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ABSTRACT 

·This paper reviews the principles underlying water dynamics in the 

unsaturated zone and gives an overview of simulation rnadelling of soil water 

flow in the unsaturated zone. 

The basic relations descrihing kinetics of flow and governing equations of 

flow in the unsaturated zone are presented in a general form considering un­

steady multidimensional anisotropic and nonhomogeneous flow in the presence of 

sinks/sources. The influence of overburden potentiai, characterizing swelling 

soils, on water transport through the unsaturated zone is discussed. Outlines of 

thermally-induced water flow are presented with an extension to the specific 

case of frozen soils. Complex relationships descrihing the hydrological system 

are reduced into the one-dimensional vertical flow cases. for which the mathema­

tica! models are defined. The entire model has the form of a set of partiaJ dif­

ferentlal equations tagether with auxiliary conditions, that describe the 

system's geometry, parameters, boundary conditions and in case of transient flow 

also the initia! conditions. Simulation is defined as operation with such a 

mathematica! model. 

Numerical approximations to solve governing equations of unsaturated water 

flow are emphasized. Recently-introduced numerical methods are discussed 

pointing out their advantages and limitations. Atmospheric boundary conditions 

of the modelled system are described with a maximizing procedure of the flux 

through the soil-air interface. SeveraJ options to define lower boundary con­

ditlans are discussed and a special type of lower boundary condition is given for 

the case that unsaturated flow is coupled with a regional groundwater model. 

Simulation models require data concerning input, calibration and verification. 

The current status of collecting model parameters is discussed as well as 

measurement of common verification data, i.e. phreatic surface, matric head, 

water content and actual evapotranspiration. 

Preferentlal flow of water through unsaturated soil has considerable con­

sequences for simulating the field water balance. The attempts to simulate such 
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hydrological systems are also evaluated. 

Some transient flow problems are affected by hysteresis. Successful attempts 

to build hysteresis into dynamic simulation models are still scarce, though 

recently a number of solutions have been presented. 

Finally, several practical examples of simulation of flow problems are 

presented. These examples are taken from everydáy water management practice and 

document the wide range of applicabJlJty of simulation models. 
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I. INTRODUCTIO~ 

Since BUCKINGHAM (1907) introduced the energy concept to describe 

the condition of water and RICHARDS (1931) formulated the partlal dif­

ferentlal equation for water flow in unsaturated soil, a quantitative 

analysis came within reach. Soil water flow, however, is highly non-linear, 

as bath the hydraolie conductivity and the soil water pressure head depend 

on the soil water content. Exact analytica! salutlans are only possible for 

simplified flow cases under a number of restrictlve assumptions. Numerical 

salution of the flow equation on the other hand offers a powerful tool in 

approximating the real nature of the unsaturated zone for a wide variety of 

soil systems and external conditions. 

The partial differential flow equation can be interpreted 

numerically by a finite difference. a finite element or a boundary element 

technique. Then a discretization scheme is applled for a system of nodal 

points that is superimposed on the soil depth - time region under con­

sideration (Figs. 3 and 4). Implementing the appropriate initia] and boun­

dary conditlans then leads to a set of (linear) algebraic equations that 

can be solved by different methods. The operation by means of such a mathe­

matica! model is termed simulation, while the model is called simulation model. 

The output of a simulatlon model can include such variables as 

pressure head, malsture content and flux as a function of soil depth 

and time. However, most frequently one calculates the terms of the water 

balance, i.e. infiltration, actual evaporation, actual transpiration, 

change in soil water starage and the net flux through the region boundary. 
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The main purpose of using dynamic simulation models is to assess the 

effects of water management measures such as irrigation, sub-irrigatlon, 

drainage, soil improvement and regional water supply plans, on the terms of 

the water balance of agrlcultural as wellas nature conservation areas. 

Through the water balance terms one is generally able to evaluate effects 

of water management on e.g. erop yield and agricultural income. Another 

application can be found in civil engineering where seepage through dams 

and seepage losses from channels must be estimated. 

Transport of solutes is another aspect, which is directly related to 

the simulation of unsaturated water flow, i.e. the evaluatlon of polJution of 

the groundwater reservoir, salinization, etc. 

The yield of a erop well supplied wlth nutrients is directly 

related to its water use i.e. to its transpiration. The higher the 

water use, the higher the yield. Hence slmulation of different irrlgation 

regimes by a soil water balance model that has been combined with a erop 

growth model enables one to find the optimum regime. In such a case the 

erop and soil system should interact with each other, i.e. erop 

development with time should have a feedback with calculated actual water 

use and production rates. 

In many soils water shortage for crops is caused by a too 

shallow rooting depth. The reasons for a restricted rooting depth can 

be many, such as poor aeration, soil compaction, etc. Again through soil 

water balance/crop growth models the effects of changes in a soil profile 

on erop water use and yield can be evaluated. 

Inadequate drainage generally results in decreased trafficability and 

workability of the soil and hence timely farming operations are not 

possible. The lengthof the growing season is shortened and consequently 

erop yield is reduced. If the relationship of soil moisture conditloos 
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with farming operations and erop growth is known, one is then able with 

soil/crop simulation models to evaluate effects of drainage on erop produc­

tion on a day to day basis. Such an approach is not only feasible for 

drainage studies, but also for irrigation, soil improvement, etc. and 

thus applicable to quantitative land evaluation studies in genera!. 

The classica! Richards-flow theory upon which most simulation models 

are based holds for stabie flow conditions only. Yet instability of flow 

has been observed under a wide variety of circumstances such as abrupt and 

gradual increases of hydraolie conductivity with depth, compression of air 

ahead of the wetting front and water repellency of the solid phase (e.g. 

RAATS, 1973). Another example of non-Richards-type of flow is the preferen­

tlal flow through non-capillary macropores. With classica! flow theories 

one mat then underestimate the velocity and depth of waterlsoJute 

transport. 

The present paper does not review all literature dealing with water 

flow in unsaturated soil. For example, a subject as transport of solutes 

is left out of consideration. The main purpose is (i) to give the prin­

ciples behind unsaturated soil water flow, (ii) to present an outline of 

simulation approaches and (iii) to consider recent ·developments. Some 

examples of simulation of flow problems taken from everyday water manage­

ment practices are presented. 
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THEORY OF WATER DYNAMICS IN THE UNSATURATED ZONE 

The fact that water moves through an unsaturated soil was recognized 

by BUCKINGHAM (1907) who related the flow rate to suction 

gradients. Buckingham also 1ntroduced a pressure head term which was later 

measured by GARDNER and WIDTSOE (1921). RICHARDS (1931) presented the 

differenttal equation for soil water flow using an analogy to heat flow in 

porous media. Up to now this equation is used as the basic mathematica} 

expression that underlies unsaturated flow phenomena. 

Mechanica} and energy concept 

In the mechanical concept only suction gradients were considered as 

the cause of water movement through the soil. However, watermayalso move 

through unsaturated soil by other driv1ng forces such as thermal, electrical, 

or solute concentration gradients. Therefore, an energy concept has been 

developed which states that soil water moves in the direction of 

decreasing energy status. 

For a given temperature the energy status of soil water can be charac­

terized by Gibbs' free enthalpy commonly called the water potential. 

Physically the potentlal expresses the capacity of a eertaio mass 

of water to do work as compared with the same mass of pure free water 

(defined as having a potenttal of zero). The soil water potential ~ can be 

writte:: ... ,: 

~ + ~ex + ~en + ~os ( 1 ) 
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where: <Pm matric potentlal arising from local interactions between the 

soil matrix and water 

<Pex potentlal arising from the external gas pressure 

<Pen overburden (envelope) potentlal caused by an external load which 

is partially carried by the soil water phase 

<Pos osmotic potentlal arising from the presence of solutes in the 

soil water 

When the water is located at an elevation different from that of the 

reference level, the gravitational potentlal <Pg has to be added. Hence 

the total water potentlal <Pt is given by: 

rp + <Pg 

Potentials can be expressed on a mass, volume, or weight basis. In 

hydrological studies, the use of potentlal on weight basis is preferred. 

The potentlal then has the dimension of length and is referred to as a 

'head' h. 

( 2) 

The energy or thermodynamic concept was reviewed by e.g. SLATYER 

(1967) and TAYLOR (1968). The influence of electrical gradients upon water 

flow will be incidentally touched on in this review while the dynamics of 

coupled water and heat flow in unsaturated soils will be given in a 

separate section. 

Kinetics of flow: Darcy's law 

Consirlering multi-dimensional flow under anisotropic and non-uniform 

conditions, Darcy's law can be written as: 

with j (summation index) 1,2,3 for each value of i (3) 
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where: v{ the flux vector 

the hydraulic conductivity written as a tensor of second 

degree for anisotropic soil 

V~ gradient of soi1 water potential, having a vectorlal nature, 

the soil water potentlal itself being a scalar 

Expressing potentlal in terms of head, h, and if the only changes in the 

system are due to interactions between the soil matrix and water, as 

well as due to elevation X3, eq. (2) reduces to: 

For isotropie conditions the Darcy's law (eq. 3) then takes the form: 

~ a 
v

1 
= -K - (h • x ) 

ax
1 

m 3 

For one-dimensional vertical flow one gets: 

y"' = -K 
ah 

m (az- + 1) 

( 4) 

( 5) 

( 6) 

where the notation z for the vertica1 coordinate (positive upward) is used 

instead of x3. 

