(MOBS),BEST(MTERM),BSE(MTERM) 
JR, CDF, BDF 

DO 11 I=1,NOBS 
DO 10 J=1,NX1 

X(I,J) = X1(i,J) 
10 CONTINUE 
11 CONTINUE 

CALL LINREG(NOBS, NX1, Y, W, X, BFIT, BLEV, BEST, 
BSE, BVCOV, BSS, BDF, MES) 

BSTFIT = 0 
BJACSS = 0 
DO 20 J=1,NOBS 

IF (W(J).NE.O) THEN 
JR = (Y(J)-BFIT(J))/(1-BLEV(J)) 
BJACSS = BJACSS + JR*JR 

END IF 
20 CONTINUE 

* from X2 take the variate giving the best jackknife ss ------------ * 
IF (NX2.GT.O) THEN 

~~-~~~~=-I)0~30=J=4.7NGBS- ---___ - -_-------_-----~--~-

X(J,NX1+1) = X2(J,I) 

CALL LINREG(NOBS, NX1+1, Y, W, X, CFIT, CLEV, CEST, 
CSE, CVCOV, CSS, CDF, MES) 

CJACSS = 0 



31 

DO 31 J=1,NOBS 
IF (W(J).NE.O.) THEN 

JR = (Y(J)-CFIT(J))/(1-CLEV(J)) 
CJACSS = CJACSS + JR*JR 

END IF 
CONTINUE 
IF (CJACSS.LT.BJACSS .AND. CEST(NX1+1).GT.O.) THEN 

BSTFIT = I 
CALL EXCRS(BJACSS,CJACSS) 
CALL EXCRS(BSS,CSS) 
CALL EXCRS(BDF,CDF) 
CALL EXCR1(MOBS,BFIT,CFIT) 
CALL EXCR1(MOBS,BLEV,CLEV) 
CALL EXCR1(MTERM,BEST,CEST) 
CALL EXCR1(MTERM,BSE,CSE) 
CALL EXCR2(MTERM,MTERM,BVCOV,CVCOV) 

END IF 
32 CONTINUE 

END IF 

* copy results to outputparameters --------------------------------- * 
SS = BSS 
DF BDF 

DO 40 I=1,NOBS 
FIT(I) BFIT(I) 
LEV(I) = BLEV(I) 

40 CONTINUE 

DO 41 I=1,NX1 
EST (I) BEST (I) 
SE ( I ) = BSE ( I ) 

41 CONTINUE 

IF (NX2.GT.O) THEN 
DO 42 I=NX1+1,NX1+NX2 

EST(I) 0. 0 
SE(I) = 0.0 

42 CONTINUE 

43 

END IF 

IF (BSTFIT.NE.O) THEN 
EST(NX1+BSTFIT) BEST(NX1+1) 
SE(NX1+BSTFIT) = BSE(NX1+1) 

END IF 

IF (NX2.GT.O) THEN 
DO 44 I=1,NX1+NX2 

DO 43 J=1,NX1+NX2 
VCOV(I,J) = 0.0 

CONTINUE 

DO 45 J=1,NX1 
VCOV(I,J) BVCOV(I,J) 

45 CONTINUE 
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46 CONTINUE 

IF (BSTFIT.NE.O) THEN 
DO 47 I=1,NX1 

VCOV(NX1+BSTFIT,I) 
47 CONTINUE 

DO 48 I=1,NX1 

BVCOV(NX1+1,I) 

VCOV(I,NX1+BSTFIT) = BVCOV(I,NX1+1) 
48 CONTINUE 

VCOV(NX1+BSTFIT,NX1+BSTFIT) = BVCOV(NX1+1,NX1+1) 
END IF 

RETURN 
END 

SUBROUTINE EXCRS(V1,V2) 
REAL V1,V2,P 
P V1 
V1 = V2 
V2 = P 
RETURN 
END 

SUBROUTINE EXCR1(N,V1,V2) 
INTEGER N,I 
REAL V1(N),V2(N),P 

DO 10 I=1,N 
P V1(I) 
V1 (I) V2 (I) 
V2 (I) P 

10 CONTINUE 
RETURN 
END 

SUBROUTINE EXCR2(N1,N2,V1,V2) 
INTEGER N1,N2,I,J 
REAL V1(N1,N2),V2(N1,N2),P 

DO 11 I=1,N1 
DO 10 J=1,N2 

P V1(I,J) 
V1(I,J) V2(I,J) 
V2(I,J) P 

10 CONTINUE 
11 CONTINUE 

RETURN 
END 



Appendix Sa. Example of detailed statistical output. Prediction rule 
PO 

crop =wheat 
region name = R22 (Bassin Parisien) 
number of seasons = 15 
mean = 5.644 

Predictions based on all data: 
term est 
constant 5.644 
(year-1982.0) 0.186 
(ind[*]- *) * 

R-squared: 0.74 

se 
0.130 
0.030 

* 

t 
43.28 

6.16 

* 

Estimated relative root mean square errors(% of 5.644): 
residua I : 8.9 
jackknife : 9.5 

Predictions based on last 9 seasons: 
term est 
constant 6.190 
(year-1985.0) 0.151 
(ind[*]- *) * 

R-squared: 0.37 

se 
0.193 
0.075 

* 

t 
32.12 
2.02 

* 

Estimated relative root mean square errors (0/o of 5.644): 
residua I : 1 0.2 
one year ahead : 
two years ahead : 

12.0 (based on 6 comparisons) 
14.3 (based on 5 comparisons) 
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Appendix Sb. Example of detailed statistical output. Prediction rule 
PS. 

crop =wheat 
region name = R22 (Bassin Parisien) 
number of seasons = 15 
mean = 5.644 

Predictions based on all data: 
term ert 
constant 5.644 
(year-1982.0) 0.168 
(ind[1 ]- 8.538) 0.331 

R-squared: 0.86 

se 
0.101 
0.024 
0.107 

t 
55.80 
6.97 
3.10 

Estimated relative root mean square errors (0/o of 5.644): 
residual: 6.9 
jackknife: 9.2 

Predictions based on last 9 seasons: 
term ert se t 
constant 4.528 0.700 6.47 
(year-1985.0) 0.125 0.058 2.15 
(ind[1]- 5.187) 0.481 0.198 2.43 

R-squared: 0.68 

Estimated relative root mean square errors (0/o of 5.644) 
residual: 7.9 
one year ahead: 10.2 (based on 6 comparisons) 
two years ahead: 13.5 (based on 5 comparisons) 



Appendix 9 and 10. Summarized results, explanation of abbreviations. 

Two prediction rules are investigated: 

PO: no model indicators used 
P5: chooses between no model indicator, potential grain yield, water limited grain yield, 

potential biomass and water-limited biomass. 

Each region or country corresponds to a line in a dataset. The columns contain: 
nuts : region or country NUTS-code (see Appendix 3) 
nobs : number of years 
mean : mean yield over years 
sel : indicator selected: [1]= potential grain yield, [2]= water-limited grain yield, 

coef 
t 
rsq 
res 

[3]= potential biomass, [4]= water-limited biomass 
: coefficient of the selected indicator 
: t-value of indicator 
: R2 of selected regression based on all years 
: relative root mean squared residual error of selected regression based on last 9 

years 
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jack : relative root mean squared jackknife error of complete prediction rule based on 
all years 

oya : relative root mean squared one year ahead error of complete prediction rule 
tya : relative root mean squared two years ahead error of complete prediction rule 

*** : no data available 
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Appendix 9. Summary output Nuts-1. 
Explanation abbreviations: page 85. 

Wheat PO 
nuts nobs mean sel coef t rsq res jack oya tya 
R11 15 6.639 0.000 0.00 0.781 6.3 7.5 7.7 8.1 
R12 15 6.095 0.000 0.00 0.745 8.2 8.3 11.9 13.1 
R13 15 5.617 0.000 0.00 0.594 12.2 10.6 17.5 19.7 
R14 10 5.250 0.000 0.00 0.786 4.9 5.1 2.6 *** 
R15 15 5.6 79 0.000 0.00 0.821 6.7 7.8 9.0 9.0 
R16 15 5.374 0.000 0.00 0.690 7.8 8.7 8.5 7.7 
R17 15 4.919 0.000 0.00 0.708 7.9 9.6 9.3 8.7 
R18 15 4.918 0.000 0.00 0.765 9.7 7.9 12.4 14.3 
R19 15 5.261 0.000 0.00 0.813 10.3 8.8 13.5 12.6 
R1A 15 4.580 0.000 0.00 0.491 21.4 21.6 27.8 32.7 
R21 15 6.119 0.000 0.00 0.705 11.1 10.4 12.7 13.3 
R22 15 5.644 0.000 0.00 0.745 10.2 9.5 12.0 14.3 
R23 15 6.178 0.000 0.00 0.776 11.6 9.5 15.1 14.1 
R24 15 4.850 0.000 0.00 0.602 14.5 12.3 18.0 18.4 
R25 15 4.731 0.000 0.00 0.731 7.3 8.3 8.6 7.1 
R26 15 3.989 0.000 0.00 0.541 14.1 13.1 19.4 20.9 
R27 15 4.299 0.000 0.00 0.553 13.4 12.9 17.3 15.7 
R28 15 2.959 0.000 0.00 0.274 13.8 12.5 16.4 16.3 
R31 15 3.652 0.000 0.00 0.625 11.5 11.9 15.5 13.1 
R32 15 4.771 0.000 0.00 0.653 7.3 7.5 10.2 7.1 
R33 15 4.747 0.000 0.00 0.815 4.2 7.2 7.2 7.8 
R34 15 4.696 0.000 0.00 0.294 7.6 10.3 12.1 15.5 
R35 15 2.971 0.000 0.00 0.658 5.6 6.6 7.6 8.0 
R36 15 2.634 0.000 0.00 0.339 11.7 12.3 15.3 13.9 
R37 14 2.329 0.000 0.00 0.788 3.9 8.1 5.8 7.3 
R38 14 2.446 0.000 0.00 0.440 8.4 10.6 12.3 13.4 
R39 14 1.919 0.000 0.00 0.001 24.3 22.2 28.5 17.5 
R3A 14 1.685 0.000 0.00 0.003 18.2 19.7 23.9 25.1 
R3B 15 1.475 0.000 0.00 0.032 41.7 35.0 47.9 36.6 
R41 15 6.129 0.000 0.00 0.552 9.3 9.3 12.1 12.0 
R42 15 6.815 0.000 0.00 0.634 8.6 9.8 12.7 14.4 
R45 15 6.443 0.000 0.00 0. 795 8.2 9.3 11.6 13.2 
R47 14 6.939 0.000 0.00 0.696 8.4 9.6 12.1 14.1 
R51 15 5.536 0.000 0.00 0.643 15.2 13.1 19.6 19.3 
R52 15 5.543 0.000 0.00 0.773 10.0 9.8 12.4 13.6 
R53 14 4.981 0.000 0.00 0.755 8.2 9.1 10.0 6.4 
R60 15 3.548 0.000 0.00 0.595 12.3 15.1 10.0 10.4 
R71 14 5.944 0.000 0.00 0.594 11.8 11.4 15.6 20.6 
R72 14 6.203 0.000 0.00 0.680 11.6 10.6 14.8 20.8 
R73 14 5.995 0.000 0.00 0.607 12.9 11.7 16.9 21.7 
R74 14 6.122 0.000 0.00 0.502 11.2 11.8 18.8 23.6 
R75 14 5.909 0.000 0.00 0.493 10.5 11.8 15.5 20.7 
R76 14 5.801 0.000 0.00 0.571 8.0 10.1 11.0 13.9 
R77 14 5.704 0.000 0.00 0.601 9.2 9.9 12.1 16.5 
R78 14 5.516 0.000 0.00 0.223 11.1 12.6 14.3 13.4 
R 79 14 5.678 0.000 0.00 0.307 13.9 13.6 8.1 11.0 
R7A 14 6.537 0.000 0.00 0.534 11.4 11.6 17.1 11.4 
R7B 14 5.252 0.000 0.00 0.125 27.8 24.0 34.4 20.9 
R80 15 6.018 0.000 0.00 0.740 13.2 11.6 17.7 21.6 
R90 16 5.954 0.000 0.00 0.650 10.9 9.9 14.4 14.7 
RA1 10 2.664 0.000 0.00 0.197 13.5 13.5 6.3 *** 
~RB1 15 1.641 .. 0.000 0.00 0.576 11.9 10.8 16.2 18.2 
RB2-· _ts_. _· 2.404~--· ____ ·· _Q.OOQ_. _·. O.QQ ____ Q.132_ .. t3.6~11"'9~2~L2_23.~Lc: ____ ~-----
RB3 15 1.717 0.000 0.00 0.257 21.4 25.7 30.0 26.8 

