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Abstract 

Laat, P.J.M, de (1980) Model for unsaturated flow above a shallow water-table, 
applied to a regional sub-surface flow problem. Agric. Res. Rep. (Versl. land-
bouwk. Onderz.) 895, ISBN 90 220 0725 1, (vii) + 126 p., 42 figs, 6 tables, 
182 refs, 2 appendices, Eng. and Dutch summaries. 
Also: Doctoral thesis, Wageningen. 

A mathematical model is developed to simulate transient unsaturated flow 
above a shallow water-table. The unsaturated zone, here extending from just 
below the phreatic level to soil surface, is schematized into a root zone and 
a subsoil. In.the root zone the gradient of the hydraulic potential is assumed 
equal to zero. Vertical flow in the subsoil is described by a combination of 
steady-state situations corresponding to the upper and lower boundary flux, 
respectively. Transient flow is solved by a sequence of steady-state situa
tions, subject to boundary flux conditions at the soil surface and from below 
the water table. The solution uses time increments of the order of days and 
is efficient in terms of computer costs. 

To verify the model for an actual field situation, it is linked at the 
upper boundary to a model for évapotranspiration and at the lower boundary 
to a model for two-dimensional horizontal saturated flow. The resulting quasi 
three-dimensional model is applied to a field-size flow problem. Results agree 
closely with observed water-table elevations. The composite model is further 
used to predict consequences of groundwater extraction. 

Free descriptors: capillary rise, percolation, saturated-unsaturated flow,, 
évapotranspiration, groundwater extraction, prediction. 

This thesis will also be published as Agricultural Research Reports 895. 

0 Centre for Agricultural Publishing and Documentation, Wageningen, 1980. 

No part of this book may be reproduced or published in any form, by print, photoprint, 
microfilm or any other means without written permission from the publisher. 
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1 Introduction 

The reclamation and protection of land from the sea and inland waters in the Neth

erlands during the past centuries resulted in the development of large polder areas. The 

excellent opportunities for water management in these areas provided optimum conditions 

for crop growth, at least from a quantitative point of view. Qualitative problems arose 

due to the deterioration in quality of the supplemented surface water and, particularly 

in the lowest polders, to the intrusion of saline groundwater. 

It is only since the beginning of this century that serious attention has been 

given to the water management problems in the eastern and southern part of the country. 

Although the land is above mean sea level, flooding was frequent in some places and 

large areas suffered from too high water-tables. It is well-known that wet conditions 

in the beginning of the growing season may seriously affect agricultural crop production. 

It delays the sowing and planting of crops, but also the seedling emergence and growth 

because of low temperatures and high concentrations of carbon dioxide in the root zone 

of the soil. To ensure favourable conditions for crop growth at the beginning of the 

growing season, the drainage in many of the higher areas with mainly aeolian soils has 

been drastically improved. 

Although the average annual rainfall excess in the Netherlands is between 200 and 

300 mm, the potential évapotranspiration exceeds precipitation during the growing season 

(April to September) by more than 100 mm. If this amount is available for the crop in 

the root zone, water supply is optimum for crop production. However, most of the (sandy) 

soils in the eastern and southern part of the country are not even able to retain the 

amount that is needed in a year for which 'average weather conditions' apply. With a 

shallow water-table a considerable part of this deficit may be supplemented by the 

transport of soil moisture from the groundwater reservoir to the root zone. The upward 

movement of soil moisture in the region above the water table is termed capillary rise. 

This process depends on the depth of the water table. It becomes insignificant for the 

water supply of the crop if the prevailing water-table depth is more than 3-5 m below 

soil surface. 

The rapid expansion of population and industry during the past decades resulted in 

a considerable increase in the demand for domestic and industrial water. As surface 

water in general is of poor quality, and as there is hardly any fresh groundwater in the 

west, the amounts extracted from the eastern and southern parts of the country are rap

idly increasing. Jn those areas where the implemented drainage system is (more than) 

adequate, an additional extraction of groundwater results in an undesirable drawdown of 

the water table. The effect of a drawdown on the availibility of water for the crop in 

areas with relatively high water-tables is twofold. It reduces the amount of soil mois

ture initially available in the root zone and it hampers capillary rise. As a result of 



the development described above, some of the areas which previously had an abundance of 

water now show a shortage. 

This study concerns groundwater flow in shallow water-table aquifers and in par

ticular flow in the unsaturated region between the soil surface and the phreatic level. 

Although the water movement in a partly saturated soil may be described by one single 

equation, the flow regions above and below the phreatic surface were traditionally 

treated as two separate systems. One of the reasons for the separate approach is that 

flow in the unsaturated zone is predominantly vertical, and in the saturated part in a 

horizontal direction. Moreover, the numerical solution of the governing equation re

quires much more effort in the unsaturated zone than in the saturated region. The 

available solutions of three-dimensional, saturated-unsaturated problems using a single 

equation are, therefore, restricted to small-size flow systems. 

A less-rigorous approach treats flow in the saturated and unsaturated region sepa

rately and uses a special procedure to link both sub-systems. The partial differential 

equation governing non-steady unsaturated flow is highly non-linear. For stability and 

convergence the solution requires that time and space are discretized to small steps. 

The restriction with respect to the length of the time increment is imposed upon the 

entire system. Therefore, for the less-rigorous approach to be attractive in terms of 

computer costs, it is necessary that the numerical solution of the equation governing 

unsaturated flow is replaced by a more efficient simulation model. The approximate 

solutions, available at present, are unsuitable for a complete transient analysis, as 

they consider flow in an upward or downward direction only. Moreover, most of the solu

tions assume that the water table is at infinite depth. 

For a shallow water-table in a sandy aquifer, the characteristic time of the un

saturated flow system is of the order of days. With a time increment of approximately 

this length, the flow system can be described by a succession of steady-state situations. 

This approach is used in this study to develop a model for unsaturated flow. 

In order to verify this model for an actual field situation, it is linked at the 

upper boundary to a model for évapotranspiration, and at the lower boundary to a model 

for two-dimensional horizontal saturated flow. The combined model is applied to an area 

of 36 km2 around the pumping site " t Klooster' in the east of the country. The amount 

of surface water runoff from this area is relatively small. It was selected for this 

study to reduce the effect of the surface water system on the verification of the com

bined saturated-unsaturated flow model. 

Finally, the model is used to predict consequences of groundwater extraction on the 

water-table elevation and real évapotranspiration. 



2 Transport of water in soil 

2.1 SOIL WATER POTENTIAL 

In an isothermal system the driving force for transport of soil water is the gra

dient of potential energy. The 'International Soil Science Society' (Aslyng, 1963; Bolt, 

1975) uses concepts based on energy and thermodynamics to define the condition of water 

in soil (see e.g. Taylor, 1968; Hillel, 1971). The total potential energy is described 

as the amount of work liberated by removing a unit mass of soil water from a certain 

location in the soil in the form of pure free water at the same temperature and to 

transfer this quantity isothermally to a reference level where it is defined as having 

a potential of zero. The components of the total potential ï are the pressure potential 

ï , the osmotic or solute potential "P and the gravitational potential ¥ . Thus 

r = f + f + t (1) 
t p o g *• / 

The pressure potential results from a pressure that differs from the existing at-
-2 -3 

mospheric pressure. Pressure (N-m ) is equivalent to energy per unit volume (J-m ) . 

Since the density p is mass per volume it follows that the pressure potential (expressed 

in energy per unit mass) 

Y = E- (2) 
P P 

where p is the pressure with respect to atmospheric pressure. In the unsaturated soil 

the pressure potential is negative due to the attractive forces of the soil matrix. 

Buckingham (1907) introduced the term 'capillary potential' to indicate that the poten

tial results from capillary effects. Nowadays the term 'matric potential' is preferred 

as the pressure p is, especially in clayey soils, also affected by adsorption, by at

traction between water molecules and ions in the electrical double layer of clay par

ticles and by small deviations in the soil air pressure from the existing atmospheric 

pressure. In particular with respect to the last mentioned effect see Stroosnijder 

(1976). At the free water surface atmospheric pressure exists (by definition), so that 

p equals zero. Below this level, in the saturated region, the attraction of the soil 

matrix is negligible. Pressure merely results from the hydrostatic pressure, so that 

values for y are positive. The pressure potential in the saturated zone has been 

termed 'submergence potential' (Rose, 1966). Although the pressure above and below the 

free water level results from quite different forces, p is considered in this study as 

a single continuous quantity, extending from the saturated to the unsaturated region. 

The osmotic or solute potential reduces the total potential energy in the presence 



of a membrane whose permeability to water molecules differs from that to the molecules 

of the dissolved salts. When dealing with water movement in soil it is assumed that the 

solute can move freely with the soil water. Hence 

¥ 
o 

= 0 (3) 

This condition implies that the soil water potential is defined with respect to free 

water of similar chemical composition as the soil moisture located at reference level. 

The gravitational potential is the energy due to the earth gravitational field. If 

g is the gravity constant, the required energy to lift a mass of water m over a height z 

above reference level equals mgz. So the gravitational potential per unit mass 

¥ = gz (4) 

as g can be considered a constant over the distances involved. 

The driving force for transport of water in a porous medium is then given by 

vy = vY + vy = v(E) + gvz (5) 
t p g V 6 

If at a height z above reference level pressure p exists, the total potential energy per 

unit mass at this particular location in the soil may be written as 

P 1 z 
¥ = ƒ j - da + g ƒ d3 (6) 

0 p 0 

The potential ¥t represents a scalar quantity if its gradient describes a vector field 

without a rotational component. It can be shown (De Wiest, 1966) that ¥ as given by 

Eqn 6 generates an irrotational vector field, provided that the density p is a function 

of p only. Actually, the density of the soil water also varies with solute concentration 

and temperature. In this study the soil water is assumed to be homogeneous and imcom-

pressible, so that for isothermal systems the total water potential (energy per unit 

mass) is given by 

*t-jr + § z CJ-kg"1) (7) 

as here p can be considered a constant. Multiplying Eqn 7 by the constant p yields the 

pressure equivalent of the water potential (energy per unit volume) 

P = pgz + p (J-nf3 or Pa) (8) 

Dividing Eqn 7 by the constant g results in a quantity known as hydraulic head or 

hydraulic potential (energy per unit weight) 

* » z + fg M C9) 



2.2 GENERAL EQUATION OF FLOW 

In the absence of other forces, such as thermal and electrical gradients, a differ

ence in the total potential energy between two locations in the soil is the driving 

force to move water from the location where the potential is high to the location where 

a lower value exists. The resulting volume flux density q related to the potential gra

dient is known as Darcy's law, written in vectorial form as 

q = -k(vp + pgvz) (10) 

2 -1 -1 
where the hydraulic conductivity k (m «s «Pa ) depends on the characteristics of the 

soil matrix, the dynamic viscosity of the fluid and the degree of saturation. If the 

value of k is the same in each flow direction, the porous medium is said to be hydrau-

lically isotropic. Though the flux density vector q has the dimension of velocity 
_1 

(m-s ) , the term velocity is more properly used for the actual velocity of the water 

in the pore space of the soil matrix. In groundwater hydrology q is preferably termed 

'specific discharge'. 

In the unsaturated soil the pressure of water is usually measured with a tensio-

meter and below the free water surface with a piezometer. Both methods measure the pres

sure at a certain location in the soil relative to atmospheric pressure as a height of 

a water column, called pressure head y. If the density p in the apparatus equals the 

density of the soil water, p = pgij>. It is therefore convenient to use the gradient of 

the hydraulic head to write Eqn 10 as 

q = -K[(^)vp + vz] = -KV* (11) 

where the hydraulic conductivity K (= pgk) is expressed in the practical unit (m-s ) . 

The continuity equation for flow in non-deformable media, stating the Law of Con

servation of Mass, may be written as 

^ = - V - p q (12) 

where t is time and e the volume fraction of water per unit volume soil matrix. Taking 

P again as a constant and combining Eqns 11 and 12 results in a general equation of flow, 

written in vector notation as 

ff-=V-(KV<» (13) 

For flow in anisotropic media a more general equation is obtained by expanding 

Eqn 13 as follows 

39 _ 3 ,K U i + -L (K ^-) + — (K 1^) (14) 
•st " "3X" { \ 3XJ 3y L y 3yJ 3z <• z 3z' 

where the x,y,z directions are chosen in the three principal directions of the hydraulic 

5 



conductivity K , K and K . When solving multi-dimensional flow problems, anisotropy 

should be taken into account because generally the natural porous medium has a stratified 

structure. Since transformation of isotropic flow problems into a problem for anisotropic 

media is relatively simple, the equations in Section 2.3 are conveniently derived for 

isotropic soils. For a thorough discussion on anisotropy in porous media the reader is 

referred to Childs (1969). 

2.3 PARTICULAR FORMS OF THE GENERAL EQUATION 

When modelling complicated systems simplifying assumptions have to be made. Some of 

these simplifications are necessary for a mathematical description of the system. An 

example is the assumption that Darcy's law, which is in accordance with the equation of 

Hagen-Poiseuille for laminar flow in a circular tube, also holds for flow in porous 

media. The validity of Darcy's law especially in unsaturated soil is still a matter of 

discussion (Swartzendruber, 1963 and 1968; Thames & Evans, 1968; Vachaud, 1969). Other 

assumptions are necessary to obtain an analytic or adequate numerical solution of the 

problem: for example, considering flow in one or two directions only, or neglecting the 

variation in hydraulic conductivity. These simplifying assumptions result in a number of 

differential equations each of which holds for a certain class of flow problems which 

are characterized by the assumptions made when deriving the formula. Many equations have 

been given the name of the author who first suggested its use. Equations frequently 

cited when discussing saturated and unsaturated flow will be dealt with in this section. 

It should be realized that the general equation as formulated in Eqn 13 is general 

in so far as it describes the flow in a three-dimensional, non-homogeneous, saturated 

or unsaturated porous medium, but is less general in so far as it is restricted to iso

thermal flow of an incompressible homogeneous fluid in a rigid soil without other 

driving forces than those defined by the hydraulic head. Problems on mixed saturated-

unsaturated flow in this study and most of the problems discussed in literature on this 

subject satisfy or nearly satisfy these restrictions. Therefore Eqn 13 will be used as 

the basic equation for further consideration. 

The development of flow equations for transport of water in porous media came from 

two different disciplines. Saturated flow problems have been studied by groundwater 

hydrologists in relation to civil engineering and unsaturated flow has always been the 

domain of the soil scientist in relation to agriculture. This separate development may 

be illustrated by the fact that Buckingham when introducing the capillary potential in 

1907 dit not even mention Darcy's law from 1856 and it took 20 years before Israelson 

(1927) noted the connection. The delayed progress made in the development of unsaturated 

flow theory compared with that of saturated flow has been mainly due to the difference 

in the nature of the potentials. In saturated media the potentials involving position 

and pressure are easily obtained where as it was not until 1928 with the introduction of 

the tensiometer (Richards, 1928) that unsaturated flow potentials could be measured. 

Moreover, empirical relations between pressure and moisture content and between pressure 

and hydraulic conductivity are required for the solution of unsaturated flow equations. 

These relations are difficult and tedious to obtain and are both subject to hysteresis. 



Therefore analogy of flow through porous media to heat conduction was first recognized 

for saturated flow. 

2.3.1 Saturated flou 

For saturated flow the earlier defined proportionality factor k in the equation of 

Darcy as formulated in Eqn 10 is a function of the properties of the soil matrix and the 

fluid. Many investigators have tried to describe this parameter in terms of the charac

teristics of the medium as well as those of the liquid. In this connection use has been 

made of the experimentally derived equation of Poiseuille. According to this equation 

the rate of (laminar) flow through a tube of uniform cross-section is proportional to 

the hydraulic gradient, which is essentially Darcy's law for a column filled with porous 

material. From considerations on the proportionality constant of both equations, it 

follows that (Rose, 1966) 

Ar2 
k = £j_ (15) 

where A is a dimensionless constant, r the 'effective' radius of the pores and n the 

dynamic viscosity of the liquid. The constant A results from the fact that the flow 

through a porous medium is very irregular compared with laminar flow through a tube. It 

contains dimensionless characteristics on the geometry of the soil matrix. A reliable 

expression to relate the constant A to the porosity, shape of the grains, grain-size 

distribution and other geometrical properties of the porous medium has not been found. 

Muskat (1937) suggested to lump A and r into one parameter that is a function of the 

structure of the medium alone and entirely independent of the nature of the fluid. This 

parameter has later been termed 'inherent', 'intrinsic' or 'specific' permeability. This 

concept of inherent permeability is rather not used by soil scientists, because soils 

are in general by no means inert in the physicochemical sense (Childs, 1969). This is 

well-known from farming practice where the structure of clayey soils is improved by the 

application of certain fertilizers. However, in the more inert sandy porous media in the 

absence of air, the concept of inherent permeability proved to be useful and it is gener

ally applied by groundwater hydrologists. Denoting the intrinsic permeability by K, the 

proportionality constant k is given by 

k = S.- (16) 
n 

The hydraulic conductivity K, which appears in Darcy's law expressed in terms of hydrau

lic head may then be written as 

K = pgk = ̂ f (17) 

Since p has been assumed a constant and the fluid homogeneous, the hydraulic conductivity 

K may still be considered as a characteristic of the (saturated) porous medium alone. 

Laplace's equation, earlier derived for the steady conduction of electricity and 



heat was introduced for steady flow in homogeneous saturated media before the end of the 

last century by Slichter (1899). With 39/3t = 0 and K is a constant this equation follows 

directly from Eqn 13 

v \ . ii + i i + ii = o o8) 
3X 3y 3z 

In a horizontal, completely confined aquifer of uniform thickness the specific dis

charge in vertical direction can be disregarded and Eqn 18 reduces to 

ii + ii = o 09) 
3xz 3y 

For semi-confined or leaky aquifers the vertical flux is still small enough to write the 

continuity equation as 

^ • ^ = -q. (20) 
3x 3y H i 

where D is the thickness of the aquifer and q. is the leakage through the upper confining 

layer. Substituting q = -K3<)>/3x and q = -K3<j>/3y into Eqn 20 and assuming the hydraulic 

conductivity K to be a constant in vertical direction yields 

-L (T Mi + J_ <T Mi = n (21) 
3x K SxJ 3y *-x 3yJ q i *• 

where T = KD is termed the transmissivity, a function of x and y in non-homogeneous 

media. The flux q. may be written in terms of the characteristics of the confining layer 

and the hydraulic head of the adjoining aquifer. Using Darcy's law 

qi = -K' ±^-t = - il^l (22) 

where <f>' is the hydraulic head in the adjoining aquifer, K' the hydraulic conductivity 

and D' the thickness of the confining layer. K' and D' are usually expressed as the 

resistance c = D'/K'. If <f>' varies with time, qi is also a function of time and Eqn 21 

describes transient flow in a non-homogeneous, non-deformable, semi-confined aquifer. 

An important class of problems describing essentially horizontal flow are based on 

the Dupuit-Forchheimer assumptions. Dupuit (1863) derived an equation for radial flow in 

an unconfined aquifer assuming that for small inclinations of the free water surface the 

streamlines may be taken as horizontal. Furthermore he assumed that along each vertical 

line the hydraulic head is equal to the height of the free water surface above the hori

zontal impermeable base (thus 3qx/3z = 3q /3z = 0 ) . Applying the equation of continuity 

to flow in any column with a free surface height h above the impermeable base, Forch-

heimer (1886) derived a general equation for flow in unconfined aquifers with water 

tables of low slope. The equation of continuity requires that 



•k <h(U + 4y chV = -y ft (23) 

where y is the 'drainable porosity' or 'specific yield', defined as the volume of water 

extracted from the groundwater per unit area and per unit descent of h. The Dupuit 

assumptions allow the equations of Darcy to be written as q = -K3h/3x and q = -K3h/3y, 

which combined with Eqn 23 yield the equation of Boussinesq (1904) 

è ^ ^ + #<*»#-"$ (24) 

Although Muskat (1937) in a comprehensive discussion strongly took issue with the 

Dupuit-Forchheimer theory and preferred to await the development of a more satisfactory 

solution, the theory has become very popular because it is easy to apply. The errors 

resulting from the Dupuit-Forchheimer assumptions generally depend on the curvature of 

the free surface and tend to be larger for the approximated shape of the water table 

than for the calculated flow rates. For one particular flow problem Charny (see 

Polubarinova-Kochina, 1962) has shown that the Dupuit-Forchheimer assumptions lead to 

the exact solution for the rate of flow. 

The right side of Eqn 24 represents the change in time of the total volume of water 

stored in a column of unit cross-sectional area due to a variation in the height of the 

water table. It has the dimension of a flux. The dimensionless parameter y is a function 

of x, y and t. When the changes in h are small as compared with the thickness of the 

aquifer, Kh may be considered as a function of x and y alone. Substituting the trans-

missivity T = Kh into Eqn 24 yields a non-linear diffusion equation developed by Jacob 

(1950) 

A fr 3h) + _L ft Ü1) = u — + rq. (25) 
3x ll dxJ 3y u 3yJ " 3t Hx l 

where the additional term zq. = q + q_ + q3 + . •• represents sources and sinks such as 

leakage through a confining layer, rainfall, pumpage, etc. The transmissivity T is a 

function of x and y, while q. may vary with x, y and t. Positive values of qA represent 

a sink, negative values a source function. For steady flow conditions the term y3h/3t 

disappears and Eqn 25 reduces to a form similar to the equation for semi-confined flow 

(Eqn 21). These types of equation are known as Poisson equations. 

2.3.2 Unsaturated flow 

Considering flow in unsaturated porous media, the hydraulic conductivity becomes a 

function of the water content, expressible as k = k(e), and the general equation of flow 

may be reproduced in the form 

|| = v-k(e){vp + Pgvz} (26) 



Equation 26 can be solved only if a unique relation exists between k and e as well as 

between e and p. Haines (1930) was among the first to report experimental evidence, using 

sand and uniform glass spheres, that e(p) is not a single-valued function. In rigid soils 

unique relations between e and p exist if the change in 9 is monotonie, i.e. the moisture 

content is either continuously increasing or decreasing. Between these two extreme rela

tions, known as the 'wetting' and 'drying' moisture characteristic, a family of so-called 

'scanning'-curves determine the relation between 6 and p dependent on the past history. 

Hysteresis effects in the relation between k and 6 appear to be less sizable (Nielsen & 

Biggar, 1961; Elrick & Bowman, 1964; Top & Miller, 1966; Poulovassilis, 1969), but if k 

is expressed as k(p) hysteresis in the moisture characteristic is imposed on the relation 

between k and p. 

To convert Eqn 26 into an equation with one dependent variable, the left side is 

written as 

If = | S - CCP) H • C27) 

where C(p) is defined as the specific moisture capacity. Writing Eqn 26 as a function of 

p, Richards (1931) derived the following equation for unsaturated flow in non-homogene

ous, isotropic, porous media 

<*») 3 = & CkûO g) • £ CkûO -g) • h MP) g ) • pg * g * C28) 

which is usually referred to as Richards' equation (Swartzendruber, 1969). The use of 

Eqn 28 is restricted to the class of problems in which the matric pressure changes mono-

tonically, as it fails to take into account hysteresis effects in the relations k(p) and 

e(p). A modified hysteretic version of Richards' equation has been proposed by Miller & 

Miller (1956), but its use is limited as hysteretic relationships are difficult to obtain 

in practice. 

Buckingham (1907) has expressed Darcy's law in terms of 6 with the introduction of 

D(e) = k(e) ^ (m2^"1) (29) 

which later Childs & Collis-Qeorge (1950) noted as being mathematically identical to a 

diffusion coefficient. Application of the soil-water diffusivity D requires that dp/de 

exists, which is not the case for saturated media where p varies and 6 remains a con

stant. Richards (1931) suggested that writing Eqn 28 in terms of the other dependent 

variable 6 is just a matter of mathematical expediency if p is a single-valued function 

of 9. However, Vp can only be expressed in terms of V9 when 9 is continuous and thus the 

medium homogeneous. With reference to these restrictions, Eqn 28 written in terms of 9 

yields the transport-diffusion equation 

S " H M* S> + £ CDCe) fi) + ± cDCo) 'gj + pg 3!gl • (»J 
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which was presented in this form by Philip (1957a). Equation 30 is a non-linear Fokker-

Planck equation. The class of flow problems to which it in general refers is absorption 

and infiltration into homogeneous unsaturated soil. For one-dimensional horizontal flow 

and other instances where gravity may be neglected Eqn 30 reduces to the non-linear dif

fusion equation 

I « & ^ $ (31) 

for which analytical and quasi-analytical solutions have been obtained (Philip, 1969). 

A form of transport of water in porous media that has not been discussed is the 

water-vapour movement. Vapour movement is a process of diffusion rather than mass flow 

and may conveniently be included in the diffusivity term in the Fokker-Planck equation 

(Philip, 1957a). However, vapour movement becomes only a significant fraction of the 

total unsaturated transport when the soil is very dry and the rate of liquid flow close 

to zero (Rose, 1963a, 1963b). Hence vapour movement may be neglected (Miller & Klute, 

1967). This conclusion is only warranted in view of the assumption made earlier that 

isothermal transport of a homogeneous liquid is considered. For conditions that are no 

longer isothermal, vapour diffusion becomes the dominant system in the total moisture 

transport in very dry soil (Philip, 1957b). Rosema (1974), following an approach of 

Philip & de Vries (1957), showed that for wet conditions Eqn 28 cannot be used to de

scribe the diurnal change in the total moisture flux in the top layer of a bare soil. 

For an analysis of the simultaneous transport of water and heat from the point of view 

.of irreversible thermodynamics the reader is referred to e.g. Cary & Taylor (1962) and 

Cary (1963, 1966). 

2.4 METHODS FOR SOLUTION OF FLOW PROBLEMS 

To solve problems of groundwater flow a system (real or abstract) is derived to 

simulate the operation of the prototype system with the limits of accuracy required by 

the problem under study (Dooge, 1973 and 1977). Such a simulation system is termed a 

model. The process of simulation is then the operation of the model to predict the re

sponse of the prototype system. In this sense, differential equations governing ground

water flow are models, and simulation of a groundwater flow system involves the solution 

of a differential equation. Mathematical models use analytical or numerical techniques 

to obtain this solution. 

A mathematical model represents an abstract system. Real simulation systems include 

physical and analogue models. These direct simulation methods are first reviewed brief

ly. Mathematical models, which are of primary interest for this study, are discussed in 

more detail afterwards. 

2.4.1 Direat simulation methods 

Physical models comprise one-dimensional flow in soil columns and two or three 
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dimensional flow in sand tanks. The porous medium is usually homogeneous, isotropic and 

consists of artificial or natural granular material. For saturated flow the model is of

ten a scaled-down version of the aquifer, which involves the use of scale factors. Since 

the same laws governing flow apply to both the model and the prototype system, physical 

models are in particular useful for comparison with theory. Application of sand tank 

models to regional flow problems have not been reported, probably due to the restrictions 

imposed by the scale factors (Prickett, 1975). 

Analogue solutions of groundwater flow problems are based on the principle that 

systems belonging to an entirely different physical category are described by essentially 

the same equations as those governing flow in porous media. Similarity of Darcy's law to 

the equation for laminar flow of a viscous fluid through a circular tube has already been 

mentioned. A model for transient, unsaturated, vertical flow based on this analogy was 

built by Wind (1972). The model consists of a number of vessels each representing one 

soil layer. When appropriate scale" factors are used, the shape of the vessel, its liquid 

content and level represent the moisture characteristic, moisture content and matric 

pressure, respectively. The non-hysteretic flow process is simulated by the flow of a 

viscous fluid through a number of tubes connecting the vessels. The model has been 

successfully used for flow in heavy soils with a high water-table and under wet condi

tions. 

A viscous fluid analogue for saturated groundwater flow is the parallel plate model. 

This model is usually called Hele-Shaw model, because Hele-Shaw (1898) first noticed the 

analogy between the equation for two-dimensional laminar flow of a viscous fluid through 

a narrow interspace between two parallel plates and the equation of Laplace. It can be 

shown that Poiseuille's law applied to this flow system is the analogue to Darcy's law 

for groundwater flow (Lamb, 1932, p. 582). The model is used in vertical position to 

simulate two-dimensional steady or transient unconfined flow for a variety of boundary 

conditions (e.g. Awan & O'Donnell, 1972). Non-homogeneity of the porous medium is imita

ted by variations of the width of the interspace. In horizontal position the model has 

long been used to study steady confined and unconfined flow problems. Santing (1958) 

extended its use to simulate the diffusion equation with the introduction of a number of 

vessels on top of the model to imitate storage capacity. The model is suitable to simu

late numerous groundwater flow problems including steady, transient, confined and un

confined flow in homogeneous or non-homogeneous media in the presence of sources and 

sinks, rainfall and evaporation. A disadvantage of the model lies in the fact that the 

transmissivities are constant in time and difficult to change once the model is con

structed and the width of the interspace has been fixed. Viscous flow models are re

stricted to simulate two-dimensional flow problems. The models are difficult to con

struct and the complicated operation requires a temperature controlled environment. 

The analogy of Darcy's law and Ohm's law governing the steady flow of an electri

cal current through a conductive medium has led to numerous electrical analogue models 

for groundwater flow. The model may be a continuous or discrete representation of the 

porous medium. Continuous systems are used to study steady groundwater flow problems. 

The conductive material may be an electrolyte in an insulated tank or solid material 

from which the conductive Teledeltos paper is most commonly used. The shape of the 
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conductive medium is a scaled-down version of the aquifer. Teledeltos paper is used to 

solve two-dimensional homogeneous flow problems. For the simulation of two-dimensional 

flow problems with liquid models non-homogeneity of the aquifer may be imitated by 

varying the bottom level of the tank. De Josselin de Jong (1962) combined two liquid 

tanks by a resistor network to study steady flow in two aquifers separated by a con

fining layer. 

