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Abstract 
In problems related to agricultural land use exploration, nearly optimal solutions of 
linear programming models constitute alternative land use allocations that result in 
good, albeit not optimal, levels of satisfaction of objectives. In this paper, we develop a 
framework to study nearly optimal solutions. The principle is to generate a group of 
nearly optimal solutions, to summarize the generated solutions by low dimensional 
vectors called 'aspects of the solutions' and, finally, to present graphically these 
vectors. Different procedures are described to generate the nearly optimal solutions. 
The framework is applied to a linear programming model developed for land use 
exploration at the European level. Regional, crop, and technical aspects of a group of 
nearly optimal solutions are presented graphically and reveal a great diversity of land 
use allocations with similar performance in terms of objective. Such presentation allows 
a stakeholder to choose a solution according to issues that are not taken into account by 
the model. The results indicate a high sensitivity of the nearly optimal solutions to the 
procedure used to generate them. 

1. Introduction 
Linear programming is recognized as an important tool for agricultural land use 

exploration (De Wit et al., 1988; Van Keulen, 1990). It can be used to explore land use 
allocations that optimize agricultural, economic or environmental objectives at the farm 
level (Rossing et al., 1997) and at the regional level (WRR, 1992). 

A linear programming model is defined by 

Min {z = c' x} (1) 

Dx~ b (2) 

X'?. 0 (3) 

Scalar z is the objective function, c and x are two n-dimensional vectors, and b is a p­
dimensional vector. D is a matrix pxn. The n elements of the vector x are the values of 
the decision variables. The classic outputs of such models are an optimal solution x* 
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and the optimal value of the objective function z*. As noted by Brill (1979), a linear 
programming model may not take into account all the objectives and all the constraints 
that are important for the stakeholder. Many issues cannot be quantified satisfactorily 
and the calculated optimal solution x * is not necessarily the best solution in the real 
world. Better solutions may be found in the set of nearly optimal solutions, Sa, defined 
by (2), (3) and by 

z ~ (1 + a) z* (4) 

in which a is a small and positive constant which represents a tolerable deviation from 
z*. The solutions included in Sa are all good in terms of objective function value but can 
differ considerably in terms of decision variable values. 

In problems related to agricultural land use exploration, all the decision variables 
are somehow related to areas allocated to activities and, thus, are bounded. This implies 
that Sa defines a polytope in the n-space of the decision variables. The extreme points, 
vertices, of Sa are particularly interesting because there the maximum or the minimum 
of linear objective functions can be found. These solutions are useful to discriminate 
between the characteristics of the optimal land use allocation x* that really make a 
difference for the objective value and the characteristics that do not. A study of nearly 
optimal solutions can thus provide information on the robustness of the optimal land use 
allocation to a slight deviation in the objective function value. Such a study avoids 
overemphasis on the optimal land use allocation and allows the stakeholder (e.g. policy 
maker or farmer) to choose a solution according to issues that are not quantified in the 
model. 

A study of nearly optimal solutions involves two different problems: the 
generation of the nearly optimal solutions and the presentation of the generated 
solutions. The models developed for agricultural land use exploration often have several 
hundreds or even thousands of decision variables. This high number of decision 
variables complicates both the generation and the presentation of the nearly optimal 
solutions. A first consequence is that the extreme nearly optimal solutions are very 
numerous. Methods have been developed to enumerate all the extreme points of a 
polytope (Mattheiss and Rubin, 1980) but, when the number of decision variables is too 
high, the calculations are intractable. As a rule of thumb, Burton et al. (1987) fixed the 
upper limit on model size for a complete enumeration of the extreme points at 50 
decision variables and 50 constraints. Thus, in practice, one can generate only a part of 
the possible extreme nearly optimal solutions. Different methods were developed in the 
80's to generate some extreme nearly optimal solutions and were applied for water 
resource planning (Chang et al., 1982 ; Chang and Liaw, 1984; Harrington and Gidley, 
1985), for public sector planning (Brill et al., 1982), to study the impact of free trade 
agreement on industry (Gibson et al., 1991) and for agricultural planning (Jeffrey et al., 
1992 ; Willis and Willis, 1993 ; Abdulkadri and Ajibefun, 1998). However, the 
properties of the various methods developed to generate nearly optimal solutions have 
received little attention. As only a part of the possible nearly optimal solutions can be 
generated, some methods may generate solutions that are all situated in a particular 
region, subset of Sa. Others may provide a wider coverage of Sa. 

