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Chapter 1 

General Introduction 

1.1 Background  

Ex-situ germplasm collections have increased enormously in number and size over the 

last three to four decades as a result of global efforts to conserve plant genetic resources 

for food and agriculture. Globally, over seven million accessions of different crop species 

are conserved in about 1750 genebanks (Upadhyaya et al. 2010). These accessions are of 

a  diverse nature and include landraces, selected lines from landraces, elite breeding lines, 

released varieties, wild and weedy relatives of cultigens, and genetic stocks from 

different areas of origin. Because of this diverse nature,  they can provide all relevant 

allelic diversity necessary for plant improvement.  However, the large sizes of these 

collections hinder full exploitation of all available genetic resources.  The idea of picking 

an accession with genes of interest from say a collection of 80,000 rice accessions is 

simply mind boggling for a breeder and this is  one of the reasons that the potentials of 

plant genetic resources in genebanks have remain largely unexploited.  The approach of 

forming core collections (core sub-sets) was introduced to ensure efficient and effective 

management and utilization of all accumulated plant genetic resources.  Frankel (1984) 

defined a core collection as a limited set of accessions representing, with minimum 

repetitiveness, the genetic diversity of a crop species and its wild relatives. The idea of 

core collections is a radical departure from first generation genetic resource conservation 

thinking which stresses accumulation without much concern about utilization. From the 

original definition, several operational definitions have since been coined (see Brown, 

1995;  van Hintum et al. 2000).  

              

Core collections have many roles to play in the management and use of genetic resources.  

Genebank curators have the responsibility for conservation, regeneration, safety 

duplication, documentation, evaluation and characterisation of the genetic resources in
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 their collections. These activities of the genebank often require the curators to make 

choices or set priorities among accessions because of limited resources (Brown, 1995).  

Because a core collection is smaller in size compared to the whole collection, it enables 

some operations of the genebank, such as evaluation, to be handled more efficiently and 

effectively. The limited size of a core is key to its manageability, and in many cases the 

representation of the collection’s diversity enables the core to function as a reference set 

of accessions for the whole collection (Brown and Spillane, 1999). On the other hand, 

having a small sample of accessions (core collection) representing the diversity exhibited 

by a crop species coupled with evaluation or characterization data would greatly 

encourage the breeders to effectively exploit the potential of these genetic resources. 

Since the inception of the idea of core collections almost three decades ago, a vast body 

of literature on the theory and practice of core collections has accumulated.   Very many 

approaches for selecting core collections have been proposed and used (e.g. M-Strat 

(Gouesnard et al. 2001), Genetic distance sampling (Jansen and van Hintum 2007), 

PowerCore (Kim et al. 2007) and Core Hunter (Thachuk et al. 2009)).  For several plant 

species, core collections have been established using different approaches: sweet potato 

(Huaman et al. 1999), maize (Malosetti and Abadie 2001), chickpea (Upadhyaya et al. 

2001), peanut (Upadhyaya et al. 2002),  rice (Li et al. 2002), soybean (Wang et al. 2006),  

bread wheat (Balfourier et al. 2007) and Chilean common bean (Mario et al. 2010). 

However, several challenges still exist when it comes to making decisions on 

methodologies for selection of core collections.   

Designation of a core collection involves a number of decisions especially on quantitative 

sampling methodologies. The key issues include amongst others:  a) choice of the size of 

core collection b) determination of the genetic structure of germplasm collections 

(stratification/grouping)  c) determination of the number of accession to be selected from 

each group d) method to select  accessions from the different groups and   e) evaluating the 

quality of core collections.    Each of the key issue mentioned above have received research 

attention to a varying degree but a lot still need be done.  In the following section we give 
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brief  descriptions of the challenges that motivated the different aspects of the research that 

led to this thesis. 

1.2 Determination of the genetic structure of germplasm collections 

             

Determination of the genetic structure (partitioning) of heterogeneous germplasm 

collections is an essential component of the sampling of core collections. Partitioning of 

germplasm collections before sampling ensures that both the genetic and the ecological 

spectra of  germplasm collections are fully represented in core collections (Brown 1995; 

van Hintum et al. 2000).  In addition, even in cases where core collections were selected 

without stratification  it may be necessary to associate an accession in the core collection 

with accessions in the entire collection; this association can be based on the group 

structure of the germplasm collection. The determination of genetic structure is also an 

important aspect of association studies (Wang et al. 2005; Shriner et al. 2007); general 

agreements exist among researchers that incorporating population structure into statistical 

models used in association studies is necessary to avoid false positives (Pritchard et al. 

2000b; Flint-Garcia et al. 2003; Zhu et al. 2008).   

             

Whether the genetic structure is needed for use in sampling core collections or for 

association studies, an important challenge still is the choice of a method for determining 

the genetic structure.  In the past, determination of the genetic structure of germplasm 

collections has mainly been done using passport data (van Hintum 2000) or multivariate 

statistical methods such as cluster analysis, principal component analysis, and 

multidimensional scaling, usually based on agronomic data (Peeters and Martinelli 1989; 

Franco et al. 1997, 2005, 2006). However, in recent years, many new methods have been 

developed especially for studying the genetic structure of natural populations using 

molecular markers, e.g. STRUCTURE (Pritchard et al. 2000), PCA (Patterson et al. 

2006) and PCO-MC (Reeves and Richards 2009). Despite the introduction of these 

approaches, most researchers in the plant sciences still use traditional methods especially 

hierarchical clustering techniques for studying genetic diversity in crop species (see 

Folkertsma et al. 2005; Perumal et al. 2007; Barro-Kondombo et al. 2010; D'hoop et al. 
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2010).  The popularity of traditional hierarchical clustering techniques such as Ward’s 

method stems from the fact that they a) require little computer time compared to other 

methods, b) are available in many general statistical packages, c) are frequently used in 

different types of applications and d) the output is easy to interpret. Moreover, traditional 

hierarchical clustering techniques do not require genetic assumptions such as Hardy-

Weinberg or linkage equilibrium. However, with the changes in types, quality and 

quantity of data used for studying genetic structure of germplasm collections, the 

performance of traditional hierarchical clustering techniques ought to be evaluated. For 

example, most evaluations of the performance of hierarchical clustering methods were 

based on data sets of very limited sizes (Milligan and Cooper 1985). In addition, most 

studies carried out to evaluate the performance of hierarchical clustering methods with 

respect to germplasm collections were not carried out molecular marker data (Peeters and 

Martinelli, 1989; Franco et al. 1997, 2005, 2006).  Currently, we are not aware of any 

study in which the performance of hierarchical clustering techniques was evaluated 

specifically using molecular marker data. With the expected reduction in the cost of 

genotyping, researchers will be faced with datasets of thousands of accessions genotyped 

with many  molecular markers so there is strong need to evaluate the performance of the 

traditional hierarchical clustering techniques using large sets of molecular marker data. In 

general it is not clear how traditional clustering will perform under different factors 

affecting genetic diversity like migration and reproductive system of the materials that 

constitute germplasm collections. The response received on a recent paper (Odong et al. 

2011; Chapter 2) on cluster analysis using molecular markers is a good indication of the 

growing interest of researchers in this topic. This paper was consistently the most 

downloaded paper from Theoretical and Applied Genetics for a period seven months 

(April - November 2011) with  over 300 downloads per month. In addition, it has been 

suggested in the literature  (Patterson et al. 2006) that the use of principal component 

analysis (PCA) could boost the performance the traditional clustering technique for 

determining the population genetic structures.  The integration of PCA and cluster 

analysis is likely to contribute tremendously to improving the ability of the traditional 

cluster analysis when determining the genetic structure of germplasm collections 

(Chapter 3).   



5 

1.3 Connecting germplasm collections in different genebanks : Reference sets of 

accessions and molecular markers 

The exploitation of the full potential of plant genetic resources cannot be complete 

without linking information on genetic diversity from the different germplasm collections 

(genebanks) around the world.  It is possible to establish relations between genebank 

collections by defining for each crop a small but informative set of accessions, together 

with a small set of reliable molecular markers, that can be used as reference material 

(reference sets).  The reference material should be an adequate representation of the 

genetic diversity of that crop as stored in genebanks around the world. In that case, 

molecular marker information can be used to place new accessions in the spectrum of 

current accessions. The designation of reference sets will help in the identification of 

overlaps between germplasm collections and this will allow these collections to be 

analyzed together thus enlarging the space of  our inference.  The reference sets can also 

be used to connect different population genetic and quantitative genetic studies, including 

association studies.  However, defining statistical methods for selecting such a 

representative subsets of accessions and molecular markers is a challenge. The 

Generation Challenge Programme –CGP (GCP; http://www.generationcp.org) initiated 

the process of constructing reference sets by genotyping  large numbers of accessions of 

important agricultural crops using microsatellite markers. 

For the selection of such a representative subset of accessions, the ideal method should be 

based on the relationship between the selected accessions (entries) and the accessions not 

selected in the subset.  Most existing algorithms for selection of core collection 

(MSTRAT (Gouesnard et al. 2001), PowerCore (Kim et al. 2007) and Core Hunter 

(Thachuk et al. 2009)) pay more attention to the content of the core collections but tend to 

ignore the relationships between the selected entries and those accessions not included in 

the subset.  In addition, by aiming at maximizing genetic diversity parameters such as 

allelic richness, average distances between selected accessions, methods such as 

MSTRAT (Gouesnard et al. 2001) are likely to select mainly non-representative 
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accessions (“outliers”).  In other words, none of the existing algorithms for selecting core 

collections was developed to select accessions to serve as representatives around which 

the other accessions can be positioned.   

For the selection of a subset of molecular markers, the aim is to obtain a subset of 

markers that would preserve the major population genetic structure in the data.  Currently 

the most common criterion used for selection of molecular markers in plant germplasm 

studies is the polymorphic information content – PIC (Botstein et al. 1980).  It should be 

noted that PIC favors molecular markers with very many alleles of equal frequencies. 

Although molecular markers with high PIC may be good for differentiating between 

individual accessions, those markers are likely to perform poorly with respect to detecting 

differences between groups (population structure). In addition, two markers with high 

PIC may contain similar information and thus introduce redundancy in the subset of 

selected markers.  Consequently, there is a need to come up with methods for the 

selection of subsets of molecular markers which describe the major genetic structure in 

the data with minimum redundancy.  

1.4 Quality criteria for evaluation of core collection 

When comparing the options for assembling core collections, one of the challenges is to 

choose the right evaluation criteria for gauging the quality of the result. Various criteria 

for determining the suitability of a core collection have been suggested in the literature, 

yet very little attention has been given to the analysis of these quality criteria. In fact most 

researchers appear to choose quality evaluation criteria simply because they were used in 

earlier publications. There is a need to clearly define criteria for the evaluation of the 

quality of core collections and to determine the conditions under which these criteria are 

suitable.  For example, a core subset formed for the purpose of capturing rare or extreme 

traits (e.g. high resistance to pest or high yield) should be evaluated differently from one 

formed with the intention of representing the pattern of genetic diversity in the collection.  
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1.5 Study objectives and outline of the thesis 

The work in this thesis aims at improving knowledge associated with the sampling of 

core collections and the roles that core collections have to play in the utilization of plant 

genetic resources. This thesis looked at three key aspects of core collection development 

and its roles in utilization of plant genetic resources: a) determination of the genetic 

structure of germplasm collections and the relevance of the genetic structure in core 

selection and utilization of germplasm resources in general b) creating links between 

genetic resources stored in different parts of the world and c) critical examination of 

criteria for evaluating the quality of core collections. 

In chapter 2 we study the appropriateness of traditional hierarchical clustering techniques 

(Ward’s method and UPGMA) for determining the structure of germplasm collections 

using molecular marker data. The relationships between criteria used for evaluating the 

output of cluster analysis (co-phenetic correlation coefficient and agglomerative 

coefficient) and population genetic structure parameters (F-statistic) will be explored. 

The performance of hierarchical clustering techniques will be compared amongst 

themselves and with STRUCTURE (Pritchard et al. 2000). STRUCTURE is a computer 

program especially developed for studying the population structure of natural 

populations. Real and simulated data sets were used in the study.  

Chapter 3 we  look at the possibilities of using principal component analysis (PCA) to 

boost the performance of traditional hierarchical clustering techniques for determining 

the genetic structure of germplasm collections. In this chapter we will study the ability of 

the Tracy-Widom distribution to accurately determine the number of genetically 

differentiated groups in germplasm collections. The significant principal components 

(PCs) based on the Tracy-Widom distribution will be used for the grouping of accessions 

usinga traditional hierarchical clustering technique (Ward’s method) and a model-based 

clustering method (Mclust).  The performance of Ward’s clustering technique using 

Euclidean distance based on significant PCs (reduced data set) will be compared with 

clustering based on several other distances measures calculated using the full data set.  
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In chapter 4 we propose and discuss several statistical techniques for defining a 

representative subset of accessions and molecular markers that can be used for 

connecting genetic resources in different genebanks. We will study  Genetic Distance 

Optimization (GDOpt)  as a suitable method for the selection of a representative set of 

accessions. For the selection of molecular markers we will evaluate backward elimination 

methods as well as methods based on principal component analysis. The current practice 

of using the polymorphic information content (PIC) as a criterion for selecting molecular 

markers will be used as a baseline against which the other methods will be compared.  

Chapter 5 we critically examine criteria for quality evaluation of core collections. We 

will define different types of core collections and relate each type of core collection with 

suitable quality evaluation criteria. We propose distance-based evaluation criteria and 

evaluated their performance using real data sets.  

Finally chapter 6 provide a general discussion and draw conclusions. 



T.L. Odong • J. van Heerwaarden • J. Jansen • Th.J.L. van Hintum • F.A. van Eeuwijk 
(2011) Determination of genetic structure of germplasm collections: Are traditional hierarchical 
clustering methods appropriate for molecular marker data? Theor Appl Genet 123(2):195-205: 
doi 10.1007/s00122-011-1576-x

Chapter 2 

Determination of genetic structure of germplasm collections: Are traditional 

hierarchical clustering methods appropriate for molecular marker data? 

Abstract  

Despite the availability of newer approaches, traditional hierarchical clustering remains 

very popular in genetic diversity studies in plants. However, little is known about its 

suitability for molecular marker data. We studied the performance of traditional 

hierarchical clustering techniques using real and simulated molecular marker data.  Our 

study also compared the performance of traditional hierarchical clustering with model-

based clustering (STRUCTURE).  We showed that the co-phenetic correlation coefficient 

is directly related to subgroup differentiation and can thus be used as an indicator of the 

presence of genetically distinct subgroups in germplasm collections.  Whereas UPGMA 

performed well in preserving distances between accessions, Ward excelled in recovering 

groups. Our results also showed a close similarity between clusters obtained by Ward and 

by STRUCTURE. Traditional cluster analysis can provide an easy and effective way of 

determining structure in germplasm collections using molecular marker data, and, the 

output can be used for sampling core collections or for  association studies.
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2.1 Introduction 

Information about the structure of germplasm collections is of great importance for both 

the conservation and utilization of genetic resources collected in genebanks. Because of 

the diverse nature of genebank germplasm materials (landraces, selected lines from 

landraces, elite breeding lines, released varieties, wild and weedy relatives of the 

cultigen, and genetic stocks from different areas of origin), they provide all relevant 

allelic diversity necessary for plant improvement.  These materials are therefore very 

suitable for example for association studies (D’hoop et al. 2010).  However, the large 

numbers of accessions accumulated in genebanks reduce the efficiency and effectiveness 

with which these genetic resources can be exploited.  The approach of forming core 

collections (core sub-sets) was introduced to solve the above problem. Frankel (1984) 

defined a core collection as a limited set of accessions representing, with minimum 

repetitiveness, the genetic diversity of a crop species and its wild relatives.  

Determination of the genetic structure (partitioning) of heterogeneous germplasm 

collections is an essential component in the sampling of core collections since 

partitioning of germplasm collections before sampling ensures that both the genetic and 

the ecological spectra of  germplasm collections are fully represented in core collections 

(Brown 1995; van Hintum et al. 2000).  In addition, it may be necessary to associate a 

accessions in the core collection with the entire collection; the association can be based 

on the group structure. 

The determination of genetic structures of germplasm collections is also an important 

aspect of association studies (Wang et al. 2005; Shriner et al. 2007).  General agreement 

exist among researchers that incorporating population structure into statistical models 

used in association mapping is necessary to avoid false positives (Pritchard et al. 2000b; 

Flint-Garcia et al. 2003; Zhu et al. 2008).  The general model for association mapping can 

be written as “phenotype = marker + genotype + error”,  and test for a marker effect is 

equivalent to  testing for a QTL. Typically genotype is a random factor whose effects are 

structured by kinship or population structure. This simple model can be improved by 

incorporating information on the relationships between the genotypes a.k.a. population 



11 

structure.  The relationship between phenotype and marker can be tested within the 

different groups (e.g. Remingston et al. 2001; Simko et al. 2004) or genetic groups can be 

used as an extra factor or as a covariate in modelling the relationship (e.g. Thornsberry et 

al. 2001; Wilson et al. 2004).  Yu et al. (2006) went further by introducing a mixed model 

approach which incorporates both population structure (Q) and kinship (K) in modelling 

the relationship between phenotype and marker. Another important method for 

incorporating population structure in association studies involves the use of principal 

components (Price et al. 2006).   

 Whether the genetic structure is needed for use in sampling core collections or for 

association studies, an important challenge  still is the choice of a method for determining 

the genetic structure of germplasm collections.  In the past determination of the genetic 

structure of germplasm collections has mainly been done using traditional multivariate 

statistical methods such as cluster analysis, principal component analysis, and 

multidimensional scaling, usually based on agronomic data (Peeters and Martinelli 1989; 

Franco et al. 1997, 2005, 2006).  

  

In recent years, many new methods have been developed especially for studying structure 

in natural populations using molecular markers, e.g. STRUCTURE (Pritchard et al. 

2000a), PCA (Patterson et al. 2006) and PCO-MC (Reeves and Richards 2009). These 

methods can also be used for studying genetic structure in germplasm collections. 

However, traditional hierarchical clustering is still a very popular method for studying 

genetic diversity in crop species (see D'hoop et al. 2010; Barro-Kondombo et al. 2010; 

Perumal et al. 2007; Folkertsma et al. 2005).  Its popularity stems from the fact that it 

requires little computer time compared to other methods, it is available in many general 

statistical packages, it is frequently used in different types of applications and it is easy to 

understand. Moreover, it does not require genetic assumptions such as Hardy-Weinberg 

or linkage equilibrium. Hierarchical clustering requires decisions about the distance 

measure, the clustering algorithm and the evaluation of dendrograms, amongst others.  

Most  evaluations of the  performance of hierarchical clustering methods were based on 

data sets of limited size (Milligan and Cooper 1985). In addition, most studies carried out 
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to evaluate the performance of hierarchical clustering methods with respect to germplasm 

collections were on non-molecular marker data (Peeters and Martinelli, 1989; Franco et 

al. 1997, 2005, 2006).  We are not aware of any study in which the performance of 

hierarchical clustering techniques were evaluated specifically using molecular marker 

data. With the expected reduction in the cost of genotyping, we will be faced with 

datasets of thousands of accessions genotyped with several molecular markers so there is 

strong need to evaluate the performance of the traditional hierarchical clustering 

techniques using large sets of molecular marker data. The structure of genetic diversity in 

germplasm collections is totally different compared to natural populations. It is not clear 

how traditional clustering will perform under different factors affecting genetic diversity 

like migration and reproductive system of the materials that constitute germplasm 

collections. As pointed out by Mohammadi (2003), very few studies in plant genetic 

diversity have critically analyzed the performance of different clustering procedures 

especially with respect to molecular markers.  

  

Several methods for evaluating the results of hierarchical clustering techniques exist. 

When performing hierarchical cluster analysis, we are interested in answering some of 

the following questions: 1) is there agreement between the original distances and the 

distances between individuals as represented by the dendrogram 2) what can the 

dendogram tell us about structure in the data set and 3) what is the optimum number of 

clusters for a given data set?  One of the most popular measures of agreement between 

the original distances and the distances in dendrogram is the co-phenetic correlation 

coefficient (CPCC) (Sokal and Rohlf 1962); another measure is the stress criterion of 

Kruskal (1964). Only a few measures for the presence of hierarchical structure can be 

found in the literature. Kaufman and Rousseeuw (1990) proposed the agglomerative 

coefficient (AC) as a criterion for measuring the amount of hierarchical structure in the 

data. A large number of methods have been proposed to deal with the optimum-number-

of-clusters problem.  A classical study is that of Milligan and Cooper (1985) who 

examined the performance of 30 of such criteria. Since then many criteria for determining 

the optimal number of clusters were introduced: the silhouette statistic (Rousseeuw 

1987), Krzanowski and Lai’s index (Krzanowski and Lai 1988), the gap method 
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(Tibshirani and Walther 2001), the Clest method (Dudoit and Fridlyand 2002), the jump 

method (Sugar and James 2003) and the weighted gap method (Yan and Ye 2007). In 

general, little attention has been paid to the behaviour of the above measures and methods 

in relation to molecular marker data from germplasm collections. A literature search 

indicated that so far no study tried to relate the amount of genetic structure in a 

germplasm collections to the performance of hierarchical cluster analysis techniques. The 

main objective of our study is to determine a relationship between dendogram evaluation 

criteria such as CPCC, AC to subgroup differentiation (genetic structure). In addition, we 

also compared the performance of hierarchical clustering techniques with model-based 

clustering methods. 

  

In this paper, the merits of hierarchical clustering techniques for application in 

germplasm collections will be considered. The materials and methods section contains a 

brief description and overview of clustering techniques, the evaluation criteria and the 

methods used for generating simulated data.  The real data set used for illustration in this 

paper is also described. In the results section, we present results of cluster analysis of 

both real and simulated data sets. We compare the results of two traditional hierarchical 

clustering techniques (UPGMA and Ward) with the model-based cluster analysis 

program STRUCTURE (Pritchard et al. 2000a), and show using simulated data how 

different evaluation criteria of hierarchical cluster analysis are related to subpopulation 

differentiation.    
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2.2  Material and Methods 

2.2.1 Motivation of the study 

This study was motivated by the need to study genetic diversity of several important food 

crops under the  Generation Challenge Programme-GCP (www.generationcp.org). The 

Generation Challenge Programme is a broad network of partners from international 

agricultural research institutes and national agricultural research programs collectively 

working to improve crop productivity in the developing world, especially environments 

prone to drought, low soil fertility, pests and diseases. All the real data sets used in this 

study were generated under GCP subprogram I – Crop Genetic Diversity. 

2.2.2 Data

Real data:  The real data that will be used to illustrate methods consist of 1014 accessions 

of coconut (Cocos nucifera) genotyped with 30 SSR markers. The accessions were 

collected from different regions of the world: West Africa (32), North America (52), 

South Asia (62), Latin America (72), Central America & the Caribbean (109), East Africa 

(124), South East Asia (183) and the Pacific Islands (380).  Coconut is a diploid, mainly 

out-crossing species. Most of the accessions in this collection were indicated as tall; 43 

dwarf accessions were present mainly from South East Asia. Dwarf coconuts have a high 

degree of self-fertilization. Because of its usefulness, coconut has been extensively 

distributed around the world. For this study, the coconut data were selected because it 

contained larger numbers of accessions of each of the diverse origins (a typical genebank 

germplasm collection). 

Two additional data sets, on potato (Solanum species) and common bean (Phaseolus 

vulgaris), are described, analyzed and discussed in Appendix 1. The potato data (233 

accessions; 50 SSR markers) contained several unique accessions which act like outliers. 

All accessions used in this study are diploid. Unlike coconut and potato, common bean is 

a predominantly selfing species. The common bean data (603 accessions; 36 SSR 

markers) consist of accessions of two distinct types, Mesoamerican and Andean. 

Simulated data Marker data were simulated by SimuPOP (Peng and Kimmel 

2005),  a forward-time population genetic simulation environment. We used a finite 
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island (Wright, 1931) and a stepping stone (Kimura, 1953) migration models. In each 

generation, random mating (with 2% selfing) was assumed to produce a diploid genotype 

for 30 unlinked loci for each individual, which had a certain probability  of migrating to 

another subpopulation. We simulated 1000 individuals in five subpopulations of varying 

subpopulation differentiation levels (differentiation between subpopulations was 

determined by migration rates and number of generations).  The migration rates used in 

this study were 0, 1 and 2 migrants per subpopulation.  At each of the 30 loci, the average 

allele frequency of coconut data was used as the starting allele frequency for the 

simulation. Within each parameter set, all the loci had the same mutation dynamics, 

which occurs according to a K-allele model (KAM).  Under the KAM model, there are K 

possible allelic states, and any allele has a constant probability of mutating into any of the 

other K–1 allelic states (Crow and Kimura 1970).  A mutation rate of 2 x 10-5 with 50 

possible allelic states was used in the simulation.   The mutation parameters were set to 

mimic highly polymorphic markers such as SSR markers. However, in this case the role 

of mutation is very limited since we used a limited number of generations in the 

simulation.  In addition to using alleles from real data as starting frequencies for 

simulation, the numbers of generations for the simulations were restricted (from 5 to 200 

generations) to mimic the situation of agricultural crops in the genebanks.   

2.2.3 Distance 

In this paper, we used genetic distances (D) based on the proportion of shared alleles 

(PSA) where  

D = 1 - PSA, and 

MffPSA ma

M

m

A

a
ma

m

/),min( 2
1 1

1=
= =

, 

where in diploids maf 1  and maf 2  are the frequencies of allele a ( a =1, 2… mA ; mA is the 

total number of alleles for molecular marker m ( m =1, 2… M )) in individuals 1 and 2, 

respectively, and 1or0 2
1

21 ,f,f mama = . For more information on the proportion of shared 

alleles as similarity measure, see Bowcock et al. (1994), Chakraborty and Jin (1994) and 
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Chang et al. (2009). The effect of distance measures on the grouping of accessions will be 

considered in another paper.      

2.2.4 Clustering Techniques 

Hierarchical clustering techniques  From the literature on determination of the 

structure of plant germplasm collections, the most popular clustering methods are 

Unweighted Pair Group Method with Arithmetic Mean  (UPGMA; (Sokal and Michener 

1958)) and Ward’s method (Ward 1963). For the purpose of this study, only these two 

hierarchical clustering methods (hereafter referred to as UPGMA and Ward) will be 

discussed; both methods are well described in  Kaufman and Rousseeuw (1990) and 

Johnson and Wichern (2002).

   

The differences between hierarchical clustering algorithms lie mainly in how the 

distances between pairs of objects or clusters are defined. In UPGMA the distance 

between two clusters is defined as the unweighted mean of the distances between all pairs 

of accessions, one from each cluster. At each step, the two nearest clusters are joined. 

Ward employs analysis of variance (ANOVA) approach for calculating the distances 

between clusters. For each pair of clusters, the sum of squared deviations between each 

accession and the centre of the new cluster (error sum of squares) is calculated and the 

pair of clusters that yields the lowest error sum of squares are merged. In other words at 

each step in the clustering process, the effect of the union of every possible pair of 

clusters is considered, and the two clusters that produce the smallest increase in error sum 

of squares are joined.  It should be noted that both UPGMA and Ward use Lance and 

William’s recurrence formula (Lance and Williams 1967) to operate directly on any 

distance matrix. 

Model-based clustering techniques  The most popular model-based clustering 

technique is STRUCTURE (Pritchard et al. 2000a; Falush et al. 2003, 2007). 

STRUCTURE assumes a model with K populations; K may be unknown. It is assumed 
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that within populations loci are in linkage equilibrium and Hardy-Weinberg equilibrium; 

STRUCTURE assigns individuals to populations to achieve this.  

Evaluation Criteria 

Co-phenetic Correlation Coefficient   The Co-phenetic Correlation Coefficient 

(CPCC) is a product-moment correlation coefficient between co-phenetic distances and 

distance matrix (input distance matrix) obtained from the data. The co-phenetic distance 

between two accessions is defined as the distance at which two accessions are first 

clustered together in a dendrogram going from the bottom to the top. The CPCC therefore 

measures the relationships between the original pair wise distance between accessions 

(true distances) and pair wise distances between accessions predicted using the 

dendogram. Farris (1969) proved algebraically that among the traditional hierarchical 

clustering algorithms, UPGMA always produces the highest CPCC; earlier this was 

shown empirically by Sokal and Rohlf (1962). 

Agglomerative Coefficient   The Agglomerative Coefficient (AC) 

described by Kaufman and Rousseeuw (1990), is one of the methods proposed for 

quantifying hierarchical structure. The agglomerative coefficient is defined as 

final

average

d

d
AC = 1 , 

where averaged   denotes the average distance at which each object merges with one or 

more objects for the first time, finald  is the distance at which all the objects are merged 

into one cluster.  It is clear from the formula that AC is highly affected by the distance 

( finald ) at the final merger of the algorithm i.e. as long as the value of finald  is high 

relative to averaged , AC will always be close to one. The use of AC in plant diversity 

studies is quite limited but it has been used in other fields.  
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Determining the optimal number of clusters 

Milligan and Cooper (1985) evaluated 30 rules for determining the optimal number of 

clusters. For illustration, one of the best six methods according to Milligan and Cooper 

(1985), the point biserial correlation, will be compared with the average silhouette 

coefficient  proposed by Rousseew (1987). The two criteria were chosen because of their 

easy interpretation. The Point-Biserial Correlation (PBC) (Milligan 1981) is defined as 

the correlation between corresponding entries in the original distance matrix and a matrix 

consisting of zeros and ones indicating whether two objects are in the same cluster or not. 

