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Formulas are powerful tools in science, having a high information density (p). They're real paper-savers. 
But the omission of the units of variables, renders formulas worthless obstacles. What sense does it 
make to multiply mice with elephants? 
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SUMMARY 

For the quantitative description of soil hydrologie processes, the soil water 

retention curve and the hydraulic conductivity curve are indispensable. Most 

methods to determine these functions are time-consuming, expensive or both. 

Parameter estimation methods, like the one-step outflow method seem promising. 

In the one-step outflow method, parameters of the Mualem-Van Genuchten model, 

describing water retention and hydraulic conductivity, are evaluated by non

linear least squares fitting of predicted to observed outflow with time. 

Problems arise because a reasonable first guess is needed for the parameters 

and solutions suffer from non-uniqueness. The latter problem can be alleviated 

by the addition of independently measured or estimated retention data. 

In this paper estimated retention data are used, derived from pedo-transfer 

functions, which relate texture and other easily measurable quantities to 

retention data. Pedo-transfer functions are either empirical, using regression 

equations between textural data and retention or parameters describing 

retention, or semi-empirical, relying on the shape-similarity between the 

retention curve and the cumulative particle-size distribution. 

Textural and outflow data are available of 72 soil samples from the 'Hupselse 

Beek' catchment area. Data of an adjacent field are used for validation. 

Four empirical pedo-transfer functions, of Gupta and Larson, Rawls and 

Brakensiek, Saxton et al. and Cosby et al., and three semi-empirical pedo-

transfer functions, of Arya and Paris, Tyler and Wheatcraft and Haverkamp and 

Parlange, are tested against validation data. Average curves as well as the 

results of scaling are analyzed. The model of Tyler and Wheatcraft is chosen to 

be used for the combination with outflow data. 

The inclusion of retention data in the one-step outflow optimization is 

accomplished by including one retention point in the object function of the 

optimization or by fixing the retention curve, optimizing only for the 

conductivity curve. 

The inclusion of one retention point gives a reasonable average retention 

curve, but a too steep conductivity curve. The latter is also the result when 

the retention curve is fixed completely. Non-uniqueness is not reduced for both 

procedures when compared to optimization on outflow data only. 

Due to inaccuracies in the outflow data, it is not possible to say whether 

these meagre results are attributable to errors in the pedo-transfer function, 

weaknesses in the one-step outflow method, or both. 

IX 



PREFACE 

My eyes are about as square a the monitor of a computer, but they have seen 

quite a many things. 

Following a MSc-thesis in meteorology, in which I did a lot of field work, I 

had two questions when I asked Han Strieker for a subject for a second thesis. 

Firstly, I wanted to analyze data which other people had collected, because I 

knew already the despair connected to data-collection. Secondly, I wanted to go 

beneath the soil surface, having worked before on the layer of air above it. 

Han Strieker came up with the present subject, the combination of pedo-transfer 

data and outflow data to determine soil hydraulic properties. I was given the 

honourable task of trying to rescue a data set which was bound to be lost. At 

the start of this research I had only little knowledge about the theories 

concerning pedo-transfer functions and unsaturated flow. On my way, step by 

step, pieces began to fit together. If the jig-saw of soil science consists of 

1000 pieces, I now may have found 10 pieces to fit together. So, there is no 

need for despair. 

Again the best way of learning proved to be to work with people who know much 

more about the subject. Fortunately, they were available. Firstly I would like 

to thank Han Strieker for offering me the possibility to do this 3-months 

thesis, whenever I had a question, I could drop in, even in his busiest 

moments, which are omnipresent. Also I am very obliged to Jos van Dam, who 

supplied me with computer programs, ideas, encouragements, and other practical 

matters. Paul Torfs I would like to thank for borrowing me his directory on the 

VAX-mainframe. I have used it exhaustively. Finally I am grateful to all these 

nameless people who collected the data I have worked with. I know the agony of 

collecting a reliable data set. 

I would like to finish with some directions to the reader. Firstly, those not 

acquainted with soil physical nomenclature are directed to the glossary. 

Secondly, I am ashamed that I have to admit that I do not use SI units in this 

paper. I have followed the soil physical tradition of the use of grams, 

centimetres (if not inches !) and hours. However, I think that in the near 

future this should be prohibited. 

Wageningen, October 1990 
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1. INTRODUCTION 

The hydrological cycle comprises several subsystems, namely the systems of 

atmospheric water, surface water and subsurface water. Within and between these 

subsystems a variety of processes takes place, such as precipitation, 

evapo(transpi)ration, overland flow, runoff to streams and oceans, subsurface 

flow and groundwater flow (Chow et al., 1988). In order to make any quanti

tative statement about these processes one is in need of governing equations, 

deacribing the processes, and parameters, describing the properties of the 

subsystems and the processes. 

In the present paper soil moisture transport in the unsaturated zone will be 

dealt with. More specifically the attention is directed to the determination of 

two soil hydraulic properties. These are the relationship of soil water content 

to soil water pressure (retention curve), 0(h), and the relationship of hy

draulic conductivity to either soil water content or soil water pressure (which 

are interconnected by 8(h)), K(0) or K(h) respectively. These two properties 

are indispensable for the modelling of unsaturated soil moisture flow, as can 

be seen from the one-dimensional, vertical Richards' equation (Kool et 

al.,1985): 

ah a ah 

at ax ax 

with : h = pressure head (cm) 

t = time (hr) 

x = vertical coordinate (cm) 

K(h) - hydraulic conductivity (cm-hr~ ) 

39(h) i 
C(h) - — — — = water capacity (cm ) 

3h 

The 6(h) and K(h) relationships can be determined either directly or indirect-

iy. 

Direct laboratory determination of the 9(h) relationship involves the desorp-

tion of an initially saturated soil sample to a pre-specified pressure and the 

determination of its equilibrium water content. In the field the 9(h) 



relationship can be assessed directly by the in situ measurements of h, using a 

tensiometer, and of 9 by neutron or gamma-ray attenuation (Arya and Paris, 

1981). Because under field conditions periods of drying and wetting alternate, 

hysteresis causes the resulting retention curve to be a mixture of drying and 

wetting boundary or scanning curves. An overview of methods to determine 9(h) 

is given by Klute (1986). 

Disadvantage of all methods is that they are rather time consuming, expensive 

or both. 

Most direct methods to measure K(h) are based on the direct solution of the 

inverse problem. This means that either Darcy's equation or a simplified 

approximation of the one-dimensional unsaturated water flow equation (equation 

1.1) is inverted and simplified in such a way that K can be expressed in terms 

of directly measurable variables. Both laboratory and field methods include 

steady-state as well as transient methods. Laboratory methods most frequently 

used are the crust method, sorptivity method, evaporation method and hot air 

method. Field methods are e.g. the infiltration gradient method and the 

instantaneous profile method. Klute and Dirksen (1986) give an overview of 

various laboratory methods to measure the K(h) relationship, whereas Green et 

al. (1986) review field methods. 

Two major drawbacks can be distinguished. The first is the time consumptiveness 

because of the relatively restrictive initial and boundary conditions and (for 

some methods) the need for the achievement of some steady-state situation. 

Secondly, errors may be introduced as a result of the simplifications of the 

governing flow equations, necessary to allow their (semi-)analytic inversion 

(V»n Genuchten, 1989). 

At least some of the drawbacks of the methods to determine 9(h) or K(h), 

mentioned above, are alleviated by recently introduced parameter estimation me

thods. In these methods the direct flow problem can be formulated for any set 

of initial and boundary conditions (Van Genuchten, 1989). For the 9(h) and K(h) 

relationships a mathematical expression is used, containing a limited number of 

parameters. The flow problem is simulated, optimizing the parameters in the 

expressions of 9(h) and K(h), until the optimal fit between measured and 

simulated flow is found according to some object function (Kool et al., 

1915a). An extra advantage of these methods is, that one is able to compute the 

accuracy of the results (Van Dam, pers. com., 1990). 



An example of these parameter estimation methods is the one-step outflow method 

(Parker et al., 1985; Kool et al., 1985b). A recent modification is the multi-

step outflow method (Van Dam et al., 1990) 

Problems that may arise in the use of parameter estimation methods are non-

uniqueness of the solution and the need for a reasonable first guess of the 

parameters. 

A class of methods intermediate between 'direct' and 'indirect' comprises me

thods to determine K(h) from 6(h), using some pore size distribution model. 

These methods are based on the use of a mathematical expression to describe 

9(h) which has some or all parameters in common with an expression describing 

K(h). These parameters can then be estimated from 9(h) data. The two most well-

known formulations are those of Campbell (1974) and of Van Genuchten (1980). 

Indirect methods are here referred to as pedo-transfer functions, a term 

stemming from quantitative land evaluation (Bouma, 1986). These methods are 

based on the relationships between soil hydraulic properties and other, usually 

easier to measure, properties, such as bulk density, organic matter content, 

particle size distribution. These methods can be classified as being either 

semi- or completely empirical. 

The semi-empirical model for 9(h) of Arya and Paris (1979) is based on the 

similarity between the distribution of particle size and pore size (which is 

connected to 9(h)). The number of points of the 9(h) relationship which can be 

determined with this model depends on the number of particle size ranges in 

which the sample has been divided. The model of Haverkamp and Parlange (1986) 

is based on the same principle of shape similarity, but includes the effect of 

hysteresis and yields a curve rather than a set of points. 

Empirical models are purely statistical relationships between soil hydraulic 

properties and basic soil properties. The models of Cosby et al. (1984), Saxton 

et al. (1986) and Vereecken (1989) estimate the parameters of mathematical 

expressions describing 9(h) and K(h). The models of Rawls and Brakensiek 

(1982), Rawls et al. (1982) and Gupta and Larson (1979) yield the soil water 

content at a limited number of soil water pressures. 

In the framework of the research on the spatial variability of soil hydraulic 

properties, in 1988 a set of 72 soil samples was taken in the research catch

ment area 'Hupselse Beek'. In order to determine soil hydraulic properties one-



step outflow experiments were executed. However, it appeared that the op

timization yielded unrealistic results. It is thought that this is a result of 

non-uniqueness in the parameter optimization procedure. According to Van Dam et 

al. (1990) a solution could be to add independent retention data to force the 

optimization into the right direction. 

The aim of this research is to find out whether the addition of soil water 

retention data, derived from pedo-transfer functions, can improve the results 

of the parameter optimization from one-step outflow data. 

In chapter 2 the various methods used in this research are reviewed and 

discussed, together with the data set and the way the aim stated above will be 

attained. In chapter 3 the results will be presented. Finally, in chapter 4 a 

discussion on the results will be given. 



2. THEORY, MATERIAL AND METHODS 

In this chapter firstly the one-step outflow method will be described (section 

2.1). Next some remarks regarding the relationship between soil texture and the 

water retention curve will be given in section 2.2. In section 2.3 and 2.4 the 

empirical and semi-empirical the pedo-transfer functions will be treated 

respectively. Subsequently, spatial variability and the concept of scaling will 

be dealt with in section 2.5. Finally, the data sets used and the method of 

this research will be described in sections 2.6 and 2.7 respectively. 

2.1 One-step outflow method 

The one-step outflow method is one of the so-called inverse methods, which are 

used to determine both 9(h) and K(h). Some flux related attribute of a flow 

syBtem is measured. Starting with an initial guess for the parameters de

scribing 9(h) and K(h), the flow system is simulated. Based on the difference 

between the simulated and observed flow system, the parameter values are 

adjusted. The adjustment is repeated until the simulated flow process gives an 

optimal fit to the observed system. (Kool et al., 1985a). In the present case 

9(h) and K(h) are described by the Mualem-Van Genuchten model (Van Genuchten, 

1980): 

9 - 9„ 
S - E [2.1.1] 

6s - 6r 

s(h> - [i + U i v [2-l-2] 

K(h) = Ks-S2[l - (1 - s 1 / m ) m ] 2 [2.1.3] 

with : S = relative saturation (-) 

9g - saturated water content (-) 

9 = residual water content (-) 

a - fitting parameter (cm" ) 

n - fitting parameter (-) 

m » 1 - 1/n (-) 

K - saturated hydraulic conductivity (cm.hr" ) 

1 « fitting parameter (-) 

http://cm.hr


Equations 2.1.2 and 2.1.3 have In common the parameters a and n and are linked 

by the theoretical pore size distribution model of Mualem (1976). Mualem 

assumed I to be 0.5, as did Van Genuchten (1980), but later (e.g. Wösten and 

Van Genuchten, 1988) he considered 1 to be an experimental variable. The para

meter a is inversely related to the air entry pressure, while n is related to 

the slope of the retention curve (- water capacity C(h)). The latter is in turn 

connected to the width of the pore size distribution (Kool et al., 1985a). The 

effects of a and n on the shape of the retention curve work in the same 

direction. A higher value for a increases the slope of the retention curve as 

well as does an increase in n. 

The flow process being evaluated in the one-step outflow method is the 

desorption of an, initially saturated, two-layer system of a soil sample and a 

ceramic plate to which an instantaneous pressure increment is applied. The 

cumulative outflow from the system is measured and used as input for the 

optimization procedure to find 6(h) and K(h). The system of soil sample and 

ceramic plate is shown in figure 2.1.1. 

PNEUMATIC 
PRESSURE 

fig. 2.1.1. Cross section of Tempe-pressure cell (from: Van Dam et al.) 



The system is mathematically described by the Richard's equation (equation 

1.1), together with the following initial and boundary conditions and parameter 

set {b}: 

h - hQ (x) t - 0 0 < x < L [ 2 . 1 .4 ] 

ah 
1 t > 0 x = 0 [ 2 .1 .5 ] 

ax 
h - h, - h t > 0 X = L [ 2 . 1 . 6 ] 

{b} = {9S , e r , a, n , K s , 1} [ 2 . 1 . 7 ] 

with : x - vertical coordinate (cm) (x=0 at top of the soil core; x=L 

at bottom of ceramic plate) 

hg — initial pressure head (cm) 

h & - applied pneumatic pressure head (cm) 

h^ - initial pressure head below the ceramic plate (cm) 

{b} - set of Mualem-Van Genuchten parameters 

Cumulative outflow Qr(t) is calculated as : 

L 
- 2 , 
x-0 

Qc(t) = A__Srt[8(x,0) - 6(x,t)]-Ax [2.1.8] 

o 

with : A - surface area of soil core (cm ) 
Ax - distance between successive nodes (cm) 

The object function E({b}) for the parameter estimation is of an ordinary least 

square form: 

E((b}) - [Q0(ti) - Qc(ti, {b})]2 [2.1.9] 

o 

with : Qg(tj) = measured cumulative outflow at time t^ (cm ) 

Besides, independently measured retention and conductivity data can be included 

in the object function. The squared deviations between measured and simulated 

outflow, retention and conductivity data can be given different weights in the 



optimization. 

