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1. INTRODUCTION

The work contained in this nolte was performed while the author
was on leave from the Mathematics Department at the University of

Arizona for two months,the summer of 1978.

Solutions of the time dependent moisture flow equation with plant-
water extraction are primarily obtained by numerical techniques. For
example consider papers by NIMAH and HANKS (1973), NEUMAN, FEDDES
and BRESLER (1975) apnd FEDDES and ZARADNY (1977). Analytical solu-
tions are, by necessity, subject to more restrictive assumptions,
but are generally easy and inexpensive to evaluate. They provide
exact answers for which round-off and computational errors are negli-~
gible. Such solutions are valuable for checking complicated numeri-
cal simulations as well as for providing answers when the assumptions
are satisfied or the input data are such that a more elaborate ana-
lysis would be unnecessary. In this report a solutionof the problem
of the title will be derived. Besides being of interest in its own
right, it could be usefull to check complicated subroutines of pro-
grams such as SWATR (FEDDES et al, 1978). The number of calculations
and instructions needed in such a large scale program is such that
it is nearly impossible to be sure all are given without error.
Having an analytical solution to compare with can save a lot of time
and effort on the part of the researcher as well as greatly increase

his confidence in the output of his numerical approximation,



2, BASIC EQUATIONS AND ASSUMPTIONS

a, Differential equations

The starting point for many investigations into moisture movement
in so0il is 3 relationship hypothesized to explain steady flow of a
single viscous liquid through an isotropic saturated porous medium.
This is called Darcy's law and says the vertical velocity of the
liquid, v, is proportional to the gradient of the total hydraulic
head,H..RICHARDS (1931), extended Darcy's law to an unsaturated

medium were it is written as:
v = - KVH ()

In eq. (1) the constant of proportionality is the qnsaturated
hydraulic copductively, K = K(¥), which is a function of the pressure
head ¥, (H =¥ - z, with z ppsitive downward into the soil).

The second equation which we use is the continuity equation:
_——= = m— - § (2)

which is derived using conservation of mass, In eq. (2), 0 is the
volumetric water content, t is time and .S is the "water uptake" term
representing the volume of water used by the roots per unit volume
of soil per unit time.

If we combine eqs. (1) and (2) we obtain:

20

28 _ AK(Y) _
Bt

3z S ' _ - (3)

= 2k 2
whiech is indentical with (7) of FEDDES and ZARADNY (1977)._Thqre are
two obstacles to obtaining solutions of (3), namely two dependent
variahles,® and ¥,and the unsaturated hydraulic conductivity K which
is a highly non-linear function of V.

GARDNER (1958) eliminated the second obstacle for steady flows

by defining a new dependept variable ¢, as:



¥
¢ = I K(¥) d¥ | (4)

and assuming
K=K exp (a¥) | (3

where Ko and o should be considered emperical constan;s‘(BEN~ASHER,
LOMEN and WARRICK (1976)), The function ¢ is called the "matric flux
potential" but was used by KIRCHHOFF as a "diffusjvity. potential"
(sep IRMAY (1966)).1f we then assume 6 = 0(¢), we can write eq, (3)

as:

. ,--'2',- - . - ) .
do 30 _ 2% _ 9 -
d¢ 3t 522 %3z 8 R (6)

(note that %% = K(¥) %% and ¢ = K/a)

For s t e a‘d y sta te situa t_i o ns the left hand
side of eq. (6) is zero and a relationsﬁip between 6§ and ¢ is npt
needed, Solutions of eq. (6) in that situation are given by WARRICK
(1974) and LOMEN and WARRICK (1976) for sink functions (S) which are
defined explicitly in terms of depth or implicitly through several
functions of ¢. ?his was done for deep and shallow water tables as

well as an impermeable barrier at a shallow depth;

Time dependeni solutionsof eq, (6) with no water
uptake (5 = 0) have been given by PHILIP (1969), BRAESTER (1973) and
WARRICK (1975) by assuming:

|
== (7

D.-lﬂ..
B~

with D the soil moisture diffusivity (D = Kd¥/d6}. This is equivalent
to having K linearly related to & as:

d

%% = oD

S
2%



and reduces eq. (6) to

%.§$.= b, g (8)

In general K is not linear with 6, but if the soil moisture
varies over a limited range the assumption is more reglistic. In
evaluating the acceptability of all assumptions it is important to
remember the natural uncertainly of all input parameters due Lo time
and spatial variability and to experimental error, Major advantages
to be gained by the linearizing assumptions are numerical accuracy
and simplicity, Computafional times are negligible compared with
finite difference and finite element solutions of eq. (6). Of course
as a tool for checking complieated pumerical schemes, thepe reser-

valtions are unwarranted.

