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I . lNTRODUCTION 

The work contained in this note was performed while the at~thor 

was on leave from the Mathem11tic~ Department at the University of 

Arizona for two months,the summer of 1978. 

Solutions of the time dependent moisture flow equation with plant

water extraction are primari+y obtained by numerical techniques. for 

example consider papers by NI~~H and HANKS (1973), NEU~~N, FEDDES 

and BRESLER (1975) and FEDDES and ZARADNY (1977). Analytica! solu

tions are, by necessity, qubject to more res~rictive assurnptions, 

but are generally easy and inexpensive to evaluate. They provide 

exact answers for w)lich round-off and computational errors are negli

gible. Such solutions are valuable ~or checking complicated numeri

cal simulations as \vell as for providing answers \</hen the assumptions 

are satisfied or the input data arE' such that a more elaborate ana ... 

lysis would be unnecessary. In this r<;oport a salution of thl' problem 

of the title will he derived. Besides beipg of interest in its own 

right, it could be usefull to check complicated subroutines of pro

grams such as SWATR (FEDDES et al, 1978), The numher of calculations 

and instructions needed in such a large scale prog,ram is such that 

it is nearly impossible to hesure all are given without error. 

Having an analytica! salution to campare with cao save a lot of time 

and effort on the part of the researcher as well as greatly incr<;>ase 

his confidence in the output of his numerical approximation. 
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2. BASIC EQUATIONS ANP ASSUHPTIONS 

a. n i f f e r e n t i a 1 e q u a t i o n s 

The starting point for many investigations into moisture movement 

in soil is a relatioqship hypothesized to explain steady flow of a 

single viseaus liquid through an isotropie saturated porous medium. 

This is called narey's law and says the vertical velocity of the 

liquid, v, is proportional to the gradient of the total hydraulic 

head,H. RICHARDS (1931), extended narey's law to an unsaturated 

medium were it is written as: 

V = - KVH ( 1) 

In eq. (1) the constant of proportionality is the unsaturated 

hy<;lr11ulic conductivety, K = K('l'), which is a function of the pressure 

head '1', (H = 'I' - z, with z positive downward into the soil). 

The second equation which we use is the continuity equation: 

av _ s 
az (2) 

which is derived using conservalion of mass, In eq. (2), e is the 

volumetrie water content, t is time and.S is the "water uptake" term 

representing the volume of water used by the roots per unit volume 

of soil per unit time. 

If we combine eqs. (1) and (2) we obtain: 

ae 
~~ 

at 
~[K('I') a'l'1 _ aK('I') 
az az a~ 

- s (3) 

whièh is indentical with (7) of FEnnES and ZARAnNY (1977). There are 

two obstacles to obtaining solutions of (3), namely two dependent 

variables,e and 'l',and tne uosaturated hydraulic conductivity K which 

is a highly non-linear function of '!'. 

GARnNER (1958) eliminated the second obstacle for steady flows 

by defining a new dependent variable $, as: 
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'!' 

4> ~ f K('l') d'l' ( 4) 

~00 

a.nd asst~rning 

)< ~ K e)<p 
0 

(a'!') m 

wiJere K and a should he çonsidered empf'rical constant~ (BEN-ASHER, 
0 . 

LOMEN and WI\RRICK ( 1976)), The function .p· is called the "m;ttric flux 

potential" but wa~ used by KIRCHHOfF as a ''di.ffusj.vity. potential" 

(~e~ II!.MAY (1966')), If we then assume e " 8(ofo), "'e can write eq, (3) 

as I 

(6) 

(note that li = !<('!') i! and op ~ K/a) az az 

For s t e a d y s t a t e s i t u a t i o n s 
I " 

the lef t l)and 

side of eq. (6) is zero and a relationship between 8 and ofo is npt 

needed, Solutions of eq. (6) in that situation are given by WARRICK 

(1974) and LOMEN and WARRICK (1976) for sjnk functions (S) which are 

defined explicitly in terros of depth or implicitly through S!'Vf'ral 

functions qf ofo. This was done for deep and shallow water tables as 

well as an irope11meable harrier at a shallow depth, 

T,i m e d e p e n d e n t solutionsof eq, (6) with no water 

uptake (S = 0) have been given by PHILIP (1969), BRAESTER (1973) and 

WARRICK (1975) by assuming: 

de 1 
dop ~ ïï (7) 

with D the soH moisture diffusivity (D ~ Kd'l'/d8), This is equivalent 

to having K linearly related to 8 as; 
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and reduces eq. (6) to 

