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Abstract 

Laat, P.J.M, de (1980) Model for unsaturated flow above a shallow water-table, 
applied to a regional sub-surface flow problem. Agric. Res. Rep. (Versl. land-
bouwk. Onderz.) 895, ISBN 90 220 0725 1, (vii) + 126 p., 42 figs, 6 tables, 
182 refs, 2 appendices, Eng. and Dutch summaries. 
Also: Doctoral thesis, Wageningen. 

A mathematical model is developed to simulate transient unsaturated flow 
above a shallow water-table. The unsaturated zone, here extending from just 
below the phreatic level to soil surface, is schematized into a root zone and 
a subsoil. In.the root zone the gradient of the hydraulic potential is assumed 
equal to zero. Vertical flow in the subsoil is described by a combination of 
steady-state situations corresponding to the upper and lower boundary flux, 
respectively. Transient flow is solved by a sequence of steady-state situa­
tions, subject to boundary flux conditions at the soil surface and from below 
the water table. The solution uses time increments of the order of days and 
is efficient in terms of computer costs. 

To verify the model for an actual field situation, it is linked at the 
upper boundary to a model for évapotranspiration and at the lower boundary 
to a model for two-dimensional horizontal saturated flow. The resulting quasi 
three-dimensional model is applied to a field-size flow problem. Results agree 
closely with observed water-table elevations. The composite model is further 
used to predict consequences of groundwater extraction. 

Free descriptors: capillary rise, percolation, saturated-unsaturated flow,, 
évapotranspiration, groundwater extraction, prediction. 

This thesis will also be published as Agricultural Research Reports 895. 

0 Centre for Agricultural Publishing and Documentation, Wageningen, 1980. 

No part of this book may be reproduced or published in any form, by print, photoprint, 
microfilm or any other means without written permission from the publisher. 
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1 Introduction 

The reclamation and protection of land from the sea and inland waters in the Neth­

erlands during the past centuries resulted in the development of large polder areas. The 

excellent opportunities for water management in these areas provided optimum conditions 

for crop growth, at least from a quantitative point of view. Qualitative problems arose 

due to the deterioration in quality of the supplemented surface water and, particularly 

in the lowest polders, to the intrusion of saline groundwater. 

It is only since the beginning of this century that serious attention has been 

given to the water management problems in the eastern and southern part of the country. 

Although the land is above mean sea level, flooding was frequent in some places and 

large areas suffered from too high water-tables. It is well-known that wet conditions 

in the beginning of the growing season may seriously affect agricultural crop production. 

It delays the sowing and planting of crops, but also the seedling emergence and growth 

because of low temperatures and high concentrations of carbon dioxide in the root zone 

of the soil. To ensure favourable conditions for crop growth at the beginning of the 

growing season, the drainage in many of the higher areas with mainly aeolian soils has 

been drastically improved. 

Although the average annual rainfall excess in the Netherlands is between 200 and 

300 mm, the potential évapotranspiration exceeds precipitation during the growing season 

(April to September) by more than 100 mm. If this amount is available for the crop in 

the root zone, water supply is optimum for crop production. However, most of the (sandy) 

soils in the eastern and southern part of the country are not even able to retain the 

amount that is needed in a year for which 'average weather conditions' apply. With a 

shallow water-table a considerable part of this deficit may be supplemented by the 

transport of soil moisture from the groundwater reservoir to the root zone. The upward 

movement of soil moisture in the region above the water table is termed capillary rise. 

This process depends on the depth of the water table. It becomes insignificant for the 

water supply of the crop if the prevailing water-table depth is more than 3-5 m below 

soil surface. 

The rapid expansion of population and industry during the past decades resulted in 

a considerable increase in the demand for domestic and industrial water. As surface 

water in general is of poor quality, and as there is hardly any fresh groundwater in the 

west, the amounts extracted from the eastern and southern parts of the country are rap­

idly increasing. Jn those areas where the implemented drainage system is (more than) 

adequate, an additional extraction of groundwater results in an undesirable drawdown of 

the water table. The effect of a drawdown on the availibility of water for the crop in 

areas with relatively high water-tables is twofold. It reduces the amount of soil mois­

ture initially available in the root zone and it hampers capillary rise. As a result of 



the development described above, some of the areas which previously had an abundance of 

water now show a shortage. 

This study concerns groundwater flow in shallow water-table aquifers and in par­

ticular flow in the unsaturated region between the soil surface and the phreatic level. 

Although the water movement in a partly saturated soil may be described by one single 

equation, the flow regions above and below the phreatic surface were traditionally 

treated as two separate systems. One of the reasons for the separate approach is that 

flow in the unsaturated zone is predominantly vertical, and in the saturated part in a 

horizontal direction. Moreover, the numerical solution of the governing equation re­

quires much more effort in the unsaturated zone than in the saturated region. The 

available solutions of three-dimensional, saturated-unsaturated problems using a single 

equation are, therefore, restricted to small-size flow systems. 

A less-rigorous approach treats flow in the saturated and unsaturated region sepa­

rately and uses a special procedure to link both sub-systems. The partial differential 

equation governing non-steady unsaturated flow is highly non-linear. For stability and 

convergence the solution requires that time and space are discretized to small steps. 

The restriction with respect to the length of the time increment is imposed upon the 

entire system. Therefore, for the less-rigorous approach to be attractive in terms of 

computer costs, it is necessary that the numerical solution of the equation governing 

unsaturated flow is replaced by a more efficient simulation model. The approximate 

solutions, available at present, are unsuitable for a complete transient analysis, as 

they consider flow in an upward or downward direction only. Moreover, most of the solu­

tions assume that the water table is at infinite depth. 

For a shallow water-table in a sandy aquifer, the characteristic time of the un­

saturated flow system is of the order of days. With a time increment of approximately 

this length, the flow system can be described by a succession of steady-state situations. 

This approach is used in this study to develop a model for unsaturated flow. 

In order to verify this model for an actual field situation, it is linked at the 

upper boundary to a model for évapotranspiration, and at the lower boundary to a model 

for two-dimensional horizontal saturated flow. The combined model is applied to an area 

of 36 km2 around the pumping site " t Klooster' in the east of the country. The amount 

of surface water runoff from this area is relatively small. It was selected for this 

study to reduce the effect of the surface water system on the verification of the com­

bined saturated-unsaturated flow model. 

Finally, the model is used to predict consequences of groundwater extraction on the 

water-table elevation and real évapotranspiration. 