Darcy's 1aw is taking a more complex form when in addition to the 

water potentlal gradient another gradient 11ke the electrical or the ther-

mal one is considered. Taking into account the e1ectr1ca1 potentlal gra-

dient, according to the Onsager's phenomenolog1ca1 equations one can write 

for the coupled one-dimensional water flux v and e1ectrica1 flux I: 
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-Lll 
aht 

L12 
au 

V = a x a x 

I = -L 
aht 

L22 
au 

21 a x a x ( 7) 

where U is the electrical potentlal and Lij are the so-called cross conductivlty 

coefflcients (BRAESTER et al. 1971). A simllar way of coupllng can be applled 

to the thermal potentlal gradlents and soil water potentlal gradlents. The 

questlon of combination of all the acting farces to one term. which is the 

derlvative of some general potential, was 1nvestlgated by ZASLAVSKY and 

RAVINA (1968). The dependency of cross conductivity coefficients on torces them-

selves as well as on the degree of saturatlon pose the main difflculty of such 

an approach. 

Conservatlon of mass 

.... 
Havlng defined the flux vector v, the expression for conservation 

of mass can be wrltten as: 

(di" v :D= - ae - s at 

where 9 the volumetrie soil malsture content 

t time 

s = the slnk (or negatlve source) of soil water (e.g. water 

extraction by roots) 

For one-dlmensional vertical flow eq. (8) reacts as: 

av 
az 

ae --- s 
at 

( 8) 

(9) 
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Differentlal equation of unsaturated flow 

Combination of mass conservation and narey's equation leads to the 

partlal differentlal equation of unsaturated flow. There are a number of 

alternative expresslons of the partlal differentlal equation considering 

steady and unsteady flow conditions. 

or 

Combination of eq. (8) and (3) yields: 

aa + 8 at 

Eq. (11) describes unsteady multi-dimensional anisotropic and non-

( 10) 

(11) 

homogeneaus flow. It should be mentioned that Kij is not only a parameter 

for an anisotropic and heterogeneaus medium, but it also depends on the 

soil moisture content 9. Substituting eq. (4) into eq. (11) and getting 

back to isotropie soils, eq. (11) then reduces to: 

a aKI BI a a 
at + s ( 12) 

In eqs. (11) and (12), repeated indexes mean summation on these indexes. 

Considering the one-dimensional case of vertical flow 

and introducing the differentlal soil water capacity Clhml = aa;ahm• 

eq. (12) can be rewritten in terms of soil matric head hm as: 

1 a 
C(hm) az 

ah 
[K(h ><a m + 1)) m z 

s 
---C(h ) 

m 

ah 
m 

at (13) 

Eq. (13) has the advantage of being applicable for the entire flow region. 
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including saturated and partially saturated flow. The use of hm instead of 

6 as the dependent variabie has the advantage of being applicable in 

layered soils, where hm remains continuous at the boundaries between the 

layers. 

Swelling soils 

The overburden or envelope potential. as mentioned in eq. (1). plays a 

role in soils where an applied load is not fully carried by the solid soil 

particles. In swelling clay soils. the overburden potentlal resulting from 

the load of overlying soil layers can be calculated according to 

GROENEVELT and BOLT (1972) as: 

P~P 

f ( ae) dP 

P=O 
3

" P,T 
( 14) 

or 

cp ~ aP 
en 

( 15) 

where: P load 

ae/31Y= slope of the shrinkage characteristic 

T temperature 

e void ratio ~ volume of voids/volume of solids 

tr ~ moisture ratio = (l+e)6 = volume of water/volume of solids 

a load factor 

6 volumetrie water content volume of water/total volume 

Both Darcy's equation and the continuity equation remain valid in swelling 
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soils. However, the composition of total potentlal differs from that in 

rigid soils and the space coordinate system changes due to swelling and 

shrinkage. This problem is overcome by defining a material coordinate m 

according to eq. (16) (PHILIP and SMILES, 1969): 

dm 
dz 

where: m material coordinate 

The conservation of mass (eq. 9) can then be converted into: 

1
av

1 am t 
= - ca."') at - s 

m 

(16) 

( 17) 

Evidently, the mentioned processes not only influence the calculation 

of water transport through the unsaturated zone, but also the equations 

governing infiltration at the soil surface (GIRALDEZ and SPOSITO, 1964). 

Thermally induced soil water flow 

The thermal regime of the soil can affect soil water movement. 

Several researchers attempted to describe the interaction of thermal 

and water potentlal gradients (e.g. HADLEV and EISENSTADT, 1955). 

MEEUWIG (1964) reported that the dependenee of soil water viscosity on the 

temperature is as much as 3 times higher than of the free water viscosity. 

Also the soil water diffusivity increases considerably when the soil tem-

perature rises (JACKSON, 1963). 

Two different approaches evolved in analyzing the coupling between 

soil water and heat flow. The mechanistic approach (KRISCHER and ROHNALTER, 
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1940: PHILIP and DE VRIES, 1957) employs the concepts of fluid mechanica and 

heat conduction 1eading, for one dimensiona1 water and heat flow, to: 

ae 
at= V(DT.VT) + V(D9.V9) aK 

az 

c aT 
s at V(À.VT) 

where: DT therma1 diffusivity 

tota1 isotherma1 diffusivity resp. isotherma1 vapour 

diffusivity 

C8 volumetrie heat capacity 

Lv latent heat of vaporization 

À = thermal conductivity of soil 

VT temperature gradient 

( 18) 

(19) 

The thermodynamic approach involves the use of thermodynamica of irre-

versible processes tagether with the Clapeyron equations to derive the 

coupling coefficients (TAYLOR and CARY, 1964). BOLTand GROENEVELT (1972) 

and KAY and GROENEVELT (1974) give a derfvation of the basic partlal dif-

ferential equations for the case, when matric potentlal is considered as 

a superficial driving force. They indicate that the temperature gradient 

VT could introduce a liquid flow in the opposite direction as compared with 

the salution by means of the mechanistic approach for the same value of matric 

head. 

TEN BERGE (1986) shows that the widely accepted PHILIP and DE VRIES 

(1957) formulation of thermally induced liquid flow does not descrlbe the 

real coupling in the true thermadynamie sense. He gives an outline for com-

bining the mechanistic and thermadynamie approaches _to solve coupled soil 

water and heat flow for bare soil surface conditions. 
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In arid and semi-arid regions with rapidly drying so11s, the application 

of simultaneous soil water and heat flow principles is essential. An 

extensive review of coupled water and heat flow in drying soils was pre-

sented by WIEGAND and TAYLOR (1961) and BRUTSAERT (1981). Discrepancies 

between the assumptions used in most theoretica! investigations and the pre­

valling physical conditions in arid areas were reviewed by JURY et al. (1981). A 

major problem in dealing with water flow in drying soils is the separation bet­

ween vapour and liquid flow. MENENTI (1984) has shown that thermal conveetien of 

soli air can occur in the top layer. Heat and vapour flow can be in opposite 

direction due to the density gradient induced by vapour production. He related 

thermal admittance of the so11 surface to the thermal properties of the 

underlying soil layers and considered the soil heat flux as a driving force for 

upward soli vapour flow under the conditlans that evaporation takes place below 

the soil surface. 

Few investigations were reported on therma1 effects in liquid domi­

nant processes such as infiltration in irrigated fields. Recently an exten­

sive derfvation of the basic equation of coupled water and heat flow in 

(trickle) irrigated fJelds was given by GHALI (1986). Although basedon the 

mechanistic approach of PHILIP and DE VRIES (1957) and DE VRIES (1958). 

Ghali's conceptual model is generaland considers radial two-dimenslonal or one­

dimensional systems wlth hysteresis and both water and heat sinks/sources. 
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Prozen soils 

Prozen soils play a significant role in the hydrology of many 

watersheds. Pore blockage by ice greatly decreases the permeability of soil 

and causes large runoff rates from otherwise mild rainfall or snowmelt 

events. Extreme erosion rates result when such runoff occurs from thawed 

saturated surface layers overlying a still frozen soil layer. The complex 

processes characterizing simultaneous heat and soil water transport in 

a freezing soil were studled by e.g. TAYLOR and LUTHIN (1978), GUYMON et al. 

(1980), HROMADKA et al. (1981). 

The physics of a frozen heterogeneaus soil profile includes terms of 

soil energy balance and soil water balance. Considering conductive, convective 

and latent heat transfer, the one dimensional energy conservation equation 

for potentlally freezing soil can be written as: 

a 
az 

ar 
(À(8) azl 

ar aa
1 

es at - PiLf ~ + 

The mass conservation equation reads: 

a ah 
[K(e) (a/ + 1)] + 

aa piae1 
= +--

at p
1 
at az 

ap 
V L (- + v at 

av 
V az-l (20) 

(21) 
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where: P1 density of liquid water 

CJ specHic heat capacity of water 

V] = downward liquid water flux 

Cs volumetrie heat capacity of soil 

Pi density of ice 

Lf latent heat of fusion 

6j volumetrie ice content 

Pv vapour denslty in soil pore space 

Vv downward water vapour flux through soll 

Sm = water slnk/source 

sh heat sink/source 

A complex analysis of the freezing soil-residue-snowpack system is pre­

sented by FLERCHINGER and SAXTON (1987). They studled the impact of 

tillage, resldue, solutes and environmental condltions on freezing soil and 

developed a detalled physlcally-based model of the system. 

A new methad based on the total energy concept to solve the problem of com­

bined heat and water flow in partly unsaturated and seasonally frozen solls was 

given by KARVONEN (1988). He simplified equations (20) and (21) by neglecting 

the vapour flux ter~s and derlved from the soll water retention curve both 

a freezing characteristic curve and the relationship between soil tem-

perature and soil water potentlal inthefrozen soli. He proposed both 

iterative and explicit techniques to calculate unknown unfrozen and frozen 

water content and soil temperature. 

