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Chapter 1 
General Introduction 

M. Laura Ferrando 



Chapter 1 

1. Streptococcus suis 

1.1 Ecology and taxonomy 

Streptococcus suis is a major zoonotic swine pathogen capable of causing serious 

infections in pigs and persons in close occupational or accidental contact with infected 

pigs or contaminated pork products. Infections caused by 5. suis cause significant 

economic losses to the swine industry worldwide. The natural habitat of 5. suis is the 

upper respiratory tract of pigs, particularly the tonsils and nasal cavities, as well as the 

alimentary and genital tracts [1,2]. Although S. suis is considered mainly a pathogen of 

swine, it has been isolated increasingly frequently from a wide range of mammals 

(ruminants, cats, dogs, deer and horses) and birds [3,4,5,6] which suggests a capacity to 

persist in a broad range of very different hosts, leading to high diffusion of this pathogen 

[7]. 5. suis can survive for 8 days in faeces and for short periods of exposure to moderate 

heat (i.e. survival after 60°C for 10 min and 50°C for 2h) and desiccation (24 h in dust at 

25°C or 1 month in dust at 0°C) [8]. 

5. suis is a Gram-positive facultative anaerobe belonging belonging to the phylum 

Firmicutes, class Lactobacillales that is a- or ß-hemolytic, catalase negative and with a low 

G+C DNA composition. The capsulated bacteria possess cell wall antigenic determinants 

somewhat related to Lancefield group D [9]. Based on differences in antigenic properties 

of the polysaccharide capsule, 33 serotypes have been distinguished to date (types 1-33 

and 1/2), [10,11]; serotypes 32 and 34 have since been proven to belong to the related 

species Streptococcus orisratti [12]. Phylogenetic analysis of the 5. suis heat-shock 

chaperone 60 gene showed the presence of three basal clusters. The majority of serotypes 

are associated with cluster I; 20, 22 and 26 serotypes with cluster II, and isolates of 

serotype 33 with cluster III. According to this systematic analysis, S. suis was most closely 

related to Streptococcus anginosus, Streptococcus parasanguinis, Streptococcus sanguis, 

Streptococcus oralis and Streptococcus mitis [13]. 

1.2 Metabolism 

The metabolic map of S. suis includes more than 80% of the metabolic maps known for 

other Streptococcus species (Chapter 5). Like other Streptococci, S. suis produces energy 

mainly through metabolism of glucose via homolactic or mixed-acid fermentations 

depending on the availability of external oxygen and carbohydrate. Under conditions of 

excess glucose and in presence of oxygen, glucose is preferentially metabolised by the 
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General introduction 

glycolytic pathway (or Embden-Meyerhof pathway) to pyruvate that is reduced via 

oxidative respiration through the tricarboxylic acid (TCA) cycle. However, in S. suis, as in 

most other lactobacilli, the TCA cycle is incomplete, rendering S. suis incapable of 

oxidative respiration. Instead energy is derived from the metabolism of pyruvate using 

organic compounds as electron acceptors. In homolactic fermentation one molecule of 

glucose is ultimately converted to two molecules of lactic acid whereas heterolactic 

fermentation is the production of lactic acid as well as other acids and alcohols. The 

metabolic map of S. suis suggests that pyruvate can be converted into lactic acid but also 

acetic acid, ethanol and formic acid, but not acetoin (Chapter 5). 5. suis is able to ferment 

alternative sugars including mono- and di-saccharides such as ribose, L-arabinose, 

mannose, sorbitol, lactose and raffinose, but also complex carbohydrates such as 

glycogen, starch and pullulan, to glucose [12]. The metabolism of complex carbohydrates 

requires the presence of specialized transport systems and catabolic enzymes such 

amylase, pullulanase and amylopullulanase that permit the utilization of alternative sugars 

in different environmental niches including those present within the host [14]. These 

enzymes enable S. suis to grow efficiently on complex carbohydrates and colonize the host 

mucosal epithelia that are rich in such carbohydrates (Chapter 3, Chapter 4, Chapter 5). 

1.3 Diagnosis 

S. suis can be cultured from nasal, vaginal and tonsillar swabs, cerebrospinal fluid (CSF) or 

blood samples of infected animals. The solid medium most commonly used to isolate S. 

suis is sheep blood agar on which viridans group streptococci produce an a- hemolysis. 

This type of hemolysis is due to the production of hydrogen peroxide by 5. suis which 

oxidizes hemoglobin to a green colored methemoglobin. However, when cultivated on 

horse blood agar 5. suis produces a clear zone of ß-hemolysis [15]. Usually the 

identification is further verified by checking if colonies are catalase negative, negative for 

the Voges-Proskauer (acetoin) reaction, hydrolysis of esculin, trehalose positive, amylase 

positive, and if growth inhibition occurs in the presence of 6.5% NaCI. The use of 

miniaturized biochemical test like the Rapid Strep System is common in microbiology 

diagnosis. This Analytical Profile Index (API) test is based on the reaction of a panel of 

chemicals (usually 20) to determine the bacterial species. However, cross-reactivity, a 

feature of many standard microbiological techniques, often hampers correct identification 

[16] such that infections may go undiagnosed. It is possible that 5. su/s-positive cultures 

are sometimes misidentified as other Streptococcus species, Aerococcus viridans, 
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Enterococcus faecalis or even 5. sanguinis [17,18]. Misidentification in diagnostic 

laboratories has also been influenced by unawareness of the possibility that 5. suis can 

lead to meningitis; the result being that S. suis colonies have been assumed to be 

enterococci or (group D) streptococci [19]. Therefore, more accurate molecular methods 

have been developed to correctly identify 5. suis from infected tissue samples. 

In Asia, molecular techniques to detect 5. suis in human samples, by real time PCR 

detection of the cps2J gene, improved the rate of pathogen detection over the last few 

years. Recently a sensitive loop-mediated isothermal amplification (LAMP) technique 

targeting the cpn60 gene (encoding chaperonin 60) has been developed that can be used 

to successfully detect all 33 S. suis serotypes [20]. 

Serotyping of bacteria is an important step in routine diagnostic procedures. In most 

laboratories, S. suis serotyping is usually carried out by scoring different types of 

agglutination using a panel of 33 specific sera [21]. However this serotyping method 

presents a low sensitivity due to the fact that some isolates react with more than one 

antiserum (cross-reactions). A serotype-specific polystyrene bead-based immunomagnetic 

separation (IMS) technique has been described that permits an better isolation and 

distinction among the serotypes [16]. 

1.4 Molecular markers to detect S. suis 

Two secreted cell wall located proteins have been proposed as virulence markers, namely 

the muramidase-released protein (MRP) and the extracellular factor (EF) [22,23]. Both 

MRP and EF can be detected by monoclonal antibodies and were frequently (77%) 

produced by strains isolated from pigs with symptoms of meningitis in The Netherlands. 

However, the majority (86%) of isolates from tonsils of healthy pigs did not produce these 

proteins [23]. In field isolates of S. suis different molecular variants MRP and EF have been 

characterized by electrophoretic mobility [24]. The variants have been designated as 

MRP* and EF*. So far several variant types have been described: MRP+EF+, MRP+EF*, 

MRP+EF , and MRP EF . It appears that the EF* strains producing the high-molecular 

weight variant of EF are avirulent or weakly-virulent. Nevertheless, in the USA, a lower 

percentage of strains (56%) isolated from the CNS of diseased pigs were MRP+EF+ [24] 

indicating that globally there is no strict correlation between production of MRP and EF 

and virulence. 
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2. Porcine infections with 5. suis 

2.1 S. suis epidemiology in pigs 

S. suis was first isolated during an outbreak of meningitis among piglets in the Netherlands 

in 1954 [25]. Since then S. suis porcine infection with S. suis has been reported worldwide, 

from North America (United States and Canada) to South America (Brazil), Europe, Asia 

(China, Thailand, Vietnam, and Japan), Australia, and New Zealand [15]. In the USA alone 

the economic losses to the swine industry from 5. suis infection is estimated at over 300 

million dollars in the United States [15] and in the Netherlands 12 million Euro [26]. In 

swine herds, the rates of asymptomatic carriage may be as high as 80%. The incidence of 

disease varies over time and is generally less than 5%, possibly due to the differential use 

of antibiotics. Pig morbidity due to infection with S. suis has been estimated to be in the 

range of <1% to >50% [15]. 

In piglets S. suis can be vertically transferred from the sow to the piglet through nasal 

secretions, during suckling [27,28] or via the vaginal secretions during parturition [29]. In 

addition horizontal transmission can occur in pig herds, mainly via the respiratory route 

[30]. Airborne transmission of 5. suis has been shown over a distance of 40 cm or more, 

without nose-to-nose contact [31]. In fact, it appears that transmission between herds 

occurs usually via healthy carrier pigs [32]. The introduction of carriers into a non-infected 

herd usually results in the subsequent onset of disease in weaning- and/or growing pigs 

(i.e. pigs 3 to 12 wk of age) [33]. Clinical disease may suddenly develop within a herd of 

pigs due to predisposing factors, such as co-infection by other swine pathogens. For 

example, co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) 

or Aujeszky's disease virus exacerbates S. suis infection [34]. PRRSV and Aujeszky's disease 

are typically enzootic in intensive pig production settings [35] and show a stress-induced 

susceptibility in pigs [36], suggesting that the association between S. suis infection and 

high-density pig herds is probably multifactorial [8]. Crowding, poor ventilation, sudden 

weather change, mixing, moving, vaccination, and concurrent disease are all stresses that 

predispose pigs to S. suis infections [15]. In general, 5. suis most often affects pigs in 

intensively managed herds, especially herds with a high population density [37]. 

In pigs all S. suis serotypes can potentially cause disease but their virulence differs among 

and within the serotypes. Serotypes show a different geographical distribution [15]. 

Serotype 2 is the serotype most commonly associated with disease and is most frequently 
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isolated from S. su/s-infected pigs [38,39]. However, not all isolates of type 2 are 

pathogenic and this serotype, comprises pathogenic, weakly pathogenic, and 

nonpathogenic strains [40,41,42]. The closely related serotypes 1 and 14 appear highly 

virulent and have been frequently isolated from piglets or adult pigs [7,15,43]. Lung 

inflammation has been observed in pigs infected with serotypes 1-5, 7, 8 and 1/2 [44]. 

Although 5. suis is widespread, the serotypes seem to have a different geographical 

location among the 5 continents. The serotypes 1, 2, 7, 9, and 14 are most frequently 

isolated from diseased pigs in Europe, and serotype 9 in particular, is being increasingly 

isolated and associated with diseased pigs [45,46]. 

In Northern America, the percentage of 5. suis serotype 2 strains isolated from diseased 

animals decreased from 22% to 15% in the past 10 years [7], while serotypes 3, 5 and 8 

have been frequently isolated from diseased animals [30]. Multiple strains or serotypes 

are often found within a herd during an 5. suis outbreak, although no significant 

differences in clinical signs or lesions occur in pigs infected with multiple versus single 

serotypes [47]. 

2.2 Clinical signs of disease induced by 5. suis 

Although pigs of any age can be affected by S. suis, the disease mainly is observed in 

weaning and growing pigs (with peaks at the age of 6 weeks). The first symptoms of the 

disease include fever, depression, anorexia and lassitude. 

The development of the disease is accompanied by a detectable bacteremia or 

pronounced septicaemia, fluctuating fever (up to 42°C), loss of appetite, depression, and 

shifting lameness [48]. 

In pigs, the most important clinical feature associated with 5. suis is meningitis. Symptoms 

of meningitis and meningoencephalitis are often preceded by early signs of a nervous 

disorder including incoordination, adoption of unusual stances, instability, paddling, 

opisthotonos, convulsions and nystagmus. In case of S. suis infections, other pathologies 

have also been described, such as arthritis, pneumonia, rhinitis, fibrinous polyserositis, 

abortion, endocarditis, and septicaemia with sudden death [49,50]. 

2.3 Pathology 

Histological features from pigs showing S. suis disease symptoms may include lesions with 

fibrino-purulent exudates in the brain, swollen joints, fibrinous inflammation of the linings 

of the lungs, and cardiac valvular vegetations (a mass of platelets, fibrin, 5. suis colonies, 
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and inflammatory cells). Less frequently, lesions associated with septicaemia or 

polyarthritis are seen. S. suis can also cause lesions associated with pneumonia, but these 

are often considered to be secondary to other diseases. 

2.4 Treatment ofS. suis infections 

Antimicrobial therapy is an important disease management tool used to treat and/or 

control streptococcal infections, as current bacterins (vaccines comprising killed 

suspensions of bacterial strains) provide only serotype-specific protection. Penicillin is the 

most common antibiotic used in treatment of S. suis infection. Although S. suis is usually 

sensitive to penicillin, penicillin resistance has been reported in pig carriers [51]. 

Antimicrobial susceptibility of S. suis strains (Minimum Inhibitory Concentration MIC) 

differs from country to country [52,53,54]. Most antibiotic resistance determinants 

identified in 5. suis are located on plasmids or transposons and are disseminated. 

Recently, two genetic elements conferring resistance to erythromycin (erm(B)) and 

tetracycline (tet(W)) were characterized in two human S. suis isolates [55]. 

2.5 Vaccines 

Most vaccines used to protect against S. suis infections have been based on formalin-

killed whole cells. These are called bacterins can confer a good protection only to those 

serotypes present in the vaccine [56]. Commonly used is a commercial vaccine containing 

killed S. suis serotype 2 (Emulsibac-SS®, MVP Laboratories, Inc., Ralston NE) [57] and an 

autogenous 5. suis bacterin (produced by MVP Laboratories, Inc., Ralston NE) [58]. Subunit 

vaccines based on murein-associated protein (MAP) fraction subunit vaccine have also 

been compared to an autogenous bacterin [59]. Immunization with bacterin, but not with 

MAP subunit vaccine, induced opsonizing antibody titres against the serotype 2 strain, and 

these antibody titres were found to correlate with protection. However cross-protection 

against a serotype 9 strain was very low for both vaccines [59]. These results emphasize 

the importance of finding conserved protein antigens for the development of new cross-

protective subunit vaccines [60,61,62,63]. The presence of maternal antibodies in the 

colostrum of sows may present challenges for effective vaccination of young piglets as 

recently demonstrated by Baums et al. [64]. Nevertheless immunization of sows can 

confer passive immunity against S. suis to the young piglets but after weaning those young 

pigs become more susceptible to infection [64,65]. 
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The use of an avirulent strain as vaccine can give protection in piglets [66]. The protective 

efficacy of a live and formalin killed non-encapsulated isogenic mutant has been tested in 

specified pathogen-free (SPF) pigs, housed in boxes at animal facilities [67]. All pigs 

vaccinated with wild type (capsulated) killed bacteria were completely protected against 

challenge with the homologous serotype; the killed non-encapsulated strain conferred a 

partial protection to the pigs [67]. This finding suggested that antigens within the S. suis 

cell wall contribute to induction of an immune response. 5. suis cell wall proteins could 

play a role in vaccine protection, but the role of such cell wall proteins in cross-protection 

is still being actively investigated [60,61,62,63]. 

3. Zoonotic infections with S. suis 

3.1 S. suis epidemiology in humans 

The first documented case of a human infection by S. suis was in Denmark in 1968 [68]. 

The number of human S. suis cases reported in the literature has increased significantly in 

more than 20 countries and with more than 700 cases over the past few years [69]. 

Infections with 5. suis have also caused sporadic human illness in other countries, 

including Thailand [70,71,72], the United Kingdom [73], Portugal [74], Italy [75], Japan 

[76], Australia [77], the Netherlands [78] and the United States [79,80,81]. The majority of 

human cases and outbreaks are reported from Asian countries with intensive pig 

production, i.e. China, Vietnam, and Northern Thailand. At present, 5. suis meningitis is 

considered to be the most common cause of adult human meningitis in some areas of 

southeast Asia (see below). Sporadic cases have also been reported in European countries, 

including the Netherlands (Fig. 1.1). 
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Streptococcus suis, Human Cases and Pig Density 

Country 
China 
VtatNam 
Thailand 
Japan 
Australia 
Laos 
New Zealand 
Philippines 
Singapore 

1 Cases 
332 
293 
118 

7 

Country j Cases 
Argentina 

Country | 
Netherlands 
Uiited Kingdom 
Denmark 
France 
Germany 
Spain 
Belgium 
Croatia 
Greece 
Italy 
Austria 
Hungary 
Portugal 
Sweden 

Cases 
41 
15 
12 
7 
7 

e 
2 
2 
2 
2 
1 
1 
1 
1 

Fig. 1.1 : World map of human S. suis cases with background pig density data. Published with permission from the Infectious 

Diseases Research Foundation (World Atlas of Infectious Diseases Project) [82]. 

In Southern Vietnam, S. suis is the main cause of acute bacterial meningitis in adults (151 

meningitis cases in the last 10 years) [83] and it is the third most common cause of 

meningitis in Hong Kong [84]. In cases of human meningitis in Vietnam, S. suis serotype 2 

infection was more common than infections with Streptococcus sanguis and Neisseria 

meningitidis combined [85]. Most reports of S. suis infection are due to sporadic cases of 

infection but two larger outbreaks of 5. suis infection occurred in China. One large 

outbreak was associated with 25 cases and 14 deaths in Jiangsu in 1998, and a second 

Chinese outbreak involving 204 cases and 38 deaths occurred in the Sichuan province in 

2005, emphasizing the importance of S. suis as an emerging zoonosis [86,87,88]. 5. suis 

serotype 2 is the most common cause of meningitis disease in humans [89] although 

serotypes 1, 4, 14, and 16 have been linked to severe disease in a limited number of 
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persons [90]. The relative high mean patient age (47-55 years) and almost complete 

absence of children in case series, as well as the high male-to-female patient ratio (3.5:1.0 

to 6.5:1.0), support the notion that infection with S. suis is generally an occupational 

disease [18,19,69,70,77,78,81,91]. Persons in close occupational or accidental contact 

with pigs or pork products and those who eat uncooked or undercooked pork may be at 

higher risk than others. 5. suis may become an opportunistic pathogen under particular 

circumstances such as stress or immunodeficiency and the onset of meningitis may 

manifest itself by clinical signs such as loss of coordination [19,75]. Purulent meningitis 

may result in permanent hearing loss, septicaemia, and endocarditis, which are commonly 

fulminant and often fatal [69,70,73,92]. In humans, direct entry of S. suis into the blood 

through skin wounds correlates with a very short incubation phase [87]. 

3.2 Treatments in humans 

Data from Vietnam show that 5. suis is susceptible to penicillin, ceftriaxone, and 

vancomycin [69]. Strains isolated from humans are frequently resistant to tetracycline 

(83.2% of isolates), erythromycin (20% of isolates) and chloramphenicol (3.3%)[69]. 

Penicillin resistance has been reported in a single human case [92]. The principles of 

treatment are the same as those for other causes of bacterial meningitis. For empirical 

treatment, ceftriaxone with or without vancomycin (depending on the local epidemiology 

of bacterial meningitis and drug resistance) is a good choice until the laboratory diagnosis 

is confirmed [69]. Penicillin G (24 million U over 24 h for at least 10 days) has been used 

successfully for the treatment of S. suis meningitis [93]. 

4. Aspects of Pathogenesis 
The progression of disease symptoms caused by 5. suis are characterized by at least four 

sequential processes: (i) adherence to host cells, (ii) invasion and crossing of host 

epithelia, (iii) dispersal and survival in the blood stream, and (iv) infection of downstream 

organs. During any of these steps, bacteria may proliferate and induce damage leading to 

exaggerated inflammation (Fig. 1.2). However, there are several open questions 

concerning the pathogenesis of disease cause by S. suis infection that are discussed below 

and throughout this thesis. These consecutive steps in the pathogenesis of invasive 

disease caused by S. suis will now be discussed in sequence. 

18-



General introduction 
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Fig. 1.2 Hypothetical model of the pathogenesis of S. suis infection (modified from Gottschalk et al 2011) [19]. The description 
of pathogenesis steps from A to J are found in the text. A Adhesion of mucosal epithelium; B Invasion by epithelia disruption due 
to Sly toxin production; C Hypothetical dissemination from the mucosal epithelium through the interaction with DC cells; D, E, F 
S. suis survival strategies in the bloodstream as free capsulated or F, J associated with monocytes (adherent or internalized); G, H, 
I 5. suis crosses the blood-brain barrier (BBB) by adhesion and penetration of endothelial cells. An increased permeability of BBB 
due to cytokines or bacterial toxins production can help the bacteria to penetrate across the BBB and gives local inflammation of 
meninges. 
Sly, suilysin; CPS, capsular polysaccharides; CAMs, cellular adhesion molecules, DC dendritic cells, Mo/M 
Monocytes/Macrophages, BBB brain blood barrier, CFS central nervous system. 

4.1 Mucosal adhesion and colonization 

Swine can become infected by S. suis via both the vertical and horizontal route leading to 

colonization of the oropharyngeal cavity, in particular the tonsils [94]. In humans, it is 

thought that people can also become infected through wounded skin by handling of 
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uncooked pork that is contaminated with 5. suis [69,94]. Inoculation through cuts and 

sores in the skin are assumed to be associated with an acute infection because the 

bacteria may directly multiply in the blood stream. Colonization may lead to asymptomatic 

carriage or invasion of the mucosal tissues and dissemination in the blood to other organs. 

In the mucosal epithelium of upper respiratory/intestinal tract are present high 

concentrations of common forms of a-glucans including dietary starch and glycogen, the 

storage form of a-glucose in the eukaryotic cell. a-Glucan-binding proteins include the 

enzymes capable of hydrolysis and synthesis of the a-glucans including starch and 

cellulose, that can act as substrates for microbial growth [95]. Several adhesins with 

metabolic enzymatic activity, have been identified in vitro and may also contribute to the 

adhesion to host epithelial cells, by binding to unknown glycoconjugates or host receptors 

(Fig. 1.2 step A). An example is amylopullulanase (ApuA), a cell wall-anchored a-glucans 

degrading enzyme, that probably binds different host carbohydrates through the 

conserved carbohydrate binding domains present in the ApuA protein (Chapter 3). 

Moreover 6-phosphogluconate-dehydrogenase (6-PGD) [96] and glutamine synthetase 

(GlnA) [97] are cytoplasmic glycolytic enzymes thought to be involved in the adhesion to 

epithelia. Two different studies showed reduced adherence of S. suis lacking 6-PGD- and 

GlnA-to epithelial HEp-2 cells S. suis suggesting the involvement of these proteins in the 

first steps of the bacterial adhesion to host cells. 

The adhesion SadP (SSU0253) was recently shown to bind to galactosyl-al-4-galactose 

(Galal-4Gal) galabiose-containing glycolipids [98,99]. Galabiose occurs as a terminal or 

internal structure in globo-series glycolipids (GbOs), and in humans they form the blood 

group P antigen system. Chemical studies have shown GbOs to be expressed in many pig 

and human tissues [100,101,102]. The SadP was shown to mediate the agglutination of 

sialidase-treated erythrocytes and binding to glycolipid Gb03 and to participate in the 

binding of S. suis to pig pharyngeal epithelium [99]. 

S. suis strains that recognize sialylated O-linked carbohydrate (NeuNAca2-3Galßl) 

terminal structures in mucin-like glycoproteins have also been identified [103], but they 

appear to be less common than the Galal-4Gal-binding (via SadP) strains. 

Electron microscopy studies on 5. suis revealed the presence of several other external 

structures similar to pili that may be involved in adhesion [105,106]. 
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4.2 Mucosal invasion 

The epithelia provide the first host barrier separating 5. suis from the circulating blood. 

The processes leading to 5. suis invasion of epithelia and from there, translocation through 

the mucosal tissues into the bloodstream are not clear but as indicated above it may 

involve altered expression of the capsule, surface adhesins, invasins and the damaging 

effect of suilysin on the epithelium (Fig. 1.2 step B). Suilysin (Sly) is an extracellular thiol-

activated haemolysin produced by S. suis which belongs to the cholesterol binding-toxin 

family. Sly forms pores in host cells by oligomerization [109] and has been shown to be 

cytotoxic for epithelial [110,111] endothelial [112,113,114] and immune cells in vitro 

[115,116]. Thus production of suilysin is hypothesized to play a role in epithelial 

disruption, enabling 5. suis to invade the mucosal tissues and then disseminate in the 

body, an hypothesis that is tested in Chapter 5. However strains not producing suilysin 

have been associated with invasive disease [114]. 

Once 5. suis has crossed the epithelial barrier it may adhere to components of the 

extracellular matrix (ECM) such as laminin, fibronectin, and plasminogen [117]. The host 

ECM presents an intermediate interface between the host epithelia and the underlying 

mucosal tissues. Insynergy with suilysin, the hyaluronate lyase of 5. suis is thought to 

degrade hyaluronic acid, one of the major components of the ECM in the loose connective 

tissue, thereby contributing to invasion and spread of S. suis [118]. 

Furthermore during the interaction of S. suis with the host, a broad variety of bacterial 

extracellular proteins play important roles in binding host cell surface receptors and other 

possible host adherence sites including ECM molecules and glycoconjugates such as 

glycosphingolipids and glycoproteins. Potential host cell molecules for adhesion by 

streptococcal pathogens include surface-associated fibronectin in the ECM [119] and 

glycosphingolipids and glycoproteins bearing sialic acid, galactose or N-

acetylgalactosamine residues [120,121,122]. As in many Gram positive bacteria 5. suis 

possesses a sortase A enzyme (SrtA) that anchors the extracellular proteins containing an 

LPXTG motif to the cell wall. A S. suis SrtA~ mutant showed less adherence to ECM proteins 

[123,124] indicating that LPXTG-motif-containing adhesins are also important for 

interactions with ECM proteins. 

S. suis fibronectin-binding protein (FBPS) was shown to bind human fibronectin and 

fibrinogen in vitro [125]. However experimental infection of pigs with the fbps mutant 
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strain showed that FBPS is not required for colonization of the tonsils but that it may play 

a role in colonization of specific organs during invasive disease [125]. 

In 5. suis two glycolytic enzymes, typically found in the cytosol, have also been identified 

as anchorless adhesins of ECM, namely, glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) [126,127], and enolase [128]. A decreased adhesion of S. suis to plasminogen of 

porcine tracheal rings and HEp-2 cells was observed when the cells were pre-incubated 

with recombinant mutant GAPDH, suggesting its involvement in adhesion [126,127]. The 

GAPDH gene is highly upregulated during in vivo growth in different porcine organs [130] 

but its contribution to virulence of S. suis remains to be demonstrated in vivo [129]. 

Enolase is considered the major plasmin- and plasminogen- binding protein of 

streptococcal pathogens and the extracellular S. suis enolase (Eno) was shown to bind 

both plasminogen and fibronectin (obtained from commercial companies) and to be 

important for adhesion and invasion [128]. Plasminogen can be converted, following 

cleavage by plasminogen activators, to the serine protease plasmin. Plasmin in turn can 

degrade ECM proteins. Thus, surface-associated plasmin has been proposed to facilitate 

bacterial invasion and bacterial dissemination through epithelial barriers. 

The 5. suis di-peptidyl peptidase IV (Dpp IV), which interacts with human fibronectin and is 

required for full virulence in experimental infection studies of pigs [131] and in a similar 

way to enolase, may contribute to the degradation of fibronectin. 

4.3 Avoidance of innate and adaptive immunity in the mucosa 

Once present in the mucosal connective tissues, S. suis bacteria will be perceived by the 

mucosal immune system. S. suis appears to produce several factors that can interfere with 

some of the innate immune molecules. Secretory IgA (slgA) plays an important role in 

mucosal immunity by immune exclusion mechanisms, toxin neutralization and steric 

inhibition of adhesion or invasion by binding to bacterial surface antigens [132]. IgA 

protease-producing bacteria can affect this defence by the cleavage of slgA, releasing Fab 

fragments (the regions on antibodies that bind to antigens) [133]. It has recently been 

reported that S. suis produces an IgAl protease capable of cleaving human IgAl [134]. 

However the amount of recombinant IgAl protein used in the IgA protease activity is very 

high compared to the physiological condition and it is possible that the presumed IgAl 

protease is in fact a metalloprotease family member with a different function to IgA 

protease. Nevertheless an isogenic mutant of the putative IgA protease was reported to 

lead to a significantly decreased lethality of S. suis in pigs [135]. 
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A secreted DNase has been identified in S. suis [136] with an expected role in the 

breakdown of neutrophil entrapments (NETS) [137] but its contribution to the virulence of 

5. suis remains to be verified. 5. suis is also able to inhibit neutrophil recruitment by 

degrading interleukin-8 presumably by the production of a serine protease [138]. 

Dendritic cells (DCs) are important sentinels in the skin and mucosal surfaces and 

recognize pathogen-associated molecular patterns (PAMPs) through the binding to 

specific pathogen recognition receptors (PRRs) like Toll-like receptors (TLRs). Upon 

microbial invasion, immature DCs are recruited from nearly tissue regions and activated in 

order to coordinate the adaptive immune responses. Activated or mature DCs then 

migrate to the adjacent lymphoid organs where they activate T cells producing different 

cytokines that mediate inflammation and other antimicrobial responses [139,140]. DCs 

can also initiate phagocytosis to eliminate invasive pathogens. The S. suis capsular 

polysaccharide (CPS) was shown to interfere with phagocytosis and consequently, the 

level of DC maturation and production of several cytokines was reduced compared to an 

unencapsulated strain [141]. 

In Chapter 1 we reported the effect of different S. suis serotypes including an 

encapsulated mutant on DCs (maturation, cytokines production and phagocytosis) to 

investigate if capsule composition might differentially modulate the mucosal immune 

response. In addition we sought if activated DCs could be involved in S. suis dissemination 

from the mucosal site of infection (Fig. 1.2 step C). 

Suilysin could also be important in avoidance of innate and adaptive immune responses as 

it increases the survival of 5. suis upon phagocytosis by DCs [116]. It has been recently 

demonstrated that 5. suis suilysin was partially involved in cytokine release from DCs and 

also contributed to bacterial escape of phagocytosis [116] and resistance to complement-

dependent killing by neutrophils [142,143]. The toxin might activate complement and 

reduce complement availability for bacterial opsonisation, as has previously shown for 

pneumolysin, an orthologous toxin produced byS. pneumonia [144]. 

4.4 Survival in the blood and dissemination to the organs 

5. suis survival in the blood is thought to largely depend on the production of CPS (Fig. 1.2 

steps D-E-F). It has been widely documented that the CPS protects S. suis from neutrophil 

and monocyte/macrophage-mediated phagocytosis and killing [94]. In Streptococcus 

agalactiae capsule sialic acid has been shown to increase the hydrophilic surface 

properties of the bacteria and to have an inhibitory effect on phagocytosis [145]. Capsular 

23 



Chapter 1 

sialic acid has been shown to be important in preventing the deposition of the 

complement protein C3 on the surface of GBS, therefore blocking activation of the 

alternative pathway and allowing for GBS resistance to opsonin-dependent intracellular 

killing [146] (Fig. 1.2 step 2D). Indeed, several different in vitro and in vivo experiments 

using isogenic unencapsulated mutant strains have conclusively shown that the absence of 

CPS correlates with highly increased phagocytosis and/or killing of these strains by 

phagocytic cells, with a rapid clearance from circulation [147,148,149,150]. 

5. suis may travel in the bloodstream to reach the target organs by different means: (i) as 

free encapsulated bacteria (Fig. 1.2 step 2E), (ii) as internalized by or adherent to 

monocytes/macrophages (Mo/M) using a "modified Trojan horse" strategy (Fig. 1.2 step F) 

or (iii) as free bacteria protected by a thick capsule layer, as a high level of bacteremia 

usually precedes the onset of bacterial meningitis [151]. The possibility that S. suis can 

survive inside professional phagocytes (macrophages and neutrophils) and disseminate to 

other organs (Trojan horse theory) seems unlikely based on in vitro studies (Chapter 1) but 

cannot be ruled out. Sialic acid has been implicated in the "modified Trojan horse" 

mechanism of S. suis adherence (without phagocytosis) to Mo/M [34] (Fig. 1.2 steps F-J). 

