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ABSTRACT 

Nyrop, J.P., Binns, M.R., van der Werf, Wopke and Kovach J., 1994. Cascading tripartite binomial 
classification plans to monitor European red mite (Acari, Tetranychidae) through a season; 
development and evaluation of a new methodology for pest monitoring. Exp. Appl. Acarol., 18: 
123-153. 
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A monitoring protocol that schedules future sample bouts based on the outcome of density classifi­
cation and expected population growth has been developed and applied to monitoring European red 
mite (Panonychus ulmi Koch) through a growing season. The monitoring protocol is based on 
concatenating through time tripartite sequential classification sampling plans that use binomial counts 
in lieu of complete enumeration. Binomial counts are scored positive when the number of organisms 
(mites) on a sample unit (leaves) exceeds a tally number. At each sample occasion the monitoring 
procedure leads to one of three possible decisions; intervene when the density is high, sample at the 
next sample occasion (after one week) when the density is intermediate, and sampl~ at the second 
next sample occasion (after two weeks) when the density is low. Evaluation of the monitoring 
protocol under field conditions showed that the protocol with constituent tally 0 binomial count 
sampling plans was quite successful in timing intervention at the moment when population densities 
were about to exceed an established threshold that dictated intervention. The performance of this 
monitoring protocol and another protocol in which constituent sampling plans used binomial counts 
with a tally number of 4 were compared using simulation. Sampling plans that used a tally number 
of 4 were more precise than plans that used a tally number of 0. However, the overall performance 
of the monitoring protocol based on tally 0 sampling plans did not greatly differ from the monitor­
ing protocol based on tally 4 sampling plans. Simulated performance of the tally 0 protocol was 
corroborated by field evaluation. The monitoring protocol based on tripartite classification required 
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30 to 45 percent fewer sample bouts than a protocol based on conve:ltiDnal sequential classification 
at weekly intervals. The monitoring protocol based on tripartite classification was also better able to 
schedule intervention when needed compared to a protocol based on conventional classification at 
two week intervals. Using the tally 0 protocol and current thresholds for P. u/mi, cumulative mite 
density was kept below 300 mite-days per leaf, which is well below levels regarded damaging. A 
tally 0 protocol with raised thresholds, developed on the basis of this finding, gave the best simulated 
performance of all protocols evaluated. 

INTRODUCTION 

Cornerstones of most integrated pest management programs are decision-making 
protocols that allow determination of when a pest population is so abundant as to 
require control. Most of these protocols consist of at least two items: (1) a threshold 
pest density, which, when exceeded by a local population, dictates management 
intervention (usually a pesticide application), and (2) a reliable and efficient method 
for estimating or classifying pest abundance. Much work has been devoted to de­
vising and analyzing sampling methods that-maximize precision while minimizing 
sampling costs (Kuno, 1991; Nyrop and Binns, 1991; Binns and Nyrop, 1992). 

Most sampling procedures used in pest management have only been concerned 
with classifying or estimating pest density at a single point in time. This reflects 
the primary purpose of these procedures; to determine whether a chemical pesti­
cide is needed. There are, however, instances when it is desirable to know whether 
population density remains below some critical threshold( s) over a period of time. 
For example, when biological control is substituted for a chemical pesticide, it may 
be necessary to monitor the population over a period of time to be sure that con­
trol by natural enemies is effective. It might be possible to predict the outcome of 
a natural enemy - pest interaction based on the ratio of pest to natural enemy and 
thereby obviate the need for monitoring (Nyrop, 1988). However, a number of 
factors such as uncertainty in the understanding of natural enemy -pest dynamics, 
errors in initial population estimates, and the influence of biotic and abiotic factors 
can obviate such predictions. 

When a pest population is monitored through time, two questions must be 
answered: ( 1) Does the pest density exceed a threshold that dictates management 
intervention now? (2) If the density is below the threshold now, when should the 
population be sampled again? A simple solution to the second question is to 
sample very frequently; however, this will be unnecessarily costly. A better 
solution would be to use information about population density in conjunction with 
knowledge about population growth to schedule future sampling bouts (Wilson, 
1985). 

European red mite (Panonychus ulmi Koch) is a worldwide pest of apples. This 
mite usually achieves pest status as a result of its natural enemies being destroyed 
by pesticide applications. Biological control of P. ulmi can be successful; however, 
it is also often necessary to monitor populations to insure that densities remain 
below levels that cause injury to foliage. Even when natural enemies of P. ulmi are 
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present, biological control may not result because abiotic factors or pesticide 
applications may differentially influence prey and predators. Furthermore, several 
natural enemies may attack P. ulmi simultaneously making it difficult to predict the 
natural enemy - pest interactions. Thus, biological control of European red mite 
populations often requires monitoring pest density through time. 

In this paper we describe a method that can be used to efficiently monitor a 
population through time to determine whether density remains below a critical 
threshold(s) and apply this procedure to monitoring P. ulmi. We also describe how 
the performance of any protocol used to monitor a population can be assessed. It 
is important to distinguish a monitoring method from a sampling plan. We will use 
the term smnpling plan to denote a scheme for classifying pest density at a specific 
point in time. We will use the term monitoring protocol to refer to the way in which 
one or more sampling plans are concatenated to assess population density re­
peatedly through time. The paper is divided into four sections. In the materials and 
methods section we describe the monitoring protocol by specifying in a general 
way what it is designed to do, how constituent sampling plans are constructed, and 
how the performance of constituent plans and the monitoring method can be 
assessed by the use of computer algorithms. Next, we describe those algorithms as 
developed for monitoring European red mite. The algorithms incorporate the fact 
that because counting spider mites in the field is laborious and not practical, records 
of the presence or absence of spider mites on a sample unit (binomial counts) are 
substituted for complete enumeration. Thirdly, we present a specific monitoring 
protocol, field evidence for its effectiveness in monitoring European red mite, and 
its simulated performance when applied to a set of fictitious and observed popula­
tions. Finally, it is shown how some parameters of constituent sampling plans affect 
the performance of the monitoring protocol. 

MATERIALS AND METHODS 

Principles of the monitoring protocol 
The monitoring method consists of tripartite sequential classification plans that are 
cascaded through time (Fig. 1). Tripartite classification sampling plans are used to 
classify density each time a population is sampled. The classifications are: (1) low 
density indicating that damaging pest levels are unlikely to occur in the near future 
and hence resampling can be delayed; (2) intermediate density showing that 
densities are not currently at a damaging level, but the population should be 
sampled again soon to make sure this is still the case; and (3) high density prompt­
ing immediate intervention. If the first or second decisions are reached, the 
population is sampled again using either the same or a different tripartite classifi­
cation protocol. Several tripartite classification procedures are thus cascaded 
through time (Fig. 1). Depending upon the population dynamics process, sample 
occasions are scheduled more or less frequently. The process stops either at the end 
of the season or when an "intervene" decision is made. 



126 

Intervene 
(classification 3) 

resample in 
2 weeks 

(classification 1) 

Intervene 

resample in 
2 weeks 

Intervene 

J.P. NYROP ET AL. 

resample in 
2 weeks 

Intervene 

······ 

Fig. 1. Illustration of a monitoring scheme based on cascaded tripartite classification of population 
density. Large circles are points in time a population is sampled. Each sampling session can result in 
one of three classifications with concordant decisions. 

