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Abstract 

Liquid animal manure and its management contributes to environmental problems 
such as, global warming, acidification, and eutrophication. To address these 
environmental issues and their related costs manure processing technologies were 
developed. The objective here was to assess the environmental consequences of a new 
manure processing technology that separates manure into a solid and liquid fraction 
and de-waters the liquid fraction by means of reverse osmosis. This results in a liquid 
mineral concentrate used as mineral nitrogen and potassium fertilizer and a solid 
fraction used for bio-energy production or as phosphorus fertilizer. Five 
environmental impact categories were quantified using life cycle assessment: climate 
change (CC), terrestrial acidification (TA), marine eutrophication (ME), particulate 
matter formation (PMF), and fossil fuel depletion (FFD). For pig as well as dairy 
cattle manure, we compared a scenario with the processing method and a scenario 
with additional anaerobic digestion of the solid fraction to a reference situation 
applying only liquid manure. Comparisons were based on a functional unit of 1 ton 
liquid manure. System boundaries were set from the manure storage under the animal 
house to the field application of all end products. Scenarios with only manure 
processing increased the environmental impact for most impact categories compared 
to the reference: ME did not change, whereas, TA and PMF increased up to 44% as a 
result of NH3 and NOx emissions from processing and storage of solid fraction. 
Including digestion reduced CC by 117% for pig manure and 104% for dairy cattle 
manure, mainly because of substituted electricity and avoided N2O emission from 
storage of solid fraction. FFD decreased by 59% for pig manure and increased 19% 
for dairy cattle manure. TA and PMF remained higher compared to the reference. 
Sensitivity analysis showed that CH4 emission from manure storage, NH3 emission 
during processing, and the replaced nitrogen fertilizer by the mineral concentrate were 
important parameters affecting final results. It was concluded that processing fattening 
pig and dairy cattle manure to produce mineral fertilizer increased overall 
environmental consequences in terms of CC (except for dairy cattle manure), TA, 
PMF, and FFD compared to current agricultural practice. Adding the production of 
bio-energy reduced CC and FFD. Only when NH3 emission from processing was low 
and bio-energy was produced, overall equal or better environmental performance was 
                                                 
1 This paper was submitted in revised form to the Journal of Environmental 
Management on 19-1-2012. 
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obtained for TA and PMF. It was emphasized that real time measurements should be 
done to enhance the environmental assessment of manure processing technologies. 
Results of this study present the full environmental consequences of manure 
processing and key parameters affecting the environmental impact of manure 
management. Outcomes can be used for decision making and further tackling of 
environmental problems related to manure management.  
 
Keywords: LCA; slurry treatment; fertilizer; anaerobic digestion; greenhouse gases; 

ammonia  
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1. Introduction 
The environmental impact from animal manure and its management (i.e., storage and 

application) has increased considerably through growth of livestock production 

worldwide. In the Netherlands, for example, national production of pig and dairy 

cattle manure increased from about 46 million tons in 1950 to 68 million tons in 2009 

(CBS, 2011). Manure contributes to the following environmental impacts: 

acidification and particulate matter formation, mainly through volatilization of 

ammonia (NH3) and nitrogen oxides (NOx); climate change through emissions of 

greenhouse gases (GHG); eutrophication, mainly through leaching of nitrate (NO3
-) 

and phosphate (PO4
3-) to soil and surface water; and depletion of fossil energy sources 

as a result of management (Prapaspongsa et al., 2010; Sandars et al., 2003; 

Thomassen et al., 2008).  

These environmental impacts have led to international and national regulations 

(e.g., Gothenburg Protocol, NEC-Directives, and Nitrates Directive) designed to 

reduce emissions related to animal manure and management. This has induced 

surpluses in several regions of the world including the Netherlands, increasing manure 

removal costs for farmers. To decrease these costs and the environmental impact, 

manure processing technologies have been developed, including anaerobic digestion 

(AD), biological treatment, composting, incineration, and gasification (Burton and 

Turner, 2003). These technologies were mainly developed to reduce GHG emissions, 

NH3 volatilization and fossil fuel depletion by producing bio-energy. However, the 

whole life cycle of these technologies, including the storage and application of end 

products should be addressed to evaluate their true environmental performance. 

The environmental impact of manure processing technologies has been 

analyzed along the entire life cycle of the manure and its end products by means of 

life cycle assessment (LCA) in several studies (Hamelin et al., 2011; Lopez-Ridaura 

et al., 2009; Prapaspongsa et al., 2010). GHG emissions were reduced through AD of 

manure as a result of bio-energy production (electricity and heat) and the substitution 

of mineral fertilizer. Reductions by up to 147 kg carbon dioxide equivalents (CO2-eq.) 

per ton of pig manure and 104 kg CO2-eq per ton of solid fraction of separated pig 

manure were reached through AD (Hamelin et al., 2011; Prapaspongsa et al., 2010). 

Acidification and eutrophication potentials did not vary, or very little, when digestion 

was applied. On the other hand these potentials have been shown to be increased 
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through aeration of the liquid fraction from separated manure combined with 

composting of the solid fraction (Lopez-Ridaura et al., 2009). 

A manure processing technology using liquid and solid separation and reverse 

osmosis (RO), currently being developed and investigated in the Netherlands, aims at 

producing a liquid nitrogen (N) and potassium (K) concentrate. The process produces 

as main products: mineral concentrate (MC), considered to have similar fertilizing 

properties as mineral N and K fertilizer, and a solid fraction that can be used as a 

substrate for AD and as a phosphorus (P) fertilizer. Although LCA studies have 

focused on the environmental impact of some manure processing technologies, the 

impact of this process has not been investigated.  

The objective of this study was to assess the environmental impact of this new 

manure processing method for fattening pig and dairy cattle manure, and to compare 

it to conventional manure management practices. We used LCA to determine and 

compare the environmental impact of manure processing to produce mineral fertilizer, 

with and without AD, including the application of its end products and compared it to 

current agricultural practice.  
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2. Materials and methods 

2.1. LCA approach and functional unit 

Life cycle assessment is a method to determine the environmental impact of a system 

providing a product or service. An LCA includes all pollutants and consumptions of 

finite resources from each stage in the life cycle, and allows a comparative analysis of 

the environmental impact of different production scenarios of a product (ISO-14040, 

2006). In particular, the LCA in this study aimed at assessing the environmental 

consequences of moving to a manure management system including manure 

processing relative to a reference without processing. We, therefore included in the 

analysis the change in environmental impact of all processes (also called marginal 

processes or suppliers) affected by this change in manure management (Weidema et 

al., 1999).  

