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Title of project 

Development of a stochastic model of rainfall for radar hydrology (Contract No. ENV4-
CT96-5030). 

Summary of results arising out of this research 

• The arrival rate fluctuations of the raindrops which contribute most to rain rate and 
radar reflectivity behave, for moderate rain rates, according to Poisson statistics. This 
implies a rejection of the (multi-)fractal hypothesis for rainfall, at least at the raindrop 
scale. Hence, Poisson statistics may be used as a starting point for the development 
of a theory of sampling fluctuations in surface rainfall observations. 

• The sampling distribution of the estimator of any rainfall integral variable converges 
to a Gaussian probability density function for large values of the expected sample size. 
The approach to normality is slower for the higher order moments of the raindrop size 
distribution. As a result of the asymmetry of the sampling distributions, the median 
always underestimates the population value of a rainfall integral variable. These 
results have important practical implications for the estimation of radar reflectivity -
rain rate relationships from surface raindrop observations. 

• Von Smoluchowski's (1916) stochastic model of density fluctuations for intermittent 
observations provides a reasonable first approximation of the spatial rainfall process at 
the droplet scale, i.e. the fluctuations in the rainfall integral variables in a given volume 
of air. Such a model may be used to investigate the additional amount of rainfall 
information which may be hidden in the reflectivity fluctuations of high resolution 
radar observations. 

• A reasonable first approximation of the temporal rainfall process at the droplet scale 
(including both sampling fluctuations and natural variability) is provided by a dou­
bly stochastic Poisson process (Cox process), where the rate process follows a log-
transformed, normal (Gaussian), first-order autoregressive (AR(1)) process. Such a 
model may be used to determine over what time period surface rainfall observations 
should be accumulated to reduce the sampling fluctuations as much as possible with­
out loosing an unacceptable amount of natural variability. 

• A statistical model of the natural variability of the rainfall process provides a direct 
physical interpretation of the scaling exponents of a recently proposed general for­
mulation for the raindrop size distribution as a scaling law. These exponents can be 
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expressed in terms of the variances of and the covariances between the parameters of 
the raindrop count and size distributions. The values of the scaling exponents indi­
cate whether it is the raindrop concentration or the characteristic raindrop size which 
controls the variability of the raindrop size distribution. 
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Assessment by the scientist in charge of the project 

This fellowship gave an invaluable opportunity to the grant holder of making the synthesis 
of different studies made in his home institute. The main achievement of the grant holder 
was to put a considerable amount of existing experimental results into a coherent theoreti­
cal framework based on a new formulation of the microphysical properties of rain. He also 
visited via simple analytical solutions the implications of this theory on the concrete applica­
tion of radar detection to hydrology. The grant holder brought us a considerable experience 
on the subject of rain microphysics and its hydrological applications. The fellowship allowed 
our laboratories in France and Holland to deepen existing collaboration. 
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Chapter 1 

Introduction 

1.1 Background 

Knowledge of the spatial and temporal variability of rainfall over a wide range of scales is 
indispensable in a variety of disciplines. Examples range from the study of hydrology, soil 
erosion and cloud and precipitation physics to the design and operation of water manage­
ment, telecommunication and atmospheric remote sensing systems. The recent attention 
for the role of land surface processes in the climate system has stimulated research in this 
direction as well. The interest of this project is focussed on radar hydrology, more specifi­
cally on the application of ground-based weather radar for the estimation of rain rates on 
different spatial and temporal scales. 

Accurate measurement and prediction of the spatial and temporal distribution of rainfall 
is a basic problem in hydrology because rainfall constitutes the main source of water for the 
terrestrial hydrological processes. As a result of the gradual development of radar technology 
over the past 50 years, ground-based weather radar is now finally becoming a tool for 
quantitative rainfall measurement. The advantages of ground-based weather radar over the 
traditionally used raingauge networks are: (1) they cover extended areas while measuring 
from a single point; (2) they allow rapid access for real-time hydrological applications; 
(3) their spatial and temporal resolution is generally high. Formerly, such results could 
only be achieved by very dense and therefore impractical raingauge networks. Potential 
areas of application of ground-based weather radar systems in operational hydrology include 
storm hazard assessment and flood forecasting, warning and control (Collier, 1989). The 
current attention for the role of land surface hydrological processes in the climate system 
has stimulated research into the spatial and temporal variability of rainfall as well. A 
potential area of application of ground-based weather radar in this context is the validation 
and verification of sub-grid rainfall parameterizations for atmospheric mesoscale models and 
general circulation models (Collier, 1993). 

RADAR is the acronym for "RAdio Detection And Ranging". According to Battan 
(1973), radar can be defined as 'the art of detecting by means of radio echoes the presence 
of objects, determining their direction and range, recognizing their character and employing 
the data thus obtained'. The principle of radar remote sensing is based upon the trans­
mission of a coded radio signal, the reception of a backscattered signal from the volume of 
interest and inferring the properties of the objects contained in that volume by comparing 
the transmitted and received signals. In the case of radar meteorology, the objects in the 
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scattering volume are in principle hydrometeors (precipitation particles), although occa­
sionally the ground surface may be detected as well. Hydrometeors can be raindrops, but 
snow flakes and ice crystals as well. The main interest in this report lies obviously in the 
raindrops. 

A fundamental problem before radar derived rainfall amounts can be used for hydro-
logical purposes is to make sure that they provide accurate and robust estimates of the 
spatially and temporally distributed rainfall amounts. The branch of hydrology dealing 
with this problem is now starting to be known as radar hydrology. The fundamental con­
version associated with radar remote sensing of rainfall is that from the radar reflectivities 
measured aloft to rain rates at the ground. This so-called observer's problem is generally 
tackled in two main steps (e.g. Smith and Krajewski, 1993): (1) conversion of the reflectiv­
ity measured in the atmosphere to surface reflectivity; (2) conversion of surface reflectivity 
to rain rate. The exact manner in which these conversions are carried out will obviously af­
fect the precision of the obtained radar rainfall estimates. Various aspects of the associated 
assumptions, errors and uncertainties are discussed among others by Battan (1973), Wil­
son and Brandes (1979), Sauvageot (1982), Doviak (1983), Zawadzki (1984), Clift (1985), 
Austin (1987), Joss and Waldvogel (1990), Jameson (1991), Andrieu et al. (1997) and Cre-
utin et al. (1997). In this project, the main interest lies in the errors associated with the 
second conversion. 

It has been common practice for more than half a century now (e.g. Marshall and 
Palmer, 1948) to take for the second of the mentioned conversions a simple power law 
relationship between radar reflectivity factor Z ( m m 6 m 4 ) and rain rate R (mmh - 1 ) , 
at attenuated wavelengths accompanied with a power law relationship between specific 
attenuation coefficient k (dB km - 1 ) and rain rate. In an ideal situation, i.e. one in which all 
other possible error sources would be negligible, the main uncertainty in rainfall estimates 
by (conventional, i.e. single parameter) weather radar would be due to uncertainty in 
the Z-R relationship. In practice, this would mean a situation where a non-attenuated, 
pencil beam weather radar is observing nearby homogeneous rainfall close to the ground. 
In reality, these requirements are hardly ever met. Therefore, in any practical situation 
the uncertainty in the Z-R relationship will provide a lower bound to the uncertainties 
associated with radar rainfall estimation. 

Establishing Z-R and to a lesser extent k-R relationships has captured the attention 
of radar meteorologists since the early days of weather radar more than five decades ago. 
From the point of view of instrumentation, there exist two approaches. The relationships are 
either calibrated in real time using simultaneous observations from a radar and a network 
of rain gages (e.g. Wilson and Brandes, 1979) or determined in advance on the basis of 
observations of raindrop size spectra obtained from disdrometers or optical spectrometers 
(e.g. Marshall and Palmer, 1948). In both cases it is, apart from errors directly related to 
the operation of the radar, the limited representativeness of the surface rainfall observations 
which affects the precision of the radar estimates of rainfall. 

1.2 Rainfall measurement: a historical perspective 

1.2.1 The raingauge era 

Traditionally, information on the atmospheric component of the hydrological cycle has been 
gathered from raingauges. A basic problem with raingauges, however, is the fact that 
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they are point measurements. This means that their limited spatial representativeness 
can only be increased indirectly, through temporal accumulation. Even then, the spatial 
representativeness of raingauges remains unclear, as it will depend on the dynamics of the 
rainfall process. Moreover, accumulation of raingauge measurements reduces their ability to 
capture the temporal structure of rainfall. This trade-off between spatial representativeness 
and temporal resolution is a fundamental problem associated with raingauges. Additional 
difficulties are related to all kinds of practical issues associated for instance with wind effects 
and maintenance. 

The application of raingauges in networks has long been considered a solution to the 
problem. All kinds of procedures have been proposed over the years to interpolate spatially 
between the raingauges and fill in the gaps. However, the density of the network (in the 
form of the mean inter-gauge distance), together with the dynamical properties of the 
rainfall process (its characteristic advection velocity), dictate a lower limit to the temporal 
resolution of the spatially interpolated raingauge measurements. The result is that, from a 
hydrological point of view, most operational raingauge networks are too sparse to provide 
information on the rainfall process at a satisfactory spatial and temporal resolution. Denser 
networks, on the other hand, would generally be very impractical. 