With a discrete electrical analogue model the properties of the porous medium are 

simulated by a network consisting of electrical elements. The network is a scaled-down 

version of the hydrologie prototype. At the nodes appropriate electrical voltages and 

current sources can be introduced to represent corresponding boundary conditions and 

sources or sinks. The electrical elements simulating transmission and storage are re

sistance and capacitance. Resistance network analogues are used to solve steady flow 

problems. Herbert (1968) showed that problems of two and three dimensional transient 

flow may be solved by a stepwise solution, considering the time-variant flow process 

as a succession of steady-states. This method is rather time consuming and introduces 

extra errors due to discretizing the time parameter. Transient flow problems are more 

conveniently handled with resistance-capacitance networks. Resistance-capacitance ana

logues are the most versatile analogue models for analysing sub-surface flow systems, 

but there is a limit to the complexity of the flow system they can handle (Bouwer, 

1967). This refers in particular to the inclusion of transient unsaturated flow (Wind & 

Mazee, 1979). 

Comparing results from analogue models with numerical solutions obtained with a 

digital computer, Prickett & Lonnquist (1969) concluded that digital methods are less 

time consuming for model construction and operation, and superior for non-linear 

problems. For the simulation of large groundwater flow systems requiring many time in

crements and a large core storage, analogue models are less costly to operate than 

digital models but the data handling is more difficult. This problem can be solved by 

combining resistance network and digital computer into a hybrid computer model. This 

allows the groundwater flow problem to be programmed as for a pure digital computer 

solution, but the non-linear partial differential equation is solved by a resistance 

network. Since the solution with the resistance network is almost instantaneously ob

tained it serves as a subroutine in the digital computer program which reduces the com

putational time drastically (Vemuri & Dracup, 1967). 

Apart from viscous fluid and electrical analogue models there are several other 

simulation techniques based on analogy (Karplus, 1958) from which the stretched membrane 

analogue model is worth mentioning. The model consists of a thin rubber sheet stretched 

with uniform tension. The shape of the membrane due to a point load which represents a 

source or sink is governed by Poisson's equation. The tension of the sheet and the ver

tical deflections are analogous to aquifer transmissivity and hydraulic head variations, 

respectively. The model is' simple and inexpensive when used to simulate steady flow 

problems of multiple wells in homogeneous aquifers. De Josselin de Jong (1961) pointed 

out that accurate solutions can be obtained with an optical technique for the observa

tion of the simulated flow pattern. 
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2.4.2 Mathematical models 

Mathematical models describe the prototype system by a set of algebraic formulas. 

The nature of the formula depends on the approach used to solve the groundwater flow 

problem. This approach may range from a pure black box analysis, via conceptual models 

to the mathematical physics approach. Strictly speaking, it is difficult to distinguish 

between the different approaches, since almost every mathematical model contains to a 

certain extent conceptual elements. The mathematical physics approach results in differ

ential equations, and the particular forms of the general equation derived in Section 2.3 

are generally accepted to belong to this category. 

Mathematical models use analytical or numerical methods to solve the governing 

equation of flow. The solution requires that the geometry of the one, two or three di

mensional region in which flow is considered is specified as well as the conditions that 

apply at the boundary of the flow domain. If at the boundary the value of the dependent 

variable is given, the boundary condition is known as the Dirichlet condition. Flux, or 

Neumann conditions refer to situations for which the flux (or zero flux) normal to the 

boundary is specified. If for different parts of the boundary different types of boundary 

conditions apply, the system is known as a mixed boundary value problem. The use of 

derivative boundary conditions for the solution of a steady-state flow problem requires 

that the net flow out of the flow domain equals zero. Moreover, to arrive at a unique 

solution for a typical Neumann problem an additional parameter is needed. Well-defined 

boundary conditions are sufficient to obtain a particular solution of a steady-state 

flow problem. But for the solution of a transient flow problem, the initial condition 

as well as changes in boundary values with time have to be specified. 

Analytical methods 

Much effort has been made to derive analytical solutions of flow problems. In gen

eral analytical solutions can only be obtained for homogeneous media and when sufficient 

simplifying assumptions are made. For saturated flow these have led to a great number of 

groundwater formulas. Well-known formulas are the Theis and Hantush equations for tran

sient radial flow to a well. These equations are important for an approximation of the 

performance of wells and aquifer in the absence of sufficient data. For this purpose the 

properties of the aquifer and its boundary conditions are idealized. Imaginary wells are 

used to reproduce the same disturbing effects as the idealized geological boundary. A 

solution may then be obtained by using the principle of superposition for the effects of 

real and imaginary wells in an infinite aquifer (e.g. Walton & Neill, 1960). 

A semi-analytical solution is obtained with the boundary element method (Brebbia, 

1978). The boundary of the two-dimensional flow domain is divided into a series of ele

ments. Van der Veer (1978) used a continuous distribution of sinks, sources and vortices 

over each element to generate a flow pattern in the domain. The solution found by en

forcing the flow pattern to satisfy the boundary conditions, is obtained by numerical 

techniques and is exact in the region enclosed by an approximate boundary. 

For the derivation of the Theis and Hantush formulas the Boltzmann substitution has 
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been used to transform the partial differential equation into an ordinary differential 

equation. This reduction in the number of independent variables is known as similarity 

substitution and is only useful if the variables removed from the equation are also 

removed from the governing conditions by the same substitution. The Boltzmann similarity 

substitution may also be used to solve the Fokker-Planck equation for unsaturated flow. 

This results in a semi-analytical solution for which an efficient numerical method was 

introduced by Philip (1955). 

Pure analytical solutions which are found completely by mathematical analysis can

not be obtained for transient unsaturated flow unless some non-realistic assumptions are 

made. For instance, assuming D and k to be constants, the one-dimensional Fokker-Planck 

equation reduces to the linear diffusion equation 

|f = D 4 (32) 
3x 

for which solutions for a great number of boundary conditions are readily available 

(Crank, 1956; Carslaw & Jaeger, 1959). 

For solving practical problems, analytical and semi-analytical methods are often 

unsuitable. However, from solutions obtained with such methods one can gain a better 

understanding of the fundamental structure of the flow problem than with an incidental 

numerical solution. 

Numerical methods 

The solution of differential equations governing flow may be approached numerically 

using a finite element or finite difference method. With finite element methods, the flow 

problem is either reformulated using variational calculus (e.g. the Rayleigh-Ritz method) 

or balanced using weighted residual principles (e.g. the method of Galerkin). For two-

dimensional flow a solution is obtained by first sub-dividing the flow region into elemen

tary sub-areas, the elements. The size of the elements may vary, the shape is usually tri

angular or quadrangular. The independent variable in the interior of the element is ex

pressed in terms of its value at the corner points. Application of finite element methods 

results in a set of simultaneous equations. Various techniques to solve sets of simultaneous 

equations are discussed later in this section. 

The finite element method is a quite recent development in the field of sub-surface 

hydrology (Zienkiewicz, 1967). Its relative merits compared with the 'classical' finite 

difference technique have to be further established, as the number of comparisons be

tween both methods is still limited. A distinct advantage of the finite element method 

is the ability to generate easily any irregular grid to describe the flow domain. For a 

regular grid of triangular elements, the method yields for the two-dimensional equation 

of Laplace the same set of simultaneous equations as generated by a finite difference 

technique (Remson et al., 1971). 

For a finite difference approach a grid has to be defined with dimensions depending 
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Fig. 1. The finite difference grid 
for Eqn 32 with distance x and 
time t. 

on the number of independent variables that appear in the partial differential equation. 

If the one-dimensional diffusion equation (32) is taken as an example, the grid will have 

two co-ordinates: distance x and time t, as shown in Fig. 1. Every point in this finite 

difference grid corresponds to a specific point in space at a specific instant in time. 

It is convenient to choose a regular grid with constant At and Ax but this is by no means 

a requirement (.e.g. Tyson & Weber, 1964). If the co-ordinates in the x,t plane are indi

cated by i and n, the solution at any given grid point or node (i,n) is 6n. For n = 0 

initial values for 9 have to be given and if the flow domain is divided into m equal 

intervals, boundary conditions for i = 0 and i = m have to be specified for each time 

level n. 

The finite difference approach replaces the derivatives of the partial differential 

equation by their finite difference analogue. This approach may lead to an explicit or 

implicit finite difference scheme. An explicit scheme is obtained if the time derivative 

is replaced by a forward difference approximation between the n and n+1 time level and 

the space derivatives are replaced by their finite difference analogues at the n time 

level. Applied to Eqn 32 this yields 

ei 9i 
At 

i+1 
AX 

e n - e11 , 
1 1-1 

AX 
AX 

(33a) 

which can be written as 

„n+1 = e n
1 + D At 

(AX): C6i-, i i+i' 
(33b j) 

In Eqn 33b the unknown value of the dependent variable at time level n+1 is explicitly 

expressed in terms of known values at the time level n. To solve Eqn 33b Dirichlet con-
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ditions have to be specified. Flux conditions involve an extra equation. For instance, 

if at the boundary x the flux q" is specified an imaginary node is introduced as fol

lows 0n _ eii 
„ m+1 m-1 

TÎScJ \ 
(34a) 

to be written as 

n̂ 2 ( A x ) n11 + en (34b) 9" , = ~ s " v q~ + 6" . 
m+1 D ™ m-1 

With the introduction of imaginary nodes when flux conditions are specified at the 

boundary, 6 can be solved at the end of the first time increment through a repeated 

application of Eqn 33b. Once these values are computed, Eqn 33b is used again to move 

the solution forward by another time increment. Although the explicit finite difference 

scheme appears to be a simple straightforward technique, it has found little application 

in the field of sub-surface hydrology (Remson et al., 1971). The reason is that the 

method is unstable and leads to a meaningless solution due to the amplification of 

round-off errors, unless the inequality 

D At ^ 1 (35) 
7772 2 (Ax) 

is satisfied (Richtmyer & Morton, 1967). Moreover, Eqn 35 is a requirement for the finite 

difference approximation to converge to the true solution when in the limit Ax and At 

approach to zero. Because stability and convergence criteria imposed on an explicit 

finite difference scheme often lead to unacceptable restrictions on the choice of Ax and 

At, an implicit scheme is usually preferred. Such a scheme is obtained if the time 

derivative is replaced by a backward difference approximation between the n-1 and n time 

level. If this scheme is applied to Eqn 32, the resulting equation 

_n „n-1 - Qn 9fln fln 
9i - 9i _ D

 9i-1 2 9i ei+l (36) 
A t (AX)2' 

contains three, unknowns. If for the first time level Eqn 36 is written for each node, 

this results in (m-1) equations with (m-1) unknowns. Through a simultaneous solution of 

this set of equations values for 6 at the first time level are obtained. The procedure 

is repeated to move the solution forward in time. The truncation of the Taylor series 

which is used to convert the partial differential equation into a finite difference form 

results in a truncation error. This error can be reduced with the Crank-Nicolson scheme, 

which uses the central time difference by approximating the space derivatives half way , 

täw level n-1 and n. The Crank-Nicolson approximation of the linear diffusion equation 

(32) is , 

e^-er1 iffl
p , - 28^en^M1Heg_12e;-' * e£j) (37) 

-T-=D— i ~ 7 A ^ 
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The central (37) and backward (36) difference approximations lead to similar implicit 

schemes, which are unconditionally stable. The second order accuracy of the Crank-

Nicolson scheme usually results in a faster convergence. The coefficient matrix which is 

obtained from Eqns 36 and 37 has a tridiagonal form. It is efficiently solved by a 

Gaussian elimination technique known as the tridiagonal algorithm. 

If two space parameters (x,y) are involved the implicit finite difference approxi

mation yields equations with five unknowns. Peaceman & Rachford (1955) proposed a method 

which enables the application of the tridiagonal algorithm for the two-dimensional prob

lem. The method is known as the alternating direction implicit (ADI) method. It requires 

two advanced time levels for a complete application. Time level n is approached with an 

equation equivalent to Eqn 36 where the finite difference analogue of 3 e/3y is evalu

ated at time level n-1. Next lines parallel to the x co-ordinate are solved, one at a 

time in the direction of increasing y. For the second step the treatment of the space 
2 2 

parameters is the reverse, i.e. the finite difference approximation for 8 e/3x is 
2 2 

evaluated explicitly in terms of the known values at time level n and 3 e/3y is ex

pressed implicitly for time level n+1. The ADI technique is unconditionally stable and 

the resulting coefficient matrix for each line has the advantageous tridiagonal form. 

According to Rushton (1974), singularities in the flow domain may impose restrictions on 

the use of the method. Many successful applications in the field of saturated (e.g. 

Pinder & Bredehoeft, 1968) as well as unsaturated (e.g. Rubin, 1968) groundwater flow 

have been reported. The ADI technique can be extended to solve three-dimensional prob

lems (Douglas & Gunn, 1964). 

The finite difference and finite element methods have in common that they both give 

rise to a set of linear (or linearized) equations. For the solution of a system of si

multaneous equations direct and iterative methods may be used. A direct method is the 

above-mentioned tridiagonal or Thomas algorithm, which can be applied to coefficient 

matrices that show a tridiagonal form. This algorithm effectively reduces the implicit 

scheme to two explicit schemes. It is obtained through a decomposition of the coeffi

cient matrix into a lower triangular matrix and an upper triangular matrix. First the 

lower triangular matrix is solved by forward substitution and then the upper triangular 

matrix is solved by backward substitution. Since this method greatly reduces the number 

of computational steps when compared with other Gaussian elimination methods it is 

economical with respect to computer costs (Isaacson & Keller, 1966). Applications of the 

tridiagonal algorithm in the field of sub-surface hydrology are numerous, e.g. Hanks & 

Bowers (1962), Liakopoulos (1965), Rubin (1969), Jensen & Hanks (1967), Freeze (1969). 

Most of the sub-surface flow equations are non-linear. Only if the coefficients of 

the derivatives in the differential equation are a function of the dependent variable 

does the implicit finite difference scheme generate a set of non-linear difference 

equations. This applies in particular to equations describing unsaturated flow in which 

functions appear such as k(8), D(e) and C(p). Since direct methods solve the coeffi

cient matrix only once to advance the solution from time level n to n+1, the values of 

the dependent variable at the advanced time level cannot be used to obtain the average 

values of the coefficients. The most obvious and simple approach is the use of coeffi

cients evaluated for the known value of the dependent variable at time level n. Since 



the values of the coefficients often change rapidly with a small variation in the value 

of the dependent variable, this results in a loss of accuracy unless small time steps 

are employed. The linearization technique may be improved if extrapolated values of the 

dependent variable from previous time levels are used to estimate the values of the 

coefficients. This technique used by Rubin & Steinhardt (1963) is less suitable for 

systems where the value of the dependent variable is not monotonically increasing or 

decreasing. Douglas & Jones (1963) proposed a predictor-corrector technique which is 

particularly suited to mildly non-linear, one-dimensional, parabolic differential equa

tions. The method is stable when used in combination with the tridiagonal algorithm. It 

involves two applications of the Crank-Nicolson scheme. The first step, known as the 

predictor, solves the system of equations for time level n+|. This facilitates the 

evaluation of the coefficients at this time level. For the second step, known as the 

corrector, the Crank-Nicolson scheme is applied to advance the solution from time level 

n to n+1, using the predicted values of the coefficients at time level n+J. With hys

teresis the non-linearity may render the solution unstable and less accurate. Predictor-

corrector techniques have been used by e.g. Molz & Remson (1970), Hornberger et al., 

(1970), Homberger & Remson (1970). A disadvantage of the method is that it requires 

twice as much computer time. Even more time-consuming is a method used by Klute et al. 

(1965) where the system of equations is repeatedly solved to improve the values of the 

coefficients in the non-linear equations. 

With complicated problems or when the non-linearities are more pronounced, iterative 

methods are preferred to the direct Gaussian elimination technique. Moreover, iterative 

methods are the only means to solve coefficient matrices which result from differencing 

elliptic equations. If the linear two-dimensional Laplace equation (19) is taken as an 

example, the most simple Jacobi iterative scheme which results from differencing this 

elliptic equation is written (with Ax = Ay) as 

•nj-»ï - . . j+*ï+ . . j + *Lj-. + ^ . v 4 (38) 

where r is the iteration index and i,j indicates the location or the node in the x,y 

plane. For the solution of an elliptic problem an initial guess for ̂ ^ is required to 

start the iteration. If the scheme is executed in a specific order, earlier improved 

values of $ can be used to speed up the rate of convergence. This technique is known as 

Gauss-Seidel iteration and can be written for Eqn 19 as 

•n ] - c« ! f J
 + <j-. + ^ . . j + * u . ) / 4 (39) 

The rate of convergence is greatly improved with a scheme known as the successive over-

relaxation (SOR) method. It uses an acceleration parameter <o and can be written for 

Eqn 19 as 

where generally 1 < u < 2. For certain problems an optimum value for o> may be obtained 

from theoretical considerations, for other problems empirical formulas or trial and 
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error procedures have to be used. Many applications of point-iterative methods (Gauss-

Seidel and SOR) to transient and steady flow problems have been reported in literature. 

They include saturated (e.g. Remson et al., 1965; Freeze & Witherspoon, 1966; Taylor & 

Luthin, 1969) as well as unsaturated (e.g. Watson, 1967; Ibrahim & Brutsaert, 1968; 

Wisler et al., 1968) flow conditions. 

Instead of improving the value of the dependent variable for' each node indepen

dently, a block or line successive over-relaxation (LSOR) method may be used. If LSOR is 

applied to the two-dimensional problem (19), the iterative scheme for each horizontal 

line of the x,y difference grid can be written as 

1,J L >J 4 i-l »J i+l,J *i,j-M Vi,j + H (41) 

The system of'equations generated with Eqn 41 is efficiently solved with the tridiagonal 
algorithm, since <(£!_, is known from previously obtained values for the nodes on line 
j-1. 

A more implicit solution is obtained with the alternating direction implicit pro

cedure (ADIPIT), the iterative variant of the ADI method. Each iteration cycle consists ' 

of solving simultaneous sets of equations for rows and then for columns. The rate of 

convergence greatly depends on the choice of the acceleration parameter which varies in 

a cyclic manner (Wachspress, 1966). Applications of LSOR and ADIPIT methods have been 

reported by e.g. Bredehoeft & Pinder (1970), Prickett (1975), Vauclin et al. (1975). 

With the above-mentioned techniques, stable and convergent solutions can be obtained 

for relatively simple, non-linear flow problems. For complicated problems Stone (1968) 

proposed a more powerful technique known as the strongly implicit procedure (SIP). How

ever difficulties arise when the finite difference approach is used to solve multi

dimensional, saturated-unsaturated flow problems for heterogeneous media or where the 

geometric boundary of the flow domain is irregular (Vachaud et al., 1975). These diffi

culties do not occur with the application of the finite element technique. This method 

is flexible for use in an irregular flow domain and allows at the boundary a change from 

Dinchlet to Neumann conditions during a single time increment. 

A recent numerical approach, commonly referred to as numerical simulation is used 

to solve transient one-dimensional unsaturated flow problems. For this purpose the soil 

co umn is divided into a number of layers. To each separate layer and for a small time 

™ ' Da7 ! l3W «* * » P r i n c i P l e »f continuity are applied. This results in the 

ea^ ar" * & T ̂  ** "** * ""*** * " ValUe £or the misture «»tent of 
71 " ?" fl0W m e S arS CalCUlated -^Pendently of each other the p ^ c e -

Zank «Tws? 6XPli? meth°d t0 Whidl the earlier mentioned ̂ i c t i o n s *»»• 
l l t v a r 9 7 3 ^ r ° P ° s e d * numerical simulation technique in which the number of 

Z J 9 7*r i l y * aCCOrdanœ Wlth the dBn^ m0iStoe P™^- * »it * 
2 T on̂ uir V3n K6Ulen ° 9 7 5 ) M E SPeCial C0mpUt6r l a n ^ e developed by 
%Z - ~ s -~i i ,g Prog™ W ) ) which greatly reduces ro_ 
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Numerical methods have proved to be an important tool in the solution of compli

cated flow problems. Nevertheless, mathematical analysis of flow processes is of impor

tance to gain a better understanding of the structure of the solution and for comparison 

with results obtained through a numerical approach. Analytical or semi-analytical methods 

are particularly useful when a first estimate of quantitative aspects of a flow system 

is required. 

Analogue methods are used to solve a wide variety of flow problems. The construction 

of a resistance-capacitance network does not necessarily require more time than the setup 

of a numerical computer program. Analogue models are less costly to operate, but computer 

methods are more efficient in handling input and output of data. The size of the core 

memory of the computer and the running costs are limiting factors in the application of 

numerical methods to large problems (Freeze & Witherspoon, 1968). However these limits 

are rapidly extending due to advances in the field of computer technology. As computer 

programs are easily changed and adapted to other problems, they are in many cases con

sidered superior to direct simulation methods. 
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3 Saturated-unsaturated flow 

3.1 THE TRADITIONAL APPROACH 

As a result of the traditional approach to treat flow in porous media of which part 

is saturated and part unsaturated separately, an interface between both flow systems 

must be defined. For this purpose the level in the soil where the pressure is atmos

pheric, known as free water level, water table or phreatic surface is most commonly used. 

It has the advantage that it is easily measured in the field and constitutes a flow line 

when there is steady flow without accretion from the overlying unsaturated region. The 

actual saturated zone extends to a little above the free water level due to capillary 

rise. The region of complete saturation above the water table was originally termed 

capillary fringe ('capillaire zone') by Versluys (1916). The height of the capillary 

fringe depends on the air entry value, i.e. the negative pressure at which the soil 

begins to desaturate. Gradually a less well-defined definition has come into use to in

clude the height above the water table at which desaturation becomes considerable or even 

to include the entire region of unsaturated flow. Some textbooks on groundwater flow 

(e.g. Verruijt, 1970; Bear, 1972) misuse the term 'capillary rise' for the height of the 

capillary fringe. Capillary rise refers to a phenomenon (Breaster et al., 1971) and the 

height of capillary rise is a quantity used with respect to well-prescribed conditions 

of unsaturated flow (Wesseling, 1957). 

When solving saturated groundwater flow problems, the phreatic level is usually 

taken as the upper boundary of the flow domain, disregarding water movement in the over

lying unsaturated zone. Since the conductivity in the region just above the water table 

is approximately equal to the saturated hydraulic conductivity, some authors (e.g. 

Youngs, 1969) include the capillary fringe in the flow domain. However the height of the 

capillary fringe is generally small compared with the saturated thickness of the aquifer 

and for practical purposes the phreatic level is taken as the upper boundary of the 

saturated region. 

Another concept inherent to the separate approach to saturated-unsaturated flow is 

specific yield. It is often defined as the volume of water released from a soil column 

of unit area, extending from the water table to the soil surface if the water table is 

lowered a unit distance. For the analysis that follows it is necessary to define more 

precisely the fluxes in the vicinity of a moving water-table 

Consider a change in the position of the phreatic level Ah = h_ - h, during a single 

Urn increment At and assume that flow in the unsaturated soil c o l L is in vertical 

fc a a T H ?" ?" ̂  aVSrage £1UX dUrlng *» time lnCrement « ™ * ** soil sur-
to defne f n* ? " ^ ^ leVel' " d e n ° t e d b y qs ( P ° s i t i v e W s ) . In an attempt 
to define sunilarly the flux across the water table, difficulties arise as its position^ 
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Fig. 2. The different levels at which the vertical 
fluxes are defined. The numbers (1) and (2) indi
cate possible soil moisture distributions corre
sponding to the water-table elevations h. and h„, 
respectively. 

Fig. 3. Typical relations between the 
specific yield u and the depth of the 
water table w for the situation that 
water is released from an initially 
saturated column at a steady rate a-
cross the soil surface (Curve a) or 
at a steady rate across the water 
table (Curve b ) . 

is not stationary. If storage changes occur between the levels hj and h2, the flux across 

the initial level h. is definitely not equal to the flux across the final level h2> To 

avoid ambiguities due to a moving water-table, a third level h3 is defined just below h2, 

so that h 2 - h is very small. The flux o^ across the lower level h 3 is taken as 'the 

flux across the water table'. Disregarding horizontal flow components in the small region 

just below the water table, the flux across level h 2 is equal to q ^ 

According to the definition given above, the specific yield u may be formulated as 

fe. qs) At/Ah 
(42) 

Fig. 3 shows typical relations between the specific yield v and w, the depth of the water 

table below soil surface. Curve a represents the situation when water is released from 

an initially saturated column at a steady rate across the surface (qw = 0 ) , and Curve b 

for a steady rate across the water table (qs = 0). In the field of saturated groundwater 
flow, the definition of specific yield is generally meant to refer to the latter situ

ation where in isotropic, homogeneous soils u approaches an approximate constant value 

when the water table is sufficiently deep. When solving unconfined flow problems the 

specific yield is usually considered as a constant property, characteristic of the 

W e r . Its value is taken equal to the average air content at the soil surface (Fig. 2, 

"here for the situations (1) and (2) equilibrium conditions are assumed). The fallacy of 
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this approach for rapid fluctuations or shallow water-tables has been pointed out by 

Childs (1960) and is extensively discussed by dos Santos & Youngs (1969). 

For the solution of unconfined flow problems that take into account flow from or to 
the unsaturated zone, y is usually defined as 

»=(•%- %) " / A h ( 4 3 ) 

where qu (Fig. 2) represents the flux into the unsaturated zone (positive) or recharge 

at the phreatic surface from the overlying unsaturated region (negative). The definition 

of » with Eqn 43 is equivalent to that with Eqn 42 if the level h, is taken at the soil 

surface. In practice, the level for h, is chosen such that qu approaches a constant value 

equal to the long term average f lux across the soil surface. V i s yields an approximate 

constant value of v> which facilitates the solution of equations for saturated unconfined 

flow. 

Writing Eqn 43 in differential form for two space dimensions gives 

v at + % = V*.y>t,h) . (44) 

where v and qu may be functions of x, y and t. If for convenience, q is considered as 

the « l y source or sink function, the right side of Eqn 25 may be replaced by Eqn 44 to 

'S W>* & * % (T(x,y) f ) = qw(x,y,t,h) ( 4 5) 

Equation 45 describes steady flow in a non-homogeneous unconfined aquifer. Transient flow 
may be approached by a succession of steady-state situations (Muskat, 1937). If the time 
dependent function % is given for each tüne step, the use of Eqn 45 does not require 
the concept of specific yield. 

« • O M " S h T d be rCaliZed ̂  ** 6XaCt f 0 ™ l a t i 0 n °f the saturated unconfined flow 
problan 1S far more complicated. When considering three-dimensional flow in an isotropic 

ZST \Z 7\m T"17 °f *" PhreatiC SUr£ace is a priori *•—•Af-
facTz; iiziLz continuity equatim for a snan eiement a^*• *- — 

v£ -%-%-%§ - q y f , (46) 

qheIqu^ârdTSentS ? S P e C i £ i C d i S C h a r g e * ^ «**"**** - o r n a t e direction, 

^r s i 1 Td": 6 UnSatUnited Z ° n e "* h 1S the Z C 0 - d i ^ °f *» fee sur-race, bince the hydraulic head j f r T , t i - , i / 
follows for z = h that « * • * * . « " * • vUg and p = 0 at the free surface i t 

+(x,y,h,t) = h 
or (47) 

h = *(x,y,h(x,y,t),t) = *(x,y,z,t) 
z=h (48) 
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Partial differentiation of h yields 

* = 11 + 11 Ui o r 11 = ih f H 
3x 3x 3z 3x ° r 3x 3x U 3zJ (-4ya-) 

ih = i l + ii ill o r 11 = là h . lij f 4 9 b> 
3y 3y 3z 3y U I 3y 3y u 3zJ ^yD} 

* = 1 1 + M Hi „ r Ü = ^ 1 fl 111 CiQrl 
3t at 3z at at at u azJ (-4ycj 

Substituting Darcy's law (11) for the specific discharges into Eqn 46 gives for the 

elevation h = h(x,y,t) of the moving free surface 

3h _ K- 3£ 3h . -v- 34« Hi _ y M. - n f501 
u - 3 t _ K 3 l 3 l E + K 3 7 3 y K a i % LbUJ 

Multiplying Eqn 50 by (1 - | £ ) and substituting Eqn 49 yields the boundary condition at 

the free surface 

v | 1 = K(|i)2 + K(|i)2 + K(f£)2 - K(|i) - quC1 - | f ) (51) 

Equation 51 and the equation for saturated flow, rewritten as 

V • (KV*) = 0 ( 5 2 ) 

have to be solved simultaneously, subject to appropriate boundary conditions at the fixed 

frontiers to determine <Kx,y,z,t) everywhere in the flow domain. Since solutions are only 

possible in a very limited number of cases, the Dupuit-Forchheimer assumptions are 

generally applied to exclude the vertical flow component. The advantages are that the 

number of independent variables i s reduced by one and the solution of the resulting 

equation (the equation of Boussinesq (24)) directly yields the position of the free 

surface. However the equation i s s t i l l non-linear and two-dimensional analytical solu

tions have not been obtained. A numerical approach was presented by Lin (1972) resulting 

in a complex f in i te difference scheme which is efficiently solved using the ADI tech

nique. 

There are several methods to linearize either the equation of Boussinesq or the 

free surface boundary condition (51). A linearization technique often applied to prob

lems where the change in h i s small compared with the total thickness of the aquifer, 

p l a c e s ifc by the average transmissivity T, resulting in the diffusion equation (25) 

which is l inear in h. The objections to the use of the diffusion equation to saturated-

"nsaturated flow problems result from the following simplifications: 
1- the assumptions made to fac i l i ta te a numerical solution (Dupuit-Forchheimer approxi

mation and l inearization), 
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2. the flew is restricted to the saturated domain, 

. 3. the change in volume of water per unit area per unit change in head is instantaneous 

and constant, 

4. the flux q^ is independent of the saturated flow system. 

