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Abstract

' Laat, P.J.M, de (1980) Model for unsaturated flow zbove a shallow water-table,
applied to a regional sub-surface flow problem. Agric. Res. Rep. (Versl. land-
bouwk. Onderz.) 895, ISBN 90 220 0725 1, (vii) + 126 p., 42 figs, 6 tables,
182 refs, 2 appendices, Eng. and Dutch summaries. PR o
Also: Doctoral thesis, Wageningen. .

A mathematical model is developed to simulate transient unsaturated flow
above a shallow water-table. The unsaturated zone, here extending from just
below the phreatic level to seil surface, is schematized into a root zone and
a subseoil. In.the root zone the gradient of the hydraulic potentizl is assumed
equal to zero. Vertical flow in the subsoil is described by a combination of
steady-state situations corresponding to the upper and lower boundary flux,
respectively. Transient flow is solved by a sequence of steady-state situa-
tions, subject to boundary flux conditions at the soil surface and from below
the water table. The solution uses time increments of the order of days and
is efficient in terms of computer costs.

To verify the model for an actual field situation, it is linked at the
upper boundary to .a model for evapotranspiration and at the lower boundary
to a model for two~dimensional horizontal saturated flow. The resulting quasi
three-dimensional madel is applied to a field-size flow problem. Results agree
closely with observed water-table elevationg. The composite model is further
used to predict consequences of groundwater extraction.

Free descriptors: capillary rise, percolation, saturated-unsaturated flow,,
evapotranspiration, groundwater extraction, prediction.

This thesis will also be published as Agricultural Research Reports 895,
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1 Introduction

The reclamation and protection of land from the sea and inland waters in the Neth-
erlands during the past centuries resulted in the development of large polder areas. The
excellent opportunities for water management in these areas provided optimm conditions
for crop growth, at least from a quantitative point of view. Qualitative problems arose
due to the deterioration in quality of the supplemented surface water and, particularly
in the lowest polders, to the intrusion of saline groundwater.

It is only since the begimning of this century that serious attention has been
given to the water management problems in the eastern and southern part of the country.
Although the land is above mean sea level, flooding was frequent in some places and
large areas suffered from too high water-tables. It is well-known that wet conditions
in the beginning of the growing season may seriously affect agricultural crop production.
It delays the sowing and planting of crops, but also the seedling emergence and growth
because of low temperatures and high concentrations of carbon dioxide in the root zone
of the soil. To ensure favourable conditions for crop growth at the beginning of the
growing season, the drainage in many of the higher areas with mainly ée_olia.n soils has
been drastically improved. '

Although the average anmual rainfall excess in the Netherlands is between 200 and
300 mm, the potential evapotranspiration exceeds precipitation during the growing season
(April to September) by more than 100 mm. If this amount is available for the crop in
the root zone, water supply is optimum for crop production, However, most of the (sandy)
soils in the eastern and southern part of the coumtry are not even able to retain the
amount that is needed in & year for which 'average weather conditions' apply. With a -
shallow water-table a considerable part of this deficit may be supplemented by the
transport of soil moisture from the groundwater reservoir to the root zone. The upward
movement of soil moisture in the region above the water table is termed capillary rise.
This process depends on the depth of the water table. It becomes insignificant for the
water supply of the crop if the prevailing water-table depth is more than 3-5 m below
s0il surface. ' '

The rapid expansion of population and industry during the past decades resulted in
a considerable increase in the demand for demestic and industrial water. As surface
water in general is of poor quality, and as there is hardly any fresh groundwater in the
west, the amounts extracted from the eastern and southern parts of the country are rap-
idly increasing. .In those arcas where the implemented drainage system is (more tham)
adequate, an additional extraction of groundwater results in an undesirable drawdown of
the water table. The effect of a drawdown on the availibility of water for the crop in
areas with relatively high water-tables is twofold. It reduces the amount of soil mois-
ture initially available in the root zone and it hampers capillary Tise. As a Tesult of



the development described above, some of the areas which previously had an abundance of
water now show a shortage.

This study concerns groundwater flow in shallow water-table agquifers and in par-
ticular flow in the unsaturated region between the soil surface and the phreatic level.
Although the water movement in a partly saturated soil may be described by one single
equation, the flow regions above and below the phreatic surface were traditionally
treated as two separate systems. One of the reasons for the separate approach is that
flow in the unsaturated zone is predominantly vertical, and in the saturated part in a
horizontal direction. Moreover, the mmerical solution of the governing equation re-
quires much more effort in the unsaturated zone than in the saturated region. The
avajlable solutions of three-dimensional,. saturated-unsaturated problems using a single
equation are, therefore, restricted to small-size flow systems.

A less-rigorous approach treats flow in the saturated and unsaturated region sepa-
rately and uses a special procedure to link both sub-systems. The partial differential
equation governing non-steady unsaturated flow is highly non-~linear. For stability and
convergence the solution requires that time and space are discretized to small steps.
The restriction with respect to the length of the time increment is imposed upon the
entire system. Therefore, for the less-rigorous approach to be attractive in terms of
computer costs, it is necessary that the numerical solution of the equation governing
unsaturated flow is replaced by a more efficient simulation model. The approximate
solutions, available at present, are unsuitable for a complete transient analysis, as
they consider flow in an upward or downward direction only. Moreover, most of the solu- -
tions assume that the water table is at infinite depth.

For a shallow water-table in a sandy aquifer, the c]mracterlstlc time of the un-
saturated flow system is of the order of days. With a time increment of approximately
this length, the flow system can be described by a succession of steady-state situations.
This approach.is used in this study to develop a model for unsaturated flow,

In order to verify this model for an actual field situation, it is linked at the
upper boundary to a model for evapotrmispiration, and at the lower boundary to a model
for two-dimensional horizontal saturated flow, The combined model is applied to an area
of 36 kn? around the punping site ''t Klooster' in the east of the country, The amount .-
of surface water nmoff from this area is relatively small. It was selected for this
study to reduce the effect of the surface water system on the verification of the com-
bined saturated-unsaturated flow model.

Finally, the model is used to predict consequences of gromdwater extraction on the
water-table elevation and real evapotranspiration.



2 Transport of water in soil

2.1 SOIL WATER POTENTIAL

In an isothermal system the driving force for transport of soil water is the gra-
dient of potential energy. The 'International Soil Science Society' (Aslyng, 1963; Bolt,
1975) uses concepts based on energy and thermodynamics to define the condition of water
in soil (see e.g. Taylor, 1968; Hillel, 1971). The total potential energy is described
as the amount of work liberated by removing a unit mass of soil water from a certain
location in the soil in the fomm of pure free water at the same temperature and to
transfer this quantity isothermally to a reference level where it is defined as having
a potential of zero. The components of the total potential ¥, are the pressure potential
¥ , the osmotic or solute potential ¥ and the gravitational potential wg. Thus

YT Y | _ (1_)
The pressure potential results from a pressure that differs from the existing at-

mospheric pressure. Pressure (N-muz} is equivalent to energy per unit volume (J-m-3).

Since the density p is mass per volume it follows that the pressure potential (expressed

in energy per unit mass)

WP % {; o ' . (2)
where p is the pressure with respect to atmospheric pressure. In the unsaturated soil
the pressure potential is negative due to the attractive forces of the soil matrix.
Buckingham (1907) introduced the term 'capillary potential' te indicate that the poten-
tial results from capillary effects. Nowadays the temm 'matric potential' is preferred
as the pressure p is, especially in clayey seils, alsc affected by adsorptien, by at-
traction between water molecules and ions in the electrical double Iayer of clay par-
tiéles and by small devistions in the scil air pressure from the existing atmospheric
pressure. In particular with respect to the last mentioned effect see Stroosnijder
(1976) . At the free water surface atmospheric pressure exists (by definition), so that
P equals zero, Below this level, in the saturated region, the attraction of the soil
matrix is negligible. Pressure merely results from the hydrostatic pressure, so that  .
values for y_ are positive. The pressure potential in the saturated zone has been .
termed 'submergence potential' (Rose, 1966). Although the pressure above and below the’
free water level results from quite different forces, p is considered in this study as
a single continuous quantity, extending from the saturated to the unsaturated region.
The osmotic or solute potential reduces the total potential energy in the presence



of a membrane whose permeability to water molecules differs from that to the molecules
of the dissolved salts. When dealing with water movement in soil it is assumed that the
solute can move freely with the soil water. Hence

¥ =0 _ (3)
This condition implies that the soil water potential is defined with respect to free
water of similar chemical composition as the soil moisture located at reference level.

The gravitational potential is the energy due to the earth gravitational field. If
g is the gravity constant, the required energy to 1ift a mass of water m over a height z
above reference level equals mgz. So the gravitational potential per unit mass

y = ' '
L = 8 _ 4)
as g can be considered a constant over the distances involved.

The d_ri\ring force for transport of water in a porous medium is then given by

Y =¥ = v '
e =T, VY, S V(E) 4 gi2 (s

If at a height z above reference level pressure p exists, the total potential energy per
unit mass at this particular location in the soil may be written as

P1 Z .
¥, = 0{ ;du+goj dg . (6}

The potential ¥, Tepresents a scalar quantity if its gradient describes a vector field
‘without a rotational component. It can be shown (De Wiest, 1966) that ¥ . as given by
Eqn 6 generates an irrotational vector field, provided that the density p is a function
of p only. Actually, the density of the soil water also varies with solute concentration
and temperature, In this study the soil water is assumed to be homogeneous and imcom-

pressible, so that for isothermal systems the total water potential {energy per unit
mass) is given by

¥, = %. + gz FxghH . : n

as here p can be considered a constant. Multiplying Eqn 7 by the constant ) ylelds the
pressure equ:walent of the water potential (energy per unit volume)

P =g +p _ (Fom > or Pa) o . ' .(8)
Dnudmg Eqn 7 by the ccmstant g Tesults in a quantlty known as hydrauhc head or
hydraulic potenua.l (energy per unit welght)
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2.2 GENERAL EQUATION OF FLOW

In the absence of other forces, such as thermal and electrical gradients, a differ-
ence in the total potential energy between two locations in the soil is the driving
force to move water from the location where the potential is high to the location where
a2 lower value exists. The resulting volume flux density q related to the potential gra-
dient is known as Darcy's law, written in vectorial form as

q = -k(vp + pgvz) ' (10}

where the hydraulic conductivity k (m2-3-1-Pa“1) depends on the characteristics of the
soil matrix, the dynamic viscosity of the fluid and the degree of saturation. If the
value of k is the same in each flow direction, the porous medium is said to be hydrau-
lically isotropic. Though the flux density vector q has the dimension of velocity
(m-s"‘l] , the term velocity is more properly used for the actual velocity of the water
in the pore space of the soil matrix. In groundwater hydrology q is preferably termed
'specific discharge’. :

In the unsaturated soil the pressure of water is usually measured with a tensio-
meter and below the free water surface with a piczometer. Both methods measure the pres-
sure at a certain location in the soil relative to atmospheric pressure as a height of
a water colum, called pressure head ¢. If the density p in the apparatus equals the
density of the soil water, p = pgy. It is therefore convenient to use the gradient of
the hydraulic head to write Egn 10 as

q= _K[(p'_g)vp.+ vz] = -Kv¢ . (1)

where -the hydraulic conductivity X (= pgk) is expressed in the practical unit (m-s-1) .
The continuity equation for flow in non-deformable media, stating the Law of Con-

servation of Mass, may be written as

308 . _y. : , . 12
3T~ VPl (12)

where t is time and o the volume fraction of water per unit volume soil matrix. Taking
¢ again as a constant and combining Eqns 11 and 12 results in a general equation of flow,
written in vector notation as ' ' :

39_.. | _ - (13
-a-f—v(l(w;.). . (13)

For flow in anisotropic media a more general equation is obtained by expanding

Eqn 13 as follows

308 ¢ 38 42 x 2L x 2 y
"—B—-E(Kxﬁ) ay (Ky By)+az X, 37 (14)

where the x,y,z directions are chosen in the three principal directions of the hydraulic

s



conductivity K , K_and K,. Hhen solving multi-dimensional flow problems, anisotropy
should be taken into account because generally the natural porous medium has a stratified
structure. Since transformation of isotropic flow problems into a problem for anisotropic
media is relatively simple, the equations in Section 2.3 are conveniently derived for
isotropic soils. For a thorough discussion on anisotropy in porous media the reader is
referred to Childs (1969).

2.3 PARTICULAR FORMS OF THE GENERAL EQUATION

When modelling complicated systems simplifying assumptions have to be made. Some of
these simplifications are necessary for a mathematical description of the system. An
example is the assumption that Darcy's law, which is in accordance with the equation of
Hagen-Poiseuille for laminar flow in a circular tube, also holds for flow in porous
media. The validity of Darcy's law especially in unsaturated soil is still a matter of
discussion (Swartzendruber, 1963 and 1968; Thames & Evans, 1968; Vachaud, 1969). Other
assumptions are necessary to obtain an analytic or adequate mumerical solution of the
problem: for example, considering flow in one or two directions only, or neglecting the
variation in hydraulic conductivity. These simplifying assumptions result in a number of
differential equations each of which holds for a certain class of flow problems which
are characterized by the assumptions made when deriving the formula. Many equations have
been given the name of the author who first suggested its use. Equations frequently
cited when discussing saturated and unsaturated flow will be dealt with in this section.

It should be realized that the general equation as formulated in Eqn 13 is general
in so far as it describes the flow in a three-dimensional, non-homogeneous, saturated
or unsaturated porous medium, but is less general in so far as it is restricted to iso-
thermal flow of an incompressible homogeneous fluid in a rigid soil without other
driving forces than those defined by the hydraulic head. Problems on mixed saturated-
unsaturated flow in this study and most of the problems discussed in literature on this
subject satisfy or nearly satisfy these restrictions. Therefore Eqn 13 will be used as
the basic equation for further consideration.

The development of flow equations for transport of water in porous media came from
two different disciplines. Saturated flow problems have been studied by groundwater
hydrologists in relation to civil engineering and unsaturated flow has always been the
domain of the soil scientist in relation to agriculture. This separate development may
be illustrated by the fact that Buckingham when introducing the capillary potential in
1907 dit not even mention Darcy's law from 1856 and it took 20 years before Israelson
{1927) noted the commection. The delayed progress made in the development of unsaturated
flow theory compared with that of saturated flow has heen mainly due to the difference
in the nature of the potentials. In saturated media the potentials invelving position
and pressure are easily obtained where as it was not until 1928 with the introduction of
the tensiometer (Richards, 1928) that unsaturated flow potentials could be measured.
m:i'ezver, empirical relations hetw&een pressure and moisture content and between pressure
and hydraulic conductivity are required for i i
These relations are diffii:::ult an:q tediousotot::t:zliuzgna: ::i;t:mt_:ed oy equatlm'ls'

ubject to hysteresis.

6



Therefore analogy of flow through porous media to heat conduction was first recognized
for saturated filow.

2.3.1 Saturated flow

For saturated flow the earlier defined proportionality factor k in the equation of
Darcy as formulated in Eqn 10 is a function of the properties of the soil matrix and the
fluid, Many investigators have tried to describe this parameter ‘in terms of the charac-
teristics of the medium as well as those of the liquid. In this connection use has been
made of the experimentally derived equation of Poiseuille. According to this equation
the rate of (laminar) flow through a tube of uniform cross-section is proportional to
the hydraulic gradient, which is essentially Darcy's law for a colum filled with porous
material. From consideraticns on the propertionality constant of both equations, it
follows that (Rose, 1966)

k= i : (15)
n

where A is a dimensionless constant, r the ‘effective' radius of the pores and n the
dynamic viscosity of the liquid. The constant A results from the fact that the flow
through a porous medium is very irregular compared with laminar flow through a tube. It
‘contains dimensionless characteristics on the geometry of the soil matrix. A reliable
expression to relate the constant A to the porosity, shape of the grains, grain-size
distribution and other geometrical properties of the porous medium has not been found.
Muskat (1937) suggested to lump A and ¢ into one parameter that is a function of the
structure of the medium alone and entirely independent of the nature of the fluid. This
" parameter has later been termed 'inherent', 'intrinsic' or 'specific' permeability. This
concept of inherent permeability is rather not used by soil scientists, because soils
are in general by no means inert in the physicochemical sense {Childs, 1969). This is:
well-known from farming practice where the structure of clayey soils is improved by the
application of certain fertilizers. However, in the more inert sandy porous media in the
absence of air, the concept of inherent permeability proved to be useful and it is gener-
ally applied by groundwater hydrologists. Denotmg the intrinsic permeability by x, the
proportionality constant k is given by -

k = (16)

3|=

The hydraulic conduct1v1ty X, which appears in Darcy's law expressad in terms of hydrau-
lic head may then be written as CLl

Since p has been assumed a constant and the- fluid homogenecms, the hydraulic conductlvlty_

K may still be considered as a characteristic of the (saturated) porous medium alone.
Laplace's equation, earlier derived for the steady conduction of electricity and -



heat was introduced for steady flow in homogeneous saturated media before the end of the
last century by Slichter (1899}. With 38/5t = 0 and K is a constant this equation follows
directly from Eqn 13

2¢=ﬁg+u+u=o (18)

In a horizontal, completely confined aquifer of uniform thickness the spec1f1c dis-
charge in vertical direction can be disregarded and Eqn 18 reduces to

2 2 '
L, 80 oy (19)
axt oy

For semi-confined or leaky aquifers the vertical flux is still small enough to write the
continuity equation as

aDq,, 3qu
Tl % o _ _ _ -(20)

where D is the thickness of the aquifer and q; is the leakage through the upper confining
layer. Substituting q, = -K3¢/ax and q, = -Kaw‘ 3y into Eqn 20 and assuming the hydraulic
conductivity X to be a constant in vertical direction y1e1ds

—x(T J;J (T ) . ey

where T = XD is termed the transmissivity, a function of x and ¥ in non-homogeneous
media. The flux q; may be written in terms of the characteristics of the conflnlng layer
and the hydrauhc head of the adjoining agquifer. Using Darcy's law

q; = K’ Q;D;__ = - L_c" . : (22)

where ¢'.is the hydraulic head in the adjoining aquifer, K' the hydraulic conductivity
and D' the thickness of the confining layer. K' and D' are usually expressed as the -
resistance ¢ = D'/K'. If ¢' varies with time, q; is also a function of time and Eqn 21
describes transient flow in a non-homogenecus, non-deformable, semi-confined aquifer.

An important class of problems describing essentially horizental flow are based on
the Dupuit-Forchheimer assumptions. Dupuit (1863) derived an equation for radial flow in
an unconfined aquifer assuming that for small inclinations of the free water surface the
streamlines may be taken as horizontal. Furthermore he assumed that along each vertical
line the hydraulic head is equal to the height of the free water surface above the hori-
zontal impermeable base (thus aqx/ az = 3q_/dz = 0). Applying the equation of contimuity
to flow in any column with a free surface height h above the impermeable base, Forch-
heimer (1886) derived a general equation for flow in unconfined aquifers with water
tables of low slope. The equation of continuity requires that

8



ax (ha) + —%; (hq ) = - % (23)

where u is the 'drainable porosity' or 'specific yield', defined as the volume of water
extracted from the groundwater per unit area and per unit descent of h. The Dupuit
assumptions allow the equations of Darcy to be written as q = -Keh/ax and q, = -Kah/ay,
which combined with Eqn 23 yield the equation of Boussmesq (1904)

2@ L@ - & (24)

Although Muskat (1937) in a comprehensive discussion strongly took issue with the
Dupuit-Forchheimer theory and preferred to await the development of a more satisfactory
solution, the thecry has become very popular because it is easy to apply. The errors
resulting from the Dupuit-Forchheimer assumptions generally depend on the curvature of
the free surface and tend to be larger for the approximated shape of the water table
than for the calculated flow rates. For one particular flow problem Charny ({see
Polubarinova-Kochina, 1962) has shown that the Dupuit-Forchheimer assumptions lead to
the exact solution for the rate of flow.

The right side of Eqn 24 represents the change in time of the total volume of water
stored in a colum of unit cross-sectional area due to a variation in the height of the
water table. It has the dimension of a flux. The dimensionless parameter u is a function
of x, y and t. When the changes in h are small as compared with the thickness of the
aquifer, Kh may be considered as a function of x and y alone. Substituting the trans-
missivity T = kKh into Eqn 24 yields a non-linear diffusion equation developed by Jacob
(1950)

3h El 3N, _ _3_1"_1_ 25
ax (T'—'— W_(TF);)_uat +2q]-_ . ( )

where the additional term Iq, =q *qy * Q3 * .-- represents sources and sinks such as
leakage through a confining layer, rainfall, pumpage, etc. The transmissivity T is a
function of x and y, while q; may vary with x, y and t. Positive values of q; represent
a sink, negative values a source function. For steady flow conditions the term wdh/ot
disappears and Eqn 25 reduces to a form similar to the equation for semi-confined flow
(Eqn 21). These types of equation are known as Poisson equations. :

2.3.2 Unsaturated flow

‘Considering flow in unsaturated porous media, the hydraulic conductivity becomes a

function of the water content, express1b1e as k = k[e), and the general equation of flow

may be reproduced in the form

-g—i = y.k(8){vp + pgvz} (26)



Equation 26 can be solved only if a unique relation exists between k and 6 as well as
between @ and p. Haines (1930) was among the first to report experimental evidence, using
sand and uniform glass spheres, that 0(p) is not a single-valued function. In rigid soils
unique relations between & and p exist if the change in 6 is monotenic, i.e. the moisture
content is either continuously increasing or decreasing. Between these two extreme rela-
tions, known as the 'wetting' and 'drying’ moisture characteristic, a family of so-called
'scanning'-curves detemmine the relation between 8 and p dependent on the past history.
Hysteresis effects in the relation between k and & appear to be less sizable (Nielsen &
Biggar, 1961; Elrick & Bowman, 1964; Top & Miller, 1966; Poulovassilis, 1969), but if k
is expressed as k(p) hysteresis in the moisture characteristic is imposed on the relation
between k and p.

To convert Eqn 26 into an equation with one dependent variable, the left side is
written as

28 a : '
o =.£ ::.% =C(p]%% | (2n

where C(p) is defined as the specific moisture capacity. Writing Eqn 26 as a function of
P, Richards (1931) derived the follawing equation for unsaturated flow in non-homogene-
ous, isotropic, porous media i

3 7 | .
CP) 38 = & k) 3B+ L k) B+ L ko) By 4 pg KR (28)

which is usually referred to as Richards' equation (Swartzendruber, 1969)}. The use of

Egn 28 is restricted to the class of problems in which the matric pressure changes mono-
tonically, as it fails to take into account hysteresis effects in the relations k(p) and
8(p}. A modified hysteretic version of Richards' equation has been proposed by Miller-&
Miller (i956), but its use is limited as hysteretic relatmnshxps are difficult to obtain-
in practice. : ‘

Buckingham (1907) has expressed Darcy s law 1n terms of 6 with the introduction of
© D(8) = k(&) aE m2s71) o o (29)

which later Childs & Colhs-(ieorge (1950) noted as be:mg mathematlcally identijcal to a
dlffusmn coefficient. Application of the soil-water diffusivity D requires that dp/de
exists, which is not the case for saturated media where p varies and 6 remains.a con-
stant. Richards (1931) suggested that writing Eqn 28 in terms of the other dependent
variable € is just a matter of mathematical expediency if p is a single-valued fumction
- of 8. However, Vp can only be expressed in terms of V9 when  is continuous and thus the

mt-ed:um .homogeneous. With reference to these restrictions, Fqn 28 written in terms of 9
yields the transport-diffusion equation

® . 3 3 - |
5t " o OO 39 + £ 00) B L (D(e) 2, g_kﬂl (30)
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which was presented in this form by Philip (1957a). Equaticn 30 is a non-linear Fokker-
Planck equation. The class of flow problems to which it in general refers is absorption
and infiltration into homogemeous unsaturated soil. For one-dimensional horizontal flow
and other instances where gravity may be neglected Eqn 30 reduces to the non-linear dif-
fusion equation

36 _ 3 38
T 7 oA 00 ) | 31

for vwhich analytical and quasi-analytical solutions have been cbtained (Philip, 1969).

A form of transport of water in porous media that has not been discussed is the
water-vapour movement. Vapour movement is a process of diffusion rather than mass flow
and may conveniently be included in the diffusivity temm in the Fokker-Planck equation
(Philip, 1957a). However, vapour movement becomes only a significant fraction of the
total unsaturated transport when the seil is very dry and the rate of liquid flow close
to zero (Rose, 1963a, 1963b}. Hence vapour movement may be neglected (Miller & Klute,
1967). This conclusion is only warranted in view of the assumption made earlier that
isothermal transport of a homogeneous liquid is considered. For conditions that are no
longer isothermal, vapour diffusion becomes the dominant system in the total moisture
transport in very dry soil (Philip, 1957b). Rosema (1974), following an approach of
Philip & de Vries (1957}, ‘showed that for wet conditions Eqn 28 cannot be used to de-
scribe the diurnal change in the total moisture flux in the top layer of a bare soil.
For an analysis of the simultaneocus transport of water and heat from the point of view
.of jrreversible thermodynamics the reader is referred to e.g. Cary & Taylor (1962) and
Cary (1963, 1966).

2.4 METHODS FOR SOLUTION OF FLOW PROBLEMS

To solve .problems of groundwater flow a system (real or abstract) is derived to
simulate the operation of the prototype system with the limits of accuracy required by
the problem under study (Dooge, 1973 and 1977). Such a simulation system is termed a
model, The process of simulation is then the operation of the model to predict the re-
sponse of the prototype system. In this sense, differential equations. governing ground-
water flow are models, and simulation of a groundwater flow system involves the solution
of a differential equation. Mathematical models use analytical or numerical techniques
" to obtain this solution. : ’

A mathematical model represents an abstract system Real simlation systems mclude
physical and analogue models. These direct simulation methods are first reviewed brief-
ly. Mathematical models, which are of primary interest for this study, are discussed in

more detail afterwards.

2.4.1 Direot simulation methods

Physical models comprise one~dimensional flow in soil columms and two or three .
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dimensional flow in sand tanks. The porous medium is usually homogeneous, isotropic and
consists of artificial or natural granular material. For saturated flow the model is of-
ten a scaled-down version of the aguifer, which involves the use of scale factors. Since
the same laws governing flow apply to both the model and the prototype system, physical
models are in particular useful for comparison with theory. Application of sand tank
models to regional flow problems have not been reported, probably due to the restricticns
imposed by the scale factors (Prickett, 19¢75).

Analogue solutions of groundwater flow problems are based on the principle that
systems helonging to an entirely different physical category are described by essentially
the same equations as those governing flow in porous media. Similarity of Darcy's law to
the equation for laminar flow of a viscous fluid through 4 circular tube has already been
mentioned. A model for transient, unsaturated, vertical flow based on this analogy was
built by Wind (1972). The model consists of a mumber of vessels each representing one
soil layer. When appropriate scale factors are used, the shape of the vessel, its liquid
content and level represent the moisture characteristic, moisture content and matric
pressure, respectively. The non-hysteretic flow process is simlated by the flow of a
viscous fluid through a mumber of tubes connecting the vessels. The model has been
successfully used for flow in heavy soils with a high water-table and under wet condi-
tions. - e : ' :

A viscous fluid analogue for saturated groundwater flow is the parallel plate model.
This model is usually called Hele-Shaw model, because Hele-Shaw (1898) first noticed the
analogy between the equation for two-dimensional laminar flow of a viscous fluid through
a narrow interspace between two parallel plates and the equation of Laplace. It can be
shown that Poiseuille's law applied to this flow system is the analogue to Darcy's law
for groundwater flow (Lamb, 1932, p. 582). The model is used in vertical position to
simulate two-dimensional steady or transient uncenfined flow for a variety of boundary
conditions {e.g. Awan & O'Donnell, 1972). Non-homogeneity of the porous medium is imita-
ted by variations of the width of the interspace. In horizontal position the model has
long been used to study steady confined and unconfined flow problems. Santing (1958)
extended its use to simulate the diffusion equation with the introduction of a mumber of
vessels on top of the model to imitate storage capacity. The model is suitable to simu-
late mmerous groundwater flow problems including steady, transient, confined and un-
confined flow in homogeneous or non-homogeneous media in the presence of sources and
sinks, rainfall and evaporation. A disadvantage of the model lies in the fact that the -
transmissivities are constant in time and difficult to change once the model is con-
structed and the width of the interspace has been fixed. Viscous flow models are re-

_ stricted to simulate two-dimensional flow problems. The models are difficult to con-
~ struct and’ the complicated operation requires a temperature controlled environment.