An additional problem is that even the most sophisticated spatial interpolation proce­
dures (such as the geostatistical procedure know as kriging) generally lack the ability to 
capture the extreme rainfall variability found in nature. The interpolated rainfall fields are 
simply too smooth. Recent advances in (multi) fractal descriptions of rainfall fields may 
provide opportunities in this direction, although they will never be able to overcome the 
fundamental shortcomings of raingauges. 

1.2.2 Weather radar 

The remote sensing of rainfall using ground-based radar is a technology which has been 
in continuous development since World War II. It is currently reaching a state of maturity 
which renders its hydrological application a feasible enterprise. Radars can provide complete 
spatial and temporal coverage of an area from one single measurement site and as such they 
are ideally suited to hydrological applications. 

Already since the early 1970s, attempts have been made to use weather radar to estimate 
the spatial and temporal distribution of rainfall. For almost three decades, radar has been a 
promise to hydrology. A promise however, which until recently it has not been able to keep. 
This has been due to both the material and the methods used at the time. First of all, most 
weather radars which have been used for hydrological applications until recently, were part 
of existing meteorological radar networks. These instruments were not designed with the 
hydrological application in mind. For instance, their spatial and temporal resolutions and 
sampling capabilities were generally insufficient. Secondly, the manner in which the radar 
data were used was generally not suited to the problem at hand. The hydrologists who were 
tackling the problem tried to avoid looking at the principle of radar measurements as much 
as possible. 

During the 1980s, all kinds of more or less sophisticated statistical schemes were devised 
to combine the information from radars with that from networks of raingauges, the type 
of information hydrologists were used to working with (e.g. Collier, 1986a,b; Collier and 
Knowles, 1986; Krajewski, 1987; Creutin et al., 1988; Delrieu et al., 1988; Azimi-Zonooz 
et al., 1989; Seo et al., 1990a,b; Seo and Smith, 1991a,b; Smith, 1993b; Uijlenhoet et 
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al., 1994, 1995, 1997). The idea was that raingauges were providing the 'ground truth' 
at various points in the area of interest. The radar data were then used in a sense to 
interpolate between the raingauges. Besides the fact that it remains to be seen to what 
extent raingauges represent the truth (since 'ground truth is the amount of rain that would 
have reached the ground if the raingauge had not been there'), the lack of attention for the 
principle of radar measurements proved to work counter-productive. After adjustment of 
the radar data using the raingauge measurements (erroneously called 'calibration' at the 
time), all kinds of errors and inconsistencies remained which this approach was not able to 
solve. 

1.2.3 Radar hydrology 

Since the early 1990s, hydrologists working on the problem of radar rainfall estimation 
have begun to take a different, more physical approach. They are revisiting the established 
theory of weather radar developed in the 1950s and 1960s by their meteorological and radar 
engineering colleagues. However, this is done using today's radar technology and, moreover, 
from a hydrological perspective. The objective is to apply ground-based weather radar to 
estimate the spatial and temporal distribution of rainfall at the ground. 

As opposed to the largely statistical approach of the 1980s, the current physical approach 
considers the principle of radar measurements and the microstructure of rainfall in quite 
some detail. Another new aspect is that raingauges are no longer used to 'calibrate' the 
radar images, but for verification purposes only. This new approach, now starting to be 
known as radar hydrology, is currently starting to provide its first results (e.g. Smith et al., 
1996a,b; Andrieu et al., 1997; Creutin et al., 1997; Sempere Torres et al., 1999a; Serrar et 
al., 2000; Uijlenhoet et al., 1999a). Radar is finally starting to redeem the promise it has 
been to hydrology for almost three decades. 

1.3 Radar rainfall estimation: an overview 

1.3.1 A n inverse problem 

Because radar is a remote sensing technique, it does not provide direct measurements of 
rainfall, but only indirect ones via the interaction with electromagnetic waves. Radar is a so-
called active microwave technique, in which a radio signal with known properties (amplitude, 
frequency and polarization state) is sent into the scattering medium. In this case, the 
scattering medium is rainfall and the scatterers are raindrops. Part of the radio signal 
received by the raindrops is scattered back into the direction of the radar and received 
by its antenna. The difference between the properties of the transmitted and the received 
signal provides information on the dielectric properties of the scattering medium. It is 
the objective of radar hydrology to devise accurate and reliable methods to convert this 
information into rainfall rates at the ground for hydrological applications. 

In order to be able to perform the conversion of the scattering properties of rainfall in 
the air into rainfall rates at the ground, some model of the microstructure of rainfall and 
its interaction with the radar signal has to be used. Since rainfall consists of individual 
raindrops with different sizes and hence different scattering properties, such a model should 
necessarily comprise a parameterization of the raindrop size distribution. The model should 
be simple, however, as one should be able to invert it on the basis of radar measurements. 
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More specifically, the number of model parameters should not exceed the number of variables 
estimated ('measured') by the radar system in question. Otherwise, the inversion problem 
would be underdetermined. The algorithms used to invert the model and estimate the 
model parameters on the basis of the available radar measurements are known as retrieval 
algorithms. 

Conventional weather radars are able to estimate only one property of the backscattered 
signal, namely its mean power. This mean power is commonly expressed in terms of a so-
called radar reflectivity factor Z. The inversion model to be used with such one-parameter 
radar systems is therefore necessarily a one-parameter model. The classical Z-R model 
provides a direct relationship between the radar reflectivity factor Z and the rainfall rate 
R. Because in reality there is much more uncertainty than can be captured in this one-
parameter model, the Z-R model is necessarily statistical in nature. It is a regression 
model. 

Over the past 20 years, ground-based radars have become capable of measuring, apart 
from the mean power, the Doppler and polarization properties of the backscattered signal 
as well. These multi-parameter radar systems have created the possibility of using inversion 
models with more than one parameter. Such models are able to capture more aspects of the 
microstructure of rainfall than the simple Z-R model. It is the hope that with such models, 
a larger fraction of the uncertainty is captured and that, as a result, the rainfall estimates 
become more reliable. The development of retrieval algorithms for multi-parameter radar 
systems is seen as a big challenge. 

1.3.2 Fundamental problems 

Up to this point, we have assumed that radars are able to measure the scattering properties 
of rainfall perfectly and that, as a consequence, the only remaining problem is the conversion 
of these properties to rainfall rates at the ground. This would imply that uncertainty in the 
raindrop size distribution would be the main error source. Nothing is less true, however. A 
series of additional problems remains to be tackled before the objective of radar hydrology 
can be considered achieved. 

Perhaps the most fundamental problem of all is that of calibration. If a radar system is 
not well calibrated, then the measured powers do not correspond to true powers. This will 
introduce a bias in the radar power measurements which greatly affects the corresponding 
rainfall estimates. Hence, for hydrological applications, it is very important to have a 
well-calibrated radar system and to control its stability over time. 

Additional problems associated with the quantitative use of weather radar can be more 
easily appreciated if the geometrical configuration of radar measurements is considered in 
some more detail. Although the radar antenna can in principle be pointed in any direction, 
the greatest spatial coverage can of course be obtained if it is used in a rotating fashion 
at a low elevation angle. This is the preferred configuration for operational meteorological 
and hydrological applications. In this configuration, the radar is providing the user with 
circular images with fixed resolutions in distance ('range' in radar terminology) and angle. 

Although any subdivision of additional problems associated with the quantitative use of 
weather radar is necessarily arbitrary, we have made an attempt by identifying two classes 
of problems: (1) instrumental effects, i.e. effects associated purely with the principle of 
radar measurement; (2) environmental effects, i.e. effects associated with the interaction of 
the radar signal with its environment (the atmosphere and the ground). 
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Instrumental effects 

A first instrumental effect in weather radar measurements is the range effect caused by the 
spatial expansion of the radar beam. This expansion, associated with the radar's fixed angu­
lar resolution, has the effect that the spatial resolution of the radar, both in the horizontal 
and in the vertical, decreases with range. Hence, the further away from the radar, the worse 
the spatial variability of the rainfall field is captured. An extreme example of this occurs 
when, at appreciable distances from the radar (say 100 km), the volume of the resolution 
cells becomes so large (of the order of a km3) that situations of partial beam filling result. 
Unless corrected for, this may lead to serious underestimations of radar reflectivities and 
the corresponding rain rates. 

Apart from its spatial expansion, it should be recognized that the weighting of the 
scatterers inside the radar beam is not done uniformly, neither in range nor in angle. In 
range, this non-uniform weighting is such that the centre of a range resolution cell receives 
more weight than the front or tail ends. In angle, the radar beam consists of a main lobe 
with several side lobes. Again, the centre of the resolution cell receives the heaviest weight. 
In conclusion, the reflectivity associated with a particular resolution cell is the convolution 
of the true spatial variability of the rainfall field at the cell's location with the radar's range 
and angular weighting functions. 

An additional range effect can be associated with the fact that, unless the elevation angle 
of the radar is 0° (horizontal), the height of the beam axis increases with range. Hence, the 
further away from the radar, the less representative the measurements are for rain rates at 
ground level. A particular example of this range effect is the problem of beam overshooting. 
In this case, the radar beam completely overshoots the precipitation area of interest. 

