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I. INTRODUCTION 

A primary objective of integrated pe~t management is to move from crop protee-
tion systems that rely on broad spectrum pesticides to more environmentally benign 
systems built upon target-specific chemical management tools, host plant resistance, 
cultural practices, and biological control. Sampling and pest control decision making 
are foundations of most integrated pest management systems. Well-designed pest 
control decision rules can reduce the need for prophylactic chemical pesticide use and 
thereby assist in establishing environments wherein biological control agents can 
survive. 

When making decisions about the need for pesticide use, it often suffices to 
estimate or classify pest density at a single point in time. If the phenology of a 
population is uncertain, it may be necessary to repeat sampling; however, a decision is 
still sought concerning pest density over a relatively narrow time span. Most currently 
used pest control decision rules are designed to meet this need. 

With greater reliance on biological control, desired information on population 
density changes. While it is still necessary to ascertain that density remains below 
some critical level where economic injury occurs, it usually will be necessary to either 
make this determination many times during some period of interest, say a growing 
season, or to make a prediction about it. Conventional classification or estimation 
sampling procedures can be used to repeatedly sample a population through time; 
however, this usually will not be an effective use of sampling resources. In this 
chapter, we present methods that can be used to either predict, based on the ratio of 
pest to natural enemy, that a population will remain below a critical level, or to 
parsimoniously sample a population through time to answer the same question. 

Little work has been done in the area of sampling for predicting or monitoring 
biological control. 1 We describe one method that can be used for prediction and two 
that can be used for monitoring. The first procedure is based on using the ratio of 
pests to natural enemies to predict the likelihood for biological control. Sequential 
methods for classifying pest-natural enemy ratios have previously been described.2 

Here, we review this work and present a FORTRAN computer program that can be 
used to design and analyze these sampling plans. The second and third methods are 
based on sampling a population repeatedly through time by using information on 
expected population growth along with sample information on present density to 
schedule future sampling. FORTRAN computer programs for designing and analyzing 
sampling protocols founded on this approach are also provided. 

We will illustrate the methods using data that describe sampling distributions for 
European red mite, Panonychus ulmi (Koch), and its predator Typhlodromus pyri 
(Scheuten) in New York apples. 1

'
3 

II. PREDICTING BIOLOGICAL CONTROL VIA 
PREY-NATURAL ENEMY RATIOS 

The ratio of pest to natural enemy, R, can sometimes be used to determine 
whether natural enemies are sufficiently abundant to control pest population growth.4 

------Hlf'-----1-(R-is-l-ess than some-critiea1rattoe:Jr,value, it is assumedthologtcal control wtl 
ensue. In addition to the ratio R, pest density, m N' in relation to an intervention 
threshold, T, may also be of interest. If m N exceeds T, some immediate action may 
be required. The critical ratio might also be conditional on m N so that if m N exceeds 
T, biological control might not occur even if R ~ CR. 

Consideration of R in relation to CR and m N in relation to T results in four 
-----~ ~--~----~~g!2!!_~_jg!Q ___ ~h!f:JL1ht~-J~~-~t_and ___ naturaL_enem~ __ populations_can_he__Jnintly-elassified-~-------
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limits are comprised of two sets, one with which the estimated prey density is 
compared and one with which the estimated predator density is compared. The stop 
limits for the prey are based on confidence limits about T If an estimated density 
exceeds the upper confidence limit, sampling is terminated, and the population 
classified as > T. Conversely, if the estimated density is less than the lower confi
dence limit, density is classified as ::::; T. Sampling continues until one of the stop 
boundaries -is crossed. Binns (Chapter 8) provides a complete description of these stop 
lines. 

Stop limits for the ratio classification work as follows: from a sample of size ni the 
pest (mN) and natural enemy (mD) densities are estimated. The subscripts Nand D 
denote numerator and denominator of the ratio. Both the sample size and m N are 
used to determine the upper and lower ratio stop limits (ULR and LLR). Classifica
tion decisions are made by comparing the natural enemy density to ULR and LLR 
according to the following rules: If m D < LLR stop sampling and classify R as 
> CR. If m D > ULR stop and classify R as ~ CR. If neither of these conditions are 
met, take another sample of ni observations, calculate the means (mN and mD) based 
on all the observations, and repeat the comparison. The stop limits are the densities 
of natural enemies (denominator of the ratio) given sample size n and prey density 
m N that produce confidence limits for an estimated ratio which are greater than 
(LLR) and less than (ULR), the critical ratio CR. It is important to note that when 
both ratio and prey (pest) density are being classified, stop boundaries for both 
parameters must be crossed before sampling is terminated. A batch sampling proce
dure where ni samples are examined before estimated means are compared with stop 
lines is used for two reasons. First, without batch sampling an unwieldy number of 
stop limits must be created because there is a new set of limits for each sample size. 
Second, batch sampling with ni 2 20 is currently necessary for determination of the 
operating characteristic ( OC) and average sample number (ASN) functions. These 
functions must be simulated and require generation of correlated bivariate random 
deviates. Normal bivariate deviates are easily computed and with ni 2 20 the assump
tion of normality should be reasonably robust. It is not clear how correlated bivariate 
random variables that follow some other distribution might be simulated. The entire 
procedure is truncated so that after a total of n 1 observations, a classification is made 
by comparing the estimated ratio to CR and estimated pest density to T. 

The equation 

[ 

2 
z~12 J(cN + cD- 2cND)- z~ 12(cNcD- c~D) l 

r ( 1 - Za;2CND) ± ( 2 ) (1) 
1 - Za;2CD 

is used to compute ratio confidence limits. 5 In this equation the subscripts N and D 
again denote the numerator (pest) and denominator (natural enemy) of the ratio. The 
other variables are defined as follows: CN = s~j(nm~), CD = sfyjnm1, CND = 
PNDsNsDj(nmDmN), s2 =the sample variance, mN and mD are the estimated means 
for the numerator (pest) and denominator (natural enemy), PND is an estimated 
correlation coefficient between the numerator and denominator, r = mNjmD, and 
za12 is a standard normal deviate such that P(Z ~ za 12 ) = aj2. 

-----tC:i:Halatl-a-tien---ef-stop-l-im-it-s--us-ing-Eqttatffi-n-1:-reqttires-that--t-he-correfatiorr--and 
variances for the numerator and denominator are known or can be written in terms of 
the means and the sample size. The variances usually can be modeled precisely as a 
function of the respective means using Taylor's power law (TPL), s2 = amb.6 It also 
may be possible to model the correlation as a function of the means, or more simply, 
it may be a constant. 
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With the correlation specified and the variances modeled in terms of the means, 
stop lines can be determined for any value of nand mN. To calculate ULR, values for 

for R = mNjx is calculated and compared to CR. If CR is greater 
than or equal to the confidence limit, ULR = x; otherwise, x is increased by some 
value d, the confidence limits are calculated for a new R, and the comparison is made 
again. This procedure is repeated until CR is greater than or equal to the upper 
confidence interval. If the LLR are to be calculated, the procedure is identical with 
the exception that a lower confidence limit is calculated, the comparison criterion is 
that CR is less than or equal to the lower confidence limits and x is decreased by 
some value d. By setting d to a small value (ca., 0.01) x's can be found so that the 
confidence intervals are approximately equal to CR. Program "ratio" performs these 
calculations (see Appendix). 

OC and ASN functions are constructed using simulation. Because both the 
pest-natural enemy ratio and the pest density are simultaneously classified, there are 
two sets of OC and ASN functions. For the ratio, the null hypothesis is that there are 
sufficient natural enemies for biological control, and hence the OC is the probability 
of accepting this hypothesis given any true ratio and a fixed pest density. For the pest 
density, the null hypothesis is that the density is less than the intervention threshold 
and the OC is the probability of accepting this hypothesis given any true pest density 
and a fixed ratio. The two sets of OC and ASN functions can be studied two ways. 
First, sets of OC and ASN functions can be plotted where each member of the set is 
indexed by a ratio or pest density (Figure 1). Alternately, the probability of making an 
incorrect classification (PIC) and ASN given any true ratio and pest density can be 
determined and plotted using an x-y-z ordinate system (Figure 2). The PIC function is 
a convenient way of representing the probability of an incorrect decision; however, 
three-dimensional figures are often difficult to interpret. To construct any of these 
functions, sampling is simulated from two jointly distributed populations: one repre
senting the natural enemies and one representing the pest. Means from ni observa
tions are assumed to be bivariate normally distributed with variances defined as s 21 n i 
and s2 modeled using TPL. The FORTRAN program "ratio" computes stop lines, 
ASN, OC, and PIC functions (see Appendix). 

To illustrate the method we use information on the sampling distribution of P. 
ulmi and T. pyri. Parameters for TPL for P. ulmi are a = 4.32 and b = 1.2. The same 
parameters for T. pyri are 2.38 and 1.2, respectively. Correlation between counts of 
this pest and natural enemy are variable; however, a conservative estimate is - 0.25. 
Confidence intervals for a ratio become wider as the correlation decreases. Therefore, 
when a range of correlation coefficients can apply, use of the smallest value will 
produce the most conservative stop lines. The CR for this system is approximately 7.5, 
and one intervention threshold for P. ulmi is 5.0 per leaf. Stop lines were constructed 
using z values of 1.28 for both the ratio and prey density limits. The batch sample size 
(n) was set to 20, the maximum sample size was 100, and d was set to 0.01. 

Stop lines are shown in Figure 1. Vertical lines are used with the pest density and 
those that run at approximately 45° from the origin are used with the natural enemy 
density. There are four sets of thin lines for the prey and natural enemy. Each set 

-----f;;err-es-pend-s-t-e-a-sample size ef~-0,-40,--{}0-;--eF 80, '.vit-h--th-e-int-erva-1--between-t-h-e-line~s ----
becoming narrower as the sample size increases. The thick line in the center of each 
set of stop lines is used if the maximum sample size is reached by comparing the 
estimated mean to it. 

An example will clarify use of the stop lines. Suppose a sample of 20 leaves is taken 
resulting in estimated pest and predator means of 3.4 and 0.85, respectively. This 
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Stop lines constructed using z = 1.28 
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FIGURE 2. Probability of incorrect classification (PIC) and average sample number functions (ASN) for a 
ratio sequential classification sampling plan. 

point is shown in Figure 1 as a dark circle; it lies to the right of the left-most stop 
limit for classifying pest density and below the uppermost limit for classifying the 
ratio. As a result, another sample must be taken. Suppose that after another sample 
of 20 leaves, the estimated density for pest and predator from the joint sample of 40 
leaves was 3.5 and 1.2. This point is shown in Figure 1 as a shaded circle; it lies above 
the second stop line for the ratio (corresponding to a sample size of 40) and to the left 
of the second stop line for the pest. Sampling is terminated with the decision that the 
pest density is less than the intervention threshold and there are sufficient predators 
for biological control. 

Also shown in Figure 1 are conditional OC and ASN functions for this sampling 
plan. Recall that the OC functions for the ratio are conditional on a particular pest 
density and OC functions for the pest are conditional on a ratio value. The OC 

-----Jf:ttll-Il-Gt-iens for the-rat-ie-beeeme steeper and-improve at higher prey densities. rhis is 
because the variance of the ratio decreases with increasing prey density and because 
more samples are taken when the prey density is close to the intervention threshold. 
The OC functions for the prey are largely independent of the ratio; however, ASN 
values plotted in relation to prey density are greatly influenced by the ratio value. As 
expected, more samples are required to make a decision when th~ ratio is close to 
CR. 
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Shown in Figure 2 are three-dimensional plots of the ASN and PIC functions for 
the sampling plan described above as well as one where the z values were set to 3.0. 
Inueasing z ma:k:es the stop limits wid@r. For z 3 0, this r:esu1ts in a 1arger ASN and 
in many cases use of the maximum sample size of 100. The two sampling plans are 
compared to show that use of the sequential procedure with z = 1.28 results in 
approximately the same PIC as that for a plan based on z = 3.0 and with considerable 
savings in sample size. 

The greatest drawback to using sequential ratio classification is that complete 
enumeration of counts is necessary. For many small organisms such as mites this is 
nearly impossible under field situations. As a result, sampling procedures for classify
ing or estimating densities of small, prolific organisms have been developed that 
substitute presence or absence of animals on sample units for enumeration. This also 
should be done for the ratio classification procedure and, if accomplished, would 
provide a tool that would be more readily used. It is straightforward to modify the 
stop lines so that they are expressed in terms of presence-absence counts. However, it 
is not clear how random variables that correctly model all sources of variation should 
be generated during simulations to determine performance of ratio classification 
schemes based on presence-absence counts. 

III. MONITORING POPULATION DENSITY THROUGH 
TIME 

The ratio of a pest to natural enemy cannot always be used as an index of the 
likelihood for biological control. At least three situations may result in this index 
being inappropriate or not usabie. First, the CR, the ratio for which biological control 
can be expected, may not be constant with prey or predator density or other factors 
such as weather may influence this index. Second, more than one natural enemy 
species may be involved in the interaction and the relative species mix may influence 
the CR. For example, at least three phytoseiid predators can be found in commercial 
New York apple orchards (T. pyri, T. longipilus, and A. fallacis), as well as two 
stigmaeiid predators. This predator complex often provides effective biological con
trol; however, a single CR for this complex is not tenable. Finally, it may not be 
practical to measure natural enemy density. Again, referring to the mite predator-prey 
(pest) system in apples, densities of predaceous mites can be estimated, although it is 
often difficult to do so in the field because phytoseiid predator mites superficially 
resemble their prey and are often concealed along the midrib of leaves. In other 
situations predators may be difficult to find or may be very mobile. When pest and 
natural enemy densities cannot both be estimated, ratios cannot be used, and another 
method for measuring the effectiveness of biological control is required. 

One solution is to estimate or classify pest population density through time, and as 
long as the density remains below a threshold density that dictates intervention, 
biological control is effective. Using this scenario, it is not necessary to estimate or 
classify natural enemy density. However, it is often not practical or necessary to 
sample a pest population frequently through time. If, for example, a pest's density was 
much less than an intervention threshold, the population should not have to be 
sampled again as soon as a population whose density was-only slightly less than an 
intervention threshold. What is needed is a sampling scheme that allows rapid 
classification of population density at a particular point in time, and that provides a 
measure of when the population should be resampled if the current density is less 
than the intervention threshold. 

If knowledge of population growth is available, sample information can be com
~-~--~---~--binetlwi-ththi&knowledge-to-JorecasLfuture_-_densicy,_Such_foreCil~ls __ -C(;lJl~Q~J!§~~t_£:L-~~~~---
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basis for scheduling future samples. Wilson7 developed such a system that used 
estimates of pests and natural enemies and nonlinear regression to determine when 
the next sample should be taken. Here, we present two methods based on sequentia1 
classification of density and simple forecasts of population growth. Each of these 
methods can be viewed as belonging to a family of potential monitoring protocols that 
do two things. First, these protocols determine whether a pest density exceeds an 
intervention threshold. Second, if the density is less than the threshold, the sampling 
protocols determine how long one can wait before sampling the pest population again 
and be reasonably sure that density will not have grown so that it exceeds an 
intervention threshold. The first method makes use of tripartite sequential classifica
tion (TSC). Binns (Chapter 8) describes this sampling method in detail. We briefly 
review the technique to maintain continuity in the presentation. The second method 
uses both sequential classification and fixed sample size estimation. Both procedures 
cascade individual sampling plans through time to monitor a population trajectory. 

A. CASCADED TRIPARTITE SEQUENTIAL CLASSIFICATION 
Tripartite sequential classification sampling plans can be used to classify popula

tion density into one of three categories that are defined by two critical densities; cdi 
and cd 2, where cd I < cd 2. The three categories defined by the two critical densities 
are u s cdi, cdi < u s cd2, and u > cd2 where u is the population mean. Based on 
the two critical densities, two dichotomous sequential classification (DSC) sampling 
plans are constructed. The dichotomous plans could be based on one of several 
different sequential classification schemes. We will use Wald's8 sequential probability 
ratio test (SPRT). Using this test, the two dichotomous classification plans are 
constructed with the following null and alternate hypotheses: 

DSCI DSC2 
H 10 : u = m 10 H 20: u = m 20 

H 11 : u = m 11 ' m 10 < m 11 H 2I : u = m 2I ' m 20 < m 2I 

Normally cdi = (m 10 + m 11 ) /2 and cd2 = (m 20 + m 21 ) j2. It is also required that 
m 20 > m II· The mean density is classified as less than cd i if H w is accepted and 
greater than cdi if Hw is rejected. 

When two DSC sampling plans are used simultaneously to form a tripartite 
sequential classification plan, composite stop lines are formed as shown in Figure 3. 
When using a TSC plan, sampling can be terminated with one of three possible 
decisions: (1) if samples fall in region 1 the decision is to accept H 10 , which leads to 
the conclusion that u s cdi; (2) if the samples fall in region 2, the decision is to 
accept H 20 and concurrently reject H 10 , leading to the conclusion that cdi < u s cd2; 
and (3) if the samples fall into region 3, the decision is to reject H 20 , leading to the 
conclusion that u > cd 2. 

With a DSC plan there are two performance criteria: OC and ASN. The OC is 
defined as the probability of accepting the null hypothesis given any true mean. With 
a TSC plan there are three possible decisions and three corresponding probabilities of 
making these decisions-gWen-any-true-m~-pd-e-ti, i- ~}.-G-iven-any-twfTPd.p..ecPct,_·,~------

the third is one minus the sum of these two. As with a DSC plan, an ASN also exists 
for a TSC plan; however, it is not monotonically convex. 

Tripartite sequential classification sampling schemes can be used to monitor a 
population through time by allowing the time interval between samples to be indexed 
by the less-than-threshold classification. For example, if a population was classified as 
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~ cd1 in Figure 3, the population might not be resampled for some specified time 
interval. If, however, it was classified as > cd1 and ~ cd 2 , it might be resampled 
again in a much shorter time interval. One way of determining the critical densities is 

---------*to~l~~~n~~t~~~nd-~~~~~~llm~we~d~-------
to grow unchecked for a period of time, would result in a density no greater than cd 2 • 

The time period is the longest possible time to the next sample. If a density was 
classified as > cd1 and ~ cd 2 , the next sample might be taken one half of the 
specified time interval in the future. It is useful to call the shortest time interval 
between samples the sample interval (sint). Thus, if the mean is classified as ~ cd 1, 



254 Handbook of Sampling Methods for Arthropods in Agriculture 

the time period to the next sample will be some multiple of sint, and if the mean is 
classified as > cd1 and .;:;; cd 2 , the time period to the next sample is sint. Different 
TSC plans can be used at different times when sam lin the same o ulation rocess. 

en one or more TSC plans are used to monitor a population in the manner 
described above, we will refer_ to the process as cascaded tripartite sequential 
classification sampling. The FORTRAN program "sprt" (see Appendix) can be used 
to construct and analyze TSC plans based on Wald's SPRT. 

The performance of tripartite classification sampling plans, cascaded through time, 
can be evaluated using four criteria that describe expected performance when 
sampling the entire population process. In addition, the outcome of each sampling 
bout (i.e., each time the population density is sampled) also can be examined. The 
four overall performance criteria are an operating characteristic, a total average 
sample size, the expected number of sampling bouts, and expected loss. These criteria 
have their basis in DSC sampling plans; however, they differ in that they refer to a 
trajectory of population density through time and not to specific density values. The 
OC is defined as the probability of not intervening over all sample bouts. The total 
average sample size (TASN) is the expected number of samples required to sample 
the population process over the time of interest. The expected number of sampling 
bouts (ESB) is the average number of times the population process must be sampled. 
Finally, the expected loss (EL) is the expected cumulative density allowed without 
intervention. With DSC sampling, densities allowed without intervention have a 
probability of occurring defined by the OC function. When tripartite plans are 
cascaded through time, a decision to not intervene at one point in time may still allow 
for intervention at the next sampling time, albeit with a different density. An expected 
loss function for cascaded plans must account for this. With this introduction, we will 
now define these performance criteria mathematically. 

Because population density is being sampled through time, some variables are time 
dependent and for these variables, time are denoted by a subscript. To keep the 
notation simple, it is necessary to consider two time scales. The first and obvious one 
is chronological time. The second time scale that will be convenient to use is the one 
for sample bouts (i.e., 1, 2, 3 ... ). For example, it will be clearer to write the density at 
sampling bout two as d 2 instead of d 23 where 23 specifies the chronological time 
when sampling bout two occurred. 

The population process to be sampled is defined by d t where d is density and t is 
time. During the time interval of interest there are a known set of times (st) during 
which sampling might take place defined by a starting point (i.e., st = 1), a fixed time 
interval between samples (sint ), and an ending point (st = end). We use the variable 
sb to denote the sampling bout where sb belongs to the set {1, 2, 3, ... , last}. For all 
combinations of density and time there exist functions that describe the outcome of 
sampling. These functions are the probability of decision functions (pdeci) and (ASN) 
function previously described for tripartite plans. As a review, pdec1 is the probability 
of no intervention and waiting two or more time intervals (sint) before sampling 
again, pdec2 is the probability of no intervention and waiting one sample time 
interval before sampling again, and pdec3 is the probability of intervening. The loss at 
any sampling time is defined as the cumulative density to that time point: 

(2) 

At the first sampling time, the density is d 1, where the temporal subscript now 
refers to the sample bout, the probability of sampling at this time is one ps 1 = 1), the 
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probability of each of the three decisions is given by pdeci1 where the subscript 
denotes the sampling bout, and the loss is given by /1• At the second sampling time 
the density is d 2 , the probability of sampling at this time is ), and 

ships apply because sampling at time two can only occur if a decision was made to 
resample after one time interval (sint) during the first sample bout and because the 
probability of reaching a particular decision during the second sampling bout must be 
conditioned on the probability of sampling at that time. At the third sampling time 
the density is d3 , the probability of sampling at this time is ps3 = pdec2 2(ps 2 ) + 
pdec1 1(ps 1), and the probability of each of the three decisions is given by ps3(pdeci 3). 

Sampling at time three can only occur if a decision was made to resample after one 
time interval during the second sample bout or if a decision was made to resample 
after two time-intervals during the first sample bout. Hence, the probability of 
sampling at the third sampling time is the sum of these two probabilities. The 
probability of sampling at periods 3 through last can be generalized as: 

(3) 

Note that this equation will apply to all sampling periods provided ps 0 = 1, pdec2 0 = 1, 
ps_ 1 = 0, and pdec1_ 1 = 0. 

The OC, total ASN, and ESB are now calculated as: 

last 

OC = 1 - LPSsb(pdec3sb) 
1 

last 

TASN = LPSsb(asnsb) 
1 

last 

ESB = LPSsb 

(4) 

(5) 

(6) 

The OC and TASN are weighted sums of the respective values at each sample bout 
with the weights determined by the probability of sampling. The ESB is simply the 
sum of the probability of sampling because the value being weighted is one. 

The last performance measure to be computed is EL. Recall that this is the 
expected cumulative density allowed to occur without intervention. At any sampling 
bout a measure of loss would be the cumulative density to that point times the 
product of the probability of sampling and the probability of intervening. Summing 
these loss measures over all sampling bouts provides a measure of loss when sampling 
the entire population process. This sum is easily computed provided two endpoints 
are considered. First, if the last sample period is reached, then the loss at that time is 
simply the probability of sampling times the loss. Second, at the next to last sampling 
period a decision to wait two time periods to sample again is equivalent to not 
intervening because sampling will not be repeated. Thus, the loss that would occur at 
the last sampling time should apply to these cases. The following equation accounts 
for these endpoints: 

EL = L [lsbPSsb(pdec3sb)] + (psendlend) + (psend-1/endpdec1end-1) (7) 
1 

The measure of loss we have proposed is an expected value and therefore masks 
extreme values and provides no information on the distribution of possible values. 
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Loss also should be considered in terms of extreme values and in fact, managers may 
be more interested in the likelihood of a particular large cumulative density occurring 
when using a particular sampling plan than an expected value. Such values can be 
computed using the cumulative probability of Intervening (spdec3t) and the time 
dependent loss. 

The cumulative probability of intervening is calculated as: 

sb 

spdec3sb = 'Lps1pdec31 
1 

(8) 

A loss can be calculated for each sb entry and, therefore, a loss value for any specific 
spdec3 can be determined using interpolation. 

The FORTRAN program "cascade" (see Appendix) can be used to evaluate the 
performance of TSC plans cascaded through time. 

We illustrate the use and investigate some of the properties of cascaded TSC plans 
by studying plans developed for sampling P. ulmi in apples. Three TSC plans were 
constructed for use at different times during the period June 1 to August 31. Two 
sequential probability ratio tests based on the negative binomial distribution formed 
the basis for each TSC plan. 

The following thresholds were used to define the DSC plans built around cd 2 : 

June 1 to June 30-2.5 motile mites per leaf, July 1 to July 31-5.0 motiles per leaf, 
and August 1 and after-7 .5 motiles per leaf. The cd 1 used to develop the second set 
of DSC plans were calculated as the densities that would result in no more than the 
intervention threshold density after 14 d, assuming the population grows exponentially 
with a growth rate of 0.065 (Hr = N0 e0·

065
t where t = 14). This growth rate was an 

average determined by fitting an exponential model to 14 data sets that described P. 
ulmi dynamics. Thus, we set the minimum time interval to the next sample (sint) to 7 
d and the resample interval if the mean was classified as ~ cd 1 to 14 d. Parameters 
used to construct the sampling plans are shown in Table 1. 

Stop lines and probability of decision (pdeci) and ASN functions for these 
sampling plans are shown in Figure 3. Maximum ASN values occur when the density 
equals cd1 or cd 2 . These are also the points where pdeci functions intersect. The 
jaggedness of the functions in Figure 3 occurs because the functions were estimated 
using simulation (n = 500). 