· RB4-1-5-1-.663 Q,QQQ-Q,Q0-0.493-2+.-7-2-2.-7-28.6---2-9.4-·-----··- ------

RB5- lS - 2. 595''=== - ~=,====o~om:J===o~o~o"=="'"0:7~~.c1'5'3 1=zt~=czz~T==23~6 ·c ··· --·---·---

RB6 15 2.440 0.000 0.00 0.246 30.0 25.6 30.2 22.7 



88 

Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85. 

Wheat PS 
nuts nobs mean sel coef t rsq res jack oya tya 
R11 15 6.639 0.000 0.00 0.781 6.3 8.3 11.6 11.9 
R12 15 6.095 0.000 0.00 0.745 8.2 9.7 16.8 17.2 
R13 15 5.617 0.000 0.00 0.594 12.2 10.6 17.6 19.7 
R14 10 5.250 0.000 0.00 0.786 4.9 5.1 2.6 *** 
R15 15 5.6 79 0.000 0.00 0.821 6.7 8.2 9.1 9.0 
R16 15 5.374 ind[2] 0.173 1.68 0.749 7.8 9.0 9.2 7.8 
R17 15 4.919 ind[2] 0.271 3.55 0.858 7.9 6.5 10.6 4.6 
R18 15 4.918 ind[3] 0.108 1.07 0.785 9.0 8.0 11.8 14.5 
R19 15 5.261 ind[4] 0.129 1.00 0.828 10.3 9.1 14.1 12.3 
R1A 15 4.580 ind[3] 0.342 1.62 0.582 21.1 21.2 29.9 29.2 
R21 15 6.119 ind[1] 0.391 3.38 0.849 6.4 10.8 10.5 9.6 
R22 15 5.644 ind[1] 0.331 3.10 0.858 7.9 9.2 10.2 13.5 
R23 15 6.178 0.000 0.00 0.776 11.6 9.5 15.1 14.1 
R24 15 4.850 ind[1] 0.336 2.44 0.734 11.7 13.3 15.4 16.6 
R25 15 4.731 ind[3] 0.344 3.48 0.866 5.7· 6.3 9.5 10.0 
R26 15 3.989 0.000 0.00 0.541 11.9 14.1 22.3 26.2 
R27 15 4.299 ind[4] 0.106 1.31 0.610 13.4 14.8 17.4 15.6 
R28 15 2.959 ind[3] 0.354 4.15 0.702 8.0 8.7 8.5 17.3 
R31 15 3.652 0.000 0.00 0.625 11.5 11.9 15.5 13.1 
R32 15 4.771 0.000 0.00 0.653 7.3 7.5 10.2 7.1 
R33 15 4.747 0.000 0.00 0.815 4.2 7.2 7.2 7.8 
R34 15 4.696 0.000 0.00 0.294 7.6 10.3 12.1 15.5 
R35 15 2.971 0.000 0.00 0.658 5.6 6.6 7.6 8.0 
R36 15 2.634 0.000 0.00 0.339 11.7 12.3 15.3 13.9 
R37 14 2.329 0.000 0.00 0.788 3.9 8.9 5.8 7.3 
R38 14 2.446 0.000 0.00 0.440 8.4 11.4 12.3 13.4 
R39 14 1.919 ind[2] 0.445 3.30 0.498 15.9 19.2 21.6 16.6 
R3A 14 1.685 ind[2] 0.196 1.94 0.257 15.3 20.4 23.1 27.1 
R3B 15 1.475 0.000 0.00 0.032 41.7 41.4 55.5 52.7 
R41 15 6.129 ind[1] 0.351 1.71 0.640 9.3 10.0 12.1 12.0 
R42 15 6.815 ind[1] 0.372 1.67 0.703 8.0 9.9 12.7 14.4 
R45 15 6.443 ind[3] 0.132 1.30 0.820 8.2 9.5 11.8 12.4 
R47 14 6.939 ind[1] 0.654 2.75 0.820 7.1 12.1 12.1 14.1 
R51 15 5.536 0.000 0.00 0.643 15.2 15.4 22.5 14.5 
R52 15 5.543 0.000 0.00 0.773 8.3 16.2 12.8 12.1 
R53 14 4.981 0.000 0.00 0.755 8.2 10.3 13.5 2.7 
R60 15 3.548 ind[2] 0.257 2.95 0.765 12.3 15.5 11.1 15.3 
R71 14 5.944 0.000 0.00 0.594 11.8 11.4 15.6 20.6 
R72 14 6.203 0.000 0.00 0.680 11.6 10.9 14.8 20.8 
R73 14 5.995 0.000 0.00 0.607 12.9 12.3 16.9 21.7 
R74 14 6.122 ind[2] 0.376 1.33 0.571 11.2 12.6 17.7 22.7 
R75 14 5.909 0.000 0.00 0.493 10.5 11.8 16.1 19.7 
R76 14 5.801 ind[3] 0.193 1.68 0.659 7.1 10.2 12.1 12.9 
R77 14 5.704 0.000 0.00 0.601 8.1 10.6 13.3 19.7 
R78 14 5.516 0.000 0.00 0.223 11.1 13.7 15.6 15.0 
R 79 14 5.678 0.000 0.00 0.307 13.9 15.0 11.5 13.1 
R7A 14 6.537 0.000 0.00 0.534 11.4 11.6 17.1 11.4 
R7B 14 5.252 0.000 0.00 0.125 27.8 24.0 34.4 20.9 
R80 15 6.018 0.000 0.00 0.740 13.2 12.9 19.4 23.6 
R90 16 5.954 ind[2] 0.467 2.38 0.756 7.9 9.1 14.1 17.1 
RA1 10 2.664 ind[4] 0.107 1.94 0.477 11.6 14.6 10.0 *** 
RB1 15 1.641 0.000 0.00 0.576 9.9 11.9 19.1 22.7 
RB2 15 2.404 ind[3] 0.214 3.00 0.847 11.6 11.6 21.7 28.2 
RS3 15 ~~ 1:+14: ' ifld[2] ~· 9.99~' ===1.91 '9.431 21.4 2if.8 ·~7.4 29.9 

-· RB4-· -1'5~1':o63~md[-z·]-· ·-(f.172-· _·· 2~56~0:012-· ·_· 1-2~~3~1~22~4'----'--ZS.O --------------------~ 

RB5 15 2.595 ind[3] 0.528 3.93 0.874 10.5 13.6 18.6 19.6 
-· .. ~==aa:o~ .. ~ls==l~a:ao~====-==--=-~=n-:-orm~=~==o~o·o=:=:o~24:o_. _ _:~-JD1>==zs;'IC-4l~~.:J-s-:-o=·~=·~:=·==·==~·-·=·=-···--·=···· -·····=·=··==-······--··--,, 
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85. 