4.5 Crossing the blood-brain barrier fBBB) 

As for other pathogens causing meningitis, 5. suis must cross the blood-brain barrier (BBB) 

and/or the blood-cerebrospinal fluid (CSF) barrier in order to cause central nervous system 

(CNS) infections (Fig. 1.2 steps G,H,I). The main cellular type of the BBB is brain 

microvascular endothelial cells (BMEC). The BBB is characterised by restricted 

permeability on both sides of the layer due to the presence of tight junctions between 

endothelial cells of cerebral vessels and epithelial cells of the choroid plexus. S. suis can 

adhere to, and invade immortalised porcine BMEC, as demonstrated by antibiotic 

protection assays and electron microscopy [152]. 5. suis invasion of primary porcine BMEC 

was confirmed later by Vanier et al. who also showed that serum components, possibly 

fibronectin, played an important role in adherence [153]. As suggested for epithelial cell 

adhesion, the 5. suis CPS may partially interfere with the abilities of the pathogen to 

adhere and invade the BMEC (Fig. 1.2 steps G-H). Cell wall components such as 

lipoteichoic acid (LTA) have also been implicated in BMEC invasion [153,154]. An S. suis 

mutant impaired in D-alanylation of LTA showed reduced levels of adherence and invasion 

of porcine BMEC compared to the wild type strain [154]. Other cell wall anchored 

extracellular proteins may also be involved in BMEC adhesion as indicated by the reduced 
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adherence capacity of the S. suis SrtA mutant to adhere to BMEC, compared to the wild 

type strain [155]. Suilysin positive strains may also disrupt the BBB through cytotoxic 

effects, increasing the BBB permeability (Fig. 1.2 steps G-H) although production of 

suilysin is not essential for invasion [152]. After adherence to BMEC S. suis might stimulate 

production of cytokines resulting in alteration of BBB permeability. This has been 

suggested because of the high production of cytokines by human BMEC which alter tight 

junction structure [156]. Apart from alteration of BBB permeability, overproduction of 

cytokines can activate different leukocyte subpopulations and up-regulate the expression 

of cell adhesion molecules (CAMs), such as integrins and selectins, that allow trans­

endothelial migration of leukocytes [157]. Very recently, using an experimental transwell 

model, translocation across the blood-CSF barrier of S. su/s-activated neutrophils was 

demonstrated [158]. 

As evidenced by human outbreaks of toxic shock-like syndrome (STLSS) as well as by septic 

shock cases in Europe and Asia caused by 5. suis (characterised by short incubation time, 

rapid disease progression and a high rate of mortality), a substantial release of pro­

inflammatory mediators is thought to take place during 5. suis systemic infections of 

human [159]. High levels of systemic cytokines induced by S. suis in vivo post-infection are 

thought to be responsible for the death of animals [7,160]. 

5. Regulation of virulence gene expression 
Environmental conditions such pH, temperature, oxygen availability, and organic 

metabolites may influence the physiology of 5. suis. The ability of 5. suis to colonize 

diverse host niches such mucosal epithelia, the bloodstream and target organs indicates 

that the bacteria have evolved precise mechanisms to alter, sense and adapt to different 

environmental conditions, including those within the host. 

Like many other bacteria, S. suis possess two major types of transcriptional regulators: 1) 

two-component gene regulatory systems (TCS) and 2) stand-alone regulators. TCS consist 

of a membrane sensor histidine kinase that influences the phosphorylation state of a 

cytoplasmatic cognate regulator, which repress or activate gene expression by DNA 

binding [161]. The TCS regulate the expression of metabolic and virulence genes in 

response to the external environmental signals. Among the presumptive signals that are 

thought to be detected by TCS are chemical and physical parameters such as different 

ions, temperature, pH, oxygen pressure, osmolarity, autoinducer compounds, the redox 
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state of electron carriers, and the contact with host cells [162]. The regulation systems for 

other human pathogens (i.e. Salmonella and Staphylococcus aureus) virulence properties 

are well characterized, and involve a sophisticated interaction of several TCS 

[163,164,165]. In Streptococcus pathogens, many virulence factors such capsule, 

hemolysis, and exotoxin have been regulated by TCS [166,167,168]. In total 12 or 13 TCS, 

depending on strain differences, have been annotated in S. suis genomes to date. Despite 

the importance the two component regulatory systems play in 5. suis pathogenesis, only 

few have been studied so far. Mutants lacking TCS CiaR/H or the orphan transcriptional 

regulators RevSC21 and CovR were impaired in adherence to epithelial cells [169,170,171]. 

A study on the TCS SalK/SaIR has demonstrated that this TCS protects 5. suis against killing 

by phagocytes [172,173,174]. This TCS appears not to be present in the European 

reference strain S. suis P l /7. A deletion mutant of covR produced a thicker capsule, 

conferring higher survival compared to the wild type in phagocytosis assays with human 

monocytes. Inactivation of covR gene also increased the lethality of S. suis in experimental 

infection of piglets [175]. These examples show that TCS are important mediators of 

bacterial virulence and survival in the host, but the precise mechanisms by which each TCS 

functions are generally unknown and may differ for different bacterial species. In addition 

to TCSs, transcriptional regulators, e.g. from the Lacl/GaIR family are important regulators 

of virulence factor production and of bacterial metabolism such as complex carbohydrate 

utilization (Chapter 4, Chapter 5). 

As mentioned above, starch a-glycans (large polymers of glucose) are found in high 

concentrations in the saliva and oropharyngeal cavity [176,177,178]. Glucose, if consumed 

with the diet may also be present in the oral cavity but concentrations diminish rapidly 

(within 30 min) after ingestion [179]. In S. pyogenes transcript levels of genes involved in 

carbohydrate metabolism, including those involved in maltodextrin and mannose 

catabolism, were maximal during the initial colonization phase of primates [180]. These 

data suggest that in streptococcal pathogens, genes required for a-glucan metabolism 

were either being induced or derepressed during the in vivo growth of the bacteria, 

suggesting a role for these metabolic genes in bacterial proliferation during the initial 

stages of colonization of the oropharynx [180]. 

Generally, host-associated bacteria do not synthesize degradative (catabolic) 

carbohydrates enzymes unless the substrates of these enzymes are present in the 

environment. For this reason, bacteria have evolved elaborate regulatory control 
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mechanisms to utilise the carbon source that allows fastest growth [181]. In the presence 

of glucose, the sugar that cells use as the primary source of energy, a carbon catabolite 

control mechanism represses the expression of degradative enzymes, transporters and 

metabolic pathways for catabolism of other (more complex) sugars. In Firmicutes, the 

catabolite control protein A (CcpA) is well-conserved among different species and can 

repress or activate transcription by binding to cis-acting catabolite response element (ere) 

sites (Fig. 1.3). 
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Fig. 1.3: Transport of extracellular glucose is linked to CcpA mediated Carbon Catabolite Repression (CCR) or Activation (CCA). 
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Consensus ere sequences have been determined in several species [181]. Studies in 

Bacillus spp. have shown that the binding of CcpA to DNA ere sites is enhanced by 

interaction of CcpA with the phosphoprotein HPr-Ser-46-P [182,183]. The HPr 

phosphorylation state is determined by the action of HPr kinase/phosphorylase (HPrK/P), 

which, in turn, is affected by the intracellular concentration of fructose 1,6-bisphosphate 

(FBP) that is produced during the glycolysis, the process of degradation of glucose. 

Orthologues of CcpA, HPr, and HPrK/P from Bacillus species are present in the genome 

sequence of S. suis serotype 2 Pl/7, the pathogenic European reference strain [84] (Fig. 3). 

CcpA has been shown to be important for the virulence of several streptococcal species, 

influencing growth, haemolysin production, biofilm formation and capsule expression 

[184,185]. Recently, the role of CcpA was investigated by microarray analysis of wild-type 

S. suis and an isogenic ccpA mutant grown in THB. Deletion of ccpA altered the expression 

of capsule locus genes encoding surface-associated virulence factors: arcB, sao and eno as 

well as ofs and cps2A [186]. 

In Chapter 4 we studied if CcpA was involved in the regulation of the virulence factor 

ApuA. In Chapter 5 we describe a different approach to study the role of carbohydrate 

metabolism on metabolism and virulence, by comparing the transcriptomes of S. suis 

grown in complex medium plus a-glucan (pullulan) or glucose in both exponential and 

early stationary growth phases. Additionally we investigated whether or not carbohydrate 

composition of the growth medium could influence the virulence of S. suis by altering 

adherence or invasiveness. 

6.5. suis genomics 

Comparative genomics is commonly used in order to study bacterial outbreaks and 

identification of loci encoding virulence factors [187]. Therefore, several genomics project 

aimed at sequencing and identifying S. suis isolates from human and pig origin have been 

initiated. One of the first initiatives, started by the Sanger Institute, resulted in the 

sequencing and annotation of three 5. suis isolates, two from human origin, and one from 

pig origin (5. suis P l /7, AM946016) [84]. The genome of S. suis S10 used in our study, is 

more than 99% identical to the genome of 5. suis P l /7. As of January 2012, sixteen 

genome sequencing project are reported, and thirteen genome sequences have been 

completed (NCBI Genome and NCBI BioProject 

http://www.ncbi.nlm.nih.gov/genome/?term=Streprococco5%20suis). 
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S. suis genome sizes are around 2 Mb [84,188], of which 40% is unique for this species in 

comparison to the genomes of other Streptococcus species [84]. Within 5. suis, the 

genome content is highly conserved apart from three ca. 90 kb regions, present in the two 

human sequenced isolates from the Chinese outbreak, that contain insertion sequences 

(IS) including conjugative elements and transposon sequences, in addition to drug 

resistance genes, strongly suggestive of horizontal gene transfer [84]. The isolates 

described by Holden et al. (2009) are of serotype 2, belong to a single lineage and include 

two highly similar (1 single locus difference) multilocus sequence types. Interestingly, 

similar numbers of IS were also found in less related strains belonging to different 

serotypes [188] and horizontal transfer of the 90 kb region between different serotype 2 

isolates was demonstrated [188], suggesting that gene transfer, possibly including genes 

involved in antibiotics resistance, could be a common feature of S. suis serotype 2 isolates. 

For horizontal transfer to occur between serotype 2 isolates, a specific 15 bp sequence 

was found to be necessary for recombination; this 15 bp sequence was also present in 

sequenced strains belonging to other (not serotype 2) serotypes [188]. This intriguing 

observation suggests that genomes of S. suis strains could be very dynamic, irrespective of 

their serotype. Indeed, global comparisons of 13 sequences isolates showed that the 

numbers of gene gains and losses in S. suis genomes was larger compared to other 

Streptococcus genomes [188]. It is clear that further analysis of S. suis genomes, from 

strains isolated from different hosts, different organs, and inducing different symptoms, 

will eventually reveal loci and genes involved in differential host infection, organ 

colonisation, and bacterial survival and virulence. Such knowledge will be instrumental in 

developing therapies against 5. suis infection, for instance by showing which gene 

products are necessary for survival in different hosts (organs) and by yielding novel drug 

targets. One modest example of this is provided in Chapter 2, where we mined the S. suis 

genome sequences to find genes encoding surface-anchored, extracellular and thus, 

exposed proteins that were likely candidates to participate in interactions with the host. 
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7. The purpose and nature of this PhD thesis 
The purpose of this PhD was to characterize a putative surface catabolic enzyme ApuA, in 

the important zoonotic pathogen Streptococcus suis and investigate its role in nutrition 

acquisition during colonization of the upper respiratory tract. This enzyme was found to 

have a dual function in adhesion to porcine epithelium and in the degradation of complex 

dietary or host-derived carbohydrates in the mucosal environment. Studies on the 

molecular mechanisms of regulation of ApuA revealed that its expression was regulated 

by carbon catabolite control and a dedicated regulator that induces transcription in the 

presence of substrates for ApuA. Carbon catabolite control mechanisms were also shown 

to regulate several virulence factors. In summary the work demonstrates a clear link 

between virulence and carbohydrate metabolism whereby the pathogen utilises complex 

carbohydrates as an environmental cue to regulate virulence. In addition the role of 

different capsule types in phagocytosis and immune response of human dendritic cells 

was investigated. The thesis contributes substantially to our understanding of the 

mechanisms of pathogenesis in this major pathogen and has implications for the design of 

novel vaccines and anti-infective strategies. 
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Chapter 2 

Summary 

Streptococcus suis is a major porcine pathogen of significant commercial importance 

worldwide and an emerging zoonotic pathogen of humans. Given the important sentinel 

role of mucosal dendritic cells and their importance in induction of T cell responses we 

investigated the effect of different S. suis serotype strains and an isogenic capsule mutant 

of serotype 2 on the maturation, activation and expression of IL-10, IL-12p70 and TNF-ct in 

human monocyte-derived dendritic cells. Additionally, we compared phagocytosis levels 

and bacterial survival after internalization. The capsule of serotype 2, the most common 

serotype associated with infection in humans and pigs, was highly anti-phagocytic and 

modulated the IL-10/IL-12 and IL-10/TNF-ct cytokine production in favor of a more anti­

inflammatory profile compared to other serotypes. This may have consequences for the 

induction of effective immunity to S. suis serotype 2 in humans. A shielding effect of the 

capsule on innate Toll-like receptor signaling was also demonstrated. Furthermore, we 

showed that 24 h after phagocytosis, significant numbers of viable intracellular 5. suis 

were still present intracellular^. This may contribute to the dissemination of S. suis in the 

body. 
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Introduction 

Streptococcus suis is a major pathogen of swine, causing considerable economic losses and 

animal health care problems for the pig farming industry worldwide [1]. The natural 

habitat of 5. suis is the upper respiratory tract and the intestinal tract [2,3], In adult pigs 

carriage of S. suis is usually asymptomatic but colonized sows can infect their piglets after 

nasal or oral contact [4]. Newborn pigs can also become infected during parturition when 

they contact, swallow or aspirate 5. suis from sow vaginal secretions [5]. In young pigs S. 

suis infection causes a wide variety of diseases, including meningitis, septicemia which are 

the main causes of mortality. S. suis is also emerging as a serious zoonotic pathogen of 

humans particularly in South East and East Asia where it is one of the most common 

causes of human meningitis [6,7]. In 2005 a large outbreak of 215 cases S. suis infections 

occurred in Sichuan, China, resulting in 38 deaths [8]. There are 33 serotypes of S. suis of 

which serotype 2 is most commonly associated with disease in humans and pigs 

worldwide [9,10]. In addition serotypes 1 to 9 and 14 are responsible for infections in pigs 

[11] and serotypes 1, 4, 5, 14, 16 and 24 have caused severe disease in a limited number 

of persons [12,13,14,15]. The capsule is known to be a very important virulence factor in 

S. suis [16] although not all capsulated isolates (including serotype 2) are virulent, 

highlighting the importance of other virulence factors in the pathogenesis of disease [3]. 

Dendritic cells (DCs) are important sentinels in the skin and mucosal surfaces that contact 

the external environment and play a key role in the homoeostatic control tolerance and 

immunity in the mucosal tissues [17]. Stromal factors such as retinoic acid and thymic 

stromal lymphopoietin imprint tolerogenic properties on resident DC. However when 

invading microbes are encountered the homeostatic mechanism are overridden by 

chemotactic recruitment of DC and their activation by pattern recognition receptor (PRR) 

binding to pathogen-associated molecular patterns (PAMPs). Upon activation DCs express 

up to lOOx more MHC than monocytes, macrophages and neutrophils other antigen 

presenting cells (APCs) and migrate to mucosal associated lymphoid tissue to induce 

antigen-specific T cell responses [18,19]. Thus DCs are instrumental in the orchestration of 

adaptive immune responses. Cytokines produced by activated DC have a major influence 

on T cell polarization, differentiation and clonal expansion. Interleukin (IL)-12 and tumor 

necrosis factor (TNF)-a, are pro-inflammatory cytokines that promote T helper (Th) 1 cell 

responses, whereas IL-10 is an anti-inflammatory cytokine that can promote induction of 

Th2 cells or regulatory T cells depending on the expression of other tolerizing factors [20]. 
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DCs recognize different types of PAMPs using pattern recognition receptors (PRRs) of the 

Toll-like receptor (TLR), nucleotide-binding oligomerisation domain receptor (NLR) and C-

type lectin receptor (CLR) protein families, [17,21,22]. PRR signaling is critical to DC 

maturation and in recent years much emphasis has been given to dissecting the innate 

signaling pathways involved in pathogen recognition. Each PRR recognizes variants of a 

specific molecular pattern and can be expressed on the cell surface, in intracellular 

compartments or in the cytosol. TLR1, 2, 4, 5, 6 and 11 recognize mainly microbial 

envelope components and are expressed on the cell surface, TLR3, 7, 8 and 9 recognize 

microbial nucleic acids and are expressed in intracellular compartments such as the 

endoplasmic reticulum, endosome and phagosome. TLR2 can form heterodimers with 

TLR1 or TLR6 to detect different, but related ligands. TLR2/1 recognizes tri-acyl 

lipoproteins found predominantly in Gram-negative bacteria and TLR2/6 the diacyl groups 

on lipoteichoic acid and lipoproteins of Gram-positive bacteria. NODI and NOD2 are 

cytoplasmic receptors that can detect peptidoglycan fragments produced in the 

phagosome or phagolysosome of antigen presenting cells although the nature of the 

transporters involved in translocation to the cytoplasm remains unknown [23]. The CLR 

family is characterized by the presence of one or more C-type lectin-like domains (CTLDs) 

and bind mainly sugars including self-antigens. CLRs trigger distinct signaling pathways 

that induce the expression of specific cytokines which determine T cell polarization fates 

[24]. Recently the interactions of a virulent serotype 2 strain and its unencapsulated 

derivative with porcine DC were studied in vitro. The capsular polysaccharide was shown 

to interfere with phagocytosis and consequently the level of DC maturation and 

production of several cytokines was reduced compared to an unencapsulated strain [25]. 

Given the emergence of 5. suis as a significant cause of meningitis in humans we 

investigated the effect of different serotypes (SSI, SS2, SS4, SS7, SS9 and SS14) and the 

unencapsulated mutant of 5. suis serotype 2 (SS2 J28) on the maturation and expression 

of IL-10, IL-12p70 TNF-a in human monocyte-derived DC. Additionally, we compared the 

efficiency of the different isolates in DC phagocytosis assays and studied the intracellular 

survival of internalized 5. suis serotype 2of internalized S. suis serotype 2 S10 and its 

unencapsulated isogenic mutant . The ability of the different serotype strains to induce 

TLR signaling via human TLR2/6 was also investigated using a TLR2/6 specific luciferase 

reporter cell line. To our knowledge this is the first study concerning the interactions of S. 
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suis with human DC and it provides new knowledge of the role of different capsular 

polysaccharide serotypes in the avoidance of host innate immunity. 

Results 

5. suis capsule serotype differentially affects DC maturation and activation 

Immature monocyte-derived DCs derived from six different human donors were used as in 

vitro model to investigate interactions with S. suis. The DCs were stimulated for 48 hours 

with 6 different S. suis serotypes and SS2J28 at MOI 1 and MOI 10 (Fig. 2.1A-C). Expression 

of the surface expressed co-stimulatory molecule CD86 and maturation marker CD83 were 

measured to determine the activation and maturation status of the DCs respectively (Fig. 

2.1A and B for mean fluorescence intensity and 2.1C for histograms). For all 

encapsulated strains stimulation of DC with S. suis at a MOI 10 resulted in higher 

maturation and activation marker expression than at MOI 1. The induction of the surface 

expression CD86 and CD83 differed markedly among the capsule serotypes tested. 

Significantly higher levels of CD83 and CD86 were observed following DC stimulation with 

serotypes SSI, SS7 and SS9 and the unencapsulated SS2 mutant than with serotype SS2. 
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Fig. 2.1. Mean Fluorescence Intensity (MFI) of dendritic cells normalized with LPS. 
The MFI of stained cell surface markers by monocyte derived dendritic cells with 6 different S. suis strains and SS2J28 mutant, 
wi th immature DCs as the negative control and LPS as the positive control. A. MFI of CD83 B. MFI of CD86. Bars showing unequal 
letters significantly differ in their surface marker expression (P<0.05). 

Interestingly, serotype SS2 was the least effective at maturating DC although its 

unencapsulated variant, SS2J28 was the most effective indicating the importance of the 

capsule in the avoidance of host innate immunity. 
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Fig. 2.1. Mean Fluorescence Intensity (MFI) of dendritic cells normalized with LPS. 
C. Histograms for expression of surface markers CD83 and CD86. Dotted lines represent the isotype controls and black lines the 
stimulated samples. In case of bacteria a black line represents a MOI 1 and a dashed line a MOI 10. 

44-



S. suis interactions with human dendritic cells 

The capsule ofS. suis serotype 2 differentially modulates the 11-10 to IL-12 ratio 

The amounts of IL-10, IL-12 and TNF-a measured in the supernatants of DC co-cultured 

with the different serotypes was highly variable (Fig. 2.2). The amounts of IL-10 ranged 

from 5 pg/mL to 56 pg/mL, IL-12p70 from 7 pg/mL to 6948 pg/mL and TNF-a from 5 

pg/mL to 3744 pg/mL (Fig. 2.2A-C). As expected, stimulation with an MOI 10 resulted in 

higher amounts of secreted cytokine than stimulation with an MOI 1. In keeping with the 

data on maturation markers (Fig. 2.1) serotypes SSI, SS7 and SS9 were the highest 

inducers of cytokines, whereas serotype SS2 induced the lowest amounts of cytokines (all 

cytokine < 10pg/mL). In contrast the unencapsulated derivative SS2J28 stimulated the 

highest amounts of IL-10 and IL-12 and high amounts of TNF-a. The ratio of IL-10 to IL-12 

is often used as an indicator of the potential to polarize T cell responses towards Th l or 

Th2/Treg [17]. Interestingly all of the 5 suis serotypes except SS2 induce low IL-10 to IL12 

ratios (less than 0.08). For SS2 the IL-10 to IL-12 ratio was 0.34 at MOI 10 and almost 1.0 

(0.98) at MOI 1. Strikingly, the unencapsulated derivative of SS2 designated SS2J28 has a 

much lower IL-10 to IL-12 ratio than SS2 (0.03 at MOI 1 and 0.008 at MOI 10) suggesting 
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that the type 2 capsule can down-regulate the host cell-mediated response to S. suis (Fig. 

2D). Similar trend of ratio's were observed for the IL-10 to TNF-a ratio (Fig. 2E). 

Effect of capsular polysaccharide on the capacity of DCs to internalize S. suis 

The percentage of 5. suis phagocytosed by DCs varied considerably among the different 

serotypes tested. After one hour of incubation of the DCs with the bacteria, SS4 and SS9 

were more efficiently taken up by the DCs (respectively 23% and 20% of original inoculum 

(107 bacteria) compared to the other strains (Fig. 2.3). In contrast capsule types SSI and 

SS2 were relatively resistant to phagocytosis by DCs (0.04% and 2.16% respectively of the 

original inoculum). The unencapsulated mutant was internalized at significantly higher 

amounts than its wild type SS2 progenitor (5.29% vs 2.16%; P= 0.0001). Surprisingly 

however, the unencapsulated strain was less efficiently internalized than serotype strains 

SS4andSS9(Fig2.3). 

Phagocytosis assay 
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Fig. 2.3. Phagocytosis assay. Phagocytosis by immature DCs with 6 different 5. suis strains and an unencapsulated mutant at an 
MOI 10. This is a representative figure from 1 donor, out of 5 donors. *P < 0.05. 

Capsular type 2 does not affect intracellular survival of internalized S. suis 

To rule out the possibility that differences in internalization of SS2 and SSJ28 by DC might 

be due to strain variation in intracellular survival we measured the survival of these two 

strains in DC over time. After one hour of incubation with iDC antibiotics were added for 1 

hour to ensure that only internalized bacteria were counted after lysis of the DCs. After a 
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total 2 hours of incubation the number of viable bacteria inside the DCs decreased 

considerably, to 39% of the original inoculum for SS2 and 43% of the inoculum for SS2J28 

(Fig. 2.4A). Over the first 4 hours the number of viable 5. suis decreased at a similar rate 

for both strains indicating that the higher level of internalization measured for SS2 J28 

(Fig. 2.4A) could not be due to less rapid killing. 

Viable S. suis reside within DC 24 hours after phagocytosis 

To examine the survival of the wild type SS2 and its mutant SS2J28 inside the DCs after 24 

hours, the DCs (106 cells) and bacteria (MOI 10) were incubated for 2 and 24 hours (Fig. 

2.4B). After 1 hour of incubation antibiotics were added to the medium kill extracellular 

and adhered bacteria. After 5 hours, the medium was replaced by RPMI without 

antibiotics, to prevent the antibiotics from entering the DCs. After 24 hours around 103 

CFU/mL of live S. suis were recovered from the lysed DC suggesting that a small 

proportion of the bacteria could survive intracellular^. To rule out that these 

phagocytosed bacteria were released from DC after 5 hours of co-incubation and were 

growing in the medium the experiment was repeated using an additional antibiotic 

treatment at 23 hours to kill any extracellular/adherent bacteria that might be present. 

The results (Fig. 2.4B) showed that the CFU/mL counts present after 24 hour could be 

attributed to the presence of intracellular S. suis. 
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Fig. 2.4. Survival of S. suis inside dendritic cells. A. Phagocytosis kinetics. Immature DCs were inoculated with SS2 and SS2 J28 at 
a MOI of 10 bacteria/DC for subsequently 2, 3, 4, 5 and 24 hours of incubation. B. Survival of S. suis inside DCs after 2 and 24 
hours. Immature DCs were inoculated with SS2 and SS2J28 at a MOI10 for 2 and 24 hours of incubation. The last hour the DCs 
were incubated with (24+) or without (24) antibiotics. 
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Involvement of TLR2 and TLR6 in cell activation by S. suis 

TLR2/6-mediated activation of NF-KB could be one of the major pathways for DC 

activation via LTA or lipoproteins in the cell envelope of S. suis. Therefore we tested the 

TLR2/6 signaling capacities of all the serotypes in a reporter assay using HEK293 cells 

expressing human TLR2 and TLR6 heterodimer that recognizes lipoteichoic acid (LTA) and 

lipoprotein lipid anchors in Gram-positive bacteria (Fig. 2.5). HEK293 cells transformed 

with only the pNIFTY, a NF-KB luciferase reporter construct did not respond to Pam2CSK 

demonstrating the dependency of NF-KB activation on co-expression of hTLR2/6 receptor. 

Medium was used as a negative control and Pam2CSK (synthetic agonist of TLR2/6) as a 

positive control. The results shown in Fig. 2.5 demonstrate that indeed all strains are 

capable of triggering NF-KB activation via TLR2/6 signaling but there was no correlation 

between the capacity of the strains to induce TLR2/6 signaling and activate DC (Fig. 2.2). 

Interestingly the unencapsulated mutant of SS2 induced significantly (P<0.05) higher levels 

of NF-KB than SS2 indicating that the capsule has a shielding effect on TLR activation. 
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Discussion 

Apart from its major economic impact on the mortality and morbidity of young pigs in 

agro-food production S. suis is emerging as a one of the major causes of meningitis in 

South East Asia. To gain further knowledge on the role of 5. suis capsule and capsule 

serotype on the immune response of the human host we compared phagocytosis and 

immune responses of human immature DC to different serotypes of S. suis. DCs are 

professional antigen presenting cells that play a key role in the induction of adaptive 

immune responses. Once activated by contact with invading pathogens CD103+ DC can 

traffic from the sites of mucosal infection to the draining lymph nodes to induce T cell 

responses. Additionally they play a crucial role in induction of adaptive immune responses 

in the Peyer's patches of the nasal mucosa and small intestine. Many pathogens have 

evolved mechanisms to avoid phagocytosis including production of leukotoxins, the 

inhibition of complement activation and masking of binding sites for endocytic receptors 

by polysaccharide capsules [37]. 

The serotypes of 5. suis differed significantly in their ability to activate DCs and induce 

cytokine responses. Serotypes SSI, SS7 and SS9 induced expression of significantly higher 

levels of DC activation and maturation markers than serotypes SS2, SS4 and SS14 (Fig. 2.1). 

Interestingly SS2, the strain that was the least effective at activating and maturating DC 

was serotype 2, which is the serotype most commonly associated with invasive disease in 

pigs and humans [38]. In contrast the unencapsulated variant of SS2 (SS2J28) was the 

most effective strain in maturating and activating DC, indicating the important role of the 

capsule in shielding cell wall components that activate DC and induce cytokine responses 

(Fig. 2.1). The thickness of the capsule may also influence the activation by influencing the 

release of MAMPs such as lipoproteins and LTA. Capsule serotype 1 has been reported to 

have a thinner capsule than other serotypes [51] and interestingly this was the most 

effective of all capsulated strains in activating and maturating DC. The anti-phagocytic 

effects of SS2 capsule were apparent from the significantly higher phagocytosis of the 

unencapsulated mutant SS2J28 (5.29% vs 2.16%; P= 0.0001) (Fig. 2.3). To rule out the 

possibility that differences in internalization of SS2 and SS2J28 by DC might be due to 

strain variation in intracellular survival we measured survival over period of 4 hours after 

phagocytosis. The number of viable 5. suis decreased at a similar rate for both strains 

indicating that the higher level of internalization measured for the unencapsulated mutant 

SS2J28 (Fig. 2.3) was not due to less rapid killing (Fig. 2.4A). Similar results were recently 
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described using porcine DCs and a capsulated and unencapsulated serotype 2 strain [25]. 

As in our own study an unencapsulated mutant of a serotype 2 strain was phagocytosed at 

significantly higher levels and once internalized, both the wild-type strain and its non-

encapsulated mutant were killed at similar rates. 

To investigate the effect of other capsule types on phagocytosis the internalization of 

several other serotypes were compared to serotype 2 and its unencapsulated mutant 

SS2J28 (Fig. 2.3). The serotypes differed considerably in their ability to be phagocytosed 

with around 20% of the inoculum being internalized in the case of SS4 and SS9 but only 2% 

in the case of SS2 (Fig. 2.3). This might be explained by the difference in composition of 

the capsules and their charge which is known to be important in the avoidance of 

phagocytosis. A recent genetic analysis of the capsular polysaccharide synthesis locus of 

15 5. suis serotypes predicted that capsules of serotypes 1, 2, and 14 may contain sialic 

acid [39]. In Streptococcus agalactiae capsule sialic acid has been shown to increase the 

hydrophilic surface properties of the bacteria and have an inhibitory effect on 

phagocytosis [40]. This might be an explanation for the fact that phagocytosis of serotype 

strains 1, 2 and 14 was significantly lower than for serotype strains 4 and 9. The sialylated 

capsule of Streptococcus agalactiae also inhibits C3 deposition on the bacterial cell surface 

[41], probably via recruitment of factor H, an anti-activator of the complement alternative 

pathway [42]. However it is not evident that C3 deposition is inhibited by sialic acid in the 

serotype 2 capsule of S. suis because phagocytosis levels are not significantly different in 

the presence or absence of serum factors [25]. 

Interestingly the unencapsulated SS2J28 strain was less efficiently phagocytosed than 

serotype strains SS4 and SS9 (Fig. 2.3). Thus it is possible that SS2 has other mechanisms 

that inhibit phagocytosis. A two-component regulatory system (TCS) designated SalK/SaIR 

has been shown to have a protective role in the killing of S. suis by granulocytes [16,43,44] 

but this locus is absent in the genome of SS2 strain and thus cannot be responsible for the 

lower levels of phagocytosis observed for SS2 compared to SS4, SS7, SS9 and SS14. 

A shielding effect of SS2 capsule was investigated using a reporter cell line for TLR2/6 

signaling. The TLR2/6 heterodimer is formed by binding of the di-acyl groups present on 

lipoproteins of Gram-positive bacteria and lipoteichoic acids present in the cell wall 

[22,45]. This triggers NF-KB activation via a signal kinase cascade involving the adapter 

protein MyD88 and was detected in our assay by production of luciferase under control of 

an NF-KB promoter. The unencapsulated mutant of SS2 induced significantly (P<0.05) 

50-



5. suis interactions with human dendritic cells 

higher levels of NF-KB than SS2 suggesting that the capsule has a shielding effect on the 

exposure of TLR agonists that might can activate cells such as DCs (Fig. 2.5). Notably, the 

level of NF-KB activation obtained with the unencapsulated mutant was significantly lower 

than for SS9(p<0.0001), SS14(p<0.0001) and SS4(p<0.0001). The highest level of TLR2/6 

activation was observed for SS9, something observed in a previous study using the same 

strains SS2 and SS9 (Fig. 2.5) [46]. Interestingly we found that SS9 was phagocytized more 

efficiently than the other strains and was highly effective at activating DC. However 

efficiency of phagocytosis did not correlate with activation of DC as evident for strain SSI 

which was phagocytized at relatively low levels compared to the other serotypes but 

nevertheless strongly activated DC in co-culture. 

The amounts of IL-10 IL-12 and TNF-a measured in the supernatants of DC co-cultured 

with the different serotypes was highly variable (Fig. 2.2). The amounts of IL-10 ranged 

from 5 pg/mL to 56 pg/mL, IL-12p70 from 7 pg/mL to 6948 pg/mL and TNF-a from 5 

pg/mL to 3744 pg/mL (Fig. 2.2A-C). In agreement with the data on maturation and 

activation markers (Fig. 2.1) the serotypes SSI, SS7 and SS9 were the highest inducers of 

cytokines, whereas serotype SS2 induced the lowest amounts of cytokines (all cytokine < 

10pg/mL). Interestingly all of the S suis serotypes except SS2 induce low ratios of IL-10 to 

IL12 ratios (less than 0.08). For SS2 the IL-10 to IL-12 ratio was 0.34 at MOI 1 and almost 

1.0 (0.98) at MOI 10. This qualitative effect on the cytokine response was due to the 

serotype 2 capsule because the unencapsulated mutant of SS2 induced cytokines with a 

low IL-10 to IL-12 ratio (0.03 at MOI 1 and 0.008 at MOI 10) as observed for the other 

serotypes (Fig. 2.2D). A similar trend was seen for the IL-10/TNF-a cytokine ratio (Fig. 