TABLE 1 
Parameters Used to Construct Tripartite Sequential Classification 

Sampling Plans for Use with P. ulmi 

Plana cd; b kc Ho Hl Alpha Beta 

1.1 1.0 0.301 0.7 1.3 0.1 0.1 
1.2 2.5 0.467 2.0 3.0 0.15 0.15 
2.1 2.0 0.418 1.6 2.4 0.15 0.15 
2.2 5.0 0.667 4.2 5.8 0.15 0.15 
3.1 3.0 0.513 2.3 3.7 0.1 0.1 
3.2 7.5 0.827 6.5 8.5 0.15 0.15 

a For each plan there are two thresholds and two sets of SPRT parameters. The 
number following the decimal point signifies whether it is plan 1 or 2 of a 
tripartite scheme. 

b The first value for each plan is cd 1 and the second is cd 2 • 

c Parameter k for negative binomial distribution computed using moments and 
based on a predicted variance calculated using the model s 2 = amb. 
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Performance of the sampling plans cascaded through time was studied by applying 
the plans to a set of populations described by exponential growth (r = 0.03 to 0.075) 
and to seven actual population trajectories. The first sampling Ian was a lied durin 
the time period 1 to 30, sampling plan 2 was applied during the period 31 to 60, and 
sampling plan 3 was used during the period 61 to end. Performance of cascaded 
dichotomous sampling plans was also studied. This was done to determine the saving 
in sampling costs that would result and what errors might result from using the 
tripartite plans. These dichotomous plans were constructed using the parameters for 
the tripartite plans based on cd 2 shown in Table 1. These plans were cascaded in time 
by applying the sampling plans every 7 d. 

OC values obtained with the cascaded tripartite plans are shown adjacent to each 
population trajectory in Figure 4. Also shown in this figure are the time-dependent 
intervention thresholds. The OC is very steep when densities exceed the intervention 
threshold (cumulative density of 150 to 180). In fact, the OC is steeper than might be 
predicted based on the pdec3 values for each tripartite sampling plan. This is because 
the OC for cascaded plans is a summation of probabilities over all sample bouts; the 
sum of pdec3 values much less than one over a set of sampling bouts can still lead to 
large (i.e., close to 1.0) overall probability of intervention. A numerical example using 
a cascaded dichotomous plan will clarify this. Suppose sampling occurred three times 
where the densities were 2.5, 6, and 8 and the probabilities of intervening at these 
times (1 - OC) were 0.4, 0.5, and 0.6. The probability of sampling at the first time is 
1.0, so the probability of sampling at time 2 is 1(1 - 0.4) = 0.6. The cumulative 
probability of intervening at the second sampling time is 0.4 + (0.5 * 0.6) = 0.7. The 
probability of sampling at the third time period is 0.6(1 - 0.5) = 0.3 and the cumula
tive probability of intervening is 0.7 + (0.3 * 0.6) = 0.88. 

The four overall performance criteria for the four sampling plans are shown in 
Figure 5. In addition to expected loss, losses that would occur with probability 0.2 and 
0.05 are also shown. The OC for tripartite and dichotomous plans are essentially 
equal. Slightly more total samples were required by the dichotomous plans. More 
importantly, the dichotomous plans required approximately twice the number of bouts 

100 
f density O_C_ 
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1 46 1.0 
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FIGURE 4. Populations with exponential growth, cumulative density, and OC values for cascaded 
tripartite sequential classification sampling plans applied to the populations. Short horizontal lines are 
intervention thresholds. 
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FIGURE 5. Performance of cascaded tripartite and dichotomous sampling plans. 

as the tripartite plans. Because sample bouts are usually more costly than samples per 
bout, tripartite plans should significantly reduce overall sampling costs. Losses for the 
tripartite and dichotomous plans were nearly identical. Intervention thresholds for P. 
ulmi are designed to prevent a cumulative density of 500. This was always achieved 
with at least probability 0.95. As a result, the tripartite plans may, in fact, be overly conservative. 

The seven population trajectories sampled are shown in Figure 6. Sampling was 
started at time 12 and the last sample was taken at time 89. Results of applying the 
tripartite and dichotomous sampling plans to these J2opula~abte-Z~-. -----• 

-------:JPHe~rr.t:formanee of thetripart1te and dichotomous plans was similar except for the 
total number of samples and the number of bouts which were both larger for the 
dichotomous plans. Use of the tripartite plans reduced the number of bouts by one 
half to one third. With populations 1, 2, 4, and 6 intervention always occurred. These 
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FIGURE 6. Dynamics of seven P. u/mi-phytoseiid mite populations. 

populations all had cumulative densities at or near the level for which damage occurs 
(500). With population 4 biological control occurred; however, not before a high 
density of P. ulmi was present. For populations 3, 5, and 7, biological control was 
successful and there was no probability of intervention. 
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TABLE 2 
Results of Cascading Tripartite and Dichotomous Complete Count and Tripartite 

Binomial Count Sequential Classification Sampling Plans to Sample Seven 
Population Trajectories 

Loss with Loss with 
Population f density oc ASN Bouts Loss P{0.2} P{0.05} 

Tripartite 

1 329.7 0 145.8 4.8 63.4 60.0 68.0 
2 363.1 0 118.8 6.0 163.1 142.1 157.9 
3 103.9 1 229.9 6.6 103.9 103.9 103.9 
4 462.2 0 119.9 4.1 109.5 96.5 108.0 
5 15.5 1 129.5 6.0 15.5 15.5 15.5 
6 363.4 0 25.2 1.0 0 0 0 
7 69.5 1 180.2 6.5 69.5 69.5 69.5 

Dichotomous 

1 329.7 0 199.1 7.7 60.0 57.63 67.1 
2 363.1 0 190.6 10.0 58.4 48.90 56.1 
3 103.9 1 236.7 12.0 103.7 103.90 103.9 
4 462.2 0 161.0 6.7 92.1 91.60 106.7 
5 15.5 1 235.3 12.0 15.5 15.50 15.5 
6 363.4 0 24.8 1.1 0 0 0 
7 69.5 1 239.4 12.0 69.5 69.50 69.5 

Binomial 

1 329.7 0.08 270.3 5.4 143.0 211.9 329.7 
2 363.1 0.10 223.6 6.0 188.7 155.4 363.1 
3 103.9 0.98 327.4 6.4 103.1 103.9 103.9 
4 462.2 0.01 219.5 4.3 132.9 110.8 233.2 
5 15.5 1.00 176.2 6.0 15.4 5.4 15.4 
6 363.4 0.03 163.5 2.6 65.5 159.5 319.8 
7 69.5 0.96 245.2 6.3 68.4 69.5 69.5 

Note: The maximum potential number of sampling bouts is 12. 

B. BINOMIAL COUNT TRIPARTITE PLANS 
Counting small, numerous organisms such as mites in the field is tedious and often 

not practical. To circumvent this problem, sampling plans have been developed that 
substitute presence or absence of an organism on a sample unit for complete 
enumeration. The shortcoming of this approach is that sampling plans based on 
binomial counts are less precise than plans that use enumeration. This shortcoming 
can be ameliorated by defining a positive binomial score as a sample unit with more 
than TP organisms where TP is called a tally point (Jones, Chapter 9). However, when 
TP becomes too large the benefits oLbinomi.al-eounts are r-ed-~--t:e~X;t:~f)f@.e-Ari..genH-cBe~---=-------
has been that practitioners favor binomial plans with a tally count of zero. We 
developed binomial count tripartite plans for P. ulmi based on the negative binomial 
distribution using the FORTRAN programs in the Appendix and discovered that 
when they are cascaded through time, they performed much better than expected. 
The reason for this is identical to the explanation given for the large cumulative 
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probability of intervention when individual pdec3 values are modest. Here, we briefly 
summarize these findings because room does not permit a detailed exposition. 

Table 3. We also constructed plans using a tally count of four and found the 
performance, when they were used once in time, of the tally 4 sampling plans to be 
superior to the tally 0 sampling plans. This is not unexpected and parallels the 
conclusions of Nyrop and Binns.3 

Performance of the tally 0 and tally 4 sampling plans cascaded through time was 
studied by applying the plans to the set of exponential populations. The OC for the 
tally 0 plan was not as steep as that for the tally 4 plan, and losses for the tally 0 plan 
were greater than for the tally 4 plans. Intervention thresholds for P. ulmi are 
designed to prevent a cumulative density of 500, which was achieved by the tally 0 
plans with probability 0.95. This is an important result because it previously was 
suggested3 that tally zero plans be avoided because of their poor precision. When 
tally 0 plans are cascaded they are quite adequate and tally 0 counts are easier to 
make than tally 4 counts. 

Performance of the tally 0 binomial and complete enumeration sampling plans with 
the exponential populations is compared in Figure 7. By all accounts, the tally 0 
binomial plan performed adequately and in one sense was superior to the complete 
enumeration plans because it is not as conservative as the complete enumeration 
plans. Of course, the complete count plans could be modified by using higher 
thresholds. 

Performance of the tally 0 and complete count plans did not differ greatly, except 
that the ASN was greater for the binomial plans as were for the losses incurred with 
probability 0.2 and 0.05 (Table 2). These losses were higher for the tally 0 plans; 
however, they were still acceptable. With populations 1, 2, 4, and 6 intervention is 
practically assured. These populations all had cumulative densities at or near the level 
for which damage occurs (500). For populations 3, 5, and 7 biological control was 
successful, and there was very low or no probability of intervention. The ASN for the 
binomial plans probably could be reduced without sacrificing performance because 
much of the variability that influences the OC function is due to variation in the 
binomial count-mean density model which is not affected by sample size. 

TABLE 3 
Parameters Used to Construct Binomial Tripartite Sequential Classification 

Sampling Plans for Use with P. ulmi 

Plana Tally cd; b kc Thresholdd Ho Hl Alpha Beta 

1.1 0 1.0 0.301 0.356 0.306 0.406 0.075 0.075 

1.2 0 2.5 0.467 0.578 0.529 0.628 0.075 0.075 

2.1 0 2.0 0.418 0.52 0.480 0.560 0.1 0.1 

2.2 0 5.0 0.667 0.760 0.720 0.800 0.075 0.075 

3.1 0 3.0 0.513 0.627 0.587 0.667 0.1 0.1 

a For each plan there are two thresholds and two sets of SPRT parameters. The number following 
the decimal point signifies whether it is plan 1 or 2 of TSC. 

b The first value for each plan is cd1 and the second is cd 2 • 

c Parameter k for negative binomial distribution computed using moments and based on a 
predicted variance calculated using the model s 2 

= aub. 

ct cdi expressed as the proportion of sample units with > Tally count. 
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FIGURE 7. Performance of cascaded complete count and binomial tripartite sequential classification 
sampling plans. 

C. ADAPTIVE FREQUENCY CLASSIFICATION MONITORING 
If density is classified as less than an intervention threshold, tripartite classification 

sampling plans determine when the population should be sampled again by classifying 
density into one of two categories. If, for example, a decision was made to resample 
after the maximum waiting time, it does not matter whether the actual density was 
just slightly less than the critical density used to denote the maximum waiting time 
(cd 1) or much less than this value. However, the time s_ampling_can._hec._\..ld~elwaL-¥-y~et....L-------
depending on the actual density, might be longer if the true mean is much less than 
cd1. The waiting time to the next sample bout might be more precisely determined by 
allowing density to be classified into four or more categories. However, such plans 
would require three or more dichotomous classification procedures and would likely 
be very cumbersome to develop. A more rational approach is to use both classification 
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and estimation to formulate sampling plans for monitoring a population through time. 
We have developed such a sampling protocol and call the scheme adaptive frequency 
classification monitoring (AFCM). As with TSC plans, AFCM plans are cascaded 
through time to monitor a population trajectory. Performance criteria for cascaded 
AFCM plans are identical to those for cascaded TSC plans. Here, we describe AFCM 
sampling and illustrate its use by developing plans for monitoring P. ulmi. FOR
TRAN programs "afcm" and "cascade" perform necessary computations (see Ap
pendix). 

In AFCM, a sequential classification procedure is used to determine whether a 
density exceeds an intervention threshold. Unlike TSC plans though, densities are not 
classified as less than the intervention threshold. Instead, an estimated density is used 
to determine the waiting time to the next sample bout. Wald's SPRT is used to 
construct a classification stop line for determining whether density exceeds the 
intervention threshold. The mean for the alternate hypothesis is set equal to the 
intervention threshold. The mean for the null hypothesis is set equal to a density 
which, if allowed to grow at the maximum growth rate for the minimum time until the 
next sample bout, would not exceed the intervention threshold. Note that the 
densities used to construct these hypotheses are different from those used to specify 
stop lines for the TSC plans. With TSC plans null and alternate hypotheses are 
constructed around the intervention threshold while with AFCM plans, the interven
tion threshold is the density used for the alternate hypothesis. With TSC plans null 
and alternate hypotheses are also constructed around a density which, if allowed to 
grow at the maximum growth rate for the maximum time until the next sample is 
taken, would equal the intervention threshold. With AFCM plans the density for the 
null hypothesis is defined using the minimum time to the next sample bout. 

In AFCM schemes, if a decision is to not intervene, the time to the next sample 
bout is based on an upper confidence limit for an estimated density obtained via a 
fixed sample size. We reasoned that individuals using an AFCM sampling plan would 
not be motivated to spend much sampling effort if the density was below an 
intervention threshold. Thus, we established a maximum sample size, which, if 
reached before a decision was made to intervene, indicated that the density was below 
the intervention threshold and a waiting time to the next sample should be deter
mined. While a waiting time could be determined for each possible estimated density, 
this is not practical. Instead, we specify waiting times as multiples of the resample 
interval (sint; the minimum time between sample bouts) and then determine ranges 
of estimated densities that correspond to each waiting time. How these ranges of 
densities are determined is explained below. 

AFCM stop lines are a composite of the upper stop limit for the sequential 
classification procedure and the maximum sample size. Shown in Figure 8 is an 
illustrative stop line. The first step in constructing an AFCM stop line is to plot the 
upper stop line for the sequential classification plan. Let thr(t) be the intervention 
threshold at the current sampling time (t ). As for the TSC plans, we assume that 
population growth can be described by a simple exponential model, although some 
other model could also be used. The null and alternate hypotheses for the sequential 
classification procedure are then: 

H 0 : u = thr(t) j[exp(r · sint)] 

H 1 : u = thr(t). 

Alpha and beta for the SPRT are chosen to produce a desired width between the stop 
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FIGURE 8. Adaptive frequency classification monitoring (AFCM) stop limit. 

lines. Smaller alpha and beta result in wider stop lines that increase the average 
sample size and improve precision of the SPRT. With AFCM plans, this affects the 
proportion of sampling bouts that terminate with a decision to intervene before the 
maximum sample size is reached. 

The second step is to plot a vertical line corresponding to the maximum sample 
size. Points on this line define the beginning and end of line segments which, if 
intersected by the total number of animals found after examining the maximum 
number of samples, determine the waiting time until the population is sampled again. 
Let ucl be an upper confidence limit for a mean estimated using the maximum sample 
size (nmax). Mean densities (nn) with upper confidence intervals ucl that solve 

thr(t + i * sint) 
(9) ucl = ------

eCr * i * sint) 

are the points on the maximum sample size line that define the line segments. In 
Equation 9, i is an integer that ranges from one to the maximum number of sint time 
intervals in the future sampling might be delayed, thr(t + i * sint) is the intervention 
threshold at time t + i * sint and an exponential model has been used to define 
population growth. In Figure 8, i ranges from 1 to 4 and the mean densities with 
upper confidence intervals defined by Equation 9 are labeled as nn 1 * nmax (nn = 

resample mean). If the total number of animals (total) in nmax samples satisfies 

nni. nmax > total ~ nni+ 1 . nmax (10) 

then sampling is to be done i · sint time steps in the future. If total > nn 1 • nmax a 
decision to intervene is made. 

Equation 9 cannot be used directly to find the points (means multiplied by the 
maximum sample size) on the maximum sample size line that defines the line 
segments which correspond to spe-crftc-waiting tirnes. This is because Equation-9--is------
solved for an upper confidence limit; however, knowing the upper confidence limit for 
an estimated mean does not always .allow determination of the mean itself. This 
problem is easily overcome on a computer by first determining ucl via Equation 9 and 
then performing a line search to find the mean density with this upper confidence 
interval. This is the strategy used in program "afcm." 
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It is important to note that the point on the maximum sample size line that defines 
the start of the line segment used to specify the shortest waiting time to the next 

occurs because the SPRT uses a likelihood ratio test to determine whether sample 
data are most consistent with H 0 or with H 1, whereas the points on the maximum 
sample size line are defined using an upper confidence limit for the estimated density. 
If the point nmax · rm 1 lies below the upper stop limit, a horizontal line can be drawn 
from this point to the upper stop limit and this line now defines part of the "intervene 
decision" stop limit (Figure 8). This can be done because once the total count exceeds 
nmax. rml, a decision to intervene will always be made regardless of additional 
samples taken. If nmax · rm 1 lies above the upper stop limit for the classification 
procedure, then the intersection of the stop limit and the maximum sample size line 
defines the start of the first line segment, which, if intersected by the total count, 
specifies a decision to sample again after sint time steps. The count corresponding to 
the intersection of the SPRT upper stop limit and rm 1 · n max is called the intersection 
point and the sample size where this occurs is called the intersection sample. 

A final point that must be made about AFCM stop limits, as we have formulated 
them, concerns the intervention threshold. In the AFCM protocol we, have allowed 
the intervention threshold to be any nondecreasing continuous function of time and 
computation of waiting times to the next sample bout takes into account future 
threshold values. In contrast, the threshold for the TSC procedure was a discrete step 
function and computation of the waiting time to the next sample bout was based on 
the current threshold. By allowing the intervention threshold to be a nondecreasing 
continuous function of time and, by formulating waiting times based on future 
thresholds, waiting times to the next sample bout are lengthened. There is a price for 
this, though, because a different sampling plan must now be constructed for every 
possible sampling bout with a unique threshold. For example, if sint = 7 d and a 
population is to be monitored for 92 d with a different threshold for each day, 14 sets 
of stop lines must be determined. The large number of sampling plans required to 
monitor a population over several weeks or months is a possible drawback to 
AFCM -based monitoring plans. 

AFCM plans are cascaded like TSC plans to monitor a population through time. 
Each AFCM plan has a set of performance characteristics consisting of an ASN 
function, pdeci functions for each of the resample decisions (1, ... , i where i is the 
maximum sint interval sampling that may be delayed), and probability of a decision to 
intervene. Program "afcm" computes these performance characteristics for individual 
sampling plans. To determine how cascaded AFCM plans perform, the computations 
used with the cascaded TSC plans need only be slightly modified. All that is required 
is that, instead of sampling and decision probabilities being based on the outcome 
from two sample bouts in the past, i sample bouts in the past must now be considered. 
Program "cascade" does this. 

