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ABSTRACT 

The components of an existing model for supervised control of aphids 
(especially Sitobion avenae) and brown rust (Puccinia recondita) in 
winter wheat contain uncertainty. Their contribution to uncertainty about 
model output is assessed. The nwdel simulates financial loss associated 
with a time sequence of decisions on chemical control as a function of 
crop development, population grmvth, and damage. Four sources of uncer
tainty were quantified: model parameters, incidence sample estimates, 
future average daily temperature, and white noise. Uncertainty about the 
first two sources is controllable because it decreases when more informa-
tion is collected. Uncertainty about the last two sources is uncontrollable, 
given the structure of the model. Uncertainty about model output, charac-
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terized by its variance, is calculated by repeatedly drawing realizations 
of the various sources of uncertainty, and calculating financial loss after 
each draw. By processing new realizations of these sources one by one, the 
contrib1irton ofeac1i-coFFzp-mrerrtto- total variance canbe assessed using 
an adapted Monte Carlo procedure. For most relevant initial conditions 
and decision strategies the sources of uncontrollable uncertainty cause 
more than half of the uncertainty about model output. White noise in the 
relative growth rates of aphids and brown rust is the most important 
source of uncertainty. Resources for improvement of the model are most 
effectively allocated to studies of the population dynamics of aphids and 
brown rust. 

INTRODUCTION 

Predictions of costs and benefits of chemical control of pests and diseases 
at the field level are an essential element of supervised control (Zadoks, 
1985). Such predictions can be made using dynamic models which relate 
pest or disease intensity to financial loss. Usually, uncertainty about the 
values of parameters and model inputs is ignored and calculations are 
carried out with average values. In principle, however, uncertainty must 
be taken into account when relations in the model are non-linear, when 
the contribution of different sources of uncertainty to output uncertainty 
of the model is of interest, or when risk has to be assessed. 

A decision model for evaluating costs associated with different strate
gies of chemical control of aphids (especially Sitobion avenae) and brown 
rust (Puccinia recondita) in a field of winter wheat was presented 
(Rossing et a!., 1994b ). It represents an upgraded version of part of the 
EPIPRE advisory system (Zadoks et al., 1984; Drenth et al., 1989). The 
model predicts financial. loss associated with a particular time series of 
decisions on chemical control for given initial values of temperature sum 
,and incidences of aphids and brown rust. Aphids and brown rust were 
considered because they often occur simultaneously. Diseases other than 
brown rust were omitted in view of the exploratory nature of the study. 
The effect of uncertainty about model parameters and model inputs on 
damage thresholds, i.e. densities at which chemical control is just eco
nomical for a farmer, was assessed. It was shown that ignoring uncer
tainty about model parameters and inputs results in damage thresholds 
which exceed the thresholds calculated· under uncertainty, assuming risk
neutrality. Farmers deciding on chemical control based on the determin
istic damage thresholds will spray their crops too late, and may incur 
economically unacceptable financial losses. Thus, as a consequence of 
non-linear relations in the model, uncertainty must be taken into account 
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when calculating expected costs associated with different strategies of 
chemical control of aphids and brown rust. 

In this paper, the contribution of uncertainty about parameters and 
inputs of1liedecision model to uncertainty about predicted fiii;incialloss 
is assessed. The major causes of model output uncertainty are identified 
for a number of relevant initial conditions and control strategies. 
Research prioritization is discussed in relation to the possibilities for 
reducing model output uncertainty. 

MATERIALS AND METHODS 

Description of the decision model 

The decision model, which was described earlier (Rossing et al., 1994b ), 
simulates financial loss due to attack by aphids and brown rust from ear 
emergence (DC 55 (Zadoks et al., 1974)) to dough ripeness (DC 83), 
i.e. approximately from early June till late July, in a commercial field of 
winter wheat in The Netherlands of, say, 5-10 ha. Financial loss is 
defined as the costs of yield reduction caused by aphids and/or brown 
rust plus the costs of eventual control. Costs are calculated at field level. 
The model is used to estimate the probability distributions of financial 
loss associated with. different strategies of chemical control. A strategy 
is defined as a series of decisions on chemical control made on the first 
day of consecutive decision periods of one week. The decisions which 
can be taken at the start of each week are either chemical control of 
aphids and/or brown rust or no chemical control. The series of decisions 
is fixed at the start of the simulation. The model comprises relations 
which describe the dynamics of crop development, population growth, 
and damage by aphids and brown rust as a function of the strategy 
on chemical control. The model inputs include the temperature sum 
accumulated since the day the crop attained development stage pseudo
stem elongation (DC 30), the future average daily temperature, and the 
initial values of aphid and brown rust incidences determined by the 
farmer. 

