
Automated Generalization in GIS

Wanning Peng

• T C

Publication
Number 50

Supervisor: Dr. Ir. M. Molenaar
Professor of Spatial Information Production
from Photogrammetry and Remote Sensing

Co-Supervisor: Dipl.-Ing. Dr. K. Tempfli
Associate Professor
Department of Geoinformatics
International Institute for Aerospace Survey and Earth Sciences
(ITC), Enschede

(j ^o teo t , 11S<o ,

Wanning Peng

Automated Generalization in GIS

Proefschrift
ter verkrijging van de graad van doctor
op gezag van de rector magnificus,
Dr. CM. Karssen,
in het openbaar te verdedigen
op vrijdag 16 mei 1997,
des morgens om elf uur in de Aula
van de Landbouwuniversiteit te Wageningen

ITC Publication Series
Nr. 50
The research presented in this thesis was performed at
International Institute for Aerospace Survey and Earth Sciences (ITC)
P.O. Box 6, 7500 AA Enschede, The Netherlands

The Examining Committee:

Prof. Dr. J.C. Muller, Institute of Geography, Ruhr University Bochum, Germany

Prof. Ir. A. Beulens, Department of Computer Science, WAU, The Netherlands

Prof. Dr. M.J. Kraak, Department of Geoinformatics, ITC, The Netherlands

Dr. P.J.M. van Oosterom, Cadastre & Public Registers Agency, Apeldoorn, The
Netherlands

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

© 1997 Wanning Peng
ISBN 90 6164 1349

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior permission, in
writing, from the author.

Automated generalization in GIS
Thesis Wageningen Agricultural University and ITC,
with index, ref. Summary in Dutch.

Subject headings: database generalization, view generalization, supporting data
model, spatial adjacency, spatial analysis and geometric operations, object-oriented
design for automated database generalization, generalization rule base.

BIBLIOTHEEK
LANDBOUWUNIVERSITEIT

WAGENIMG EN

•jc^O', ££34
t/r

PROPOSITIONS

Peng, W., 16 May 1997. Automated generalization in GIS. PhD Dissertation.

1. Map generalization has been regarded as an issue of art for many decades; the
research efforts on the automation of a generalization process have been gradually
transforming this issue into a scientific topic.

2. The bottom-up approach in the research of automated generalization attempts to
understand the generalization process from the products and experiences of manual
generalization, and then simulate the process in a computer. The top-down
approach, based on the "theory" of geo-data and GISs, studies first what role
generalization should play in a GIS, and in geo-information processing, then
investigates problems that may be encountered in playing such a role, and finally,
looks for solutions for the problems. This approach is more appropriate than the
bottom-up one, for defining the subject of automated generalization.

— This thesis

3. An automated generalization system is the dream of many cartographers and GIS
developers. However, it is important to realize that while database generalization
can be fully automated, a view generalization process may need the user — the
judge — to participate in decision-making. Thus, interactive-generalization utilities
are still required in a GIS, as far as view generalization is concerned.

— This thesis

4. To a great extent, view generalization is an issue of competition under certain rules.
In the competition, more important or stronger objects "survive", whereas less
important or weaker objects have to struggle for "survival" by, for instance, forming
"communities" to become stronger (aggregation), or adjusting themselves to adapt
to the environment (symbolization, exaggeration, shrinking, typification). Those
who fail to do so will be eliminated. In this sense, view generalization can be seen
as a process of 'evolution'.

— This thesis

5. Being an important property of a map, 'scale' has been used as a critical index for
the usage of the map, but it does not have the nature of telling whether the contents
of a map of a certain scale were described in the way that best suits a particular
application.

6. In the context of a GIS, a database should no longer be related to a 'scale' level,
but rather, a 'resolution' level, which indicates the level of geometric and thematic
detail of the data contained in the database.

— This thesis

À

7. For many applications in China, data can be obtained in a much more economical
and efficient way, by transforming existing detailed geo-databases, if an automated
database generalization process is available.

8. Conceptual data models are independent of implementation conventions; however,
only through an implementation can the promise of a conceptual data model be
validated.

9. 'Telling the truth' does not always lead to a good effect, and 'not telling the truth'
sometimes can be constructive.

10. If not being prepared to be a loser, one should not aim to be a winner.

11. An irritation at a proper time can be much more helpful than a compliment (after
"Proclamatie", Nr. 35, by H. N. Werkman).

12. In many instances it is said that 'saying is easier than doing', but generalization is
the process for which 'doing is easier than saying'.

Wanning Peng

Automated Generalization in GIS

Thesis
to fulfil the requirements for the degree of doctor
on the authority of the rector magnificus,
Dr. CM. Karssen,
to be publicly defended
on Friday 16 May 1997,
at 11:00 hours in the Auditorium
of Wageningen Agricultural University

Abstract. (W. Peng)

ABSTRACT

Peng, W., 1997. Automated generalization in GIS. PhD Dissertation.

After more than three decades of effort, it is still a question whether generalization can
be formally defined, and whether automated generalization can be realized. This work
models automated generalization in GIS by defining a conceptual framework,
elaborating the supporting data model, and developing key algorithms for the required
spatial analysis and geometric transformation. The object-oriented logical design,
which has been developed in this research, demonstrates the feasibility of realizing an
automated database generalization in a general purpose GIS.

Although the theory of geo-data and GISs is still under development, there already
exist some concepts, based on which generalization in GIS can be defined. These
concepts include geo-databases and the underlying modelling process, spatial objects
and object types, object classification and aggregation hierarchies, spatial and thematic
resolutions, and the graphic 'views' of a geo-database. Generalization (in GIS) is seen,
in this context, as a transformation process with the following two objectives: a) to
transform an existing database to another one of lower resolution; and b) to provide a
legible graphic view of a database or part of it.

These two objectives lead to the distinction of database generalization and view
generalization. A formal description of the generalization problems, and solutions, is
provided for both types of generalization.

Generalization operations are arranged into an operation-matrix and operation-network
for automated database generalization. In this way, it has become possible to set up a
generalization rule base and provide measures for reasoning the rule base. A process
flow is also developed for view generalization. Objects are grouped into generalization-
units according to certain criteria; constraints, such as solution-localization, are
introduced, in order to understand and define the problems in view generalization, and
to facilitate the solutions.

The supporting data model is the Formal Data Structure model (FDS). The concept of
spatial adjacency which has been defined in the FDS, is extended by introducing the
adjacency relationships between geometric primitives of different types, and between
objects of different geometric description types (including both connected and
disconnected objects). These extended adjacency relationships are important for
decision-making in automated generalization, and for geometric transformation. They
are modelled based on the Delaunay triangulation network (DTN).

This enhanced FDS, the EFDS, has proven adequate for supporting automated
generalization, particularly for rule translation, spatial analysis, and the implementation

Abstract. (W. Peng)

of generalization operations.

The algorithms, which have been developed in this research, pertain to important
geometric problems in both database generalization and view generalization. These
problems include object aggregation, spatial conflict detection, object displacement and
displacement propagation, pattern detection, and spatial context analysis. The
algorithms make use of the DTN, and the adjacency relationships defined in the EFDS.
The safe-region of an object, which determines the area within which the object can
expand and move around freely, provides us with an efficient and useful means to
control generalization operations in order to avoid violating topology and creating new
spatial conflicts.

These algorithms, and the extended adjacency relationships, are tested using ISNAP,
which is a Windows-based Multiple Document Interface software package developed
for this research.

The object-oriented design has three essential characteristics: a) the rule base scheme
and reasoning process; b) the object-oriented database structure; c) the generalization
mechanism integrated in the database structure.

Based on the database structure, generalization operations are defined at database level,
and then "propagated" to object-container level, and finally to object level, if
necessary. This three-level (i.e., database/container/object) structure allows a complex
generalization problem to be decomposed, and solved at different levels according to
its nature, which, in turn, leads to a more simple, clear, and structured generalization
mechanism. The rule base scheme, and the reasoning mechanism, offer to the user the
"authority" to define his/her target database and the corresponding transformation. The
design makes use of the advantages of object-orientation in both data modelling and
programming.

Keywords: automated generalization, database generalization, view generalization,
spatial object, object type, object classification hierarchy, object aggregation hierarchy,
spatial resolution, thematic resolution, database, view, scale, abstraction level, data
complexity, data model, spatial adjacency, generalization-unit, solution-localization,
safe-region, rule base scheme, object-orientation, Delaunay triangulation network,
algorithm.

Samenvatting. (W. Peng) iii

SAMENVATTING

Peng, W., 1997. Automated generalization in GIS. PhD Dissertation.

Al meer dan 30 jaar wordt onderzoek gedaan naar de mogelijkheden om het generalisatie
proces van ruimtelijke gegevens te formaliseren en te automatiseren; de resultaten van
dit onderzoek zijn tot nu toe gering en het is nog steeds de vraag of dit mogelijk is. In
deze dissertatie wordt een strategie voorgesteld voor de geautomatiseerde generalisatie
in GIS; hiertoe wordt een ontwerp-raamwerk geformuleerd uitgaande van een
onderliggend gegevensmodel en de ontwikkeling van de belangrijkste algorithmen voor
de benodigde ruimtelijke analyse en geometrische bewerkingen. Via een object­
georiënteerde benadering wordt een aantal mogelijkheden getoond voor de
geautomatiseerde generalisatie van ruimtelijke gegevensbestanden in een algemene GIS
omgeving.

De ontwikkeling van een geografische informatie theorie is nog in volle ontwikkeling,
maar de contouren van zo'n theorie zijn al duidelijk te vinden in de literatuur en er zijn
al een groot aantal concepten geformuleerd die van belang zijn voor het automatiseren
van generalisatie processen in GIS zoals de topologische gegevensmodellen, het
concept van ruimtelijke objecten en hun object klassen en klasse hiërarchieën, het
concept van aggregatie hiërarchieën van ruimtelijke objecten, het begrip van
ruimtelijke en thematische resolutie. Generalisatie (in GIS) wordt in dit verband
beschouwd als een transformatie met de volgende twee doelstellingen: a) de
transformatie van een gegevensbestand in één dat minder gedetailleerd is, en b) het
creëren van een leesbare grafische presentatie van (een gedeelte van) een
gegevensbestand.

Deze twee doelstellingen leiden tot het onderscheid van de generalisatie van een
gegevensbestand en van de grafische presentatie ervan. Van de problemen die zich
voordoen bij generalisatie wordt voor beide een formele omschrijving gegeven.

De verschillende operaties worden geordend in een bewerkingsmatrix en een
bewerkingsnetwerk, waardoor het mogelijk werd om een set van regels voor
generalisatie te formuleren en criteria te geven voor de toepassing van die regels.

Voor generalisatie van een grafische presentatie werd tevens een processchema
ontwikkeld. Objecten worden volgens bepaalde criteria in generalisatie-eenheden
gegroepeerd; beperkingen voor de transformatie mogelijkheden van zulke eenheden
worden geanalyseerd, teneinde het zoeken naar mogelijkheden voor de generalisatie
van de grafische voorstellingen te preciseren en te vergemakkelijken.

De ontwikkeling van generalisatie strategieën gaat uit van de Formele Gegevens
Structuur (Formal Data Structure-FDS). Het begrip "adjacency" (aangrenzing), zoals

iv Samenvatting. (W. Peng)

in de FDS omschreven, wordt uitgebreid door de adjacency-relaties tussen
geometrische primitieven van verschillende types, alsmede tussen objecten met
afwijkende geometrische beschrijvingstypes (zowel verbonden als niet-verbonden
objecten) erbij te betrekken. Deze uitgebreide adjacency-relaties zijn van belang voor
de formulering van beslissingscriteria in geautomatiseerde generalisatie processen
alsmede voor geometrische bewerkingen. Zij zijn gemodelleerd met behulp van
Delaunay triangulatie netwerken (DTN).

Deze "extended FDS", EFDS genaamd, bleek geschikt voor de automatisering van
generalisatie processen, en vooral voor de implementatie van beslisregels voor de
ruimtelijke analyse en voor het uitvoeren van generalisatie operaties.

De in dit onderzoek ontwikkelde algorithmen hebben betrekking op belangrijke
geometrische problemen in zowel generalisatie van gegevensbestanden als van de
grafische presentaties ervan, zoals het samenvoegen van objecten, de opsporing van
ruimtelijke conflicten, de verschuiving en verspreiding van objecten,
patroonherkenning, en de analyse van ruimtelijke verbanden. De algorithmen zijn
gebaseerd op DTN en de adjacency-relaties in de EFDS. Het veilige gebied van een
object, dwz. de ruimte waarin het object zich kan uitbreiden en vrij bewegen levert een
efficiënte en nuttige methode om generalisatie operaties te controleren, zodat de
topologie niet aangetast wordt en er geen nieuwe ruimtelijke conflicten veroorzaakt
worden.

Met ISNAP, een voor Windows bij dit onderzoek ontwikkeld computer programma dat
meerdere documenten verbindt, worden deze algorithmen en de uitgebreide adjacency-
relaties getoetst.

Het object-georiënteerde ontwerp omvat drie essentiële eigenschappen: a) het overzicht
van de regels en de onderbouwing daarvan; b) de structuur van het object-georiënteerde
gegevensbestand; c) het in de structuur van het gegevensbestand geïntegreerde
generalisatie mechanisme.

Op basis van de structuur van het gegevensbestand worden generalisatie operaties
duidelijk omschreven op het niveau van het gegevensbestand, en vervolgens
doorvertaald naar een niveau van object-containers en zonodig tenslotte naar het
niveau van de individuele objecten. Deze structuur van 3 niveaus stelt ons in staat om
een ingewikkeld generalisatie probleem in delen te splitsen en elk van deze
deelproblemen, per geval, op drie niveaus aan te pakken en op te lossen, hetgeen tot
een eenvoudiger, duidelijker en beter gestructureerd generalisatie proces leidt. Het
overzicht van de regels en hun onderbouwing stelt de gebruiker instaat zelf zijn/haar
"target" gegevensbestand te definiëren met de daarbij behorende operaties. Het
ontwerp maakt gebruik van de voordelen van object-oriëntatie voor
gegevensmodellering en programmering.

Acknowledgements. (W. Peng)

ACKNOWLEDGEMENTS

Thanks are due to many people for their support and contributions, in one way or the
other, during this research project.

I am particularly grateful to both of my supervisors, Professor dr. Martien Molenaar
and dr. Klaus Tempfli, for their scientific contributions, and strong support in various
aspects. The contribution of their rich knowledge of geo-information sciences,
particularly in data modelling and geo-information processing, has played an important
role in this research.

It was a valuable experience to work with dr. Tempfli. I especially appreciate the
stimulating, yet enjoyable, discussions on various issues regarding this research. This
thesis benefited a great deal from his 'right to the point' comments.

My special thanks go to professor dr. Jean Claude Muller, who initiated this research
project in 1992, when he was my supervisor during my MSc study in ITC. He
continued to give me his valuable advice, support, and friendship after having moved
to Ruhr University, Bochum, in Germany. In May 1995,1 had the opportunity to visit
him and discussed with him a number of important issues with respect to the subject.

I would also like to thank dr. K. Sijmons and Mr. A. Brown for their contributions and
help in the early stage of this research. I am also thankful to ITC and DGIS for
providing the financial support.

Stimulating discussions and close cooperation with Morakot Pilouk, my former PhD
fellow colleague, were a great help to the achievement of this research. The ISNAP
software package is the best example of the benefit which has been derived from our
cooperation and discussions.

There are many more people to whom I wish to express my gratitude. Professor dr. M.
Juppenlatz always gave me encouragement, and kindly edited this thesis within a very
short period. Mrs. Anneke Homan took care of the administrative matters, and carefully
and promptly prepared the final production of the thesis. Mr. Ard Blenke was always
helpful in providing computer hardware and software support. The secretariat of the
Department of Geoinformatics were always glad to lend me a hand when I needed help.
I am also grateful to dr. Elizabeth Kosters for her help and support.

Life could have been very hard without friends. Mrs. N. Juppenlatz always showed her
concern, understanding, and friendship. Friendship and help were also received from
Mr. Yu Jing-quan, Mrs. Wang Yan, Mrs. Anneke Homan, and from the families of dr.
Tempfli, dr. Pilouk, Mr. Phem, Mr. Lin Hsiang-tseng, and Mr. Wang Wei-min.

Finally, I wish to express my deep gratitude to my wife and children, my parents,
sisters, and brothers. This thesis could never have been completed without their great
support, understanding, and love.

VI

Contents. (W. Peng) vii

CONTENTS

ABSTRACT i

SAMENVATTING iii

ACKNOWLEDGEMENTS v

CONTENTS vii

LIST OF FIGURES AND LIST OF TABLES xi

1 INTRODUCTION 1

1.1 Problems and the Needs for the Study 1

1.2 Objectives of the Study 4

1.3 Scope of the Study 5

1.4 Research Approach 6

1.5 Structure of the Thesis 6

2 RELEVANT ASPECTS OF GEO-DATA AND GEOGRAPHIC

INFORMATION SYSTEMS 9

2.1 Basic GIS Components and System Architecture 9

2.2 Relevant Aspects of Conceptual Data Modelling 12

2.3 Spatial Resolution and Thematic Resolution 17

2.4 The Graphic Representation of a Database - Views 21

2.5 Difference between a Database and a Map 22

2.6 Map Generalization and its Complexity from a GIS Perspective 24

3 GENERALIZATION IN A GIS CONTEXT 25

3.1 Objectives of Generalization 25

3.2 Generalization as a Database Process and as a Visualization Process . . 25

3.3 Database Generalization 28

3.3.1 Elementary Problems and Solutions 28

3.3.2 Modelling Operations for Database Generalization 35

3.4 View Generalization 38

3.4.1 A Geographic Space from a View Generalization Perspective . 39

3.4.2 The Concept of Solution-localization 42

3.4.3 Assumptions and Constraints 42

viii Contents. (W. Peng)

3.4.4 Elementary Problems and Solutions 44

3.4.5 The Proposed View Generalization Flow 54

3.4.6 Determining an Output Scale 57

3.5 Generalization of Terrain Relief Representation 57

3.6 Summary 60

4 SUPPORTING DATA MODELS 63

4.1 General Requirements of Supporting Data Models 64

4.2 The Formal Data Structure Model - FDS 65

4.3 The Enhanced Formal Data Structure Model - EFDS 67

4.3.1 General Concepts ofDelaunay Triangulation Network 68

4.3.2 Some Definitions and Notations 69

4.3.3 Adjacency Relationships between Geometric Primitives 70

4.3.4 Adjacency Relationships between Features 72

4.3.5 The Symmetric and Intransitive Properties of the Adjacency

Relationships 73

4.4 Examples of Spatial Query Operations Based on the EFDS 74

4.5 Summary 78

5 SUPPORTING ALGORITHMS 79

5.1 'Spacing' Checking 79

5.2 Aggregation Operation 81

5.3 Spatial Conflict Checking 85

5.4 Clustering and Problem-zone Detection 86

5.5 Object Displacement and Safe-region 89

5.6 Displacement Propagation 91

5.7 Object Exaggeration 93

5.8 Safe-region Expansion 93

5.9 Pattern Detection 93

5.10 Spatial Context Analysis 99

5.10.1 An Example of Spatial Context Analysis 99

5.10.2 Design and Construction of a Dynamic Decision Tree 100

5.10.3 Reasoning Process for Decision-making 104

5.10.4 Final Decision-making and a Progressive Approach 105

5.10.5 Test and Discussion 106

Contents. (W. Peng) ix

6 AN OBJECT-ORIENTED DESIGN FOR AUTOMATED DATABASE

GENERALIZATION 109

6.1 Key Problems 109

6.2 Generalization Rule Base 110

6.2.1 A Generalization Rule Base Scheme 110

6.2.2 Reasoning a Generalization Rule Base 116

6.2.3 Consistency Check 118

6.3 An Object-oriented Design for Automated Database Generalization . 119

6.3.1 A GeneralEFDSDatabase 120

6.3.2 Introducing Generalization in a EFDS Database 126

6.4 Summary and Discussion 133

7 IMPLEMENTATION AND TEST 135

7.1 The Interface 135

7.2 The Triangulation (Network) 138

7.2.1 Definition of a Triangulation Network 138

7.2.2 Construction of a Triangulation Network 140

7.2.3 Information Inquiry 142

7.3 The Application 142

7.4 Data Input and Output 144

7.5 Discussion 145

8 CONCLUSIONS AND FUTURE RESEARCH 151

8.1 Discussion 151

8.2 Conclusion 155

8.3 Future Research 156

BIBLIGRAPHY 159

APPENDICES 167

APPENDIX A: Class Definition (A) 167

APPENDIX B: Class Definition (B) 175

APPENDIX C: File Format 185

ACRONYMS 187

CURRICULUM VITAE

List of figures and list of tables (W. Peng) xi

LIST OF FIGURES

2.1 The main components of a GIS 10

2.2 A structural integration architecture of a GIS 12

2.3 Two principle structures for spatial data 13

2.4 Two geometric structures for spatial objects 14

2.5 Examples of classification hierarchy and aggregation hierarchy 16

2.6 Examples of consequences of changing spatial resolution components . . . 19

2.7 An example of thematic resolution and classification hierarchy 20

2.8 An example of thematic resolution and aggregation hierarchy 20

2.9 Database and its view(s) 22

2.10 Difference between a GIS database and a map database 23

2.11 Examples of "distortion" 24

3.1 Examples of different generalization schemes 26

3.2 An example of context transformation by reclassification operation 30

3.3 An example of changing classification level: Universalization 31

3.4 An example of creating homogeneous unit: Homogenization 31

3.5 An example of combination operation 33

3.6 An example of combination operation 33

3.7 An example of combination operation 34

3.8 An example of combination operation 34

3.9 An operation-network for database generalization 38

3.10 Examples of linear-generalization-unit, simplex-generalization-unit, and

complex-generalization-unit 40

3.11 Examples of local-conflict-group and independent-unit 40

3.12 A geographic space from a view generalization perspective 41

3.13 Examples of solutions for handling "too-small" generalization-units 45

3.14 Examples of solutions for handling "too-small" single simplex-

generalization-units within a local-conflict-group 46

3.15 Examples of solutions for a conflict between an independent-unit and a

linear-generalization-unit 48

3.16 Size and shape of an independent-unit or local-conflict-group have

influences on the solution , 49

3.17 Examples of some of the solutions for a conflict between a local-conflict-

group and a linear-generalization-unit 50

xii List of figures and list of tables (W. Peng)

3.18 A local-conflict-group is split into two after an aggregation operation . . . 51

3.19 Examples of some of the solutions for a conflict within a local-conflict-

group 52

3.20 Examples of the solutions for "too-small" objects within a complex-

generalization-unit 53

3.21 Examples of the solutions for conflicts within a complex-generalization-

unit 53

3.22 Generalization flow in a view generalization process 56

3.23 Detailed generalization flow in a view generalization process 56

3.24 The proposed terrain relief generalization process 60

4.1 The FDS model 66

4.2 Examples of DTN and constrained DTN 68

4.3 The projection point 70

4.4 Adjacency relationship between nodes 71

4.5 Adjacency relationship between nodes and arcs 71

4.6 Adjacency relationship between arcs 72

5.1 'Spacing' and spatial conflict checking 80

5.2 Proposed solutions for aggregating two adjacent area objects 82

5.3 The relationships between arcs a, and aj 83

5.4 Examples of object aggregation 84

5.5 Examples of safe-region 90

5.6 An example of displacement propagation using safe-regions 92

5.7 The (DTN) structure reflects the distribution of a point set 94

5.8 A group of islands 94

5.9 Bearing and span 95

5.10 An example of linear group detection 97

5.11 Examples of linear groups detected with different k values 98

5.12 A un-generalized view of a part of a road network structure 99

5.13 A generalized view of a part of a road network structure 100

5.14 An example of DDT construction 103

5.15 An example of urban road network generalization 107

5.16 An example of urban road network generalization 107

6.1 The operation-network for reasoning the generalization rule base 117

6.2 A general EFDS database 120

6.3 Object classes and class inheritance hierarchy 121

List of figures and list of tables (W. Peng) xiii

6.4 The generalization flow 133

7.1 An example of MDI 136

7.2 An example of Document/View interface 137

7.3 Grid/bin sorting and triangle searching method 141

7.4 The process for inserting a new node 141

7.5 The process for inserting a new arc 142

7.6 An example of adjacency relationships between nodes, between nodes

and arcs, and between arcs 143

7.7 Examples of spatial conflict detection, object aggregation, safe-region,

and displacement propagation 146

7.8 Examples of object aggregation 147

7.9 Examples of safe-region 148

7.10 An example of object displacement and displacement propagation 149

LIST OF TABLES

3.1 An operation-matrix for database generalization 37

3.2 Possible conflict among local-conflict-group, independent-unit, linear-

generalization-unit, and outer-space 41

4.1 The adjacency matrix 73

XIV

Chapter 1: Introduction. (W. Peng)

CHAPTER 1

INTRODUCTION

The issue of automated generalization has been a big challenge to cartographers and
GIS developers during the last three decades. As GIS applications have matured during
these years, this issue has become more and more obvious and important to many GIS
users. The emergence of the National Spatial Data Infrastructure (NSDI) in the past few
years (Goodchild, 1995) has added to it a new importance. However, after several
decades of effort, the achievement is still far from being satisfactory. As a result,
although the rapidly developing GIS technology has been offering more and more
promises to many geo-related applications, the problems of data acquisition, data
representation, and data sharing, where generalization plays an important or critical
role, still remain one of the major impediments for a GIS to meet its full potential, and
to the development of the national, regional or local GIS industrialization process.

1.1 Problems and the Needs for the Study

Several reasons can be identified as to why automated generalization is still in an early
stage after so many years of research:

• Theoretical problem: Although map generalization has been carried out by human
experts for many years, the subject has not been formally defined yet. Cartographers
have been doing map generalization, mainly based on their own understanding and
experience, but have not yet been able to sum up, and generalize, the practices to
develop a "generalization theory"; our knowledge about generalization is still
perceptual. As a result, map generalization, as generally understood, does not
constitute a coherent and well-defined process, but is rather a conglomerate of many
different processes (Muller, 1989). Nevertheless, part of this issue has been studied
by a number of authors and several (conceptual) generalization models have been
proposed, such as the Ratajski model, Morrison model, Nickerson and Freeman
model, McMaster and Shea model, Brassel and Weibel model. In his review of these
models, McMaster (1991) identified the Brassel and Weibel model as the best for
implementing an expert system1.

These models, however, were developed based on the long tradition and practice of
multi-scale map production. As pointed out by Muller and colleagues (1995), "the
generalization of digital products can no longer be driven by paper map production,
as the needs for spatial data have become much broader and complex." In recent
years, research has been paying more and more attention to model-oriented
generalization2 and database generalization or generalization from a database

1 : Note: In a sense these models are incomparable as they focused on different aspects.

2: Muller, 1991; Muller et al., 1993; Grunreich, 1993; Muller et al., 1995; Weibel, 1995.

Chapter 1: Introduction. (W. Peng)

perspective3. However, unlike in graphic or view generalization where the objectives
and problems are clear and commonly understood, research in model-oriented or
database generalization has largely focused on developing solutions for specific
problems, neglecting the general picture (Weibel, 1995), in particular, the objectives
and scope, the requirements and problems, and the relationship with graphic
representation.

Technical problem: Generally speaking, to what extent a manual process can be
automated with today's computers is mainly dependent upon the level at which the
underlying problem can be formalized, such as the description of different states of
an event, the transformation of these states, and the modelling of the controlling
operations. Map generalization is a problem proven to be extremely difficult to be
formally defined, given its subjective and creative nature. Moreover, because the
reality (or part of it) has to be represented in a computer, some information (e.g.,
relationship) may be lost in the process, and the degree of loss largely depends on
the data model which has been adopted. Contemporary data models (e.g., the Formal
Data Structure model, Molenaar, 1989, 1991, 1995a), use the object-oriented
concept, and may provide topological relationships among spatial objects that are
connected to each other. While these models may have the potential to support
decision-making in automated generalization, and the implementation of operations,
to a certain extent, the current corresponding 'spatial query space' is limited to the
'description of spatial objects by geometric primitives'. Little work has been
completed that looks into the problems of whether, and how, more abstract
information can be derived from the existing data models, such as geographic
complexity, adjacency, similarity, context, global and local structures. Such
information plays an important role in generalization decision-making, and the
implementation of generalization operations.

Finally, many data structures and algorithms used in computational geometry, spatial
indexing, and AI4 applications may be also useful for automated generalization.
They include, for instance, the Delaunay triangulation network (Delaunay, 1934),
Quad-tree (Samet, 1990), and R-tree (Guttman, 1984). Examples are available that
applied some of these data structures and algorithms to support automated
generalization (e.g., the BLG-tree and reactive-tree (van Oosterom and Schenkelaars,
1996), the Delaunay triangulation network (Jones et al., 1995; Peng et al., 1995),
and the dynamic decision tree (Peng and Muller, 1996)). However, research and
development in this area is still at an early stage and requires the investment of much
more effort.

3: Molenaar and Richardson, 1993; Richardson, 1993; Peng and Molenaar, 1995; Peng et
al., 1996; Molenaar, 1996; van Smaalen, 1996; Peng and Tempfli, 1996.

4: Artificial Intelligence.

Chapter 1: Introduction. (W. Peng)

Practical problem: To a great extent, automated generalization still remains as an
issue of digital cartography for automatic multi-scale map production, and mainstream
GIS research has been neglecting or ignoring this issue (Weibel, 1995). This may
be attributed to the following factors:

1) Automated generalization has mainly been regarded as a problem of automating
a cartographic process. Although the scope of generalization has become broader in
a GIS context, and research from other disciplines is available (e.g., the environment
and database groups, van Oosterom, 1989, 1995; Molenaar and Richardson, 1993;
Richardson, 1993; Molenaar, 1996; van Smaalen, 1996; Peng et al., 1996; Peng and
Tempfli, 1996), this new view of generalization has not yet been adopted by the
majority of the generalization research group. The problem of generalization as a
database process (Muller, 1991; Richardson, 1993) has been somewhat neglected
in comparison with the efforts invested in graphic-oriented generalization. As
indicated by Muller and colleagues (1995), "the traditional view of generalization
in support of surveying and mapping organizations for multi-scale map production
is overwhelming and has been much more studied. Busy implementing algorithms
to perform the analog of cartographic generalization tasks such as simplification,
exaggeration, elimination and displacement, we have forgotten the intimate
relationship between generalization at the modelling level and generalization at the
'surface' (e.g., graphical representation)." "While many researchers argue that
generalization should be performed with a different view in the digital domain, most
of us still resort to cartographic generalization when they claim to be busy
developing methods for non-graphic generalization (i.e., model generalization)."

2) Most GIS applications are still at the "project level" or "department level" (Chen,
1995), where generalization is either not an urgent or critical problem to be solved,
or, though it is important, alternative solutions (e.g., interactive process or multi-
scale structure) are still practically acceptable, both in the senses of time and
expense, given the great difficulty and uncertainty of developing automated
generalization in a GIS.

As one of the results, there are limited software tools available in the market, or the
public domain, that support, or can be easily extended to support, for instance,
spatial analysis, concurrency management (e.g., dynamic topology updating), and
graphic demonstration in a batch generalization process.

• Approach(es): The research methods commonly used hitherto could be referred to
as a bottom-up approach, i.e., from the experiences and products of human experts,
trying to extract and formalize the rules, operations, and reasoning flow(s) which
have been used in manual generalization, and then to simulate manual generalization
processes in a computer. This approach, though straightforward, has proven
unsuccessful, due to the subjective and intuitive nature of traditional map
generalization. Furthermore, the quality of a generalized result by an automated

Chapter 1: Introduction. (W. Peng)

process is often accessed against that of a manually generalized one. This is probably
dubious and unrealistic (Muller et al., 1995), as the criteria used are not clearly
stated, and are often instinctive and subjective; even cartographers often provided
results which do not agree with each other.

In addition to these problems, most of the contemporary cartographic research and
development has been focusing on individual generalization operations for a single
object type (or layer), or a particular part of a comprehensive generalization process,
such as object selection, line simplification, conflict detection, object displacement and
aggregation, pattern detection, and quantitative description of objects' characteristics5.
While these studies are all important, as they serve as fundamental elements of a
comprehensive approach, there is an urgent need to conduct, at a higher level and from
top to bottom, a systematic study of the issue of generalization, especially when GIS
application and development are of concern.

There is also a need, after so many years of individual and fragmented research and
development, to look into the possibility and problems of integrating existing tools to
come up with an operational automated generalization system, or in designing and
implementing an automated generalization in a GIS, which in turn will provide
important information to guide further (individual and fragmentai) research and
development. Examples of this kind of integrating or designing works include, for
instance, (Ruas and Plazanet, 1996; Peng and Tempfli, 1996).

1.2 Objectives of the Study

The main objectives of this research are directly related to the problems discussed in
section 1.1;

• identify the main problems which explain why research and development, during the
last three decades, have failed to provide an approach ready to be implemented in
a GIS. This in turn will provide useful information, and guidelines, for achieving the
main research objectives.

• develop a conceptual framework for generalization in GIS, based on related concepts
of geo-data and GISs, in particular, the concepts of geo-databases and the underlying
modelling process, spatial objects and object types, classification and aggregation
hierarchies, spatial and thematic resolutions, and the graphic 'views' of a geo-
database. This will include:

1) defining the objectives and scope of generalization in GIS;

5: Muller, 1987; Meyer, 1987; Muller and Wang, 1992; Peng, 1992; Wang and Muller,
1993; Richardson, 1993; Mackaness, 1994, 1995; Peng et al., 1995; Ruas, 1995; Plazanet,
1995; Jones et al., 1995; Regnauld, 1996; Peng and Muller, 1996.

Chapter 1: Introduction. (W. Peng)

2) identifying and formally describing generalization problems and developing
solutions (conceptually) to the problems.

•

•

•

select and enhance a supporting (conceptual) data model that provides a description
of spatial objects and the topologie relationships among them, and has the potential
to handle complex geographic structures.

develop algorithms for handling selected important geometric problems in automated
generalization, such as the problems of aggregating and displacing objects.

design an object-oriented system structure for automated database generalization,
including the rule base scheme and reasoning process, the object-oriented database
structure, and the generalization mechanism integrated in the database structure.

1.3 Scope of the Study

This research does not intend to develop an operational generalization system, as it is
not considered feasible within this research project. It is also not the intension of this
study to deal with the generalization problem of a particular object type, for a specific
application, and within a certain scale range.

The main attention of this study is given to a generic and systematic study on the
concepts of generalization in GIS, the capabilities of the current data "theory" and
computer technology in supporting automated generalization. The concepts of object
types, object classification and aggregation hierarchies, and the relationship with
generalization (Molenaar and Richardson, 1993; Richardson, 1993; van Smaalen,
1996) play an important role in this study. The research also looks into how the
Delaunay triangulation and AI technology can support geographic analysis and
geometric operations. It focuses specifically on supporting data models and algorithm
development. Spatial adjacency relationships are examined in detail. Some of the key
aspects are tested/demonstrated through a software package developed for this research.

In this research, both the database and graphic aspects of generalization are investigated
at the conceptual level. However, the investigation gives emphasis to the database
aspect by providing an object-oriented (system structure) design for automated database
generalization.

Although the research focuses on 2D (vector-format) object generalization, it also
touches on the issue of terrain relief generalization. The temporal aspect and data
quality in relation to generalization, however, are not included.

Chapter 1: Introduction. (W. Peng)

1.4 Research Approach

This research follows a top-down approach to define the concept of generalization in
GIS. Instead of trying to extract the knowledge from the products and experiences of
manual map generalization, it studies first the related concepts of geo-data and GISs.
Based on these concepts, it defines the objectives of generalization in GIS, which in
turn lead to the two sub-generalization processes (i.e., database generalization and view
generalization). The objectives, together with the concepts of databases and views, set
up the framework for defining the general principles for both database generalization
and view generalization, and for identifying and categorising elementary generalization
problems. Solutions to the problems are then proposed with respect to the general
principles.

While the top-down approach is the one for defining the generalization concepts and
for the system design, bottom-up analysis plays a role in examining the concepts as
well as in algorithm development. The concepts are tested, in terms of applicability and
completeness, for a large number of situations and/or cases. An example of bottom-up
analysis, in algorithm development, is described in section 5.10. It shows spatial
context analysis for the generalization of urban road networks.

1.5 Structure of the Thesis

This thesis consists of eight chapters which are constructed in a way that provides the
framework of the study.

•

•

Chapter 1, as already discussed, summarises the main impediments to automated
generalization, and based on which the main research objectives are outlined and
the scope of the study defined. The arguments for why generalization is needed in
a GIS is not discussed in this chapter, but are provided through Chapters 2 and 3.

Chapter 2 carries out a review of some related concepts of geo-data and GISs,
including geo-databases, conceptual data modelling, system architectures, views, as
well as maps, and discusses the complexity of map generalization against these
concepts. These related concepts have important effects on understanding and
defining the new concept and strategy of generalization in GIS.

Chapter 3 defines the subject of generalization within the framework of a GIS. Based
on the related concepts of geo-data and GISs discussed in Chapter 2, it studies first
what role generalization should play in a GIS, and in geo-information processing,
then investigates problems that may be encountered in playing such a role, and
finally, looks for solutions for the problems. Two objectives of generalization are
defined in this study, which leads to the distinction of a database process and a
graphic representation process. These two processes are referred to as database
generalization and view generalization respectively. Solutions to the problems are

Chapter 1: Introduction. (W. Peng)

proposed and formalized. Generalization operations are arranged into an operation-
matrix and operation-network for automated database generalization, and a process
flow is developed for view generalization. In order to facilitate view generalization,
objects are grouped into generalization-units according to certain criteria, and
assumptions for defining the object's order relationship are proposed, and
constraints, such as solution-localization, are introduced. The generalization of
terrain relief representation is also discussed in this chapter.

• Chapter 4 specifies the need for an adequate supporting (conceptual) data model that
provides a description of spatial objects, and the topologie relationships among
them. In particular, it presents three reasons as arguments for such a need, namely,
rule translation, spatial analysis, and the implementation of generalization
operations. An object-oriented and topologie data model, the FDS, is introduced,
and later enhanced for handling spatial adjacency relationships among objects
disconnected from each other. Examples of some of the most common spatial query
operations in automated generalization are also given.

• Chapter 5 introduces the Delaunay triangulation network, an important and powerful
data structure in computational geometry, to support developing algorithms for
handling the following important geometric problems:

1) 'spacing' checking and object aggregation in database generalization;

2) defining an object's safe-region, spatial conflict detection, object aggregation,
object displacement and displacement propagation, object exaggeration, as well as
linear pattern detection in view generalization.

A dynamic decision tree structure is also developed to facilitate spatial context
analysis for decision-making. Its power and benefit is demonstrated through an
application in urban road network generalization.

• Chapter 6, based on the framework defined in Chapter 3, and having the support of
the conceptual data model described in Chapter 4, provides an object-oriented
(logical) design for automated database generalization in a general purpose GIS. It
deals with critical problems such as:

1) how can we define operations for problems which are unknown at the moment the
system is constructed?

2) the users of the system may wish to introduce their own rules and indicate what
they expect from the new database. How can a system deal with such demands?

This chapter proposes a solution that makes use of the advantages of object-
orientation in both data modelling and programming and integrates generalization
in the database structure. A rule base scheme, and reasoning mechanism, are also
developed. This design indicates, at the logical level, the feasibility of realizing an
automated database generalization in a general purpose GIS.

•

Chapter 1: Introduction. (W. Peng)

Chapter 7 describes the design, implementation, and application of ISNAP, a
Windows-based Multiple Document Interface software package developed for this
research. It demonstrates the applicability of the algorithms developed in Chapter 5,
the extended adjacency relationships defined in Chapter 4, and some of the design
aspects described in Chapter 6.

Chapter 8 provides a general review of the work described in the first seven
chapters, gives conclusions, and indicates some future work, which needs to be
undertaken to further develop automated generalization.

Chapter 2: Relevant aspects ofgeo-data and GISs. (W. Peng) 9

CHAPTER 2

RELEVANT ASPECTS OF GEO-DATA AND GEOGRAPHIC
INFORMATION SYSTEMS

In the society of cartographers, generalization was traditionally regarded as a tool for
producing maps at smaller scales. This concept, however, may not be applicable within
the framework of a GIS. In other words, the concept of generalization needs to be
restudied when it is to be applied in a GIS context. This is obvious because of the
intrinsic difference between a GIS and a map (in its traditional meaning, whether in an
analogue format or digital format), and the difference in the ways that people use maps
and GISs. This chapter sets up the foundation of this research by looking into relevant
aspects ofgeo-data and GIS in order to understand the generalization problems, and to
define the concept and strategy of generalization in GIS. The aim is not to carry out a
review of general GIS concepts, but, it provides a discussion on some key aspects that
will have important effects on defining the new concept and strategy of generalization.

2.1 Basic GIS Components and System Architecture

A GIS can be seen as a particular type of information system that "supports the capture,
management, manipulation, analysis, modelling and display of spatially-referenced data
for solving complex planning and management problems" (NCGIA, 1990). The
geometric aspect of these data is the important factor that sets GIS apart from other
information systems (Molenaar, 1991). The main components of a GIS, as described
by Burrough (1986), include data input, storage (database), output, transformation and
analysis, and user-interface (Figure 2.1). Among these five components, data input,
output, and analysis are the three that require generalization to play a role. However,
the database component (including purpose(s), contents, and structure) is the one that
actually determines what is to be generalized and how generalization is to be
implemented. The rest of the section gives a brief description of these components and
the relationships with generalization, and finally, presents an example of system
architecture.