Each tripartite sequential classification sampling plan is constructed by com­
bining two dichotomous classification protocols (Binns, 1994; Fowler and Lynch, 
1987). Suppose one wishes to classify density (p.,) into one of three regions defined 
by two critical densities ed1 and ed2; J.L ~ ed1, ed1< J.L ~ ed2, and J.L > ed2 where 
ed1< ed2• Using the two critical densities two dichotomous plans would be con­
structed: Plan 1; J.L ~ ed1 or J.L > ed1• Plan 2; J.L ~ ed2 or J.L > ed2• Construction of 
these plans using Wald's sequential probability ratio test (Wald 1947) and place­
ment of the stop lines for both plans in one figure would result in a composite 
figure as Fig. 2. If, in this figure, the plotted cumulative sample counts cross into 
region 1 density is classified as J.L ~ ed1 (decision 1), if the sample data cross into 
region 2, density is classified as ed1< J.L ~ ed2 (decision 2), and if the sample path 
enters region 3, density is classified as J.L > ed2 (decision 3). 

Tripartite classification sampling plans are cascaded by scheduling future 
sampling based on the current density classification. If density is classified as inter­
mediate (ed1< J.L ~ ed2; decision 2), then the next sample should be taken after time 
interval 11t. If density is classified as low (J.L ~ ed1; decision 1) the next sample 
should be taken after time interval ml1t. We have always set m = 2; however, other 
multipliers could be used. One way of determining the critical densities ed1 and ed2 

is to let ed2 be an intervention threshold (a density that triggers a management 
action) and let ed1 be a density which, if allowed to grow unchecked for mf1t 
time steps, would result in ed2• It is in the computation of ed1 that knowledge about 
population growth is incorporated into the sampling protocols. 
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Fig. 2. Stop lines for a tripartite sequential classification sampling plan. 

Evaluating the monitoring protocol by simulating the sampling process 
To evaluate the monitoring protocol two steps are followed. First, performance 
of each tripartite classification procedure is determined. Second, the monitoring 
protocol is evaluated for specific population trajectories on the basis of the 
performance of its constituent sampling plans. 

Dichotomous classification plans have two performance criteria; the OC func­
tion which is the probability of accepting the low density hypothesis (i.e.; J.t s cd1) 

as a function of the true mean, and the average number of sample units (ASN) 
required to make a classification, also as a function of the true mean. With a 
tripartite classification scheme there are three possible classifications (Fig. 2) and 
three corresponding probabilities of making these classifications (PCi, i = 1,2,3). 
Tripartite classification schemes also have an ASN function; however, it usually 
has two peaks instead of one. 

Probability of classification (PCi, i = 1,2,3) and average sample number (ASN) 
functions for tripartite classification sampling plans must be determined using 
simulation, unlike dichotomous plans for which these functions can be approxi­
mated analytically. The simulation entails generating random variables from 
probability distributions and then simulating sampling by subjecting these random 
variables to stop boundaries of a tripartite plan as if the random variables were 
actual sample observations (Binns, 1994; Nyrop and van der Werf, 1994). 
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The performance of tripartite classification sampling plans cascaded through 
time to monitor an entire population trajectory can be evaluated using five criteria: 
( 1) The probability of intervening at some time during the season, (2) the expected 
number of occasions (bouts) on which samples are taken; (3) the expected total 
sample size (e.g. number of leaves) taken in all bouts; (4) the expected density at 
which intervention occurs and some indication of variability; and (5) the expected 
loss and again some indication of variability. Because the relationship between mite 
density and damage is not well defined, we use cumulative mite density per leaf 
until a decision to intervene is made as a measure of loss. As an indication of 
variability we use the value of density at intervention, or loss, that is greater than 
aX 100 percent of possible densities or losses. This is a useful measure for risk to 
a grower. A mathematical description of these performance criteria is provided in 
the appendix and FORTRAN programs that make the calculations are available 
from the authors. 

Parameterization of the monitoring protocol for European red mite in apple 
During the course of the study, several sampling plans were constructed and 
evaluated for use in monitoring European red mite populations. We will first 
describe the plan for which a field evaluation was done and then present 
modifications made to this plan based on later simulation studies. 

Three tripartite sequential classification plans were constructed for use at 
different times during the period 1 June to 31 August. The upper arm of each plan 
(Fig. 2) was based on the critical densities (cd2) 2.5 motile mites (i.e. anything but 
eggs) per leaf for the period 1 June to 30 June, 5.0 motiles per leaf for 1 July to 31 
July, and 7.5 motiles per leaf thereafter. These thresholds were expert judgements 
b~sed on the need to prevent a cumulative density (mite-days) of more than 
500-600 from occurring during this period (Nyrop et al. 1989), while also mini­
mizing the risk of letting dense populations of more than approximately 15 mites 
per leaf establish, as such dense populations are sometimes difficult to control. The 
critical densities ( cd1) defining the lower set of dichotomous plans were chosen 
in such a way that, after 14 days with an exponential growth rate of 0.065 d- 1, 

densities cd1 would grow to densities cd2: cd2 = cd1exp(0.065 X 14) = 2.5 Xcd1, 

approximately. The growth rate of 0.065 d-1 was an ·average determined by fitting 
an exponential model to 14 data sets on P. ulmi dynamics (Nyrop, ~npublished 
data). Seven days was chosen as a natural and practical time interval between 
potential sample bouts (14 = 2X7 = 2dt). 

Because counting spider mites in the field is difficult at best and often not even 
possible, binomial sampling plans were used. These are founded on a relationship 
between the proportion of sample units with more than T organisms (py), T = 0, 1, 
2, ... , and the density (d) of organisms per sample unit. The parameter Tis called 
a tally number. Based on Nyrop and Binns' work (1992), we used a negative 
binomial probability model to describe the PT - d relationship. 

We constructed binomial count sampling plans based on T equal to 0 and 4 using 
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Wald's sequential probability ratio test (SPRT). The parameter k for the negative 
binomial distribution was estimated via Taylor's power law, variance= a(mean)h 
and the relationship k = (mean)2/(variance-mean) (Nyrop and Binns, 1992). The 
critical proportions of leaves with more than T mites corresponding to the critical 
densities cd1 and cd2 were based on the negative binomial distribution using 
values of k derived from the above formula. The four parameters of the SPRTs were 
selected so that ASN functions remained below 100. We also set an upper limit of 
100 to the sample size because the stop boundaries do not guarantee a decision will 
be reached within any given sample size. If 100 samples are taken without making 
a classification, the estimated proportion of occupied sites is compared with the 
two threshold proportions (cd1 and cd2 converted to proportions) and density 
classified accordingly. Parameters for the sample plans are shown in Table 1. 

The only parameter that has to be known when using the negative binomial 
distribution is k. A value for k must be specified in order to compute PT for a 
particular critical density. Functional dependency of k on mean density and/or 

TABLE 1 

Parameters used to construct "standard" tripartite sequential classification sampling plans for use with P. uimi. 

