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De Wit & Ennik (1958) studied competition between plant species which 
influence each other in a relatively simple way in order to arrive at some 
useful characteristic for denoting 'competitive power'. An analogy 
between competition phenomena and the theories underlying exchange 
processes was noted and on the basis of this analogy a theory was developed 
which enables many competition phenomena to be described quantita
tively. This approach is in many ways connected with other theories which 
have been more or less independently developed in the field of animal 
ecology, plant ecology, population genetics, enzyme kinetics and competitive 
uptake of ions by plants. 

An outline of this approach is given in this paper. For full details on the ' 
interpretation in relation to plant and animal competition, much more 
experimental data, and a more comprehensive review of literature the reader 
is referred to de Wit (i960). 

CROWDING FOR THE SAME SPACE AT ONE SPACING 
The present theory is mainly based on many results of experiments on 
competition between barley and oats. The number of barley kernels and 
oat kernels per unit surface area in a sown mixture are Zn and Z0 and the 
total seed number sown is kept constant. Let it be supposed now that the 
'spaces' of the field which are occupied by barley (Ab) and by oats (A0) (

at 

the time Ob and 00 are measured) are in the proportion of 

A\) :A0 = o^Zfa :boZ0 — kboZb'Z0, 

so that the sum of these two spaces is constant and arbitrarily chosen to be one. 
The fraction of the total space occupied by barley is now 

Ab = k\>0Zt,(ki,oZ\3 + Zo)'1 

and by oats 
A0 = Z0(kboZb + Zo)*1. 

The number Äbo (= ibÄ0
-1)is called the relative crowding coefficient of 

barley with respect to oats and is supposed to be independent of the 
relative seed frequency. 
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These equations define mathematically the term 'crowding for the 
same space'. The physiological background of this term can only be worked 
out by studying the results of experiments. Let it be assumed that the 
number of harvested kernels of a plant species in the mixture is propor
tional to the relative space occupied, so the number of harvested seeds of 
the mixture are equal to : 

Ob = kb0Zb{kb0Zb+Z0)-mbA 

Oo = zjkboZt+ZoyWo, J 
in which Mb and M0 are the yields in number of kernels of pure stands of 
barley and oats, respectively. 

W 

106 kernels/ha. M 

W 

O80h 

Fig. x. (Exp. IBS346-I9S9.) ^ X ^ ^ ^ ^ i ^ ^ S ^ - ^ ^ ^ 
seed rate of 3 * x 10« kernels/ha. (= 31 cm. V k e r n 1 } ? - J ^ £ & (310 cm.'/kernel) 

Although her« (*+*) > k * ^ f f i g £ g £ ! Ü Z 3 2 Z 
ment series, (cZt+e<,Zo is kept constant, i.e. if the ° P e ™ ' . f b , 
in sueh a way that «,-> kernel» of oat» mtf ,^L£to*Z£e*> 
seed and harvest rates by Zh = cbZb, Ob - CbUb, mb D, 

The reproductive rate of a species is equal to thecumber 0 seeds 
harvested divided by the number of seeds ^ ^ ^ J ^ 
reproductive rate is equal to the ratio of both and, from equaüon (1), 
equals ' ~ ' " str> '7 v"1 = kh^MhMo 1- \zf 

abo 
= {O^Z^OolZoY1 = hoMt.Mo-1-
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The relative reproductive rate is independent of the composition of the 
seed mixture. 

The results of one of thirty-four experiments are given in Fig. i . The 
relative frequencies of barley zb[ = Z^Z^+Zo)'1] and oats are given 
along the horizontal axis and the yields of each are shown on the vertical 
axis of Fig. ia. The curves satisfy equation (i), the value of Äbo being 2-3 
and of M\> and M0 being 123 x io6 and 162 x io6 kernels/ha., respec
tively. The relative reproductive rate of barley with respect to oats is, 
according to equation (2), [2-3 x 123/162 =]i '75. Thus, although the yield 
of barley in monoculture is lower than the yield of oats, the proportion of 
barley in a mixture increases because the barley has an advantage as far as 
crowding for space is concerned (the Montgomery effect; cf. Gustafsson, 
1951.) The advantage, however, is of small value in pure stands. The 
curvature of the yield curves is governed by the value of k. 

If k equals one, straight lines are obtained. This special case of the 
model is often used in population genetics. Unless (plant) densities are 
small, this special case appears to be of small practical value. 