This is an easy measure of the resemblance between the distance matrix and the resulting 

tree.  

The Average Silhouette Coefficient (ASC) (Rousseeuw 1987) combines the concepts of 

cluster cohesion and separation; it relates distances between objects within the same 

cluster with distances between objects in different clusters. The silhouette coefficient ( s ) 

of an object is calculated as: 

),max(/)( ababs = , where a  is the average distance of an object  to all the objects in 

the same cluster and b  is the minimum  average distance between an object to objects in 

any of the other clusters.  

The average silhouette coefficient for each cluster is calculated by averaging the 

silhouette coefficients of all the objects in the cluster.  An overall measure of the quality 

of the clustering is obtained by computing the average silhouette coefficient over of all 

objects in the data. Two other criteria (C-Index (Hubert, 1976) and method based on FST) 

for determining the optimum number of clusters are discussed in Appendices 2.  In 

applying the criteria for determining optimum numbers of clusters, each dendrogram was 

cut into a specified number of clusters K( = 2, 3 … 10) and values of the criteria for 

determining the number of clusters were calculated and plotted against K.  For both PBC 

and ASC, the number of clusters (K) at which the plot of K versus the value of the 

criterion is maximum  is considered as the optimum number of cluster for a given data 

set. It should be noted that all these criteria do not directly test for the presence of one 

cluster (K =1).   
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2.2.5 Data analysis 

Real data.   After performing cluster analysis using UPGMA and Ward, 

CPCC and AC were calculated. The results from hierarchical cluster analysis were also 

compared with the results from STRUCTURE with regard to cluster composition and 

appropriate number of clusters. 

STRUCTURE was run under the assumption of an admixture model with independent 

allele frequency model. No  prior information was used. Calculations were carried with 

the number of subgroups K ranging from two to 10 with three independent repeats for 

each K and with 100,000 iterations of which the first 30,000 were used as burn-in.  

Simulated data  In this paper the analysis of variance (ANOVA) approach 

(algorithm described by (Yang 1998)) and implemented in Hierfstat package in R by 

(Goudet 2005) was used to calculate subgroup differentiation (FST). To explore the 

relationships between FST and clustering evaluation criteria, datasets from different 

simulations were pooled together and then grouped based on the strength of subgroup 

differentiation into groups (each containing 100 datasets) with similar realized values of 

FST.    Hierarchical cluster analysis was performed using Agglomerative Nesting (Agnes) 

procedure (Kaufman and Rousseeuw 1990) of the package Cluster of R.  

The ability of UPGMA and Ward to recover the subpopulations in the simulated data was 

evaluated using overall cluster purity (Zhao and Karypis 2004). Overall purity  was 

calculated as follows. Let 
i

ij
ij m

m
p =  be the probability that a member of cluster i  (i = 

1,2,…, I) belongs in reality to subpopulation j  (j = 1, 2,…., J), ijm  is the number of 

members of subpopulation j  allocated to cluster i  and im  is the number of members of 

cluster i . The purity for each cluster ( ip ) is defined as the maximum probability of 

correct assignment of cluster i to one of the subpopulations, i.e. ( ),pmaxp ij
j

i =  and over 

all purity is defined as 
=

k

i
i

i p
m

m

1

.
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2.3 Results 

2.3.1 Coconut  

Both dendrograms (UPGMA and Ward) resulted into two major clusters (Fig 1),  but 

clear differences were evident within these clusters. For example, any attempt to produce 

more than two clusters from each dendogram result into groups of very different 

structures with UPGMA resulting into highly unbalanced clusters in terms of sizes, 

(many of the clusters contained one or two accessions) compared to Ward.  UPGMA 

(CPCC = 0.82) preserved the original distance matrix better than Ward (CPCC = 0.74). 

The two dendrograms had very different values of AC (Ward: 0.97; UPGMA: 0.58).   

Fig 1: Dendrograms for the coconut data a) Ward; b) UPGMA. Dendrograms produced by Ward and 
UPGMA are clearly different with respect to branching. Ward dendrogram had Cophenetic Correlation 
Coefficient (CPCC) of 0.74 and Agglomerative Coefficient (AC) of 0.97 while UPGMA had CPCC of 0.82 
and AC of 0.58. The two major clusters in the two dendrograms had similar compositions (Accessions 
associated with Indian and Atlantic Oceans versus those associated with the Pacific Ocean) 

a) b) 
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When applied to the Ward dendogram, both criteria for determining the optimum number 

of clusters  (PBC and ASC) identified two as the optimal number of clusters for the 

coconut data (Fig 2 a) and b)). However, when applied to UPGMA dendrogram, PBC 

was not able to identify an optimum number of clusters i.e. changing the number clusters 

from two to ten produced very similar correlations (Fig 2 a).   STRUCTURE (method by 

Evanno et al. 2005) also showed two as the optimum number of clusters (see Appendix 

1).  

Fig 2: a) Plot of the Point-Biserial Correlation (PBC) versus the number of groups for the UPGMA and 
Ward dendograms for the coconut data. b) Plot of the Average Silhouette Coefficient (ASC) versus the 
number of groups for the UPGMA and Ward dendograms for the coconut data.  For both criteria, the 
number of groups (K) for which the criterion is maximum (or point where the plot flattens off) indicates the 
optimum number of clusters. Both criteria show two as the optimum number of clusters

Composition of clusters 

The two major groups identified by both UPGMA and Ward contained accessions 

associated with the Pacific Ocean versus accessions associated with the Atlantic and 

Indian oceans. These two major groups were also observed when clustering was done 

using STRUCTURE (K=2) (see Fig 3). While further subdivision obtained from Ward’s 

dendogram led to formation of clusters/groups which coincided with groups based on 
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passport data (region of origin), this was not possible with UPGMA.  In terms of 

grouping of accessions, the results from STRUCTURE are quite similar to those of Ward.  

In fact, for the number of groups (K) equal two, three or four, the groups formed by 

STRUCTURE were almost identical to those produced by cutting Ward’s tree to produce 

the same number of clusters (Fig 3). For example, by specifying (K = 3), both 

STRUCTURE and Ward resulted into the following three groups: 1) accessions 

associated with the Atlantic and Indian oceans 2) accessions from Central America 

(Panama)  and 3) other accessions associated with the Pacific ocean. Similarity between 

groups formed by STRUCTURE and Ward was also observed for the potato data (see 

Appendix 1).  

2.3.2 Simulated data 

The two migration models (Island and Stepping stone) yielded identical results so only 

the results of the Island model will be shown. The simulated data sets varied greatly with 

respect to subpopulation differentiation with realized FST ranging from 0.010 to 0.431. In 

general, the values of CPCC increased with subgroup differentiation (expressed as FST); 

UPGMA produced a consistently higher CPCC than Ward (Fig. 4). The difference in 

CPCC between UPGMA and Ward decreased with increasing subgroup differentiation. 

AC also increased with subpopulation differentiation for both UPGMA and Ward (Fig. 

4). In this case Ward showed a higher AC than UPGMA; Ward reached the maximum 

value of one with FST just over 0.1, i.e. the curve flattens off much quickly. 
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Fig 3: A) Bar plots for individual coconut accessions generated by cutting the Ward dendogram into a 
specified number of clusters/groups; the numbers of clusters from top to bottom were 2, 3, 4 and 5. The 
clusters are represented by different colours. Each column represents one accession. The labels below the 
bar plots indicate the regions of origin of the coconut accessions. B) Bar plots for individual coconut 
accessions generated by STRUCTURE 2.2 using the admixture model with independent allele frequency 
model based on 30 SSR markers; the numbers of clusters from top to bottom were 2, 3, 4 and 5. The groups 
are represented by different colours. Each bar is partitioned into segments indicating its genetic 
composition, the longer the segment the more an accession resembles one of the groups. The labels below 
the bar plots indicate the regions of origin of accessions. 
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Fig 4: A) Relationship between Cophenetic Correlation Coefficient (CPCC) and subgroup differentiation 
(FST) for the simulated data A) Relationship between Agglomerative Coefficient (AC) and subgroup 
differentiation (FST)  for the simulated data. Each data point is the average of 100 datasets with similar 
subgroup differentiation. 

Identification of the optimum number of groups 

Cutting of UPGMA trees resulted into highly unbalanced clusters (one or two clusters 

containing the majority of accessions with several other clusters with 1 or 2 accessions 

like in real data); only results for Ward is presented. The performance of the criteria for 

determining optimum number of clusters also depended on the amount of subgroup 

differentiation (Fig. 5). With relatively weak population differentiations (FST <0.08), all 

methods performed quite poorly in identifying the correct number of groups.  At  low 

differentiation levels, most criteria for determining optimum number of clusters gave two 

as the appropriate number of clusters.   We also noticed that for a number of data sets 

with weak subgroup differentiations the values of criteria for determining optimum 

number of clusters either kept rising or falling, or kept fluctuating to an extent which did 

not allow determination of an optimum number of clusters. At higher levels of  

population differentiation (FST > 0.2) the performances of became similar.  
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Fig 5: Percentages of simulated data sets for which the Point Biserial Correlation (PBC) and the Average 
Silhouette Coefficient (AC) identified the correct number of clusters versus the subgroup differentation 
(FST) (results from Ward only). Each point is based on 30 simulated data sets. 

From Fig 6 it can be observed that Ward performed well in recovering the 

subpopulations.   Except for relatively weak subpopulation differentiation (FST < 0.05), by 

cutting the trees into five groups, Ward produced clusters of which over 90% of the 

members were from one subpopulation. The poor performance of UPGMA methods in 

recovering the original subpopulations, even with high subgroup differentiation, is due to 

the fact that UPGMA produced highly unbalanced clusters. 
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Fig 6:  Plot showing the difference in ability of Ward and UPGMA to recover known subgroups in the data 
based on cluster purity. Each point is based on 100 datasets of similar FST values. Data sets with zero 
migration rates were excluded since we were mainly interested in low to medium subgroup differentiation. 

2.4 Discussion 

This paper shows that, if used with care, traditional cluster analysis provides a simple and 

powerful tool for determining the genetic structure of germplasm collections using 

molecular marker data. Traditional cluster analysis is available in many standard 

statistical packages and does not require special purpose software like STRUCTURE. In 

addition, when clustering individual accessions, the performance of hierarchical 

clustering techniques depends only on subgroup differentiation,  not on the migration 

models used to simulate the data, provided that descrete subgroups are present. 
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Based on our results, CPCC can be used as an indicator for the strength of subgroup 

differentiation. A high CPCC ( 8.0CPCC ) with both UPGMA and Ward is an 

indication of the presence of reliable population structure in the data.  Although it has 

been shown theoretically and empirically that UPGMA always produce dendograms with 

a higher CPCC than other clustering algorithms (Farris 1969),  our simulation results 

showed that, if distinct groups exist, the difference in CPCC between UPGMA and Ward 

is expected to be small and this difference gets smaller as subgroup differentiation 

increases. The differences in CPCC between Ward and UPGMA in real data also appear 

to reflect the degree of distinction between the groups in the data.  For example, the 

common bean data with two distinct groups (Mesoamerican versus Andean) had a much 

smaller difference (0.07) in CPCC between Ward and UPGMA compared to potato data 

(0.17) with many unique accessions.  For taxonomic applications (see Rohlf (1992)), it is 

recommended that CPCC should be very high ( 9.0>CPCC ) for a dendogram to be 

useful. Our results indicate that  when clustering large numbers of accessions the CPCC 

obtained using Ward is not likely to be greater than 0.85 unless the subpopulations are 

highly differentiated (FST >0.25). This is due to the fact that Ward tends to form balanced 

clusters which may include outlying accessions (Jobson 1992); UPGMA tends to form 

unbalanced clusters assigning outlying accessions to separate clusters. 

The usefulness of AC as a method for quantifying the amount of hierarchical structure in 

the data appears to be quite limited especially when applied to Ward. For Ward, the 

distance at which all clusters finally join is often much larger than the distance at which 

objects are joined in a cluster for the first time. All the three real data sets show very 

similar AC (0.97, 0.94, and 0.90 for coconut, potato and common beans respectively) 

with Ward but marked differences observed for UPGMA (0.58, 0.77, and 0.67 for 

coconut, potato and common beans respectively). Several studies in the literature have 

also obtained high AC values ( 95.0 ) with Ward and have used these results to either 

justify the use of Ward clustering algorithms or to conclude that there is substantial 

amount of structure in the data (Fan et al. 2004, Cushman et al. 2010, Negro et al. 2010). 

Based on our results which showed that Ward can result in a high AC even  for a 

homogenuous population, these conclusions can be misleading. We suggest that further 
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modification should be made before AC can be used in conjunction with Ward.  It should 

be noted that AC was initially proposed to describe the strength of the hierarchical 

structure as obtained by UPGMA (Kaufman and Rousseeuw 1990). The rather low values 

of AC ( 75.0< ) obtained from UPGMA dendograms even for highly differentiated 

subgroups could be attributed to a chaining effect (tendency of a clustering algorithm to 

pick out long string-like clusters (see Johnson and Wichern (2002)) caused by outliers.  

UPGMA dendrograms with high CPCC but a very low AC value ( 6.0< ) often indicate 

the presence of many unique accessions or small groups of accessions (together with two 

or more large groups).  The use of CPCC and AC (only with UPGMA) together can 

roughly tell us the degree of fit, the presence and strength of subgroup differentiation.  

The poor performance of criteria for determining the number of clusters may be 

explained by the presence of weak subgroup differentiation found in many germplasm 

collections. Accessions in genebanks are not random samples but selections based on 

factors such as geographical distribution/location, accessibility or even perceived 

uniqueness. The inability of criteria to determine the optimum number of groups or 

clusters in a dataset is not limited to hierarchical cluster analysis techniques.  Falush et al. 

(2003, 2007) stated that the method for determining the number of populations in 

STRUCTURE most often fails in real-world data sets due to various reasons (e.g.  

isolation by distance or inbreeding). The tendency for these criteria to show two as an 

optimal number clusters for the real data could be attributed to the presence of dominant 

groups (Evanno et al. 2005; Yan and Ye 2007).  In the cases where dominant groups 

overshadow minor subdivision, sequential detection of structure as described by Yan and 

Ye (2007) could offer solutions.  Based on the poor performance of criteria for 

determining optimum number of clusters with UPGMA, it is clear that when the cluster 

sizes are highly unequal, as will often be the case in germplasm collections, applying 

criteria for determining optimum number of clusters makes little sense.  In the case of 

association studies, one way of getting around the problem of identifying optimal number 

of clusters could be to use the relatedness based on co-phenetic distances (predicted pair 

wise distances between accessions) directly to correct for population structure just like 

kinship or other relatedness information is used (K matrix). Studies have shown that 
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correcting for population structure using the K matrix may be sufficient (see Zhao et al. 

2007, Stich et al. 2008, Astle and Balding 2009). Our analysis show a high correlation 

between co-phenetic distances and dissimilarity between accessions based on the first two 

axes of principal coordinate analysis (see Appendix 2).  However, further study is 

required to assess the usefulness of co-phenetic distance in association mapping studies.  

  

Our simulation results showed that Ward was very successful in recovering the original 

subgroups in the data if they were present and distinctly separated.  In addition, because 

the nature of groups formed by Ward,  the dendrograms can be evaluated using standard 

criteria such as those for determining the number of clusters.  However, in the presence of 

many unique or intermediate accessions the groups formed by Ward will not be 

homogeneous.  In this case, the differences in CPCC between UPGMA and Ward can be 

quite helpful in deciding which method to select. In situations in which both UPGMA and 

Ward have high CPCC ( 8.0 ), Ward will have many advantages over UPGMA. 

However, in a situation in which only UPGMA has CPCC 8.0  and there is a big 

difference (>0.1) in the values of CPCC between UPGMA and Ward, it will be preferable 

to use the groups formed by UPGMA. 

  

In conclusion, traditional cluster analysis (UPGMA and Ward) provides an easy and 

effective way for determining structure in germplasm collections. In addition to being 

simple to apply (using standard statistical software) and simple to interpret, it is possible 

to determine the presence and strength of subgroup differentiation as well as the presence 

and influence of unique accessions in the collection. It provides a good alternative for 

STRUCTURE or PCA in association analyses. It can be combined easily with mixed 

model facilities that are available in standard statistical packages. Although our 

simulations were based on random mating, similarity of results between the real data 

from both out-crossing (coconut and potato) and selfing species (common bean) clearly 

indicate that traditional cluster analysis can be applied in both mating systems.   
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Appendices 

Appendix 1: Results of additional real data 

a) Coconut  

Fig 7: Detection of true number of groups (K) in the coconut data using method described by Evanno et al 
2005. The programme was run for K=1 to 10 and for each K value, STRUCTURE was run 20 times. With 
this method, it is only possible to test for presence of more than one (K>1).   
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Fig 8 a) 

Fig 8 b) 

Fig 8: a)  Heatmap of the relationships between accessions based on co-phenetic distances calculated using 
the Ward dendogram. The colours associated with the rows of the heatmap indicate the different regions 
from which the accessions were obtained b) Plot of the first two axes of a principal coordinate analysis with 
the letters and colours showing the regions from which the accessions were obtained (A (green)-Atlantic 
Ocean; I (blue)-Indian Ocean; P1 (black): Pacific Ocean (South East Asia); P2 (Red)-Pacific Ocean 
(dwarf); P3-Pacific Ocean (the Pacific Islands); P4-Pacific Ocean (Panama)).  
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b) Potato 

Data   The data used in this study consisted of 233 diploid accessions genotyped 

with 50 SSR markers. The accessions were collected from different regions of South America 

(Bolivia – 44; Colombia – 80; Ecuador – 16 and Peru - 91).  Potato is an out-crossing species 

with a substantial level of self-pollination. The 233 diploid accessions came from four species (S. 

ajanhuri (22); S. goniocalix (47); S. phureja (105) and S. stenotomum (59)).  

Dendrogram, CPCC and AC   Dendrograms are given in Fig 9. The potato data 

showed many more differences between the results of the different clustering algorithms than the 

coconut data. Ward (CPCC = 0.62) performed poorly in preserving the original pair wise 

distances between accessions compared to UPGMA (CPCC = 0.89). With regard to quantification 

of the hierarchical structure the difference between Ward (AC = 0.94) and UPGMA (AC = 0.77) 

was smaller than for the coconut data (0.97 for Ward versus 0.58 for UPGMA).  

Fig. 9: Dendrograms for potato for Ward (A) and UPGMA (B). Clear differences can be observed amongst 
the clustering techniques. Ward dendrogram had Cophenetic Correlation Coefficient (CPCC) of 0.62 and 
Agglomerative Coefficient (AC) of 0.94 while UPGMA had CPCC of 0.89 and AC of 0.77.  

Determining the optimum number of clusters   The criteria for determining the number 

of clusters applied to the Ward did not agree on the optimum number of clusters (PBC: 4; C-

index: 2; ASC: 6 and FST-based method: 3). C-index had local optima at four and three clusters 

(Fig. 10).  A similar disagreement was observed with the UPGMA dendrogram (PBC: 3; C-Index, 

FST and ASC: 2).  It should be noted that the groups resulting from the two dendrograms were of 
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different sizes and compositions. For STRUCTURE, the plot of log-likelihood versus the number 

of groups K did not provide a clear indication of the optimum number of clusters. However, for 

potato it is clear that the number of clusters is less than eight (there is a sharp drop after k=5). 

Fig 10:  Plot of the criteria for determining the optimum numbers of clusters for UPGMA and Ward 
dendrograms for potato data.  For PBC (A), ASC (B) and FST-based criteria (D), the number of clusters 
with the maximum value of the criteria (or the number where the graph starts leveling off) is the optimum; 
the opposite applies to C-index (C). 

Composition of clusters   While Ward split accessions into two major clusters S. ajanhuri

(mainly accessions from Bolivia and Peru) versus the other species (S. goniocalix, S. phureja and 

S. stenotomum; accessions from Colombia and Ecuador), UPGMA first isolated three accessions 

of S. ajanhuri (all from Bolivia) from all other accessions.  As for coconut, most clusters formed 

by cutting UPGMA trees consisted of 1 or 2 accessions.  

  

In terms of composition of clusters, results of STRUCTURE and Ward showed a good agreement 

(see Fig.  11). For example, for K =2 STRUCTURE and Ward both split the accessions into S. 

ajanhuri (from Bolivia and Peru) versus S. goniocalix, S. phureja and S. stenotomum (from 

Colombia and Ecuador).   
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Fig 11 a) Bar plots for individual potato accessions generated by cutting the Ward dendrogram into 2, 3, 4 
or 5 groups (from top to bottom). Groups are represented by different colours. Each column represents one 
accession.  The labels below indicate the potato species.

Fig 11 b) Bar plot for individual potato accessions generated by STRUCTURE 2.2 using the admixture 
model with independent allele frequencies based on 50 SSR markers for 2, 3, 4 or 5 groups (from top to 
bottom). Groups are represented by different colours. Each column represents one accession. Bars may 
consist of different segments representing its composition; the longer a segment the more an accession 
resembles the corresponding cluster. The labels below indicate the potato species. 
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c) Common Bean (Phaseolus vulgaris) 

Data   The data consisted of 603 accessions with 296 being described as 

Andean and 307 as Mesoamerican types genotyped with 36 SSR markers.  These accessions 

originated from 24 different countries, most of them coming from Peru (184), Mexico (183), 

Guatemala (62), Ecuador (37), Colombia (30) and Brazil (24).   

Dendrogram, CPCC and AC   Dendrograms are given in Fig. 12. For common 

bean, both clustering methods preserved the original pair wise distances between the accessions 

quite well. With a CPCC of 0.92, UPGMA performed better than Ward (0.85). Ward indicated 

the presence of hierarchical structure better than UPGMA (AC of 0.97 versus 0.66). 

Fig 12 Dendrograms for common bean for Ward (A) and UPGMA (B); dendrograms are clearly different 
with respect to branching. Ward dendrogram had Cophenetic Correlation Coefficient (CPCC) of 0.85 and 
Agglomerative Coefficient (AC) of 0.97 while UPGMA had CPCC of 0.92 and AC of 0.66. The two major 
clusters in the two dendrograms had similar compositions (Andean versus Mesoamerican type) 

Determining the optimum number of clusters   The criteria for determining the 

optimum number of clusters produced conflicting results for the common beans(Fig. 13) and in 

most cases it is not straight forward which k produce optimum value of the criteria.  For Ward, 

the following approximate optima were found, PBC: 4, ASC 2 and FST: 6. For the C-index it was 

not possible to determine an optimum number of clusters. For UPGMA, the optimum number 

number of clusters were PBC: 6, ASC: 2, FST: 6. Also, for UPGMA C-index did not indicate an 

optimum number of clusters.   



36 

Fig: 13:  Plot of the values of criteria for determination of optimal number of clusters against the number of 
clusters for both UPGMA and Ward dendrograms.  For PBC (A), ASC (B) and FST-based criteria (D), the 
number of clusters with the maximum value (or where the graph starts leveling off) of the criteria is the 
optimal number of clusters; the opposite applies to C-index (C). 

Composition of clusters   Cutting the UPGMA and Ward dendrograms into two 

groups led to the separation of the Andean and Mesoamerican types. Further cutting of the 

UPGMA dendrogram resulted into highly unbalanced clusters with respect to size. For example, 

with six clusters, three clusters contained three or fewer accessions.  
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Appendix 2: Additional results from simulated data 

Fig. 14 shows a sample of dendrograms for Ward and UPGMA obtained using simulated data 

sets. These dendrograms show again that usually Ward dendrograms are highly balanced, 

dividing objects in major groups, whereas UPGMA dendrograms are usually highly unbalanced, 

forming small groups of objects.    

Fig 14: UPGMA and Ward dendrograms for three simulated data sets of different subpopulation 
differentiations (FST = 0.009 (A), 0.05(B) and 0.1(C)). The dendrograms show changes in CPCC, AC and 
branching patterns as subgroup differentiation increase from A to C. 

Determining the optimum number of clusters   From the simulations, it was 

only possible to get sensible results when the criteria for determination of optimum number of 

clusters were applied to Ward. Cutting of UPGMA dendrograms resulted into highly unbalanced 
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groups. The performance of the criteria for determining the optimum number of clusters rules also 

depended on the level of differentiation between subpopulations(see Table 2). The simulation 

results indicated that with weak population differentiation (FST <0.08), all methods performed 

quite poorly in identifying the correct number of groups.  With relatively weak differentiation 

between subpopulations, most criteria for determination of optimum number of clusters indicated 

two as the appropriate number of clusters. We also noticed that with weak differentiation between 

subgroups values of the criteria kept fluctuating to the extent that it was not possible to determine 

a knee or a dip indicating an optimal number of clusters. Beyond a certain level of population 

differentiation (FST > 0.2) the performance of all criteria become quite similar (see Table 2). 

  

Table 2 Percentage of simulated data sets (based on 30 datasets per group) in each category for 
which each criteria for determining the number of clusters identified the correct number of 
clusters (results from Ward only) 
 Criteria  

Group 
mean FST ASC (%) PBC (%) C-index (%)* FST (%)** 

0.0123 0 0 3.3 20 
0.0347 23 43 27 20 
0.0637 73 80 50 77 
0.0836 87 90 53 97 
0.1335 93 93 67 100 
0.1998 93 93 77 100 
0.2503 100 93 100 100 
0.3039 100 100 100 100 
0.3528 100 100 100 100 

*C-Index: This criterion is only based on distances between objects within  clusters and is calculated as 

follows:    )/()( minmaxmin SSSSIndexC =
in which S is the sum of pair wise distances between objects within the same cluster summed over all 

clusters. If l  is the number of pairs of objects used to calculate S, then minS  and maxS are the sum of the l

smallest and the l largest distances between all pairs of objects (i.e. ignoring the presence of clusters). 
**FST-based criterion:  FST directly measures genetic divergence among clusters.  Wright (1951; 1965) 
defined FST  as the correlation between two alleles chosen at random within a subpopulation relative to 
alleles sampled at random from the total population. In this case, FST is calculated between clusters 
obtained by cutting dendrograms into specified numbers of clusters. Theoretically, the optimum number of 
clusters should result in the highest FST-value. In this paper the analysis of variance (ANOVA) approach 
was used to calculate FST, more specifically the algorithm of Yang (1998) as implemented in the Hierfstat 
package of R (Goudet 2005).  
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Chapter 3 

Principal components analysis improves ability of hierarchical cluster analysis 

methods for recovering the genetic structure of germplasm collections 

Abstract 

Understanding the genetic structure of germplasm collections is a prerequisite for effective and 

efficient utilization of genetic resources stored in genebanks. Although recent developments in 

genetics and statistics have led to the development of  new tools for studying genetic structure of 

populations, the old, and usually simpler approaches such as hierarchical cluster analysis are still 

very popular with scientists.  Our study explores the potential of combining two classical 

multivariate statistical techniques, cluster analysis and principal component analysis (PCA), for 

understanding the genetic structure of germplasm collections.  The two-step approach involves 

first applying PCA to molecular marker data followed by cluster analysis using significant 

principal components (PC) only.  The determination of the number of significant PC is done 

using the Tracy-Widom (TW) distribution.  The parameters of the TW distribution only depend 

on the dimensions of the allele frequency matrix.  In this study we compared the performance of 

cluster analysis (Ward and model-based hierarchical clustering) using reduced sets of significant 

PC  with cluster analysis using the full data set.  For reduced sets of PC, Ward’s clustering was 

performed on Euclidean distances, while for the full data sets three other distance measures 

(proportion of shared alleles, Jaccard and simple matching) were used. Clustering (Ward and 

model-based clustering) using reduced sets of PC performed much better than clustering using 

full data sets both in terms of recovering groups as well as in determining the exact number of 

groups.  The improvement in performance was most noticeable in cases with low population 

structure. In conclusion,  PCA in combination with cluster analysis provides a very useful tool for

studying genetic structure of heterogeneous germplasm collections, which can be carried out 

using standard statistical software. 
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3.1 Introduction 

Knowledge of the genetic structure of heterogeneous germplasm collections is essential 

when forming core collections (Brown 1995; van Hintum et al. 2000), and in association 

studies (Wang et al. 2005; Shriner et al. 2007).  Hierarchical clustering techniques such as 

Ward and UPGMA are still among the most-used methods for determining structure, and 

a recent study by Odong et al. (2011) indicates that they are also very useful when 

molecular markers have been used to characterise the collection.  Unlike programs such 

as STRUCTURE (Pritchard et al. 2001), hierarchical clustering techniques require little 

computer time, and moreover, they are simple to use. However, both traditional 

clustering algorithms and programs such as STRUCTURE do not always perform very 

well with germplasm data especially when it comes to the determination of the number of 

clusters. Principal component analysis (PCA) has been suggested to enhance the 

performance of clustering techniques (Patterson et al. 2006, Lee et al. 2009).  In this 

study, we explore the possibility of boosting the performance of hierarchical cluster 

analysis using PCA.   

Recent developments in population genetics theory have provided interesting avenues for 

exploiting the information that molecular markers contain about population 

differentiation. It has been shown that there is a direct theoretical relationship between 

population genetic structure and principal components (Patterson et al. 2006, McVean, 

2009). In particular, the distribution of eigenvalues associated with principal components 

is determined by the number of independent sources of differentiation (i.e. 

subpopulations) present in the dataset. Moreover, the distance between groups along the 

major PCs has been shown to be proportional to the level of genetic differentiation 

(McVean, 2009). PCA has been successfully used with SNP data for determining the 

number of different populations (Patterson et al. 2006) and to assign individuals to these 

populations (Lee et al. 2009). The usefulness of this novel application of PCA in 

understanding the genetic structure of germplasm collections is yet to be exploited, 

especially using multi-allelic markers such as Single Sequence Repeat (SSR) markers. 

