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Summary. Dynamic modeling of ecological phenomena has been greatly facilitated 
by the recent development of continuous system simulator programs. This paper 
illustrates the application of one of these programs, S/360 Continuous System 
Modeling Program (S/360 CSMP), to four systems of graduated complexity. The 
first is a two species system, with one feeding on the other, using differential 
equations with constant coefficients. The second and third systems involve two 
competing plant species in which the coefficients of the differential equations 
are varying with time. The final example considers the management of a postulated 
buffalo herd in which the dynamics of the herd population and composition by 
sex and age is combined with various strategies to control it« size and to optimize 
buffalo production. 

Recently developed " continuous system simulator" languages make i t 
possible for the ecologist to construct digital computer models of bio­
logical systems with a minimal input of effort and mathematical 
expertise. These languages permit him to concentrate on the biological 
phenomenon of interest rather than the intricacies of numerical analysis 
and digital computer programming (Brennan, 1968; Yates et ed., 1868). 
This paper provides an introduction to S/360 CSMP1, perhaps the most 
powerful of these languages, and illustrates its application to several 
simple ecological systems. 

Theory relating to the number and kinds of plants and animals 
found in nature and their order and interactions has developed 
considerable sophistication in recent years. Slobodkin (1961) has stated 
that such a general theory is a solvable problem and that the procedures 
involved in its solution are available a t least in principle. In general, 
the solution must be sought in the mathematical expression of 
relationships. The most convenient mode for defining such processes is 
in systems of algebraic or differential equations. But most processes 
in nature are essentially non-linear, and the analytical solution of all 

1 "S/360CSMP", or more properly, "S/360Continuous System Modeling 
Program", is a continuous system simulator developed by IBM for its System/360 
Computer System operating under OS/360 on systems with 128K core memory 
or larger. 
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but the most trivial system of non-linear algebraic or differential 
systems of equations is impossible or at least extremely cumbersome 
{Pranks, 1967). Watt (1966) and Patten (1986) among others have 
suggested using systems analysis techniques with general purpose com­
puter languages (e.g., FORTRAN, ALGOL, PL/1). This makes possible 
the solution of many problems not amenable to analytical resolution, but 
requires considerable mathematical facility on the part of the researcher 
and usually the services of a professional programmer to handle the 
many details of program writing and debugging. 

The utilization of a simulation language for work in this area has 
received little attention as yet by ecologists, although their usefulness 
has been indicated by Garfinkel and Sack (1964), Paulik and Greenough 
(1966), and de Wit and Brouwer (1968). Recently-developed simulation 
languages have several advantages for those with a limited mathe­
matical and computer background. First, they are relatively simple to 
learn. Rather than worrying about the details of programming (which 
have been taken care of by the language developer), one can concentrate 
on relational concepts and problem conceptualization. Second, because 
of the dynamic aspects of the modeling permitted, one can observe 
relationships not apparent from steady state solutions, and thus can 
ascertain inadequacies and ambiguities in the postulated model. This 
may lead directly to the formulation of incisive experiments. 

Description of S/360 CSMP 
S/360 CSMP is a continuous system simulation language which enables 

the user to define the structure of a model starting from either 
a relational block diagram or a differential-equation representation of 
the model system (IBM, 1968). This language feature is an accommo­
dation to the observation that people are of distinct cognitive types: 
those who conceptualize dynamic phenomena in pictures and those who 
do so via mathematical notation. To the ecologist this means he may 
use such simulation languages in whatever manner seems most con­
venient for the particular investigation. For example, he may view 
exponential smoothing as a process provided by a functional block into 
which he sends certain signals and from which is obtained an output, 
or he may consider it a mathematical operator of specific difference 
or differential equation form. The distinction is entirely conceptual; 
in each case the operation must be specified with precision. While 
simulation languages facilitate model building and verification, they 
contain no magic to transform muddled thinking into scientific 
investigation. 

The program provides a complement of 34 functional blocks (also 
called functions) for modeling a continuous system. These functions 
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include such conventional analog computer components as integrators 
and relays plus many special purpose functions such as delay time, 
zero-order hold, dead space, and limiter functions. This complement is 
augmented by FORTRAN library functions such as sine, logarithm, 
and square root. 

In addition, the user can define other functional blocks specially 
suited to his own system. This definition can be accomplished either 
through FORTRAN subprograms or, more simply, through "MACRO'S " 
or "PROCEDURE'S" which permit individual functions tobe combined 
into larger functional blocks. By combining these functional blocks with 
FORTRAN algebraic and logio statements, the user may handle very 
complex non-linear and time-variant models. 

