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Preface

The development of the program presented in this report was initiated by C.T. de Wit who
pointed at the work of Olivier Klepper within the Delta Institute. During 1988, a calibration
study was carried out on the potato implementation of SUCROS87. The results of this study
were presented within the CABO/TPE simulation group and at the First International
Workshop on Potato Modelling of the EAPR held in Wageningen, May 29-31,1990.

The FORTRAN program developed in 1988 on the basis of the PRICE algorithm was
supplied to various scientists for calibration studies. The program was subsequently used in
calibration studies on: photosynthesis-light response curves, combination of radar-
backscatter data and crop growth models (SUCROS), soil-water balance, mineralization of
nitrogen from organic matter, dry matter partitioning in potatoes and the phenological
development of oil-seed rape.

Although most of the studies carried out yielded satisfactory results, the program was
difficult to understand for less-experienced FORTRAN-programmers, due to the complex

communication between the calibration-program and the simulation-model- At the-suggestion

of Peter Kooman, we redefined the program, included suggestions of Michiel Jansen on the
Downhill Simplex method of Nelder and Mead and adapted the program to the FORTRAN
Simulation Environment (FSE) by van Kraalingen (1991). The result is a program package that
will help modellers within the CABO/TPE simulation group and others in executing fast
calibration experiments.

We thank Kees Rappoldt for suggestions on the development of this versatile calibration
package and critical comments on the report. We hope that this program will give colleagues in
the field of modelling research the opportunity to carry out calibration studies and sensitivity
analyses to study model behaviour which results in well calibrated, highly applicable models
with less programming efforts.

Wageningen, Madison, may 1992

Willem Stol

Doug Rouse

Daniel van Kraalingen
Olivier Klepper






1 Introduction

Explanatory agro-ecological simulation models contain several sources of uncertainty. One of
these sources is associated with parameter values used in the models. Some parameter
values are obtained from previous research reported in the scientific literature and some are
estimated from experimental research conducted locally. Whether a parameter estimate is
obtained from the literature or from measurements by the modeller, there may be a range of
biologically plausible values to choose from. Subsequent to initial choice of parameter values
the final values used in a model are often selected on the basis of comparison between model
output and one or more field datasets. The procedure used most often for choosing final
parameter values is best described as "trial and error".

The subjective "trial and error" approach is problematic, because there is no way of
knowing how good the final choice of parameters is relative to other possible choices. Thus it
is impossible to judge how well the model actually corresponds to the important features of
the system being modelled. A solution to this problem would be to use a mathematical
algorithm for finding the best combinations of model parameters for a given set of field data.
There are a number of mathematical approaches to calibration of simulation models (Klepper,

1989, Tarantola, 1987, Press et al.,; 1988, Van Straten;1985). " The program-presented-here-—

consists of two of these algorithms. The first one is a controlled random search procedure for
global optimization developed by Price (1979). The second one, which is local, is the
Downhill-Simplex method from Nelder and Mead (1965) as implemented in Numerical Recipes
(Press et al., 1986). The Price algorithm was adapted to the calibration of simulation models by
Klepper (1989). This algorithm has been used in a study by Klepper and Rouse (1991) to
demonstrate its applicability to crop growth simulation models. It has been used to examine
the transportability (Rouse et al., 1991) of a potato growth model based on SUCROS87
(Spitters et al., 1987). The Downhill Simplex method was added later as a faster alternative to
the Price-method which is known as a large consumer of computer time, due to its
thoroughness in (random) search. Both algorithms will be briefly described. A program called
FSEOPT that is an implementation of both algorithms has been written in FORTRAN. A
description of FSEOPT will be given along with instructions for its use.

The Price algorithm, as implemented in FSEOPT, generates histograms of parameter
values from parametersets found to be acceptable by the algorithm. Both algorithms can
either use the sum of absolute residuals or the square root of the sum of squares of the
residuals between model output and field data as the basis for determining acceptability of
sets of parameters. Other criteria for determining acceptability of parametersets can be
introduced by the user. The program also finds the minimum and maximum output values at
each sampling moment before and after calibration. A number of statistical programs that can
be used to analyse the output of the calibration program to study model behaviour are given
in Appendix D. The program FSEOPT is especially suited for calibration of simulation models
implemented in the FORTRAN Simulation Environment (FSE). The FSE system for crop
growth simulation, recently developed by van Kraalingen (1991), is a set of FORTRAN
programs defining a general simulation algorithm in which simulation runs proper can be
executed.
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To obtain the FSEOPT program, as well as the full TTUTIL library on floppy disk, write to:

Centre for Agrobiological Research,
P.O. Box 14,

6700 AA Wageningen,

The Netherlands.

or.

Department of Theoretical Production Ecology,
Agricultural University,

P.O. Box 430,

6700 AK Wageningen,

The Netherlands.




2 Description of methods

For application of the program it is necessary to identify those model parameters that have a
large range of uncertainty and to specify this range. For some parameters there may be
insufficient data to specify the range of uncertainty. In that case a guess must be made.
However, the algorithms can easily handle parameters with a high degree of uncertainty so
that it is possible to give a wide range initially. It is also necessary to specify a goodness of fit
function to judge the correspondence between model output and experimental data.

2.1 Criteria for goodness of fit

The choice of a goodness of fit function to judge the degree of correspondence between
model output and experimental data depends on the objectives of the researcher. These
objectives dictate which state variables will be considered in the study and what goodness of

fit function will be chosen.
As an example, the objective may be to determine whether a wheat crop growth model

—behaves similar-to reality with respect to biomass-production. In this case the dry weightsof

stems, leaves and storage organs might be chosen as state variables to be compared with
experimental data. It is necessary to express the criterion for goodness of fit ('performance’)
between model output and experimental data as a single number. In the program FSEOPT
the goodness of fit value is calculated using the expression:

QT /[ & QT
QT'(i) = D
k=1

(1T =1,2) (1)

( dik-Mik )
) -8
dik+ 10

where djk and mjk represent the experimental data and the model output respectively, and k
is the number of data points over time for the ith state variable. The number of data points k
can include: data from different experiments, different harvest dates within experiments and
different replicates within harvest dates. The expression |dji - mjk| denotes the absolute value
of djk - mik. IQT is an optional switch which makes it possible to choose between the L4 norm,
the sum of absolute residuals (IQT=1), or the Lo norm, the square root of the sum of squares
of residuals (IQT=2) (Tarantola, 1987). When the variable I1QT has the value 2, outliers have a
greater influence on the value of QT.

If several state variables are taken into account in the calibration procedure, the maximum
value of QT'() is taken as 'over-all' QT using the expression:

QT =max (QT(i),i=1,2,..,n) (2)

where n'is the number of different output (state-) variables considered and QT'(i) represents
the goodness of fit value of the residuals for the ith state variable.
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Alternative formulations for evaluating the degree of correspondence between model
output and experimental data have been discussed in the literature (Klepper, 1989, Beck,
1982, Tarantola, 1987, Scholten et al., 1990).

2.2 Optimization algorithms
2.2.1 Controlled Random Search method according to Price

This algorithm for reducing parameter uncertainty was first applied by Kiepper (1989) to a large
simulation model. He used it for calibration of an ecological model of the Qosterschelde
estuary. The algorithm is adapted from that of Price (1976) which is a controlled random
search procedure for finding the global minimum of a function with constraints on the
independent variables. The algorithm can be visualized as consisting of two parnts; the first
being non-iterative while the second is iterative. In the first part a number of parametersets are
generated consisting of parameter values chosen at random from their biologically plausible
ranges. In the second part new parametersets are generated which replace existing sets, if

than the most unfavourable existing parameterset. The optimization procedure is repeated,
either a predetermined number of times or until the range of the QT-values is less then a
predefined limit. In FSEOPT the range in QT-values is calculated as the fractional range from
best to worst parameterset:

_2+| QtHigh-QtLow @)

Ftol
| QtHigh+QtLow|

Noniterative part: Let P(1,j),.....,P(i,j) represent the parameters in the jth parameterset
where i denotes the parameters to be calibrated. The first part of the algorithm generates
INPS parametersets (INPS >> number of parameters) by choosing values at random from a
uniform distribution over the biologically plausible range for each parameter. In the FORTRAN
program this is accomplished in subroutine WRRRUN, which writes an input-file that can be
read by FSE. For each parameterset generated, a goodness of fit value is calculated in the
subroutine COMP as previously described. This requires running the FORTRAN Simulation
Environment and submodel(s) for each parameterset to obtain values of the state variables
that can be compared to the experimental data. This procedure is repeated for each
experimental dataset. The subroutine COMP finally calculates the weighted residuals.

Iterative part: In the second part of the algorithm new parametersets are generated. A
newly generated set replaces the worst one if its goodness of fit value is lower then that of any
of the current sets of parameters. A new parameterset is obtained by choosing at random g+1
different parametersets from the existing series of INPS ones, where g is the number of
parameters in each parameterset. A new parameter value P(i,*) is obtained from the equation:



-7-
P(i,*) = 2*G(i) - P(i,g+1) (4)

where G(i) is the average value of parameter i from the first  randomly chosen parametersets
as represented by the equation:

G(i) = 13 P(ij) (5)

O |

q
j=t

Equations 4 and 5 are executed for each parameter in the calibration procedure. Call the
new parameterset, thus created P(*,*). The value of QT is calculated for P(*,*) and compared
to the largest QT from the existing parametersets. If its value is smaller, that QT-value and the
corresponding parameterset are replaced with both the newly calculated QT-value and P(*,*).
This procedure is repeated for a preset number of iterations or until the range in QT-values
meets a predefined criterion.

2.2.2 Downhill-Simplex method according to Nelder and Mead

The Downhill-Simplex method according to Nelder and Mead (adopted from Press et
al.,1986) is implemented in FSEOPT as an alternative to the CRS algorithm of Price. The
difference between these algorithms is that the CRS algorithm is global, whereas the Downhill
simplex method may end up in a local minimum.

Non-iterative part: Is identical to that in the CRS algorithm of Price, except that the
number of parametersets in the Price algorithm, INPS, is much larger than the number of
parameters in the optimization, INFND, (INPS>>INFND). The number of parametersets in the
Downhill Simplex method INPS, equals only INFND+1. The values of the parameters in each
set are choosen randomly from within the biologically plausible range. After filling a reruns-file
with these parameter values, the subroutine FSE is called to perform model calculations with
the generated parametersets. After completion of the simulationruns the model output is
compared to the experimental data within the subroutine COMP and QT-values are calculated
for each parameterset.

lterative part: Within a subroutine called AMOEBA the Downhill-Simplex method tries
to move in various ways from the position with the highest QT-value to positions with lower
QT-values. Imagine that the n points sampled represent the corners of a simplex, the most
simple geometrical structure in n-1 dimensional space. The routine has four types of basic
steps to 'move’ this structure through the parameter space; it can reflect from the high point of
the simplex through the centre of gravity of the opposite face, reflect and expand through the
centre of gravity of the opposite face, contract from the high point through the centre of
gravity along one dimension and contract to the low point from all directions. These search
strategies are automatically handled within the subroutine AMOEBA. The algorithm continues
to converge the model for a predefined number of iterations or till the calculated range in QT-
values meets a predefined criterion. After convergence of the simplex within subroutine
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AMOEBA, the simplex is reinitialized with the set with the lowest QT-value as basis. The
process of reinitialization is repeated if it is succesful.
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3 Description of main program FSEOPT and modules
(A full listing of the program is given in Appendix A)

3.1 Main program FSEOPT

The main program FSEOPT has basically three functions: it specifies the memory
requirements for the calibration experiment, selects the optimization method and the output
options. Since all arrays are dimensioned with passed-length declaration, array lengths can be
set by specifying values of the relevant parameters. This has significant advantages for users.
Table 1 provides information on the names of the parameters in use for pass-length
declaration, their description and their-actual length.

Table 1. Parameters for passed-length declaration in FSEOPT.

Parameter name Description Default length
IMXNPS Max. number of parametersets 100
—IMXPAR————————Max:-number-of parameters 20
IMXOUT Max. number of output-options 4

The main program FSEOPT reads two variables, IMETHD and IOUT, from the
optimization-definition file 'OPTIM.DEF'. The variable IMETHD defines the preferred
optimization method while the variable array IOUT selects the preferred output options. After
reading these values from file, the requested optimization procedure is called to do the
calibration experiment. If IMETHD equals 1 subroutine Price is selected, if it equals 2
subroutine SIMPLX is choosen. These underlying optimization routines consist of an
optimization algorithm which interacts with FSEOPT-subroutines. These subroutines enable
the calibration environment to execute the simulation model with a particular parameterset and
compare model output with experimental data to judge model performance. Alternative
optimization algorithms can be included in FSEOPT, they would consist of a subroutine with
its specific code and calls to the FSEOPT subroutines to perform specified tasks. The
structure of FSEOPT is schematically depicted in figure 1.
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Calibration environment - Simulation
FSEOPT environment - FSE
I Function: FSE-submodel 1
| FUNC ,
Subrt.: Subrouting
» common
PRICE l FSE
% /suB/
| Subrt.: A
WRRRUN
IMETHD=] l
- d
Program | Subrt. : FSE-submodel 2
FSEOPT I CcOMP Common
Common /SUB/
IMETHD=2 I /SUB/ <-
1 Subrt.: I r
SIMPLX Subrt . :
' OUTPUT
I Common
/SUB/
Subrt.: [
AMOEBA I v

Figure 1. General structure of program FSEOPT
3.2 Subroutine Price

The subroutine Price consists of the Controlled Random Search procedure by Price and calls
to the FSEOPT-submodules FUNC, HIGHLO and OUTPUT. The first (non-iterative part) of this
routine instructs the function FUNC to generate INPS parametersets and execute the
simulation model with each parameterset for each experimental dataset separately. The
parametersets and the environmental variables are input to the simulation model, and the
simulated values of the statevariables are stored in a matrix. After execution of the FSE-
submodel, model output is compared to the experimental data and corresponding QT-values
representing model performance are calculated. Then the function FUNC returns to the
subroutine PRICE.