For a comparative assessment, the environmental impact is related to a 

functional unit (FU) that expresses the function of the system in quantitative terms. 

The function of the system is to process liquid manure into a MC that can be applied 

as mineral N and K fertilizer and a solid fraction suitable for bio-energy production or 

as P fertilizer. As the available manure was the starting point, a functional unit (FU) 

of 1 ton untreated liquid fattening pig or dairy cattle manure was applied. The same 

chemical composition of manure was applied in the references and the scenarios. This 

ensured that in all cases equal amounts of nutrients and dry matter were introduced 

into the system.  

 

2.2. Manure management system and scenarios 

2.2.1. System boundaries 

The LCA included the environmental impacts from manure storage in the animal 

house and outside storage; processing of manure; storage, distribution, and field 

application of the end products; and the transport of materials between different life 

cycle stages (Fig. 1). To assess distribution and transport distances, we distinguished 

between four locations for product application: local application on a dairy farm with 

grassland, local application on an arable or dairy farm with arable land, external (i.e. 

off farm) application on an arable farm, and application on an arable farm outside the 
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Netherlands. The system further included environmental impacts related to production 

of chemicals used for processing (e.g., flocculants), consumed electricity, and 

substituted electricity in the case of bio-energy production. The system boundaries 

also encompassed impacts from the production, transport, and application of avoided 

mineral fertilizer, i.e., N, P and K avoided from mineral fertilizer as a result of using 

nutrients from manure. The analysis further included environmental emissions and 

resource use from the production of capital goods except for the manure storage and 

processing plants.  

The system excluded the impacts from animal production, as we assumed that 

a change in the animal production sector would not be driven by a change in manure 

management. Additionally, biogenic CO2 emissions were not incorporated in the 

calculations as they are considered to be short cyclic carbon taken up by crops (IPCC, 

1997). The emission of P was excluded because manure processing was assumed to 

not affect the total amount of P in manure and end products. Input of P to the soil and 

crop, therefore, was the same for all references and scenarios. 

Marginal products for mineral fertilizer production were assumed to be: 

ammonium nitrate for N, triple superphosphate for phosphorus pentoxide (P2O5), and 

potassium chloride for potassium oxide (K2O). Marginal electricity production was 

based on current Dutch statistics and EU production outlooks from the International 

Energy Agency. The long term marginal electricity source for the Netherlands was 

estimated to be a mix of coal (28%), natural gas (67%), and wind (5%) (IEA, 2008, 

2011). The utilization of excess heat from AD, i.e. heat produced in addition of the 

required heat for the process, was not included as heat offset possibilities are still 

limited in the Netherlands (Dumont, 2010).  

 

2.2.2. Manure processing 

Manure processing was done in five full-scale pilot plants operating in the 

Netherlands (Hoeksma et al., 2011). These pilot plants processed up to 50,000 tons of 

manure annually and aimed at producing a concentrated N-K liquid and a remaining 

solid fraction mainly through three processing steps: 1. separation of solids and 

liquids by means of dissolved air floatation, 2. separating the liquid from the solid 

remains by a sieve belt press or a screw press, and 3. de-watering of the effluent with 

reverse osmosis (Fig. 2). The plants produce three end products: MC, solid fraction, 
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and permeate, i.e., water remaining after reverse osmosis. The MC and solid fraction 

were applied in crop production as fertilizers. The solid fraction was also used as a 

substrate for AD to produce bio-energy where after it was applied. Permeate was 

treated in a water purification plant and discharged to surface water (Fig. 1).  

  

2.2.3. Definition of scenarios 
For processing pig and dairy cattle manure, we compared the environmental impact of 

four scenarios relative to two reference situations. A reference for pig (PRef) as well 

as dairy cattle manure (CRef) was considered because their manure management 

systems differ considerably (Table 1). Furthermore, manure from fattening pigs was 

considered for the pig manure scenarios as this is the most common type of pig 

manure in the Netherlands. 

The scenarios represented central processing plants. Scenario 1 implied 

processing of fattening pig or cattle manure into MC, solid fraction and permeate 

(PSc1 and CSc1), whereas scenario 2 also included AD of solid fraction to produce 

bio-energy (PSc2 and CSc2, Table 1).  

Manure was stored for an average period of three months in the animal house 

in PRef and CRef. Additionally, in PRef, pig manure was stored for one month in a 

covered outside storage tank, which was excluded in PSc1 and PSc2 because manure 

processing reduced the need for storage space given that manure is collected from the 

farms on a monthly basis (De Vries et al., 2011). The end products were stored for a 

period of three months in a covered circular concrete tank, except for the solid 

fraction, which was stored in an open shed. They were then applied to the field (Table 

1). All emissions and resource use for the processes were included in the assessment. 

 

2.3. Life cycle data inventory and assumptions 

2.3.1. Chemical composition of manure and end products 

The chemical composition of manure after storage (Table 2) was based on KWIN 

(2009-2010) and corrected for emissions from the storage system to obtain the 

composition after excretion following a mass balance approach. Distribution of mass 

and nutrients to the end products was based on data from the pilot plants (Table 2). 

Data used for pig manure were also used for cattle manure.  
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2.3.2. Storage of manure and end products 
Emission of nitrogen occurred from manure and product storages as NH3, nitrous 

oxide (N2O), nitrogen monoxide (NO) and nitrogen gas (N2) (Table 3). Emissions of 

NH3 from processing and storage of end products was estimated as two times the 

emission from manure storage (total 4% N; 2% of N entering the processing plant and 

2% of N during storage). A higher emission was assumed as a result of more contact 

area with outside air during processing and storage of end products. Emissions of 

N2O, NO and N2 from storage of MC were not included as they were considered to be 

negligible (Mosquera et al., 2010). Emission of N2O from storage of solid fraction 

was based on solid manure storage (Groenestein et al., 2011). Leaching of NO3
-, P 

and K during storage was assumed to be negligible because it is obligatory to have 

sealed concrete floors in manure and product storage systems in the Netherlands. 

Indirect emissions of N2O were included as 1% of NH3-N + NOx-N and 0.75% of 

NO3-N after application (IPCC, 2006a).  

Emission of methane (CH4) occurred during storage of manure and of end 

products. Methane emission from manure storage prior to processing was modeled 

specific to the conditions of this study (De Mol and Hilhorst, 2003); the modeled data 

captured changes in emission related to changes in manure storage retention time 

between the references (3 months) and the scenarios (1 month) (De Vries et al., 2010). 

