

J

1
r
I
!

69

Variable time step during calculation No

Variable distance step Yes

Discharge and water elevation in all reaches Yes

Flooding No

Location of drop No

Dry water front No

Movable drop No

Pressurized flow Yes

Mesh Goints and bifurcations) Yes

.Discharge at offtakes Yes

Screen: tables Yes

Yes I II Screen: graphs II

Yes r Printer: tables

Printer: graphs Yes

File: ASCD Yes

File: graphs Yes

Links with, other programs: dBase No

Links with other programs: SIG No

.II Links with other software: CAO Yes If
____ ""1""" ___ ---:-----,ll

II Output for all points and times Yes If

5.5 Proposal for a modified evaluation framework

Taking into account the results of the FAO and ASCE meetings, software engineering
considerations, and other work done, as described in Sections 5.2-5.4, we propose a

-I

.. ---1

70

modified evaluation framework. Its broad set-up is largely the same as that of Rogers et
al. (1991), which we have modified to agree with earlier remarks on the subject (see also
Chapter 1). · ·

We start with a category 'General information', containing the name of the program, the
contact address, relevant literature, etc., · combining items from the FAO softWare
descriptive forms (Table 5.1) and the IRRISOFT software descriptive pages (Table 2.1),
but excluding items that are falling in the other two categories, i.e. ProJ)erties and
QuaJi~es.

.

The major distinction is between 'Properties' and 'Qualities'. Properties then relate to the
more factual information ("What can a program do'?"). Under Properties we have added ·
'Scope ·and purpose' and the mechanical (hardware) requirements. 'Purpose and scope'
includes some aspects of Rogers' modelling capabilities. ·

The second group (the 'Qualities', ·i.e. "How does a program do it'?") concern the
'Program qualities' and the use;r-friendliness. A distinction has been made in Program
qualities between 'Theoretical quality' , which refers to the conceptual and model-building
phases in software engineering (theories, assumptions, mathematical representation), and
the 'Technical quality' , which concerns the implementation or the programming of the
model. 'User qualities' are a very important category, containing aspects which
immediately concern the end user of the program. This framework is shown in Table 5.5·.
Details of this evaluation framework are discussed below.

Table 5.5 Proposed irrigation software evaluation framework

·General infonnation - program name
-made by
-cost
- referenc~ person
- programming language .

..
- manual availability
- key refemce publication

Properties Scope and purpose -subjeCt
-purpose
- capabilities/options
- limitations

Hardware requirements

Qualities Program qualities - theoretical quality
- technical quality

User qualities -interface
- documentation
- availability

71

- Properties: Scope and puri>ose

As a first item under 'Scope and purpose' one can find for which subject the program can
be used, and what it can do for that subject. The indication of the subject should be
sufficiently detailed and clear. "Surface irrigation" is not adequate for a specific furrow
irrigation design program; the mentioning of "furrow irrigation" and "design" are
essential. It should further be mentioned if it includes cut-back, blocked-end or re-use
options and if the program concerns one furrow or the complete field lay-out. A brief
indication of required input and ex~ted output often makes the subject clearer.

A second item to be mentioned is the purpose for which the program has been made. A
program can be meant explicitly for planning, design, operation, evaluation, or training.
Some ·programs are simple calculation tools, others are simulating a process, to be used
for any purpose. Of course, a design program can be an instructive trai~g tool, but
specifying the target group for which the program was developed assists end users in
making a choice.

Under 'Options/capabilities' information can be find about inputlouput options of the
program, if the units can be changed, if subject-specific modes can be chosen, etc. In
practical terms, this is a further detailing of the subject, combined wit~ computer-specific
items. Special distinguishing features can be mentioned here (" ... produces daily, weekly
and monthly totals in tabular and graphical form .. "). ·

A clear statement on the limitations of the program should be included, if it were only to
avoid disappointed buyers/users. Such limitations can have to do with the subject, the
purpose, and the options mentioned above. They can also indicate limits of data ranges or
scale, or can state underlying assumptions and boundary conditions. Examples are: " ... this
program is not suitable for design purposes, but returns order-of-'magnitude estimates only
... ";" ... the program only considers uniform soil condition ... ";" ... the program accepts
monhtly average values only ... ").

- Properties: Hardware requirements

Under this heading; the operating sjstem must be specified (MS-DOS 6.0 and higher,
Windows 95). Also the necessary and recommended processor (Pentium 100 MHz), the
required free memory for installing and running the program should be stated. One also
would like to know if a hard disk is required to unpack/install the program; whether a
(special} printer is needed, and if a certain graphics or sound card is necessary. Whether
or not a particular keyboard, monitor, or mouse is required is also useful to know. Further
possible items to include are mentioned in Chapter 3 (Figure 3.4).

- Qualities: Program qualities

Under 'Theoretical quality' we expect information on the underlying theory of the program
(" ... based on a full solution of the St. Venant equations ... "). Virtually all irrigation
programs are based on a mathematical modelling of a part of reality, and it is important

. :1.

72

to know whether the model approach uses simple regression. equations or more universally
applicable physical laws. ·

Apart from this conceptualisation, one would also like to assess the chosen modelling
approach, i.e. the mathematical approach· used. Stating which (type of) algorithms and
physical or ·statistical laws were applied is useful, so that the user can judge their
acceptability.