The analogy of Darcy's law and Ohm's law governing the steady flow of an electri- .
cal current through a conductive medium has led to numerous electrical analogue models -
for groundwater flow. The model may be a continuous or discrete representation of the
porous wedium. Continuous systems are used to study steady groundwater flow problems.
The conductive material may be an electrolyte in an insulated tank or solid material
from which the conductive Teledeltos paper is most comnonly used. The shape of the

12



conductive medium is a scaled-down version of the aquifer. Teledeltos paper is used to
solve two-dimensional homogeneous flow problems. For the similation of two-dimensional
flow problems with liquid models non-homogeneity of the aquifer may be imitated by
varying the bottom level of the tank. De Josselin de Jong (1962) combined two liquid
tanks by a resistor network to study steady flow in two aquifers separated by a con-
fining layer.

With a discrete electrical analogue model the properties of the porous medium are
simulated by a network consisting of electrical elements. The network is a scaled-down
version of the hydrologic prototype. At the nodes appropriate electrical voltages and
current sources can be introduced to represent corresponding boundary conditions and
sources or sinks. The electrical elements simulating transmission and storage are re-
sistance and capacitance. Resistance network analogues are used to solve steady flow
problems. Herbert (1968) showed that problems of two and three dimensional transient
flow may be solved by a stepwise solution, considering the time-variant flow process
as a succession of steady-states. This method is rather time consuming and introduces
extra errors due to discretizing the time parameter. Transient flow problems are more
conveniently handled with resistance-capacitance networks. Resistance-capacitance ana-
logues are the most versatile analogue models for analysing sub-surface flow systems,
but there is a limit to the complexity of the flow system they can handle (Bouwer,
1967). This refers in particular to the inclusion of transient unsaturated flow (Wind &
Mazee, 1979).

Comparing results from analogue models with mmerical solutions obtained with a
digital computer, Prickett & Lonnquist (1969) concluded that digital methods are less
time consuming for model construction and operation, and superior for non-linear
problems. For the simulation of large groundwater flow systems requiring many time in-
crements and a large core storage, analogue models are less costly to operate than
digital models but the data handling is more difficult. This prcblem can be solved by
combining resistance network and digital computer into a hybrid computer model. This
allows the groundwater flow problem to be programmed as for a pure digital computer
solution, but the non-linear partial differential equation is solved by a resistance
network, Since the solution with the resistance network is almost instantanecusly ob-
tained it serves as a subroutine in the digital computer program which reduces the com-
putational time drastically (Vemuri & Dracup, 1967).

Apart from viscous fluid and electrical amalogue models there are several other -
simulation techniques based on analogy (Karplus, 1958) from which the stretched membrane
analogue model is worth mentioning. The model consists of a thin rubber sheet stretched
with uniform tension. The shape of the membrane due to'a point load which represents a
source or sink is governed by Poisson's equation. The tension of the sheet and the ver-
tical deflectlons are analogous to aqu;l,fer transmissivity and hydraulic head variaticns,
reSpectlvely. The model is simple and inexpensive when used to simulate steady flow
Problems of multiple wells in homogenecous aquifers. De Josselin de Jong {1961) pointed -
out that accurate solutions can be: obtained with an optical technique for the observa-

tion of the simulated flow pattern.
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2.4.2 Mathematical models

Mathematical models describe the prototype system by a set of algebraic formulas.
The nature of the formula depends on the approach used to solve the groundwater flow
problem. This approach may range from a pure black box analysis, via conceptual models
to the mathematical physics approach. Strictly speaking, it is difficult to distinguish
between the different approaches, since almost every mathematical model contains to a
certain extent conceptual elements. The mathematical physics approach results in differ-
ential equations, and the particular forms of the general equation derived in Section Z.3
are generally accepted to belong to this category.

Mathematical models use analytical or mumerical methods to solve the governing
equation of flow. The solution requires that the geometry of the one, two or three di-
mensional region in which flow is considered is specified as well as the conditions that
apply at the boundary of the flow domain. If at the boundary the value of the dependent
variable is given, the boundary condition is known as the Dirichlet condition. Flux, or -
Neumann conditions refer to situations for which the flux (or zero flux) normal to the
boundary is specified. If for different parts of the boundary different fypes of boundary
conditions apply, the system is known as a mixed boundary value problem. The use of
derivative boundary conditions for the solution of a steady-state flow problem requires
that the net flow out of the flow domain equals zero. Moreover, to arrive at a unique
solution for a typical Neumann problem an additional parameter is needed. Well-defined -
boundary conditions are sufficient to obtain a particular solution of a steady-state
fiow problem. But for the solution of a transient flow problem, the initial condition
as well as changes in boundary values with time have to be specified.

Analytical methods

Much effort has been made to derive amalytical solutions of flow problems. In gen-
eral analytical solutions can only be obtained for homogencous media and when sufficient
simplifying assunptions are made. For saturated flow these have led to a great mumber of
groundwater formulas. Well-known formulas ave the Theis and Hantush equations for tran-
sient radial flow to a well. These equations are important'for an approximation of the
performance of wells and aquifer in the absence of sufficient data. For this purpose the
properties of the aquifer and its boundary conditions are idealized. Imaginary wells are
used to reproduce the same disturbing effects as the idealized geclogical boundary. A
solution may then be obtained by using the principle of superposition for the -effects of
real and imaginary wells in an infinite aquifer (e.g. Walton & Neill, 1960).

A semi-analytical solution is obtained with the boundary . element method (Brebbia,
1978) . The boundary of the two-dimensional flow domain is divided into a series of ele-
ments. Van der Veer {1978) used a continuous distribution of: sinks, sources and vortices
over each element to generate a flow pattern in the domain. The solution found .by en-
forcing the flow pattern to satisfy the boundary conditions, is obtained by numerical
techniques and is kxact in the region enclosed by an approximate boundary. :

For the derivation of the Theis and Hantush formulas the Boltzmann substitution has
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been used to transform the partial differential equation into an ordinary differential
equation. This reduction in the mumber of independent variables is known as similarity
substitution and is only useful if the variables removed from the equation are also
removed from the governing conditions by the same substitution. The Boltzmann similarity
substitution may alsc be used to solve the Fokker-Planck equation for umsaturated flow.
This results in a semi-analytical sclution for which an efficient numerical method was
intreduced by Philip (1955).

Pure analytical solutions which are found completely by mathematical analysis can-
not be obtained for transient unsaturated flow unless some non-realistic assumptions are
made. For instance, assuming D and k to be constants, the one-dimensional Fokker-Planck
equation reduces to the linear diffusion equation

for which solutions for a great mumber of boundary conditions are readily available
(Crank, 1956; Carslaw & Jaeger, 1959).

For solving practical problems, analytical and semi-analytical methods are often
unsuitable. However, from solutions obtained with such methods one can gain a better
understanding of the fundamental structure of the flow problem than with an incidental
numerical solution. '

Numerical methods

The solution of differential equations governing flow may be approached mumerically
using a finite element or finite difference method. With finite element methods, the flow
problem is either reformulated using variational calculus (e.g. the Rayleigh-Ritz method)
or balanced using weighted Tesidual principles (e.g. the method of Galerkin). For two-
dimensional flow a solution is obtained by first sub-dividing the flow region into elemen-
tary sub-areas, the elements. The size of the elements may vary, the shape is usually tri-
angular or quadrangular. The independent variable in the interior of the element is ex-
pressed in terms of its value at the corner points. Application of finite element methods
results in a set of simultaneous equations. Various techniques to solve sets of simultaneous
equations are discussed later in this section.

The finite element method is a quite recent development in the field of sub-surface
hydrology (Zienkicwicz, 1967). Its relative merits compared with the 'classical' finite

-difference technique have to be further established, as the mmber of comparisons be-
tween both methods is still limited. A distinct advantage of the finite element method
is the ability to generate easily any irregular grid to describe the flow domain. For a
Tegular grid of triangular elements, the method yields for the two-dimensional equation
of Laplace the same set of simultaneous equations as generated by a finite difference

technique (Remson et al., 1971). ' : ' \

For a finite difference approach a grid has to be defined with dimensions depending
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on the mmber of independent'variables that appear in the partial differential equation.
If the one-dimensional diffusion equation (32) is taken as an example, the grid will have
two co-ordinates: distance x and time t, as shown in Fig. 1. Every point in this finite
difference grid corresponds to a specific point in space at a specific instant in time.
It is convenient to choose a regular grid with constant At and Ax but this is by no means
a requirement (e.g. Tyson & Weber, 1964). If the co-ordinates in the x,t plane are indi-
cated by i and n, the solution at any given grid point or node (i,n) is B’i"‘. For n = 0
initial values for ¢ have to be given and if the flow domain is divided into m equal
intervals, boundary conditions for i = ¢ and i = m have to be specified for each time
level n.. R ) ) _ ' ' _

The finite difference approach replaces the derivatives of the partial differential
equation by their finite difference analogue. This approach may lead to an explicit or
implicit finite difference scheme. An explicit scheme is obtained if the time derivative
is replaced by a forward difference approximation between the n and n+1 time level and

the space derivatives are replaced by their finite difference analogues at the n time
level. Applied to Eqn 32 this yields

n n - .n_.n
o7t - gf i 7% 87 8y
i i_ AX - Ax : _
e P T (332)
which can be written as
‘ T - atl . n At n 0 L . _ 4 ,
P L = 9. ) —= ; o 257

v

In Eqn 33b the unknown value of the dependent variable at time level n+l is explicitly
expressed in terms of known values at the time level n. To solve Eqn 33b Dirichlet con-
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ditions have to be specified. Flux conditions involve an extra equation. For instance,
if at the boundary x the flux q_ is specified an imaginary node is introduced as fol-

lows o™ - g%
D ‘E:%IEiTE:l =q° (34a)
to be written as
n _ 2(ax} n n
em+l D 4y * em-l (34b)

With the introduction of imaginary nodes when flux conditions are specified at the
boundary, © can be solved at the end of the first time increment through a repeated
application of Eqn 33b. Once these values are computed, Eqn 33b is used again to move
the solution forward by another time increment. Although the explicit finite difference
scheme appears to be a simple straightforward technique, it has found 1ittle application
in the field of sub-surface hydrology (Remson et al., 1971)}. The reason is that the
method is unstable and leads to a meaningless solution due to the amplification of
round-off errors, unless the inequality

Dar 1 (35)

( Ax)2 oz

is satisfied (Richtmyer & Morton, 1967). Moreover, Eqn 35 is a requirement for the finite
difference approximation to converge to the true solution when in the limit Ax and At
approach to zero. Because stability and convergence criteria imposed on an explicit
finite difference scheme often lead to unacceptable restrictions on the choice of Ax and

At, an implicit scheme is usually preferred. Such a scheme is obtained if the time

derivative is replaced by a backward difference approximation between the n-1 and n time
level. If this scheme is applied to Eqn 32, the resulting equation :

br n-1 . O n n .

oy -8y . 8, 207 *+ 05y, | G6)

At (Ax)?'"

contains three wnknowns. If for the first time level Eqn 36 is written for each node,
this results in (m-1) equations with (m-1} unknowns. Through a simultaneous solution of :
this set of eguations values for ¢ at the first time level are obtained. The procedure

is repeated to move the solution forward in time. The truncation of the Taylor series
which is used to convert the partial differential equation into a finite difference form
results in a truncation error. This error can be reduced with the Crank-Nicolson scheme,
which uses the central time difference by approximating the space derivatives half way. .,
time level n-1 and n. The Crank-Nicolson approximation of the linear diffusion equation -

(32) is
n -1 a 01 _ ggn! . g7l '
8 - o) 5 3(ef_, - 207+ 05,y) (6 - 78 O541) (37
st =Y 2 ‘

At | (ax)
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The central (37) and backward (36) difference approximations lead to similar implicit
schemes, which are unconditionally stable. The second order accuracy of the Crank-
Nicolson scheme usually results in g faster convergence. The coefficient matrix which is
obtained from Egns 36 and 37 has a tridiagonal fomm. It is efficiently solved by a
Gaussian elimination technique known as the tridiagonal algorithm.

If two space parameters (x,y) are involved the implicit finite difference approxi- -
mation yields equations with five unknowns. Peaceman & Rachford (1955) proposed a method
which enables the application of the tridiagonal algorithm for the two-dimensional prob-
lem. The method is known as the alternating direction implicit {ADI) method, It requires
two advanced time levels for a complete application. Time level n is approached with an
equation equivalent to Eqn 36 where the finite difference analogue of azefay?‘ is evalu-
ated at time level n-1. Next lines parallel to the x co-ordinate are solved, one at a
time in the direction of increasing y. For the second step the treatment of the space
parameters is the reverse, i.e. the finite difference approximaticn for a” f:!/ax2 is
evaluated explicitly in terms of the known values at time level n and 3%e/ ayz is ex-
pressed implicitly for time level n+1. The ADI technique is umconditionally stable and
the resulting coefficient matrix for each line has the advantageous tridiagonal form.
According to Rushton (1974), singularities in the flow domain may impose restrictions on
the use of the method. Many successful applications in the field of saturated (e.g.
Pinder & Bredehoeft, 1968) as well as unsaturated {e.g. Rubin, 1968) groundwater flow
have been reported. The ADI technique can be extended to solve three-dimensional prob-
lems (Douglas & Gunn, 1964).

The finite difference and finite element methods have in common that they both give
rise to a set of linear [or linearized) equations. For the solution of a system of si-
multaneous equations direct and iterative methods may be used. A direct method is the
above-mentioned tridiagonal or Thomas algorithm, which can be applied to coefficient
matrices that show a tridiagonal form. This algorithm effectively reduces the implicit
scheme to two explicit schemes. It is obtained through a decomposition of the coeffi-
cient matrix into a lower triangular matrix and an upper triangular matrix. First the
lower triangular matrix is solved by forward substitution and then the upper triangular
matrix is solved by backward substitution. Since this method greatly reduces the number
of computational steps when compared with other Gaussian elimination methods it is
economical with respect to computer costs (Isaacson & Keller, 1966). Applications of the -
tridiagonal algorithm in the field of sub-surface hydrelogy are numerous, ¢.g. Hanks &
Bowers {1962), Liakopoulos (1965), Rubin {1969}, Jensen & Hanks (1967), Freeze (1969).

Most of the sub-surface flow equations are non-linear. Only if the coefficients of
the derivatives in the differential equation are a function of the dependent variable
does the implicit finite difference scheme generate a set of non-linear difference
eq“atff‘mS' This applies in particular to equations describing unsaturated flow in which
f\-mctwns appear such as k(8), D(8) and C(p). Since direct methods solve the coeffi-
Clent matrix only once to advance the solution from time level n to n+l, the values of
the deperdent variable at the advanced time level cannot be used to obtain the average
vz.llues of the coefficients. The most obvious and simple approéch is the use of coeffi-
Clents evaluated for the known value of the dependent variable at time level n. Since
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the values of the coefficients often change rapidly with a small variation in the value
of the dependent variable, this results in a loss of accuracy unless small time steps
are employed. The linearization technique may be improved if extrapolated values of the
dependent variable from previous time levels are used to estimate the values of the
coefficients. This technique used by Rubin & Steinhardt (1963) is less suitable for
systems where the value of the dependent variable is not monotonically increasing or
decreasing. Douglas & Jones (1963) proposed a predictor-corrector technique which is
particularly suited to mildly non-linear, one-dimensicnal, parabolic differential equa-
tions. The method is stable when used in combination with the tridiagonal algorithm. It
involves two applications of the Crank-Nicolson scheme. The first step, known as the
predictor, solves the system of equations for time level n+}. This facilitates the
evaluation of the coefficients at this time level. For the second step, known as the
corrector, the Crank-Nicolson scheme is applied to advance the selution from time level
1 to n+l, using the predicted values of the coefficients at time level n+}. With hys-
teresis the non-linearity may render the solution unstable and less accurate. Predictor-
corrector techniques have been used by e.g. Molz & Remson (1970), Hormberger et al.,
{1970}, Hornberger & Remson (1970). A disadvantage of the method is that it requires
twice as much computer time. Even more time-consuming is a method used by Klute et al.
(1965} where the system of equations is repeatedly solved to improve the values of the
coefficients in the non-linear equations.

With complicated problems or when the non-linearities are more pronounced, iterative
methods are preferred to the direct Gaussian elimination technique. Moreover, iterative
methods are the only means to solve coefficient matrices which result from differencing
elliptic equations. If the linear two-dimensional Laplace equation (19) is taken as an
example, the most simple Jacobi iterative scheme which results from differencing this
elliptic equation is written (with Ax = Ay) as :

r” H X NS 17 (38)
(¢1-1 2] ¢i+1,j * ¢i,j-l ¢1,J+|}/
where r is the iteration index and i,j indicates the location or the node in the x,y
plane. For the solution of an elliptic problem an initial guess for ¢ j is required to
start the iteration. If the scheme is executed in a specific order, earller improved
values of ¢ can be used to speed up the rate of convergence. This technique is known as
Gauss-Seidel iteration and can be written for Eqn 19 as
AL Oy ol S YIS I (39)
1 +J B (‘tl" 1] ¢i’j-] * ¢i+l|J ¢1)J+IJ/
The rate of comvergence is greatly improved with a scheme known as the successive over-
relaxation {SOR) method. It uses an acceleration parameter w and can be written for

Eqn 19 a5 .
+1 T+l r T ]
H ¢i,j-l ¥ ¢i+l,j ¥ d'1,_1*-!J (40)

T
¢§:; = (- w)¢i,J (¢1 1,]

where generally 1 < w < 2. For certain problems an optimm value for » may be obtained

from theoretical considerations, for other problems empirical fonmilas or trial and
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error procedures have to be used. Many applications of point-iterative methods (Gauss-
Seidel and SOR) to transient and steady flow problems have been reported in literature.
They include saturated (e.g. Remson et al., 1965; Freeze & Witherspoon, 1966; Taylor &
Luthin, 1969) as well as unsaturated (e.g. Watson, 1967; Ibrahim & Brutsaert, 1968;
Wisler et al., 1968) flow conditions. ‘

Instead of improving the value of the dependent variable for each node indepen-
dently, a block or line successive aver-relaxation (LSOR) method may be used. If LSOR is
applied to the two-dimensional problem (19) » the iterative scheme for each horizontal
line of the x,y difference grid can be written as

r+l _ _ r W oooT+] r+] + aE¥] + 4F
P15 T TR 5 g Oy a5 e

) (41)

The system of ‘equations generated with Eqn 41 is efficiently solved with the tridiagonal
algorithm, since ¢§:J!_]is known from previously cbtained values for the nodes on line
j-1. .

A more implicit solution is obtained with the alternating direction implicit pro- ‘
cedure (ADIPIT), the iterative variant of the ADI method. Each jiteration cycle consists
of solving simultaneous sets of equations for rows and then for eolumms. The rate of
convergence greatly depends on the choice of the acceleration parameter which varies in
a cyclic manner (Wachspress, 1966). Applications of LSOR and ADIPIT methods have been
reported by e.g. Bredehosft & Pinder (19703, Prickett {1975}, Vauclin et al. (1975).

With the above-mentioned techniques, stable and convergent selutions can be cbtained
for relatively simple, non-linear flow problems, For compliéatqd problems Stone (1968)
proposed a more powerful technique known as the strongly implicit procedure (SIP). How-
ever difficulties arise when the finite difference approach is used to solve multi-
dimensional, saturated-unsaturated flow problems for heterogeneous media or where the 7
geometric boundary of the flow domain is irregular (Vachaud et al., 1975). These diffi-
culties do not occur with the application of the finite element technique. This method
is flexible for use in an irregular flow domain and allows at the boundary a change from
Dirichlet to Neumann conditions during a single time increment. _

A Yecent mmerical approach, commonly referred to as mmerical simulation is used
to solve transient one-dimensional unsaturated £low problems. For this purpose the soil
colum is divided into a number of layers. To each separate layer and for a small time
increment, Darcy's law and the principle of éontinuity are applied.
calculation of a flux which is used to Compute a new value for the
each layer. Since all flow rates are calculated

dure is essentially an explicit method to which
Kastanek (1971,

This results in the
moisture content of
independently of each other the proce-

the earlier mentioned restrictions apply.

1873) proposed a mmerical simulation technique in which the mumber of -
layers varies automatically in accordance with ‘the

IBM, .the Continuous_ System Modelling Program (CsMp)

» which greatly reduces the pro- |
gramming effort._ .
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Numerical methods have proved to be an important tool in the solution of compli-
cated flow problems. Nevertheless, mathematical analysis of flow processes is of impor-
tance to gain a better understanding of the structure of the solution and for comparison
with results obtained through a mumerical approach. Analytical or semi-analytical methods
are particularly useful when a first estimate of quantitative aspects of a flow system
is required.

Analogue methods are used to solve a wide variety of flow problems. The construction
of a resistance-capacitance network does not necessarily require more time than the setup
of a mumerical computer program. Analogue models are less costly to operate, but computer
methods are more efficient in handling input and output of data. The size of the core
memory of the computer and the running costs are limiting factors in the application of
mmerical methods to large problems (Freeze & Witherspoon, 1968). However these limits
are rapidly extending due to advances in the field of computer technology. As computer
programs are easily changed and adapted to other problems, they are in many cases con-

sidered superior to direct simulation methods.

21



3 Saturated-unsaturated flow

3.1 THE TRADITIONAL APPROACH

As a result of the traditional approach to treat flow in porous media of which part
is saturated and part unsaturated separately, an interface between both flow systems
must be defined. For this purpose the level in the soil where the pressure is atmos-
pheric, known as free water level, water table or phreatic surface is most commonly used.
It has the advantage that it is easily measured in the field and constitutes a flow line
when there is steady flow without accretion from the overlying unsaturated region. The
actual saturated zone extends to a little above the free water level due to capillary
rise. The region of complete saturation above the water table was originally termed
capillary fringe ('capillaire zone') by Versluys {1916). The height of the capillary
fringe depends on the air entry value, i.e. the negative pressure at which the soil
begins to desaturate. Gradually a less well-defined definition has come into use to in-
clude the height above the water table at which desaturation becomes considerable or even
to include the entire region of unsaturated flow. Some textbooks on groundwater flow
(e.g. Verruijt, 1970; Bear, 1972) misuse the term 'capillary rise' for the height of the
capillary fringe. Capillary rise refers to a phenomenon (Breaster et al., 1971) and the
height of capillary rise is a quantity used with respect to well-prescribed conditions
of unsaturated flow {Wesseling, 1957).

When solving saturated groundwater fiow problems, the phreatic level is usually
taken as the upper boundary of the flow domain, disregarding water movement in the over-
lying unsaturated zone. Since the conductivity in the Tegion just above the water table
is approximately equal to the saturated hydraulic conductivity, some authors (e.g.
Youngs, 1969) include the capillary fringe in the flow domain. However the height of the
capillary fringe is generally small compared with the saturated thickness of the aquifer
and for practical purposes the phreatic level is taken as the upper boundary of the
saturated region.

Another concept inherent to the separate approach to saturated-unsaturated flow is

specific yield. It is often defined as the volume of water released from a soil column

of unit area, extending from the water table to the s50il surface if the water table is

"lowered a unit distance. For the analysis that follows it is necessary to define more

precisely the fluxes in the vicinity of a moving water-table.

Consider a change in the Position of the phreatic level ah = h2 - h, during a single

time increment At, and assume that flow in the unsaturated soil coil
direction only (Fig. 2). The average flux during the time increment
face at a height hs above datum level, is denoted
to define similarly the flux across the water tab

wim is in vertical
across the soil sur-
by g, (positive upwards). In an attempt
le, difficulties arise as its position
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H Fig. 2. The different levels at which the vertical
] fluxes are defined. The numbers (1) and {(2) indi~
0 T —0 cate possible soil moisture distributions corre-

h :
] sponding to the water~table elevations h] and hz,

s respectively.

0 W

Fig. 3. Typical relations between the
specific yield p and the depth of the
water table w for the situation that
water is released from an initially

gaturated column at a steady rate a-

T ' . cross the soil surface (Curve a) or
| h3 at a steady rate across the water
Gw . table (Cutve b):

is not stationary. If storage changes occur between the levels h, and h,, -the flux across
the‘initial level h, is definitely not equal to the flux across the final level h,. To
avoid ambiguities due to a moving water-table, a third level h, is defined just below h,,
$o that h, - h, is very small. The flux q across the lower level h, is taken as 'the
flux across the water table'. Disregarding horizontal flow components in the small region
Just below the water table, the flux across level hz'is equal to q,-

According to the definition given above, the specific yield u may be formulated as

we=(q -q,) at/sh (42)

Fig. 3 shows typical relations between the specific yield .u and w, the depth of the water
table below soil surface. Curve a represents the situation when water is released from .
an initially saturated column at a steady rate across the surface (q, = 0), and Curve b .
for a Steady rate across the water table (qs = (). In the field of saturated groundwatef-

flow, the definition of specific yield is generally meant to refer to the latter situ-

ation where in isotropic, homogeneous soils u approaches an approximate constant value

when the water table is sufficiently deep. When solving unconfined flow problems the
Specific yield is usually considered as a constanf property, characteristic of the .
duifer, Its value is taken equal to the average air content-at the soil surface (Fig. Z,
Where for the situations (1) and (2) equilibriun conditions are assumed). The fallacy of
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this approach for rapid fluctuations or shallow water-tables has been pointed out by
Childs (1960} and is extensively discussed by dos Santos & Youngs (1969).

For the solution of unconfined flow problems that take into account flow from or to
the unsaturated zone, p is usually defined as

W=, -a) at/th | N

where q, (Fig. 2) represents the flux into the unsaturated zone (positive) or recharge
at the phreatic surface from the overlying unsaturated region (negative). The definition
of y with Eqn 43 is equivalent to that with Eqn 42 if the level h, is taken at the soil
surface. In practice, the level for h, is chosen such that q,, approaches a constant value
equal to the long tem average flux across the soil surface. This yields an approximate
constant value of w, which facilitates the solution of equations for saturated ur_lconfined
flow. ) .