ICW-nota 1858 
Team Integraal Waterbeheer 
Centrum Water&Klimaat 
Alterra-WUR



-15-

Water extraction by roots 

Since GRADMAN (1928) and VAN DEN HONERT (1948) suggested that under 

steady-state conditions water flow through the soil-root-stem-leaves path-

way could be described by an analogue of Ohm's law, the following 

expression has been widely accepted: 

h - h 
T m r 

R (22) 
s 

where: T transpiration rate 

matric heads in the soll, at the root surface and in 

the leaves respectlvely 

llquld flow reslstances in soll and plant respectively 

By consldering the diffuslon of water towards a single root, GARDNER (1960) 

showed that Rs is dependent on root geometry, rooting length and the hydraulic 

conductivity of the soil. This so-called microscopie type of approach is often 

used when evaluatlng the influence of complex soil-root geometries on 

water/nutrient uptake (e.g. DE WILLIGEN and VAN NOORDWIJK, 1987; ZELLER, 1987). 

In the field, however, steady-state conditlans hardly exist. Moreover, 

the living root system is dynamic (dying roots are constantly replaced by 

new ones), geometry is time dependent, water permeability varles with posi-

tion along the root and with time. Root water uptake is most effective in 
• 

young root material, but the lengthof young roots is not directly related 

to total root length. In addition, experimental evaluation of root proper-

ties is hardly practical, and often impossible. 
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Thus, insteadof consictering water flow to single roots, a more 

suitable approach might be the macroscopie one, in which a sink term S 

representing water extraction by a homogeneaus and isotropie element of the 

root system (volume of water per volume of soil per unit of time) is added 

to the conservation of mass equation (8). FEDDES (1981), MOLZ (1981) and 

CAMPBELL (1985) gave an overview of possible S-functions for non-uniform 

matric potentials. DIRKSEN (1985, 1987) investigated S-functions con-

sidering the influence of both the osmotic and the matric potential. 

As it seems to be impossible and unpractical to look for a complete 

physical description of water extraction by roots, FEDDES et al. (1978) 

described S semi-empirically by: 

S(hml (23) 

where a(hml is a dimensionless prescribed function of pressure head and 

Smax is the maximal possi.ble water extraction by roots. The last mentioned 

authors assume in the interest of practicality a homogeneaus root distribu-

tion over the soil profile and define Smax according to (see Fig. 1): 

s ma x 

T 

~ r 
(24) 

where Tp is the potential transpiration rate and lzrl is the depth of the 

root zone. 

ICW-nota 1858 
Team Integraal Waterbeheer 
Centrum Water&Klimaat 
Alterra-WUR



-17-

PRASAD (1988) and HAYHOE and DE JONG (1988) take care of the fact that 

in a moist soil the roots can prlncipally extract water from the upper soil 

layers, leaving the deeper layers relatively untouched. The root water 

uptake at the bottom of the root zone (zrl equals zero and the following 

salution is derived: 

2T 
rtr {1 

r 

lzl 
-~} 

r 
(25) 

So far we considered root water uptake under optima! soil water con-

ditlons, Smax· Under non-optima! conditions, i.e. either too dry or too wet 

Smax is reduced by means of the pressure head-dependent a-function (see eq. 

23). The shape of this function is shown in Fig. 2. Water uptake below 

}hmtl (oxygen deficiency) and above }hm41 (wiJting point) is set equal to 

zero. Between }hm21 and }hm31 (reduction point) water uptake is maxima!. 

Between }hmtl and }hm21 a linear varlation and between }hm31 and }hm41 a 

linear (Fig. 2) or hyperbolle varlation is assumed. The value of }hm31 is 

dependent on the demand of the atmosphere and thus varles with Tp· 
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MODELLING WATER DYNAMICS IN THE UNSATURATED ZONE 

Analogue slmulation models 

According to PRICKETT (1975) a hydrological simulation model is 

defined as 'each system that can duplicate the response of a hydrological 

system'. Slmulation models whlch resembie the real world most closely are 

physical models (scale models) like for example sand tanks. 

Analogue models are based on the simllarlty between the relatlons 

descrlbing water dynamics and those describing physical phenomena such as 

electrical flow. Examples are the hydraulic and electrical analogues of WIND 

(1979). Analogue models have the advantage of contlnuous simulation 

and they give a good approximation of the exact solution provided that the 

proper scale factors or transferm functlons are used. The main disad­

vantage is the time-consuming construction and operation. At this moment 

analogue simulation of water flow in the unsaturated zone is rarely 

applied. However, in combination with digital computers (hybrid models) 

most of the drawbacks can be overcome. 

Mathematica! models 

In the previous sections the dynamics of soil water was cast in the form 

of mathematica] expresslons that describe the hydrological relations within 

the system. The governing equations define a mathematica! model. The entire 

model has usually the form of a set of partlal differentlal equations. 

together with auxiliary conditions (REMSON et al .. 1971; HORNUNG and 

MESSING, 1980). The auxlllary conditlens must describe the system's 

geometry, the system parameters, the boundary conditions and, in case of 

transJent flow, also the initia! conditlons. Operatiens with such a mathe­

matica! model are called simulation. 
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If the governing equations and auxiliary conditions are simple an 

exact analytica! solution may be found. Otherwise, a numerical approxima­

tion is applicable. The numerical simulation models are by far the most 

applied ones. 

Solution of the governing equations 

Analytica! approach 

The relationships that govern the flow of water in unsaturated soil 

are quasi-linear equations of the parabolle type. Since the coefficients in 

these equations are functions of the independent variables, exact analyti-

ca! solutions for specific boundary conditions are extremely difficult to obtain. 

Analytica! methods to solve the non-linear governing equations (see 

eqs. 12, 13), search for the exact salution in termsof analytica! 

functions. Such an exact solution, if it exists, requires transformation, 

separation of variables, and usually a series of error functions. 

The commonly used Boltzman transformation reduces the partlal dif­

ferentlal equations to ordinary differentlal equations. The Laplace 

transformation results in removing the time variable. The salution of 

an equation modified in this way yields a dependent variabie as a 

function of the space variables (GARDNER, 1958). The non-linear mass 

conservation equation can be analytically solved only us!ng various types 

of relaxation techniques such as linearization, quasi-linearization and 

transformation to steady state (BRAESTER et al., 1971; PHILIP, 1968a,b; 1970). 

The basic equation that describes one-dimensional vertical water movement 

in isotropie non-swelling soils with no consideration of sinks/sources can 

be derived from eq. (12) as: 
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(26) 

By introducing the soil water diffusivity D(ll) = K(li)/C(ll) eq. (26) can be 

written as: 

69 
6t 

6 (D(B) 68) 
6z 6z 

6K(ll) 
+--

6z 

The following simplifications can be introduced to find analytica! 

solutlons: 

- K is an analytica! function of 9 or hm; 

- hysteresis is neglected; 

- the medium is homogeneaus and isotropic; 

- the flow is considered to be stationary or a succession of steady-

state situations (quasi-stationary approach); 

- the gravity force is neglected. 

(27) 

The first two assumptions linked with the third one have resulted in a great 

number of analytica! solutions (e.g. GARDNER, 1958; LOMEN and WARRICK, 

1978). The gravity force is often neglected in descrihing the infiltration 

process in originally dry soil, resulting in analytica! solutions as derived 

by e.g. PHILIP (1957, 1958), PARLANGE (1971) and PARLANGE et al. (1987). 

Numerical approach 

With the advance of digital computers, emphasis has shifted drastically 

from the classica! approach of analytica! solutions to the rapidly 

developing field of numerical analysis. At present, numerical 

approximations are possible for co~plex, compressible, nonhomogeneous and 

anisotropic flow regtons having various boundary configurations. 
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Numerical methods are based on subdividing the flow region into finite 

segments bounded and represented by a series of nodal points at which a solu-

tion is obtained. This salution depends on the solutions of the surrounding 

segments and on an appropriate set of auxiliary conditions. 

In recent years a number of numerical methods has been introduced. The 

methods that are most appropriate to the problem of soil water dynamics, 

will now be discussed below. 

Finite difference methods 

Finite difference methods (REMSON, 1971), either explicit or implicit, 

belang to the most frequently used techniques in modelling unsaturated flow 

conditions. To illustrate the use of finite difference methods, the one-

dimensional case of unsaturated flow without sink/sources (eq. 26) will be 

considered. 

Let the entire flow domain be divided into a grid of equal intervals. 

hz and the time domain be similarly divided into intervals At. The 

resulting two-dimensional grid is shown in Fig. 3. Referring to this figure 

eq. (26) can be expressed in finite difference form as: 

6j+1 - 6j hj hj hj - hj 
i i 1 m mi m - m. 1 

[Kj ( 1+1 + 1) - Kj ( i j-
+ 1)) (28) 

6t hz i+~ Az i-~ hz 

where: i index a long the space coordinate 

j index along the time abscissa 

Eq. (28) represents the so-called forward difference scheme with an explicit 

linearization of the K(6)-function. 
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The forward dlfference scheme is easy toprogram but the.solutlon 

becomes unstable unless bt is kept sufficiently small. 