In the implementation phase of modelling, bugs could ·have entered and therefore it is
important to know if the program has been de-b.ugged and verified to give correct results
for test· cases. Test case results are mainly a software engineer's: worry, but a user would
like to know about the most recent tests.

Under the heading 'Technical quality' we mainly expect information on the chosen
numerical solution technique, which affects a number · of criteria, such a,s correctness,
accuracy, stability, and convergence. Correctness is self-explanatory . . Accuracy and .
stability deal with unavoidable rounding or trun~ting error in the many calculations,

· especially if differentiation or integration have to be done numerically. Smaller (time) steps
.lead to a greater accuracy, but the cumulated error may become so· large that it approaches
the solution, in · wl)ich case the stability is lost. Convergence is. another requirement is
numerical iterations: we would like to know if the program will always give a solution
(implicit solution schemes will, explicit ones may not).

A further technical quality relates to input sensitivity (are input ranges limited, or does the
program also give a solution for freak values) , which quality is also referred to as
robustness.

A last. technical quality that a user would' like. to know about is whether any calibration
and/or validation has been done, and what the results thereof were. Calibration refers to
th~ testing of the program versus measured data, after which adjustments may have been
made. In the validation stage such adjustments are not made. Compare the remarks on
validation made in Section 5.2.

Qualities: User· qualities .

The user qualities are often neglected, but they form the link between· the prograin and the
user and as such are very important for its application (also see Chapter 6). One could also
describe these user qualities as the degree of user-friendliness. We distinguish three groups
of aspects, i.e. the user interface (on the computer), the manual, and the availability of
the program. ·

For the user interface, we can specify the following aspects: accessibility, clarity,
program handling, file handling, input and output. .For each of these aspects, we have
listed a number of requirements below:

··. * Accessibility
- easy install , start, stop;

* Apparent simplicity
clear program structure;

- clear and consistent menus;
:- easy to to browse, get back, get out;

set of default data (standard file);
- clear input/output;

* Program hand_ling
:- screen help (meaning/purpose);
- common key operations + instructions;
- clear terminology;
- clear screens;

error mes.sages;
- time to learn/manual/training;

* File handling
- retrieve and save;
- dos/windows options; .

impo~, export, convert;
- track record;

* Input
consistent option selection ,_ input;

- interactive/on screen;
- clear meaning/purpose;
- message on ranges;

* Output
- clear screen;

primary and secondary;
- report, tabl~s, graphs;

save/print/plot.

73

The documentation quality mainly concerns the user manual (in contrast to the
programmer's manual). Although the necessity of a clear manual has often been stressed,
a number of programs still do not have them. A good manual should "document the
objectives, target groups, relevant current developments, the methodology and the process
of program development, the background theory, the use of approximations and constants.
It should also explain the use of the program step-by-step and point out any less common
uses. At least one worked example should be included, the data of which should already
be available on the distribution disk", as stated in the ILRI inventory of 1993. A good
manual should e.g. contain an introduction, a chapter on the·background theory, a

.. ..•

.. .

74

summary and explanation of the program structure, a section on how to run the program
(operation), one or more worked examples, data ranges and a good index.

Another user concern is the availability of the program. Many of the irrigation software
packages are non-commercial, and therefore are not officially marketed. The existence of
a certain program often follows from a journal article, from workshop proceedings, or
from correspondence between a selected group of people. Making an inventory and adding
qualities should help to overcome this problem to a certain extent. IRRISOFT (Chapter 2),
LOGID (Chapter 3) and the ILRI inventory (Chapter 4) may certainly help.

Another availability aspect is the price of a package. Development costs of the larger
packages are high (labour-intensive), and commercial institutions (consultancy firms,
publishers) by nature want to sell their products at a profit. Many publicly-funded research
and educational institutions do not have this urge and make programs available at nominal
cost only (although privatization unfortunately leads to reversing this trend). Apart from
the purchase price, there are also indirect costs which need to be invested in learning time,
data collection, etc.

Under the availability heading one can also think of the support that is available for a
software package; a name and an (e-mail) address where further information can be
obtained, where queries are answered, and where updates are made (and made known).

References

Clemmens, A.J., W.R. Walker & R.S. Gooch, 1991. Irrigation canal system unsteady flow modelling. In:
W.F. Ritter (ed.): Irrigation and drainage, Proceedings of the 1991 National conference, Honolulu,
Hawaii, July 22-26, 1991: p. 231-237

Deutsch, M.S. & R.R. Willis, 1988. Software quality engineering - a total"technical and management
approach. Prentice Hall, Englewood Cliffs

F AO, 1994. Summary report, conclusions and recommendations. In: Irrigation water delivery models.
Proceedings of the FAO Expert consultation, Rome, 4-7 October, 1993. Water report #2: p. 1-10

Ingels, D.M., 1985. What every engineer should know about computer modelling and simulation. Marcel
Dekker, New York

Jurriens, M. & K.J. Lenselink, 1992. User-oriented irrigation software for micro-computers. In: Annual
report 1992, ILRI, Wageningen, p. 41-51 ·

Lenselink, K.J. & M. Jurriens, 1993. An inventory of irrigation software for microcomputers. ILRI Special
report, Wageningen. 172 p. ·

Rogers, D.C., W. Schuurmans & J.W. Keith, 1991. Canal model evaluation and comparison criteria. In:
W.F. Ritter (ed.): Irrigation and drainage, Proceedings of the 1991 National conference, Honolulu,
Hawaii, July 22-26, 1991: p. 323-329