Methane emission from digestate storage was considered to be equal to outside 

storage of pig manure (Table 3); emissions during the storage of end products were 

based on Mosquera et al. (2010) and scaled relative to the ratio of emission from raw 

manure storage, and storage of solid (42 times lower) and liquid fractions (12 times 

lower).  

 

2.3.3. Manure processing 

Separation of liquid manure and de-watering consumes electricity and chemicals for 

cleaning. Production emissions of these products were included in the assessment and 

taken from the ecoinvent database (EcoinventCentre, 2007). Electricity demand for 

processing was 9.0 kWh ton-1 manure entering the processing unit (Table 3). About 

0.39 liters of flocculating additives (polyacrylamide) per ton of manure were used for 
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separating solid particles from the liquid fraction. In addition, 0.022 liters of sodium 

hydroxide (NaOH) and 0.081 liters of sulfuric acid (H2SO4) per ton of manure was 

used for cleaning the installations (Hoeksma et al., 2011).  

 

2.3.4. Anaerobic digestion 
AD of the solid fraction was applied in PSc2 and CSc2. Digestion took place in a 

digester with a retention time of 60 days. The produced biogas was used in a 

combined heat and power plant (CHP) with an electric capacity of 250 kWh (Zwart et 

al., 2006). The energetic and electric efficiencies of the CHP were respectively 80 and 

35% (Van der Leeden et al., 2003).  

 Emissions of CH4, N2O and NOx and consumption of energy occurred during 

digestion and the combustion of the biogas. Methane losses were 1.5% of produced 

CH4 (1% from the installation and 0.5% from the gas engine) (IPCC, 2006a). 

Emissions of N2O were 0.1 kg N2O TJ-1 of produced electricity and emissions of NOx 

were 0.42 g NOx m-3 of produced biogas (IPCC, 1997; VROM, 2010). Digestion 

required 66 MJ of electricity per ton substrate and 166 MJ heat per ton substrate 

(Berglund and Börjesson, 2006). Electricity was taken from the grid whereas heat 

originated from the CHP. 

During AD the composition of solid fraction changed, as part of the organic 

nitrogen was converted into mineral nitrogen. To factor this in, we considered a 20% 

increase of Nmin during AD (Ovinge, 2008; Schröder et al., 2008).  

 

2.3.5. Distribution of products and transport distances 

Distribution of manure (flows a, b, and c in Fig. 1) in the reference situations (PRef; 

CRef) was calculated based on Dutch national statistics, an average defined arable and 

dairy farm, and legal application standards of N and P2O5. Of the arable farms, 57% 

was on clay and 43% on sandy soil. For dairy farms these proportions were 

respectively 27% and 59% and additionally 14% was on peat soil. On the average 

arable farm, the total annual N, P2O5, and K2O demand was: 179 kg N ha-1, 85 kg 

P2O5 ha-1, and 171 kg K2O ha-1 (De Vries et al., 2011). On the dairy farm, total 

annual N, P2O5, and K2O demand was: 274 kg N ha-1, 97 kg P2O5 ha-1, and 360 kg 

K2O ha -1. The legal application standards for animal manure applied on the arable 
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farm were 170 kg N ha-1 and 85 kg P2O5 ha-1 and on the dairy farm 250 kg N ha-1 and 

100 kg P2O5 ha-1 (combined grassland and arable land) (MEAAI, 2010). Application 

amounts of K2O from animal manure were dependent on application limits of N and 

P2O5.  

As a consequence of these limits, an average of 39% of fattening pig manure 

on province level was transported and applied to another province in the Netherlands 

(external application) (CBS, 2011; De Vries et al., 2011). Additionally, 2.7% of the 

surplus pig manure was exported outside the Netherlands and assumed to be applied 

in Northern France or Germany (Luesink, 2009 Personal communication). Exported 

manure was disinfected by heating it to 70 degrees C and consumed approximately 24 

kWh electricity per ton of manure (Melse et al., 2004). Emissions of nitrogen during 

disinfection were not considered as they were expected to contribute very little to the 

end result. 

 On average 13.8% of the dairy cattle manure on farm level was transported 

and applied to an external arable farm (De Vries et al., 2011). No export of cattle 

manure outside the Netherlands was assumed as this occurs rarely. Manure applied on 

farm was distributed relatively to the ratio of nitrogen applied to grassland (86%) and 

arable land (14%).  

In the scenarios it was assumed that the MC was authorized to be used over 

and above the application standards of nitrogen from animal manure, but not over the 

total nitrogen application standards, to represent its possibility of being used as 

mineral fertilizer. All MC, therefore, was applied in the local area. In the pig manure 

scenarios 56% was applied on grassland and 44% on arable land (De Hoop et al., 

2011). Mineral concentrate was applied first in the local area where after solid 

fraction or digestate was applied until one of the application standards was reached. 

The remainder was transported off farm and if necessary outside of the Netherlands 

Transport distances were based on data from the manure processing plants 

(DR, 2010 Unpublished data) and expert judgment (Table 4). Emission data and 

resource use for all transportation were taken from the ecoinvent database 

(EcoinventCentre, 2007). Distances for application outside the Netherlands were 

estimated distances to Northern France and Germany. Transport distance of chemicals 

used for processing was 150 km.  
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2.3.6. Manure product application and avoided fertilizer  
Manure, MC, and digestate were applied with a manure injector on grassland and 

arable land. Solid fraction was applied by means of a solid manure spreader and 

incorporated into the soil directly after application (arable land). Mineral fertilizer was 

applied with a broadcast spreader. The environmental impact from production and 

combustion of diesel and capital goods for spreading of the products were taken from 

the ecoinvent database (EcoinventCentre, 2007). All application areas were assumed 

to have similar management. 

During and after application of manure and end products emissions of NH3, 

N2O, NO and leaching of NO3
- occurred (Table 3). Ammonia emission factors for the 

application of MC were adjusted relatively to emission factors for the application of 

manure. Absolute NH3 emissions for MC were recorded to be similar to manure 

(Huijsmans and Hol, 2010). Taking the higher mineral nitrogen content of MC into 

account, the emission factors of MC were calculated as 0.32 times the emission factor 

of manure (i.e., the ratio between the emission factor of liquid manure and MC). 

Nitrous oxide emission factors for application of MC were adjusted in a 

similar way. Based on Velthof  and Hummelink (2011), N2O emission factors from 

MC were 1.5 times the emission factor of manure. All nitrous oxide emission factors 

applied to grassland were weighted by soil type (i.e. the implementation of farms on 

different soils in section 2.3.5).  