A second consequence of the high number of decision variables is that each 
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solution is equivalent to a high dimensional vector. Such vector cannot be presented 
directly in a graph or a short table. Consequently, it is necessary to summarize the 
nearly optimal solutions before presenting them. 

In the current paper, we present a framework to study nearly optimal solutions of 
linear programming models developed for agricultural land use exploration. The 
principle is to generate a group of nearly optimal solutions, to summarize it and, finally, 
to present it graphically. The framework is applied to a model developed for land use 
exploration at the European level. Three different procedures are compared to generate 
nearly optimal solutions of this model. 

2. A framework to study nearly optimal solutions 

2.1. General outline 
In this framework, a group of nearly optimal solutions is summarized by 

projection into different low dimensional spaces. The result of a projection of a solution 
is a low dimensional vector called 'an aspect of the solution'. The elements of such 
vector are called 'attributes of the solution'. Having a low dimension, aspects of the 
solutions can be presented graphically. Information on the characteristics of the group of 
nearly optimal solutions can be provided to stakeholders by defining different aspects. 

The framework consists of three steps: (1) definition of the different aspects of 
solutions that will be shown; (2) generation of a group of nearly optimal solutions; (3) 
graphical presentation of the different aspects of the generated solutions. 

2.2. Definition of the aspects of solutions 
In the linear programming models developed for agricultural land use 

exploration, the decision variables are usually areas allocated to production activities. 
This implies that an optimal or nearly optimal solution is a vector whose elements are 
the areas allocated to the different production activities taken into account by the model. 
A production activity is defined by Van Ittersum and Rabbinge (1997) as cultivation of 
a crop or crop rotation in a particular physical environment, completely specified by its 
input and output. Consequently, an optimal or nearly optimal solution can be 
summarized by the allocation of the agricultural area between different regions, by the 
allocation of the agricultural area between different crop rotations or by the allocation of 
the agricultural area between different types of production techniques. These three types 
of allocations define respectively the regional ('where'), crop ('what') and technical 
('how') aspects of a solution. Such aspects provide relevant information to stakeholders. 

A particular aspect of a solution x can be seen as an m-dimensional vector, 
m < n, denoted by a(x) and defined by 

a(x) =Rm'x 

Rm = [rb ... , rj, ... , r,J 

Rm is an n x m matrix. The n-dimensional vectors r b ... , ri ... , r m each represent a group 
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of activities and consist of zeros and ones such that rjl' rj2 = 0, \I } 1 * }2,}1 ,}2 = 1, ... , m. 
Each element a1(x) of a(x) is a sum of decision variables and represents an attribute of 
the solution x. If the decision variables are areas allocated to production activities, an 
attribute is an area allocated to a group of production activities. The vectors r1 can be 
chosen to identify groups of production activities characterized by particular regions, by 
particular crop rotations or by particular production techniques. An attribute of x is then 
an area allocated to a region, to a crop rotation or to a production technique and the 
vector a(x) represents a regional, a crop or a technical aspect of the solution x. 

2.3. Generation of optimal and nearly optimal solutions 
The optimal solution is generated by common linear programming. Several ways 

can then be considered to generate nearly optimal solutions. In all cases, one must 
define the tolerable deviation a allowed for the objective function. This coefficient 
defines the set of nearly optimal solution, Sa. In a multi-objectives model, different 
levels of tolerable deviation can be used. 

Nearly optimal solutions can be generated by maximizing or minimizing the 
function 

f(x) = u' x 

where u is an n-dimensional vector whose elements are 0 and 1. Maximization or 
minimization of Iunder the constraints defined by the relations (2), (3) and (4) results in 
an extreme nearly optimal solution. Various methods can be used to define vector u, for 
instance: 

i. In the HSJ ('Hop, Skip, Jump') method (Brill et al., 1982), a first vector u is chosen 
such that the function I is the sum of the decision variables that are non-zero in the 
optimal solutionx*. This function is then minimized to obtain a nearly optimal solution. 
The vector u is then updated to generate other nearly optimal solutions that minimize 
the decision variables which are non-zero both in the optimal and the previous nearly 
optimal solutions. 

ii. Another method is to generate randomly different vectors u and to maximize the 
corresponding functions f Chang et al. (1982) propose to select randomly s decision 
variables and to maximize their sum. 

iii. A third possibility is to choose u such that u = Rm v, where vis an m-dimensional 
vector whose elements are 0 or 1. Then, the function f is a particular attribute or a 
particular sum of attributes. The minimization or the maximization of I will generate a 
nearly optimal solution minimizing or maximizing a particular attribute or a particular 
sum of attributes. 

