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ABSTRACT 

Raats, P. A.C., 1978. Convective transport of solutes by steady flows. II. Specific flow 
problems. Agric. Water Manage., 1: 219—232. 

A comprehensive theory describing convective transport of solutes was presented in 
Part I. In this paper the general theory is applied to specific flow problems. The relatively 
simple problem of leaching to drains and ditches induced by an input distributed uniform
ly over the surface is discussed in detail. It is shown that if the ratio of the halfspacing 
between the drains or ditches and the depth to the impermeable layer is larger than about 
five, then the system approximates an apparently well-mixed system, i.e., then the transit 
time density distribution is approximately exponential. The general theory is also used to 
evaluate the literature on many other problems. 

INTRODUCTION 

The transfer function approach to the transport of solutes, that was intro
duced in Part I (Raats, 1978) was inspired by analogous treatments of cer
tain industrial processes by Danckwerts (1953) and of tracers in hydrological 
systems by Eriksson (1961, 1971). These authors treated their respective 
systems largely as black boxes, paying not much attention to the internal 
dynamics. Typically, they regarded functions analogous to the transit time 
density distribution function, dq/dr, as probability density distributions. The 
stream tube model developed in I provides a simple, physical interpretation 
of all concepts. It also allows for an explicit treatment of the initial distribu
tion of a solute over the region, of the distribution of fluxes of water and 
solutes over the input surface, of desaturation, and of anisotropy of the soil. 

In this paper I discuss applications of the theory to specific flow systems. 
The leaching to drains and ditches will be the primary interest. 

The idea to develop a comprehensive theory of convective transport of 
solutes based upon flow patterns originated during a series of seminars given 
jointly with W.R. Gardner at the University of Wisconsin in the fall of 1972. 
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Specifically, it was the demonstration by Gardner of the simple dependence 
of transit time upon water content, hydraulic conductivity, distance, and 
head difference for the one-dimensional case (cf. the finite difference equa
tion (1.22) of Part I) that induced me to study the multidimensional problem. 
A year later I presented a brief outline of the "material approach" at the 
Annual Meeting of the American Society of Agronomy. Most of the details 
were worked out while I was on the staff of the U.S. Salinity Laboratory at 
Riverside, Calif. There I showed that following parcels of solute is also use
ful in describing the transport of solutes across the rootzone (Raats, 1975, 
1977). By focussing upon the spatially distributed uptake of water and the 
flow pattern, one can formulate a detailed description of the leaching process. 
Of course, the simple, integral concept of a leaching fraction (U.S. Salinity 
Laboratory Staff, 1954) fits naturally in the new framework. At Riverside, 
J. Letey and J. van Schilfgaarde provided stimuli to look into the fate of 
periodic inputs (see Section 4 of Part I and Section 7 of this paper, see also 
Jury, 1975 a and b) and anisotropic media (see Section 5 of Part I), respec
tively. After joining the Institute for Soil Fertility at Haren (Gr.), The Nether
lands, I learned from Th.J. Ferrari that the convective transport of solutes to 
drains and ditches was discussed at that Institute in December 1972 by L.F. 
Ernst from the Institute of Land and Water Management Research at 
Wageningen, The Netherlands. Unfortunately, Ernst's contribution is avail
able only as an internal note of his Institute, written in Dutch (Ernst, 1973). 
I thank Ernst for allowing me to include the outline of his work in Section 
8.2. 

6. PISTON FLOW SYSTEMS 

If the inflow and outflow surfaces are parallel planes, concentric cylinders, 
or concentric spheres, then along every streamline the transit time will be 
equal to the turnover time. Such systems will be called piston flow systems. 
On the basis of Eq. (2.2) and Darcy's law, Muskat (1934, 1946) calculated 
successive isochrones for linear, two-dimensional radial, and spherical dis
placement. In these problems, the forms of the isochrones are obvious and 
only the associated residence time needs to be determined. For a piston flow 
system, water introduced at time t0 will appear in the output at time t0 + f, 
where r is the turn-over time defined earlier. For any flow system, the amount 
of water, T?, that was applied to the actual system after time t0, and has already 
left the system at time 10 + f is equal to the amount of water that was present 
at time t0, and has not yet left the system at time 10 + f (equality of areas bij 
and jek in Fig.2 of I): 

v=fqÛT^f{l- q)dr. (6.1) 
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Following Danckwerts (1953), I will call this quantity r\ the hold-up of the 
flow system. The hold-up is a measure of the deviation of the actual system 
from a piston flow system. 