Critical density Sprt parameters 

Plana cdf k' Proportiond He 
0 

He 
I 

af j3g 

Tally 0 
1.1 1.0 0.301 0.356 0.306 0.406 0.075 0.075 
1.2 2.5 0.467 0.578 0.529 0.628 0.075 0.075 
2.1 2.0 0.418 0.520 0.48 0.56 0.1 0.1 
2.2 5.0 0.667 0.760 0.72 0.80 0.075 0.075 
3.1 3.0 0.513 0.627 0.587 0.667 0.1 0.1 
3.2 7.5 0.827 0.852 0.812 0.892 0.05 0.05 
Tally 4 
l.l 1.0 0.301 0.061 0.031 0.091 0.075 0.075 
1.2 2.5 0.467 0.187 0.137 0.237 0.1 0.1 
2.1 2.0 0.418 0.146 0.106 0.186 0.1 0.1 
2.2 5.0 0.667 0.368 0.318 0.418 0.1 0.1 
3.1 3.0 0.513 0.227 0.176 0.276 0.1 0.1 
3.2 7.5 0.827 0.507 0.457 0.557 0.1 0.1 

a For each plan there are two thresholds and two sets of SPRT parameters. The number following the decimal 
point signifies whether it is plan 1 or 2 of the tripartite scheme. 

b The first value for each plan is cd1 and the second is cd2• 

' k parameter for negative binomial distribution computed using moments and based on a predicted variance 
calculated using the model s2 = 4.32dl.42. 

d cd1 expressed as the proportion of sample units with > tally number. 
e H0 and H1 reflect two hypothetical true proportions of occupied leaves an arbitrary 'distance' at both sides of 

the threshold proportion. 
f Probability of erroneously classifying proportion= H1 when H0 is true. 
g Probability of en·oneously classifying proportion = H0 when H 1 is true. 
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variation in k independent of mean density introduces variability into the Pr- d 
relationship. When there is variation in k, a specific Pr corresponds to a range of 
densities instead of to a single value, which in tum affects the performance of 
sampling procedures that classify density based on a classification of Pr· In 
general, if a particular value of k is used forT= 0, then the OC and ASN functions 
fork values less than the nominal k (i.e. the population is more aggregated) tend to 
be flatter and shifted to the right along the mean density axis. OC and ASN for k 
values greater than the nominal value (i.e. the population is less aggregated) tend 
to be steeper and shifted to the left along the mean density axis. What this means 
is that is that if aggregation is greater than expected, populations with density much 
in excess of the intervention threshold are liable to be classified as needing no 
action. Likewise, if aggregation is less than expected, populations with density 
much less than the intervention threshold are liable to be classified as requiring 
intervention. Clearly, sampling plans for which modest changes in k of the 
sampled population result in wide variation in the outcome of sampling are not 
robust. The robustness of the sampling procedure with respect to the effect of 
variability ink can be improved by careful selection of the tally number (Binns and 
Bostanian, 1990). Nyrop and Binns (1992) showed that binomial sequential 
classification sampling plans for European red mite having a tally number of four 
or six were significantly more robust than plans with a tally number of zero. How­
ever, sampling plans with such high tally numbers are more time-consuming 
because they require some mite counting. PC and ASN functions were computed 
using simulation methods described by Nyrop and Binns (1992). The functions 
presented in this paper are averages that incorporate variation ink. A FORTRAN 
program that performs these computations is available from the authors. 

Evaluation of the monitoring methods using field data and computer simulation 
The sampling plan based on tally 0 binomial counts was used to monitor 42 
European red mite populations from 42 apple orchard blocks located at the New 
York State Agricultural Experiment Station, Geneva, NY, USA. The tally 0 plans 
were used for the field evaluation because we have found that practitioners are 
reluctant to use sampling plans based on higher tally numbers. The study was con­
ducted during the summer of 1992 between 15 June and 26 August. Apple leaves 
were collected for observation by removing 5 intermediately-aged leaves from the 
outer portion of the mid-crown of each tree sampled. Before making comparisons 
to stop lines, at least 4 trees were sampled. Furthermore, when additional samples 
were required, leaves were collected in batches of five and comparisons to stop 
boundaries were based on these totals. Based on the outcome of the classification 
procedure, each population was either sampled again after one or two weeks or 
treated with a miticide. If a miticide was applied the population was not sampled 
further. After each classification, an additional 100 leaves were collected and 
P. ulmi density was estimated by brushing mites from these leaves onto a single 
glass plate and counting the mites with a microscope. 
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For each intervention threshold, the distribution of estimated P. ulmi density that 
corresponded to each classification decision (resample in two weeks, resample 
in 1 week, treat) was plotted. Box plots (Systat, 1992) were constructed of 
cumulative mite density that corresponded to the final decisions of; (1) not inter­
vening, (2) applying a miticide when the threshold was 5 mites per leaf, and 
(3) applying a miticide when the the threshold was 7.5 mites per leaf. 

Performance of the monitoring schemes based on tally 0 and tally 4 sampling 
plans was studied using simulation by applying the monitoring protocols to a set 
of 15 artificial populations described by logistic growth and a further seven actual 
population trajectories. The populations with logistic growth were meant to broadly 
represent mite population growth under a range of conditions where the shapes of 
the population trajectories were similar. The latter condition was required so that 
we could use cumulative density as a reasonable index for each population. The 
growth rate r ranged from 0.03 to 0.14 and the maximum density was set to 60. 
When density approached the maximum it was not allowed to decline as would 
happen in the real world due to degradation of the plant because in the simulations 
it allowed the accumulation of mite-days at the maximum to be a surrogate for the 
relatively greater damage that would be done by such large populations early in the 
season. The seven actual population trajectories were all influenced by predaceous 
mites; however, biological control was not always realized. Sampling plans with 
intervention thresholds of 2.5, 5.0 and 7.5 were used from day 1-30, 31-60 and 
60 to the last sample time, respectively, counting 1 June as day 1. 

We compared the performance of the monitoring scheme based on tally 0 
sampling plans to a monitoring protocol based on tally 0 dichotomous sampling 
plans that resulted in decisions to either intervene or sample the population again 
after one week or after two weeks. These comparisons were made for two reasons. 
First, to determine the savings in sampling costs and errors that might result from 
using the tripartite schemes compared with sampling each week. Second, to 
determine the improvements in scheduling intervention when tripartite classifica­
tion sampling plans were used compared with dichotomous plans used every two 
weeks. The dichotomous plans were constructed using the parameters for the plans 
based on cd 2 shown in Table 1. 

Based on outcomes from the experiments described thus far, two additional 
simulation experiments were conducted with monitoring protocols based on tally 
0 tripartite sampling plans. In the first of these ("short term plans") we reduced the 
values for cd1 (Table 2). This was done because region 2 of the stopping bound­
aries for the original sampling plans were very narrow and we wished to determine 
the effect of making these areas larger. We hypothesized that doing so would 
increase the expected number of sample bouts and reduce expected density at inter­
vention and expected loss. 

In the second experiment we applied the monitoring protocols to a population 
trajectory that exactly followed the cd2 values and to a set of population trajectories 
that were 10, 20, 30, 40, and 50 percent less than the cd2 values. This was done to 
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TABLE2 

Parameters for tripartite classification plans with increased probability of decision 2: "short term plans". 