The former methods allow generation of several nearly optimal solutions. The 
optimal solution and the generated nearly optimal solutions constitute a group of t 
solutions which can be represented in a tx n matrix~ whose rows are the t solutions 
and whose columns are the n decision variables. An aspect of this group of solutions is 
defined by 
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At=~ Rm 

At is a tx m matrix. Each row of At is the aspect of a solution: a(x) '. Each column of this 
matrix represents the value of an attribute of the t solutions: ~ r1 . The next step is to 
present graphically the matrix At corresponding to one of the aspects of the group of 
solutions. 

2.4. Presentation of an aspect of a group of solutions 

2.4.1. Plots of pairs of attributes 

One possibility to graphically represent At is to plot pairs of attributes, that is, to 
plot the points whose coordinates are in~ r11 and in~ r12, 11 =t= 12, 11 , 12 = 1, ... m. The 

number of possible plots of pairs of attributes is equal to (;) . If the considered aspect 

has just two attributes, it can be represented by a simple graph. If a larger number of 
attributes has been defined, the number of possible plots of pairs of attributes may be 
high. For instance, one could draw 3 different figures if 3 attributes are considered, 6 
different figures if 4 attributes are considered, 1 0 different figures if 5 attributes are 
considered. Thus, if the number of attributes is high, plotting all the possible pairs of 
attributes will overload the decision maker with information. In this case, a more 
synthetic presentation is called for. 

2.4.2. Plots of principal components 

A principal component analysis (Hotelling, 1933 ; Krzanowski and Marriot, 
1990) can be used to reduce the dimension of the dataset At. The principle is to 
determine few linear combinations of the attributes that explain as much as possible of 
the variability of the data. We defined At* as the matrix At centered about the mean so 
that column totals are zero. The matrix ~=At*' A/l(t -1) is considered as an estimate 
of the variance-covariance matrix of the aspect a(x). Let "Ab ... , "Ai' ... , "-m be the m 
eigenvalues of At*' At* arranged in decreasing order and db .. . , ~, ... , dm their 
corresponding eigenvectors. We know that ~1 ' d12 = 0 11 * 12 '\/1b 12 and that d1 is the 
axis which displays the highest variance of the data set, d2 is the second one, and so on. 
The 1th principal component of At is defined as the vector At* ~~ where ~ is the 
eigenvector corresponding to the 1th largest eigenvalue "A1, and var(At * d.) = "A1. The total 
inertia of At is defined as I= "A1+ ... + "-m· Consequently, the importance of the 1th 
component in a more parsimonious description of the system can be measured by AJI. 
This ratio is useful to determine the number of principal components that should be 
plotted to represent much of the variability of At. 
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3. Application 

3.1. The GOAL-QUASI model 
The GOAL-QUASI model (Van Ittersum et al., 1995 ; Hijmans and Van 

Ittersum, 1996) is a simplified version of the GOAL model (General Optimal Allocation 
of Land use) (Scheele, 1992; Rabbinge and Van Latesteijn, 1992). GOAL is a multiple 
goal linear programming model which was developed for exploration of land use 
options in the European Community (EC 12). The target group of the model were policy 
makers in Europe. The GOAL-QUASI model takes into account 706 decision variables. 
Each decision variable corresponds to a production activity describing where to 
produce, which crops and how to produce it. The constraints of the model include 
product balances, area constraints, water use constraints and manure balances. One of 
these constraints ensures self-sufficiency for agricultural products within the EC. Nine 
different agricultural, economic or environmental objectives can be optimized by the 
model. In this study we consider only the objective 'minimization of nitrogen loss (N 
loss) for total agricultural production in the EC'. 

3.2. Definition of the aspects of solutions 
Regional ('where'), crop ('what') and technical ('how') aspects and their 

corresponding attributes are given in Table 1. 

