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1 Moving to Eat, optimal foraging
and environmental heterogeneity

Geerten M. Hengeveld

For many animals, the food supply is heterogeneous in both the spatial distribution,
the composition of (macro-nutrients) and the temporal availability. This heterogeneity
provides animals the possibility to make choices on (1) what to eat, (2) where to eat
and (3) when to eat (Schoener, 1971; Pyke et al., 1977; Stephens & Krebs, 1986). These
choices allow animals to influence the timing and location of foraging and the time that
they can spent on non-foraging activities. In most natural conditions, food availability
is limiting individual animals in their daily routines (Stephens & Krebs, 1986). This
limitation is quantitative, qualitative, spatial and temporal. Quantitative because the
requirements of the animal are so high that it has to eat a large part of the day to meet
these requirements. Qualitative because the requirements of the animal for different
(macro-)nutrients or for minimum quality are such that not all potential food is accept-
able. The spatial distribution of potential food forces animals to move between different
locations where food is available. Finally, the availability of food is mostly dependent
on the timing of climate and the life-cycle of the food creating temporal variability in
the availability of different types of food (Pulliam, 1974; Pyke et al., 1977; Stephens &
Krebs, 1986).

By strategically choosing what, where and when to eat, animals can increase the
time that they have available for activities other than foraging, either at shorter or
longer time scales, and plan activities at locations and times that are more suitable
(Pyke et al., 1977; Stephens & Krebs, 1986). It is therefore to be expected that foraging
behaviour can create a fitness gradient within an animal population, i.e., animals that
make choices that increase their total intake of nutrients or have more time available
for non-foraging activities like vigilance or courtship and mating behaviour, can increase
their fitness relative to animals that made different choices (Stephens & Krebs, 1986). If
fitness differences exist, transmitting the traits that cause these differences to offspring
(either genetically or through learning or culture) can cause a selective advantage for
animals exhibiting fitness increasing traits. In the course of evolution the foraging be-
haviour within a population should then become such that they anticipate and utilise
the heterogeneity of forage in an optimal way (MacArthur & Pianka, 1966; Stephens &
Krebs, 1986). Based on this assumption we can use mathematical models that describe
(parts of) the foraging behaviour of animals and that capture the essence of the het-
erogeneity of food, we can predict which behavioural patterns ‘optimal’ animals should
follow in a particular situation.
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Chapter 1.

Foraging is a process that has many aspects and that takes place at various tem-
poral and spatial scales (Schoener, 1971; Pyke et al., 1977; Senft et al., 1987; Bailey
et al., 1996). At most of these scales, choices about what and where to eat are being
made by an animal. Different models of optimal foraging have thus focussed on different
scales, ranging from the scale of the distribution of individuals over large areas (Fretwell
& Lucas, 1970) to the scale of the timing of patch depletion (Charnov, 1976). At these
different scales different decisions can be made and decisions will be based on different
types of information, e.g., within a pasture, the decision of a herbivore to eat at a specific
location will depend on the quality of the food at that location relative to the quality in
the pasture and not relative to the quality in a different pasture. However, the decision
to forage in this pasture was made on the basis of the (expected) quality in this pasture
relative to the (expected) quality in different pastures (Senft et al., 1987; Bailey et al.,
1996). There are however few studies that integrate the different scales of foraging in a
formal modelling approach.

As the density of food or patches of food declines from very abundant to very
scarce, the rate at which an animal can consume that food is limited by different pro-
cesses (Holling, 1959; Spalinger & Hobbs, 1992): at high density food is plenty and the
processing of the food by the animal (i.e., capturing, chewing) is limiting intake. As
density decreases the distance between food patches of food will increase and movement
between patches will limit the intake of the animal. Finally, at even lower density, the
animal has to search for new patches of food while moving from one patch to another
(Spalinger & Hobbs, 1992). The search for new patches can occur in informed and non-
informed situations. When cues about the location of food are available, movements
become directed towards these cues (Bell, 1991). In the absence of such cues, random
movement rules provide a suitable movement model (Bell, 1991; Bartumeus et al., 2005).

Foraging is a process that determines the behaviour of animals to a large extent.
It is governed by decisions that can be taken at different spatial and temporal scales and
limited by different processes at these different scales. Heterogeneity of food, in quantity,
quality, space and time, limits the foraging behaviour of animals. In this thesis, I will
focus on what decisions animals should take to cope with the limitations that especially
spatial heterogeneity and heterogeneity in the quantity and quality of resources. The
main focus of this thesis lies on exploratory movement at low food density (chapters 2 -
5). In the final chapters (chapters 6 & 7) the focus is shifted to the decisions on what to
eat and how much of that to eat at two spatial scales, and how exploratory movements
can influence these decisions.

1.1 Movement

When the information horizon of an animal is smaller than the distance between targets
(λ), animals will not only have to move between targets, but they will have to search for
them too (Bell, 1991; Spalinger & Hobbs, 1992; Bartumeus et al., 2005). The pattern
of moving during the search can result in different encounter rates with these targets
(Pyke, 1984; Hogeweg, 1989; Viswanathan et al., 1999; Zollner & Lima, 1999; Bartumeus
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Moving to Eat

et al., 2005). For a forager, the choice of movement pattern can thus be an important
choice within the foraging process.

The movement of animals is also important in mediating spatial processes in ecol-
ogy (Turchin, 1996). By moving, animals connect places that could otherwise not have
any interactions. During their movement, animals feed from the encountered resources,
they take seeds, pollen and diseases from one location to another, they trample the
soil, and they defecate. As such, the movement paths of animals are important for the
locations and scales of interactions, connectivity and nutrient cycling in an ecosystem
(Bovet & Benhamou, 1988; Turchin, 1991, 1996; Farnsworth & Beecham, 1999; Oom
et al., 2002; Cumming & Cumming, 2003; Morgan et al., 2004; Mouissie, 2004; Oom
et al., 2004). Because different movement patterns result in different encounter rates,
they can also change the locations and intensity of ecological processes (Turchin, 1996).
In order to understand and predict ecological processes and patterns, it is thus important
to understand and to be able to predict the movement patterns of animals.

1.1.1 Random walk models

Random walk models are often used to predict the large scale movement pattern of
animals (Skellam, 1951; Kareiva & Shigesada, 1983; Bergman et al., 2000; Zollner &
Lima, 1999). The major advantage of random walk models, is that they do not need the
assumption of any interaction between the animal and its environment, which makes it
possible to derive analytical approximations of the displacement of an animal (Kareiva
& Shigesada, 1983; Bovet & Benhamou, 1988; Benhamou, 2004).

Random walk movement can be modelled in various ways, but in general they
assume that the movement path of an animal is a sequence of discrete steps and turning
angles (Turchin, 1998). Simple random walks result from a uniform distribution of
turning angles between −π and π and step lengths of fixed length (Holmes, 1993) (Figure
1.1 a). The mean squared displacement (msd) of animals moving with a random walk
increases linearly with time (Holmes, 1993; Bartumeus et al., 2005). For most animals,
there is however some correlation between the direction of successive steps (Kareiva &
Shigesada, 1983; Turchin, 1991). Various ways have therefore been proposed to relax
the model assumptions of the simple random walk.

Two types of random walk models that are often used to describe animal move-
ment are the correlated random walks (Kareiva & Shigesada, 1983) and the Lévy walks
(Viswanathan et al., 1999). Because these models will be used in this thesis, I will
introduce the basic principles of these random walks here.

Correlated random walk (crw) For the correlated random walk the simple assumption
of a uniform distribution of turning angles is discarded and a unimodal distribu-
tion of turning angles is assumed. As a result, the directions of successive steps
are correlated to each other (Figure 1.1 b). For generating the correlation between
succesive steps several different distributions have been proposed (Cain, 1985; Zoll-
ner & Lima, 1999). Following Zollner & Lima (1999) and Bartumeus et al. (2005)
I have used crw simulations with a wrapped Caughy distribution (wcd). The
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Chapter 1.

Figure 1.1: The movement patterns resulting from different movement models. Each panel
shows a representative movement path. (a) Simple random walk (Brownian move-
ment), (b) Correlated random walk (crw) with ρ = 0.9, (c) Lévy walk (lw) with
μ = 2 and (d) ballistic (straight line) movement. Note the different scales.
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parameter R that sets the level of directionality of the resulting movement path
(R = 0 for highly tortuous movement (Brownian movement) and R = 1 for straight
line movement (ballistic movement)) is equivalent to the length of the mean vector
of the turning angles. This creates a straightforward link between observable prop-
erties of a movement path and the simulated movement paths. The msd of a crw
can be approximated analytically (Bovet & Benhamou, 1988; Benhamou, 2004),
but does not scale nicely with the length of the walk. In stead, with increasing
length, the msd of the walk becomes equivalent to the msd of a simple random
walk. The correlation between the direction of successive steps does not remain
across scales (Bartumeus et al., 2005).

Lévy walk (lw) The Lévy walks are a class of fractal random walks. The directions
of successive steps are uncorrelated, and the distribution of the lengths of the
steps (called flights) is characterised by a long fat tail (Viswanathan et al., 1999).
The distribution P (l) of lengths l of these flights can be described with a Lévy
distribution, which is best approximated as P (l) ∼ l−μ. μ can be estimated as the
slope of the log-log regression of the frequency distribution of steps (Viswanathan
et al., 1999; Sims et al., 2007). The value of μ can range between 1 (many long
steps) to 3 (Brownian motion). For μ ≈ 2, the movement path shows a fractal
alternation of short and long steps (Figure 1.1 c). The msd of the lw scales to
the duration of the walk with a power between 1 and 2, depending on μ. The lw
thus produces scale free super-diffusive behaviour (Bartumeus et al., 2005). The
lw can be approximated by superimposing the Lévy distributed reorientations
(turning angles ∈ [−π, π]) on a crw with a high directionality (R), without losing
the optimal efficiency of μopt ≈ 2 (Bartumeus et al., 2005).

In the absence of information about the whereabouts of targets, a searcher should
use a random movement strategy to search (Bell, 1991; Bartumeus et al., 2005). By
incorporating simple assumptions on behavior around the targets being sought (i.e.,
stop at the location of the target and consume it), Viswanathan et al. (1999) found that
two different classes of distributions of targets resulted in different optimal movement
patterns for lw; with a homogeneous target distribution, μopt → 1, resulting in ballistic
movement is optimal, while with a patchy target distributed (modelled through targets
that are not consumed at encounter) μopt ≈ 2. The results for homogeneous target dis-
tributions correspond to earlier results with crw’s (Pyke, 1984; Hogeweg, 1989; Zollner
& Lima, 1999). Bartumeus et al. (2005) show that the optimal lw for patchy target
distributions cannot be rivalled by crw’s. Many studies have used crw and lw models
to explain or describe observed movements of animals (Root & Kareiva, 1984; Viswa-
nathan et al., 1996, 1999; Atkinson et al., 2002; Mårell et al., 2002; Bartumeus et al.,
2003; Austin et al., 2004; Bowne & White, 2004; Ramos-Fernández et al., 2004).
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Chapter 1.

1.2 Thesis outline

This thesis consists of two parts. In the first part of this thesis (chapters 2 - 5) I have
increased the understanding of the mechanisms generating optimal searching efficiency
of the Lévy walks. Hereto I first give account of an experiment observing the forag-
ing movement of goats (Capra hircus), that do show these Lévy walks under specified
conditions (chapter 2). Then I report the results of two studies using computer sim-
ulations. These chapters deal with the influence of the basic assumptions of random
walk models on model performance (chapter 3) and the influence of target encounters
on the diffusive properties of the lw models (chapter 4). Finally I report the results
of an experiment with laughing doves (Streptopelia roseogrisea), where we tested the
predictions of Viswanathan et al. (1999); Bartumeus et al. (2005) and chapters 2, 3 and
4.

In the second part (chapters 6 & 7) of this thesis I focus on what foraging deci-
sions animals should take when they require several (macro-) nutrients that are hetero-
geneously distributed over different food species. Based on the assumption that animals
do not live to eat, but eat to live, we designed a modelling framework that can find nu-
trient balancing and intake maximising foraging choices using different decisions made
at different scale levels (chapter 6). In the final chapter (chapter 7), I refer back to the
results of chapters 3 and 4 on the efficiency of searching under different target densities
and derive approximations for the perceived target density, based on different movement
patterns. I integrate this perceived target density into the model presented in chapter 6
to come to a model formulation that addresses the three of the main questions in optimal
foraging theory: what to eat, how much to eat and how to move to find it.

1.3 Disclaimer

The models presented in this thesis are focussed on animals searching for food resources.
There is however no guarantee that the concepts of searching for targets and choosing
between different types of resource cannot be applied to other situations within the bio-
logical sciences or in the economic or information sciences. The author would encourage
the reader to do so.
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2 Patch Density Determines
Movement Patterns and Foraging
Efficiency of Large Herbivores

Henrik J. de Knegt, Geerten M. Hengeveld, Frank van Langevelde,
Willem F. de Boer & Kevin P. Kirkman

Few experimental studies have tested theoretical predictions regarding the move-
ment strategies of large herbivores and their consequences for the efficiency of foraging.
We therefore analysed how the movement and foraging behavior of goats is related to
patch density, by analysing their movement and behavior in a low and high patch density
plot, with patches being trees and bushes. We show that their movement paths become
more tortuous when patch density increases, resulting in shorter steps and larger turning
angles at high patch density. We also found a switch from Lévy motion at low patch
density to a movement strategy tending towards Brownian motion in high resource abun-
dance. At low patch abundance these statistical properties were sufficient to explain the
amount of food encountered by the goats. However, the goats foraging in high patch
abundance encountered more food than would be expected on the basis of these statis-
tical properties. Hence, at high patch density the sequence of steps and turns becomes
an important determinant of the foraging efficiency. We argue that this originates from
an increased amount of information cues available to the foragers to include in their
decision making. While changing the movement behavior with increasing patch density,
the goats raised the efficiency of their foraging behavior more than proportional to the
increase in patch density. These findings provide support for theoretical expectations on
the foraging behavior of large herbivores in relation to resource density.

2.1 Introduction

Spatial variation within landscapes results in a heterogeneous distribution of animals’
food resources. To exploit these resources animals have to move. The movement strategy
that animals use while foraging on spatially dispersed resources is crucial to their success
in exploiting (Bell, 1991; Viswanathan et al., 1999; Zollner & Lima, 1999; Bartumeus
et al., 2005). Since the interplay between environmental heterogeneity and movement
of individual foragers is an extremely important aspect of ecological dynamics (Turchin,
1998), the movement strategies of foraging animals have been a central focus in ecology
(Schoener, 1971; Pyke et al., 1977; Stephens & Krebs, 1986; Bell, 1991; Turchin, 1998;
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Chapter 2.

Viswanathan et al., 1999; Zollner & Lima, 1999; Bartumeus et al., 2005). Ecologists have
therefore invested a lot of effort in quantifying movement patterns of organisms (Turchin,
1998). This is mostly done within the realm of microorganisms, insects, birds, and small
mammals (Kareiva & Shigesada, 1983; Turchin, 1991; Crist et al., 1992; Cole, 1995;
Viswanathan et al., 1996; Levandowsky et al., 1997; Viswanathan et al., 1999; Atkinson
et al., 2002; Bartumeus et al., 2003; Austin et al., 2004; Ramos-Fernández et al., 2004).
However, experimental studies of the movement strategy of large mammalian herbivores
in relation to resource density, and the consequent influence on foraging efficiency are
rare (but see Gross et al. (1995); Bergman et al. (2000); Mårell et al. (2002)). In
order to increase our understanding of the movement and foraging behavior of large
herbivores, experiments need to be carried out to test theoretical predictions. In this
paper, we therefore analyse the movement behavior of a large mammalian herbivore
species (the goat, Capra hircus) in relation to the density of resources and the effect of
these movements on foraging efficiency.

Several foraging studies showed that animals adjust their decision-making in rela-
tion to the distribution and density of food resources (Benhamou & Bovet, 1989; Bell,
1991; Farnsworth & Beecham, 1999; Nolet & Mooij, 2002; Newlands et al., 2004). Gen-
erally, it is hypothesised that foraging animals adjust movement path sinuosity to the
density of resources encountered (Benhamou & Bovet, 1989; Bell, 1991; Turchin, 1998;
Benhamou, 2004). Most key parameters in movement models for foraging animals there-
fore modulate the tortuosity of the movement paths. Considering animal movement as
a discrete series of displacement events separated by successive reorientations provides
a very powerful approach to modeling and analysing movement paths (Turchin, 1998).
This approach allows for the characterisation of movement paths by few parameters
and it provides a mathematically tractable way for both analysing and modeling them
(Benhamou, 2004). Discretisation of movement paths can determine the statistical dis-
tributions of displacement lengths (i.e., step lengths), and of changes of direction (i.e.,
turn angles) (Bartumeus et al., 2005). To shift movements from tortuous to straight,
animals can decrease the frequency or magnitude of turning, increase the proportion of
long steps, or do both (Bartumeus et al., 2005).

A general hypothesis in foraging ecology is that animals, in order to increase the
efficiency of foraging, increase the tortuosity of their movement paths and decrease the
speed of movement when resource density increases (Kareiva & Odell, 1987; Bell, 1991;
Turchin, 1991; Focardi et al., 1996; Turchin, 1998; Viswanathan et al., 1999; Bartumeus
et al., 2005). By doing so, animals foraging in an area with high food abundance have a
lower net displacement and decrease the chance of leaving the high resource density area,
thereby increasing the utilisation of resources (Kareiva & Odell, 1987; Turchin, 1991;
Focardi et al., 1996; Bartumeus et al., 2005). On the other hand, when resources become
scarce, straighter and faster movements become more efficient than highly tortuous ones,
as they result in high net displacement, thereby minimizing the chance of revisiting an
already visited resource and increasing the chance of finding new resources (Turchin,
1991; Crist et al., 1992; McIntyre & Wiens, 1999; Viswanathan et al., 1999; With et al.,
1999; Zollner & Lima, 1999; Bartumeus et al., 2005). When resources are distributed in
few patches, a special type of movement, known as Lévy walks (lw), is most efficient in
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Goat Foraging Experiment

exploiting them (Viswanathan et al., 1999). These Lévy walks are scale-free movements
that are characterized by an exponentially decreasing frequency distribution P (l) ∼ l−μ

of flight lengths (l). These flights are episodes of approximately straight locomotion and
can be interpreted as the aggregation of steps in more or less the same direction. If
μ ≈ 2, movement is optimal for exploiting scarce resource patches, while μ → 1 results
in straight line movements and μ → 3 results in highly tortuous movements that are
optimal at high patch density (Viswanathan et al., 1999; Bartumeus et al., 2005).

The shape of movement paths is a fundamental determinant of the efficiency of
movement strategies (Bartumeus et al., 2005). This research therefore focuses on the
movement pattern and foraging efficiency of goats foraging on spatially dispersed re-
source patches. We analyse the movement and foraging behavior of goats in two different
patch densities to address a set of consecutive hypotheses. We hypothesise that, as patch
density increases, (1) the movement paths become more tortuous, resulting in shorter
steps and larger turning angles. In accordance with results of lw models, movement
paths are converted into flights and we hypothesise (2) a shift in the slope μ of the Lévy
distribution of flight lengths from μ ≈ 2 at low patch density towards μ ≈ 3 at high
patch density. To test whether the efficiency of movement of the foraging goats can
reliably be characterized by the statistical distributions of turn angles and step lengths,
or by the distributions of the aggregated flight lengths and their turn angles, we conduct
a modeling exercise and compare observed movement paths with statistically equivalent
bootstrapped pseudo paths. We hypothesise that (3) the goats encounter more browse
while moving than simulated ones moving with the same statistical distributions of step
lengths and turn angles. We then test our last hypothesis that, due to adaptations
of their movement strategy to changes in patch density, (4) the efficiency of foraging
increases more than proportional to an increase in patch density. We define foraging
efficiency by means of both the sampling efficiency (number of visited patches per meter
traversed) and the browsing efficiency (time spent browsing divided by time spent walk-
ing). We test these hypotheses in an experimental set-up by analysing the differences in
movement and foraging behavior of goats between a high and a low resource density plot,
and by comparing computer simulated pseudo paths with the observed paths. While
testing these hypotheses, we aim at finding empirical evidence for theoretical predictions
of the behavior of foraging animals and hence contributing to a better understanding of
the foraging behavior of large mammalian herbivores.

