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1.1 General introduction 

On October 31 2011, United Nations (UN) estimated that the 7th billion living person 
was born in India, only 12 years after the world population reached 6 billion (United 
Nations Population Fund (UNPF), 2011). This refuelled discussions about the 
demand on agricultural production and concern about degrading land resources. 
Discordance between exponential population growth and linear increase in food 
production was foreseen as early as the 18th century (Malthus, 1798). Later, in 1968, 
the population bomb sketched dark scenarios of overpopulation (Ehrlich, 1968) and, 
around the same time, the Club of Rome argued that the human ecological footprint 
would soon surpass Earth’s carrying capacity (Meadows et al., 1972). After the 
golden ages of soil science during the green revolution in the 1950s and 1960s, when 
its contribution to agricultural productivity was considered a key factor in banishing 
global famine (Bradfield, 1960), another facet of soil science emerged by means of 
land degradation which soon appeared on the global agenda as an economic, security 
and environmental issue (Dent et al., 2007). 
 
Land is shorthand for the system made up of soil, water, the biota and, also, the man-
made landscape and their biophysical processes (Dalal-Clayton & Dent, 2001). It can 
be considered as the Earth’s critical zone – the thin veneer extending from the top of 
the tree canopy to the bottom of our aquifers – of which soil lies at the heart 
(Banwart, 2011). Land degradation and soil degradation are therefore often used 
interchangeably. In this work, the term land degradation is used, which is interpreted 
as a deterioration of the system’s function in which the soil has a prominent but not 
an exclusive position.  

Land degradation, despite the contentious nature of its exact definition (see 
section 3.1), is commonly measured by vegetation activity or productivity (Zika & 
Erb, 2009). Figure 1.1 schematizes the relationship between the two and 
distinguishes three different phases of land degradation separated by thresholds 
which are specific for the prevailing environmental conditions (Lal et al., 1989). 
Given our interest in detecting improvement or deterioration, phase I and III are not 
of particular interest, since they represent stable states. According to the first global 
assessment of soil degradation (GLASOD), a substantial part of the terrestrial earth 
surface can be classified as (very) degraded, but not beyond irreversible (Oldeman et 
al., 1990; Banwart, 2011) and thus in phase II. Figure 1.2a shows the spatial 
distribution of what are considered (very) degraded soils. 
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Figure 1.1 The generalized, three-phased 
soil degradation pattern (in relation to 
plant/crop productivity). Phase I represents 
degradation in the none-to-slight category. 
Soil productivity within this range is 
influenced by exogenous factors, e.g. 
climate. Phase II represents a rapid rate of 
soil degradation, where productivity decline 
accelerates and eventually decelerates. The 
limit B is the point-of-no-return, at which the 
soil is so degraded that it does not deteriorate 
any further and from which it cannot be 
restored. Within phase III the soil may be 
irreversibly degraded or at best, degraded 
beyond practical utility. The range and 
magnitude of the limits A and B, therefore, 
vary among soils and land use. Modified 
after Lal et al. (1989). 

 
Figure 1.2 shows (a) a generalized version and (b) the full version of the 

GLASOD map, which is a result of cooperative research efforts of soil scientists and 
soil degradation experts throughout the world in the late 1980s (Oldeman et al., 
1990). The delineation of map units and assessment of degradation type and severity 
class were qualitative and partly subjective and therefore hardly reproducible 
(Sonneveld & Dent, 2009). Two decennia later, this map needed a quantitative 
follow-up (Bai et al., 2008). 
 
The research presented in this thesis was carried out in the broad context of the UN 
Food and Agricultural Association (FAO) project global assessment of land 
degradation and improvement (GLADA), which aimed at quantifying land 
degradation at global scale using vegetation productivity as a proxy. The main 
assumption here is that productivity numbers, which deviate from the long-term 
norm, may be taken as a measure of land degradation or improvement (Bai & Dent, 
2007). The general approach developed for GLADA involves a sequence of analyses 
to identify land degradation hotspots using remotely sensed data: first with simple 
vegetation index (VI) indicators which are taken as proxy for productivity; secondly 
using integration with climate data and, thirdly, using stratification of the landscape 
and high spatial resolution imagery for local analysis. The main indicator, which 
plays a central role in all analyses steps, is the temporal increase or decrease in 
yearly VI aggregates, which is referred to as global greening or browning. In 
essence, these trends are to be interpreted as vegetation degradation or improvement, 
but in combination with other information sources they allow assessment of land 
degradation. 
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Figure 1.2 Results of the first global assessment of (human-induced) soil degradation (GLASOD). Top (a): 
generalization of the GLASOD map, showing the severity of soil degradation in three qualitative classes. Modified 
after: Philippe Rekacewicz, UNEP/GRID-Arendal. Bottom (b): the full GLASOD map, showing types and 
severity of soil degradation (Oldeman et al., 1990). 
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1.2 Monitoring terrestrial vegetation activity using remote sensing 

1.2.1 Definition of vegetation activity 

The fixation of atmospheric carbon dioxide (CO2) by photosynthesis in plants is a 
key process for the functioning of ecosystems and – more general – for life on Earth. 
It traps energy from the sun and releases oxygen to the atmosphere (Eq. 1.1). The 
rate at which this process occurs is termed gross primary production (GPP). 
Subtracting the plant’s day and night respiratory losses yields net primary production 
(NPP), or the flux at which carbon is stored as biomass or plant dry matter (DM). It 
is usually measured in gCm-2year-1 or in tCha-1year-1 and referred to as plant 
productivity or productivity in short. NPP measures accumulation of biomass in any 
part of the plant, including root systems. Integration over the ecosystem and 
subtraction of additional respiratory losses, e.g. by soil organisms and decay 
processes, yields net ecosystem exchange (NEE).  

2n CO2 + 2n H2O + photons → 2(CH2O)n + 2n O2   (1.1) 

carbon dioxide + water + light energy → carbohydrate + oxygen 

The magnitude of the yearly global GPP flux is about 15 times the value of CO2 
emissions from combustion of fossil fuels (Wang et al., 2011). Therefore may a small 
change in vegetation photosynthesis have a large effect on the role of vegetation as a 
carbon sink and, as a result, on climate change (Luyssaert et al., 2007). Soil 
resources play a large role here, as they govern annual carbon gain and they define 
the patterns of variation in NPP across landscapes and biomes (Chapin et al., 2011, 
pp. 168-169). 

Deriving the rate of photosynthesis from spectral data is a troublesome task, 
especially at large spatial scales and with dense time intervals. The only direct 
relationship resides in the small fraction (1-2%) of the absorbed photosynthetically 
active radiation (PAR), which is reradiated at a longer wavelength during the process 
of photosynthesis. This chlorophyll fluorescence can be measured with hyperspectral 
sensors or with other narrow-band sensors that are specifically designed for this 
purpose. Efforts to employ this technique at global scale using satellite sensors are 
still in their infancy (see Section 2.2.2). Today, the most widely used approach to 
quantify plant productivity is the use of spectral vegetation indices as proxies. Many 
different indices have been developed and it is beyond the scope of this chapter to 
review all of these. Some 30 different indices were listed and discussed by Jones & 
Vaughan (2010, Box 7.1). The one that measures chlorophyll fluorescence most 
closely is the photochemical reflectance index (PRI), which is based on excitation of 
chlorophyll pigments in the leaf (Gamon et al., 1997). It needs, however, narrow-
band measurements (531nm and 570nm) and application at large spatial and temporal 
scales is limited by availability of operational sensors. 
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While vegetation systems are very complex by nature, a vegetation index (VI) is a 
one-dimensional measure derived from few spectral bands. As mentioned above, VIs 
do not directly measure biomass, nor productivity or chlorophyll content. There is, 
however, a strong relationship between VI values, chlorophyll abundance and energy 
absorption (Myneni et al., 1995), hence they reflect photosynthetic activity (Slayback 
et al., 2003). Relationships with GPP and NPP have also been demonstrated (Box et 
al., 1989), but are not straightforward. Following Zhou et al. (2001), vegetation 
activity was used in this work to refer to the state and dynamics of terrestrial 
vegetation systems as inferred by broad-band vegetation indices. Changes in 
vegetation activity have in literature been referred to as greening and browning for 
positive and negative changes respectively (Alcaraz-Segura et al., 2010; Samanta et 
al., 2010; Wang et al., 2011). 

1.2.2 Broad-band vegetation indices 

The many existing vegetation indices can be grouped into either broad-band or 
narrow-band types, based on both their intended purpose and the width of the 
spectral bands used. Narrow-band indices are usually pigment-specific and, as such, 
used for spectroscopic applications. Such indices are not applicable for the purposes 
of this work. Therefore, this section focusses on broad-band indices and, more 
specifically, on the most common normalized difference vegetation index (NDVI). 

 
Red radiance exhibits a nonlinear inverse relationship between integrated spectral 
radiance and green biomass, while the near-infrared component exhibits a nonlinear 
direct relationship (Tucker, 1979). The former is related to pigment (e.g. chlorophyll) 
absorption, while the latter is related to the cell structure of the leaf. This is a 
biological adaptation against overheating of the plant, which would happen if 
infrared radiation were absorbed. In a typical spectral signature of green vegetation, 
these unique properties cause a sharp increase in reflectance (ρ) between the red 
(~650nm) and infrared (~750nm) bands, known as the red edge (Figure 1.3). Bare 
soil, on the other hand, typically shows a positive linear relationship between red and 
near-infrared (NIR) reflectance, known as the soil line (Huete, 1988; Baret et al., 
1993). Practically all broad-band vegetation indices are based on this differential 
response of vegetation and soil in red and NIR.  

Simple vegetation indices based on the red edge were developed in the 1970s and 
described in several publications. The paper of Tucker (1979) is often adopted as the 
first to describe the rationale and the wide range of applications for remote sensing of 
vegetation systems. The first reported use of the NDVI, however, was by Rouse et al. 
(1973), although they christened it the Vegetation Index. The majority of studies at 
that time used Landsat data and focussed on monitoring of crop systems. Large-scale 
applications, related to land-cover dynamics or climate change, were developed in 
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the 1980s when satellites started to produce high-resolution time series with global 
coverage (see Sections 1.2.3 and 2.2). 

The NDVI is obtained by dividing the difference vegetation index (NIR 
reflectance minus red reflectance) by the sum of both reflectance values (Eq. 1.2). By 
design, NDVI is dimensionless and varies between -1 and 1 or, in case of green 
vegetation where NIR reflectance exceeds the red counterpart, between 0 and 1. It is 
beyond the scope of this chapter to review the physical basis of this type of 
vegetation indices, but a few relationships (given below) with properties of 
vegetation (canopies) may elucidate the physical meaning of greening and browning 
trends. 

REDNIR

REDNIRNDVI
ρρ
ρρ

+
−

=       (1.2) 

The ultimate goal that is pursued with vegetation indices should be the 
quantification of state and flux of biophysical properties amenable to economic 
and/or environmental analysis. This includes energy fluxes, water content and 
fixation of dry matter. A sound understanding of these properties provides insight in 
processes driving plant productivity, vegetation-atmosphere and vegetation-
hydrology interactions and associated feedback mechanisms. Any VI, however, 
yields a one-dimensional spectral measure, which can, by nature, not directly relate 
to all of these components. Nevertheless, assuming (linear) mixture of only soil and 
vegetation components within each pixel, the VI values can be used to estimate the 

Figure 1.3 Characteristic reflectance spectra for green vegetation (black line) and soil (grey line) as well as 
the red and near-infrared acceptance bands of the advanced very-high resolution radiometer (AVHRR) in light 
grey and the moderate-resolution imaging spectrometer (MODIS) in dark grey.  The sharp increase in 
reflectance of green vegetation between ~650nm and ~750nm is know as the red edge. 
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fractional cover of photosynthetically active vegetation (PV) for an area of interest 
(Eq. 1.3) (Choudhury et al., 1994). 

minmax

min

VIVI

VIVI
f PV −

−
≅       (1.3) 

The PV fraction (fPV) directly relates to the fraction of PAR (fPAR) absorped by 
the vegetation – i.e. fraction of absorbed PAR (APAR) over incident PAR. Therefore, 
fPAR can be estimated from the VI given a vegetation-specific conversion 
coefficient αveg (Eq. 1.4). This was demonstrated by theoretical work of Sellers et al. 
(1992, 1997) and has been extensively documented (Gallo et al., 1985; Asrar, 1989; 
Friedl et al., 1995). It provides the theoretical connection between NDVI and NPP 
through the concept of light use efficiency (LUE) on which the equation of Monteith 
(1981) is based (Eq. 1.5). In this equation, the conversion efficiency (ε) translates 
fPAR (in energy units) to plant tissue growth, or NPP. The integral denotes yearly 
aggregation. This principle has been used in a multitude of ecological studies 
(Tucker et al., 1981; Tucker et al., 1985; Box et al., 1989; Paruelo et al., 1997) and 
implemented for large-scale monitoring systems (Myneni et al., 2002). 

vegPVf
PAR

APAR
fPAR α⋅≅=      (1.4) 

 ××= PARfPARNPP ε       (1.5) 

In conclusion, it remains unclear what the NDVI itself measures, but it is directly 
related to the fractional vegetation cover and, through some modeling steps, to 
productivity measures. Theoretical work provides strong support for the 
interpretation of the NDVI as a measure of carbon flux through ecosystems (Paruelo 
et al., 1997). It has also been defined as indicator of relative growth and/or vigor of 
green vegetation (Wickland, 1989). In any case, the NDVI does not directly reflect a 
biophysical process, but it is diagnostic of various biophysical vegetation and canopy 
attributes and has been used (some say overused or even abused) as a proxy for 
biomass, leaf area index (LAI), evapotranspiration and albedo. Given these 
relationships, applications included the quantification of drought stress, ecosystem 
functioning, vegetation patterns, food security, wildfire prediction and climate 
change. A review of all studies would be a tedious exercise, but a concise overview 
of the relationships between VI measurements and a range of vegetation and canopy 
attributes was provided by Glenn et al. (2008). 
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1.2.3 Low-resolution satellite sensors 

A paper of Cracknell (2001) was endowed with the title ‘The exciting and totally 
unanticipated success of the AVHRR in applications for which it was never 
intended’. One of the key successes he had in mind was the application of the NDVI 
for terrestrial monitoring purposes. The sensor, or more accurately the series of 
sensors, is called the advanced very-high resolution radiometer (AVHRR) and is 
carried on-board polar-orbiting satellites of the U.S. National Oceanic and 
Atmospheric Administration (NOAA). The intended meteorological purpose can be 
deduced from its name, since the spatial resolution (~1km), also by standard of that 
time, is low rather than ‘very high’ for terrestrial purposes. By way of comparison, 
the Landsat multi-spectral sensor (MSS) was already well established and provided a 
spatial resolution of ~60m. On the other hand, the temporal resolution and spatial 
extent (daily global coverage) make AVHRR a perfect sensor for large-scale 
monitoring. Today, it provides an invaluable historical record. 

In 1979, the AVHRR sensor system was modified to improve discrimination 
between land and oceans, as well as clouds and snow. A single broad-wavelength 
sensor was replaced with two sensors, which separately measure visible and NIR 
spectral reflectance. Fortuitously, this sensor modification made the AVHRR 
measurements suitable to study land vegetation dynamics (Goward et al., 1993). 
Several vegetation datasets were prepared using this data (Table 2.1). Out of these, 
the global inventory for mapping and modeling studies (GIMMS) dataset is probably 
the most broadly used for ecological monitoring purposes (Pettorelli et al., 2005). 
This dataset is still regularly being updated with new measurements and more 
enhanced calibration and correction methods and was found the most accurate in 
terms of temporal change (Beck et al., 2011). For these reasons, we selected it for 
use in this work. For each study, i.e. each of the core chapters in this thesis, we used 
the most recent version of the dataset. For the GLADA work that implied the time 
span of 1981–2003 (Bai et al., 2008); later this was extended until 2006 and 2008. 
Soon, the update until 2010 will become available (Molly Brown, pers. com.). 
Extensive VI studies based on AVHRR data helped improvement of instrument 
characterization and calibration of modern sensors (Huete et al., 1994). These 
sensors, including the moderate-resolution imaging spectrometer (MODIS) on-board 
NASA Terra and Aqua satellites, provide finer spatial resolution (Table 2.1, p. 23) 
and narrower spectral acceptance bands (Fig. 1.3). The latter yields a cleaner NDVI 
measurement, since spectral water-absorption features are not any longer included 
(Salomonson et al., 1989). Although records from these sensors are increasingly 
being used for analysis of temporal trends, datasets are not available for the 1980s 
and 1990s. 
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Technical details about the AVHRR sensor were provided by Cracknell (1997) 
and about the GIMMS processing scheme by Tucker et al. (2005). Baldi et al. (2008) 
and Beck et al. (2011) compared GIMMS with other long-term NDVI datasets. Here, 
we limit ourselves to a concise description.  

The dataset is based on daily global area coverage (GAC) data which was 
collected by a suite of NOAA satellites (Table 5.3) at ~4km spatial resolution. The 
source data were aggregated into fortnightly scenes with 0.072deg (~8km) spatial 
resolution. The maximum-value compositing (MVC) technique was used for 
temporal aggregation, while minimizing bias caused by atmospheric conditions 
(Holben, 1986). This is not an atmospheric-correction method and some inaccuracy 

 

 

Table 1.2 Description of the GIMMS dataset. After Baldi et al. (2008) and Beck et al. (2011). 

    GIMMSa, version g 

Data origin (and its spatial resolution) NOAA-AVHRR GAC 1B (4km) 

Platforms 7, 9, 11, 9d, 14, 16, 17 (operational dates in Table 5.3) 

Temporal extent 1981–2008 

 resolution Fortnightly (24 scenes/year) 

 compositing Maximum value composites (MVC) 

Spatial extent Global, 62.85°S – 89.22°N 

 resolution 0.072deg (~8km) 

 compositing Forward, nearest neighbour mapping. Selection of the 4km pixel with 
the maximum NDVI value for the 8 km output pixel. 

Corrections radiometric Ocean and clouds calibration NOAAb-7 to -14: Vermote & Kaufman 
(1995) coefficients; NOAAb-16 and -17: prelaunch coefficients. 
Additional calibration using invariant desert targets (Los, 1998) 

 viewing and illumination / 
BRDFc 

Adaptive empirical mode decomposition (EMD) method (Pinzon et al., 
2005) 

 cloud 0 °C thermal mask (Channel 5) 

 aerosol Volcanic aerosol correction for El Chicon (04/1982–12/1984) and Mt 
Pinatubo (06/1991–12/1993) 

noise attanuation and gap 
filling 

Kriging interpolation 

 water-vapour / molecular 
absorption and scattering 

None 

Scaling procedures Non-linear rescaling against SPOT-VGTd (Tucker et al., 2005) 

a Global Inventory for Mapping and Modeling Studies (GIMMS) 
b National Oceanic and Atmospheric Administration (NOAA) 
c Bidirectional Reflectance Distribution Function (BRDF) 
d Satellite Pour l’Observation de la Terre (SPOT) Vegetation (VGT) 
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remains, especially in hazy and cloudy conditions (Nagol et al., 2009). We applied a 
harmonic smoothing algorithm to further reduce these inaccuracies in areas with 
persistent cloud cover (see Section 3.2). Orbital decay and platform changes are 
known to affect AVHRR observations (de Beurs & Henebry, 2005b) but processed 
NDVI data have been found to be free of trends introduced from these effects 
(Kaufmann et al., 2000). This is confirmed by a study in the Sahel to the effects of 
shifts in solar zenith angle on NDVI (Eklundh & Olsson, 2003). The characteristics 
of the GIMMS dataset are listed in Table 2.1 and further discussed in several papers 
(Zhou et al., 2001; Brown et al., 2006; Alcaraz-Segura et al., 2010). 

1.3 Research questions 

Leaving aside deforestation and other land cover changes that accompany a growing 
human population, the last decades were prosperous for plants on planet Earth. In 
many parts of the world, the mean temperature raised and precipitation increased 
(IPCC, 2007), which are, in general, beneficial circumstances for plant growth. This 
contributed to intensification of agriculture with higher yields, but left important 
questions like: How will global soils cope with these climatic changes? (How long) 
can this trend last? Is it a global trend, or a collection of local trends? In that case, 
which parts of the world suffer from degradation and how hard are they hit? To get 
closer to answers we need more advanced analysis methods for available satellite 
imagery and we need to make steps towards disentangling climate effects from 
human-induced effects. The ultimate goal, towards which first steps were made 
(Symeonakis & Drake, 2010), should be the development of a universal land 
degradation model which is able to predict changes in land resources and their 
environmental and societal impacts. 

The work presented in this thesis is based on the GLADA approach for 
quantification of vegetation changes. The main objective is: “to advance the 
understanding of dynamics and trends in global vegetation activity, in relation to 
climate variability, for use in land resource applications, including land degradation 
assessments, using quantitative Earth observation approaches”. We followed a step-
wise approach, in which each step focuses on one of the following research 
questions. 
 
1: What is the current state-of-art in large-scale quantitative land degradation 
assessment and what are knowledge gaps, key ecological indicators and successful 
methods that have not yet been exploited to their full potential?  

We address this question by reviewing the currently available datasets and 
findings of recent research. Several disciplines are involved but our focus is on 
satellite remote sensing data and methods for monitoring land surface dynamics at 
global scale. 
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2: Can we use the full temporal dimension offered by satellite records for detection 
of vegetation-activity trends, and what is then the influence of land surface 
phenology? 

Previous studies used yearly aggregates of satellite measurements. This is an 
effective way to remediate serial autocorrelation, but it also eliminates intra-annual 
information. The latter might provide clues towards processes driving the detected 
change. 

 
3: Can we detect trend reversals within the time series and what is the implication of 
these reversals for detection of global vegetation-activity trends? 

Changes in vegetation activity over time may consist of an alternating sequence 
of greening and/or browning periods. As a next step in the trend analysis, trend 
reversals may be considered for a closer relation to the system dynamics. We found 
that there is a critical need for a consistent global assessment of trend changes. 
 
4: What are the spatial relationships between potential climatic growth constraints 
and trends in vegetation activity? 

Previous steps aimed at enhancing change detection techniques, but trends were 
detected irrespective of their driving processes. Quantification of spatial 
relationships between trends in vegetation activity and climate variables might 
provide a step towards establishing links between climate change, human-induced 
land changes and plant growth. 

1.4 Outline 

The core of this thesis is a series of five peer-reviewed papers. Four papers address 
the before-mentioned research questions and one short technical paper (Chapter 4) 
addresses a statistical issue which is inherent to trend analysis. The problem and 
framework of quantifying land degradation using remote sensing are described in 
Chapter 2, while the subsequent chapters present advancements for VI trend analysis 
and interpretation of the detected trends. 
 
The key principles about remote sensing of terrestrial vegetation activity and the 
main datasets – as they were used in this work – are described in this introductory 
chapter. This is not an exhaustive text on remote-sensing theories nor on ecological 
principles, for which purpose other textbooks can be consulted. These data and 
principles have been applied in a framework of land degradation. Chapter 2 provides 
a review of previous studies in this field and shows that degradation of land 
resources has many dimensions, not least of all one that involves issues of definition 
and perception. Leaving this aside, challenges and knowledge gaps in the quantitative 
aspects are described and used as starting point for the technical work. 
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Building further on the GLADA approach, Chapter 3 demonstrates how the full 
temporal resolution, i.e. without temporal aggregation, can be used to detect 
monotonic trends in vegetation activity with higher accuracy than on a yearly 
aggregated basis. The intra-annual information, which is retained in this approach, 
provides information about changes in land surface phenology and can be used for 
non-parametric analysis. In addition to the trend in yearly aggregates, the trend in 
intra-annual growing intensity can be used to relate vegetation changes to possible 
drivers. 

Chapter 4 contains a short technical communication on the previously mentioned 
temporal aggregation. This approach for dealing with serial autocorrelation is valid 
for many regions where growing seasons are relatively stable, but it might affect 
trend detection in other cases. We demonstrate this modifiable temporal unit problem 
(MTUP) for linear trend models based on real VI time series and on synthetic data. 

Both gradual and abrupt changes in vegetation activity occurred in many regions 
in the world, as demonstrated in Chapter 5. It provides an approach to include these 
changes in the afore-mentioned trend analysis. This improves our insight in the 
system dynamics in temporal sense. 

Better change-detection methods provide tools for identifying trends in vegetation 
activity, but detection of trends is irrespective of the underlying driving processes. 
These processes find their basis in climatic or human actors and can, in part, be 
distinguished by the spatial scale at which they express themselves. Chapter 6 
provides a step towards relating observed climate changes to trends in vegetation 
activity using a spatial-statistical approach. This chapter demonstrates that many 
trends in vegetation activity can be associated with climatic changes and provides a 
basis for statistical modeling of climate and human-induced land degradation in 
future research. 

Finally, Chapter 7 concludes this thesis by integrating the main results from the 
core chapters and suggesting directions for future research efforts. 
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Quantitative mapping of global land degradation 
using Earth observations  
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“A plenty of rich land, to be had for little or  
nothing, is so powerful a cause of population  

as to overcome all other obstacles.” 
 

Thomas Malthus (1798)  
An Essay on the Principle of Population,  

as it Affects the Future Improvement of Society 
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This chapter is based on: 
International Journal of Remote Sensing, 32 (2011), pp. 6823-6853 

DOI: 10.1080/01431161.2010.512946 
 
 

Abstract 

Land degradation is a global issue on a par with climate change and loss of 
biodiversity, but its extent and severity are only roughly known and there is little 
detail on the immediate processes – let alone the drivers. Earth-observation methods 
enable monitoring of land degradation in a consistent, physical way and on global 
scale by making use of vegetation productivity and/or loss as proxies. Most recent 
studies indicate a general greening trend but improved datasets and analysis also 
show a combination of greening and browning trends. Statistically based, linear 
trends average out these effects. Improved understanding may be expected from data-
driven and process-modeling approaches: new models, model-integration, enhanced 
statistical analysis and modern sensor imagery at medium spatial resolution should 
substantially improve the assessment of global land degradation. 
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2.1 Introduction 

Recent discussions on competition for land resources suggest that claims on fertile 
land and even on degraded land, have never been higher (Tilman et al., 2009; 
Rathmann et al., 2010). In the context of ever-growing human population, the global 
area under food crops has peaked at the end of the last century and there is a growing 
demand for land for production of biofuels. This puts land degradation on the global 
agenda as an economic, security and environmental issue (Dent et al., 2007) with a 
strong focus on land use change science (Turner et al., 2007). The IPCC argues that 
climate change will drive certain types of land degradation by more extreme weather 
events and a likely increase in total area affected by drought (Trenberth et al., 2007). 
At the same time, land degradation interacts with atmospheric processes (Cracknell 
& Varotsos, 2007) and may drive climatic change through increasing greenhouse gas 
emissions and reducing carbon fixation in soils and biomass (Schlesinger et al., 
1990). Mitigation and adaptation require the ability to predict and monitor land 
degradation; UNEP’s GEO4 report urges governments to respond with ‘effective 
early warning, assessment and monitoring – combine remote sensing with field 
surveys of key indicators; measure indicators consistently at different scales over the 
long-term.’ 

This poses scientific and technical challenges (Zucca et al., 2012). The 
distribution and intensity of land degradation are only roughly known; assessments 
have been local, or based on expert opinion and qualitative classifications (Oldeman 
et al., 1990; Dregne, 2002). Satellite remote sensing provides the only viable option 
for quantitative estimations of degradation at global scale. Time-series imagery with 
dense acquisition intervals and global coverage is available since the early 1980s and 
can be used for change detection. Quantitative and physically-based models can be 
used to relate detected changes to physical processes. In reviewing the currently 
available datasets and findings of recent, broad-scale research on land degradation, 
we aimed at identification of knowledge gaps, key ecological indicators and 
successful methods that have not yet been exploited to their full potential. Several 
disciplines are involved but our focus is on satellite remote sensing data and methods 
for monitoring land surface dynamics at global scale. 

2.1.1 Definitions  

Land is shorthand for the system made up of soil, water, the biota and, also, the man-
made landscape and their biophysical processes (Dalal-Clayton & Dent, 2001). Loss 
of ‘its usefulness for human beings’ (Wasson, 1987) or ‘its services, notably the 
primary production service’ (Adeel et al., 2005) is considered as degradation. Still, 
different schools, according to their interests, use diverse definitions of land 
degradation. FAO (1979) defined land degradation as ‘a process which lowers the 
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current and/or potential capacity of soils to produce’; the Millennium Ecosystem 
Assessment (MEA, 2005) defined it as ‘the reduction in the capacity of the land to 
perform ecosystem goods, functions and services that support society and 
development’. The term soil degradation is often used interchangeably (Lal et al., 
1989) and desertification has been adopted as a synonym of land degradation in dry 
lands (UNCCD, 1994; Reynolds et al., 2007), but common usage may also imply 
desert encroachment into adjacent regions (Lamprey, 1988). 

Both economic loss and ecological degradation may be considered and measured 
against the capacity to satisfy human needs (Kassas, 1995) and this is a common 
viewpoint of agriculture-oriented research (FAO, 1979; Dent & Young, 1981). 
Standing apart from human interest, land degradation has also been defined as 
deterioration in the physical and chemical properties of the soil as result of 
environmental change (Imeson & Emmer, 1992) and, embracing both viewpoints, as 
‘a long-term reduction in ecosystem function and productivity from which the system 
cannot recover unaided’ (UNEP, 2007). 

Despite the lack of a common definition, there is consensus that land degradation 
is widespread, has severe financial and social consequences and may sometimes be 
irrecoverable on a human time scale at manageable cost (Okin et al., 2001). Also, it 
can be self-accelerating so the cost of rehabilitation rises exponentially as it advances 
(Glantz & Orlovsky, 1983) and, in some forms, it has a reciprocal relationship with 
climatic systems (Schlesinger et al., 1990; Prospero & Lamb, 2003), causing 
significant changes in global biogeochemical cycles. 

2.1.2 Processes and drivers 

The most common perspective on land degradation is what farmers see happening to 
their land – symptoms such as soil erosion and salinity. That something bad is 
happening might be obvious but links with the driving processes may not be. Driving 
processes may be categorized as biological, physical or chemical (Lal et al., 1989) – 
though rarely political (Blaikie, 1985) – and each may have natural or man-induced 
causes, also called factors, that are agents or catalysts of the mentioned processes 
(Lal et al., 1989). Figure 2.1 shows examples of these categories.  

