PARDENS - an experimental program for
Parzen density fitting

Rafat Wéjcik and Paul Torfs

January, 2003

Contents

1 Introduction

2 Copyright

3 Obtaining the program and seeking-assistance

4 The graphical user interface

4.1 Re-entering commands
4.2 LUA . . . e
4.2.1 Multiline commands
4.2.2 LUA and objects
4.2.3 LUAextensions
43 Themenu
4.3.1 Dofileo
432 Browse.
433 Clear
4.3.4 Selvaro
435 Edit
4.3.6 Quit
437 Info

5 The interface to GNUPLOT

6 Data types

6.1 Vectors and matrices
6.1.1 Defining vectors and matrices
6.1.2 Modeso
6.1.3 Plotting through GNUPLOT
6.2 Parzen density classes L.
6.2.1 PARZENclass
6.2.2 D2Pclass
6.2.3 XYPARZENclass.
References

Acknowledgments

10

12
12
13
14
15
16
18
24
36

47

48

3 OBTAINING THE PROGRAM AND SEEKING-ASSISTANCE

1 Introduction

This document outlines the operation and the available options of the pro-
gram PARDENS. The main purpose of the program is to fit a Parzen (or
optionally a mixture) probability density model of multivariate normal com-
ponents to the user-provided data set. Estimation procedure is based on
penalized version of log likelihood maximization. The penalty term incor-
porates the Kullback-Leilbler divergence from the global Gaussian fitted to
data (for a technical description of the algorithm see Torfs and Wéjcik, 2003).
Many other facilities are implemented in the program, that we found to be
of use when modelling Parzen densities.

2 Copyright
Copyright (C) 1999-2003 Paul Torfs, Rafal W6jcik

Permission to use, copy and distribute this software and its documentation
for any purpose without fee is hereby granted, provided that the above copy-
right notice appears in all copies and that both the copyright notice and this
permission notice appear in supporting documentation.

Permission to modify this software is granted, but not the right to distribute
the modified code. Modifications are to be distributed as patches to the re-
leased version.

This software is provided “as is” without express or implied warranty.

3 Obtaining the program and seeking-assistance

Copies of PARDENS are available upon request from the authors. Bug re-
ports, code contributions and questions concerning the methodology pre-
sented in this document should be mailed to:

Raf .Wojcik@wur.nl or Paul.Torfs@wur.nl

NOTE: PARzen DENSity fitting remains a difficult business, in particular for
high-dimensional data. You may be assured that when treating the program
as a black box, you are volnurable to get nonsensical results. Even if you know
what you are doing, output produced by the program has to be interpreted
very carefully. Now that you are warned, go ahead and have fun!

2

4 THE GRAPHICAL USER INTERFACE

4 The graphical user interface

While interacting with the program, the user is confronted with a graphical
interface as shown in Fig. 1. The interface is written with the f1tk library
(visit http://www.fltk.org for more information). Command lines are en-

COMMAND HISTORY WINDOW

X+ Thome/raf hidevilopementPardens PARDENS = O %]
Cofle Browse Selvar Edit [Clear Quit |nfo i
s="hello” v
X=2.4
prini(s,x"x)
hello 5.76
prini(s”s,x"x)

arror: attempt fo parform arithmetic on global s’ (a string value)
stack traceback.
1. main of string ‘print(s *sx*x)" at ine 1

> brint(s*5,%"%)

f

COMMAND LINEWINDOW

Figure 1: The interface.

tered in the “command line” window. After hitting the Enter-key, these
commands, and the responses of the program obtained by executing them,
are written to the “command-history” window. The echos of the command
lines are written in bold face, the “regular” answers in normal face, the error
messages in italic.

4.1 Re-entering commands

Lines from the “command-history” window can be re-entered to the “command-
line” window by left-clicking them (they can then be further edited), or by
right-clicking, in which case they are immediately executed.

4.2 LUA 4 THE GRAPHICAL USER INTERFACE

4.2 LUA

The program interpretes the commands through (an extension) of the “LUA”
language. At the web site of the LUA-project :

http://www.tecgraf.puc-rio.br/lua/

a complete (less then 50 pages) manual can be downloaded. Some simple
characteristics of the language are already demonstrated in Fig. 1 :

e variables of simple types (strings, numbers) do not have to be declared,
but can immediately be used

e all standard computations are implemented
e when performing un-allowed commands, error messages are produced

All basic libraries of LUA (string manipulation, mathematical functions, I/O
facilities, system facilities) have been implemented, so that all standard items
of a complete programming language are available. Moreover, there are some
functions available which make LUA a useful batch processing program. The
most important is the:

execute (command)

function. This passes commands to be executed to the operating shell.

4.2.1 Multiline commands

For executing multi-line commands, the command line window is not suffi-
cient, as each line is immediately executed after entering. For that reason, a
simple multiline editor is built in. The multiline editor is started by executing
the “<” in the command line window. All command lines that are entered
afterwards, are not immediately executed, but buffered, and executed as a
complete buffer after the ending of the macro by entering the “>” in the
command line (see Fig. 2). In the multiline-entering phase, the multiline
indicator will light up. The example in Fig. 2 above also shows one of the
basic control structures in the LUA language: the for-loop. Figure 3 depicts
yet another typical use of the multiline command - that of the definition of a
function. In this function, the use of the LUA “if” structure is demonstrated.

4 THE GRAPHICAL USER INTERFACE 4.2 LUA

Dofle Browse Selar Edt Clear GQuit Info |

f(ori-o,sdo

print(i*i)

end

o

1

4

]

16

25

"\
MULTILINE
INDICATOR

Figure 2: A typical multiline command: a for loop.

Dofile Browse 3Selvar Edit Clear Quit [nfo I
function si(x)

if x==0.0 then return 1.0

else return sin(x)x

end

end

print(si(4.5).5i(0.0))
0.01743535460618777 1

= Orint(si(4.5),5i(0.0))]

Figure 3: A typical multiline command: the definition of a function.

4.2 LUA 4 THE GRAPHICAL USER INTERFACE

¥ Thomerraf) chidevelopemenyPardens/PARDENS = O X]|
Cofile Browse Selvar Edt Clear GQuit [nfo i

<
function printwholename(of)

print{ of forename.of.surname)
end

i={}

i.surname = "Kowalski”
i.forename = "Jan"

l.age = 23

i.name = printwholename
iname()

Jan Kowalski

Figure 4: An object oriented example.

4.2.2 LUA and objects

The LUA language has an object oriented flavor. This means that vari-
ables can have data fields and methods (or functions acting on those data
fields). Figure 4 shows an implementation of an object. First, by us-
ing the multiline command facility, a LUA function is defined. Next by
the statement i = {} a standard LUA object called TABLE is created. By
i.surname = ‘‘Kowalski’’, a field with name surname and with data be-
ing the string ‘ ‘Kowalski’’ is created. An object can have several fields
of different types. A field of type “function” is called a method of the ob-
ject. In the example the object i has a method with name name and value
printwholename. The last command illustrates how a method is called.
The line i:name() is interpreted as i.name(self), thus providing the called
function with the object as first argument.