7. APPARENTLY WELL-MIXED SYSTEMS 

7.1 Analysis 

Consider the flow in a saturated soil with porosity 6 in the rectangular 
region shown in Fig.4, with the y-axis and the line y = Y being a bounding 

Fig.4. Plane flow pattern with uniform input and uniform output. 

streamline, a uniform input fa along the surface y = 0, and a uniform output 
foj ~ faXIY along the surface x = X. This flow is a good approximation for 
steady flow to ditches or tile drains, if the water table is flat and the distance 
2X between the ditches or tile drains is large relative to the depth, Y, of the 
impermeable layer. The turnover time, T, for the water in this région is equal 
to the volume of water in the system, 6XY, divided by the rate of input, faX: 

BY 
r = — . (7.1) 

la 

The total potential function, ip, and the stream function, \p, given by 

v = (2ïyl{(Y-y)2-x2}, (7.2) 

and 

/̂ = f-1 x{Y-y), (7.3) 

satisfy the boundary conditions. The flow pattern is shown in Fig.4. The 
streamlines are rectangular hyperbolas that have the y-axis and the line y = Y 
as asymptotes. The equipotential lines are also hyperbolas for which the y-
axis and the line y = Y are axes of symmetry. 
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The components of the velocity vector are given by 

(7.4) 

y)lT. (7.5) 

Eqs. (7.4) and (7.5) describe a very simple variation of the components of 
the velocity over the flow region. The vertical component of the velocity vy, 
is uniform over any horizontal cross section and varies linearly from a value 
fa/6 = y IT at the input surface located at y -. 0 to zero at the impermeable 
base located at y - Y. The horizontal component of the velocity, ux, is 
uniform over any vertical cross section and varies linearly from the plane of 
symmetry located at x = 0 to (faX)/(d Y) = x/f, at the output surface located 
at x = X. Integration of (7.4) and (7.5) gives 

x = x 0 exp(£ — t0)lf, (7.6) 

y=Y-(Y-yQ)exp-(t-t0)/f, (7.7) 

where x and y are the coordinates of a particle at time t whose coordinates 
at t ime t0 were x 0 and y0. Eq.(7.6) shows that, as a result of the uniformity 
of the horizontal component of the velocity over any vertical cross section, 
material surfaces that are vertical will remain so in the course of time. Simi
larly, Eq.(7.7) shows that material surfaces that are horizontal will remain so 
in the course of time. In other words, all horizontal planes form a family of 
isochrones with all parcels in each horizontal plane having the same resi
dence time, Ta, and all vertical planes form a family of isochrones with all 
parcels in each vertical plane having the same residual transit time, fu 

(Pig.5). 

The transit time, r, for a parcel introduced into the system at x = x0 is 
found by setting x - X and t — 10 = r in (7.6). 

T = f In X/x0 (7.8) 

Since parcels introduced near x = X are the first to appear in the output, 
the cumulative transit time distribution function, q, is given by 

q = l-x0/X=l- e x p - r / r . (7.9) 

Differentiation of (7.9) with respect to r gives the transit t ime density dis
tribution, dq/dr: 

dq/dT = T"1 e x p r / f . (7.10) 

Eq.(7.10) is identical to the well-known transit time density distribution of 
a well-mixed system of volume 6XY and rate of input faX. Of course, being 
based on piston displacement, the present model is as far removed from a 
well-mixed model as is possible. The transit-time density distribution is 
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Fig.5. Isochrones with equal residence time (full lines) and with equal residual transit time 
(broken lines). 

entirely dictated by the flow pattern given by Eq.(7.3). To assess the devia
tion of an actual system from a well-mixed system Danckwerts introduced 
the segregation, S, defined by 

" / ' factual system Qwell-mixed system' °-T. (7.11) 

In the present context, these deviations are the result of transit time density 
distributions associated with particular geometries and boundary conditions; 
Danckwerts considered many other factors influencing the distributions. 