In the backward difference scheme, the rlght hand side of eq. (28) is 

written for the (j+1)th time level which leads to a set of implicit 

simultaneous nonlinear algebraic equations. Another impllcit set of 

equations can be obtained by the so-called Crank-Nlcholson (time centred) 

finite dlfference scheme or by the rather commonly used uncentred scheme 

(BRAESTER et al., 1971). There are a great number of methods to solve an 

lmplicit set of algebraic equatlons, such as linearizatlon, predietor­

corrector or iteratlon methods. Fora complete review, see REMSONet al. 

(1971) and HORNUNG and MESSING (1981). 

In dealing with unsaturated flow problems that involve more than one 

space dimeosion and a grid with many nodal points, it is often necessary to 

use a mixed scheme that relles on simultaneous displacements along one 

space dlmenslon and on successive displacements along the remaining space 

dlmenslons. This leads to the method of successlve overrelaxation (SOR) 

(WATTS, 1970; AMERMAN, 1976). In the case of lsotropie conditions, faster 

convergence may be sometlmes achieved by using the iterative alternatlog 

direction impliclt procedure (ADIPIT) of PEACEMAN and RACHFORD (1955) and 

of VAUCLIN et al. (1975). HORNUNG and MESSING (1980) developed a mixed 

impliclt ADI-predictor-corrector method to solve a two-dimenslonal unsa­

turated flow problem under unsteady conditions. 

The advantage of the finite difference method is its simpllcity and 

efficiency in treatlng the time derivatlves. On the other hand, the methad 

is rather incapable to deal with complex geometries of flow regions. A slow 

convergence, a restrietion to bi-linear grids and difflculties in treating 

moving boundary conditions are other serious drawbacks of the method. 

ICW-nota 1858 
Team Integraal Waterbeheer 
Centrum Water&Klimaat 
Alterra-WUR



-23-

Finite element method 

With finite element methods (e.g. ZIENKIEWICS and PAREKH, 1970; 

ZIENKIEWICZ, 1971; NEUMAN, 1973) the domain is divided into a number of rigid 

elements. The properties of different element types are described e.g. in 

ZIENKIEWICZ et al. (1966, 1970). In modelling soil water flow problems, triangu-

lar elements can be efficiently used to represent difficult geometries and to 

concentrate coordinate functions in regions where rapid changes are ant!cipated 

- such as near soil surface or wetting fronts. The corners of such trlangular 

elements (Fig. 4) are designated as nodal points. Thesenodes serve the purpose 

of locating state variables, e.g. matric heads. Each element is characterized by 

local coordinate functions (NEUMAN et al., 1975). This permits the application 

of variational or weighted residual principles (WANG and ANDERSON, 1982). Of the 

Jatter, Galerkin's method is the most widely used. It leads to an approximate 

solution at any given time t in the form: 

N 
I hm (t).U,(x1) 

n=1 n J 
(29) 

where: Xi space coordinate of the node n, i 1,2,3 

N = total number of nodes 

Uj shape function, defined for each element 

hmn(t) value of hm at the node n 

By applying the following steps of the Galerk!n scheme (NEUMAN et al., 

1975) one gets a set of quasi-linear first-order differentlal equations: 

{Q} + {B} + {D} (30) 

ICW-nota 1858 
Team Integraal Waterbeheer 
Centrum Water&Klimaat 
Alterra-WUR



-24-

where: [A) = conductance matrix 

[C) capacity matrix 

lol boundary conditions vector 

{B} gravJty term vector 

{D} sink term vector 

The coefficients of eq. (30) can be obtained by applying the Galerkin 

method individually for each element and adding up the effects of these 

elements (see e.g. KARVONEN, 1987). 

To integrate eq. (30), the time domain is discretized into a sequence of 

finite intervals and the time derivatives are replaced by finite differences: 

{Q}t+~ + {B}t+~ + {o}t-~ 

(31) 

where t+~ implies that the coefficients are evaluated at half the time step 

to prevent unwanted oscillations (NEUMAN, 1973; NEUMAN et al., 1975). 

Vector /hmlt+1 includes the unknown matric heads which should be 

solved by assuming that the matric heads at time t are known. The resulting 

set of equations is then solved, e.g. by Gauss elimination. Due to the 

nonlinear nature of the equations, the results must be improved by an 

iterative process. The iteration procedure is stopped when a prescribed degree 

of convergence is achieved. 

Finite element methods are capable of solving complex flow geometries, 

nonlinear and time-dependent boundary conditions, while they possess a high 

ICW-nota 1858 
Team Integraal Waterbeheer 
Centrum Water&Klimaat 
Alterra-WUR



-25-

flexibility in following rapid soil water movement. In many cases the rate 

of convergence of the finite element methods exceed those of finite dif­

ference methods. A drawback of the finite element method is the rather 

time-consuming and laborious preparation of the solution mesh. However, 

with an automatic mesh generation model this problem could be considerably 

reduced. Another problem is that checking the finite element solution by 

simple calculations is not always possible. 

Boundary element method 

This method (e.g. BREBBIA et al., 1980) known also as Boundary 

Integral Equations, presents the most recent application of an approximate 

method to solve soil water flow problems. The integral of the domain of 

flow is eliminated by a set of basic functions and therefore reduces the 

problem to a so-called boundary-only problem. The reduction of the order of 

differentlation results in considerably less computer storage of matrix 

coefficients. TAIGBENN et al. (1985) used this method to solve a problem 

characterized by time-dependent governing equatlons and boundary con­

ditions. High efficiency and ability to solve singular problems on infinite 

regions are the advantages of the method. On the other hand, the presence 

of sinks/sources can increase the matrix size considerably. When dealing 

with an 1ntegrat1on of transeendental functions over a domain, one is also 

losing the advantage of efficiency. 
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Initia! and boundary conditlans 

Inltlal conditlans must be defined when translent soil water flow is 

modelled. Usually values of matric head or soil water content at each nodal 

point wlthin the soll profile are requlred. However, when these data are 

not available water contents at field capacity or those in equilibrium 

wlth the groundwater table mlght be consldered as the initia! ones. 

Upper boundary conditlans 

While the potentlal evapotransplratlon rate from a soil depends only on 

erop and atmospherlc conditions, the actual flux through the soil surface 

and the plants is limited by the ablllty of the soil matrix to transport 

water. Similarly, lf the potentlal rate of lnfiltration exceeds the 

infiltration capacity of the soil, part of the water runs off, since the 

actual flux through the top layer is limlted by moisture conditlans in the soil. 

Consequently, the exact boundary condltions at the soil surface cannot 

be estimated a priori and solutlons must be found by maximizing the abso-

lute flux (HANKS et al., 1969; FEDDES et al., 1978) i.e.: 

(32) 

hlim ' h ' 0 m m 
(33) 

where: v(K,hml actual upward flux through the soil-air interface 

ETp = the known potentlal surface flux (i.e. potentlal evapotrans-

piration), time dependent 

hlim minimum allowed pressure head at the soil surface, time dependent 
m 

ICW-nota 1858 
Team Integraal Waterbeheer 
Centrum Water&Klimaat 
Alterra-WUR



-27-

Methods to calculate ETp are published elsewhere (e.g. MONTEITH, 1965; 

PRIESTLEY and TAYLOR, 1972; FEDDES et al., 1974, 1975) and are beyond the scope of 

this review. 

The value hlim can be determined from equilibrium conditions between soil 
·"""' 

water and atmospheric vapour: 

RT ln(f) 
Mg 

where: R universa! gas constant (J.mol-1.K-1) 

T absolute temperature (K) 

M molecular weight of water (kg.mol-1) 

g acceleration due to gravity (m.s-2) 

f relative air humidity (fraction) 

(34) 

The possible effect of ponding has been neglected so far. In case of panding. 

usually the height of the ponded water as a function of time is given. However, 

when the soil surface is at saturation then the problem is to define the depth 

in the soil profile where the transition from saturation to partial satura-

tion occurs (WOODING, 1968). 

There are different ways to partition the potential evapotranspiration. 

ETp, into potential transpiration Tp and potentlal soil evaporation Ep· 

Usually, one separates Ep from ETp by taking into account that part of the 

radiation energy which reaches the soil surface after having passed through 

the soil cover. For details, see RITCHIE (1972) and BELMANS et al. (1983). 
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FEDDES (1987) and KABAT et al. (1988) presented the partitioning of ETp into 

potentlal transpiration Tp and potentlal soil evaporatlon Ep as a tunetion 

of leaf area index. The soil water conditions were found to have con­

siderable influence on the partitioning function. 

BOESTEN and STROOSNIJDER (1986) developed a simple parametrie model to 

estimate daily actual soil evaporation from the cumulative potentlal 

evaporation. The advantage of such a slmple model is that the procedure to 

maximize flux (see eq. 32) is replaced by empirical relations. 

When seepage faces are considered, another kind of atmospheric boun­

dary condition should be defined. Along such faces, the pressure is atmo­

spheric and the matric head zero. Since seepage faces vary with time, again 

an a priori prediction of this phenomenon is impossible and an iteratlve 

solution becomes necessary. 

In most of the dynamic transient models, the surface nodal point is treated 

during the first iteration as a prescribed flux boundary and matrlc head hm 

is computed. If hm satisfies eq. (33), the upper boundary condition remains 

a flux boundary during the whole iteration. If not, the surface nodal point 

is treated as a prescribed pressure head in the following iteration. Then 

in case of infiltratlon, hm = 0 and in case of evaporation hm = h~im. The 

actual flux is then calculated explicitly and is subject to the condition 

of eq. ( 32) . 

Lower boundary conditions 

At the lower boundary one can define three different types of conditions: 

a) Dirichlet condition: the pressure head is specified: 

b) Neumann condition: the flux is specified; 

c) Cauchy condition: the flux is a function of a dependent variable. 