SSR markers are still among  the most commonly used molecular markers for germplasm 
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characterization. For PCA to be useful for determining the number of subpopulations, the 

assumptions are a) the number of markers is greater than the number of individuals and b) 

the molecular markers used should be independent or unlinked (Patterson et  al. 2006). It 

should be noted that unlike the SNP data used in previous studies (Patterson et al. 2006; 

Lee et al. 2009 ) in which the markers are usually much greater in  number than the 

individuals, in most germplasm collection data, this difference (between number of 

individuals and number of markers) is much smaller. In addition, when SSR markers are 

treated as binary markers (each allele is coded 0 (absent) or 1 (present)), the assumptions 

of independence of the different columns in the data matrix is violated.  

Because of the multi-allelic nature of SSR markers, various methods for determining the 

(dis)similarity (hereafter referred to as distances) between individuals or subgroups exist; 

there is no standard way of handling SSR markers.  For example, when SSR markers are 

treated as binary markers (each allele is coded for presence or absence), a binary-based 

distance measure such as Jaccard (Jaccard 1908) can be applied (Anthony et al. 2002; 

Cordeiro et al. 2003; Balestre et al. 2008). Another common distance measure for SSR 

markers is based on the proportion of shared alleles (Chakraborty and Jin 1994;  Chang et 

al. 2009).  The performance of different distance measures for cluster analysis has not yet 

been extensively evaluated.   In this study, we use real and simulated data sets to explore 

the effect of data reduction using PCA on the clustering of germplasm collections using a 

traditional hierarchical clustering technique (Ward’s method) and a model-based 

hierarchical clustering technique (Mclust, mixture of normal distributions; Fraley and 

Raftery 2002; Fraley 2006). Ward and UPGMA are the two most commonly used 

hierarchical clustering techniques in plant germplasm studies. Ward was selected for this 

study because it has been shown to perform much better with molecular marker data than 

UPGMA (Odong et al. 2011).   Model-based clustering was used previously with SNP 

data and shown to perform quite well (Lee et al. 2009).  We also evaluated the effect of 

different distances measures (Euclidean, proportion of shared alleles (Bowcock et al. 

1994, Chang et al. 2009), Jaccard (Jaccard 1908) and simple matching (Sokal and 

Michener 1958) for clustering germplasm collections using SSR markers.    
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3.2 Materials and Methods 

3.2.1 Description of  data sets 

Real data 

A coconut (Cocos nucifera) data consist of 1014 accessions genotyped with 30 SSR 

markers. The accessions were collected from different regions of the world (West Africa 

– 32; North America – 52; South Asia – 62; Latin America – 72; Central America & the 

Caribbean – 109; East Africa – 124; South East Asia – 183; the Pacific Islands - 380).  

Coconut is a diploid, mainly out-crossing species.   Most of the accessions in this 

collection are described as tall; only 43 dwarf accessions mainly from South East Asia 

were present. Dwarf coconuts have a high degree of self-fertilization. More than half (19) 

of the 30 SSR markers have known positions on the linkage map; they are well spread 

across the genome. 

Simulated data      

Marker data were simulated using SimuPOP (Peng and Kimmel 2005),  a forward-time 

population genetic simulation environment. We used a finite island model (Wright 1931) 

and a stepping stone (Kimura 1953) migration model. In each generation, random mating 

(with 2% selfing) was assumed to produce  diploid genotypes for 30 unlinked loci. We 

simulated 1000 individuals in five and eight subpopulations and 750 individuals in 15 

subpopulation with varying levels of subpopulation differentiation (differentiation 

between subpopulations is determined by migration rate and number of generations).  The 

migration rates used in this study were 0, 1 and 2 migrants per subpopulation per 

generation .  At each of the 30 loci, the average allele frequencies of the coconut data 

were used as the starting allele frequencies for the simulation. Within each parameter set, 

all loci had the same mutation dynamics, according to a K-allele model (KAM).  Under 

the KAM model, there are K possible allelic states, and any allele has a constant 

probability of mutating into any of the other K–1 allelic states (Crow and Kimura 1970).  

A mutation rate of 2 x 10-5 with 50 possible allelic states was used in the simulation.   

The mutation parameters were set to mimic highly polymorphic markers such as SSR 
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markers. However, in this case the role of mutation is very limited since we used a 

limited number of generations in the simulation.  In addition to using alleles from real 

data as starting frequencies for simulation, the numbers of generations for the simulations 

were restricted (from 5 to 200 generations) to mimic the situation of agricultural crops in 

genebanks.   

3.2.1 Genetic distance measures  

Because SSR markers are multi-allelic in nature genetic similarities or dissimilarities 

(hereafter referred to as distances) between individuals or groups are calculated in several 

ways.  In this paper, four different types of genetic distances between accessions were 

used.  

a) Distance based on proportion of shared alleles  

The genetic distance (D) between individuals (accessions) i and j based on the proportion 

of shared alleles (PSA) was calculated as  

D_PSA ij = 1 – PSAij, 

Where  LffPSA jla

L

l

A

a
ilaij

l

/),min(
1 1= =

= . 

In diploids ilaf  and jlaf  represent the frequencies of allele a ( a =1, 2… lA ; lA  is the total 

number of alleles for molecular marker l ( l =1, 2… L ) in individuals i and j, respectively; 

i j = 1, 2 … N). It should be noted that in this paper PSAij refers to proportion of shared 

alleles between (diploid) individuals rather than populations; as a consequence 

1or,0, 2
1=jlaila ff . For more information on the proportion of shared alleles as 

similarity measure between populations, see Bowcock et al. (1994), Chakraborty and Jin 

(1994) and Chang et al. (2009).  
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b) Euclidean distance 

The Euclidean or straight line distance between two individuals i  and j , having 

observations on P quantitative variables denoted as iPii xxx ,...,, 21   and jPjj xxx ,...,, 21  is 

given by 

22
22

2
11 )(...)()(_ jpiPjijiij xxxxxxEuclD +++= . 

 In this study the variables Pxxx ,...,, 21   are the principal components obtained from the 

molecular marker data.   

c) Distances based on coding SSR markers as binary data

For the calculation of genetic distances between individuals, it is common practice to 

treat SSR markers as binary markers (Anthony et al. 2002; Cordeiro et al. 2003; Balestre 

et al. 2008).   In this case, each allele is treated as a binary variable (0 = absence, 

1=presence). Because they are among the most frequently used distances in the genetic 

diversity studies, the Jaccard (Jaccard 1908) and simple matching (Sokal and Michener 

1958) distances have been selected for this study. The major difference between the two 

distances is that for Jaccard double-absent matches are ignored, while for simple 

matching they are included. It should be noted that   the double-absent matches do not 

contain useful information in the case of multi-allelic SSR markers. However, simple 

matching distance is included in this study for reference purposes.  For each allele, the 

results of individuals i and j can be summarized in a contingency table: 

Individual i

   
In

di
vi

du
al

 j 

 Present Absent 

Present aij bij 

Absent cij dij
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where aij + bij + cij + dij = A  (A is total number of alleles for all the L SSR markers).  

The distances based on binary coding of SSR markers are calculated as follows  

i) Jaccard distance

ijijij

ij
ij cba

a
JACD

++
= 1_

ii) Simple matching distance  

ijijijij

ijij
ij dcba

da
SMD

+++

+
= 1_  

It is common to convert similarity measures into distances  without using the square root, 

but the square root gives distances the Euclidean property (Gower and Legendre, 1986). 

The Euclidean property is important, because it is a requirement of many multivariate 

analysis methods such as principal coordinate analysis, hierarchical cluster analysis, 

hierarchical classification, and graph theory (Gower, 1985). However, empirically we 

found that conversion of similarity measures into distance measures with or without using 

the square root had no effect on the formation of clusters. 

3.2.3 Principal component analysis  

PCA  does not attempt to classify individuals into discrete subgroups but instead it 

characterizes each individual by coordinates (PC) along the major axes of variation. In 

this paper we investigate how these coordinates can be used to improve the results of both 

hierarchical and model-based clustering methods.    

We treat each allele from an SSR marker l as a bi-allelic marker. The data can be 

represented as a rectangular matrix G of which the number of rows is equal to number of 

individual accessions N and the number of columns is equal to the total number of alleles 

(A)  (
=

=
L

l
lAA

1

, where lA is the number of alleles from SSR marker l (l= 1, 2 …, L )). 
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The matrix G contains allele counts 0, 1 or 2.  Before performing PCA, the matrix G is 

standardized by subtracting column means followed by dividing columns by their 

standard deviation (see Patterson et al. 2006).  We performed PCA using the function 

prcomp in R.  

Determination of eigenvalues and the Tracy Widom test  

Eigenvalues 

It has been shown recently that, in the absence of genetic structure and for independent 

markers, the leading eigenvalue of the covariance matrix of a normalized G matrix 

follows a Tracy-Widom (TW) distribution (Tracy 1994; Patterson et al. 2006). This fact 

has been exploited to determine the number of genetically different groups in genotypic 

datasets (Patterson et al. 2006).  If there are k genetically different groups in a dataset, the 

number of significant eigenvalues based on TW distribution is expected to be k-1 

(Patterson et al. 2006). In performing the TW test, Patterson et al. (2006) assumed that 

the SNP being analyzed were independent.  It is clear that this assumption will be 

violated when the TW test is applied to SSR data since alleles from the same SSR marker 

are not independent.  To get around this problem, we have adapted the procedure to 

handle SSR markers as follows: 

a) Perform PCA on a matrix Gl (l =1,2,...L, L is the number of SSR), the sub-matrix of 

matrix G containing only alleles from SSR marker l. Let  Gl* (l=1, 2, ….., L) be  the 

matrix of which the columns consist of PC (from matrix Gl) explaining more than 

0.5% of  the variance. Removing PC which explain less than 0.5% of the variance  

eliminates noise so that it will become easier to detect the correct number of major 

groups. Removing non-important PC is similar to the idea of determination of the 

effective number of alleles.  

b) Form a matrix G* of which the columns consist of the columns of the matrices 

G1*, G2*,..., GL*  obtained from step (a) above. The columns of the matrix G* are 

thus effectively independent (when the loci (SSR markers) are independent) 
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leading to an approximate TW distribution of eigenvalues (Tracy, 1994). The 

assumptions that markers are independent still holds.  

c) Perform an eigenvalue decomposition on the matrix X =
n

1
 where 

        G** is obtained by standardizing the matrix  G* (from each column of matrix 

        G*, we subtract the column mean and divide by its standard deviation) and n  is  

        the number of columns of matrix G*  .  

Tracy-Widom distribution 

Patterson et al. (2006) provided a detailed description of the TW distribution and its 

application for the detection of population structure. A brief review is provided below.  

Following the notation of Patterson et al. (2006), consider an m × n  matrix  M with 

( nm < ),of which each entry contains an independent standard normal random variable.  

Let  '1
MMX

n
= , and let { } mkk <<1  be the eigenvalues of X.  For ordered eignenvalues 

( m>> ...21 ) Johnstone (2001) showed that for a suitably normalized matrix M, and 

for large m and n the largest eigenvalue 1  approximately follows a TW distribution 

(Tracy and Widom, 1994) with mean ),( nm and standard deviation ),( nm  in which 

n

mn
nm

2)1(
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+
=    
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+
=
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i.e. the statistic (
),(

),(1

nm

nm
z = ) follows approximately a standard TW distribution.  

Patterson et al. (2006) state, that if the first k eigenvalues have been declared significant, 
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the test for  mkk >> ++ ...21  can be carried out as X having dimension )( km  x  

)( km , and changing mean and variance of the TW distribution accordingly. 

When analysing data from germplasm collections, the number of markers (n) is usually 

less than the number of individuals ( nm > ) so based on Johnstone (2001), we suggest 

that the above formulae must be adapted before performing the TW test (i.e. m = 

min(nrow(M), ncol(M)) and n = max(nrow(M), ncol(M)) where nrow(M) and ncol(M) 

are the number of rows and columns of the matrix M respectively).  

Additional methods for determination of the number of groups 

In addition to the TW test we also used two other criteria frequently used for determining 

the number of clusters in hierarchical cluster analysis: the point biserial correlation (PBC) 

and the average silhouette coefficient (ASC).  

PBC (Milligan 1981) is defined as the correlation between the original distance matrix 

and a matrix consisting of zeros and ones indicating whether two objects are in the same 

cluster or not. This is an easy measure of the resemblance between the distance matrix 

(observed relationships) and the resulting tree (fitted relationships).  

ASC (Rousseeuw 1987) combines the concepts of cluster cohesion and separation; it 

relates distances between objects within the same cluster with distances between objects 

in different clusters. The silhouette coefficient ( is ) of an object i is calculated as: 

),(max)/( b(i))w(i)b(i))w(i) ddddsi = , where w(i)d  is the average distance of an object i to 

all the individuals in the same cluster and )(ibd  is the minimum of  the average distance 

between an object i and objects in another single cluster (i.e. for every cluster to which 

object i does not belong,  the average distance between an object i and objects in that 

cluster is calculated (separately), and the minimum of those averages is )(ibd ).  The 

average silhouette coefficient for a cluster is calculated by averaging the silhouette 

coefficients of all the objects in the cluster.  The overall measure of the quality of the 

clustering (ASC) is obtained by computing the average silhouette coefficients over of all 

objects in the data. 
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3.2.4 Cluster analysis results 

We explored the potential of using significant PC (expected to be the first k-1 PC in a 

situation with k subpopulations) to improve the performance of hierarchical clustering. 

Ward’s clustering algorithm (Ward, 1963; Johnson and Wichern, 2002) was selected for 

this study because it is one of the most used clustering methods and has been shown to 

perform relatively well (see Odong et al 2011). Ward’s method employs an analysis of 

variance (ANOVA) approach for calculating distances between clusters. For each pair of 

clusters, at each step in the clustering process, the effect of the union of every possible 

pair of clusters is considered, and the two clusters that produce the smallest increase in 

within group sum of squares are joined.  Ward’s method was used with a) Euclidean 

distances based on different numbers of PC b) distances based on the proportion of 

shared alleles c) distances based on SSR markers coded as binary markers (Jaccard and 

Simple matching).   

The performance of cluster analysis using Ward’s method was compared with that of 

model-based Gaussian hierarchical clustering (Fraley, 1998) using significant PCs.   This 

method assigns individuals to groups by fitting a mixture of multivariate normal 

distributions to the data.  The estimation of model parameters and assignment of 

accessions to groups is done by the Expectation Maximization (EM) algorithm (Banfield 

and Raftery, (1993)). In this case the geometric features (shape, volume and orientation) 

of the clusters are determined by the covariance structures.  We used the implementation 

provided by the R package mclust (Fraley and Raftery, 2006). Several covariance models 

were tested and the spherical variable volume was found to fit our data best, and this 

model was used for all subsequent analyses. In this model, all clusters are assumed to 

have a spherical shape with different volumes depending on the variance within each 

cluster (see review by Fraley and Raftery, 2002).  
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Evaluating the performance of cluster analysis based on different genetic distances  

In this study, the success of cluster analysis was measured using i) cluster purity and ii) 

the adjusted rand index (see below). The adjusted rand index was also used to compare 

the similarity of groups formed by clustering using different distance measures.  To 

explore the effect of the number of PCs used in cluster analysis, we looked at the 

correlation between the group membership matrix and Euclidean distances between 

accessions based on the first n PC (only for simulated data). The performances of the two 

criteria for evaluation of the number of clusters were compared with testing for the 

number of subgroups using the TW distribution.  

Cluster purity 

For the simulated data, the ability of clustering techniques to recover the subpopulations 

was evaluated using overall cluster purity (Zhao and Karypis 2004). Overall cluster purity 

is calculated as follows. Let 
r

rq
rq w

w
p =  be the probability that an accession is allocated to  

cluster r  (r = 1,2, …, R) belongs in reality to subpopulation q  (q = 1, 2,…., Q), rqw  is 

the number of members of subpopulation q  allocated to cluster r  and rw  is the number 

of objects in cluster r . The purity for each cluster ( rp ) is defined as the maximum 

probability of correct assignment of objects in cluster r to one of the subpopulations, i.e. 

( ),max rq
q

r pp =  and over all purity is defined as 
=

R

r
r

r p
w

w

1

. For the coconut data, the 

groups formed by clustering using different genetic distances were related to their 

passport data (country of origin). 

Adjusted rand index 

The adjusted rand index (Hubert and Arabie, 1985) assesses the degree of agreement 

between two partitions of the same objects.  In this study the adjusted rand index was 

used to compare the grouping based on cluster analysis to  known groups (obtained 
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through simulation).  We also used the adjusted rand index to study the similarities 

between groups formed using Ward’s method with different genetic distance measures.  

A brief description of adjusted rand index is given below (detailed mathematical 

description see Santos and Embrechts, 2009). 

Consider a set of N objects (or individuals) { }NOOOS ,...,, 21=  (Oi = object i; i =1, 

2,...,N) and suppose that },...,,{ 21 RuuuU =  and { }QvvvV ,...,, 21=  represent two different 

partitions (e.g. cluster analysis groupings versus true simulated subpopulations) of the 

individuals in S  such that q
Q
qr

R
r vSu 11 == == and qqrr vvuu == for 

Rrr'1 and Qqq1 . Given two different partitions U and V, with R and Q

subsets, respectively, the contingency table can be formed to indicate group overlap 

between U and V (see Table 1).  

Table 1: Contingency table for comparing partitions U and V
Partition*  V 
 Group 

1v 2v ...
Qv Total 

1u 11t 12t ...
Qt1 .1t

U 
2u 21t 22t ...

Qt2 .2t
.
. 
.

.

. 

.
.
. 
.

.

. 

.
.
. 
.

.

. 

.

Ru 1Rt 2Rt ...
RQt .Rt

Total 
1.t 2.t ...

Qt. Nt =..

* trq, represents the number of individuals  that were classified in the rth subset of partition U and 
in the qth subset of partition V.

The total number of possible combinations of pairs 
2

N
 from a given set of individuals 

can be divided into in four different types of pairs: 

2/
1 1

2
1 =

= =

R

r

Q

q
rq Ntg  - number of pairs of individuals placed in the same group by 

using methods U and V (e.g. using cluster analysis and according to the groups used for 

simulating the marker data );   
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2/
1 1 1

22
.2 =

= = =

R

r

R

r

Q

q
rqr ttg  - number of pairs of individuals put in same group by method 

U and different groups by methods V;   

2/
1 1 1

22
.3 =

= = =

Q

q

R

r

Q

q
rqq ttg   -number of pairs of individuals that are put in the same group  

by method  V but in different groups by method U  and, finally,   

3214 2
ggg

N
g =  - number of pairs of individuals that are put in different groups 

by both methods U  and  V. 

The rand index R_index is given by 

+
=

2

_ 21

N

gg
indexR , 

Hubert and Arabie (1985) introduced the correction for chance so that the expected value 

of the rand index is zero for random partitions.  

The adjusted rand index (AR_index) is given by 
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+++++
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==

, 

where )_( indexRE  represents the expected value of R_index  and )_( indexRMax  the 

maximum value of R_index  (see Hubert and Arabie, 1985 for details); AR_index has 

expectation zero and maximum 1. 

Correlation between the group membership matrix and genetic distances 

This correlation is used to determine the effect of the number of PC (used for calculating 

distances) on the distortion of relationship between  individuals both within and between 

groups.  Elements of the group membership matrix are either one (if two accessions 
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belong to the same population) or zero (if two accessions belong to different 

populations). This correlation was only used for the simulated data when group 

membership is known exactly .  

3.3 Results: 

3.3.1 Coconut data 

A PCA of the coconut data reveals the presence of significant population structure. The 

total number of significant PC is 14, explaining 21.3 percent of variance. The correlation 

between Euclidean distances based on the first 14 PC with other genetic distances ranged 

from 0.512 (with simple matching) to 0.700 (with proportion of shared alleles).  

Distances based on SSR  coded as binary markers (Jaccard and simple matching) are 

highly correlated (0.884) among  themselves but also with distances based on the 

proportion of shared alleles (0.869 and 0.919 with simple matching and Jaccard, 

respectively).  

Clustering using Ward’s method and model-based clustering using the first 14 PC 

resulted into 15 groups which coincided well with the region of origin of the accessions 

(see Table 2).    The large group of Pacific accessions (PCF) were clustered into seven 

groups (six for model-based clustering), whereas accessions from Central America (CA)  

and South East Asia were each clustered into two groups. Accessions from West Africa 

(WA), Latin America (LA), South Asia and East Africa each formed one group, with 

both Ward’s method and model-based clustering. The South East Asian Dwarf accessions 

(SEA2) also formed a single cluster with Ward’s method but two with model-based 

clustering.  Analysis of the seven groups of accessions from the Pacific formed by Ward 

(using Euclidean distance) showed good associations with specific islands or groups of 

islands. For example, the largest group (135) has 80% of the accessions coming from 

Papua New Guinea; accessions from the South Pacific (Fiji, Cook Island, Tonga and 

French Polynesia) form one group, accessions from the Mid Pacific (Marshall Islands, 

Kirivatu and Tuvalu) form their own group too (see Appendix 1).  
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Groups formed with Ward’s method using other distance measures (proportion of shared 

alleles, Jaccard and simple matching) differ from groups formed with Ward’s method 

using Euclidean distances (based on the 1st 14 PC)  in the  grouping of accessions from 

the Pacific, South Asia and South East Asia. It can be seen from Table 2 that accessions 

from South Asia and South East Asia form more than one group when clustering is done 

using Ward’s method with distances based on proportion of shared alleles.  For the 

accessions from the Pacific Islands the correspondence between the islands as origins of 

accessions and the groups formed by Ward’s method with distances based on the 

proportion of shared alleles distances is  poor (see Appendix 1). For example,  accessions 

from Papua New Guinea and Vanuatu no longer form their own separate groups when 

clustering is done using Ward’s method with distances based on the proportion of shared 

alleles.  

The level of agreement between groups formed by Ward’s method using different 

distance measures depends on the number of groups the accessions are clustered into. 

When the dendrogram is cut into two or three groups (major groups in the data), all 

values of the adjusted rand index are above 0.96.  However, when dendrogram is cut into 

fifteen clusters (number of clusters predicted by the TW test), the agreements between the 

groups formed using different distances are considerably smaller (values range from 

0.468 to 0.771) (see Table 3).   
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Table 2: The distribution of accessions from different origins into the 15 clusters formed 

using Ward’s method with Euclidean distance (14 PCs) and, distance based on proportion 

of shared alleles and model-based clustering . Cluster numbering is arbitrary  

Euclidean distances based on 1st 14 PCs (E-r) 
Origin1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
CA 80 23 - - - - - - - - - - 2 - - 
CAR - - - - - - - - - - - 2 - - 2 
EA - - 115 - - - - - - - - 9 - - - 
LA - - - 69 - - - - - - - - 1 - 2 
NAM1 - - - - 2 3 9 - - - - - 29 - - 
NAM2 - - 1 - - - - - - - - 8 - - - 
PFC - - - - 135 18 114 27 15 20 41 - 3 3 - 
PFC2 - - - - 2 - - - - - - - - 2 - 
SA - - 7 1 1 - - - - - - 41 - 3 9 
SEA - - 1 - 13 5 - - - - - 5 115 4 - 
SEA2 - - - - - - - - - - - - 5 35 - 
WA - - - - - - - - - - - - - 3 29 

Model-based clustering using 1st 14 PCs (MC) 
Origin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
CA 79 23 1 - - - - - - - - - 1 1 - 
CAR - - - - - - - - - - 3 - - - 1 
EA - - 116 - - - - - - - 8 - - - - 
LA - - 6 63 - - - - - - 3 - - - - 
NAM1 - - - - - 1 9 1 - - - - 31 1 - 
NAM2 - - - - - - - - - - 9 - - - - 
PFC - - - - 111 65 115 14 25 36 - 3 5 2 - 
PFC2 - - - - 1 - - - - - - 2 - 1 - 
SA - - 7 2 - - - - - - 49 1 - 2 1 
SEA2 - - - - - - - - - - - 22 1 17 - 
SEA - - 3 - 5 7 2 - - - 5 1 104 16 - 
WA - - - 2 - - - - - - 6 - - 3 21 

Distances based proportion of shared alleles (PS) 
Origin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
CA 102 1 - - - - - - - - - 1 - 1 - 
CAR - - 1 - - - - - - - - - - - 3 
EA - 116 - - - - - - - 2 6 - - - - 
LA - 5 66 - - - - - - - 1 - - - - 
NAM1 - - - 1 - 7 - - - 6 - 1 - 28 - 
NAM2 - - - - - - - - - - 9 - - - - 
PFC - 1 - 85 78 69 24 14 32 61 - 7 3 2 - 
PFC2 - - - - - - - - - 2 - - 2 - - 
SA - 12 - - - - - - - - 30 - 3 - 17 
SEA - 6 - 1 3 3 - - - 27 - 54 10 39 - 
SEA2 - - - - - - - - - - - 1 39 - - 
WA - - - - - - - - - - - - 3 - 29 
1CA: Central America (Panama), CAR: Caribbean, EA: East Africa, LA: South America (Brazil),  NAM1: 
North America (Pacific),  NAM2: North America (Atlantic), PFC: Pacific Islands, PFC2: Pacific Islands 
(dwarf), SEA: South East Asia,  SEA2: South East Asia (dwarf), WA: West Africa
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Table 3: Adjusted rand index showing the agreement between groups formed by Ward’s 
method using different genetic distances. The groups are formed by cutting the dendrogram 
into 2, 3, 4 and 15 clusters. The agreement between groups formed by different distance 
measures reduces when the number of clusters increases  
  Two clusters Three clusters 

E-r1 1.000       1.000       

PS 0.968 1.000 0.974 1.000   

Jaccard 0.984 0.976 1.000 0.983 0.979 1.000   

SM 0.980 0.972 0.980 1.000 0.984 0.975 0.982 1.000 

  Four clusters Fifteen clusters 

E-r 1.000 1.000   

PS 0.693 1.000 0.468 1.000   

Jaccard 0.704 0.965 1.000 0.456 0.500 1.000   

SM 0.880 0.687 0.693 1 0.545 0.578 0.573 1.000 

  E-r PS Jaccard SM E-r PS Jaccard SM 
1E-r - Euclidean distance based on the first k-1 PCs, PSA: distance based on proportion of shared alleles,  SM: 
simple matching distance 

3.3.2 Simulated data 

Relationship between different genetic distances 

Euclidean distances based on the first k-1 PC (k is the number of subpopulations in the data) 

have a low to moderate correlation with the other genetic distances (proportion of shared 

alleles, Jaccard and simple matching). This correlation increases with the strength of subgroup 

differentiation (see Fig 1). The distances based on SSR markers coded as binary markers 

(Jaccard and simple matching) are highly correlated (on average 0.917) among themselves 

and this correlation is less affected by the strength of subgroup differentiation. Distances 

based on proportion of shared alleles also have a high correlation with distances based on SSR 

coded as binary markers (on average  0.876 and 0.845 with Jaccard and simple matching, 

respectively).       
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Fig 1: A plot of the correlations between Euclidean distances based on the first k-1 PC (k is the number of 
subpopulations in the data) and other genetic distances (PSA: distances based on the proportion of shared alleles, 
SM: simple matching distance) against the population differentiation (FST) for a data set with five (k = 5) 
subgroups.  

Clustering success (Cluster purity and Adjusted Rand Index) 

The ability of Ward’s method to recover the original groups in the data (based on cluster 

purity and adjusted rand index) increases with the number of PC used for calculating 

distances between accessions before levelling off at the first k-1 PC (see Fig 2).  For data sets 

with the highest number (15) of subgroups, the levelling off takes place at a number of PC 

less than k-1 when subgroup differentiation is high.  The increase in cluster purity and 

adjusted rand index was also observed for model-based clustering (result not shown). 

However for model-based clustering, as the number of PCs increases beyond k-1 the results 

(cluster purity and adjusted rand index) become more erratic.  
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Fig 2: Plot of cluster purity verses the number of  PC used for performing cluster analysis using Ward’s method 
for simulated data  with different number of subgroups (5, 8 and 15) and different levels of genetic 
differentiation (FST). 

Clustering with Ward’s method using Euclidean distances calculated using the first k-1 PC 

performs much better than clustering using other genetic distances especially at low levels of 

subgroup differentiation.  Results of Ward’s method using the first k-1 PC are similar to those 

of model-based clustering for all levels of subgroup differentiation.   Euclidean distances 

based on all PC produced the worst results (see Fig 3).  



59 

Fig 3: Plot of cluster purity for Ward’s dendrograms based on different genetic distances (E-r: Euclidean 
distance based on the first k-1 PC; E-f: Euclidean distance based on all PC; PS: distance based on the proportion 
of shared alleles; SM: simple matching distance) and MC: model-based clustering 

For all the simulated data, the similarity (adjusted rand index) between groups formed by 

Ward’s method using different genetic distances increases with subgroup differentiation 

(Table 4).  