Van Dam et al. (1990) and Kool et al. (1985a) have investigated the merits and 

problems of the one step outflow method. 

With respect to the flow process itself the following remarks have to be made. 

Firstly, at the start of the process the flow is mainly determined by the cera

mic plate, being the only region where a pressure gradient exists. Later on the 

lower part of the soil sample adjusts to the suction of the plate and begins to 

dominate the flow process. This means that the outcome of a parameter 

optimization reflects the hydraulic properties of the lower, say, 20 % of the 

sample, rather than a sample average. 

Secondly, due to the large instantaneous pressure increment applied at the 

start of the experiment, the possibility of non-Darcian flow should be kept in 

mind. The Darcy equation, which is the basis of Richard's equation (eq. 1.1), 

is only valid under the assumption of stationarity and the mere absence of 

friction within the fluid. These restrictions follow from the derivation of the 

Darcy equation from the Navier-Stokes equations. In order to make some 

quantitative statement about this, dimensional analysis can be used (see 

appendix 3). 

Sensitivity analysis showed that the optimization is not disturbed by small 

errors in burette readings and in the conductivity of the ceramic plate. The 

optimization is however rather sensitive to leakage (systematic error in 

outflow) and incomplete saturation of the sample at the start of the experi

ment. The latter problem can be circumvented by starting the experiment at some 

(known) suction. 

The optimization is also influenced by the restraints put on the various 

parameters. Firstly, it is a mathematical necessity that n > 1.1. Further, it 

does not make sense to optimize both 6S and 9r because the outflow is deter

mined by the difference between these two parameters. Van Dam et al. (1990) 

claim that I is necessary as a fitting parameter in order to make the descri

ption of K(h) flexible enough. However some boundaries (-0.5 and 1.5) should by 

used to avoid large deviations in the optimization. 

Van Dam et al. (1990) showed that outflow data alone are not sufficient to 

yield unique results. Non-uniqueness can result both from the high correlation 

between parameters and from local minima in the response surface of the object 

function. According to Van Dam (pers. com., 1990) non-uniqueness of parameter 



optimization results especially occurs for soils with extreme textures, viz. 

sandy and clayey soils. 

Kool et al. (1985a) have investigated the effect of the choice of initial 

parameter values on the parameter optimization, related to the applied pressure 

increment and the total amount of outflow (Qtot) during the experiment. They 

used artificial outflow data for two hypothetical soils ('sandy loam' and 'clay 

loam'). They optimized for a, n and 9r, keeping 9g, Kg and 1 constant. Problems 

arose when Q t o t was small compared to the equilibrium outflow (Q(tœ)) which 

would occur at t-*». This problem can be circumvented by either increasing ha, 

or increasing the duration of the experiment, or including Q(tœ) in the 

optimization. The latter possibility does not imply that the simulation has to 

be extended ad infinitum. Q(tœ) in fact only gives information on (9g - 9(ha)) 

and thus has the same effect on the optimization as the inclusion of an 

independently measured retention point 9(ha). Qt o t can also be increased by 

increasing ha, which has the additional advantage that the experimental range 

of h is increased. 

Their overall conclusion is that accurate and unique estimates for 9(h) and 

K(h) can be obtained from outflow data under some conditions. These are that 

Qtot/Q(t00) > 0.5, Q(tœ) is included and the measurements of outflow and 9S are 

rather accurate, and the measurement of Kg is accurate within 25 %. (Kool et 

al., 1985). Regarding the latter requirement it should be noted that such 

accuracy is hardly attainable, due to the probable occurrence of preferential 

stream channels. Besides, Kg is usually not representative for the con

ductivities at higher suctions and therefore the conductivity curve should not 

be fixed to Kg. 

The parameter optimization can be carried out by the FORTRAN program ONESTP 

(Kool et al., 1985b), or the modification of this program, MULSTP by Van Dam. 

2.2 Relationship between texture and the retention curve 

The relationship between soil water pressure and soil water content depends on 

the complicated interaction between soil water and the soil matrix. That 

intricacy is due to the irregularity of the pore spaces and the dependence of 

forces between water and the matrix on temperature, the composition of the soil 



water and the nature of the solid phase. Due to these complications a micro

scopic description of soil water phenomena is impossible and so the derivation 

of a water retention curve from first principles. 

To shift the problem from a microscopic to a macroscopic problem the continuum 

concept has to be invoked (Bear and Bachmat, 1990). This means that soil water 

and the soil matrix are both assumed to be continuous and that properties (e.g. 

soil water tension, porosity, bulk density) of both media can be described by a 

volume average. This introduces the problem of the definition of a représenta-

tire elementary volume (REV). The scale of this REV should be some orders of 

magnitude larger than the scale of the individual features constituting the 

'continuum' but small enough to circumvent spatial variations of the averages 

of the properties. The problem in the application of the continuum concept for 

a soil is that there are at least two scales, a textural (related to soil 

particles) and a structural (related to aggregates). On the sub-aggregate scale 

the soil looks different from that on a super-aggregate scale. When the pore 

space is described, using particle size distribution, a 'textural pore space' 

is described. The soil water retention curve, however, is a expression of the 

(inseparable) combination of 'textural' and 'structural pore space' (Childs, 

1969). 

The existence of at least two scales in soils has also consequences for the 

site of the sample (100 cm cylinder or lysimeter) of which e.g. soil hydraulic 

properties are measured. 

One of the quantities which describes the soil matrix at a macroscopic level, 

disregarding the exact microscopic arrangement of particles and structural 

elements, is particle size distribution. A connection between soil texture and 

the soil water retention curve might be expected. The particle size 

distribution determines to some extent the distribution of the room between the 

particles, i.e. pore size distribution. A soil consisting of large particles 

presumably has larger pores than a fine textured soil. And, keeping in mind the 

equation of capillarity, relating water pressure to the radius of a capillary, 

the water retention curve is nothing but a relationship between pore radius and 

cumulative pore volume (Haverkamp and Parlange, 1986). This is however not a 

unique relationship due to hysteresis. Besides, Haverkamp and Parlange (1982) 

claim that only the wetting boundary of the retention curve can be derived from 

cumulative particle size distribution. 

10 



Methods to relate the water retention curve to soil texture are treated in 

sections 2.3 and 2.4. Limitation to these methods is the limited amount of 

information contained in texture data. Factors, other than soil texture, 

influencing the water retention curve are soil structure (cracks, swelling, 

aggregation), packing of soil particles within aggregates and composition of 

the solid phase (clay minerals, organic matter). To circumvent these limi

tations partly, some of the described methods use additional data such as 

organic matter content, bulk density or saturated water content. 

2.3 Empirical pedo-transfer functions 

In this section four empirical methods to derive retention data from texture 

data will be dealt with. These are the methods of Gupta and Larson (1979), 

Rawls and Brakensiek (1982), Saxton et al. (1986) and Cosby et al. (1984). 

2.3.1 Gupta and Larson 

Gupta and Larson (1979) developed statistical relationships predicting soil 

water retention at 12 soil water pressures, viz. -0.04, -0.07, -0.10, -0.20, -

0.33, -0.60, -1.0, -2.0, -4.0, -7.0, -10.0, -15.0 bar. These relationships are 

based on percentages sand, silt, clay and organic matter and bulk density. 

The retention and texture data were obtained from 43 soil materials, of which 

40i were artificially packed cores. The artificial soil samples were composed of 

dried soil material from ten locations in the United States plus a dredged 

sediment. Retention data were smoothed and the water content values used in the 

regression analysis were taken from the smoothed curve. 

Regression coefficients were determined for the following equation, relating 

water content to texture data: 

G = a-SA + b-SI + c-CL + d-OM + e-ph [2.3.1] 

with : 6 - water content at pressure head p (-) 

SA - percentage sand (%) 

SI - percentage silt (%) 

CL - percentage clay (%) 

OM = organic matter content (%) 
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o 

pv - bulk density (g-cm" ) 

a, b, c, d - regression coefficients (-) 

e = regression coefficient (cm -g ) 

Regression coefficients can be found in table 2.3.1. 

Table 2.3.1. Regression and correlation coefficients for prediction of soil 
water content at specific matric potentials (Gupta and Larson, 
1979) 

Matric 
poten
tial 

bar 

-0.04 
-0.07 
-0.10 
-0.20 
-0.33 
-0.60 
-1.0 
-2.0 
-4.0 
-7.0 

-10.0 
-15.0 

a x 103 

-

7.053 
5.678 
5.018 
3.890 
3.075 
2.181 
1.563 
0.932 
0.483 
0.214 
0.076 

-0.059 

Regress 

b x 103 

-

10.242 
9.228 
8.548 
7.066 
5.886 
4.557 
3.620 
2.643 
1.943 
1.538 
1.334 
1.142 

ion coefficients 

c x 103 

-

10.070 
9.135 
8.833 
8.408 
8.039 
7.557 
7.154 
6.636 
6.129 
5.908 
5.802 
5.766 

d x 103 

-

6.333 
6.103 
4.966 
2.817 
2.208 
2.191 
2.388 
2.717 
2.925 
2.855 
2.653 
2.228 

e x 102 

cm3-g_1 

-32.120 
-26.960 
-24.230 
-18.780 
-14.340 
-9.276 
-5.759 
-2.214 
-0.204 
1.530 
2.145 
2.671 

Corre
lation 
coeff. 

-

0.950 
0.959 
0.961 
0.962 
0.962 
0.964 
0.966 
0.967 
0.962 
0.954 
0.951 
0.947 

2.3.2 Rawls and Brakensiek 

The approach of Rawls and Brakensiek (1982) is quite similar to that of Gupta 

and Larson (1979), but the first made use of natural soils instead of arti

ficial soil samples. Using a U.S. data base of 500 soil profiles, comprising 

2543 soil horizons, Rawls and Brakensiek developed regression equations to 

predict retention data from texture. They fitted the Brooks and Corey equation 

(Brooks and Corey, 1964; see also section 2.3.4) to the measured retention 

data. Subsequently, water contents were calculated for 12 pressure heads, using 

these curves. The pressure heads are the same as those used by Gupta and Larson 

(see 2.3.1). 

Three levels of regression equations were developed. At the first level only 

percentages sand, silt, clay and organic matter and bulk density were used. At 

the second level the water retention at -15.0 bar was added and at the third 
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level the retention at -0.33 bar. Because in this research only textural data 

are available, the second and third level are of no use. When available, 

especially the retention at -0.33 bar might give much information. The regres

sion equation for the first level reads as follows: 

e - a + b-SA + c-SI + d-CL + e-OM + f-p^ [2.3.2] 

with : a, b, c, d, e 

f 

regression coefficients (-) 
3 -1 regression coefficient (cm -g ) 

The regression coefficients are summarized in table 2.3.2. 

Table 2.3.2. Regression and correlation coefficients for prediction of soil 
water content at specific matric potentials (Rawls and Braken-
siek, 1982) 

Water 

sure 

bar 

-0.04 
-0.07 
-0.10 
-0.20 
-0.33 
-0.60 
-1.0 
-2.0 
-4.0 
-7.0 

-10.0 
-15.0 

a 

-

0.7899 
0.7135 
0.4118 
0.3121 
0.2576 
0.2065 
0.0349 
0.0281 
0.0238 
0.0216 
0.0205 
0.0260 

Regression coe 

b 

-

-0.0037 
-0.0030 
-0.0030 
-0.0024 
-0.0020 
-0.0016 

c 

-

0. 
0. 
0. 
0. 
0. 

.0014 

.0011 

.0008 

.0006 

.0005 

ifficients 

d 

-

0.0017 
0.0023 
0.0032 
0.0036 
0.0040 
0.0055 

0.0052 
0.0050 
0.0049 
0.0050 

e 

-

0.0100 

0.0317 
0.0314 
0.0299 
0.0275 
0.0251 
0.0220 
0.0190 
0.0167 
0.0154 
0.0158 

f 

3 
cnr-g 

-0. 

-1 

1963 

Corre
lation 
coeff. 

-

0.58 
0.74 
0.81 
0.86 
0.87 
0.87 
0.87 
0.86 
0.84 
0.81 
0.81 
0.80 

2.3.3 Saxton, Rawls, Roberger and Fapendick 

Saxton et al. (1986) observed that the water retention curve can not be de

scribed, from saturation to wilting point, by an exponential equation, nor by 

any other first or second order equation, because of the double inflection 

point in the curve. Therefore, they proposed a description which consists of 

three sections (see fig 2.3.1). 
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fig. 2.3.1. Retention curve divided into three sections according to Saxton 
et al. (1986) 

For soil water pressures ranging from 10 to 1500 kPa an exponential function is 

applied, equation 2.3.3a (to convert from kPa to cm, multiply with 10.1936). 

Between 10 kPa and the water pressure at air entry, hae, a linear relationship 

gives a good approximation (equation 2.3.3b). Between h0 0 and saturation water 

content is supposed to be constant (equation 2.3.3c): 

h - A-G 

h - 10 

9 - e. 

B 

e - e 10 
es - e10 

d o - hflP) 

10 < h < 1500 kPa 

ha e < h < 10 kPa 

0 < h < h 
ae 

[2.3.3a] 

[2.3.3b] 

[2.3.3c] 

with : 

10 

ae 

= coefficient (kPa) 

= coefficient (-) 

= water content at h - 10 kPa (-) 

= water potential at air entry (kPa) 

In order to establish regression equations to estimate the coefficients in the 

above mentioned equations, hypothetic soils were generated. 55 soil textures 

were generated by dividing the USDA soil texture triangle into grids of 10 % 

sand and 10 % clay increments. Organic matter content was held constant at 

0.66 %. 

Artificial water retention data were generated using the regression equation of 

Rawls et al. (1982), predicting water content at 10 values of pressure head, 

using percentages sand, silt, clay and organic matter as input data. 
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Table 2.3.3. 

Equation 

Summary of regression equations (Saxton et al., 1986) 

Coefficient 

A - exp [a + b-CL + c-SA2 + d-SA2•CL]•100.0 a, b, c, d 

B - e + f-CL2 + g-SA2 + g-SA2-CL e, f, g 

910 - (10/A) 1/B 

h.., = 10. (m + n-6„) m, n ae Î0 e_ - h + j-SA + ̂ logCCL) h, j, k 

Because of the limited range of textures in the original data of Rawls et al. 

(1982), hypothetic soils with >60 % clay, <5 % sand or <5 % clay were omitted. 

The resulting regression equations can be found in table 2.3.3, the regression 

coefficients in table 2.3.4. 