From equation (2) it follows that 

logObOö1 = logabo+logZbZ"1, 

so that, the relative reproductive rate being constant, the observations 
plotted on double logarithmic paper with Z^Zô1 and ObOö1 along the 
axes are on a straight line parallel to the diagonal. The value of a^o is then 
read at the intercept of the line and the vertical at Z^Z~X = 1. Such a 
plot is called the ratio-diagram and the data of Fig. 1 a is so given in Fig. 1 b. 
The number of steps of the broken line in this figure corresponds to the 
number of generations necessary for a given shift in the composition of the 
mixture. 

The equations (1) may be formally extended to cases where n species 
compete with each other, the yield of the jth species being given by: 

O^b.Z^h^M,, 
n 

S = Zk = constant, 
k=l 

(3) 

in which the n coefficients b, of which (n-1) are independent, are used 
instead of the relative crowding coefficients kjk = bfit1 for reasons of 
symmetry. 



SPACE RELATIONSHIPS WITHIN MIXED POPULATIONS 317 

THE INTERPRETATION OF EXPERIMENTS 
ON SPACING 

The equations (1) may be applied also to the situation where diseased 
plants crowd for space with healthy plants. Very diseased seeds do not 
germinate at all so that under such conditions competition experiments 
between healthy and diseased plants degenerate into a spacing experiment 
of healthy plants only. For reasons of continuity it is to be expected that 
the result of a spacing experiment can be described also by means of one 
of the equations (1), which needs some rearrangement before application. 

In equation (1) barley (b) is supposed to be the 'growing species', and 
oats (o) the 'non-growing' species. The second equation vanishes and 
the first may be written as follows: 

Ob = ÄboZbCAfcoZb + Zo^M,, = hoZb[kboZ* + (m-i-Zb)]-iMb, 

because Zx> + Z0 = constant = nr\ 

i.e. Ob = [m(kx>o-i)+m][m(kbo-i)
JrilZ*Y1M*-

By putting i[Zb = * or the surface allotted to one seed, Ob = Ms or the yield 
at a spacing s, m(*b0-1) = ß (which is independent of m) and Mb = Mm 

or the yield at a spacing m. It is found that 

Ms - ß+s
 m™ ß+s. 

The constant Ü is the extrapolated yield at an infinite seed density The 

extrapolated yield of one seed growing wide apart from other seeds is equal 

t 0 (M^oo - fib ( 5 ) 

and ß is a constant which is numerically equal to the spacing at which the 

yield is the half of Q. ., 
According to equation (4) the following relation holds: 

ß+s= ßttMT1. <6) 

Hence, if the inverse of theyield ^ ^ f i l C 
the space per seed (or the inverse of the se d rate astr igh ^ 

rates ranging from 0-125 to 10 um«. 
cm.2/kernel for oats and 139 cm.2/kern 

tes of peas are expressed in pea-units,. 
39/31 = ] 4 . 5 pea-units, to simplify com 
In Fig. 2 the inverse of the harvest rate ^ " ^ j - ^ e x p r e s s e d in 

or pea-unit is plotted against the inverse of the seed 

rates ranging from 0-125 to io " T " " The seed and harvest 
31 cm.*/kernel for oats and 139 cm.2/kernel for pea 1 
rates of peas are expressed in pea-units, one kerne of p e - bemg q 

[.39/31 =14-5 P e a - i t s , to ^ f « " ? ^ 2 e ^ o * t e B c l 
Tn Fia. 7. the inverse of the harvest rate expressed in J 
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similar units. The observations indeed lie on a straight line up to a spacing 
of 0'5 times the normal spacing. The normal spacings, the yields of which 
are determined on a larger number of plots, are represented by large 
symbols. The value of Ci is the inverse of the intercept of the straight line 
with the vertical axis and appears to be 1-35 oat-kernel/cm.2 and 1-32 pea-
units/cm.2 The values of ß are read at the intercept with the horizontal 
axis and are 580 cm.2/oat-kernel and 100 cm.2/pea-unit. The yield of one 

cm.2/' kernel 

3 

cm.2/' kernel ' 

s 
Fig. 2. (Exp. IBS 245—1959.) The results of a spacing experiment with peas (1 pea 
kernel = 4-5 pea-units) and oats. The lines satisfy the equations. M = 580(580+ î ) - 1 kernel = 4-5 pea-units) and oats. The lines satisfy the equations. M 
1-35 oat-kernels/cm.2 and M = 100(100+s)_11-32 pea-units/cm.2 

oat-kernel or one pea-unit planted wide apart from other seeds is equal to 
the product ßQ. or, apart from different units along the axis, the cotangents 
of the slopes of the lines, that is 780 oat-kernels and 132 pea-units. 