The objections are less severe or disappear for flow in horizontal, thick aquifers in 

which the water table is sufficiently deep (say more than 5 m below soil surface) and 

where fluctuations in the position of the free water level are small and slow. However, 

with transient flow to a gravity well (pumping test) and flow in shallow water-table 

aquifers, the above assumptions are seriously violated. Since Theis (1935) derived an 

exponentional integral for non-steady flow to a well in a homogeneous, isotropic aquifer 

which is pumped at a steady rate, Theis' formula has extensively been used to determine 

the formation constants („ and T). It has long been recognized that, as a result of the 

rapid drawdown in the vicinity of the well just after pumping has started, deviations 

from Theis' non-equilibrium curve occur. According to Walton (1960) the specific dis

charge at the very early stages of pumping in an unconfined aquifer is small due to a 

delay in yield (slow drainage) and merely results from a compression of the aquifer and 

expansion of the water. During the next stage the delayed yield reaches the water table 

and the aquifer behaves as a semi-confined aquifer tending to equilibrium conditions. At 

late time w approaches a constant value and the time drawdown curve merges with Theis' 

non-equilibrium curve. 

In this connection Boulton (1955, 1963) introduced the concept of 'delayed yield'. 

lesulZl f Part °f ̂  SPeCi£iC yi6ld' *A - instantaneous and that a part „ , 
ui ing rom a unit drawdown at time T reaches the water table according to thXpir-

I t a T U ""B eXP{" aCt " T)}' WhSre t>Tand V a iS the ^ y i n d - > - empirical 
Z n S n f en.!XPreSSed ln " * » * » « h — • «hen water is extracted from a well in an 
unconfined aquifer, the flux q, resulting from the drawdown of the water table is given 

^•'Aïï^/ïï^^fc (53) 

v"luatedtooî f j ^ ™ * 5 % = ".<«• though Boulton's convolution integral is a 

^ e H?rS t6S t e V a l U a t i ° n " haS reCeiVSd i t S S h - ° f ~ i t i c sm. Boulton 
Z17Z1TI T meth°d 1S °n ly C a P a M e °f e X p r e S S i l * " - * a - t i an of time 
: l ; ^ - ! ' T 1 0 " W l t h d i S t a n C e t 0 * - W e l 1 - S i n c e ** e f f - t s of ver
ein T^l \ d ! f S l 0W d r a i n a g e a r e b ° t h *»** *»" *e empirical coeffi-

sion I^ZJ^Z™^™?, merng'CNeman' ̂ ••*'— 
ceased. Moreover it has b J , ^ W a t e r " t a b l e r e s P^e has not yet 
also be der vldw Lout ^ ^ ^ ^ ^ *™ * * »*» l inage may 
Cooley i cZ Z T ^ * * * * * ^ ^ " s o v a . 1972; Neuman, 1972; 

s^7:Tre~Za
fl°" 'T1118 S h a l l W W a t e r " t a b l e S h a S b - extensively 

stricted t f i l * T T « a g r i C U l t U r a l l a n d s - *** of the studies were rl-
Bdelman, m Ï ^ " £ £ * ™ « * " * * « » * * » fro. rainfall (e.g. 
Maasland, 1959). Laborator I T ' K r a i ^ ° « van de Leur, 1958; Isher̂ ood, 1959; 

Laboratoxy experiments carried out by Luthin » Worstell (1956) and 

26 



Vachaud et al. (1973) clearly showed the variable nature of y. Where with pumping tests 

this variability merely results from the rapid drawdown of the free water level, the 

specific yield in the shallow water-table case rather depends on the depth of the water 

table below surface. For this reason Brutsaert et al. (1961) proposed an approximate 

solution which treats u as a function of the elevation of the free water level. 

The traditional approach to unsaturated flow considers transport of soil moisture 

in the vertical direction only. Most of the papers deal with infiltration into a homo

geneous, semi-infinite medium. The unsaturated zone extends from the soil surface to a 

depth at which the moisture content may be considered as time-invariant, while the 

phreatic surface is assumed at infinite depth. 

Papers on unsaturated flow that include a water table, which are particularly of 

interest for this study, are much less numerous. Exact analytical solutions have not 

been presented. A few approximate solutions were obtained for the drainage of an ini

tially saturated soil column. Gardner (1962) assumed the moisture content to be a linear 

function of the hydraulic head and Youngs (1960) and Youngs & Aggelides (1976) assumed 

a constant specific yield. Childs & Poulovassilis (1962) have presented a solution to 

the shape of a falling water-table moving with a constant velocity. Capillary rise from 

a water table has been solved for steady-state situations (Wind, 195S; Wesseling, 19S7; 

Gardner, 1958) or by linearization (Philip, 1966). The first numerical solution to one-

dimensional vertical flow was presented by Klute (1952). Since then many numerical models 

for flow in the unsaturated zone have been published, but very few use the water table 

as the lower boundary and until 1968 none of these models included interaction with the 

underlying saturated zone. 

3.2 THE RIGOROUS APPROACH 

Although Richards' equation applies to transient flow in a rigid system above as 

well as below the water table, the differences in the nature of the flow are reasons to 

treat saturated and unsaturated flow separately. In the unsaturated zone the hydraulic 

gradient in the horizontal direction is usually a negligible fraction of the gradient in 

the vertical direction since the boundary conditions at the soil surface (rainfall, 

evaporation) are relatively uniform over large areas. Consequently flow is predominantly 

vertical, often governed by large gradients in the matric pressure in combination with a 

low hydraulic conductivity. Below the water table the soil is saturated and matric 

pressure gradients do not exist, while the hydraulic conductivity is always at its 

maximum. I n many saturated flow systems the hydraulic gradient in the vertical direction 

«•ay be neglected and flow is predominantly horizontal, governed by gravity. Hence, the 

Vantage of a separate treatment is that, for unsaturated flow, it is often s o i e n t 

to solve the one-dimensional form of Richards' equation, where for saturated flow the 

relatively simple two-dimensional form of the (linearized) Boussinesq equation can be 

-ed. A disadvantage is that effects of unsaturated flow on unconfined g r o u n d w a r l o w , 

« studied by Kraijenhoff van de Leur (1962) in a scaled granular model « n n o t t o « n 

sidered. Moreover from a fluid dynamic point of view the water table is an 
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boundary and the necessity of a unified approach to saturated-unsaturated flow was 
stressed long ago (e.g. Childs, 1960; Stallman, 1961). There have been a number of 
multi-dimensional steady-state solutions to saturated-unsaturated flow problems, which 
are obtained by analogue models (e.g. Bouwer & Little, 1959) and numerical methods (e.g. 
Reisenauer, 1963; Luthin & Taylor, 1966; Merman, 1976). For a transient analysis 
Richards' equation can be used or a combination of equations for saturated and unsatu
rated flow which in some way or another have to be linked. For the simulation of non-
steady flow, viscous analogue models cannot be used because of the non-linear relation
ships C(p) and k(p). A solution of Richards' equation for saturated-unsaturated flow 
systems with an electrical analogue would be extremely difficult and, if ever possible, 
very expensive. In the absence of analytical solutions numerical methods are the only 
means to solve transient saturated-unsaturated flow problems. This approach was first 
applied by Rubin (1968), who solved transient drainage of a partly saturated slab of 
soil into a ditch, a classical problem, known as the ditch drainage case or falling 
water-table case. Rubin used the two-dimensional form of Richards' equation (28) and 
expressed the flow problem in the vertical plane in terms of the hydraulic head as 

C(P) |f = ± (k(p) |±) + £ (k(p) ||) (54a) 

The flow system is schematically shown in Fig. 4. The height of the slab is D and the 
length a , but because of symmetry only half the slab is considered. The origin of the 
Ibl "LT L? I,""" in ̂  l0Wer le£t — ^ ^ » • * °n an impor
t e d e ' e ^ v w h X

 h
 WatCr table 1S ̂  a hSight Zi - d e * u i l i b ™ conditio^ are 

turned everywhere ln the flow region. It follows for the initial condition at t = 0 

° K X * L 0 < z < D (54b) = z. 
l 

ZLÎZ.TJ? '" "" diKheS iS l0Wred * ̂  • - « * ». - — — t a n t . 
* r t h e v ™ ™ * ^ *™ — - " — « * 1, also true 

«many at x I. Since a seepage face is allowed to develop three 

m77T777^77777T7777T7T777777t7mrmm77777777JS7777 
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types of boundary conditions exist at x = 0. Between the top of the seepage face and the 

soil surface the matric pressure is negative and outflow is impossible, hence this part 

acts as an impermeable boundary. At the seepage face the matric pressure is atmospheric, 

so the hydraulic head * equals the height z above the impervious base. Below the water 

level in the ditch the hydraulic head equals z . It follows that the boundary conditions 

for t > 0 may be formulated as 

i -o 
S -o 
| i » o 
3X 

<J> = z 

<(> = z w 

0 < x < L 

0 < z < D 

z < z < D s -

z < z < z 
w - - s 

0 < z < z - w 

z = 0 

x = L 

x = 0 

x = 0 

x = 0 

and z = D (54c) 

(S4d) 

(54e) 

(54f) 

(54g) 

Difficulties in solving the flow problem (54) do not only arise from its non-linearity. 

The governing equation is parabolic in the unsaturated zone and of an elliptical type in 

the saturated region, where C(p) = 0. The position of the free surface separating both 

regions is time dependent. Moreover, the height of the seepage face is a priori unknown 

and constitutes part of the solution. A forward finite difference scheme that determines 

the position of the water table explicitly seem? to be obvious. Taylor & Luthin (1969) 

used an explicit scheme for the unsaturated part of the soil when solving an axisymmetri-

cal flow problem towards a well that completely penetrates the aquifer and discharges at 

a constant rate. The boundary conditions are similar to those used by Rubin (1968) except 

for the outer radius where a constant head is assumed. An additional problem is the water 

level in the well which is continuously adjusted to yield the prescribed discharge. 

Application of the explicit finite difference scheme for nodes for which p < 0 yields 

values for e and * and is followed by a solution of •.for nodes for which p > 0 using 

SOR. The exact position of the free surface follows from a linear interpolation between 

nodes at which p changes sign. The position of the seepage face at the well is obtained 

from extrapolation of the free surface. The calculations are repeated for an adjusted 

water level in the well if 'the computed outflow differs too much from the prescribed 

discharge. ' 

Explicit numerical methods were not used by other investigators to solve saturated-

unsaturated flow problems, because they require for stability reasons a small mesh size 

specially in the unsaturated zone in the vicinity of the well. It was found that the 

length of the time step should be small enough to restrict the change in hydraulic head 

^ring the step to values less than 1 mm. Rubin (1968) and later Vachaud et al. (1975) 
s°lved the ditch drainage case with an iterative alternating direction implicit pro-

«dure (ADIPIT) in which the values of k are evaluated at the old time level while C is 

U * centered. The method is restricted to flow in homogeneous systems and not suitable 

** infiltration problems in the presence of a sharp wetting front. The unknown position 
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of the seepage face requires an adjustment if after a complete set of iterations the 

computed <f> values indicate an upward or sideward flow away from the seepage zone. 

Vachaud/Vauclin et al. (1975) compared their numerical simulation favourably with labo

ratory experiments. Hie results indicated that the decline of the water table, the total 

volume of outflow and the duration of the transfer are seriously affected by flow in the 

unsaturated zone. 

Verma & Brutsaert (1970) tried a number of implicit methods (including ADIPIT) to 

solve the ditch drainage case. They found that the unknown position of the free surface 

and the unknown length of the seepage face rather than the non-linearity of the flow 

equation were most critical in causing slow convergence, especially for more realistic 

problems in which the unsaturated zone was not entirely in or near the capillary fringe. 

The implicit scheme they finally adopted is preceded by an explicit step to predict 9 in 

the unsaturated region. T̂ e finite difference corrector, implicit in *, results in a set 

of simultaneous linear equations which are solved by Gaussian elimination. Next the 

position of the free surface and the e values are compared with values obtained from the 

explicit step. If they are found different, a smaller value of At is used or the length 

of the seepage face is adjusted. It is obvious that the use of a direct method to solve 

2 Zf1C1T, mtrtX redUC6S ** C Q m P U t a t i o n * » « compared with iterative methods. 

Ube leT n0t lndiCate ̂  effeCt °f the eXpUCit Step °n the »*»» len^ °f At 

al n o L T *i g 0 r 0 U^P P r 0 a c h t0 the * * * linage case was reported by Homberger et 
al. (1969). Th« implicit finite difference scheme of Remson et al. (1967) was used 

ZTsZnTstnl a GaUSS-Seidel lterati0n- N 0 ™ l i S t i C ^ c o n ^ n s t r e .unposea on a small flow svstpm rn 7 m ~ n r -. 
lateral hn,m^ • m x o.S m); a constant hydraulic head at the vertical 

Xr!r ; ' t
i g n o r i n 8 **deveiopment °£ a seepage face- ^ *» i™»* 

U n tt 7T r W6re reqUired bSCaUSe n° att6mpt ™ - d e *> P-dict the posi-
- a t u a " ^ a c e . Prom comparison with models that do not take into account the 

" f e T o t l ! : • " ? C°nClUded t h a t U n S a t U r a t e d f l 0 W d° e S - h - * significant exrect on the position of the water table 

» i n (,96sT ™ t rh K l s>™" n<« Pn*l« are similar to those used b, 

- «Uirtr-jr rr^rs^r irric - i s •**""• 

- e scheme w h i c h ' i T L ^ " J e T Î s l i d T ^ " ' ^ ' " ^ " " " ' " * * " 
the »11 „ u m l y ^ ^ * " " G a u s s - * ^1 «erat!« procedure. Computations at 

f»nd for p at 1 ™ I f r T " " " " ^ " * * U - *>»«» values 
concluded that the effects oillT " ^ * * " ^ t t e s W face. The authors 

effects of hvsteresrs on »ater-table recoveries are negligible. 

or axi-

The solved problems discussed so far an ^ 3 l • « . ' 
syndical saturated-unsaturated Z 7 n M * - * ™ i * - l plane 
interest concerns the effect of th water-table aquifers. T^eir common 

effect of the unsaturated zone on unconfined groundwater flow and 



the general conclusion is that this effect is more pronounced for rapid drawdown or in 

the presence of steep gradients of the free water level. 

To investigate the delayed response of the water table in an aquifer that is pumped 

at a constant rate, Cooley (1971) developed a finite difference model for axisymmetrical 

flow to a well that includes the unsaturated zone and takes into account the compressi

bility of water and soil in the saturated region. For this purpose the general equation 

(13) is rewritten without neglecting possible changes in p and the porosity n as 

V • (pKv*) = -^ (Pnsw) (55) 

where s is the degree of water saturation. Expanding the term on the right of Eqn 55 

yields 

£ C p n s w ) = P n ^ + p S w | | + n s w | f (56) 

or 

£ (Pnsw) = Pn - ^ * swp2gn(cf • c,) j f (57) 

where the formation compressibility c is defined as 

_ _ 1 dn (58) 
"f n op 

and for the compressibility of the water c holds 

c = 1 dp (59) 
w p dp 

The specific storage s is given by 

t \ (60) 
s s = pgn(cf + cw) 

and is defined as the volume of water released from a unit volume of porous medium as a 

result of compression of the medium and expansion of the water when the hydraulic head 

is lowered one unit. Substituting Eqn 60 into Eqn 57 yields 

3 , Ï 3 S x Ü (61) 
^ (Pnsw) = p n 1 F

 + P V s 3t 

With the specific moisture capacity C(p) = de/dp = (n/Pg) (dsyd*), Eqn 55 may be written 

as 

n 3* (62) 
V - (pKv*) = p[pgC(p) + swss] -^ 

^ development of Eqn 62 involves the assumption that the formation compressibility may 
be expressed in terns of fluid pressure rather than effective stress. It is furthermore 

turned that the compressibility is constant with time and that with desaturation c may 
b* neglected since its effect is small compared with that of changes in s„. Cooley (19/ ) 
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used a radial, simplified version of Eqn 62 by neglecting spacial variation of p and 
found that for an isotropic, non-homogeneous medium LSOR was, out of three different 
solution techniques, most efficient. The boundary conditions are similar to those used 
by Taylor & Luthin (1969). The seepage face and the head in the well corresponding to a 
constant discharge were found by iteration. Underrelaxation often appeared necessary to 
maintain stability. It was found that for unconfined flow or when the aquifer is over
lain by an aquitard, for which analytical solutions exist at late time and early time, 
the numerical solution converges towards the analytical one with decreasing time step 
and mesh sizes. 

Neuman (1973) used the same equation as Cooley (1971) but for anisotropic media, so 
that K in Eqn 62 represents a tensor. The equation is solved by the Galerkin method in 
conjunction with a finite element discretization scheme. The solution of the coefficient 
matrix is obtained with an iterative Gaussian elimination technique. After each iteration 
the boundary conditions that involve the seepage face are adjusted if necessary. As the 

; type of boundary condition is allowed to change during the solution for a single time 
increment the method is superior to a finite difference technique. With examples that 
include the two-dimensional transient seepage through an earth dam and a layered hill 
slope cut by a ditch, Neuman showed an inverted shape of the water table which could not 

-be obtained with the classical free surface approach. The same model including evapo
ration from the soil and transpiration from the crop is used for flow in the vertical 
plane (Neuman et al., 1975). 

^ A rather complete treatment of three-dimensional transient flow in saturated-unsatu-
m e d non-homogeneous porous media was presented by Freeze (1971). The flow equation, 

l^Z 1°• * 1S TUen ln temS °f thC PreSSUre h6ad * C* = P/PÖ « * **es i n t° 
Z7L 7T hyStereSlS * *• *elati0nS K(P) "* e ^ ' *» f -te difference 
271 1 7 T Wlth a VertlCally ° r i e n t e d LS0R- ̂  SCheme is t i » centered in * 
and valu s for K, •. n and e are extrapolated for the first iteration from previous time 

h u d not T i n ** d a n 8 B ln PreSSUre h6ad ̂  a Sin*le **» dement 

ÏÏL I6Z'Z^Tu Ttiœ step during early stages of p-ing is -
for a smalls i * convergence cannot be achieved, the step i s recalculated 
1 a ^ ! Tu A t ' ^ ^ - ^ - ^ -ample comprises groundwater withdrawal 

P r i l l s ^ ; r b e ^ t ^ r <* • * * » - <*. «** *~ - - a of the size of 

of ^Z^Zl7Z\:uTe'àilKmi0nal f i n l t e * * * « ^ to . 64 ta reach 
of Shards- ^ S T ^ ^ " ** *** * ^ « - Hnearized form 
- * of the time ̂ T ^ ^ L C T t S ^ * ? * *" b6gin" 

in head for ^ s ^ ü Z Z T o Z ^ r ^ ^ *» ^ * * " ~ 
obtained i s ,0 a», resulting in a ^ Z T Z T ' " * " * " ***** " * * » 
m vertical direction could not be ref PT V e r y " " ^ m e s h t h a t i s œ e d 

time and storage. - S l n C S t h l S « " ^ «qu i re too much computer 
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3.3 COMPUTATIONAL DIFFICULTIES 

A review of available numerical solutions to transient multi-dimensional, saturated-

unsaturated flow problems is given in Table 1. Except for the paper by Pikul et al. 

(1974), all of the papers listed use a single equation to model saturated-unsaturated 

flow. It can be seen that the size of the flow problems solved is small. The reason is 

the non-linearity of the flow equation which does not allow an efficient numerical tech

nique to be used. It is well-known that in the presence of a sharp wetting front, the 

change in matric pressure can be as much as a few thousands of mbar over a depth of less 

than 10 cm. But also for capillary rise it is not unusual to find pF values (pF = lg[-p]) 

greater than 4 during a dry summer within 100 cm above the water table. Therefore the 

mesh size in the vertical direction must be a few centimetres only, in order not to lose 

a significant part of the k(p) and e(p) relations, since almost the full range of these 

highly non-linear relations applies to a vertical distance of less than one metre. Now, 

if we consider a shallow water-table aquifer with a depth of 20 m and a water table 

within 5 m below surface, the number of nodes required in the vertical direction could 

be estimated as follows. If the mesh size for the first metre below soil surface is 

taken as 5 cm, for the next metre as 10 cm, for the remaining part of the unsaturated 

zone as 20 cm and in the saturated zone as '1 m, about 60 nodes would be required. Freeze 

(1971) claimed that the large computer he was using could accommodate 30,000 nodal 

points, which restricts the flow region in the horizontal plane to less than 23 x 23 

nodes, or a few square kilometres if the horizontal mesh size is allowed to be as large 

as 100 m. Because of the restriction in the mesh size most of the papers listed in 

Table 1 consider two-dimensional flow systems of a few square metres only. 

More serious is the time step restriction imposed upon the finite difference solu

tion to obtain convergence. The length of the time step is closely related to the maxi

mum change in matric pressure in any of the nodes. In some of the papers listed in 

Table 1 the maximum change in pressure for which convergence can be obtained is indi

cated and appears to be of the order of a few mbar or less. Other investigators report 

that the number of iterations required to obtain a solution is considerably increased 

for rapidly changing events. Most of the problems are solved with a variable time step, 

which at the-start of the experiment is often less than one second. To avoid excessive 

amounts of computer time the conditions of the flow problems are relatively wet; the 

absolute value of the matric pressure never exceeds a few hundreds of mbar. 

Several authors (Verma & Brutsaert, 1970; GuitJens & Luthin, 1971; Freeze, 1971) 

suggested that from similitude considerations the simulation results of a scaled-down 

version of the prototype may be extrapolated to the real system. Breaster et al. (1971) 

showed that similitude affects the soil moisture characteristics. A small-scale numerical 

»»del,.based on relations for k(p) and 8(p) that apply to the real system, tends to 

exaggerate the effect of the unsaturated zone on the flow in the system. Moreover the 

scale factor for the space co-ordinates is also used to reduce p. It follows that the 

s * numerical difficulties are faced whether a small-scale or real-size numerical model 
is used since the range in matric pressure that corresponds to a significant change in 
1S r e d u « d proportionally. 
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Table 1. Review of available numerical solutions to multi-dimensional, transient, 
saturated-unsaturated flow problems. 

Dimension Type of problem Size of flow Numerical approximation Solution method 
problem 

Rubin (1968) 
2-D Ditch drainage 0.3 m x 0.3 m Linearized implicit 
vertical plane case finite difference 

scheme 

ADIPIT 

Taylor & Luthin. (1969) 

2-D Flow to well in 2.0 m x 1.2 m Explicit finite differ- Gauss-Seidel in 
axisymmetrical shallow water- ence scheme in unsatu- saturated zone 

table aquifer rated zone 

Hornberger et al. (1969) 

2-D Ditch drainage 0.3 m x 0.5 m Linearized implicit Gauss-Seidel 
vertical plane case finite difference 

scheme 

Verma & Brutsaert (1970) 

2-D Ditch drainage 3.0 m x 3.0 m Expl ic i t p redic tor ADI 
ve r t ica l plane case followed by impl ic i t 

corrector 

Guitjens & Luthin (1971) 

2-D Flow to well 3.7 m x 2.5 m Implicit finite differ- Gauss-Seidel 
axisymmetrical (effect of ence scheme 

hysteresis) 

Cooley (1971) 

2-D _ Flow to well 20 m x 396 m Implicit finite differ- LSOR 
axisymmetrical (delayed water- ence scheme 

table response) 

Freeze (1971) 
3-D General 

Neuman (1973/197S) 
2 - D Several 
vertical plane 

53 m x 40 m Implicit finite differ- Vertically 
and 6 m deep ence scheme oriented LSOR 

Pikul et al. (1974) 
quasi 2-D Several 
vertical plane 

Several 

Several Predictor-corrector 
technique applied to 
Richards as well as 
Boussinesq equation 

Vaohaud/Vauolin et al. (1975) 

2-D Ditch drainage 3.0 m x 2.0 m Linearized implicit 
vertical plane case finite difference 

scheme 

Rovey (1975) 

3-D Stream-aquifer 6000m x 6000m Linearized implicit 
system and variable finite difference 

depth scheme 

Implicit Galerkin-type Iterative appli" 
finite element scheme cation of Gauss 

elimination 

Tridiagonal Al
gorithm. Linkage 
procedure may 
require iteration 

ADIPIT 

Gauss elimina
tion 
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3.4 ALTERNATIVE SOLUTIONS 

In an attempt to find an alternative for the single-equation model to solve field-

size flow problems in shallow water-table aquifers, it should be realized that the solu

tions presented so far are rather academic. The problems are solved to show the signifi

cance of the unsaturated zone to groundwater flow and have been chosen such that unsatu

rated lateral flow is of importance. However, in the field, water gradients are low, the 

Dupuit-Forchheimer assumptions are approximately valid in the saturated zone and lateral 

unsaturated flow is insignificant compared with lateral saturated flow. These conditions 

allow the three-dimensional flow system to be described in terms of vertical flow in the 

unsaturated part and horizontal flow in the saturated region. A solution in the vertical 

plane to this quasi three-dimensional flow system based on coupled one-dimensional 

Richards and Boussinesq equations was presented by Pikul et al. (1974). Their model 

first solved the equation of Boussinesq, written as 

K ^ C h g ) = , C x , t ) | | +quCx,t) (") 

by using the predictor-corrector technique of Douglas and Jones, where values for the 

specific yield u and the discharge (positive) or recharge (negative) from the unsaturated 

zone q of the previous time step are used. Next, in each of the nodes of the horizontal 

mesh, the same technique is applied to solve Richards' equation. The unsaturated zone is 

assumed to extend from the lower end of the root zone where the flux is prescribed to 

the water table where zero pressure exists. The principle of continuity, applied to each 

unsaturated column yields qu which is used in Eqn 63 for the next time step. The specific 

yield is derived from 

(64) 
y(x,t) = n - em(x,t) 

where e is (rather arbitrarily) defined as 'the minimum soil moisture content below the 

depth from which moisture may be removed directly by évapotranspiration'. The change in 

the height of the water table appears to be critical for the determination of the length 

of the time step. A large change in the water-table position makes an adjustmentof the 

lower boundaxy of the unsaturated model desirable after each time step and may require 

an iterative solution to both equations to satisfy the internal boundary ^ * - * * 
•nodel performs rather poorly when lateral unsaturated flow is of importance Only when 

the water-table movement is relatively small and the length of the unsaturated colons 

can be taken as a constant, is the model more efficient than a ' ^ ^ J ^ ^ 
One could draw the conclusion that the present state in the development of computer 

-, -̂ +„ -F^irl-size saturated-unsaturated flow 
technology prohibits the numerical solution t f » I d ~ e ̂  s available 

systems. On the other hand one could also state that the numerica 4 

to-day are inadequate to solve unsaturated flow efficiently, ^ ^ J J ^ J , 

sn.ll mesh size that is required in the ̂ ^ 1 ^ ™ ^ ^ ^ 

solution of a field-size problem, the horizontal mesh sizes ar 

fold the mesh size in the unsaturated zone in vertical direction. This gives 
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discrepancy that on the one hand the hydraulic head is calculated with an accuracy of a 

few centimetres where on the other hand data are used that represent an 'average' over a 

large non-homogeneous area. According to Freeze (1971), complex models are open to the 

charge that their sophistication outruns the available data. However, it is rather a 

deficiency of the numerical method that requires the sub-surface flow to be calculated 

to such a high degree of detail and precision in order to obtain a solution, that the 

results are far out of proportion to what is usually wanted in practice. The discrepancy 

between the numerical solution and the actual situation in the field is even more severe 

close to the soil surface. In particular the validity of Richards' equation for flow in 

the root zone may be questioned in the presence of water uptake by the roots, non-capil

lary pore space, osmotic and temperature gradients, non-continuous wetting phase, water 

vapour diffusion, tillage, etc. Moreover, a number of hydrological processes that occur 

above the soil surface and greatly affect the sub-surface flow are often poorly de

scribed, such as évapotranspiration, interception and overland flow. It should also be 

realized that the small time increments that have to be used require an abundance of 

data which are usually not available. 

If the numerical approximation to Richards' equation for the simulation of unsatu
rated flow 1S abandoned what alternative is available? In fact there is a wide variety 
of possibilities ranging from pure black box analyses to complicated conceptual models 
based on the original equations of Darcy and continuity. The choice depends very much 
on the type of problem to be solved, the input that is available and the output that is 
wanted. 

3.5 SCOPE OF PRESENT STUDY 

The objective of this study is the development of a mathematical model to solve 

fxe d-size saturated-unsaturated flow problems in relation to évapotranspiration from 

sh ow water-table aquifers. It is assumed that fluctuations in the position of the 

1 2 e TH6 arC 'T COnPared Wlth ̂  t0tal SatUrat6d t M c k n e s s ° f the unconfined 

a ft^'i 7 P P e r aTy £ ° r t W 0 " d i m e n s i ° - 1 horizontal saturated flow is taken as 

JZ ZT1, *" l0WSSt Water"table eleVatl0n 0 C C U ™ S - the considered 

rated"!6 T ^ " ^ " " ̂ ^ ^ ^ ** S £ ™ e d ^ ^^~ 
i nal mdT', '" aSSUmSd ln VertiCal direCti0n' ™ S - S u l t s - a quasi three-dimen-

™ nlTT5)' *"stniCture of which is similar to ̂  « *«*— »y 
a Ï Ï e on ; V " ^ * ^ SCh™^™ storage changes in the unconfined 

atodii Ti:zzz—edzone-At the s o i i — - — - — -
whi^tflned fZ 1 S T^^ l n C aCh n°de °f * * ^-d-nsional horizontal grid, 
* - o 1 fel T i ; ^ S a t U r a t 6 d ^ ^ the upper and lower boundary of 

ts2l\Z Z s N 6 U m a m C ° n d i t i 0 n S a P P l y - A ^ P - e d u r e i s Q u i r e d 
flow " e S " r e l a t l ° n t 0 * » S U b - S > ^ fi- évapotranspiration and saturated 

^^z^z~^ rï : PT ̂  which has been 
i-uidge ot neat m the soi l i s neglected, estimates 
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of évapotranspiration are most accurate if the method is applied to periods of a few 

days. Actual évapotranspiration depends on moisture conditions in the unsaturated zone. 