2.2E). It is not known whether the immunomodulatory effect of SS2 capsule is also 

observed with porcine DC as the recent study did not measure IL-10 production by DC 

[25]. A consequence of increased IL-10 production may be the polarization of T helper cell 

responses towards Th2 or Treg [47]. In pathogenic species of Yersinia for example, the 

secreted V antigen protein induces IL-10 in macrophages to evade the host's inflammatory 

response during infection [48]. Pathogens such as Mycobacterium tuberculosis and HIV 

target DC-SIGN on DC to escape immunity. Binding to DC-SIGN cause internalization but 

not subsequent antigen processing and induces IL-10 expression resulting in suppression 

of Thl responses [49]. DC-SIGN binds glycans containing high mannose structures appear 

not to be present in the published structure of the serotype 2 capsular polysaccharide 

[50]. However, it is possible that the involvement of other C -type lectin receptors on DC 
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or other glycan structures may be involved in the immunomodulatory effects of the SS2 

capsule. 

Over a period of 5 hours after internalization in DC the number of viable S. suis were 

reduced about 100 fold. The rate of killing and overall levels of intracellular survival of S. 

suis after 5 hours was higher than that reported previously using porcine DC [25]. This may 

have been due the use of a different serotype 2 strain and/or differences in killing capacity 

of human and pig DCs and warrants further study. Despite the fact that a high proportion 

of phagocytized S. suis were killed by DC in the first 5 hours of incubation we were able to 

recover around 103 CFU/ml of SS2 and the unencapsulated mutant after 24 hours 

incubation (Fig. 2.4B). In these experiments antibiotics were added to the medium for 5 

hours to kill extracellular and adhered bacteria then the medium was replaced by RPMI 

without antibiotics, to prevent the antibiotics from entering the DCs. Prior to lysis 

antibiotics were added a second time to some of the samples to kill any extracellular 

bacteria that might have been released from DC. The results (Fig. 2.4B) showed that the 

CFU counts present after 24 hour could indeed be attributed to the presence of viable 

intracellular S. suis. This has important consequences for pathogenesis because activated 

DCs eventually undergo apoptosis and may release viable S. suis. As DC traffic from the 

mucosa travel via the bloodstream to lymphoid tissue such a mechanism may enable 5. 

suis to rapidly disseminate in the body during invasive disease. 
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Materials and Methods 

Bacterial strains 

Six different serotypes (SSI, SS2, SS4, SS7, SS9 and SS14) and the unencapsulated mutant of SS2 (SS2 

J28) were obtained from Central Veterinary Institute, Lelystad NL (Table 2.1). The genome of S. suis 

S10 is more than 99% identical to the genome of S. suis P l /7, a sequenced reference strain of which 

the genome had been annotated previously (Chapter 1). In the table are indicated for each strain 

the expression of three virulence markers: two secreted cell wall located proteins namely the 

muramidase-released protein (MRP) and the extracellular factor (EF) [26,27], and secreted 

hemolytic toxin suilysin (SLY) [28]. MRP and EF variants have been designated as MRPS and EF*. All S. 

suis strains were cultured overnight at 37°C in Todd Hewitt broth (Oxoid). The bacteria were then 

recovered by centrifugation, washed twice in phosphate buffered saline (PBS, pH=7.4), resuspended 

at approximately l x lO 9 colony forming units (CFU)/mL in PBS containing 20% glycerol, and stored in 

aliquots at -80°C prior to use. The exact number of bacterial CFU in a thawed aliquot was 

determined by plating serial dilutions on Columbia blood agar plates (BD) containing 5% sheep blood 

in presence of 5% C02. 

Table 2.1: List of strains used in this study 

Serotype 

SSI 
SS2 

SS2 J28 
SS4 
SS7 
SS9 
SS14 

Strain 

6388 
S10 

lOcpsAEF* 
5213 
8039 
8067 
13730 

Virulence 
in pigs 

HV 
V 

AV 
ND 
ND 
AV 
ND 

MRP 

MRPS 

MRP* 
MRP* 
MRP* 

-
-
-

EF 

EF* 
EF* 
EF* 

-
-
-

EF* 

Suilysin 

SLY* 
SLY* 
SLY* 
ND 

-
SLY* 
ND 

CPS 

Cpsl* 
Cps2* 
Cps2" 
Cps4* 
Cps7* 
Cps9* 

Cpsl4* 

Reference 

[29,30] 

[16] 
[16] 

[31] 
[30,32] 
[30,33] 

-
The isogenic unencapsulated mutant strain lOcpsûEF parts of the cps2E and cps2F gene were replaced by an antibiotic 

resistance gene. HV high virulent, V virulent, AV avirulent. MRP muraminidase-released protein. EF extracellular factor. SLY 
suilysin. CPS capsular polysaccharide synthesis *, higher MW protein expressed; s, smaller MW protein expressed 

Differentiation and maturation of dendritic cells 

The study was approved by the Wageningen University Ethical Committee and was performed 

according to the principles of the Declaration of Helsinki. Buffy coats from four blood donors were 

obtained from the Sanquin Blood bank Nijmegen, Netherlands. A written informed consent was 

obtained before the sample collection. Human monocytes were isolated from blood using a 

combination of Ficoll density centrifugation and cell separation using CD14-specific antibody coated 

magnetic microbeads (Miltenyi Biotec). The purity of isolated CD14+ cell fraction was greater than 

90% and viability >95% in all experiments. To generate immature DC (iDCs), the purified CD14+ cells 

were cultured for 6 days in RPMI 1640 medium (Invitrogen), supplemented with 100 units/ mL 

penicillin G (Invitrogen), 100 u.g/mL streptomycin (Invitrogen), IL-4 (R&D systems) and granulocyte-

macrophage colony-stimulating-factor (GM-CSF) (R&D systems). GM-CSF and IL-4 were added to 
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r ,6 . differentiate the monocytes into myeloid DCs. At day 6 the iDCs (1 x 10 /mL) were stimulated with 

LPS (1 u.g/mL) or the different 5. suis serotypes at multiplicities of infection (MOI) of 1 bacterium per 

DC or 10 bacteria per DC for 48 hours. Unstimulated iDCs were used as a negative control. 

Analysis of cell surface markers and measurement of cell death by flow cytometry 

During the 8 day culture period of the CD14+ cells (6 days of differentiation of monocytes into 

immature dendritic cells and two days of stimulation), cells were stained on days 3, 6 and 8 with 

fluorescence-conjugated monoclonal antibodies specific for CD83, CD86 or their isotype-matched 

controls (BD biosciences, San Diego, USA) and analyzed by flow cytometry (FACSCanto II, BD, San 

Diego, USA) to check the maturation and activation status of the cells. CD86 and CD83 were not 

expressed on immature dendritic cells (d3 and 6) but were highly expressed on DCs after activation 

with known maturation factors (e.g. LPS). The magnitude of the response from different human 

donors can vary considerably so for comparison the data was normalized to the LPS control sample 

data (100%) for each donor. On days 3, 6 and 8 the percentage of viable cells was measured by flow 

cytometry (FACSCanto II, BD, San Diego, USA). Live, apoptotic and necrotic cells were discriminated 

by staining with Annexin V and propidium iodide on days 3, 6 and 8 according to the manufacturer's 

protocol. The cells were analyzed on a flow cytometer (FACSCanto II, BD, San Diego, USA). Cells that 

are negative for both Annexin V and PI are not apoptotic or necrotic as translocation of the 

membrane phospholipid phosphatidylserine has not occurred and the plasma membrane is still 

intact. Therefore, Annexin V and PI double negative cells were considered as viable cells, whereas 

both single and double positive cells were regarded as non-viable [29]. The flow cytometry data was 

analyzed using the BD FACSDiva software. On days 3 to 8 the viability of the cells was between 60 

and 95%. There were no significant differences in cell death between S. suis co-cultures or compared 

to the medium and LPS controls. 

Cytokine assay 

Supernatants from the DC stimulation assays were collected after stimulation for 48 hours, and 

analyzed for the presence of cytokines (IL-10, IL-12p70 and TNF-a) using a cytometric bead-based 

immunoassay that enables multiplex measurements of soluble cytokines in the same sample [30], 

according to the manufacturer's protocol (BD biosciences). The limits of sensitivity for detection 

were as follows: 0.13 pg/mL, 0.6 pg/mL and 0.7 pg/mL. The flow cytometry data were analyzed using 

the BD FCAP software. 

Phagocytosis assay 

The iDCs (106 cells) were inoculated with the different S. suis serotypes (MOI 10) and incubated for 

one hour in antibiotic-free RPMI 1640 at 37°C and the presence of 5% C02. The DCs were further 

incubated for one hour in RPMI 1640 containing 56.2 u.g/mL penicillin G and 100 u.g/mL gentamicin. 

Subsequently the DCs were collected and the centrifuged for 5 minutes at 845 g. The pellet was 
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washed with PBS to remove the antibiotics and the DCs lysed and vigorously vortex in ice-cold milliQ 

water. The cell lysate was then serial plated on Columbia blood agar plates (BD) containing 5% sheep 

blood to enumerate the CFU of S. suis. 

Adhesion and Phagocytosis Assay 

In Fig. 3 the iDCs (106 cells) were inoculated with SS2 and SS2 J28 (MOI10) and incubated for 1 hour 

in antibiotic-free RPMI1640. To count the adherent and phagocytosed bacteria DCs were washed 

after one hour twice with PBS to remove the unbound bacteria, lysed with ice-cold milliQ water and 

plated on Columbia blood agar plates (BD) containing 5% sheep blood. 

Kill Curve 

Phagocytosis of S. suis was performed as described above and then the DCs were incubated in RPMI 

1640 containing 56.2 u.g/ml_ penicillin G and 100 ug/mL gentamicin to kill extracellular bacteria. The 

killing of phagocytosed S. suis was determined after 1, 2, 3 and 4 h by removing the antibiotics with 

PBS washes, lysis in ice-cold milliQ water and serial plating on Columbia blood agar plates (BD) 

containing 5% sheep blood (Fig 4A) 

Survival ofS. suis inside DCs after 2 and 24 hours 

The iDCs (106 cells) were inoculated with SS2 and SS2 J28 (MOI10) and incubated for one hour in 

antibiotic-free RPMI1640. After one hour of incubation antibiotics (100 u.g/mL gentamicin and 56.2 

Ug/mL of penicillin G) were added to kill all the extracellular bacteria. After a further one hour 

incubation in the presence of the antibiotics DCs samples were collected and plated in the same way 

as described in the phagocytosis assay (2h time point). After a further 4 hours, the medium was 

replaced by RPMI lacking antibiotics to prevent the antibiotics from entering the DCs and killing 

intracellular bacteria. After a total of 23 hours incubation the DCs were incubated for one hour in 

RPMI with or without antibiotics washed twice with PBS, lysed with ice-cold milliQ water and plated 

on Columbia blood agar plates (BD) containing 5% sheep blood (24 h time point). 

TLR2/6 assay 

The TLR2/6 signaling assay was performed essentially as previously described [31]. Briefly, HEK293 

cells (Invivogen, Toulouse, France) were transformed with human TLR2/6 and pNIFTY, a NF-KB 

luciferase reporter construct (Invivogen). The cells were plated a concentration of 6 x 10 cells per 

well in DMEM medium. Cells were then stimulated with the different S. suis strains, Pam2CSK as a 

positive control and with medium alone (negative control) and incubated at 37°C and 5% C02 for 24 

hours. After this incubation period the medium was replaced with Bright glow (Promega), the plate 

was vortexed and the luminescence was measured using a Spectramax M5 (Molecular Devices). 

Human embryonic kidney (HEK)293 cells not expressing TLR receptors but harbouring pNIFTY, a NF-
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KB luciferase reporter construct (Invivogen, Toulouse, France) were used as the negative control in 

the NF-KB assays. 

Statistical analysis 

Dixon's Q test was applied for the evaluation of differences in the values of the immune- and 

cytokine assays. Datasets contained values of six different donors. P values of <0.05 were considered 

significant. Independent sample t-test was applied for the evaluation of differences between SS2 

and SS2J28 in the phagocytosis assay and the kill curve. P <0.05 were considered significant. 
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Summary 

We have identified apuA in Streptococcus suis which encodes a bifunctional 

amylopullulanase with conserved a-amylase and pullulanase binding domains and 

catalytic motifs. ApuA exhibited properties typical for a Gram-positive surface protein with 

a putative signal sequence and LPKTGE cell wall anchoring motif. The cc-1,4 glycosidic 

activity has been showed by the production of an recombinant protein of the a-amylase 

domain. The predicted a-(l,6) glycosidic activity of a pullulanase was found in the cell 

surface protein extract of S. suis. ApuA was required for normal growth in complex 

medium containing pullulan as the major carbon source suggesting that in vivo this 

enzyme plays a role in nutrient acquisition via the degradation of glycogen and food-

derived starch in the nasopharyngeal and oral cavities. ApuA was shown to promote 

adhesion to porcine epithelium and mucus in vitro, highlighting a link between 

carbohydrate utilization and the ability of S. suis to colonize and infect the host. 
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Introduction 
Streptococcus suis is a major porcine pathogen of significant commercial importance 

worldwide. In suckling and weaning pigs it is the principal cause of acute meningitis but 

can infect other organs leading to arthritis, serositis, endocarditis, otitis media and 

bronchopneumonia [1,2]. Healthy pigs asymptomatically colonized with S. suis form a 

reservoir for this disease and play a major role in the epidemiology [3]. To date 33 

different capsule serotypes of 5. suis have been identified but serotype 2 is most 

commonly associated with disease worldwide [4,5]. Serotype 2 strains were also 

associated with recent large outbreaks of severe human infections in China and Asia 

[6,7,8]. The recently obtained genome sequences of two Chinese virulent S. suis serotype 

2 (SS2) strains (98HAH12 and 05ZYH33) [9] and Pl/7 the European reference strain [10] 

led to the identification of a large number of potential surface and secreted proteins that 

might play a role in virulence, including a number of putative carbohydrate degrading 

enzymes [11]. Genes encoding carbohydrate degrading enzymes are common in the 

genomes of other streptococcal pathogens and play a role in nutrient acquisition for 

growth and colonization on mucosal surfaces [12,13,14,15]. Dietary sources of highly 

polymerized a-glycans such as starch and glycogen are abundant in the human colon [16], 

oropharynx [17,18,19,20], epithelium of the vagina and lung [21,22,23,24]. Starch and 

glycogen degradation in most organisms proceeds via the action of amylases and pullulan 

degrading enzymes (such pullulanase and amylopullulanase) which cleave a-(l,4) and a-

(1,6) glycosidic linkages. Pullulan is a linear polysaccharide of maltotriose repeating units 

linked via a-(l,6) glycosidic bonds, produced by the ascomycete fungus Aureobasidium 

pullulons [25]. Although pullulan is not found in animals it is commonly used as substrate 

to identify pullulanases with ot-(l,6) glycosidase activity [9,26,27]. 

In Group A streptococci (GAS), Group B streptococci (GBS) and Streptococcus pneumoniae, 

cell wall anchored enzymes that can hydrolyze pullulan, have been characterized 

[23,28,29]. Recent research has shown an additional role for the streptococcal 

pullulanases in virulence. The GAS pullulanase PulA, was shown to function as a 

strepadhesin, binding to several complex carbohydrate substrates including submaxillar 

mucin [28]. Additionally, recombinant PulA and the related pneumococcal SpuA, have 

been shown to bind with high affinity to alveolar type II cell glycogen in the lung [24]. 

Further evidence for the role of SpuA in virulence comes from genome signature-tagged 

mutagenesis screens in 5. pneumoniae using a mouse pneumonia model to identify genes 
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that decreased pathogen fitness in vivo [30]. Recently, it was shown that GAS PulA 

deficient mutants were less able to adhere to human epithelial cells [31]. Furthermore, 

recombinant SAP, a type I pullulanase from GBS, was shown to bind human epithelial cells 

in vitro [21,31]. Here we report on the characterization and mutagenesis of apuA, 

encoding an extracellular bifunctional amylase/pullulanase with C-terminal pullulanase 

activity that was identified in the genome of 5. suis. Its potential role in virulence was 

investigated using binding assays with porcine epithelial cells and mucin. 

Results 
Identification and analysis of 5. suis serotype 2 amylopullulanase-encoding gene 

A gene designated here as apuA (6285 bp and 2094 amino acids (aa)) and predicted to 

encode an amylopullulanase, was identified in the genome sequence of S. suis Pl/7 

(YP003027676.1). Based on the presence of a putative signal peptide sequence and a C-

terminal LPNTG motif (residues 2059-2064) [32] ApuA is predicted to be a 23 kDa mature 

surface protein covalently linked to the cell wall (Fig. 3.1). 

YSIRK G I II III IV 
o - amy 

2 0 9 4 a a 

LPKTGD 

Fig. 3.1 Schematic representation of the apuA locus. ApuA is encoded by a single open reading frame of 6,285 bp, producing a 
bifunctional amylase/pullulanase protein of 2,094 amino acids. Located upstream of the apuA locus is a putative sugar-specific 
permease, component IIC (sgoT) belonging to a sugar phosphotransferase system (PTS). Downstream the apuA locus is a putative 
transcriptional regulator gene with similarity to lacltr. The oc-amylase and pullulanase domains are located in the amino-
terminal and carboxy-terminal regions, respectively. The N-terminal region includes a signal peptide (SP) of 41 amino acids 
containing a YSIRK-G domain. Within the N-terminal a-amylase domain are two tandem repeats designated CBM41, followed by 
an alpha-amylase (a-amy) catalytic domain, belonging to glycosyl hydrolase family 13. In the pullulanase C-terminal domain, two 
tandem CBM41 repeats are followed by a specific pullulanase N-terminal domain (N-pul) associated with an alpha-amylase (a-
amy) catalytic domain. The amylase and pullulanase domains contain a four-motif (I, II, III and IV) region that is highly conserved 
in a-amylase-like proteins. 

The apuA gene is located upstream of genes encoding a putative sugar-specific permease 

(sgal) classified as component IIC that belongs to a sugar phosphotransferase system 
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(PTS) and downstream of a putative transcriptional regulator gene with homology to the 

lad family (Fig. 3.1). 

The ApuA protein was predicted to contain a distinct a-amylase domain (103 to 860 aa) 

and a pullulanase domain (921 to 1962 aa) (Fig. 3.1). Upstream of each functional domain 

lie two tandem repeats belonging to carbohydrate binding motif family 41 (CBM41) which 

binds tightly to a-glucan polysaccharides containing a-(l,4) glycosidic and a-(l,6) 

glycosidic linkages [24]. Within the protein two pairs of four regions highly conserved in a-

amylase like proteins were identified (I, II, III and IV) which form the catalytic triad Asp-

Glu-Asp [33,34]. 

At the protein level ApuA shares 47 % and 60 % identity to the predicted alkaline 

amylopullulanase in Bacillus sp. KSM-1378 [35] and the putative amylopullulanase in 

Streptococcus infantarius respectively (Fig. 3.2A). Additionally, the predicted S. suis ApuA 

pullulanase domain shares 58% and 55% identity with the well characterized pullulanases 

described in pathogenic S. pneumoniae (SpuA), GAS (PulA) and S. agalactiae (Sap) (Fig. 

3.2A). Both functional domains of ApuA contain the four highly conserved regions 

designated I, II, III, and IV that are found in a-amylases, pullulanases and 

amylopullulanases (Fig 1, Fig. 3.2). The two glutamic acid (Glu) residues that are crucial for 

the catalytic activity of these enzymes [33], lie at positions Glu66i and Glu1598 within 

conserved region III of the a-amylase and pullulanase domains respectively (Fig. 3.2B). 

Analogously, the catalytic aspartate residues are found at positions Asp632 (region I) and 

Asp727 (region IV) of the a-amylase domain, and at positions Aspi569 (region I) and Asp1686 

(region IV) within the pullulanase domain. The presence of the LPXTG motif, and the 

distinct a-amylase and pullulanase domains each possessing conserved catalytic and 

substrate binding sites suggested that ApuA is a cell wall anchored bifunctional 

amylopullulanase. 
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Name Enzyme Strain Identity Reference 

ApuA amylopuilutanase p' | y i s 

— (?) amylopuilutanase S. infantahus 

APase alkaline amylopullulanase Bacil1^5 $P-
KSM 1378 

(?) pullulanase 

(?) pullulanase 

SpuA pullulanase 

PulA pullulanase 

S. sanguinis 
SK36 

S. equi 
MCCS10565 

S. pneumoniae 
serotype I 3.B 

S. pyogenes 
NZÎ3Î 

Sap Type I pullulanase s- fgf- ' f**30 

pullulanase 

!>••• '• I I. I HSHMI! 

pullulanase 

100% This work 

47% 20 

58% 23 

55% 43 

Fig.3.2A. Structural comparison of pullulan-degrading enzymes and their subdomains in different Gram-positive species 
Amylopullulanase/pullulanase enzymes in S. suis Pl /7, Streptococcus infontarius, Bacillus spp. KSM 1378, Streptococcus sanguinis 
SK36, Streptococcus equi MGCS10565, Streptococcus pneumoniae serotype I 3.B, Streptococcus pyogenes NZ131 and 
Streptococcus agalactiae COH1. 

amy 

pul J 

Consensus 

Pl /7 

KSM-1378 

f P l / 7 
KSM-1378 

SK36 

MGCS10565 

S13.B 

NZ131 

COH1 

Region I 

556 OWLNH 
462 DVVLNH 

1501 DWYNH 
1396 DWFNH 

715 DWYNH 
734 DWYNH 
717 DWYNH 

664 DWYNH 

734 DWYNH 

Region II Region III Region IV 

* 
628 AFRVDTVKH 

546 YFRVDTVKH 

* 
1565 GFRFDMMGD 
1460 GFRFDMMGD 

779 GFRFDMMGD 
798 GFRFDMMGD 
781 GFRFDMMGD 

728 GFRFDMMGD 

798 GFRFDMMGD 

661 

579 

1598 
1493 

812 
831 

814 
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831 

* 
ETWG 
EAWG 

* 
EGWR 
EGWV 

EGWK 
EGWV 
EGWR 

EGWR 

EGWR 
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640 

1681 

1578 

895 
914 

897 

844 

914 

* 
FLGSHD 
FLGSHD 

* 
YIAAHD 

YIEAHD 

YIAAHD 
YIAAHD 
YIAAHD 

YIAAHD 

YIAAHD 

Fig. 3.2B. Conserved sequences of the regions I, II, III and IV in the a-amylase and pullulanase domains. Two copies of the four 
regions highly conserved among a-amylases, pullulanases and amylopullulanases were identified in ApuA from Bacillus spp. KSM-
1378. The amino acids shown in bold are conserved among all amylolytic enzymes, while the putative catalytic amino acids are 
denoted by (*). 
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The a-amylase recombinant domain contains a-1,4 glycosidic activity 

The DNA fragment encoding the predicted a-amylase domain of ApuA was cloned in the 

IPTG-inducible expression vector pTrcHis to generate pTrc-amy. Induction of expression by 

IPTG for 3 hours at 37°C resulted in high level production of a protein of the expected size 

(Fig. 3.3A). The recombinant amylase was purified by Immobilized Metal Affinity 

Chromatography (IMAC) using an imidazole gradient to obtain a fraction highly enriched 

for the expressed protein (Fig. 3.3A). The purified recombinant protein tested in the Red 

Starch assay comprises of a single band on a Coomassie stained protein gel and was 

compared to an extract from E. coli and 1 mg of the purified a-amylase from Aspargillus 

oryzae as a positive control. The a-amylase activity of 70 ug of the purified recombinant 

protein was 16 fold higher than 130 ug from the E. coli expression strain (Fig. 3.3B). This 

indicates that the activity of the purified recombinant protein is not due to contamination 

with residual amounts of E. coli glycosidases having an a-1,4 glycosidase activity. Thus 

these results confirm that the N-terminal half of ApuA indeed possesses the predicted a-

1,4 glycosidase activity. 

A B 
M FT rAmy 

0.8 

~ 105 kDa 0 7 

0.6 

£ 0.5 
c 

S ° -4 

in « 0.3 

0.2 

0.1 

0 
I 

rAmy 70 ug E. coli extract Amy A.oryzae 
130 ug 1 mg 

Fig. 3.3 a-amylase domain purification and activity A. SDS-PAGE (12% get) of Amy purification steps. NI: total E. colt cellular 
protein no inducted; I: cleared cell lysate of £ coli after 3 h at 37 °C of induction; M marker; FT: Ni-NTA flow-through.; rAmy 
elution from an Ni-NTA column containing the recombinant Amy with the expected size. B. Amylase activity measured with Red 
Starch as substrate. 

Disruption ofapuA in S. suis 510 

To study the putative functions and expression of ApuA in 5. suis, an isogenic apuAr.spc 

knockout mutant of strain 10 was constructed using the £ coli- Gram-positive shuttle 
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vector pG+host9 that shows thermosensitive replication in L lactis [36]. Plasmid pG+host9 

is able to replicate and be maintained episomally in S. suis at 30°C but at temperatures 

above 37°C it is segregationally unstable and lost in the absence of antibiotic selection. In 

the presence of antibiotic selection growth at temperatures above 37°C promotes 

recombination between homologous DNA cloned in pG+host9 and the chromosome. PCR 

apuA fragment containing the pullulanase domain (from 3114 bp to 6133 bp) was ligated 

to the EcoRI and Xhol digested pG+host9 and transformed in E. coli VE7108 to generate 

pG9-api/A:spe. A spectinomycin resistance cassette was then inserted into the middle of 

the apuA coding region using an inverse PCR strategy to generate the integration 

construct pG9-apuA:spc. This construct was introduced into 5. suis by electroporation 

resulting in 10 transformants that were recovered at 28°C in the presence of Erm (Fig. 

3.4A 1s t step). Single cross-over events in these transformants were achieved by overnight 

growth in liquid medium containing Spc and Erm at 37 °C, the non-permissive temperature 

for plasmid replication in 5. suis (Fig. 3.4A 2nd step). Integrant strains were then serially 

passaged for 5 days in liquid medium at 28°C without erythromycin selection to facilitate 

plasmid excision by homologous recombination between flanking duplicated regions. 

Dilutions of the serially passaged cultures were plated on agar plates and single colonies 

tested for erythromycin sensitivity (Erms) and spectinomycin resistance (SpcR) to select for 

double crossover events resulting in insertion of spc into the apuA gene (apuAr.spc) (Fig. 

3.4A 3 r , 4* step). Spc integrants were confirmed to have the expected genotype by PCR 

(Fig. 3.4B) and a single integrant designated 5. suis 10 apuAr.spc was used for further 

studies. 
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1. 

• # 

Erm pG9-apuA : :spc 

apuA 5' Spc apuA 3' 

X 

2. 
apuaF apuaR 

264 bp 

S. suis s t ra in 10 g e n o m e 

apuA 3' 

4. 

apuX 5' apuA 3' 

X 

apu>4 5' spc apuA 3' 

-> •«-
apuaF apuaR 

1318 bp 

Erm S 
I 1 

apuAr.spc mutant 

B 
wt T apuAr.spc 

Fig. 3.4 ApuA mutant construction A. Strategy for mutagenesis of the apuA gene to generate the knockout mutant apuAr.spc via 
a double cross-over event. 1 s t step: S. suis strain 10 transformed with pG9-apuA::spc. The first recombination event (integration) 
occurs by a single cross-over (SCO) event through sequences homologous to apuA (only one possible SCO indicated); 2nd step: the 
resulting SCO integrants; 3rd step: a shift of the SCO integrants to 28 "C stimulates the second (double) cross over event (DCO) 
and leads to plasmid excision; 4 th step: Genotype of the verified apuAr.spc mutant. B. PCR validation of the expected genotype 
using primers apuaF and apuaR which flank the insertion region of spc. A 264 bp PCR product is detected in S. suis strain 10 (wt) 
and a 1318 bp product in the apuArspc mutant. As expected the SCO transformant (T) contained both PCR products. 

Pullulanase activity of the apuAr.spc insertion mutant 

A red-pullulan plate assay was used first to evaluate the a-(l,6) glycosidic activity of the 

wild type and mutant strains [37]. Hydrolysis of the red dye-conjugated pullulan resulted 

in a clear zone on the plate incubated with the wild type strain but not the apuAr.spc 

mutant indicating that the mutant lacked detectable pullulanase activity (Fig. 3.5A). The a-

amylase activity of the apuAr.spc mutant and wild type strain was not assessed as the S. 

suis genome contains a second predicted a-amylase gene classified as ct-(l,4) glucan 

branching enzyme (GenelD:8152319). As ApuA was predicted to be cell wall anchored in S. 

suis, the pullulanase activity of cell wall, cytoplasmic and secreted proteins was measured 

in a spectrophotometric assay for endo-acting pullulanase activity using a purified 

pullulanase from Klebsiella planticola as a reference. The pullulanase activity of the cell 
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wall fraction from the wild type strain was 55 mil mg -1 protein. Only background levels of 

pullulanase activity were detected for the apuA mutant indicating that ApuA is the sole 

enzyme responsible for breakdown of a-(l,6) glycosidic linkages found in pullulan, starch 

and glycogen. No pullulanase activity was measured above background levels in the cell 

wall and supernatant fractions (data not shown) demonstrating that this enzyme is surface 

located as predicted. 
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Fig. 3.5. Characterization of wild type and apuA::spc mutant phenotype A. Pullulanase activity of apuAr.spc mutant (left) and wt 
strain 10 (right) on Red-Pullulan plate. The light zone indicates pullulan degradation by the wt isolate. B. Pullulanase activity of 
extracted cell wall proteins from wt and apuA::spc mutant as determined by linear regression on a standard curve obtained with 
K. pianticola pullulanase 

Carbohydrate utilization assays 

S. suis wt and the apuAr.spc mutant were analyzed for the ability to grow on glycogen, 

pullulan and maltotriose as the major sources of carbohydrate. In complex medium both 

strains grow to a low density (OD6u0 0.25 - 0.3) after 13 hours incubation (Fig. 3.6A). 

Supplementation of the medium with maltotriose or glycogen supported growth of both 

the wt and apuA mutant strains to a higher density (OD600 0.4 to 0.6) than in complex 

medium alone (Fig. 3.6C and D). However, in the presence of pullulan growth of the 

mutant was decreased compared to the wild type strain and it reached the same optical 

density as for complex media alone (Fig. 3.6A and B). 
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Fig. 3.6. Growth curves of wild type (-Q-) and apuA::spc (- • - ) mutant strains grown in complex medium A. alone, or B. with 
the addition of 1 % of pullulan C. maltotriose and D. glycogen. 

Adhesion to a porcine tracheal cell line 

The newborn porcine tracheal cell line NPTr was chosen to investigate the role of ApuA in 

adhesion to the epithelium [38]. In agreement with previous studies on serotype 2 strains 

of S. suis in porcine and human kidney and lung adenocarcinoma cell lines, we found that 

the wild type was adherent but not invasive within 2 hours of incubation (results not 

shown). In contrast to previous adhesion studies with the same 5. suis strains and a human 

laryngeal carcinoma cell line we found that the wild type strain adhered strongly to the 

porcine epithelium with maximum percentage of adherence of 19% using a multiplicity of 

infection (m.o.i.) of 75 for the wild type (Fig. 3.7A). The adhesion of wt and mutant strains 

were tested over a range of m.o.i.; in all cases, the mutant was significantly (P < 0.05) less 

adherent than the wt strain (Fig. 3.7A). 

Binding to porcine mucin 

The ability of 5. suis strains to adhere to porcine mucin was examined in a solid-phase 

assay using mucin-coated microtiter wells. As shown in Fig. 3.7B, the binding of the wild 
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type strain to porcine mucin was significantly higher than binding of the apuAr.spc mutant 

using inoculums of 108 and 107c.f.u. ml-1. At the higher inoculum dosages, approximately 

2 fold higher numbers of the wild type strain were recovered after 2h of incubation. 

B 

aapuA::spc 

xlO' 1x10' 

inoculum (c.f.u. m l 1 ) 

Fig. 3.7. A. Percentage adhesion of wild type and isogenic mutant apuAr.spc to the epithelial cell line NPTr. Results were 
determined after 2h co-incubation of epithelial cells with wt and mutant strains at 37^C with 4 different multiplicities of infection 
(m.o.i) followed by extensive washing, lysis and viable plate counts. *, P < 0.05 compared to adherence of the apuAr.spc mutant. 
B. Binding of S. suis wt and apuAr.spc mutant bacteria (at doses 108 and 107 c.f.u. ml-1) to microtiter plate wells coated with 
porcine mucin at 37 °C. The mean standard deviation (error bars) was derived from triplicate wells in two independent 
experiments. *, P < 0-05 compared to binding of the mutant strain apuAr.spc. 
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Discussion 
A gene, apuA, encoding a cell wall anchored amylopullulanase was identified in the 

genome sequence of S. suis strain 10. apuA encodes a protein with distinct a-amylase (a-

(1,4) glycosidic) and pullulanase (a-(l,6) glycosidic) domains (Fig. 3.1). Each domain 

contains conserved a-glucan binding domains and four highly conserved regions 

designated I, II, III and IV. These regions are predicted to confer catalytic activity by 

comparison to a wide range of a-amylases, pullulanases and amylopullulanases [24,33] 

(Fig. 3.2B). The pullulanase domain of ApuA shares high identity with a-(l,6) glycosidic 

pullulanases identified in other pathogenic streptococcal species such as 5. infartarius, S. 

sanguinis, Streptococcus equi, S. pneumoniae (pulA) [29], GAS (spuA) [24,28,31] and GBS 

(sap) [23]. The last three proteins have been well characterized and have 58-55 % identity 

with the pullulanase domain of S. suis ApuA (Fig. 3.2A). Pullulanase activity was found 

solely in the cell fraction of S. suis wild type indicating that this enzyme is surface located. 