Whether land degradation is mainly human-induced, natural, or both, is often a 
moot point (Evans & Geerken, 2004). Early researchers focused on human-induced 
land (or soil) degradation (Aubreville, 1949; Dregne, 1986). Emphasising the impact 
of man on geology and ecology, Vitousek et al. (1997) state that we live on a human-
dominated planet and Crutzen (2002) proposed the name Anthropocene for the 
current geological epoch. More recently, fluctuating climatic conditions have been 
considered a significant cause (UNCCD, 1994; Puigdefábregas, 1998; Nicholson, 
2000; El Hassan, 2004; IPCC, 2007); a change of view brought about by the Sahelian 
droughts of the 1970s and 80s (Glantz & Orlovsky, 1983) and drying of the Aral Sea 
(Micklin, 1988; Small et al., 2001) and Lake Chad (Haas et al., 2009), among others. 
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Climatic variations are believed to be a greater factor in, for instance, biodiversity in 
arctic and boreal areas, whereas land-use change is considered a greater factor in 
other biomes (Chapin et al., 2000). Most authors agree that various human and 
environmental processes interact along complex pathways and that both biophysical 
and socio-economic indicators should be considered jointly (Lambin et al., 2001; 
Baartman et al., 2007). Despite this, biophysical variables other than climatic change 
have received relatively little attention as causal factors of land degradation (Turner 
et al., 2007). 

The interaction of the human and the biophysical sub-systems on the land system 
and the schematic positioning of land degradation within the latter is depicted in 
Figure 2.2. The biophysical sub-system interacts with the human sub-system by 
delivering environmental goods and services (Turner et al., 2007) that might be 
diminished by land degradation as defined by UNEP (2007). Land degradation, in 
this sense, is an issue beyond the field scale and has become part of the emerging 
land change sciences (LCS). Research is undertaken by various disciplines including 
remote sensing, resource economics, landscape ecology and biogeography. It is a 
challenge to capture the whole system with its interrelationships between acting 
processes and to scale-up understandings gleaned from field studies to regional, 
biome and global perspectives. 

Figure 2.1 Examples of land degradation. Top: (a) Human-induced soil erosion on agricultural fields (Volker 
Prasuhn, website); (b) Secondary (human-induced) salinity in farmland, California (USDA Agricultural 
Research Service); (c) Loss of forest cover through shifting agricuture, Wau district, Sudan (UNEP website). 
Bottom: (d) Soil erosion induced by snowmelt (Volker Prasuhn); (e) Acid sulphate scald caused by drainage 
change (Gardner et al., 2004) which may be natural or man-made; (f) Drought -induced vegetation decline 
and soil erosion (WMO). 
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2.1.3 Classification methods 

Land degradation may be assessed qualitatively or quantitatively. The first approach, 
using expert opinion, may be able to embrace several processes in a single 
assessment that usually considers the consequences or symptoms of degradation – 
such as decline of land quality, biomass or vegetation health. The quantitative 
approach uses proxy measures like spectral reflectance. Remote-sensing methods are 
most frequently employed and depend on establishing relationships between the 
proxy and the ‘real thing’. Most land-degradation processes affect the vegetation 
cover, for which reason vegetation dynamics, which is relatively easy to quantify 
using remote sensing, has been widely adopted as an indicator of land degradation at 
regional to global scales; this approach has the strength of being repeatable and 
transferable between scales and regions. 

In early years, qualitative research included systematic and detailed soil survey. 
Two approaches emerged (Bergkamp, 1996; Boer, 1999): one focusing on the 
sensitivity of land mapping units to external changes which imposes limitations to 
the farmers’ freedom of action; the other focusing on the actual change induced by 
external factors. The first is represented by the well-known Land Capability 
Classification (Hockensmith & Steele, 1949; Klingebiel & Montgomery, 1961) which 
defines land capability classes, each having a defined degree of limitation or 
conservation problems. This is a rules-based approach, depending on expert 

Figure 2.2 The positioning of land degradation within the land change science framework. Modified after Turner
et al. (2007). 
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judgment. Similarly, the FAO Land Quality Classification relates risk of degradation 
to crop yields and management factors like germination conditions (FAO, 1976). The 
second approach is represented by the global assessment of human-induced soil 
degradation (GLASOD; Oldeman & van Lynden, 1997), an expert assessment of land 
degradation by classes applied to a common base of landform units depending on the 
degree (light − severe) and the frequency (percentage occurrence within the mapping 
unit) of degradation by soil erosion, nutrient depletion, salinity and/or chemical 
contamination. Experts are comfortable with both of these approaches; they deliver a 
familiar perspective of land degradation but they are time-bound and not 
reproducible. 

Air-photo interpretation was employed extensively from the 1960s and, later, 
satellite imagery. In the beginning these were used in a qualitative way. Later, more 
quantitative methods emerged which often employ several indicators in combination 
with modeling (Kirkby et al., 2004) or statistical methods to define the contribution 
of various processes (Feoli et al., 2002; Riedler & Jandl, 2002; Stroppiana et al., 
2009). For instance, Vargas et al. (2007) used a fuzzy clustering algorithm to 
calculate classes combining loss of vegetation, soil chemical degradation and soil 
physical degradation and employed a decision tree to derive a land degradation map. 

Various criteria for monitoring ecological status have been proposed respecting 
scalability, reproducibility, consistency, cost-effectiveness, transferability and 
statistical rigor (Boer, 1999); remote sensing meets many of these criteria.  

2.2 Earth-observation datasets and methods  

2.2.1 Time series of global vegetation status  

Land degradation is often linked to a decline in biomass or vegetation cover, which 
may be measured in terms of biomass productivity, or undesirable changes in 
composition (Bertiller et al., 2002; Hanafi & Jauffret, 2007; Wessels et al., 2007; 
Salvati & Zitti, 2009; Zika & Erb, 2009). Green vegetation has a characteristically 
high reflectance in the near-infrared (NIR) and a low reflectance in the red part of the 
electromagnetic spectrum. Many broadband vegetation indices (VI) using this 
characteristic have been developed (see Section 1.2.2). 

The most common VI is the normalized difference vegetation index (NDVI), 
which is a normalized ratio between NIR and red reflectance (Tucker, 1979). It is 
sensitive to the amount of photosynthetically active vegetation and, therefore, is 
useful for monitoring biomass (Tucker et al., 1985; Prince & Tucker, 1986). 
Correlation with biomass is highest in the mid-range of NDVI values (Asner et al., 
2004; Phillips et al., 2008). In areas of dense vegetation, the NDVI signal saturates 
and other indices, like EVI (Enhanced Vegetation Index) and SAVI (Soil-adjusted 
Vegetation Index) or narrow-band measures perform better (Huete et al., 2002a; 
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Asner et al., 2004). NDVI has been used for many other applications, including as a 
proxy for vegetation water content and drought stress. Its spectral resolution, 
however, does not allow to separate water absorption features and its reliability 
decreases with mixed vegetation types (Ceccato, 2001). 

Frequently-acquired imagery from the advanced very high resolution radiometer 
(AVHRR) has yielded unprecedented insights into our changing planet, by analyses 
of land cover dynamics, biomass and primary production (Tatem et al., 2008). The 
availability of a long time-series of global NDVI data, in combination with detailed 
studies of its relationship with many biophysical parameters, prompted the use of 
NDVI trends as a proxy for land degradation. It has already been used extensively to 
study vegetation change and its interactions with climate (Townshend, 1994; 
Loveland et al., 2000), global primary production (Prince & Goward, 1995), land 
cover (DeFries et al., 1995) and yield prediction and crop modeling (Chen et al., 
2008; Stöckli et al., 2008; Boschetti et al., 2009). The 8km spatial resolution – a 
characteristic of many AVHRR datasets – is considered to be suitable for global 
vegetation monitoring (Justice et al., 1985; Moulin et al., 1997; Pinzon et al., 2004; 
Tucker et al., 2005) and constrains the spatial variability between different NDVI 
products (Tarnavsky et al., 2008). The problem for land degradation studies is to 
discount false alarms raised by factors that are not commonly understood as land 
degradation, notably fluctuations in rainfall, rising temperatures, atmospheric CO2 
and nitrate precipitation and land-use change – which may not be accompanied by 
land degradation as commonly understood (Bai et al., 2008). 

Global VI time series are available from several sensors; Table 2.1 lists the most 
commonly used examples. The longest run consists of AVHRR NDVI maximum-
value composites (Holben, 1986). The global inventory modeling and mapping 
studies (GIMMS) dataset has been compiled from daily AHVRR 4km global area 
coverage (GAC) data, geometrically and radiometrically corrected to produce 
fortnightly 8-km resolution NDVI data from 1981 through 2006 (Tucker et al., 2005). 
These NDVI values are comparable to NDVI products from other sensors such as 
MODIS, SPOT Vegetation, SeaWiFs and Landsat ETM+ (Brown et al., 2006). Other 
AVHRR NDVI datasets include Fourier-adjusted, sensor and solar zenith angle 
corrected interpolated and reconstructed monthly time-series (FASIR; Los et al., 
2000), Pathfinder AVHRR land (PAL; James & Kalluri, 1994) and global vegetation 
index (GVI; Goward et al., 1993). Although the various datasets started with nearly 
identical composited AVHRR measurements, different processing has produced 
absolute NDVI values that can differ substantially, especially in the tropics and 
northern high latitudes (Hall et al., 2006). Also, compared with new-generation time-
series data like the moderate resolution imaging spectrometer (MODIS), there are 
limitations including orbital drift, atmospheric interference, wide spectral bands and 
discontinuities due to platform changes (de Beurs & Henebry, 2004; Fensholt et al., 
2009; Nagol et al., 2009).  
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Shorter time series of about 10 years are available from MODIS, SPOT and 
SeaWiFs. MODIS imagery is acquired every three days, providing aggregated 
products every 3-16 days. MOD13 is an NDVI dataset with a spatial resolution of 
250-1000m and appears to be more accurate than NOAA AVHRR, especially in areas 
with high atmospheric water vapour content (Huete et al., 2002a). MODIS also 
provides a continuous NPP dataset (Running et al., 2004) derived from the fraction 
of absorbed photosynthetically active radiation (fPAR), which is a more direct 
physical measurement than NDVI (Phillips et al., 2008). The spectral bands used are 
narrower than for the AVHRR NDVI product (Figure 1.3) so there is less 
interference with (water) absorption features; importantly, the derived NPP is less 
sensitive to saturation over dense vegetation. On the other hand, fPAR is generally 
overestimated in semi-arid areas (Fensholt et al., 2004; Turner et al., 2006). The 
French satellite pour l'observation de la terre provides global vegetation datasets 
(SPOT VGT) of 1km spatial resolution. Replacement of SPOT VGT1 by VGT2 in 
2003 involved a change in the spectral response functions of channels 1 and 2 
(Figure 2.3b) but, after correction, the NDVI products of AVHRR and SPOT are 
comparable, except for regions with high biomass (Swinnen & Veroustraete, 2008). 
In semi-arid areas, Fensholt et al. (2009) show that GIMMS and MODIS NDVI agree 
better than SPOT VGT, as a result of the SPOT discontinuity (Figure 2.3a). The 
OrbView-2/SeaWiFs (Sea-viewing Wide Field-of-view Sensor) was originally 
designed to monitor the colour of the oceans, but thanks to convenient spectral bands 

 

Table 2.1 Most commonly used time series of vegetation imagery for broad-scale land degradation studies, 
limited to datasets with a high temporal resolution and global coverage. 

Dataset / Product Indicator Sensor Platform Time 
range 

Spatial 
resolution 

Temporal 
resolution 

Pathfinder Land 
(PAL) 

NDVI 
 

AVHRR 
 

NOAA 
satellites 
 

1981-2006 
 

8km 
(GVI 16km) 
 

10-day MVC 

Global Vegetation 
Index (GVI) 

 Weekly MVC 

GIMMS  15-day MVC 

FASIR  15-day MVC 

MOD13 / MYD13 NDVI / 
EVI 

MODIS 
 

Terra / Aqua 
 

2000-
present 
 

250m – 1km 8 or 16-day 
MVC 

MOD17A2 / 
MYD17A2 

GPP 1km 8-day 
composite 

VGT-S10 NDVI VGT SPOT-4 1998-
present 

1km  10-day 
synthesis 

L3-SMI NDVI NDVI  SeaWiFS OrbView-2 1997-
present 

4.63km Weekly MVC 
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and a detector and amplifier that does not saturate over land, it also allows 
monitoring of the land surface (Gobron et al., 2003). Differences between SeaWiFs 
and AVHRR NDVI data can be neglected for land degradation studies, especially in 
drylands (Laneve & Castronuovo, 2005).  

Many other remotely sensed datasets have been used for regional land degradation 
studies. It is beyond the scope of this review to list them all and, therefore, we 
restrict ourselves to radar remote sensing and satellite based imaging spectroscopy, 
which we expect to be useful to global land-degradation research in the near future. 
For other sensors, the reader is referred to recent reviews of remote sensing for land 
degradation assessments, including local to regional scales, by Metternicht et al. 
(2010) and Zucca et al. (2012). 

2.2.2 Space-borne radar and imaging spectroscopy 

Radar was brought into space in the 1980s and has the advantage over optical remote 
sensing that it can sense through cloud cover and without daylight. Synthetic 
Aperture Radar (SAR) interferometry has been investigated for identification of 
potential degradation sites (Liu et al., 2004), for monitoring of wind erosion (Del 
Valle et al., 2010), for measurements of soil water (Walker et al., 2004) and carbon 
stock (Goetz et al., 2009), for crop monitoring (Baghdadi et al., 2009) and to study 
ecological processes (Kasischke et al., 1997). The latter include vegetation mapping 
and above-ground biomass estimation which, in combination with change-detection 
methods, can provide information on land degradation. For instance, SAR using 
multiple frequencies and polarizations is better for estimating woody biomass in 
tropical forest than optical remote sensing (Wang & Qi, 2008). There are more and 
more radar instruments in orbit, especially in C and X bands, with recent launches of 
TerraSAR-X and COSMO-SkyMed and forthcoming launches of TanDEM-X and 
SAOCOM. However, consistent time series needed for land degradation assessment 
are not yet available. 

Figure 2.3 Comparison of GIMMS, MODIS NDVI and SPOT VGT for a test site in Senegal. Reproduced from
Fensholt et al. (2009). 
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Methods have been proposed for broad-scale degradation assessment by space-
borne imaging spectroscopy. At the moment, Hyperion (on board NASA EO-1 
launched in 2000) has been successfully tested for land degradation research (Huete 
et al., 2002b; Asner & Heidebrecht, 2003). The spectral analyses for dryland 
degradation (SAND) mission was proposed to specifically target dryland degradation 
(Mueller et al., 2001; Kaufmann et al., 2002) but not realized; it was followed up by 
the German environmental mapping and analysis program (EnMAP) to be launched 
in 2013 (Kaufmann et al., 2006). The lauch of the Italian counterpart precursore 
iperspettrale della missione applicativa (PRISMA) is also planned for 2013. All 
these sensors have a spatial resolution of about 30m, which currently limits global 
applications by the welter of data that attend high resolution. Preliminary results 
from plant physiological studies, however, indicate the potential power of using 
imaging spectroscopy for monitoring chlorophyll fluorescence emission as a measure 
for heat or drought stress (Krumov et al., 2008; Soukupova et al., 2008). Recently, 
ESA published plans for the FLEX (fluorescence explorer) mission, which will 
comprise weekly global mapping of fluorescence at 300m spatial resolution (Rascher 
et al., 2008). Potential pigment shifts as indicators for plant stress and plant 
community composition change are also available at leaf and canopy level (Kokaly et 
al., 2009) from imaging spectrometer data. Data assimilation techniques (Dorigo et 
al., 2007) and angular sampling (Schaepman, 2007; Verrelst, 2010) will further 
improve the use of imaging spectrometer data in process modeling for land 
degradation. 

2.2.3 Climatic and land-use / land-cover data 

Various complementary global datasets may be used in concert with satellite imagery 
to constrain index-based assessment of land degradation. Global or near-global 
climatological datasets are available from satellites, including tropical rainfall 
measuring mission (TRMM) and the AVHRR-based PATMOS-x project and also 
from long-term, station-based observations (Beck et al., 2004; Mitchell & Jones, 
2005). From these, rain-use efficiency (RUE), light-use efficiency and energy-use 
efficiency can be calculated (Le Houérou, 1984; Goetz et al., 1999; Bai et al., 2008). 
If productivity is limited by rainfall, RUE accounts for variability of rainfall and, to 
some extent, local site characteristics. The combination of NDVI and rainfall or RUE 
has been widely applied (e.g. Hein & de Ridder, 2006) but direct use of RUE has its 
critics (Holm et al., 2003; Prince et al., 2007). 

Soil characteristics and variability are important variables in land degradation 
studies (Nicholson & Farrar, 1994), but the available datasets such as the soil map of 
the world (FAO-UNESCO, 1988), the harmonized world soil database (Nachtergaele 
et al., 2008) and SOTER (Van Engelen & Wen, 1995) are hardly compatible with 
Earth-observation data, although a rigorous application at a regional scale has been in 
China under the global assessment of land degradation and improvement (Bai & 
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Dent, 2009). Improved global soil and terrain datasets are being developed in the e-
SOTER project (e-SOTER website, 2010) and the GlobalSoilMap.net project 
(Sanchez et al., 2009). 

Land use and management are largely influential for land degradation and certain 
land-use changes make land degradation more or less likely (Vacca et al., 2000); 
information about land-use and land-cover change is therefore essential for studying 
land degradation. Global land-cover maps have been derived from several remotely-
sensed datasets including AVHRR (IGBP-DIS), SPOT-VGT (GLC2000), ENVISAT 
MERIS (Glob-Cover) and MODIS (Herold et al., 2008). At finer resolution, Landsat-
based land cover datasets include NLCD2001 (USA), CORINE (Europe) and 
AfriCover (Africa). However, each is specific to its own date and data; they are not 
mutually comparable. In China, a SPOT VGT-based land cover classification has 
been used to detect areas at risk of desertification (Huang & Siegert, 2006) and is 
claimed to be superior to GLC2000 and MODIS Land Cover products but, for 
establishing the causes, the use of higher resolution, Landsat or ASTER, imagery was 
recommended. The same SPOT data were used to monitor land cover changes in 
West-Africa by NDVI and SAVI (Lupo et al., 2001). Several climate-driven 
processes of land-cover change were detected but it was also concluded that the data 
suffered from an incomplete cloud mask and sensor noise. There have been efforts to 
derive dynamic land cover maps from AVHRR or MODIS time-series (Julien & 
Sobrino, 2009) but there is still need for reliable, readily-available products. 

2.3 Broad-scale land degradation studies 

Global assessments of land quality and dynamics became feasible with the first 
AVHRR images (Justice et al., 1985). Since then, studies using time series of 
satellite imagery have mainly focussed on the areas generally considered to be prone 
to degradation. The Sahel attracted attention because of a succession of severe 
droughts since the 1960s, with driest years in the early 1980s (Nicholson, 2000; 
Anyamba & Tucker, 2005; Govaerts & Lattanzio, 2008). It is an important validation 
site for general circulation models because of the uncertainty about the system’s 
reaction (Cook, 2008) and of human-environment models because of the disputes 
about human influences on land degradation in the Sahel (Helldén, 2008). It has often 
been asserted that the Sahara is encroaching as a result of human activities 
(Cloudsley-Thompson, 1974; Lamprey, 1988) but assessment of time-series imagery 
in the Sudan showed no systematic advance of the desert or reduction in vegetation 
cover (Hellden, 1984). This was confirmed by Tucker et al. (1991) and Schlesinger 
& Gramenopoulos (1996) who found that vegetation density on the margins of the 
Sahara varies with rainfall, by Seaquist et al. (2008) who found no relation between 
demographics and model-based vegetation dynamics and by Prince et al. (1998) on 
the basis of rain-use efficiency (RUE). Still, Hein & de Ridder (2006) argue for 
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human-induced vegetation degradation over the last two decades based on temporal 
RUE variability – an interpretation disputed by Prince et al. (2007). A systematic 
increase in vegetation productivity around the Sahara has been measured using 
satellite imagery (Anyamba & Tucker, 2005; Herrmann et al., 2005; Olsson et al., 
2005; Heumann et al., 2007; Karlsen et al., 2007). Probably, much of what has been 
identified as human-induced land degradation is a response to climatic fluctuations 
(Nicholson, 2000). 

There is also controversy about land degradation in South Africa, both about the 
existence of severe degradation and about the causes. Several studies identified land 
degradation, mainly in rangelands (Ross, 1963; Adler, 1985; Hoffman & Simon, 
2000), but Dean et al. (1995) found no evidence for increasing degradation and other 
studies in South Africa and surrounding countries concluded that vegetation change 
could be attributed to natural conditions such as drought and restrictive soil 
conditions (Dahlberg, 2000). In Zimbabwe, Prince et al. (2009) recently found that 
detected degradation could not be related to natural conditions and thus concluded 
that it was caused by human land-use practices. Wessels et al. (2007), in South-
Africa, used the trends of the residuals of NDVI vs. time regressions (RESTREND) 
to distinguish human-induced land degradation. They concluded that observed 
changes could have resulted from several processes, including natural ecological 
processes and land-use changes. Not explicitly assigning causes, Bai & Dent (2007), 
in the GLADA project, found that almost half of the cultivated land experienced a 
decline in productivity over the last quarter century and one third of the whole 
country, mostly rangeland, showed increasing productivity. 

Broad-scale assessments using NDVI in several other parts of the world show a 
general greening trend (Table 2.2), but also regions of decline. Like the Sahel, the 
Northern Hemisphere has become greener during recent decades (Myneni et al., 
1997; Slayback et al., 2003; Hüttich et al., 2007), although a browning trend was 
found between 1994 and 2002 (Angert et al., 2005). Pouliot et al. (2009), in Canada, 
found that AVHRR NDVI data compared well with Landsat data and show an overall 
positive trend since 1985. Alcaraz-Segura et al. (2010), also in Canada, confirm this 
but remark that AVHRR NDVI exhibit other greening and browning trends than the 
CCRS (Canadian Centre for Remote Sensing) NDVI dataset. In Australia, an increase 
in vegetation cover, especially in winter, recorded by fPAR derived from AVHRR 
PAL has been attributed to an increase in available moisture (Donohue et al., 2009). 
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Table 2.2 Selected studies of broad-scale vegetation trends. 

Extent Indicator Spatial 
resolution 

Time 
range 

Remote 
sensing data 

Conclusion Reference 

Global NPP 
(PEM) 

0.5deg 1982-
1999 

PAL / GIMMS 6% increase in global 
NPP 

Nemani et 
al. (2003) 

Global NPP 
(CASA) 

1deg 1983-
1988 

FASIR Increase in global 
NPP, 6-month to 1-
year offset in timing of 
anomalies 

Potter et al. 
(1999) 

Global NDVI 8km 1981-
2003 

GIMMS Greening and 
browning trends 
globally 

Bai et al. 
(2008) 

Northern 
hemisphere 

NDVI 8km 1982-
1999 

GIMMS/FASIR Significant greening 
trends (61% of 
vegetated area) 

Slayback et 
al. (2003) 
Tucker et 
al. (2001) 
Zhou et al. 
(2001) 

Northern 
hemisphere  

NDVI 1deg 1982-
2002 

GIMMS Shifting greening and 
browning trends, net 
greening 

Angert et 
al. (2005) 

Northern 
Eurasia 

NDVI  1998-
2005 

SPOT VGT Greening trend Hüttich et 
al., (2007) 

Northern 
high 
latitudes 

NDVI 8km 1981-
1991 

PAL / GIMMS Photosynthetic activity 
increased, suggesting 
increase in plant 
growth 

Myneni et 
al. (1997) 

Sahel NDVI / 
RUE 

8km 1982-
1990 

GIMMS No evidence of 
desertification 

Prince et al. 
(1998) 

Sahel NDVI / 
rainfall 

8km 1982-
2003 

GIMMS Greening trend Herrmann 
et al. 
(2005) 

Sahel NDVI 8km 1982-
1999 

PAL Greening trend Olsson et 
al. (2005) 

Sahel Albedo  1984 -
2003 

MeteoSAT Greening associated 
with decreasing 
albedo 

Govaerts & 
Lattanzio 
(2008) 

Australia fPAR 0.08deg 1981-
2006 

PAL Increase in vegetation 
cover 

Donohue et 
al. (2009) 

South 
America 

fPAR / 
NDVI 

 1981-
2000 

AVHRR Overall increase of 
1.3% 

Paruelo et 
al. (2004) 

China NPP 
(PEM) 

0.5deg 1981-
2000 

AVHRR Increase in NPP 
(0.32% / year), 
decrease in net 
ecosystem 
productivity between 
80s and 90s due to 
global warming 

Cao et al. 
(2003) 
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NDVI has proved capable of assessing vegetation dynamics and relations to land 
degradation. However, assessment of land degradation at global scale remains a 
challenge. One of the first attempts was Dregne’s 1977 map of the status of 
desertification for the UN Conference on Desertification which was based on expert 
opinion and restricted to drylands. The later GLASOD map (Oldeman et al., 1990) 
provided full global coverage, also based on expert opinion. The situation has been 
revolutionised by the availability of more than 25 years of consistent Earth-
observation data. These are the basis of the first quantitative assessment of global 
land degradation and land improvement (GLADA) which applied trend analysis to 
the GIMMS dataset and corrected for trends in rainfall using rain-use efficiency and 
temperature using energy-use efficiency (Bai et al., 2008). The GLADA map 
detected potential degradation hotspots (Figure 2.4) and yielded quantitative 
estimates of lost productivity in terms of NPP. However, much potential information 
in the dataset is not revealed by the linear regression of yearly aggregated values.  

Assessments of land degradation using NDVI focused mainly on areas where the 
NDVI signal does not saturate, such as semi-arid and temperate regions with 
relatively low LAI. But land degradation is not confined to these areas and also 
occurs in humid tropical and sub-tropical areas with dense vegetation. Deforestation 
is one of the most common kinds of human-induced land degradation but there are 
many other facets that may be referred to as forest degradation (Köhl et al., 2009) – 
monitoring of which is technically more challenging than monitoring deforestation 
(DeFries et al., 2007). The estimated extent of deforestation in humid tropic forests is 
1.4% of the total area (2000-2005) and another 20% is affected by some kind of 
logging (Asner et al., 2009). Accurate broad-scale estimations are difficult, because 
clearing mostly occurs at a fine scale, but MODIS data have been used to create 
indicator maps (Hansen et al., 2008). The impact of natural factors like droughts has 
also been assessed using MODIS. For instance, in the Amazon there has been debate 
about whether the 2005 drought caused greening or not (Saleska et al., 2007; 
Samanta et al., 2010). Both studies used EVI but the latter concluded that the data 
were corrupted by atmospheric factors that explained the apparent greening effect. At 
global scale, FAO undertakes a decennial forest resource assessment but there is no 
global forest degradation inventory available. 

Biogeochemical models can assess changes in vegetation productivity with and 
without human activity: a decline in productivity that cannot be explained by climatic 
variations might be attributed to human influences (Seaquist et al., 2008). At global 
scale, Nemani et al. (2003) applied a biome-specific production efficiency model 
with two AVHRR datasets (GIMMS and PAL) and found that global climatic and 
atmospheric changes have eased several constraints on NPP, which had increased by 
6 percent over the period 1982-1999 (Figure 2.5).  



Chapter 2 

30 

 

 

Figure 2.4 Linear trends in net primary production (NPP) from the 1981-2003 global assessment of land 
degradation and improvement (GLADA). Reproduced from Bai et al. (2008). 

 
 

 

Figure 2.5 Linear trends in yearly accumulated net primary production (NPP) from 1982-1999 using a global 
production efficiency model (PEM). Reproduced from Nemani et al. (2003). 
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Similarly, Cao et al. (2003), in China, used AVHRR data and two biogeochemical 
models to estimate inter-annual variations of NPP. One of the models, the global 
production efficiency model (GLO-PEM) uses only remotely-sensed input data and, 
thus, delivers independent estimates of NPP (Goetz et al., 2000). They concluded 
that, in contrast with the global trend, the net ecosystem production in China 
decreased in the past decades because of stronger warming than the global average. 
Seaquist et al. (2003) built a LUE model for estimation of GPP in the Sahel, which 
was parameterized with satellite data (PAL). In a follow-up they used the model to 
disentangle the effects of climate and human influence and concluded that the 
identified changes could not be associated to human activity (Seaquist et al., 2008). 
To address human appropriation of NPP (HANPP) at global scale, Haberl et al. 
(2007) used the Lund-Potzdam-Jena (LPJ) dynamic global vegetation model for 
calculating potential NPP. They concluded that almost 24% of yearly potential NPP 
was lost due to human activities (based on the year 2000) including harvesting (53%) 
and land-use change (40%). These data have also been used to focus on human-
induced dryland degradation at global scale (Zika & Erb, 2009). The extent of 
degrading areas was taken from a compilation of mainly qualitative land degradation 
assessments, including GLASOD. They found a loss in NPP of 1.6% with respect to 
the global terrestrial NPP but emphasized, that results are hard to interpret because of 
uncertainties in the underlying assumptions. Another model that has been regularly 
used in combination with Earth observations for modeling NPP is the Carnegie-
Ames-Stanford (CASA) biogeochemical (BGC) model (Potter & Klooster, 1997; Yu 
et al., 2009). 

So far, biomass decline has been considered as a gradual process on the human 
time scale, but it may equally well be considered an abrupt, or catastrophic, shift 
induced by gradual environmental change (Scheffer et al., 2001; Rietkerk et al., 
2004). The latter is caused by positive feedback mechanisms like the effect of 
vegetation on soil erosion and the other way around (Janssen et al., 2008). Mid-
Holocene desertification in North Africa has been identified as such a catastrophic 
shift (Dakos et al., 2008). The concept has been used in a study to resilience of 
tropical forest and savanna ecosystems (Hirota et al., 2011) but assessment of 
catastrophic land degradation using remote sensing is yet an unexplored field of 
research. 