Table 2.3.4. Regression coefficients (Saxton et al., 1986) 

Coefficient 

a 
b 
c 
d 
e 
f 

Value 

-4.396 
-0.0715 
-4.880-10"4 

-4.285-10"5 

-3.140 
-2.22-10"3 

Coefficient 

g 
h 
j 
k 
m 
n 

Value 

-3.484-10-5 

0.332 
-7.521-10"4 

0.1276 
-0.108 
0.341 

2.3.4 Cosby, Homberger, Clapp and Ginn 

Cosby et al. (1984) described the water retention curve with a modification of 

the Brook and Corey (1964) equation (eq. 2.3.6), setting 8r to zero (eq. 2.-

3.7): 

h " h s ( i - ~ i r ) b t2-3-6] 

ös " er 

h - hs<Z~>b [2.3.7] 
es 

with : hs = saturation pressure head (cm) 

b = coefficient (-) 
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The parameter hg is comparable to the air entry pressure hae, but hs in this 

case was used as a fitting parameter instead of a physical parameter. Cosby et 

al. took 6g as a measured quantity and hg and b were estimated by fitting 

equation 2.3.7 to the retention data. This was done for 1448 samples form U.S. 

soils, comprising the entire textural spectrum. Apart from texture, other 

descriptors of the samples were available, such as horizon, consistency, 

structural size and form, roots, topography, drainage and land use. Using one 

and two way analysis of variance they showed that texture was the most 

significant descriptor for both b and log(hg). 

In the data set texture was given as a textural class (according to the 12 

textural classes in the USDA textural triangle), not as percentages sand, silt 

and clay. In order to develop regression equations between texture and the 

parameters hg and b, percentages were obtained from the midpoint values of each 

textural class. Regression equations were also developed for log(Kg), 6g and 

the standard deviations of b, hg, 9g and log(Kg). Regression equations are of 

the following form: 

x a + b-SA + c-SI + d-CL [2.3.8] 

with b (-), hg (cm), 6g (-), log(Kg) (logUnch.hr-1)), 

a(b) (-), a(hg) (cm), a(6g) (-), a(log(Ks)) 

(log(inch.hr-1)) 

coefficients ([x]) 

Table 2.3.5. Regression and correlation coefficients (Cosby et al., 1984) 

Parameter 

Name 

b 
log(hs) 
log(Kg) 

c(b) 
a(log(hg)) 
a(log(Kg)) 
"(es) 

Units [x] 

. 

log(cm) 
log(in-hr" 
% 
-

log(cm) 
log(in-hr" 
% 

b 

b 

Regression coefficient 

a 

[x] 

-3.10 
1.54 

-0.60 
50.5 
0.92 
0.72 
0.43 
8.23 

b 

[x] 

0.003 
-0.0095 
0.0126 

-0.142 

-0.0070 

c 

[x] 

0.0063 

0.0144 
-0.0026 
0.0032 

d 

[x] 

-0.1570 

-0.0064 
-0.037 
0.0492 
0.0012 
0.0011 

-0.0805 

Corre
lation 
Coeff. 

-

0.966 
0.850 
0.872 
0.785 
0.584 
0.111 
0.403 
0.574 
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Th« regression coefficients can be found in table 2.3.5. One remark has to be 

made with respect to parameter b. From physical considerations it is clear that 

b should be negative, because 6 decreases as h increases. According to Cosby et 

al. (1984), however, b is positive. This error is corrected by multiplying all 

regression coefficients for b with -1. 

2.4 Semi-empirical pedo-transfer functions 

In this section three pedo-transfer functions will be described which are a 

combination of empiricism and physical considerations. These are the model of 

Arya and Paris (1981), the modification of this model by Tyler and Wheatcraft 

(1989) and the model of Haverkamp and Parlange (1986) . 

2.4.1 Arya and Paris 

Th« model of Arya and Paris (1981) is based on the observation that there is an 

obvious similarity in shape between the water retention curve and the 

cumulative particle size distribution. The retention curve is in fact a pore 

site distribution curve (see section 2.2). 

The cumulative particle size distribution is divided into n fractions (usually 

th« same fractions as were used for the textural analysis). The particles of 

each fraction are thought to be assembled in a discrete domain with the same 

void ratio (ratio between pore volume and solid mass volume) as the undisturbed 

sample, where the void ratio is defined as: 

e « (Pp - ph)/ph [2.4.1] 

with : e = void ratio (-) 

Pfo " bulk density (g*cm ) 
o 

p — particle density (g-cm ) 

The pore volume associated with each size fraction can then be computed as: 
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Vv,i = Wi/p^-e [2.4.2] 

with : Vv i - specific pore volume associated with particles in fraction i 

W^ - mass fraction in particle size range i (-) 

The pore volumes generated by each size fraction are successively filled with 

water, starting with the pores associated with the smallest particles. The 

water content related to each particle size fraction is computed as: 

6v,i -jlîVjAb t2-4-3] 

3 1 with : Vfj = specific bulk volume = 1/p^ (cm -g ) 

The average volumetric water content corresponding to the midpoint of a given 

particle size fraction is approximately given by: 

e * v , i = < e v , i + e v , i + l > / 2 t2-4-4] 

with : 6 • = average volumetric water content in pore volume for which 

largest pore relates to midpoint of i-th particle size fraction 

(-) 

Now the 6-coordinates of the points of the retention curve are determined. 

Subsequently the h-coordinates need to be assessed, h is related to the pore 

radius by the equation of capillarity, so that the problem is shifted to the 

determination of a representative pore radius for each particle size fraction. 

In order to establish a relationship between particle size and pore radius, two 

assumptions have to be made. Firstly, it is assumed that the solid volume in 

any fraction can be approximated as that of spheres with a uniform size, 

defined by the mean particle radius for that fraction. Secondly, it is assumed 

that the volume of the pores in each domain can be approximated as that of 

cylindrical capillary tubes with a uniform size, whose radii are related to the 

meen particle radius for that fraction. 

With these assumptions, the particle and pore volumes in each particle size 

fraction can be represented respectively as : 
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V p , i - n i 4 W R i
3 / 3 - Wj/pb [ 2 . 4 . 5 ] 

Vv,i - * r i \ - < W ' e [2.4.6] 

o -ï 

with : V • - specific solid volume in range i (cm -g"-1-) 
P >J-

R* - mean particle radius of range i (cm) 

n^ - number of particles in range i (-) 

r^ - mean pore radius related to range i (cm) 

h^ = pore length of pores related to range i (cm) 

Combining equations 2.4.5 and 2.4.6 gives: 

r j V R j 3 - 411,6/314 [2-4.7] 

The pore length h* is approximated as the number of particles that lie along 

the pore path times the length contributed by each particle. In a cubic, 

closely packed assemblage of uniform spherical particles h* would be n*2Rj. In 

natural soils, however, pore length will depend on actual soil particle shapes, 

size and orientation. The contribution of each particle to pore length will be 

greater than its diameter: 

h± = ni
a2Ri [2.4.8] 

with : a = empirical coefficient (-) 

Pore radius can then be approximated as : 

ri - Ri[4e-ni(1_a!V6]1/2 [2.4.9] 

Arya and Paris found a to be 1.38 on the average (ranging from 1.31 to 1.43) 

for fractions with a mean particle radius up to about 100 /xm. For particles 

with larger radii a seems to drop sharply, but because of the scarce data in 

that size range, Arya and Paris decided to fix a at a value of 1.38. 

When for each particle size fraction r^ has been calculated, soil water pres

sure can easily be obtained using the equation of capillarity: 
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hi - 2a-cos(6)/pw-g-ri [2.4.10] 

with : 6 = contact angle between water surface and capillary (°) 
9 5 

a = surface tension of water (g-s or 10 N/cm) 
o 

g - gravitational acceleration (m-s ) 
pw - density of water (kg-m ' 

Although in reality 8 depends on organic matter content, Arya and Paris set it 

to zero, which is only valid for an absolutely clean capillary. pw and a were 

held constant, while in reality they are temperature dependent. 

Haverkamp and Parlange (1982) pointed out in their comment that the model of 

Arya and Paris does not take into account air entrapment, so that near satur

ation water content will be overestimated. Haverkamp and Parlange also stated 

that particle size distribution data can only be used for the determination of 

the wetting boundary curve. Finally they argued that the relation between pore 

and particle radii (eq. 2.4.8) is not uniquely defined as it depends on the way 

n^ is chosen. Having the same average particle radius, the width of the range 

of radii affects n^. Arya and Paris (1982) showed in their reply that a drastic 

variation in n^ only has minor effects on the pore size. 

2.4.2 Tyler and Wheatcraft 

Tyler and Wheatcraft (1989) reduced the empiricism in the model of Arya and 

Paris (1981) (described in the previous section) by showing the physical 

significance of the empirical factor a, assumed to be constant at 1.38 by Arya 

and Paris. For this they used concepts from fractal mathematics. 

In Euclidean geometry a straight line with length L can be measured with a 

measuring unit e (e < L): 

L(e) = Ne1 - constant [2.4.11] 

with : N - number of measuring units to cover straight line 

Thts holds also true for two or three dimensions, when the exponent of e 
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u r n " H2-62 

fig. 2.4.1. Dependence of the length of an irregular line on the length of 
the measuring unit (after: Tyler and Wheatcraft, 1989) 

is changed to 2.0 or 3.0 respectively. 

If the line is irregular, the measured length becomes dependent of the size of 

the measuring unit (see figure 2.4.1). In that case the following relationship 

holds : 

F « NeD = constant [2.4.12] 

with : F - measure of line length, independent of € 

D - dimension that yields a constant F 

Combining equations 2.4.11 and 2.4.12 yields: 

L<0 - F€1 _ D , [2.4.13] 

which is a transformation relationship between topological dimension of one and 

the fractal dimension of D for a fractal line. 

The irregular line we are dealing with in the model of Arya and Paris is the 

pore wall, whereas they assumed a straight capillary tube of which the length 

was expressed in equivalent particle radii (eq. 2.4.8), Tyler and wheatcraft 

consider a pore to be a fractal object, of which the true length is measured 

as: 

hj* - F-(2Ri)1*D [2.4.14] 

with : h^ - true length of the pore channel 
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F can be evaluated from equation 2.4.12, setting 2R^ equal to the straight line 

length h^ of h* , so that N=l and: 

F - h j 0 [2.4.15] 

The true fractal pore length of the i-th scale of measurement in terms of 

particle size and straight line length is then given by: 

ht* - h i
D (2R i ) 1 _ D [2.4.16] 

But h^ is equal to 2R^N^ so, 

hj* - 2RiNi
D [2.4.17] 

The exponent D is the fractal dimension describing the tortuosity of the pore 

channels and is equivalent to Arya and Paris' a, A low fractal dimension is an 

indication for a fairly straight channel, while a D of 1.5 yields a very 

tortuous pore channel. D > 1.5 are physically unrealistic according to Tyler 

and wheatcraft. 

The exponent a, invoked by Arya and Paris to account for non-spherical par

ticles has thus a sound physical basis. 

The fractal dimension of a three dimensional packing of particles can be 

estimated from the following relationship: 

NRj° = constant [2.4.18] 

with : N = number of particles of radius > R^ 

For D = 0 the distribution is composed of particles of equal diameter. 0 < D 

<3.0 reflects a greater number of larger grains, whereas D > 3.0 reflects a 

distribution dominated by smaller particles. 

D can thus be estimated from a log-log plot N versus R^. R^, the representative 

particle radius of a fraction, was taken by Tyler and Wheatcraft to be the 

arithmetic mean of two successive sieve sizes. N* can be calculated, assuming 
o 

spherical particles and a known particle density (2.65 g-cm ). 
In- our case we need the fractal dimension of the one dimensional trace of the 
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pore channel. Tyler and Wheatcraft use the concept of fractal increment D^ 

being the difference between the fractal dimension and the traditional topo

logical dimension, D^. It is assumed that the fractal increment (D - D̂ .) is 

constant for different topological dimensions (profiles, transects). Then the 

fractal dimension of the pore channel (1 dimension) can be estimated from the 

fractal dimension of the soil matrix D (3 dimensions), as 1 + (D - D^) - 1 + 

Di-

2.4.3 Haverkamp and Parlange 

Haverkamp and Parlange (1986) presented a model relating the soil water reten

tion curve to the cumulative particle size distribution. They claimed the model 

to be applicable to sandy soils without organic matter. 

To relate soil water pressure to pore radius they used the equation of capil

larity (eq. 2.4.10). To relate particle diameter to equivalent pore radius 

they used a simple linear relation, which will hold only when pores of dif

ferent sizes are similar in shape: 

d « 7R [2.4.19] 

with : d - particle diameter (cm) 

R - equivalent pore radius (cm) 

7 = packing parameter (-) 

fig. 2.4.2. 

log (part ie l« dianater) » 
l o i <h) log (pore radius) » 

Shape similarity between cumulative particle size distribution 
and retention curve 
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7 is dependent on textural and structural soil properties and is a simplifi

cation of a more complex d(R) relation. The simplification, however, is jus

tified when structural properties become independent of the degree of satura

tion which is the case for relatively uniform particles in sandy soils. 

Assuming shape similarity between the cumulative particle size distribution and 

the retention curve (see fig. 2.4.2) it follows from 2.4.19 that for a given R 

and d (- 7R) the relative pore fraction and the relative solid fraction are 

equal: 

S(7R) - F(d) [2.4.20] 

with : F - cumulative particle size distribution (-) 

S = relative saturation - 6/6s (-) 

When equations 2.4.10, 2.4.19 and 2.4.20 are combined with known values for 6g 

and 7 a water retention curve can be determined from a cumulative particle size 

distribution. In order to incorporate the effect of hysteresis a different 

value of 7 should be determined for each scanning curve, because 7 is the only 

parameter which could yield different values for R, with the same d and same 

packing arrangement. However, Haverkamp and Parlange selected a value for 7, 

consistent with one of the boundary scanning curve and predicted the other 

boundary curve using a hysteresis model of Parlange. For an explanation of the 

symbols and variables, see fig 2.4.2. 

fig 2.4.2 Explanation of terms and variable occurring in model of Haverkamp 
and Parlange (after: Haverkamp and Parlange, 1986) 
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Haverkamp and Parlange used the Brooks and Corey (1964) equation to describe 

the main wetting curve, setting 9r to zero, because they considered it to be a 

fitting parameter: 

(!r~) " ("ÏT)A f ° r h - hae [2.4.21] 

with : 6ae = water content at h = ha e (-) 

A = coefficient (-) 

In order to circumvent the assumption that the potential at air entry and water 

entry (hae and h^g, respectively) are equal, the lower part of the wetting 

branch is described by the linear relationship passing through \fe(®ae)
 anc* 

(_H_) = [i + A . x ] for h < ha e [2.4.22] 
öae hae 

so that: 

\e,-l eae * V 1 + x - A ^ ] - 1 [2.4.23] 
ae 

A drying scanning curve, starting at a water pressure hgt(j on the wetting 

boundary of the loop, is given by: 

<h - h s t d ) ^ = ew - 6d [2.4.24] 

with : 8W - 0 for h at the wetting curve (-) 

6^ - 9 for h at the drying curve (-) 

Combination of equations 2.4.21 through 2.4.24 together with ̂ std^estd^ *" 

hw e(8s), yields formulations for the main wetting and drying curves. The two 

specific water pressures occurring in these formulations, ha e and hwe are of 

course linked, but Haverkamp and Parlange argued that the relationship is not 
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constant. The water entry pressure tends to zero when the pore space becomes 

totally saturated, when 8g tends to the porosity e: 

£**• = [——-Id - — ) [2.4.25] 
h a e A e 

Using this, yields the final main wetting curve: 

e - T - — r t - p ] A for h > hae [2.4.26a] 
1 + A h d e 

9 * e [ 1 ' (rrr)ïr~] f o r ^ s h - h ^ [2.4.26b] 

9 * 9S for h < ha e [2.4.26c] 

And the main drying curve: 

Vi Vi Ö 

e - e(-p)A[l - -p(l - — ) ] for h > ha e [2.4.27a] 
h h e dtJ 

9 - 9S for h < ha e [2.4.27b] 

In order to use this model the parameters 6S, A, 7 and ha e (which is a function 

of 7) have to be estimated. 