The next (iterative) part of the program performs the following operations; INFND+1
(INFND is the number of parameters in the calibration)-parametersets are sampled at random
from the INPS sets. The average value of each parameter is calculated from INFND of these
sets (equation 5). A new parameter value is calculated by reflecting the INFND+1th parameter
through the average value of the INFND sets (equation 5). The program has to determine



-11 -

whether the newly calculated parameter value is within the Biologically Plausible Range
(BPR). If a newly calculated parametervalue is outside the BPR, there are two ways to
proceed. The user can select the preferred method by setting the variable IBOUND.

if the value of the variable IBOUND equals 0 the procedure restarts and samples INFND+1
sets again. [f IBOUND does not equal 0, the parameter value outside the range is set to the
limiting value. Next the real function FUNC is called with ITASK=3 (Table 3) to execute the
runs for the selected experimental sets with this newly generated parameterset, and
calculates QT by comparing with the appropriate experimental datasets. The subroutine
HIGHLO is called to find the highest and lowest QT-values within the INPS sets. If the QT-
value of the new parameterset is lower than the highest QT-value from the original INPS
parametersets, both the QT and the new parametervalues are substituted into that particular
set. This whole process proceeds iteratively till the number of iterations equals the preset
value of the variable INT, or till the range in QT-values RTOL satisfies the predefined criterion
FTOL.

3.3 Subroutine HIGHLO

In the subroutine HIGHLO the QT-values of the parametersets are evaluated. Two pointer-
variables are assighed to a value in this subroutine, IPNT1 identifies the parameterset with the
highest QT-value (‘'worst set') and IPNT2 identifies the parameterset with the lowest QT-value
('‘best set'). This routine is called each time in the iterative part of the algorithm to obtain the
highest and lowest QT-values needed to calculate the range in QT-values of the
parametersets. Both the values of the pointers IPNT1 and IPNT2 and the minimum and
maximum value of QT, QTLOW and QTHGH, respectively, are outputs of this routine.

3.4 Subroutine SIMPLX

The Downhill Simplex method is implemented by means of the subroutines SIMPLX and
AMOEBA. The non-iterative part of this optimization procedure is in the module SIMPLX,
whereas the iterative part is in the module AMOEBA. Within the non-iterative part the
FSEOPT function FUNC is called with ITASK = 2 (Table 3), to generate INFND+1
parametersets, each with INFND parameters, execute the FSE-submodel with these sets and
calculate QT-values by comparing the model output with the experimental data. The INFND+1
parametersets and corresponding QT-values are assigned to the variable names used locally
in the subroutine AMOEBA. Then a slightly modified version of the subroutine AMOEBA is
called with ITASK=3 to perform the optimization. As in PRICE, AMOEBA finishes the
optimization process, if the number of iterations reaches the value of INT, or if the tolerance,
RTOL, of the QT-values reaches the predefined value of the variable FTOL. The real function
FUNC is called from the subroutine SIMPLX with ITASK-values of 3 and 5 after the initial
section and with ITASK-values of 4 and 6 just after the iterative part of the subroutine to obtain

requested output.
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3.5 Subroutine AMOEBA

The subroutine AMOEBA is taken entirely from Numerical Recipes (Press et al., 1986), where
the principles and functional description of this routine are given on pages 289-293. It is
recommended to read the book and note the restrictions on publication of Numerical Recipes
programs when using the Downhill Simplex method for your calibration experiment.

Within AMOEBA the real function FUNC is instructed to generate a new parameterset with
the parametervalues suggested by AMOEBA, to perform a run with these parameters,
calculate a QT-value and assign these values to their local synonyms YPR and YPRR. The
subroutine AMOEBA stops the optimization process and returns to the subroutine SIMPLX
whenthe range in QT values reaches the predefined value FTOL. If the latter is the case, all
resulting parametersets have the same performance with respect to the experimental data,
and the same parameter values, if the value of FTOL is low enough, for instance 1078,

3.6 Real function FUNC

The real-function-FUNC-is-the-main-module-in-FSEOPT;-it-communicates-with-the-other
subroutines WRRRUN, COMP and OUTPUT. In this subroutine five parameters are included
from the include block 'DIMENS.INC' that define the lengths of the arrays actually in use.
These parameters, their names, description and actual length are listed in Table 2.

Table 2. Parameters for pass-length declaration in real function FUNC

Parameter name Description Default length
IMXNDS Max. number of datasets 5
IMXHVS Max. number of samplingtimes 13
IMXREP Max. number of replicates 5
IMXNDP Max. number of datapoints (model statevariables) 3
IMXNRR Max. number of reruns 500
IMXDAT Max. number of experimental observations 4000

The real function FUNC acts as a driver and communication module for WRRRUN, FSE,
COMP and OUTPUT. With task-specific calls to these routines this subroutine instructs the
other routines to carry out a sequence of tasks as given in table 3.
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Table 3. Task-specific calls to and from the real function FUNC

ITASK-value  Module called from FUNC  Description of task(s)

to FUNC
1 WRRRUN Write initial parametersets
FSE Execute simulation runs, store data
COMP Compare model output with experimental data
2 WRRRUN Write initial parametersets
FSE Execute simulation runs, store data
COMP Compare model output with experimental data
3 WRRRUN Write newly generated parameterset
FSE Execute simulation run, store data
COMP Compare model output with experimental data
4 OUTPUT Write (initial) parametersets to file with
accompanying QT-values before calibration
5 OUTPUT Write (initial) ‘confidence-intervals' of
modelstate variables to file before
calibration
6 OUTPUT Write (final) parametersets to file
with accompanying QT-values after
calibration
7 OUTPUT Write (final) 'confidence-intervals' of

model-state variables to file after
calibration

After performing the sequence of tasks specified in table 3 the function returns to the calling
subroutine. The large number of arguments of the real function FUNC is necessary to enable
pass-length declaration of arrays. The design of this subroutine is a compromise between a
portable model-function and a user-friendly calibration package.

3.7 Subroutine WRRRUN
The task of the subroutine WRRRUN (WRite ReRUN) is to write parameternames and

corresponding values to outputfile. This module has an initial section that is evaluated when
ITASK equals 1 or 2, when executing the Price or Downhill Simplex method. In this initial
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section values for a number of variables are read from the file 'OPTIM.DEF' and supplied to the
other modules COMP and OUTPUT. Then the parameternames and corresponding
Biologically Plausible Ranges are read from the parameter definition file 'PARAM.DEF'. This is
done in a flexible way: when a parameter is added to or deleted from this file, the calibration is
executed with the existing parameters in the file. It is checked that each parameter is assighed
only two values, and that the lower bound precedes the upper bound.

The number of experimental datasets in the calibration experiment is obtained by
counting the number of non-zero values in the array IDSID. Then the observation definition
file 'OBSERV.DEF' specifying environmental variables is read. It specifies the number of the
weather-stations involved, according to the CABO/TPE Weather System (van Kraalingen,
1991), the various years and the starting dates for all simulation runs. The one-dimensional
array HARD stores the harvest dates, in the same units as simulation time (e.g. seconds,
minutes, days, years), from the experimental datasets to synchronize model output with
experimental data. Harvest data should be entered in ascending order per dataset. The last
harvest date of the first experimental set is followed by the first of the second set. Then the
number of replicates per dataset is read from file. At last the array DAT stores the experimental

onal-structure—Each-observation-has_an-identifier for_ number of the

Aat i Lati
data-proper-in—a—relational-stru obset

dataset, number of sampling date, number of replicate and the experimental observation
proper.

After the initial section there are three write sections; the first and the second are
evaluated when WRRRUN is called with ITASK-values of 1 and 2. These sections write an
output file with INPS*NSITES and (INFND+1)*NSITES parametersets for the Price and
Downhill-Simplex algorithm, respectively. The third write section generates an output file that
exists of the new parameterset derived within the optimization algorithm and environmental
variables identifying the selected experimental datasets.

3.8 Subroutine COMP

The main function of subroutine COMP i$ to make a comparison between model output and
experimental data, synchronized on sampling time. In the initial section of the subroutine the
experimental data are read from the observation definition file 'OBSERV.DEF'.

The value of the variable IQT, which is read from file 'OPTIM.DEF', determines in which
way the differences between model output and experimental results are calculated. Model
performance expressed in one single value can be calculated as the sum of the absolute
differences (IQT=1) or as the square root of the sum of squares of residuals (IQT=2). The array
SUM which stores the sums of the residuals is initialized at 0. The one-dimensional array DAT
is transformed into the four-dimensional array OBSERV with the dimension of the datasets:
max. number of datasets, max. number of sampling times, max. number of replicates and max.
number of statevariables in the calibration experiment. Then the accumulated absolute
differences or the square root of the sum of squared differences between model-output and
experimental data including replicates are stored in the array SUM(1,M). The 'overall’
goodness of fit value for a particular parameterset is the maximum of the goodness of fit
values of the individual statevariables. This calculation procedure is repeated for each
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parameterset in the initial section of the subroutine COMP. When this subroutine is called with
ITASK equals 2, the preceding procedure is repeated, for the model output of each new
generated parameterset.

3.9 Subroutine OUTPUT

The function of the subroutine OUTPUT is to write (optional) initial and final results of the
calibration experiment to output files. Several output options are available which can be
selected in the optimization definition file 'OPTIM.DEF'.

With the outputoptions 1I0UT(1) and 10UT(2) set to 1, the subroutine OUTPUT is
instructed to write two output files, one with parameter values and corresponding QT-values
before calibration: the file 'PAR_INIT.DAT', the other, 'PAR_TERM.DAT' with the same
variables after calibration.

With output options IOUT(3) and IOUT(4) set to 1, the subroutine OUTPUT is instructed
to write for each dataset the initial and the final 'confidence interval' of the model
statevariables. That implies that the minimum and maximum values of the relevant

—gtatevariables-obtained-during-execution-of the-runs-are-writteno-file-each-sampling-time

With the output options implemented one can observe variance in initial and final input and
output in relation to corresponding QT-values. The names of the outputfiles that are created
with IOUT(2) and IOUT(4) set to 1 are respectively CF_STixx.DAT and CF_STTxx.DAT were
xx represents the number of the dataset. The names of the state variables involved are
represented with the names ST_x_LOW and ST_x_HGH were x represent the number of the
variable.
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3.10 Interface of FSEOPT with FSE-submodules

To combine an FSE-submodule with FSEOPT some adaptations are necessary. Instead of
the FSE main program supplied in van Kraalingen (1991), one should use the modified
version supplied with FSEOPT. Each simulation run is terminated at the last sampling date.
The logical variable OUTPUT is set to TRUE only when experimental data are available. The
data files of the original simulation model implemented within the FSE structure (e.g.
‘TIMER.DAT', 'PLANT.DAT" or 'SOIL.DAT') should be combined into one file with the name
'INPUT.DAT', in such a way that it starts with the variables from 'TIMER.DAT'. The file
'INPUT.DAT' is read only once at the beginning of the first simulation run, remains open, and
is never opened or closed again to accelerate execution.

The interface (communication) of FSEOPT, the calibration environment with the
simulation environment FSE is simple: one common block called /SUB/ which contains two
variables, the array SIM and the pointer variable Il. After execution of the simulation run(s) the
sets of model output are stored in the array SIM. The pointer Il is used in the iterative section
to start storage of the model output of consecutive runs on a new position in the matrix with

model data.

1) In the FSE-submodel: Within the declaration section of the FSE-submodel the declaration
of the variables in the common block and the common block itself should be included;

K m e Integer declaration for variables in optimization
INTEGER INHVS

e Maximum number of rerunsets in optimization
INTEGER IMXNRR
PARAMETER (IMXNRR=500)

H e — Maximum number of observations in time per dataset
INTEGER IMXHVS
PARAMETER (IMXHVS=13)

e Maximum number of statevariables in the optimization
INTEGER IMXNDP
PARAMETER (IMXNDP=3)

e Dimension of array in common block with plant-module
DIMENSION SIM (IMXNRR+IMXNDS, IMXHVS, IMXNDP)

Ko — Integer declaration for variables in common block
INTEGER II
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K Common block common with submodule under FSE-driver
* SIM is a matrix with the simulated data and has the
* dimension number of datasets, number of harvests,

* number of replicates, number of datapoints

COMMON /SUB/ SIM, II

2) In the initial section (ITASK=1) of the submodule only one statement should be added:
INHVS = 1

this statement will reset the pointer which controls sampling time each run.

3) At the end of the rate calculation section (ITASK=2) the values of the model statevariables

are stored within the matrix SIM, if the logical OUTPUT is true. Each time the program enters

this section the pointer variable INHVS is assigned to the previous value plus 1. In the FSE-
submodaule this look likes:

[l fill matrix with simulation output synchronous with
* harvest dates in experiments
IF (OUTPUT) THEN
SIM(II,INHVS,1)
SIM(II,INHVS, 2)
SIM(II,INHVS, 3)
INHVS = INHVS +
ENDIF

1

STATE VARIABLE (1)
STATE VARIABLE (2)
STATE VARIABLE (3)

[a=t

4) In the terminal section of the FSE-submodule the pointer Il should be assigned to the
previous value plus 1, each time the routine enters this section (when terminal conditions
occur). Model output of the next run is then started at a new position in the matrix with
simulation output.

IT =II +1

With these adaptations to the original structure of FSE, the calibration program FSEOPT can
be used successfully with this simulation environment.
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4 Recommendations for setting up your own calibration experiment
- Identify parameters with uncertainty and determine their range

This is perhaps the most difficult step in calibration. Any reasonably sized simulation
model contains a host of parameters. Some are physical constants which are known with a
high degree of certainty, while others are obviously only poorly estimated or may not even
have known estimates. In between these extremes there will likely be parameters whose
selection for inclusion in the calibration of the model is subjective. Initially the safest course is
to include all parameters for which there is some doubt with a BPR around their initial value.

Finding the boundaries of the biologically plausible ranges may be difficult as well. In many
reports in the literature estimates of parameters are given without any reference to the
variability of the estimates. Clearly, it would be helpful if researchers would report the range
and variance of their data.

After a first sensitivity analysis on all the parameters, one can redefine the set of
parameters to be used in the iterative procedure. To facilitate this, one should use the PRICE

—algorithm-with-100-200-parametersels,-execute-the-initial-runs—and-analyse_the-output=file
'PAR_INIT.DAT".

- Implement your simulation model as a FSE-submodule

This step requires to subdivide your simulation model into an initial, a rate calculating, an
integrating and a terminal section, compatible with the FORTRAN Simulation Environment
FSE. Note that initialization of integrals should be explicit and that the statements within
sections should be sorted into an executable algorithm to establish a proper simulation
algorithm. Model parameters should be read from data file, at least those that are to be used to
use within the calibration procedure. These input-file(s) should be handled with the RD-(read)
routines of the TTUTIL library. Extensive information on the use of these routines can be
found in Rappoldt and van Kraalingen (1990). More detailed information on the development
of FSE-submodules can be found in van Kraalingen (1991).