Environmental effects 

The first environmental effect to be discussed here could just as well have been grouped 
under the instrumental effects in the previous section. It is the range effect associated with 
the attenuation of the radar signal as it propagates through the atmosphere, particularly at 
shorter wavelengths. Part of the radiation transmitted by the radar is absorbed or scattered 
(part of which back to the radar antenna) by the constituents of the atmosphere. Only a 
fraction of the total energy flux remains travelling away from the antenna. The problem with 
attenuation is that it is caused to a large extent by the very phenomenon radar hydrologists 
are interested in, rainfall itself. This renders attenuation a highly nonlinear effect which it 
is troublesome to correct for. 

Other environmental effects are associated with the vertical structure of the atmosphere. 
For radar meteorological and hydrological purposes this vertical structure is often summa­
rized in terms of a so-called vertical profile of reflectivity, the vertical profile of the radar 
reflectivity factor Z. Because melting snowflakes are seen by conventional (single param­
eter) weather radars as huge raindrops, the melting layer of precipitation (characteristic 
of stratiform conditions) causes a bright band on the radar screen. The problem with the 
vertical profile of reflectivity is that it is very difficult to correct for, because its actual 
structure at any location is unknown. It can have a strong spatial and temporal variability. 
Moreover, it generally causes a range effect due to the spatial expansion of the radar beam 
and its increasing height with range. 

Even in the absence of precipitation (i.e. in clear air), the vertical structure of the at-
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mosphere may influence the performance of radar systems. During favorable meteorological 
conditions (particularly temperature and water vapor inversions), the vertical profile of the 
refractive index of the atmosphere may be such that the electromagnetic waves transmit­
ted by a radar are bent towards the earth's surface. In that case, we speak of anomalous 
propagation, or simply anaprop. As a result of anaprop, at some distance the radar signal 
hits the surface and causes a so-called ground clutter. Large errors in rain rate estimates 
result if these clutters are erroneously interpreted as rainfall. 

Finally, it may be the earth's surface itself which causes problems. We have already 
encountered ground clutter as a result of anaprop. However, in mountainous terrain, ground 
clutter may even occur during standard propagation conditions. At the same time, the relief 
may cause partial or complete obstruction of the radar beam. Recent research has shown 
that, under particular conditions, ground clutter caused by relief may be used to estimate 
total attenuations and to test the stability of the radar calibration. This is one of the few 
occasions where it is advantageous to use radars in mountainous terrain. 

1.4 Objectives of this project 

At the spatial and temporal scales associated with rain gages and disdrometers, rainfall can 
no longer be considered a continuous process. Rather, it is a discrete process describing the 
arrival of raindrops of different sizes and fall speeds at the ground. As a result, observed 
rain rate fluctuations are partly caused by actual changes in the meteorological character of 
the rainfall process and partly by random changes in the arrival rate of raindrops dictated 
by the laws of chance. The terminology generally adopted for these types of fluctuations 
are natural variability and sampling fluctuations, respectively. 

In hydrological applications, sampling fluctuations are generally disregarded because 
the spatial and temporal scales at which these fluctuations play a role are thought to be 
insignificant as compared to the characteristic scales of typical hydrological processes such 
as rainfall-runoff transformations. However, it would be of practical importance to be able 
to distinguish between both sources of variability, because the coefficients of Z-R and k-R 
relationships should represent the properties of the type of rainfall to which they pertain 
as much as possible and the properties of the raindrop sampling device from which they 
are derived as little as possible. A stochastic model of rainfall which explicitly considers 
discrete nature of rainfall may be employed to investigate over what time period surface 
rainfall observations need to be aggregated in order to reduce the sampling fluctuations 
to an acceptable level without loosing an unacceptable amount of information regarding 
natural variability. 

The objective of this project has been to develop a stochastic model of rainfall to in­
vestigate to what extent rainfall fluctuations observed with different types of instruments 
reflect the properties of the rainfall process itself and to what extent they are merely instru­
mental artefacts. Knowledge of the relative contributions to these fluctuations may lead to 
improved Z-R and k-R relationships and ultimately to improved radar rainfall estimates. 
Moreover, a stochastic model such as the one proposed will provide a more realistic frame­
work for simulation studies dealing with problems in radar hydrology (e.g. Chandrasekar 
and Bringi, 1987; Krajewski et al., 1993). 
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1.5 Rainfall microstructure 

1.5.1 A static picture of rainfall 

CHAPTER 1. INTRODUCTION 

Figure 1.1: Schematic representation of the subject of this report: the spatial distribution of rain­
drops in a volume of air and the distribution of their sizes (Courtesy of J. M. Porrà). 

An example of a more detailed description of the microstructure of rainfall is provided 
by Fig. 1.1. Although it is merely a schematic representation of reality, it serves to show 
some of the features of the microstructure of rainfall which are relevant to this research 
project. First of all, although the raindrops are distributed homogeneously in space on the 
average, their local concentration is not everywhere the same. For a volume of a given size, 
the numbers of raindrops it contains will therefore fluctuate in space and in time. On the 
average, 1 m3 of air typically contains of the order of 103 raindrops. Closely related to the 
numbers of raindrops in a volume of air are the distances between them. Again, these will 
be subject to statistical fluctuations, but a typical mean distance would be of the order of 
10 cm. A third and very prominent feature is that raindrops have different sizes. Their 
diameters range typically from 0.1 to 6 mm. Although Fig. 1.1 does not show this very 
clearly, in reality there are many more small raindrops than large ones. The majority of 
the raindrops encountered in nature are smaller than 3 mm (e.g. Rogers and Yau, 1996). 
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A fundamental property of rainfall in this respect is its so-called raindrop size distribu­
tion. In its traditional definition, it represents the expected (mean) number of raindrops per 
unit of raindrop diameter interval and per unit volume of air. According to this definition, 
the notion of a raindrop size distribution is a mixture of two different concepts, namely 
that of the spatial distribution of raindrops in a volume of air (which governs the raindrop 
concentration) and that of the probability distribution of their sizes. A fundamental but 
seldom explicitly mentioned hypothesis with regard to the existence of the raindrop size 
distribution is that it is independent of the size of the reference volume under considera­
tion. This assumes a certain amount of spatial homogeneity and temporal stationarity of 
the rainfall process. See Porrà et al. (1998) for a review of the hypotheses on which the 
concept of the raindrop size distribution is based. 

A comparison of the definition of the raindrop size distribution with Fig. 1.1 shows that 
it is in fact a parameterization of the actual microstructure of rainfall within the reference 
volume. Its definition neglects the exact numbers, positions and sizes of the individual 
raindrops in the reference volume and merely provides an idea of the average conditions. 
The minimum spatial scale for which it can be considered an accurate representation of the 
instantaneous conditions is the scale for which the field approximation of rainfall breaks 
down. This representative elementary volume would roughly be a few tens of cubic meters. 
According to Orlanski's (1975) rational subdivision of scales for atmospheric processes, this 
corresponds to the micro-7 scale. 

With regard to the shapes of raindrops, those in the figure are perfect spheres. This 
is a very good approximation to their true shapes. Only raindrops larger than 2 mm 
deviate significantly (i.e. more than 10%) from the perfect spherical shape. In contrast 
to common belief, these larger raindrops do not have 'teardrop' shapes, but more closely 
resemble oblate spheroids (Pruppacher and Pitter, 1971; Pruppacher and Klett, 1978; Beard 
and Chuang, 1987). Therefore, the raindrop diameter D actually represents an equivalent 
spherical raindrop diameter, i.e. the diameter of a sphere with the same volume as that of 
the raindrop under consideration. Here, raindrops will be assumed perfect spheres. This 
has the additional advantage that the influence of wind and turbulence on the orientation 
of raindrops ('canting') (e.g. Brussaard, 1974; 1976) does not have to be considered. 

1.5.2 A dynamic p icture of rainfall 

Fig. 1.1 provides a rather static picture of rainfall, in the sense that it suggests that the 
raindrops are not moving. However, nothing is less true. In still air, raindrops have terminal 
fall speeds which range from about 0.1 m s " 1 for the smallest raindrops to more than 9 
m s " 1 for the largest raindrops. At altitudes well above sea level, the fall speeds tend to 
be somewhat higher (e.g. Foote and du Toit, 1969; Beard, 1976). However, in practical 
situations this effect of air density is likely to be small compared to the influence of wind 
(updrafts, downdrafts), turbulence and raindrop collisions. 

Consider the flux of raindrops through part of the bottom of the reference volume 
indicated in Fig. 1.1. If the corresponding rain rates would be calculated on the basis of the 
volumes of the raindrops which pass that surface during subsequent time intervals of one 
second, then the resulting time series of rain rates might look like that provided by Fig. 1.2. 
This is actually a time series of rain rates with a temporal resolution of 1 s collected using 
a capacitor type raingauge with a surface area of 730 cm2 (Semplak and Turrin, 1969). For 
reference, a line corresponding to the 20 s moving average has been indicated in the figure. 
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Figure 1.2: Thin line indicates 200 s time series of 1 s mean rain rates collected with a 730 cm2 

capacitor type raingauge at Bell Laboratories^ New Jersey on July 21st, 1967 (Semplak and Turrin, 
1969). Bold line indicates 20 s moving average. 