Maize PO 
nuts nobs mean sel coef t rsq res jack oya tya 
R11 13 5.518 0.000 0.00 0.720 9.6 15.8 9.8 11.5 
R12 15 5.572 0.000 0.00 0.658 12.7 11.4 13.7 12.1 
R13 15 5.787 0.000 0.00 0.585 11.5 9.8 14.2 14.6 
R15 15 6.320 0.000 0.00 0.729 7.7 7.2 10.5 8.8 
R16 15 6.530 0.000 0.00 0.727 5.8 8.8 5.4 6.5 
R17 15 5.759 0.000 0.00 0.410 6.6 11.1 8.7 10.9 
R18 15 6.319 0.000 0.00 0.284 17.2 16.1 19.0 21.4 
R19 15 6.265 0.000 0.00 0.676 9.8 9.7 9.8 9.3 
R1A 15 4.589 0.000 0.00 0.438 25.5 23.4 24.5 22.8 
R21 15 6.541 0.000 0.00 0.588 9.0 13.4 11.4 12.2 
R22 15 5.736 0.000 0.00 0.780 6.8 9.6 7.5 7.4 
R23 15 5.898 0.000 0.00 0.667 8.9 8.7 10.8 11.1 
R24 15 6.874 0.000 0.00 0.804 9.5 8.3 8.2 10.1 
R25 15 5.673 0.000 0.00 0.640 8.8 12.8 10.6 11.5 
R26 15 5.945 0.000 0.00 0.873 5.9 6.5 9.1 9.8 
R27 15 5.661 0.000 0.00 0.524 13.6 11.5 13.5 17.4 
R28 15 5.423 0.000 0.00 0.839 6.3 6.1 8.8 10.0 
R31 15 6.407 0.000 0.00 0.517 5.7 5.4 7.7 7.1 
R32 15 7.698 0.000 0.00 0.759 4.9 4.9 5.2 7.4 
R33 15 7.664 0.000 0.00 0.551 6.9 6.2 8.3 9.3 
R34 15 7.772 0.000 0.00 0.704 6.2 5.5 7.2 7.0 
R35 15 6.561 0.000 0.00 0.749 5.5 6.0 8.0 8.5 
R36 15 5.805 0.000 0.00 0.891 7.8 6.4 10.8 10.8 
R37 14 4.227 0.000 0.00 0.801 13.0 16.0 24.3 29.3 
R38 14 4.625 0.000 0.00 0.657 8.7 9.7 13.0 16.4 
R39 14 2.410 0.000 0.00 0.855 8.1 7.3 10.1 12.0 
R3A 14 5.001 0.000 0.00 0.859 8.1 15.2 9.9 13.3 
R3B 15 6.563 0.000 0.00 0.001 18.2 14.9 21.5 25.3 
R51 15 6. 797 0.000 0.00 0.705 8.1 8.9 11.3 13.0 
R52 15 6.531 0.000 0.00 0.242 19.6 16.4 24.7 17.6 
RA1 10 8.574 0.000 0.00 0.438 11.3 16.0 3.7 *** 
RB1 15 2.765 0.000 0.00 0.496 6.7 10.3 6.5 7.9 
RB2 15 6.621 0.000 0.00 0.397 11.2 12.9 16.2 21.5 
RB3 15 7.452 0.000 0.00 0.642 10.2 8.5 11.1 11.5 
RB4 15 6.570 0.000 0.00 0.378 19.0 17.9 26.4 27.8 
RB5 15 5.435 0.000 0.00 0.380 9.3 8.7 12.0 11.6 
RB6 15 6.981 0.000 0.00 0.817 9.4 11.7 9.2 11.5 
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Appendix 9 {continued). Summary output Nuts-1. Explanation abbreviations: page 85. 

Maize PS 
nuts nobs mean sel coef t rsq res jack oya tya 
R11 13 5.518 0.000 0.00 0.720 6.1 15.8 10.0 10.1 
R12 15 5.572 ind[2] 0.155 1.93 0.739 5.4 13.3 8.3 6.7 
R13 15 5.787 ind[4) 0.168 2.65 0.738 6.3 9.7 11.4 10.2 
R15 15 6.320 ind[2] 0.241 2.85 0.838 4.0 6.6 8.3 7.9 
R16 15 6.530 ind[2] 0.331 3.64 0.870 3.9 6.7 7.8 7.0 
R17 15 5.759 ind[2] 0.231 1.74 0.529 5.5 13.9 12.7 19.2 
R18 15 6.319 ind[4] 0.406 3.02 0.593 10.4 13.0 15.2 19.9 
R19 15 6.265 ind[4] 0.191 2.40 0.781 7.4 9.2 8.5 10.5 
R1A 15 4.589 ind[4] 0.311 4.29 0.778 12.4 18.8 17.6 17.5 
R21 15 6.541 ind[2] 0.253 4.09 0.828 6.9 8.5 17.2 11.8 
R22 15 5.736 ind[4] 0.135 3.48 0.891 6.7 6.9 8.3 10.3 
R23 15 5.898 0.000 0.00 0.667 6.9 13.3 8.7 7.9 
R24 15 6.874 ind[4] 0.187 4.69 0.931 4.8 6.3 5.8 8.3 
R25 15 5.673 ind[4] 0.163 5.46 0.897 5.3 7.9 8.1 9.5 
R26 15 5.945 ind[2] 0.069 1.54 0.894 4.2 7.3 8.3 9.8 
R27 15 5.661 ind[2] 0.195 2.76 0.709 9.1 12.9 17.9 19.5 
R28 15 5.423 0.000 0.00 0.839 3.7 7.4 6.5 9.1 
R31 15 6.407 ind[4] 0.094 1.76 0.616 5.7 6.0 9.7 12.9 
R32 15 7.698 ind[4] 0.082 1.90 0.815 4.9 4.8 7.2 10.0 
R33 15 7.664 ind[4] 0.166 1.86 0.651 6.9 7.8 11.4 11.5 
R34 15 7.772 ind[3] 0.162 2.33 0. 796 4.5 5.8 10.0 9.4 
R35 15 6.561 0.000 0.00 0.749 5.5 6.4 8.0 8.5 
R36 15 5.805 0.000 0.00 0.891 7.8 6.4 11.3 11.4 
R37 14 4.227 ind[4] 0.121 1.63 0.840 13.0 17.0 28.5 29.3 
R38 14 4.625 ind[4] 0.089 2.98 0.810 8.7 7.9 13.0 16.1 
R39 14 2.410 ind[3] 0.067 1. 79 0.888 7.0 10.9 11.3 12.1 
R3A 14 5.001 0.000 0.00 0.859 8.1 15.2 9.9 13.3 
R3B 15 6.563 ind[1] 0.404 1.34 0.131 18.2 16.4 21.5 25.3 
R51 15 6. 797 ind[4] 0.106 1.71 0.762 6.2 11.4 13.6 14.1 
R52 15 6.531 ind[3] 0.471 3.14 0.585 12.2 13.8 46.6 47.6 
RA1 10 8.574 0.000 0.00 0.438 11.3 17.1 3.7 *** 
RB1 15 2.765 0.000 0.00 0.496 6.1 10.3 7.1 9.1 
RB2 15 6.621 0.000 0.00 0.397 11.2 12.9 16.2 21.5 
RB3 15 7.452 0.000 0.00 0.642 10.2 9.3 13.3 12.7 
RB4 15 6.570 0.000 0.00 0.378 19.0 20.7 28.1 28.8 
RB5 15 5.435 ind[3] 0.094 1.08 0.435 9.3 9.2 13.3 13.6 
RB6 15 6.981 0.000 0.00 0.817 9.4 11.7 9.2 11.5 
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85. 

Barley PO 
nuts nobs mean sel coef t rsq res jack oya tya 
R11 15 5.531 0.000 0.00 0.750 8.9 8.6 10.2 10.1 
R12 15 4.987 0.000 0.00 0.801 5.5 7.0 6.4 6.3 
R13 15 4.539 0.000 0.00 0.744 3.7 4.5 5.4 5.4 
R14 10 4.297 0.000 0.00 0.761 4.5 4.5 5.4 *** 
R15 15 4.967 0.000 0.00 0.767 6.1 6.1 7.7 6.0 
R16 15 4.740 0.000 0.00 0.628 8.5 8.7 8.7 10.4 
R17 15 4.096 0.000 0.00 0.433 9.0 11.2 7.4 6.3 
R18 15 4.235 0.000 0.00 0.681 9.2 7.4 11.9 14.3 
R19 15 4.287 0.000 0.00 0.670 11.8 10.0 15.7 18.0 
R1A 15 3.945 0.000 0.00 0.352 10.0 11.6 7.4 7.2 
R21 15 5.276 0.000 0.00 0.752 10.1 9.7 10.1 8.5 
R22 15 4.849 0.000 0.00 0.861 8.5 7.5 9.5 6.2 
R23 15 5.764 0.000 0.00 0.738 9.8 9.2 10.9 8.2 
R24 15 4.063 0.000 0.00 0.484 16.2 13.0 16.4 15.9 
R25 15 3.925 0.000 0.00 0.652 13.4 13.3 15.2 14.4 
R26 15 3.449 0.000 0.00 0.650 13.6 10.9 16.0 13.4 
R27 15 3.534 0.000 0.00 0.504 15.1 14.6 19.1 18.1 
R28 15 3.101 0.000 0.00 0.249 10.5 10.4 11.2 12.6 
R31 15 3.667 0.000 0.00 0.617 16.4 15.0 22.6 17.4 
R32 15 4.735 0.000 0.00 0.601 10.8 10.3 15.6 14.0 
R33 15 4.284 0.000 0.00 0.725 10.8 10.9 16.2 20.3 
R34 15 4.239 0.000 0.00 0.780 6.9 8.2 11.2 13.6 
R35 15 2.749 0.000 0.00 0.722 5.6 8.2 9.0 8.2 
R36 15 2.833 0.000 0.00 0.541 9.1 13.1 14.4 15.8 
R37 14 2.326 0.000 0.00 0.731 6.6 8.7 9.8 10.8 
R38 14 2.313 0.000 0.00 0.726 7.7 8.7 13.5 16.9 
R39 14 1.971 0.000 0.00 0.129 20.2 18.5 21.4 20.9 
R3A 14 1.514 0.000 0.00 0.019 18.6 17.6 25.2 27.8 
R3B 15 1.533 0.000 0.00 0.008 37.9 32.0 47.2 34.3 
R41 15 4.977 0.000 0.00 0.175 12.9 11.5 15.0 18.3 
R42 15 4.883 0.000 0.00 0.451 11.1 9.5 13.4 13.6 
R45 15 4.718 0.000 0.00 0.492 9.9 11.5 12.1 14.7 
R47 14 5.178 0.000 0.00 0.356 14.5 13.1 17.8 18.5 
R51 15 5.041 0.000 0.00 0.604 10.1 10.1 10.8 9.9 
R52 15 5.429 0.000 0.00 0.762 9.4 8.7 8.2 6.7 
R53 14 4.843 0.000 0.00 0.5 79 9.2 11.5 10.0 6.4 
R60 15 3.333 0.000 0.00 0.225 15.9 17.2 6.4 5.5 
R71 14 4.557 0.000 0.00 0.398 10.4 10.1 12.5 16.7 
R72 14 4.851 0.000 0.00 0.677 9.5 8.4 12.5 16.8 
R73 14 4.656 0.000 0.00 0.537 12.1 12.2 15.9 21.7 
R74 14 4.657 0.000 0.00 0.543 8.7 9.8 14.0 17.1 
R75 14 4.731 0.000 0.00 0.599 8.9 10.8 12.0 17.7 
R76 14 4.587 0.000 0.00 0.559 9.4 10.4 11.4 16.4 
R77 14 4.626 0.000 0.00 0.515 12.1 11.8 15.7 20.6 
R78 14 4.206 0.000 0.00 0.211 11.0 11.4 12.2 16.4 
R 79 14 4.300 0.000 0.00 0.149 11.7 12.5 15.1 19.9 
R7A 14 4.735 0.000 0.00 0.075 6.8 8.2 7.5 5.0 
R7B 14 4.031 0.000 0.00 0.214 12.1 10.9 12.2 10.1 
R80 15 4.955 0.000 0.00 0.657 7.7 8.7 9.7 9.5 
R90 16 4.298 0.000 0.00 0.650 11.9 9.8 12.0 9.4 
RA1 11 2.575 0.000 0.00 0.028 14.8 14.2 16.1 23.3 
RB1 15 1.663 0.000 0.00 0.128 9.4 8.6 10.5 8.9 
RB2 15 2.326 0.000 0.00 0.009 19.7 20.4 28.1 26.7 