Furthermore, insertional inactivation of apuA (by generating the interrupted locus 

apuAr.spc) resulted in loss of pullulanase activity. 

Compared to the wild type, growth of the apuAr.spc mutant was significantly impaired in 

complex medium containing pullulan but not glycogen, or maltotriose as major carbon 

sources. The ability of the apuAr.spc mutant to grow efficiently on glycogen may be due to 

the fact that the 5. suis genome contains a second gene encoding a predicted a-amylase 

domain. Hydrolysis of pullulan with an oc-(l,6) pullulanase yields maltotriose as the main 

product. The failure of the mutant to utilize pullulan as a carbon source strongly suggests 

that ApuA is necessary for hydrolysis of pullulan and the release of maltotriose which is 

used as a carbon source for growth. ApuA shows highest protein sequence similarity to a 

putative amylopullulanase STRINF_01787 of Streptococcus infartarius (60 %) and the 

characterized alkaline amylopullulanase (APase) from Bacillus sp. KSM-1378 (47 %; Fig. 

3.2A) which was shown to hydrolyze both a-(l,4) and a-(l,6) glycosidic bonds from two 

distinct domains and catalytic sites within the same protein [35]. 

The evolution of this type of bifunctional enzyme could have resulted from recombination 

between a-amylase and type I pullulanase genes. Similar events are thought to be 

responsible for the origin of genes encoding bifunctional enzymes, such as enzymes with 

endo- and exoglucanase activities from Caldocellum saccharolyticum [39]. 
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The upper respiratory pharyngeal mucosa is the primary site of adherence and 

colonization by S. suis but the factors involved in these key virulence mechanisms have not 

been identified. Given that the type I pullulanase of Group A streptococci mediates 

adherence to eukaryotic carbohydrate residues [28] we investigated the potential role of 

ApuA in adhesion to the porcine epithelial cell line NPTr. Previous studies with human and 

porcine kidney epithelial cell lines showed that S. suis serotype 2 strains are able to 

adhere, but not invade, eukaryotic cells [40,41]. We found, for the first time, that this was 

also the case for the porcine NPTr cell line which has not previously been used for 5. suis 

virulence studies. The adherence to the porcine epithelial cells was substantially (twenty 

fold) stronger than that reported previously for the human laryngeal carcinoma cell line 

HEp-2 using similar assay conditions [41]. Strikingly, in our cell line model, the adherence 

of apuAr.spc mutant was around 2 fold lower than the wt strain over a range of 

multiplicities of infection suggesting that ApuA may play an important role in colonization 

and virulence in vivo. As pullulan is not found in humans and pigs ApuA presumably binds 

to similar carbohydrate structures on porcine epithelium and mucus. 

Colonization of the nasopharyngeal cavity by S. suis is an important risk factor for the 

infection of young pigs [42,43]. Recent evidence suggests that the nasopharynx and 

palatine tonsils may be the routes of entry in invasive disease [2]. Adhesion of S. suis to 

mucus in the oral cavity is likely to be important for colonization as demonstrated for 

other opportunistic pathogens colonizing the nasopharyngeal cavity [44,45,46]. The 

demonstration that the apuA::spc mutant binds less well to porcine gastric mucus is an 

indication that this surface enzyme may also promote adhesion to mucus in vivo. 

In vivo, ApuA is likely to play a role in nutrient acquisition via the degradation of glycogen, 

the major carbohydrate storage protein in animals, as well as in the degradation of food-

derived starch or glycogen in the nasopharyngeal and oral cavity. Our results demonstrate 

an important role for ApuA in adhesion to porcine epithelial cells and to mucus in vitro. 

These results also point at a link between carbohydrate utilization by S. suis and the ability 

to colonize and infect hosts. 
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Materials and Methods 

Bacterial strains, plasmids and culture conditions 

Bacterial strains and plasmids used in this study are listed in Table 3.1. S. suis strains were grown in 

Todd-Hewitt broth (THB) (Difco) or on Columbia agar plates with 6 % sheep blood (Oxoid) at 37°C 

under 5 % C02 for 18 h. The genome of S. suis S10 is more than 99% identical to the genome of S. 

suis P l /7, a sequenced reference strain of which the genome had been annotated previously 

(Chapter 1). An optical density (OD) of 1.0 at 600 nm with a 1 cm path length corresponds to 

approximately 10 bacterial colony forming units per milliliter (c.f.u. ml-1). Escherichia coli VE7108 

(derived from TGI) was cultured in Luria-Bertani (LB) broth or LB agar (Difco Laboratories) at 37°C 

for 18 h. When necessary, antibiotics were added to culture media at the following concentrations: 

for E. coli, erythromycin (Erm) 150 ug m f ; and spectinomycin (Spc) 50 u.g ml" ; for S. suis, Erm at 2 

ug m f and Spc at 100 u.g m f . The use of pullulan as a sole carbon source for growth was 

demonstrated using red pullulan agar (1% peptone; 0.1% NH4CI; 0.1% Red pullulan (Megazyme) and 

2% agar) as previously described [37]. A complex medium (CM) comprising of 10 g f proteose 

peptone, 5 g I"1 trypticase peptone, 5 g f 1 yeast extract, 2.5 g f 1 KCl, 1 mM Urea, and 1 mM 

Arginine, pH 7-0 was used to assess growth on different carbon sources by supplementation with 

different carbohydrates at a final concentration of 1% (w/v) as previously described [23]. Growth in 

complex medium was determined by measurement of turbidity OD600 using a SpectraMax M5 

reader. 

TABLE 3.1. Bacterial strains and plasmids used in this study 

Strain or plasmid Genetic markers and/or description ' Reference 
E. coli VE7108 
E. coli VE6838 

E. coli TOP 10 

S. suis 2 SIO 
5. suis apuAr.spc 
Plasmids 
pTrcHisTOP02 
pTrc-ApuaR 
PDL282 
pKUN19-spc 
pG*host9 
pG9-opuA 
pG9apuA::spc 

supE hsdü5 thi A(lac-pro AB) F'[traD36 proAB+ laclq lacZÛMIS] repA* [48] 
supE hsdAS thi û(lac-pro AB) F'[traD36 proAB+ laclq lacZAM15] [48] 
VE7108 carrying pG*host9 
F- mcrA A(mrr-hsdRMS-mcrBC) O80/ocZAM15 AtocX74 recAl oroD139 Invitrogen 
A(oro/eu) 7697 galU galK rpsL (StrR) endAl nupG 
Virulent serotype 2 strain [55,56] 
Isogenic apuA::spc mutant of strain SIO This work 

Expression vector containing C-Terminal His-tag Invitrogen 
pTrcHis2 vector containing 936 bp of apuA This work 
Replication functions of pUC19 and pVT736-l, AmprSpcr [57] 
pKUN19 containing Spc' gene of pDL282 [49] 
Erm', a thermosensitive derivative of pGK12 [36] 
pGhost*9 derivative containing 3020 bp of apuA This work 
pG9-opuA:.spc containing a 1.2-kb Spcr fragment from pKUN19-spc This work 
cloned within apuA 

ErrrT, erythromycin resistant; Ampf, ampiciliin resistant; Spcr, spectinomycin resistant. 
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Nucleotide and protein sequence analyses 

Blast searches with S. suis strain Pl/7 (serotype 2) genome sequences were performed using non-

redundant sequences accessible at the National Centre for Biotechnology Information internet site 

(http://www.ncbi.nlm.nih.gov). Sequence alignments were performed using the ClustalW program 

(http://www.ebi.ac.uk/Tools/clustalw2/index.html). Signal peptide motifs were identified in protein 

sequences using the SignalP VI .1 software (http://www.cbs.dtu.dk/services/SignalP/). 

Expression and purification of recombinant a-amylase domain. 

The nucleotide sequence predicted to encode the mature a-amylase domain of ApuA (amino acids 

51 to 855) was amplified by PCR from S. suis 2 10 genomic DNA using GoTaq (Promega) and primers 

AmyF and AmyR as listed in Table 3.2. 

TABLE 3.2. Oligonucleotide primers used in this study 

Primer 

amyF 
amyR 

pulF-FcoRI 
pulR-X/iol 

pul F-Pvul 
pulR-ßg/// 

Spc-Pvul 

Spc-Bglll 

apuaF 
apuaR 

Sequence3 

CTTTCGGAACAGGATGGC 
GACGATGTCACCTGCTTCTG 

GaATCGAATTCTATACCGATGGCAATTATGAT 
TCGAATCTCGAGATCTTGTCCAGACGCTTGAG 

GCTAGTCCATGGTACTGCCTCCATGAAGTGATAAT 
TCGTCGATCGCGCGTCGTGTCTTAGTTGATTCC 

GCTATACCATGGTAAGGTCGACTCTAGAGGATC 

i L b l A b L A b A l L l L b l l A I A A I I I I I I I A A I U U I A I MA 

TGGGTGTGATTTTGGATGTG 
TAAAGGCCAGCTCAATTGCT 

Purpose 

Cloning of a-amylase 
domain in pTrcHisTopo 

Cloning of amylopullulanase 
fragment in pGhosf9 

Inverse PCR of pG9-opuA 

Insertion of spc gene into 

pG9-opuA 

To check for correct mutant 
clones using colony PCR 

The sequences in bold and underlined correspond to gene sequence and restriction sites respectively. 

The purified PCR products were ligated to the pTrcHis TOPO TA expression vector (Invitrogen) such 

that the expressed recombinant a-amylase would be fused to an N-terminal polypeptide containing 

six histidine residues for affinity purification. After transformation of F. coli TOPO 10, several clones 

were picked and checked for the correct insertion of the a- amylase gene fragment and verified by 

DNA sequencing. Expression of the amylase-protein domain was induced by addition of 1 mM 

Isopropil ß-D-1-tiogalattopiranoside (IPTG) to an exponential culture (OD600 of 0.6) for 3 hours at 

37°C with shaking (250 rpm). The cells were harvested by centrifugation (8 000 g x 10 min at 4°C) 

and the pellet was resuspended in lysis buffer (50 mM Tris-CI; 150 mM NaCI (pH 7.4]) containing a 

cocktail of protease inhibitors; Roche), and then disrupted using a high pressure cell disrupter 

(Constant Systems, U.K.). The soluble poteins extract was recovered after high speed centrifugation 

(14 000 rpm 40 min) and loaded onto a HisTrap affinity chromatography column (Amersham 

Pharmacia Biotech, Freiburg, Germany). Proteins were eluted in a phosphate buffer containing 500 
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mM NaCI and increasing concentrations of imidazole and checked by SDS-PAGE gel electrophoresis. 

Fractions containing purified fusion proteins of the expected size (approx. 110 kDa) were stored at 

4°C in aliquots in the elution buffer. Protein concentration was measured using a BCA Protein Assay 

(Thermo Scientific), according to the supplier's instructions. 

Assay for a-amylase activity 

Alpha amylase activity was measured using Red Starch (Megazyme) according to the manufacturer's 

instructions. Briefly Red-Starch (1% w/v in 0.5 M KCl) was incubated for 10 min at 40°C with 500 nl 

of each protein fractions in 1 ml of buffer B (maleic acid 0-1 M, calcium chloride 2 mM, sodium azide 

0.01% w/v pH 6.5 ). Red-Starch is depolymerized by a-amylase to produce low-molecular weight dye 

compounds that remain in solution on addition of 2.5 ml ethanol. After centrifugation at 1 000 g x 10 

min the released dye was quantified in the supernatant by spectrophotometer (510 nm) 

(SpectraMax M5 reader). 

Insertional inactivation of apuAr.spc 

All the primers used for mutagenesis have been listed in Table 3.2. Chromosomal DNA was isolated 

using the CTAB extraction method after pretreatment of the bacteria with lysozyme (10 mg ml~ ) for 

10 min at 37°C as previously described [47]. An internal EcoRI-Xhol fragment (nucleotide position 

3114 to 6133) of the apuA gene was amplified using primers pulF and puIR and ligated into EcoRI 

and Xhol digested pG+host9, a shuttle vector that is thermosensitive for replication in Gram-positive 

bacteria [36]. The resulting plasmid pG9-apuA::spc was introduced into competent E. coli strain 

VE7108 [48] by electroporation and the transformants selected on LB agar containing erythromycin. 

Plasmid pG9-apuA::spc extracted from the transformants was linearized by inverse PCR using Pfu 

Taq polymerase (Promega) and the internal apuAr.spc primers pulF-Pvu/ and pulR-ßg///. A spc 

cassette, containing the promoter and transcriptional terminator, was amplified from plasmid 

pKUN19-Spc [49] using primers 5'Spc-Pvu/ and 3' Spc-Bglll. Both the inverse PCR product of pG9-

apuAr.spc and the spc cassette were then digested with Pvul and Bglll enzymes and ligated using T4 

DNA ligase (Promega) to generate pG9-apuA::spc which contains a spc cassette inserted between 

nucleotides 4564 and 4624 of apuA. 

Purified plasmid pG9-apuA:spc was then transformed into competent 5. suis strain 10 by 

electroporation as described previously [50]. The transformants were selected on agar plates 

containing 2 ng ml - 1 Erm at 28°C, the permissive temperature for replication of pG+host9. 

Transformants were then grown at 37°C, the non-permissive temperature of replication, on 

Colombia agar containing Erm and Spc to select for chromosomal integration. The integrants were 

serially passaged for 5 days in liquid medium at 28°C without Erm selection to select for loss of the 

plasmid via a double cross-over event, leaving the spc gene insertion in apuAr.spc [51]. Erythromycin 

sensitive colonies with the apuAr.spc phenotype were verified by PCR using primers apuaF and 

apuaR. 
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Pullulanase activity of cell wall, intracellular and secreted proteins 

The cell free supernatant (secreted proteins) and cytoplasmic and cell wall protein fractions of wild 

type (wt) and apuA::spc mutant were assayed for pullulanase activity. To obtain streptococcal 

secreted proteins, 90 ml of overnight culture bacteria grown in THB was pelleted (10 000 g x 10 min 

at 4 °C) and 10 ml of supernatant was collected and concentrated to a final volume of 1 ml using a 

10 kDa filter (Sartorius). To extract the cell wall proteins the resultant bacterial pellet was incubated 

for 1.5 h at 37°C in 1 ml of extraction buffer (30 mM Tris-HCI pH 8.0; 3 mM MgCI2, 25 % sucrose) 

containing protease inhibitors (Roche), 1 mg m f lysozyme and 125 U m f mutanolysin (Sigma). The 

bacterial suspension was then pelleted by centrifugation (10 000 g x 10 min at 4 °C) and the 

supernatant containing cell wall proteins was concentrated using a 10 kDa filter (Sartorius) to a 

volume of approximately 1 ml. The pellet of osmotically fragile protoplasts was lysed by 

resuspension in 10 ml of buffered saline (pH 7-0) containing 5 mM MgCI2. The suspension was 

allowed to stand at room temperature for 15 min and centrifuged at 10 000 x g for 30 min at 4°C 

[52]. The clear supernatant containing the cytoplasmatic proteins was concentrated as described 

above. The concentration of the protein in each fraction was quantified using NanoDrop 

Spectrophotometer (NanoDrop Technologies, USA). 

The pullulanase activity was determined by measuring the enzymatic release of reducing groups 

from a-glucans using red-pullulan as substrate (Megazyme). Briefly, Red-Pullulan (1 % w/v in 0.5 M 

KCl) was incubated for 10 min at 40°C with 1 ml of cell wall protein extracted cells. The red-pullulan 

substrate was depolymerized by an endo-mechanism to produce dyed fragments which remain in 

solution on addition of 2-5 ml absolute ethanol. High-molecular weight material was removed by 

centrifugation, and the soluble dye measured in a spectrophotometer at 510 nm (SpectraMax M5 

reader). The amount of pullulanase activity in the S. suis protein extract was calculated using a 

standard curve generated with purified pullulanase from Klebsiella planticola (Sigma). One unit of 

activity is the amount of enzyme required to split one micromole of ct-(l,6) linkages per minute 

under the defined assay conditions. 

Cell line and culture conditions 

Newborn pig tracheal cells (NPTr) [38] were maintained in Dulbecco's modified eagle medium 

/Ham's F-12 (1:1), 5 mM glutamine (Gibco) supplemented with 10 % fetal calf serum (Gibco), 

without antibiotics at 37°C and 5 % C02. The cells were seeded into new flasks every 4-5 days by 

detachment with 0-25 % w/v trypsin, 1 mM Na-EDTA (trypsin- EDTA, Gibco-lnvitrogen) and 

replacement of the medium [53]. For the adherence assay, approximately 2-3 x 10 cells per well 

were seeded in antibiotic free complete medium on 12 well tissue culture plates (Costar) and 

incubated until they reached confluence. 
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Adherence assays using NPTr cell line 

For the adhesion assay, bacteria were pelleted by centrifugation, washed with PBS and resuspended 

at 10 c.f.u. ml" in fresh cell culture medium without antibiotics. Bacterial suspensions diluted in cell 

culture medium (between 1-15 x 10s and 2-3 x 107 c.f.u. ml-1) were added to wells containing a 

monolayer (2-3 x 10 ) of epithelial cells in 1 ml of medium (multiplicities of infection (m.o.i.) ranged 

from approximately 5 to 100 bacteria per cell). Plates were incubated for 2 h at 37°C with 5 % C02. 

The cell monolayers were washed three times with PBS, and detached by scrapping in 800 u.1 of ice-

cold milli-Q water. To enumerate the viable bacteria, serial dilutions of the cell lysate were plated in 

triplicate on Columbia sheep blood agar plates and incubated at 37°C for 24 h. The number of 

bacteria recovered in this assay was expressed as a percentage of the original inoculum. 

Binding ofS. suis to porcine mucus 

A modified solid-phase mucin binding assay was performed with purified porcine gastric mucin 

(Sigma) as described previously [54]. Briefly, a 96-well microtiter plate (Nunc Inc., Roskilde, 

Denmark) was inoculated with 7-5 u.g of purified porcine gastric mucin in 250 uJ NaHC03 (pH 8-0) 

and incubated overnight at 37°C (mucin-coated wells). Overnight bacterial cultures were pelleted by 

centrifugation (8 000 x g for 5 min), washed in PBS, and adjusted to an OD of 1-0 at 600 nm. 

Triplicate wells in both plates were inoculated with 2-5 x 108 and 2-5 x 107 bacteria in a volume of 

100 uJ in PBS. The microtiter plates were incubated for 2 h at 37°C and 5 % C02. The wells were 

washed 8 to 10 times with sterile PBS. Bound bacteria were desorbed with 250 u.1 of 0-03 % Triton X-

100 in sterile PBS for 1 h at room temperature and enumerated by plating on blood agar for 12 to 14 

h at 37 °C. This concentration of Triton X-100 was shown not to affect the viability of S. suis under 

these conditions (not shown). 

Statistical analysis 

The adherence assays and the binding mucin experiments were performed at least three times using 

triplicate samples. All numerical data presented here are expressed as means ± standard deviation 

(sd). Statistical significance was determined using a two-tailed Student's t test. Differences were 

considered significant at P < 0-05. 
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Chapter 4 

Summary 
Streptococcus suis is the major pathogen of young pigs and an emerging zoonotic 

pathogen. In humans and pigs it causes a variety of diseases including meningitis, 

septicemia and endocarditis. During colonization, dietary or host sources of a-glucans are 

likely to be a key source of nutrients for S. suis. A cell wall anchored amylopullulanase 

(ApuA) is necessary for the degradation of a-glucans and contributes to the adhesion of S. 

suis to porcine epithelium. ApuA expression was induced in the presence of pullulan and 

maltotriose and repressed in the presence of glucose. The promoter of apuA contains two 

transcription factor binding motifs. The motif located upstream of the -35 box is bound by 

ApuR, a transcriptional activator we propose to be allosterically regulated by maltotriose. 

Additionally CcpA, global carbon catabolite regulator, specifically binds a catabolite 

responsive element (ere) overlapping the -35 box. Based on these findings we propose a 

model for the regulation of a-glucan utilization in S. suis during colonization and invasive 

disease. Here we demonstrate a link between virulence and carbohydrate metabolism 

whereby the degradation products of complex carbohydrates serve as an environmental 

cue to induce ApuA expression. 
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Introduction 

Streptococcus suis is the major pathogen of young pigs causing a variety of diseases 

including meningitis, septicaemia and endocarditis. Additionally S. suis is a zoonotic agent 

which can be transmitted to humans through contact with contaminated swine products 

or infected animals [1]. Recently S. suis emerged as one of the most common causes of 

adult human meningitis in South East and East Asia [2,3]. Pigs colonized by S. suis harbor 

the organism in the nasal-oropharynx [4] which may lead to asymptomatic carriage, 

invasion or dissemination in the bloodstream and eventually, infections of the central 

nervous system (CNS) or meningitis [2,3,5]. 

In the oropharynx dietary a-glucans are likely to be a key nutrient source for S. suis and 

non-pathogenic commensals [6,7]. Alpha-glucans such as starch and glycogen are 

polysaccharides comprising of repeating glucose monomers linked by alpha-glycosidic 

bonds (a-1,4 and a-1,6 linked) and are present at concentrations sufficient to support 

bacterial growth in the saliva and oropharyngeal cavity of pigs and humans [8,9,10,11]. 

Additionally, animal glycogen stores released from damaged or lysed cells may be an 

important substrate for pathogen growth during the early stages of infection. The 

genomes of commensals inhabiting the digestive tract of mammals frequently encode 

amylases and pullulanases to degrade a-glucans via the cleavage of a-1,4 and a-1,6 

glycosidic bonds respectively. The concerted activity of these enzymes primarily generates 

a-1,4 linked polymers of glucose containing two (maltose), three (maltotriose) or four up 

to nineteen glucose units (maltodextrins). In Streptococcus pyogenes (Group A Strep-GAS), 

maltose and maltotriose are transported by a phosphoenolpyruvate-dependent 

phosphotransferase system (PTS) (M5005_Spy_1692) [12], a homologue of which is also 

present in both Streptococcus pneumoniae (SP_0758) [13] and Streptococcus mutans 

(SMU2047) [14]. Additionally, maltodextrins with degrees of glucose polymerization of 3 

to 7 are taken up via a maltodextrin-specific ATP-binding cassette (ABC) transport system 

that is conserved in other streptococci capable of degrading a-glucans [13,15,16]. In GAS, 

mutants affected in maltose and maltodextrin transport are significantly attenuated in 

their growth in human saliva and their ability to colonize the mouse oropharynx compared 

to wild-type [12,17]. 

Recently, a cell wall anchored amylopullulanase (ApuA) was characterized in 5. suis and 

shown to be necessary to support growth on glycogen or pullulan (a-1,6 linked glucose 
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polymer) as a sole carbon source [18]. Additionally, ApuA was shown to promote adhesion 

of S. suis to porcine tracheal cells suggesting that it has a dual role in virulence and 

colonization [18]. Recently, inactivation of pullulanases (SpuA) and S. pneumoniae (PulA) 

were also shown to significantly reduce virulence in mouse models [17,19]. Several other 

recent studies have highlighted a link between a-glucan degrading enzymes and virulence 

in opportunistic pathogens [20,21,22,23]. In S. pneumoniae for example, several signature-

tagged mutagenesis screens identified genes known to be involved in carbohydrate 

metabolism including several enzymes involved in the breakdown of a-glucans 

[24,25,26,27]. 

To date, the mechanism and regulation of a-glucan catabolism in 5. suis is only partly 

understood although this is important in virulence and oropharyngeal colonization. 

Generally, bacteria do not synthesize degradative (catabolic) enzymes unless the 

substrates for these enzymes are present in their environment and have evolved 

elaborate control mechanisms to select the carbon source that allows the fastest growth 

[28]. Bacteria have also developed diverse mechanisms for the control of biosynthetic 

(anabolic) pathways when the end product of the pathway is not needed or is readily 

obtained by uptake from the environment. Control of biosynthetic pathways in microbes 

is often performed at the level of DNA transcription, by transcriptional regulators that 

activate or repress transcription of metabolic genes. 

Catabolite control protein A (CcpA) is a global transcriptional regulator of carbon 

catabolite control (CCC) in Firmicutes and can repress or activate transcription by binding 

to cis-acting catabolite responsive element (ere) sites. Consensus ere sequences have been 

determined in several species [28]. In the model organism Bacillus subtilis, growth on a 

preferred, easily metabolized sugar leads to high concentrations of fructose-1,6-

bisphosphate (FBP) and ATP and phosphorylation of histidine-containing phosphocarrier 

protein (HPr) at Ser46 by HPr kinase/phosphorylase (HPrK). Phosphorylated HPr(Ser-P) 

then binds to the CcpA protein inducing a conformational change that enhances binding to 

ere sites on the DNA. Under conditions of poor nutritional supply HPrK is also responsible 

for dephosphorylation of HPr(Ser-P). Depending on the position of the ere sites in the 

promoter, binding of the HPr-P/CcpA complex can cause carbon catabolite repression 

(CCR) or carbon catabolite activation (CCA). If the ere is located upstream of the -35 

promoter element it may mediate CCA via interaction with the RNA polymerase. In 

contrast ere elements located downstream of the -35 typically lead to CCR by repression 
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of transcription. Apart from CcpA, several other transcriptional repressors or activators 

play a role in the regulation of carbon catabolism and anabolism in Gram-positive 

bacteria. For example in different streptococci, MaIR, a member of the Lacl/GaIR family of 

transcriptional regulators regulates the maltodextrin transport operon and a pullulanase 

in GAS [12]. We hypothesized that in S. suis ApuA was regulated by an upstream 

transcription factor designated here as ApuR. ApuR shares low sequence homology with 

MaIR but high similarity to the maltodextrin regulators Lmo2128 and MdxR in Listeria 

monocytogenes and ß. subtilis respectively. Herein we report on studies designed to 

unravel the role of ApuR in the regulation of ApuA. Our results provide the first detailed 

insights into the control of ct-glucan utilization in S. suis and further expand our 

understanding of the links between metabolic processes and virulence gene regulation. 
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Results 

Description of the apuR gene locus and its homology to known transcriptional regulators 

Microbial genes encoding degradative (catabolic) enzymes for carbohydrates are usually 

regulated depending on the availability of the substrates. We hypothesized that this may 

also be the case for the amylopullulanase apuA (SSU1849) and that an upstream gene 

designated here as apuR (SSU1850) was involved in its regulation. The gene encoding 

ApuR was predicted to possess its own promoter with a rho-independent terminator (AG -

10 kcal/mol) downstream of the stop codon (Fig. 4.4.1A). Homology searches indicated 

that ApuR is a member of the Lacl/GaIR family of regulators containing a conserved two 

domain structure. The ApuR N-terminus contains a DNA binding domain which is capable 

of dimerization and DNA binding through a helix-turn-helix motif. The C-terminus contains 

a conserved ligand-binding domain that can be bound by a specific sugar(s), conferring 

specificity to the regulator by modulating its DNA binding activity. 

Comparison of ApuR with protein sequences in the UniProt database revealed similarities 

to several regulators of opérons comprising clusters of carbohydrate catabolic enzymes. 

Highest homologies were to Lactobacillus casei BL23 YvdE (53% identity), B. subtilis 168 

MdxR (49% identity) (also referred to as YvdE) and L. monocytogenes EGD-e Lmo2128 

(47% identity) which are all transcriptional regulators in the maltodextrin utilization 

cluster of genes [29,30,31,32]. Genes in these clusters encode predicted maltogenic 

amylases or neopullulanases as well as ABC transporters and permeases for maltodextrin 

uptake (Fig. 4.4.1B). MdxR of B. subtilis has been proposed to be the cognate 

transcriptional regulator of the maltodextrin-utilization cluster but so far there is no 

experimental evidence to support this hypothesis [29]. However in L monocytogenes, 

YvdE (Lmo2128) was shown to be a transcriptional activator of the maltodextrin gene 

cluster [32]. 

Within the streptococcal species highest homology of ApuR was found to MaIR (25% 

identity-not shown), the negative transcriptional regulator of genes involved in 

maltodextrin uptake and degradation [12,15,16,33,34]. In S. suis the genes downstream of 

apuR include apuA but not the maltodextrin transport gene cluster which is present at a 

different locus in 5. suis (from SSU1914 to SSU1920). Located downstream of apuA are a 

cluster of genes predicted to be involved in uptake and fermentation of ascorbate; sgaT 

(SSU1848, a predicted phosphotransferase system (PTS) IIC component), sgaB (SSU1847, 

86 



Regulation of S. suis amylopullulanase ApuA 

PTS MB component), ptsN (SSU1846, a PTS MA component), sgbH (SSU1845, hexulose-6-

phosphate synthase), sgaU (SSU1844, putative hexulose-6-phosphate isomerase), ulaD 

(SSU1843, L-ribulose-5-phosphate 4-epimerase) (Fig. 4.1A). The size of the intergenic 

region between apuA and sgaT and presence of a predicted terminator (AG -15 kcal/mol) 

suggested that the genes for ascorbate metabolism were transcribed as a separate 

operon. This gene organization is well conserved in the genomes of 5 sequenced strains of 

5. suis genomes (Fig. 4.1B) although in the Chinese strain 05ZYH33 the apuA gene was 

annotated as two genes that encode an amylase and a pullulanase. Homologues of ApuR 

were not found upstream of amylases or pullulanases in other pathogenic streptococci 

indicating that the genetic organization of the apu locus is unique to 5. suis. 

r Y I *~ sgaT sgaByttsN sgbH sgaU araD\ 

pgmA malKl dexB malEl malFl malG 

L. casei BL23 

B. subtilis 168 

L. monocytogenes EGD-e 

S. suis 05ZYH33 

S. suis 98HAH33 

S. suis BM407 

S. suis SC84 

S. suis p i / 7 

^m transcriptional regulator 
^m a-l,4-glucosidase 
^m maltogenic amylase 
mt maltose Phosphorylase 
en glucomutase 
^ sugar ABC transporter 
^m a -1,6-glucosidase 

I maltose/maltodextrin-bindïng lipoprotein 
I permease component 
I permease component 
I permease component 
t Amylopullulanase (a-1,6- 1,4- glucosidase) 
I sugar permease SgaT/UlaA family 
I PTS I IA component 

Fig. 4.1. Organization and homology of apuA locus in S. suis. A. The 6 kb amylopullulanase gene apuA is located downstream of 
apuR which encodes a putative transcriptional regulator of the Lacl/GaIR family. Downstream of apuA are cluster of genes 
predicted to be involved in uptake and fermentation of ascorbate [sgaT, sgaB, ptsN, sgbH, sgbH and ulaD). For each gene, the 
direction of transcription is indicated by an arrow, whose size is proportional to the length of the corresponding open reading 
frame. Putative promoters are represented by arrows and transcription terminators by loops. B. Gene homologues in other Gram 
positive bacteria that share > 45% of protein identity with apuR gene (black arrows). The annotations of the genes downstream 
of apuR are also indicated and colored to show functional relatedness. Gene names are indicated above the arrows. 
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Transcriptional regulation of the apuA gene cluster is induced by pullulan and 

maltotriose 

To investigate the substrate dependent regulation of the apuA gene cluster including 

apuR, its putative transcriptional regulator (Fig. 4.1A), we performed qPCR analysis of 

gene transcripts during growth in different sources of carbohydrate (see below). Addition 

of 1% (w/v) of glucose, lactose, maltotriose or pullulan resulted in high density growth of 

5. suis S10 compared to complex medium alone, demonstrating that these four sugars can 

be metabolized (Fig. 4.2). 

naltotriose • glucose • lactose A pullulan 

Fig. 4.2 S. suis S10 growth curve at 37°C in different media. OD«» readings were taken at indicated times to measure growth in 
complex media (CM) supplemented with 1% (w/vj of maltotriose, glucose, pullulan and lactose. The graph shows the means and 
standard deviations from two independent experiments. 

Compared to growth in glucose or lactose, apuA transcription was strongly induced (up to 

4 fold) by growth in pullulan and maltotriose (Fig. 4.3A). Highest induction of apuA was 

seen after 4 hours in the presence of pullulan while this was at 2.5 hours in maltotriose 

(Fig. 4.3A). This most likely reflects the fact that after 4 hours growth in pullulan the 

bacteria were still in late exponential phase whereas the bacteria had already reached 

stationary phase in the presence of maltotriose (Fig. 4.2). Relative expression levels of 

sgaT and ptsN were significantly induced by growth in pullulan compared to the other 

three sugars (Fig. 4.3B and C). However, fold changes were low (0.1 to 0.06 fold) 

compared to apuA, suggesting these genes were independently regulated (Fig. 4.1). 