Writing Eqn 43 in differential form for two space dimensions gives

-

w3+ q, = q (xy,t,h) : (44)

where y and q, may be functions of x, y and t. If for convenience, q, is considered as

the only source or sink functidn, the right side of Eqn 25 may be replaced by Eqn 44 to
yield

= 00 3+ L oy 29 = q oyt | (45)

Equation 45 describes steady flow in a non-homogeneous unconfined aquifer, Transient flow
may be approached by a succession of étead)'-state situations  (Muskat, 1937). If the time
dependent function q, is given for each time step, the use of Eqn 45 does not require
the concept of specific yield. :

It should be realized that the exact formulation of the saturated unconfined flow -
problem is far more complicated. When considering three-dimensional flow in an isotropic
unconfined aguifer, the geometry of the phreatic surface is a priori unknown. After

Verruijt (1970, p. 171), the continuity equation for a small element along the free sur-
face may be written as

3h o .. __ o 3h '
SRR (46

where'qx, y,z TePTesents the specific discharge in the appropriate co-ordinate directiom,

q,, the upward flux into the unsaturated zone and h
face. Since the hydraulic head ¢(x
follows for z = h that

is the z co-ordinate of the free sur-
»Y>2,t) = z + p/pg and p= 0 at the free surface it

#(x,y,h,t) = h (47)
or L : ’

: h = ¢(XJY:h(x:Y,t) yt) = ¢(X,y,z,t) z=h : | (48)

24



Partial differentiation of h yields

3h _ 9 . 8¢ 3h 3 _ 3h 3%
® T %t %o T a T % 0 3 (49a)
dh _ 3¢ 3¢ 3h 3¢ _ 2h ¢ LS
ay sy Tz ay T 3y - oy (T 5D (49b)
3h _ 3¢ , 3 2h 3¢ _ 3h ., _ 3¢
Bt 5t Y 3z 3t O 3~ s (0 ° 3P {49¢)

Substituting Darcy's law (11} for the specific discharges into Eqn 46 gives for the
elevation h = h(x,y,t) of the moving free surface

3h _ 3 h 3¢ 2 _ g3
nat K5 ox Ry wy T Ke T4 (50)

Multiplying Eqn 50 by (T - %%) and substituting Eqn 49 yields the boundary condition at
the free surface

w3t - xgh? - xGH? + kD - kG - 9,0 - D (51)

Equation 51 and the equation for saturated flow, rewritten as
V.- (Kvg) =0 - (52)

have to be solved similtaneously, subject to appropriate boundary conditions at the fixed
frontiers to determine ¢(x,y,z,t) everywhere in the flow domain. Since solutions are only
possible in a very limited mumber of cases, the Dupuit-Forchheimer assumptions are
generally applied to exclude the vertical flow component. The advantages are that the
number of independent variables is reduced by one and the solution of the resulting
Bquation (the equation of Boussinesq (24)) directly yields the position of the free
surface. However the equation is still non-linear and two-dimensional analytical solu-—
tions have not been obtained. A mumerical approach was presented by Lin (1972} resulting
in a complex finite difference scheme which is efficiently solved using the ADI tech-
nique. - _ o
equation of Boussinesq OT the

There are several methods to linearize either the s
prob-.

free surface boundary condition (51). A linearization technique often applied to-
lems where the change in h is small compared with the total thickness of the a.lqulfer,
Teplaces Kh by the average transmissivity T, resulting in the diffusim;l equation (25)
which is linear in h. The objections to the use of the diffusion equation to saturated-
Unsaturated flow problems result from the following simplifications: _ -
!. the assumptions made to facilitate a mumerical solution (Dupuit-Forchheimer approxi=
mation and linearization), - o ' '
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2. the flow is restricted to the saturated domain,
3. the change in volume of water per unit area per wnit change in head is instantaneous
and constant, :
4. the flux q  is independent of the saturated flow system.
The objections are less severe or disappear for flow in horizontal, thick aquifers in
which the water table is sufficiently deep (say more than 5 m below soil surface) and
where fluctuations in the position of the free water level are small and slow. However,
with transient flow to a gravity well {pumping test) and flow in shallow water-table
aquifers, the above assumptions are seriously violated. Since Theis (1935) derived an
exponentional integral for non-steady flow te a well in a homogeneous, isotropic aquifer
vhich is pumped at a steady rate, Theis' formula has extensively been used to determine
the formation constants (u and T}. It has long been recognized that, as a result of the
rapid drawdown in the vicinity of the well just after pumping has started, deviations
from Theis' non-equilibrium curve occur, According to Walton (1960) the specific dis-
charge at the very carly stages of pumping in an unconfined aquifer is small due to a
delay in yield (slow drainage) and merely results from a compression of the aquifer and
expansion of the water. During the next stage the delayed yield reaches the water table
and the aquifer behaves as a semi-confined aquifer tending to equilibrium conditions. At
late time y approaches a constant value and the time drawdown curve merges with Theis'
non~equilibrium curve.

In this connection Boulton (1955, 1963) introduced the concept of 'delayed yield'.
He assumed that part of the specific yield, u , 1s instantaneous and that a part yg,
resulting from a unit drawdown at time t reaches the water table according to the empir-
ical formula oup exp{- a(t ~ 1)}, where t > t and 1/a is the delay index, an empirical
constant often expressed in minutes or hours. When water is extracted from a well in an -
unconfined aquifer, the fiux q, resulting from the drawdown of the water table is given
by :

_ . % "3h -a(e-r) .
% T W et +uu30f It g (T dr (53)

and the delay in yield causes q = q_(t). Although Boulton's convelution integral is a-
valuable tool for Pumping test evaluation it has received its share of criticism. Boulton
(1963) conceded that the method is only capable of expressing u as a function of time
and does not predict the variation with distance to the well. Since the effects of ver-
tical hydraulic gradients and slow drainage are both Iumped into the empirical coeffi-
cient a, which is *devoid of any apparent physical meaning’ . (Neuman, 1972}, the 'discus-
sion on %hich phenomenon is predominant in the delayed water-table response has not yet
ceased. Moreover it has been shown that the characteristj
also be derived without the assumption of delayed yield (Streltsova
Cooley & Case, 1973). ST
Saturated groundwater flow_ involving shallow water-tables has been extensively
studied with respect to drainage of agricultural. lands. Most of the studies were re-’
stricted to the falling water-table case with or withou

_ i t recharge from rainfall (e.g. .
Edelman, 1947; Kirkham & Gaskell, 1951; Kraijenhoff van de Leur, 1958; Isherwood, 1959;
Maasland, 19593}. Laboratory experiments

carried out by Luthin & Worstell (1956) and
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Vachaud et al. (1973) clearly showed the varisble nature of p. Where with pumping tests
this variability merely results from the rapid drawdown of the free water level, the
specific yield in the shallow water-table case rather depends on the depth of the water
table bhelow surface. For this reason Brutsaert et al. (1961) proposed an approximate
solution which treats u as a function of the elevation of the free water level.

The traditional approach to unsaturated flow considers transport of scil moisture
in the vertical direction only. Most of the papers deal with infiltration intc a homo-
geneous, semi-infinite medium. The unsaturated zone extends from the soil surface to a
depth at which the moisture content may be considered as time-invariant, while the
phreatic surface is assumed at infinite depth.

Papers on unsaturated flow that include a water table, which are particularly of
interest for this study, are much less numerous. Exact analytical solutions have not
been presented. A few approkimate solutions were obtained for the drainage of an ini-
tially saturated soil columm. Gardner (1962) assumed the moisture content to be a linear
function of the hydraulic head and Youngs (1960) and Youngs & Aggelides (1976} assumed
a constant specific yield. Childs & Poulovassilis (1962) have presented a solution to
the shape of a falling water-table moving with a constant velocity. Capillary rise from
a water table has been solved for steady-state sitvations (Wind, 1955; Wesseling, 1957;
Gardner, 1958) or by linearization (Philip, 1966}. The first mmerical sclution to one-
dimensional vertical flow was presented by Klute (1952). Since then many numerical models
for flow in the unsaturated zone have been published, but very few use the water table
as the lower boundary and until 1968 none of these models included interaction with the

underlying saturated zone.
3.2 THE RIGOROUS APPROACH

Although Richards' equation applies to transient flow in a rigid system above as
well as below the water table, the differences in the pature of the flow are reasons.to
treat saturated and unsaturated flow separately. In the_tmsaturated zone the hydraulic
gradient in the horizontal direction is usually a negligible fraction of the gradient in
the vertical direction since the boundary conditions at the soil surface (rﬂiﬂfal? ;-
evaporation) are relatively uniform over large areas. Consequently flow is'pre(.iomm?.ntly
Vertical, often governed by large gradients in the matric pressure in combination with a
low hydraulic conductivity. Below the water table the. soil is saturated and matI_'J.c
Pressure gradients do not exist, while the hydraulic conductivity is 31“’3)’? at 1‘:'5 .
maxinum. In many saturated flow systems the hydraulic gradient in the \ft‘ertlcal dlre;tlmn
may be neglected and flow is predominantly horizontal, governed b}_’ gl.‘anty- Henc;f ‘ et
advantage of a separate treatment is that, for unsaturated flow, 1t 15 often sufficlen
to solve the one-dimensional form of Richards’ equatien, where for saturatec‘l flow. tf;e
relatively simple two-dimensional form of the (linearized) Boussint_asq equa;z :a: fjow
used. A disadvantage is that effects of unsaturated flow on unconfined gro tab: eon !
5 Studied by Kraijenhoff van de Leur (1962) in a scaled granular model canno e
Sidered. Moreover from a fluid dynamic point of view the water table-is an artl S
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boundary and the necessity of a unified approach to saturated-unsaturated flow was
stressed long ago {e.g. Chiids, 1960; Stallman, 1961). There have been a number of
milti~dimensicnal steady-state solutions to saturated-unsaturated flow problems, which
are obtained by analogue models (e.g. Bouwer & Little, 1959) and mmerical methods (e.g.
Reisenauer, 1963; Luthin & Tayloer, 1966; Amerman, 1976). For a transient analysis
Richards' equation can be used or a combination of equations for saturated and unsatu-
rated flow which in some way or another have to be linked. For the simalation of non-
steady flow, viscous analogue models camnot be used because of the non-linear relation-
ships C(p) and k(p). A solution of Richards' equation for saturated—umsaturated £low
systems with an electrical analogue would be extremely difficult and, if ever possible,
very expensive. In the absence of analytical solutions mumerical methods are the only
neans to solve transient saturated-unsaturated flow problems. This approach was first
applied by Rubin (1968), who solved transient drainage of a partly saturated siab of
soil into a ditch, a classical problem, known as the ditch drainage case or falling
water-table case. Rubin used the two-dimensional form of Richards' equation {28) and
expressed the flow problem in the vertical plame in terms of the hydraulic head as

o 2 = L am L aw 5D (542}

The flow system is schematically shown in Fig. 4. The height of the slab is D and the

length 2L, but because of symmetry only half the slab is considered. The origin of the

co-ordinates x and z are assumed in the lower left corner. The slab rests on an imper-

meable base, Initially the water table is at a height z. and equilibrium conditions are

at:smned everywhere in the flow region. It follows for t}l1e initial condition at t =0
at :

¢ =z, 0<x=<L 0<z<D {54b)

For t > 0 the water level in the ditches is lowered to a height z_ and remains constant.
In the absence of infiltration and evaporation the soil surface 3:-: well as the bottom of
;l; :;:bvz::iac;a;l oiimmpd:x;yneable bo:.mdali‘y. From symmetry consideration this is also true

| at x-= L. Since a seepage face is allowed to develop three

%

e S
b=z L— g%
o
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Fig. 4. Sch i i
g ematic presentation and boundary conditions of the falling water-table case-
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types of boundary conditions exist at x = 0. Between the top of the seepage face and the
soil surface the matric pressure is negative and outflow is impossible, hence this part
acts as an impermeable boundary. At the seepage face the matric pressure is atmospheric,
50 the hydraulic head ¢ equals the height z above the impervious base. Below the water
level in the ditch the hydraulic head equals 2, It follows that the boundary conditions
for t > 0 may be formulated as

%%:0 0<x=2L z=0 and z=D (54c)
%’;:0 0<z<h x=1L (54d)
-g—;%=0 z, sz <D x=0 | (54e}
4 =z z, <252, x=10 (54£)
$ =z, 0‘_:252‘w x;{l, ’ (54g)

Difficulties in solving the flow problem (54) do not only arise from its non-linearity.
The governing equation is parabolic in the unsaturated zone and of an elliptical type in
the saturated region, where C{p) = 0. The position of the free surface separating both
regions is time dependent. Moreover, the height of the seepage face is a priori unknown
and constitutes part of the solution. A forward finite difference scheme that determines
the position of the water table explicitly seems to be obvious. Taylor & Luthin (1969}
used an explicit scheme for the unsaturated part of the soil when solving an axisymnetri-
cal flow i)roble:n towards a well that completely penetrateé. the aquifer and discharges at
a constant rate. The boundary conditions are similar to those used by RJ.:I_)in (1968) except
for the outer radius where a constant head is assumed. An additional problem is the water
level in the well which is continucusly adjusted to yield the prescribed discharge.
Application of the explicit finite difference scheme for nodes for whichp < 0 yie%ds
values for ¢ and 4 and is followed by a solution of ¢ for nodes lfnr which p > 0 using
S0R. The exact position of the free surface follows from a linear interpolation bett‘veen
nodes at which p changes sign. The position of the seepage face at the well is t:.ubtamed
from extrapolation of the free surface. The calculations are repeated for an adjusted
water level in ‘the well if the computed outflow differs too mquch from the prescribed
diSCharge, . i

Explicit mmerical methods were not used by other investigators to solve sawrai-:ed-
Wisaturated flow problems, because they require for stability reasons & small mesh size
especially in the unsaturated zome in the vicinity of the well. It was found that the
length of the time step should be small enough to restrict the change in hydraulic head
,during the step to values less than 1 mm. Rubin (1968) and later Vachaud et al. (1975)

Solved the ditch drainage case with an iterative alternating direction implicit pro-

Sedure (ADIPIT) in which the values of k are evaluated at the old time level while C 1s
: and not suitable

time centered. The method is restricted to fiow in homogeneous 5)’5?9“'5 4 ition
for infiltration problems in the presence of a sharp wetting front. The umknown po
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of the seepage face requires an adjustment if after a complete set of iterations the
computed ¢ values indicate an upward or sideward flow away from the seepage zone.
Vachaud/Vauclin et al. (1975) compared their mmerical similation favourably with labo-
ratory experiments. The results indicated that the decline of the water table, the total
volume of cutflow and the duration of the transfer are seriously affected by flow in the
unsaturated zone.

Verma & Brutsaert (1970) tried a mmber of implicit methods (including ADIPIT) to
solve the ditch drainage case. They found that the unknown position of the free surface
and the unknown length of the seepage face rather than the non-linearity of the flow
equation were most critical in causing slow convergence, especially for more realistic
problems in which the wnsaturated Zone was not entirely in or near the capillary fringe.
The implicit scheme they finally adopted is preceded by an explicit step to predict 9 in
the unsaturated region. The finite difference corrector, implicit in ¢, results in a set
of simultaneous linear equations which are solved by Gaussian elimination. Next the
position of the free surface and the o values are compared with values obtained from the
explicit step. If they are found _different, a smaller value of At is used or the length
of the seepage face is adjusted. It is obvious that the use of a direct method to solve
the coefficient matrix reduces the Computation time as compared with iterative methods.
The authors did not indicate the effect of the explicit step on the maximum length of At
to be used. :

A less rigorous approach to the ditch drainage case was Treported by Hornberger et
al. (1969). The implicit finite difference scheme of Remson et al. (1967) was used,
which was solved with a Gauss-Seidel iteration. Non-realistic boundary conditions were
imposed on a small flow system {0.3m x 0.5 m); a constant hydraulic head at the vertical
lateral boundaries, ignoring the development of a seepage face. Small time increments
and lengthy computations were required because no attempt was made to predict the posi-
tion of the free surface. From comparison with models that do not take into account the

unsaturated zone, the authors concluded that unsaturated flow does not have a significant
effect on the position of the water table. Co

ence scheme which is solved with the Gauss-Seidel iterative procedure. Computations at
the well wall only include points above the water level in the well. Positive values
found for p at the well wall are put to zero which yields the ‘Seepage face. The authors .
concluded that the effects of hysteresjs on water-table recoveries are negligible.



the general conclusion is that this effect is more proncunced for rapid drawdown or in
the presence of steep gradients of the free water level.

To investigate the delayed response of the water table in an aquifer that is pumped
at a constant rate, Cooley (1971) developed a finite difference model for axisymmetrical
flow to a well that includes the unsaturated zone and takes into account the compressi-
bility of water and soil in the saturated region. For this purpose the general equation
{13) is rewritten without neglecting possible changes in p and the porosity n as

v+ (pkv$) = = (ons ) (55)

where s, is the degree of water saturation. Expanding the term on.the right of Eqn 55
yields ' :

3s
& = on ¥ an 3p 56
sg (PMs) = en 5 *es gy * NS oy (56)
or
] asw 2 3¢ (57)
5t (ems ) = en == *+ 5.0 gn{c, + ¢ ) 3¢

where the formation compressibility ¢; is defined as

_ 1 dn . 58
cf_ﬁaﬁ . ()

and for the compressibility of the water c,, holds-

[ = .1-. (59}
W e

oy

The specific storage s, is given by

: 60}
5, = pgn(cf + cw) . {
and is defined as the volume of water released from a unit volume of porous medium as a
Tesult of compression of the medium and expansion of the water when the hydraulic head
is lowered one unit. Substituting Eqn 60 into Eqn 57 yields

as
8 39 (61)
3¢ (P0S) = en 5 T eSS, 5t -

With the specific moisture capacity C(p) = de/dp =

(n/pgE) (dS"/dtb) , Eqn 55 may be written

- ' 2t (62)
v« (oKve) = plogC(p) *+ s,5.) 3¢ o
The development of Eqn 62 involves the assumption that the formation compt_'es-‘*lbtl;llt)’ 1:)?
be expressed in terms of fluid pressure rather than effective stress. It 15 fuz-’ e::moma
assuted that the compressibility is constant with time and that with (.iesaturzz;c;: f1 97);)
be neglecteq since its effect is small compared with that of changes 1n 5. 4
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‘used a radial, simplified version of Eqn 62 by neglecting spacial variation of p and
found that for an isotropic, non-homogeneocus medium LSOR was, out of three different
solution techniques, most efficient. The boundary conditions are similar to those used
by Tayloi‘ & Luthin (1969). The seepage face and the head in the well corresponding to a
constant discharge were found by iteration. Underrelaxation often appeared necessary to
maintain stability. It was found that for unconfined flow or when the aquifer is over-
lain by an aquitard, for which analytical solutions exist at late time and early time,. .
the numerical solution converges towards the analytical one with decreasing time step
and mesh sizes,

Neuman (1973) used the same equation as Cooley (1971) but for anisotropic media, so
that X in Eqn 62 represents a tensor. The equation is solved by the Galerkin method in
conjunction with a finite element discretization scheme. The solution of the coefficient
matrix is obtained with an iterative Gaussian elimination technique. After cach iteration
the boundary conditions that involve the seepage face are adjusted if necessary. As the
type of boundary condition is allowed to change during the solution for a single time
increment the mothod is superior to a finite difference technique. With examples that
include the two-dimensional transient Seepage through an carth dam and a layered hill
slope cut by a ditch, Neuman showed an inverted shape of the water table which could not
‘be obtained with the classical free surface approach. The same model including evapo-
ration from the soil and transpiration from the crop is used for fiow in the vertical
plane (Neuman et al., 1975).

A rather complete treatment of three-dimensional transient flow in saturated-unsatu-
rated non-homogeneous porous media was presented by Freeze (1971), The flow equation, '
similar to Eqn 62 is written in tems of the pressure head ¢ (¢ = p/pg) and takes into -
account anisotropy and hysteresis in the Yelations K(p) and 6(p). The finite difference
equations are solved with a vertically oriented LSOR. The scheme is time centered in ¥
and values for K; v, nand s are extrapolated for the first iteration from previous time

steps. It was found that the change in pressure head during a single time increment

should not exceed 10 m, so that the time step during early stages of pumping is re-
stricted to less than 0.01 S.

If convergence cannot be achieved, the step is recalculated
for a smaller value of at. The three-dimensional example comprises groundwater withdrawal
from 2 single well in an aquifer (53 mx 40 m x 6 m), which gives an idea of the size of
problems that can be tackled.

Rovey (1975) applied a three-
of the Arkansag River of South-eas
of Richards’ equation,
ning of the time step’
sional version of the

dimensicnal finite difference model to a 64 km reach
tern Colorado. The model is based on.a linearized fomn
where C(p) and K(p) are evaluated for values of p at the begin-
and are held constant during each time increment. The three-dimen-
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3,3 COMPUTATIONAL DIFFICULTIES

A review of available mmerical solutions to transient multi-dimensional, saturated-
unsaturated flow problems is given in Table 1. Except for the paper by Pikul et al.
(1974}, all of the papers listed use a single equation to model saturated-unsaturated
flow. It can he seen that the size of the flow problems solved is small. The reason is
the non-linearity of the flow equation which does not allow an efficient numerical tech-
nigue to be used. It is well-known that in the presence of a sharp wetting front, the
change in matric pressure can be as much as a few thousands of mbar over a depth of less
than 10 an. But also for capillary rise it is not unusual to find pF values (pF = 1g(-pl)
greater than 4 during a dry summer within 100 cm above the water table. Therefore the
mesh size in the vertical direction must be a few centimetres only, in order not to lose
a significant part of the k(p) and o(p) relations, since almost the full range of these
highly non-linear relations applies to a vertical distance of less than one metre. Now,
if we consider a shallow water-table aquifer with a depth of 20 m and a water table
within 5 m below surface, the number of nodes required in the vertical direction could
be estimated as follows. If the mesh size for the first metre below soil surface is
taken as 5 cm, for the next metre as 10 cam, for the remaining part of the unsaturated
zone as 20 cm and in the saturated zone as ‘1 m, about 60 nodes would b:? required. Freeze
(1971) claimed that the large computer he was using could accommodate 30,000 nodal
points, which restricts the flow region in the horizontal plane to less than 23 x 23
nodes, or a few square kilometres if the horizental mesh size is allowed to be as large
as 100 m. Because of the Testriction in the mesh size most of the papers listed in
Table 1 consider two-dimensional flow systems of a few square metres only.

More serious is the time step restriction imposed upon the finite gifference solu-
tion to obtain convergence. The length of the time step is closely related to the maxi-
. mm change in matric pressure in any of the nodes. In some of the papers listed in
Table 1 the maximum change in pressure for which convergence can be obtained is indi-
cated and appears to be of the order of a few mbar or less. Other investigators report
that the mmber of jterations required to obtain a solution is considerably inc.:reased
for rapidiy changing events. Most of the problems are solved with a variable time 51':ep,
vhich at the.start of the experiment is often less than one second. To avoid excessive
amounts of computer time the conditions of the flow problems are relatively wet; the
dbsolute value of the matric pressure never exceeds a few hundreds of mbar.

Several authors (Verma & Brutsaert, 1970; Guitjens & Luthin, 1971; Freeze, 1971)
Suggested that from similitude considerations the simulation results of a scaled-down
Version of the prototype may be extrapolated to the real system. Breaster et al. {197?) 1
Showed that similitude affects the soil moisture characteristics. A small-scale numerica
model, based on relations for k(p) and 8(p) that apply to the real system, tends to
eXaggerate the effect of the unsaturated zone on the flow in the system. Moreover the
Stale factor for the space co-ordinates is also used to reduce p. It follows that the

: -size mmerical model
Same mumerical difficuities are faced whether a small-scale or real-size

. ) o eionificant change in ©
18 Used since the range in matric pressure that corresponds to @ significan ¢

13 reduced Proportionally.
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Table 1. Review of available numerical soluticns
saturated-unsatyurated flow problems.

to multi-dimensional, transient,

Dimension Type of problem

kubin (1968)
2= '
vertical plane

Ditch drainage
case

Toylor & Luthin. (1963)

2-p Flow to well in

axisymmetrical shallow water—
table aquifer

Hormberger et al. (1369)
2-D Ditch drainage
vertical plane case

Verma & Brutsaert (1970)
2-D bPitch drainage
vertical plane . case

Guitjens & Luthin (1971)

2-D Flow to well
axisymmetrical  (effect of
hysteresis)

Cooley (1871}
2-D
axisymmetrical

Flow to well
(delayed water-
table response)

Freeze (1971)

3-n General

Nevman - (1973/1975)

2-D . Several
vertical plame

Pikyl et al. (1974)

quasi 2-p Several
vertical plane

Wnﬂuﬁmbdbuclin et al. {1375)

2-p ‘Ditch drainage
vertical plane

case
Rovey (1975) _
3-D Stream-aquifer
- 8ystem

Size of
problem

flow

0.3mx0,3m

20mx 1.2 m
0.5 m
3.0mx 3.0m
3.7mx 2.5n

20m x 396 m

53m x 40 m
and 6 m deep

Several

Several

30mx 2.0

6000m x 6000m

and variable
depth

Kumerical approximation

Linearized implieit
finite difference
scheme

Explicit finite differ-
‘ence scheme in unsatu-
rated zone

Linearized implicit
finite difference
scheme

Explicit predictor
followed by implicit
corrector

Implicit finite differ-
ence scheme

Implicit finite differ-
ence scheme

Implicit finite differ-
ence scheme

Implicit Galerkin-type
finite element scheme

Predictor-corrector
technique applied to
Richards as well as
Boussinesq equation

Linearized implicit
finite difference
scheme

Linearized implicit
finite difference
scheme

Solution method

ADIPIT

Gauss—Seidel in
saturated zone

Gauss-5Seidel

Gauss-Seidel
LSOR
Vertically

oriented LSOR

Iterative appli-
cation of Gauss
elimination

" Tridiagonal Al-

gorithm Linkage
pracedure may
require iteratiol .