- " (8) 

In general K is not linear with 0, but j_f the s.oil moisture 

varies over a limited range the assumption is more rl'~listic. In 

evaluating the acceptability ~f all assumptions it is important to 

remember the natural uncertainly of all input parameters due to time 

and spatia1 variability and to experimental error, Major advantages 

to be gained by the lin!'larizing assl!mptions are qum..,rical accuracy 

and simplicity. Computational times 1il;e negligible comp&red with 

finite differ!'lnce and finite eleml'nt solutions of eq, (6). Of course 

as a tool for checking compli~ated numerical sch!'lmes 1 theu!'l reser

vations are unwarranted. 

b. B o u n d a r y a n d i n i t i a 1 c o n d i t i o n s 

If a time dependent surface flux is given by v(t), we can use 

eq. (I) and the equations in parenth!'ses following eq, (6) to ob

tain: 

V ( t) - K .L('Jl - z) az 
3"' . 

= - .:::<. + "<P az 

where the right hand side qf eq, (9) j_s evaluated at Z '" p, 

(9) 

If a shallow water table is present at depth L we specify the 

potential there, namely: 

1 ) at z " L 
0 

(I 0) 

On the other hand for deep water tables it is more convenient 

to assume that: 

lim 
z + ., <P(z, t) ( I I ) 

For either situation we need to spedfy an initi;ll condition for 

time zero, namely: 

4 
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$(z, 0) = g(z) (12) 

c, S i n k f u n c t i o n s 

The technique of salution for a shallow water table will permit 

the sink function S = S(Z, T) to be any reasonable function of depth 

and time. For a specific choice of S, all that the user need do is 

to evaluate some integrals using, for example, DWIGHT (1961). 

The salution for an infinitely deep water table uses a sink 

function which varies discreetly in ti.n:e as: 

S (Z, T) 

S (Z) 
n 

0 = T 
0 

T 
n-1 

<T<T (Q 

n 

( 13) 

d. T h e c o m p 1 e t e p r o b 1 e m w i t h d i m e n s i o n-

1 e s s v a r i a b 1 e s 

It seems advantageous to introduce dimensionless variables Z and 

T by: 

Z = az/2, 2 T = a Dt/4 ( 14) 

which reduce the boundary value problem (eqs. (8), (9), (I 0) and 

( 11)) to: 

~ = a2<t> - 2 ~- ~ s T > 0, 0 < Z < aL/2 (15) ar az2 az 2 
(j, 

- ~ + 2<!> = 2v(T)/a at z = 0 (16) az 

<I> = <1>0 at z aL/2 (I 7) 

<I> = g(Z) at T = 0 ( 18) 

5 
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3. SOLUTIONS 

a. D e e p w a t e r t a b 1 e 

The salution of eqs. (IS), (16), (17) and (18) fora deep water 

table (L = m) has been given in a recent artiele (LOMEN and WARRICK 

(1978)). A summary of their conclusions is included in this report 

to give an indication of the types of results possible from a linear 

analysis. For a sink function given by eq. (13) we define: 

m z• 
<Ps . (Z) 

2 
f exp[2(Z - Z')) f s.m dF;dZ I , = U. /a - 4/a 

,1 1 1 

z 0 

T. I < T < 
1-

where U. is the "steady" velocity during the time period 
1 

T. 1 <T<T., 
1- 1 

u. 
1 

(2/a) f Si(Z) dZ 

0 

If we also define two additional functions: 

T. 
1 

cp (Z, T) =- (Z + 2T + 1/2) exp(2Z) erfc(Z/2T! + T!) + 
u 

( 19) 

(20) 

1 1 1 2 1 , 
+ (4T/~) 2 exp[- (Z/2T 2 

- T2
) ) + 1/2 erfc(Z/2T 2 

- T2
) (21) 

and 

m 

R(Z, T, f) = exp(Z- T) J~4~T)-j[exp(- (Z- Z')
2

/4T) + exp(- (Z + Z 1
)

2
/4T)) -

0 

- exp(T + Z + Z') erfc((Z + Z1 )/2Tj + T!)]f(4') exp(- Z') dZ' (22) 

and consider the surface flux to change with time as: 
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v(T) = 

V m 

0 

m-1 T 

then the overall solution is: 

+ ~s . - (1/a) 
.~ 

where 

g(Z) and V 
0 

j 
L (vk 

k=l 

u = 0 
0 

00 

(23) 

(24) 

T. I < T < T. 
~- ~ 

(25) 

Five numerical examples will now he presented to demonstrate the 

application of eq. 24. 