To monitor P. ulmi we constructed AFCM plans based on a negative binomial 
distribution with the variance modeled using TPL. Additional parameters were 
sint = 7 d, i = 4, r for the exponential growth model = 0.065, alpha and beta for the 
SPRT = 0.1, nmax = 50, and alpha for the upper confidence limit = 0.3. Stop line 

~~~~-p~a~r~amete~ ~r protoco~ 1, 5, 9, and 13 
Probability of decision functions (pdeci) and ASN functions for these plans are shown 
in Figure 9. Also shown in this figure are the proportion of decisions reached by (1) 
crossing the SPRT upper stop limit, (2) crossing the intersection point, and (3) 
reaching the maximum sample size. Probabilities of intervening were greater than 
specified via the SPRT parameters alpha and beta. SPRT alpha is. the probability of 
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TABLE 4 
Stop Line Parameters for Four AFCM Sampling Plans Used to Monitor 

SPRT Intersection 

Sample Waiting Decision 
Plan Threshold Time Ho Intercept Slope Point size time count 

1 2.5 1 1.59 27.44 1.98 87 30 7 87 
14 65 
21 47 
28 33 

5 4.91 29 3.12 36.38 3.89 149 30 7 149 
14 99 
21 65 
28 44 

9 6.13 57 3.89 39.88 4.85 184 30 7 184 
14 120 
21 78 
28 51 

13 7.29 85 4.63 42.9 5.77 216 30 7 216 
14 135 
21 84 
28 52 

accepting the null hypothesis when the alternate hypothesis is true and for a 
conventional SPRT the probability of intervening approximately equals 1-alpha when 
the mean is equal to the alternate hypothesis. For the AFCM plans the probability of 
intervening was always in excess of this value because use of the intersection point as 
a stop limit increased the number of decisions to intervene. Similarly, when the 
density equals the null hypothesis, the probability of intervening is approximately 
equal to beta for a conventional SPRT. However, almost all decisions made when the 
density was close to the null hypothesis value were made by either reaching the 
maximum sample size or by crossing the intersection point. Both situations result in 
more decisions to intervene being made than if only the SPRT stop lines had been 
used. Overall, these factors cause the procedure to result in a high proportion of 
intervene decisions when the density is considerably less than the intervention 
threshold. 

We used the AFCM protocols to sample the set of exponentially growing popula
tions and the historical mite counts to which the cascaded TSC procedures were 
applied. Shown in Figure 10 are the performance criteria for cascaded TSC and 
AFCM plans used to monitor the exponential populations. When cascaded, the 
AFCM protocols resulted in more decisions to intervene than with the TSC protocol. 
The AFCM plans required approximately two thirds as many total samples as the TSC 
plans and approximately one half as many sample bouts. At low densities, this was due 
to the ability of AFCM plans to lengthen the waiting time beyond the 14-d maximum 
of the TSC plans. At high densities, the AFCM procedure had lower total average 
sarnples sizes and nurnber of sarnple bouts because-this procedure resulted in an 
intervention decision more quickly than the TSC protocols. 

Shown in Table 5 are the results from applying the TSC and AFCM plans to the 
seven historical populations. For population 1 AFCM and TSC plans provided similar 
results. For population 2 the AFCM protocol did not always result in intervention 
(OC = 0.14). This occurred because at the third from last sample bout, 14% of the 
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FIGURE 9. Probability of decision and average sample number functions for four AFCM sampling plans 
and the propm Lions of decisions made by ( 1) reaching the maximum sample size-(-s-math:lashed line), (2 
crossing the horizontal portion of the upper stop limit (large dashed line), and (3) crossing the SPRT upper 
stop limit (solid line). The probability of decision function that starts at 1.0 with mean = 0.0 is the decision 
to wait four time intervals until the next sample bout. This is followed by decisions to wait 3, 2, and 1 time 
interval to the next bout. The final function is for a treat decision. 
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FIGURE 10. Performance of cascaded adaptive frequency classification monitoring plans and cascaded 
tripartite sequential classification sampling plans applied to exponentially growing populations. 

decisions were to wait 4 weeks before sampling again, which was equivalent to a 
decision to not intervene because these populations were never sampled again. By 
extending the sampling period to 96 d from 92 d the OC was reduced to 0.0 and the 
ASN and expected number of sample bouts increased to 169.2 and 4.0, respectively. 
For population 3 the AFCM protocol resulted in a low rate of intervention (0.17). A 

-------th-Hi-gh~ent· · · recrdensity oH~.s~at~ti-=m;;;-;e~------
75 resulted in a probability of intervention equal to 0.77. The expected number of 
sample bouts was always less with the AFCM protocol. 

In comparison to TSC protocols, the AFCM plans resulted in a greater proportion 
of intervene decisions and the AFCM plans usually required fewer sampling resources 
(sample bouts plus number of samples per bout). Space does not permit development 
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TABLE 5 
Results of Applying Cascaded Adaptive Frequency Classification Monitoring Plans 

and Tri artite Se uential Classification Sam lin Plans to Seven Po ulations 

Adaptive frequency classification 
Monitoring Tripartite sequential classification 

1 329.7 0.0 167.19 4.0 184.4 0.0 145.8 4.8 63.4 
2 363.1 0.14 166.24 3.9 307.7 0.0 118.8 6.0 163.1 
3 103.9 0.83 216.14 4.3 97.7 1.0 229.9 6.6 103.9 
4 462.2 0.0 116.5 3.0 129.3 0.0 119.9 4.1 109.5 
5 15.5 1.0 150 3.0 15.5 1.0 129.5 6.0 15.5 
6 363.4 0.0 22.88 1.0 0.4 0.0 25.2 1.0 1.8 
7 69.5 0.38 196.1 4.1 52.9 1.0 180.2 6.5 69.5 

and analysis of binomial count plans for the AFCM protocol; however, this IS a 
straightforward endeavor. 

IV. SUMMARY AND CONCLUSIONS 

Monitoring for biological control is currently not well developed and additional 
research is needed. Pest-natural enemy ratios sometimes can be used to predict the 
likelihood for biological control. If such a ratio is appropriate, the ratio classification 
sampling method described in this chapter can be used. However, the usefulness of 
this method would be enhanced if binomial counts could be substituted for complete 
enumeration. Cascaded tripartite plans provide a method of monitoring a population 
without the need for determining the abundance of natural enemies. At least one 
extension to this approach should prove useful: one set of plans could be used if 
natural enemies are present in samples and another set based on a larger pest 
population growth rate could be used when natural enemies were not present. In this 
way the time interval between samples might be made longer. Adaptive frequency 
classification monitoring shows even greater promise as a monitoring tool. Further 
work on this procedure is needed to determine how to design AFCM sampling plans 
that are not overly conservative in recommending intervention without increasing 
required sampling resources. 

APPENDIX 

ratio.for: sequential classification of ratios 

Background: Program ratio.for is designed to construct and analyze ratio sequential 
classification sampling plans. These plans are designed to simultaneously classify (1) a 
pest density as either greater or less than an intervention threshold and (2) a 
pest/natural enemy ratio as either greater or less than a critical value. Stop lines are 
based on confidence intervals about the intervention threshold and critical ratio. 
Samples are processed in batches where the batch size should be > 20. Means· from 
each batch sample are assumed to be bivariate normal distributed with the variance 
made]ed as a function_oLthe_mean_v_ia_IP-L-and the correlation,.---\Jb~etwt..-¥¥-\e;;;...\e.;..},nl--J.m,we~.Ma;un,~.,;;s,__ _____ ---1 

constant. 
The program works as follows: 

1. Model parameters and data required to compute ratio stop limits are input. 
Required data are TPL parameters for pest and natural enemy (ya, yb, xa, xb), 
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correlation coefficient used to describe statistical correlation between counts of 
prey and natural enemy (rho), the critical ratio (cr ), the inteiVention density for 
the pest (t), standard norma] z vaJues for computing ratio and pe~t den~i~' ~top 
lines (zcr, zt) and a delta value for computing the ratio stop limits (xdel). Larger 
z values result in more stringent stop lines. Delta should be .::;; 0.1. These values 
are displayed and confirmed. Parameters for specifying the range of prey 
densities (numerator of ratio) and range of sample sizes for which ratio stop 
limits are to be calculated are then input and confirmed. 

2. Ratio and pest density stop limits are computed. Stop limits can be displayed on 
the screen and written to a file. Stop limits for the ratio are indexed by the 
sample size and numerator (pest) density. 

3. Performance of the sampling plan is determined via simulation. Data to be 
entered are parameters for specifying the range of prey densities and ratios to 
be used in the simulation, the correlation coefficient to be used in the simula
tion, and the number of Monte Carlo runs. Output consists of performance 
parameters indexed by the prey density (Y) and prey ;natural enemy ratio (R). 
Performance parameters are the probabilities of making classifications one 
through four (decl = Y.::;; T,R .::;; CR, dec2 = Y > T, R .::;; CR, dec3 = Y.::;; T, 
R > CR the ASN, and dec4 = Y > T, R > CR), the average sample size, the 
the probability of an incorrect classification (PIC), the ratio-only OC and ASN 
(rOC, rASN), and the pest density-only OC and ASN (tOC, tASN). The PIC is 
based on Pdecl-Pdec4. The ratio-only and pest density-only OC and ASN are 
determined by making decisions using only the ratio or pest density stop lines. 
These parameters are only written to the tab delimited output file and are not 
displayed on the screen. 

An example run is shown below. User inputs are underlined and comments are in 
italics. 

> ratio 
Enter name for output file ( ~ 12 characters) 
test.out 
Input model parameters 
TPL parameters (var = a*m**b) 
Parameters for numerator (y ): 
a: 
4.32 
b: 
1.42 
Parameters for denominator (x): 
a: 
2.38 
b: 
1.2 
correlation coefficient: 
-0.25 
critical ratio: 
7.5 

5.0 
z for ratio: 
1.28 

z is a standard nonnal deviate 

z for intervention threshold: 
1.28 
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delta for determining x: values much smaller than 0.001 greatly increase computation time 
0.01 

ya 
4.320 

TPL parameters 

yb 
1.420 

xa 
2.380 

Parameters correct? (Y or N) 
y 

xb 
1.200 

rho 
-0.25 

Input parameters for specifying numerator (y) 
minimum: 
1 
maximum: 
10 
delta: 
1 

ymin ymax ydel 
1 10 1 

Parameters correct? (Y or N) 
y_ 
Input parameters for specifying sample sizes' 
batch size 
20 
maximum sample size 
100 

batch size maximum 
20 100 

Parameters correct? (Y or N) 
y_ 
Display stop limits? (Y or N) 
n 
Write stop limits to file? (Y or N) 
y 
stop limits determined for following range of y 
minimum = 1.00 maximum = 10.00 

cr 
7.50 

t 

5.00 
zcr 
1.28 

zt 
1.28 

xdel 
0.010000 

input parameters for specifying y during simulations it is not necessary to use the same range for y in 
the simulation as was used to determine the stop limits; however, stop limits required in the simulation for y 
values beyond those for which stop limits were actually determined will be linear interpolations 

minimum: 
1 
maximum: 
10 
delta: 
1 

ymin ymax ydel 
1 10 1 

Parameters correct? (Y or N) 
y_ 
input parameters for specifying ratio 
minimum: 
3.5 
maximum: 
10.5 

0.5 
ymin ymax ydel 
3.5 10.5 0.5 

Paramaters correct? (Y or N) 
y_ 

the same is true for the ratio as stated above for y 
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Correlation used to compute stop lines = - 0.25 
input correlation for use in simulations: 
-0.25 

input nmnbet of Monte Carlo 
500 

Repeat simulations (Y or N)? 

!! 
simulations are performed and output is written to the tab delimited file 'test. out'. A portion of the output is 

shown below: 

TPL parameters 

ya , yb xa xb rho cr t zcr zt xdel 
4.320 1.420 2.380 1.200 -0.25 7.50 5.00 1.28 1.28 0.010000 

Ratio Pest 
N Numerator Upper_limit Lower_limit Upper_limit Lower_limit 

20. 1.00 0.43 0.02 6.87 3.135 
20. 2.00 0.67 0.08 6.87 3.135 
20. 3.00 0.89 0.15 6.87 3.135 
20. 4.00 1.09 0.21 6.87 3.135 
20. 5.00 1.30 0.30 6.87 3.135 
20. 6.00 1.49 0.38 6.87 3.135 
20. 7.00 1.68 0.45 6.87 3.135 
20. 8.00 1.88 0.55 6.87 3.135 
20. 9.00 2.06 0.63 6.87 3.135 
20. 10.00 2.24 0.72 6.87 3.135 
40. 1.00 0.31 0.04 6.32 3.681 
40. 2.00 0.52 0.12 6.32 3.681 
40. 3.00 0.71 0.20 6.32 3.681 
40. 4.00 0.89 0.29 6.32 3.681 
40. 5.00 1.08 0.39 6.32 3.681 
40. 6.00 1.26 0.48 6.32 3.681 
40. 7.00 1.43 0.57 6.32 3.681 
40. 8.00 1.61 0.68 6.32 3.681 
40. 9.00 1.77 0.77 6.32 3.681 

Correlation used in simulations -0.250 
Monte Carlo iterations = 500 

y R Pdec1 Pdec2 Pdec3 Pdec4 ASN PIC rOC rASN tOC tASN 
1.00 3.50 0.910 0.000 0.090 0.000 52.44 0.090 0.910 52.44 1.000 20.00 
2.00. 3.50 0.964 0.000 0.036 0.000 43.20 0.036 0.958 42.64 1.000 21.24 
3.00 3.50 0.994 0.000 0.006 0.000 42.52 0.006 0.980 37.36 1.000 33.16. 
4.00 3.50 0.966 0.032 0.000 0.002 63.80 0.034 0.990 36.64 0.954 60.76 
5.00 3.50 0.544 0.452 0.000 0.004 81.80 0.456 0.992 32.32 0.528 74.44 
6.00 3.50 0.088 0.910 0.000 0.002 64.76 0.090 0.996 29.48 0.086 56.96 
7.00 3.50 0.034 0.964 0.000 0.002 46.40 0.036 0.998 29.68 0.034 37.12 
8.00 3.50 0.012 0.984 0.000 0.004 37.08 0.016 0.996 28.36 0.012 28.64 
9.00 3.50 0.000 1.000 0.000 0.000 32.40 0.000 1.000 27.76 0.000 24.44 

10.00 3.50 0.000 1.000 0.000 0.000 26.92 0.000 1.000 25.28 0.000 21.64 
1.00 4.00 0.848 0.000 0.152 0.000 61.56 0.152 0.848 61.56 1.000 20.00 

3.00 4.00 0.990 0.000 0.010 0.000 50.04 0.010 0.968 45.96 1.000 32.76 
4.00 4.00 0.952 0.044 0.002 0.002 66.56 0.048 0.968 43.12 0.946 62.56 

program ratio 
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c Program written in Fortran 77 compiled using Microsoft FORTRAN 
c compiler v5.1. 

This program requires a uniform {0,1} random number geJnet·at<)r 

sections of code must be changed in the subroutines 
c if a similar is not provided by the compiler. 
c Program written by Jan Nyrop, Department of Entomology, NYSAES, 
c Cornell University, Geneva, NY 14456 
c Last modification date: 7 October, 1992 

c ************************************************************************************** 
c * * ** * ** ****** *** *********** ***** Variable definitions *** ****** **** * *** *** ** *** ****** *** * 
c ************************************************************************************** 

c asn - average sample size for complete plan determined via simulation 
c batch - batch sample size (real) 
c cr - critical ratio of pest (y) to natural enemy (x); y jx 
c file - name of output file 
c i - integer index 
c j - integer index 
c k - integer index 
c 1 - integer index 
c llr - lower limit for ratio determined via interpolation during simulation 
c m - integer index 
c mci - Monte Carlo iterations (integer) 
c mcruns - Monte Carlo iterations (real) 
c n(25) - sample size; n(i) is the total number of samples after i batches 
c ncount - number of samples taken during a Monte Carlo bout 
c ni - batch sample size (integer) 
c nsteps - maximum number of batch samples to take during a Monte Carlo bout 
c nt - maximum sample size 
c pdecl - probability of making classification 1 
c pdec2 - probability of making classification 2 
c pdec3 - probability of making classification 3 
c pdec4 - probability of making classification 4 
c pic - probability of making an incorrect classification 
c r1dec - classification 1 counter 
c r2dec - classification 2 counter 
c r3dec - classification 3 counter 
c r4dec - classification 4 counter 
c rasn - asn based only on classifying the ratio 
c rdel - delta for determining the ratio during simulation 
c respond - character keyboard input 
c rftag - flag used to indicate when a ratio classification has been made 
c rho - correlation between pest and natural enemy used to build stop limits 
c rll(l00,25) - ratio lower stop limits indexed by pest density (100) and sample size 

(25) 
c rmax- maximum ratio used in simulations 
c rmin - minimum ratio used in simulations 
c roc - OC (P{r ~ cr}) based only on classifying the ratio 
c roccnt - counter for computing roc 
c rsamp - counter for computing rasn 
c rsteps - number of ratios used in simulation 

---------'-;_rul(JJl(425) - ratio_uppeLStop limits indexed by-Pest-density (.l.OO)_and-sampl.te--------------------1 
size (25) 

c samples - number of samples taken during a Monte Carlo bout 
c simrat - pest/natural enemy ratios used in simulations 
c simrho - pest/natural enemy correlation used in simulations 
c sirnx - natural enemy density used in simulations 
c simy - pest density used in simulations 
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c stdxm - standard deviation of the mean for natural enemy 
c stdym - - standard deviation of the mean for pest 
c t - pest threshold density 

c tasn - average sample number based only on classifying pest density 
c tflag - flag used to indicate when a pest classification has been made 
c tll(25) - pest lower stop limits indexed by sample size (25) 
c toe - OC (P{pest ~ t}) based only on classifying the pest density 
c toccnt - counter for computing toe 
c totsamp - total samples taken during a simulation for specified pest density and 
ratio 
c tsamp - counter for computing tasn 
c tul(25) - pest upper stop limits indexed by sample size (25) 
c ulr - upper limit for ratio determined via interpolation during simulation 
c xdel - delta used when determining ratio stop limits 
c xm - bivariate normal deviate generated by subroutine binorm used to represent 
natural enemy density 
c xmean - estimated natural enemy mean density during a Monte Carlo bout 
c xtpla - TPL parameter a for natural enemy 
c xtplb - TPL parameter b for natural enemy 
c y(lOO) - pest densities used to compute ratio stop limits 
c ydel - delta used to compute y(i) when calculating ratio stop limits 
c ym - bivariate normal deviate generated by subroutine binorm used to represent 
pest density 
c ymax - maximum y used to compute ratio limits 
c ymean - estimated pest mean density during a Monte Carlo bout 
c ymin - minimum y used to compute ratio limits 
c ysimstp - number of pest density values used in simulation 
c ysteps - number of pest density values used to compute ratio limits 
c ytpla - TPL parameter a for pest 
c ytplb - TPL parameter b for pest 
c zcr - standard normal z used with ratio limits 
c zt - standard normal z used with pest limits 
c ******************* Variable declarations ******************* 

real ymin,ymax,ydel,ytpla,ytplb,xtpla,xtplb,rho,cr, t,zcr ,zt,xdel, 
+ n(25),tul(25),tll(25),y(100),rul(100,25),rll(100,25) 
real rmin,rmax,rdel,rsteps,simra t,simy ,simx, batch,r 1 dec,r2dec, 
+ r3dec,r4dec,stdym,stdxm,mcruns,ym,xm,xmean,ymean, ulr,llr, 
+ totsamp, pdec 1 ,pdec2,pdec3, pdec4,samples,asn,roccnt, toccnt, 
+roc, toc,rsamp, tsamp,rasn, tasn, pic,simrho 
integer ni,n t,nsteps,ysteps,i,j ,ncoun t,k,l,m,mci,ysimstp,rflag, tflag 
character* 1 respond, tab 
character* 12 file 
common I params jytpla,ytplb,xtpla,xtplb,rho,cr, t,zcr ,zt,xdel 

tab = char(9) 

c open file for output 
write (*,'(a)')' Enter name for output file ( ~ 12 characters)' 
read (*,'(a)') file 
open (unit = 10,file = file,status = 'unknown') 

c ************************************************************************************** 
c *************************** Define models and sampling plan **************************** 
c ************************************************************************************** 

write(*,*) 'TPL parameters (var = a*m**b)' 
write (*,*)'Parameters for numerator (y):' 
write (*, *) 'a:' 
read(*,*) ytpla 
write (*, *) 'b:' 
read (*, *) ytplb 
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write ( *, *) 'Parameters for denominator (x):' 
write(*,*) 'a:' 
read (*, *)xtpla 

read(*,*) xtplb 
write (*, *) 'correlation coefficient:' 
read (*, *) rho 
write(*,*) 'critical ratio:' 
read(*,*) cr 
write (*, *) 'intervention threshold:' 
read(*,*)t 
write(*,*) 'z for ratio:' 
read(*,*) zcr 
write (*, *) 'z for intervention threshold:' 
read (*, *) zt 
write (*, *) 'delta for determining x:' 
read (*, *) xdel 

c display and confirm 
write (* ,10) 

10 format (' TPL parameters') 
write (*,11) 

11 format (' ya yb xa xb rho cr t zcr zt xdel 
+') 

write (* ,20) ytpla,ytplb,xtpla,xtplb,rho,cr,t,zcr,zt,xdel 
20 format ( 1x,f5 .3, 1x,f5 .3, 1x,f5 .3, 1x,f5 .3, 1x,f5 .2, 1x,f4.2, 1x,f5 .2, 

+ 1x,f4.2, 1x,f4.2, 1x,f8.6) 
30 write (*,*)'Parameters correct? (Y or N)' 

read (*,'(a)') respond 
if (respond.ne. 'N' .and.respond.ne. 'n') then 

if (respond.ne.'Y'.and.respond.ne.'y') goto 30 
end if 
if (respond .eq. 'N' .or. respond .eq. 'n') goto 1 
write (10,40) 

40 format (' TPL parameters') 
write (10,41) 

41 format (' 1 ya yb xa xb rho cr t zcr zt xdel 
+') 

write (10,50) ytpla,ytplb,xtpla,xtplb,rho,cr,t,zcr,zt,xdel 
50 format (lx,f5.3,1x,f5.3,1x,f5.3,1x,f5.3,1x,f5.2,1x,f4.2,1x,f5.2, 

+ 1x,f4.2, 1x,f4.2, 1x,f8.6) 
51 write (0 ,*) 'Input parameters for specifying numerator (y)' 

write (*, *) 'minimum:' 
read (*, *) ymin · 
write (*, *) 'maximum:' 
read(*,*) ymax 
write (*, *) 'qelta:' 
read (*, *)ydel 
ysteps = aint((ymax - ymin) jydel) + 1 
ymax = ymin + ydel*(ysteps-1) 
write (*,60) 

60 format (' ymin ymax ydel') 
write (*,70) ymin,ymax,ydel 

70 format (lx,f5.2,1x,f6.2,1x,f6.3) 

read (*,'(a)') respond 
if (respond.ne.' N' .and.respond.ne. 'n') then 

if (respond.ne.'Y'.and.respond.ne.'y') goto 80 
end if 
if (respond .eq. 'N' .or. respond .eq. 'n') goto 51 

81 write (*,*)'Input parameters for specifying sample sizes' 
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write (*, *) 'batch size' 
read(*,*) ni 
write (*, *) 'maximum sample size' 

nsteps = aint(ntlni) 
no = ni*steps 
write (* ,90) 

90 format (' batch size maximum') 
write (*,100) ni, nt 

100 format (7x,i4,3x,i6) 
110 write (*, *) 'Parameters correct? (Y or N)' 

read (*,'(a)') respond 
if (respond.ne.'N'and.respond.ne.'n') then 

if (respond.ne.'Y'.and.respond.ne.'y') goto 110 
end if 
if (respond .eq. 'N' .or. respond .eq. 'n') goto 81 

c * * ** * ** ** * ** ** * *** * * * ** * ** * * * *** * * Compute stop limits * ** ** * * * * ** * * * * * * * ** * * * * * * * * * ** * * * 
c ************************************************************************************** 
c ** * * * * * * * * * * * * * * *** * * * * * * * * * * * * * * * * sequential limits * * ** * ** * * * * * * * * * * * * ** * ** ** * * * * * * * * * 

do 220 i = 1,nsteps - 1 
n(i) = float(ni*i) 
call tlim (n(i),tul(i),tll(i)) 
do 230 j = l,ysteps 

y(j) = ymin +(ydel*(j - 1)) 
call ratlim (n(i),y(j),rul(j,i),rll(j,i)) 

230 continue 