 The nitrogen fertilizer replacement values (NFRVs, also called mineral 

fertilizer equivalent values) were used to calculate the avoided N fertilizer from using 

manure products (Table 3). For cattle manure applied on farms, NFRV was 45%, as a 

consequence of grazing, and 60% in the case of off farm application (DR, 2009). 

These ratios were applied to adjust replacement values for MC and solid fraction. 

Replacement values for pig and dairy cattle manure applied on arable farms were 

weighted by soil type. Fertilizer replacement values for P2O5 and K2O were 

considered as 100%. Furthermore, the NFRV for undigested solid fraction was also 

used for digested solid fraction, since a recent study has indicated that the NFRV of 

digested manure increased in the first year after application but declined more rapidly 

afterwards and did not differ in the long term (Schröder et al., 2007). 

In CSc1 and CSc2 over-application of K2O on farm occurred (0.57 kg total), 

so was assumed not to substitute mineral fertilizer. 
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 Nitrate leaching was computed as a percentage of the total N applied from 

each product. The leaching fractions for the products were based on N-balance 

calculations, i.e., after subtracting gaseous emission and N-uptake by crops (Dekker et 

al., 2009). Leaching after application of the MC was considered equal to leaching 

from liquid fraction after separation of liquid manure. The leaching from digestate 

was considered equal to leaching from undigested solid fraction. 

 

2.4. Impact assessment 
In the life cycle impact assessment, the emissions and resource use from the 

references and scenarios are accounted for and categorized into the environmental 

impact categories to which they contribute (Heijungs et al., 1992). Five impact 

categories were selected based on their relevance for manure management: climate 

change (CC expressed in kg CO2-equivalants (eq.), including emission of CO2, CH4, 

and N2O), terrestrial acidification (TA expressed in kg SO2-eq., including emission of 

NH3, NOx, and SO2), marine eutrophication (ME expressed in kg N-eq., including 

emission of NH3, NOx, and leaching of NO3
-), particulate matter formation (PMF 

expressed in kg PM10-eq., including emission of particulates < 10 µm and NH3, NOx, 

and SO2 as precursors of particulate matter), and fossil fuel depletion (FFD expressed 

in kg oil-eq., with 42 MJ kg oil-eq-1). The scenarios and impact assessments were 

modeled and computed in SimaPro v.7.2 (PRé Consultants, the Netherlands) and by 

using the ReCiPe midpoint v.1.04 impact assessment method (Goedkooop et al., 

2009).  

 

2.5. Sensitivity analysis 
A sensitivity analysis was conducted to assess the influence of changes in important 

parameters and underlying assumptions on the comparison between the scenarios and 

references and therewith the solidity of the end results. In the analyses, the effect of 

changing four parameters was tested: CH4 emission from manure storage, NH3 

emission from manure processing, NFRV of MC, and excess heat utilization from AD.  
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3. Results 

3.1. Environmental consequences of processing 
manure to produce mineral fertilizer 

The processing of pig manure and application of end products as fertilizer (PSc1) 

showed an increase in all environmental impact categories except for ME compared to 

the reference system. Climate change, FFD, TA, and PMF increased by respectively 

9%, 33%, 19%, and 23% (Fig. 3). The increase in CC was caused mainly by emission 

of GHGs from storage of end products (Table 5). Although CH4 emission from 

manure storage decreased, storage of solid fraction resulted in higher N2O emissions 

from more denitrification compared to anaerobic storage of liquid manure (Table 3). 

Fossil fuel depletion increased as a result of energy demand for manure processing 

despite the energy demand for transportation having been approximately halved and 

avoided fossil fuel of mineral fertilizer produced. Less energy for transport was 

needed for two reasons. First, less weight had to be transported because water is 

removed during the process. Second, less long distance transport was required due to 

application of MC in the local area. TA and PMF increased due to NH3 emission from 

manure processing together with NH3 and NOx emission from product storage. 

Storage of solid fraction resulted in higher NOx emission. However, TA and PMF 

were governed by NH3 emission from manure storage prior to processing, which was 

equal in all cases. 

 Processing dairy cattle manure and applying the end products (CSc1) showed 

a decrease in CC of 67% and an increase in FFD of 110%, in TA of 31%, and in PMF 

of 44% compared to the reference situation (Fig. 4). ME did not change. The decrease 

in CC was caused by less CH4 emission from manure storage due to a shorter storage 

time, which was not offset by increased N2O emission from storage of solid fraction. 

Fossil fuel depletion increased as a result of energy demand for manure processing 

and transportation of manure and end products. Energy for transportation increased, 

because products had to be transported to and from the processing location whereas in 

the reference situation only surplus cattle manure was transported locally. TA and 

PMF in CSc1 increased for the same reasons as in PSc1.  
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3.2. Environmental consequences of processing 
manure to produce bio-energy 

The second scenario for pig and dairy cattle manure (PSc2 and CSc2) included the 

AD of solid fraction for bio-energy production. In PSc2, although TA and PMF 

increased due to higher NH3 emissions from manure processing and product storage, 

other measures mainly decreased. CC reduced 117% and FFD 59% compared to the 

reference situation (Fig. 3). TA and PMF were lower compared to PSc1, as storage of 

solid fraction was avoided, but was higher (12%) than in the reference situation. 

Again, ME did not change. Climate change and FFD reduced mainly due to 

substitution of fossil electricity (85 MJ) as a result of bio-energy production. 

Furthermore, CC reduced as a result of less CH4 emission from manure storage and 

less N2O emission from storage of solid fraction as it was assumed to be digested 

shortly after production (Table 5). Fossil fuel depletion reduced not only because of 

substituted fossil electricity, but also because of less energy for transport compared to 

PRef. The produced energy more than counteracted the required energy for processing.  

 Processing of dairy cattle manure and AD of solid fraction (CSc2) reduced CC 

by 104%, but increased FFD by 19%, TA by 9%, and PMF by 12% compared to the 

reference situation. As in CSc1, ME did not change. Climate change decreased as a 

result of less CH4 emission from manure storage, less N2O emission from storage of 

solid fraction, and because of the substitution of fossil based electricity (56 MJ). FFD 

increased as a result of low energy production and energy demand for processing and 

transportation (Table 6). TA and PMF increased for the same reason as in CSc1.  