Introducing (7.9) into (3.1), (3.2), and (3.4) and (3.5) shows that the 
bypass, .B, the displacement, D, the overall leaching efficiency, E&, and the 
marginal leaching efficiency, Em, are given by 

B = FT-F?{1- e xp( - r / r )} , 

D = F f { l - e x p ( - r / f ) } , 

£ a = { l - e xp ( - r / f ) } f / r , 

Em = exp(—r/f ). 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

Consider a uniform, periodic input of solute dissolved in the water, i.e., 
an input whose input density distribution r[q] is unity and whose time 
dependence is described by (4.15). The response to such an input by a sys
tem with a transit-time density distribution given by (7.10) is given by (4.16) 
with the amplitude a and the phase shift b given by 

a = a 0 ( l + £22f2r1 /2 , (7.16) 

6 = tan"1nT:. (7.17) 

Plots of a/do and b, as functions of SI f, are shown in Fig.6. If 8 = 0.4, Y = 10 
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m, and q = 0.5 m/year then f = 8 year. If the input of the water is distributed 
uniformly over the year, then for annual variations of the input of salinity, 
the amplitude of the output is about one-eighth of that of the input, and the 
phase shift is 82.9°, or nearly 3 months. 

3 4 5 6 7 8 9 10 

Dimensionless Frequency, Z~ ß 

Fig.6. Response to periodic input of solute in plane flow with uniform input and uniform 
output. 

The main conclusions of the above analysis of shallow system leaching to 
drains and ditches induced by an input distributed uniformly over the sur
face are that (1) all horizontal planes form a family of isochrones with all 
parcels in each horizontal plane having the same residence time, ra, (2) all 
vertical planes form a family of isochrones with all parcels in each vertical 
plane having the same residual transit time, TW , and (3) the transit time den
sity distribution is the same as that of a well-mixed system, i.e., it is exponen
tial. The latter conclusion is also reached on the basis of a Dupuit-type of 
analysis (Raats, 1977). The key assumption is that at any distance from the 
drainage facility the horizontal component of the velocity is uniform over 
any vertical cross section and is given by: 

v = (6A)-1 ƒ fa dx, (7.18) 

where A is the cross-sectional area at x, and fa is the rate of input per unit 
distance in the x-direction. Introducing (7.18) into (1.5) and setting t — t0 = T 
gives the general expression for the transit time from x = x0 to x = X: 

x 
f OAI f fa dx \ dx. (7.19) 

The transit time depends on the distribution of 0 and A between x0 and X 
and on the distribution of fa over the entire interval 0 to X. If A is equal to a 
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constant depth Y times unit thickness and 8 and fa are constants then (7.19) 
reduces to (7.8) from which in turn follow Eqs (7.9) to (7.17). 

7.2 Evaluation of earlier work 

Eriksson (1958) speculated that transport of uniform inputs of salt and 
water draining through a soil mass whose hydraulic conductivity decreases 
with depth would lead to an exponential distribution of arrival times. This 
model was used later without further justification in theoretical discussions 
of input/output relationships (Eriksson, 1961, 1971; Nir, 1964; Bolin and 
Rodhe, 1973; Nir and Lewis, 1975), and in attempts to fit experimental data 
(Eriksson, 1963; Peck and Hurle, 1973; Peck, 1973). The analysis in Section 
7.1 provides a more explicit basis for Eriksson's speculation. Ericksson 
(1961, 1971) gave a detailed discussion of the frequency response of the 
well-mixed system, including the results (7.16) and (7.17) above. 

The problem discussed in detail in Section 7.1 was also considered by 
Eldor and Dagan (1972). They gave expressions for the potential and stream 
functions, the velocity modulus, the location at successive times of a salinity 
front introduced at the soil surface, and an expression for the flushing 
efficiency. Unfortunately, what they identified as the cumulative inflow is 
only 50% of the cumulative inflow. The factors 1/2 and 2 in their Eqs. (60) 
and (62) compensate for this. The values of t in their Figs. 9a and 9b, and of 
Vw(t)/Vfot&i in Fig. 9c should be multiplied by two. These errors are perhaps 
the reason for their not recognizing that the response of the system is equiva
lent to that of a perfectly mixed system. 