2.4 Broad-scale monitoring of physical and chemical land degradation 
processes 

Soil erosion by runoff water is considered to be the most widespread process of land 
degradation (Eswaran et al., 2001; Vrieling, 2007). Most commonly, it is assessed by 
measuring or modeling the detachment of particles by rain splash and overland flow 
and up-scaling to the catchment. Vrieling (2006) and Metternicht et al. (2010) review 
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the application of satellite remote sensing, which can show the larger erosional 
features such as rills, gullies and land slips. Smaller features like crusting or soil 
compaction may be spectrally distinguishable on bare ground (Goldshleger et al., 
2001) but attempts to quantify them in remotely sensed imagery have been limited to 
small plots. The same holds for monitoring of gully erosion (Marzolff & Poesen, 
2009) and quantification of soil properties (Summers et al., 2011), which are mostly 
done using high-resolution, often airborne, remote sensing. Nevertheless, a recent 
modeling approach for soil erosion at continental scale for sub-Saharan Africa by 
Symeonakis & Drake (2010) found that the estimates are within the same order of 
magnitude as field measurements. In drylands, wind is an important agent of erosion 
and deposition (Ravi et al., 2010) but it is hard to quantify at broad scales 
Symeonakis & Drake (2004). Radar remote sensing has been tested for mapping of 
wind-driven land degradation by mapping its primary factors: surface roughness, soil 
moisture, local incidence angle and vegetation cover (Del Valle et al., 2010). The 
acute processes of chemical land degradation are salinization and chemical 
contamination. Salt accumulation may arise from groundwater, coastal flooding or 
irrigation; chemical contamination may be natural, for instance in volcanic areas, or, 
most often, man-made (Gardner et al., 2004). Salinity may be detected with 
relatively high-resolution imagery like Landsat (Chen & Rao, 2008) but comparison 
with the GLADA assessment at 8km resolution shows some sensitivity at the broader 
scale as well (Figure 2.6). However, the coarse resolution of most satellite imagery 
compared with the variability of salt concentrations in the soil and the interference of 
other soil properties with the detected signal limit its value for detailed mapping 
(Mougenot et al., 1993; Ben-Dor, 2009). At the same time, high-resolution data 
impose a practical constraint on broad-scale mapping. Metternicht & Zinck (2003, 
2009) provided an overview. 

 

Figure 2.6 Salinization study in China: middle- Landsat image of study area, overlaid by GLADA NDVI trend
(Figure 2.4); right - red indicates degradation and blue improvement (1988-1996). Modified after Chen & Rao
(2008). 
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2.5 Future steps for Earth observations 

There is broad agreement that efficient action to arrest land degradation requires 
‘effective early warning, assessment and monitoring – combining remote sensing 
with field surveys of key indicators’ (UNEP, 2007); but it remains a contentious field 
(Bai et al., 2008). Field observations and experiments combined with expert 
synthesis measure physically different things at a different scale from those measured 
by remote sensing. Expert judgement of ‘the real thing’ is local and time-bound and 
it is hardly possible to validate 25 years of NDVI measurements in the field, after the 
event, at 8km spatial resolution. Remote sensing can take us several steps towards 
accurate and consistent monitoring of land degradation at the global scale, but 
interpretation of imagery and derived products comes with challenges. Some 
important steps towards better understanding of time series of satellite imagery are 
listed below. 

2.5.1 Advanced time-series analysis 

The value of a 30-year record of AVHRR can hardly be over-stated. Land 
degradation nearly always affects vegetation and NDVI is one of the few, consistent 
indicators available at global scale over the long term. In spite of the limitations of 
AVHRR data already discussed, data-driven approaches can derive several 
biophysical variables (Goetz et al., 2000). Since 2000, MODIS, SPOT VEG and 
SeaWiFS provide improved datasets in terms of accuracy or spatial resolution. Each 
dataset contains information on inter- and intra-annual variability, phenological 
cycles, frequency and shift of growing seasons and distinction between gradual and 
abrupt changes (Azzali & Menenti, 1999; Jönsson & Eklundh, 2002; Zhang et al., 
2003; Verbesselt et al., 2010a) which might be linked to climatic changes, changes in 
land use and management and/or land degradation. Current assessments eliminate 
intra-annual information by reducing the temporal resolution, while existing methods 
can account for phenological variation without averaging to yearly values, for 
instance by harmonic analysis of NDVI time-series (Jakubauskas et al., 2001; Hird & 
McDermid, 2009). For this purpose, the HANTS algorithm (Verhoef et al., 1996; 
Roerink et al., 2000; Jun et al., 2004) performs well in comparison with several 
others (White et al., 2009). If more measurements are maintained in the analysis, it is 
also possible to capture trend breaks or shifts. For instance, certain regions exhibit 
combined greening and browning trends (Angert et al., 2005), which are averaged 
out by simple linear trends analysis. 

When using vegetation dynamics as indicator for land degradation, it is essential 
to account for phenological variation and, when using regression to quantify trend 
slopes, it is essential to deal with trend shifts and breaks. The analysis of the full 
temporal domain of AVHRR and other datasets is needed to achieve these goals. 
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2.5.2 Spatial-contextual analysis 

The spatial-contextual approach, which includes the pixel location and interaction 
with adjacent pixels as source of information, is relatively unexplored. For coarse 
resolution data, this might include stratification by phenological zones, while at finer 
resolution changes in land use may be incorporated (Friedl et al., 2002; Lupo et al., 
2007). In any case, the spatial resolution of the imagery should correspond with the 
scale at which the processes act. In case of climate-driven land cover changes (e.g. 
warming, change in precipitation) a 1km spatial resolution will suffice, whereas most 
human-driven land cover changes (e.g. land transformation, logging, over 
exploitation) occur at 250m–500m scale (Townshend & Justice, 1988). Patchiness, or 
spatial configuration, of vegetation is often used to study ecosystem health or 
degradation (Bastin et al., 2001; Ludwig et al., 2007). In water-limited ecosystems, 
patchiness might be self-organizing due to a positive feedback relation between 
vegetation and water availability (Rietkerk et al., 2004): dense vegetation allows for 
high water infiltration into the soil and lower soil evaporation. As a result, vegetation 
may persist where it is already established but bare soil does not allow for vegetation 
to establish. The catastrophic shift between vegetated patchy state and bare 
homogeneous state, e.g. due to overgrazing, might have severe consequences for land 
degradation in drylands (von Hardenberg et al., 2001). It is a challenge and urgent 
issue to anticipate these changes using earth observation and include these in dryland 
degradation models (Kéfi et al., 2007). 

2.5.3 Modeling 

Satellite-based Earth observation methods are confined to physical measurement – in 
most cases radiances or reflectance factors (Schaepman-Strub et al., 2006). Mapping 
of indicators of land degradation relies on empirical models, mostly using statistical 
methods, to establish relationships between the physical measurement and the 
degradation process. Models that aim at predicting catastrophic shifts need a long 
time-series of sufficient quality and resolution to capture the dynamics of the system 
(Dakos et al., 2008). Currently available remotely-sensed time series enable trend 
analysis of some fast-reacting sub-systems but large climatic systems are known to 
react over centuries (deMenocal, 2008). At shorter time-scales, remotely sensed data 
can be coupled to outputs from vegetation dynamics or light-use efficiency models 
like Biome-BGC (White et al., 1999), LPJ (Bonan et al., 2003), CASA (Potter et al., 
1999) or crop growth simulation models (Jongschaap, 2006); differences between 
observed productivity and simulated productivity without human interference might 
indicate land degradation. Although many studies have shown the potential of this 
approach, it remains a challenge to combine these models with others, e.g. soil-
erosion models (Symeonakis & Drake, 2010) and land-change models / human-



Global land degradation monitoring 

35 

environment models (Turner et al., 2007; Helldén, 2008) into a generic land-
degradation model. 

2.5.4 Validation 

Validation is crucial for remote sensing studies. We have consistent satellite data of 
the past 30 years, but no compatible field data. Field validation is hardly feasible for 
pixels ranging from 1–8km (Running & Nemani, 1988) and, because of heterogeneity 
on the ground, extrapolation is often problematic. Every study of scalability issues 
deals with the trade-off between local precision, which is improved by on-the-spot 
assessment (Baartman et al., 2007) and global accuracy which needs a consistent, 
world-wide overview but which is hard to recognize in the field. The AVHRR dataset 
captures the typical temporal scale on which degradation processes occur, whereas 
the new generation sensors capture the typical spatial scale (Townshend & Justice, 
1988). If the 1981–2006 AVHRR data were to be processed in a manner 
quantitatively comparable to that of the new generation of sensors, many advantages 
of MODIS and SPOT Vegetation data could be realized while retaining historical 
information (Tucker et al., 2005). Many regional and national studies will remain 
essential to validate broad-scale degradation estimates – either qualitative or 
quantitative. 

2.6 Conclusions 

Land degradation is a global environmental and development issue but there is no 
consensus on its causes, severity and extent. Many scientific and political fields are 
involved in research and policy making and there is agreement about the need for up-
to-date, quantitative information at national and global scales to support mitigation. 
This requires consistent monitoring of key indicators at a range of scales. Loss of 
vegetation productivity or cover has been widely used to quantify land degradation, 
not least because of the availability of long-term NDVI time series. Broad-scale 
studies show a general greening trend over recent decennia but, also, regions of 
productivity decrease, e.g. in south China. The first quantitative global assessment of 
land degradation and improvement (GLADA) used yearly averaged linear trends in 
NDVI, translated in terms of NPP as a proxy measure. However, the results of global 
studies are disputed because they are different from traditional expert assessments 
and they are hard to validate in the field. At the same time, local assessments are 
only snapshots of small areas, generally too detailed for global application. Steps 
towards improvement of broad-scale assessments include more advanced time-series 
analysis, integration of state assessments using statistical methods with model based 
links to processes or drivers, the use of spatial-contextual information and validation 
using regional assessments. The first might include recognition of intra-annual 
variation, non-linear trends and breaks or shifts in greening and browning trends. The 
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others might include the use of regional studies at medium spatial resolution, for 
instance land degradation assessments, but also dynamic land use mapping and other 
land dynamics or land change studies for validation and identification of driving 
processes. A truly global assessment, empirical or deterministic, requires more than 
NDVI measurements, which have limited application in densely vegetated (high LAI) 
regions. Integration with a future global forest-degradation assessment is needed. 

The long-term AVHRR-NDVI record provides an invaluable historical record but 
there is still a gap in the methodology to couple this dataset to the datasets from the 
new generation of improved sensors. Using the full potential of all available datasets 
– in all temporal, spectral and spatial dimensions – will be a significant step towards 
global-scale assessment of land degradation. Advances in satellite-based remote 
sensing will improve its measurement, but further development of physically-based 
process models is needed to establish cause-and-effect relationships. Until then, 
Earth observation-based mapping of indicators will continue to reveal ambiguities.  
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Abstract 

Remotely sensed vegetation indices are widely used to detect greening and browning 
trends; especially the global coverage of time series normalized difference vegetation 
index (NDVI) data, which are available from 1981. Seasonality and serial auto-
correlation in the data have previously been dealt with by integrating the data to 
annual values; as an alternative to reducing the temporal resolution, we apply 
harmonic analyses and non-parametric trend tests to the GIMMS NDVI dataset 
(1981–2006). Using the complete dataset, greening and browning trends were 
analyzed using a linear model corrected for seasonality by subtracting the seasonal 
component, and a seasonal non-parametric model. In a third approach, phenological 
shift and variation in length of growing season were accounted for by analyzing the 
time series using vegetation development stages rather than calendar days. Results 
differed substantially between the models, even though the input data were the same. 
Prominent regional greening trends identified by several other studies were 
confirmed but the models were inconsistent in areas with weak trends. The linear 
model using data corrected for seasonality showed similar trend slopes to those 
described in previous work using linear models on yearly mean values. The non-
parametric models demonstrated the significant influence of variations in phenology; 
accounting for these variations should yield more robust trend analyses and better 
understanding of vegetation trends. 
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3.1 Introduction 

Vegetation, as the main component of the terrestrial biosphere, is a crucial element in 
the climate system (Foley et al., 2000) and there is high confidence that global 
warming is now strongly affecting the terrestrial biosphere (IPCC, 2007). Vegetation 
status is commonly used in assessments of productivity of natural and agricultural 
lands (Sims et al., 2008; Yu et al., 2009; Cai & Sharma, 2010) and a declining, or 
browning, trend is considered to indicate land degradation (Wessels et al., 2007; Zika 
& Erb, 2009; Metternicht et al., 2010). The normalized difference vegetation index 
(NDVI), based on red and near-infrared reflectance (Tucker, 1979), is correlated with 
vegetation activity measures (see Section 1.2.2) and trends in NDVI can thus be used 
as a proxy for greening or browning (Bai et al., 2008; Alcaraz-Segura et al., 2010). 
However, it is difficult to attribute cause-and-effect relationships to the detected 
trends, since variations in vegetation activity are driven by various factors, including 
climatic cycles and management practices (Lupo et al., 2001; Evans & Geerken, 
2004; Wessels et al., 2007). NDVI trends have been used for many purposes, 
including assessment of ecological response to global warming (Pettorelli et al., 
2005), phenological change (White et al., 2009), crop status (Tottrup & Rasmussen, 
2004), land-cover change (Hüttich et al., 2007) and desertification (Symeonakis & 
Drake, 2004). For example, systematic greening has been found in the Sahel 
(Anyamba & Tucker, 2005; Olsson et al., 2005; Heumann et al., 2007), most likely 
due to climatic variations and recovery from severe droughts (Nicholson, 2000; 
Herrmann et al., 2005). The effects of human-induced land degradation are 
highlighted by some studies (Hein & de Ridder, 2006) and disputed by others (Prince 
et al., 2007; Seaquist et al., 2008). Most analyses established trends by linear 
regression of NDVI, integrated annually (Bai et al., 2008) or seasonally (Eklundh & 
Olsson, 2003) but it is not always clear whether the derived slope coefficient differs 
significantly from zero (de Beurs & Henebry, 2004) or what may be the effect of 
integration by calendar year in the Southern Hemisphere where growing seasons 
straddle the year end (Wessels, 2009).  

Trends and inter-annual variability in vegetation phenology – the timing of 
seasonal activities of plants – affect the exchange of carbon, water and energy 
between the vegetation and the atmosphere (Baldocchi et al., 2001). A range of 
studies using station observations of phenology and temperature has shown a 
widespread trend of earlier onset of greening and longer growing seasons, especially 
in the Northern Hemisphere (Menzel et al., 2006; Rosenzweig et al., 2007; Sparks et 
al., 2009); these findings are substantiated by satellite observations since the early 
1980s (Myneni et al., 1997; Tucker et al., 2001; Zhou et al., 2001; Karlsen et al., 
2007) and are in line with the increase in net primary production (NPP) suggested by 
modeling studies (Nemani et al., 2003). Longer and warmer growing seasons 
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increase evapotranspiration and drought stress (Barber et al., 2000; Zhang et al., 
2009), wildfire incidence (Westerling et al., 2006) and intensity of carbon 
sequestration (Goulden et al., 1996; White et al., 1999). Therefore, a decrease in the 
growth rate within the growing season might be a more sensitive measure than total 
production as an indicator of stress and soil degradation. Unfortunately, information 
on growth rate, or intensity, is concealed by integration of NDVI data to annual 
values. 

When analyzing complete NDVI time series for trends, without yearly 
aggregation, linear regression needs to be used with care. Any auto-correlation 
within the dataset will violate some model assumptions (McBride & Loftis, 1994; de 
Beurs & Henebry, 2004; Beck et al., 2006) and trends may be less significant than 
they appear. Either seasonality must be removed (Hussian et al., 2005) or a non-
parametric trend test that accounts for seasonality may be applied (de Beurs & 
Henebry, 2004). In the Sahel, growth intensity has been measured by combination of 
the seasonal amplitude and the seasonal total but the amplitude appeared to be 
affected by saturation of the NDVI signal (Eklundh & Olsson, 2003). The non-
parametric analysis will not be so affected because NDVI values near the beginning 
and end of the season are well below saturation level. 

This paper considers monotonic trends; accordingly it is assumed that trends 
preserve their increasing or decreasing order throughout the time series. We examine 
differences between previously-published methods using the 1981-2006 global 
inventory modeling and mapping studies (GIMMS) dataset (Bai et al., 2008; Bai & 
Dent, 2009) and suggested improvements that do not require temporal aggregation: 
1) a linear model applied to NDVI residuals after the seasonal component has been 
removed; 2) a non-parametric model applied to the original NDVI data; 3) a non-
parametric model applied to vegetation development stages (NDVI data adjusted for 
the growing season). Long-term and annual harmonic analyses were used to filter 
cloudiness and seasonality, and to derive phenological measures. 

3.2 Materials and Methods 

Harmonic analysis was applied to the NDVI data to remove residual cloud and haze 
effects and seasonality. Greening and browning trends were then investigated using 
linear and non-parametric models, summarizing the outputs by land-cover class. 

3.2.1 The GIMMS dataset 

NDVI is the most-used product derived from NOAA-AVHRR data (Cracknell, 2001). 
We used GIMMS version G (Tucker et al., 2004), consisting of 26 years of NDVI 
data from 1981 through 2006, summarized fortnightly at 8km resolution. The 
fortnightly time series was derived from daily 4km global area coverage data from a 
suite of NOAA satellites (Tucker et al., 2005), applying the maximum-value 
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composite (MVC) technique to remove bias caused by atmospheric conditions 
(Holben, 1986). See Section 1.2.3 and Table 1.2 for more details about the GIMMS 
dataset. 

3.2.2 Harmonic analysis of NDVI time series 

Phenological patterns were extracted from the GIMMS data using a modified 
implementation of the harmonic analysis of NDVI time series (HANTS) algorithm 
(Roerink et al., 2000; de Wit & Su, 2005) which describes seasonal effects in 
vegetation using a limited number of low-frequency cosine functions with different 
phases, frequencies and amplitudes. The algorithm uses Fourier analysis, 
complemented with detection of outliers, which are flagged and replaced iteratively 
(Figure 3.1).  

First, the raw GIMMS data were used as input for a fast Fourier transform (FFT). 
The frequencies representing the yearly, 6-monthly and 4-monthly signals were 
selected from the Fourier spectrum. Based on these frequencies, the spectrum was 
transformed back into a filtered NDVI time series using inverse FFT. Outliers were 
filtered using a fit-error tolerance (FET): each original NDVI value that deviated 

Figure 3.1 Harmonic analysis of NDVI time series flowchart. 

Table 3.1 Parameters used for the harmonic analysis of NDVI time series (HANTS) algorithm. 

Parameter Single year Full temporal extent (26yrs) 

Number of data points 26 624 

Fourier frequencies 0,1,2,3 0,26,52,78 

Fit error tolerance (FET) 0.1 0.1 

Max. number of iterations (iMAX) 6 12 

Min. number of retained data points 16 (66.7%) 416 (66.7%) 

1st iteration
GIMMS HANTS input

apply
FFT

Fourier
spectrum

select
freqs

apply
iFFT

Filtered NDVI
time series

Any data points below FET?
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no
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from the harmonic curve by more than the FET-value was considered noise and was 
replaced by the filtered value. This procedure was repeated until either no points 
exceeded the FET or a pre-defined constraint was reached; the constraints concern 
the maximum number of iterations (iMAX) and a threshold on retained data points, 
which is closely related to the degree of over-determinedness as defined by Roerink 
et al. (2000). The number of retained data points may be taken as a measure of the 
performance of the algorithm. A disadvantage of HANTS is the lack of objective 
rules to determine its control parameters; parameterization requires experience and 
running several parameter combinations.  

We used HANTS in two ways. First, the per-pixel long-term harmonic patterns 
were determined using the full-length GIMMS dataset (HAfull). Secondly, the 
harmonic pattern was extracted for each year separately (HAyear). Differences 
between the two were considered NDVI anomalies (A) and used for temporal trend 
analysis. Figure 3.2 and Equation 3.1 illustrate how the anomalies were calculated. 

)()()( tHAtHAtA fullyear −=      (3.1) 

Using anomalies, seasonality could be almost fully eliminated from the data, as 
illustrated by the autocorrelation functions in Figure 3.3. The algorithm was tuned to 
disregard values lower than zero, as these correspond to water or null-values in the 
GIMMS data. Fills, having value zero, replaced the eliminated values. The FET was 
fixed to 10% of the NDVI range (0.1), so observations with a lower anomaly were 
retained. The number of iterations required depended on the biome and the length of 

Figure 3.2 Example of NDVI anomalies as derived from the long- and short-term fits of the harmonic analysis. 
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the time series. For a single-year analysis, 1 or 2 iterations proved sufficient for all 
except some tropical areas in which the amplitude was limited and cloudiness 
affected even the fortnightly MVC images (Julien & Sobrino, 2010); in these cases a 
stable fit was obtained after 3 or 4 iterations. The iMAX was fixed to 6 iterations in the 
yearly analysis. The full time series is 26 times longer and needed more iterations for 
a stable fit. In this case, the iMAX was doubled to 12. The minimal number of retained 
data points was set to 16 and 416 for the yearly and the full datasets, respectively. 
This implies that the output curve is always fitted to at least two-thirds of the original 
data points, even if the FET is not achieved. Table 3.1 lists the parameters used for 
analysis of both the full dataset and each year separately. 

3.2.3 Extraction of phenological measures 

Although satellite-observed phenology – also referred to as land-surface 
phenology (LSP) – is not identical to plant phenology, it is considered to be related 
(Doktor et al., 2009; Liang & Schwartz, 2009; White et al., 2009) and LSP has been 

Figure 3.3 Average autocorrelation functions (ACF) of GIMMS data (A: interpolated, B: anomalies) with
fortnightly lags (lag 24 = 1 year). The dotted lines indicate the 95% confidence interval of zero autocorrelation.
For both, single and double growing seasons, 30 pixels were used. 
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used to define developmental stages of vegetation. Analyzing trends in NDVI by 
vegetation development stage rather than by day of the year eliminates variations in 
the start and length of growing season – since the growing season is fully contained 
within the first developmental stage (start of season, SoS), and the last stage (end of 
season, EoS). Various approaches have been described to derive SoS from NDVI 
time series: half-maximum (White et al., 1997), 10% amplitude (Jönsson & Eklundh, 
2002), inflection point (Moulin et al., 1997), maximum curvature (Zhang et al., 
2003), delayed moving average and forward-looking moving average (Reed et al., 
2003). Following White et al. (2009), we used the first derivative of the HANTS-
smoothed NDVI profile, where SoS is defined as the maximum of the first derivative 
(maximum NDVI increase), and EoS is defined as the first occasion after SoS where 
the NDVI value drops below the value at the start of the growing season. Between 
SoS and EoS, ten equally spaced vegetation development stages were defined. This 
approach is reliable in comparison with several other methods (White et al., 2009), 
but it can be anticipated that the approach only works for single growing seasons and 
that it will not be able to detect multiple growing seasons. This limits the 
applicability of the method in multi-cropping regions. For illustration, Figure 3.4 
shows an example of a growing season in which several measures are indicated.  

The NDVI values at each development stage (NDVIds) were calculated using the 
yearly harmonic fit (Eq. 3.2a), where FC represents the Fourier Component, 
NDVImean is the mean NDVI (FC0), A is the amplitude, Φ  is the phase shift and x is 
the day number represented in radians (Eq. 3.2b). 

 =
Φ+⋅⋅+= max

1

)cos(
FC

FCi iimeands xiANDVINDVI    (3.2a) 

π2365/ ⋅= dayx        (3.2b) 

For each growing season, this provided 12 NDVIds values, which were used as 
input for the seasonal Mann-Kendall (SMK) model described below. 

3.2.4 Trend analysis  

NDVI time series are characterized by outliers, seasonality and serial auto-
correlation. The GIMMS data were analyzed for trends using three different 
strategies that take account of these effects – all involving harmonic smoothing to 
remove outliers and seasonality.  

The first approach – here referred to as the linear model (LM) – uses the 
smoothed time series (624 fortnightly values from 1981 through 2006) to analyze 
trends in anomalies (A) between the long-term harmonic fit and yearly fits (Eq. 3.1). 
In the case of a perfectly stable seasonal pattern without additional trend, there would 
be no anomalies; conversely, differences between the long-term and yearly fits may 
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indicate land degradation or improvement, particularly if there is a significant 
negative or positive trend over time. Trends were quantified by the slope of the 
regression line derived from a simple linear model of the NDVI anomalies against 
time. The fitted slopes were tested for significance using analysis of variance 
(ANOVA) with a significance level (α) of 0.1. Only slopes that significantly differed 
from zero have been considered to indicate greening or browning trends.  

The second approach used the HANTS-interpolated data without removing 
seasonality. This dataset would violate the assumption of independent residuals, 
which is a basis for ordinary least-squares regression. For this reason, the seasonal 
Mann-Kendall test was used as a non-parametric test for monotonic trends. The test 
may be used with missing or tied data and its validity does not depend on the data 
being normally distributed. Mann (1945) first suggested using the Mann-Kendall test 
for significance of Kendall’s τ for temporal trends and this approach has since been 
applied to seasonal data, mainly for hydrological analyses (Hirsch et al., 1982) and, 
more recently, with NDVI data (Chamaille-Jammes et al., 2006; Pouliot et al., 2009; 
Alcaraz-Segura et al., 2010). The test consists of computing the Kendall Score (S) 
and its variance separately for each season (p). In this case, p equals the number of 
observations in a year (24). For each season, n equals the number of observations in 
the record (26). S denotes the sign (sgn) of the change between subsequent samples 
and attains the value -1, 0 or +1 (Hirsch & Slack, 1984). These individual values are 
summed over all samples to obtain the seasonal statistic Sg (Eq. 3.3). The sum over 

Figure 3.4 Example of single growing season and related phenological measures. Start of season (SoS) is defined
as the date of the inflexion point of the NDVI curve and end of season (EoS) as the date at which NDVI drops
below the SoS value. In between these dates, 10 equally distanced vegetation development stages (VDS) are
defined, covering the entire growing season (shaded area). 
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all seasons provides the final test statistic S’ (Eq. 3.4). Subsequently, the Kendall's 
rank correlation coefficient (τ) ranging between -1 and 1 (Kendall, 1938), is 
calculated (Eq. 3.5). The null hypothesis H0 is that for each of p seasons the n 
samples are randomly ordered (mean S = 0), versus the alternative hypothesis HA of a 
monotonic trend in one or more seasons (Hirsch & Slack, 1984). H0 was tested 2-
sided against HA and rejected when Kendall's τ of NDVI versus time is significantly 
different from zero (α = 0.1). We then conclude that there is a monotonic trend in 
NDVI over time: a greening trend if τ > 0 and a browning trend if τ < 0.  
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In a further step, the slope of this trend may be quantified using a Kendall slope 
estimator, but we preferred using the Kendall's rank correlation coefficient τ (Eq. 
3.5) directly. 

The seasonal approach compares events linked to the same seasonal phase (e.g. 
the first half of January); each scene is compared with the corresponding scene in 
other years but no cross-phase comparisons are made. In reality, phenological cycles 
vary in start and length according to the weather (Moulin et al., 1997; Zhou et al., 
2001; Cleland et al., 2007); such variability may produce trends that can be falsely 
interpreted as land degradation. Therefore, we propose a third method in which we 
use the SMK method to analyze trends by vegetation development stages (VDS) 
rather than by month or calendar day. This approach eliminates phenological shifts 
and variations in length of season (LoS). A linear model of yearly LoS values was 
used to find regions where greening or browning may be caused by a longer or 
shorter thermal growing season, and the coefficient of variation (CoV) was used as a 
measure of reliability: a large variation in the identified LoS might indicate 
limitations to the model’s capability to extract phenological parameters, for instance 
as a result of multiple growing seasons or low seasonal amplitude. 

The International Geosphere-Biosphere Program (IGBP) global land cover 
characteristics database (Loveland et al., 2000) was used to calculate statistics of our 
results according to land-cover class. The 1km dataset was resampled to 8km 
resolution. In this process, the IGBP biome with the highest occurrence was assigned 
to each pixel (majority resampling). To minimize edge effects and mixed pixels, only 
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clusters of more than 50 adjacent pixels belonging to the same IGBP class were used 
in the calculation of statistics. A land-cover map, based on the same classification 
scheme but resampled to 0.5deg spatial resolution, is shown in Figure 6.1a (p. 98). 

3.3 Results 

3.3.1 Linear trends in NDVI anomalies 

Figure 3.5a shows the results of the linear model based on the NDVI anomalies: 
green and red colors indicate greening and browning, respectively; areas with little or 

Figure 3.5 (a) Change in NDVI (dNDVI/dt, t in years), based on linear model of NDVI anomalies (1981–2006).
(b) Kendall's tau from seasonal Mann-Kendall model on data adjusted by vegetation development stage (VDS). In
both cases trends were assessed for significance (α = 0.1) using analysis of variance (ANOVA). Weak trends were
masked. 
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no vegetation (NDVI < 0.1) were masked. Overall, greening predominates, especially 
in the Northern Hemisphere and most notably in the boreal forests, eastern Europe, 
Asia Minor, the Sahel, and western India. In the Southern Hemisphere, greening is 
apparent in Western Australia and Botswana; and browning in the tropical Africa and 
Indonesia / Oceania and in northern Argentina.  

3.3.2 Seasonal trends in interpolated NDVI 

The SMK model seconded some of the conspicuous regions of greening as identified 
by the linear model, including western India and the Sahel, but it showed a different 
picture for some other regions. In some cases the detected trend is even inverted (e.g. 
parts of Botswana, Nigeria, Argentina and Australia). With few exceptions, the 
absolute Kendall τ scores were not larger than 0.25, which indicates rather weak 
trends and therefore, the map is not illustrated here. 

The extent to which the SMK model is influenced by phenological variations is 
determined by the variation in SoS (phenological shift) and LoS (variation in length 
of the growing season). If the growing season is stable, then the inter-annual VDS 
dates are close to each other, which is essential for the SMK model. Figure 3.6 shows 
the variation in LoS using the slope of the linear trend (days/year) analysis and the 
CoV. It is clear that the growing season is not stable everywhere: most regions 
showed a positive or negative trend in LoS (Figure 3.6a). This trend was significant 
(α=0.1) in parts of the Sahel, Asia, North-America and northern Europe, with lowest 
p-values in Sweden and Russia. The CoV values indicate that the extraction of LoS is 
stable (low CoV) across most of the Northern Hemisphere but less stable in the 
tropics and some parts of the Southern Hemisphere (Figure 3.6b).  