Example I - Drainage. In all there are five terms in eq. 24. The 

first term arises from the boundary condition at infinity. If 

g(Z) = 0 and no water was added or withdrawn after time zero, then 

simple drainage would occur and ~ would he given by the first term 

only. This situation is given in Fig. IA showing drainage from an 

initially wet profile where ~~~ is plotted as a function of dimen-
oo 

2 sionless depth Z for dimensionless times T =a Dt/4 of 0.1, 0.5 and 

1.5. As the time increases the upper part of the profile drains, For 

a= 0 .• 015 cm-I and D = 4000 cm2/day, Z = 0.1 corresponds toa 13 cm 

depth while T = 0.1 is the same as 10.6 hours. 

Example 2 - Infiltration. If a surface flux is introduced but no 

plant water uptake occurs, the first two terms of eq. 24 comprise 

7 
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Fig. I. Salution for drainage (A), infiltration (B) and infiltration 

1áth constant uptake (C). After LOMEN and WARRICK (1978) 

. I 
the solut1on. If T ~ 00 , then the salution is for a constant surface 

flux and equivalent to that of BRAESTER (1973). Such aresult is 

shmm in Fig. I B for v ~ 3 cm/day and acj> ~ 2 cm/day. 
00 

Example 3 - Constant uptake. The third 

the sink function in effect at a g1ven 

term cj>S . of eq. 24 is due to 
,1 

time. Fig. IC depiets the 

matric flux potential ,.,-,i th 

a exp(- bz) where a ~ 

2 
0.03 

a Hater withdrawal 
-I 

day and b ~ 0.03 

function of the form 
-I 

cm , v ~ I . 5 cm/day 

and cj>
00 

~ 100 cm /day. The curve for T ~ oo is the steady-state limit 

and 1s identical with Warriek (1974, equation [1], table 1). These 

values of a and b result in 95% of the total uptake from the upper 

100 cm of soil. The total uptake equals 1.0 cm/day. 

Examples 4 and 5 - Cyclic uptake. Figs. 2 and 3 illustrate cyclic 

cases 1•here the surface flux is assumed to be 3.0 cm/day for the 

first 24 h and 0.0 for the next 24 h. This pattern is 

a 2-day cycle. The sink function has b = 

continued 
-I 

0.02 cm 

with 

for 

bath cases Hith 
-I 

a ~ 0.04 day , 

a ~ 

exponential 
-I 

0.02 day in Fig. 2 while in Fig. 3 12-h active, 

depicted are 

133 cm) with 

8 

12-h inactive, a= 0.0, cycles are taken. The curves 

for depths Z ~ 0.1, 0.5 and 1.0 (z ~ 13.3, 66.6 and 
2 

cj> ~ 33.3 cm /day. As expected, the potential reaches 
00 
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Fig. 2. Solution for 4:yclic inpu.t and 

constant uptake c~xponential with 

depth). After LDMEN and WARRICK 

( 1978) 
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Fig. 3. Salution for cyclic input and 

~yclie uptake (exponential with 

depth). After LOMEN and WARRICK (1978) 
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its highest values when there is no water withdrawal, just b~fore 

the surface flux stops. Notice also that for Z = 1.0 there is v~ry 

little difference between the two curves. The sink strength for Fig. 

3 is twice that of Fig. 2 so the total uptake in the two cases is 

identical. The rapid fall in ~ after irrigation ceases has been de

monstrated before in Fig. 3 of BEN-ASHER et al. (1978) but is even 

more pronounced here because of the water withdrawal (sink) term. 

b. S h a 1 1 o w w a t e r t a b 1 e 

The Laplace transform will be used to obtain the solution of an 

problem defined by eq. (IS) through (18). Some useful results about 

·Laplace transformsare listed in Table I (from Chapter 13 of KUIPERS 

and TUIMAN ( 1963) . 