Data input covers all aspects of transforming data captured in the form of, for example,
existing maps, text documents, field observations, aerial photographs, and satellite
images into a compatible digital form (Burrough, 1988). Generalization is an important
aspect of such a transformation process, as the data available may not be at the
resolution level required. Apart from these possibilities of capturing data, required data
can also be obtained through format conversion and/or generalization of existing digital
data (see also discussions on the data output component and system architecture). This
is particularly desired when the cost and time spent for data acquisition are of great
concern to the users.

A geo-database is the digital form of a geo-spatial model which is a replica of some

10 Chapter 2: Relevant aspects ofgeo-data and GISs. (W. Peng)

portion of the planet earth (Pilouk, 1996). The prefix geo was introduced to illustrate
the earth-related nature of the model. This nature is the key factor that distinguishes this
kind of model from other kinds.

Databases1 are central to GISs. A database is not only a collection of data, but also
contains relationships among data elements, and the rules and operations that are used
to change the state of the data elements (Pilouk, 1996). It is organized and manipulated
by a computer program known as Database Management System (DBMS). The related
modelling process and the relationship with generalization will be discussed in section
2.2. Detailed discussion on how to construct a database can be found in Burrough
(1986), and Pilouk (1996).

Figure 2.1. The main components of a GIS (after Burrough, 1986).

Data output concerns how the data and the results of analyses are presented and
reported to the users. Texts, tables, maps, and figures are the most common forms of
data output. Due to the "geo" nature of the data, maps are usually desirable, and in
many cases, are the only adequate representational form of the data. Paper or "screen"
maps, however, are constrained by the map scale, pen width, or screen resolution. As
a result, representing the data in the form of maps may require a graphic generalization
process to ensure a legible product.

Note that apart from the above traditional purposes, data output also can serve as the
input for another database, after format conversion and/or generalization (see also

: For convenience, we refer to geo-database as database within this thesis.

Chapter 2: Relevant aspects ofgeo-data and GISs. (W. Peng) 11

discussions on the data input component and system architecture).

Data analysis and transformation deals with two classes of operation (Burrough, 1986):

1) operations needed to clean or update the data or to match them to other data sets;

2) a large array of analysis methods that can be applied to the data in order to achieve
answers to the questions asked of a GIS.

Typical examples of such operations include geometric computation, map overlay,
network analysis, map projection and projection transformation. In addition to those
operations of a general nature that should be included in every kind of GIS, there may
be operations which are extremely application-specific, and their incorporation into a
particular GIS may be just to satisfy the specific users ofthat system (Burrough, 1986).
In the context of this study, generalization is regarded as a basic operation of data
transformation.

The user-interface of a GIS is an important layer for the users to communicate with the
system. In recent years, this aspect has received a considerable amount of attention in
GIS research and development; to a certain extent, the user-interface may determine the
market (i.e., the acceptance and use) of a system.

Many new concepts and techniques exist, and more are becoming available, such as
Windows, Multi Document Interface, Document/View, Tools-bar, Status-bar, Icon,
Hyper-text, Hyper-map, Multi-medium. The user-interface may affect the efficiency of
a generalization process, especially in an interactive generalization environment, such
as the MAP GENERALEER of INTEGRAPH.

Different system architectures can be derived based on Figure 2.1 and the above related
concepts. Figure 2.2 shows a structural integration system architecture proposed by
Pilouk (1996). In this diagram, the integrated database is designed and constructed for
multi purposes or applications, whereas a client database is derived from the integrated
database, through generalization, for a particular application. The DBMS shell provides
functions and rules to access and update the integrated database and views. The
generalization process was specifically indicated and placed between the DBMS shell
and the Input/Output shell. Note that the views appearing in this diagram mainly serve
as graphic indices of the database; they are different from those views introduced in
section 2.4.

This scheme strongly reflects the new role and importance of generalization in GISs
and geo-information infrastructures, such as NSDI. It is understood that, apart from its
original role in visualization, generalization is an essential process in deriving a new
spatial model, which is considered more suitable than the original one for the user to
solve his/her particular problems. It transforms a more complex database that is subject
to one conceptual data model (to be discussed in section 2.2) to another less complex
database, which is subject to another conceptual data model. Note that a client database,

12 Chapter 2: Relevant aspects ofgeo-data and GISs. (W. Peng)

in this particular example, is regarded as an output of the system, which in turn is
considered as an input for the system that organizes and manipulates the client database.

Structural integration architecture

Figure 2.2. A structural integration architecture of a GIS (after Pilouk, 1996).

2.2 Relevant Aspects of Conceptual Data Modelling

While a database is the core of a GIS, the underlying modelling process is the essential
step that brings about a meaningful database for an application. This process, known
as data modelling or geo-spatial modelling (Frank, 1983; Peuquet, 1984; Worboys
1992; Molenaar, 1995a; Pilouk, 1996), aims at producing representation schemes for
real world phenomena that later can be implemented in a computer environment, and
be used for building a database. It consists of several steps:

• conceptual data modelling, involving the design of a conceptual scheme (or
'conceptual data model') in which relevant spatial objects, the relationships among
them, and how they should be represented, are specified. No hardware and other
implementation conventions are taken into account in a conceptual data model.

• logical data modelling, dealing with the design of a data structure (or logical data
model) for representing the conceptual scheme, in which all the data elements
needed for the representation of each spatial object, and the methods for transforming
the conceptual scheme into the data structure, are defined.

Chapter 2: Relevant aspects ofgeo-data and GISs. (W. Peng) 13

• physical data modelling, concerning mapping the logical data structure onto a file
structure that is understandable by the computer hardware.

Among these three processes, only the relevant aspects of conceptual data modelling
will be discussed, as the concept of generalization is somewhat independent from the
other two processes.

Spatial Objects and Their Description

Spatial objects are real world objects that have to be described, or related to a location
in reality (Pilouk, 1996). A spatial object contains both thematic and geometric (spatial)
information, and is normally represented through thematic and geometric descriptions
in a GIS.

There are two principle structures for linking thematic and geometric data, namely the
field-approach and the object-structured-approach (Molenaar, 1995a).

The field-approach considers the earth's surface as a spatial (-temporal) continuum.
Several terrain aspects that are relevant to the underlying application(s) are given in the
form of attributes, of which the values are considered to be "position dependent"
(Figure 2.3a). The representation of such a field in a database requires that the
continuum is described in the form of points or finite cells often in regular grid or raster
format. The attribute values are then evaluated for each point or cell.

position attribute value

a. b.

Figure 2.3. Two principle structures for spatial data (after Molenaar, 1995a). a:
attribute value directly linked to position; b: object-structured data organization.

The object-structured-approach assumes that spatial objects can be defined which have
a geometric position, size, shape, and several non-geometric properties. These objects
are represented in a database by means of an 'object identifier' to which the thematic
data and geometric data are linked (Figure 2.3b).

14 Chapter 2: Relevant aspects ofgeo-data and GISs. (W. Peng)

The geometry of a spatial object can be described using a raster structure or vector
structure (Figure 2.4). The vector structure and the object-structured-approach are the
ones adopted in this research.

thematic
data

vector geometry raster

1

geometry

Figure 2.4. Two geometric structures for spatial objects (after Molenaar, 1995a).

The Need for Conceptual Data Modelling

The real-world is complex. It is not possible (and not necessary) for a spatial model to
accommodate all the aspects of the reality. Spatial models should always be subject to
interpretations of different disciplines for particular applications, and should be
constructed at such a complexity level that the modelled phenomena, as well as
underlying processes, are meaningful and best understood (Muller et al., 1995; Weibel,
1995). Higher complexity implies the result of more detailed information, but this does
not necessarily mean that such would be more adequate for a particular application, i.e.,
some of the details may not be relevant to the application, and more important
information may be hidden by these "noises." Moreover, maintaining such details in
a database would lower efficiency and may create difficulties in spatial analysis,
decision-making, geometric operation, storage, updating, and maintenance. Hence,
before a database can be constructed, one has to determine what aspects of reality are
relevant to his/her application(s). This includes specifying types of objects, the
relationships among them, and how they should be represented.

Object Types

Objects in a spatial model, that have common patterns of both state and behaviour
within the framework of an application, may be grouped into classes to form object
types, and object types in turn may be organized into superclasses to form super-types,
and so on. An object is an instance of some object type. Road, river, park, building,

Chapter 2: Relevant aspects ofgeo-data and GISs. (W. Peng) 15

parcel, building-block, city, these are typical examples of object types used in many
geo-related applications. Among these object types, road, railway, and river can be
further grouped into a super-type called transportation for some applications. Object
types, together with the classification and aggregation hierarchies (to be discussed
below) are important aspects in semantic data modelling and play a critical role in
defining the concept of generalization in GIS.

Classification Hierarchy

Object types and super-types can then be organized into a hierarchical structure called
classification hierarchy (Smith and Smith, 1977; Thompson, 1989; Hughes, 1991;
Molenaar, 1993. See also Figure 2.5a as an example). This hierarchical structure
reflects a certain aspect of data abstraction. The lower levels in the hierarchy
correspond to lower abstraction levels and thus will result in more complex data
(including both thematic and spatial aspects), whereas the higher levels correspond to
higher abstraction levels, thus will lead to less complex data. In this sense, specifying
an object type implies, to a certain extent, determining the abstraction (or complexity)
level of a (geo-spatial) model. For instance, referring to Figure 2.5, the complexity
level of a model that employs the object type Transportation is usually lower than that
of another model which employs the object types Railway, Road, and River. However,
these two models have some inherent relationship due to the IS-A relationship2 between
the object type Transportation and the object type Road (and Railway and River)
presented in the classification hierarchy. This relationship makes it possible to
transform the more complex model to the less complex one (not the other way around),
and this "transformation process" is, in fact, what we call database generalization in
Chapter 3. Because the object types at different levels of the hierarchy correspond to
data of different complexity, changing the object types of an existing model to the ones
at the higher levels of the same classification hierarchy, would mean transforming the
model from a lower abstraction (or higher complexity) level to a higher abstraction
level, and will lead to a generalization process taking place in order to convert instances
of the sub-types to instances of the super-types (see sections 3.3.1 for more detailed
discussion). This holds for both single-inheritance and multi-inheritance hierarchies.

Note that two linked classes (i.e., sub-class and super-class) in the same classification
hierarchy are mutually exclusive within one model. For example, it should not be
allowed to have both instances of the object type Road, and instances of the object type
Motor Road in the same database, since a 'motor road' is a 'road'. If the original type
in the database is Motor Road, and later the new (super-) type Road is introduced to
the same database, then the object type Road should replace the object type Motor
Road, and all the instances of Motor Road should be converted into instances of Road

2: The object type Transportation is a "generalization" of the object type Road, and the
type Road, in turn, forms a "specialization" of the type Transportation (for a detailed
discussion, see, e.g., Hughes, 1991; Molenaar, 1993).

16 Chapter 2: Relevant aspects ofgeo-data and GISs. (W. Peng)

through a generalization process (see sections 3.3.1 for more detailed discussion). This
exclusion constraint, however, does not apply to, or affect, query operations that access
objects of sub-types using super-types as entries (see van Smaalen, 1996).

It is important to realize that not only an object type can be associated to a classification
hierarchy, the domains of some attributes of an object type may also have associated
classification hierarchies. For example, cadastral Parcel may contain an attribute land-
use, which itself may be associated to a classification hierarchy.

Transportation
••*/ K V - -

Railway Road River Transportation District

Pedestrian Way Motor Road Bicycle Road
V>...

First Class Road Highway Second Class Road

a. *• IS-A

Vacant Building-block

Building Garden

PART-OF

Figure 2.5. Examples of classification hierarchy (a.) and aggregation hierarchy (b.).

Aggregation Hierarchy

Another important structure is the aggregation hierarchy (Thompson, 1989; Hughes,
1991 ; Molenaar, 1993). This structure shows how a higher-order object type is formed
by lower-order object types that belong to different classification hierarchies. For
example, in Figure 2.5b, the object type Building-block is a combination of the types
Building and-Garden. In other words, Building is part of Building-block, and so is the
Garden. This PART-OF relationship3 is a "M to 1" link in the sense that an instance
of Building-block may consist of many instances of both Building and Garden, and an
instance of Building or Garden can only be part of one instance of Building-block.

In this thesis the object type of higher-order in the hierarchy is called container-type
(or aggregation-type), whereas the object types that are parts of the container-type are
called element-types (or component-types). Accordingly, an instance of the container-
type is referred to as a container-object (or aggregated object), and an instance of the

3: Hughes, 1991; Molenaar, 1993.

Chapter 2: Relevant aspects ofgeo-data and GISs. (W. Peng) 17

element-container is regarded as an element-object (or component-object). A container-
type can be the element-type of another (super-) container-type. For instance, Building-
block is the container-type of Building and Garden. In the meantime, it is also the
element-type of District.

Similar to the classification hierarchy, this structure also reflects some aspect of data
abstraction. The container-types in the hierarchy correspond to higher abstraction levels
and thus will result in less complex data, while the element-types correspond to lower
abstraction levels and thus will result in more complex data. This implies that replacing
the element-types in a model with their container-type will result in transforming the
model from a lower abstraction level to a higher abstraction level, and may require a
generalization process taking place in order to construct instances of the container-type
using the existing objects of the element-types (see sections 3.3.1 for more detailed
discussion).

Note that a container-type in the aggregation hierarchy may be introduced into an
existing model while still keeping its element-types, and objects of the container-type
and that of the element-types, can co-exist in the same model. For instance, it is
possible that the object type Building-block exists together with its element-types
Building and Garden in the same model. This is different from changing object types
along a classification hierarchy, in which the super-type replaces the sub-types, and
instances of the super-type replace all the objects of the sub-types in a model.

Determining a right object type according to the two hierarchies for an application is
actually choosing a proper geographic unit that represents at which abstraction level a
geographic structure should be understood (Molenaar, 1996). For example, Parcel,
District, and City represent three different geographic units suitable for planning and
management at different levels. A geographic unit, suitable for one application, may
not be suitable for another. Choosing an adequate complexity level for a GIS
application is not simple, though it might seem to be so. This is comparable to the work
of selecting a proper map scale in the analogue environment, which is often rather
confusing as one can hardly explain why a particular scale was selected for use in
solving his/her problem. In fact, in many cases, the user was forced to use what is
available from surveying and mapping agencies, not what is more suitable for solving
his/her problem.

2.3 Spatial Resolution and Thematic Resolution

A spatial model represents a certain abstraction (or complexity) level of some real-
world phenomena. When the model is in the form of a database, this characteristic can
be indicated by means of resolution. The resolution, together with data quality, serves
as a specification for the evaluation and usage of a database; this is comparable to the
fact that any figure of measurement should have an accuracy estimate (e.g., standard
deviation) attached to it.

18 Chapter 2: Relevant aspects ofgeo-data and GISs. (W. Peng)

Three types of resolutions can be perceived, and categorised, concerning objects and
a database, namely spatial resolution, thematic resolution, and temporal resolution.
Temporal resolution and related aspects are not discussed in this study.

Spatial Resolution

The spatial resolution of an object type is a specification that indicates the spatial
abstraction level of the object type in a database. It comprises three aspects, namely,

1) minimum object size that a database can contain;

2) minimum object's details that a database can contain; and

3) minimum space by which a database can distinguish two adjacent objects of the

same type.

It is important to realize that these three aspects are different from the three criteria for
ensuring legible visualization (see section 3.4).

• Minimum Object Size: minimum size for area objects, or minimum length for line
objects. Only objects that are larger or equal to this threshold are contained in the
database (Figure 2.6a). In other words, the database is suitable for applications that
are not interested in objects smaller than the threshold. Note that this criterion should
not be applied to the objects that are represented as points in the database, because
it would be meaningless.

• Minimum Space between two adjacent objects of the same type: two adjacent (but
geometrically disconnected) objects of the same type become one larger object if the
space between them is smaller than this threshold (Figure 2.6b). This implies that
the database is suitable for applications that are not interested in object spacings
smaller than the stated threshold. For instance, bus navigation may be not interested
in narrow alleys smaller than two metres in width, while motorbike navigation is.

• Minimum Object's Detail: local spatial details of an object disappear if smaller than
this threshold (Figure 2.6c), which means that the database can provide spatial
information of an object at a detail level not higher than that indicated by this
threshold. The severest case in spatial detail transformation is the degeneration of
the spatial description of an object, i.e., an area object is degenerated into a line or
point object, or a line object is degenerated into a point object.

These three aspects of spatial resolution apply to an object type, and may take different
values for different object types, even though they are in the same database, (which is
also a common practice in data acquisition and traditional map generalization). Hence,
to compare the spatial resolutions of two databases, one may need to look into the
spatial resolutions of the constituent object types, and comprehensive measures may
need to be introduced.

Chapter 2: Relevant aspects ofgeo-data and GISs. (W. Peng) 19

In using a database, its spatial resolution should satisfy the 'application requirement'
to avoid potential risks and inefficiency. For example, planing out some details of
buildings in a database may introduce a risk that the moving object, such as a car, may
collide with these details in the reality, if the database is to be used for automated
navigation. On the other hand, taking out the space between two adjacent buildings in
the database may introduce inefficiency, and increase cost if the space in the reality is
large enough for the moving object to pass through (Figure 2.6d).

D D _ D D nD
j I D • D _ D

3
Q

dangerous

can pass through

d.

Figure 2.6. Examples of consequences of changing spatial resolution components.

Thematic Resolution

Thematic resolution is a specification that indicates the thematic abstraction level of the
objects in a database. It includes four aspects:

• the level in which an object type is located in its associated classification hierarchy;

• the level in which the associated domain of an attribute of an object type is located
in its associated classification hierarchy;

• the level in which an object type is located in the associated aggregation hierarchy;

• the number of attributes contained in an object type.

Figure 2.7 shows an example indicating how databases of different thematic resolutions
are associated to sub-types and super-types in a classification hierarchy. Note that the
set up presented in this particular example does not mean that objects of sub-types
cannot be accessed using super-types of the whole hierarchy as entries (see the
discussion on classification hierarchy). Figure 2.8 shows a similar example, but with
an aggregation hierarchy.

20 Chapter 2: Relevant aspects ofgeo-data and GISs. (W. Peng)

database 4

database 3 —•*•

database 2

Transportation

Railway Road Canal

Pedestrian Way Motor Road Bicycle Road

00

database 1 —• • • • First Class Road Highway Second Class Road • •

Figure 2.7. An example of thematic resolution and classification
hierarchy, the arrows indicate the IS-A relationships.

database 4

database 3

database 2 '

database 1

Transportation
if V

00

Building Garden

Figure 2.8. An example of thematic resolution and aggregation
hierarchy, the arrows indicate the PART-OF relationships.

These four aspects and the number of object types that a database contains determine
the thematic resolution of the database. Like spatial resolution, comprehensive
measures need to be introduced in order to compare the thematic resolutions of
different databases. However, it is important to realize that the aspect of 'number of
object types' can be used for comparing two databases, only if the object types
contained in one database is the subset ofthat contained in another database. The same
consideration also applies to the aspect of'number of attributes'. It is also important to

Chapter 2: Relevant aspects ofgeo-data and GISs. (W. Peng) 21

note that thematic resolutions may be ranked, but cannot be measured.

Relationship between Spatial Resolution and Thematic Resolution

Although these two types of resolutions have no explicit link, they do have an implicit
relationship. Generally speaking, higher thematic resolution tends to lead to higher
spatial complexity, (when increasing thematic resolution, geographic units that remain
homogeneous tend to become smaller in size). If an application requires a database of
higher thematic resolution, then, the spatial resolution of the database should be also
higher. If the thematic resolution should be reduced for another application, then
probably the spatial resolution will also need to be readjusted to a lower level. For
instance, if an application needs to work at the level of parcel, then the required spatial
resolution is likely higher than that required for another application that works at the
level of district. Spatial resolution and thematic resolution also have impact on the
selection of map/view scales. Map/view scales, on the other hand, reflect different
spatial and thematic resolutions. This will be further discussed in section 3.4.6.

2.4 The Graphic Representation of a Database - Views

In order to avoid potential confusion caused by the long tradition of dealing with maps
in an analogue environment (see the following sections for detailed discussion), it is
essential to distinguish a database from its graphic representation or views. A
database's view is a graphic representational form of the database (Figure 2.9). It is
concerned with the graphics, and thus, is scale-dependent. The legibility of the graphic
and the message that it may convey to the users, are the main aspects to be considered.
Scale, colour composition, screen resolution or paper quality, pen width, symbol,
minimum object's dimension, and minimum space between two disconnected, but
adjacent, objects, are important factors for ensuring the legibility. Local and global
structures of objects, (both as individual objects and as a group), such as size, shape,
distribution, density, and pattern, as well as the relationships among them are all
important aspects concerning the message, that is, how well a view can represent the
database. Note that the concept of view used here is different from that used for
database indexing (see section 2.1), or as an interface for database editing/updating.

Database contents, together with communication rules and graphic constraints, determine
the appearance of a view, and the view in turn reflects the nature of the database, but
should not change the database. This implies that while a change of the database may
lead to an update of its associated view(s), the design, processing, and modification of
a view should not cause any change over its associated database. However, this
constraint should not apply to another kind of view that is used as an interface for
database editing or update, which is beyond the scope of this study.

22 Chapter 2: Relevant aspects ofgeo-data and GISs. (W. Peng)

Database-objects and Their Graphic Mapping

The distinction between a database, and its views, naturally leads to the introduction
of the, so-called, database-objects and view-objects. We refer to an object presented
in a database as a database-object, and the one presented in a view as a view-object. A
view-object is the graphic mapping of one or more database-object(s). While its graphic
mapping may take various forms, a database-object should not have more than one
version within one database.

It is important to distinguish a database-object from its graphic mapping, as they play
different roles in an application. In Chapter 3, we will see that one of the main aspects
of generalization is actually dealing with the transformation from database-objects to
view-objects.

Conceptual
Data Model (as a filter)

-

1
1

Views

Figure 2.9. Database and its view(s).

2.5 Difference between a Database and a Map

Having understood the concepts of databases, views, and their relationships, it is
important to realize that the two distinct functions of a map, i.e.,

1) it acts as a storage medium for spatial objects and the relationships among them, and

2) it serves as an interface conveying information to map users,

have been separated and replaced by a digital database and its associated views
respectively in a GIS environment. Therefore, a GIS database is different from a map
database in many aspects. The most significant difference between these two is that a

Chapter 2: Relevant aspects ofgeo-data and GISs. (W. Peng) 23

GIS database is (or should be) independent of its graphic representation or view(s),
whereas a map database is embedded in a view (Figure 2.10). As a result, a map database
always has a certain scale and must cope with graphic constraints4, whereas a GIS
database does not suffer from such restrictions. A GIS database is not confined to a scale
but represents a certain abstraction level. Another important difference is that a GIS
database can accommodate more thematic information than a map database possibly can.

Application(s)

•

Graphic
Presentation

1
•

Application(s)

Map
Database

Graphic
Presentation

1
1

1

Views

Figure 2.10. Difference between a GIS database and a map database.

Equally important is the difference between a GIS database's view (GDB view) and a
map view. Although both of them are scale-dependent, and have graphic constraints,
a GDB view focuses on the graphic representation of its associated database (or aspects
of the database), whereas a map view itself is actually a database with graphic
constraints. An object in a GIS database may or may not appear in a GDB view,
whereas an object contained in a map database must be shown in the map view. The
objects in a map view and that in the associated map database have an "one to one"
relationship, that is, a view-object corresponds exactly to one database-object and vice
versa, whereas an object in a GDB view may correspond to more than one object in the
associated GIS database. Unlike a map view, a GDB view is not supposed to be used
for computational purpose (this should be done through the GIS database). In other
words, one can use a map view for computational analysis and he/she has to do so; on
the other hand, one could also use a GDB view for the same purpose, however, he/she
should not try to do so.

These differences, i.e., the difference between a GIS database and a map database, and
the differences between a GDB view and a map view, are important aspects to be
considered in defining the concept and strategy of generalization in GIS.

4: This creates a virtual impression to many users that any database is related to a certain
scale and has graphic constraints. This explains why many users tend to extend the way of
processing, and using, maps to GIS databases.

24 Chapter 2: Relevant aspects ofgeo-data and GISs. (W. Peng)

2.6 Map Generalization and Its Complexity from a GIS Perspective

Before leaving this chapter, it is worth analysing map generalization and its complexity,
based on the above understanding about maps, databases, views, and the relationships
among them. This represents an attempt to understand the nature of the great difficulty
of automated map generalization from another perspective, other than only looking into
the subjective, artistic, and fuzzy aspects of the issue.

From the GIS point of view, deriving a new map of smaller scale from a larger scale
map through generalization is actually a process of generating a new map database and
its sole associated view (at the smaller scale). It would be less complex and more
transparent if the process could be decomposed into two independent sub-processes for
database generation and view creation respectively, as the criteria applied to a database
and a view are different and may be in conflict in some cases. For instance, on the one
hand, computational analysis is likely to require database-objects to remain in their
"true" shapes and locations (as much as necessary); on the other hand, graphic
presentation may force objects to "distort" themselves (e.g., exaggerating, displacing,
and aggregating, see Figure 2.11) in order to satisfy the legibility requirement. As a
map database is mixed with a view, an operation on the view may affect the geometry
(including size, shape, metric, and topology) of the objects contained in the database,
which is undesirable; and vice versa.

a. Exaggeration. b. Displacement. c. Aggregation.

Figure 2.11. Examples of "distortion".

This mixed nature of a map has created a lot of problems for automating generalization.
Cartographers often have to make compromises in order to respect both database
application and graphic representation requirements. Contemporary data modelling
"theory" and method may find difficulties in fully explaining and supporting the
process. The four geographic information abstraction types for semantic data modelling
(i.e., classification, generalization, aggregation, and association; Nyerges, 1991;
Molenaar, 1993), for instance, may work well with the derivation of a generalized
database, but, they only partly contribute to the graphic representation of the database,
which is more a subject of visualization.

It is obvious that the theoretical complexity of map generalization, and the practical
difficulty in automating a generalization process, will remain as long as a database is,
or has to be, embedded in a view.

Chapter 3: Generalization in a GIS context. (W. Peng) 25

CHAPTER 3

GENERALIZATION IN A GIS CONTEXT

This chapter continues the discussion by defining generalization in a GIS context. This
is achieved through the following approach. First, the objectives of generalization are
defined based on the concepts discussed in the previous chapter, such as databases,
views, and resolutions. Then, according to these objectives, elementary generalization
problems which are to be tackled are identified and categorised, and solutions to the
problems are proposed. Generalization operations that are involved in the solutions are
introduced. Finally, a controlling mechanism that guides a comprehensive (batch)
generalization process is proposed. The discussion focuses on the generalization of a
2D space. Also, the issue of terrain relief generalization is briefly discussed.

3.1 Objectives of Generalization

Having understood the concept of a database and the underlying conceptual modelling
process, and the concept of views and the relationships with the associated database,
generalization in a GIS context can be regarded as a transformation process with the
following two objectives (Peng and Molenaar, 1995):

• to derive a new (digital) database with different (coarser) spatial/thematic/temporal
resolutions from existing database(s), for a particular application;

• to enhance graphic representations of a database or part thereof when the output
scale cannot accommodate the data set of interest, for visualization purposes.

Among them, the first objective corresponds to the aspect of changing the complexity
(or abstraction) level of a spatial model, whereas the second one relates to the graphic
representation of a database or part of it. The latter is defined mainly based on the
tradition of cartographic understanding, but taking into account the differences of
maps, GIS databases, and views. This will be demonstrated further in section 3.4 where
generalization for graphic representation is to be discussed.

3.2 Generalization as a Database Process and as a Visualization Process

The objectives defined in section 3.1 provide the basis for designing a generalization
scheme. Figure 3.1 shows two such schemes associated to two different kinds of
system architecture, in which a map generalization process is decomposed into two
independent sub-processes for deriving new databases, and creating the views of a
database, respectively. These two processes are referred to as database generalization
and view generalization respectively (Peng et al., 1996), with the former corresponding
to the first objective and the latter corresponding to the second. Note that in these
schemes, we assume that a database can have many views attached to it, but a view is
associated with only one database (see also Figure 2.9). This is perhaps too restrictive,

26 Chapter 3: Generalization in a GIS context. (W. Peng)

but, it facilitates a simple and transparent structure for database manipulation and
graphic presentation, and consequently reduces the complexity of a generalization
process.

Database generalization is also referred to as model-oriented generalization in the
society of cartographers (Muller et al., 1995). Richardson (1993) also suggested a
generalization from a database perspective, which is similar to the concept of database
generalization.

Database
Generalization

/ ^ D B M S ^ N

f5IMMl~j2\
Generalized

Database W /

• \ D B M S ^ /

View/Graphic
Generalization -

• Application

i ,

Views

Figure 3.1. Examples of different generalization schemes. Left: database and view
generalizations exist as 'two external function bodies'. Right: generalization exists as
a basic function of a GIS (see the discussion on system architecture in section 2.1).

Note that the two schemes presented in Figure 3.1 represent two different system
development strategies. In the one on the left side of the figure, database generalization
and view generalization exist as two 'external function bodies', whereas in the scheme
on the right side of the figure, generalization exists as a basic function of a GIS.
Conceptually, the latter is more advanced than the former, since the latter is
corresponding to the structural integration architecture introduced in Chapter 2. It also
has an advantage over the former from an implementation point of view. This will be
further discussed in Chapter 6.

The following general principles can be defined for database generalization and/or

Chapter 3: Generalization in a GIS context. (W. Peng) 27

view generalization, under the premise that a database is independent of its view(s),
thus any computational analysis should be based on the data contained in the database;
and that a view is created to demonstrate the result of the analysis, or to provide a
visualization to the user, to help understand the phenomenon that the database
represents. These principles are to be used to define generalization problems and guide
development of the solutions. Note that in the following description, (D) implies that
the associated principle only applies to database generalization; (V) means that the
associated principle only applies to view generalization; (D,V) indicates that the
associated principle applies to both types of generalizations.

•

•

(D) Database generalization transforms an existing database only if the user has
introduced a new conceptual data model, which will lead to a database of lower
resolution.

(D) The underlying conceptual data model, not map scale, determines what object
types and which instances of these object types, should be contained in the
generalized database1.

(D) The underlying conceptual data model, not graphic constraints, determines the
resolution of the target database.

(V) A view of a database should reflect the nature of the database. A view
generalization process is required only when certain graphic constraints prevent such
a result.

(V) All the objects in a database are useful information to be presented to the users
(note that this does not necessarily mean that all the objects can be legibly portrayed
in a view of a particular scale), otherwise, a database generalization process should
be carried out beforehand.

(D, V) In traditional map generalization, some of the objects of an object type may
be reorganized to form instances of a super-type or container-type, while the rest of
the objects remain unchanged. In other words, different thematic resolutions may be
employed to represent the same phenomena in different parts of the same model. For
example, a group of small objects of types Apple-orchard and Orange-orchard may
be aggregated to form a single object of type Orchard, while other apple and orange
orchards still remain as they are. This should not be allowed in database and view
generalizations in order to avoid inconsistency and "false representation".

(D,V) Topological constraints are critical and any generalization process should be
subject to such constraints. These constraints include: 1) an object must not move
across the boundary of another object, and 2) an object must not overlap with
another object, in a generalization process. For instance, if a building is on the left
side of a road, then this on-the-left relationship should not be changed to on-the-
right, and if a building is inside a parcel, then this inside relationship should not
become outside; however, this on-the-left or inside relationship may disappear if the

1: See also Richardson, 1993.

28 Chapter 3: Generalization in a GIS context. (W. Peng)

building is to be deleted. Violations of this principle will be referred to as violating
topology in this thesis.

• (V) Metric relationship may be changed provided that this change does not cause
violation of topology (e.g., a building may move towards, but should not cross a
road).

• (V) Spatial pattern/structure is important and should be maintained. Hence, if a
group of adjacent objects form a pattern/structure of interest because of, for example,
their spatial distribution, similarity in size and/or shape, then they should be treated
as a group, and its priority as a whole should be higher than each individual member
or component object. For instance, for a group of evenly distributed or similarly
sized objects, this even or similar property should be maintained in a generalization
process, i.e, they should not become randomly distributed or irregularly sized.

• (V) Thematic resolution should not be changed. For instance, individual buildings
and gardens in a database should not be aggregated and represented as building-
blocks in any of the database's views.

• (V) Eliminating an object from a view will obscure all the related information,
hence, in general, presenting a recognizable "distorted" or symbolized graphic
representation of the object in the view is considered a better solution, unless the
cost of keeping the presentation is too high according to some criteria (e.g., may lead
to serious displacement propagation).

• (V) Distorted and un-distorted objects and object details should be distinguished in
a view, by means of, e.g., colour, texture, or line style.

3.3 Database Generalization

This section elaborates database generalization. First, problems that occur in transforming
an existing database to the one of lower resolution, are elaborated. Each problem is
associated with an operation and one or more statements. These statements explain and
describe the nature of the corresponding generalization operations. They will be used
to guide the development of a rule base scheme in Chapter 6, with which, the user
"describes" his/her target database, necessary transformation processes and criteria (i.e.,
building a rule base), and communicates with the software system. Then, an operation-
network is developed that is to be used for reasoning the rule base and modelling the
operations specified in the rule base.

3.3.1 Elementary Problems and Solutions

According to the first generalization objective defined in section 3.1, database
generalization, as a database process, deals with contents operation and resolution
transformation, in which view/map scale plays no role. Contents operation, though it
is not within the objectives, usually plays a role in database operation, and may have
a close link with resolution transformation. Resolution transformation includes thematic

Chapter 3: Generalization in a GIS context. (W. Peng) 29

resolution transformation, spatial resolution transformation, as well as temporal
resolution transformation (temporal resolution transformation, however, is not
discussed in this study).

This section provides a detailed description on the problems related to these activities
(i.e., contents operation and resolution transformation). These problems are considered
to be a complete set, within the framework of the generalization objectives defined in
this thesis, and according to the given definitions of spatial resolution and thematic
resolution. Note that in order to facilitate the description, we will use the term
adjacency to describe the adjacency relationships among objects that are geometrically
connected to and/or disconnected from each other, and use the term adjoining to
describe the adjacency relationships among objects that are geometrically connected
to each other. This convention will apply through the whole thesis.

Contents Operation

• Extracting Target Objects: a selection operation that selects, from a selected object
type (to be discussed later in Changing Thematic Resolution), a subset of objects
having particular geometric and/or thematic properties. Selecting those parcels of
which the land-use is "residential" is an example. Note that this selection operation
(and the deletion operation to be discussed later under Changing Spatial Resolution),
is totally controlled by the user according to his/her application. This is different
from the selection operation based on the Necessary Factor (Richardson, 1993) in
which map scale was taken into account, and an experimental quantitative rating of
object types (i.e., 100, 75, 25, and 0 percent), and an experimental quantitative
rating of object activities2, were employed to eliminate some objects of an object
type due to reduction of map scale — some proportion of objects of an object type
will be eliminated anyway. These considerations are not taken as relevant aspects of
database generalization, but can be applied in view generalization, within the context
of this thesis.

Statement 1: from a selected object type, select objects of which the geometric
and/or thematic properties meet the criteria defined by the user.

• Extracting Target Object Components: different from selecting a subset of objects
from a given type, this selection operation selects a subset of object components of
a complex object that have particular geometric and/or thematic properties. Typical
examples include selecting inter-city roads from a road network, and selecting those
rivers with a flow capacity which is more than a certain value from a river network,
assuming both networks are represented as complex objects.

2: E.g., 80, 90, 90, 90, and 100 percent for land cover maps of 1:1.2 million corresponding
to orientation, location, enumeration, measurement, and description, five activities.

30 Chapter 3: Generalization in a GIS context. (W. Peng)

Statement 2: select a subset of components of a complex object, of which the
geometric and/or thematic properties meet the criteria defined by the user.

• Changing Theme or Context Transformation: this reclassification process aims at
creating instances of a new object type using objects of another object type, of which
one of the attributes defines the theme of the new object type. For instance, object
type Parcel may include an attribute land-use. If Land-use is an object type in the
new model, it is then possible to construct a land-use unit (i.e., instances of Land-
use) using the parcels, assuming that the land-use is homogenous in each parcel. As
the boundary of an object is related to its theme (e.g., ownership defines the
boundary of a cadastral parcel), a geometric operation may need to follow afterwards
(Figure 3.2).

Statement 3: create instances of a new object type using the objects of another
object type, of which one of the attributes defines the theme of the new object type.

Note that this reclassification process, together with the universalization and
homogenization processes (to be discussed under Changing Thematic Resolution),
can provide a very useful and powerful operation for data acquisition/transformation
and data sharing.

4

1

2

3

-

B

A

A

B

-

l, 2,3,4: parcels. A, B: land-uses of parcels. D , ö : land-use units.

Figure 3.2. An example of context transformation by reclassification operation.

Changing Thematic Resolution

Problems concerning changing thematic resolution are related to the four aspects of
thematic resolution, as well as the number of object types that a database contains (see
section 2.3).

• Extracting Application-Relevant Object Types: a thematic selection operation that
selects a subset of object types that are relevant to an application (i.e., object types
specified in the new conceptual data model). For example, for urban planning, road
and river may be selected; telephone wire pole may not be selected, etc.

•

Chapter 3: Generalization in a GIS context. (W. Peng) 31

Statement 4: given a set of object types T = {t„ t j , . . . , t„}, and a subset Ts = { ts„
ts2,..., tsm} c T, select only the objects that belong to type tsi e Ts (1 < i < m).

Changing Classification Level: a universalization operation, which is equivalent to
the generalization operation in semantic data modelling. It can be applied to both
class and attribute, and a homogenization process may need to follow afterwards
(Figures 3.3 and 3.4).

Bicycle Road Road 1

Motor Road Road 2

Figure 3.3. An example of changing classification level: Universalization.

Statement 5: convert the objects of an object type to instances of a super-type in the
same classification hierarchy, followed by a homogenization process, if necessary.

Statement 6: change the domain of an attribute of a selected object type to the one
corresponding to a higher classification level \, in the associated classification
hierarchy.

Creating Homogeneous Units: this homogenization operation is employed to create
a homogeneous unit (object) by merging a subset of adjoining objects of the same
type, or a subset of adjoining objects of the same type that have the same value(s)
of certain attribute(s) (Figure 3.4). Changing classification level (universalization)
and context transformation (reclassification) are normally followed by this operation.
Note that homogenization, in fact, is not a thematic process, but a geometric
operation as a result of changing thematic resolution, or context transformation. Two
adjoining objects become a larger homogeneous unit (object) because some of their
thematic aspects have been changed. They existed as two separated objects because
some of their attributes or attribute values were different (Molenaar, 1996). The
values of some of the attributes may need to be modified after combining two
objects into a larger one.

Road 1

—»• Road
Road 2

Figure 3.4. An example of creating homogeneous units: Homogenization.

32 Chapter 3: Generalization in a GIS context. (W. Peng)

Statement 7: from the selected objects of the same type, create homogeneous
objects by aggregating those existing objects that are adjoining.

Statement 8: from the selected objects of the same type, create homogeneous
objects by aggregating those existing objects that are adjoining and have the same
value(s) of certain attribute(s) specified by the user.

• Changing Scope: a thematic simplification operation that reduces the number of
attributes of an existing type by taking out some attributes but leaving the theme
unchanged. For example, for an application, object type Road may have attributes
number-of-lanes and traffic-volume, whereas for another application these may not
be relevant.

Statement 9: given a list of attributes List(Ti) = { al5 %,..., a„ } of object type Ti,
select a subset of attributes (specified by the user) SubList(Ti) = { a,,, as2,..., a^ }
c List(Ti), where m < n.

• Changing Aggregation Level: a combination operation similar to the aggregation
operation in semantic data modelling. Different from the homogenization process,
which works within one object type, this operation deals with a specific subset of
objects that may belong to different types, and aggregate them to form a container-
(or aggregated-) object of the container-type (or aggregation-type, see Aggregation
Hierarchy in section 2.2) based on their geometric and semantic relationships. Two
different cases can be distinguished:

l)The boundary of the container-object can be defined only through the geometric
and thematic descriptions of the element-objects and the spatial relationship among
them, which means that the boundary of the container-object can be delineated by
simply aggregating the existing element-objects. For example, a building-block is
defined as an aggregation of all the adjoining buildings and gardens (Figures 3.5 and
3.6).

2) Not only the geometric and thematic descriptions of the element-objects and the
spatial relationship among them, but also the semantic relationship among them, are
required in order to define the boundary of the container-object. For instance,
aggregating farm yards and fields into farms, in which only the farm yards and fields
that are adjoining and belong to the same farmer should be aggregated (Figure 3.7,
Richardson, 1993; Molenaar 1996). Another example concerning the second case
is to create an object university by aggregating those element-objects that are
adjacent and belong to the same object university (Figure 3.8).

Statement 10: create instances of a container-type by aggregating a subset of
adjoining objects of the element-types.

Statement 11: create instances of a container-type by aggregating a subset of

Chapter 3: Generalization in a GIS context. (W. Peng) 33

adjoining/adjacent objects of the element-types that have certain common properties
specified by the user.

r

1

Building Garden Building-block

Figure 3.5. An example of combination operation.

Building Garden Building-block

Figure 3.6. An example of combination operation. Note that disconnected
but adjacent building-blocks are aggregated to form larger ones after

changing the spatial resolution (see Statement 14).

34 Chapter 3: Generalization in a GIS context. (W. Peng)

1

Farmyard Field Farm

Figure 3.7. An example of combination operation that needs to know the
semantic relationships among the element-objects.

V

-JC3 O
CD *

u 1 1 I)j

• m
Building Play ground

University

•
University

Figure 3.8. An example of combination operation that needs to know the
semantic relationships among the element-objects.

Changing Spatial Resolution

Similar to changing thematic resolution, problems concerning changing spatial resolution
are related to the three aspects of spatial resolution (see section 2.3).