4.2.3 LUA extensions

LUA is a language which can easily be extended by new functions and objects
(written in C++). One type of object that is included in the program (and
has been added to the LUA core), is the MACRO type. A MACRO is a collection
of (command) lines. A variable is declared to be of the MACRO type by:

f = MACRO

Command lines can be put into the macro by the multiline editing facility,
as shown in Fig. 5. Actually, all objects which have a fread method can
be given values in the same way. Objects of type MACRO have the following
methods:

4 THE GRAPHICAL USER INTERFACE 4.3 The menu

* thome/raf/ chidevelc Pardens/PARDENS = O X||
Dofle PBrowse Selvar Edt Clear Quit [nfo i
m = MACRO

<
This is line 1
This is line 2
>m
m:listall()
This is line 1
This is line 2

> |

Figure 5: Declaring a macro, filling it with the multiline facility, and calling
the method “listall”.

listall() lists all lines

fread (STRING filename) reads all lines from a file with name filename
furite (STRING filename) writes all lines to a file with name filename
exec () executes all lines

4.3 The menu

Menu items can be activated by clicking them, or by pressing th ALT-key and
the corresponding underlined letter.

4.3.1 Do file

Collection of command lines can be stored in files. The “Dofile” opens
a file selector (see Fig. 6). Once a file is selected, all lines in that file are
executed as if they were entered in the command line. By default, the files
with extension “lio” are shown first.

4.3.2 Browse

If one wants to execute only a few command lines from a file (unlike in the
“Do file” menu where all the lines are executed), one can use the “Browser”
option of the menu. After selecting a file with the file selector (see also the
“Do file” menu) a browser window as in Fig. 7 will pop up. From this
window one can select lines to the command line window in the same way as

7

4.3 The menu 4 THE GRAPHICAL USER INTERFACE

r. Select inpan file 1o do o %]
|~ lio =] Favorites = | &
B, a =3¢
D1.Jio T
D2lio W = -b-egrtibal - 4=
D3 lio
D4lio

names.lio

¥ Preview
1

i Ll 1 1 1
Filename: I /homedrafresearchidevelopement/Pardens/simple lio

!OK -’Jl Cancel

Figure 6: A file selector.

¥ /home/ral/research/developementPardens/simpleio = O X||

CLOSE DoAl |

Figure 7: A typical browser window.

from the command history window. The “Close” button closes the browser
window.
4.3.3 Clear

Clears the command history window.

4.3.4 Selvar

Selvar menu makes it possible for the user to list variables declared in a par-
ticular LUA script. Three options to do this listing are available (see Fig. 8):
“all vars” button displays all the variables currently used by the program,
“value vars” button displays only variables that are numbers (integers,
floating point numbers) and finally “edit vars” button displays so-called

8

4 THE GRAPHICAL USER INTERFACE 4.3 The menu

edit variables. These variables are objects that have “fread” and “fwrite” as

X * hom e/raf research/develope nt/Pardens/PARDE N<
Cofle Browse Selvar Edit Clear Quit |nfo

c=049
d = -b-sqri{fb™~2 - 4"a™c)(2"a)

Tx Y

al vars [,

value vars .
edit vars

Selected var .

n:ln:ld cancel I
typelnumher QK s

Figure 8: A SelVar menu.

methods:

e foo:fread(filename) reads the content of the file into the object

e foo:fwrite(filename) writes the content of the file into the object

Clicking a variable of interest in the right-hand side scroll-window shows the
name and the type of that variable (two bottom panels in Fig. 8). Selvar
menu is particularly helpful in keeping hold on administration of large LUA
programs.

4.3.5 Edit

The content of LUA files or edit variables can be altered via Edit menu. Fig9
shows an edit window which appears after choosing a “file” type option. This
edit window has some classical edit facilities so the content of a file can easily
be changed and saved. The same kind of operations can be performed on
edit variables. Figure 10 shows this for an object of the MACRO type (see also
Section 4.2.3). In the variable “sidef” of type MACRO, a function definition is
stored by the multiline facility (see Section 4.2.1). Corrections (e.g. changing
the “*” in the function definition) however are not possible in the multiline
environment. In this case the Edit menu should be used. After selecting
“sidef” variable to be edited, and clicking Search and then Replace options
in edit window, the “*” can be replaced by “\”. By pressing Save menu item
the (changed) content of the edit window is read into the “sidef” variable
(by the fread method).

5 THE INTERFACE TO GNUPLOT

X * home/raiiresearch/developement/Pardens P ARDENS = 0Xx

Dofle Browse Selvar Edit Clear Quit |nfo

TX ¥ Untitled = O N
Edt Search |nsertSel Save SaveAs Quit

the second argument 15 the mimimal criterium change
to see the progress of the optimization procedure
on the screen, we first put on verbose

[d2p.verbose = |
d2p:optimize(50,0.001)

-- 8/ and again inspect (visually] the result

f1d = dens(dZp.parzen,300,-0.1,1.1)

pfld = fld:zyline()

title = "fitted density with globality = "..d2p.globality
pfld:addtitle(title)

Figure 9: An edit window.

4.3.6 Quit

The quit button quits the program.

4.3.7 Info

The info button displays the information about the program.

5 The interface to GNUPLOT

A remark

The material presented here (and further in Section 6.1.3) is optional.
The interface to GNUPLOT plotting package described below was rather
developed to get a poor men’s look at the results produced by PARDENS
during long debugging sessions than to obtain sophisticated graphical
representation of data. Since it is easy to store output from PARDENS
in text ASCII files, we strongly encourage the user unfamiliar with or
annoyed by GNUPLOT to visualize the output with any plotting software
she/he feels comfortable with.

To provide a simple plotting facility, an object type GNUMACRO was developed.
The content of a variable of this type is just a number of lines (as in the case

10

5 THE INTERFACE TO GNUPLOT

X * home/raf/research/developsment/Pardens/PARDENS <2> =

Dofle Browse Selvar Edit Clear Gut Info
sidefl - MACRO

function si(x)

if x=0.0 then return 1.0
else return sin{x)"x
end
end
>sidel (X Untifled <2 i
- | Edt Search [nsertSel Save SaveAs Quit

function si(x)
if z=0.,0 then return 1.0

else return sin(z)xx
end
end

Feplace:\
Replace All | Replace Next~~ | Cancel |

Figure 10: Editing a macro.

of more general MACRO type of section 4.2.3). Those lines are then send by
various methods of this object to the GNUPLOT interpreter. GNUPLOT is
a general plotting program, available in the public domain. From the web-

site http://www.gnuplot.info, executables, manuals and source code can
be downloaded.

In order to make GNUMACROs function properly, the gnuplot program for
UNIX-based systems, or the wgnuplot program for WINDOWS-based sys-
tems, should be callable by the interface.

For the GNUMACRO type there are several available

e methods:
listall() lists all lines
fread (STRING filename) reads all lines from filename
fwrite (STRING filename) writes all lines to filename
show () shows the plotting results in a window
exec () the same as show ()
eps (STRING filename) plots in eps-format to filename.eps
ps(STRING filename) plots in ps-format to filename.ps
fig (STRING filename) plots in fig-format to filename.fig *

LThe fig-format is the format used by an excellent UNIX-drawing program Xfig (see
http://www.xfig.org for more information).

11

6 DATA TYPES

X * PARDENS 11-9-02

Dofile Browse 3Selvar Edit Clear Quit [nfo
fancyplot=GNUMACRO

:plot [2:2] [2:2] 22 + y*2) exp{-x"*2 - y*2)
>fancyplot
fancyplot:show()

> ‘ancyplot:show()

coooooos
S bt b i

Figure 11: A typical plot made by a GNUMACRO.