 

3.3. Sensitivity analysis 

3.3.1. Methane emission from manure storage 

In this study we modeled CH4 emissions from manure storage specifically for the 

described circumstances. We assumed that storage time of manure was reduced to 1 

month only in case of manure processing although in practical circumstances, even 

with manure processing, manure storage time might be longer. We therefore tested 

this assumption by exploring the effect of a 3 month storage time in the scenarios. 

Results showed an increase in CC for all scenarios (Table 7). In PSc1 and PSc2, CC 

was about 26 kg CO2-eq higher than their baseline situations, whereas in CS1 and 
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CSc2, this increase was about 78 kg CO2-eq. For CSc1 and CSc2, this meant a change 

in the comparison between the scenarios and reference indicating the importance of 

shortening the storage time of manure to reduce CC. Furthermore, it shows the 

necessity of accurately estimating CH4 emission from manure storages in LCAs.  

 

3.3.2. Ammonia emission from manure processing 
In this study, we applied an estimated NH3 emission factor of 4% of N including both 

emission during storage of the end products (2%) and emissions during manure 

processing (2%) (Table 3). Data on NH3 emissions during processing are scarcely 

available, and therefore over or under estimation may occur. Since we considered 

testing a higher emission irrelevant, (as this would increase TA and PMF and to lesser 

extent ME and CC), a lower emission rate during processing (0.3% of N in manure 

entering the processing plant) was tested (Melse and Verdoes, 2005). Results showed 

a decrease in TA and PMF of approximately 10% in CSc1, 13% in CSc2 and a 

decrease of 7% in both PSc1 and PSc2 (Table 7). The total impact for TA and PMF in 

PSc2 was approximately equal to the reference. The impact for CSc2 was even lower 

than its reference. This indicates that for improving the environmental performance of 

manure processing, controlling NH3 emission during processing is essential.  

 

3.3.3. NFRV of mineral concentrate 
The NFRV of MC has been reported to vary considerably depending on factors such 

as, soil type, method of application and weather conditions (Velthof, 2009). To assess 

the influence of a change in the NFRV on the impact assessment, this parameter was 

varied plus and minus 20%. Results showed that mainly ME, CC and FFD decreased 

with a 20% increase of the NFRV and increased with a 20% decrease of the NFRV 

(approximate variation for ME was 14%, CC 29 – 265%, and FFD 10 – 147%).  

 

3.3.4. Excess heat utilization from anaerobic digestion 
The effect of including heat use of AD on the impact assessment was explored to 

represent existing initiatives of heat utilization. The substituted marginal source for 

heat in the Netherlands was assumed to be a mix of heat based on natural gas (79%) 

and heat based on light fuel oil (21%) (CBS, 2009; Menkveld and Beurskens, 2009). 
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Heat from natural gas was divided into heat from boilers smaller than 100 kW with 

low NOx emission technology (55%) and heat from industrial furnaces with low NOx 

emission technology (24%) as these sources are the most common in the Netherlands 

(EcoinventCentre, 2007; Menkveld and Beurskens, 2009). Results showed a reduction 

in CC and FFD (respectively 118% – 160% and 26% – 50%) in the scenarios with AD 

(Table 7), thereby in CSc2, FFD was lower compared to the reference situation. This 

indicates that utilization of excess heat from AD strongly improves the environmental 

performance of manure management concerning CC and FFD. 

 

4. Discussion 
Overall, processing pig and dairy cattle manure to produce mineral fertilizer increased 

the environmental impact. In environmental terms, processing without AD does not 

represent an attractive alternative to current agricultural practice, as it increases FFD, 

CC, TA, and PMF. In the pig manure scenarios, the additional energy required for 

processing outweighed the reduction in energy required for transportation. This has 

also been observed in other studies (Lopez-Ridaura et al., 2009). In the cattle manure 

scenarios, even additional energy for transportation was needed. This indicates that 

other drivers e.g., economic viability or social acceptance, are more likely to propel 

initiatives for manure processing instead of the related environmental impact as 

considered in this study. 

The importance of controlling nitrogen emissions from manure processing and 

product storage (NH3, NOx, and N2O) is stressed by the modeled increases in CC, TA, 

and PMF, as environmental impact is affected both directly and indirectly due to less 

substituted mineral fertilizer. The importance of nutrient recovery for mineral 

fertilizer substitution has been indicated in other studies as well (Prapaspongsa et al., 

2010). Furthermore, as Dinuccio et al. (2008) have mentioned, storing separated 

fractions from mechanical separation of manure has the potential to increase CC. 

Emission data from storage of separated fractions are still rare. These emissions are 

difficult to quantify as they depend on specific circumstances such as, storage type, 

storage time and climatologic conditions. Our initial estimates, therefore, were based 

on a combination of comparative lab results and best available data. Our model results 

show that it is important to further quantify these emissions under different conditions 

and include them in environmental assessments of manure management techniques. 
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Processing pig manure and digestion of the solid fraction for bio-energy 

production presented a better alternative, as it added a strong environmental 

advantage by reducing CC and FFD. This is in agreement with other studies which 

showed a similar reduction in CC of approximately 40 kg CO2-eq, including manure 

storage with a natural crust cover (Hamelin et al., 2011; Prapaspongsa et al., 2010). It 

also indicates that it is preferable to avoid producing end products with potentially 

high denitrification rates during storage as this results in increased CC. Furthermore, 

AD of the solid fraction from pig and cattle manure reduced TA and PMF compared 

to the scenarios without AD, as storage of solid fraction was avoided. However, TA 

and PMF remained higher compared to the references. This may be partly due to the 

assumption that NH3 emission factors, as a percentage of Nmin, during application of 

digestate were assumed equal to undigested manure. The higher Nmin in the digestate, 

therefore, increased total NH3 emission. However, absolute emissions during 

application have been reported to be equal compared to undigested manure due to 

higher infiltration rates of digestate into the soil (Amon et al., 2006). In that case, 

including AD would lead to more reduction of TA and PMF improving its 

environmental potential compared to current practice.  

Surprisingly, processing dairy cattle manure for bio-energy production did not 

lower FFD more than the reference. This indicates that processing of cattle manure in 

this fashion provides only little environmental benefit, reducing only CC. Moreover, 

the method presented in this research is costly with processing costs approximately 9 

– 13 euro per ton of manure (De Hoop et al., 2011). Because cattle manure 

management differs strongly from pig manure management, simpler technologies 

requiring less energy may provide a better solution for handling cattle manure 

surpluses (Evers et al., 2010). Studies on the environmental consequences of such 

methods have not been conducted. 