   
Table 4: Adjusted rand index showing the agreement between groups formed by Ward’s 
method  using different distance measures (for simulated data with 8 groups). The groups are 
formed by cutting the dendrogram into 8 clusters. Agreement increases with subgroup 
differentiation  

  FST=0.025 FST =0.037 

E-r1 1.000 1.000   

PS 0.106 1.000 0.323 1.000   

Jaccard 0.113 0.093 1.000 0.375 0.265 1.000   

SM 0.109 0.091 0.132 1.000 0.369 0.264 0.356 1.000 

  FST =0.069 FST =0.121 

E-r 1.000 1.000   

PS 0.810 1.000 0.957 1.000   

Jaccard 0.827 0.763 1.000 0.963 0.953 1.000   

SM 0.838 0.772 0.817 1.000 0.963 0.956 0.963 1.000 

  E-r PS Jaccard SM E-r PS Jaccard SM 
1E-r – Euclidean distances based on the first k-1 PC,  PS: distance based on the proportion of shared alleles, SM: 
simple matching distance 
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Correlation between the group membership matrix and observed distances 

Ward’s clustering using Euclidean distances based on the first k-1 PC produces clusters with 

the highest within-group similarities and the highest between-group dissimilarities, i.e. 

clusters formed are of very high resolution (see Fig 4).  A marked relationship between the 

number of the first n PC used for cluster analysis and the quality of clusters is a clear 

indication of the importance of using the right number of PC when performing cluster 

analysis.  

Fig 4: Plot of correlations between the group membership matrix and Euclidean distances based on the first n PC 
for simulated data sets with different numbers of subgroups and different levels of subgroup differentiation (FST) 
. Group membership is based on simulated groups.  

Determination of the number of groups (clusters) 

The ability of the TW test to determine appropriate numbers of subgroups depended on the 

number of subgroups in the data as well as the strength of subgroup differentiation. For 

moderate to highly differentiated subgroups, the TW test using a significance threshold of 

0.01 performed well in identifying the correct number of subgroups for simulated data sets 

with 8 and 15 groups (see Fig 5). For data sets with five and eight groups the TW test 

sometimes overestimates the number of subgroups slightly.  Except for very low population 

differentiation (FST =0.024, 0.025 and 0.040), when Ward clustering is done using Euclidean 
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distance based on significant PC (even when TW test failed to predict the true number of 

subgroups), ASC and PBC always identified the correct number of groups (see Fig 6).  When 

model-based clustering was done using  significant PCs, the clustering process converge on 

the right number of clusters except for data sets with low subgroup differentiation (result not 

shown).  

Fig 5:  Distributions of the number of groups determined using Tracy-Widom distribution (test) for  
data sets with different numbers of groups (5, 8 and 15) and different  levels of population structure 
(FST).  Box plots are based on 20 data sets with similar FST values .  

When other distance measures (proportion of shared alleles, Jaccard and Simple matching) 

were used in combination with Ward’s clustering there were no differences in the 

performance of the two criteria (ASC and PBC) for determining  the number of clusters.  
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Fig 6: Plot of Average Silhouette Coefficient (A and B) and Point Biserial Coefficient and  (C and D) versus the 
number of clusters obtained by cutting Ward’s dendrograms (for data sets with five groups; k=5).  A and C 
obtained by clustering distance based on proportion of shared alleles (PS) while for B and D clustering was done 
using Euclidean distance (using significant PCs – E-r). For both criteria, the peak or the point at which the 
graphs start levelling off at is the right number of clusters. Each point is based on average from 25 data sets of 
similar FST.  
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3.4 Discussion

In this paper we have shown that cluster analysis in conjunction with PCA can be a very 

useful combination of tools for studying the genetic structure of heterogeneous germplasm 

collections. By emphasizing differences between populations, PCA provides a good 

description of the genetic structure (McVean2009; Patterson et al 2009). It is clear from this 

study that the identification of the correct number of PC to be used in cluster analysis is very 

important.   Although there are many statistical criteria for deciding on the optimum number 

of clusters (Milligan and Cooper, 1985), their performance with real data from germplasm 

collections is not always good (Odong et al. 2011). Our simulations show that testing the 

significance of the eigenvalues against the TW distribution, as pioneered by Patterson et al. 

(2006), works well for SSR data as long as each locus is properly normalized (van 

Heerwaarden et al. 2010). The decision on the number of PC to be included can therefore be 

based on a statistic that has a direct population genetic interpretation.  We have also noted that 

sometimes the number of significant PC (based on TW test) over- or underestimates the 

number of groups in the data. In our simulation study, for data sets with FST > 0.05 the 

difference between the numbers of significant PC and the expected number (k-1)  is only one. 

An earlier study performed using SNP (Lee et al. 2009) showed a very big difference (> 60) 

between the number of significant PC and the number of groups in the data.   For simulated 

data, we noted that even in cases where the TW test failed to identify the correct number of 

groups in the data, performing cluster analysis (with both Ward’s method and model-based 

clustering) using significant PC we are still able to recover the groups well. It is also worth 

noting that the performances of other methods for determination of the number of clusters 

(ASC and PBC) are highly improved when clustering is based on significant PC only.  

In our simulated data, PCA-based clustering outperformed clustering using other distances in 

terms of recovering groups from the data.  This is mainly due to the fact that PCA emphasizes 

between-population differences (McVean 2009;  Patterson et al. 2009) while smoothing out 

within-population differences.  The high correlation between Euclidean distances based on k-

1 PC and the group membership matrix is a clear indication of the effect of PCA in 

elucidating between-population differences while smoothing within-population differences. 
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 For the coconut data -, the number of groups (15) predicted by TW test is far larger than the 

number of groups (2) suggested by STRUCTURE and Ward’s method using distances based 

on proportion of shared alleles (see Odong et al. 2011). We speculate that this increase in the 

number of groups detected is a result of a reduction in noise leading to a better detection of 

subgroups within the two large groups (Pacific versus Indian and Atlantic Ocean accessions) 

detected earlier. The 15 groups appear to be quite reasonable since they coincide nicely with 

the origin of the accessions.   

Not surprisingly, the high correlations between genetic distance measures could not always be 

translated into a high levels of agreement between the groups formed by cluster analysis using 

those distance measures, especially for data with low levels of subgroup differentiation.    The 

main reason for this is that the correlation coefficient mainly reflects the major group 

structure in the data and ignores finer details. For real data we noted that although the 

correlation between Euclidean distance based on k-1 PC and other genetic distances are 

relatively low (0.512 - 0.700) compared to correlations between binary based distance 

measures (0.884), the major groups in the data were captured well with Ward’s clustering 

using all genetic distance measures. However, cutting the dendrogram into many groups (4 or 

more), the different genetic distance measures produce groups with low level of agreement 

(low adjusted rand index).  In all cases, Ward’s method using Euclidean distance based on 

significant PC, produces groups that are much more similar to those produced  by model-

based clustering.   In terms of recovering groups in the data, the performances of the distance 

measures based on SSR markers coded as binary markers are similar. The handling of SSR 

markers as binary markers has been criticized by Kosman and Leonard, (2005) who proposed 

a distance similar to distance based on proportion of shared alleles. According to Kosman and 

Leonard (2005) for diploid organisms, coding alleles as 0 or 1 and using common measures of 

dissimilarity do not result into an adequate assessment of the genetic dissimilarity between 

homozygous and heterozygous individuals. They  pointed out that for a locus with four alleles 

A, B, C and D, there is no justification why the distance between genotypes AA and AB 

should not be the same as  the distance between genotypes AB and AC since in both pairs the 

genotypes only have one allele in common.  Both Jaccard and simple matching result into 

different distances ( 2/1 versus 4/3 ). The distance based on proportion of shared alleles 

does not have the above problem.   However for practical purposes of grouping of accessions, 

these differences are not a problem because the interest is only to recover the major groups in 

the data. However, for a better unraveling of the details of genetic structure, Euclidean 
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distance based significant PC should be preferred. One weakness for the use  of Euclidean 

distance based on only significant PC  is that it smoothens out within-group relationships 

between accessions. 

We have shown that appropriately accounting for population structure using PCA, the ability 

of both hierarchical clustering methods such as Ward’s method and model-based clustering to 

recover subgroups in the data is highly improved.  
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Appendices 

Appendix A: The distribution of accessions from different Pacific Island (origins) into the 7 clusters 
formed  with Ward’s method using  Euclidean distances (the first 14 PCs). Cluster numbering is 
arbitrary 

 Origins of accessions ( Pacific Islands)1

clusters PNG VUT NCL COK FJI PYF TON SLB KIR MHL TUV 

1 108 21 2 0 0 1 0 2 0 0 1

2 1 12 0 0 0 1 0 2 2 0 0

3 9 94 4 0 1 2 1 3 0 0 0

4 1 2 0 5 10 5 4 0 0 0 0

5 0 4 0 0 0 0 0 11 0 0 0

6 19 0 1 0 0 0 0 0 0 0 0

7 0 1 0 0 0 0 0 0 19 5 16

Appendix B: The distribution of accessions from different Pacific Islands (origins) into the 6 clusters 
formed using Model-based clustering (on the first 14 PCs). Cluster numbering is arbitrary 

 Origin of accessions (Pacific Islands)1

Clusters PNG VUT NCL COK FJI PYF TON SLB KIR MHL TUV 

1 99 7 3 0 0 1 0 0 0 0 1

2 3 24 1 5 11 8 5 2 6 0 0

3 14 93 2 0 0 0 0 6 0 0 0

42 4 0 0 0 0 0 0 0 1 0 0

5 0 4 0 0 0 0 0 10 0 0 0

6 21 3 1 0 0 0 0 0 0 0 0

7 0 1 0 0 0 0 0 0 14 5 16

Appendix C: The distribution of accessions from different Pacific Island (origins) into the 7 clusters 
formed  with Ward’s method using  distances based on proportion of shared alleles. Cluster numbering 
is arbitrary 

 Origin of accessions (Pacific Islands)1

Clusters PNG VUT NCL COK FJI PYF TON SLB KIR MHL TUV 

1

2

3

4

5

6

7
1PNG: Papua New Guinea; VUT: Vanuatu; NCL: New Caledonia; COK: Cook; FJI: Fiji; PYF: French 
Polynesia; TON: Tonga, SLB: Solomon Islands; KIR: Kirivatu; MHL: Marshall Islands and TUV: Tuvalu 
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Chapter 4 

Statistical techniques for defining reference sets of accessions and microsatellite 

markers 

Abstract 

Exploitation of the available genetic resources around the world requires information about 

the relationships and genetic diversity present among genebank collections. These relations 

can be established by defining for each crop a small but informative set of accessions, 

together with a small set of reliable molecular markers, that can be used as reference material. 

In this study, various strategies to arrive at small but informative reference sets are discussed. 

For selection of accessions, we proposed Genetic Distance Optimization method (GDOpt), 

which selects a subset of accessions that optimally represent the accessions not included in the 

core collection.  The performance of GDOpt was compared with Core Hunter, an advanced 

stochastic local search algorithm for selecting core subsets.  For the selection of molecular 

markers, we evaluated a) backward elimination method (BE) and b) methods based on 

principal component analysis (PCA). We examined the performance of the proposed 

methodologies using five real datasets. Relative to average distance between an accession and 

the nearest selected accession (representativeness), GDOpt outperformed Core Hunter. 

However, Core Hunter outperformed GDOpt with respect to allelic richness.  The BE 

performed much better than other methods in selecting subsets of markers.  Methods based on 

PCA showed that, for practical purposes, the inclusion of the first few (two or three) PCs was 

often sufficient.  In order to obtain robust and high-quality reference sets of accessions and 

markers we advise a combination of GDOpt (for accessions) and BE or methods based on 

principal component analysis using a few PCs (for subsets of markers).  
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4.1 Introduction 

Plant genetic resources stored in genebanks offer great opportunities for improving 

and securing crop production, especially in marginal environments. Exploitation of 

the full potential of all available genetic resources around the world requires 

knowledge about the relationships relative to genetic diversity among genebank 

collections stored in different centers. The relations  between genebank collections 

can be established  by defining for each crop a small but informative set of accessions, 

together with a small set of reliable molecular markers, that can be used as reference 

material.  Hereafter, the reference material will be referred to as “reference sets.” 

A reference set of a crop should be an adequate representation of the genetic diversity 

of that crop as stored in genebanks around the world. In that case, markers can be 

used to place new accessions in the spectrum of current accessions. The reference sets 

can also be used to connect different population genetic and quantitative genetic 

studies, including association studies.  

To obtain reliable reference sets, large numbers of accessions have to be genotyped 

with markers. Under the auspices of the Generation Challenge Programme (GCP; 

http://www.generationcp.org), large numbers of accessions of important agricultural 

crops were genotyped with 15 to 50 microsatellite markers. The GCP is a broad 

network of partners from international agricultural research institutes and national 

agricultural research programs collectively working to improve crop productivity in 

the developing world, especially environments prone to drought and having low soil 

fertility, and high incidences of pests and diseases.  

The general philosophy underlying the current study is that molecular markers, such 

as microsatellites, can be used to represent accessions as points in a multi-dimensional 

genetic space.  A strategy for selecting accessions may consist of choosing accessions 

in such a way that the whole of the original genetic space is covered by a pre-defined 

number of accessions. With regard to molecular markers, the reference set should be 

able to approximate the full genetic space by preserving the distances between the 

accessions. It may be useful to identify clusters of accessions and use them as a basis 

for choosing accessions in a stratified way.  In addition to statistical principles, 
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molecular genetic requirements should be taken into account, especially the ease of 

generating markers and marker quality.  

The concept of reference sets of accessions and markers is quite similar to the concept 

of forming core collections using marker information. The reference sets, unlike core 

collections, place emphasis on the selection of both accessions and molecular 

markers. In this case, the selected accessions are not linked to a specific genebank 

collection but taken from collections assembled from many centers. Brown (1995) 

referred to such a subset of accessions as synthetic core.   

In this paper, various strategies to arrive at small but informative reference sets will be 

discussed. For selection of accessions, we propose a method based on optimization of 

the spacing of a fixed number of accessions within the genetic space; this method will 

be referred to as Genetic Distance Optimization method, hereafter referred to as 

GDOpt. To the best of our knowledge, currently, no method exists for the selection of 

core collections that aims at obtaining a set of entries to maximize the representation 

of the accessions in the whole collection. Compared to GDOpt, most existing 

algorithms for selection of core collections (e.g., Mstrat (Gouesnard et al., 2001), 

PowerCore (Kim et al. 2007) and Core Hunter (Thachuk et al. 2009)) pay more 

attention to the content of the core collections but tend to ignore the relationships 

between the selected entries and those not included in the core collection. The D-

method (Franco et al. 2006) maximizes the representation of the groups with the 

assumption that the groups are known. The GDOpt aims specifically at the selection 

of core entries that optimally represent accessions not included in the core collection.  

For the selection of molecular markers, we examined a) a backward elimination 

method and b) methods based on principal component analysis (PCA). Section 4.2 

(Materials and methods) contains a description of the proposed methods and of five 

datasets used for illustration in this paper.  In section 4.3 (Results), the results of the 

application of the proposed methodologies to five datasets will be presented.    
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4.2  Materials and Methods 

4.2.1 Data 

Coconut  (Cocos nucifera):  The coconut data consist of 1014 accessions genotyped 

with 30 SSR markers. The accessions were collected from different regions of the 

world (see Table 1) Coconut is a diploid, mainly outcrossing species.   Most of the 

accessions in this collection were described as tall; only 43 dwarf accessions mainly 

from South East Asia were present. Dwarf coconuts have a high degree of self-

fertilization. More than half (19) of the 30 SSR markers used in this study have 

known positions on the linkage map; they are well-spread across the genome. 

Potato (Solanum species):   The potato data consisted of 233 diploid accessions from 

four species (S. ajanhuri (22); S. goniocalix (47); S. phureja (105) and S. stenotomum

(59)) genotyped with 50 SSR markers (see Table 1). Potatoes are mainly outcrossing, 

with a substantial amount of self-fertilization. The linkage group of 42 of the 50 SSR 

markers used in study is currently known. 

Common bean (Phaseolus vulgaris):   Genotyped with 36 SSR markers, the common 

bean dataset consisted of 603 accessions with 296 being described as Andean and 307 

as Mesoamerican types (see Table 1).  Common bean is a self-pollinating diploid 

species. Twenty-nine of the 36 SSR markers used in study belong to known linkage 

groups.

Rice (Oryza sativa): The rice dataset consisted of 1998 accessions genotyped with 37 

markers (see Table 1).  Rice is a self-pollinating diploid species. The linkage map 

positions of all 37 SSR markers used in study are known. 

Chickpea (Cicer arietinum): The chickpea data consisted of 3000 accessions 

genotyped with 50 SSR markers.  The accessions originated from more than 60 

countries (mainly from the Middle East and other parts of Asia), with germplasm 

collections maintained at two international centers (ICRISAT in India and ICARDA 

in Syria) and at several national gene banks (see Table 1).  Chickpea is a self-

pollinating diploid species.  Thirty-two of the 50 SSR markers used in study have 



71 

known linkage groups but the positions of  the markers on the linkage map were not 

available. 

Table 1: Summary information on the five data sets used in this study  
Crop Number 

of 
accessions 

Origins of Accessions* Number of 
SSR markers 

Coconut 1014 

West Africa(32); North America(52); 
South Asia(62); Latin America(72); 
Central America & the Caribbean(109); 
East Africa(124); South East Asia(183); 
the Pacific Islands(380) 

30 

Potato 233 

Peru(91); Colombia(80); Bolivia(44); 
Ecuador(16); Argentina(1) and Chile(1) 

50 

Common 
bean

603 

Peru(184);  Mexico(178);  Guatemala(6); 
Ecuador(1 35);  Colombia(29);  Brazil(22) 
and others (18 countries)(94) 36 

Rice 1988 

India(320); Bangladesh(210);  China(167); 
Indonesia(166);   Philippines(139); 
Liberia(137); Sri Lanka (124); 
Thailand(122);  USA (99);  Malaysia (97); 
Madagascar (87); Nigeria (80) and others 
(250) 

37 

Chickpea  3000 

India(820);  Iran(552); Syria (183); 
Turkey(160); Afghanistan(147);  ICRISAT 
collections of mixed origin(138), and 
Ethiopia(124) and others(876).   

50 

*The numbers in the parentheses indicate the number of accessions from each area of origin
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4.2.2 Strategies for selecting representative accessions 

A number of strategies for selecting subsets from large collections of accessions (with 

special reference to the forming of core collections) have been proposed: MSTRAT 

(Gouesnard et al. 2001), Genetic Distance Sampling (Jansen and Van Hintum, 2007), 

PowerCore (Kim et al. 2007) and Core Hunter (Thachuk et al. 2009). With the 

exception of Genetic Distance Sampling, all methods mentioned above apply the M-

strategy (Schoen and Brown, 1993) in some way; the M-strategy aims at maximising 

the number of observed alleles of the markers in the subset of selected accessions. In 

Genetic Distance Sampling, accessions are selected in such a way that selected 

accessions are always a pre-defined distance (selection radius) away from each other. 

This ensures that no duplicates or similar accessions are selected. A disadvantage of 

the M-strategy is that it is likely to select non-representative accessions ("outliers"). 

None of the above methods was developed to select accessions to serve as 

representatives, around which the other accessions can be positioned. In this paper, we 

propose Genetic Distance Optimization (GDOpt) for selecting representative 

accessions. 

Genetic Distance Optimization:  

The aim of GDOpt is to select a fixed number (say K) of representative accessions. It 

is a form of K-medoids clustering (Kaufman and Rousseeuw, 1990), in which one 

accession in each of K clusters acts as center of the cluster. Clusters are formed by 

minimizing the total distance of all accessions to the nearest of the K accessions 

designated as cluster centers. The current algorithm utilizes simulated annealing 

(Kirkpatrick et al. 1983). To obtain a good starting point, the initial configuration of 

cluster centers is provided by a modified version of Genetic Distance Sampling 

(Jansen and Van Hintum, 2007).  Genetic distance sampling was modified to select a 

fixed number of accessions by adjusting the selection radius until the number of 

accessions selected by genetic distance sampling was equal to or greater than the 

required size of the reference set. If the number of accessions selected by genetic 

distance sampling is greater than the intended size of the reference set, random 

sampling is used to delete the extras.  Eventually, the algorithm will be made 

available as a procedure in the Biometris Genstat Library (http://www.biometris.nl/), 

but at the moment it is available on request from the authors.  
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Comparison with Core Hunter:  

In this paper, the results obtained with GDOpt are compared with those obtained with 

Core Hunter (Thachuk et al. 2009). Core Hunter was selected because the authors 

have demonstrated its superiority over other existing methods of core selection. In 

Core Hunter, the weights attached to two optimization criteria (Modified Rogers 

Distance and Shannon Diversity Index) were varied. By assigning all the weight to the 

Modified Rogers Distance, Core Hunter maximizes the average genetic distance 

between selected accessions, whereas by assigning all the weight to Shannon 

Diversity Index, it maximizes the number of alleles in the selected accessions. The 

comparison was based on two criteria: a) the distance between accessions and the 

nearest entry in the reference set (representativeness) and b) the proportion of alleles 

captured in a subset of a specified sample size selected by each method.  This 

comparison was done to show that forming core collections with the intention to 

maximize either allelic richness or distances between entries (e.g., using Core Hunter 

settings in this study) compromises the ability to represent the contents of the whole 

collection.  

The results from GDOpt and Core Hunter were also compared with those from simple 

random sampling (for real data) and stratified random sampling for simulated data. 

The results for the simulated datasets are presented in Appendix 1.  

4.2.3 Selecting subsets of molecular markers 

Criterion:  

In the current context, the criterion used for comparing different methods of selecting 

subsets of molecular markers is based on the preservation of genetic distances 

between accessions. The key assumption is that by preserving genetic distances 

between accessions, population structure (if present) will be preserved. The criterion 

applied in all cases is the correlation between genetic distances between accessions 

based on a subset of molecular markers and genetic distances based on all available 

markers.  



74 

Polymorphism information content (PIC):  

The PIC (Botstein et al. 1980) depends on the number and frequencies of alleles.  

According to this criterion, a marker with many alleles with small frequencies is more 

informative than a marker with two alleles with equal frequencies. The PIC does not 

take into account the dependencies between markers. Because it is one of the most 

frequently used criteria for selecting sets of molecular markers, the performance of 

other methods will be compared with that based on PIC. 

Methods based on Principal Component Analysis (PCA):  

These methods use the dimension reduction ability of PCA to identify a subset of 

molecular markers that should be retained to achieve minimum loss of information. 

Recently, the use of PCA for selecting subsets of molecular markers (especially single 

nucleotide polymorphisms (SNPs)) has been discussed by Paschou et al. (2007) and 

Zhang et al. (2009).  

Molecular markers are selected based on the weighted sum of squared loadings on all 

principal components (PCs) designated as important, using the corresponding 

eigenvalues as weights. The method will be referred to as ‘Weighted principal 

component analysis WPCA’. The steps are (1) Perform PCA on the accession-by-

marker matrix; (2) Decide on the number of PCs to be designated as important; (3) 

Calculate the weighted sum of squares of the loadings of each marker on the PCs 

designated as important; (4) The markers are ranked in descending order based on 

their weighted sums of squared loadings. The molecular markers are then included in 

the subset based on their ranks. For weighted PCA, we compared (1) ranking based on 

the first PC (WPCA1); (2) ranking based  on the first two PCs (WPCA2); (3) ranking 

based on the first three PCs (WPCA3) and (4) ranking based on the first 20 PCs 

(WPCA20) when selecting a subset of markers.  

  

Patterson et al. (2006) discussed the use of the Tracy-Widom distribution for 

determining the number of significant principal components for SNP data. This is 

done by comparing standardized eigenvalues with the Tracy-Widom distribution. If n

differentiated groups of genotypes are present in the data, one expects to find k = n-1 

significant eigenvalues.  However, in practice it has become standard to designate the 
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first two or three principal components as important and discard the rest without 

performing any statistical test. Formal testing usually leads to many statistically 

significant PCs.  

Application of PCA to SSR data requires special attention. The SSR markers were 

first recoded as 0, 1 or 2 based on the number of copies of the allele with frequency 

closest to 0.5.  The advantage of treating SSR markers in this way lies in its 

simplicity. We expect the loss of information associated with coding SSR markers in 

this way to be small in most cases. The SSR-marker data were recoded as described 

above to reduce the information from each SSR marker into a single column, which 

can then be easily related to PCs.  

Backward Elimination (BE):  

This method is similar to the backward elimination method used for variable selection 

in multiple regression. It uses the correlation between the genetic distances (between 

accessions) based on all molecular markers and the genetic distances based on a 

subset of markers as the criterion for deleting markers.  In a stepwise approach, at 

each step, the molecular marker whose exclusion leads to the smallest reduction in 

correlation between the two sets of distances is removed until a specified level of 

correlation or a desired number of molecular markers is reached.  

The BE method can be summarized as follows: 

Step 1:  Calculate the distances between accessions using all the molecular markers. 

Let 0D be the matrix of those distances ( )(0 ijdD = , where ijd  is the distance between 

accession i and j.  

Step 2:  For each of the m markers, calculate the distances between accessions by 

leaving out one marker at a time. Let eD  ( me ,...,2,1= ) be the matrix of distances 

between accessions constructed with marker e  left out ( )( ijee dD = , where ijed  is the 

distance between accessions i and j calculated when marker e  is left out).  Denote er

as the correlation between 0D  and eD . 
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Step 3:  Select marker with the largest er  value, and eliminate it (the marker) from 

the dataset and repeat Step 2 with the remaining markers.  Each time, the maximum 

value of er  is recorded. 

Step 4:  Repeat steps 2 and 3 until either the maximum value of er  reaches the 

stopping value set or until the desired number of markers is achieved. 

Similarity measures 

In this paper, we used genetic distances (D) based on the proportion of shared alleles 

(PSA) applied to the original SSR marker data and the recoded data, where D = 1 - 

PSA, and 

MffPSA ma

M

m

A

a
ma

m

/),min( 2
1 1

1=
= =

, 

where maf 1  and maf 2  are the frequencies of allele a ( a =1, 2… mA ) for molecular 

marker m ( m =1, 2… M ) in individuals 1 and 2, respectively. For more information 

on the proportion of shared alleles as similarity measure, see Bowcock et al. (1994), 

Chakraborty and Jin (1994) and Chang et al. (2009).  

Other important aspects of selecting subsets of molecular markers 

In addition to the statistical criteria used for selecting molecular markers, a number of 

important issues should also be examined.  The non-statistical issues of importance in 

marker selection are quality relative to clarity and repeatability of banding pattern, 

ease of automation of allele calling and genome coverage and linkage between 

markers.  The markers selected should be of high quality with highly reproducible 

alleles.  
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4.3  Results 

4.3.1 Selection of accessions 

General results: In the following, representativeness is measured as average distance 

between each accession to the nearest selected entry in the subset of accessions (Table 

2). The GDOpt produces subsets of accessions that are much more representative 

compared with Core Hunter. In all the crops, the average distance from accessions to 

its nearest entry in the subset of accessions is smaller for GDOpt compared with all 

settings of Core Hunter.  Random sampling also performed much better than all the 

different settings of Core Hunter relative to representativeness of the whole collection. 

Table 2: Average distances between accessions and their nearest entry in the selected 
subset of accessions obtained using Genetic Distance Optimization (GDOpt), Random 
sampling and Core Hunter with five (CH1 – CH5) different parameter settings in 
terms of Modified Rogers distance (MR) and Shannon diversity index (SH). Random 
sampling values were obtained from 100 samples  

Crop
Method Coconut Potato Common bean Rice Chickpea 

GDOpt 0.389 0.216 0.359 0.472 0.646 

Random sampling 0.463 0.274 0.443 0.548 0.729 
CH1 (MR=1.0;SH= 0.0)* 0.490 0.307 0.467 0.547 0.760
CH2 (MR= 0.7;SH=0.3) 0.522 0.325 0.476 0.551 0.775 
CH3 (MR=0.5;SH=0.5) 0.531 0.327 0.478 0.542 0.760 
CH4 (MR=0.3;SH=0.7) 0.527 0.326 0.474 0.534 0.748 
CH5 (MR=0.0;SH=1.0) 0.521 0.321 0.483 0.537 0.766 
*The values in the parentheses show the different weights given to modified Rogers distance (MR) and 
Shannon diversity index (SH) used when selecting a subset of accessions using Core Hunter

With regard to the total number of alleles captured by subsets of 15 selected 

accessions (Table 3), all parameter settings of Core Hunter performed better than 

GDOpt. However, major differences were found in the retention of alleles with 

different frequencies (see Fig. 1). For ease of interpretation, we have classified alleles 

into three categories based on their frequencies ( p ): a) common alleles-CA 

( 05.0p ) b) rare alleles-RA ( 05.0005.0 <p ) and c) very rare alleles-VRA 

( 005.0<p ). The proportion of common alleles captured by GDOpt and different 

settings of Core Hunter were comparable. For all five crops, subsets of 15 accessions 

selected using GDOpt performed well in capturing common alleles. With the 
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exception of chickpea, subsets selected via GDOpt captured more than 85% of all 

common alleles. In potato and common bean, subsets of accessions obtained by 

GDOpt showed a higher frequency of common alleles compared with subsets of 

accessions obtained by the different settings of Core Hunter.  Core Hunter performed 

much better than GDOpt in capturing rare and very rare alleles. However, with 

simulated data, GDOpt performed better than Core Hunter with all the weights given 

to Modified Roger’s distance relative to proportion of captured alleles (see Appendix 

1).  