Additionally we measured the relative transcript level of apuR to determine if 

transcription was constitutive or induced by different carbohydrate sources. Expression of 
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apuR was significantly induced after 2.5 hrs growth in maltotriose, and after 4 hrs growth 

both in maltotriose and pullulan compared to growth in glucose (Fig. 4.3D). A similar low 

induction was observed for the homologous transcriptional regulator (lmo2128) of the 

maltodextrin gene cluster in L monocytogenes [32]. 
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Fig. 4.3. Relative expression of apu locus in CM containing different sugars. Transcript levels of A. apuA, B. sgaT, C ptsN and D. 
apuR were measured after 2.5 hours and 4 hours of growth in CM containing 1% glucose, lactose, maltotriose or pullulan, relative 
to the reference gene proS which is constitutively expressed at similar levels during growth in different sugars (data not shown). 
The height of the bars represent mean values for the relative expression data ± SEM from two independent experiments (n = 3). 
Statistical significance was calculated using a two-way ANOVA test followed by Bonferroni's post hoc test (*, P < 0.05; * • , P < 
0 . 0 1 ; * * * , P< 0.001). 

Taken together these results show that apuA transcription is induced by maltotriose and 

pullullan. Maltotriose is an end product of the enzymatic degradation of pullulan, starch or 

glycogen by a-glucan degrading enzymes such as pullulanases or amylopullulanases like 
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ApuA [18]. Owing to its proximity to apuA and homology with other regulators of 

amylases/pullulanases and maltodextrin utilization genes in Listeria and Bacillus, we 

hypothesized that ApuR was a regulator of apuA and that its activity was modulated by 

maltotriose and potentially other transported maltodextrins. To investigate the regulation 

of apuA we determined the transcription start site, performed homology searches for 

binding motifs of known regulators, and carried out promoter binding assays with purified 

transcription factors (TFs). 

Transcription start site and bioinformatics analysis of the apuA promoter 

During growth in pullulan the transcriptional start site of the apuA transcript was 

determined experimentally by 5'-RACE to be 31 nt (T nt of 5'-TAC-3' codon) upstream of 

the start codon ATG (described in Materials and Methods) (Fig. 4.4A). 
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Fig. 4.4. Identification of conserved operator binding motifs for ApuR (OM1) and CcpA (OM2) in S. suis P l /7 , B. subtilis 168 and 
L monocytogenes EDG-e. The promoter regions and the relative p-values were determined using the MEME Suite software, 

which calculates the probability of match score with the given sequence. A. The -10 and -35 regions (indicated) were deduced 

based on the transcription start site (Ts arrow) that was determined experimentally by 5'-RACE. B. The OM1 and OM2 putative 

binding sites (black boxes) were identified in the B. subtilis promoter of the mdxE gene (BSU34610) that encodes a maitodextrin-

binding periplasmic protein and in C. the promoter of the L monocytogenes lmo2125 gene that encodes a maltose/maltodextrin 

ABC-transporter. D. and E. Sequence alignment of the DNA binding domains of the ApuR and CcpA proteins of 5. suis, L 

monocytogenes and S. subtilis. Conserved amino acid sequences are indicated in black. 
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The consensus -35 element (5'-TTGCAA-3') and -10 element (5'-TATATA-3') required for 

interaction with the RNA polymerase and transcription initiation were found at the 

expected positions upstream of the transcription start site. 

The -10 element differs at one nucleotide from the consensus for prokaryotic promoters; 

the -35 element is similar to the consensus sequence for RpoD, the main a factor in 

prokaryotes (Fig. 4.4A). 

Visual inspection of the DNA region bound by ApuR for consensus binding motifs of B. 

subtilis mdxR or the Lacl/GaIR family of regulators revealed two potential operator motifs 

(OMs) (RegPrecise database) [35]. Using the MEME informatics tool [36], these same two 

OMs were identified in alignments of the apuA promoter sequence with sequences of 

promoter regions of mdxR and lmo2128 (i.e. PmdxC and Pim02i25 respectively) (Fig. 4.4B and 

C). The first sequence, similar to operator motifs for TFs belonging to the Lacl/GaIR family 

and designated here as OM1 was found at position -50 nt upstream of the apuA start 

codon. OM1 has homology to the predicted binding sites of mdxR and the transcription 

activator lmo2128 and is located 13 bp upstream of the -35 element. The amino acid 

sequences of the helix-turn-helix domains of MdxR and Lmo2128 that are predicted to 

interact with OM1 are highly conserved and are also present in ApuR (Fig. 4.4D), 

suggesting that ApuR might also be a transcriptional activator. 

A second operator motif (designated OM2) was found at position -27 nt overlapping the 

-35 region that is identical to the catabolite responsive element (ere) consensus sequence 

determined in Bacillus species (WTGNAANCGNWNNCWW where W = A or T and N = any 

base). The ere motif is used as a binding site by CcpA [37,38,39]. The amino acid sequence 

of the region of CcpA that was predicted to interact with ere was highly conserved in S. 

suis, Listeria and Bacillus (Fig. 4.4E). The location of OM1 and OM2/cre suggested that 

apuA is subject to dual regulation: i) by a transcriptional activator, ApuR and ii) via carbon 

catabolite repression by CcpA. 

Binding of recombinant ApuR and CcpA to the apuA promoter 

Recombinant ApuR (rApuR) and CcpA (rCcpA) were expressed in E. coli with C terminal-

His-tag using the IPTG inducible trc promoter at 18°C to optimize solubility. Both proteins 

were purified by HPLC affinity chromatography using extensive washing of the column 

bound protein with a buffer containing low concentrations of imidazole to remove weakly 

binding proteins. His-tagged rApuR and rCcpA were eluted using an imidazole gradient and 
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fractions containing the highest purity were obtained using an imidazole concentration of 

around 100 mM (Fig. 4.5A and C). Western blotting with a monoclonal antibody to the His-

tag confirmed that soluble eluted rApuR was of the predicted molecular weight and not 

degraded by proteolysis (Fig. 4.5B). 

To investigate whether rApuR did bind to the promoter of apuA, three overlapping 

fragments of the PapuA promoter region (Pr 1-3; approx. 120 bp in length) were amplified 

using fluorescent dye labeled primers (IRDye 800 nm) and tested in an electrophoresis 

mobility shift assay (EMSA). A single rApuR-DNA complex was observed with promoter 

fragments Pr2 and Pr3 suggesting the binding motif for ApuR lies within the 64 bp 

overlapping region (Fig. 4.6A and B). 

A B C 

^ ^ ^ ^ 40 kDa ^g, 
38 kDa ^ ^ ^ H p. ..... IJl 
•4 • 

Fig. 4.5. SDS Polyacrylamide electrophoresis of purified transcriptional regulators A. A Coomassie stained SDS-PAGE gel (12%), 
showing purified fraction His-ApuR at the expected size of 38 kDa. B. Western Blotting of the gel from A. with a monoclonal His-
tag antibody to the recombinant His-ApuR protein. C. A Coomassie stained SDS-PAGE gel (12%) of purified His-CcpA at expected 
size of 40 kDa. 

The binding of ApuR to Pr2 was shown to be concentration dependent in the range from 

0.5 to 4.0 u.M of rApuR (see Fig. 4.6C). The specificity of rApuR binding to Pr2 was shown 

by the use of non-fluorescent competitor DNA fragments (the fragment Pr2 and a non­

specific DNA fragment not containing the two predicted OM1/OM2 operator binding 

motifs) in a competition EMSA. 
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DNA/ rApuR 
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Fig. 4.6. Binding of recombinant ApuR protein to PapM promoter region A. Schematic representation of the apuA promoter 
(PopU/i) and fluorescently labeled PCR amplified DNA fragments (Pr l , Pr2 and Pr3) used for EMSA. B. to F. Native 5% TBE 
electrophoresis gels of DNA amplicons and DNA/rApuR protein complexes visualized using the Odyssey Imager. In these EMSA 
assays the concentration of each DNA amplicon was around 4-6 ng B. EMSA of 6 uM rApuR binding to Pr l , Pr2 and Pr3. C. 
Increasing DNA/rApuR complex formation in presence of 4 ng Pr2 DNA amplicon and an increasing amount of rApuR (~ 0,5 - 4 p.M 
as indicated) D. Competitive EMSA using increasing concentrations of non-fluorescent non-specific competitor DNA (lacking OM1 
binding motifs). E. Competitive EMSA using increasing concentrations of non-fluorescent Pr2 as a specific competitor. The 
amounts of competitor DNA added are indicated (2 - 14 ng). F. Identification of specific ApuR binding sites in PapM- PR2: native 
promoter region fragment 2. AOM1 and AOM2/cre are synthetic DNA fragments of P„puA that lack the predicted binding sites. + 
rApuR recombinant present - rApuR recombinant absent. 

The non-specific competitor DNA fragment had no effect on Pr2 complex formation 

whereas non-fluorescent Pr2 substantially reduced rApuR binding (Fig. 4.6D and E). To 

investigate whether ApuR binds to OM1 or OM2/cre, promoter fragments lacking these 

motifs were synthesized and tested in the EMSA (AOM1 and AOM2/cre, Table 2). In 

several independent experiments we observed a lower amount of the rApuR-DNA 

complex with fragments lacking AOM2/cre suggesting that ApuR binds strongly to this 

motif. In some experiments complex formation was slightly reduced when AOM1 was 

deleted, possibly due to low affinity binding of ApuA to AOM2/tre at higher 

concentrations (Fig. 4.6F). 
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We hypothesized that CcpA could directly repress apuA expression through binding to the 

PapuA OM2/cre that overlaps with the predicted -35 promoter element. Recombinant 

rCcpA was tested for DNA binding in an EMSA using a fluorescent IRdye-Pr2 fragment 

containing the putative ere element (Fig. 4.7). rCcpA binding was enhanced upon addition 

to the binding reaction mixture of glucose-6-phosphate, a putative cofactor for CcpA 

[40,41,42]. An increasing amount of a rCcpA-DNA complex was observed with an 

increasing concentration of purified rCcpA (1.5 to 5 \iM) (Fig. 4.7A). The complex could be 

outcompeted by addition of unlabeled Pr2 but not with non-specific competitor DNA 

fragment lacking the ere, indicating that CcpA binds specifically to PapUA (Fig- 4.7B and 7C). 

Interestingly, the complex DNA/rCcpA appears to possess residual binding to AOM2/cre 

suggesting that CcpA may also bind OM1 or other sequences in Pr2 (Fig. 4.7D). 

B 

DN/VrCcpA 

jjjaLj. ji|i|L ĝgjjiî ^ AL~. 

Pr2 AOM2/cre AOM1 Pr2 AOM2/cre AOM1 
rCcpA 

DNA/rCcpA 

ä k f a t d L * 
Fig. 4.7. Binding of CcpA recombinant protein to the apuA promoter. Native 5% TBE electrophoresis gels of DNA and DNA/rCcpA 
protein complexes visualized using the Odyssey Imager. In the EMSA assays the concentration of each Pr2 DNA amplicon was 
around 4-6 ng A. DNA/rCcpA complex formation in presence of in presence of 4 ng Pr2 DNA amplicon and an increasing amount 
of rCcpA (~ 1.5 - 5 uM as indicated). B. Competitive EMSA using increasing concentrations of non-fluorescent Pr2 as a specific 
competitor. C Competitive EMSA using increasing concentrations of non-fluorescent, non-specific competitor DNA lacking 0 M 1 
and OM2 binding motifs. D. Identification of specific binding sites for CcpA in POPM- AOM1 and AOM2 are synthetic DNA 
fragments of PapuA that lack the predicted binding sites. + rCcpA recombinant present - rCcpA recombinant absent. 

ApuA is co-regulated by carbon catabolite repression 

Given that OM2/cre specifically binds CcpA we hypothesized that apuA was co-regulated 

by carbon catabolite repression. To verify this finding we performed qPCR assays on apuR, 
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apuA, sgaT and ptsN. We first obtained growth curves where putative inducers were 

added to 5. suis growing in exponential phase (Fig. 4.8A and B). 
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Fig. 4.8. Growth curves of 5. suis S10 in CM containing lactose or glucose before and after addition of putative inducers. 5. suis 
bacteria were grown in CM plus 1% lactose (A) or 1% glucose (B) to which pullulan or one of three putative inducers (maltotriose, 
pullulan or glucose) were added (0.25% w/v) during exponential growth (arrow). The graphs show the means and standard 
deviations from two independent experiments. 

The growth curves for S. suis were very similar in lactose and glucose and were not 

influenced by addition of 0.25% (w/v) inducer. In medium containing lactose, both 

maltotriose and pullulan strongly induced expression of apuA (4.5 fold and 2.2 fold 

respectively; Fig. 4.9A and B). Transcription of sgaT and ptsN which lie downstream of 

apuA were not significantly modulated by addition of maltodextrin or pullulan. 
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30 60 

minutes 

apuR apuA sgaT ptsN 

Fig. 4.9. Relative expression of apu locus genes following addition of putative inducers. 5. suis was grown in CM with 1% of 
lactose and in the exponential phase, 0.25% (w/v) putative inducers of apuA expression were added as follows: A. Maltotriose, B. 
Pullulan and C. Glucose. Similarly D., E. and F. represent expression data of S. suis in CM containing 1% w/v glucose after addition 
of the putative inducers D. Maltotriose, E. Pullulan and F. glucose. At time zero (immediately prior to addition of the putative 
inducers) and after 10, 30, 60 and 90 minutes, the relative expression of opuR, apuA, sgaT and ptsN were measured by qPCR. The 
height of the bars shows the mean (n = 3) fold change in expression ± SEM from two independent experiments. Statistical 
significance was calculated using a two-way ANOVA test followed by Bonferroni's post hoc test (*, P<0.05; **, P< 0.01; •**, P < 
0.001). 

In medium containing glucose the addition of maltotriose (Fig. 4.9D) or pullulan (Fig. 4.9E) 

had no significant effect on the expression of apuA, apuR, sgaT, and ptsN; only a slight 
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increase (1.6 fold) of apuA expression was observed 30 min after addition of maltotriose 

(Fig. 4.9D). 

Furthermore, when bacteria exponentially growing in complex medium containing glucose 

or lactose were supplemented with additional glucose, the relative transcript levels of all 

the genes were lowered (Fig. 4.9C and F). 

Taken together these results suggest that apuA expression is repressed by growth in 

glucose. These results, together with the results shown in Fig. 4.3B and C, suggests that 

sgaTand ptsN are not co-transcribed with apuA. Supporting this is the finding that the 328 

nt intergenic region upstream of sgaTand ptsN does not contain the operator motifs OM1 

or OM2/cre. 
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binding motif for ApuR is also found in the predicted promoter for malQ but further work 

is needed to confirm the precise regulatory mechanisms for these opérons. 

On mucosal surfaces a-glucans may not always be abundant but other sugars apart from 

glucose could support growth. Under these conditions ApuA is presumably expressed at 

low levels but in sufficient amounts to initiate enzymatic degradation of a-glucans, 

thereby generating inducers of ApuR binding and activation. After invasion of the mucosal 

tissues and dissemination of S. suis via the bloodstream, our model predicts that 

expression of apuR (and potentially the mal Operon) would be repressed by blood glucose 

and the lack of maltotriose as an inducer (Fig. 4.10B). 

These complex intertwined mechanisms of regulation would allow fine tuning of ApuA 

production (energy-demanding because of its large size of 2094 amino acids, ca. 230 kDa), 

according to the availability of carbohydrates and sugars in order to optimize proliferation 

in the host. 

Here we demonstrate a link between virulence (adhesion to host epithelial cells) and 

carbohydrate metabolism whereby the degradation products of complex carbohydrates 

serve as environmental cues to regulate expression of proteins like ApuA which play a role 

in both virulence and carbohydrate catabolism. This concept is an emerging theme in the 

biology of opportunistic pathogens such as S. pyogenes and 5. pneumoniae [43]. The 

ability of a pathogen to efficiently utilize different carbohydrates and sugars during 

infection and to adapt rapidly to its environment is crucial to infectivity. In the future, it 

may be possible to devise strategies to combat pathogens by interfering with these 

regulatory mechanisms or pathways. 
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Fig. 4.10. Hypothetical model of a-glucan catabolism regulation in 5. suis. The proteins/genes indicated in this model are the 
most likely candidates for the predicted functions based on their homology and genome organization in related organisms. The 
extracellular surface anchored ApuA (5SU1849) is able to degrade a-glucans. MalX (SSU1914) is a maltodextrin binding protein 
anchored in the cell wall that is specialized in the binding and uptake of maltodextrins. MalP (SSU0357) is part of a PTS system 
specific for uptake of maltotriose and/or maltose. The presence of OMl and OM2/cre are indicated in the promoters of PcpM and 
the predicted promoters of PapM Pmcia and PmjK (Table 1). A. Regulation in the presence of relatively high amounts of a-glucans 
and low amounts of glucose. In the absence of CCR, the apuA gene will be expressed and the ApuA protein will degrade glucans 
leading to the generation of maltodextrin and maltose or maltotriose. The transport systems, maltose- and maltotriose-specific 
PTS (MalP) and the ABC permease system (MalX), are than expressed and import maltose and maltodextrins. The intracellular 
maltotriose is proposed to interact with ApuR to promote binding and transcriptional activation of P„p„a (continuous green line) 
and potentially P„oK (broken green line). 
B. Regulation in the presence of relatively low amounts of a-glucans and high amounts of glucose. The Hpr protein is activated by 
the phosphotransfer system for glucose. In its phosphorylated form, Hpr(Ser-P) acts as a cofactor for CcpA to increase the affinity 
of binding to ere operator motifs in P„M (continuous red line). CcpA is also predicted to bind to ere sites in P„p„« and the PM<,/ 
operon (broken red line). Binding of CcpA is predicted to repress transcription of expression of the apuR, apuA and mol opérons. 
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Materials and Methods 

Bacterial strains, plasmids and culture conditions 

In this study, the virulent S. suis strain S10 (virulent serotype 2 strain) [59] has been used. The 

genome of S. suis S10 is more than 99% identical to the genome of S. suis Pip, a sequenced 

reference strain of which the genome had been annotated previously (Chapter 1). S. suis was grown 

in Todd-Hewitt broth (THB) (Difco) or on Columbia agar plates with 6% sheep blood (Oxoid) at 37°C 

under 5% C02 for 18 hr. A complex medium (CM) comprising of 10 g I -1 proteose peptone, 5 g f 1 

trypticase peptone, 5 g I"1 yeast extract, 2.5 g f 1 KCl, 1 mM Urea, and 1 mM Arginine, pH 7.0 was 

used to assess growth on different carbon sources by supplementation with different carbohydrates 

at final concentrations of 1% (w/v) as previously described [44]. The carbohydrates were added 

separately and sterilized by autoclaving at 100°C for 10 min (pullulan) or filtration with 0.45 u.M pore 

size filter (glucose, lactose and maltotriose). We previously demonstrated that S. suis only grows to 

high density in CM when exogenous carbohydrates are added [18]. Growth in complex medium was 

determined by measurement of turbidity at OD60o using a SpectraMax M5 reader. 

Expression and purification of recombinant ApuR and CcpA 

To purify the recombinant His-ApuR and His-CcpA proteins we used a similar protocol as described 

below with some small modifications according the proteins. Briefly, the entire genomic regions 

encoding the mature regulators ApuR (amino acids 2 to 312) and CcpA (amino acids 2 to 333) were 

amplified by PCR from S. suis S10 genomic DNA using GoTaq (Promega) with primers ApuR_F/R and 

CcpA_F/R (Table 2). 

The purified PCR products were ligated to the pTrcHis TOP02 TA expression vector (Invitrogen) such 

that the expressed recombinant regulators would be fused in-frame to a C-terminal polypeptide 

containing six histidine residues for affinity purification. After transformation of E. coli TOPO 10, 

clones containing the recombinant apuR and ccpA were selected on LB agar containing 50 u.g m f 1 of 

ampicillin; several colonies were checked for the correct insertion of the apuR and ccpA gene 

fragments and verified by DNA sequencing. Expression of both regulators was induced by addition of 

1 mM isopropyl-ß-D-1-tiogalattopiranoside (IPTG, Invitrogen) to an exponentially growing culture 

(OD600 of 0.6) for 4 hrs at 18°C for ApuR and overnight at 18°C for CcpA under shaking (250 rpm). 

The cells were harvested by centrifugation (8 000 g x 10 min at 4°C) and the pellet was resuspended 

in lysis buffer (50 mM Tris-CI; 0.5 M NaCI, pH 7.4) containing a cocktail of protease inhibitors 

(Roche), and then disrupted using a high pressure cell disrupter (Constant Systems, U.K.). The 

soluble protein extract was recovered after high speed centrifugation (20 000 x g 40 min at 4°C) and 

loaded onto a HisTrap affinity chromatography column (Amersham Pharmacia Biotech, Freiburg, 

Germany). Proteins were eluted in a phosphate buffer containing 500 mM NaCI and increasing 

concentrations of imidazole (0-500 mM) and checked by SDS-PAGE gel electrophoresis. Fractions 

containing purified fusion proteins of the expected size (approx. 38 kDa for ApuR and 40 kDa for 
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CcpA) were collected and dialyzed against buffer (500 mM NaCI, 50 mM Tris-HCI pH 7.4) and stored 

at -80°C with 10% of glycerol. Protein concentrations were measured using a BCA Protein Assay 

(Thermo Scientific), according to the supplier's instructions. 

TABLE 2. O l igonucleot ide p r imers used in th is s tudy 

Primer Sequence3 ( 5 ' to 3 ' ) Purpose 

ApuR_F 
ApuR_R 
CcpA_F 
CcpAR 
PrlF 
PrlR 
Pr2F 
Pr2R 
Pr3F 
Pr3R 
A-CompF 

A-CompR 

AOM1 

AOM2/cre 

ASP1 
ASP2 
AAP 
proSl 
proS2 
apuRl 
apuR2 
apuAl 
apuA2 
sgaTl 
sgaT2 
ptsNl 
ptsN2 

ACGACATTAGCCGATGTGG 
CTGAGGTGTAGTCTCCCTTTCAA 
TTAAACACTGACGATACGGTAACG 
CTTAGTTGATTTACGTACTTTGATTCC 
AGGGAGACTACACCTCAGTA 
TTAACGGTAACAAGTTTTGA 
AAAGAAGGGGGAGCTATTTAT 
CTACCAGTATATACAATTCCAAGG 
CTTGTTACCGTTAACATTTAA 
TATTCTGAACGGATTTCTT 
GTTTATCAAGGTGACTTCAGA 

GTACCAATTCATCAAAGGA 
AAAGAAGGGGGAGCTATTTATTCTATTTTTGTTAGATAGTAGCTCAAAACT 
TGTTACCGTTAACATTTAAACTCCTTGGAATTGTATATACTGGTAG 
AAAGAAGGGGGAGCTATTTATTCTATTTTTGTTAGATAGTAGCTCAAAA 

TAAGAAAACGTTTGCAAAGACTCCTTGGAATTGTATATACTGGTAG 
CTCCCCAAGTCCAAA 
CTGTTACCGCTGTCGCTTCA 
GGCCACGCGTCGACTAGTACGGGIIGGGMGGGIIG 
TTACGTGCGGGCTATGT 
GCTGTAGCCGTCTTTCATG 
CTGAGGTGTAGTCTCCCTTTC 
GGGAGAGAAGAAGGCTACAA 
CACCACTTGTCGCTTGTC 
ACCTTTGACTGCAACAGTG 
GGGTTTATCAAAGCGACAG 
ACTGCCCAGTAGATACCACAG 
GCAGGAGGCTGTTCACA 
CTAGGTAAGGACTGTTTTTGG 

To produce rApuR 

To produce rCcpA 

EMSA fragment Pr l 

EMSA fragment Pr2 

EMSA fragment Pr3 

Aspecific competitor 

Synthetic fragment 1 
with OM1 deletion 
Synthetic fragment 2 
with OM2 deletion 
5'-RACE cDNA 
5'-RACE nested PCR 
5'-RACE nested PCR 

qPCR proS reference gene 

qPCR apuR target gene 

qPCR apuA target gene 

qPCR sgoTtarget gene 

qPCRprs/V target gene 

5'-Rapid Amplification ofcDNA Ends (5'-RACEj 

The 5'-rapid amplification of cDNA ends (RACE) system (Invitrogen) was used to determine the 

transcription start site of the apuA gene. Briefly, the first strand cDNA was reversed transcribed 

from RNA from 1 u.g of total RNA 5. suis grown in CM plus pullulan using the specific primer ASP1 

(Table 2). The obtained cDNA was treated with RNase Mix and purified with a S.N.A.P. Column 

(Invitrogen). A homopolymeric tail was then added to the 3'-end of the cDNA using terminal 

deoxynucleotidyl transferase (TdT) and the deoxynucleotide dCTP. The tailed cDNA was amplified in 

nested-PCR with Abridged Anchor Primer (AAP) and a second apuA specific primer ASP2 primers 

upstream ASP1. The resulting 5'-RACE product of ~ 380 bp was sequenced and analyzed by Vector 

NTI software (Invitrogen). 
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DNA Binding Reactions and Electrophoretic Mobility Shift Assay 

Gel-shift assays were performed utilizing three pairs of fluorescent IRdye 800 labelled primer on the 

5' ends (Biolegio, the Netherlands). Primers used to PCR-amplify three DNA fragments (Prl-Pr3, 

~120 bp) containing overlapping regions to cover the full length of PapuA promoter from S. suis 

genomic DNA are listed in Table 2. The fluorescents PCR fragments were purified with QIAquick PCR 

Purification Kit (Qiagen) and used for the binding reaction at a concentration of around 4-6 ng. DNA 

binding reactions were performed in 20 u.1 of binding buffer containing 10 mM Tris-HCI pH 8.5, 

50mM NaCI, 10 mM EDTA, 0.5% Tween-20, 10 mM DTT, and 1 mg of poly(dl-dC); labelled PCR 

fragments at room temperature for 30 min. For the specific and aspecific competition assays, D(+)-

glucose 6-phosphate (30 mM) (Sigma) was added to the binding buffer in the EMSA as CcpA cofactor 

[60]. Purified ApuR and CcpA proteins (200-800 ng) were incubated, in separate experiments, with 

the fragment Pr2 and a non-specific competitor fragment that was obtained by PCR amplification of 

the gene (SSU0879) (4-14 ng). Two 95 bp oligonucleotides complementary to Pr2 fragment without 

the two predicted binding sites (AOM1 and AOM2/cre) were synthesized (Eurogentec, the 

Netherlands), PCR- amplified with labelled Pr2F/R primers and incubated with the proteins. Free and 

bound DNAs were separated on 5% Tris-Borate-EDTA (TBE) native gels for 30 min at 10 cm/v. The 

gels were visualized using a U-COR Odyssey Imager and scanned at 800 nm wavelengths. 

Bioinformatic tools 

In silico searches and comparisons of genomic regions containing apuR and homologous genes were 

conducted using the MicrobesOnline web server (http://microbesonline.org). 

The reference set of predicted régulons was present within the Streptococcus régulons collection, 

provided by the RegPrecise database (http://regprecise.lbl.gov) [35]. 

The MEME (http://meme.sdsc.edu/meme/meme.html) software suite (version 4.1.0) was used for 

the identification of motifs OM1 and OM2. MEME can be used to identify likely motifs within a given 

input set of aligned sequences [61]. It produces a consensus sequence and a position specific 

probability matrix, which has probabilities associated with each base at each position. A range of 

motif widths (15 nt in length) and zero or one motif per sequence were specified in our queries. 

We then applied the FIMO (Find Individual Motif Occurrences) module (part of the MEME suite), 

using the motif weight matrix from the MEME program, to search for the occurrence of operator 

motifs (OMs) in all S. suis opérons. Motif hits with a position-specific goodness-of-fit P value of less 

than 10"4 [62] were considered to identify putative ApuR-CcpA binding sites across the S. suis 

genome. 
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Growth of S. suis in CM media supplemented with different sugars and RNA extraction 

All growth experiments were performed at least in duplicate. S. suis S10 bacteria grown overnight in 

THB were harvested, washed in 0.1 M phosphate buffer and added to complex media supplemented 

with 1% of sugars to achieve a uniform starting OD6M of 0.05. 

To determine the activity of putative inducers, the growth curves for S. suis were carried out in CM 

plus 1% of glucose and CM plus 1% of lactose. During the exponential growth phase (~ OD600 0.24), a 

putative inducer 0.25% (w/v) was added to the media. Spectrophotometric density readings were 

then taken after 30 min until completion of the experiment. 

For analysis of gene expression under diverse growth conditions, S. suis S10 was grown to 

exponential-early stationary phase in the indicated media. Ten ml of culture was collected and 

centrifuged for each analyzed point. The pellet was immediately frozen in nitrogen and stored at 4°C 

overnight with 1.5 ml RNA/oter (Ambion). To isolate total RNA, 1.5 ml RLT lysis buffer (Qiagen) was 

added to the RNA/oter to dissolve the pellet and after incubation at 15 min at room temperature, 

centrifuged at high speed (13 000 g for 30 min). The cells were dissolved in 600 |il RA1 buffer 

(Macherey-Nagel) plus 6 u.1 ß-mercaptoethanol and destroyed using a FastPrep-24 (MP. Biomedicals, 

Solon, OH) for 20 sec at 6.0 m/sec. Total RNA was purified using NucleoSpin RNA II columns 

(Macherey-Nagel). Residual DNA was removed on a column with RNase-free DNasel (Ambion). The 

quality and the concentration of RNA samples were assessed with the Experion system (Bio-Rad) 

and by analysis of the A260/A280 ratio (Nanodrop). The absence of DNA from RNA samples was 

verified by PCR prior to reverse transcription, using prolyl-tRNA synthetase housekeeping gene 

(proS-SSU1753)-specific primers. 

cDNA synthesis and quantitative reverse transcription-PCR 

cDNA was synthesized from 1 u.g of total purified bacterial RNA and random oligonucleotide 

hexamers using SuperScript® VILO (Invitrogen) according to the manufacturer's recommendations. 

Primers were designed using Oligo Program version 6 (MedProbe, Oslo, Norway) to have melting 

temperatures above 83°C and an amplicon size of approximately 400 bp (Table 2). Quantitative PCR 

was performed with LightCycler 4.0 V and using LightCycler FastStart DNA Master SYBR Green I Kit 

(Roche). The identities of the resulting amplicons were checked by melting curve analysis using the 

LightCycler 4.1 software and 1.5% agarose gel electrophoresis. Reaction mixtures containing no 

template were included in each real-time PCR experiment to control for contamination. Constitutive 

gene expression in complex media was determined as a ratio of target gene vs reference gene proS 

and was calculated according to the following equation: ratio = (freference)Q referenc7(ftarget)a tarBe' 

where E is the amplification efficiency and Ct is the number of PCR cycles needed for the signal to 

exceed a predetermined threshold value. Expression following the addition of the possible inducer 

was determined relative to the expression at the non-induced time point according to the following 
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e q u a t i o n : Rat iO=(£ t a r g e , )Ct t a r 8 e t ( C O n t r 0 l S a m P 'e ) / ( freference)Ct -ferencefcontrd-sample) [ ö ] > T h e ^ Q f ^ 

expression was constant at all the time points analysed (data not shown). Two replicates of all 

samples and primer pairs were included and the experiment was performed in triplicate. Non-

template controls were included for each gene in each run. Primers for targets and the internal 

control gene proS are listed in Table 2. 

Statistical analysis 

All qPCR experiments were reproduced at least two times in triplicates and, where indicated, 

representative experiments are shown. Two-way ANOVA tests were carried out using Bonferroni's 

post hoc test. Statistical analyses were performed using GraphPad Prism 5 software (La Jolla, CA, 

USA). Statistical significance was indicated as follows: * p < 0.05; ** p < 0.01; * * * p < 0.001. 
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Summary 

Streptococcus suis is a major pig pathogen as well as an emerging zoonotic pathogen. 

Previous work has demonstrated that the 5. suis extracellular amylopullulanase enzyme 

that degrades complex carbohydrates was also an important adhesin that increased 

bacterial binding to porcine epithelial cells. This finding suggested a link between 

carbohydrate metabolism and virulence. To explore this link, S. suis whole-genome gene 

expression microarrays were used to measure 5. suis transcriptome alterations when 

bacteria were grown in minimal media supplemented with glucose or pullulan as carbon 

sources. We found that the relative expression of seventeen virulence genes was 

increased during growth in presence of pullulan, compared to growth in glucose. To test 

the hypothesis that 5. suis grown in pullulan is more virulent, adhesion and invasion 

experiments were performed using porcine epithelial cells and bacteria grown in the two 

different media. We show that growth of S. suis using complex carbohydrates as carbon 

source significantly improves bacterial adhesion to host epithelia and significantly 

increased bacterial invasion of epithelia. 
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Transcriptome analysis of 5. suis metabolism and its link to virulence 

Introduction 

Streptococcus suis is a major swine pathogen and an emerging zoonotic pathogen of 

humans [1,2]. Young pigs typically acquire 5. suis by vertical or horizontal transmission, 

resulting in colonization of the tonsils and the nasal cavity (oropharynx). Some carrier 

piglets may develop invasive disease leading to bacteremia, meningitis, septicemia and 

arthritis, whereas other piglets also carrying S. suis may never develop disease [3,4]. 

Humans are thought to become infected via skin lesions or via the oral route upon contact 

with, or consumption of, contaminated pork [2,5]. 