Seed rates higher than two times normal are not plotted because these 
deviate from the line, there being always a threshold density beyond which 
the plants leave each other such a small space that normal development is 
not possible and yield depressions occur. By plotting the data in the normal 
way, the reader may satisfy himself that the normal type of 'saturation 
curve' is obtained. 
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L O G I S T I C GROWTH 

Let it be supposed that the harvest in one year is re-sown quantitatively 
the next year under the same conditions, so that the spacing formula (4) 
is valid. 

The relation between the yield in the (*+i)th year {Mt+1) and the rth 
year (Mt) is then given by 

Mt+1 = ß(ß+Mf*)-V. (7) 

Flies/bottle 

1000| 

bottles/fly 5QQ 

0006] 

0-004 

12 days 
onwards 

0-002 

0-002 °-°08 Bottles/fly 

Fig. 3. The growth of a Drosophila population plottedI (*) as a g.owA curve, and (*) treated 
as a spacing experiment (data ot feari, 193°;-

The differential equation of logistic population growth is 

dMJdt = rMt(K-Mt)K-\ (8) 

in which r is the coefficient of increase if ample space is *f^Ktte 
maximum or equilibrium yield and Mt the yidd at tune t. Solvmg tins 
differential equation and substituting 

Q = Ke^(<fAt-i)-\y ( 9 ) 

the following relation is obtained: 

Ml+At = ßiß+Mf1)-1^ 
(10) 
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in which Mt+At and Mt are yields at times in interval at apart. This relation 
is identical with equation (7), so that the present spacing formula is a 
solution of the differential equation of logistic growth. 

The result of one of the well-known experiments of Pearl ( 1930) on growth 
of Drosophila populations is given in Fig. 3 a. The inverse of the number of 
flies on the rth day is plotted against the inverse of the number of flies on 
the (t + 3)th day in Fig. 36. The observations are indeed on a straight line. 
The equilibrium density K is given by the inverse of the value read at the 
intercept of the experimental line and the diagonal (broken line in Fig. 3 e). 
It follows from the formulae that 

K = Q- /?- 1 and ßQ. = érAt. ( " ) 

It is well known that the logistic model is only applicable in animal 
ecology if the conditions are rigidly simplified. In contrast, it appears that 
an analogous model is of far greater value in plant ecology. The main reason 
for this difference is that in spacing experiments the experimental con
ditions are far less complicated. It may be worth while to carry out spacing 
experiments with animals which are of a similar design as spacing 
experiments with plants. 

CROWDING FOR THE SAME SPACE AT 
DIFFERENT SPACINGS 

Equation (3) describes the result of crowding for the same space between 
species at constant spacing. It may be supposed here again that one of the 
n species in equation (3) does not germinate to obtain an equation which 
should describe the result of crowding for the same space over a range of 
spacings. The following relation is then obtained: 

n 

0 , = /?,Z,(i + 2/?fcZfc)-iß3, (12) 

J = 1, 2, . . . , n, 

in which Q and ß are the same constants as in equation (4), and ß and Z are 
expressed in such units that their product is without dimension. 

The relative reproductive rate of the kth. species with respect to the/th 

species is «w - O W ( / W * . ( l 3 ) 

which is independent of the seed rate of any species. It is recalled that the 

product ßQ. is equal to the yield of one seed when planted alone. 

The relative crowding coefficient of equation (1) is equal to 

Ä« = (x +A S Zu(1 + A 2 zx)-\ (H) 
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and approaches therefore to one with decreasing seed rate. The most extreme 
value (ßjßiT1) would be reached at an infinite seed rate but for the fact that the 
whole relation breaks down at very high seed rates. 

The present formulae contain only constants calculated from seed rate 
and final harvest data. If it is found, for instance, by means of spacing 
experiments that the product ß£l is the same for two plant species, it may 
be concluded from equation (12) that the relative reproductive rate is one 
and independent of the seed rate of the mixture. It is, however, perfectly 
possible that one of the species is earlier in its development than the other 
and occupies already a large part of the available space at the time that the 
other begins its grand period of growth. As a consequence the relative 
reproductive rate of the earlier species is larger than that calculated from the 
spacing experiments, and this is more so at closer spacings. Equation (13) 
can hold, therefore, only if the ratio (ÄU*)0W - 1« a s m e a s u r e d by 
periodic harvests of spacing experiments, remains practically constant 
during the whole period of growth; that is, if the growth curves are 
practically synchronous and similar. 