Table I. Properties of Laplace transforms 

f(p) = L(f(t)) 

r..{f' (t)) 

L- 1{f(p -a>} 

L- 1{e-bp f(p)} 

L-1 { (p- a)-1\ 

= 

= 

= 

= 

J f(t) e-pt dt 

0 

{~(t) : : ~ 
pL(f(t)) - f(O) 

t 

f f(t - T) g(T) dT 

0 

eat f(t) 

f(t - b) H(t - b) 

at e 

If wedefine the Laplace transform of~ by eq. (26)and 

10 

~(Z, p) = L($(Z, t)) ~ J $(Z, t) e-pt dt 

0 

(26) 
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u~e it on the differential eq.,(l5),"e obtain; 

00 

S(Z, p) ~ f S(Z, T) e-pT dT 

0 

(27) 

(28) 

We can also use it to transferm the b o u n d a r y c o n d i
' t i o n s (16) and (17) to: 

- -
- $

2 
+ 2$ ~ 2v/a 

$ " $ at 
0 

at Z "' 0 

Z ~ aL/2 ~ Z 
0 

(30) 

Eq. (27) coupled "ith eqs. (29) and (30) defines a StÜrm-Liouville 

bound~ry value problem. To obt~in eigenvalnes ~nd eigenfunctions we 

need a transformation 

$ ~ X + z$ /Z + A(Z - Z ) 
0 0 0 

to make the boundary conditions homogeneous. lf "e choose 

A~ (- $ /Z - 2v/a)/{l + 2Z ) 
0 0 0 

the new dependent variable x "ill satisfy 

- -- x
2 

+ 2x ~ o for 

x " 0 for 

z 

z 

0 

z 
0 

as well as the dtfferential equation 

OI) 

(32) 

(33) 

{34) 

+ p[Z$ /Z + A(Z- Z )] (35) 
0 0 0 

11 
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Since the right hand side does not contain the unknown function x, 
we should seek so~utions of the homogeneous differential equation 

2-
Xzz - 2x2 + À x = o (36) 

satisfying eqs. (33) and (34). Such solutions have been obtained by 

WARRICK and LOMEN (1977) as 

P (Z) 
n 

1,2,3, ... 

with the ~ determined from 
n 

~ = - tan ~ Z n = n n o 

The eigenvalues arE) given by 

Values of ~ appear in Table .. n 

I ' 

À2 
n 

4. 19 

(37) 

2, 3, (38) 

I + 2 
~n' n = I ' 2' 3, ... 

of ABRAMOWITZ and STEGUN (1964). 

The last factor in eq. (37) is chosen so the p (Z) form an ortho
u 

normal set, i.e. 

z 
0 

f [pn(Z)]2 dZ = 

0 

If we assume a solution pf the form 

x L en (p) pn (Z) 
n=l 

and substitute it into eq. (35) we obtain 

00 

L cn(p)[- I - ~~- p] pn(Z) 
n=l 

2 -= (4/a ) S(Z, p) - g(Z) + 

(39) 

(40) 

+ 2(~ /Z +A) + p[Z~ /Z + A(Z- Z )] (41) 
0 0 0 0 0 

If we .make use of th!) fact that the p (Z) are orthonormal on the 
n 

interval (0, Z ), we obtain 
0 

12 
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z 
0 

c (p) = ---~1,---- J { {4/a2) 
n I + 11~ + P 0 

S(Z', p) r g(Z') + 2(~ /Z 
0 0 

+ A) + 

+ p[Z'$ /Z + i\(Z' - Z )j} p (Z') dZ' (42) 
o o o n 

Combining eqs. (31), <n> and (40) yielo;ls the salution to our 

original problem a~ 

<f>(Z, T) = 
<z-z>' 

- (2Z t ~)(4v(T)/a) 
0 

(43) 
Now we <lecompose c (p) into the following parts: 

11 

z 
0 

-I { l - 4 -I { J L cn(p) = «4 L. -~-+-72-+~p 
l'n 0 

2 
2

o 
-(l+u 11 )T J 

+ e g(Z') p (Z') dZ' 
n 

0 

z 
0 

Z (I : 2Z ) ) J 
p 0 

0 

z 
0 

- L-1 {~--71 _,-.. p;j; } { r-! - 2Z )) J 
I 

2 o fZ Z (I + 
+ 11 + p 0 0 0 

n 0 

;- z -

0 

4 f on(?;') dZ' 