- Create a parameter definition file

This file should be similar to the one in Appendix C on page C-3. It should contain the
name and the lower and upper bounds of the BPR of each modelparameter selected for use
within the calibration procedure. As argued before, it will be best to include all parameters with
their corresponding biologically plausible range in this file.
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- Create an observation definition file

This file should be similar to the one in Appendix C on page C-4. It should contain the
specifications of the experiments to be used to evaluate model performance. The file
contains for each experiment(-al site): number of weather station, year, starting day of the
simulation, sampling date(s) and number of replicates. At last, the observation definition file
will contain the experimental data proper. They are encoded in a relational structure with
identifiers for experiment, sampling date, replicate and observed characteristic. Missing
values in this file are recognized by the value -99.

- Create (optional) files with dataset-specific constants, initial values of
statevariables, parameter values or functions

When using FSEOPT it may be necessary to supply dataset-specific constants, initial
values of statevariables, parameter values or functions. This can be the case for instance
when the aim is to calibrate biological parameters while the modelinputs pertaining to the

experimental datasets vary, for example plantdensity orinitial biomass inthe case of the wheat
crop growth model.

In a step-wise calibration procedure where more or less independent biological processes
are involved, one can introduce parametervalues resulting of the first calibration as constants
into subsequent calibrations, instead of calibrating the various processes simultaneously.

These dataset-specific model variables should be (optionally) written to file(s) called
'SETxx_CN.DEF' where xx identifies the number of the experimental dataset. The specific
write statements are ignored, if the file SET01_CN.DEF does not exist on the current
directory.

- Determine the goodness of fit function to be used for evaluating the
correspondence of model results and experimental data

This is also a subjective step that should be selected on the basis of the objectives of the
model. When other criteria than accumulated absolute or square root of the sum of squared
differences between model results and experimental state variables are selected, adaptation
of subroutine COMP is necessary.

- Redefinition of the capacity of the FSEOPT program

The standard version of FSEOPT can hold observations of 3 state variables from 5 different
experiments with 13 intermediate harvests and 5 replicates. It can optimize 20 parameters
simultaneously. In the initial part of the PRICE algorithm it can store model output of 500
reruns at maximum; 100 parametersets tested at 5 experimental datasets. When these default
values not suit your purposes you should change the parameters, compile both FSEOPT and
the FSE-submodule and link the application. The maximum number of parametersets can be
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defined with the variable IMXNPS in the program FSEOPT. The number of experimental
datasets can be changed with the variable IMXNDS, the number of intermediate harvests with
IMXHVS, the number of replicates with IMXREP, the number of statevariables with IMXNDP
and the maximum number of reruns with IMXNRR in the include block 'DIMENS.INC'. Changes
to the variables IMXNDS, IMXHVS and IMXNDP should be duplicated in the include block
'MINMAX.INC'.

- Adaptations to the TTUTIL library

With the program FSEOPT an adapted version of the subroutine RDDATA is supplied with a
different parameter for the variable ILPREP. The current value of this variable is 4000. If the
program stops with the message 'In rerun file reruns.dat too many sets occur. Increase the
value of ILPREP in subroutine RDDATA. Error in RDINDX: too many sets Press <RETURN>'
one should increase the value of ILPREP in RDDATA. Changes to the variable ILNDAT
should be applied in RDDATA and in the subroutine WRRRUN. After any change to FSEOPT
or TTUTIL-module one should compile the changed module and link the application again.
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APPENDIX A - Listing of main program and modules

In this appendix the program FSEOPT and the assoclated subprograms
are listed. These subroutines are PRICE, SIMPLX, AMOEBA, WRRRUN,
COMP, OUTPUT, WRSTAT, HIGHLO, INDEXX, the real function FUNC and the
include blocks DIMENS.INC and MINMAX.INC.

Contents Page
Main program FSEOPT . . . . . A-1
Subroutine PRICE . . . . . A-1
Subroutine SIMPLX . . . . . A-2
Subroutine AMOEBA . . . . . A-2
Real function FUNC . . . . . A-3
Subroutine WRRRUN . . . . . A-4
Subroutine COMP . . . . . A-6
Subroutine—OUTPUT : : : . . A=T
Subroutine HIGHILO . . . . . A-8
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K am e Program FSEOPT - february 1992

* — Willem Stol and Doug Rouse -

*

* FORTRAN - Utility library:

* - D.W.G. van Kraalingen and C. Rappoldt -

PROGRAM FSEOPT
IMPLICIT REAL (A-Z)

Ko Maximum number of parameter-sets in calibration procedure
INTEGER IMXNPS
PARAMETER (IMXNPS=100)

* e Maximum number of parameters in calibration procedure
INTEGER IMXPAR
PARAMETER (IMXPAR=20)

o] Maximum number of output options in calibration procedure
INTEGER IMXOUT
PARAMETER (IMXOUT=4)

e Dimension of array with QT-values for each parameter-set
DIMENSION QT(IMXNPS+1)

H e Dimension of array with optional output switches
INTEGER IOUT
DIMENSION IOUT(IMXOUT)

F e Declaration of array initialized in subroutine SIMPLEX and
* locally used in subroutine AMOEBA, containing IMXPAR+1
* parameter-sets with IMXPAR parameter values

DIMENSION P(IMXPAR+1l,IMXPAR)
Lt Character string PARNAM contains the parameter names, array
* PARVAL the lower and upper bound of each parameter

CHARACTER*6 PARNAM
DIMENSION PARNAM(IMXPAR)

o Declaration of array with indexes of gt-values
INTEGER INDX(IMXNPS)
K Integer variables output of FUNC
INTEGER INFND,INPS,INT,IBOUND,INRR
Fmmmm Variables used as pointer in array with QT-values
INTEGER IPNT1,IPNT2,PST
Homm Variable ITASK specifies tasks to modules
INTEGER ITASK
Fom e Variables used as counter in do-loops
INTEGER I,ITER,J,K
LESEEES Logical variables which check whether new parameter-sets
* are within or outside BPR's (Biological Plausible Range)
LOGICAL MORE,LESS
K e e End of declarations
SAVE
Fmmmm Section in which:
*
* * parameter-sets are generated
*
* * FSE is instructed to perform model calculations
* with these parameter-sets
¥
* * Model-output is compared to experimental data

*

————— Execute initial runs and compare with experimental data
ITASK =
DUMMY = FUNC (ITASK,IMXNPS,IMXPAR,IBOUND,INT,INPS,INFND,
INRR,QT, PARNAM, PARVAL ,RANGE,V, IPNT1, IPNT2, INDX)

DIMENSION PARVAL(2,IMXPAR) Hmm e Write initial parameter-sets and corresponding QT-values to
* output-file
hmmmme Dimension of array with pointers to the IMXPAR+1l (at maximum) IF (IOUT(1).EQ.1) THEN
* randomly choosen parameter-sets in the subset ITASK = 4
INTEGER PS(IMXPAR+1) DUMMY = FUNC (ITASK,IMXNPS,IMXPAR,IBOUND,INT,INPS,INFND,
$ INRR,QT, PARNAM, PARVAL, RANGE,V, IPNT1, IPNT2, INDX)
e Array RANGE contains the biological plausible range (upper END IF
* bound - lower bound) of each parameter
DIMENSION RANGE(IMXPAR) ¥———--Write igitial confidence intervals from state-variables to
- ile

P
k] Matrix with parameter space, IMXNPS+2 paraméter-sets with IF(TIOUT(3)+EQ:1)THEN
* IMXPAR parameters ITASK = 6
DIMENSION V(IMXNPS+2,IMXPAR) DUMMY = FUNC (ITASK,IMXNPS,IMXPAR,IBOUND,INT,INPS,INFND,
$ INRR,QT, PARNAM, PARVAL , RANGE,V, IPNT1, IPNT2 , INDX)
*mmme e Declaration of array with QT-values in subroutine AMOEBA END IF
DIMENSION Y(IMXPAR+1)
H e Section in which iterative new parameter-sets are generated and
Ko Declaration of array with indexes of gt-values * FSE is instructed to perform model calculations with the new
INTEGER INDX(IMXNPS) * parameter-set.
L Character string with name of input datafile LT Write message to screen to monitor program execution
CHARACTER*12 OPTFIL WRITE (*,'(/,A,I5,A)') ' Price algorithm, execution of ',
INT* (INRR/INPS),' (iterative) runs'
Hmm e Variables use as output of routine RDSINT
INTEGER IMETHD * o number of iterations of optimization algorithm

Koo Variables used as unit number for file I/O or counter in do-loops
INTEGER IUNIT,IUL,I

H e End of declarations
Homm e Initial section
Fmm e Unit numbers for file I/0
IUNIT = 40
IvL = 20
*mm e Filename from file with definitions of optimization
* algorithm
OPTFIL = 'OPTIM.DEF'
%-----Read variables which defines the optimization method,
* tolerance of QT-values and output options

CALL RDINIT (IUNIT, IUL, OPTFIL)
CALL RDSINT ('IMETHD',IMETHD)

CALL RDSREA ('FTOL' ,FTOL)

CALL RDAINT ('IOUT' ,IOUT ,IMXOUT,I)
CLOSE (IUNIT, STATUS='DELETE')

H e Optimization methods:

* 1: Global random search algorithm accoxding to Price
* 2: Local optimization algorithm downhill-simplex

* according to Nelder & Mead

IF (IMETHD.EQ.1l) THEN

CALL PRICE (IMXNPS,IMXOUT,IMXPAR,QT,IOUT,
PARNAM, PARVAL , PS, RANGE, V, FTOL , INDX)

ELSE IF (IMETHD.EQ.2) THEN

CALL SIMPLX (IMXNPS,IMXOUT,IMXPAR,QT,IOUT,
P, PARNAM, PARVAL , RANGE,V,Y, FTOL , INDX)

END IF
END

SUBROUTINE PRICE (IMXNPS,IMXOUT,IMXPAR,QT,IOUT,
PARNAM, PARVAL, PS, RANGE, V, FTOL , INDX)
IMPLICIT REAL (A-Z)

hmm Declaration of variables in parameter list
INTEGER IMXNPS , IMXOUT, IMXPAR
DIMENSION QT(IMXNPS+1)
INTEGER IouT
DIMENSION IQUT(IMXOUT)
CHARACTER*6 PARNAM
DIMENSION PARNAM(IMXPAR)
DIMENSION PARVAL(2,IMXPAR)
INTEGER Ps
DIMENSION PS(IMXPAR+1)
DIMENSION RANGE(IMXPAR)
DIMENSION V(IMXNPS+2,IMXPAR)

DO 100 ITER = 1,INT

10 CONTINUE
PS(1) = NINT(UNIFL()+*INPS+0.5)
1=2

15 IF (I.LE.(INFND+1)) THEN

20 PST = NINT(UNIFL()*INPS+0.5)

Do 30 J = 1,1I-1
IF (PST.EQ.PS(J)) GO TO 20

30 CONTINUE
PS(I) = PST
I=I+1
GO TO 15
END IF
¥ e Calculate new parameter set

MORE = .FALSE.
LESS = .FALSE.

* e e Calculate average values of each parameter for the INFND
* randomly choosen parameter sets
DO 50 I = 1,INFND
PSUM = 0.
DO 40 K = 1,INFND
J = PS(K)
PSUM = PSUM + V(J,I)
40 CONTINUE
V(IMXNPS+2,I) = PSUM/INFND
50 CONTINUE

* e Use formula: V(J,I) = 2.0 * V(IMXNPS+2,I) - V(PS(INFND+1),I),
* where V(PS(INFND+1),I) is a parameter set choosen from the

* INPS-INFND remaining unchoosen sets. PS({INFND+1) is the

* INFND+1 parameter set selected at random in array ps

DO 60 I = 1,INFND
Hmmmm value is lower bound value plus range*unifl()
V(IMXNPS+1,I) = 2.0 * V(IMXNPS+2,I) - V(PS(INFND+1),I)

oo Set logical names to false if the calculated parameter
* value falls outside parameter bounds

LESS = V(IMXNPS+1,I).LT.PARVAL(1,I)

MORE = V(IMXNPS+1,I).GT.PARVAL(2,I)
Hmmm Check to see if parameter sets with parameter values
* out of bounds are going to be discarded (IBOUND=0) or
* set to the bound (IBOUND<>0)

IF (IBOUND.EQ.0) THEN
IF (MORE.OR.LESS) GO TO 10

ELSE IF (LESS) THEN
V(IMXNPS+1,I) = PARVAL(1,I)

ELSE IF (MORE) THEN
V(IMXNPS+1,I) = PARVAL(2,I)

END IF

60 CONTINUE

ITASK = 3
DUMMY = FUNC (ITASK,IMXNPS,IMXPAR,IBOUND,INT,INPS, INFND,
$ INRR,QT,PARNAM, PARVAL,RANGE,V, IPNT1, IPNT2, INDX)



Search all the parameter sets for the set with the highest QT-value

CALL HIGHLO (IMXNPS,INPS,IPNT1,IPNT2,QT,QTLOW,QTHIGH)

Discard the parameter set with the highest QT-value with the new
QT-value, if better, the old parameter-values with the new ones
and the accompanying simulation-output in matrix SIM

IF (QT(IMXNPS+1).LE.QT(IPNT1)) THEN

END IF

-Assign values of gt and v to the local simplex equivalents
y and p
DO 20 I = 1,INPS
¥(I) = QT(I)
DO 10 J = 1,INFND
P(I,J) = V(I,J)