Apart from a proper linking procedure to solve the Neumann conditions, the model 

for unsaturated flow should have the following properties. 

1. It should compute the change in the position of the free water level for changing 

boundary conditions. 

2. It should satisfactorily approximate the soil moisture conditions close to the soil 

surface for the calculation of actual évapotranspiration. 

3. The model must allow the use of time steps with a length of the order of days. 

4. The solution technique must be efficient in terms of computer time and storage re

quirement . 

It should be noted that except in the vicinity of the upper and lower boundary of the 

model, it is not necessary for unsaturated flow to be described in detail. 

Though a large number of approximate solutions to unsaturated flow problems exist, 

none of these has the above mentioned properties. In order to arrive at a model that 

solves field-size saturated-unsaturated flow systems in shallow water-table aquifers, 

a solution technique for unsaturated flow that meets the above requirements is proposed 

and outlined in the next chapter. 
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4 Development of a model for unsaturated f l ow 

4.1 STEADY-STATE RELATIONS 

In the same paper in which Richards (1931) derived the general equation for unsatu

rated flow (28), he proposed a solution to a steady-state situation that includes a water 

table. For steady vertical flow the differential form of the continuity equation reduces 
to 

(65) 

where q is the vertical flux and z the vertical co-ordinate direction, both taken posi
tive upward. Integration of Eqn 65 yields 

q = q = constant -.,,•. 

which appears to be a trivial result. It follows for the fluxes across the upper and 
lower boundary that for steady flow 

%'* (67) 

which implies a stationary position of the water table as may be seen from Eqn 42. Tne 
rlux q is given by Darcy's law 

q = -K 4i 
fo (68) 

and the hydraulic head is defined as 

* • P / P g + Z (69) 

-rpract ic t Z T l 5 t0 f0ll0W' * 1S C°nVenient t0 ad0pt> f ™ ^ »"*> ™ * . 
Z 1 be ̂ L 2 S- \SOm °£ ** q U a n t i t i 6 S a P P e a r l n g i n E ^ 6 8 « * 69 The pressure 
It y i r " ™ r ' " ^ ** a dVantage ^ i t S — - a i value is approxi-

each f T c 0fd n r r * (Qn)' °ften M * U — • If *• ̂  in 
in the unt Z L s ^ ^ " "*""* * " • *» * * " * * P ««M • is also 
in the u^t " ^ t 0 6 X P r e S S * " " i n * " » ' «I - d * - most conveniently 

Substituting Eqn 69 in Eqn 68 yields 

q = -K(p) (-1 4£ + n 
Pg dz 'J ( 7 0 ) 
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Separating the variables in Eqn 70 and solving for z gives 

= _ _L 
p g 0' q + K(p) 
L /P_!lEL_dp (71) 

where the reference level is chosen at the stationary phreatic surface at which level 

z = 0 and p = 0. 

Richards (1931) used a linear relation between K and p to solve Eqn 71 analytically 

for upward flow. Many other empirical K(p) relations have been proposed more recently, 

some of which allow an analytical solution to Eqn 71. A review is given by Raats & 

Gardner (1971). The relation between p and z for a particular steady flux q is termed 

pressure profile z(p,q). By numerical integration of Eqn 71 pressure profiles can be 

calculated for any given relation between K and p. 

Transport of water in the unsaturated zone in an upward direction is called capil

lary rise. During the first half of this century many experiments were carried out to 

determine the maximum height of capillary rise for many different types of soil. The 

definition of the 'maximum height of capillary rise' was often vague and could refer to 

transient, steady or equilibrium conditions. Well-known is a method where tubes filled 

with air-dry soil are supplied at the base with water of constant pressure. The maximum 

height of capillary rise is reached when the advance of the wetting front is negligible. 

At this stage, according to Moore (1939), the sum of the maximum height of capillary rise 

and the pressure corresponding to the 'moisture content of the wetting front' is equal to 

zero. The experiment carried out by Shaw & Smith (1927) is an example of the determina

tion of the maximum height of capillary rise for steady flow conditions. Tubes ranging in 

length from 1.2 to 3.0 m, uniformly packed with Yolo sandy loam and Yolo loam are ini

tially wetted and permanently supplied with water at the base. Capillary rise is measured 

for a period of ten months. From the experiment the authors concluded that the maximum 

height of capillary rise equals three metres, as for this depth of the water table, evap

oration from the surface during the considered period is negligible. In the Netherlands 

*» early comprehensive description of water in the unsaturated zone was presented by 

Versluys (1916). The unsaturated zone is divided from the water table upwards into a 

capillary zone (fully saturated), a funicular zone (unsaturated, continuous liquid phase) 

^ d a pendular z o n e (unsaturated, discontinuous liquid phase). Versluys distinguished 

between heights of capillary rise and funicular rise. The rather artificial tripartita 

°f the unsaturated flow region became quite popular and has led many investigators to 

determine heights of rise according to these concepts. 

A proper definition of the height of capillary rise as defined in Eqn 71 is the 

height above the water table at which a given steady upward flux can be maintained for a 

given matric pressure at this height. A systematic application of Eqn 71 to compute 

eights of capillary rise for different values of the flux q was first carried out Dy 
Wi*d (1955). The analytical solution to Eqn 71 was obtained with an empirical K(p) rela

tion which may be formulated as 
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K = a(-p)-n
 (72) 

where a and n are constants (n = 1.5). Wesseling (1957) used Eqn 72 with n = 2 to compute 

from Eqn 71 maximum heights of capillary rise for a range of values of q. The maximum 

height for a particular steady flux is found by integrating Eqn 71 from p = 0 to a value 

of p which corresponds with the so-called wilting point or by integrating to a value of 

p approaching minus infinity as suggested by Gardner (1958). For practical purposes the 

matric pressure for wilting can be taken equal to -16000 mbar or pF 4.2, where pF E lg(-p), 

Given the relation between moisture content and matric pressure e(p), usually termed the 

soil moisture characteristic or pF-curve, pressure profiles are easily transformed into 

moisture profiles z(9,q). 

Rijtema (1969) calculated moisture profiles for a great number of soils using data 

available from literature. From these data the K(p) relation and soil moisture charac

teristic of medium fine sand are presented in Figs 5a and Sb, respectively. Integration 

of Eqn 71 for this K(p) relation yields the pressure profiles presented in Fig. 5c. 

Van der Molen (1972) showed that with" simple integration techniques acceptable results 

may be obtained. For q < 0 (steady percolation) the profiles have a distinct vertical 

shape, merging with the equilibrium profile at the lower end. For the development of a 

model for unsaturated flow it is convenient to schematize these profiles into a vertical 

part and into a part that coincides with the equilibrium profile as shown in Fig. 5c. 

Moisture profiles computed from the pressure profiles with the aid of the soil moisture 

characteristic m Fig. 5b are presented in Fig. 5d. The soil physical data of medium fine 

sand given in the Figs 5a and 5b and the derived steady-state profiles (Figs 5c and 5d) ' 

will be used throughout this chapter to illustrate calculation techniques. The symbols 

that will be used are explained in Fig. 6. The lower boundary of the unsaturated zone is 

chosen as a fixed level just below the lowest water-table depth occurring in the period 

to be considered. This level serves as an interface between the saturated and unsatu

rated sub-system. The vertical co-ordinate ç equals zero at the lower boundary and is 

taken as positive in an upward direction. The upper layer of the unsaturated zone in 

ru . * TS 3re PrCSent 1S temed r ° 0 t ZOne °r e£fective «** — -d the 
I tu a r UnSatoated Z ° n e 1S Call6d SUbSOil- ** — - - e the entire 
un aturated zone is taken as homogeneous although without appreciable difficulties most 

P P T iff0 f5 ̂  ^ US6d f ° r SltUati0nS Where d i f f e - * «oil physical data 

T L r ? ; ! ' T ^ dePÜ1 ° £ the r ° 0 t — 1S C < ™ «* equL D while 

beT h v T T :he r ° 0 t Z ° n e ̂  the ̂  - - * * * * * ,rs. Flow is assumed r n :r e Z T r t i o n oniy **is taken to be positive ̂ - *» ***— 
n u , a os 2 ^ r ° 0 t Z ° n e "**" S U b S O i l a t C = Crs i s denoted by q and the 
eZZZ Z7Z r ' b0Undai7 by ^ " * V - P ^ i v e l y . Figure 6 shows an 
rtHo 1 r V SOil m ° i S t U r e f 0 r a *** W ° f t h e ^ ^ level below sur-

sZ I F sH r i b U U O n C O r r e S P O n d S t 0 * * m 0 i S t U r e P^"e for q = 0 as 

T s Z OTdl:f" 9 1S 8 i V e n M a f U n C t i 0 n ° £ t h S h e i g h t 2 *™ the wat r table, 
l e v e l r ^ T ^ ^ i n **-*• ^ " should be noted that the 

0 (the phreatic level) changes with time, depending on the value for z r.Y 
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Fig. 5a. Relation between hydraulic conduc
tivity K and matric pressure p for a medium 
fine sandy soil. 
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Fig. 5g. Saturation deficit curves for the entire unsaturated zone giving the relation 
between the saturation deficit Su and the pressure at the interface root zone - subsoil 
Prs f o r different values of the steady flux q" (cm-d-1). Saturation deficit curve ( ) 
for the root zone giving the relation between the saturation deficit S and the pressure 
at the interface root zone - subsoil pr„. 
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Eig. 6. Schematic presentation of the unsatu
rated flow system. 

the distance between the lower side of the root zone and the water table. At the phreatic 

level p = 0 and at the height ç = ç the matriç pressure is denoted by p . De Laat 

(1976) showed that for a moving water-table 'saturation deficits' may be used to facil

itate calculation techniques. The saturation deficit of the unsaturated zone S is the 

amount of water needed to completely saturate the soil and equals the volume of air 

present between the lower boundary and the soil surface. The saturation deficit of the 

subsoil S R may be written as 

Ss = ƒ tn - e(ç)]dç (73a) 

or, since n - 9(c) = 0 for 0 < ç < ?rg - z r s 

ƒ tn - e(ç)]dç 
Crs-Zrs 

(73b) 

Substituting for ç = z + (ç - z ) it follows that z = 0 f or ç = ç_„ - z_„ and 
f o r c = Ç,-c> whence rs rs 

z = z. 

S s = ƒ [n - 6(z)]dz (73c) 

which is an expression for S s in a moving co-ordinate system. The saturation deficit of 
the root zone S r may be written as . . . . . . 

Ç +D rs r 
S

r - ƒ . .[n - 8(ç)]dç (74a) 

or, applying the same substitution for ç as above 
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z +D rs r 
[n - 6(z)]dz (74b) 

And it follows for the saturation deficit of the entire unsaturated zone, S = S + S . 
' u r s 

4.2 PSEUDO STEADY-STATE APPROACH 

Wesseling (1957) used moisture profiles to calculate the maximum amount of soil 

water that is available for crop growth. The procedure may be described as follows. At 

the beginning of the growing season equilibrium conditions are assumed. The soil mois

ture distribution equals the moisture profile for q = 0 and is indicated by the broken 

line in Fig. 7 for an initial depth of the water table w = 100 cm. Based on data obtained 

by Verhoeven (1953) for a light clay soil during the extremely dry summer of 1947, 

Wesseling assumed that the moisture content at the surface at the end of the growing 

season corresponds to pF 4.2 and increases linearly with depth in the root zone. For 

small rooting depths, as in the example in Fig. 7 where D = 30 cm, the moisture dis

tribution is assumed uniform and the matric pressure at a depth D likewise equals 

pF 4.2. The maximum amount of soil moisture that is available from the subsoil by cap

illary rise to the root zone is found by assuming steady flow conditions at the end of 

the growing season between the lower side of the root,zone and the phreatic level. Pres

sure profiles are used to determine the magnitude of the steady flow q for a given final 

depth of the water table. For instance, if at the end of the growing season w = 120 cm, 

the matric pressure at a height z = w - O = 9 0 c m equals pF 4.2 and from interpolation 

in Fig. 5c it is found that q~ = 0.125 amd - ', The area between the initial and final 

moisture distribution in the region below the root zone may be integrated numerically or 

graphically to yield AS = 4.6 cm, which is the maximum amount available during the 

Fig. 7. Initial (broken line) and final moisture 
distributions for different depths of the water 
table w at the end of the growing season. 
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Fig. 8. Relation between the amount of mois
ture available from the subsoil and the depth 
of the water table w at the end of the growing 
season. 
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be transported, At is found from the continuity equation applied to the subsoil 

AS = Atfq V (75) 

Disregarding the fact that the boundary conditions differ slightly from the conditions 

applied by Wesseling (1957), Fig. 7 is used to elucidate the calculation procedure. For 

the first step ASg is found by integrating the area between the initial equilibrium curve 

and the moisture profile for q = 0.125 crn-d"1 which yields ASs = 4.6 cm. Since a equals 

zero, the total amount AS is transported to the root zone with a rate of at least 
— l s i 

0.125 cm-d . If it is assumed that q =0.2 cm-d , it follows from Eqn 75 that 

At = 23 d. Hence, the amount available from the subsoil after 23 d equals q x At = 

4.6 cm. Integration of the area in Fig. 7 enclosed by the moisture profiles for q = 0.125 

and 0.06 an«d yields AS = 3.9 cm for which step an average flux q = 0.0925 cm-d 

applies. Next the length of this step is calculated from Eqn 75 which yields At = 42 d. 

It follows that after t = 23 + 42 = 65 d an amount equal to 4.6 + 42 x 0.0925 = 8.5 cm 

has become available for the crop from the subsoil. Continuation of the calculation 

yields a relation between the amount available from the subsoil as a function of time. 

In Fig. 9 the result is shown for a more detailed calculation, using smaller steps. 

Interpolation for t = 100 d and adding the amount available from the root zone gives the 

total amount available for the crop during hundred days. Although a constant matric 

pressure is assumed at the lower side of the root zone and the flux across the lower 

boundary is not considered, the calculation procedure may be regarded as a first pseudo 

steady-state solution to capillary rise, yielding the drawdown of the water table and 

the change in moisture distribution in the subsoil as a function of time. 

Feddes (1971) assumed a sudden drop in matric pressure at the lower side of the 

root zone from the initial equilibrium value to pF 4.2 and used the method developed by 

Wesseling (1957) to compute AS (w), similar to Fig. 8. The procedure to calculate the 

amount of moisture 
available from 
the subsoil 
(cm) 

12-1 

T 1 1 P — 1 
20 40 60 80 100 

t(d) 

Fig. 9. Amount of moisture available from the 
subsoil as a function of time. 



drawdown of the water table due to capillary rise as a function of time allows the 

phreatic level to be lowered by small steps. For each step Aw the amount released from 

the subsoil is obtained from the relation AS (w) and the corresponding average flux q is 

interpolated in Fig. 5c for z equal to the average depth of the water table below the 

root zone and the corresponding matric pressure equal to pF 4.2. The amount released 

divided by the average flux yields the time for a drawdown of Aw cm. 

Instead of a fixed matric pressure at the lower side of the root zone, Rijtema (1971) 

used a calculation procedure for which q is held constant as long as possible. It is 

assumed that flow in the root zone is governed by water uptake of the roots and that the 

moisture distribution in the root zone equals at all times the equilibrium distribution 

(d((>/dz = 0). Water may be extracted from the, root zone until pF 4.2 is reached. The cal

culation procedure is based on the principle that for the assumed equilibrium conditions 

in the root zone and steady flow conditions in the subsoil, the moisture distribution is 

fully determined for any given set of values for q and w. This is shown for the root zone 

extending to a depth Dr = 30 cm, q = 0.1 cm-d-1 and w = 120 cm as follows. The moisture 

distribution between the water table and the root zone equals the moisture profile for 

q = 0.1 cm-d" . At a height z = 90 cm above the water table and q = 0.1 cm-d-1 it follows 

from Fig. 5c that the matric pressure equals -500 mbar, which is the pressure at the 

lower side of the root zone p r g . As a result of the assumption that in the root zone 

d<)>/dz = 0, the matric pressure at the surface equals -530 mbar and the moisture distri

bution corresponds to the equilibrium moisture profile for p ranging from -500 to -530 

mbar. Figure 10 shows the moisture distribution for q = 0.1 cm-d-1 and w = 120 cm to

gether with an equilibrium distribution for w = 100 cm. With this calculation procedure 

the water table can be lowered step by step. If at time t = 0 equilibrium conditions are 

assumed for w = 100 cm and for the first step Aw = 20 cm while q = q = 0.1 cm-d-1, the 

situation as depicted in Fig. 10 occurs. Integrating the increase of saturation deficits 

in the root zone and the subsoil yields ASr = 3.6 cm and AS = 4.1 cm. If for convenience 

q^ is assumed constant and equal to -0.05 cm-d-1 it follows from Eqn 75 that At = 
A V ( q r s " %) = 4-1/(0.1 + 0.05) = 27.3 d and the amount available for the crop may be 

e 
O 0.10 Q20 O30 - 1 ' 1 • 

\ ASr \ 

X J *^ |sV 

\ fc j l | 

1 

r° 
-20 

- 40 

- 60 

-80 

-100 

-120 
w(cm) 

Fig. 10. Equilibrium soil moisture distribution 
(broken line) and the steady-state situation for 
q O.l cm-d after a drawdown of the water table 
of 20 cm. 
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Fig. 11. Total amount of moisture available from 
the entire unsaturated zone as a function of time 
assuming qrs = q' = 0.1 cm'd . 

calculated as ASr + qr s * At = 3.6 • 0.1 x 27.3 = 6.3 an. Continuation of the calcula

tions for successive steps during which the water table is lowered by Aw cm yields the 

total amount (root zone and subsoil) available for the crop as a function of time as 

shown in Fig. 11. After the water table has been lowered^ a depth w « 125 cm, the maxi

mum height of capillary rise (z = 95 cm) is reached for q = 0.1 cm-d- (as may be seen 

from Fig. 5c) and the matric pressure at the lower side of the root zone has dropped to 

pF 4.2. From this stage onwards the calculations are continued similar to the procedure 

described by Feddes (1971). Rijtema (1971) used an empirical relation between the depth 

of the water table and the flux across the lower boundary to determine the average flux 

q for each step Aw. 

T^e above calculation procedure yields the flux across the surface qs as a function 

of time for a given initial value for q and the assumption that q is constant until the 

pressure at the lower side of the root zone equals P F 4.2. A.trial and error procedure 

is used to find the initial value for q such that the computed value for qs equals a ^ 

given extraction rate from the root zone. As initially there is no moisture deficit this 

extraction rate equals potential évapotranspiration minus rainfall. 

De Laat (1976) used a constant value for the length of the time increment At and 

applied the continuity equation for the subsoil (75) in combination with the continuity 

equation for the root zone, written as 

AS = At fa «W 
(76) 

to solve the steady-state situation of capillary rise for given values of the flux across 

the upper and lower boundaries. After Rijtema (1971), equilibrium conditions are assumed 

in the root zone at all times (d*/dz = 0 so that dp = -Pgdz). This assumption allows the 

expression for S given by Eqn 74b to be written in terms of p. At a height z = z r 8 the 

pressure p = p ' so that the saturation deficit S r may be calculated as 



Prs-P8D
r 

S r = - ^ ƒ [n-6(p)]dp (77) 
prs 

To facilitate the calculation procedure, S is computed for a number of values for v 
to yield the saturation deficit curve for the root zone, S (p ) . This relation is shown 

in Fig. 5g (lower curve) for the soil moisture characteristic 6(p) given in Fig. 5b and 

a depth of the root zone Dr = 30 cm. The saturation deficit of the subsoil S for a par

ticular steady flux q is found from 

z rs 
s

s = ƒ tn - e(z,q)]dz (78) 

where the level z = 0 is chosen at the phreatic level which is situated at a depth z 

below the root zone. The moving z co-ordinate system is used to calculate S for a number 

of water-table depths zr s to set up a relation between S s and zr g. This procedure may be 

carried out for any value of the flux q to yield a relation Ss(z°s,q) which is shown in 

Fig. Se. With the aid of pressure profiles z(p,q), the relation s[(z ,q) is transformed 

into saturation deficit curves for the subsoil Ss(prs,q) which are presented in Fig. 5f. 

It shows that for the vertical part of the percolation profiles where z is not defined 

for given values of p and q, the saturation deficit Ss is also undefined. A numerical 

approach to the computation of saturation deficit curves for a (heterogeneous) subsoil 

is discussed in Appendix A. 

Since both Sr and Sg can be written as a function of p the saturation deficit of 
the entire unsaturated zone S u is for any steady flux q computed from 

Su(Prs'<Ù = Sr(prs) + Ss(prs,q) (79) 

Saturation deficit curves for the entire unsaturated zone S f c . q ) including a depth of 
the root zone Dr = 30 cm are shown in Fig. 5g. Finally the saturation deficit curves 
S (p q) are combined with the pressure profiles zfe.q) to yield the relation S (z ,q) 
which is presented in Fig. Sh. u rs 

The transient process of capillary rise due to water extraction from the root zone 
is approached by a sequence of steady-state situations. The calculation procedure solves 
or each time step At the steady-state profiles for a given flux across the upper and 

lower boundary. Since Su(prs,q) « * s ( } are related f 

fil fulTT b6tWeen Su' S' ̂  'q S ° * " • giV6n " * ~ *" S andï, te s L d y state is fully determined. For examnlp fnr c . ,. « , u r 

from Fig. Sg that q = 0 020 Z ^ I' U ' ** "* ^ = '''S C n " ^ b e ̂  " 
S - 18« * 7- ft -1 P " = " 1 5 ° mbar" mterpolation in Fig. Sh for 
S - 18.8 cm and q = 0.02 on-d yields the depth of the water table below the root zone 
" z

rs - 105 cm. 

For the calculation of the steady-state situation for capillary rise at time n+l 
for given initial values Sn anH ç11 J U . ^f^dvy rise at time n-<-2 

the length of the ^ r u' " ^ C ° n d i t i o n S < * ̂  «C+i that apply over 
length of the ti^e increment At, the following scheme is used. 
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1. Calculate S for the given boundary flux conditions from the water balance equation 

S n + 1 = S n + At(qn+J - qn+*) (80) 
u u vns nw ' 

2. The relations S (p ,q) and S (p ) may be combined to give S (q,S ) , so that for 

S = S there exists a unique relation between S and q 

3. The water balance equation for the root zone is written as 

S n + 1 = S n + At(qn+* - qn+i) (81) 
r r vns nrs J 

Assuming that qn+* = qn+1 Eqn 81 provides another relation between s£ and qn . Both 
rs n + 1 n + 1 

relations are used to solve graphically or by numerical iteration Sr and q 
4. The water-table depth z is found from interpolation in S (z ,q) for q = qn and 
s = sn + 1 - sn + 1 

s 
In the original scheme (de Laat, 1976) the saturation deficit S, at_time n+1 is used 

to compute from the steady-state profiles the relation between S^ and q .The rela-
• • •+ +^ a= çn+* = Sn + lAtfa11 * - q ' ) • Assuming tion from the water balance equation is written as b f ar 2 Ü K 4 S *IS 

that the average flux during the time increment across the interface root « m e - subsoil 

equals the flux corresponding to the average steady-state situation (qfs = q ) . t e 

solution applies from a numerical point of view correctly at time n+1. The use of average 

values for the saturation deficits S u and Sr will only yield an average value for q or 

q if the system is linear. The unsaturated flow process, however, is non-linear and it 

isSfound that this approach may cause the solution to be inconsistent. For example the 

solution for Sn +* and qn+* may result in a value for s f ' which is larger than the maxi

mum possible saturation deficit in the root zone. Therefore the relation between S and 

q is in the above scheme evaluated from the steady-state profiles for S u at time n+l. 

may easily be shown by decreasing the length of the time increment that this approach 

does not significantly affect the simulation results. The assumption in the above scheme 

that qn+* = qa+1 introduces uncertainty about the time at which the calculated steady-

state allies. Therefore the calculated saturation deficits are defined to apply at time 

n+1 as well as the corresponding flux q. The calculated value for qr s applies at tune i 

and other parameters, such as z r s and p r s may be taken at time n+1 or at time n+1 de

pending on the time at which the initial value is specified (n-J or » «spec ivelyj. 

As a numerical example the following initial situation is assumed: S u - 5.8 an and 

S» = 7.4 cm. Other parameters corresponding to the initial steady-state situation may be 

obtained from Fig. 5. Interpolation in Fig. 5g for the given value of the saturaion 

deficits yields êf - 0.06 cm-d"' and P « s = -140 nfcar. The initial depth ofthe w t 

table below the root zone is interpolated from Fig 5h for S u = 15.8 « an q -0.06 
i „ î n - ,n + n = 91.5 + 30 = 121.5 cm. lne 

cm-d"1 to yield z n = 91.5 cm. Consequently w - z r s + Dr »"•» n+J 

boundary conditio^ that apply for the next time increment At = 10 d are q - 0. 
c m - d - l d <£** - -0-06 c d - . For a solution the above scheme is applied as ol low • 
1. Tb. saturation deficit of the entire unsaturated zone is calculate * o m the water 

• IJ cn + 1 - K S + I O X (0.24 + 0.06) = 18.8 cm. 
balance equation (80) to yield S - 5.8+ 10 (0 = ^ ^ ^ . ^ - ^ 
2. Figure 5g is used to compute the relation Sr(q,buj tor :>u 
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construction of the relation between S and q an example is given in Fig. 5g. It shows 

for S = 18.8 cm that S = 7.5 cm for q = 0.02 crn-d-1. 
u r _ ^ 

3. The relation between S and q resulting from the water balance equation (81) may be 

written as S = 7.4 + 10 x (0.24 - q). Both relations between S and q are shown in 

Fig. 12 and it appears graphically that S n + 1 = 9.0 cm and (f1*1 = 0.08 cm'd-1. 

4. Interpolation in Fig. 5e for Sg = S^+I - s£+1 = 18.8 - 9.0 = 9.8 cm and q = 0.08 

cm-d yields zr g =95.5 cm. It follows that the water table during this time step 

dropped from 121.5 cm to 125.5 cm below surface. The pressure at the lower side of the 
root zone is found from Fig. 5g for S = 9.0 cm as p n+1 -900 mbar. The soil moisture 

distributions at the beginning and at the end of the time increment are given in Fig. 13. 

T 1 1 1 1 1 1 1 1 1 1 r~ 
O 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 

q(cm-cH) 

Fig. 12. The relations between Sr and q for capillary rise. 
Curve a: S (q,S ) for S = 18.8 cm. Curve b: S = 7.4 + 10 x (0.24 - q). 

Fig. 13. The initial (broken line) and final soil 
moisture distribution for the example given in the 
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If the same boundary conditions apply for subsequent time steps, the situation 

arises that the amount of water available from the root zone is exhausted and the rate 

of capillary rise from the subsoil is not sufficient to maintain the upper boundary flux 

condition. Consequently the flux % must be reduced. The calculation procedure to compute 

the reduced or real surface flux q « is similar to that described by Feddes (1971). 

Assume at time n the following initial situation: S» = 18 8 cm and S r = 9.0 cm. Figure 5g 

shows that this situation corresponds with q = 0.08 cm-d and p r s = -900 mbar. ̂ For 

At - 10 d and the same boundary conditions as used above (qs - 0.24 and o^ - • 

cm-d"1) it follows that S n + 1 = 18.8 • 10 x (0.24 + 0.06) = 21.8 cm. From Fig. 5g it is 

seen that for S = 21.8 cm and for the maximum value for the matric pressure (pF 4.2) 

the maxien possible rate of capillary rise equals 0.07 cm-d" . The relations Sr(q,S ) 

for S - 21.8 cm and S r - 9.0 + 10 * (0.24 - q) resulting from the water balance equa

tion (81) are plotted L Fig. 14, which shows that a solution cannot be found for 

q < 0.07 cm-d"1. The maximum amount to be extracted across the upper boundary during^ 

time step n+1 equals the amount available from the root zone (Sr - S -. . • 

0.8 cm) and the amount that is made available by capillary rise from the subsoil. The 
, , v -1 cn - Qn - S n = 18.8 - 9.0 = 9.8 cm. To compute 

initial saturation deficit of the subsoil bg - b u .or t l n . i c , 

the amount that is made available from the subsoil by capillary rise for 10 days the 

initial value for S is increased by small steps. The calculations carried out for the 

present numerical example are presented in Table 2. For each step the maximum r « e o f 

capillary rise < T < is found from Fig. 5f and the time required or each tep (Column 6) 

is found from the water balance equation for the subsoil as iSs/(qrs - V 

Sr(cm) 

O 0.01 0.02 0.03 OÓ4 0.05 006 0.Ó7 
qCcm-d" ) 

Fig 
for q 

14. Relations between S_ and q 

Curve a: Sr(q,Su) for S 
Curve b: S r = 9.0 + 10 x 

- 21.8 cm. 
(0.24 - q)-
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Table 2. An example for the calculation of the reduced upper boundary flux qo (see text). 