Two important features of the program are statement sequencing 
and a choice of integration methods. With few exceptions, structure 
statements may be written in any order and are automatically sorted 
by the system to establish the correct order of information flow. 
Centralized integration is used to ensure that all integrator outputs are 
computed simultaneously at the end of each time interval. A choice 
may be made among the fifth-order Milne predictor-corrector, fourth-
order Runge-Kutta, Simpson's, second-order Adam's, trapezoidal, and 
rectangular integration methods. The first two methods allow the inte­
gration interval to be automatically adjusted by the program to meet 
specified error limits. 

A fixed format for data output is provided at selected increments 
of the independent variable for all output options, thereby freeing 
the user from the details of programming format. Output options 
include the printing of tables and print-plotting in graphs of the values 
for the variables used. 

A simulation pioblem is programmed for solution by preparing the 
following three types of statements on punched cards or other input 
device: 

1. Structure statements. These describe the functional relationships 
among the variables of the model; taken together, they define the 
system to be simulated. 

2. Data statements. These assign numerical values to the initial 
conditions, parameters, and table entries used in the problem. 

3. Control statements. These specify options relating to the trans­
lation, execution, and output phases of S/360 CSMP. 

Two Species, One Feeding Upon The Other 
In the first illustration we will use the classical two species system 

first described mathematically by Lotka (1925, reprinted 1956) and 
Volterra (1928, reprinted 1931). For a feasible analytical solution, the 
8» 
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TITLE DYNAMIC INTERACTION IN A TWO SPECIES SYSTEM 
INCON SO - 100.0 , 10 - 10.0 
PARAMETERS KI - t . I , « » 1 . 0 E - 5 , KI - I.OC-1 . . . . 

)(* ' D.t . Ki-t.0t-4 , » - 0.02 

S » INTGtM 50. K1«J -KÏ«S«Ï -KJ'SU ) 
L « INTOKK 10, i«K3«SU -KAU -K*«l.*l ) 

MTH.OT t 
lAML LIMPET POPULATION PEU HECTARE • RECOVERY FROM 01SASTER 
PRTPlOT S 
LAIEL SEAWEED AMOUNT PEK HECTARE - «ECOVE(Y FtOM OIS AS TE« 
TIMER FINNM « 30.0 , OUTDEL • 1.0 
EN0 
STOP 

Fig. 1. S/360 CSMP statements for seaweed-limpet model 

coefficients in the differential equations must be constant. A general 
form the equations can take is shown in two differential equations 
describing the time-rate of change in the amount of food as seaweed 
(8) and the number of limpets (L) in a system (Garfinkel, 1967): 

dSjdT=:Rl-S-K2-S»-K3-S-L. 
dLjdT=B-K3-8-L-Ki'L-K5'I^. 
The coefficients of proportionality are related to the associated 

processes as indicated: 
K\ a* 1.1 reproduction of seaweed; 
ÜT 2 = 1.0 x 10-6 seaweed density factor ; 
K3 = 1.0 x 10-8 effect of limpet feeding; 
ÜT4=0.9 limpet mortality ; 
K5 = 1.0 x 10-* limpet density factor ; 
B =0.02 limpet birth rate; 

with time expressed in days. 
For an example, we will assume a disaster has reduced the seaweed 

to 100 units/hectare and the limpet population to 10 individuals/hectare 
and that we wish to simulate the population changes during the 
subsequent 30-day period. A suitable program in S/360 CSMP is shown 
in Fig. 1. 

Initial conditions (£0 = 10.0, 50 = 100.0) are specified by the state­
ment ICON, and the PARAMETERS are listed in a self-evident 
manner. The two differential equations are written in simplified inte­
gral (INTGRL) form with the initial conditions SO and £0 (i.e., constants 
of integration) first, followed by the differential expressions to be 
integrated. Next are the output control statements for print-plotting 
(PRTPLT) and the results of the integrations with appropriate labels 
(LABEL). Finally, the duration of the simulation (FINTIM=30.0) and 
the plotting interval (OUTDEL = 1.0) are specified in days. The 
program is terminated by END and STOP cards. 
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TIME 
o.o 
1.000JE 0 0 
i.oosas oo 
3.0000E oo 
4.ooooe oo 
S.OOOOE 00 
4 .0000E 00 
7 .0000E 00 
S.OOOOE 00 
9 .0000E 00 
l.OOpOE Ol 
l.lOOOE Ol 
1 .2000E Ol 
1.3000E Ol 
1 .40006 Ol 
1.5000E Ol 
1 .60006 Ol 
1.7000E Ol 
1.8000E Ol 
1 .90006 Ol 
2 . 00006 Ol 
2 .1000E Ol 
2 . 2 0006 Ol 
2 .3000E Ol 
2 . 40006 Ol 
2 . 50006 Ol 
2 . 60006 Ol 
Z.7000E Ol 
2 .8000E Ol 
2 .9008E Ol 
3 .0000E Ol 

l.OOOOE 0 2 
2 . 97496 02 
8 .S745S 02 
2 . 62126 03 
7 . 5 U 9 E 03. 
1 .9844E 0« 
4 .37786 04 
7 .3153E 0« 
9 . 41856 04 
1 .04136 OS 
1 .07326 0 5 
1 .08726 OS 
1.0763E 0» 
1 .02676 09 
8.91C1E 04 
6 .67*06 0« 
4 .80626 04 
3 .9870E 0* 
3 .931IE 04 
4 . 27636 0 4 
4 . 7282« 0 4 
S.0S15E 04 
5 .13S7E 0 4 
S.0374E 04 
4 .8742E 04 
4 . 75236 04 
4 .70906 04 
4 . 72WE 0 4 
4 . 77846 04 
4 . 8 2 U E 04 
4 . 84086 0 4 

