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I • INTRODUCTION 

The analytic salution to the rainfall interstation correlation 

function depends on the salution of some integrals (STOL, 1977a). 

Although the salution is a straightforward application of integral 

calculus the structure of the integrals is rather complicated (STOL, 

1977b) and need some·comments to simplify the elaborations. 

In this report the salution of the required integrals will be 

given for reference. The integrals are solved step by step. The 

final result is the rainfall interstation correlation function for 

time series. They are given too and briefly commented with respect 

to their specific properties. 

Main formulas are given in boxes to clearly distinguish between 

definitions or final results and intermediate expressions. 

2, GENERAL DEFINITIONS· 

The meteo-hydrological background of the elaborations to be 

dealt with, will not be paid attention to; They can be found in 

publications mentioned.in the list of references. 

Instead, the mathematica! treatment is subject of our conside

rationG. The development of the required model will be given in 

mathematica! terms only. However, symbols are chosen such that 

they correspond with those used in the applications, so results 

need not be transformed or encoded. 

For the same reason functions and variables are given narnes 

according to their hydrological meaning, 

·Let a model ·for a storm be given by the stormtunetion 

ICW-nota 993 
Team Integraal Waterbeheer 
Centrum Water&Klimaat 
Alterra-WUR



h = f (x) 

consisting of two parts 

h = 
1f(x) 

h = 
2
f(x) 

(See Fig. I) 

"" h~ 

H 

if 0 < x < B1 

= 

if B' < x < B 

h: 1f(x) h: 2t(x) 

h 

t 
------.,._ ____ _ 

h ~ f(x) 

Fig. I. Schematic illustration of the relationship between symbols 

defined in this report 

Values of h obtained by specific values of x are defined by 

I ha m f(a) I 
Particular values are 

I f(O) = 0, 1
f(B 1

) = 2
f(B 1

) = H, 2f(B) = 0 

We assume that x = a is obtained by a random process so x = ~~. 

where a is supposed·to be uniformly distributed on the interval 

[o, B) 

~stochastic variables will be denoted by underlining the symbol 

2 

ICW-nota 993 
Team Integraal Waterbeheer 
Centrum Water&Klimaat 
Alterra-WUR



The function 1t(x) is assumed to be monotonic increasing while 
2 f(x) is assumed to be monotonic decreasing. Now we can define the 

probability P by 

P(~ __ <a) ~ P(h < h ), 
a a 0 ~ a< B 1 

Using intervals, to define probabilities, we have 

P(h 
a 

. a 
<h)~-, 

a B 
0 < a< B 1 

~ 

Dropping indices, and expressing intervals on x in terms of h 

we can write 

P(_h < h) = 0 < a< B' 
~ 

The density of this distribution reads 

dP(h < h) 
-a:ii&::---'- ~ 0 < a < B1 

~ 

which can be used to derive expec~ations. 

Function values are connected by the 1 interstation 1 distance D, 

such that 

b~a+D, 0 < D < B - a 
= = 

If coordinates are obtained randomly, we have 

b = a + D 

consequently, conventionally, in general 

hb = f (~) = f (~ + D) 

but, depending on the magnitudes of the intervals, probable 

outcomes are 
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h = I f( I f -I (h ) + D} 
b . a (I ) 

h = 2f{Jf-l(h) 
b a 

+ D} (2) 

h = 2f(2f-l(h) 
b a 

+ D} (3) 

which depend on the location of a and b with respect to each of the 
~ 

defined functions. 

3. SPECIAL PROPERTIES OF STORM FUNCTIONS 

In this Section some special properties are introduced. 

In the first place we take 

BI c !B 

and aasurne the storm function to be symmetrie about x = jB, so 

1
1
f(x) = 

2
f(B-x) I (4) 

Consider a pair of points rnaving along the 1 e f t b r a n c h 

of the storm function according to 

{
1f(x), 1t(x+D)} from x= 0 to x= !B-D 

I where f(x), because of the trivia! argument, is called the leading 

point. 