ADIPIT

Gauss elimina~
tion

34




3.4 ALTERNATIVE SOLUTIONS

In an attempt to find an alternative for the single-equation model to solve field-
size flow problems in shallow water-table aquifers, it should be realized that the solu~
tions presented so far are rather academic. The problems are solved to show the signifi-
cance of the unsaturated zone to groundwater flow and have been chosen such that unsatu-
rated lateral flow is of importance. However, in the field, water gradients are low, the
Dupuit-Forchheimer assumptions are approximately valid in the saturated zone and lateral
unsaturated flow is insignificant compared with lateral saturated flow. These conditions
allow the three-dimensional flow system to be described in terms of vertical flow in the
unsaturated part and horizontal flow in the saturated region. A solution in the vertical
plane to this quasi three-dimensional flow system based on coupled one-dimensional
Richards and Boussinesq equations was presented by Pikul et al. (1974). Their model
first solved the equation of Boussinesq, written as

K2 8 - o B+ g (0 | (63)

by using the predictor-corrector technique of Douglas and Jones, where values for the
specific yield p and the discharge (positive) or recharge (negative) from the unsaturated
zone q, of the previous time step are used. Next, in each of the nodes of the horizontal
mesh, the same technique is applied to solve Richards' equation. The unsaturated zone 1s
assumed to extend from the lower end of the root zone where the flux is prescribed to

the water table where zero pressure exists. The principle of continuity, applied to each
unsaturated column yields q, which is used in Eqn 63 for the next time step. The specific
vield is derived from

u(x,t) =n - 6_(x,t) (64}

where em ‘is (rather arbitrarily} defined as 'the minimum soil moisture content below the
depth from which moisture may be removed directly by evapotranspiration'. The change in
the height of the water table appears to be critical for the determination of the length
of the time step. A large change in the water-table position makes an adjustment of_the-
lower boundary of the unsaturated model desirable after each time step and ma)‘f 1-'equ1re
an iterative solution to both equations to satisfy the internal boundary condition. The
model performs rather poorly when lateral \msaturated £low is of importance. Only when
the water-table movement is relatively small and the length of the unsaturated columms
model more efficient than a single-equation model.

can be taken as a constant, is the
sent state . in the development of computer

.- One could draw the -conclusion that the pre o
technology prohibits the numerical solution to field-size saturated-msat':urat z:b .
Systems, On the other hand one could also state that the mumerical techniques available

to-day ‘are inadequate to solve unsaturated flow efficiently, because the problem of the

'
small mesh size that is required in the unsaturated zone has hot been solved. For the .
h sizes are a hundred or thousand

solution of a field-size problem, the horizontal mes ; dred e he
fold the mesh size in the unsaturated zone in vertical direction. This gives rise
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discrepancy that on the one hand the hydraulic head is calculated with an accuragy of a
few centimetres where on the other hand data are used that represent an 'average' over a
large non-homogeneous area. According to Freeze (1971), complex models are open 1i0 the
charge that their sophistication outruns the available data. However, it is rather a
deficiency of the numerical method that Tequires the sub-surface flow to be calculated
to such a high degree of detail and precision in order to obtain a solution, that the
results are far out of propertion to what is usually wanted in practice. The discrepancy
between the numerical solution and the actual situation in the field is even more severe
close to the soil surface. In particular the validity of Richards' equation for flow in
the root zone may be questioned in the presence of water uptake by the roots, non-capil-
lary pore space, osmotic and temperature gradients, non-continuous wetting phase, water
vapour diffusion, tillage, etc. Moreover, a number of hydrological processes that occur
above the soil surface and greatly affect the sub-surface flow are often poorly de-
scribed, such as evapotranspiration, interception and overland flow. It should also be
Tealized that the small time increments that have to he used require an abundance of
data which are usually not availahle. . :

If the numerical approximation to Richards' equation for the simulation of unsatu-
rated flow is abandoned what alternative is available? In fact there is a wide variety
of possibilities ranging from pure black box analyses to complicated conceptual models
based on the original equations of Darcy and continuity. The choice depends very much

on the type of problem to be solved, the input that is available and the output that. is
wanted. ' '

3.5 SCOPE OF PRESENT STUDY

The objective of this study is the development of a mathematical model to solve .
field-size saturated-unsaturated flow problems in Telation to evapotranspiration from
shallow water-table aquifers. It is assumed that fluctuations in the position of the
water table are small compared with the total saturated thickness of the unconfined
aguifer. The upper boundary for two-dimensional horizontal saturated flow is taken as
a fixed level, just beneath the lowest water-

table elevation occurring in the considered
period. Above this level, which serves as an

interface between the saturated and unsatu-
rated system, flow is assumed in vertical dircction. This results in a quasi .three-dimen-
sional model (see Chapter 5), the structure of which is similar to the one proposed by
Pikul et al. (1974). As a result of this schema
aquifer only occur in the unsaturated zone.
- a model for evapotranspiration. . . '
© ‘Unsaturated flow is simlated in each
which:is defined to describe the saturated
the model for wnsaturated flow Netmann cond

to solve both fluxes in relation to the sub

tization storage changes in the unconfined
At the soil surface the system is linked to

node of the two-dimensional horizontal grid,
System. At the upper and lower boundary of -
itions apply. A linking procedure is required
~System for evapotranspiration and saturated

Evapotranspiration is calculate

d with the formula of Perman (1948}, which has been
adapted to Cropped surfaces,

As the storage of heat in the soil is neglected, estimates
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of evapotranspiration are most accurate if the method is applied to periods of a few
days. Actual evapotranspiration depends on moisture conditions in the unsaturated zone.

Apart from a proper linking procedure to sclve the Neumann conditions, the model
for unsaturated flow should have the following properties.

T. It should compute the change in the position of the free water level for changing
boundary conditions.

2. It sheuld satisfactorily approximate the soil moisture conditions close to the s50il
surface for the calculation of actual evapotranspiration.

3. The model must allow the use of time steps with a length of the order of days.

4. The solution technique must be efficient in terms of computer time and storage re-
qu1rement . .

It should be noted that except in the vicinity of the upper and lower boundary of the
model, it is not necessary for unsaturated flow to be described in detail.

Though a large number of approximate solutions to unsaturated flow problems exist,
none of these has the above mentioned properties. In order to arrive at a model that
solves field-size saturated-unsaturated flow systems in shallow water-table aquifers,

a solution technique for unsaturated flow that meets the above requirements is proposed

and outlined in the next chapter.
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4 Development of a model for unsaturated flow |

4.1 STEADY-STATE RELATIONS

In the same paper in which Richards (1931) derived the general equation for unsatu-
rated flow (28), he proposed a solution to a steady-state situation that includes a water
table. For steady vertical flow the differential form of the continuity equation reduces’

to .
8- | e

where q is the vertical flux and z the vertical co-ordinate direction, both taken 90514
tive upward. Integration of Eqn 65 yields '

4 = q = constant ' ' (696)

which appears to be a trivial result. It follows for the fluxes across the upper and
lower boundary that for steady flow

qs=qw=q (67]

which implies a stationary position of the water table as may be seen from Eqn 42. The
flux q is given by Darcy's law

d=x & (68)

and the hydraulic head is defined as
¢ =plog +z (69}

In view of the analysis to follow, it is convenient to adopt, from this stage orwards,
more practical units for some of the quantities appearing in Eqns 68 and 69. The pressure
P Will be expressed in mbar: It has the advantage that its numerical value is approxi-

mately equal to the pressure head ¥ (cm), often used in literature. If the distance in
each of the co-ordinate directions is expressed in cm,

Substituting Eqn 69 in Eqn 68 yields
o I : : o
T K0 G R vy | (70)
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Separating the variables in Eqn 70 and sclving for z gives

pe- k[ KB g (7
0 q+Km

vhere the reference level is chosen at the stationary phreatic surface at which level
z=0and p = 0.

Richards (1931) used a linear relation between K and p to solve Eqn 71 analytically
for upward flow. Many other empirical K{p) relations have been proposed more recently,
some of which allow an analytical solution to Eqn 71. A review is given by Raats &
Gardner (1971). The relation between p and z for a particular steady flux q is termed
pressure profile z{p,q). By mumerical integration of Eqn 71 pressure profiles can be
calcutated for any given relation between K and p.

Transport of water in the unsaturated zone in an upward direction is called capil-
lary rise. During the first half of this century mamy experiments were carried out to
determine the maximum height of capillary rise for many different types of soil. The
definition of the 'maximm height of capillary rise' was often vague and could refer to
transient, steady or equilibrium conditions. Well-known is a method where tubes filled
with air-dry soil are supplied at the base with water of constant pressure. The maximum
height of capillary rise is reached when the advance of the wetting front is negligible.
At this stage, according to Moore (1939), the sun of the maximm height of capillary rise

~and the pressure corresponding to the 'moisture content of the wetting front' is equal to
zero, The experiment carried out by Shaw & Smith (1927) is an example of the determina-
tion of the maximum height of capillary rise for steady flow conditions. Tubes rangir'lg in
length from 1.2 to 3.0 m, uniformly packed with Yolo sandy loam and Yolo loam are ini-
tially wetted and permanently supplied with water at the base. Capillary rise is measured
for a period of ten months. From the experiment the authors concluded that the maximum
height of capillary rise equals three metres, as for this depth of the water table, evap-
oration from the surface during the considered period is megligible. In the Netherlands
M early comprehensive description of water in the unsaturated zone was presented by
Versluys (1916). The unsaturated zone is divided from the water table upwards inFo a
Capillary zone (fully saturated), a fumicular zone (unsaturated, continuous liqu?d phase)
@d a pendular zone (unsaturated, discontinuous liquid phase). Versluys diStinguJ.she.ad'
between heights of capillary rise and funicular rise. The rather artificial.tnparutlon
of the unsaturated flow region became quite popular and has led many investigators to
deternine heights of rise according to these concepts.

A proper definition of the height of capillary Tise as defined
height above the water table at which a given steady upward flux can
8iven matric pressﬁre at this height. A systematic .application of Eqn 71 todcompu"-e
heights of capillary rise for different values of the flux  was first carried out byl )
King (1955). The analytical solution to Eqn 71 was cbtained with an empirical K(p) rela

tion which may be fornulated as

in Eqn 71 is the
be maintained for a
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K=a(-p™ | -0

where a and n are constants (n = 1.5). Wesseling (1957) used Eqn 72 with n = 2 to compute
from Eqn 71 maximum heights of capillary rise for a range of values of q. The maximm
height for a particular steady flux is found by integrating FEqn 71 from p = { to a value
of p which corresponds with the so-called wilting point or by integrating to a value of

P approaching minus infinity as suggested by Gardner {1958) . For practical purposes the
matric pressure for wilting can be taken equal to -16000 mbar or pF 4.2, where pF = 1g{-p).
Given the relation between moisture content and matric pressure 8(p), usually termed the
soil moisture characteristic or pF-curve, pressure profiles are easily transformed into
moisture profiles z(8,q}. '

Rijtema (1969) calculated moisture profiles for a great number of soils using data
available from literature. From these data the X(p) relation and seoil moisture charac-
teristic of medium fine sand are presented in Figs Sa and 5b, respectively. Integration
of Eqn 71 for this K(p} relation yields the pressure profiles presented in Fig. 5c.

Van der Molen (1972) showed that with' simple integration techniques acceptable results
may be obtained. For g < 0 (steady percolation) the profiles have a distinct ‘vertical
shape, merging with the equilibrium profile at the lower end. For the development of a
model for unsaturated flow it is convenient to schematize these profiles into a vertical
part and into a part that coincides with the equilibrium profile as shown in Fig. 5c. =
Moisture profiles computed from the pressure profiles with the aid of the soil moisture’
characteristic in Fig. 5b are presented in Fig. 5d. The soil physical data of medium fine
sand given in the Figs 5a and 5b and the derived steady-state profiles (Figs 5¢ and 5d)°
will be used throughout this chapter to illustrate calculation techniques. The symbols
that will be used are explained in Fig. 6. The lower boundary of the unsaturated zone is
chosen as a fixed level just below the lowest water-table depth occurring in the period’
to be considered, This level S€rves as an interface between the saturated and unsatu--
rated sub-system. The vertical co-ordinate ¢ equals zero at the lower boundary and is
taken as positive in an upward direction. The upper layer of the unsaturated zone in
which most of the roots are present is termed root zone or effective root zone and the
remaining part of the unsaturated zone is called subscil. For convenience the entire

unsaturated zone is taken as homogeneous although without appreciable difficulties most

calculation procedures may be used for situations where different soil physical data
apply to different layers.

The depth of the Toot zone is constant and equals D while
the interface between the root zone and the subsoil is at a'height ¢__ . Flow i; assumed
to be in the vértical direction only and is taken to be positive upw;:ds.' The flux across
the interface between the root zone and ‘the subsoil at z = ¢ is denoted by q__ and the
-f.lm‘c across the upper and lower boundary by q. and q, respe;ts:ively.- Figure 6 ;Iiows an
equilibrium distribution of soil moisture for a depth w of the phreatic level below sur-
face. 'Fhe s0il moisture distribution corresponds to the moisture profile for q = 0 as
shown in Fig. 5(31. where 8 is given as a function of the height 'z above the water table.
'ihejeiar:e co-:rdmate system- is indicated in Fig. 6, while it should be noted that the

0T z = 0 (the phreatic level) changes with time, depending on the value for zrs}
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rated flow system, :

the distance hetween the lower side of the root zone and the water table. At the phreatic
level p = 0 and at the height ¢ = L, the matric pressure is denoted by P,.+ De Laat
{1976) showed that for a moving water-table 'saturation deficits® may be used to facil-
itate calculation techniques. The saturation deficit of the unsaturated zone S, is the
amount of water needed to completely saturate the soil and equals the volume of air
present between the lower boundary and the soil surface. The saturation deficit of the
subseil S may be written as

9

Irs

Sg= J  In-e(ld (73a)
o N ;

0 for 0 <z < Tpg ™

or, since n - 8(z) Z..
grs . . - L
5= [ In-e(0)ld : (73b)
rs %rs

Substituting for ¢ = z + (Crs - zrs) it follows that z = 0 for L= g ™ Z.. and z =:er
for ¢ = Srg? whence S : :

]

s

S;= /| In-e@ldz - ' ; : (730)
0 :

which is an expression for S in a moving co-

ordinate system. The saturation deficit of
the root zone S may be wrltten as

ch+Dr

N N N T ) & L (74)
‘ rst . . . ' .

or, applying the same substitution for t as above
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s = f [n - 8(z)ldz (74b)

And it follows for the saturation deficit of the entire unsaturated zone, Su =8 et Ss.
4.2 PSEUDQ STEADY-STATE APPROACH

Wesseling {1957) used moisture profiles to calculate the maximm amount of soil
water that is available for crop growth. The procedure may be described as follows. At
the beginning of the growing season equilibrium conditions are assumed. The soil mois-
ture distribution equals the moisture profile for q = 0 and is indicated by the broken
line in Fig. 7 for an initial depth of the water table w = 100 cm. Based on data obtained
by Verhoeven (1953) for a light clay soil during the extremely dry sunmer of 1847,
Wesseling assumed that the moisture content at the surface at the end of the growing
season corresponds to pF 4.2 and increases linearly with depth in the root zone. For
small rooting depths, as in the example in Fig. 7 where D= 30 cm, the moisture dis-
tribution is assumed uniform and the matric pressure at @ depth b, likewise equals
PF 4.2, The maximm amount of soil moisture that is available from the subscil by cap-
illary rise to the root zone is found by assuming steady flow conditions at the end of
the growing season between the lower side of the root.zone and the phreatic level. Pres-
sure profiles are used to determine the magnitude of the steady flow q for a given final
depth of the water table, For instance, if at the end of the growing season w = 120 cm,
the matric pressure at a height z = w ~ b, = 90 cm equals pF 4.2 and from interpolation
in Fig. Sc it is found that § = 0.125 cn+d™', The area between the initial and final
moisture distribution in the region below the root zone may be integrated mmerically or
graphically to yield .e.Ss = 4,6 cm, which is the maximum amount available during the

Fig. 7. Initial (broken line) and final moisture
distributions for different de?ths of the water
table w at the end of the growing season.
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growing season by capillary rise from the subsoil. If this procedure is applied to a
number of water-table depths (as shown in Fig. 7) a relation is found between the final
depth of the water table w and the maximum amount of water available from the subsoil

45 _, which relation 85,(w) is shown in Fig. 8. Instead of ope Telation, Wesseling (1957)
computed a family of curves each of which applies to a different initial water-table
depth. Integrating the area between the initial and final moisture distributions in the
raot zone yields ASr. The total maximm amount of soil water ASu available for the crop-
during the growing season for a given depth w of the water table at the end of the season
is found as AS | = S, + 85 (w). Wesseling (1957) did not mention the flux across the

lower boundary q,: but from the procedure above it is obvious that he assumed q, to be
equal to zero. : :

sensitivity of three types of soil in relation to the depth of the water table. In order:
to calculate maximm amounts of moisture available for Crop growth during periods of 30,
60, 90 and 120 days assunptions were made about rates of capillary rise. A steady flux
q, from below the Stationary water-table was taken into account, R

form and corresponds to pF 4.2, except for the lower 10 am where pF 3 is assumed. A

Succession of steady-state flgy situations is used to compute, step by step, the maximum
amount of soil moisture available from the subsoil as a functi. me.
water released between two successive steady-
between the Trespective moisture brofiles afte

on of time. The amount of :
states, 48 is found by integrating the area
r which the time it takes for this amount to
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be transported, At is found from the continuity equation applied to the subsoil

88, = ot(a,, - q) (75

Disregarding the fact that the boundary conditions differ slightly from the conditions
applied by Wesseling (1957), Fig. 7 is used to elucidate the calculation procedure. For
the first step AS_ is found by integrating the area between the initial equilibrium curve
and the moisture proflle for q = 0,125 cmed” I yhich yields aS_ = 4.6 cm. Since q,, equals
zero, the total amount AS_ is transported to the root zone w1th a rate of at least

0.125 amed”!, If it is assumed that ¢, = 0.2 cm- a7 , it follows from Egn 75 that

= 23 d. Hence, the amount avallable from the subsoil after 23 d equals Q. x At =

4.6 cm. Integration of the area in Fig. 7 enclosed by the moisture profiles for g = 0.125
and 0.06 em-d”' yields AS_ = 3.9 cm for which step an average flux q__ = 0.0925 cned
applies. Next the length of this step is calculated from Eqn 75 which yields at = 42 d.
It follows that after t = 23 + 42 = 65 d an amount equal to 4.6 + 42 = 0.0925 = 8,5 cm
has become available for the crop from the subseil., Continuation of the calculation
yields a relation between the amount available from the subsoil as a function of time.
In Fig. 9 the result is shown for a more detailed calculation, using smaller steps.
Interpolation for t = 100 d and adding the amount available from the root zone gives the
total amount available for the crop during hundred days. Although a constant matric
" pressure is assumed at the lower side of the root zone and the flux across the lower
boundary is not considered, the calculation procedure may be regarded as a first pseudo
steady-state solution to capillary rise, yielding the drawdown of the water table and
the change in moisture distribution in the subsoil as a function of time.

Feddes (1971) assumed a sudden drop in matric pressure at the lower side of the
root zone from the initial equilibrium value to pF 4.2 and used the method developed by
Wesseling (1957) to compute S, (w), similar tc Fig. 8. The procedure to calculate the

amount of moisture

available from

the subsoil

(cm)
12~

10+

‘0 2]0 4I0 810 810 111'.!0 ' Fig.. 9. Amount of moisture available from the
' tid) subsoil as a function of time.
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drawdown of the water table due to capillary rise as a function of time allows the
phreatic level to be lowered by small steps. For each step Aw the amount released from
the subseil is obtained from the relation Ass (w) and the corresponding average flux q is
interpolated in Fig. 5c for z equal to the average depth of the water table below the
root zome and the corresponding matric pressure equal to pF 4.2, The amount released
divided by the average flux yields the time for a drawdown of Aw cm.

Instead of a fixed matric pressure at the lower side of the root .zone, Rijtema (1971}
used a calculation procedure for which 4., is held constant as long as possible. It is
assumed that flow in the root zone is governed by water uptake of the roots and that the
moisture distribution in the root zone equals at all times the equilibrium distribution
{d¢/dz = 0). Water may be extracted from ths root zene until PF 4.2 is reached. The cal-
culation procedure is based on the principle that for the assumed equilibrium conditions
in the root zone and steady flow conditions in the subsoil, the moisture distribution is
fully determined for any given set of values for a and w. This is shown for the root zone-

extending to a depth Dr =30 cm, q= 0.7 aned’} and w = 120 cm as follows. The moisture
distribution between the water table and the root zone equals the moisture profile for

q=0.1cmd. At a height z = 90 cm above the water table and q = 0.1 an-d! it follows
from Fig. 5c that the matric pressure equals ~500 mbar, which is the pressure at the

_ lower side of the root zone Prge As a result of the assumption that in the root zone
d¢/dz = 0, the matric pressure at the surface equals -530 mbar and the moisture distri-
bution corresponds to the equilibrium moisture profile for p ranging from -500 to -530
mbar, Figure 10 shows the moisture distribution for g = 0.1 an-d™! and w = 120 am to-
gether with an equilibrium distribution for w = 100 cm. With this calculation procedure
the water table can be lowered step by step. If at time t = 0 equilibrium conditions are
assumed for w = 100 cm and for the first step &w = 20 cm while Q. = q=20.1 cmed”! , the
situation as depicted in Fig. 10 occurs. Integrating the increase of saturation deficits
in the root zone and the subsoil yields A5, = 3.6 am and 45, = 4.1 am. If for convenience
q, is assumed constant and equal to -0.05 an-d”! it follows from Eqn 75 that At =
Ass/(qrs - q,) = 4.1/(0.1 + 0.05) = 27.3 d and the amount available for the crop may be

Fig. 10. Equilibrium soil moisture distribution
(broken line) and the steady-state .situation for

T = 0.1 cmd”) after a drawdown of the water table .’
of 20 cnm. ‘
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amount of moisture
available from the
entire unsaturated zone
{cm) '
10+

T T T 1 Fig. 11. Total amount of moisture available from
0 10 20 30 40 the entire unsaturated zone as a functionm of time
t(d) assuming q,., = § = 0.1 cmed .

calculated as AS_+q x At = 2.6 + 0.1 x 27.3 = 6,3 an. Continuation of the calcula-
tions for successive steps during which the water table is lowered by aw ¢ yields the
total amount (root zome and subsoil) available for the crop as a function of time as
shown in Fig. 11. After the water table has been 1owered to a depth w = 125 cm, the maxi-
mm height of capillary rise (z = 95 am) is reached for q = 0.1 med”! {as may be seen
from Fig. 5c) and the matric pressure at the lower side of the root zone has dropped to
pF 4.2. From this stage onwards the calculations are continued similar to the procedure
described by Feddes (1971). Rijtema (1971) used an empirical relation between the depih
of the water table and the flux across the lower boundary to determine the average flux
q,, for each step aw. '

The above calculation procedure yields the flux across the surface q_ as a function
of time for a given initial value for  and the assumption that g is constant until the
pressure at the lower side of the root zone equals pF 4.2. A trial and error procedure
is used to find the initial value for q such that the computed value for q equals a
given extraction rate from the root zone. As initially there is no moisture deficit this
extraction rate equals potential evapotranspiration minus rainfall.

De Laat (1976) used a constant value for the length of the time increment At and
applied the continuity equation for the subsoil (75} in combination with the continuity
equation for the root zone, written as . :

84S = at(a, - q,4) (76)_

to solve the steady-state situation of capillary rise for given values of the flux across
After Rijtema (1971), equilibrium conditions are assumed

the upper and lower boundaries.
-pgdz). This assumption allows the

in the Toot zone at all times (d¢/dz = 0 so that dp =
expression for S given by Eqn 74b to be written in temms of p. At a height z = Zre the
pressure p = p__, so that the saturation deficit §_may be calculated as



prs-pgDr
s =-L g fn - 8(p)ldp _ (77)

To facilitate the calculation procedure, S, is computed for a mmber of values for P.g
to yieid the saturation deficit curve for the root zone, Sr{prs). This relation is shown
in Fig. 5g (lower curve) for the scil moisture characteristic 8(p) given in Fig. 5b and
a depth of the root zone Dr = 30 cm, The saturation deficit of the subsoil S, for a par-
ticular steady flux § is found from

z
r

s
S5, = [ In-e(z,q)ldz ' (78)
o .

where the level z = 0 is chosen at the phreatic level which is situated at a depth s
below the root zone. The moving z co-ordinate system is used to calculate SE for a number
of water-table depths z,.s t0 set up a relation between S, and Z,4+ This procedure may be
carried out for any value of the flux g to yield a relation S.(z_.»q) which is shown in
Fig. 5e. With the aid of pressure profiles z(p,), the relation S,(z_,,q) is transformed
into saturation deficit curves for the subsail § s ,q)} which are presented in Fig. 5f.
It shows that for the vertical part of the percolation profiles where z is not defined
for given values of p and §, the saturation deficit § s 15 also undefined. A numerical
approach to the computation of saturation deficit curves for a {heterogeneous) subsoil
is discussed in Appendix A.

Since both S and S_ can be written as a function of P, » the saturation deficit of
the entire unsaturated zone S, is for any steady flux q computed from

S, (Pre® = 5.(p.,) + 5, (0 Q) - - (9

Saturation deficit curves for the entire unsaturated zone Su(prs,_) including a depth of
the root zone D_ = 30 om are shown in Fig. 5g. Finally the saturation deficit curves

Su{prsj »4) are combined with the pressure profiles z(p,q) to yield the relation S (z
which is presented in Fig. Sh. :

)
- The transient process of capillary rise due to water extraction from the root zone
1s approached by a sequence of steady-state situations. The calculation procedure solves
for each time step At the steady-state profiles for a given flux across the upper and

lower b . 8i
T boundary. Since §,(p, ) and S.(p,,) are related by the pressure p,.» Fig. 5g

rovid i q i
provides & relaticn between S, S_ q so that, given values for 5, and S_, the steady-

state is fully determined, For example, for S,=18.8 cmand S_ = 7.5 cm it may be seen
f . . . - o _i r .
Srcnin ::;gs 5g that_q 0.020 cm_cli and Prg = -150 mbar. Interpolation in Fig. Sh for

- S-S Omand q = 0.02 amd” ' yields the depth of the water table below the root zone
as z =106 cm.

0 i . i .
I‘T T t}'le‘calculatlon of the steady-state situation for capillary rise at time n+}
for given initial values s

n tar .
e oo il values and S , and boundary conditions q‘sl+i and q:+i that apply over
g e time increment At, the following scheme is used. '
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o+ .
1. Calculate S for the given boundary flux conditions from the water balance equation

sl = s, + at(q™*} - q:+i) ' (80)

u s

z. Thenfclelations Su{prs,a and S_(p, ) may be combined to give Sr(ﬁ,Su] , so that for
§,= 8, there exists a unique relation between S;J_'l and .

3. The water balance equation for the root zome is written as

n+l _ .0 n+j n+}
Sr " Sr * At(qs " s ) (&1
Assuming that q:? = aﬂ” Eqn 81 provides another relation between S:}H and ﬁnﬂ . Both
relations are used to solve graphically or by mmerical iteration S:H and ﬁnﬂ .
~n+1

4, 'Ihi:;:ater-l:?ble depth z__ is found from interpeolation in Ss(zrs,'i) forg=9"" and
S, =S, -8 .

In the original scheme {de Laat, 1976) the saturation deficit 5 at time n+} is used
to compute from the steady-state profiles the relation between S;H and ﬁm&. The rela-
tion from the water balance equation is written as S'?* =50+ ir:\t:(qg+£ - q:__l;i). Assuming
that the average flux during the time increment across the interface root zone - subsoil
equals the flux corresponding to the average steady-state situation (qzzi = Em ), the’
solution applies from a numerical point of view correctly at time n+}. The use of average
values for the saturation deficits S and S, will only yield an average value for q or
q . if the system is linear. The unsaturated flow process, however, is non-linear and it
is found that this approach may cause the solution to be inconsistent. For example the
solution for STi and q?? may result in a value for S;f” which is larger than the maxi-
H_UH possible saturation deficit in the root zone. Therefore the relation between S and
q is in the above scheme evaluated from the steady-state profiles for §, at time n+1. It
may easily be shown by decreasing the length of the time increment that this approach
does not significantly affect the simulation results. The assumption in the above scheme
that CII;;’ = 3! introduces uncertainty about the time at which the calculated steady-
state applies. Therefore the calculated saturation deficits are defined to apply at time
n*1 as well as the corresponding flux g. The calculated value for q . applies at time n+i
and other parameters, such as z.. and p_, may be taken at time n+} or at time n+l de-
pending on the time at which the initial value is specified (n-i or n, respectively).

As a numerical exanple the following initial situation is assumed: S\ = 15.8 cm and

st =7 : s
= 7.4 cm. Other parameters corresponding to the initial steady-

r
obtained from Fig. 5. Interpolation in Fig. 58 for the given value of the saturation

deficits yields E[n = .06 c.rn-d"l and pt;s = =140 mbar. The initial depth of the wateT

tahle below the root zone is interpolated from Fig. sh for 5, = 15.8 am and q = 0.06

ad”' to yield z0, = 91.5 . Consequently w" = 2y, + D =91.5+ 30 = 121.5 cm. The
- 10 d are q2*} = 0.24

boundary conditions that apply for the next time increment At
an-d”! and qzﬂ - -0.06 cm-d”'. For a solution the above scheme is applied as follows.
entire unsaturated zone is calculated from the water

= 15.8 + 10 x (0.24 + 0.06) = 18.8 am.

= 18.8 cm. To elucidate the

state situation may be

1. The saturation deficit of the
balance equation (80) to yield o'
2. Figure 5g is used to compute the relation S_(g,S,) for 5
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construction of the relation between S_ and q an example is given in Fig. 5g. It shows
for §_ = 18.8 cm that S_ = 7.5 am for q = 0.02 ened”).