Compared to the references, in the scenarios ME did not change (maximum 

variation of 3%). The main reason was that emissions of NO3
-, NOx, and NH3 

counteracted each other in the different scenarios although they contribute in different 

degrees to ME, i.e., when emission of NO3
- was lower, emissions of NH3 and NOx 

were higher and vice versa. This indicates that trade-off between different substances 

within an impact category may occur and require attention.  

Important parameters affecting final results, as sensitivity analysis showed, 

include CH4 emission from manure storage, NH3 emission during processing, and the 
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NFRV of the MC. Methane emission from manure storage has been reported 

elsewhere as an important parameter affecting the greenhouse gas balance and 

therewith CC from manure management systems (IPCC, 2006a; Lopez-Ridaura et al., 

2009). Data on CH4 emission from manure storages should, therefore, be carefully 

considered, and it is advised to use models, as in this study, based on a higher Tier 

method in the IPCC guidelines to obtain specific data related to the circumstances of 

the conducted study. NH3 emission directly affects TA and PMF and to a lesser extent 

ME and CC and should therefore be kept to a minimum. This could be achieved by 

for example reducing contact with outside air, to ensure lower NH3 emission and 

overall equal or better performance compared to current practice. Furthermore, it 

shows the necessity of obtaining more detailed data on NH3 emissions, as well as 

other N-substances, such as N2O, NO and N2, occurring during processing to enhance 

LCA studies of manure management as very often emissions from processing may be 

underestimated. The NFRV of MC mainly affected ME, CC and FFD. It will depend 

on circumstances, such as soil type, weather conditions, cropping system, and time of 

application of the manure product. NFRVs used in calculating mineral fertilizer 

substitution rates should, therefore, be tailored to the specific conditions applicable 

over the long term. As Schröder et al. (2005) states, a correct assessment of the NFRV 

for each manure product is important in reducing the environmental impact of manure 

management in terms of NO3
- leaching.  

Marginal production of electricity was not addressed in the sensitivity analysis 

as recent studies have shown that a change in marginal electricity will not affect the 

outcome of the study (De Vries et al., 2011; Hamelin et al., 2011).  

This study included CH4, N2O and NH3 emissions from in house storage of 

manure as these emissions contribute strongly to CC, TA, and PMF. It also indicates 

that future work should consider the loss of N from manure storage prior to 

processing to determine a proper mineral fertilizer substitution rate. Additionally, 

although studies on reducing emissions from animal houses have been done e.g., 

(Aarnink et al., 1996; Canh et al., 1998; Monteny et al., 2006), new developments are 

needed, such as separating feces and urine under the slats (Aarnink and Ogink, 2007), 

and should be assessed to indicate improvements of the environmental performance of 

manure management.  

As N and P application standards in the Netherlands will be lowered in the 

coming years to comply with the EU Nitrates Directive (MEAAI, 2010), local manure 
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surpluses will likely increase, inducing more transportation of manure and its derived 

products. This, however, should not affect the conclusions of this study, as changing 

distribution and transport distances has only a limited effect on the environmental 

impact of manure management. Moreover, mineral fertilizer replacement rates may 

also change due to lowering of the application standards. The reference system, 

however, will also change in conjunction with those standards and, therefore, 

conclusions of this study will not change (i.e., the comparison between scenarios and 

references will stay the same). On the other hand, availability of other fertilization 

products could change fertilization strategies on farms and therewith the 

environmental impact. This should be studied in more detail as it was out of scope in 

this study.  

Finally, future processing scenarios are also expected to include the processing 

of digestate from AD. Currently, however, this approach has practical difficulties as 

digestates vary in composition as a result of varying input materials and because 

processing conditions change from plant to plant (Hoeksma et al., 2011). It is 

expected that AD of liquid manure will increase energy production as compared to 

AD of the solid fraction and therewith further reduce CC (De Vries et al., 2011). 

 

5. Conclusion 
Processing of fattening pig and dairy cattle manure by using liquid and solid 

separation and reverse osmosis (RO) to produce mineral fertilizer increased overall 

environmental impact in terms of climate change (CC) (except for dairy cattle 

manure), terrestrial acidification (TA), particulate matter formation (PMF), and fossil 

fuel depletion (FFD) compared to current agricultural practice. Marine eutrophication 

(ME) did not change. Adding the production of bio-energy enhanced the 

environmental performance by substituting fossil electricity and reducing storage 

emissions from solid fraction. Utilization of excess heat increased this trend for CC 

and FFD. However, the addition of AD did not present a better option compared to 

current practice considering TA and PMF, and FFD for cattle manure, unless when 

NH3 emissions from processing were kept low. In that case, equal or better 

environmental performance was obtained for TA and PMF. 



20 
 

Key parameters affecting the environmental performance were identified as 

NH3 emission from manure processing and product storage together with N2O and 

NOx emissions from product storage as a result of denitrification; controlling these 

was essential to reduce the environmental impact of manure processing and to 

improve the potential for substituting mineral fertilizer. Additionally, CH4 emission 

from manure storage should be modeled as precisely as possible to the circumstances 

being studied, to correctly assess its environmental consequences. Overall, this 

emphasizes a continuous need of real time measurements of these emissions to ‘feed’ 

future LCA studies. 

Results of this study show the environmental consequences and key 

parameters affecting the environmental impact of manure management as it considers 

the full life cycle of the processing and application of all end products. It also shows 

that innovations that appear worthwhile for reducing environmental impact do not 

always deliver the expected results when considering all consequences within the 

system. Furthermore, it highlights the importance of particular emissions during both 

processing and storage. For those tackling environmental problems around manure 

management, this assessment has provided a number of key outcomes to inform their 

decision making. 
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Figures 

 

 
Fig. 1. Manure management system with input of 1 ton pig or dairy cattle manure and 

distribution of end products as considered in the assessment. Black arrows represent 

mass flows of materials. The two-way arrow for electricity production and 

consumption points out that electricity is consumed as well as produced. (T) 

represents transportation. 

 

 
Fig. 2. Schematic overview of the manure processing technology and its intermediate 

and end products (after Hoeksma et al. (2011)). 
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Fig. 3. Relative change in the environmental impact of the fattening pig manure 

scenarios (PSc1 & PSc2) compared to the reference (PRef = 0%). 