Critical density Sprt parameters 

Plan cdi k Proportion Ho H, Cl ~ 

1.1 0.50 0.224 0.231 0.201 0.261 0.15 0.15 
1.2 2.5 0.467 0.578 0.529 0.628 0.075 0.075 
2.1 1.25 0.334 0.405 0.355 0.455 0.075 0.075 
2.2 5.0 0.667 0.760 0.720 0.800 0.075 0.075 
3.1 2.0 0.418 0.520 0.470 0.570 0.075 0.075 
3.2 7.5 0.827 0.852 0.812 0.892 0.05 0.05 

TABLE3 

Parameters for tripartite classification sampling plans with higher values of cd1 and cd2 than those shown in 
Table 1: "long term plans". 

Critical density Sprt parameters 

Plan cdi k Proportion Ho H, Cl ~ 

1.1 2.0 0.418 0.520 0.480 0.560 0.100 0.100 
1.2 5.0 0.667 0.760 0.720 0.800 0.075 0.075 
2.1 3.0 0.513 0.627 0.587 0.667 0.100 0.100 
2.2 7.5 0.827 0.852 0.812 0.892 0.050 0.050 
3.1 4.0 0.594 0.703 0.663 0.743 0.100 0.100 
3.2 10.0 0.934 0.904 0.874 0.934 0.075 0.075 

determine how the monitoring protocol behaved when population levels were close 
to levels requiring control but the intervention thresholds had not been exceeded. 
This situation could arise when P. ulmi population growth was being constrained 
by natural enemies. We then constructed new sampling plans ("long term plans") 
in which we increased the values of cd2 from 2.5, 5.0 and 7.5 to 5.0, 7.5, and 10.0 
respectively (Table 3) and applied them to these artificial populations as well as to 
the set of populations described by logistic growth. 

RESULTS 

Performance of constituent sampling plans 
Probability of classification (PCi) and average sample number (ASN) functions for 
the tally 0 and tally 4 tripartite "standard" classification plans are shown in Fig. 3. 
Probability of classification functions for the tally 4 sampling plans are steeper than 
those for the tally 0 sampling plans indicating that the tally 4 procedures produce 
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Fig. 3. Expected probability of classification (PC) and average sample size (ASN) functions for 
"standard" tripartite classification binomial sampling plans, obtained by simulation. 

classifications with greater precision. This can be seen by referring to the PC3 

function which is the probability of intervening. Ideally this function should re­
semble a step with a value of 0.0 when the density is less than the intervention 
threshold and 1.0 when the density exceeds this threshold. This ideal is better met 
by the tally 4 schemes. The tally 4 sampling plans produced ASN functions 
equivalent to or always slightly less than those for the tally 0 plans. Based on the 
PC and ASN functions for each plan, the tally 4 sampling plans are clearly superior. 
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Field evaluation of the monitoring protocol 
All density classifications made while an intervention threshold of 2.5 was applic­
able resulted in a decision to resample the population after two weeks. The median 
P. ulmi density for which this decision was reached was 0.19 mites per leaf and all 
but three were less than 0.5 per leaf. The expected probability of making a decision 
to resample in two weeks for such densities is greater than 0.95 (Fig. 3), so the field 
results were congruous with the simulated performance of the sampling plan. 

While the intervention threshold of 5.0 was applicable, the tripartite sampling 
plan produced density classifications that resulted in all of the three possible 
decisions (Fig. 4). European red mite populations for which a decision was made 
to resample in two weeks had a median density of 0.94 and 93 percent of the 
densities were less than 2.5. Examination of the PC1 function for this sampling plan 
(Fig. 3) shows that these results are also in accord with the computer simulation. 
When a decision was made to resample after one week, the median density was 
3.64 and all densities were less than 7.0. This is the range of densities that the 
simulation indicated decisions to resample in one week are most likely. When a 
decision was made to intervene, all but two densities were in the range of 5.0 to 
7.0. This result is also concordant with the simulated performance illustrated in 
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Figure 4. Distribution of estimated mean densities corresponding. to monitoring decisions using 
"standard" binomial tripartite classification sampling with T = 0. Numbers in parentheses are data 
points in each group. 
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Fig. 3. For densities between five and seven mites per leaf, approximately 60 percent 
of the decisions are expected to be intervene, 35 percent to resample in one week, 
and 5 percent to resample in two weeks. There were 15 sampled field populations 
with densities between five and seven. Of these, nine (60 percent) produced a 
decision to intervene, four (27 percent) a decision to resample in one week, and 
two (13 percent) a decision to resample in two weeks. 

Concordance between the field results and simulated performance of the 
sampling plan based on an intervention threshold of 7.5 was not as good as for the 
sampling plan based on a threshold of 5.0. However, the discrepancy was that the 
sampling plan performed better than expected. Populations with densities less than 
approximately three mites per leaf all resulted in decisions to resample after two 
weeks (Fig. 4), whereas 10 to 20 percent of these decisions should have been to 
resample in one week. All populations with densities in the range 4.0 to 6.5 (9) 
produced a decision to resample in one week, whereas only about 60 percent of 
these decisions should have been to resample in one week and the remaining 
decisions should have been to resample in two \:Veeks (20%) or intervene (20% ). 
All of the populations (12) with densities in the range of 7.0 to 8.0 resulted in a 
decision to intervene, whereas decisions for this range of densities should have 
been approximately evenly distributed between decisions to intervene and resample 
after one week. 

One factor that may have contributed to divergence between the simulated and 
field results is that the simulated PCi functions are expected values based on 
modelled variation in the parameter k of the negative binomial distribution. The 
sampled populations may not have had k values corresponding to the k values used 
in the simulation. If the k values for the field populations were concentrated in the 
upper part of the range of k values used in the simulation, sampling in the field 
would have resulted in more decisions to intervene than predicted from the simu­
lations. Unfortunately, this could not be tested because k could not be estimated 
from the field data because mite counts were not recorded on a leaf by leaf basis 
but were pooled when mites were brushed from leaves onto the glass plates. 

The overall performance of the monitoring protocol used in the field study is 
portrayed by the box plots shown in Fig. 5. In this figure, box plots of cumulative 
mite density are plotted with respect to the three final decisions; not to intervene, 
to intervene when the threshold was 5.0, and to intervene when the threshold 
was 7.5. Cumulative mite density never exceeded 250 which is only half of the 
threshold (500). Based on these results it can be concluded that the monitoring 
protocol based on tally 0 binomial count sampling plans functioned adequately and 
in good agreement with the simulated performance shown in Fig. 3. 

Evaluation based on simulation and known population trajectories 
Performance of the monitoring schemes based on tally 0 and tally 4 sampling plans 
was studied by applying the plans to a set of populations described by logistic 
growth and to a set of trajectories estimated from field populations. One specific 
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Fig. 5. Box plots of mite-days versus treatment decision for a monitoring protocol based on cascaded 
binomial tripartite classification sampling plans. Each box encloses 50% of the data and the 
horizontal line within the box is the median. Lines extending from either end of the box mark 
minimum and maximum values that fall within an acceptable range. Points outside this range are 
outliers. Numbers in parentheses are data points in each group. 

question that we wanted to address with this comparison was whether the rather 
high probability of erroneously not intervening of tally 0 plans could be corrected 
in the framework of the monitoring protocol by sampling and intervening at 
subsequent bouts. 