2 Transport of water in soil 

2.1 SOIL WATER POTENTIAL 

In an isothermal system the driving force for transport of soil water is the gra­

dient of potential energy. The 'International Soil Science Society' (Aslyng, 1963; Bolt, 

1975) uses concepts based on energy and thermodynamics to define the condition of water 

in soil (see e.g. Taylor, 1968; Hillel, 1971). The total potential energy is described 

as the amount of work liberated by removing a unit mass of soil water from a certain 

location in the soil in the form of pure free water at the same temperature and to 

transfer this quantity isothermally to a reference level where it is defined as having 

a potential of zero. The components of the total potential ï are the pressure potential 

ï , the osmotic or solute potential "P and the gravitational potential ¥ . Thus 

r = f + f + t (1) 
t p o g *• / 

The pressure potential results from a pressure that differs from the existing at-
-2 -3 

mospheric pressure. Pressure (N-m ) is equivalent to energy per unit volume (J-m ) . 

Since the density p is mass per volume it follows that the pressure potential (expressed 

in energy per unit mass) 

Y = E- (2) 
P P 

where p is the pressure with respect to atmospheric pressure. In the unsaturated soil 

the pressure potential is negative due to the attractive forces of the soil matrix. 

Buckingham (1907) introduced the term 'capillary potential' to indicate that the poten­

tial results from capillary effects. Nowadays the term 'matric potential' is preferred 

as the pressure p is, especially in clayey soils, also affected by adsorption, by at­

traction between water molecules and ions in the electrical double layer of clay par­

ticles and by small deviations in the soil air pressure from the existing atmospheric 

pressure. In particular with respect to the last mentioned effect see Stroosnijder 

(1976). At the free water surface atmospheric pressure exists (by definition), so that 

p equals zero. Below this level, in the saturated region, the attraction of the soil 

matrix is negligible. Pressure merely results from the hydrostatic pressure, so that 

values for y are positive. The pressure potential in the saturated zone has been 

termed 'submergence potential' (Rose, 1966). Although the pressure above and below the 

free water level results from quite different forces, p is considered in this study as 

a single continuous quantity, extending from the saturated to the unsaturated region. 

The osmotic or solute potential reduces the total potential energy in the presence 



of a membrane whose permeability to water molecules differs from that to the molecules 

of the dissolved salts. When dealing with water movement in soil it is assumed that the 

solute can move freely with the soil water. Hence 

¥ 
o 

= 0 (3) 

This condition implies that the soil water potential is defined with respect to free 

water of similar chemical composition as the soil moisture located at reference level. 

The gravitational potential is the energy due to the earth gravitational field. If 

g is the gravity constant, the required energy to lift a mass of water m over a height z 

above reference level equals mgz. So the gravitational potential per unit mass 

¥ = gz (4) 

as g can be considered a constant over the distances involved. 

The driving force for transport of water in a porous medium is then given by 

vy = vY + vy = v(E) + gvz (5) 
t p g V 6 

If at a height z above reference level pressure p exists, the total potential energy per 

unit mass at this particular location in the soil may be written as 

P 1 z 
¥ = ƒ j - da + g ƒ d3 (6) 

0 p 0 

The potential ¥t represents a scalar quantity if its gradient describes a vector field 

without a rotational component. It can be shown (De Wiest, 1966) that ¥ as given by 

Eqn 6 generates an irrotational vector field, provided that the density p is a function 

of p only. Actually, the density of the soil water also varies with solute concentration 

and temperature. In this study the soil water is assumed to be homogeneous and imcom-

pressible, so that for isothermal systems the total water potential (energy per unit 

mass) is given by 

*t-jr + § z CJ-kg"1) (7) 

as here p can be considered a constant. Multiplying Eqn 7 by the constant p yields the 

pressure equivalent of the water potential (energy per unit volume) 

P = pgz + p (J-nf3 or Pa) (8) 

Dividing Eqn 7 by the constant g results in a quantity known as hydraulic head or 

hydraulic potential (energy per unit weight) 

* » z + fg M C9) 



2.2 GENERAL EQUATION OF FLOW 

In the absence of other forces, such as thermal and electrical gradients, a differ­

ence in the total potential energy between two locations in the soil is the driving 

force to move water from the location where the potential is high to the location where 

a lower value exists. The resulting volume flux density q related to the potential gra­

dient is known as Darcy's law, written in vectorial form as 

q = -k(vp + pgvz) (10) 

2 -1 -1 
where the hydraulic conductivity k (m «s «Pa ) depends on the characteristics of the 

soil matrix, the dynamic viscosity of the fluid and the degree of saturation. If the 

value of k is the same in each flow direction, the porous medium is said to be hydrau-

lically isotropic. Though the flux density vector q has the dimension of velocity 
_1 

(m-s ) , the term velocity is more properly used for the actual velocity of the water 

in the pore space of the soil matrix. In groundwater hydrology q is preferably termed 

'specific discharge'. 

In the unsaturated soil the pressure of water is usually measured with a tensio-

meter and below the free water surface with a piezometer. Both methods measure the pres­

sure at a certain location in the soil relative to atmospheric pressure as a height of 

a water column, called pressure head y. If the density p in the apparatus equals the 

density of the soil water, p = pgij>. It is therefore convenient to use the gradient of 

the hydraulic head to write Eqn 10 as 

q = -K[(^)vp + vz] = -KV* (11) 

where the hydraulic conductivity K (= pgk) is expressed in the practical unit (m-s ) . 

The continuity equation for flow in non-deformable media, stating the Law of Con­

servation of Mass, may be written as 

^ = - V - p q (12) 

where t is time and e the volume fraction of water per unit volume soil matrix. Taking 

P again as a constant and combining Eqns 11 and 12 results in a general equation of flow, 

written in vector notation as 

ff-=V-(KV<» (13) 

For flow in anisotropic media a more general equation is obtained by expanding 

Eqn 13 as follows 

39 _ 3 ,K U i + -L (K ^-) + — (K 1^) (14) 
•st " "3X" { \ 3XJ 3y L y 3yJ 3z <• z 3z' 

where the x,y,z directions are chosen in the three principal directions of the hydraulic 

5 



conductivity K , K and K . When solving multi-dimensional flow problems, anisotropy 

should be taken into account because generally the natural porous medium has a stratified 

structure. Since transformation of isotropic flow problems into a problem for anisotropic 

media is relatively simple, the equations in Section 2.3 are conveniently derived for 

isotropic soils. For a thorough discussion on anisotropy in porous media the reader is 

referred to Childs (1969). 

2.3 PARTICULAR FORMS OF THE GENERAL EQUATION 

When modelling complicated systems simplifying assumptions have to be made. Some of 

these simplifications are necessary for a mathematical description of the system. An 

example is the assumption that Darcy's law, which is in accordance with the equation of 

Hagen-Poiseuille for laminar flow in a circular tube, also holds for flow in porous 

media. The validity of Darcy's law especially in unsaturated soil is still a matter of 

discussion (Swartzendruber, 1963 and 1968; Thames & Evans, 1968; Vachaud, 1969). Other 

assumptions are necessary to obtain an analytic or adequate numerical solution of the 

problem: for example, considering flow in one or two directions only, or neglecting the 

variation in hydraulic conductivity. These simplifying assumptions result in a number of 

differential equations each of which holds for a certain class of flow problems which 

are characterized by the assumptions made when deriving the formula. Many equations have 

been given the name of the author who first suggested its use. Equations frequently 

cited when discussing saturated and unsaturated flow will be dealt with in this section. 