(1) (2) 

step S 
number , s, 

(cm) 

9.80 
1 10.12 
2 10.85 
3 11.29 

(3) 

AS 
s 

(cm) 

0.32 
0.73 
0.44 

(4) 

-max 
q 

(cm-d ') 

0.10 
0.09 
0.08 

(5) 

-max 
q -% 
(cm-d-1) 

0.16 
0.15 
0.14 

(6) 

time 

(d) 

2.0 
4.9 
3.1 

(7) 

total 
time 
(d) 

0.0 
2.0 
6.9 

10.0 

(8) 

amount avail 
able from 
subsoil (cm) 

0.20 
0.44 
0.25 

o • amax TU 

côij sn^oTT *T* mde available by c a p i l l a ^ r i s e f ™ t h e **»" 
maximum rato o C a : P T ^ " ^ ^ te " * S t e p ( C o l U m n 6> * *» 
0.89 an, which L Z 7 T ' *' Mditï°n °f *» V a l U e S i n C ° l u m n 8 >*elds 

, « x « . „ enceT T W i t h *» °'80 - a v - ^ e * » the root zone cotises 

co.89:0Zo ? ; r :^°t a i 7 nm for ̂ time i n™ n t> <e -
calculated as Sn + 1 *\8 ^ ' saturation deficit of the unsaturated zone is re-
thc root zone Sn + I i. ' + 10 * ( ° ' 1 7 + °'°6) = 2 K 1 "" and the saturation deficit of 

r « set equal to its maximum value. 

4.3 ANALYSIS OF THE PSEUD0 STEADy.STATE ^ ^ 

A true steady-stnt-
fluxes across the u p t J ^ T " ^ ^ 0btained 3fter m in£initely long time when both 
magnitude and in the ^ ° f ̂  COnsidered soil column are of the same 

tions is an apparentU^ J"***0"' C o n s < W t l y a succession of steady-state situa-

since it requires the i h " ^ f ° r m ° d e l l i n g t r a n s P ° " in the unsaturated zone, 

»How a change in s t o m r ^ *"* inCrement t0 b e infinitely long and it does not 

pseudo steady-state *L&1 T, ^ ^ ^ ^ Stated in E q n 6 7 ^ ^ ™^Y of the 

conditions, the initio 0n ̂  magnitUde and direction ° f the boundary flux 
Consider an i j • , ^ ^ ** ̂  ° f « » ^ -rement. 

*,. « 50 on, followed b y ̂ 1 ^ ^ * * * * " * °f *» w a t e r t a b l e > 

The soil moisture d i s t i l i n C m'e n t " " 9d dUT^ which % ' ° and q =0.1 » f 

steady-state approach is presen ̂  . U m e "»"»»it resulting from the pseudo 

the actual moisture content d T ' -J**1*' ^ ^ solution is based on the concept that 

spending to a steady f ^ situ^ U ° n ^ * " P P " » ^ by a moisture profile corre-

since the flux ranges from ̂  ^ for ̂ ^ ^ = %s- The actual situation is unsteady 

boundary. Rather than a steadT" ^ " ** " f * " table t0 °"1 an'd_1 at the "PP61* 
is more properly a p p r o ^ , ? ' a 0 1 ^ r e P r ° f i l e f ° r °- = 0'1 °n-d"'. the actual situation 
corresponding to fluxes „ ^ * C a*lnatlon °f an infinite number of moisture profiles 
boundary. However the „ ^ ^ ' T . f ™ °'1 an'd at the top to zero flux at the lower 
approximation of the n ^ ^ ^ J * ™ ? ™ « * t 0 * » « W « boundary flux is a fair 
«les are largest near ̂  ' ƒ " " \ " ̂ " ^ *"* di«erences between moisture pro-
In downward diction ^ a ^ * *U n d a i* * W « « Ö « approaches the true steady-state. 

« « actual flux xncreasingly deviates from the assumed steady flux 
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Fig. 15. Steady-state soil moisture distributions, showing the difference in «turation_ 
deficit (shaded area) for an equilibrium situation (broken Une) 
rise (TT - 0.1 crn-d"1), (b) steady percolation ft - -1.0 cm-d ). 

(broken line) and (a) steady capillary 

q but the difference between the steady moisture profile and the non-steady soil moisture 

distribution decreases continuously and ultimately vanishes completely at the water table. 

It is this phenomenon which enables the use of the concept of a succession of steady-

states to approach the non-steady process of capillary rise. The validity of the concept 

improves if (i) the length of the time increment is large, (ii) qrg changes slowly in 

time and (iii) the difference in magnitude of the boundary flux conditions is small. 

(i) Length of time increment , 

Unlike the numerical approach to Richards- equation for solving one-dimenstonal 

transient unsaturated flow (Freeze, 1969), the pseudo steady-state approach requires 

large values for At. The solution may even become inconsistent if the length of the time 

increment is taken smaller than the characteristic time t. The characteristic time is ti« 

appxoximate lag between the instantaneous change in the upper boundary flux condition and 

the response of the water table. Given a change in the upper boundary flax from q o 

C , the characteristic time equals the ratio of the amount of watery be « « r e d to 

reach the steady-state soil moisture distribution corresponding to q (assun ng a 

stationary position of the water table) and Aq,,. For the example used *™'**J£L 

area in Fig 15a is the a^unt of water to be removed to reach the ̂ ady-state « » I t « , 

from ûqrs - 0.1 cm-d"' while the position of the water table remains unchanged^ T h i s ^ 

a ^ e q u a l s 0.9 cm, hence , - 0.9/0.1 - 9 days. The * ^ « * * ~ ™ ^ f 

with the pseudo steady-state approach in relation to * e ^ J ^ ^ , . 

(Fig. 16a) shows a rise of the phreatxc level for At < t. This pny r 

for capillary rise in combination with a lower boundary flux cqua1 to ̂  J * f i g -

further showl that the response to an instantaneous change (At * 0) is limited to a rise 

° f 3'3 m' • u „ „ . H ™ of the water-table depth arises with perco-
A similar inconsistency in the solution of the water w f refilled 

lation when At < ,. The area shaded in Fig. 15b shows the a^unt of w ter « b o ^ 
OS - -1.2 on) if the initial equilibria situation is followed by steady percolation 

s ' 



Azrs(cm) 
12 T 

At(d) At(d) 

Inc;eie;t AtPresultinf f. r t a b l e / e p t h A Z " in "l a ti°n to the length of the time 
ations in L ^ ° m ^ P S e U d° steady-state approach for the corresponding situ
ations in Fig. 15. Negative values of Azrg indicate a rise in the water table. 

(q. 
n -1.0 cm-d~ ). Figure 16b shows that the use of the pseudo steady-state approach 

for a situation with At < i - -1.2/-1.0 = 1.2 d yields a drawdown of the water table (as

suming q = 0). The relations shown in Fig. 16 depend very much on the initial situation. 

This may be seen from Fig. 5e, which has been used to derive these relations. 

(ii) Rate of change in q 

Application of the p'seudo steady-state approach to situations for which |q dec r e a s e ,-« „„*.<,*.• r.-, r r ' *•" ^'-"cn-J-uns ror wmcn q ae-

c l 11 rv T l 6 - a S ^ C h a r a C t e r l S t i C "» * i s ^ t i v e . A decrease n'the rate 

or : I ' I l l v 1 T X y i 6 l d S a d r aWd0Wn ° f t h e W a t 6 r t a b l e assuming o^ = 0) even 

chL™ i : L t ™ e r d u r i " p e r i o d s w i t h e v a p o r a t i o n — X > «J. -
5 4rs 1S smal-L as the maximum value of a iq limits +„ +1, • 

rate. Moreover- tK«, ̂  * qs ^^ited to the maximum evaporation 

^ *TLSLT: « ™ r, :bu£fe: *? tte w- °£ <» - —- * -
the ^ Mi taa t ioTra te J™!. ° " » " y b e l a r s e œ % « » « l i l t e d only to 

More»er the b u l f ^ "ffe OÎ a " " ^ ^ " " " k " 1 * ^ " M " - t a M e d e p t h -

* - » a - — t o . » ere, d L " a i ^ « « s T S t e a d " " S t a t e " " ^ » 
« zero or even b e e « * »e e « i v e (Fif " « « I T , * ?°S""'' " ^ '"' "" d " P S 

non-steady and th« m»«™. ! Obviously the actual flow situation is highly 
type Ol Z „ 2 1 P ^ ^ ^ ^ ""***" * « - « * > • - solve this 

fin 



(iii) Influence of boundary conditions 

Hie approximate nature of the pseudo steady-state approach (as explained earlier for 

the situation that % = 0) improves if the lower boundary flux % is positive, even with 

steady percolation (qrs < 0). For the latter situation the upward flux across the lower 

boundary affects the characteristic time favourably while the zero flow conditions occur

ring somewhere between the upper boundary and the water table coincide with the lower 

(equilibrium) part of the percolation profile. However for relatively large negative 

values of the flux across the lower boundary the position of the water table is dominated 

by the shape of the percolation profile prevailing in the lower part of the subsoil 

rather than the moisture profile for capillary rise. Assuming zero flux conditions at the 

upper boundary the pseudo steady-state procedure yields an equilibrium soil moisture 

distribution regardless of the magnitude of the flux across the lower boundary. For deep 

water-tables the solution is equivalent to the situation shown in Fig. 2. Consequently 

the same objections raised against the use of a constant storage coefficient to solve 

saturated groundwater flow problems apply to the use of the pseudo steady-state procedure 

when there are large negative values of the flux across the lower boundary. 

in conclusion, the pseudo steady-state procedure may only be applied to periodsMdth 

evaporation excess (the inconsistency as discussed under (i) is usually small for capil

lary rise) and in combination with a lower boundary flux condition which is either posi

tive or small in the downward direction. In order to adapt the pseudo steady-state pro

cedure for general use, new concepts have to be introduced to remove the existing; in

consistencies and to treat periods with rainfall excess after a situation « * « £ * * 

rise. For a relatively large lower boundary flux in the dow^ard direction, a solution 

of the position of the water table cannot be found with the aid of a moisture profil^ 

corresponding to the flux across the upper boundary. Therefore " - Prosed J* the^ 

pseudo steady-state approach is applied to both boundary flux conditions separte y ^ e 

solutions for the upper and lower boundary flux condition (termed upper or lower boundary 

solution) finally result in a combined pseudo steady-state procedure. 

4.4 UPPER BOUNDARY SOLUTION 

4.4.1 Perao lotion 

. * ^rvmarv rise (page 55) reduces the pseudo steady-state 
The calculation scheme for capillary rise ipage j ,. reiation 

* •,« relations and two unknowns (Fig. 12). The first relation 
procedure to a problem of two relations and ^ ^ ^ 

Sr(q,Su) derived from the steady-state profiles, 1 in factba cy ^ 

second relation between Sr and q is merely an equation of continuity b 

balance for the root z o n e W S1). * > ° ~ ^ 

tive values of q the scheme may also be used for percolation. v 

Sr(,,Su) for a given S„ value, it f £ ^ ^ ^ ^ - * ~ 
somatization of the pressure profiles (Fig. 5c int ^ ^ ^ 

a part that coincides with the equilibrium profil r ^ o not ̂  ^ ^ ^ ^ ^ 

range of negative q values. For example, if Su - 10. cm 



for -0.03 < q < 0 cm-d" the value of p and hence of S is constant and equal to 6.5 cm - n - rrs r 
(see PQ in Fig. 17). Outside this range of q values for which S r is constant the relation 

between S and q is, unlike for the situation of capillary rise, independent of S . The 

entire (independent) relation (the Curve OPR in Fig. 17) is computed from a combination 

of Sr(prs) and q(p) with p = p r g . The latter relation is equal to -K(p), as for steady 

percolation it follows from Eqn 71 that q = -K for large water-table depths (z -»• », and 
thus S -*• » ) . 

u ' 

For a numerical example consider the following initial equilibrium situation at time 

n: S" = 18.5 cm, S" = 6.8 cm and z£g = 110 cm. If for the next time increment (At = 1 d) 

the following boundary conditions apply: qn+* = -2.4 cm-d-1 and q"+* = 0 cm-d-1, the 

total saturation deficit S n + I = 18.5 - 2.4 = 16.1 cm. For this S value S (q.S ) is 
u u r u 

presented in Fig. 17, Curve a (OPQ). The other relation between S and q may be written 

as Sr = S" + At(q"+i - q) = 4.4 - q and the solution, obtained graphically from Fig. 17 

yields q""1"1 = -0.5 cm-d-1 and S"+1 = 4.9 cm. As explained earlier, the solution to the 

position of the water table is inconsistent if At < T. The characteristic time may be 

found from Fig. 5e. For zr g = 110 cm, the change in saturation deficit for q changing 

from 0.0 to -0.5 cm-d"1 is read as ASs = -1.9 cm. Consequently T = AS /Aq = -1.9/-0.5 = 

3.8 d. Since the length of the time step used is one day only, the solution to the posi

tion Of thf> irat-oi- »»I1- ...i-i -i. - - ,n+l : 1A 1 _ 4 Q = 

tion of the water table yields a large drawdown (for S. = S 
11.2 cm and q = - o . s cm.^" 

S u + 1 

i t i s found from Fig. 5e that z" =1211 cm) 

is the assumption of an equilibrium profile in the 

O— 

Sr(cm) 
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i 
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Fig. 17. Relation between Sr and q for percolation. 
Curve a: SrCq,Su) for Sy » 16.1 cm (OPQ) and S 

:u -*» (OPR). curve b: S,. = 4.4 
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subsoil. Thus with percolation the curve for q = 0 in Fig. 5e is always used to solve zr s 

for a given S value. It may be seen from Fig. 5e that this assunçtion is approximately 

correct for shallow water-tables or low percolation rates. For deep water-tables the 

results are expected to be poor. However, it was found in this study that deep water-

tables are usually computed by the model for the lower boundary solution (Section 4.5). 

Therefore, the water-table depth is, with percolation, always solved from the equilibrium 

Fig. Se. For the above example it is found for S^ = 11.2 cm and q = 0 that 
curve in 
zn+1 = 108 cm. rs 

It should be noted that the value found for the percolation rate should not exceed 

the saturated hydraulic conductivity. For the permeable 'medium fine sandy soil used 

here to illustrate calculation procedures the problem does not arise but for soils with 

a lower saturated hydraulic conductivity such a situation might occur. Then |q (equals 

the saturated hydraulic conductivity as a result of which ponding of water on the upper 

boundary of the subsoil may occur. Serious ponding may result in a situation w h e r t h e 

root zone becomes waterlogged (Sr < 0) while there is still a saturation defi it n the 

subsoil (S > 0). Generally ponding occurs when the water level has reached the oil 

s J . • -M q = s < 0 These negative 

surface in which case the water balance equations yieia s u r _ 

values serve as the initial saturation deficits for the next tùne increment ̂  the ab 

sence of surface drainage. In the presence of a surface drainage system he saturation 

deficits are increased by the amount that is discharged overland during the time 

crement. 
•<->, r « W r t to the K(p) relation (Appendix A ) , 

If the subsoil is not homogeneous with respect to tne M P J „ m r a t e d hy_ 

the percolation rate at the upper bo.dary ^ ^ ^ ^ ^ ^ L 
draulic conductivity in one of the lower layers. This caus s h tional 

water-table due to which a steady-state situation may ^ ^ J R e l a t i o n 

difficulties with percolation in a heterogeneous soil, one ( average ) w 

must be used. 

4.4.2 Capillary vise 

As plained earlier, the pseudo steady-state procedure m, «usea rise in the 

flux condition hut that the chan8e in the phreatic l.vei rs governed by %jW-

«ter-tahie depth 2?, at t*e end rf the «*. " ™ ™ ^ T o repre

n d for eouiiihri» c^iti«sin * su - . J - - ^ J ^ ^ ^ ^ s#. 

sents the relation between z and the equiiiDriun 
Denoting this curve by zrs(Se) the solution of z*s follows from 

dz (82) 
zrs " Zrs ^Ç e 

t.at Ac = - û f q n + ! . This procedure 
where the change in S e results from % alone, so that ASe % 



yields a stationary position of the phreatic level for At < T and q = 0. For a changing 

lower boundary flux condition the characteristic time was not defined. It is, however, 

assumed that the solution is consistent if the computed value for zn+1 is larger than 

z*s. If this condition is not valid the final water-table depth is taken equal to z* . 

For example, for an initial situation at time n with S^ = 6.2 cm and z^g = 80 cm followed 

by a time increment of one day during which q£** = 0.2 on-d"1 and q°+J=S0.1 cm-d"1, the 

saturation deficit S^1 = 6.3 on and Fig. 5e yields z^1 = 78.1 cm, hence a rise of the 

phreatic level. A first interpolation in Fig. 5e for z£s = 80 cm and q = 0 yields 

S* = 6.0 cm and a second interpolation for Sg = S* - A " * q£+i = 6.0 - 0.1 = 5.9 cm and 

q = 0 gives z*s = 79.4 cm. Thus z^1 = max(z£> ,z*8) = max(78.1,79.4) = 79.4 cm. Without 

the corrective procedure the rise of the water level would have been 1.9 cm. The calcu

lated rise of 0.6 cm is caused by the lower boundary flux condition which is positive in 

an upward direction. 

4.4.3 Rainfall excess following capillary viae 

A situation with capillary rise followed by rainfall excess represents the most 

extreme case of a changing upper boundary flux condition; the flux does not only change 

in magnitude but also in direction. If the root zone is dry and the amount of water infil

trating through the soil surface is relatively small, the situation at the end of the 

time increment may be highly non-steady. As the pseudo steady-state approach is not 

likely to perform well, the following procedure is proposed. Given an initial situation 

at time n, the computation of the situation at time n+1 consists of two steps. In the 

tirst step, prior to the solution of q, the total saturation deficit is redistributed to 

a steady-state situation corresponding to the initial water-table depth, taking into 

account the rainfall excess. Thus for ̂  and S* = S» - q»** „ it the steady-state soil 

m sture distribution is solved. For this purpose Fig. sh'-ay be used to yield the cor-

sponding flux q*. From Fig. 5e the saturation deficit S* for q* and z» is found, where 

moist d J T ^ i£ * < ° the CUrVe £0r * " ° ̂  b e - e d as -equilibrium 
def cit- \ T ln ̂  SUbSOil 1S aSSUmed W h e n ̂  is Percolation. The saturation 

cLreslnd UT Z ° n e 1S COmPUted " ' * = Su - Ss- If * » ««tuai £ ^ e does not 

1 e n s " , I lnitial Steady-StSte S i t U a t i ° n ^ t0 *» <*™£* P-edure dis
cussed in Section 4.4.2, S* may be greater than S». Then S* is set equal to S*. 

sn . ; ̂ f SteP tHe P S e U d ° s t o " * - * " e procedure L applied with S» = S*. 

process tl I > V h e glVen l0WSr b0Undaiy C ° n d i t i 0 n C J • * » advantage" of this 
procedure „ that it does not give rise to inconsistencies! But more important is the 

T^;:z r ;T £or a trai*port ° f — * - *• ™ J L T T J ^ ^ 
tribut oTacS eTS t a t e yieldS a S i t U a t i ° n Wlth ^ i U ^ ™- m this way re
distribution accounts for the usual discrepancy between the actual duration of thl rain 

^C^^i:^r—-in the—- —» *— 
increm^t -̂ 0 * Î V ^ ™' ** = ̂  » "* ^ = 100 an.' For the next time 
; C - ; " d ) J . f 0 l l 0 W ^ b ° - ^ editions apply: q ^ = _0.37 ».«f« ^ 
% 0 cm d . Tne redistribution of soil moisture in the first step of the procedure 
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is calculated as follows. For z° 8 = 100 cm and S*u= S^ • q f * x At - 21.1 - 0.37 x 10 = 

17.4 cm it is found from Fig. 5h that q* = 0.03 cm-d"1. Interpolation in Fig. 5e for 

z£ = 100 cm and q* = 0.03 cm-d"1 yields S* = 10.0 cm, so that S* = S* - S* = 17.4 - 10.0 = 

7 " cm. For the second step the pseudo steady-state procedure is applied with S u - S* -

17.4 cm, S n = S* = 7.4 cm, qn + i = 0 and the lower boundary condition c£+ s which has been 

given equal to zero. It follows from the water balance (Eqn 80) that S f • = U.4_cm for 

which value the relation S (q.SJ is computed. From this relation and S r = Sr - q x it 

it may be found that qn+1 = 0.022 cm-d"1 and s f ' = 7.2 cm. Interpolation in Fig. 5e for 

Sn+1 = 10.2 cm and qn+1 = 0.022 cm-d"1 yields z£> = 102 cm. The example shows that al

most one third of the rainfall excess has entered the subsoil (ASg = -1.1 cm), while 

there is still capillary rise resulting in a drawdown of the water table by 2 cm. 

4.4.4 Flow chart for the upper boundary solution 

The flow chart in Fig. 18 shows the calculation scheme of the pseudo steady-state 

solution for the upper boundary flux condition. To simplify the diagram those situations 

for which the phreatic level rises into the root zone are not considered. Before appli

cation a number of relations have to be computed. The saturation deficit in the root 

zone is integrated for 13 values of p r s mentioned in Appendix A, yielding SrCp ) • The 

computation of S,Czr8.«D and Ss(prs,q) is discussed in Appendix A. Combining these rela-

tions with S (q ) gives Su(zrs,q) and Su(pr s,q). 

The steps indicated in the flow chart are elucidated as follows. 

1. Given values for S» and S« the initial steady-state is fully determined. As the water-

table depth may not correspond to the steady-state situation, its value must be given, 

this scheme it is assumed that z r s applies halfway the previous tune increment. 

2. The length of the time increment and boundary conditions have to be ^ ^ 
flux q must be regarded as the maximum possible flow rate across soil surface The re 

upper boundary flux < e may be different due to desiccation or complete saturation of the 

root zone. . *.- „n-*^a 

3. interpolation in Fig. 5g is required to determine whether the initial situation corre

sponds to capillary rise (q* > 0) or P ^ l ^ f i ^ (qn+i « 0) f o l l owing a period 
4. Check whether this is a situation with rainfall excess iqg > 
with capillary rise (q > 0 ) . ., ™,4<.+,,,.<» 
5. If L é Z excess of rainfall following a period with capillary rise, soil moisture 
is redistributed as discussed in Section 4.4.3. 
6. Compute Sn + 1 from the water balance equation. 

u ,. *. cn+I sTiri TT" ' for S is discussed in bec-
7. The computation of the relation between S and q tor s> _ 1 a H o n based 

tto ,,, te ;. », -*. <^>°—* ~,* £• *T , :"^J 
on the water balance may be written as S - b r a t w s H ,. d 
• A *• A * v * 77 < 71 where K is the saturated hydraulic conductivity and 
is defined for -*,., < q < ̂  ™ J ^ " rise I£ - + > is outside this range of 
q* is the maximum possible rate of capillary rise, it q 
Jmax . , 
q values a solution cannot be obtained. 
8. Check the upper constraint of q m j „ ™ -Fiinr n r e 

9. Apply the scheme explained in Table 2 to compute the reduced upper boundary flux % . 



initial data: Sn, Sn and zn * 
u' r rs 

\r 

boundary conditions for At: q11 2 and q° * 

V 

interpolate qn for Sn and Sn 

YES redistribution: 
compute Sn, Sn 

j u r 
set qn+* = 0 

ns 

Û ' • s
u+ ^K* - O l « 

set up two relations between Sr and q 
n+l „_J ̂ n+1 
r 

11 

q1*1 
-K 

sat 
Sr+ 1 = Sr + AtCq^-q»*1) 

YES 

YES Jreduction upper boundary 
ri . ., re -n+l C

n+I 

flux yields: q , q , Sr 

12 solve S°+1 and g^1 

13 interpolate z"+* from S (z ,q) for 
s = sn+l . sn+l ̂  - - ̂ ;:f-n+l 

O U T" 

_ ŝ  rs _ 
q = maxCq^'.O) 

14 

16 

15 
YES compute z*s 

zn+* = max(zn+i,z*J| 
rs v rs rs i 

result: Sn + 1,Sn + I, z"+* and qre 

Fig. 18. Simplified flow chart of the solution for 
For explanation see the text. the upper boundary flux condition. 
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This scheme yields q , while S is set equal to its maximum value (corresponding to 

pF 4.2). 

10. Check the lower constraint of q11 . 

11. The value for q n equals -K and S n follows from the water balance. 
• I Sat V 

12. Solve q11 and S n from the relations set up in Step 7. 

13. When interpolating the water-table depth, q = 0 must be used if q11 < 0 to avoid the 

inconsistency as discussed in Section 4.4.1. 

14. Check for a situation of capillary rise (q11 > 0 ) . 

15. Use the procedure discussed in Section 4.4.2 to correct for a possible inconsistency 

in the computed water-table depth. 

16. The scheme yields initial values for the following time increment and the real upper 

boundary flux q r e . If required other values, such as p r and q r g are easily derived. 

4.5 LOWER BOUNDARY SOLUTION 

The solution for the lower boundary flux condition is based on the concept that the 

soil moisture distribution may be approached by a sequence of steady-state situations 

corresponding to the lower boundary flux a . The solution applies to the lower part of 

the subsoil and the situations for which the storage coefficient is independent of the 

water-table depth. 

For steady flow conditions the storage coefficient is defined as 

U = A S s / A Z r s 
(83) 

where y is a function of z r g and q. The relation v(zrs,q) derived from Sg(zr s,q) is 

presented in Fig. 19 for q ™ 0. As a result of the schematization of the pressure pro

files (Fig. 5 c ) , the storage coefficient for a particular percolation rate is either 

030 

0.20-| 

0.10-| 

q(cnrd~') 

180 200 220 240 
zr s(cm) 

»ig. 19. Storage coefficient » as a function of the „ater-table depth z „ for a number 
°f steady flow situations q. 
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constant or equal to the y value for the equilibrium profile. For situations that u is 

independent of the water-table depth the storage coefficient is denoted by u • The rela

tion between y and q is easily derived, as for steady percolation q = -K. With the aid 

of the soil moisture characteristic the relation K(p) is transformed into K(e). Using 

the relation q(9) = -K(6) as its inverse 8(q), it follows (Fig. 20) that y = n - e(q) = 
— ^ -1 

y ( q ) where q = q. For the most relevant values for q (say -1.0 < q < -0.01 cm»d ) 
the relation y ( q ) may often be approximated by 

0.15 0.20 

Mq 

• " l S Ä t i ^ r n e S v ^ ^ V ^ u c t i v i t y * ^ t h e moisture content 9 used as 
lation (broken line) is g ' e n b y " q n £ ^ S t ° r a g e c ° e f f i " - t V The approximate re-
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y q = A i + B i g ( - c g 
(84) 

where the constants A and B depend on the soil physical properties. For the medium fine 

sandy soil used here A = 0.110 and B = -0.054 yield the broken line in Fig. 20. 

The model for the lower boundary solution does not consider flow in the upper part 

of the subsoil. The i n i t i a l equilibrium moisture profile serves as the upper boundary of 

the model. For example, consider an i n i t i a l situation for z f s = 85 cm and q = 0, followed 
by a time increment At = 5 d during which % - -1.0 cm-d'1 . Superposition of the moisture 

profile for q = -1.0 cm-d-1 on the i n i t i a l equilibrium curve yields the soil moisture 

distribution as shown in Fig. 21a. The moisture profile corresponding to the downward 
flux across the lower boundary i s temed -percolation profi le ' . Since the percolation 
profile is at the upper and lower side bounded by the same curve i t may be schematized 

to a rectangle (Fig. 21b). The upper boundary of the model is situated at a height 
C = c - z , where z i s the i n i t i a l water-table depth (z r s = 85 cm). The shaded 
area equals the saturation deficit of the percolation profile Sp. The rectangular shape 
results from the res t r ic t ion that the lower boundary solution only applies to situations 
for which p = p and therefore i s independent of z r g . I t allows the saturation deficit 

q 

to be expressed as 

SP - v s -ç) 
(85) 

where c i s the actual height of the water table, the level for which p = 0. The water 

balance of the lower boundary model may be written as 

100 

120 

-140 
I .», . u zrs(cm) 

qw=-10(cm-d-1) 

F x8- 21a. Moisture profile for q = -1.0 cm-d 
superimposed on the initial equilibrium soil 
"•oisture distribution (broken line), where _ 
J;he shaded area equals the saturation deficit 
5p of the percolation profile (S = 5 cm). 

qJ.-lOCem-d-1) 

Fig. 21b. Schematization of the per
colation profile used for the lower 
boundary solution. 
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S*+1 = Sn + Atfan+i - nn+*ï + At(q 
P ? «O (86) 

where q is the flux (positive upwards) across the level ç . When solving ç from Eqn 85 

the same difficulties arise as for the upper boundary solution. The saturation deficit 

and boundary flux condition which determine the steady-state solution do not apply at the 

same time. In view of the approximate nature of the analysis little of its generality is 

lost when zn+ is solved from Eqn 85 with Sn +* replaced by Sn + 1 . Hence, the solution for 

C at time n+i follows from 

cn+l 
rn+{ 

S- n»*F /•„Il+5-v (87) 

The flow chart in Fig. 22 shows the calculation scheme of the pseudo steady-state solution 

for the lower boundary flux condition. When flow in the upper part of the unsaturated 

zone can be neglected, c^ equals zero and Cp corresponds to the phreatic level at the 

onset of the calculations. This situation applies shortly after a sudden lowering of the 

level m open water courses or during the early stages of a pumping test. In general ç 

and 0^ depend on flow in the upper part of the unsaturated zone. A solution of these * 

variables is obtained in combination with the model for the upper boundary solution, as 

discussed in the next section. 

For a numerical example, consider the situation of Fig. 21 to apply at time n, so 

that Sp = 5.0 cm. For the next time increment (At = 5 d) the following boundary condi-
j-1 tions are assumed: q°+* 

(V fifil U l l+l ^ "" — • - . . - j . u j . j . u n o 2.1 Ulli LUC WctLCI UÜJ.CI 

(Eqn 86) that S p = 5.5 cm. Calculating the storage coefficient from Eqn 84 gives 

= 0 and c£+J 0.1 cm-d .It follows from the water balance 

initial data: S n and ç 
P P 

boundary condition for At: qn+* and qn+* 
P TJ 

S*+1 = Sn • At(qf * - < + i ) 
P D p w 

find uq from u (q^) for q = q"+* 

f+l = _ s „ + 1 
P P " q 

result: S n + 1 and çn + 1 

«* a. n» *« £„ the W r bomagts „ ^ For expUMtion =ee 
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y = 0.110 - 0.054 lg(0.1) = 0.164. Noting ç = 55 cm, i t follows frora Eqn 87 that 

çn+i = 55 - 5.5/0.164 = 21.5 cm. Since çn~* = 9.5 cm this corresponds to a rise of the 
phreatic level with 12 cm. The r i se is caused by the decrease in flow rate across the 
lower boundary from c£_ i = -1.0 cm-d-1 to c£+* = -0.1 cm-d-1 . This effect (a rise without 
recharge (q = 0) from above) i s similar to the phenomenon of delayed yield (Section 3.1). 