The populations described by logistic growth and the performance criteria for 
the two monitoring protocols used to monitor these populations are shown in Fig. 6. 
In all of these plots the performance criteria are graphed with respect to cumula­
tive density (i.e.; total mite-days at season end). This is possible because each 
population had the same initial density and the shape of the populations trajectories 
were similar. Therefore, cumulative density is a concise and intuitive summary of 
each curve. The monitoring period for these populations was from time 0 to 98. 
Thus, 15 sample bouts could potentially occur. The endpoint of 98 was used to 
facilitate comparisons among different monitoring protocols. 

The overall probabilities of intervening for tally 4 and tally 0 were both both 
centered around 200 mite-days, but the curve for tally 4 was steeper (Fig. 6). This 
is expected based on the PC3 functions for each of the respective plans. Expected 
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binomial counts. Density at intervention not applicable for populations with cumulative density 
< 128 because the probability of intervention was zero. Maximum number of sample bouts was 15. 
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number of sample bouts and expected sample sizes for the two monitoring 
protocols were similar. 

Expected densities at intervention were similar for monitoring protocols based 
on tally 0 and tally 4 sampling plans. These expected densities increased to a 
maximum of about nine when cumulative density approximated the threshold value 
of 500. Populations with cumulative density close to the threshold value of 500 had 
dynamics such that intervention density thresholds were not exceeded until late in 
the sampling period. For populations with faster growth and dynamics such that 
intervention density thresholds were reached during the first half of the sampling 
period, expected density at intervention declined as the growth rate increased. This 
pattern was not unique to the logistic populations shown in Fig. 6. We conducted 
simulations with other sets of populations described by logistic and purely expo­
nential growth and obtained similar results (data not presented). Note that the 
expected density at intervention is independent of the the probability of intervening. 
Therefore, when the final density of a monitored population is low, the expected 
density at "intervention" is often equal to this final density. 

The 95th percentiles for expected density at intervention were greater for the 
monitoring protocol based on tally 0 plans compared with tally 4 plans. However, 
these percentiles were always less than 14 and deemed to be acceptable. The 
pattern for these percentiles with increasing cumulative density was similar to that 
for the expected values but more jagged. This jaggedness occurred for two reasons: 
First, the shown percentiles are linear interpolations of functions that are curvi­
linear. Second, when growth rates were high, small changes in the time of inter­
vention resulted in large changes in the density at intervention. 

Expected losses were approximately equal; however, the 95th percentiles for 
loss were greater for the monitoring protocol based on tally 0 plans than for the 
protocol based on tally 4 plans when cumulative density exceeded approximately 
250. This occurred because for populations with cumulative density greater than 
250, the monitoring protocol based on tally 0 sampling plans was less likely to 
result in a decision to intervene than the protocol based on tally 4 sampling plans. 
However, losses for the monitoring protocol based on the tally 0 plans were 
less than 300, 95 percent of the time. This is an important result because it has 
previously been suggested (Nyrop and Binns, 1992) that binomial sampling plans 
based on tally 0 should be avoided because of their poor precisi9n,. Monitoring 
protocols based on cascaded tally 0 sampling plans are, in this case, acceptable. 
These monitoring schemes will almost always result in a decision to intervene 
before cumulative mite density exceeds a threshold of 500. This is despite the fact 
that the results from individual sample bouts will be to resample even when 
density exceeds the intervention threshold. 

Sampling plans based on tally 0 were less precise than plans based on tally 4. 
Although in the long run average performance of monitoring protocols with 
constituent tally 0 and tally 4 sampling plans were similar, the variances were 
different: Tally 4 plans will make the right decision at the right time but tally 0 



CASCADING TRIPARTITE BINOMIAL CLASSIFICATION PLANS TO MONITOR EUROPEAN RED MITE 139 

relies on "having a second chance" to reach the right decisiun1. Erroneous decisions 
to not intervene are corrected at later sampling bouts. Such corrections can, however, 
not occur for erroneous intervene decisions. Therefore, when the PC3 function is 
flat (as with tally 0 plans), errors of such sort should be avoided by raising the inter­
vention threshold. Otherwise the protocol becomes overly intervention-prone. This 
will be discussed further later in the paper. 

Simulated sampling of the estimated population trajectories (Fig. 7) was started 
at time 12 and the last sample was taken at time 89. Performance of the monitor­
ing protocols based on tally 0 and tally 4 sampling plans did not differ greatly except 
for the 95th percentiles for density at intervention and for loss (Table 4 ). These 
values were higher for the monitoring protocol based on tally 0 plans. Except for 
population two, the 95th percentiles for density at intervention were less than 15. 
All of the percentiles for loss were less than the threshold of 500. With populations 
1 2, 4, and 6 intervention was assured. These populations all had densities in excess 
of the intervention thresholds and cumulative densities at or near the level for which 
damage occurs (500). For populations 3, 5, and 7 biological control was success­
ful and there was very low or no probability of intervention. 

The results presented thus far clearly show that the "standard" monitoring 
protocol of table 1 based on tally 0 sampling plans has acceptable performance. 
Therefore, all additional simulations were conducted using only binomial count 
sampling plans with a tally number of 0 because these plans are favored over plans 
with higher tally numbers by practitioners. 

The performance of the monitoring protocol based on tripartite classification 
sampling plans was compared to a monitoring protocol in which populations were 
sampled each week or every second week and a decision was made to either 
sample again or to intervene (dichotomous classification). The comparison was 
made using the set of populations described by logistic growth and using the 
historical populations. When sampling was conducted every second week to 
monitor the historical populations it was necessary to extend the sampling period 
to time 96 so that the end of the population trajectories could be reached. In the 
simulations densities at time 96 were set equal to densities at time 89. 

The probabilities of intervening were nearly identical for the three monitoring 
protocols (Fig. 8). Use of tripartite classification in the monitoring protocol resulted 
in 30 to 45 percent fewer sampling bouts compared with dichotomous classifica­
tion each week. Dichotomous classification every second week did not result in 

'Suppose a monitoring scheme consists of three sample bouts where the probabilities of classifying 
a given population trajectory, which is above threshold, at each bout are: PC~ = 0.2, PC7 = 0.4, 
PC~ = 0.4; PC;= 0.0, PC~= 0.5, PC~= 0.5; PC~= 0.0, PC~= 0.4, PC~= 0.6. Note that the probabil­
ity of intervening at each bout is maximally 0.6. For a damaging population trajectory, an overall 
probability of intervention of only 0.6 would be unacceptable. But the overall probability of inter­
vention is 0.84. This is calculated as follows. The probability of sampling on the second occasion is 
ps2 = PC7 = 0.4 and the probability of sampling on the third bout is ps3 =PC~+ ps2•PC~ = 0.2 + (0.4*0.5) 
= 0.4. Therefore, the overall probability of intervention is pi = PC~ + ps2•PC~ + ps3•PC~ = 0.4 + 
(0.4*0.5) + (0.4*0.6) = 0.84. 
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Fig. 7. Seven estimated density trajectories for P. ulmi populations preyed upon by phytoseiid mites. 

appreciable savings in the number of sample bouts. The expected sample size was 
less with the monitoring schemes based on dichotomous classification because the 
dichotomous classification sampling plans had lower ASN functions. This is 
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TABLE4 

Results from applying tally 0 and tally 4 "standard" cascaded tripartite sequential classification sampling plans 
to seven population trajectories (Fig. 7). 

Pop.a Cumulated Probability of Expected Expected Density at Loss 
density intervention sample size number of intervention (mite-days per leaf) 

boutsb Expectation 95 per.c Expectation 95 per. 