QT(IPNT1) = QT(IMXNPS+1) 10 CONTINUE
Do 70 I = 1,INFND 20 CONTINUE
V(IPNT1,I) = V({IMXNPS+1,I)
70 CONTINUE WRITE (*,'(/,A)")
ITASK = 8 ' simplex algorithm, execution of iterative runs'
DUMMY = FUNC (ITASK,IMXNPS, IMXPAR,IBOUND,INT, INPS, INFND,
$ INRR,QT,PARNAM, PARVAL,RANGE,V, IPNT1, IPNT2, INDX) W e Search for minimum of problem within INFND+1th space
END IF ITASK = 3
CALL AMOEBA (ITASK, IMXNPS, IMXPAR+1,IMXPAR,IMXPAR,
RTOL = 2. * ABS(QTHIGH-QTLOW)/(ABS(QTHIGH)+ABS(QTLOW) ) $ INFND, INT,QT,FTOL,P,PARNAM, PARVAL,RANGE,
$ V,Y,IPNT1, IPNT2,INDX)
IF (MOD(ITER,25).EQ.0) THEN
CALL WRSTAT (ITER,RTOL,QTLOW,QTHIGH) DO 40 I = 1,INPS
ELSE IF (RTOL.LE.FTOL) THEN QT(I) = ¥Y(I)
WRITE (*,'(/,1X,A)") DO 30 J = 1,INFND
$ ' Tolerance of QT-values met criterion: Optimization stops' v(1,3) = P(I,J)
CALL WRSTAT (ITER,RTOL,QTLOW,QTHIGH) 30 CONTINUE
GO TO 110 40 CONTINUE
END IF
YNEW = QT(IPNT2)
100 CONTINUE REINIT = 0
CALL WRSTAT (ITER,RTOL,QTLOW,QTHIGH) *mmm e re-initialize simplex (again) if the new iterative
* p dure was full
110 CONTINUE
45 CONTINUE
Hmm e Write final parameter-sets and corresponding gt-values to
* output-file IF (YNEW.LE.YOLD.AND.REINIT.LT.3) THEN
IF (IOUT(2).EQ.1l) THEN
ITASK = 5 YOLD = QT(IPNT2)
DUMMY = FUNC (ITASK,IMXNPS,IMXPAR,IBOUND,INT,INPS,INFND,
INRR,QT, PARNAM, PARVAL, RANGE,V, IPNT1, IPNT2, INDX) Instruct FUNC to re-initialize simplex again, run with the
END IF * new choosen simplex parameter-sets and compare model-output
* against experimental data
Hmmm Search for new confidence intervals of state-variables
* within data and write final confidence intervals from WRITE (*,'(/,A)')
* state-variables to file $ ' simplex algorithm, re-initialization of simplex'
IF (IOUT(4).EQ.1) THEN
ITASK =7 ITASK = 2
DUMMY = FUONG "( TTASK, IMXNPS, IMXPAR, IBOUND, INT; INP5; INFND; DUMMY = -FUNC( ITASK; IMXNPS , IMXPAR, IBOUND , INT, INPS, INFND, . . .. =
INRR,QT,PARNAM, PARVAL,RANGE,V, IPNT1, IPNT2 , INDX) $ INRR,QT, PARNAM, PARVAL,RANGE,V, IPNT1, IPNT2, INDX)
END IF INPS = INFND+1
RETURN Homm e Assign values of gt and v to the local simplex equivalents y
END * and p
DO 60 I = 1,INPS
SUBROUTINE SIMPLX (IMXNPS,IMXOUT,IMXPAR,QT,IOUT, Y(I) = QT(I)
$ P, PARNAM, PARVAL , RANGE,V, Y, FTOL , INDX) DO 50 J = 1,INFND
IMPLICIT REAL (A-2Z) P(I,J) = V(I,J)
50 CONTINUE
Ko e Declaration of variables in parameter list 60 CONTINUE
INTEGER  IMXNPS, IMXOUT, IMXPAR
DIMENSION QT(IMXNPS+1) WRITE (*,'(2(/,A))')
INTEGER I0UT $ ' simplex algorithm, execution of iterative runs',
DIMENSION IOUT(IMXOUT) $ ' with re-initialized simplex'
DIMENSION P(IMXPAR+1,IMXPAR)
CHARACTER*6 PARNAM Fommmmm Search for minimum of problem within INFND+1th space
DIMENSION PARNAM(IMXPAR) ITASK = 3
DIMENSION PARVAL(2,IMXPAR) CALL AMOEBA (ITASK,IMXNPS, IMXPAR+1l, IMXPAR, IMXPAR,
DIMENSION RANGE(IMXPAR) $ INFND, INT,QT,FTOL, P, PARNAM, PARVAL , RANGE,
DIMENSION V(IMXNPS+2,IMXPAR) $ V,Y,IPNT1, IPNT2, INDX)
DIMENSION Y(IMXPAR+1)
DO 70 I = 1,INPS
--Declaration of array with indexes of gt-values QT(I) = Y(I)
INTEGER INDX(IMXNPS) DO 80 J = 1,INFND
V(I,J) = P(I,J)
e Integer variables output of FUNC 80 CONTINUE
INTEGER INFND,INPS,INT,IBOUND,INRR 70 CONTINUE
e Variable ITASK specifies tasks to modules YNEW = QT(IPNT2)
INTEGER ITASK
IF (YNEW.LT.YOLD) THEN
LETEES ‘Variables used as counter in do-loops REINIT = 0
INTEGER I,J ELSE
REINIT = REINIT + 1
e Pointer variable in array with parameter-sets END IF
INTEGER IPNT1,IPNT2
GO TO 45
END IF

INTEGER REINIT

[ ZETere— End of declarations

$
INPS = INFND+1

Ko, Assign lowest gt-value to the variable YOLD, to test succes of
iterative part of the optimization procedure

YOLD = QTLOW

$
END IF

SAVE

Instruct FUNC to do initial runs with simplex parameter-sets
and compare model-output against experimental data

ITASK = 2

DUMMY = FUNC (ITASK,IMXNPS,IMXPAR,IBOUND,INT,INPS,INFND,
INRR,QT, PARNAM, PARVAL,RANGE,V, IPNT1, IPNT2 , INDX)

Search all the parameter sets for the set with the highest
QT-value
CALL HIGHLO (IMXNPS,INPS,IPNT1,IPNT2,QT,QTLOW,QTHIGH)

Write initial parameter-sets and corresponding gt-values to
output file
IF (IOUT(1).EQ.1) THEN

ITASK = 4

DUMMY = FUNC (ITASK,IMXNPS,IMXPAR,IBOUND,INT,INPS,INFND,
INRR,QT,PARNAM, PARVAL , RANGE,V, IPNT1, IPNT2, INDX)

Write initial confidence intervals from state-variables to
output file
IF (IOUT(3).EQ.1) THEN
ITASK = 6
DUMMY = FUNC (ITASK, IMXNPS,IMXPAR,IBOUND,INT,INPS,INFND,
INRR,QT, PARNAM, PARVAL, RANGE,V, IPNT1, IPNT2, INDX)

L J—.

*

--Write final parameter-sets and corresponding gt-values

to output-file
IF (IOUT(2).EQ.1) THEN
ITASK = 5
DUMMY = FUNC (ITASK,IMXNPS,IMXPAR,IBOUND,INT, INPS,INFND,
INRR, QT , PARNAM, PARVAL, RANGE,V, IPNT1, IPNT2 , INDX)
END IF

--gearch for new confidence intervals of state-variables

within data and write final confidence intervals from
state-variables to file
IF (IOUT(4).EQ.1) THEN
ITASK = 7
DUMMY = FUNC (ITASK,IMXNPS,IMXPAR,IBOUND,INT,INPS,INFND,
INRR,QT, PARNAM, PARVAL, RANGE,V, IPNT1 , IPNT2, INDX)
END IF

RETURN
END

SUBROUTINE AMOEBA (ITASK,IMXNPS,MP,NP, IMXPAR,
NDIM,INT,QT,FTOL,P, PARNAM, PARVAL,RANGE,
V,Y,IPNT1,IPNT2, INDX)

IMPLICIT REAL (A-Z)

—--Declaration of variables in parameter list

INTEGER IMXNPS, IMXPAR

~-Amoeba declarations

INTEGER MP,NP,NMAX

--Func declarations

INTEGER ITASK, INPS,INFND,INT,IBOUND,INRR



ke Dimension of array with values of model performance for

* each rerun
DIMENSION QT(IMXNPS+1)

H Declaration of array with indexes of gt-values
INTEGER INDX{IMXNPS)

H oo Dimensions of parameter space, IMXNPS+l parameter-sets

* with IMXPAR parameters

DIMENSION V(IMXNPS+2,IMXPAR)
CHARACTER*6 DPARNAM
DIMENSION PARNAM(IMXPAR)
DIMENSION PARVAL(2,IMXPAR)
DIMENSION RANGE(IMXPAR)

*mmmm Pointer variables in array with parameter-sets
INTEGER IPNT1,IPNT2

Hommm Original amoeba declarations
PARAMETER (NMAX=20,ALPHA=1.0,BETA=0.5,GAMMA=2.0)
INTEGER I,J,IHI,ILO,INHI,MPTS,NDIM,ITER
DIMENSION P(MP,NP},Y(MP),PR(NMAX),PRR(NMAX),PBAR(NMAX)
o End of declarations

SAVE

PRR(J) = BETA*P(IHI,J)+(1.-BETA)*PBAR(J)
V(IMXNPS+1,J) = PRR(J)
21 CONTINUE
YPRR = FUNC (ITASK,IMXNPS,IMXPAR,
IBOUND, INT, INPS , INFND, INRR,
QT, PARNAM, PARVAL , RANGE, V, IPNT1, IPNT2, INDX)
IF (YPRR.LT.Y(IHI)) THEN
DO 22 J = 1,NDIM
P(IHI,J) = PRR(J)
22 CONTINUE
Y(IHI) = YPRR

W

IPNT1 = IHI
ITASK = 8
DUMMY = FUNC (ITASK,IMXNPS, IMXPAR,
$ IBOUND, INT, INPS, INFND, INRR,
$ QT , PARNAM, PARVAL , RANGE, V, IPNT1, IPNT2 , INDX)
ITASK = 3
ELSE

DO 24 I = 1,MPTS
IF (I.NE.ILO) THEN

DO 23 J = 1,NDIM
PR(J) = 0.5%(P(I,J)+P(ILO,J))
P(I,J) = PR(J)
V(IMXNPS+1,J) = PR(J)

23 CONTINUE
Y(I) = FUNC (ITASK,IMXNPS,IMXPAR,

INFND = NDIM $ IBOUND, INT, INPS, INFND, INRR,
$ QT, PARNAM, PARVAL , RANGE, V, IPNT1, IPNT2 , INDX)
MPTS = NDIM+1 END IF
ITER = 0 24 CONTINUE
1 ILO = 1 END IF
IF (Y(1).GT.¥(2)) THEN ELSE
IHI = 1 DO 25 J = 1,NDIM
INHI = 2 P(IHI,J) = PR(J)
ELSE 25 CONTINUE
IHI = 2 Y(IHI) = YPR
INHI = 1
END IF IPNT1 = IHI
DO 11 I = 1,MPTS ITASK = 8
IF( ¥(I).LT.Y(ILO)) ILO = I DUMMY = FUNC (ITASK,IMXNPS, IMXPAR,
IF (Y(I).GT.Y(IHI)) THEN $ IBOUND, INT, INPS, INFND, INRR,
INHI = IHI $ QT , PARNAM, PARVAL, RANGE,V, IPNT1, IPNT2 , INDX)
IHI = I ITASK = 3
ELSE IF (Y(I).GT.Y(INHI)) THEN
-------- e P (ENE-THI)—INHI =T END_IF
END IF GO.-TO -1
11 CONTINUE END

RTOL = 2.%ABS(Y(IHI)-Y(ILO))/(ABS(Y(IHI))+ABS(Y(ILO)))
CALL WRSTAT (ITER+1,RTOL,Y(ILO),Y(IHI))

IF (RTOL.LT.FTOL.OR.ITER.EQ.INT) THEN
IPNT1 = IHI
IPNT2 = ILO
RETURN

END IF

ITER = ITER+1
DO 12 J = 1,NDIM
PBAR(J) = 0.
12 CONTINUE
DO 14 I = 1,MPTS
IF (I.NE.IHI) THEN
DO 13 J = 1,NDIM
PBAR(J) = PBAR(J)+P(I,J)
13 CONTINUE
END IF
14 CONTINUE
DO 15 J = 1,NDIM
PBAR(J) = PBAR(J)/NDIM
PR(J) = (1.+ALPHA)*PBAR(J)-ALPHA*P(IHI,J)
V(IMXNPS+1,J) = PR(J)
15 CONTINUE
YPR = FUNC (ITASK,IMXNPS,IMXPAR,
$ IBOUND, INT, INPS, INFND, INRR,
QT, PARNAM, PARVAL, RANGE, V, IPNT1, IPNT2 , INDX)
IF (YPR.LE.Y(ILO)) THEN
DO 16 J = 1,NDIM
PRR(J) = GAMMA*PR(J)+(1.-GAMMA)*PBAR(J)
V(IMXNPS+1,J) = PRR(J)
16 CONTINUE
YPRR = FUNC (ITASK,IMXNPS, IMXPAR,
IBOUND, INT, INPS, INFND, INRR,

w»n

IF (YPRR.LT.Y(ILO)) THEN
DO 17 J = 1,NDIM
P(IHI,J) = PRR(J)
17 CONTINUE
Y(IHI) = YPRR
ELSE
DO 18 J = 1,NDIM
P(IHI,J) = PR(J)
18 CONTINUE
Y(IHI) = YPR
END IF

IPNT1
ITASK
DUMMY

THI

8

FUNC (ITASK, IMXNPS, IMXPAR,
IBOUND, INT, INPS , INFND, INRR,

[}

"

ITASK = 3

ELSE IF (YPR.GE.Y(INHI)) THEN
IF (YPR:LT.Y(IHI)) THEN
DO 19 J = 1,NDIM
P(IHI,J) = PR(J)
13 CONTINUE
Y(IHI) = YPR
END IF

IPNT1
ITASK
DUMMY

IHI

8

FUNC (ITASK, IMXNPS, IMXPAR,
IBOUND, INT, INPS, INFND, INRR,

w0
nown

ITASK = 3

DO 21 J = 1,NDIM

QT , PARNAM, PARVAL , RANGE, V, IPNT1, IPNT2 , INDX)

QT , PARNAM, PARVAL, RANGE, V, IPNT1, IPNT2 , INDX)

QT , PARNAM, PARVAL , RANGE, V, IPNT1, IPNT2 , INDX)

REAL FUNCTION FUNC (ITASK,IMXNPS,IMXPAR,
IBOUND, INT, INPS , INFND, INRR,
QT, PARNAM, PARVAL , RANGE , V, IPNT1, IPNT2 , INDX)
IMPLICIT REAL (A-Z)

F o Declaration of variables in parameter list
INTEGER ITASK,IMXNPS, IMXPAR, IBOUND
INTEGER INT,INPS,INFND,IPNT1,IPNT2

%—~—~——MICROSOFT FORTRAN V 5.1 / VAX FORTRAN V 5.6-199
INCLUDE 'DIMENS.INC'

oo MAC FORTRAN/020 V 2.3

* INCLUDE DIMENS.INC

H o Array with daynumbers of the observations for each dataset
DIMENSION HARD( ( IMXHVS*IMXNDS)+1)