2.2 Material and Methods

2.2.1 Study species and Study site

We selected goats (Capra hircus), because in our study area they mainly browse on easily
recognisable Acacia trees and bushes (Breebaart et al., 2002) and thus visit clearly
delimited patches and thus visit clearly delimited patches, enabling us to avoid the
common problem of herbivores that forage on patches that are very diffuse (Senft et al.,
1987; Bailey et al., 1996). We used fifteen goats that had no previous exposure to the
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study sites.
We conducted fieldwork at Ukulinga Research Farm, Pietermaritzburg, South

Africa (29◦67’E, 30◦40’S). Two adjacent plots with savanna vegetation were used. Both
plots were similar regarding vegetation structure and composition, since both were influ-
enced by the same management practices and abiotic conditions. Both plots were com-
posed of a homogeneous grass layer with randomly scattered trees and bushes, which we
will further refer to as patches.The dominant tree species was Acacia nilotica, making
up more than 90% of the patches. Acacia sieberiana, Lippia javannica, Lantana camara
and Rhus pyroides also occurred. Within each plot, three release areas (20x20 m) were
selected in which the goats were released for observations. The two plots are called plot
lpd (Low Patch Density) and plot hpd (High Patch Density). Plot lpd covered 1.3 ha
and contained 239 patches, while plot hpd covered 2.0 ha and contained 594 patches,
respectively 178 and 294 patches/ha.

With an aerial photograph and a GPS, we surveyed both plots and drew detailed
maps (scale 1:500) showing all patches and plot boundaries. At each patch we recorded
species, X and Y co-ordinates, patch height, canopy bottom height and average canopy
radius. With these measurements, the browse availability per patch below the upper
browse height of goats (1.5 m) was estimated following Camp & Hardy (1999).

There were no significant differences in patch characteristics between the plots
(canopy height: Mann-Whitney, U239,594 = 70058.5, P = 0.768; canopy bottom height:
Mann-Whitney, U239,594 = 67882.5, P = 0.321; canopy radius: Mann-Whitney, U239,594 =
67642.5, P = 0.288; browse availability: Mann-Whitney, U239,594 = 69793.5, P = 0.705).
The distribution of the patches in both plots did not significantly deviate from a random
distribution (lpd: nearest neighbor ratio= 0.935, z = −1.930, P > 0.05; hpd: nearest
neighbor ratio= 0.982, z = −0.855, P > 0.05; calculated using ArcMap 9.1, ESRI
inc., Redlands, California). Daily air temperature and rainfall were recorded during the
fieldwork period, but no significant differences were found between observation weeks
(rainfall: Anova, F5,24 = 0.936, P > 0.05; daily air temperature: Anova, F5,24 = 2.392,
P > 0.05).

2.2.2 Observations

The goats were divided into three groups of five goats. For five consecutive days, one
group of goats was selected and released at a random position in a randomly chosen
release area of a plot. From this group, we randomly selected one goat that was observed
at short distance for a period of 15 minutes. The behavior of the observed goat was
recorded in space and time. At regular intervals (5 s) we recorded the location of the
observed goat on the plot map. Our fine-scale maps and close focal observation allowed us
to achieve mapping accuracy of 0.5 m. For the temporal measurements, we used a Psion
Workabout portable computer and the program Observer (V3.0, Noldus Information
Technology, Wageningen, The Netherlands) to record the activity of the goat at a 1-
second resolution, simplified with the classes browsing, grazing, walking, standing, lying
and other. Since the grass layer in both plots was visually homogeneous and did not
differ between the plots, we cannot relate characteristics of movement paths or foraging

12



Goat Foraging Experiment

behavior to grazing. In this paper we therefore focus on browsing and walking. On
average, 8 observations were carried out per day. The observations per day were lumped
to have a sufficient number of steps and turns to be able to determine the statistical
characteristics of the movement paths. At night the goats were kept in a stable without
access to food. We observed the goats for six weeks, each week with one group in one
plot, so that after six weeks each group was observed in both plots.

2.2.3 Discretisation and Analyses of movement paths

To test our first hypothesis that the steps become shorter and the turn angles become
larger when patch density increases, we calculated the distances between all successive
positions (i.e., step lengths) and the turn angles between successive steps, using all
recorded positions. The turn angles were calculated as deviation angles from straight
locomotion with the interval {−180◦,180◦}, where negative angles were turns to the left,
positive angles turns to the right and 0◦ corresponded with straight locomotion. We then
analysed the distributions of step lengths for differences between the plots. We analysed
the turn angle distributions with Oriana, a circular statistics program (V2.0, Kovach
Computing Services, Anglesey, Wales), based on the methods described by Fisher (1993).
For both plots, we calculated the orientation and length (R) of the mean resultant vector.
The orientation of the mean resultant vector expresses the angular mean (i.e., the mean
turn angle), and the length of the mean resultant vector expresses the concentration
of the distribution around its mean, between R = 0 (uniform, fully dispersed circular
distribution) and R = 1 (punctual distribution, all angles being equal) (Benhamou,
2004). Hence, the length of the mean resultant vector is a measure for the strength of
directionality of the turn angles, i.e., the tendency of the forager to maintain a similar
heading from one time step to the next.

Based on the discretisized movement paths, we also calculated and analysed the
total distance traversed per movement path, the average speed while traversing and
the net displacement, i.e. the beeline distance between the first and last point of an
observation. Furthermore, we calculated the ‘searching intensity’ index, expressing the
searched area per distance unit traversed, i.e., the ratio between the area of a movement
path with width x (with x = 0.5 m, see below) divided by the total length of the
movement path. This area:length ratio expresses the level of overlap in searched area.
High values indicate that a large proportion of the searched area is scanned only once,
whereas low values indicate a large overlap in searched area so that a larger proportion
of the searched area is scanned more than once. Reversely, the area:length ratio can also
be interpreted as a measure of the tortuosity of the movement paths, with high values
indicating straighter movements and low values indicating a high level of tortuosity, since
an increasing frequency or magnitude of turning results in an increase of the searched
area that overlaps with each turn.
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Figure 2.1: Aggregating N positions of an animal’s movement path into one flight if all inter-
mediate positions are no more than x m away from the line connecting the first
point with point N (after Turchin (1998)). We used x = 0.5 m.

2.2.4 Path aggregation and Lévy flights

To be able to test the hypotheses from lw models that animals move with μ ≈ 2
in low patch density environments and towards μ ≈ 3 when resources are abundant,
we converted the movement paths into flights. Following Bartumeus et al. (2005) the
flights of the lw can be interpreted as an aggregation of steps in more or less the same
direction, separated by acute turns. We aggregated a variable number of steps into
flights using the approach suggested by Turchin (1998). N positions were aggregated
into one flight if all intermediate positions were no more than x m away from the line
connecting the first point with point N (Figure 2.1). For x we used 0.5 m, since this is
the approximate step size of the goats and the accuracy of observation. Oversampling
was avoided, since serial correlation of turn angles vanished (Pearson product-moment
correlation coefficient; lpd: −0.019, hpd: −0.049). The Lévy index (μ) of the flight
length distribution was subsequently described with a linear regression of the double
logarithmic frequency distribution of flight lengths, where the regression coefficient is
equivalent to −μ. The slope μ was then tested for differences between the plots .

2.2.5 Simulation of pseudo paths

We simulated movement paths that are statistically equivalent to the observed move-
ment paths, and compared their performance to that of the observed paths. They were
generated using the bootstrap procedure as described by Turchin (1998), in which each
step consists of a random draw from the observed step length and turn angle distribu-
tions for that plot. Pseudo paths were generated for both the short range turn angles
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Figure 2.2: Calculating the performance of the observed and simulated movement paths: avail-
able browse encountered (dark) divided by the area of the movement paths with
width x. The area of the dark circles represents the amount of browse available to
the goats. The performance of the movement paths thus expresses the fraction (or
percentage) of the searched area that contains available forage.

and step lengths and for the aggregated flight lengths and accompanying turn angles.
As was the case for the observed paths, we let the pseudo paths begin at a random point
within one of the release areas of a plot. The performance of a path was defined as
the amount of available browse encountered within a distance x from the path, divided
by the area of the movement path with radius x (Figure 2.2). The performance was
calculated for all observed movement paths and simulated pseudo paths for x = 0.5 m.
On average, the browse availability per square meter was 7% in plot lpd and 12% in
plot hpd. Per plot the performance of the observed movements were compared with the
plot average using a t-test and to both types of simulated pseudo paths using Anova
followed by Dunnett’s post-hoc test for comparison to a control.

2.2.6 Analysing foraging efficiency

To analyse the foraging efficiency of the observed goats, the efficiency of their foraging
behavior was defined by means of their sampling and browsing efficiency. The sampling
efficiency was calculated as the number of visited patches per observation divided by
the total distance traversed. The browsing efficiency was calculated as the time spent
browsing divided by the time spent walking. The sampling and browsing efficiencies
were subsequently tested for differences between the plots.
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Table 2.1: Summary of the results

Plot lpd Plot hpd
Patch density (patches/ha) 178 294
Median step length (m) 2.24 2.00
Mean turn angle (◦) 0 0
R (length of the mean resultant vector) 0.75 0.6
Trend of R over time increasing decreasing
Average length of movement path (m) 63.0 53.6
Net displacement per observation (m) 30.7 24.6
Speed during locomotion (ms) 1.4 1.1
Area:length ratio 1.3 1.0
μ (slope flight length distribution) 2.1 2.9
Tortuosity of movement paths Lower Higher
Sampling efficiency (patchesm) 0.020 0.040
Browsing efficiency 0.7 2.6
Foraging efficiency Lower Higher

2.3 Results

2.3.1 Analyses of discretisized movement paths

The distributions of the short range step lengths of both plots differed significantly
(Mann-Whitney, U2938,2939 = 3190954.0, P < 0.001), with shorter steps in plot hpd than
in plot lpd: median 2.00 m in plot hpd and 2.24 m in plot lpd (see table 2.1 and Figure
2.3). The distributions of short range turn angles of both plots deviated significantly from
a uniform circular distribution (plot lpd: Rayleigh’s Uniformity test, Z = 1565.686,
ν = 2826, P < 0.001; plot hpd: Rayleigh’s Uniformity test, Z = 1019.276, ν = 2827,
P < 0.001) and from each other (Chi-Square test, χ2 = 273.025, ν = 71, P < 0.001)
(Figure 2.4). The angular mean of the turn angle distributions of both plots was 0◦

(t-test, t = −1.435, ν = 2826, P = 0.151 for lpd and t-test, t = 0.30, ν = 2827,
P = 0.976 for hpd) and the distributions were symmetrical around the angular mean
(plot lpd : Mann-Whitney, U1469,1358 = 993130.0, P = 0.842; plot hpd: Mann-Whitney,
U1395,1433 = 974302.0, P = 0.245). The length of the mean resultant vector (R), as
measure of the strength of directionality, was significantly lower in plot hpd (Anova,
F1,28 = 58.673, P < 0.001): 0.60 compared with 0.75 in plot lpd. We also found a
significant decrease of R over time (i.e., observation days) in plot hpd, but there was a
significant increase over time in plot lpd (Anova, F9,20 = 9.203, P < 0.001) (see Figure
2.5).

The movement paths in plot hpd were significantly shorter than in plot lpd(Mann-
Whitney, U111,111 = 4849.5, P = 0.006), as was the net displacement (Anova, F1,220 =
8.405, P = 0.004). While traversing, the goats moved with a significantly lower speed
in plot hpd (Mann-Whitney, U111,111 = 4739.5, P = 0.003). No significant difference
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Figure 2.3: Frequency distribution of step lengths for both plots, using all recorded positions.
Since the sampling intervals for all the moves are equal (5 s), the frequency distri-
butions also represent the frequency distributions of speeds of each plot.

Figure 2.4: Circular frequency distribution of turn angles in (a) plot lpd (n = 2827) and (b)
plot hpd (n = 2828). The concentric circles represent frequency increments of 120
and the numbers at the outer circle represent degrees. The direction of the arrows
represents the mean turn angle (0◦ for both plots) and their lengths the strength
of directionality (R = 0.75 for plot lpd and 0.60 for plot hpd, with R = 1 at the
outer circle). See text for statistics.
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Figure 2.5: The strength of directionality (R) of the turn angle distributions in relation to
increasing experience with the plots, here the number of days of exposure to the
plots.

in time spent walking was found between the plots. Analyses of the searching intensity
index showed that the goats foraging in plot lpd had a significantly higher area:length
ratio than foraging in plot hpd(Mann-Whitney, U111,111 = 4759.0, P = 0.003): 1.3 in
plot lpd compared with 1.0 in plot hpd.

2.3.2 Flight lengths

The distributions of the aggregated flight lengths could be well described with Lévy
distributions (R2 = 0.90 on average). The average value of μ in plot lpd was 2.1,
compared to 2.9 in plot hpd. The values of μ were significantly higher in plot hpd than
in plot lpd (Anova, F1,28 = 11.168, P = 0.002). See Figure 2.6.

2.3.3 Simulated pseudo paths

In both plots, the performance of the observed movement paths was not different from
the plot average available canopy per square meter. In plot lpd the performance of
the observed movement paths was not different from the performance of the random
sequences of either the short range or the aggregated step lengths and turn angles
(ANOVA, F2,330 = 1.72, P = 0.181). In plot hpd the observed movement paths had
a significantly higher performance than the pseudo path of aggregated flight lengths,
and tended towards a higher performance than the short range pseudo path (Anova,
F2,330 = 3.219, P = 0.041, Dunnett’s test observed-short-range P = 0.066, observed-
aggregated P = 0.043). See Figure 2.7.

2.3.4 Foraging efficiency

The goats foraging in plot hpd had a significantly higher sampling efficiency (Mann-
Whitney, U111,111 = 3701.5, P < 0.001) and browsing efficiency (Mann-Whitney, U111,111 =
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Figure 2.6: Frequency distribution of flight lengths for both plots, with μ from the Lévy dis-
tribution P (l) ∼ l−μ of flight lengths (l) being the regression coefficient of a linear
regression between 10 log (frequency) and 10 log(flight length).

Figure 2.7: Performance of the observed and simulated movement paths in both plots, for
x = 0.5m. The movement paths are simulated for both the short range step
lengths and corresponding turning angles (SL), as well as for the aggregated flight
lengths (lw) and angles. The performance can be expressed as the percentage of
the searched area that contains available forage. The dotted line represents the
plot average (plot lpd: 7% and plot hpd: 12%). Within plot lpd, there were
no significant differences in the performance between the observed paths and both
simulated pseudo paths, whereas in plot hpd both simulated pseudo paths had a
significantly lower performance than the observed paths, see text for statistics.
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3095.5, P < 0.001). They visited more patches per movement path (Mann-Whitney,
U111,111 = 4010.0 P < 0.001) and spent more time browsing per observation (Anova,
F1,158 = 34.881, P < 0.001). All these measures showed a larger difference between the
plots than the difference in patch density would indicate (Table 2.1).

2.4 Discussion

In this paper, we experimentally analysed several key aspects of animal movement and
foraging behavior in relation to the density of resource patches. Our main focus is the
shape of the movement paths as a fundamental determinant of the efficiency of movement
strategies. Our first hypothesis that the movement paths become more tortuous resulting
in shorter steps and larger turning angles when patch density increases was supported by
our data. The steps were significantly shorter in plot hpd, while the level of directionality
in turn angles was lower. Hence, more large turns occurred in the movement paths of the
goats in plot hpd. The goats did not exhibit a preference for either right or left turning,
which corresponds with research on angora goats Ganskopp (1995), goldenrod beetle
Goodwin & Fahrig (2002) and reindeer Mårell et al. (2002). However, they showed a
higher tendency to maintain a similar heading from one time step to the next in the
low patch density plot. These results agree with predictions generated by correlated
random walk models (Kareiva & Shigesada, 1983; Bovet & Benhamou, 1988; Turchin,
1991; Crist et al., 1992; Johnson et al., 1992; Bergman et al., 2000). Also our other
measures for the tortuosity of the movement paths (e.g. net displacement and searching
intensity index) confirmed our hypothesis that the tortuosity of the paths increased
with increasing patch density. In the high patch density plot, the goats thus exhibited
highly tortuous movement paths, resulting in a lower net displacement. In the low patch
density plot, however, the goats exhibited straighter movements, resulting in a higher
net displacement. Straight paths increase the chance of finding areas with high food
density (Crist et al., 1992; McIntyre & Wiens, 1999; Viswanathan et al., 1999; With
et al., 1999; Zollner & Lima, 1999; Bartumeus et al., 2005). Combining this with a lower
speed and distance traversed in the high patch density plot results in intensive foraging
on a small area in a high patch density environment, but extensive foraging on a larger
area in a low patch density environment. These findings correspond to the concept of
area restricted search (e.g., Haskell (1997)), stating that foragers increase the frequency
or magnitude of turning and decrease the speed of locomotion following encounters with
food resources.

Our second hypothesis that the goats moved with μ ≈ 2 of the Lévy distribution of
flight lengths in the low patch density plot, but with μ ≈ 3 in the high patch density plot
was also supported by the data. As in other studies (Levandowsky et al., 1988; Cole,
1995; Schuster & Levandowsky, 1996; Viswanathan et al., 1996, 1999; Atkinson et al.,
2002; Mårell et al., 2002; Bartumeus et al., 2003; Ramos-Fernández et al., 2004), the
observed flight length distributions could be well explained by Lévy distributions. The
goats followed movements with a Lévy distribution of flight lengths with μ = 2.1 in plot
lpd, but with μ = 2.9 in plot hpd. These results correspond with findings of authors
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studying the movement of other species (Focardi et al., 1996; Viswanathan et al., 1996,
1999; Atkinson et al., 2002; Mårell et al., 2002; Bartumeus et al., 2003; Ramos-Fernández
et al., 2004). These results provide empirical evidence for theoretical expectations that
Lévy walks with μ ≈ 2 are optimal when resources are scarce, but that the principal
advantage of a flight length distribution with μ ≈ 2 becomes negligible when there are
ample patches, since then a Brownian strategy (i.e., μ ≥ 3) becomes an optimal solution
(e.g., Viswanathan et al. (1999); Bartumeus et al. (2003, 2005)). In the low patch density
plot, the goats approached this predicted optimal strategy with μ = 2.1, whereas in the
high patch density plot the goats indeed tended to move according to Brownian motion
by moving with μ = 2.9. Hence, we agree with the conclusions from Bartumeus et al.
(2003) that Brownian motion should not be considered as a null model, but rather as
another movement strategy that is optimal under high resource levels, and to expect
a switching behavior between Lévy and Brownian strategies as optimal solutions when
resource levels increase.