3. The relation between S and q resulting from the water balance equation (81) may be
written as S_ = 7.4 + 10 x (0.24 - Q. Both relations between S_ and q are shown in
Fig. 12 and 1t appears graphically that S™' = 9.0 cm and q & = 0.08 amed”t.

4, Interpolatmn in Fig. 5e for S = SEH - S:__”l =18.8 - 9.0=9.8 cmand q = 0.08
an-d”? yields zn+1 95.5 am. It follcws that the water table during this time step
dropped from 121 5 cm to 125.5 cm below surface. The pressure at the lower side of the
root zone is found from Fig. 5¢ for §_ = 9.0 cm as pn+] = -900 mbar. The soil moisture

distributions at the beginning and at the end of the time increment are given in Fig. 13.

S, (cm)
10 -

J | Y T T T T
0 001 002 003 004 005 006 007 008 048 010 011 OJ2
_ G(cm-d-")
Fig. 12. The relations between S, and
q for capillary rise.
Curvea.S('“,S)forS =188cm. Curve b: § p =74+ 10 x (0,24 - Q)

. 0
0 o0 020 030

=140 : Fig. 13. The ln1t1a1 (broken line) and final soil
wlcm) _ ?:;iture distribution for the example given in the
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If the same boundary conditions apply for subsequent time steps, the situation
arises that the amount of water available from the root zone js exhausted and the rate
of capillary rise from the subsoil is not sufficient to maintain the upper boundary flux
condition. Consequently the flux q  must be reduced. The calculation procedure to compute
the reduced or real surface flux q“ is similar to that described by Feddes (1971).
Assume at time n the following initial situation: S 18 8 cm and S, = 9.0 cm. Figure 5g
shows that this situation corresponds with q=0. 08 an-d” and P = —900 mbar. For |
at = 10 d and the same boundary conditions as used above (q nth 0 24 and qw = -0,06
caned” ] it follows that S“+i = 18.8 + 10 x (0.24 +.0.06) = 21. 8 cm. From Fig. 5g it is
seen that for 5, F 21.8 cm and for the maximm value for the matrlc pressure (pF 4.2)
the maximm possible rate of capillary rise equals 0.07 cm-d . The relations 5 (_ ,S )
for§ =21.8 cmand S = 9.0+ 10 x (0.24 - q) resulting from the water balance equa-
tion (81) are plotted in Fig. 14, which shows that a solution cannot be found for
q < 0.07 amed ! The maximum amount to be extracted across the upper boundary during
time step n+1 equals the amount available from the root zone (2% - 57 = 9.8 - 9.0 =
0.8 cm) and the amount that is made available by caplllary rise from the subsoil. The
initial saturation deficit of the subsoil Sg - sl -5]=18.8-9.0= 9.8 an. To compute
the amount that is made available from the sub5011 by caplllary rise for 10 days, the
initial value for S is increased by small steps. The calculations carried out for the
present numerical exa.mple are presented in Table 2. For each step the maximm rate of

capillary rise q°°F is found from Fig. SF and the time Tequired for each step (Column 6)

is found from the water balance equation for the subsoil as AS ,/ (q qw) with

Sr.(cm) . .

10 5

for- qse < Gg.

8

Glemd™ 1) Cutrve b: 5.

Fig. 14. Relations between 8, and §

0 001 002 00 o.oqabs 006 u07' cuve a1 S,(@.8,) for Sy = 21.8 cd
’ 1'--sao °T 8 0.24 - W
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re
Table 2. An example for the calculation of the reduced upper boundary flux 9, (see text),

{1) (2) (3) (4) (5) (6) (7) (8)
atep 8 48 Pl Emax_qw time total amount avail-
number 8 8 -1 -1 time able from

(em) (cm) (emed ) (em+d™") ) (d) subsoil (cm)
9,80 0.0

| 10,12 0.32 0.10 0.16 2.0 2.0 0.20

2 10.85 0.73 0.09 0.15 4.9 6.9 0.44

3 11.29 0.44 0.08 3.1 10.0 0.25

Uy " 9%, The amount that is made available by capillary rise from the subsoil
(Colum 8) is found by multiplying the required time for each step (Column 6) by the
maximem rate of €apillary rise {Colum 4). Addition of the values in Colum 8 yields
0.89 cm, which amoun together with the 0.80 cm available from the root zome comprises
9, * at. Hence, the reduced boundary flux for this time increment, q®° =

(0.89 + 0.80)/10 = 0.17 amed™!, The saturation deficit of the unsaturated zone is re-
calculated as §™! x4 o, 10 x (0.17 + 0.06) = 21.1 cm and the saturation deficit of
the root zone S:H Is set equal to its maximam value,

4.3 ANALYSIS OF THE PSEUDO STEADY-STATE APPROACH

psewdo steady-state Approach depends
conditions, the initial situatiop and the length of the time increment.

in Fig. 15a. The solution is based on the concept that

the at‘:tual moisture coprent distribution can be approached by a moisture profile corre-
sponding to a steady £, Situation for which q = 9.5+ The actual situation is unsteady
from essentially zero at the water table to 0.1 cm-d™! at the upper

- properly o istuf'e pf‘ofile for g = 0.1 an-d”™!, the actual situ?tion
o o ﬂm":achet.i by a combination of ar_: infinite number of moisture profiles
panding s which range fram 0,1 cmed™! gt the top to zero flux at the lower
boundary. However the moisture profile corresponding to the upper boundary flux is a fair
dpproximation of the Mon-steady situatien because the differences between moisture pro-
{‘03? the upper boundary where the flux approaches the true steady-state.
100 the actual flux incTeasingly deviates from the assumed steady flux
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Fig, 15. Steady-state soil moisture distributions, showing the difference in saturation
dgficit (shaded area) for an equilibrium gituation (broken line) and {a) steady capillary
rise ( = 0.1 cm-d~1), (b) steady percolation (@ = ~1.0 cmed™ ).

q but the difference between the steady moisture profile and the non-steady soil molsture
distribution decreases continuously and ultimately vanishes campletely at the water table.
It is this phenomenon which enables the use of the concept of a succession of steady-
states to approach the non-steady process of capillary rise. The validity of the concept
improves if (i) the length of the time increment is large, (ii) q,, changes slowly in
time and (iii) the difference in magnitude of the boundary flux conditions is small.

(i) Length of time increment

Unlike the mumerical approach to Richards' equation for solving one-dimensional
transient unsaturated flow (Freeze, 1969), the pseudo steady-state approach requires
large values for At. The solution may even become inconsistent if the length of the time
increment is taken smaller than the characteristic time T. The characteristic time is the
approximate 1ag between the instantaneous change in the upper boundary flux condition and
the response of the water table. Given a change in the upper boundary flux from q': . °
q'::', the characteristic time equals the ratio of the amount of water to be removed to
reach the steady-state soil moisture distribution corresponding to q':,:' (assuming a
stationary position of the water table) and 80, For the example used above, the shaded
area in Fig. 15a is the amount of water 10 be removed to reach the steady-state resulting
from &q . = 0.1 cm-d”! while the position of the water table remains unchanged. This
amxmt equals 0.9 cm, hence v = 0.9/0.1 =9 days. The response of the water table found
with the pseudo steady-state approach in relation to the length of the time increment
(Fig. 16a) shows a rise of the phreatic level for ot < 7. This is physically impossible
for capillary rise in combination with a lower boundary flux equal to zero, The figure
further shows that the Tesponse to an instantancous change (st + 0} is limited 10 2 rise
of 3.3 om.

A similar inconsistency in the solution of the water-table depth arises with perco-
lation when At < t. The area shaded in Fig. 15b shows the amount of water to be refilled
(85, = -1.2 cm) if the initial equilibrium situation is followed by steady percolation
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Fig. 16. Response of the water-table depth Az, in relation to the length of tgzntlsitu-
increment At resulting from the pseudo steady-state app¥oacy for the corres$on g v
ations in Fig, 15. Negative values of 4z, indicate a rise in the water table.

[qrS = -1.0 cm-d_lJ. Figure 16b shows that the use of the pseudo steady-state approach
for a situation with At < T=-1.2/-1.0=1.2 4 vields a drawdown of the water table (as-
slmﬁj1g q, = 0). The relations shown in Fig. 16 depend very much on the initial situation.
This may be seen from Fig. Se, which has been used to derive these relations.

(ii) Rate of change in Qg ' o S

Application of the pseudo steady-state approach to situations for which !qrs] de- .
Creases is questionable as the characteristic time 1 is negative. A decrease in the rate
of capillary rise definitely yields a drawdown of the water table {assuming q, = 0) even,
for very small values of 4t. However during periods with evaporation excess l(qS > 0), the
change in Uy is small as the maximm value

of g, is limited to the maximum evaporation .
rate. Moreover the root zome acts as a buffe

T while the value of q,, is restricted by the
depth of the falling water-table, If g period with capillary rise is followed by rainfall
excess (qs < 0), the change in the value of Qg
the maximm infiltration rate while q. b
Moreover the buffering effect of the Toot
relatively large drawdown may be calculate
applied to flow situations where, due to rainfall excess

may be large as qg is now limited only to
ecomes Independent of the water-table depth.
zone decreases due to hysteresis. Therefore 4

- Obvicusly the actual flow situation is highly
non-steady and the present pseudo steady-state procedure is not suitable to solve this .
“type of flow problem.

an



(iii) Influence of boundary conditions ‘

The approximate nature of the pseudo steady-state approach (as explained earlier for
the situation that q_ = 0} improves if the lower boundary flux q is positive, even with
steady percolation (q]rs < 0). For the latter situation the upward flux across the lower
boundary affects the characteristic time favourably while the zero flow conditions occur-
ring somewhere between the upper boundary and the water table coincide with the lower
(equilibrium) part of the percolation profile. However for relatively large negative
values of the flux across the lower boundary the position of the water table is dominated
by the shape of the percolation profile prevailing in the lower part of the subsoil
rather than the moisture profile for capillary rise. Assuming zero flux conditiens at the
upper boundary the pseudo steady-state procedure yields an equilibrium soil moisture
distribution regardless of the magnitude of the flux across the lower boundary. For deep
water-tables the solution is equivalent to the situation shown in Fig. 2. Consequently
the same chjections raised against the use of a constant storage coefficient to solve
saturated groundwater flow problems apply to the use of the pseudo.steady-state procedure
when there are large negative values of the flux across the lower boundary.

In conclusion, the pseudo steady-state procedure may only be applied to periods with
evaporation excess (the inconsistency as discussed under (i) is usually small for capil-
lary rise) and in combination with a lower boundary flux condition which is either posi-
tive or small in the dowmward direction. In order to adapt the pseudo steady-state pro-
cedure for general use, new concepts have to be jntroduced to remove the existing in-
consistencies and to treat periods with rainfall excess after @ situation with capillary
rise., For a relatively large lower boundary flux in the downward direction, a splution
of the position of the water table cannot be found with the aid of a moisture profile

corresponding to the flux across the upper boundary. Therefore it is proposed that the

pseudo steady-state approach is applied to both poundary flux conditions separately. The
ition (termed upper or lower boundary

solutions for the upper and lower boundary flux cond
solution) finally result in a combined pseudo steady-state procedure.

4.4 UPPER BOUNDARY SOLUTION

¢.4.1 Percolation

The calculation scheme for capillary Tise (pafge 55} reduces the pseudo steady-state
procedure to a problem of two relations and two unknowns (Fig. 12). The first relation
$.@@ S ) derived from the steady-state profiles, is in fact based on Darcy's law and the
second relation between S_ and g is merely an equation of contimuity, based on the water
balance for the Toot zome (Eqn 81). As both relations are equally well set up for nega-
tive values of g the scheme may also be used for percolation. When computing the relation
5.(q,8 ) for a given S value, it should be noted, hawever, that as a 1-‘esu_1t of the )
schematization of the pressure profiles (Fig. 5c) into a strictly vertical part and into

a part that coincides with the equilibrium profile, 5, does not change over a cgrtain
range of negative q values. For example, if S, = 16.1 cm it may be seen from Fig. 5g that



for -0.03 cq <0 aned™! the value of P, and hence of 5, is constant and equal to 6.5 cn
{see PQ in Fig. 17). Qutside this range of q values for which Sr is constant the relation
between S_ and q is, unlike for the situation of capillary rise, independent of S, The
entire (independent) relation (the Curve CPR in Fig. 17) is computed from a combination
of Sr(prsJ and q(p) with p = P, The latter relation is equal to -K(p}, as for steady
percolation it follows from Egqn 71 that q = -K for large water-table depths (z + », and
thus Su + @),

For a numerical example consider the following initial equilibrium situation at time
n: S) = 18.5 cn, S; = 6.8 cm and z,, = 110 am. If for the next time increment {at =14)
the following boundary conditions apply: q:"’% =-2.4 cned”! and q:d =0 cm-d-l, the
total saturation deficit S'*' = 18.5 - 2.4 = 16.1 an. For this 8, value S,(q,S) is
bresented in Fig. 17, Curve a (OPQ). The other relation between S, and q may be written
as 5 =S7+ At(q:J'i -q) = 4.4 - q and the solution, obtained graphically from Fig. 17
yields @ = -0.5 cned™! ang s = 4.9 cm. As explained earlier, the solution to the
position of the water table is inconsistent if At < 1. The characteristic time may be
found from Fig. Se. For 2.5 = 110 cm, the change in saturation deficit for q changing
from 0.0 to -0.5 an-d”! is read as 88 = -1.9 o, Consequexﬁ:ly T= ASS/Aqrs = =1.9/-0.5 =
3.8 d. Since the length of the time Step used is one day only, the solution to the posi-
tion of the water table yields a large drawdown (for §_ = 5™ _ go*1 _ 151 _ 4.9 =
1.2 cmand § = -0.5 anrd™ it is found from Fig. Se that z:S =121 am).

From a computational point of view, the best Procedure to remove this inconsistency
in the solutien of the phreatic level is the assumption of an equilibrium profile in the

Sylem)
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: §lemd™)
Fig. 17. Relation between §,. and J for percolation, - a -
Curve a: 5:(@,8,) for Sy = 16.1 cm.(OPQ) ang Sy * = (OPR). Curve p: Sp = 4.4 - §.
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subsoil. Thus with percolation the curve for q = 0 in Fig. 5e is always used to solve z__
for a given 5_ value. It may be seen from Fig. e that this asswiption is approximately
correct for shallow water-tables or low percolation rates. For decp water-tables the
results are expected to be poor. However, it was found in this study that deep water-
tables are usually computed by the model for the lower boundary solution {Section 4.5).
Therefore, the water-table depth is, with percolation, always solved from the equilibrium

curve in Fig. Se. For the above example it is found for s = 11.2 cmand = 0 that

n+l _
. = 108 cm.

It should be noted that the value found for the percolation rate should not exceed

the saturated hydraulic conductivity. For the permeable 'mediun fine sandy soil' used
here to illustrate calculation procedures the problem does not arise but for soils with
a lower saturated hydraulic conductivity such a situation might occur. Then Iﬁ“”] equals
the saturated hydraulic conductivity as a result of which ponding of water on the upper
boundary of the subsoil may occur. Serious ponding may result in a situation where the
root zone becomes waterlogged (Sr < 0) vhile there is still a saturation deficit in the
subsoil (S, > 0). Generally ponding occurs when the water level has reached the soil

surface in which case the water balance equations yield S = 8, s 0. These negative
its for the next time increment in the ab-

system the saturation
during the time in-

values serve as the initial saturation defic
sence of surface drainage. In the presence of a surface drainage
deficits are increased by the amount that is discharged overland

crement. _
If the subsoil is not homogeneous with respect to the K(p) relation (Appendix A),

the percolation rate at the upper boundary of the subsoil may exceed the saturated hy-
draulic conductivity in one of the lower layers. This causes the formation of a perched
water-table due to which a steady-state situation may not exist. To avoid computational
difficulties with percolation in a heterogencous soil, one ('average') K(p) relation

mist be used.

4.4.2 C(Capillary rise

As explained earlier, the pseudo steady-state procedure may cause a rise in the
Phreatic level for q_, > 0 and q_ = 0. This inconsistency with capillary rise, resulting
from At < 1, is usually small compared with that for percolation. If the situation occurs
i,t is assumed that the position of the water table is not affected by the upper boundary
flux condition but that the change in the phreatic level is governed by g, only. The
water-table depth z:s at the end of the time increment resulting from q alone is com-

puted for equilibrium conditions in the subseil. The curve in Fig. 5e for q = 0 repre-

sents the relation between Z_ and the equilibrium saturation deficit in the subsoil Se. .
5

Denoti i i * follows from

noting this curve by z_ (5.) the solution of z¥_ fol |
R i e (82)
rs r_s i %, e

. , : : :
n+d :
where the change in S, results from q , alone, SO that 85, = -8t*q, "~ This procedure



yields a stationary position of the phreatic level for At < t and q, = 0. For a changing
lower boundary flux conditicn the characteristic time was mot defined. It is, however,
assumed that the solution is consistent if the computed value for zi_l;l is larger than
z:s. If this condition is not valid the final water-table depth is taken equal to z:S.
For example, -for an initial situation at time n with Sz = 6.2 am and z.:S = 80 cm followed
by a time incremont of one day during which q®*% = 0.2 cn-d™! and ="0.1 aned, the
saturation deficit S:ﬂ = 6.3 cm and Fig. 5e yields z:: = 78.1 an, hence a rise of the
phreatic level. A first interpolation in Fig. e for z%, = 80 cm and q = 0 yields

5% = 6.0 cm and a second interpolation for 5, = S‘; - At x qwn+i = 6.0 - 0.1 = 5,9 ¢cm and
q = 0 gives z*_ = 79.4 cm. Thus z:;l = max(zg;',z;s) = max(78.1,79.4) = 79.4 cm. Without
the corrective procedure the rise of the water level would have been 1.9 cm. The calcu-
lated rise of 0.6 cm is caused by the lower boundary filux condition which is positive in
an upward direction. : '

:4.4.3 Rainfall excess following capillary rise

A situation with capillary rise followed by rainfall excess represents the most
extreme case of a changing upper boundary flux condition; the flux does not only change
in magnitude but also in direction. If the root zone is dry and the amount of water infil-
trating through the soil surface is relatively small, the situation at the end of the
time increment may be highly non-steady. As the pseudo steady-state approach is not
likely to perform well, the following procedure is proposed. Given an initial situation
at time n, the computation of the situation at time n+1 consists of two steps. In the
first step, prior to the solution of q, the total saturation deficit is redistributed to
& steady-state situation corresponding to the initial water~tahle depth, taking into
account the rainfall excess. Thus for z:s and S’:; = _S?J - q:+£ x At the steady-state soil
moisture distribution is solved. For this purpose Fig. Sh may be used to yield the cor-
responding flux g*. From Fig. Se the saturation deficit 5* for q* and z" is found, where
it should be noted that if q* < 0 the curve for qQ=20 musz be used as a;sequilibrilﬂn
moisture distribution in the subsoil is assumed when there is percolation, The saturation
deficit in the root zone is computed as S¥ = S* - S*. If the actual z® value does not
correspond with the initial steady-state situation cslue to the correct;fre procedure dis-
Cussed in Section 4.4.2, S} may be greater than S7. Then S} is set equal to ST,

. In m§+.;;econd ‘step the pseudo steady-state procedure is applied with SE = 8%,

§ = 5%, q, * = 0 and the given lower boundary condition qwn+5. The advantage of this -
procedure is that it does pot give rise to inconsistencies., But more important is the -
phenomenon that it allows for a transport of water from the root zone to the subsoil even
when the computed. steady-state yields a situation with capillary rise, In this way re-..
distribution accounts for the usual discrepancy between the actual duration of the rain

- shower and the length of the time increment used in the model. The procedure is eluci-
dated by the following example.

. . . e _ n

e lezn at time n: § 21.1 cm, Sr = 0.8 cm and z:s = 100 cm. For the next time

ne E‘.l:e: [A:‘.]— 10 d@) tht-e fo?low%ng boundary conditions apply: ql:+i = -0.37 em-d”’ and
q, tm+@ . The redistribution of soil moisture in the first step of the procedure ~ -
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is calculated as follows. For z = 100 cm and S% = s+ q;‘*i x At = 21,1 - 0.37 x 10 =
1:1 .4 am it is found from Fig. Sh that g* = 0.03 cm-d”!. Interpolation in Fig. 5e for
Teg = 100 cmandq*— 0.03 cmed™! yields S*= 10.0 cm, s0 thatS*-S*- S*=17 4 - 10.0 =
7.4 cm. For the second step the pseudo steady—state procedure is applled w1th S =5t =
17.4 an, 8] = 8% = 7.4 am, qr:* = 0 and the lower boundary condition qw+ which has been
given equal to zero It follows from the water balance {Eqn 80) that Sn+l 17.4 cm for
which value the relation S, [q,S ) is computed. From this relation and S St -q % At
lttHIFay be found that a'n 1< 0.022 aned”! and Snﬂ = 7.2 an. Interpolatlon in F1g. Se for
8, =10.2 cm and Hml 0.022 cm-d— yields zu +1 - 102 cn. The example shows that al-
most one third of the rainfall excess has entered the subscil (a5, = -1.1 cm), while

there is still capillary rise resulting in a drawdown of the water table by 2 cm.

4.4.4 Flow chart for the upper boundary solution

The flow chart in Fig. 18 shows the calculation scheme of the pseudo steady-state
solution for the upper boundary flux condition. To simplify the diagram those situations
for which the phreatic level rises into the root zone are not considered. Before appli-
cation a mmber of relations have to be computed. The saturation deficit in the root
zone is integrated for 13 values of Py mentioned in Appendix A, yielding S (pl_s) The
computation of 5_(z_ ,a ‘and S_(p, ﬁ') is discussed in Appendix A. Combining these rela-
tions with S_(q, ] glves 8,244 ,—') and S, (P ¢4 ).

The steps mdlcated in the flow chart are elucidated as follows.
ial steady-state is fully determined. As the water-

its value must be given. In

1. Given values for S and S the init
table depth may not correspond to the steady-state situationm,
this scheme it is assumed that z, applles halfway the previous time increment.

2. The length of the time mcrement and boundary conditions have to be specified. Th

flux q, must be regarded as the maximum possible flow rate across soil surface. The real
upper boundary flux qr'3 may be different due to desiccation or camplete saturation of the

Toot zone.

3.: Interpolation in Fig. 5g is required ‘to determine whether the

sponds to capillary rise (q" > 0) or percclation Q" < 0).

4. Check whether this is a situation with rainfall excess (qr:! < 0) following a period

with capillary rise (4 > 0).

5. If there.is excess of rainfall following a period with capillary rise,

is redistributed as dlscussed in Section 4.4.3.

6. Conpute S“” from the water balance e quation.

7. The Computat10n of  the relation between S and " ™ for Sn+l is discussed in Sec-

tion 4.4.1 for q <0, while for q>0an example is shown in F1g. 5g. The relation based

on the water balance may be written as Sn o S + r:n':(q“"'i ). The relation S @8

is defined for -K_,_ < q < q, where K . I8 the saturated hydraulic conductivity and
If q ™" is outside this range of

mi_tial situation corre-

s0il moisture

qmax is the maxmum p0551b1e rate of caplllary rise.
q values a solution camnot be obtamed
8. Check the upper constraint of .

9. Apply the scheme explained in Table Z to compute the reduced upper boundary flux q;e_



1 |initial data: S:’ s’: and 24

l -

2 |boundary conditions for at: q‘:;”'i and q

3 |interpolate " for ST and s:_j

5
YES I‘edlstrlblnltlog:
compute Su, Sr
set q:h“ =0

6 Sﬁ” = Sp+ m;(q;"'i - q:;*%

7 [set up two relations between S:ﬂ and g}

9

Teduction upper boundary

+1
flux yields: q*°, 3™, S}

12 [solve 82! and ™!

13 |interpolate z:;i from S_(z,_,q) for
_ ontl $1 -
S =5y =S and g = max@@™!,0)

15

14 compute zX_ .
ntd . _ n+3 ok
2. = ma.x(zl_S ,er)

. . ohtl] n+] n+} e o
16 |result: S, » S, s z -andqs—le _

Fig, 18. Simplified flow chart of the solution for the . , . ondition
3 T for the upper boundary flux condition.
For explanation see the text. . . :




This scheme yields g% , while S:H is set equal to its maximum value (corresponding to
PF 4.2).

10. Check the Iower constraint of & .

11. The value for 9°" equals K, and S;‘” follows from the water balance.

12. Solve 3" and S;‘” from the relations set up in Step 7.

13. When interpolating the water-table depth, q = 0 nust be used if
inconsistency as discussed in Section 4.4.1.

3“” < D to avoid the
14. Check for a situation of capillary rise (an+l > 0).

15. Use the procedure discussed in Section 4.4.2 to correct for a possible inconsistency
in the computed water-table depth.

16, The scheme yields.initial values for the following time increment and the real upper
boundary flux q:e. If required other values, such as p__ and q, are easily derived.

4.5 LOWER BOUNDARY SOLUTION

The solution for the lower boundary flux condition is based on the concept that the
s0il moisture distribution may be approached by a sequence of steady-state situations
corresponding to the lower boundary flux q . The solution applies to the lower part of
the subsoil and the situations for which the storage coefficient is independent of the
water-table depth. ,

For steady flow conditions the storage coefficient is defined as

= (83)
u ASs/Azr5
where n is a function of z . and q. The relation u(z .a) derived from Ss{zrs,@ is
Presented in Fig. 19 for' g < 0. As a result of the schematization of the pressure pro-
files (Fig. 5¢), the storage coefficient for a particular percolation rate is either

T
030- : : glemd™"
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Fig. 19. Storage coefficient p as a function of the water-table depth z., for a numb _

of steady flow situations q.
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constant or equal to the u value for the equilibrium profile. For situations that u is
independent of the water-table depth the storage coefficient is denoted by u a The rela-
tion between p_ and q is easily derived, as for steady percolation g = -K. With the aid
of the soil moisture characteristic the relation K(p) is transformed into K{8). Using
the relation q(8) = -K(8) as its inverse 6(q), it follows (Fig. 20) that p_='n - 8(Q) =
uq(qu where q = q. For the most relevant values for q, {(say -1.0 < g < -0.01 cm-d-l)
the relation "q(un may often be approximated by

alemd™") gz 030 025 220 as K (emd™")
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g = A+ B lgla) ‘ _ (84)

dhere the constants A and B depend on the soil physical properties. For the medium fine
sandy soil used here A = 0.110 and B = -0.054 yield the broken line in Fig. 20.