There are only few studies on the interactions between S. suis and mucosal epithelial cells 

but according to these, the ability of S. suis to invade epithelial cells or pass the epithelial 

barrier remains somewhat controversial [6,7,8,9]. Some studies reported that only 

unencapsulated strains can invade epithelial cells [8] and it has been hypothesized that 

capsule production might be suppressed in response to environmental signals to promote 

adhesion and invasion, but this remains to be proven in vivo [7,8]. 

Passage of the epithelial barrier depends on several bacterial molecules, bacterial effector 

molecules or virulence factors, that interfere with host defense responses and promote 

disease. Suilysin (Sly) produced by some but not all S. suis isolates is an extracellular thiol-

activated haemolysin which belongs to the cholesterol-binding toxin family. Suilysin forms 

pores in host cells upon oligomerization [10] and has been shown to be cytotoxic for 

epithelial [7,11], endothelial [12,13,14] and immune cells in vitro [15,16]. Production of 

suilysin has been proposed to play a role in epithelial damage and translocation, enabling 

S. suis to invade the mucosal tissues and thereafter disseminate via the blood [11]. Suilysin 

may not be essential for host invasion since strains that do not produce suilysin have also 

been associated with invasive disease [14]. 

Host colonisation also depends on the efficiency by which bacteria can utilize host tissues 

as nutrient source. Starch ct-glucans (large polymers of glucose) are used as an energy 

storage by plants and are present in large amounts in the staple diet of food production 

animals [17]. Consequently starch cc-glucans are found in high concentrations in the saliva 

and oropharyngeal cavity of domestic animals including pigs [18,19,20,21]. Presence of 

high amounts of complex carbohydrates is of relevance to microbial ecology since the 

utilization of different carbohydrates by bacterial pathogens is known to influence their 

metabolism and as a consequence, pathogen virulence [22,23,24,25]. 
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Glucose, a common component of most diets, may also be present in the oral cavity but 

concentrations diminish rapidly (within 30 min) after ingestion [26] since glucose is readily 

metabolised by microbes. In human the concentration of available glucose in the human 

oropharynx is too low (0.02-0.4 mM) to support 5. suis growth, which means that other 

carbon sources are needed for bacterial proliferation [27]. Generally, host-associated 

bacteria do not synthesize degradative (catabolic) enzymes unless the substrates for these 

enzymes are present in their environment, and host-associated bacteria have evolved 

elaborate control mechanisms for selective uptake and utilization of the carbon source 

that allows fastest growth [28,29]. In the presence of glucose, a carbon catabolite control 

(CCC) mechanism controls (usually suppresses) the expression of genes encoding 

degradative enzymes, transporters and metabolic pathways for other sugars 

[30,31,32,33]. The catabolite control protein A (CcpA) is well-conserved among Firmicute 

species and can repress (the most common activity) or activate transcription by binding to 

c/s-acting catabolite response element (ere) sites that are present in promoter regions of 

genes controlled by CcpA [33]. Consensus ere sequences have been determined in several 

species [32]. Studies in Bacillus species have shown that the binding of CcpA to ere DNA 

sites is enhanced by interaction of CcpA with the histidine-containing phosphocarrier 

protein HPr-Ser-46-P [34,35]. The HPr phosphorylation status is determined by the action 

of HPr kinase/phosphorylase (HPrK/P), which, in turn, is affected by intracellular 

concentrations of fructose 1,6-bisphosphate (FBP) that is produced during glycolysis. 

Orthologues of Bacillus genes regulating CcpA-mediated carbon catabolite control are 

present in S. suis isolate Pl/7 (serotype 2), the pathogenic European reference strain of 

which a fully sequenced genome is available [36]. These genes comprise (i) the 

transcriptional regulator CcpA (SSU1202), (ii) prsG-IIBCAGIC (including enzyme l-HPr; 

SSU1309), (iii) the glycolytic enzyme fructose-bisphosphate aldolase (fba; SSU0312), (iv) 

the HPr kinase/phosphorylase {hprK; SSU1419). In addition to CcpA, other transcriptional 

repressors or activators play a role in the regulation of carbon metabolism in Gram-

positive bacteria [23,37] (Chapter 4). 

CcpA is important for virulence of streptococcal species, influencing growth, haemolysin 

production, biofilm formation and capsule expression [22,38,39,40]. In streptococci, 

several virulence factors are known to be controlled by CcpA, including genes that 

regulate and mediate capsule formation, the virulence M protein positive transcriptional 

regulator Mga, and several cytotoxins [38,40,41,42,43]. CcpA loss-of-function mutants in 
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Streptococcus pneumoniae were attenuated for virulence in mouse infection models 

[38,41] whereas CcpA depletion in Streptococcus pyogenes led to both hypervirulence and 

hypovirulence, again in experimental mouse infection models [22,43]. 

Recently, the role of CcpA was investigated by microarray analysis of wild-type 5. suis and 

an isogenic bccpA mutant grown in THB. Deletion of ccpA altered the expression of the 

surface-associated virulence factors arcB, sao and eno as well as ofs and cps2A in the 

capsule locus [44]. In electron micrographs of the AccpA mutant, the thickness of the 

capsule was shown to be markedly reduced. Reduced capsule was proposed to be the 

reason for enhanced binding of the deletion mutant to porcine plasma proteins and a 

reduced resistance of S. suis to killing by porcine neutrophils [44]. 

The recently obtained genome sequences of 13 S. suis strains [36,45] led to the 

identification of a large number of predicted surface proteins and secreted proteins that 

might play a role in virulence, including a number of putative complex carbohydrates 

degrading enzymes. Many streptococcal pathogens possess the ability to metabolize a-

glucans from the environment [46,47,48,49,50]. Here we took an experimental approach 

to study the role of 5. suis carbohydrate metabolism on global S. suis metabolism and 

virulence, by comparing the transcriptomes of S. suis P l /7 grown in complex medium plus 

pullulan (an a-glucan) or glucose in both exponential and early stationary growth phases. 

Pullulan is a polymer of a-glucose linked by glycosidic bonds that is degraded by bacterial 

enzymes such as pullulanase or amylopullulanase into maltodextrins that can be 

metabolised further [9,48,51,52,53]. A metabolic pathway map was generated from the 

genome sequence of 5. suis P l /7 and the transcriptome data. We also quantified 

production of suilysin and the expression of known virulence genes and performed 

adhesion and invasion assays of S. suis Pl/7 grown in pullulan or glucose, to study the 

effect of different carbon sources on in vitro virulence. The results provide new insights 

into carbohydrate metabolism in 5. suis and demonstrate links between carbohydrate 

metabolism and virulence gene expression concurrent with adhesion and invasion of 

epithelial cells. 
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Results 

The metabolic map ofS. suis 

The metabolic map of S. suis includes most of the metabolic pathways that have been 

found in other Streptococcus species; these include all standard metabolic pathways for 

fatty acid biosynthesis, nucleotide, amino acid and carbohydrate metabolism (Fig. 5.1). 

Streptococcus species do not encode all enzymes necessary for completion of the 

tricarboxylic acid (TCA) cycle, the series of chemical reactions whereby aerobic organisms 

generate energy through the oxidization of acetate derived from carbohydrates, possibly 

because streptococcal species tend to be facultative anaerobes. S. suis appears to produce 

energy (ATP) through homolactic and/or mixed-acid fermentation of carbohydrates. 

Under conditions of excess glucose and in presence of oxygen, glucose is oxidized via the 

glycolysis (or Embden-Meyerhof pathway) to pyruvate. In several streptococcal 

pathogens, the oxidative respiratory enzymes of the TCA cycle then metabolize pyruvate 

via an incomplete TCA cycle [54,55] (Fig. 5.1). Alternatively, under limited oxygen 

conditions, 5. suis can reduce pyruvate to lactic acid and products such as formate, 

ethanol and acetate. In addition, S. suis possesses the genes encoding proteins 

participating in the Leloir pathway, where UDP-glucose (UDP-GIc) and UDP-galactose 

(UDP-Gal) can be generated from glucose-1-phosphate or a-galactose. To date two ABC 

transporters and 17 phosphotransferase systems (PTSs) for the uptake of carbohydrates 

have been predicted for 5. suis in the KEGG database highlighting the potential for S. suis 

to ferment a variety of sugars and carbohydrates (Fig. 5.1). Indeed, metabolic pathways 

for metabolism of fructose, mannose, glucans, galactose and sucrose appear to be present 

in S. suis and the capacity to ferment ribose, L-arabinose, mannose, sorbitol, lactose, 

raffinose, maltotriose, and a-glucans such as glycogen and pullulan has been described for 

S. suis [9,56]. For the metabolism of a-glucans, the extracellular amylopullulanase (ApuA) 

is required to degrade a-D-glucose polymers into smaller units for transport across the 

cytoplasmic membrane [9]. ApuA is the only extracellular a-glucan catabolic enzyme 

found in the sequenced genomes of S. suis except in the pathogenic S. suis ST3 serotype 3 

[57] which possess an additional secreted amylase gene (SSUST3_0537). The broad 

fermentative capabilities of S. suis enables this organism to utilize dietary and host sources 

of carbohydrates for colonization of host mucosal tissues. 
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Fig. 5.1. Metabolic pathways chart, generated using iPath [58]. (Fragments of) pathways that include genes previously 
annotated in S. suis Pl/7 are indicated in red. 
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Fermentation ofpullulan has pleiotropic effects on gene expression 

To compare the effects of pullulan (Pul) and glucose (Glc) on bacterial growth and 

transcriptional activity, we performed a gene expression profiling experiment, hybridizing 

RNA prepared from bacteria in exponentially growth phase (e) and in early stationary 

phase (s) (Fig. 5.2) to whole-genome microarrays. 

0.8-1 

5 10 
hours 

-*- CM + pullulan CM+glucose 

Fig. 5.2. S. suis S10 growth curve at 37°C in presence of different carbon sources. OD600 measured in complex media (CM) 
supplemented with 1% (w/v) glucose or pullulan. 

At stationary phase, S. suis populations grown in CM + pullulan consistently yielded a 

higher biomass compared to 5. suis grown in CM + glucose. The numbers of genes 

differentially expressed during growth in pullulan versus glucose in exponential (e) or early 

stationary (s) phase were 1028 (52% of annotated genes) and 1015 (51% of annotated 

genes), respectively (Fig. 5.3). In total 738 (37% of annotated genes) genes were 

differentially regulated in pullulan compared to glucose, irrespective of the growth phase. 

In pullulan, 209 genes were differentially regulated between the exponential and early 

stationary phases of growth; in glucose, 432 genes were differentially regulated for the 

same comparison. 
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s-Pul/s-GIc e-Pul/s-Pul 

e-Pul/e-GIc f ^ ^ v , ^ . ^ ^ ^ ^ ^ ^ ^ ^ e-Glc/s-GIc 

Fig. 5.3. Venn diagram of the genes differentially regulated growings, suis in pullulan (Pul) vs glucose (Glc) in exponential (e) or 
stationary (s) phase. This diagram was created using VENNY (http://bioinfogp.cnb.csic.es/tools/venny/index.html). For all 
intersections the numbers of differentially expressed genes are indicated. 

For all genes and proteins identified in the 5. suis Pl/7 genome, Gene Ontology (GO, 

http://www.geneontology.org) and KEGG pathway annotations were obtained using the 

BLAST2G0 software (www.blast2go.org) [59] including annotations based on terms 

obtained from EBI using the InterPROScan feature [60] that is part of BLAST2G0. The GO 

enrichment analysis feature of BLAST2G0 was used to identify the functional categories 

that were statically over- or underrepresented in the set of genes differentially expressed 

in pullulan vs glucose in exponential and early stationary phases of growth. GO 

enrichment was calculated using a Fisher's Exact Test and P value cut-offs of 0.05 and 

lower. We determined over- and under-represented GO categories of genes differentially 

regulated in pullulan versus glucose in early exponential and early stationary growth 

phases (Fig. 5.4A and 5.4B). Similar analyses were performed for a subset of differentials, 

namely all upregulated genes with the GO annotation "carbohydrate metabolism" (Fig. 

5.5Aand5.5B). 

The functional categorization of genes revealed that the highest number of genes 

differentially expressed in both growth phases participated in carbohydrate transport into 

the cell (11.7% of annotated sequences were annotated with this GO term). Related to 

carbohydrate transport, genes annotated with GO term "carbohydrate metabolism" 

(18.6%) (Fig 5.4A) and its sub-categories galactose metabolism (4.1%), starch-sucrose 
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metabolism (3.4%), pyruvate metabolism (7.1%) and fructose-mannose metabolism (6.0%) 

were also important components of the transcriptomes (Fig. 5.5A). The starch metabolic 

pathways comprise the genes encoding ApuA, transport systems for the 

maltose/maltodextrin breakdown products, and genes encoding enzymes that convert 

maltose and maltodextrin into GlclP or Glc6P for other metabolic pathways (see below). 

The category "galactose metabolism" was possibly over-represented due to increased 

expression of the Leloir pathway enzymes that convert galactose into GlclP (Fig. 5.5). 

Interestingly, genes in the GO category "energy reserve metabolism" (2.1%) were also 

enriched when bacteria were grown in pullulan versus glucose. Polysaccharide 

biosynthesis (4.1%) was over-represented in pullulan (Fig. 5.5), presumably due to the 

increased expression of the a-glucan branching enzymes (SSU0870, SSU0874 and 

SSU0873) that are required for the synthesis of glycogen from glucose-1-phosphate 

(GlclP) (Fig. 5.5). 

Another GO category that was enriched during growth in pullulan was lipid metabolism 

(11.7%) which is the metabolic pathway during which precursors of lipoteichoic acids and 

membrane phospholipids are generated. Linked to this GO category is glycolipid 

metabolism (2.7%), which includes glycosphingolipids and globosides (Fig. 5.5), molecules 

which are involved in membrane biosynthesis and biofilm formation [61]. Other enriched 

GO categories included amino acid metabolic pathways for arginine and proline, which in 

5. suis and other streptococcal pathogens are repressed in the presence of glucose by 

carbon catabolite repression (CCR) [44,62]. The under-represented categories in pullulan 

included ribosome biogenesis, trans-membrane ATPase activity, and regulation of gene 

expression by transcriptional regulatory proteins including two-component systems. 

Under-represented categories suggest possible cross-regulation (pathway repression) 

which could be due to activity of CcpA and other transcriptional regulatory systems. 

In early stationary phase (Fig. 5.4B), "rRNA binding" is the first over-represented category 

that includes genes encoding stress proteins binding to 5S RNA, possibly due to the 

depletion of the carbon sources that were metabolised to generate energy [63]. 

Carbohydrate transport systems were more enriched at early stationary than in early 

exponential phase (17.9%) while cellular carbohydrate metabolism was under-

represented (6.4%), possibly also due to the diminished availability of carbohydrate 

sources. 
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Fig. 5.4. GO term distribution of S. suis genes upregulated in pullulan vs glucose. A. early exponential (e) and B. early stationary 
phase (s) GO Enrichment analysis performed using BLAST2GO (P= 0.05, two-tailed Fisher's Exact test). 
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with their predicted function as a repressor and activator of the maltodextrin utilization 

system, respectively (Chapter 4). 

Glucose-1-P (GlclP), released upon pullulan degradation, can be metabolized in different 

pathways. Phosphoglucomutase (pgm-SSU0826), which is highly upregulated in pullulan 

compared to glucose, can isomerise GlclP to Glc6P which can enter the glycolytic 

pathway. However, the glycolytic pathway enzymes were either not modulated or slightly 

down-regulated in pullulan compared to glucose under all conditions (Fig. 5.6). In 

agreement with this, genes participating in the pentose-glucuronate pathway were 

upregulated in pullulan. The pentose-glucuronate pathway is an alternative to glycolysis 

for the metabolism forGlc6P. 

GlclP is a direct precursor substrate for synthesis of glycogen (glucose polymers) as an 

energy reserve. The three genes encoding the ADP glucose pyrophosphorylase, glycogen 

synthase, and branching enzyme (glgC-glgA-glgB; SSU0870 to SSU0874) were all strongly 

induced (Fig. 5.6). The glycogen utilization genes encoding glycogen Phosphorylase (glgP2-

SSU0354) and malQ2 (SSU0353), which convert glycogen or maltodextrins to GlclP, were 

not differentially regulated (Fig 5.6). Enzymes for maltodextrin utilization and glycogen 

synthesis are classified in starch-sucrose pathway (Kegg ssi00500). 

The genome of 5. suis encodes also predicted enzymes belong both starch-sucrose and 

galactose metabolism that participate to the interconversion of different sugars [69,70]; 

their activities have not been biochemically tested yet. These genes, sucrose 

Phosphorylase (gr//4-SSU1369), ß-fructofuranosidase/interconvertase [71] (invrtsC-

SSU1169) and raffinose galactohydrolase [72] (ra/gH-SSU0167) were strongly induced in 

pullulan compared to glucose (Fig 5.6) and may be associated with the downstream 

induction of genes associated with galactose metabolism (Fig. 5.6). 
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Fig. 5.6. Heatmap showing the effect of pullulan on the transcription of genes involved in key basic metabolic processes. 
Expression (ratios) of genes participating in 9 different metabolic processes (indicated at the right of the heatmap) are shown for 
6 different comparisons (indicated at the top of the heatmap). At the top of the figure, a color scale depicts the ratio of 
expression during growth in pullulan vs. glucose. Red colour indicate induction (upregulation of the respective genes) and blue 
indicates repression (downregulation of the respective genes) for each comparison. For each gene, the S. suis Pip locus tag and 
the gene name is given on the right. 
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Interestingly, the galT (galactose-1-phosphate uridylyltransferase) and galK 

(galactokinase) genes that participate in the Leloir pathway were strongly induced. The 

GalT enzyme (EC 2.7.7.9) interconverts galactose-1-phosphate (Gall-P) and UDP-Glucose 

(UDP-GIc) to UDP-galactose (UDP-Gal) and GlclP. Activated UDP-sugars are important 

intermediates in polysaccharide biosynthesis, e.g. as capsule components or 

exopolysaccharides. Expression ratios of capsule biosynthesis genes were slightly lower 

(cps2C-SSU0517, cps2D-SSU0518, cps2£-SSU0519, cpss_/p/-SSU1123) for bacteria grown in 

pullulan compared to glucose, suggesting capsule production would not be increased in 

pullulan. Indeed, similar levels of capsule production were observed in transmission 

electron micrographs of S. suis grown in pullulan or glucose (Fig. 5.7). 

Fig. 5.7. EM picture of S. suis grown in CM supplemented with A. pullulan or B. glucose. 

In lactic acid bacteria including streptococci, pyruvate, the end product of glycolysis, is 

converted to lactate during homolactic fermentation. Mixed-acid fermentation of 

pyruvate may also occur in lactic acid bacteria, resulting in end products such as 

acetate, ethanol, formate or lactate, the growth conditions. The fermentation of 

pullulan may result in the formation of formate and ethanol, predicted from the induction 

of genes encoding pyruvate formate lyase (p//0-SSUO191) and alcohol dehydrogenase 

(arJ/7f-SSU0260) (Fig. 5.6; Chapter 6). 

The prediction ofcre-sites in the genome ofS. suis 

The microarray analysis did show that carbohydrate metabolism is substantially altered 

when 5. suis bacteria are grown in presence of pullulan or glucose. The CcpA transcription 

factor that mediates carbon catabolite repression (CCR) or activation (CCA) is a major 
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Table 5.1: cre-site prediction in the genome of S. suis Pip. 
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P/GIc1 upregulated (U) or downrcgulated (D) expression when S. suis was grown in pullulan compared to glucose 
AccpA2 upregulated (U) or downregulated (D) expression in wild type S. suis 10 compared to its isogenic AccpA mutant (data from 
Willenborg et al. [44)) 
Pos3 tag locus located upstream of the start codon of predicted proteins (P) or in proximity of the gene transcription start (G) 

regulator of carbohydrate metabolism. Catabolite control, activated in presence of glucose, 

leads to high-affinity binding of CcpA to a catabolite responsive element (ere). Inactivation 

of ccpA in S. suis was reported to alter expression of 259 genes (13.2% of the genome) [44]. 

For this chapter, it was of interest to investigate if (part of) these genes were differentially 

expressed during growth in pullulan (compared to glucose) and thus, might be regulated by 

CcpA. Therefore, using MEME [73] and MAST-algorithms [74], the genome sequence of 5. 

suis strain Pl/7 was mined for presence of a cre-site motif (tGAAAACGTTTGCat); this motif is 

similar to a B. subtilis consensus cre-site (TGWAARCGYTWNCW) [75,76]. A total of 472 

putative cre-sites were identified within 71 sites in the tag locus located upstream of the 

start codon of predicted proteins (P) or in proximity of the gene transcription start (G) 

(Table 5.1). A total of 171 genes, including other genes within the same operon, were 

predicted to be under control of CcpA. In Table 5.1 we listed 38 ere sites and their 

downstream genes or opérons, and indicated if those genes were differentially expressed in 

pullulan compared to glucose (our study), and if genes were differentially expressed in a 

AccpA mutant [44]. 

In table 5.1, we observed that genes belonging to all main functional classes were 

represented in the ecp/\-regulon prediction, but with a relative enrichment of cre-sites in 

the upstream regions of genes predicted to encode carbohydrate PTS and ABC 

transporters (17%), genes (opérons) with regulatory functions (10%), and genes encoding 

enzymes involved in carbohydrate metabolism (25%) and, noteworthy, in virulence (8%). 
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A total of 171 genes, including other genes within the same operon, were predicted to be 

under control of CcpA. In Table 5.1 we listed 38 ere sites and their downstream genes or 

opérons, and indicated if those genes were differentially expressed in pullulan compared 

to glucose (our study), and if genes were differentially expressed in a AccpA mutant [44]. 

In table 5.1, we observed that genes belonging to all main functional classes were 

represented in the ccp/J-regulon prediction, but with a relative enrichment of cre-sites in 

the upstream regions of genes predicted to encode carbohydrate PTS and ABC 

transporters (17%), genes (opérons) with regulatory functions (10%), and genes encoding 

enzymes involved in carbohydrate metabolism (25%) and, noteworthy, in virulence (8%). 

Links between carbohydrate metabolism and virulence gene regulation 

To investigate if growth of 5. suis in cc-glucans could affect expression of known or 

predicted virulence genes, the expression of these genes were compared during bacterial 

growth in pullulan or glucose (Fig 5.8). 

Seven genes involved in the invasion of mucosal tissues or avoidance of host defenses by 

streptococcal pathogens were upregulated in pullulan compared to glucose. These genes 

included sly (suilysin-SSU1231) [11,77,78,79,80], hepll/lll (putative oligohyaluronate lyase-

SSU1048) [81], hyl (hyaluronidase precursor-SSU1050) [82], arcB (arginine deiminase-

SSU0580) [83,84], igaP (surface métallo serine protease-SSU1773) [85] dppIV (Xaa-Pro 

dipeptidyl peptidase-SSU0187) [86,87], and pepD (putative surface dipeptidase-SSU1215) 

[88]. 

Regarding the envelope structures which contribute to S. suis virulence, only two capsule 

biosynthesis genes (cpss_/p/-SSU1124 and cpss_ /p/2-SSU 1123) were slightly 

downregulated, but not the gene encoding the cps operon regulator. These transcriptional 

changes did not appear to have a visible effect on capsule production (Fig. 5.7). The 

neuACB operon, containing genes involved in sialylation of the capsule polysaccharides 

[89] was slightly induced. The only adhesin highly upregulated during bacterial growth in 

pullulan was ApuA. 

Remarkably, the genes with highest (sly, apuA, arcB, hyl-hepll/lll) or moderate (ssnA, 

cps2A) differential induction in pullulan all have a predicted ere element site in their gene 

or operon promoter region (Table 5.1) indicating they might be subject to CcpA-mediated 

repression when concentrations of glucose are high enough. However, these genes can be 

co-regulated by other transcriptional regulators, for instance suilysin may be co-regulated 

by the two-component system CovS/CovR (SSU1190-SSU1191)[90]. 
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Fig. 5.8. Gene expression ratio of putative and characterized virulence factors of 5. suis grown in pullulan or glucose in 
exponential (white bar) and early stationary (black bar) phases. The genes are grouped together according to their predicted or 
described function in S. suis pathogenesis. Envelope: cps2E*-SS0519 putative galactosyl transferase; wc/iF*-SSU0520 putative 
rhamnosyl transferase; cps2C-SSU0517 tyrosine-protein kinase; cpss_/p/-SSU1123 putative glycosyltransferase; cpss_lpi2-
SSU1124 putative rhamnosyl transferase pgd/4-SSU1448 peptidoglycan GlcNAc deacetylase, dVM-SSU0596 D-alanine-
poly(phosphoribitol) ligase subunit l ; Envelope/Adhesion neuB-SSU0535 putative N-acetylneuraminic acid synthase; neuC-
SSU0536 putative UDP-N acetylglucosamine 2-epimerase; neu4-SSU0538 N-acylneuraminate cytidylyltransferase; Adhesion: 
opu/4*-SSU1849 amylopullulanase; sadP-SSU0253 putative surface-anchored protein receptor; gnd-SSU1541 6-
phosphogluconate dehydrogenase; Adhesion/Invasion: srM-SSU0925 sortase; /bpS-SSU1311 fibronectin-fibrinogen binding 
protein; gapc/H-SSU0153 glyceraldehyde-3-phosphate dehydrogenase; eno-SSU1320 enolase; pepD-SSU1215 putative surface-
anchored dipeptidase; dpp /V-SSU0187 Xaa-Pro dipeptidyl-peptidase; Invasion: sly* SSU1231 suilysin (haemolysin); 
nep»/H/*-SSU1048 heparinase ll/lll-like protein; /)y/*-SSU1050 hyaluronidase precursor; ssnA*-SSU1760 surface-anchored DNA 
nuclease; orcS*-SSU0580 arginine deaminase; /goP-SSU1773 putative surface-anchored serine protease; ssp,4-SSU0757 cell 
envelope proteinase; o/s-SSU1474 serum opacity factor; /ux5-SSU0376 S-ribosyl homocysteinase; Marker: mrp-SSU0706 
muramidase-released protein precursor; e/-SSU0171 putative surface-anchored protein. * Indicates the presence of predicted 
cre-site in the promoter region of the gene virulence factor. 

Effect of carbohydrates on haemolytic activity ofS. suis 

According to our microarray analysis, the expression of suilysin, an important 5. suis 

virulence factor, was strongly induced in pullulan compared to glucose, both at 

exponential and stationary growth stages (+18.1/+17.9 ratio pullulan vs glucose). To test if 

secretion of suilysin was indeed increased during bacterial growth in pullulan, we 

measured erythrocyte haemolytic activity (HA) of culture supernatants of S. suis grown in 

glucose or pullulan. Haemolytic activity was higher in CM supplemented with pullulan than 

in CM plus glucose, over a wide range (ca. 0.5) of OD values (Fig 5.9). In early stationary 
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phase, HA for pullulan and glucose cultures was approx. 91% and 18%, respectively (Fig. 

5.9). We assume that suilysin (SSU1231) is the only active haemolysin that is produced by 

S. suis P l /7. A haemolysin-like protein (SSU1464) has been annotated in the genome of S. 

suis, but this gene was not differentially expressed under these conditions. 

CM glucose CM pullulan 

Fig. 5.9. Hemolysis assay of S. suis growing in two different carbon sources. A. The hemolysis production was measured by 
analyzing the supernatant of 5 suis grown in CM plus 1% of glucose or pullulan in the lag, exponential and stationary phase (OD600 

values 0 to 0.56). B. Deep-well titer plate showing hemolytic activity of supernatants collected from 5. suis grown in CM 
supplemented with glucose or pullulan. 

Effect of carbohydrate source on S. suis adhesion and invasion 

From our microarray data, and the expression of (putative) virulence factors, we 

hypothesized that the adhesion and invasion capacity of S. suis might be enhanced upon 

growth in pullulan compared to glucose. Because of its porcine epithelial origin, the 

newborn pig tracheal cell line (NPTr) [9,91] was chosen to investigate the adhesion and 

invasion of S. suis S10 grown in pullulan or in glucose. Exponentially growings, suis grown 

in CM plus 1% of either carbohydrate were harvested and incubated for 2 h at a 

multiplicity of infection (MOI) of approximately 50 (number of bacteria per NPTr cell). To 
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maintain similar growth conditions, the cell culture medium was replaced with glucose-

free DMEM and supplemented with 1% glucose or pullulan during the incubation with 5. 

suis. In agreement with previous adhesion studies that used the NPTr cell line [9], we 

found that adherence of 5. suis bacteria grown in CM plus glucose was 19.4 ± 1.0 % of 

original inoculum (averaged over 3 independent replicates). 5. suis had a significantly 

higher adhesion capacity (24.9 ± 1.7 %; P <0.05; 3 replicates) after bacteria had been 

grown in CM plus 1% pullulan (Fig. 5.10A). In accordance with previous studies using a 

human Hep-2 cell line [8], 5. suis S10 showed low invasion capacity (0.05% of original 

inoculum) in glucose. Strikingly, invasiveness of 5. suis was nearly 9 times higher when 

grown in pullulan as a unique carbon source (0.43% ± 0.01) (*** P <0.01) (Fig. 5.10B). In 

conclusion, S. suis bacteria grown in pullulan showed a slightly but significantly increased 

adherence to, and a strongly increased invasiveness of NPTr cells, always compared to 

glucose. 

B 

CM+glucose CM+pullulan 

0.2 

0.0 

1 L* 
CM+glucose CM+pullulan 

Fig. 5.10. Comparison of NPTr adherence A. and invasion 8. of 5. suis after growth in CM+1% pullulan (black columns) vs. 
CM+1% glucose (white columns). 
NPTr confluent monolayers were co-cultivated for 2 h with S. suis SIO bacteria grown in CM medium complemented with 
pullulan or glucose. NPTr cells were washed and lysed and lysates plated on Columbia agar to determine number of adherent 
bacteria as calculated from CFU. To determine real invasion, antibiotics were added for 1 additional hours to kill extracellular 
bacteria before plating. Results were expressed as % adherence or % invasion (% recovered CFU of the inoculum) as described in 
Experimental procedures. Plotted values indicate means ± SD averaged across three independent experiments. 
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Discussion 

5. suis is an important pathogen of swine; some isolates have also shown to be able to 

infect humans. S. suis is among the more ubiquitous bacteria that colonise the oropharynx 

and oral cavity of asymptomatic carrier pigs [92,93]. It is unclear how, and under what 

external conditions S. suis bacteria can switch from an asymptomatic to a pathogenic 

association with their host. Host susceptibility to 5. suis infection may occur due to 

inadequate host immune responses but may also be due to reduced antagonism by 

commensal bacteria, concurrent infections or environmental factors such as the 

availability of nutrients. As shown in this study, carbohydrate availability may be an 

important environmental factor as carbohydrates can dramatically alter gene expression 

and may promote an increased production of toxins and other virulence factors. In the 

mammalian oropharynx and saliva, dietary a-glucans are present at high concentrations 

[18,19,27]. The importance of these substrates to the ecology of bacteria in this niche is 

evident from the high number of a-glucans degrading enzymes and starch metabolic 

pathway genes present in genome sequences of commensals [9,48,51,52,53]. 

Previously, we showed that the ability of S. suis to utilize a-glucans is dependent on a 

bifunctional a-glucan degrading enzyme (amylopullulanase, ApuA) that also mediates 

adhesion to porcine epithelial cells [9] (Chapter 3). Growth in pullulan led to an induction 

of S. suis starch metabolic pathway genes, including homologues of the maltodextrin ABC 

transport operon and a predicted PTS for maltose/maltotriose (prsG-SSU0357), as 

described in other Streptococcus species [94,95] (Fig. 5.11). PTS systems were important 

to utilize the two different carbon sources: one of the GO categories with the highest 

number of genes over-represented during exponential growth in pullulan was the 

phosphotransferase system (PTS) category (Fig. 5.4). 70% (12 out of 17) of the annotated 

PTS were upregulated in pullulan and 40% of the genes encoding these PTSs contained a 

ere binding site in the promoter region. As several PTS genes are transcribed at higher 

levels in pullulan, we cannot exclude the possibility that one of these is the major 5. suis 

transporter for maltose or maltotriose. 

Intracellular glgl and malQl are predicted to convert maltodextrins to GlclP which can be 

converted by phosphoglucomutase (pgm-SSU0856) to Glc6P, a substrate for glycolysis 

(Fig. 5.11). We observed that transcription of glycolytic pathway genes were not 

substantially altered by growth in pullulan compared to glucose, suggesting that this 
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pathway is similarly expressed under both conditions. Strikingly, the pentose and 

glucuronate interconversion pathway for metabolism of Glc6P were stronger induced 

during growth in pullulan compared to glucose, suggesting an accumulation of 

intracellular a-glucose. This suggestion is supported by the finding that glycogen 

biosynthesis genes including three a-glucan branching enzymes (SSU0870, SSU0874 and 

SSU0873) that synthesize glycogen from GlclP were stronger induced in pullulan than in 

glucose (Fig. 5.11). Thus growth in pullulan may promote glycogen energy storage. We 

noted that in early stationary phase, when glucose is depleted, the expression of glycogen 

biosynthesis genes was suppressed, whereas the expression of two genes encoding 

glycogen-degradation enzymes (glg2 and malQ2, SSU0353-SSU0354) was induced, 

presumably to enable the intracellular glycogen reserves to be converted to glucose for 

fermentation. This could explain why 5. suis bacteria grow to higher OD600 in pullulan than 

in glucose (Fig. 5.2). Glycogen concentrations can increase up to 50% of the cell dry weight 

without having detrimental effects on internal osmotic pressure in the bacterial cell 

[96,97]. S. suis appears to be able to metabolize pyruvate to different end-products 

including lactate, acetate, ethanol and formic acid (but not acetoin). This assumption is 

supported by the finding that the genes involved in metabolism of pyruvate to formate 

and ethanol were more strongly induced during growth in pullulan than in glucose. 