-I { I ;;} 0 
+ L 2 a( I + 2Z ) 

I + 11 + p L-
0 -11 

p (Z') dZ' 
11 

Z 1 p (Z') dZ' + 
n 

CD 

p (Z') dZ'} @ 
11 
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z z 
0 0 

2 I Z1 p (Z 1
) dZ 1 2Z I p (Z I) dZ 1 

n 0 n 

L-1 { I p;} 0 0 ® + 2Z ) -
2 a{ I + a ( I + 2Z ) 

I + ~ + p - 0 0 -n 
144) 

In eq. (44) 

represents the effect of the sink 

represents the effect of the initial profile 

+ ® together with ( 2Z + I)/ (2Z + I) cj> from ( 43) represent the 
0 0 

effect of the water table 

0) + ® together with the v(t) term in eq. (43) represent the 

effect of the surface flux{infiltration or evaporation) 

If we now use the results of Table I we can rewrite some terms 

of eq. (44) as follows: 

-----~· -~------

<D becomes 

~ ' 
z i -0 .,;, ' 

0 -4 I e (I+)Jn) , I S(Z 1
, T) p (Z I) dZ 1 dT e 

n 
a 0 0 

Q) becomes 

' : :, ~ (I +IJ2) 
z 

"] 
2 0 T 

I 
-(I+)J) T 

n 
<jJ (T) dT p (ZI) n 

e e 
0 n 

0 0 0 

® becomes 

' : :, ~ 
2 

,j~ l" (I +IJ ) (T-T) 
L-1 {p~o} n ZIp (Z I ) dZ I + e n 

0 0 

z 

"] 
0. 

+ I p (Z I) 
n 

0 

14 
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(!) becomes 

"" : "·' ~ 
(l+p2) 

z 
0 

T 

f 
n v(T) dT P (Z') e n 

0 

@ beoomes 

-o•l> '~ (I +p2) dl z 

"] 
0 

2 n f T 
-I { -} 

J 
n Z1 p (Z') dZ' - pn(~') a(I+2Z) e L pv z . n 0 

0 0 0 

(45) 

To make further progress let ~0 (T) = $
0

• a constqnt, giving CP 
as 

2 
-(1+)1 ) T 

- 4<)> (I - n 
) e 

0 
--r 2 

(I + 2Z ) (I + )1 ) 
0 n 

(46) 

and (§) as 

-------·--------~------------------------------------·- ---
A second ppssipility is to let 

~I 0 < T < IT 0 T = 0 

<)2 
IT < T < 2T 

<P (T) = "i th ~I , <fl2' ... • <Pi constants 
p i-1 il 9 T < T < i = I ' 2. 3 ' .. ' I 

i 

I 5 
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Th is gives Q) as 

z ~ -( ... ;, j ~-· [ (l+~~h (l+~~)k-lj 0 

- 4 
f p (Z I) dZ I e 2 L 

+ 2Z 
<P e - e 

n k 
0 I + ~ k=l 

0 n 

i-IT < T < T1 

while (?i) should be rewritten using 

rl -k-1 kT 
'i -p T 

P~o 
<I> (e - e-p ) 

-I k=l 
n 

L 2 L -I {I 
+ 2 

~n +J I + ~n + p 

2 
I [ -(I+JJ ) 
L <P e n 

k=l k 

'-- -
2 

-(1+~ ) 
n 

e 

The usual function for v will model infiltration and evapora-

tion, so 

VI 0 = To < T < Tl 

v2 
Tl < T < T2 

v(T) j I, 2, 3, ... , J ( 48) 

v. T 
j-1 

< T < TJ 
J 

J ~ . I -pTj] pL(v(t)) 'i 
-pTJ-

(49) v. e - e 
j=l J 
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-- -------- ----------------~ --- ----------------- --,---- ------
from (5) eq. (1,5) ;,e need 

TJ (I+/) r . Il 
e 

0 

[· (' ., ,, T 
n 

e 
+ v. 