9 is considered as an independent input parameter. 

A has been found to be related to the pore size distribution and can be es

timated from the cumulative particle size distribution F(d), assuming shape 

similarity between ©w(h) and F(d). Haverkamp and Parlange use a function, 

similar to the Mualem-Van Genuchten equation, to describe F(d). The function 

contains two fitting parameters, n and d : 

F [2.4.28] 

[1 + (%n]m 

a 

with : m = 1 -1/n 

For high values of d, equation 2.4.28 tends to: 
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F - (-&)» [2.4.29] 
d 

with : fi = m/(l-m) 

Assuming shape similarity between ©w(h) and F(d), /* = A. This only holds for 

uniform-sized particle systems. Therefore ju is corrected as a function of soil 

structure using p ^ : 

A = arn-pd
a2 [2.4.30] 

with : a^ - regression coefficient ({cm -g" }"a2) 

&2 ~ regression coefficient (-) 

hg^ is related to 7 and d by equation 2.4.10 and 2.4.19, where there are two 

values for 7, 7 w e t and 7 Ó V V I corresponding to the wetting and drying curve, 

respectively. Combining this with equations 2.4.10, 2.4.19, 2.4.20 and 2.4.28 

yields : 

h„_ 2a 1 6„„ 1 /„ i m h_„ 

_§Ê [(_££)-1/m . ijl-m—§e— [2 4 31] 
7 Pwg dg 6S h(9ae) 

with : M 9 a e ) - h at 6& e on the drying boundary curve 

7 " 7dry 

Estimating 0 from the main wetting curve, and introducing it into the main 

drying curve yields an expression for the ratio h a e / M 6 a e ) . which can be solved 

iteratively: 

- ï g S — =[(1 + A)[l - r^fS-rd - ̂ ) ] ] " 1 / A [2.4.32] 
h(6ae) h(eae> £ 

Finally, 7 can be estimated from A using the following regression equation: 

7 * b-L + b2A + b3A2 [2.4.33] 

with : b-̂ , bo, bo - regression coefficients (-) 
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Combining equations 2.4.31 through 2.4.33 gives an estimate for hae. 

Values for the regression coefficients used in equation 2.4.30 and 2.4.33 were 

obtained by Haverkamp and Parlange from 10 sandy soils, and can be found in 

table 2.4.1. 

Table 2.4.1. Regression coefficients for the determination of A and 7 
(Haverkamp and Parlange (1986)) 

Coefficient Value Coefficient Value 

ax 0.0723 b1 17.1736 
3.8408 b0 -4.7043 12 J.04UO D2 

b3 0.1589 

2.5 Spatial variability and scaling 

Soil properties vary with distance, due to the spatial differences in the 

processes of soil formation and transformation. As a result of this variability 

the description of a certain soil requires a number of samples in order to 

obtain a representative mean. The number of samples depends on the degree of 

variability and the soil property under consideration. 

To describe the spatial variability of soil hydraulic properties the method of 

scaling can be used, which is based on the concept of similar media. Similar 

media have internal geometries differing only by the characteristic length Ar. 

This implies that such materials have identical porosities and relative par

ticle and pore size distributions (Warrick et al., 1977). 

A scaling factor a„ can be defined as: 

ar = V A m [2.5.1] 

with : Ar - microscopic characteristic length of soil at location r 

Am - microscopic characteristic length of a reference soil 

a - scaling factor for soil at location r 

Then, the soil water characteristic and hydraulic conductivity at any location 

r can be related to a reference curve, at a certain water content i (Hopmans, 

1987): 
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hr,i - Vi/°r [2.5.2a] 

Kr,i = Km.i'«2 [2.5.2b] 

with : h„ • - pressure head at water content i at location r (cm) 

hjn i " pressure head at water content i for reference soil (cm) 

K„ • - conductivity at water content i at location r (cm.hr" ) 

KJJJ ̂  = conductivity at water content i for reference soil 

(cm.hr"1) 

Assuming the similar media concept to be valid, the soil hydraulic properties 

of an area could be described by a reference retention curve and conductivity 

curve, combined with a set of scaling factors, one for each location. Real 

soils at adjacent locations do not satisfy the requirements for similar media 

in at least one aspect, viz. they do not have identical porosities. This 

deviation can easily be circumvented by using relative saturation S instead of 

0. There may be, however, also other deviations from the concept of similar 

media. 

A variety of methods to obtain scaling factors from measured data does exist, 

of which Hopmans (1987) gave a review. In this research a modification of the 

method of Warrick et al. (1977) is used. Scaling factors are obtained by 

minimizing the sum of square deviations (eq. 2.5.3a), under the condition of 

equation 2.5.3b : 

(a^ + a2
 + «3 + + <*R)/R " ! [2.5.3b] 

with : R - number of locations 

Whereas Warrick et al. (1977) used a power function to describe h^S) and 

KJJ-CS), in this research the Van Genuchten functions will be applied (eq. 2.1.2 

and 2.1.3). To scale retention data, use will be made of the PASCAL program 

HSCALE, written by Droogers. 
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2.6 Materials 

All soil sample used in this research were taken from the 'Hupselse Beek' 

catchment, near Eibergen in the east of the Netherlands. Two sets of data were 

used, both consisting of sandy soils, although in the first data set some 

samples contained some peat. 

Table 2.6.1. Data and used methods in set 1 

Quantity Method of determination 

Textural analysis fractions < 0.053 mm : sedimentation 
fractions > 0.053 mm : sieving 

Organic matter glow method 
Bulk density drying and weighing 
Saturated water content saturation, drying and weighing 
Saturated conductivity flux measurement at two pressure differences : 

±1.5 cm and ±3 cm 
Outflow data Tempe pressure cell ; with pressure increment of 

1000 cm 
Infiltration data field measurement with infiltration rings 

The first set was obtained in 1988 and consists of 72 undisturbed samples in 

cylinders with a diameter of 5 cm and a height of 5.1 cm. These were taken at a 

plot of 1 ha. A square 6x6-grid was used with a gridpoint spacing of 20 meters, 

taking samples at two depths (topsoil ± 10-15 cm, subsoil ± 45-50 cm). The 

samples were given a number, consisting of a letter and number for the two 

horizontal coordinates of the grid, and a number for the depth (top = 1, 

sub = 2), e.g. D3-4. 

In table 2.6.1 a review is given of the available data of these samples, 

together with the methods used to obtain them. The data, excluding outflow and 

infiltration data, can be found in Appendix 1. One remark has to be made 

regarding the outflow data. During later experiments using the same equipment, 

it appeared that water evaporated through the tube leading from the bottom of 

the ceramic plate to the burette (see fig. 2.1.1). This leakage was of the 

order of 0.1 to 0.2 ml-day . More important was the leakage past the rubber 0-

rings. No quantitative data are available on this error, but the amount of 

leakage can be at least one order of magnitude larger than the leakage through 

the tube. 

The second set of data has been published before by Hopmans and Strieker (1987) 

30 



as sampling scheme 2. These data were obtained from a field adjacent to the 

field of the first data set and is assumed to be representative for the latter. 

This set will be used as validation data. 

The set consists of 28 samples from 7 locations at two depths, 2 samples at 

each point. Of these samples retention data were obtained by means of a sand

box, up to pressure heads of ± 500 cm. The retention data have been summarized 

in 28 sets of Van Genuchten data, setting 6 to zero. Also conductivity data 

were collected, using the hot air method and the crust method (also up to ± 500 

cm). Conductivity data, together with all retention data of each point (2 

samples), were also fitted to the Van Genuchten model, setting 6r to zero and 1 

to> 0.5, which yielded 14 sets of parameters, including Kg. These data can be 

found in Appendix 2. 

2.7 Methods 

The first part of this research will comprise the application of the pedo-

transfer functions, described in sections 2.3 and 2.4, to the data of the first 

data set. To simplify data handling and storage the resulting curves will be 

summarized with a set of Van Genuchten parameters. Curve fitting will be done 

using the FORTRAN program RETC. In the curve fitting procedure 9S will be held 

constant at its measured value, because none of the pedo-transfer functions 

predicts water contents sufficiently near saturation. 

In order to make a statement on the quality of the thus generated curves, they 

will be compared to the retention data of data set 2, because no retention data 

are available of data set 1. For this comparison the curves will be fitted to 

the Van Genuchten equation with 9r set to zero (as in data set 2). (in the 

remainder of this research the curves will be described by Van Genuchten 

parameters with 8r as a fitting parameter). Averages will be taken of the 

curves of data set 1 and 2, for top and subsoil samples separately. A root 

maan square (RMS) criterion, between the estimated curves of data set 1 and the 

measured curves of set 2, will be used to compare the quality of the different 

pedo-transfer functions. To circumvent the effect of unequal porosities, S will 

be used instead of 6. 

Besides, scaling will be applied, in order to study the description of spatial 

variability by the pedo transfer functions. Standard deviation, minimum and 

maximum values of the scaling factors of estimated and measured curves will be 
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compared. Also the correlation between scaling factors of the different pedo-

transfer functions will be calculated to figure out to what extent these 

functions describe spatial variability in the same way. Because in the scaling 

procedure deviating soils can have a profound effect, the peaty soils in data 

set 1 will be excluded. As a selection criterion will be used an organic matter 

content of more than two times standard deviation above average. 

The second part of this research is an attempt to improve the results of the 

one-step outflow optimization (see section 2.1), by adding retention data. 

These retention data will be derived from the pedo-transfer function, chosen in 

the first part. 

Addition of retention data will take place in two ways. Firstly by including a 

point of the retention curve in the optimization. Secondly by fixing the 

retention curve, only optimizing the conductivity curve. The latter procedure 

will be repeated with different restraints on the optimized parameters. For 

the first procedure, the water content at 1000 cm will be used, because this 

should have the same effect as including QCt,,,) in the optimization as advocated 

by Kool et al. (1985a). 

The outcomes will be judged on the resulting average curve and the uniqueness 

of the solutions. Average conductivity curves will be obtained by logarithmic 

averaging over all samples, top and sub soil samples separately. Uniqueness 

will be tested by repeating the optimization procedure with three different 

sets of initial parameter values. 
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3. RESULTS 

In this chapter firstly, in sections 3.1 and 3.2, the results on the pedo-

transfer functions, described in sections 2.3 and 2.4, will be dealt with. In 

section 3.1 the implementation of the methods and computed van Genuchten 

parameters will be presented. In section 3.2 the results will be compared with 

the validation data. In section 3.3 the outcomes of the combined use of 

estimated retention data and outflow data in one-step outflow optimization will 

be reviewed. 

3.1 Pedo-transfer functions 

In this section the use and results of the pedo-transfer functions, described 

in sections 2.3 and 2.4 will be dealt with. But firstly a review of data set 1 

will be given. Figure 3.1.1a and 3.1.1b show the average particle size 

distributions of 36 samples of topsoil and subsoil samples respectively. Most 

striking feature of these figures is the limited scatter around the mean curve. 

In table 3.1.1 the other measured quantities are reviewed. Note the high 

organic matter content. 
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Table 3.1.1. Summary of data set 1 

Quantity 

Org. mat. 

% 
9s 
Ks 
l°ß(Ks) 

Unit 

% 
g-cm"1 

cm-hr 
cm-hr 

mean 

3.677 
1.442 
0.407 

11.98 
6.88 

top so 

SD 

1.919 
0.120 
0.052 

21.45 
2.43 

il 

min. 

0.89 
1.02 
0.306 
2.229 
2.229 

max. 

10.5 
1.59 
0.562 

122.3 
122.3 

mean 

2.085 
1.514 
0.384 

10.98 
6.62 

sub so 

SD 

2.115 
0.146 
0.053 

11.14 
3.05 

il 

min. 

0.35 
1.1 
0.293 
0.188 
0.188 

max. 

11.18 
1.77 
0.518 
46.71 
46.71 

3.1.1 Gupta and Larson 

The model of Gupta and Larson was rather easily implementable. The 13 available 

particle size fractions had to be reduced to percentage sand, silt and clay. 

Table 3.1.1. Conversion from 13 particle-size fractions to percentage sand, 
silt and clay 

Name Particle Computed as : 
-sizes 

fixa % 

Clay (CL) < 2 (< 2 /tm) 
S i l t ( S I ) 2 -50 (< 16 /im) - (< 2 /xm) + 0 . 9513 • ( 1 6 - 53 /tin) 
Sand (SA) 50 -2000 0 . 0 4 8 7 - ( 1 6 - 5 3 /im) + ( 53 -75 /tm) + ( 75 -106 /im) + 

+ ( 106 -150 /im) + ( 150-212 /xm) + ( 212 -300 /im) + 
+ ( 300-425 Mm) + ( 425-600 /tm) + ( 600 -850 /im) + 
+ ( 850-1190 itm) + (>1190 /im) 

This conversion can be found in table 3.1.2. Interpolation between 16 and 53 /im 

was done logarithmically. 

The matric potentials at which water contents are computed had to be converted 

from bar to cm. This was done by multiplying with 1019.1 cm-bar . Next the Van 

Ganuchten model was fitted to the calculated data points with 9 held at its 

measured value. The result can be found in table 3.1.3. 
o 

As can be seen from the correlation coefficient R , the Van Genuchten model was 

quite well able to describe the calculated retention points. The value of all 

parameters are reasonable for a sandy soil. They are of the same order as those 
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Table 3.1.3. Van Genuchten parameters for curves generated with method of 
Gupta and Larson (1979) 

top soil sub soil 
Para-
mater Unit mean SD min. max. mean SD min. max. 