The phreatic surface (place, where matric head is atmospheric) is usually 

taken as lower boundary of the unsaturated zone in the case, where recorded 

water table fluctuations are known a priori. Then the flux through the 

ICW-nota 1858 
Team Integraal Waterbeheer 
Centrum Water&Klimaat 
Alterra-WUR



-29-

bottorn of the system can be calculated. In regions with a very deep ground­

water table. a Neumann type of boundary condition is used. 

Dirichlet condition 

Easy recording of changes in phreatic surface in case of present 

groundwater table is the main advantage of specifying a zero matrix head as 

the bottorn boundary. A drawback is that with shallow groundwater tables (<2 m 

below soil surface) the simulated effects of changes in phreatic surface 

are extremely sensitive to variations in the soil hydraulic conductivity. 

The noctal points in a soil profile usually have fixed positions and 

probably none of them will coincide with the water table level. The nodal point, 

where the matric head is prescribed, is often the one immediately beneath 

the phreatic level. When large fluxesacross the lower boundary occur, 

an error is introduced by this approximation. The problem of hydrodynamic 

circumstances which can occur at the bottorn boundary was analyzed e.g. by 

JENSEN (1983). 

Neumann condition 

A flux as lower boundary condition is usually applied in cases where 

one can identify a no-flow boundary (e.g. an impermeable layer) or a free 

drainage case. In the latter case the flux is always directed downward and 

the gradient 6htl6z = 1, so the Darclan flux is equal to the hydraulic con­

ductivity at the lower boundary. 

Cauchy condition 

This type of boundary condition is used when unsaturated flow models 

are combined with models for regional groundwater flow or when the effects 

of surface water management are to be simulated. Writing the lower boundary 

flux, vb. as function of the phreatic surface, which is in this case the 
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dependent variable, one can incorporate relationships between the flux to/from 

the drainage system and the height of the phreatic surface. This flux-head 

relation can be obtained from drainage formulae such as those of HOOGHOUDT (1940) 

or ERNST (1962) (see SKAGGS, 1980) or from regionol groundwater flow models (e.g. 

VAN BAKEL, 1986). 

With the lower boundary conditions the conneetion with the saturated 

zone can be established. In this way effects of activities influencing the 

regionol groundwater system upon, for instance, erop transpiration can be simu-

lated. The coupling between the two systems is possible by consictering the phreatic 

surface as an internol moving boundary with one-way or two-way relationships. For 

a full survey, see VAN BAKEL (1986). 

The most general form of the Cauchy condition can be written as: 

(35) 

where vb is the flux through the lower boundary, Vct is the flux from/to the 

drainage system and v8 is the flux to/from deep aquifers (Fig. 5). The 

flux vd can be written as a sum of drainage fluxes of different order: 

N 
I 

n=l 

h -t1,n 
i 

n 
(36) 

where ht1,n is open water level (below the soil surface), ht2 is phreatic 

surface and in drainage resistance of drainage system of order n (ERNST, 

1978). 
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The seepage flux Va can be expressed in terms of a resistance flow as: 

V 
a (37) 

where ht3 is the level of the phreatic surface averaged over the area, ht4 

is the piezometric level of the deep aquifer and c is vertical resistance for 

flow between phreatic and deep aquifer. 

When the Cauchy-condition is linked with a one-dimensional vertical 

flow model, one can consider such a solution as quasi-two-dimensional, 

since both vertical and horizontal flow are calculated. 
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COLLECTION OF DATA FOR MODEL INPUT AND VERIFICATION 

Required input data 

Simulation of water dynamics in the unsaturated zones requires 

input data concerning the model parameters, the geometry of the system, the 

boundary conditions and, when simulating transient flow. initia! con-

ditions. With geometry parameters the dimensions of the problem domain are 

defined. With the physical parameters the physical properties of the system 

under consideration are described. With respect to the unsaturated zone it 

concerns the soil water characteristic, 6(hml• and the hydraulic conductivity, 

K(6). If root water uptake is also modelled, the parameters defining the 

relation between root water uptake and soil water status should be given, 

tagether with erop specifications. In case a functional flux-head 

relationship is used as lower boundary condition the parameters describing 

the interaction between surface water and groundwater and - if necessary -

the vertical resistance of poorly permeable layers have to be supplied. 

Soil physical properties 

The most important soil physical properties for water movement in the 

unsaturated zone are the relationships between the soil matric head (hml• 

water content (6) and hydraulic conductivity (K). 
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During the last 50 years many methods were developed to determine these 

relationships in situ and from soil samples in the laboratory (see KLUTE, 

1986). Traditionally these methods need a steady-state flow or some 

equilibrium situation at different matric heads. The procedures are very 

time consuming and they determine the hm-9 and the K-hm relationships on 

different soil cores. A much faster method was developed by WIND (1966) and 

BOELSet al. (1978) todetermine both the h-9 and the K-9 relationships 

from a transient flow experiment on one evaporating soil sample. 

KOOL et ai. (1987) reviewed recent deveiopments in parameter estimation 

techniques for unsaturated flow. The parameters of an a-priori formulated 

model, which describes the K-hm-9 relationships, are estimated from a tran­

sient flow experiment with known initia! and boundary conditions. The 

observations of the experiment (e.g. matric heads, outflow) and the 

model-predicted output are compared. The estimated parameters of the model 

are optimized to minimize the differences between the observations and pre­

dicted output. The advantage of this approach is that no restrictive ini­

tia! and boundary conditions are needed. Therefore this technique can be 

also used in field studies. But one should realize that the hydraulic pro-

cesses are as well described as the K-hm-6-model used allows for. Another problem 

is that the estimated parameters are not necessarily the most optimal ones 

and that the solution can be dependent on the initial estimates. 

Software has been developed to estimate the five parameters of the Van 

Genuchten model from transient flow experiments (VAN GENUCHTEN, 1980). 

Extensions can be added to include hysteresis and air entrapment (KOOL and 

PARKER, 1987). In the latter case the K-hm-9 relationships are described by 

eight parameters. The present authors use ~ind's type of evaporation 

ICW-nota 1858 
Team Integraal Waterbeheer 
Centrum Water&Klimaat 
Alterra-WUR



-34-

experiment and some additional information (e.g. the volumetrie water con­

tent at saturation and at a matric head of -15 000 cm) to determine the K-hm-9 

relatlonshlps by parameter estimation. The estimates are compared with the 

more direct calculatlons following Wind's metbod (Fig. 6). Inthls way one 

can estimate the physical characteristics of a soli sample and check whether 

the postulated model with its estimated parameters can describe the 

observations sufficiently well. 

A new metbod to estimate the vertical and horizontal hydraulic con­

ductivity based on the inverse approach has been developed by KARVONE~ 

(1988). The metbod applies a simplification of the Kalman filtering 

technlque (MAYBECK, 1979). The advantages of the slmplified Kalman 

filtering technique are that (l) it allows to assess uncertainty involved 

in the parameter estlmates, (ll) it reveals the dependenee of the parameters 

on state variables and (lii) Jt allows to test time invarlancy of the para­

meters. 

Spatial variability and sealing 

Most models for the unsaturated zone are one-dimenslonal. 

However, the problems which have to be modelled, are in general of local or 

regional nature. In that case, we face the problem of spatial variabillty. 

This phenomenon recently has attracted much attention in literature 

(NIELSEN et al., 1973; WEBSTER, 1984, 1985; RUSSO and BRESLER. 1981; JURY 

et al., 1987a). The basic assumption is that the porous medium is regarded 

as a macroscopie continuurn with properties that are continuous functions of the 

space coordinates. A set of measured values is interpreted as a realization 

of a spatial stochastic function. Usually semivariograms are used to spe-

cify the spatial structure. The estimation of these functions may be very 

complicated (JURY et al., 1987a). 
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Especially with respect to sampling techniques, described by the 

various authors, the usefulness of the (geo)statistical approach is 

obvious. But also the application of geo-statistics with regionalization of 

point simulations is of value. A proper application of the geo-statistlcal 

approach may reveal field characteristics that are not apparent from con­

ventional statistica! analysis. 

A phenomenon connected with regional application of one-dimensional 

simulation models is sealing. In principle sealing is a technique of 

expressing the statistica! variability in, for instance, the hydraulic conduc­

tivity in handsome relationships. By this simplification, the pattern of 

spatlal variability is described by a set of scale factors, defined as the 

ratio between the characteristic phenomenon at the particular location and 

the corresponding phenomenon of a reference soil (HOPMANS, l987a,b). See 

also JURY et al. (1987b). 

Model verification 

Verification (or validation) of a model means to check whether or not it is 

acceptable as an image of reality. This has to be done by camparing 

observed and simulated variables, such as heights of the phreatic surface, 

matric head, water contents and actual evapotranspiration. The measurement 

of these variables will be discussed insome detail. 

Height of the phreatic surface 

The height of the phreatic surface can be measured by piezometers. By 

the use of pressure transducers it is easy to record this level automatically. 

However, water table fluctuations are often recorded with mechanica! water 

table recorders, which may suffer from slow response in rather impermeable soils. 
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Matric head 

In relatively wet conditions (-800 < hm < 0 cm) the matric head can be 

directly ~easured by means of a tenslometer connected to a pressure trans­

ducer. Below the tenslometer range the matric head can only be measured by 

indirect methods. 