] 

from (6) eq. (44) "e 

L -I {--'p~~~-} 
I + I' + P 

n 

2 
( I +p ) 

n - e 
2 

+ I' 
Il 

need 

,; 'l 

2 
+ ~'n + p 

T 

2 
+ l' n 

j-1 
< T < Tj 

2 -(l+p ) 
n 

e 

(50) 

H(T -T
1

) 

(51) 
----------~--~~~---· 

The only task left before one can use eq. (43) is to specify 

the sink function 1.e. evaluate: 

S(Z', T) p (Z') dZ 1 dT 
n 

specify the surface fluxes, v. (see eq. (48), and the value (or 
'· 

values) of <j> at depth z ~ L. The remaining integuals can be evalua-

ted l!Sing DWIGIIT (1961) as 

where 

z 
211 N e 

0 I (I 
n n 

N2 
p /(2p Z - sin(2ll Z )) 

n n no no 

(52) 
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z 
0 

f 
0 

while 

2 

z 
0 

f 
0 
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21J N ~z Z'p (Z') dZ' = n n e 0 (Z 
n 1 + IJ2 o 

n 

simple algebra gives 

z z 
0 0 

f Z'p (Z') dZ' + f p (Z') dZ' 
n n 

0 0 

z 
0 

f Z'p (Z') dZ' - z P (Z') dZ' 
n 0 n 

0 

+ IJ 
n 

+ cos(IJ Z ~ n oj 

41J N ~ Z n n2 e o(.S +Zo 
I + IJ 

n 

+ cos (ll z. ~ n oj 

(53) 

(S4) 

~ ' 
2p N 

2 
o 

n n e ""''" ' J 2 2 
l+p +p 

n o 
n n 

(SS) 
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4. SUNMIIRY IINil CONCLUSIONS 

11 salution of the linearized one-dimensional moisture flow 

equation has been derived iqcluding water uptake by plant roots in 

the presence of a shallow water table. The major assumpd.oqs are 

listed as follows: 

I) Hydra u 1 i c conduct i vit y vz. o re ss ure 

h e a d i s g i v e n b y 

2) 

K = K
0

exp(n'l'), (Note tl1at consictering K
0 

and n to be emperical 

constants is equivalent (away from near saturation) to having 

K = K ti'XP (n (IJl ". 'I' ) ) as proposed by RIJTEN/\ (1965), see a lso sa a 
WESSELING and WIT (1966)), 

T h e h y d r a u 1 i c c o n d u c t i V i t y i s 
~ 

p r (> p 0 r t i o n a 1 t 0 t h e V 0 l11met r i c 

w a t e r c o n t ~ n t. (Th is is a severe requirement and 

care must be tal<en in applytng the results). 

3) A s h a 1 1 o w w a t e r t a b 1 e i s p r e s e ~ 

Eq. (46) represents the parts of the salution valid for a 

water table which stayp at Z=L over th!;' time period in question. 

Since I specified the value of ~ at Z=L, a fluctuating water 

tabl~ can be approximatect by changing this value as a tunetion 

time. The salution in this case will use data from eq. (47), 

if the fluctuating water table is to be accounted for exactly 

the methad of salution would be mucp more çomplicated, 

4) A s u r f a c e f 1 u • i s s p e c i f i e d. 
~ 

v(t)> 0 implies infiltration while v(t)< 0 represents evaporation. 

5) ~-~.3.-L-b i .!_~_E_J'__ s i n k f u n c t i o _!! ____ ~_I!~L!i-

s p e c i f i e d a s a f u n c t i o n o f d e p t h a n d 

t i m e. Having specified the sink function, the first integral 

in eq. (45) must be evaluated. For types of sink functions usually 

used this might re&ult in lengthy computations but they are surely 

possible. 
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The solution as given by eq. (43) and (44), is quite lengthy 

but is cornpletely deterrnined. Time is not currently available to 

illustrate the behavi0r. of this solution by rneans of exarnples. 

However graphical presentations of the solution for the same type 

of situations illustrated in Section lila are possible. The purpose 

of those illustrations (lila) was to shm• how linearized solutions 

can be used in rnodelling infiltration, drainage and periodic 

irrigation with diurnal water uptake. 

In the future a computer program will be written to easily 

calculate the value of the solution for rnany values of Z. This is 

not needed as an approximl'tion devise, but as a tool to add, 

subtract, multiply and divide the many expressions in eqs. (43) and 

(44). Then examples,as mentioned previously,can ba given which 

also enclude the effects of a shallow water table. 

f'O f~'e I 1 
• 

20 

ICW-nota 1082 
Team Integraal Waterbeheer 
Centrum Water&Klimaat 
Alterra-WUR



5. LlTERATURE 

ABI~OWITZ, M. and STEGUN, I.A., 1964. Handhook of mathematica! 

functions. Natl.Bur.Stand., Appl.Hath.S!'r., Vo1.55, U.S. 