Table 1: Attributes associated to regional, crop and technical aspects 

Aspect Attribute 

Regional Area allocated to the north of the European Community (North) 
Area allocated to the south of the European Community (South) 

Crop Area allocated to roughage (ROU) 
Area allocated to short rotations (SHO) 
Area allocated to long rotations without field bean (LO 1) 
Area allocated to long rotations with field bean (L02) 

Technical Area allocated to yield oriented and irrigated activities (YOP) 
Area allocated to yield oriented and non-irrigated activities (YOW) 
Area allocated to environmental oriented and irrigated activities (BOP) 
Area allocated to environmental oriented and non-irrigated activities (BOW) 
Area allocated to extensive activities (EXT) 

These attributes are only examples. Others could be defined. Here, the regional aspect of 
a solution is a two dimensional vector [North, South]' whose attributes are the area 
allocated to the north of the European Community (Ireland, United Kingdom, Belgium, 
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The Netherlands, Germany and France north) and the area allocated to the south of the 
European Community (Portugal, Spain, Italy, Greece and France south). The crop 
aspect of a solution is a four dimensional vector [ROU, SHO, L01, L02]' whose 
attributes are the areas allocated to four kinds of crops or crop rotations. The technical 
aspect of a solution is a five dimensional vector [YOP, YOW, EOP, EOW, EXT]' 
whose attributes are the areas allocated to five production orientations (a production 
orientation is defined as the aims and restrictions that direct the output and input levels 
of a production activity, Van Ittersum and Rabbinge, 1997). 

3.3. Generation of nearly optimal solutions 
We follow the steps presented in section 2.3. The optimal solution is calculated 

for the objective 'Minimization of nitrogen loss'. The optimal value ofN loss in the EC 
is 2234.1 10 6 kg. We assume a deviation tolerance a of 5% from the optimal value for 
the level of N loss. This deviation tolerance defines a set of nearly optimal solutions. 
Three different methods are used to generate nearly optimal solutions: 

Method i. A group of 15 nearly optimal solutions, called 'NOS 1 ', is generated with the 
HSJ method. A first nearly optimal solution is generated by minimizing the sum of the 
decision variables that are non-zero in the optimal solution. A second nearly optimal 
solution is generated by minimizing the sum of the decision variables that are non-zero 
both in the optimal solution and in the first nearly optimal solution, and so on. 

Method ii. A second group of 15 nearly optimal solutions, called 'NOS2 ', is generated 
by selecting randomly 15 different sets of 30 decision variables and by maximizing in 
successive runs the sums of values of these sets. 

Method iii. A third group of 22 nearly optimal solutions, called 'NOS3 ', is generated by 
both maximizing and minimizing each one of the 11 attributes defined in Table 1. 

All calculations are performed with OMP software (OMP manual, 1993). 

3.4. Presentation of the aspects of the solutions 

3.4.1. Regional aspect 

The regional aspect of the group of solutions is presented graphically in a two 
dimensional space defined by the attributes North and South (Fig. 1). The range of 
variation of the two attributes is quite large. For North, the minimal and maximal values 
are respectively 10.9 106 ha (11% of the territory of the north ofEC) and 50.2 106 ha 
(51% of the territory of the north ofEC). For South, the minimal and maximal values 
are respectively 1.9 10 6 ha (1.4% of the territory of the south of EC) and 36.6 10 

6 
ha 

(28% of the territory of the south of EC). The values obtained for the optimal solution 
are intermediate: 26.5 10 6 ha for North and 26.0 10

6 
ha for South. 

Thus, the regional aspect of the nearly optimal solutions reveals that it is 
possible to modify greatly the optimal distribution of agricultural area between the north 
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and the south of EC without increasing the level of nitrogen loss by more than 5%. 
Although the agricultural area is equally distributed between the north and the south in 
the optimal solution, nearly optimal solutions exist with both a high proportion of area 
allocated to the north and a high proportion of the area allocated to the south. The two 
attributes are not independent: when allocation to the north is high, allocation to the 
south was found to be rather small, and vice versa. This relation between attributes is 
due to the constraint which puts an upper bound on the total agricultural area and to the 
constraint which ensures self-sufficiency on the agricultural products. This later 
constraint implies a lower bound on the total agricultural area in EC. It should be noted 
that this apparent global substitutability observed between area allocated to the north 
and area allocated to the south of EC may not be possible for less aggregated levels, i.e. 
the level of provinces or municipalities. 