Using electrical resistance blocks (with a range of -10 000 < hm < -20 cm), 

made of gypsum or nylon, one is measuring the electrical resistance of 

these blocks as an indication of the matric head. The resistance depends on 

the amount of water in the blocks and the electrical conductivity of the 

water. The former is dependent on the water retentien characteristic of the 

block and the rnatric head, which should be in equilibrium with that of the 

surrounding soil. The conductivity of the water depends on the amount of 

electrolytes in it. This amount can vary with that of the soil solution. 

The resistance blocks must be calibrated against soil matric head. 

The vapour pressure of soil water can be determined with 

psychrometers. But this pressure is dependent on both the matric head and 

the salt concentratien of the soil water. The measurernent ltself is dif­

ficult and needs therrnal equilibrium between the sensor and surrounding 

soil. Reasonable results can be obtained only with very low rnatric heads. i.e. 

hrn < -2000 cm. 

Promising developments are based on the therrnal conductivity (PHENE et 

al., 1971; PHENE et al., 1987; range -3000 < hm < -100 cm) and the dielectrical 

properties (HILHORST, 1986; range -15,000 < hrn < -10 cm) of a material 

which is in hydraulic equilibrium with the surrounding soil. 

Soil water content 

The water content of a soil cannot be directly measured with autornatic 

recording systems. Some property of the soil-water-air mixture is ~easured 

which is related to the water content. Consequently, there is always a need 
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for callbratlon. Relatlng the water content with the matrlc head can give 

serlous errors due to hysteresls. 

Neither the commonly used neutron probe nor the gamma radlation measurement 

technique can be used in automatic systems because of safety precautions. 

Good results have been obtained with the capacltlve metbod 

(HILHORST, 1984) whlch is based on the measurement of capacitance of a 

capacitor wlth the soli-water-air mixture as the dielectrlc medium. The 

water content can be determlned after field callbration wlth an accuracy 

of ±0.02 m3.m-3 (HALBERTSMA et al., 1987). The changes in the water con­

tent can be used to calculate daily evapotranspiratlon as the unknown term 

of the water balance (Fig. 7). 

A slmilar methad that uses the dielectrical properties of the soil is 

time domain reflectometry (TDR), applied in soil physics by TOPPet al. 

(1980). The propagation time of a pulse travelling along a wave gulde is 

measured. This time is dependent on the dielectrical properties of the soil 

surrounding the wave gulde and consequently dependent on the water content 

of the soil. Determlnation of this time is more dlfficult than the fre­

quency measurement of the capacitlve method. The accuracy of bath methods 

is comparable. Note that the TDR methad can be used for many soils without 

callbration, because the relationship between the apparent dielectric 

constant and volumetrie water content is only weakly dependent of soil 

type, soll density, soil temperature and salt content (TOPP and DAVIS, 

1985a,b,c). TOPPet al. (1980) reported a measured volumetrie water content 

with an accuracy of ±0.02 m3,m-3. 

Because of the ever expanding computer power, numerical simulation 

models can describe the physical processes with increasing accuracy in time 

and space. Thls gives a need in the future for more continuous and 

accurate data collection. Only auto•atic recording systems can do this job. 

Many data acquisltion units are commercially available. These units can 
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be used as front ends of a computer system or as independent units with 

data logging facilities. With these units the recording of data is not a 

limiting problem. The limitations are still on the side of the sensors that 

have to convert the soil water status into eJectrical signals. 

Increasing attention has been paid to the spatial distributton of the 

measuring sites to obtain statistically representative data sets. Here, a 

linkage with remotely sensed surface soil water contents seems to point out 

a future direction (GURNEY and CAM!LLO, 1984). 

Actual evapotranspiration 

There are three potentlal sites to measure actual evapotranspiration ET 

- the soil, the plantand the atmosphere. Soil-based measurements, where 

actual evapotranspiration is estimated indirectly as the rest term of the 

water balance (eq. 38), have been the most popular. 

The change in water storage ~W for a given period of time ~t can be 

written as the difference of inflow, i.e. infiltration, net upward flow 

through the bottorn Q, and outflow i.e. evapotranspiration ET: 

~W = I + Q - ET (38) 

The problem with eq. (38) is that it is very difficult to evaluate Q 

properly. This flow is the resultant of capillary rise and percolation. 

Often one does not consider capillary rise: what bas percolated 

through the root zone is simply lost. In the presence of a groundwater 

table that influences the moisture conditions in the root zone, eq. (38) is 

usually too simple to apply. One then also has to take into account the 

water transport in the subsoil below the root zone. 

Because of uncertainties in estimation of Q the period for which the evapo-
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transpiration term is calculated from eq. (38), should be sufficiently 

long (HALBERTSMA et al., 1987). 

A common technique for measuring ET from water balances is by lysimetry. 

The precision of the weighing lysimeter provides the current standard 

against which other ET measuring techniques are judged. However, there are 

problems inherent in the use of lysimeters. These include the expenses 

involved in installation, the limited number of sites that can be main-

tained, the time required to test different crops, and the care which must 

be taken to maintain lysimeter conditions which are representative of the 

surrounding field. 

Another measurement site is the plant itself. Possible approaches include 

xylem flow measurement and remote sensing techniques. However, transpira-

tion measurements neglect the soil evaporation component of ET. 

Remote sensing can provide an indirect measure of ET. Using thermal 

infrared images from satelite or airplane observations, surface temperatures 

are derived and transformed into daily evapotranspiration values using sur-

face energy balance models. NIEUWENHUIS et al. (1985) proposed to replace 

the surface-air temperature difference by the instantaneous temperature 

difference near midday between a erop that is transpiring under condition of 

restricted soil moisture availability and a erop that is transpiring under 

optimal moisture conditions (Tc-Tc*>· The net radlation term was 

recalculated as the 24-hour potentlal evapotranspiration rate of the erop. 

Using these adjustments one obtains: 

* ETa/ETp = 1 - B(Tc-Tc ) (39) 

where ETa and ETp are respectively the actual and potentlal 24-hour evapo­

transpiration rate and B is a calibration constant, which is erop dependent 

THUNNISSEN, 1964a: NIEUWENHUIS et al., 1965). 
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The last group of methods is represented by techniques for atmospheric 

measurement of ET in the plants' microenvironment. These include chamber 

techniques, the Bowen ratio method, and the eddy correlation method. The 

chamber approach often requires cumbersome equipment, and the presence of 

the chamber can significantly disturb the plant environment. 

The eddy correlation method (BRUTSAERT, 1982: KIZER and ELLIOTT, 1987) 

is attractive because it has a sound theoretica} foundation and measures 

the evaporative flux directly. Major obstacles to its use have been the 

availability, cost and portability of the required instrumentation. 

Under certain conditions fluxes from the surface can be measured by 

correlating the vertical wind fluctuations with fluctuations in the con­

centration of the transported entities such as heat, water vapour. co2 . etc. 

For sensible, H, and latent heat flux, Le• the covariances of vertical wind 

velocity, w, air temperature, T, and vapour density, q, are formed 

H = PCpW'T' ( 40) 

(41) 

where p and Cp are the density and specific heat of air, and À is the 

latent heat of vaporization. The overbarred variables are time averages and 

those with primes are instantaneous deviations about the time averages. 

Equations (40) and (41) describe the turbulent flux components and 

represent surface fluxes only when the mean component is (by definition) 

zero i.e., W' = 0. This assumption is invalid downwind from obstacles or 

large changes in surface roughness. If a one-dimensional sensor is used 

to measure w, the vertical alignment is critica! because fluctuations in 
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the horizontal wind appear as fluctuations in the measured w. The methad 

has potential to be used over dry lands, under wet conditfans is still 

susceptible to errors. 

The Bowen Ratio energy balance methad (CAMPBELL SCIENTIFIC, INC., 1987: 

TANNER and GREENE, 1987) is a means of partitioning the energy budget to 

determine evapotranspiration (ET). The energy budget is based upon the 

principle of conservation of energy, where energy entering the surface is 

equal to energy leaving that surface. The energy budget for a soil or water 

surface is: 

Rn - G - H - Le = 0 (42) 

where Rn is net radfation for the surface, Gis the rate of starage of heat 

in the soil or water, H is the sensible heat flux, and Le is the latent 

energy flux due to evaporation. The sign convention used here is Rn posi-

tive into the surface and G, HandLe positive upward from the surface. Rn is 

measured with a net radiometer and Gis measured with heat flux plates, 

usually in conjunction with temperature measurements, H and Le depend on 

eddy or turbulent transport. 

The ratio of the sensible to latent heat flux is called the Bowen ratio 

(~). Substituting for H in equation and solving eq. (42) for Le yields: 

L = 
e 

R - G 
n 

1 + ~ 

Le and H are expressed as: 

L e 

(43) 

(44) 
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H (45) 

where pep is the volumetrie heat capacity of air, y is the psychrometer constant, 

e1, e2, and T1, T2 are the vapour pressores and temperatures at heights z1 and z2, 

and rv and rH are the vapour and heat transfer resistances between heights z1 and 

z2. The psychrometer constant is equal to PCpi(ÀE); pis barametrie pressure, Cp 

is the heat capacity of air, À is the latent heat of vaporization, and E is the 

ratio of the molecular weight of water vapour to the molecular weight of dry air. 

Assuming rv = rH, the Bowen ratio is given by: 

- T ) 2 
- e ) 

2 
(46) 

and is obtained by knowing the atmospheric pressure and by measuring tem-

perature and vapour pressure at two heights. While barametrie pressure can 

be measured at the site, it is unlikely that it will vary by more than a 

few percent. In practice, it is generally adequate to calculate the baro-

metric pressure for the site elevation, assuming a standard atmosphere, or 

to obtain a reading from a nearby station and correct it for any difference 

in elevation between the reporting station and the Bowen ratio site. 