4.6 COMBINED PSEUDO STEADY-STATE SOLUTION 

Transient unsaturated flow is approached by a sequence of steady-state situations 
corresponding to the upper boundary flux of the subsoil q r g . For capillary rise the 
assumption of steady flow i s seriously violated i f the flux across the lower boundary 
is large in the downward direction so that the actual soil moisture profile has a more 
elongated shape than the assumed steady-state profile. Therefore the drawdown of the 
water table is recalculated assuming steady flow in the lower part of the subsoil corre
sponding to the lower boundary flux %. If the lower boundary solution yields^a+water-
table depth below the level that i s found with the steady-state solution for q , a 
percolation profile develops. The upper boundary of the percolation profile Cp equals the 
phreatic level a t the time i t s tar ts to develop and remains unchanged during the period 
the percolation profile ex is ts . The difference in the calculated phreatic levels xs an 
indication to what extent the steady-state profile for q11 i s elongated. 

Below the upper boundary of the percolation profile the flow is always downwards. 

For a solution of the flux q across this level the following conditions can be formu-
P 

lated. The flux q must be 
1. downwards in order to satisfy flow conditions in the lower boundary model, 

2. equal to q^1 for steady percolation in the upper boundary model, 
3- approaching zero when the pF in the root zone reaches i t s maximum value, 
4- independent of flow conditions in the lower boundary model in order to avoi an 
iterative solution. , , , tu th~ 
* * • properties are obtained if o f * i s taken equal to the steady flux solved « f t t t o 
eherne in Fig. 18 for the situation that the water table is at i n f l a t e depth The s 
tion uses the relation S (q,S ) for S + - (Curve a (OPR) in Fig. 17) so that q, 
andqn+i< ï ïn+l * W u 

T? - q • Q W that for S ->• 0 the water-
For the combined model to be consistent i t xs necessary that ^ 

Wble depth z r found with the upper boundary solution xs below the leve ç 

I * lower boundary solution. Since Ç = Cp for Sp = 0 (Eqn 87) the condxtxon for 
Slstency may be formulated as 

(88) 
z > ç - e f o r p 
rs rs p 

** v a l i d i t y of th is condition is demonstrated with the use of the ^ » ^ ^ 

Produced in Section 4.4.2. If ASe i s the increase of the S va u ^ ^ ^ 

I l l a t i o n profile s tarted to develop, a positive value of Abe condition 
^ r - t a b l e depth z below the level C . Thus Eqn 88 may be ***** a v o i d i n c o n . 
4Se > S for S . o!SAs a result of th /correct ive procedure xntroduced 
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sistency with capillary rise (Section 4.4.2) dSe > - q ^ t . Since q < 0 and dS = (q - qjdt, 

i t follows that dS /dt > dS /d t . Hence, i f a percolation profile exists (S > 0 and q^ < 0) 

the condition AS > S is valid during periods with capillary r i s e . For rainfall excess 
redistribution causes the saturation deficit in the subsoil S to be equal to Sg at the 

beginning of the percolation period. During percolation the equilibrium profile applies 
in the subsoil so that S = S and thus dS = (q - q )d t . Since q > q i t follows that 
dS /dt > dS /dt . Hence the condition AS > S i s always valid, e - p e p ' 

Soil moisture characteristics and K(p) relations are subject to hysteresis. Though 
the effects may be considerable, i t was mentioned that they may often be neglected when 
both relations are combined (e.g. into a K(9) re la t ion) . When computing the saturation 
deficit curves for the subsoil, both relations have indeed been used. Therefore hyste
resis effects are only considered for the root zone. The use of a hysteretic soil moisture 

init ial data: Sn, Sn, Sn, zn"^ and ç 
u' r ' p ' r s 

boundary conditions for At: qn+* and qn+i £ 

hysteresis: compute S,(p,J •» s ^ z ^ q ) and S 
u(Prs,q) 

± 
upper bounSary solution 

Fig- 18. yielding 
çn+1 „n+1 n+J , rp 

u ' r ' z
r s and q 

solve q from Sr(q,S ) for S 

%Sr I s; * At(qf J . a U 

10 
-Sn = n + 1 I 

' tf 

NO 

lower boundary solution 
Fig. 22, yielding 
Sn+ ' and cn+J 

Ffg. 23. Simplified flow h 
tion see the t ex t . C h a " o f «=he combined model for unsaturated flow. For explana-

72 



characteristic to compute Sr(p ) causes this relation to become time-variant and con

sequently relations for S will also change in time. The effect of hysteresis on the 

S (p ) relation is discussed in Appendix B. 

The flow chart of the combined model for unsaturated flow is given in Fig. 23. To 

obtain a surveyable diagram, situations for which the water level rises into the root 

zone are not considered. The steps indicated in the flow chart are elucidated as follows. 

1. Calculations are preferably started for a situation that S = 0 . This situation can be( 

expected in shallow water-table aquifers after a long wet period (with q < q ) . Initial 

values for S and S are found from Fig. 5 for a given water-table depth and a q value 

corresponding to the rainfall excess in the preceding period. For situations that S 

cannot be neglected, initial values for S and ç have to be estimated. 

2. For a given length of the time increment a constant flux at the upper and lower bound

ary must be specified. 

3. The computation of S (p ) is discussed in Appendix B. It should be noted that as a 

consequence of a changing S (p ) relation, the relations for S u are also time-variant. 
4. The upper boundary solution is given in Fig. 18. 

5. Check for the sign of the lower boundary flux condition. 

6. A percolation profile does not exist. 
7. The flux c£+* equals the steady: flux q for the situation that S u * ». 

8. The lower boundary solution is given in Fig. 22. 

9- Check whether the lower boundary solution yields a level (çn+i) below the phreatic 

level that is found with the upper boundary solution (çrs
 _ z

rs ) • 

10. The time index may be increased if required. 
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5 A quasi three-dimensional approach 

For the solution of saturated-unsaturated sub-surface flow in shallow water-table 

aquifers, it is assumed that the Dupuit-Forchheimer assumptions are approximately valid. 

The three-dimensional flow system may then be schematized into horizontal flow in the 

saturated part and vertical flow in the unsaturated region. If the fluctuations of the 

water table are small as compared with the total saturated thickness D of the aquifer, 

the latter may be taken as a constant. The value of D is chosen such that the upper 

boundary of the saturated zone is just beneath the lowest phreatic level occurring in the 

period considered. Since water and soil are assumed incompressible, storage changes are 

restricted to the unsaturated zone. Taking into account recharge from the overlying 

partly saturated region, unconfined saturated flow is described by Eqn 45, rewritten 

here for convenience as 

•k vw i>+ i ĉ y) f) = ̂ ./.M) C89) 

where the transmissivity T = KD. If R is the region for which Eqn 89 holds and S, and S2 

constitute the boundary of R, the conditions valid at the boundary may be formulated as 

on S, : h = h*(x,y,t) 

on S,: ijl = o 

(90a) 

r 8n ~ u (90b) 

where the phreatic level h* on S, is supposed to be given and n is the direction normal 
to the boundary. 

Figure 24 is the somatization of the saturated-unsaturated sub-surface flow system 

xn the vemcal plane. It shows a cross section of an unconfined aquifer bounded by a 

stream and a groundwater divide (no-flow boundary). The model for unsaturated flow is 

presented at one particular location only. The lower boundary of this model (ç = 0) is 

taken at a hexght D above the impermeable base of the aquifer. At the soil surface the 

upper boundary f lux condition qs is supposed to be given as a function of x, y and t. 

For the s t a t i o n of transient sub-surface flow the time is discretized to small 

steal; T T - ' r inCrement At' eXtendlng f r ° m **» n t0 n+1' fl- i» -sumed to be 
L ? T T C°n d i t i 0 n S " *" b0Undaiy ° n S. - * the N " editions at the 

Z^ tumeTflPP 7 thS tlme inCrement- ̂  S ° 1 U t i 0 n ° f the steady-state saturated-
unsaturated flow sxtuauon is then obtained at time n+i and yields the internal boundary 

« T h \ m s o H e d U r e / 7 r i S e S ^ s t e P - CD computation of a relation between q„ 
and h, ( 1 1) soluuon of the steady-state saturated flow situation, and (iii) solution^of 
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v/^/////////;/)/////>//////////////////////AJ/// 777?. 
Fig. 24. Schematic presentation in the vertical plane and boundary conditions of the 
quasi three-dimensional approach to saturated-unsaturated flow. 

the steady-state unsaturated flow situation. 

(i) relation between q and h 

Application of the model for unsaturated flow for q f * and for different values of 

c£+i yields a relation between the change in the position of the water table Aç = 

ç*+i - e«"* and q f *. Since ç = h - D, it follows that Ac = Ah. If % is either positive 

or small in the downward direction, the relation between the lower boundary flux and the 

change in the phreatic level is approximately linear: 

% 
,n+i = a.Ah + b 

(91) 

where a and b are constants to be determined for each time step. THe approximate linearity 

stems from the relation between S u and z r s in Fig. 5h. This relation governs the water-

table depth in the absence of a percolation profile. The equilibrium curve used when 

q < 0 shows that for a small change in the water-table depth dSu/dzrs is approximately 

constant. For capillary rise the solved value of q decreases slightly if S u increases due 

to q alone, so that (see Fig. Sh) dSu/dzrs approaches a constant value. Since dS^/dz 

is proportional to dq^/dh, it follows for a small change in the phreatic level during the 

time increment that Eqn 91 is approximately valid. 

Large changes in h usually involve large negative q,, values in which case the 

phreatic level is governed by Eqn 87. Introducing dp as the depth of the water table 

below the upper boundary of the percolation profile (Fig. 21b) gives 

(92) 
ç = d + ç 
P P 
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Substituting Eqn 92 for time n-J into Eqn 87 yields 

çn+j = çn-J S 

Ô P (93) 

Replacing Sn+1 by Eqn 86, fcq(q£+*) by Eqn 84 and introducing Ah = çn+* - çn~* into 
Eqn 93 gives 

Qn+J.At - qn+*.At - S n 

T» P D Ah -I E + d n ^ 
A + B lg(-c£+*) P 

(94) 

Equation 94 is valid for q° + 5 < 0 and S°+ 1 > 0. It follows from Eqn 86 that the condition 
n+1 -t. 1 1 P 

Sp > 0 may be written as c£ * < q"+* + Sn/At. Hence, Eqn 94 applies for 
q»+* <min(0,qn+* + Sn/At). P 

w P P 

The implicit non-linear expression for q^ in Eqn 94 and the explicit one in Eqn 91 

are combined as follows. The model for unsaturated flow is applied for an arbitrary nega

tive value of c£+ to yield cÇK In order to solve the constants a and b in Eqn 91 the 

model for unsaturated flow is used twice to compute Ah for a,small positive value of c£+* 

and c£ = min(0,qp + Sn/At). The latter value of q^ yields a water-table depth below 

or+equal to ç^while^Eqn 94 yields Ah = dj"*, or çn+{ = ̂ . For deCreasing values of 

qw < min(0,c£ + S^/At), Ah decreases linearly according to Eqn 91 and more than 

linearly according to Eqn 94. The point of intersection q£ is found by a Newton iterative 

procedure. An example of the time-dependent relation between q. and Ah used to solve . 
Eqn 89 is given in Fig. 25. 

0.2 qw(cnvd-1) 

«~ io 

Abased to : o S U 89 (ShÎliLan T ! f t he t ime"Variant r e l a t i 0 n between <w « * 
for u n s a tu r a t i ng for I - 0 Z T ^ l r e s"if s , f™" tw° applications, of theVdel 
part (CD) is computed from^qn 9Wi?K I t L , TÎ ^ " ^ b y X ) " T h e n°«" l i n e a r 

B - -0.054. Both relations i te e ' t for £ ^-0 V^l°' «P = °' A = ° - 1 1 0 a n d 

76 



, 

Ay 

i 

Ax 

i-1,j + l 

C 

'-1.J 

P 

i - I .J- l 

i,j + l 

D 

'J 

Q 

i.i-1 

i + 1,j+1 

i+1.j 

i + 1,j-1 

Fig. 26. Grid configuration for two-
dimensional horizontal flow. 

(ii) solution of saturated flow 

For a numerical solution of Eqn 89 the region R is schematized to a horizontal x.y 

grid. If the nodes in the x direction are subscripted by i and those in the y direction 

by j (Fig. 26) the finite difference equation to Eqn 89 at time n+J may be written as 

(T . + T Oft1?** • - h?i) 

2(Ax)2 

CT . + T .)(h?i , - h?i) 

2(Ay)2 

2 (Ax)2 

2(Ay)2 ^ 1,J 

(95) 

Equation 95 is applied for each of the nodes for which h has to be calculated. The 

phreatic level is then solved with a point iterative method (Gauss-Seidel or SOR). The 

right side of Eqn 95 is replaced by a linear(ized) expression for o^ written (without 

the space index i,j) as 

c£+i = a(hn + i \P~\ ) + b 
(96) 

where f or a > q* the coefficients a and b are identical to the constants in Eqn 91. For 

q„'< q* t h r a l l of a and b vary for each iteration cycle so that Eqn ^ - p r e s e n 

t L tangent to Eqn 94. The tangent for iteration cycle r is obtained for q„ , so that 

_L - d ( A h 

ar " \~K 

d(Ahi xA 

% 

(97) 

Differentiating Eqn 94 for q^ , gives 

as 

r-1 „w.= the coefficient ar (without the time subscript) 
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f r-K2 
^aJ 

r-l _ n ,™,_r-i .. — — TT7TT C98) 

so that 

At-p^1 - O^SBC^"1 -At - qp-At - S^/q^ 1 

r-l _ „rr., .r-l br = (£-' - ar(Ah) (99) 

NT-1 
where (Ah) " is the change in the phreatic level calculated with Eqn 94 and /"' is the 
storage coefficient according to Eqn 84, both for a = q*"' . q 

(iii) solution of unsaturated flow 

Hie model for unsaturated flow is applied in each node for the given upper boundary 

flux condition % and the lower boundary flux ^ calculated with Eqn 96. The steady-

state solution yields the saturation deficit in the root zone and the subsoil, the matric 

pressure and the flux at the interface root zone - subsoil, and the real upper boundary 

s ' 

For the solution presented above the interface between the models for saturated and 
unsaturated flow has been taken at a fixed level. Equations 91 and 94 used to link both 
-dels appear to be independent of this level, provided it is located below the phreatic 
surface. The interface may therefore be taken just below the moving water-table, resulting 
in a varylng reference level for c. The advantage of using saturation deficits instead of 
saturations is that such shifts in the origin of the vertical co-ordinate ç do not involve 
voume transes across ̂  fluctuating . ^ ^ ^ . ^ ^ ^ ^ ^ 

2 Z T l J*"6' ™e r e f 0 r e the m0del ** c r a t e d flow can be linked to models for 
saturated flow which take into account a varying thickness of the saturated flow region. 
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6 Application and use 

6.1 EXPERIMENTAL VERIFICATION 

In order to apply the quasi three-dimensional sub-surface flow model to an actual 

field situation, sink terms are added to the right side of Eqn 89. They involve a term 

q representing groundwater extraction from wells and a term qo representing groundwater 

discharge into the open water system. Withdrawal rates from nodes in which groundwater 

is extracted are supposed to be specified halfway the time increment (q" ) . The dis

charge into the surface water system is computed with the aid of a linearized relation 

between the flux q and h. 

The computer program used in this study is written in FORTRAN. That part of the 

computer model dealing with saturated flow was developed and written by van den Akker 

(1972). It uses a finite element method, based on the variational principle (Zienkiewicz, 

1967) to approach the solution of Eqn 89. A horizontal x,y grid is used to divide the 

region R into a number of sub-areas, the elements. Within each element [indicated by a 

letter in Fig. 26) the transmissivity is assumed constant. Using square elements, the 

equation for node i,j at time n+J is written as (van den Akker, 1972) 

V h- j + 1 • 2h-))j+1 • hSJfJ) • hoZL + <?,;->+ hÖ-'} + 

where i is the mesh width (£ = AX = Ay). Application of Eqn 100 to each of the nodes for 

which h has to be calculated yields a set of equations which is solved by SOR. The over-

relaxation parameter u is computed according to an empirical formula 

I 2 J 

where I and J are the number of nodes in x and y direction, respectively. The total num

ber of iterations is controlled by the maximum local difference in the calculated value 

for h between two successive iteration cycles. If this difference is less than the error 

criterium e for which a value is chosen at the beginning of the c a l c u l a t e (xn this 

study e = 0.01 an), convergence has occurred. When testing the computer program conver

gence problems were encountered resulting from the discontinuity in the relation q„ 
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(Fig. 25). The problem arose for the s i t ua t ions 

and 

r „, r-1 
%<c^<% 

r „, r-i 

(102a) 

(102b) 

The following solution to the convergence problem has been adopted. If one of the situ

ations given by Eqn 102 occurs, Eqn 100 is recalculated for the concerning node with q*~! 

set equal to q£. The two relations between a and h now applying to q*-1 are tried until 

% and % both correspond to only one of these. Once the computer program proved to be 

internally consistent, convergent and numerically correct, it was applied to an actual 

field-size saturated-unsaturated flow problem. 

6.1.1 Selected study area 

The study area selected for simulation by the sub-surface flow model is located in 

the east of the Netherlands around the pumping site ' 't Klooster' (Fig. 27) near Hengelo 

(Gld.) The area considered for simulation is 6 x 6 km2 and is described by means of a 

square grid with a mesh width of 500 m (Fig. 28). The pumping station is situated exactly 

in the middle. Two small intermittent streams are schematized to follow the nodes. Most 

of the area is occupied by farmland (Fig. 29), and grass is the principal crop grown 

(70*). The climate is humid with moderate temperatures. The mean annual rainfall and 

évapotranspiration are about 75 cm and 45 cm, respectively. The region is geohydrolo-

gically characterized by a thick coarse sandy aquifer, overlying a more or less imper

meable layer of fine silty sand at a depth of about 35 m, and covered on top by a few 

metres of aeolian loamy sand. The surface elevation taken from a detailed topographical 

map shows a difference between the highest and lowest grid point in the area of only 7 m. 

Fig. 27. Location of the study area. 
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Fig. 28. Grid configuration for the study area and the s o m a t i z a t i o n of both streams. 
x pumping site, — stream. 
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—\ stream 
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Fig. 29. Land use for the growing season 
of 1973 in the study area. 

Water-table elevations were recorded twice a month in 28 ^ ^ f » ^ ^ ^ 

Fig. 30. The depth o£ the water table ranged in the period considered for s ^ l a t x o n 

between zero and 4.5 m below soil surface. 
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Fig. 30. Location of observa
tion wells in the study area. 

6.1.2 Saturated flow 

In the eastern part of the Netherlands where the study area is located (Achterhoek) 

rather «tensive geohydrological investigations were carried out in the past (e.g. Ernst 

et al., 1970). Within a radius of 6 km around the pumping site 't Klooster, the results 

of 13 borings are available. From the boring descriptions and grain-size data trans

missivity values were estimated. These values are supported by a field pumping test 

carried out m 1964 by the Institute for Land and Water Management Research in Wageningen, 

the Netherlands. The test was held on the pumping site 't Klooster before the station 

came into operation. Based on results from these investigations a transmissivity map of 

? Î o O S r L o o e m C l C O m P i l e d CFig' 31)' T r a n S m i S S l v i t y Values used in the model range from 

Due to the flat topography of the study area there is no surface runoff, unless the 

soil is completely saturated. The sub-surface discharge into the drainage system is rela

tively small. From investigations (Colenbrander, 1970) in a nearby experimental basin 

Fi Fig. 31. Contours of transmissivity values 
(m^-d~') in the studv area 
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Fig. 32. Linearized empirical relation be
tween the water-table elevation h (• hs - w) 
and the groundwater discharge q given by 
Eqn 103 used in the study area. 

(Leerinkbeek area) a linear relation was derived between the discharge into the surface 

water system q and the water-table depth w (Fig- 32). Since w = hg - h, the groundwater 

discharge may be formulated as 

q = • no 

' 0.2 

-0.0013(hg 

0 

- h) + 0.2 

for 

for 

for 

h - h < 0 
s 

0 < h - h < 150 

h - h > 150 
s 

(103a) 

(103b) 

(103c) 

The relation given by Eqn 103 applies for every node. More recently Ernst (1978) showed 

that for the eastern part of the Netherlands an (approximate) exponentional relation 

applies between qQ and w. If the required data for this relation can be obtained it 

could be used instead of Eqn 103 without appreciable difficulties. However, it is to be 

expected that the simulation results are not noticeably affected as the total open water 

discharge from the model area and thus the groundwater discharge into the open water 

courses are relatively unimportant. 

For the discharge of groundwater into the open water courses, schematized in nearby 

nodes, the drainage resistance resulting from a silt layer at the river bed and con

vergence of stream lines can be taken into account (de Laat & Awater, 1978). However, 

for the study area this approach was not considered necessary, as the two rivers are 

very small and only carry water during wet periods (mostly in winter time). For the nodes 

in which both streams were schematized, the phreatic level was taken equal to the ob-

served open water level. 

Dirichlet conditions apply for all nodes at the model boundary. The prescribed 

phreatic levels for each successive time step were derived from six observation wells 

just outside the model area. . 

Groundwater withdrawal from wells is restricted to the pimping site located in the 

centre. The extracted water is almost entirely used for domestic supply outside the 

study area. Extraction rates Q are available in n^.d"'. The flux qe is obtained for each 

time step from 
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t+At 

I Q(t) 
_t 

At 

100 
500-500 cm-d ,-1 

(104) 

6.1.3 Unsaturated flow 

Soil physical data were collected by the Soil Survey Institute, Wageningen, the 

Netherlands, in 1973 (van Hoist et al., 1974). Most important soils in the study area 

are podzol soils (about 501), sandy hydro-earth soils (about 201) and very old arable 

fields, known as 'Enk' earth soils (about 201). At, or near each node the soil profile 

was described from borings. The depth of the borings was 30 cm below the lowest water-

table but not deeper than 200 cm below soil surface. The upper layer of the soil con

taining 80% of the roots was taken as the root zone. Values of D r ranged between 20 and 

100 cm and were rounded (for computational reasons) to decimetres. Based on the described 

texture the borings were compared with a large series of soil profiles of which e(p) and 

K(p) relations are available. This comparison resulted in eleven different soil moisture 

characteristics to be distinguished for the root zone. For the subsoil ten different 

pF-curves and three K(p) relations were used. The root zone was taken as homogeneous. A 

typical soil moisture characteristic, used in about 251 of the nodes, is given in Fig. 33a, 

Curve a. With regard to their capillary properties, the selected K(p) relations may be 

characterized as poor, medium and good (Fig. 33c). For each node one of these K(p) rela

tions was used to compute the pressure profiles. These profiles were combined with two 

different soil moisture characteristics to obtain the saturation deficit curves. For the 

upper 50 cm of the subsoil one of the ten selected PF-curves was used. Figure 33a, Curve b, 

shows a typical soil moisture characteristic applied for the upper part of the subsoil in 

about 45* of the nodes. At greater depth one 6(p) relation was used for the entire area. 

This relation (Fig. 33b) was actually measured in the field at a depth between 1.5 and 2 m. 

p (mbar) 
p (mbar) 

- r J — r i 
0.1 0.2 0.3 0.4 0.5 

e 
Fig. 33. Soil physical data used in the study area. 
(a) Typical soil moisture characteristics used for the root zone (Curve a) and the upper 
part of the subsoil (Curve b ) . 

(b) Soil moisture characteristic used for the lower part of the subsoil. 
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The measurements were carried out in 1977 to obtain a relation between K and e. From this 

relation the parameters were derived for the lower boundary solution. The K(6) relation 

was established by Bouma (1977) using the crust test in combination with an instantaneous 

profile method (Arya et al., 1975). Investigations at different locations do not justify 

a variation in the K(6) relation within the study area. As values for q during the summer 

period range from -0.01 to -0.05 on-d" the corresponding range of the K(e) relation is 

used to derive the parameters of the u (q ) relation (84) as shown in Fig. 33d, yielding 

A = -0.01 and B = -0.06. 

6.1.4 Surface flux 

In the absence of irrigation in the study area and neglecting surface runoff, the 

surface flux at time n+\ follows from 

„n+i En+i _ pn+f 
re 

(105) 

where E £ * is the real or actual évapotranspiration flux and Pn+* is the precipitation 

flux, both taken as an average over the time increment At. 

Precipitation was assumed to be uniformly distributed. Daily rainfall data were 

obtained from three different gauging stations outside and in the study area (Fxg. 27): 

Doetinchem (1x), Kervel (1*) and Varssel (2*). The value between brackets indicates the 

Ô —1 

qw(cnvcH) 0.19 Q21 Q23 (X25 0.27 0.29 0.31 0.33 Kfcrrrd ) 

KCcm-cT1) 

-10° -101 -102 -103 -104 -10° 
p(mbar) 

i T T 
0.14 0.12 0.10 O08 0.06 0.04 0.02 0 

Mq 

(c) K(p) relations used for the subsoil. r e l a t i o n (broken line) between uq and qtf. 
(d) The measured K(9) relation and the denvea 
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weight factor used for the calculation of P. During the period considered precipitation 

was in the form of rain. In view of the flat topography of the area, the low intensities 

of the rainfall and the high permeability of the soil, surface runoff was not considered 

except when the root zone was fully saturated (S < 0). Then the water remaining on the 

surface was assumed to run off overland during the same time increment. 

Evapotranspiration rates were computed for each node individually. Neglecting the 

storage of heat in the soil, the formula of Penman (1948) for the calculation of evapo

ration of a wet surface E t may be written as 
wet ' 

sR 
- 2 + YE 

Ewet = — — (106) 
S + y 

where s is the slope of the temperature-saturated vapour pressure curve, R is the net 

radiation, L is the latent heat of vaporization, y is the psychrometric constant and E 

is the aerodynamic evaporation. Using turbulent transport theories, the original empiri

cal expression for Ea, proposed by Penman, was later improved, to include the geometry 

of the evaporating surface (see Feddes, 1971) 

F _ epa (es - e
a ) 

a "p r — (107) 
*a a 

where e is the ratio of molecular weight of water vapour and dry air, p is the density 

of the air, Pg is the atmospheric pressure, eg is the saturated vapour pressure for the 

air temperature at 2 m height, ea is the actual vapour pressure at 2 m height and ra is 

the diffusion resistance to water vapour in the air. Values for ra in relation to crop 

height and wind velocity were tabulated by Feddes (1971). Standard meteorological data 

were used to calculate E w e t from Eqn 106. They comprise wind velocity, relative humidity, 

temperature and relative sunshine duration. The daily values (24 hours means) were pro

vided by the Royal Dutch Meteorological Institute and obtained from the following sta-

stions: Almen, Diepenveen, Twenthe and Winterswijk (see Fig. 27). 

Taking into account the diffusion resistance rg of both crop and soil and neglecting 

evaporation of intercepted water, the real évapotranspiration E of a cropped surface 

with limited water supply may be written as (Monteith, 1965; Rijtema, 1965) 

Ere = s + Y(1 V r /r ) (108) 
s a 

After Rijtema (1965), the diffusion resistance rg is expressed as 

rs B rc + Sc<ri * V O 0 9 ) 

where rc is the diffusion resistance depending on the fraction of soil covered, r is' the 

resistance depending on light intensity, r is the resistance depending on soil moisture 

conditions and flow in the plant while Sc is the fraction of the soil covered by the crop. 
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For a crop with ample water supply r = 0 and it follows for the potential évapotranspi

ration 

S + v 

pot = s + Y(1 + Cr + S r J/r ) Ewet f110) 
c c t a.' 

The expression proposed by Rijtema (1965) for the resistance r of the soil plant system 

and values for rc and r as functions of S and mean short-wave radiation, respectively, 

can be found from van Bakel (1979). 

The linking of the models for évapotranspiration and unsaturated flow requires that 
—2 -1 —1 

évapotranspiration rates, here expressed in kg-m -s are converted to an»d . The real 

évapotranspiration E depends on soil moisture conditions through the resistance r 

while unsaturated flow depends on E through the upper boundary flux qs. Therefore few 

iterations of the calculation of both models are necessary to solve qn+i and E n + '. 

There has been little change in the cropping pattern (Fig. 29) during the years 

considered for simulation. The small urban area in the region is treated by the model as 

if it were grass. 

6.1.5 Simulation results 

The ability of the model to correctly simulate water-table elevations for an actual 

field-size sub-surface flow problem was tested in the study area over a time period of 

almost 6 years. The simulation started at the beginning of April 1971 and ended in Decem

ber 1976, using a time increment of 10 days. As compared with average weather conditions, 

the summer of 1972 was extremely wet and the growing season (the period from April to 

September) of the years 1971, 1973 and 1975 was dry. Extremely dry was the year 1976, 

while the winter of 1974/1975 was very wet. 

The initial steady-state situation was calculated several times for different per

colation rates in the unsaturated region. For q^ (= q) = -0.1 cm-d-1 calculated phreatic 

levels compared favourably with observed water-table elevations at the onset of the simu

lation period. The years 1971, 1972 and 1973 were simulated several times during the 

development of the model. Results of earlier model versions are published elsewhere 

(de Laat et al., 1975; de Laat & van den Akker, 1976). For the calibration of the present 

model the growing season of 1971 was used. Calibration was necessary to estimate the 

hysteresis factor used for the root zone and to test the empirical relation (103) between 

qQ and w. The test runs did not give reasons to alter the qQ(w) relation adopted origi

nally. Furthermore it appeared from testing different hysteresis factors (0, 0.5 and 1.0) 

that a value of 0.5 was most suitable. 