• Filtering out Small Objects: a deletion operation that filters out small area or line
objects (Figure 2.6a). This process is invoked when the minimum object size of the
spatial resolution, is changed to a larger one for the target database.

Statement 12: among the selected area or line objects, delete objects of which the
sizes are smaller than the required minimum value.

•

•

Chapter 3: Generalization in a GIS context. (W. Peng) 35

Filtering out Small Spatial Details: a geometric simplification operation that filters
out small spatial details of an area or line object (Figure 2.6c). This process is
invoked when the minimum object's detail of the spatial resolution, is changed to a
larger one for the target database3.

Statement 13: plane away or ignore small details of a selected area or line object if
their sizes are smaller than the required value.

Merging Close Objects: an aggregation operation that amalgamates two disconnected
but adjacent objects of the same type to form a larger object (Figure 2.6b). Similar
to the homogenization process, the values of some of the attributes may need to be
modified after aggregating two objects into a larger one. This process is invoked
when the minimum space of the spatial resolution, is changed to a larger one for the
target database.

Statement 14: among the selected objects of the same type, if the space between two
disconnected, but adjacent objects is smaller than the required minimum value,
aggregate them to form a new object of the same type without moving any of them.
Mark the new object to indicate this property.

Changing Geometric Description Type: a collapse operation that changes the
geometric description of a spatial object from area type to line or point type, or from
line type to point type. This process can be seen as the severest case of geometric
simplification operation.

Statement 15: among the selected area objects, for those objects of which some of
the properties meet the criteria specified by the user, change their geometric
descriptions to line/point type.

Statement 16: among the selected line objects, for those objects of which some of
the properties meet the criteria specified by the user, change their geometric
description to point type.

Note that the aggregation operation, motivated by spatial resolution transformation, is
neither the same as homogenization nor the same as combination.

3.3.2 Modelling Operations for Database Generalization

In the last section, we have identified a list of problems in database generalization. This
list is considered complete for database generalization within the framework of the

•

3: Note that if an object's detail must be kept regardless of its size, then an attribute should
be introduced to indicate this property, unless a procedure is available that can detect such a
'detail' automatically.

36 Chapter 3: Generalization in a GIS context. (W. Peng)

generalization objectives defined in this thesis, and based on the given definitions of
spatial resolution and thematic resolution. Generalization operations corresponding to
these problems include selection, reclassification, universalization, homogenization,
simplification, combination, deletion, aggregation, and collapse. Among them, thematic
simplification, reclassification, and universalization apply only to the thematic domain,
whereas deletion, geometric simplification, and collapse only apply to the geometric
domain. Homogenization, combination, and aggregation require inputs from both
thematic and geometric domains. Thematic operations may require geometric operations
to follow.

To derive a generalized database, these operations must be ordered in a proper way in
the underlying process. Table 3.1 is an operation-matrix showing how these operations
relate to each other. The numbers in the matrix indicate the priority of an operation.
Selection is always the first operation in any generalization process. This is obvious
since, if an object or object type is not selected, then it would be meaningless to apply
any other operations to the object or object type.

Simplification should be executed after deletion has been conducted; this is because
there is no need to simplify an object if it would eventually be eliminated. However,
deletion should not be conducted before aggregation is carried out, as a group of
adjacent small objects may be aggregated into a single one of which the size is larger
than the criterion for deletion.

Collapse is ordered higher than aggregation, deletion, and simplification, because the
last three operations depend on the geometric description type of an object.

Homogenization should be executed before collapse has taken place, so that the result
will not be affected due to changing the geometric description type of the objects
involved, if there is a request to bring together specific adjoining objects to form
homogeneous units. However, this operation should follow universalization, since it
is the geometric consequence of a universalization (or reclassification) process.

Universalization and reclassification should not co-exist for the same object type
within one database transformation, therefore, their position can be exchanged.

Combination should be conducted immediately after selection, before the element-
objects involved are converted to "something else", or deleted by other operations, such
as reclassification and deletion.

To interpret the table, we look at the very first column, where we see that combination
has higher priority (value 1) than reclassification (value 2), and simplification has the
lowest priority. The first operation is selection. If selection should be followed by, e.g.,
combination, the row for combination shows the next priorities to be observed.
Reclassification has the value 1, hence is the first candidate to be probed. The x symbol

Chapter 3: Generalization in a GIS context. (W. Peng) 37

indicates that there is no link from the operation specified in the second column to the
one specified in the first row. For example, there is no link from universalization to any
other operation. This is because if an object type is replaced by a super-type in the same
classification hierarchy, then any other operations should be directed to the super-type,
not the original type, which will not exist in the target database after the process. This
example also indicates that the nine operations cannot exist at the same time for the
same object type.

Table 3.1. An operation-matrix for database generalization.
*

1

2

3

4

5

6

7

8

Selection

Combina­
tion

Reclassi­
fication

Universa­
lization

Homoge-
nization

Collapse

Aggrega­
tion

Deletion

Simplifi­
cation

Combina­
tion

-

X

X

X

X

X

X

X

Reclassi­
fication

1

-

X

X

X

X

X

X

Universa­
lization

2

X

-

X

X

X

X

X

Homoge-
nization

3

X

X

-

X

X

X

X

Collapse

4

X

X

1

-

X

X

X

Aggrega­
tion

5

X

X

2

1

-

X

X

Deletion

6

X

X

3

2

1

-

X

Simplifi­
cation

7

X

X

4

3

2

1

-

Legend: *: the first operation; x: no connection; 1,2,3,... : priority order.

Table 3.1 shows that in general thematic processes have higher priority than geometric
processes, and all the links between operations are a "one-way-link", which means that
operations of higher priority will not be iterated after an operation of lower priority.
This characteristic ensures that a database generalization process will not fall into a
loop.

The relationships presented in Table 3.1 hold true for every object type, though an
operation may have different versions for different types of objects. System and
algorithm development may benefit from this operation-matrix (see Chapter 6, for
example). In order to facilitate implementation, as an alternative, the semantic meaning
of this table can be represented in an equivalent tree structure, called operation-
network, as shown in Figure 3.9. This tree should be interpreted as an OR tree (Kumar
and Kanal, 1983) and searched using backward chaining with depth-first searching
(Townsend, 1987; Weiskamp and Hengl, 1988).

38 Chapter 3: Generalization in a GIS context. (W. Peng)

This operation-network can be used for reasoning a generalization rule base, in which
the user "describes" his/her target model, necessary transformation processes as well
as criteria, and communicates with the software system (see section 6.2.2 for a detailed
discussion). For example, the priority order determines which rules in the rule-base
should be checked first and which ones are to be checked next for the same object type;
for instance, rules leading to a deletion process should have been checked before
checking those leading to a simplification process.

Figure 3.9. An operation-network for database generalization (note: each
operation is represented by its first three letters and a circle encloses the text,

numbers indicate generalization steps).

3.4 View Generalization

Since a view is a graphic representational form of a database, the main task of view
generalization is to enhance the legibility of the graphic representation of the database,
in particular, to tackle the problems encountered when the output scale cannot
accommodate the original data set in an one-to-one mapping (i.e., graphically depict
each database-object and its details according to the scale). These problems are:

some objects are too small to show at the selected scale;

some spatial details of an object are too small to show at the scale;

the graphic output of some objects are in conflict (i.e., the distance between the
view-objects is too small to be detected by human eyes, or smaller than a certain
value that ensures the legibility of a view).

Chapter 3: Generalization in a GIS context. (W. Peng) 39

View generalization, therefore, can be seen as a process that defines the non-one-to-one
mapping between database-objects and their graphic mapping, that is, view-objects.
Note that "too dense" is not regarded as a problem in view generalization, as long as
the distance between two close objects is big enough.

The following discussion follows a structure similar to that used in section 3.3 for the
discussion on database generalization. However, in order to facilitate the discussion,
and the reasoning, about the generalization problems and solutions, we first introduce
the following concepts before looking into the problems and solutions.

3.4.1 A Geographic Space from a View Generalization Perspective

When a database is constructed, the data should be organized in such a way that they
best suit the user's applications (see discussions in section 2.2). We can consider
creating a legible view as a special application of the database, and regard view
generalization as the underlying process. In this way we can "borrow" the idea of
conceptual data modelling in order to facilitate this special application. This implies
that the data contained in the database needs to be reviewed from a view generalization
perspective, in which the local and global structures presented in the data, the status of
spatial conflicts, and the object behaviour in a generalization process, are the most
important concern.

Following the same avenue of O-O data modelling, objects are grouped into three types
(or generalization-units) according to their structure and behaviour in a generalization
process. They are:

• linear-generalization-units (roads, railways, rivers, and similar kinds);

• complex-generalization-units (a cluster of adjacent non-linear objects that is treated
as a group in a problem-solving process, and its priority as a whole is regarded
higher than each individual member or component object. For instance, it can be a
group of objects that forms a regular pattern, or structure, because of, for example,
their spatial distribution, similarity in size and/or shape);

• simplex-generalization-unit (an individual non-linear object that does not belong to
any complex-generalization-unit).

Figure 3.10 shows some examples.

Generalization-units can be divided into local-conflict-groups and independent-units
according to their metric relationships against the criterion for the space between
objects. A local-conflict-group is defined as a composite unit formed by all the non­
linear generalization-units that are adjacent to and in conflict with each other; an
independent-unit is defined as an individual non-linear generalization-unit which does
not belong to any local-conflict-group (Figure 3.11). A local-conflict-group in fact

40 Chapter 3: Generalàation in a GIS context. (W. Peng)

represents a difficult situation in generalization, and will be treated as a "composite-
object" in a problem-solving process in this study.

Complex-generalization-unit

/ D • \

\ o • / (n j
v " \'—y

Simplex-generalization-unit

Simplex-generalization-unit

0 n ^
\
i
i

i
/

L J • • Simplex-generalization-units

• D

Linear-generalization-unit

Figure 3.10. Examples of linear-generalization-unit, simplex-generalization-
unit, and complex-generalization-unit.

Local-conflict-group

S . . (CGU)

(SGU)
f / a ö \
j i I I LU ^ ^ „

I \ D D / M j i
l V« S \ I I / /

Local-conflict-group

D
I 1 (SGUs)

[| [_J

I

S

Independent-unit

,' .

w
V

N(SGU) I

v._

Linear-generalization-unit

Figure 3.11. Examples of local-conflict-group and independent-unit (CGU:
complex-generalization-unit; SGU: simplex-generalization-unit).

While an independent-unit can only be a single simplex-generalization-unit or
complex-generalization-unit, a local-conflict-group consists of more than one non­
linear generalization-unit, including both simplex-generalization-unit and complex-
generalization-unit, and it can only be adjacent to:

• another local-conflict-group;

• an independent-unit;

• a linear-generalization-unit;

• the outer-space.

Chapter 3: Generalization in a GIS context. (W. Peng) 41

From the point of view of view generalization, linear-generalization-unit, independent-
unit, local-conflict-group, and outer-space, can be seen as the four basic elements that
constitute a geographic space at a high abstraction level (Figure 3.12).

-*• PART-OF IS-A

Figure 3.12. A geographic space from a view generalization perspective.

Table 3.2. Possible conflicts among the four basic elements.

Local-conflict-
group

Independent-unit

Linear-
generalization-
unit

Outer-space

Local-conflict-
group

NO

NO

YES

NO

Independent-
unit

NO

NO

YES

NO

Linear-generalization-
unit

YES

YES

YES

NO

Outer-space

NO

NO

NO

NO

Table 3.2 shows the possible relationships (in the sense of spatial conflict) among

42 Chapter 3: Generalization in a GIS context. (W. Peng)

them. This perception helps to understand and define the generalization problems and
facilitates formulating the solutions.

3.4.2 The Concept of Solution-localization

Having the concepts of local-conflict-group and independent-unit, we can introduce the
idea of solution-localization for solving spatial conflicts. Solving spatial conflicts is the
most difficult and challenging issue in view generalization. Spatial conflicts may result
from scale reduction and/or the limitation of screen/printer/plotter resolution. Some
generalization operations, such as exaggeration, symbolization, simplification, and
displacement, may also cause spatial conflicts. There is no doubt that solutions for
resolving a spatial conflict can be numerous and various. There are, for example, many
ways of displacing surrounding objects to solve the problem if displacement is applied.
Displacement propagation is another problem as there are no rules to guide the process,
how it should proceed and when it should end. Apparently, constraints need to be
introduced in order to control a generalization process.

The idea of solution-localization is thus introduced for this purpose. It means solving
a spatial conflict locally without interfering or disturbing the global structure. This
implies that a local region needs to be defined and spatial conflicts within the region
should be solved inside the region unless otherwise a more important rule would be
violated (e.g., a preserved object has to be deleted). Apparently, a local-conflict-group
forms such a local region.

3.4.3 Assumptions and Constraints

View generalization, to a great extent, is an issue of competition under certain rules4.
In the competition, more important or stronger objects "survive", whereas less
important or weaker objects have to struggle for "survival" by, for instance, forming
"communities" to become stronger (aggregation), or adjusting themselves to adapt to
the environment (symbolization, exaggeration, shrinking, typification). Those who fail
to do so will be eliminated. Apparently, the level of importance of an object plays a key
role in the competition, and in order to be able to come to a conclusion, we need to
determine the order relationships among the objects involved in the competition. The
following assumptions are particularly introduced for this purpose:

• If, for the underlying application(s), an object type is more important than another,
then this relationship holds for all of their instances, regardless of other properties
of the objects (e.g., object size)5.

4: Note: to a certain degree, object behaviours in a view generalization process may be
regarded as a process of evolution.

5: See also Richardson, 1993.

Chapter 3: Generalization in a GIS context. (W. Peng) 43

• Within the same object type, the "weighted size" of an object determines its rank.
The weight of an object is equal to 1.0 unless there are thematic preferences. For
example, a building of 100.0 m2 is regarded as being more important than another
of 80.0 m2. However, this relationship will not hold if the president of the country
is working in that smaller building, and if we think that this fact is important. Note
that only the original size of an object should be used for comparison; the
exaggerated one (if existing) should not be used for the purpose.

• Within the same object type, a complex-generalization-unit is considered more
important than a simplex-generalization-unit of similar size unless there exist other
criteria (e.g., if the simplex-generalization-unit must be preserved).

• If a local-conflict-group or complex-generalization-unit contains objects of different
types among which object type tj is the most important one, then the local-conflict-
group or complex-generalization-unit is regarded as an instance oft; in the sense of
importance level.

The three problems in view generalization (see the introduction part of section 3.4)
have a graphic nature, thus the solutions are graphic-oriented. However, they are (and
should be) restricted by semantic and geometric constraints, as well as the request for
maintaining the characteristics of the original structure. Geometric constraints include
metric and topological constraints. The following controls are introduced to guide
object behaviours; note that the controls are also applicable to generalization units:

• Unless an otherwise important/preserved object would have to be deleted, conflicts
within a local-conflict-group should be solved inside the group without propagation
to any of its neighbours, in other words, solutions should not result in a new local-
conflict-group, or the expansion of the existing local-conflict-group (i.e., an object
originally outside the group becomes a member of the group).

• In case conflict propagation is necessary in order to keep an important/preserved
object,

1) the process should not lead to a new conflict with a linear-generalization-unit, i.e.,
spatial conflict propagation should not affect linear generalization units due to the
potentially severe consequences and great difficulty to manipulate (e.g., move) them;

2) the process should not cause a new conflict with a more important object; and

3) the propagation should not come back to the object, or affect an object twice or
more.

• Unless an otherwise important/preserved object would have to be deleted, object or
object detail exaggeration/symbolization should not result in a new local-conflict-
group or the expansion of the existing local-conflict-group.

• A complex-generalization-unit may be degenerated into a simplex-generalization-
unit, but should not be split into pieces (i.e., several simplex-generalization-units).

• Objects of different types should not be aggregated in a view generalization process.

44 Chapter 3: Generalization in a GIS context. (W. Peng)

• Solutions that lead to increasing the total covered area of a view and the solutions
that result in decreasing the area should be balanced to maintain the "black-white
ratio"6.

It is possible that some rules may prevent a conflict being solved within the local-

conflict-group, e.g., if two preserved objects are in conflict and:

1) none of them can be displaced because otherwise new conflicts will be introduced;

2) they cannot be aggregated because of different properties;

3) none of them can be shrunk because otherwise they will become "invisible".

In this case, displacement could be a solution. This solution will cause new conflicts)
with some of the neighbours thus displacement propagation is necessary. Similar
situations may also happen when exaggerating or symbolizing a small but preserved
object. It is obvious that displacement should not be propagated to a linear unit, such
as road and river, because of the potentially severe consequence and difficulty of
moving such a unit. It is also true that in general shifting a single object will cause less
damage to the original structure than shifting a group of objects. Note that, based on
the given rules, there may be situations that a system cannot handle. In this case, the
system can only report to the user, and thus an interactive process may be required.

3.4.4 Elementary Problems and Solutions

The proposed view generalization process is divided into two steps. The first step
detects and solves the problems at generalization-unit level. The second step then
detects and locally solves the problems within each generalization-unit. This approach,
together with the assumptions and constraints facilitate the formalization of the
reasoning process.

Unlike in database generalization, where a problem is associated with one operation,
in view generalization, a problem may be associated with more than one operation.
Generalization problems and solutions are formalized as statements in each of which
different operations are specified according to different situations. These statements
then are structured to define a process flow for view generalization.

Note that for convenience, we refer objects or generalization-units that are too small
to be present as "too-smair objects or "too-small" generalization-units; and refer
details of an object that are too small to be present as "too-small" details.

6: SWISS SOCIETY OF CARTOGRAPHY, 1987.

Chapter 3: Generalization in a GIS context. (W. Peng) 45

Handling "too-Small" Generalization-units

To deal with this problem, different solutions may be required regarding different
situations. Operations for this kind of problems include exaggeration, symbolization,
aggregation, typification, and deletion.

• "Too-small" complex-generalization-units:

Statement 17: if a complex-generalization-unit as a whole is too small to be present,
then degenerate it into a ("too small") simplex-generalization-unit by aggregating
all the objects contained in the complex-generalization-unit to form an aggregated
object. Mark the object to indicate this character (Figure 3.13a).

• a s j

Complex-generalization-unit

J Independent-unit

' • o
Local-conflict-group t£

a. b.

Figure 3.13. Examples of solutions for handling "too-small"generalization-units.

• A group of "too-small" and adjacent simplex-generalization-units within a local-
conflict-group:

Statement 18: for a group of "too-small" and adjacent simplex-generalization-units
of the same type7 within a local-conflict-group, aggregate them to form a single and
larger simplex-generalization-unit, or, if possible, to form several units of which the
sizes are big enough. Mark the aggregated unit(s) to indicate this character (Figure
3.13b).

• "Too-small" but independent simplex-generalization-units: the following proposed
process should start with more important units and continue with less important ones
to increase efficiency.

Statement 19: if a "too-small" simplex-generalization-unit is an independent-unit,

7: "Two simplex-generalization-units have the same (or different) type(s)" actually means
that the objects which form the units have the same (or different) type(s).

46 Chapter 3: Generalization in a GIS context. (W. Peng)

then solve the problem with one of the following methods in which the numbering
indicates the priority of the associated method:

1) exaggerate or symbolize the unit if a sufficient buffer is available8 (Figure 3.13);

2) if the unit is preserved, or it is the most important one in the neighbourhood (i.e.,
the local extreme/maximum), and if a sufficient buffer can be obtained by asking its
neighbours to make it9, then exaggerate or symbolize the unit;

3) delete the unit if it is not preserved, otherwise report to the operator (the user) for
a judgement.

• A "too-small" single simplex-generalization-unit within a local-conflict-group: the
following proposed process should start with more important units and continue with
less important ones to increase efficiency.

(LCG)

Acau) (SGU)\

/ r iDDYpM

v_

(IU)

D
(LCG)

« ^ (SGUÀ
— ' y !

VDDOAJ—I'
v y — '

N.„

(IU)

(LCG)

t' ^(CGU) (SGU)\ I (IU)
, ' D D D Vr-nN | f j

VnnnAU/il—1 \ D D D / '

v .

~^s(COU)

/DDDV]
\U • D /

(IU)

D

Figure 3.14. Examples of solutions for handling "too-small" single simplex-
generalization-units (SGU) within a local-conflict-group (LCG) (IU:

independent-unit; CGU: complex-generalization-unit).

Statement 20: if a "too-small" simplex-generalization-unit is part of a local-conflict-
group and is not adjacent to any other simplex-generalization-units of the same type

8: Here, a 'sufficient buffer' means that the object can be exaggerated to the required size
without overlapping with others or resulting in a new conflict-group.

9: See section 5.8.

Chapter 3: Generalization in a GIS context. (W. Peng) 47

(see Statement 18), then it must be adjacent to some simplex-generalization-unit(s)
of other types and/or complex-generalization-units. In this case, solve the problem
with one of the following methods in which the numbering indicates the priority of
the associated method:

1) exaggerate or symbolize the simplex-generalization-unit if a sufficient buffer is
available10 (Figure 3.14a);

2) if the unit is preserved, or it is the most important one in the neighbourhood, and
if a sufficient buffer can be obtained by asking its neighbours to make it, then
exaggerate or symbolize the unit;

3) delete the unit if it is not preserved (Figure 3.14b), otherwise report to the
operator.

Note that a control needs to be introduced for the exaggeration operation in order to
indicate the maximum acceptable amplification in size. This can be a percentage of the
original size. Let sa be the size of an object, s,,^ be the required minimum object size,
kbe the maximum acceptable amplification of sa, if (s,,^ / sa) > k, then symbolization
or deletion should be applied instead of exaggeration. This control also implies that
larger objects have a higher chance to "survive" than smaller ones.

Handling Spatial Conflicts between Generalization-units

Spatial conflict is the most difficult problem to be solved. The proposed solutions
involve several generalization operations, including displacement, shrinking, aggregation,
typification, and deletion.

• Conflict between an independent-unit and a linear-generalization-unit:

Statement 21: if an independent-unit and a linear-generalization-unit are in conflict,
then solve the problem with one of the following methods in which the numbering
indicates the priority of the associated method:

1) displace the independent-unit if this will not create a new conflict;

2) displace the independent-unit to the maximum extent and reduce its size
{shrinking) if this could solve the problem;

3) displace the independent-unit to the maximum extent and then symbolize the
independent-unit if this could solve the conflict without leading to a new conflict,
and if the underlying object type has a symbol which is meaningful in the context
(e.g., usually we do not symbolize houses in an urban area, but we do symbolize
churches in the same area);

4) if the independent-unit is a simplex-generalization-unit and if displacement will

10: Here, a 'sufficient buffer' means that the object can be exaggerated to the required size
without overlapping with others, or leading to expand the conflict-group.

48 Chapter 3: Generalization in a GIS context. (W. Peng)

cause a new conflict with another neighbour independent simplex-generalization-
unit of same type, then first displace the simplex-generalization-unit and then
aggregate it with the neighbour to form a single simplex-generalization-unit which
is still an independent-unit;

5) if the independent-unit is preserved, or it is the most important one in the
neighbourhood, then try to solve the problem through shrinking (which is applied
to the independent-unit) and displacement propagation;

6) delete the independent-unit if it is not preserved, otherwise report to the operator.

Figure 3.15 shows some examples. Note that a complex-generalization-unit can be
shrunk by reducing the sizes of some of its constitute objects and/or omitting some of
the constitute objects, or through typification. Similar to the exaggeration operation, a
control needs to be introduced for the shrinking operation in order to indicate the
maximum acceptable reduction in size. This again can be a percentage of the original
size. The bottom line is the required minimum object size. Let sa and s,, be respectively
the original size and reduced size of an object, s ^ be the required minimum object
size, if k is the maximum acceptable reduction of s„, then sb must be larger than or equal
to (sa / k) and not smaller than s^.

D C a
Linear-generalization-unit

S in
i i s :::i i — i

i J

:

= j

Linear-generalization-unit

Figure 3.15. Examples of solutions for a conflict between an independent-unit
and a linear-generalization-unit.

It is important to realize that since the required minimum object size is usually larger

Chapter 3: Generalization in a GIS context. (W. Peng) 49

than (but close to) the required minimum space between objects, the solutions proposed
in this statement tend to keep large objects. This is because large objects can stand for
high-degree shrinking, which, in turn, will offer more space for solving the problem of
spatial conflict. If shrinking cannot provide enough space for a spatial conflict, then the
involved object must be small or rather "thin" in shape along the direction of conflict
(Figure 3.16). It is also important to keep in mind that any displacement for solving a
spatial conflict is not more than the size of a "visible" non-linear object, in the
direction of conflict, under the above premise.

A

D B CZI

D (LCG)

D \Z3 !
I | c '̂ \^2 [] cm ; iT~î

E (LCG)

Linear-generalization-unit

Oi Ü i =

j 1 I f 1 | 1 •

! 1 1 bü°j
i

L~] ill"}
Linear-generalization-unit

Figure 3.16. Size and shape of an independent-unit or a local-conflict-group
have influences on the solution: 1) unit A is large enough to shrink; 2) unit B is
too small to shrink; 3) unit C is too "thin" to shrink; 4) local-conflict-group D
can shrink by dropping some of its constitute units; 5) local-conflict-group E

cannot shrink because it is too "thin".

Conflict between a local-conflict-group and linear-generalization-unit:

Statement 22: if a local-conflict-group and a linear-generalization-unit are in
conflict, then solve the problem with one of the following methods where the
numbering indicates the priority of the associated method:

1) displace the local-conflict-group if this will not create a new conflict;

50 Chapter 3: Generalization in a GIS context. (W. Peng)

2) displace the local-conflict-group to the maximum extent and shrink its size if this
could solve the problem;

3) first "degenerate" the problem into one or several problems of "conflict between
an independent-unit and a linear-generalization-unit", by solving the conflicts within
the local-conflict-group (see the discussion below and Statement 23); and then apply
Statement 21 to solve the new problem(s).

Local-conflict-group

(D C3 [] N]
[i D
f—I I I D

Local-conflict-group

' [~j C3 ri \

rï • I
Linear-generalization-unit

Local-conflict-group

(Ö CD [] N|

D
vj
• •

Local-conflict-group

' G 0 D i

SBUJ
CZ3 C J

Linear-generalization-unit

Figure 3.17. Examples of some of the proposed solutions for a conflict
between a local-conflict-group and a linear-generalization-unit.

Figure 3.17 shows examples of some of the solutions. Note that a local-conflict-group
can be shrunk by reducing the sizes of some of its generalization-units and/or omitting
some of the generalization-units. If shrinking cannot provide enough space for solving
the conflict, then the local-conflict-group properly contains preserved object(s), or has
a "thin" structure as shown in Figure 3.16 (local-conflict-group E), that is, there is only
one small or "thin" unit along the direction of conflict.

Conflicts within a local-conflict-group: in order to give more important units a

Chapter 3: Generalization in a GIS context. (W. Peng) 51

higher chance to maintain their original characteristics, for each local-conflict-group,
the following proposed process should start with less important units and continue
with more important ones; and among all the neighbours that are in conflict with the
unit under consideration, the process should also first check with less important units
and continue with more important ones. After each operation, the local-conflict-
group must be re-examined to check if the operation has split it into several sub-
local-conflict-groups or independent-units (Figure 3.18). If this is the case, then the
new local-conflict-groups, or independent-units, should replace the original local-
conflict-group.

Local-conflict-group Local-conflict-group Local-conflict-group

' n v

•JnJ
Figure 3.18. A local-conflict-group is split into two after an aggregation operation.

Statement 23: if two generalization-units within a local-conflict-group are in
conflict, then solve the problem with one of the following methods where the
numbering indicates the priority of the associated method:

1) displace the less important unit if this will not create a new conflict or make other
conflicts worse (Figure 3.19a);

2) displace the less important unit to the maximum extent and then displace another
unit if this will not create a new conflict or make other conflicts worse (Figure
3.19b);

3) displace both units to the maximum extent and then shrink first the less important
unit and then another (if necessary), if this can create sufficient space (Figure 3.19c);

4) displace both units to the maximum extent and then symbolize first the less
important unit and then another (if necessary), if symbolization is applicable, and if
this can create sufficient space;

5) aggregate the two units if they are both simplex-generalization-units and have the
same type (Figure 3.19d);

6) aggregate one (or both) of the units with one of its neighbours if they are both
simplex-generalization-units and have the same type, shrink the unit (not the
neighbour) before aggregation, if necessary (Figure 3.19e);

7) delete the less important unit if it is not preserved (Figure 3.19f);

8) try to solve the conflict through shrinking and displacement propagation if both
units are preserved (Figure 3.19g), and report to the operator if this fails.

52 Chapter 3: Generalization in a GIS context. (W. Peng)

D[] •
":•'

1

*

m "y CI [pu n

ID DD D
! 1

|[J™ D

[] ID
1

Q[]|[ÎI

D|

•
Figure 3.19. Examples of some of the solutions for a conflict within a local-conflict-group.

Handling "too-Small" Objects and Spatial Conflicts within a
Complex-generalization-unit

• "Too-small" objects within a complex-generalization-unit: the following proposed
processes should start with more important units and continues with less important
ones, so that more important units have a higher chance to maintain their original
characteristics.

Statement 24: if all the objects are too small, then:

1) exaggerate all of them if this will not cause any spatial conflict with any of the
neighbours of the complex-generalization-unit (Figure 3.20a); otherwise,

2) represent the group by several larger (and fewer) objects through typiflcation, and
mark the new objects to indicate this character (Figure 3.20b).

Statement 25: if only some of the constitute objects are too small, then represent the
group by several larger (and fewer) objects through typiflcation. Mark the new
objects to indicate this character.

Note that typiflcation is a comprehensive operation that needs to analysis the current
structure/pattern of a group of related objects, and then create a new set of objects that
inherit the main characteristics of the original group, and finally eliminate the original
group. The automation of such an operation is a great challenge, though it seems to

Chapter 3: Generalization in a GIS context. (W. Peng) 53

have received little attention in the literature. A possibility to automate such an
operation is through structure/pattern matching, as the Hannover group did for building
generalization (Meyer, 1987). However, such a method requires a much more
sophisticated algorithm.

•

DD D D
DD •» D D
D D DD

©

® m ®
© ®

a. b.

Figure 3.20. Examples of the solutions for "too-small" objects within a
complex-generalization-unit.

Conflicts within a complex-generalization-unit: the following proposed process
should start with more important units and continue with less important ones, so that
more important units have a higher chance to maintain their original characteristics.

Statement 26: if there exists a sufficient surrounding buffer", or if such a buffer can
be obtained by asking the neighbours of the complex-generalization-unit to make
it12, then solve the conflicts by using, for example, the method of proportional radial
displacement13 (Figure 3.21a); otherwise, represent the group by fewer (and
probably larger) objects through typiflcation, and mark the new objects to indicate
this character (Figure 3.21b).

D D
D D
D D

D D
4 D D

D D

D D
D D
D D

a. b.

Figure 3.21. Examples of the proposed solutions for conflicts within a complex-
generalization-unit.

11 : Here, a 'sufficient buffer' means that after the process the exaggerated complex-
generalization-unit will not overlap or come into conflict with other units.

12: See section 5.8.

13:SeeMarkness, 1994.

54 Chapter 3: Generalization in a GIS context. (W. Peng)

Handling "too-Small" Object Details

Statement 27: plane away or ignore the details through simplification, except those
which are considered as important. The operation should avoid introducing topological
violation and new spatial conflict.

Statement 28: exaggerate or symbolize the important details of an object if a
sufficient space is available or can be made available; otherwise, report to the operator.

Note that whether a detail is important or not depends upon the object type, its role in
presenting the geometric character of the object (by which each object is distinguished
from another), and its role in an application; e.g., S-shaped curves of a road, inlets for
shipping navigation. Relevant research work, particularly under the issue of line
simplification, is available, and some is still going on (e.g., Muller, 1987; Wang and
Muller, 1993; Barber et al., 1995; Plazanet et al., 1995).

Generalizing Linear Objects

Linear objects, or linear-generalization-units, have special geometric properties and
normally form networks (e.g., road and river networks). Their huge dimension, the
potential consequences and great difficulty to move them, as well as the network
constraints, all make it necessary to treat them differently from non-linear objects.
Examples for the generalization of this kind of objects can be found in the literature
(e.g., Douglas and Peucker, 1973; Catlow and Du, 1984; Muller, 1987; Jones and
Abraham, 1987; McMaster, 1987, 1989; Buttenfield, 1989; Boutoura, 1989; Mazur
and Castner, 1990; Peng, 1992; Wang and Muller, 1993; Plazanet, 1995; Peng and
Muller, 1996).

3.4.5 The Proposed View Generalization Flow

Simplification, exaggeration, symbolization, aggregation, displacement, shrinking,
typification, and deletion are the eight operations that may be involved in a view
generalization process. Among them, aggregation, deletion, and simplification are
similar to those in database generalization. However, it must be realized that although
the action may be similar, the motivations, and thus criteria, are different in view
generalization and database generalization. Collapse is not involved in view
generalization as it is in map generalization, because the same process is regarded as
symbolization in the context of view generalization. If, for example, a road that is
geometrically described as an area object in a database has to be graphically represented
as a line in a view (or map), then we are, in fact, using a line symbol of certain width
to represent the road, but not geometrically degenerating it into a line (description), as
happened in database generalization.

These operations may cause different geometric consequences to the surrounding

Chapter 3: Generalization in a GIS context. (W. Peng) 55

objects: exaggeration, symbolization, displacement, simplification, and aggregation
may affect the surroundings, whereas deletion, typification, and shrinking have no
consequence for the surroundings but may affect existing topological relationships. The
degree of distortion resulting from these operations are also different: deletion totally
destroys an object; typification and aggregation destroy original objects, but create less
new (but probably larger) objects; symbolization, exaggeration, simplification, and
shrinking partly change an object; displacement changes an object's location but
maintains its shape and dimension.

From an implementation point of view, exaggeration, symbolization, and displacement
should not be conducted before a sufficient buffer is available. This is because these
operations may cause overlapping of objects, and it is extremely difficult to describe
and manipulate the spatial relationships among these (overlapping) objects, which
would lead to a severe problem in resolving the conflicts. Such a consideration is
particularly important when a linear object, such as a road, has to be displaced due to,
for example, a conflict with a river, as such an operation may affect (e.g., overlap with)
many other objects along the road.

Figures 3.22 and 3.23 show how a view generalization process should proceed; note
that the ordering of operations invoked for solving a given problem is already defined
in each statement. The process first solves problems at the generalization-unit level,
and continues with the problems within each generalization-unit. The problem of "too-
small" is first dealt with before solving the problem of spatial conflict. There are three
reasons for this arrangement.

• First, a "too-small" object needs to be exaggerated or symbolized if it should be
presented in the view, which requires an extra space and may cause new spatial
conflicts. If the problem of spatial conflict is processed before solving the problem
of "too-small", then spatial conflicts may occur again later when handling "too-
small" objects.

• Secondly, if some of the "too-small" objects will eventually be eliminated, then there
is no need to deal with the spatial conflicts caused by these objects, or to take them
into account in a problem-solving process, which may make the process very
complicated.

• Thirdly, eliminating some "too-small" objects before hand can leave more space for
more important objects in dealing with spatial conflicts afterwards.

The problem of "too-small" object details is the last one to be solved. This is because
solutions to both of the last two problems may result in eliminating some objects, and
if these objects would eventually be eliminated then there is no need to deal with the
problem of "too-small" details.

56 Chapter 3: Generalization in a GIS context. (W. Peng)

Figure 3.22. Generalization flow in a view generalization process (numbers: orders).

Figure 3.23. Detailed generalization flow in a view generalization process
(numbers: orders).

Chapter 3: Generalization in a GIS context. (IV. Peng) 57

3.4.6 Determining an Output Scale

It is not realistic to graphically represent a database at all scales. The output scale for
a view should be determined according to the resolution of the database, together with
the user's specification and requirements, as well as output medium. The general
principle is that, higher resolution databases should be represented at larger scales,
whereas lower resolution databases may be represented at smaller scales. For instance,
for a database where buildings are recorded as individual objects, large scales such as
1:500 or 1:1000 are necessary in order to be able to accommodate the very detailed
information; on the other hand, for a database in which only the outlines of cities are
stored, medium or small scales are sufficient to accommodate the more abstract
information.

An output scale which is not comparable to the database resolution, (i.e., it is too small),
will result in a heavy view generalization, and as a consequence, may seriously reduce
the information contents and distort the phenomena that the database represents. This
is because, unlike database generalization, view generalization is not an information
abstraction process, but a process that rearranges and readjusts the data so that the data
can be placed in a reduced space. Such a process distorts the original data, and the
heavier the process, the bigger the distortion. At a certain point, only remodelling of
the original data — e.g., changing classification and/or aggregation level, which is
certainly undesirable - can solve the problem. Moreover, when the output scale is too
small compared to the database resolution, the generalization process becomes difficult
to control, and the result will be unpredictable. This problem is similar to that of the so
called scale-independent or scale less databases (Muller, 1991).

Map generalization is a scale-driven process. For a given theme, the target scale, object
sizes, and density, determine the abstraction level of data, and the user then chooses an
available proper scale for his/her application. In the context defined in this thesis, the
user determines the abstraction level for the database according to the application, and
a proper scale is then chosen for adequately representing the data in a view.

It is not necessarily required that a given database can be represented only at one scale.
There may exist a scale range within which the database can be properly represented
without a heavy generalization process, and yet still be represented in an efficient way.
How to determine such a scale range requires further study that looks into the
relationships among resolution, scale, and generalization. Cartographic knowledge and
experiences in map generalization can contribute to this study.

3.5 Generalization of Terrain Relief Representation

Terrain relief information plays a very important role in many GIS applications. Due
to the limitations of available tools, this three-dimensional information traditionally is
mainly represented as contour lines in a two-dimensional space, such as a map sheet.

58 Chapter 3: Generalization in a GIS context. (W. Peng)

As a contour line is not a real terrain feature, but an isolated imaginary line connecting
terrain points of the same elevation, contour maps do not provide immediate images of
relief characteristics for the readers. Generalizing contour lines, therefore, requires
some kind of "imagination" that "captures" the relief characteristics of terrain surfaces,
from a set of contour lines that are naturally interrelated in a certain way, through the
nature of terrain relief and constraints of man-made features.

While contour lines are the most comprehensive form of terrain relief representation
in a 2D analogue environment, the digital terrain model (DTM) is the common
approach for representing terrain relief in a digital environment, due to its advantage
in computer analysis and visualization. The automated generalization of terrain relief
representation, or automated terrain relief generalization14, hence can be regarded as
an issue of DTM generalization, and, conceptually, contours can be seen as one of the
graphic representational forms of a DTM in a GIS context. Thus, generalization of
DTMs and generalization of contour lines fall within the framework of database
generalization, and view generalization, respectively. This concept can be further
demonstrated by the fact that contour lines of any interval can, and should, be derived
from a DTM, and the fact that generalization of contour lines is restricted to the graphic
aspect of generalization (Bos, 1984), except for the selection of contour line interval
which is associated with the spatial properties of terrain surfaces, apart from other
aspects, such as scale and usages.

DTM generalization aims at reducing the relief spatial resolution of a source DTM to
arrive at a more abstracted relief model. The factors that affect the selection of a proper
resolution for an application may include:

• the purpose,

• the relevance of small details,

• accuracy requirement,

• processing time,

• data storage space,

• hardware and software limits.

It is important to stress that although it is true that in general a more abstracted relief
model is also more smooth and less accurate, smoothing or compression operation
alone does not, in general, provide a good generalization result. The key aspect is that
while local and irrelevant relief details disappear, the skeleton information representing
the characteristics of the terrain surface should be maintained as much as necessary.
From this point of view, both DTM filtering (Loon, 1978; Zoraster et al., 1984), and

14: For convenience, we refer to the generalization of terrain relief representation as terrain
relief generalization or relief generalization.

Chapter 3: Generalization in a GIS context. (W. Peng) 59

DTM compression (Gottschalk, 1972; Heller, 1990), are not adequate approaches.
However, they can be improved by introducing skeleton information as a constraint in
the generalization process.

Known approaches to the problem of relief generalization can be categorized into three
groups, namely: a) DTM filtering; b) DTM compression; and c) structure or skeleton
line generalization (Wu, 1981; Yoeli, 1990; Wolf, 1988; Weibel, 1989).

Weibel (1992) evaluated these three types of methods and pointed out that global
filtering (or DTM filtering) achieves a smoothing effect by eliminating high
frequencies from the source DTM, while keeping the number of points in the model
unchanged. Selective filtering (or DTM compression) selects a subset of points from
the source DTM to approximate the original surface with a user-specified accuracy.
While both approaches are employed for minor scale reductions, DTM filtering is
intended to be used in topography with smooth forms, and DTM compression is meant
to be applied to a terrain of any complexity. Heuristic generalization, or structure line
generalization, directly generalizes the structure lines of the terrain surface through
individual generalization operators, such as selection and simplification, and
reconstructing the target DTM through interpolation from the generalized structure. It
is intended for use in rugged terrain and is the only approach that includes the
fundamental transformations required to accomplish major scale reductions.

In fact, these three generalization approaches emphasize the different aspects of relief
generalization:

• DTM filtering smooths the surface but does not reduce the data volume;

• DTM compression reduces the data volume but does not necessarily lead to a more
abstracted surface; and

• structure line generalization deals with skeleton transformation but ignores other
properties not shown in the skeleton.

Hence, an approach combining these three methods may lead to a more comprehensive
solution (Figure 3.24):

1) extracting the skeleton from the source DTM or from other sources;

2) generalizing the skeleton through structure line generalization;

3) creating the first intermediate DTM by applying DTM compression to the source
DTM, and using the generalized skeleton as a constraint (e.g., the generalized
skeleton can be used as part of the initial set of points);

4) creating the second intermediate DTM by applying DTM filtering to the first
intermediate DTM and again using the generalized skeleton as a constraint;

5) verifying and finally arriving at a target, generalized, DTM.