220 continue 

c ***** terminal stop limits ***** 

n(nsteps) = float(nt) 
tul(nsteps) = t 
tll(nsteps) = t 
do 240 j = 1,ysteps 

rul(j,nsteps) = y(j) I cr 
rll(j,nsteps) = y(j) I cr 

240 continue 

c ***** output stop lines ***** 

250 write (*, *) 'Display stop limits? (Y or N)' 
read (*,'(a)') respond 
if (respond.ne. 'N' .and.respond.ne. 'n') then 

if (respond.ne.'Y'.and.respond.ne.'y') goto 250 
end if 
if (respond .eq. 'Y' .or. respond .eq. 'y') then 

write (*,251) 
251 format (' Ratio limits Pest limits 

+') 

write (* ,252) 
252 format (' N Numerator Upper_limit Lower_limit Upper_limit 

+ Lower_limit') 

do 253 i = 1,nsteps 
do 254 j = 1,ysteps 

write (* ,255) n(i),y(j),rul(j,i),rll(j,i),tul(i),tll(i) 
255 format (lx,f6.0,3x,f6.2,6x,f6.2,6x,f6.2,6x,f6.2,5x,f6.2) 

ncount = ncount + 1 
if (ncount.gt.20) then 
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pause 'input blank line to continue display' 
ncount = 0 
write (* ,256) 

end if 
254 continue 
253 continue 

end if 
260 write (*, *) 'Write stop limits to file? (Y or N)' 

read (*,'(a)') respond 
if (respond.ne. 'N' .and.respond.ne. 'n') then 

if (respond.ne.'Y' .and.respond.ne.'y') go to 260 
end if 
if (respond .eq. 'Y' .or. respond .eq. 'y') then 

write (10,261) tab,tab,tab,tab 
261 format (lx,a1,a1,' Ratio',a1,a1,'Pest') 

write (10,262) tab,tab,tab,tab,tab 
262 format (' N',a1,'Numerator',a1,'Upper_limit',a1,'Lower_limit', 

+ a1,'Upper.:_limit',a1,'Lower_limit') 

+ 
265 
264 

do 263 i = 1,nsteps 
do 264 j = 1,ysteps 

write (10,265) n(i),tab,y(j),tab,rul(j,i),tab,rll(j,i), 
tab,tul(i),tab, tll(i) 

format (1x,f6.0,a1,f6.2,a1,f6.2,a1,f6.2,a1,f6.2,a1,f6.3) 
continue 

263 continue 
endif 

c ************************************************************************************** 
c ******************************* Simulate performance ********************************* 
c ************************************************************************************** 

c **************** input parameters **************** 

295 write (*, *) 'stop limits determined for following range of y' 
write (* ,300) ymin,ymax 

300 format(' minimum = ',f5.2,' maximum = ',f5.2) 
305 write (*, *) 'input parameters for specifying y during simulations' 

write(*,*) 'minimum:' 
read (*, *) ymin 
write (*, *) 'maximum:' 
read(*,*) ymax 
write(*,*) 'delta:' 
read (*, *) ydel 
ysimstp = aint((ymax - ymin) jydel) + 1 
ymax = ymin + ydel*(ysimstp - 1) 
write (*,310) 

310 format(' ymin ymax ydel') 
write (*,320) ymin,ymax,ydel 

320 format (lx,f5.2,1x,f6.2,1x,f6.3) 
330 write (*, *) 'Parameters correct? (Y or N)' 

read (*,'(a)') respond 

end if 
if (respond .eq. 'N' .or. respond .eq. 'n') goto 305 

335 write (*, *) 'input parameters for specifying ratio' 
write (*, *) 'minimum:' 
read (*, *) rmin 
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write(*,*) 'maximum:' 
read (*, *) rmax 
write (*, *) 'delta:' 

rsteps = aint((rmax - rmin)jrdel) + 1 
rmax = rmin + rdel*(rsteps - 1) 
write (* ,340) 

340 format (' rmin rmax rdel') 
write (* ,350) rmin,rmax,rdel 

350 format (lx,f5.2,1x,f6.2,1x,f6.3) 
360 write(*,*) 'Parameters correct? (Y or N)' 

read (*,'(a)') respond 
if (respond.ne. 'N' .and.respond.ne. 'n') then 

if (respond.ne.'Y'.and.respond.ne.'y') goto 360 
end if 
if (respond .eq. 'N' .or. respond .eq. 'n') goto 335 
write (* ,365) rho 

365 format (' Correlation used to compute stop lines ',f6.3) 
write (*,*)'Input correlation for use in simulations:' 
read(*,*) simrho 
write (*,*)'input number of Monte Carlo runs' 
read (*, *) mci 
mcruns = ftoat(mci) 
batch = ftoat(ni) 
write (10,366) simrho 

366 format (' Correlation used in simulations ',f6.3) 
write (10,367) mci 

367 format (' Monte carlo iterations = ',i4) 
write (* ,370) 

370 format ('Y R Pdecl Pdec2 Pdec3 Pdec4 ASN PIC') 
write (10,380) tab,tab,tab,tab,tab,tab,tab,tab,tab,tab,tab 

380 format(' Y',a1,'R',a1,'Pdec1',a1,'Pdec2',a1,'Pdec3',a1,'Pdec4', 
+ a1, 'ASN' ,a1, 'PIC' ,a1, 'rOC' ,a1, 'rASN' ,a1, 'tOC' ,a1, 'tASN') 

c ******************** Computations ******************** 

c ***** loop for ratio ***** 

do 400 k 
simrat 

1,rsteps 
rmin + rdel*(k - 1) 

c ***** loop for numerator (y) ***** 

do 410 1 = 1,ysimstp 
simy = ymin + ydel *(I - 1) 
simx = simy 1 simrat 
r1dec 0.0 
r2dec 0.0 
r3dec 0.0 
r4dec 0.0 
totsamp = 0.0 
roccnt 0.0 
toccnt 0.0 
rsamp 
tsamp 
stdym 
stdsm 

0.0 
sqrt( (ytpla * simy* *ytplb) jbatch) 
sqrt( (xtpla * simx* *xtplb) jbatch) 

c ***** loop for Monte Carlo runs ***** 



do 420 m = 1,mci 
xmean = 0.0 
ymean = 0.0 

tflag = 0 
do 430 i = 1,nsteps 

samples = fioat(i *ni) 
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call binorm (symy ,simx,stdym,stdxm,simrho,ym,xm) 
xmean = ((xmean*float((i -l)*ni)) + (xm*batch)) ;samples 
ymean = ( (ymean *float( (i -1)*ni)) + (ym *batch)) 1 samples 
call interp (rul(l,i),y,ymean,ysteps,O,ulr) 
call interp (rll(l,i),y,ymean,ysteps,O,llr) 
if (rfiag.eq.O) then 

if (xmean.ge.ulr) then 
rflag = 1 
roccnt roccnt + 1.0 
rsamp = rsamp +samples 

end if 
if (xmean.lt.llr) then 

rfiat = 1 
rsamp = rsamp +samples 

end if 
end if 
if (tflag.eq.O) then 

if (ymean.le.tll(i)) then 
tflag = 1 
toccnt toccnt + 1.0 
tsamp = tsamp + samples 

end if 
if (ymean.gt.tul(i)) then 

tfiag = 1 
tsamp = tsamp + samples 

end if 
end if 
if (ymean.le. tll(i).and.xmean.ge. ulr) then 

r1dec = r1dec + 1.0 
totsamp = totsamp + samples 
goto 500 

end if 
if (ymean.gt.tul(i).and.xmean.ge.ulr) then 

r2dec = r2dec + 1.0 
totsamp = totsamp + samples 
goto 500 

endif 
if (ymean.le.tll(i).and.xmean.t.llr) then 

r3dec = r3dec + 1.0 
totsamp = totsamp + samples 
goto 500 

endif 
if (ymean.gt. tul(i).and.xmean.lt.llr) then 

r4dec = r4dec + 1.0 
totsamp = totsamp + samples 
goto 500 

endif 
430 continue 

420 continue 

c ************************************************************************************** 
c * ** * ******* * ** * ** ********* ** * *** * *** Output results *** ************** * * * * **** ** * **** * * ** 
c ************************************************************************************** 
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pdecl 
pdec2 
pdec3 

rldeclmcruns 
r2dec I mcruns 
r3declmcruns 

asn = totsamplmcruns 
if (simy.le.t.and.simrat.le.cr) pic 
if (symy.gy.t.and.simrat.le.cr) pic= 
if (simy.le.t.and.simrat.gt.cr) pic = 
if (symy.gt.t.and.simrat.gt.cr) pic= 
roc = roccntlmcruns 
toe = toccnt 1 mcruns 
rasn = rsamplmcruns 
tasn = tsamplmcruns 

1-pdecl 
1 - pdec2 
1 - pdec3 
1 - pdec4 

write (* ,510) simy,simrat,pdecl,pdec2,pdec3,pdec4,asn,pic 
510 format ( lx,f6.2,2x,f6.2,2x,4(f5 .3,2x),f7 .2,2x,f5 .3) 

write (10,520) simy,tab,simrat,tab,pdecl,tab,pdec2,tab,pdec3, 
+ tab, pdec4, tab,asn, tab,pic, tab,roc,tab,rasn, tab, toe, tab, tasn, 
+tab 

520 format (lx,f6.2,al,f6.2,a1,4(f5.3,a1),f7.2,a1,f5.3,a1,2(f5.3,al,f7.2,a1)) 
410 continue 
400 continue 

600 write (*, *) 'Repeat simulations (Y or N)?' 
read (*,'(a)') respond 
if (respond.ne. 'N' .and.respond.ne. 'n') then 

if (respond.ne. 'Y' .and.respond.ne. 'y') goto 600 
end if 
if (respond .eq. 'Y' .or. respond .eq. 'y') goto 295 
close (10) 
stop 
end 

c ************************************************************************************** 
c *************************************SubroutineS************************************* 

c ************************************************************************************** 

subroutine tlim (n,ul,ll) 

c ************************************************************************************ 
c Subroutine computes stop limits for comparing pest density to 

c ************************************************************************************ 

real n, ul,ll, var ,ytpla,ytplb ,xtpla,xtplb,rho,cr, t,zcr ,zt,xdel 
common I params lytpla,ytplb,xtpla,xtplb,rho,cr, t,zcr ,zt,xdel 
var = ytpla *t* *ytplb 
ul = t +zt*sqrt(var In) 
11 = t -zt*sqrt(varln) 
return 
end 

subroutine ratlim(n,y,ul,ll) 

c ************************************************************************************ 
c Subroutine computes stop limits for comparing natural enemy density 
c to in order to classify the pest-natural enemy ratio 

c ************************************************************************************ 

real n, ul,ll,ytpla,ytplb,xtpla,xtplb ,rho,cr, t,zcr ,zt,xdel, 
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+ x,vy,vx,cyy,cxx,cyx,var1,var2,var3,var4,rhat,rhigh,rlow 
integer j 
common I params jytpla,ytplb,xtpla,xtplb,rho,cr, t,zcr ,zt,xdel 

c *** note: j = 1 for upper interval and j 

x = y jcr 
20 vy = ytpla *y* *ytplb 

vx = xtpla *x* *xtplb 
cyy vy j(n*y**2) 
cxx = vxj(n*x**2) 
cyx = (rho*sqrt(vx)*sqrt(vy))j(n*x*y) 

2 for lower interval * * * 

var1 (cyy + cxx- (2*cyx))- (zcr**2*(cyy*cxx- cyx**2)) 
rhat = yjx 

c ***** test for imaginary roots of var1 ***** 

if (varl.lt.O.O.and.j.eq.1) then 
x = x+xdel 
goto 20 

end if 
if (varl.t.O.O.and.j.eq.2) then 

x = x-xdel 
if (x.lt.O.O) then 

11 = -999.0 
goto 10 

endif 
goto 20 

end if 

c ***** compute confidence intervals ***** 

var2 1-(zcr**2*cyx) 
var3 1-(zcr**2*cxx) 
var4 zcr*sqrt(varl) 
if (j.eq.l) then 

rhigh = rhat*(var2+var4)jvar3 
else 

rlow = rhat*(var2-var4)jvar3 
endif 

test if conditions have been met for confidence limits to be stop limits 

if Q.eq.1) then 
if (rhigh.lt.cr.and.rhigh.gt.O.O) then 

ul = x 
else 

x = x+xdel 
goto 20 

endif 
else 

11 = X 

else 
x x-xdel 
if (x.lt.O.O) then 

11 = -999.0 
goto 10 
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end if 
goto 20 

end if 

10 continue 
return 
end 

subroutine binorm (m1,m2,stdv1,stdv2,rho,x1,x2) 

c ************************************************************************************ 
c Subroutine computes bivariate normally distributed random variables 
c using the method described by Johnson and Kotz in Distributions in 
c Statistics: Continuous Multivariate Distributions. John Wiley & Sons, 
c New York. The subroutine use a uniform {0,1} random variate which 
c must be provided if the FORTRAN compiler does not support 
c it [call random(r1) below]. 

c ************************************************************************************ 

real m1,m2,stdv1,stdv2,rho,r1,r2,u1,u2,y1,y2,x1,x2 

c generate first uniform normal variate 

call random(r1) 
if (rl.le.O.O) r1 = 0.0000001 
call random(r2) 
u1 = sqrt(- 2. *log(r1))*(cos(6.283*r2)) 

c generate second uniform normal variate 

call random(r1) 
if (r1.1e.O.O) r1 = 0.0000001 
call random(r2) 
u2 sqrt(- 2. *log(rl))*(cos(6.283*r2)) 
y1 u1 
y2 rho*u1 + sqrt(l - rho**2)*u2 
x1 m1 + y1 *stdv1 
x2 m2 + y2*stdv2 
return 
end 

subroutine interp (y,x,dummyx,k,trunc,yvalue) 

c ************************************************************************************ 
c This subroutine performs a linear interpolation of a function y = f(x). 
c Vectors of y values (y) and x values (x) are passed along with a dummy 
c x value (dummyx) for which a y value (yvalue) is sought. The dimension 
c of the y and x arrays (k) must also be passed. In addition a variable 
c trunc is passed that when = 1 causes trunction of the function so that 
c when dummyx < x(1) or dummyx > x(k), yvalue is constrained to be y(1) or 
c y(k). When trunc is not equal to 1, yvalue is interpolated beyond y(1) 
c or y(k). 

c ************************************************************************************ 

real y,x,dummyx,yvalue 
integer k,trunc,j 
dimension y(k),x(k) 

if (dummyx.le.x(1)) then 

. 



if (trunc.eq.l) then 
yvalue = y(1) 
goto 20 
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yvalue = y(1)- ((y(2)- y(1)) j(x(2)- x(1))*(x(l)- dummyx)) 
goto 20 

endif 
endif 

do 10 j = 2,k 
if (dummyx.le.x(j)) then 

yvalue = y(j - 1) + ((y(j)- y(j -1)) j(x(j)- x(j - l))*(dummyx- x(j - 1))) 
goto 20 

end if 
10 continue 

if (trunc.eq.1) then 
yvalue = y(k) 
goto 20 

else 
yvalue = y(k)+((y(k)-y(k-l))j(x(k)-x(k- 1))*(dummyx-x(k))) 
goto 20 

endif 

20 continue 
return 
end 

sprt: sequential classification 

Background: Program sprt.for analyzes the performance of dichotomous and tripartite 
sequential classification sampling plans based on Wald's sequential probability ratio 
test (SPRT). Tripartite plans are based on two dichotomous plans. Five models can be 
used to describe sample observations; binomial, Poisson, and negative binomial 
distributions and two models where binomial counts are substituted for complete 
enumeration. One binomial count model is the empirical relationship In( -ln(l -
pT)) = 'Y + 8n(m) and the other is based on the negative binomial distribution 

T 

PT=l- LPr{x=v} 
v=O 

In both of these equations P T is the proportion of sample units with more than T 
organisms. T is referred to as a tally threshold. 

OC and ASN functions for dichotomous plans based on the three probability 
distribution functions are computed using an approximate formula. When the nega
tive binomial distribution is specified, the parameter k can either be a function of the 
mean by modeling the variance via TPL (s 2 = am f3) or k can be a constant. For the 
negative binomial distribution OC and ASN functions are first computed using a 
norninal valu-e-of--k:-When k fffPL) this is-the--k-that-eorrespontl-s-t'Ao~al--'m-e.q-1anA--Pe-q-ua<;Hl--------l 
to the average of the means used to specify the null and alternate hypotheses. OC and 
ASN functions for the negative binomial distribution can also be simulated. For 
k = f(TPL), k in the simulation is computed using TPL. When k is a constant a new 
k for the simulations is input. OC and ASN functions for binomial count plans are the 
expected values described by Nyrop and Binns. 3 
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The program functions as follows: 

1. A sample model is chosen and data re uired to describe the 
equtred data for each model are listed below: 

(i) Binomial: none 
(ii) Poisson: none 
(iii) Negative binomial: if k = f(TPL), intercept and slope for TPL model. 
(iv) Empirical p - m: intercept, slope, variance of the slope, mean square 

error, number of data points, and mean of independent variable used in 
regression 

(v) NGB based p - m: intercept, slope variance of the slope, mean square 
error, number of data points, and mean of independent variable used in 
TPL regression 

2. Parameters for the first SPRT are input. If a tripartite plan is to be constructed 
the first SPRT is the one used to classify the density into the lowest category. If 
binomial count models are used, a threshold density is first specified and then the 
proportion of occupied sample units is computed and displayed. The SPRT is based 
on this proportion. 

3. OC and ASN functions for the specified plan are computed and displayed. 
Displayed values are interpolated from a more complete set of OC and ASN values. 
Interpolated values are shown to facilitate comparison of plans. If desired, the 
complete set of OC and ASN values can be written to the output file. If the OC and 
ASN values are not acceptable, new SPRT parameters can be entered. 

4. Steps 2 and 3 are repeated for the second SPRT of a tripartite plan. If only a 
dichotomous SPRT is desired, program execution can be halted. 

5. Both SPRT plans are displayed. If desired, parameters for either plan can be 
changed and OC and ASN functions are recomputed. 

6. The two SPRT plans are used to construct a tripartite plan and the performance 
of this plan is simulated. To start the simulations the number of Monte Carlo runs as 
well as the maximum sample size are input. If the maximum sample size is reached, 
sampling is terminated by comparing the sample mean to the midpoints of the means 
used to form the null and alternate hypotheses. The means of populations for which 
sampling is simulated are automatically determined. This is done as follows: for each 
SPRT, OC and ASN values are determined for 29 means. The means used in the 
tripartite simulation are determined as: 

i) The first 18 means from the first SPRT 
ii) Means 19-29 from the first SPR T unless a mean from the first SPR T > the 

first mean from the second SPRT 
iii) All the means from the second SPR T 

When two SPRTs are combined to form a tripartite plan it is possible for the 
lower stop limit of the uppermost set of limits to lie below the lower limit of the 
lowermost set of limits for some means. It is also possible for the upper stop limit for 
the lowermost set of limits to lie above the upper limit of the uppermost set of limits. 
When either of these situations occur in the simulation, a decision--to-st-Op--sampli-ng~·-s-------
not made until sample data lie beyond both sets of stop limits. 

An example run using a binomial count model based on the negative binomial 
distribution is shown below. User inputs are underlined and comments are in italics. 

> sprt 
Enter name for output file ( ~ 12 characters) 
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ngb.txt 
Choose a sampling model 
1) Binomial 

3) Negative binomial 
4) Empirical p-m 
5) NGB based p-m 
enter a number 1-5-m 
5 
Input TPL parameters 
intercept; 
4.32 
slope; 
1.42 
variance of the slope; 
0.004 
mse from the regression; 
0.278 
number of data points for regression; 
147 
mean of the independent variable {lnm}; 
0.728 

NGB p-m model with TPL used 

intercept 
4.320 

slope 
1.420 

Parameters correct? (Y or N) 
y 

var(slope) 
0.0040 

mse 
0.278 

Enter plan number; 0 plan number is initially set to 0 
1 

N 
147.0 

mean of lnm 
0.728 

threshold as density; 0.0 a threshold density is required to compute Pr it is initially set to 0.0 
1.0 
tally threshold; 0.0 
0 

Intervention proportion 0.3564 
mean for null hypothesis; 
0.306 
mean for alternative hypothesis; 
0.406 
alpha; 
0.075 
beta; 
0.075 

HO mean 
0.306 

H1 mean 
0.406 

Parameters correct? (Y or N) 

'j 

k 
0.301 

alpha 
0.075 

beta 
0.075 k is computed using TPL 
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Redo OC and ASN? (Y or N) 
!l 

oc 
0.99 
0.90 

0.70 
0.60 
0.50 
0.40 
0.30 
0.20 
0.10 
0.01 

Write OC and ASN functions to file? (Y or N) 
!l 
Stop now? (Y or N) 

!l 
Enter plan number; 1 
2 

threshold as density; 0.0 
2.5 

Mean ASN 
0.39 72.15 
0.55 82.85 

0.78 87.56 
0.88 88.12 
0.99 87.82 
1.11 82.89 
1.28 74.20 
1.50 64.32 
1.90 51.22 
3.32 22.30 

tally threshold; 0.0 tally threshold for plan 2 
intervention proportion = 0.5785 

that for plan 1 

mean for null hypothesis; 
0.529 

mean for alternative hypothesis; 
0.628 
alpha; 
0.075 
beta; 
0.075 

HO mean 
0.529 

H1 mean 
0.628 

Parameters correct? (Y or N) 
y 

Redo OC and ASN? (Y or N) 
!l 

k 
0.467 

oc 
0.99 
0.90 
0.80 
0.70 
0.60 
0.50 
0.40 
0.30 
0.20 
0.10 

alpha 
0.075 

Write OC and ASN functions to file? (Y or N) 
!l 

beta 
0.075 

Mean 
0.85 
1.37 
1.68 
1.95 
2.22 
2.50 
2.81 
3.26 
3.85 
4.88 

HO and HI means for plan L. are larger 
than those for plan 1 

ASN 
31.45 
60.06 
71.46 
77.19 
81.48 
82.67 
79.14 
72.70 
64.11 
49.46 
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Stop now? (Y or N) 

!! 

NEG p-m model with TPL used 

intercept 
4.320 

slope 
1.420 

var(slope) 
0.0040 

HO mean H1 mean k alpha beta 
0.306 0.406 0.301 0.075 0.075 

Low intercept 
-5.73 

High intercept 
5.73 

Slope 
0.355 

intercepts and slopes are those for stop lines 

oc 
0.99 
0.90 
0.80 
0.70 
0.60 
0.50 
0.40 
0.30 
0.20 
0.10 
0.01 

Redo a plan? (Y or N)? 
n 
starting simulations ... 
Maximum sample size? 
100 

Monte Carlo iterations? 
500 

Mean ASN 
0.39 72.15 
0.55 82.85 
0.67 86.14 
0.78 87.56 
0.88 88.12 
0.99 87.82 
1.11 82.89 
1.28 74.20 
1.50 64.32 
1.90 51.22 
3.32 22.30 

mse 
0.278 

N 
147.0 

HO mean H1 mean 
0.529 0.628 

mean of lnm 
0.728 

k alpha beta 
0.467 0.075 0.075 

Low intercept 
-6.16 

High intercept 
6.16 

Slope 
0.579 

oc Mean ASN 
0.99 0.85 31.45 
0.90 1.37 60.06 
0.80 1.68 71.46 
0.70 1.95 77.19 
0.60 2.22 81.48 
0.50 2.50 82.67 
0.40 2.81 79.14 
0.30 3.26 72.70 
0.20 3.85 64.11 
0.10 4.88 49.46 
0.01 8.71 21.82 

Simulations are perfonned and output is written to the tab delimited file 'ngb.txt'. 
A the is shown below: 

Max. sample size = 100 iterations 500 

number of means 45 
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Mean P{dec1} P{dec2} P{dec3} ASN 

0.396 0.985 0.015 0.000 41.09 
0.437 0.968 0.032 0.000 44.92 
0.480 0.946 0.054 0.000 48.75 
0.527 0.916 0.084 0.000 52.52 
0.576 0.880 0.120 0.000 56.22 
0.628 0.839 0.161 0.000 59.68 
0.682 0.793 0.206 0.001 62.99 
0.739 0.735 0.263 0.002 66.04 
0.797 0.680 0.316 0.004 68.51 
0.809 0.670 0.326 0.005 68.99 
0.821 0.657 0.337 0.005 69.45 

P{decl} is the probability of classifying the density as ~ 1.0, P{dec2} is the probability of classifying the 
density as > 1.0 and ~ 2.5, and P{dec3} is the probability of classifying the density as > 2.5 

program sprt 

c Program written in Fortran 77: IBM version compiled using Microsoft 
c FORTRAN compiler v5.1. 
c This program requires a uniform {0,1} random number generator. This 
c version makes use of the RANDOM subroutine provided in Microsoft 
c Fortran. If the FORTRAN compiler used does not provide a similar 
c function, one must be provided and small sections of code in some 
c subroutines must be changed. 
c Program written by Jan Nyrop, Department of Entomology, NYSAES, 
c Cornell University, Geneva, NY 14456 
c Last modification date: 3 August, 1992 

c ************************************************************************************** 
c *** ****************** *********** Variable definitions * ********* ************* **** ** ** **** 
c ************************************************************************************** 

c a: intermediate SPRT variable 
c alpha(2): alpha for SPR T plans 1 and 2 
c asn(29,2): ASN corresponding to OC(29,plan(2)) 
c asnprt(11,2): displayed ASN values corresponding to mean(11,sampling 

plan(2)) 
c b: intermediate SPRT variable 
c beta(2): beta for SPR T plans 1 and 2 
c bvar1: variable used to compute binomial SPRT 
c c: intercept for empirical p-m model On( -ln(p)) = c + d0n(m)) 
c confirm: integer used to flag whether sampling model has been confirmed 
c count: number of samples generated during one simulated sampling bout 
c d: slope for empirical p-m model On( -ln(p)) = c + d0n(m)) 
c distr: distribution index 
c dummy: x value passed to interpolation routine for which a y value is 

returned 
c easn: expected average sample size when binomial counts are substituted for 

complete counts 
c edec: expected probability of a decision (e.g., OC) when binomial counts are 

c file: name for output file 
c h(14): variable used in computation of dichotomous SPRT OC 
c highi(2): stop limit parameter for SPRT plans 1 & 2 
c i: plan number (1 or 2) 
c i2: do loop index 
c icount: index for simmean 
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c initun: initial file unit number 
c init(2): used to determine if plans 1 & 2 have been initialized 
c ivalues: number of values passed to interpolation routine 

c jj: index 
c k(2): NGB k used to construct dichotomous SPRT 
c ksim: NGB k used in tripartite SPRT simulations 
c Ina: ln(a) - intermediate SPRT variable 
c lnb: ln(b) - intermediate SPRT variable 