Table 3: Numbers of alleles in the whole datasets and proportions of alleles in subsets 
of 15 accessions obtained using Genetic Distance Optimization, Random sampling 
and Core Hunter with five (CH1 – CH5) different parameter settings in terms of 
Modified Rogers distance (MR) and Shannon diversity index (SH). Random sample 
values were obtained from 10 samples 

Crop 
Method Coconut Potato Common bean Rice Chickpea 

Whole dataset 469 367 1089 566 1605 
GDOpt 0.422 0.635 0.255 0.339 0.318 
Random sampling 0.430 0.554 0.254 0.344 0.264 
CH1 (MR=1.0;SH= 0.0)*  0.388 0.700 0.298 0.426 0.318 
CH2 (MR= 0.7;SH=0.3) 0.527 0.796 0.332 0.459 0.338 
CH3 (MR=0.5;SH=0.5) 0.563 0.820 0.341 0.466 0.336 
CH4 (MR=0.3;SH=0.7) 0.569 0.837 0.346 0.463 0.333 
CH5 (MR=0.0;SH=1.0) 0.569 0.839 0.350 0.482 0.343 

*The values in the parentheses show the different weights given to modified Rogers distance (MR) and 
Shannon diversity index (SH) used when selecting a subset of accessions using Core Hunter 
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Fig 7: Proportions of alleles in different classes in the whole dataset (Whole_Col) and in subsets of 15 
accessions obtained using Genetic Distance Optimization (GOpt), random sampling and different 
parameter settings for Core Hunter (CH1-RD(1)SH(0); CH2-RD(0.7)SH(0.3); CH3-RD(0.5)SH(0.5); 
CH4-RD(0.3)SH(0.7); CH5-RD(0)SH(1)). The parameter settings refer to weights assigned to 
Modified Rogers Distance (RD) and Shannon diversity Index (SH).  Classes are based on the 
frequencies of the alleles in whole collection (Common alleles-CA ( 05.0P ); Rare alleles-RA 

( 05.0005.0 <p ) and Very rare alleles-VRA ( 005.0<p )) 

4.3.2 Selection of markers 

General Results: In the following, the preservation of pairwise distances between 

accessions by a subset of SSR markers is measured by the correlation between the 

distances based on the subset of SSR markers and the distances based on the whole set 

of SSR markers (Table 4). 
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Table 4: Correlation of pairwise distances between accessions for a subset of five 
markers versus all the markers with distance based on PSA 

Crop 

Method* Coconut Potato Common bean Rice Chickpea

BE 0.813 0.826 0.902 0.706 0.661 
WPCA1 0.775 0.718 0.864 0.698 0.640 
WPCA2 0.766 0.772 0.722 0.533 0.624 
WPCA3 0.653 0.651 0.719 0.407 0.624 
WPCA20 0.669 0.607 0.617 0.361 0.535 
PIC 0.603 0.663 0.527 0.607 0.347 
*BE: Backward Elimination; WPCA1, WPCA2, WPCA3, WPCA20: Weighted Principal Component 
using the first 1, 2, 3 and 20 PCs, respectively; PIC: Polymorphic Information Content 

Across all five crops, BE performed much better than all other methods in selecting a 

subset of molecular markers for preserving the pairwise distances between accessions. 

The selection based on PIC performed very poorly in datasets with very many alleles 

(common bean and chickpea). The method based on WPCA using many principal 

components (WPCA20) usually produced worse results compared with when one, two 

or three principal components (WPCA1, WPCA2 or WPCA3) were used. The 

differences in performance between the methods became more pronounced when 

selecting small subsets (< 10) of SSR markers (results not shown). 

The number of SSR markers required to achieve a specified minimum correlation 

depended on whether the SSR markers are recoded or not (Table 5). For all five crops, 

fewer markers were required to achieve a specified correlation when the proportion of 

shared alleles was calculated from the original SSR data instead of recoded data. The 

differences can be attributed to the loss of information associated with recoding SSR 

markers and this loss of information appears to be large for SSR markers with high 

PIC values.  
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Table 5: Numbers of selected markers required to achieve a minimum correlation of 
0.85 between distances between accessions based on markers selected using different 
methods and distances between accessions based on all markers. The numbers in the 
parenthesis is obtained when the distances between accessions were based on SSR 
data recorded as 0,1 or 2. 

Crop 

Method* Coconut Potato Common bean Rice Chickpea 

BE 7(12) 6(13) 2(3) 13(18) 16(23) 
WPCA1 9(16) 16(23) 2(2) 13(18) 18(26) 
WPCA2 9(14) 11(24) 7(11) 13(18) 17(26) 
WPCA3 11(15) 15(24) 9(12) 15(19) 17(24) 
WPCA20 11(16) 15(28) 11(14) 20(22) 21(25) 
PIC 14(20) 18(31) 13(17) 18(22) 40(40) 
*BE: Backward Elimination; WPCA1, WPCA2, WPCA3, WPCA20: Weighted Principal Component 
using the first 1, 2, 3 and 20 PCs, respectively; PIC: Polymorphic Information Content  

Evaluation of subsets of five SSR markers indicated that BE and WPCA-based 

methods tended to select markers whose major alleles had frequencies close to 0.5 

(Table 6). These SSR markers separated major groups of accessions. The PIC 

criterion favored SSR markers with very many alleles. These SSR markers 

differentiated between individual accessions or small groups of accessions thus played 

a minimal role in separating major groups.  

Table 6: Average frequencies of major alleles in a subset of five SSR markers 
selected by different methods 

  Crop 
Method* Coconut Potato Common bean Rice Chickpea
BE 0.501 0.511 0.484 0.311 0.420 
WPCA1 0.515 0.566 0.515 0.459 0.435 
WPCA2 0.562 0.541 0.320 0.411 0.461 
WPCA3 0.388 0.482 0.455 0.440 0.461 
WPCA20 0.367 0.428 0.386 0.414 0.209 
PIC 0.241 0.357 0.122 0.201 0.070 
*BE: Backward Elimination; WPCA1, WPCA2, WPCA3, WPCA20: Weighted Principal Component 
using the first 1, 2, 3 and 20 PCs, respectively; PIC: Polymorphic Information Content 
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Crop-specific results

Coconut: The best method for selection of a subset of markers was BE, followed by 

WPCA1 and WPCA2 (see Fig 2). For example, when distances were based on PSA, 

using the original SSR marker data we only required seven out 30 markers using BE, 

compared with 14 using PIC criterion to achieve a correlation of 0.85. The results 

obtained for WPCA3 and WPCA20 were quite similar to random sampling of marker 

subsets but better than those for PIC. A similar pattern in the number of molecular 

markers required to achieve a correlation of 0.85 was observed when distances were 

calculated using the recoded data, except that the numbers of required markers were 

much higher.  

Potato: BE outperformed all other methods in selecting a subset of molecular markers 

(see Fig. 2).  When pairwise distances between accessions were calculated using PSA 

based on the original SSR marker data, we only needed six out of 50 markers to 

achieve a correlation of 0.85, which is less than half the number required by other 

methods.  For the number of molecular markers needed to achieve a correlation of 

0.85 (with the exception of WPCA2), the performances of the other methods were 

quite similar. Only BE, WPCA1 and WPCA2 performed better than random selection.  

Common bean: For common bean, a much greater difference in the performance of 

BE, compared with the other methods (except WPCA1), was found than for the other 

crops, especially in subsets of markers of small size (see Fig. 2).  The PIC performed 

very poorly in this dataset. The BE and WPCA1 required only two out 33 of SSR 

markers to achieve a correlation of 0.85 compared with 13 markers for PIC. The 

performance of WPCA20 was quite similar to that of PIC. 

Rice: The BE performed better than the other methods, except WPCA1 (see Fig. 2). 

The performances of BE, WPCA1 and WPCA2 were very similar for subsets of 

markers with sizes greater than 10. For subsets of markers of sizes less than 10, 

random selection of markers performed much better than WPCA3 and WPCA20. 

With the exception of BE and WPCA1, the method based on PIC performed better 

than other methods for subsets of size less than 5.  When correlation was based on 

recoded SSR data, WPCA20 and PIC required the same number of markers (22) to 

achieve a correlation of 0.85.  
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Chickpea: Although BE method performed better than all the other methods, the 

differences in performance were not prominent, especially with WPCA-based 

methods (see Fig. 2).  The selection based on PIC performed very poorly compared 

with the other methods. The PIC required 40 out of 50 markers to achieve a 

correlation of 0.85. In this case, randomly selecting a subset of SSR markers produced 

much better results than PIC. 

4.4 Discussion and Conclusions 

Understanding the current status of genetic diversity and finding links between 

genetic resources stored in different institutions are essential for a successful, 

worldwide exploitation of genetic resources for crop improvement.  The concept of 

reference sets of accessions and markers provides an efficient way to relate new 

materials to existing ones and set up different crop-specific study panels that can be 

used by plant breeders worldwide, with just a few representative accessions and a few 
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molecular markers covering the genetic diversity in each crop.  For example, selected 

accessions can be used for creating the so-called MAGIC (Multiparent Advanced 

Generation Inter-Cross) population, which can be used for QTL analysis. Kover et al. 

(2009) demonstrated the utility of MAGIC population in improving the precision of 

QTL mapping. 

In this study, representative accessions were selected using GDOpt, which aims at 

optimizing the spacing of a fixed number of accessions within the genetic space 

defined by all available markers. By performing selection and clustering of accessions 

simultaneously, this method can avoid the tedious process of determining population 

structure of the collection. Determination of population structure is quite challenging, 

especially in the case of germplasm collections where most often no clearly defined 

groups exist (Odong et al. 2011). In highly diverse collections, it may only be possible 

to isolate subsets of closely related individuals rather than obtaining large 

homogenous groups (Hamblin et al. 2007). It is from these closely related individuals 

that GDOpt selects a representative.  Results from simulations have shown that if 

groups are known, stratified sampling does give improvement over simple random 

sampling, but its performance is still worse than that of GDOpt (Appendix 1).  

However, in situations where distinct groups of accessions exist (e.g., the Andean and 

Mesoamerican types of common beans), the selection can be performed separately for 

each group.  Most methods that aim at optimizing either allelic richness or maximum 

genetic distances between selected accessions are quite capable of covering the full 

range of genetic diversity, including extremes, but may not produce representative 

subsets of accessions.  For example, by simply selecting extremes, it would be 

possible to produce a subset with maximum genetic distances between accessions or 

maximum number of alleles although the selected accessions are not fully 

representative of the whole collection. Moreover, according to Zhang et al. (2010), the 

majority of very rare alleles would not contribute to the genetic diversity needed to 

develop elite cultivars and therefore their inclusion in the core collection may not be 

worthwhile. Some scientists (Allard, 1992; Frankel et al. 1995) have argued that less 

frequent alleles only occasionally affect quality or other traits and are generally 

unlikely to be of future use. In a situation where a representative subset is required, 

GDOpt has great advantages over all other methods, as shown in this study.   
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One of the key challenges in selecting representative sets of accessions based on 

distances between accessions is the effect of (random) errors in the data. In general, 

(random) errors will inflate dissimilarities between individuals, with smaller 

dissimilarities being relatively more inflated than larger ones.  The inflation of 

dissimilarities consequently results in an overall greater dispersion of accessions in 

the genetic space, making it more difficult to obtain representative sets of accessions. 

The use of SSR markers with very many alleles (and consequently high PIC values) 

aggravates this problem. It is thus clear that if we are interested in a stable relationship 

between accessions, then the distances obtained from all the available markers and/or 

all alleles may be unsuitable. Markers with very high PIC (or very many alleles), in 

addition to inflating the distances between accessions, are likely to provide 

inconsistent relationships because of the fact that some of the alleles are as a result of 

misreading bands and are not repeatable. A much more stable relationship (distance) 

between accessions can be obtained by discarding some markers. Our results show 

that for all the five crops, 10 or more markers can be discarded without much 

distortion of pairwise distances between accessions. Another alternative for obtaining 

a stable relationship between accessions or group of accessions would be to calculate 

distances using important PCs, but additional studies are needed.   

For the selection of subsets of molecular markers, we have shown that if one is 

interested in selecting a subset that preserves pairwise distances between accessions, 

BE provides the best option. The BE tends to remove markers with very many alleles 

and lots of missing values because they tend to contribute less to pairwise distances 

between accessions. The first markers included in the subset using BE mainly separate 

the major groups present in the data but could have the weakness of not differentiating 

well between accessions within groups.  For example, for the common bean data, only 

two markers are required to achieve a correlation of 0.85 and those two markers 

separate Mesoamerican and Andean types quite well. A similar situation was 

observed for coconut where the first five markers separated accessions associated with 

the Pacific Ocean from those associated with Indian and Atlantic Oceans.  

Simulations (results not shown) indicated that the correlation between pairwise 

distances between accessions based on a subset of markers and distances based on the 

entire set of markers depended on the level of group structure in the data. The stronger 

the group structure, the fewer the number of markers required to preserve the pairwise 
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distances between accessions.  The performance of BE could be improved by 

performing marker selections in two steps, i.e., first perform BE based on the whole 

dataset and subsequently perform it within the major groups. For rice and chickpea, 

the difference in performance between BE and other methods was smaller compared 

to common bean, coconut and potatoes. This could be attributed to nature of group 

structure present in these datasets. Both multidimensional scaling and cluster analysis 

showed the presence of strong structure that was consistent with passport data in the 

three datasets (common bean, coconut and potato), which indicated a large difference 

between BE and other methods of selection of subset of markers compared to rice and 

chickpea. 

  

The performances of the PCA-based methods were quite good and in some cases 

comparable with that of BE.  Our study revealed one interesting aspect about the 

number of important principal components to be included in the selection process. In 

all our datasets, the first few (1 to 3) principal components appeared to be sufficient. 

For most datasets, the eigenvalues revealed a big difference between the first two or 

three principal components compared with the rest; which made the contribution of 

the later PCs of minor importance. The practice of determining the number of 

important PCs through rigorous statistical testing most often leads to inclusion of too 

many principal components, which in turn introduces noise.  A recent study by Lee et 

al. (2009) noted a negative effect of including all significant PCs when performing 

distance-based cluster analysis.  

Subsets of markers selected using PIC performed very poorly in preserving pairwise 

distances between the accessions, especially with common bean and chickpea.  The 

poor performance with common bean and chickpea could be attributed to the poor 

quality of the data. Both datasets contained many markers with a very large number of 

alleles with more than 50% of the alleles having frequencies of less than 0.01 (see 

Appendix 2 for diversity statistics of the SSR markers for common bean data used in 

this study).  In both crop species, the average frequency of major alleles for the five 

SSR markers with the highest PIC is much smaller compared with subsets formed by 

BE and PCA-based method.  A large of number of alleles with frequencies of less 

than 0.01 could be because of poor binning of alleles.  The presence of error (random) 

in the data was thus more likely to affect selection of markers based on PIC compared 

with BE and WPCA-based methods. The BE and WPCA-based methods (especially 
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WPCA1, WPCA2 and WPCA3) were more robust for detecting errors because those 

methods only picked out the key features of the data. Although PIC is the most 

common criterion used for selection of molecular markers, we have shown in this 

study that it performed poorly with respect to preserving major relationships between 

groups of individuals. Because PIC measures genetic diversity within a population, its 

poor performance with respect to identifying major features in the data is not 

surprising.  

When SSR markers were recoded, the difference in performance between the different 

methods was smaller compared with the results obtained using the original SSR 

marker scores. This may be because of a loss of information; forcing alleles into just 

two categories (allele with frequency closest to 0.5 versus others) tends to smooth out 

differences between accessions. It is clear from literature that one needs more bi-

allelic markers to achieve the same level of genetic distance accuracy as a set of 

multi-allelic markers, such as microsatellites (see Laval et al. 2002).  As noted from 

the results in this study, recoding affected markers with a high PIC much more than 

other markers. The correlation between distances between the accessions based on the 

original SSR markers and distances based on recoded SSR markers indicated some 

loss of information. The correlations for chickpea, coconut, rice, common beans and 

potatoes were 0.42, 0.69, 0.71, 0.82 and 0.88, respectively.  The low correlation for 

chickpea (0.42) is an indication that recoding SSR data can sometimes lead to a 

substantial loss of information, and therefore it should be applied cautiously. Other 

methods, such as performing PCA on allele frequencies from each SSR marker 

separately and later combining the information across all markers, can be explored.   

   

One of the key advantages of BE and PCA-based method is that the selected 

molecular markers are likely to be independent. For PIC, unless sets of markers on 

which selection is done are known to be independent, there is no guarantee that the 

selected markers will be independent. For the datasets used in this study, several of 

the markers provided were on different linkage groups and those for which the 

positions on the chromosomes were given showed wide spacing between the markers 

(independence).  
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It is clear from our study that using both BE and PCA-based methods, several good 

subsets of markers can be obtained. Other (quality aspects) of the chosen molecular 

markers (e.g., the possibilities for multiplexing) can be used to identify the most 

appropriate set. In the same way, alternative sets of accessions also exist and suitable 

accessions can be selected to replace less desirable ones. For example, accessions 

with missing values or those known to have propagation problems can be replaced. 

Discussion with genebank curators, crop specialists and laboratory technicians can 

provide information that can be used as a basis of determining which of the selected 

accessions and molecular markers should be retained or dropped.  The use of 

multivariate statistical techniques, such as multidimensional scaling, can assist in 

visualizing the selected accession in the space defined by the selected subset of 

markers. 

In summary, for the selection of subsets of both accessions and markers, several 

methods exist, each with their own advantages and disadvantages, i.e., there is no 

perfect core collection suitable for all purposes. Although GDOpt performs very well 

with respect to representativeness of non-selected accessions, its performance with 

respect to maximizing genetic diversity parameters, such as allelic richness or 

distances between selected accessions, is slightly compromised – i.e., there is a trade-

off.  Methods such as Mstrat (Gouesnard et al., 2001)  PowerCore (Kim et al. 2007) 

and Core Hunter (Thachuk et al. 2009) should be used when the interest is in selecting 

subsets of accessions by maximizing diversity parameters, such as allelic richness or 

distance between entries in the core collection.  For the selection of subsets of 

molecular markers, both BE and methods based on the first few (two or three) PCs 

gave rise to subsets of markers that preserved the major structure in the data but may 

have performed poorly for discriminating between individuals within the groups 

compared with markers with a high PIC.  
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Appendices 

Appendix 1 

Result of simulated data 

a) 

b) 

Figure 3: Boxplot of a) distance between each accession and the nearest entry in the core collection 
(A-NE distance) and b) Proportion of alleles captured by core collections (of size 15) obtained by 
GDOpt, different settings of Core Hunter (CH-0/1, CH-0.7/0.3, CH-0.5/0.5, CH-0.3/0.7, CH-0/1), 
Random sampling (Random) and Stratified Random sampling (StrRandom) from 10 simulated data 
sets. For both random and stratified sampling, for each data set sampling was performed 100 times. 
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Appendix 2 

Table 6: Values of diversity statistics for each molecular marker – Common beans

Marker No.  of Alleles 
Frequency of 
 Major alleles No. of Genotypes Gene Diversity Heterozygosity PIC 

PV_at001 121 0.0540 181 0.9814 0.6945 0.9810 

BM187 95 0.1317 137 0.9533 0.3034 0.9516 

GATS91 48 0.0825 79 0.9523 0.0846 0.9502 

BM143 65 0.1594 109 0.9394 0.1299 0.9366 

BM156 62 0.1817 93 0.9310 0.1044 0.9276 

BMd01 40 0.1491 99 0.9253 0.7059 0.9208 

BM200 58 0.1706 90 0.9213 0.1983 0.9166 

BM188 49 0.1653 91 0.9191 0.8152 0.9140 

PV_ctt001 23 0.1690 38 0.8860 0.0716 0.8752 

BM141 38 0.2527 75 0.8740 0.2602 0.8642 

BM175 39 0.2888 58 0.8707 0.0510 0.8616 

BM183 41 0.2755 62 0.8695 0.1216 0.8589 

BM172 47 0.3489 83 0.8580 0.1470 0.8527 

BM160 59 0.3705 83 0.8497 0.0936 0.8460 

BM205 19 0.3296 37 0.8219 0.2480 0.8035 

BM139 27 0.4534 46 0.7679 0.0769 0.7564 

BM201 16 0.3004 29 0.8152 0.0576 0.7920 

BMd16 22 0.3096 35 0.7798 0.1743 0.7481 

PV_ag003 12 0.3153 17 0.7685 0.0196 0.7329 

BMd15 22 0.3476 33 0.7423 0.3111 0.6996 

BMd18 15 0.3877 19 0.7111 0.3475 0.6663 

BM149 10 0.5764 15 0.6328 0.0238 0.6086 

PV_cct001 14 0.5000 17 0.6533 0.0724 0.6002 

BMd08 14 0.5114 18 0.6716 0.0207 0.6345 

BMd20 10 0.5397 13 0.6412 0.0146 0.5997 

BMd47 10 0.4615 14 0.6554 0.0243 0.5952 

BMd17 9 0.4892 12 0.6390 0.0784 0.5735 

AG01 10 0.5780 17 0.5971 0.1951 0.5499 

BMd02 12 0.5539 15 0.6012 0.0294 0.5420 

PV_at003 14 0.4567 19 0.6056 0.1333 0.5258 

BMd46 7 0.4930 10 0.5362 0.0099 0.4286 

GATS54 9 0.6815 11 0.4555 0.0643 0.3811 

BMd51 3 0.9894 3 0.0211 0.0000 0.0209 

Only summary for  33 SSR markers shown 



This chapter is  submitted (under  revision) to  Theoretical and Applied Genetics as:  
T.L. Odong  J. Jansen  F.A. van Eeuwijk -- T.J.L. van Hintum 
Quality of  Core Collections for Effective Utilization of Genetic Resources 
Review, Discussion and Interpretation

Chapter 5 

Quality of core collections for effective utilization of genetic resources

Review, discussion and interpretation 

ABSTRACT 

Defining proper criteria for evaluating the quality of core collections is a prerequisite 

for selecting high-quality cores.  However, a critical examination of the different 

methods used in literature for evaluating of the quality of core collections shows that 

there are no clear guidelines on the choices of quality evaluation criteria and as a 

result, inappropriate analyses are sometimes made leading to many false conclusions 

being drawn regarding the quality of core collections and the methods to select them.    

The choice of  criteria for evaluating core collections appear to be based mainly on 

criteria being used  in earlier publications  rather than on the objectives of the core 

collection.  In this study, an insight in the different criteria used for evaluating core 

collections is provided. We also discuss the different types of core collections and 

relate each type of core collection to possible evaluation criteria. Two new criteria 

based on genetic distance are introduced. The consequences of the different 

evaluation criteria are illustrated using simulated and experimental data. We strongly 

recommend the use of the distance-based criteria since they not only allow the 

simultaneous evaluation of all variables describing the accessions, but they also 

provide intuitive and interpretable criteria, as compared with the univariate criteria 

generally used for the evaluation of core collections. The results presented allow 

genebank curators and researchers to make informed choices when creating, 

comparing and using core collections.  
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5.1 Introduction 

Ex-situ germplasm collections have increased enormously in number and size over the 

last three to four decades as a result of global efforts to conserve plant genetic 

resources for food and agriculture. The large sizes of these collections complicate the 

characterization, evaluation, utilization and maintenance of the conserved germplasm. 

The approach of forming core collections (core sub-sets) was introduced to increase 

the efficiency of characterization and utilization of collections stored in the gene 

banks, while preserving as much as possible the genetic diversity of the entire 

collection (Frankel, 1984; Brown 1989).  Frankel (1984) defined a core collection as a 

limited set of accessions representing, with minimum repetitiveness, the genetic 

diversity of a crop species and its wild relatives. From the original definition, several 

operational definitions have been coined (see Brown, 1995 and Van Hintum et al. 

2000).  

Core collections have many roles to play in the management and use of genetic 

resources.  Gene bank curators have the responsibility for conservation, regeneration, 

safety duplication, documentation, evaluation and characterization of the genetic 

resources in their collections. These activities often require them to make choices or 

set priorities among accessions because of limited resources (Brown, 1995).  Because 

a core collection is smaller in size compared to the whole collection, it enables some 

operations of the genebank, such as evaluation, to be handled more efficiently and 

effectively. The limited size of a core is key to its manageability, and in many cases 

the representation of the collection’s diversity enables the core to function as a 

reference set of accessions for the whole collection (Brown and Spillane, 1999).  

Since the inception of the idea of core collections over two decades ago, a body of 

literature on the theory and practice of core collections has accumulated.   Very many 

approaches for selecting core collections have been proposed and used (e.g. M-Strat 

(Gouesnard et al. 2001), Genetic distance sampling (Jansen and van Hintum 2007), 

Power Core (Kim et al. 2007) and Core Hunter (Thachuk et al. 2009)).   In comparing 

the options for assembling a core collection, one of the challenges is to decide on the 

evaluation criteria for the quality of the result. Various criteria for determining the 

suitability of a core collection have been suggested in the literature, yet very little 
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attention has been given to the analysis of these quality criteria. In fact every 

researcher appears to have his/her own criteria for the evaluation of core collections.  

There is a need to clearly define criteria for the evaluation of the quality of core 

collections and to determine the conditions under which these are suitable.  For 

example, a core subset formed for the purpose of capturing rare or extreme traits (e.g. 

high resistance to pest or high yield) should be evaluated differently from one formed 

with the intention of representing  an overview of the pattern of genetic diversity in 

the collection. By the pattern of genetic diversity we refer to the differences in the 

genetic constitutions of the accessions which have been accumulated as a result of 

natural processes, species characteristics and historical events.  

In this paper, we will i) discuss the different types of core collections and proposed 

criteria suitable for quality evaluation of each type of core collection ii) discuss the 

different criteria used in the literature for evaluating the quality of core collections and 

relate each criterion to the different types of core collections iii) use real data sets 

(molecular marker data) to illustrate the performance of the proposed quality 

evaluation criteria with respect to the different types of core collections. The outcome 

of our study will allow researchers and curators to make informed choices from a set 

of alternative approaches. 

5.2 What is a good core collection? 

One of the key goals of defining a core collection is efficient utilization of available 

genetic resources and this is best achieved by having clear objectives in mind when 

selecting entries for the core (Mackay, 1995). The answer to the question “what is a 

good core collection” therefore depends on the objectives for making the core. This 

can be “storing as much variation as possible”, “optimizing the chance of finding a 

new allele” but also “obtaining a few accessions that represent the spectrum of 

phenotypes in the collection”.  A second question is how to measure quality, and this 

will depend on the type of data available for evaluation.   

According to  Brown (1989), a good core collection should have no redundant entries 

(an entry is an accession included in the core), represent the whole collection with 
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regards to species, subspecies and geographical regions and should be small enough to 

be easily managed. It was suggested by Marita et al. (2000) that selection of core 

collections can be performed with two general purposes i) maximizing the total 

genetic diversity(as sometimes favoured by taxonomists and geneticists) and ii) 

maximizing the representativeness  of genetic diversity in the whole collection (as 

sometimes favoured by plant breeders). Accordingly, maximizing the 

representativeness  of genetic diversity implies the inclusion of broadly adapted and 

heterotic materials containing ‘generalist’ alleles in a core collection.  Earlier, Galwey 

(1995) stated these two purposes of core collections in a slightly different way as: (i) 

maximizing the representativeness of the full range of variation in whole collection; 

(ii) maximizing the representativeness of the pattern of variation in the whole 

collection.  

There is also an aspect of balance between representing total diversity and the 

usefulness of the core to the intended user (Brown 1995). This can be illustrated with 

some examples. If a breeder searches for a particular trait, it is likely that the best core 

collection should contain relatively more material from the primary genepool as 

compared to the secondary genepool, irrespective of the amount of diversity in it, and 

within the primary genepool there will be a strong preference for material in an 

adapted genetic background. If a core collection is created in the search for new 

resistances, the part of the genepool that in the past has shown to contain resistances 

should obviously be overrepresented. This implies that the user is often not primarily 

interested in maximising diversity per sé (which  would result in core collections with 

mainly wild and exotic material), but rather in optimising the chance of finding what 

he/she is looking for in material which is relatively easy to use in, say, a breeding 

programme.  To achieve this, the selection of a core collection often starts with 

stratifying accessions into homogeneous groups, followed by an arbitrary 

determination of the number of accessions to be selected from each group, the so-

called allocation.  When a core collection is being formed for a specific user, the 

stratification and allocation process can be used to ensure that accessions from (a) 

particular group(s) (e.g. primary gene pool, modern varieties or Ethiopian landraces) 

are given more priority than justified by the genetic variation contained in that group. 

Since this stratification and especially the allocation process is sometimes arbitrarily 

defined by curators or users, it is difficult to incorporate this aspect into quality 
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criteria. The rest of this paper will therefore concentrate on non-stratified groups of 

accessions. However, it should be noted that when grouping of accessions is 

necessary and/or when the groups can be appropriately determined,  the quality 

criteria should be applied within the different groups. 

From the literature, it is not clear how to relate the purpose of the core collections 

with the various quality evaluation criteria, and only very few authors have attempted 

this  (e.g. Thachuk et al. 2009). Based on the purposes of core collections as suggested 

by Galwey (1995) and Marita et al. (2000), we have identified three broad types of 

core collection which will be discussed in the next section.  

5.3 Types of Core Collections 

Based on the purposes for which they are formed core collections can generally be 

classified into three categories. In defining the types of core collections, the term 

accessions refers to elements that constitute the whole collection (population) and  

entries are elements of the core collection (sample). Since the core collection is a 

selection from the whole collection, all entries are accessions, but only few accessions 

are entries.  

Type 1: A core collection representing the individual accessions of the whole 

collection (CC-I). 

Implication: each accession of the whole collection is represented by an entry of the 

core collection (usually by the closest entry). 