R.13~ts-·· ·· ~2:cr6s-· ·_· · -~~~~~o:noo-····· -· o:oo-· -· ~0~1~12_··· -· ·23:7~T4:9c~29:2~29~o~~-~~~--~ ------------------

RB5 15 2.253 0.000 0.00 0.267 25.4 23.4 32.6 29.0 
-----;·R-B6=~18-···--4~~1:::c:c===,cc==~~oi'OQ.fL=fhOQ=,==Q~1=1~7=-·••-l-5:i~2~-==~=1~~-&-k-=:-_;;_~-:--;~=--~ ~-=:~:·-······---~= 
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85. 

Barley PS 
nuts nobs mean sel coef t rsq res jack oya tya 
R11 15 5.531 0.000 0.00 0.750 8.9 8.6 10.2 10.1 
R12 15 4.987 0.000 0.00 0.801 5.5 7.0 6.4 6.3 
R13 15 4.539 ind[4] 0.080 1.42 0.781 3.7 4.7 5.4 5.4 
R14 10 4.297 0.000 0.00 0.761 4.5 4.5 5.4 *** 
R15 15 4.967 ind[4] 0.263 2.87 0.862 5.4 5.0 9.2 6.4 
R16 15 4.740 ind[4] 0.475 3.14 0. 796 7.2 8.5 11.2 9.8 
R17 15 4.096 ind[2] 0.464 2.64 0.642 9.0 11.9 8.7 8.1 
R18 15 4.235 ind[1] 0.443 2.53 0. 792 7.0 7.3 11.3 13.3 
R19 15 4.287 ind[4] 0.408 3.25 0.825 7.3 8.2 16.2 13.6 
R1A 15 3.945 ind[2] 0.472 4.24 0.741 8.3 9.9 9.2 9.8 
R21 15 5.276 ind[2] 0.425 3.43 0.875 6.9 8.8 7.5 4.9 
R22 15 4.849 ind[4] 0.311 3.36 0.928 8.5 6.6 8.8 6.1 
R23 15 5.764 0.000 0.00 0.738 9.8 9.2 12.2 8.4 
R24 15 4.063 ind[2] 0.407 2.03 0.616 14.6 12.3 15.2 12.4 
R25 15 3.925 ind[4] 0.568 5.61 0.904 6.6 7.6 13.5 14.2 
R26 15 3.449 ind[3] 0.337 3.80 0.841 6.3 8.5 17.0 13.4 
R27 15 3.534 ind[2] 0.329 1.57 0.588 15.1 18.2 19.2 15.2 
R28 15 3.101 ind[4] 0.333 7.14 0.857 3.2 5.0 6.5 14.6 
R31 15 3.667 ind[3] 0.197 1.65 0.688 14.6 16.1 22.6 17.4 
R32 15 4.735 0.000 0.00 0.601 10.8 10.3 15.6 14.0 
R33 15 4.284 0.000 0.00 0.725 10.8 10.9 16.2 20.3 
R34 15 4.239 0.000 0.00 0.780 6.9 8.2 11.2 13.6 
R35 15 2.749 ind[4] 0.098 1.08 0.747 5.6 8.0 9.0 8.2 
R36 15 2.833 0.000 0.00 0.541 9.1 13.1 14.4 15.8 
R37 14 2.326 0.000 0.00 0.731 6.6 8.7 9.8 10.8 
R38 14 2.313 0.000 0.00 0.726 6.8 9.5 13.5 17.6 
R39 14 1.971 ind[4] 0.237 1.50 0.278 18.8 19.3 23.2 28.6 
R3A 14 1.514 ind[4] 0.268 2.70 0.410 14.6 17.5 26.1 27.8 
R3B 15 1.533 0.000 0.00 0.008 33.6 35.5 50.2 36.3 
R41 15 4.977 ind[2] 0.695 2.35 0.436 12.9 12.7 15.8 18.3 
R42 15 4.883 0.000 0.00 0.451 11.1 9.9 13.9 15.3 
R45 15 4.718 ind[2] 0.461 2.64 0.6 79 8.6 9.9 10.2 14.1 
R47 14 5.178 ind[1] 0.756 2.00 0.528 12.9 13.9 17.8 18.5 
R51 15 5.041 ind[1] 0.392 1.60 0.673 8.8 10.9 11.2 7.5 
R52 15 5.429 0.000 0.00 0.762 6.0 10.7 10.3 7.1 
R53 14 4.843 0.000 0.00 0.5 79 9.2 12.5 11.2 5.7 
R60 15 3.333 ind[2] 0.572 3.72 0.640 15.9 12.8 5.8 8.2 
R71 14 4.557 0.000 0.00 0.398 10.4 10.1 12.9 17.0 
R72 14 4.851 0.000 0.00 0.677 9.5 8.9 11.9 17.4 
R73 14 4.656 0.000 0.00 0.537 12.1 12.2 15.9 21.7 
R74 14 4.657 0.000 0.00 0.543 8.7 10.4 14.0 17.1 
R75 14 4.731 0.000 0.00 0.599 8.9 10.8 12.0 17.7 
R76 14 4.587 0.000 0.00 0.559 9.4 10.4 11.4 16.4 
R77 14 4.626 0.000 0.00 0.515 12.1 12.2 17.2 20.4 
R78 14 4.206 ind[1] 0.407 1.76 0.385 11.0 12.8 13.4 17.4 
R 79 14 4.300 0.000 0.00 0.149 11.7 12.5 15.1 19.9 
R7A 14 4.735 0.000 0.00 0.075 6.1 9.7 7.8 6.4 
R7B 14 4.031 0.000 0.00 0.214 12.1 11.5 16.0 9.8 
R80 15 4.955 ind[1] 0.486 2.03 0.744 7.7 8.6 12.8 10.5 
R90 16 4.298 0.000 0.00 0.650 11.9 10.2 12.0 9.4 
RA1 11 2.575 0.000 0.00 0.028 14.8 21.7 16.1 23.3 
RB1 15 1.663 0.000 0.00 0.128 9.4 9.6 11.5 11.7 
RB2 15 2.326 ind[4] 0.312 3.81 0.552 11.3 17.0 22.9 22.9 
R83 15 -;2;9~9 iAd['H 9 12<13 3 97 9 475 ~~ ~i:7 6(),.& 

~CRBZI:_~~ -~ t5 ~2~06-a-~ -~·~·rndt31~~o:4o7~~c4~67~~~o:68S-~~~ ~~8~7~1~7;5~19~7-~ 23~2- ------------ ----------- ----

RB5 15 2.253 ind[4] 0.720 4.27 0.709 14.5 17.3 21.7 25.4 
·~~==-~· ~·~-R~6=~=]:s=:-:··~=r.::s2r-~==ir1oi~1~~::=o:3:s2::=3:_o9-:=·-~_a:sn~ ~~~ .. ~ ~·2a:o=--zo:9=~·3~::33:s ~~~· ·-·--····1 
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85. 

Rice PO 
nuts nobs mean sel coef t rsq res jack oya tya 
R28 15 4.421 0.000 0.00 0.609 11.9 15.8 13.7 12.2 
R31 15 5.612 0.000 0.00 0.238 2.8 12.1 3.9 7.6 
R32 15 5.287 0.000 0.00 0.264 8.2 11.6 8.2 11.5 
R33 15 5.477 0.000 0.00 0.412 16.5 14.6 21.0 25.9 
R34 15 5.271 0.000 0.00 0.413 6.7 7.9 6.8 3.9 
R35 13 5.048 0.000 0.00 0.591 9.2 12.4 6.3 5.9 
R39 12 4.545 0.000 0.00 0.478 22.8 27.3 55.4 36.5 
R3B 15 5.583 0.000 0.00 0.668 9.4 8.5 10.8 7.6 
RA1 9 6.024 0.000 0.00 0.589 8.1 10.7 *** *** 
RB2 15 4.146 0.000 0.00 0.157 19.4 17.2 26.7 26.2 
RB4 15 5.657 0.000 0.00 0.229 11.3 13.2 10.0 12.3 
RB5 15 6.141 0.000 0.00 0.011 5.6 5.9 5.2 5.4 
RB6 15 6.236 0.000 0.00 0.002 14.1 11.9 12.9 15.8 

Rice PS 
nuts nobs mean sel coef t rsq res jack oya tya 
R28 15 4.421 ind[1] 0.554 2.35 0.732 9.6 14.0 11.6 7.7 
R31 15 5.612 0.000 0.00 0.238 2.8 12.1 4.5 8.3 
R32 15 5.287 0.000 0.00 0.264 8.2 11.6 8.0 15.6 
R33 15 5.477 0.000 0.00 0.412 12.5 17.1 20.8 25.8 
R34 15 5.271 0.000 0.00 0.413 6.7 7.9 6.8 3.9 
R35 13 5.048 0.000 0.00 0.591 9.2 14.2 6.7 5.9 
R39 12 4.545 ind[4] 0.463 2.01 0.640 22.8 29.5 51.3 32.4 
R3B 15 5.583 0.000 0.00 0.668 9.4 9.1 13.8 11.5 
RA1 9 6.024 ind[1] 0.695 2.03 0.756 6.8 10.9 *** *** 
RB2 15 4.146 ind[1] 0.163 0.74 0.194 17.4 18.5 26.7 26.2 
RB4 15 5.657 ind[1] 0.409 1.64 0.371 11.3 14.2 10.0 12.3 
RB5 15 6.141 0.000 0.00 0.011 5.6 5.9 5.4 5.5 
RB6 15 6.236 0.000 0.00 0.002 14.1 11.9 12.9 15.8 



94 

Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85. 