¥ Dimension of array with values of model performance for each

* rerun

DIMENSION QT (IMXNPS+1)

Hommm e, Array with number of replicates per measurements
INTEGER INREP
DIMENSION INREP(IMXNDS)

Fmmme Dimensions of parameter space, IMXNPS+1 parameter-sets
* with IMXPAR parameters
DIMENSION V(IMXNPS+2,IMXPAR)
* e Array with names of parameters are stored in the variable
* PARNAM the corresponding BPR's (Biological Plausible Ranges)
* in array PARVAL

CHARACTER¥6 PARNAM
DIMENSION PARNAM(IMXPAR)
DIMENSION PARVAL(2,IMXPAR)
DIMENSION RANGE(IMXPAR)

Hmmmm Array with names of files that store dataset-specific
* constants, parameters, functions or initial values
CHARACTER*12 CNFIL
DIMENSION CNFIL(IMXNDS)

e Array with data-set identifier
INTEGER IDSID
DIMENSION IDSID(IMXNDS)

*m e Arrays with number of weather stations, number of year,
* start and harvest data and number of harvest per dataset
INTEGER ISTN,IYEAR,INHVS,INDS,INRR
DIMENSION ISTN(IMXNDS),IYEAR(IMXNDS)
DIMENSION DAYB(IMXNDS), INHVS(IMXNDS)
INTEGER IIHRD
DIMENSION IIHRD(IMXNDS+1})

Hmm e Declaration of array with indexes of gt-values
INTEGER INDX(IMXNPS)
Fommm Array with observed data
DIMENSION OBSERV({IMXNDS,IMXHVS,IMXREP, IMXNDP)
Frm e Dimension of array with aggregated values of model
* performance for each measured variable
DIMENSION MPF(IMXNDP)
LTS Dimension of array with sums of observed data and
* residuals between observed and measured data
DIMENSION SUM(2, IMXNDP)
Homm e Variable used as counter in do-loops
INTEGER I



-Logical variables which check whether new parameter-sets
are within or outside BPR's (Biological Plausible Range)
LOGICAL MORE,LESS

Dimension of array in common block with submodule

DIMENSION SIM(IMXNRR+IMXNDS,IMXHVS,IMXNDP)

Variable II is pointer in array with simulations
INTEGER II

* o % K

w-n

ock
the matrix with the simulated data.
number of datasets, number of harvests, number of replicates,
number of datapoints
COMMON /SUB/ SIM, II

IF (ITASK.EQ.1)

n with submodule under FSE-driver SIM is
It has the dimension

bl

End of declarations

SAVE

THEN

Write rerun-file with the appropriate parameter-values
CALL WRRRUN (ITASK,IMXHVS,IMXNDS,IMXNPS,IMXPAR,
INDS, INFND, INHVS, INPS, INRR,
HARD, IBOUND, DAYB, IDSID, IIHRD, INT,
ISTN, IYEAR, INREP, PARNAM, PARVAL, RANGE,
CNFIL,V,IPNT2)

Write message to screen to monitor program execution
WRITE (*,'(/,A,I4,A)') ' Price algorithm, execution of ',
INRR, ' (initial) runs'

Calculate QT for each parameter set
II =1
CALL FSE

Instruct COMP to read experimental data from file, to ini-

tialize a matrix with them and this calculate the performance

of the initial model-runs against the experimental data

CALL COMP (ITASK,IMXHVS,IMXNDP,IMXNDS, IMXNPS,IMXNRR,IMXREP,
QT,IDSID,II,INDS,INHVS,INPS,MPF, INREP,OBSERV,SIM,
SUM, IPNT1)

ELSE IF (ITASK.EQ.2) THEN

ELSE IF (ITASK.EQ.6) THEN

ITASK = 4
CALL COMP (ITASK,IMXHVS,IMXNDP,IMXNDS, IMXNPS,IMXNRR, IMXREP,

$ QT,IDSID,II,INDS,INHVS,INPS,MPF,INREP,OBSERV,SIM,
$ SUM, IPNT1)

ITASK = 3

CALL OUTPUT (ITASK,INFND,INPS,QT,PARNAM,V,IMXNPS, IMXPAR,HARD,
$ IMXHVS, IMXNDS, IDSID, IIHRD, IMXNDP, INDX)

ELSE IF (ITASK.EQ.7) THEN

ITASK = 4
CALL COMP (ITASK,IMXHVS,IMXNDP,IMXNDS,IMXNPS, IMXNRR, IMXREP,
QT,IDSID,II,INDS, INHVS, INPS,MPF, INREP,OBSERV,SIM,
SUM, IPNT1)
CALL OUTPUT (ITASK,INFND,INPS,QT,PARNAM,V,IMXNPS,IMXPAR, HARD,
IMXHVS , IMXNDS , IDSID, IIHRD , IMXNDP , INDX)

ELSE IF (ITASK.EQ.8) THEN
II = IMXNPS+1

ITASK = 3
CALL COMP (ITASK,IMXHVS, IMXNDP, IMXNDS,IMXNPS, IMXNRR, IMXREP,

$ QT,IDSID,II,INDS, INHVS, INPS,MPF, INREP,OBSERV,SIM,
$ SUM, IPNT1)

END IF

RETURN

END

wwnnn

SUBROUTINE WRRRUN (ITASK,IMXHVS,IMXNDS, IMXNPS, IMXPAR,
INDS, INFND, INHVS , INPS , INRR,
HARD , IBOUND, DAYB, IDSID, ITHRD, INT,
ISTN,IYEAR, INREP, PARNAM, PARVAL,RANGE,
CNFIL,V,IPNT2)

IMPLICIT REAL (A-2%)

*m e Declaration of variables in parameter list

INTEGER ITASK,IMXHVS, IMXNDS, IMXNPS, IMXPAR, INDS, INFND
INTEGER INHVS,INPS,INRR,IBOUND,INT, IPNT2

Foem Variables with names of datafiles

CHARACTER*12 OPTFIL, PARFIL, OBSFIL, CNFIL(IMXNDS)

$
$

Write rerun-file with the appropriate parameter-values
CALL WRRRUN (ITASK,IMXHVS, IMXNDS,IMXNPS,IMXPAR,
INDS, INFND, INHVS , INPS , INRR,
HARD, IBOUND, DAYB, IDSID, IIHRD, INT,
ISTN, IYEAR, INREP, PARNAM, PARVAL, RANGE,
CNFIL,V,IPNT2)

Write message to screen to monitor program execution
WRITE (*,'(/,A,I4,A)")

Simplex algorithm, execution of ',
INRR, ' (initial) runs'

Execute a simulation run with the calculated parameter-sets
simulated data are filled on pointers 1:INFND+1

I =1

CALL FSE

Calculate the model performance against the experimental data

INPS = INFND+1

ITASK = 1

CALL COMP (ITASK,IMXHVS,IMXNDP,IMXNDS,IMXNPS,IMXNRR,IMXREP,
QT,IDSID,II,INDS,INHVS,INPS,MPF,INREP,OBSERV,SIM,
SUM, IPNT1)

ITASK = 2

ELSE IF (ITASK.EQ.3) THEN

WAy

PO 10 I = 1,INFND

Check to see if the calculated parameter value is out of
bounds of possible values, if so set logical names to false
LESS = V(IMXNPS+1,I).LT.PARVAL(1,I)

MORE = V(IMXNPS+1,1).GT.PARVAL(2,I)

IF (MORE.OR.LESS) THEN
FUNC = 1.0E+3
RETURN

END IF

CONTINUE

Write rerun~file with the appropriate parameter-values
II = IMXNPS+1
CALL WRRRUN (ITASK,IMXHVS,IMXNDS,IMXNPS,IMXPAR,
INDS, INFND, INHVS, INPS, INRR,
HARD, IBOUND,DAYB, IDSID, IIHRD, INT,
ISTN, IYEAR, INREP, PARNAM, PARVAL,RANGE,
CNFIL,V,IPNT2}

Execute a simulation run with the calculated parameter-set
simulated data are filled on pointer IMXNPS+1
CALL FSE

Calculate the model performance against the experimental data
ITASK = 2

After the run of the model the pointer II is reset to IMXNPS+1

II = IMXNPS+1

CALL COMP (ITASK,IMXHVS,IMXNDP, IMXNDS, IMXNPS, IMXNRR, IMXREP,
QT, IDSID, IT, INDS, INHVS, INPS,MPF , INREP, OBSERV,SIM,
SUM, IPNT1)

ITASK = 3

FUNC = QT(IMXNPS+1)

ELSE IF (ITASK.EQ.4) THEN

$

ITASK = 1
CALL OUTPUT (ITASK,INFND,INPS,QT,PARNAM,V,IMXNPS, IMXPAR,HARD,
IMXHVS, IMXNDS , IDSID, TIHRD , IMXNDP , INDX)

ELSE IF (ITASK.EQ.5) THEN

ITASK = 2
CALL OUTPUT (ITASK,INFND,INPS,QT,PARNAM,V,IMXNPS, IMXPAR, HARD,
IMXHVS , IMXNDS , IDSID, ITHRD, IMXNDP, INDX)

Fooono Variab.

ed as paraneter in-RDSINT
INTEGER IMETHD

INTEGER IIDSID

¥-----Variable used as counter in do-loops

INTEGER NSITES

Hom Dimensions of parameter space, IMXNPS+l parameter-sets

with IMXPAR parameters
DIMENSION V(IMXNPS+2,IMXPAR)

ke Character string PARNAM contains the parameter names, array

PARVAL the lower and upper bound of each parameter
CHARACTER*6 PARNAM

DIMENSION PARNAM(IMXPAR)

DIMENSION PARVAL(2,IMXPAR)

DIMENSION RANGE(IMXPAR)

*mmme e Array with data-set identifier

INTEGER IDSID
DIMENSION IDSID({IMXNDS)

Hommm Arrays with the number of samples in time for each dataset

INTEGER IHRD,IIHRD

e Arrays with number of weather stations, number of year,

start and harvest data and number of harvest per dataset
INTEGER ISTN,IYEAR,INREP

DIMENSION ISTN(IMXNDS),IYEAR(IMXNDS)

DIMENSION DAYB(IMXNDS), INHVS( IMXNDS)

DIMENSION IIHRD(IMXNDS+1)

DIMENSION INREP(IMXNDS)

¥, Array with daynumbers of the observations for each dataset

DIMENSION HARD( (IMXHVS*IMXNDS)+1)

L Name of internal file

CHARACTER*2 STRING

o e Variables used as unit number

INTEGER IUNIT,IUL,IUNITR

Variables used as counter in do-loops
INTEGER I,J,K,L

Hom Variables used as argument to subroutine RDFREA
INTEGER IREQ

Hmmmm Logical variable to check existence of file
LOGICAL THERE

*-~—--Logical variable to check status of subroutine
LOGICAL INIT, FIRST, SECOND

o Common variables with RD-routines

index data file ; index availabale after CALL RDINIT
INTEGER ILNDAT,IARDAT,IPTDAT,INFDAT

CHARACTER DATLIS*6,DATTYP*1

PARAMETER (ILNDAT=400)

DIMENSION DATLIS(ILNDAT),DATTYP(ILNDAT)

DIMENSION IARDAT(ILNDAT),IPTDAT(ILNDAT)

COMMON /TTUDD1/ DATLIS,DATTYP

COMMON /TTUDD2/ IARDAT,IPTDAT,INFDAT

e End of declarations

SAVE

DATA INIT /.FALSE./

IF (.NOT.INIT) THEN



FIRST = .TRUE.
SECOND = .FALSE.

*mm e Unit numbers for file I/O
IUNIT = 40
IUL = 20
Hmm e Filename from file which defines the optimization
* characteristics
OPTFIL = 'OPTIM.DEF'
K m— Read variables with optimization characteristics

CALL RDINIT (IUNIT, IUL, OPTFIL)
CALL RDSINT ('IMETHD' ,IMETHD)
CALL RDSINT ('IBOUND' ,IBOUND)

CALL RDSINT ('INPS' ,INPS)
CALL RDSINT ('INT' +INT)
CALL RDSINT ('INDS' ,INDS)

CALL RDAINT ('IDSID' ,IDSID ,IMXNDS ,IIDSID)
CLOSE (IUNIT, STATUS='DELETE')

Fmmm Filename from parameter definition file

PARFIL = 'PARAM.DEF'
Koo Analyse file with parameter-names and BPR's, get
* names and number of parameters in the file

CALL RDINIT (IUNIT, IUL, PARFIL)

IREQ = 2
INFND = INFDAT
DO 10 I = 1,INFND

CALL RDFREA (DATLIS(I),PARVAL(1,I),IREQ,IREQ)

IF (PARVAL(1,I).GT.PARVAL(2,I)) CALL ERROR ( WRRRUN',

$ 'Lower bound exceeds upper bound in PARAM.DEF.')
PARNAM(I) = DATLIS(I)
10 CONTINUE
CLOSE (IUNIT, STATUS='DELETE')
e Create array containing the multiplication factor used to change
* the uniform random deviate on the interval 0-1 into a value on
* the range of the parameter

DO 20 I = 1,INFND
RANGE(I) = PARVAL(2,I)-PARVAL(1,I)

$ 'ISTN =',ISTN(K),'IYEAR = ',KIYEAR(K), 'DAYB =',6DAYB(K)
*mm e copy dataset specific constants, initial values or
* functions from file with constants to reruns file

IF (THERE) CALL COPFIL (90,CNFIL(K),21)

write section with parameter names and values

WRITE (21,'(6(1X,4(a6,''="',F9.5,'" ; '), /"'
$ (PARNAM(I),V(J,I),I=1,INFND)
e write section to synchronize model- and experimental data
WRITE (21,'(1X,A)') 'HARDAY ='
WRITE (21,'(10(F4.0,A)})') (HARD(L),',',
$ L=ITHRD(K), ITHRD(K+1)~2), HARD(IIHRD(K+1)~-1)
END IF
45 CONTINUE

50 CONTINUE

CLOSE (21)
L — Simplex initial runs
ELSE IF (ITASK.EQ.2) THEN
e Number of rerun-sets is n experimental data-sets
* times n parameters + 1
INRR = NSITES * (INFND+1)
Fmm e Write headerfile in reruns file
WRITE (21, '(R,I3,R)') '¥eeeeo Reruns-file: ',INRR,
$ ! parameter-sets generated by FSEOPT'
L Simplex first optimization