In addition to the findings that patch density influences the statistical character-
istics of the movement paths, we compared the performance of the observed movement
paths with statistically equivalent pseudo paths, both for the short range step lengths
and turn angles and for the aggregated flights and turns, to test whether the statistical
properties of the discretisized movement paths do reliably predict the efficiency of the
movement strategies. In the low patch density plot the observed paths did not perform
significantly better than the pseudo paths. In the high patch density plot however,
the performance of the observed paths was significantly better than the pseudo paths
generated from the aggregated flights and tended to be better than the pseudo paths
generated from the short range steps and turns. Hence, the sequence of steps and turns
did not significantly matter in the low patch density environment, whereas is did matter
in the high patch density plot. Consequently, the statistical distributions of step lengths
and turn angles are sufficient to characterise the efficiency of movement behaviour in a
low patch density environment, while these properties are insufficient when patches are
more abundant. Since animals use information cues from the surrounding environment
to increase the efficiency of their foraging process (Kohler, 1984; Gross et al., 1995; Bai-
ley et al., 1996; Laca, 1998) and these cues are more abundant when resource density
increases, these cues are probably at the basis of the higher observed performance in the
high patch density plot. Hence, the statistical properties of the movement paths become
relatively less important when resource levels increase and the sequence of steps and
turns becomes important due to the use of these cues. On the other hand, in low patch
abundance the relative importance of information cues and thus the sequence of steps
and turns becomes negligible and the statistical distributions of step lengths and turn
angles can be used to predict the performance of movement strategies. This might ex-
plain why we could not find a significant difference in performance between the observed
and simulated movement paths in the low patch density plot.

To test our fourth and last hypothesis, namely that, due to adaptations in their
movement strategy to the density of patches, the goats were able to increase their forag-
ing efficiency disproportional to an increase in patch density, we analysed the sampling
and browsing efficiencies of the goats. Both indices for foraging efficiency showed a sig-
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nificant increase with increasing patch density. The sampling and browsing efficiencies
even showed a larger difference between the plots than would be expected from the dif-
ference in patch densities between both plots (see table 2.1). This increase in foraging
efficiency agrees with studies on other animals (Crist et al., 1992; Viswanathan et al.,
1996; Stapp & van Horne, 1997; Gillis & Nams, 1998; Schultz, 1998; Schultz & Crone,
2001; Fortin, 2002; Nolet & Mooij, 2002). We argue that this disproportional increase in
foraging efficiency results from behavioural adaptations in movement strategy as shown
in previous sections of this paper and the use of environmental cues that are more abun-
dant when resource density increases. Hence, the efficiency of foraging depends upon
the strategy of movement, the amount of information available to use in decision making
and the density of food patches.

The goats used in this research had no previous experience with the plots and
therefore did not have prior knowledge regarding the distribution of the food patches.
With more experience in the plots, they would be presumed to increase their expectation
of the patch density in the plots (Bailey et al., 1996). The observed decrease in time
of the strength of directionality in plot hpd and its increase in time in plot lpd could
indicate that the goats used this experience to adjust their movement paths to the
experienced density. It is possible that the goats, when first confronted with the plots,
moved following a naive distribution of turn angles but adjusted this distribution in
response to the experienced resource density. No other differences due to experience
were found (μ, sampling efficiency and browsing efficiency remained constant), which
contradict the results of Gillingham & Bunnell (1989); Johnson (1991); Noda et al.
(1994); Laca (1998), who showed that foragers increase their foraging efficiency with
increasing experience.

In this paper, we show a positive correlation between patch density, movement
path sinuosity and foraging efficiency of large mammalian herbivores. It provides fur-
ther evidence that foragers often adjust their decision-making in relation to the density
of food resources and by doing so are able to increase the efficiency of their foraging
behavior. The novelty of our analysis is that we are able to relate statistical properties
of discretisized movement paths with empirical measures of foraging activity and effi-
ciency. Furthermore, we provide empirical evidence for several theoretical predictions
on movement and foraging behavior in relation to the density of food patches. We show
that many characteristic properties of animal movement and foraging behavior are influ-
enced by the patch density of the environment. These characteristic properties include
the shape of the step length and turn angle distributions, the exponent μ of the flight
length distribution, the length, speed and net displacement of the movement paths and
indices regarding the foraging efficiency of herbivores. The data show a switch from
Lévy motion with μ ≈ 2 in a low resource density environment to a tortuous movement
strategy with μ = 2.9 at high resource abundance, thereby tending towards Brownian
motion. Moreover, the sequence of steps and turns becomes important when resources
are abundant and we argue that this originates from an increased amount of informa-
tion cues available to the foragers to include in their decision making. With a change
in movement behavior with increasing patch density, the goats were able to raise the
efficiency of their foraging behavior more than proportional to the increase in resource
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abundance. These findings provide further experimental evidence for theoretical ex-
pectations and we hope this will contribute to the development of theory on foraging
animals by investigating mechanisms behind foraging behavior.
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3 Search Efficiency and General
Assumptions in Random Search
Models

Geerten M. Hengeveld, Frederic Bartumeus, Frank van Langevelde &
Herbert H.T. Prins

Random searches are employed when searching for targets (e.g., resources or mates)
with little information available in the environment. Some random searches are more
efficient than others in locating targets. Here, we explore which are the essentials that
provide the basis for this success by relaxing some general assumptions of random search
models. Following previous work, we use two types of random walk models; Lévy walks
and correlated random walks. We relax three assumptions related to the target encounter
and dynamics. First, we assume that the searcher needs to go to the exact location of
the target for consumption. Second, we assume that the searcher does not start a
new search in a new direction after resource encounter. Third, we assume permanent
depletion of targets in the environment due to consumption. Three main results are
obtained: without the start of a new search after target encounter (1) the Lévy walk
looses the super-efficiency if targets are not depleted and (2) straight-line (ballistic)
search movements become even more efficient if targets are depleted, finally (3) moving
to the location of the target increases the efficiency of correlated random walks if targets
are not depleted. We attribute the super-efficiency of Lévy walks to their ability to
generate ‘area-restricted search’-like patterns; a fractal combination of local searches that
are anchored at the location of a target and occasional long range exploratory moves.
We conclude from these results that the interactions with resources are important for
random search models. In particular, with target depletion interactions with targets
diminish the efficiency, while with fast recovery of targets these interactions anchor the
movement to the location of the targets and increase efficiency.

3.1 Introduction

For most animals, the search for food takes a large part of their time (Schoener, 1971;
Jander, 1975; Pyke, 1984). Although random searching rules are less efficient than
searches based on feedbacks between experience and behaviour (Bell, 1991), there are
many situations where animals are forced to use random searches (Bartumeus et al.,
2005). Random searches are most likely to occur in areas with unknown distributions of
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targets, variable environments or a large number of competitors (Bell, 1991). As such,
the best movement rule for random searching should be efficient over a wide range of
conditions.

For a searching animal, the environment can be divided into a known, recently
searched area and an unknown area. Visiting unknown areas is only rewarding if recovery
of recently visited targets is slow or all known targets are depleted. In the case of recovery
of targets, the searched area will be depleted only for a limited time, but after that, the
animal faces the choice of searching in new, unexplored and thus uncertain areas or
returning to a known area. Even for random search models this local depletion effect is
important (Raposo et al., 2003).

Random search models range between two extreme types of movement: ballistic
search characterised by straight line movement and Brownian search, characterised by
short movements in random directions. The spectrum of possible movement types be-
tween Brownian and ballisic movements can be filled in by two different types of random
walks that have been proposed to model animal movements; correlated random walks
(crw) and Lévy walks (lw) (Bartumeus et al., 2005). In the crw the direction of
movement is correlated to the direction of the previous step. In the lw the length of
movements is taken from a power-law distribution. Both models have one parameter
that controls the shape of the movement path. For crw this parameter is ρ, a parameter
that controls the correlation of successive movements. For lw this parameter is μ, the
negative exponent of the power-law distribution of movement lengths, that controls the
relative importance of long movements in the movement path . For both models, the
parameters can change the shape of the movement path from Brownian (μ = 3 and
ρ = 0) to ballistic (μ = 1 and ρ = 1) movement (Bartumeus et al., 2005).

Both models have been intensely studied for their efficiency in finding targets
(Pyke, 1984; Cain, 1985; Hogeweg, 1989; Viswanathan et al., 1999; Zollner & Lima, 1999;
Bartumeus et al., 2005). For situations where new targets should be found (because the
targets that are found are depleted) these studies show that both crw and lw should
approach ballistic (straight line) movement. If targets are not depleted, the search
efficiency of the lw is greatly increased for values of the parameter μ ≈ 2.0. This
results in a fractal movement pattern consisting of periods of large range movement
alternated with periods of short range local movements, that cannot be produced by a
crw (Bartumeus et al., 2005).

The specific assumptions on how searchers change movement at or after target
encounter could have a great influence on the exploration of the environment at the
landscape-level, and thus, on the efficiency of the random search. Therefore we explore,
in much more detail, some general assumptions of random search models (Bartumeus
et al., 2005). In particular, in the present paper, we focus on two assumptions regarding
target encounter and one assumption regarding target dynamics; (1) that the target
can be consumed from the location were it is detected, (2) that there is a random
reorientation after target consumption and (3) that target depletion does not change
the target density (Bartumeus et al., 2005). Because we will simulate the depletion of
the global target density, we cannot simulate with periodic boundary conditions (as is
done in Viswanathan et al. (1999); Bartumeus et al. (2005)). Therefore we can also
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check for the effect of the assumption of periodic boundary conditions on the efficiency
of the search movements.

These assumptions are not typical for the proposed random search models, but
can have a profound influence on the path properties and the searching efficiency of
these random searches. Furthermore these assumptions can conflict with the behaviour
of different species, e.g., for tactile foraging animals resources can usually be taken and
consumed at the same distance at which they are detected. This will not be the case for
animals that detect their targets visually or by smell. In such cases animals will need to
change their movement direction and move towards the detected target before they can
consume it.

We change these assumptions by: (1) the introduction of explicit movement to ap-
proach a target, (2) no change in behaviour after target encounters and (3) a permanent
depletion of targets and depression of target density. These changes in assumptions, may
affect the displacement caused by the movement path (1 and 2) and the likelihood of
finding new targets when returning to previously searched areas (3). With these changes
in assumptions, we can investigate the effect of changes in the path properties, due to
different behaviours at target encounter, on the overall search efficiency. In general, our
results strengthen the findings of Viswanathan et al. (1999); Bartumeus et al. (2005)
and give insight into the effect that these basic model assumptions have on the realised
search efficiency.

3.2 Methods

To explore the differences between lw and crw searches, we used a basic random walk
simulation; each random walk consists of a sequence of moves separated by turns. When-
ever a target is encountered it is consumed from the location where it is detected and
the search is continued in a random direction. Search efficiency is expressed as λη; the
quotient of the encounter rate (η, the number of targets found divided by the distance
moved) and the expected encounter rate ( 1

λ
).

In the lw, the movement pattern is determined by the distribution of move lengths
(also called flights (Viswanathan et al., 1999)). This distribution of move lengths (l) is
characterised by the distribution P (l) ∼ l−μ, where 1 < μ < 3. Lower values of μ result
in more long moves. The turns between successive moves are uniformly distributed.
Because the search is continued in a random direction after target encounter, the move
that resulted in the encounter is truncated.

In the crw the steps are of fixed length and the movement pattern is determined
by the distribution of turning angles. The turning angles are distributed according to
a Wrapped Caughy distribution (wcd). The shape of this distribution, and thus the
shape of the resulting movement path, is determined by the parameter ρ. Thus for both
models there is one characteristic parameter (μ for lw and ρ for crw). This parameter
can scale the movement pattern from Brownian motion (μ → 3 and ρ = 0), to ballistic
motion (μ → 1 and ρ = 1) (Bartumeus et al., 2005).

We investigate the effect of two general assumptions on movement behaviour on the
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Table 3.1: differences between the movement models. The movement models differ in the
distribution of turning angles (TA) (either a Wrapped Caughy distribution (wcd) or
uniform in [−π, π]), the distribution of move lengths (ML) (either Lévy distributed
or fixed at 0.5), they can have to move to the target in order to consume it or not,
and they can have a reorienation after target encounter according to a specified
distribution ((wcd) or uniform in [−π, π]) or none at all.

Model TA ML Approach target reorientation
lw [−π, π] Lévy(μ) No [−π, π]
crw WC(ρ) 0.5 No [−π, π]
lwP [−π, π] Lévy(μ) No None
crwP wcd(ρ) 0.5 No wcd(ρ)
lwA [−π, π] Lévy(μ) Yes [−π, π]
crwA wcd(ρ) 0.5 Yes [−π, π]

searching efficiency of these random searches. These assumptions are (1) the consump-
tion of the target from the location were it is detected, and (2) the random reorientation
after target consumption. We alter these two assumptions by including movement to-
wards a target and by excluding a change in behaviour after target encounter.

We explore the effect of a possible orientation and movement towards a detected
target by modelling both the standard situation without approach to the target i.e., the
target is consumed from the location where it is detected, and the situation where the
target should be approached before they can be consumed (suffixed A). To approach
the target the searcher changes its direction towards the closest detected target and
incrementally moves towards this target.

The standard models of both lw and crw assume random reorientation after
encounter with a target. This assumption breaks the directional persistence of the
movements. To relax this assumption we simulate a lw without the truncation of the
movement at target encounter and a crw where the reorientation after target encounter
is not uniform but taken from the corresponding wcd (suffixed P ).

Searching for targets has been categorised as destructive or nondestructive (Vis-
wanathan et al., 1999; Raposo et al., 2003; Bartumeus et al., 2005). In the destructive
search, targets that are found are depleted and removed from the field, while in the
nondestructive search targets remain attractive to the searcher after being found. To
keep the target density the same, destructive searching is usually simulated by placing a
new target in the search area whenever a target is found (Bartumeus et al., 2005). Here
we also include a type of destructive search where the global target density is declin-
ing, i.e., where no replacement is taking place. This last search involves non-stationary
dynamics, i.e., the density of targets is not constant, and is referred to as the globally
depleting search. The destructive search with replacement is referred to as the locally
depleting search. For consistency, the non-destructive search will be referred to as the
non-depleting search.

To avoid looping in the original path in the globally destructive search, which could
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Table 3.2: parameter values used for the simulations.

Parameter Model Units Values
detection radius all unit length 1
scan interval all unit time 0.5
duration all unit time 106

replicates all - 84

occur with periodic boundary conditions, all simulations take place in an expanding
environment. Initially a region containing 10 targets is created. Whenever the searcher
scans over the boundaries of this region, a new region containing 10 targets is added.
For the locally depleting search, targets are replaced within the region where they are
found to keep the target distribution homogeneous. After target encounter a refraction
time of four steps is taken into account to allow for the searcher to move away from the
target location (cf. Bartumeus et al. (2005)). The expanding environment allows us to
check the existence of potential artifacts introduced by periodic boundary conditions in
previous simulations (Viswanathan et al., 1999; Bartumeus et al., 2005).

To test the robustness of the movement rules to changes in the target density each
movement rule was tested at four different target densities. Conform Viswanathan et al.
(1999); Raposo et al. (2003); Bartumeus et al. (2005), we use the mean free path (λ)
as a measure of the target density (see Bartumeus et al. (2005, Appendix 1) for the
relationship between λ and the density). Searching success (η) is defined as the number
of targets encountered divided by the total distance searched. To compare searching
success across target densities, η is multiplied with λ. The searching efficiency (λη) is
a measure that standardises the searching success. If the average λη = 1, the searching
was as efficient as would be expected on the basis of the initial mean free path, i.e., a
target was encountered on average every λ steps.

Simulations were run with one searcher in the environment. Within each simulation
the searcher would use one of the movement models (Table 3.1). Movement paths are
simulated for five values for each parameter (μ and ρ) of the lw and crw (Table 3.2).

3.3 Results

In general, the results support the findings of Bartumeus et al. (2005), in that:

1. Straighter movement paths (μ → 1, ρ → 1) are more efficient in finding targets if
targets are depleted.

2. lw with μ ≈ 2 are most efficient in finding non-depleting targets.

3. Intermediate values of μ result in more efficient movement paths than intermediate
values of ρ.
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Figure 3.1: Searching efficiency while searching for non-depleting targets with λ = 1000. Shown
are the efficiencies of the standard lw (�) and crw (�) models and for the lw
without truncation at target encounter (lwP , �) and the crw where the searcher
moves to the exact location of the target before consumption (crwA, �). The
horizontal axis represents an increase in ρ for the crw models (lower axis) and
a decrease in μ for the lw models (top axis). ρ = 0 and μ− > 3 correspond to
Brownian movement, ρ = 1 and μ− > 1 correspond to ballistic movement. Results
show averages for 84 simulations. Lines connecting symbols are drawn to guide the
eye.

4. The efficiency of the optimal lw in a non-depleting search increases with increasing
λ (decreasing density).

Our simulations extend these patterns to larger and smaller values of λ. With non-
depleting targets, however, the difference in efficiency of the movement rules decreases
for λ = 10. In contrast to the result presented in Bartumeus et al. (2005) that changes
in ρ do not affect the efficiency in a non-depleting crw, we find that an increase in ρ,
results in an increase in the search efficiency in a non-depleting crw (Figure 3.1).

The changes in model assumptions on target encounter and target dynamics did
influence the efficiency of the searching patterns in some cases:

1. lwP (without truncation at target encounter) does not show the increased effi-
ciency for intermediate values of μ in the non-depleting search compared to the
standard lw (Figure 3.1). There is only a slight difference between the different
values of μ for lwP .

2. crwA (with an explicit approach of the target) shows an increase in the efficiency
of more Brownian motion (ρ < 0.5) in the non-depleting search compared to the
standard crw (Figure 3.1).

3. Both lwP and crwP (without truncation and reorientation at target encounter)
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Figure 3.2: Searching efficiency while searching for depleting targets with λ = 10. Shown are
the efficiencies of the standard lw (�) and crw (�) models and for the persistent
variation of the lw (lwP , �) and the crw (crwP , �). Panel a shows the efficiency
of the movement models for the globally depleting targets, while the panel b show
the results for the local depleting targets. The horizontal axis represents an increase
in ρ for the crw models (lower axis) and a decrease in μ for the lw models (top
axis). ρ = 0 and μ− > 3 correspond to Brownian movement, ρ = 1 and μ− > 1
correspond to ballistic movement. Results show averages for 84 simulations. Lines
connecting symbols are drawn to guide the eye.

show an increased efficiency compared to the standard models at low λ (high target
density) within the globally depleting search. The optimal movement regime is still
ballistic (ρ = 1, μ → 1), but these variants without reorientation are more efficient
than the standard models in finding the globally depleting targets (Figure 3.2).
With local depleting targets and at larger values of λ, the standard models are as
efficient as the variants without reorientation for μ = 1.1 and ρ = 1, but lwP is
more efficient than lw at μ = 2.0 and μ = 2.5.

4. Globally depleting searches have a lower efficiency than locally depleting searches.
Apart from this quantitative effect of the non-stationary dynamics, the global
depletion made little difference compared to the local depletion. The lwP suffered
less from these non-stationary dynamics, especially with μ ≤ 2 (Figure 3.2).