 

 
Fig. 4. Relative change in the environmental impact of the dairy cattle manure 
scenarios (CSc1 & CSc2) compared to the reference (CRef = 0%). 
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Table 1. Considered processes in the references and manure processing scenarios for 

pig and dairy cattle manure 

Scenario Storage in 

house 

Outside 

storage 

Manure 

processing 

Anaerobic 

digestion 

Product 

storage 

Field 

application 

Pig       

PRef X X - - - X 

PSc1 X - X - X X 

PSc2 X - X X X X 

Cattle       

CRef X - - - - X 

CSc1 X - X - X X 

CSc2 X - X X X X 

PRef = pig manure reference, PSc1 = pig manure scenario 1, PSc2 = pig manure 

scenario 2, CRef = dairy cattle manure reference, CSc1 = dairy cattle manure scenario 

1, CSc2 = dairy cattle manure scenario 2. ‘X’ indicates included processes whereas ‘-

‘ indicates excluded processes. 
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Table 2. Calculated distribution of mass and nutrients for processing and chemical composition of manure and end products after storage 

Product Distribution of mass and nutrientsb Chemical composition 

 Mass 

(%) 

OM 

(%) 

N, Nmin, P, K (%) DM  

(kg ton -1) 

OM  

(kg ton-1) 

Ntot 

(kg ton-1) 

Nmin 

(kg ton-1) 

P2O5  

(kg ton-1) 

K2O  

(kg ton-1) 

Density 

(kg m-3) 

PM after storagea - - - 90.0 60.0 7.60 4.60 4.2 7.2 1040 

PM after in house 

storage 
- - - 90.4 60.4 7.63 4.63 4.2 7.2 1040 

PM after excretion - - - 93.7 63.7 9.34 6.01 4.2 7.2 1040 

Mineral concentrate 39 12 53, 70, 5, 79 27.1 18.1 9.90 7.77 0.5 14.7 1031 

Solid fraction 19 88 45, 28, 95, 19 416 278 14.9 3.68 20.8 7.2 n.d. 

Permeate 42 0 2, 3, 0, 1 0.17 0.11 0.32 0.27 0.0 0.2 1001 

Digested solid fraction - - - 351 213c 17.1 7.25 20.8 7.2 n.d. 

CM after storagea - - - 86.0 64.0 4.40 2.20 1.6 6.2 1005 

CM after excretion - - - 92.3 70.3 4.66 2.22 1.6 6.2 1005 

Mineral concentrate 

Equal to pig manure 

25.8 19.2 5.71 3.65 0.2 12.6 1031 

Solid fraction 395 294 8.58 3.03 7.9 6.2 n.d. 

Permeate 0.16 0.12 0.18 0.07 0.0 0.2 1001 

Digested solid fraction - - - 352 251 9.89 3.36 7.9 6.2 n.d. 

‘-‘ = not applicable, n.d. = not determined. OM = organic matter, DM = dry matter, Ntot = total nitrogen, Nmin = mineral nitrogen (NH4
+-N), PM 

= pig manure, and CM = cattle manure. 
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a (KWIN, 2009-2010). 
b (De Vries et al., 2011; Hoeksma et al., 2011). 
c Calculated based on 50% C in the organic matter, 37.5 m3 CH4 ton-1 solid fraction and a CH4 content of 60% in the biogas. Includes storage 

losses after digestion (0.17 kg CH4 ton-1). 
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Table 3. Emission factors and energy use during storage, processing, and field application of manure and end products and methane yields of 

anaerobically digested solid fractions 

 Unit Storage in 

house 

Outside 

storage 

Processing/ 

AD 

Product storage Field application 

PM CM PM PM CM MC Dig SF PM, CM, Dig AN MC SF 

          Gr Ar Gr Ar Gr Ar Gr Ar 

NH3-N % TAN 27a 10a 2% Na 4% N 19i 2i 2.5i 6.0i 0.64i 40i 22i 

N2O-N % N 0.1a - - 0.1b 2a 0.4j 1.3j 1.3j 1j 0.6j 1.95j 0.4j 1.3j 

N2-N % N 1a - - 1c 10c - - - - - - - - 

NO-N % N 0.1a - - 0.1c 2c 0.55k 

NO3-N % N - - - - - - - 20.3l 15.8l 18.1l 22.6l 

NFRVa % - - - - - - - 62;45m 100m 60m 60;80m 31m 31;41m 

CH4 long
a kg ton-1 1.33d 3.32d 

0.17d - 
0.014e 0.17d 0.004e 

- - - - - - - - 

CH4 short
a kg ton-1 0.29d 0.21d - - - - - - - - - 

CH4 yield m3 ton-1 - - - 37.5f 25f - - - - - - - - - - - 

Energy kWh ton-1 1.7g 0.5g 9.0h 0.5g - Ecoinvent databasen 

‘-‘ = not included. AD = anaerobic digestion, PM = pig manure, CM = cattle manure, MC = mineral concentrate, Dig = digestate, SF = solid 

fraction, AN = ammonium nitrate, Gr = grassland, Ar = arable land, TAN = total ammoniacal nitrogen (NH4
+ and NH3), NFRV = nitrogen 

fertilizer replacement value, CH4 long = methane emission factor for long term (3 months) storage, and CH4 short = methane emission factor for 

short term (1 month) storage. 
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a (Groenestein et al., 2011). 
b (IPCC, 2006b).  
c N2-N and NO-N emission factors calculated as ratio of N2O-N (Oenema et al., 2000). 
d (De Mol and Hilhorst, 2003). 
e (Mosquera et al., 2010). 
f Solid fraction from fattening pig manure (Timmerman et al., 2009). Solid fraction from dairy cattle manure (Van Dooren, 2010 Unpublished 

data). 
g (Wesnæs et al., 2009). 
h Energy requirement for processing (De Vries et al., 2011). 
i (Huijsmans et al., 2011; Huijsmans and Hol, 2010; Huijsmans et al., 2007). 
j (Velthof and Hummelink, 2011; Velthof and Mosquera, 2010). 
k (Stehfest and Bouwman, 2006). 
l (Dekker et al., 2009). 
m (De Vries et al., 2011; DR, 2009) 
n (EcoinventCentre, 2007). 
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Table 4. Transport distances and method of transportation in the references and 

scenarios 

Scenario Supply of  

manure 

(km) 

Supply of 

mineral 

fertilizer (km) 

Local 

transport 

(km) 

External 

transport 

(km) 

Outside NL 

transport 

(km) 

PRef - 

50b 

31a 120a 200b 

PSc1&2 13.9a 31a 120a 200b 

CRef - 1b 50b - 

CSc1&2 13.9a 13.9a 50b - 

Transport 

method 

Lorry >32 

ton 

Lorry 16 – 32 

ton 

Lorry >32 

ton 

Lorry >32 

ton 

Lorry 16 – 32 

ton 

‘-‘ = not included. 
a (DR, 2010 Unpublished data). 
b Estimated transport distances. One km distance in CRef with tractor and trailer. 
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Table 5. Impact assessment results for the life cycle stages in the pig manure reference and scenarios 

‘-‘ = not included, *Totals do not always correspond to the sum of columns due to rounding. 