This type of core collection (CC-I) aims at a uniform representation of the original 

genetic space, with equal weights across this space and is the most intuitive way of 

looking at core collection (see Fig 1).  A core collection of type CC-I is especially 

suitable, for situations requiring an overview of the diversity of the accessions of the 

whole collection. Core collections formed for the purposes of maximizing the 

representativeness of genetic diversity as suggested by Marita et al. (2000) can be 

placed in type CC-I.  
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Type 2:  A core collection representing the extremes of the whole collection (CC-X). 

Implication: the diversity of the traits of the entries of the core collection is 

maximized. 

A core collection of type CC-X is geared towards representing the ranges of 

phenotypes or alleles of the whole collection. A good core collection of type CC-X 

has entries that are as different as possible from each other. A core collection 

representing the total genetic diversity, as suggested by Marita et al. (2000), can be 

considered as a core collection of type CC-X.    

Type 3: A core collection representing the distribution of accessions of the whole 

collection (CC-D). 

Implication: the distributions of all relevant traits with regard to the entries of the core 

are similar (in terms of mean, variance, quartiles, frequencies) to those of the whole 

collection. 

This core collection of type CC-D is hardly ever of interest; only if the aim is to give 

an overview of a the composition of the whole collection using only a part of the 

collection, this type should be considered. This type of core collection will be 

obtained by maximizing the representativeness of the pattern of variation of traits in 

the whole collection, as suggested by Galwey (1995).   

Although a CC-D core collection is hardly of interest, the criteria used for evaluating 

most core collections in the literature suggest that most core collections are of type 

CC-D (e.g. annual medicago (Diwan et al. 1994), sesame core collection - China 

(Xiurong et al. 1998), Iberia Peninsula common bean (Rodino et al. 2003), groundnut 

(Upadhyaya et al. 2003), peanut (Valencia) (Dwivedi et al. 2008), USDA soybean 

core (Oliveira, et al. 2010) ).   

The different types of core collections have been illustrated graphically using a 

multimodal univariate distribution for the whole collection (Fig 1). 
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Fig 1: A. Multimodal trait distribution of for whole collection; B. Distribution of the same trait for a 
collection of type CC-I; C. Distribution of the same trait for a core collection of type CC-X ; D. 
Distribution of the same distribution for a collection of type CC-D 

5.4 Quality criteria for evaluating core collections 

The process of evaluating a core collection usually involves a comparison with the 

whole collection from which it has been obtained, or a comparison with alternative 

core collections.  This requires clear and objective criteria for assessing the quality of 

the different types of core collections.  

Irrespective of the type of core collection and the quality criterion used, the evaluation 

of quality should be based if possible on data that were not used in the selection of the 

core (van Hintum et al. 2000). This might sound like an obvious statement, but it is 

very often neglected (e.g. Tai and Miller 2001 and Wang et al. 2007).  For example, 

one has a dataset of 1000 accessions each genotyped with 50 markers, and the 

objective is to create a core collection of 20 entries with maximal allelic richness. If it 

would concern only the current 50 markers, this would be a simple optimisation 

problem. However, the question is, “what if the core collection should also be ‘allelic 

rich’ for all loci that were not genotyped?”  One option would be to use half the 
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markers for creating core collections using different methods, and the other half for 

evaluating the quality of the result of each method (for a good examples see Mckhann 

et al. (2004), Ronfort et al. (2006) and Balfourier et al. (2007)). Once the best strategy 

has been determined this strategy could then be used on the entire set of markers to 

create the final core collection. Since often molecular data will be used to select a core 

that is also supposed to optimize the phenotypic diversity, relevant phenotypic traits 

should be used for the validation.  

In this article, we place emphasis on evaluation criteria based on genetic distances 

between accessions.  The main advantage of using genetic distance for evaluation of 

core collections is that unlike the other criteria used in literature which handle one 

variable at a time, all the variables are used simultaneously. It is also easier and more 

intuitive to link distances to the concept of genetic diversity. 

Evaluation of type CC-I  

A good criterion  for evaluation CC-I core should relate each accession of the whole 

collection with the entries of the core collection. For CC-I, we proposed criteria based 

on  distances between each accession in the whole collection and the nearest entry in 

the core collection (A-NE) (see Fig 2).  

Fig 2: A) Eight accessions (1,2,..,8) in a 2D space with all pairwise distances (the distance between 
accession n and m is indicated as Dn-m).  B) The three selected entries (highlighted accessions) based 
on the A-NE criterion, minimising the average distance between each accession and it nearest 
neighbouring entry (D1-2 + D2-2 + D3-3+ D4-2 + D5-6 + D6-6 + D7-6 + D8-6)/8  
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Average distance between each accession and the nearest entry (A-NE) (Odong et al 

2011b):  In this case, the distance between each accession and the nearest entry in the 

core is calculated and averaged over all the accessions. For the selected accessions 

(entries) these distances are taken as zero (they are closest to themselves). For 

example, the value A-NE for Fig 2 is given as 

Where the distance between accession n and m is indicated as Dn-m.

For core collections of type CC-I, the value of A-NE should be as small as possible; 

the maximum representation (A-NE = 0) is obtained when each accession is 

represented by itself  or by an identical duplicate accession in the core. In core 

collections that optimize the values of A-NE (CC-I type of core), the accessions 

selected as entries tend to be centres of clusters(groups)  rather peripheral objects (see 

Fig 4).  

Evaluation of type CC-X  

A good criterion for a core collection of type CC-X (representing the extreme values) 

should be able to quantify differences between entries of the core collection as well as 

being able to measure the inclusion or exclusion of accessions with extreme traits in 

the core. The most intuitive criteria  for determining differences between entries in the 

core collection are those criteria based on pair-wise distances.  The exclusion or 

inclusion of accessions with extremes values in the core can be assessed using 

frequencies of traits or alleles captured (see Thachuk et al. 2009). Below we propose a 

new criterion based on distances between an entry and the nearest neighbouring entry 

(E-NE) and compare it with criteria based on average pair wise distances between all 

entries.  

8

)( 6867666524332221 +++++++
=

DDDDDDDD
NEA
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Fig 3: A) Eight accessions (1,2,..,8) in a 2D space with all pairwise distances (the distance between 
accession n and m is indicated as Dn-m).  B) The three selected entries (highlighted accessions) based 
on the E-NE criterion maximizing distances between each entry and the nearest neighbouring (D1-3 + 
D3-1 + D7-1)/3  

Average distance between each entry and the nearest neighbouring entry (E-NE): 

According to this criterion (E-NE), a good core collection is one that maximizes the 

average distance between each entry and the nearest neighbouring entry in the core 

collection.  For this criterion, each entry should be as different as possible from the 

most similar entry. This avoids selecting a few clusters of similar accessions at the 

extreme ends of the distribution, that might occur if one chooses a set of entries that 

maximizes the average of all pair-wise  distances  between the entries in the core (E-

E) (see Fig 4).  Using example in Fig 3, if accessions 1,3 and 7 are selected as entries 

in the core collection, and  if 1 is the nearest neighbouring entry to both 3 and 7  

(reverse is also true)  then  E-NE is  given as 

3

)( 171331 ++
=

DDD
NEE

where the distance between accession n and m is indicated as Dn-m.

Average genetic distances between entries (E-E): Maximizing the average genetic 

distance between entries of a core collection has been suggested as a desired quality 

criterion for evaluating core collections intended for plant breeders (Franco, 2006, 

Thachuk et al. 2009). Using example in Fig 3,  E-E are given as 

3

)( 737131 ++
=

DDD
EE  . 
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Fig 4 provides a simple numeric and graphical comparisons of the three distance-

based criteria discussed above. Although both E-E and E-NE  are suitable for CC-X 

type of core, as illustrated in Fig 4C core collection with a high average distance 

between the entries (E-E) can still have a high level of redundancies.  It is clear from  

Fig 4 that despite having the highest E-E (0.573 versus 0.491  and 0.467) the core 

collection in Fig 4C,  some entries in Fig 4C are too close to each other to be included 

in a core collection as reflected by a low value of E-NE. Fig 4 A indicates that 

minimization of A-NE leads to selection of accessions from the centres of clusters 

compared to E-E and E-NE which select accession at the periphery of clusters. 

Fig 4 Examples of core collections, showing the effect of optimization of different  criteria on the 
positioning of entries (red stars) within the distribution of accessions (circle) for each core collection, 
the value of all three evaluation criteria are given: A) The average distance between each accession and 
the nearest entry (A-NE) is minimized (E-E =0.467; E-NE=0.180; A-NE=0.038) B) The average 
distance between an entry and the nearest other entry (E-NE) is maximized (E-E =0.491; E-NE=0.241; 
A-NE =0.056)   C)The average distance between entries (E-E) is maximized (E-E =0.573; E-
NE=0.118; A-NE=0.094).  Thus, for E-E and E-NE, the larger the value the higher the quality of the 
core collection, the opposite is true for A-NE.
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Evaluation of type CC-D  

Ideal criteria for evaluating a core collection of type CC-D should be able to compare 

many distributional aspects simultaneously: centre (mean, mode), spread (variance, 

range), shape (symmetry, skewness, number of modes) and unusual features (gaps, 

presence of outliers) of all data simultaneously. For continuous data, we propose the 

use of quantile-quantile plots (Gnanadesikan and Wilks 1968) which provide a visual 

comparison for two data sets using several distributional aspects of the data 

simultaneously. We also recommend the use of Kullback-Leibler distance (Kullback 

and Leibler, 1951) which measures the distance between probability distributions, can 

be used to compare the difference in probability distribution between the core 

collection and the whole collection. 

QQ plot: Compared to simple comparison of means or variances the QQ plot gives a 

much better overall visual view of how the distribution of a given trait differs between 

the core collection and the whole collection. A QQ plot is a graphical method for 

comparing two probability distributions by plotting corresponding quantiles against 

each other. If the two distributions are similar, the points in the QQ plot will lie 

approximately on a straight line. A QQ plot is generally a more powerful approach for 

comparing distributions than the common technique of comparing histograms of the 

two samples, but requires more skill of interpretation.  A more quantitative approach 

for comparing the distribution of the traits in the whole collection and the core would 

be to calculate the Kullback-Leibler distance between the core collection and the 

whole collection.  Fig 5 below shows QQ plots for the three core collections shown in 

Fig 1. We have also used the information from QQ plot to calculate the Kullback-

Leibler distance between the different core collections in Fig 1 and the whole 

collection. A brief description of Kullback-Leibler distance is presented in Appendix 

1.  
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Fig 5: Q-Q-plots for different types of core collections shown in Fig 1. From both the qq-plots and 
Kullback distance (Kullback Dist), it is clear that the distribution of whole collection is best represented 
by type 1 (CC-D) core.  The Kullback-Leibler distance was calculated based on values generated by the 
Q-Q plot. Random sampling core collection is only based on one data set. The minimum value of 
Kullback-Leibler distance is zero (for a core collection with identical distribution to that of the whole 
collection).  

5.5 Common methods used for evaluating core collections in the  literature 

Below we give an overview of the various criteria for evaluating core collections used 

in the literature and relate them to the three types of core collection. Given that the 

type of data determines how diversity in the whole collection or the core collection 

should be quantified, we will also try to relate the evaluation criteria to the different 

types of data (see Appendix 2 for brief descriptions of different types of data used for 

selecting and evaluating the quality of core collections). It should be noted that when 

evaluating the quality of core collections, most authors apply several evaluation 

criteria despite the fact that those criteria are only suitable for different aspects of core 

collections. The most common criteria used for evaluating core collections include 

summary statistics, the Shannon diversity index, class/category coverage and chi-

square tests of association (see table 1 below for summary).  
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5.5.1 Summary statistics:   Criteria based on mean, variance and other summary statistics such 

as coefficient of variation, range, inter-quartile range have been used mainly to evaluate the 

quality of core collections based on continuous traits (Hu and Xu 2000; Tai and Miller, 2000).  It 

involves statistical tests of differences between means, variances and other summary statistics of 

the core and the whole collection. Based on the results of statistical tests (mainly t-tests and F-

tests) performed on each trait separately, several evaluation criteria (mean difference percentage, 

variance difference percentage, coincidence rate of change and variable rate of coefficient of 

variation, sign test) have been suggested (see Table 2).  Criteria based on means and variances 

are probably suitable for the evaluation of a core collection of type CC-D and will perform very 

poorly with core collections of type CC-I and CC-X.  

Some authors have questioned the use of differences between means and variances of core and 

whole collection as criteria for evaluating the quality of core collections (e.g. Kim et al. 2007). 

There is also a conceptual problem when comparing a core collection (a sample) and a whole 

collection (population). Thus the question is not  whether these two samples are different, but 

could this sample have come from this distribution? So we should be dealing with a one-sample 

test and not a two-sample test. It is thus clear that the use of QQ plot (Gnanadesikan and Wilks 

1968) and probability distribution based methods such as the Kullback-Leibler distance 

(Kullback and Leibler 1951) would be the best option for evaluation of CC-D  types of core 

collections.  
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Table 2: Common criteria for evaluating the quality of core collections based on summary 

statistics 

Criteria Description

Mean difference 
percentage (MD) 
(Hu et al. 20003)

100x
n

S
MD t=

where St is the number of traits with a significant difference between the means of the 
whole collection and the core collection; n is the total number of traits. The lower 
(<20%) the value of MD the more representative the core collection.  

Variance 
difference 
percentage (VD) 
(Hu et al. 2000)

100x
n

S
VD t=

 where St is the number of traits with a significant difference between the variances of 
the whole collection and the core collection; n  is the total number of traits. The 
larger (>80%) the value of VD, the more diverse the core collection.

Coincidence rate of 
range (CR)  
(Diwan 1995)

100
1

1

x
R

R

n
CR

n

i )i(W

)i(C

=

=

where )(iCR  and  )i(WR  represent the ranges of the thi trait in the core collection and  

the whole collection, respectively; n  is the total number of traits.

Variable rate of 
coefficient of 
variation (VR) 
(Hu et al.  2000)

100
1

1

x
CV

CV

n
VR

n

i )i(W

)i(C

=

= , 

where )(iCCV and )i(WCV  represent the coefficients of variation of the thi  trait in the 

core collection and the whole collection, respectively; n is the total number of traits.

The Sign test 
(Basigalup et al. 
1995, Tai and 
Miller, 2001) 

( ) ( )21
2

21
2 NN/NNX += . 

where N1 is the number of variables for which the mean or variance of the core core 
collection is greater than the mean or variance of the whole collection (plus); N2 is the 
number of variables for which the mean or variance of the core collection is less than 
the mean or variance of the whole collection (minus). The values of X2 should be 
compared with a chi-square distribution with 1 degree of freedom.
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Apart from the criteria described in Table 2, the correlation coefficient has also been used as a 

criterion for evaluating the quality of core collections (Reddy et al. 2005; Mahajan et al. 2007). 

The pairwise phenotypic correlation coefficients between different traits are calculated separately 

for the core collection and whole collection and the values are then compared in order to 

determine whether the associations between traits have between conserved well enough in the 

core collection.  

5.5.2 Principal component analysis  

  

Another exploratory criterion for evaluating core collections involves the inspection of the 

spatial distribution of the entries in plots of principal components ( Bisht, Mahajan and Patel, 

1998; Kang et al. 2006, Mahajan et al. 2007).  Based on the method suggested by Noirot et al. 

(1996), it is possible to compare two core collections or relate the core collection with the whole 

collection based on the sum of squares of the scores of the entries on the major principal 

components: the greater the value, the more diverse the core collection. This criterion would be 

suitable for evaluation of core collections of type CC-X. However, it should be noted that a core 

with a higher value for this criterion can still have a high level of redundancy resulting from the 

inclusion of two or more similar accessions from the extreme ends of the distribution.  

5.5.3 Shannon diversity Index (SH):  

This criterion is suitable for evaluating core collections using categorical data; it has been used 

extensively in the literature.  For a given trait, the Shannon diversity index (Shannon, 1948) is 

calculated as follows: 

)log(
1

i

n

i
i ppSH

=

=

where ip is the frequency of the category i  and n is the total number of categories.  The SH 

penalizes redundancy at the category level and its maximum value (log(n)) is obtained when all 

classes are represented in equal proportions (i.e. nppp n /1...21 ==== ).  Therefore, in terms 
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of SH, the best core collection should be the one with the maximum attainable value which 

makes SH a suitable criterion for core collections of type CC-I.  It is completely meaningless to 

make comparisons of SH values of the core collection and the whole collection  as often done in 

the literature (e.g. Bisht, Mahajan and Patel (1998), Upadhyaya et al. (2003), Mahalakshmi et al. 

(2007), Dwivedi et al. (2008) and Upadhyaya et al. (2009)) since SH of the whole of collection is 

often affected by high level of redundancy which we would not want to have in the core 

collection.   

To apply SH or other measures of diversity to continuous agronomic data, the data should first 

be converted into categorical data by putting them into a specific number of classes. McKhann et 

al. (2004) suggested that instead of calculating SH for each trait separately, traits (any type of 

traits) should be used to calculate distances between each accession and the centre of the 

distribution represented by multi-trait mean values after which, the observed range of the 

distances is divided into several discrete classes of equal length.  One of the main problem with 

this approach is that two accessions with equal distances from the centre of the distribution but 

on the opposite sides are put in the same category.   

5.5.4 Class Coverage (Coverage):  

This reports the percentage or proportion of the categories in the whole collection that have been 

retained in a core collection (Kim et al. 2007). It is defined by 

100
1

1

x
A

A

K
Coverage

K

k Wcol

Core=
=

where CoreA  is the sets of categories in the core collection and WcolA  is the sets of classes found 

in the whole collection and K is the number of traits. According to this criterion, a good core 

collection should retain all categories of a given variable in the whole collection. For the case of 

molecular marker data, the categories represent the number of distinct alleles (akin to allelic 

richness) in the whole collection. Class coverage is also a suitable quality criterion for core 

collections formed with the purpose of representing the accessions in the whole collection (type 
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CC-I) and when applied to molecular markers it will be suitable for core collections aimed at 

capturing accessions with rare alleles (type CC-X).   

It should be noted that unlike SH, coverage does not take into consideration the differences in 

frequency of the categories represented in the core collection so a core collection with high 

coverage can still have high redundancy. Just like with SH, deciding on the number of categories 

(intervals for continuous data) is a major challenge when calculating coverage.  

5.5.5 Chi-square goodness-of-fit:   

This criterion has been used to test for the deviation of the frequency distributions of important 

categorical traits between core collection and  the whole collection (Tai and Miller 2001, Grenier 

et al. 2000, Zeuli and Qualset 1993). Chi-square goodness-of-fit can also be used for continuous 

agronomic data converted into categorical data. The chi-square values can be computed as:  

=

=
k

i i

ii

WCFreq

WCFreqCFreq

1

2
2

)(

)(

where iCFreq   is the relative frequency of accession from category i  ( ki ,....,2,1= ) in the core 

collection and iWCFreq  is the relative frequency of accessions from category i  in the whole 

collection. The number of degrees of freedom being the number categories (classes) minus one.  

This test (chi-square) is only suitable when the interest is in representing the distribution of 

accessions in the whole collection (type CC-D).  

From the literature, it clear that criteria based on summary statistics and SH are the most 

frequently used (see Table 3).  Because of the similarities of criteria used to evaluate those core 

collections, it appears that all those cores were obtained with the same objective(s) in mind.   
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Table 3:  Samples of Core collections from literature showing data and criteria used for their 
evaluating them 
Paper (Core) Data use for 

selection 
Data use for 
evaluation 

Criteria use for evaluation

Soybean core collection 
(Oliveria et al. 2010) 

P, A ,M A, M Summary statistics,  chi-square, 
Correlations 

Sorghum mini core 
(Upadhyaya et al. 2009) 

P, A, M P, A ,M Summary Statistics,  Chi-square,  SH, 
Correlation 

Mini core Japanese rice 
landraces  
(Ebana et al. 2008) 

Markers Markers,  A Percentage of alleles retained, 
Summary Statistics  

Peanut (Valencia) (Dwivedi 
et al. 2008) 

P, A, M P,  A, M Summary statistics,  Chi-square SH  
Correlation 

A worldwide bread wheat 
(Balfourier et al. 2007) 

P, Markers P, Markers* Alleles captured , countries of origins 
represented 

Pearl millet (Bhattacharjee et 
al. 2007) 

P, A,  M P, A, M Summary Statistics, Chi-square, SH,  
Correlation 

World sesame
 (Mahajan et al. 2007) 

P, A, M A, M Summary statistics, Correlations,  SH, 
PCA 

West African yam Dioscorea 
spp. 
(Mahalakshmi, et al. 2007) 

P, A, M A Summary Statistics , Correlation Chi-
square, SH  

USDA rice (Yan et al. 2007) P A, M* Summary Statistics,  Correlation 
Korean Sesame core (Kang 
et al. 2006) 

P, A, M A, M Summary Statistics, Chi-square PCA

Pigeon pea 
(Reddy et al. 2005) 

P, A, M P, A, M Summary Statistics, Chi-square, SH,  
Correlation 

Iberia Penisula common 
beans  
 (Rodino et al. 2003) 

P A, M Summary statistics, Chi-square

Groundnuts 
(Upadhyaya et al. 2003) 

P, M M Summary statistics, chi-square, SH, 
Correlation   

Sesame -China (Xiurong, et 
al. 2000) 

P, A, M A, M Summary Statistics 

Indian Mung  Beans 
 (Bisht, Mahajan and Patel, 
1998) 

A, M M* Summary Statistics,  PC,  SH

Perennial Medicago 
(Basigalup et al. 1995) 

P , A, M A, M Summary Statistics

Annual Medicago (Diwan et 
al. 1994) 

P, A, M P, A, M* Summary Statistics

A: Agronomic data, M: Morphological data, P: Passport data, PCA: Principle component 
analysis, SH: Shannon Diversity Index 
*Part or all the data used for evaluation was different from the one used for forming the core 
collection 
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5.6 Illustration using real data sets 

We used two published data sets (Coconut and Common bean (Odong et al. 2011))  to show the 

importance of choosing the right criteria for each type of core collection (see chapters 2 and 4 for 

detail description of the data).     Core collections of different sizes (5 to 100) were formed by 

optimizing (minimizing or maximizing) each of the three criteria (A-NE, E-NE and E-E) and 

later evaluated using the other two criteria.  

For both coconut and common bean data,  Fig 6 shows that in terms of A-NE (representing 

accessions in the whole collection), core collections formed by maximization of E-NE or E-E 

perform even poorer than random sampling. On the other hand the performance of core 

collections formed by minimizing A-NE performed poorly when evaluated using E-NE or E-E 

criteria (see Fig 7 and 8).  This shows that when selecting a core collection, it is essential to 

define  the objectives clearly and the objectives should be the basis for choosing the evaluation 

criteria.   

Fig 6: Plot of Average distance between each accessions and its nearest entry in the core (A-NE) against different 
sizes of collections formed by optimizing (minimizing or maximizing) different criteria (E-E, E-NE, A-NE and 
Random sampling) using Coconut (A) and Common beans (B).  
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We have shown in Fig 7 and Fig 8 that for both crops a core collection that maximizes E-NE also 

perform (maximizes) very well with respect to E-E but the reverse is not always true (i.e.

maximizing E-E can results in a much lower value of E-NE since similar accessions at the 

extreme ends of the distributions can be included in the core). In general, for both coconut and 

common beans data sets comparison based on E-E is less responsive to changes within the core 

collection introduced by either changing the number entries (5 - 100) or changes in the 

optimization methods used for forming core collection. For example for both crops (Fig 7 and 8) 

the changes in E-E between a core of size 5 and that of size 100 range between 1.5 to 12% 

compared to the changes in E-NE which lies between 18 to 54%. The little response of E-E to 

changes within core collection is due to the fact that as the core (sample) size increases, the 

average distance between entries (E-E) tends towards the overall mean of distances between 

accessions in the whole collection (the E-E line of random sampling – Fig 7 A and Fig 8A).  

Fig 7: Plot of average distances between the entries in the core collection (E-E) (A)  and average distance between 
an entry and the nearest neighbouring entry (E-NE) (B) against the size of core collection for cores  formed by 
optimizing  different criteria (E-E, E-NE, A-NE  and random sampling) for Coconut data (1014 accessions) 
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Fig 8: Plot of average distances between the entries in the core collection (E-E) (A)  and average distance between 
an entry and the nearest neighbouring entry (E-NE) (B) against the size of core collection for cores  formed by 
optimizing  different criteria (E-E, E-NE, A-NE  and random sampling) for Common bean (515 accessions) data  

Use of different data sets for evaluating core collections 

A core collection obtained by optimizing one set of variables may not be optimal for another set 

of variables. The evaluation of a core collection with the same data set that was used to create it 

ignores this simple but very important point.  This is quite important especially in the case of 

molecular markers data where the key assumption is that by maximizing diversity in a given set 

of markers loci, the diversity at genes of interest will also be maximized. Fig 9 shows the result 

obtained by dividing the common bean data into two sets; one set (random sample of 18 SSR 

markers) was used to form the core collections (training set) and the other set (the remaining 18 

SSR markers) was used to evaluate the resulting cores (evaluation set). It is clear from Fig 9 that 

major differences may occur between the unknown value we intend to optimize (Target – 

obtained by optimizing evaluation set) and the actual value obtained when the core is formed 

using training set  and evaluated using another set of data (Actual – obtained by optimizing 

training set and evaluated using evaluation set).   Although the core collections obtained by 

optimizing both E-NE and A-NE performed better than random sampling in capturing unknown 
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diversity, the differences are quite small (5 -15% for E-NE and 1-5% for A-NE).  Ronfort et al. 

(2006) found very little gain in the total number of alleles captured using the H and M strategy 

(Schoen and Brown, 1995) over random sampling when evaluation was done using a different 

set of data.   Their (Ronfort et al. 2006) major explanation was that the set of inbred lines used in 

their study had no redundancy leaving little room for optimization to improve the results over 

and above random sampling.  The relatively small gain in our case is probably due to limited size 

(number of markers) and questionable quality of the data. For data set with limited structure, we 

expect little gain by minimizing A-NE compared to random sampling and this could explain the 

small difference observed in the common bean data i.e.  splitting the common bean data into two 

weakened the group structure in data resulting into very little gain.   

Fig 9: Plot of average distance between an entry and the nearest neighbouring entry (E-NE) (A)  and average 
distance between each accessions and its nearest entry in the core (A-NE) (B) against the size of core collection for 
bean data set. The bean data set was split into two halves with one half used to form collection and the other half 
used for evaluation of the core. Target (E-NE and A-NE) values are the maximum (E-ENE) or minimum (A-NE) 
possible values for each criterion for the half of the data used for evaluation (evaluation set), while actual (E-ENE 
and A-NE) values are obtained from a core collections that were created using one half (training set) and evaluated 
using the quality evaluation half of the data (evaluation set).  
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5.7 Conclusions and recommendations 

A critical examination of the different methods for evaluating the quality of core collections used 

in the literature shows that the choices of criteria for evaluating core collections are sometimes 

meant arbitrarily resulting in false conclusions regarding the quality of core collections and the 

methods to select them.  The  criterion of choice for evaluating the quality of core collections 

should be determined by the objectives or type of the core collection. If the core collection is 

made to represent the accessions in the collection (CC-I), the evaluation criterion should reflect 

that, and a criterion such as the A-NE criterion proposed in this paper should be used. If the core 

is to represent the range of genotypes and/or phenotypes in the collection (CC-X), a criterion 

such as the E-NE criterion should be used. In addition,  we stress that where possible or 

appropriate the evaluation of core collections should be based on data that are not used for the 

selecting the core collection.  When the core collection is intended for a specific user,  the quality 

will have to be determined in terms of fitness-for-use such as the ease with which certain groups 

of material can be used or the likelihood of finding traits of interest.  

In summary, we introduced two distance-based criteria (A-NE and E-NE) for evaluating the 

quality of core collections. We  strongly recommend distance-based criteria  mainly for two 

reasons a) they combine information from all traits simultaneously, instead of using one trait at a 

time as most of the evaluation criteria used in literature do, b) they are intuitive, easy to interpret 

and relate to the concept of representation of genetic diversity. The new distance based criteria, 

we proposed in this paper, are suitable for evaluating the two important  types of core collections 

(CC-I and CC-X) These evaluation criteria can also be used as optimisation criteria when 

creating the core collections. 
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Appendices 

Appendix 1: brief description of types of data used for selection of core collections 

Several types of information can be used for selecting core collections. The most common 

type of data used include i) passport data ii) agronomic data and iii) molecular marker data.   

Passport data 

Passport data are data about the identity and origin of the accession, including its taxonomic 

classification, with connected knowledge about domestication, distribution, breeding history, 

cropping pattern and utilization. Example of passport data include the country of origin, the 

crop type (e.g. winter versus summer wheat), and pedigree.  

Agronomic data 

Agronomic data can be continuous, discrete or categorical. Examples of continuous variables 

include grain yield, plant height, leaf area, etc.  Discrete variables mainly deal with counts 

such as the number of fruits or the number of seeds in a pod. Categorical variables may be 

defined as binary (presence or absence of a given characteristic), nominal (colour or shape of 

an organ) or ordinal (a visual scale arranged to represent intensity, color or size) (Crossa and 

Franco 2004).  Agronomic traits are usually controlled by multiple genes as well as by 

environmental factors. 