Eldor and Dagan (1972) have shown that diffusion and dispersion have 
only a very minor influence on the transit of a pulse of salts. This is not 
surprising since diffusion and dispersion will only have a very small influence 
on the distribution of the solute in the horizontal direction. Of course, if in 
Eq.(l l) the period Ü,'1 is much smaller than the turnover time f, the response 
of the system will depend more on diffusion and dispersion. ' 

Ernst (1973) arrived at the logarithmic Eq. (7.8) for the transit times by 
assuming a parabolic water table and introducing the resulting gradient óf the 
total head into (1.17) of paper I. This is equivalent to the reduction, indi
cated earlier, of (7.19) to (7.8) on the basis of A being equal to a constant 
depth Y times unit thickness and of 6 and fa being constants. Ernst used 
complex variables to determine the plane flow pattern shown in Fig.2 and 
to show that the associated travel times are given by (7.8). He did not explic
itly state any of the implications of Eq.(7.8) expressed in Eqs. (7.9) to (7.17). 

In the analysis leading to the logarithmic Eq.(7.8) both the input and the 
output were assumed to be uniformly distributed over the input and output 
surfaces, respectively. Whereas such an input may result from rainfall or 
sprinkler irrigation, the output into ditches or tile drains will generally result 
in a very nonuniform distribution of the output over the surface x = X. Ernst 
(1973) proposed two different approximations that can be used to account 
for convergence to the drain. The first approximation is based on the assump-
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flow from a line source at constant total head to a point sink, and a plane 
flow from a point source to a point sink. For each of these problems, an 
explicit expression for I V-fiN "2 in terms of the total head, H, and the plane 
stream function, \jj, can be derived and (1.18) can be used to calculate the 
distribution of the travel times. The plane flow from a line source to a point 
sink represents flow of ponded water into a single drain or to a single well 
along a river. Muskat showed that for this problem the breakthrough time 
Tmin is 2irdh2/{3F), where h is the depth of the drain or the distance from 
the well to the river, and that the corresponding displacement D at break
through is 2irh2/3, i.e., that the leaching extends on the average to a distance 
of -nh/3 on either side of the drain. This clearly indicates that for wide spacings 
the leaching process is not efficient. 

The isochrones for plane flow from a point source to a point sink, calcu
lated by Muskat, may be regarded as an example of a transformation of ra to 
TW = T — ra, where the r are the transit times between the source and the 
midplane of the source/sink pair. Bear and Jacobs (1965) calculated iso
chrones for plane flow to and from a well in a uniform flow field. They 
showed that in this case the coordinate in the direction of the uniform flow 
could be expressed in terms of the coordinate perpendicular to the flow and 
the stream function, so that (1.14) could be used to calculate the travel time 
distribution. An interesting feature of this problem is that the isochrones 
corresponding to large values of ra, respectively TW , approach the divide 
between the uniform flow and the flow from the source, respectively into 
the sink. For a point source, a similar technique cannot be used, and Bear 
and Jacobs had to resort to a numerical solution. 

Luthin et al. (1969) were the first to calculate travel times for an agricul
tural drainage system. They in essence used (1.22) to determine the distribu
tion of travel times for flow of ponded water to drains. They used flow nets 
for certain drain radii, drain spacings, and locations of the drains relative to 
the distance between the soil surface and an impermeable layer, as calculated 
from an analytical solution given by Kirkham (1957). They presented their 
results in the form of isochrones of equal residence time ra. The agreement 
with observations on an interface between water with 10 000 ppm NaCl and 
ponded tap water in large sand tanks was only fair. The observed concentra
tions in the effluent were generally larger than the calculated concentrations. 
The discrepancy is possibly due to the large difference of the densities of the 
two fluids. 

Ortiz and Luthin (1970) calculated travel time distributions along a stream
line in an anisotropic soil directly from an expression for the magnitude of 
the velocity : 

v = -(feg/0) dH/bs, (8.1) 

where ks is the reciprocal resistivity scalar defined by 

fes = ( r-Rr)-1 , (8.2) 
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where R is the resistivity tensor. Introducing (8.1) into (1.5) gives 

t~t0 = -e J (ksdH/dsy1 ds. (8.3) 

Ortiz and Luthin used a finite difference version of (8.3) in their study of 
movement of salts to tile drains in anisotropic soils with water ponded on 
the surface. The calculations are elaborate since even in homogeneous media, 
the reciprocal resistivity scalar, ks, depends at any point along a streamline 
upon the direction of the streamline. The method outlined in Section 5 of I 
is much simpler. 