It will be clear that at least part of the fluctuations in the 1 s observations about the 20 s 
moving average must have been caused by purely random fluctuations in the numbers and 
sizes of the raindrops arriving at the raingauge. Note that there are rain rate differences 
from one second to the next of close to 100 m m h - 1 . The arrival of only one 6 mm raindrop 
at the raingauge during a l s time interval would already produce a mean rain rate of 5.6 
m m h - 1 . Hence, the arrival of only a few large raindrops is able to cause the extreme rain 
rate differences observed at this time scale. 

This is an example of a time scale for which the field approximation of rainfall breaks 
down (Rodriguez-Iturbe et al., 1984; Fabry, 1996). As a result, the observed rain rate 
fluctuations must be due 'both to statistical sampling errors and to real fine-scale physical 
variations which are not readily separable from the statistical ones' (Gertzman and Atlas, 
1977). The terminology generally adopted for these two types of fluctuations is sampling 
fluctuations and natural variability, respectively. In this case, the 20 s moving average may 
be considered a first rough estimate of the natural variability for the considered time series 
and the deviations from this moving average consequently as an estimate of the sampling 
variability. Results of applications of (multi)fractal analysis techniques to study the fluc­
tuations in rain rate time series with comparable resolutions (e.g. Rodriguez-Iturbe et al., 
1989; Rodriguez-Iturbe, 1991; Georgakakos et al., 1994) should therefore be interpreted 
with care. 
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1.6 Summary of results 

1.6.1 Application to the study of sampling fluctuations 

The starting point of this research project has been the marked point process model of 
rainfall developed by Smith (1993). An adapted version of this mathematical model provides 
a convenient framework for generalizing previous work on sampling fluctuations in rainfall 
observations (e.g. Sasyo, 1965; Cornford, 1967; Cornford, 1968; Joss and Waldvogel, 1969 
de Bruin, 1977; Gertzman and Atlas, 1977; Stow and Jones, 1981; Wirth et al., 1983 
Wong and Chidambaram, 1985; Chandrasekar and Bringi, 1987; Hosking and Stow, 1987 
Chandrasekar and Gori, 1991; Smith et al., 1993; Bardsley, 1995). Based on the assumptions 
made by these investigators regarding the counts and sizes of the raindrops, exact analytical 
solutions have been obtained for all moments of the univariate and bivariate sampling 
distributions of rainfall integral parameters (such as Z, k and R). These moments have 
been employed to obtain approximative series expansions for the corresponding probability 
density and distribution functions. In some cases it has even been possible to obtain the 
exact functional forms. Similar results have been obtained for the sampling distributions of 
related properties such as the mean and the variance of the raindrop size and the minimum 
and maximum raindrop sizes encountered in a sample. Analytical solutions to sampling 
distributions will allow hydrologists to provide all kinds of parameters derived from surface 
rainfall measurements with confidence limits representing the expected magnitude of the 
fluctuations resulting from instrumental considerations. These confidence intervals will be 
very useful in separating sampling fluctuations from natural rainfall variability. 

1.6.2 Application to the study of natural variability 

Smith and Krajewski (1993) have demonstrated that, in the absence of sampling fluctu­
ations, the coefficients of power law Z-R relationships can be expressed in terms of the 
variances of and the covariances between the parameters of the probability distributions of 
raindrop count and size. It has been demonstrated that their approach can be extended 
to any pair of rainfall integral parameters, provided these parameters are proportional to 
moments of the raindrop size distribution (which is approximately the case for Z, k and 
R). In this manner, statistical power law relationships have been obtained which are in 
a sense complementary to the deterministic power laws pioneered by Atlas and Ulbrich 
(1974) and Ulbrich and Atlas (1978). The statistical approach, however, does not only lead 
to theoretical expressions for the coefficients of power law relationships between rainfall in­
tegral parameters, but to theoretical expressions for the goodness of fit of such power laws 
as well. Moreover, this approach can be readily extended to include higher order power 
laws, such as double and triple power laws. In this manner, theoretical expressions for 
the coefficients of power laws used in multi-parameter radar observation of rainfall have 
been derived. Another interesting feature of the developed approach is that it provides a 
theoretical confirmation of the scaling law formulation for the raindrop size distribution as 
proposed by Sempere-Torres et al. (1994, 1998). It provides a direct physical interpreta­
tion of the scaling exponents in terms of the variances of and the covariances between the 
parameters of the raindrop count and size distributions. 
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1.6.3 Innovative aspects 

• The description of rainfall in terms of a stochastic point process where the points 
represent the arrivals of individual raindrops is new and will be of great importance 
in separating instrumental artefacts from the actual rainfall properties hydrologists 
are interested in. The point process framework for modeling the phenomenology of 
rainfall at the ground has a long history in hydrology (e.g. Le Cam, 1961; Waymire 
and Gupta, 1981a,b,c; Smith and Karr, 1983; Rodriguez-Iturbe et al., 1984; Waymire 
et al., 1984; Smith and Karr, 1985; Rodriguez-Iturbe, 1986; Rodriguez-Iturbe et al., 
1986; Rodriguez-Iturbe and Eagleson, 1987; Rodriguez-Iturbe et al., 1987; Smith, 
1987; Rodriguez-Iturbe et al., 1988). In all previous models, however, the points have 
been considered to represent the arrivals of entire rainfall events rather than individual 
raindrops; 

• Capturing the influence of natural rainfall variability on the coefficients of relationships 
between rainfall integral parameters in terms of a consistent set of statistical rather 
than deterministic power laws is a novel approach as well; 

• The proposed model of rainfall will provide a theoretical interpretation of the experi­
mentally based scaling law formulation for the raindrop size distribution as proposed 
by Sempere Torres et al. (1994, 1998). 



Chapter 2 

Detailed description of results 

2.1 Introduction 

Detailed knowledge of the microstructure of precipitation is important both from a funda­
mental and from an applied point of view. The spatial and temporal distributions of pre­
cipitation particles (hydrometeors) determine the manner in which the concept of a particle 
size distribution should be interpreted (e.g. Jameson and Kostinski, 1998), have important 
implications for the microphysical processes involving interactions between hydrometeors 
(e.g. Jameson and Kostinski, 1999d) and strongly influence the sampling characteristics of 
both in situ and remote sensing measurement devices (e.g. Jameson and Kostinski, 1999a; 
Kostinski and Jameson, 1999b). 

With regard to raindrops (but the same holds for cloud droplets), the classical hypothesis 
is that they behave according to Poisson statistics, i.e. that they are as homogeneously 
distributed in space and time as randomness allows. This hypothesis forms the basis of the 
classical sampling theory of in situ rainfall observations (e.g. Cornford, 1967, 1968; Joss 
and Waldvogel, 1969; Gertzman and Atlas, 1977; Smith et al., 1993) and can be considered 
one of the cornerstones of the classical theory of weather radar (Marshall and Hitschfeld, 
1953; Wallace, 1953). Although rainfall observations may occasionally behave according to 
Poisson statistics during rare periods of exceptional stationarity (see Kostinski and Jameson 
(1997) and Uijlenhoet et al. (1999b) for experimental evidence), it becomes now more and 
more clear that rainfall exhibits significant spatial and temporal drop clustering. Since the 
homogeneous Poisson process is not able to cope with these types of clustering, a more 
versatile description of raindrop statistics is needed. 

There exist basically two "schools" with regard to tackling this problem. The first con­
sists of those who propose to generalize the restrictive homogeneous Poisson process (which 
has a constant mean) to a Poisson process with a randomly varying rate of occurrence, i.e. 
a so-called doubly stochastic Poisson process or Cox process (see e.g. Cox and Isham (1990) 
for a summary of the properties of this type of stochastic point process). This approach has 
been pioneered by Sasyo (1965) and has later been applied by Smith (1993). More recently, 
it has been put in an entirely new perspective in a remarkable series of articles by Kostinski 
and Jameson (1997, 1999a), Jameson and Kostinski (1998, 1999b,c) and Jameson et al. 
(1999). The second school consists of those who propose to abandon the Poisson process 
framework altogether and replace it with a (multi-) fractal approach. Examples of the lat­
ter are Lovejoy and Schertzer's (1990) analysis of the spatial distribution of raindrops and 
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Zawadzki's (1995) and Lavergnat and Golé's (1998) analyses of the temporal distribution 
of raindrops. 

The cited doubly stochastic Poisson process models tend to produce clustering of rain­
drops on certain distinct, predefined spatial and/or temporal scales. The implications of 
this type of rainfall behavior for sample-to-sample radar echo fluctuations are discussed by 
Jameson and Kostinski (1999b). (Multi-)fractal processes on the other hand are associated 
with clustering of raindrops on all scales. If rainfall would indeed exhibit such a strong clus­
tering behavior, the implications for radar remote sensing of rainfall would be profound, 
as pointed out by Lovejoy and Schertzer (1990). For instance, there would no longer be a 
simple proportionality between the expected number of raindrops in a radar sample volume 
and the size of that sample volume. Due to increased coherent scattering, it would affect 
the sample-to-sample echo fluctuations as well. In short, it would essentially be necessary 
to revise the currently accepted theory of weather radar. 