c lowi(2): stop limit parameter for SPR T plans 1 & 2 
c m(29,2): mean corresponding to an OC(29,plan(2)) 
c m0(2): null hypothesis mean for SPR T plan 1 & 2 
c m1(2): alternate hypothesis mean for SPRT plans 1 & 2 
c mci: Monte Carlo iterations 
c mean(11,2): means corresponding to ocprint(11,plan(2)) 
c mlnm: mean of ln(m) used in empirical p-m or TPL model 
c mse: mean square error for either empirical p-m or TPL model 
c mt: threshold density used to compute a threshold proportion for binomial 

count sampling 
c nmax: maximum sample size for simulating tripartite SPRT OC and ASN 
c ngbk: flag to indicate whether constant k or k = f(TPL) is to be used 
c oc(29,2): dichotomous SPRT OC function for m(29, plans(2)) 
c ocprint(11): SPRT OC values for which means are displayed on screen 
c p: NGB p corresponding to an OC value 
c pdec1(58): P{decision m < mO(l)} 
c pdec2(58): P{decision m1(1) < m < m0(2)} 
c pdec3(58): P{decision m > m1(2)} 
c pi(2): threshold density expressed as a proportion of binomial counts 
c pmbin(29,2): mean density corresponding to threshold proportions used to 

compute OC and ASN functions for dichotomous SPR T 
c pnbO: NGB parameters for m1 
c pnb1: NGB parameters for mO 
c pxgtt: probability that x > t when x is distributed as NGB 
c q: NGB q 
c qnbO: NGB parameter for m1 
c qnb1: NGB parameter for mO 
c qO: binomial parameter for mO 
c q 1: binomial parameter for m1 
c refm: a reference set of means for which pxgtt is calculated 
c respond: used to record keyboard input to questions (Y, N) 
c result: y value returned from interpolation routine 
c revoc(29,2): 1 - OC; used in interpolation routine 
c rn: number of data points in either TPL or empirical p-m model 
c seq3: number of > m1(2) sequential decisions 
c seq2: number of > m1(1) and < m0(2) sequential decisions 
c seq2dec: P{m1(1) < m < m0(2)1m} for sequential decisions 
c seq 1: number of < mO(l) sequential decisions 
c seq1dec: P{m < m0(1)lm} for sequential decisions 
c simasn(58): ASN for simulated means 
c simmean(58): means for which P{dec} and ASN functions are to be simulated 
c sll(2): stop line 
c slope(2): stop limit parameters for SPR T plans 1 & 2 
c slu(2): stop line 
c spmbin(58): means for which P{dec} and ASN functions are to be simulated; 

c 
c 
c 

sum: sum of NGB variates during a simulated sampling bout 
sumpdec: sum of P{deci} functions used to standardize so sum 
t: tab character 

c tally: integer used to define a positive binomial count 
c temp: 
c ter3: number of > m1(2) terminal decisions 

1.0 
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c ter2: number of > ml(l) and < m0(2) terminal decisions 
c ter2dec: P{ml(l) < m < m2(0)lm} for terminal decisions 
c terl: number of < m0(1) terminal decisions 

c thresh(2): threshold for SPRT plans 1 & 2 
c totcnt: total samples generated for simulated sampling from a mean 
c tpla: a for var = a(mean)"b 
c tplb: b for var = a(mean) "b 
c unit: file connection number 
c var: computed variance 
c vb: variance of the slope b 
c vd: variance of the slope d 
c vnb1: intermediate variable for computing stop limits 
c vnb2: intermediate variable for computing stop limits 
c weight: weights for computing expected asn and P{dec} functions for binomial count sampling 
c x: random variate generated during simulations 
c xbar: average of x values 

character* 1 respond,t 
character* 12 file 
integer i,i2,icount,init(2),ivalues,j,jj,mci,nmax,unit,initun,distr,ngbk,confirm 
real a,alpha(2),asn(29,2),asnprt(11,2),b,beta(2),count, 
+ dummy,h(l4 ),highi(2),k(2),ksim,lna,lnb,lowi(2),m(29,2),m0(2), 
+ m1(2),mean(11,2),oc(29,2),ocprint(l1),p,pdecl(58),pdec2(58), 
+ pdec3(58),pnbO,pnb 1 ,q,qnbO,qnb 1,result,revoc(29 ,2),seq3,seq2, 
+ seq2dec,seq 1,seq 1dec,simasn(58),q0,q 1 ,bvar 1,sumpdec,temp 
real simmean(58 ),sll(2),slope(2),slu(2),sum, ter3, ter2, ter2dec, 
+ ter1,terldec,thresh(2),totcnt,tpla,tplb,vnb1,vnb2,x,xbar 
real c,d,vd,mse,m,mlnm,weight(11),z(l1),edec(58),easn(58), 
+ mt(2),pi(2),pmbin(29,2),spmbin(58),temp1(58),temp2(58),temp3(58), 
+vb,tally,var,pxsum,refm(101),pxgtt(l01) 

data hl5,4.5,4.,3.5,3.,2.5,2.,1.5,1.,.5,.4,.3,.2,.11 
data ocprint 10.99,0. 9,0~8,0. 7,0.6,0.5,0.4,0.3,0.2,0.1,0.01 1 
data init 10,01 
data weight 10.1974,0.1856,0.1638,0.1358,0.1062,0.0776, + 0.0534,0.0346,0.0212, 
0.012,0.00641 
data z 10.0,0.375,0.625,0.875,1.125,1.375,1.625,1.875,2.125,2.375,2.625 1 

t = char(9) 
tpla 0. 
tplb 0. 
i = 0. 

c open file for output 

write (*,'(a)') ' Enter name for output file ( ~ 12 characters)' 
read (*,'(a)') file 
open (unit = 10,file = file,status = 'unknown') 

c the initialized value of unit is the screen 

initun = 0 

c ************************************************************************************** 
c ************************** Model selection and parameterization ************************** 
c ************************************************************************************** 

confirm = 0 
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500 write (*, *) 'Choose a sampling model' 
write (*, *) '1) binomial' 
write (*, *) '2) Poisson' 

write (*, *) '4) Empirical p-m' 
write (*, *) '5) NGB based p-m' 
write (*, *) 'enter a number 1-5' 
read (*, *) distr 
if (distr.lt.l.or.distr.gt.5) goto 500 

505 continue 

if (distr.eq.l) then 
write (unit,510) 

510 format (' Binomial distribution used') 
endif 

if (distr.eq.2) then 
write (unit,520) 

520 format (' Poisson distribution used') 
end if 
if (distr.eq.3) then 

if (confirm.eq.O) then 
530 write (*, *) 'use 1) constant k or 2) k f(TPL)' 

read (*, *) ngbk 
if (ngbk.ne.l.and.ngbk.ne.2) goto 530 

end if 
if (ngbk.eq.l) then 

write (unit,540) 
540 format (' NGB model with constant k used') 

else 
if (confirm,eq.O) then 

write (*, *) 'Input TPL parameters' 
write (*, *) 'intercept;' 
read (*, *) tpla 
write (*, *) 'slope;' 
read (*, *) tplb 

end if 
write (unit,550) tpla,tplb 

550 format (' NGB model with k f(TPL) used',/, 
+ 'a = ',f5.3,1x,'b = ',f5.3) 

end if 
end if 

if (distr.eq.4) then 
if (confirm.eq.O) then 

write(*,*) 'Input empirical p-m model parameters' 
write (*, *) 'intercept;' 
read(*,*) c 
write (*, *) 'slope;' 
read(*,*) d 
write (*,*)'variance of the slope;' 
read (*, *) vd 
write (*, *) 'mse from the p-m regression;' 

write (*, *) 'number of data points for p-m regression;' 
read (*, *) rn 
write (*, *) 'mean of the independent variable {lnm};' 
read (*, *) mlnm 

end if 
write (unit,560) 
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560 format(' Empirical p-m model used',/, 
+ ' intercept slope var(slope) mse N mean of lnm'} 

write (unit,565) c,d,vd,mse,m,mlnm 

endif 

if (distr.eq.5) then 
if (confirm.eq.O) then 

write (*, *) 'Input TPL parameters' 
write (*, *) 'intercept;' 
read (*, *) tpla 
write (*, *) 'slope;' 
read (*, *) tplb 
write (*, *) 'variance of the slope;' 
read (*, *) vb 
write (*, *) 'mse from the regression;' 
read (*, *) mse 
write (*, *) 'number of data points for regression;' 
read(*,*) m 
write (*, *) 'mean of the independent variable {lnm};' 
read(*,*) mlnm 

endif 
write (unit,570) 

570 format(' NGB p-m model with TPL used',/, 
+ ' intercept slope var(slope) mse N mean of lnm') 

write (unit,575) tpla,tplb,vb,mse,m,mlnm 
575 format (3x,f6.3,1x,f6.3,5x,f7.4,1x,f6.3,1x,f4.0,3x,f8.3) 

end if 

if (confirm.eq.O) then 
580 write (*, *) 'Parameters correct? (Y or N)' 

read (*,'(a)') respond 
if (respond.ne. 'N' .and.respond.ne. 'n') then 

if (respond.ne.'Y'.and.respond.ne.'y') goto 580 
end if 
if (respond .eq. 'N' .or. respond .eq. 'n') then 

goto 500 
else 

unit = 10 
confirm = 1 
goto 505 

end if 
end if 

unit = initun 

c ************************************************************************************** 
c ******************************** SPRT parameterization ******************************** 
c ************************************************************************************** 

7 continue 
write (* ,8) i 

8 format(' Enter plan number; ',i3) 
read(*,*)i 

,~···~-~.u, .. ~, .•. J •• ~.~) goto 
if (i.eq.l.and.init(l).eq.O) init(l) 1 
if (i.eq.2.and.init(2).eq.O) init(2) 1 

9 if (distr.eq.4.or.distr.eq.5) then 
write (* ,10) mt(i) 

10 format (' threshold as density; ',f6.3) 







Sampling to Predict or Monitor Biological Control 293 

if (distr.eq.4) then 
pi(i) = 1-exp(- exp(c +d*log(mt(i)))) 

else 
write (* ,11) tally 

11 format (' tally threshold; ',f4.0) 
if (i.eq.l) then 

read (*, *) tally 
endif 
var = tpla *mt(i)* *tplb 
k(i) = mt(i)**2j(var- mt(i)) 
call ngbcdf(mt(i),k(i), tally ,pxsum) 
pi(i) = 1.0-pxsum 

endif 
write ( *, 12) pi(i),k(i) 

12 format (' intervention proportion ',f6.4, 
+ ' k based on TPL = ',f6.4) 

endif 

write (* ,13) mO(i) 
13 format ('mean for null hypothesis; ', f6.3) 

read (*, *) mO(i) 
write (* ,14) ml(i) 

14 format (' mean for alternative hypothesis; ',f6.3) 
read (*, *) m1(i) 
write (* ,15) alpha(i) 

15 format (' alpha; ',f5.3) 
read (*, *) alpha(i) 
write (* ,16) beta(i) 

16 format (' beta; ',f5.3) 
read (*, *) beta(i) 
thresh(i) = (mO(i) + ml(i)) j2. 
if (distr.eq.3) then 

if (ngbk.eq .1) then 
write (*,17) k(i) 

17 format (' NGB k; ',f5.3) 
read (*, *) k(i) 

else 
k(i) = thresh(i)* *2 j(tpla *thresh(i)* *tplb-thresh(i)) 

end if 
end if 

write (* ,18) 
18 format(' HO mean H1 mean alpha beta NGB k') 

write (* ,19) mO(i),ml(i),alpha(i),beta(i),k(i) 
19 format(f7 .3,3x,f7.3, 11x,f4.3,4x,f4.3,4x,f5 .3) 
20 write (*, *) 'Parameters correct? (Y or N)' 

read (*,'(a)') respond 
if (respond.ne. 'N' .and.respond.ne. 'n') then 

if (respond.ne.'Y'.and.respond.ne.'y') goto 20 
end if 
if (respond .eq. 'N' .or. respond .eq. 'n') goto 9 

c ************************************************************************************** 
c ********************************** SPRT computations ********************************** 
c ************************************************************************************** 

c variables used for all distributions 

a = (1-beta(i))jalpha(i) 
Ina = log(a) 
b = beta(i) j(l-alpha(i)) 
lnb = log(b) 
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c variables used for binomial and negative binomial 

if (distr.eq.l.or.distr.eq.4.or.distr.eq.5) then 
q1 = 1-ml(i) 
qO = 1-mO(i) 
bvar1 = log((ml(i)*qO)j(mO(i)*q1)) 

end if 
if (distr.eq.3) then 

pnbO mO(i) jk(i) 
pnb1 m1(i)jk(i) 
qnbO 1 + pnbO 
qnb1 1 + pnb1 
vnb1 (pnb1*qnb0)/(pnb0*qnb1) 
vnb2 qnb0jqnb1 

end if 

c calculate stop limit parameters 

if (distr.eq.l.or.distr.eq.4.or.distr.eq.5) then 
lowi(i) = lnb jbvar1 
highi(i) = lnajbvar1 
slope(i) = log(q0jq1)jbvar1 

else if (distr.eq.2) then 
lowi(i) = lnb jlog(m1(i) jmO(i)) 
highi(i) lnajlog(ml(i) jmO(i)) 
slope(i) = (m1(i) - mO(i))jlog(m1(i)jmO(i))) 

else 
lowi(i) = lnb jlog( vnb 1) 
highi(i) Ina /log( vnb 1) 
slope(i) = k(i)*(log(qnb1 1 qnbO) jlog(vnb1)) 

end if 

c OC and ASN computations 

do 30 j = 1,14 
oc(j,i) = (a**h(j) -1)/(a**h(j)- b**h(j)) 
revoc(j ,i) = 1 -oc(j ,i) 
if (distr.eq.l.or.distr.eq.4.or.distr.eq.5) then 

m(j,i) = (1-(q1jqO)**h(j))j((ml(i)jmO(i))**h(j)-(q1jq0) 
+ **h(j)) 

asn(j,i) = (lnb*oc(j,i) + (1-oc(j,i))*lna) jm(j,i)*bvar1 
+ log(q1jq0)) 

else if (distr.eq.2) then 
m(j,i) = ((ml(i)- mO(i))*h(j))j((ml(i)jmO(i))**h(j) -1) 

asn(j,i) = (lnb*oc(j,i) + lna*(1-oc(j,i)))j(m(j,i)* 
+ log(ml(i)jmO(i)) + mO(i)- m1(i)) 

else 
p = (1 - vnb2**h(j))j(vnb1 **h(j) - 1) 
m(j,i) = p*k(i) 
asn(j,i) = (lnb*oc(j,i) + lna*(l-oc(j,i))) j(k(i)*log(vnb2) 

+ k(i)*p*log(vnb1)) 
end if 

30 continue 
oc(15,i) = lnaj(lna -lnb) 
revoc(15,i) = 1 -oc(13,i) 
if (distr.eq.l.or.distr.eq.4.or.distr.eq.5) then 

m(15,i) = -log(q1jq0)jbvar1 
asn(15,i) = -Ina *lnb j(log(ml(i) jmO(i))*log(qO 1 q1)) 

else if (distr.eq.2) then 
m05,i) = (ml(i) - mO(i)) jlog(ml(i) jmO(i)) 
asn(15,i) = -Ona*lnb)j(m(j,i)*(log(m1(i)jmO(i)))**2) 
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else 
p = log(qnb1jqnb0)jlog(vnbl) 
q = 1+p 
m(15,i) = p*k(i) 
asn(15,i) = - Ona*lnb) j(k(i)*p*q*(log(vnb1))**2) 

end if 
do 35 index = 1,14 

j = 15- index 
jj = 15 + index 
oc(jj,i) = ((lja**h(j)) -1)j((lja**h(j))- (ljb**h(j))) 
revoc(jj,i) = 1 -oc(jj,i) 
if (distr.eq.l.or.distr.eq.4.or.distr.eq.5) then 

m(jj,i) = (1-(1j(q1jqO)**h(j)))j((lj(m1(i)jmO(i))**h(j))
+ (lj(q1/ qO)**h(j))) 

asn(jj,i) = Onb*oc(jj,i) + (1-oc(jj,i))*lna) j(m(jj,i)*bvar1 
+ log(q1jq0)) 

else if ( distr.eq .2) then 
m(jj,i) = ((ml(i) - mO(i))*(- h(j)))j(lj(ml(i)jmO(i))**h(j) -1) 
asn(jj,i) = Onb*oc(jj,i) +Ina *(1-oc(jj,i))) j(m(jj,i)* 

+ log(m1(i)jmO(i)) + mO(i)- ml(i)) 
else 

p = (1 - 1jvnb2**h(j)) j(ljvnb1 **h(j) -1) 
m(jj,i) = p*k(i) 
asn(jj,i) = (lnb*oc(jj,i) +Ina *(1-oc(jj,i))) /(k(i)*log(vnb2) 

+ k(i)*p*log(vnbl)) 
end if 

35 continue 

c ************************************************************************************** 
c ******************* Incorporation of p-m model variablity in OC and ASN ******************* 
c ************************************************************************************** 

c If distr = 4 (empirical binomial) or distr = 5 (NGB binomial) 
c then do the following: 
c 1) Convert m(j,i) which is expressed as a proportion to 
c a density (pmbin(j,i)). 
c 2) Compute effect of variation in p-m model or variation in 
c NGB k on OC and ASN 
c 3) Set revoc(j,i) and asn(j,i) to result from binemp and binngb 
c subroutines 

if (distr.eq.4) then 
do 36 j = 1,29 

pmbin(j,i) = exp((log( -log(1 -m(j,i)))- c) 1 d) 
36 continue 

call binemp(29, pmbin( 1 ,i),d,vd,mse,m,mlnm,weight,z, 
+ oc(1,i),asn(l,i),edec,easn) 

endif 
if (distr.eq.5) then 

do 37 j = 1,101 
refm(j) = ftoat(j -1) 
call ngbcdf(refm(j) ,k(i), tally, pxsum) 
pxgtt(j) = 1 - pxsum 

37 continue 
do 38 j = 1,29 

call tabex(refm,pxgtt,m(j,i),101,pmbin(j,i)) 
38 continue 

call binngb(29,pmbin(1,i),m(1,i),tpla,tplb,mse,m,vb,mlnm, 
+ oc( 1,i),asn( 1 ,i), tally,z,weight,edec,easn) 

endif 
if (distr.eq.4.or.distr.eq.5) then 

do 39 j = 1,29 
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revoc(j,i) = 1 -edec(j) 
asn(j,i) = easn(j) 

39 continue 
endif 

c ************************************************************************************** 
c * * ** *** * ** * * * * ** * * * * * * * * * * * * * * * * * * * * display results * * * ** *** * ** ** * * * * * * * * * * * * * * * * * * * * * * * 
c ************************************************************************************** 

write (* ,40) 
40 format (' OC Mean ASN') 

do 45 j = 1,11 
ivalues = 29 
dummy = 1 -ocprint(j) 
if (distr.eq.4.or.distr.eq.5) then 

call tabex(pmbin(1,i),revoc(1,i),dummy,ivalues,result) 
if (result.le. 0.0) then 

result = 0.000 
endif 

else 
call tabex(m( 1 ,i),revoc( 1,i),dummy ,ivalues,result) 

endif 
mean(j,i) = result 
if (distr.eq.4) then 

dummy = 1 -exp(- exp(c +d*log(result))) 
elseif (distr.eq.5) then 

call ngbcdf(result,k(i),tally,pxsum) 
dummy 1 -pxsum 

else 
dummy result 

end if 
call tabex(asn(1,i),m(1,i),dummy,ivalues,result) 
asnprt(j,i) = result 
write (*,50) ocprint(j),mean(j,i),asnprt(j,i) 

50 format (lx,f4.2,1x,f6.2,1x,t7.2) 
45 continue 

60 write (*, *) 'Redo OC and ASN? (Y or N)' 
read (*,'(a)') respond 
if (respond.ne. 'N' .and.respond.ne. 'n') then 

if (respond.ne.'Y'.and.respond.ne.'y') goto 60 
end if 
if (respond .eq. 'Y' .or. respond .eq. 'y') goto 9 

61 write(*,*) 'Write OC and ASN functions to file? (Y or N)' 
read (*,'(a)') respond 
if (respond.ne. 'N' .and.respond.ne. 'n') then 

if (respond.ne.'Y'.and.respond.ne.'y') goto 61 
end if 
if (respond .eq. 'Y' .or. respond .eq. 'y') then 

write (10,62) i 
62 format (' Complete OC and ASN functions for plan ',i2) 

write (10,63) 
63 format(' HO mean H1 mean k alpha beta') 

write (10,64) mO(i),m1(i),k(i),alpha(i),beta(i) 
64 format(t7.3,3x,t7.3,3x,f5.3,3x,f4.3,4x,f4.3) 

write (10,65) 
65 format (' Low intercept High intercept Slope') 

write (10,66) lowi(i), highi(i), slope(i) 
66 format (6x,f8.2,9x,t7.2,1x,f6.3) 

if (distr.eq.4.or.distr.eq.5) then 
write (10,67) 
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67 format (' threshold proportion') 
write (10,68) mt(i),pi(i) 

68 format (2(3x,f6.3,7x,f6.4,3x)) 
if (distr.eq.5) then 

write (10,69) tally 
69 format(' tally threshold ',f5.1) 

end if 
end if 
write (10,70) t,t 

70 format(' Mean',a1,'0C',a1,'ASN') 
if (distr.eq.4.or.distr.eq.5) then 

do 71 j = 1,29 
write ( 10, 72) pmbin(j ,i), t,edec(j), t,asn(j,i) 

72 format (lx,f6.2,a1,f4.2,a1,f7.2) 
71 continue 

else 
do 73 j = 1,29 

write (10,74) m(j,i),t,oc(j,i),t,asn(j,i) 
74 format (lx,f6.2,a1,f4.2,a1,f7.2) 
73 continue 

end if 
end if 

c NGB model simulation 

if (distr.eq.3) then 
75 write (*, *) 'Simulate OC and ASN? (Y or N)' 

read (*,'(a)') respond 
if (respond.ne.'N'.and.respond.ne.'n') then 

if (respond.ne.'Y'.and.respond.ne.'y') goto 75 
end if 
if (respond .eq. 'Y' .or. respond .eq. 'y') then 

76 format (' Simulated OC and ASN functions for plan ',i2) 
write (10,77) 

77 format (' HO mean H1 mean k alpha beta') 
write (10,78) mO(i),ml(i),k(i),alpha(i),beta(i) 

78 format(f7 .3,3x,f7 .3,3x,f5 .3,3x,f4.3,4x,f4.3) 
write (10,79) 

79 format (' Low intercept High intercept Slope') 
write (10,80) lowi(i), highi(i), slope(i) 

80 format (6x,f8.2,9x,f7.2,1x,f6.3) 
call ngbsim (m(l,i), thresh(i), tpla, tplb,k(i),ngbk,lowi,highi, 

+ slope,oc(1,i),asn(l,i),29) 
end if 

end if 

90 write (*, *) 'Stop now? (Y or N)' 
read (*,'(a)') respond 
if (respond.ne. 'N' .and.respond.ne. 'n') then 

if (respond.ne.'Y'.and.respond.ne.'y') goto 90 
end if 
if (respond .eq. 'Y' .or. respond .eq. 'y') goto 1000 

if (init(l).eq.O.or.init(2).eq.O) goto 7 

c ************************************************************************************** 
c ************************* display results for both plans and verify ************************* 
c ************************************************************************************** 

call print (unit,m0,m1,k,alpha,beta,lowi,highi,slope, 
+ ocprint,mean,asnprt,mt,pi,distr,tally) 
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if (unit .eq. initun) then 
100 write(*,*) 'Redo a plan? (Y or N)?' 

read (*,'(a)') respond 
if (respond.ne.'N'.and.respond.ne.'n') then 

if (respond.ne.'Y'.and.respond.ne.'y') goto 100 
end if 
if (respond .eq. 'Y' .or. respond .eq. 'y') then 

goto 7 
else 

unit = 10 
call print (unit,m0,m1,k,alpha,beta,lowi,highi,slope, 

+ ocprint,mean,asnprt,mt, pi,distr, tally) 
end if 

end if 

c ************************************************************************************** 
c ************************* Simulation of tripartite plan performance ************************* 
c ************************************************************************************** 

write (*, *) 'starting simulations ... ' 
write (*, *) 'Maximum sample size? ' 
read(*,*) nmax 
write (*, *) 'Monte Carlo iterations?' 
read (*, *) mci 

150 format (' Max. sample size = ',i4,' iterations ',i4) 
icount = 0 
do 200 j = 1,18 

icount = icount + 1 
simmean(icount) = mG,l) 

200 continue 
do 120 j = 19,29 

if (mG,l).gt.m(1,2)) then 
temp = m(j -1,1) 
goto 220 

endif 
icount = icount + 1 
simmean(icount) = m(j,1) 

210 continue 
220 do 230 j = 1,29 

if (temp.lt.mG,2)) then 
icount = icount + 1 
simmean(icount) = m(j,2) 

endif 
230 continue 

write (* ,240) icount 
write (10,240) icount 

240 format(' number of means ',i3) 

do 300 j = 1,icount 
write (* ,250) j,icount 

250 format(' simulating from mean ',i2,' of ',i2) 

c set decision counters to zero 

seq1 = 0. 
seq3 = 0. 
seq2 = 0. 
terl = 0. 
ter3 = 0. 
ter2 = 0. 

totcnt = 0. 
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if (distr.eq.3) then 
if (ngbk.eq.l) then 

if (simmean(j).le.((m1(1) + m0(2)) j2.)) then 
ksim k(l) 

else 
ksim k(2) 

end if 
else 

ksim 
end if 

endif 

simmean(j)* *2 j(tpla * simmean(j)* * tplb - simmeanG)) 

c Monte Carlo loop 

do 400 i2 = 1 ,mci 
count = 0. 
sum = 0. 
if ( distr.eq .Lor .distr.eq .4 .or.distr.eq .5) then 

call binomial(simmeanG),x) 
else if (distr.eq.2) then 

call poisson(simmeanG),x) 
else 

call ngb(simmeanG),ksim,x) 
end if 
sum = sum + x 
count = count + 1. 

c compute stop lines and compare samples to them 

450 continue 
slu(l) = highi(l) + slope(l)*count 
sll(l) = lowi(l) + slope(l)*count 
slu(2) = highi(2) + slope(2)*count 
sll(2) = lowi(2) + slope(2)*count 
if ( (sum.gt.sl u(2).and.sum.gt.slu( 1) ).or .(sum.lt.sll( 1).and. 

+ sum.lt.sll(2))) then 
if (sum.lt.sll(l).and.sum.lt.sll(2)) then 

totcnt = totcnt + count 
seq1 = seq1 + 1. 

else 
totcnt = totcnt + count 
seq3 = seq3 + 1. 

end if 
else if (sum.gt.slu(l) .and. sum.lt.sll(2)) then 

seq2 = seq2 + 1. 
totcnt = totcnt + count 

else if (count .ge. nmax) then 
xbar = sumjfl.oat(count) 

if (xbar.le.thresh(l)) then 
terl = terl + 1. 
totcnt = totcnt + count 

else if (xbar.gt.thresh(l).and.xbar.le.thresh(2)) then 
ter2 = ter2 + 1. 
totcnt = totcnt + count 

else 
ter3 

totcnt 
end if 
else 

ter3 + 1. 
totcnt + count 

if (distr.eq.l.or.distr.eq.4.or.distr.eq.5) then 
call binomial(simmean(j),x) 
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else if (distr.eq.2) then 
call poisson(simmean(j),x) 

else 
call ngb(simmean(j),ksim,x) 

end if 
sum = sum+ x 
count = count + 1. 
goto 450 

end if 
400 continue 

c compute OC values and probabilities of decision 

seq1dec = seq1jftoat(mci) 
ter1dec = ter1jftoat(mci) 
seq2dec = seq2jftoat(mci) 
ter2dec = ter2 jftoat(mci) 
pdecl(j) = seq1dec + ter1dec 
pdec2(j) = seq2dec + ter2dec 
pdec3(j) = 1 - (pdecl(j) + pdec2(j)) 

c compute average sample size 

simasn(j) = totcntjftoat(mci) 
300 continue 

c ************************************************************************************** 
c ****************** Incorporation of p-m model variability in P{dec} and ASN ***************** 
c ************************************************************************************** 

c If distr = 4 (empirical binomial) or distr = 5 (NGB binomial) 
c then do the following: 
c 1) convert simmean(j), currently a proportion, to a density 
c [spmbin(j)] 
c 2) compute effect of variation in p-m model on pdec and asn 

if (distr.eq.4) then 
do 460 j = 1,icount 

spmbin(j) = exp((log( -log(l-simmean(j)))- c) j d) 
460 continue 

call binemp(icount,spmbin,d, vd,mse,m,mlnm, weight,z,pdec 1, 
+ simasn,temp1,easn) 

call binemp(icount,spmbin,d,vd,mse,m,mlnm,weight,z,pdec2, 
+ simasn,temp2,easn) 

call binemp(icount,spmbin,d, vd,mse,m,mlnm, weight,z, pdec3, 
+ simasn,temp3,easn) 

endif 
if (distr.eq.5) then 

do 463 j = 1,icount 
call tabex(refm, pxgtt,simmean(j),icount,spmbin(j)) 

463 continue 
call binngb(icount,spmbin,simmean,tpla,tplb,mse,rn,vb,mlnm, 

+ pdec 1 ,simasn, tally ,z, weight, temp 1,easn) 
call binngb(icount,spmbin,simmean,tpla,tplb,mse,m,vb,mlnm, 

+ pdec2,simasn, tally,z, weight, temp2,easn) 
call binngb(icount,spmbin,simmean,tpla,tplb,mse,m,vb,mlnm, 

+ pdec3,simasn, tally,z,weight, temp3,easn) 
end if 



if (distr.eq.4.or.distr.eq.5) then 
do 465 j = 1,icount 

pdecl(j) temp1(j) 
pdec2(j) = temp2(j) 
pdec3(j) = temp3(j) 
simasn(j) = easn(j) 
simmean(j - = spmbin(j) 
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465 continue 
endif 

c adjust P{dec} functions so that they sum to 1.0 

466 

do 466 j = 1,count 
sump dec = pdecl(j) + pdec2(j) + pdec3(j) 

continue 
do 467 j = 