b. Boundary and initial conditions

If a time dependent surface flux 1s given by v(t), we can use
eq. (1) and the equations in parentheses following eq. (6) to ob-
tain:

] oY

_W—ZX=TK”*“=“%§fwr O

v(t) = - K v 5%

where the right hand side qof eq; (9) is évaiuated at Z = D,
If a shallow water table is present at depth L we specify the

_potential there, namely:

b =d(pry=v)acz=L | | (10)

On the other hand for deep water cables it is more convenient
to assume that;

Llim
7 > 0

$(z, ©) = o | - o

For either situation we need to specify an initial condition for

time zero, namely:



$(z, 0) = g(Z) (12)

¢, Sink functions

The technique of solution for a shallow water table will permit
the sink function § = S(Z, T) to be any reasonable function of depth
and time. For a specific choice of S, all that the user need do is
to evaluate some integrals using, for example, DWIGHT (1961).

The solution for an infinitely deep water table uses a sink

function which varies discreetly in tine as:

Sl(z) 0 = T0 < T < T]
S(Z, T) = + 8, (2) T, <T<T, (13)
.‘SII(Z) Tn_] < T < TII = w

d,. The complete problem with dimension-

less variables

It seems advantageous to introduce dimensionless variables Z and

T by:

7 = 0zl2, T = oDt /b (14)

which reduce the boundary value problem (eqs. (8), (9), (10) and
{(11)) to:

g%=_z%_2%%-;%s T>0,0<2Z< al/2 (15)
- %%.+ 26 = 2v(T) /o at 2 = 0 (16)
o= ¢, at Z = al/2 (17)
¢ = g(2) at T =0 . (18)




3. SOLUTIONS

a.Deep water table

The solution of eqs. (15), (16), (17) and (18) for a deep water
table (L = =) has been given in a recent article (LOMEN and WARRICK
(1978)). A summary of their conclusions is included in this report
to give an indication of the types of results possible from a linear

analysis, For a sink function given by eq. (i13) we define:

w Z
2
¢s,i(Z) = Ui/a - 4fa J exp[2(Z - 2")] si(g) dedz',
Z 0

T,y <T<T, (19)

where Ui is the "steady" velocity during the time period

Ti—l < T < Ti’

Ui = (2/a) J Si(Z) dz (20)
0

If we also define two additional functions:

¢u(Z, T) = - (Z + 2T + 1/2) exp(2Z) erfc(Z/ZT% + Tg) +
1 L 1 9 1 1
+ (4T/n)? exp[- (2/2T% - T3] + 1/2 erfe(Z/2T? - T?) (21)
and

R(Z, T, £) = exp(Z - T) I[(lan)_%[exp(— (2 - 2)2/4T) + exp(~ (7 + 2')2/41)] -
0

- exp(T + Z + Z') erfc((Z + Z')/ZT% + T%)]f(z') exp(— Z')y dz' . (22)

and consider the surface flux to change with time as:



v, 0= 70 <7 <7l
1 2
v(T) = ¢ v, T <T < T (23)
v PALaL PR IR LS
m

then the overall solution is:

] _
$z, T = ¢, [1 - ¢ (2, D] + O/a) ) (v ~v, ) ¢ (2, T~ ™1y +
k=1
i
+ g o = (1a) Jw o -u ) ez, T-T ) (24)
» k=1
1 . j—l j
+ kzl R(Z, T - L ¢S,k—l - ¢S,k)’ T <T<TH T, <T<Ty
where
bs,0 = 8(2) and v o=U =0 (25)

Five numerical examples will now be presented to demonstrate the

application of eq. 24.

Example | — Drainage. In all there are five terms in eq. 24. The
first term arises from the boundary condition at infinity. If

g(2) = 0 and no water was added or withdrawn after time zero, then
simple drainage would occur and ¢ would be given by the first term
only. This situation is given in Fig. lA showing drainage from an
initially wet profile where ¢/¢m is plotted as a function of dimen-
sionless depth Z for dimensionless times T = ath/4 of 0.1, 0.5 and
1.5. As the time increases the upper part of the profile drains, For
a = 0,015 cm_l and D = 4000 cm2/day, Z = 0.,! corresponds to a 13 cm
depth while T = 0.1 is the same as 10.6 hours.