2.2 Experimental verification of the Poisson homogeneity hy­
pothesis in stationary rainfall 

Due to the profound implications for radar rainfall estimation and rainfall sampling theory, 
it is important to investigate experimentally whether the raindrop arrival process at the 
ground can at times be considered a homogeneous Poisson process or whether it systemati­
cally exhibits clustering (or possibly even scaling) behavior. Kostinski and Jameson (1997) 
find indications for Poisson behavior during 'a time of unusually constant flux'. The same 
authors argue that 'evidence of nonclustering, Poissonian structure conflicts with any ubiq­
uitous fractal description of rain' (Jameson and Kostinski, 1998). It would not conflict with 
the doubly stochastic Poisson process description of rain, however. The latter namely con­
tains the homogeneous Poisson process as a limiting case. In view of these arguments, this 
section reports on the analysis of an exceptionally stationary dataset with mostly sampling 
fluctuations and very little natural variability. Acceptation of the Poisson homogeneity 
hypothesis would then automatically imply a rejection of the (multi-)fractal hypothesis (at 
least at the raindrop scale). 

The available dataset consists of raindrop counts in 16 diameter intervals of 0.21 mm 
width for 1066 consecutive time intervals of about 10 s duration, i.e. almost 3 h in total. The 
data have been collected as part of the NERC Special Topic HYREX, a large hydrological 
radar experiment organized in the United Kingdom, at the Bridge Farm Orchard site on 
14 February 1995. The instrument used is an Ulingworth-Stevens Paired-Pulse Optical 
Disdrometer, which has an area presented to the rain of 50 cm2 (Ulingworth and Stevens, 
1987). Rain rates calculated using the observed raindrop counts vary from 0 to 9 mmh - 1 . 
The average wind speed during the event amounts approximately 3 m s _ 1 . 

As mentioned in the previous chapter, observed rain rate fluctuations are caused both 
by sampling fluctuations and by natural variability, which are not readily separable from 
each other. That is why experimental studies intended to test the Poisson homogeneity 
hypothesis in rain are often bound to fail. Unless of course there are strong indications 
that the amount of natural variability present in a particular time series is negligible as 
compared to the amount of sampling fluctuations. This rare situation happens to be the 
case in the dataset at hand during a period of 35 min. This period contains 210 consecu­
tive 10 s raindrop size distributions (comprising a total of 6281 raindrops) and is roughly 
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Figure 2.1: Empirical (crosses) and theoretical Poisson (circles) frequency functions of raindrop 
counts for diameters between 0.51 and 1.77 mm diameter (24 degrees of freedom). Error bars 
indicate 95% confidence limits. Also indicated are the average number of raindrops per 10 s interval, 
the Poisson dispersion index and the x goodness-of-fit statistic. 
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Figure 2.2: Empirical (crosses) and theoretical Poisson (circles) cumulative frequency functions 
of raindrop counts for diameters between 0.51 and 1.77 mm diameter. Error bars indicate 95% 
confidence limits. Also indicated are the average number of raindrops per 10 s interval, the Poisson 
dispersion index and the maximum absolute deviation between the empirical and the theoretical 
cumulative frequency function. 
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characterized by uncorrelated fluctuations around a constant mean rain rate of about 3.5 
m m h - 1 . 

The empirical frequency function calculated from the 210 observations has been com­
pared for each raindrop diameter interval with the theoretical frequency function expected 
for a homogeneous Poisson process with the same mean. Fig. 2.1 shows the results for the 
first 6 intervals, corresponding to diameters from 0.51 mm to 1.77 mm. The error bars in 
this figure represent 95% confidence limits. Fig. 2.1 also provides the mean raindrop count, 
the value of the Poisson dispersion index and the value of the x 2 goodness-of-fit statistic for 
each diameter interval. Fig. 2.2 gives the corresponding results for the empirical cumulative 
frequency function. This figure also provides the maximum absolute deviation between the 
empirical and the theoretical cumulative frequency function for each diameter interval. 

A visual inspection of Figs. 2.1 and 2.2 reveals that only the first diameter interval shows 
major deviations from Poisson behavior. For all other intervals the relative frequencies more 
or less correspond to what can be expected on the basis of Poisson statistics. The fit with 
the Poisson frequency function becomes nearly perfect for the last diameter intervals (which 
are not shown here as they provide little extra information). A closer look at the values of 
the Poisson dispersion indices and the x2 statistics shows that at the 95% confidence level, 
the hypothesis that the raindrop counts can be considered random samples from Poisson 
distributions is only rejected for the first three diameter intervals, containing raindrops with 
diameters less than 1.14 mm. 

In summary, the analysis demonstrates that the Poisson homogeneity hypothesis is only 
rejected for raindrops with diameters smaller than 1.14 mm. Although these raindrops 
account for 66% of the raindrop concentration in the air and 55% of the raindrop arrival 
rate at the ground, they only account for 14% of the rain rate and 2% of the radar reflectivity 
factor (on the basis of the mean raindrop size distribution during the experiment). In other 
words, although clustering may be a significant phenomenon for the smallest raindrops, the 
analyzed data seem to indicate that for moderate rain rates the arrival rate fluctuations 
of the raindrops which contribute most to rain rate and radar reflectivity factor behave 
according to Poisson statistics. 

2.3 An explanation for the apparent fractal correlation di­
mension of homogeneously distributed raindrops 

(Multi-)fractal models have originally been used to describe turbulence. Since rainfall is 
intimately related to the (turbulent) wind field in the atmosphere, it seems natural to use 
the same approach for modeling rainfall (e.g. de Lima, 1998). However, Fabry (1996) argues 
that, since raindrops are not passive tracers of the wind field, the analogy between wind and 
rain may break down at the smallest spatial and temporal scales. The fact that raindrops 
have different sizes and therefore different fall speeds would tend to filter out the scaling 
properties of the wind field at those scales. A "white noise" (i.e. homogeneous) regime 
would be the result. 

Additionally, it has recently been demonstrated that one of the strongest empirical 
arguments in favor of the (multi-)fractal hypothesis at the raindrop scale available to date 
(the results reported by Lovejoy and Schertzer (1990)) may not be as convincing as it seems 
(Jameson and Kostinski, 1998). Lovejoy and Schertzer (1990) report on a box counting 
analysis of blotting paper observations of the spatial distribution of raindrops. They find 



26 CHAPTER 2. DETAILED DESCRIPTION OF RESULTS 

1 
C / 
/ 

B 

S 
C s 

\ 

B f 

A 

B 

\ 1 

B 

' C 
i 

Figure 2.3: Schematic representation of a L x L (m2) piece of chemically treated blotting paper 
(bold square) with a raindrop stain (black dot) and a circle with radius R (< L/2) (m) around 
the center of the stain (bold circle). The surface of the blotting paper can be divided into three 
separate regions (as indicated by the thin lines) according as to whether the circle surrounding a 
raindrop center will fall entirely inside (region A) or partly outside the boundary of the blotting 
paper (regions B and C). 

normalized circle radius, R / L (-) 

Figure 2.4: Expected surface area of a circle with radius R (m) around the center of a raindrop 
uniformly distributed on [0,L] X [0,L] (normalized by the surface area of the blotting paper 1? (m2)) 
versus the normalized radius R/L (-). Solid line: without adjusting for the expected fraction of the 
circle falling outside the boundary of the blotting paper; dashed line: with boundary correction. 
Since for a Poisson process the expected number of raindrop stains is proportional to the expected 
surface area falling inside the blotting paper boundary, multiplication of the vertical axis with the 
(expected) total number of raindrop stains on the blotting paper yields the expected number of 
raindrop stains as a function of R/L. 
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Figure 2.5: Expected proportion of a circle with radius R (m) around a uniformly distributed 
raindrop center falling inside the boundary of the blotting paper as a function of the normalized 
radius R/L (-) (i.e. the ratio of the dashed to the solid line in Fig. 2.4). 
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Figure 2.6: Apparent fractal correlation dimension (i.e. the slope of the dashed line in Fig. 2) as 
a function of the interval used to perform the regression analysis. Solid line: minimum normalized 
radius R/L = 10 - 1 ; dashed line: minimum normalized radius R/L = 10 - 2 ; dash-dotted line: 
minimum normalized radius R/L = 10~3. The slopes have been obtained using linear regression on 
the logarithmic values, uniformly distributed over the interval in logarithmic space. 
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evidence for the scaling behavior of raindrops in space. However, first of all the limited size 
of their sample (comprising only 452 raindrop stains) questions the statistical significance 
of their results. Moreover, since the sizes of the raindrops are not taken into account in 
their analysis, it remains unclear whether the reported scaling behavior is exhibited to the 
same extent by raindrops of all sizes. Perhaps the deviation from homogeneity is largely 
restricted to particular raindrop sizes. Thirdly, Jameson and Kostinski (1998) present the 
results of a numerical simulation experiment intended to mimic Lovejoy and Schertzer's box 
counting analysis. They find exactly the same fractal dimension as Lovejoy and Schertzer, 
even though their simulation is based on uniformly distributed raindrops, consistent with 
the Poisson homogeneity hypothesis. This indicates that the fractal dimension reported by 
Lovejoy and Schertzer may have been a mere sampling artifact. 