Sugar beet PO 
nuts nobs mean sel coef t rsq res jack oya tya 
R11 12 40.737 0.000 0.00 0.195 14.9 14.0 22.6 10.2 
R12 8 40.835 0.000 0.00 0.290 7.7 8.2 *** *** 
R13 12 43.346 0.000 0.00 0.286 9.9 9.5 7.1 8.8 
R15 12 48.891 0.000 0.00 0.375 9.4 9.4 4.3 3.9 
R16 12 47.098 0.000 0.00 0.332 6.4 7.7 3.1 1.2 
R17 12 51.933 0.000 0.00 0.209 7.7 8.2 4.4 1.5 
R18 12 51.558 0.000 0.00 0.275 7.8 6.9 1.6 1.0 
R19 12 54.396 0.000 0.00 0.248 7.1 8.4 5.2 4.7 
R1A 9 36.418 0.000 0.00 0.005 19.3 21.9 *** *** 
R21 11 55.251 0.000 0.00 0.735 6.5 11.8 7.8 2.2 
R22 11 54.726 0.000 0.00 0.877 5.7 7.3 4.5 0.3 
R23 11 50.774 0.000 0.00 0.697 9.2 9.3 6.4 7.3 
R24 11 50.159 0.000 0.00 0.633 6.8 6.8 6.5 10.6 
R25 11 47.768 0.000 0.00 0.718 7.7 9.5 14.9 15.1 
R27 11 54.214 0.000 0.00 0.913 5.7 5.9 0.8 1.2 
R31 10 52.345 0.000 0.00 0.134 11.2 11.8 10.3 *** 
R32 10 53.078 0.000 0.00 0.359 8.4 8.9 3.1 *** 
R33 10 53.771 0.000 0.00 0.385 11.7 11.9 20.3 *** 
R34 10 51.520 0.000 0.00 0.007 8.5 8.3 0.2 *** 
R35 10 40.800 0.000 0.00 0.209 16.8 16.9 2.3 *** 
R36 10 47.801 0.000 0.00 0.063 10.0 10.5 17.4 *** 
R37 10 30.270 0.000 0.00 0.001 25.4 26.7 36.3 *** 
R38 10 45.999 0.000 0.00 0.024 17.1 17.8 10.3 *** 
R39 10 38.531 0.000 0.00 0.048 16.7 17.2 14.2 *** 
R38 10 41.200 0.000 0.00 0.157 19.4 20.5 12.1 *** 
R51 12 51.424 0.000 0.00 0.273 6.9 8.4 6.7 4.7 
R52 12 51.694 0.000 0.00 0.367 9.7 10.2 11.0 13.0 
R53 11 49.368 0.000 0.00 0.042 3.9 11.2 4.9 3.6 
R60 11 45.628 0.000 0.00 0.320 26.3 31.0 30.7 36.9 
R80 11 42.507 0.000 0.00 0.004 12.3 11.3 6.9 5.3 
R90 13 44.082 0.000 0.00 0.548 11.5 10.0 12.4 9.0 
RB2 11 39.146 0.000 0.00 0.772 9.1 9.3 18.3 18.7 
RB3 11 35.516 0.000 0.00 0.1 79 7.0 10.0 11.6 8.0 
RB4 11 41.587 0.000 0.00 0.374 10.8 10.8 14.1 16.1 
RB5 9 28.908 0.000 0.00 0.235 31.0 32.6 *** *** 
RB6 10 31.697 0.000 0.00 0.573 14.8 15.5 25.8 *** 
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85. 

Sugar beet PS 
nuts nobs mean sel coef t rsq res jack oya tya 
R11 12 40.737 ind[2] 4.058 4. 79 0.773 7.1 8.8 10.7 6.2 
R12 8 40.835 0.000 0.00 0.290 6.7 10.3 *** *** 
R13 12 43.346 0.000 0.00 0.286 8.4 10.4 10.9 8.9 
R15 12 48.891 ind[2] 2.033 1.98 0.564 7.2 10.2 2.7 2.5 
R16 12 47.098 ind[2] 1.214 2.04 0.544 5.7 8.3 3.5 2.3 
R17 12 51.933 ind[4] 1.508 2.88 0.589 7.7 9.0 3.9 1.3 
R18 12 51.558 0.000 0.00 0.275 7.8 6.9 1.6 1.0 
R19 12 54.396 0.000 0.00 0.248 7.3 8.5 6.0 4.7 
R1A 9 36.418 ind[4] 1.876 2.36 0.484 15.0 23.2 *** *** 
R21 11 55.251 ind[4] 1.606 5.18 0.939 6.5 7.1 8.4 11.0 
R22 11 54.726 ind[2] 1.110 2.58 0.933 5.7 5.7 5.6 7.0 
R23 11 50.774 0.000 0.00 0.697 9.2 9.3 6.4 7.3 
R24 11 50.159 0.000 0.00 0.633 6.8 6.9 5.9 10.2 
R25 11 47.768 ind[4] 0.943 4.78 0.927 4.3 5.1 7.4 2.8 
R27 11 54.214 0.000 0.00 0.913 5.7 5.9 0.8 1.2 
R31 10 52.345 0.000 0.00 0.134 8.8 13.5 10.3 *** 
R32 10 53.078 0.000 0.00 0.359 8.4 8.9 3.1 *** 
R33 10 53.771 ind[3] 3.089 2.44 0.667 9.3 10.1 24.2 *** 
R34 10 51.520 ind[3] 1.959 5.28 0.801 4.1 4.4 6.5 *** 
R35 10 40.800 ind[3] 2.607 2.22 0.535 12.7 16.3 10.1 *** 
R36 10 47.801 0.000 0.00 0.063 10.0 10.9 17.4 *** 
R37 10 30.270 ind[4] 1.377 1.66 0.283 20.0 30.8 36.3 *** 
R38 10 45.999 0.000 0.00 0.024 16.5 21.1 10.3 *** 
R39 10 38.531 ind[4] 1.967 2.80 0.550 11.7 17.2 15.6 *** 
R3B 10 41.200 0.000 0.00 0.157 19.4 20.5 12.1 *** 
R51 12 51.424 0.000 0.00 0.273 6.8 8.4 11.3 12.2 
R52 12 51.694 0.000 0.00 0.367 9.8 10.9 13.7 17.4 
R53 11 49.368 0.000 0.00 0.042 3.9 11.2 4.9 3.6 
R60 11 45.628 0.000 0.00 0.320 26.3 31.0 30.7 36.9 
R80 11 42.507 ind[3] 3.098 2.80 0.498 6.3 11.2 12.4 6.1 
R90 13 44.082 ind[2] 2.130 3.37 0.788 7.0 10.9 11.8 14.4 
RB2 11 39.146 ind[2] 1.053 1.42 0.818 8.5 10.7 19.0 10.7 
RB3 11 35.516 ind[2] 0.847 1.50 0.359 7.0 10.9 11.6 8.0 
RB4 11 41.587 ind[2] 1.428 1.53 0.516 10.8 12.2 14.1 16.1 
RB5 9 28.908 0.000 0.00 0.235 31.0 32.6 *** *** 
RB6 10 31.697 ind[4] 2.858 2.36 0.762 12.2 15.5 25.8 *** 
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85. 