3.3.3 Seasonal trends in phenology-adjusted NDVI 

The map of Kendall’s τ scores from the VDS model (Figure 3.5b) identifies the same 
areas of distinct greening but the absolute Kendall τ values are higher than those 
from the SMK model (commonly higher than 0.3 in areas with a greening or 
browning trend).  Results from the VDS model should be interpreted in combination 
with the trend in LoS (Figure 3.6) because greening might be caused either by a 
longer growing season or by a higher rate of production. The former effect is not 
captured by this method because the data were adjusted for changes in length of 
growing season. 
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3.3.4 Significance of trends 

In Figure 3.5, the non-masked pixels show significant trends, green indicates a 
positive trend and red a negative trend. The analysis of variance (ANOVA) of the 
LM results shows that the identified trends are significant in large parts of Europe, 
western India, Western Australia, the Sahel, Botswana and in some parts of 
Argentina, North America and Canada. Trends are weak in most tropical and tundra 
regions. The SMK model had non-significant values in most places and these results 
are not shown in Figure 3.5; only few pixels with significant trends were found in 
western India, Western Australia and parts of the Sahel and Asia Minor. The VDS 

Figure 3.6 Change in length of growing season. (a) Magnitude of change in days per year; insignificant (α = 0.1)
changes were masked. (b) Coefficient of variation (standard deviation / mean) of the observed growing season
length. 
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model was more powerful in rejecting the no-trend hypothesis: significant trends are 
revealed in the northern Sahel, Asia Minor, Scandinavia, Western Australia and 
Botswana and smaller parts of western India, China, Canada and the Horn of Africa 
(Figure 3.5b). 

3.4 Discussion 

3.4.1 Model results 

The slopes found using the linear model and fortnightly NDVI values were very close 
to the linear trend analysis of yearly cumulative values published by Bai et al. 
(2008). On average, the difference in change is < 0.001 units and never as much as 
0.01 units – which supports the contention that reducing the temporal resolution to 
yearly values and the choice of annual break-point does not affect the trend slopes 
(Dent et al., 2009), given that the time series start and end in the same phase. 

The SMK model is valid only when it is conceptually correct to compare 
measurements based on calendar date. In case of NDVI time series, this assumes that 
there is no phenological shift or variation in length of growing season throughout the 
measured period – which is not the case. Therefore, the SMK model identified only 
the most conspicuous greening regions; the likeliness (according to Kendall’s τ) and 
significance (according to p-values) were generally low. 

In the VDS model, Kendall’s τ values were higher and p-values lower than in the 
SMK approach but VDS measures a different attribute of vegetation activity. The LM 
and SMK models use values with equal intervals (continuous fortnightly 
measurements) whereas VDS is based on an equal number of values for each growing 
season (the interval between these values might differ between years). Therefore, the 
VDS model does not show greening or browning associated with variation in 
growing season; it measures activity within a growing season (changes in 
photosynthetic intensity) rather than of the total yearly activity (changes in integrated 
NDVI). 

3.4.2 Land-cover stratification 

The LM indicated greening in all biomes except deciduous needle-leaf forest, where 
no trend was observed (Figure 3.7a no. 3). Figure 3.7b,e show that the LoS trend 
opposed the photosynthetic intensity trend in all biomes except shrubland and 
savanna. For cropland, the detected LoS trend was negligible. In all forest types but 
especially in Scandinavian boreal forest, the VDS model indicated a decrease in 
photosynthetic intensity which was counterbalanced by an overall increase in LoS 
(Figure 3.5b and Figure 3.6a). This might indicate that vegetation growth was no 
longer limited by temperature but by other constraining factors such as exhaustion of 
soil water or nutrients, which is in line with results from evapo-transpiration models 
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(Zhang et al., 2009). On the other hand, the significance of the trends appeared to be 
highest outside of the forest biomes (Figure 3.7d) but, as already remarked, the 
power of the LM might be over-estimated (the predictive power of the models used 
and the performance of HANTS are discussed in Section 3.4.4). 

3.4.3 Assessment of greening and browning trends 

All three methods agreed on a significant greening across western India, Western 
Australia, Asia Minor, parts of the Sahel, Canada and the USA. Validation, however, 
is a moot point. Even if field observations were available, they are usually limited to 
a few points in time that may not be representative for 8km pixels (Running & 
Nemani, 1988). We therefore compared our results with regional studies. 

An inherent problem with time series is that the initial status is often not known. 
The Sahel, for instance, experienced severe droughts in the late 1960s, 1970s and the 
early 1980s (Nicholson, 2000; Zeng, 2003; Govaerts & Lattanzio, 2008); recovery 
from these droughts shows as greening that is confirmed by several studies 
(Anyamba & Tucker, 2005; Herrmann et al., 2005; Olsson et al., 2005; Heumann et 
al., 2007) and there is controversy about this greening trend concealing the role of 
human-induced land degradation (Hein & de Ridder, 2006; Prince et al., 2007). The 
VDS model showed strong positive trends in the northern parts of the Sahel, e.g. 
central Chad and northern Burkina Faso, indicating that greening is caused by a more 
intense growing season rather than a longer season, in line with recovery from 
drought. Greening in the Deccan thorn forests of west India can be explained, in part, 

Figure 3.7 Statistics based on selected IGBP land clover classes. (a) change in NDVI from linear model, (b)
Kendall’s tau of vegetation development stage (VDS) model, (c) Fraction of retained data points (RDP) from
HANTS algorithm, (d) p-values of linear and VDS models, (e) change in length of growing season (LoS). Some
land cover classes (Table 2) have been merged based on similar response. Classes which are not shown are:
urban, snow and ice, barren / sparsely vegetated, permanent wetlands and water bodies. 
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by recovery from degradation that occurred prior to the start of the GIMMS record 
(Champion & Seth, 1968); nowadays, parts of these shrublands are protected (Chape 
et al., 2003) and recovering from human-induced degradation. 

In Western Australia, Donohue et al. (2009) identified greening by an increase in 
fPAR (from AVHRR PAL) for the period 1981–2006; greening in north-eastern 
Australia is also in line with the increase in fPAR. In contrast, central Australia 
browned during this period; this might be explained by an 0.1 ºC/yr increase in 
temperature (Nemani et al., 2003). Also in the Southern Hemisphere, there has been 
greening in Botswana, which is in line with the 1% yearly increase in NPP found by 
Nemani et al. (2003) using AVHRR data and a production-efficiency model. 

In Canada and the USA, all models showed three notable greening regions: (1) the 
Low-Arctic tundra in Alaska, North West Territories and Yukon; (2) tundra and taiga 
east of Hudson’s Bay; and (3) the prairie of southern Saskatchewan. These trends are 
most conspicuous in the VDS model and confirmed by other studies. Pouliot et al. 
(2009) used a similar Mann-Kendall approach with GIMMS data and found NDVI 
changes of about 0.01 units in all three regions. Goetz et al. (2005), using the same 
input data, confirm two out of three greening regions and also browning in Alaska, 
close to the British Columbia / Alberta border, and some parts of Quebec; they 
conclude that growth in tundra had increased due to rising CO2 concentration and 
temperature but, in the boreal forest, various other factors including fire complicated 
the issue. Alcaraz-Segura et al. (2010) showed that the GIMMS dataset largely 
misses greening due to post-fire recovery. This is also mentioned by Neigh et al. 
(2008) who attribute greening of the tundra to an increase in temperature and 
associated growing season lengthening and greening of the prairies mainly to an 
increase in rainfall, which was the limiting factor for growth and lead to much higher 
crop yields and conversion of land to arable.  

There is some discrepancy between the models for Eurasia. According to the 
linear model, greening prevailed over browning, most conspicuously towards the 
east, in line with the relation between PAL NDVI and land surface temperature 
(Julien et al., 2006) – drier areas in the south have become hotter and even drier 
while northern Europe has become cooler. Stöckli & Vidale (2004) found a related 
positive trend in LoS of 1.4 days per year in central Europe (Germany) and a 
negative trend of -0.54 days per year in Scandinavia but our harmonic analysis 
showed an increase in LoS in Scandinavia (Figure 6), which might indicate warming 
(Hüttich et al., 2007; Karlsen et al., 2007). A longer growing season would explain 
the differences between the LM and the VDS model: greening due to a longer 
growing season does not necessarily produce a greater intensity of vegetation activity 
in the growing season. The VDS model showed a decline in vegetation activity in 
Scandinavia, whereas the LM showed a slight increase. 

In their global assessment and in detail in China, Bai et al. (2008) and Bai & Dent 
(2009) used GIMMS data in another way to assess land degradation and 
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improvement. They applied a linear model but introduced additional criteria of rain-
use efficiency and energy-use efficiency to screen NDVI trends caused by drought 
and climatic warming. By translating NDVI to NPP using the relationship with 
MODIS NPP data, they derived a tangible measure of severity that can be subjected 
to economic appraisal. For China, they concluded that land degradation is most 
conspicuous in the rapidly-developing humid south, rather than in the drylands of the 
north and west, where land reclamation initiatives have been concentrated. This 
conclusion is supported by our results from the LM and the VDS models. 

3.4.4 Limitations and lessons learned 

Harmonic analysis dealt effectively with some of the limitations of previous work 
that used yearly-aggregated NDVI data. HANTS removed cloud interference and 
eliminated the influence of phenological shift between the Northern and Southern 
Hemispheres – but it did not remediate inter-annual phenological shifts from which 
the LM and, especially, the SMK model suffer. This problem was targeted by the 
single-growing-season normalization used in the VDS method.  

Serial autocorrelation remained an issue for short temporal lags with the use of 
the linear model (Figure 3.3). The reason for this resides in the fact that a possible 
deviation from the long-term norm is likely to show for much of the growing season 
under consideration, rather than for a single biweekly observation. Providing that 
seasonality is accounted for, the power of the statistical methods is mainly 
determined by the sample size. Serial auto-correlation is an issue if the value of a 
sample is partly determined by its neighbors – so a dataset with serial auto-
correlation contains less information than one of the same length with truly 
independent samples. As such, serial auto-correlation spuriously inflates the power of 
the test (McBride & Loftis, 1994). It is a challenge to distinguish between 
statistically significant changes and practically significant changes and, in this 
sense, non-parametric models should be more robust than parametric models or, from 
a different perspective, the linear trend is more powerful in rejecting H0 (Hirsch & 
Slack, 1984) – which might explain that the LM trends appear more significant 
(Figure 3.5). 

The performance of HANTS is biome-dependent. Most IGBP biomes showed 
harmonic fits with more than 90% retained data points (Figure 3.7c) so the fitted 
NDVI curve lost less than 10% of the original observations. Exceptions are tropical 
evergreen broadleaf forest, deciduous needle-leaf forest, and shrubland. In the IGBP 
classification, latter includes most tundra – where NDVI is zero, or a fill value, under 
snow cover and increases quickly to high values upon snowmelt (a situation that 
would be better described by double logistic functions (Beck et al., 2006). In the 
tropics, by contrast, NDVI is high throughout the year so noise in the phase-shift 
estimates makes it hard to extract phenological measures. 
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Better analysis requires a globally applicable method for deriving the start and 
length of growing season, which is neither simple nor straightforward (Hird & 
McDermid, 2009). With the HANTS technique used in this study, phenological 
measures can be derived automatically only for areas with a single annual growing 
season but it is essential to extract multi-season measures, for instance in eastern 
China, the Horn of Africa and the Indian Ganges plain. For these regions, Figure 6b 
shows a large coefficient of variation in the extracted LoS, probably caused by slight 
variations in the minimal NDVI between the growing seasons, which implies that, in 
one year, EoS occurs at the end of the first growing season and, in another year, at 
the end of the second season. This requires a procedure to extract multiple growth 
periods (e.g. Zhang et al., 2003) and, ideally one globally applicable method. 
Although several methods are available, each is suitable for only one or few biomes. 
The method proposed by Geerken (2009), defining a set of reference curves, is a step 
towards global application. 

Applying NDVI trends for land degradation assessment, definition of land 
degradation remains contentious. Since the initial status is often not known, greening 
might represent recovery from drought or other disturbance; and greening resulting 
from the replacement of old-growth forest by crops or grassland might be considered 
as either degradation or land improvement, depending on the researchers point of 
view. In the humid tropics, the NDVI proxy is less reliable due to saturation of the 
signal (Myneni et al., 2002) and cloud cover; although most trends are in line with 
decreasing NPP (Nemani et al., 2003), there are also contradicting trends. 

At present, choice of NDVI time series presents a trade-off between temporal 
coverage and spatial resolution: between 10 years at 250–500m resolution (e.g. 
MODIS) or almost 30 years at 1–8km spatial resolution (AVHRR). The longer period 
captures more climatic cycles and significant changes in land use and management, 
but a single pixel might contain several land-use types or ecosystems. These datasets, 
nevertheless, are more suitable for capturing temporal dynamics.  

We have assessed monotonic trends in NDVI but vegetation trends are often 
complex and breaks or interruptions of trends are common (Tucker et al., 2001; 
Slayback et al., 2003; Angert et al., 2005; Xin et al., 2008; Verbesselt et al., 2010a). 
Major volcanic eruptions can cause sudden breaks in a trend; fast-acting climatic 
cycles like El Niño or broad-scale land management practices may bring about large 
fluctuations. Gradual changes may be associated with slow-acting climatic cycles or 
the accumulation of changes in management but these gradual changes might, 
ultimately, trigger a catastrophic shift in the ecosystem (Scheffer et al., 2001). Trend 
breaks will be easier to identify within long time series of global observations. 
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3.5 Conclusions 

We used harmonic analysis to enhance linear and monotonic trend analysis of 
GIMMS NDVI time series. Greening and browning trends were revealed but these 
could not be quantified unambiguously. Variations in phenology confused simple 
greening or browning trends but this aspect may be illuminated by using the seasonal 
Mann-Kendall (SMK) model with normalization of the growing season using 
vegetation development stages (VDS), rather than analysis by calendar day. The VDS 
model showed that greening or browning depends on growing intensity as much as 
yearly-aggregated NDVI. 

At global scale, phenological shifts and variation in length of growing season 
render comparisons of NDVI values by calendar date unsatisfactory. However, it is 
difficult to extract phenological measures using a generalized method; the explaining 
power of the VDS model may be increased by, for instance deriving these measures 
by several methods, according to the phenology or climate zone, but this has yet to 
be undertaken. 

Linear-model slopes derived from anomalies between long-term and yearly 
harmonic fits hardly differ from the slopes of yearly-aggregated NDVI data – so it 
unlikely that aggregating to yearly values severely influences NDVI trend analysis. 
However, the explaining power will decrease with a decreasing number of 
observations.  

All models were consistent in detecting a greening trend in western India, the 
Sahel and parts of Asia Minor, Canada, northern China and Western Australia; the 
land-cover classes showing most conspicuous greening were shrubland, savanna and 
cropland. 
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Abstract 

Time series of vegetation indices (VI) derived from satellite imagery provide a 
consistent monitoring system for terrestrial plant productivity. They enable detection 
and quantification of gradual changes within the time frame covered, which are of 
crucial importance in global change studies, for example. However, VI time series 
typically contain a strong seasonal signal which complicates change detection. 
Commonly, trends are quantified using linear regression methods, while the effect of 
serial autocorrelation is remediated by temporal aggregation over bins having a fixed 
width. Aggregating the data in this way produces temporal units which are 
modifiable. Analogous to the well-known modifiable areal unit problem (MAUP), the 
way in which these temporal units are defined may influence the fitted model 
parameters and therefore the magnitude of change detected. This chapter illustrates 
the effect of this modifiable temporal unit problem (MTUP) on a synthetic data set 
and an actual VI data set. Large variation in detected changes was found for 
aggregation over bins that mismatched full lengths of vegetative cycles, which 
demonstrates that aperiodicity in the data may influence model results. Using 26 
years of VI data and aggregation over full-length periods, deviations in VI gains of 
less than 1% were found for annual periods (with respect to seasonally adjusted 
data), while deviations increased up to 24% for aggregation windows of 5 years. This 
demonstrates that temporal aggregation, even for bins corresponding to full calendar 
years, needs to be carried out with care in order to avoid spurious model results. 
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4.1 Introduction 

Vegetation systems provide a quick and measurable response to many environmental 
changes at a wide range of spatial and temporal scales. The availability of historical 
time series from satellite observations with daily global coverage makes operational 
monitoring of vegetation condition a matter of detecting and interpreting changes 
within these datasets. Change detection, however, is often complicated by a number 
of statistical preconditions that are intrinsic to time series of spectral vegetation 
indices with dense sampling intervals. Literature is replete with the most frequently 
used approach for detecting temporal trends, i.e. fitting linear regressions of a 
(temporally aggregated) vegetation index (VI) against time (Paruelo et al., 2004; 
Herrmann et al., 2005; Olsson et al., 2005; Heumann et al., 2007; Bai et al., 2008), 
but this needs to be done with care in order to avoid spurious trends. The detected 
slope (or gain) coefficient can be used to calculate the amount of change, but it is not 
always tested for significant deviation from zero, nor are standard statistical 
assumptions always respected (de Beurs & Henebry, 2005a). Seasonal variation is an 
important cause for the data to violate assumptions like homogeneous variation and 
absence of serial correlation in the residuals. In few cases linear models were fitted 
directly to seasonal data (e.g. Pelkey et al., 2000), but seasonality is typically 
remediated using temporal aggregation, where the aggregation window (or bin size) 
corresponds to the length of a calendar year. The resulting bins can be regarded as 
temporal units, which, like spatial units, are modifiable (Taylor, 2010). In case of 
spatial units, it has been demonstrated that the size may influence the model results, 
which is known as the modifiable areal unit problem (MAUP) (Openshaw & Taylor, 
1979). This problem may affect a myriad of spatial studies in geography (Dark & 
Bram, 2007) and remote sensing (Marceau et al., 1994). Similarly, there is a 
modifiable temporal unit problem (MTUP) that is as troublesome as the MAUP, as it 
essentially entails the question of scale in the temporal dimension (Çöltekin et al., 
2011). In analysis of time series of satellite vegetation indices this problem is easily 
disregarded, although it may result in misjudgements of temporal trends in the data. 
Aspects of the problem include the starting phase of a time series or segment, its 
extent and the level of temporal aggregation. Some studies, which analyse temporal 
trends in vegetation activity, have been debated in literature, in part because of such 
issues (Wessels, 2009; Samanta et al., 2011). The aim of this paper is to demonstrate 
possible MTUP effects in analysis of time series of satellite imagery using both real 
and simulated VI data and to provide, in this sense, a framework for linear time-
series regression. 
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4.2 Data and methods 

4.2.1 Trend analysis and the modifiable temporal unit problem 

Many trend analysis methods exist, including parametric and non-parametric 
approaches. The most common method to detect changes in cyclic time series is the 
use of a linear model (Equation 4.1) obtained using ordinary least-squares (OLS) 
regression. The slope coefficient β, or gain, was used to calculate the change in Y as 
β times the number of bins. This number is determined by the aggregation level (or: 
number of observations per bin), which is equivalent to the sample interval. Given 
that the datasets consist of 24 observations per year, aggregation level 24 
corresponds to yearly bins and so on. 

ttay ωβ ++=        (4.1) 

Where ωt, the residual, is ideally independent and identically distributed (iid), i.e. 
white noise. The dependent variable Y can be any kind of VI or cyclical 
environmental parameter in general. The most common spectral vegetation indices 
are based on the rapid change in reflectance of chlorophyll between the red and near 
infrared (NIR) ranges. Here, we used the normalized difference vegetation index 
(NDVI), which is a commonly used proxy for terrestrial photosynthetic activity. A 
decrease over time is referred to as browning, whereas an increase indicates greening 
(de Jong et al., 2011a). Given this, we used a three-step approach to demonstrate the 
MTUP effect: 
 
(step 1)  The influence of starting phase and data extent is illustrated using a 

perfectly harmonic model, without trend or noise components. Using 
a sample size of 24 observations per cycle this implies that the 
model residuals are far from independent, which invalidates linear 
regression by OLS. However, it provides a theoretical scenario to 
demonstrate our point that spurious slopes can be detected from 
cyclical data. 

 
(step 2) Next, the sample was aggregated into bins of fixed width. These 

bins represent different temporal units (or aggregation levels). The 
MTUP effect is demonstrated by calculating the change in NDVI 
from linear models (Equation 1) fitted for different bin sizes. The 
minimum number of bins over the full length of the synthetic time 
series was set to 5.  

 
(step 3) Finally, step 2 was repeated using actual data from Advanced Very 

High Resolution Radiometer (AVHRR) sensors. The detected 
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changes were compared to the corresponding change obtained using 
seasonally adjusted data without temporal aggregation. The seasonal 
adjustment was carried out using a Fourier method (Roerink et al., 
2000) with four components, following de Jong et al. (2011a). The 
significance of the slopes in the seasonally adjusted data was 
assessed using generalized least-squares (GLS) in order to account 
for remaining short-lag serial correlation. A sample of 1,000 pixels 
was used for calculation of deviations introduced by the MTUP and 
the state of Queensland in north-eastern Australia was used to 
illustrate possible spatial patterns introduced by different temporal 
aggregation schemes.  

 
Provided that the level of serial autocorrelation can be disregarded after aggregation, 
the significance of the detected trends can be tested using OLS-based t-tests conform 
the hypotheses H0: β = 0 and HA: β ≠ 0. Analogous to step 3 (described above), we 
used GLS-based tests to account for remaining serial autocorrelation. Slopes 
coefficients beyond the 0.05 confidence level were considered significant. All 
analyses were performed using standard R functionality (R Development Core Team, 
2011). 

4.2.2 Time-series data 

Synthetic data 

Synthetic time series were used to illustrate the effect of cyclic data on regression 
analysis. For this purpose, model parameters were chosen in such a way that they 
approximate the AVHRR time series described below for a temperate (non-forest) 
environment with a single growing season. As such, the peak-to-peak amplitude was 
set to 0.6 – fluctuating around a mean of 0.4 – and the number of observations per 
year to 24. NDVI (Y) was simulated using a cosine model with no underlying 
positive or negative trend (Equation 4.2a). In this equation, a denotes the amplitude, 
t the radians equivalent of the observation number (x) (Equation 4.2b) and Φ the 
phase shift. 

)cos( Φ+⋅+= tayyt        (4.2a) 

π224/ ⋅= xt        (4.2b) 

AVHRR data 

The longest run of NDVI measurements is available from AVHRR sensors on board a 
series of National Oceanic and Atmospheric Administration (NOAA) satellites. 
Acquisition started in 1981 and is still on-going, but pre-processed datasets are for 
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now available until the year 2006. Pre-processing includes correction for orbital 
decay, satellite changes and several atmospheric effects. The resulting NDVI values 
were aggregated into biweekly composites with ~8km spatial resolution. The full 
description of the dataset and the processing steps is provided by Tucker et al. 
(2005). A sample of 1’000 pixels was used for the MTUP analysis. Other vegetation 
indices, including the enhanced vegetation index (EVI) or the soil-adjusted 
vegetation index (SAVI), have similar statistical characteristics and therefore the 
problem described here is not restricted to NDVI. 

4.3 Results and discussion 

4.3.1 Synthetic data 

In case of seasonal data with a dense sampling interval, both starting phase and 
extent influence the linear model. Figure 1a illustrates the ad absurdum case that a fit 
on a perfectly harmonic model without linear trend results in a range of slope 
coefficients – positive or negative, varying with the starting phase – but never zero. 
Zero slopes are obtained only if both sides of a minimum or a maximum are equally 
sampled. This might, however, result in over- or underestimation of the mean NDVI 
from the model intercept (α). The slope coefficient is linearly related to the 
amplitude used for the seasonal model and is inversely related to the extent of the 
time series (or segments). The latter is illustrated in Figure 4.1b, which shows 4 
different extents (respectively 2, 4, 6 and 8 years) and the associated linear models 
for a given starting phase. 

The slope coefficient changed with the level of temporal aggregation, which 
influenced the detected change in NDVI. This is illustrated in Figure 4.2 using a 
similar synthetic data set as above but now having a length of 26 full cycles, which is 
comparable to that of AVHRR datasets. The variation in detected NDVI change 
increased with the level of aggregation, which resulted in larger uncertainty in model 
predictions. The true change in NDVI (i.e. zero) is only obtained by aggregation over 
complete cyclic periods, i.e. 1 or more years. Given the perfect periodicity of this 
synthetic example, this is true by definition, but in reality calendar years may not fit 
the periodicity of VI time series because of shifts in vegetation phenology and 
variations in growing season length. For this reason, the same analysis was also 
performed on actual AVHRR time series (see Section 4.3.2).  

As mentioned, the starting phase and extent influence each segment of the linear 
analysis. The effect reduces with longer extents, but it appeared that the change for 
the longest available run of NDVI data (AVHRR) is of the same magnitude as 
changes found by trend studies which account for seasonality (e.g. Zhou et al., 2001; 
de Jong et al., 2011a; Wang et al., 2011). Table 4.1 lists the calculated changes in 
NDVI for a perfectly periodic model without trend component (Figure 4.1) for time 
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spans of AVHRR (26 years), MODIS (11 years) and 1 year. The seasonal peak-to-
peak amplitude was set to 1 for ease of comparison to other amplitudes. Given that 
the order of maximum change reported in literature is ~4.0×10-2 for AVHRR data, 
trends induced by phase shift might introduce errors varying from 10% to 90% if 
seasonality is not accounted for. 
 

Table 4.1. Detected changes in NDVI 
using linear regression on synthetic 
seasonal data for different starting phases 
and extents. Change values were calculated 
as the slope coefficient β (Eq. 4.2) times 
the length of the time series and were 
multiplied by 100 for numerical 
convenience. The lengths of 26 and 11 
years (yr) correspond to the approximate 
length of AVHRR and MODIS time series 
respectively. The applied harmonic model 
had peak-to-peak amplitude 1 for which 
values can be multiplied by the actual 
amplitude. Due to serial autocorrelation, t-
values could not be calculated. 

Figure 4.1 The effect of phase shift (a) and extent (b) on linear regression of NDVI against time for seasonal data.
The legend in (a) shows the phase shift in months. In (b), each shade of grey represents an additional extent of 2
years. Accordingly, black to light grey refer to extents of 2, 4, 6 and 8 years respectively. 

phase shift (months) 

change in NDVI * 100 

26yr 11yr 1yr 

0 -0.48 -1.14 -12.52 
1.5 2.24 5.30 58.40 
3 3.65 8.63 95.11 
4.5 2.92 6.91 76.11 
6 0.48 1.14 12.52 
7.5 -2.24 -5.30 -58.40 
9 -3.65 -8.63 -95.11 
10.5 -2.92 -6.91 -76.11 
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4.3.2 AVHRR data 

An example of the MTUP effect for an AVHRR pixel with a significant (p < 0.05) 
trend component is shown in Figure 4.3. The change in NDVI was found to vary 
among aggregation levels: slight differences with respect to seasonally adjusted data 
occurred for 1 or 2-year windows and substantial differences for all other cases. This 
illustrates that aperiodicity in the data or in the aggregation window might result in 
considerable deviations from the change in NDVI found using seasonal correction 
instead of temporal aggregation.  

If temporal aggregation is used to account for seasonality, the characteristics of 
the commonly used harmonic functions dictate the use of whole periods as 
aggregation windows, in order to force the deviation in slope coefficient to zero 
(Figure 4.2). Aiming for bins holding complete seasons, the MTUP analysis was 
carried out on AVHRR data for aggregation levels of exactly 1 to 5 calendar years. It 
appeared that the significant changes in NDVI (i.e. significant for all aggregation 
levels) varied considerably with respect to trend analysis with seasonal adjustment 
instead of temporal aggregation. Table 4.2 lists the mean deviation and mean 
absolute deviation for the AVHRR sample and for the example in Figure 4.3. This 
table shows that the mean deviation and the variation for the sample are low (around 

Figure 4.2 Change in NDVI detected using linear models depending on the temporal aggregation level. The plot
illustrates the MTUP effect for a harmonic model of 26 years (length of common AVHRR datasets) and an
amplitude of 0.6 NDVI units. The points shown are the ones that resulted in a change in the number of bins,
while increasing the aggregation level. The vertical dotted lines indicate aggregation levels corresponding to 1, 2,
3, 4 and 5 years respectively and the grey line shows a LOESS curve indicating an average trend. 
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1%) for fine aggregation levels but considerably higher in case of coarser 
aggregation: a mean absolute deviation of 24 per cent was found for 5-year 
aggregation. In few cases the detected change in NDVI switched between positive 
(greening) and negative (browning), although these trends could not be confirmed 
using significance tests. It was almost exclusively found that the amount of detected 
change increased with the level of aggregation, so greening and browning trends 
appeared stronger after aggregation. Figure 4.4 illustrates this by showing spatial 
patterns of deviations for the state of Queensland in Australia. The different panels 
show the change in NDVI with respect to the change detected without temporal 
aggregation. Spatial patterns are hardly perceivable at fine temporal aggregation 
levels, but they become apparent at coarser levels. 
 
 
 
 
 
 
 

Figure 4.3 Change in NDVI detected using linear models depending on the temporal aggregation level. The plot
illustrates the MTUP effect for an AVHRR pixel with significant (p < 0.05) trend component (location:
46.21N/110.65E, Montana, USA). See the caption of Figure 4.2 for additional information and Table 4.2 for the
NDVI values corresponding to full-year aggregation levels. 
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Temporal aggregation will only lead to unbiased estimates of VI trends if the 
following requirements are met: 

 
1. The regarded time series is perfectly periodic. Any type of aperiodicity, 

including phase shift or incomplete periods at the start or end, may result in 
incorrect model parameters. 

 
2. The aggregation level corresponds exactly to the period of the seasonal 

signal (often one calendar year). Aggregating over multiple periods increases 
the risk of MTUP effects. 