MINIMUM 
l.OOOOE 62 

I 

VERSUS TIME MAXIMUM 
1,06726 OS 

1 

— — — i ' . . . i . - y 

— , . — - . , , • • • . - . . - • • • • . • — — — . . . • — — » — . . , - — - , , , » 

— - - - - - - , — , • - — — - , . . - . . . - - ^ . . » — . — • - » . — • . — . • » . . » » 

— — • • - . . . . . • • • - • . — . . • — — . . . « — . . , . . — — » 

- . . „ — — - — — — - . . . - - . • + 

—-—- - —-— » 
- • ——-.••....•—•..—.• 

TtKfi 
0 .0 
l.OOOOE 00 
2 .0000E 00 
3 . 0 0008 00 
4 .0000E 00 
S.OOOOE 00 
6 .0000E 00 
7 .0000E 00 
S.OOOOE 00 
9 .0000E 00 
l.OOOOE Ol 
1 .1000E Ol 
1 .20006 Ol 
1.3000E Ol 
1.4000E Ol 
1 .50006 Ol 
1 .60006 Ol 
1 .70006 Ol 

v.eoooe oi 
1.90006 Ol 
2.000ÜE Ol 
Z .10006 Ol 
2 . 20006 Ol 
2 .3000B Ol 
2 . 40006 Ol 
2 .5000E Ol 
2 . 60006 Ol 
2 . 70006 Ol 
2 . 80006 Ol 
2 . 90006 Ol 
S.OOOOE Ol 

l.OOOOE Ol 
4 . 07796 00 
f . 67556 00 
7 . 03356 -01 
3 . 1391E-01 
1 .6494E-01 
1 .2433E-01 
1 . 633J6 -01 
3 . 6122E-01 
1 .09236 00 
3.6S73E 00 
1 .31006 Ol 
4 .6399E Ol 
1 .54616 0 2 
4 . 23976 02 
7 .75856 02 
8.9T21E 02 
7.9387E 02 
6 . 56Î9E 02 
5 .6848E 02 
5 . 36596 02 
3 . 5 3 4 3 t 02 
5 .9108E OZ 
6 .26856 02 
6 .4423E 0 2 
6 .4234E 02 
6 .3035E 0 2 
6 .1831E 02 
6 . U 6 9 E 02 
6 .1114E 02 
6 . 1 4 4 4 t 02 

MINIMUM 
1 .24336 -01 

i 

«EMUS r«m HA «HUM 
8 .97216 02 

I 

Fig. 2. Sample output {top—seaweed, bottom—limpets) 

The resulting output is shown in Fig. 2 with the recovery oi the 
organisms depicted as a function oi time with both tabular and 
graphical data sets for the seaweed (top) and the limpets (bottom). The 
seaweed recovers first, and the limpet population then surges until it 
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S«nw*%(l 

limp*ti 

Fig. 3. Life processes as interconnected blocks 

limits the seaweed. Cyclical fluctuation follows with decreasing amplitude 
in time exhibiting the well known behavior of this pair of equations. 

Note thesimplestruoturestatementsrequired to generate their solution. 
The two statements representing the integration of the differential 
equations are in the form 

r=INTQRL(JO )Z) 
which states that the output Y is obtained by integrating X,i the 
differential function, with the initial condition that Y at time zero is 
equal to 10. The name INTGRL defines the operation to be performed 
on the function X', i.e., integration, and is one of the 34 functional 
blocks available. Also note the meaning of the operational symbols: 
(as in FORTRAN) =replaces, -f addition, * multiplication, ** exponen­
tiation, / division, and ( ) grouping. 

The preceding formulation was based direotly upon the differential 
equation representation of the seaweed-limpet system. Even for a model 
this simple, many different conceptualizations and formulations are 
permissible and equally valid "de gustibus non est disputandum". 
To illustrate an alternate approach, let us consider the life processes of 
the seaweed and the limpets as separate blocks, each involving the 
appropriate dynamics, and with the blocks connected as in Fig. 3 to 
emphasize their coupling or interaction. 