‘ The model for the lower boundary solution does not consider flow in the upper part
of the subsoil. The initial equilibrium moisture profile serves as the upper boundary of
the model. For example, consider an initial situation for 24 " ‘85 cm and g = 0, followed
by a time increment At = 5 d during which q = -1.0 an-d” . Superposition of the moisture
profile for g = -1.0 an-d”’ on the initial equilibrium curve yields the soil moisture
profile corresponding to the dowrward
. Since the percolation
it may be schematized

distribution as shown in Fig. 21a. The moisture
fhax across the lower boundary is termed 'percelation profile'
profile is at the upper and lower side bounded by the same curve
10 a rectangle (Fig. 21b). The upper boundary of the model is situated at a height

by = Lpg = Zpg» WheTe Z is the initial water-table depth (z = 85 an). The shaded

p TS rs
arca equals the saturation deficit of the percolation profile SP. The rectangular shape
o situations

results from the restriction that the lower boundary golution only applies t
for which u = My and therefore is independent of 2ot It allows the saturation deficit
to be expressed as : : : ’

(85)

S = -
o uq(cp z)

where ¢ is the actual height of the water table, the level for which p = 0. The water

balance of the lower boundary model may be written as

a
0 o0 To_zo 033 gicm)
il e O 140
A
Qrs=0\ . . ’
\ 20 ' - 120
L 40 - 100
_Bo -
. 60 :
_ % alg
80 ..g—l’,'p- - Lo
100 ‘ 440
p
120 -20
T .
_ 140 ! .
Gw=-10tcrrd=h =™ . qu=-tolemd™

Fig, 21a. Moj -1 jg. 21b. Sch

. . Moigture profile for §=-1.0 cmed Fig. ' : for the lower

Superimposed P Sy - colation profile uged fo 5
on the initial equilibrium soil o andary D lution.

moi Lo Y

th?t;:re distribution (broken line), where
D: aded area equals the saturation deficit

p °f the percolation profile (5, = 5 cm).

ematization of the per—’
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o+

n+l _ on
) = SP + At(q_p

qwn"‘i) (86)
p

vwhere 9 is the flux (positive upwards) across the level Ly When solving ¢ from E?n.SS'
the same difficulties arise as for the upper boundary solution. The saturation deficit
and boundary flux condition which determine the steady-state solution do not apply at the
same time. In view of the approximate nature of the analysis little of its generality is
lost when t;nﬂ is solved from Eqn 85 with S:J'i replaced by S:ﬂ . Hence, the solution for
¢ at time n+} follows from

Snﬂ

et , - _Lr (s?)

+
INCHD!

The flow chart in Fig. 22 shows the calculation scheme of the pseudo steady-state solution
for the lower boundary flux condition. When flow in the upper part of the umsaturated
zone can be neglected, 9 equals zero and L, corresponds to the phreatic level at the
onset of the calculations. This situation applies shortly after a sudden lowering of the
level in open water courses or during the early stages of a pumping test. In general o
and q, depend on flow in the upper part of the unsaturated zone. A solution of thgse
variables is obtained in combination with the model for the upper boundary solution, as
discussed in the next section. '

For a mmerical example, consider the situation of Fig. 21 to apply at time n, S0

that S; = 5.0 cm. For the next time increment (at = 5 d) the following boundary condi-
tions are assumed: q°*! = ¢ ang q:+i -

-0.1 cmed™ + It follows. from the water balance
(Eqn 86) that s;” = 5.5 cm,

Calculating the storage coefficient from Egn 84 gives

initial data: S: and 5,

b

boundary condition for at: q_;”i and q::+£

L

n+l _ on o+ n+l
S =S, Ay " - a.)

find u_ from u (o) for q - o

n+}

1
z = - Sn+
(A p fu

A

Tesult: S:” and [+

9

Fig. 22. Flow chart for the lower boundary solution. For explanat{on see the text.:
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uq = 0.110 - 0.054 1g(0.1) = 0.164. Noting £_ = 55 cm, it follows from Eqn 87 that

= 55 - 5.5/0.164 = 21.5 cm. Since ;n_i = 9.5 cm this corresponds to a rise of the
phreatic level with 12 cm The rise is caused by the decrease in flow rate across the
lower baundary from qW = -1.0 and” to q3+£ = -0.1 an-d” . This effect {a rise without

recharge (q_p 0) from above) is similar to the phenomenon of delayed yield (Section 3.1).
4,6 COMBINED PSEUDO STEADY-STATE SOLUTION

Transient tmsaturated flow is approached by a sequence of steady-state situations
corresponding to the upper boundary flux of the subsoil Qg For capillary rise the
assumption of steady flow is seriously violated if the flux across the lower boundary
is large in the downward direction so that the actual so0il moisture profile has a more
elongated shape than the assumed steady-state profile. Therefore the drawdown of the
water table is recalculated assuming steady flow in the lower part of the subsoil corre-
sponding to the lower boundary flux Q- If the lower boundary solution y1e1d5 a water-
table depth below the level that is found with the steady-state solution for q , @
percolation profile develops. The upper boundary of the percolation profile ¢ equals the
phreatic level at the time it starts to develop and remains unchanged during the period
the percolation profile exists. The difference in the calculated phreatic levels is an
indication to what extent the steady-state profile for q is elongated.

Below the upper boundary of the percolation profile the flow is always downwards .
For a solution of the flux q, across this level the following conditions can be formu- "
lated. The flux q_must be
1. donwards in ozp'der to satisfy flow conditions in the 1
2. equal to @™ for steady percolation in the upper boundary medel,

3. approaching zero when the pF in the Toot zome reaches its maximum value,

4. independent of flow conditions in the lower boundary model in order to avoid an
iterative solution. :
These properties are obtained if B+} 1o taken equal to the
Scheme in Fig, 18 for the situation that the water table is at inf

tion uses the relation S (q,S ) for 5 + = (Curve a (OPR) in Fig.
and g ¢ gnel

awer boundary model, .

steady flux solved with the
inite depth. The solu-
17) so that q:)“‘i <0

1". e water-
For the combined model to be consistent it is necessary that for 5~ 0 th

table depth 2., found with the upper boundary solution is below the level & found with
the Tower bolmdar}’ solution. Since ¢ = ¢, for S, - 0 (Eqn 87) the condition for con-

Sistency may be fomulated as

: 88
'z >z - . . for Sp"’El ( )

The validity of thlS condition is demonstrated with the use of the relauon z,4(5 ]the .
ntroduced in Section 4.4.2. If a5, is the increase of the 5, value since the tme :
S necessarily yields a

@

Percolation profile started to develop, a positive value of A iition

"ater-table depth z__ below the level ¢ . Thus Eqn 88 may be replaced by the °°d
on-=

AS > S for S > 0 As a result of theIJ orrective procedure mtrodu ced to. avoid inc
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sistency with capillary rise {Section 4.4,2) dSe > -qwdt. Since qP < 0 and dSlJ = (qP - q“)dt,
it follows that dse/dt > dSp/dt. Hence, if a percolation profile exists (Sp >.0 and q, < 0)
the condition 48, > Sp is valid during periods with capillary rise. For rainfall excess
redistribution causes the saturation deficit in the subsoil Ss to be equal to 5, at the
beginning of the percolation period. During percolation the equilibrium profile applies

in the subsoil so that So = S, and thus dS_ = (q - q )dt. Since q > 'cip it follows that

a5 /dt > dSp/dt. Hence the condition as, > SP is always valid.

Soil moisture characteristics and K{(p) relations are subject to hysteresis. Though
the effects may be considerable, it was mentionéd that they may often be neglected when
both relations are cambined (e.g. into a K(e) relation). When computing the saturation
deficit curves foli‘ the subsoil, both relations have indeed been used. Therefore hyste-
Tesis effects are only considered for the root zome. The use of a hysteretic soil moisture

s . ol =
1 |initial data: s, S’:,- Sg, z:: and ¢

2 |boundary conditions for At: qf; and qwnT%k -

L]

y

3 |hysteresis: compute Sr(prs) > Su(zrs,a) and Su(prs,a)

I

4 lupper boundary solution
Fig. 18. yielding

ntl oo+l ne)

Su ’ Sr * Bpg

and q:e

i +1 : 10
i L =g -z®
] {}p rs  “ra n=nt 1_
7 | solve q from Sr('ci,su) for §, > w
.
et - g Y
qp =q.

8 | Lower boundayy solution
Fig, 22,_yie1ding
gt and cnﬂ

P

Fig. 23, Simplifieq ¢ ow : o |
. * 1 i B
tion see the text, - chart of tpe combined model for unsaturated flow, For expland

72



characteristic to compute Sr(prs) causes this relation to become time-variant and con-
sequently relations for S will also change in time. The effect of hysteresis on the
] {p ) relation is dlscussed in Appendix B.

The flow chart of the combined.model for unsaturated flow is given in Fig. 23. Te
¢btain a surveyable diagram, situations for which the water level rises into the root
zome are not considered. The steps indicated in the flow chart are elucidated as follows.
1. Calculations are preferébly started for a situation that S_ = 0. This situation can be,
expected in shallow water-table agquifers after a long wet period {with q, < qw) Initial
values for § and 5 are found from Fig. 5 for a given water-table depth and a q value
Correspondlng to the rainfall excess in the preceding period. For situations that S
cannot be neglected, initial values for S and r_ have to be estimated.

2. For a given length of the time mcrement a constant flux at the upper and lower bound-
ary must be specified.

3. The computation of S_(p,,) is d1scussed in Appendix B. It should be noted that as a
consequence of a changlng Sr(prs) relation, the relations for S are also time-variant.
4. The upper boundary solution is given in Fig. 18.

5. Check for the sign of the lower boundary flux condition.

6. A percolation profile does not exist.

7. The flux qp i equals the steady flux q for the 51tuat10n that S =+ =-

8. The lower boundary solution is given in Fig. 22. .

9. Check whether the lower boundary solution yields a level (;‘nﬂ) "below the phreatic
level that is found with the upper boundary solution (Z.¢ - 5 :; ).
10. The time index may be increased if required.
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5 A quasi three-dimensional approach

For the solution of saturated-unsaturated sub-surface flow in shallow water-table
aquifers, it is assumed that the Dupuit-Forchheimer assumptions are approximately valid.
The three~dimensional flow system may then be schematized into horizontal flow in the
saturated part and vertical flow in the unsaturated region. If the fluctuations of the
water table are small as compared with the total saturated thickness D of the aquifer,
the latter may be taken as a constant. The value of D is chosen such that the upper
boundary of the saturated zone is just beneath the lowest phreatic level occurring in the
period considered. Since water and soil are assumed incompressible, storage changes are
restricted to the unsaturated zome. Taking into account recharge from the overlying

partly saturated region, unconfined saturated flow is described by Eqn 45, rewritten
here for convenience gs '

w TN 3+ 2wy 2y = q b0 (89)

where the transmissivity T = KD. If R is the region for which Eqn 89 holds and 5 and 5,
constitute the boundary of R, the conditions valid at the boundary may be formulated as

on § : h:= h*(x,y,t) (90a)
. Bh ob
on 5,: TR {90b)

vwhere the phreatic level h* on S, is supposed to be given and n is the directicn normal
to the boundary.

Figure 24 is the schematization of the saturated-unsaturated sub-surface flow system
in the vertical Plane. It shows a cross section of an unconfined aquifer bounded by a
Stream and a groundwater divide (no-flow boundary}. The model for wmsaturated flow is
Presented at one particular location only. The lower boundary of this model {c¢ =0} is
taken at a height D above the impermeable base of the aquifer. At the soil surface the
upper boundary flux condition 9, 1s supposed to be given as a function of X, y and t.

For the similation of transient sub-surface flow the time is discretized to small
steps. During a time increment At, extending from time n to n+l » flow is assumed to be
steady. The Dirichlet conditions at the boundary on S] and the Neumann conditions at the

soil surface apply halfway the time increment. The solution of the steady-state saturated-

unsaturated flow situation is then obtained at time n+} and yields the internal boundary

flux q,- The procedure comprises three steps: (i) computation of a relation between q,
and h, (ii) solution of the steady-state saturated flow situation, and {iii) solution of
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Fig-'24. Schematic presentation in the vertical plane and boundary conditions of the
quasi three-dimensional approach to saturated-unsaturated flow.

the steady-state unsaturated flow situation.

(1) relation between q and h

Application of the model for unsaturated flow for qn+i and for different values of
q:+i vields a relation between the change in the positiors\ of the water table Az =
L QL PO q::'i. Since ¢ = h - D, it follows that Az = sh. If q_ is either positive

or small in the dowrward direction, the relation between the lower boundary flux and the

change in the phreatic level is approximately linear:

& = aun v b )

where a and b are constants to be determined for each time step. The approximate linearity
in Fig. Sh. This relation governs the water-
equilibrium curve used when

is approximately

stems from the relation between S and z
table depth in the absence of a percolation profile. The
q < 0 shows that for a small change in the water-table depth ds /dz .
constant. For capillary rise the solved value of q decreases slightly if
to q_ alone, so that (see Fig. sh) dS /dz . approaches 2 constant value. Since dS /fdz_.
is proportional to dq /dh, it follows for a small change in the phreatic level during the
time increment that Eqn 91 is approximately valid. :

Large changes in h usually involve large negative q_ values in which case the
phreatic level is governed by Eqn 87. Introducing d_ as the depth of the water table
below the upper boundary of the percolation profile (Fig. 21b) gives ‘

Su increases due

= (92}
;p dp +r
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Substituting Eqn 92 for time n-~} into Eqn 87 yields

Sn+1

cn+§, - cn_i. _ ' . d;_i j(93)

Hglay™®)

Replacing Sl;'l by Eqn 86, ﬁq(qr*) by Eqn 84 and introducing ah = ¢ - ;f‘_i into

Eqn 93 gives ) .
o+ n+ n
AL - At - 8§ .
the B 7% o, g (94)

A+ B 1g(-q™) P

Equation 94 is valid for ¢°"

Sgﬂ > 0 may be written as qwn+i < q:“é 7 §%/at, Hence, Eqn 94 applies for
qwn'*i < min((],qs"'i + S:/At) . F .

The implicit non-linear expression for q, in Eqn 94 and the explicit one in Eqn 91
are combined as follows. The model for unsaturated flow is applied for an arbitrary nega-
tive value of q::'"% to yield q‘:i. In order to solve the constants a and b in Eqn 91 the -
model for unsaturated flow is used twice to compute ah for a;snw;ll positive vailue of q:+i
and q:+£ = min(O,q_:)H'i + S;/At) . The latter value of q3+£ yields a water-table depth below
or equal to £y while Egn 94 yields ah = d:"i, or zo*} = ¢ . For decreasing values of
q":+i < min[o,q‘;'* + S;/A;), ah decreases linearly according to Eqn 91 and more than
‘linearly according to Eqn 94. The point of intersection q; is found by a Newton iterative
procedure. An example of the time-dependent relation between q, and Ah.used_ to solve
Eqn 89 is given in Fig. 25.

< 0 and S™ > 0. It follows from Eqn 86 that the condition

shem) o ' I

02 q,femd™)

L-10 .

Fig. 25. The solid line (CEB) is an example of the time-varian i
i - t relation between q and
gzrused to solve Eqn 89, The linear Part (AB) results from two applications of thewmodel-
unsaturated flow for q, = 0 and q_ = 0.05 cm-d-1 (indicated by x). The non-linear
part (D) is computed from Eqn 94 with At = | 4, §_ = 0,d, =~0,q =0, A=0,110 and
B = -0.054. Both relations intersect at E for qf = -0,2 cmbg-1,” P , ' :
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Fig, 26, Grid configuration for twe-
dimensional horizontal flow.

{ii) solution of saturated flow
Tor a mmerical solution of Eqn 89 the region R is schematized to a horizontal X,y

grid. If the nodes in the x direction are subscripted by i and those in the y direction
by j (Fig. 26) the finite difference equation to Eqn 89 at time n+} may be written as

AL P I NI LU EL <
2(Ax)2 2(Ax)
n+§ oot ' nt} n+i
Tipm 715,900 Lt hi,9 - E,l_,l+___L_L—"—J—'-1—)- - @1 o9
et 2(ay)? |

Equation 95 is applied for each of the nodes for which h has to be calculated. The

ph veatic level is then solved with a point iterative method (Gauss-Seidel or SOR). The
r:r.ght side of Eqn 95 is replaced by a linear{ized) expression for q_written (without
the space index i,j) as

o+l _ a(hn+i _ n-i) +b (96}

where for q, 2 qw the coefficients a and b are identical to the constants in Eqn 91. For

q, < qw the values of a and b vary for each iteration cycle s© that Eqn 96 represents

the tangent to Eqn 94. The tangent for iteration cycle r is obtained for qw , so that

ety - @

r - " 2 t
leferentlatmg Egn 94 for qw , gives the coeff1c1ent a" (without the time subscrip }

as
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r-1.2
(u 4 )] | 98)

r .
r~1 -1 - . - r-1
At-uq - 0.43B (qW At qp At SP) /C[w

a =

s0 that ‘
br = q;—] = ar(Ah)r-l {gg)

where (aﬁh)r_1 is the change in the phreatic level calculated with Eqn 94 and u;-l is the
storage coefficient according to Eqn 84, both for q, = q:_l .

(iii) solution of unsaturated flow

The model for unsaturated flow is applied in each node for the given upper boundary
flux condition q;“'i and the lower boundary flux qwm'i calculated with Eqn 96. The steady-
state solution yields the saturation deficit in the root zone and the subsoil, the matric

pressure and the flux at the interface root zone - subsoil, and the real upper boundary
flux q:e.

For the solution presented above the interface between the models for saturated and
unsaturated flow has been taken at a fixed level. Equations 91 and 94 used to link both
models appear to be independent of this level, provided it is located below the phreatic
surface. The interface may therefore be taken just below the moving water-table, resulting
in a varying reference level for t. The advantage of using saturation deficits instead of
saturations is that such shifts in the origin of the vertical co-ordinate g do not involve
volume transfers across the fluctuating interface, provided that the shifts remain below
the water table. Therefore the model for unsaturated flow can be linked to models for
saturated flow which take into account a varying thickness of the saturated flow region.
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6 Application and use

6.1 EXPERIMENTAL VERIFICATION

In order to apply the quasi three-dimensional sub-surface flow model to an actual
field situation, sink terms are added to the right side of Eqn 89. They involve a tem
9, representing groundwater extraction from wells and a temm q representing groundwater
dlscharge into the open water system. Withdrawal rates from nodes in which groundwater
is extracted are supposed to be specified halfway the time increment (q i) The dis-
charge into the surface water system is computed with the aid of & 11near1zed relation
between the flux q, and h.

The computer program used in this study is written in FORTRAN. That part of the .
computer model dealing with saturated flow was developed and written by van den Akker
(1972). It uses a finite element method, based on the variational principle (Zienkiewicz,
1967) to approach the solution of Eqn 89. A horizontal X,y grid is used to divide the
region R into a number of sub-areas, the elements. Within each element {indicated by a
letter in Fig. 26) the transmissivity is assumed constant. Using square elements, the
equation for node i,j at time n+} is written as (van den Akker, 1972)

2 g nt} _ 1 n+} n+l o+l
3- (TC + TD +. TP + TQ)hi,j [T (Zhl 1 J+| hi _]+1 hi'l ,j) +
n+§ n+} n+i n+y n+} n+}
Tpthy iy + Zhyy it e, * Te®ini, 3 +2h )ty _,) +
: +
Q{h::; it htiif;%-l S (unmi v (q )n+% [qo)zi (100)

where § is the mesh width (¢ = &x'= Ay). Application of Eqn 100 to each of the nodes for
which h has to be calculated yields a set of equations which is solved by SOR. The over-:
relaxation parameter w is computed according to an enpirical formula

/2 2 (101)

m=2-n/-i- + -

[

where I and J are the mumber of nodes in x and y direction, respectively. The total mm--
d by the maximm local difference in the calculated value
for h between two successive iteration cycles. If this difference is less than the error
criterium ¢ for which a value is chosen at the beginning of the calculations (in this.
study £ = 0.01 ¢m), convergence has occiirred. When testing the computer program conver-
gence problems were encountered Tesulting from the discontinuity in the relation for q,

ber of iterations is controlle
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(Fig. 25). The problem arcse for the situations

q:; < gk < q;_] (102a)
and
Q> qt > qi_l (102b)

“The following solution to the convergence problem has been adopted. If one of the situ-
ations given by Eqn 102 occurs, Eqn 100 is recalculated for the concerning node with q:,_]
set equal to g¥*. The two relations between q, and h now applying to qz-l are tried until
qW and qw- both correspond to only one of these. Once the computer program proved to be
internally consistent, convergent and mmerically correct, it was ap'plled to an actual
field-size saturated-—unsaturated flow problem. '

6.1.1 Selected study area

The study area selected for simulation by the sub-surface flow model is located in
the east of the Netherlands around the pumping site ' 't Klooster {Fig. 27} near Hengelo
(G1d.) The area considered for similation is 6 x 6 kn? and is described by means of &
square grid with a mesh width of 500 m (Fig. 28). The pumping station is situated exactly
in the middle. Two small intermittent streams are schematized to follow the nodes. Most
of the area is occup1ed by farmland (Fig. 29), and grass is the principal ¢rop grown
(70%). The climate is humid with moderate temperatures. The mean annual rainfall and
evapotranspiration are about 75 cm and 45 cm, respectively. The region is geohydrolo-
gically characterized by a thick coarse sandy aquifer, overlying a more or less imper-
meable layer of fine silty sand at a depth of about 35 m, and covered on top by a few
metres of aeolian loamy sand. The surface elevation taken from a detailed topographical
map shows a difference between the highest and lowest grid point in the area of only 7 m.

al

l«~.- -

l:orvel ) J'“
vargse| ‘a_\
sdoetinchem
i Mntenwiikj
et

’
e ._\_\‘,'.'A-.

Fig. 27. Location of the study area.
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Fig, 28. Grid configuration for the study area and the schematization of both streams.
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Fig. 29. Land use for the growing seasoh of 1973 in the study area.
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Water-table elevations were recorded twice ‘a month in 2
Fig. 30. The depth of the water table ranged in the period
between zero and 4.5 m below soil surface.
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6.1.2 Saturated flow

In the eastern part of the Netherlands where the study area is located (Achterhoek)
rather intensive gechydrological investigations were carried out in the past (e.g. Ernst
et al., 1970). Within a radius of 6 km around the pumping site 't Klooster, the results
of 13 borings are available. From the boring descriptions and grain-size data trans-
missivity values were estimated. These values are supported by a field pumping test
carried out in 1964 by the Institute for Land and Water Management Research in Wageningen,
the Netherlands. The test was held on the pumping site 't Klooster before the station
came inte operation. Based on results from these investigations a transmissivity map of
the study area was compiled (Fig. 31). Transmissivity values used in the model range from.
1700 to 3500 m>-d™!, : | ' L |

Due to the flat topography of the study area there is no surface runoff, unless the
soil is completely saturated. The sub-surface discharge into the drainage system is rela-
tively small. From investigations {Colenbrander, 1970) in a nearby experimental basin

Fig. 31. Contours of transmissivity values
(m*<d™ 1) in the study area.
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) Fig. 32, Linearized empirical relation be-
200 - tween the water-table elevation h (= hg — w)
( and the groundwater discharge q, given by
wlcm) : : Eqn 103 used in the study area.

(Leerinkbeek area) a linear relation was derived between the discharge into the surface
water system q and the water-table depth w (Fig. 32). Since w = h_ - h, the groundwater
discharge may be formilated as

0.2 for h -hz<t0 (103a)
' q, = —0.0013(hS -h) +0.2 for 0 < hs - h < 150 (103b)
0 - for h,_-h > 150 (103c)

The relation given by Eqn 103 applies for every node. More recently Ermnst (1978) showed
that for the eastern part of the Netherlands an {approximate) exponentional relation
applies between q and w. If the required data for this relation can be obtained it
could be used instead of Eqn 103 without appreciable difficulties. However, it is to be
expected that the simulation results are not noticeably affected as the total open water
discharge from the model area and thus the groundwater discharge into the open water
courses are relatively umimportant.

For the discharge of groundwater into the open water courses, schematized in nearby
nodes, the drainage resistance resulting from a silt layer at the river bed and con-
vergence of stream lines can be taken into account (de Laat & Awater, 1978). However,

for the study area this approach was not considered necessary, as the two rivers are

very small and only carry water during wet periods (mostly in winter time). For the nodes

in which both streams were schematized, the phreatic level was taken equal to the cb-
served open water level. ' '

Dirichlet conditions apply for all modes at the model boundary.
Phreatic levels for each successive time step were derived from six observation wells
just outside the model area. - -

Groundwater withdrawal from wells is Testricted to the pumping site located in the

cted water is almost entirely used for domestic supply outside the
3.d~1. The flux q, is obtained for each

The prescribed

centre. The extra
study area. Extraction rates Q are available in m

time step from
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-] (104)

6.1.3 Unsaturated flow

Soil physical data were collected by the Soil Survey Institute, Wageningen, the
Netherlands, in 1973 (van Holst et al., 1974). Most important soils in the study area
are podzol soils (about 50%), sandy hydro-earth soils (about 20%) and very old arable
fields, known as 'Enk' earth soils (about 20%). At, or near each node the soil profile
was described from borings. The depth of the borings was 30 c¢m below the lowest water-
table but not deeper than 200 an below soil surface. The upper layer of the soil con-
taining 80% of the foots was taken as the root zone, Values of D, ranged between 20 and
100 on and were rounded (for computational reasons) to decimetres. Based on the described
texture the borings were compared with a large series of soil profiles of which e(p) and
K(p) relations are available. This comparison resulted in eleven different soil mpisture
characteristics to be distinguished for the root zone. For the subsoil ten different
pF-curves and three K(p) relations were used. The root zone was taken as homogeneous. A
typical soil moisture characteristic, used in about 25% of the nodes, is given in Fig. 33a,
Curve a. With regard to their capillary properties, the selected K(p} relations may be
characterized as poor, medium and good (Fig. 33c). For each node one of these K{(p)} rela-
tions was used to compute the pressure profiles. These profiles were combined with two
different soil moisture characteristics to obtain the saturation deficit curves. For the
upper 50 cm of the subsoil one of the ten selected pF-curves was used. Figure 33a, Curve b,
shows a typical soil moisture characteristic applied for the upper part of the subsoil in
about 45% of the nodes. At greater depth one 8(p) relation was used for the entire area.
This relation (Fig. 33b) was actually measured in the field at a depth between 1.5 and 2 m.

p{mbar) a p (mbar) - b

-10* -10%

“10°- -10:{- _.

-10°4 -10%4"

-10'- -10'

-10° T 7 T i ‘\ ~10° T T T -
0 01 02 03 04 o5 0 01.02 03 04 o5

' ) 8 ' 0

Fig. 33. So0il physical data used in the study area.

(a) Typical soil moisture characteristics used for the root zome (Curve a} and the uPPBr_.
part of the subsoil (Curve b). . '

(b) 50il moisture characteristic used for the lower part of the subsoil.
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The measurements were carried out in 1977 to cbtain a relation between K and 9. From this
relation the parameters were derived for the lower boundary solution. The K(8) relation
was established by Bouma (1977) using the crust test in combination with an instantaneous
profile method (Arya et al., 1875). Investigations at different locations do mot justify
a variation in the K(8) relation within the study area. As values for q, during the summer
pericd range from -0.0%1 to -0.05 cm-d_l the corresponding range of the K(e) relation is
used to derive the parameters of the “q(qv) relation (84) as shown in Fig. 33d, yielding
A =-0.01 and B = -0.06.

6.1.4 Surface flux

In the absence of irrigation in the study area and neglecting surface runoff, the

surface flux at time n+i follows from

qrswi - E:;i i {105)
where E;‘:i is the real or actual evapotranspiration flux and Pn+£ is the precipitation
flux, both taken as an average over the time increment At.