 Total* 
Manure 
storage 

Manure processing 
& product storage 

Anaerobic 
digestion 

Manure 
application 

MC 
application 

Solid fraction/ 
digestate application 

Avoided 
fertilizer Transport 

Climate change (kg CO2-eq)         
PRef 33.8 51.0 - - 51.2 - - -75.7 7.2 
PSc1 36.9 19.9 42.0 - - 25.1 20.8 -74.8 3.8 
PSc2 -5.9 19.9 12.4 -12.9 - 25.1 23.1 -77.2 3.8 
Terrestrial acidification  
(kg SO2-eq)                  
PRef 5.0 5.3 - - 0.31 - - -0.65 0.03 
PSc1 5.9 4.8 0.99 - - 0.36 0.33 -0.62 0.02 
PSc2 5.6 4.8 0.91 -0.02 - 0.36 0.11 -0.64 0.02 
Marine eutrophication  
(kg N-eq)                  
PRef 0.93 0.21 - - 1.5 - - -0.80 0.01 
PSc1 0.95 0.19 0.10 - - 0.73 0.67 -0.76 0.01 
PSc2 0.95 0.19 0.05 -0.01 - 0.73 0.76 -0.79 0.01 
Particulate matter formation  
(kg PM10-eq)                
PRef 0.62 0.69 - - 0.06 - - -0.15 0.01 
PSc1 0.76 0.63 0.15 - - 0.05 0.05 -0.14 0.01 
PSc2 0.69 0.63 0.12 -0.01 - 0.05 0.02 -0.14 0.01 
Fossil fuel depletion (kg oil-eq)                
PRef -6.4 0.53 - - 0.62 - - -10.3 2.8 
PSc1 -4.3 0.48 3.4 - - 0.18 0.21 -10.0 1.5 
PSc2 -10.2 0.48 3.4 -5.5 - 0.18 0.09 -10.2 1.5 
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Table 6. Impact assessment results for the life cycle stages in the cattle manure reference and scenarios 

 Total* 
Manure 
storage 

Manure processing 
& product storage 

Anaerobic 
digestion 

Manure 
application 

MC 
application 

Solid fraction/ 
digestate application 

Avoided 
fertilizer Transport 

Climate change (kg CO2-
eq)          
CRef 69.0 87.0 - - 19.0 - - -37.7 0.7 
CSc1 22.9 9.2 27.9 - - 10.5 6.9 -34.0 2.2 
CSc2 -2.5 9.2 11.1 -7.7 - 10.5 7.0 -34.8 2.2 
Terrestrial acidification  
(kg SO2-eq)                   
CRef 1.4 0.67 - - 0.99 - - -0.29 0 
CSc1 1.8 0.67 0.58 - - 0.24 0.56 -0.27 0.01 
CSc2 1.5 0.67 0.53 -0.01 - 0.24 0.33 -0.28 0.01 
Marine eutrophication  
(kg N-eq)                   
CRef 0.61 0.03 - - 0.95 - - -0.37 0 
CSc1 0.60 0.03 0.07 - - 0.42 0.40 -0.33 0 
CSc2 0.59 0.03 0.03 0 - 0.42 0.45 -0.34 0 
Particulate matter formation  
(kg PM10-eq)                 
CRef 0.16 0.09 - - 0.14 - - -0.07 0 
CSc1 0.24 0.09 0.09 - - 0.04 0.08 -0.06 0 
CSc2 0.18 0.09 0.07 0 - 0.04 0.05 -0.06 0 
Fossil fuel depletion (kg oil-eq)                 
CRef -3.9 0.48 - - 0.46 - - -5.1 0.26 
CSc1 0.4 0.48 3.4 - - 0.18 0.21 -4.8 0.84 
CSc2 -3.1 0.48 3.4 -3.3 - 0.18 0.08 -4.8 0.84 

‘-‘ = not included, *Totals do not always correspond to the sum of columns due to rounding. 
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Table 7. Results of the sensitivity analysis for the tested parameters 

  Tested parameters 

 Baseline 
CH4 from 

manure storage 
NH3 manure 
processing 

NFRV of MC Heat 
use AD 

   -20% +20%  
Climate change (kg CO2-eq)      
PRef 33.8 - - - - - 
PSc1 36.9 62.9 36.6 48.2 25.6 - 
PSc2 -5.9 20.1 -6.7 5.5 -17.2 -12.8 
CRef 69.0 - - - - - 
CSc1 22.9 101 22.8 29.7 16.2 - 
CSc2 -2.5 75.3 -3.1 4.2 -9.3 -6.6 
Terrestrial acidification 
(kg SO2-eq)       
PRef 5.0 - - - - - 
PSc1 5.9 - 5.5 6.0 5.8 - 
PSc2 5.6 - 5.2 5.7 5.5 - 
CRef 1.4 - - - - - 
CSc1 1.8 - 1.6 1.8 1.7 - 
CSc2 1.5 - 1.3 1.5 1.4 - 
Marine eutrophication  
(kg N-eq)       
PRef 0.93 - - - - - 
PSc1 0.95 - 0.94 1.08 0.81 - 
PSc2 0.95 - 0.94 1.08 0.81 - 
CRef 0.61 - - - - - 
CSc1 0.60 - 0.60 0.67 0.52 - 
CSc2 0.59 - 0.60 0.67 0.52 - 
Particulate matter formation  
(kg PM10-eq)      
PRef 0.62 - - - - - 
PSc1 0.76 - 0.71 0.77 0.74 - 
PSc2 0.69 - 0.64 0.71 0.67 - 
CRef 0.16 - - - - - 
CSc1 0.24 - 0.21 0.25 0.23 - 
CSc2 0.18 - 0.16 0.19 0.17 - 
Fossil fuel depletion (kg oil-eq)      
PRef -6.4 - - - - - 
PSc1 -4.3 - -4.4 -3.3 -5.3 - 
PSc2 -10.2 - -10.3 -9.1 -11.2 -12.8 
CRef -3.9 - - - - - 
CSc1 0.4 - 0.4 1.0 -0.2 - 
CSc2 -3.1 - -3.2 -2.6 -3.7 -4.7 

‘-‘ = no change. 
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