Expression of the two Leloir pathway genes galTK were highly upregulated in pullulan 

compared to glucose. The enzymes GalT and GalK catalyze the interconversion of UDP-

galactose (UDP-Gal) to UDP-glucose (UDP-GIc) [98,99] (Fig. 5.11). Although galactose was 

not a standard component of the bacterial growth medium, it can presumably be derived 

through enzymatic interconversion of other sugars. Activated sugars such as UDP-GIc and 

UDP-Gal are key components in the biosynthetic pathway of extracellular polysaccharides 

(EPS) [100,101]. Exopolysaccharides produced by Lactococcus and Streptococcus species 

have a range of functions including adhesion and biofilm formation [102]. In Streptococcus 

thermophilus, the overexpression of both phosphoglucomutase (PGM) and GalE increases 

EPS synthesis more than 2-fold; increased production of GalK, GalT, and GalU led to 

further increases of EPS production [103]. During our experiments, no difference in 

production of capsule was evident from comparing electron micrographs of S. suis grown 

in glucose or pullulan (Fig. 5.7). Recently, Willenborg et al. reported that the capsule of 5. 

suis S10 àccpA mutant strain was downregulated compared to the wild type. Moreover, 

the glycosyl transferases present in the capsule operon (cpssjpl and cpss_lpl2) and the 
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capsule operon regulator (cps2A/wzg) were slightly downregulated in exponential phase. 

S. suis cps and sialic acid transfer gene clusters have been proposed to be activated by 

CcpA [44]. However, in other Streptococcus species, production of capsule is influenced by 

carbon source but in a CcpA-independent manner [38,64] suggesting that the influence of 

CcpA control of capsule biosynthesis is not a straightforward consequence of glucose (or 

another monosaccharide) availability. 

Many of the transcriptional changes we observed could be attributed to carbon catabolite 

control (CCC). To predict which of the differentially expressed 5. suis genes could have 

been regulated by CcpA we searched for conserved catabolite-responsive elements (ere) 

motifs in the genome of S. suis P l /7. 172 genes (or opérons) were predicted to be under 

control of CcpA (Table 5.1). Of these 172 genes, 145 (84%) were differentially regulated 

during growth in pullulan compared to glucose. The difference may be due to incorrect ere 

presence predictions, or to the fact that genes and opérons may have dual regulation 

involving not only CcpA but also other transcription factors (Chapter 4). 

The 145 genes that appeared to be controlled by CCC were also compared to a published 

microarray data set generated by comparison of a bccpA mutant with the corresponding 

wild-type strain [44]. In total, 99 genes comprising 38 opérons were differentially 

regulated in both datasets (Table 5.1), lending further support to the accuracy of ere site 

predictions for at least a subset (70%) of genes. 

The CCC-regulated gene set included genes encoding PTS and ABC carbohydrate 

transporters (17%), genes encoding proteins with regulatory functions (10%), and genes 

encoding enzymes involved in carbohydrate metabolism (25%) and in virulence (8%) 

(Table 5.1). These genes participate in metabolic pathways including Leloir pathway, 

pyruvate metabolism, starch metabolism, glycogen biosynthesis and pentose glucuronate 

interconversion pathway (Fig. 5.11). In S. pneumoniae, one of the genes activated by CcpA 

is lactate dehydrogenase (Idh). Under anaerobic conditions, CcpA CCR leads to increased 

production of lactate and repression of two mixed-acid fermentation genes, pfl and adhE 

[64]. A similar regulation mechanism may also occur in S. suis, where decreased 

expression of Idh (containing a predicted ere site) and induction of genes participating in 

mixed acid fermentation was observed during growth in pullulan compared to glucose. 

Most striking was the induction of nearly 30 genes encoding virulence factors associated 

with mucosal invasion and the avoidance of host defenses in pullulan compared to 

glucose. One of these was the gene encoding a secreted suilysin, a pore-forming toxin 

137 



Chapter 5 

which we showed to be highly induced during growth in pullulan, using a haemolytic in 

vitro assay (Fig. 5.9). Suilysin has been shown to play a role in damaging host epithelial 

[7,11], endothelial [12,14] and immune cells [16], suggesting that suilysin could faciltate 

the entry of 5. suis into tissues and avoidance of host defences [5,104]. In contrast to our 

own results, sly expression was not increased in a recent study which compared gene 

expression of a wild-type strain with a hccpA mutant grown to early exponential phase 

[44]. The reason for these different findings is unknown but may be related to the use of 

THB medium [44] instead of the supplemented CM medium. Also upregulated in pullulan 

(compared to glucose) was a gene encoding hyaluronidase, the enzyme which can 

breakdown hyaluronan, an anionic, non-sulphated glycosaminoglycan distributed widely 

throughout the extracellular matrix of eukaryote connective tissue cells. Its role in S. suis 

infection remains to be demonstrated but in Streptococcus intermedius, hyaluronidase 

may be important for detachment from a biofilm [105]. Additionally, two peptidyl 

peptidases (dppIV and pepD) were transcribed at higher levels when 5. suis was grown in 

pullulan. In 5. suis, the function of pepD is unknown but the 5. suis di-peptidyl peptidase IV 

(DppIV) has been shown to interact with human fibronectin, and a cfpp/\/-deficient mutant 

was greatly attenuated in a mouse infection model [86]. A putative heparinase ll/ll 

enzyme was also highly upregulated but its function and potential role in virulence is 

unknown. In our experiments, the sspA gene which encodes a secreted serine protease 

was also induced. This protease can degrade eukaryote pro-inflammatory interleukin-8 (IL-

8) molecules and, by degrading IL-8, SspA is predicted to inhibit Chemotaxis and infiltration 

of neutrophils and other leukocytes in vivo [106,107]. The ssnA gene, encoding a recently 

described DNase which is secreted by S. suis and is potentially involved in the breakdown 

of neutrophil entrapments (NETS) [108], was slightly upregulated in pullulan compared to 

glucose. 

Several adhesion factors, namely ApuA [9], FbpS [109], Eno [110], GAPDH [111,112], Gnd 

[113] and SadP [114]) have been characterized in S. suis. Transcription of apuA was 

strongly induced, whereas sadP and gapdH were only slightly induced during growth in 

pullulan compared to glucose. Adhesion and invasion of porcine epithelial cells was 

significantly increased when S. suis was grown in pullulan rather than glucose which may 

be due to increased expression of adhesins (apuA, sadP and gapdH) and possibly other 

genes including genes that modify the cell envelope by transfer of sialic acids (neu operon, 

capsule II; Figs. 5.6 and 5.8). In other streptococcal pathogens, it was shown that the 
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external part of the capsule was needed for binding alveolar cells by sialic acids contained 

in the envelope [115]. 

In blood, glucose levels are relatively high (6-9 mM) [116] compared to the oropharyngeal 

cavity where dietary sources of a-glucans will be the predominant carbon source that will 

be available for bacterial fermentation. Here we show that fermentation of a-glucans in 

the absence of extracellular glucose leads to differential expression of approximately 1000 

genes, of which about 145 contained predicted ere sites in their promoter regions. We 

propose that the altered expression of these 145 genes is most likely due to relief from 

CcpA-dependent carbon catabolite repression; most of the genes that we predicted to 

include a ere site in their promoter regions are predicted to participate in diverse 

metabolic pathways, including biosynthesis of glycogen (as energy reserves). In addition, 

nearly 30 genes encoding putative or confirmed virulence factors were transcribed at 

higher levels during growth in pullulan including the genes encoding the toxin suilysin and 

ApuA, an adhesion and extracellular enzyme required for growth on a-glucans. These 

findings demonstrate a clear link between carbohydrate utilisation and regulation of 

virulence, and suggests that fermentation of a-glucans favours colonisation and early 

stages of invasion at the mucosal epithelium. These findings are in agreement with studies 

in other streptococcal pathogens that have shown a role for CcpA and CCC in colonization 

and infectivity in animal models [22,42]. 
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Fig. 5.11. Schematic representation of S. suis metabolic pathways differentially regulated in pullulan vs glucose a-glucans (i.e. 
pullulan). a-glucans are degraded by extracellular amylopullulanase (ApuA) and the end degradation products, 
maltose/maltotriose and maltodextrins, are transported by PTS for maltose/maltotriose (malT) and maltodextrin ABC transport 
inside the bacteria (malx, malC and malD). Maltodextrins and maltose are presumably converted to glucose-1-phosphate (GlclP) 
or a-glucose by 4-a-glucanotransferase and maltodextrin Phosphorylase (mo/Ql and glgPl respectively). GlclP can be 
metabolized in different pathways: phosphoglucomutase (pgm) isomerize GlclP to glucose-6-phosphate (Glc6P) which may enter 
glycolysis (violet box) where it is consequently oxidated to pyruvate (pyr). Homolactic fermentation reduces pyruvate into 
lactate, whereas mixed-acid fermentation leads to other products, such as formate, acetate and ethanol (pyruvate metabolism, 
yellow box). The excess of GlclP that cannot enter in glycolysis may be used for synthesis of glycogen as an energy reserve (light 
blue box). The genome of 5. suis is predicted to encode the enzymes sucrose Phosphorylase gtfA, a-fructofuranosidase 
(interconvertase) invrtsC, and raffinose galactohydrolase, rafgH for the interconversion of sugars like raffinose. These enzymes 
participate in the starch and galactose-Leloir pathway. Part of Leloir pathway genes (e.g. galactose-1-phosphate 
uridylyltransferase galT and galactokinase galK) was induced more strongly in pullulan. GalT interconverts galactose-1-phosphate 
(Gall-P) and UDP-Glucose (UDP-GIc) to UDP-galactose (UDP-Gal) and GlclP. Alternatively, UDP-GIc may be converted into 
glucuronic acid (Glcur) by UDP-D-glucuronate (UDP-Glcur) to enter in an alternative (to glycolysis) pathway for pyruvate (pyr) 
production. Pathway predictions were reconstructed based on genome information 

(http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi), literature and database surveys (KEGG, MetaCyc). The following gene 
annotation was downloaded from NCBI: galM, aldose 1-epimerase; galK, galactokinase; galE, UDP-glucose 4-epimerase; galT, 
galactose 1-phosphate uridylyltransferase; pgm, phosphoglucomutase/phosphomannomutase; pfkA, 6- phosphofructokinase; 
fba, fructose bisphosphate aldolase; tpiA, triosephosphate isomerase; gap, glyceraldehyde-3-phosphate dehydrogenase; pgk, 
phosphoglycerate kinase; gpmA, phosphoglyceromutase; eno, phosphopyruvate hydratase; pyk, pyruvate kinase; Idh, L-lactate 
dehydrogenase; pyrox, pyruvate oxidase; ackA, acetate kinase; pfl, pyruvate formate-lyase; adIE acetaldehyde-CoA 
dehydrogenase; adhE alcohol dehydrogenase; g/gS, glgA glycogen synthase; glgC glucose-1-phosphate adenylyltransferase; glgP 
glycogen Phosphorylase 
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Materials and methods 

Bacterial strains, plasmids and culture conditions 

S. suis S10 strain was grown in Todd-Hewitt broth (THB) (Difco) or on Columbia agar plates with 6% 

sheep blood (Oxoid) at 37°C under 5% C02 for 18 h. An optical density (OD) of 1.2 at 600 nm with a 1 

cm path length corresponds to approximately 109 bacterial colony forming units per milliliter (c.f.u. 

ml-1). The genome of S. suis S10 is more than 99% identical to the genome of S. suis P l /7, a 

sequenced reference strain of which the genome had been annotated previously (Chapter 1). 

A complex medium (CM) comprising of 10 g I"1 proteose peptone, 5 g I"1 trypticase peptone, 5 g I -1 

yeast extract, 2.5 g I"1 KCl, 1 mM urea, and 1 mM arginine, pH 7.0 was used to assess growth on 

different carbon sources (glucose-GIc, pullulan-Pul) by supplementation with different 

carbohydrates at a final concentration of 1% (w/v) as previously described [53]. Growth in complex 

medium was determined by measurement of turbidity at OD600 using a SpectraMax MS (Molecular 

Devices LLC) reader. 

RNA extraction 

For RNA extraction, S. suis S10 was grown to exponential and early stationary phase in indicated in 

Fig. 5.2. 10 ml of culture was collected and centrifuged for each analyzed point. The pellet was 

immediately frozen in liquid nitrogen and stored over night at 4°C in 1.5 ml RNAIater (Ambion). To 

isolate RNA, 1.5 ml RLT lysis buffer (Qiagen) was added to the pellet dissolved in RNAIater, incubated 

at 15 min at r.t. and centrifuged (13000 g for 30 min). The cells were dissolved in 600 u.1 RA1 reagent 

(Macherey-Nagel) plus ß-mercaptoethanol and lysed using a FastPrep-24 (MP. Biomedicals, Solon, 

OH) for 6.0 m/sec at 20 sec. Total RNA was purified using NucleoSpin RNA II (Macherey-Nagel). The 

quality and the concentration of RNA were assessed with an Experion™ System (Bio-Rad) and by 

analysis of the A26o/A28o ratio (NanoDrop 8000 UV-Vis Spectrophotometer). 

Transcriptome analysis, bioinformatics tools and data mining 

A two-color microarray-based gene expression analysis was performed on a custom-made 60-mer 

oligonucleotide array (Agilent Biotechnologies, submitted in GEO under platform GPL9359) to 

determine the global gene transcription levels of WCFS1 and the lp_2991 deletion mutant. Cy3- and 

Cy5-labeled cDNAs were prepared using a Cyscribe post labeling kit (GE Healthcare, United 

Kingdom). Slides were pre-hybridized for 45 min at 42°C in 20 ml prehybridization solution (1% 

bovine serum albumin, 56SSC, 0.1% sodium dodecyl sulfate; filtered), washed in filtered deionized 

water, and dried. Co-hybridization with Cy5-and Cy3-labeled cDNA probes was performed overnight 

at 42 °C for 16 h in Slidehybttl (Ambion, Austin, TX). The slides were then washed twice in 16SSC -

0.1% sodium dodecyl sulfate (16SSC is 0.15 NaCI plus 0.015 M sodium citrate) and twice in 16SSC 

before they were scanned. Slides were scanned with a ScanArray Express 4000 scanner (Perkin 

Elmer, Wellesley, MA), and image analysis and processing were performed using the ImaGene 
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Version 7.5 software (BioDiscovery Inc., Marina Del Rey, CA, USA). The microarrays were scanned at 

different intensities. For each of the individual microarrays the best scan was selected on the basis 

of signal distribution (combination of a low number of saturated spots and a low number of low 

signal spots). The data were normalized using lowess normalization as available in MicroPrep [117]. 

The data were corrected for inter-slide differences on the basis of total signal intensity per slide 

using Postprep [117]. The median intensity of the different probes per gene was selected as the 

gene expression intensity. CyberT was used to compare the different transcriptomes, taking into 

account the duplicates (dye swaps) of each of the conditions [118]. This analysis resulted in a gene 

expression ratio and false discovery rate (FDR) for each gene. Genes with FDR values under 0.05 and 

with expression ratios greater than 2 or lower than -2 were considered to be statistically significant 

and biologically relevant. All microarray data are MIAME compliant and are available in GEO. 

Venn diagrams 

Differential gene expression of S. suis bacteria grown in CM supplemented with pullulan (Pul) or 

glucose (Glc) and harvested at early exponential (E) or early stationary (S) phase was cross-

compared in different combinations (Pul_E vs Glc_E, Pul_S vs Glc_S, Pul_E vs Pul_S and Glc_E vs 

Glc_S). Overlapping and unique differentials were visualised using Venn diagrams generated by the 

on-line software program Venny, available at http://bioinfogp.cnb.csic.es/tools/vennv/index.html. 

Enrichment analysis using BLAST2G0 

BLAST2G0 was used to annotate all known S. suis genes and proteins according to standard Gene 

Ontology (www.geneontology.org) nomenclature. BLAST2G0 uses the integrated Gossip package 

[59] for statistical assessment of differences in GO term abundance between two sets of sequences. 

This package employs the Fisher's Exact Test and corrects for multiple testing. For our analysis we 

GO term enrichment using standard and more specific settings, employing similarity term filter 

settings ranging from P or FDR<0.05 to P or FDR<0.01. The similarity term takes into account the 

sequence similarity to the homologue sequence (max.sim), modulated by the individual evidence 

code (EC) of its corresponding annotations. 

Searching ere motifs in the S. suis genome using MEME 

The MEME (http://meme.sdsc.edu/meme/meme.html) software suite (version 4.1.0) was used for 

the identification of motifs 0 M 1 and 0M2. MEME represents motifs as position-dependent letter-

probability matrices which describe the probability of each possible letter at each position in the 

pattern and uses statistical modeling techniques to identify likely motifs within the input set of 

sequences [119]. After alignment of sequences that are thought to contain conserved motifs, MEME 

produces a consensus sequence and a position- specific probability matrix, which has probabilities 

associated with each base at each position. As input, we used the promoter sequences of the MdxE 
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and MalE genes, with well-characterised ere sites, from Bacillus and Listeria. A range of motif widths 

(15 nt in length) and zero or one motif per sequence were specified in our queries. 

We then applied the FIMO (Find Individual Motif Occurences) program, using the motif weight 

matrix from the MEME program, to search for the operator motifs (OMs) in the operon as well as for 

a random sequence model based on the letter composition of the target sequence. The algorithm in 

MAST calculates position scores for the motif at each possible position within a sequence [74]. Only 

the motif hits with a position-specific goodness-of-fit P value of less than 10 were considered to 

identify putative CcpA binding sites. In silico searches and comparisons of predicted ere sites within 

the 5. suis genome sequence and reconstruction of ere locations in the predicted opérons was 

conducted using the corresponding databases provided by the MicrobesOnline web server 

(http://microbesonline.org). As a further check for our predictions, we performed a cross-database 

comparison using predicted reference sets of cre-containing régulons that had been annotated for 

Streptococcus species and deposited within the RegPrecise database (http://regprecise.lbl.gov) 

[120]. 

Electron microscopy 

For morphological analysis of the capsule structure, samples of exponential phase (~ 0.5 OD600) 

bacteria were fixed according to the lysine-acetate-based formaldehyde/glutaraldehyde ruthenium 

red-osmium (LRR) fixation procedure, as described previously [8] and studied by JEOL JEM 2100 

transmission electron microscope at magnifications of 25.000 X. 

Titration of hemolytic activity 

The hemolytic activity was assayed as previously described [79]. Two different independent assays 

using triplicate were carried out. Briefly, S. suis bacteria were grown in CM+GIc and CM+Pul at three 

different growth stages: lag (OD600 0.1-0.2) exponential (OD600 0.2-0.5) and stationary (ODG00 0.5-

0.7). The supernatant was collected from 1 ml for each culture by centrifugation at max speed 

(12000g x l min). 

Serial twofold dilutions (150 u.1) of test samples were prepared in polystyrene deep-well titer plates 

(Beekman) with 10 mM Tris-buffered saline (PBS, pH 7.4). Subsequently, 150 ul of a 2% (washed) 

horse erythrocyte suspension in 10 mM Tris-buffered saline containing 0.5% BSA was added to each 

well. After the wells were sealed, the plates were incubated on a Coulter mixer for 2 h at 37°C. After 

unlysed erythrocytes were sedimented by centrifugation (1500 g for 10 min), 150 ni portions of the 

supernatant were transferred to a polystyrene flat-bottom microtiter plate and measured at 540 nm 

with a microELISA (enzyme-linked immunosorbent assay) reader (SpectraMax M5, Molecular 

Devices LLC). A 100% lysis reference sample was obtained by lysing bacteria with 1% Triton-X and 

background lysis was subtracted before calculation of hemolytic activity. 
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Cell line and culture conditions 

Newborn pig tracheal cells (NPTr) [91] were maintained in Dulbecco's Modified Eagle Medium / 

Ham's F-12 (1:1), 5 itiM glutamine (Gibco) supplemented with 10% fetal calf serum (Gibco), without 

antibiotics at 37°C and 5% C02. The cells were seeded into new flasks every 4-5 days by detachment 

of cells from flasks with 0.25% w/v trypsin, 1 mM Na-EDTA (trypsin-EDTA, Gibco-lnvitrogen) and 

replacement of the medium [121]. For the adherence assay, approximately 2.3 x 105 cells per well 

were seeded in antibiotic free complete medium on 12 well tissue culture plates (Costar) and 

incubated until they reached confluence. 

Adhesion and invasion assays using NPTr cell line 

For the adhesion assay, bacteria were pelleted by centrifugation, washed with PBS and resuspended 

at 10 c.f.u./ml in fresh cell culture medium without antibiotics. Bacterial suspensions (around 1.15 x 

10 c.f.u.) diluted in cell culture medium (glucose-free DMEM) were added to wells containing a 

monolayer (2.3 x 10 cell/well) of epithelial cells in 1 ml of medium (multiplicities of infection (m.o.i.) 

were approximately 50 bacteria per cell). Plates were incubated for 2 h at 37°C with 5% C02. The cell 

monolayers were washed three times with PBS and detached and lysed by scraping in 800 u.1 of ice-

cold Milli-Q water. To enumerate the viable bacteria, serial dilutions of each cell lysate were plated 

in triplicate on Columbia sheep blood agar plates and incubated at 37°C for 24 h. The number of 

bacteria recovered in this assay was expressed as a percentage of the original inoculum. For the 

invasion assay, the co-coture bacteria-cells (m.o.i 50) were incubated for 2 h at 37 °C with 5% C02, to 

allow cellular invasion by the bacteria. The monolayers were then washed three times with PBS, 1 

ml of cell culture medium containing 100 uJ/ml gentamicin and 5 u,g/ml penicillin G was added to 

each well, and the plates were incubated for 2 h at 37 °C, 5% C02 to kill extracellular and surface-

adherent bacteria. The monolayers were washed three times with PBS, and cells were disrupted by 

the addition of 800 u.1 of ice-cold Milli-Q water and repeated pipetting to liberate intracellular 

bacteria. To enumerate the viable bacteria, serial dilutions of each cell lysate were plated in 

triplicate on Columbia sheep blood agar plates and incubated at 37°C for 24 h. The rate of invasion 

was expressed as the total number of c.f.u. recovered per well. Assays were performed in triplicate 

and repeated two times. 
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1. Ecological niches of Streptococcus suis 

Infections caused by Streptococcus suis are considered a worldwide economical problem 

for the pig industry [1]. Moreover, S. suis is emerging as a zoonotic pathogen of humans 

due increased awareness of its association with meningitis and septicaemia [2,3]. 

Although 5. suis is considered a major swine pathogen, it has been isolated from a wide 

range of different hosts including domestic animals and birds [3] and has frequently been 

found to be a normal inhabitant of the intestine of a variety of ruminants [4,5]. These 

findings indicate that S. suis can colonize and proliferate in different hosts leading to a 

complex epidemiology [6,7,8,9]. 

S. suis can colonize the buccal gingiva, tonsils, nasal conchae [10], intestine and genitals of 

weaning pigs [11,12]. Disease occurs primarily in young pigs 2-3 weeks of age whereas 

asymptomatic carriage appears to be the norm in older pigs [13,14,15]. However, also in 

young pigs colonization by S. suis does not always lead to disease [5]. 

In the study of Baele et al. (2011) [10], S. suis was found to be the most abundant bacterial 

group isolated from the 40 study pigs; but none showed any symptoms of disease. In this 

study, twelve 5. suis serotypes were found; none of the S. suis strains was of serotype 2, 

and none of the strains expressed the virulence markers MRP or EF (Chapter 1). This does 

not contradict the notion that 5. suis serotype 2 is more strongly associated with disease. 

However, in an earlier study on 38 pigs S. suis serotype 2 strains were isolated from 

diseased as well as healthy pigs [16]. In this study 3 out of the 4 (11%) of the S. suis 

isolates came from healthy pigs and produced bacteriocin-like compounds that inhibited 

growth of other 5. suis strains, as well as several streptococcal pathogens and other few 

Gram+ and - bacteria often associated with microflora of pig tonsils and nasal cavities. 

Thus it is clear that S. suis can colonize pigs asymptomatically, and as such be a member of 

the pig nasal and oral commensal microbiota. 5. suis is among the most abundant bacteria 

in pigs, and it frequently co-occurs with Rothia sp. (/?. nasimurium) [10,17]. Rothia species 

have been associated with disease, at least in human [18,19]. 

In this respect 5. suis might be considered a "pathobiont" which is the term given to a 

symbiont that does not normally elicit any pathology in the host except under special 

circumstances (e.g. in susceptible hosts and environmental conditions including altered 

microbiota). We showed in Chapter 3 and 5 that a change in diet (a diet high in 

carbohydrates and low in glucose, or vice versa) alters virulence gene expression. Thus 
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changes in carbohydrate composition and availability could have a major influence on the 

ability of S. suis to cause disease. 

Changes in commensal microbiota may also influence 5. suis pathogenicity, e.g. via 

synergistic or competitive interactions. Cooperation between bacterial pathogens in order 

to optimize metabolism via quorum sensing [20] and iron uptake [21] has also been 

described. It is therefore of interest to consider that bacteria co-occurring with S. suis 

might complement its metabolism, such as has been shown for short carbohydrate 

conversions in populations of different bacteria co-occurring in the small intestine [22]. 

1.1 Transmission of 5. suis 

Young pigs typically acquire S. suis by vertical or horizontal transmission, resulting in 

colonization of the tonsils, nasal cavity (oropharynx) and occasionally, invasive disease 

leading to bacteremia, meningitis, septicemia and arthritis. Infections of humans have 

been considered for a long time to be sporadic and to have low prevalence and only affect 

people working with pigs or pig-derived products [12]. Two recent large outbreaks that 

occurred in China [23,24,25] changed that perception of the potential threat posed by 5. 

suis bacteria to human health. The current view is that humans become infected via skin 

lesions or via an oral route, due to contact with contaminated pork [3,26]. However, in 

some cases patients did not recall any contact with pigs or pork products [27,28,29,30] 

suggesting other potential routes of transmission. For instance, clinical case studies have 

reported the presence of S. suis in the nasopharynx of workers in the pig slaughter 

industry [31]. In one study, colonisation of the mucosal epithelia with S. suis was 

estimated to be around 5.3% of the case group [32], highlighting this as a potential route 

of invasion. 

Colonization of the nasopharyngeal cavity by 5. suis was shown to be an important risk 

factor for the infection of young pigs [33,34], and in vivo distributions of bacteria have 

pointed toward the pharyngeal and palatine tonsils as principal portals of entry [35]. Other 

circumstantial evidence for invasion via the tonsils comes from the finding that 5. suis 

serotype 2 bacteria were frequently identified in the lymph nodes draining the upper 

respiratory tract [35]. 

Adhesion of S. suis to mucosal epithelia of the nasal and oral cavities is likely to be 

important for colonization, as demonstrated for other opportunistic pathogens that 

colonize the oropharynx [36,37,38]. It is still unclear what triggers the switch from an 
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asymptomatic to pathogenic association of 5. suis with the host. Vulnerability to S. suis 

infection may occur due to weaknesses in host defences including reduced antagonism by 

commensals [10,15], concurrent or sequential infections by other pathogens, or 

environmental factors such as pH and the type of nutrients that are available. 

The purpose of this thesis research was to increase our knowledge of the 

interactions of S. suis with the host in the mucosal environment. The specific aims were 

investigate the following: 

1. The interaction of S. suis with human dendritic cells which are abundant in the mucosa. 

2. The functions of a surface amylopullulanase ApuA that was predicted to be involved in 

the catalytic breakdown of complex carbohydrates found in the oropharyngeal cavity and 

intestinal tract. 

3. The mechanisms regulating expression of ApuA. 

4. How carbohydrate sources alter global regulation of metabolism and importantly, 

expression of virulence factors involved in invasion and dissemination of bacteria. 

2. Alpha-glucans degrading enzymes are key factors for 
colonization of the host oropharynx 

To colonize host mucosal surfaces, bacteria typically must i) survive in critical niches with 

limited nutrient resources, ii) compete with other commensal microbes, iii) bind residues 

of host cell receptors, and iv) avoid or tolerate the host immune defences. Typically, such 

interactions are dynamic and multifactorial and are mediated by a diversity of bacterial 

proteins including surface-exposed, cell wall-anchored and secreted proteins and 

metabolites. 

In the mammalian oropharynx and saliva, different a-glucans (e.g. starch and dextrans) 

are present at high concentrations [39,40,41,42]. Apart from high abundance of starch in 

the animal diet [40,43], eukaryotic glycogen stores, released from damaged or lysed cells 

may be an important substrate for pathogen growth during the early stages of infection 

[44]. In contrast to a-glucans, glucose, the most readily metabolized polysaccharide, is 

present in too low an amount to support S. suis growth, highlighting the need for 

alternative carbon sources to support bacterial proliferation at the mucosal surface 

[45,46]. The importance of a-glucans as substrates to the ecology of bacteria in the oral 

and oro-/nasopharynx niche is evident from the high number of a-glucans-degrading 
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enzymes, maltodextrin transport systems, and the diversity of starch metabolic pathway 

genes that are typically present in genome sequences of commensals or pathogens of the 

host mucosal epithelia [47,48,49,50,51,52,53]. 

Genes encoding carbohydrate-degrading enzymes are common in the genomes of 

streptococcal pathogens and play key roles in nutrient acquisition for colonization of 

mucosal surfaces and proliferation. Transcriptome studies of Streptococcus pyogenes 

growing in saliva and in a mouse infection model [42,54,55,56] have identified genes that 

were highly expressed during the adaptive metabolic responses of bacteria that colonized, 

or dispersed into, different host organs. Among the highly expressed genes were genes 

involved in utilization of a-glucans. The metabolism of these complex carbohydrates 

requires the presence of specific transport systems and catabolic enzymes such as 

amylase, pullulanase or amylopullulanase that permit the utilization of sugars other than 

glucose in the host mucosal environment [52]. 

This led us to consider that 5. suis might be able to survive and proliferate in host mucosal 

epithelia via the degradation of a-glucans that are present in high amounts compared to 

glucose. In Chapter 3 we characterized a large 5. suis surface amylopullulanase (we 

designated as ApuA), which is the only extracellular a-glucan-degrading catabolic enzyme 

found in the sequenced genomes of S. suis, except for the pathogenic S. suis isolate ST3 

(serotype 3) [57] which possesses an additional gene (SSUST3_0537) that is predicted to 

encode a secreted amylase. ApuA was shown to possess both a-amylase and pullulanase 

catalytic activities that can breakdown a-glucans to maltodextrins. The evolution of this 

type of bifunctional enzyme could have resulted from recombination events (fusions) 

between genes encoding an a-amylase and type I pullulanase. Similar events are thought 

to be responsible for the origin of genes encoding bifunctional endo- and exoglucanase 

enzymes in Caldocellum saccharolyticum [58]. Indeed, as shown in Fig. 3.2 of Chapter 3, 

the presence of a bifunctional ApuA gene seems to be peculiarity of S. suis and is not 

found in the sequenced genomes of other streptococcal species. The fusion of both 

catalytic functions in one protein may have provided an evolutionary advantage for S. suis. 

We hypothesized that ApuA would play an important ecological role by allowing 5. suis to 

remain competitive in the environment of the host where environment where food 

sources change. As expected, our phenotypic characterization of apuA mutant 

demonstrated that ApuA was required for fermentative growth on food-derived starch 

and glycogen. Glycogen released from damaged host cells may also be degraded by ApuA 
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and used for fermentative growth. This agrees with the findings that both PulA from S. 

pyogenes and the related pneumococcal pullulanase SpuA bind with high affinity to 

alveolar type II cell glycogen in the mouse lung tissue [44]. 

Apart from its role in carbohydrate utilization, the extracellular pullulanase from S. 

pyogenes has been shown to bind to several carbohydrates including submaxillar mucin 

[49]. Furthermore, recombinant SAP, a type I pullulanase from Streptococcus agalactiae, 

was shown to bind human epithelial cells in vitro [59,60]. In Chapter 3 we investigated the 

possible role of S. suis ApuA in adhesion to a tracheal newborn pig cell line (NPTr) as in 

vitro model. In adhesion assays, our S. suis apuA mutant showed significantly less 

adherence to NPTr cells compared to the wild type S. suis. The host molecule or receptor 

bound by ApuA in vivo has not been identified so far. In S. pneumonia a library of 300 

(PhoA+) fusion mutants were screened against multiple eukaryotic sugar receptors [61]. A 

mutant pullulanase (PulA-PhoA+) was shown to have lost the capacity for adhesion to ß( l -

3)Gal glycoconjugate receptor [62]. Similar studies involving eukaryotic sugar receptors 

need to be performed with S. suis to identify which receptors they bind to in vivo in pigs 

and humans. ApuA is one of four adhesins identified in vitro for 5. suis, together with 

streptococcal adhesin P (SadP) [63], 6-phosphogluconate-dehydrogenase (6PGD-SSU1541) 

[64] and glutamine synthetase (GlnA-SSU0157) [65]. The latter 6PGD and GlnA are 

cytoplasmic glycolytic enzymes that are present on the surface of other pathogens and 

reported to be involved in adhesion to epithelia. 