3.4 Discussion

Because random searches are employed whenever there is uncertainty about the distri-
bution of targets (Bell, 1991; Bartumeus et al., 2005), optimal random searches should
be efficient in finding targets in a wide range of target distributions. Moreover, the pat-
terns found in the efficiency of random movement models should be robust to changes
in the non-typical model assumptions.
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Therefore we analysed the efficiency of different movement rules at target densities
spanning four orders of magnitude and with three different types of target dynamics. The
movement rules were based on Lévy walk and correlated random walk models following
Bartumeus et al. (2005). To assess the robustness of these models to changes in model
assumptions, we investigated the effect of changes in three general assumptions made
by Bartumeus et al. (2005) on the efficiency of lw and crw (see Table 3.1 for the
notations). These changes are

1. The introduction of explicit movement towards the target after detection (suffixed
A), resulting in less directional persistence and an anchoring of the movement path
to the exact location of the target.

2. No reorientation or truncation of the move at target encounter (suffixed P ), re-
sulting in more directional persistence and less anchoring of the movement path
to the location of the target.

3. Permanent depletion of the target after encounter, resulting a depression of the
target density and the formation of a depleted search path.

The results of these analyses are in general agreement with Bartumeus et al. (2005)
and earlier work on optimal movement patterns: lw searches with μ ≈ 2.0 are the best
search if targets are not depleted. If the searcher is depleting the targets, ballistic
searches (ρ → 1 and μ → 1) are better than Brownian searches (ρ → 0 and μ → 3). In
contrast to Bartumeus et al. (2005), who find no effect of changes on ρ on non-depleting
crw, we find a positive effect of increasing ρ on the efficiency of non-depleting crw
searches.

The changes in assumptions regarding target encounter effected the results only in
three ways: (1) the explicit movement towards the target after detection increased the
efficiency of the crw with ρ < 0.5 in a non-depleting search, (2) in the non-depleting
search the exclusion of the truncation of the movement at target encounter removed the
increased efficiency of the lw with μ ≈ 2, and (3) the exclusion of the truncation of the
movement and the reorientation at target encounter increased the efficiency of lw with
μ ≥ 2 in all depleting searches with λ < 1000 and of crw with ρ = 1 in the globally
depleting search with λ = 10.

The changes in assumptions regarding the target dynamics only had a quantitative
effect on the efficiency of the standard models; the globally depleting search resulted in
less targets found. This is the effect of non-stationary target dynamics as a result of the
depletion of the target density. The expanding environment used in this study did not
affect the general results as they were also found by Bartumeus et al. (2005). This is to be
expected because Bartumeus et al. (2005) simultaneously use multiple (non-interacting)
searchers that generate a dynamic target distribution. This dynamic distribution will
also negate any effects of periodic boundaries.

These results show that in a depleting search, directional persistence is most im-
portant, hence the increase in efficiency towards ballistic movements (μ → 1 and ρ → 1)
and the higher efficiency for movement rules that do not change direction after target en-
counter (lwP and crwP ). Thus when targets become useless after the first encounter,
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re-sampling the same area greatly decreases the efficiency of the search and ballistic
movement is the best exploration strategy (Pyke, 1984; Hogeweg, 1989; Viswanathan
et al., 1999; Zollner & Lima, 1999; Bartumeus et al., 2005).

With non-depleting searches, the best movement rule would be to find a target and
then to stop moving. However, the lw and crw movement rules used in this study do
not allow for such behaviour. Therefore we find that ballistic searches (μ → 1, ρ → 1) are
slightly better than Brownian searches (μ → 3, ρ → 0). These ballistic searches are best
at finding new targets, while Brownian searches have got a relatively slow displacement,
but cannot be fixed to one location (Bartumeus et al., 2005). By explicitly moving the
searcher to the location of the target, as in crwA, crw with ρ < 0.5 can be anchored
to this location and the efficiency of the search can be greatly increased.

The best random search movement for non-depleting targets is a lw with μ ≈ 2.
The lw produces a fractal movement path. With μ ≈ 2 this movement path is a fractal
alternation of local movement clusters and long range connections (see Figure 1.1c. or
(Bartumeus et al., 2005, Fig 1d.) for an impression of lw movement paths). This
alternating pattern does not result in the increased efficiency per se. By truncation
of movements at the location of a target, the local movement clusters are anchored to
this location and enable the searcher to repeatedly find the same target. Whenever the
searcher wanders away from the target, the relatively large chance to make an extremely
long movement enables the searcher to efficiently find a new target to exploit. When the
truncation at the target location is removed from the model (lwP ) the efficiency gain of
μ ≈ 2 disappears.

Empirical studies have often described animal movements exhibiting optimal lw
searches with μ ≈ 2.0 (Viswanathan et al., 1996, 1999; Mårell et al., 2002; Bartumeus
et al., 2003; Ramos-Fernández et al., 2004) (chapter 2). However, without considering
the dynamics and the spatial configuration of the targets, no conclusions can be drawn
about the mechanism generating these movement patterns (Ramos-Fernández et al.,
2004; Boyer et al., 2006). Scale-free movement patterns resulting from a lw could also
reflect a scale-free distribution of resources (Boyer et al., 2006). Furthermore several
data-based models have been formulated that combine different movement rules for
different situations or behavioural states (Bell, 1991; Walsh, 1996; Fortin, 2002; Nolet
& Mooij, 2002; Morales et al., 2004). These models use feedback from past experience
to combine local and a long range movements into an area-restricted search. Because of
the truncation of movements at the location of the target, the lw model with μ ≈ 2.0 is
the best way to generate this type of movement path without considering the underlying
state of the searching animal.

Our results confirm earlier results that ballistic movement is most efficient in find-
ing new targets (Pyke, 1984; Cain, 1985; Hogeweg, 1989; Viswanathan et al., 1999;
Zollner & Lima, 1999; Bartumeus et al., 2005), and that a Lévy walk with μ ≈ 2 is
most efficient for the combination of exploration and exploitation whenever targets are
not depleted or have a patchy distribution (Viswanathan et al., 1999; Bartumeus et al.,
2005). By relaxing some of the general model assumptions we show that these results
are robust to a changing target density and to changes in boundary conditions. As-
sumptions that can anchor the movement path to the location of a non-depleting target,
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or that retain directional persistence over target encounter can increase the efficiency of
the movement path. We find that the super-efficiency of the Lévy walk with μ ≈ 2 in
finding non-depleting targets (as found by Viswanathan et al. (1999); Bartumeus et al.
(2005)) is sensitive to the assumption that movement is truncated at target encounter.
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4 Target Encounters alter Lévy
Search Characteristics

Geerten M. Hengeveld, Frank van Langevelde & Herbert H.T. Prins

Lévy flight random walks have two interesting features that separate them from
other random walk models: (1) The scale free properties of the Lévy walks enable a link-
age between local movements and landscape level processes. (2) Lévy walks are shown
to be more efficient in finding targets than other random walk models. The efficiency
in finding targets is dependent on the truncation of long movements at the target loca-
tion. We investigate the effect of finding targets on the displacement of the movement
path. We find that finding targets decreases the displacement of the Lévy walk and
links the scale of the movement to the scale of the target distribution. By examining
the distribution of observed movements we find that with an decrease in the mean free
path between targets (λ) the slope (−μ) of this distribution is systematically under-
estimated. Truncating movements at target locations, which is an assumption crucial
to the success of Lévy walks, thus leads to a systematic error in both the estimation
of the model parameter μ from local movements and the scale-free extrapolation from
these local movements to landscape level processes. The linkage between the scale of
the target distribution and the scale of movement will not be limited to interactions
with targets in Lévy walks but will also be occur as a result of interactions with other
landscape features in fractal-like movement patterns. Changes in the scale at which
landscape features are expressed can thus change animal distribution patterns.

4.1 Introduction

Animal movement is a key element of many ecosystem processes (Bell, 1991; Turchin,
1991, 1996; Viswanathan et al., 1999). Because movement determines the rates of en-
counters with resources, predators and habitats, the movements of individual animals
will have a profound influence on their fitness (Pyke, 1984; Turchin, 1998; Viswana-
than et al., 1999; Zollner & Lima, 1999; Prasad & Borges, 2006). Individual movements
determine in the distribution of a population, interactions with the environment and con-
nections between sub-populations at the ecosystem scale (Turchin, 1991, 1996; Hanski,
1999). Therefore there is a lot of interest in using movement models that can describe
movements at the level of the individual, and that can be used to predict large scale
distributions of populations (Turchin, 1996). Random walk models can provide such
a link between individual and local movement behaviour to population and large scale
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distributions (Kareiva & Shigesada, 1983; Turchin, 1991, 1998; Bartumeus et al., 2005).
Especially for fractal-like movement models, it is assumed that the statistical properties
remain constant when scaling up from local movement paths to larger scales (Dicke &
Burrough, 1988; Turchin, 1996). Based on this assumption rates of individual displace-
ment and population diffusion can be calculated over larger scales than the scales on
which parameter estimates were based (Turchin, 1996; Bartumeus et al., 2005).

One important class of fractal-like random walks is that of the Lévy walks (Vis-
wanathan et al., 1999). Lévy walks consist of straight line movements (called flights)
with a length drawn from a power-law distribution, and uniformly distributed turning
angles. The resulting movement path is typically a fractal combination of frequent local
movements with occasional long range movements (Viswanathan et al., 1999; Bartumeus
et al., 2005). The exponent −μ of the power-law distribution is the parameter that de-
termines the relative amount of those long movements. The power-law distribution of
flights ensures scale-free properties of the movement path, potentially allowing for the
extrapolation of results across scales. The parameter μ can be estimated relatively easily
from animal movement data by estimating the slope of the downward part of the log-log
frequency distribution (Viswanathan et al., 1999; Sims et al., 2007). This approach has
resulted in many observations of Lévy walks in animal movements, e.g., albatross (Viswa-
nathan et al., 1996), deer and bumblebees (Viswanathan et al., 1999), jackals (Atkinson
et al., 2002), reindeer (Mårell et al., 2002), micro-organisms (Bartumeus et al., 2003),
seals (Austin et al., 2004), spider-monkeys (Ramos-Fernández et al., 2004) and goats
chapter 2.

The scaling of the mean squared displacement (msd) to the duration of searching, is
an important macroscopic property of movement behaviour (Kareiva & Shigesada, 1983;
Bell, 1991; Turchin, 1991). Lévy walk paths result in a msd that scales with a factor α
between 1 and 2 (Bartumeus et al., 2005). For Brownian motion, msd scales with α = 1
with duration, while for ballistic (straight line) motion α = 2 (Bartumeus et al., 2005).
Fixed scaling allows for the extrapolation of path properties from small to large scale
movements. Correlated random walks, often used to model animal movements, do not
have constant scaling factor for the msd, but rather converge to Brownian motion at
the long term limit and thus α eventually converges to 1 (Bartumeus et al., 2005).

The Lévy walk with μ ≈ 2 has been shown to be extremely successful in finding
scarce patches of targets (Viswanathan et al., 1999; Bartumeus et al., 2005). Further
investigations have shown that the crucial assumption determining the efficiency of the
Lévy flight model is the truncation of flights at target encounter chapter 3. This trun-
cation allows for repeated rediscovery of the same patch of targets, while the relative
large frequency of long movements ensure high efficiency in locating new patches. The
frequency of encounters is determined by the density of patches of targets or, inversely,
the mean free path between two patches targets (λ) (Viswanathan et al., 1999).

Thus Lévy walks show scale-free macroscopic properties and have the highest
searching efficiency. These properties of Lévy walks can however be conflicting if the
truncation of a flight at target encounter would change the shape of the frequency dis-
tribution of performed flights (da Luz et al., 2001), chapter 3. This would be the case
if these encounters occur often and proportional to the length of a flight. While the
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scale-free increase of the msd depends on the scale-free distribution of flight lengths,
the truncated flight is shorter than the original flight, increasing the frequency of the
smaller flight classes at the expense of the larger flight classes and possibly changes the
distribution of flights. da Luz et al. (2001) have quantified the effect this truncation has
on the distribution of the short flights, but the formula they provide does not allow for
changes in the frequency of long flights in the distribution. Furthermore a change in the
distribution of long flights will change the estimation of μ.

Here we use on simulated Lévy walks at different values of λ to assess the influence
of encounters with targets on the properties of the movement path. We are especially
interested in the displacement realised by the Lévy flight and the shape of the log-
log frequency distribution of the observed flight lengths. This distribution is used to
estimate the value of the parameter μ that determines the shape of the movement path.
We compared the distribution of chosen flights to the distribution of observed flights to
estimate the error in estimating μ from this distribution and to understand the effect of
λ on the macroscopic properties of the movement paths.

4.2 Methods

To investigate the effect of target encounters on Lévy flights, we simulated the Lévy
flight following the description of Viswanathan et al. (1999):

1. If a target site lies within a direct vision distance rv, then the forager
moves on a straight line to the nearest target site.

2. If there is no target site within a distance rv, then the forager chooses a
direction at random and a distance lj from the probability distribution
P (l) ∼ l−μ. It then incrementally moves to the new point, constantly
looking for a target within a radius rv along its way. If it does not
detect a target, it stops after traversing the distance lj and chooses a
new direction and a new distance lj+1; otherwise, it proceeds to the
target as in rule (1).

The movement was simulated in an expanding two-dimensional environment. Ini-
tially one region containing 10 randomly distributed targets was created (the dimensions
of this region were determined by λ, see Bartumeus et al. (2005, appendix)). Whenever
the forager scanned across the boundaries of this region (with a ‘direct vision’ distance of
1 unit), a new region containing 10 targets was added. Both non-destructive (as an ap-
proximation of a patchy resource distribution) and destructive searches were simulated
(Viswanathan et al., 1999). During a destructive search, targets were replaced within
the region of the old target. For both destructive and non-destructive search a delay of
four time steps after consumption was used within which no targets could be found by
the forager. A step increment of 0.5 units was used.

Simulations were done for both destructive and non-destructive search in environ-
ments with λ of 10, 100, 1000 and 10000. Movement paths were simulated for five values
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of μ, ranging from near ballistic (μ = 1.1) to near Brownian (μ = 2.9), with intermedi-
ate values μ = 1.5, μ = 2.0 (referred to as the optimal movement), and μ = 2.5. Each
simulation was repeated 20 times, simulations lasted 106 timesteps. During the simu-
lation, the chosen movement lengths and the subsequent locations of the forager were
recorded. Displacement was recorded after 103, 104, 105 time steps and at the end of the
simulation. After the simulation the recorded locations were aggregated into flights as
described in Turchin (1998), chapter 2. This resulted in the observed flight distribution.
We compared the longest of the observed flights to the longest of the chosen flights and
λ. This gives information about the extent to which the flight distribution is truncated;
the ratio between the observed and the chosen flights shows the effect of truncation, the
ratio between the observed fights and λ and between the chosen flights and λ indicate
the relative importance of λ in the truncation. The downward part of the log-log plot of
the frequency distribution of flights was used to estimate both μin (for the distribution
of chosen flights) and μobs (for the distribution of observed flights) (Viswanathan et al.,
1999; Sims et al., 2007). The regressions of μobs on μin were calculated for each value
of λ separately. Regressions were compared using analysis of covariance, followed by a
Tukey-test for multiple comparisons (Zar, 1996).

4.3 Results

Because the results of the destructive search were qualitatively similar to those of the
non-destructive search, only the non-destructive search results will be shown. For the
near ballistic (μ = 1.1) and optimal (μ = 2.0) movements, the distribution of observed
flights is clearly different from the chosen flights. This difference is largest for the near
ballistic motion at low λ, in this situation the largest observed flight is only 6.7% of
the largest chosen flight (Table 4.1). While for near Brownian motion (μ = 2.9) the
maximum chosen flight is already shorter than λ and there is no truncation of these
flights.

These truncations can be seen in the distribution of the flight lengths. Figure
4.1 shows the log-log frequency distribution of the observed flights for a given path
for all three values of μ at the highest and lowest values of λ. In these graphs it can
be seen that the truncations result in three patterns for the tail of the distribution:
(1) the slope and the shape of the distribution of observed flights do not deviate from
the distribution of chosen flights (Figure 4.1 b,d,f), (2) the slope of the distribution of
observed flights partially follows the slope of the distribution of chosen flights, but the
frequency of larger flights is much smaller for the observed than for the chosen flights
(Figure 4.1 c,e), and (3) the observed flight distribution does not resemble the chosen
flight distribution (Figure 4.1 a).

Figure 4.2 illustrates that the distribution of observed flights changes with decreas-
ing λ. In this figure, the estimated μ of the observed flights (μobs) is plotted against
the μ of the chosen flights μin. The regression lines for the different values of λ share a
common slope (F = 2.29, ν1 = 3, ν2 = 392, p = 0.08, common slope = 0.93), but the
elevations of the lines are different (F = 175.2, ν1 = 3, ν2 = 397, p 
 0.001). Multiple
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Figure 4.1: The log-log frequency distribution of chosen (gray line) and observed (black line)
flights. Representative flight distributions are shown for (a) μ = 1.1,λ = 10, (b)
μ = 1.1,λ = 104 (c) μ = 2.0,λ = 10 (d) μ = 2.0,λ = 104 (e) μ = 2.9,λ = 10 (f)
μ = 2.9,λ = 104
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Table 4.1: The maximum flights. Maxima for the chosen (Mc) and observed (Mobs) flights.
Mobs
Mc

shows the relative truncation, while the relation between Mc/λ and Mobs/λ
gives insight in the relative impact of λ on the truncation. Values for the flights and
λ are all log10 transformed.

μ λ Mc Mobs
Mobs

Mc
Mc/λ Mobs/λ

1.1 1 42.716 1.999 0.067 42.716 1.999
2 40.670 2.904 0.073 20.335 1.452
3 31.808 3.812 0.123 10.603 1.271
4 23.460 4.651 0.212 5.865 1.163

2 1 5.343 1.862 0.352 5.343 1.862
2 5.087 2.724 0.541 2.544 1.362
3 5.343 3.575 0.679 1.781 1.192
4 4.862 4.228 0.872 1.215 1.057

2.9 1 2.935 1.734 0.598 2.935 1.734
2 2.860 2.401 0.844 1.430 1.201
3 2.860 2.694 0.948 0.953 0.898
4 2.965 2.976 1.004 0.741 0.744

comparisons showed that the lines for λ = 103 and λ = 104 had no different elevation
(q = 2.14, ν = 196, p > 0.05). The other lines had significantly different elevations.

The msd is shown for three values of μ (near Brownian, optimal and near ballistic)
in figure 4.3. For the near Brownian movement, the msd is scaling to time with unity.
The msd of the ballistic and optimal movements are greatly reduced by a decrease of
λ. Over time the msd of both near ballistic and optimal search converges to the msd of
Brownian motion (α = 1).

4.4 Discussion

The assumption of scale-free extrapolation of the movement pattern across spatial scales
for fractal-like movements, like the Lévy walks, is important to provide a link between
small scale data-collection and landscape level spatial processes (Turchin, 1996). The
simulation results presented in this study show that encounters with targets can greatly
change both the macro- and microscopic properties of movement paths. These encoun-
ters limit the scales over which the macroscopic properties of the movement path are
approximately scale-free. This means that the property that makes the Lévy walks
an optimal movement strategy in a patchy environment, at the same time changes the
macro- and microscopic properties of the movement paths. This limits the applicabil-
ity of this fractal-like movement model to link local movements and landscape level
processes.