In Fig.8, the results of Luthin et al. (1969) and of Ortiz and Luthin (1970) 
are summarized as q vs. r / r curves for seven different combinations of half 
spacing/depth ratios, XjY, and drain depth/depth ratios, D/Y. The expo
nential distribution that was discussed earlier is also shown. The results 
show that narrow spacings and large drain depths result in large breakthrough 
times. The X/ Y given for curves 4 to 7 are those for the equivalent isotropic 
systems. 

Miyamoto and Warrick (1974 a) derived an analytical solution for flow of 
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time density distribution for ponded leaching and seven different geometries. 
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water ponded over the entire surface or over part of the surface to drains 
spaced equally at a certain depth in soils without an impermeable layer. They 
used a complex variable method to determine \XJH\~1 as a function of the 
total head, H, and the plane stream function, 4/. The distribution of the travel 
times was calculated by introducing (1.18) into (2.5) and integrating numeri
cally. The calculated isochrones, r a , agreed quite well with observations in a 
small tank filled with fine sand (Miyamoto and Warrick, 1974 a, Fig. 5). For 
five combinations of drain depth to drain spacing and of cover width to drain 
spacing, they also calculated the displacement D and the differential or 
marginal leaching efficiency (1 — q). The latter agreed reasonably with the 
ratio of the measured concentration in the outflow to the initial concentra
tion in the soil solution. 

Miyamoto and Warrick (1974 b) did a similar analysis for water-filled 
ditches. For displacement into ditches, the isochrones advance much faster 
near the drains than in the region midway between them and a shallow imper
meable sublayer accentuates this trend. With a wide, impermeable spoil bank 
near the ditch, the isochrones become nearly horizontal. For displacement by 
water moving from the ditches into a field, Miyamoto and Warrick found 
good agreement between calculated and observed isochrones. 

Miyamoto et al. (1974 a), Warrick and Miyamoto (1974), and Miyamoto 
et al. (1974 b) used similar techniques to evaluate sorption patterns around 
pipes used for land disposal of waste gases. In that context, Tm;n is the time 
it takes for the gas front to reach the soil surface. To characterize any system, 
Miyamoto et al. introduced the ratio of the displacement at breakthrough, 
i*Ymin, to the total volume of the system, FT, as a uniformity parameter. 
This ratio is of course equal to Tmin/f. 

Zaslavsky and Levkovitch (1974) used a graphical technique, in essence 
based on (1.12), to determine isochrones for flow of ponded water to drains 
in soils with (like Luthin et al., 1969) and without an impermeable layer and 
for different depths and spacings of the drains. They used graphical analysis, 
electrical analogs, and Hele—Shaw models to obtain the flow patterns. The 
Hele—Shaw model also permitted direct observation of the isochrones. They 
defined quantities corresponding to the integral or overall leaching efficiency, 
E&, the differential or marginal efficiency, (1 — q), the breakthrough time, 
Tmjn , and the displacement at breakthrough, FTm-m> and derived relation
ships between times in prototypes and models. They used the Hele—Shaw 
model to determine isochrones for flows with water ponded over only part 
of the surface. They also speculated about the potential of controlling the 
input distribution with sprinklers. 

9. CONCLUDING COMMENTS 

In view of the wide interest in convective transport of solutes, calculation 
of ra-isochrones and the function q[r] should be a routine part of solving 
any steady flow problem. The theory presented in this paper shows the 

file:///XJH/~1
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various ways such information can be used to describe leaching processes 
and effluent concentrations. The results can be easily extended to solutes 
experiencing adsorption and/or decay. Unsteady flows in saturated media 
can, in principle, be treated as successive steady flows. Elsewhere, I have 
treated convective transport of solutes in the presence of uptake of water by 
plant roots, assuming that all salts are excluded by the plant roots (Raats, 
1975). Of great practical interest are the use of Ta-isochrones and of the 
function q[r] to summarize the effect of changing the geometry of the flow 
region and/or the boundary conditions, and of the input density distribution, 
r[q], to compare alternative management practices for amendments. 
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