60 Chapter 3: Generalization in a GIS context. (W. Peng)

This proposed approach, however, still needs to be validated as part of future work.
Note that to derive a more abstracted DTM, graphic constraints should not be taken
into account when generalizing structure lines.

Figure 3.24. The proposed terrain relief generalization process (after Peng et al., 1996).

3.6 Summary

Based on the related concepts of geo-data and GISs discussed in Chapter 2, this chapter
first defined the objectives of generalization in GIS, and then defined the two sub-
processes of generalization under the framework set out by the objectives, and based
on the different nature and purpose of a GIS database, from a graphic view of the
database. These two processes were called database generalization and view
generalization respectively, with the former corresponding to the first objective and the
later corresponding to the second. Database generalization aims at transforming an
existing database into one of a lower resolution, according to a new conceptual data
model suitable for another application. It deals with contents operation and resolution
transformation, and is scale-independent. Twelve problems were categorised, and to

Chapter 3: Generalization in a GIS context. (W. Peng) 61

solve these problems nine operations were introduced and arranged in an operation
matrix and operation-network. In this way, it has become possible to set up a
generalization rule base and provide measures for reasoning the rule base (see Chapter
6). The rule base is introduced for the user to "describe" his/her target model, necessary
transformation processes and criteria, as well as to communicate with the software
system. Problems of database generalization identified in this research are considered
complete within the framework of the generalization objectives defined in this thesis,
and based on the given definitions of spatial resolution and thematic resolution.

The purpose of view generalization is to enhance the graphic representation of a
database, or part of it, in case the output scale cannot accommodate the data set of
interest. It is a visualization aspect concerned with graphic legibility; it is graphic-
oriented and scale-dependent. The process was simplified by introducing the concepts
of generalization-unit and solution-localization. These concepts allowed us to group
objects according to their characteristics, and potential behaviours in a view
generalization process, which in turn, enabled us to re-model a geographic space using
linear-generalization-unit, local-conflict-group, independent-unit and outer-space as the
four elements, which then helped to understand and define the generalization problems,
and facilitated the solutions. This approach led to the formal description of a view
generalization process, in which problems were first detected, and solved, at
generalization unit level, and then at object level within each unit. Eight operations
were proposed for handling view generalization problems, based on the works by many
authors for many years. Among these operations, aggregation, deletion, and geometric
simplification are similar to those in database generalization. However, the motivation,
and thus criteria, are different for the same operations in database generalization and
view generalization, although the action may be similar.

The reasoning which led to the proposed solution for view-generalization was
somewhat subjective, reflecting the nature of the issue of view generalization. What we
were concerned with in the reasoning is whether the process is logical, and whether the
solution will lead to a reasonable result (e.g., that more important objects have a higher
chance of being kept). The different natures of database and view generalizations were
reflected in the way in which the statements in these two kinds of generalizations were
organized, and the way of modelling a generalization process. While the operation
network was introduced to dynamically reason a user-defined rule base for database
generalization, for view generalization, a generalization flow was proposed to direct
an automated generalization process.

The concept of terrain relief generalization, and the approach introduced in this
chapter, still needs to be validated. This will be done in future work.

62 Chapter 3: Generalization in a GIS context. (W. Peng)

Chapter 4: Supporting data models. (W. Peng) 63

CHAPTER 4
SUPPORTING DATA MODELS

It has been generally recognized that automated generalization requires adequate
supporting data models (Muller, 1991 ; Richardson, 1993; Muller et al., 1995; Peng and
Molenaar, 1995; Peng and Tempfli, 1996). There are at least three reasons that support
this postulate.

•

•

Generalization rules need to be translated into equivalent thematic and/or geometric
descriptions and generalization operations. To be more concrete, let us look at the
following rule:

If two adjacent parcels have the same land use, then aggregate them.

Apparently, in this statement, adjacent and aggregate are two key words, their
semantic meaning must be translated in order to adapt to the digital environment and
be understandable by a computer system. As for this particular example, the aggregate
can be straightly translated into aggregation operation. However, the adjacent aspect
is rather complex, its translation relies on the supporting data model, and is not
straight forward.

Since reducing spatial complexity is one of the major aims of generalization, both
decision-making and the implementation of operations often have to rely on spatial
analysis. They are usually constrained by the existing relationships within and
among the objects involved. Whereas semantic constraints are normally "application
dependent", geometric constraints are, in general, universal.

Typical examples of geometric constraints include, for instance, "two objects should
not be aggregated/merged if there is another object between them"; "moving an
object should not cause it to hit others". In a manual process, spatial analysis is
normally carried out through the eye-brain cognitive system (i.e., visual inspection
of map contents and object relationships, followed by human analysis in a contextual
manner of the information derived from this inspection). It is almost impossible to
simulate such activities in a computer without the support of an adequate data model
that allows the system to efficiently provide/derive sufficient information, such as
connectivity and adjacency, in addition to metric (and metric-derived) information,
such as location, orientation, length, perimeter, area, and shape.

The implementation of generalization operations usually has to deal with the
geometric description of spatial objects. If the data are arranged in a proper way,
then we may avoid manipulating the coordinate description in many cases.

For example, having the support of topologie data modelling, many geometrically

64 Chapter 4: Supporting data models. (W. Peng)

related problems can be translated into equivalent symbolic problems that can be
manipulated by the use of a powerful and convenient symbolic tool, and vice versa
(Herring, 1987). Through this translation, in many cases, spatial objects and their
relationships (e.g. adjacency) can be handled without reference to their coordinate
description, of which the manipulation is usually a bottle neck in spatial analysis and
transformation1.

Obviously, an adequate data model is critical for automated generalization. This
chapter first analyses the general requirements of the supporting data models, then
introduces the Formal Data Structure model (Molenaar, 1989, 1991, 1995a), and later
enhances it in the sense of spatial adjacency relationships. Finally, it presents examples
of some of the commonly used spatial query operations. Note that although other types
of spatial relationships, such as metric and order (Ehenhofer, 1989; Kainz, 1989) are
also of interest to automated generalization, this chapter only focuses on adjacency.

4.1 General Requirements of Supporting Data Models

Different problems may have different requirements of their supporting data models.
As for automated generalization, the data model is the basis on which we

1) describe relevant spatial objects (including both thematic and geometric aspects);

2) describe the relationships among them;

3) define the fundamental geometric transformations.

These transformations, in turn, will support complex generalization processes.
Conceptually, any geometry-related (complex) generalization process can be broken
down into lower level processes, and no matter how different the thematic aspects are,
eventually, solutions are based on unambiguous and reliable transformations at the
geometric primitive level. At the primitive level, we can pre-define a set of fundamental
geometric transformations, and any geometry-related generalization process at a higher
level will be a proper combination of some of these fundamental transformations.

Generalization affects not only an individual object, but also the surroundings of the
object, hence, topological relationships among spatial objects and their geometric
primitives play an important role in determining whether a transformation is required,
and which transformation should be invoked, as well as how it should be implemented.
The data model determines which transformation safely can be defined. In the FDS, for
instance, adjacency is defined for area objects of which the boundaries share some
arc(s). Therefore, we can aggregate two adjoining area objects into a single one without
causing any topologie violation, by simply dropping the common arc(s) and changing
the left/right properties of the rest of the arcs that make up the boundaries of the two
original area objects. However, because adjacency is only defined for connected area

1 : Note that topology is coordinate system independent.

Chapter 4: Supporting data models. (W. Peng) 65

objects, the model does not support the operation ofmerging two disconnected area
objects. It will be difficult to prevent topological violation if such an operation would
nevertheless be implemented.

Hence, a data model, to be adequate for automated generalization, should provide the
basis for describing spatial objects, and the topological relationship among them,
through a well defined set of geometric primitives. Since generalization decision­
making relies on both spatial information and thematic information, the model should
also indicate how the geometric aspect of a spatial object is linked with its thematic
aspect (see section 2.2). Due to the fact that the spatial objects concerned are not
always connected to each other (e.g., buildings and islands), topological relationships
among "disconnected objects" are important to support spatial analysis, and geometric
operations, that involve these kind of objects. Apart from these aspects, it is apparent
that the data model must be implementable in a computer environment. This would
mean that the model can be mapped onto a logical data model. Finally, the model
should also support consistency checks in order to avoid internal contradictions in the
data maintained, thus ensure the reliability of the data (Hughes, 1991 ; Kufoniyi, 1995).

In summary, the general requirements on a supporting data model are:

• identify the elementary data types (or geometric primitives), and the topological
relationships among them (including adjacency relationships), based on which, the
geometric aspects of spatial objects can be described;

• support the link between geometry and attribute data;

• facilitate mapping onto logical models, especially relational and object-oriented;

• support query operations involving objects that are disconnected from each other;
• support consistency checks.

4.2 The Formal Data Structure Model - FDS

The Formal Data Structure model (FDS) developed by Molenaar (1989, 1991, 1995a),
is an object-oriented topological (conceptual) data model. It consists of:

• three feature types, namely point feature, line feature, and area feature, classified
according to the geometric description of spatial objects;

• four geometric data types (or geometric primitives), including coordinates, node,
arc, and shape1, the definition of which is based on planar-graph theory at node-arc
level;

2: Note: Shape was introduced as a special data type to describe the 'shape' of an arc and is
optional, depending on the convention for arcs: if arcs only can be straight lines, then the
convention of 'straight line' already determines the shape; otherwise, the shape will be
defined by a list of sequential points between the 'begin node' and 'end node' of an arc.

66 Chapter 4: Supporting data models. (W. Peng)

• a set of links between geometric data types (g-g links), and a set of links between
geometric data types and feature types (g-f links). It supports a number of elementary
topological relationships, including area-area, line-line,point-point, area-line, area-
point, and line-point relationships.

The whole structure is shown in Figure 4.1, in which, the term 'feature' is equivalent
to 'spatial object', and the boundary of an 'area feature' is implicitly described by a list
of arcs.

Note that the thematic aspect of a spatial object is defined in the corresponding feature
class and should be modelled according to underlying application(s). The relationships
between the second and third rows of ellipses indicate how the thematic and geometric
aspects are linked to each other.

belongs to

Figure 4.1. The FDS model (after Molenaar, 1991).

As an example that demonstrates the potential of the FDS in supporting automated
generalization, let us consider the "rule translation problem" raised at the beginning of
this chapter:

• the concept of adjacent parcels can be translated into the following description:
1) according to the definition given in the FDS, parcels px and py are adjacent only

if they are adjoined, that is, part and only part of their boundaries are in
common, say arc â ;

2) in this case, the left-area-object of the arc ay must be px (or py), and its right-
area-object must be py (or px), i.e., Left^, p j = 1, Right[ar py] = l3.

3: The FDS-grammar (Molenaar, 1994, 1995).

Chapter 4: Supporting data models. (W. Peng) 67

• thus, one of the equivalent thematic and geometric descriptions of the rule is:

For any arc ay such that Left^, px] = 1 and Right[ay, py] = 1, if px.land_use =
Py.landuse, then execute px.Aggregation(py), or py.Aggregation(pJ.

Note that this formulation is based on the adjoining relationship explicitly defined in
the FDS. The translation may take another form if another data model is adopted that
supports the same kind of relationship either explicitly or implicitly. If the data model
does not support this adjoining (or adjacency) relationship, then a process involving a
probably heavy computation and complicated algorithm is necessary in order to detect
two adjacent objects.

The model was extended by Pilouk and Tempfli to handle elevation (Pilouk and
Tempfli, 1993) and further developed by Kufoniyi and Pilouk to handle 'multi-themes'
(Kufoniyi and Pilouk, 1994). A tetrahedron-based data model was also given by Pilouk
to handle 3D modelling (Pilouk, 1996).

4.3 The Enhanced Formal Data Structure Model - EFDS

Although the FDS supports a number of elementary topological relationships, it does
not support the spatial adjacency relationship among objects that are disconnected from
each other. As mentioned in section 4.1, in the FDS, adjacency is restricted to the
adjoining relationship among area objects, and is based on the concept of a "common
boundary", i.e., two area objects are adjacent if part and only part of their boundaries
are in common (e.g., if the two boundaries share an arc). With this definition, adjacent
area objects may be detected through the "left-area-object" and "right-area-object"
properties associated with an arc, and maintained by a system, or through a searching
that looks for area objects having the same arc(s) as part of their boundaries, if the
system does not maintain the "left-area-object" and "right-area-object" properties for
each arc. However, this definition does not work for the objects that are disjointed from
each other, but are still regarded as adjacent in generalization and many other
applications, as two such objects do not have any part of their boundaries in common.

In the real word, the concept of adjacency is much richer than that described above. It
may also include the adjacency relationship between those area objects that are
geometrically disconnected from each other, as well as the adjacency relationship
between line objects, between point objects, and moreover, the adjacency relationship
between objects of different geometric description types. A typical example is "an area
object building is adjacent to a line object road1'. Apparently, the FDS needs to be
enhanced in the sense of adjacency relationship, which is particularly important in
automated generalization. This can be achieved by extending the adjacency relationships
between geometric data types.

The Delaunay triangular network (DTN) is considered an adequate solution for the

68 Chapter 4: Supporting data models. (W. Peng)

purpose of modelling the extended adjacency relationships (see sections 4.3.3 and
4.3.4), due to the Delaunay criterion, or the equivalent Voronoi criterion (Preparata and
Shamos, 1985; Gold 1989, 1990; Aurenhammer, 1991). The rest of the chapter
describes how to enhance the FDS, using the DTN, for the purpose of automated
generalization. Note that the DTN is introduced as a means for defining the extended
adjacency relationships, but is not necessarily part of the data model. It may be
generated dynamically and locally at a certain step of a generalization process.
However, a data model, the UNS (Pilouk and Tempfli, 1993), that treats the DTN as
part of the geometric primitives of the data model already exists. If the UNS is adopted,
then the means for defining the extended adjacency relationships is automatically
available.

4.3.1 General Concepts of Delaunay Triangular Network

A DTN is generally defined as a triangulation W(N, A, T) of a set of points N with the
empty circle property, that is, the circumcircle of any of its triangles tj e T does not
contain any point nj e N (Preparata and Shamos, 1985). Here A is the set of all the
triangle edges in the DTN. The Delaunay triangulation is unique and locally equiangular
(Sibson, 1977), hence, it maximizes the minimum angle of its triangles compared to all
other triangulations.

A constrained DTN W/N, A, T, Ac) is an extension of the standard DTN by allowing
pre-described, non-intersecting line segments (except at their endpoints) Ac (c A) to
be forced in as part of the triangulation. Note that triangles containing any of such pre-
described edges may not be Delaunay triangles4. Figure 4.2 shows examples of
constrained and unconstrained DTNs.

Figure 4.2. Examples of DTN and constrained DTN (thick line = constraint).

An important property of the DTN is the adjacency relationship between two points

4: Detailed discussions about the Voronoi diagram, DTN, constrained DTN, and their
construction can be found in Sibson, 1977; Lee and Schachter, 1980; Preparata and
Shamos, 1985; Sloan, 1987; Floriano and Puppo, 1988; Aurenhammer, 1991; Tsai, 1993,
MidtbO, 1993; Okabe et al., 1994.

Chapter 4: Supporting data models. (W. Peng) 69

connected by a Delaunay arc, i.e., if two points are connected by a Delaunay arc, then
their associated Voronoi region (Aurenhammer, 1991) must be adjacent to each other,
and vice versa. Such two points are regarded as point Delaunay neighbours. They have
the following properties (Ahuja, 1982):

• The point Delaunay neighbours (relationship) are symmetric by definition.

• The Delaunay neighbours of a point may change if the point changes its position.

• The Delaunay neighbours of a point are not necessarily its nearest neighbours. They
must "surround" the point. Hence, distant points may be accepted as neighbours on
the sparsely populated side, whereas relatively close objects may not be accepted as
neighbours on the dense side, if they occur "behind" other closer objects. This
property is of particular interest from the point of view of generalization, and many
other applications.

This Delaunay point adjacency relationship is the basis on which adjacency relationships
concerning other geometric data types and feature types are defined. This is because
points are the most primitive geometric components of any spatial objects.

4.3.2 Some Definitions and Notations

The following give a list of notations to be used to define and describe the extended
adjacency relationships.

• Let Nf be a set of nodes, Af be a set of arcs within the framework of the FDS, thus

(before the construction of a DTN):

1) for each aj e Af, there exists at most one node nb e Nf for which:

Begin(ai, nb) = 1 and thus End(a,, nb) = 0 if aj does not form a loop;

2) for each e^ e Af, there exists at most one node ne e Nf for which:

End(ai, n,,) = 1 and thus Begin(a„ ne) = 0 if e^ does not form a loop;

3) for each n, e Nf, there may or may not exist an arc â for which:

Beging, nt) + End(ar ns) = 1;

• Let WC(N, A, T, Ac) be a DTN constrained by a subset of arcs Ac, where N = Nf, Ac

= Af, and A = Af u A'f (Af n A'f = 0). A'f is a subset of arcs that are not components
of any spatial object).

• ai(nbi, nei) - arc â with node nbj and nei being its begin and end nodes respectively.

• t^n,;, n2i, n3i) - triangle tj with node nn, n2i, and n3i being its three vertices.

• Nfi - a set of nodes which represent the boundary of feature ft.

• Afl -» a set of arcs that represent the boundary of feature f|.

70 Chapter 4: Supporting data models. (W. Peng)

pff, If], afj - point feature, line feature, and area feature respectively.

xi{ - given a node ^ and an arc aj(nbj, nej), the projection point of n(on aj along the
direction perpendicular to aj is denoted by n .̂ Note that n̂ is considered being
located at infinity if it lies beyond â (Figure 4.3).

ai

"ei n'ej (= »)

Figure 4.3. The projection point.

• Adjacent(n„ nj) - adjacency relationship between nodes n; and nj.

• Adjacent(n„ a;) or Adjacent^ n^ -* adjacency relationship between node n; and
arc aj.

• Adjacent^, aj) - adjacency relationship between arcs aj and aj.

• Adjacent(f„ fj) -- adjacency relationship between features f] and fj.

• Distance^, Vj) -* distance between two points v; and Vj.

• Distance(np n) -* distance between two nodes nf and n̂ .

• Distance(n„ aj) -• the minimum of the following three distances:

Distance^, n)̂, Distance^, nbj), Distance^, nej), where aj(nbj, nej).
• Distance^, aj) - the minimum of the following four distances:

Distance(nb„ rfj, Distance(nei, rfj, Distance(nbj, n
j
bj), Distance(nej, n\), where

ai(nbi, nei) and aj(nbj, nej). Note that Distance^ â) is actually the shortest distance
among the distances between any two points lying on a; and aj respectively, assuming
Distance(ai, aj) * °°. It is symmetric, i.e., Distance^, â) = Distance^, aj).

4.3.3 Adjacency Relationships between Geometric Primitives

The following adjacency relationships are defined for nodes and arcs. They, together
with the adjacency relationships defined in section 4.3.4, are referred to as extended
adjacency relationships in this study.

Chapter 4: Supporting data models. (W. Peng) 71

Adjacency Relationship between Nodes

Two nodes are adjacent if they are connected by an arc in the network Wc:

• For two nodes nx e N and nj e N (n; * nj), if there exists an arc \ e A such that:

Begin(ak, n;) + End(ak, nj = 1, and

Beging, Uj) + EndCa,, n) = 1, *• • • n'
t n e n Figure 4.4. Adjacency

Adjacent(np nj) = Adjacent(nj, n^ = 1. relationship between nodes.

According to this definition, a node can be adjacent to more than one node.

Adjacency Relationship between Nodes and Arcs

Node ri; and arc aj(nbj, nej) are adjacent to each other if there exists a triangle of which
the three vertices are i ,̂ nbj, and n^. This adjacency relationship implies that any
straight line s^ connecting node ii; and an arbitrary point q on arc aj does not intersect
any arc of the network Wc except at n; and q:

• For a node n; e N and an arc aj(nbj, nej) e A (where n{ * nbj * nej), if there exists a
triangle tk (nlk, n2k, n3k) 6 T such that for any n,, 6 {ri;, nbj, nej}, there exists nv e {nlk,
n2k, n3k} such that nu = nv, then
Adjacent(ni? aj) = Adjacent^, n,) = 1.

Note that a node can be adjacent to more than one arc, and an arc can be adjacent to,
at most, two nodes which are the two opposite vertices with respect to the arc.

— q n2 £
" 6

Figure 4.5. Adjacency relationships between nodes and arcs.

Adjacency Relationship between Arcs

Two disconnected arcs aj(nbi, n j e A and a/n^, nej) e A are adjacent if the four vertices
of aj and aj form an undegenerate simple polygon (Mathematics Dictionary, 1992),
which does not enclose, or intersect, any other elements of the network Wc, except

72 Chapter 4: Supporting data models. (W. Peng)

those arcs that are connected to both a; and aj.

• For two arcs aj(nbi, nei) e A and aj(nbj, nej) e A, if

1) % * nd * % * n<y> and
2) Adjacent(nbi, â) + Adjacent(nei, â) i. 1, and

Adjacent(nbj, a;) + Adjacent(nej, a^ ;> 1,

then

Adjacent^, â) = Adjacent(aj, a j = 1.

Figure 4.6 shows some examples of the adjacency relationship. Note that an arc can
have at most two arc neighbours on one side (Figure 4.6b), and thus has at most four
arc neighbours on both sides. If an arc has two arc neighbours on the same side, then
these two neighbours must share a node (Figure 4.6b). If an arc is part of the boundary
of a simple polygon, then one of its adjacent arcs must be also part of the boundary of
the same polygon (Figure 4.6e, arcs &x and a3).

<h
<h /

mÏÏ!à

.':.;.. ï-1*

% ai

c \7
/ \

i.

*2

b.

Figure 4.6. Adjacency relationship between arcs, a: a, and z^ are adjacent; b: a, is
adjacent to both d^ and a3 which share a node; c, d: a, is not adjacent to a^ e: a, is

adjacent to a3 and both of them are part of the same polygon.

4.3.4 Adjacency Relationships between Features

These higher level adjacency relationships can be defined based on the adjacency
relationships described above. According to the three feature types defined in the FDS
(see section 4.2), there will be nine possible adjacency relationships, namely, the
adjacency relationships between point features, between line features, between area
features, between point features and line features, between point features and area
features, as well as between line features and area features. These relationships are
summarized in Table 4.1.

Two features are adjacent to each other if any parts of their boundaries are adjacent to
each other:

Chapter 4: Supporting data models. (W. Peng) 73

• For two features fj and fj, if there exists at least one pair of nodes nu e Nfl and nv €
Nfl, such that Adjacent(nu, nv) = 1, then
Adjacent^, fj) = Adjacent(fj, fj) = 1.

For two ID (or 2D) features fj and fj, if there exists at least one pair of arcs \ e Af) and
a, e Afj, such that Adjacent^, a,) = 1, then, the adjacency relationship between the
two features is said to be typical. This term, i.e., typical, is introduced to distinguish the
following two situations: 1) two adjacent features have not only some of their node
components being adjacent to each other, but also have some of their arc components
being adjacent to each other; 2) two adjacent features have only some of their node
components being adjacent to each other.

Table 4.1. The adjacency matrix.

OD

ID

2D

Pfi

If,

afi

OD

Pfj

Adjacent^ , pf])

Adjacent^, pfj)

Adjacent(af„ pfj)

ID

Ifj

Adjacent(pf„ Ify

Adjacent(lfi, lfj)

Adjacent(afi5 lfj)

2D

afj

Adjacent(pf„ afj)

Adjacent(lf„ afj)

Adjacent(af„ afj)

4.3.5 The Symmetric and Intransitive Properties of the Adjacency Relationships

The adjacency relationships defined in the EFDS, including the traditional one and the
extended ones, have two important properties. The first one is that they are symmetric,
i.e.,

• Adjacent^, nj) = Adjacent^, n^;

• Adjacent^, aj) = Adjacent^, n;);

• Adjacent^, aj) = Adjacent(aj, aj);

• Adjacent(pf„ pfj) = Adjacent(pfj, pQ;

• Adjacent(lfi5 lfj) = Adjacent(lfj51Q;

• Adjacent(af„ afj) = Adjacent(afJ? afj);

• Adjacent(pt;. lfj) = Adjacent(lfj5 pfj);

• Adjacent(pf„ afj) = Adjacent(afJ7 pf;);

• Adjacent(lfi5 afj) = Adjacent(afj, 1Q;

74 Chapter 4: Supporting data models. (W. Peng)

The second property is that these relationships are intransitive. For example, having
Adjacent^, n^ = 1 and Adjacent^, n,̂ = 1, it may not hold that Adjacent(n„ n j = 1.

4.4 Examples of Spatial Query Operations Based on the EFDS

This section provides some typical examples of spatial query operations based on the
adjacency relationships previously defined. These query operations detect adjacent
objects, of different feature types, or with different degree of adjacency (i.e., typical or
non-typical), or with different connection situations (i.e., connected or disconnected
to each other). Decision-making in automated generalization and the implementation
of generalization operations often invoke such query operations. This is to be
demonstrated in Chapter 5.

Some Definitions

• Geometric primitives: nodes and arcs within the framework of the FDS.

• Geometric objects: point/line/area objects, that represent the geometric part of the
three feature types within the framework of the FDS.

• Geometric complexes: aggregations of geometric primitives or lower geometric
complexes. Geometric objects (i.e., point objects, line objects, and area objects) are
the geometric complexes of geometric primitives.

• Adjacent arc pair: Two arcs that are adjacent.

• Adjacent node pair: Two nodes that are adjacent.

• Adjacent node-arc pair: A node and an arc that are adjacent.

Examples of Spatial Query Operations

The following examples are described using C^-like procedures.

q l : Let theObject be a geometric object. Find all the adjacent geometric objects and
store them in pointObjectList, HneObjectList, and areaObjectList, for point
objects, line objects, and area objects respectively.

si : className = theObject.GetClassName();
if className = "Point Object"////// is a point object
{ ni = theObject.GetComponents(); //get the node

for each nj e N and nj * ni
{ if Adjacent(ni, nj) = 0

continue;
nj.GetComplex(complexList); //get the geometric objects consisting ofnj
for each theComplex e complexList
{ theClassName = theComplex.GetClassName();

Chapter 4: Supporting data models. (W. Peng) 75

if theClassName == "Point Object" // if node nj represents a point object
if pointObjectList.HasValue(theComplex) = FALSE

pointObjectList.Add(theComplex);
if theClassName == "Line Object" // if node nj is part of a line object

if HneObjectList.HasValue(theComplex) == FALSE
HneObjectList.Add(theComplex);

if theClassName = "Area Object" // if node nj is part of an area object
if areaObjectList.HasValue(theComplex) = FALSE

areaObjectList.Add(theComplex);

}

if (className = "Line Object") or
if (className = "Area Object") // if it is a line object or an area object
{ theObject.GetComponents(nodeList); //get all the nodes of the line or area object

for each ni e nodeList
{ for each nj e N and nj * ni

{ if Adjacent(ni, nj) = 0
continue;

nj.GetComplex(complexLisf); //get the geometric objects consisting ofnj
for each theComplex e complexList
{ if theComplex == theObject

continue;
theClassName = theComplex.GetClassName();
if theClassName = "Point Object"

if pointObjectList.HasValue(theComplex) = FALSE
pointObjectList.Add(theComplex);

if theClassName == "Line Object"
if lineObjectList.HasValue(theComplex) = FALSE

lineObjectList.Add(theComplex);
if theClassName == "Area Object"

if areaObjectList.HasValuë(theComplex) = FALSE
areaObjectList.Add(theComplex);

76 Chapter 4: Supporting data models. (W. Peng)

q2: Let theObject be an area (or line) object. Find all the line and area neighbours
with which the adjacency relationships are typical, and store them in theNeighbours.

s2: theObject. GetComponents(arcList); //get all the arcs of the area (or line) object
for each ai e arcList
{ for each aj e Af and aj * ai //see section 4.3.2 for Af

{ if (Adjacent(ai, aj) = 0)
continue;

aj .GetComplex(complexList);
for each theComplex e complexList
{ if theComplex = theObject

continue;
if theNeighbours.HasValue(theComplex) = FALSE

theNeighbours.Add(theComplex);
}

}
}

q3: Assuming that area objects are geometrically connected to each other, and let
theObject be a reference to an area object. Find all the area neighbours, and store
them in theNeighbours.

s3: theObject.GetComponents(arcList); //get all the arcs of the area object
for each ai e arcList
{ theNeighbour = ai->GetLeftGeometricObject;

if theNeighbour == theObject
theNeighbour = ai->GetRightGeometricObject;

if theNeighbour = 0 // if it is the outer-space
continue;

if theNeighbours.HasValue(theNeighbour) = FALSE
theNeighbours.Add(theNeighbour);

}

Chapter 4: Supporting data models. (W. Peng) 11

q4: Let fj and f] be two adjacent area objects. Find:

• all the adjacent arc pairs each of which consists of one arc from f(and another
from fj;

• all the adjacent node pairs each of which consists of one node from fs and
another from fj;

• all the adjacent node-arc pairs each of which consists of a node (or an arc) from
f; and an arc (or a node) from fj. Assume that fi and fj are references to fj and
fj respectively.

s4: fi.GetComponents(fiArcList, fiNodeList); //get Afl andNfi

fj.GetComponents(fjArcList, fjNodeList); //getAs andNe

for each au e fïArcList
{ for each av e fjArcList // get adjacent arc pairs

{ if Adjacent(au, av) = 1
arcPairList.Add(au, av);

}
for each nv e fjNodeList //get adjacent node-arc pairs
{ if Adjacent(nv, au) = 1

nodeArcPairList.Add(nv, au);
}

}

for each av 6 fjArcList //get adjacent node-arc pairs
{ for each nu e fiNodeList

{ if Adjacent(nu, av) = 1
nodeArcPairList.Add(nu, av);

}
}

for each nu e fiNodeList //get adjacent node pairs
{ for each nv e fjNodeList

{ if Adjacent(nu, nv) == 1
nodePairList.Add(nu, nv);

}
}

78 Chapter 4: Supporting data models. (W. Peng)

4.5 Summary

This chapter introduced the EFDS, an enhanced (not extended) version of the FDS, as
a data model to support automated generalization and elaborated on the extended
adjacency relationships. It also provided examples of spatial query operations that make
use of the extended adjacency relationships. These adjacency relationships are of
particular interest to automated generalization. They have two important properties: the
symmetric and intransitive properties.

The DTN was introduced to define the adjacency relationships, but is not necessarily
part of the data model. It may be generated dynamically, and locally, at a certain step
of a generalization process. A detailed description on how to construct unconstrained
and constrained DTNs is given in Chapter 7.

The EFDS is mapped into an O-O data structure in Chapter 6, where the link between
the thematic and geometric aspects of an spatial object is elaborated. The consistency
aspect of the data model is not covered by this research, however, consistency has been
addressed in other research projects, such as Kufoniyi (1995) and Pilouk (1996).

Chapter 5: Supporting algorithms. (W. Peng) 79

CHAPTER 5

SUPPORTING ALGORITHMS

Having the EFDS (see chapter 4) to support the description of spatial objects and the
topological relationships among them, we still need algorithms to actually perform
spatial analysis and transformations. The most fundamental tasks in developing an
operational automated generalization system are to identify where to generalize, and
to prevent the result of a generalization operation from violating topology or creating
new spatial conflicts. These are the main concerns of this chapter. It introduces a
number of algorithms that have been developed to solve a number of critical geometric
problems in both database generalization and view generalization, as defined in
Chapter 3. These problems include 'spacing' checking, objects aggregation, spatial
conflict detection, object clustering, object displacement and displacement propagation,
object exaggeration, pattern detection, as well as spatial context analysis. Among them,
'spacing' checking and object aggregation are related to database generalization,
whereas the rest (as well as object aggregation) are some of the key problems related
to view generalization.

In developing the algorithms, the adjacency relationships defined in Chapter 4, and the
DTN, play an important role. These algorithms have been implemented and tested.
Chapter 7 provides a detailed description of the implementation and test.

5.1 'Spacing' Checking

One of the operations in spatial resolution transformation is the aggregation of two
adjacent objects if the space between them is smaller than the threshold (see section
3.3.1). This requires to identify adjacent objects (or neighbours) and check the space
between them, which can be conducted by analysing the spatial relationship among the
geometric primitives.

The process is described as follows, using Figure 5.1 as an example for illustration:

• let dämsMä be the space threshold, d ^ = °°. Assume that area object p3 in Figure 5.1a
is the object in consideration.

• get all area neighbours using the procedure described in section 4.4 (ql-sl), and
store them in neighbourList. The result (as shown in Figure 5.Id) is:

neighbourList = {pi, p2, p4, p5}.

80 Chapter 5: Supporting algorithms. (W. Peng)

17 5 19

10 u

lliL

1 9 21

14

4

16

6

24

1 5 25

23

26

7

2
s «

a: A group of unconnected objects. b: Constrained Delaunay Triangulation.

5 I

2

5. I

l 4: IT" XT'
" \ \ /

••;;;.:i 7
1-

/''

TV" T7 • ;;:;i 7

c: Delaunay neighbours derived from b. d: Delaunay neighbours of object 3 (solid lines).

2

1

1

3

4

dm„
3 9 3

9 11

6 1

2
s «

2

1

1

3

4

«U-S-
3 9

10 11

. 3 , ?

6 J

2
5 8

e: Spacing checking. f: Status of spatial conflict.

Figure 5.1. 'Spacing' and spatial conflict checking.

Chapter 5: Supporting algorithms. (W. Peng) 81

for each p(e neighbour List, do the following:

{ • use the procedure described in section 4.4 (q4-s4) to get all the adjacent node-
arc pairs (with respect to p3 and p(e neighbourList). Referring to the example,
for Pi = Pi, the result is:

nodeArcPairList = {(n10, a3), (n4, a,)}.

• for each node-arc pair (nu, a j e nodeArcPairList, do the following:

{ • let duv = Distance(nu, av).

• if duv<dmin, then let d,^ = duv.

}
• ifdmin<dthreshold,then the spacing ofp3andpiis beyond the requirement of

minimum space.

5.2 Aggregation Operation

Where should two adjacent objects be merged? How could the operation ofmerging
two close objects be conducted without violating topology? These are the two most
critical questions for merging two adjacent objects. For the first question, the proposed
solution is straightforward:

• merging two adjacent area objects at the place where an adjacent arc pair occurs,
that consists of two arcs from the two area objects, and the spacing of the pair is
smaller than the threshold (note that if there exist more than one such arc pairs, then
either the closest arc pair, or all the pairs may be selected to merge).

• merging two adjacent line objects at the place where an adjacent node pair occurs
that consists of two nodes each of which is the first or last node of its respective line
object, and the spacing of the pair is smaller than the threshold.

The solution to the second question is based on the definitions of the arc-arc adjacency
relationship and the node-node adjacency relationship (see section 4.3.3). For two line
objects, the merging operation can be conducted by simply changing the associated
thematic properties of one of the line objects and the arc that links the two adjacent
nodes. As for two area objects, the solution is more complicated.

According to the definition given in section 4.3.3, if two arcs are adjacent to each other,
then the four nodes of the arcs form a simple polygon that encloses or intersects no
other elements of the network but those arcs connecting the four nodes. This polygon
is, in fact, a quadrangle constituted by two adjacent triangles and with two of the four
edges that are not connected to each other being the adjacent arc pair. It is an area
bridging the two area objects. Thus, the merging operation can be implemented by
simply deleting the adjacent arc pair and using the other two edges of the quadrangle

82 Chapter 5: Supporting algorithms. (W. Peng)

to connect the two area objects, as shown in Figures 5.2a, 5.2b, and 5.2c. However, the
new, aggregated, object by such a solution may occupy too much space in the cases
such as that shown in Figures 5.2b and 5.2c. In this respect, the results shown in
Figures 5.2d and 5.2e are regarded as better solutions. The following discusses the
respective algorithm.

£

' • * .

G

SS

•
•

-.

4

- '.\

4

b. c. d.

Figure 5.2. Proposed solutions for aggregating two close area objects.

Assume that arcs aj(nbi, n^ and aj(nbj, n^) are adjacent to each other. Let p(j be the
simple polygon formed by the four nodes of aj and aj (thus a; and aj are the two opposite
edges of pjj). Suppose py is a convex polygon. A convex polygon has the property that
any straight line connecting any two points lying on the boundary of the polygon does
not intersect the boundary. Let:

• Ns={nbi,bei,nbj,bej},

• N's = {nJbi, n»d, nVj, nj
ej} (see section 4.3.2),

• Es = {e„ ..., e4} be a subset of straight lines, each of which connects a nB e Ns and
its projection point n'u e N's,

• E's = {e,,..., em} s Es, such that none of the two nodes of each eu (e E's) is located at
infinity (see section 4.3.2). Note that if one of the two nodes of eu e E's is the begin
node or end node of arc a,; (k e {i, j}), then eu is said to be corresponding to arc %.
For instance, e^n^, rfj and e ^ , rfj are both corresponding to arc â whereas
ex(nbj, n'bj) and ey(nq, n y are both corresponding to arc â . An important property
about E's is that any eu 6 E's does not intersect any av e Af - {a;, aj} (see section 4.3.3
- Adjacency Relationship between Nodes and Arcs), or pass any nw e N - {nbi, nei,
nbj, nej}. Figure 5.3 shows all the possible combinations with respect to the relationships
ofaj, ajandE's.

Chapter 5: Supporting algorithms. (W. Peng) 83

/
*i

a, / \

A*-.. - ••

a. m = 4 b. m = 3 c:m = 3 d.m = 2

••-.5

e. m = 2 f. m = 2

g. m = 2 h. TO = 2 i. m=\ 'ym=\ k. m = 0

Figure 5.3. The relationships between arcs a; and aj.

Assuming that the subset E's has m elements, we can introduce the following rules for
the merging operation in database generalization:

• if m is equal to four, then among E's choose any pair which are corresponding to the
same arc (i.e., either eu(nbi, < ;) and ev(nei, n>ei), or ex(nbj, n^) and ey(nej, n

j
ej)), as the

two new arcs for connecting the two area objects (Figure 5.4a).

• if m is equal to three, then among E's choose the two that are corresponding to the
same arc (i.e., either e^n,», rfj and e ^ , n>ei), or ex(nbj, n '^ and efi^, rie), depending
on which pair are available), as the two new arcs for connecting the two area objects
(Figures 5.4b and 5.4c). Do not use such a combination as ejex, or eu/ey, or e^e,, or
e,/er

• if m is equal to two, and if the two lines:

1) do not coincide, or

2) do not intersect, or

3) intersect, but the intersecting point of them lies outside the polygon;

then choose these two lines as the two new arcs for connecting the two area objects,
(Figure 5.4d to Figure 5.4g).

• if »j is equal to two, and if the two lines:

1) coincide, or

2) intersect, and the intersecting point lies inside the polygon (Figure 5.3h);

then:

1) omit both lines so that m becomes equal to 0, then use the other two edges of the
quadrangle as the two new arcs for connecting the two area objects (Figure 5.4h); or

84 Chapter 5: Supporting algorithms. (W. Peng)

2) omit one line from E ', so that m becomes equal to 1, then apply the next rule
(Figures 5.4i and 5.4j).

if m equals 1 then use this only line eu and one of the edges of the quadrangle ev as
the two new arcs for connecting the two area objects (Figures 5.4i and 5.4j). Note
that ev must be properly determined. If eu is corresponding to arc .^ (x e {i, j}) and
it connects n^ and n5^ (nta e {nta, n^}, y € {i, j} and y * x), then one of the vertices
of ev must be n^ (n^ e {nbx, nex} and n^ * n j .

if m is equal to 0, then use the other two edges of the quadrangle as the two new arcs
for connecting the two area objects (Figure 5.4k).

a. m = 4 b. m = 3

>=> "=>

1 \

^>

c.m = 3

^>

d.m = 2

^> ^>

e. m = 2 f.m = 2

\

r~-r n
1 A-

i

^>

',.m = . 2

- /
r^.

II
\

/

*

i. m = 2

'• V„ ' ,,

~~ ---
r-~. I 1 - -

j . m = 1 k. m = 0

Figure 5.4. Examples of objects aggregation.

i. m = 1

U.
^

If Pij is a concave polygon, then an eu 6 E's may intersect the polygon boundary. A pre-
checking process is therefore necessary that cleans out those edges of E's that intersect
the polygon boundary. Once E's is free from such edges, the above rules can be
applied. In the case that an arc is adjacent to two arcs of another object on the same
side, select the pair according to the following criteria:

Chapter 5: Supporting algorithms. (W. Peng) 85

• if one pair forms a convex polygon and the other forms a concave one, then choose
the pair that forms a concave polygon; otherwise,

• choose the pair that forms a polygon with smaller area.

Note that in practice, the user may want to aggregate a cluster of adjacent point objects
of the same type to form an area object. A cluster of adjacent objects can be detected
using a procedure similar to the one described in section 5.4 — Detecting Problem-
zones of Spatial Conflict. By checking the attribute data of an object, objects of other
types can be excluded from the cluster detected. The next step is to replace the cluster
by an area object. A simple solution is to use the convex hull of the point cluster as the
area object. However, this may result in violating topology apart from the problem that
the area of the convex hull may be too big compared with that covered by the point set.
The adjacency relationships defined in the EFDS, and the DTN, can be potential in
finding an area object to represent the point set; that at least does not lead to violating
topology. This is an issue to be investigated in future work.

5.3 Spatial Conflict Checking

One of the main reasons for requiring view generalization is spatial conflict due to the
limitation of output space and/or scale reduction. Spatial conflict checking is, therefore,
an important aspect in decision-making. It should answer at least the following two
questions:

• Which parts of two objects are in conflict?