Molecular data 

Data from molecular or biochemical marker systems can be treated as either continuous 

(allele frequency) or categorical (presence or absence of band or allele). Examples of popular 

molecular data types  include single nucleotide polymorphism (SNP), amplified fragment 

polymorphism (AFLP), random amplified polymorphic DNA (RAPD), and simple sequence 

repeats (SSR).    
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Appendix 2: Description of Kullback-Liebler distance 

In probability theory and information theory, the Kullback–Leibler distance (KL) is a non-symmetric 

measure of the difference between two probability distributions P and Q (Kullback and Leiber, 1951).  

For two probability distributions P and Q, KL distance is defined as 

=
P

Q
EQPK p log),(

where [].pE  indicates the expectation value with respect to the probability distribution  P(the expectation 

is evaluated with respect to distribution P).  

Typically P represents the "true" distribution of data, observations, or a precise calculated theoretical 

distribution. The measure Q typically represents a theory, model, description, or approximation of P. KL 

is always non negative and is zero only if the two distributions are identical. In core collection 

application, the distribution of a particular trait in the whole collection represents true distribution (P) 

which is approximated by the distribution of the trait in the core collection. KL distance would therefore 

be a suitable criterion for evaluating core collections selected for representing the distribution of the traits 

in the whole collection.   

For normally distributed variables, KL distance can be calculated for univariate as well as multivariate 

data. For two multivariate normal densities KL is an explicit function of only their covariance 

(correlation) matrices ( 1  and 2 ) and the only necessary condition is that the two covariance matrices be 

positive definite (Tumminello et al. 2007, Chen et al. 2008).  Given two probability density functions 

( )XP ,1  and ( )XP ,2  KL is defined as 

( ) ( )( ) ( )+= ntrXPXPK 1
1

2
1

2
21 log

2

1
,,, , 

where n is the dimension of the space spanned by the X variable and  indicates the determinant of . 

There are several other distance (probability) based criteria that can be used to compare the two 

distribution (example: Kolmogorov-Sminov test; Anderson-Darling distance ( see Stephens, 1977)). 
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Chapter 6 

General discussion 

6.1 Introduction 

Since its inception about three decades ago, the core collection concept has been fully accepted,  

and made operational in many genebanks around the world (see Huaman et al. (1999), Malosetti 

and Abadie (2001), Upadhyaya et al. (2001), Li et al. (2002), Wang et al. (2006),  Balfourier et 

al. (2007) and Mario et al. (2010)). In this thesis efforts have been made to combine existing 

knowledge on core collections and statistical-genetic concepts to aid the efficient and effective 

utilization of genetic resources. The research was aimed at filling knowledge gaps in the 

development and utilization of core collections. In this final chapter, the main findings of the 

thesis and their implications will be discussed and suggestions will be made for future research. 

In this thesis three key aspects of core collection development and plant genetic resources 

utilization have been considered: 

 a) methods for the determination of the genetic structure of germplasm collections and the 

relevance of genetic structure for the selection of core collections and the utilization of 

germplasm resources (Chapters 2 and 3)  

b) methods for connecting  germplasm collections stored in different genebanks around  the 

world using molecular marker data (Chapter 4) and  

c) a critical examination of criteria for evaluating the quality of core collections (Chapter 5).  
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6.2 Methods for the determination of the genetic structure of germplasm collections and the  

relevance of  genetic structure for genetic resource utilization 

Understanding the structure and nature of genetic diversity in germplasm collections is important 

for the efficient conservation and exploitation of plant genetic resources. The importance of 

using the genetic structure of germplasm collections in the selection of core collections has been 

stressed by several authors (Brown, 1989; Spagnoletti-Zeuli, 1993; van Hintum, 2000; Franco et 

al. 2006).  Grouping accessions according to agro-ecological criteria is expected to enhance the 

possibility of recovering alleles responsible for local adaptability (Cordeiro et al. 1995).   

Knowledge of the structure of a germplasm collection can also be very useful for the 

optimization of its composition. Many collections of crop genetic resources have been 

established without a clearly defined conservation goal or mandate, which resulted in collections 

of considerable sizes, unbalanced compositions and high levels of duplication. Based on 

knowledge of the genetic structure, the representation of the different components of a crop’s 

genepool can be adjusted to take care of over- or underrepresentation (van Treuren et al. 2009), 

thus  ensuring that a genebank collection is not overburdened with large numbers of accessions 

that add little to the overall objective of conserving the maximum possible variation present in a 

gene pool. Based on groups formed by molecular markers, it is clear from this thesis (chapter 2 

and 3)  that there is an overlap in genetic diversity between coconut accessions from West Africa 

and those from Latin America and this information can be used for rationalization of the coconut 

collections in genebanks.   

Genetic structure is also very important in association studies (Wang et al. 2005; Shriner et al. 

2007). Correcting for population genetic structure or cryptic relatedness  (unknown kinship 

among individuals) reduces rates of false positives in association studies (Pritchard et al. 2000b; 

Flint-Garcia et al. 2003; Zhu et al. 2008).  

It should be noted, that genetic structures serve different purposes in core collection designation 

and in association studies.  For designation of core collections, genetic structure guides the 

allocation of entries over the different groups (clusters), in which case it may be critical that 

accessions are clustered into discrete groups. Although the requirement for discrete grouping is  

often seen as  convenient,  in reality genetic diversity occurs in a continuum.  However, many 
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authors agree that stratification of germplasm collections leads to improvements of the quality of 

core collections (see Cordeiro et al. 1995; Franco et al. 2006).    In association studies, fuzzy 

grouping can easily be accommodated since the main role of genetic structure is to indicate the 

relationships between individuals. In fuzzy grouping  each accession is allowed to belong to 

more than one group,  and associated with each accession is a set of membership probabilities 

(usually referred to as the Q-matrix) for the different groups.   In association studies, the 

membership probability is used as an estimate of the contribution of each group to the  to the 

genome of a given accession. Thus  the Q-matrix allows  modelling of the contributions of 

different groups to the genomes of individual accessions (Pritchard et al. 2000, Yu et al. 2006). 

In this thesis we proposed the use of co-phenetic distances between accessions as an alternative 

for incorporating relatedness information obtained from traditional clustering techniques in 

association studies (Chapter 2). The co-phenetic distance is the distance at which two accessions 

are clustered for the first time in a hierarchical cluster analysis. Co-phenetic distances may be 

considered as ‘fitted’ distances based on the dendrogram and as a consequence will contain less 

noise compared to observed, ‘crude’ distances.  Relatedness based on co-phenetic distances can 

be used directly to correct for population structure or cryptic relatedness without a need for 

obtaining discrete groups.  Studies need be carried out to establish the usefulness of co-phenetic 

distances  in association studies.  We need to answer questions such as: ”is the co-phenetic 

distance a suitable estimate of  kinship (usually referred to as the K-matrix) matrix in association 

studies?”  

In the selection of core collections, a grouping is relevant only if it is meaningful in relation to 

evolutionary forces (e.g. natural selection, domestication, plant breeding etc.) that shaped the 

structure of genetic diversity.  It is clear from the literature that when forming core collections 

most curators prefer to structure germplasm collections using passport data by means of a 

hierarchical branching method (see Brown, 1989a; van Hintum et al. 1995, 2000).  This approach 

is simple and intuitive.   In the hierarchical branching method, assumptions about and knowledge 

of the structure of a genepool is systematically used to split germplasm collections into smaller 

and smaller subgroups based on passport data until further splitting is not possible or is no longer 

relevant. Hierarchical branching is a form of a classification and regression tree - CART (see 

Berk 2008 for a detail description of CART).   This approach was beautifully illustrated  by van 
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Hintum et al. (2000)  using the lettuce collection of the  Center of Genetic resources, the 

Netherland (CGN) in which accessions were first grouped using domestication level (cultivated 

or wild), cultivated lettuces were further divided according to crop types (butterhead lettuce, cos 

lettuce, crisp lettuce etc.) and within each crop type accessions were divided based on area of 

origin (e.g. butterhead lettuce from Western Europe) and so on.  However, often passport data 

are lacking or are of poor quality.  We hope that the similarities between the groups formed by 

cluster analysis using molecular markers and groups based on passport data shown in chapters 2 

and 3 provide assurance, and encourage researchers and curators to exploit the potential of 

molecular markers for understanding the genetic structure of germplasm collections.  However, 

we do admit that there  is still a big challenge in interpreting the meaning of the groups formed 

by molecular markers in their own right without making reference to other information such as 

passport data. At the moment it appears that the validity of groups formed by molecular markers 

depends  on the ability of those groups to reflect the groups formed using other information 

sources (e.g. D’Hoop et al. 2010).    We believe that as entire genomes get sequenced,  the 

relevance of groups formed by molecular markers can be obtained without a need for comparison 

with other sources of information (we will come back to this point later).  At this stage it would 

be interesting to determine how we can use  different types of  information (passport data, 

molecular markers etc.) simultaneously when studying genetic structure of germplasm 

collections.  Through personal experiences and feedbacks from genetic resources users,  most 

curators have accumulated a vast amount  of knowledge which can be very valuable for 

understanding the genetic structure of germplasm collections and for the selection of core 

collections. How can such valuable information from curators be integrated with molecular and 

passport data?  One way of integrating information from the different sources could be achieved 

by the use of a Bayesian approach. One could use passport data and information from curators as 

prior information when determining  the genetic structure of germplasm collections using 

molecular marker data.  Another possible alternative could  be  to use an approach similar to 

classification and regression trees (CART).  In this case rather than using only passport data as a 

basis for hierarchically splitting germplasm collections in groups, one could also incorporate 

molecular marker information in the process.  For example, in the case of the CGN lettuce 

collection,  molecular marker information could be used to decide on whether the cultivated 

lettuce should first be split using crop types  or using origin of accessions. By using molecular 
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marker information it will be possible to determine which of the alternative splittings would lead 

to formation of groups which are genetically more distinct.   Molecular marker information can 

also  be used to determine when to stop further splitting in hierarchical branching process (i.e. 

molecular markers can be used for determining within group genetic diversity which can be used 

as a criteria for stopping further splitting).  

The key question often asked  after forming groups is what strategy should be adopted for 

deciding on the number of accessions to be selected from each group (i.e. allocation problem)? 

Different methods of allocation of entries over the different groups have been proposed and 

discussed in the literature (Brown 1989b).  In general the importance of groups with respect to 

the purpose of core collections should determine the proportion of accessions to be selected from 

each group. For  example if  diversity associated with a given trait is suspected to be higher in a 

certain group then that particular group should be given more priority in allocation.   In cases 

where allocation is based on genetic diversity within each group, there has to be a clear method 

for quantifying genetic diversity.  Quantifying genetic diversity is much easier if the groups are 

formed using molecular markers than when using other types of data. When groups are based on 

passport data, genetic diversity is usually estimated using the history of domestication and 

dispersion of the crop (e.g. area of origins are thought to have more diversity than other areas). 

One could also use molecular marker information to quantify genetic diversity in groups formed 

using passport data.  

6.3 Reference sets: Connections between germplasm collections in different genebanks 

using molecular marker data  

Currently there are several international efforts (e.g. Generation Challenge Programme – GCP; 

http://www.generationcp.org) aimed at solving the problem of food insecurity using genetic 

resources available in genebanks around the world.  The concept of reference sets of accessions 

and markers discussed in this thesis (chapter 4) can serve as a powerful method for connecting 

germplasm collections  in different places and provide  a global map of genetic diversity of a 

given crop leading to more efficient utilization of genetic resources. Through definition of 

overlaps between germplasm collections using molecular marker data, reference sets will allow 
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these collections to be analyzed together, thus enlarging the space of  inference.  With just a few 

selected accessions and molecular markers, a reference set can provide an efficient way to relate 

new materials to existing collections and set up different crop-specific study panels that can be 

used by plant breeders worldwide.   The method for selecting reference sets (GDOpt) discussed 

in this thesis can be applied  in selecting subsets of accessions for creating the so-called MAGIC 

(Multiparent Advanced Generation Inter-Cross) population for QTL identification.  Unlike the 

traditional mapping populations (e.g. RIL) which are obtained by crossing two lines only, 

MAGIC populations are established by crossing multiple founder lines. MAGIC populations are 

therefore more genetically diverse compared to the traditional mapping populations and are more 

suitable for QTL studies (see Kover et al. 2009).  Since GDOpt selects a subset of accessions that 

maximally represent (based on the average distance between each accessions and the nearest 

entry) all the accessions in the collection, there is high probability that a subset selected using 

this method (GDOpt) captures multiple QTL alleles present in the germplasm collection.  

Another possible area of application of GDOpt could be in allele mining using  the focused 

identification of germplasm strategy (FIGS (Mackay and Street 2004)). Based on  information 

about the different groups of accessions in a germplasm collection,  FIGS identifies a group or 

groups of accessions as candidates to be screened for alleles influencing a particular trait 

(Mackay and Street 2004).  For example, to maximize the chances of finding functional diversity  

for powdery mildew resistance while limiting the number of wheat landrace accessions to  a 

workable size,  Bhullar et al. (2009) used FIGS to defined a subset of accessions for screening.  

The first step in identification of useful alleles can be done by screening a subset of accessions 

selected using GDOpt.  The information obtained from screening a subset of accessions selected 

using GDOpt can then be used to identify other accessions (potential sources of desired alleles) 

from the whole collection to be screened (since each selected accession can be linked to non-

selected accessions).  

In attempting to setup a reference set (or core collection) using molecular markers a number of 

interesting questions will come up.  Since different types of markers (SSRs, SNPs) often provide 

different types of  information (see review by Vignal et al.  2002), how can we come up with 

robust reference sets? To what extent does a reference set or core collection formed using neutral 

diversity represent functional diversity? Functional genetic diversity is diversity that is directly 
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associated with important traits.   It is clear from the literature  that in addition to crop 

evolutionary forces such as natural selection and domestication that affect neutral diversity, 

functional diversity is also shaped by plant responses to different environments as a form of local 

adaptation (see review on crop evolution by Burger et al. 2008).  Can information accumulated 

from QTL mapping and allele mining studies  be incorporated  in the selection of reference sets 

(or core collection)?  A number of allele-specific markers have been developed for marker-

assisted selection in major crops such as rice and barley (see review by  Kumar et al. 2010) and 

this information could potentially be used for the selection of reference sets/core collections or 

for the determination of the genetic structure of germplasm collections.  In the light of our 

increasing knowledge of germplasm collections and diversifying interest of genetic resource 

users, we  strongly believe that for a given crop, the concept of core collections or  reference sets  

should be flexible so as to fulfill particular interests or roles in a changing environment.  For 

example, as the genomes of different crops get sequenced, it should be possible to use GDOpt or 

other core collection algorithms to select subsets of accessions targeting  specific sections of the 

genome say by giving more weights to molecular markers from those sections.  However, such 

markers coming from specific sections of the genomes may sometimes show different levels of 

linkage equilibrium (correlation). At the moment most methodologies for analysis molecular 

marker data use the assumptions that markers are independent, and markers that are in linkage 

equilibrium are discarded.    It is certainly interesting to quantity the amount of information that 

is lost by simply throwing away markers that show some evidence of correlation. For the case of 

functional markers, the loss of information caused by discarding correlated markers is likely to 

be higher than for neutral markers due to epistasis.  

The concept of maximizing the representativeness of accessions in the whole collection which 

we emphasized in this thesis has largely been ignored by available methods for selecting core 

collections. We believe that core collections that maximize representativeness  in relation to 

whole collection are often more robust and can serve multiple roles compared to core collections 

which are selected by maximizing specific genetic diversity parameters such as allelic richness 

or average distance between entries.  For example, maximizing diversity could simply mean 

selecting accessions with extreme characteristics.  Although these types of core collections 

(representing extremes) may be good for the specific roles for which they are created, a number 
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of important questions should be answered before any attempt is made to use them for other 

purposes. Is it wise to put more or equal emphasis on outliers than common accessions? In 

general what would such a subset represent? With subsets of accessions that put much emphasis 

on extremes (which could be due to error), we risk representing a world that never existed in the 

first place.  A breeder would certainly be interested in a subset of accessions with maximum 

number of functional alleles (preferably in an adapted background) but he/she is not interested in 

neutral alleles.   For germplasm collections with a strong group structure, one question that is 

still open to debate is whether the selection of subsets of accessions should be based on  richness 

of diversity within a group or on the degree of divergence between groups?     Definitely further 

research is needed to determine the usefulness of subsets of accessions selected using different 

methods for mapping and breeding purposes. For example, if we are interested in selecting 

founder lines for establishing a MAGIC population which criteria (number of alleles, pair-wise 

distances between accessions, etc.) should a subset of accessions optimize?  In addition, as more 

knowledge about the genomes of plants become available should the existing core collections be 

re-evaluated e.g.  using functional markers, and their content modified? 

6.4 Criteria for evaluation of core collections 

In comparing the options for assembling core collections, one of the challenges is in deciding on 

the criteria for evaluating the quality of the resulting core collections. Of all aspects of core 

collection methodology, criteria for evaluating the quality of core collections has been given the 

least research attention.  Apparently there are no clear guidelines for the choice of criteria for 

evaluating the  quality of core collections and  most researchers seem to choose criteria simply 

because those criteria were used in earlier publications.  By relating evaluation criteria to the 

different types (objectives) of core collections, this thesis (chapter 5) hopes to help researchers to 

make appropriate decisions when selecting evaluation criteria. Since there is no one perfect core 

collection suitable for all purposes, it is important that one uses  appropriate criteria if he/she is 

to get the best core collection for a given objective and avoid drawing false conclusions.  In most 

cases once the criteria for the desired core subset is well defined, the selection of accessions can 

effectively and efficiently be handled as an optimization problem using algorithms such as 

MSTRAT (Gouesnard et al. 2001), PowerCore (Kim et al. 2007),  Core Hunter (Thachuk et al. 
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2009) or GDOpt (Odong et al. 2011)). When a germplasm collection has been structured, the 

selection of accessions can be done by optimizing the desired criteria in the different groups and 

in that case the number of accessions to be selected from each group (allocation) will be 

determined by the relative importance of that group.   

When evaluating the quality of core collections,  most often the evaluation is done for each trait 

separately and later the results are combined with traits given equal weight (see Hu and Xu 2000; 

Tai and Miller, 2000). In this thesis we advocated the use of multivariate approaches (distance-

based criteria).  The distance-based criteria presented in this thesis are intuitive, easy to interpret 

and relate to the concept of representation of genetic diversity.    When evaluating the quality of 

core collections we believe that not all traits or markers may deserve to be given equal weight. 

For example when evaluating core collections using phenotypic data, should traits with high 

heritability be given the same weight as traits with low heritability?   

The most common criteria used in literature for evaluating core collections are based on 

summary statistics (means, variances, range etc.) (see Hu and Xu 2000; Tai and Miller, 2000).  

The main idea behind the use of criteria based on summary statistics is that the distribution of the 

traits in the core collection should reflect that of the whole collection.  There is a conceptual 

problem with the statistical test used for comparing a core collection (sample) and a whole 

collection (population) in the literature. In a statistical comparison of the core and the whole 

collection,  the question is not  whether two samples are different, but could a sample (core) have 

been obtained from a particular population distribution (whole collection)? So we should be 

dealing with a one-sample test, and not a two-sample test. 

6.5 Concluding remarks 

The concept of core collections has finally come of age and the contributions of core collections 

to the utilization of plant genetic resources has been demonstrated. However, with increasing 

amounts of information being obtained from plant genome sequencing, new questions about the 

idea of core collections will certainly come up, and answers must be given.    For example,  will 

complete sequencing of genomes of crop species make the idea of core collections more or less 

relevant?   This thesis has addressed among others the challenges faced when determining the 

structure of germplasm collections using molecular markers. We conclude from this thesis that a 
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two-step approach (principal component analysis followed by Ward’s cluster analysis)  is 

suitable  for unraveling the genetic structure of germplasm collections. We believe that the idea 

of reference sets of accessions and molecular markers will open a new avenue for sharing 

information between genebanks which will lead to a better utilization of genetic resources. The 

method of selection of accessions (GDOpt)  proposed in this thesis will likely have extensive 

applications especially for the selection of lines for multi-parent crosses and allele mining. 

Finally we would like to stress that when selecting core collections or reference sets it is 

important that the objectives are clearly defined and such objectives should be the basis for  

evaluating  the selected set.  



129 

References 

Allard RW (1992) Predictive methods for germplasm identification. In: Stalker HT, Murphy JP 

(eds) Plant breeding in the 1990’s. CAB International, Wallingford, pp 119–146. 

Astle W and Balding  DJ 2009 Population Structure and Cryptic Relatedness in Genetic 

Association Studies. Statist Sci 24(4) 451-471. 

Barro-Kondombo C, Sagnard F, Chantereau J, vom Brocke K, Durand P, Goze´ E and Zong JD 

(2010) Genetic structure among sorghum landraces as revealed by morphological 

variation and microsatellite markers in three agroclimatic regions of Burkina Faso. Theor 

Appl Genet 120: 1511-1523. 

Balfourier F, Roussel V, Strelchenko P, Exbrayat-Vinson F, Sourdille P, Boutet G, Koenig J, 

Ravel C, Mitrofanova O, Beckert M, Charmet G (2007) A worldwide bread wheat core 

collection arrayed in a 384-well plate.  Theor Appl Genet. 114(7), 1265-1275

Banfield JD, Raftery AE (1993) Model-based Gaussian and non-Gaussian clustering. Biometrics 

49:803–821. 

Basigalup DH, Barnes DK  and Stucker RE (1995) Development of a core collection for 

perennial Medicago plant introductions. Crop Sci. 35:1163-1168. 

Berk, Richard A. (2008). Statistical Learning from a Regression Perspective. Springer Series in 

Statistics. New York: Springer-Verlag. 

Bhattacharjee R (2007) Establishment of a pearl millet (Pennisetum glaucum (L.) R. Br.) core 

collection based on geographical distribution and quantitative traits. Euphytica 155:35-

45. 

Bisht, IS, Mahajan RK and Patel DP (1998) The use of characterisation data to establish the 

Indian mungbean core collection and assessment of genetic diversity. Genet Resour Crop 

Evol 45(2): 127-133. 

Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a Genetic-linkage map in 

Human using Restriction Fragment Length Polymorphisms. Am J Hum Genet 32:314-

331. 

Bowcock, AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR and Cavalli-Sforza LL (1994)  

High-resolution of human evolutionary trees with polymorphic microsatellites.  Nature 

368:455-457.



130 

Brown, AHD (1989)  Core collections - a  practical approach to genetic-resources management.  

Genome 31:818-824. 

Brown AHD (1995) The core collection at the crossroads. Pp. 3-19 in Core Collections of Plant 

Genetic Resources (T. Hodgkin, A.H.D. Brown, T.J.L. van Hintum and E.A.V. Morales, 

eds.). John Wiley and Sons, Chichester, UK. 

Brown AHD and Spillane C (1999) Implementing core collections - principles, procedures, 

progress, problems and promise. In: Johnson RC and Hodgkin T (Eds) Core Collections 

for Today and Tomorrow, Crop Science Society of America: Madison, Wisconsin, p1-10. 

Cavalli-Sforza L, Edwards A: Phylogenetic analysis. Models and estimation procedures. Am J 

Hum Genet 1967, 19(3):233-257. 

Chakraborty R, Jin L (1994) Determination of Relatedness Between Individuals using DNA-

Fingerprinting (VOL 65, PG 875, 1993). Human Biol 66:363-363. 

Chang WH, Chu HP, Jiang YN, Li SH, Wang Y, Chen CH, Chen KJ, Lin CY, Ju YT (2009) 

Genetic variation and phylogenetics of Lanyu and exotic pig breeds in Taiwan analyzed 

by nineteen microsatellite markers. J Anim Sci 87:1-8. 

Cordeiro CMT, Morales EAV, Ferreira P, Rocha DMS, Costa IRS, Valois ACC and Silva S  

(1995) Towards a Brazilian core collection of cassava. Pp. 155-168 in Core Collections 

of Plant Genetic Resources (T. Hodgkin, A.H.D. Brown, T.J.L. van Hintum and E.A.V. 

Morales, eds.). John Wiley and Sons, Chichester, UK.

Crossa J and Franco J (2004)  Statistical methods for classifying genotypes.  Euphytica 137:19-

37. 

Crow JF and Kimura M (1970)  An introduction to population genetics theory. Harper and Row, 

New York. 

Cushman SA, McKelvey KS, Noon BR and McGarigal K, (2010) Use of abundance of one 

species as a surrogate for abundance of others. Conserv Biol 24: 830–840. 

Diwan N, Gary Bauchan GR and McIntosh MS (1994) A core collection for the United States 

Annula Medicago Germplasm collection. Crop Sci 34:279-285. 

D’hoop BB, Paulo MJ, Kowitwanich K, Senger M, Visser RGF,  van Eck HJ and van Eeuwijk 

FA (2010) Population structure and linkage disequilibrium unravelled in tetraploid 

potato. Theor Appl Genet 121:1151-1170. 



131 

Dudoit S and Fridlyand J (2002)  A prediction-based resampling method for estimating the 

number of clusters in a dataset.  Genome Biol 3: research0036-research0036.21; 

doi:10.1186/gb-2002-3-7-research0036. 

Dwivedi SL, Puppala N, Upadhyaya HD, Manivannan N, Singh S (2008) Developing a core 

collection of peanut specific to Valencia market type. Crop Sci 48:625-632. 

Ebana K, Kojima Y, Fukuoka S, Nagamine T, Kawase M (2008) Development of mini core 

collection of Japanese rice landrace. Breeding Sci 58:281-291. 

Evanno G, Regnaut S, and Goudet J (2005) Detecting the number of clusters of individuals using 

the software STRUCTURE: a simulation study. Molecular Ecology 14:2611-2620. 

Falush D, Stephens M and Pritchard JK (2003)  Inference of population structure using 

multilocus genotype data: linked loci and correlated allele frequencies. Genetics 

164:1567-1587. 

Falush D, Stephens M and Pritchard JK (2007)  Inference of population structure using 

multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes 

7:574-578. 

Fan JB, Yeakley JM, Bibikova M, Chudin E, Wickham E, Chen J, Doucet D, Rigault P, Zhang 

B,. Shen R, McBride C, Li HR, Fu XD, Oliphant A, Barker DL and Chee MS, (2004)  A 

versatile assay for high-throughput gene expression profiling on universal array matrices. 

Genome Res. 14: 878–885. 

Farris, J. S. (1969)  On Cophenetic Correlation Coefficients.  Systematic Zoology 18(3): 279- 

285. 

Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in 

plants. Annual Rev Plant Biol 54:357-374. 

Folkertsma RT, Rattunde FH, Chandra S, Raju GS and Hash CT (2005) The pattern of genetic 

diversity of guinea-race Sorghum bicolor (L.) Moench landraces as revealed with SSR 

markers. Theor Appl Genet 111:399–409. 

Fraley C (1998) Algorithms for model-based Gaussian hierarchical clustering. SIAM Journal on 

Scientific Computing 20:270–281. 



132 

Fraley C and Raftery AE (2006) MCLUST Version 3 for R: Normal Mixture Modeling and 

Model-Based Clustering.  Technical Report No. 504, Department of Statistics University 

of Washington, Seattle, USA. 

Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density 

estimation. J Am Stat Assoc 97:611–631. 

Franco J, Crossa J, Villaseñor J, Taba S, Eberhart SA (1997)  Classifying Mexican maize 

accessions using hierarchical and density search methods.  Crop Sci 37:972-980. 

Franco J, Crossa J, Villaseñor J, Taba S, Eberhart SA. (2005)  A sampling strategy for 

conserving genetic diversity when forming core subsets.  Crop Sci 45:1035-1044. 

Franco J, Crossa J, Warburton ML, Taba S, Eberhart SA (2006)  Sampling strategies for 

conserving maize diversity when forming core subsets using genetic markers.  Crop Sci 

46:854-864. 

Frankel, OH (1984) Genetic perspectives of germplasm conservation. WK Arber et al. (ed.) 

Genetic manipulation: impact on man and society. Cambridge Univ. Press. Cambridge, 

England, p 161-170. 

Frankel OH, Brown AHD and Burdon JJ (1995) The conservation of plant biodiversity. 

Cambridge University Press, UK. 

Galwey, NW (1995) Verifying and validating the representativeness of a core collection. Pp. 

187-198 in Core Collections of Plant Genetic Resources (T. Hodgkin, A.H.D. Brown, 

T.J.L. van Hintum and E.A.V. Morales, eds.). John Wiley and Sons, Chichester, UK. 

Gnanadesikan R., Wilk MB (1968) Probability plotting methods for the analysis of data. 

Biometrika  55 (1): 1–17. 

Goldstein DB, Linares AR, Cavallisforza LL, Feldman MW (1995) An evaluation of genetic 

distances for use with microsatellite loci. Genetics 139:463–471. 

Goodman MM and Stuber CW (1983) Races of maize: VI. Isozyme variation among races of 

maize in Bolivia. Maydica 28:169–187. 

Goudet J (2005)  HIERFSTAT, a package for R to compute and test hierarchical F-statistics.  

Molecular Ecology 5:184-186. 

Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) MSTRAT: An 

algorithm for building germ plasm core collections by maximizing allelic or phenotypic 

richness. J Hered 92:93-94. 



133 

Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27, 

857–874. 

Gower JC (1973) Classification Problems. Bull International Statistical Inst, 45:471-477. 

Gower JC (1985) Measures of similarity, dissimilarity and distances. p. 397–405. In S. Kotz, et 

al. (ed.) Encyclopedia of statistical sciences. Vol. 5. Wiley, New York.

Grenier C, P Hamon and PJ Bramel-Cox (2000) Assessment of genetic diversity in three subsets 

constituted from the ICRISAT sorghum collection using random vs non-random 

sampling procedures A. Using morpho-agronomical and passport data. Theor Appl Genet 

101(1-2): 190-196. 