Figure 11 illustrates a simple use of this object. The methods fread and
furite make it also possible to use the Edit facility of the menu (see Sec-
tion 4.3.5).

6 Data types

6.1 Vectors and matrices

For mathematical convenience, the object types VECTOR and MATRIX have
been added to the program. The VECTOR class has the following interface:

e setfields:
length INT length of a vector
e methods:
fread (STRING filename) reads all elements of a vector from
a file with name filename
furite (STRING filename) writes all elements of a vector to a
file with name filename
listall() lists all elements of a vector

12

6 DATA TYPES

6.1 Vectors and matrices

listfromto(INT el,INT e2)

showmode ()

The interface to the MATRIX class reads:

e setfields:

nrows

ncols
e methods:

fread (STRING filename)

fwrite (STRING filename)

listall()

lists elements of a vector with in-
dices ranging from el to e2.

shows mode of a vector

INT number of rows of a matrix

INT number of columns of a matrix

reads all elements of a matrix from
a file with name filename

writes all elements of a matrix to a
file with name filename

lists all elements of a matrix

listfromto (INT rl, INT r2, INT cl, INT c2)

showmode ()

lists elements of sub-matrix of a ma-
trix; the sub-matrix ranges from row
rl to r2 and column c1 to c2 of the
original matrix

shows mode of a matrix

It is important to note that fields of both VECTOR and MATRIX classes are
so-called setfields. This means that the user must specify values of those
fields in order to use a class properly. Sometimes the values of fields are
automatically found by a class itself. Therefore, the user cannot explicitely
set those values and is only able to get them by i.e. printing them out. Such
fields are said to be getfields (see Section 6.2.1 and 6.2.2 for examples of

classes with getfields).

6.1.1 Defining vectors and matrices

The code below (file vecmat.lio) creates a vector of length 3 and a matrix
with 3 rows and 2 columns, and stores some values in those objects.

—-- define a vector

v = VECTOR

13

Nl BN e NENGAITS

10
11
12
13
14
15
16

6.1 Vectors and matrices 6 DATA TYPES

v.length = 3

print("length of v =",v.length)

v[0] = 2.3

v[1] = 3.4

v[2] = 5.6

-- define a matrix

m = MATRIX

m.numrows = 3

m.numcols = 2

print("size of m =",m.numrows," by ",m.numcols)

m[0][0] = 2.3
Note that for a vector indices must be in the range 0,..., N-1 where N is
the length of the vector and for a matrix row’s and column’s indices must be
in range 0,..., Nr-1 and O0,..., Nc-1 respectively where Nr is the num-

ber of rows and Nc is the number of columns. Both for vectors and matrices
the default value of all the elements is 0. Note also that the statement m[1]
produces a vector of length m.numcols

As mentioned earlier both the VECTOR and the MATRIX objects have the fread
and fwrite methods. This makes the multiline option of Section 4.2.1 and
the edit options of Section 4.3.5 available. Note that the fread method tries
to read as many entries as possible. The methods 1istall and listfromto
are used to show the content of a vector or of a matrix in the history window.

6.1.2 Modes

Sometimes, it does not make sense to change the dimensions of a matrix
or vector (especially when they depend on some other parameters). In that
case, they are said to be in EDIT mode. This is e.g. the case for the vector
m[r] of a matrix m. The length of this vector should remain equal to the
number of rows of the matrix. Sometimes, it does not make sense to change
the values of a vector or a matrix. In that case, they are said to be in VIEW
mode. When both the dimensions and the values may change, the vector or
matrix is said to be in ALL mode. The method showmode() shows the mode
of a vector or matrix.

14

6 DATA TYPES 6.1 Vectors and matrices

6.1.3 Plotting through GNUPLOT

When v is a VECTOR, a command “picture = v:plot()” assigns to picture
a GNUMACRO (see Section 5) containing a plot of the values of v. If needed,

PARDENS 11-9-02 * a

Browse Selvar Edit Clear Quit Inio

v=VECTOR
wv.length=20

for i=0,19 do
v[i]=if10"random()
end

>
picture = v:ploi{)
picture:shovwq)

> picture:show()

Figure 12: A plot of a vector.

the variable picture can further be edited (see Section 4.3.5) to add some
other GNUPLOT commands. With the help of those commands the user
can e.g. change the form of the plot, add titles etc.

For a matrix, the following plotting commands (see also Fig. 13) are available:

1. surfplot(): Interpretes the values of the matrix as z-values. A surface
is plotted with row numbers and column numbers on the x and y-axis.

2. xysurfplot (VECTOR x, VECTOR y): Same as above, but now with the
values of the x-vector on the x-axis and the values of the y-vector on
the y-axis.

3. contplot(): Interpretes the values of the matrix as z-values. Contours
are plotted with row numbers and column numbers on the x and y-axis.

4. xycontplot (VECTOR x, VECTOR y): Same as above, but now with the
values of the x-vector on the x-axis and the values of the y-vector on
the y-axis.

5. colplot(): The different columns are plotted against the row number.

15

6.2 Parzen density classes 6 DATA TYPES

60
40
20

. xyline(): The first column is interpreted as x-values. The other

columns are interpreted as y-values and are plotted against the x-values,
connected by lines.

. xyscatter(): Same as above, except the points are not connected by

lines, but represented with various symbols.

surplot() xysurfplot(x,y)
60
40
20
0
54 ° . 108
1 2 2 01 o>
3 p) 50 1 03 oz 05 100
contplot() xycontplot()
T S -9 T T 1. T~-_7110
- -~ - T 3 4 - T - — =~ T = 108
B S 43 — S -1 106
- =< -2 B S] 104
| B - > -1 102
B 11 - v 100
l [| 0 1 1 1 1 08
0 1 2 3 4 5 0O 01 02 03 04 05
colplot() Xyscatter
T T T T 55 T T T T TA
50 - _
T 4 -
40 - _
35 A A é .
oL, A 3 A
25 é I
20 I X g ° -
15 3 _
10 [+ > -
5 o | | | |
0 5 10 15 20 25

w
o

Figure 13: Different plots of a matrix.

6.2 Parzen density classes

In this section we describe three classes for dealing with the Parzen densities:
PARZEN, D2P and XYPARZEN. For the sake of clarity it is useful here to

16

6 DATA TYPES 6.2 Parzen density classes

) componentl \

Parzen density

iy
/ ,'b'.“.\‘\

7 Parzen density
\

component 1

component 2

component 3

Figure 14: A one and two dimensional example of a Parzen density. In both
cases the density is the sum of three Gaussian components.

introduce some basic theory of Parzen models. In a Parzen model (Parzen,
1962), a probability density function is expressed as a linear combination of
component densities or simply components (see Fig.14). A model with Ne¢
components is written in the form:

N.<N
frx) = wn f(x[n) (1)

n=1
where wy, ..., wy, are called the weights and the parameters of the compo-

nents f(x|n) typically vary with n. Note that in statistical literature (see
e.g. McLachlan and Peel, 2000) (1) is sometimes referred to as the mixture
density model if N, is smaller than the number of data points N to which
the model is to be fitted. By constraining the weights:

N.<N
Z w, = 1 (2)
n=1

00 < w, < 10 (3)

and choosing normalized components:

JECREE (4)

guarantees that (1) does represent the density function.