After having passed the center the move becomes 

{ 2f(x), 2f(x+D)} from x= !B to x= B-D 

change the direction of the move, giving 

x = B-D to x = jB 
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chcnge leading points, first by arguments 

from x = B to x "' jB+D 

then by their occurrence in the set 

{2f(x), 2f(x-D)} from x= B to x = jB+D 

Now we use x = B as a new origin and define y = B-x, so 

from y = 0 to y = jB-D 

The last step is that we make use of the symmetry by (4) and 

so the move along the r i g h t b r a n c h can be written 

{ 1f(y), 1f(y+D)} from y = 0 to y = jB-D 

But here we arrive at the same structure as the one given for 

the move along the left branch. Since x and y are duromies in the 

sense that their values are defined by the 'from-to' statements 

we see that the moves - under the condition of symmetry - are 

identical. 

All combinations of points on one branch and at distance D 

apart (0 < D < jB) produce a combination on the other branch with 

the same function values. 

This also means that 

so, 

P(h < h) = 2P(h < h la c[O, B]) = 2P( 1f(!'_) < 
1
f(a)) 

a a a a 
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Thus, for symmetrie univariate moves, we can us~ the density 

to calculate all s tatistical parameters·. 

For shortness we introduce in this Section symbols to denote 

integrals by the following convention. An integrand will be denoted 

by i, tne integral by I. Subscripts refer to the occurrence of a 

first: I, and a second: 2, value of h, while, if novalues of h 

are present, the subscript equals 0. Superscripts are used to 

indicate functions of the left branch: I, and the right branch: 2. 

Consequently, to start with 

(5) 

we can check the formula for the density by the relationships 

( 6) 

2 
P(h < H) = - I = I 

- = B o 
(7) 

The univariate density itself is given by 

dP(h) 2 
ëii1"- = B io 

but this formula will not be used explicitely. 

The mathematica! expectation will be defined by respectively 

H 

I h i
0 

dh and (8) 

0 
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or 

The varianee 

1
11 

2 
0 

H 

r 
J 

0 

then 

h2. 
1 . 

0 

is given by 

dh and 
2 2 2 

0 = 'B 1
11 

- ~ 

Note that a more general formula for the integral reads 

'I = 
0 

1
f0E) 

r i 
J 

I f(O) 

dh 
0 

which defines the boundary values in termsof 1f(x). 

(9) 

(6a) 

In the same way the covariance between ha and hb can he obtained. 

We should consider a bivariate density. However, siÏÏce val~es of hb 

are determined by h according to hb = h 
0

, densities for h are 
a a + a 

required only. Because of the symmetry they can he defined on- 1f(x). 

The second branch need not he used for this purpose. 

According to equations (1), (2) and (3) we have to consider several 

combinations with which ha and hb can occur, This is subject-matter 

of next Section. 

4. RELEVANT ha AND hb COMBINATIONS 

The relevant situations that need concern are sketched in Fig. 2. 

Increasing values of D ·give rise to distinguish between three 

cases, viz. 

Case I 

Case II 

Case lil: 

0 ~ D < jB < B 
= 

0 <jB < D < B 
= 

0 <jB < B < D 

(large) 

(medium) 

(small) 

(The qualification refers to storm sizes} 
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"•. 

h 

! ' ' <-1 D 

(I) 

<--: 

<-- : I D 

'(2) 

D 

( 2) 

CD> B} 

I.l 

'...,. 
I.2 

<--: D :__,.. 
I. 3 

(3) 

:-> 
II.l 

]![ -

Fig. 2. Schematic illustration of the three cases (Roman figures), 

the three situations (Arabic figures) and the three equations 

(figures between parentheses) to he distinguished for 

combinations of ha and hb for increasing values of D 

Since the expectation from which the covariance is obtained 

vanishes when one of the variables takes on the value zero, only 

those combinations of ha and hb need considered in which both 

variables are greater than zero. This means that in Case I there 

are three relevant situations to he treated with the formulas (1), 

(2) and (3), (see Fig.· 2); Case II with only one relevant situation 

to he treated with formula (2); and Case III withno relevant 

situatl.on. 