Gov<'rnment Printing Office, Washington, D.C. 

BEN-ASHER, J., D.O. LOMEN and A.W. WARRICK, 1978. Linearand non

linear roodels of infiltration from a point source, Soil 

Sci.Soc. Am. j. 1 4~ 3-6. 

BRAESTER, C., 1973, Moisture variation at the soil surface and the 

advance of the wetting front infiltration at c;onstant flux. 

Water Resour. Res., 9:6~7-694 

DWIGHT, H.B., 1961. Tables of Integrals and other Mathematica! data. 

4th ed. the ~lacMillan Company, New York 

fEDDES, R.A. and H. ZARADNY, 1977, Numerical model for transient 

water flow in non-homogeneaus soil-root-~yst~s with 

groundwater influence. Proc. I.F. I.P. Conf. on ~lodeling 

and Simulation of Lancl 1 Air an<! Water Resources, Ghent 

, P. KOWALIK and H. ZARADNY, 1978, Slmulation of field water 

use and erop yield.Pudoc, Wageningen (in press) 

GARDNER, W.R., 1958. Some steady-state solutions of the unsaturated 

moisture flow equation with application to evaporation from 

a water table. Soil Sci., 85: 228-232 

IRMAY, s., 1966. Salution of the non-linear ditfusion eqQation with 

a gravity term in hydrology. In: Watf,!r in the unsaturatecl 

zone (Eds. P.E. Rijtema an~ H. Hassink). Symp, Proc. Unesco/ 

IASH, 1969 

KUIPERS, L. and TUIHAN, R., 1963. Handboek der Wiskunde: Scheltema 

en Holkema N.V., Amsterdam 

LOMEN, D.O. and A.W. WARRICK, 1976. Salution of the one-di~ensional 

linear moisture flow equation with implicit water extraction 

functions. Soil Sci. Soc. Am. J., 40: 342-344 

and A.W. WARRICK, 1978. Time-dependent solutions to the one

dimensional moisture flow equation wlth water extraction. 

J. Hydro1. 39 (in press) 

21 

ICW-nota 1082 
Team Integraal Waterbeheer 
Centrum Water&Klimaat 
Alterra-WUR



j'll\UHAN, S.P., R.A. FEilflES and E. BRESLE!I, 1975, finite elemen~ 

analysis of two-dimensional flmo~ in soils consiclering 

water uptake by roots, I. Theory. Soil Sci. Soc. Am., 

Proc., 39: 224-230 

NUIAH, H.N. and. R.J. HANKS, 1973. Hodel for estimating soil water, 

plant, and ·atmospheriC'· interrelations, II. Oe$crip tion and 

scnsitivity. Soil Sci.Sqc,Am. ,Proc,, 39: 522-527 

PHILIP, J.R., 1969 .. Theory of infPtration. Adv. Hydrosci., 5: 215-

296 

RICHARDS, L.A., 1931. Capillary conductivity of liquids through 

porous mediums. Ph.D. thesis, Cornell. Univ., Physics vol. 

I; 318-333 

RIJTEHA, P.E., 1965. An analysis of actual eyaporation. Agric. Res. 

Rep. 659: Pudoc, Hageningen 

HARRICK, A,H., 1974. Solution. to the one-dimenstonal linear moisture 

flow equation with water C}\traction. Soil Sci. Soç.Am., Proc., 

38: 573-576 

1975. Analytic&l sólutions to the one-dimensional linearized 

moisture flow equation for arbitrary Ü)put. Soil Sci., 120: 

79-84 

and D.D. LOHEN, 1977. Flow from a line souree above a shallow 

water table. Soil Sci. Soc. Am. J., 41: 849-852. 

WESSELING, J. and K.E. HIT, 1966. An infiltration methad for the 

22 

determination of the capillary conductivity of undisturbed 

soil cores. In: «ater in the unsarurated zone. (Eds. P.E. 

Rij tema and H. ~lassink). Symp. Prae. Unesco/IASH, 1969 

ICW-nota 1082 
Team Integraal Waterbeheer 
Centrum Water&Klimaat 
Alterra-WUR