Uncertainty about the values of input variables and of model para
meters was quantified using empirical data (Rossing et al., 1994b). 
Parameters were estimated by regression, the variance-covariance matrix 
of the estimates providing a measure of parameter uncertainty. Residual 
variation was ascribed to measurement effects and was disregarded 
for prediction. In some of the regression analyses, ·however, residual 
variances greatly exceeded the variances attributable to measurement 
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TABLE 1 
Sources of Uncertainty in Decision Model 

Category 

Parameters 
White noise 

Estimates of initial state 

Future average daily 
temperature 

Component 

Various 
Relative growth rate 
Incidence-density transformation 
Temperature sum-development 

stage relation 
Incidence 

Distribution 

(Multivariate) Normal, Beta 
Normal 
Normal 
Normal 

Binomial 
Temperature sum a 

Future average daily temperature 36 Years of historic data 

" Uncertainty is disregarded. 

effects. Apparently, the y variable varied in an unpredictable n1anner, 
due to causes not accounted for in the regression model. In these cases 
the residual variation constitutes a source of uncertainty which must be 
taken into account for prediction of a new situation. The random devia
tions of the empirical data from the fitted regression model were de
scribed as mutually independent, identically distributed, Normal variates. 
This source of variation is referred to as white noise. The input variable 
'initial temperature sum' was assumed to be known with negligible varia
tion. Initial values of aphid and brown rust incidences were subject to 
observational error. The variation in future average daily temperature 
was described by 36 years of daily maximum and minimum temperatures 
measured at the meteorological station of the Wageningen Agricultural 
University from 1954 to 1990. Thus, analysis of the available informa
tion resulted in four categories of uncertainty: model parameters; white 
noise; estimates of the initial state; and future average daily temperature. 
In each category one or more components can be distinguished (Table 1 ). 
These components represent the smallest independent sources of uncer
tainty in the model. Uncertainty about the interactions between these 
model components was assumed to be absent. 

Relative importance of component uncertainty for model output uncertainty 

Uncertainty about model components (Table 1) causes the outcome of 
the model, financial loss, to be uncertain. Here, the uncertainty about 
model outcome is characterized by its variance. Model output variance 
attributable to uncertainty about model component xi can be assessed in 
two ways. First, by calculating the decrease in expected model output 
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variance resulting from removal of the uncertainty about xi, and, second, 
by calculating the expected model output variance remaining after 
removal of the uncerfainfy abouf all components excepf xi. The fifst 
approach is relevant for m-odel parameters and estimates of the initial 
state where, theoretically, uncertainty is controllable. In these categories 
uncertainty declines when more empirical data are collected. The second 
approach is appropriate for the categories white noise and future average 
daily temperature where uncertainty is uncontrollable. 

Jansen et al. (1994) developed an adapted Monte Carlo method to 
assess efficiently the contribution of uncertainty about a model com
ponent to model output variance. The method is illustrated in Fig. 1. 
The procedure starts with a simple random sample of the Q, i.e. three, 
independent components of uncertainty in a model and calculation of 
model output, which is indicated in Fig. 1 as f(ub vb w1). Processing one 
component at a time, new realizations of the components are drawn by 
simple random sampling from the appropriate probability distributions. 
After each draw, model output is calculated and stored. After Q draws, 
the values of all components have been changed once compared to their 
initial values, resulting in f(u2, v2, w2) in Fig. 1, and the first cycle is 
completed. In total M cycles are made. Since the components are 
changed one by one, the difference in model output between consecutive 
draws is solely due to variation in one component. The change in model 
output after (Q - 1) draws is due to variation in all components, except 
one. 

The expected output variance of the full model is estimated as the 
variance of a column in Fig. 1, each column representing a random 
sample of the model output distribution. The contribution of a source of 
controllable variation to model output uncertainty is calculated as the 
decrease in expected output vanance resulting from removal of the 
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Fig. 1. Illustration of the adapted Monte Carlo method for a model f(-) with three 
sources of uncertainty, u, v, and w. Consecutively drawn random values of, for example, 
u are denoted by u~> u2, etc. The sample consists of three cycles. After Jansen et a!. 