 

Figure 4.4 Detected changes in NDVI for different levels of temporal aggregation – example for Queensland
(Australia). The top-left map shows the location of Queensland and the 5 panels show the change in NDVI with
respect to changes found using seasonal adjustedment without temporal aggregation. The aggregation levels
correspond to 1, 2, 3, 4 and 5 years (YR) respectively. 
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Other analysis methods may implicitly require similar conditions. For example, non-
parametric trend tests such as the seasonal Mann-Kendall method (Hirsch & Slack, 
1984) and related slope estimators like Theil-Sen selection (Birkes & Dodge, 1993) 
rely strongly on the absence of seasonal changes. In case of vegetation indices, this 
assumption often renders the method unsuitable for large spatial and temporal scales 
(de Jong et al., 2011a). The results from this study indicate that similar effects may 
disturb linear regression. The effects, however, may not be as conspicuous because 
parametric models are less robust against this type of error than non-parametric 
models (McBride & Loftis, 1994). Seasonally adjusting the data using a 
decomposition method (e.g. Cleveland et al., 1990) provides another approach for 
eliminating serial autocorrelation and the MTUP. In that case, the seasonal model 
used should be appropriate for the growing regime and ideally should take possible 
seasonal changes into account. An example of such an approach is provided by 
Verbesselt et al. (2010b). Yet other methods to describe seasonal time series include 
data generating processes without the use of deterministic functions. Changes in 
NDVI are likely to persist from one period to the next. As such, it may be reasonable 
to represent the process using an autoregressive (AR) model (Equation 4.3). 

yt = αi ⋅ yt−ii=1

p +ωt       (4.3) 

Where p represents the autoregressive order (or maximal lag), αi are stochastic 
model parameters and ωt is white noise (Cowpertwait & Metcalfe, 2009). Under 
these conditions, fitting a temporal trend to yt (e.g. using Eq. 4.1) will generate 
misleading results termed spurious regressions (Granger & Newbold, 1974). The 
spuriousness resides in the effect of autocorrelated residuals which bias the test 
towards rejection of the null hypothesis, even when the series are generated as 

 

Table 4.2 The MTUP effect for a sample of 1’000 AVHHR pixels and aggeregation levels (AL) of 1 to 5 
years. Detected changes in NDVI (dNDVIagg) were compared to those found using seasonally adjusted data 
(dNDVIref) and listed as dNDVIagg–dNDVIref (dNDVI), dNDVIagg/dNDVIref (pct) and square root of the 
sample variation of pct (sd). The last columns list the detected changes in NDVI for the pixel in Figure 4.3. In 
all cases, slopes were significant (p < 0.05). NDVI values were multiplied by 100 for numerical convenience. 

AL (yr) 

  mean deviation   mean absolute deviation   Figure 3 

dNDVI pct sd dNDVI pct sd NDVI pct 

0             2.75   

1 0.015 100.5% 1.6% 0.044 101.0% 1.3% 2.77 2.0% 

2 0.019 100.6% 3.0% 0.084 102.2% 2.2% 2.89 14.0% 

3 -0.016 102.4% 9.0% 0.264 107.2% 5.8% 2.96 21.0% 

4 0.022 105.4% 15.7% 0.469 112.9% 10.5% 3.47 72.0% 

5   0.066 106.6% 31.4%   0.950 124.1% 21.1%   2.28 -47.0% 
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statistically independent random walks (Phillips, 1986). This problem is analogous to 
the MTUP effects described in Section 4.3.1 and will be subjected to the effects 
described in Section 4.3.2, were yt temporally aggregated before fitting the temporal 
trend. 

Using temporal aggregation, slopes may be found significant at a given 
aggregation level while not at another level. False positives (trend is found to be 
significant while it is not in reality) are likely to occur more frequently at low 
aggregation levels, but examples of the opposite case were found as well (not 
shown). If the significance of trends is not considered in the analysis, the MTUP may 
not only affect the amount but also the sign of detected changes in NDVI. These 
effects can be expected to be largest in regions with high seasonal amplitudes. MTUP 
as described here cannot affect analysis of time series without seasonal amplitude, 
e.g. in dense tropical forests or very sparsely vegetated areas. On the other hand, the 
use of vegetation indices is such regions is disputed; either because of signal 
saturation issues (Huete et al., 1997) or because of over-estimation of NDVI or 
related parameters (Fensholt et al., 2004). 

4.4 Conclusions 

Ordinary least squares (OLS) time series regression can be used to quantify trends in 
cyclic data but temporal aggregation needs to be carried out carefully in order to 
avoid spurious results. The risk of artefacts is minimal at an aggregation level 
corresponding to a full period, for instance a calendar year. Coarser aggregation 
levels tend to overestimate the magnitude of change and result in higher variation in 
model predictions, especially from 3 periods onwards. However, the use of a full-
period window may be impractical because VI time series are hardly ever free of 
changes in seasonality. Aperiodicity within long-term time series of vegetation 
indices is intrinsic to certain land cover types and may arise from variations in start 
and length of growing seasons as a result of variations in temperature and/or 
precipitation. The starting phase and the choice of aggregation level – or temporal 
unit – affect the estimation of model parameters, including the slope coefficient or 
gain. In this study, the amount of absolute change that was attributed to the 
modifiable temporal unit problem (MTUP) varied between 1% and 24% for full-
period aggregation levels. 
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"Each time wave has its own driver and its own cyclicity.  
A composite curve, originating from integration of all individual 

 cycles, like the climate curve, can only be accurately extrapolated  
if all individual components are known. As long as this is not the  

case, it cannot be determined when the next trend break will occur. ...  
'Punctuated cyclicity' one could call it, with a blink at Eldredge and Gould"  

[my English, original text in Dutch] 

 
Salomon Kroonenberg (2006) 

De Menselijke Maat (The Human Measure) 
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Abstract 

Field observations and time series of vegetation greenness data from satellites 
provide evidence of changes in terrestrial vegetation activity over the past decades 
for several regions in the world. Changes in vegetation greenness over time may 
consist of an alternating sequence of greening and/or browning periods. This study 
examined this effect using detection of trend changes in Normalized Difference 
Vegetation Index (NDVI) satellite data between 1982 and 2008. Time series of 648 
fortnightly images were analyzed using a trend breaks analysis (BFAST) procedure. 
Both abrupt and gradual changes were detected in large parts of the world, especially 
in (semi-arid) shrubland and grassland biomes where abrupt greening was often 
followed by gradual browning. Many abrupt changes were found around large-scale 
natural influences like the Mt Pinatubo eruption in 1991 and the strong 1997/98 El 
Niño event. The net global figure – considered over the full length of the time series 
– showed greening since the 1980s. This is in line with previous studies, but the 
change rates for individual short-term segments were found to be up to 5 times 
higher. Temporal analysis indicated that the area with browning trends increased 
over time while the area with greening trends decreased. The Southern Hemisphere 
showed the strongest evidence of browning. Here, periods of gradual browning were 
generally longer than periods of gradual greening. Net greening was detected in all 
biomes, most conspicuously in croplands and least conspicuously in needleleaf 
forests. For 15% of the global land area, trends were found to change between 
greening and browning within the analysis period. This demonstrates the importance 
of accounting for trend changes when analyzing long-term NDVI time series. 
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5.1 Introduction 

Over the last decades of the 20th century, terrestrial ecosystems acted as net carbon 
sink, as evidenced by ecosystem process models and satellite vegetation data 
(Myneni et al., 1997; Schimel et al., 2001; Zhou et al., 2001). The easing of climatic 
constraints on plant growth as a result of increased CO2 concentrations and higher 
temperatures is a likely explanation for this effect (Nemani et al., 2003). Indications 
for increased biological activity were found in the Northern Hemisphere between 35° 
and 75° latitude (Zhou et al., 2001; Slayback et al., 2003) and in several hot-spot 
regions, including the Sahel (Olsson et al., 2005; Fensholt et al., 2009) and parts of 
Australia (Donohue et al., 2009). On the other hand, many forested biomes 
experienced a decline in biological activity (de Jong et al., 2011a) and especially 
large parts of the boreal forests showed evidence of this, likely driven by late 
summer drought (Goetz et al., 2005). Since instrument measurements began, record 
high global mean temperatures were reached in the past decade (Hansen et al., 2010). 
This was found to induce a drying trend and a productivity decline in large parts of 
the Southern Hemisphere (SH), which counterbalanced the Northern Hemisphere 
(NH) green-up and resulted in a net global reduction in productivity (Zhao & 
Running, 2010). These findings may indicate a major change in the global greening 
regime. However, such trends may not be significant at large temporal extents and 
productivity estimates are often highly uncertain (Samanta et al., 2011). For this 
reason, there is a need to better understand the temporal and spatial dynamics of 
ecosystem productivity (Sjöström et al., 2011). The focus regarding such 
environmental changes is shifting towards increasingly large spatial and temporal 
extents (Niemi & McDonald, 2004; Pettorelli et al., 2005; Verbesselt et al., 2010a). 
As a result, long-term trends (i.e. time scales of decades) are becoming more likely to 
be composed of more extreme shorter-term changes (i.e. several years), which might 
balance themselves out. An analysis of this effect at global scale is presented in this 
study. 

A common way to derive indicators on environmental change is the use of 
spectral vegetation indices (Pettorelli et al., 2005). Such indices, based on the red / 
near infrared spectral region, are indicative of chlorophyll abundance and as such 
correlate to vegetation amount and photosynthetic capacity (Myneni et al., 1995). 
Positive and negative changes in time can be referred to as greening and browning 
respectively. Here, time series of satellite data are particularly valuable because they 
provide a monitoring system with repeatable vegetation index (VI) measurements at 
scales at which climate- and human-induced changes take place (e.g. Wessels et al., 
2007). Detecting changes within the time series is the first step towards assessing 
their environmental impact or attributing drivers or acting processes. Changes within 
VI time series can be divided into three major classes (Verbesselt et al., 2010a): 
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seasonal changes, gradual changes and abrupt changes. The first type occurs when 
the land surface phenology changes, e.g. driven by temperature or rainfall, without 
necessarily affecting the underlying trend component. For example, earlier onset of 
greening in spring might be counterbalanced by lower productivity late summer 
(Angert et al., 2005). The gradual and abrupt changes refer to the trend component 
beyond the seasonal variation. Slowly acting environmental processes, including 
climate change, certain land management practices or land degradation, may cause 
gradual changes in the time series. Over time, these gradual changes may stall or 
reverse (Scheffer et al., 2001; Zhao & Running, 2010), which involves a trend break. 
Following Verbesselt et al. (2010a), we define such an event, together with the 
associated magnitude and/or change in direction, as an abrupt change. Abrupt 
changes can also be induced by land-use changes (Turner et al., 2007), wildfires 
(Kasischke et al., 1993; Boles & Verbyla, 2000), floods (Domenikiotis et al., 2003) 
or other fast-acting processes (Potter et al., 2003). The nature of abrupt and gradual 
changes can be further illustrated by the equilibrium concept. Vegetation systems are 
dominated by negative feedbacks, for which they are in equilibrium. This implies 
some sort of balance as well as the maintenance of that balance (Inkpen, 2005). The 
seasonal variation around an invariant mean provides the basis for a steady-state 
equilibrium, while changes in the mean render equilibriums either dynamic (gradual 
changes) or meta-stable (abrupt changes). This study focused on these abrupt and 
gradual VI changes. 

Previous regional and global studies showed trends in vegetation activity using VI 
time series from spaceborne sensors like the American AVHRR (Advanced Very 
Hight Resolution Radiometer) and MODIS (Moderate Resolution Imaging 
Spectrometer) or the French VEGETATION sensor onboard SPOT (Satellite Pour 
l'Observation de la Terre). The direction and rate of change – together referred to as 
trend – have commonly been determined by the slope of a linear regression model in 
which the VI values or derived metrics depend on time (e.g. Paruelo et al., 2004; 
Herrmann et al., 2005; Olsson et al., 2005; Heumann et al., 2007; Bai et al., 2008). 
As a next step, trend changes may be considered within the analysis for closer 
relation to the system dynamics. In the case of trends in vegetation productivity since 
the early 1980s, many areas in the world are known or expected to show trend 
changes (Schimel et al., 2001; Slayback et al., 2003; Angert et al., 2005; Wang et al., 
2011). For instance, trend changes were found early 1990s in the Northern 
Hemisphere (Slayback et al., 2003), possibly related to the June 1991 Mount 
Pinatubo eruption, which depressed incoming short-wave radiation and caused an 
anomalous cooling (Stenchikov et al., 1998; Lucht et al., 2002). Furthermore, the 
Northern Hemisphere greening seems to have stalled or even reversed towards 
browning in the last decade (Zhao & Running, 2010; Wang et al., 2011). All this 
illustrates the critical need for a consistent global assessment of trend changes within 
long-term vegetation time series. Here, we applied a data-driven change detection 
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approach that is capable of quantifying trend changes without prior knowledge on 
location or timing. Regions in the world where trend changes have occurred were 
identified and net greening and browning for the 1982–2008 period was derived from 
a sequence of abrupt and gradual trend changes. 

5.2 Methods 

5.2.1 NDVI data 

In an effort to monitor fluctuations in vegetation and understand interactions with the 
environment, the National Oceanic and Atmospheric Administration (NOAA) has 
been collecting images of vegetation condition using AVHRR sensors. The non-
linear combination of red and near infrared (NIR) spectral radiance (Eq. 1.2), known 
as normalized difference vegetation index (NDVI), exhibits a strong relationship with 
green biomass and is commonly used for vegetation assessments from space.  

NOAA AVHRR sensors provide the longest available run of NDVI data, 
including the Global Inventory for Mapping and Modeling Studies (GIMMS) which 
was used in this study (see Section 1.2.3). The data spans from 1981 through 2008 
and has a temporal resolution of two weeks and a spatial resolution of 0.072 degrees 
(~8km). Errors in NDVI introduced from orbital drift were largely (~90%) eliminated 
in the most recent GIMMS version (Tucker et al., 2005). The transitions between 
platforms may cause some discontinuities in the data (de Beurs & Henebry, 2005b), 
but these are expected not to affect trend slopes (i.e. gradual changes) in the 
vegetation index (Kaufmann et al., 2000). A maximum value compositing (MVC) 
technique (Holben, 1986) was used to minimize cloud contamination during GIMMS 
processing and the risk of detecting trend changes caused by persistent cloud cover 
was further reduced by the configuration of the trend-break algorithm (see Section 
5.2.3). Image acquisition started in July 1981, but we excluded 1981 in order to use 
only full one-year periods in the analysis. In this way, the 27-year time series (1982–
2008) for each pixel consists of 648 NDVI measurements with a frequency of 24 
scenes per year. 

NDVI values lower than 0.2 are sparsely vegetated or not vegetated at all 
(Carlson & Ripley, 1997; Sobrino et al., 2001), but to include sparsely vegetated 
areas in the analysis we masked pixels with yearly mean values below 0.1. The 
resulting dataset consists of 2,256,962 unmasked pixels (~86% of all terrestrial pixels 
excluding Antarctica). The NDVI signal in tropical evergreen forests is likely to 
saturate, causing low signal to noise ratios (Huete et al., 1997). These regions were 
not omitted from the analysis, because abrupt changes might well be detectable. 
However, results for these regions were interpreted with caution. 
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5.2.2 Land cover classification 

Detected vegetation changes were summarized per land cover class – which is also 
referred to as biome – because each might respond differently to climate change and 
to land-use change (Chapin et al., 2000; Verburg et al., 2011). In the International 
Geosphere and Biosphere Programme (IGBP), a 1km AVHRR-based land cover 
product (DISCover) intended for remote sensing of global change was developed 
(Loveland et al., 2000). The dataset consists of 17 general land-cover types, based on 
the climate-independent vegetation-classification logic of Running et al. (1994), but 
extended to provide, where possible, land-use implications and to represent 
landscape mosaics. For definitions of each category the reader is referred to 
Appendix 1 in Loveland & Belward (1997) and to Loveland et al. (2000) for an 
elaborated description of the dataset and comparison with other land-cover datasets. 
The classification scheme, among few others, was later adopted within the MODIS 
land-cover products. These products provide yearly land-cover maps at 500m spatial 
resolution. In this study, the 2009 MOD12C1 product was used, as it provides land 
cover at an aggregated 0.05 degree spatial resolution, which closely resembles the 
GIMMS spatial resolution. The MOD12C1 dataset was resampled to 0.072deg 
resolution using a majority method, which best preserves the spatial structure of 
major land cover classes at the cost of minor classes (Dendoncker et al., 2008; 
Verburg et al., 2011). For this reason, the class ‘urban and built-up’ had few pixels 
and was omitted from the summary statistics. The classes ‘snow/ice’, ‘barren’ and 
‘water bodies’ are not represented in the analysis due to the masking procedure 
described in Section 5.2.1.  

5.2.3 Detecting trend changes within time series 

Depending on biome, NDVI time series may contain a strong seasonal component 
linked with the growing seasons of vegetation being monitored. Most existing change 
detection techniques are unable to account for seasonal variation and analyze time 
series by aggregating the measurements by season or calendar year or they compare 
specific periods between years (Coppin et al., 2004). A more generic change 
detection method was proposed by Verbesselt et al. (2010a,b). This method for 
detecting Breaks For Additive Seasonal and Trend (BFAST) accounts for seasonality 
and enables the detection of trend change within the time series. The methods are 
available in the BFAST package for R (R Development Core Team, 2011). Here, we 
explain the key concepts of BFAST and apply a modified version. The full 
motivation for the procedure is given in afore-mentioned publications, where also a 
validation is provided using both simulated time series and MODIS NDVI data for 
Australian environments. 

The basic principle of the BFAST algorithm is the combination of time series 
decomposition into seasonal, trend, and remainder components with methods for 
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detecting structural changes in both the trend and seasonal components. In this study 
we focused on breaks in the trend component. It was assumed that non-linearity can 
be approximated by a piecewise linear model and, as such, linearity was assumed in 
the individual trend segments. An additive decomposition approach was used to 
iteratively fit the piecewise linear regression model and a seasonal model (Haywood 
& Randall, 2008). The general model is of the form:  

tttt eSTY ++=  : }...1{ nt ∈       (5.1) 

where, at time t in the time series {1 … n}, Yt is the observed NDVI value, Tt is the 
trend component, St the seasonal component en et the remainder component which 
contains the variation beyond what is explained by Tt and St.  

The iteration is initialized with an estimate Ŝt of the seasonal component using a 
non-parametric season-trend decomposition (STL) method (Cleveland et al., 1990). 
Subsequently, the estimates of St and Tt and their changes are determined by iterating 
through the following steps until the number and position of the detected breakpoints 
remain unchanged: 

 
(step 1a) Test whether breakpoints are occurring in the seasonally adjusted 

data (Yt–St), using the MOving SUM (MOSUM) approach (Zeileis & 
Kleiber, 2005). If the test indicates significant change (α = 0.05), the 
breakpoints are estimated using the method of Bai & Perron (2003), 
as implemented by Zeileis et al. (2002). This method minimizes the 
Bayesian information criterion (BIC) (Schwarz, 1978) to determine 
the optimal number of breaks m and uses an iterative procedure – 
minimizing the residual sum of squares – to estimate the optimal 
break positions and accompanying 95% confidence intervals. For the 
MOSUM test to hold the nominal significance level, the error terms 
after decomposition should not be serially correlated. 

(step 1b)  The trend component T̂  for each segment is estimated using robust 
linear regression (Venables & Ripley, 2002). As such, the trend 
component is described by a robust piecewise linear model, which 
allows the trend to exhibit changes. The positions in time of these 
trend changes are indicated by the individual breakpoints. The trend 
within each segment j is assumed to be linear with intercept αj and 
slope βj: 

tjjtT ⋅+= βα  : }...1{ mj ∈    (5.2) 

where m equals the number of abrupt trend changes so that m+1 
equals the number of segments. 
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(step 2)  Detrended data (Yt – Tt) are used to refit the seasonal term St using a 

harmonic model with 3 components, i.e. periods of 12, 6 and 3 
months. 

 
(step 3)  The number and position of breakpoints are compared to the 

previous iteration and the fitting procedure is finalized if they 
remain unchanged. 

 
BFAST can be generically applied to VI time series independent of the land-cover 
type, reference periods or specific change trajectory. The only parameterization 
required is the maximum number of breakpoints mmax or the minimum time between 
breakpoints. The minimum time between breakpoints needs to coincide with the 
typical length scale of the monitored processes. In line with Verbesselt et al. (2010a) 
and following the recommendations of Bai & Perron (2003), we used a minimum of 4 
years (corresponding to ~15% of the 27-year data span) between successive 
breakpoints. In case of several changes within a 4 year segment, only the most 
statistically significant is detected. This configuration also reduced the effect of 

Figure 5.1 Example of decomposition and trend break analysis for a location in China (35.913ºN,
108.513ºE). The top panel shows the GIMMS NDVI data (Yt), while the other 3 panels depict the individual
components after decomposition. The seasonal (St) and remainder (et) components have zero mean while the
trend component (Tt) shows the temporal trend in NDVI: a period of browning between 1982 and 1986 and a
period of greening between 1994 and 1998. The slope coefficients (β) of the other two segments are not
significant (p > 0.05). The dashed line (Tt panel) shows the equivalent linear model for the full time series. 
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persistently clouded areas, as clouds were found to be captured by the remainder 
component (et). For illustration, Figure 5.1 shows the decomposition and breakpoint 
detection for a GIMMS pixel in China. The trend component (Tt) consists of 4 
segments with gradual changes, separated by 3 breakpoints at which abrupt changes 
were detected. For comparison, the Tt panel also shows the linear model for the full 
time series, together with the slope coefficient and the corresponding significance 
value (p). The latter is based on generalized least squares (GLS) to account for 
remaining short-lag serial autocorrelation. 

5.2.4 Analysis of NDVI changes  

The BFAST procedure was extended to analyze the significance of the detected 
slopes in Tt against the null hypothesis that slope βj = 0 at α = 0.05 (degrees of 
freedom equals the number of observations in the segment minus 2). Only significant 
slopes were adopted as indicators for greening (βj > 0) or browning (βj < 0). 
Subsequently, the duration of the significant greening and browning segments and 
the magnitude of change in NDVI were calculated. The first is the sum of length of 
individual segments with significant slopes and the latter is a combination of gradual 
magnitude within segments and abrupt magnitude at the breakpoints between 
consecutive segments. Results were summarized at global, hemisphere and biome 
scales. Abrupt changes shortly after the Mt Pinatubo eruption (Jun 1991 – Dec 1992) 
were extracted separately for mapping possible effects of this eruption on NDVI 
trends. All described analyses were performed using R statistical software (R 
Development Core Team, 2011) on a high performance computing facility. 

5.3 Results 

5.3.1 Duration of gradual changes 

Figure 5.2 illustrates the detected duration of both gradual greening and gradual 
browning, without showing the associated slope or absolute changes in NDVI values. 
The most conspicuous region in terms of long greening periods is the eastern part of 
Europe. Also regions in North America, most tundra regions, the savanna between 
the Sahara desert and the equator and parts of India exhibited a greening trend for 20 
years or longer. Most of these areas are in the Northern Hemisphere while long 
browning periods were mainly found in the Southern Hemisphere, conspicuously in 
parts of Argentina and Australia. In the Northern Hemisphere, on the other hand, 
browning was mainly found in the Kazakh steppe and in the boreal forests in parts of 
Siberia, Alaska and Canada. 
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A distinct difference was found between both hemispheres regarding the duration of 
greening and browning. Gradual greening trends lasted longer than equivalent 
browning trends in all biomes in the Northern Hemisphere, while the opposite holds 
for most biomes in the Southern Hemisphere (Table 5.1). The global figure is mainly 
determined by the Northern Hemisphere – due to the north-heavy arrangements of the 
continents – and therefore greening trends lasted longer in all biomes, although most 
conspicuously in mixed forests, croplands and cropland / vegetation mosaics. The 
longest gradual browning trends were found in grasslands. On average, the detected 
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Figure 5.2 Duration of change by means of number of years in which a significant (α = 0.05) NDVI trend was 
found. (a) positive trend, or greening and (b) negative trend, or browning. White areas were masked out (see 
sections Data and Methods) or showed short or insignificant trends. 
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duration of gradual changes varied roughly between 3 and 6 years for NH browning 
and between 9 and 14 years for NH greening. The SH durations varied between 7 and 
9 years for greening and between 7 and 12 years for browning. 

5.3.2 Trend breaks 

Following the described approach, large parts of the global surface experienced 
NDVI trend changes during the 1982–2008 period. From the unmasked area, 32.9% 
shows zero, 27.2% one, 22.7% two and 17.2% more trend changes. Most of these 
were detected in Australia, Argentina, south-west Texas (USA) / north-east Mexico, 
Botswana and western South Africa (Figure 5.3). The higher northern latitudes and 
the tropics seem least affected by trend discontinuities, although some were detected 
in the North American boreal forests. For the better part, the detected breakpoints 
separate segments with significant slopes from segments with insignificant slopes. 
However, for 14.5% of the total land surface the slope coefficient swapped sign, 
which indicates that both a period of significant greening and a period of significant 
browning occurred at the same location between 1982 and 2008. Many of these shifts 
between greening and browning were found in semi-arid climate regions, but also in 
temperate climate regions in Europe and North America. The majority of this area 
corresponded to open and closed shrubland, while grassland takes a second place.  

Table 5.1 Total duration of gradual NDVI change in years. Lengths of individual significant segments were 
summed and averaged over all pixels within the land-cover class for the Northern Hemisphere (NH), the 
Southern Hemisphere (SH) and globally (G). Land-cover classes (number and name) correspond to the IGBP 
classification (Loveland et al., 2000). 

    Positive change (greening)   Negative change (browning) 

Land-cover class / biome NH SH G   NH SH G 

1 Evergreen Needleleaf Forest 10.41 10.41 6.14 6.14 

2 Evergreen Broadleaf Forest 9.51 9.48 9.51 5.24 7.34 5.05 

3 Deciduous Needleleaf Forest 7.84 7.84 4.21 4.21 

4 Deciduous Broadleaf Forest 13.08 6.56 11.10 4.25 9.76 6.00 

5 Mixed Forests 13.57 13.57 4.04 4.04 

6 Closed Shrublands 10.32 9.70 10.13 6.21 9.67 7.55 

7 Open Shrublands 11.93 7.58 10.75 2.93 12.44 5.43 

8 Woody Savannas 9.83 7.14 9.16 4.76 8.87 5.81 

9 Savannas 14.98 9.18 10.34 3.92 7.54 6.83 

10 Grasslands 10.77 7.59 10.18 7.85 10.55 8.34 

11 Permant Wetlands 12.10 7.70 11.38 3.02 8.27 3.74 

12 Croplands 13.49 8.10 12.86 5.09 10.23 5.66 

14 Cropland / Vegetation Mosaic 13.31 8.68 12.60   4.46 6.70 4.78 
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5.3.3 Magnitude of NDVI changes 

Global greening and browning patterns were divided into gradual and abrupt changes 
in NDVI and are shown in Figure 5.4a,b. Gradual changes – which were calculated 
from the detected duration of change and the corresponding slope coefficients – are 
shown in green and brown colors respectively and abrupt changes at breakpoints are, 
partially transparent, shown in blue. The magnitude of each of these components 
varies between 0 and ~0.15 (absolute NDVI units). Greening was found in many 
parts of the world and most conspicuously in the Northern Hemisphere, which is in 
line with the longer change trajectories of greening found there (Table 5.1). Abrupt 
greening was mainly found in areas with relatively sparse vegetation cover (e.g. 
Australian rangelands, African open shrublands and the Sahel region), mostly in 
combination with gradual browning, whereas abrupt browning was mainly detected 
in more densely vegetated regions (e.g. broadleaf forest in Europe and North 
America) and in humid grasslands. The sum of all significant change components 
provides the net change in NDVI (Figure 5.4c), with magnitudes up to ~0.04  
(absolute NDVI units). 

Figure 5.3 Number of detected abrupt changes, or breakpoints, irrespective of the magnitude of the changes.
Areas with a yearly mean NDVI < 0.10 were masked. 
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Figure 5.4 Global greening and browning in terms of NDVI changes between 1982 and 2008: (a) positive
changes, both gradual (green) and abrupt (blue); (b) negative changes, both gradual (red) and abrupt (blue); (c)
sum of the four components of figures a and b. 
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Table 5.2 summarizes the detected changes in NDVI per biome and hemisphere. At 
global scale, net greening is most conspicuous in cropland regions (net change 
0.034), followed by evergreen broadleaf and mixed forests. In the Northern 
Hemisphere, savannas show the strongest indication for greening (0.050). Net 
greening was found in all biomes except for few minor net browning changes in the 

 

Table 5.2 Changes in NDVI for the time span of the GIMMS dataset (1982–2008), subdivided into abrupt and 
gradual changes for the Northern Hemisphere (NH), the Southern Hemisphere (SH) and globally (G). For easier 
numerical representation, values were multiplied by 100. Land-cover classes (number and name) correspond to the 
IGBP classification (Loveland et al., 2000). Classes 1 to 5 represent forest types. 

    Gradual change   Abrupt change   Net result   

Land cover class / biome NH SH G NH SH G NH SH G 

greening 
 

1 Evergreen Needleleaf 5.80 5.92 2.91 2.91 0.68 0.81 
2 Evergreen Broadleaf 9.23 9.24 9.25 5.87 5.99 5.94 2.25 2.65 2.50 
3 Deciduous Needleleaf 3.10 3.10 1.18 1.18 0.81 0.82 
4 Deciduous Broadleaf 7.38 7.62 7.56 3.59 6.29 4.46 2.56 1.53 
5 Mixed Forests 5.89 6.05 2.58 2.58 2.45 2.61 
6 Closed Shrublands 7.74 12.10 9.60 6.61 11.97 8.75 2.02 0.28 1.42 
7 Open Shrublands 3.71 7.47 4.67 2.39 13.17 5.22 1.90 0.02 1.39 
8 Woody Savannas 5.09 9.08 6.13 2.79 6.25 3.67 1.39 0.44 1.16 
9 Savannas 9.84 10.84 10.65 5.68 6.81 6.59 5.03 1.67 2.33 
10 Grasslands 6.00 8.03 6.32 6.40 9.58 6.96 2.04 1.55 
11 Permant Wetlands 4.39 7.94 4.77 2.68 5.68 3.05 2.34 0.43 2.07 
12 Croplands 7.84 10.84 8.14 4.62 8.06 5.01 3.79 0.36 3.40 
14 Cropland Mosaic 7.09 7.23 7.10 3.73 4.66 3.85 2.87 1.08 2.62 

browning 

1 Evergreen Needleleaf -3.75 -3.74 -4.28 -4.28 
2 Evergreen Broadleaf -6.42 -6.55 -6.48 -6.43 -6.03 -6.21 
3 Deciduous Needleleaf -1.42 -1.42 -2.04 -2.04 
4 Deciduous Broadleaf -3.34 -8.36 -4.98 -5.08 -6.33 -5.51 -0.79 
5 Mixed Forests -2.53 -2.53 -3.49 -3.49 
6 Closed Shrublands -6.84 -14.69 -9.94 -5.50 -9.09 -6.99 
7 Open Shrublands -2.32 -14.79 -5.60 -1.88 -5.83 -2.90 
8 Woody Savannas -3.03 -7.56 -4.19 -3.47 -7.33 -4.46 
9 Savannas -4.99 -7.48 -6.99 -5.50 -8.50 -7.91 
10 Grasslands -6.49 -11.67 -7.41 -3.87 -6.52 -4.32 -0.58 
11 Permant Wetlands -2.22 -7.20 -2.83 -2.52 -5.99 -2.92 
12 Croplands -4.12 -10.41 -4.81 -4.55 -8.14 -4.93 
14 Cropland Mosaic -3.59 -5.55 -3.85 -4.36 -5.25 -4.48       
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Southern Hemisphere. In general, the Northern Hemisphere showed less variation (in 
terms of absolute greening and browning per biome), but higher net NDVI changes 
compared to the Southern Hemisphere. In the latter, the highest variation was 
detected in shrublands and grasslands (e.g. parts of the Australian rangelands, 
Andean puna and Patagonian steppe / Monte semi-desert). The lowest variation was 
found in needleleaf forest and open shrublands in the Northern Hemisphere (e.g. 
boreal forest and tundra).  