Precipitation was assumed to be wniformly distributed, Daily rainfall data were
cbtained from three different gauging stations outside and in the study area (Fig. 27):
Doetinchem (1x), Kervel (1x) and Varssel (2x). The value between brackets indicates the

o =
awlemd g0 021 023 025 027 029 031.033 Klemd ™)
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-1 // -1
-0 ~4 =10
o
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16'6 t T r T -10-3 T T T T T T 10
-10° o' -102 -10% -10* -10° 014 012 010 008 006 004 002 0
: p {mbar) Pq
{c) K(p) relations used for the subsoil. o4 relation (broken line) between ig and q-

(d) The measured {8} relatiom and the deriv
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weight factor used for the calculation of P. During the period considered precipitation
was in the form of rain. In view of the flat topography of the area, the low intensities
of the rainfall and the high permeability of the soil, surface Tunoff was not considered
except when the root zone was fully saturated (Sr < 0). Then the water remaining on the
surface was assumed to run off overland during the same time increment.
Evapotranspiration rates were computed for each node individually. Neglecting the
storage of heat in the soil, the formula of Perman (1948) for the calculation of evapo-

ration of a wet surface E o¢ M3y be written as

sRn

——ana 4 'YE
E. = Lo e (106)
we s + ¥

where s is the slope of the temperature-saturated vapour pressure curve, R is the net
radiation, L is the latent heat of vaporization, vy is the psychrometric constant and E
is the aerodynamic evaporation. Using turbulent transport theories, the original emplrl-

cal expression for E,, proposed by Penman, was later improved, to include the geometry
of the evaporating surface (see Feddes, 1971)

p
E, 5 F (107}
where ¢ is the ratio of molecular weight of water vapour and dry air, N is the density
of the air, p, is the atmospheric pressure, e_ is the saturated vapour pressure for the
air temperature at 2 m height, e, is the actual vapour pressure at 2 m hHeight and T, is
the diffusion resistance to water vapour in the air. Values for r_ in relation to cTOP
height and wind velocity were tabulated by Feddes (1971). Standard meteorological data
were used to calculate E or from Eqn 106. They comprise wind velocity, relative humidity,
temperature and relatnre sunshlne duration. The daily values (24 hours means) were pro-
vided by the Royal Dutch Meteorological Institute and obtained from the following sta-
stions: Almen, Diepenveen, Twenthe and Winterswijk (sce Fig. 27).

Taking into account the diffusion resistance T of both crop and soil and neglecting

evaporation of intercepted water, the real evapotransp1rat1on E_ of a cropped surface
with limited water supply may be written as (Monteith, 1965; letema, 1965)

= S + vy

Ere = soy07+ T Jr) E (10%)

After Rijtema (1965), the diffusion resistance T is expressed as
Ts T T fsc(rz t ) . | (109)

where T, is the diffusion resistance dependmg on the fraction of soil covered, lt'ja is the
re515tance depending on 1light intensity,

r. is the resistance depending on soil moisture
P
conditicns and flow in the plant while S

< 1s the fraction of the soil covered by the crop.
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For. a crop with ample water supply rp 0 and it follows for the potential evapotranspi-

ration

E = 52X E
pat s+ y(1 + (rc + Scrz)[raj— wet

(110)

The expression proposed by Rijtema (1965) for the resistance r1J of the soil plant system
and values for L and T, as functions of Sc and mean short-wave radiation, respectively,
can be found from van Bakel (1979).

The linking of the models for evapotranspiration and unsaturated flow requires that
evapotranspiration rates, here expressed in kg-m_z-s_I are converted to cmed”. The real
evapotranspiration E, depends on s0il moisture conditions through the resistance r
while unsaturated flow depends on E_ through the upper boundary flux q,. Therefore few
iterations of the calculation of both models are necessary to solve q‘“‘i and Enﬂf

There has been little change in the cropping pattern (Fig. 29) durmg the years
considered for simulation. The small urban area in the region is treated by the model as
if it were grass.

8.1.5 Simulation results

The ability of the model to correctly simulate water-table elevations for an actual
field-size sub-surface flow problem was tested in the study area over a time period of
almost 6 years, The simulation started at the beginning of April 1971 and ended in Decem-
ber 1976, using a time increment of 10 days. As compared with average weather conditicns,
the suimer of 1972 was extremely wet and the growing season (the period from April to
September) of the years 1971, 1973 and 1975 was dry. Extremely dry was the year 1976,
while the winter of 1974/1975 was very wet.

The initial steady-state situation was calculated several times for different per-
colation rates in the unsaturated region. For q, (=9 = -0.1 aned? calculated phreatic
levels compared favourably with chserved water-table elevations at the onset of the simu-
lation period. The years 1971, 1972 and 1973 were simulated several times during the
development of the model. Results of earlier model versions are published elsewhere
{(de Laat et al., 1975; de Laat & van den Akker, 1976). For the calibration of the present
model the growing season of 1971 was used. Calibration was necessary to estimate the
hysteresis factor used for the root zone and to test the empirical relation (103} between
q, and w. The test runs did not give reasons to alter the qo(w) relation adopted origi-
nally, Furthermore it appeared from testing different hysteresis factors (¢, 0.5 and 1.0)
that a value of 0.5 was most suitable.

Couputed water-table elevations were interpolated in time and space to be conqoared.
with observed values in the 28 wells shown in Fig. 30. From the difference between the
measured and simulated water-table elevation ah (cm), the average &h and the average _
absolute difference |ah| are calculated for the total mmber of cbservations. Values for’
8h, mﬂ- and the standard deviation ¢ of ah are presented in Table 3a. In hydrology an
efficiency factor R; is often used for the comparison of rainfall-runoff models. The
efficiency factor may be defined as (Nash & Sutcliffe, 1570)
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Table 3. (a) Comparison of observed and simulated water-table elevations. (b} Idem, with
Bh set to zero.

a . b
Well No. 2h TaaT o Ry Well No. [2h] Rg
1 1 6 8 0.97 1 6 0.97
2 2 7 10 0.97 2 8 0.97
3 15 16 12 0.87 3 9 0.95
4 -4 7 8 0.97 4 6 0.98
5 -5 9 8 0.96 5 7 0.98
6 -2 9 10 0.96 6 8 0.97
7 -9 13 12 0.92 7 9 0.95
8 2 10 14 ©0.94 8 10 0.94
9 12 13 10 0.92 9 7 0.97
10 19 20 B 0.79 10 8 0.95
] 10 13 11 0,90 11 8 0.95
12 9 10 8 0.95 12 6 0.97
13 -8 13 12 0.92 13 10 0.95
14 -4 11 12 0.94 14 10 0.95
15 28 28 1z 0.71 15 10 0.95
16 25 25 12 0.76 16 10 0.95
17 ) 11 15 0.87 17 11 0.87
18 0 8 10 0.96 18 8 0.96
19 7 12 17 0.78 19 11 0.81
20 -10 11 6 0.95 20 5 0.99
21 6 9 10 0.94 21 7 0.96
22 14 16 12 0.82 22 9 0.92
23 16 19 15 0.83 23 8 0.92
24 -48 50 17 0.28 24 10 0.92
25 10 1 9 0.94 25 7 0.97
26 12 13 11 0.91 26 7 .96
27 16 17 12 0.86 27 8 0.95.
28 7 1 1 0.91 8 0.93

‘Fig. 34, Simulated water-table
- elevation contours and observed
values at the end of August 1973
in the study area. The quantities
. are expressed in cm. L
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R =1- MEZF) am
2(F - —)2 . _ ’

where F represents the measured water-table elevations, F' the simlated values and F the
mean of the observed data.; If simulated and observed data fully agree Rp =1, while R, = 0
if the simulated values equal the mean of the ohserved values. The efficiency factor for
each of the observation wells is presented in Table 3a. The value for ah is largely gov-
erned by the difference between actual and model surface elevation at the observation
well. In order to eliminate the effect of R on the comparison of the simulated and ob-
served fluctuation of the phreatic level, values for ]ThT and R, were computed for ob-
served data which were 'corrected' for ik (Table 3b).

Similated water-table elevation contours and observed values at the end of August
1973 are shown in Fig. 34. To illustrate the goodness of fit, cbserved and simulated
water-table elevations for ohservation well No. 12 are plotted in Fig. 35. Also given in
the same figure are the groundwater extraction rates, precipitation data, calculated
potential and real evapotranspiration rates and the resulting actual flux across the soil
surface. Simulated water-table elevations in four observation wells (Nos 5, 14, 21 and
28) are compared in Fig. 36 with observed values, which are 'corrected’ for ah.

Due to the nature of the model for unsaturated flow, least accurate results are
obtained if a period with capillary rise is followed by rainfall excess. This situation
oceurs frequently during the growing season of 1972, In an attempt to improve the result
by decreasing at, it appeared that reducing the length of the time increment does not
affect'the simulated water-table elevation significantly. The effect of non-steady satu-
rated flow conditions resulting from a large variation in the extraction rate is shown
in Figs 35 and 36 by the calculated phreatic level in the summer of 1976.

6.2 SENSITIVITY ANALYSIS

A comprehensive sensitivit

Y analysis was carried out with respect to input data.
Part of the analysis considers

An approximate relation between q, and h, derived fmm
lation results, serves as the lower boundary condition
The analysis is, therefore, limited primarily to the
effect on calculated reai and potential evapotranspiration rates. ,

Another part of the sensitivity analysis Considers flow in the entire study area,
but only for the years 1973 g 1974 (Awater & de Laat, 1979). Bouma & van Heesen (1979)
used the same period to study the effect of the different ways of collecting soil physi-
C".il data on the similation results, Their investigations are important, as the costs of
Slmulating regional, Saturated-unsaturated figy problems largely depend on the degree of
detail to which soi] Physical data need to be measured.

In this study the Sensitivity of the results of simuilation to a variation in the
values of seven parameters was investigated. The parameters were selected for different

the quasi three-dimensiona] sima
of the unsaturated flow model,



tions were conducted in the study area. The transmissivity, the prescribed phreatic

levels for the nodes at the boundary and the relation uq(qﬂ) were chosen because cofi-
prehensive data were not available. Finally the depth of the ‘effective root zone' was
included in the analysis as its value is not well defined. The parameter I, results from
the schematization of the unsaturated region into a root zome and a subsoil. In the reot
zone upward flow is governed by the water uptake of the roots and moisture is available
for the crop until pF 4.2 applies over the entire depth. The root zone may, therefore, be
considered as a reservoir, the size of which depends on D.. Although rooting depths were
extensively measured in the study area, the effective rooting depth D, which is assumed
to comprise 80% of the roots, had to be estimated. '

The sensitivity analysis for the seven parameters is restricted to results obtained
for a period of one year (37 time increments of 10 days each) starting at the beginning
of April 1973. First a run of the model was made with the parameters set equal to the
values used for the six-year simulation period. This nun was then repeated with nothing
changed except the value of the parameter under consideration. The effect of parameter
variation was investigated for the simulated water-table elevations and the calculated
real evapotranspirations. A global impression of the sensitivity may be obtained by
comparing average values. To Teduce the effect of the prescribed levels at the boundary,
similated water-table elevations and real evapotranspiration values were averaged over
the interior of the model area. The interior comprises 49 nodes located in the centre at

a distance of more than 1000 m £rom the model boundary. S _
jmilation runs with the original and
as an example, the effect of 3
able elevation in the interior

Average water-table elevations resulting from s
changed parameter value were plotted. Figure 37 shows,
variation in the hysteresis factor on the average water-t

- : wicm)
h(em) - - 0
500 <
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ATMTIT I ATS 0N D] FM
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i ' ' > . o interior of the study
a2 Comparison of caleulated water-table el?vatmns lgrzraei:rsl original value
gtea for sensitivity to a change in the nysteresis factor i
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Table 4. Summary of sensitivity analysis results.

Parameter

Hysteresis
factor

Rydraulic
conductivity
relation K(p)

Groundwater
discharge
relation qo(h)

Transmissivity
T

Prescribed
Phreatic levels
at the boundary

Storage
coefficient
relation uq(qw)

Depth of root
zone Dr

Change

Set to zero

'good' -+ 'medium'
'medium' + 'poor’
(Fig. 33c)

See Fig., 38
Increased by 25%

Raised by 5 cm

See Fig. 39

Decreased by 10 cm

Effect of changing parameter value on

water—table elevation

At the beginning of the
second half year 12 cm
lower, thereafter 2 cm
higher.

In the first half year

2 cm higher. In the
second half year, at
first more than 10 em
higher, later decreasing
to no change.

Varying from 20 cm lower
for the highest levels
to 2 em lower for the
lowest levels,

High levels 2 em lower.

- Local effect (except

for the well site)
ranges from +3 to -8 cm,

High levels 2 cm and low

levels 4 cm higher.

Up to 10 em higher in
sumer and 10 cm lower
in winter,

In the second half year

. (vhen the water table ig
-rising) 10 to 15 cm

higher,

real evapotranspiration

Overestimated by 0.3 cm,
but locally more than
1 cm.

Underestimated by 1.8 cm,
but locally more than
5 cm.

Underestimated by 0.6 cm,
but locally more than
4 em,

Underestimated by 0.1 cm.

Overestimated by 0.1 cm,
but locally almost 1 em.

Underestimated by 0.4 cm
(at some locations by

1 e¢m but also overestl~
mated by | cm).

Underestimated by almost
2.8 cm. (The local effect
ranges from 2 to 5 em.)

J——

of the study area. The results for all seven parameters are summarized in Table 4. This
table also gives the effect of parameter variation on the total real evapotranspiration
calcul_ated for the considered period of one year. The effect applies to the average value

for the nodes in the interior. The results of the sensitivity analysis are discussed
below. :

Bysteresis factor Neglect:
10 rainfall excegs at the
rainfall excess during the

ing hysteresis results in a delayed response of the water table
end of the sumer as may be seen in Fig. 37. Since more of the

: growing season is kept in the root zone, the calculated evapo~
transpiration rates are higher. .

Hydraulie conduativity Th
described by three differe
as 'poor!

¢ capillary properties of the subsoil in the study area are
. mt K(p) relations (Fig. 33c). The K(p) relation characterized
2pplies to only eight nodes, For the sensitivity analysis these nodes were
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left unchanged. Nodes initially characterized as 'good' became medium' and the capillary
properties of nodes initially 'medium' were changed to 'poor'. The calculated real evapo-
transpiration proves sensitive to a variation in the K{p) relation. At places where the
water-table depth may be considered as 'critical’, the calculated values are largely
reduced. As a result of the poor capillary properties, less water becomes available for
the crop due to a decrease in capillary Tise and an increase of the pF value in the root
one, Consequently, the saturation deficit at the end of the summer is smaller, resulting

in higher levels when rainfall excess causes the water tasble to rise.

Grounduater discharge The relation between groundwater discharge and water-table depth
was drastically changed (Fig. 38). The change represents an ' improvenent of the drainage
systen affecting primarily the most shallow water-tables. The effect on water tables
deeper than 200 cm is almost negligible. Calculated real evapotranspiration values are
lower as the drawdown of the water table hampers the process of capillary rise and re-
duces (at some places considerably) the amount of moisture available in the root zone at
the beginning of the growing season.

Trangmiesivity A large change in the transmissivity values has negligible effect on the
simlated water-table elevations and calculated real evapotranspiration rates.

Preseribed phreatic levels at the boundary The prescribed phreatic levels were derived
from the same data in two different ways, independent of each other. Both series obtained
for 1973 were compared for two arbitrarily selected nodes. The 95% confidence limits of
the average value appeared to be 4 and 2 o, respectively. Based on these results-; the.
Prescribed levels were raised by 5 cm. The change also applies for the initial s1tuaF10n.
As the water table in the study area is relatively deep (the average depth for 1_9"-’3 n
the interior is 190 am) the calculated real evapotranspiration is not very sensitive to

4 change in the prescribed levels at the boundary.

qw(cm-d")
o1 Yotemd")
0 . °i2 013 hs.
50
1004
h
150 4
200 ' I(')-:3 T T e -
' , 4 o005 o0f0 0I5
Hg

wiem) - o
: 3 : . .1 () and changed (-—}
E:i;t?&- The original () and changed (-=-) F.iﬁ' t:f'g;l E};iwzz:‘g:naing 31 used for the sen~
€lation pet ;- relatio o Hg , R
tivigy ana‘;'y‘;‘;:n g, and h used for the sensi= T Lo ana)ysis.
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Storage coeffieient The change in the relation between 3.|q and a, (Fig. 39) effectively
increases the storage coefficient by 0.03. As a result of the larger g value the fluctu-
ation of the water table in 1973 is reduced by 20 cm. The change has two effects which
act in opposite directions on the calculated real evapotranspiration. On the one hand
capillary rise benefits from the higher phreatic levels in the growing season, while on
the other hand less moisture is available in the subsoil due to a larger downward flux
across the lower boundary of the model for unsaturated flow. '

Depth of the root zone A decrease of Dr results in an underestimation of Ere for three
reasons: (i)} less water is available in the root zone at the beginning of the growing
season, {1i} less water is kept in the root zone during periods with rainfall excess,
and (iii) the supply by capillary rise is hampered due to larger 2o values. The calcu-
lated lower real evapotranspiration values result in smaller saturation deficits at the
end of the swmer yielding higher phreatic levels during the time the water table is
rising.

The sensitivity was, apart from the seven input parameters, also investigated for
& change in the calculation procedure. The upper-boundary condition given by Eqn 105
‘Tequires an iterative solution of the models for evapotranspiration and unsaturated flow

to calculate Ef__‘:i. Instead of solving Ef_f:% by iteration, E°}

ot 15 used to computg the

surface flux as

n+4 - n+j _ n+i . :
s Epot P : . : UL

The actuazl surface flux q:e computed by the model for unsaturated flow is then used to
calculate the real evapotranspiration rate

o g g | Coan

As a result of the change in the model, the calculated real evapotranspiration rate equals
its potential value until the pressure in the root zone reaches wilting point, because

© = q_ for pF values less than 4.2, The use of Eqn 112 instead of Eqn 105 and the
calculation of E__ with Eqn 113 rather than by iteration did not have any effect on the
similated water-table elevations. The calculated real evapotranspiration for the interior-
of the model area was overestimated by only 0.1 cm, but after 130 days when pF 4.2 is
reached in most parts of the region by 0.5 cm. local effects largely depend on the type
of land use. Potatoes appeared to be very sensitive while the calculated real evapo-
transpiration of g'rass was hardiy affected.

The results of the ”Sensitivity a'nalysis may be summarized as follows. The fluctu-
ation of the simulated water-table elevation depends largely on the relation between Yq
and q_ which is derived from the K(e) relatlon applying to the lower part of the subsoil.
The average water-table height in summer is predominantly governed by the prescribed
phreatic levels at the boundary, while in winter the empirical relation (103} between -
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q, and h appears to prevail.

The calculated real evapotranspiration is sensitive to the water-table elevation at
the beginning of the growing season, the hydraulic conductivity relation K(p) and the
depth of the effective root zone D, . The sensitivity to the parameter D, is most pro-
nounced as it directly affects the amount of water available for the crop. A similar
sensitivity was noticed by Feddes et al. (1978) using a sink temm function to describe
water uptake by roots. They reported that a relatively small change in the sink term
function affects the system.

A final Tun of the model showed that the difference between the real and potential
evapotranspiration of grass is not governed by the diffusion resistance T, {see Section
6.1.4) but Tesults from a deficiency of available water in the root zome.

When evaluating the sensitivity analysis, it should be realized that the results
apply for one particular situation. In another period or region for which conditions
differ significantly from those in the study area in 1973, the foregoing conclusions may
not be applicable.

6.3 CONSEQUENCES OF GROUNDWATER EXTRACTION

The model has been used in the study area to predict coensequences of the implemented
groundwater extraction. Since the model was verified only with respect to water-table
elevations, in the absence of other possibilities, an investigation of these consequences
should be restricted to the prediction of the drawdown of the phreatic level. Neverthe-
less tentative conclusions will be drawn with respect to other hydrological consequences
for the following reason. Assuming that the gechydrological data, the groundwater ex-
traction rates and the prescribed phreatic levels at the boundary are correct, the simi-
lated water-table elevation is governed by ¢ and q,. Because the discharge q is very
small, in particular during the last 1} year of the simulated time period, the flux q_ is
correctly simulated considering the excellent agreement of computed and observed water-
table elevations. The recharge of the saturated zone from the overlying unsaturated region

depends (in particular at the end of the growing season) very mich on the saturation

deficit and thus the surface flux q - Assuming that rainfall rates were accurately measured
must have been approached properly.

the real evapotranspiration during the growing season

Potential evapotranspiration rates are independent of soil moisture conditions and veri-

fied for lysimeter experiments (Rijtema, 1965) and field experiments (Feddes, 1971).
The similation model was applied in the study area in exactly the same way as for

verification but without groundwater extraction from the wells in the centre. A condition

for this application is that the effect of the change in the actual situation on the

boundary conditions is either negligible or predictable. With regard to the study area,
the boundary of the model was chosen at such a distance from the pumping site that the
prescribed phreatic levels are not appreciably affected by the implemented extraction,

while the effect on the water levels in both streams is assumed insignificant.

The water balances resulting from simulation of the actual situation and the situ-
ation without extraction are presented in Table 3. The quantities are expressed in am

and refer to a period of approximately one year (except for 1976) starting at the begin-
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s

Fig. 40. Contours for the simulated situation in
the study area at the end of August 1973.

(a) Difference in water-table elevation (cm) for
the situations with and without the implemented
extraction.

(b} Relative evapotranspiration (%)} contours.

(c) Difference in relative evapotranspiration be-
tween the situations with and without extraction.

ning of April. The water balances for the sunmer half year (170 days} are given in

Table 6. This table shows that the total amount of groundwater, leaving the region during
the growing season as surface water ('Surface water discharge'} is relatively small. Most
of the rainfall excess in the study area is discharged across the model boundary as -
groundwater ('Groundwater discharge'}.

The difference in the calculated water-table elevation for the situations with and
without groundwater extraction at the end of August 1973 is shown in Fig. 40a. As a
result of the drawdown less water becomes available for the crop by capillary rise, which
may result in a reduction of the evapotranspiration. Most of the reductions occur during
the summer half year. The relative contribution to the supply of the implemented ground-
water extraction of each of the terms of the water balance during the summer half year
is presented in Fig. 41. The results show that a simple relation between reduction of .
evapotranspiration due to groundwater extraction and the prevailing climatological con-
ditions during the growing season does not exist. Other important factors mist be con-
sidered, such as water-table depth and soil moisture conditions at the begimning of the
growing season (which are very favourable in 1975) and the distribution of precipitation
over the season. \

If crop production is not restricted by water suppljr, the total actual evapotran-:
spiration at the end of the growing season IE ., cquals the total potemtial evapotran- -
spiration IE ¢+ The production capacity of the crop is often expressed in temms of
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relative evapotranspiration {Feddes & van Wijk, 1976), defined as (EE /EEPot) ~100%.
Relative evapotranspiration calcuwlated from simulation results for the situation without
extraction is presented in Fig. 40b. Reductions in relative evapotranspiration and con-
sequently in crop production are likely to occur in areas showing high evapotranspiration
rates and situated not too far from the pumping site as may be seen from Figs 40b and
40c.

The effect of groundwater extraction on the calculated phreatic level in well No. 12
is shown in Fig. 42.

Applications of the quasi three-dimensional approach to saturated-unsaturated flow
as described in this study were reported for the following regions.
- Leerinkbeek area (141 kmz) . De Laat & van den Akker (1976) studied consequences of
groundwater extraction on the water-table elevation and crop production for a three-year
period.
- Dinxperlo area {57.5 lm12). Awater (1976) investigated possibilities to reduce the draw-
down resulting from pumpage by means of surface water infiltration. The simulation period
covered 41 years.
- Glindhorst .area (156 kmz). The 'Werkgroep Wateronttrekking Gelderse Vallei' (1979)
studied hydrological consequences for different groundwater extraction rates for a three-
year period. .
~ Achterhoek area (701 kmz). Awater & de Laat (1979) investigated for a three-year period
the effect of sprinkling and different extraction patterns on the water-table elevation
and real evapotranspiration. :

For each of the above mentioned applications the length of the time step used was.
ten days and the mesh width of the two-dimensional horizontal grid 1000 m, except for the
Dinxperlo area where the distance between the nodes was 500 m.
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Summary

The most important driving forces for transport of water in soil are differences in
elevation and pressure. These forces are usually combined into the hydraulic potential
gradient. Darcy's law relates this gradient to the flux density or specific discharge.
The proportionality factor of both quantities is the hydraulic conductivity K. Combina-
tion of Parcy's law and the principle of continuity leads to a general equation (13) with
two dependent varisbles (9 and p). In this study the generality is restricted to iso-
thermal flow of an incompressible homogeneous liquid in an isotropic rigid soil.

The particular forms of the general equation applying to simplified flow problems
are essentially different for a situation of complete saturation and for a partly satu-
rated flow system. For complete saturation the muher of dependent variables reduces to
one, and the hydraulic conductivity is a function of the independent variables alome. The
solution of differential equations governing flow in unsaturated porous media requires
the soil moisture characteristic, the relation between & and p, to be specified. Moreover,
the hydraulic conductivity is a function of 8 or p. Since both empirical relations {8(p}
and K(p) or K{8)} are difficult to measure and subject to hysteresis, solutions of par-
tial differential equations governing saturated flow are often more easily obtained than
of those governing unsaturated flow.

The algebraic formulation of the flow problem results in an abstract simulation
system, or mathematical model. Real simulation systems comprise physical and analogue -
models. A viscous fluid analogue model for simulating vertical unsaturated flow was
developed by Wind (1972) and a special purpose electrical analogue by Wind & Mazee (1979).
The most versatile models for saturated flow are the resistance-capacitance amalogues.
Although these direct simulation methods are capable of solving complex flow problems,
mathematical models are, due to recent advances in the field of computer technology,
considered superior in many ways.

The numerical solution of the governing partial differential equations may be ob-
tained by finite element or finite difference methods. The use of finite element methods
is advantageous if the flow domain is to be described by an irregular grid or when com-
plicated saturated-unsaturated flow problems are to be solved. Finite element techniques
are a recent development in the field of sub-surface hydrology. Most of the available
selutions of groundwater flow problems indeed use a finite difference method. Some cur-
rent finite difference techniques are discussed towards the end of Chapter Z.

For historical reasons and in view of the sbove mentioned differences in the nature
of the partial differential equations governing flow in completely saturated and partly
saturated porous media, flow above and below the water table was traditionally treated
separately. As it is often sufficient to consider flow in the unsaturated region verti-
cally and, in the saturated part in horizontal direction only, the separate approach
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largely reduces the complexity of the flow problem. However, serious objections are
raised if water tables are shallow or rapidly fluctuate, as the effect of unsaturated
flow on the saturated system may be.considerable. :

A unified approach to saturated-unsaturated flow was first reported by Rubin (1968).
In Chapter 3 a review is given of a mmber of papers using a single equation to model
flow in partly saturated flow systems. The problems solved by this rigorous approach deal
with pumping tests and flow in shallow water-table aquifers. For these flow problems the
effect of the unsaturated system on unconfined groundwater flow is most pronounced.

The use of ‘a single equation to solve saturated-unsaturated £low problems introduces
numerical difficulties. The governing equation is parabolic in the unsaturated zone and
of an elliptical .type in the saturated part, while the position of the phreatic surface
separating both regions is a priori unknown. The mmerical solution requires a small mesh
size in the region above the water table and in the vicinity of the well, because the
value of the dependent variable may change drastically over a short distance. Moreaver,
the non-linearity of the coefficients in the umsaturated part of the flow domain requires
for reasons of stability and comvergence that time is discretized to small steps. Due to
the limited capacity of the core memory of the computer and the extremely high rumming
costs, applications to regional problems have mot been reported.