At the macroscopic level, the mean square displacement of the movement paths
decreases with the increase of the number of encounters with targets. This decrease
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Figure 4.2: Observed vs Chosen μ. The slopes of the downward part of the log-log frequency
distribution of the observed flights (μobs) are plotted against the slopes of the
distribution of flight used to generate the paths μin. For four values of λ (λ = 10,
(�); λ = 102, (�); λ = 103, (�); λ = 104, (�)); The solid line is the reference line
μin = μobs
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Figure 4.3: The mean square displacement (msd) as a function of time. msd is shown for
the near ballistic (μ = 1.1, left), optimal (μ = 2.0, middle) and near Brownian
(μ = 2.9, right) motion. Each panel shows the msd at four levels of λ (λ = 10, �;
λ = 102, �; λ = 103, λ = 104, �). The continuous lines show the hypothetical
extremes of Brownian (α = 1) and ballistic (α = 2) motion. Fitted lines serve only
as indication of a temporal trend in msd.

in displacement is the result of truncations of the long movement lengths at target
encounter. These truncations occur at every scale of λ evaluated in this study, but have
little effect on movement paths resulting from Brownian motion. This is due to the fact
that the longest flight expected in a flight length distribution associated with this type
of movement is about 103 units, which is smaller than the largest λ used. All other
movement paths used in this study show a decrease in the scaling of the mean square
displacement with time that will eventually make all paths converge to Brownian motion
at scales much larger than the scale of the movements.

These truncations also change the shape of the distribution of observed flights.
The shape of these distributions could be categorised into three general patterns. First
(mostly observed for high values of λ and large values of μ), the slope of the distribution
of observed flights coincides with the slope of the original distribution (pattern 1). With
pattern 2 (found at intermediate to low values of λ and at intermediate values of μ),
the slope of the original distribution only coincides with the observed distributions at
intermediate flights. For patterns of type 3 (found with low values of μ and λ), the slope
of the chosen distribution cannot be found in the observed distribution. For patterns 2
and 3 the estimation of the value of μ from the is no longer straight forward. As a result
of this shift in patterns, the value of μ was systematically overestimated. These errors
become apparent at intermediate values of λ and increase with decreasing λ. Field or
experimental estimations of μ should therefore include an estimate of λ and are only
valid for high values of λ.

The relation between the scale of the target distribution (λ) and the scale of the
movement path, that we find in this study, will not be limited to targets which are
specifically sought using a Lévy walk, but will occur with fractal movements and the scale
of the distribution of other landscape features that interact with these movements. Such
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interactions with landscape features have been shown to influence animals’ movement
paths (Crist et al., 1992; Crist & Wiens, 1994; Wiens et al., 1995) and changes in
the dominant scale of the landscape have changed the distribution of animals (e.g.,
elephants (Murwira, 2003)). We show that interactions with landscape features reduce
movements that are in principle scale free to Brownian motion that is scaled to the scale
of those landscape features. Because Brownian motion can only cause limited dispersion
of animals through the landscape relative to scale-free fractal movements (Bartumeus
et al., 2005), the simple interaction of animals with landscape features could account
for changes in animal distribution if the scale at which those landscape features are
expressed change.
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5 Search Movements of Doves are
not Affected by Detection Radius
and Resource Density

Geerten M. Hengeveld, Coen P. H. Elemans, Frank van Langevelde,
Jasja Dekker & Herbert H. T. Prins

Animal movement is predicted to change in response to changes in the mean free
path (λ) between resources. With a small λ the path is predicted to be tortuous without
long stretches, while with a large λ the path will be more straight, containing many long
stretches. Searching ceases at the encounter with a target, causing interruptions in the
searching part of the movement path. These interruptions are predicted to alter the
shape of the movement path, relative to the searching path. Using an experimental
system with ring doves searching for hidden hemp seed, these predictions were tested.
The experimental setup allowed for the independent manipulation of the detection radius
of the doves and the density of the seeds, together determining λ. Both hypotheses
were refuted by the data. This result indicates one movement strategy regardless of the
density of resources.The movements of the doves could be described as a Lévy modulated
correlated random walk. The distribution of intervals between large turns (l) could be
described as P (l) ∼ l−μ, with μ = 1.61. This is a deviation from the predicted ballistic
movement (μ → 1) in a search for random targets, and is different from the often found
μ ≈ 2.0 that is optimal in a patchy environment.

5.1 Introduction

Whenever information about the distribution of resources is limited, animals targeting
these resources are predicted to employ random movement strategies while searching
(Bell, 1991; Bartumeus et al., 2005). Because information limitation is expected to be
common (Bell, 1991), a number of studies used random search movements within the
theory of optimal foraging (Pyke, 1984; Cain, 1985; Viswanathan et al., 1999; Zollner &
Lima, 1999; Bartumeus et al., 2005). These studies show that some movement patterns
are more successful in finding resources than others. In the search for single targets
that are depleted after encounter, straight line searches are most efficient (Pyke, 1984;
Viswanathan et al., 1999; Zollner & Lima, 1999; Bartumeus et al., 2005). For multiple
targets with a patchy distribution a fractal combination of frequent short with occasional
very long straight searches maximises the searching efficiency (Viswanathan et al., 1999;
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Bartumeus et al., 2005). The key environmental parameters that scale movement models
are the number of resource targets (N0) and the detection radius of the searching animal
(rv [m]) (Viswanathan et al., 1999).

Many animals have been shown to follow these predictions on various scales and
mostly in field situations (e.g.micro-organisms (Bartumeus et al., 2003), cabbage but-
terfly (Root & Kareiva, 1984), painted turtles (Bowne & White, 2004), albatross (Vis-
wanathan et al., 1996),deer (Viswanathan et al., 1999), reindeer (Mårell et al., 2002),
goats (chapter 2), grey seals (Austin et al., 2004), jackals (Atkinson et al., 2002), and
spidermonkeys (Ramos-Fernández et al., 2004)). However, most of these studies do not
specifically address the effect of resource density and detection radius, on the shape of the
movement path (but see Boyer et al. (2006)). Using ring doves (Streptopelia roseogrisea),
we experimentally tested the effect of resource density and detection radius on the shape
of the movement path.

The radius at which targets can be detected (rv) and the density of resources
(N0/L

2, where L is the size of the area [m2]), together determine the average distance
that needs to be moved to locate a resource (the mean free path λ ≈ L2

2rvN0
(Viswanathan

et al., 1999; Bartumeus et al., 2005)). Theoretical work has lead to the prediction that
for optimal foraging at low values of λ the movement path should be more tortuous (Bell,
1991; Viswanathan et al., 1999) than at higher λ. In the random walks, the tortuosity
changes by changing 1) the distribution of turning angles (resulting in a correlated
random walk (Kareiva & Shigesada, 1983; Turchin, 1998)), 2) the distribution of intervals
between turning (for specified distributions resulting in a Lévy walk (Viswanathan et al.,
1999)) or 3) a combination of both (resulting in a Lévy modulated correlated random
walk (Bartumeus et al., 2005)). Consequently, the distribution of the turning angles
and/or the intervals between turning can be used to characterise the tortuosity of the
movement path. The length of the mean vector of turning angles R quantifies the average
displacement per step and can be used to quantify the tortuosity of the movement path.
A small R indicates a highly tortuous movement path. The exponent (−μ) of the power-
law describing the distribution of turning intervals (P (l) ∼ l−μ, where l is the length of
a turning interval) also captures the tortuosity of the movement path. For 1 ≤ μ ≤ 3
the movement path is referred to as a Lévy walk with μ → 1 for low tortuous, ballistic,
movement and μ → 3 for high tortuosity. The predicted optimal search movement for a
patchy distribution of targets is μ ≈ 2.0 (Viswanathan et al., 1999). So to optimise the
efficiency in finding targets the movement pattern needs to be adjusted (by changing
either R or μ) to the environment (i.e., λ).

Within the movement path of an animal searching for targets, we differentiate
between 1) the ’total path’ i.e. the entire travelled path and 2) the ’searching path’,
i.e. the traveled part of the movement path in which the animal is only searching in
between encounters with targets (see Figure 5.1). Theoretical work predicts that changes
in rv or N0 (thus changes in λ), result in a change of the shape of the movement path
(as has been observed for bumblebees (Viswanathan et al., 1999) and goats chapter 2).
Furthermore, theoretical models predict that with decreasing λ an increasing difference
between the characteristics of the total path and searching path can be expected. This
latter prediction follows from the argument that at low values of λ, an animal will
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Figure 5.1: The difference between locations making up the total path (all filled circles) and
the locations where the animal is searching (black circles). Those locations where
the animal is within the detection radius (rv) of a resource (+) are classified as part
of a finding event, between these locations movement is not guided by searching
behaviour, but directed towards the resource

encounter more targets per unit of time. Because target encounters cease searching
behaviour, they influence the characteristics of the total movement path, chapter 4.

In this paper, we test the effect of changes in detection radius rv and resource
density N0 on movement patterns in a controlled setting for the first time. Our experi-
mental setup allows us to systematically manipulate N0 and rv, and to directly measure
the difference between the searching path and the total path. We tested the following
two hypotheses:

H1 The path characteristics of the searching path are different from those of the total
path.

H2 The movement path becomes more tortuous when rv and/or N0 increase.

5.2 Material and Methods

Our hypotheses were tested using an experimental system with ring doves searching for
hidden hemp seeds in an arena. The experimental design allowed for the independent
manipulation of both rv and N0. The searching path could be separated from the total
path, because rv and the location of the seeds were known. Video-tracking the dove
provided high temporal resolution determination of the position of the dove.

5.2.1 Animals

For the experiment, 10 domesticated ring doves of unknown sex were used. The animals’
primary feathers were cropped to avoid flying during the trials. In between trials, the
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Figure 5.2: Schematic of the experimental setup. By placing the seed in a hole in the ground
the minimal distance at which it can be seen by the dove can be measured. The
depth (D) of the holes could be varied, the height of the dove (H) was estimated to
be 18 cm. From these two parameters, the detection distance rv could be calculated

animals were housed individually, but closely together in cages. To ensure that the
animals foraged during the trials, the trails were done in the morning, and doves were
deprived of food 36 hours prior to the experiment. When not in cue for the experiment,
food an water were provided ad libitum. The animals were habituated to the arena
prior to the experiment. The experiment was assessed and permission granted by the
Institutional Animal Care and Use Committee of Wageningen University (entry code
2004095c).

5.2.2 Arena design

The staging arena consisted of a fenced area of 4 meter x 4 meter. The floor of this
arena consisted of wood plating that contained a grid of 1917 holes (� 1 cm, at an
average distance of 9 cm) that formed the potential resource locations. The detection
radius of the dove was altered by manipulating the depth of the holes. Adding a layer of
wood plating, increased the depth of each hole from 0.4 to 0.8 cm. With an average eye
height of 18 cm, this manipulation resulted in detection radii rv of 22.5 cm and 11.25
cm, respectively (Figure 5.2). The arena was surrounded with 2.5 meter high fences
that were covered with white cloth to minimise distraction for the experiment subjects.
Overhead lights were used and windows were blinded during experiments to ensure that
light was similar during all trials and no orientation cues (e.g., the position of the sun)
could affect directionality.

50



Dove Searching Experiment

5.2.3 Tracking system & Image analysis

During the trials, the ring dove was video-tracked from above. The whole area was
filmed at 4 Hz by four webcams (Quickcam 4000, Logitech Inc, Romanel-sur-Morges,
Switzerland) resulting in a final spatial resolution of 2.3 cm pixel (Figure 5.3). The
webcams were controlled using the Image Acquistion Toolbox in Matlab 7.0 (The Math-
works Inc., Natick, MA, USA). The consecutive locations of the doves were extracted
from the data using a custom-written algorithm in Matlab (using the Image Processing
Toolbox). For every sampling point in the time-series, a calibrated composite image of
the arena was calculated by rotating, scaling and aligning the raw images of the four
webcams. In essence, the position of the dove was extracted by subtracting the frame
with a weighted frame of the empty arena that was acquired before the start of every
trial. The resulting image was thresholded and denoised, which yielded a binary image
of the arena (pixelvalue = 0) with the region of interests (ROI, pixelvalue = 1) occupied
by the dove. The position of the dove was defined as the position of the centre of mass
of the ROI. This algorithm proved very robust as out of 120 trails, only 2 paths could
not be extracted.

5.2.4 Trial procedure

The animals foraged on three different resource densities, with 9, 19 and 95 seeds in
the arena, and on two different hole depths, i.e., two resource detection radii of the
animal (0.4 and 0.8 cm, resulting in rv values of 22.5 cm and 11.25 cm, respectively,
based on an average dove height of 18 cm). For each density, two different distributions
were presented to each dove. For these distributions, each seed was assigned a random
location in the arena, with the constraint that the distance between to seeds was larger
than rv. At the densities used, the majority of holes did not contain seeds, only 0.5%,
1% and 5% of the holes were filled. Before the trial the locations of the resources were
recorded with the cameras using paper markers. A ring dove was introduced in the
arena, and was tracked for 15 minutes. After the trial, the remaining seeds were counted
and removed.

The trials with the large detection radius were carried out from 29 June 2005 until
1 August 2005, and the trials with the small detection radius were carried out from 23
August 2005 until 22 September 2005. Doves were put in the trial in sequence, with a
maximum of three doves per day. Each dove encountered the different distributions in
random order.

5.2.5 Statistical analyses

The parts of each path that were not within detection distance rv from a resource
were analysed separately as searching path (Figure 5.1), next to the analysis of the
total path comprising all locations. Turning angles at locations that were within the
detection distance from a resource were excluded from the ‘total path’ turning angle
distributions to form the ’searching path’ turning angle distributions. Intervals that
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Figure 5.3: A movement path. This figure shows a typical movement path. The recorded
locations of the dove are shown with a filled diamond. Seeds (small circles) and
the area around it from where they can be detected (large circles, with radius rv)
are shown. Seeds that are eaten are shaded. Parts of the path that are within the
radius rv of a seed (shaded areas) are excluded from the path to derive searching
path statistics
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encompassed these locations were excluded from the ‘total path’ interval distribution,
to form the ’searching path’ interval distribution. The characteristics of the searching
path were calculated in the same way as those of the total path. For the statistical
analyses, the movement path data were lumped according to the different values of
λ, i.e., for each combination of N0 and rv. Following Bartumeus et al. (2003), the
major discontinuity in the turning angle distribution (β) was used as an indication
that there are two overlapping distributions of turning angles; a unimodal distribution
of turning angles and a uniform distribution of turning angles. The turning angles
were thus split into two groups, Ψ<β (small angles) and Ψ>β (large angles), that were
analysed separately. The small angles were used directly, while for the large angles,
the distribution of intervals between these large angles was used as an indication of
the distribution of the ‘flights’ of a Lévy flight movement (Viswanathan et al., 1999;
Bartumeus et al., 2003). The slope of the downward part of the log-log frequency
distributions of those flights is an estimator of the parameter μ scaling such Lévy flight
movements (Viswanathan et al., 1999).

First, the hypothesis that there is a difference between the searching path and the
total path was tested for each combination of N0 and rv. For the small angles (Ψ<β)
the probability that the turning angles of the searching paths observed were a random
sample of the turning angles of the total paths with the same combination of N0 and
rv was determined using bootstrapping. The mean vector (R) of the searching Ψ<β was
compared to the R of 1000 equally sized random samples of the Ψ<β from the total path.
The percentage of samples with a larger R was calculated. Percentages > 97.5% and
< 2.5% were taken as indication that the searching path had a significantly lower or
higher R, respectively. Subsequently the slope of the distribution of intervals between
the large angles (Ψ>β) for the searching and the total path were compared using the
Student’s t-test (Zar, 1996).

Second, the effect of N0 and rv on the total paths was tested. A difference in
the spread of Ψ<β was tested using the two-factor Kruskall-Wallis test as proposed by
Scheirer, Ray & Hare (Scheirer et al., 1976; Zar, 1984). For this procedure sample sizes
were reduced to the smallest sample size. The comparison between the slopes of the
distribution of intervals between Ψ>β was done using analysis of covariance (Zar, 1996).

5.3 Results

Of the 120 trials performed, 102 trials were included in the analyses. The other trials
were excluded because there were either difficulties with extracting the positions of the
dove from the captured images (2) or there was insufficient movement during the 15
minute trial (16).

The major discontinuity in the frequency distribution of turning angles was found
at β = 45◦ (Figure 5.4). The turning angles were split into two groups; Ψ<β (small angles,
|angle| < β) with a unimodal distribution and Ψ>β (large angles, |angle| > β) with a
more uniform distribution. These groups were analysed separately. A linear regression
was fitted to the log-log distribution of intervals between the large angles (Viswanathan
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Figure 5.4: frequency distribution of the angles. The frequency distribution of the absolute
turning angles are shown, summed for the different number of seeds N0 and the
different detection radii rv. The frequency distributions of the turning angles show
a discontinuity at 45◦

et al., 1999; Sims et al., 2007). For all separate treatments, this regression resulted in
good fits: R2 > 0.94 (see Figure 5.5).

First, we tested our hypothesis that the searching path was different from the total
path. The small turning angles (Ψ<β) in the searching paths did not differ from a random
sample from Ψ<β of the total movement paths for all combinations of N0 and rv (Table
5.1). Furthermore, for none of these parameter combinations, a difference between the
distributions flights of the searching paths and the total path was found (Table 5.2).

Second, we tested the difference in the total path between the different levels of
N0 and rv. Ψ<β did not differ between the different values of rv and N0 (Schreirer-Ray-
Hare-test H = 6.8, ν = 5, p = 0.24). Neither did the distributions of the intervals differ
between the large turning angles (Ψ>β) (F = −0.63, ν1 = 5, ν2 = 46, p > 0.05, pooled
slope = −1.61, Figure 5.5).

5.4 Discussion

The shape of the movement path determines the displacement that is reached by the
animal while moving and thus the average spread of the animals in a population (Bell,
1991; Turchin, 1991; Benhamou, 2004; Bartumeus et al., 2005). As such, movement be-
havior can have a large influence in the spatial extent over which animals interact with
and have impact on their environment. Understanding the magnitude of the response
of animals to the density of resources and the effect of resource encounters on the to-
tal movement path strengthens the understanding of the effect of small scale foraging
movements in larger scale ecological processes, such as dispersion and consumer-resource
interactions.

For the first time to out knowledge, we investigated the sensitivity of the movement
patterns of ring doves to changes in the density of seeds (N0) and the distance from which
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Table 5.1: Summary of the distribution of turning angles < 45◦ in the total path (T ) and the
searching path (S). The table shows the number of angles, the mean vector (r) and
the percentage of random samples from the angles from the total path that has a
larger R than RS .

rv cm N0 ##anglesT RT ##anglesS RS % > S

22.5 9 1269 0.963 398 0.961 79.0
22.5 19 1311 0.966 294 0.963 85.5
22.5 95 647 0.955 114 0.957 34.6
11.25 9 1021 0.959 543 0.957 76.3
11.25 19 824 0.960 434 0.963 10.5
11.25 95 1263 0.960 181 0.960 57.0

Table 5.2: Comparison of the slopes of the loglog distribution of intervals between turning
angles > 45◦ between the total path (μT ) and the searching path (μS)

rv (cm) N0 μT μS t ν p

22.5 9 -1.592 -1.492 0.783 12 0.45
22.5 19 -1.616 -1.620 0.030 10 0.98
22.5 95 -1.565 -1.339 0.469 5 0.66
11.25 9 -1.561 -1.569 0.081 10 0.94
11.25 19 -1.587 -1.538 0.505 12 0.62
11.25 95 -1.668 -1.715 0.370 10 0.72
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Figure 5.5: The Frequency distribution of intervals between large turning angles (Ψ>β). The
frequency distributions for all six combinations of N0 and rv are combined. The
regression line fits a power-law distribution (P (l) ∼ l−μ with μ = 1.61, R2 = 0.99)
. The regression excludes the first two bins.

these seeds can be detected (rv) experimentally. Furthermore, we tested the prediction
that the searching path is different from the total movement path. Within the range of
densities and detection radii that we used, no change in movement pattern was found.
There also was no difference between the parts of the movement path where the doves
were searching for seeds and the total movement path.