IF (FIRST) THEN

* e The parameter-values of the first parameter-set are random
* choosen, by adding range*unifl() to the lower bound, this
* this is the initial simplex side, these parameter-values

* are applied to the other sets

DO 60 I = 1,INFND

* ptart somewhere in the biological plausible range
* V(1,I) = PARVAL(1,I)+RANGE(I)*UNIFL()

IF (V(I,J).LT.HALF) THEN

20 CONTINUE
* gtart at initial value of parameter
“NSITES = 0 V{1,I)—= PARVAL(1,I)+RANGE(I)*0.5
DO 25 K = 1,INDS
IF (IDSID(K).EQ.1l) NSITES = NSITES + 1 DO 55 J = 2,INFND+1
25 CONTINUE V(J,I) = V(1,I)
55 CONTINUE
Hmmmm Filename from observation definition file 60 CONTINUE
OBSFIL = 'OBSERV.DEF'
S The other vertices of the simplex are set-up by adding
Kmmm e Input section ; analyse input file * or subtracting 0.1 of the (biological plausible) range
CALL RDINIT (IUNIT, IUL, OBSFIL) * to the value of the first parameterset. The choice between
* adding or subtraction will depend on the placement of the
H e Get values from file * parameter-set with respect to the parameter-bounds
CALL RDAINT ('ISTN' , ISTN , IMXNDS, I) DO 70 I = 2,INFND+1
CALL RDAINT ('IYEAR' , IYEAR , IMXNDS, I) DO 65 J = 1,INFND
CALL RDAINT ('INREP' , INREP , IMXNDS, I) IF (J.EQ.I-1) THEN
CALL RDAREA ('DAYB' , DAYB , IMXNDS, I HALF = PARVAL(1,J)+0.5%RANGE(J)
l

)
CALL RDAREA ('HARD' , HARD { IMXHVS*IMXNDS)+1, IHRD)

CLOSE (IUNIT,STATUS='DELETE')

J=1
IIHRD(1l) = J
DO 30 I = 1,IHRD
IF (HARD(I+1).LE.HARD(I)) THEN
J=J+1
ITHRD(J) =TI + 1
INHVS(J-1) = IIHRD(J) - IIHRD(J~1)

END IF
30 CONTINUE
Hmmmmm check if file with data-set specific constants
* of first data-set does exist
CNFIL(1) = 'SETO1_CN.DEF'
THERE = .FALSE.

INQUIRE (FILE=CNFIL(1l),EXIST=THERE)

IF (THERE) THEN
DO 35 I = 1,IMXNDS

WRITE (STRING(1:2),'(I12.2)') I
CNFIL(I) = 'SET'//STRING(1:2)//'_CN.DEF’'
35 CONTINUE
END IF
LEEEEES Set logical variable init to true
INIT = .TRUE.
END IF
Ko Write reruns file to enable multiple runs with FSE
IUNITR = 21
CALL FOPEN (IUNITR,'RERUNS.DAT','NEW','DEL')
F o Price initial runs
IF (ITASK.EQ.l) THEN
* e Number of rerun-sets is n experimental data-sets times
* n parameter-sets
INRR = NSITES * INPS
e Write headerfile in reruns file
WRITE (21,'(A,I4,A)') ',—e—eun Reruns-file: ',INRR,
$ ! parameter-sets generated by FSEOPT'
H e Create INRR parameter-sets with INFND parameters

DO 50 J = 1,INPS

DO 40 I = 1,INFND

Hmmme value is lower bound value plus range*unifl()
V(J,I) = PARVAL(1,I)+RANGE(I)*UNIFL()
40 CONTINUE

DO 45 K = 1,INDS
IF (IDSID(K).EQ.1) THEN
e write section to identify location and year
WRITE (21,
$ ‘(/,1%,8,12,'" ; '',A,14,'" ; '',A,F4.0)")

V(I,J) = V(I,J)*1.2
ELSE
V(I,J) = V(I,J)%0.8
END IF
END IF
65 CONTINUE
70 CONTINUE

FIRST = .FALSE.
SECOND = ,TRUE.

e Simplex next iterative loops
ELSE IF (SECOND) THEN

DO 75 I = 1,INFND
v(1,I) = V(IPNT2,I)
75 CONTINUE

DO 85 I = 1,INFND
DO 80 J = 2,INFND+1
V(J3,I) = V(1,I)

80 CONTINUE

85 CONTINUE

*mmm e The other vertices of the simplex are set-up with the

* same method as the original simplex, taking the best set
* of the first iterative section as initial simplex side

TMP = UNIFL()*0.2
DO 95 I = 2,INFND+1
DO 90 J = 1,INFND
IF (J.EQ.I-1) THEN
HALF = PARVAL(1,J)+0.5+RANGE(J)
IF (V(I,J).LT.HALF) THEN
V(I,J) = V(I,J)*%(1.+TMP)
E

ELS!
V(I,J) = V(I,J)*(1.-TMP)
END IF
END IF
90 CONTINUE
95 CONTINUE
END IF

e e Create INFND+l parameter-sets with INFND parameters

DO 105 J = 1,INFND+1

DO 100 K = 1,INDS
IF (IDSID(K).EQ.1l) THEN

Fowmmm write section to identify location and year
WRITE (21,
$ "(/,1%,A,12,'" ; "' ,A,I4,"" ''yAFL.0) )
$ 'ISTN =',ISTN(K),'IYEAR = ',IYEAR(K), 'DAYB =',DAYB(K)
o copy dataset specific constants, initial values or
* functions from file with constants to reruns file

IF (THERE) CALL COPFIL (90,CNFIL(K),21)

K e write section with parameter names and values



WRITE (21,'(6(1X,4(A6,''="',F9.5,'" ; '""y,/N")
$ (PARNAM(I),V(J,I),I=1,INFND)
*omm e write section to synchronize model- and experimental data Fmm e
WRITE (21, (1X,A)") HARDAY =
WRITE (21,'(10(F4.0,A))') (HARD(L),
$ L=IIHRD(K), IIHRD(K+1) 2y, HARD(IIHRD(K+1) 1)
END IF Ko e
100 CONTINUE

105 CONTINUE

LET RS Rexrun with model within iterative optimization loop
ELSE IF (ITASK.EQ.3) THEN
o e Write headerfile in reruns file o
WRITE (21,'(2R)') ‘'¥=—=m- Reruns-file: 1',
$ ' parameter-set generated by FSEOPT'
Hommm e Create for each experimental dataset in the optimization Fom e
* 1 parameterset with INFND parameters, get parameter-values
* at pointer IMXNPS+1 from matrix with parameter-values

J = IMXNPS+1

DO 110 K = 1,INDS
IF (IDSID(K).EQ.1) THEN [
ko write section to identify location and year
WRITE (21,
$ ‘(/,1%x,A,12,'" ; '',A,14,"" ; '',A,F4.0)
$ 'ISTN =',ISTN(K), 'IYEAR = ', IYEAR(K),'DAYB =',DAYB(K) 10

*mmm copy dataset specific constants; initial values or Hmm e
* functions from file with constants to reruns file
IF (THERE) CALL COPFIL (90,CNFIL(K),21) 15

*mmmmm write section with parameter names and values
WRITE (21,'(6(1X,4(A6,''='',F9.5,'"' ; ‘), /0"
$ (PARNAM(I),V(J,I),I=1,INFND)

Lt write section to synchronize model~ and experimental data
WRITE (21,'(1X,A)° HARDAY ="'
WRITE (21,'(10(F4. o +A)) ') (HARD(L),','
$ L=IIHRD(K),IIHRD(K+1)-2), HARD(IIHRD(K+1) 1)
END IF
110  CONTINUE

ID—LE

IF (.NOT.INIT) THEN

Unit numbers for file I/0
IUNIT = 70
IUL = 50

Filename from optimization definition file (OPTIM.DEF)
OPTFIL = 'OPTIM.DEF'
CALL RDINIT (IUNIT, IUL, OPTFIL)

Get value from file
CALL RDSINT ('IQT', IQT)
CLOSE (IUNIT, STATUS='DELETE')

Filename from file which defines the experimental datasets
OPTFIL = 'OBSERV.DEF'
CALL RDINIT (IUNIT, IUL, OPTFIL)

Get values from file
CALL RDAREA ( 'DAT' , DAT , IMXDAT, IIDAT)
CLOSE (IUNIT, STATUS='DELETE')

End of input section

Initialize array SUM
DO 10 I = 1,IMXNDP
SUM(1,I) = 0.
SUM(2,I) = O.
CONTINUE

Change one-dimensional array in a four-dimensional array
M =0
IF (H LT.IIDAT/5) THEN

*

NINT(DAT(N+1))
NINT(DAT(N+2)
NINT(DAT(N+3))
NINT(DAT(N+4)
OBSERV (1 J,K,L) = DAT(N+5)
M=M+
GOTO 15
END IF

Fnonowe

PRQGHZ

ANDS = 0O
DO 45 M = 1,IMXNDS
ANDS = ANDS + IDSID(M)

ND—IF

CONTINUE

CLOSE (21}

RETURN
END

SUBROUTINE COMP (ITASK,IMXHVS,IMXNDP, IMXNDS, IMXNPS, IMXNRR, IMXREP,
QT,IDSID,II,INDS,INHVS,INPS, MPF,INREP,OBSERV,SIM,
SUM, IPNT1)

IMPLICIT REAL (A-Z)

Fomm e Declaration of variables in parameter list
INTEGER ITASK, IMXHVS, IMXNDP, IMXNDS, IMXNPS, IMXNRR, IMXREP , IPNT1 50
INTEGER II,INDS,INHVS,INREP
DIMENSION INREP(IMXNDS)
DIMENSION INHVS(IMXNDS)
DIMENSION QT(IMXNPS+1)

#*-———-Dimension of array with sums of observed data and
* residuals between observed and measured data
DIMENSION SUM(2,IMXNDP)
| LT ——
*--—--Dimension of array with aggregated values of model *
* performance for each measured variable *

DIMENSION MPF (IMXNDP)

INIT = .TRUE.
END IF

IF (ITASK.EQ.1l) THEN
DO 100 I = 1,INPS

DO 50 M = 1,IMXNDP
SUM(1,M) = 0.
CONTINUE

ITMP = 0
DO 55 J = 1,INDS
IF (IDSID(J).EQ.1) THEN
ITMP = ITMP+1
DO 80 K = 1,INHVS(J)
DO 70 L = 1,INRER(J)
DO 60 M = 1,IMXNDP
calculate sum of differences between experimental
and simulated data according to the method choosen
in optimization definition file.
DK = OBSERV(J,K,L,M)
MK = SIM((I-1)*ANDS+ITMP,K, M)

* e Character string with name of input datafile SUM(1,M) = SUM(1,M)+ABS((DK-MK)/(DK+1E-8))**IQT
CHARACTER*12 OPTFIL 60 CONTINUE
70 CONTINUE
Fmmmee Maximum number of data-points per observation in matrix 80 CONTINUE
* DAT (dummy matrix which is read in OBSERV) END IF
INTEGER IIDAT 55 CONTINUE
INTEGER IMXDAT
PARAMETER ( IMXDAT=4000) QT(I) = 0.
DIMENSION DAT(IMXDAT) DO 90 M = 1,IMXNDP
Hmm e, Array with observed data Hom apply the appropriate factor to normalize residuals
DIMENSION OBSERV(IMXNDS,IMXHVS, IMXREP, IMXNDP) IF (IQT.EQ.l) THEN
MPF(M) = SUM(1,M)
oo Variable INPS contains number of parameter runs ELSE IF (IQT.EQ.2) THEN
INTEGER INPS MPF(M) = SQRT(SUM(1,M))
END IF
Hmmmm Variable ANDS contains actual number of datasets
INTEGER ANDS Hmmm e find the maximum of residuals
QT(I) = AMAX1 (MPF(M),QT(I))
* e Variable ITMP scratch integer
INTEGER ITMP 90 CONTINUE
Fomm Parameter in calculation method model performance 100 CONTINUE
INTEGER IQT
ELSE IF (ITASK.EQ.2) THEN
Hommmm Array with data-set identifier
INTEGER IDSID DO 110 M = 1,IMXNDP
DIMENSION IDSID(IMXNDS) SUM(1,M) = 0.
110 CONTINUE
o Logical name used in initial section
LOGICAL INIT ITMP = 0
DO 115 J = 1,INDS
hm e Dimension of array in common block with submodule IF (IDSID(J).EQ.1) THEN
DIMENSION SIM(IMXNRR+IMXNDS,IMXHVS, IMXNDP) ITMP = ITMP + 1
DO 140 K = 1,INHVS(J)
e Variables used as unit number for file I/O or counter in do-loops DO 130 L = 1,INREP(J)
INTEGER IUNIT,IUL,I,J,K,L,M,N DO 120 M = 1,IMXNDP
e calculate sum of differences between experimen-
* ] MICROSOFT FORTRAN V 5.1 / VAX FORTRAN V 5.6-199 * tal and simulated data according to the method
INCLUDE 'MINMAX.INC' * choosen in optimization definition file.
DK = OBSERV(J,K,L,M)
Hmmm MAC FORTRAN/020 V 2.3 MK = SIM(II-1+ITMP,K,M)
* INCLUDE MINMAX.INC SUM(1,M) = SUM(1,M)+ABS((DK-MK)/(DK+1E-8))**IQT
120 CONTINUE
Ko End of declarations 130 CONTINUE
140 CONTINUE
SAVE END IF
115 CONTINUE