Tally 0 
1 329.67 1.00 247.71 5.06 7.92 11.62 91.41 217.15 
2 363.08 1.00 221.63 6.08 18.89 23.85 171.49 219.71 
3 103.85 0.06 340.20 6.70 3.37 3.38 101.77 103.85 
4 462.20 1.00 222.45 4.29 10.26 13.96 109.08 153.86 
5 15.45 0.00 171.41 6.03 n.a.d n.a. 15.45 15.45 
6 363.41 1.00 118.95 1.96 4.77 10.53 31.58 210.69 
7 69.53 0.11 254.02 6.38 0.57 n.c.e 66.22 69.53 

Tally 4 
1 329.67 1.00 231.27 4.95 7.82 10.94 79.47 199.74 
2 363.08 1.00 186.96 6.01 17.84 17.45 164.53 158.60 
3 103.85 0.00 327.69 6.58 n.a. n.a. 103.85 103.85 
4 462.20 1.00 193.49 4.10 10.32 10.29 108.87 108.54 
5 15.45 0.00 202.29 6.01 n.a. n.a. 15.45 15.45 
6 363.41 1.00 51.50 1.27 4.19 3.88 9.38 n.c. 
7 69.53 0.00 267.96 6.47 n.a. n.a. 69.44 69.53 

Dichotomous every 7 daysf 
1 329.67 1.00 158.22 8.07 7.43 10.27 78.06 182.52 
2 363.08 1.00 134.79 10.21 13.61 16.61 81.94 142.67 
3 103.85 0.18 177.87 11.35 3.29 3.38 93.97 103.85 
4 462.20 1.00 143.34 6.63 8.32 11.06 84.71 118.02 
5 15.45 0.00 105.03 12.00 n.a. n.a. 15.45 15.45 
6 363.41 1.00 103.86 1.97 4.33 4.81 19.64 152.24 
7 69.53 0.20 148.76 11.57 0.96 0.10 64.23 69.53 

Dichotomous every 14 daysg 
1 329.67 1.00 129.40 5.73 9.44 16.13 151.87 288.21 
2 363.08 1.00 86.90 6.07 19.26 24.47 177.59 225.41 
3 103.85 0.10 103.10 6.92 3.37 3.38 101.54 103.85 
4 462.20 1.00 86.83 4.10 11.37 15.54 130.98 211.84 
5 15.45 0.00 62.50 7.00 n.a. n.a. 15.45 15.45 
6 363.41 1.00 93.88 1.98 5.63 11.49 50.95 239.96 
7 69.53 0.03 75.61 6.94 0.19 n.c. 67.98 69.53 

a population. 
b maximum 12 bouts. 
c 95th percentile. 
d not applicable; the probability of intervention was 0.0. 
e not calculable; percentile could not be calculated because probability of intervening at the first sample bout 

was> 0.95. 
r SPRT using upper arm of "standard" plans; potential number of sample bouts= 12. 
g SPRT using upper arm of "standard" plans; potential number of sample bouts =. 7. 
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Fig. 8. Performance of monitoring protocols based either on tripartite or dichotomous classification 
of density. The dichotomous protocol sampled populations either every 7 or 14 days. Population 
trajectories were described by logistic growth. Maximum possible number of sample bouts was 15. 

because tripartite plans have an extra set of stop lines, in addition to the set already 
present in the dichotomous plans. This extra set of stop lines expands the set of 
possible sampling sequences that make short or long excursions in the indecision 
region, before crossing one of the stop lines. Expected values and 95th percentiles 
for density at intervention and loss were lowest for the monitoring protocol based 
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on dichotomous classification each week,. intermediate for the protocol based 
on tripartite classification, and highest for the protocol based on dichotomous 
classification every second week. 

These results show that dichotomous classification every second week would 
too frequently allow high density populations to develop before scheduling 
intervention. Tripartite classification usually prevented this from occurring by 
scheduling a shorter time to the next sample bout when densities were close to the 
intervention threshold. Monitoring protocols based on tripartite classification can 
also provide considerable savings in sampling costs compared with monitoring 
protocols based on dichotomous classification every week. To make a three-way 
classification of density, more samples must be taken than to make a two-way 
classification. However, because trips to a field to collect samples will usually be 
more time consuming and costly than processing additional samples once at the 
field site, the savings in sample bouts will greatly outweigh the costs of additional 
sample observations at each bout. 

Monitoring protocols based on dichotomous classification each week may also 
too hastily conclude that intervention is necessary. For example, if the monitoring 
protocol based on weekly dichotomous classification was used to monitor the 
populations shown in Fig. 7, the probability of intervention with population 3 is 
0.18 and with population 7 is 0.20 (Table 4 ). In both cases biological control was 
successful and the monitoring protocol based on tripartite classification produced 
probabilities of intervention of only 0.06 and 0.11. Furthermore, the monitoring 
protocol based on the tripartite plans required only two thirds as many sample bouts 
as the monitoring protocol based on the dichQtomous plans. Dichotomous 
classification each week did reduce the 95th percentile for density at intervention 
for population 2 from 219.7 for the tripartite classification (Table 4 ). However, 
219.7 is well within the range of acceptable loss so we do not feel this benefit 
outweighs the costs of using the dichotomous-based protocol. 

The monitoring protocol based on dichotomous classification every second week 
and the protocol based on tally 0 tripartite classification had, with the exception of 
average sample size and 95th percentiles for density at intervention, comparable 
performance when used to monitor the seven historical populations (Table 4 ). 
Average sample sizes were lower with the dichotomous plans but the 95th 
percentiles for density at intervention were higher. These results show that when 
population growth rates are low, dichotomous classification every two weeks is the 
best strategy and when growth rates are high, dichotomous chissification every 
week is the best strategy. However, when a priori knowledge of growth rates is 
lacking, tripartite classification is the best compromise between sampling very 
frequently or with a longer time interval between sample bouts. 

The influence ofcd1on the performance of the monitoring protocol 
We observed that stop lines for the constituent tripartite classification sampling 
plans of the monitoring protocol produced very small regions where a decision to 
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resample after one week would be made. We therefore constructed a new set of 
sampling plans (table 2) with the same ed2 values but lower edt values to produce 
stop lines that had wider regions in which a decision to resample in one week would 
be made. Differences in the stop lines and resulting probabilities of classification 
are illustrated for an intervention threshold of 5.0 in Fig. 9. It is worth noting that, 
because the upper SPRT is unchanged, the PC3 curves for plans A and B are almost 
identical. The difference between the plans is that, under B, there is generally a 
greater chance of early resampling. 

Monitoring protocols based on these two sets of tripartite sampling plans were 
used to simulate monitoring the populations described by logistic growth. We will 
refer to the original monitoring protocol as protocol A. The protocol based on the 
sampling plans with reduced edt values will be referred to as protocol B. Moni­
toring protocol B produced a slightly greater probability of intervening, required 
more sample bouts and more samples, and resulted in lower expected and 95th 
percentiles for density at intervention and loss compared to protocol A (Fig. 10). 
This resulted mainly because of the greater chance of early resampling with 
protocol B, which, in tum increased the overall probability of intervening. 
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Fig. 9. Stop lines, probability of classification functions (PC) and average sample size functions (ASN) 
for two tripartite classification sampling plans. Both plans are based on cd2 = 5.0. Plan A is based on 
cd1 = 2.0 and plan B on cd1 = 0.5. 
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Fig. l 0. Performance of two monitoring protocols based on tripartite classification sampling. 
Constituent sampling plans have identical cd2 values; however, cd1 values for protocol B were less 
than those for protocol A. Maximum possible number of sample bouts was 15. 