Figure 1 shows that the solutions NOS3 provide a wider coverage of the space of 
the attributes than the solutions NOS 1 and NOS2. The solutions NOS 1 and NOS2 are 
all located in the center of the whole group of solutions and are rather close to the 
optimal solution. Moreover, it should be noted that the solutions NOS 1 and NOS2 form 
disjunct clusters. For a given value of North, the solutions NOS2 have higher values of 
South than the solutions NOS 1. 

60 

-ns .c: 40 
CDC 
oc--.c: ... 
::s 20 0 en 

0 

0 0 

0 20 40 60 

North (106 ha) 

Figure 1: The regional aspect of optimal and nearly optimal solutions of GOAL­
QUASI, represented by attributes North and South. The optimal solution ( ~ ) was 
calculated by minimizing the nitrogen loss in the EC. Fifty two nearly optimal solutions 
were generated using methods z ( • ), ii ( 0 ) and iii ( 0 ) with a tolerable deviation of 
5% from the minimal value of nitrogen loss. 
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3.4.2. The crop aspect 

The crop aspect of the group of solutions was studied first by plotting the 
different pairs of attributes. Two of these plots are shown in Figure 2: the plot ofROU 
and L02 (Fig.2a) and the plot ofSHO and LOl (Fig.2b). 
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SHO (106 ha) 

20 

Figure 2: The crop aspect of optimal and nearly optimal solutions of GOAL-QUASI, 
represented by (a) attributes ROU and L02, (b) attributes SHO and LOl, and (c) the 
first two principal components (Prinl, Prin2). The optimal solution ( )( ) was calculated 
by minimizing the nitrogen loss in the EC. Fifty two nearly optimal solutions 
were generated using methods i ( • ), ii ( 0 ) and iii ( 0 ) with a tolerable deviation 
of 5% from the minimal value of nitrogen loss. 
Prinl = 0.96 ROU + 0.24 SHO- 0.08 LOl + 0.15 L02 (centered values) 
Prin2 = 0.0007 ROU + 0.57 SHO + 0.24 LOl- 0.78 L02 (centered values) 
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The values of ROU and L02 are higher than the values of SHO and LOl. Moreover, 
ROU and L02 have a wider range of variation among the solutions than SHO and LOl. 
No particular relation between attributes has been noticed. 

Another way to study the crop aspect is to use principal component analysis. A 
principal component analysis was performed on the 53 optimal and nearly optimal 
solutions using the procedure princomp of the SAS software (SAS/STAT User's Guide, 
1990). The four attributes of the crop aspect were considered as variables. The 
eigenvalues of the variance-covariance matrix are shown in Table 2. 

Table 2: Eigenvalues of the variance-covariance matrix obtained for the crop aspect 

Axis Eigenvalue Proportion a Cumulative 

1 26.76 0.57 0.57 
2 12.88 0.27 0.84 
3 6.24 0.13 0.97 
4 1.42 0.03 1 

a Proportion = t/ t, A,, 

These eigenvalues can be used to calculate the proportion of variance explained by each 
axis. We see that the first two axes explain 84% of the total variance of the group of 
solutions. Thus, the plot of the first two principal components (scores of the solutions 
on the first two axes) seems sufficient to represent the crop aspect of the group of 
solutions. This plot is shown in Figure 2c. The attribute ROU receives a high positive 
loading on the first component. Thus, solutions with high values of ROU are on the 
right side of the graph and solutions with low values of ROU are on the left side of the 
graph. The attribute SHO and L02 have, respectively, a high positive and a high 
negative loading on the second component. Thus, the second component measures the 
preponderance of the attribute SHO over the attribute L02. Solutions with high values 
of SHO and low values of L02 are on the upper side of the graph and solutions with 
low values of SHO and high values of L02 are on the lower side of the graph. One 
should notice that the highest coefficients of the principal components are the 
coefficients of the attributes which have the widest range of variation. 