17

6.2 Parzen density classes 6 DATA TYPES

Having fp defined it only remains to decide on the form of the components.
Apart from numerous other possibilities (see e.g. Epanechnikov components
in Silverman, 1986) in PARDENS there is only one option available, which
is a Gaussian density with full covariance matrix:

(5)

T
F&x[n) = faqunca) (%) = M)

—_— X
CORA p< 2

where

I = [, = (% =) Ca™" (3 = pin)" (6)

and pu, is given mean vector and C, is given covariance matrix.

6.2.1 PARZEN class

PARZEN class was designed to construct Parzen density models out of given
parameters (number of component densities, their weights, means and co-
variances). So this class does not implement any fitting procedure and as
such cannot be used to fit a Parzen density to the user-provided data sets.
The interface to the PARZEN class reads:

o getfields:
dim INT dimension of the Parzen density
function
numcomponents INT number of component density
functions
e methods:
simulate (INT numsim) samples numsim points from a Parzen
density; the result is dim X numsim
MATRIX
density(VECTOR x) evaluates a Parzen density function

at a given point x; the result is a
DOUBLE number

addcomponent (VECTOR mean, MATRIX covariance, DOUBLE weight)
adds a component parameterized by
the mean, covariance and the un-
normalized weight to a Parzen den-
sity

18

10

15

6 DATA TYPES 6.2 Parzen density classes

moments () calculates first and second order mo-
ments of a Parzen density; the re-
sult is a pair consisting of mean VECTOR
and the covariance MATRIX

listall() lists the parameters of all compo-
nent densities of a Parzen density

save (STRING filename) stores parameters (i.e. component
weights, means and covariances) of
a Parzen density in a file with filename

load (STRING filename) reads parameters (i.e. component
weights, means and covariances) of
a Parzen density from a file with
filename

Example 1

To explain the concepts of this object, the meaning of the fields and methods,
we will work out an example. In this example program (file star.lio) we will
construct a 2-dimensional star-shaped mixture density (which is a logo of our
program), visualize it and then sample 3000 points from it. In lines 1-42 we
define a simple LUA function that computes of Parzen density

-- first a helper function that produces 2-d density plots
-- and writes a density to a file

<

function densplot(p,N,xmin,xmax,ymin,ymax)
local dens
local xaxis
local yaxis
local i
local j
local arg
dens = MATRIX
dens.numrows = N
dens.numcols = N
xaxis = VECTOR
xaxis.length = N
yaxis = VECTOR
yaxis.length = N

19

6.2 Parzen density classes 6 DATA TYPES

20

25

30

35

40

for i=0,N-1 do
xaxis[i] = xmin+(i/N)*(xmax-xmin)
end
for i=0,N-1 do
yaxis[i] = ymin+(i/N)*(ymax-ymin)
end
arg = VECTOR
arg.length = 2
writeto("star.dat")
for i=0,N-1 do
for j=0,N-1 do
arg[0] = xaxis[i]
argl[1] = yaxis[j]
dens[i]l[j]l= p:density(arg)
write("\n",arg[0]," ",arg[1]l," ",dens[i][j])
end
end
writeto()
gsurf = dens:xysurfplot(xaxis,yaxis)
gcont = dens:xycontplot(xaxis,yaxis)
gcont:addcommand ("set cntrparam levels 15")
return gsurf,gcont
end
>

on a regular mesh of values in z- and y-directions and prepares it for plotting
with GNUMACRO (see Section 5 and 6.1.3) facility. Additionally the computed
density is stored in an ASCII text file called (”star.dat”) in line 27. The func-
tion takes several arguments: density object p and the number N that controls
the amount of plotting positions over the region [xmin,xmax] x [ymin, ymax].
The returned Edit variables gsurf and gcont can easily be visualized (as
will be demonstrated further) via show() method to produce surface and
contour plots of the density p respectively.

Next, in line 48 of the listing below we declare a PARZEN object p. In this
example p is comprised of four uniformly weighted components.

-- allocate PARZEN object

20

50

55

60

65

70

75

6 DATA TYPES 6.2 Parzen density classes

p = PARZEN

-- define the mean

m = VECTOR

m.length = 2

m[0] = 0.0

m[1] = 0.0

-- and the covariance of first component density
¢ = MATRIX

c.numrows = 2

c.numcols
sx = 2.0
sy = 0.2
rho = 0.0
c[0][0] = sx*sx

c[01[1]1 = rhox*sx*sy

c[11[0] = rho*sy*sx

c[11[1] = syx*sy

-- add the first component density to a mixture density p
p:addcomponent (m,c,1.0)

]
N

The way to build such a mixture density in PARDENS is to add the com-
ponents one by one to the object p. Lines 50-64 define mean vector and the
covariance matrix of the first component. This component is then sort of
”pushed” onto the mixture density p in line 66. Note that the (unit in this
case) weight in addcomponent method is an unnormalized weight designated
as wy. The unnormalized weight is further automatically translated by our
program into the normalized weight in (1) by:

W,

_ 7
S @)

Wy =

In a similar manner we add the remaining three component densities (lines 70-93):

-— and repeat the same operations for
-— the next three component densities

sx = 0.2

sy = 2.0

rho = 0.0

c[0][0] = sx*sx
c[01[1]1 = rho*sx*sy
c[11[0] = rho*sy*sx

21

6.2 Parzen density classes 6 DATA TYPES

80

85

90

95

100

c[11[1] = syx*sy
p:addcomponent (m,c,1.0)

sx = 2.0

sy = 2.0

rho = 0.99

c[0][0] = sx*sx
c[0I1[1] = rho*sx*sy
c[11[0] = rho*sy*sx
c[11[1] = syx*sy
p:addcomponent (m,c,1.0)
sx = 2.0

sy = 2.0

rho = -0.99

c[0][0] = sx*sx
c[01[1]1 = rhox*sx*sy
c[11[0] = rho*sy*sx
c[11[1] = syx*sy

p:addcomponent (m,c,1.0)

-— calculate moments of the mixture density p
-- and print them to the screen

pm,pc = p:moments ()

print ("numcomponents = "..p.numcomponents)
print("mean = ["..pm[O]..","..pm[1].."]")
print("covariance : ")

pc:listall()

The last few lines of the code above show the use of moments method by
printing out the mean vector pp and the covariance matrix Cp of p. The ith
element of the mean vector is calculated as:

upli] = / dx o] fr(x) (®)
= chn ,UJn[Z]

22

6 DATA TYPES 6.2 Parzen density classes

orNwWRU

T T 1T T 1T T 17T
\
I I S |

1
-4 -3 -2 -1 0 1 2 3 4 5

|
o

(©
Figure 15: Example of a mixture density produced by the demonstration

script star.lio. The density is represented as (a) surface plot, (b) contour
plot and (c) data points drawn from it.

and the 7, jth element of the covariance matrix as:
Colivd) = [dx (ali) = upldl) (a1 = l]) F(x))

=S wn (il = 19 li]) (alf] — 1)
+3 " wn Calil]

where indices 7 and j are in the range 0, ..., dim(x) —1. Finally, the following
statements produce surface and contour plot of the density p (lines 106-111),
sample some points from it via simulate method (line 116) and visualize
those sampled points by executing xyscatter() command on lines 121-122.
The resulting plots are depicted in Fig.15.