pdec1(j) 
pdec2(j) 
pdec3(j) 

1,count 
pdecl (j) I sumpdec 
pdec2(j) 1 sumpdec 
pdec3(j) 1sumpdec 

467 continue 

write(* ,470) 
470 format(' Mean P{decl} P{dec2} P{dec3} ASN') 

write(10,471) t,t,t,t 
471 format(' Mean',a1,'P{decl}',a1,'P{dec2}',a1,'P{dec3}',a1, 

+'ASN') 
do 480 j = 1,icount 
write(* ,481) simmean(j),pdecl(j),pdec2(j),pdec3(j),simasn(j) 

481 format(lx,f7 .3,3x,f7 .3,3x,f7 .3,3x,f7 .3,3x,f7 .2) 
write(10,482) simmean(j),t,pdec1(j),t,pdec2(j),t,pdec3(j),t, 

+simasn(j) 
482 format(1x,f7.3,a1,f7.3,a1,f7.3,a1,f7.3,a1,f7.2) 
480 continue 

pause 

1000 continue 
close (10) 
end 

subroutine tabex(val,arg,dummy,k,value) 

c ************************************************************************************** 
c This subroutine uses linear interpolation to compute y = f(x). 
c Sets of y values (val) and x arguments (arg) are passed along 
c with a dummy x value (dummy) for which y (value) is to be 
c determined. k is the size of the val and arg arrays. Values 
c in the argument (arg) array must be in ascending order. 
c *******************************************************************~~***************** 

real val,arg,dummy,value 
integer k,j 
dimension val(k),arg(k) 
do 1 j = 2,k 
if (dummy.gt.arg(j)) go to 1 

2 value = (dummy-arg(j-1))*(val(j)-val(j-l))l 
+ (arg(j) - arg(j -1)) + val(j -1) 
return 

1 continue 
j = k 
go go 2 
end 

subroutine ngb(mean,k,x) 
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c ************************************************************************************** 
c This subroutine generates negative binomial distributed random 
c variables using a rejection method. It requires uniform {0,1} 
c random variates be generated as the variable r. If the Fortran 
c compiler does not support a 'random' function, one must be provided. 

c ************************************************************************************** 
real x,mean,k,px,ppx,pxsum,r 
call random(r) 
X = 0.0 
px = 1j((l +meanjk)**k) 
ppx = px 
pxsum = px 
if (r .le. px) goto 4 

5 x- = x + 1 
px = ((k +x - 1.) jx)*(meanj(mean + k))*ppx 
ppx = px 
pxsum = pxsum + px 
if (r .le. pxsum) goto 4 
if (x. gt. 200.) goto 4 

goto 5 
4 continue 

return 
end 

subroutine binomial(p,x) 

c ************************************************************************************** 
c This subroutine generates binomial distributed random 
c variables x {x = 0 or 1} using a rejection method. 
c The subroutine requires uniform {0,1} random variates be generated 
c as the variable r. If the Fortran compiler does not support a 
c 'random' function, one must be provided. 

c ************************************************************************************** 
real p,x,r 
call random(r) 
if (r.lt.p) then 

X 1. 
else 

X 0.0 
end if 
return 
end 

subroutine poisson(mean,poivar) 

c ************************************************************************************** 
c Generates pseudo random Poisson distributed random variables using a 
c rejection method. A uniform random variate (r) is required. If 
c the FORTRAN compiler does not support a function (random in this routine) 
c for generating uniform deviates, one must be supplied. 

c ************************************************************************************** 
real mean,poivar,r,px,pxsum 

call random(r) 
poivar = 0. 
px = exp( - mean) 
pxsum = px 
if (r.le.pxdum) return 

10 continue 
poivar poivar + 1. 
px = px*meanjpoivar 
pxsum = pxsum + px 



if (r.le.pxsum) return 
if (poivar.ge.500) return 

goto 10 

return 
end 
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subroutine binemp (entries,m,d,vd,mse,rn,mlnm,weight,z,novdec, 
+ novasn,edec,easn) 

c ************************************************************************************** 
c Subroutine computes expected P{dec} and ASN for sequential binomial sampling 
c programs based on the empirical model In( -ln(pT)) = a + bln(m) where pT is 
c the proportion of samples with less than T animals and m is the mean. A 
c maximum of 58 nominal values can be passed. 

c ************************************************************************************** 

c variable definitions 

c c,d; intercept and slope of pO - m relationship 
c dec(k,j), asn(k,j); P{dec} and asn values indexed by the means (m(j)) 
c and the bias weights k 
c edec(j), easn(j); expected P{dec} and asn functions 
c m(j) mean density corresponding to 1 -p(j) where p(j) is the proportion of 
c samples with ::::;; tally threshold 
c mlnm; mean of independent variable of p -m relationship 
c mse; mean square error of pO - m relationship 
c negbm(j) means biased by P{x::::;; tally threshold} being less than nominal value 
c novdec(j), novasn(j): P{dec} and asn values exclusive of variance in the p -m 
c relationship 
c posbdec(j),negbdec(j),posbasn(j),negbasn(j): oc and asn values for biased p 
c values calculated for the set of means = m(j) 
c posbm(j) means biased by P{x::::;; tally threshold} being greater than nominal value 
c vd, rn; variance of d and data.points used in p -m relationship 
c vlnlnp(j); variance of In( -ln(l-pT) 
c weight(k) set of values for weighting biased P{dec} and ASN curves 
c z(k): standard normal values associated with weight(k) 
c declarations 

integer entries,j,k 

real d, vd,mse,rn,mlnm,novdec,novasn,m, weight( 11 ),z( 11 ), 
+ vlnlnp(58), temp,posbm(58 ),negbm(58),posbdec(58),negbdec(58), 
+ posbasn(58),negbasn(58),bdec(11,58),basn(11,58),edec,easn, 
+ dummy,result 

dimension novdec(entries),novasn(entries),m(entries), 
+ edec(entries),easn(entries) 

c computations 

do 30 j = 1,entries 
vlnlnp(j) msejrn + (log(m(j))- mlnm)**2*vd + mse 
bdec(l,j) novdec(j) 
basn(l,j) novasn(j) 

30 continue 

50 

do 40 k = 2,11 
do 50 j = 1,entries 

temp = exp(z(k)*sqrt(vlnlnp(j)) 1 d) 
posbm(j) m(j) jtemp 
negbm(j) = m(j)*temp 

continue 
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c compute P{dec} and ASN values for biased means that have the same p value 
c as the nominal means 

do 60 j = l,entries 
dummy = m(j) 
call tabex(novdec,posbm,dummy,entries,result) 
posbdec(j) = result 
call tabex(novdec,negbm,dummy,entries,result) 
negbdec(j) = result 
call tabex(novasn,posbm,dummy,entries,result) 
posbasn(j) = result 
call tabex(novasn,negbm,dummy,entries,result) 
negbasn(j) = result 
bdec(k,j) (posbdec(j) + negbdec(j)) j2. 
basn(k,j) = (posbasn(j) + negbasn(j)) j2. 

60 continue 
40 continue 

c compute expected P{dec} and ASN values 

do 70 j = l,entries 
edec(j) = 0.0 
easn(j) = 0.0 
do 80 k = 1,11 

edec(j) edec(j) + bdec(k,j) * weight(k) 
easn(j) = easn(j) + basn(k,j) * weight(k) 

80 continue 
70 continue 

return 
end 
subroutine binngb(entries,m,p,a,b,mse,m,vb,mlnm,novdec, 

+ novasn, tally,z, weight,edec,easn) 

c ************************************************************************************** 
c Subroutine computes expected P{dec} and ASN for sequential binomial sampling 
c programs on a negative binomial model. Expected values are based on 
c variation in k modeled using variation about TPL ( residuals about TPL are 
c assumed to be normally distributed. A maximum of 58 nominal values can be 
c passed. 
c ************************************************************************************** 

c variable definitions 

c a TPL parameter 
c b TPL parameter 
c dummy temporary variable 
c easn expected ASN 
c edec expected P{dec} 
c entries number of P{dec} and ASN values passed 
c i integer index 
c j integer index 
c ktemp temporary variable 
c lnm ln(mean) 
c lnv ln(variance) 
c m mean 
c mlnm mean of ln(mean) used in TPL 
c mse means square error for TPL regression 
c negasn asn corresponding to negative deviation about TPL 
c negdec P{dec} corresponding to negative deviation about TPL 
c novasn nominal ASN 
c novdec nominal P{dec} 
c p proportion of samples with more than T organisms (corresponds tom) 
c posasn asn corresponding to positive deviation about TPL 
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c posdec P{dec} corresponding to positive deviation about TPL 
c pxsum NGB cumulative distribution function value 
c rn data points in TPL regression 
c tally T value or p -m model 
c v variance 
c vb variance of TPL b 
c vlnv variance of In( variance predicted via TPL) 
c weight normal probability for z 
c z standard normal deviate 

integer entries,j,i 
real m,p,a,b,mse,rn,vb,mlnm,novdec,novasn, tally ,z, weight,edec, 

+ easn,v ,lnv ,lnm,vlnv ,dummy,ktemp,pxsum,posdec,negdec, 
+ posasn,negasn 

dimension m(entries),p (entries),novdec (entries),novasn(entries), 
+ z(11),weight(11),edec (entries),easn(entries) 

c computations 

do 1 j = 1,entries 
v = a*m(j)**b 
lnv = log(v) 
lnm = log(m(j)) 
vlnv = msejrn + (lnm- mlnm)**2*vb + mse 
edec(j) = 0.0 
easn(j) = 0.0 

do 35 i = 1,11 
dummy = lnv + z(i)*sqrt(vlnv) 
dummy = exp(dummy) 
ktemp = (dummy- m(j))jm(j)**2 
if (ktemp.lt.0.01) ktemp = 0.01 
ktemp = 1. jktemp 
call ngbcdf (m(j),ktemp,tally,pxsum) 
dummy = 1.0- pxsum 
call tabex(novdec,p,dummy,entries,posdec) 
if (posdec.gt.l.) posdec = 1.0 
if (posdec.lt.O.) posdec = 0. 
call tabex(novasn,p,dummy,entries,posasn) 
if (posasn.lt.l.O) posasn = 1.0 

c repeat for negative deviation 

dummy = lnv - z(i)*sqrt(vlnv) 
dummy = exp(dummy) 
ktemp = (dummy- m(j))jm(j)**2 
if (ktemp.lt.O.Ol) ktemp = 0.01 
ktemp = 1. jktemp 
call ngbcdf (m(j),ktemp,tally,pxsum) 
dummy = 1.0- pxsum 
call tabex(novdec,p,dummy,entries,negdec) 
if (negdec.gt.l.) negdec = 1.0 
if (negdec.lt.O.) negdec = 0. 
call tabex(novasn,p,dummy,entries,negasn) 
if (negasn.lt.l.O) negasn = 1.0 
edec(j) edec(j) + ((posdec + negdec) j2)*weight(i) 
easn(j) = easn(j) + ((posasn + negasn) j2)*weight(i) 

35 continue 
1 continue 

return 
end 

subroutine ngbcdf (m,k,t,pxsum) 
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c ************************************************************************************** 
c This routine computes the probability that x is ~ T when x is 
c distributed as a negative binomial random variable with m 
c (the mean) and k (the dispersion parameter). 
c The routine uses a recursive relationship for computing the 
c probability mass function for the negative binomial distribution. 

c ************************************************************************************** 

real m,p,q,k,px,pxp,pxsum,x,t 
10 continue 

p mjk 
q = 1+p 
X = 0. 
pxsum = 0. 
px = 1/q**k 
pxsum = pxsum + px 
pxp = px 

15 continue 
if (x.lt. t) then 

x = x+1 
px = ((k +x -1)*p j(x*q))*pxp 
pxp = px 
pxsum = pxsum + px 
goto 15 

end if 
return 
end 

subroutine print (unit,m0,m1,k,alpha,beta,lowi,highi,slope, 
+ ocprint,mean,asnprt,mt,pi,distr, tally) 

real m0(2),m1(2),k(2),alpha(2),beta(2),lowi(2),highi(2),slope(2), 
+ ocprint(11),mean(11,2),asnprt(11,2),mt(2),pi(2),tally 

integer unit,j,distr 
write (unit,l) 

1 format ('HO mean H1 mean k alpha beta', 
+' HO mean H1 mean k alpha beta') 

write (unit,2) m0(1),m1(1),k(l),alpha(l),beta(l), 
+ m0(2),m1(2),k(2),alpha(2),beta(2) 

2 format(2(f7 .3,3x,f7 .3,3x,f5 .3,3x,f4.3,4x,f4.3)) 
write (unit,3) 

3 format (' Low intercept High intercept Slope', 
+' Low intercept High intercept Slope') 

write (unit,4) lowi(l), highi(l), slope(l), 
+ lowi(2), highi(2), slope(2) 

4 format (2(6x,f8.2,9x,f7.2,1x,f6.3)) 
write (unit,5) 

5 format(' OC Mean ASN',1x,' OC Mean ASN') 
do 10 j = 1,11 

write (unit,ll) ocprint(j),mean(j,l),asnprt(j,1), 
+ ocprint(j),mean(j,2),asnprt(j,2) 

11 format (2(1x,f4.2,1x,f6.2,1x,f7.2)) 
10 continue 

if (distr.eq.4.or.distr.eq.5) then 
write (unit,15) 

15 format (' threshold proportion threshold proportion') 
write (unit,16) mt(l),pi(l),mt(2),pi(2) 

16 format (2(3x,f6.3,7x,f6.4,3x)) 
if (distr.eq.5) then 

write (unit,l7) tally 
17 format(' tally threshold ',f5.1) 

endif 



end if 
return 
end 
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subroutine ngbsim (m, thresh, tpla, tplb,nomk,ngbk,lowi,highi, 
+ slope,nomoc,nomasn,values) 

c ************************************************************************************** 
c This subroutine simulates the performance of an SPRT when a negative 
c binomial model is used and k is either 1) a constant, or 2) a function 
c of TPL. 
c ************************************************************************************** 

real m, thresh, tpla, tplb,lowi,highi,slope,nomoc,nomasn,ngbsoc, 
+ ngbsasn,seql,seqh, terl, terh,totcnt,k,sum,slu,sll,xbar ,var ,x,nomk 

integer values,i,j,nmax,mci,count,ngbk 
character* 1 respond, tab 
dimension m( values),nomoc( values),nomasn( values) 
tab = char(9) 

c variables unique to subroutine: 

c count, sum; number of samples, sum of animals in total samples from one run 
c k; k from negative binomial distribution used in sensitivity analysis 
c mci; number of Monte Carlo iterations 
c mci; number of monte carlo iterations 
c ngbsoc, ngbsasn; oc and asn values determined via simulation 
c nmax; maximum number of samples to be taken 
c nmax; maximum number of samples to be taken 
c seql, seqh, terl, terh; number of above and below threshold 
c sequential decisions, number of above and below terminal decisions 
c slu, sll; upper and lower stop lines 
c totcnt; total number of samples drawn 
c tpla, tplb; parameters for Taylors power law 
c xbar; mean of sample observations 
c 
c variables passed to subroutine 

c lowi, highi, slope; intercepts and slopes for stop lines 
c m; means for which oc and asn are to be computed 
c ngbk; indicates whether 1) constant k or 2) k = f(TPL) 
c nomk; nominal value of k used to construct stop lines 
c nomoc, nomasn; nominal oc and asn values 
c thresh; average of means for null and alternate hypothesis 
c pla, tplb; a and b for Taylor's power law 

c obtain necessary data 

1 write (*, *) 'input maximum sample size' 
read (*, *) nmax 
write (*, *) 'input monte carlo iterations' 
read (*, *) mci 
k = 0.0 
if (ngbk.eq.1) then 

write (* ,5) nomk 
5 format(' Nominal k = ',f5.3,j, 

+ ' input k value for simulations') 
read(*,*)k 

end if 
write (*,10) nmax, mci,k 

10 format(' maximum samples = ',i4,' monte carlo iterations ',iS 
+' k* = ',f5.3,j,' '*if k = 0, k = f(TPL)') 
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write (*, *) 'parameters correct? (y or n)' 
read (*,'(a)') respond 

if (respond.ne.'N'and.respond.ne.'n') then 
if (respond.ne.'Y'.and.respond.ne.'y') goto 11 

end if 
if (respond.eq. 'N' .or. respond.eq. 'n') goto 1 
write (10, *)'Simulation of SPRT performance with variable k' 
write (10,12) nmax,mci, k 

12 format(' maximum samples = ',i4,' monte carlo iterations ',i5, 
+' k* = ',f5.3,j, *if k = 0, k = f(TPL)') 

write (* ,20) 
20 format(' Mean Nom_OC Sim_OC Nom_ASN Sim_ASN') 

write (10,21) tab,tab,tab,tab 
21 format (' Mean',a1,'Nom_OC',a1,'Sim_OC',a1,'Nom_ASN',a1, 

+ 'Sim_ASN') 

do 100 i = 1,values 

c set decision counters to zero and compute k 

seql = 0. 
seqh = 0. 
terl = 0. 
terh = 0. 
totcnt = 0. 
if (ngbk.eq .2) then 

var = tpla *m(i)* *tplb 
k = (m(i)**2)j(var- m(i)) 

end if 

c Monte Carlo loop 

do llO,j = 1,mci 
count = 0. 
sum = 0. 

call ngb(m(i),k,x) 
sum = sum+ x 
count = count + 1 

c compute stop lines and compare samples to them 

120 continue 
slu = highi + slope*ftoat(count) 
sll = lowi + slope*ftoat(count) 
if (sum.gt.slu.or.sum.lt.sll) then 

if (sum.lt.sll) then 
ttcnt = totcnt + count 
seql = seql + 1. 

else 
totcnt = totcnt + count 
seqh = seqh + 1. 

end if 
else if (count .ge. nmax) then 

xbar = sumjftoat(count) 
if (xbar.lt.thresh) then 

terl = terl + 1. 
totcnt = totcnt + count 

else 
terh = terh + 1. 
totcnt = totcnt + count 

end if 



else 
call ngb(m(i),k,x) 
sum = sum + x 
count = count + 1 
goto 120 

end if 
110 continue 

c compute OC values 
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ngbsoc = (seql + terl) jftoat(mci) 

c compute average sample size 

ngbsasn = totcntjfioat(mci) 

c write results 

write (* ,130) m(i),nomoc(i),ngbsoc,nomasn(i),ngbsasn 
130 format (lx,f6.2,2x,f5.3,3x,f5.3,3x,f7.2,2x,f7.2) 

write ( 10, 131) m(i), tab,nomoc(i), tab,ngbsoc, tab,nomasn(i), tab, 
+ ngbsasn 

131 format (lx,f6.2,a1,f5.3,a1,f5.3,a1,f7 .2,a1,f7 .2) 

100 continue 

if (ngbk.eq.1) then 
write (*, *) 'repeat simulations for new k (y or n)?' 
read (*,'(a)') respond 

200 if (respond.ne.'N'.and.respond.ne.'n') then 
if (respond.ne. 'Y' .and.respond.ne. 'y') goto 200 

end if 
if (respond.eq. 'Y' .or. respond.eq. 'y') goto 1 

end if 

return 
end 

cascade: cascading of sampling decisions to monitor density through time 

Background: This program evaluates the performance of sampling plans cascaded 
through time. Each sample plan independently results in decisions to either resample 
the population i time intervals in the future or to intervene. A maximum of 20 
sampling plans can be cascaded. The program works by first building a table of 
sampling statistics indexed by sampling time and then by computing summaries of 
these tables. Extended output yields the time-indexed tables. Two input data files are 
required; one provides the sampling statistics (P{dec} and ASN) for each sampling 
plan used and time schedule for using each plan, and the other data file describes the 
population trajectories to be sampled. At each sampling bout (time) a particular 
sampling plan is used that can result in one of ndel + 1 decisions; intervene, or 
resample after i = 1, ... , ndel time periods. A maximum of five resample time 
intervals can be used. Probabilities for these decisions and the average sample 
number are determined via interpolation from an input data file. Each sample plan 
can have a maximum of 100 data points that describe the probabilities for these 
decisions [pdec(i, j, k); i = 1, ... , 100, j = 1, ... , 5 (plan number), k = 1, ... , 6 (deci
sion)]. A table is built for each possible sampling bout that consists of the time 
[determined by the beginning sampling time (begtime) and sample interval (deltime)], 
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the population density (dent) which is interpolated from an input file, the probability 
of sampling at that time (psamp), the six possible decision probabilities, the cumula
tive probability of making a decision to intervene (sumptrt) and average sample 
number, and the loss (losst) which is defined as the cumulative population density. 

Summary statistics [indexed by the population (pindex)] consist of the cumulative 
density for the population, the OC (oc), the average total sample size (avgtotn), the 
expected number of sampling bouts (expbout), the expected loss (exploss), and losses 
with probability 0.5, 0.2, and 0.05. At the end of the summary table is the statement 
"if PO loss = Cum.den, SUM P(dec3) < 1 - PO." This means that if the loss with 
probability x equals the cumulative density, then the cumulative probability of a 
decision to intervene is less than x. 

The program functions as follows: 

1. Files that contain the P{ dec} and ASN data and the population trajectories to be 
sampled are specified along with a file to which output is written. Data are read 
from the respective files which have the following formats. P{dec} and ASN data 
file. The first line contains two integers separated by a tab, space, or comma. 
The first number specifies the number of sampling plans and the second the 
number of time intervals ( ~ 5) sampling might be delayed. The second line 
contains two integers delimited by a tab, space, or comma that specify the 
number of data points (n) for the first sampling plan and the time when the 
sampling plan should first be used. The third through n + 2 lines contain the 
mean, P{dec(1)}, P{dec(2)}, ... , P{dec(ndel + 1)}, and ASN values for the first 
sampling plan delimited by a tab, space, or comma. The n + third line contains 
the number of data points for the second sampling plan and when the second 
plan should first be used. The data file then repeats to conclusion. An example is 
shown below: 

3 2 
46 0 

0.245 1.000 0.000 0.000 21.59 
0.276 1.000 0.000 0.000 22.82 
0.312 1.000 0.000 0.000 23.89 
0.353 1.000 0.000 0.000 25.39 
0.402 0.998 0.002 0.000 28.34 
0.459 0.994 0.006 0.000 30.21 
0.526 0.994 0.006 0.000 34.66 
0.606 0.980 0.020 0.000 40.71 
0.700 0.936 0.064 0.000 50.40 
0.812 0.862 0.138 0.000 58.41 
0.837 0.772 0.228 0.000 56.41 
0.863 0.720 0.280 0.000 58.13 
0.890 0.676 0.324 0.000 56.68 

49 30 
0.789 1.000 0.000 0.000 21.93 
0.856 1.000 0.000 0.000 23.54 
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Population trajectory data file: the first line contains the number of populations 
in the file (maximum of 15). Subsequent lines have the time and densities for 
each population delimited by a tab, space, or comma. An example with seven 
populations and time values of 12, 20, ... , 89 is shown below: 

7 
12 0 0 0 0 0.1 3.88 0.34 
20 0 0 0.12 0.42 0.36 1.36 0.2 
26 0 0.02 0.2 0.52 0.42 0.58 0.16 
33 0 0.1 0.12 0.64 0.16 5.22 0.09 
40 0.22 0.02 0.82 1.58 0.16 1.9 0.04 
47 0.32 0.06 2.58 4.58 0.3 1.1 0.08 
61 9.05 0.38 0.14 16.53 0.2 3.7 0.38 
68 2.6 1.44 3.16 20.74 0.01 2.58 3.04 
75 8.98 12.22 2.72 8.4 0 8.9 4.68 
82 11.82 17.68 1.94 2.02 0.18 12.7 0.8 
89 18.84 39.46 3.38 0.16 0.28 18.6 0.1 

The file containing the P{ dec} and ASN data can be quickly constructed from 
the output file generated by programs 'sprt' or 'afcm.' It is important that the 
P{dec} functions in these files be convex at the tails; otherwise, interpolated 
values may be seriously in error. For example, if the last three values for the 
P{dec(3)} function were 1.0, 1.0, 0.99 when ndel = 2; these should be changed to 
1.0, 1.0, 1.0. 

2. Whether or not extended output is desired is specified. 
3. When samples are to be taken is specified by providing a starting time, an 

ending time, and a time interval between samples. If the time interval lies 
outside the time horizon for which population trajectory data are available, 
densities are truncated to either the first or last value. Note that while sampling 
plans constructed for cascading usually are designed with a specific time interval 
between samples in mind, this feature allows other time intervals to be used for 
sensitivity analysis. 

4. A population scale factor can be applied if desired. This factor scales the 
densities in the population trajectory file by the multiple provided. A value of 1.0 
must be entered if no scaling is desired. 

5. Computations are made and results are written to the output file. If desired 
computations can be repeated for a new population scale factor or for a new 
sampling time schedule. 

An example is shown below. Ulser inputs are underlined and comments are in 
italics. 

> cascade 
Enter name of file with P{dec} & ASN data 

Enter name of file with trajectory data 
histpop.in 
P{dec} & ASN file = ngb.in Population data file 
Is this correct? (Y or N) 
y 

histpop.in 
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Enter name of file for output 
ngb.out 
Select extended(l) or summary(2) output 
1 
Write P{dec} & ASN data to file? (Y or N) 
n 

Starting time for plan 1 = 0 
Starting time for population trajectories = 12 
Ending time for population trajectories = 89 
Input time for first sample: 
12 
Input time interval between samples: 
7 