Example 2 — Infiltration. If a surface flux is introduced but no

plant water uptake occurs, the first two terms of eq. 24 comprise
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Fig. 1. Solution for drainage (A), infiltration (B) and infiltration
with constant uptake (C). After LOMEN and WARRICK (1978)
the solution. If T] = o

, then the solution is for a constant surface

flux and equivalent to that of BRAESTER (1973). Such a result 1is

shown in Fig. IB for v = 3 cm/day and a¢_ = 2 cm/day.

Example 3 - Constani: uptake. The third term ¢S i of eq. 24 is due to
3

the sink function in effect at a given time. Tig. 1C depicts the

matric [lux potential with a water withdrawal function of the form

a exp(- bz) where a = 0.03 day—] and b = 0.03 cm_l, v = 1.5 em/day

and ¢ _ = 100 cmzlday. The curve for T = « is the steady-state limit

and is identical with Warrick (1974, equation [1], table 1). These
values of a and b result in 957 of the total uptake from the upper
100 cm of soil. The total uptake equals 1.0 cm/day.

Examples 4 and 5 - Cyclic uptake. Figs. 2 and 3 illustrate cyciic
cases where the surface flux is assumed to be 3.0 cm/day for the
first 24 h and 0.0 for the next 24 h. This pattern is continued with
a 2-day cycle. The exponential sink function has b = 0,02 t:rnhI
both cases with a = 0.02 day_l

a= 0,04 daly_l

for
in Fig. 2 while in Fig. 3 12-h active,
, 12=h inactive, a = 0.0, cycles are taken. The curves
depicted are for depths Z = 0.1, 0.5 and 1.0 (z = 13.3, 66.6 and

133 em) with ¢ = 33.3 cmzlday. As expected, the potential reaches
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Fig. 2. Solution for .cyclic input and

constant uptake {expenential with

depth). After LOMEN and WARRICK T
(1978) Fig. 3. Solution for cyclic input and

cyelie uptake (exponential with
depth). After LOMEN and WARRICK {1978)



its highest values when there is no water withdrawal, just before
the surface flux stops. Notice also that for Z = [.0 there is very
little difference between the two curves. The sink strength for Fig,
3 is twice that of Fig. 2 so the total uptake in the two cases is
identical. The rapid fall in ¢ after irrigation ceases has been de-
monstrated before in Fig. 3 of BEN-ASHER et al. (1978) but is even

more pronounced here because of the water withdrawal (sink) term.

b. Shallow water table

The Laplace transform will be used to obtain the solution of an
problem defined by eq. (15) through (18). Some useful results about
Laplace transformsare listed in Table 1 (from Chapter 13 of KUIPERS
and TIMMAN (1963).

Table 1. Properties of Laplace transforms

1

f(p) = L(E(L))

'{ E<(
E(t) t>0

I £(t) e Pt ac
0
0

1t

L))

L(E' () = pL(£(£)) - £(0)
' t
LTI{E(P) g(p)} = I f(t - 1) g(1) dr
0
Ve - = e fw
L PP )} = E(c - b) H(E - b)
e -0l -

If we define the Laplace tragnsform of ¢ by eq. (26)and

5z, p) = L2, ) = | ¢(z, t) e Pt gt | (26)

oO—-8



uge it on the differential eq.,{i5),we obtain;

n

b3 - 8(2) - 93, - /e®) 5, B

dbZZ

where

S(Z, p) = | S(z, T) e Pl ar

O3

2n

(28)

We can also use it to transform the boundary cond i~

tions (16) and ()7) to:

- EZ + ZE = 2v/a at Z =0

= ¢0 at 7 = gLf2 = z0

(29)

(30)

Eq. (27) coupled with eqs. (29) and (30) defines a Stﬂrm-Liouville

boundary value problem. To obtain eigenvalues and eigenfunctions we

need a transformation
¢ =X+ z@olzo +A(Z -2 )

to make the boundary conditions homogeneous, If we choose
A= (=9 /2 - /a1 + 22 )

the new dependent variable ¥ will satisfy
T Xy * 2y = 0 for Z=20

x = 0 for
as well as the differential equation

Xpy = My - DX = (4/a%) 5(z, p) - g(2) + 23 /2 + ) +

+ p[z$o/zo + A(Z - zo)]

(31)

(32)

(33

(34)

(35)



Since the right hand side does not contain the unknown function Xs

we should seek solutions of the homogeneous differential equation

- 2x, + A% = 0 - (36)

satisfying eqs. (33) and (34). Such solutions have been obtained by
WARRICK and LOMEN (1977) as

Z . un :
pn(Z) = 2 e” gin un(Zo - Z) zunzo ~in Zunzo n=1, 2, 3,
(37)
with the My determined from
uo= - tan unZO , n=1, 2, 3, ... (38)
. 2 2 -
The eigenvalues are given by A= | + M, M= 1, 2, 3,

Values of W appear in Table 4.19 of ABRAMOWITZ and STEGUN (1964).