At first sight this seems a necessary condition for two species affecting 
each other only by crowding for the same space. This appears to be, how
ever, not the case. Two species may crowd for the same space if their growth 
curves are synchronous but not similar. Equation (13) is under these 
conditions not valid, but equations (1) and (4) still hold, because the period 
during which the space is actually claimed may be assumed practically 
independent of the relative seed frequency as long as the total seed rate is 
kept constant. These two situations are best illustrated by examples 

On the same field as the spacing experiments of Fig. 2 were carried out 
peas (1 pea kernel = 4 '5 Pea-units) and oats were grown in ™V«*™« 
different relative frequencies, but at the same spacing of _31 cm. oa 
kernel or Pea-unit. Because both plants are annuals and the mttogen.tod 
of the field was high, any complication due to a ^ ^ ^ 
effect of the nitrogen which may be fixed in the nodules of the pea roots on 

% ï : t l 7 r ^ —ematically treated according to e o ^ 

tion ( ^ i s ü ! that it must be ^ ^ ^ ^ ^ 

rate of oats with respect to pea-units («po) » nere 4 . 

value, a p o , can be calculated i ^ ^ ^ S 
experiments presented in Fig. *>**£* values of av0 calculated in 
(equation 13). This ratio was o-i7. Since ^ 
both ways were similar, it may be concluded mat 4 * 
represent competition between oats and peas in this « P « ™ « * ^ ^ 
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Barley and oats affect each other also only by crowding for the same 
space, as is to be concluded from the data presented in Fig. i. However, the 
relative reproductive rate of barley with respect to oats (ax,0) appears to be 
i'75 at a spacing of 31 cm.2/kernel and 1-02 at a spacing of 310 cm.2/kernel, 
whereas abo as calculated from spacing experiments with these crops on 
the same field is 1-04. (These latter data are not reported in full.) The 
value of abo at the wide spacing is equal to the value calculated from the 

Fig. 4. (Exp. IBS 245—1959.) Crowding for space between oats and peas (1 pea-
kernel = 4-5 pea-units) at a spacing of 31 cm.Voat-kernel or pea-unit. 

t 

spacing experiment, but at the narrow spacing considerably higher. The 
reason for this difference is that, although barley and oats crowd for the 
same space, their growth curves are not similar. Barley develops earlier in 
the season and is, therefore, at an advantage at closer spacings. 

THE LOTKA-VOLTERRA EQUATIONS OF 
COMPETITIVE GROWTH 

By combining equations (11) and (13) it is found that the relative repro
ductive rate of two species in the time interval A* is equal to : 

«12 = (0«+MlO?){0«+MlO$)-l = «fri-r^i ( I5) 
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in which r is the coefficient of increase, and Cß and O('+A0 the yields at 
the times t and t+At. 

Volterra (1928) supposed that the growth of two populations growing 
on the same food may be governed by 

dOf/dt = [rz-yi{KOy+h20$)]0$,) 

in which r is the coefficient of increase and r(yA)-1 the maximum or equi
librium density of the species under the conditions of growth. A partial 
solution of this set of differential equations is 

(16) 

0£Oïr' = e(r*7>-r'y')t constant, (17) 

which after introducing an arbitrary time interval At may be rewritten as 

follows: ÇQ(t+M)iQ(fiy>/Q(t+M)jQ(t)\-n — e<.ny.-uydM^ (ï8) 

° r i \ 1 i A H r ^ - t - i » 10 » 14 
Days ' 

Fig. 5. The growth of Paramecium aurelia and P. caudatum (a) alone, and (*) in competition 
e (data of Gause, 1934)-

Equations (15) and (17) are the same, if it is supposed that Volterra's 
constants 7l and y2 are both equal to one. Equations ( « are thereto e 
solutions of simplified (y = 1) Lotka-Volterra differential equationif 
yields at the times t and t+At are substituted for Z and O, « P ^ 

The well-known growth curves of Paramecium caudatum and P.amto 
as determined by Gause (,934) - d e r constant ™à*™S ™&™™ 
Fig K(a) on a percentage basis. The coefficients of increase (r) and equi-
uÏmmyie ld 1 Tcalculated b y Gause (x934) ^ e r the supposition^ 
logistic growth are 1-124 day- and 245 indmduals/o-5 cm.« for P. aureha 
and 0704 d ay - and 64 individuals^ cm.« for P. caudatum 