DATA INIT /.FALSE./



OT(IMXNPS+1) = 0.
DO 150 M = 1,IMXNDP

CALL OUTDAT (2,IUNIT,'SET-i',FLOAT(I))
DO 10 J = 1, INFND
CALL OUTDAT (2,IUNIT,PARNAM(J),V(I,J))

hmmmm apply the appropriate factor to normalize residuals 10 CONTINUE
IF (IQT.EQ.1) THEN CALL OUTDAT (2,IUNIT,'QT',QT(I))
MPF (M) = SUM(1,M) 20 CONTINUE
ELSE IF (IQT.EQ.2) THEN
MPF (M) = SQRT(SUM(1,M)) TEXT =
END IF $ 'FSEOPT - calibration: (unsorted) initial sets and QT-values'
CALL OUTDAT (4,IUNIT,TEXT,0.)
LETT find the maximum of residuals
QT (IMXNPS+1) = AMAX1 (MPF(M),QT(IMXNPS+1)) CALL INDEXX (INPS,QT,INDX)
CALL OUTDAT (1,IUNIT,'SET-i',0.)
150 CONTINUE
DO 22 I = 1, INPS
ELSE IF (ITASK.EQ.3) THEN CALL OUTDAT (2,IUNIT, 'SET-i', FLOAT(INDX(I))
DO 21 J = 1, INFND
ITMP = 0 CALL OUTDAT (2,IUNIT,PARNAM(J),V(INDX(I),J))
DO 160 J = 1,INDS 21 CONTINUE
IF (IDSID(J).EQ.1l) THEN CALL OUTDAT (2,IUNIT,'QT',QT(INDX(I)))
ITMP = ITMP + 1 22 CONTINUE
DO 1%0 K = 1,INHVS(J)
DO 180 L = 1,INREP(J) TEXT =
DO 170 M = 1,IMXNDP $ 'FSEOPT - calibration: (sorted) initial sets and QT-values’
*mm replace the existing values of state variables CALL OUTDAT (4,IUNIT,TEXT,0.)
* with the new values with closer correspondence CALL OUTDAT (99, 0, ' ', 0.)
SIM((IPNT1-1)*ANDS+ITMP,K,M) = CLOSE (IUNIT)
$ SIM(II-14ITMP,K,M)
170 CONTINUE ELSE IF (ITASK.EQ.2) THEN
180 CONTINUE
190 CONTINUE Fmmmm Write final parameter-sets and QT-values to output file
END IF OPTFIL = 'PAR_TERM.DAT'
160 CONTINUE CALL FOPEN (IUNIT OPTFIL, 'NEW', 'DEL')
CALL OUTDAT (1, IUNIT, 'SET-i',0.)
ELSE IF (ITASK.EQ.4) THEN
DO 40 I = 1, INPS
DO 220 J = 1,IMXNDS CALL OUTDAT (2,IUNIT,'SET-i',FLOAT(I))
DO 210 X = 1,IMXHVS Do 30 J = 1, INFND
DO 200 M = 1,IMXNDP CALL OUTDAT (2,IUNIT,PARNAM(J),V(I,J))
LOW (J,K,M) = 1.0E+8 30 CONTINUE
HIGH(J,K,M) = -1.0E+8 CALL OUTDAT (2,IUNIT,'QT',QT(I))
200 CONTINUE 40 CONTINUE
210 CONTINUE
220 CONTINUE TEXT =
$ 'FSEOPT - calibration: (unsorted) final sets and QT-values'
DO 260 I = 1,INPS CALL OUTDAT (4,IUNIT,TEXT,0.)
Tg}l'ﬂ—ﬂ
DO-230-J-=—17INDS CALL.INDEXX. (INPS,QT,INDX)
IF (IDSID(J).EQ.1) THEN CALL OUTDAT (1,IUNIT,'SET-i',0.)
ITMP = ITMP+1
DO 250 K = 1,INHVS(J) DO 42 I = 1, INPS
DO 240 M = 1,IMXNDP CALL OUTDAT (2,IUNIT,'SET-i',FLOAT(INDX(I)))
Hmmmm e calculate maxima and minima of state variables DO 41 J = 1, INFND
* within model-simulations CALL OUTDAT (2,IUNIT,PARNAM(J),V(INDX(I),J))
LOW(J,K,M) = AMINL(SIM((I-1)*ANDS+ITMP, K,M), 41 CONTINUE
$ LOW(J,K,M)) CALL OUTDAT (2,IUNIT,'QT',QT(INDX(I)))
HIGH(J,K,M) = AMAX1(SIM((I-1)*ANDS+ITMP, K,M) 42 CONTINUE
$ JHIGH(J,K,M))
240 CONTINUE TEXT =
250 CONTINUE $ 'FSEOPT - calibration: (sorted) final sets and QT-values'
END IF CALL OUTDAT (4,IUNIT,TEXT,0.)
230 CONTINUE CALL OUTDAT (99, 0, ' ', O.
260 CONTINUE CLOSE (IUNIT)
END IF ELSE IF (ITASK.EQ.3) THEN
RETURN Hommmm Write initial confidence interval of state-var's to output-file
END STRING = 'ST_CFI'
PO 50 K = 1,IMXNDS
SUBROUTINE OUTPUT (ITASK,INFND,INPS,QT,PARNAM,V,IMXNPS,IMXPAR, IF (IDSID(K).EQ.1) THEN
$ HARD , IMXHVS , IMXNDS , IDSID, IIHRD, IMXNDP , INDX) WRITE (INTERN(1:8),'(A,I12.2)') STRINGK
IMPLICIT REAL (A-2Z) OPTFIL = INTERN(1:8)//' .DAT'
CALL FOPEN (IUNIT,OPTFIL,'NEW','DEL')
INTEGER ITASK,INFND,INPS,IMXNPS,IMXPAR,IMXHVS,6 IMXNDS, IIHRD CALL OUTDAT (1,IUNIT,'HARDAY',O.)
INTEGER IMXNDP,IDSID DO 70 I = IIHRD(K), ITIHRD(K+1)-1
DIMENSION QT (IMXNPS+1) CALL OUTDAT (2,IUNIT, HARDAY', HARD(I)
CHARACTER*6 PARNAM DO 60 L = 1, IMXNDP
DIMENSION PARNAM(IMXPAR) WRITE (INTERN(1:8),'(A,I1,A)') 'ST_',L,' LOW'
DIMENSION V(IMXNPS+2,IMXPAR) M =1+ I - IIHRD(K)
DIMENSION HARD(IMXHVS*IMXNDS) CALL OUTDAT (2, IUNIT INTERN(I 3) LOW(K,M,L))
DIMENSION IDSID(IMXNDS) WRITE (INTERN(1:8),'(A,I1,A)') 'ST_',L,'_ HGRH'
DIMENSION IIHRD(IMXNDS+1) CALL OUTDAT (2,IUNIT, INTERN(l:G),HIGH(K L))
60 CONTINUE
%--———Character string with name of input datafile 70 CONTINUE
CHARACTER*14 OPTFIL CALL OUTDAT (4,IUNIT,
CHARACTER*6 STRING $ 'FSEOPT - confidence intervals before calibration',0.)
CALL OUTDAT (99, 0, ' ', 0.)
Hmmm o Variables used as unit number for file I/0 or counter CLOSE (IUNIT)
* in do-loops END IF
INTEGER IUNIT,I,J,K,L,M 50 CONTINUE
*mmm ] Name of internal file ELSE IF (ITASK.EQ.4) THEN
CHARACTER¥*14 INTERN
e Write final confidence interval of state-var's to output-file
Hmmm e Name of character string STRING = 'ST _CFT'
CHARACTER*80 TEXT DO 80 K = 1,IMXNDS
IF (IDSID(K) EQ.1) THEN
Ko Declaration of array with indexes of gt-values WRITE (INTERN(1:8),'(A,I2. 2) ) STRING,K
, INTEGER INDX(IMXNPS) OPTFIL = INTERN(1:8)//'.DAT'
CALL FOPEN (IUNIT,OPTFIL,'NEW', 'DEL')
*mm e .MICROSOFT FORTRAN V 5.1 / VAX FORTRAN V 5.6-139 CALL OUTDAT (1,IUNIT, 'HARDAY',0.)
INCLUDE 'MINMAX.INC' DO 100 I = IIHRD(K), IIHRD(K+1l)-
CALL OUTDAT (2,IUNIT,'HARDAY',HARD(I))
Fmmmee MAC FORTRAN/020 V 2.3 DO 90 L = 1, IMXNDP
* INCLUDE MINMAX.INC WRITE (INTERN(1:8),'(A,Il1,A)') 'sT ',L,' LOW'
M =1+ I - IIHRD(K)
Fmmmmm End of declarations CALL OUTDAT (2,IUNIT,INTERN(1:8),LOW(K,M,L)
WRITE (INTERN(1:8),' (A I1,A)') 'ST ',L,' HGH'
SAVE CALL OUTDAT (2, IUNIT,INTERN(1:8),HIGH(K,H L)
90 CONTINUE
* o Unit number for file I/0O 100 CONTINUE
IUNIT = 70 CALL OUTDAT (4,IUNIT,
$ 'FSEOPT - confidence intervals after calibration',0.)
IF (ITASK.EQ.1) THEN CALL OUTDAT (99, 0, ' ', O.
CLOSE (IUNIT)
hm o Write output-file with initial parameter sets and QT-values END IF
OPTFIL = 'PAR INIT.DAT' 80 CONTINUE
CALL FOPEN (IUNIT OPTFIL, NEW', 'DEL') END IF
CALL OUTDAT (1,IUNIT,'SET-i',0.)
RETURN

DO 20 I = 1, INPS END



SUBROUTINE HIGHLO (IMXNPS,INPS,IPNT1,IPNT2,QT,QTLOW,QTHIGH)

IMPLICIT REAL (A-2)

LEET Variables in parameter-list
INTEGER IMXNPS,INPS,IPNT1,IPNT2
DIMENSION QT (IMXNPS+1)

*mmmmm Integer variable used in do-loops
INTEGER I
L End of declarations
SAVE
QTLOW = 1.0E+8
QTHIGH = -1.0E+8

DO 10 I = 1, INPS
IF (QT(I).LT.QTLOW) THEN

IPNT2 = I
QTLOW = QT(I)
END IF
IF (QT(I).GT.QTHIGH) THEN
IPNTL = I
QTHIGH = QT(I)
END IF
10 CONTINUE
RETURN
END

SUBROUTINE WRSTAT (ITER,RTOL,QTLOW,QTHIGH)
IMPLICIT REAL (A-Z)

INTEGER ITER
SAVE

$WRITE (*,‘(/élx,:,110,3({,;¥é§,G10.5))')
' Iteration-n: ', ’

s Tolerance: ',RTOL,

$ ' Qt-value best-set: ', QTLOW,

$ ' gt-value worst-set: ', QTHIGH

RETURN
END

*

*

of the FSEOPT program the order is the number of
datasets (5), number of harvests (13} and the number
of datapoints (3)

DIMENSION LOW(5,13,3)

DIMENSION HIGH(5,13,3)

COMMON /CONF1/ LOW,HIGH

SUBROUTINE INDEXX (N,ARRIN,INDX)
IMPLICIT REAL(A-Z)

INTEGER I,J,N,IR,L
DIMENSION ARRIN(N)
INTEGER INDXT, INDX(N)

Do 11 J=1,N
INDX(J)=J
11 CONTINUE
L=N/2+1
IR=N
10 CONTINUE
IF (L.GT.l) THEN
L=L-1
INDXT=INDX (L)
Q=ARRIN( INDXT)
ELSE
INDXT=INDX(IR)
Q=ARRIN(INDXT)

INDX(IR)=INDX(1)
IR=IR-1
IF (IR.EQ.1) THEN
INDX(1)=INDXT
RETURN
ENDIF
ENDIF
1=L
J=L+L
20 . IF (J.LE.IR) THEN

IF (J.LT.IR) THEN
IF (ARRIN(INDX(J)).LT.ARRIN(INDX(J+1)))J=J+1
ENDIF
IF (Q.LT.ARRIN(INDX(J))) THEN
INDX(I)=INDX(J)
1=
J=J+3
ELSE
J=IR+1
ENDIF
GO TO 20
ENDIF
INDX(I)=INDXT
GO TO 10
END

e Include block 'DIMENS.INC'

¥ et ] Maximum number of harvests (sampling times)
INTEGER IMXHVS
PARAMETER ( IMXHVS=13)

] Maximum number of state-variables in the optimization
INTEGER IMXNDP
PARAMETER (IMXNDP=3)

Koo ] Maximum number of experimental data-sets
INTEGER IMXNDS
PARAMETER (IMXNDS=5)

LESEEES Maximum number of rerun-sets in optimization
INTEGER IMXNRR
PARAMETER (IMXNRR=500)

H e Maximum number of replicates per observation
INTEGER IMXREP
PARAMETER (IMXREP=5)

Fmmm Include block ‘MINMAX.INC'
e Dimension of array with minimum and maximum values
* of simulation-runs, these values are interpreted as

* confidence intervals. When you will change the size



APPENDIX B - Interface of FSEOPT and user-defined submodules

In this appendix the interface of FSEOPT and user—defined submodules
and the example of the file RERUNS.DAT are listed.

Contents Page

Interface . . . . . . B-1
File-layout RERUNS.DAT . .. . . B-2







B -1

Include these declarations in the declaration section of
your FSE-(sub)model:

INCLUDE 'DIMENS,INC'

————— Integer declaration for variables in optimization

INTEGER INHVS

————— Dimension of array in common block with plant-module
DIMENSION SIM(IMXNRR+IMXNDS, IMXHVS, IMXNDP)

————— Integer declaration for variables in common block
INTEGER IT

Arixror
Qv Cer

" 13 1 : N T Alaa =
————— Common_—biock common—with—submodule under—FSE

SIM is a matrix with the simulated data and has the
dimension number of datasets, number of harvests,
number of replicates, number of datapoints

COMMON /SUB/ SIM, II

Include this assignment in the initial section (ITASK=1)
of your FSE-submodel:

INHVS = 1

Include this section in the integral section (ITASK=3)
of your FSE-submodel:

F e fill matrix with simulation output synchronous with
* harvest dates in experiments
IF (OUTPUT) THEN
SIM(ITI,INHVS,1) STATE VARIABLE (1)
SIM(II,INHVS, 2) STATE VARIABLE (2)
SIM(II,INHVS,3) = STATE VARIABLE (3)
INHVS = INHVS + 1
ENDIF

Il

Include this assignment in the terminal section (ITASK=4)
of your FSE-submodel:

IT = IT + 1



B-2

HK e Reruns-file: 4 parameter-sets generated by FSEOPT

ISTN =1 ; IYEAR = 1985 ; DAYB = 70.

* Contents of input file: SETO01_CN.DEF
* e

NPL = 100.

LAO = 0.5470 ; TMBJUV=  1.3550 ; RGRL = 0.0170 ;
HARDAY =

71., 77., 84., 91., 98.,105.,112.,119.,126.,133.,
140.,147.,154.

ISTN = 1 ; IYEAR = 1985 ; DAYB = 70.

*

* Contents of input file: SETO1 CN.DEF
*

NPL = 100.

IAO = 0.5926 ; TMBJUV=  0.4417 ; RGRL = 0.0190 ;
HARDAY =

7i., 77., 84., 91., 98.,105.,112.,119.,126.,133.,
140.,147.,154.