3. Carbohydrate metabolism in 5. suis 

Before the completion of this thesis, there was little published information about 

carbohydrate metabolismin S. suis and its implications for colonization of host tissues, 

virulence factors production and tissue invasion. Given that we had established a role for 

ApuA in adhesion and as a potential virulence factor involved in mucosal colonization, we 

sought to gain a better understanding of its regulation with the aim of finding correlations 

between the regulation of carbon metabolism and virulence. 

We hypothesized that, in order to most efficiently use the entire spectrum of bacterial 

factors involved in adhesion and nutrient acquisition during the colonization of host 

mucosa, enzymes such as ApuA would need to be tightly regulated, depending on 

substrate availability. Genetic regulatory systems are fundamental to optimize (in terms of 

energy production) expression of adhesins and other colonization factors in response to 
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changes in the environment. The regulation of ApuA was studied using two different 

approaches, one involving transcriptome and qPCR transcript quantification of 5. suis 

grown in defined complex media (CM) containing different carbohydrates, and one 

focusing on transcription factor binding to the apuA promoter region. 

At the start of our study, little was known about the global metabolic potential of S. suis 

except for annotation of the genome and proteome sequence of S. suis P l /7. The latter is 

a sequenced strain that is more than 99% identical to the often used S10 strain. We 

functionally annotated the Pl/7 strain using Gene Ontology (GO) terms and EBI protein 

domain annotations. We found that 1447 ORFs (73.5% of the total number of Pl/7 ORFs) 

matched known proteins [66] and we constructed a metabolic map, using the Cluster of 

Orthologous Group (COG) annotations of all known 5. suis proteins. The metabolic map of 

5. suis is described first time in this thesis and includes more than 80% of the metabolic 

maps known for other Streptococcus species (Chapter 5). The metabolic map indicated 

that like other lactic Streptococcus species, 5. suis is able to ferment a wide diversity of 

sugars, including mono- and di-saccharides but also a-glucans such as glycogen, starch and 

pullulan, to glucose [67]. To date, two ABC transporters and 17 phosphotransferase 

systems (PTSs) for the uptake of carbohydrates have been predicted for S. suis in the KEGG 

database, highlighting the potential for S. suis to ferment a variety of carbohydrates. Like 

other Streptococcus species, S. suis mainly produces energy through degradation of 

glucose via two different metabolic routes: homolactic or mixed-acid fermentation, 

depending on the environmental growth conditions. 

Comparative transcriptome analysis of S. suis grown in pullulan or glucose revealed that 

growth in pullulan induced expression of the maltodextrin utilization gene cluster that 

includes ApuA and the corresponding PTS and ABC transporters. Also induced were two 

intracellular phosphatase enzymes, glgl and malQl, predicted to convert maltodextrins to 

glucose-IP (GlclP). GlclP is then transformed, by intracellular phosphoglucomutase 

(pgm), into glucose-6P (Glc6P) that may enter glycolysis. However, expression of the 

glycolysis pathway genes did not change significantly during growth in pullulan compared 

to glucose, suggesting that activity of this pathway was not altered during growth in both 

carbon sources. Rather, it appeared that the excess of intracellular glucose was converted 

in glycogen as energy reserves or had entered into hexose-pentose carbohydrate 

pathways as an alternative to glycolysis. We noted that the genes that participate in the 

Leloir pathway were highly induced in pullulan compared to glucose. Leloir pathway 
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enzymes catalyze the interconversion of glucose or galactose to activated sugars (UDP-GIc 

and UDP-Gal) which are key components in the biosynthetic pathway of extracellular 

polysaccharides (EPS) production. S. suis, as other lactic acid bacteria, appears to be able 

to metabolize pyruvate, the end product of fermentation, to different end-products 

including lactate, acetate ethanol and formic acid. This pathway appeared to be 

upregulatedduring growth in pullulan, as the genes involved in pyruvate conversion to 

ethanol and lactate were transcribed at higher levels in pullulan compared to glucose. 5. 

suis has an incomplete tricarboxylic acid cycle (TCA cycle) (Fig. 6.1) as reported for other 

Streptococcus pathogens [68,69] and is unable to generate ATP from oxidative 

phosphorylation. 

Other metabolic pathways induced during growth in pullulan were lipid metabolism, 

important for generating lipoteichoic acid (LTA) precursors and membrane phospholipids 

important during adhesion/invasion [70,71], and metabolic pathways for arginine and 

proline, which in S. suis and other Firmicutes are used as reducing agents to maintain 

redox balance [72] during metabolism of pyruvate. 

In order to investigate the effects of a-glucans on global gene expression, we performed a 

transcriptome analysis of S. suis grown in defined complex media (CM) supplemented with 

an a-glucan (i.e. pullulan) or glucose. Fermentation of a-glucans enhanced the metabolic 

activity of S. suis, resulting in a higher biomass production (Fig. 5.1) and production of 

intracellular energy reserves (Fig. 6.1). 
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Aminoacid 

Fig. 6.1: Diagram depicting the major changes in metabolism of S. suis based on transcriptome analysis of bacteria grown in CM 
(see Methods, Chapter 5) supplemented with pullulan and compared to growth in CM with glucose. Continuous and dotting lines 
indicate induction and repression respectively. 

4. Transcriptional regulation of carbohydrate metabolism 

The expression of apuA was highly induced in presence of pullulan or maltotriose (which is 

the most abundant degradation product of pullulan) and repressed in presence of glucose. 

An analysis of the promoter region of ApuA revealed the presence of two transcription 

binding motifs (Chapter 4). Studies conducted on the molecular mechanisms of regulation 

of apuA (Chapter 4) showed that apuA expression was co-regulated by catabolite control 

protein A (CcpA) and a dedicated regulator (ApuR) that we suggest to be an activator that 

induces apuA transcription in the presence of (phosphorylated) maltotriose or maltose. 

Additionally, CcpA, in the presence of rapidly metabolized sugars such as glucose, 

mediates a repression of apuA transcription upon binding to catabolite response elements 

(ere) sites that we predicted to overlap with the apuA -35 promoter region. Similar binding 

sites for ApuR and CcpA were also found in the promoters of the maltodextrin-specific 

157 



Chapter 6 

ABC transporter operon and 4-a-glucanotransferase (malQl) (Chapter 5). We proposed 

that in vivo, dual regulation may ensure that apuA is expressed in the mucosa where 

glucose levels are low and when the substrates that can be degraded by ApuA are present 

(Fig. 5.10). 

Recently, the role of CcpA was investigated by microarray analysis of S. suis strain S10 and 

its isogenic hccpA mutant growth in standard THB culture media. Inactivation of ccpA in 5. 

suis altered expression of 259 genes (13.2% of the genome) including cell surface-

associated virulence factors and capsule genes [73]. In Chapter 5 we searched for ere 

motifs in 5. suis P l /7 and predicted for 172 genes (8.7% of the genome; this number 

included genes belonging to the same operon) that these were under direct control of 

CcpA (Table 5.1). The number of genes is lower than that affected in the bccpA deletion 

mutant possibly due to the inaccuracy of informatics predictions or indirect effects in the 

mutant background. Genes belonging to all main functional classes were represented in 

the ccpA regulon prediction; a relative enrichment of cre-sites was found in the upstream 

regions of genes predicted to encode PTS and ABC carbohydrate transporters (17%), 

proteins with regulatory functions (10%), and enzymes involved in carbohydrate 

metabolism (25%) and in virulence (8%). 

5. Carbon catabolite control and virulence gene regulation in 5. 
suis 

As mentioned above, bacteria alter transcription of carbohydrate utilization genes and 

virulence factor production in response to changes in environmental conditions 

encountered during host colonization and infection [56,74,75,76]. Therefore, pathogenic 

bacteria have developed molecular strategies to directly link regulation of carbohydrate 

utilization and virulence factor production. CcpA has been shown to be important for 

virulence of several streptococcal species, influencing growth, haemolysin production, 

biofilm formation and capsule expression [56,77,78,79]; several virulence factors including 

capsule genes and cytotoxins are directly controlled by CcpA [77,79,80,81,82]. CcpA 

mutants in Streptococcus pneumoniae are often attenuated for virulence in mouse 

infection models [77,80]. However, in Streptococcus pyogenes, CcpA depletion did lead to 

both hypervirulence and hypovirulence, in the same set-up of experimental mouse 

infection [56,82]. 
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Table 6.1: S. suis virulence genes differentially expressed in pullulan (P) compared to glucose (Glc) 

Annotation 

Galactosyl / rhamnosyl transferase 

Tyrosine-protein kinase Wze 

N-acetylneuraminic acid synthase 

Peptidoglycan GIcNAc deacetylase 

D-alanine-poly(phosphoribitol) ligase 

Fibronectin-fibrinogen binding 

Enolase 

Glyceraldehyde-3-P-dehydrogenase 

Di-peptidyl peptidase IV 

6-phosphogluconate-dehydrogenase 

Amylopullulanase 

Glutamine synthetase 

Streptococcal adhesin P 

Arginine deaminase 

Anchored DNA nuclease 

Cell envelope proteinase 

Metallo-serine protease 

Suilysin 

Hyaluronate lyase 

Sortase A 

Serum opacity-like factor 

S-ribosyl homocysteinase 

Muramidase released protein 

Extracellular protein factor 

Protein 

CpsE/F 

Cps2C 

NeuB 

PgdA 

DltA 

FbpS 

eno 

GAPDH 

DpplV 

6-PGD 

ApuA 

GlnA 

SadP 

ArcB 

SsnA 

SspA 

IgAl 

Sly 

Hyl 

SrtA 

OFS 

LuxS 

MRP 

EF 

Function 

CPS biosynthesis 

CPS biosynthesis 

Sialic acid synthesis 

Peptidoglycan 

LTA D-alanylation 

Adhesion ECM 

Adhesion ECM 

Adhesion ECM 

Adhesion ECM 

Adhesion epithelium 

Adhesion epithelium 

Adhesion epithelium 

Adhesion epithelium 

Resistance to acidity 

Host DNA degradation 

Subtilisin-like protease 

IgAl protease 

Haemolysin 

Hyaluronan degradation 

Protein sorting 

Serum opacification 

Quorum sensing 

Unknown 

Unknown 

Virulence 

Attenuated-pi g 

Attenuated-pig 

Attenuated-pig 

Attenuated-pig 

Attenuated-pig 

Attenuated-pig 

no Mutant 

no Mutant 

Attenuated-mouse 

No Mutant 

Not tested 

Attenuated-mo use 

no Mutant 

Not tested 

Not tested 

Attenuated-mouse 

Attenuated-pig 

Unaffected-pig 

Not tested 

Attenuated-pig 

Attenuated-pig 

Attenuated zebrafish 

Unaffected-pig 

Unaffected-pig 

P/GIc 

U 

D 

U 

U 

U 

D 

U 

U 

u 
u 
u 
u 
u 

D 

D 

U 

U 

P/GIc upregulated (U) or downregulated (D) expression when S. suis was grown in pullulan (P) compared to glucose (Glc) 

These results could be explained by considering that CcpA may have a pleiotropic effect in 

host colonization and virulence since it can mediate the repression or activation of 

different virulence factors, depending on the location in the body where 5. suis is actually 

dispersed during the progression of the infection. 

Our transcriptome and ere site analyses predicted that CcpA regulated multiple virulence 

genes in S. suis and that carbohydrate utilization would play a key role in virulence 

regulation in vivo. In Chapter 4 and 5 we reported that the expression of 17 virulence 

genes associated with mucosal adhesion and invasion and avoidance of host defences 

were significantly differentially expressed when bacteria were grown in CM supplemented 

with pullulan (Table 6.1). 

One of these genes encodes a secreted suilysin, a pore-forming toxin which has been 

shown to play an important role in damaging host epithelial [83,84], endothelial [70,85] 

and immune cells [86]. Suilysin is cytotoxic to different cell and tissue types including 

-159 



Chapter 6 

leukocytes [1,3] thereby facilitating bacterial tissue invasion. Increased expression of the 

suilysin gene by S. suis bacteria grown in pullulan (compared to glucose) was concomitant 

with a higher suilysin production in vitro and an increased hemolytic capacity of bacteria in 

vitro assays using horse red blood cells (Chapter 5). 

Additionally, a hyaluronidase (Hyl) gene, encoding an enzyme which is predicted to break 

down hyaluronan, a component from the extracellular matrix of eukaryote connective 

tissue cells, was highly induced in pullulan. Hyaluronidase, in combination with suilysin, 

could contribute to destruction of epithelial tissue, thereby promoting the release of 

glycogen from host cells. Glycogens can be degraded by amylopullulanase, and the 

degradation products (maltotriose/maltodextrin) can be imported by the invading 

bacteria via specific transport systems (MalT, part of the corresponding PTS and MalX part 

of a specific ABC transporter) and then metabolized to sustain bacterial proliferation in an 

infection site (Fig. 6.2). 

Bacterial-induced damage to host epithelia (e.g. brought about by suilysin) may expose 

ECM and may contribute to microbial colonization and infection. Some virulence genes 

could encode factors that contribute to bacterial binding to extracellular matrix (ECM) 

components such as collagen and fibronectin (Table 6.1). 5. suis encodes several additional 

secreted surface proteins that may bind ECM, two of which, GAPDH and peptidyl 

peptidase DppIV, were also induced in presence of a-glucans (Fig. 6.2). 

Bacteria that have translocated across epithelia and have invaded the connective tissue 

are very likely to be perceived by the mucosal immune system including dendritic cells 

(DCs). In Chapter 2, we investigated the fundamental role of capsule during interactions of 

5. suis bacteria with DCs. In addition to capsule production, S. suis may use additional 

virulence factors that modulate DC functions and escape immune surveillance, mainly by 

modulating cytokine release and avoiding phagocytosis. Invading 5. suis bacteria may also 

interact with neutrophils at infection sites. We observed that the ssnA gene that encodes 

a secreted DNase and is potentially involved in the breakdown of neutrophil entrapments 

(NETS) [87], was upregulated in bacteria grown in presence of pullulan (compared to 

glucose). Human and pig plasma cells in the lamina propria secrete large amounts of 

immunoglobulin A (slgA) which is transported to the lumen and secreted via epithelial 

cells into the lumen. Secretory IgA can effectively limits translocation of bacteria and 

several bacterial pathogens encode IgA proteases. In S. suis a metallo-serine protease with 

homology to IgA proteases was shown at hogh concentrations to cleave human IgA [88]. 
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In our experiments, the SspA gene which encodes a secreted serine protease was also 

induced in pullulan compared to glucose. This protease can degrade eukaryote pro­

inflammatory interleukin-8 (IL-8) molecules thereby inhibiting Chemotaxis and infiltration 

of neutrophils and other leukocytes to infection sites in vivo [89,90]. Note that these 

predicted or validated virulence genes were all induced when 5. suis bacteria were grown 

in CM supplemented with pullulan (compared to glucose) and that induction of these 

genes correlated with a significantly increased adherence and cell invasion of bacteria in 

vitro assays using a porcine tracheal epithelial cell line (Chapter 5). 

Defence 

> Proliferation 

Fig. 6.2 Virulence factors upregulated in pullulan and their (confirmed or proposed) role during adhesion to and invasion of 
host mucosal epithelia. 
Secreted suilysin promotes S. suis invasion, possibly by damaging host epithelial barriers exposing basolateral membrane 
receptors or extracellular matrix components (ECM) for interactions with S. suis. Surface-expressed proteins DppIV and GAPDH 
promote binding to ECM components, such as fibrinogen and fibronectin, and degradation of host cells and tissues once the 
epithelial barrier has been breached. Several 5. suis adhesins (ApuA and SadP) and LTA have been reported to contribute to 
cellular invasion [70]. The bacteria can proliferate upon degradation by ApuA of dietary a-glucans or eukaryotic glycogen coming 
from damaged cells in the infection site. Other secreted or cell wall-anchored proteins (IgAl, SsnA and SspA) protect the bacteria 
against the mucosal immune response. 

Abbreviations: ECM, extracellular matrix; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; Sly, suilysin; Hyl, hyaluronidase; 
Dpp IV, peptidyl peptidases; ArcB, arginine deaminase; ApuA, amylopullulanase; SadP, streptococcal adhesin P; SspA, cell 
envelope proteinase; SsnA, (extracellular} DNA nuclease; Igal, metallo-serine protease; CPS, capsule; LTA, lipoteichoic acid. 
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6. The role of 5. suis capsule during infection 

In a previous study, higher levels of adhesion and invasion were obtained with 

unencapsulated mutants compared to wild type strains [91]. Unencapsulated S. suis 

strains, isolated from pigs that had developed endocarditis, also showed increased 

adherence to HEp-2 cell lines and porcine and human platelets compared to capsulated 

strains [91,92]. These findings suggest that the presence or composition of the capsule or 

its charge, may hinder the binding of surface adhesins to receptors on epithelial cells. A 

recent genetic analysis of the capsular polysaccharide synthesis locus of fifteen 5. suis 

serotypes predicted that capsules of serotypes 1, 2, and 14 may contain sialic acid [93]. In 

Streptococcus agalactiae, capsule sialic acid has been shown to increase the hydrophilic 

surface properties of the bacteria and to have an inhibitory effect on phagocytosis [94]. 

Based on these findings, it has been hypothesized that during infection, S. suis could down 

regulate capsule expression for increased adhesion to epithelial cells and, after passing 

the epithelial barrier, in response to external stimuli and after entering the bloodstream, 

up regulate capsule expression for protection against phagocytosis [1]. In a recent study, a 

àccpA deletion mutant of S. suis showed reduced transcription of the capsule gene cps2A 

and reduced thickness of the capsule in electron micrographs [73]. However, reduced 

capsule thickness was not observed in our study when S. suis was cultured in CM plus 

pullulan but no glucose (Chapter 4). The reason for these different findings is not clear but 

may be related to the use of a different serotype 2 strain or differences in the growth 

media (THB vs. CM supplemented by glucose or pullulan). Furthermore, reduced 

expression of the capsule during colonization remains to be proven in vivo. 

The capsule was previously shown to be essential for full virulence of S. suis in a porcine 

infection model [95]. However, not all capsulated isolates of S. suis (including serotype 2) 

are virulent, highlighting the (existence and) relevance of additional virulence factors in 

disease pathogenesis [1]. The capsular polysaccharide was shown to interfere with 

phagocytosis by porcine dendritic cells (DCs) and consequently, the level of DC maturation 

and cytokines production was reduced compared to an unencapsulated strain [96]. DCs 

are important sentinels in the host mucosa that play a key role in immune homeostasis 

and tolerance [97]. Phagocytosis of invading microbes typically results in DC activation and 

antigen presentation to T cells in the Peyer's patches or mesenteric lymph nodes. 
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Cytokines secreted by activated DCs have a major influence on T cell polarization, 

differentiation and clonal expansion [98]. 

Considering the emergence of 5. suis as a significant cause of meningitis in humans, we 

investigated the effect of different European serotypes that have been associated with 

human infections on the maturation and expression of cytokines in human monocyte-

derived DCs. As references, we also included the capsulated S. suis serotype 2 (SS2) and its 

own unencapsulated mutant (SS2J28) in these DC assays. Additionally, we compared the 

efficiency by which the different isolates were phagocytosed by DCs and studied the 

intracellular survival of internalized S. suis serotype 2 isolates. We measured a high 

variation in the induction of cytokine profiles and resistance to phagocytosis between the 

tested strains; the unencapsulated mutant SS2J28 was the most effective in stimulating 

and activating DCs. Interestingly, the capsulated SS2, which is the serotype most 

commonly associated with invasive disease in pigs and humans [99], was least effective in 

activating DCs. This might be due to presence of sialic acid in the capsule. Sialylated 

capsules and sialylated lipo-oligosaccharides are known to render bacteria more resistant 

to complement killing, and sialylation can affect bacterial interactions with neutrophils 

and epithelial cells [94]. 

The contribution of capsule to resistance to phagocytosis became clearly apparent when 

comparing the significantly higher phagocytosis of the unencapsulated SS2J28 with the 

much lower phagocytosis of SS2 capsule-bearing bacteria. It appears that the presence of 

capsule during colonization is needed to shield the bacteria from phagocytosis by DCs. To 

rule out the possibility that the quantified differences in phagocytosis of SS2 and the 

unencapsulated SS2J28 by DCs might be due to strain variation in intracellular survival, we 

measured kinetics survival over a period of 4 hours after phagocytosis. We found that 

once internalized, both the wild-type strain and its unencapsulated SS2J28 were killed at 

similar rates. 

Surprisingly, after 24 hours of incubation, we were still able to recover 103 CFU/ml from 

both strains. This has important consequences for pathogenesis because activated DCs 

eventually undergo apoptosis and may release viable 5. suis. As DCs traffic from the 

mucosa via the blood to lymphoid tissues [35], intracellular survival may enable 

phagocytosed S. suis to disseminate in the body and contribute to invasive disease 

(Chapter 2). 
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7. A revised model of 5. suis colonization and pathogenesis 

Based on the literature and novel results obtained in the course of this thesis we propose 

a revised model for colonization and pathogenesis taking into account the role of 

carbohydrate metabolism (this thesis; Fig. 6.3). 

S. suis bacteria, upon entering the host by a nasal or oral route, will colonize the mucosal 

epithelia. The composition of carbohydrates within this niche can be highly variable 

because of differences in parameters such as diet and resident microbiota. When the local 

carbohydrate composition is low in glucose and high in a-glucans, S. suis bacteria may 

behave as described in Chapter 3 and we propose that ApuA may contribute to adhesion 

of bacteria to host mucosa and acquisition of mucosal carbohydrates (Fig. 6.3 step A). 

During this colonization phase, the capsule may be thinner than when the bacteria are 

growing inside the body to promote adhesion of bacterial surface structures to host 

epithelia, possibly to specific epithelial receptors (Fig. 6.3 step A). 

Invasion of host mucosa may be a consequence of bacterial translocation across epithelia 

or after internalization and transport of bacteria by mucosal DCs (Chapter 2) (Fig. 6.3 step 

B). Eukaryotic glycogen, released by (suilysin) damaged host cells, can be used as substrate 

by ApuA and fermented during growth (Fig. 6.3 step C). Once bacteria have breached the 

epithelium and reach the loose connective tissues of the lamina propria, adhesins and 

proteases such as hyaluronidase are thought to bind and digest components of the ECM, 

promoting spreading of the infection (Fig. 6.3 step C). In the tissues and bloodstream, 

glucose concentrations are substantially higher compared to oral and nasal mucosa or 

saliva. The higher (around 5 mM) glucose concentrations will induce a change in metabolic 

gene expression in order to optimize bacterial metabolism and survival. In presence of 

high concentrations of glucose capsule genes will be induced and capsule thickness will 

increase to protect S. suis from phagocytosis by leukocytes recruited to the site of 

infection (Fig. 6.3 step D). 
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Fig. 6.3: S. su« colonization model of host mucosal epithelia. Sly, suilysin; Hyl, Hyaluronidase; CPS, capsular polysaccharides; DC 
dendritic cells, M o / M Monocytes/Macrophages, IL8-IL10-IL12-TNFa interleukins. The description of pathogenesis steps are 
found in the text. 
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8. The future of 5. suis research in the veterinary and medical 
field. 

S. suis continues to be an unresolved problem for the pig industry due to the lack of new 

preventive measures. New insights from our work suggest a few possible strategies to 

"combat" this important swine and human pathogen. 

1. Is ApuA a vaccine target? Possibly not since apuA may not be expressed in blood. 

However it could be useful to immunize sows with ApuA and test if anti-ApuA 

antibodies in the colostrum protect pigs against pathogenic colonization by S. suis. In 

order to do so, we should validate that ApuA (or other adhesins mentioned in this 

thesis) is (are) expresssed and immunogenic in vivo. Adhesins with demonstrated in 

vivo functionality could be combined in a single vaccine and tested. 

2. In pigs, S. suis is frequently present in the oral cavity. It may be worthwhile 

determining which members of the microbiota could influence 5. suis colonization 

and invasion of the host mucosa. 

3. What is the contribution of resident microbiota in suppression or induction of 

pathogenic factors in 5. suis? If S. suis could be suppressed by certain bacterial 

groups, this could indicate novel approaches for 5. suis control. 

4. In addition, could the diet be a major factor in promoting S. suis pathogenicity while 

at the same time, reducing competition by other bacteria? 5. suis infections of piglets 

are most common around weaning, when piglets no longer receive the sow's milk 

but instead, receive solid pig feed. Interestingly, starch is among the most abundant 

carbohydrate present in the feed of weaned piglets. Since the extracellular ApuA 

enzyme is a unique feature of S. suis, we propose that the unique (compared to other 

bacteria that do not possess extracellular ApuA) capacity of 5. suis to degrade starch 

provides it a major advantage over other resident bacteria. We propose that the 

starch from the piglet's feed provides a rich source of nutrients for S. suis but not for 

other bacteria that lack extracellular ApuA enzymes. Extracellular ApuA therefore 

provides S. suis a huge temporal competitive advantage. This could explain the 

frequent infections of weaned piglets, whereas infections of piglets receiving milk or 

of adult pigs occur far less often. We propose that it could be of interest to modify 

dietary composition to promote growth of competitive bacteria. 
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The last decade has clearly highlighted the clinical relevance of human infections by S. suis 

and the increasing numbers of cases of human infections reported in the literature. 

1. How does S. suis colonize the human mucosa cause and which route(s) is used to 

invade the host? Contaminated pork products have been demonstrated as a source 

for S. suis infections. A possible route of human entry leading to infection could be 

via colonization of the oral cavity, and then enter a bloodstream or other route to 

the brain. 

2. What determines differences in human or pig dendritic cell responses to 5. suis? it 

appears that sialic acid decorations could play a role here [100] although capsule 

sialic acids do not appear to function as virulence factor for serotype 2 isolates [101]. 

3. What (if any) are the correlations between 5. suis serotype and an isolate's capacity 

to disperse and cause disease? It is clear that especially serotype 2 is associated with 

human disease, and that distribution of highly virulent isolates in humans may 

change considerably within a decade [102,103]. 

There are many more research questions to be addressed, all relating to pathogenicity, 

ecology and infection of different hosts by S. suis. Based on the global distribution of 5. 

suis, and increased awareness of S. suis as a cause of human meningitis we anticipate that 

clinical relevance of S. suis as a human pathogen will increase during the coming years. 
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Summary 
Streptococcus suis (Firmicutes, Lactobacillales) is a major pathogen of swine and an 

emerging zoonotic pathogen that induces diverse serious diseases including septicaemia 

and meningitis. 5. suis bacteria show clear characteristics of pathobionts, which are 

symbionts that do not normally elicit any damage in the host except under specific 

circumstances (e.g. host hypersusceptibility or major changes environmental conditions 

including changes in microbiota composition and carbon sources). The purpose of this 

thesis research was to increase our knowledge of the interactions of 5. suis with the host 

mucosa and to investigate conditions that could alter virulence in 5. suis. 

The interaction of 5. suis with human dendritic cells was investigated by measuring 

phagocytosis and intracellular survival of different strain serotypes. Pathogen adhesins 

play a major role in colonization of the host which is typically a re-requisite to cause 

disease. Therefore, the role of an extracellular surface amylopullulanase (ApuA) in 

bacterial adhesion to porcine tracheal epithelial cells was investigated. ApuA indeed 

contributed significantly to bacterial adhesion to host cells and was also required for the 

utilization of a-glucans for fermentative growth. The expression of apuA gene was shown 

to be regulated by the presence of a-glucans (specifically pullulan) and maltotriose a 

breakdown product generated by the catalytic activity of ApuA. To understand the 

mechanisms regulating expression of apuA the roles of an upstream transcriptional 

regulator (ApuR) and the carbon catabolite control protein A (CcpA) were investigated. 

From these studies, it became clear that growth of bacteria in glucose or a-glucans greatly 

impacted on bacterial growth and possibly, on virulence. To determine whether 

carbohydrate sources could alter the global regulation of metabolism and the expression 

of virulence factors, 5. suis whole-genome gene expression microarray experiments were 

performed. Based on the recent literature and novel results obtained in the course of this 

thesis, a revised model for colonization and pathogenesis of 5. suis was proposed, taking 

into account the role of carbohydrate metabolism. According to the model, 5. suis 

bacteria, upon entering the host by a nasal or oral route, colonize mucosal epithelia. The 

composition of carbohydrates within this niche can be highly variable due to differences in 

parameters such as diet and resident microbiota. When the local carbohydrate 

composition is low in glucose but high in complex a-glucans, the expression of several 
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virulence factors is upregulated. This thesis exemplifies how carbon sources determine 

genetic regulation of S. suis metabolism and virulence. The results described in this thesis 

suggest how dietary carbohydrates could influence S. suis virulence and provide 

information that may contribute to the rational design of novel strategies to control this 

emerging zoonotic pathogen. 
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Samenvatting 
Streptococcus suis (Firmicutes, Lactobacillales) is een belangrijk pathogeen van varken en 

een opkomend zoonotisch pathogeen van de mens dat een aantal uiteenlopende ernstige 

ziektes kan veroorzaken inclusief septicemia en hersenvliesontsteking. 5. suis bacteria 

vertonen duidelijke kenmerken van pathobionten, oftewel symbionten die onder normale 

omstandigheden geen schade in de gastheer veroorzaken behalve onder specifieke 

omstandigheden (bv. hypervatbaarheid van de gastheer of drastische veranderingen in de 

omgeving waartoe veranderingen in microbiota samenstelling en koolstof bronnen 

behoren). Het doel van dit onderzoek was het vergroten van onze kennis omtrent de 

interacties van 5. suis met de gastheer mucosa en te onderzoeken welke omstandigheden 

de virulentie van S. suis zouden kunnen veranderen. 

De interactie van 5. suis met humane dendritische cellen werd onderzocht door 

fagocytose en intracellulaire overleving te meten van een aantal isolaten met 

verschillende serotypes. Pathogeen adhesines spelen een belangrijke rol in kolonisatie van 

de gastheer, een algemene voorwaarde om ziekte te veroorzaken. Om die reden werd de 

rol van een extracellulair oppervlakte amylopullulanase (ApuA) enzym in adhesie van 

bacteriën aan varkens trachéale epitheel cellen onderzocht. ApuA droeg inderdaad 

significant bij aan bacterie adhesie aan gastheercellen en was ook noodzakelijk om a-

glucanen voor fermentatieve groei te kunnen gebruiken. Het kon aangetoond worden dat 

de expressie van het apuA gen gereguleerd werd door de aanwezigheid van a-glucanen 

(vooral pullulan) en maltotriose, een afbraakprodukt dat gevormd werd door de 

katalytische activiteit van het ApuA enzym. Om de mechanismen te begrijpen welke 

bijdragen aan regulatie van apuA werden de functies van een upstream transcriptie 

regulator (ApuR) en het carbon catabolite control protein A (CcpA) onderzocht. Uit deze 

studies werd duidelijk dat groei van bacteriën in glucose of a-glucanen in belangrijke mate 

van invloed was op bacteriegroei en mogelijk ook op virulentie. Om vast te stellen of 

carbohydrate bronnen de globale regulatie van metabolisme en expressie van 

virulentiefactoren konden veranderen werden S. suis compleet-genomische genexpressie 

microarray experimenten uitgevoerd. Uitgaande van de recente vakliteratuur en de 

nieuwe resultaten verkregen tijdens de uitvoering van dit promotie onderzoek wordt hier 

een aangepast model voor kolonisatie en Pathogenese van S. suis voorgesteld, met 
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inachtneming van de rol van het carbohydraat metabolisme. Volgens dit model 

koloniseren S. suis bacteriën het mucosale epitheel na binnendringen van de gastheer via 

de neus of mondholte. De samenstelling van de carbohydraten in deze niche kan erg 

verschillend zijn vanwege verschillen in de samenstelling van de lokale microbiota. 

Wanneer de plaatselijke carbohydraat samenstelling van glucose laag is maar a-glucanen 

algemeen zijn neemt de expressie van een aantal 5. suis virulentie genen toe, waaronder 

expressie van suilysin, een bekend cytotoxine. 

In dit proefschrift wordt aangetoond hoe koolstofbronnen de genetische regulatie van 5. 

suis metabolisme en virulentie bepalen. De resultaten die in dit proefschrift beschreven 

worden stellen voor hoe carbohydraten, onderdeel van het dieet, virulentie van S. suis 

zouden kunnen beïnvloeden, en verschaffen informatie die kan bijdragen tot het rationeel 

ontwikkelen van nieuwe strategieën om dit belangrijke, opkomende zoönotische 

pathogeen. 
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