For a more complex system, one might model the two blocks 
separately ; but since both have similar factors—reproduction/mortality, 
density, and coupling — one can, in fact, define a general MACRO 
which is representative of both life processes. For example, the following 
set of statements define such a MACRO which has been arbitrarily 
named CYCLE: 

MACRO P I =CYCLE (IC, A, B, C, P2) 
DPIDT=A*P1 + B*PI*P1 + C*P1*P2 

PI =INTGRL (10, DPIDT) 
ENDMAC 
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The output of block CYCLE is P1 (population No.l ) ; the initial value 
of P I at time zero is assigned the quantity 10. The derivative of P I 
involves linear and squared terms in P I as well as a coupling term 
involving P2 (population No.2). Thus, the CYCLE block conceptually 
has a single input, P2, and associated parameters IC, A, B, and C. 
By invoking the MACRO twice, each time with the appropriate input 
and parameters, one may represent both processes as follows : 

L=CYCLE (LO, -K4, -K5, BB*K3, 8) 
£=CYCLE (80, El, -K2, K3, L) 

The S/360CSMP translator automatically expands each of the invo­
cations of the MACRO according to the "pattern" specified in the 
definition of CYCLE. 

In the above problem an implicit solution is possible by analytical 
methods, and an explicit solution is more difficult. If some of the 
coefficients vary with time or any other element, analytical solution 
becomes impossible (Volterra, 1928). However, the use of an appropriate 
simulation language makes the solution of these differential equations 
with variable coefficients not only possible, but simple, as will be 
demonstrated in the next example involving competition in a mixture 
of two plant species. 

Two Plant Species Competing for the Same Spaee 
With but minor modification, the Lotka-Volterra equations may be 

used to represent the competition between plant species in a mixed 
stand. In contrast to the seaweed-limpets model in which the two 
populations were the variables of interest, in a mixed stand of an 
agricultural crop the number of plants of each species is determined 
at planting time. The competition between crop species may be ex­
pressed in terms of "relative space", RS, a dimensionlesa variable 
which characterizes the effect of crowding for available root, and foliage 
space, nutrients, sunlight, and associated factors. Actual production 
of dry matter, if desired, can be obtained from the product of "relative 
space" and the maximum possible yield for very dense monoculture 
planting. It is important to realize that all three quantities are functions 
of time. 

For example, barley and oats can be planted as a mixed stand. 
Simulation provides a convenient means for studying their competition. 
The differential equations, in which RSb represents "relative space" 
for barley and RS0 represents that for oats, are as follows: 

^=RGRb(RSb-RSl-RSbRS0) 

±§*=RGR0 (R80-RSl-RSb RS0) 
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0.1-r- n r12a0 

W 21 28 
Time in days 

Fig. 4. Space (<S$ and S0) occupied by barley and oats versus time of harvesting 
and their relative growth rates (R0Rb and R0R„) Note: RGR=s-r,-

These have the same form as the seaweed-limpet example except for 
one important distinction — the coefficients U(?jß6 (relative growth rate 
for barley) and BOR0 (relative growth rate for oats) are both empirical 
functions of time. Both functions represent relative plant growth rates 
in absence of competition and have been determined from experimental 
plantings with very low seed densities. l ïg. 4 illustrates the absolute 
growth, as well as the relative growth rates derived therefrom, for 
barley and oats harvested at intervals (Baeumer and de Wit, 1968). 
Note that the barley grows rapidly at first, then levels off; the reverse 
is true for the oats — its growth curve is concave upwards. Hence, if 
these two species are grown together, a disproportionate share of the 
available "space" is occupied by the barley at an early stage, and by 
the time the oats comes to claim its share there is little remaining. 

Empirical functions such as the relative growth rates are readily 
modeled with a continuous system simulation language. To illustrate, 
the complete program to simulate the barley-oats competition is shown 
in Fig. 5. The data representing relative growth rate for the barley 
(RGRB) is specified as follows: ' 

FUNCTION RGRB = (0.0, 0.4286),... 
(7.0,0.1071),... 
etc. 

Each couplet represents a data pair: the first, the value of the 
independent variable; the second the corresponding dependent variable. 
Thus, the second pair above gives the relative growth rate of the 
crop on the 7 th day. These statements associated with the label 
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T I T l t » A H l j y AND OAT5 — C O M F t T I N G FO« THE SAME SFACE 

I N I T I A I 

( S O I 

U l i 

DYNAMIC 

- 3 . 0 • DO 

- » ,0 " 0 1 

* EQUATIONS FO« OATS 

I S O 

• A I I O 

» I N T G « l ( «SOI , « A T I O ) 

• «SO « ( 1 . - »SO - « S I ) * NLFCtNS « G « 0 , TIME ) 

• EQUATIONS FO« »A«IEY 

• S I 

«ATE« 

FUNCTION « 0 » « 

FUNCTION « 0 1 0 

- INTGIL1 «S»l , «ATE» ) 

- «S» • ( 1 . - «SO -«S» ) • N l F 0 E N ( «G«B , TIME ) 

- ( 0 . 0 , 0 . « * * ) . . . . 