The detected NDVI trends do not only vary in space, but also in time. Figure 5.5 
illustrates how gradual greening and browning trends were found to evolve across the 
time series by means of globally aggregated area per fortnightly time-step (with 
respect to the first four years in which no trend changes occurred by design). It 
appeared that the area which showed gradual greening decreased to 83% (with 
respect to the start of the time series) between 1986 and 2002, after which it 
increased to 92%. The browning area quickly increased to 118% in 1994, after which 
is decreased and stabilized around 110%. The total land area which experienced 
gradual changes was found to vary between 51% and 56% (blue line) with the 
minimum around the year 2000. 

5.4 Discussion 

The presented methodology, based on the BFAST algorithm, enabled detection of 
short-term greening or browning periods within a longer time series of satellite data. 
This approach is, in this sense, more flexible than previous global assessments of 

Figure 5.5 Primary axis: area with positive gradual trends in NDVI (greening) and negative gradual trends
(browning) over time. The area was indexed with respect to the first four years (minimal segment length) of the 
time series. Secondary axis: percentage of total land area with significant greening or browning trend. 
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vegetation activity (Bai et al., 2008; de Jong et al., 2011a). There is general 
agreement with respect to the afore-mentioned global assessments regarding the 
spatial pattern of net changes in NDVI (Figure 5.4c). However, the results showed 
different spatial patterns for gradual and abrupt NDVI changes (Figure 5.4a,b) and 
indicated that gradual trends generally last for periods shorter than the full length of 
the time series (Figure 5.2). The change rates for these shorter periods were, by 
definition, greater than those found using monotonic analysis and resulted in higher 
absolute NDVI changes within the 1982–2008 time span (Table 5.2). Considered 
over all pixels used in this study, greening rates were found to be around 4 to 5 times 
greater with respect to monotonic analysis with a fixed change duration of 26 years 
(Bai et al., 2008). Browning rates were also greater, which may be accountable to 
shrubland biomes. This indicates that, especially in these regions, short-term 
greening and browning effects averaged out using monotonic analysis. This was 
found to occur in approximately 15% of the global land area, which showed both 
gradual browning and gradual greening trends between 1982 and 2008. The net 
global figure of NDVI change was positive for all land-cover classes, but slightly 
lower than estimated in mentioned monotonic studies. A plausible explanation for 
this effect is that monotonic methods are likely to overestimate changes in periods 
which were considered stable in this study. For example, in Figure 5.1 the entire time 
span was considered significant in case of the monotonic method (p = 0.004), while 
only ~9 out of 27 years were considered significant using the BFAST method. 

5.4.1 Possible drivers of NDVI trends and trend changes 

Terrestrial vegetation productivity is influenced by many cyclical and abrupt events 
which might cause trends in vegetation productivity to change (Gobron et al., 2010). 
These events include climatic and oceanic oscillations, of which the El Niño / La 
Niña - Southern Oscillation (ENSO) with a period of 4-7 years is the best known 
(Woodward et al., 2008), but also volcanic eruptions and anomalously warm and dry 
years (e.g. the European drought of 2003: Ciais et al., 2005). Aside from biophysical 
drivers, the observation record might be contaminated with measurement errors 
originating from sensor changes, orbital drift of satellites or atmospheric effects. 
Most measurement errors can be well corrected for, but other drivers are likely to 
cause actual changes in vegetation response in some biomes or regions (e.g. volcanic 
eruptions and oceanic oscillations). Some of these effects are discussed here. 

The GIMMS dataset has been corrected for aerosols injected into atmosphere by 
volcanic eruptions, i.e. the El Chichon eruption in April 1982 and the Mount 
Pinatubo eruption in June 1991 (Slayback et al., 2003). Still, discontinuities might 
result from actual vegetation response to temporary global cooling. Effects of El 
Chicon are not likely to be found in the GIMMS data, because the eruption date is 
close to the start of the dataset and therefore the initial status is unknown. After the 
Mt Pinatubo eruption, however, a higher representation of breakpoints was found (de 
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Jong et al., 2011b) and cooling effects attributable to the eruption have been reported 
around the world (Lucht et al., 2002; Soden et al., 2002; Angert et al., 2004). This 
provides a candidate explanation for the high occurrence of abrupt trend changes 
around this time. Figure 5.6 shows that abrupt changes in NDVI were detected in 
many regions in the world between June 1991 and December 1992. Browning was 
most conspicuous in North America, Southern Africa and Eastern Asia. This 
corresponds with negative NDVI changes found in the higher northern latitudes 
between 1991 and 1992 (Slayback et al., 2003). Two large regions showed positive 
changes (abrupt greening): Kazakhstan and the states of Western and South 
Australia. In Kazakhstan this might be explained by a sharp decline in precipitation 
in the years before the eruption (Pilifosova et al., 1997). A weak El Niño event 
caused warming and higher precipitation in certain regions shortly after the eruption 
date (Woodward et al., 2008). This might have counterbalanced some Pinatubo 
effects and caused the abrupt greening in Australia. 

The Sahel experienced climatic extremes in terms of drought. During the last 30 
years of the 20th century, nearly all years have been anomalously dry (Nicholson, 
2000), which is likely related to the Atlantic multi-decadal oscillations (AMO) 
(Zhang & Delworth, 2006). In water-limited ecosystems like these, such rainfall 
trends are expected to induce browning trends, possibly amplified by a positive 
feedback due to increasing albedo (Zhang & Delworth, 2006). However, greening 
trends were found in the Sahel, especially in the southern parts. These trends are 
strongest in the 1980s and were found to change into browning trends in the northern 
Sahel. The net result for 1982–2008 showed greening (Figure 5.4c), which is 

Figure 5.6 Magnitude of abrupt NDVI changes detected shortly after the Mt Pinatubo eruption (Jun 1991 – Dec
1992). Green colours indicate positive changes and brown colours negative changes. 
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probably the result of recovery from the droughts which were most severe around the 
start of the GIMMS dataset. It will be a complex exercise to disentangle all sea-
atmosphere-land interactions which drive the gradual and abrupt changes in 
vegetation productivity here, but there seems to be a general agreement that the Sahel 
vegetation is heavily influenced by natural processes, more than by men (Fensholt & 
Rasmussen, 2011). In these and other shrubland biomes – especially in the Southern 
Hemisphere – it was found that the greening changes are generally abrupt, followed 
by gradual browning (Figure 5.4 and Table 5.2, classes 6 and 7). Relatively wet years 
might lead to extensive germination of short-lived plants, which is followed by 
browning in successive drier years. The total variation in NDVI change is also 
highest in these regions (together with grasslands), which is likely explained by 
strong reactions to climatic fluctuations like ENSO cycles. A large number of abrupt 
changes was found in Australia – which is particularly prone to ENSO fluctuations – 
around the strong 1997/98 El Niño (Wolter & Timlin, 1998) and following La Niña 
events. These fluctuations are much smaller in the Northern Hemisphere figures for 
the same biomes, owing to the stable tundra regions, which form – in the IGBP 
DISCover classification – part of the (open) shrublands and due to the reduced ENSO 
influences. Other climatic oscillations which act at (sub-)decadal time scale and 
which have larger effects in the Northern Hemisphere include the Pacific Decadal 
Oscillation (PDO) and the North Atlantic Oscillation (NAO). Both have mainly been 
in positive phases during the GIMMS time span, which leads to relatively high 
temperatures some regions (Viles & Goudie, 2003), but not likely to trend breaks in 
NDVI. 

Relatively long periods of browning were detected in boreal forests in Canada and 
Siberia (Figure 5.2). This boreal browning is in line with results from previous 
studies (Bunn et al., 2007), in which drought and, accordingly, vapor pressure 
deficits (VPD) were documented as possible drivers. In North America, large 
forested areas experienced a decline in productivity without significant changes in 
growing season length, indicating impacts of late summer drought (Zhang et al., 
2009; Goetz et al., 2011). This is in agreement with several trend analyses performed 
on the GIMMS dataset indicating that boreal browning is mainly attributable to stress 
within the growing season, rather than to changes in length of growing season (Goetz 
et al., 2005; de Jong et al., 2011a) and supported by tree ring studies (Lloyd & Bunn, 
2007). Net NDVI increase was found for all land cover classes, but Table 2 shows 
that the lowest increases were found for needleleaf forest – which is most abundant 
in the boreal regions. Arctic coastal tundra ecosystems, on the other hand, mostly 
show a stable greening trend which is likely related to decreasing sea ice 
concentrations and associated higher land surface temperatures (Goetz et al., 2011). 
Aside from boreal regions, long periods of browning were also found in Kazakhstan. 
These have been attributed to drought conditions, at least towards the end of the time 
series, when negative precipitation trends were found from both station observations 
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and gridded precipitation data (de Beurs et al., 2009). The same research showed an 
increase in NDVI, using MODIS data from 2000–2008, in a study area in the 
European part of Russia, which is in accordance with the long-term greening trends 
found in this study. These trends were attributed to land abandonment and an 
increase in agricultural productivity (de Beurs et al., 2009). Agricultural expansion 
plays an important role in Argentina as well (Viglizzo et al., 2011), which is likely 
one of the drivers of the negative NDVI trends found there. On the other hand, the 
strongest indication for greening is also found in cropland regions (Table 5.2), which 
is likely attributable to improved agricultural techniques. Urban expansion might 
have caused local NDVI decline around several cities. In the global statistics this 
effect is not captured as a result of the resampling scheme used for the land cover 
data. For such purposes it is recommended to run the BFAST algorithm on MODIS 
(or equivalent) data. This recommendation also holds for other purposes where 
processes act beyond the spatial resolution of GIMMS, for instance most 
deforestation studies. 

Many regions, other than discussed above, show significant NDVI trends and for 
most of these regions ample studies relate the trends to possible drivers. Few studies, 
however, assessed trends and drivers at continental or larger scale. In the Northern 
Hemisphere, greening patterns were found and related to increasing temperature and 
precipitation (Zhou et al., 2001), but recently trends in certain regions were also 
found to have stalled or even inversed (Wang et al., 2011). Globally, the terrestrial 
net primary productivity (NPP) was found to have reduced during the past decade, 
attributable to large-scale warming-associated droughts in the Southern Hemisphere 
(Zhao & Running, 2010) and a likely soil moisture deficit (Jung et al., 2010). This is 
in line with the browning patterns (Table 5.2) and the increasing area with browning 
trends (Figure 5.5) found in this study, although the strongest increase was found 
before 1994. The sharp increase in 2004 might be partly explained by a decrease in 
vegetation productivity in Europe following the anomalous warm year of 2003 (Ciais 
et al., 2005). Overall, the past decade showed an increase in greening trends, but our 
analysis period for trend changes was limited to 2005. 

5.4.2 Limits and artifacts 

The presented approach proved capable of detecting trend changes in global NDVI 
time series and reduced the limitation of a commonly assumed fixed change 
trajectory. Common trend analysis methods may average out the temporal signal for 
time series which consist of several different change periods. Accordingly, areas 
might be labeled stable while in reality changes occurred over periods of several 
years or – the other way around – stable periods are included in a significant long-
term trend. The longer a time series is, the more likely that this effect conceals actual 
short-term trends, which might be closer related to driving processes than long-term 
trends. Information on greening versus browning sign changes, for instance, is 
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crucial for monitoring the effect of land-management changes or the influence of 
meteorological conditions on vegetation status. This information can be provided 
using the presented approach, keeping in mind some constraints. 

Several NOAA satellites have been used to generate the GIMMS dataset. 
Although the data has been thoroughly corrected (Tucker et al., 2005), this 
potentially causes trend breaks within the time series (Cracknell, 1997; de Beurs & 
Henebry, 2004). Table 5.3 lists the platform changes and the corresponding dates. 
We analyzed the frequency distribution of the detected break points, from which it 
appeared that few sensor changes (between NOAA platforms 9, 11 and 14) coincide 
with periods with a higher than average number of breakpoints (de Jong et al., 
2011b) but a causal relationship could not be established. The likeliness of these 
transitions influencing the timing of detected breaks is highest in low-latitude 
biomes, especially in case of sparse vegetation cover and relatively light-colored 
soils, but even then it is likely not to affect the detected trend slopes (Kaufmann et 
al., 2000). 

NDVI is a one dimensional measure with a multi-dimensional biophysical origin, 
which – despite the improved time series analysis techniques – urges caution in the 
interpretation of trends. Given that the data is free of measurement errors, it still does 
not directly measure the amount of standing biomass nor the vegetation productivity, 
but is also influenced by canopy structure and soil parameters, among others (Baret 
& Guyot, 1991; Myneni et al., 1995). It is therefore not straightforward to relate 
NDVI changes to ecosystem changes, which in itself are often multi-actor issues and 
subject to change over time (Nelson et al., 2006). Expressing productivity change in 
terms of Net Primary Productivity (NPP) – using empirical relationships with NDVI 
or production efficiency models – yields an indicator which is closer related to 
biophysical processes and better amenable to economic analysis. The relationship 
between the two, however, is not always strong and not over the entire range linear 
(Paruelo et al., 1997), although a large part of interannual variation in NPP (30% up 
to 90%, depending on biome) can be explained by NDVI (Potter et al., 1999). The 
application of trend break analysis of satellite records in combination with 
production efficiency models needs further investigation. 
 

 

 

 

 

Table 5.3 Sensor changes within the time span of the 
GIMMS dataset. Due to malfunction of NOAA-11 and 
failure of NOAA-13 to achieve orbit, NOAA-9 
descending node data was used in the period Sep 20, 
1994 until Jan 19, 1995 (Tucker et al., 2005).  

AVHRR platforms  Date  

NOAA-7 > NOAA-9  Feb 10, 1985 
NOAA-9 > NOAA-11  Nov 9, 1988 
NOAA-11 > NOAA-9d  Sep 20, 1994 
NOAA-9d > NOAA-14  Jan 19, 1995 
NOAA-14 > NOAA-16  Nov 1, 2000 
NOAA-16 > NOAA-17  Jan 1, 2004 
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5.5 Conclusions 

Temporal decomposition of trends in vegetation activity inferred from NDVI 
revealed an alternating pattern of short-term greening and browning trends for large 
parts of the terrestrial surface. For almost 15% of this area, both periods with an 
increase and with a decrease in vegetation activity were found between 1982 and 
2008. The ENSO-prone shrubland and grassland regions, mainly in the Southern 
Hemisphere, appeared specifically prone to reversing trends. Many trend changes 
were detected for certain regions after the strong ENSO event of 1997/98 and 
globally after the Mt Pinatubo eruption of June 1991. 

Different spatial patterns were found for abrupt and gradual changes. Abrupt 
greening prevailed in semi-arid regions, probably due to their strong reactions to 
climatic variations. These abrupt greening events were often followed by periods of 
gradual browning. In general, greening prevailed in all land cover classes and as a 
result the global figure indicates greening between 1982 and 2008, strongest in 
croplands and weakest in needleleaf forests. Greening trends were also found to be 
weaker in the Southern Hemisphere, compared to the Northern Hemisphere. 
Globally, the area which experienced gradual greening trends was found to decrease 
over time, while browning increased. This might indicate an overall reduction in 
global terrestrial vegetation activity, although an increasing trend was found in recent 
years. 

The results from this study show that linear trend analysis over a time series of 
arbitrary length may obscure significant trend changes appearing within shorter 
duration, while particularly the latter can be linked to large scale drivers. As such, 
automatic detection of trend changes provides a new step in the analysis of trends in 
global vegetation activity, specifically in (semi-arid) shrub- and grassland biomes. 
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“When we look about us towards external objects, and consider the 
operation of causes, we are never able, in a single instance, to discover 

any power or necessary connexion; any quality, which binds the effect to 
the cause, and renders the one an infallible consequence of the other.”  

 
David Hume (1737) 
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Abstract 

Vegetation, the main component of the terrestrial biosphere, is often used as a proxy 
in studies addressing land degradation and climate change. Several studies have 
reported on temporal trends in time series of satellite data. There is, however, little 
known about the processes underlying changes in vegetation activity at large spatial 
scales. In this study, we aimed at quantifying the spatial relationship between 
potential climatic influence (i.e. temperature, precipitation and incident radiation) 
and human-induced change in vegetation activity as a step towards establishing links 
between plant growth, climate change, and human-induced land change. A spatial 
additive model was used in combination with regression models representing both, 
deterministic or fixed-effects and a spatially correlated random field representing a 
random component. Little over 50% of the variance could be explained with changes 
related to climatologies; the remainder may contain large-scale human interventions 
or residual climate effects (likely hidden in negative feedbacks). The strongest 
relationship between climate and vegetation activity was found in forests. Large-
scale vegetation changes which could not be related to climate variables were found 
in sub-equatorial Africa, mainly in Tanzania and Zimbabwe. The novelty of this 
study is the combination of a spatial modeling approach with long-term climate and 
vegetation records, which showed plausible associations between limiting climate 
variables and vegetation activity in many regions, as well as locations where these 
associations were less pronounced. 
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6.1 Introduction 

Vegetation is the main component of the terrestrial biosphere and remotely sensed 
vegetation indices (VI) are often used in climate change studies as a proxy for 
vegetation amount and photosynthetic capacity (Myneni et al., 1995). Today, VI time 
series are available at large spatial scales and dense time intervals. Studying the 
available satellite imagery at global scale involves the analysis of large quantities of 
data, which is usually done on a per-pixel basis. Temporal VI changes have been 
quantified using several approaches, including parametric linear models on data 
aggregated on a yearly basis (Bai et al., 2008), on a seasonal basis (Eklundh & 
Olsson, 2003), non-parametric models on the full time series (Pouliot et al., 2009) or 
seasonal-trend decomposition algorithms (de Jong et al., 2012). The general pattern 
of the detected changes is mostly the same: increases in VI over time (greening) have 
been found in many areas of the world, for instance in Europe, the Sahel and India. 
Decrease (browning), on the other hand, has been identified mainly in the Southern 
Hemisphere (e.g. South America), but also in boreal forests (de Jong et al., 2012). 
These results indicate temporal change in vegetation activity over the past decades, 
but leave the relation with underlying processes open. 

Changes in vegetation activity – as we use to refer to changes in vegetation index, 
following Zhou et al. (2001) – form a complex system of biotic and abiotic 
interactions, which differ between land-cover classes and may evolve over time 
themselves (Nelson et al., 2006). Changes may be induced by natural processes, 
anthropogenic processes or, often, by a combination of both (Evans & Geerken, 
2004). For these reasons, disentangling all drivers of changes in vegetation activity at 
large spatial scales remains an unsolved issue. Typical spatial resolutions ranging 
from 0.05 – 0.5 degrees complicate the issue as they involve mixed pixels, consisting 
of several vegetation types and other land-use/land-cover types. Many local-scale 
processes may influence vegetation at sub-pixel level, including changes in land 
management, human-induced land degradation, changes in soil background and local 
diseases or fires. Climate change, on the other hand, is more likely to act at much 
larger spatial scales. In global datasets with relatively large pixel size, local-scale 
effects may be expected to be randomly distributed (in space), while climatic effects 
may express as a spatially correlated field (Zhou et al., 2001). 

Climate observations (temperature, precipitation, cloudiness, amongst others) are 
available as global gridded data with monthly intervals since the beginning of the 
previous century (Mitchell & Jones, 2005). Variations in vegetation activity have 
been inferred from satellite data at global scale since the early 1980s (Tucker et al., 
2005). The normalized difference vegetation index (NDVI) is currently the most 
widely applied spectral index for quantification of trends in vegetation activity. It 
directly correlates to the fraction of absorbed photosynthetically active radiation 



Chapter 6 

94 

(fPAR) and can – in combination with an efficiency conversion factor and the 
amount of incident PAR – be used to quantify gross primary productivity (GPP) 
(Running et al., 2004). Comparisons between climate change and changes in NDVI 
can be made for the last decades using statistically derived trends over time. 

In this study, the described temporal and spatial components were combined into 
an additive model where the observed changes in vegetation activity are modelled as 
the additive combination of fixed (climate) effects, spatially dependent random 
effects and independent residuals. First, we used a land-cover specific deterministic 
model and a regression-tree approach to explain variation in vegetation activity from 
climate changes. Covariates for these models were selected based on the assumption 
that plant growth is limited by either one or a combination of three climatological 
constraints: water availability, temperature and incident radiation (Field et al., 1995). 
This assumption was found to hold for most parts of the world, except for some 
regions (e.g. tropics) where other environmental controls – including nutrient 
availability or biological constraints like multi-layer canopies – constrain plant 
growth (Churkina & Running, 1998). Changes in global vegetation activity cannot be 
solely accounted to changes in the described climate parameters. Other factors which 
tend to occur over large geographic areas might have contributed to the observed 
changes in vegetation activity, for instance temporal variations in permafrost or other 
climate responses. Such factors are likely to cause spatial autocorrelation, even at 
coarse spatial resolution. For this reason we added a spatially smooth field to model 
random effects originating from other actors than captured by the fixed-effects 
model. A Gaussian random field (GRF) model was used for this purpose. 

With this work, we aim at quantifying spatial relationships between climatic 
constraints and temporal VI trends. We are interested in trends beyond the pixel-level 
and associations with possible drivers that can be made using historical data and 
without a-priori information. The associated spatial patterns help the interpretation of 
relationships between vegetation activity, climate change, and human-induced land-
use / land-cover changes. 

6.2 Data 

6.2.1 NDVI data 

The National Oceanographic and Atmospheric Administration (NOAA) acquired the 
longest series of data using advanced very-high resolution radiometer (AVHRR) 
sensors. We used the most recent GIMMS version G datasets (Tucker et al., 2004), 
consisting of 28 years of NDVI data from 1981 through 2008, aggregated to 
fortnightly scenes at 8km spatial resolution (see Section 1.2.3). These fortnightly 
scenes were derived from daily 4km global area coverage (GAC) data (Tucker et al., 
2005), applying a maximum value compositing (MVC) technique to remove bias 
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caused by atmospheric conditions (Holben, 1986). This, however, is not an 
atmospheric-correction method and some inaccuracy remains, especially in hazy and 
cloudy conditions (Nagol et al., 2009). For this reason, we applied a harmonic 
interpolation algorithm (Roerink et al., 2000; de Jong et al., 2011a) to remove 
remaining noise in areas with frequent cloud cover. Areas with very sparse or no 
vegetation cover (median NDVI < 0.1) were masked out, as well as regions at higher 
than 72 degrees northern latitude. As such, we excluded the northernmost regions of 
Russia and Canada. In these regions, NDVI signals have been found to be distorted 
by high solar zenith angles and by snow and ice (Brown et al., 2006). Orbital decay 
and changes in NOAA satellites are known to affect AVHRR data but processed 
NDVI data have been found free of trends introduced from these effects (Kaufmann 
et al., 2000). Discussions on the GIMMS data quality and derived trends are, among 
others, provided by Zhou et al. (2001), Baldi et al. (2008) and Alcaraz-Segura et al. 
(2010). 

6.2.2 Climate data 

High resolution gridded datasets with global coverage were obtained from the 
Climatic Research Unit (CRU). The most recent TS 3.1 datasets (Mitchell & Jones, 
2005) were released in April 2011 and provide time series for a range of parameters 
(Table 6.1). The dataset spans 1901–2009, but only the subset matching the time span 
of GIMMS data was used. Daily observations were aggregated into monthly mean 
values with 0.5 degree spatial resolution. As such, each time step consists of a 720 
columns and 360 rows image. Non-terrestrial pixels were masked, resulting in 
approximately 65 000 observations per time step. 

 
 
 

Table 6.1 Climate parameters provided by the Climate Research Unit (CRU) TS 3.1 dataset as high resolution 
monthly grids (spatial resolution 0.5 degree) for the time span 1901–2009. 

Label Parameter Unit 

CLD cloud cover % 

DTR diurnal temperature range degree C 

FRS frost day frequency Days 

PRE Precipitation Mm 

TMP daily mean temperature degree C 

TMN daily minimum temperature degree C 

TMX daily maximum temperature degree C 

VAP vapour pressure hecta-Pascal 

WET wet day frequency Days 

PET potential evapotranspiration Mm 
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Covariates were selected based on the assumption that plant growth is limited by 
water availability, temperature and/or incident radiation (Field et al., 1995). Changes 
in either of these parameters might induce changes in vegetation productivity and in 
the proxy NDVI signal. For most regions, water availability is determined by the 
amount of precipitation, although snowmelt should be accounted as well for high 
northern latitudes and in mountainous regions. In this study, this parameter was 
confined to precipitation as the mentioned regions are temperature-limited rather than 
water-limited (Nemani et al., 2003). Time series of incident PAR are not globally 
available, but the amount of PAR is to a large extent determined by the intensity and 
duration of cloud overcast (Zhuravleva et al., 2006). Therefore, trends in temperature 
(TMP), precipitation (PRE), cloud cover (CLD) were selected as covariates for the 
deterministic prediction of NDVI trends. Potential Evapotranspiration (PET) is a 
reflection of the energy available to evaporate water given that ample water is 
available. It may reflect growth-limitation by radiation, for which it was incorporated 
as additional covariate. PET was calculated as reference value for grass according to 
the method used by the United Nations Food and Agricultural Organization (Ekström 
et al., 2007) – which is a variant of the Penman-Monteith method (Allen et al., 
1994). The gridded TMP, TMN, TMX, VAP and CLD (Table 6.1) were used as input 
for this method. PET units are mm/day and were multiplied by the number of days in 
each month to obtain mm/month. The ratio PRE/PET is known as the aridity index 
(AI) (Middleton & Thomas, 1997) and was additionally used as indicator of water-
limiting conditions for plant growth. 

6.2.3 Land-cover data 

Land cover was considered because biomes may respond differently to climate 
change and to land-use change (Chapin et al., 2000; Verburg et al., 2011). In the 
International Geosphere and Biosphere Programme (IGBP), a 1km AVHRR-based 
land-cover product (DISCover), intended for remote sensing of global change, was 
developed. The dataset consists of 17 general land cover types, based on an extended 
climate-independent vegetation classification logic of Running et al. (1994). For 
definitions of each category the reader is referred to Appendix 1 in Loveland & 
Belward (1997) and to Loveland et al. (2000) for an elaborated description of the 
dataset and comparison with other land cover datasets. The classification scheme was 
later adopted within the moderate resolution imaging spectrometer (MODIS) land 
cover products (Friedl et al., 2002), which provide yearly land cover maps at 500m 
spatial resolution. In this study, the MCD12C1 product was used, as it provides land 
cover at an aggregated 0.05 degree spatial resolution together with the sub-pixel 
frequency of each class. These land cover classes were used to develop biome-
specific regression models on a subset of homogeneous pixels. Both GIMMS and 
MCD12C1 datasets provide higher spatial resolutions than CRU data and needed to 
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be resampled to 0.5 degree resolution. The aggregation scheme used for this purpose 
is described in the Methods section. 

6.3 Methods 

6.3.1 Spatial aggregation of NDVI and LCC data  

The native spatial resolution of the CRU TS 3.1 climate data is 0.5 degree, whereas 
the land cover data from the MCD12C1 product and the GIMMS NDVI data have 
spatial resolutions of 0.05 degree (~5.6km) and 0.073 degree (~8km) respectively. 
Therefore, both the land cover data and the temporal NDVI trends needed to be 
resampled to 0.5 degree spatial resolution. With regard to the discrete land-cover 
data, the spatial aggregation scheme determines the area and the spatial coherence of 
each land cover class within the aggregated product (Dendoncker et al., 2008; 
Verburg et al., 2011). For this reason, careful selection of the aggregation scheme is 
crucial. A central pixel approach best preserves the relative area of the individual 
classes, especially the minor classes. A majority approach, on the other hand, 
provides the best result in terms of spatial structure of the major classes. In this 
study, we adopted the majority scheme to assign the prevailing land cover class 
(Figure 6.1a) and we used the sub-pixel frequency (Figure 6.1b) to select relatively 
homogeneous pixels for fitting the regression models. The raw GIMMS data was 
used for determination of temporal trends in NDVI between 1982 and 2008 at 0.072 
degrees (~8km) spatial resolution. The resulting dataset was aggregated to 0.5 
degrees resolution using the areal mean. 

6.3.2 Temporal changes in vegetation activity and climatologies  

The total amount of change was determined for both NDVI and climate time series 
using linear regression after correction for seasonality. The latter was described by 
additive harmonic functions with periods of 12, 6 and 3 months respectively. The 
seasonal component was subtracted from the original data before fitting the linear 
model. The slope coefficient of the fitted model was multiplied by the length of the 
time series to obtain the magnitude of change. For the GIMMS data, trend analysis 
was applied before the spatial resampling procedure. The resulting change maps 
(Figure 6.2) were used for the additive model that is described in the next section. 
Significance of the slope coefficients was assessed using generalized least squares 
(GLS). In this way, possible short-lag temporal autocorrelation, which remains after 
subtracting the seasonal component, is accounted for in the calculation of the p-
values. All trends at 0.05-confidence level were retained; other slope coefficients 
were neglected (and appear as zero in Figure 6.2). 
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Figure 6.1 (a) Major land cover class based on the MODIS MCD12C1 product and the International Geosphere-
Biosphere Programme classification scheme (Loveland et al., 2000). The data were resampled to 0.5 degree
spatial resolution using a majority resampling approach. (b) sub-pixel frequency of the major land-cover class
(%). 
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Figure 6.2 Temporal changes in vegetation activity and Climate Research Unit (CRU) parameters (1982 – 2008). 
Left, top to bottom: vegetation activity (NDVI), temperature (TMP), precipitation (PRE). Right, top to bottom: 
cloudiness (CLD), potential evapotranspiration (PET) and aridity index (AI). Changes in climate parameters were 
derived with linear models, after seasonal decomposition, on monthly gridded data (CRU TS 3.1) (Mitchell & 
Jones, 2005). 

 

6.3.3 Additive model for observed NDVI changes 

An additive model was used for describing the observed temporal changes in NDVI 
(observation matrix Y). The model consists of a deterministic part where Y depends 
on a set of covariates X with their coefficients β (fixed effects), a spatial process h 
and a residual noise component ε (Eq. 6.1). 