23

6.2 Parzen density classes 6 DATA TYPES

0.8
0.7
0.6
0.5
0.4
0.31
0.2+

0.1

RN 1 §‘ TN

Figure 16: Parzen density fitted to 1-D (left panel) and 2-D (right panel) toy
data sets. Data points are marked by small vertical lines.

-- show surface and contour plots of p
105
gsurf,gcont = densplot(p,50,-5,5,-5,5)
gsurf:addtitle("The star density")
gsurf :show()
pause ()
110 gcont:addtitle("The star density")
gcont :show()

pause ()
115 -- sample 3000 points from p
simp = p:simulate(3000)

-- and plot them

120
simp_plot = simp:xyscatter()
simp_plot:show()

6.2.2 D2P class

While the class described in Section 6.2.1 is useful for modelling Parzen
densities, it does not provide the way in which those densities can be fitted
to data. For that purpose we developed another class called D2P (Data-
To-Parzen). Within this class all the tools necessary to fit Parzen density
models, i.e. to find the weights, means and covariances of the components
to the user-provided data sets (see Fig.16 for a depiction of this concept),
are implemented. To begin a technical description of D2P we present the

24

6 DATA TYPES 6.2 Parzen density classes

interface to the class in question:

e setfields:
calibdata MATRIX with calibration data set
validdata MATRIX with validation data set
globality DOUBLE globality constant ~y
verbose verbose level: 0 makes the fitting
procedure run silently (even with-
out warning messages); 1 (default
value) displays the fitting criterion
values during the iteration process
o getfields:
parzen fitted Parzen density object of type
PARZEN
numcomponents INT number of component density
functions
numcalibdata INT number of points in calibration
set
numvaliddata INT number of points in validation
set
spacedim INT dimension of a Parzen density
function
calibcrit DOUBLE value of the maximized fit-
ting criterion on the calibration set
for a given globality constant
validcrit the same as above but for validation
data set
e methods:

initialize (INT numcomponents)
initializes parameters(weights, means
and covariances) of a Parzen density
with numcomponents components; this
method must be executed before ac-
tual fitting procedure starts.

25

6.2 Parzen density classes 6 DATA TYPES

optimize (INT maxnumiter, DOUBLE mincritchange)

starts the iterative fitting procedure;

the procedure terminates if either
the maximum number of iterations
maxnumiter or minimum change in
fitting criterion function mincritchange
between two consecutive iterations

is reached

Preparing the data

The data to be processed by the D2P class should be read from an input file
to a matrix. An input file is a text ASCII file that contains the data set to
be analyzed. The data is listed as a data point on each line, with each data
point consisting of one or more variables separated by one or more space(s)
or tab(s). An example file stdex.dat consisting of 5 data points each with
3 variables is shown below:

0.45 8.97 5.00
242 -1.88 4.89
-3.34 479 6.14
3.38 1.76 2.34
5.60 0.04 1.21

The following piece of code reads the file into PARDENS:

data = MATRIX
data:fread("stdex.dat")

By convention every row in the data matrix represents one data point as in
the original input file.

Fitting procedure

The fitting criterion implemented in D2P class is based on maximum log
likelihood approach (as in McLachlan and Krishnan, 1997, Section 2.7). The
new twist proposed by Torfs and Wéjcik (2003) is incorporation of an extra
regularization term - the average Kullback-Leibler distance (Kullback and
Leibler, 1951) between the components of the Parzen density and the global
Gaussian fitted to data. Imposing such a penalty avoids all numerical prob-
lems, as e.g. those with singular covariance matrices, that have frequently
been encountered when fitting mixture densities with classical log likelihood

26

6 DATA TYPES 6.2 Parzen density classes

maximization. Formally, the fitting procedure can be represented as the fol-
lowing optimization problem:

Given:

e a globality constant v

e a data sample x1,...,Xy,, with the following moments:

1

N . 10

pslil = ;xk[]] (10)
Ng

Cqr 1 : . . .

Csli]l2] = N, > (@elir] — psli]) (walia) — pslia]) — (11)

k=1

e a number of components N, < Ny
Find:

a Parzen density fp(x) as defined in (1) with components’ weights wy, ...,
wy,, means and covariances (1, ..., iy, C1, ..., Cy, such that

Ne
A=L- h’(fY) [Ni Z/dx fN(M&Cs)(X) log (M)
¢ n=1

12
fN(ug,Cs) (X) ()

is maximal under the condition that 22721 wy, = 1. The term £ stands for

the log likelihood function, h(y) = \/1/(1 —+2) — 1 and far(us.cs)(-) stands
for the global Gaussian fitted to data.

It is clear from the description above that the user has to choose two param-
eters before starting the maximization: the number of components N, and
the globality constant . To see that this choice is non-trivial let us consider
two ”limiting” cases:

e If v = 0 then h(y) = 0 and criterion (12) will become pure log likelihood
criterion which gives high preference to very local density functions.
Therefore, setting N, = Ny would result in Dirac density centered
on each data point. To avoid such degeneration N, < N,. Several
heuristic ways of choosing N, are described in McLachlan and Peel
(2000). None of them, however, guarantees numerical stability of the
fitting procedure unless extra assumptions are made with regard to the
form of covariance matrices of the components.

27

6.2 Parzen density classes 6 DATA TYPES

e If ¥ — 1 then h(y) — oo and one essentially fits a global Gaussian
to data. In this case the choice of N, is irrelevant as all components
are equal.

Intuitively it follows that the higher the value of v the smaller the /N, should
be since a density function that gets closer to the Gaussian will anyway not be
able to capture geometric details potentially present in data space. However,
due to the Kullback-Leibler penalty term used in (12) it is numerically safe,
for all v € (0;1), to simply set N. = N, although it increases computing
time. With this choice there is only one parameter left to be optimized: ~.
In PARDENS we adapt the approach by Hastie et al. (2001) p. 196 in which
the total data set is divided randomly (unless there are good reasons to do
the division deterministicly) into two parts: a calibration set and a validation
set. The calibration set is used to fit the density models for a given range
of v while the validation set is used to estimate the criterion (12) for model
selection. It is difficult to give a general rule on how to choose the number of
observations in each of the two parts, as it depends on the sample size and
signal-to-noise ratio in the data. A typical split might be 60 % for calibration
and 40% for validation:

TOTAL DATA SET

A
Y

CALIBRATION VALIDATION
The model selection runs according to the following algorithm:

set N, equal to the number of points in the calibration set
set 0 <71
for a number of v values € (0;1) do
for a given v MAXIMIZE A in (12) on the calibration set
STORE the parameters of Parzen density
ESTIMATE A on the validation set using the above
parameters
STORE this A
end
Optimal v or optimal density model is one that corresponds to the largest
of the STORED A values.

28

6 DATA TYPES 6.2 Parzen density classes

40

TOTAL DATA SET

0.6 -

04

0.2 -

<
0 I s
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 12

e
CALIBRATION DATA VALIDATION DATA

— vz
o Ogg@ge%% e q
© @
gogse %o

o %@00%2&000

09 -

07 - ¢ R o 4
Oo 0%)%;%0 @@éo
06 4 06 F o DR xS ooy o 4
sl o o R P 8 o i
: So Fo%w, 385 o
Pedo%
04 B 04 0O I L 0, 4
° o<>°§ p < %
03 4 Qoo&g» PR 7
% L3 % B
02 4 02k 0% 6 B0 4
& °°Qi>% RSN M
01 o ®e % q
o B30 o
L oo 0 9 o7 e o \ \ .