{ 7 . 0 , 0 .1071 ) , . . . 

{ 14.0 , 0 .0441 ) , . . . 

( 2 1 . 0 , 0 . 0 2 3 3 ) . . . . 

( I I . 0 , 0 .0054 ) . . . . 

( 3 5 . 0 , - 0 . 0 0 3 « ) . . . . 

( 4 2 . 0 , - 0 . 0 0 4 5 ) 

- ( 0 . 0 . 0 . 7 H J ) , . . . 

( 7 . 0 , 0 .1190 ) . . . . 

( 1 4 . 0 , 0 .0634 ) , . . . 

( 2 1 . 0 , 0 .0411 ) , . . . 

( 2 1 . 9 , 0 .0242 ) . . . . 

( 3 5 . 0 , 0 .0511 ) . . . . 

( 4 2 . 0 , 0 . 0 4 » ! ) 

• DATA F«OM IAEUMI« AND DE WIT I N I 

METHOD MILNE 

M I N T « 5 1 , «SO, 

TIME« F INT IM 

D I L I 

- 4 2 . 0 , F « D E l - 7 . 0 

« ' OENSITY OF SOWING I N « O W / C M 

FAIAMETE« D l 

END 

PAIAMETE« D l 

END 

STOF 

• 0 .02 , DO - 0 ,02 

• 0 .04 , D O - 0 . 0 4 

Fig. 5. S/360 CSMP statements for barley-oate competition 

"FUNCTION" merely enter the data, they do not specify its use. For 
example, to generate a time function with simple linear interpolation 
between these data points, one might use the statement 

BARLEY=AFGEN (RGRB, TIME) 
where AFGEN is one of the standard functional blocks or elements 
of the S/360 CSMP language. If instead one wished a quadratic inter­
polation between these data points, it is only necessary to use instead 
the standard element NLFGEN rather than AFGEN. 

Fig. 5 includes several other features not used in the seaweed-
limpet simulation. Note that a "METHOD" statement is used to specify 
the desired integration algorithm — here a variable-step Milne 5th-
order predictor-corrector method. If a method is not specified, the 
program automatically chooses a variable-step Runga Kutta method 
which usually gives excellent results. The first occurrence of the "END" 
statement signals the completion of the model description and the para-



122 E. D. Breiman, 0. T. de Wit, W. A. Williams, and E. V. Quattrin: 

»ARIEY MO OATS« — COMPETING FOK THE S U E SMCE 

TIME 
0 . 0 
7.0000E 00 
1,«000E 01 
2 .1000E 01 
J.800OE 01 
3 .5000E 01 

„ . ^ A . Ï O O O E 01 

RS8 
1 .8000S-01 
•* .6«05E-0l 
S .0987E-01 
5 . 29116 -01 
3 .369QE-01 
5 .3740E-01 
5 .3485E-01 

»50 
4 . 0000E-02 
Z.730SE-01 
2 .938SE-01 
3 .12T0E-01 
S.23TTE-01 
3 .341TE-01 
3 .4948E-01 

OELT 
4 .3750E-01 
4.3T5ÖE-01 
8 .T500E-01 
1 .7500S 00 
1 .7500« 00 
1.T300E 00 
1.T5O0E 00 

Fig. 0. PRINT output for barley-oats competition 

meters for the first run. Note that following the first use of "END" 
there is another parameter specification for DB and DO, the planting 
densities for the two crops. By this meanB one may order a lengthy 
series of simulation runs, varying parameters and control variables from 
run to run. It is perhaps worth noting that the S/360CSMP data 
and control statements are executed "interpretively"; thus given some 
convenient terminal device, it is possible to achieve effective man-
machine interaction while experimenting with a simulation. 

For this example simple tabular or "PRINT" output was selected 
rather than the "print-plot" shown in Fig. 2. A portion of this output 
is shown in Fig. 6. Although both species were sown in a 1:1 ratio, 
it appears that barley obtains a much larger relative space than the 
oats — because it uses much of the space while the oats are yet 
growing slowly. Comparison with actual competition experiments 
(Baeumer and de Wit, 1968) shows that the assumptions made regarding 
the interference between species are valid. Fig. 6 also shows the variation 
of the integration step DELT during the simulation run; since a variable-
step integration method was selected, the program automatically adjusts 
DELT to satisfy relative and absolute accuracy requirements (which 
could have been explicitly specified, if the default values routinely 
used by the program were not satisfactory). 