εβ ++= hXY        (6.1) 

The individual components were modelled using a backfitting approach, 
consisting of an iterative estimation of the fixed effects β (regression step) and the 
spatial field h (kriging step). Initially, Xߚመ  was estimated using a regression tree 
model on the input data Y. The initial spatial field ℎ෠ was fitted on the residuals of 
this model. Initial values for the parameters of the spatial model were estimated by 
the method-of-moments, which is affected by both the random variation and the 
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variation represented by the fixed effects (Lark et al., 2006); the backfitting approach 
pursues optimal parameter estimation in this situation of mutual model dependency. 
The procedure is schematized in Method 6.1. 
 

Method 6.1 
[1] Put i = 0; let ߚመ(଴) be an initial fit of Y on X 
[2] Let ℎ෠(଴) be an initial fit on ܇ −  መ(଴) (see Method 6.2)ߚ܆
[3] Put i = i + 1 
[4] Estimate ߚመ(௜) from ܇ − ℎ෠(௜ିଵ) 
[5] Estimate ℎ෠(௜) from ܇ −  መ(௜)ߚ
[6] Repeat steps 3 to 5 until convergence 
[7] ߳ = ܇	 − መ(௜)ߚ܆ − ℎ෠(௜) 

 
The deterministic approach (steps 1 and 4) and the spatial model (steps 2 and 5) 

are described in the following sections. 

Deterministic model (fixed effects) 

Climatic limitations on vegetation activity can be described by any combination of 
three drivers and their interactions: temperature, precipitation and incident PAR 
(Field et al., 1995). As such, changes in these climate parameters may induce 
changes in vegetation activity as inferred by NDVI. Two approaches were used to 
model changes in NDVI from changes in limiting climate parameters, where CLD 
and PET were used as proxies for PAR. Different land cover classes (or biomes) are 
likely to respond different to changes in climatic conditions (Chapin et al., 2000). 
For this reason, a model that directly relates climate changes to changes in vegetation 
activity (e.g. using multiple regression) is likely to be inaccurate in certain regions. 
At global scale we therefore used a more flexible regression tree model. Such a 
model is built by recursive partitioning of the sample (= root node) into more 
homogeneous nodes, or children (Breiman et al., 1984). Each split is based on one 
predictor and is selected according to a splitting criterion which minimizes the total 
sum of squared deviations from node centres. The tree is grown until no splits can be 
made anymore due to lack of data and subsequently reduced in a process of pruning 
where least important splits, based upon the cost-complexity measure (Steinberg, 
2009), are removed. We used cross-validation to derive the optimal complexity 
parameter. Using this, the 54601 grid cells (root node) were classified into 867 
terminal nodes. All climate parameters were selected in approximately equal amounts 
in the splits. The resulting model was used to predict the change in vegetation 
activity by following the path from the root node down to the appropriate terminal 
node of the tree. This provided the fixed-effects term of the additive model in Eq. 
6.1. A minus of this approach is the limited transparency of the predictor importance 
compared with linear regression models. Several methods can be used to estimate 
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variable importance, but their robustness is debated and even if successfully applied 
they have been limited to non-spatial estimates. Complementary to this approach we 
therefore applied multivariate linear regression (Eq. 6.2) for a better insight in 
contribution of the predictors in specific land cover regions. 

[ ]410 βββ ×


















Δ
Δ
Δ
Δ

+=−

PET

CLD

PRE

TMP

hY     (6.2) 

In Eq. 6.2, β are regression coefficients and the other vector contains changes in 
the CRU parameters (Table 1) as covariates (X in Eq. 6.1). The latter were 
determined for the same time span as the NDVI data using seasonal decomposition 
and a linear trend model. For the seasonal decomposition we used the smooth 
harmonic curve derived using the harmonic analysis of NDVI time series (HANTS) 
algorithm (Roerink et al., 2000; de Jong et al., 2011a). For the reasons mentioned 
above, the regression models were specifically parameterized for each land-cover 
class based on the MODIS land cover product (relying on the IGBP classification 
scheme). At 0.5 degree spatial resolution, land cover is in most cases a composite of 
smaller patches. The sub-pixel frequency (Figure 6.1b) of each class was used to 
quantify this effect. The highest threshold was selected such that each land cover 
class retained a sufficient number of pixels for training the regression models of Eq. 
6.2. Above the threshold of 80%, the smaller land cover classes (deciduous broadleaf 
forest and closed shrubland) retained too few pixels for model training and 
significance tests. At the 80% level, permanent wetlands – the major land cover class 
in 514 grid cells (< 1%) – formed the only vegetated land cover class that could not 
be incorporated in the model. For all other classes, the coefficient of determination 
(R2) and correlation coefficients between changes in climatologies and vegetation 
activity were listed (Table 6.2). The correlation between changes in aridity index and 
precipitation was high (0.71) and in the regression models the latter appeared 
stronger as a predictor. For that reason, the aridity index was omitted from the model. 

Clusters of pixels in large homogeneous regions (Siberia, Amazon, Great Plains, 
etc.) may cause spatial dependency in the training data. Therefore, a bootstrapping 
method was applied for estimation of the model coefficients to avoid spatial 
autocorrelation. The number of bootstrap resamples was set to 1,000 for each land 
cover class. The output was used to calculate 95% confidence intervals and, based on 
these, to exclude parameters for which the regression coefficient appeared 
insignificantly different from zero. 
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Spatial field model (random effects) 

The deterministic model is a per-pixel approach which does not account for spatial 
dependence, other than by land-cover interaction. Spatial dependence can be imposed 
by modeling h as a stationary Gaussian random field (GRF). A GRF is specified by 
its mean value function and its covariance function. Therefore, the main assumption 
underlying h is a normal distribution with, in this case, zero mean and covariance 
matrix ∑(Θ). The model parameters Θ (i.e. sill, nugget and range parameter δ) fully 
characterize the random field, which is to say ℎ|0)ܰ~߆,  (6.3)       ((߆)∑

The covariance matrices need to be symmetric and positive definite. They were 
specified using a spherical covariance function which satisfies these conditions. The 
size of each covariance matrix (i.e. square of the number of observations) may lead 
to serious computational issues for datasets of the size used here (Furrer & Sain, 
2009). We used two measures to deal with this. First, a spherical function was 
selected because observations beyond the maximum range δ can be considered 
spatially uncorrelated. We determined δ using a negative 2 log-likelihood, or -2ln(L), 
curve while estimating ℎ෠(଴) (Method 6.2), but for larger datasets δ might be imposed 
by memory limits. Second, recognizing the sparse nature of the covariance matrices, 
only non-zero entries were stored and used for estimation of Θ. For this part of the 
analysis we used the R package spam (Furrer & Sain, 2010). Subsequently, given that 
∑(Θ) is a symmetric positive definite matrix, Cholesky decomposition was used to 
construct a lower triangular matrix L, such that the product LLT returns the original 
matrix. Solving linear systems becomes computationally more efficient using this 
manipulation (Higham, 2009), which we used to our advantage when estimating Θ 
and ℎ෠ as seen in Method 6.2. 

 
 

Method 6.2 
[0a]  Let ߚመ(௜) be a fit from Y (fixed effects) 
[0b] Estimate Θ0 from ܇ −  መ(௜) by method-of-momentsߚ
[0c*] Put δ = 0 (unit: degrees) 
[1*] Put δ = δ + 1 
[2] Calculate distance matrix using δ and great-circle distance (unit: km) 
[3] Apply spherical covariance function using Θ and δ 
[4] Optimize Θ using MLE 
[5*] Repeat steps 1 to 4 until minimum in -2ln(L) function 
[6] Fix δ *, calculate ℎ෠(௜) (Eq. 4) and continue with Algorithm 6.1 
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Initial values for Θ0 used in the MLE were obtained by the method-of-moments 
using gstat (Pebesma & Wesseling, 1998). The spatial field ℎ෠  was then calculated 
from the estimated Θ (Eq. 6.4) and used for backfitting of β (Method 6.1 step 5). The 
procedure of the spatial field model is summarized in Method 6.2, where steps 
marked with an asterisk were only applied in the first iteration, i.e. when predicting ℎ෠(଴)  (Method 6.1 step 2). Methods 6.1 and 6.2 provide the best empirical linear 
unbiased prediction (EBLUP) of the spatial field (Henderson, 1975) and are, under 
the intrinsic assumption of Eq. 6.3, analogous to kriging approaches in geostatistics 
(Lark et al., 2006). More specifically, given that the fixed-effect term is some linear 
combination of predictors, as in our case, then the EBLUP is equivalent to universal 
kriging or regression kriging. ℎ෠ = ∑௛෢ ∙ ൫∑௛෢ + ∑ఌ෢൯ିଵ ∙ ൫܇ −  ൯     (6.4)܆መߚ

Where ∑h is essentially identical to ∑(Θ), but without nugget variance (∑ε). The 
nugget variance is equivalent to ߪොଶܫ. 
 
In summary, the spatial field is described by a spherical model based on the range, 
(partial) sill and nugget parameters. The optimal range δ was estimated during the 
first model iteration (Method 6.1 step 2). In terms of log-likelihood, the optimum was 
found around 900km (Figure 6.3a), with the most substantial decrease in -2ln(L) 
below ~500km. We used the most conservative range of δ = 897km (~8deg) for 
estimation of the other model parameters. This resulted in a covariance-matrix 
density of 3%, equivalent to 89.5 million nonzero elements for 54601 observations. 
The other parameters were estimated using this fixed range and the resulting 
spherical covariance function is shown in Figure 6.3b. 

Figure 6.3 (a) Maximum likelihood estimation (MLE) of spatial model parameters as a function of range δ (x-
axis). The y-axis shows the negative 2 log-likelihood, or -2ln(L). (b) the optimal spherical covariance function
obtained from the MLE  and used for the Gaussian Random Field (GRF). 
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Residual component 

A pure-nugget effect (variogram not shown) indicated that the pixel values in the 
residual component are spatially uncorrelated. This implies that the combination of 
fixed effects and random effects captured all spatial variance at 0.5 degree resolution. 
As previously mentioned, the within-pixel variation, i.e. due to processes which act 
beyond 0.5deg scale, remains unexplained. 

6.4 Results and discussion 

6.4.1 Model predictions 

Figure 6.4 shows the decomposition of the changes in vegetation activity into the 
fields described by the fixed effects, the spatial process and the residual error 
process, which includes local-scale effects. At global scale, the regression tree model 
was used to represent the variation in vegetation activity which can be associated to 
climatologies. The prediction based on the optimal model fit (in terms of lowest 
cross-validation error) explained 54% of the variation and is shown in the second 
panel of Figure 4. Bootstrapped regression models provided insight in land-cover 
specific associations between vegetation activity and growth-limiting climate 

 

Table 6.2 Results of the bootstrapped linear regression model. For each land cover class (following Loveland 
et al., 2000), the table lists the number of 0.5 degree grid cells in which the corresponding land cover 
dominates (Cells), the coefficient of determination of the fitted model (R2) and the Pearson correlation 
coefficients between the change in NDVI and the parameters in the model. Homogeneous grid cells (sub-pixel 
frequency > 80%) were used for model training and climate parameters that did not significantly (α = 0.05) 
contribute to the model were not included. 

Correlation coefficients 

Land cover class Cells R2 TMP PRE CLD PET 

Fo
re

st
 

Evergreen Needleleaf Forest 3474 0.43 0.65 0.25 

Evergeen Broadleaf Forest 4773 0.22 0.17 -0.16 

Deciduous Needleleaf Forest 1431 0.54 -0.57 -0.26 -0.32 

Deciduous Broadleaf Forest 663 0.68 -0.23 0.79 

Mixed Forest 3441 0.25 0.14 -0.14 

 
N

on
-F

or
es

t 

Closed Shrubland 505 0.59 0.09 0.67 0.17 0.36 

Open Shrubland 11391 0.08 0.12 0.05 0.25 -0.17 

Woody Savanna 5557 0.20 0.38 -0.37 0.32 

Savanna 3119 0.10 0.16 0.06 -0.12 0.10 

Grassland 6211 0.22 0.14 0.30 -0.20 

Cropland 5327 0.13 0.07 0.28 0.05 

Cropland / Natural Mosaic 2392 0.20 0.30 
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parameters. The performance, in terms of coefficient of determination (R2), varied 
between land cover classes. There appeared to be a difference between forest and 
non-forest areas when it comes to the strength of association. In general, the 
strongest relationships were found in forests (Table 6.2), with the highest R2 in 
deciduous classes and the lowest R2 in the (tropical) evergreen broadleaf class. The 
latter was anticipated for a number of reasons: the use of NDVI is disputed in this 
class (Huete et al., 1997), the density of climatological observations is low (Zhao & 
Running, 2011) and vegetation growth may not be limited by the included 
climatologies (Churkina & Running, 1998). Outside of the forests, the strongest 
relationship was found for closed shrubland (e.g. parts of the Sahel region) while the 
weakest relationship was found for open shrubland. The likely explanation for the 
latter is the heterogeneous distribution of this land cover class over the globe (Figure 
6.1a). It includes, among other regions, the tundra, large parts of the Horn of Africa, 
southern Africa, central Australia and Argentina, each of which can be expected to 
react differently to climate changes (Chapin et al., 2000, Chapter 2). For such 
reasons, the regression tree approach was adopted for global prediction (shown in 
Figure 6.4b). 

Table 6.2 suggests that the relationship between cloudiness, which was used as 
proxy for incident radiation, and vegetation activity is more conspicuous for non-
forest than for forest classes. A positive relationship between cloudiness and 
vegetation activity was found for all classes but savanna, which suggests that a 
reduction in incident radiation has a positive impact on vegetation activity in, among 
others, grasslands and croplands. For a proper explanation of this relationship it is 
important to understand the influence of direct and diffuse components of incoming 
global radiation and the PAR fraction in special (Spitters et al., 1986). Clouds do not 
act as on/off switch for incident radiation, but determine the ratio between direct and 
diffuse radiation. For this reason, the efficiency of photosynthesis under overcast 
skies may be underestimated (Roderick et al., 2001; Gu et al., 2002) which would be 
a candidate explanation for the observed relationship. For other land cover systems, 
the combination of higher temperatures and reduced cloudiness may increase the 
potential evapotranspiration, but limit vegetation activity, as observed for savannas. 
These ecosystems are predominantly water limited, rather than temperature limited 
(Nemani et al., 2003). In addition to the increased photosynthetic efficiency, the 
observed cloudiness associations may be related to changes in global radiative 
forcing. A reduction, or global dimming, has been suggested for the 1960s until late 
1980s, but it was suggested that the trend inversed towards global brightening 
afterwards (Wild et al., 2005). The latter was found to have raised the diffuse 
fraction of solar radiation which, in turn, may have boosted photosynthetic 
efficiency. Conversely, less direct radiation reduced evapotranspiration in some 
semi-arid regions (Oliveira et al., 2011). In forest ecosystems, associations between 
cloudiness and vegetation activity were only found in the deciduous broadleaf class. 



Chapter 6 

106 

The (boreal) needleleaf classes show the strongest associations with temperature, 
which is in line with the expected limiting factor (Nemani et al., 2003), although the 
deciduous needleleaf forests (Russia) show reduced vegetation activity despite the 
warming trend (Figure 6.2, Table 6.2). This case of boreal browning has been called 
the divergence problem and underlying processes remain unknown. Suggested causes 
include drought stress, pollution, global dimming, direct temperature stress and, 
likely, a combination of these (Goetz et al., 2011). Drought stress would be in line 
with field observations in relatively dense forests (Goetz et al., 2011) and radiation-
related causes may be expected in other cases, although in this study only found 
through association with potential evapotranspiration. Radiation-hydrology feedback 
mechanisms may further complicate this issue (Oliveira et al., 2011).  

The strongest association with precipitation was found in closed shrublands, 
including parts of the Sahel. This region is known for its long anomalously dry 
period since the early 1970s (Nicholson, 2000), probably related to multidecadal 
oceanic oscillations (Zhang & Delworth, 2006). The record-low years were the early 
1980s and since then a positive trend in both precipitation and vegetation activity 
was found (Fensholt & Rasmussen, 2011) which likely underlies the detected 
association. 

In Figure 6.4, the general pattern of changes in vegetation activity is well 
captured by the fixed-effects model, although the greening patterns seem better 
represented than some of the browning patterns (e.g. in sub-equatorial Africa). These 
large-scale browning patterns were picked up by the spatially correlated field, which 
implies that they could not be directly related to the regarded climate changes, but 
the underlying processes are likely to act at large spatial scales. In Africa, two 
regions stand out: south / east of Lake Victoria (mainly Tanzania) and Zimbabwe / 
southern Mozambique. In the former, the changes might be partly related to human 
activities, since the fixed-effect model predicted small increases in vegetation 
activity rather than decreases. In recent decades, population increased and agriculture 
intensified accordingly. Although small parts of the area are in protected national 
parks (e.g. Serengeti), the browning hotspots are in unprotected woodland and 
grassland, parts of which were previously marked as degraded (Pelkey et al., 2000). 
Wind erosion and overgrazing have been mentioned as causes for degradation in 
these regions (Dregne, 2002).  

 
 
 

Figure 6.4 (next page) Decomposition of (a) the observed changes in vegetation activity (Figure 6.1a) into (b) 
fixed effects based on coefficients β and CRU climate parameters X as represented by the regression tree(CART)  
model, (c) random effects (smooth spatial field) h based on a Gaussian random field (GRF) and (d) residual term ε. 
The four insets in the right column illustrate the spatial structure of each model component at pixel level for the 
example of southern Africa. For few grid cells, fixed effects could not be estimated and, as a result, the spatial 
field not predicted, due to masking of water bodies and permanent wetlands (e.g. Lake Malawi in the insets). 
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Severe degradation was also found in Zimbabwe and attributed to human land use, 
concentrated in communal areas (Prince et al., 2009). While relating potential 
productivity to actual productivity in this region, Prince et al. (2009) could establish 
no relationship between productivity declines and climatic factors, which is in line 
with our results. Other conspicuous regions include large parts of the needleleaf 
forests in Alaska, Canada and Russia. For these regions, the complicated relationship 
with climate and other abiotic factors was discussed before. 

The remainder component in Figure 6.4d is spatially uncorrelated. This 
component may contain small-scale human interventions, indirect climate effects 
(likely hidden in uncaptured feedback mechanisms) or measurement error (Zhou et 
al., 2001). It should be noted, however, that a substantial part of the local variation 
caused by small-scale processes was averaged out in the spatial aggregation 
procedure. Climatological observations at higher spatial resolution would be needed 
to further disentangle these processes. 

6.4.2 Limitations and outlook 

The results from the presented model showed plausible associations between limiting 
climate variables and vegetation activity. However, it also seems appropriate to 
reflect on the limitations and on future steps to be taken. First of all, we are aware 
that correlation, on which this study relied, does not mean causation. The presented 
statistical methods form no atmosphere-vegetation interaction model and there are 
many climatological processes that cannot be resolved while being of influence at the 
regarded spatial scale. Sophisticated modeling of the deterministic component, 
including mentioned climate-vegetation feedback mechanisms, might be achieved 
with full spatial-temporal models, but comes with challenges. For example, 
estimation of many model parameters, given only NDVI as response variable, is 
likely to run into an ill-posed scenario. Furthermore, dynamic temporal lags between 
some climatic predictors and vegetation response need to be accounted for. The latter 
is neither simple nor straightforward at large spatial and temporal extents (Eklundh, 
1998). 

The predictive power of the gridded climate data at hand is limited for reasons of 
spatial interpolation, i.e. the effective number of observations is lower than the 
number of 0.5 degree grid cells. This lack of predictive power currently gives more 
weight to the random components of the model. A denser climate observation 
network would increase the predictive power, especially in remote areas, although 
great value of the CRU dataset resides in its time span. As regards the cloudiness 
data, station-based observations have been augmented with sunshine records 
(Mitchell & Jones, 2005) and few observations are available outside Europe, North 
America and Asia. Both may bias the prediction and render radiation the component 
where improvement is most needed. 
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6.5 Conclusions 

In this study we applied a decomposition of spatial patterns in vegetation-activity 
changes in an attempt to contribute to the quest of disentangling various climate and 
human effects. As a step towards this goal, we aimed at quantifying spatial 
relationships between temporal trends in potentially growth-constraining 
climatologies (i.e. temperature, precipitation and radiation) and vegetation activity, 
inferred from normalized difference vegetation index (NDVI) data. The 
deterministic, or fixed-effects, component established a global relationship which 
explained about 54% of the spatial variation. The remainder was described using a 
spatially correlated field as well as spatially uncorrelated residuals. This 
demonstrated that associations between vegetation-activity trends and possible 
drivers can be made using historical satellite data. Land-cover specific regression 
models, in combination with spatial patterns from the random-effect component, 
demonstrated that the strongest relationships were found in forests, while weak 
relationships were found for more heterogeneously distributed land-cover classes like 
open shrubland. For many classes, inverse relationships with cloudiness may indicate 
that, also at large scales, vegetation activity is positively influenced by a higher 
proportion of diffuse light. Strongest relationships with temperature, both positive 
and negative, were found in needleleaf forest. A negative relationship is, in this case, 
indicative of reduced vegetation activity under warming conditions: an effect which 
is, for boreal forests, known as the divergence problem. Strong positive relationships 
between precipitation and vegetation activity were found in closed shrublands, 
including the Sahel. For other sub-Saharan regions, including Tanzania and 
Zimbabwe, browning trends could not be related to climate variables. In these 
regions, negative changes in vegetation activity may need to be explained by human 
activities. 
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7.1 Main results 

Seven billion people, directly or indirectly, depend on Earth’s capacity to let plants 
grow. Slight changes in this capacity may have dire environmental and societal 
consequences. It is therefore a valuable effort to closely monitor fluctuations in 
vegetation activity and to detect changes. This information lies at the heart of land 
degradation monitoring. To recall, this work addressed four main research questions, 
as they were listed in Section 1.3. In answering these questions, this work aimed at 
advanced understanding of dynamics and trends in global vegetation activity, in 
relation to climate variability, for use in land resource applications, including land 
degradation assessments. The four research questions are individually addressed 
below, followed by general conclusions and an outlook for future research efforts. 
 
 
1: What is the current state-of-art in large-scale quantitative land degradation 
assessment and what are knowledge gaps, key ecological indicators and successful 
methods that have not yet been exploited to their full potential?  
 
Land degradation is recognised as a global environmental and development issue on 
a par with climate change, but due to its complex nature there is until today no 
consensus on its causes, severity and extent. Among the most urgent demands is the 
separation of human-induced from climate-induced degradation, irrespective of the 
question to what extent the latter is caused by human interventions. In the case of 
direct human actors, e.g. land-use changes or overexploitation of land resources, 
mitigation might be targeted by different land-use practises, while climate-induced 
changes can, most likely, not be counteracted at this scale. In such cases, a way of 
adaptation to these developments is required. For making such decisions and 
associated policy, it is not sufficient to rely on anecdotal and qualitative information. 
Quantified, explicit information is needed to determine the nature and seriousness of 
the situation. This requires consistent monitoring of key indicators at a range of 
scales. Key indicators, however, can only be selected if an unambiguous definition of 
land degradation is adopted. This is hardly possible at global scale, since the term 
land degradation can be very specific to prevailing environmental conditions and is 
often subject to interpretation and perception (Section 2.1). Despite this 
contentiousness, a main characteristic can be distilled from the many existing 
definitions: reduction or loss of ecosystem services, notably the primary production 
service (Adeel et al., 2005). Loss of vegetation activity and/or cover have therefore 
been widely used as key indicator, also because of the availability of long-term VI 
time series. The first quantitative global assessment of land degradation and 
improvement (GLADA) used linear trends over yearly averaged NDVI measurements 
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and translated these into NPP (Bai et al., 2008). There is, however, still criticism and 
steps towards improvement included (I) advancement of the change detection 
techniques, (II) the use of spatial-contextual information in the interpretation of 
detected changes, (III) integration of state assessments using model-based links to 
driving processes and (IV) validation using regional assessments (Section 2.5). 

The more thorough use of the temporal and spatial dimensions of the available VI 
datasets was adopted as research line for the technical work of this thesis. This 
targets the first two identified steps for improvement of land degradation monitoring. 
The temporal dimension provided the initial focus and the second research question, 
around which we elaborated several enhanced change detection methods. A 
conventional approach for change detection involves yearly aggregation of VI 
measurements, which inherently eliminates useful intra-annual information. The 
reduction of the information content also obstructs the possibilities of detecting trend 
reversals or possible (catastrophic) shifts in the greening or browning regime. We 
know that such shifts have occurred in the past decades (Schimel et al., 2001; 
Slayback et al., 2003; Angert et al., 2005; Wang et al., 2011), but quantitative 
information is lacking at the global scale. This knowledge gap provided our third 
research question. Finally, the interpretation of detected changes beyond the per-
pixel level using spatial-contextual approaches was targeted by our final research 
question. 
 
In following the described research line, the main focus was on spectral vegetation 
indices. However, VIs are not exclusive as key indicator for land degradation. In 
previous studies they have, for instance, been complemented with climate parameters 
and, at smaller spatial scales, with yield statistics or demographic measures. 
Conspicuously, precipitation changes have been adopted in a range of land 
degradation studies in the form of the rain use efficiency (RUE) concept (Le 
Houérou, 1984; Prince et al., 1998; Symeonakis & Drake, 2004; Bai et al., 2008). 
This concept was developed for use in arid and semi-arid environments and assumes 
that water availability is limiting for plant growth – i.e. RUE is the ratio of NPP to 
precipitation. In the most prominent study area for land degradation, the Sahel, this 
resulted in a debate about the way RUE should be interpreted. At least, the 
relationship with trends in precipitation itself should be carefully considered. If this 
is done properly, temporally invariant RUE measurements might then still indicate 
human-induced degradation (Hein & de Ridder, 2006). This conclusion was later 
disputed for reasons of the uncertainty in RUE close to zero rainfall and for 
methodological issues in derivation of temporal trends (Prince et al., 2007). A 
follow-up then concluded that uncertainties do indeed exist and may be attributed to 
non-linearity in the NPP–RUE relationship and to cross-scale effects, i.e. feedback 
mechanisms at site-scale may differ from spatially integrated observations (Hein et 
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al., 2011). At least, it can be concluded that the concept strongly correlates with the 
use of precipitation trends and that it is not globally applicable. 
 
Finally, both the start and the extent of the time series leave ample space for 
uncertainty about degradation trends. The presented work demonstrates 
advancements in monitoring of long-term vegetation activity on our globe. Long-
term, in this context, coincides with the few decades for which satellite imagery is 
available: slightly more than one human generation. This is a short and seemingly 
arbitrary time span in the Earth’s system – with climate cycles acting at time scales 
of thousands of years and beyond – and may raise questions about the relevance of 
the efforts. At the same time, it covers the period in which the human population 
grew from 4.5 billion to 7 billion and, as a consequence, the period in which 
relatively small changes in vegetation productivity can be of large environmental and 
societal importance. These changes may need adaptation to new conditions, including 
humanitarian aid in regions which see land resources degrading in present time. On 
the other hand, it urges to weigh the lack of initial-state information in the 
interpretation of changes. 
 
 
2: Can we use the full temporal dimension offered by satellite records for detection of 
vegetation-activity trends and what is then the influence of land-surface phenology? 
 
Change detection using yearly integrals of NDVI measurements is a robust approach 
for most parts of the world, as we demonstrated in Chapter 4, but it eliminates intra-
annual information. The latter is useful for the interpretation of changes and might 
provide clues towards driving processes. Also, the way data is aggregated influences 
the change detection. This issue is well-known for the spatial domain as the 
modifiable areal unit problem (MAUP), but it also affects the temporal domain: the 
detected magnitude of change is, in part, determined by the way in which data is 
aggregated. 

As an alternative to reducing the temporal resolution, we investigated the use of 
harmonic analyses and non-parametric trend tests. The first may serve several 
purposes, including the detection of clouds as large negative deviations from the 
expected VI value. It can also be applied to describe the seasonal component of the 
observed VI signal. Greening and browning trends were quantified using a linear 
model on observations from which the seasonal component was subtracted. 
Furthermore, a seasonal non-parametric model was tested on raw GIMMS data. Both 
approaches preserve the full temporal resolution, but with each arise other issues. In 
case of the linear model, the observations are not truly independent since anomalies 
are likely to persist for longer than two weeks. This increases the risk of detecting 
false-positives: statistically significant trends which do not exist in reality. It might 
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then become problematic to distill what is practically meaningful from what is 
statistically meaningful. In this work, this effect was reduced by modifying the 
confidence intervals accordingly using generalized instead of ordinary least squares. 
The non-parametric tests are not affected by this issue. However, this type of tests 
compares observations in time based on the associated calendar dates and, as such, 
they rely on the intrinsic assumption that the growing seasons are invariant over 
time. This assumption does, for various reasons, not hold for global monitoring. 
Therefore, phenological shifts and variation in length of growing season were 
accounted for by adjusting the timing of the observations to the growing season. In 
this way, the observations represent vegetation development stages rather than 
calendar days. The resulting trend provides a measure of within-season growing 
intensity rather than accumulated vegetation productivity. A reduction in growing 
intensity might indicate degradation due to nutrient or water stress, since changes in 
length of growing season due to temperature are not regarded. Harmonic functions 
were used to determine phenological parameters, although these are mainly suited for 
single growing seasons in regions with sufficiently high seasonal amplitude. The 
development of a globally comprehensive method which accounts for all growing 
regimes is an urgent issue which has been adopted by the research community 
(Geerken, 2009; Stöckli et al., 2011). 
 
Conspicuous greening and browning hotspots were previously identified in literature 
(see Table 2.2) and Chapter 3, about monotonic trends, seconded most of these 
conclusions. The non-parametric models demonstrated the significant influence of 
variations in land-surface phenology and provided the option of including intra-
annual variation within the analysis. The results were adequate for use in our next 
steps: detection of trend reversals and interpretation of spatial patterns. 
 
 
3: Can we detect trend reversals within the time series and what is the implication of these 
reversals for global vegetation activity trends? 
 