That this is indeed the case can be demonstrated analytically. Fig. 2.3 provides a 
schematic representation of the blotting paper employed by Lovejoy and Schertzer (1990) in 
their box counting analysis. This analysis consisted of drawing concentric circles around the 
center of each of 452 raindrop stains collected on a 128 x 128 cm2 piece of chemically treated 
blotting paper - using an exposure time of approximately 1 second - 'during a moderately 
heavy stratiform rain'. The radii of the circles were logarithmically varied from a few mm 
(i.e. of the order of the size of the stains) to more than 1.5 m (i.e. largely exceeding the 
size of the blotting paper). For each value of the radius, the numbers of drop stains falling 
inside each of the 452 circles were averaged. In this manner, Lovejoy and Schertzer obtained 
an average number of drop stains as a function of the circle radius. This empirical function 
was subsequently plotted on log-log paper. Apart from a fall-off both at small radii (due 
to the finite number of drop stains) and at large radii (due to the finite size of the blotting 
paper), the function was found to be reasonably well described by a straight line for 'the 
part of the graph [...] that was relatively unaffected by the [...] fall-off' (reported as the 
range between 2 mm and 40 cm). The obtained slope of the straight line, the 'correlation 
dimension', was found to be 1.83 (1.79 and 1.93 on two other occasions), as opposed to 
a value of 2 expected for uniformly distributed drop stains. Lovejoy and Schertzer inter­
preted this as 'evidence that rainfall is scaling over this range' and implying that 'drops are 
(hierarchically) clustered over the range'. 

For homogeneously distributed raindrops (obeying Poisson statistics), the expected num­
ber of raindrop stains falling inside a circle of a given radius would be the product of (1) 
the expected stain density (in this case 452/1.282 = 276 m~2, i.e. 276 drops per square 
meter) and (2) the expected surface area of the circle, with a center uniformly distributed 
over the blotting paper, which falls inside the boundary of that blotting paper. Using the 
subdivision shown in Fig. 2.3, the latter can be calculated analytically in a straightforward 
manner for circles with radii up to half the length of a side of the blotting paper. Fig. 2.4 
shows the result on a log-log plot. This figure can be directly compared to Fig. 2 of Lovejoy 
and Schertzer (1990). Clearly, the expected surface area of the circle will eventually be­
come equal to the area of the blotting paper, when the circle will cover the paper entirely 
no matter where its center will be located. This will be true when the circle radius equals 
y/2 times the length of a side of the blotting paper. 

Although the difference between the solid and the dashed line in Fig. 2.4 may not seem 
significant, it should be recognized that this is due to the fact that the y-axis in that figure 
has a logarithmic scale. Fig. 2.5 shows the ratio of the dashed to the solid line in Fig. 2.4, 
i.e. the expected proportion of a circle with a given radius falling inside the blotting paper. 
For a radius which equals half the length of a side of the blotting paper, this proportion is 
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only slightly more than 60%. Even for the largest radius taken into account by Lovejoy and 
Schertzer (1990) to fit a straight Une to their Fig. 2 (corresponding to a normalized circle 
radius of 40/128 = 0.3125), this figure is only 75%, indicating that the expected number 
of drop stains will be underestimated by 25% for circles of this size. It should be noted 
that this underestimation can be entirely explained as a boundary effect in an otherwise 
homogeneous rainfall sample and does not require invoking any scaling hypothesis. 

Fig. 2.6, finally, shows the influence of this boundary effect on the estimation of the 
slope of the dashed line in Fig. 2.4. For a maximum normalized radius as employed by 
Lovejoy and Schertzer (0.3125), this leads to slopes of 1.83, 1.93 and 1.97, respectively, 
depending on whether the minimum radius used in the regression analysis is a fraction 
10_1 , 10~2 or 10~3 of the length of a side of the blotting paper. Apparently, the influence 
of the blotting paper's finite size remains appreciable even for circles which are orders of 
magnitude smaller than the paper. The indicated slopes represent "apparent" correlation 
dimensions, as their fractal values are entirely the result of sampling effects. In conclusion, 
Lovejoy and Schertzer's (1990) claim that their box counting analysis provides empirical 
evidence for the fractal hypothesis that 'inhomogeneity in rain is likely to extend down to 
millimeter scales ' has to be reconsidered. As a result of instrumental artifacts, their test 
results are not significant enough to reject the Poisson homogeneity hypothesis in favor of 
a fractal description of rainfall. 

2.4 A stochastic model of stationary rainfall for the study of 
sampling fluctuations 

The results reported in the previous two sections have demonstrated that Poisson statistics 
may be used as a starting point for the development of a theory of sampling fluctuations in 
surface rainfall observations. The basis of such a theory would be provided by the choice 
of an appropriate stochastic model of stationary rainfall, i.e. rainfall in which no natural 
variability is present. In this section, rainfall is modeled as a so-called marked point process, 
perhaps the simplest model able to account for the raindrop structure of rainfall. The 
basic hypotheses of the model are (1) spatial homogeneity and (2) the absence of raindrop 
interaction. 

In most previous rainfall studies, raindrop populations have been characterized by the 
raindrop size distribution only. This quantity provides the average number of drops per unit 
volume of air and per unit diameter. It is an average because both the number of raindrops 
in a volume and their diameters fluctuate. Hence, any description of rainfall at the level 
of raindrops has to include two types of fluctuations: the statistics of the distribution of 
raindrops in space and the distribution of their sizes. Here, raindrops are assumed to be 
uniformly distributed (in a statistical sense) in a given volume. In other words, the number 
of drops is assumed to be distributed according to a Poisson distribution. This is the sim­
plest model that is possible. In the previous sections, the Poisson homogeneity hypothesis 
has been justified experimentally as a good approximation to reality during stationary rain­
fall. Additionally, Kostinski and Jameson (1997) find indications for homogeneous Poisson 
behavior during 'a time of unusually constant flux'. Within this model, the density of rain­
drops per unit volume of air, the raindrop concentration, is the only parameter required to 
characterize the spatial distribution of drops. The distribution of drop diameters is charac­
terized by a certain probability density function. For instance, Marshall and Palmer (1948) 
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Figure 2.7: Three different representations of the stochastic process describing the arrival of rain­
drops at the ground: (a) the stochastic point process describing the arrival times of the raindrops; 
(b) the stochastic counting process, the integral of the point process under (a), describing the num­
ber of raindrops which have arrived up to a particular time; (c) the stochastic process describing 
the sequence of raindrop counts in fixed time intervals. 
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Figure 2.8: Three different representations of the stochastic process describing rainfall at the ground: 
(a) the marked point process describing the arrival times and the sizes of the raindrops; (b) the 
stochastic process describing the cumulative amount of rainfall which has arrived up to a particular 
time; (c) the stochastic process describing the sequence of rain rates in fixed time intervals. 
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have suggested that drop diameters are distributed according to an exponential density (see 
Uijlenhoet and Strieker (1999a) for a recent review of the exponential raindrop size distri­
bution). The model just introduced is a marked point process, in which the point process 
represents the positions of drops in the sample volume and the mark associated with a drop 
is its diameter (Smith, 1993). 

The sample-volume process described above can be transformed into an arrival process 
by considering the arrival of raindrops at a given surface during a given period of time 
(Figs. 2.7, 2.8). The connection is established by assuming (1) that raindrops fall vertically 
downward at a terminal velocity which depends exclusively on their diameter and (2) that 
drops do not interact with each other. The absence of interaction together with the Poisson 
distribution of drops in space implies that the inter-arrival times of drops are exponentially 
distributed (Smith, 1993). The arrival process obtained in this way also becomes a marked 
point process. The arrival times now constitute the point process (in time; Fig. 2.7) and 
the diameter of each drop is its mark (Fig. 2.8). The exponential distribution completely 
determines the statistics of the arrival point process. In fact, this process will also be of 
the Poisson type because the number of raindrops arriving at the sampling surface during 
a given period of time is distributed according to a Poisson distribution as well. A final 
simplification in the proposed model of stationary rainfall is that the random diameters 
of the individual raindrops are assumed to be independent and identically distributed, 
independent of their arrival times. 

2.5 A theory of sampling fluctuations in properties derived 
from measurements of raindrop size distributions 

Rainfall properties estimated from raindrop size measurements show great variability. Gen­
erally speaking, three factors can explain this variability: (1) climatological factors (as 
different kinds of rainfall have different properties), (2) physical factors (as meteorological 
conditions change during rainfall events), and (3) instrumental factors (those associated 
with the device used to measure drop diameters). The latter includes any instrument 
malfunctioning, device sensitivity, and sample size effect. In this section the focus is on 
the analysis of the magnitude of the variability caused by the sample size: the sampling 
fluctuations. 

The stochastic rainfall model described in the previous section is used in this section to 
obtain the sampling distributions of rain rate (Fig. 2.9), the time needed to exceed a given 
rain water depth (Fig. 2.10) and the minimum and maximum raindrop diameters (Figs. 2.11 
and 2.12). For the first two of these distributions, exact forms can only be obtained under 
the assumption that the volumes of the arriving raindrops are exponentially distributed. 
If this restrictive assumption is relaxed, only asymptotic expansions can be derived. For 
the sampling distributions of the minimum and the maximum raindrop diameters, exact 
solutions can be found for any form of the raindrop size distribution. Notice that, although 
the sampling distribution of the maximum raindrop diameter shows a pronounced rain rate 
dependence (Fig. 2.12), that of the minimum drop diameter is almost entirely independent 
of rain rate (Fig. 2.11). 