It should be realized that the general equation as formulated in Eqn 13 is general 

in so far as it describes the flow in a three-dimensional, non-homogeneous, saturated 

or unsaturated porous medium, but is less general in so far as it is restricted to iso­

thermal flow of an incompressible homogeneous fluid in a rigid soil without other 

driving forces than those defined by the hydraulic head. Problems on mixed saturated-

unsaturated flow in this study and most of the problems discussed in literature on this 

subject satisfy or nearly satisfy these restrictions. Therefore Eqn 13 will be used as 

the basic equation for further consideration. 

The development of flow equations for transport of water in porous media came from 

two different disciplines. Saturated flow problems have been studied by groundwater 

hydrologists in relation to civil engineering and unsaturated flow has always been the 

domain of the soil scientist in relation to agriculture. This separate development may 

be illustrated by the fact that Buckingham when introducing the capillary potential in 

1907 dit not even mention Darcy's law from 1856 and it took 20 years before Israelson 

(1927) noted the connection. The delayed progress made in the development of unsaturated 

flow theory compared with that of saturated flow has been mainly due to the difference 

in the nature of the potentials. In saturated media the potentials involving position 

and pressure are easily obtained where as it was not until 1928 with the introduction of 

the tensiometer (Richards, 1928) that unsaturated flow potentials could be measured. 

Moreover, empirical relations between pressure and moisture content and between pressure 

and hydraulic conductivity are required for the solution of unsaturated flow equations. 

These relations are difficult and tedious to obtain and are both subject to hysteresis. 



Therefore analogy of flow through porous media to heat conduction was first recognized 

for saturated flow. 

2.3.1 Saturated flou 

For saturated flow the earlier defined proportionality factor k in the equation of 

Darcy as formulated in Eqn 10 is a function of the properties of the soil matrix and the 

fluid. Many investigators have tried to describe this parameter in terms of the charac­

teristics of the medium as well as those of the liquid. In this connection use has been 

made of the experimentally derived equation of Poiseuille. According to this equation 

the rate of (laminar) flow through a tube of uniform cross-section is proportional to 

the hydraulic gradient, which is essentially Darcy's law for a column filled with porous 

material. From considerations on the proportionality constant of both equations, it 

follows that (Rose, 1966) 

Ar2 
k = £j_ (15) 

where A is a dimensionless constant, r the 'effective' radius of the pores and n the 

dynamic viscosity of the liquid. The constant A results from the fact that the flow 

through a porous medium is very irregular compared with laminar flow through a tube. It 

contains dimensionless characteristics on the geometry of the soil matrix. A reliable 

expression to relate the constant A to the porosity, shape of the grains, grain-size 

distribution and other geometrical properties of the porous medium has not been found. 

Muskat (1937) suggested to lump A and r into one parameter that is a function of the 

structure of the medium alone and entirely independent of the nature of the fluid. This 

parameter has later been termed 'inherent', 'intrinsic' or 'specific' permeability. This 

concept of inherent permeability is rather not used by soil scientists, because soils 

are in general by no means inert in the physicochemical sense (Childs, 1969). This is 

well-known from farming practice where the structure of clayey soils is improved by the 

application of certain fertilizers. However, in the more inert sandy porous media in the 

absence of air, the concept of inherent permeability proved to be useful and it is gener­

ally applied by groundwater hydrologists. Denoting the intrinsic permeability by K, the 

proportionality constant k is given by 

k = S.- (16) 
n 

The hydraulic conductivity K, which appears in Darcy's law expressed in terms of hydrau­

lic head may then be written as 

K = pgk = ̂ f (17) 

Since p has been assumed a constant and the fluid homogeneous, the hydraulic conductivity 

K may still be considered as a characteristic of the (saturated) porous medium alone. 

Laplace's equation, earlier derived for the steady conduction of electricity and 



heat was introduced for steady flow in homogeneous saturated media before the end of the 

last century by Slichter (1899). With 39/3t = 0 and K is a constant this equation follows 

directly from Eqn 13 

v \ . ii + i i + ii = o o8) 
3X 3y 3z 

In a horizontal, completely confined aquifer of uniform thickness the specific dis­

charge in vertical direction can be disregarded and Eqn 18 reduces to 

ii + ii = o 09) 
3xz 3y 

For semi-confined or leaky aquifers the vertical flux is still small enough to write the 

continuity equation as 

^ • ^ = -q. (20) 
3x 3y H i 

where D is the thickness of the aquifer and q. is the leakage through the upper confining 

layer. Substituting q = -K3<)>/3x and q = -K3<j>/3y into Eqn 20 and assuming the hydraulic 

conductivity K to be a constant in vertical direction yields 

-L (T Mi + J_ <T Mi = n (21) 
3x K SxJ 3y *-x 3yJ q i *• 

where T = KD is termed the transmissivity, a function of x and y in non-homogeneous 

media. The flux q. may be written in terms of the characteristics of the confining layer 

and the hydraulic head of the adjoining aquifer. Using Darcy's law 

qi = -K' ±^-t = - il^l (22) 

where <f>' is the hydraulic head in the adjoining aquifer, K' the hydraulic conductivity 

and D' the thickness of the confining layer. K' and D' are usually expressed as the 

resistance c = D'/K'. If <f>' varies with time, qi is also a function of time and Eqn 21 

describes transient flow in a non-homogeneous, non-deformable, semi-confined aquifer. 

An important class of problems describing essentially horizontal flow are based on 

the Dupuit-Forchheimer assumptions. Dupuit (1863) derived an equation for radial flow in 

an unconfined aquifer assuming that for small inclinations of the free water surface the 

streamlines may be taken as horizontal. Furthermore he assumed that along each vertical 

line the hydraulic head is equal to the height of the free water surface above the hori­

zontal impermeable base (thus 3qx/3z = 3q /3z = 0 ) . Applying the equation of continuity 

to flow in any column with a free surface height h above the impermeable base, Forch-

heimer (1886) derived a general equation for flow in unconfined aquifers with water 

tables of low slope. The equation of continuity requires that 



•k <h(U + 4y chV = -y ft (23) 

where y is the 'drainable porosity' or 'specific yield', defined as the volume of water 

extracted from the groundwater per unit area and per unit descent of h. The Dupuit 

assumptions allow the equations of Darcy to be written as q = -K3h/3x and q = -K3h/3y, 

which combined with Eqn 23 yield the equation of Boussinesq (1904) 

è ^ ^ + #<*»#-"$ (24) 

Although Muskat (1937) in a comprehensive discussion strongly took issue with the 

Dupuit-Forchheimer theory and preferred to await the development of a more satisfactory 

solution, the theory has become very popular because it is easy to apply. The errors 

resulting from the Dupuit-Forchheimer assumptions generally depend on the curvature of 

the free surface and tend to be larger for the approximated shape of the water table 

than for the calculated flow rates. For one particular flow problem Charny (see 

Polubarinova-Kochina, 1962) has shown that the Dupuit-Forchheimer assumptions lead to 

the exact solution for the rate of flow. 