Because of the assumed symmetry Case I. I can be treated in the 

same way as Case 1.3, which means that the corresponding integral 

in Case I. I can he taken twice, 

A further special property is that Case 1.2 and Case II. I can 

he treated with the same integral, although different boundarl' 

expressions have to be used. 
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From these considerations we see that the formulas for the 

covariance are: 

Case I: 

1f(!B-D) 
. IJ 

r h. 1f{ 1f-l (h) + DJ. i dh 1 12 = 
J 0 

I f (0) 

1f(!B) 
121 = I h. 2f{ Jf-1 (h) + DJ. i dh 

12 0 

I 
f(jli-O) 

C (h h ) = ~ I - 2 
ov a b B 12 ~ 

Case II: 

1f(B-D) 
2J I 

1 12 = J h.
2t! 1

t-
1
(h) + D}, i dh 

0 

I f (0) 

Case lil: 

(I 0) 

( 11) 

( 12) 

( 13) 

( 14) 

(IS) 
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From these results, to be worked'with specific storm functions, 

the correlation coefficient is obtained by dividing the covariance 

by the varianee since Var(ha) = Var(hb)' which easily can be verified 

with the aid of the foregoing Sections. 

It should be noted that the above mentioned correlation refers 

to the storm function. The ultimate goa1, the interstation correlation 

for time series, can be obtained by further transformations (STOL, 

1977a). They are briefly discussed in Annex I. 

5. PARTICULAR STORM FUNCTIONS 

A. T h e r e c t a n g u 1 a r t y p e 

A.I. Definition 

The rectangular type is defined by 

h 
1t(x) = H, 0 < x < !B 

h = 
2 f(x) = H, ~B ~ x ~ B 

The probability that ~ ~ H equals ~ = 1, because h is constant. 

For combination of values we have to determine probabilities 

instead of densities since h is constant. On ~he basis of intervals 

we have (see Fig. 2) 

Case 

I. I 

1.2 

1.3 

II.I 

III 

Since h 

giving 

10 

Probabi li ty 

{jB-D) I B 

( D ) I B 

{4B-D) I B 

(B-D) I B 

0 

H for 0 < x ~ B we can combine the cases by adding, 
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Case Probability 

I (B-D) I B (also for D = 0) 

II (B-D) / B 

III 0 

A.2. Expectation 

The mathematica! expectation is found to he 

u = E(h ) 
a 

A. 3. Varianee 

B 
= B 0 H 

The varianee is found by 

A.4. Covariance 

A.4. I. Case I 

H 

The covariance between h = H and h = H is obtained by 
a b 

so 

A.4.2. Case II 

A.4.3. Case III 
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B. T h e t r i a n g u 1 a r t y p e 

B. I. Def in i ti on 

is 

and 

The triangular type is already sketched inFig, 2, The definition 

0 < x < ~B 

h = 
2
f(x) ~B < x < B 

The inverse of the first function 1s 

so, by (5) and (6): 

[;;Jand I B 
hr m· H 0 

0 

The check according to (7) reads 

~I 
B o 

= 

B 
= 

2 

B.2. Expectation 

First the integral (8) has to he solved which gives 

H 

r B B 
J h. 2Hdh =2if· 

0 

and so 

'

.--.. -=-2--BH-_-H-, 

." B"4 -2 

B.3. Varianee 

12 

Inserting i in (9) produces 
0 

BH 
=-4-
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H H 
BH2 

IJl r h2 i dh B t h31 
J 0 =m· =~ 

0 0 

and 
BH2 H2 H2 2 2 

(J = - -=--B 6 4 12 

B.4. Covariance 

Elements to he used in the determination of the covariance 

according to formulas given in Section 4 are, putting 

2HD/B = K, 

I f(!B-D) = H - K 

h + K 

H-K; H 

2t{Bh + D} = 2H - h - K 
2H 

1
f(O) = 0; 

1t(B-D) = 2H - K 

with which the integrals can he ohtained. 

B,4.1. Case I 

H-K 

J h. (h+K). 2: dh 

0 
H-K 

= Q <! h3 + ! h2K)I 
K 3 2 

0 
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and for the second part 

H 

r h. (2H -
J 

H-1\ 

B 
h - K) -dh 

' 2H 

H 

=i f!h
2
(2H- K) -i h3

} I 
H-K 

= _Q_ { 6H3 - 3H2K - 2H3 - (H-K) 2 ( 4 H-K)} 
6K 

which finally leads to (see (JO)): 

giving for the covariance, according to (I 1): 

Cov(ha hb) 
I 2 = - I - ~ B 12 

2 
- 6BD

2 
+ 6D3) 