When the Bowen ratio approaches -1, the denominator in eq. (43) approaches 

0, causing the calculation of Le and H to 'blow up'. Fortunately, in the 

field this situation usually occurs only when H is small, e.g. at night 

when there is little available energy (Rn- G). In practice, when ~is 

close to -1 (e.g., -1.25 < ~ < -0.75), Le and Hare assumed to be negligible 

and are not calculated. 
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EXTENSION TO PREFERENTlAL FLOW AND HYSTERESIS 

Preferentlal flow 

Most simulation models for the unsaturated zone consider the 

soil to be isotropie and homogeneous. The fact that most soils are neither 

was recognized already in the 19th century (SCHUMACHER, 1864: LAWES et al., 

1882, as quoted by BEVEN and GERMANN, 1982). In field soils, transport of 

water is often heterogeneons with part of the infiltrating water travelling 

faster than the average wetting front. This has important consequences for 

simulating the field water balance and therefore on the calculation of erop 

water use, yield, solute transportand polJution of groundwater and subsoil. 

In some soils preferential flow occurs through large pores in an unsa-

turated soil matrix, a process known as bypass flow or shortcircuiting (HOOGMOED 

and BOUMA, 1980). In other soils, different flow rates vary more gradually, 

while matrix and preferentlal pathways cannot be distinguished easily. 

Preferentlal flow of water through unsaturated soil can be caused by 

different mechanisms, one of them being the occurrence of non-capillary 

sized macropores (BOUMA, 1981: BOUMA and DE LAAT, 1981: BEVEN and GERMAN, 

1982). This type of macroporosity can be caused by shrinking and cracking 

of the soil, by plant roots, by soil fauna or by tillage operations. The 

occurrence of wetting front instability, as caused by air entrapment ahead 

of the wetting front or by water repellency of the soil (RAATS, 1973: 

HENDRICKX et al., 1988) can also be viewed as an expression of preferentlal 
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flow. Whatever the cause of preferentlal flow, the result is that the basic 

partial differentlal equation (eq. 11) descrihing flow within the soil 

matrix domain, needs adaptation. 

HOOGMOED and BOUMA (1980) developed a model to simulate infiltra-

tion, including preferentlal flow, into clay soils with shrinkage cracks. 

The model combines vertical and horizontal infiltration. It is physically 

based but has only been applied to 20 cm soil cores and has not been tested 

in field soils. VAN AELST et al. (1986) adapted the SWATRE model for use in 

cracking clays by calculating water flow through cracks, which was dependent 

on the water content of the topsoil. BRONSWIJK (1988) introduced the 

shrinkage characteristic in the simulation model FLOWEX (BUITENDIJK. 1984). 

The model calculates swelling and shrinkage and corresponding cracking and 

subsidence in relation to changes in water content. In this approach pre­

ferentlal flow through shrinkage cracks is calculated in dependency of both 

the area of cracks at the soil surface and the maximum infiltration rate of 

the soil matrix between the cracks. A one-year field experiment yielded 

good agreement between simulation and field observations of water balance, 

cracking and subsidence of a heavy clay soil. 

The partitioning of soil water over the soil matrix and macropores, 

and the fate of water flowing downward through the macropores is handled 

differently by the various models mentioned above. The common principle of all 

these models, however, is essentially the two-domain concept. This concept 

was rejected by BEVEN and GERMANN (1984), who applied kinetic wave 

theory to model water flow through soils with numerous different sized 

macropores. Their approach prediets in outflow rates of unsaturated soil 

cores, but does not yield profiles of soil moisture. 
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An important aspect of prefentlal flow is the interaction between water 

in the soil matrix and water inside the macropores. In some models the 

total preferential flow is accumulated at the bottorn of the macropores and 

is then added to the unsaturated zone at that depth (BRONSWIJK, 1988; 

PEERBOOM, 1987; VAN AELST et al., 1986). A more general model was suggested 

by KABAT, PEERBOOM and BRONSWIJK (1988, personar communication) who linked 

preferentlal flow and matrix flow by extending eq. (13) to the form: 

1 a 
C(h l az 

m 

ah 
[K(h Ha m m z 

s 
+ 1)] - ëTiï) + 

m 
= (47) 

where B represents a souree of soil water due to horizontal infiltration. 

or a sink due to evaporatlon through the walls of the macropores. For the 

resulting model see Fig. 8. Because this approach is physically based, 1t 

seems promising and generally applicable. However, a quantification of the 

B-term in eq. (47) poses a difficult problem and requires a number of 

simplifications when the one-dimensional Richards's type of flow model is 

considered. A quasi-two-dimensional deterministic approach can be foliowed 

to obtain an estimate of the B-term. 

EDWARDS et al. (1979) proposed a two-dimensional model which allows for 

vertical infiltration from the soil surface and for lateral infiltration 

from a vertical hole after excess precipitation on the surface runs into 

the opening. Further research is needed under field condittons with sequentia! 

wetting and drying cycles. 
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Hysteresis 

Most simulation models ignore the effect of hysteresis. However, it 

has been recognized for a long time that hysteresis in the soil water 

retentien curve influences the soil water movement, especially when fre­

quent changes from wetting to drying occur (MILLY, 1982; HOPMANS and DANE, 

1986). The hysteresis phenomenon doesnotaffect the K(O)-relation very 

much and it usually neglected. Note that if K(O)-functions are not taken as 

subject to hysteresis, they might be considered being dependent on tem­

perature. 

The main reasans for hysteresis in the water retentien curve are the 

complexity of the pore-space geometry, the presence of entrapped air, 

shrinking and swelling and thermal gradients. The first mathematica! models 

of hysteresis were based on the so-called independent domain concept 

(POULAVASSILIS, 1962; TOPPand MILLER, 1966). The basic assumptions of this 

concept are (i) a difference in the water volume of each pore does not 

depend on matric head and (ii) the pore space is built up of pores or 

domains with each pore size defined by two soil matric heads. 

TOPP (1971b) tested the independent domain concept and reported discrepancies 

when a high soil water content was considered. He solved the problem (see 

also POULAVASSILIS and CHILDS, 1971) by Jntroducing a domain dependenee 

factor, so that the drying and wetting of single pore was made dependent on 

the neighbouring pore status. MUALEM (1974) introduced a model to compute 

hysteresis, based on the independent domain principle. In 1984, he defined 

a domain dependenee factor as the ratio between the volume of pores actually 

emptied and the volume which could have been emptied if all the pores would 

receive enough air from neighbouring pores. In Mualem's model, the volu­

metrie water content for any value of matric head can be calculated from 
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the value of matric head at the last reversal point of the curve. The 

main drying and wetting curve as well as a domain-dependence factor, have 

to be defined a priori (MUALEM, 1984). Between these main curves, intermediate 

scanning curves are foliowed after each change in external conditions. 

HOPMANS and DANE (1986) incorporated the hysteresis model of Mualem in a 

soil-water flow model and they investigated the combined effect of hystere­

sis and temperature on soil-water movement. 

Since there are infinitely many scanning curves, the differentlal 

soil water capacity (see also eq. 13) cannot be uniquely defined. Here, the 

differentlation of Mualem's expresslons with respect to matric head can be 

used at any point of a scanning curve. Usually, the calculations of wetting 

and drying scanning curves are done at a reference temperature, using 

experimentally derived relations for the conversion to the actual tem­

perature (HOPMANS and DANE, 1985). 

A similar analysis as described above was used by GHALI (1986), 

who considered hysteresis and simultaneous flow of water and heat, 

allowing multidimensional transient flow to be modelled. Due to the high 

flexibility of Ghali's model, the influence of hysteresis terms on dif­

ferent transient flow situations can be investigated. 

From a modelling point of view the results of HOPMANS and DANE (1986) 

are interesting since they found the effect of hysteresis on soil water dis­

tribution was dependent on the type of upper boundary condition applied. Soil 

water flow was more affected by hysteresis (and varying temperatures) for a 

pressure head boundary condition than for a prescribed flux at the soil surface. 

Apart from the examples given, successful attempts to build the hysteresis 

problem into dynamic simulation transient flow models are still scarce. 

However, some of the practical problems, e.g. low pressure/very frequent 

irrigation or significant shrinkage/swelling clearly define a range of 
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flow situations, where hysteresis cannot be omitted. For the case when 

water retention is noticeably affected by heavy swelling/shrinking and 

water adsorption-desorption, the boundary hysteresis curves do not join 

even for the highest values of matric heads (SHCHERBAKOV, 1985). Under such 

condition all of the present hysteresis models still need adaptations. 
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EXAMPLES OF APPLICATIONS 

Example 1: Seepage through an earth dam 

NEUMAN et al. (1975) and FEDDES et al. (1975) have developed the model 

UNSAT2 which solves transient flow in saturated-unsaturated soil by a 

Galerkin-type finite element approach. The model can handle flow regions 

delineated by irregular boundaries and composed of non-uniform soils having 

arbitrary degrees of local anisotropy. Flow can be considered in the ver­

tical plane, in the horizontal plane, or in a three dimensional region with 

radial symmetry. A multi-dimensional sink term is incorporated to account 

for water uptake by plant roots. UNSAT2 has been applied to complex field 

situations in agricultural and civil engineering problems. DAVIS and NEUMAN 

(1983) used UNSAT2 to calculate infiltration through an earth dam. 