Figure 17: Data used in demonstration script onetomany.lio. The total data
set (1000 points) was randomly divided into calibration part (600 points) and
validation part (400 points).

Example 2

For the example of this Section, we will use the 2-D data set shown in Fig. 17.
The actual numbers of this example were obtained from non-linear one-to-
many mapping (for more details see Example 3 in Section 6.2.3) inspired by
Bishop (1995) p.204 and were stored in file mulvalmap.dat. To illustrate
Parzen density fitting to this data set we developed a demonstration script
onetomany.lio. For clarity, we start the listing after omitting the definition
of density plotting function (see Example 1 in Section 6.2.1):

-- a helper function to randomize rows of a matrix

<

function randomizerows (m)
local temptosswap
for i=0, m.numrows-1 do

29

45

50

55

60

65

70

75

6.2 Parzen density classes 6 DATA TYPES

j = floor((i+1)*random())
for k=0, m.numcols-1 do
temptoswap = m[i] [k]
m[i] [k] = m[j] [k]
m[j]l[k] = temptoswap
end
end
end
>

A helper function above is designed to shuffle rows of a matrix m in a random
manner. This matrix can represent a particular data set. The basic idea here
is to randomly draw new data set without replacement from the original data
set. The new data set has exactly the same size as the original one. Such
a procedure is generally known as the bootstrap (see Efron and Tibshirani,
1993).

-- main
-- read in the data

onetomany = MATRIX
onetomany:fread("mulvalmap.dat")
print("numdata read = ",onetomany.numrows)

--randomize rows of onetomany MATRIX

randomseed (7866023)
randomizerows (onetomany)

-- show the scatter plot

onetomany:xyscatter() :show()
onetomany:xyscatter() :fig("totaldata")
pause ()

-— split the data into calibration and validation part

caldata MATRIX
caldata.numrows = 600
caldata.numcols = 2
valdata = MATRIX

30

6 DATA TYPES 6.2 Parzen density classes

80

85

90

95

100

valdata.numrows = 400
valdata.numcols

]
N

<
for i=0,caldata.numrows-1 do
caldatal[i] [0] = onetomany[i] [0]
caldatal[il[1] = onetomany[i][1]
end
>
<
for i=0,valdata.numrows-1 do
valdata[i] [0] = onetomany[i+caldata.numrows] [0]
valdata[i] [1] = onetomany[i+caldata.numrows] [1]
end
>

-- show the scatter plots of both parts

caldata:xyscatter () :show()
caldata:xyscatter() :fig("caldata")
pause ()

valdata:xyscatter() :show()
valdata:xyscatter() :fig("valdata")
pause ()

In lines 55-57 we read the data set of this example into onetomany matrix and
print the total number of data points (1000 in this case). After fixing the seed
of pseudo-random number generator in line 61 (to get reproducible results)
we randomize rows of the onetomany matrix in line 62. This operation is
needed to split the total data set into the calibration and the validation part
by lines 70-90. The total data set, the calibration part and the validation
part are visualized in form of scatter plots in lines 66,94 and 98 respectively
and saved as Xfig files in lines 67,95 and 99 respectively. Those plots are
shown in Fig.17.

Once the data have been prepared we can start the actual fitting procedure:

-- fitting a Parzen density by increasing the gamma

31

6.2 Parzen density classes 6 DATA TYPES

fit = D2P
105 fit.calibdata = caldata
fit.validdata valdata

-- initilization

110 fit.globality = 0.01
fit:initialize(600)
fit:optimize(50,0.001)

—— define a matrix to store criterion values
115 -- on the calibration and validation set

crits = MATRIX
crits.numrows = 101
crits.numcols = 2

120 crits[0]1[0] = fit.globality
crits[0][1] fit.validcrit

Numglobs = crits.numrows

startglob = 0.02
125 endglob = 0.99
-- main loop

<
130 for i=0,Numglobs-1 do
fit.globality = startglob + (endglob-startglob)*i/Numglobs
fit:optimize(50,0.001)
crits[i][0] = fit.globality
crits[i][1] = fit.validcrit
135 if (mod(i,10) == 0) then
print (fit.globality)
filename="otm_1"..i..".fig"
gsurf,gcont = densplot(fit.parzen,50,-0.5,1.5,-0.5,1.5)
gsurf:addcommand ("set view 20,10,1")
140 gsurf:fig(filename)
end
end

pause ()

32

6 DATA TYPES 6.2 Parzen density classes

y= 0.02

y= 0.12

y=021 y= 0.78

y= 031 y= 0.88

y=0.98

Figure 18: A sequence of Parzen densities fitted to the calibration data from
the bottom left panel of Fig. 17.

In lines 104-106 an object fit of D2P class type is defined and two fields
of that object - the calibration and the validation data - are filled in. Next
(lines 110-111) we define the starting value of globality constant as v = 0.01
and fix the number of components N, = 600 which is exactly the number
of points in the calibration set. Line 112 initializes parameters of Parzen
density (for technical details of the initialization see Torfs and Wojcik, 2003)
and maximizes A in (12) for those initial parameters. The result of that
optimization is very local Parzen density fitted to the calibration data. The
globality constant v and the corresponding value of A for the validation set
is stored as Oth row of the crit matrix in lines 120-121. This matrix has
101 rows which means that we are going to re-estimate Parzen density for

33

6.2 Parzen density classes 6 DATA TYPES

145

Fitting criterion A [-]

| | A | P |
0.1 0.2 0.3 0.4 0.5 O.é\ 0.7 0.8 \\\ 0.9 1
Globality constant ‘Y [-]

0.55 [— T Y
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

I A4

0 I I ! ! ! I !
0.1 0.15 015 0.25 0.3 0.35 0.4 0.45 05 0.55 0.6

OPTIMAL Y

Figure 19: Fitting criterion plot for the validation set from Fig.17. The
selected optimal value of v = 0.21 is marked as a cross.

101 different values of 7 (line 123) ranging from startglob to endglob (lines
124-125). From those values we hope to infer the optimal one.