Theva4luesyof /? andl Û for the two species for P f ™ * * ™ days can 
be calculated by substituting the above values in equations (9). By 
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substituting these values of ß and Q. in equation (12) the following rela
tions between the number of individuals at time t and t + 2 as a percentage 
of the equilibrium density are obtained: 

0«+2) *= o-o850«> (0-0850» + o-o390«> + I ) - X I 12 (for P. aurelia), \ 

0<<+2> = o-0390^(o-o850«) + o-0390«) +1)^126 (for P. caudatum).r9) 

Gause cultivated the same species in competition under the same 
conditions. These results are, again on a percentage basis, given in Fig. 5 b. 
It is seen that at the fifth day the yield of P. aurelia is about 5 2 % and of 
P. caudatum about 40 % of the maximum. These values are substituted in 
equation (19) to calculate the yields at (5 + 2) and (5 — 2) days, and these 
yields are again used to calculate the yields at (5 + 4) and (5—4) days and 
so on. The resulting calculated growth curves for the two species are given 
in Fig. 5&. As far as the observations go, the agreement between the 
observations and the calculated growth curves is reasonable. 

THE RELATIVE REPRODUCTIVE RATE OF PERENNIAL 
GRASSLAND SPECIES 

The relative reproductive rate of two seed-producing species as barley and 
oats can be calculated from the composition of a sample of the seed mixture 
in two subsequent winters. Likewise the relative reproductive rate of two 
perennial species can be calculated from observations during the winter 
rest period. The yield during the growing period gives in principle no 
information because the harvested parts of the plant are lost. 

It appeared that the number of tillers of grass per unit surface is a 
reasonable measure of the amount of grass present in winter and the length 
of the stolons per surface unit a good measure of the amount of clover 
present in winter. 

The relative reproductive rate of one grass species with respect to 
another, or a grass species with respect to clover, is thus obtained by 
plotting in a ratio diagram (as in Fig. 1 b) the ratio of the number of tillers 
of both species in the first winter against this ratio in the second winter or 
by doing the same for the ratio between the length of the stolons of clover 
and the number of tillers of grass. Ennik (i960) and van den Bergh & de 
Wit (i960) carried out some experiments on this basis in a phytotron 
where mixtures were grown in containers and winter treatments of one 
month and summer treatments of two months were given. 

The result of an experiment with Anthoxanthum odoratum and Phleum 
pratense is given in Fig. 6. The relative reproductive rate differs slightly 
from one in this case and is independent of the ratio between the two 
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Fig. 6. The ratio-diagram of Anthoxanthum odoratum and Phleum pratemegrown in 
containers in a phytotron. Z.1Ç1 and OaO? are the ratios of the number oifillerof 
A orforatu« and P . pratense\i'the end of the first and the second winter treatment, 
respectively (data of van den Bergh & de Wit, i960). 

Fig. 7. The ratio-diagram of LoliumP^f^M^ZSioSÎ* ^»TaTdThe 
Phytotron. ZtZ^ and 0,OTl are the ratios of * e ^ g m » ^ ^ ^ t r e a t m e n t > r e s p e c . 
number of tillers of L. perenne at the end ot the nrsr anu 
tively (data of Ennik, i960). 
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species. Hence it must be concluded that these two species affect each 
other only by crowding for the same space. 

The result of Ennik's experiment with Trifolium repens and Lolium 
perenne is given in Fig. 7. It appears that the observations are arranged 
around a line with a slope less than 450 so that the relative reproductive 
rate depends on the composition of the mixture. The two species affect 
each other, therefore, in some other way besides crowding for the same 

Çamelina 
sativa 

O 
20,000 r-

Came/Zna 
sativa 

Yield in seeds per pot 

O Sub-irrigation 
Artificial-rain 

Linum 
usitatissimum 

H2000 

1000 

•° Linum 
usitatissimum 

Seed rate in seeds per pot 

Fig. 8. Crowding for space between Linum usitatissimum and Camelina sativa grown in 
containers in a greenhouse and watered by sub-irrigation and by artificial rain. 

space. This is here due to the ability of clover to obtain nitrogen from the 
air and, because the soil nitrogen was low, the clover thereby having a 
much better nitrogen supply than the grass. It is easily seen that these two 
species tend to an equilibrium given by the value at the intercept of this 
line with the diagonal. 