H2 
Cov(ha hb) =-H- (B3 

3B
3 -4 
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B.4.2. Case II 

We can use the second integral of Case I but have to change the 

boundary values, so We have to work out 

2H-K 

I~~~ K {lh
2
(2H-K)- i h3JI 

0 

which, according to (12) yields 

and according to (13) finally gives 

B.4.3, Case lil 

No integrals need he solved si nee 

I 1 12 = 0 

so we have at once with ( 14) and (IS): 

in this case 
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C. T h e e x p o n e n t i a 1 t y p e 

C.I. Definition 

The exponential type is defined by the follmáng equations in 

which b is a storm parameter, 

. h 1t(x) 2b(x-1B) 
He 2 

, 0 < x < ~B 

h = 
2
t(x) H 2b(!B-x) 

e ' jB < x < B 
= 

Hère, 1f(O) = 2t(B) = He-bB 1 0, but b can be taken large 

enoug~ to make h
0 

and hB small. 

The inverse of the first tunetion is 

x = 

and so, by (5) and (6): 

which yields 

16 
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I I 
B o 
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C.2. Expectation 

First the integral (8) has to be solved which gives 

and so 

It will appear to be convenient to define 

so 

u a - e 

v a + e 

H 
J..l =-u bB 

-bB 

-bB 

C.3. Varianee 

lnserting i in (9) produces 
0 

I h21H 
• "'2bhdh =Tb 

2 2 2 and so, since o =-I -J..l 
B 11 

H2 

-bB 
He 

=--uv 
4b 

j (....!!.) 
2 u (bBv - 2u) bB 

I 7 
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C.4. Covariance 

Elements to be used in the determination of the covariance 

according to formulas given in Section 4 are 

-bB 
= He ; 

I f{-1 ln .!:!_ + jB + D} 
2b H 

H exp(ln h - ln H + 2bD) 

I h = H exp 2b(-~ln H - D) 

H
2 -2bD 

=- e 
h 

I f(B-D) = H exp 2b(!B-D) 

with which the integrals can be obtained. 

C.4. I. Case I 

18 
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and for. the second part 

H 

f_2bD 
He 

I 
2bh dh 

H2e-2bD -2bD 
Zb (ln H - ln H - ln e ) 

H2e-2bD 2 2bD = , 2bD = H D e-
2b 

which finally leads to (see (10)): 

giving for the covariance, according to (11): 

C.4.2. Case II 

We can use the second integral of Case I but have to change 

the boundary values, so we have to workout 

H bB-2bD 
H2e -2bD I e 

= ..:.:....::..,.;-- (1 n h) 
zb I He-bB 
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(bB - 2bD + bB) 

so using the equallity given in (12): 

I I 
H2e.-2bD (B-D) 

~ 2 = 

giving for the covariance, according to (11): 

C. 4,3," Case III 

-2bD 
H2 {.::.e __ (B-D) 

B 

No integrals need he solved since in this case 

so we have at once with (14) and (15): 
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ANNEX I 

MODIFIED SOLUTIONS FOR TIME SERIES 

The solutions obtained in Section 5 refer-in the hydrological 

sense- to statisticai parameters in storms. It is usefull to have 

solutions for time series, The relationship between both is given 

by Stol (1977a), With the aid of the integrals the modified solutions 

can be bbtained easily. 

Consider the correlation coefficient 

A Cov(hahb) + (A-B) ~ 2 
p ----~-------"-

A Var(h ) 
a 

+ (A-B) ~ 
(STOL, 1977a, Annex I) 

where A = L + B, where L is a constant, Actually L plays the role of 

area length which, in the mathematica! treatment, is irnrnaterial, 

We may write for sy.rnrnetric storm functions, according the basic 

integrals (8), (9) and (IJ): 

which equals 

AI 12 - 4I~ 
p - ---'-''---....:.... 

4I2 
2AI 1 I - I 

a, R e c t a n g u 1 a r s t o r m s 

For rectangular storms the first equation is more convenient. 

So with results obtained in Section A.2 through A.4 we have: 

Case I and Case II: 
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-AD + B (A-B) ~ _-.::A:::.D=+:......::B:::.L 
B(A-B) BL 

or 
L + B . 