• What is the status of the conflict (e.g., the location, orientation, and degree of
conflict)?

Geometrically, the process of spatial conflict checking is similar to 'spacing' checking,
and many concepts introduced in section 5.1 can also be used here. The following
describes the process (see also Peng et al., 1995). Figure 5.1 will be used as an example
for illustration.

• let d^si,,,,,, be the space threshold, d,,̂ = ». Assume that area object p 3 in Figure 5.1a
is the object in consideration.

• get all neighbours using the procedure described in section 4.4 (ql-sl), and store
them in pointObjectList, UneObjectList, and areaObjectList, for point objects, line
objects, and area objects respectively. The result (as shown in Figure 5.Id) is:

pointObjectList and UneObjectList are both empty.
areaObjectList = {p„ p2, p4, p5}.

• for each p; e areaObjectList, do the following:
{ • use the procedure described in section 4.4 (q4-s4) to get all the adjacent node-

arc pairs (with respect to p3 and ft e areaObjectList), or adjacent node pairs,
if no such node-arc pair is available. Referring to the example, for p; = p b the

86 Chapter 5: Supporting algorithms. (W. Peng)

result is:
nodeArcPairList = {(n,0, a3), (n4, a,)}.

• for each arc-node pair (nu, av) e nodeArcPairList, do the following:
{ • let duv = Distance(nu, av).

• if duv < d^, then let dmin = duv.
}

• if nodeArcPairList is empty, then for each node pair (nu, nv) e nodePairList
{ • let duv = Distance(nu, nv).

• if duv < dmin, then let dmin = duv.
}

• if d,™ < d ^^d , then p3 and ps are in conflict.
}

• the orientation of the conflict between p3 and p; is identified by the direction a
associated with d,,̂ . This direction (a) is also the most efficient candidate direction
for the conflicted objects to move away from each other in order to solve the
conflict. In other words, if moving along this direction will not create a new conflict,
then the displacement required is minimized (i.e., d^shou - d,,̂ , Figure 5.1 f). Because
of this property, a is used as the initial attempt to move an object in the algorithms
for object displacement and displacement propagation (see section 5.6). In this
thesis, Vector V(p, a) is referred to as displacement vector, where p = d,,,,,.,.,,,,,,, - d,,^.

5.4 Clustering and Problem-Zone Detection

Clustering is an important process as many generalization problems need to be solved
by considering a subset of related objects as a whole (see Chapter 3), rather than
treating them individually (Markness, 1994; Peng et a l , 1995). Few generalization
problems can (or should) be solved by just looking into individual objects. The aspects
that "bring together" a subset of objects can be semantical and/or geometrical. This
section focuses on the geometric-related problems, in particular, the problem of
detecting a problem-zone. A problem-zone can be a local-conflict-group or a group of
small but adjacent objects. Three types of problem-zones are considered in this study,
each of which requires a different generalization solution:

• problem-zones of small area objects;

• problem-zones of spatial conflict;

• problem-zones of small area objects and spatial conflict.

Detecting a problem-zone is a recursive process in which spatial relationship plays a
key role. The process described below is based on the adjacency relationships described
in Chapter 4.

Chapter 5: Supporting algorithms. (W. Peng) 87

Detecting Problem-Zones of Small Area Objects

• let theProblemZone be an empty list;

• for each area object theCurrentObject, do the following:

{ • check if theCurrentObject has been included in any problem-zone detected
previously; this can be done by introducing a flag for each object. If the result
is yes, or if the area of theCurrentObject is larger than the threshold, then move
to the next area object in the data set; otherwise do the following:

{ • add theCurrentObject to the list theProblemZone. Mark the object (i.e.,
theCurrentObject) by, for instance, setting its flag;

• use the procedure described in section 4.4 (ql-sl) to get all the area object
neighbours of theCurrentObject, and store them in a list theNeighbours.
Note that neighbours can also be detected using another procedure (q3-s3
in section 4.4) for a geographic space where area objects are connected
to each other;

• for each theNeighbour e theNeighbours, do the following:

{ • if the area of theNeighbour is larger than the threshold, or if it has
been included in theProblemZone, then move to the next neighbour
in the list; otherwise move to the next step;

• push theNeighbour into a stack theStack,

}
• pop up an object theObject from theStack, and let theCurrentObject =

theObject, then repeat the above three steps (indicated by icon *) at this
level until theStack is empty;

• the objects contained in theProblemZone form a problem-zone within
which objects are small but adjacent to each other;

}
• move to the next area object in the data set and repeat all the processes at this

level to detect other problem-zones.

Detecting Problem-Zones of Spatial Conflict

• let theProblemZone be an empty list;

• for each object theCurrentObject, do the following:

{ • check if theCurrentObject has been included in any problem-zone detected
previously. If the result is yes, then move to the next object in the data set;
otherwise do the following:

{ • add theCurrentObject to the list theProblemZone. Mark the object (i.e.,

88 Chapter 5: Supporting algorithms. (W. Peng)

theCurrentObject) by, for instance, setting its flag;

• use the procedure described in section 4.4 (ql-sl) to get all the neighbours
of theCurrentObject, and store them in a list theNeighbours. Note that
this problem is only applicable to the objects which are geometrically
disconnected. It is meaningless for a geographic space where objects are
connected to each other, thus neighbours cannot be found using the "left-
area-object" and "right-area-object" information as described in section
4.4 (q3-s3);

• for each theNeighbour e theNeighbours, do the following:

{ • if theNeighbour and theCurrentObject are not in conflict (see
section 5.3), or if it has been included in theProblemZone, then
move to the next neighbour in the list; otherwise move to the next
step;

• push theNeighbour into a stack theStack;

}
• pop up an object theObject from theStack, and let theCurrentObject =

theObject, then repeat the above three steps (indicated by icon *) at this
level until theStack is empty;

• the objects contained in theProblemZone form a problem-zone within
which objects are in conflict with each other;

}
• move to the next object in the dataset and repeat all the processes at this level

to detect other problem-zones.

}

Detecting Problem-Zones of Small Area Objects and Spatial Conflict

• let theProblemZone be an empty list;

• for each area object theCurrentObject, do the following:

{ • check if theCurrentObject has been included in any problem-zone detected
previously. If the result is yes, or if the area of theCurrentObject is larger than
the threshold, then move to the next area object in the dataset; otherwise do the
following:

{ • add theCurrentObject to the list theProblemZone. Mark the object (i.e.,
theCurrentObject) by, for instance, setting its flag;

• use the procedure described in section 4.4 (ql-sl) to get all the area object
neighbours of theCurrentObject, and store them in a list theNeighbours;

• for each theNeighbour e theNeighbours, do the following:

{ • if its area is larger than the threshold, or if it is not in conflict with

Chapter 5: Supporting algorithms. (W. Peng) 89

theCurrentObject, or if it has been included in theProblemZone,
then move to the next neighbour in the list; otherwise move to the
next step;

• push theNeighbour into a stack theStack;

}
* pop up an object theObject from theStack, and let theCurrentObject =

theObject, then repeat the above three steps (indicated by icon •) at this
level until theStack is empty;

• the objects contained in theProblemZone form a problem-zone within
which objects are small and conflict with each other;

}
• move to the next area object in the dataset and repeat all the processes at this

level to detect other problem-zones.

}

5.5 Object Displacement and Safe-region

Object displacement is one of the major problems in automated view generalization.
One of the main reasons is that when an object has to be displaced because of spatial
conflict, there are no adequate measures and sufficient information to guide the
movement of the object so that it will not "hit" or "cross" other objects. In other words,
violation of topology may occur when object displacement is taking place. Another
reason is that, in some cases, the displacement of an object relies on the displacement
of other neighbour objects, which is even more complicated, difficult to control and
implement.

The solutions introduced here and in the next two sections are based on the concept of
safe-region (Peng et al., 1995). The safe-region 0 ; of an object o; is defined as an area
enclosing only the object itself. An object can expand and move around freely without
"hitting" or "crossing" any other objects as long as it stays inside its safe-region (that
is how 0 ; got its name). 0 ; determines within how much area of freedom the associated
object O; can expand and move around; apparently, the bigger the Oi5 the more the
space in which os can move around and expand. 0 ; is an important aspect in view
generalization as most of the solutions proposed in Chapter 3 (see section 3.4) require
to first check the consequences of a proposed operation, e.g., whether exaggerating or
displacing an object will cause a new spatial conflict.

An approximation of O; can be obtained using the DTN. In Figure 5.5, if we take a
close look at the triangles around each object, it is not difficult to find that each object
O; is surrounded by a group of triangles Ts which do not enclose any other objects. The
polygon formed by the external edges of the triangles of Ts can be regarded as an
approximation of Oj of the enclosed object Oj and is denoted by O';.

90 Chapter 5: Supporting algorithms. (W. Peng)

2 3

1

/ £

5

20

19
21

22

6

-.4 S

a: A group of unconnected objects. b: Constrained Delaunay Triangulation.

c: The safe-region (0'3) of object 3. d: The safe-region (0'4) of object 4.

Figure 5.5. Examples of safe-region.

It should be realized that 0 ' ; is not the maximum safe-region of Oj. This, in some cases,
may cause 0\ to reject o;'s request for moving to a place which has no "danger" at all1.
However, 0\ is still an efficient and useful measure to guide the expansion of o^which
will be discussed in section 5.7), and its displacement in the sense of solving spatial
conflict, as the constraints by the surrounding objects are embedded in it. The
important fact is that 0 '{ will never allow o; to move to a dangerous place or grow to
a dangerous status. In many cases, O'; rejects Oj's request because it is not necessary (or
not "good") to move in that direction (e.g., may seriously destroy the original
structure/pattern). However, further research is necessary that looks into other properties
of O';, the effects of the difference between O'; and the maximum safe-region, and a
more representative 0 ' ; .

1 : In the algorithms developed for object displacement and exaggeration, before moving to
a new location or growing to a new status, an object will first check with its safe-region
whether it will still remain inside the safe-region after the process, and the safe-region will
determine if this will be the case and reply to the object.

Chapter 5: Supporting algorithms. (W. Peng) 91

The concept of safe-region and its application can be extended and applied to complex
generalization units and local-conflict-groups, by treating each unit (or group) as an
individual area object.

Note that because we want to keep a certain distance between two objects (in a view),
we must apply a buffer on Oj when it moves. The width of the buffer should equal the
distance required. The following section describes how displacement and displacement
propagation are conducted.

5.6 Displacement Propagation

The problem that "the displacement of an object relies on the displacement of others"
is referred to as displacement propagation. It can be solved by using the safe-region
and neighbour relationship. The basic idea is the following (see also Peng et al., 1995):

• a spatial conflict can be detected and the displacement vector V(p, a) can be

calculated using the procedure described in section 5.3;

• for each object the safe-region attached to it can be identified (see section 5.5);

• an object can check with its safe-region for "safely" shifting V(p, a);

• for each object its neighbour(s) can be found (see section 4.4);

• if an object o; cannot move to a new location after checking with its safe-region, it
can pass this request (i.e., shifting V(p, a)) to one, or more, of its neighbours and ask
the neighbours) to move and make room for it in order to move to its new location.
Note that in practice, if the movement along a fails, one still can try by changing a
and, accordingly, p;

• the neighbours) sends a message to o; if it succeeds in moving to the new location,
and now o{ can move to its new location;

• if the neighbours) fails to move to the new location after checking with its safe-
region, then it may further pass the request to its neighbours in the same way as Oj
did. This process can go on until it meets a pre-defined condition, e.g., reaches the
outer-space or an "immovable" or more important object (see sections 3.4.2 and
3.4.3);

• if neighbours cannot make room for oi5 then other solutions are required.

To demonstrate the process, let us consider the example shown in Figure 5.6:

• Suppose object p3 is in conflict with object p, (Figure 5.6a), and p3 must move away
from p,;

• from section 5.3 it is known that a is to the right and horizontal (see Figure 5.If);

• find the safe-region 0 ' 3 of object p3 (see Figure 5.5c);

• apply a buffer on p3; the new and temporal object is denoted by p'3;

92 Chapter 5: Supporting algorithms. (W. Peng)

• let p"3 = p'3 + Ap3, i.e., n"j (e Np"3) = n'j (e Np'3) + Ap3, where Ap3 = V(p, a);

• if any vertex in p"3 is outside of 0 '3 , or any vertex in 0 ' 3 falls into p"3, then p3

cannot shift V(p, a). Assume that this is the case (i.e., p3 cannot shift);

• by comparing a with the direction from p3 to its neighbours2, it is known that object
p4 is probably the one which blocked the movement of p'3, therefore, it must move
away;

• the request for the displacement of Ap3 = V(p, a) is now propagated onto object p4.
Assume that the space between p3 and p4 along a is d34, the required space is d̂ ,̂,,,,,,,,
thus the displacement vector with respect to the displacement of p4 is V(A, a), where
A. = p - (d34 - dtoshoJ;

• carry out a similar procedure and try to move object p4; if p4 cannot move, then pass
the request to another object in the same way as done for p3;

• displace p3 by Ap3 if p4 can move. The result is shown in Figure 5.6d.

2

1

4

3

4

3 9
10 11

P 3 , 2
12

11
13

6

14

4

16

15
25

26

7 27

a: A group of unconnected objects. b: Constrained Delaunay Triangulation.

5

2 3

1

; j

3 " i " 1 1 » 3
9 12 4

6 7

2
s s

6

7
r-f 1 H' ! 1

/

c: Status of spatial conflict. d: Displacement propagation.

Figure 5.6. Displacement propagation using safe-regions.

2: More sophisticated algorithm may be required for more complicated situations than just
comparing the direction.

Chapter 5: Supporting algorithms. (W. Peng) 93

5.7 Object Exaggeration

Object exaggeration can also benefit from the use of safe-regions: an object can be
exaggerated only if it is still within its safe-region after the operation. Note that in some
cases, e.g., if an object is not located in the centre area of its safe-region, displacing an
object towards the centre of its safe-region before exaggerating it may help to increase
the degree of exaggeration.

5.8 Safe-region Expansion

In many cases, view generalization solutions may require to expand the safe-region of
an object (or a generalization unit), before a generalization activity takes place,
especially when an object has to be exaggerated, or symbolized, or displaced (see
section 3.4.4). The only way to expand the safe-region of an object (or generalization
unit) is by asking its neighbours to "contribute". There are four possibilities for the
contribution:

• some of the less important neighbours move away from the object (or generalization-
unit);

• some of the less important neighbours reduce their size (i.e., shrinking);

• some of the less important neighbours eliminate themselves;

• the combination of the last three methods.

Move a neighbour away from the object (or generalization unit) may create new
conflicts, hence displacement propagation may be required if this is the case, and the
constraints introduced in section 3.4.3 should be applied to control the process.

5.9 Pattern Detection

Regular patterns may be detected using the DTN as the structure reflects the distribution
of a point set. As shown in Figure 5.7, dense points correspond to small triangles, while
sparse points result in big triangles. Evenly distributed points give rise to triangles of
similar sizes and shapes. For a subset of points having an anisotropic distribution, the
shapes of the resulting Delaunay triangles exhibit corresponding directional sensitivity.
These are the properties based on which we could detect a regular pattern from a set
of objects. A similar observation of these properties in relation to the Voronoi diagram
was given by Ahuja (1982). Although there are many possible patterns that are of
interest to automated view generalization, the following discussion concentrates on the
detection of regular linear groups of objects (see below for the definition) within a
larger group. However, the same approach can also be applied to other patterns after
modification.

94 Chapter 5: Supporting algorithms. (W. Peng)

Figure 5.7. The structure reflects the distribution of a point set.

The particular example to be considered concerns the detection of linear groups of
islands (Figure 5.8). The human eye will detect such a linear group when:

• the centroids of the islands lie on a straight or curved line;

• the islands are rather similar in size;

• the distances between neighbouring islands in the group are similar and are normally
less than the distance to the nearest island outside the group, from any member of
the group.

linear group

f\ (\ linear group '-- ' ' C_T\

Q
u 0

Figure 5.8. A group of islands (source:
Muller and Wang, 1992).

The algorithm which has been developed is based on this understanding, and the
Delaunay triangulation of the centroids of the islands.

Chapter 5: Supporting algorithms. (W. Peng) 95

As the algorithm is related to the pattern of triangles, we need to find some parameters
to describe the nature of a triangle. In addition to area and perimeter, we introduce two
more parameters to describe the orientation and "width" of a triangle, called bearing
and span. Their definitions, as well as some other related concepts to be used in the
algorithm, are given below:

• Let V, = {v„ v2, v3} be the vectors from the vertices Nt = {n„ n2, n3} of a triangle to
the mid-points of their opposite edges Et = {el5 e2, ej}, the bearing of the triangle
is defined as the orientation of v; e V, of which length | y{\ is the maximum; the span
is defined as the length of the corresponding edge ej (see Figure 5.9).

• A subset of adjacent triangles Ts = {t,, t2,..., t j have radial orientations if the
bearing of each tj e Ts starts from the same point. This point is called the radiant-
point of Ts.

• A subset of adjacent triangles Ts = {tls t^ ..., t„} have similar spans, if for each tj e
T

| Sj - s | < (/"•§).

Where s, is the span oft;, and

s = (X>i)/" {1 < i < «} ,

/ = l - (s / S) * {ifs<S},or

/ = l - (S / s) * { ifs>S},

S = dSj)/Ä { l s j < Ä } ,
, . ft Figure 5.9. Bearing and span.

S and s are respectively the global (triangle) span average and the local (triangle) span
average; h is the total number of triangles of the dataset; n is the number of members
ofTs;£isafactor that controls the tolerance for the variation of S;. This criterion is
given based on the observation that the larger the difference between a local cluster (as
a whole) and its global environment, the less critical the requirement concerning the
differences among the members within the local cluster. In other words, if a local
cluster is very different from its environment, we may allow the cluster to have
members which are slightly different from the rest of the group. The tolerance of the
cluster difference depends on the difference between the local cluster and the global
environment.

The procedure of detecting a regular linear group within a larger group is formulated
as follows (see also Peng et al., 1995):

• calculate the centroid and area of each polygon (island);

• triangulate the centroids (Figure 5.10a);

span

96 Chapter 5: Supporting algorithms. (W. Peng)

• find all subsets of adjacent triangles Ts = {t^, t^,..., t,,,,} having radial orientations
(Figure 5.10b), i.e., triangles with solid lines and connected by arcs;

• from each Ts, select a subset of adjacent triangles Tt = {t,„ t^,..., t^} having similar
spans (Figure 5.10c), i.e., triangles with solid lines and connected by arcs;

• from T„ select all the vertices except the radiant-point and form in sequence a list
of points N, = {ntl, nc,..., n,q} which are the centroids of the associated islands;

• from N„ select a sublist of "adjacent" points Nv = {n^, n^,..., n^} under the
condition that the areas of all the associated objects are similar. The similarity of
areas is defined in the same way as for spans;

• Nv forms a linear group (islands connected by solid lines as shown in Figure 5.1 Od).
The characteristics of the group can be described by the following variables:

1) the average distance d between two adjacent points of Nv and its standard
deviation Sj;

2) the average angle ü included between adjacent edges connecting two adjacent
points of Ny, and its standard deviation Sa;

3) the average area ä and its standard deviation Ss.

• Based on these characteristics, extend both sides of the existing pattern by including
new islands that fall into the pattern but were not detected by the above procedure:

including neighbours in the DTN of centroids which meet the following three
conditions:

I d i - d ^ K S a ;

|U i -ü |<K-S ü ;

| a i - ä | < K - S , .

Where dj is the distance between two adjacent points, u; is the angle included
between adjacent edges, a; is the area of an island, K is a tolerance factor and may
be set to 2 or 3. The result is shown in Figure 5.1 Od (islands connected by dashed
lines). This result was obtained with k = 2 and K = 3. The same result also can be
obtained with 1.3 <; k < 8.1. Figure 5.11 shows results obtained with k =1.0 and k
= 9.0.

Note that the approach described in this section for detecting linear patterns is rather
experimental. There are still several issues that need further study, such as the
sensitivity of factor k, and the reliability of the algorithm. One of the possibilities of
determining k value is through the use of existing examples. It must be stressed that
although pattern is an important aspect in view generalization, it is not easy to give a
definition to each pattern of possible interest. The perspective on a group of objects in
the sense of pattern is, in many cases, intuitive and subjective, and may depend on the
application(s). Because of these factors, it is possible that pattens detected by a

Chapter 5: Supporting algorithms. (W. Peng) 97

computer procedure contain errors, or some of the patterns are not taken by the
procedure. Hence, user's participation may be necessary in examining the output of the
computer procedure and spotting lost patterns. This would imply that pattern detection
would better be introduced as a pre-generalization process rather than an on-line
process in generalization, i.e., the user uses the computer procedure(s) to help him/her
detect patterns of interest and store this information in the database, which later can be
used in a generalization process.

a. The DTN of the centroids. b. Triangles with radial orientation.

c. Triangles with radial orientation and similar spans. d. Linear groups detected.

Figure 5.10. An example of linear group detection.

98 Chapter 5: Supporting algorithms. (W. Peng)

a. Linear groups detected with k = 1.0. b. Linear groups detected with k = 9.0.

Figure 5.11. Examples of linear groups detected with different k values.

Chapter 5: Supporting algorithms. (W. Peng) 99

5.10 Spatial Context Analysis

This section discusses how spatial context analysis can be realized by integrating
topological data modelling and AI technology. In particular, it introduces a dynamic
decision tree (DDT) structure (Peng, 1992; Peng and Muller, 1996), to support context
analysis for urban road network generalization (as an example) in order to enhance
graphic presentation. The structure consists of several components, namely root, node,
leaf, and branch, each of which represents an object (or object component) having
particular properties. Its construction is based on topological relationships and several
rules.

5.10.1 An Example of Spatial Context Analysis

In order to develop an algorithm for spatial context analysis, we need to study first how
such an analysis would be conducted in practice, which in turn may help us to
understand and formalize the reasoning path and see what information is necessary.

902

501

901

101

[1]

903

201

[2]

502

[6]

904

301

[3]

503

905

401

[4]

504

906

[5]

505

Figure 5.12. Before generalization.

Figure 5.12 shows an un-generalized view [°1
of a part of a road network structure, in
which each road is composed of one or
several road segments (e.g., road 5
consists of segments 501, 502, 503, 504,
and 505), and each city-block is formed
by a set of road segments (e.g., city-block
[2] consists of road segments 502, 101,
903, and 201). Assume that city-blocks
[2]» [3], [4], and [5] are all smaller than a
certain threshold, and consequently, need
to be merged into bigger ones at a certain
output scale, whereas city-block [1] and [6] are large enough to be preserved. The
following procedure is proposed to tackle this problem.

First, the following three rules are particularly defined for this example to guide the
process:

• rule 1: Road connectivity must be maintained, i.e., a road must not be cut into
several disjointed pieces.

• rule 2: When a small city-block needs to be merged to one of its neighbour city-
blocks, consider the smallest candidate first, provided that rule 1 is not violated.

• rule 3: View (or map) boundary, if any, must not be broken.

Note that the road connectivity is ensured by the use of a road identifier rather than
road name. Thus, if two roads have the same name but are not geometrically connected

100 Chapter 5: Supporting algorithms. (W. Peng)

to each other, then they will have different identifier numbers.

Now let us consider each small city-block and proceed further. Our first observation
is that the four small city-blocks (i.e., [2], [3], [4], and [5]), form a problem-zone of
small areas that are connected to each other (see section 5.4), which means that objects
within the area are too crowded, indicating a need for generalization. Objects within
a problem-zone should be treated as a whole, and our consideration may concentrate
on this problem-zone and its immediate neighbours. Firstly, let us look at city-block [3]
in Figure 5.123. We need to decide which of its segments should be eliminated in order
to merge it to one of its neighbours (i.e., city-blocks [2], [6], [4] and outer-space [0]).
Both rule 1 and rule 2 prevent city-block [3] from being merged to city-block [6] (i.e.,
firstly, city-block [6] is large enough; and secondly, merging city-block [3] to city-
block [6] would mean deleting road segment 503, which would cut road 5 into two
pieces). We also cannot break the view/map boundary and merge city-block [3] to the
outer-space [0]. Therefore, our choice is limited to city-blocks [2] or [4].

902

501

901

[1]

101

903+904

301

[8]

502+503

[6]

905+906

[7]

504+505

Figure 5.13. After generalization.

As for the candidates [2] and [4], there [°]
seems to be no obvious criterion to
determine to which of them it should be
merged. However, as human experts, we
are able to extend our reasoning path to
city-blocks [4] and [5] (remember, we are
considering city-block [3]). Looking at
city-block [5], we know that road segment
401 must eventually be eliminated, if we
assume that city-block [5] is too small to
be kept. Thus city-block [4] and [5] may
have to be merged into a larger one, i.e.
into city-block [7]. Keeping this decision in mind and being aware that city-block [3]
will be adjacent to a new, large city-block (city-block [7]), it makes sense that city-
block [3] should be merged to city-block [2], and thereby road segment 201 should be
eliminated (refer to rule 2). The result is shown in Figure 5.13.

This is a simple but good example. Real situations can be much more complex.
However, we can localize and break a complex problem into a list of such fundamental
reasoning processes, and combine the results from different reasoning channels to
arrive at a final decision. This will be demonstrated further in the following sections.

5.10.2 Design and Construction of a Dynamic Decision Tree

Bearing in mind the example described above, the question is: how can a computer

3: Note: this choice will not affect the final result. We may choose any other candidate
within the problem-zone, and still arrive at the same decision.

Chapter 5: Supporting algorithms. (W. Peng) 101

simulate the reasoning process? The solution proposed here is to apply a dynamic
decision tree, which is constructed using topologie information and by applying
specific rules. Decision trees are well known in artificial intelligence and expert
systems. Today's computers may have great difficulty in dealing with graphic context
analysis, but they are powerful in dealing with tree searching. This is why many speed-
sensitive searching problems are translated into tree searching problems.

Design of a Dynamic Decision Tree

Like a real tree, a decision tree has root(s), branches, nodes and leaves. A decision tree
is, however, somewhat different from a real tree, e.g., a decision tree is an "upside
down tree". They are defined as follows:

• node: a polygon of which the area is smaller than a given value a^,,,,!,! (e.g.,
polygons [2], [3], [4], and [5] in the previous example); or a polygon of which the
area is bigger than, or equal to, the given value, but is adjacent to a polygon of which
the area is smaller than the given value. Note that here we assume that the area of the
outer-space [0] is equal to °°.

• root: a polygon being currently considered, e.g., polygon [3] in the example. It is a
special node.

• branch: an arc, e.g., arcs 101, 903, 201 and 502 in Figure 5.12. Two polygons
which are adjacent are linked by a branch that is the common arc of the two
polygons, e.g., polygon [3] and polygon [2] are linked by arc 201 in the tree. Those
branches which immediately link to the root of the tree are called main branches,
e.g., arcs 201, 301, 503 and 904 in the example; others are called sub-branches.
Main branches are in fact the arcs of the root polygon.

• leaf: a special node which has no further branch. A leaf must be a polygon of which
the area is larger than, or equal to, the given value a ^ , ^ ; or a node which already
appeared at a higher level of the same path in the tree; or any node which is linked
to its parent by the following arcs:

1) an arc of a preserved road;

2) an arc of a road which is only partly involved in the problem-zone (refer to rule 1);

3) map/view boundary (refer to rule 3).

If two nodes in the tree are linked by a branch, then the one that is located at the higher
level is called parent-node, and the other one is called son-node.

Construction of a Dynamic Decision Tree

To construct a DDT, first we need an object-oriented topological data model. This is
supported by the FDS described in section 4.1, and for this particular application we
consider that an arc can be both a straight line and a curved line. Having the support

102 Chapter 5: Supporting algorithms. (W. Peng)

of this data model, the general procedure for constructing a DDT is as follows:

1) Detect a problem-zone (of small area objects) using a procedure described in
section 5.4. The result is a subset of polygons Pz = {pz„ p^,... , pm}.

2) Select the first polygon pzl e Pz and define the root of the tree. According to the
definition, pzl is the root. Let pCUIieilt = pzl. Note which polygon is selected as the
first one to be processed, and that the one which follows will have no effect on the
final decision, as it does not depend on the reasoning of a single tree, but the
reasoning of all the trees associated with the problem-zone (see also section
5.10.4).

3) Find all the neighbours of polygon pcumnt using the procedure described in section
4.4 (q3-s3). The result is a subset of polygons Pn = {pnl, p^, . . . , p„J.

4) For each p^ e Pn (1 < i < m), check its area against the conditions set for nodes
and leaves, and then construct the branches, (i.e., the component arcs of polygon
Peu™*)* son-nodes or leaves of node pciment.

5) Select one of the branches of node p^^p which leads to a node and has not been
treated; skip the branches leading to leaves. Along this branch move to its
corresponding node p ^ e Pn. If no such a branch is found, or all the branches of
node pcurren, have been treated, then the tree is completed and the construction
process must be stopped if pCUITCnt is the root; otherwise, if R.^^, is not the root,
then backtrack to its parent p , ^ , . Let pcuirait = pparent, and repeat step 5.

6) Let pctmmt = pson and go back to step 3.

7) After completing the tree construction for polygon pzl 6 Pz, let pCUITent = p^ e Pz (1
< i < m), and repeat step 3 to step 6 to conduct tree construction for polygon p^.

To illustrate the process, let us consider the following example. Suppose we want to
construct a decision tree for polygon (or city-block) [3], then according to the process
described above, the construction flow is as follows:

1) Determine the root of the tree, i.e., polygon [3].

2) Find all the neighbours of polygon [3], i.e., polygons [2], [4], [6], and outer-space
[0].

3) Check the area of each neighbour polygon, and all the component arcs of polygon
[3] (i.e., arcs 904, 201, 301 and 503), to construct the main branches (i.e., arcs
904, 201, 301 and 503), son-nodes (i.e., polygons [2] and [4]), and leaves (i.e.,
polygon [6] and outer-space [0]). See Figure 5.14a.

4) Move to node [2] along branch 201, and find all the component arcs and
neighbour polygons of node [2]; and then construct its branches (i.e., arcs 903,
101 and 502), son-nodes (no node), and leaves (i.e., polygons [0], [1] and [6]).
See Figure 5.14b.

5) Because all the branches of node [2] link to leaves, we backtrack to its parent (i.e.,

Chapter 5: Supporting algorithms. (W. Peng) 103

the root), and move to node [4] along branch 301.
6) Find all the component arcs and neighbour polygons of node [4]; and then

construct its branches (i.e., arcs 905, 401 and 504), son-nodes (i.e., polygon [5])
and leaves (i.e., polygons [0] and [6]). See Figure 5.14c.

7) Because [0] and [6] are both leaves, move to node [5] along branch 401. Find all
its component arcs and neighbour polygons, and then construct its branches (i.e.,
arcs 906 and 505), son-nodes (no node) and leaves (i.e., polygons [0] and [6]).
See Figure 5.14d.

8) Because all the branches of node [5] link to leaves, we backtrack to its parent, i.e.,
node [4]. At node [4], we find no further node to move to, so backtrack to its
parent, that is the root. At the root, we still cannot find any further node to move
to. This means that the tree has been completed, so we stop the process.

Figure 5.14. An example of DDT construction.

104 Chapter 5: Supporting algorithms. (W. Peng)

From the above description, it is obvious that constructing a decision tree is a recursion
and backtracking problem. Hence, we can use a recursive procedure and backtrack
stack in C, C" or other kinds of programming languages to solve this problem. Such
a tree can be constructed, and deleted, easily. Once anything changes in the database,
a new tree representing the new status can be dynamically constructed to replace the
old one.

5.10.3 Reasoning Process for Decision-making

In order to search a tree, a reasoning strategy must be set up. Existing reasoning
strategies include backward-chaining and forward-chaining, each of them may be
incorporated with breadth-first or depth-first searching (Townsend, 1987; Weiskamp
and Hengl, 1988); which of them should be used depends on the 'problem space' and
the tree structure. For the dynamic decision tree, which is an OR tree, the backward-
chaining with depth-first searching was adopted as such a reasoning strategy is easy to
implement and more importantly, it fits our "problem space"; this can be seen from the
tree construction process, as described above.

Reasoning rules also need to be defined in order to come up with conclusions, and
derive new facts. Three rules are defined and applied in the reasoning process:

• rule A: If a branch is connected to a leaf, then it should not be deleted.

• rule B: If a branch is connected to the parent of a leaf and the parent of the parent,
then it should be deleted.

• rule C: If a branch is eliminated, the two nodes connected by the branch become one
new leaf.

The reasoning process can be illustrated using Figure 5.14, as an example. Note that
a constraint needs to be introduced in order to avoid possible ambiguous results by
rules A and B. This constraint is: when performing the searching operation, always
follow the branch which leads to a node at the next level, unless all the nodes at the
next level are leaves. For instance, it is not allowed to follow the searching path:

[3] [4] ro];0r

[3] [4] [6]

because at node [4], we still can move to node [5], and have the searching path:
[3] [4] [5] [0] ; o r

[3] [4] [5] [6]

• For the main branch 904, the only searching path is:
904

[3] [0]

Chapter 5: Supporting algorithms. (W. Peng) 105

According to rule A, arc 904 should not be eliminated (904 is a part of the map/view
boundary).

• For the main branch 201, one of the searching paths is:
201 903

[3] [2] — — - [0]

According to rule B, arc 201 should be eliminated. Because the tree is an OR tree,
it is not necessary to continue with other searching paths.

• For the main branch 301, one of the searching paths is:
301 401 906

[3] [4] [5] [0]

L- new leaf —'

According to rules B, C, and A, arc 301 should not be eliminated. Another searching
path is:

301 401 505

[3] [4] [5] [6]

1— new leaf —'

Again, according to the same rules, arc 301 should not be eliminated.

• For the main branch 503, the only searching path is:
503

[3] [6]

According to rule A, arc 503 should not be deleted.

Constructing and searching a tree are normally two independent processes, especially
in a static case where a tree may remain unchanged during a problem solving or query
process. Our tree is rather a dynamic tree, and will be searched only once. It has to be
dynamic as subsequent decisions will be taken which may lead to the elimination of
some features, which in turn will create a new status. In this case, a new tree
representing the new situation should be created. Therefore, for this application, the
searching process may be embedded in the constructing process, so that once a tree is
completed, the searching is also finished. As another characteristic, it must be
emphasized that unlike a normal reasoning problem in an expert system, where the goal
to be reached is normally the root or the sub-roots (nodes) of a tree, in this case, it is
the main branches of the tree that need to be searched, for elimination.

5.10.4 Final Decision-making and a Progressive Approach

Due to the problem, that in some cases different trees may propose different candidates,
or a single tree may propose more than one candidate, the final decision for eliminating
an arc (or road segment) should not depend on a single reasoning result. Instead, we
need to search all the decision trees associated with a problem-zone, and count, for all
the arcs involved in the problem-zone, how many times they have been proposed (for

106 Chapter 5: Supporting algorithms. (W. Peng)

elimination). Finally, we select the one which gets the highest mark, i.e., the most
"favoured" candidate, for elimination.

After eliminating an arc, the topology will be modified accordingly, and a new
problem-zone may be detected based on the new situation, and then a new arc may be
selected and deleted by carrying out the same procedure. This process will continue
until no more new problem-zone exists, or for all the problem-zones left the arcs
proposed to be deleted cannot be deleted, e.g., they belong to roads that must be
preserved.

5.10. S Test and Discussion

A PC software package called URNAGS has been developed to test this method. It was
written in C programming language and has a built-in relational DBMS that can
dynamically update topology whenever a change occurs in the database; however, the
original data and topology need to be imported from ARC/INFO. The dynamic
decision tree, in conjunction with a road classification hierarchy, road length and
sinuosity, was tested in two examples using URNAGS. The results are shown in figures
5.15 and 5.16. To increase adaptability, apart from a batch generalization process,
URNAGS also allows the user to preserve a road before generalization, and recover a
road segment deleted after generalization. It also allows the user to select and delete
interactively.

This study has shown the benefits of employing the dynamic decision tree structure to
develop a logical/procedural approach to automated generalization (Muller et al.,
1993). The experiment also indicated that the dynamic decision tree structure itself may
fail to provide a single solution in some cases. In this case, it is necessary to use the
dynamic decision tree structure in combination with other criteria, such as compactness
(Peng, 1992). Another shortcoming of this approach is that functional relationships
(e.g., a road is the only path leading to an important site) were not taken into account
by the method itself although the user can specify manually which road is to be
preserved. This problem can be solved by introducing more rules applied during the
tree construction process, which in turn requires more thematic information to be
available in the database.

Although in this study the dynamic decision tree structure was employed particularly
in urban road network generalization, the basic idea, that is, transforming a geographic
space into a tree structure according to pre-defined generalization rules, and searching
the tree using AI technology to arrive at a conclusion, is a potential approach for
conducting spatial context analysis by a computer system. For instance, it may be used
for the generalization of patch areas and hydrographie networks.

Chapter 5: Supporting algorithms. (W. Peng) 107

K

I)

b. A (generalized) view at
the scale of 1:100000.

a. An (un-generalized) view at the scale of 1:50000.

Figure 5.15. An example of urban road network generalization.

b. A (generalized) view at
the scale of 1:100000.

a An (un-generalized) view at the scale of 1:50000.

Figure 5.16. An example of urban road network generalization. The bottom part is the
magnified version of the top part for clarity purpose.

108 Chapter 5: Supporting algorithms. (W. Peng)

Chapter 6: An O-O design for automated database generalization. (W. Peng) 109

CHAPTER 6
AN OBJECT-ORIENTED DESIGN FOR
AUTOMATED DATABASE GENERALIZATION

In Chapter 3, we have set up a conceptual framework for database generalization and
view generalization. We have also introduced, in Chapter 4, a comprehensive data
model for defining a geographic space and its transformation. In this chapter, we
should move one step further to produce a logical design for automated generalization
in a GIS, with the support of the described data model and today's GIS technology.
Such a design is a necessary and important step towards an operational generalization
in a GIS, as it bridges generalization concepts, and the implementation of the concepts
in a computer environment (i.e., programming). The discussion focuses on database
generalization and covers the following three aspects:

• key problems regarding developing a generic automated generalization in a GIS;

• a generalization rule base scheme and reasoning process;

• an object-oriented and integrated concept for implementing automated database
generalization.

6.1 Key Problems

There are three critical problems concerning the development of a generic automated
generalization in a GIS.

First, generalization solutions are usually "application dependent" and "theme related".
In most of the existing approaches, knowledge about an object type and the
transformation of that type of objects, as well as their potential uses, are usually
embedded in the algorithm which has usually been developed for that object type. This
cannot be done in a general-purpose GIS (e.g., ARC/INFO), because it is impossible
for the system developer to know, in advance, the purposes and contents of the
database that the user will create, and the classification scheme that the user will apply
for building up the hierarchies for the spatial objects concerned. The question is,
therefore, how can we define operations for problems which are unknown at the
moment the system is constructed?

Second, existing generalization functions were normally implemented as "external
function bodies" separated from the database structure. This implies that the
corresponding DBMS may not be able to control the results of generalization operations
in the sense of maintaining consistency and concurrency. The consequence is that each
generalization function may have to include operations for consistency check and
concurrency maintenance.

Third, users may wish to introduce their own rules and indicate what they expect from

110 Chapter 6: An O-O design for automated database generalization. (W. Peng)

the new database. How can a system deal with such demands in a more flexible way
than embedding generalization rules in procedures? If a rule-based approach is the
solution, then what are the principles for constructing rules so that they are meaningful
to a computer system?

These problems are the main concern of this design. Note that problems, such as how
to conduct geographic analysis and geometric transformations, are also critical problems
in automated generalization; however, they are the key problems at a different (lower)
level and have been discussed in Chapters 4 and 5.

6.2 Generalization Rule Base

As one of the basic knowledge structures, a rule can be defined as a clause that expresses
relationships between facts in expert systems (Weiskamp and Hengl, 1988). A rule
base is a kind of knowledge base in which (static) knowledge is represented as a set of
logically related rules. The key factor that differentiates a rule-based generalization
approach, and a procedural-based approach, is the way of handling generalization rules.
In a procedure-based approach, generalization rules are all embedded in a procedure,
or, to be more specific, are part of programming source codes. Because of this nature,
any change of the rules will give rise to the modification of the source codes. Therefore,
this approach is only suitable for systems designed for particular applications.

In a rule-based approach, on the other hand, a system maintains a rule base and an
inference engine for reasoning the rule base. The rule base and inference engine are
independent of any generalization procedure, thus, the user can modify the rule base
without interfering with the system (i.e., modifying the source code). If a rule contained
in the rule base is fired, then some of the generalization operations will be invoked.
Such an approach provides the flexibility of accommodating different users'
requirements. Therefore, it has an advantage over a procedure-based approach from the
point of view of developing a generic automated generalization in a GIS. This will be
the approach adopted for this study. However, it must be realized that a rule-based
approach is not better than a procedure-based approach in the sense of geographic
analysis and geometric transformation. This is why the status of automated
generalization has not been significantly improved, though the approach has been
under development for many years (Nickerson and Freeman, 1986; Muller, 1991).

6.2.1 A Generalization Rule Base Scheme

Regarding automated generalization, a rule base (for database generalization) should
play the role that it provides the user with the means to define the target database (or
a view in view generalization), and the transformation from the original database(s) to
the target one. Through a rule base, the user keeps the control for what he/she wants,
while the execution of a generalization process is actually done by the system in an
automated or batch manner. Based on this understanding, the following general
principles are employed for constructing a generalization rule base (Peng and Tempfli,

Chapter 6: An O-O design for automated database generalization. (W. Peng) 111

1996):

• a generalization rule base should comprise a list of statements or rules that are
constructed according to the following principles;

• each statement should lead to actions on one or more object classes, therefore;

• each statement should comprise an action part and an argument part. The action part
specifies the desired (generalization) operations. The argument part gives a list of
classes on which the operations will apply, and a list of attributes of which the values
require to be modified in the generalization processes, as well as conditions and
spatial tolerances, as options.