Input time for last sample: 
89 

Sampling schedule: 

Start 
12 

Interval 
7 

Last sample at 
89 

Is this correct? (Y or N) 
y 
Input population scale factor: 0.0 
1.0 
computations are performed and displayed on the screen 
Repeat for new population scale? (Y or N) 

!! 
Repeat for new time model? (Y or N) 
n 
a portion of the output file is shown below: 

P{dec} & ASN file = ngb.in Population data file 
Results for population # 1 

Time Density 
12.00 0.00 
20.00 0.00 
26.00 0.00 
33.00 0.00 
40.00 0.22 
47.00 0.32 
61.00 9.05 
68.00 2.60 
75.00 8.98 
82.00 11.82 
89.00 18.84 

Time Density P{samp} Pd Pd2 Pd3 Pd4 
12.00 0.00 1.000 1.000 0.000 0.000 0.000 
19.00 0.00 0.000 1.000 0.000 0.000 0.000 
26.00 0.00 1.000 1.000 0.000 0.000 0.000 
33.00 0.00 0.000 1.000 0.000 0.000 0.000 
40.00 0.22 1.000 0.000 0.000 0.000 0.000 
47.00 0.32 0.000 0.000 0.000 0.000 0.000 
54.00 4.68 1.000 0.000 0.655 0.345 0.000 
61.00 9.05 0.655 0.000 0.069 0.931 0.000 
68.00 2.60 0.045 0.800 0.200 0.000 0.000 
75.00 8.98 0.009 0.000 0.084 0.916 0.000 
82.00 11.82 0.037 0.000 0.002 0.998 0.000 

89.00 18.84 0.000 0.000 0.000 1.000 0.000 

histpop.in 

Pd5 Pd6 
0.000 0.000 
0.000 0.000 
0.000 0.000 
0.000 0.000 
0.000 0.000 
0.000 0.000 
0.000 0.000 
0.000 0.000 
0.000 0.000 
0.000 0.000 
0.000 0.000 

0.000 0.000 

p{trt} ASN Loss 
0.000 21.59 0.00 
0.000 21.59 0.00 
0.000 21.59 0.00 
0.000 21.93 0.00 
0.000 21.93 0.77 
0.000 21.93 2.66 
0.345 51.48 35.46 
0.955 39.45 68.25 
0.955 51.74 109.03 
0.963 40.36 149.56 
1.000 17.19 222.36 

1.000 9.72 329.67 
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Note: Pdl-Pd6 values are output even when the number of delays are < 6. The last Pdi values that are not 
all zeroes are the probabilities for an interoention decision. 

Results for population# 2 

Start 
12.0 

Interval 
7.0 

Population scale factor 1.000 

Time Density 
12.00 0.00 
20.00 0.00 
26.00 0.02 

Last sample at 
89.0 

Possible bouts 
12.0 

Pop. Cum.den. oc ASN Bouts Exp.loss P(0.5)loss P(0.2)loss 
1 329.67 0.00 145.79 4.75 63.35 43.79 59.94 
2 363.08 0.00 118.75 6.00 163.09 110.76 142.16 
3 103.85 1.00 229.89 6.64 103.85 103.85 103.85 
4 462.20 0.00 119.94 4.08 109.47 73.64 96.52 
5 15.45 1.00 129.46 6.00 15.45 15.45 15.45 
6 363.41 0.00 25.19 1.05 1.78 0.00 0.00 
7 69.53 1.00 180.16 6.48 69.49 69.53 69.53 

** if P()loss = Cum.den, SUM(pdec3) < 1- PO 

program cascade 

c Program written in Fortran 77: IBM version compiled using Microsoft 
c FORTRAN compiler v5.1. 
c Program written by Jan Nyrop, Department of Entomology, NYSAES, 
c Cornell University, Geneva, NY 14456 
c Last modification date: 2 February, 1993 

P(0.05)loss 
68.01 

157.86 
103.85 
107.96 
15.45 
0.00 

69.53 

c ************************************************************************************** 
c * ** ** * * * ** ** ** ** * * ** *** * ** * *** * * * Variable descriptions * * * * * ** * ***** ** * ** * ** * ** * ** * * * * ** 
c ************************************************************************************** 

c asn(j,i): ASN values for mean j and sampling plan i 
c avgden: average of two densities used to compute cumulative density 
c avgtotn(k): average total number of samples taken for each of k 
c trajectories 
c begtime: time for first sample 
c bout: sample bout index 
c cplan: sampling plan currently being used 
c delta: time interval used to compute cumulative density 
c deltime: sampling time interval 
c dent: population density at current sampling time 
c endtime: last sampling time 
c expbout(k): expect number of sampling bouts for each of k trajectories 
c exploss(k): expected loss for each of k population trajectories 
c file1: file name 
c file2: file name 
c file3: file name 
c i: integer index 
c iend: integer index 
c ii: integer index 
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c iin1: file unit number 
c iin2: file unit number 
c input: character to record keyboard input 
c intasn: interpolated asn value 
c intpd(i): interpolated P{dec(i)} value 
c iout: file unit number 
c ipoint: integer index 
c ipops: integer index 
c j: integer index 
c losst: loss (cumulative density) at sampling time t 
c losssb(sb ): loss at sampling bout sb 
c lossp1(k): interpolated loss for probability p1 and population k 
c lossp2(k): interpolated loss for probability p2 and population k 
c lossp3(k): interpolated loss for probability p3 and population k 
c lsttime: last sampling time 
c mean(j,i): mean for P{dec} and ASN functions for tripartite plan i 
c mult: multiplier for scaling population density 
c ndel: number of time intervals resampling might be delayed 
c oc(k): OC value for each of k population trajectories 
c oldpopsc: old population scale value 
c pdec(j,k,i): probability of making decision i with plan k for mean j 
c pindex: population index 
c plans: number of sampling plans used 
c points(i): number of P{dec} and ASN data points in sampling plan i 
c popscale: population scale factor 
c potbouts: number of potential sampling bouts 
c prpdec(j,i): probability of making decision j i time intervals previous 
c prpsamp(i): probability of sampling i time intervals previous 
c psamp: probability of sampling at a particular time 
c respond: keyboard input 
c respond2: keyboard input 
c sched(i): time to begin using sampling plan i 
c sum1: summed values 
c sum2: summed values 
c sum3: summed values 
c sumden(j,i): cumulative density through time for population i 
c sumptrt(sb ): probability of intervention summed through sample bout sb 
c time: sampling time 
c trent: number of population trajectories to be sampled 
c trden(j,i): population density for trajectory i 
c trtime(j): times corresponding to trden(j,i) 

c ************************************************************************************** 
c * * * * * * ** * * * * * * * * * ** *** * ** * * * * * * * * * ** * Declarations * ** * * * * * * * * * * * * * * * ** * ** * * * * * * * * * * * * * * 
c ************************************************************************************** 

real mean(100,20),pdec(100,20,6), 
+ asn( 1 00,20),oc( 15),expbout( 15),avgtotn( 15),exploss( 15),sched(20 ), 
+ trtime( 100 ), trden( 100, 15),sumden( 100, 15),losssb(50),sumptrt(50 ), 
+ lossp 1 ( 15),lossp2( 15),lossp3( 15), prpsamp(5),prpdec(5,5),intpd( 6) 

real time,dent,psamp,intasn,sum1,sum2,temp, 
+ sum3,deltime,endtime,losst,begtime,popscale,mult,oldpopsc, 
+ lsttime,delta,avgden,potbouts 

integer plans,cplan,respond,pindex,trcnt,ipops,k, 
+ points(20),iin1,iin2,iout,i,iend,j,ii,ipoint,bout,ndel 

character* 12 file 1, file2, file3 
character* 1 t,input 
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t = char(9) 
oldpopsc 1.0 
popscale 0.0 

do 500 k = 1,6 
do 510 j = 1,20 

do 530 i = 1,100 
pdec(i,j,k) = 0.0 

520 continue 
510 continue 

intpd(k) 0.0 
500 continue 

c ************************************************************************************** 
c ******************************** Model parameterization******************************** 
c ************************************************************************************** 

iin1 20 
iin2 21 
iout 15 

1 write (*,'(a)')' Enter name of file with P{dec} & ASN data' 
read (*,'(a)') file1 
write (*,'(a)') ' Enter name of file with trajectory data' 
read (*,'(a)') file2 
write (* ,2) file1,file2 

2 format(' P{dec} & ASN file = ',a12,' Population data file 
+a12) 

3 write (*, *) 'Is this correct? (Y or N)' 
read (*,'(a)') input 

if (input.ne.'N'.and.input.ne.'n') then 
if (input.ne.' Y' .and.input.ne. 'y') goto 3 

end if 
if (input .eq. 'N' .or. inp.ut .eq. 'n') goto 1 

write (*,'(a)') ' Enter name of file for output' 
read (*,'(a)') file3 
open (unit = iin1,file file1,status = 'old') 
open (unit = iin2,file file2,status = 'old') 
open (unit = iout,file file3,status = 'unknown') 
write (iout,4) file1,file2 

4 format (' P{dec} & ASN file = ',a12,' Population data file 
+a12) 

c determine whether extended or summary output is desired 

10 write (*, *) 'Select extended(l) or summary (2) output' 
read (*, *) respond 
if ((respond.ne.l).and.(respond.ne.2)) goto 10 

c read P{dec} and ASN data 

read (iin1, *) plans,ndel 
do 15 i = 1,plans 

read (iin1, *) points(i),sched(i) 
iend = points(i) 
do 20 j = 1,iend 

read (iin1, *) mean(j,i),(pdec(j,i,k),k = 1,ndel + l),asnG,i) 
20 continue 
15 continue 

' 
' 



316 Handbook of Sampling Methods for Arthropods in Agriculture 

c read population trajectory data 

read (iin2, *) ipops 
trent - 0 

22 if (.not. eof(iin2)) then 
trent = trent + 1 
read (iin2, *) trtime(trcnt), (trent), (trden(trcnt,j), j 
goto 22 

endif 
close (iin2) 

1,ipops) 

c if extended results are requested determine whether P{dec} and ASN functions 
c should be written to file: 

if (respond.eq .1) then 
25 write (*, *) 'Write P{dec} & ASN data to file? (Y or N)' 

read (*,'(a)') input 
if (input.ne. 'N' .and.input.ne. 'n') then 

if (input.ne.'Y'.and.input.ne.'y') goto 25 
end if 
if (input .eq. 'Y' .or. input .eq. 'y') then 

do 30 i = 1,plans 
write (iout,31) i 

31 format(' P{dec} and ASN functions for sampling plan ',i2) 
write (iout,33) t,t,t,t,t,t,t 

33 format(' Mean',a1,'Pd1',a1,'Pd2',a1,'Pd3',a1,'Pd4',a1, 
+ 'Pd5',a1,'Pd6',a1,'ASN') 

iend = points(i) 
do 35 j = 1,iend 

write (iout,36) mean(j ,i), t, pdec(j ,i, 1), t, pdec(j ,i,2), t, 
+ pdec(j,i,3),t,pdec(j,i,4),t, 
+ pdec(j,i,5),t,pdec(j,i,6),t,asnG,i) 

36 format (lx,f6.2,a1,6(f5.3,a1),f7.2) 
35 continue 
30 continue 

end if 
end if 

c determine time interval between samples and last sampling time 

39 continue 
write (*,40) sched(l) 

40 format (' Starting time for plan 1 = ',f6.1) 
write (*,41) trtime(l) 

41 format (' Starting time for population trajectories = ',f6.1) 
write (* ,42) trtime(trcnt) 

42 format(' Ending time for population trajectories = ',f6.1) 
write (*, *) 'Input time for first sample:' 
read (*, *) begtime 
write (*, *) 'Input time interval between samples:' 
read (*, *) del time 
write(*,*) 'Input time for last sample:' 
read (*, *) end time 
potbouts = aint((endtime- begtime)jdeltime) + 1 
lsttime = begtime + ((potbouts - l)*deltime) 
write (*, *) 'Sampling schedule:' 
write (* ,43) 

43 format ('Start Interval Last sample at') 
write (*,44) begtime,deltime,lsttime 

44 format (lx,f6.1,2x,f6.1,5x,f6.1) 
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45 write (*, *) 'Is this correct? (Y or N'. 
read (*,'(a)') input 

if (input.ne. 'N' .and.input.ne. 'n') then 
if (input.ne.' Y' .and.input.ne. 'y') go to 45 

end if 
if (input .eq. 'N' .or. input .eq. 'n') goto 39 

c apply population scale factor 

46 write (* ,47) popscale 
47 format ('Input population scale factor: ',f7.3) 

read (*, *) popscale 
mult = popscale I oldpopsc 
oldpopsc = popscale 
do 48 i = 1,trcnt 

do 49 j = 1,ipops 
trden(i,j) = trden(i,j)*mult 

49 continue 
48 continue 

c ************************************************************************************** 
c ************************************* Calculations ************************************* 
c ************************************************************************************** 

c compute the area beneath each population trajectory curve (sumden) 

do 50 j = 1,ipops 
sumden(l,j) = 0.0 
do 51 i = 1,trcnt - 1 

delta = trtime(i + 1) - trtime(i) 
avgden = (trden(i + 1,j) + trden(i,j))j2.0 
sumden(i + 1,j) = sumden(i,j) + (delta*avgden) 

51 continue 
50 continue 

c loop based on populations in trajectory file 
pindex = 1 

60 continue 

c if detailed output is required, print header 

if (respond.eq.l) then 
write (iout,61) pindex 

61 format ('Results for population# ',i2) 
write (iout,62) t 

62 format (/,'Time' ,a1, 'Density') 
do 63 ii = 1,trcnt 

write (iout,64) trtime(ii),t,trden(ii,pindex) 
64 format(lx,f7.2,a1,f7.2) 
63 continue 

write (iout,65)t, t, t, t, t, t, t, t, t, t, t, t 
65 format (/'Time' ,al, 'Plan' ,a1, 'Density' ,a1, 'P{samp}' ,a1, 'Pd1' 

+ a1, 'Pd2' ,a1, 'Pd3' ,a1, 'Pd4' ,al 'Pd5' ,a1, 'Pd6' ,a1, 'P{trt}' ,al, 
+ 'ASN',a1,'Loss') 

end if 

c initialize probabilities at time 0, set time to 0, set sums to 0 

do 66 i = 1,5 
do 67 j = 1,5 

prpdec(i,j) = 0.0 
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67 continue 
prpsamp(i) 0.0 

66 continue 

prpdec(ndel,1) = 1.0 
prpsamp(1) = 1.0 
time = begtime 
bout = 0 
sum1 0. 
sum2 = 0. 
sum3 = 0. 
exploss(pindex) 0. 

c loop based on time 

70 continue 

bout = bout + 1 

c determine which sampling plan to use 

i = plans 
75 if ((time+ O.OOl).ge.sched(i)) then 

cplan = i 
else 

i = i -1 
go to 75 

end if 

c compute the time dependent density 

call interp(trden(1,pindex),trtime,time,trcnt,1,dent) 

c compute the time dependent loss function 

call interp(sumden(1,pindex),trtime,time,trcnt,1,1osst) 
losssb(bout) = losst 

c compute the interpolated probabilities for each decision and 
c the interpolated asn 

ipoint = points(cplan) 
do 78 j = 1 ,ndel + 1 

call interp(pdec(1,cplan,j),mean(1,cplan),dent,ipoint,O, 
+ intpd(j)) 

if (intpd(j).lt.O.O) intpd(j) = 0.0 
if (intpd(j).gt.l.O) intpd(j) = 1.0 

78 continue 
call interp(asn(1,cplan),mean(1,cplan),dent,ipoint,1,intasn) 

c calculate the probability of sampling in the current time period 
psamp = 0 
do 90 j = 1,ndel 

psamp = psamp + (prpsamp(j)*prpdec(ndel + 1 - j,j)) 
90 continue 
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c calculate sums 

sum1 sum1 + (psamp*intpd(ndel + 1)) 
sum2 sum2 + (psamp*intasn) 
sum3 sum3 + psamp 
sumptrt(bout) = sum1 

c determine if it is the last sampling time 

if ((time + deltime).lt.(endtime + 0.0001)) then 
exploss(pindex) = exploss(pindex) + losst*psamp*intpd(ndel + 1) 

c delay probabilities of decision 1 to ndel; prpdec(decision,delay) 

do 95 j = 1,ndel 
do 100 k = ndel,2,- 1 

prpdec(j,k) = prpdec(j,k -1) 
100 continue 

prpdec(j,l) = intpd(j) 
95 continue 

c delay probabilities of sampling; prpsamp(delay) 

do 110 j = ndel,2,- 1 
prpsamp(j) = prpsamp(j - 1) 

110 continue 
prpsamp(1) = psamp 
if (respond.eq.l) then 

write (iout, 120) time, t,cplan, t,dent,t,psamp,t,intpd( 1),t, 
+ intpd(2), t,intpd(3 ), t,intpd( 4 ), t,intpd(5), t,intpd( 6), t,sum1, 
+ t,intasn,t,losst 

120 format(1x,f7.2,a1,i2,a1,f7.2,a1, 7(f5.3,al),f7.3,a1,f7.2,a1, 
+ f7.2) 

end if 
time = time + deltime 
go to 70 

else 
temp = 0.0 
do 125 j = 2,ndel 

intpd(l) = intpd(l) + intpd(j) 
intpd(j) = 0.0 

125 continue 
temp = 0.0 
do 130 j = ndel - 1,1,- 1 

do 135 i = 1,ndel - j 
temp = temp+ prpsamp(j)*prpdec(i,j) 

135 continue 
130 continue 

exploss(pindex) = exploss(pindex) + losst*psamp + temp*losst 
if (respond.eq.l) then 

write (iout, 140) time, t,cplan, t,dent, t, psamp,t,intpd(1), t, 
+ intpd(2), t,intpd(3 ), t,intpd( 4 ), t,intpd(5), t,intpd( 6), t,sum1, 
+ t,intasn,t,losst 

140 format(1x,f7.2,a1,i2,a1,f7.2,a1,7(f5.3,al),f7.3,a1,f7.2,a1, 
+ f7.2) 

end if 
end if 

c end of time loop 
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c compute OC, bouts, average total sample size, losses 

oc(pindex) = 1 -sum1 
avgtotn(pindex) = sum2 
expbout(pindex) = sum3 
if (sumptrt(bout).lt.0.5) then 

lossp l(pindex) = losst 
else 

call interp(losssb,sumptrt,0.5,bout,1,1ossp1(pindex)) 
endif 
if (sumptrt(bout).lt.0.8) then 

lossp2(pindex) = losst 
else 

call interp(losssb,sumptrt,0.8,bout,1,1ossp2(pindex)) 
endif 
if (sumptrt(bout).lt.0.95) then 

lossp3(pindex) = losst 
else 

call interp(losssb,sumptrt,0.95,bout,1,1ossp3(pindex)) 
endif 

c increment population index 

pindex = pindex + 1 
if (pindex.le.ipops) go to 60 
pindex = pindex - 1 

c write summary statistics to output file and to the screen 

write (iout,200) 
200 format (' Start Interval Last sample at Possible bouts') 

write (iout,205) begtime,deltime,lsttime,potbouts 
205 format (f6.1,2x,f6.1,7x,f6.1,12x,f6.1) 

write (* ,210) 
210 format (' Start Interval Last sample at Possible bouts') 

write (* ,215) begtime,deltime,lsttime,potbouts 
215 format (f6.1,2x,f6.1,7x,f6.1,12x,f6.1) 

write (iout,220) popscale 
220 format (' Population scale factor ',f6.3) 

write (* ,225) popscale 
225 format (' Population scale factor ',f6.3) 

write (* ,230) 
230 format (' Pop Sum.den OC ASN Bouts Exp.loss P0.5loss 

+ P0.2loss P0.05loss') 
write (iout,235) t,t,t,t,t,t,t,t 

235 format(' Pop.',a1,'Cum.den.',a1,'0C',a1,'ASN', 
+ a1, 'Bouts' ,a1, 'Exp.loss' ,a1, 'P(0.5)loss' ,a1, 'P(0.2)loss' ,a1, 
+ 'P(0.05)loss') 

do 240 j = 1,pindex 
write (iout,245) j,t,sumden(trtcnt,j),t,oc(j),t, 

+ avgtotn(j),t,expbout(j),t,exploss(j),t,lossp1(j),t, 
+ lossp2(j),t,lossp3(j) 

write (* ,246) j,sumden(trtcnt,j),oc(j),avgtotn(j),expbout(j), 
exploss(j),lossp 1 (j),lossp2(j ),lossp3(j) 

245 format ( 1x,i2,a1 ,f7 .2,a1 ,f4.2,a1 ,f7 .2,a1,f5 .2,a1 ,f7 .2, 
+ a1,f7.2,a1,f7.2,a1,f7.2) 

246 format ( 1x,i2,3x,f7 .2,2x,f4.2,2x,f7 .2,2x,f5 .2,2x,f7 .2, 
+ 3x,f7.2,3x,f7.2,3x,f7.2) 

240 continue 
write (iout,250) 
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250 format (' * * if P()loss = Cum. den, SUM(ptrt) < 1 - PO') 

260 write (*, *) 'Repeat for new population scale? (Y or N)' 
read (*,'(a)') input 
if (input.ne.'N'.and.input.ne.'n') then 

if (input.ne.'Y'.and.input.ne.'y') goto 260 
end if 
if (input .eq. 'Y' .or. input .eq. 'y') goto 46 

270 write(*,*) 'Repeat for new time model? (Y or N)' 
read (*,'(a)') input 
if (input.ne. 'N' .and.input.ne. 'n') then 

if (input.ne.'Y'.and.input.ne.'y') goto 270 
end if 
if (input .eq. 'Y' .or. input .eq. 'y') goto 39 

close (iout) 
close (iinl) 
close (iin2) 
end 

subroutine interp (y ,x,dummyx,k, trunc,yvalue) 

c ************************************************************************************** 
c This subroutine performs a linear interpolation of a function y = f(x). 
c Vectors of y values (y) and x values (x) are passed along with a dummy 
c x value (dummyx) for which a y value (yvalue) is sought. The dimension 
c of the y and x arrays (k) must also be passed. In addition a variable 
c trunc is passed that when = 1 causes trunction of the function so that 
c when dummyx < x(l) or dummyx > x(k), yvalue is constrained to be y(1) or 
c y(k). When trunc is not equal to 1, yvalue is interpolated beyond y(l) 
cor y(k). 
c ************************************************************************************** 

real y,x,dummyx,yvalue 
integer k,trunc,j 
dimension y(k),x(k) 

if (dummyx.le.x(l)) then 
if (trunc.eq.l) then 

yvalue = y(l) 
goto 20 

else 
yvalue = y(l)- ((y(2)- y(l)) j(x(2)- x(l))*(x(l)- dummyx)) 
goto 20 

endif 
endif 

do 10 j = 2,k 
if (dummyx.le.x(j)) then 

yvalue = y(j -1) + ((y(j)- y(j -1)) j(x(j)- x(j -l))*(dummyx- x(j -1))) 
goto 20 

end if 
10 continue 

if (trunc.eq.l) then 
yvalue = y(k) 
goto 20 

else 
yvalue = y(k) + ((y(k)- y(k -1)) j(x(k)- x(k -l))*(dummyx- x(k))) 
goto 20 

endif 
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20 continue 
return 
end 

afcm: adaptive frequency classification monitoring 

Background: This program constructs stop lines for and evaluates the performance of 
a set of adaptive frequency classification monitoring (AFCM) sampling plans. AFCM 
sampling plans are designed to be used as a cascaded set to monitor a population 
through time. Decisions made via a single AFCM sampling plan are to sample the 
population again after some time interval or to intervene. Time intervals between 
sample bouts are specified as a multiple of some minimum time. The program 
computes descriptions of stop lines for each plan as well as probabilities of making 
various decisions, average sample number functions, and probabilities of terminating 
sampling one of three ways. All performance criteria are determined by simulating 
sampling from a specified distribution and applying the stop lines to the generated 
random variables. Sampling decisions for which probabilities are determined include 
resampling the population 1,2, ... , n minimum time intervals in the future and the 
probability of intervening. Sampling can be terminated by the sample path crossing 
the upper stop line for the SPRT, by crossing the intersection point, or by reaching 
the maximum sample size. 

The programs work as follows: 

1. Parameters used to describe the sampling plans are specified in a file read by 
the program. An example file is shown below. Labels read by the program and 
used to describe parameters occupy columns 1 to 30. Data values begin in 
column 31; the range of columns the data may be in are indicated in parenthe
ses. The first two lines of the file are headers and are ignored; however, they 
must be present in the file. Currently only a negative binomial distribution can 
be used to describe sample counts and this distribution is specified by the 
integer 1. It is straightforward to modify the program to allow other distributions 
such as a Poisson or a binomial count model. Methods used in the program 
'sprt' can be adapted for this purpose. In the remainder of this section text 
enclosed by single quotes denotes the label for a parameter. The 'growth rate' is 
the parameter r for the exponential model used to describe population growth. 
'SPRT alpha and beta' are parameters for the sequential probability ratio test. 
The 'maximum sample size' is the maximum number of samples that will be 
taken before reaching a decision. The 'confidence interval alpha' is used to 
specify the confidence interval about estimated means used to compute the 
waiting time until the population is sampled again. The 'resample time interval' 
is the minimum time until the next sample will be taken. The 'resample time 
delays' specifies the number of resample time intervals sampling might be 
delayed. The maximum for this parameter is 5. For example, if the 'resample 
time interval' is 3 days and the 'resample time delays' is 3, plans would be 
constructed that would result in decisions to resample after 3, 6, and 9 days or to 
intervene. The 'number of sampling plans' specifies the number of plans to be 
constructed; this parameter must be ~ 20. Each sampling plan is tied to s 
specific time and intervention threshold. The first plan is constructed for 
sampling at the 'sampling start time'. The second plan is to be used at the 
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'sampling start time'+ the 'resample time interval' and the last plan is con
structed for sampling at the 'sampling start time'+ ('number of sampling 
plans'- l)*('resample time interval'). 'TPL alpha and beta' are the parameters 
for Taylor's power law. When the negative binomial distribution is used, k is 
assumed to be a function of the mean. Intervention thresholds are interpolated 
from a set of values specified in the parameter data file. The 'threshold data 
points' specifies the number of values. The 'monte carlo iterations' specifies the 
number of simulated sampling bouts used to estimate performance criteria. 
Mean densities during the simulations are specified by the 'density start'ing 
value, 'stop'ping value, and 'incr'ement. 

2. The program functions by first constructing stop lines for all sampling plans. 
These stop lines can then be displayed on the scren and are written to an output 
file. If the intersection of the SPRT upper stop limit on the maximum sample 
size line exceeds the first decision count, program execution is terminated. This 