The crop aspect of the nearly optimal solutions reveals that one can modify 
greatly the optimal distribution of agricultural area among rotations without increasing 
the level of nitrogen loss by more than 5%. For instance, it is possible to find nearly 
optimal solutions that have, compared to the optimal solution, a lower area allocated to 
roughage, a higher area allocated to long rotations with field bean or a higher area 
allocated to short rotations. On the other hand, one can not find nearly optimal solutions 
with very low area allocated to roughage or to long rotations with field bean. The fact 
that the area allocated to roughage remains relatively high among solutions may be due 
to the constraint in the model which ensures self-sufficiency on agricultural products. 
Agricultural products include animal products and the level of animal products depends 
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on the level of roughage. 
As noted also for the regional aspect, the solutions NOS3 provide a wider 

coverage of the space of the attributes than the solutions NOS 1 and NOS2. Moreover, 
the solutions NOS 1 and NOS2 form disjunct clusters: the solution NOS2 have higher 
values of SHO and ofROU than the solutions NOS 1 (Fig. 2). 
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Figure 3: The technical aspect of optimal and nearly optimal solutions of GOAL­
QUASI, represented by (a) attributes YOP and BOP, (b) attributes YOW and BOW, (c) 
attributes BOP and EXT, and (d) the first two principal components (Prin1, Prin2). The 
optimal solution (::.: ) was calculated by minimizing the nitro!!en loss in the EC. Fifty 
two nearly optimal solutions were generated using methods i ( • ), ii ( 0 ) and iii ( 0 ) 

with a tolerable deviation of 5% from the minimal value of nitrogen loss. 
Prin1 = -0.63 YOP- 0.006 YOW+ 0.75 BOP+ 0.02 BOW+ 0.2 EXT (centered values) 
Prin2 = -0.05 YOP + 0.05 YOW- 0.29 BOP+ 0.06 BOW+ 0.95 EXT (centered values) 
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3.4.3. The technical aspect 

The technical aspect of the group of solutions was studied first by plotting the 
different pairs of attributes. Three of these plots are shown in Figure 3: the plot of YOP 
and EOP (Fig.3a), the plot of YOW and EOW (Fig.3b) and the plot of EOP and EXT 
(Fig.3c). The attributes YOP, EOP and EXT have a wider range of variation than the 
attributes YOW and EOW. The latter two attributes remain always small. Figure 3a 
shows a strong substitutability between EOP and YOP: ifYOP is high EOP is small and 
if YOP is small EOP is high. No other particular relation between attributes has been 
noticed. 

A principal component analysis was performed on the optimal and nearly 
optimal solutions by considering as variables the five attributes of the technical aspect. 
The eigenvalues of the variance-covariance matrix are shown in Table 3. 

Table 3: Eigenvalues of the variance-covariance matrix obtained for the crop aspect 

Axis Eigenvalue Proportion a Cumulative 

1 148.79 0.69 0.69 
2 56.5 0.26 0.95 
3 5.99 0.03 0.98 
4 4.99 0.02 0.998 
5 0.39 0.002 1 

'Proportion= Nit"-' 
We see that the first two axes explain 95% of the total variance of the group of 
solutions. Thus, the plot of the first two principal components seems sufficient to 
represent the technical aspect of the group of solutions. This plot is shown in Figure 3d. 
The attributes YOP and EOP have, respectively, a high negative and a high positive 
loading on the first component. Thus, the substitution between YOP and EOP noticed in 
Fig.3a appears in the definition of the first principal component. This component 
measures the preponderance of EOP over YOP. Consequently, solutions with high 
values of YOP and low values of EOP are on the left side of the graph and solutions 
with low values of YOP and high values of EOP are on the right side of the graph. The 
attribute EXT has a high positive loading on the second component. Thus, solutions 
with high values of EXT are on the upper side of the graph an4 solutions with low 
values of EXT are on the lower side of the graph. 

The technical aspect of the nearly optimal solutions shows that the optimal 
distribution of the area between production orientations can be modified greatly without 
increasing the level of nitrogen loss by more than 5%. Although the optimal solution is 
characterized by a high value ofYOP, by a low value ofEOP, and by an intermediate 
value of EXT, one can find nearly optimal solutions with a low value ofYOP and a high 
value ofEOP, or with quite different value of EXT. On the contrary, the values of YOW 
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and EOW can not be greatly modified and always remain relatively low among the 
nearly optimal solutions. 