Note that apart from geometric transformations, database generalization also has to deal
explicitly with the transformation of thematic properties, which is different from map
and view generalizations. For example, a building may have population as one of its
attributes. When aggregating two buildings into a larger one, the user may ask to sum
the population values of the two original buildings for the new object. Because it is not
possible for a system to know which attributes should be modified in a generalization
process, and because it is also not possible to pre-define the attributes of each object
class, and indicate which attribute needs what transformation (except for those which
can be defined through pure geometric computation, such as area, width, and length),
the user must explicitly specify which attributes are to be modified by which
operations. Such messages can be sent to the system through the rule base. In order to
do so, we need to introduce sub-operations under each generalization operation.
Examples of these sub-operations include sum and copy attribute values.

According to the generalization processes identified in section 3.3.1, and the principles
described above, we can design a template for each type of generalization operation.
The following indicates the formulation of rules for the nine operations, in which the
capitalized words are system defined key-words. Their names are self explanatory.

• OPERATION selection ON_CLASS <class name> {AND <class name> . . .};

• OPERATION selection ON_CLASS <class name>

WHERE <condition> {AND/OR <condition> . . .};

• OPERATION reclassification ON_CLASS <class name> NEW_CLASS <class name>

COPY <attribute name> {, <attribute name>,...};

• OPERATION universalization ON_CLASS <class name> NEWJXASS <class name>;

• OPERATION universalization ONATTRIBUTE <attribute name> OFJXASS <class
name> NEW_LEVEL <level>;

• OPERATION homogenization ONCLASS <class name>

{BASED.ON <attribute name> {, <attribute name>,...}}

112 Chapter 6: An O-O design for automated database generalization. (W. Peng)

{SUM <attribute name> {, <attribute name>,...}};

• OPERATION simplification ON_CLASS <class name> NEW_CLASS <class name>;

• OPERATION simplification ON_CLASS <class name> TOLERANCE <tolerance>;

• OPERATION combination ON_CLASS <class name> {AND <class name> ...}

CONTAINER_CLASS <class name> SPATIAL_RELATION <ADJOINING/ADJACENT>

{COMMON_PROPERTY Ottribute name> {AND <attribute name> ...}};

• OPERATION deletion ON_CLASS <class name> TOLERANCE <tolerance>;

• OPERATION aggregation ON_CLASS <class name> TOLERANCE <tolerance>

{SUM <attribute name> {, <attribute name>,...}};

• OPERATION collapse ON_CLASS <class name> NEW_TYPE <POINT/LINE/AREA>;

In fact, this scheme is very much similar to a batch file of database query processes
(e.g. the SQL), which reflects the nature of database generalization as a database
process. As those used in the SQL, these templates (with probably more key-words as
pointed out in the following discussion for operation selection) will be supported by
a system for the end user to construct the rule base. The design strategy to be discussed
in section 6.3 will also allow these templates to be extended/modified, provided that
associated source codes are correspondingly extended/modified. The following sub­
sections provide a detailed discussion of the scheme.

OPERATION selection...

• OPERATION selection ON_CLASS <class name> {AND <class name> . . .};

• OPERATION selection ONCLASS <class name>

WHERE <condition> {AND/OR <condition> . . .};

There are two versions for the selection operation. The first one indicates which object
classes are to be selected, and the second one specifies, by the use of argument
<condition>, which objects of a selected class are to be selected. For instance, in the
following examples:

• OPERATION selection ON_CLASS Parcel AND Building;

• OPERATION selection ON_CLASS Parcel WHERE landUse = "transportation" OR
"recreation";

the first rule selects classes Parcel and Building, whereas the second rule selects only
those parcels of which the land use is "transportation" or "recreation".

The following examples illustrate that more key-words may need to be introduced for
specifying complex conditions, especially those related to geometric descriptions:

Chapter 6: An O-O design for automated database generalization. (W. Peng) 113

• OPERATION selection ON_CLASS Building WHERE LOCATION = ADJACENT_TO

CLASS Road AND DISTANCE = 100 FROM CLASS Road;

• OPERATION selection ONJXASS Building WHERE LOCATION = ADJACENTTO

CLASS Road OBJECT* = 123 AND DISTANCE = 100 FROM CLASS Road OBJECT# = 123;

OPERATION reclassification...

• OPERATION reclassification ONJXASS <class name> NEW_CLASS <class name>

COPY <attribute name> {, <attribute name>,...};

In this template, the key-word NEWCLASS with argument <class name> specifies
which new class is to be "derived" from an existing class. The key-word COPY with
argument <attribute name> indicates the request of copying the values of some
attributes of an object of the existing class to the derived object of the new class.
Consider this example:

• OPERATION reclassification ONJXASS Parcel NEWJXASS LandUseZone

COPY landUse;

This rule "derives" a new class LandUseZone from the existing class Parcel, and
copies the value of attribute LandUse to the derived object from the original one. The
definition of the new class LandUseZone, (and other new classes appearing in other
examples provided in the rest of section 6.2.1), must be given by the user. A system
should provide a tool for the user to define a new class. The definition must be stored
so that the system can access it whenever necessary.

OPERATION universalization...

• OPERATION universalization ONJXASS <class name> NEWJXASS <class name>;

• OPERATION universalization ON_ATTRIBUTE <attribute name> OF_CLASS

<class name> NEW LEVEL <level>;

There are two versions for this operation. The first version corresponds to "changing
classification level of an object type", whereas the second one corresponds to
"changing classification level of the domain of one of the attributes of an object type".
Two key-words, ONCLASS and ONATTRIBUTE, indicate whether the operation
should be applied to a class or to an attribute. The key-word NEWCLASS with
argument <class name> specifies the corresponding new class name if the operation is
applied to a class. The new classification level of the attribute domain is indicated by
key-word NEW_LEVEL and argument <level>, when the operation is applied to an
attribute. The following examples demonstrate how to change class MotorRoad to class

114 Chapter 6: An O-O design for automated database generalization. (W. Peng)

Road, and how to change the land use of class Parcel to the first classification level.

• OPERATION universalization ONJXASS MotorRoad NEWJXASS Road;

• OPERATION universalization ON_ATTRIBUTE LandUse OFJXASS Parcel

NEW_LEVEL 1 ;

Note that the definition of the land use classification hierarchy must be pre-defined
according to the problem domain and stored somewhere (e.g., in the rule base) for the
system to access. If a code-system is adopted to represent land uses, and if the position
of a digit in a code corresponds to the classification level, then we may need not to
store the definition for this operation. For example, if the original land use is "234", to
move from level 3 to level 1, we can simply change the land use to "2" (or to "23" if
we want to move to level 2). However, some kind of "look up table" is still necessary
to convert codes to natural textual descriptions for output.

OPERATION homogenization...

• OPERATION homogenization ONCLASS <class name>

{BASED_ON <attribute name> {, <attribute name>,...}}

{ SUM <attribute name> {, <attribute name>,...}};

In this template, the option {BASEDON <attribute name>,...} specifies whether the
operation is based on the theme of a class or based on the value(s) of certain attribute(s)
of the class. The option {SUM <attribute name>,...} specifies which attribute's values
are to be accumulated after merging two adjacent objects into a larger one. Among the
following two examples, the first one creates homogeneous roads, whereas the second
one creates larger land use homogeneous zones, and assigns a new value to the attribute
population by taking the sum.

• OPERATION homogenization ON CLASS Road;

• OPERATION homogenization ON CLASS LandUseZone BASED_ON landUse
SUM population;

OPERATION simplification...

• OPERATION simplification ONJXASS <class name> NEW_CLASS <class name>;

• OPERATION simplification ONJXASS <class name> TOLERANCE <tolerance>;

There are two versions for the simplification operation. The first one is corresponding
to the thematic simplification operation, and the second one is corresponding to the
geometric simplification operation. The key-word NEWCLASS with argument <class
name> specifies the new class that contains less attributes. The key-word TOLERANCE

Chapter 6: An O-O design for automated database generalization. (W. Peng) 115

with argument <tolerance> specifies the minimum spatial detail for geometric
simplification. In the following examples, the first rule will derive, from class Road,
a new class MyRoad, in which some of the attributes included in class Road will be
excluded from class MyRoad. The second rule will cause every road of class MyRoad
to be simplified according to the tolerance specified.

• OPERATION simplification ON_CLASS Road NEW_CLASS MyRoad;

• OPERATION simplification ONCLASS MyRoad TOLERANCE 0.1 ;

OPERATION combination...

• OPERATION combination ONCLASS <class name> {AND <class name> ...}
CONTAINERJXASS <class name> SPATIAL_RELATION <ADJOINING/ADJACENT>

{COMMON_PROPERTY <attribute name> {AND <attribute name> ...}};

In this template, the key-word ONCLASS with argument <class name> as well as
option AND <class name> specifies the element-class(es), whereas the key-word
CONTAINER with argument <class name> specifies the container-class. The key-word
SPATIAL_RELATIONSfflP with argument <ADJOINING/ADJACENT> specifies
the required spatial relationship, i.e., whether the objects should be adjoining or
adjacent in order to be aggregated. The following example creates building-blocks by
aggregating buildings and gardens that are adjoining.

• OPERATION combination ON_CLASS Building AND Garden
CONTAINERJXASS BuildingBlock SPATIAL_RELATION ADJOINING;

Consider the following examples:

• OPERATION combination ON_CLASS Farm Yard AND Field CONTAINERJXASS Farm

SPATIAL_RELATION ADJOINING COMMON_PROPERTY Owner;

• OPERATION combination ONJXASS * CONTAINERJXASS University
SPATIALJŒLATION ADJACENT COMMON.PROPERTY PartOf;

The first rule creates farms from those farm yards and fields that are adjoining and
belong to the same farmer. The second rule aggregates those objects of any type that
are adjacent and are part of the same university to form an instance of class University.
This/?ar/-o/relationship (or the aggregation hierarchy) must be pre-defined according
to the problem domain, and stored in the original database.

OPERA TION deletion...

• OPERATION deletion ONJXASS <class name> TOLERANCE <tolerance>;

116 Chapter 6: An O-O design for automated database generalization. (W. Peng)

In this template, the key-word TOLERANCE with argument <tolerance> specifies the
minimum size requirement, that will determine which objects will not be transferred
to the target database. Consider the following example:

• OPERATION deletion ON CLASS BuiltUpArea TOLERANCE 6.0;

This rule excludes from the target database those built-up-areas of which the area is
smaller than 6.0 units.

OPERATION aggregation...

• OPERATION aggregation ONJXASS <class name> TOLERANCE <tolerance>

{SUM <attribute name> {, <attribute name>,...}};

The key-word TOLERANCE with argument <tolerance> specifies the minimum space
between two adjacent objects, and the option {SUM <attribute name>,...} indicates
which attributes' values are to be accumulated after aggregating two disjointed, but
adjacent objects, into a larger one. The following example changes the spatial resolution
of BuildingBlock with 3.0 units as the minimum space between two adjacent objects:

• OPERATION aggregation ON CLASS BuildingBlock TOLERANCE 3.0;

OPERA TION collapse...

• OPERATION collapse ONJXASS <class name> NEW_TYPE <POINT/LINE/AREA>;

In this template, the key-word NEWJTYPE with argument <POINT/LINE/AREA>
determines the new geometric description type for the objects of the class specified.

6.2.2 Reasoning a Generalization Rule Base

Although through a generalization rule base, the user can define his/her target database
and the transformation, we still need to tell a system which rule is to be fired first and
which one next. One possibility is to ask the user to construct a rule base in such a way
that rules are to be fired in the same sequence as they are stored in the rule base. This
will be extremely difficult for the user if the transformation is complex. Another
possibility is to have an inference engine that reasons the rule base and makes decisions
based on pre-defined criteria and rules. The latter is the strategy adopted for this study.

The reasoning process will follow the generalization operation-network (see section
3.3.2) for each object class. Firstly, a subset of rules applied to the same object class
will be extracted from the rule base, then each rule of the subset will be examined
against the operation-network. If the operation specified in a rule matches the one

Chapter 6: An O-O design for automated database generalization. (W. Peng) 117

proposed by the operation-network, then the corresponding rule will be fired. If there
is no such match, then the inference engine will perform a backtracking operation, and
then move to another node along a new path in the network. The operation represented
by the node is then the new proposed generalization operation.

To illustrate the process, let us consider the following example. Suppose we have a
subset of rules as below:

• OPERATION selection ON CLASS BuildingBlock;

• OPERATION aggregation ON CLASS BuildingBlock TOLERANCE 3.0;

• OPERATION homogenization ON CLASS BuildingBlock SUM ATTRIBUTE population;

• OPERATION deletion ON CLASS BuildingBlock TOLERANCE 6.0;

Looking at Figure 6.1, we see that the first proposed operation is selection. Thus the
first rule of the example subset is fired first. Then we move along branch 1 to node
[COM], and get, as next proposed operation, combination. Since there is no rule in the
subset that specifies such an operation, we backtrack to the parent of node [COM],
(that is node [SEL]), and move to node [REC] along branch 2. Node [REC] represents
operation reclassification, and again we find no rule specifying such an operation. So
we backtrack to node [SEL] again, and move to node [UNI] along branch 3. We still
cannot find any rule that pertains to the universalization operation represented by node
[UNI]. Therefore, we continue the same process until we come to the node [HOM]
along branch 4. Node [HOM] represents operation homogenization and we find a
corresponding rule in the rule base. So we fire the third rule of the subset.

Figure 6.1. The operation-network for reasoning the generalization rule base.

118 Chapter 6: An O-O design for automated database generalization. (W. Peng)

After having fired the third rule, we move along branch 5 to node [COL], which
represents operation collapse. Because there is no rule corresponding to such an
operation, we then backtrack to node [HOM] along the same branch, and move to node
[AGG] along branch 6. At this point we find that the second rule specifies an operation
which matches the one represented by the node, i.e., aggregation. After having
executed the aggregation operation, we move to node [DEL] along branch 7. Node
[DEL] represents operation deletion, and the last rule is just the one that specifies such
an operation.

Because all the rules in the subset have been fired, the reasoning process then stops for
class Building-block, and may continue for another object class. Note that in the
reasoning process, rule interpretation detects the operation name, class name(s), and
other arguments/conditions included in a rule. The key-words used in the rule base play
an important role in the process.

Although we expect that the generalization result will be the same regardless of which
object class is to be processed first and which one next, the sequence adopted may have
impacts in the sense of processing complexity (e.g., controlling topological violation)
and time. Would processing class Road first and class Building second be less complex
than the other way around? This issue needs a further study.

6.2.3 Consistency Check

People cannot avoid making mistakes. It is, therefore, necessary to check a rule base
in the sense of logical consistency. For instance, it is possible for the user to specify
such rules in the same rule base:

• OPERATION simplification ON_CLASS Building TOLERANCE 0.1;

• OPERATION collapse ON_CLASS Building NEW_TYPE <POINT>;

• OPERATION collapse ON_CLASS City NEW_TYPE <POINT>;

There are two problems regarding this rule base. First, if buildings will eventually be
represented as point objects in the target database, then it makes no sense to apply
geometric simplification operation to the area objects. Second, if a city would be
represented as a point object in the target database, then, there should not be any
operation applied to the detailed objects inside the city. To tackle these problems, we
should consider the following consistency rules:

• The dimension of the component objects should not be higher than the dimension
of their container-object.

• If the container-object is represented as a point object, then the component objects
should not be transferred to the target database.

Chapter 6: An O-O design for automated database generalization. (W. Peng) 119

• The types of geometric transformations applied to an object should respect the
geometric description type of the object. For example, geometric simplification,
homogenization, and collapse should not be applied to point objects.

Rule base consistency check may need to look into the following problems:

• Missing a "chain" in a reasoning path: the user forgets to specify an important
operation that provides a logical link between two subsets of rules.

• Missing a pre-process: the user forgets to specify an operation (e.g., aggregation)
that would otherwise prevent some of the small objects being eliminated.

• Type mis-match: an operation specified does not agree with the geometric description
type of the objects applied; or the geometric description type of the element-objects
does not agree with the geometric description type of their container-object.

Operation conflict: two operations that should not be applied to the same object type
coexist for the same object type.

Empty entities: an operation or class or attribute specified in a rule does not exist,
or a class specified in a rule is not selected.

•

•

Since we are actually designing a dynamic and open system, consistency problems
introduced by the user are inevitable and can be variant. Some of the problems may be
detected automatically, using pre-defined consistency rules, such as those described
above; others may not be easy to detect, due to the dynamic/variant nature of a rule
base, especially when the rule base consists of many rules. It is obvious that an
operational automated generalization system should provide utilities to ensure the
logical consistency of a rule base. However, it is still a question whether a complete set
of consistency problems can be perceived, and what consistency rules can be applied;
in other words, at which level a rule base consistency check can be done. Further
research is needed concerning this consistency issue.

6.3 An Object-Oriented Design for Automated Database Generalization

Having the support of the above rule base scheme and the EFDS data model, we can
now study how to introduce database generalization in a GIS. Instead of developing an
'external function body', the proposed approach is to develop the generalization
mechanism according to the database structure. In this way, we can avoid the second
problem described in section 6.1, that each generalization function may have to include
operations for consistency check and concurrency maintenance, if generalization
functions would have to be developed as 'external function bodies' separated from the
database structure. In order to do so, we need to understand the database structure.
Since the 'database to be processed' is built up according to the database structure, it

120 Chapter 6: An O-O design for automated database generalization. (W. Peng)

has an important effect on how automated generalization is to be implemented.

We start with an object-oriented database structure, and then continue by elaborating
generalization operations. For the sake of simplicity, we will not pay attention to the
problems of object storage strategy, persistent storage management, transaction, and
other related issues, as these are the problems which any object-oriented database
management system must solve.

6.3.1 A General EFDS Database

The proposed 2D database structure is based on the EFDS and is illustrated in Figure 6.2.

Geometric
Primitives
containers

Geometric
Primitives

T__

/

-|
J
i

n
J

TheDatabase

Geometric
Objects

t containers

i Geometric
Objects

\ s .
*~ Spatial "

Objects
^ containers J

Spatial
1 Objects

Arc
container

TheDatabase ' •

AreaObject
container

_i LineObject
^ container

Node
container

PointObject
container *~~̂

Parcel
container j

r

Containing {folding a reference to Holding a method for

Arc
container

AreaObject
container

liiiip

i AreaObject
instance

LineObject
container

Arc
instance

Node
container

Node
instance

_ LineObject
< i—-T instance

PointObject
container

, , PointObject
™ instance

Parcel J
container I

Parcel
instance

XT

I '

Figure 6.2. A general EFDS database.

The diagram implies the following concepts:

• a database is an object which contains and manipulates a set of object-containers;

• an object-container is also an object that contains and manipulates database objects;

• a database is therefore a super container;

• an object always maintains a reference to its associated container, which represents
the part-of relationship;

Chapter 6: An O-O design for automated database generalization. (W. Peng) 121

• a spatial object holds a reference to its geometric description, which itself is a
(geometric) object holding a link to the spatial object it belongs to, and having
methods to access and collect its primitive geometric components;

• a geometric primitive is an object maintaining a link to its associated geometric
object;

• the five geometric primitive and object containers (i.e., Node-container, Arc-container,
PointObject-container, LineObject-container, AreaObject-container), are the basic
components of a database, and are always created by the database immediately after
it has been created, whereas 'spatial object containers' are normally created by the
database upon the request of the user.

Figure 6.3 shows the basic classes and auxiliary classes as well as the inheritance
hierarchy (e.g., class Geometry is derived from class BaseObject; Class Node is derived
from both classes Location2D and Geometry — multi inheritance —). A class in the
sense of O-O programming language defines a structure and a set of operations which
are common to a group of objects. A new object is generated by creating a new instance
of the appropriate class. Objects which are instances of the same class have a common
set of operations, specified in the class definition (or interface), and therefore, a
common object behaviour. However, such instances in general will have different states
(Hughes, 1991). An object type (see section 2.2) thus naturally forms an object class.
Note that discussions on other O-O programming concepts, such as base class, abstract
class, (multi) inheritance, virtual function, dynamic binding, encapsulation, and
overloading, can be found in Parsaye et al. (1989) and Hughes (1991).

/' 'MyObject-"N / ' ' „ ...
V_ Container J \^ Bmld lnS

vv MyDalabase)

Figure 6.3. Object classes and class inheritance hierarchy.

122 Chapter 6: An O-O design for automated database generalization. (W. Peng)

The following gives the definitions of the classes presented in Figure 6.3'.

• BaseObject: a base class with a unique identity and a pointer pointing to its
container as its attributes. All other classes except Location2D will be derived from
this class to maximize the benefits of inheritance, dynamic binding, and type casting.

class BaseObject
{ protected:

IdType id;
BaseObject* myContainer;

public:
BaseObject(IdType theld, BaseObject* container);
~BaseObject();
virtual NameType* GetClassName();

};

• Location2D: a class that defines and manipulates the plane coordinates of points.

class Location2D
{ protected:

XyType x, y;
public:

Location2d(XyType xi, XyType yi);

};

• Geometry: a class derived from BaseObject. It holds a link, i.e., part-of, to the
associated spatial object or geometric complex (see section 4.4 — Some Definitions),
and will serve as a base class for all the object classes related to geometry.

class Geometry : public BaseObject
{ protected:

BaseObject* partOf;
public:

Geometry(IdType theld, BaseObject* container, BaseObject* aPartOf);
BaseObject* IsPartOf();

};

• Node, Arc: derived from Geometry, these two classes represent the two geometric
data types in the EFDS. Their instances are referred to as geometric primitives (see

1 : More detailed definitions are given in Appendix A.

Chapter 6: An O-O design for automated database generalization. (W. Peng) 123

section 4.4 - Some Definitions). Node is also derived from LocationlD. Arc has
additional attributes beginNode (begin-node), endNode (end-node), leftGmO (left
geometric object), and rightGmO (right geometric object), its shape is implicitly
defined by the beginNode and endNode. It is also possible that Arc holds a list of
sequential coordinates between the begin-node and end-node to allow "curve" arcs.
The attribute partOf (inherited from Geometry) indicates the geometric object to
which a geometric primitive belongs. Note, that if an arc does not belong to any
spatial object, but exists as a triangle edge in a DTN, then its attribute partOf is set
to 'null'.

class Node : public Geometry, public Location2D
{ public:

Node(IdType theld, BaseObject* container, BaseObject* aPartOf,
XyType xi, XyType yi);

};

class Arc : public Geometry
{ protected:

IdType beginNode, endNode, leftGmO, rightGmO;
public:

Arc(IdType theld, BaseObject* container, BaseObject* aPartOf,
IdType begin, IdType end, IdType left = 0, IdType right = 0);

Geometry* GetLeftOrRightGmO(Topology leftRight);
void SetLeftOrRightGmO(Geometry* gmO, Topology leftRight);
Geometry* GetBeginOrEndNode(Topology beginEnd);
void SetBeginOrEndNode(Geometry* node, Topology beginEnd);

};

PointObject, LineObject, AreaObject: derived from Geometry, these three
(geometric object) classes represent the geometric parts of the three feature types in
the EFDS. Their instances are referred to as geometric complex (or geometric
objects, see section 4.4 -Some Definitions). Each of these classes has an operation
GetComponents to get their (primitive) geometric components, i.e., a node for a
point object, a list of arcs for a line object, and a list of (closed) arcs for an area
object. An alternative is that each geometric complex holds references to its
components to increase efficiency, which requires extra work on consistency check
and concurrency management. The attribute partOf indicates the spatial object to
which a geometric object belongs.

124 Chapter 6: An 0-0 design for automated database generalization. (W. Peng)

class PointObject : public Geometry
{ public:

PointObject(IdType theld, BaseObject* container,
BaseObject* aPartOf);

void GetComponents(NodePointerArray& array);

}

class LineObject : public Geometry
{ public:

LineObject(IdType theld, BaseObject* container,
BaseObject* aPartOf);

void GetComponents(ArcPointerArray& array);

}

class AreaObject : public Geometry
{ public:

AreaObject(IdType theld, BaseObject* container,
BaseObject* aPartOf);

void GetComponents(ArcPointerArray& array);

}

• GeometricContainer: an object container class derived from BaseObject. It is used
to create, maintain, retrieve, detach/delete instances of the above six geometry
related classes.

class GeometricContainer : public BaseObject
{ protected:

NameType myName[MaxClassName];
BaseObjectPointerArray* array;
CountType currentlndex;

public:
GeometricContainer(IdType theld, BaseObject* container,

NameType* theMyName);
ErrorType AddObject(BaseObject* theObject);
ErrorType DetachObject(BaseObject* theObject);
BaseObject* GetObject(IdType objectld);
BaseObject* GetNextObject();

private:
BaseObject* CreateObject(BaseObject* GeometricComplex,

•

Chapter 6: An O-O design for automated database generalization. (W. Peng) 125

XyType xi, XyType yi); //for nodes
BaseObject* CreateObject(BaseObject* GeometricComplex,

IdType begin, IdType end, IdType left, IdType right); //for arcs
BaseObject* CreateObject(BaseObject* spatialObject);
//for point/line/area objects

};

ThematicContainer: derived from GeometricContainer, this object container class
will serve as a base class for spatial object containers used to create, maintain,
retrieve, detach/delete instances of the corresponding spatial object classes. It has an
additional attribute featureType to indicate the associated feature type (i.e., POINT,
LINE, or AREA) of a spatial object class.

class ThematicContainer : public GeometricContainer
{ protected:

FeatureType featureType; //POINT/LINE/AREA
public:

ThematicContainer(IdType theld, BaseObject* container,
NameType* theMyName, FeatureType type);

FeatureType GetFeatureType();
ErrorType DetachObject(BaseObject* object,

Boolean detachGeometry = TRUE);
virtual BaseObject* CreateObject() = 0;

};

Database: a container class derived from BaseObject. It is used to create, maintain,
retrieve, detach/delete object-containers contained in a database.

class Database : public BaseObject
{ protected:

GeometricContainer *nodeContainer, *arcContainer;
GeometricContainer *pointObjectContainer, *lineObjectContainer,
GeometricContainer *areaObjectContainer;
ThematicContainerPointerArray* array;
CountType currentlndex;

public:
Database(IdType theld, BaseObject* container = NULL);
ErrorType AddClass(ThematicContainer* container);
ThematicContainer* GetClass(IdType containerld);
ThematicContainer* GetClass(NameType* className);
ErrorType DetachClass(ThematicContainer* container);

126 Chapter 6: An O-O design for automated database generalization. (W. Peng)

ErrorType DetachClass(NameType* className);
ThematicContainer* CreateClass(NameType* className,

FeatureType type = AREA);

};

• SpatialObject: an object class derived from BaseObject. It contains an additional
attribute geometryld to maintain a link to its geometric component. It will serve as
a base class for any spatial object class such as Parcel and Building.

class SpatialObject : public BaseObject
{ protected:

IdType geometryld;
public:

SpatialObject(IdType theld, BaseObject* container);
virtual ErrorType ConstructGeometricComponent();
Geometry* GetGeometryO;

};

6.3.2 Introducing Generalization in a EFDS Database

The generalization model should be implemented according to the logical structure of
a database. With the database structure described above, generalization operations will
be defined at database level, and then "propagated" to object-container level and object
level, if necessary. In defining these operations, the format of generalization rules will
play a role since operations are, in fact, the "consequences" of rules that, implicitly or
explicitly, specify which operations are to be invoked, and how they will be conducted
in general.

Generalization Operations at Database Level

Conceptually, when a generalization process is required, the user will first define the
rule base, and then "communicate" with the system through its interface, and send a
message to the system by, for example, clicking on an icon or strike a function key.
Upon receiving this message, the system may ask some further information (e.g., the
database and rule base names) by, for example, popping up a dialogue window. After
confirmation, the system should take over the control and start a batch process by
passing a message to the corresponding database. Upon receiving the message, the
database starts its Generalization operation defined in the following, to complete the
task2:

2: The new definition for each class with generalization functions are given in Appendix B.

Chapter 6: An O-O design for automated database generalization. (W. Peng) 127

void Database: :Generalization(NameType* ruleBaseName)
{ NameType className[MaxClassName], newClassName[MaxClassName];

NameArray classArray(3,1,1);
NameArray attrArray(3,1,1), attrArrayA(3,1,1), attrArrayB(3,1,1);
NameType condition[MaxCondition], attrName[MaxAttrName];
FeatureType newType; int operation, level; double tolerance; Topology relation;
Restart(); /* set the current index to the top of the container array */
for(IdType i = 1; i <= GetNumberOfClasses(); i++)

{ ThematicContainer* container = GetNextClass();
container->SetSelection(FALSE); /* no class is selected at the beginning */

}
...; /* open the rule-base indicated by 'ruleBaseName ' */
while(...) /* while not every rule has been executed */

{ ...; /* reason the rule base (see section 6.2.2) */
switch(operation)

{ case SELc: Selection(classArray);//.se/ectf c/ossas
break;

case SELo: Selection(className, condition); //select objects
break;

case COM: Combination(className, classArray, relation, attrArray);
break;

case REC: Reclassification(className, newClassName, attrArray);
break;

case UNlc: Universalization(className, newClassName);
break; // applied to classes

case UNla: Universalization(className, attrName, level);
break; // applied to attributes

case HOMc: Homogenization(className, attrArray);
break; // based on theme

case HOMa: Homogenization(className, attrArrayA, attrArrayB);
break; // based on attributes ' values

case COL: Collapse(className, newType);
break;

case AGG: Aggregation(className, tolerance, attrArray);
break;

case DEL: Deletion(className, tolerance);
break;

case SlMt: Simplification(className, newClassName);
break; //thematic simplification

case SIMg: Simplification(className, tolerance);
break; //geometric simplification

}
}

}

128 Chapter 6: An O-O design for automated database generalization. (W. Peng)

The task of this operation is not to perform any generalization activity, but to act as a
control centre conducting decision-making at the highest level, based on the current
and historical information. It checks the rule base, interprets each rule and determines
which rule is to be fired first and which ones next, and decides to which object-
container the generalization message should be sent; in order to be able to do so, a
reasoning mechanism (or inference engine) needs to be introduced, one that can
interpret and search the rule base, and keep track of the historical states according to
the structure defined in the operation-network, as described in section 6.2.2. In this
sense, the approach is an integration of an expert system and GIS.

According to the structure defined in section 6.3.1, a database does not directly
manipulate database objects, but does so via their containers. For instance, no methods
are defined in the class Database to create, store, retrieve and detach/delete nodes, arcs,
parcels, and buildings. Instead, these objects (and of similar kinds) are contained and
manipulated by their associated object-containers (e.g., NodeContainer, ArcContainer,
ParcelContainer, and BuildingContainer), which, in turn, are created and manipulated
by the database. Therefore, generalization operations defined at this level will not apply
to database objects, but object-containers, such as, indicating adequate containers,
creating new containers, and passing generalization messages to related containers for
further processes, which will be discussed later in Generalization Operations at
Object-container Level. The following examples are given to illustrate this concept:

void Database: :Universalization(NameType* className, NameType* newClassName)
{ ThematicContainer *container, *newContainer;

container = GetClass(className);
if(container->IsSelected() = FALSE) return;
newContainer = CreateClass(newClassName, container->GetFeatureType());
container->Universalization(newContainer);
DetachClass(container, FALSE); // should not detach geometry

}

void Database: :Homogenization(NameType* className, NameArray& attrArray)
{ ThematictContainer* container = GetClass(className);

if(container->IsSelected() = FALSE) return;
container->Homogenization(attrArray);

}

In the Universalization operation, the third line gets the container associated to a class
indicated by argument className; the fourth line makes sure that only selected classes
will be generalized; the fifth line creates a new container associated to a new class
indicated by argument newClassName; and the sixth line sends a message, i.e.,
Universalization(newContainer) , to object container, which, upon receiving the
message, will perform a further universalization process (see the discussion below).
The attrArray in the second example specifies which attributes' values are to be

Chapter 6: An O-O design for automated database generalization. (W. Peng) 129

accumulated.

Generalization Operations at Object-container Level

From the programming point of view, object-containers are objects controlled by a
database, and they in turn contain and manipulate database objects; the existence of
object-containers is hidden from the user in the sense that he/she does not need to be
aware of their existence when defining a rule base. Because of this property, those
operations that only work at class level (e.g., reclassification, universalization, and
thematic simplification) will conduct substantive generalization activities at the
container level, whereas those that need to work at object level (e.g., homogenization,
aggregation, deletion, and geometric simplification) will "propagate" the processes to
the relevant objects. In this sense, an object container is a "message transition station",
that receives messages from the database and transfers them to the objects it contains.
The following examples show how an operation is implemented at this level:

void ThematicContainer::Universalization(ThematicContainer* newContainer)
{ SpatialObject *object, *newObject;

RestartO;
for(IdType i = 1; i <= GetNumberOfObjects(); i++)

{ object = (SpatialObject*)GetNextObject(); // get an object of the sub-class
if(object->IsSelected() == FALSE)

continue; // only selected objects need to be generalized
newObject = newContainer->CreateObject(); //create an object of the super-class
newObject->SetGeometry(object->GetGeometry());
// copy the geometric description
newObject->CopyAttributes(object); //copy the attribute values
Geometry* geometry = newObject->GetGeometry());
geometry->SetPartOf(newObject); //maintain a link to the new spatial object

void ThematicContainer: :Homogenization(NameArray& attrArray)
{ if((featureType == POINT) || (featureType == LINE))

return; // this operation only applies to area object
RestartO;
for(IdType i = 1; i <= GetNumberOfObjects(); i++)

{ SpatialObject* object = (SpatialObject*)GetNextObject();
if(object->IsSelected() == FALSE)

continue; // only selected objects need to be generalized
object->Homogenization(attrArray);
// send the message to the object for further processing

130 Chapter 6: An O-O design for automated database generalization. (W. Peng)

It is important to note that in the Universalization operation, although the sub-class has
all the properties of the super-class, we cannot simply take out some of the attributes
and convert its objects into instances of the super-class. We have to explicitly create
an instance of the super-class, and then copy the geometric component and attribute
values to the new object. The same applies to thematic simplification operation. These
implementation considerations/constraints were also taken into account in designing
the rule base scheme (see section 6.2).

Several additional attributes and functions have been introduced to some classes to
facilitate generalization operations:

• SpatialObject* partOf. this attribute is introduced to class SpatialObject for its
instances to maintain a link to their container-object (see sections 2.2 and 6.2.1). It
is specially introduced for combination operation.

• BOOL selected: this is a boolean type variable introduced to class BaseObject to
indicate if an object is selected.

• double area, perimeter and length: these three attributes are introduced to class
PointObject for operation collapse. The purpose is to keep the area and perimeter of
an area object if it collapses into a point object, or to keep the length of a line object
when it becomes a point object; area and perimeter are also introduced to class
LineObject for the same purpose.

• void SetGeometryQ: this function is introduced to class SpatialObject to facilitate
generalization operations such as universalization, reclassification, and thematic
simplification. These operations require to copy the geometric description of a
spatial object to another spatial object.

• void SetPartOfQ: this function is introduced to class Geometry for its instances to
maintain a link to the associated spatial objects. It always follows operation
SetGeometry;

• ErrorType GetSomethingO, void CopyAttributesO, void SumAttributeValuesQ: these
functions are introduced to class SpatialObject for the transformation of thematic
properties (see also section 6.2.1). This transformation includes at least two aspects.

First, some generalization operations may need to copy the values of some attributes
of an object of one class to an object of another class. For instance, when creating
an object of class LandUseZone from class Parcel through reclassification, one may
require the value of attribute postCode of a parcel to be copied to the new object of
class LandUseZone. Another example is related to the universalization operation,
in which a new object of the super-class is created based on an object of the sub­
class, and because the sub-class also has the attributes that the super-class has, we
would like the values of these (common) attributes of the object of the sub-class to
be copied to the corresponding object of the super-class.

Second, some operations, such as homogenization and aggregation, may need to

Chapter 6: An O-O design for automated database generalization. (W. Peng) 131

summate the attribute values of two or more objects of the same type for a new
(larger) object. For example, when aggregating two buildings into a larger one, one
may ask to summate the population values of the two original buildings for the new
object.

These three newly introduced functions are all defined as virtual to allow dynamic
binding, and must be redefined in any further derived object class. Note that if the
object storage format of a system is transparent, and can be accessed by the
programming language, then the implementation of these functions will be different
and need not be redefined in any derived object class.

Generalization Operations at Spatial Object Level

Only some of the processes are "propagated" to this level. They are: selection,
universalization (for attribute), homogenization, collapse, aggregation, deletion, and
geometric simplification, among which, the selection operation is very much similar
to the database retrieval query process.

An object of class SpatialObject (or its descendants) does not directly own and
manipulate its geometric component, but holds the identifier number, (which can also
be a pointer or reference), ofthat component, which itself is an object having its own
properties, and methods, to perform necessary geometric operations. Therefore,
generalization operations that are defined at this level will only carry out decision­
making processes, and change the thematic properties of an object. The final geometric
processes, such as merging two area objects, simplifying a line, and shrinking an area
to a point, will be conducted by the geometric components upon request. The following
example shows how an operation is implemented in this level:

void SpatialObject: :Homogenization(NameArray& attrArray)
{ GeometryPointerArray array(3,1,1);

AreaObject* myGeometry = (AreaObject*)(GetGeometry());
while(l)

{ Boolean done = FALSE;
myGeometry->GetNeighbours(array, ADJOINING);//gef connected neighbours
for(CountType i = 1; i <= array.getNumOfltems(); i++)

{ AreaObject* neighbourGeometry = (AreaObject*)(array[i]);
SpatialObject* neighbour = neighbourGeometry->IsPartOf();
if(neighbour->IsSelected() == FALSE)

continue;
if(stricmp(neighbour->GetClassName(), GetClassName()))

continue; // if not the same class
myGeometry->Homogenization(neighbourGeometry); //further processing
SumAttributeValues(neighbour, attrArray);
((ThematicContainer*)myContainer)->DetachObject(neighbour, TRUE);

132 Chapter 6: An O-O design for automated database generalization. (W. Peng)

done = TRUE;
}

if(done == FALSE)
break;

}
}

Generalization Operations at Geometric Object Level

In order to perform necessary geometric transformations, four generalization operations,
namely Homogenization, Aggregation, (geometric) Simplification, and Collapse, need
to be "propagated" to a geometric object class AreaObject; three methods, i.e.,
Aggregation, Simplification and Collapse, need to be introduced to another geometric
class LineObject. These functions can be pre-defined and implemented as standard
functions. Thematic consideration can be taken into account in advance by the use of
attribute partOf defined in the class Geometry. The following example shows how an
operation is implemented at this level:

void AreaObject::Homogenization(AreaObject* neighbour)
{ ArcPointerArray arcArray(3,1,1), arcArrayNeighbour(3,1,1);

Arc* arc;
AreaObject* myNeighbour;
GetComponent(arcArray);
neighbour->GetComponent(arcArrayNeighbour);
for(countType i = 1 ; i <= arcArrayNeighbour.getNumOfItems(); i++)

{ arc = arcArrayNeighbour[i];
myNeighbour = (AreaObject*)(arc->GetLeftOrRightGmO(LEFT));
if(myNeighbour != NULL) // if this is not the outer-space

{ if(myNeighbour->GetId() == neighbour->GetId())
myNeighbour = (AreaObject*)(arc->GetLeftOrRightGmO(RIGHT));

if(myNeighbourO->GetId() = this->GetId()) // if 'arc' is a common edge
{ ((GeometricContainer*)(arc->GetContainer()))->Detach(arc);

continue;
}

}
if(arc->GetLeftOrRightGmO(LEFT) == neighbour)

arc->SetLeftOrRightGmO(this, LEFT);
else

arc->SetLeftOrRightGmO(this, RIGHT);

Chapter 6: An O-O design for automated database generalization. (W. Peng) 133

6.4 Summary and Discussion

The approach to automated database generalization introduced in this chapter is
illustrated in Figure 6.4. It indicates, at the logical level, the feasibility of realizing an
automated database generalization in a GIS, given the support of a good data model,
an adequate system development environment, and algorithms for handling geometric
problems, as have been discussed in Chapters 4 and 5. The proposed three-level
structure (i.e., database/container/object) allows a complex generalization problem to
be decomposed and solved at different levels, according to its nature, which in turn
leads to a more simple, clear, and structured generalization mechanism. By integrating
the generalization mechanism into the data structure, the design avoided the problem
discussed in section 6.1, that each generalization function may have to include
operations for consistency check and concurrency maintenance, if generalization
functions would have to be developed as 'external function bodies' separated from the
database structure.

User System TheDatabase TheContainer

Geometric
Primitives

Geometric
Objects

Spatial
Objects

Figure 6.4. The generalization flow (after Peng and Tempfli, 1996).

The rule base scheme, and the reasoning mechanism, offer to the user the "authority"
to define his/her target database and the corresponding transformation. In this respect,
database generalization can be described as a transformation fd, such that,

db, =fd(dbit r ty ;

where db; = original database; dbj = generalized database; rty = rule base.

Note that in the same way, view generalization can be described as a transformation ƒ,,
such that,

v ^ / v C d b ^ r b J ;

where vk = view; db; = database; rbk = rule base.

134 Chapter 6: An O-O design for automated database generalization. (W. Peng)

The benefit of object-orientation is obvious from the context.

First, the EFDS was translated smoothly into a database structure without losing any
of its semantic meaning.

Second, apart from other commonly recognized advantages, the inheritance and
dynamic binding mechanisms (in the sense of programming) ensured generalization
operations, and other associated functions, to be defined without knowing exactly the
definition of a future object class, which is critical for developing a generic generalization
in a GIS3.