The right side of Eqn 24 represents the change in time of the total volume of water 

stored in a column of unit cross-sectional area due to a variation in the height of the 

water table. It has the dimension of a flux. The dimensionless parameter y is a function 

of x, y and t. When the changes in h are small as compared with the thickness of the 

aquifer, Kh may be considered as a function of x and y alone. Substituting the trans-

missivity T = Kh into Eqn 24 yields a non-linear diffusion equation developed by Jacob 

(1950) 

A fr 3h) + _L ft Ü1) = u — + rq. (25) 
3x ll dxJ 3y u 3yJ " 3t Hx l 

where the additional term zq. = q + q_ + q3 + . •• represents sources and sinks such as 

leakage through a confining layer, rainfall, pumpage, etc. The transmissivity T is a 

function of x and y, while q. may vary with x, y and t. Positive values of qA represent 

a sink, negative values a source function. For steady flow conditions the term y3h/3t 

disappears and Eqn 25 reduces to a form similar to the equation for semi-confined flow 

(Eqn 21). These types of equation are known as Poisson equations. 

2.3.2 Unsaturated flow 

Considering flow in unsaturated porous media, the hydraulic conductivity becomes a 

function of the water content, expressible as k = k(e), and the general equation of flow 

may be reproduced in the form 

|| = v-k(e){vp + Pgvz} (26) 



Equation 26 can be solved only if a unique relation exists between k and e as well as 

between e and p. Haines (1930) was among the first to report experimental evidence, using 

sand and uniform glass spheres, that e(p) is not a single-valued function. In rigid soils 

unique relations between e and p exist if the change in 9 is monotonie, i.e. the moisture 

content is either continuously increasing or decreasing. Between these two extreme rela­

tions, known as the 'wetting' and 'drying' moisture characteristic, a family of so-called 

'scanning'-curves determine the relation between 6 and p dependent on the past history. 

Hysteresis effects in the relation between k and 6 appear to be less sizable (Nielsen & 

Biggar, 1961; Elrick & Bowman, 1964; Top & Miller, 1966; Poulovassilis, 1969), but if k 

is expressed as k(p) hysteresis in the moisture characteristic is imposed on the relation 

between k and p. 

To convert Eqn 26 into an equation with one dependent variable, the left side is 

written as 

If = | S - CCP) H • C27) 

where C(p) is defined as the specific moisture capacity. Writing Eqn 26 as a function of 

p, Richards (1931) derived the following equation for unsaturated flow in non-homogene­

ous, isotropic, porous media 

<*») 3 = & CkûO g) • £ CkûO -g) • h MP) g ) • pg * g * C28) 

which is usually referred to as Richards' equation (Swartzendruber, 1969). The use of 

Eqn 28 is restricted to the class of problems in which the matric pressure changes mono-

tonically, as it fails to take into account hysteresis effects in the relations k(p) and 

e(p). A modified hysteretic version of Richards' equation has been proposed by Miller & 

Miller (1956), but its use is limited as hysteretic relationships are difficult to obtain 

in practice. 

Buckingham (1907) has expressed Darcy's law in terms of 6 with the introduction of 

D(e) = k(e) ^ (m2^"1) (29) 

which later Childs & Collis-Qeorge (1950) noted as being mathematically identical to a 

diffusion coefficient. Application of the soil-water diffusivity D requires that dp/de 

exists, which is not the case for saturated media where p varies and 6 remains a con­

stant. Richards (1931) suggested that writing Eqn 28 in terms of the other dependent 

variable 6 is just a matter of mathematical expediency if p is a single-valued function 

of 9. However, Vp can only be expressed in terms of V9 when 9 is continuous and thus the 

medium homogeneous. With reference to these restrictions, Eqn 28 written in terms of 9 

yields the transport-diffusion equation 

S " H M* S> + £ CDCe) fi) + ± cDCo) 'gj + pg 3!gl • (»J 
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which was presented in this form by Philip (1957a). Equation 30 is a non-linear Fokker-

Planck equation. The class of flow problems to which it in general refers is absorption 

and infiltration into homogeneous unsaturated soil. For one-dimensional horizontal flow 

and other instances where gravity may be neglected Eqn 30 reduces to the non-linear dif­

fusion equation 

I « & ^ $ (31) 

for which analytical and quasi-analytical solutions have been obtained (Philip, 1969). 

A form of transport of water in porous media that has not been discussed is the 

water-vapour movement. Vapour movement is a process of diffusion rather than mass flow 

and may conveniently be included in the diffusivity term in the Fokker-Planck equation 

(Philip, 1957a). However, vapour movement becomes only a significant fraction of the 

total unsaturated transport when the soil is very dry and the rate of liquid flow close 

to zero (Rose, 1963a, 1963b). Hence vapour movement may be neglected (Miller & Klute, 

1967). This conclusion is only warranted in view of the assumption made earlier that 

isothermal transport of a homogeneous liquid is considered. For conditions that are no 

longer isothermal, vapour diffusion becomes the dominant system in the total moisture 

transport in very dry soil (Philip, 1957b). Rosema (1974), following an approach of 

Philip & de Vries (1957), showed that for wet conditions Eqn 28 cannot be used to de­

scribe the diurnal change in the total moisture flux in the top layer of a bare soil. 

For an analysis of the simultaneous transport of water and heat from the point of view 

.of irreversible thermodynamics the reader is referred to e.g. Cary & Taylor (1962) and 

Cary (1963, 1966). 

2.4 METHODS FOR SOLUTION OF FLOW PROBLEMS 

To solve problems of groundwater flow a system (real or abstract) is derived to 

simulate the operation of the prototype system with the limits of accuracy required by 

the problem under study (Dooge, 1973 and 1977). Such a simulation system is termed a 

model. The process of simulation is then the operation of the model to predict the re­

sponse of the prototype system. In this sense, differential equations governing ground­

water flow are models, and simulation of a groundwater flow system involves the solution 

of a differential equation. Mathematical models use analytical or numerical techniques 

to obtain this solution. 

A mathematical model represents an abstract system. Real simulation systems include 

physical and analogue models. These direct simulation methods are first reviewed brief­

ly. Mathematical models, which are of primary interest for this study, are discussed in 

more detail afterwards. 