An alternative solution proposed by Pikul et al, (1974) links Richards' equation
for vertical unsaturated flow to the equation of Boussinesq for horizontal saturated
flow. The efficiency of the resulting quasi three-dimensional approach for solving satu-
rated-unsaturated flow problems does not improve significantly, mainly because of the’
time step restriction for the solution of the eguation for unsaturated flow, which is
imposed upon the entire system. : : R

A model for vertical unsaturated flow being more efficient in terms of computer
costs is developed in Chapter 4. The model similates transient flow by a succession of

steady-state situations. Steady upward flow in a soil column extending to 2 height of one

metre above the water table was first computed by Richards (1931). A systematic computa-
(1955) and used by others te com-

tion of steady-state relations was carried out by Wind
pute for various water-table depths the maximm amount of soil moisture available for the
crop. Feitsma (1969) used a succession of steady-state situations to simulate the tran=
sient process of capillary rise and the drawdown of the water table. N

In this study the pseudo steady-state approach to capillary rise is analyzed. Its
approximate value depends on the length of the time increment used for simulation in
relation to the characteristic time of the unsaturated flow system. With a shallow water-
table in a sandy aquifer, the characteristic time is of the order of days. The-rest.alts
of the pseudo steady-state approach become jnconsistent if the length of the time 1incre-
ment used is smaller then the characteristic time. Similar difficuities arise for a
decreasing flux across the upper boundary and for the gituation that capillary rife is
followed by pércolation. Furthermore the position of the water table may not be simu-
lated properly if the flux across the lower boundary is large and dmmard?.

In this study the unsaturated zone extends fram just below the phreatic level tr:u
the soil surface. The region is schematized into a root zone and a subsoil. As flow in
the root zone is largely governed by the water uptake of the Toots, the gradient of the

105



hydraulic potential in the root zone is assumed equal to zero. It is shown that the
steady~state situation is fully determined by only two parameters (e.g. the saturation
deficit of the root zone 5_ and the steady flux in the subsoil q). The use of saturation
deficits reduces the solution of the steady-state situation to a problem of two relations
with two unknowns (Sr and q). The steady-state solution corresponding to the upper bound-
ary flux of the subsoil is termed upper boundary $olution. Procedures are developed to
account for the above mentioned inconsistencies and to treat periods with rainfall excess
following capillary rise. If the root zone desiccates to wilting point the calculation
procedure yields furthermore the actual flux across the soil surface. When there is a
large downward flux across the lower boundary, the upper boundary solution is unsuitable
for computing?_the water-table depth. For a downward lower boundary flux condition the
position of the phreatic level is therefore similated by a pseudo steady-state approach
to percolation applying to the lower part of the unsaturated zone, The steady-state solu-
tion corresponding to the lower boundary flux of the subsoil is termed lower boundary
solution. The upper and lower boundary solutions are combined into one simulation model,
taking into account hysteresis and heterogeneity. However, with percolation capillary
properties are assumed homogeneous, so that the model does not allow for the formation
of‘ perched water-tables.

A quasi three~dimensional approach for simulating transient sub-surface flow in
shallow water-table aquifers is outlined in Chapter 5. The solution uses a two-dimen-
sional horizontal grid to describe saturated flow. A special procedure is developed to
link in each node of the grid the unsaturated flow model with the saturated system.

An area of 36 kn’ in'the east of the Netherlands was chosen for experimental veri-
fication of the quasi three-dimensional model. The area was described by a rectangular
grid with a mesh size of 500 m. The length of the time increment used was ten days and
the simulation period covered almost six years. Simulated water-table elevations compared
favourably with observed values. Less accurate results were obtained in periods with an
2lternating evapotranspiration and rainfall excess. The sensitivity of the simulated
water-table elevations and calculated real evapotranspiration rates to a variation in the
value of several parameters was investigated. The results discussed in Chapter 6 show
that the calculated real evapotranspiration is most sensitive to the conceptual approach
for water uptake by the roots. For the approach to evapotranspiration as used in this
study, it appeared furthemmore that the difference between the calculated actual and
potential evapotranspiration of grass depends on the amount of soil moisture available
in the root zone rather than upon the empirical diffusion resistance for soil and crop
(rp]. : , : .

An application of the model for saturated-unsaturated flow is given. Consequences
of the implemented groundwater extraction in the study area on the calculated phreatic -

levels and water balances are predicted for the same period used for the verification
of the model. . - = - C : .
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Samenvatting

De belangrijkste drijvende krachten voor de beweging van water in de grond zijn ver-
schillen in hoogte en druk. Het is gebruikelijk deze krachten te combineren in de gradi-
ent van de hydraulische potentiaal. Het verband tussen deze gradiént en de fluxdichtheid
of het specifieke debiet staat bekend als de wet van Darcy. Hierin is de hydraulische
doorlatendheid K de evenredigheidsconstante van beide grootheden. Combinatie van de wet
van Darcy en het continuiteitsbeginsel leidt tot een algemene stromingsvergelijking (13)
met twee afhankelijke variabelen (6 en p). In deze studie is de algemeenheid beperkt tot
isotherme stroming van een onsamendrukbare homogene vloeistof in een isotrope rigide
grond.

Van de algemené formulering afgeleide vergelijkingen voor vereenvoudigde stromings-
problemen vertonen wezenlijke verschillen voor zover zij betrekking hebben op een geheel
of een gedeeltelijk verzadigd systeem. Bij volledige verzadiging is er nog slechts sprake
van 88n afhankelijke variabele die niet van invloed is op de hydraulische doorlatendheid
K. Voor het oplossen van differentiaalvergelijkingen voor stroming in een gedeeltelijk
verzadigd systeem moet het verband tussen & en p worden gespecificeerd. Bovendien is de
hydraulische doorlatendheid een functie van e of p. Beide empirische relaties {e(p) en
K(p) of K(8)} zijn moeilijk te bepalen en onderhevig aan hysteresis. Vandaar dat oplos-
singen van partigle differentiaalvergelijkingen in het algemeen eenvoudiger worden ver-
kregen voor stroming in een volledig verzadigd systeem dan voor stroming in een gedeel-
telijk verzadigd medium. _

De algebraische formulering van het stromingsprobleem resulteert in een abstract

simulatiesysteem of mathematisch model. Daarnaast bestaan er ook fysische en analoge mo-

dellen. Wind (1972) ontwikkelde een hydraulisch analogon en Wind & Mazee (1979) een
elektrisch analogon voor de similatie van verticale stroming in de onverzadigde zone.

De meest veelzijdige electrische analogons voor de simulatie van verzadigde grondwater-
an weerstanden en condensatoren. Ofschoon met deze

stroming bestaan uit een netwerk v
worden

directe simulatietechnieken gecompliceerde stromingsproblemen zijn op te lossen,
mathematische modellen in velerlei opzicht als superieur beschouwd. Hieraan heeft vooral
de recente ontwikkeling op het gebied van de digitale computertechniek bijgedragen.

Voor het numeriek oplosseri van stromingsvergelijkingen worden eindige elementen- en
eindige differentiemethoden gebruikt. De eindige elementermethode biedt voordelen bij het
oplossen van gecompliceerde verzadigde-onverzadigdé stromingsproblemen en in gevallen
waarbij het gebruik van een onregelmatig netwerk wenselijk is. De methode wordt pas sinds
kort toegepast voor het oplossen van stromingsproblemen in poreuze media, Van de be?r,aan-.
de numerieke oplossingen is dan ook het grootste deel verkregen met behulp van eindige
differenties. Fen aantal gangbare eindige differentietechnieken wordt besproken. aan het

¢inde van hoofdstuk 2.
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Om historische redenen, maar ook vanwege de genoemde verschillen tussen stromings-
vergelijkingen voor volledig verzadigde en gedeeltelijk verzadlgiie systemen, werd de X
waterheweging boven en beneden het freatisch vlak vanouds gescheiden bel'v?mleld. De?e a-
nadering vereenvoudigt de oplossing van het stromingsprobleem aanmerkelijk, omdat 1n de
onverzadigde zone veelal volstaan kan worden met het in beschouwing nemen van stroming
in verticale richting en in de verzadigde zone met stroming in het horizontale V%ak. Maar
in het geval van ondiepe of snel fluctuerends grondwaterstanden bestaan er ernstige be-
zZwaren tegen deze aanpak varwege het effect van de cnverzadigde stroming op het verza-
digde systeem. :

Een integrale benadering van verzadigde-onverzadigde stroming werd voor het eerst
gerapporteerd door Rubin (1968). In hoofdstuk 3 wordt een overzicht gegeven var'l modellen
die gebruik maken van slechts &n vergelijking voor het oplossen van stroming ir een ge-
deeltelijk verzadigd medium. De toepassingen van deze rigoureuze benadering hebben be-
trekking op de simulatie van pompproeven en stroming in watervoerende pakketten met ieen
ondiepe grondwaterstand. Voor deze stromingssituaties is het effect van het onverzadigde
Systeem op de stroming in het verzadigde freatische pakket het meest geprononceerd.

Het gebruik van slechts &sn vergelijking voor het simuleren van verzadigde-om-rr.erza-
digde stroming introduceert nmumerieke problemen. De stromingsvergelijking is namelijk
Parabolisch in de onverzadigde zone en van een elliptisch type in het verzadigde d?el,
terwi}l de ligging van het freatisch viak tussen beide gebieden a priori onbekend is.
Omdat de afhankelijke variabele in de onverzadigde zone en in de buurt van de put aan-
zienlijk kan varigren over een geringe afstand, moet gebruik gemaakt worden van een r.1et-
werk met een kleine maaswijdte, Bovendien vereist de niet-lineariteit van de coéffici-
enten die betrekking hebben op het onverzadigde deel van het stromingsgebied dat om re-
denen van stabiliteit en convergentie de .tijdstappen tot een kleine grootte worden ?emg_
gebracht. Voor Stromingsgebieden van enige omvang leidt dit tot exorbitante rekentijden
BN een tekort aan beschikbare geheugencapaciteit van de computer. Vandaar dat tot op
heden geen toepassingen op regionale schaal bekend zijn. .

Fen altematieve oplossing (Pikul et al., 1974) is de koppeling van Richards' ver-
gelijking voor verticale onverzadigde stroming aan de vérgelijking van Boussinesq \.r(‘)or
horizontale verzadigde stroming. De resulterende quasi drie-dimensionale aanpak bllJl_(t
Mt tot een significant gr Otere doelmatigheid te leiden bij het oplossen van verzadigde

onverzadigde stromingsproblemen, De belangrijkste oorzaak hiervan is dat de beperkingen

‘ : . en
die gelden ten aanziep van de lengte van de tijdstap voor onverzadigde stroming, word
opgelegd aan het gehele systeem.

In hoofdstuk 4 wordt de ontwi

_ {cale on-
kkeling beschreven van een model voor verticale
verzadigd

- i i - e
& stroming waarvoor de rekenkosten aamnmerkelijk lager zijn. Niet-stationaif
stroming wordt dogy het model ges

Opwaartse Stationaire stroming in
freatisch

imileerd met een opeenvolging van stationaire toestandel:
¢en grondkolom met een hoogte van cen meter boven het
berekend door Richards (1931). Een systematische be-
werd uitgevoerd door Wind (1955} en later door andoTen
toegepast bij de bepaling van de voor het gewas maximaal beschikbare hoeveelheid vocht

in relatie tot de diepte van de grondwaterstand. Feitsmg (1969) gebruikte hierbij ¢en
Opeenvolging yan Stationaire toestanden om het njiet-

vlak werd voor het eerst
Tekening vap stationaire relaties

. .re
stationaire proces van capillal
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opstijging en grondwaterstandsdaling te simuleren.

In deze studie is de pseudo stationaire benadering van capillaire opstijging ge-
analyseerd. De resultaten die met deze aanpak worden verkregen, blijken afhankelijk te
zijn van de lengte van de gebruikte tijdstap in relatie tot de karakteristieke tijd van
het onverzadigde systeem. In het geval van een ondiepe grondwaterstand in een zandige
grond ligt de waarde van de karakteristieke tijd in de orde van grootte van dagen. Indien
de lengte van de gebruikte tijdstap kleiner is dan de karakteristieke tijd, worden met de
pseudo stationaire benadering resultaten verkregen die fysisch gezien onjuist zijn. Het-
zelfde geldt in geval van een afnemende flux door de bovenrand van het model en voor de
situatie waarbij capillaire opstijging wordt gevolgd door percolatie. Bovendien is ge-
bleken dat voor een grote neerwaartse flux door de onderrand de positie van het freatisch
viak niet goed gesimuleerd kan worden. : : . ‘

In deze studie strekt de onverzadigde zome zich uit van juist beneden het freatisch
vlak tot aan maaiveld. Het gebied is schematisch verdeeld in een wortelzone en een onder-
grond. Omdat stroming in de wortelzone in hoge mate wordt bepaald door de wateropname Van
de wortels, is de gradi&nt van de hydraulische potentiaal in de wortelzone gelijk gesteld
aan nul, Er is aangetoond dat de stationaire stromingstoestand volledig is bepaald door

slechts twee parameters (b.v. het verzadigingstekort van de wortelzone S, en de statio-

naire flux in de ondergrond q). Door gebruik te maken van verzadigingstekorten wordt de
en probleem van twee relaties

tplossing van een staticnaire situatie teruggebracht tot ©

met twee onbekenden (S en Q. De oplossing van de stationaire situatie overeenkomend met
de flux door de bovenrand van de ondergrond wordt bovenrandoplossing genoend. Procedures
2ijn ontwikkeld om de hierboven genoemde onjuistheden te corrigeren en om perioden met
meerslagoverschot volgend op een situatie met capillaire opstijging te kumen simuleren.
Indien de wortelzone uitdroogt tot verwelkingspunt, berckent het model bovendien de wer=
kelijke flux door &e bovenrand. In het geval van een grote neerwaartse flux door de
onderrand is de bovenrandoplossing ongeschikt voor de berekening van de grondwatersa.md.
Vandaar dat voor een neerwaartse £lux door de onderrand de grondwaterstand wordt gesimu=
leerd met behulp van een pseudo stationaire benadering van de stroming in het deel vax}

e ondergrond dat juist boven het Freatisch vlak gelegen is. De oplossing van de statio-
taite situatie overcenkomend met de flux door de onderrand van de onverzadigde z?ne wordt
onderrandoplossing genoemd. De boven- en onderrandoplossingen zijn gecor?bir'xeerd n éé';
simulatienodel waarbij rekening is gehouden met hysteresis en heterogeniteit. (Iin g:;:t
van percolatie worden de capillaire eigenschappen echter homogeen verondersteld, Z

et het mode] geen schijngrondwaterspiegels gesimlleerd fumnen wor:en Limens
In h i i even van een quasil rie- )
cofdstuk 5 wordt een uiteenzetting g€ o st ing in water-

ring voor de simulatie van niet-stationaire verzadigde-onverzadl

og e i rdt gebruik ge-
Voerende . d. Bij de oplossing Wo t ge

pakketten me di ndwaterstand. B1] _ .

en t een ondiepe gIol e beschrij\’ing v e verza

kt van een i i i k voo
twee- rizontaal netwer
ee-dimensionaal horl ko1d on in seder + van
koppelen aan het verzadig-

jonale be-

d%gde grondwaterstroming, Een speciale procedure is ontwl
4t netwerk het model voor stroming in de onverzadigde zone te

de SYSteeIn. .f-.
i i drie-di i smenteel te Veriil
Teneinde het quasi drie-dimensionale model expeT 2 r een boschrijving van

%0sten van Nederland een gebied gekozen teT grootte van 36 km

gren werd in het
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het gebied is gebruik gemaakt van een rechthoekig netwerk met een maaswijdte van 500 m.
Met een tijdstap van tien dagen werd een periode van bijna zes jaar gesimuleerd. De over-
eenkomst tussen de gesimuleerde grondwaterstande; en de waargenomen waarden is bevredi-
gend. Minder nauwkeurige resultaten zijn verkregen in perioden met een afwisselend ver- -
dampings- en neerslagoverschot. De gevoeligheid van de gesimuleerde grondwaterstanden en
de berekende evapotranspiratie ten aanzien van een variatie in de waarde van een aantal
parameters werd onderzocht. Uit een bespreking van de resultaten in hoofdstuk 6 blijkt
dat de berekende werkelijke verdamping in hoge mate wordt bepaald door de conceptuele
benadering van de watercpname door de wortels. Voor de in deze studie gevolgde benade-
ringswijze van de gewasverdamping is verder gebleken dat het verschil tussen de berekende
werkelijke en potentidle evapotranspiratie van gras vrijwel uitsluitend afhankelijk is
van de beschikbare hoeveelheid vocht in de wortelzone en in veel mindere mate van de
empirische diffusieweerstand voor bodem en gewas (rp] . .
Met een toepassing van het model voor verzadigde-onverzadigde stroming werden de

gevolgen van grondwateronttrekking voor de berekende grondwaterstanden en waterbalansen

- voorspeld. De toepassing heeft betrekking op de onttrekking in het modelgebied en de
periode die ook voor de verificatie van het model is gebruikt.
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Coefficient in Eqn 72

Coefficient in Eqn 91

Coefficient in Eqn 15

Coefficient in Eqn 84

Coefficient in Eqn 91

Coefficient in Eqn 84

Hydraulic resistance of confining layer
Compressibility of the soil matrix

Compressibility of water

Specific moisture capacity

Partial differential operator

Depth of water table helow upper boundary of percola-
tion profile '
Thickness of (saturated part of) aquifer
Diffusivity as defined by Eqn 29
Thickness of confining layer

Thickness of 'effective' root zone

" Actual vapour pressure at 2 m height

Saturated vapour pressure for the air at 2 m height

Aerodynamic evaporation
Potential evapotranspiration

-Real evapotranspiration

Evaporation of a wet surface
Observed water-table elevation
Mean of observed water-table elevations

.Simulated water-table elevation

Acceleration due to gravity

Water-table elevation

Water-table elevation at boundary §

Soil surface elevation

Space index in x direction

Total mmber of nodes in x direction

Space index in y direction

Total muber of nodes in y direction -
Proportionality factor in Darcy’s law (Egn 10)
Hydraulic conductivity S
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Hydraulic conductivity of an aquifer taken as a con-
stant in vertical direction

Hydraulic conductivity of confining layer
Principal components of the hydraulic conductivity
tensor

Saturated hydraulic conductivity in the unsaturated
zone

Mesh width

Latent heat of vaporization

Horizontal distance used in problem {54)

Index for boundary node in x direction

Time index

Porosity

Coefficient in Eqn 72

Direction normal to the boundary

Hydraulic or matric pressure, relative to atmospheric
pressure

Atmospheric pressure (pa = 1.013)

Matric pressure at interface root zone - subsecil
Pressure equivalent of total soil water potential
Precipitation

Flux density or specific discharge

Flux in case of steady unsaturated vertical flow
Sink term due to groundwater extraction

Source or sink term function

Groundwater discharge into surface water system
Upper boundary flux of percolation profile

Flux across interface root zone - subsoil

Maximm possible flux across soil surface |

Real flux across soil surface

Upward flux from the saturated region into the un-
saturated zone : -
Vertical flux across a level just below the water
table or lower boundary of the unsaturated flow model
Flux for which both relations (91) and (94) apply
Flux in the respective co-ordinate directions
Groundwater extraction

Iteration index

'BEffective’ pore radius : :
Diffusion resistance to water vapour in the air
Diffusion resistance depending on the fraction of

. s0il covered

Diffusion resistance depending on light intensity

Pa, mbar

bar
mbar
Pa
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Diffusion resistance depending on soil moisture-
conditions and flow in the plant

Total diffusion resistance of crop and soil
Efficiency factor

Net radiation

Slope of the temperature - saturation vapour pres-
sure curve :

Specific storage s, = pgn(cf + c:w)}

Degree of water saturation

Part of boundary for horizontal saturated flow for
which h =-h*, and the flux normal to the boundary
equals zero, Tespectively '
Fraction of the soil covered by the crop
Saturation deficit in the subsoil for q = 0
Saturation deficit of percolation profile
Saturation deficit of root zone

Saturation deficit of subsoil

Saturaticn deficit of entire unsaturated zone

. (su = Sr * SsJ

Time

Transmissivity

Average transmissivity of element A

Depth of water table below soil surface

Cartesian co-ordinate directions or distance along

_the respective co-ordinate directions

Various heights used in problem (54)
Distance between phreatic level and interface root

zone - subsoil applying to the upper boundary solution
Depth of water table resulting from the lower bound-

ary flux alone

Integration dummies

Reciprocal of delay index

Psychrometric constant

Increment

Ratio molecular weight of water vapour and dry air
(e = 0.622)

Height of the water table above the lower boundary
of the unsaturated flow model

Elevation of upper boundary of percolation profile
in the model for unsaturated flow

Distance between the interface root zone - subsoil

and the lawer boundary of the unsaturated flow mbdel_

Fluid dynamic viscosity
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Fractional volumetric moisture content
Moisture content used in Eqn 64
Intrinsic permeability

Specific yield or storage coefficient

Short-term and long-term specific yield, respective- -

1y, used in Eqn 53

Storage coefficient which is independent of water-
table depth

Density of soil water

Density of air (pa = 1.,2047)

Standard deviation of the differences between simu-
lated and observed water-table elevations

Time (r < t) used in Eqn 53

Characteristic time

Hydraulic head or total soil water potential ex- .
pressed as energy per unit weight

Hydraulic head in adjoining aquifer

Total, pressure, osmotic and gravitational soil water
potential, respectively, expressed as energy per umit
mass

Over-relaxation parameter

Operator for gradient or divergence

m, Cn
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Appendix A

Computation of 5 A and 3, a8 a function of Ppg and q for a heterogencous soil profile

If different K(p) relations apply to different layers in the subsoil pressure pro-
files do not exist. Instead of z(p,q), a relation can be computed between the pressure
at the interface root zone - subsoil Prs and the depth of the water table below this
interface z,.. for a mumber of positive values for q, yielding z, (p s,_) A numerical
approach to the computation of the relations S, (Zra ,q) and Ss‘(p]rs ,q) for a heterogeneous
subsoil is given below.

The subsoil is divided into layers with a depth of 1 cm. For each layer a soil mois~
ture characteristic and K(p) relation must be specified. Given a water-table depth Z,q
(integer in am) the layer index & runs from 1 to z__, where £ = 1 for the layer of which
the lower side is at a depth zZ, (F1g Al). For a given steady flux q and water-table
depth z o the computation of S and Pps proceeds as follows. The matric pressure distri-
buticn is mmerically approached for the successive layers starting at the phreatic level
in upward direction. The variables are initialized as follows: p = 0; 4p = -1 mbar; Sa =0
and & = 1, where Ap is a first estimate for the change in p over layer t.

Step 1: The average pressure p in layer £ is estimated as p = p + }4p.

Step 2: Interpolate the hydraulic conductivity K for p = p from the K(p} relation that
applies for layer £. (It may often be necessary to carry cut this interpolation an
a double logarithmic scale, due to the non-linearity of this relation.)

Step 3: Compute the increase in height Az from Darcy's law, written as

L-er

Zrg

—— e o
[ R ——

- N W H

Fig. Al. The use of the layer index & for a par-
ticular water-table depth z ..
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Step 4: Improve the estimate for p halfway layer & to
P=p+ig

Step 5: Interpolate K for p = p from the K(p) relation that applies for layer %.
Step 6: Compute the change in p over layer & (for which Az = 1 cm) from Darcy's law, now
written as i

AP=-OgK—Kﬂ Az

(Comparison with analytical solutions shows no need to repeat Steps 1 toé to
improve the solution for ap.}
Step 7: Interpolate for p = p + iap the moisture content & from the soil moisture charac-
teristic for layer 2 am_i increase S, with the saturation deficit of this layer
s = SS +n-9

where n is the porosity of layer &,
Step 8: Compute the matric pressure at the upper side of layer &

p=p+ip
Step 9: Increase‘thellayer index
=&+ 1
Step 10: If & < z__ go to Step 1. If not, the computations are ccrnp}e#gd and p. = P-

The above scheme is executed for values of z . increasing from zero with steps of 1. cm
until the absolute value calculated for P, 1s greater than or equal to 16000 mbar. If
the soil is homogeneous the computed relation between p and z (and between 6 and z) does
not change with z .- Then values for p., and S are easily computed for z s if the above
scheme is applied with the following 1n1t1a1 data- = z . and values for Ap, SS and

P = P, 3s computed for the previous water-table depth (z rg ~ 1)+ From the calculated
relations between Zrgr Ppg 8nd S_ values for z rs 2nd S_ are interpolrated for diff(_—:r_ent
values of Ppgs yielding S {p ) and zrs(prs) .

The above procedure is carned out for a number of values for q resultlng in-the
relations S_{p__,q) and er(Pr »@ . In this study S, and z _ are computed for the follow-
ing 13 values for P -10, -20, -31, -50, -100, -250 =500, -100G, -2500, -5000,
-10000 and -16000 mbar and the following 18 values for q: 0, 0.001; 0.005, 0.010, 0.015,
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0.020, 0.030, 0.040, 0.060, 0.080, 0.100, 0.125, 0.150, 0.200, 0.300, 0.400, 0.500 and
1,000 an-d”'.

As for a homogeneous profile the values computed for z as a function of p are in-
dependent of the water-table depth, the relation zrs(prs,a) may be written as z{p,q),
which are the pressure profiles in Fig. 5c. The saturation deficit curves Sa(pl_s ,q) are
presented in Fig. 5f, while the derived relation Ss[zrs,ﬁ) which results from a combina-

tion of Ss(prs,a] and er(prs’q) is shewn in Fig. Se.
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Appendix B

Hysteresis in the Sr(prs) relation

Consider the hysteretic relation between 8 and p given in Fig. Bl. The solid lines
represent the relation for dryving, the broken lines for wetting. The most extreme curve
for drying corresponds to the soil moisture characteristic given in Fig. 5b. Disregarding
the scanning curves, the relations for drying and wetting are used to compute Sr(prs) .

The result is given in Fig. B2 for a depth of the root zone Dr = 30 can. The broken line
represents the situation for which : 3 continuously decreases from pF 4.2 to zero assuming
equilibrium conditions in the root zone. This process may be approximated if the root zone
is slowly wetted by capillary rise from the subsoil while q_ = 0. Generally wetting is
caused by rainfall excess, resulting in a highly non-linear flow process which is com-
plicated by hysteresis. As the pseudo steady-state procedure does not consider fiow in
the root zone, the total effect must be lumped into the S.(p,,) relation. It should be
noted that the nature of the pseudo steady-state procedure hampers the pressure at the
lower side of the root zone obtaining low pF values. Even after a long wet periocd the

P, Value may not drop below pF 1.5. Therefore it is assumed that hysteresis effects in
the root zone have ceased if the matric pressure P, has reached a value of e.g. pF 1.5.
The resulting numerical representation of the hysteretic Sr (prs} relation for the 13
values of p,, mentioned in Appendix A is given in Fig. B3.

Data on hysteresis in the soil moisture characteristic are usually not available.
Therefore a 'hysteresis factor' is introduced, defined as the mumber of logarithm cycles

Fig. Bl, Soil moisture characteristic
showing hysteresis with 68(p) relations
for drying (—) and for wetting {(-=-).
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Fig. B2. Saturation deficit curve for the
Toot zone (D, = 30 cm) showing hysteresis
with § (prs) relatlons for drying (- ) and
for wettxng (==,

S, {cm)
10

| 1 } 1 | | 1 LI
1720 242730 34374042
pF= lg{(-pyg)

S
-
bl

Fig. B3. Numerical representation of the
8 (Pr$) relation showing hysteresis (hys-—
teresis factor equals 0.5) with Sr(Prs)

relations for drying (=) and for wetting

(—).

over which the S_(p ) curve for drying is shlfted along the p__ axis to obtain the -
wetting curve. The hystere51s factor applying to Fig. B3 equals 0 5. In the absence of

data the hysteresis factor must be calibrated.

A mumerical procedure is developed to compute the S (p ) relation at the beginning
of each time increment. For time step n+] the scanning curve connecting the curves. for
drying and wetting is computed such that it joins the drying curve for values of S > S

and the wetting curve for values of S, < Sr.
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