The last factor in eq. (37) is chosen so the*pn(Z) form an ortho-

normal set, i.e.

Z
o

[ [ (2)]% daz = | | : (39)
0

If we assume a solution pf the form

o

X = nzl c (p) 0, (2) (40)

and substitute it into eq. (35) we obtain
e r]

I e @01 -l =0l (2) = (4/a®) 5z, p) - g(2) +
n=1

+ 2(50/20 + A) + p[Z$0/26_+ A(Z - zo)] (41)

Tf we .make use of the fact that the pn(Z)areorthonormal on the

interval (0, Zo), we obtain

12



Z
Q
[ {(arahy 52, p) ¢ g2y + 23 /2, + ) +
+ P 0

c (p) =
Il +u

=T 1

+ p[z'EO/z0 + A2 - ZO)]} p (2") dz! (42)

Combining eqs. (31), (32) and (40) yields the solutiom to our

original problem as

T

T L T Y L ™ T T T T
00 ’ ( Z - Z ) l
- -1 (22 + 1) O
$(z, T) n);I L {e (@} p (2) + LT ¢, G Fy(2v(T) /)
) T
Now we decompose cn(p) into the following parts:
)
Lnl{cn(p)} = :~% L*]f~—~——%-~—-l S(z', p) o_(z") d2'} @D
v 1 + [ + p 0 L
A
-(l+ui)T ©
e } g(z') p (2') dz’ @
0
0
- L_l{ [60]}[‘22- T 537 J2r 57 )] J pn(Z') dz! @
1+ +p o o o
n 0
o
- L"I T_,_,,,___,L__r__p$ }{[%—W] I le (Zl) dZ' +
I +u +p @ 0 0 Tty 0 "
o
| 1
+|+22 J pn(Z')dZ}@
20
-, _
o
4 J pn(Z') dz!
-1 | - 0 ‘
+ L v} &)
|+ll[21+P L_oc(]+220) i




Z Z
o o

2 J z'p (2') dz' 2z, J p (2') dz'

-1 1 ~| © 0
+L | 2 pv} all ¥ 22 T a0 F 22 ®
1 + “n +p o (o}

(44)

In eq. (44)

represents the effect of the sink

represents the effect of the initial profile

+ (E) together with (2Z + 1)/(22.o + 1) ¢Ofrom (43) represent the

effect of the water table

© OO0

+ (E) together with the v(t) term in eq. (43) represent the

effect of the surface flux(infiltration or evaporation)

1f we now use the results of Table | we can rewrite some terms

of eq. (44) as follows:

(1D becomes
A
2
4 (1+uﬁ) v ~(Lp ) T
- LE-J e I S(Z', 1) pn(Z') dZ' dt|e
“lo 0
(3) becomes
A
4 f (1+ui) T ° —(l+u§) T
— 1 ]
T 220 J e ¢°(T) dt J pn(Z Y d2'| e
0 0
(&) becomes
I AT e S N ° o
L
l—':—'i-z—"—I e L {pd)o} dr||2 J Z pn(Z ) dz' +
°lo 0
Z
o
' ] ]
+ J pn(Z } dZ
0




€)) becomes

2
a(l + 2Z ) I e v(r} dt J p (2') dz'| e
° 10 o
@ becomes
2 7 .
2 e—(]+u“) I (1+Ui) Ty o ° | 0
' ' ! ) . ] 1
a(l + 22 ) ¢ L {PV} dt I Z_pn(Z ) dZ Zo J pn(z )y dzZ
o 0 !
_ (45)

To make further pragress let r,ho('r) = ¢_» a constant, giving )

un

T — —

T
!

as
--(I-Ivu[zl) T Z0
- 4¢o(l - e )
e — L o (@) 4z’ (46)
(b +2z) (1 + u )
and @ as
2
Ce e (|+un) T Zo Zp
Q ] !
{1+ 22 ) 2 J Z pn(Z') dz' + J p“(Z') dz
° 0 0
A second pessibility is to let
r‘
9, 0<T<'T %p a0
6, lp e1 < %7
¢O(T) = { : ol - with by ¢2, ver s b constants
& T<T«< T i=1,2,3,..,1
L i