Size Distribution ol Plants in a Stand 

After sowing seeds in a field, some may germinate in one day, more 
after two days, the bulk perhaps between the 5th and the 10th day, 
and some others still later. The plants from the earlier germinating 
seeds claim most of the available space so that little is left fOT those 
plants resulting from later germination. This may be an important 
reason why plants in a cultivated crop often have great differences in 
size. This simulation study was initiated to study this effect; except 
for time of germination, it is assumed here that all plants are governed 
by the same growth factors. 
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TITLE PLANT SIZE D I S K I I U N O N IN A C«OP DUE TO G E R M I N A T I O N TIMES 

HUE 0 IN Kö/HA, f IM MA/KO, TIME IM DAYS 

STORAGE IFOM(IJ) 
TA«L2 «rGM(l-lS) - .O4S,3*.OfJ,.o«4,.0r*' , .94r,.ai«,.«*3. . . . 

.04«,.03«,.033,.034 

MACAO IS - SMCK N, fACTO« ) 
MOCEO01E 1AI( ,1I IC,1N • TESTf M) 

IK TIME ) 1,1.2 
I tSIC • S • O • «f«M(N) 

EN « H 
3 If ( TIME • EH ) J . « . ' 
3 RATE • 0 .0 -

OO TO J 
4 IATE • NlfCEN( 1 0 1 , TIME • EM ) 
5 CONTINUE 

ENPPRO 
«s . «sic » I N T O « « o.o. «ATE * I S • P A C I O « » 

• 4.002 
• 30.0 

DYNAMIC 
• «SI TO «SIS A«£ THE «SLATIYE STACES OCCUP1E0 »Y THE HANTS 
• IN EACH EMEIOENCE «ASS — THEII SUM IS S«S 

«SI 
• 12 
«S3 
«S4 
>SS 
«S« 
«57 

• «S« 

«Sf 
«SIC 
tsn 
«SIE 
«Sil 
«Sit 
«SIS 
SIS 

PAC TO« 

FUNCTION 10« • ( 

( 
I 

( 
< 
( < 
( 
< 
( 
I 

- IMCK 1 , fACTOI ) 
• EMCK 2, PACTO« ) 
- EMCK 3. PACTO« ) 
- EMC« 4, PACTOl ) 
- EMCLf S, FACTOR ) 
• EMCU 0, PACTO« ) 

" - «MCl( J, PACTO« 1 
- EMCK «, PACTO« ) 
• EMCtf », PACTOE 1 
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Fig. 7. S/360 CSMP statement« for size distribution of planta in a stand 

The model assumes 15 emergence classes, representing the plants 
resulting from germination on each of 15 successive days after Bowing. 
Since each class must obey the same growth function, a "MACRO" 
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has been defined to specify the relationship; it is then invoked 15 times 
to represent each of the classes. The relative frequency of germination 
for each class is communicated to the respective use of the MACRO 
by means of a data array. The "STORAGE" statement shown in Kg. 7 
informs the S/360 CSMP translator that the symbolic name RFGM 
represents an array of 16 elements. The associated "TABLE" statement 
is used to assign relative frequency distribution values to each of the 
15 classes. Thus, the statement 

TABLE RFGM (1—15) =0.048, 5 * 0.095, 0.086,... 

specifies that 4.8% will germinate the first day, 9.5% the next 5 days, 
8.6% on the seventh day, etc. 

The MACRO shown in Fig. 7, while representing more complex use 
of the simulation language than required for the proceeding examples, 
still shows only modest degree of sophistication compared to what a 
knowledgeable modeler might attempt. The statements between "MA­
CRO" and "ENDMAC" specify the structural pattern which the S/360 
CSMP translator should follow each time the MACRO is subsequently 
invoked in the DYNAMIC portion of the model. Note that within the 
definition of the MACRO is contained a set of 10 ordinary FORTRAN 
statements which collectively comprise a "PROCEDURE" which is 
conceptually a single functional element. This particular element is 
defined as having three outputs (RATE, RSIC, and EN) and a single 
input (N). At the beginning of each run, that is, when TIME equals 
zero, the initial value for the Nth class is computed as the product of 
S, D, and RFGM(N) where S is the initial relative space for the 
particular species, D is the density of sowing, and RFGM(N) is the 
relative frequency of germination for the class. Until TIME equals 
N days, the RATE of growth is set to zero; thereafter it is determined 
by a function generator using the FUNCTION data array named RGR. 

Except for two statements required to compute SRS and FACTOR, 
the DYNAMIC segment of the model's structure shown in Fig. 7 consists 
of "invocations" of the MACRO "EMCL" previously defined. It is this 
portion of the model, describing the dynamics of the model, which the 
program must exercise in conjunction with the selected integration 
subroutine at each discrete advance in TIME. While the DYNAMIC 
segment appears concise, it should be remembered that each of the 
15 invocations of "ENCL" résulte in generation of a set of FORTRAN 
statements corresponding to those specified when initially defining this 
MACRO; thus, the subroutine actually generated by the S/360 CSMP 
translator may be quite lengthy. Since MACROs may actually be 
embedded within MACROs, themselves perhaps within other MACROs, 
this feature of continuous system simulation languages offers significant 
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power to the modeler; this is especially true with biological systems 
which characteristically are hierarchical in nature. 