The distribution of the absolute turning angles of the doves showed a marked
discontinuity (β) at 45◦. This discontinuity was used to distinguish two different types
of movement: (Bartumeus et al., 2003) 1) the small angles (Ψ<β) showed a unimodal
distribution, indicative of a correlated random walk, and 2) the large angles (Ψ>β) were
uniformly distributed. The distribution of intervals between large turning angles of the
doves could be described by a negative power-law distribution, this indicates scale-free
Lévy flight behaviour. These two different patterns in the movement path together
suggest that the doves search according to the Lévy modulated correlated random walk
(lmcrw) introduced by Bartumeus et al. (2005). The lmcrw combines the large scale
properties of the Lévy flight behaviour with small scale deviations from this behaviour.

Many studies finding Lévy flight behaviour in animals find the exponent μ to be
approximately 2 (Viswanathan et al., 1996, 1999; Atkinson et al., 2002; Mårell et al.,
2002; Bartumeus et al., 2003; Ramos-Fernández et al., 2004) This value for μ is the the-
oretically predicted optimum when searching for patchy distributed targets. However,
for randomly distributed targets, such as the ones the doves were confronted with in
this study, theory would predict μ to approach 1, resulting in straight line movement
(Viswanathan et al., 1999; Zollner & Lima, 1999; Bartumeus et al., 2003). Our experi-
ment shows an exponent value of μ = 1.61 to fit the distribution of the intervals between
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large turning angles. This exponent (μ = 1.61) does, however, falls well within the range
of near optimal exponents for searching for targets in patches that become temporarily
unavailable after it has been visited (Raposo et al., 2003). This could be an indication
that doves searching for seeds employ one movement strategy that is not conditioned to
the density or distribution of the seeds. Their movement pattern does allow for both
patchy and non-patchy distributed seeds.

Within this experiment the animals performed a standard search strategy that was
independent of the mean free path (λ). We measure no effect of target encounter on
the movement path within the range of seed densities and detection radii used in this
experiment. Furthermore, the doves do not seem to adjust their behaviour as a function
of different densities encountered. If this finding would hold for a wider range of λ and
over larger spatial extent, this allows prediction of animal movements over wide scales
based on small scale movements. The Lévy modulation of the movement will ensure
scale free movement properties that result in superdiffusive dispersion (Bartumeus et al.,
2005). The specific low value of μ found in this study would make animals interact with
their environment over an even wider range than the ‘optimal’ μ ≈ 2.0 would. The doves
used in this experiment will thus cover a larger range than predicted on the basis of the
optimal Lévy walk.
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6 Optimal Foraging for Multiple
Resources in Several Food Species

Geerten M. Hengeveld, Frank van Langevelde, Thomas A. Groen &
Henrik J. de Knegt

Optimal foraging theory has rarely resulted in quantitative models for animals that
need to forage for more than one resource. However, such models are needed because
the concentrations of resources in food species are not perfectly balanced to the needs of
an animal and forage species differ in these concentrations. Under many circumstances
animals should thus forage on multiple food species to attain the maximum and most
balanced intake of several resources. In this paper we present a model to extend optimal
foraging theory to incorporate concurrent foraging for multiple resources from several
forage species. A natural balancing of resources is achieved by representing the amount of
a resource as the time during which it is used by the animal. Optimisation of decisions
at two scale levels is considered simultaneously: the time spent in a patch, and the
proportion of patches of each forage species that is included in the foraging path. Our
results show that the balancing of resource intake is achieved at the level of the foraging
path, while the maximisation of intake is realised at the nested patch level. Furthermore
our results show that the choice for a forage species is dependent on the differences
between the intake per forage species, and on the differences between the resource ratios
in the forage species. The optimal patch residence time is a function of only local
information.

6.1 Introduction

Optimal foraging theory has mainly focussed on the optimal acquisition of a single
resource (generally energy as the principal forage component for animals) (Charnov,
1976; Stephens & Krebs, 1986; Newman et al., 1995; Bergman et al., 2001). Most
extensions have involved the constraints an animal faces while trying to either maximise
the intake rate of a resource or minimise the time needed to acquire a specific amount
of that resource (Pulliam, 1974; Westoby, 1974; Pulliam, 1975; Belovsky, 1978; Owen-
Smith & Novellie, 1983; Stephens & Krebs, 1986; Illius & Gordon, 1991; Owen-Smith,
1993; Wilmshurst et al., 2000; Bergman et al., 2001; Fryxell et al., 2004). However,
animals need to acquire more than one type of resource during foraging; many (macro-
)nutrients (e.g., protein or nitrogen and phosphorus) are consumed and needed (Westoby,
1974; Belovsky, 1978; Westoby, 1978; Prins & Beekman, 1989; Prins, 1996; Forbes, 1999;
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Raubenheimer & Simpson, 2004; Simpson et al., 2004; Anderson et al., 2005; Prins &
Van Langevelde, in press). The concentrations of these (macro-)nutrients differ between
the different types of food. Especially for herbivores, the concentrations of (macro-
)nutrients will differ both between and within forage species (Voeten & Prins, 1999;
Simpson et al., 2004; Prins & Van Langevelde, in press). Although linear programming
studies do take minimal requirements of several nutrients into account (Westoby, 1974;
Pulliam, 1975; Belovsky, 1978; Prins & Beekman, 1989; Nolet et al., 1995; Voeten &
Prins, 1999), the optimal acquisition of multiple resources has rarely been considered
quantitatively so far (but see Simpson et al. (2004)).

Herbivores have been shown to make foraging decisions at different scales. These
decisions involve choosing in which areas to search for food, which forage species to
include in their foraging path or diet, and how long to stay in a given patch (Schoener,
1971; Owen-Smith & Novellie, 1983; Pyke, 1984; Senft et al., 1987; Bailey et al., 1989;
Skarpe et al., 2007). In this paper we extend optimal foraging theory to include foraging
for multiple resources at the scale of both the patch and the foraging path.

On average, there will be a constant turnover rate of resources within a herbivore
(Forbes, 1999; Prins & Van Langevelde, in press), while these resources are acquired
during short and discrete bouts of foraging. During these short foraging bouts, herbivores
need to acquire enough of all resources to be able to engage in non-foraging activities.
In forage species the ratio between the concentrations of resources will in most cases be
different from the ratio of the turnover rates for these resources in the herbivore (Prins &
Beekman, 1989; Anderson et al., 2004; Prins & Van Langevelde, in press). A herbivore
thus faces the two-fold problem of having to choose between different forage species in
order to balance the intake of several resources to its requirements, and of having to
maximise the rate at which this optimal food mix is consumed.

To address this problem, we use a stoichiometric approach within the optimal
foraging paradigm (Sterner & Elser, 2002; Simpson et al., 2004). This is done by linking
the composition of forage species to the turnover rates of the different resources in the
animal.The key element of our approach is that the amount of each resource is expressed
as the extent of the time during which it is used by the herbivore. This enables direct
comparison between the intakes of the different resources.

Time that is spent foraging cannot be spent on non-foraging activities; therefore
many optimal foraging models focus on either maximisation of the intake rate or min-
imisation of the foraging time (Stephens & Krebs, 1986). When a consumer is foraging
for several resources, the maximum intake rate of each resource is not necessarily met by
the same decisions. However, on timescales much longer than a few foraging bouts, e.g.,
a couple of days, there is no use for the consumption of any resource if it is not matched
by the consumption of other complementary resources. The time that can be spent
on non-foraging activities is determined by the resource with the smallest intake rate
relative to its turnover rate. When maximising the intake-rate for this most-limiting re-
source, the ratio between non-foraging time and foraging time is maximised. We assume
that excess intake of the other resources is compensated for by post-ingestive processes
(Raubenheimer & Simpson, 2004). In this paper the goal for the optimal forager is to
maximise the time that can be spent on non-foraging activities, relative to the time
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Table 6.1: model parameters
quantity units description
ui mass time−1 turnover rate of a resource i
cij - mass proportion of a resource i in forage

species j
tj time time spend at a patch of forage species j
Ij(tj) mass mass intake from forage species j after

spending tj time there
tt time average time taken to travel between two

patches
Dj - proportion of the chosen patches that is of

forage species j
gi(tX , tY ) mass time−1 global intake rate of resource i
γi(tX , tY ) - proportion of time that no intake of resource

i is required
Γmin(tX , tY ) - minimum of the γi(tX , tY ) for all resources i
Mj mass maximum intake at a patch of forage species

j
hj time half-saturation constant of forage species j

spent foraging.

6.2 Model

Consider a herbivore and p potential forage species (denoted with subscript j). The
forage species contain r resources (denoted with subscript i) that are used by the animal
at a constant turnover rate ui (see Table 6.1 for a full list of the parameters and their
description). Let cij denote the mass proportion of resource i in forage species j. The
forage species are patchily distributed within the environment. Each patch is considered
to be of fixed size, homogeneous and to contain only one forage species. tt is the average
travel time between two patches. The travel time is independent of the time spent in
patches, or the ratio of patches in the foraging path (Charnov, 1976). The cumulative
consumption (Ij(tj)) at a patch of forage species j is strictly increasing with time in the
patch (tj), and will typically be asymptotically saturating towards a maximum intake.

The herbivore can visit various patches of different forage species while foraging.
A proportion Dj of all patches visited will be of forage species j (with

∑p
j Dj = 1).

The global intake of resource i is the weighted sum of the intake of that resource from
each forage species. The total time spent foraging is the weighted sum of the time spent
foraging at patches of each forage species, plus the average travel time between the
patches. The global intake rate of resource i (gi, in units mass time−1) is the ratio of
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the global intake and the total time spent foraging.

gi =

∑p
j(DjcijIj(tj))

tt +
∑p

j Djtj
(6.1)

Although every gi is expressed in the same units, these values cannot be compared
in a straightforward way. Because the resources are used by the forager at different
rates, a mass unit of one resource will have a totally different value to an animal than
the same mass of another resource. To sidestep this problem, we convert equation 6.1
into a proportion of time by dividing cij by the turnover rate ui. This gives us

γi =
gi

ui

=

∑p
j(Dj

cij

ui
Ij(tj))

tt +
∑p

j Djtj
(6.2)

In ecological terms γi is the proportion of the time spent foraging that the herbivore
can continue without necessarily having to forage specifically for resource i. Values of
γi below 1 can be considered as insufficient for survival, since less of the resource is
consumed than is used during foraging.

An optimal forager would want to maximise the intake rate for all resources. How-
ever, as there is no direct use for excesses of a resource, increasing γA beyond γB (for
two resources A and B) will not increase the time for non-foraging activities. This
means that the proportion of time for non-foraging activities, Γmin, is the minimum of
all proportions γi:

Γmin =
p

min
i

(γi) (6.3)

The objective for the optimal forager is to find the combination of t� and D� that max-
imises Γmin, i.e., to attain the maximum intake rate that is balanced to the turnover of
all resources.

Γmin is a function that contains two parameters that are under direct control of
the herbivore:

1. tj; the time spent in patches of forage species j

2. Dj; the proportion of visited patches that is of forage species j

The first control variable is a decision at the patch scale. The second control variable
is the key determinant at the scale of the foraging path, comprising a series of patches,
that determines the diet of the herbivore.

In the following we will evaluate the effect of simultaneous optimisation of foraging
at these two scales using the two control variables by applying numerical methods. For
simplicity, we consider only two forage species containing two resources. In the results
we will first focus our attention on the optimal value of Dj. Within the suitable range,
Dj > 0, we will analyse the values for tj.
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6.3 Numerical analyses

Let us assume two forage species (X and Y ), both containing two resources (A and
B). A herbivore can forage on patches of both forage species to attain the maximum
and most balanced intake rate on both resources. To achieve this goal, the herbivore
can decide how long to remain in a patch of any forage species (tX and tY ) and it can
alter the proportion of patches of each forage species in the foraging path (DX and
DY = (1 − DX)). Using numerical methods we will calculate the combination of tX , tY
and DX that maximises Γmin.

Because the solution cannot be found using analytical methods, an explicit form
of the cumulative gain function Ij(tj) needs to be introduced. Without loss of generality
we use the Michealis-Menten function because the optimal time in a patch predicted
by the marginal value theorem can be derived explicitly for this function (see appendix
6.A). Ij(tj) then takes the form:

Ij(tj) =
Mjtj

hj + tj
(6.4)

With Mj as the maximum intake at a patch of forage species j, and hj as the half-
saturation constant; i.e., the time needed to consume half of the patch.

The numerical analyses of this model are carried out by first calculating the com-
bination of tX and tY that yields the highest Γmin for all values of DX ∈ [0, 1]. From
this we find the value of DX that yields the highest Γmin.

For the analysis we compare forage species in pairs. These pairs consist of forage
species X with given resource contents cAX and cBX , and an alternative forage species Y ,
from the whole range of alternative forage species, with c�Y ∈ [0, 1] and cAY + cBY ≤ 1.
If we look at the values of DX and t� we find an interesting pattern (Figure 6.1 and
Figure 6.2). The combinations of specific values of both DX and t�, can be categorised
into five regions in Figure 6.1. These regions all represent different sets of alternative
forage species, relative to forage species X. For each set of alternative forage species we
will give an ecological interpretation (for the mathematical summary see Table 6.2).

I The alternative forage species has lower proportions of both resources than forage
species X. The optimal choice would be to only choose forage species X. The
optimal patch residence time is equal to the marginal value theorem prediction
(Charnov (1976); Appendix 6.A).

II The alternative forage species has higher proportions of both resources. The opti-
mal choice would be to always choose the alternative forage species Y . The optimal
patch residence time is equal to the marginal value theorem prediction.

III Foraging on the alternative forage species will yield more resource A, but less of
resource B than foraging on forage species X. However, forage species X provides
more of resource A than of resource B, making B the most limiting resource.
Therefore including the alternative forage species will not increase Γmin. The
optimal patch residence time is equal to the marginal value theorem prediction.
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Figure 6.1: A schematic representation of the values of DX , the optimal proportion of the diet
that should consist of forage species X (on a scale from white for DX = 1 to dark
grey for DX = 0). In the figure, one forage species X containing resources A and
B in mass proportions cAX and cBX is compared to all alternative forage species Y
for which c�Y ∈ [0, 0.1]. The X marks the alternative forage species Y that has the
same resource composition as forage species X. The lines l1, l2, l3 delineate groups
of alternative forage species for which the optimal behaviour in combination of
forage species X is based on the same conditions (table 6.2). For two types of
alternative forage species (I & III) the optimal choice is for forage species X, for
two types (II & IV) the optimal choice is for forage species Y and for type V there
should be a mix of both forage species, in a gradient that goes from little X near
the line l1 to a lot of X further away from this line. This gradient is described by
equation 6.8. Lines l1, l2 and l3 can be calculated from the model parameters using
the equations 6.5, 6.6 and 6.7. If IX(tX) = IY (tY ), equations 6.6 and 6.7 reduce
to the form ciY = ciX . The pattern is not limited to the range [0, 0.1]. parameter
values: cAX = 0.075, cBX = 0.025, uA = uB = 1, MX = MY = 100, hX = hY = 1,
tt = 2
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Figure 6.2: The influence of cAX and hX on DX . Each panel represents the values of DX ,
build up in the same way as Figure 6.1. If hX �= hY (top panels and bottom
panels) X, the locations that marks the alternative forage species Y that has the
same resource composition as forage species X is no longer at the intersection of
the lines l2 and l3, because IX �= IY . hX ; top panels (A,B,C): hX = 0.5hY ,
middle panels (D,E,F): hX = hY , bottom panels (G,H,I): hX = 2hY . cAX ; left
panels (A,D,G): cAX = 0.025, middle panels (B,E,H): cAX = 0.05, right panels
(C,F,I): cAX = 0.075. Other parameter values: cBX = 0.05, uA = uB = 1,
MX = MY = 100, hY = 1, tt = 2
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IV Compared to forage species X, forage species Y has less A and more B. Since in
both forage species there is more A than B, relative to the turnover rates of the
herbivore, the optimal choice would be to leave forage species X for the alternative
forage species Y . The optimal patch residence time is equal to the marginal value
theorem prediction.

V The shortage of resource B in forage species X can be compensated with excesses
of B in forage species Y while the excesses of resource A in forage species X can
compensate for the shortage in forage species Y . The optimal choice here is to feed
on both forage species. The optimal patch residence time for both forage species is
the product of only the local half-saturation constant (hj) and the average travel
time (tt) (see Table 6.2).

These sets of alternative forage species are separated by the lines l1, l2 and l3,
which are given by the equations:

l1 :
cAY

cBY

=
uA

uB

(6.5)

l2 : cAY = cAX
IX(t∗X)

IY (t∗Y )
(6.6)

l3 : cBY = cBX
IX(t∗X)

IY (t∗Y )
(6.7)

These lines indicate:

l1: those alternative forage species that contain a perfectly balanced ratio of resources
(equation 6.5).

l2: those alternative forage species for which the potential intake of resource A is equal
for both forage species (equation 6.6).

l3: those alternative forage species for which the potential intake of resource B is equal
for both forage species (equation 6.7).

Table 6.2: types of alternative forage species

type condition DX tX tY

I (cAY < cAX) ∧ (cBY < cBX) 1
√

hXtt -

II (cAY > cAX) ∧ (cBY > cBX) 0 -
√

hY tt
III cAY

uA
> cAX

uA
> cBX

uB
> cBY

uB
1

√
hXtt -

IV cAX

uA
> cAY

uA
> cBY

uB
> cBX

uB
0 -

√
hY tt

V (cAY < cAX) ∧ (cBY > cBX) ∧
( cAY

uA
< cBY

uB
) ∧ ( cAX

uA
> cBX

uB
)

eq. 6.8
√

hXtt
√

hY tt
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For the first four sets of alternative forage species, only patches of one forage species
are visited. For the fifth set of alternative forage species the optimal diet consists of a
mix of both forage species. At the optimum the condition γA = γB holds. From this it
follows that the optimal ratio of the proportion of patches of both forage species can be
calculated using the equation:

DX

DY

=
IY (t∗Y )( cBY

uB
− cAY

uA
)

IX(t∗X)( cAX

uA
− cBX

uB
)

(6.8)

Where t∗j is the optimal patch residence time in patches of forage species j. Equation 6.8
shows that patches of forage species with resource contents that are balanced more to
the herbivore’s needs (i.e., cBY

uB
− cAY

uA
< cAX

uA
− cBX

uB
) are visited most frequently.

Whenever Dj > 0, the patch residence time tj is optimised simultaneously with the
optimisation of Dj. So optimisation of the foraging behaviour takes place both between
patches and within the patch. For all Dj > 0 the optimal patch residence time t∗j is
equal to

t∗j =
√

hjtt (6.9)

For Dj = 1, this is equal to the marginal value theorem prediction (Charnov, 1976) (see
Appendix 6.A). From equation 6.9 it follows that the ratio in optimal patch residence
times for two forage species is equal to the square root of the ratio of the half-saturation
constants for those species.

t∗X
t∗Y

=

√
hX

hY

(6.10)

6.4 Discussion

In this paper we present a model that predicts the foraging behaviour that maximises
and balances intake when foraging for multiple resources on several forage species. It
predicts that when animals are free to choose the forage species they feed from, patch
residence time is only determined by local information. Furthermore, the ratio of forage
species in the foraging path is only dependent on forage species characteristics.