Both the exact and the asymptotic forms of the sampling distributions are found to con­
verge to Gaussian distributions (Fig. 2.9). The relevant parameter controlling this evolution 
turns out to be the average number of drops in the sample. An advantage of the asymptotic 
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10 
rain rate (mm/h) 

Figure 2.9: Exact form of the continuous part of the sampling distribution of rain rate in case the 
arrival process of raindrops at a surface obeys a Poisson process and the volumes of the arriving 
raindrops are exponentially distributed. The rain rate dependence of the arrival rate and the mean 
volume of the raindrops are those which follow from a combination of the Marshall-Palmer (1948) 
distribution and Atlas and Ulbrich's (1977) raindrop terminal fall speed parameterization (Uijlenhoet 
and Strieker, 1999a). (a) mean rain rate is 0.1 mmh - 1 ; (b) mean rain rate is 1 mmh" 1 ; (c) mean 
rain rate is 10 m m h - 1 . Solid line: integration time is 0.1 s; dashed line: integration time is 1 s; 
dash-dotted line: integration time is 10 s. In all cases the sampling surface is 50 cm2, corresponding 
to a Joss-Waldvogel (1967) disdrometer. 
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Figure 2.10: Exact form of the sampling distribution of the time needed to exceed a given rain 
water depth in case the arrival process of raindrops at a surface obeys a Poisson process and the 
volumes of the arriving raindrops are exponentially distributed. The rain rate dependence of the 
arrival rate and the mean volume of the raindrops are those which follow from a combination of 
the Marshall-Palmer (1948) distribution and Atlas and Ulbrich's (1977) raindrop terminal fall speed 
parameterization (Uijlenhoet and Strieker, 1999a). (a) mean rain rate is 0.1 m m h - 1 ; (b) mean rain 
rate is 1 m m h - 1 ; (c) mean rain rate is 10 m m h - 1 . Solid line: exceeded rain water depth is 0.001 
mm; dashed line: exceeded rain water depth is 0.002 mm; dash-dotted line: exceeded rain water 
depth is 0.003 mm. In all cases the sampling surface is 50 cm2, corresponding to a Joss-Waldvogel 
(1967) disdrometer. 
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Figure 2.11: Exact form of the continuous part of the sampling distribution of the minimum raindrop 
diameter in case the arrival process of raindrops at a surface obeys a Poisson process and the 
diameters of the arriving raindrops are exponentially distributed. The rain rate dependence of the 
arrival rate and the mean diameter of the raindrops are those which follow from a combination of 
the Marshall-Palmer (1948) distribution and Atlas and Ulbrich's (1977) raindrop terminal fall speed 
parameterization (Uijlenhoet and Strieker, 1999a). (a) mean rain rate is 0.1 m m h - 1 ; (b) mean rain 
rate is 1 mm h~1 ; (c) mean rain rate is 10 mm h~ *. Solid line: integration time is 0.1 s; dashed line: 
integration time is 1 s; dash-dotted line: integration time is 10 s. In all cases the sampling surface 
is 50 cm2, corresponding to a Joss-Wald vogel (1967) disdrometer. 
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Figure 2.12: Exact form of the continuous part of the sampling distribution of the maximum raindrop 
diameter in case the arrival process of raindrops at a surface obeys a Poisson process and the 
diameters of the arriving raindrops are exponentially distributed. The rain rate dependence of the 
arrival rate and the mean diameter of the raindrops are those which follow from a combination of 
the Marshall-Palmer (1948) distribution and Atlas and Ulbrich's (1977) raindrop terminal fall speed 
parameterization (Uijlenhoet and Strieker, 1999a). (a) mean rain rate is 0.1 m m h - 1 ; (b) mean rain 
rate is 1 m m h - 1 ; (c) mean rain rate is 10 m m h - 1 . Solid line: integration time is 0.1 s; dashed line: 
integration time is 1 s; dash-dotted line: integration time is 10 s. In all cases the sampling surface 
is 50 cm2, corresponding to a Joss-Wald vogel (1967) disdrometer. 
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method over the exact solutions is that it provides expansions for the sampling distribu­
tions of all rainfall integral variables, not only that of rain rate, but for instance those of 
kinetic energy flux density and radar reflectivity as well. The skewness of the distributions 
is found to be more pronounced for smaller mean sample sizes (Fig. 2.9) and for higher order 
moments of the raindrop size distribution. For instance, the sampling distribution of the 
normalized mean diameter becomes nearly Gaussian for mean raindrop counts greater than 
10 while the sampling distribution of the normalized rain rate remains skewed for mean 
raindrop counts as large as 500. 

Another result of the analysis is the conclusion that the median always underestimates 
the population value of a rainfall integral variable. The amount of underestimation depends 
on the raindrop size distribution. This provides a theoretical confirmation and explanation 
of simulation results presented by Smith et al. (1993). 

The practical relevance of the results of this section lies in the possibility of estimating 
the effect of the sample size associated with a given disdrometric instrument on a particular 
rainfall estimator. For instance, for the Joss-Waldvogel (1967) disdrometer and the Optical 
Spectro-Pluviometer (Salles et al., 1998), the average number of raindrops sampled for rain 
rates below 0.1 mm h _ 1 is less than 100 and the corresponding rain rate and radar reflectivity 
estimates will therefore be strongly influenced by sampling fluctuations. The proposed 
methodology for obtaining asymptotic approximations to sampling distributions, provides 
a manner to better establish the accuracy of estimates of rainfall integral variables obtained 
from disdrometric measurements. Moreover, the developed method can be generalized to 
provide estimates of the correlation between estimators of different rainfall variables induced 
by sampling fluctuations only. 

2.6 Extensions of the stochastic rainfall model 

This section presents two extensions of the stochastic rainfall model discussed in the previous 
sections: (1) the generalization of the temporal model of stationary rainfall to a model which 
includes spatial dimensions as well; (2) the generalization of the temporal model to include, 
besides sampling fluctuations, natural variability as well. 

With the smaller and smaller sample volumes currently employed, (Doppler) radar ob­
servations of precipitation will be subject to sampling fluctuations as well. For example, 
suppose the rectangular reference volume indicated in Fig. 1.1 (p. 16) represents a radar 
sample volume of 1 m3. Fig. 2.13 shows what the temporal (sampling) fluctuations in the 
raindrop concentration py (m~3), the rain rate R (mmh - 1 ) and the radar reflectivity factor 
Z (mm 6m - 3 ) might look like for this hypothetical sample volume, assuming a Marshall-
Palmer raindrop size distribution and a constant (mean) rain rate of 1 m m h - 1 . This simula­
tion has been based on an adapted version of von Smoluchowski's (1916) stochastic model of 
density fluctuations for intermittent observations (e.g. Fürth, 1918, 1919; Chandrasekhar, 
1943; Smith, 1993a). Although pv remains roughly constant, R and particularly Z are ob­
served to fluctuate appreciably. Note the differences in correlation structure between these 
three rainfall integral variables as well. Again, in a practical situation, a first estimate of 
the magnitude and speed of these fluctuations may be obtained on the basis of the Poisson 
homogeneity hypothesis. A model such as this may be used to investigate the additional 
amount of rainfall information which may be hidden in the reflectivity fluctuations of high 
resolution radar observations. 
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Figure 2.13: Simulation of the temporal evolution of rainfall integral variables in a 1 m3 sample 
volume on the basis of the Poisson homogeneity hypothesis: (a) number of raindrops n (-) or raindrop 
concentration py (m - 3 ) ; (b) rain rate R (mm h _ 1 ) ; (c) radar reflectivity factor Z (mm6 m~3). Mean 
rain rate R = 1 m m h - 1 , Marshall-Palmer raindrop size distribution Ny (D,R), raindrop diameter 
resolution AJD = 0.1 mm, maximum raindrop diameter Dmax = 6 mm, time step Ai = 0.05 s. 
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Figure 2.14: The raindrop arrival process, including both sampling fluctuations and natural vari­
ability, modeled as a doubly-stochastic Poisson process (Cox process). Bold lines: one realization 
of an arrival rate process modeled as a logarithmically transformed Gaussian (normal) first-order 
autoregressive (AR(1)) process with a mean of 25 drops per second, a coefficient of variation (CV) 
of l/>/2 and a first-order autocorrelation coefficient of 0.95. Thin line: three different realizations 
of independent Poissonian fluctuations around the arrival rate process. 
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Secondly, a reasonable first approximation of the temporal rainfall process at the droplet 
scale (including both sampling fluctuations and natural variability) is found to be provided 
by the doubly stochastic Poisson process (Cox process), where the rate process follows a 
logarithmically transformed, normal (Gaussian), first-order autoregressive (AR(1)) process 
(Fig. 2.14). Such a model may be used to determine over what time period actual surface 
rainfall observations should be accumulated to reduce the sampling fluctuations as much as 
possible without loosing an unacceptable amount of natural variability. 

2.7 A statistical model of natural rainfall variability 

In this final section, the subject of sampling fluctuations is abandoned. The focus is en­
tirely on the natural variability of the rainfall process. Smith and Krajewski (1993) have 
demonstrated that, in the absence of sampling fluctuations, the coefficients of power law 
Z-R relationships can be expressed in terms of the variances of and the covariances between 
the parameters of the probability distributions of raindrop count and size. Their approach 
can be extended to any pair of rainfall integral parameters, provided these parameters are 
proportional to moments of the raindrop size distribution (which is approximately the case 
for Z, k and R). In this manner, statistical power law relationships have been obtained 
which are in a sense complementary to the deterministic power laws pioneered by Atlas and 
Ulbrich (1974) and Ulbrich and Atlas (1978). The statistical approach, however, does not 
only lead to theoretical expressions for the coefficients of power law relationships between 
rainfall integral parameters, but to theoretical expressions for the goodness of fit of such 
power laws as well. Moreover, this approach can be readily extended to include higher order 
power laws, such as double and triple power laws. In this manner, theoretical expressions 
for the coefficients of power laws used in multi-parameter radar observation of rainfall have 
been derived. 