Computed water-table elevations were interpolated in time and space to be compared 

with observed values in the 28 wells shown in Fig. 30. From the difference between the 

measured and simulated water-table elevation Ah (cm), the average ÄE and the average 

absolute difference Jtàï\ are calculated for the total number of observations. Values for 

un", ]ÄhT and the standard deviation a of Ah are presented in Table 3a. In hydrology an 

efficiency factor R^ is often used for the comparison of rainfall-runoff models. The 

efficiency factor may be defined as (Nash & Sutcliffe, 1970) 
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Table 3. (a) Comparison of observed and simulated water-table elevations, (b) Idem, with 
TO set to zero. 

a 

Well No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

Ah 

1 
2 

15 
-4 
-5 
-2 
-9 
2 

12 
19 
10 
9 

-8 
-4 
28 
25 
0 
0 
7 

-10 
6 

14 
16 

-48 
10 
12 
16 
7 

|âh| 

6 
7 

16 
7 
9 
9 

13 
10 
13 
20 
13 
10 
13 
11 
28 
25 
11 
8 

12 
11 
9 

16 
19 
50 
11 
13 
17 
11 

0 

8 
10 
12 
8 
8 

10 
12 
14 
10 
11 
11 
8 

12 
12 
12 
12 
15 
10 
17 
6 

10 
12 
15 
17 
9 

11 
12 
11 

h 
0.97 
0.97 
0.87 
0.97 
0.96 
0.96 
0.92 
0.94 
0.92 
0.79 
0.90 
0.95 
0.92 
0.94 
0.71 
0.76 
0.87 
0.96 
0.78 
0.95 
0.94 
0.82 
0.83 
0.28 
0.94 
0.91 
0.86 
0.91 

b 

Well No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

|Ah| 

6 
8 
9 
6 
7 
8 
9 

10 
7 
8 
8 
6 

10 
10 
10 
10 
11 
8 

11 
5 
7 
9 
8 

10 
7 
7 
8 
8 

h 
0.97 
0.97 
0.95 
0.98 
0.98 
0.97 
0.95 
0.94 
0.97 
0.95 
0.95 
0.97 
0.95 
0.95 
0.95 
0.95 
0.87 
0.96 
0.81 
0.99 
0.96 
0.92 
0.92 
0.92 
0.97 
0.96 
0.95 
0.93 

Fig. 34. Simulated water-table 
elevation contours and observed 
values at the end of August 1973 
in the study area. The quantities 
are expressed in cm. 
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R - 1 SO7 - F M 2 

where F represents the measured water-table elevations, F' the simulated values and F the 
mean of the observed data.. If simulated and observed data fully agree R^ = 1, while IL = 0 
if the simulated values equal the mean of the observed values. The efficiency factor for 
each of the observation wells is presented in Table 3a. The value for Ah is largely gov
erned by the difference between actual and model surface elevation at the observation 
well. In order to eliminate the effect of ÂÏÏ on the comparison of the simulated and ob
served fluctuation of the phreatic level, values for |^h| and R were computed for ob
served data which were 'corrected' for Ah (Table 3b). 

Simulated water-table elevation contours and observed values at the end of August 
1973 are shown in Fig. 34. To illustrate the goodness of fit, observed and simulated 
water-table elevations for observation well No. 12 are plotted in Fig. 35. Also given in 
the same figure are the groundwater extraction rates, precipitation data, calculated 
potential and real évapotranspiration rates and the resulting actual flux across the soil 
surface. Simulated water-table elevations in four observation wells (Nos S, 14, 21 and 
28) are compared in Fig. 36 with observed values, which are 'corrected' for ÂE. 
o b t a i ^ "I thS natUTe °f *" m0del f ° r «»«toted flow, least accurate results are 
occlrst S T? Wlth CaPiUary rlSe 1S f0ll0Wed *y « * * * 1 excess. This situation 
b y ! re! ' ** gr0Wlng S e a S ° n ° £ 1972- * - attempt to improve the result 

affeclZ At,' " aPPeared that redUCing * » l e n S t h of the time increment does not 
rated fit T Wat6r"table eleVati0n significantly. The effect of non-steady satu-

in L 3T TTZT reSUltlng £ r ° m a ̂  Variati0n in »he extraction rate is shown 
Figs 35 and 36 by the calculated phreatic level in the summer of 1976. 

6.2 SENSITIVITY ANALYSIS 

Part i T a n X T ^ ^ 1 ^ ^ ^ ^ "* ** " ^ * ^ 
lation period (van Bakel lQ7<n 4

 W " ^ n ° d e ° n l y ** C0Vers the entirC SUU" 
the quasi three-dimensional aPProximate relation between q^ and h, derived from 

of the unsaturated f l ^ Z d ^ T ^ T e S U l t S ' ^ ^ ** the l0Wer b0Undai7 C ° n d i t i ° n 

effect on calculated real an/ 1S "' t h e r e £ o r e> limited primarily to the 

Another part of t L se ^ ^ ^ V ™ ™ »tes. 
but only for the years 1973^07! T ^ * COnsiders flow in the entire study area, 
used the same period to study H ^ T I " ^ ^ **"" & " *"** ^ 
cal data on the simulation results T G è r e n t W S of collecting soil phys 
simulating regional satura d investigations are important, as the costs of 
detail to which soii D h v J Ü Ï 'unsaturated flow problems largely depend on the degree of 

In this study the senî ata " ^ * ^ measured-
values of seven parameterT^1*7 ^-^ r6SUltS ° f simulation t0 a variation in the 
reasons. The hysteresis f a c ^ lnVeStlgated- The Parameters were selected for different 
in the relations K(p) a n d ^ M ^ C h ° S e n ** U S ValUe had t0 be estimated. Variations 

V J were analyzed as no actual measurements of these rela-

(1979) 

rSi-

of 



tions were conducted in the study area. The transmissivity, the prescribed phreatic 
levels for the nodes a t the boundary and the relation yq(<g were chosen because com
prehensive data were not available. Finally the depth of the 'effective root zone' was 
included in the analysis as i t s value is not well defined. The parameter Dr results from 
the somatization of the unsaturated region into a root zone and a subsoil. In the root 
zone upward flow is governed by the water uptake of the roots and moisture is available 
for the crop unt i l PF 4.2 applies over the entire depth. The root zone may, therefore, be 
considered as a reservoir, the size of which depends on V Although rooting depths were 
extensively measured in the study area, the effective rooting depth Dr, which is assumed 
to comprise 801 of the roots, had to be estimated. , 

The sensitivity analysis for the seven parameters is restricted to results o m n d 
for a period of one year (37 time increments of 10 days each) starting at the b ginning 
of April 1973. First a run of the model was made with the parameters set equa to the 
values used for the six-year simulation period. This run was then repeated witf> no^ng 
changed except the value of the parameter under consideration. The effec of parameter 
variation was investigated for the simulated water-table elevations and ^ e j a ^ l a t e 

• -™ „f thP sensitivity may be obtained by 
real évapotranspirations. A global impression of the sensitiv y j h o u n d a r v 

p a r i n g average values. To reduce the effect of the prescribed levels « * £ £ £ > 

s e a t e d w a t J t a b l e elevations and real évapotranspiration values were ave^g e d o v r 

the interior of the model area. The interior comprises 49 nodes located in the 

a distance of more than 1000 m from the model boundary. original and 
Average water-table elevations resulting from ^ ^ ^ ^ ^ ^ f f e c t of a 

changed parameter value were plotted. Figure 37 shows, as an ******' ^ ^ ^ ^ ^ 
variation in the hysteresis factor on the average water-table 

A ' M V J ' A ' S ' O ' N ' D J ' F M 
1973 1 9 7 4 

table «1CT«i«= u - A l l AT* F l 8. 37. Comparison of calculated wa t e r""D^r."irfactor from its 
"ea for sensitivity to a change in the hysteresis 
0,5 H to zero ( ). 
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Table 4. Summary of sensitivity analysis results. 

Parameter 

Hysteresis 
factor 

Hydraulic 
conductivity 
relation K(p) 

Groundwater 
discharge 
relation q (h) 

Transmissivity 
T 

Prescribed 
phreatic levels 
at the boundary 

Storage 
coefficient 
relation u (q ) 

Depth of root 
zone D 

Change 

Set to zero 

'good' ->• 'medium' 
'medium' -* 'poor' 
(Fig. 33c) 

See Fig. 38 

Increased by 25% 

Raised by 5 cm 

See Fig. 39 

Effect of changing parameter value on 

water-table elevation 

At the beginning of the 
second half year 12 cm 
lower, thereafter 2 cm 
higher. 

In the first half year 
2 cm higher. In the 
second half year, at 
first more than 10 cm 
higher, later decreasing 
to no change. 

Varying from 20 cm lower 
for the highest levels 
to 2 cm lower for the 
lowest levels. 

High levels 2 cm lower. 
Local effect (except 
for the well site) 
ranges from +3 to -8 cm. 

High levels 2 cm and low 
levels 4 cm higher. 

Up to 10 cm higher in 
summer and 10 cm lower 
in winter. 

Decreased by 10 cm In the second half year 
(when the water table is 
rising) 10 to 15 cm 
higher. 

real évapotranspiration 

Overestimated by 0.3 cm, 
but locally more than 
1 cm. 

Underestimated by 1.8 cm, 
but locally more than 
5 cm. 

Underestimated by 0.6 cm, 
but locally more than 
4 cm. 

Underestimated by 0.1 cm. 

Overestimated by 0.1 cm, 
but locally almost 1 cm. 

Underestimated by 0.4 cm 
(at some locations by 
I cm but also overesti
mated by 1 cm). 

Underestimated by almost 
2.8 cm. (The local effect 
ranges from 2 to 5 cm.) 

of the study area. The result* fm- „ n 

table ai<=n „,-, *u r SCVen P a r a ^ t e r s are summarized in Table 4. This 
umie also gives the pffpn- n-e 
calculated fnr «, Parameter variation on the to ta l real évapotranspiration *r ^ J I ^ : ^ : p r d of one year- ̂  effect -iies to *•me vaiue 
below. v e r l o r . The results of the sensi t ivi ty analysis are discussed 

table 

of the 

Hysteresis factor Neelecti™ Wo* 

to rainfall excess at t L " d of T ^ " ^ ** * ***** ^ ^ ° £ ** **" 
rainfall excess during the < ™ ! SUmBT ** "** be S6en " Fig' 37" SinCe " ^ ° 
transpiration rates are M g n e T ^ S6aS0n " ^ *" ** rO0t Z ° n e ' ** calculated *"** 

Hydraulic conductivity The canin»« 
described by three different Ir\ p r ° p e r t i e s ° f the subsoil in the study area are 

» 'Poor' applies to only eLht J ^ * " 0 ^ ^ ^ K(P) " ^ ^ à""***** 
snx nodes. For the sensitivity analysis these nodes were 
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left unchanged. Nodes i n i t i a l ly characterized as 'good' became 'medium' and the capillary 

properties of nodes i n i t i a l l y 'medium' were changed to 'poor'. The calculated real évapo

transpiration proves sensitive to a variation in the K(p) relation. At places where the 

water-table depth may be considered as ' c r i t i c a l ' , the calculated values are largely 

reduced. As a result of the poor capillary properties, less water becomes available for 

the crop due to a decrease in capillary r ise and an increase of the pF value in the root 

zone. Consequently, the saturation deficit at the end of the summer is smaller, resulting 

in higher levels when ra infal l excess causes the water table to r ise. 

Groundwater discharge The relation between groundwater discharge and water-table depth 

was drastically changed (Fig. 38). The change represents an 'improvement' of the drainage 

system affecting primarily the most shallow water-tables. The effect on water tables 

deeper than 200 cm i s almost negligible. Calculated real évapotranspiration values are 

lower as the drawdown of the water table hampers the process of capillary rise and re

duces (at some places considerably) the amount of moisture available in the root zone at 

the beginning of the growing season. 

TvanemUsivity A large change in the transmissivity values has negligible effect on the 

simüated water-table elevations and calculated real évapotranspiration rates. 

Prescribed phreatia levels at the boundary The prescribed phreatic ^ ^ ^ ^ 
from the same data in two different ways, independent of each other. Bo s e r i e 

for 1973 were compared for two arbi trari ly selected nodes. The 951 confx dence « x t t t f 

the average value appeared to be 4 and 2 cm, « ^ ^ - ^ ^ ^ s i t Uation. 
Prescribed levels were raised by 5 cm. The change also applies 
As the water table in the study area is relatively deep (the average dePtf> to 197^ ^ 

the interior is 190 cm) the calculated real évapotranspiration is not very 
a change in the prescribed levels at the boundary. 

qo(crrvd-1) 
0 Ol 0.2 0.3 

w(cm) 

F i 8- 38. The 

• 'rial (—) and cnangeu \ / 

S - 38. The original (-) and changed (-). *£J^ ^ I n T , «* * — <" ** "~. 
tiv- between q0 and h used for the sensi- itivity analysis. 

xty analysis. 

The original (-) and changed ( ) 

te., between v ~J *• ••"* for the sen
sitivity analysis. 
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Storage coefficient The change in the relation between u and q^ (Fig. 39) effectively • 

increases the storage coefficient by 0.03. As a result of the larger u value the fluctu

ation of the water table in 1973 is reduced by 20 cm. The change has two effects which 

act in opposite directions on the calculated real évapotranspiration. On the one hand 

capillary rise benefits from the higher phreatic levels in the growing season, while on 

the other hand less moisture is available in the subsoil due to a larger downward flux 

across the lower boundary of the model for unsaturated flow. 

Depth of the root zone A decrease of D results in an underestimation of E f e for three 

reasons: (i) less water is available in the root zone at the beginning of the growing 

season, (ii) less water is kept in the root zone during periods with rainfall excess, 

and (iii) the supply by capillary rise is hampered due to larger z values. The calcu

lated lower real évapotranspiration values result in smaller saturation deficits at the 

end of the summer yielding higher phreatic levels during the time the water table is 

rising. 

The sensitivity was, apart from the seven input parameters, also investigated for 

a change in the calculation procedure. The upper boundary condition given by Eqn 105 

requires an iterative solution of the models for évapotranspiration and unsaturated flow 

to calculate E n . Instead of solving E n + * by iteration, E n + * is used to compute the 

surface flux as 

n+i = En+J _ pn+J (112) 
ns pot 

The actual surface flux qre computed by the model for unsaturated flow is then used to 

calculate the real évapotranspiration rate 

En+J _ (qrejn+i + pn+J (113) 

As a result of the change in the model, the calculated real évapotranspiration rate equals 

its potential value until the pressure in the root zone reaches wilting point, because 

q " = qg for pF values less than 4.2. The use of Eqn 112 instead of Eqn 105 and the 

calculation of E r e with Eqn 113 rather than by iteration did not have any effect on the 

simulated water-table elevations. The calculated real évapotranspiration for the interior 

of the model area was overestimated by only 0.1 cm, but after 130 days when pF 4.2 is 

reached in most parts of the region by 0.5 cm. Local effects largely depend on the type 

of land use. Potatoes appeared to be very sensitive while the calculated real évapo

transpiration of grass was hardly affected. 

The results of the sensitivity analysis may be summarized as follows. The fluctu

ation of the simulated water-table elevation depends largely on the relation between u 

and qw which is derived from the K(e) relation applying to the lower part of the subsoil. 

The average water-table height in summer is predominantly governed by the prescribed 

phreatic levels at the boundary, while in winter the empirical relation (103) between 
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q and h appears to prevail. 

The calculated real évapotranspiration is sensitive to the water-table elevation at 

the beginning of the growing season, the hydraulic conductivity relation K(p) and the 

depth of the effective root zone D . The sensitivity to the parameter Dr is most pro

nounced as it directly affects the amount of water available for the crop. A similar 

sensitivity was noticed by Feddes et al. (1978) using a sink term function to describe 

water uptake by roots. They reported that a relatively small change in the sink term 

function affects the system. 

A final run of the model showed that the difference between the real and potential 

évapotranspiration of grass is not governed by the diffusion resistance rp (see Section 

6.1.4) but results from a deficiency of available water in the root zone. 

When evaluating the sensitivity analysis, it should be realized that the results 

apply for one particular situation. In another period or region for which conditions 

differ significantly from those in the study area in 1973, the foregoing conclusions may 

not be applicable. 

6.3 CONSEQUENCES OF GROUNDWATER EXTRACTION 

The model has been used in the study area to predict consequences of the implemented 

groundwater extraction. Since the model was verified only with respect to water-table 

elevations, in the absence of other possibilities, an investigation of these consequences 

should be restricted to the prediction of the drawdown of the phreatic level. Neverthe

less tentative conclusions will be drawn with respect to other hydrological consequences 

for the following reason. Assuming that the geohydrological data, the groundwater ex

traction rates and the prescribed phreatic levels at the boundary are correct, the simu

lated water-table elevation is governed by % and qQ. Because the discharge qo is very 

small, in particular during the last M year of the simulated time period, the flux q„ is 

correctly simulated considering the excellent agreement of computed and observed water-

table elevations. The recharge of the saturated zone from the overlying unsaturated region 

depends (in particular at the end of the growing season) very much on the saturation 

deficit and thus the surface flux v Assuming that rainfall rates were accurately measured 

the real évapotranspiration during the growing season must have been approached properly. 

Potential évapotranspiration rates are independent of soil moisture conditions and veri

fied for lysimeter experiments (Rijtema, 1965) and field experiments (Feddes, 1971). 

The simulation model was applied in the study area in exactly the same way as for 

verification but without groundwater extraction from the wells in the centre. A condition 

for this application is that the effect of the change in the actual situation on the 

boundary conditions is either negligible or predictable. With regard to the study area, 

the boundary of the model was chosen at such a distance from the pumping site that the 

prescribed phreatic levels are not appreciably affected by the implemented extraction, 

while the effect on the water levels in both streams is assumed insignificant 

The water balances resulting from simulation of the actual situation and the s t 

ation without extraction are presented in Table 5. The quantities are « * » » ^ » 

and refer to a period of approximately one year (except for 1976) starting at the begin 
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Fig. 40. Contours for the simulated situation in 
the study area at the end of August 1973. 
(a) Difference in water-table elevation (cm) for 
the situations with and without the implemented 
extraction. 
(b) Relative évapotranspiration (%) contours. 
(c) Difference in relative évapotranspiration be
tween the situations with and without extraction. 

ning of April. The water balances for the summer half year (170 days) are given in 

Table 6. This table shows that the total amount of groundwater, leaving the region during 

the growing season as surface water ('Surface water discharge') is relatively small. Most 

of the rainfall excess in the study area is discharged across the model boundary as 

groundwater ('Groundwater discharge'). 

The difference in the calculated water-table elevation for the situations with and 

without groundwater extraction at the end of August 1973 is shown in Fig. 40a. As a 

result of the drawdown less water becomes available for the crop by capillary rise, which 

may result in a reduction of the évapotranspiration. Most of the reductions occur during 

the summer half year. The relative contribution to the supply of the implemented ground

water extraction of each of the terms of the water balance during the summer half year 

is presented in Fig. 41. The results show that a simple relation between reduction of 

évapotranspiration due to groundwater extraction and the prevailing climatological con

ditions during the growing season does not exist. Other important factors must be con

sidered, such as water-table depth and soil moisture conditions at the beginning of the 

growing season (which are very favourable in 1975) and the distribution of precipitation 

over the season. 

If crop production is not restricted by water supply, the total actual évapotran

spiration at the end of the growing season SE equals the total potential évapotran

spiration IE . The production capacity of the crop is often expressed in terms of 
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relative évapotranspiration (Feddes & van Wijk, 1976), defined as (ZE /iE )-100%. 

Relative évapotranspiration calculated from simulation results for the situation without 

extraction is presented in Fig. 40b. Reductions in relative évapotranspiration and con

sequently in crop production are likely to occur in areas showing high évapotranspiration 

rates and situated not too far from the pumping site as may be seen from Figs 40b and 

40c. 

The effect of groundwater extraction on the calculated phreatic level in well No. 12 

is shown in Fig. 42. 

Applications of the quasi three-dimensional approach to saturated-unsaturated flow 

as described in this study were reported for the following regions. 
2 

- Leerinkbeek area (141 km ) . De Laat & van den Akker (1976) studied consequences of 

groundwater extraction on the water-table elevation and crop production for a three-year 

period. 

- Dinxperlo area (57.5 km ) . Awater (1976) investigated possibilities to reduce the draw

down resulting from pumpage by means of surface water infiltration. The simulation period 

covered 4 J years. 

- Glindhorst area (156 km 2 ). The 'Werkgroep Wateronttrekking Gelderse Vallei' (1979) 

studied hydrological consequences for different groundwater extraction rates for a three-

year period. 

- Achterhoek area (701 km 2 ). Awater & de Laat (1979) investigated for a three-year period 

the effect of sprinkling and different extraction patterns on the water-table elevation 

and real évapotranspiration. 

For each of the above mentioned applications the length of the time step used was 

ten days and the mesh width of the two-dimensional horizontal grid 1000 m, except for the 

Dinxperlo area where the distance between the nodes was 500 m. 
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Summary 

The most important driving forces for transport of water in soil are differences in 

elevation and pressure. These forces are usually combined into the hydraulic potential 

gradient. Darcy's law relates this gradient to the flux density or specific discharge. 

The proportionality factor of both quantities is the hydraulic conductivity K. Combina

tion of Darcy's law and the principle of continuity leads to a general equation (13) with 

two dependent variables (6 and p ) . In this study the generality is restricted to iso

thermal flow of an incompressible homogeneous liquid in an isotropic rigid soil. 

The particular forms of the general equation applying to simplified flow problems 

are essentially different for a situation of complete saturation and for a partly satu

rated flow system. For complete saturation the number of dependent variables reduces to 

one, and the hydraulic conductivity is a function of the independent variables alone. The 

solution of differential equations governing flow in unsaturated porous media requires 

the soil moisture characteristic, the relation between 6 and p, to be specified. Moreover, 

the hydraulic conductivity is a function of e or p. Since both empirical relations {e(p) 

and K(p) or K(e)} are difficult to measure and subject to hysteresis, solutions of par

tial differential equations governing saturated flow are often more easily obtained than 

of those governing unsaturated flow. 

The algebraic formulation of the flow problem results in an abstract simulation 

system, or mathematical model. Real simulation systems comprise physical and analogue 

models. A viscous fluid analogue model for simulating vertical unsaturated flow was 

developed by Wind (1972) and a special purpose electrical analogue by Wind & Mazee (1979). 

The most versatile models for saturated flow are the resistance-capacitance analogues. 

Although these direct simulation methods are capable of solving complex flow problems, 

mathematical models are, due to recent advances in the field of computer technology, 

considered superior in many ways. 

The numerical solution of the governing partial differential equations may be ob

tained by finite element or finite difference methods. The use of finite element methods 

is advantageous if the flow domain is to be described by an irregular grid or when com

plicated saturated-unsaturated flow problems are to be solved. Finite element techniques 

are a recent development in the field of sub-surface hydrology. Most of the available 

solutions of groundwater flow problems indeed use a finite difference method. Some cur

rent finite difference techniques are discussed towards the end of Chapter 2. 

For historical reasons and in view of the above mentioned differences in the nature 

of the partial differential equations governing flow in completely saturated and partly 

saturated porous media, flow above and below the water table was traditionally treated 

separately. As it is often sufficient to consider flow in the unsaturated region verti

cally and, in the saturated part in horizontal direction only, the separate approach 



largely reduces the complexity of the flow problem. However, serious objections are 

raised if water tables are shallow or rapidly fluctuate, as the effect of unsaturated 

flow on the saturated system may be considerable. 

A unified approach to saturated-unsaturated flow was first reported by Rubin (1968). 

In Chapter 3 a review is given of a number of papers using a single equation to model 

flow in partly saturated flow systems. The problems solved by this rigorous approach deal 

with pumping tests and flow in shallow water-table aquifers. For these flow problems the 

effect of the unsaturated system on unconfined groundwater flow is most pronounced. 

The use of a single equation to solve saturated-unsaturated flow problems introduces 

numerical difficulties. The governing equation is parabolic in the unsaturated zone and 

of an elliptical type in the saturated part, while the position of the phreatic surface 

separating both regions is a priori unknown. The numerical solution requires a small mesh 

size in the region above the water table and in the vicinity of the well, because the 

value of the dependent variable may change drastically over a short distance. Moreover, 

the non-linearity of the coefficients in the unsaturated part of the flow domain requires 

for reasons of stability and convergence that time is discretized to small steps. Due to 

the limited capacity of the core memory of the computer and the extremely high runnxng 

costs, applications to regional problems have not been reported. 

An alternative solution proposed by Pikul et al. (1974) links Richards' equation 

for vertical unsaturated flow to the equation of Boussinesq for horizontal »Juniled 

flow. The efficiency of the resulting quasi three-dimensional approach for so ving »tu-

rated-unsaturated flow problems does not improve significantly, mainly because of th 

time step restriction for the solution of the equation for unsaturated flow, which 

imposed upon the entire system. r m n n t.r 

A m i l for vertical unsaturated flow being more efficient in ten* * " * £ * 

costs is developed in Chapter 4. The model simulates transient f low by s u c c ^ n of 

steady-state situations. Steady upward f low in " ^ ^ £ £ £ ? 

metre above the water table was first computed by Richards I WIJ. V 

tion of steady-state relations was carried out by Wind ^ ] ^ ^ J ^ ^ 

pute for various water-table depths the maxima amount of soil « ^ ^ ^ ^ 

crop. Feitsma (1969) used a succession of steady-state situations to simulate the tran 

sient process of capillary rise and the drawdown of the water table 

in this study the pseudo steady-state approach to capil ary ri i - X « * • 

approximate value depends on the length of the * - « £ « ! £ ^ t T 2 water-

relation to the characteristic * - of the unsatur«rf f £ « * - ^ ^ 

table in a sandy aquifer, the characterise « , he ° Y ^ 

of the pseudo steady-state approach become inconsis ent if ̂  ^ » £or a 

ment .ed is smaller than the * « ^ ^ £ ^ ^ * - » 
decreasing flux across the upper boundary and for the s 

followed by percolation. F u r « the position o, ^ ^ £ L L 

lated properly if the flux across the lower b o u n t y - a J level t0 

In this study the unsaturated zone extends from just below t V ^ 

the soil surface. The region is s c h e m e d into a roo z - sub o ^ ^ 

the root zone is largely governed by the water uptake of the roots, 
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hydraulic potential in the root zone is assumed equal to zero. It is shown that the 

steady-state situation is fully determined by only two parameters (e.g. the saturation 

deficit of the root zone S r and the steady flux in the subsoil q ) . The use of saturation 

deficits reduces the solution of the steady-state situation to a problem of two relations 

with two unknowns (Sr and q ) . The steady-state solution corresponding to the upper bound

ary flux of the subsoil is termed upper boundary solution. Procedures are developed to 

account for the above mentioned inconsistencies and to treat periods with rainfall excess 

following capillary rise. If the root zone desiccates to wilting point the calculation 

procedure yields furthermore the actual flux across the soil surface. When there is a 

large downward flux across the lower boundary, the upper boundary solution is unsuitable 

for computing^the water-table depth. For a downward lower boundary flux condition the 

position of the phreatic level is therefore simulated by a pseudo steady-state approach 

to percolation applying to the lower part of the unsaturated zone. The steady-state solu

tion corresponding to the lower boundary flux of the subsoil is termed lower boundary 

solution. The upper and lower boundary solutions are combined into one simulation model, 

taking into account hysteresis and heterogeneity. However, with percolation capillary 

properties are assumed homogeneous, so that the model does not allow for the formation 

of perched water-tables. 

A quasi three-dimensional approach for simulating transient sub-surface flow in 

shallow water-table aquifers is outlined in Chapter 5. The solution uses a two-dimen

sional horizontal grid to describe saturated flow. A special procedure is developed to 

link in each node of the grid the unsaturated flow model with the saturated system. 

An area of 36 km in the east of the Netherlands was chosen for experimental veri

fication of the quasi three-dimensional model. The area was described by a rectangular 

grid with a mesh size of 500 m. The length of the time increment used was ten days and 

the simulation period covered almost six years. Simulated water-table elevations compared 

favourably with observed values. Less accurate results were obtained in periods with an 

alternating évapotranspiration and rainfall excess. The sensitivity of the simulated 

water-table elevations and calculated real évapotranspiration rates to a variation in the 

value of several parameters was investigated. The results discussed in Chapter 6 show 

that the calculated real évapotranspiration is most sensitive to the conceptual approach 

for water uptake by the roots. For the approach to évapotranspiration as used in this 

study, it appeared furthermore that the difference between the calculated actual and 

potential évapotranspiration of grass depends on the amount of soil moisture available 

in the root zone rather than upon the empirical diffusion resistance for soil and crop 
(V 

An application of the model for saturated-unsaturated flow is given. Consequences 
of the implemented groundwater extraction in the study area on the calculated phreatic 
levels and water balances are predicted for the same period used for the verification 
of the model. 
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Samenvatting 

De belangrijkste drijvende krachten voor de beweging van water in de grond zijn ver

schillen in hoogte en druk. Het is gebruikelijk deze krachten te combineren in de gradi

ent van de hydraulische potentiaal. Het verband tussen deze gradiënt en de fluxdichtheid 

of het specifieke debiet staat bekend als de wet van Darcy. Hierin is de hydraulische 

doorlatendheid K de evenredigheidsconstante van beide grootheden. Combinatie van de wet 

van Darcy en het continuïteitsbeginsel leidt tot een algemene stromingsvergelijking (13) 

met twee afhankelijke variabelen (9 en p ) . In deze studie is de algemeenheid beperkt tot 

isotherme stroming van een onsamendrukbare homogene vloeistof in een isotrope rigide 

grond. 