This model enables the prediction of the optimal combination of forage species
without going through the laborious work of explicitly defining a multidimensional fit-
ness landscape (Raubenheimer & Simpson, 2004; Simpson et al., 2004) or considering
independent fitness effects of surpluses or deficits in separate resources (Anderson et al.,
2004; Raubenheimer & Simpson, 2004; Simpson et al., 2004). This makes our model
robust, i.e., independent to species-specific constraints, and enables testing in field ex-
periments. Furthermore we can predict the patch residence time in patches of several
forage species when more resources are taken into account.

The model presented in this paper extends the commonly used single resource
approach (Charnov, 1976; Owen-Smith, 1993; Stephens & Krebs, 1986; Fryxell et al.,
2004). This single resource approach is applicable whenever there is one resource limiting
for all combinations of forage species (Figure 6.1, sets of alternative forage species I, II,
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III, and IV ). In these pairs of forage species, one forage species is chosen exclusively.
There is, however, a large range of alternative forage species for which none of the
resources is limiting in both forage species (Belovsky, 1978; Prins & Beekman, 1989;
Voeten & Prins, 1999; Ludwig et al., 2001; Raubenheimer & Simpson, 2004; Simpson
et al., 2004). These forage species are shown in Figure 6.1, region V. When such pairs of
forage species are available, the ratio between the resources in the diet can be optimised
by selecting patches of both forage species. We provide a model to investigate the
optimal foraging behaviour for these combinations of forage species at two foraging
scales simultaneously (Senft et al., 1987; Bailey et al., 1989).

At the landscape level, the forager optimises the balance in its intake by controlling
the proportion of the patches of each forage species within the foraging path. The
balance between the proportions of forage species X and forage species Y in the foraging
path is determined by the ratio of the intake at patches of both forage species and the
differences of the resource contents within each forage species relative to the turnover
rates (equation 6.8). Predicting herbivore food selection from plant chemistry has proved
to be difficult (Owen-Smith & Novellie, 1983; Skarpe et al., 2007). The model presented
in this paper provides testable hypotheses about forage species selection at the landscape
scale.

At the patch level,the optimal patch residence time depends on the average travel
time between patches and the half-saturation constant within a patch of that forage
species, this information can be considered to be locally available. The predicted optimal
patch residence time is the same as the marginal value theorem prediction for one forage
species (see Appendix 6.A; Charnov (1976)). We show that this is the optimal patch
residence time even when more than one forage species is included in the forage path,
and the forager can select at both path and patch level of foraging. We predict that
the ratio of patch residence times is determined by the ratio between half-saturation
constants of these patches (equation 6.10). These half-saturation constants are readily
assessed from field data on the cumulative intake over time (Illius et al., 1999; Skarpe
et al., 2007).

Most parameters in our model can be measured directly in experimental studies,
e.g., Illius et al. (1999); Skarpe et al. (2007). Most difficult will be the assessment of
the turnover rates for the different resources (ui). Turnover rates of water, energy and
nitrogen are quite well known, but those of other elements such as Se, Co or even P, K
and Na are much less readily available, except for some domestic herbivores.

We presented an optimal foraging approach to the challenge of achieving a balanced
diet and a maximum intake for multiple resources by selecting on two scale levels. A
natural balancing of resources is achieved by representing the amount of a resource as
the time within which it is used by the animal. We identify the rules that make pairs
of forage species exclusive or complementary. For complementary forage species the
optimal balance is only achieved by taking into account the difference in intake of the
resources in patches of both forage species. Both when visiting patches of multiple forage
species, and when visiting one single forage species, patch residence time is dependent
only on the shape of the local cumulative intake function and the average travelling time
between patches.
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6.A The Marginal Value Theorem with one Forage Species

Considering one forage species (X) containing two resources (A and B), DX = 1. We
write equation 6.2 as

γi =

ciX

ui
IX(tX)

tX + tt
(6.A.1)

If cAX
uA

> cBX
uB

,

Γmin = γB =

cBX

uB
IX(tX)

tX + tt
(6.A.2)

The marginal value theorem (Charnov, 1976) predicts that any patch should be
left whenever:

∂ cBX

uB
Ij(tj)

∂tj
= Γ∗

min (6.A.3)

where Γ∗
min is the global intake rate when tX is optimal. Using equation 6.4, we can

write:
∂ cBX

uB
IX(tX)

∂tX
=

cBX

uB
MXhX

(hX + tX)2
(6.A.4)

combining equations 6.A.2, 6.A.3, and 6.A.4, we get

cBX

uB

MX t∗X
hX+t∗X

(t∗X + tt)
=

cBX

uB

MXhX

(hX + t∗X)2
(6.A.5)

which we can reduce to:
t∗X =

√
hXtt (6.A.6)
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7 Moving Matters; how movement
can affect foraging decisions

Geerten M. Hengeveld

For many animals, the world is a heterogeneous collection of possible food. This
possible food is heterogeneous with respect to the spatial distribution, but also in the
constitution of (macro-) nutrients, like energy & protein or nitrogen & phosphate. To
deal with this heterogeneity, animals have to make decisions on what to eat, how to
find this food, and how much to feed from a patch of a chosen food type. Finding
sufficient food is a major component in the daily and life-long activities of animals.
Not surprisingly therefore these questions have played an important role in foraging
theory (Schoener, 1971; Pyke et al., 1977; Pyke, 1984; Stephens & Krebs, 1986). These
questions have also been the basis of the work that is presented in this thesis.

In this thesis, I have more specifically addressed three questions: (1) Which move-
ment pattern is used to find food; (2) What food types are chosen; (3) How much of
the chosen food is eaten. The main focus has been on how to deal with the spatial
heterogeneity of scarce resources (chapters 2 - 5). Spatial heterogeneity can be over-
come by moving between locations of high quality or density (MacArthur & Pianka,
1966; Schoener, 1971; Jander, 1975; Bell, 1991; Turchin, 1991, 1996; Viswanathan et al.,
1999; Bartumeus et al., 2005). With little information about where these locations are,
random searching movements have to be employed (Bell, 1991; Bartumeus et al., 2005).
The idea of random searches has been the focus of several movement models. These ran-
dom movement models differ in the aspects of movement that they address (e.g., turning
angles or movement length), but are similar in that they do not allow for changes in
behaviour as information about the environment is gathered (Turchin, 1998). Although
with homogeneous distributions of targets straight-line movement (also known as ballis-
tic movement) has long be known to be the most efficient in finding targets (Pyke, 1984;
Hogeweg, 1989; Zollner & Lima, 1999), for heterogeneous environments, Lévy walks (a
class of fractal random walks) perform better than expected (Viswanathan et al., 1999;
Bartumeus et al., 2005).

In chapters 2 – 5 I have used both experimental and theoretical approaches to in-
crease our understanding of how these random walk models attain their super-efficiency
and what the influence of changes in target density is on the scale-free properties of these
movement patterns. In chapter 2, we observed that goats use different movement pat-
terns at different resource densities. The fractal properties of these movement patterns
followed the model predictions for optimal searching movements (Viswanathan et al.,
1999). At low density random walk models were sufficient to explain the efficiency of
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these searches, while at high density the goats encountered more resources than the
statistically equivalent random walks. This higher search efficiency could be because at
this higher density, the goats could use additional information for finding browse.

Finding Lévy walk movement made me curious about the causes of this efficiency.
In chapter 3 we therefore evaluate the effect of the general assumptions of random
searches on the searching efficiency. We find that interactions with targets, i.e., stopping
at a resource location and starting a new search from that location, are key components
for efficient searching in patchy environments. These interactions ensure that scale-free
movement rules produce fractal ’target area’-restricted search movements.

The consequences of these interactions at larger scales are further explored in
chapter 4. We found that the interactions with targets limit the fractal properties of
movement paths to the scale of the resource distribution. This is a limitation for the
use of fractal movement patterns in the extrapolation from small scale to larger scale
movements. This interaction between the distribution of landscape features (that would
act as targets) and the displacement of animals, could be used to explain the change in
population distribution of animals that has been observed as a consequence of changes
in the distribution of landscape features (Murwira, 2003).

Because chapters 3 and 4 concluded that with decreasing distance between targets
the shape of the total movement path would change (as a result of the increase in
the number of re-orientations), while the optimal searching path should stay the same,
I carried out the experiment with the doves (chapter 5). In this experiment I could
manipulate the scale of the target distribution by changing the number of targets and
the distance at which these targets could be detected. The ring doves (Streptopelia
roseogrisea) used in this experiments did not show any of the predicted behaviours;
(1) their movement patterns did not change with changes in the scale of the target
distribution, (2) there was no difference between the movements while searching and
the total movement path, and (3) the exponential distribution of movement lengths did
not show the expected exponent of -2. The movements did however show a scale-free
distribution of the re-orientating turning angles which was independent of the target
distribution. This might indicate that the findings of chapters 3 and 4 are true in the
narrow theoretical limit within which they are set, but do not hold for actual animals,
for which many of the model assumptions do not hold.

Space is not the only factor that makes food heterogeneous. In chapter 6 we
investigated a different type of heterogeneity; the heterogeneity of (macro-)nutrients
between different types of food. All types of food consist of different macro-nutrients
(e.g., energy, protein or fat), or nutrients (e.g., carbon, nitrogen or phosphorus) (Pulliam,
1975; Simpson et al., 2004; Prins & Van Langevelde, in press). While foraging, it is these
(macro-)nutrients that animals need to acquire. On average, the turnover-rates of these
(macro-)nutrients level out and are more or less constant relative to each other (Prins &
Van Langevelde, in press). Therefore, the goal of the animal in foraging can be expressed
as a fixed ratio of the intake rates of these (macro-)nutrients. Most food types do not
supply such an optimal ratio of (macro-)nutrients.

In chapter 6 we designed a new framework to address two of the main questions in
foraging theory: what to eat and how long to eat from this food, with respect to the need
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for several (macro-)nutrients. Using time as a unifying currency across the (macro-)nu-
trients, we maximise the time that the animal does not need to forage relative to the time
spent foraging. The initial results of this approach are interesting. In order to acquire the
optimal amount of (macro-)nutrients, animals are predicted to simultaneously optimise
the ratio of patch types in their diet and the time spent at any of those patches. The
optimisation of the ratio of the (macro-)nutrients only affects the ratio of patch types,
while the time spent foraging at a patch is independent of the quality of that patch, but
only depends on the local intake rate and the time spent travelling between patches.

In the current chapter, I will further explore the effect of movement patterns on
foraging. I will first extend the model presented in chapter 6, to explicitly take into
account the distance between different patches (λ). To incorporate the effect of different
movement patterns on the searching efficiency, I derive a relationship between λ and
the distance between patches that is experienced by the animal (λe). Because different
movement patterns result in a different searching efficiency (chapter 3), this relationship
is dependent on the movement pattern used. Furthermore, when more than one type
of patch is sought, it can be deduced from chapter 4 that the searching efficiency for
one patch type is determined by the mean free path between all patches and not only
by the mean free path between patches of that one type. These considerations are used
to explicitly take the effect of different movement patterns into account while modelling
the foraging decisions of an animal. The application of the relationship between the
experienced distance between targets and the movement pattern used is not limited to
the optimal foraging framework presented here, but can be applied in any modelling
approach where mean field assumptions on movement behaviour are made.

7.1 The cost of moving

In chapter 6, we have assumed that the time spent searching for, and moving between
patches of food does not change as the ratio between different types of food changes
(the average travelling time between patches (tt) is constant). However, in order to
change the ratio between the number of patches of different types of food visited, some
patches should be passed by, which will almost inevitably lead to an increase in the
distance between the patches that are visited and thus in the travelling time. In earlier
chapters I have used the mean free path between patches (λ) as a scaling parameter for
the movement models. Now I will use this mean free path to provide a spatial scaling of
the foraging decisions. I will incorporate λ, and thus the scale of the patch distribution,
explicitly into the model presented in chapter 6, in order to show that the effects of
different movement patterns, and possibly the choice of movement pattern, can be dealt
with in mean field approximations of foraging models.

When dealing with different types of patches (as in chapter 6), the mean free path
between all patches (λT ), is determined by the number of patches of each of the patch
types in the movement path (i.e., the mean free path between the patches for each of
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these patch types separately (λj)). λT can be calculated through the formula:

1

λT

=

p∑
j

1

λj

(7.1)

for all p patch types j. The average time spent moving between patches (tt) is indepen-
dent of the patch type visited, and thus is the ratio of the mean free path between all
patches in the foraging path (λT ) and the velocity with which the animal moves (v).

tt =
λT

v
(7.2)

In chapter 6 the animal was given control over the relative amount of patches of
each patch type in the foraging path (Dj, where

∑p
j Dj = 1). Thus, for a foraging path

where Dj has been adjusted by the animal, we know that λj in this path should satisfy:

Dj =
λT

λj

(7.3)

Furthermore, the environment will provide a minimum λ for each patch type j (λj,min,
the actual distance between two patches of type j in the environment). Combining
equations 7.2 and 7.3 with equation 6.2, the proportion of time gained while foraging
for resource i can be expressed as a function of λj

γi =

∑p
j(

1
λj

cij

ui
Ij(tj))

1
v

+
∑p

j
tj
λj

| λj > λj,min (7.4)

where cij is the mass content of resource i in patch type j, ui is the turn-over rate of
resource i and Ijtj is the intake in visited patches of type j after having foraged there
for a duration of tj. By summing over equation 7.4 we get the equivalent of equation
6.3 and express Γmin a function of λj.

Before I start to consider the implications of the explicit inclusion of λ for foraging
decisions, I will first link the experienced distance between patches to the movement
pattern used. Subsequently, I will be able to link the effect of different movement
patterns to the foraging decisions.

7.2 Experienced mean free path

Different types of movement result in different encounter rates with targets and thus will
result in a different searching efficiency (λη) (chapter 3 and Schoener (1971); Charnov
(1976); Cain (1985); Viswanathan et al. (1999); Zollner & Lima (1999); Bartumeus et al.
(2005)). From chapter 3 and Viswanathan et al. (1999); Bartumeus et al. (2005) we can
also see that λη changes with changing λ for some movement patterns. Determining the
relationship between λη and λ The movement pattern and λ The searching efficiency
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that I have used in chapter 3 (λη), is expressed as the number of targets found per
distance moved (η) times the mean free path between all patches available (λ). As a
result, λη is a scalar value that relates the mean free path (λ) to the distance that the
animal has moved between patches (λe, the mean free path that was experienced by the
animal).

λe =
λ

λη
(7.5)

I will not simplify this equation furhter, because the quantity λη has been commonly used
in other studies as a measure of searching efficiency (Viswanathan et al. (1999); Raposo
et al. (2003); Bartumeus et al. (2005); chapter 3) and because the two occurrences of λ
in equation 7.5 will have a different interpretation further on in this chapter.

By quantifying λη for different types of movement, the distance that the animal
moves between patches (λe) can be related directly to the density of the patches available
(∼ λ−1). Lévy walks (lw) provide a class of movement types that scale gradually
between the two extreme cases of random movement (straight-line ballistic movement
for μ → 1 and Brownian motion for μ → 3, where the distribution P (l) of movement
lengths (l) is given by P (l) ∼ l−μ) (Bartumeus et al., 2005). Therefore I will use the
lw in this chapter to show the potential for summarising the effect of movement for
the use in ‘mean field’ models. For convenience I will limit myself to the analysis of
non-depleting searches, but I will analyse both searches in one dimension, building on
the approximation of Viswanathan et al. (1999) for η, and searches in two dimensions,
by extending the simulations as they were used in chapter 3. Non-depleting searches can
be seen as a proxy for both searches for targets that are only temporarily unavailable
for the searcher, or for targets that occur in a patchy distribution (Viswanathan et al.,
1999).

For one-dimensional searches, Viswanathan et al. (1999) have derived an analytical
approximation of η. By scaling λ to the detection radius rv, this approximation can be
simplified this and λη can be expressed as

λη1D ≈ λ

λ
3−µ

2 + μ−1
2−μ

(λ
3−µ

2 − λ
µ−1

2 )
(7.6)

for the one-dimensional non-depleting search.
For the two-dimensional search, I extended the simulations of chapter 3, by in-

cluding more values of λ between λ = 10 and λ = 105. The efficiency (λη) in these
simulations was calculated as in chapter 3. The movement rules used were Lévy walks
with μ = 1.1 (ballistic search), μ = 2.0 (optimal search) and μ = 2.9 (Brownian search).
Only non-depleting searches were simulated. For both the one-dimensional and two-
dimensional searches λη is shown for λ between 10 and 105 in Figure 7.1. From these
simulations the relationship of λη with λ can be estimated by fitting a power-law regres-
sion (Table 7.1). These estimates of λη can be used to include the effect of the different
two-dimensional movement patterns in mean field models using equation 7.5.

77



Chapter 7.

Figure 7.1: The searching efficiency λη for three selected movement patterns. (a) For
the one-dimensional non-depleting search, λη is calculated using equation 7.6,
for μ ∈ {1(�), 2.01(�), 3(�)}. (b) For the two-dimensional non-destructive
search, simulations as described in chapter 3 were performed for λ ∈
{31.6, 100, 316, 1000, 3160, 10000, 31600} and μ ∈ {1.1(�), 2.0(�), 2.9(�)}. Sim-
ulations lasted 106 time steps.

7.3 Two types of targets

In equation 7.4, there are several types of targets (the food types), each with their own
λ. The experienced λ for any of these types of target will depend on the searching
efficiency (λη) as a result of the movement pattern and the λ for that specific target
type (λj). In chapter 3 I have demonstrated that the interaction with targets is a major
determinant of the searching efficiency of the movement pattern. In chapter 4 however,
I have shown that these interactions change some properties of the movement patterns,
and that this change is dependent on the density of the targets. Because animals will
react similar to all patch types, it is therefore most likely that the searching efficiency
(λη) of a movement pattern is determined by the mean free path between all target
types combined (λT ). For each target type j, the mean free path as experienced by the
animal (λe,j) can be calculated by dividing the mean free path between targets of this
type (λj), by the searching efficiency as it is determined by the movement pattern and
the mean free path between all targets of any type (λT η):

λe,j =
λj

λT η
(7.7)

The movement pattern determines the dependency of λT η on λ. Either equation 7.6,
assuming one-dimensional search, or one of the relationships estimated from Figure
7.1(b) (Table 7.1) for two dimensional search can be used as an approximate for λT η
with a given μ.
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Table 7.1: Estimated dependency of λημ on λ. The coefficients of the power-law regression of
λη to λ for non-depleting searches in two dimensions (simulation results summarised
in Figure 7.1). The power-law relationship: λη2D = ελζ .

μ ε ζ r2

1.1 1.018 -0.0012 0.21
2 0.964 0.0218 0.99
2.9 0.944 0.0035 0.55

7.4 Movement patterns in the search for multiple nutrients

So far, I have shown how the scale of the distribution of food patches can be incorporated
in the model presented in chapter 6, by making both the travelling time between patches
(tt) and the relative proportion of patches of each type (Dj) a function of λ (equations
7.3 and 7.2). By substituting these equations into equation 6.2, I derived equation 7.4.
Thus the proportion of the time spent foraging that an animal will have available for non-
foraging activities (Γmin) can be expressed in terms of the distance between food patches
(λ). Then I derived relationships between the mean free path between patches (λ) and
the mean free path as experienced by the animal (λe) for different types of searching
movements. Subsequently I expressed the experienced distance between patches of a
given type (λe,j) as a function of the actual mean free patch between the patches of
this type (λj), the mean free path between all patches (λT ) and the movement pattern
(equation 7.7). Combining equations 7.4 and 7.7, the proportion of time available for
non-foraging activities can be calculated as a function of the movement pattern.