. For this simulation study, the PREPARE output option was selected. 
This causes the variables included with the statement — here RSI, 
RS 4, RS 7, etc. — to be included in & magnetic tape which includes 
their values every OUTDEL time units. This tape can then be used 
for preparation of an X-Y plot of the variables on a Calcomp plotter. 

Buffalo Herd Management 
Most changes in ecological systems occur continuously with time. 

However, when demographic aspects of systems are under consideration, 
it is clear that discrete events must be adequately accounted for in the 
modeling process. Although S/360 OSMP is a continuous system 
simulator, this type of problem may be conveniently handled by means 
of this language as illustrated here. 

The dynamics of buffalo herd population and composition is combined 
with various strategies to control its size and to optimize buffalo 
production. Population dynamics, when approached from the more tradi­
tional stochastic approach, involves complex statistical formulations 
that are difficult to apply (Bartlett, 1960). Our simulation of a herd 
of buffalo shows how situations containing such complex relationships 
may be dealt with rather simply. 

The program elaborates on Watt's (1963) buffalo example and uses 
data from buffalo (American bison) studies by Fuller (1962), McHugh 
(1958), and Roe (1951). The objectives of this simulation are to generate 
a realistic life process and to view the results of various management 
practices on the population. 

The buffalo example was chosen for it typifies questions that are 
being asked as wildlife areas become more restrictive and the demand 
for a representee natural wildlife state increases. Our hypothetical 
wildlife area is restricted to an area on which only a herd of buffalo 
composed of a typical cross-section of ages and sexes is maintained. 
All the other animals that would naturally share the range could be 
represented also, but since this is only a simple illustration we 
concerned ourselves with the dynamics of the buffalo only. 

The first objective was to simulate the population of buffalo over 
time while weather and the carrying capacity of the range resource 
are varied cyclically according to the season, but in a random manner 
from year to year. The condition of the animals is a specified function 
of the carrying capacity of the range. Fecundity is introduced as 
a function of animal condition and age and the proportion of adult 
males to adult females. The mortality is calculated from the condition 
and age factors. Within the model various harvesting strategies are 
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END OF MACRO DEFINITIONS, IIOINNINO OF MODEL STRUCTURE 
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Fig. 8 continued 
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inserted to keep the herd numbers onder control without adversely 
affecting the health or age and sex composition of the herd. The time 
interval for computation is the month. Births occur in April, a census 
is taken in July (mating season), and hunting takes place in October 
of each year. 

The resulting model has been made somewhat more complex than 
the previous examples in order to illustrate some additional features 
of the simulation program, yet it is still a relatively simple model. It 
could be easily made more sophisticated by including other factors of 
the environment and the buffalo's life processes in the program. 

In the model, animals of each sex are divided into calves, yearlings, 
and five 5-year age groups, plus a single "AGED" group containing 
both males and females 27 -f years old (Fig. 8). The number of animals 
in each group (TOTAL) is subdivided into the five yearly age classes 
Nl , N2, N3, N4, N5. The AMAX1 function in the first operational 
statement of the MACRO is used as a convenient way to sum the five 
yearly age classes while insuring that TOTAL never becomes negative 
from numerical "round off". OLD is the number of animals in the 
year class N5 and which will be advanced to the next 5-year age group • 
(or AGED) at their next birthday (APRIL). The total number of fertile 
animals (TFERTL) in the 5-year age group is the product of the 
fertility factors due to age and condition and the TOTAL. 

A PROCEDURE is inserted into the MACRO to calculate the 
number of animals harvested in the 5-year age group (SHOT), the 
number yet to be harvested from other groups (SHTYET), and the 
fraction of the group harvested (FRSHT). The AMIN1 function limits 
the number harvested to not more than 80% of the total. The PROCE­
DURE also calculates the remainder to be harvested from the rest of the 
adult age groups (SHTYET) and the fraction of this age group 
harvested (FRSHT). The PROCEDURE is sorted as a unit, but its 
contents remain unsorted to permit the power of FORTRAN logio state­
ments and other FORTRAN routines to be exploited. 

The rest of the MACRO calculates monthly values for each yearly 
age class Nl , N2, N3, N4-, and N5 by integrating from an initial 
number of animals (10) over the number advanced from the previous 
yearly age class (Fl * NIN) minus the number advanced to the next 
yearly age class (F2 * Nl); F l and F2 are calculated from ADVNCE 
which takes the value 1.0 on the birth month, April, and 0.0 for all 
other months and from M0RTA1, the number of animals dying 
as a function of age and range condition factors (MORTA and MORTC) 
and of the fraction of the age group harvested (FRSHT). Note that the 
MORTA and FERTA factors are inputs for which actual values are 
substituted when the MACRO is called for below, whereas MORTC 
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and FERTC are factors obtained from structure statements near the end 
of the program in function generator blocks dependent on condition 
of the animals (COND). 