15



This gives Q) as

A 2
_ 4 o o (l+un) T i—1 (]+u§)kT (l+pﬁ)k—]T
Y J oo(%1) dz! 71| L %l e
o 1 + k=1

0 n

Gy T
+ ¢1 e - e (47)

i—IT < T < Ti

while (4) should be rewritten using

I k-1 k
- T _ -pT
P L 4 ’ me )
-1 0 -1]k=1
L =t N
]+un+p I+pn+p J
2 k- : 2 k
i ~(n2y (- - () (- .
= 1 ¢ e H(T - T) - e H(T - T)
k=1 &
The usual function for v will model infiltration and evapora-
tion, so

v, 0=1" <1<t

v, T| < T < 'I‘2
v(T) = . i=1,2,13, ..., J (48)

v, TJ"l < T < T3

]

J il i

-pT -pT

pL{v(t)) = ¥ vjEz P -e P ] . (49)

3=1




[ from (5) eq. Zgﬁ) we need

2 k 2 krl
(l+u’) 1 1-1 (I+un) T (I+un) T
' I e - e
e v{t) dtv = Z v |-
k=1 k 1 + 2
0 Mo
9 2. j-
(T4p ) T ) (l+p ) T | _
v, |S ¢ ™o < pd (50)
J I + pz
n
from (6) eq. (44) we need
-1 pv -1 | o '-ij"' p1]
P e e Ty [T P
1 + Wy + p 1 + M + p J=1
3 ~andy (@Y ., -Gwd) @ - S
= 1 v fe Htr - ™) - e H(T =T }
ol
L RELD

The only task left before one can use eq. (43) is to specify

the sink function i.e. evaluate:

Z
0

2

(1+p7)
J e M [ s(z', 1) p (2') dZ'dr
0 0

specify the surface fluxes, v, (see eq. {48), and the value (or
values) of ¢ at depth z = L. The remaining integrals can be evalua-

ted using DWIGHT (196!) as

Z
o

vA
J p n(z')dz' =2 N e I+ “i) ‘ (52)
0

where

2 _ e
Nn = un/(anZo 51n(2un20))

17



o}

2unNn o 2 |
z'pn(z') z' = ——|e (Z0 - 2) + cos(unZO) (53)
0 1 + un 1 + un
while simple algebra gives
Zo Z
© 4unN Z
2 I z'p (z') dz' + I p (2) dz' = ~2 8 e %05 + z, - 5) +
0 0 L+ Py
+ cos(unzo)} (54)
Z Z
° ° 2w |,
' 1 " ' v _ -
J Z pn(Z ) dz Z0 J pn(Z ) dz | . 5 e cos(unZO)
0 . 0 Mo n
(55)



4,

SUMMARY AND CONCLUSTONS

A solution of the linearized one-~dimensional moisture flow

equation has been derived including water uptake by plant roots in

the presence of a shallow water table. The major assumptions are

listed as follows:

1

2)

3)

4)

5)

Hydrauvlic conductivity vz.npressure

— T T

head is given by

K = Koexp(aW).(Note,that congidering Ko and o to be emperical

constants is equivalent (away from near saturation) to having
K= Ksatexp(a(w ~ ?a)) as proposed by RIJTEMA (1965), see also
WESSELING and WIT (1966)).

The hydraulic conductivity 1s
, , - . :

o

proportional to the volumetric

water content. (This is a severe requirement and

care must be takem in applying the results).

A shallow water table is present.

Eq. (46) represents the parts of the solution valid for a

water table which stays at Z=L over the time period in guestion.
Since [ specified the value of ¢ at Z=L, a fluctuating water
table can be approximated by changing this value as a function
time. The solution in this case will use data from eq. (47).

If the fluctuating water table is to be accounted for exactly

the method of solution would be much more complicated,

A surface flux is specified,

v(t)> 0 implies infiltratiom while v(t)< O represents evaporation.

An arbitrary sink function can be

specified as a function of depth an d
tim e; | Haviﬂé speéified the sink function, the first integfal
in eq. (453) must be evaluated. Tor types of sink functions usually
used this might result in lengthy computations but they are surely

possible,



The solution as given by eq. (43) and (44), is quite lengthy
but is completely determined. Time is mot curvently available to
illustrate the behavior of this solution by means of examples,
However graphical presentations of the solutiop for the same type
of situations illustrated in Section 1I1Ia are possible. The purpose
of those illustrations (IIIa) was to show how linearized solutions
can be used in modelling infiltration, drainage and periodic
irrigation with diurnal water uptake.

In the future a computer program will be written to easily
calculate the value of the solution for many values of Z. This is
not needed as an approximation devise, but as a toel to add,
subtract, multiply and divide the many expressions in eqs. (43) and
(44). Then examples,as mentioned previcusly,can be given which

also enclude the effects of a shallow water tabile.

HOMU(JQH\ pro Jml 7
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