Based on these results we conclude that when monitoring European red mite, a 
protocol based on sampling plans that produce higher probabilities of resampling 
in one week is inferior to the original monitoring protocol based on sampling plans 
that produce a lower probability of resampling in one week. 
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The influence of cd2 on the peJformance of the monitoring protocol 
As shown previously, the overall probability of intervening when using a 
monitoring protocol with constituent tripartite classification sampling plans is 
often greater than might be expected based on the performance of the individual 
tripartite plans. As a result, we hypothesized that a monitoring scheme in which 
constituent sampling plans had cd2 values equal to the intervention threshold(s) 
might call for intervention too frequently when densities were close to but less than 
the intervention thresholds. This situation might arise when natural enemies are 
effectively regulating P. ulmi densities. To examine this question further, the 
monitoring protocol based on tally 0 sampling plans was applied to a population 
trajectory that exactly followed the intervention thresholds ( cd2) and to a set of 
population trajectories that were 10, 20, 30, 40, and 50 percent less than the inter­
vention thresholds 

When density equalled the threshold, intervention was practically assured 
(Table 5). In fact, intervention occurred 97 percent of the time when density was 
only 70 percent of the original thresholds (population 4 in Table 5). These results 
substantiated our concern that a monitoring protocol based on current intervention 
thresholds would too frequently result in a decision to intervene when densities 
remained close to the threshold. We further hypothesized that this situation could 
be remedied by increasing the cd2 and associated cd1 values. Therefore, we 
developed sampling plans based on cd2 values of 5.0, 7.5, and 10.0 (Table 3) and 
used these sampling plans in a monitoring schen1e. We will refer to the monitor­
ing protocol based on these higher cd2 values as monitoring scheme C and the 
original monitoring protocol as scheme A. 

When monitoring protocol C was used to monitor the populations whose 

TABLES 

Results of applying the "standard" monitoring protocol based on tally 0 sampling plans to populations with 
density equal or close to the intervention thresholds. 

Pop.a Cumulated Probability of Expected Expected Density at Loss 
density intervention sample size number of intervention (mite-days per leaf) 

bouts Expectation 95 per.b Expectation 95 per. 

527.50 1.00 139.15 1.95 2.60 2.50 19.53 63.46 
2 474.75 1.00 173.94 2.35 2.47 4.50 27.26 92.27 
3 422.00 0.99 227.73 3.00 2.42 4.00 41.03 155.66 
4 369.25 0.97 313.89 4.06 2.52 5.25 65.91 295.49 
5 316.50 0.86 446.00 5.74 2.74 4.50 107.23 307.50 
6 263.75 0.59 590.77 7.74 2.91 3.75 154.17 256.25 

a Population 1: 2.5 for time 1 to 30, 5.0 for time 31 to 60, 7.5 for time 61 to 98. Populations 2 through 6: 90, 80, 
70, 60, and 50 percent of population 1. 

b 95th percentile. 
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densities remained close to the original intervention thresholds, the probability of 
intervening was reduced compared with monitoring protocol A (Table 6). For 
example, when the population with density equal to 70 percent of the intervention 
thresholds (population 4) was monitored, the probability of intervening when using 
protocol C was 0.49 compared with 0.97 for protocol A. Protocol C resulted in an 
increased number of sample bouts and increased expected total sample size com­
pared with protocol A. This is because there was a reduced probability of inter­
vening with protocol C and hence there were more sample bouts. Note that in 
this case an increased number of sample bouts did not lead to an increased overall 
probability of intervening. 

Monitoring protocol C was also applied to the logistic populations and the results 
compared to those obtained using protocol A . With the logistic populations 
protocol C resulted in reduced probabilities of intervening, slightly more sample 
bouts, lower sample sizes, and increased densities at intervention and increased 
loss (Fig. 11). Some 95th percentiles for density at intervention exceeded the 
target value of 15 when protocol C was used. However, 90th percentiles for 
density at intervention were always less than 16 (data not shown). 

By using the higher intervention thresholds (protocol C) a better balance 
was obtained between correctly scheduling intervention when population density 
was growing rapidly and not intervening unnecessarily when densities remained 
just below the nominal intervention thresholds. Monitoring protocol C should 
therefore be preferred to A to assess P. ulmi density throughout a growing 
season. 

TABLE6 

Results of applying a monitoring protocol with higher values of cd1 and cd2 (protocol C) to populations with 
density equal or close to the intervention thresholds. 

Pop.a Cumulated Probability of Expected Expected Density at Loss 
density intervention sample size number of intervention (mite-days per leaf) 

bouts Expectation 95 per.b Expectation 95 per. 

527.50 0.94 485.85 6.35 5.28 7.50 198.36 512.50 
2 474.75 0.85 548.26 7.26 5.30 6.75 232.14 461.25 
3 422.00 0.71 604.36 8.17 5.20 6.00 262.51 410.00 
4 369.25 0.49 636.51 8.88 4.89 5.25 280.15 358.75 
5 316.50 0.27 621.83 9.14 4.38 4.50 275.34 307.50 
6 263.75 0.10 554.45 8.94 3.73 3.75 247.46 56.25 

a Population 1: 2.5 for time 1 to 30, 5.0 for time 31 to 60, 7.5 for time 61 to 98. Populations 2 through 6: 90, 80, 
70, 60, and 50 percent of population 1 

b 95th percentile 
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Fig. 11. Performance of two monitoring protocols based on tripartite classification when applied 
to populations with exponential growth. Protocol C was based on sampling plans with cd1 and cd2 

values greater than those used for the constituent sampling plans of protocol A. 

DISCUSSION 

In pest manage!nent it is often necessary to monitor a population through time in 
order to ascertain that density does not exceed potentially damaging levels that 
require intervention. When doing this it is desirable to minimize the number of 
times the population is sampled during the growing season and to minimize the 
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number of sample units examined during a single sal!lple bout. Sequential 
sampling can be used to minimize sample size at each sample bout. To minimize 
the number of times the population is sampled, we developed a monitoring proto­
col that schedules sample bouts based on a classification of current population 
density and expected population growth. At each sampling bout density is 
classified into one of three categories with resultant decisions to intervene when 
the density is high, resample at the next sample occasion when the density is inter­
mediate, and resample at the second sample occasion when density is low. The 
monitoring protocol is evaluated for a particular population trajectory by five 
criteria: ( 1) the overall probability of intervening, (2) the expected number of 
sample bouts, (3) the expected total sample size, ( 4) expected density at inter­
vention, and (5) expected loss. 

We parameterized this procedure for monitoring European red mite in apples 
and classified density at each sample bout using binomial count sampling plans. 
With binomial count plans records of the proportion of sample units with more than 
T organisms (pT) are substituted for complete enumeration of the samples. The 
easiest binomial counts to make are when T = 0. However, due to the effect of 
variation in the model that relates mean density toPTon the precision of binomial 
count sampling plans, it has been suggested that T>O be used or that binomial counts 
be avoided entirely. This admonition may be less important when sampling plans 
are concatenated and used to assess population density repeatedly through time. 