2.4.1 Direat simulation methods 

Physical models comprise one-dimensional flow in soil columns and two or three 
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dimensional flow in sand tanks. The porous medium is usually homogeneous, isotropic and 

consists of artificial or natural granular material. For saturated flow the model is of­

ten a scaled-down version of the aquifer, which involves the use of scale factors. Since 

the same laws governing flow apply to both the model and the prototype system, physical 

models are in particular useful for comparison with theory. Application of sand tank 

models to regional flow problems have not been reported, probably due to the restrictions 

imposed by the scale factors (Prickett, 1975). 

Analogue solutions of groundwater flow problems are based on the principle that 

systems belonging to an entirely different physical category are described by essentially 

the same equations as those governing flow in porous media. Similarity of Darcy's law to 

the equation for laminar flow of a viscous fluid through a circular tube has already been 

mentioned. A model for transient, unsaturated, vertical flow based on this analogy was 

built by Wind (1972). The model consists of a number of vessels each representing one 

soil layer. When appropriate scale" factors are used, the shape of the vessel, its liquid 

content and level represent the moisture characteristic, moisture content and matric 

pressure, respectively. The non-hysteretic flow process is simulated by the flow of a 

viscous fluid through a number of tubes connecting the vessels. The model has been 

successfully used for flow in heavy soils with a high water-table and under wet condi­

tions. 

A viscous fluid analogue for saturated groundwater flow is the parallel plate model. 

This model is usually called Hele-Shaw model, because Hele-Shaw (1898) first noticed the 

analogy between the equation for two-dimensional laminar flow of a viscous fluid through 

a narrow interspace between two parallel plates and the equation of Laplace. It can be 

shown that Poiseuille's law applied to this flow system is the analogue to Darcy's law 

for groundwater flow (Lamb, 1932, p. 582). The model is used in vertical position to 

simulate two-dimensional steady or transient unconfined flow for a variety of boundary 

conditions (e.g. Awan & O'Donnell, 1972). Non-homogeneity of the porous medium is imita­

ted by variations of the width of the interspace. In horizontal position the model has 

long been used to study steady confined and unconfined flow problems. Santing (1958) 

extended its use to simulate the diffusion equation with the introduction of a number of 

vessels on top of the model to imitate storage capacity. The model is suitable to simu­

late numerous groundwater flow problems including steady, transient, confined and un­

confined flow in homogeneous or non-homogeneous media in the presence of sources and 

sinks, rainfall and evaporation. A disadvantage of the model lies in the fact that the 

transmissivities are constant in time and difficult to change once the model is con­

structed and the width of the interspace has been fixed. Viscous flow models are re­

stricted to simulate two-dimensional flow problems. The models are difficult to con­

struct and the complicated operation requires a temperature controlled environment. 

The analogy of Darcy's law and Ohm's law governing the steady flow of an electri­

cal current through a conductive medium has led to numerous electrical analogue models 

for groundwater flow. The model may be a continuous or discrete representation of the 

porous medium. Continuous systems are used to study steady groundwater flow problems. 

The conductive material may be an electrolyte in an insulated tank or solid material 

from which the conductive Teledeltos paper is most commonly used. The shape of the 
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conductive medium is a scaled-down version of the aquifer. Teledeltos paper is used to 

solve two-dimensional homogeneous flow problems. For the simulation of two-dimensional 

flow problems with liquid models non-homogeneity of the aquifer may be imitated by 

varying the bottom level of the tank. De Josselin de Jong (1962) combined two liquid 

tanks by a resistor network to study steady flow in two aquifers separated by a con­

fining layer. 

With a discrete electrical analogue model the properties of the porous medium are 

simulated by a network consisting of electrical elements. The network is a scaled-down 

version of the hydrologie prototype. At the nodes appropriate electrical voltages and 

current sources can be introduced to represent corresponding boundary conditions and 

sources or sinks. The electrical elements simulating transmission and storage are re­

sistance and capacitance. Resistance network analogues are used to solve steady flow 

problems. Herbert (1968) showed that problems of two and three dimensional transient 

flow may be solved by a stepwise solution, considering the time-variant flow process 

as a succession of steady-states. This method is rather time consuming and introduces 

extra errors due to discretizing the time parameter. Transient flow problems are more 

conveniently handled with resistance-capacitance networks. Resistance-capacitance ana­

logues are the most versatile analogue models for analysing sub-surface flow systems, 

but there is a limit to the complexity of the flow system they can handle (Bouwer, 

1967). This refers in particular to the inclusion of transient unsaturated flow (Wind & 

Mazee, 1979). 

Comparing results from analogue models with numerical solutions obtained with a 

digital computer, Prickett & Lonnquist (1969) concluded that digital methods are less 

time consuming for model construction and operation, and superior for non-linear 

problems. For the simulation of large groundwater flow systems requiring many time in­

crements and a large core storage, analogue models are less costly to operate than 

digital models but the data handling is more difficult. This problem can be solved by 

combining resistance network and digital computer into a hybrid computer model. This 

allows the groundwater flow problem to be programmed as for a pure digital computer 

solution, but the non-linear partial differential equation is solved by a resistance 

network. Since the solution with the resistance network is almost instantaneously ob­

tained it serves as a subroutine in the digital computer program which reduces the com­

putational time drastically (Vemuri & Dracup, 1967). 

Apart from viscous fluid and electrical analogue models there are several other 

simulation techniques based on analogy (Karplus, 1958) from which the stretched membrane 

analogue model is worth mentioning. The model consists of a thin rubber sheet stretched 

with uniform tension. The shape of the membrane due to a point load which represents a 

source or sink is governed by Poisson's equation. The tension of the sheet and the ver­

tical deflections are analogous to aquifer transmissivity and hydraulic head variations, 

respectively. The model is' simple and inexpensive when used to simulate steady flow 

problems of multiple wells in homogeneous aquifers. De Josselin de Jong (1961) pointed 

out that accurate solutions can be obtained with an optical technique for the observa­

tion of the simulated flow pattern. 

13 



2.4.2 Mathematical models 

Mathematical models describe the prototype system by a set of algebraic formulas. 

The nature of the formula depends on the approach used to solve the groundwater flow 

problem. This approach may range from a pure black box analysis, via conceptual models 

to the mathematical physics approach. Strictly speaking, it is difficult to distinguish 

between the different approaches, since almost every mathematical model contains to a 

certain extent conceptual elements. The mathematical physics approach results in differ­

ential equations, and the particular forms of the general equation derived in Section 2.3 

are generally accepted to belong to this category. 