Hamblin MT, Warburton ML and Buckler ES (2007) Empirical comparison of simple sequence 

repeats and single nucleotide polymorphisms in assessment of maize diversity and 

relatedness. PLoS ONE 2 (12):e1367. doi: 10.1371/journal.pone.0001367. 

Hintum TJL van, Brown AHD, Spillane C and Hodgkin T (2000) Core collections of plant 

genetic resources. IPGRI Technical Bulletin No.3. International Plant Genetic Resources 

Institute, Rome, Italy. 

Hu JJ and H H M Xu (2000) Methods of constructing core collections by stepwise clustering 

with three sampling strategies based on the genotypic values of crops. Theor Appl Genet 

101(1-2): 264-268. 

Hutcheson  K (1970) A Test for Comparing Diversities based on the Shannon Formula. J Theor 

Biol 29: 151-154. 

Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–

269. 

Jansen J and van Hintum TJL (2007)  Genetic distance sampling: a novel sampling method for 

obtaining core collections using genetic distances with an application to cultivated 

lettuce.  Theor Appl Genet 114:421-428. 

Jobson JD (1992)  Applied multivariate data analysis, Vol. 2: Categorical and multivariate 

methods. Springer, New York. 

Johnson, AR and Wichern DW (2002)  Applied multivariate statistical analysis, 5th edition. 

Prentice Hall, New Jersey. 



134 

Kang CW, Kim SY, Lee SW, Mathur PN, Hodgkin T, Zhou MD, Lee RJ (2006)  Selection of a 

core collection of Korean sesame germplasm by a stepwise clustering method. Breeding 

Sci, 56(1):85-91.  

Kaufman, L and Rousseeuw PJ (1990)  Finding groups in data. an introduction to cluster 

analysis. Wiley, New York.  

Kim KW, Chung HK, Cho GT, Ma KH, Chandrabalan D, Gwag JG, Kim TS, Cho EG, Park YJ 

(2007) PowerCore: a program applying the advanced M strategy with a heuristic search 

for establishing core sets. Bioinformatics 23:2155-2162. 

Kimura M (1953) "Stepping Stone" model of population. Ann. Rept. Nat. Inst. Genetics, Japan 

3:62-63. 

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by Simulated Annealing. Science 

220:671-680. 

Kosman E, Leonard KJ (2005) Similarity coefficients for molecular markers in studies of genetic 

relationships between individuals for haploid, diploid, and polyploid species. Molecular 

Ecology 14: 415-424. 

Kover PX, Valdar W, Trakalo J,Scarcelli N, Ehrenreich IM, Micheal, Purugganan MD, Durrant 

C and Mott R (2009) A multiparent advanced generation inter-cross to fine-map 

quantitative traits in Arabidopsis thaliana. PLoS Genet. 5: e1000551. 

Kruskal JB (1964)  Nonmetric multidimensional-scaling - a numerical method.  Psychometrika 

29:115-129. 

Krzanowski WJ and Lai YT (1988)  A criterion for determining the number of groups in a data 

set using sum-of-squares clustering.  Biometrics 44:23-34. 

Kullback S, Leibler RA (1951) On Information and Sufficiency. Annals of Mathematical 

Statistics 22 (1): 79–86. 

Lance GN and Williams WT (1967) A general theory of classificatory sorting strategies I. 

Hierarchical system. The Computer Journal 9: 373 - 380. 

Laval G, San Cristobal M, Chevalet C (2002) Measuring genetic distances between breeds: use 

of some distances in short term evolution models. Genet Sel Evol 34: 481-507. 

Lee C, Abdool  A, Huang CH (2009) PCA-based population structure inference with generic 

clustering algorithms. BMC Bioinformatics 10 (Suppl. 1):S73. doi:10.1186/1471-2105-

10-S1-S73. 



135 

Mackay MC (1995) One core or many? Pp. 199-209 in Core Collections of Plant Genetic 

Resources (T. Hodgkin, A.H.D. Brown, T.J.L. van Hintum and E.A.V. Morales, eds.). 

John Wiley and Sons, Chichester, UK. 

Mahajan RK, Bisht IS and Dhillon BS  (2007) Establishment of a core collection of world 

sesame (Sesamum indicum L.) germplasm accessions. Sabrao Journal of Breeding and 

Genetics 39:53-64. 

Mahalakshmi V, Ng Q, Atalobhor J, Ogunsola D, Lawson M and Ortiz R (2007) Development of 

a West African yam Dioscorea spp. core collection. Genet Resour Crop Evol 54:1817-

1825.  

Mario PC, Viviana  BV, Juan Tay U, Mathew WB and Gabriel BB (2010) Selection of a 

representative core collection from the Chilean common bean germplasm.  Chilean J 

Agric Res 70(1) http://www.chileanjar.cl/files/V70_I1_2010_ENG_MarioParedesC.pdf

Marita, JM, Rodriguez JM and Nienhuis JM (2000) Development of an algorithm identifying 

maximally diverse core collections. Genet Resour Crop Evol 47(5): 515-526. 

McKhann HI, Camilleri C, Bérard A, Bataillon T, David JL, Reboud X, Le Corre V, Caloustian 

C, Gut IG and Brunel D (2004) Nested core collections maximizing genetic diversity in 

Arabidopsis thaliana. Plant Journal 38(1): 193-202.

McVean G (2009) A genealogical interpretation of principal components analysis. PLoS Genet

5:e1000686. 

Milligan GW(1981)  A Monte Carlo study of thirty internal criterion measures for cluster 

           Analysis. Psychometrika 46:187-199. 

Milligan, GW and Cooper MC (1985)  An examination of procedures for determining the 

number of clusters in a data set.  Psychometrika 50:159-179. 

Mohammadi SA (2003)  Analysis of genetic diversity in crop plants - Salient statistical tools and 

considerations.  Crop Sci 43:1235-1248. 

Negro SS, Caudron AK, Dubois M, Delahaut P, Gemmell NJ (2010) Correlation between male 

social status, testosterone levels, and parasitism in a dimorphic polygynous mammal. 

PLoS ONE 5(9): e12507. doi:10.1371/journal.pone.0012507. 

Noirot M, Hamon S and Anthony F (1996) The principal component scoring: a new method of 

constituting a core collection using quantitative data. Genet. Res. Crop Evol. 43: 1-6 



136 

Odong TL, van Heerwaarden J, Jansen J, van Hintum ThJL, and van Eeuwijk FA (2011a) 

Statistical techniques for defining reference sets of accessions and microsatellite markers. 

Crop Sci 

Odong TL, van Heerwaarden J, Jansen J, van Hintum ThJL, and van Eeuwijk FA (2011b)  

Determination of genetic structure of germplasm collections: are traditional hierarchical 

clustering methods appropriate for molecular marker data? Theor Appl Genet 

123(2):195-205: doi 10.1007/s00122-011-1576-x. 

Oliveira MF, Nelson RL, Geraldi IO, Cruz CD, de Toledo JFF (2010) Establishing a soybean 

germplasm core collection. Field Crops Research 119:277-289.  

Paschou P, Ziv E, Burchard EG, Choudhry S, Rodriguez-Cintron W, Mahoney MW, Drineas P 

(2007) PCA-correlated SNPs for structure identification in worldwide human 

populations. PloS Genetics 3:1672-1686. 

Patterson N, Price AL and Reich D (2006)  Population structure and eigenanalysis.  PloS 

Genetics 2:e190. 

Peeters JP and Martinelli JA (1989) Hierarchical cluster analysis as a tool to manage variation in 

germplasm collections. Theor Appl Genet 78: 42-48. 

Peng B and Kimmel M (2005)  SimuPOP: a forward-time population genetics simulation 

environment.  Bioinformatics 21:3686-3687. 

Perumal R, Krishnaramanujam R, Menz MA, Katile S, Dahlberg J, Magill CW and Rooney WL 

(2007) Genetic diversity among sorghum races and working groups based on AFLPs and 

SSRs. Crop Sci 47:1375-1383. 

Price A, Patterson N, Plenge R, Weinblatt M, Shadick N and Reich D (2006) Principal 

components analysis corrects for stratification in genome-wide association studies. Nat 

Genet 38: 904–909. 

Pritchard JK, Stephens M and Donnelly P (2000a)  Inference of population structure using 

multilocus genotype data.  Genetics 155:945-959. 

Pritchard JK, Stephens M, Rosenberg NA and Donnelly P (2000b)  Association mapping in 

structured populations.  Am J Hum Genet 67:170-181.

Reddy LJ, Upadhyaya HD, Gowda CLL, Singh S (2005) Development of core collection in 

pigeonpea [Cajanus cajan (L.) Millspaugh] using geographic and qualitative 

morphological descriptors. Genet Resour Crop Evol 52:1049-1056. 



137 

Reeves PA and Richards CM (2009) Accurate inference of subtle population structure (and other 

genetic discontinuities) using principal coordinates. PLoS ONE 4:e4269. 

Reif JC, Melchinger AE and Frisch M (2005) Genetical and mathematical properties of 

similarity and dissimilarity coefficients applied in plant breeding and seed bank 

management. Crop Sci 45(1):1-7. 

Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, 

Goodman MM, and Buckler ES (2001) Structure of linkage disequilibrium and 

phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98: 11479–

11484. 

Rodino AP, Santalla M, Ron AMD, Singh SP (2003)  A core collection of common bean from 

the Iberian peninsula. Euphytica 131, 165–175. 

Rogers DJ and Tanimoto TT (1960) A computer programming for classical plants. Science

132:1115–1118. 

Roger KB (1976)  Mixture model tests for cluster analysis: accuracy of four agglomerative 

hierarchical methods.  Psychological Bull 83:377-388. 

Rohlf FJ (1992) NTSYS-pc (Numerical Taxonomy and Multivariate Analysis System). Version 

1.70. Exeter, Setauket, NY. 

Ronfort J, Bataillon T, Santoni S, Delalande M, David J, Prosperi JM  (2006) Microsatellite 

diversity and broad scale geographic structure in a model legume: building a set of nested 

core collections for studying naturally occurring variation in Medicago truncatula. BMC 

Plant Biol 6:28 doi:10.1186/1471-2229-6-28.  

Rosenberg NA, Li L, Ward R, Pritchard JK (2003) Informativeness of genetic markers for 

inference of ancestry. Am J Hum Genet 73:2653. 

Rousseeuw PJ (1987)  Silhouettes: a graphical aid to the interpretation and validation of cluster 

analysis. J Comput Appl Math 20:53–65. 

Santos JM and Embrechts M (2009) On the use of the Adjusted Rand Index as a metric for 

evaluating supervised classification. In Proceedings of ICANN (2): 175–184.

Schoen DJ and Brown AHD (1993) Conservation of allelic richness in wild crop relatives is 

aided by assessment of genetic markers.  Proc Natl Acad  Sci USA 90:10623 - 10627. 

Schoen DJ and Brown AHD (1995) Maximising genetic diversity in core collections of wild 

relatives of crop species. Pp. 55-76 in Core Collections of Plant Genetic Resources (T. 



138 

Hodgkin, A.H.D. Brown, T.J.L. van Hintum and E.A.V. Morales, eds.). John Wiley and 

Sons, Chichester, UK. 

Shannon CE (1948) A mathematical theory of communication. Bell System Technical Journal

27, 379–423.  

Shriner D, Vaughan LK, Padilla MA and Tiwari HK  (2007)  Problems with genome-wide 

association studies. Science 316:1840-1842. 

Simko I,  Haynes KG, Ewing EE, Costanzo S, Christ BJ and Jones RW (2004)  Mapping genes 

for resistance to Verticillium albo-atrum in tetraploid and diploid potato populations 

using haplotype association tests and genetic linkage analysis. Mol Genet Genomics 271: 

522–531. 

Sokal RR and Michener C (1958)  A statistical method for evaluating systematic relationships.  

Univ Kansas Sci Bull 38: 1409-1438. 

Sokal, RR and Rohlf  FJ (1962)  The comparison of dendrograms by objective methods.  Taxon 

11: 33 - 40. 

Spagnoletti Zeuli, PL, and CO Qualset (1993) Evaluation of 5 strategies for obtaining a core 

subset from a large genetic resource collection of Durum wheat. Theor Appl Genet 87(3): 

295-304.  

Stephens M A (1977) Goodness of Fit for the Extreme Value Distribution.  Biometrika, 64: 583-

588. 

Stich B, Möhring J, Piepho Hans-Peter,  Heckenberger M, Buckler ES and Melchinger AE 

(2008) Comparison of mixed-model approaches for association mapping. Genetics 178:

1745–1754. 

Sugar CA and James GM (2003)  Finding the number of clusters in a dataset: an information-

theoretic approach.  J Amer Stat Assoc 98: 750-763.

Tai P and Miller JD (2001) A core collection for Saccharum spontaneum L. from the world 

collection of sugarcane. Crop Sci 41(3): 879-885. 

Thachuk C, Crossa J, Franco J, Dreisigacker S, Warburton M, Davenport GF (2009) Core 

Hunter: an algorithm for sampling genetic resources based on multiple genetic measures. 

BMC Bioinformatics 10:243. 



139 

Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, and Buckler ES (2001) 

Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–

289. 

Tibshirani R, Walther G and Hastie T (2001)  Estimating the number of clusters in a data set via 

the gap statistic   J Roy Stat Soc B 63:411-423. 

Tracy CA, Widom H (1994) Level-spacing distributions and the airy kernel. Communications in 

Mathematical Physics 159:151–174. 

Upadhyaya HD (2003) Development of a groundnut core collection using taxonomical, 

geographical and morphological descriptors. Genetic resources and crop evolution 

50:139-148. 

Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG., Singh S (2009) Developing 

a Mini Core Collection of Sorghum for Diversified Utilization of Germplasm. Crop Sci 

49:1769-1780.  

Van Heerwaarden J, Ross-Ibarra J, Doebley J, Glaubitz JC, DE Jesus Sanchez Gonzalez J, Gaut 

BS, Eguiarte LE (2010) Fine scale genetic structure in the wild ancestor of maize (Zea 

mays ssp. parviglumis). Mol Ecol 19(6):1162-1173. 

Wang WYS, Barrat BJ, Clayton GG and Todd JA (2005)  Genome-wide association studies: 

theoretical and practical concerns. Nat Rev Genet 6:109-118. 

Wang JC, Hu J,  Xu HM and Zhang S (2007) A strategy on constructing core collections by least 

distance stepwise sampling. Theor Appl Genet 115(1): 1-8. 

Warburton ML, Xianchun X, Crossa J, Franco J, Melchinger AE, Frisch M, Bohn M and 

Hosington D (2002) Genetic characterization of CIMMYT inbred maize lines and open 

pollinated populations using large scale fingerprinting methods. Crop Sci 42: 1832-1840.  

Ward JH (1963)  Hierarchical groupings to optimize an objective function.  J Amer Stat Assoc 

58:236-244. 

Wilson LM, Whitt SR, Ibanez AM, Rocheford TR, Goodman MM, and Buckler ESIV (2004) 

Dissection of maize kernel composition and starch production by candidate gene 

association. Plant Cell 16: 2719–2733. 

Wright S (1931) Evolution in Mendelian populations. Genetics 16: 97-159. 

Wright S (1951) The genetical structure of populations. Annals of Eugenics 15:323–354. 



140 

Wright S (1978) Evolution and the Genetics of Populations: A treatise in four volumes Volume 

IV. University of Chicago Press. 

Xiurong Z, Yingzhong Z, Yong C, Xiangyun F, Qingyuan G, Mingde Z andHodgkin T (2000) 

Establishment of sesame germplasm core collection in China. Genet Resour Crop Evol 

47:273-279. 

Yan M and Ye K (2007)  Determining the number of clusters using the weighted gap statistic.  

Biometrics 63:1031-1037. 

Yan W, Rutger JN, Bryant RJ, Bockelman HE, Fjellstrom RG, Chen MH, Tai TH and McClung 

AM (2007) Development and evaluation of a core subset of the USDA rice germplasm 

collection. Crop Sci 47:869-878.  

Yang R (1998)  Estimating hierarchical F-statistics. Evolution 52: 950-956. 

Yu J, Pressoir G, Briggs WH, Vroh BI, I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, 

Nielsen DM, Holland JB, Kresovich S and Buckler ES (2006) A unified mixed-model 

method for association mapping that accounts for multiple levels of relatedness. Nat. 

Genet. 38: 203–208. 

Zhang F, Zhang L, Deng HW (2009) A PCA-based method for ancestral informative markers 

selection in structured populations. Sci China C-Life Sci  52 (10):972-976. 

Zhang H, Zhang D, Wang M, Sun J, Qi Y, Li J, Wei X, Han L, Qiu Z, Tang S and Li Z (2010) A 

core collection and mini core collections of Oryza Sativa L. in China. Theor Appl Genet 

DOI: 10.1007/s00122-010-1421-7.

Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, 

Marjoram P, and Nordborg M (2007) An Arabidopsis example of association mapping in 

structured samples. PLoS Genetics. 3 : e4. 

Zhao Y and Karypis G (2004)  Empirical and theoretical comparisons of selected criterion 

functions for document clustering.  Machine Learning 55:311-331. 

Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. 

Plant Genomes 1:5-20. 



141 

Summary 

Genetic diversity of crop species stored in genebanks will play a vital role in addressing future, global 

challenges, especially those associated with the expected food crisis as a result of climate change and the 

fast growing world population. The effective and efficient management and exploitation of  all available 

genetic resources depends largely on genebank managers and users (e.g. plant breeders) having a clear 

insight on the quantity and the structure of genetic diversity present in germplasm collections worldwide.  

The choice of methods for determining the genetic structure of germplasm collections using molecular 

markers is one of the challenges addressed in this thesis. In addition, the resources required for 

assembling, managing, conserving and providing access to the usually very large germplasm collections 

are limited. It is about three decades ago since the idea of core collections (i.e. a limited set of accessions 

representing the genetic diversity of a whole collection) was introduced to ensure efficient and effective 

management and utilization of the accumulated plant genetic resources with limited resources. In this 

thesis we expanded the idea of core collection from being a subset of accessions representing genetic 

diversity in a single genebank to a subset of accessions and molecular markers (reference set) for linking 

genetic diversity in different genebanks. The subset of accessions are selected from several genebanks. 

This thesis provides an extensive account of how to exploit the potential of molecular marker data for 

creating and evaluating core collections.   

In chapter 2 we evaluated the appropriateness of traditional hierarchical clustering techniques (Ward and 

UPGMA) for determining the genetic structure of germplasm collections using molecular marker data. 

The performance of hierarchical clustering techniques was compared with that of STRUCTURE, a special 

model-based package designed for studying the genetic structure of natural populations.  Based on our 

results, Ward performed much better than UPGMA in all aspects of determining genetic structure. In 

addition, groups formed by Ward were in agreement with groups formed by STRUCTURE and passport 

data.  Using simulated data we showed that the co-phenetic correlation coefficient (one of the criteria for 

evaluating cluster analysis) is directly related to subgroup differentiation and consequently this criterion is 

a good indicator of the presence of genetically distinct subgroups in germplasm collections. However, our 

results also showed that for real data sets, the problem of determining the number of groups in the data set 

cannot be solved completely with traditional hierarchical clustering methods. The two-step approach we 

proposed and discussed  in chapter 3 (see below) solved the problem of determination of number of 

groups in the data set.  
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Chapter 3 deals with a two-step approach  for determining the genetic structure of germplasm 

collections.  The first step involves applying principal component analysis to allele frequency data and 

using the Tracy-Widom distribution to determine the number of significant principal components.  We 

then perform cluster analysis (Ward and model- based hierarchical clustering) using significant principal 

components only. This provided a tremendous boost in the performance of cluster analysis. No difference 

was found between Ward and model-based hierarchical cluster analysis. The two-step approach is very 

effective especially for determining the number of groups in the data.    

In chapter 4 we studied statistical techniques for constructing representative subsets of accessions and 

accompanying sets of molecular markers that can be used to connect genetic resources from different 

genebanks. For the selection of accessions, we proposed Genetic Distance Optimization (GDOpt), a 

method which selects subsets of accessions that optimally represent all accessions. In terms of 

representing accessions not included in the subset, GDOpt performed better than existing core selection 

algorithms.  However, by ensuring that the non-selected accessions are maximally  represented by the 

selected accessions, the ability of GDOpt to obtain subsets which maximize genetic diversity parameters 

(for example allelic richness) is slightly compromised.   For the selection of molecular markers we 

suggested the use of the backward elimination method (BE) or methods based on the first few principal 

component.  In this thesis the ideal subset of molecular markers is defined as the one which maximally 

preserves the pair-wise relationships between accessions based on all molecular markers i.e. the pair-wise 

distances based on a selected subset of markers should have a high correlation with the pair-wise 

distances based on all the markers.  In a fashion similar to the backward elimination method in multiple 

regression analysis, BE as defined for our purposes uses this correlation directly as the criterion for 

selecting markers.  In the method based on principal components, molecular markers are selected based 

on their weighted sum of squared loadings on all principal components designated as important,  in which 

the corresponding eigenvalues are used as weights. The current practice of using polymorphic information 

content (PIC) as a criterion for selecting molecular markers is insufficient when the interest is in a subset 

that preserves the main features of the genetic structure in the data.    

Chapter 5 presents a critical examination of criteria for the evaluation of the quality of core collections. 

This chapter highlights the importance of selecting the right criteria when evaluating core collections.  We 

defined different types of core collections and related each type with suitable evaluation criteria for 

quality. We proposed distance-based evaluation criteria and evaluated their performance using real data 

sets. The distance-based criteria not only allow the simultaneous evaluation of all variables describing the 
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accessions, but are also intuitive and interpretable, in contrast with the univariate approaches generally 

used for determining the quality of core collections.  

Chapter 6 provides a general discussion that critically reflects on the concepts and methods used in this 

thesis and puts them into a broader perspective. 
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Samenvatting 

De genetische diversiteit van gewassen zoals die wordt geconserveerd in genenbanken, is van cruciaal 

belang voor het aanpakken van problemen die in de nabije toekomst op wereldschaal zullen gaan spelen, 

vooral problemen die betrekking hebben op de verwachte voedselcrisis als gevolg van 

klimaatveranderingen en de sterke groei van de wereldbevolking. Het doelgericht en doelmatig beheer en 

gebruik van alle beschikbare genetische bronnen is in hoge mate afhankelijk van het inzicht dat curatoren 

en gebruikers van genenbanken hebben in de hoeveelheid en de structuur van de genetische diversiteit 

zoals die wereldwijd aanwezig is in genenbankcollecties.  De keuze van methoden voor het in kaart 

brengen van de genetische structuur van collecties door het gebruik van moleculaire merkers, is één van 

de uitdagingen van dit proefschrift. Er zijn beperkte middelen beschikbaar voor het opzetten, beheren en 

conserveren, alsmede het toegankelijk maken van de veelal zeer grote gewascollecties.  Om met beperkte 

middelen een doelgericht en doelmatig gebruik van al het verzamelde, genetische materiaal te garanderen 

is ongeveer dertig jaar geleden het idee van de ‘core-collectie’ geïntroduceerd. Een ‘core-collectie’ is een 

collectie van beperkte omvang die de genetische diversiteit van een gehele gewascollectie in een 

genenbank moet representeren. In dit proefschrift wordt het idee van ‘core-collectie’ uitgebreid van een 

representatieve deelverzameling van een gewascollectie in één genenbank naar een representatieve 

deelverzameling van gewascollecties van meerdere genenbanken. Hierbij worden moleculaire merkers 

gebruikt om de samenhang tussen de genetische diversiteit in de verschillende genenbanken te bepalen. In 

dit proefschrift wordt uitgebreid aandacht besteed aan het gebruik van het potentieel dat beschikbaar is in 

data van moleculaire merkers voor het opzetten en evalueren van ‘core-collecties’.  

In Hoofdstuk 2 wordt de geschiktheid onderzocht van traditionele, hiërarchische cluster technieken 

(Ward, UPGMA) voor het vastleggen van de genetische structuur van gewascollecties met behulp van 

moleculaire merkers. De resultaten van hiërarchische cluster technieken worden vergeleken met die van 

“STRUCTURE”, een computer programma, gebaseerd op een statistisch model, dat speciaal is 

geschreven voor het bestuderen van de genetische structuur van natuurlijke populaties. Op basis van onze 

resultaten is duidelijk geworden dat Ward in alle aspecten van het vastleggen van genetische structuur 

veel beter
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 presteerde dan UPGMA. Bovendien kwamen de clusters verkregen met Ward overeen met die verkregen 

met “STRUCTURE”, en met de paspoortgegevens van het geanalyseerde materiaal. Met behulp van 

computer simulatie laten we zien dat de co-phenetische correlatie coëfficiënt (één van de criteria voor het 

evalueren van cluster analyses) direct gerelateerd is aan de mate van differentiatie binnen gewascollecties, 

en daarmee een goede indicator van de aanwezigheid van genetisch te onderscheiden groepen in 

gewascollecties. Echter, onze resultaten laten ook zien dat voor praktijkdata, het probleem van het 

vaststellen van het aantal clusters niet volledig kan opgelost worden met traditionele hiërarchische cluster 

technieken. Als alternatief wordt hiervoor een twee-stappen benadering voorgesteld en besproken in 

Hoofdstuk 3.   

In Hoofdstuk 3 wordt een twee-stappen benadering voor het vaststellen van de genetische structuur van 

gewascollecties gepresenteerd. De eerste stap betreft de toepassing van principale componenten analyse 

(PCA) op allel frequenties gevolgd door het vaststellen van het statistisch significante aantal principale 

componenten met behulp van de Tracy-Widom verdeling. De tweede stap betreft een cluster analyse 

(Ward en hiërarchische cluster analyse gebaseerd op een statistisch model), waarbij alleen gebruik wordt 

gemaakt van de statistisch significante principale componenten. Deze twee-stappen benadering leidt tot 

een enorme verbetering van de prestatie van cluster analyse, en laat geen verschil zien tussen Ward en 

hiërarchische cluster analyse gebaseerd op een statistisch model.  De twee-stappen benadering is erg 

effectief, vooral in het vaststellen van het aantal groepen in gewascollecties op basis van data van 

moleculaire merkers.  

In Hoofdstuk 4 worden statistische technieken onderzocht voor het construeren van kleine representatieve 

‘core-collecties’ in combinatie met specifieke moleculaire merkers, die kunnen worden gebruikt om 

gewascollecties van verschillende genenbanken te verbinden. Voor het selecteren van accessies wordt 

“Genetic Distance Optimization” (GDOpt) geïntroduceerd, een methode die op zodanige wijze ‘core-

collecties’ selecteert dat alle accessies optimaal gerepresenteerd worden. Vooral in de representatie van 

niet geselecteerde accessies presteert GDOpt veel beter dan bestaande methoden voor het selecteren van 

‘core-collecties’. Echter, door het accent te leggen op de optimale representatie van niet-geselecteerde 

accessies, is GDOpt minder geschikt voor het selecteren van ‘core-collecties’, maximale genetische 

diversiteit (zoals “allelic richness”). Voor het selecteren van moleculaire merkers wordt achterwaartse 

selectie voorgesteld of methoden gebaseerd op de eerste paar principale componenten. In dit proefschrift 

wordt de ideale deelverzameling van moleculaire merkers gedefinieerd als die deelverzameling waarmee 

de paarsgewijze relaties tussen accessies gebaseerd op alle moleculaire merkers wordt behouden. In de 

praktijk betekent dit dat de paarsgewijze afstanden gebaseerd op een deelverzameling van merkers een 
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hoge correlatie moet hebben met de paarsgewijze afstanden op basis van alle merkers. Net als bij de 

toepassing in multipele regressie, maakt achterwaartse eliminatie direct gebruik van de 

correlatiecoëfficiënt als criterium voor het selecteren van merkers. Bij de methoden gebaseerd op 

principale componenten worden de moleculaire merkers geselecteerd op basis van de gewogen som van 

gekwadrateerde ladingen van alle als belangrijk aangemerkte principale componenten, waarbij de 

corresponderende eigenwaarden worden gebruikt als gewichten.   De huidige praktijk om de 

“polymorphic information content” (PIC) te gebruiken voor het selecteren van moleculaire merkers werkt 

onvoldoende als het gaat om het behouden van de belangrijkste aspecten van genetische structuur. 

Hoofdstuk 5 bevat een kritische beschouwing van criteria voor het evalueren van de kwaliteit van ‘core-

collecties’. Dit hoofdstuk appelleert aan het belang van het gebruik van juiste criteria.  Verschillende 

types ‘core-collecties’ worden gedefinieerd en aan elk type worden evaluatiecriteria gekoppeld. In dit 

hoofdstuk wordt voorgesteld om evaluatiecriteria te baseren op (genetische) afstanden tussen accessies; 

deze op afstanden gebaseerde criteria worden geëvalueerd op basis van hun prestaties met 

praktijkgegevens. De criteria gebaseerd op afstanden maken niet alleen simultaan gebruik van alle 

variabelen, zij berusten op intuïtie en zijn interpreteerbaar. Dit in tegenstelling tot benaderingen waarbij 

elke kenmerk apart wordt behandeld; deze worden in de huidige praktijk nog veel gebruikt voor het 

vaststellen van de kwaliteit van ‘core-collecties’.

Hoofdstuk 6 bevat een algemene discussie waarin een kritische beschouwing wordt gegeven van de 

concepten en methoden die in dit proefschrift worden gebruikt, en waarin deze ook in breder perspectief 

worden geplaatst.  
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