(1994). 
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uncertainty about one model component. For example, the expected 
model output variance ren1aining after removal of the controllable uncer
tainty about u is estimated as the variance of the differences between 
-cOhimiis-1 aiid3 itfFig. 1. The contributi-on ofa soutce ofuncontrollable 
variation to model uncertainty is assessed by the expected model output 
variance remaining after removal of the uncertainty about all other 
sources of uncertainty. For example, the contribution of the source of 
uncontrollable uncertainty v to model uncertainty is estimated as the 
variance of the differences between columns 1 and 2 in Fig. 1. The vari
ance estimates are used to obtain a ranking of the relative importance of 
the various components of controllable and uncontrollable uncertainty, 
respectively. 

The estimates of expected model output variance are unbiased and 
asymptotically normally distributed. Since their (co-) variances can be 
estimated, the difference between expected model output variances 
resulting from uncertainty in two components can be tested for deviation 
from zero. 

Note, that after removal of uncertainty in, for example, component u 
the expected model output variance represents the main effect of u, 
whereas the expected model output variance after removal of uncertainty 
in all components except u constitutes the main effect of u plus the inter
action of u with the other components of uncertainty. Thus, the two 
variance estimates do not necessarily add up to the full model's output 
vanance. 

The decision model and the Monte Carlo procedure are programmed 
in FORTRAN-77. The analysis of model output was programmed in 
C (Jansen et al., 1994). Preliminary analyses showed that between 2000 
and 32 000 cycles were needed to arrive at sufficiently precise estimates 
of expected model output variance, i.e. with a coefficient of variation of 
approximately 0.1 0, or smaller. The greatest number of iterations was 
needed for decision strategies which resulted in highly skewed frequency 
distributions of financial loss. 

In the analysis, a distinction is made between white noise and future 
temperature on the one hand, and model parameters and estimates of the 
initial state on the other. Uncertainty about white noise and future tem
perature cannot be reduced without changing the structure of the model, 
and represents uncontrollable variation. Thus, the uncertainty about 
financial loss caused by these sources represents a lower bound for model 
uncertainty. In contrast, uncertainty about model parameters and esti
mates of the initial state decreases as more information is collected, and 
represents controllable variation. Therefore, the decrease of uncertainty 
about model outcome resulting from removing the uncertainty about 
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these sources is the maximum improvement achievable within the frame
work of the model structure. 

RESULTS 

In a previous paper (Rossing et al., 1994b) risk-neutral damage thres
holds for aphids and brown rust were calculated for temperature sums 
which correspond with average crop development stages '50°/o of the ear 
visible' (DC 55), 'onset of flowering' (DC 61), and 'flowering completed' 
(DC 69). These temperature sums and incidences of aphids and brown 
rust are used as initial states in the calculation of the relative importance 
of the various categories and components of uncertainty. Three strategies 
of chemical control are evaluated for both aphids and brown rust: 

TABLE 2 
Expected Variance of Financial Loss (Dfl2 ha-2

) Caused by Different Sources of 
Uncertainty for Combinations of Three Initial States and Three Decision Strategies (NS, 