I. LB D 

Case III: 

2 (A-B) H2 A(-H ) + -B 
Pur 

(A-B) H2 =!:"" 

·.I Pui= 
I 

L + B - L 

b. T r i a n g u 1 a r s t 0 r m s 

For triangular storms we apply the last equation for p, So with 

results obtained in Section B we have 

Case I: 

and finally 

= 
4A(B3-6BD 2+6D3) - 3B4 

4AB3 - 3B4 

= I -
24AD 2 (B-D) 

B3(4A - 3B) 

I - 24(L+B)D2-....:B:._-_D:;__ 
B3 (4L + B) 
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Case II: 

Pn 

and finally 

2 3 A.l!!_ (B 
3B2 

- D) - 4 

2 B2H2 
2A~- 4 _1_6_ 

6 

BA (B - D) 3 - 3B4 

4AB3 - 3é 

B2i 
16 

3 3 
p II = I - 4 (1 + B) 

B - 2(B - D) 

B
3

(41 + B) 

Case lil: 

= 
- 3B 

4A - 3B 

= I _ 4(1 + B) 
41 + B 

c. E x p o n e n t i a 1 s t o r m s 

For the exponential storms we apply the equation for p with the 

results obtained inSection C. We have 

Case I: 

We have to divide 

24 
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AH 2 eZbD -4bD -2bB -4bD 
2b ( e - e + 2bDe ) -

by 

wh:ich gives 

Abe2bD(e-4bD_ e-2bB + 2bDe-4bD) _ 2 u2 

Abuv - 2 u2 

-2bB _ e-2bD + e-2b(B-D) _ ZbDe-2bD 
=I- Ab~~--~e~----~~--~~---------=~~--

u(Abv - 2u) 

which, possibly not can he written in a better way than by 

{e-2bD (I _ e-2b(B-2D)} -ZbDe-2bD 
I- Ab..::u~v---~~--~~~~~----~~~---

u(Abv - 2u) 

(where A = L + B) to match the following expressions. 

Case II: 

finally 

2Ah 2e- 2b0 (B-D) - 2u2 

Abuv - 2u2 

-2bD uv - 2b(B-D)e 
= I - Ah -':77:~'-"--'~'---u(Abv 2u) 
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case 111: 

so 

26 

H2 2 
-4--2u 

4b 

2 - 2u 
=-----2:;

Abuv - 2 u 

uv 
I - Ab_~---:-"7 

u(Abv - 2u) 
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ANNEX 2. 

SPECIFIC PROPERTIES OF THE CORRELATION FUNCTIONS 

The correlation function for time series as derived in Annex I, 

have some special properties with respect to the transition from 

P
1 

to p
11 

to p
111

. A few comments will he given here. 

a •. T h •e r e c t a n g u 1 a r s t o r m f u n c t i o n 

It was found that p
1

(D) = P
11

(D) 

Forther we have 

L+B --= L 

(same function) 

B 
L 

(constant) 

So the complete function is continuous at the transition points 

from one case to another. 

The derivatives are: 

dp
1

(D) 

dD 
= 

- 0 

L + B 
= - ...:::,...,,....::.... 

LB 

Tne complete function is not 'smooth' in the sense that the 

first derivatives are continuous. The complete function consists 

of two straight lines that interseet at D = B, 

b, T h e t r i a n g u 1 a r s t o r m f u n c t i o n 

There are three different correlation functions, p
1

(D), p
11

(D) and 

P111(D), pertaining the cases I, II and lil respectively, 
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We have 

and 

(JB)3 -. 24(1 + B) _...;.:;..__;___ __ 

1 + B 
I - 3 41 + B 

I - 4 (1 + B) 

B
3 (41 + B) 

B3 - 2(jB) 3 

B3(41 + B) 

I - 3 (1 + B) 41 ! B 

Finally, 

and 

28 

( B) = I _ 4(1 + B) 
PII 41 + B 

4(1 + B) 
PIII(B) = I - 41 + B ' (constant) 

The complete function is continuous at the transition points, 

The derivatives are: 

pi(D) = -24(1 + B) (2BD - 3D 2) 
B3 (41 + B) 

Pir(D) = 
8(1.+ B) 

.3. (B- D) 2
(-l) 

Bj(41 + B) 

-24(1 + B) (B - D) 2 

B3 (41 + B) 