6 ! 
a 
n 

0.0573 0.0050 0.047 0.068 
cm'1 0.0419 0.0139 0.0175 0.0972 

1.5672 0.0379 1.4931 1.6594 

0.9949 0.0021 0.9898 0.9983 

0.0558 0.0099 0.042 0.0858 
0.0520 0.0190 0.0173 0.1004 
1.6338 0.1362 1.4953 2.1393 

0.9916 0.0041 0.9803 0.9978 

occurring in the validation data set (appendix 2), except for a, which is about 

a factor 2 higher. 

3.1.2 Rawls and Brakensiek 

Concerning the ease of implementation and the conversion of pressure heads and 

particle size fractions, this model identical to that of Gupta and Larson. 

However, when we look at the resulting Van Genuchten parameters (see table 

3.1.4) the differences appear. 

Firstly, as can be seen from R , the retention points could not accurately be 

described by the Van Genuchten model. Secondly, the fitted curves sometimes 

have unrealistic parameter values, especially for n. 

Table 3.1.4. Van Genuchten parameters for curves generated with method of 
Rawls and Brakensiek (1982) 

top soil sub soil 
Para-
meter Unit mean SD min. max. mean SD min. max. 

a 
n 

R* 

0.0872 0.0228 0 0.1043 
cm"1 0.0170 0.0042 0.0112 0.0317 

2.4637 1.6494 1.1770 7.4892 

0.7894 0.0470 0.7246 0.9176 

0.0803 0.0196 0 0.1229 
0.0150 0.0025 0.0104 0.0254 
5.7100 4.8745 1.1864 28.119 

0.8530 0.0682 0.6486 0.9345 

35 



3.1.3 Saxton, Rawls, Romberger and Fapendick 

To begin with, it should be noted that, strictly speaking, the model of Saxton 

et al. (1986) is not applicable to the data set under consideration. This is a 

conséquence of the fact that Saxton et al. removed all data points with 

textures with > 60% clay, < 5% clay and < 5% sand from their artificial data 

set (see section 2.3.3). Besides, they fixed organic matter content at 0.66 %. 

Therefore, the curves calculated from the present data set are beyond the range 

of validity of the model. 

The implementation of the model was not too complicated, except for the fact 

that some coefficients had to be adjusted, because Saxton et al. used kPa as 

unit of pressure head instead of cm. After the calculation of the parameters 

describing the various stretches of the retention curve, 16 points of the curve 

were calculated, namely at h-0, h , halfway ha e and 10 kPa, 10 kPa and 12 

points up to h=16 kPa (logarithmically spaced). 

Results of the curve fitting with the Van Genuchten model can be found in table 

3.1.5. The Van Genuchten model is able to describe the points reasonably. The 

angular shape (round hae) of the curves generated by the model of Saxton et al. 

might have caused some problems. The values of a and 6r seem acceptable, but n 

shows some extreme results. However, these high n values are invariably 

correlated to lower o values, so that the combined effect on the curves might 

not be as dramatic as expected (see section 2.1). 

Table 3.1.5. Van Genuchten parameters for curves generated with method of 
Saxton et al. (1986) 

Para-
meter Unit mean 

top soil 

SD m m . max. mean 

sub soil 

SD min. max. 

er 
a 
n 

cm 
-

0.0625 
0.0184 
3.5361 

0.0140 0.0319 0.0989 
0.0053 0.0105 0.033 
4.1792 1.5135 23.996 

0.0550 0.0146 0.030 0.0897 
0.0215 0.0070 0.0112 0.0354 
2.7623 1.9112 1.4813 11.582 

0.9753 0.0109 0.9536 0.9957 0.9803 0.0113 0.9561 0.9965 
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3.1.4 Cosby, Hornberger, Clapp and Ginn 

Implementation of the model of Cosby et al. consisted of two steps. Firstly the 
o 

parameters of equation 2.3.7 were calculated. No correlation (R « 0.01) 

appeared to exist between the 9g and Kg as calculated with the regression 

equation and the values which are reported data set 1 (appendix 1). 

NeKt, for each sample 12 points of the retention curve were calculated, ranging 

from hg to h~16000 cm. To make optimum use of the available data, measured 

values were used for 6 , instead of estimated data. 

Table 3.1.6 Van Genuchten parameters for curves generated with method of 
Cosby et al. (1984) 

Para
meter 

er 
a 

n 

R2 

Unit 

cm 

mean 

0.0284 
0.0848 
1.5329 

0.9932 

SD 

0.0044 
0.0010 
0.0172 

0.0002 

top soil 

min. 

0.02 
0.0817 
1.4955 

0.9928 

max. 

0.041 
0.0863 
1.5634 

0.9935 

mean 

0.0266 
0.0859 
1.5325 

0.9433 

sub 

SD 

0.0047 
0.0015 
0.0285 

0.0002 

soil 

min. 

0.0191 
0.0818 
1.4303 

0.9928 

max. 

0.0393 
0.0876 
1.5636 

0.9936 

The resulting Van Genuchten parameters can be found in table 3.1.6. The most 

striking fact is the lack of variability in, especially, a and n. This is 

attributable to two reasons. Firstly, as a result of the smoothing effect of 

regression equations (seeking 'average' relationships), the real variability of 

retention curves might be lost. This argument, however, is equally applicable 

to the pedo-transfer functions discussed before. A second argument is that the 

model of Cosby et al. makes use of only one type of curve (whereas Saxton et 

al, use 3 sections). This single curve is similar in shape for all textures, 

causing the Van Genuchten parameters not to vary much. Further, the high values 

of a should be noted. 

3.1.5 Arya and Paris 

The application of the model of Arya and Paris resulted in 12 points of the 

retention curve for each sample. The results of the Van Genuchten fitting 

procedure can be found in table 3.1.7. 
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Table 3.1.7. Van Genuchten parameters for curves generated with method of Arya 
and Paris (1981) 

top soil sub soil 
Para-
meter Unit mean SD min. max. mean SD min. max. 

a 
n 

cm 
-1 

0.0201 
0.0078 
3.1019 

0.0088 
0.0020 
0.4787 

0 
0.0051 
2.1851 

0.042 
0.0157 
4.0911 

0.9841 0.0477 0.7032 0.9984 

0.0145 0.0121 0 0.0468 
0.0075 0.0032 0.0045 0.0201 
3.2289 0.7016 1.8385 5.2453 

0.9881 0.0112 0.9417 0.9987 

The parameter values look reasonable, although a is lower and n higher than 

expected from the validation data set (Appendix 2). But because the effects of 

a and n, on the shape of the retention curve, work in the same direction (see 

2.1), these deviations might counteract. 

One remark has to be made, which is equally applicable to the model of Tyler 

and wheatcraft (see next section). This is that approaching zero pressure head, 

the water content approaches porosity instead of saturated water content. When 

air-entrapment occurs (which is nearly always) the saturated water content will 

be overestimated. This deviation can be corrected for in two ways. Firstly, all 

water contents could be multiplied by the ratio &s/e. Secondly, which would be 

better, is to keep 8 constant at 6g up to that value of h at which the original 

curve reaches 6g. This solution, however, is mathematically more complicated. 

In this research no correction is applied. 

3.1.6 Tyler and Wheatcraft 

A first step was to calculate the fractal dimension D of the soil material. A 

review of the values can be found in table 3.1.8. The averages of D for top and 

subsoil are equivalent to values for a of 1.483 and 1.476, which is higher than 

th« 1.38 used by Arya and Paris. 

Next the Arya and Paris model was applied again, now using a variable a, set 

equal to (D-2). The Van Genuchten parameters are given in table 3.1.9. The 

values do not differ too much from those of the curves generated with the 

conventional Arya and Paris model. However, because both a and n are lower, 

there might be some effect on the resulting curve, keeping in mind that a and n 

work in the same direction. 
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Table 3.1.8. Fractal dimension soils in data set 1, as calculated by the 
method cited by Tyler and Wheatcraft (1989) 

top soil sub soil 
Para-
meter Unit mean SD min. max. mean SD min. max. 

3.483 0.1502 2.918 3.705 3.476 0.182 3.154 3.929 

Tyler and Wheatcraft report that fractal dimension D can even be estimated from 

only three particle size fractions. D, being the slope of the log-log plot of 

particle diameter and number of particles larger than that diameter, in fact 

defines a particle size-distribution. Assuming that the theory underlying the 

method to estimate D is valid, a particle size distribution with any number of 

fractions needed, could be generated when D is known. From this extended 

textural data again a retention curve could be estimated with the model of 

Tyler and wheatcraft. To test this idea, of all samples percentages sand, silt 

and clay were determined, with which D was estimated. From D a new particle 

siste distributions was derived with 12 fractions. The resulting curves were 

absolutely unrealistic. 

Table 3.1.9. Van Genuchten parameters for curves generated with method of 
Tyler and Wheatcraft (1989) 

top soil sub soil 
Para-
meter Unit mean SD m m . max. mean SD min. max. 

a 
n 

cm 
-1 

0.0176 0.0106 0 0.0477 
0.0075 0.0120 0.0011 0.0686 
3.0459 0.8585 2.1671 7.3944 

0.9909 0.0061 0.9670 0.9980 

0.0124 0.0122 0 0.0441 
0.0079 0.0099 0.0004 0.0368 
3.0558 0.7150 1.8842 5.3746 

0.9874 0.0106 0.9445 0.9981 

3.1.7 Haverkamp and Parlange 

This model was, compared to all others, the most time consuming, both in 

inplementation and in computation time. This was due to the fact that two 

iteration procedures were involved. The first to fit a curve (eq. 2.4.28) to 

the cumulative particle size distribution. The second was to calculate the 

ratio hae/h(6ae) (eq. 2.4.32). 
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In this case the main drying curve was calculated, for two reasons. Firstly, 

because usually retention curves are determined at desorption. Secondly, 

because the curves have to be used as additional data for the one-step outflow 

method, also a drying phenomenon. 

16 points of the curve were calculated, namely h=0, h=hae and 14 points between 

h—100 cm and h - 16000 cm. The Van Genuchten parameters can be found in table 

3.1.10. The values look quite normal. The only noticeable fact is the 

reasonable spread in n for the subsoil samples. 

One remark has to be made regarding the applicability of this model. It was 

deiigned for the use with sandy soils without organic matter. The soils under 

consideration are sandy soils, but the organic matter content is rather high. 

The paper, promised by Haverkamp and Parlange, containing an extension of the 

model, taking into account the effects of organic matter has not been published 

yet. 

Table 3.1.10. Van Genuchten parameters for curves generated with method of 
Haverkamp and Parlange (1986) 

Para
meter 

er 
a 

n 

R2 

Unit 

cm 

mean 

0.0236 
0.0098 
2.2614 

0.9898 

SD 

0.0298 
0.0011 
0.5237 

0.0027 

top so 

min. 

0.0056 
0.0081 
1.1873 

0.9847 

dl 

max. 

0.1642 
0.0133 
3.8768 

0.9984 

mean 

0.0158 
0.0102 
2.8416 

0.9899 

sub 

SD 

0.0179 
0.0019 
1.2069 

0.0036 

soil 

min. 

0.0028 
0.0070 
1.2415 

0.9842 

max. 

0.102 
0.0166 
6.922 

0.9981 

3.2 Comparison of estimated retention curves and validation data 

In this part the retention curves as estimated with the respective pedo-

tr»nsfer functions will be compared with the curves of the validation data (see 

Appendix 2). Because the validation data contained retention data up to 

pressure heads of only ± 500 cm, no reasonable value of 6 could be estimated. 

9 was therefore set to zero. In order to make a valid comparison, the curves 

generated with the pedo-transfer functions were again fitted to the Van 

Genuchten model, now with 6r set to zero. 

For each pedo-transfer function at 15 values of h, 6 was calculated and 

averaged 
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over topsoil and subsoil samples separately. The same was done for the 

validation curves. The resulting curves can be found in figures 3.2.1a and b 

through 3.2.7a and b. For the retention curves of the pedo-transfer functions 

also the range of one time the standard deviation around the mean is indicated. 

From these figures it can be seen that none of the pedo-transfer functions 

yields a good average curve. Either they are shifted to lower soil water 

pressures (Cosby et al. and Gupta and Larson) or they are too steep. The latter 

is applicable especially to the semi-empirical models, which might be caused by 

the close link between the shape of particle size distribution and the 

retention curve. 
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fig. 3.2.2. Retention curves from model of Rawls and Brakensiek (1982), 
average retention curve (A) with range ± standard deviation (+ 
and 0) and retention curve from validation data set (O); topsoil 
(a) and subsoil (b) 
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fig. 3.2.3. Retention curves from model of Saxton et al. (1986), average 
retention curve (A) with range ± standard deviation (+ and 0) and 
retention curve from validation data set (D); topsoil (a) and 
subsoil (b) 
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fig. 3.2.4. Retention curves from model of Cosby et al. (1984), average 
retention curve (A) with range ± standard deviation (+ and 0) and 
retention curve from validation data set (D); topsoil (a) and 
subsoil (b) 
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fig. 3.2.5. Retention curves from model of Arya and Paris (1981), average 
retention curve (A) with range ± standard deviation (+ and 0) and 
retention curve from validation data set (D); topsoil (a) and 
subsoil (b) 
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fig. 3.2.6. Retention curves from model of Tyler and Wheatcraft (1989), average 
retention curve (A) with range ± standard deviation (+ and 0) and 
retention curve from validation data set (D); topsoil (a) and 
subsoil (b) 
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fig. 3.2.7. Retention curves from model of Haverkamp and Parlange (1986), 
average retention curve (A) with range ± standard deviation 
(+ and 0) and retention curve from validation data set (D);topsoil 
(a) and subsoil (b) 

The particle size distribution is rather steep as can be seen from figure 

3.1.1. 

The smoothing effect of organic matter on the retention curve is not included. 

Models using organic matter content as an input variable (Rawls et al. and 

Gupta and Larson) suffer less from this steepness syndrome. 