Potato PO 
nuts nobs mean sel coef t rsq res jack oya tya 
R11 11 28.262 0.000 0.00 0.476 16.9 20.6 16.0 19.5 
R12 11 29.635 0.000 0.00 0.662 12.5 14.3 13.5 16.6 
R13 11 32.588 0.000 0.00 0.763 9.9 10.0 6.3 3.1 
R15 11 33.550 0.000 0.00 0. 798 8.2 10.2 13.2 5.9 
R16 11 27.204 0.000 0.00 0.385 15.3 15.6 10.8 1.8 
R17 11 26.781 0.000 0.00 0.566 11.0 12.5 2.9 5.7 
R18 11 27.995 0.000 0.00 0.105 15.2 15.0 13.8 13.3 
R19 11 30.495 0.000 0.00 0.440 13.0 12.9 22.2 19.0 
R1A 11 24.535 0.000 0.00 0.345 24.8 26.6 22.7 32.5 
R21 10 32.671 0.000 0.00 0.630 17.4 21.4 7.1 *** 
R22 10 33.869 0.000 0.00 0.720 15.3 16.8 3.6 *** 
R23 10 38.454 0.000 0.00 0.612 13.1 15.3 3.2 *** 
R24 10 29.962 0.000 0.00 0.609 29.4 33.0 72.9 *** 
R25 10 24.685 0.000 0.00 0.784 11.3 13.3 10.0 *** 
R26 10 25.389 0.000 0.00 0.763 15.6 18.6 20.8 *** 
R27 10 20.756 0.000 0.00 0.523 15.9 20.2 22.0 *** 
R28 10 20.208 0.000 0.00 0.827 6.5 7.4 10.0 *** 
R31 11 20.090 0.000 0.00 0.341 14.9 14.5 21.0 18.6 
R32 11 23.390 0.000 0.00 0.378 11.3 11.6 20.2 26.5 
R33 11 26.296 0.000 0.00 0.718 5.8 5.9 7.7 6.5 
R34 11 27.054 0.000 0.00 0.819 7.5 7.6 8.9 13.9 
R35 11 13.672 0.000 0.00 0.377 8.1 8.7 15.2 20.6 
R36 11 17.986 0.000 0.00 0.820 7.9 9.5 5.9 0.1 
R37 10 20.328 0.000 0.00 0.042 14.3 15.0 6.3 *** 
R38 10 15.375 0.000 0.00 0.689 9.5 10.5 0.3 *** 
R39 10 11.601 0.000 0.00 0.718 9.7 10.0 12.2 *** 
R3A 11 17.751 0.000 0.00 0.062 28.3 27.6 43.6 35.5 
R3B 12 15.323 0.000 0.00 0.129 9.0 11.8 19.2 24.0 
R41 12 34.7 79 0.000 0.00 0.495 9.5 9.4 7.8 4.3 
R42 12 42.473 0.000 0.00 0. 798 7.9 7.2 8.2 10.3 
R45 12 43.502 0.000 0.00 0.697 6.6 10.2 7.6 12.7 
R47 11 39.676 0.000 0.00 0.812 6.5 6.4 6.3 6.0 
R51 11 33.128 0.000 0.00 0.512 10.0 16.0 14.5 17.6 
R52 11 33.427 0.000 0.00 0.267 13.4 17.2 14.0 1.9 
R53 10 29.065 0.000 0.00 0.302 20.5 21.7 9.5 *** 
R60 12 27.788 0.000 0.00 0.217 19.1 26.3 16.1 18.4 
R7A 9 34.492 0.000 0.00 0.381 6.0 6.4 *** *** 
R7B 10 25.783 0.000 0.00 0.073 6.8 6.4 2.9 *** 
R80 11 23.223 0.000 0.00 0.174 13.1 12.4 13.4 10.4 
R90 12 30.993 0.000 0.00 0.789 9.8 12.0 5.3 9.7 
RB1 10 12.426 0.000 0.00 0.333 17.4 31.6 50.4 *** 
RB2 10 17.859 0.000 0.00 0.597 6.0 21.2 3.2 *** 
RB3 10 20.385 0.000 0.00 0.372 1.5 19.9 8.6 *** 
RB4 10 16.868 0.000 0.00 0.686 6.9 14.5 6.7 *** 
RB5 10 15.020 0.000 0.00 0.518 4.6 29.3 15.3 *** 
RB6 10 17.034 0.000 0.00 0.590 9.0 28.8 5.8 *** 





97 

Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85. 

Potato PS 
nuts nobs mean sel coef t rsq res jack oya tya 
R11 11 28.262 ind[4] 1.158 3.34 0.781 16.9 14.5 15.9 8.3 
R12 11 29.635 ind[4] 0.856 3.52 0.867 9.3 12.3 14.0 10.4 
R13 11 32.588 ind[3] 3.347 2.50 0.867 6.7 11.3 10.8 11.1 
R15 11 33.550 ind[4] 0.701 2.73 0.896 4.6 10.0 10.2 1.3 
R16 11 27.204 ind[1] 2.196 1.90 0.576 15.3 16.9 9.9 7.4 
R17 11 26.781 ind[1] 2.098 3.91 0.851 7.1 8.7 7.3 11.1 
R18 11 27.995 0.000 0.00 0.105 15.2 15.9 13.8 13.3 
R19 11 30.495 ind[1] 2.169 1.46 0.558 12.2 13.3 22.0 19.7 
R1A 11 24.535 ind[1] 3.102 2.78 0.667 18.6 22.1 27.6 42.8 
R21 10 32.671 ind[1] 3.408 3.95 0.886 10.4 20.2 0.7 *** 
R22 10 33.869 ind[1] 3.057 4.04 0.916 9.1 13.5 6.8 *** 
R23 10 38.454 ind[4] 1.047 3.23 0.844 8.6 14.2 1.3 *** 
R24 10 29.962 ind[1] 4.407 2.47 0. 791 25.7 30.8 67.0 *** 
R25 10 24.685 ind[1] 1.558 3.50 0.921 3.5 11.1 2.2 *** 
R26 10 25.389 ind[3] 1.254 1.52 0.822 13.0 18.8 14.9 *** 
R27 10 20.756 ind[4] 0.552 2.10 0.707 13.8 24.0 13.6 *** 
R28 10 20.208 0.000 0.00 0.827 6.5 8.4 10.0 *** 
R31 11 20.090 0.000 0.00 0.341 14.9 14.5 21.0 18.6 
R32 11 23.390 0.000 0.00 0.378 11.3 11.6 20.2 26.5 
R33 11 26.296 0.000 0.00 0.718 5.8 6.4 7.7 6.5 
R34 11 27.054 ind[2] 0.369 2.48 0.898 6.3 6.0 8.9 13.9 
R35 11 13.672 ind[3] 0.437 2.04 0.590 7.1 9.3 15.2 20.6 
R36 11 17.986 0.000 0.00 0.820 7.9 10.5 5.9 0.1 
R37 10 20.328 0.000 0.00 0.042 14.3 15.7 6.3 *** 
R38 10 15.375 ind[4] 0.277 1.53 0.767 8.7 10.9 0.0 *** 
R39 10 11.601 ind[3] 0.556 1.42 0.781 9.3 10.6 10.7 *** 
R3A 11 17.751 0.000 0.00 0.062 28.3 32.4 43.6 35.5 
R3B 12 15.323 0.000 0.00 0.129 9.0 12.7 19.2 24.0 
R41 12 34.7 79 ind[4] 0.809 4.62 0.850 5.1 6.1 7.9 6.4 
R42 12 42.473 ind[3] 1.831 2.45 0.8 79 5.0 6.8 7.4 10.3 
R45 12 43.502 ind[1] 2.654 3.44 0.869 4.8 8.4 8.2 4.2 
R47 11 39.676 0.000 0.00 0.812 6.5 8.1 6.3 6.0 
R51 11 33.128 ind[1] 4.021 6.24 0.917 4.8 9.1 0.9 2.2 
R52 11 33.427 ind[2] 1.063 3.26 0.685 11.3 16.1 15.1 22.5 
R53 10 29.065 ind[1] 3.986 3.95 0.783 11.5 19.4 3.6 *** 
R60 12 27.788 ind[1] 3.630 3.66 0.685 19.1 16.9 20.1 22.6 
R7A 9 34.492 ind[3] 1.862 1.96 0.623 5.1 6.5 *** *** 
R7B 10 25.783 ind[1] 0.749 1.00 0.189 6.7 6.7 2.8 *** 
R80 11 23.223 ind[3] 2.075 2.47 0.531 10.3 10.9 9.8 11.7 
R90 12 30.993 ind[2] 0.363 1.24 0.819 9.8 13.9 3.0 7.2 
RB1 10 12.426 0.000 0.00 0.333 17.4 31.6 50.4 *** 
RB2 10 17.859 0.000 0.00 0.597 6.0 21.2 3.2 *** 
RB3 10 20.385 0.000 0.00 0.372 1.3 19.7 8.6 *** 
RB4 10 16.868 0.000 0.00 0.686 6.9 23.7 56.1 *** 
RB5 10 15.020 0.000 0.00 0.518 4.6 29.3 15.3 *** 
RB6 10 17.034 0.000 0.00 0.590 9.0 28.8 5.8 *** 
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85. 

Oilseed rape PO 
nuts nobs mean sel coef t rsq res jack oya tya 
R11 11 2.921 0.000 0.00 0.357 16.6 16.1 17.1 22.2 
R12 11 2.674 0.000 0.00 0.3 79 11.6 11.6 13.7 18.7 
R13 11 2.603 0.000 0.00 0.902 5.5 6.1 7.2 3.1 
R15 11 2.648 0.000 0.00 0.834 8.9 8.5 3.1 5.5 
R16 11 2.500 0.000 0.00 0.876 6.8 8.8 3.2 1.8 
R17 11 2.452 0.000 0.00 0.753 6.7 9.9 3.9 4.4 
R18 11 2.586 0.000 0.00 0.899 5.5 5.9 10.2 5.2 
R19 11 2.742 0.000 0.00 0.850 6.6 7.2 11.3 12.2 
R1A 11 2.357 0.000 0.00 0.636 10.8 13.0 21.0 25.2 
R21 11 2.805 0.000 0.00 0.628 19.6 18.9 20.6 24.0 
R22 11 2.475 0.000 0.00 0.674 19.0 18.8 18.7 23.0 
R23 11 2.629 0.000 0.00 0.749 15.0 15.5 7.6 10.9 
R24 11 2.565 0.000 0.00 0.597 16.7 17.2 13.4 17.5 
R25 11 2.417 0.000 0.00 0.596 19.4 20.3 24.3 28.0 
R26 11 2.205 0.000 0.00 0.336 19.0 21.0 19.3 30.3 
R27 11 2.243 0.000 0.00 0.225 28.2 27.5 27.4 27.1 
R28 11 2.066 0.000 0.00 0.390 13.5 14.0 12.7 19.4 
R32 8 2.146 0.000 0.00 0.082 36.4 42.4 *** *** 
R33 10 2.432 0.000 0.00 0.405 12.5 14.5 13.8 *** 
R35 9 2.360 0.000 0.00 0.104 36.5 38.6 *** *** 
R41 11 3.026 0.000 0.00 0.421 10.5 10.8 9.3 1.8 
R42 11 3.190 0.000 0.00 0.591 10.2 10.6 15.9 22.5 
R45 11 2.611 0.000 0.00 0.001 20.8 21.3 22.1 9.4 
R47 10 2. 790 0.000 0.00 0.100 13.4 13~7 10.6 *** 
R51 11 2.448 0.000 0.00 0.245 13.6 30.9 24.9 17.3 
R52 11 2.836 0.000 0.00 0.150 14.1 14.9 7.4 8.7 
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Appendix 9 {continued). Summary output Nuts-1. Explanation abbreviations: page 85. 