Sl and S2). 
APHIDS 

Sources of 
uncertainty 

All 

White noise and 
future temperature 

Model parameters 
and estimate of 
initial state 

BROWN RUST 

Sources of 
uncertainty 

All 

White noise and 
future temperature 

Model parameters 
and estimate of 
initial state 

T0 = 165; Io.A = 0·08 
Strategy 

NS S1 S2 
45 800 715 1 370 

32 600 443 1 030 

13 200 272 340 

T0 = 165; Io.B = 0·01 
Strategy 

NS Sl S2 
76 800 4 030 4 170 

66 000 3 940 4 030 

10 800 90 140 

Initial state 

T0 = 225°d; Io.A = 0· 30 T0 = 320; Io.A = 0·85 
Strategy Strategy 

NS S1 S2 NS S1 S2 
41 100 587 2 120 24 100 758 5 680 

30 300 342 1 700 17 800 314 4 780 

10 800 245 420 6 300 444 900 

Initial state 

T0 = 225°d; Io.B = 0·02 T0 = 320; Io.B = 0·08 
Strategy Strategy 

NS Sl S2 NS Sl S2 
60 800 1 750 1 850 60 400 959 1 730 

53 700 1 820 1 760 53 700 1 020 1 560 

7 100 0 90 6 700 0 170 

T0 represents the initial temperature sum (0 d), Io.A the estimated initial aphid incidence (-), and Io.B 
the estimated initial brown rust incidence(-). Attainable yield is 8 000 ka ha- 1 
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TABLE 3 
Expected Variance of Financial Loss (Dfl2 ha-2) Caused by White Noise and Future 
Average Daily Temperature for Three Decision Strategies (NS, S1 and S2) at Initial State 
T0 = 225°d (Temperature Sum), Io.A = 0·30 (Initial Aphid Incidence) and Io.B = 0·02 

(Initial Brown Rust Incidence). 

Source of uncertainty 

APHIDS 
White noise and future temperature 
White noise in relative growth rate 
White noise in temperature sum--crop 

development stage relation 
White noise incidence-density transformation 
Future average daily temperature 

BROWN RUST 
White noise and future temperature 
White noise in relative growth rate 
White noise in temperature sum--crop 

development stage relation 
White noise incidence-density transformation 
Future average daily temperature 

NS 

30 300 
23 600a 

697c 

5 250b 
4 830b 

53 700 
41 400a 

3 640c 

13 500b 
18 500b 

Strategy 

Sf S2 

342 1 700 
198a 1 260a 
45c 54d 

76b 595b 
137a 157c 

I 820 1 760 
I 300a I 330a 

304d 256c 

507c 749b 
974b 898b 

Attainable yield is 8 000 kg ha 1
• Different letters following estimates indicate significant 

differences within strategies (p < 0·05). 

no chemical control at any time (NS); control at the start of the first 
decision period only (S 1 ); and control at the start of the second 
decision period only (S2). Throughout the analysis attainable yield IS 

8000 kg ha~ 1 • 

Expected variance of financial loss, the model output of interest, is 
greatest when no chemical control is carried out for both aphids and 
brown rust (Table 2). Immediate chemical control results in the smallest 
expected variance while chemical control at the start of the second deci
sion period results in an intermediate variance estimate. These results 
correspond to the graphical and numerical results in the previous paper 
(Fig. 4 and Table 8 in Rossing et al., 1994b ), which showed that chemical 
control reduces the range of possible financial losses. 

In most cases the categories of uncontrollable variation, white noise 
and future average daily temperature cause more than 50°/o of the uncer
tainty about financial loss (Table 2). More detailed analysis shows that 
white noise in the relative growth rates of aphids and brown rust usually 
contributes significantly more to model output variance than other white 
noise components or future ten1perature. This is illustrated for an initial 
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TABLE 4 
Expected Reduction of Variance of Financial Loss (Dfl2 ha-2

) When Uncertainty About 
Model Parameters and the Estimated. InitiaL State is removed, for Three Decision 
Strategies (NS, Sl and S2) at Initial State T0 = 225°d (Temperature Sum); Io.A = 0·30 

(Initial Aphid-Iiici<:fence) ana 10.~ = o:o2 (Initial Brown Rusf1ncidencer ···-

Source of uncertainty 
removed 

APHIDS 
Model parameters and estimate of 

initial state 
Model parameters: 

Incidence-density transformation 
Damage relation 
Maximum damage 
Temperature sum-crop development 

stage relation 
Relative growth rate 
Direct aphicidal effect 
Effective ~phicidal period 

Estimate of initial state 

BROWN RUST 
Model parameters and estimate of 

initial state 
Model parameters: 

Incidence-density transformation 
Damage relation 
Maximum damage 
Temperature sum-crop development 

stage relation 
Relative growth rate 
Direct aphicidal effect 
Effective aphicidal period 

Estimate of initial state 

NS 

10 800 

300b 
300b 

Ob 
1 OOOb 

4 900a 
Ob 
Ob 
Ob 

7 100 

2 300b 
900b 
500b 

Ob 

800ab 

Strategy 

Sl 

245 

Oa 
Oa 
Oa 
Oa 

91a 
27a 

Oa 
Oa 

0 

30b 
Ob 
Ob 
Ob 

190b 
420a 

420 

Ob 
Ob 

80b 
Ob 

300a 
230b 
130b 
140b 

170 

Oa 
30a 
50 a 
80a 

80a 
90a 

S2 

1 Uncertainty about the mean relative growth rate is disregarded (see Rossing eta/., 1994b). 
2 Direct fungicidal effect absent. 
3 Attainable yield is 8000 kg ha-1

• Different letters following estimates indicate significant 
differences within strategies (P < 0·05). 

temperature sum of 225°d (equivalent to average crop development stage 
DC 61 ), and initial aphid and brown rust incidences of 30°/o and 2o/o, re
spectively (Table 3). 