In order to make a quantitative comparison the root mean square deviation (RMS) 

was calculated for each average curve. In order to circumvent the problem of 

comparing soils with different porosities, relative saturation S was used 

instead of 6. RMS is defined as: 
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Takle 3.2.1. Root mean square deviations in S between validation curves and 
curves generated with pedo-transfer functions 

Pedo-transfer function 

Root mean square deviation 

Top soil Sub soil 

Gupta and Larson (1979) 
Rawls and Brakensiek (1982) 
Saxton et al. (1986) 
Cosby et al. (1984) 
Arya and Paris (1981) 
Tyler and Wheatcraft (1989) 
Haverkamp and Parlange (1986) 

0.3889 
0.4588 
0.1405 
0.6302 
0.1493 
0.0579 
0.1106 

0.3337 
0.5146 
0.0856 
0.5810 
0.1008 
0.0552 
0.0920 

N 
" * = [N Ä<( Sl>est - <Si>ref>'] 

2,1/2 [3.2.1] 

with : ( S i ) e s t 

<Si>ref 

N 

« relative saturation at h*, at estimated curve (-) 

= relative saturation at h^, at curve of validation data 

(-) 

*= number of calculated points 

In the calculation of RMS only retention points up to h=512 cm were used. The 

RMS value can be found in table 3.2.1. The most promising functions, with 

respect to average curves, seem to be those of Tyler and Wheatcraft, and 

Haverkamp and Parlange. 

Also the description of spatial variability was examined by means of scaling. 

Because deviating soils, violating the concept of similar media, can cause 

large errors, soils were left out which were suspected to be peaty. As a 

criterion was used an organic matter content of two times standard deviation 

above average. Samples Al-1, D4-1, C4-2 and E5-2 were skipped. Scaling was 

applied separately to topsoil and subsoil curves (34 curves each). 

The same was done for the validation data set, splitting it into 2 data sets 

(validation 1 and validation 2) because at each location two retention curves 

had been determined. In order to make a valid comparison possible, scaling had 

to be applied to that part of the retention curve where h < 512 cm. Because the 

scaling procedure works with a prescribed range of S, this was range was 
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Table 3.2.2. Distribution of scaling factors 

Function 

Gupta/Larson 
Rawls et al. 
Saxton et al. 
Coeby et al. 
Arya and Paris 
Tyler and Wheatcraft 
Haverkamp / Parlange 

Validation 1 
Validation 2 

cr(a) 

0.3528 
0.2335 
0.0758 
0.4860 
0.1550 
0.5049 
0.2134 

0.6426 
0.7602 

top soil 

min(a) 

0.5770 
0.5249 
0.7464 
0.8978 
0.7056 
0.1686 
0.4782 

0.0124 
0.1142 

max(a) 

2.3738 
1.5223 
1.1218 
1.0819 
1.3238 
2.3357 
1.5606 

1.9616 
2.4473 

a(a) 

0.4717 
0.2908 
0.1724 
0.1067 
0.2207 
1.1664 
0.3109 

0.7160 
0.8575 

subsoil 

min(a) 

0.3691 
0.2912 
0.5320 
0.5878 
0.6196 
0.0474 
0.3676 

0.1580 
0.3339 

max(a) 

2.3931 
1.2984 
1.1889 
1.0954 
1.6413 
5.0192 
1.7269 

2.0570 
2.7436 

deduced from the average retention curves of the validation data set (top soil: 

S S 0.4, sub soil: S < 0.25). 

Th« resulting distribution of scaling factors can be found in table 3.2.2. The 

following remarks can be made. Firstly, the spread of scaling factors of 

Validation sets 1 and two are quite comparable. This enhances the credibility 

of these figures. Secondly, the limited spread for the models of Saxton et al. 

and Cosby et al. should be noticed. This might be result of the rigidness of 

the function, used to describe the retention curve. Thirdly, the distribution 

of the scaling factors of the model of Tyler and Wheatcraft, approximates that 

of the validation set most closely. Finally, it appears that the spread in 

scaling factors is larger for sub soil sample than for top soil samples. 

In order to investigate to what extent the successive pedo-transfer functions 

Table 3.2.3. Correlation between scaling factors of different pedo-transfer 
functions; top soil samples 

Function 

Gupta/Larson 
Rawls et al. 
Saxton et al. 
Cosby et al. 
Arya/Paris 
Tyler/Wheatc. 
Haverk./Parl. 

Gupta 
Larson 

1 
0.8165 
0.3284 
0.4338 
0.0667 
0.0300 
0.5620 

Rawls 
et al. 

1 
0.3228 
0.4883 
0.0583 
0.0290 
0.5323 

Function 

Saxton 
et al. 

1 
0.2850 
0.5332 

-0.3676 
0.4650 

Cosby 
et al. 

1 
0.0484 

-0.2844 
0.5600 

Arya 
Paris 

1 
0.6346 
0.1890 

Tyler 
Wheatc. 

1 
0.0157 

Haverk. 
Pari. 

1 
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Table 3.2.4. Correlation between scaling factors of different pedo-transfer 
functions ; sub soil samples 

Function 

Gupta/Larson 
Rawls et al. 
Saxton et al. 
Cosby et al. 
Arya/Paris 
Tyler/Wheatc. 
Haverk./Parl. 

Gupta 
Larson 

1 
0.4972 
0.1285 
0.1880 
0.1910 
0.2081 
0.7344 

Rawls 
et al. 

1 
0.4749 
0.3507 

-0.0523 
-0.0588 
0.4292 

Function 

Saxton 
et al. 

1 
0.2587 
0.3718 
0.2420 

-0.0448 

Cosby 
et al. 

1 
0.0309 

-0.0241 
0.4550 

Arya 
Paris 

1 
0.7800 
0.0338 

Tyler 
Wheatc. 

1 
0.0466 

Haverk. 
Pari. 

1 

describe spatial variability in the same way, correlations between sets of 

scaling factors were calculated. These can be found in tables 3.2.3 and 3.2.4 

for top and sub soil samples respectively. 

Scaling factors derived from the various methods can only be compared when the 

reference curves resulting from scaling are comparable. Therefore the reference 

curves of the empirical and semi-empirical methods are shown in fig. 3.2.8 and 

3.2.9 respectively, together with the reference curve derived from the model of 

Tyler and Wheatcraft. This is done, because the latter model is the most 

promising with respect to the average curve. 

Relatively high correlations are found between the models of Arya and Paris and 

Tyler and wheatcraft. This is not surprising, because the latter is a 

modification of the first. However, where the reference curve of the model of 

Haverkamp and Parlange closely resembles that of the other semi-empirical 

models, no correlation is found between the respective scaling factors. 

The reference curves of the models of Saxton et al. and Rawls and Brakensiek 

are also comparable (also to those of the semi-empirical models), but also in 

this case hardly any correlation exists between the sets of scaling factors. 

The curves of Gupta and Larson and Cosby et al. are deviating, but mutually 

comparable and also show no correlation between their scaling factors. The 

outcomes are consistent between top and sub soil samples. 

Based on the above analysis it is decided to continue with the model of Tyler 

and Wheatcraft, because of both its average behaviour and the distribution of 

the scaling factors. No decisive conclusions can be drawn regarding the skill 

of the curves of individual samples. 
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fig. 3.2.8. Comparison of reference curves obtained with scaling of retention 
curves from empirical models of Gupta and Larson (+), Rawls and 
Brakensiek (0), Saxton et al. (A), Cosby et al. (x), with 
reference curve from model of Tyler and Wheatcraft (D); topsoil 
(a) and subsoil (b) 
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fig. 3.2.9. Comparison of reference curves obtained with scaling of retention 
curves from semi-empirical models of Arya and Paris (+), Tyler 
and Wheatcraft (D) and Haverkamp and Parlange (0); topsoil (a) 
and subsoil (b) 

3.3 Combination of outflow data and estimated retention curves 

Available outflow data comprised cumulative outflow for a period of about six 

to ten hours. Times of observation were approximately logarithmically spaced in 

time, giving 20 to 25 readings. For some samples which drained only slowly, 

outflow data extend up to 15 hours. All outflows were a result of a pressure 

increment of 1000 cm (== 1 bar). The parameter optimization was executed with 

the program MULSTP. 

47 



Table 3.3.1. Program parameters for MULSTP 

Parameter Value Description 

NN 
LNS 
DNÇL 
AIRP 
EPS1 
EPS 2 
MIT 
MDATA 

46 
42 
10"5 

1000.0 
1.0 
1.0 

30 
1 

Number of nodes 
Node at soil plate boundary 
Initial time step (hr) 
Pneumatic pressure (cm) 
Temporal weighting coefficient 
Iteration weighting coefficient 
Maximum number of iteration 
Data mode (1 - transient flowdata only) 

The program parameters for MULSTP, describing the optimization are given in 

table 3.3.1 (for a full explanation, see Van Dam et al., 1990). For all 

optimizations, the Mualem-Van Genuchten parameters, as derived with the model 

of Tyler and Wheatcraft, were used as the initial guess. 

Six optimizations were performed, which are summarized in table 3.3.2. In 

optimization B the retention point was given a weight of 1, like every point of 

the cumulative outflow curve. This weighing factor might have been too low, as 

was indicated by Van Dam et al. (1990), who usually used a weight of 5 or more. 

Besides they took about five points of the retention curve into account. 

A fixed retention curve (CI to C4) implies that the optimized a and n only 

describe the conductivity curve, not the retention curve. 

Table 3.3.2. Review of performed optimizations 

Name 

A 
B 
CI 
C2 
C3 
C4 

Input 

Out
flow 

yes 
yes 
yes 
yes 
yes 
yes 

data 

Point 
6(h) 

no 
yes 
no 
no 
no 
no 

Fixed 
e(h) 

no 
no 
yes 
yes 
yes 
yes 

Point 
K(h) 

no 
no 
no 
no 
yes 
yes 

Constraints on 

9c 

fix 
fix 
fix 
fix 
fix 
fix 

er 

var 
var 
fix 
fix 
fix 
fix 

a 

var 
var 
var 
var 
var 
var 

parameters 

n 

<var> 
<var> 
<var> 
<var> 
<var> 
<var> 

Ks 

var 
var 
var 
var 
var 
var 

1 

<var> 
<var> 
<var> 
var 

<var> 
var 

Notts: Point 6(h) : water content at 1000 cm (from pedo-transfer function) 
Point K(h) : measured K at saturation 
<var> : 1.1 < n < 10 

-0.5 < I < 1.5 
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Table 3.3.3. 

Parameter 

Van Genuchten parameters of average curves of data set 2 (top 
soil samples) 

Unit Value 

ei 
a 
n 

cm 

cm-hr' 

0.3982 
0.0130 
0.0168 
1.3646 
1.75 
0.5 

In order to gain some insight in the effect of errors in the retention data, 

which are added to the outflow data, a simple sensitivity analysis was 

employed. Using the average retention and conductivity data of the topsoil 

samples of data set 2 (see table 3.3.3), artificial outflow data were 

generated. Subsequently optimizations B and CI were executed with errors 

applied to a, n and 9(1000 cm) ranging from -90 to +100, -20 to +100 and -40 to 

+100 % respectively. The results for optimization B can be found in figure 

3.3.1. In this case the parameters a and n are valid for both retention and 

conductivity curve (linked via the Mualem-Van Genuchten model). Results for 

optimization CI are presented in figure 3.3.2 and 3.3.3. 

Looking at these figures it should be kept in mind that optimization was 

employed with error-free outflow data. From figure 3.3.1 it can be concluded 

that the 

pareantafa error in 1(1000 ca) 

fig. 3.3.1. Sensitivity of parameter optimization to errors in additional 
retention data (9(1000 cm)); optimized parameters are a (D) , n 
(+), Ks (0) and 2 (A) 
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optimization is not extremely sensitive to an error in the added retention 

point. When we reverse the argument, this would imply that, when outflow data 

are not perfect, the addition of one retention point might not be able to force 

the optimization into the right direction. 

Figures 3.3.2 and 3.3.3 indicate that optimization CI is more sensitive to 

errors in n than in a. This is however not surprising when we look at the 

effect of changes in parameters a, n, Ks and I on the shape of both retention 

and conductivity curve (fig. 3.3.4 through 3.3.9). The effect of a 50 % change 

in n is dramatic in both curves, whereas changes in a only have a minor effect. 

This, however, also means that retention curves, estimated with a pedo-transfer 

function, will have a smaller relative error for n than for a. 

From this simple sensitivity analysis it might be expected that errors in the 

estimated retention curves give large deviations in the parameters, found in 

the optimization. Whether these deviations also give large errors in the 

resulting curves, remains to be seen. Besides, we do not know the errors in the 

parameters of the estimated retention curves. The average of 36 curves of the 

model of Tyler and Wheatcraft seemed to be a reasonable approximation of the 

'real' retention curve, but the ability of the individual curves until now has 

not been proven. 
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fig. 3.3.6. Effect on retention curve 
(D) of -50% (+) and +50% (0) 
change in n 

fig. 3.3.7. Effect on conductivity 
curve (D) of -50% (+) and 
+50% (0) change in n 
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fig. 3.3.8. Effect on conductivity curve fig. 3.3.9. 
(D) of -50% (+) and +50% (0) 
change in K 

Effect on conductivity 
curve (D) of -50% (+) and 
+50% (0) change in I 
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Regarding the simulation of the flow process, problems might arise due to non-

Darcian flow. Then the equation used to describe the flow in the soil sample is 

not valid. In Appendix 3 it is shown that the condition of laminar flow is not 

violated. The condition that friction within the fluid is neglectable compared 

to the friction between fluid and matrix is not unambiguously fulfilled. Also 

at the start of the flow, say the first 15 to 60 seconds, the approximation of 

stationarity might not be valid. However, the effect on the optimization 

procedure is not clear. 

Firstly optimization A was performed. A summary of the results can be found in 

table 3.3.4. Most striking are the high values for 8r. The resulting amount of 

available water (6g - 6r) is unrealistically small for some of the samples. 

This is partly caused by the leakages reported in section 2.6. 

The high values for 9 r is also quite obvious in the figures 3.3.10a and b, 

showing the average retention curves of top and subsoil samples respectively. 

The average conductivity curves, presented in figures 3.3.11a and b, agree 

rather well with those of data set 2, except for the lower Ks values of the 

first, resulting in a downward shift. For some samples the optimization did 

not converge. These are mentioned in table 3.3.5. A reason for the non-

cotivergence can be that the initial guess for the parameter values was far from 

the 'real' values. Addition of retention data from pedo-transfer functions 

obviously results in an increase in the number of non-converging optimizations. 

Some samples are non-converging for more than one type of optimization. This 

might be an indication that non-convergence is not linked to the type of 

optimization, but a result of a strong deviation of the added retention data 

from the real retention data. 

Table 3.3.4. Results of optimization A 

Para
meter 

a 
n 
er 
Ks 
2 

Ver 

unit 

cm 
-
-
cm • hr 
-

-

mean 

0.018 
1.430 
0.125 
3.970 
1.316 

0.285 

top soil (n = 

SD 

0.014 
0.232 
0.099 
4.334 
0.495 

0.081 

min. 

0.001 
1.1 
0 
0.008 

-0.5 

0.078 

35) 

max. 

0.050 
2.248 
0.331 

15.284 
1.5 

0.437 

mean 

0.022 
1.507 
0.068 
5.047 
0.898 

0.319 

sub soil (n = 

SD 

0.017 
0.242 
0.076 
6.956 
0.856 

0.076 

min. 