The facility of overloading was also beneficial, in that we could use the same operation
name for different tasks (e.g., "Homogenization" has been used for homogenization
operation at the database level, object-container level, and at the thematic/geometric
object level). Encapsulation enabled generalization operations to be bound to the
object itself, rather than existing as separate procedures, so that the whole
generalization mechanism can be embedded in the database structure. The proposed
concept has the advantage that generalization operations can be re-defined with
different algorithms for a new spatial object type, without changing the existing
controlling structure.

The implementation could be more straightforward, and simple, if the DBMS maintains
a 'Class and Class Hierarchy Manager' that takes care of the definition of a class and
its hierarchical relationships with other classes, and provides facilities to access this
information.

Through a software package developed for this research, some of the aspects of
automated database generalization will be demonstrated in Chapter 7. The others,
however, still need to be further validated through implementation. The problem of rule
base consistency is an important issue to be studied in future work.

3: Refer to the first key problem discussed in section 6.1.

Chapter 7: Implementation and test. (W. Peng) 135

CHAPTER 7

IMPLEMENTATION AND TEST

The extended adjacency relationships defined in Chapter 4, and the algorithms
described in Chapter 5, need to be tested. This is done through two software packages,
ISNAP and URNAGS. URNAGS and the testing of the algorithm for spatial context
analysis has already been described in section 5.10.5, thus will not be repeated in this
chapter. ISNAP is a Windows-based Multiple Document Interface (MDI) PC program
which has been developed as a tool kit to test some of the concepts, and algorithms,
developed in this research. It can be described in three parts:

• the interface part,

• the triangulation part, and

• the application part.

This chapter describes how ISNAP was constructed, and how it can be used to test the
adjacency relationships and the rest of the algorithms. It also presents the testing result
for each algorithm tested, and gives an outlook for an operational generalization system.

7.1 The Interface

The interface provides a medium for the communication between the system and its
users. ISNAP uses the Windows platform as it provides a "standard" interface for
manipulating windows, menus, icons, dialogue windows, and messages, etc.

By using the MDI technique, it allows the user to open more than one database (or
document) at the same time, so that the user can compare different results (Figure 7.1).
Similar to the concepts of a database and its views, as described in section 2.4, ISNAP
uses the Document/View technique to associate a database with different windows
(Figure 7.2):

• one global-graph window providing a global view of the database;

• many local-graph windows providing different local views for inspection (a local-
graph window can be created upon user request);

• one text window for text messages.

A number of functions were developed to meet different users' tastes and to facilitate
investigations. The practical work during this research has confirmed that such
functions are important, useful, and sometimes essential for the study. They include:

• manipulating tool bar and status bar;

• arranging windows;

136 Chapter 7. Implementation and test. (W. Peng)

• handling layers (note that layers include polygon, triangle, arc, node, and contour);

• changing window's background colour;

• changing pen width and colour;

• changing text font;

U S implicit! Network and Ils Application HO 01
ftet £rame application Input Construct itfew fluerji Option Window Help

BiïiMjrmm HUfflSMIHEM!
E3 G:\ADAT A\ISNAP^SERR... B E 13 10G:\ADATA\ISNAPSSERR... HESEI

ISNAP1.0 P&R1995 30

Figure 7.1. An example of MDI (top-left: 15 metres interval contours; top-right: 20 metres
interval contours; bottom-left: unconstrained Delaunay triangulation; bottom-right:

constrained Delaunay triangulation).

file://G:/ADAT
file://G:/ADATA/ISNAPSSERR

Chapter 7: Implementation and test. (W. Peng) 137

• DTM shading;

• scaling;

• zoom and pan.

This interface was developed using Object-Windows for Borland CM

fi3 S implicit! Netwoik anil Its Application H B O

Mel frame

EEC
Input Construct)£tem fluwj» Q ^ ^ n ^ Q ^

Eattem Detection 1HIMllIM MB!M a m

Figure 7.2. An example of Document/View interface (left: local-graph window showing the
linear patterns detected; top-right: global graph window; bottom-right: text window).

138 Chapter 7: Implementation and test. (W. Peng)

7.2 The Triangulation (Network)

The triangulation network is the core of ISNAP. It consists of four basic components,
namely, Polygon, Triangle, Edge (or Arc), and Node1. Among them, Polygon is an
equivalent of (geometric) area object (see section 4.4 — Some Definitions). All the
polygons are embedded in the network as constraints, i.e., no triangle edges are allowed
to cross any polygon boundary. A triangle edge may or may not be part of a polygon
boundary. If a triangle edge is part of a polygon's boundary, then the flag attached to
the edge is set.

7.2.1 Definition of a Triangulation Network

A triangulation network is defined as a container-object that holds and manipulates a
list of sub-container-objects (or layers), including the polygon-container, the triangle-
container, the edge-container, and the node-container. Each sub-container-object in
turn, contains, and manipulates, a set of objects of the same class (such as Polygon,
Triangle, Edge, and Node). The following gives their C++ format definitions:

class NetObject
{ protected:

long no; TDocument* doc; int flag;...;
public:

};

class Location
{ protected:

double x, y; float z;...;
public:

};

class Node : public NetObject, public Location
{ protected:

long id;...;
public:

Node(TDocument* document, long n, long identifier, double xi, double yi, float
zi);

~Node();

};

1 : Contour is also a component, but will not be discussed.

Chapter 7: Implementation and test. (W. Peng) 139

class Edge : public NetObject
{ protected:

long fromNode, toNode, leftTriangle, rightTriangle;
public:

Edge(TDocument* document, long n, long fromN, long toN);
Edge(TDocument* document, long n, long fromN, long toN,

long leftT, long rightT);
~Edge(); // inform associated triangles to update their topology

};

class Triangle : public NetObject
{ private:

long e[3]; //the three edges
public:

Triangle(TDocument* document, long n, long edgel, long edgeJ, long edgeK);
~Triangle();
• • • 5

};

class Polygon : public NetObject
{ protected:

long id; long *node; int numOfVertices;...;
public:

Polygon(TDocument* document, long n, long identifier);
~Polygon();
" • 5

};

typedef pwnArray<Node*> NodeContainer;
typedef pwnArray<Edge*> EdgeContainer;
typedef pwnArray<Triangle*> TriangleContainer;
typedef pwnArray<Polygon*> PolygonContainer;

class DOCVIEWCLASS NetTriangulation : public TFileDocument
{ protected:

NodeContainer* npc; EdgeContainer* epc; TriangleContainer* tpc;
PolygonContainer* ppc;...;

public:
NetTriangulation(TDocument* parent = 0);
~NetTriangulation();

}

140 Chapter 7: Implementation and test. (W. Peng)

Note that this definition contains some redundant information which is introduced to
increase the efficiency in query operations and spatial analysis.

7.2.2 Construction of a Triangulation Network

For a given set of nodes, the corresponding triangulation network is constructed using
the Delaunay criterion. Depending on the requirement of an application, it can be
constructed with, or without, constraints (Figure 7.1). The method used in ISNAP is
a vector approach which is mainly based on the algorithm that was developed by Sloan
(1987), but replaces the super-triangle by the convex hull of the node set, and uses a
different data structure to store topology. Constraints, such as polygon boundaries and
contour segments, are forced in, using the approach introduced by Floriani and Puppo
(1988), after the unconstrained triangulation has been constructed. The main steps of
the algorithm are:

• Check the node set for duplicated nodes. The data must be free of duplicated nodes.
Duplicated nodes need be corrected or should be ignored in the construction process.

• Rasterise the space with, in average, four or five nodes in each grid sell2.

• Sort the grid as shown in Figure 7.3a. This process transforms a 2D indexing into
a ID indexing, and ensures that the next node to be processed is in the proximity of
the current one. Such a tactic can largely reduce the time spent for locating the
triangle that encloses a given node, and helps to speed up the updating process (i.e.,
triangle swapping), due to inserting a new node into an existing triangulation.

• Find the convex hull of the given node set.

• Triangulate the convex hull using the empty-circle criterion.

• Insert each node of the rest of the set, (i.e., exclude those lying on the convex hull),
into the existing triangulation. The sequence of the nodes to be inserted is
determined by the order of the grid cells where the nodes are located.

• Update the existing triangulation after a new node has been inserted:

1) find the triangle that encloses the new node; the process can be speeded up by the
use of topology as shown in Figure 7.3b;

2) form the three new triangles with the new node and the three vertices of the
triangle found, and delete the original triangle afterwards;

3) use a recursive process to check whether a new triangle, and any of its adjacent
triangles, form a convex quadrangle with the maximum-minimum angle, (i.e., the
minimum of the six angles in the two triangles making up the quadrangle is larger
than it would have been if the alternative diagonal had been drawn and the other pair
of triangles chosen). If the result is false, then swap the diagonals and use the two
newly created triangles to replace the original pair (Figure 7.4).

2:Larkin, 1991.

Chapter 7: Implementation and test. (W. Peng) 141

Note that the criteria of empty-circle and maximum-minimum angle used in the
process ensure that the triangulation constructed is a Delaunay triangulation.

• Insert, one at a time, each constraint. A constraint is represented by an arc of which
the two nodes are already in the triangulation.

• Update the existing triangulation after an arc has been forced in:

1) find all the triangles intersected by the arc;

2) these triangles form a polygon called influence-region of the arc; the arc splits the
influence-region into two polygons;

3) triangulate the two polygons locally and independently (Figure 7.5).

Note that it is critical to prevent a triangle edge from intersecting an object's boundary,
and to maintain the original link of the node set. For this reason, the existing arcs that
form an object's boundary must be forced into the network as constraints.

• < ;

r >J

j

u ;
j

•>*

x •

a. b.

Figure 7.3. a: Grid/bin sorting procedure, b: Triangle searching method (note that the
search always starts at the last formed triangle).

Figure 7.4. The process for inserting a new node.

142 Chapter 7: Implementation and test. (W. Peng)

Figure 7.5. The process for inserting a new arc (a constraint).

7.2.3 Information Inquiry

ISNAP allows the user to inspect the network. Using the mouse cursor, the user can
make an inquiry for information, (including topology), about nodes, arcs, triangles,
polygons, and the whole network. The system highlights the element about which the
inquiry is being made in the graph window, and sends text information to the text
window. This facility, together with the pan and zoom functions, has played an
important role in investigating the data structure and its applications.

7.3 The Application

Nine applications have been developed using ISNAP. They are:

1) determining and inquiring adjacency relationships;

2) 'spacing' checking and spatial conflict detection;

3) object aggregation;

4) finding safe-region;

5) object displacement;

6) displacement propagation;

7) object exaggeration;

8) pattern detection;

9) DTM (for relief generalization purpose, it will not be discussed in this thesis).

• Determining adjacency relationships: this function was developed to test the
definitions given in section 4.3.3 for the adjacency relationships between geometric
primitives (i.e., between nodes, between arcs, and between nodes and arcs). When
the user places the mouse cursor on a node and presses, and holds the left button, the
system will highlight all of its adjacent nodes and arcs (Figure 7.6, the window on
the left side). If the user places the cursor on top of a« arc and presses, and holds the
left button, then the system will highlight all the adjacent arcs (at most four) of the
arc specified (Figure 7.6, the window on the right side).

• 'Spacing' checking and spatial conflict detection: this is an implementation of the
procedures described in sections 5.1 and 5.3. The top-left window in Figure 7.7

Chapter 7: Implementation and test. (W. Peng) 143

shows an example, where the objects in red are in conflict with each other. Four local
conflict groups (see section 3.4.1) have been detected in this particular example.

EÜl Simplicidl Netwmk rintl Its Appl icat ion 0 B D I
Met d«ne Application input Construct ^iew Query option tfmdow Heip

t2G:\ADATAMSNAP\BUILDI... B E i n I M G:\ADATA\ISNAP\BUILDI BBE3

3ä"n 1 ' 1
•""•J

Figure 7.6. Examples of adjacency relationships between nodes, between nodes and arcs,
and between arcs. The node or arc with a small cross on top is the one under inquiry.

• Object aggregation: this is an implementation of the algorithm introduced in section
5.2. The top-right window in Figure 7.7 and Figure 7.8 show how the object with a
small cross inside would be aggregated with its neighbours. Of course, in an
automated generalization process, the system should determine with which of the
neighbours the object should be aggregated according to their thematic properties
and the spaces between them. The purpose of this example is only to demonstrate
the possibilities.

• Finding safe-region: this is an implementation of the algorithm described in section
5.5. The bottom-left window in Figure 7.7 and Figure 7.9 illustrate the approximate
safe-region of the object with a small cross inside. The approximate safe-region of
an object appears when the user executes the "Safe Movement" or "Exaggeration"
function from the menu, or the tools bar, and clicks the left button of the mouse
while the cursor is inside the object. If the user selects "Safe Movement", then the
object chosen will move around inside its approximate safe-region, and stop if any
part of it hes outside of the region. The process can be followed on the screen. Note
that a buffer will be applied on the object when it moves. The width of the buffer is
equal to the required space between two adjacent objects. The user can modify the
value using the "option" function in ISNAP.

• Object displacement: see finding safe-region described above. The algorithm is
tested under the function named "Safe Movement". An example of object
displacement is shown in Figure 7.10.

file://G:/ADATAMSNAP/BUILDI
file://G:/ADATA/ISNAP/BUILDI

144 Chapter 7: Implementation and test. (W. Peng)

• Displacement propagation: this is an implementation of the algorithm described in
section 5.6. The bottom-right window in Figure 7.7 shows how an object is displaced
upon the request of another adjacent object. Another example is shown in Figure
7.10. Note that the algorithm implemented for displacement propagation is still too
simple to handle complicated situations (e.g., the current version only allows
propagation once, and does not check if more than one of the neighbours need to be
displaced). This will be improved in future work.

• Object exaggeration: by checking with its safe-region, an object is able to know how
far it can expand. In ISNAP, when the user executes the "Exaggeration" function,
and clicks the left mouse button while the cursor is inside an object, the object starts
to expand and continuously to do so until any part of it hits or crosses the boundary
of the safe-region. The process can be observed on the screen.

• Pattern detection: this is an implementation of the algorithm described in section 5.9.
Figure 7.2 shows the two linear groups (in red) detected from a large group of
islands. The result was achieved with k = 2.0 (the default setting). The same result
can be obtained with 1.3 <, k < 8.1. With another data set shown in Figure 7.6, no
linear pattern can be detected, even when k is set to 99999.

7.4 Data Input and Output

ISNAP has its own structure to store data. The files that constitute a network include:
".NET", ".TNO", ".TED", ".TTR", and "CON". They are all binary files and are used
to store general network information, node information, edge information, triangle
information, and constraint information, respectively.

The original data, including polygons and nodes, can be entered through screen
digitization, or imported through format conversion from the following data format:

• ".ASC";

• ".PLY";

• ".PLG", ".ARC", ".NOD";

• ".LIN" (Arc/Info LIN format).

ISNAP can also export the following data format:

• ".ASC";

• ".DXF";

• ".PAP", ".ARA", ".NON";

• ".LIN".

Chapter 7: Implementation and test. (W. Peng) 145

The detailed description about these formats are given in Appendix C.

7.5 Discussion

The tests described in section 7.3, including the one described in section 5.10.5,
demonstrated, at the operational level, the applicability and benefit of the extended
adjacency relationships, the concept of safe-region, and the DDT in supporting
automated generalization. They also illustrated the power of the DTN as a data
structure in computational geometry, and proved that a larger number of critical
geometric problems in automated generalization can be solved, or can be solved in a
more efficient way, having the support of an adequate data model.

The generalization functions implemented in ISNAP do not constitute a generalization
system. However, they are important elements of such a system. If the design described
in Chapter 6 is to be implemented to realize an automated database generalization in
a GIS, then some of these elements, (i.e., determining adjacency relationships, spacing
checking, and objects aggregation), can be directly applied. In order to realize an
automated view generalization, first a logical system design must be made available,
one which is based on the framework set out in Chapter 33; these functions then can be
directly applied in the implementation phase. The database structure, and the design
strategy described in Chapter 6, also can be used for this design. However, a different
controlling process (i.e., an equivalent of the operation Database::Generalization()
described in section 6.3.2), and a different rule base scheme, are to be expected.

Further research and development also need to look into:

• improving the algorithms for displacement propagation and linear pattern detection;

• defining and detecting other patterns;

• improving the algorithm to obtain a more representative approximation of an object's
safe-region;

• developing algorithms for expanding an object's safe-region;

• developing algorithms for typification operation;

• applying the adjacency relationships defined in the EFDS, and the DTN, to other
geometric operations (such as geometric simplification), to prevent the operations
from violating topology.

3: As we have done for database generalization in Chapter 6.

146 Chapter 7: Implementation and test. (W. Peng)

ti3 Simplifiai Nelwuik <inrl Its Application

Net frame Application Input Construct View Query Option Window Help

ZMJ iM^ii i lEMoikBgi raiemaïanaj H5

Create a new NET

Figure 7.7. Examples of spatial conflict detection (top-left), object aggregation (top-right),
safe-region (bottom-left), and displacement propagation (bottom-right).

Chapter 7: Implementation and test. (W. Peng) 147

Ci3 Simplicial Network and Its Application B B O

Net Frame Application Input Construct ¥iew Query Option Window Help

ES G:\ADATA\ISNAP\BUILD

•
u

+

B H I 3 |

1

|C3 B:\ADATA\ISNAP\BUILD

•
+ ~JI

1 1

BHHJ

1

| U G:\ADATAUSNAP\BUiLDi

•

*
1 1

jHEinn

1

Î

| 0 G:\ADATAySNAP\BUILDI

+

1
|

1

Benig

!

;

E3 G:\ADATAMSNAPS.BUILD .. B H E Ï i U G: \ADAIA\ ISNAP\BUiLDI-BE1l3
1 l > d h f l M W a i

i
i :
f

! 1
i
j
i
1
i

i

+

an

1 . '
1 .

M

1

n i
n-

,

+
•

Figure 7.8. Examples of object aggregation.

file://G:/ADATA/ISNAP/BUILD
file://B:/ADATA/ISNAP/BUILD
file://G:/ADATAUSNAP/BUiLDi
file://G:/ADATAySNAP/BUILDI
file://G:/ADAT
file://G:/ADAIA/ISNAP/BUiLDI-BE1l3

148 Chapter 7: Implementation and test. (W. Peng)

[fjj Simplifiai Network and Its Application E S H O
Net Frame application input Construct View fiitery Qption Window Help

K3 G:\ADATA\ISNAP\BUIl D B H O a G:\ADATA\ISNAP\BUIL... H O B M

•
im

\

•

E3 G:\ADATA\1SNAP\BUILD... » 1 3 IS « U G:\ADATA\ISNAP\BIJILD . . . B B B

rSÄ
fa G:VADATA\ISNAP\BUILD.-HI3I3 i a G:\ADATASISNAP\BUILD.. .HH3B1

•
•

Figure 7.9. Examples of safe-region.

file://G:/ADATA/ISNAP/BUIl
file://G:/ADATA/ISNAP/BUIL
file://G:/ADATA/1SNAP/BUILD
file://G:/ADATA/ISNAP/BIJILD
file://G:/ADATASISNAP/BUILD

Chapter 7: Implementation and test. (W. Peng) 149

Ci3 Simplicial Network and Its Application nan

m ia z
Net Frame Application Input Construct View flueiy Option window Help

aiBiaaiaJlBiBBg EMB
MGAADATAUSNAPUSIAND / Graph 1 H B • HUG:\ADATAV . H H H

i O

«

CJ G:\ADATAV. I 5 I 3 I 3
Obj1=33 Obj2=34...

JDis=17.59 Azi=304.11

iObjl-16 Obj2-15...
JCN8-47.0S AzK32.17

0bj1=15 Obj2»14...
'• Dte«55.87 Azi=26.19

Objl-28 Obj2-27...
!Dis-28.17 Azi=324.18

d

J

ISNAP1.0 P&P.1995

Figure 7.10. An example of object displacement and displacement propagation. Top-right:
objects which are in conflict with each other (shown in red); left: object displacement and

displacement propagation in order to solve the conflicts.

file://G:/ADATAV
file://G:/ADATAV

150 Chapter 7: Implementation and test. (W. Peng)

Chapter 8: Conclusion and future research. (W. Peng) 151

CHAPTER 8
CONCLUSIONS AND FUTURE RESEARCH

This chapter provides a general review of this research, draws conclusions, and
indicates aspects for the further research and development of the topic studied. The top-
down nature of the research methodology specified in Chapter 1 is illustrated through
the review.

8.1 Discussion

Several important aspects of automated generalization have been studied and discussed
in the last seven chapters. They include:

• the main problems which lead to the absence of an operational generalization in a
GIS, while GIS applications have matured during these years and the demand for
having such a tool has been increasing;

• the relevant aspects of geo-data and geographic information systems that:
1) explain the need for generalization, and
2) set up the foundation for understanding the generalization problems within the
context of a GIS;

• the concepts of generalization in GIS, including the objectives and scope, elementary
generalization problems and solutions;

• the data model that supports automated generalization;
• the algorithms for handling important geometric problems in automated generalization;

• a rule base scheme and reasoning process, and system design for automated database
generalization; and

• the implementation of the algorithms.

Generalization procedures are used in a GIS for two reasons:
1) the need for transforming an existing database after the user has introduced a new
conceptual data model, which will lead to a database of lower resolution; and
2) the need for producing a legible view of a database, or part of it, when the output
scale cannot accommodate the data set of interest.

The two processes that are corresponding to these two aspects are referred to as
database generalization/^ and view generalization/vrespectively. They are independent
from each other in the sense of motivation (for a generalization) and implementation.

Database generalization deals with resolution transformation as well as 'contents
operation' which is related to the transformation. Scale is not a concern in database
generalization, but is a key aspect in view generalization. The generalization problems

152 Chapter 8: Conclusion and future research. (W. Peng)

and solutions, as described in section 3.3, provided a conceptual framework for
database generalization, which laid the foundation for understanding, and realizing,
automated database generalization in a GIS. Having this conceptual framework, we
were able to develop the generalization operation-matrix and operation-network, and
able to design a rule base scheme (as shown in Chapter 6), that provides a means for
the user to define the target database suitable for his/her application(s). The operation-
network makes it possible to develop a reasoning mechanism, to search and interpret
the rule base, and since it is actually a tree structure, it facilitates system development
from an implementation point of view.

View generalization is a matter of scale and graphic constraints. Graphic constraints
require objects appearing in a view (i.e., view objects) to meet certain criteria to ensure
a legible view. These criteria include the minimum size required of an object, and
object's details, and the minimum space permitted between two adjacent objects. The
scale factor affects the dimension of a view object, and the space between two view
objects. Reducing the scale results in a smaller dimension and space, and at a certain
stage the dimension and/or space may fall below the threshold (i.e., smaller than the
required value). Such a result would have to call upon a view generalization process
in order to "restore" the legibility for the new view. The generalization problems and
solutions formalized in section 3.4 set up a conceptual framework for view generalization.
They were developed, based on the understanding of the difference between a view,
and its associated database, within the framework of a GIS. The concepts of
generalization-unit and solution-localization introduced in section 3.3 are the key
factors that led to the formal description of the problems, and solutions, in view
generalization. They allowed us to group objects according to their characteristics, and
potential behaviours, in a view generalization process, which, in turn, helped us to
understand and define the generalization problems, and facilitated the solutions.

It is important to note that the reasoning which led to the proposed solution for view-
generalization was somewhat subjective, reflecting the nature of the issue of view
generalization. What we were concerned with in the reasoning, is whether the process
is logical, and whether the solution will lead to an acceptable result (by the user). It is
also important to note that there may be cases in which the user's decision is required
(see, e.g., Statements 19 and 23 in section 3.4.4). This implies that a fully automated
process for view generalization may not be realistic. Hence, utilities for interactive
generalization must also be provided. The research and development should look into
how to minimize and facilitate the interactive work.

The different natures of database and view generalizations were reflected by the way
in which the statements in these two kinds of generalizations were organized, and the
way of modelling a generalization. While the operation-network was introduced to
dynamically reason a user-defined rule base for database generalization, a generalization
flow was proposed to direct an automated view generalization process.

Chapter 8: Conclusion and future research. (W. Peng) 153

Formally defining the generalization problems and conceptually introducing the
solutions was the first step towards an operational automated generalization in a GIS.
Selecting/developing an adequate supporting data model was the second step. In
Chapter 4, the FDS was introduced particularly for this purpose. This data model
supports a description of spatial objects, and the topological relationships among them,
including the link between attribute data and geometry. By introducing the Delaunay
triangulation network, we could formulate (and utilize) an extended set of adjacency
relationships which are important for decision-making, and the implementation of
generalization operations. The extended adjacency relationships include node-node
adjacency, node-arc adjacency, arc-arc adjacency, the adjacency relationships between
point features, between line features, between area features, and the adjacency
relationships between different types of features. They play an important role in
identifying neighbours, detecting spatial conflicts, detecting local-conflict groups and
local-problem-zones, and the implementation of generalization operations, such as
object aggregation. The FDS with these extended adjacency relationship is called the
EFDS. It was translated into an O-O logical data model in Chapter 6, to facilitate the
design for automated database generalization. The aspect of consistency was not
discussed in this thesis. However, it has been addressed in other related PhD research
projects.

Having the data model to support the description of spatial objects, and the topological
relationships among them, we still need algorithms to actually perform spatial analysis
and transformations. Chapter 5 described a number of algorithms which have been
developed to handle important geometric problems in both database generalization and
view generalization. These problems include:

• 'spacing' checking;

• objects aggregation;

• spatial conflict detection;

• object clustering and problem-zone detection;

• object displacement and displacement propagation;

• object exaggeration;

• pattern detection; and

• spatial context analysis.

The algorithms made use of the DTN (as a data structure in computational geometry),
and the adjacency relationships defined in the EFDS. The safe-region of an object,
which determines the area within which the object can expand and move around safely,
provided us with an efficient and useful means to control generalization operations in
order to avoid violating topology, and creating new spatial conflicts. These operations
include exaggeration, symbolization, and displacement and displacement propagation.
By checking with the associated safe-regions of relevant objects, a decision-making

154 Chapter 8: Conclusion and future research. (W. Peng)

process is able to know, in advance, the consequence(s) of a (geometric) operation, so
that it can "think about" other solutions before running into "trouble" (i.e., making an
inadequate or wrong decision that will result in new spatial conflicts or violation of
topology). An approximation of an object's safe-region can be obtained by the use of
the DTN, making it possible to apply the concept of safe-region in developing the
algorithms.

Whereas the introduction of safe-regions enabled us to control a geometric operation,
and to "anticipate" its consequence(s), the dynamic decision tree (DDT), introduced
in section 5.10, provided us with a means to conduct context analysis for the graphic
generalization of urban road networks, and other similar kinds of networks. The DDT
is a good example of integrating topological data modelling, and AI technology, for
automated generalization. Although the algorithm described in section 5.10 was
developed particularly for the automated generalization of urban road networks, its
basic idea, i.e., transforming a geographic space into a tree structure according to pre­
defined generalization rules, and searching the tree using AI technology to arrive at a
conclusion, is a potential approach for conducting context analysis by a computer
system.

The algorithms described in Chapter 5 were tested, using ISNAP and URNAGS. As
a Windows-based Multiple Document Interface PC program, ISNAP includes basic
functions to construct unconstrained and constrained DTNs, to determine adjacency
relationships, and to obtain approximate safe-regions. With the support of these basic
functions, it provides further functions to test the algorithms for 'spacing' checking,
objects aggregation, spatial conflict detection, object clustering, object displacement
and displacement propagation, object exaggeration, and pattern detection. The
algorithm for spatial context analysis was tested using URNAGS, a DOS-based PC
program having a built-in relational DBMS, that can dynamically update topology
during a generalization process, and a reasoning mechanism for searching the DDT.
Some of the testing results were given in Chapter 5 and Chapter 7, demonstrating the
applicability and benefit of the extended adjacency relationships, the concept of safe-
region, and the DDT.

While Chapter 5 provided algorithms for handling important geometric problems,
Chapter 6 presented an O-O system design for automated database generalization. This
is an important step towards an operational automated database generalization in a GIS,
as it bridges generalization concepts and the implementation of the concepts in a
computer environment1. Through the rule base scheme, and the reasoning mechanism,
described in sections 6.2.1 and 6.2.2, the design answered the question concerning how
could the user define his/her target database, and how could the generalization system
accommodate to the user's request. By integrating the generalization mechanism into
the database structure, the design avoided the problem that existing generalization

1 : Note that this kind of work is remarkably absent in the literature on generalization.

Chapter 8: Conclusion and future research. (W. Peng) 155

functions were normally implemented as 'external function bodies', which were
separated from the database structure, thus each generalization function may have to
include operations for consistency check and concurrency maintenance. By adopting
the O-O approach, the design also answered the question concerning how to define
generalization operations for problems which are unknown at the moment the system
is constructed. Being extendable was also a concern of this design, since no existing
system can satisfy all the requests of different users. Although the applicability of some
of its aspects still needs to be finally validated through implementation, the design
indicated, at the logical level, the feasibility of developing an automated database
generalization in a general purpose GIS, given the support of a good data model, an
adequate system development environment, and algorithms for handling geometric
problems.

The system design was carried out in a top-down manner. First, a (three-level) O-O
database structure was proposed, based on the EFDS; then a generalization mechanism
was integrated into the current database structure. Generalization operations were first
defined at database level, then "propagated" to object-container level, and eventually
to object level, if necessary. Such an approach allows a complex generalization
problem to be decomposed and solved at different levels, according to its nature, which
in turn leads to a more simple, clear, and structured generalization mechanism.

Chapter 6 also raised the issue of rule base consistency. This issue requires a further
study.

Note that no specific evaluation measures have been introduced into this research, as
the solutions proposed in this research, and other output, cannot be measured, but can
be judged only.

8.2 Conclusion

Based on the study described in the last seven chapters, and summarizing the discussion
provided in the previous section, it can be concluded that:

• Generalization in the context of a GIS includes a database process called database
generalization, and a visualization process called view generalization.

• Database generalization is used to transform an existing database after the user has
introduced a new conceptual data model, which will lead to a database of lower
resolution. View generalization is invoked to produce a legible view of a database,
or part of it, when the output scale cannot accommodate the data set of interest.

Database generalization can be described as a transformation^ such that,

dbj =fd(dK ibj);

156 Chapter 8: Conclusion and future research. (W. Peng)

where dbj = original database; dbj= generalized database; rbj= rule base. In the same
way, view generalization can be described as a transformation/,, such that,

Vk^Cdb^rbJ;

where vk = view; dbj = database; rbk = rule base.

• The formal description of the underlying problems is the premise to automate a
generalization process. This premise holds for both database generalization and view
generalization. However, while the transformation process of database generalization
may be fully automated, view generalization may require a certain degree of
interactive operation.

• The EFDS is an adequate data model to support automated generalization according
to the general requirements specified in Chapter 4. The extended adjacency
relationships defined in the model not only facilitate the formal description of
generalization problems and solutions, but also support algorithm development for
spatial analysis and geometric operations.

• Due to the Delaunay criterion (or the equivalent Voronoi criterion), the DTN is an
ideal approach for supporting the extended adjacency relationships, and algorithm
development. This approach has another advantage in that it can cooperate with any
TTN-based data model that applies the Delaunay criterion, (e.g., the UNS).

• Automated database generalization requires a dynamic and 'open' system environment
in order to respond to different users' requirements. The rule base scheme and the
integrated system structure which has been developed in this research provides a
solution.

• Object-orientation plays an important role in data modelling. The facilities provided
in an O-O programming language, such as inheritance, encapsulation, and dynamic
binding, are useful tools for system design and implementation.

• Considering the differences and relationships between a database and a map (see
discussions in sections 2.5 and 2.6), automated map generalization can be conducted
by applying first database generalization, and then view generalization, under the
conditions that a) the data are arranged according to the EFDS, or other data models
that meet the requirements specified in Chapter 4; and b) the "resolution-scale"
correspondence can be identified.

8.3 Future Research

As described in the last two sections, this research has covered a number of aspects of
automated generalization in GIS, and some of the key aspects have been implemented
and tested. It can be concluded that the research objectives set out in Chapter 1 have

Chapter 8: Conclusion and future research. (W. Peng) 157

been achieved. However, there are still issues that need to be investigated, and some
of the aspects treated in this research still need further study and development. They
are summarised as follows:

• Implementing the design for automated database generalization; being able to
dynamically update topology during a generalization process is critical in this
implementation.

• Developing and implementing a logical system design for automated view
generalization, based on the conceptual framework set out in Chapter 3. A new rule
base scheme, and new controlling process, different from that used in database
generalization, are expected.

• Identifying possible consistency problems, and specifying consistency rules, that
need to be applied for consistency check; it needs to be answered whether, and at
which level, a rule base consistency check can be done automatically.

• Improving the algorithm to obtain a more representative approximation of an
object's safe-region, and investigating the properties of such an approximation.

• Applying the adjacency relationships defined in the EFDS, and the DTN, to
other geometric operations (such as geometric simplification), to prevent the
operations from violating topology.

• Defining and categorising complex-generalization-units and possible patterns
of interest; developing algorithms for detecting such patterns and units.

• Further testing and improving the algorithm for linear pattern detection.

• Improving the algorithm for "displacement propagation".

• Developing algorithms for expanding an object's safe-region.

• Developing algorithms for typification operation.

• Developing algorithms for detecting and handling "too-small" object details.

• Investigating how the scale of a view/map corresponds to the thematic and
geometric resolutions of a database, and vice versa.

• Proposing an optimal user-interface for facilitating generalization.

158 Chapter 8: Conclusion and future research. (W. Peng)

Bibliography. (W. Peng) 159

BIBLIOGRAPHY

Ahuja, N. (1982) Dot pattern processing using Voronoi neighbourhoods. IEEE, Vol.
PAMI-4, No. 3, pp. 336-343.

Armstrong, M.A. (1983) Basic Topology, Springer-Verlag, New York, Third Printing,
1990.

Aurenhammer, F. (1991) Voronoi diagram - a survey of a fundamental geometric data
structure. ACM Computing Surveys, Vol. 23, No. 3, pp. 345-405.

Barber, C , Cromley, R. and Andrle, R. (1995) Evaluating alternative line simplification
strategies for multiple representations of cartographic lines, Cartography and Geographic
Information Systems, Vol. 22, No. 4, pp.276-290.

Beard, K. and Mackaness, W. (1991) Generalization operations and supporting structure,
Auto-Carto 10. pp. 29-43.

Beard, K. (1991) Constraints on rule formulation, in Map Generalization: Making
Rules for Knowledge Representation (eds Buttenfield, B. P. and McMaster, R. B.),
Longman House Essex, United Kingdom, pp. 121-135.

Brassel, K. E. and Weibel, R. (1988) A review and conceptual framework of automated
map generalization. International Journal of Geographic Information Systems, Vol.
2, pp. 229-244.

Bos, E.S. (1984) Relief 'representation, Lecture notes, ITC, Enschede, The Netherlands,
86p.

Boutoura, C. (1989) Line generalization using spectral techniques, Cartographica,
26(3&4), pp. 33-48.

Bundy, G.L., Jones, C.B. and Furse, E. (1995) Holistic generalization of large-scale
cartographic data, in GIS and Generalization (eds Muller, J.C., Lagrange, J.P. and
Weibel, R.), pp. 106-119.

Burrough, P.A. (1986) Principles of Geographical Information Systems for land
resources assessment, Clarendon Press, Oxford, 194p.

Buttenfield, B. (1989) Scale dependence and self similarity in cartographic line,
Cartographic 26(2). pp. 79-100.

Catlow, D.R. and Du, D. (1984) The structuring and cartographic generalization of
digital river data, Technical Papers, 44th Annual Meeting ACSM, pp. 511-520.

Chen, Z. (1995) Enterprise Geographic Information Systems, Proceedings of
Geolnformatics'95, International Symposium on RS, GIS & GPS in Sustainable
Development and Environmental Monitoring, Hong Kong, pp.159-167.

Chithambaram, R., Beard, K. and Barrera, R. (1991) Skeletonizing polygons for map
generalization. Technical Papers, ACSM-ASPRS Convention, Vol. 2, Cartography and
GIS/LIS, pp. 44-55.

Delaunay, B. (1934) Sur la sphere vide, Bulletin of the Academy of Sciences of the

160 Bibliography. (W. Peng)

USSR, Classe des Sciences Mathématiques et Naturelles, 8, pp. 793-800.

Egenhofer, M.J. (1989) A formal definition of binary topological relationships,
Technical Report No. 101, JVCGZ4/Department of Surveying Engineering, University
of Maine, Orono, Me, USA.

Floriano, L. and Puppo, E. (1988) Constrained Delaunay triangulation for multiresolution
surface description, Proceedings of the 9th International Conference on Pattern
Recognition, pp. 566-569.

Frank, A. (1983) Data structures for land information systems - semantical, topological,
and spatial relations in data of Geo-Sciences (in German), PhD Thesis, Swiss Federal
Institute of Technology, Zurich, Switzerland.

Gold, CM. (1989) Spatial adjacency - a general approach, Proceedings AutoCarto 9,
pp. 298-308.

Gold, CM. (1990) Space revisited — back to the basics, Proceedings of the 4th
International Symposium on Spatial Data Handling, Zurich, Switzerland, pp. 175-189.

Goodchild, M.F. (1995) Future directions for Geographic Information Science,
Proceedings of Geolnformatics '95, International Symposium on RS, GIS & GPS in
Sustainable Development and Environmental Monitoring, Hong Kong, pp. 1-9.

Gottshalk, H.J. (1972) Die generalisieerung von isolinien als ergebnis der generalisierung
von flächen, Zeitschrift für Vermessungswesen, vol. 97, No. 11, pp. 489-494.

Grunreich, D., Powitz, B. and Schmidt, C (1992) Research and development in
computer assisted generalization of topographic information at the institute of
cartography, Hanover university, Proceedings ofEGIS'92, pp. 532-541.

Guttman, A. (1984) A dynamic index structure for spatial searching, Proceedings of
the SIGMOD Conference, Boston, pp. 47-57.

Hake, G. (1974) Kartographie, Berling: Walter de Gruyter.

Heller, M. (1990) Triangulation algorithms for adaptive terrain modelling, Proceedings
of the fourth international symposium on Spatial Data Handling, Zurich, Vol. 1, pp.
163-174.

Herbert, G., Joao E. and Rhind D. (1992) Use of an artificial intelligence approach to
increase user control of automated line generalization, Proceedings of EGIS'92,
pp.554-563

Herring, J.R. (1987) TIGRIS: topologically integrated geographic information system,
Auto-Carto 8.

Hughes, J.G. (1991) Object-Oriented Databases, Cambridge: University Press, 280p.

Joao, E., Rhind, D., Openshaw, S., and Kelk, B. (1990) Generalization and GIS
databases. Proceedings ofEGIS'90, First European Conference on Geographical
Information System, Amsterdam, The Netherlands, 1990 April 10-13. pp. 504-515.

Joao, E., Herbert, G., Openshaw, S. and Rhind, D. (1992) Magnitude and significance
of generalization and its effects, Proceedings of EGIS'92. pp.711-721.

Bibliography. (W. Peng) 161

Jones, C. B. and Abraham, I. M. (1987) Line generalization in a global cartographic
database. Cartographica 24(3), pp. 32-45.

Jones C.B., Bundy G.L. and Ware M.J. (1995) Map generalization with a triangulated
data structure, Cartography and Geographic Information Systems, Vol. 22, No. 4,
pp.317-331.

Kainz, W. (1989) Order, topology and metric in GIS, ASPRS-ACSMAnnual Convention,
Baltimore, Vol. 4, pp. 154-160.

Kufoniyi, O. and Pilouk, M. (1994) A vector data model integrating multitheme and
relief geoinformation, Proceedings ofSDH'94, Vol. 2, pp. 1061-1071.

Kufoniyi, O. (1995) Spatial coincidence modelling, automated database updating and
data consistency in vector GIS, PhD Thesis, Wageningen Agricultural University, The
Netherlands, 206p.

Kumar, V. and Kanal, N. (1983) A general branch and bound formulation for
understanding and synthesizing And/Or tree search procedures, in Search and
heuristics,(ed Pearl, J.), North-Holland Publishing Company, The Netherlands, pp.
179-198.

Larkin, B.J. (1991) An ANSI C program to determine in expected linear time the
vertices of the convex hull of a set of planar points, Computers & Geosciences, Vol.
17, No. 3, pp. 431-443.

Lee, D.T. and Schachter, B.J. (1980) Two algorithms for constructing a Delaunay
triangulation, Internationaljournal of Computer and Information Sciences, Vol. 9, pp.
219-242.

Li, Z. and Openshaw, S. (1990) A natural principle for the objective generalization of
digital map data. Research Report. NorthEast Regional Research Laboratory, Newcastle
upon Tyne. 16p.

Lichtner, W. (1979) Computer-assisted processes of cartographic generalization in
topographic maps, Geo-Processing, 1(1979). pp.183-199.

Loon, J.C. (1978) Cartographic generalization of digital terrain models, Doctoral
dissertation, The Ohio State University, Ann Arbor, Michigan: University Microfilms
International, UMI 79-02171.

Mackaness, W.A. (1994) An algorithm for conflict identification and feature displacement
in automated map generalization, Cartography and Geographic Information Systems,
Vol. 21, No. 4, pp.219-232.

Mackaness, W.A. (1995) Analysis of urban road networks to support cartographic
generalization, Cartography and Geographic Information Systems, Vol. 22, No. 4,
pp.306-316.

Mark, D.M. (1986) Knowledge-based approaches for contour-to-grid interpolation on
desert pediments and similar surfaces of low relief, Proceedings of the second
international symposium on Spatial Data Handling, Seattle, Washington, pp. 225-234.

Mark, D.M. (1989) Conceptual basis for geographic line generalization, Auto-Carto

162 Bibliography. (W. Peng)

9. pp.68-77.