Van de algemene formulering afgeleide vergelijkingen voor vereenvoudigde stromings

problemen vertonen wezenlijke verschillen voor zover zij betrekking hebben op een geheel 

of een gedeeltelijk verzadigd systeem. Bij volledige verzadiging is er nog slechts sprake 

van één afhankelijke variabele die niet van invloed is op de hydraulische doorlatendheid 

K. Voor het oplossen van differentiaalvergelijkingen voor stroming in een gedeeltelijk 

verzadigd systeem moet het verband tussen 6 en p worden gespecificeerd. Bovendien is de 

hydraulische doorlatendheid een functie van 9 of p. Beide empirische relaties (e(p) en 

K(p) of K(9)} zijn moeilijk te bepalen en onderhevig aan hysteresis. Vandaar dat oplos

singen van partiële differentiaalvergelijkingen in het algemeen eenvoudiger worden ver

kregen voor stroming in een volledig verzadigd systeem dan voor stroming in een gedeel

telijk verzadigd medium. 

De algebraïsche formulering van het stromingsprobleem resulteert in een abstract 

simulatiesysteem of mathematisch model. Daarnaast bestaan er ook fysische en analoge mo

dellen. Wind (1972) ontwikkelde een hydraulisch anàlogon en Wind & Mazee (1979) een 

elektrisch analogon voor de simulatie van verticale stroming in de onverzadigde zone. 

De meest veelzijdige electrische analogons voor de simulatie van verzadigde grondwater-

stroming bestaan uit een netwerk van weerstanden en condensatoren. Ofschoon met deze 

directe simulatietechnieken gecompliceerde stromingsproblemen zijn op te lossen, worden 

mathematische modellen in velerlei opzicht als superieur beschouwd. Hieraan heeft vooral 

de recente ontwikkeling op het gebied van de digitale computertechniek bijgedragen. 

Voor het numeriek oplossen van stromingsvergelijkingen worden eindige elementen- en 

eindige differentiemethoden gebruikt. De eindige elementenmethode biedt voordelen bxj het 

oplossen van gecompliceerde verzadigde-onverzadigde stromingsproblemen en xn « « » " « 

waarbij het gebruik van een onregelmatig netwerk wenselijk is. De methcKle ^ J ? ™ £ 

kort toegepast voor het oplossen van stromingsproblemen in poreuze medxa Van & bestun 

de numerieke oplossingen is dan ook het grootste deel verkregen met behulp ™ " ^ 

differenties. L aantal gangbare eindige differentietechnieken wordt besproken aan het 

einde van hoofdstuk 2. 
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Om historische redenen, maar ook vanwege de genoemde verschillen tussen stromings-
vergelijkingen voor volledig verzadigde en gedeeltelijk verzadigde systemen, werd de 
waterbeweging boven en beneden het freatisch vlak vanouds gescheiden behandeld. Deze be
nadering vereenvoudigt de oplossing van het stromingsprobleem aanmerkelijk, omdat in de 
onverzadigde zone veelal volstaan kan worden met het in beschouwing nemen van stroming 
in verticale richting en in de verzadigde zone met stroming in het horizontale vlak. Maar 
in het geval van ondiepe of snel fluctuerende grondwaterstanden bestaan er ernstige be
zwaren tegen deze aanpak vanwege het effect van de onverzadigde stroming op het verza
digde systeem. 

Een integrale benadering van verzadigde-onverzadigde stroming werd voor het eerst 
gerapporteerd door Rubin (1968). In hoofdstuk 3 wordt een overzicht gegeven van modellen 
die gebruik maken van slechts één vergelijking voor het oplossen van stroming in een ge
deeltelijk verzadigd medium. De toepassingen van deze rigoureuze benadering hebben be
trekking op de simulatie van pompproeven en stroming in watervoerende pakketten met een 
ondiepe grondwaterstand. Voor deze stromingssituaties i s het effect van het onverzadigde 
systeem op de stroming in het verzadigde freatische pakket het meest geprononceerd. 

Het gebruik van slechts één vergelijking voor het simuleren van verzadigde-onverza
digde stroming introduceert numerieke problemen. De stromingsvergelijking i s namelijk 
parabolisch in de onverzadigde zone en van een e l l ipt isch type in het verzadigde deel, 
terwijl de ligging van het freatisch vlak tussen beide gebieden a p r ior i onbekend i s . 
Omdat de afhankelijke variabele in de onverzadigde zone en in de buurt van de put aan
zienlijk kan variëren over een geringe afstand, moet gebruik gemaakt worden van een net
werk met een kleine maaswijdte. Bovendien vereist de n i e t - l inea r i t e i t van de coëffici
ënten die betrekking hebben op het onverzadigde deel van het stromingsgebied dat on. re-
J Ü T IT " t a b l l l t e i t e n u r g e n t i e de tijdstappen tot een kleine grootte worden terug
gebracht. Voor stromingsgebieden van enige omvang le idt d i t to t exorbitante rekentijden 

een tekort aan beschikbare geheugencapaciteit van de computer. Vandaar dat tot op 
heden geen toepassingen op regionale schaal bekend zijn. 

g e l i i k in e
a v t e m a t l e V e ° P l 0 S S i n g C P i k U l G t a 1 - ' 1 9 7 4 ) i s d e k°PP e l i ng v a n R i c h a r d S ' Ve r" 

horizontale Z ^ ^ J ™ ^ ^ ^ »* d e v e ^ ^ ^ van Boussinesq voor 
niet t o t T t ng' DS r e s u l t e r e n d e quasi drie-dimensionale aanpak blijkt 
onverzadiX "f"*"™ ^ ^ e r e doelmatigheid te leiden bi j het oplossen van verzadigde-

d i ^ d e f t
e

e
S t r 0 m i n g S p r 0 b l e - n - * belangrijkste oorzaak hiervan i s dat de beperkingen 

opgelegd aan ^ Z J T y s t e T ^ ^ * ****** " " ^ ^ s ™ 8 ' ""** 

ve r z adLS r ! ^ 1 * * " " ^ ** ° n t w i k k e l i n g beschreven van een model voor verticale on-

strommj w o ^ Z r Z ™ T ^ ^ ^ ^ ^ * » ' ^ s t a t i o n a i r e 

Opwaartse stationair ^szMileerd met een opeenvolging van stationaire toestanden, 

freatisch vlak w e r d ^ T ^ " ^ g r ° n d k o l o f f l m e t e e n h o°gte van een meter boven het 
rekening van s t a t i o n l ^ ^ ^ b e r e k e n d d o o r Schawls (1931). Een systematische be-
toegepast bij de bepaHn T e l a t l e S ^ U i t g 6 V O e r d d o o r W i n d (19SS) en la ter door anderen 
in relatie tot de die te^ ^ ^ V°° r ^ ***** m a x i m a a l beschikbare hoeveelheid vocht 
opeenvolging van s t a« & ^ ^ g r ° n d w a t e r s t a n d - Feitsma (1969) gebruikte hierbij een 

naire toestanden om het n iet-stat ionaire proces van capillaire 
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opstijging en grondwaterstandsdaling te simuleren. 
In deze studie i s de pseudo stationaire benadering van capillaire opstijging ge

analyseerd. De resultaten die met deze aanpak worden verkregen, blijken afhankelijk te 

zijn van de lengte van de gebruikte tijdstap in relatie tot de karakteristieke tijd van 

het onverzadigde systeem. In het geval van een ondiepe grondwaterstand in een zandige 

grond ligt de waarde van de karakteristieke t i jd in de orde van grootte van dagen. Indien 

de lengte van de gebruikte t i jdstap kleiner is dan de karakteristieke t i jd, worden met de 

pseudo stationaire benadering resultaten verkregen die fysisch gezien onjuist zijn. Het

zelfde geldt in geval van een afnemende flux door de bovenrand van het model en voor de 

situatie waarbij capil laire opstijging wordt gevolgd door percolatie. Bovendien is ge-

bleken dat voor een grote neerwaartse flux door de onderrand de positie van het freatisch 

vlak niet goed gesimuleerd kan worden. 

In deze studie s t rekt de onverzadigde zone zich uit van juist beneden het freatisch 

vlak tot aan maaiveld. Het gebied i s schematisch verdeeld in een wortelzone en een onder

grond. Omdat stroming in de wortelzone in hoge mate wordt bepaald door de ^ ^ Z 

de wortels, i s de gradiënt van de hydraulische potentiaal in de wortelzone f ^ J ^ 1 

aan nul. Er i s aangetoond dat de stationaire stromingstoestand volledig is bepaald door 

slechts twee parameters (b.v. het verzadigingstekort van de wortelzone S en de stat 

naire f lox in de ondergrond q) . Door gebruik te maken van verzadigingstekor* w 

oplossing van een s tationaire s i tuat ie ~ ^ £ £ ^ J Z £ Z ~ 

• » t»ee onbekenden (S en 5 ) . De oplossing van de stationaire s i procedures 

* f t a door de bovenrand van de ondergrond «ordt ' » - ™ * ^ J ^ 1 ^ 
zijn ontwikkeld om de hierboven genoemde onjuistheden te corrigeren e^ ^ ^ s i r a u l e r e n . 
neerslagoverschot volgend op een s i tuatie met capillaire opstijg?.ng^ ^ ^ ^ w e r . 
Indien de wortelzone uitdroogt tot verwelkingspunt, berekent ^ ^ ^ ^ 

olijke flux door de bovenrand. In het geval van een F0^™™ ^ grondwaterstand, 
onderrand is de bovenrandoplossing ongeschikt voor de ere ^ ^ ^ ^ ^ w o r d t gesimu-
Vandaar dat voor een neerwaartse flux door de onderrand e ^ ^ ^ ^ ^ ^ v a n 

leerd met behulp van een pseudo stationaire benadering van^ e^s ^ ^ ^ & s t a t i o . 
ie ondergrond dat j u i s t boven het freatisch vlak gelegen ï s . . ^ ^ o n v e r z a d i g d e zone wordt 
•«ire situatie overeenkomend met de flux door de onderran van ^ . ^ ^ i n één 

onderrandoplossing genoemd. De boven- en onderrandoplossingen ^ ^ ^ . ^ I n g e v a i 
simulatiemodel waarbij rekening i s gehouden met hysteresis en v e r o n d e r s t e l d > zodat 
van percolatie worden de capil laire eigenschappen e c h t < ™ j ; ^ ^ 
•et het model geen schijngrondwaterspiegels gesimuleer ^ ^ _ drie-dimensionale be-

In hoofdstuk 5 wordt een uiteenzetting gegeven van ee ^ ^ ^ ^ stroming in water

nadering voor de simulatie van niet-stationaire verzadig^e- ^ w o r d t g e b r u i k ge

urende pakketten met een ondiepe grondwaterstand. Bij b e s c h r i j v i n g van de verza

k t van een twee-dmensionaal horizontaal netwerk v o o r ^ m ^ i e d e r knooppunt van 
digde grondwaterstroming. Een speciale procedure is ontwi ^ ^ v e r z a d i g . 
dit netwerk het model voor stroming in de onverzadigde zon 
de systeem. . x t e v e r if iëren werd in het 

Teneinde het quasi drie-dimensionale model experimen^ ^ ^ ^ b e s chri jving van 

°°sten van N ^ - H ^ »«, <**ied gekozen ter grootte van 
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het gebied is gebruik gemaakt van een rechthoekig netwerk met een maaswijdte van 500 m. 

Met een tijdstap van tien dagen werd een periode van bijna zes jaar gesimuleerd. De over-

eenkomst tussen de gesimuleerde grondwaterstanden en de waargenomen waarden is bevredi

gend. Minder nauwkeurige resultaten zijn verkregen in perioden met een afwisselend ver-

dampings- en neerslagoverschot. De gevoeligheid van de gesimuleerde grondwaterstanden en 

de berekende evapotranspiratie ten aanzien van een variatie in de waarde van een aantal 

parameters werd onderzocht. Uit een bespreking van de resultaten in hoofdstuk 6 blijkt 

dat de berekende werkelijke verdamping in hoge mate wordt bepaald door de conceptuele 

benadering van de wateropname door de wortels. Voor de in deze studie gevolgde benade

ringswij ze van de gewasverdamping is verder gebleken dat het verschil tussen de berekende 

werkelijke en potentiële evapotranspiratie van gras vrijwel uitsluitend afhankelijk is 

van de beschikbare hoeveelheid vocht in de wortelzone en in veel mindere mate van de 

empirische diffusieweerstand voor bodem en gewas (r ) . 

Met een toepassing van het model voor verzadigde-onverzadigde stroming werden de 

gevolgen van grondwateronttrekking voor de berekende grondwaterstanden en waterbalansen 

voorspeld. De toepassing heeft betrekking op de onttrekking in het modelgebied en de 

periode die ook voor de verificatie van het model is gebruikt. 
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List of symbols 

a Coefficient in Eqn 72 cm«d-1 «mbar" 

a Coefficient in Eqn 91 d~' 

A Coefficient in Eqn 15 

A Coefficient in Eqn 84 

b Coefficient in Eqn 91 cm-d"1 

B Coefficient in Eqn 84 

c Hydraulic resistance of confining layer s 
c

f Compressibility of the soil matrix Pa 
c

w Compressibility of water Pa 

C Specific moisture capacity Pa , mbar 

8 Partial differential operator 

d Depth of water table below upper boundary of percola- cm 

tion profile 

D Thickness of (saturated part of) aquifer m, cm 
9 —1 

D Diffusivity as defined by Eqn 29 m -s" 

D' Thickness of confining layer m 

Dj. Thickness of 'effective' root zone cm 

ea Actual vapour pressure at 2 m height bar 

e Saturated vapour pressure for the air at 2 m height bar 
- 2 - 1 

E Aerodynamic evaporation kg'm *s 
—2 —i —1 

E Potential évapotranspiration kg'in *s , an*d 
-2 -I -1 

E Real évapotranspiration kg*m -s , cm»d 
-2 -1 

E w e t Evaporation of a wet surface kg-m -s 

F Observed water-table elevation cm 

F Mean of observed water-table elevations cm 

F' Simulated water-table elevation cm 
-2 

g Acceleration due to gravity m-s 

h Water-table elevation m, cm 

h* Water-table elevation at boundary Sj cm 

hg Soil surface elevation m, cm 

i Space index in x direction 

I Total number of nodes in x direction 

j Space index in y direction 

J Total number of nodes in y direction 

2 -1 -I 
k Proportionality factor in Darcy's law (Eqn 10) m -s -Pa 

K Hydraulic conductivity m-s , cm-d 
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K Hydraulic conductivity of an aquifer taken as a con- m-s , cm-d 

stant in vertical direction 

K' Hydraulic conductivity of confining layer m-s 

K ,K ,K Principal components of the hydraulic conductivity m-s 

tensor 
K Saturated hydraulic conductivity in the unsaturated cm'd 

zone 

S. Mesh width cm 

L Latent heat of vaporization J-kg 

L Horizontal distance used in problem (54) m 

m Index for boundary node in x direction 

n Time index 

n Porosity 
n Coefficient in Eqn 72 

n Direction normal to the boundary 

p Hydraulic or matric pressure, relative to atmospheric Pa, mbar 

pressure 

p Atmospheric pressure (p =1.013) bar 

p Matric pressure at interface root zone - subsoil mbar 

P Pressure equivalent of total soil water potential Pa 

P Precipitation cm-d" 

q Flux density or specific discharge m-s- , cm-d" 

q Flux in case of steady unsaturated vertical flow cm'd-

qe Sink term due to groundwater extraction cm'd-

q.̂  Source or sink term function cm-d" 

q„ Groundwater discharge into surface water system cm-d" 
-1 a Upper boundary flux of percolation profile cm-d ' 

q Flux across interface root zone - subsoil cm-d 
rs -1 -1 

qs Maximum possible flux across soil surface m-s , cm-d 
qr e Real flux across soil surface cm-d 

s -1 
q upward flux from the saturated region into the un- m-s 

saturated zone 

a Vertical flux across a level just below the water m-s , cm'd 

table or lower boundary of the unsaturated flow model 

q* Flux for which both relations (91) and (94) apply cm-d" 
—1 

q ,q ,q Flux in the respective co-ordinate directions m-s 
y z 3 - 1 

Q Groundwater extraction m «d 

r Iteration index -

r 'Effective' pore radius m 

ra Diffusion resistance to water vapour in the air s-m" 

rc Diffusion resistance depending on the fraction of S'rn" 
soil covered 

i"4 Diffusion resistance depending on light intensity s -m" 
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«E 

S.>S2 

t 

T 

T A 
w 

x,y,z 

z. ,z ,z 
i w' s 

z 
rs 

z* 
rs 

a,e 

a 

Y 

A 

e 

rs 

Diffusion resistance depending on soil moisture 

conditions and flow in the plant 

Total diffusion resistance of crop and soil 

Efficiency factor 

Net radiation 

Slope of the temperature - saturation vapour pres

sure curve 

Specific storage {s = Pgn(c, + c )} 
S I w 

Degree of water saturation 

Part of boundary for horizontal saturated flow for 

which h =•h*, and the flux normal to the boundary 

equals zero, respectively 

Fraction of the soil covered by the crop 

Saturation deficit in the subsoil for q = 0 

Saturation deficit of percolation profile 

Saturation deficit of root zone 

Saturation deficit of subsoil 

Saturation deficit of entire unsaturated zone 
(S = S + S ) 

u r s' 

Time 

Transmissivity 

Average transmissivity of element A 

Depth of water table below soil surface 

Cartesian co-ordinate directions or distance along 

the respective co-ordinate directions 

Various heights used in problem (54) 

Distance between phreatid level and interface root 

zone - subsoil applying to the upper boundary solution 

Depth of water table resulting from the lower bound

ary flux alone 

Integration dummies 

Reciprocal of delay index 

Psychrometric constant 

Increment 

Ratio molecular weight of water vapour and dry air 

(e = 0.622) 

Height of the water table above the lower boundary 

of the unsaturated flow model 

Elevation of upper boundary of percolation profile 

in the model for unsaturated flow 

Distance between the interface root zone - subsoil 

and the lower boundary of the unsaturated flow model 

Fluid dynamic viscosity 

s «m 

s»m~ 

J*s" •m~ 

bar-K-1 

_-l 

cm 

cm 

cm 

cm 

cm 

s, d 
2 m 
2 

cm 'd 

m, cm 

m, cm 

m 

cm 

cm 

s , 
2 j-1 

cm 'd 

.-1 

bar^K -1 

cm 

cm 

cm 

kg«m~ 'S 
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e Fractional volumetric moisture content 
e Moisture content used in Eqn 64 
m 2 

K Intrinsic permeability m 

\i Specific yield or storage coefficient 

V.,VT, Short-term and long-term specific yield, respective-
A B 

ly, used in Eqn 53 

y Storage coefficient which is independent of water-

table depth 
_3 

p Density of soil water kg>m 
_3 

p Density of air (p = 1.2047) kg«m 
a Standard deviation of the differences between simu- cm 

lated and observed water-table elevations 

T Time (T < t) used in Eqn 53 s 

T Characteristic time d 

$ Hydraulic head or total soil water potential ex- m, cm 

pressed as energy per unit weight 

$' Hydraulic head in adjoining aquifer m 

¥t,v >VQ>\ Total, pressure, osmotic and gravitational soil water J'kg-

potential, respectively, expressed as energy per unit 

mass 

u Over-relaxation parameter 

V Operator for gradient or divergence 
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Appendix A 

Computation of Sß and z as a function of p and q for a heterogeneous soil profile 

If different K(p) relations apply to different layers in the subsoil pressure pro

files do not exist. Instead of z(p,q), a relation can be computed between the pressure 

at the interface root zone - subsoil p and the depth of the water table below this 

interface z for a number of positive values for q, yielding z (p ,q). A numerical rs rs vs 
approach to the computation of the relations S (z ,q) and S (p ,q) for a heterogeneous 

s rs s rs 
subsoil is given below. 

The subsoil is divided into layers with a depth of 1 cm. For each layer a soil mois

ture characteristic and K(p) relation must be specified. Given a water-table depth z 

(integer in cm) the layer index i runs from 1 to z , where i = 1 for the layer of which 

the lower side is at a depth z (Fig. A1). For a given steady flux q and water-table 

depth zr the computation of S and p proceeds as follows. The matric pressure distri

bution is numerically approached for the successive layers starting at the phreatic level 

in upward direction. The variables are initialized as follows: p = 0; Ap = -1 mbar; Sg = 0 

and s, = 1, where Ap is a first estimate for the change in p over layer i. 
Step 1 : The average pressure p in layer l is estimated as p = p + jAp. 

Step 2: Interpolate the hydraulic conductivity K for p = p from the K(p) relation that 

applies for layer i,. (It may often be necessary to carry out this interpolation an 

a double logarithmic scale, due to the non-linearity of this relation.) 

Step 3: Compute the increase in height Az from Darcy's law, written as 

l=z rs 

I 

4 
3 
2 

1= 1 

-rs 

Fig. Al. The use of the layer index I for a par
ticular water-table depth zr g. 
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Az = _ _! ^_ ip 
p2 q + K 

Step 4: Improve the estimate for p halfway layer % to 

P = P + 2§ 

Step 5: Interpolate K for p = p from the K(p) relation that applies for layer l. 
Step 6: Compute the change in p over layer i (for which Az = 1 cm) from Darcy's law, now 

written as 

AP = _Pg — j p * Az 

(Comparison with analytical solutions shows no need to repeat Steps 1 to 6 to 

improve the solution for Ap.) 

Step 7: Interpolate for p = p + ^Ap the moisture content e from the soil moisture charac

teristic for layer l and increase S with the saturation deficit of this layer 

S = S + n - 9 s s 

where n is the porosity of layer I. 

Step 8: Compute the matric pressure at the upper side of layer i 

p = p + Ap 

Step 9: Increase the layer index 

s. = i + 1 

Step 10: If i < zr g go to Step 1. If not, the computations are completed and p = p. 

The above scheme is executed for values of zr g increasing from zero with steps of 1 cm 

until the absolute value calculated for p r s is greater than or equal to 16000 mbar. If 

the soil is homogeneous the computed relation between p and z (and between 9 and z) does 

not change with zr g. Then values for. p r g and Sfi are easily computed for z if the above 

scheme is applied with the following initial data: a = z and values for"p, S and 
_ *"s S 

P - p r s as computed for the previous water-table depth (zrg - 1). From the calculated 

relations between zr s, p r g and Ss values for zr g and Sg are interpolated for different 

values of p r s , yielding Sg(prs) and zrs(p ) . 

The above procedure is carried out for a number of values for q resulting in the 

relations Ss(prs,q) and zrs(Prs,q). In this study Sg and zr g are computed for the follow

ing 13 values for p ^ : 0, -10, -20, -31, -50, -100, -250, -500, -1000, -2500, -5000, 

-10000 and -16000 mbar and the following 18 values for q: 0, 0.001, 0.005, 0.010, 0.015, 
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0.020, 0.030, 0.040, 0.060, 0.080, 0.100, 0.125, 0.150, 0.200, 0.300, 0.400, 0.500 and 

1.000 cm-cf1. 

As for a homogeneous profile the values computed for z as a function of p are in

dependent of the water-table depth, the relation z (p ,q) may be written as z(p,q), 

which are the pressure profiles in Fig. 5c. The saturation deficit curves S (p ,q) are 

presented in Fig. 5f, while the derived relation S (z ,q) which results from a combina

tion of S (p ,q) and z (p ,q) is shown in Fig. 5e. 
s ir s r s rs 
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Appendix B 

Hysteresis in the Sp(Pps) relation 

Consider the hysteretic relation between 6 and p given in Fig. B1. The solid lines 

represent the relation for drying, the broken lines for wetting. The most extreme curve 

for drying corresponds to the soil moisture characteristic given in Fig. 5b. Disregarding 

the scanning curves, the relations for drying and wetting are used to compute S (p ) . 

The result is given in Fig. B2 for a depth of the root zone D = 30 cm. The broken line 

represents the situation for which p continuously decreases from pF 4.2 to zero assuming 

equilibrium conditions in the root zone. This process may be approximated if the root zone 

is slowly wetted by capillary rise from the subsoil while q = 0 . Generally wetting is 

caused by rainfall excess, resulting in a highly non-linear flow process which is com

plicated by hysteresis. As the pseudo steady-state procedure does not consider flow in 

the root zone, the total effect must be lumped into the S (p ) relation. It should be 

noted that the nature of the pseudo steady-state procedure hampers the pressure at the 

lower side of the root zone obtaining low pF values. Even after a long wet period the 

p r s value may not drop below pF 1.5. Therefore it is assumed that hysteresis effects in 

the root zone have ceased if the matric pressure p has reached a value of e.g. pF 1.5. 

The resulting numerical representation of the hysteretic S (p ) relation for the 13 

values of p r g mentioned in Appendix A is given in Fig. B3. 

Data on hysteresis in the soil moisture characteristic are usually not available. 

Therefore a 'hysteresis factor' is introduced, defined as the number of logarithm cycles 

p(mbar) 

-10' Fig. Bl. Soil moisture characteristic 
showing hysteresis with 6(p) relations 
for drying (—) and for wetting ( ) • 

118 



'g (-Prs) 

Fig. B2. Saturation deficit curve for the 
root zone (D = 30 cm) showing hysteresis 
with Sr(prs) relations for drying (-) and 
for wetting ( ) . 

T — m — i — i — i — i — i — i — n 

10 13151.7 2J0 2.4 2.7 ao 3.4 3.7 4.0 4.2 
pF- lg(-prs) 

Fig. B3. Numerical representation of the 
Sr(pr„) relation showing hysteresis (hys
teresis factor equals 0.5) with Sr(prs) 
relations for drying (-) and for wetting 
( ) . 

over which the S (p ) curve for drying is shifted along the p r g axis to obtain the 

wetting curve. The hysteresis factor applying to Fig. B3 equals 0.5. In the absence of 

data the hysteresis factor must be calibrated. 

A numerical procedure is developed to compute the Sr(prs) relation at the beginning 

of each time increment. For time step n+1 the scanning curve connecting the curves for 

drying and wetting is computed such that it joins the drying curve for values of Sr > S r 

and the wetting curve for values of Sr < Sr. 
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Stellingen 

1. Een numerieke oplossing van de vergelijking van Richards 
is thans nog ongeschikt voor het simuleren van regionale 
stromingsproblemen. 

Dit proefschrift. 

2. Bij het gebruik van vochtgehalte- en vochtspanningsprofielen 
wordt de voorwaarde van homogeniteit ten onrechte vaak niet 
vermeld. 

R.A. Feddes, 1971. Water, heat and crop growth. Med. Landbouwh. 
Wageningen 71-12. 

W.H. van der Molen, 1972. Stroming in de onverzadigde zone. 
LH, afd. Cultuurtechniek. 

G.P. Wind, 1979. Analog modeling of transient moisture flow 
in unsaturated soil. Versl. landbouwk. Onderz. 894. Pudoc, 
Wageningen. 

Dit proefschrift. 

3. Voor het numeriek oplossen van stromingsvergelijkingen waar-
bij het gebied wordt beschreven met een regelmatig netwerk, 
is het gebruik van eindige differentiemethoden in het algemeen 
te prefereren boven dat van de minder doorzichtige eindige 
elemententechnieken. 

4. Gezien de door het gebruik van simulatiemodellen gestimuleerde 
vraag naar bodemfysische parameters, dient meer aandacht te 
worden besteed aan verbanden tussen deze vaak moeilijK meer-
bare gegevens en eenvoudig vast te stellen bodemeigenschappen 
zoals textuur, structuur, organisch stofgehalte e.d. 

A.W. Warrick, G.J. Muilen & D.R. Nielsen, 1977. Soil water 
flux based upon field-measured soil-water properties. 
Soil Sei. Soc. Am. Proc. 41: 14-19. 

5. Het gebruik van persputten bij de infiltratie van oppervlakte
water in het Nederlandse kustgebied wordt op den duur ernstig 
bedreigd door het ontstaan van brak water als gevolg van 
menging en dispersie. 
A.J. Roebert, 1979. Werkgroep hydrologie van persputsystemen 

geïnstalleerd. H20 (12), nr. 15: 341-343. 

6. Het ontbreken van een geïntegreerd beheer van oPPf^vlakte-
water en grondwater heeft er in belangrijke mate toe 013 
gedragen dat verschillende gronden, zowel u ^ Jet oogpunt 
van landbouwproduktie als natuurbeheer, te diep ziDn ontwatera. 

7- Bij het onderzoek naar de relatie tussen vegetatietype en 
waterhuishouding is - voor de hoger gelegen jonden een 
meer uitgesproken verband te verwachten met het jochtleveren 
vermogen van de grond dan met het grondwaterstandsverloop. 



8. Verlaging van de grondwaterstand in veengronden veroorzaakt 
een zakking van het maaiveld door een versnelde oxydatie 
van het veen en moet derhalve beschouwd worden als een 
maatregel tot ontgronding. 

9. Het profijtbeginsel in het Gelders waterschapsreglement is 
in strijd met de intentie van het in dat reglement eveneens 
toegepaste omslagstelsel. 

10. Projecten met het doel visueel gehandicapten deel te laten 
nemen aan het reguliere basisonderwijs dienen gestimuleerd 
te worden. 

11. Aan diploma's voor machineschrijven en stenografie kan 
weinig waarde worden toegekend zolang geen garanties bestaan 
ten aanzien van de kwaliteit van de opleiding en de examens 
in eigen of onderling beheer worden afgenomen. 

12. De gedachte dat het nachtelijk zuurstofverbruik van bloemen 
en planten de samenstelling van de atmosfeer in ziekenhuis-
of slaapkamer merkbaar beïnvloedt, berust op een misvatting. 
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