ISTN =1 ; IYEAR = 1985 ; DAYB = 70.

*

* Contents of input file: SETO1 CN.DEF
*

NPL = 100.

LAO = 0.5934 ; TMBJUV=  2.0391 ; RGRL = 0.0130 ;
HARDAY =

71., 77., 84., 91., 98.,105.,112.,119.,126.,133.,
140.,147.,154.

ISTN =1 ; IYEAR = 1985 ; DAYB = 70.

*

* Contents of input file: SETO1l CN.DEF
*

NPL = 100.

LAO = 0.6124 ; TMBJUV=  1.2635 ; RGRL = 0.0133 ;
HARDAY =

71., 77., 84., 91., 98.,105.,112.,119.,126.,133.,
140.,147.,154.



APPENDIX C - Listing of definition files

In this appendix the input datafiles of FSEOPT are listed. There is
one file containing the definitions of the optimization procedure,
called 'OPTIM.DEF'. A second file defines the parameternames and
their Biologically Plausible Ranges, the name of this file is
'PARAM.DEF'. The third file, 'OBSERV.DEF’', contains variables which
define the experimental environment, such as number of datasets,

sampling dates, replicates and the observed data.

Contents Page
OPTIM.DEF . . . . . . c-1
PARAM.DEF . . . . . . Cc-2

OBSERV.DEF . . . . . . Cc-3







. e e e s o e e ——— [—— *
* Input datafile 'OPTIM.DEF' : contains the user—-definable
* data for the calibration procedure.

K e e e e i e e e e i S s e i e e . s e S e . e e S S P S S S e o . o e e e e e e S e e e e *
e preferred optimization algorithm; IMETHD, units: -

* 1: Price-method, controlled random search method

* for global optimization

* 2: Simplex-method, local optimization method

IMETHD = 2

e m e Preferred method for calculation of Qt value, IQT,

* 1: Sums of absolute differences observed-simulated

* 2: Sums of squares of differences observed-simulated
* units: -

IQ0T =1

e option switch which tackles parameter values outside
* predefined Biological Plausible Range (BPR), IBOUND, units = -
* 0 ; new generated parametervalues outside bounds

* are discarded

* 1 ; new generated parametervalues outside bounds

* are set to bound

TBOUND——=—1

H e number of parameter sets; INPS, units: -

* Rule of thumb: at least 10 times the number of

* modelparameters within the calibrationexperiment
INPS = 30

e number of iterations of algorithm; INT, units: -

* Rule of thumb: at least 6 times the number of

* parametersets INPS.

INT = 300

Hmm tolerance of CT-values of parametersets, stop

* criteria for optimization; FTOL, units: -

FTOL = 1.0E-8

K the number of datasets (meaning number of year/

* locations of data are entered); NDS, units: -

INDS = 5

K the datasets which will be run; IDSID, units: -

IpsIib =1, 0, 0, 0, O

Hmm output switches are entered below, 0 value skips output
* IOUT (1) : Output of initial parametersets and corresponding
* Ct-values before calibration.

* TIOUT(2) : Output of final parametersets and corresponding

* Ct-values after calibration.

*# IOUT(3) : Output of initial confidence intervals of model-
* statevariables.

* TOUT(4) : Output of final confidence intervals of model-

* statevariables.

ouT =1, 1, 1, 1



* File: 'PARAM.DEF', this file contains the parameters
* which are used in the calibration experiment

K e e e e e e e et o e e T ot e e . e e e e 2 . e T e i i, S o S . . B e e, S e e e e e e e e
K e e Extrapolated leaf area at field emergence,
* units = cm**2/plant

LA0 = 0., 1.0

K e Base temperature for juvenile growth, units = gr. C
TMBJUV = 0., 3.

Fmmmm— Relative growth rate during exponential leaf area growth
* units = em**2/cm**2/gr.C/d
RGRL = 0.01, 0.02




* File: 'OBSERV.DEF', this file contains the experimental
* data which are used in the calibration experiment.

K e e e e e ettt e i e ot St £k S S e S e it ot i o e et St s e [ [ ———

Hmm numbers of weatherstations in the subsequent
* dataset are entered, ISTN, units = -
ISsTN =1, 1, 1, 1, 1

K numbers of weatherstations in the subsequent
* dataset are entered, IYEAR, units = -
IYEAR = 1985, 1986, 1987, 1988, 1989

H e e the starting date (julian daynumber) for each
* data set, DAYB, units: julian daynumber
DAYB = 70., 70., 70., 70., 70.
Hmm e the sampling dates of the subsequent datasets
* are entered, HARD, units: julian daynumber
HARD = 71., 77., 84., ©91., 98., 105., 112., 119., 126., 133.
140., 147., 154.,
71., 77., 84., 91., 98., 105., 112., 119., 126., 133.
140., 147., 154.,
Tt F7—84—+—91++—985 105,112, 119, 126 133
140., 147., 154.,
7., 77., 84., 91., 98., 105., 112., 119., 126., 133.
140., 147., 154.,
7., 77., 84., 91., 98., 105., 112., 119., 126., 133.
140., 147., 154.
K number of replicates in the subsequent datasets,
* NREP, units: -
INREP =1, 1, 1, 1, 1
T the observations are grouped by number of dataset,
* sample number, number of replicate, number of
* measurements, DAT, units: variable
DAT =
1., 1., 1., 1., 0.,
1., 2., 1., 1., 0.,
1., 3., 1., 1., 0.,
1., 4., 1., 1., 0.,
1., 5., 1., 1., 0.,
1., 6., 1., 1., 0.01,
1., 7., 1., 1., 0.04,
1., 8., 1., 1., 0.69,
1., 9., 1., 1., 0.13,
1., 10., 1., 1., 0.40,
1., 11., 1., 1., 1.00,
1., 12., 1., 1., 1.75,
1., 13., 1., 1., 2.54,
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APPENDIX D - Listing of statistical programs

In this appendix two statistical programs are listed which can be
used to analyse output of the calibration procedure to become
familiar with model behaviour.

Contents Page

HISTOGRAM.GEN . . . . . . D-1
CONFID.GEN . . . . . . D-2










woxk

" % This genstat program produces a correlation and covariance matrix

D-1

IAKAK KK KK KK kK Ak kkkxkkk*%x  HTSTOGRAM.GEN KKK KK KK KKK KKK AR KKK Kk AR KK Kk kK

*

n % and histograms of all the values of parameters within the parameter- *

LU 3

sets. The data are read from the outputfiles par init.dat,

which

" % can be requested optionally from the calibration procedure.
n *****‘k*******‘k***********k*k*‘k‘k***‘k******'k*‘k****k********************‘k‘k****

JOB

UNIT

POIN
POIN
VARI

OPEN
SKIP
READ

'CORRELATION MATRIX AND HISTOGRAMS AFTER CALIBRATION'

(4]

[VALUES=LAO_T, TMBJUV_I,RGRL_I] PRMI
[VALUES=LAO_T, TMBJUV_T,RGRL_T] PRM2
PRM1{],PRM2 ]

NAME='PAR_TERM.DAT';CHAN=2;FILE=INPUT;WIDTH=132
{CHAN=2] 7
[CHAN=2;END=*] ISET,PRM2[],QT T

CLOSE 'CHAN=2;FILE=INPUT

" CORRELATION MATRIX "

MODEL PRM2 (]

TERM

[PRIN=C] PRM2[]

" COVARIANCE MATRIX "

SSPM

[TERMS=PRMZ2 []] SSP

*
%

n

"

OB
TS5eT

At PRIN=SSPMI—SSP
T PRIN=SSEMT—ooT

OPEN
SKIP
READ

NAMB='PAR_INIT.DAT';CHAN=2;FILE=INPUT;WIDTH=132
[CHAN=2] 7
[CHAN=2;END=*} ISET,PRM1{],QT I

CLOSE CHAN=2;FILE=INPUT

PEN NUMBER=1;LINESTYLE=1;SYMBOL=0;METHOD=LINE; SIZE=1.5

PEN

AXES

NUMBER=2 ; METHOD=POINT

1...2; PENAXES=1

FRAME WINDOW=1...4;YLOW=0.3,0.3,0.,0.;YU0PP=1.,1.,0.3,0.3;\
XLOW=0.,0.48,0.,0.48;XUPP=0.52,1.0,0.52,1.0

OPEN
VARI
DHIS
DHIS

OPEN
VART
DHIS
DHIS

OPEN
VARI
DHIS
DHIS

OPEN
VARI

'HISTO_l.GRD';CHAN=1;FILETYPE=GRAPHICS
[VALUES=0.,0.1...1.] PARl

[TITLE='Histogram 1';LIMITS=PAR1;SCREEN=K;WIND=1;KEYW=3]
[TITLE='Histogram 21;LIMITS=PAR1; SCREEN=K; WIND=2 ;KEYW=4]

'HISTO_2.GRD';CHAN=1;FILETYPE=GRAPHICS
[VALUES=0.,0.3...3.] PAR2

[TITLE='Histogram 3';LIMITS=PAR2; SCREEN=K; WIND=1;KEYW=3]
[TITLE='Histogram 4';LIMITS=PAR2; SCREEN=K; WIND=2;KEYW=4]

'HISTOﬁB.GRD';CHAN=1;FILETYPE:GRAPHICS
[VALUES=0.01,0.011...0.02] PAR3

[TITLE='Histogram 51; LIMITS=PAR3; SCREEN=K; WIND=1;KEYW=3]
[TITLE="Histogram 6'; LIMITS=PAR3; SCREEN=K; WIND=2;KEYW=4]

'QT.GRD' ; CHAN=1,;FILETYPE=GRAPHICS
[VALUES=0.,0.1...1.0] QTV

PRM1 (1]
PRM2 (1]

PRM1[2]
PRM2[2]

PRM1(3]
PRM2 [3]

DHIS [TITLE='Histogram 7';LIMITS=QTV;SCREEN=K;WIND=1;KEYW=3] QT I
DHIS [TITLE='Histogram 81 ;LIMITS=QTV; SCREEN=K; WIND=2; KEYW=4] QT T

STOP
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ok k ok kkkkkkkkkkkkkkkkhkhkkxx CONF'ID.GEN HARKAIKKKK KK KK KA RN KR XK KR Kk "
" x This genstat program produces graphs of the final values of *n
" % measured field data and worst model outcome before calibration * "
" % The data are read from FSEOPT cutputfiles: st_cfixx.dat and * o

" % st cftxx.dat. *on
T ek s ok ok ok ok ok ok ok ok ok ok ok ok ok ok Kok Kok Kok Kok ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok o ok K Sk K K kK kK Kok Rk k T

JOB 'CONFIDENCE INTERVALS - BEFORE AND AFTER CALIBRATION'

UNIT [13]
VBRI DAY, VAR[1...2],VAR2[1...2)

OPEN NAME='ST_CFI01.DAT';CHAN=2;FILE=INPUT;WIDTH=132
SKIP [CHAN=2] 6

READ [CHAN=2;END=*] DAY, VAR[]

CLOSE CHAN=2;FILE=INPUT

VARI TIMEEXP,LAI
READ TIMEEXP,LAT

71. 0.00000
7. 0.00000
84. 0.00000
al 000000
98. 0.00000
105. 0.18672E-01
112. 0.44154E-01
119. 0.69925E-01
126. 0.13226
133. 0.40995
140. 1.0019
147. 1.7523
154. 2.5483:

" This part of the GENSTAT program produces graphs of the final "
" yalues of measured field data (line) and worst model outcome "
" (points) after calibration. The data are read from OPTI "

OPEN NAME=‘ST_CFT01.DAT';CHAN=2;FILE=INPUT;WIDTH=132
SKIP ([CHAN=2] 6

READ [CHAN=2;END=*] DAY,VARZ2[]

CLOSE CHAN=2;FILE=INPUT

PEN NUMBER=1;LINESTYLE=1;SYMBOL=0;METHOD=MONO; SIZE=1.

PEN NUMBER=2;METHOD=POINT

AXES 1...2; PENAXES=1

FRAME WINDOW=1...4;YLOW=0.3,0.3,0.,0.;YUPP=1.,1.,0.3,0.3;\
XLOW=0.,0.48,0.,0.48;XUPP=0.52,1.0,0.52,1.0

OPEN 'CONFID 1.GRD';CHAN=1;FILETYPE=GRAPHICS
DGRAP [SCREEN=C;WIND=1;KEYW=3] VAR([1],VAR(2],LAI;DAY,DAY, TIMEEXP;PEN=1,1,2
DGRAP [SCREEN=K;WIND=2;KEYW=4] VAR2[1],VAR2[2],LAI;DAY,DAY, TIMEEXP;PEN=1,1,2

STOP



APPENDIX E - List of names and definitions

Variable Subroutine/Function Description

name Am Co Fs Fu Ou Pr Se Si Wr
ATPHA + Variable that defines expansion and contraction
BETA + Variable that defines expansion and contraction
Qr + + + + + + + Array with values of model performance
QTHIGH + + Maximum value of model performance

('worst set')
QTLOW + 4+ Minimum value of model performance ('best set')
DAT + Array with experimental data
DUMMY + + Dummy variable in real function FUNC
FTOL + + + + Tolerance of values in array QT
GAMMA + Variable that defines expansion and contraction
HARD + + Array with data on sampling time
HIGH + Array with maximum-valuesof modeloutput——

per dataset
IBND + + + 4+ + Variable which allows parametervalues in

or outside bounds

IQT + Variable which defines the method of
calculation of QT

IDATEB + + Array with day numbers at start of simulation

IDSID + + + Array with dataset identifiers (0/1)

IDUM + + Dummy array to store optional output switches

IHT + Pointer for set with highest function value

THRD + + + Array with number of sampling dates per dataset

IIDAT + Actual number of data in array DAT

IIDSID + Actual number of datasetidentifiers

ITHRD + + Array with pointers to array elements

ILBUF + Array length of variable XBUF

110 + Pointer for set with lowest function value

IMETHD + + Variable which defines the optimization
algorithm

IMXDAT + Maximum number of data points

IMXHVS + + + Maximum number of sampling dates

IMXNDP + + Maximum number of datapoints

IMXNDS + + + Maximum number of datasets

IMXNPS + 4+ + o+ + + Maximum number of parametersets

IMXNRR + + Maximum number of reruns

IMXOUT + + + Maximum number of output-options

IMXPAR + + 4+ + + + Maximum number of parameters