Another interesting feature of the statistical approach is that it provides a theoretical 
confirmation of the general formulation of the raindrop size distribution as a scaling law 
proposed by Sempere-Torres et al. (1994, 1998) (see Uijlenhoet and Strieker (1999b) for 
a summary of this formalism). It provides a direct physical interpretation of the scaling 
exponents in terms of the variances of and the covariances between the parameters of the 
raindrop count and size distributions. The values of the scaling exponents indicate whether it 
is the raindrop concentration or the characteristic raindrop size which controls the variability 
of the raindrop size distribution (Fig. 2.15). 

2.8 Summary of results arising out of this research 

• The arrival rate fluctuations of the raindrops which contribute most to rain rate and 
radar reflectivity behave, for moderate rain rates, according to Poisson statistics. This 
implies a rejection of the (multi-)fractal hypothesis for rainfall, at least at the raindrop 
scale. Hence, Poisson statistics may be used as a starting point for the development 
of a theory of sampling fluctuations in surface rainfall observations. 

• The sampling distribution of the estimator of any rainfall integral variable converges 
to a Gaussian probability density function for large values of the expected sample size. 
The approach to normality is slower for the higher order moments of the raindrop size 
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Figure 2.15: (a) Theoretical self-consistency relationship between the scaling exponents a (-) and 
ß (-), ß — 4^r, for three different values of the exponent 7 of a power law relationship between 
raindrop terminal fall speed and equivalent spherical raindrop diameter (dashed line: 7 = 0.8; dash-
dotted line: 7 = 0.67; dotted line: 7 = 0.5). The cross, at the point with coordinates (a,ß) = 
(—0.27,0.27) corresponds to raindrop size controlled rainfall, the plus at the point with coordinates 
(a, ß) = (0,0.21) to Marshall and Palmer's (1948) exponential raindrop size distribution, the circle at 
the point with coordinates (a,ß) = (1,0) to equilibrium rainfall (raindrop concentration controlled) 
conditions, (b) Idem in the transformed parameter space spanned by the exponents a + ß = rypv 
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distribution. As a result of the asymmetry of the sampling distributions, the median 
always underestimates the population value of a rainfall integral variable. These 
results have important practical implications for the estimation of radar reflectivity -
rain rate relationships from surface raindrop observations. 

• Von Smoluchowski's (1916) stochastic model of density fluctuations for intermittent 
observations provides a reasonable first approximation of the spatial rainfall process at 
the droplet scale, i.e. the fluctuations in the rainfall integral variables in a given volume 
of air. Such a model may be used to investigate the additional amount of rainfall 
information which may be hidden in the reflectivity fluctuations of high resolution 
radar observations. 

• A reasonable first approximation of the temporal rainfall process at the droplet scale 
(including both sampling fluctuations and natural variability) is provided by a dou­
bly stochastic Poisson process (Cox process), where the rate process follows a log-
transformed, normal (Gaussian), first-order autoregressive (AR(1)) process. Such a 
model may be used to determine over what time period surface rainfall observations 
should be accumulated to reduce the sampling fluctuations as much as possible with­
out loosing an unacceptable amount of natural variability. 

• A statistical model of the natural variability of the rainfall process provides a direct 
physical interpretation of the scaling exponents of a recently proposed general for­
mulation for the raindrop size distribution as a scaling law. These exponents can be 
expressed in terms of the variances of and the covariances between the parameters of 
the raindrop count and size distributions. The values of the scaling exponents indi­
cate whether it is the raindrop concentration or the characteristic raindrop size which 
controls the variability of the raindrop size distribution. 



Chapter 3 

Additional information 

3.1 Training content 

With regard to research, this fellowship gave an invaluable opportunity to the grant holder of 
making the synthesis of different studies made in his home institute. The main achievement 
of the grant holder was to put a considerable amount of existing experimental results into a 
coherent theoretical framework based on a new formulation of the microphysical properties 
of rain. He also visited via simple analytical solutions the implications of this theory on the 
concrete application of radar detection to hydrology. In addition, the grant holder acted as 
Coordinator of the HYDROMET Integrated Radar Experiment (HIRE), an international 
radar-hydrological field experiment organized in the framework of the Community-funded 
HYDROMET project in Marseille (France) from 1 September to 1 December 1998. 

With regard to education, the grant holder acted as a lecturer at the Advanced study 
course on radar hydrology for real time flood forecasting, held at the Water and Environment 
Management Research Centre of the University of Bristol, UK from 24 June to 3 July 
1998. He also acted as chairperson of session NP1.03 (Scaling vs. non-scaling methods in 
rainfall modelling) at the XXTV General Assembly of the European Geophysical Society, 
held from 19 to 23 April 1999 in The Hague, The Netherlands. In addition, he assisted in 
the supervision of several MSc and PhD students at the universities of Grenoble. 

3.2 Unexpected developments 

The expected results of this project were: 

• A mathematical theory for the stochastic description of rainfall at the raindrop scale; 

• Software for the visualization of the theoretical results and for the application of the 
theory to actual rainfall data obtained from disdrometers and optical spectrometers; 

• Scientific publications describing the results of the research project. 

All these results have been achieved. 
Regarding the expected links with any other Community-financed project, this research 

project was to have close links with the HYDROMET project funded by the Community 
under the Environment and Climate Programme. Specifically, a close working relation­
ship was to be established with the following HYDROMET partners: Dr. J.-D. Creutin 
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(LTHE/INPG, Grenoble, Prance), Dr. D. Sempere Torres (UPC, Barcelona, Spain) and 
Prof. I. D. Cluckie (WEMRC, University of Bristol, Bristol, UK). LTHE/INPG has been 
the host institution for the proposed project, whereas UPC and the University of Bristol 
have been visited during the course of the research. The former with the purpose of writing 
a joint scientific article (Porrà, J. M., R. Uijlenhoet, D. Sempere Torres and J.-D. Creutin 
(2000). Sampling effects in drop size distribution measurements: estimation of bulk rainfall 
variables. Journal of the Atmospheric Sciences (submitted)), the latter to attend and lec­
ture at the Advanced Study Course on Radar Hydrology for Real Time Flood Forecasting. 
All HYDROMET science meetings and workshops have been attended, which has guaran­
teed regular scientific interaction with the other partners of the HYDROMET project (Italy 
and Greece). In summary, all expected links have been established. 

This project has been complementary to Task 2.3 of the HYDROMET Project (Radar 
measurement uncertainty due to sampling fluctuations on the drop size distribution). The 
emphasis has been on the experimental verification of various theories concerning the mea­
surement and parameterization of raindrop size distributions. The proposed stochastic 
model has provided a convenient theoretical framework for this verification, since it has 
allowed experimental results to be explained in terms of both instrumental artefacts and 
actual properties of the rainfall process. Detailed knowledge of the rainfall process at the 
raindrop scale has aided the accomplishment of Task 4.1 of the HYDROMET Project (Mar­
seille experiment and space state modelling) as well. Again, all proposed tasks have been 
accomplished. No unexpected developments have taken place. 

3.3 Research lines and/or research approaches which proved 
unsuccessful 

None. 

3.4 Potential applications of t he results 

Analytical solutions to sampling distributions will allow hydrologists to provide all kinds 
of parameters derived from surface rainfall measurements with confidence limits represent­
ing the expected magnitude of the fluctuations resulting from instrumental considerations. 
These confidence intervals will be very useful in separating sampling fluctuations from nat­
ural rainfall variability. Knowledge of the relative contributions to these fluctuations may 
lead to improved Z-R and k-R relationships and ultimately to improved radar rainfall esti­
mates. Moreover, a stochastic model such as the one developed will provide a more realistic 
framework for simulation studies dealing with problems in radar hydrology. 

3.5 Interaction with industry 

None. 
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3.6 Benefit t o the Host Institution 

The grant holder brought a considerable experience on the subject of rain microphysics and 
its hydrological applications. The fellowship allowed the laboratories in France and Holland 
to deepen existing collaboration. 

3.7 Benefit to the Community 

Regarding the relevance of this project to Community policies, this project has had a direct 
relevance to Theme A of the Environment and Climate Programme: Research into the 
natural environment, environmental quality and global change. This is because rainfall 
with its large spatial and temporal variability is one of the most important links between 
the processes in the atmosphere and those on the land surface. Since its area of application is 
radar hydrology, this project has had ties with Theme B of the Programme (Environmental 
technologies) as well. 

Moreover, one of the main objectives of the Environment and Climate individual re­
search training grants is 'to provide opportunities for the advanced training, exchange and 
mobility of researchers at the postdoctoral level in science and technology relating to en­
vironment and climate'. It is clear that the postdoctoral position of a Dutch researcher 
at a French Laboratory with a research objective which is directly complementary to an­
other Community-financed project under the Environment and Climate Programme has 
contributed significantly to this objective. 
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