Table 4: Average 'N loss I Yield' ratios obtained for the five production orientations 

Attribute 

YOP 
YOW 
BOP 
EOW 
EXT 

N loss (kg.ha-1
) I Yield (t.ha-1

) 

2.42 
5.45 
2.1 
4.05 
3 

The difference of ranges of variation between attributes in the nearly optimal 
solutions may be explained by the values of technical coefficients associated to the 
activities. Table 4 shows the average values of the ratio 'N loss I Yield' calculated, for 
each production orientation, from the technical coefficients of the activities. The 
average ratios associated to YOP and EOP activities are the lowest and are very similar. 
This may explain that the areas allocated to YOP and EOP activities can reach high 
values in the nearly optimal solutions and that the two types of activities can be 
mutually substituted. The high ratios associated to YOW and EOW production 
orientations may explain that the areas allocated to YOW and EOW activities remain 
low among the solutions. 

As noted for the previous aspects, the solutions NOS3 provide a wider coverage 
of the space of the attributes than the solutions NOS 1 and NOS2. Moreover, the 
solutions NOS1 and NOS2 form disjunct clusters: the solutions NOS2 have higher 
values of EXT than the solutions NOS1 (Fig. 3). 

4. Conclusion 
We have described a framework to visually represent images of a group of 

nearly optimal solutions by means of aspects. An aspect of a solution has been defined 
as a low dimensional vector whose elements are particular attributes. This framework is 
put forward as a solution to practical problems associated with using optimization 
techniques for decision support. In our experience linear programming is useful for 
structuring information in complex decision problems. At the same time, a 
mathematical model is necessarily a simplification of reality, and mere presentation of 
'the optimal solution' is of little relevance to stakeholders. The framework was 
developed from the premise that not all of the stakeholder's objectives are represented 
in the model and that sacrificing some of the objective function optimal value may be 
useful to create a solution space for other, hidden, objectives. This approach thus 
emphasizes incomplete model specification. The description of the system is not altered 
except in one way, by controlled relaxation of the optimality criterion. 

13 



The first step of the framework - definition of aspects of solutions that are 
relevant to a stakeholder- requires close interaction between modeler and model-user. 
Analysis of a particular set of aspects may call for definition of new aspects. Such 
iterative interrogation of the model helps to learn about reality and contributes to 
informed decision making (Leeuwis, 1993). 

In the second step a tolerance deviation is allowed for the objective function(s) 
and a group of nearly optimal solutions is generated. In our application we have only 
considered a deviation for the value of total N loss in the EC. In multi-objective models, 
which are common in agricultural land use exploration, a deviation can be allowed for 
several objective functions. 

The results (Fig.1-3) reveal the sensitivity of nearly optimal solutions to the 
method used to generate them. The methods i and ii were found to generate solutions 
that have highly similar attribute values. Thus, compared to the solutions generated with 
the method iii, the solutions generated with the methods i and ii do not provide a wide 
coverage of the spaces of attributes. The range of variation of the attribute values within 
the whole set of nearly optimal solutions can be strongly underestimated with the 
methods i and ii. For instance, the maximum value of the area allocated to the north of 
the EC is equal to 36.1 106 ha for the solutions calculated with the method i, is equal to 
37.5 106 ha for the solutions calculated with the method ii but is equal to 50.2 106 ha for 
the solutions calculated with method iii. The results obtained with the methods i and ii 
could be improved by increasing the number of generated solutions but it is not possible 
to know whether the maximal and minimal values of the different attributes are well 
approximated or not. The advantage of method iii is that it gives, by definition, exactly 
the minimal and maximal values of each attribute in the whole set of nearly optimal 
solutions. 

In the third step of the method the aspects of the generated nearly optimal 
solutions are presented. We have proposed a graphic presentation either by pairwise 
plotting of attributes or by principal component analysis. The latter type of presentation 
is useful when the number of attributes exceeds four or five. 

A study of nearly optimal solutions discriminates between the characteristics of 
the optimal land use allocation that can be changed without unduly depreciating the 
objective function value and those that can not. It has been noted in our application that 
some attributes vary widely among nearly optimal solutions, while others behave more 
conservatively. For instance, the areas allocated to yield oriented and irrigated activities 
(YOP) in the nearly optimal solutions varied between 0 and 39.3 106 ha, whereas the 
areas allocated to yield oriented and non-irrigated activities (YOW) did not exceed the 
range of 0 to 13.9 106 ha. This type of information on the range of solutions all resulting 
in an acceptable level of the objective function is expected to provide a stakeholder with 
'manoevering space' necessary to resolve complex decision problems. 
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