Chapter 6 concluded that in the optimal foraging path (1) the ratio between DX

and DY (the proportion of patches of each type in the foraging path) should balance

the intake of different (macro-)nutrients, (equation 6.8:
IY (t∗Y )(

cBY
uB

− cAY
uA

)

IX(t∗X)(
cAX
uA

− cBX
uB

)
) and (2) that

t∗j (the time spent at a patch) should only depend on the time spent travelling between

patches and the intake rate at that patch (equation 6.9:
√

hjtt ). If we assume that the
dependency of tt on Dj, that is introduced in equations 7.2 and 7.3, does not change
the results presented in chapter 6, we can substitute these equations in the conclusions
of chapter 6. This gives us the optimal patch residence time (t∗j)as a function of λT :

t∗j =
√

hjtt =

√
hjλT

v
(7.8)

For the optimal ratio between λX and λY we find (substituting equations 6.4 and 7.8):

λX

λY

=
MX( cAX

uA
− cBX

uB
)(
√

vhY +
√

λT )

MY ( cBY

uB
− cAY

uA
)(
√

vhX +
√

λT )
| λj > λj,min (7.9)

which is not solved completely for λX or λY , because t∗j is a function of λT (equation
7.8). λj,min is the actual λj available, and thus the animal cannot decrease λj below
λj,min.
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Using equation 7.7, λe can be substituted for λ in equation 7.4 to investigate the
effect of different movement patterns on foraging decisions. For the patch residence time
we see that any movement path that increases λe,T will increase the patch residence
time (Charnov, 1976). So a Brownian searcher (μ → 3) should deplete a patch further
than a ballistic searcher (μ → 1), in both one and two dimensions. The optimal Lévy
walker (μ ≈ 2) will leave a patch even sooner and thus leave most resources in the
patch. Different movement patterns can thus not only influence the optimal decisions
of an animal, but through those, they can also change resource dynamics.

The ratio between λX and λY in the optimal path is dependent on the absolute
value of λT , and thus on the absolute value of λX and λY . Here the new dependency
between tt and DX blurs the insight that we gained from the results obtained in chapter
6. Furthermore, a minimum value for λX and λY (λj,min) is imposed by the spatial
context in which the animal is placed. Numerical simulations (like those presented in
chapter 6) can give insight into how a forager that sets out to minimise the relative
amount of time spent foraging, should balance the average distance between patches of
different food types.

While foraging animals take decisions at various scales (Schoener, 1971; Pyke, 1984;
Stephens & Krebs, 1986; Senft et al., 1987; Bailey et al., 1996; Klaassen et al., 2006) and
chapter 6. Therefore, optimising foraging efficiency, will be done at these various scales
simultaneously. In this chapter I have opened the possibility of incorporating those
various scales in foraging models. More specifically I have linked the model presented in
chapter 6 to the spatial extent of the patch distribution (λ). This link enables

1. the understanding of the optimal ratio between patches of different food types in
spatial space,

2. the investigation of the effect of different types of movement patterns on optimal
foraging decisions by linking λe to λ and μ,

3. the optimisation of the type of movement pattern (μ) for one-dimensional searches
simultaneous with the optimisation of foraging decisions within the patch and the
choice of the absolute and relative density of patch types, by using the approxi-
mations of Viswanathan et al. (1999).

Therefore, this link can contribute to a more holistic approach to the foraging of animals.

7.5 Conclusion

In this thesis I have, together with my coauthors, investigated how an animal can deal
with the heterogeneity in the distribution of resources, either in space or within food
types, in order to find a diet that maximises the time available for non-foraging activities.
We have shown that both goats (chapter 2) and doves (chapter 5) show scale-free move-
ment patterns. But while the behaviour of the goats followed predictions and changed
with changes in the target density, the doves moved with one scale-free pattern, that
was different from the optimal pattern, regardless of the density of targets.
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The change of the scale-free movement pattern of the goats follows predictions
from Lévy walk models (Viswanathan et al., 1999). To increase our understanding of
the super-efficiency of these Lévy walks relative to other random walks (Bartumeus et al.,
2005), we performed two simulation studies. In these studies (chapters 3 and 4), we find
an apparently paradoxical role of interacting with targets on the efficiency of searching on
the one hand and the large scale properties of movement on the other hand. To increase
the efficiency of the Lévy walk it is necessary to renew the search movement after a
target has been visited (chapter 3). However, this renewal of the search movement shifts
the large scale movement pattern from a scale-free Lévy walk to a Brownian motion that
is bounded to the scale of the density of the targets (chapter 4). This Brownian motion
does not have the benefits of the super-efficient Lévy walks (Viswanathan et al., 1999;
Bartumeus et al., 2005). Furthermore, we have shown that the searching movements are
not necessarily reflected in the total movement path. These results shows that the large
probability of a small scale sequence of steps close to renewable targets is the key to the
success of the searching movement. Thus the assumption of re-newed search after target
encounter makes the Lévy walks a fractal approximation of the area-restricted search
that has been used frequently in describing animal movements (Walsh, 1996; Fortin,
2002; Nolet & Mooij, 2002; Morales et al., 2004).

Finally we extended the existing optimal foraging models to include the balance
in the intake of several (macro-)nutrients. These (macro-)nutrients are distributed
heterogeneous over the different types of food species available to animals (Prins &
Van Langevelde, in press). In chapter 6 we open a new possibility to formalise foraging
decisions based on the optimal balance of (macro-)nutrients. This formulation was ex-
tended in the current chapter to explicitly incorporate the effect of different movement
rules. This extension relies heavily on the results and insights that are gained in chapters
3 and 4.

‘Movement is the glue that sticks ecological processes together’ (Turchin, 1996).
The notion that different modes of movement create a different experienced density of
targets is important to take into account when formulating models. It has been applied
here in a mean field model of a foraging process, but is most certainly not limited
to foraging situations. Many ecological processes rely on encounters of individuals with
other individuals or with resources for the rate at which they take place (Schoener, 1971;
Viswanathan et al., 1999; Turchin, 1996). In this chapter I have shown that the efficiency
differences between different movement patterns in a heterogeneous environment can be
approximated through explicit simulation. This approximation can then be used to form
the basis of mean field approximations of spatial processes that involve movement in a
heterogeneous environment. These considerations are also important for spatial explicit
modelling approaches: simplified assumptions on animal movement can greatly change
the rates of encounter and can thus have an unintended influence on the processes that
are the focus of the simulation. The differences in experienced target density that have
been shown so often (Pyke, 1984; Hogeweg, 1989; Viswanathan et al., 1999; Zollner &
Lima, 1999; Bartumeus et al., 2005) for different movement rules, should warn against
the use of overly simple assumptions on animal movement in ecological models. In
this chapter I have shown one simple approach to estimate the effect of movement
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on the experienced target density and incorporate this effect in a mean field foraging
model. Using this approximation the effect of searching movements in a heterogeneous
environment can be included in ecological models that use mean field approximations of
spatial processes and spatial heterogeneity.
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Summary

Food is heterogeneous in quality and quantity with respect to the distribution in space
and time. While foraging, animals have to make choices on how to deal with this
heterogeneity. To maximise the time that does not have to be spent foraging, foraging
animals decide on where, what, when and how much to eat. These decisions are of great
importance; in many situations food intake is limiting animals in their time budget. In
the first part (chapters 2 – 5) of this PhD-thesis I focus on the movements of animals
that search for spatially distributed patches of food. The second part (chapters 6 & 7)
focuses on animals that forage to satisfy their requirements for (macro-)nutrients (e.g.,
energy & protein or nitrogen & phosphorous).

The movement patterns of animals are studied using both experiments and com-
puter simulations. Chapter 2 shows results of research to the foraging behaviour of
goats. While foraging, these goats use Lévy walks1 that, theoretically, result in both
super-efficient and super-diffusive search movements2. In the two following chapters I
investigate this super-efficient and super-diffusive behaviour using computer simulations.
I find that the super-efficiency is caused by the behaviour at the location of the target
(e.g., a patch of food) (chapter 3): when an animal that moves according to a Lévy
walk stops at the location of the target, and starts a new Lévy search from this loca-
tion, ‘area-restricted search’-like movements emerge in the fractal search pattern. As a
consequence, clustered distributions of targets can be exploited better. However, stop-
ping and re-orienting at the location of a target hampers the super-diffusive property
of the movement path at higher target densities (chapter 4). Stopping at the location
of a target changes the characteristics of the searching path, because long straight path
parts are interrupted and the search is restarted in a random direction. Therefore ob-
served small scale movement paths cannot be extrapolated to predict the distribution
of animals at larger scales.

From these computer simulations (chapters 3 & 4) the hypotheses are drawn that
(1) the density of targets and the distance at which these targets can be detected influ-
ence the movement path of animals, and (2) the searching part of the path (where no
target information is present) is different from the total movement path. These hypothe-
ses were tested using ring doves in search for hemp seeds (chapter 5). By hiding the

1The Lévy walk is a type of ‘random search’ movement in between ballistic (straight line) and Brownian
(completely random) movements, that result in scale-free ‘fractal ’ movement patterns. Within a
Lévy walk long straight path parts are relatively frequent.

2These movement patterns are super-diffusive because they cause a faster than normal diffusion of
animals that move with this pattern (the animals spread out further), and they can be super-
efficient because animals can find more targets using these than when they would have moved along
a straight line of the same length.
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seeds in little holes we could manipulate both the distance at which the seeds could be
seen and the density of seeds in the experiment. The doves did however not respond to
changes in either parameter. They did move using Lévy walks, but the critical parameter
for the Lévy walk model deviated from the theoretically predicted optimal value.

The second part of this thesis contains a chapter on how animals satisfy their
requirements for (macro-)nutrients and at the same time maximise the time within
which they do not need to forage (chapters 6 & 7). In this part the emphasis is on
a combination of decisions: how many patches of each food type are included in the
foraging path and how long should be eaten from these patches. To optimise their diet,
animals have to choose that ratio of food types that can balance their requirements for
(macro-)nutrients. They have to maximise their intake rate by depleting the visited
patches to the locally optimal level (chapter 6).

In chapter 7 I synthesise the results of chapters 3, 4 and 6 into a model that can
address three basic foraging decisions simultaneously: (1) What to eat, (2) How long to
eat at a patch of this food and (3) How to move to find this food (chapter 7). With
this model I demonstrate a possibility to incorporate the effect of searching movements
within a heterogeneous environment into models that use ‘mean field’ approximations
of spatial processes.

Summarising, this thesis shows that animals can deal with the spatial heterogene-
ity in food distribution using Lévy walks. These walks result in a fractal ‘area-restricted
search’-like movement pattern, that are more efficient in exploiting clustered patch dis-
tributions. These patterns are however only scale-free at very low densities of targets,
which makes fractal-like local movements less suitable for the extrapolation to larger
scales. The experiments with goats and doves show that some animals do, and some
animals don’t use these optimal Lévy walks while searching for food. Next I present a
model that can calculate how animals can maximise the time available for non-foraging
activities: they have to choose the right ratio of food types in their foraging path to
balance the uptake of (macro-)nutrients and then deplete the visited food patches to the
locally optimal level.

Many ecological processes are, as a consequence of heterogeneity within and be-
tween ecosystems, dependent on movement. The rate of ecological processes and the
connectivity of systems is to a large extent determined by the movement patterns of
animals. Often it is impossible to incorporate those spatial processes and spatial het-
erogeneity explicitly in models. A mean-field approach is used in stead. In the final
chapter (chapter 7) I use the result of my research to show how the effect of movements
in a heterogeneous environment can be incorporated in models that use a mean-field ap-
proach to spatial processes and spatial heterogeneity. This opens the possibility for such
models to take movement patterns into account, an important part of animals foraging
behaviour and a driving factor in many ecosystem processes.
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Samenvatting

Voedsel is heterogeen in kwaliteit en kwantiteit ten opzichte van haar verspreiding in
ruimte en tijd. Dieren moeten tijdens het foerageren keuzes maken over hoe ze omgaan
met deze heterogeniteit. Om de tijd die niet besteed hoeft te worden aan foerageren te
kunnen maximaliseren, beslissen dieren over waar, wat, wanneer en hoeveel er gefoera-
geerd wordt. Deze beslissingen zijn van wezenlijk belang; voedselopname beperkt dieren
in veel gevallen in hun overige tijdsbesteding. In het eerste deel (hoofdstukken 2–5)
van dit proefschrift behandel ik de bewegingspatronen die dieren volgen bij het zoeken
naar ruimtelijk verspreide foerageerplaatsen. Het tweede deel (hoofdstukken 6 & 7) gaat
over dieren die foerageren om in hun behoefte aan (macro-)nutriënten (zoals energie &
eiwitten of stikstof & fosfor) te voorzien.

De bewegingspatronen van dieren op zoek naar voedsel zijn zowel bestudeerd aan
de hand van experimenten als van computersimulaties. Hoofdstuk 2 toont de resultaten
van een onderzoek naar foerageergedrag van geiten. Tijdens het foerageren gebruiken
deze geiten Lévy wandelingen3, die theoretisch resulteren in zowel super-efficiënte als
super-diffuse zoekbewegingen4. In de twee volgende hoofdstukken onderzoek ik dit super-
efficiënte en super-diffuse gedrag met behulp van computersimulaties. De superefficiëntie
blijkt te worden veroorzaakt door het gedrag van dieren op de plaats waar zich een
doel (zoals een foerageerplaats) bevindt (hoofdstuk 3). Wanneer een dier dat een Lévy
wandeling loopt, stopt op de plek van het doel en van daar opnieuw begint met een Lévy
zoekpad, ontstaan ‘omgevingsgebonden zoektocht’-achtige bewegingen in het fractale
zoekpatroon. Dit heeft tot gevolg dat de geclusterde verdelingen van doelen beter benut
kunnen worden. Dit stoppen en opnieuw beginnen op de plaats van een doel beperkt
de super-diffuse eigenschappen van het bewegingspad bij hogere dichtheden van doelen
(hoofdstuk 4). Het stoppen op de plaats van een doel verandert de eigenschappen van
het zoekpad, doordat lange rechte paden ingekort worden en in een willekeurige richting
opnieuw wordt gezocht. Hierdoor is het extrapoleren van op kleine schaal geobserveerde
bewegingspaden naar de verspreiding van dieren op grotere schaal niet mogelijk.

Uit deze computersimulaties (hoofdstukken 3 & 4) vloeien de hypothesen dat (1)
de dichtheid van doelen en de afstand waarop deze waargenomen kunnen worden het
bewegingspatroon van dieren benvloedt en (2) het zoekdeel van het pad (waar geen infor-

3De Lévy wandeling is een type ‘willekeurig zoek’ beweging in het gebied tussen ballistische (rechte
lijn) en Browniaanse (compleet willekeurig) bewegingen, dat resulteert in een schaal-vrij ’fractal ’
bewegingspatroon. In een Lévy wandeling komen lange rechte padstukken relatief vaak voor.

4Deze bewegingspatronen zijn super-diffuus in de zin dat ze een snellere dan normale diffusie van de
dieren die dit bewegingspatroon volgen veroorzaken (de dieren verspreiden zich met Lévy bewegingen
verder), en kunnen super-efficiënt zijn omdat dieren hiermee meer doelen kunnen vinden dan wanneer
ze langs een rechte lijn van dezelfde lengte bewegen.
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matie over de doelen beschikbaar is) anders zal zijn dan het totale bewegingspad. Deze
hypothesen zijn getoetst in een experiment met lachduiven op zoek naar hennepzaden
(hoofdstuk 5). Door de hennepzaden te verstoppen in kleine gaatjes konden zowel de af-
stand waarop deze zaden zichtbaar waren als de dichtheid van zaden in het experiment
gemanipuleerd worden. De duiven reageerden echter niet op veranderingen in beide
parameters. Ze gebruikten wel Lévy wandelingen, maar de waarde van de kritieke pa-
rameter van het Lévy wandelings-model week af van de theoretisch voorspelde optimale
waarde.

Het tweede deel van dit proefschrift gaat over hoe dieren in hun behoefte aan
(macro-)nutriënten kunnen voorzien en tegelijkertijd de tijd waarin ze niet hoeven te foe-
rageren kunnen maximaliseren (hoofdstuk 6 & 7). Deze (macro-)nutriënten zijn hetero-
geen verdeeld over verschillende voedseltypes. De nadruk ligt in dit deel op de combinatie
van de beslissingen: hoeveel foerageerplaatsen van elke voedseltype worden opgenomen
in het foerageerpad, en hoelang wordt er op elk van deze foerageerplaatsen gegeten.
Om hun dieet te optimaliseren moeten dieren die verhouding van voedseltypes kiezen
waarmee ze hun opname van (macro-)nutriënten naar behoefte balanceren. Tegelijker-
tijd moet de voedselopnamesnelheid gemaximaliseerd worden door deze voedselplaatsen
te gebruiken tot het lokaal optimale niveau (hoofdstuk 6).

In hoofdstuk 6 breng ik uiteindelijk de resultaten van hoofdstukken 3, 4 en 6 samen
tot een model dat de mogelijkheid biedt om drie basisbeslissingen van het foerageren
tegelijkertijd te behandelen: (1) wat te eten, (2) hoe lang daarvan te eten en (3) hoe
te bewegen om dat eten te vinden. Dit model biedt een mogelijkheid om het effect
van bewegingspatronen in een heterogene omgeving op te nemen in modellen die slechts
gebruik maken van een ‘veldgemiddelde’ van ruimtelijke processen.

Samenvattend laat dit proefschrift zien dat dieren met behulp van Lévy wan-
delingen om kunnen gaan met ruimtelijke heterogeniteit in hun voedsel. Deze wan-
delingen resulteren in een fractaal ‘omgevingsgebonden zoektocht’-achtig bewegingspa-
troon, waarmee voedsel met een geclusterde verdeling efficiënter gevonden kan worden.
Deze patronen zijn echter alleen schaalvrij bij erg lage dichtheden van doelen, waardoor
dergelijke fractale bewegingspatronen minder geschikt zijn voor de extrapolatie naar
grotere schaalniveaus. De experimenten met geiten en duiven laten zien dat sommige
dieren deze optimale bewegingen wel en sommige dieren deze niet gebruiken in hun zoek-
tocht naar voedsel. Vervolgens wordt een model gepresenteerd dat berekent hoe dieren
de tijd die niet besteed hoeft te worden aan foerageren kunnen maximaliseren: ze moeten
de juiste verhouding van voedseltypes in hun foerageerpad kiezen om de opname van
(macro-)nutriënten te balanceren en vervolgens foerageerplaatsen tot het lokaal optimale
niveau gebruiken.

Veel processen in de ecologie zijn door heterogeniteit, zowel binnen als tussen
ecosystemen, afhankelijk van beweging. De snelheid van ecologische processen en de
verbondenheid van systemen wordt in belangrijke mate bepaald door dierlijke bewe-
gingspatronen. Vaak is het echter niet mogelijk om dergelijke ruimtelijke processen en
ruimtelijke heterogeniteit expliciet op te nemen in modellen. In plaats daarvan wordt
gebruik gemaakt van een gemiddelde van het hele veld. In het laatste hoofdstuk gebruik
ik de resultaten van mijn onderzoek om te laten zien hoe het effect van bewegen in
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een heterogene omgeving opgenomen kan worden in modellen die van ruimtelijke pro-
cessen en ruimtelijke heterogeniteit slechts een ‘veldgemiddelde’ gebruiken. Dit maakt
het mogelijk om in dergelijke modellen op een eenvoudige manier bewegingspatronen
op te nemen, een belangrijk onderdeel van foerageergedrag van dieren en een bepalende
factor voor veel ecosysteemprocessen.
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