Mark, D. M. (1991) Object modelling and phenomenon-based generalization, in Map
Generalization: Making Rules for Knowledge Representation (eds Buttenfield, B. P.
and McMaster, R. B.), Longman House Essex, United Kingdom, 103-118.

Mathematics Dictionary, (1992) Shanghai Dictionary Publishing House, Shanghai,
China.

Mazur, E.R. and Castner, H.W. (1990) Horton's ordering scheme and the generalisation
of river networks, The Cartographic Journal, Vol. 27, pp. 104-112.

McMaster, R. B. (1987) Automated line generalization, Cartographica, 24(2), pp. 74-
111.

McMaster, R. B. (1989) The integration of simplification and smoothing algorithms in
line generalization, Cartographica, 26(1), pp. 101-121.

McMaster, R. B. (1991) Conceptual frameworks for geographical knowledge, in Map
Generalization: Making Rules for Knowledge Representation (eds Buttenfield, B. P.
and McMaster, R. B.), Longman House Essex, United Kingdom, pp. 21-39.

Meyer, U. (1987) Computer-assisted generalization of buildings for digital landscape
models by classification methods, Nachrichten aus dem karten-und Vermessungswesen,
No. 46, Series 2, pp. 193-200.

Midtbe, T. (1993) Spatial modelling by Delaunay networks of two and three dimensions,
Dr. Ing. Thesis, Norwegian Institute of Technology, University of Tronheim, Norway,
147p.

Molenaar, M. (1989) Single valued vector maps - a concept in GIS, Geo-Informations-
Systeme, 2(1), pp. 18-26.

Molenaar, M. (1990) A formal data structure for three dimensional vector maps,
Proceedings of the 4th International Symposium on Spatial Data Handling, Vol.2, pp.
830-843.

Molenaar, M. (1991) Terrain objects, data structures and query spaces, in Geo-
Informatik, (ed Schilcher, M.), Siemens-Nixdorf Informationssysteme A.G., München,
1991, pp. 53-70.

Molenaar, M. (1993) Object hierarchies and uncertainty in GIS or why is standardisation
so difficult, Geolnformations-Systeme, Vol. 6, No. 3, pp. 22-28.

Molenaar, M. (1994) A syntax for the representation of fuzzy spatial objects, in
Advanced Geographic Data Modelling, (eds Molenaar, M. and de Hoop, S.), Netherlands
Geodetic Commission, New Series, No. 40, Delft, pp. 155-169.

Molenaar, M. (1995a) An introduction into the theory of topologie and hierarchical
object modelling in Geo-Information Systems, Wageningen Agricultural University,
The Netherlands, 186 p.

Molenaar, M, (1995b) Topological and hierarchical spatial object modelling for
multiple scale representations in GIS, Geotechnica, Köln, '95,15p.

Molenaar, M. (1996) Multi-scale approaches for geo-data, International Archives of

Bibliography. (W. Peng) 163

Photogrammetry and Remote Sensing, Vol. XXXI, Part B3, Vienna, Austria, pp. 542-
554.

Molenaar, M. and Richardson, D.E. (1994) Object hierarchies for linking aggregation
levels in GIS, Proceedings of the Symposium oflSPRS Comm. IV, Athens, Georgia,
USA, pp. 610-617.

Monmonier, M.S. (1983) Raster-mode area generalization for land use and land cover
maps, Cartographica, Vol. 20, No. 4, pp. 65-91.

Muller, J.C., Johnson, R. D. and Vanzella, L.R. (1986) A knowledge-based approach
for developing cartographic expertise, Proceedings of the second international
symposium on Spatial Data Handling, pp. 557-571.

Muller, J.C. (1987) Fractal and automated line generalization, The Cartographic
Journal, Vol. 24, pp. 27-34.

Muller, J. C. (1989) Theoretical considerations for automated map generalization, TIC
Journal, 3/4, pp. 200-204.

Muller, J. C. (1990) Rule based generalization: potentials and impediments, Proceedings
of the fourth symposium on Spatial Data Handling, 317-334.

Muller, J. C. (1991) Generalization of spatial data bases, in Geographic Information
Systems (eds Maguire, D. J., Goodchild, M. F. and Rhind, D. W.), Vol. 1, Longman
Scientific & Technical Ltd, New York, pp. 457-475.

Muller, J. C. and Wang Z. (1992) Area-patch generalization: a competitive, The
Cartographic Journal, Vol. 29, pp. 137-144.

Muller, J. C , Peng, W. and Wang, Z. (1993) Procedural, logical and neural nets tools
for map generalization, Proceedings of the 16th international cartographic conference,
pp. 181-191.

Muller, J.C., Weibel, R., Lagrange, J.P. and Salge, F. (1995) Generalization: state of
the art and issues, in GIS and Generalization (eds Muller, J.C., Lagrange, J.P. and
Weibel, R.), Taylor & Francis, pp. 3-17.

NCGIA (1990) Introduction to GIS, in NCGIA Core Curriculum (eds Goodchild, M.F.
and Kemp, K.K.).

Nickerson, B. G. and Freeman, H. (1986) Development of a rule-based system for
automatic map generalization, Proceedings of the second international symposium on
Spatial Data Handling, pp. 537-556.

Nickerson, B. G. (1991) Knowledge engineering for generalization, in Map Generaltation:
Making Rules for Knowledge Representation (eds Buttenfield, B. P. and McMaster,
R. B.), Longman House Essex, United Kingdom, pp. 40-55.

Nyerges, T.L. (1980) Representing spatial properties in cartographic data bases, ACSM
40th.

Nyerges, T. L. (1991) Representing geographical meaning, in Map Generalization:
Making Rules for Knowledge Representation (eds Buttenfield, B. P. and McMaster, R.
B.), Longman House Essex, United Kingdom, pp. 59-85.

164 Bibliography. (W. Peng)

Offermann, W. (1993) Cartographic generalization with amplified intelligence, Proceedings
ofEGIS'93, pp. 1019-1024.

Okabe, A., Boots, B. and Sugihara, K. (1994) Nearest neighbourhood operations with
generalized Voronoi diagrams: a review, INT. J. Geographical Information Systems,
Vol. 8, No. 1, pp. 43-71.

Parsaye, K., Chignell, M., Khoshafian, S. and Wong, H. (1989) Intelligent databases,
John Wiley & Sons, Inc., 478p.

Peng, W. (1992) Automated generalization of urban road-networks for medium scale
topographic databases, Master Thesis, ITC, Enschede, The Netherlands, 96p.

Peng, W., Molenaar, M. (1995) An object-oriented approach to automated generalization,
Proceedings of Geolnformatics '95, International Symposium on RS, GIS & GPS in
Sustainable Development and Environmental Monitoring, Hong Kong. pp. 295-304.

Peng, W., Sijmons, K. and Brown, A. (1995) Voronoi diagram and Delaunay triangulation
supporting automated generalization, Proceedings of the 17th international cartographic
conference, pp. 3 01 -310.

Peng, W., Tempfli, K. and Molenaar, M. (1996) Automated generalization in a GIS
context, Proceedings of Geoinformatics'96, International Symposium on GIS/RS,
Research, Development and Application, Florida, USA, pp. 135-144.

Peng, W., Pilouk, M. and Tempfli, K. (1996) Generalizing relief representation using
digital contours, International Archives ofPhotogrammetry and Remote Sensing, Vol.
XXXI, Part B3, Vienna, Austria.

Peng, W., Tempfli, K. (1996) An object-oriented design for automated database
generalization, SDH'96, pp. 4B.15-4B.30.

Peng, W. and Muller, J.C. (1996) A dynamic decision tree structure supporting
urban road network automated generalization, The Cartographic Journal, Vol.
33, No. 1, pp. 5-10.

Peuquet, D. (1984) A conceptual framework and comparison of spatial data models,
Cartographica, Vol. 21, No. 4, pp. 66-113.

Pilouk, M. (1996) Integrated modelling for 3D GIS, PhD Thesis, Wageningen Agricultural
University, The Netherlands, 200p.

Pilouk, M. and Tempfli, K. (1993) An integrated DTM-GIS data structure: a relational
approach, Proceedings ofAuto-Carto 11, Minneapolis, Minnesota, USA, pp. 278-287.

Plazanet, C. (1995) Measurements, characterization and classification for automated
linear features generalization, Auto-Carto 12, pp. 59-68.

Plazanet, C , Affholder, J. and Fritsch, E. (1995) The importance of geometric
modelling in linear feature generalization, Cartography and Geographic Information
Systems, Vol. 22, No. 4, pp. 291-305.

Powitz, B.M. and Meyer, U. (1989) Generalization of settlements by pattern recognition
methods, Paper presented at the ICA Conference, Budapest, 7p.

Bibliography. (W. Peng) 165

Preparate, F., P. and Shamos, M. I. (1985) Computational geometry: an introduction,
Springer, New York.

Regnauld, N. (1996) Recognition of building cluster for generalization, SDH'96, pp.
4B.1-4B.14.

Richardson, D. E. (1993) Automated spatial and thematic generalization using a context
transformation model, PhD. Thesis, R&B Publications, Canada, 149p.

Ruas, A. (1995) Multiple paraigms for autimating map generalization: geometry,
topology, hierarchical space partitioning and local triangulation, Proceedings ofAuto-
Carto 12, Charlotte, USA, pp. 69-78.

Ruas, A. and Lagrange, J.P. (1995) Data and knowledge modelling for generalization,
in GIS and generalization, methodology and practice (eds Muller, J.C., Lagrange, J.P.
and Weibel, R.), Taylor and Francis, London, pp. 73-90.

Ruas, A. and Plazanet C. (1996) Strategies for automated generalization, SDH'96, pp.
6.1-6.18.

Samet, H. (1990) The design and analysis of spatial data structures, Reading, Addison-
Wesely, Massachusetts.

Shea, K. S. and McMaster, R. B. (1989) Cartographic generalization in digital environment:
when and how to generalize. Autocarto 9, pp. 56-65.

Shea, K. S. (1991) Design considerations for an artificially intelligent system, in Map
Generalization: Making Rules for Knowledge Representation (eds Buttenfield, B. P.
and McMaster, R. B.), Longman House Essex, United Kingdom, pp. 1-20.

Sibson, R. (1977) Locally equiangular triangulations, Comput. J., Vol. 21, No. 3, pp.
243-245.

Sloan, S.W. (1987) A fast algorithm for constructing Delaunay triangulations in the
plane, Advanced Engineering Software, Vol. 9, pp.34-55.

SWISS SOCIETY OF CARTOGRAPHY, (1987) Cartographic Generalization, 2nd
Edition Zurich: SGK-Publikationen.

Tang, L. (1992) Raster algorithms for surface modelling, International Archives of
Photogrammetry and Remote Sensing, Vol. XXTX, Part B3, Commission UJ, Washington.

Tikunov, V. S. (1993) Modelling of spatial and meaningful structures in Geographical
Information Systems,£G75"93, pp. 1186-1291.

Thompson, P.J. (1989) Data with semantics: Data models and data management, Van
Nostrand Reinhold, New York.

Tsai, J.D. (1993) Delaunay triangulation in TIN creation: an overview and a linear-time
algorithm, INT. J. Geographical Information Systems, Vol. 7, pp. 501-524.

Townsend, C. (1987) Mastering expert systems with Turbo Prolog, Howard W. Sams
& Co, A Division of Macmillan, Inc.

Van Oosterom, P. (1989) A reactive data structure for Geographic Information Systems,
Proceedings ofAuto-Carto 9, pp. 665-674.

166 Bibliography. (W. Peng)

Van Oosterom, P. and Schenkelaars V. (1993) The design and implementation of a
multi-scale GIS, Proceedings ofEGIS'93, pp. 712-721.

Van Oosterom, P. and Schenkelaars, V. (1996) Applying reactive data structures in an
interactive multi-scale GIS, in Methods for the generalization of geo-databases (ed
Molenaar, M.), Netherlands Geodetic Commission, New Series, No. 43, pp. 37-56.

van Smaalen, J. W. N. (1996) A hierarchic rule model for geographic information
abstraction, SDH'96, pp. 4B.31-4B.41.

Wang, Z. and Muller, J.C. (1993) Complex coastline generalization, Cartography and
Geographic Information Systems, 20(3), pp. 96-106.

Ware, J. M. and Jones, C. B. (1996) A spatial model for detecting (and resolving)
conflict caused by scale reduction, SDH'96, pp. 9A.15-9A.26.

Weibel, R. (1989) Konzepte und expérimente eur automatisierung der reliefgeneralisierung,
Doctoral dissertation, Geo-Processing Series, vol. 15, Department of Geography,
University of Zurith.

Weibel, R. (1992) Models and experiments for adaptive computer-assisted terrain
generalization, Cartography and Geographic Information Systems, vol. 19, No. 3, pp.
133-152.

Weibel, R. (1995) Three essential building blocks for automated generalization, in GIS
and Generalization (eds Muller J.C., Lagrange, J.P. and Weibel, R.), pp. 56-69.

Weibel, R.(1996) A typology of constraints to line simplification, SDH'96, pp. 9A.1-
9A.14.

Weiskamp, K. and Hengl, T. (19$$) Artificial intelligence programming with Turbo
Prolog, John Wiley & Sons, Inc.

Wolf, G.W. (1988) Weighted surface networks and their application to cartographic
generalization, Visualisierungstechniken und Algorithmen (ed Barth, W.), Berlin:
Springer-Verlag, pp. 199-212.

Wolf, G. W. (1988) Generalisierung topographischer karten mittels oberflächengraphen,
Doctoral dissertation, Department of Geography, University of Klagenfurt.

Worboys, M.F. (1990) Object-oriented data modelling for spatial databases, INT. J.
Geographical Information Systems, Vol. 4, No. 4, pp. 369-383.

Worboys, M.F. (1992) A generic model for planar geographical objects, INT.J.
Geographical Information Systems, Vol.6, No.5, pp. 353-372.

Wu, H. (1981) Prinzip und methode der automatischen generalisierung der reliefformen,
Nachrichten aus dem Karten-und Vermessungswesen, series I, Vol 85, pp. 163-174.

Yoeli, P. (1990) Entwurf einer methodologie fur computergestütztes kartographisches
generalisieren topographischer reliefs, Kartographisches Generalisieren.

Zoraster, S., Davis, D., and Hugus, M. (1984) Manual and automated line generalization
and feature displacement, ETL-Report, Vol. ETL-0359 (plus ETL-0359-1), Fort
Belvoir, Virginia: U.S. Army Corps of Engineers, Engineer Topographic Laboratory.

Appendix A: Classs definition (A). (W, Peng) 167

APPENDIX A
CLASS DEFINITION (A)

#define MaxClassName 81
typedef unsigned int uni;
typedef unsigned long uni;
typedef long NoType;
typedef long IdType;
typedef double XyType;
typedef float ZType;
typedef char NameType;
typedef unsigned int CountType;
typedef int ErrorType;
typedef struct {XyType x, y;} Position2D;
enum FeatureType { POINT, LINE, AREA};
enum Topology { OUTERSPACE=-l, ADJOINING, ADJACENT, BEGIN, END, LEFT, RIGHT};

template <class T>
class pwnArray
{ protected:

T huge *array;
uni lowerbound,upperbound, dit, numOfltems;
int errorFDS;

public:
pwnArray(uni upperB, uni lowerB = 0, uni dltD = 0);
-pwnArrayO;
int isVaild(void) { return(! errorFDS);}
int redefine(uni upperB, uni lowerB = 0, uni dltD = 0);
uni lowerBound(void);
uni upperBound(void);
uni arraySize(void);
uni getNumOfltems(void);
void flush();
int add(T elem);
int addAt(T elem, uni index);
T operator [] (uni index);
void detach(uni index);
void resetdlt(uni newdlt);

protected:
int resize(unl upperB);

};

class BaseObject
{ protected:

IdType id;
BaseObject* myContainer;

168 Appendix A: Classs definition (A). (W. Peng)

public:
BaseObject(IdType theld, BaseObject* container = NULL); // constructor
~BaseObject(); // destructor
virtual NameType* GetClassName() { return "BaseObject";}
BaseObject* GetContainer() { return myContainer;}
IdType Getld() { return id;}

}

class Location2D
{ protected:

XyType x, y;
public:

Location2D(XyType xi, XyType yi);
~Location2D();
void GetPosition(Position2D& p) { p.x = x; p.y = y;}
void SetPosition(Position2D& p) { x = p.x; y = p.y;}

};

class Geometry : public BaseObject
{ protected:

BaseObject* partOf;
public:

Geometry(IdType theld, BaseObject* container, BaseObject* aPartOf);
-GeometryO;
virtual NameType* GetClassName() { return "Geometry";}
BaseObject* IsPartOfQ;

};

typedefpwnArray<BaseObject*>BaseObjectPointerArray;
typedef pwnArray<Geometry*> GeometryPointerArray;

class Node : public Geometry, public Location2D
{ public:

Node(IdType theld, BaseObject* container, BaseObject* aPartOf,
XyType xi, XyType yi);

~Node();
virtual NameType* GetClassName() { return "Node"; }
void GetNeighbours(GeometryPointerArray& array);

};

class Arc : public Geometry
{ protected:

IdType beginNode, endNode, leftGmO, rightGmO;
public:

Arc(IdType theld, BaseObject* container, BaseObject* aPartOf,
IdType begin, IdType end, IdType left = 0, IdType right = 0);

~Arc();
virtual NameType* GetClassName() { return "Arc";}

Appendix A: Classs definition (A). (W. Peng) 169

Geometry* GetLeftOrRightGmO(Topology leftRight);
void SetLeftOrRightGmO(Geometry* gmO, Topology leftRight);
Geometry* GetBeginOrEndNode(Topology beginEnd);
void SetBeginOrEndNode(Geometry* node, Topology beginEnd);
void GetNeighbours(GeometryPointerArray& array);
double LengthO;
double Azimuth();

}

typedef pwnArray<Node*> NodePointerArray;
typedef pwnArray<Arc*> ArcPointerArray;

class PointObject : public Geometry
{ public:

PointObject(IdType theld, BaseObject* container, BaseObject* aPartOf);
~PointObject();
virtual NameType* GetClassName() { return "PointObject";}
ErrorType ConstructComponent();
void GetComponent(NodePointerArray& array);
void GetNeighbours(GeometryPointerArray& array);
void GetPosition(Position2D& p);
void SetPosition(Position2D& p);

}

class LineObject : public Geometry
{ public:

LineObject(IdType theld, BaseObject* container, BaseObject* aPratOf);
~LineObject();
virtual NameType* GetClassName() { return "LineObject";}
ErrorType ConstructComponent();
void GetComponent(ArcPointerArray& array);
void GetNeighbours(GeometryPointerArray& array);
double Length();

}

class AreaObject : public Geometry
{ public:

AreaObject(IdType theld, BaseObject* container, BaseObject* aPartOf);
~AreaObject();
virtual NameType* GetClassName() { return "AreaObject";}
ErrorType ConstructComponent();
void GetComponent(ArcPointerArray& array);
void GetNeighbours(GeometryPointerArray& array, Topology adjoiningOrAdjacent);
double Area();
double Perimeter();

}

170 Appendix A: Classs definition (A). (W. Peng)

class GeometricContainer : public BaseObject
{ protected:

NameType myName[MaxClassName];
BaseObjectPointerArray* array;
CountType currentlndex;

public:
GeometricContainer(IdType theld, BaseObject* container, NameType* theMyName);
~GeometricContainer();
virtual NameType* GetClassName() { return "GeometricContainer";}
NameType* GetMyName() { return myName;}
IdType GetNextUniqueId();
void RestartO;
CountType GetNumberOfObjects();
ErrorType AddObject(BaseObject* theObject);
ErrorType DetachObject(BaseObject* theObject);
BaseObject* GetObject(IdType objectld);
BaseObject* GetNextObject();

private:
BaseObject* CreateObject(BaseObject* GeometricComplex, XyType xi, XyType yi);
BaseObject* CreateObject(BaseObject* GeometricComplex, IdType begin, IdType end,

IdType left, IdType right);
BaseObject* CreateObject(BaseObject* spatialObject);

};

class ThematicContainer : public GeometricContainer
{ protected:

FeatureType featureType;
public:

ThematicContainer(IdType theld, BaseObject* container,
NameType* theMyName, FeatureType type);

~ThematicContainer();
virtual NameType* GetClassName() { return "ThematicContainer";}
FeatureType GetFeatureType() { return featureType;}
ErrorType DetachObject(BaseObject* object, Boolean detachGeometry = TRUE);
void SetFeatureType(FeatureType newType) { featureType = newType;}
virtual BaseObject* CreateObject() = 0;

};

typedef pwnArray<ThematicContainer*> ThematicContainerPointerArray ;

class Database : public BaseObject
{ protected:

GeometricContainer *nodeContainer, *arcContainer;
GeometricContainer *pointObjectContainer, *lineObjectContainer;
GeometricContainer *areaObjectContainer;
ThematicContainerPointerArray* array;
CountType currentlndex;

Appendix A: Classs definition (A). (W. Peng) 171

public:
Database(IdType theld, BaseObject* container = NULL);
~Database();
virtual NameType* GetClassName() { return "Database";}
CountType GetNumberOfClasses();
IdType GetNextUniqueId();
void RestartO;
ErrorType AddClass(ThematicContainer* container);
ThematicContainer* GetClass(IdType containerld);
ThematicContainer* GetClass(NameType* className);
ThematicContainer* GetNextClass();
ErrorType DetachClass(ThematicContainer* container);
ErrorType DetachClass(NameType* className);
ThematicContainer* CreateClass(NameType* className,

FeatureType type = AREA);
};

class SpatialObject : public BaseObject
{ protected:

IdType geometryld;
public:

SpatialObject(IdType theld, BaseObject* container);
~SpatialObject();
virtual NameType* GetClassName() { return "SpatialObject";}
virtual ErrorType ConstructGeometricComponent();
Geometry* GetGeometry();

};

#define MaxOwner 31
#define MaxLanduse 21
#define MaxAddress 31

class Parcel : public SpatialObject
{ protected:

NameType owner[MaxOwner], landUse[MaxLandUse], address[MaxAddress];
CountType population;

public:
Parcel(IdType theld, BaseObject* container);
Parcel(IdType theld, BaseObject* container, NameType* TheOwner,

NameType* theLandUse, NameType* theAddress, CountType thePopulation);
~Parcel();
virtual NameType* GetClassName() { return "Parcel";}
NameType* GetOwner() { return owner;}
NameType* GetLandUse() { return landUse;}
CountType GetPopulation() { return population;}
void SetOwner(NameType* theOwner) { strcpy(owner, theOwner);}
void SetLandUse(NameType* theLandUse) { strcpy(landUse, theLandUse);}
void SetPopulation(CountType thePopulation) { population = thePopulation;}

172 Appendix A: Classs definition (A). (W. Peng)

};

class Road : public SpatialObject
{ protected:

NameType name[MaxAddress];
int class;

public:
Road(IdType theld, BaseObject* container);
Road(IdType theld, BaseObject* container, NameType* theName, int theClass);
~Road();
virtual NameType* GetClassName() { return "Road";}
NameType* GetName() { return name;}
int GetClass() { return class; }
void SetName(NameType* theName) { strcpy(name, theName); }
void SetClass(int theClass) { class = theClass;}

};

class MyObjectContainer : public ThematicContainer
{ public:

MyObjectContainer(IdType theld, BaseObject* container, NameType* className,
FeatureType type = AREA);

~MyObjectContainer();
virtual BaseObject* CreateObject();

};

class MyDatabase : public Database
{ public:

MyDatabase(IdType theld, BaseObject* container = NULL);
~MyDatabase();
virtual ThematicContainer* CreateClass(NameType* className,

FeatureType type = AREA);
};

BaseObject* MyObjectContainer: :CreateObject()
{ BaseObject* object;

if(!stricmp(myName, "Parcel"))
object = (BaseObject*)(new Parcel(GetNextUniqueId(), this));

if(!stricmp(myName, "Road"))
object = (BaseObject*)(new Road(GetNextUniqueId(), this));

if(object)
AddObject(object);

return object;
}

ThematicContainer* MyDatabase: :CreateClass(NameType* className, FeatureType type)
{ ThematicContainer* container;

container = (ThematicContainer*)(new MyObjectContainer(GetNextUniqueId(), this,
className, type));

Appendix A: Classs definition (A). (W. Peng) 173

if(container) AddClass(container);
return container;

}

174 Appendix A: Classs definition (A). (W. Peng)

Appendix B: Classs definition (B). (W. Peng) 175

APPENDIX B
CLASS DEFINITION (B)

#define MaxClassName 81
#define MaxAttrName 81
#define MaxConditionName 256
typedef unsigned int uni;
typedef unsigned long uni;
typedef long NoType;
typedef long IdType;
typedef double XyType;
typedef float ZType;
typedef char NameType;
typedef unsigned int CountType;
typedef char ConditionType;
typedef int ErrorType;
typedef struct {XyType x, y;} Position2D;
enum FeatureType { POINT, LINE, AREA};
enum Topology { OUTERSPACE=-l, ADJOINING, ADJACENT, BEGIN, END, LEFT, RIGHT};

template <class T>
class pwnArray
{ protected:

T huge *array;
uni lowerbound,upperbound, dit, numOfltems;
int errorFDS;

public:
pwnArray(uni upperB, uni lowerB = 0, uni dltD = 0);
~pwnArray();
int isVaild(void) { return(! errorFDS);}
int redefine(uni upperB, uni lowerB = 0, uni dltD = 0);
uni lowerBound(void);
uni upperBound(void);
uni arraySize(void);
uni getNumOfltems(void);
void flush();
int add(T elem);
int addAt(T elem, uni index);
T operator [] (uni index);
void detach(uni index);
void resetdlt(uni newdlt);

protected:
int resize(unl upperB);

};

class BaseObject
{ protected:

176 Appendix B: Classs definition (B). (W> Peng)

IdType id;
BaseObject* myContainer;
Boolean selected; // new

public:
BaseObject(IdType theld, BaseObject* container = NULL); // constructor
~BaseObject(); // destructor
virtual NameType* GetClassName() { return "BaseObject";}
BaseObject* GetContainer() { return myContainer;}
IdType Getld() { return id;}
Boolean IsSelected(); // new
void SetSelection(Boolean status); //new

}

class Location2D
{ protected:

XyType x, y;
public:

Location2D(XyType xi, XyType yi);
~Location2D();
void GetPosition(Position2D& p) { p.x = x; p.y = y;}
void SetPosition(Position2D& p) { x = p.x; y = p.y;}

};

class Geometry : public BaseObject
{ protected:

BaseObject* partOf;
void SetPartOf(BaseObject* thePartOf); //new

public:
Geometry(IdType theld, BaseObject* container, BaseObject* aPartOf);
-GeometryO;
virtual NameType* GetClassName() { return "Geometry";}
BaseObject* IsPartOf();

};

typedefpwnArray<BaseObject*>BaseObjectPointerArray;
typedef pwnArray<Geometry *> GeometryPointerArray ;

class Node : public Geometry, public Location2D
{ public:

Node(IdType theld, BaseObject* container, BaseObject* aPartOf,
XyType xi, XyType yi);

~Node();
virtual NameType* GetClassName() { return "Node";}
void GetNeighbours(GeometryPointerArray& array);

};

class Arc : public Geometry
{ protected:

Appendix B: Classs definition (B). (W. Peng) 177

IdType beginNode, endNode, leftGmO, rightGmO;
public:

Arc(IdType theld, BaseObject* container, BaseObject* aPartOf,
IdType begin, IdType end, IdType left = 0, IdType right = 0);

~Arc();
virtual NameType* GetClassName() { return "Are";}
Geometry* GetLeftOrRightGmO(Topology leftRight);
void SetLeftOrRightGmO(Geometry* gmO, Topology leftRight);
Geometry* GetBeginOrEndNode(Topology beginEnd);
void SetBeginOrEndNode(Geometry* node, Topology beginEnd);
void GetNeighbours(GeometryPointerArray& array);
double Length();
double Azimuth();

}

typedef pwnArray<Node*> NodePointerArray;
typedef pwnArray<Arc*> ArcPointerArray;

class PointObject : public Geometry
{ protected:

double area, perimeter, length; // new
public:

PointObject(IdType theld, BaseObject* container, BaseObject* aPartOf);
~PointObject();
virtual NameType* GetClassName() { return "PointObject";}
ErrorType ConstructComponent();
void GetComponent(NodePointerArray& array);
void GetNeighbours(GeometryPointerArray& array);
void GetPosition(Position2D& p);
void SetPosition(Position2D& p);

//new
double Area();
double Perimeter();
double Length();
void SetArea(double a);
void SetPerimeter(double p);
void SetLength(double 1);

}

class LineObject : public Geometry
{ protected:

double area, perimeter; // new
public:

LineObject(IdType theld, BaseObject* container, BaseObject* aPratOf);
~LineObject();
virtual NameType* GetClassName() { return "LineObject";}
ErrorType ConstructComponent();

178 Appendix B: Classs definition (B). (W. Peng)

void GetComponent(ArcPointerArray& array);
void GetNeighbours(GeometryPointerArray& array);
double Length();

//new
double Area();
double Perimeter();
void SetArea(double a);
void SetPerimeter(double p);
void Collapse(FeatureType newType);
void Aggregation(LineObject* neighbour);
void Simplification(float tolerance);

}

class AreaObject : public Geometry
{ public:

AreaObject(IdType theld, BaseObject* container, BaseObject* aPartOf);
~AreaObject();
virtual NameType* GetClassName() { return "AreaObject";}
ErrorType ConstructComponent();
void GetComponent(ArcPointerArray& array);
void GetNeighbours(GeometryPointerArray& array, Topology adjoiningOrAdjacent);
double Area();
double Perimeter();

//new
void Homogenization(AreaObject* neighbour);
void Collapse(FeatureType newType);
void Aggregation(AreaObject* neighbour);
void Simplification float tolerance);

}

class GeometricContainer : public BaseObject
{ protected:

NameType myNamefMaxClassName];
BaseObjectPointerArray* array;
CountType currentlndex;

public:
GeometricContainer(IdType theld, BaseObject* container, NameType* theMyName);
~GeometricContainer();
virtual NameType* GetClassName() { return "GeometricContainer";}
NameType* GetMyName() { return myName;}
IdType GetNextUniqueId();
void Restart();
CountType GetNumberOfObjects();
ErrorType AddObject(BaseObject* theObject);
ErrorType DetachObject(BaseObject* theObject);
BaseObject* GetObject(IdType objectld);

Appendix B: Classs definition (B). (W. Peng) 179

BaseObject* GetNextObject();
private:

BaseObject* CreateObject(BaseObject* GeometricComplex, XyType xi, XyType yi);
BaseObject* CreateObject(BaseObject* GeometricComplex, IdType begin, IdType end,

IdType left, IdType right);
BaseObject* CreateObject(BaseObject* spatialObject);

};

typedef pwnArray<GeometricContainer*> GeometricContainerPointerArray;
typedef pwnArray<NameType*> NameArray;

class ThematicContainer : public GeometricContainer
{ protected:

FeatureType featureType;
public: <*

ThematicContainer(IdType theld, BaseObject* container,
NameType* theMyName, FeatureType type);

~ThematicContainer();
virtual NameType* GetClassName() { return "ThematicContainer";}
FeatureType GetFeatureType() { return featureType;}
ErrorType DetachObject(BaseObject* object, Boolean detachGeometry = TRUE);
void SetFeatureType(FeatureType newType) { featureType = newType;}
virtual BaseObject* CreateObject() = 0;

//new
virtual void Selection(ConditionType* condition);
virtual void Combination(GeometricContainerPointerArray& thematicContainerArray,

Topology relation, NameArray& attrArray);
virtual void Reclassification ThematicContainer* newContainer,

NameArray& attrArray);
virtual void Universalization(ThematicContainer* newContainer);
virtual void Universalization(NameType* attrName, int level);
virtual void Homogenization(NameArray& attrArray);
virtual void Homogenization(NameArray& attrArray A, NameArray& attrArrayB);
virtual void Collapse(FeatureType newType);
virtual void Aggregation(float tolerance, NameArray& attriArray);
virtual void Deletion(float tolerance);
virtual void Simplification ThematicContainer* newContainer);
virtual void Simplification float tolerance);

};

typedef pwnArray<ThematicContainer*> ThematicContainerPointerArray ;

class Database : public BaseObject
{ protected:

GeometricContainer *nodeContainer, *arcContainer;
GeometricContainer *pointObjectContainer, *lineObjectContainer;
GeometricContainer *areaObj ectContainer;

180 Appendix B: Classs definition (B). (W. Peng)

ThematicContainerPointerArray* array;
CountType currentlndex;

public:
Database(IdType theld, BaseObject* container = NULL);
~Database();
virtual NameType* GetClassName() { return "Database";}
CountType GetNumberOfClasses();
IdType GetNextUniqueId();
void RestartO;
ErrorType AddClass(ThematicContainer* container);
ThematicContainer* GetClass(IdType containerld);
ThematicContainer* GetClass(NameType* className);
ThematicContainer* GetNextClass();
ErrorType DetachClass(ThematicContainer* container);
ErrorType DetachClass(NameType* className);
ThematicContainer* CreateClass(NameType* className,

FeatureType type = AREA);

//new
virtual void Generalization NameType* rulaBaseName);
virtual void Selection(NameArray& classArray);
virtual void Selection(NameType* className, ConditionType* condition);
virtual void Combination(NameType* className, NameArray& classArray,

Topology relation, NameArray& attrArray);
virtual void Reclassification NameType* className, NameType* newClassName,

NameArray& attrArray);
virtual void Universalization(NameType* className, NameType* newClassName);
virtual void Universalization(NameType* className, NameType* attrName,

int level);
virtual void Homogenization(NameType* className, NameArray& attrArray);
virtual void Homogenization(NameType* className, NameArray& attrArrayA,

NameArray& attrArrayB);
virtual void Collapse(NameType* className, FeatureType newType);
virtual void Aggregation(NameType*className, float tolerance,

NameArray& attrArray);
virtual void Deletion(NameType* className, float tolerance);
virtual void Simplification NameType* className, NameType* newClassName);
virtual void Simplification NameType* className, float tolerance);

};

class SpatialObject : public BaseObject
{ protected:

IdType geometryld;
SpatialObject* partOf; // new

public:
SpatialObject(IdType theld, BaseObject* container);
~SpatialObject();
virtual NameType* GetClassName() { return "SpatialObject";}

};

Appendix B: Classs definition (B). (W. Peng) 181

virtual ErrorType ConstructGeometricComponent();
Geometry* GetGeometry();
void SetGeometry(Geometry* theGeometry); // new
virtual ErrorType GetSomething(NameType* name, void* result) { return 0;} //new
virtual void CopyAttributes(SpatialObject* sourceObject) { ;} //new
virtual void SumAttributeValues(SpatialObject* anotherObject, NameArray&

attribute Array) { ; } / / new

//new
virtual void Selection(ConditionType* condition);
virtual void Universalization(NameType* attrName, int level);
virtual void Homogenization(NameArray& attrArray);
virtual void Homogenization(NameArray& attrArray A, NameArray& attrArrayB);
virtual void Collapse(FeatureType newType);
virtual void Aggregation(float tolerance, NameArray& attriArray);
virtual void Simplification(float tolerance);

#define MaxOwner 31
#define MaxLanduse 21
#define MaxAddress 31

class Parcel : public SpatialObject
{ protected:

NameType owner[MaxOwner], landUse[MaxLandUse], address[MaxAddress];
CountType population;

public:
Parcel(IdType theld, BaseObject* container);
Parcel(IdType theld, BaseObject* container, NameType* TheOwner;

NameType* theLandUse, NameType* theAddress, CountType thePopulation);
~Parcel();
virtual NameType* GetClassName() { return "Parcel";}
NameType* GetOwner() { return owner;}
NameType* GetLandUse() { return landUse;}
CountType GetPopulation() { return population;}
void SetOwner(NameType* theOwner) { strcpy(owner, theOwner);}
void SetLandUse(NameType* theLandUse) { strcpy(landUse, theLandUse);}
void SetPopulation(CountType thePopulation) { population = thePopulation;}

//new
virtual ErrorType GetSomething(NameType* name, void* result);
virtual void CopyAttributes(SpatialObject* sourceObject);
virtual void SumAttributeValues(SpatialObject* anotherObject,

NameArray& attrArray);
};

ErrorType Parcel: :GetSomething(NameType* name, void* result)
{ if(!stricmp(name, "landUse"))

182 Appendix B: Classs definition (B). (W. Peng)

{ strcpy((NameType*)result, landUse); return OK;}
...;// other attributes

}
return FAIL;

}
void Parcel: :CopyAttributes(SpatialObject* sourceObject)
{ sourceObject->GetSomething("landUse", (void*)landUse);

sourceObject->GetSomething("owner", (void*)owner);

}
void Parcel::SumAttributeValues(SpatialObject* anotherObject, NameArray& attrArray)
{ for(unl i = 1; i <= attrArray.getNumOfltems(); i++)

{ NameType* attribute = attrArray[i];
ifî !stricmp(attribute, "population"))

SetPopulation(GetPopulation() + ((Parcel*)anotherObject)->GetPopulation());

}
}

class Road : public SpatialObject
{ protected:

NameType name[MaxAddress];
int class;

public:
Road(IdType theld, BaseObject* container);
Road(IdType theld, BaseObject* container, NameType* theName, int theClass);
~Road();
virtual NameType* GetClassName() { return "Road";}
NameType* GetName() { return name;}
int GetClassO { return class;}
void SetName(NameType* theName) { strcpy(name, theName);}
void SetClass(int theClass) { class = theClass;}

//new
virtual ErrorType GetSomething(NameType* name, void* result);
virtual void CopyAttributes(SpatialObject* sourceObject);
virtual void SumAttributeValues(SpatialObject* anotherObject,

NameArray& attrArray);
};

class MyObjectContainer : public ThematicContainer
{ public:

MyObjectContainer(IdType theld, BaseObject* container, NameType* className,
FeatureType type = AREA);

~MyObjectContainer();
virtual BaseObject* CreateObject();

};

Appendix B: Classs definition (B). (W. Peng) 183

class MyDatabase : public Database
{ public:

MyDatabase(IdType theld, BaseObject* container = NULL);
~MyDatabase();
virtual ThematicContainer* CreateClass(NameType* className,

FeatureType type = AREA);
};

BaseObject* MyObjectContainer: :CreateObject()
{ BaseObject* object;

if(!stricmp(myName, "Parcel"))
object = (BaseObject*)(new Parcel(GetNextUniqueId(), this));

if(!stricmp(myName, "Road"))
object = (BaseObject*)(new Road(GetNextUniqueId(), this));

if(object)
AddObject(object);

return object;
}

ThematicContainer* MyDatabase: :CreateClass(NameType* className, FeatureType type)
{ ThematicContainer* container;

container = (ThematicContainer*)(new MyObjectContainer(GetNextUniqueId(), this,
className, type));

if(container)
AddClass(container);

return container;
}

184 Appendix B: Classs definition (B). (W. Peng)

Appendix C: File format (W. Peng) 185

APPENDIX C
FILE FORMAT

• ".ASC"

NodeNO X Y Z

• ".PLY"

PolygonNO

ThemeCode

XI Yl

Xn Yn

END

END

• ".PLG", ".ARC", ".NOD"

• ".PLG"

PolygonNO NumberOfVertexes NodeNO ... NodeNO

-999

• ".ARC"

ArcNO LeftPolygonNO RightPolygonNO

• ".NOD"

NodeNO X Y Z

• ".LIN"

ContourLineHeight

XI Yl

Xn Yn

END

END

• ".DXF"

AutoCAD Data eXchange Format.

186 Appendix C: File format (W. Peng)

• ".PLP", ".ARA", ".NON"

• ".PLP"

TriangleNO NumberOfNodes NodeNO NodeNo NodeNO

• ".ARA"

ArcNO FromNodeNO ToNodeNO LeftTriangleNO RightTriangleNO

• ".NON"

NodeNO X Y Z

Acronyms. (W. Peng) 187

ACRONYMS

OD:

ID:

2D:

3D:

AI:

DBMS:

DDT:

DTM:

DTN:

EFDS:

FDS:

GDB:

GIS:

MDI:

NSDI:

O-O:

SQL:

UNS:

0 Dimensional.

1 Dimensional.

2 Dimensional.

3 Dimensional.

Artificial Intelligence.

Database Management System.

Dynamic Decision Tree.

Digital Terrain Model.

Delaunay Triangulation Network.

Enhanced Formal Data Structure model

Formal Data Structure model.

GIS Database.

Geographic Information System.

Multiple Document Interface.

National Spatial Data Infrastructure.

Object-Oriented.

Structured Query Language.

Unified Data Structure

188

CURRICULUM VITAE

The author of this doctoral thesis, Wanning Peng, was born in Guangdong, China, on
7 June 1963. He received his Bachelor of Engineering degree in Geodesy from Wuhan
Technical University of Surveying and Mapping, Wuhan, China, in 1983. After this,
he worked in the Field Surveying and Mapping Team of the Lands Department of
Guangdong Province, China, for about two years. From November 1985 to October
1993, he worked with the Guangdong Scientific Research Institute of Lands, Surveying
and Mapping. In the meantime, he received his Post Graduate Degree in Urban Survey
and Human Settlement Analysis from the International Institute for Aerospace Survey
and Earth Sciences (ITC), the Netherlands, in 1987, and completed, in 1992, his
Master of Science degree in Integrated Map and Geoinformation Production at ITC,
which was awarded with distinction. In October 1993, he started his PhD research
project in ITC. He is the author and coauthor of a number of scientific articles.

Wanning Peng is married to Tanghui and has two children, daughter Jingying who is
now four-years old, and son Jingfu who was born in the Netherlands during the final
writing of this thesis, and is now six-months old.