Mathematical models use analytical or numerical methods to solve the governing 

equation of flow. The solution requires that the geometry of the one, two or three di­

mensional region in which flow is considered is specified as well as the conditions that 

apply at the boundary of the flow domain. If at the boundary the value of the dependent 

variable is given, the boundary condition is known as the Dirichlet condition. Flux, or 

Neumann conditions refer to situations for which the flux (or zero flux) normal to the 

boundary is specified. If for different parts of the boundary different types of boundary 

conditions apply, the system is known as a mixed boundary value problem. The use of 

derivative boundary conditions for the solution of a steady-state flow problem requires 

that the net flow out of the flow domain equals zero. Moreover, to arrive at a unique 

solution for a typical Neumann problem an additional parameter is needed. Well-defined 

boundary conditions are sufficient to obtain a particular solution of a steady-state 

flow problem. But for the solution of a transient flow problem, the initial condition 

as well as changes in boundary values with time have to be specified. 

Analytical methods 

Much effort has been made to derive analytical solutions of flow problems. In gen­

eral analytical solutions can only be obtained for homogeneous media and when sufficient 

simplifying assumptions are made. For saturated flow these have led to a great number of 

groundwater formulas. Well-known formulas are the Theis and Hantush equations for tran­

sient radial flow to a well. These equations are important for an approximation of the 

performance of wells and aquifer in the absence of sufficient data. For this purpose the 

properties of the aquifer and its boundary conditions are idealized. Imaginary wells are 

used to reproduce the same disturbing effects as the idealized geological boundary. A 

solution may then be obtained by using the principle of superposition for the effects of 

real and imaginary wells in an infinite aquifer (e.g. Walton & Neill, 1960). 

A semi-analytical solution is obtained with the boundary element method (Brebbia, 

1978). The boundary of the two-dimensional flow domain is divided into a series of ele­

ments. Van der Veer (1978) used a continuous distribution of sinks, sources and vortices 

over each element to generate a flow pattern in the domain. The solution found by en­

forcing the flow pattern to satisfy the boundary conditions, is obtained by numerical 

techniques and is exact in the region enclosed by an approximate boundary. 

For the derivation of the Theis and Hantush formulas the Boltzmann substitution has 
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been used to transform the partial differential equation into an ordinary differential 

equation. This reduction in the number of independent variables is known as similarity 

substitution and is only useful if the variables removed from the equation are also 

removed from the governing conditions by the same substitution. The Boltzmann similarity 

substitution may also be used to solve the Fokker-Planck equation for unsaturated flow. 

This results in a semi-analytical solution for which an efficient numerical method was 

introduced by Philip (1955). 

Pure analytical solutions which are found completely by mathematical analysis can­

not be obtained for transient unsaturated flow unless some non-realistic assumptions are 

made. For instance, assuming D and k to be constants, the one-dimensional Fokker-Planck 

equation reduces to the linear diffusion equation 

|f = D 4 (32) 
3x 

for which solutions for a great number of boundary conditions are readily available 

(Crank, 1956; Carslaw & Jaeger, 1959). 

For solving practical problems, analytical and semi-analytical methods are often 

unsuitable. However, from solutions obtained with such methods one can gain a better 

understanding of the fundamental structure of the flow problem than with an incidental 

numerical solution. 

Numerical methods 

The solution of differential equations governing flow may be approached numerically 

using a finite element or finite difference method. With finite element methods, the flow 

problem is either reformulated using variational calculus (e.g. the Rayleigh-Ritz method) 

or balanced using weighted residual principles (e.g. the method of Galerkin). For two-

dimensional flow a solution is obtained by first sub-dividing the flow region into elemen­

tary sub-areas, the elements. The size of the elements may vary, the shape is usually tri­

angular or quadrangular. The independent variable in the interior of the element is ex­

pressed in terms of its value at the corner points. Application of finite element methods 

results in a set of simultaneous equations. Various techniques to solve sets of simultaneous 

equations are discussed later in this section. 

The finite element method is a quite recent development in the field of sub-surface 

hydrology (Zienkiewicz, 1967). Its relative merits compared with the 'classical' finite 

difference technique have to be further established, as the number of comparisons be­

tween both methods is still limited. A distinct advantage of the finite element method 

is the ability to generate easily any irregular grid to describe the flow domain. For a 

regular grid of triangular elements, the method yields for the two-dimensional equation 

of Laplace the same set of simultaneous equations as generated by a finite difference 

technique (Remson et al., 1971). 

For a finite difference approach a grid has to be defined with dimensions depending 
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Fig. 1. The finite difference grid 
for Eqn 32 with distance x and 
time t. 

on the number of independent variables that appear in the partial differential equation. 

If the one-dimensional diffusion equation (32) is taken as an example, the grid will have 

two co-ordinates: distance x and time t, as shown in Fig. 1. Every point in this finite 

difference grid corresponds to a specific point in space at a specific instant in time. 

It is convenient to choose a regular grid with constant At and Ax but this is by no means 

a requirement (.e.g. Tyson & Weber, 1964). If the co-ordinates in the x,t plane are indi­

cated by i and n, the solution at any given grid point or node (i,n) is 6n. For n = 0 

initial values for 9 have to be given and if the flow domain is divided into m equal 

intervals, boundary conditions for i = 0 and i = m have to be specified for each time 

level n. 

The finite difference approach replaces the derivatives of the partial differential 

equation by their finite difference analogue. This approach may lead to an explicit or 

implicit finite difference scheme. An explicit scheme is obtained if the time derivative 

is replaced by a forward difference approximation between the n and n+1 time level and 

the space derivatives are replaced by their finite difference analogues at the n time 

level. Applied to Eqn 32 this yields 

ei 9i 
At 

i+1 
AX 

e n - e11 , 
1 1-1 

AX 
AX 

(33a) 

which can be written as 

„n+1 = e n
1 + D At 

(AX): C6i-, i i+i' 
(33b j) 

In Eqn 33b the unknown value of the dependent variable at time level n+1 is explicitly 

expressed in terms of known values at the time level n. To solve Eqn 33b Dirichlet con-
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ditions have to be specified. Flux conditions involve an extra equation. For instance, 

if at the boundary x the flux q" is specified an imaginary node is introduced as fol­

lows 0n _ eii 
„ m+1 m-1 

TÎScJ \ 
(34a) 

to be written as 

n̂ 2 ( A x ) n11 + en (34b) 9" , = ~ s " v q~ + 6" . 
m+1 D ™ m-1 

With the introduction of imaginary nodes when flux conditions are specified at the 

boundary, 6 can be solved at the end of the first time increment through a repeated 

application of Eqn 33b. Once these values are computed, Eqn 33b is used again to move 

the solution forward by another time increment. Although the explicit finite difference 

scheme appears to be a simple straightforward technique, it has found little application 

in the field of sub-surface hydrology (Remson et al., 1971). The reason is that the 

method is unstable and leads to a meaningless solution due to the amplification of 

round-off errors, unless the inequality 

D At ^ 1 (35) 
7772 2 (Ax) 

is satisfied (Richtmyer & Morton, 1967). Moreover, Eqn 35 is a requirement for the finite 

difference approximation to converge to the true solution when in the limit Ax and At 

approach to zero. Because stability and convergence criteria imposed on an explicit 

finite difference scheme often lead to unacceptable restrictions on the choice of Ax and 