The simulated earth dam has a sloping clay core, sandy shells and a 

drainage blanket. The following assumptions were made: 

- no evaporation or infiltration takes place at the dam surface: 

- the drainage blanket is free draining: 

- the bottorn line of the dam forms an impermeable boundary: 

- at time zero the water level is instantaneously raised to 4 metres above 

the bottorn line: at t 184 hours the water table starts to rise at a 

constant rate, and at t = 374 hours a height of 12 m is reached. This 

height remains further constant. 

Fig. 9a shows a cross section of the dam and the finite element mesh 

applied. Fig. 9b presents the simulation output, i.e. the advance of water 

table inside the dam with time. An important aspect of this problem is e.g. 
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the assessment of the stability of the downstream sloping shell. 

Example 2: Field water use and potato erop yield 

Transient water flow in a heterogeneaus soil - root system whieh may 

or may not be under the influenee of groundwater ean be described by the model 

SWATRE (FEDDES et al., 1978; BELMANS et al., 1983). Potentlal and actual 

growth rate of a potato erop having optima] nutrient supply can be calcu­

lated with the model CROPR (FEDDES et al., 1978). FEDDES et al. (1984) have 

eombined both models into one model, SWACRO, which generates a simulation 

of the actual development of the potato erop. 

By means of this model simulations of the water balance and erop yield 

of potatoes were earried out. For details see KABAT et al. (1988). During 

1981 and 1982, a potato erop was grown on a humous top soil overlying 

coarse sand. During both growing seasons a complete data set was collected 

consisting of meteorological measurements, soil-physical charaeteristics. 

moisture status in the layered soil profile and erop characteristics. The 

groundwater table was too deep to influence the plant-soil system. In actdi­

tion sprinkling was applied while allowing different desiccation limits of 

the soil. Both simulated and measured values of the eumulative evapotranspi­

ration during 1981 are plotted in Fig. lOa. Water storage within the root 

zone during the same season is presented in Fig. lOb. Finally the transpiration 

limited potato erop yield (both total dry matter and tuber yield) obtained 

during the growing season of 1981 is presented in Fig. lOc. 

Additionally simulation of different irrigation regimes was carried 

out to find the optimum regime (Fig. lOd). Simulations were performed for 

the 1981 and 1982 growing season with the natura! precipitation being 209 

and 182 mm respectively. The actual transpiration was computed and the 
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application irrigation efficiency (defined as the ratio of the difference 

in transpiration between irrigated and not-irrigated erop over the amount 

of water applied) was plotted against the netto total irrigation gift. The 

obtained water-use efficiency curves, in spite of their dependency on a 

certain combination of erop, soil and climate, represent unique information 

for studies about irrigation management (KABAT et al., 1988). 

Example 3: Water supply plan 

The economie feasibility of expanding the water supply for agri­

culture in a region in the northeastern part of The Netherlands was 

investigated (WORKING GROUP 'TUS-10-PLAN', 1988). 

A range of water supply plans was evaluated using a model approach 

that can be summarized as follows: 

- the region was divided into 200 different sets of 

combinations of soil type, hydrological properties and land use; 

- each set (see Fig. 11) of the region was modelled with a special version of the 

SWATRE-model, i.e. extended by a module for open water level manipulation; 

operational rules for open water level manipulation were derived from a 

case study; 

- with a historica! record of weather conditions over 1954-1983 the effect 

of water supply on subsurface irrigation and sprinkler irrigation 

upon actual transpiration was calculated for each set; 

- the results were converted into effects on erop yield and agricultural 

benefits (see Fig. 12). On this basis, favourable areas for water supply 

could be located. 
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Example 4. lntegration of remote sensing with a water balance simulation model 

A method for automatic mapping of evapotranspiration from digitally 

recorded reflection and thermal images has been tested in combination with 

simulation models. Crop temperatures derived from heat images were trans­

formed into daily evapotranspiration values by using surface energy models 

(SOER, 1980; NIEUWENHUIS et al., 1985). These values, however, characterize 

the hydrological conditlans only at one day, while hydrologists are more 

interested in the cumulative effects of human-imposed actlvities on erop 

yield. Therefore, the SWATRE-model was used in order to investigate how far 

the actual evapotranspiration at that particular day is representative for 

the entire growing season. The daily values of evapotranspiration derived 

from the heat images were compared with the simulated values at the same 

day for different locations within the study region. Twelve out of fourteen 

locations showed good agreement (see Fig. 13). It was concluded that an 

important impravement of the hydrological description of an area can be 

achieved by combining simulation results of a model for the unsaturated 

zone with remote sensing (NIEUWENHUIS, 1986). 
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Feddes et al {1978) Prasad (1986) 

Fig. 1. Schematic view of different water uptake functions under optimal 

soil moisture conditions, Smax• as a function of depth lzl. as 

proposed by FEDDES et al. (1978) and PRASAD (1988). Zr = depthof 

root zone 

0.8 
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hml hm2 hm3 hm3 

Absolute matric head lhml 

Fig. 2. Dimensionless sink term variabie a as a function of the absolute 

value of the soil water matric head lhml (after FEDDES et al., 1978). 

Water uptake below lhm1l (oxygen deficiency) and above lhm4 1 (wilting 

point) is set zero. Between lhm2l and lhm31 (reduction point) water 

uptake is maximal. The value of lhm3 1 varies with the potentlal 

transpiration rate Tp 
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Fig. 3. Bi-linear grid superimposed on the z-t plane with the flow and 

time domaini~vided into 

forward fi~ difference 

equal intervals. The grid represents a 

scheme 

Fig. 4. Network of triangular final elements. The corners of element 'e' 

are designated as nodal points 'n', in which state variables are 

located 
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----------------------------------------------------------------~-----h,, 

Fig. 5. A representation of the flow situation (Cauchy lower boundary 

condition, see eq. 35) for the case of outflow from ditches and downward 

seepage to the deep aquifers; htl is open water level, ht2 is 

phreatic surface level, ht3 is level of the phreatic surface 

averaged over the area and ht4 is piezometric level of the deep 

aqulfer 
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Fig. 6. The hydraulic conductivity K of a soil core as a function of abso­

lute matric head lhml determined in the Iabaratory by Wind's 

methad (WIND, 1966) and by parameter estimation. The dots lndicate 

the calculated conductlvities and the braken 1lne describes these 

points with asecondorder polynomial. The data of thls experiment 

supplemented wlth the water contents at matric heads of -2500 and 

-15 800 cm are used to estimate the parameters of the VAN 

GENOCHTEN model (1980) with the SFIT program (KOOL and PARKER, 

1987). This conductivlty is indicated by the continuous curve 

(parameter estimation from Lafolie and Van Genuchten; personal 

communication) 
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Fig. 7. Cumulative evapotranspiration of maize for two 9-day periods as 

calculated with a water balance approach and with the Bowen ratio 

method. The change in water storage of the profile was determined 

with the capacitive soil water content meter with an accuracy of 

0.02 m3.m-3 (after HALBERTSMA et al., 1987) 
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Variabie crack volume 

• 

• 
------Matrix -crack system at time t 

Groundwater 
level 

--Matrix -crack system at time t +llt 

Fig. 8. Schematic presentation of a simulation model for unsaturated 

water transport in cracking soils. 'I' represents the infiltration 

rate into soil matrix, Ic,l part of total crack infiltration 

caused by rainfall intensity exceeding the infiltration rate of 

soli matrix Ic,2 part of total crack infiltratlon caused by rainfall 

directly into the cracks, Im is horizontal flux through the walls 

of macropores, E is actual evaporation, T is actual transpiration, 

v is Darcy flux between two nodal points and vb is the bottorn flux 

of the system 
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Fig. 9. Seepage through an earth dam as slmulated with the model UNSAT2 

(after DAVIS and NEUMAN, 1983). Cross section of the dam and the 

superimposed finite elements grid (a) and advance of phreatic water 

table inside the dam with time (hours) (b) 
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Fig. 10. Field water use and potato erop yield simulated with the model 

SWACRO (after KABAT et al., 1988). Simulated cumulative actual 

evapotranspiration (cm) (a) and water storage in the root zone (cm) 

(b) during the growing season 1981 show good agreement with the 

in-situ measured values. Calculated and measured dry matter potato 

yield are presented in (c). Different irrigation regimes were simulated 

for desiccation limits indicated along the lines (expressed in 

pF = loglhml and the optimum regime was defined (d) 
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Fig. 11. Schematic representation of the modelled hydrological system as 

used in the water supply plan (after VAN BAKEL, 1986). Effects of 

surface water level manipulation on groundwater and erop transpira-

t: o;, we re simulated. The upper boundary condit i ons are defined by 

transpiration (T) and soil evaporation (E). These are calculated with 

standard meteorological data, soil physical data and information 

about erop. The lower boundary condition (Cauchy condition, see 

eq. 35) is the volume flux density through this boundary Yb 

ICW-nota 1858 
Team Integraal Waterbeheer 
Centrum Water&Klimaat 
Alterra-WUR



fZZ) < Dfl. 10 per ha 

~ Dl1.10-20perha 

F:-:-J Dfl. 20- 40 per ha 

~ Dfl. 40-60 per ha 

liiiiliillll > Dfl. 60 per ha 

c:::=J Nol laken into account 

0 lOkm 
L__..J._ _ _J 

5 

Fig. 12. Agricultural benefits (Dfl.ha-1) of external water supply within 

the area of interest as evaluated by simulation (after WORKING 

GROUP 'TUS-10-PLAN', 1988). 
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Fig. 13. Relative 24-hour evapotranspiration rates ETa/ETp as obtained by 

the remote sensing approach and calculated with the SWATRE-model 

for 14 grassland plots on three different soil profiles (after 

NIEUWENHUIS, 1986) 
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