In the main loop of the fitting procedure (lines 129-143) we proceed according
to the algorithm presented on page 28. Lines 135-140 execute some density
plotting commands for every 10th value of v. The resulting plots are depicted
in Fig.18. Note the smooth evolution of the density function from very local
one (upper left panel) to one that is almost global Gaussian (lower right
panel). The next lines of the code:

-- show the criterion plot for the validation set

34

6 DATA TYPES 6.2 Parzen density classes

150

155

160

0.8 -

0.6 -

04

0.2

0F

02 I I I I I I
-0.2 0 0.2 0.4 0.6 0.8 1 12

Figure 20: A Parzen density obtained with an optimal value of v = 0.21.
Upper panel: surface plot; lower panel: a sample o 1000 points drawn from
the density.

critsplot = crits:xyline()
critsplot:addcommand("set xlabel \"globality\"")
critsplot:addtitle("The criterium values")
critsplot:show()

critsplot:fig("criteriaotm")

pause ()

-- enlarge the criterion plot in the region
-- where the global maximum is identified to occur

critsplot = crits:somexyline(0,1)
critsplot:addcommand("set grid")
critsplot:addcommand("set xrange [0.1:0.6]")
critsplot:show()

critsplot:fig("critplotenl")

pause ()

35

6.2 Parzen density classes 6 DATA TYPES

produce the criterion plots for selecting the optimal value of 7. Figure 18
shows those plots. It is easy to see that the optimal v which corresponds to
the largest value of the criterion on the validation set is about 0.21. In what
follows we re-estimate the density model for that optimal globality constant:

-- The density model for the optimal
165 -- globality constant 0.21

fit_optimal = D2P
fit_optimal.calibdata = caldata
fit_optimal.globality = 0.01

170 fit_optimal:initialize(caldata.numrows)
fit_optimal.globality = 0.21
fit_optimal:optimize(500,0.001)

-- show the surface plot

175
gsurf,gcont = densplot(fit_optimal.parzen,50,-0.5,1.5,-0.5,1.5)
gsurf :show()
-- store the model to a file
180
fit_optimal.parzen:save("onetomany.parzen")
-- just for fun simulate 1000 points from it and
-— show the scatter plot
185

sim_opt = fit_optimal.parzen:simulate(1000)
sim_opt:xyscatter() :show()
sim_opt:xyscatter() :fig("simulated")

plot it (lines 176-177), write it to the file onetomany.parzen (line 181) and
simulate 1000 points from it (line 186). The surface plot of the optimal
density and the simulated points are shown in Fig.20.

6.2.3 XYPARZEN class

The main idea behind XYPARZEN class is to apply Parzen densities that
have already been fitted to data, to regression function estimation, marginal
density estimation and conditional simulation. That application requires the

Uy ??

user to make a clear distinction between two types of variables e.g., “x” and

36

6 DATA TYPES 6.2 Parzen density classes

Input X Output Y

System to be modelled

e,
il
e
L

I
”, 5§
o

x) y

il

Il
il i

Figure 21: Parzen densities re-cast into systems’ modeling framework. The
data points are the input-output pairs which characterize the system to be
modelled. To those data a joint (X-Y) Parzen density is fitted. This fitting
is the first step in black-box modeling of the system.

[}

y” variables in data underlying a Parzen density. For instance, in systems’
modeling “x” could represent a set of inputs and “y” could represent the set
of outputs. An example of this for a model with one input and one output
is shown in Fig.21.

The above framework requires some reformulation and complementation of
the theory introduced in the beginning of Section 6.2. Let X and Y be two
multivariate stochastic variables and x and y their realizations, respectively.
Those variables are said to have a joint Parzen density if their density function
can be written as:

foY (Xa y) = an fXY(XaY|n) (13)

37

6.2 Parzen density classes 6 DATA TYPES

or, more compactly by defining Z = [X; Y]? as:

fr,(2) = an fz(z|n) (14)

where nth component fz(z|n) is a Gaussian function defined analogously to
(5) with parameters :

[(n)
i Hy
(n) (n)
A (16)
i Cyx Cy

where p, is the joint mean vector and C, is the joint covariance matrix
(for details of the covariance matrix partitioning in (16) see e.g Johnson
and Wichern, 1988, p.58). Note, that because X and Y are jointly Parzen
distributed then each marginal density is also Parzen. For example:

frx(x) = an fx(x[n) (17)

where fp, (x|n) has parameters ugg) and c§;‘). Moreover, the conditional

density of Y given X is expressed as:

frex(y) = @:7%;)}’)

>, Wn fxy(X,y[n)
> Wn fx(x[n)
_ 2 wn fx(X[n) fyix=x(y|n)
= (18)
> Wn fx(x[n)

As fyx—x(y|n) is a Gaussian component and the conditional of the Gaussian
is also Gaussian (see e.g. Johnson and Wichern, 1988, p.127), the conditional
density in (13) is again a Parzen density, with “new” weights w, fx(x|n).
The conditional mean also called the generalized regression curve is given by:

EYX=x = §(x)= / ¥ Fru. (¥)dY

Zn Wn fX(X|n) /1’(\1(1|)x:x

38

6 DATA TYPES 6.2 Parzen density classes

Data Joint Parzen density

12 4
w0f o Sn e ot - ,,,«au il ﬂ e

o 0p WEWEBISE e, il llll '.

o 23 REeHEST T eog@@ il
il %%%% “ ’ £ o) m,,o,;e- il "4"'0"-’»!:,%’{{”{”’ {lll i
> 6t . §@ iz" ° 4 Pxy "™ ' ':'l"l,",'l o

| o | =
T o : 1 0 3

X

12

10 -

J02)

900 £ Oy

Figure 22: A principle of generalized regression based on Parzen densities.

where:

W =)+ e (x -) (20)

is the local conditional expectation. To assess the error in the generalized
regression curve we need to estimate the conditional covariance:
Cyix—x = E[(Y - F(x))(Y - §(x))"|X =x]

= [= 500) ¥ ~ TV e (¥)dy 1)

Y wn fx(x10); {C Ty + (W x e — X)) (155 — F(x))T}

> n Wn fx(x(n)
where:
n n n 1 n
Coh e =CF — ey ek (22)

39

6.2 Parzen density classes 6 DATA TYPES

is the local conditional covariance. As symmetric and unit-preserving mea-
sure of this error, we simply calculate the standard deviation:

0Y|X=x [’L] = :t\ / Cy‘x:x[’i, Z] (23)

Figure 22 shows construction of the generalized regression curve based on
Parzen densities. The first step is to estimate a joint (X-Y) Parzen den-
sity fpyxy (X,y) for data shown in the upper left panel of the figure. This
density is plotted in the upper right panel. Afterwards, we need to calcu-
late the conditional densities in (18) for many selected values of x in order
to obtain estimates of conditional expectation in (19) and conditional stan-
dard deviation in (23). This is done by (scaled) projecting fpy, (x,y) onto
” frxy (X, ¥) —y” planes associated with each selected value of x. Four exam-
ples of such planes are represented by dashed lines in the upper right panel
of Fig.22. The conditional densities in those planes together with the condi-
tional means (filled dots) and standard deviations (empty dots) are depicted
in the lower-left panel. The entire regression curve with standard deviation
error bands is shown in the lower right panel.

The interface to the XYPARZEN class reads:

o getfields :
margx marginal Parzen density object of
type PARZEN for x variable(s)
condy conditional (y given x) Parzen den-
sity object of type PARZEN
dimx INT dimension of x space
dimy INT dimension of y space
e methods :

construct (PARZEN fromparzen, INT dimx, INT dimy)
constructs XYPARZEN density object
by specifying how many x variables
and y variables are present in
fromparzen density. Note that the
order of variables is important: x’s
always go first.

setxcondition(VECTOR x) sets x condition. This is needed for
conditional Parzen density estima-
tion.

40

6 DATA TYPES 6.2 Parzen density classes

Example 3

To illustrate the use of XYPARZEN class, the demonstration script regress.1lio
uses calibration data from section 6.2.2 (see Fig.17) with one input (x vari-
able) and one output (y variable). This allows us to plot regression result
together with the full conditional densities and show how they fit the data. It
is important to note that the generation function for this example is defined
by:

x =y + 0.45sin(2ry) + 0.1¢ (24)

where ¢ is a random variable with a A(0,1) distribution. Therefore x is
a proper function of y: this data models applications where the “forward”
problem (mapping y to x) is a single-valued (one-to-one) mapping while the
“Inverse” problem (mapping x to y) is multivalued (one-to-many) mapping.
For x € [0.1;0.9] the mapping has three branches as shown in Fig.17.