0.003 
1.187 
0 
0.037 

-0.5 

0.08 

33) 

max. 

0.059 
2.168 
0.308 

30.763 
1.5 

0.453 
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Optimization B, using both cumulative outflow data and one retention point (9 

at 1000 cm) in the object function, presented computational problems. For a 

number of samples the program MULSTP entered an endless loop or encountered a 

division by zero, which meant that the program had to be restarted a number of 

times. When this optimization was repeated later, in order to test these 

computational problems, they did no longer occur. No explanation could be found 

for this. 

Because of the initial computational problems, only for a limited number of 

topsoil samples results are available. A review of the parameters can be found 

in table 3.3.6. Curves are presented in figures 3.3.12 and 3.3.13. 
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Table 3.3.5. Samples for which optimization does not converge 

Opt. 

n 

Top soil Subsoil 

sample n 

3 

6 
6 

4 
9 

sample 

B3, 

A6, 
A6, 

A6, 
A6, 
F4, 

Dl, 

C4, 
C4, 

C4, 
C4, 
F6 

F3 

D6, 
F2, 

F4, 
Dl, 

F3, 
F3, 

F6 
El, 

F4, 
F4, 

E2, 

F6 
F6 

F2, F3, 

A 1 E3 
B 10 Al, A6, C2, C3, C4, D5, D6, 

E3, F2, F4 
CI 5 Al, A6, B6, E3, F6 
C2 11 Al, B3, B5, C2, D5, D6, E3, 

E4, E6, F5, F6 
C3 4 Al, C2, E3, F6 
C4 10 Al, A6, Bl, B6, C2, C3, E3, 

E6, F4, F6 

From the results of the successful optimizations it can be concluded that 

optimization B obviously gives improvement, regarding the values of 6r, which 

range from 0.005 to 0.10. For higher suctions, outside the experimental range, 

the average retention curve is too dry. 

For optimization B it was also tested whether the number of non-converging 

samples could be reduced. This appeared to be possible by changing the initial 

pressure head tiQ from 0 to -5 cm. This change in hg can be justified by the 

assumption that samples, which are meant to be saturated, in reality often are 

incompletely saturated, giving a negative pressure head. 

Table 3.3.5. Results of optimization B 

Para
meter 

a 
n 
e3 
er 
Ks 
2 

Ver 

unit 

cm 
-
-

cm-hr"1 

-

-

mean 

0.009 
3.982 
0.409 
0.051 
1.612 
1.423 

0.35 

top soil (n -

SD 

0.011 
2.001 
0.044 
0.044 
7.264 
0.385 

0.062 

min. 

0.001 
1.695 
0.323 
0 
0.0003 

-0.5 

0.226 

26) 

max. 

0.043 
10 
0.531 
0.173 
7.922 
1.5 

0.479 
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fig. 3.3.12. Retention curves from 
optimization B, 
average curve (A) with 
range of ± standard 
deviation (+ and 0), 
together with average 
retention curve from 
validation data set 
(D), topsoil 
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fig. 3.3.13. Conductivity curves 
from optimization B, 
average curve (A) with 
range of ± standard 
deviation (+ and 0), 
together with average 
conductivity curve 
from validation data 
set (D), topsoil 

Subsequently four optimizations (CI to C4) were executed, fixing the parameters 

of the retention curve to those obtained from the Tyler and Wheatcraft model, 

optimizing for the parameters of the conductivity curve only. The results of 

these optimizations are presented in table 3.3.7, while the resulting average 

conductivity curves are shown in figures 3.3.14 through 3.3.17. Inclusion of K 

in the data of the object function (optimizations C3 and C4), results for 

almost all some samples in a mere fixing of K at its measured value. For 

unsaturated flow-modelling the K as measured at saturation is often not 

representative for K at lower potentials, due to structural features like 

cracks and root channels. It would therefore be preferable to leave Ks totally 

free in the optimization. As can be seen in table 3.3.6 this leads for 

optimization C2 to a reasonable average value for Kg (compare to table 3.1.1). 

In the optimizations CI and C3 1 quite often reached the upper and lower 

boundary values. This was the reason for including optimizations C2 and C4, 

leaving 1 completely free. The range in resulting values for 1 seems to be 

extremely large. However, recalling that the effect of I on the shape of the 

conductivity curve is rather small, the effect of this large range on the 

resulting curves might not be too dramatic. A disadvantage of leaving 1 

completely free is that for more samples the optimization is not converging 

(table 3.3.5). 
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Table 3.3.6. Results of optimizations in group C 

Para
meter 

a 
n 
Ks 
1 

a 
n 
Ks 
1 

a 
n 
Ks 
I 

unit 

cm" 
-

cm-hr" 
-

cm" 

cm-hr 
-

cm" 

cm-hr" 
-

i 

top soil 

mean SD 

Optimization CI 
0.009 0.006 
5.354 2.172 

4.290 17.400 
0.481 0.764 

Optimization C2 
0.009 0.006 
4.315 2.052 
3.127 6.679 
2.844 5.904 

Optimization C3 
0.012 0.008 
3.749 1.619 

11.795 19.488 
1.055 0.757 

Optimization C4 

min. max. 

(n = 31) 
0.002 0.028 
1.715 10.0 

0.0 99.132 
-0.5 1.5 

(n - 25) 
0.002 0.026 
1.1 10.0 
0.011 29.956 

-0.675 28.517 

(n - 32) 
0.003 0.033 
1.502 10.0 
0.0 100.0 

-0.5 1.5 

(n - 26) 

sub soil 

mean SD 

Optimization CI 
0.007 0.006 
4.874 2.624 

3.010 6.137 
0.449 0.830 

Optimization C2 
0.007 0.007 
3.980 2.526 

10.318 26.575 
6.310 12.790 

Optimization C3 
0.012 0.011 
3.081 1.512 
9.394 9.724 
1.138 0.689 

Optimization C4 

min. max. 

(n = 31) 
0.001 0.029 
1.1 10.0 

0.001 24.622 
-0.5 1.5 

(n = 30) 
0.001 0.031 
1.1 9.985 
0.017 100.0 

-4.997 62.333 

(n - 32) 
0.0004 0.055 

1.1 7.347 
1.033 42.657 

-0.5 1.5 

(n - 26) 
a cm"1 0.008 0.007 0.002 0.031 
n - 2.714 1.631 1.101 9.142 
Ks cm-hr"1 9.850 12.029 0.011 58.468 
1 - 10.990 8.948 -0.56 37.806 

0.006 0.010 0.0004 0.054 
2.239 1.166 1.1 6.755 
9.387 9.548 0.037 42.684 

12.036 14.248 -3.224 61.955 

(a) (b) 
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fig. 3.3.14. 
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Conductivity curves from optimization CI, average curve (A) with 
range of ± standard deviation (+ and 0), together with average 
conductivity curve from validation data set (D); topsoil (a) and 
subsoil (b) 
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Conductivity curves from optimization C2, average curve (A) with 
range of ± standard deviation (+ and 0), together with average 
conductivity curve from validation data set (D); topsoil (a) and 
subsoil (b) 
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fig. 3.3.16. 
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Conductivity curves from optimization C3, average curve (A) with 
range of ± standard deviation (+ and 0), together with average 
conductivity curve from validation data set (D); topsoil (a) and 
subsoil (b) 
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fig. 3.3.17. 
PF 

Conductivity curves from optimization C4, average curve (A) with 
range of ± standard deviation (+ and 0), together with average 
conductivity curve from validation data set (D); topsoil (a) and 
subsoil (b) 
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fig. 3.3.18. Comparison of average conductivity curves from optimizations CI 
(D), C2 (+), C3 (0) and C4 (A); topsoil (a) and subsoil (b) 

A comparison is made between the average conductivity curve, resulting from the 

various C optimizations (fig. 3.3.18). It should be kept in mind that these 

curves are not always averaged over the same samples because for the various 

optimizations, different non-converging samples were left out. The first 

striking fact is that the curves of optimizations CI through C4 hardly differ. 

They all deviate from the conductivity curve of the validation data set. The 

most obvious reason for this deviation is that if we assume that K(0) is well 

predicted by the optimization, K(h) is not because of the errors in 0(h), which 

links K(6) to K(h). It has been observed before (Strieker pers. com.,1990) that 

K(0) can be rather well predicted with the one-step outflow optimization. Other 

reasons for the deviation between optimized K(h) and those of the validation 

data set might be that for data set 2 unsaturated conductivity data were used 

up to only 512 cm (pF »2.7) and that the parameters a, n and Kg are the result 

of the simultaneous fit to both retention and unsaturated conductivity data. 

Recently, conductivity and retention data, from the same location as data set 

1, came available (Driessen et al., 1990). These data were obtained using the 

multi-step outflow method. The shape of the conductivity curves is about the 

same as that of the validation curves, based on data set 2, but the curves are 

shifted downward. This indicates that the a and n values are about equal but K 

is lower than in data set 2. Ks values of the recent data are more in accord 

with those of set 1. The average retention curves of the new data set are 

almost identical to those of set 2. 
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fig. 3.3.19. 

(a) 

fig. 3.3.20. 

Non-uniqueness; retention curve of initial optimization (D) and 
deviating curves with RMS -1.8 (+) and RMS = 2.6 (0) 
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Non-uniqueness; conductivity curve of initial optimization (D) 
and deviating curves with RMS - 0.1 (+) and RMS = 0.5 (0); 
deviations calculated for K(h) (a), K(6) shown in (b) 

In order to investigate the uniqueness of the optimization results, the 

optimizations A, B, CI and C3 were repeated with different initial parameters 

(topsoil samples only). This is a standard feature of the program MULSTP. First 

an optimization is performed with undisturbed initial values for the 

parameters. In the two repetitions the initial values of a as well as n are 

about 50 % either larger or smaller than those of the first optimization. 

MULSTP calculates a Root Mean Square (RMS) (compare section 3.2) between both 

the retention and conductivity curve of the repetitions and the first 

optimization. RMS for the retention curve has the dimension of % water content. 

RMS for the conductivity curve indicates the order of magnitude, because 
10log(K) is used. 

In order to be able to decide whether an optimization was unique or not a 

threshold value of the RMS had to be selected. This selection was done by 

visual inspection of the effect of a certain value of RMS on the deviation 
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Table 3.3.8. Non-uniqueness in optimization results of topsoil samples 

for 1 repetition RMS above 
threshold 

for 2 repetitions RMS 
above threshold 

Retention 

Optimi- No. of No. 
zation opt. 

Conductivity 

No. 

Retention 

No. 

Conductivity 

No. 

A 
CI 
C3 

32 
29 
31 

26 81.2 19 
18 
30 

59.4 
62 .1 
96.8 

6.3 2 
3 
8 

6 .3 
10.3 
26.0 

between curves (e.g. fig. 3.3.19). As threshold values were chosen 2.5 and 0.5 

for retention and conductivity curves respectively. In figure 3.3.19 the effect 

of a RMS of 2.6 on the retention curve is shown. Figure 3.3.20a shows a K(h) 

with a RMS of 0.5. 

The resulting K(6) is shown in fig. 3.3.20b. From these two pictures it is 

clear that non-uniqueness in K(h) does not automatically mean non-uniqueness in 

K(6). 

Every sample, giving a RMS above the threshold value for at least one of the 

repetitions, was assumed to be non-unique for the curve under consideration. 

Because, for the various types of optimizations a different number of samples 

came to an end for both the first optimization and the two repetitions, the 

number of non-unique solutions is also expressed as a percentage. The results 

can be found in table 3.3.8. It can be concluded that the addition of a fixed 

retention curve yields no reduction in the non-uniqueness of the conductivity 

curve. Because of the computational problems with optimization B, no results 

ate available for that optimization. From the outcomes for a small number of 

samples it could be concluded that also for optimization B non-uniqueness in 

both retention and conductivity curves was a non rare phenomenon. 

If non-uniqueness is defined less restrictive, viz. if only those samples are 

classified 'non-unique' for which both repetitions yielded RMS values above the 

threshold value, the picture becomes less dramatic (see table 3.3.8). This 

means that we assume that, if at least one of the repetitions agrees with the 

first optimization (with undisturbed initial parameter values), the curve of 

that first optimization is the 'real' curve. The results become even better 

when we notice that for some samples both repetitions, having too high RMS 

values, yielded about the same curve. In those cases in fact the first, 
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undisturbed, optimization should be classified as being non-unique. 

It should be noted that for most, but not all, samples the two optimizations of 

which the curves did agree, also had the lowest RMS values for that curve. The 

exceptions indicate that the result of two identical curves, from optimizations 

with different initial parameter values, does not guarantee that the 

optimization reached its global minimum. 

The origins of non-uniqueness in parameter optimization results have not been 

investigated. The remarks made below should be seen as ideas for further 

research on this topic. Apart from the general remark that outflow data alone 

do not contain enough information to yield both a retention and a conductivity 

curve, there also might be a more specific sources of non-uniqueness. 

In the present case some causes can be indicated. Firstly, the inaccuracies in 

thte outflow data might have affected the presence or absence of a pronounced 

global minimum in the value of the object function. Secondly, the initial guess 

for the parameters to be optimized (derived from the model of Tyler and 

Whpatcraft) might have been too far from the 'real' values. Thirdly, the C-

optimizations may be were forced to a wrong conductivity curve by errors in the 

fixed retention curve, in order to simulate an outflow close to the measured 

outflow. This would mean that a solution is searched at parameter values for 

which the object function does only have local minima. Finally, the weighing 

fajctor of 1, applied to the added retention point in optimization B might have 

been too low. When the extra point of the retention curve is given too less 

weight , it might not be able to force the optimization into the range of 

parameter values where the object function has its global minimum. 

Apart from these causes, related to the quality of the data, there might be a 

more fundamental, numerical, cause. This is the shape of the response surface, 

which surface describes the dependence of the value of the object function on 

the values of the parameters to be optimized. If the response surface descends 

towards the 'real' parameter values over a large range of parameter values, the 

optimization result will not be very sensitive to the quality of the initial 

guess of parameter values. However when many local minima do exist near the 

'real' solution, non-uniqueness might be expected. 

According to Van Dam (pers. com., 1990) non-uniqueness is especially a problem 

for soils with extreme textures, viz. clay and sandy soils. This might be 

explained by different shapes of the response surface for different textures. 

Also, attention should be paid to the data which the object function should 
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contain, in order to yield a response surface that enables the estimation of 

the soil hydraulic functions. 
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4. CONCLUSIONS 

In this chapter conclusions will be drawn from the results presented in the 

previous chapter. Besides some suggestions for further research will be given. 