Oilseed rape P5 
nuts nobs mean sel coef t rsq res jack oya tya 
R11 11 2.921 0.000 0.00 0.357 13.4 19.7 17.1 22.2 
R12 11 2.674 0.000 0.00 0.3 79 9.4 14.5 13.7 18.7 
R13 11 2.603 0.000 0.00 0.902 4.7 6.1 7.2 3.1 
R15 11 2.648 0.000 0.00 0.834 8.9 8.5 3.1 5.5 
R16 11 2.500 0.000 0.00 0.876 6.8 8.8 3.2 1.8 
R17 11 2.452 0.000 0.00 0.753 6.7 9.9 3.9 4.4 
R18 11 2.586 ind[1 1 0.110 0.86 0.908 5.5 6.2 10.2 5.2 
R19 11 2.742 ind[1 1 0.230 1.55 0.884 6.6 6.8 11.3 12.2 
R1A 11 2.357 ind[41 0.078 1.95 0.754 10.3 12.8 21.0 25.2 
R21 11 2.805 0.000 0.00 0.628 19.6 18.9 26.4 21.9 
R22 11 2.475 0.000 0.00 0.674 19.0 18.8 18.7 23.0 
R23 11 2.629 ind[1 1 0.655 1.38 0. 797 14.9 16.8 7.6 10.9 
R24 11 2.565 0.000 0.00 0.597 16.7 17.2 13.4 17.5 
R25 11 2.417 0.000 0.00 0.596 19.4 21.7 24.1 13.3 
R26 11 2.205 0.000 0.00 0.336 14.6 23.9 19.3 30.3 
R27 11 2.243 0.000 0.00 0.225 28.2 27.5 27.4 27.1 
R28 11 2.066 ind[1 1 0.555 2.40 0.646 9.3 12.2 10.4 14.8 
R32 8 ,2.146 0.000 0.00 0.082 36.4 42.4 *** *** 
R33 10 2.432 0.000 0.00 0.405 12.5 17.1 13.8 *** 
R35 9 2.360 0.000 0.00 0.104 36.5 38.6 *** *** 
R41 11 3.026 0.000 0.00 0.421 10.5 10.8 9.3 1.8 
R42 11 3.190 ind[3] 0.065 1.65 0.695 9.6 12.1 15.9 22.5 
R45 11 2.611 0.000 0.00 0.001 20.8 21.3 22.1 9.4 
R47 10 2. 790 0.000 0.00 0.100 13.4 13.7 10.6 *** 
R51 11 2.448 0.000 0.00 0.245 13.6 30.9 24.9 17.3 
R52 11 2.836 0.000 0.00 0.150 14.1 14.9 7.4 8.7 
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Appendix 9 (continued). Summary output Nuts-1. Explanation abbreviations: page 85. 

Sunflower PO 
nuts nobs mean sel coef t rsq res jack oya tya 
R21 10 2.407 0.000 0.00 0.236 16.6 22.5 18.9 *** 
R22 10 2.174 0.000 0.00 0.774 10.5 11.7 9.3 *** 
R24 10 2.310 0.000 0.00 0.833 13.5 18.3 14.3 *** 
R25 10 2.103 0.000 0.00 0.485 18.5 19.5 21.9 *** 
R26 10 1.961 0.000 0.00 0.359 21.8 22.9 35.1 *** 
R27 10 2.230 0.000 0.00 0.801 10.6 11.5 13.9 *** 
R28 10 2.070 0.000 0.00 0.185 11.6 15.6 25.2 *** 
R33 10 2.818 0.000 0.00 0.208 22.7 23.0 28.2 *** 
R35 10 2.125 0.000 0.00 0.290 15.7 16.1 8.2 *** 
R36 10 2.217 0.000 0.00 0.073 18.0 21.2 16.6 *** 
R37 8 2.464 0.000 0.00 0.689 22.2 18.9 *** *** 
R38 9 1.924 0.000 0.00 0.101 20.6 22.4 *** *** 
R39 9 1.846 0.000 0.00 0.000 40.0 43.7 *** *** 
R3A 9 0.998 0.000 0.00 0.087 24.3 25.7 *** *** 
RB2 10 1.141 0.000 0.00 0.757 12.9 13.4 6.5 *** 
RB3 10 0.630 0.000 0.00 0.000 30.9 30.1 16.3 *** 
RB4 10 0.669 0.000 0.00 0.508 16.8 17.6 13.9 *** 
RB5 10 1.092 0.000 0.00 0.710 22.6 22.2 18.9 *** 
RB6 10 0.955 0.000 0.00 0.592 29.4 29.1 27.6 *** 

Sunflower PS 
nuts nobs mean sel coef t rsq res jack oya tya 
R21 10 2.407 0.000 0.00 0.236 16.6 22.5 18.9 *** 
R22 10 2.174 0.000 0.00 0.774 10.5 16.5 37.1 *** 
R24 10 2.310 0.000 0.00 0.833 13.5 20.6 14.3 *** 
R25 10 2.103 ind[4] 0.214 3. 79 0.831 11.5 17.5 41.6 *** 
R26 10 1.961 ind[4] 0.309 4.97 0.859 10.4 15.2 4.9 *** 
R27 10 2.230 ind[2] 0.259 5.93 0.967 4.1 6.0 1.1 *** 
R28 10 2.070 ind[2] 0.548 4.18 0.767 6.3 9.3 10.9 *** 
R33 10 2.818 0.000 0.00 0.208 22.3 24.8 28.2 *** 
R35 10 2.125 ind[4] 0.185 1.25 0.419 16.4 16.9 3.3 *** 
R36 10 2.217 0.000 0.00 0.073 18.0 22.2 16.6 *** 
R37 8 2.464 0.000 0.00 0.689 22.2 20.2 *** *** 
R38 9 1.924 0.000 0.00 0.101 20.6 26.4 *** *** 
R39 9 1.846 ind[3] 0.823 1.52 0.277 36.7 55.0 *** *** 
R3A 9 0.998 0.000 0.00 0.087 24.3 28.1 *** *** 
RB2 10 1.141 ind[2] 0.237 1.49 0.815 12.9 14.2 1.6 *** 
RB3 10 0.630 0.000 0.00 0.000 30.9 30.8 16.3 *** 
RB4 10 0.669 ind(4] 0.067 2.02 0.690 14.4 19.2 11.1 *** 
RB5 10 1.092 0.000 0.00 0.710 22.6 22.2 18.9 *** 
RB6 10 0.955 0.000 0.00 0.592 29.4 37.9 58.6 *** 
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Appendix 10. Summary output Nuts-0. 
Explanation abbreviations: page 85. 

Wheat PO 
nuts nobs mean sel coef t rsq res jack oya tya 
R1 15 5.440 0.000 0.00 0.884 6.1 5.8 8.3 6.5 
R2 15 5.200 0.000 0.00 0.788 8.8 8.1 10.3 11.2 
R3 15 2.689 0.000 0.00 0.227 6.9 7.3 9.8 8.6 
R4 15 6.651 0.000 0.00 0.699 7.5 8.6 10.8 12.2 
R5 15 5.535 0.000 0.00 0.761 10.6 10.0 12.8 12.3 
R6 15 3.548 0.000 0.00 0.595 12.3 15.1 10.0 10.4 
R7 15 5.849 0.000 0.00 0.654 10.4 11.4 15.6 18.7 
R8 15 6.018 0.000 0.00 0.740 13.2 11.6 17.7 21.6 
R9 16 5.954 0.000 0.00 0.650 10.9 9.9 14.4 14.7 
RA 12 2.529 0.000 0.00 0.023 13.1 15.9 10.9 13.2 
RB 15 1.998 0.000 0.00 0.558 18.6 17.8 25.5 23.5 

Wheat PS 
nuts nobs mean sel coef t rsq res jack oya tya 
R1 15 5.440 0.000 0.00 0.884 6.1 6.0 8.8 6.5 
R2 15 5.200 ind[3] 0.293 2.63 0.866 7.7 7.0 10.5 12.4 
R3 15 2.689 0.000 0.00 0.227 6.9 8.2 10.5 9.7 
R4 15 6.651 ind[1] 0.383 1.71 0.758 7.5 9.2 10.9 11.3 
R5 15 5.535 0.000 0.00 0.761 10.6 10.0 13.8 9.3 
R6 15 3.548 ind[2] 0.257 2.95 0.765 12.3 15.5 11.1 15.3 
R7 15 5.849 ind[4] 0.146 1.27 0.694 10.4 12.7 16.8 20.2 
R8 15 6.018 0.000 0.00 0.740 13.2 12.9 19.4 23.6 
R9 16 5.954 ind[2] 0.467 2.38 0.756 7.9 9.1 14.1 17.1 
RA 12 2.529 ind[4] 0.121 2.84 0.486 9.1 12.1 6.4 10.7 
RB 15 1.998 ind[2] 0.164 1.90 0.660 18.6 20.2 32.3 45.4 
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Appendix 10 {continued). Summary output Nuts-0. Explanation abbreviations: page 85. 

Maize PO 
nuts nobs mean sel coef t rsq res jack oya tya 
R1 15 6.197 0.000 0.00 0.600 10.0 9.5 11.7 11.6 
R2 10 6.382 0.000 0.00 0.751 4.9 5.7 7.0 *** 
R3 15 6.897 0.000 0.00 0.837 4.1 3.9 4.7 5.5 
R4 11 4.348 0.000 0.00 0.000 30.5 30.9 9.6 17.2 
R5 15 6.743 0.000 0.00 0.687 8.5 8.4 10.3 10.5 
RA 11 7.613 0.000 0.00 0.676 11.5 16.8 24.6 28.4 
RB 15 5.305 0.000 0.00 0.916 7.0 6.4 7.4 9.5 

Maize PS 
nuts nobs mean sel coef t rsq res jack oya tya 
R1 15 6.197 ind[4] 0.239 3.08 0.776 5.6 7.7 8.4 10.8 
R2 10 6.382 ind[2] 0.165 3.29 0.902 3.0 4.2 3.8 *** 
R3 15 6.897 ind[4] 0.118 2.57 0.895 2.7 3.8 6.1 6.4 
R4 11 4.348 ind[1 1 1.224 3.35 0.584 21.9 26.6 20.5 31.4 
R5 15 6.743 ind[4] 0.095 1.59 0.741 5.9 11.8 13.6 10.6 
RA 11 7.613 ind[4] 0.284 1.11 0.719 11.3 18.0 30.9 28.6 
RB 15 5.305 0.000 0.00 0.916 7.0 7.4 9.1 12.1 