situation signifies that inappropriate parameters (probably SPRT alpha and beta 
or the confidence interval alpha) have been used. 

3. After generation of the stop lines, performance of each plan is simulated. 

file for use with afcm.for 

123456789 123456789 123456789 
distribution 
growth rate 
SPR T alpha and beta 
maximum sample size 
confidence interval alpha 
resample time interval 
resample time delays 
sampling start time 
number of sampling plans 
TPL alpha and beta 
threshold data points 
threshold; time, value 
1.0 2.5 
30.0 5.0 
90.0 7.5 
100.0 7.5 
monte carlo iteration 
density start, stop,incr. 

123456789 123456789 
1 
0.065 
0.2 0.2 
50 
0.30 
7.0 
4 
1 
14 
4.32 1.42 
4 

500 
0.2 15.0 0.2 

1234567890 
(31-33) 
(31-35) 
(31-35,36-40) 
(31-33) 
(31-35) 
(31-33) 
(31) 
(31-34) 
(31-32) 
(31-35,36-40) 
(31-33) 

0-5,6-10) 

(31-36) 
(31-37,38-44,45-50) 

An example run is shown below. user inputs are underlined and comments are In 
italics. 

> afcm 
Enter name of file with parameters 
afcm.in 
Parameter file = afcm.in 
Is this correct (Y or N)? 

~ 
Enter name of file for output 
afcm.out 
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Input parameters are displayed and confirmed 

Is this correct? 

~ 

distribution 
growth rate 
SPR T alpha and beta 
maximum sample size 
confidence interval alpha 
resample time interval 
resample time delays 
sampling start time 
number of sampling plans 
TPL alpha and beta 
threshold data points 
threshold; time, value 
monte carlo iteration 
density start, stop, incr. 

Stop lines computed for all plans 
Display results for each plan (Y or N)? 
n 

1 
0.065 
0.2 0.2 
50 
0.30 
7.0 
4 
1 
14 
4.32 1.42 
4 

500 
0.2 15.0 0.2 

Performance criteria are then simulated; density and sampling plan being used are 
displayed on the screen. A portion of the output file is shown below. Parameters 
usd to construct the sampling plans are written to the output file; these are not 
shown. 

Results for plan 1 

intersection 

Time = 1.0 
SPRT HO = 1.59 

87 n at intersection 

Waiting time 
7.0 
14.0 
21.0 
28.0 

Results for plan 2 

Time = 8.0 
SPRT HO = 1.97 

Threshold = 2.50 
intercept = 27.44 

30 

Decision count 
87 
65 
47 
33 

Threshold = 3.10 
intercept = 30.03 

intersection 104 n at intersection 30 

Waiting time 
7.0 
14.0 
21.0 
28.0 

Decision count 
104 
76 
54 
36 

slope 1.98 

Threshold 
3.10 
3.71 
4.31 
4.91 

slope 2.46 

Threshold 
3.71 
4.31 
4.91 
5.25 
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Results for plan 14 

intersection 

14 4 

Time = 92.0 
SPRT HO = 4.76 

Threshold = 7.50 
intercept = 43.41 

216 n at intersection 5.93 

Waiting time 
7.0 
14.0 
21.0 
28.0 

Decision count 
216 
135 
84 
52 

slope 5.93 

Threshold 
7.50 
7.50 
7.50 
7.50 

number of plans and delay interoals; used by 'cascade' 
40 1.0 number of data points and starting time for use; used by cascade 

performance criteria for the first plan: 

density pdl pd2 pd3 pd4 pd5 asn pseql psq2 
0.20 0.998 0.002 0.000 0.000 0.000 50.00 0.000 0.000 
0.40 0.936 0.062 0.002 0.000 0.000 50.00 0.000 0.000 
0.60 0.630 0.304 0.058 0.008 0.000 50.00 0.000 0.000 
0.80 0.306 0.422 0.240 0.028 0.004 49.91 0.002 0.002 
1.00 0.106 0.378 0.374 0.140 0.002 50.00 0.000 0.000 
1.20 0.040 0.160 0.440 0.296 0.064 49.59 0.004 0.040 
1.40 0.010 0.088 0.316 0.422 0.164 48.66 0.018 0.122 
1.60 0.006 0.034 0.178 0.446 0.336 46.66 0.042 0.266 
1.80 0.000 0.012 0.112 0.318 0.558 43.78 0.088 0.428 
2.00 0.000 0.006 0.040 0.246 0.708 41.47 0.130 0.522 
2.20 0.000 0.000 0.014 0.140 0.846 37.54 0.204 0.604 
2.40 0.000 0.000 0.010 0.070 0.920 34.21 0.302 0.584 
2.60 0.000 0.000 0.008 0.032 0.960 31.79 0.376 0.570 
2.80 0.000 0.000 0.002 0.020 0.978 27.69 0.516 0.456 
3.00 0.000 0.000 0.000 0.014 0.986 26.10 0.560 0.424 
3.20 0.000 0.000 0.000 0.008 0.992 24.31 0.626 0.366 
3.40 0.000 0.000 0.000 0.000 1.000 21.73 0.706 0.290 

40 8.0 results for the second plan 

0.20 1.000 0.000 0.000 0.000 0.000 50.00 0.000 0.000 
0.40 0.952 0.048 0.000 0.000 0.000 50.00 0.000 0.000 
0.60 0.736 0.246 0.018 0.000 0.000 50.00 0.000 0.000 
0.80 0.420 0.460 0.114 0.006 0.000 50.00 0.000 0.000 
1.00 0.148 0.466 0.334 0.052 0.000 50.00 0.000 0.000 
1.20 0.058 0.298 0.466 0.172 0.006 49.98 0.000 0.004 
1.40 0.014 0.202 0.448 0.294 0.042 49.77 0.002 0.032 
1.60 0.004 0.100 0.312 0.454 0.130 49.05 0.010 0.090 

program afcm 

c Program written in Fortran 77: IBM version compiled using Microsoft 
c FORTRAN compiler v5.1. 
c This program requires a unifGrm {0,1} random number generator. This 

pterminal 
1.000 
1.000 
1.000 
0.996 
1.000 
0.956 
0.860 
0.692 
0.484 
0.348 
0.192 
0.114 
0.054 
0.028 
0.016 
0.008 
0.004 

1.000 
1.000 
1.000 
1.000 
1.000 
0.996 
0.966 
0.900 
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c version makes use of the RANDOM subroutine provided in Microsoft 
c Fortran. If the FORTRAN compiler used does not provide a similar 
c function, one must be provided and small sections of code in some 
c subroutines must be changed. 
c Program written by Jan Nyrop and Wopke van der Werf 
c Department of Entomology, NYSAES, 
c Cornell University, Geneva, NY 14456 
c Last modification date: 2 February, 1993 

c ************************************************************************************** 
c * * * * * * * * * * * * * *** ** * * * * * * * *** * * * * * Variable descriptions * * * ** ** *** * * *** * *** * * * * * * * * * * * * * * 
c ************************************************************************************** 

c asn, average sample size 
c avg, average of hO and h1 
c cialpha, alpha used to construct confidence limits 
c cid(i), critical initial density; density at time that will not 
c exceed a threshold at time t + i*sint 
c counter, integer counter 
c dec(i), number of sample bouts that end with dec(i), 
c i = 1 is the longest waiting time, i = ndelay + 1 intervene 
c deccnt(nplans,i), count of organisms that dictate specific time delays 
c (sint*i) to the next sample bout 
c deltime(i), time delays (i*sint) between sample bouts 
c density, mean density used in simulations 
c device, output device 
c distr, distribution of sample counts 
c dstart,dstop,dincr, starting and stopping density,density increment 
c for simulations 
c fthresh(nplan,ndelay ), future threshold values used to calculate cid 
c ftime, future time; used to compute the future threshold 
c when determining decent 
c growth, function for calculating growth rate 
c hO(nplans),h1(nplans), hypotheses for SPRT for each sampling plan 
c i, integer index 
c ii, integer index 
c intsct(nplans), total count of organisms where upper stop 
cline for SPRT = count corresponding to decision to wait 1 time interval 
c intsctn(nplans), sample size that corresponds to intsct on SPRT stop line 
c j, integer index 
c k, ngb k 
c lowi(nplans),highi(nplans),slope(nplans), low and high 
c intercept, slope for SPR T 
c mci, monte carlo iterations 
c ndelays, number of time delays (sint) sampling may be delayed; maximum of 5 
c nmax, maximum sample size 
c nplans, number of plans to be developed; maximum of 20 
c nthresh, number of values threshold is to be interpolated 
c from pdec(ndelay + 1), probability of a decision indexed by mean density 
c pseq1, probability of reaching a decision by crossing the SPRT stop line 
c pseq2, probability of reaching a decision by crossing intsct before nmax 
c pterm, probability of reaching a decision after taking 
c the maximum number of samples 
c r, growth rate for exponential model 
c samples, number of samples taken during a monte carlo iteration 
c sem, estimated standard error of the mean 
c seq1, number of sampling decisions made by crossing upper SPRT limit 
c seq2, number of sampling decisions reached by crossing 
c intsct before the maximum sample size is reached 
c sint, sample time interval; minimum·time delay between samples 



c sprta, sprtb, alpha and beta for sprt 
c start, starting time 
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c terminal, number of sampling decisions made with the maximum 
c number of samples 
c thresh(nthresh), threshold values corresponding to tthresh 
c time(nplans), time each sampling plan is first used 
c total, total of x over samples in a monte carlo iteration 
c tpla, tplb, a and b for Taylor's power law 
c tsamps, total number of samples taken during simulation for a mean 
c tthresh(nthresh), times corresponding to threshold values 
c ucl, upper confidence level (based on cialpha) for xbar 
c usl, upper stop limit for SPRT 
c uslnmax, upper stop limit for SPRT at nmax 
c x, random variable 
c xbar, estimated mean density 
c znormal, function that computes a standard normal deviate for alpha 

integer distr ,nmax,start,nplans,n thresh,j ,ndelays,i, 
+ uslnmax,counter,ii,intsct(20),intsctn(20),deccnt(20,5), 
+ mci,device,dec( 6), tsamps,seq 1 ,seq2, terminal,samples,n, 
+ dindex,points 

real r ,sprta,sprtb,cialpha,sint,tpla,tplb ,growth, time(20 ), 
+ h0(20 ),h1 (20 ),lowi(20 ),highi(20 ),slope(20 ),k,avg,sem, ucl, 
+ xbar ,ftime,znormal, dstart, dstop,dincr ,density ,x, total, usl 

real tthresh(100),thresh(100),cid(5),fthresh(20,5), 
+ deltime(5),pdec(6),asn,pseq1,pseq2,pterm 

character*30 label(14) 
character* 12 file 1 ,file2 
character* 1 input 
character* 45 frmt 
character*2 rep 

frmt = ' (lx,t7.2,2x, (f5.3,2x),t7.2,3(2x,f5.3))' 

1 write ( {a)') ' Enter name of file with parameters' 
read (*,'(a)') file1 
write (* ,2) file1 

2 format (' Parameter file = ',a12) 
3 write (*, *) 'Is this correct? (Y or N)' 

read (*,'(a)') input 
if (input.ne. 'N' .and.input.ne. 'n') then 

if (input.ne.'Y'.and.input.ne.'y') goto 3 
end if 
if (input .eq. 'N' .or. input .eq. 'n') goto 1 
write (*,'(a)') ' Enter name of file for output' 
read (*,'(a)') file2 
open (unit = 1,file file1,status = 'old') 
open (unit = 2,file file2,status = 'unknown') 

read (1,10) 
10 format (/) 

read (1,11) label(1),distr 
11 format (a30,i3) 

read (1,15) label(2),r 
15 format (a30,f6.3) 

read (1,20) label(3),sprta,sprtb 
20 format (a30,f5.3,1x,f5.3) 

read (1,25) label(4),nmax 
25 format (a30,i4) 

read (1,30) label(5),cialpha 
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30 format (a30,f5.3) 
read (1,35) label(6),sint 

35 format (a30,f6.1) 
read (1,36) label(7),ndelays 

36 format (a30,il) 
read (1,40) label(8),start 

40 format (a30,i3) 
read (1,45) label(9),nplans 

45 format (a30,i2) 
read (1,50) label(lO),tpla,tplb 

50 format (a30,f5.3,1x,f5.3) 
read (1,55) label(ll),nthresh 

55 format (a30,i3) 
read (1,60) label(l2) 

60 format (a30) 
do 70 j = 1,nthresh 

read (1,65) tthresh(j),thresh(j) 
65 format (f5.1,1x,f5.1) 
70 continue 

read (1,80) label(13),mci 
80 format (a30,i6) 

read (1,85) label(14 ),dstart,dstop,dincr 
85 format (a30,f7 .2,f7 .2,f6.3) 

write (2, 100) label(l),distr 
write (* ,100) label(l),distr 

100 format (' ',a30,i3) 
write (2,105) label(2),r 
write (*,105) label(2),r 

105 format (1 ',a30,f6.3) 
write (2,120) label(3),sprta,sprtb 
write (* ,120) label(3),sprta,sprtb 

120 format(' ',a30,f5.3,1x,f5.3) 
write (2,125) label(4),nmax 
write (* ,125) label(4),nmax 

125 format (' ',a30,i4) 
write (2,130) label(5),calpha 
write (*, 130) label(5),cialpha 

130 format (' ',a30,f5.3) 
write (2,135) label(6),sint 
write (* ,135) label(6),sint 

135 fo·rnat (' ',a30,f6.1) 
write (2,136) label(7),ndelays 
write (* ,136) label(7),ndelays 

136 format (' ',a30,il) 
write (2,140) label(8),start 
write (*,140) label(8),start 

140 format (' ',a30,i3) 
write (2,145) label(9),nplans 
write (* ,145) label(9),nplans 

145 format (' ',a30,i2) 
write (2,150) label(lO),tpla,tplb 
write (* ,150) label(lO),tpla,tplb 

150 format (' ',a30,f5.3,1x,f5.3) 
write (2,155) label91l),nthresh 
write (* ,155) label(ll),nthresh 

155 format (' ',a30,i3) 
write (2,160) label(13),mci 
write (*,160) label(13),mci 

160 format(' ',a30,i6) 
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write (2, 165) label(14 ),dstart,dstop,dincr 
write (* ,165) label(14),dstart,dstop,dincr 

165 format (' ',a30,f7.2,f7.2,f6.3) 

180 write (*, *) 'Is this correct? (Y or N)' 
read (*,'(a)') input 
if (input.ne.'N'.and.input.ne.'n') then 

if (input.ne.'Y'.and.input.ne.'y') goto 180 
end if 
if (input .eq. 'N' .or. input .eq. 'n') goto 5000 

n = ndelays + 1 
write (rep,190) n 

190 format (i2) 
frmt(13:14) = rep 

c ************************* Stoplines ************************* 

c ****** time loop ****** 

do 200 j = 1,nplans 
time(j) = ftoat(start) + ftoat(j -1)*sint 

c ****** determine threshold ****** 

call interp (thresh, tthresh, time(j),nthresh,2,h1 (j)) 

c ******* compute sprt stop lines ******* 

hO(j) = h1 (j) I growth(r ,sint) 
if (distr.eq.1) then 

avg = (h1(j) + hO(j)) /2.0 
k = avg**2j(tpla*avg**tplb - avg) 

endif 
call sprtlim (distr ,hl (j),hO(j),sprta,sprtb,k,lowi(j), 

+ highi(j),slope(j)) 

c ****** compute fixed sample size stop line ****** 

c compute each critical initial density (cid) 

do 220 i = l,ndelays 
deltime(i) = ftoat(i)*sint 
ftime = time(j) + deltime(i) 
call in terp (thresh, tthresh,ftime,nthresh,2,fthresh (j ,i)) 
cid(i) = fthresh(j,i)jgrowth(r,deltime(i)) 

220 continue 

c find means with upper confidence limit = cid 

uslnmax = nint( highi(j) + slope(j)*ftoat(nmax)) 
do 230 i = 1, ulsnmax 

xbar = ftoat(i) jftoat(nmax) 
sem = sqrt(trpla*xbar**tplb jnmax) 
counter = 0 
ucl = xbar + znormal(cialpha)*sem 
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if (ucl*ftoat(nmax).gt.uslnmax) then 
write (*, *) 'UCL > max sprt upper stop limit' 
write (2, *) 'UCL > max sprt upper stop limit' 
goto 5000 

end if 
do 240 ii = l,ndelays 

if (ucl.lt.cid(ii)) then 
deccnt(j,ii) = 1 

counter = counter + 1 
endif 

240 continue 
if (counter.eq.O) goto 250 

230 continue 
250 continue 

c ****** integrate sprt and fixed sample size stop line ****** 

intsct(j) = deccnt(j,l) 
intsctn(j) = nint((float(intsct(j))- highi(j)) jslope(j)) 

c ****** output stop lines for each sampling plan ****** 

device = 2 
call displayl (j ,device, time,hl,hO,highi,slope,intsct,intsctn, 

+ deltime,deccnt,fthresh,ndelays) 

200 continue 

write ( *, *) 'Stop lines computed for all plans' 
write (*, *) 'Display results for each plan (Y or N)?' 

360 read (*,'(a)') input 
if (input.ne.'N'.and.input.ne.'n') then 

if (input.ne.'Y'.and.input.ne.'y') goto 360 
end if 
if (input .eq. 'Y' .or. input .eq. 'y') then 

device = 0 
do 370 j = l,nplans 

call displayl (j ,device, time,hl ,hO,highi,slope,intsct, 
+ intsctn,deltime,deccn t,fthresh,ndelays) 

pause 'Enter to continue' 
370 continue 

endif 

c ****** write number of plans and delays to output file ****** 

write (2,380) nplans,ndelays 
380 format (lx,i2,2x,i2) 

c ****************** Pdec and ASN functions ****************** 

c ****** determine number of data points for each function ****** 

points = anint((dstop - dstart)jdincr) + 1 

c ****** loop for sampling plans ****** 



do 400 j = 1,nplans 
write (* ,401) j,nplans 
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401 format(' ','sampling from plan ',i2,' of ',i2,' total') 
write (2,402) points, time(j) 

402 format (lx,i3,2x,f6.1) 

c ****** loop for density ****** 

do 405 dindex = 1,points 
density = dstart + dincr*ftoat(dindex -1) 
k = density**2/(tpla*density**tplb- density) 
do 410 i = 1,6 

pdec(i) = 0.0 
dec(i) = 0 

410 continue 
tsamps = 0 
seq1 = 0 
seq2 = 0 
terminal = 0 

c ****** loop for Carlo iterations ****** 

do 420 i = 1,mci 
samples = 0 
total = 0.0 

c generate random variable 
425 call ngb(density,k,x) 

total = total + x 
samples = samples + 1 

c # of samples < intersection number 
if (samples.lt.intsctn(j)) then 

usl = highi(j) + slope(j)*ftoat(samples) 
if (total.gt.usl) then 

dec(ndelays + 1) = dec(ndelays + 1) + 1 
tsamps = tsamps + samples 

seq1 = seq1 + 1 
togo 420 

else 
goto 425 

endif 
c # of sample > = intersection number and < maximum samples 

elseif (samples.lt.nmax) then 
if (total.gt.intsct(j)) then 

dec(ndelays + 1) = dec(ndelays + 1) + 1 
tsamps = tsamps + samples 
seq2 = seq2 + 1 
goto 420 

else 
goto 425 

endif 
c # of samples = maximum samples 

elseif (samples.eq.nmax) then 
do 430 ii = ndelays,1,- 1 

if (total.lt.deccnt(j,ii)) then 
dec(ndelays - ii + 1) = dec(ndelays - ii + 1) + 1 
tsamps = tsamps + samples 
terminal = terminal + 1 
goto 420 
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430 

420 

end if 
continue 
dec(ndelays + 1) = dec(ndelays + 1) + 1 
tsamps = tsamps + samples 
terminal = terminal + 1 

endif 
continue 

c ****** end of loop for Monte Carlo iterations ****** 

c ****** compute statistics and write results ****** 

450 

+ 

do 450 i = 1,ndelays + 1 
pdec(i) = ftoat(dec(i)) jftoat(mci) 

continue 
asn = ftoat(tsamps) jftoat(mci) 
pseq 1 float( seq 1) jftoat(mci) 
pseq2 = ftoat(seq2) jftoat(mci) 
pterm = float( terminal) jftoat(mci) 
write (2,frmt) density,(pdec(i), i 1,ndelays + 1),asn, 

pseq 1, pseq2,pterm 
write (* ,frmt) density,(pdec(i), i 1,ndelays + l),asn, 

+ 
405 continue 

pseq 1,pseq2,pterm 

c ****** end of loop for density ****** 

400 continue 

c ****** end loop for sampling plans ****** 

5000 continue 
close (1) 
close (2) 
stop 
end 

c ************************************************************************************** 
c ****************************** Functions and Subroutines ****************************** 
c ************************************************************************************** 

function growth(r,t) 
real r,t 
growth = exp(r*t) 
return 
end 

subroutine sprtlim (distr,h1,h0,alpha,beta,k,lowi,highi, 
+slope) 

c ************************************************************************************** 
c This subroutine computes stop limit parameters for an SPRT 
c Parameters passed are; distr - distribution, 1 = ngb, 2 = Poisson, 
c 3 = binomial; h1 and hO null and alternate hypotheses 

c ************************************************************************************** 
real h1,hO,alpha,beta,lowi,highi,slope,k,a,lna,b,lnb,q 1,q0, 

+ bvar1,pnbO,pnb1,qnbO,qnb1,vnb1,vnb2 
integer distr 



c variables used for all distributions 

a = ( 1 -beta) 1 alpha 
Ina = log(a) 
b = betaj(l -alpha) 
lnb = log(b) 
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c variables used for binomial and negative binomial 

if (distr.eq.3) then 
q1 = 1-h1 
aO = 1-hO 
bvar1 = log((h1 *qO)j(hO*q1)) 

end if 
if (distr.eq.1) then 

pnbO hO/k 
pnb1 h1/k 
qnbO 1 + pnbO 
qnb1 1 + pnb1 
vnb1 (pnb1*qnbO)jpnbO*qnb1) 
vnb2 qnb0jqnb1 

end if 

c calculate stop limit parameters 

if (distr.eq.3) then 
lowi = lnb jbvar 1 
highi = lnajbvar1 
slope = log(q0/q1)jbvar1 

else if (distr.eq.2) then 
lowi = lnbjlog(h1jh0) 
highi lnajlog(h1jh0) 
slope = (h1 - h0)jlog(h1jh0) 

else 
lowi = lnb jlog(vnbl) 
highi Ina flog( vnb 1) 
slope = k*(log(qnb1jqnb0) jlog(vnb1)) 

end if 
return 
end 

subroutine display1 G,device,time,h1,hO,highi,slope,intsct~ 
+ in tsctn,deltime,deccnt,fthresh,ndelays) 

integer device,j,intsctn(20),intsct(20),deccnt(20,10),i,ndelays 
real time(20 ),h 1 (20 ),h0(20 ),highi(20 ),slope(20 ),del time( 10 ), 

+ fthresh(20,10) 
write (device,10) j 

10 format (' Results for plan ',i3) 
write (device,20) timeG),h1G) 

20 format(' Time = ',f6.1,' Threshold ',f6.2) 
write ( device,30) hO(j),highiG),slopeG) 

30 format(' SPRT HO = ',f6.2,' intercept = ',f7.2, 
+' slope = ',f6.2) 

write (device,40) intsctG),intsctn(j) 
40 format (' intersection = ',i7,' n at intersection = ',i4) 

write (device,50) 
50 format(' Waiting time Decision count threshold') 

do 55 i = 1,ndelays 
write (device,60) deltime(i),deccnt(j,i),fthreshG,i) 
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60 format (' ',f6.1,8x,i5,11x,f7.2) 
55 continue 

return 
end 

subroutine interp (y,x,dummyx,k, trunc,yvalue) 

c ************************************************************************************** 
c This subroutine performs a linear interpolation of a function y = f(x). 
c Vectors of y values (y) and x values (x) are passed along with a dummy 
c x value (dummyx) for which a y value (yvalue) is sought. The dimension 
c of the y and x arrays (k) must also be passed. In addition a variable 
c trunc is passed that when = 1 causes truncation of the function so that 
c when dummyx < x(l) or dummyx > x(k), yvalue is constrained to be 
c y(l) or y(k). When trunc is not equal to 1, yvalue is interpolated 
c beyond y(1) or y(k). 

c ************************************************************************************** 

real y,x,dummyx,yvalue 
integer k,trunc,j 
dimension y(k),x(k) 

if (dummyx.le,x(1)) then 
if (tninc.eq.1) then 

yvalue = y( 1) 
goto 20 

else 
yvalue = y(1)- ((y(2)- y(l)) j(x(2)- x(1))*(x(l)- dummyx)) 
goto 20 

end if 
end if 

do 10 j = 2,k 
if (dummyx.le.x(j)) then 

yvalue = y(j -1) + ((y(j)-y(j -1))j(x(j)-x(j -1))*(dummyx-x(j -1))) 
goto 20 

end if 
10 continue 

if (trunc.eq.1) then 
yvalue = y(k) 
goto 20 

else 
yvalue = y(k) + ((y(k)- y(k -1)) j(x(k)- x(k -1))*(dummyx- x(k))) 
goto 20 

endif 

20 continue 
return 
end 

*******+~****************************************************************************** 

* 
* 
* 
* 
* 
* 
* 
* 

The function ZNORMAL returns the x-value at which the cumulative 
normal probability density function reaches the y-value p. 
The algorithm was taken from Abramowitch & Stegun (1972): 
Handbook of mathematical functions, 9th ed. Dover, New York, 
1046 pp. p. 933, equation 26.2.23 
error < 4.5E-4 

Wopke van der Werf, 4j30j92 
*******************************************~******************************************* 

* 
* 
* 
* 
* 
* 
* 
* 



function znormal(a) 
real c0,cl,c2,d1,d2,d3,cdf,p,t,x,a 
cdf = 1 -a 
cO 2.515517 
c1 0.802853 
c2 0.010328 
dl 1.432788 
d2 0.189269 
d3 0.001308 

if ( cdf .le. 0. ) then 
znormal = - 5. 
return 
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else if ( ( cdf .gt. 0. ) .and. (cdf . It . 0.5 ) ) then 
p cdf 

sqrt( log( p**(- 2.) ) ) 
x = t - ( cO + c1 * t + c2 * t**2. ) 1 ( 1 + d1 * t + d2 * t**2. 

$ + d3 * t**3. ) 
znormal = -x 
return 

else if ( ( cdf .ge. 0.5 ) .and. ( cdf .It. 1. ) ) then 
p = 1 - cdf 
t sqrt( log( p**(- 2.) ) ) 
x = t - ( cO + c1 * t + c2 * t**2. ) 1 ( 1 + d1 * t + d2 * t**2. 

$ + d3 * t**3. ) 
znormal = x 
return 

else if ( cdf .ge. 1. ) then 
znormal = 5. 
return 

endif 

return 
end 

subroutine ngb(mean,k,x) 

c ************************************************************************************** 
c This subroutine generates negative binomial distributed random 
c variables using a rejection method. It requires uniform {0,1} 
c random variates be generated as the variable r. If the Fortran 
c compiler does not support a 'random' function, one must be provided. 
c ************************************************************************************** 

real x,mean,k,px,ppx,pxsum,r 
call random(r) 
X = 0.0 
px = 11((1 +meanlk)**k) 
ppx = px 
pxsum = px 
if (r. .le. px) goto 4 

5 x = x+1 
px = ((k +x -l.)lx)*(meanl(mean + k))*ppx 
ppx = px 
pxsum = pxsum + px 
if (r .le. pxsum) goto 4 
if (x .gt. 200.) goto 4 
goto 5 

4 continue 
return 
end 
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