The pedo-transfer functions examined in this study are all easily 

implementable, except for the model of Haverkamp and Parlange (1986), which 

requires more programming and computation time. All, but the model of Rawls and 

Brakensiek (1982), yield retention curves (or retention points), which can be 

well described by the Van Genuchten function. This is of importance, because it 

eases data handling and further computation. 

Analysis of the resulting Van Genuchten parameters showed that there are large 

differences in averages and ranges of parameters. Ranges seem too small for the 

models of Cosby et al. (1984) This is probably caused by the rigidness of the 

function of the function used to describe 6(h). The models of Saxton et al. 

(1986) and Rawls and Brakensiek (1982) sometimes yield unrealistic values for 

n. The models of Arya and Paris (1981), Tyler and Wheatcraft (1989) and 

Haverkamp and Parlange (1986) give extreme values for a. This might be due to 

the assumed strong link between the shape of the retention curve and the 

cumulative particle-size distribution, which can be extremely steep for sandy 

soils. 

The comparison of average retention curves of the field under consideration and 

the validation plot is not encouraging, regarding the skill of the pedo-

transfer function. Looking at a RMS criterion, the semi-empirical models have a 

closer fit to the retention curve of the validation data set, than the purely 

enpirical methods. However, from visual inspection it is quite clear that the 

even the semi-empirical models give a rather poor fit, especially regarding the 

shape of the curves. This shape reveals the true origin of these curves, viz. 

the cumulative particle-size distribution. Apparently the latter does not 

contain enough information to describe the retention curve. 

In the present case the missing information might be the organic matter 

content, which is rather high for the data set under consideration. Influencing 

aggregation and the physical interaction between water and soil matrix, this 

high organic matter content probably is the cause of the rather smooth 

retention curve of the validation data set. 
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Regarding the description of spatial variability by pedo-transfer functions, 

the various models widely differ. Regarding the distribution of scaling 

factors, the curves of the model of Tyler and Wheatcraft most closely resemble 

those of the validation data set. Looking at the correlation between the 

scaling factors of the various pedo-transfer functions, reasonable correlations 

are found between the models of Arya and Paris and Tyler and Wheatcraft. Hardly 

any correlation is found between these two models and all others. The empirical 

models show hardly any correlation. These mutual inconsistencies cast some 

doubt on the concept of pedo-transfer functions, for one would expect at least 

comparable results from models which use the same input data. 

The Tyler and wheatcraft model was chosen to be the 'best' and was used to be 

combined with one-step outflow data. 

The average retention curve, resulting from optimization on outflow data alone, 

has a unrealistically high residual water content, while the conductivity curve 

matches well with that of the validation data set when the difference in Ks is 

overlooked. 

Both the addition of a single retention point and the addition of a fixed 

retention curve, both derived from the model of Tyler and Wheatcraft, yield an 

average conductivity curve with a rapidly decreasing conductivity, with 

increasing suction. When we combine this with the steep retention curve, this 

seems logical. The flow problem is simulated with a K(6) relation which is 

related to K(h) by 6(h). Thus, probably the K(9) curve is well predicted, but 

due to the false 0(h), the K(h) is deviating. 

For the present set of outflow data, non-uniqueness of the optimization indeed 

is a major problem. It is clearly shown that neither the addition of a single 

point of the retention curve, nor a fixed retention curve, both derived from 

the model of Tyler and wheatcraft, to the outflow data gives an improvement. 

From the foregoing it is concluded that the pedo-transfer functions, examined 

in this research, can not be used to generate retention data which are accurate 

enough to supplement one-step outflow data. 

Some topics related to the pedo-transfer functions require further research. 

Firstly, the inclusion of the effects of organic matter into one of the semi-

enpirical pedo-transfer functions should be investigated. Secondly, one of the 
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purely empirical pedo-transfer functions, which uses organic matter as an input 

variable (e.g. the model of Rawls et al. (1982)) should be tested for in the 

combination with outflow data. Thirdly, it remains to be seen whether pedo-

trensfer functions can generate accurate retention data per sample or only when 

averaged over a certain number of samples. This is of importance for the 

question whether pedo-transfer functions can ever be used for the study of 

spatial variability of soil hydraulic properties. Finally, pedo-transfer 

functions should be tested with respect to their skill in predicting some 

functional criteria, like capillary rise at a given depth of the water table 

and a given suction at top of the soil column. 

Regarding the parameter optimization the problem of non-uniqueness should be 

investigated further. Special attention should be paid to the shape of the 

response surface, because that shape might be a fundamental limit to the 

uniqueness of solutions. The dependence of the shape of the response surface on 

soil texture should be looked at in order to answer the question whether non-

uniqueness of the optimization results is dependent on texture. Besides, the 

dependence of the shape of the response surface on the kind and amount of data 

in the object function should be examined. 
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GLOSSARY 

Boundary curve, see hysteresis 

Cumulative particle size distribution, see particle size distribution 

Cumulative pore size distribution, see pore size distribution 

Darcy's equation describes the relationship between pressure gradient and flow 

velocity in a porous medium. As obtained from and experiment with a 

vertical, saturated, soil column by Darcy (in 1856): 

3h 
u = - K ( — + 1) 

dz 

with : K - conductivity (m-s ) 

It is still subject to discussion whether Darcy's equation can be 

derived from the Navier-Stokes equation. When this derivation is made, 

some assumptions have to be made, viz. stationarity, constant density, 

monotone pressure variations in space, neglectable friction within the 

fluid relative to friction between soil matrix and fluid. The general 

form of Darcy's equation following from this derivation is: 

k 3h 
Ui - r S ( i x T + 5i3> 

with : x^ = distance in i-direction 

6^* - Kronecker delta (5^-1 for i«j and £-H™0 for i/j ) 
9 1 v = viscosity (m-s ) 

o 
k = intrinsic permeability (m ) 

Hysteresis is the dependence of the retention curve upon the history of drying 

and wetting. Most important cause is that upon drying the pores with 

pore entries corresponding to a certain suction are full, whereas upon 

wetting these pores are, at the same soil water pressure, still empty 

(ink-bottle effect). Other causes are the dependence of the contact 
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angle between soil matrix and water on the direction of water movement 

(rain-drop effect), shrinkage?swelling of the soil matrix and the 

possible entrapment of air. 

Connected to the latter are the concepts of boundary curves and 

scanning curves. The boundary drying curve is the retention curve 

obtained from the drying of a soil starting at complete saturation. The 

boundary wetting curve, is obtained at the wetting of an initially 

completely dry soil. At the same pressures this curve shows lower water 

contents than the boundary drying curve, due to air entrapment. Drying 

and wetting scanning curves are obtained by reversing the process at a 

point of the wetting or drying boundary curve, respectively, 

intermediate between saturation and complete drying. Hysteresis also 

influences K(h) because conductivity actually is connected to water 

content via K(9), which is linked to K(h) by the non-unique function 

6(h). 

Navier-Stokes equation describes the combined effect of momentum balance and 

conservation of mass in a laminar flow of a Newtonian fluid. A 

Newtonian fluid is a fluid in which shear stress is proportional to the 

velocity gradient. The general form of the Navier-Stokes equation 

(neglecting the effect of the earth's rotation) is: 

o 

dpui dpui dp d pu* 
+ u.j = - ( ) + v 7 - p-g-Sio 

dt J3xj v3xj/ 3XjZ H 6 l 3 

with : u^ = velocity component in i-direction 

x* = distance in i-direction 

8^i = Kronecker delta (5^J=1 for i=j and S^^O for î j ) 

Non-uniqueness in parameter optimization means that the outcome of the 

parameter optimization is dependant on the initial value of the 

parameters. 

Particle size distribution indicates the relative importance of certain 

particle sizes to the total volume of particles. The particle size 

distribution is said to be wide when both large, medium and small 

particles have an important contribution to the total volume of 
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particles. The cumulative particle size distribution has always some 

sort of S-shape, more or less steep, when for the particle size a 

logarithmic scale is used. 

Pedo-transfer function is a function which relates a physical characteristic of 

soil or land to easier measurable quantities. The concept originally 

stems from quantitative land evaluation (see Bouroa, 1986). In this 

paper the term pedo_transfer function always refers to a function which 

determines a retention curve from textural data. 

pF, see soil water pressure 

Pore size distribution indicates the relative importance of certain pore sizes 

to the total pore volume. The pore size distribution is said to be 

wide when both large, medium and small pores have an important 

contribution to the total pore volume. The cumulative pore size 

distribution has always some sort of S-shape, more or less steep, when 

for the pore-size a logarithmic scale is used. 

Pressure head, see soil water pressure 

Representative Elementary Volume (REV). Size of a domain over which averaging 

will yield a constant (within certain error limits) outcome, wherever 

the REV is placed within the medium under consideration. The concept of 

REV is used to pass from the microscopic the macroscopic level of 

description. (Bear and Bachmat, 1990). The problem of the application 

of this concept in soil science is that the soil is in fact no 

continuum, so averaging has to take place over a volume large enough to 

oversee individual pores. 

Richard's equation describes water flow in an unsaturated porous medium. It is 

a combination of mass balance (continuity equation) and momentum 

balance (Darcy's equation for unsaturated flow): 

ae ah a ah 
[K(h)(— - fii3)] 

ah at dx± dxL 
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with : X£ - distance in i-direction 

8^1 — Kronecker delta (S^-l for i=j and S^J—0 for i^j) 

Scanning curve, see hysteresis 

Soil water pressure is the pressure in soil water relative to atmospheric 

pressure. Soil water pressure is always equal to or smaller than zero. 

Assuming a constant density for the soil water, pressure head (h) and 

suction (T/>) are defined as -p/(g-pw), so that these are always 

positive. pF is defined as log(h (cm)) and is employed to compress 

the large range of suctions occurring under natural conditions (0-16000 

cm) . 

Suction, see soil water pressure 

Tortuosity is an indication of the bends in the flow path of a fluid through a 

porous medium. Tortuosity is related to the interconnectedness of 

successive pores. It increases at decreasing water content because more 

and more pores become isolated, no longer contributing to the transport 

of water. The rate of increase depends on the medium. 
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APPENDIX 1 . Da ta s e t 1 (continued) 
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APPENDIX 2. 

Location 

No. Depth 

1 top 

sub 

2 top 

sub 

3 top 

sub 

4 top 

sub 

5 top 

sub 

6 top 

sub 

7 top 

sub 

Data set 2 (Hopmans « 
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and Strieker, 1987) 
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APPENDIX 3. Dimensional analysis 

Dimensional analysis is a method used to separate dominant and non-dominant 

effects in a process. One starts with a governing equation. 

For each variable (e.g. x), coefficient or constant a dimensionless variable 

(x ) is introduced, expressing the ratio between the dimensional quantity (x) 

under consideration and corresponding reference quantity (xc) of the same 

dimension and with a value that is characteristic for the process. Subsequently 

the original quantities are expressed as the product of the dimensionless ratio 

and the reference quantity (x -x ), so that each term in the governing equation 

becomes the product of dimensionless term and a dimensional coefficient made up 

of the reference quantities. By dividing all terms of the equation by one of 

the coefficients, one obtains the dimensionless form of the original equation. 

Nov, by comparing the magnitudes of the coefficients before the successive 

terms in the equation, the relative importance of the terms and the 

corresponding processes can be inferred. Based on this comparison one or more 

terms, which are of minor importance, can be skipped from the equation, 

therewith simplifying the problem. 

Here dimensional analysis will be applied to the derivation of Darcy's equation 

from the Navier-Stokes equation. In that derivation a number of dimensionless 

numbers occurs, namely the Reynolds number, Darcy number and the Strouhal 

number. The Reynolds number (Re) expresses the ratio between inertial forces 

(convective term in Navier-Stokes equation) and viscous forces. Re indicates 

the validity of a laminar approximation. The Reynolds number as it is used here 

does not take into account the occurrence of local spots of acceleration and 

deceleration, which are a result of the irregular diameter of pore channels. 

The Darcy number (Da) expresses the ratio between the friction within a fluid 

and the microscopic friction between wall and fluid. The latter is here assumed 

to be proportional to velocity, viscosity and intrinsic permeability and 

inversely proportional to porosity (compare to Hagen-Poisseuille flow through a 

pipe). 

The Strouhal number (St) is a dimensionless number expressing the ratio between 

local acceleration and convection (first and second term on left hand side in 

Navier-Stokes equation). 

Bear and Bachmat (1990) define the Reynolds (Re), Darcy (Da) and Strouhal (St) 

number for saturated flow: 

XXV 



V„(k / n „ ) 1 / 2 

R e
 c V c/ c' [A3.1] 

c 

k_/nr Ç' c 
• 1 
-c 

Da '=-—%— [A3. 2] 

St ° — [A3.3] 
At V L J 

with : V c - characteristic velocity (m-s ) 

L - characteristic length (m) 
o 

kc - characteristic permeability (m ) 

n c - characteristic porosity (-) 

At = characteristic time increment (s) 
o -i 

vc = characteristic viscosity (m • s ) 

The approximations underlying Darcy's equation are justified only when St < 1 

and Re-Da / < 1 (non-stationarity is neglectable), Re < 10 (laminar flow) and 

Da « 1 (internal friction neglectable). 

In the case of the one-step outflow experiment the occurrence of non-Darcian 

flow might be expected during the onset of the flow. The sample is still 

saturated at that moment so that the above mentioned dimensionless numbers can 

be used. At the start of the flow process the largest accelerations occur. 

Characteristic values for the various variables occurring in Re, Da and St are 

chosen as follows for the time directly after the onset of flow. V c is 
9 

estimated from measured outflow during the first 15 s, yielding 0.13-10 m-s" 

. L is taken as one-tenth of the sample height, 0.005 m. k was estimated to 
c 9 

be 10 m , which value was calculated from a representative value for the 

saturated conductivity of sandy soils by kc=Kg»/c/g. n c was set to 0.4 and uc 

c 9 i 
was estimated to be 10 m •s . Finally the characteristic time-increment At c 

is taken to be 15 s. For the dimensionless numbers this yields the following 

values: Re - 0.435, Da - 1, St - 0.96. 

From this analysis it can be concluded that internal friction within the fluid 

will not cause problems of non-Darcian behaviour. But the St of almost 1 

combined with Re-Da ' equal to 0.435 might be reason for concern. The effect 

of non-stationarity is not neglectable at the onset of the flow process. Also 

the assumption that internal friction within the fluid is neglectable compared 
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to friction between fluid and matrix is also not unambiguously true. 

However, what the effect of this non-Darcian behaviour is on the parameter 

optimization is not clear. Probably only the simulated outflow of the first 

minutes is affected and therewith only a small volume. In that case the errors 

become relatively unimportant, because later on the flow will obey the Darcian 

approximation and the error in total outflow volume becomes increasingly 

smaller. 
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