At, an implicit scheme is usually preferred. Such a scheme is obtained if the time 

derivative is replaced by a backward difference approximation between the n-1 and n time 

level. If this scheme is applied to Eqn 32, the resulting equation 

_n „n-1 - Qn 9fln fln 
9i - 9i _ D

 9i-1 2 9i ei+l (36) 
A t (AX)2' 

contains three, unknowns. If for the first time level Eqn 36 is written for each node, 

this results in (m-1) equations with (m-1) unknowns. Through a simultaneous solution of 

this set of equations values for 6 at the first time level are obtained. The procedure 

is repeated to move the solution forward in time. The truncation of the Taylor series 

which is used to convert the partial differential equation into a finite difference form 

results in a truncation error. This error can be reduced with the Crank-Nicolson scheme, 

which uses the central time difference by approximating the space derivatives half way , 

täw level n-1 and n. The Crank-Nicolson approximation of the linear diffusion equation 

(32) is , 

e^-er1 iffl
p , - 28^en^M1Heg_12e;-' * e£j) (37) 

-T-=D— i ~ 7 A ^ 
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The central (37) and backward (36) difference approximations lead to similar implicit 

schemes, which are unconditionally stable. The second order accuracy of the Crank-

Nicolson scheme usually results in a faster convergence. The coefficient matrix which is 

obtained from Eqns 36 and 37 has a tridiagonal form. It is efficiently solved by a 

Gaussian elimination technique known as the tridiagonal algorithm. 

If two space parameters (x,y) are involved the implicit finite difference approxi­

mation yields equations with five unknowns. Peaceman & Rachford (1955) proposed a method 

which enables the application of the tridiagonal algorithm for the two-dimensional prob­

lem. The method is known as the alternating direction implicit (ADI) method. It requires 

two advanced time levels for a complete application. Time level n is approached with an 

equation equivalent to Eqn 36 where the finite difference analogue of 3 e/3y is evalu­

ated at time level n-1. Next lines parallel to the x co-ordinate are solved, one at a 

time in the direction of increasing y. For the second step the treatment of the space 
2 2 

parameters is the reverse, i.e. the finite difference approximation for 8 e/3x is 
2 2 

evaluated explicitly in terms of the known values at time level n and 3 e/3y is ex­

pressed implicitly for time level n+1. The ADI technique is unconditionally stable and 

the resulting coefficient matrix for each line has the advantageous tridiagonal form. 

According to Rushton (1974), singularities in the flow domain may impose restrictions on 

the use of the method. Many successful applications in the field of saturated (e.g. 

Pinder & Bredehoeft, 1968) as well as unsaturated (e.g. Rubin, 1968) groundwater flow 

have been reported. The ADI technique can be extended to solve three-dimensional prob­

lems (Douglas & Gunn, 1964). 

The finite difference and finite element methods have in common that they both give 

rise to a set of linear (or linearized) equations. For the solution of a system of si­

multaneous equations direct and iterative methods may be used. A direct method is the 

above-mentioned tridiagonal or Thomas algorithm, which can be applied to coefficient 

matrices that show a tridiagonal form. This algorithm effectively reduces the implicit 

scheme to two explicit schemes. It is obtained through a decomposition of the coeffi­

cient matrix into a lower triangular matrix and an upper triangular matrix. First the 

lower triangular matrix is solved by forward substitution and then the upper triangular 

matrix is solved by backward substitution. Since this method greatly reduces the number 

of computational steps when compared with other Gaussian elimination methods it is 

economical with respect to computer costs (Isaacson & Keller, 1966). Applications of the 

tridiagonal algorithm in the field of sub-surface hydrology are numerous, e.g. Hanks & 

Bowers (1962), Liakopoulos (1965), Rubin (1969), Jensen & Hanks (1967), Freeze (1969). 

Most of the sub-surface flow equations are non-linear. Only if the coefficients of 

the derivatives in the differential equation are a function of the dependent variable 

does the implicit finite difference scheme generate a set of non-linear difference 

equations. This applies in particular to equations describing unsaturated flow in which 

functions appear such as k(8), D(e) and C(p). Since direct methods solve the coeffi­

cient matrix only once to advance the solution from time level n to n+1, the values of 

the dependent variable at the advanced time level cannot be used to obtain the average 

values of the coefficients. The most obvious and simple approach is the use of coeffi­

cients evaluated for the known value of the dependent variable at time level n. Since 



the values of the coefficients often change rapidly with a small variation in the value 

of the dependent variable, this results in a loss of accuracy unless small time steps 

are employed. The linearization technique may be improved if extrapolated values of the 

dependent variable from previous time levels are used to estimate the values of the 

coefficients. This technique used by Rubin & Steinhardt (1963) is less suitable for 

systems where the value of the dependent variable is not monotonically increasing or 

decreasing. Douglas & Jones (1963) proposed a predictor-corrector technique which is 

particularly suited to mildly non-linear, one-dimensional, parabolic differential equa­

tions. The method is stable when used in combination with the tridiagonal algorithm. It 

involves two applications of the Crank-Nicolson scheme. The first step, known as the 

predictor, solves the system of equations for time level n+|. This facilitates the 

evaluation of the coefficients at this time level. For the second step, known as the 

corrector, the Crank-Nicolson scheme is applied to advance the solution from time level 

n to n+1, using the predicted values of the coefficients at time level n+J. With hys­

teresis the non-linearity may render the solution unstable and less accurate. Predictor-

corrector techniques have been used by e.g. Molz & Remson (1970), Hornberger et al., 

(1970), Homberger & Remson (1970). A disadvantage of the method is that it requires 

twice as much computer time. Even more time-consuming is a method used by Klute et al. 

(1965) where the system of equations is repeatedly solved to improve the values of the 

coefficients in the non-linear equations. 

With complicated problems or when the non-linearities are more pronounced, iterative 

methods are preferred to the direct Gaussian elimination technique. Moreover, iterative 

methods are the only means to solve coefficient matrices which result from differencing 

elliptic equations. If the linear two-dimensional Laplace equation (19) is taken as an 

example, the most simple Jacobi iterative scheme which results from differencing this 

elliptic equation is written (with Ax = Ay) as 

•nj-»ï - . . j+*ï+ . . j + *Lj-. + ^ . v 4 (38) 

where r is the iteration index and i,j indicates the location or the node in the x,y 

plane. For the solution of an elliptic problem an initial guess for ̂ ^ is required to 

start the iteration. If the scheme is executed in a specific order, earlier improved 

values of $ can be used to speed up the rate of convergence. This technique is known as 

Gauss-Seidel iteration and can be written for Eqn 19 as 

•n ] - c« ! f J
 + <j-. + ^ . . j + * u . ) / 4 (39) 

The rate of convergence is greatly improved with a scheme known as the successive over-

relaxation (SOR) method. It uses an acceleration parameter <o and can be written for 

Eqn 19 as 

where generally 1 < u < 2. For certain problems an optimum value for o> may be obtained 

from theoretical considerations, for other problems empirical formulas or trial and 
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error procedures have to be used. Many applications of point-iterative methods (Gauss-

Seidel and SOR) to transient and steady flow problems have been reported in literature. 