Pin (D) = 0 
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The complete functión is 1 smooth 1 si nee 

p'(jB)= -24(L + B) (B2 - _lBZ) 
I Bj(4L + B) 4 

Pir(lB) 
-24(L + B) (!B)2 
B\4L + B) 

giving 

Further we cbserve that 

pI (0) = 0 
I 

c. T h e e x p o n e n t i a 1 s t o r m f u n c t i o n 

There are, again, three different correlation functions, We 

have, with 

-bB 
u = - e 

v = + e -bB 

-2bB uv = - e 

the results 

uv - uv - 0 
I - Ah u (Abv - 2u) = I 

uv- {e-bB(I-1)} - bBe-bB 
I - Ah ...=.:...-,7-i'-~~~'----....::..::.::__ 

u(Abv - 2u) 

uv - bBe-bB 
1 - Ah .!u~("""Ab:-v...!!t-:=..".2u_,),--

I - Ab ---:=--=U..:.V""'"' u(Abv 2u)' (constant),= 
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The complete tunetion is continuous at the transition points 

D jB and D = B. 

The first derivatives are: 

where 

and 

so 

p~(D) 
+Ab 

= u(Abv- 2u) 'gj(D) 

e-2bD _ e-2b(B-D) + 2bD e-2bD 

_4Ab3 e-2b(B-2D) 
P 11 (D) = -,..,..,....:::~~,... (D +-"--2""b--~ u(Abv - 2u) 

Next we have 

where 

and 

giving 

g (D) = Be-2bD _ De-2bD 
2 

g'(D) = -2bBe-2bD- e-2bD + 2bPe-2bD 
2 

= -2be-ZbD(B- D) - -2bD 
e 

e 

-2bD 
e 

and finally 

30 

-2bD 
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The complete function is 'smooth' only at the first transition 

D - jB, namely it is readily seen that 

but also that 

p' ('!B) 
Il 

--,,.,.,...-.:::2A:.::b::...
2
-;;-, e- 2b B 

u(Abv - 2u) 

which only equals Pi11 (D) = 0 for b = 0 

which has no physical meaning, 

Finally we observe that 

--:,.,--=2Ao:.:b:-.
2
---=--:- - 2b B 

u(Abv - 2u) e 

which surprisingly equals Pi1(B), 
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ANNEX 3. 

, Sffi!MARY OF ÇENERAL .FQRM!JIJAS . ' 
~ i ·, 

• 
- t:'-

It is assumed that the storm function has two branches and that 

it is symmetrie about the center. 

Definitions, 

b " storm parameter (if present) 

H storm maximum, in center 

B storm diameter 

L length of gaged area 

D = inter-station distance 

h =· rainfall amount in storm 

x·= storm coordinate 

h = f{a) for x = a a 

Case I: 0 < D < 
= 

Case II: 0 < !B < 
= 

Case III: 0. < jB < 

IB < B 

D < B 

B < D 
= 

~ - ' -i 

'"'': 

:<. - tl(-·. 

,- <~<--

(large) 
. 'i) 

(medium) 

(small) 

Left branch: h O_;;x_;;jB 

Right branch: h = 

Properties, 

2 
f{x), 

I 2 f(x) = f{B - x) 

Integrals, 

32 

jB < x < B 
= 

··;· 

,,_,.; 

-.'I 
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1f(!B) 

I I i dh • 0 0 

1f(O) 

1t(!B) 

II I h i dh 
0 

1f(O) 

1f(!B) 

I 11 = r h2 i dh 
J 0 

1f(O) 

Jf( !B-D) 
I I I = h.lf{lf-l(h) + D}. i dh 

12 
1
f(O) 

0 

I21 
12 

1
f(!B) I ,h.

2
tr

1
t-

1
(h) ·> D} ' i dh 

0 

I f(!B-D) 

1f(B-D) 
21' r h. 2tr 1t- 1(h) + D}. i dh Il2 

J 0 

1f(O) 

(Case n 

(Case U) 

(Case UI) 

Total probability: li 
B o 
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Expectation: jJ 

Variance: 
2 

(] = 

Covariance: 

Correlation: ph 

2 
iï Il 

2 
B I 11 

= 
a hb 

- 2 
jJ 

Cova:riance 
Var1ance 

Correlation for time series: 

A= L + B 

p (D) = 

2 AI
12 

- 4 I
1 

2AI 11 - 4 I~ 

Alternative form: 

p(D) I - A 
21 11 -I12 

= 
2AI 11 - 4 

First derivative: 

II 

dp(D) A di 12 <n> 
dD 2AI 11 

- 4 I2 dD 
I 

If D 0 then I21 
12 0 

and Ill 
12 = I 11 

giving Il2 2 I 11 and p (0) ~ I 
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