Barley PO 
nuts nobs mean sel coef t rsq res jack oya tya 
R1 15 4.567 0.000 0.00 0. 790 6.2 5.7 7.4 7.5 
R2 15 4.396 0.000 0.00 0.842 8.5 7.6 9.9 6.7 
R3 15 3.096 0.000 0.00 0.826 7.3 7.1 11.0 9.9 
R4 15 4.952 0.000 0.00 0.387 11.2 10.3 13.0 15.1 
R5 15 5.269 0.000 0.00 0.726 9.3 9.1 8.7 7.0 
R6 15 3.333 0.000 0.00 0.225 15.9 17.2 6.4 5.5 
R7 15 4.567 0.000 0.00 0.632 7.9 8.6 10.9 12.9 
R8 15 4.955 0.000 0.00 0.657 7.7 8.7 9.7 9.5 
R9 16 4.298 0.000 0.00 0.650 11.9 9.8 12.0 9.4 
RA 12 2.304 0.000 0.00 0.011 12.8 14.4 12.2 15.9 
RB 15 2.070 0.000 0.00 0.121 21.5 21.6 28.7 27.4 

Barley PS 
nuts nobs mean sel coef t rsq res jack oya tya 
R1 15 4.567 ind[4] 0.206 1.93 0.840 6.2 5.9 7.3 7.1 
R2 15 4.396 ind[4] 0.356 4.31 0.938 8.5 5.8 8.6 5.6 
R3 15 3.096 0.000 0.00 0.826 7.3 9.3 15.7 9.8 
R4 15 4.952 ind[1] 0.634 2.24 0.568 11.2 9.3 13.6 11.6 
R5 15 5.269 0.000 0.00 0.726 6.8 10.1 10.4 5.4 
R6 15 3.333 ind[2] 0.572 3.72 0.640 15.9 12.8 5.8 8.2 
R7 15 4.567 0.000 0.00 0.632 7.9 9.4 11.9 13.4 
R8 15 4.955 ind[1 1 0.486 2.03 0.744 7.7 8.6 12.8 10.5 
R9 16 4.298 0.000 0.00 0.650 11.9 10.2 12.0 9.4 
RA 12 2.304 0.000 0.00 0.011 12.8 18.8 29.7 15.4 
RB 15 2.070 ind[4] 0.358 5.15 0.726 10.5 12.8 18.8 25.7 
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Appendix 10 (continued). Summary output Nuts-0. Explanation abbreviations: page 85. 

Rice PO 
nuts nobs mean set coef t rsq res jack oya tya 
R2 15 4.422 0.000 0.00 0.609 11.9 15.8 13.7 12.3 
R3 15 5.483 0.000 0.00 0.287 4.6 10.7 4.7 8.8 
RA 9 5.889 0.000 0.00 0.681 7.6 9.9 *** *** 
RB 15 6.093 0.000 0.00 0.013 5.3 5.2 4.2 4.9 

Rice PS 
nuts nobs mean set coef t rsq res jack oya tya 
R2 15 4.422 ind[1 1 0.554 2.35 0.732 9.7 14.0 11.7 7.7 
R3 15 5.483 0.000 0.00 0.287 4.6 10.7 4.8 9.4 
RA 9 5.889 ind[1 1 0.695 2.24 0.826 6.0 9.3 *** *** 
RB 15 6.093 0.000 0.00 0.013 3.4 6.9 4.2 4.9 

Sugar beet PO 
nuts nobs mean set coef t rsq res jack oya tya 
R1 11 48.857 0.000 0.00 0.327 9.1 9.5 6.3 1.5 
R2 11 54.088 0.000 0.00 0.866 5.6 7.3 3.9 1.1 
R3 10 48.385 0.000 0.00 0.152 9.3 9.1 4.2 *** 
R4 8 54. 799 0.000 0.00 0.139 9.0 11.0 *** *** 
R5 11 51.466 0.000 0.00 0.353 8.3 9.4 5.8 5.8 
R6 11 45.628 0.000 0.00 0.320 26.3 31.0 30.7 36.9 
R7 11 38.095 0.000 0.00 0.505 12.5 14.4 10.5 15.7 
R8 11 42.507 0.000 0.00 0.004 12.3 11.3 6.9 5.3 
R9 12 43.730 0.000 0.00 0.546 11.3 10.4 10.4 11.2 
RA 8 60.662 0.000 0.00 0.233 5.9 8.5 *** *** 
RB 10 37.778 0.000 0.00 0.801 6.6 7.1 12.8 *** 

Sugar beet PS 
nuts nobs mean set coef t rsq res jack oya tya 
R1 11 48.857 0.000 0.00 0.327 9.1 9.5 6.3 1.5 
R2 11 54.088 ind[21 1.173 2.60 0.927 5.6 5.7 6.3 8.0 
R3 10 48.385 ind[31 2.201 4.13 0.753 4.9 6.0 9.1 *** 
R4 8 54. 799 ind[21 2.993 1.98 0.518 7.1 11.7 *** *** 
R5 11 51.466 0.000 0.00 0.353 8.3 9.7 13.5 5.8 
R6 11 45.628 0.000 0.00 0.320 26.3 31.0 30.7 36.9 
R7 11 38.095 0.000 0.00 0.505 10.3 14.4 10.5 15.7 
R8 11 42.507 ind[31 3.098 2.80 0.498 6.3 11.2 12.4 6.1 
R9 12 43.730 ind[21 2.285 3.84 0.828 7.4 9.1 12.1 13.0 
RA 8 60.662 ind[31 1.483 1.97 0.568 5.9 8.3 *** *** 
RB 10 37.778 0.000 0.00 0.801 5.9 7.9 12.8 *** 
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Appendix 10 (continued). Summary output Nuts-0. Explanation abbreviations: page 85. 

Potato PO 
nuts nobs mean sel coef t rsq res jack oya tya 
R1 11 30.910 0.000 0.00 0.743 8.8 8.7 7.0 6.8 
R2 10 29.998 0.000 0.00 0. 790 12.5 14.6 11.5 *** 
R3 11 18.415 0.000 0.00 0.450 10.7 10.1 8.8 2.9 
R4 11 37.978 0.000 0.00 0.727 7.4 7.6 6.6 8.5 
R5 11 32.953 0.000 0.00 0.462 8.8 15.4 11.3 12.2 
R6 11 27.405 0.000 0.00 0.203 19.2 27.7 10.9 13.4 
R7 11 32.302 0.000 0.00 0. 797 7.0 9.8 11.5 17.9 
R8 11 23.223 0.000 0.00 0.174 13.1 12.4 13.4 10.4 
R9 12 30.993 0.000 0.00 0.789 9.8 12.0 5.3 9.7 
RA 8 17.170 0.000 0.00 0.724 5.9 5.3 *** *** 
RB 10 15.049 0.000 0.00 0.534 6.3 22.9 22.6 *** 

Potato PS 
nuts nobs mean sel coef t rsq res jack oya tya 
R1 11 30.910 ind[1] 2.727 3.51 0.899 4.8 7.6 8.4 12.0 
R2 10 29.998 ind[1] 2.322 3.51 0.924 6.2 13.1 2.3 *** 
R3 11 18.415 ind[1] 0.705 1.38 0.555 10.4 9.8 8.8 2.9 
R4 11 37.978 ind[4] 0.696 4.20 0.915 4.3 4.9 5.7 0.3 
R5 11 32.953 ind[1] 3.655 4.97 0.868 5.7 10.1 3.2 6.4 
R6 11 27.405 ind[1] 3.871 3.54 0.690 19.2 17.7 21.2 0.8 
R7 11 32.302 ind[4] 0.632 2.50 0.886 7.0 7.8 7.9 11.5 
R8 11 23.223 ind[3] 2.075 2.47 0.531 10.3 10.9 9.8 11.7 
R9 12 30.993 ind[2] 0.363 1.24 0.819 9.8 13.9 3.0 7.2 
RA 8 17.170 ind[3] 0.677 3.35 0.915 5.9 3.5 *** *** 
RB 10 15.049 0.000 0.00 0.534 6.3 22.9 22.6 *** 
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Appendix 10 (continued}. Summary output Nuts-0. Explanation abbreviations: page 85. 

Oilseed rape PO 
nuts nobs mean sel coef t rsq res jack oya tya 
R1 11 2.748 0.000 0.00 0.745 8.4 8.0 8.3 11.6 
R2 11 2.455 0.000 0.00 0.672 16.9 17.1 18.1 22.3 
R3 11 2.305 0.000 0.00 0.266 14.7 15.2 9.7 11.4 
R4 11 3.089 0.000 0.00 0.649 7.8 7.3 6.9 8.8 
R5 11 2.6 79 0.000 0.00 0.374 13.7 21.3 5.8 0.6 
R7 11 2.823 0.000 0.00 0.591 12.0 15.7 18.1 24.8 

Oilseed rape P5 
nuts nobs mean sel coef t rsq res jack oya tya 
R1 11 2.748 0.000 0.00 0.745 8.4 8.0 8.3 11.6 
R2 11 2.455 0.000 0.00 0.672 16.9 17.1 18.1 22.3 
R3 11 2.305 ind[1] 0.244 0.49 0.287 14.7 15.3 9.7 11.4 
R4 11 3.089 0.000 0.00 0.649 7.8 7.3 6.9 8.8 
R5 11 2.6 79 0.000 0.00 0.374 13.7 21.3 5.8 0.6 
R7 11 2.823 0.000 0.00 0.591 12.0 15.7 18.1 24.8 

Sunflower PO 
nuts nobs mean sel coef t rsq res jack oya tya 
R2 10 2.088 0.000 0.00 0.622 14.6 14.9 12.8 *** 
R3 10 2.054 0.000 0.00 0.267 16.5 16.5 6.8 *** 
RB 10 0.809 0.000 0.00 0.643 21.3 20.9 23.1 *** 

Sunflower P5 
nuts nobs mean sel coef t rsq res jack oya tya 
R2 10 2.088 ind[4] 0.197 3.22 0.848 9.0 14.2 29.8 *** 
R3 10 2.054 ind[4] 0.206 1.68 0.478 15.1 14.1 12.0 *** 
RB 10 0.809 ind[4] 0.120 1.65 0.743 19.4 24.9 23.1 *** 