They include saturated (e.g. Remson et al., 1965; Freeze & Witherspoon, 1966; Taylor & 

Luthin, 1969) as well as unsaturated (e.g. Watson, 1967; Ibrahim & Brutsaert, 1968; 

Wisler et al., 1968) flow conditions. 

Instead of improving the value of the dependent variable for' each node indepen­

dently, a block or line successive over-relaxation (LSOR) method may be used. If LSOR is 

applied to the two-dimensional problem (19), the iterative scheme for each horizontal 

line of the x,y difference grid can be written as 

1,J L >J 4 i-l »J i+l,J *i,j-M Vi,j + H (41) 

The system of'equations generated with Eqn 41 is efficiently solved with the tridiagonal 
algorithm, since <(£!_, is known from previously obtained values for the nodes on line 
j-1. 

A more implicit solution is obtained with the alternating direction implicit pro­

cedure (ADIPIT), the iterative variant of the ADI method. Each iteration cycle consists ' 

of solving simultaneous sets of equations for rows and then for columns. The rate of 

convergence greatly depends on the choice of the acceleration parameter which varies in 

a cyclic manner (Wachspress, 1966). Applications of LSOR and ADIPIT methods have been 

reported by e.g. Bredehoeft & Pinder (1970), Prickett (1975), Vauclin et al. (1975). 

With the above-mentioned techniques, stable and convergent solutions can be obtained 

for relatively simple, non-linear flow problems. For complicated problems Stone (1968) 

proposed a more powerful technique known as the strongly implicit procedure (SIP). How­

ever difficulties arise when the finite difference approach is used to solve multi­

dimensional, saturated-unsaturated flow problems for heterogeneous media or where the 

geometric boundary of the flow domain is irregular (Vachaud et al., 1975). These diffi­

culties do not occur with the application of the finite element technique. This method 

is flexible for use in an irregular flow domain and allows at the boundary a change from 

Dinchlet to Neumann conditions during a single time increment. 

A recent numerical approach, commonly referred to as numerical simulation is used 

to solve transient one-dimensional unsaturated flow problems. For this purpose the soil 

co umn is divided into a number of layers. To each separate layer and for a small time 

™ ' Da7 ! l3W «* * » P r i n c i P l e »f continuity are applied. This results in the 

ea^ ar" * & T ̂  ** "** * ""*** * " ValUe £or the misture «»tent of 
71 " ?" fl0W m e S arS CalCUlated -^Pendently of each other the p ^ c e -

Zank «Tws? 6XPli? meth°d t0 Whidl the earlier mentioned ̂ i c t i o n s *»»• 
l l t v a r 9 7 3 ^ r ° P ° s e d * numerical simulation technique in which the number of 

Z J 9 7*r i l y * aCCOrdanœ Wlth the dBn^ m0iStoe P™^- * »it * 
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Numerical methods have proved to be an important tool in the solution of compli­

cated flow problems. Nevertheless, mathematical analysis of flow processes is of impor­

tance to gain a better understanding of the structure of the solution and for comparison 

with results obtained through a numerical approach. Analytical or semi-analytical methods 

are particularly useful when a first estimate of quantitative aspects of a flow system 

is required. 

Analogue methods are used to solve a wide variety of flow problems. The construction 

of a resistance-capacitance network does not necessarily require more time than the setup 

of a numerical computer program. Analogue models are less costly to operate, but computer 

methods are more efficient in handling input and output of data. The size of the core 

memory of the computer and the running costs are limiting factors in the application of 

numerical methods to large problems (Freeze & Witherspoon, 1968). However these limits 

are rapidly extending due to advances in the field of computer technology. As computer 

programs are easily changed and adapted to other problems, they are in many cases con­

sidered superior to direct simulation methods. 
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3 Saturated-unsaturated flow 

3.1 THE TRADITIONAL APPROACH 

As a result of the traditional approach to treat flow in porous media of which part 

is saturated and part unsaturated separately, an interface between both flow systems 

must be defined. For this purpose the level in the soil where the pressure is atmos­

pheric, known as free water level, water table or phreatic surface is most commonly used. 

It has the advantage that it is easily measured in the field and constitutes a flow line 

when there is steady flow without accretion from the overlying unsaturated region. The 

actual saturated zone extends to a little above the free water level due to capillary 

rise. The region of complete saturation above the water table was originally termed 

capillary fringe ('capillaire zone') by Versluys (1916). The height of the capillary 

fringe depends on the air entry value, i.e. the negative pressure at which the soil 

begins to desaturate. Gradually a less well-defined definition has come into use to in­

clude the height above the water table at which desaturation becomes considerable or even 

to include the entire region of unsaturated flow. Some textbooks on groundwater flow 

(e.g. Verruijt, 1970; Bear, 1972) misuse the term 'capillary rise' for the height of the 

capillary fringe. Capillary rise refers to a phenomenon (Breaster et al., 1971) and the 

height of capillary rise is a quantity used with respect to well-prescribed conditions 

of unsaturated flow (Wesseling, 1957). 

When solving saturated groundwater flow problems, the phreatic level is usually 

taken as the upper boundary of the flow domain, disregarding water movement in the over­

lying unsaturated zone. Since the conductivity in the region just above the water table 

is approximately equal to the saturated hydraulic conductivity, some authors (e.g. 

Youngs, 1969) include the capillary fringe in the flow domain. However the height of the 

capillary fringe is generally small compared with the saturated thickness of the aquifer 

and for practical purposes the phreatic level is taken as the upper boundary of the 

saturated region. 

Another concept inherent to the separate approach to saturated-unsaturated flow is 

specific yield. It is often defined as the volume of water released from a soil column 

of unit area, extending from the water table to the soil surface if the water table is 

lowered a unit distance. For the analysis that follows it is necessary to define more 

precisely the fluxes in the vicinity of a moving water-table 

Consider a change in the position of the phreatic level Ah = h_ - h, during a single 

Urn increment At and assume that flow in the unsaturated soil c o l L is in vertical 

fc a a T H ?" ?" ̂  aVSrage £1UX dUrlng *» time lnCrement « ™ * ** soil sur-
to defne f n* ? " ^ ^ leVel' " d e n ° t e d b y qs ( P ° s i t i v e W s ) . In an attempt 
to define sunilarly the flux across the water table, difficulties arise as its position^ 
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