The consequences of removing the uncertainty about the sources of 
controllable uncertainty are illustrated for the same initial state (Table 4). 
For aphids, perfect knowledge of the parameters describing the relative 
population growth rate results in the greatest decrease of expected model 
output variance for the strategies NS and S2. For brown rust, the initial 
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incidence estimate is the most important source of controllable uncer
tainty when fungicide is applied immediately (S 1 ). However, the de
creases ofmodel otitpuf variluice expected when the various coinpotienlS 
of controllable uncertainty were fully known, are small. 

DISCUSSION 

The contribution of uncontrollable variation to uncertainty about finan
cial loss was generally more important than the contribution of control
lable variation. Among the components of uncontrollable variation, 
white noise in the relative growth rates of aphids and brown rust 
appeared more important than other sources of white noise, or future 
temperature. The minor importance of uncertainty about future average 
daily temperature is not surprising as in the decision model only temper
ature integrated over time is considered. Such integration results in 
'smoothing' of day-to-day temperature fluctuations. 

The results of the analysis indicate that, given the structure of the 
model, efforts to further refine estimates of parameters and initial inci
dences are not expected to reduce greatly output uncertainty (Table 2). 
Apparently the research effort put into the development and maintenance 
of EPIPRE (Zadoks, 1984; Drenth et al., 1989; Daamen, 1991) has 
yielded sufficiently precise parameter estimates. The uncertainty about 
financial loss due to the sample estimate of initial brown rust incidence is 
commensurate with the uncertainty due to the parameter estimates 
(Table 4). Thus, the sample size for brown rust recommended in EPIPRE 
appears adequate. For aphids, however, the uncertainty about financial 
loss due to the sample estimate of initial incidence is substantially smaller 
than the uncertainty due to the relative growth rate estimate, the largest 
source of variation (Table 4). Therefore, the recommended sample size 
for aphids may be decreased without greatly increasing the uncertainty in 
model predictions. 

As white noise in the relative growth rates of aphids and brown rust 
was of major importance, a significant improvement of the decision model 
will involve a review of the concepts of population growth. More detailed 
models, such as the one by Entwistle & Dixon ( 1986) which takes into 
account the field-to-field variation in aphid population growth rate, may 
be needed to reduce the effect of white noise in the decision model. 

The coefficient of variation of the estimates of tnodel output variance 
varied greatly with decision strategy. At M = 2000 cycles the coefficient 
of variation of the variance estimates was 5-1 0°/o for NS while for S 1 and 
S2 values of 25-40(1<> occurred, which necessitated 32 000 cycles to attain 
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the desired precision. Since the computational effort grows quadratically 
with required precision, computer speed becomes a limiting factor to 
attain more precise estimates. The reason for the large variance of the 
estimates for the strategies S1 and S2 is the skewness of the distributions 
of financial loss (see Rossing et al., 1994b). 

The structure of the decision model and the various estimates have 
been assumed valid. As the decision model constitutes an upgraded 
version of analogous modules in the EPIPRE advisory system which was 
tested extensively (Reinink, 1986; Drenth et al., 1989), this seems a valid 
assumption. 

The uncertainty analysis has identified the sources of uncertainty of 
major importance for uncertainty in predicted financial loss associated 
with a particular decision strategy. The results may be used to set 
research priorities, and to support pest and disease management. In 
combination with estimates of the likely gains in knowledge on model 
components resulting from different research efforts, the results can be 
used to allocate resources for efficiently reducing uncertainty about 
model output. When used for decision support in a farm management 
context, smne degree of uncertainty in the model has to be accepted. The 
consequences of this uncertainty for decision making in supervised 
control of aphids and brown rust are addressed in a following contribu
tion (Rossing et al., 1994a). 
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