The initial values of two parameters, the RATIO of fertile bulls 
to cows and the relative range condition in the first January (W2), are 
established in the INITIAL segment of the program. 

The DYNAMIC segment comes next with the monthly time interval 
(MONTH) defined numerically from 1.0 to 12.0 and reset at 1.0 at the 
beginning of each yearly cycle by use of the AMOD function. This is 
followed by three PROCEDURES labeled APRIL, JULY, and OCTOBR 
and they relate to the activity identified with each of these months, 
calving, census taking, and harvesting, respectively. In each a FOR­
TRAN " I F " statement is used to activate calculations done for that 
month. 

The PROCEDURE called APRIL calculates the number of animals 
born, NBORN, from the product of the total fertile females, TOTFF, 
and the minimum of 1.0 and (8.0 * RATIO) of fertile bulls to fertile 
cows (calculated in the JULY PROCEDURE). The proportion of female 
calves is 0.47 and of male calves is 0.53. 

The PROCEDURE called JULY makes the annual herd count 
ACTUAL=CALVES + YRLING+BULLS+COWS+AGED. Since 
real censuses involve errors of estimation the CENSUS is weighted by 
a random number generator with a normal distribution GAUSS (71, 
1.0, 0.05) which uses any odd number as a starting point (71 in this 
example), a mean of 1.0, and a chosen standard deviation of 0.05. 
Estimated load ESTLD on the range resource is also weighted by a 
random number generator. The LOAD of the herd on the forage 
resources, from which EDTLD is derived, is calculated below from 
weightings based on the feed required for the various classes of buffalo 
with bulls weighted as 1.0. 

The PROCEDURE called OCTOBR determines the number of ani-
mals to be harvested based on the CENSUS and on the desired 
minimum size of herd LEVEL, an input parameter that can be 
adjusted to implement various harvesting policies. 

Next, the numbers of male calves CM, female calves CF, yearling 
males YM, and yearling females YF are calculated using the integration 
function INTGRL. Initial numbers are 'specified, and then the procedure 
for summing subsequent time intervals is presented as functions of the 
number entering the age class being considered and the number leaving 
it due to mortality or due to advancing to the next age class during 
the birth month (when ADVNCE = 1.0 in APRIL). 

Following this are 10 statements each calling on the MACRO defined 
initially (GROUP). Outputs and inputs are «specified for each use of 
Of ' frf 'P i > • 
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Fig. 9. Plot of herd size without and with harvesting 

the MACRO, and the inputs that are calculated of necessity before 
using the MACRO are YM, YF, and NSHOOT. Appropriate ordering 
of the FORTRAN program is attained automatically by the sorting 
algorithm. Inability of the CSMP program to sort because of an algebraic 
loop will result in a diagnostic message which indicates the failure of the 
sorting algorithm and lists the variables in the loop. However, such is 
not the case here. 

The last PROCEDURE computes the grazing capacity CAP of the 
range resource as a function of a generator of normally distributed 
random numbers (GAUSS) and a seasonal CYCLE based on a table 
called SEASON from which values are obtained by quadratic inter­
polation using the arbitrary function generator NLFGEN. Average capa­
city AVCAP is a parameter input and should be chosen in conjunction 
with appropriate values of LEVEL. 

The statements from FINISH to STOP constitute the terminal 
segment of the program and control the operation and the output of the 
program. For the first run the parameter LEVEL is set so high 
(100,000 animals) that no animals are harvested, allowing "natural 
causes" to limit herd population dynamics. The print-plot shows both 
the numbers of bulls and cows falling slightly the first two years and 
then rising to a plateau at 17 years. After that, fluctuations occur in 
response to range condition changes. In the second run a harvesting 
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policy is implemented by reducing the parameter LEVEL to 10,000 
animals. This results in lower average numbers of bulls and cows and 
much greater variability from year to year (Fig. 9). 

Results of this simulation illustrate how the herd size and composi­
tion vary in a natural setting with weather and range condition as 
relevant variables and under various harvesting strategies. Methods of 
this type should help ecologists to understand natural phenomena and 
wildlife managers to select the best strategy to achieve game manage­
ment goals. 

I t is readily seen that many complex life processes can be simulated 
which would be difficult or impossible using conventional statistical 
methods. Increasing the complexity of the model to make it more 
realistic still is readily achieved with S/360 CSMP. Consideration of the 
interrelationship of all animals can be handled in a similar manner as the 
limpet-seaweed or barley-oats example. An automated search algorithm 
could be inserted in the TERMINAL segment to optimize a stated 
objective in finite values. 

The flexibility and adaptability of simulation languages, which these 
examples illustrate, make them powerful tools that can be easily 
adapted to ecological problems. 
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