The observations are also arranged around a line with a slope less than 
450 if the two species affect each other only by crowding for space which 
is not completely the same for both species. This is, for instance, the case 
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if one grass species develops mainly early in the season and the other late in 
the season; part of the space is then used at two different times. It was 
found, for instance, that the species Antjioxanthum odoratum with early 
growth and Phleum pratense (with late growth) tend to an equilibrium 
under field conditions, whereas this was not so in the phytotron. 

Lines with a slope greater than 45 ° can only be found if the two species 
hamper each other not only by crowding for space but also by some 
'active' process such as producing a toxic substance which restricts the 

loop 

o 

001 

Fig. c, Examples c t t ^ c i a ^ ^ ^ ^ f ^ ^ ^ S i f S S i 
the ratios of the number of plant units of the nrst and seconu H 
second rest period, respectively (for explanation, see text;. 

growth of the other species. According to Grümmer (1958; P- « 6 o f ^ . 
volume), the yield of flax (Linum usitatisnmum) is adversely affec*by som 
toxic substance produced by false flax {Camelina sa»va,* " P ^ ™ £ 
conditions where the mixtures of both plants are subjected tcram Wh^ve 
carried out experiments where both crops were grown m M herhch 
containers in a greenhouse at different P - P « ^ ^ £ £ * 
watered by sprinkling and the other by sub-urngaUon The » * £ ' 
experiment is given in Fig. 8. The curves in the figures ^ £ £ Z % . 
the observations do not show any systemaUc ^ ^ ^ ^ Z c n t s 
and the relative crowding coefficients were the sam f - b o * t«attn 
Hence, the toxic effect, if any, was too small to be shown m w y 

* Grammermain tamstha tC^^^- i s fa rmore tox ic to f lax than i sC.^ 

Editor. 
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In both water treatments, the relative crowding coefficient of false flax 
with respect to flax is 2, in spite of the fact that the seed rates are chosen 
such that five seeds of flax are replaced by only three seeds of false flax. 
False flax is, therefore, a very serious weed apart from any toxic effect it 
may have. The yields of both crops were lower where the plants were 
subjected to artificial rain, but this does of course not prove the existence 
of toxic substances. 

It is shown (de Wit, i960) that the observations from associations where 
species affect each other not only by crowding for the same space are 
arranged around the S-shaped curve, with its ends parallel to the diagonals. 
Some examples are given in Fig. 9. For a full mathematical treatment of 
the data in these, the reader is referred to Ennik (i960), van den Bergh & 
de Wit (i960) and de Wit (i960). 

SUMMARY 
A mathematical treatment of crowding for the same space within popu
lations of one or more species is given and illustrated by means of experi
mental results mainly with species of plants. A preliminary analysis can 
be based on the ratio-diagram, in which the ratio of the number of two 
species at the beginning of a suitable time interval is plotted against this 
ratio at the end of this time interval on double logarithmic paper. 

The models of the systems which have been studied may be classified as 
follows : 

Modell 

This simplest model of competition occurs if the (absolute) reproductive 
rate of each individual of each species is independent of the relative 
frequency of the species and the density. The relative crowding coefficient 
is then at any seed density equal to one. Unless seed densities are very 
small, this model is of little practical importance, although many calcu
lations in population genetics are based thereon. 

Model II 

The observations in the ratio-diagram are, independent of the seed 
density, on the same straight line parallel to the diagonal (Fig. 9, curve 1). 
The species influence each other only by crowding for the same space; they 
grow synchronously and have similar growth curves (e.g. oats and peas). 

Model III 

The observations in the ratio diagram are at constant density on the 
same line parallel to the diagonal, the position of this line depending on the 
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seed density. The species influence each other only by crowding for the 
same space ; they grow synchronously but do not have similar growth curves 
(e.g. barley and oats). 

Model IV 

The observations in the ratio-diagram are on a line with a slope smaller 
than 450, even at the same seed density (Fig. 9, curve 2). A stable equi
librium may result if this line intercepts the diagonal. This model occurs if: 
(a) one species profits from the presence of the other (e.g. grass and clover); 
(b) the species affect each other only by crowding for space, this space being 
not completely the same for both species. This is always so if the growth 
curves are not synchronous (e.g. Anthoxanthum and Phleutn under field 
conditions). 

Model V 
The observations in the ratio-diagram are on a line with a slope greater 

than 45°, even at the same seed density (Fig. 9, curve 3). An unstable 
equilibrium results if this line intercepts the diagonal. This model may 
occur if one species hampers the growth of others, not only by crowding 
for space but also by some 'active' process such as producing a toxic 
substance. Examples are not known. 
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