For clarity the listing below starts after skipping definitions of helper func-
tions (some aspects of those functions will be discussed further):

--read the calibration data

onetomany = MATRIX
220 onetomany:fread("mulvalmap.dat")

print("numdata read = ",onetomany.numrows)
randomseed (7866023)
randomizerows (onetomany)
225
caldata = MATRIX
caldata.numrows = 600
caldata.numcols = 2
230
<
for i=0,caldata.numrows-1 do
caldatal[i] [0] = onetomany[i] [0]
caldatal[i] [1] = onetomany[i] [1]
235 end

>

-- load "the optimal" Parzen density for those data

41

240

245

250

255

165

170

6.2 Parzen density classes 6 DATA TYPES

p=PARZEN

p:load("onetomany.parzen")

gsurf,gcont = densplot(p,50,-0.5,1.5,-0.5,1.5)
gsurf :show()

pause ()

Lines 219-236 reconstruct the calibration data from file mulvalmap.dat.
Note that in line 223 we use exactly the same seed of random number gen-
erator as in the script onetomany.lio from the previous Section. Next, in
line 241 we load the Parzen density that was found to be optimal for the
analyzed data set (see Fig.20). The surface plot of that density is produced
anew by lines 242-243.

—-— construct XYPARZEN out of p object

pxy = XYPARZEN
pxy:construct(p,1,1)

-- show the regression plot

regs = standardregdataplot(caldata,-0.5,1.5,300)
regs:show()
pause ()

The pxy object of type XYPARZEN is declared and constructed by executing
lines 248-249. Function standardregdataplot(data,xmin,xmax,numxs) in
line 253 calculates, given XYPARZEN density object p for a number of plot-
ting positions numxs on x axis in the range [xmin;xmax], a regression curve
together with standard deviation error bounds, and underlying data. The
essential lines of that calculation, without going into details of the function
body, are listed below:

preds = MATRIX
preds.numrows = numxs
preds.numcols
x = VECTOR
x.length =1
y = VECTOR
y.length = 1
for i=0, numxs-1 do

Il
NS

42

6 DATA TYPES 6.2 Parzen density classes

1.2

0.8

0.6

0.4

0.2

Q(X) T oy

-0.2 : : .
-05 0 0.5 1 15

Figure 23: A generalized regression curve (blue solid line) with standard
deviation error bands (green dashed lines) for the calibration data (black
dots) of Fig.17

x[0] = xmin+(i/(numxs-1))*(xmax-xmin)
175 pxy:setxcondition(x)

y,C = pxy.condy:moments ()

stdev = sqrt(c[0][0])

preds[i] [0] = x[0]
preds[i][1] = y[0]
180 preds[i] [2] = y[0]-stdev
preds[i]l [3] = y[0]l+stdev
end

Note that line 176 is an implementation of (19) and (21) and line 177 of (23).
The resulting plot is presented in Fig.23. It is clear from the figure that the
conditional mean gives a poor fit to the function underlying the data. This is
due to multi-branched nature of the function. However, in Parzen regression
there is more information available than just conditional mean. We can, e.g.
easily plot graphs of the full conditional densities:

-- show the regression plot together with full conditional
-- densities

43

6.2 Parzen density classes 6 DATA TYPES

0.4

~ 035
S 03
< 0.25
x 02
0.15
\'é 0.1
0.05

0

Figure 24: Conditional densities (red solid line) together with generalized
regression curve (blue solid line) and standard deviation error bands (green
dashed lines) for the calibration data (black dots) of Fig.17. Note that due
to multi-branched nature of the data the conditional densities are sometimes
two or three modal.

260 reg3d = reg3dplot(0,1,300,-0.5,1.5,300, 8)
reg3d:show()
pause ()

with the helper function:
reg3dplot (xmin, xmax,numxs,ymin, ymax,numys,numdens)

The first three arguments are defined the same way as for the function
standardregdataplot. The arguments ymin and ymax control the range
of y axis and numdens determines the number of conditional densities to be
plotted within [xmin;xmax] interval. The number of plotting position for
each of those densities is controlled by numys. Figure 24 shows the graph of
several conditional densities. Clearly the multimodal structure of the under-
lying data is well represented. The conditional mean and standard deviation
should be than interpreted through the modes of the conditional densities.

Another way of expressing the above conditional information is to represent
the conditional densities by points drawn from them. This can be achieved
by so-called conditional stmulation:

-- perform conditional simulation

44

265

270

275

280

285

6 DATA TYPES

6.2 Parzen density classes

14

0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 25: Conditional simulation.

xmin = 0
xmax = 1
ymin = -0.5
ymax = 1.5

numxs = 300
numsimys = 100

xc = VECTOR
xc.length = 1
ys = MATRIX

ys.numrows = 1
ys.numcols

1
[

simulateddata = MATRIX

simulateddata.numrows = numxs*numsimys
simulateddata.numcols = 2
z=0
<
for i=0,numxs-1 do
xc[0] = xmin+(i/numxs)*(xmax-xmin)

pxy:setxcondition(xc)

45

6.2 Parzen density classes 6 DATA TYPES

for j=0,numsimys-1 do
290 ys = pxy.condy:simulate(1)
simulateddatal[z] [0]=xc[0]
simulateddatalz] [1]=ys[0] [0]
z=z+1
end
295 end
>
simulateddata:xyscatter() :show()

The code above calculates 300 conditional densities (for 300 x conditions) in
line 288 and simulates 100 points from each density (lines 289-294). The sim-
ulated points are shown in Fig.25. It is easy to see that again multi-branched
nature of the data is correctly reproduced. Morover, conditional simulation
compares favorably with unconditional simulation depicted in lower panel of
Fig.20.

46

REFERENCES REFERENCES

References

Bishop, M. C. (1995). Neural Networks for Pattern Recognition. Oxford
University Press, New York.

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chap-
man and Hall, London.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction. Springer Verlag,
London.

Johnson, R. A. and Wichern, D. (1988). Applied Multivariate Statistical
Analysis. Prentice Hall International Inc., New Jersey.

Kullback, S. and Leibler, R. (1951). On information and sufficiency. Annals
of Mathematical Statistics, 22:79-86.

McLachlan, G. and Krishnan, T. (1997). The EM Algorithm and Eztensions.
Wiley Iterscience, New York.

McLachlan, G. and Peel, D. A. (2000). Finite Mizture Models. Wiley Iter-
science, New York.

Parzen, E. (1962). On estimation of a probability density function and mode.
Annals of Mathematical Statistics, 33:1065-1076.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Anal-
ysts. Chapman and Hall, New York.

Torfs, P. and Wéjcik, R. (2003). Fitting multidimensional Parzen densities
with the use of a Kullback-Leibler penalty. Submitted to Journal of the
American Statistical Association.

47

REFERENCES REFERENCES

Acknowledgments

This work was sponsored by the Netherlands Institute of Applied Geoscience
TNO within the framework of the SAMCARDS project.

48