Sampling plans that classify P. ulmi density based on binomial counts with 
T = 0 are imprecise. However, when these plans were cascaded in a monitoring 
protocol, the performance of the monitoring scheme was acceptable. The principles 
that led to this result will apply to other binomial count plans; however, the over­
all effect of the concatenation will be system specific and will require individual 
examination. 

When classification sampling plans are cascaded in the manner we have 
described, the overall probability of intervening will always be greater than the 
probability of intervening at any single sampling bout. This is an important point 
because concatenation can inadvertently lead to overall higher probabilities of 
intervention than desired. 

To overcome the problem of overly high probabilities of intervention when using 
a monitoring protocol, constituent sampling plans can be modified in two ways. 
First, the expected number of sample bouts may be reduced by making the region 
of the sample path that results in an intermediate density classification smaller 
(increase cd1 and keep cd2 constant). The reverse of this was illustrated with the 
European red mite monitoring protocols when the values for cd1 were reduced and 
values for cd2 were kept constant. These changes led to an increased number of 
sample bouts and increased probability of intervention compared with the original 
monitoring protocol. Second, the probability of intervening at each sample bout 
can be decreased by increasing cd2 and associated cd1 values. This was also 
illustrated with the P. ulmi monitoring schemes. 
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Monitoring protocols based on tripartite classification will result in reduced 
number of sample bouts compared with a monitoring protocol based on dichotomous 
classification and sampling at each possible sample bout. For the procedure 
designed for monitoring European red mite, expected sample bouts were reduced 
30 to 45 percent. When the sampling plan constructed about cd2 is the same for the 
tripartite and dichotomous plans, the tripartite procedure will always require more 
sample units each time. We think a reduced number of sample bouts will usually 
compensate for this increase. 

Monitoring schemes based on tripartite classification are best suited to situations 
where information about the growth rate of the population being monitored can not 
be obtained. If for example predaceous phytoseiid mites were abundant and P. ulmi 
densities were modest, the best monitoring strategy would be to make dichotomous 
classifications at two week intervals. However, when data that might be used 
to make inferences about population growth is lacking or confusing, tripartite 
classification is the best choice. 

When designing tripartite classification sampling plans for use in a monitoring 
protocol a balance must be obtained between intervening unnecessarily when 
densities are low and allowing rapidly growing populations from becoming too 
numerous. Adjusting the cd2 and cd1 values appears to be the best way to 
accomplish this. At present a trial and error methodology must be used to obtain 
an acceptable monitoring protocol. 
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APPENDIX 

In this appendix we provide a mathematical description of performance criteria for 
a monitoring scheme based on tripartite classification of density. Lower case 
italics indicate variables associated with the overall monitoring scheme. Upper case 
denotes variables associated with constituent tripartite classification plans. We first 
introduce some notation. 

b: 

db: 
PCt: 
ASNb: 
psb: 
lb: 

The index for sampling bouts (sessions) which takes on the range 1 through 
last. With a sampling period of 50 days and a minimum time between 
samples of 7 days, b would run from 1 to 8 if the first sample was taken on 
day 1. 
The density at sample bout b. 
The probability of classification i at sample bout b when the density is db. 
The average sample size at bout b for density db. 
The probability of sampling at sample bout b. 
The loss at sample bout b. 

We further define some terminology in order to be able to clearly distinguish 
between the probability of decisions taken within the framework of the monitor­
ing protocol and the probability of classifications in one of the constituent 
sampling plans. The probabilities of decisions taken within the framework of the 
monitoring protocol are unconditional. Within the framework of the monitoring 
protocol, the probabilities of classifications in a specific sampling bout are con­
ditional on the fact that sampling at that bout occurs at all. The classification 
probabilities for a single bout add up to one for that bout. The probabilities of 
monitoring decisions add up to one for the whole of the monitoring protocol. 

At the first sampling bout, the density is d1, the probability of samplio.g is one 
(ps 1 = 1 ), the probability of each of the three density classifications is , and the loss 
i~ l1• At the second sampling time the density is d2, the probability of sampling 
at this time is ps2 = PCfXps1, and the probability of each of the three density 
classifications is PC~ The probability of each of the three monitoring decisions 
that are possible at bout 2 are given by ps2 X PC~ At the third sampling 
time the density is d3 and the probability of sampling at this time is 
ps3 = (PC~Xps2)+(PCf Xps1). Sampling at time three can only occur if a decision 
was made to resample after one time interval during the second sample bout or if 
a decision was made to resample after two time intervals during the first sample 
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bout. The probability of each of the three monitoring decisions made at the third 
sample bout is ps3 X PC~. 

The probability of sampling at periods 3 through last can be generalized as: 

psb = (PC~_ 1 Xpsb_ 1)+(PCb_2 Xpsb_ 2) (1) 

Note that this equation will apply to all sampling periods provided we define 
ps0 = 1, PC5= 1, ps_ 1 = 0, and PC~ 1 = 0. 

The probability of intervention (pi), expected sample bouts ( eb ), and expected 
total sample size (ess) are now calculated as: 

last 
pi= Lpsh xPC~ (2) 

b=1 

last 
eb= Lpsb (3) 

b=1 

last 
ess = Lpsb xASNb (4) 

b=1 

Expected density at intervention ( edi) is the sum of the density at each sample 
bout multiplied by the product of the probability of sampling and the probability 
of intervening. Two end points must be considered. First, if the last sample period 
is reached, then the contribution to expected pensity at intervention at that time is 
simply the probability of sampling times the density. Second, at the next to last 
sampling period a decision to wait two time periods to sample again is equivalent 
to not intervening because sampling will not be repeated. Thus, the density that 
would occur at the last sampling time applies here as well. The following equation 
accounts for these endpoints: 

last-1 
edi = L [db X ps b X PC~]+ ( dlast X pslast-1 X PC~ast-1) + ( d/ast X pslast) ( 5) 

b=1 

Expected loss is the sum of the cumulative density at each sample bout multi­
plied by the product of the probability of sampling and the probability of inter­
vening. The two end points considered when computing the expected density at 
intervention must be incorporated here as well. The following equation does this: 

last-1 
el= L[zb Xpsb xPC~]+(ltast Xpslast-1 xPc:ast-1)+(1/ast Xps/ast) (6) 

b=1 

Any loss occurring after the last sample bout is not taken into account. 
It is important to understand that pi, eb, ess, edi, and el pertain to a specific 
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population trajectory being monitored and there will be different values for these 
variables for each population trajectory considered. 

Variability in density at intervention and loss is the result of variability in the 
timing of intervention which in tum is due to sampling uncertainty. The probabil­
ity that intervention will have occurred at or before a sample bout is provided by 
the cumulative probability of intervention which is calculated as: 

b 

cpib = L psi x PCi3 (7) 
i=l 

This is also the probability of having the density at intervention be less than or 
equal to db and of incurring loss less than or equal to lb. Percentage points of 
density at intervention and of loss can be approximated by selecting a desired 
cumulative probability and interpolating. Note that loss will usually be a con­

tinuously increasing function of time; however, density may rise or fall with time. 
Depending on the population dynamic being monitored, this can lead to percentiles 
of density at intervention being less than the expected value. 