For detection of temporal trends in long-term time series of VI data, the signal-to-
noise ratio is small. That is to say, the magnitude of change is typically several 
orders of magnitude smaller than seasonal variation and may, in some cases, be of 
the same magnitude as artifacts like sensor degradation. Furthermore, with time 
series becoming longer, trends become more likely to be obscured by alternation 
between positive and negative changes. Underlying this logic is the important 
question about the specific duration of phenomena under consideration: how long 
should a trend last in order to qualify as indicator for land degradation or 
improvement? An exact answer cannot be given, but provided that food crises like 
the 2011 Somalia and Kenya example can be caused by few anomalous years, it is at 
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least substantially shorter than the time span of the VI data. As a logical result, 
changes in vegetation activity over time can be regarded as a sequence of greening 
and/or browning periods, separated by abrupt changes with varying magnitude. This 
can be further illustrated by trend reversals which have been found and debated in 
recent publications. For example, the core message of a recent paper in Science – 
which caused a polemic between various scientist – was a detected reversal, around 
the year 2000, turning global greening into global browning (Zhao & Running, 
2010). The negative trends in MODIS-based modelled vegetation productivity 
expressed strongly in the Southern Hemisphere and were mainly attributed to drought 
effects. In response, it was argued that the influence of temperature on other model 
parameters could have caused artificial trends (Medlyn, 2011; Samanta et al., 2011) 
and that the occurrence of short-term trends should not be interpreted as long-term 
change (Samanta et al., 2011). These arguments were largely rebutted (Zhao & 
Running, 2011): sensitivity tests showed that temperature-dependence may have 
influenced the magnitude, but not the sign of the NPP changes and short-term 
changes were attributed to differences between field-based and satellite-based NPP 
measurements. The latter may imply scale-dependent (or: cross-scale) effects, which 
are discussed in Section 7.3. The discussion, however, emphasizes the importance of 
including short-term trends in the analysis as well as establishing a sound 
relationship with climatological constraints. 

Various studies acknowledged the occurrence of trend reversals, but the timing is 
commonly imposed (Slayback et al., 2003; Angert et al., 2005) or a single turning 
point is regarded (Wang et al., 2011). For above-mentioned reasons, there is an 
urgent need for a data-driven technique which detects and quantifies trend changes 
without a-priori knowledge on timing or location. Based on this need, the study 
presented in Chapter 5 aimed at detection of trend changes and decomposition of 
long-term vegetation-activity trends into short-term variation which is closer related 
to the typical length scale of driving processes. This is an important step towards a 
better understanding and explanation of trends in vegetation activity at the sub-
decadal scale. We did not argue the validity and existence of monotonic trends, but 
we added another step to the analysis of the temporal domain.  

Seasonally-adjusted VI data from Chapter 3 were used as input and piece-wise 
linear models revealed the magnitude of abrupt and gradual changes. Trend changes 
were detected in large parts of the world, especially in (semi-arid) shrubland and 
grassland biomes where abrupt greening was often followed by gradual browning. An 
example of this effect was found in the Sahel, which might contribute to the 
previously-mentioned debate about human vs. climatic drivers of land degradation in 
this region. Many abrupt changes were found around large-scale natural influences 
like the Mt Pinatubo eruption in 1991 and the strong 1997/98 El Niño event. Analysis 
of the detected timing of the trend breaks indicated that the area with browning 
trends increased over time while the area with greening trends decreased. This 
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supports the earlier-mentioned greening-to-browning reversal (Zhao & Running, 
2010), although greening regained area in the early 2000s. The Southern Hemisphere 
showed the strongest evidence of browning, again in correspondence with the 
modelled NPP trends. For 15% of the global land area, trends were found to reverse 
between greening and browning within the analysis period. This demonstrated the 
importance of accounting for trend changes when analyzing long-term NDVI time 
series. The research question can therefore be positively answered and the main 
implications for the vegetation-activity trends are the increased interpretability in 
terms of closer relationships to sub-decadal actors like the El Niño southern 
oscillation (ENSO). 
 
 
4: What are the spatial relationships between potential climatic growth constraints and 
trends in vegetation activity? 
 
So far, this thesis aimed at enhancing change detection techniques, but trends were 
detected irrespective of their driving processes. Chapter 2, however, highlighted the 
difficulties in interpretation, even if trends are detected with the highest achievable 
accuracy. This partly resides in the limited information content of VI data. 
Vegetation indices provide a proxy for vegetation activity, in terms of photosynthetic 
capacity and amount of standing biomass, but the functioning of terrestrial vegetation 
systems is so complex that it inherently renders studies which are exclusively based 
on VI data ill-conditioned for disentangling driving processes. This begs for other 
data to be included in any analysis of causality. Given the aimed separation between 
human and climatic actors, the climate component is best suited for quantitative 
analysis. Subsequently, under the assumption expressio unius est exclusion alterius, 
the attribution of certain trends to climatic drivers leave unexplained trends for 
interpretation as possibly human-induced. As such, quantification of spatial 
relationships between trends in vegetation activity and climate variables might 
provide a step towards establishing links between climate change, human-induced 
land changes and vegetation activity. 

The basic principle underlying the study presented in Chapter 6 is that plant 
growth is constrained by either one or a combination of three climate parameters: 
temperature, precipitation or radiation. This holds for almost all regions of the world, 
with the exception of dense tropical forests where vegetation structure might be 
limiting (Field et al., 1995; Churkina & Running, 1998). Nemani et al. (2003) 
showed the global distribution of the various constraints (Figure 7.1). Time series of 
monthly measurements or proxies of these constraints were used to develop an 
additive spatial model describing fixed effects (associated to climate) and random 
effects (non-associated). The first accounted for 54% of the spatial variation, which 
demonstrated that a substantial part of the detected vegetation-activity trends can be 
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associated to climate change. In some extensive sub-Saharan regions, including 
Tanzania and Zimbabwe, browning trends could not be related to climate variables. 
In these regions, drivers may need to be found in human activities. With this study 
the spatial context of the detected monotonic trends was used for interpretation of the 
changes and association to climate changes as follow-up to one of the identified 
improvements in Chapter 2. We realize that this only entails a first step towards a 
comprehensive methodology, as discussed in Section 7.3. 

7.2 General conclusions 

Large-scale monitoring of land resources and influences of climatic changes and 
human interventions is inherently complicated and involves multitudinous actors and 
feedback systems. The main contribution of this work towards this quest is (I) the 
identification of research lines and knowledge gaps for large-scale quantitative 
assessments of greening and browning, (II) the use of the full temporal dimension 
and phenological changes in the trend detection, (III) the decomposition of long-term 
trends into shorter-term variation for a closer description of the system dynamics, 
(IV) the quantification of spatial relationships between climate changes and changes 
in vegetation activity. The main conclusions from these studies are as follows. 
 

• Land degradation, in common definitions, involves a long-term decline in 
vegetation productivity. Vegetation activity, inferred from NDVI, can serve 
as a proxy, but interpretation of detected trends requires either auxiliary 
information or expert knowledge, as negative trends cannot always be 
associated to land degradation and vice versa. An urgent and currently 

Figure 7.1 Geographic distribution of potential climatic constraints to plant growth, derived from long-term
climate statistics. Modified after Nemani et al. (2003, Figure 1a), using original data. 
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unsolved issue in global assessments is the separation of degradation due to 
(direct) human actors from climate-driven changes. 

 
• Linear trends which are based on yearly NDVI aggregates provide accurate 

estimates of the magnitude of change, but eliminate the option of using intra-
annual variation for assignment of candidate drivers. A decrease in 
photosynthetic intensity within the growing season may indicate nutrient or 
water stress, while changes in phenology are commonly temperature-induced. 

 
• At global scale, phenological shifts and variation in length of growing 

season render comparisons of NDVI values by calendar date unsatisfactory. 
At the same time, an imposed change trajectory, e.g. by the arbitrary length 
of the time series, urges careful interpretation. Temporal decomposition 
revealed an alternating pattern of short-term greening and browning trends 
for large parts of the terrestrial surface. The ENSO-prone shrubland and 
grassland regions, mainly in the Southern Hemisphere, appeared specifically 
prone to trend reversals. 

 
• Different spatial patterns were found for abrupt and gradual changes. Abrupt 

greening prevailed in semi-arid regions, probably due to their strong 
reactions to climatic variations. These abrupt greening events were often 
followed by periods of gradual browning. In general, greening prevails in all 
land cover classes and as a result the global figure indicates an increase in 
vegetation activity in recent decades. 

 
• Spatial relationships between changes in climatic growth constraints 

(temperature, precipitation and radiation) and vegetation activity provide 
insight in the potential actors and feedback systems. Using the deterministic 
component of an additive spatial model, more than 50% of the variation in 
vegetation activity could be associated to climatic changes. For specific 
regions, browning trends could not be related to climate variables. Here, 
drivers may need to be found in human activities. 

7.3 Reflection and outlook 

The research line of this thesis has sought to amalgamate the contemporary problem 
of degrading land resources and the existing long-term satellite records which have 
the potential of capturing this phenomenon. The scientific contribution of this thesis 
herein is a combination of a fundamental and an applied part: (I) the tailoring of 
techniques adopted from other scientific fields, including econometrics and spatial 
statistics, for use with historical satellite records and (II) the application and 
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interpretation of these techniques at global scale. Land degradation, however, is a 
contentious issue; the complexity which attends monitoring efforts was set out in the 
previous section and in Chapter 2. Many limitations to the presented studies could be 
listed, but they boil down to a few core issues. 
 

• Land degradation exists in many documented forms, e.g. Lal et al. (1989) 
lists 12 processes and 9 (human) factors and Zucca et al. (2012) list a wide 
range of indicators and global issues. For this reason, the current assessment 
can by design not attribute a degradation form or driver to a detected trend. 

 
• The historical vegetation records and scant climate observations in many 

regions exceed the spatial scale at which many driving processes act. Cross-
scale effects may confuse feedbacks between climate and vegetation activity, 
resulting in omission of small-scale feedback mechanisms. Direct human 
land-use effects are also likely to act beyond the analysis scale of this work. 

 
These issues implicate two research lines in which future developments may 

reside: (I) the development and application of physically-based process models for 
establishing cause-and-effect relationships, and (II) regionalization of the analysis 
without compromising on the consistency. Both research lines are briefly discussed 
below. Third is a data-driven perspective, which is a very nature of remote-sensing 
science. The number of environmental and climatological processes which can be 
captured, including processes at decadal time scales, will increase owing to the 
lengthening VI records. For example, the relationship between vegetation-activity 
trends and different oceanic oscillations will become more transparent. Knowledge of 
this natural background variation is crucial as a baseline for detection of non-natural 
disturbances. Advances in satellite-based remote sensing will improve measurement 
but, as indicated, further development of physical process models is needed to 
establish cause-and-effect relationships. 

(I) Physical, process models 

Soil degradation research started out with a focus on driving processes. The re-focus 
on topical subjects like sustainability of the 1980s and 1990s have put soil 
degradation on the global agenda, but shifted the process-driven approach towards an 
indicator-driven approach (de Jong, 2010). Effects were measured at broader and 
coarser spatial scales than before, but the relationships with driving processes could 
no longer be established easily. NDVI trends, in this sense, do provide a globally 
consistent yardstick, and they do highlight places where biologically significant 
change is happening, but they are not sophisticated measures of land degradation, let 
alone the driving processes. 
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This highlights the need for physical models which simulate detected changes 
based on underlying processes. In the simplified case of taking vegetation activity as 
proxy for land degradation, these models should focus on potential limiting factors 
for vegetation growth (Figure 7.1). Currently, vegetation-atmosphere feedback 
mechanisms are not fully understood or cannot be replicated from remotely sensed 
data. For instance, vertical differentiation of atmospheric and near-surface fluxes 
(carbon, water, oxygen) is an issue, as is the quantification of nutrient availability. 
Remote-sensing based production efficiency models (PEMs) use meteorological 
estimates for modeling NPP as a more direct measurement than a VI. New concepts 
which need to be introduced in such modeling efforts include the differentiation of 
direct and diffuse radiation for assessment of issues like the boreal divergence 
problem (Section 6.5.1) and possibly the integration of trend reversals by means of 
different model parameterization for greening and browning segments. The 
difference in parameterization, in turn, might provide a better understanding of 
growth-limiting factors. The detection of trend reversals may be combined with the 
application of ecological theories – e.g. catastrophic shifts and hysteresis effects in 
soil-vegetation-atmosphere interactions (Scheffer & Carpenter, 2003; Janssen et al., 
2008). The advancements in deriving soil properties from spectral data (Mulder et 
al., 2011) and the development of remote-sensing based soil erosion models 
(Symeonakis & Drake, 2010) may complement the modeling efforts with a soil 
component. Validation of model results requires measurements of vegetation 
productivity. From a remote-sensing perspective, this can only be approximated 
using fluorescence-based techniques (Section 1.2.1) and, for the time being, at 
regional scales. 

(II) Regionalization 

The results of global studies are often disputed because they differ from traditional 
expert assessments and they are hard to validate in the field (Section 2.5). At the 
same time, new-generation sensors start to provide time series long enough to apply 
proposed change-detection techniques at finer spatial scales. Consistent inspection of 
detected hotspots has for yet not been undertaken, but moderate resolution imagery 
and afore mentioned modeling approaches, will facilitate this. For future research on 
this topic, we can therefore expect a shift in various scales, not the least in spatial 
scale. 

In Chapter 6, steps were made towards establishing statistical relationships 
between climatic constraints on plant growth and vegetation-activity trends. For 
effective relationships, however, it is crucial to capture the typical spatial and 
temporal scales of the processes under consideration. We compromised on the spatial 
scale, in favour of the temporal domain. This may result in omission of processes and 
feedback systems at scales closer to land degradation as it is commonly understood. 
Also, processes that are being captured may seem influential at coarse scales, whilst 
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they are in reality not at finer scales. Such cross-scale effects need to be targeted 
with a scale-adaptive approach, in both temporal and spatial sense. This will be an 
essential step in bridging observations and understandings. 
 
In conclusion, future remote-sensing based monitoring of the contemporary land 
degradation problem resides in a combination of thorough understanding of the 
physical radiation-interaction concepts (e.g. fluorescence and productivity 
measurements), model-based relationships between driving processes and vegetation 
response (e.g. influence of climatic constraints) and validated assessments at 
comprehensive spatial scales. Modeling at various regional scales – using time-series 
data from new-generation sensors like MODIS – will be mandatory to advance 
relationships to coarse scales for monitoring and policy making. At that scale, the 
AVHRR record will continue to be the most important source of quantitative 
information about status and trends in terrestrial vegetation activity. With respect to 
land degradation, there is new concern about feeding the world and food production 
has to compete for land with energy (biofuels) and feed (increased animal 
production). This has renewed global interest in soil science and agriculture 
(Hartemink & McBratney, 2008) and therefore, land degradation will remain a major 
issue as long as an ever increasing number of people depend on the same land 
resources. 
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Summary 

Land is synonym to ‘terrestrial ecosystem’ and degradation to ‘a loss in its services’, 
notably the supporting primary production service. As such, land degradation is a 
global issue on a par with climate change, but its extent and severity are only roughly 
known and there is little detail on the driving processes. Remote sensing is the only 
viable option for monitoring land resources at global scale and in a consistent and 
physical way by adopting vegetation activity and/or cover as proxies. A well-known 
spectral proxy is the normalized difference vegetation index (NDVI), which is 
available in high temporal-resolution time series since the early 1980s. There is a 
strong relationship between the index values, chlorophyll abundance and 
(photosyntethically active) solar energy absorption and hence the term vegetation 
activity can be used to refer to the state and dynamics of terrestrial ecosystems as 
inferred by NDVI. Changes in vegetation activity have in literature been referred to 
as greening and browning for positive and negative changes respectively. This thesis 
aimed at advancing the understanding of dynamics and trends in global vegetation 
activity, in relation to climate variability, for use in land resource applications, 
including land degradation assessments. Several change detection methods for long-
term satellite records were developed and results were interpreted in a framework of 
global environmental change. 

The main contribution of this work in the quest of monitoring global land 
degradation is: (I) the identification of research lines and knowledge gaps for large-
scale quantitative assessments of greening and browning, (II) the use of the full 
temporal dimension and phenological changes in the trend detection, (III) the 
decomposition of long-term trends into shorter-term variation for a closer description 
of the system dynamics, (IV) the quantification of spatial relationships between 
climate changes and changes in vegetation activity. 

 
A review of existing literature about vegetation-activity trends at global scale was 
presented in Chapter 2. Most recent studies indicate a general greening trend but 
combinations of greening and browning trends were also demonstrated. Improved 
understanding may be expected from data-driven and process-modeling approaches: 
new models, model-integration, enhanced statistical analysis and modern sensor 
imagery at medium spatial resolution should substantially improve the assessment of 
global land degradation. Two research lines were selected for further technical work: 
(I) advancement of the change detection techniques, (II) the use of spatial-contextual 
information in the interpretation of detected changes. 

In Chapter 3, harmonic analyses and non-parametric trend tests were applied to 
the NDVI dataset at hand in order to detect and quantify greening and browning 
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without relying on temporal aggregation for seasonal adjustments. Monotonic trends 
(i.e. the direction of change is invariant over time) were found and it was 
demonstrated that phenological shifts and variations in length of growing season 
complicate the issue. Accounting for these variations, using vegetation development 
stages rather than calendar days, yielded insight in intra-annual variations. Detection 
of trends in photosynthetic intensity complemented the original analysis since they 
may be related to other drivers (e.g. nutrient or water stress) than yearly changes. 

This approach did not rely on temporal aggregation, which might introduce 
artificial trends as we demonstrate in our chapter on the modifiable temporal unit 
problem (Chapter 4). Still, a major assumption underlying the analysis was that that 
trends were monotonic by nature. These monotonic trends, however, may consist of 
an alternating sequence of greening and/or browning periods. This effect and the 
contribution of short-term trends to longer term change was analyzed in Chapter 5 
using a trend breaks analysis procedure. Both abrupt and gradual changes were 
detected in large parts of the world, especially in (semi-arid) shrubland and 
grassland. Many abrupt changes were found around large-scale natural influences 
like the Mt Pinatubo eruption in 1991 and the strong 1997/98 El Niño event. 
Temporal analysis indicated that the area with browning trends increased over time 
while the area with greening trends decreased. The Southern Hemisphere showed the 
strongest evidence of browning. Here, periods of gradual browning were generally 
longer than periods of gradual greening. In total, trend reversals were found for 15% 
of the global land area. 

These new change detection techniques advance our understanding of vegetation 
variability at a multi-decadal scale, but do not provide links to driving processes. It 
will be very complex to disentangle all natural and human drivers and their 
interaction. As a first step, the spatial relationship between changes in potentially 
growth-constraining climatologies and changes in vegetation activity was addressed 
in Chapter 6. We applied a decomposition of spatial patterns into a deterministic, or 
fixed-effects, component and a spatially correlated, or random-effects, field. It 
appeared that a substantial proportion (54%) of the spatial variation in NDVI changes 
could be explained by changes in temperature, precipitation and incident radiation, 
especially in forest biomes. For other regions, including Tanzania and Zimbabwe, 
browning trends could not be related to climate variables. In these regions, negative 
changes in vegetation activity may need to be explained by human activities. 

 
With these studies we demonstrated the value of global satellite records for 
monitoring land resources and we contributed to better interpretation, although we 
realize that many steps are still to be taken. 
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Samenvatting 

Land is synoniem voor ‘terrestrisch ecosysteem’ en degradatie voor ‘een afname van 
zijn services’, in het bijzonder de ondersteunende primaire productieservice. 
Daarmee is landdegradatie een wereldwijd probleem – op gelijke voet met 
klimaatverandering – ondanks dat de omvang en impact maar globaal bekend zijn en 
er nauwelijks details bekend zijn over de onderliggende processen. Aardobservatie 
biedt de enige manier om het land en zijn bronnen op wereldwijde schaal consistent 
te monitoren door veranderingen in vegetatie-activiteit en -bedekking te meten. Een 
bekende spectrale proxy is de normalized difference vegetation index (NDVI), die 
sinds begin jaren 80 in hoge temporele resolutie beschikbaar is. Deze proxy vertoont 
sterke relaties met hoeveelheid chlorofyl en met absorptie van (fotosynthetisch 
actieve) zonnestraling en daarom kan de term vegetatie-activiteit worden gebruikt om 
te refereren aan de staat en dynamica van terrestrische ecosystemen zoals gemeten 
door de NDVI. Veranderingen hierin worden wel vergroening en verbruining 
genoemd voor respectievelijk toename en afname. Het doel van deze scriptie was om 
trends en dynamica in vegetatie-activiteit beter te begrijpen en te relateren aan 
klimaatveranderingen om ze toe te kunnen passen in landdegradatie-studies. Daarbij 
hoorde het ontwikkelen van diverse technieken om veranderingen te detecteren. De 
resultaten zijn vervolgens geïnterpreteerd in een landdegradatie-kader. 

De belangrijkste bijdrage van dit werk aan de queeste naar het effectief monitoren 
van landdegradatie is: (I) het identificeren van onderzoekslijnen en kennishiaten voor 
grootschalige kwantitatieve studies naar vegetatie-activiteit, (II) het gebruik van de 
volledige temporele resolutie van beschikbare data in de trendstudies, (III) het vinden 
van korte-termijn trends die de dynamica van het systeem beter beschrijven, (IV) het 
kwantificeren van ruimtelijke relaties tussen veranderingen in vegetatie-activiteit en 
klimaatveranderingen. 

 
Hoofdstuk 2 omvat een literatuurstudie naar trends in vegetatie-activiteit op 
wereldwijde schaal. Het bleek dat de meeste studies een globale toename 
(vergroening) vonden, maar combinaties met negatieve trends zijn ook aangetoond. 
Een beter inzicht kan worden verwacht via data-gedreven en proces-gedreven 
aanpakken: nieuwe modellen, integratie van diverse modellen, verbeterde statistische 
analyses en hogere ruimtelijke resolutie van nieuwe sensoren zullen hieraan 
bijdragen. Twee onderzoekslijnen zijn hier vastgesteld voor de opvolgende 
technische hoofdstukken: (I) verbetering van trenddetectie-technieken en (II) het 
gebruiken van ruimtelijk-contextuele informatie om de gedetecteerde veranderingen 
beter te interpreteren. 
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Harmonische en niet-parametrische analysetechnieken zijn in Hoofdstuk 4 op 
maat gemaakt voor en toegepast op NDVI tijdseries om zo trends in vegetatie-
activiteit te kwantificeren zonder daarvoor de data per jaar te middelen. Monotone 
trends (i.e. teken van de richtingscoëfficient is onveranderlijk) zijn aangetoond, net 
als de complicatie die fenologie oplevert voor trenddetectie. Een aanpassing aan 
variaties in start en lengte van groeiseizoenen leverde een beter inzicht in intra-
jaarlijkse variaties. Die variaties, samengevat als fotosynthetische intensiteit, vulde 
de oorspronkelijke analyse aan omdat het kan worden gerelateerd aan andere 
onderliggende processen (bv. nutriënt- of waterstress) dan jaarlijkse veranderingen. 

De beschreven aanpak is niet afhankelijk van temporele aggregatie wat problemen 
kan veroorzaken zoals beschreven in het hoofdstuk over de modifiable temporal unit 
problem (Hoofdstuk 4). Desalniettemin, een belangrijke aanname was dat trends van 
nature monotoon zijn. Deze monotone trends kunnen echter bestaan uit een 
afwisseling van positieve en negatieve periodes. Dit effect en de invloed hiervan op 
lange-termijn trends zijn bestudeerd in Hoofdstuk 5. Met een trendbreuk-algoritme 
zijn abrupte en graduele veranderingen gevonden in grote delen van de wereld, in het 
bijzonder in (semi-aride) struik- en graslandschappen. Veel abrupte veranderingen 
zijn gevonden rondom grootschalige natuurinvloeden zoals de Mt Pinatubo-
uitbarsting in 1991 en de sterke 1997/98 El Niño. Analyse van de trendveranderingen 
over tijd toonde aan dat een steeds groter deel van de aarde negatieve trends 
(verbruining) ging vertonen, ten koste van vergroening. Het zuidelijk halfrond 
vertoonde de sterkste verbruinings-signalen: deze perioden duurden stelselmatig 
langer dan de vergroenings-perioden. Trend-omkeringen (vergroening versus 
verbruining) konden voor ca. 15% van het aardoppervlak worden aangetoond. 

Nieuwe detectietechnieken dragen bij aan een verbeterd inzicht in vegetatie-
variabiliteit op een tijdschaal van meerdere decennia, maar ze verschaffen geen 
inzicht in de sturende processen. Het blijft zeer complex om alle natuurlijke en 
menselijke invloeden te ontrafelen, maar als eerste stap zijn diverse ruimtelijke 
relaties met klimaat bestudeerd in Hoofdstuk 6. Daar hebben we het ruimtelijke 
patroon in vegetatie-veranderingen ontbonden in een deterministische component die 
kan worden gerelateerd aan klimaatveranderingen en een overig ruimtelijk 
gecorreleerd patroon. Een substantieel deel (54%) van de NDVI-veranderingen, 
vooral in bosgebieden, kon worden verklaard vanuit veranderingen in temperatuur, 
neerslag en inkomende straling. In andere regio’s, bv. Tanzania en Zimbabwe, 
negatieve trends konden niet worden gerelateerd aan klimaat. Hier zouden menselijke 
invloeden een rol kunnen spelen. 

 
Met deze studies hebben we de waarde van historische satellietdata voor 
landdegradatie onderstreept en hebben we bijgedragen aan betere interpretatie, 
hoewel we ons realiseren dat er nog veel stappen genomen moeten worden.



Acknowledgements 

142 

Acknowledgements 

Mutantur omnia, nos et mutamur in illis. 
All things change and we too change, with them. 

 
Time, its length and its nature play inherently crucial roles in discussions about these 
changes. They also play crucial roles in the course of a PhD, which, in itself, is a 
trajectory of change. The nature of time has been subject to interpretation by many 
philosophers and scholars in history, from which three main forms can be distilled: 
time as a line or a flow, time as a cycle and time as an arrow or a pulse. All three can 
be found in this thesis and also in its origin. In the course of a PhD one gradually 
grows from understanding to practitioning science: upstream and therefore 
sometimes with struggles. The starting point is the middle of the vast metaphorical 
ocean, heading for somewhere vaguely known. And working on terrestrial remote 
sensing, the middle of an ocean is obviously not the place to be. It takes a while to 
find a way and to come up with a first paper. It may take around ten draft versions 
and the fewer comments from your supervisors, the further you are from a 
publishable paper. Then, after submission, the next paper is waiting: the cycles of 
science. On the other hand, each acceptance notification from a journal gives a boost, 
a pulse towards this thesis. Then finally, although time doesn’t end: het is af! 
 
Many people have supported me during these years, for which I am very grateful. 
First of all, I would like to express my sincere thanks to my supervisors, sine quibus 
non, Michael Schaepman and Sytze de Bruin. During the introductory PhD weekend 
we were warned that the relationship with your supervisors has ups and downs and 
might dilute over time. Our relationship has been excellent throughout all years. 
Michael, thanks a lot for all discussions, your many helpful suggestions and for the 
support when necessary. Also thanks for introducing me to the Remote Sensing 
Laboratories in Zurich and for being faithful, also after finishing my PhD. Sytze, 
thank you for your open door; working with you as daily supervisor couldn’t have 
been easier! Third in this row is David Dent. Thank you for the opportunity to work 
on ‘your’ project and for your thorough reviews of the several chapters in this thesis. 

Physical geographers, like me, tend to know their way in a broad range of 
scientific fields, but usually they are specialist in none. Therefore, I would like to 
thank other people who have contributed to the work in this thesis. Allard de Wit, 
thank you for your support with IDL and the HANTS algorithm (Chapter 4). Jan 
Verbesselt, thanks for being very helpful with the trend-break analysis while you 
were still Down-Under and even more when you came to Wageningen. It resulted in 
one of the core chapters of this thesis (Chapter 6). Reinhard Furrer, thanks a lot for 



Acknowledgements 

143 

the necessary math classes and for your patient support with the spatial statistics 
(Chapter 7). 

And then there are all colleagues at ISRIC and CGI. You are too many to list 
individually, but you made Wageningen a great place to work for this Utrecht-guy. A 
few people I would like to mention in special: at ISRIC, Zhanguo Bai for the 
collaboration on the GLADA project and Alfred Hartemink for the discussions about 
(soil) science. Bob McMillan and Tom Hengl, thanks for all the excellent Wednesday 
barbeque and pasta lunches! At CGI, the last of the Mohicans: Titia Mulder and 
Valerie Laurent, but also ‘new’ colleagues Kim Calders and Hans Roelofsen. And 
Harm Bartholomeus: we talked often about our outdoor adventures, but somehow we 
(or I?) forgot that actions speak louder than words. So, see you in Switzerland? 

Talking about Switzerland, I am grateful for having had the opportunity to work 
at the Remote Sensing Laboratories in Zurich. I would like to thank all colleagues for 
their hospitality and helpfulness. I am grateful to Jenneke, Paul, Steffi and Céline for 
the nice times and sleeping places in Zurich. In this respect, special thanks to Jan 
Blees and his roommates Regi and Marcel. I can’t remember how many nights I 
stayed at your place, but it felt like coming home. Jan, also thanks for the skiing, 
flying, hiking, snow-shoeing, climbing, camping, …! 

From the ‘Peyne 2005 generation’ of remote-sensing students in Utrecht, I am the 
last one to have finalized a PhD thesis. It must have been inspiring, thanks to Steven 
de Jong and Elisabeth Addink. Also, the Peyne catchment (Languedoc, France) was a 
great place for fieldwork (and for a cover photo). I am grateful to Wiebe Nijland for 
all the trips we made there together. And, to cite his own preface, for all the nice 
wine, the (near-infrared) photography, the many adventures with our Citroen BX, the 
discussions about remote sensing and, indeed, for more nice wine. 

Every now and then your mind needs to be on something else than science. 
Maarten Leenders, thanks for the necessary distraction from the PhD work, for 
instance by the many concerts we visited and the trips we made. Also thanks, both 
Wiebe and Maarten, for your help with graphical design and for your support as 
paranimfs. I wrote large parts of Chapters 1 and 7 in a beautiful house on the 
Veluwe. Robert Voȗte, thanks for that and for your support at Logica! 
 
En dan als laatste, maar zeker niet als minste, wil ik mijn familie hartelijk bedanken. 
Zeker in het laatste jaar was ik regelmatig op zondag aan het werk in plaats van bij 
jullie langs te komen. Wouter, bedankt dat je toch hebt aangedrongen om er af en toe 
een dagje uit te gaan. Pa en ma, bedankt voor alle medeleven, ook toen ik aangaf na 
mijn PhD naar Zwitserland te willen verhuizen. En als allerlaatste Titia, wat een PhD 
naast de woeste wetenschap al kan brengen. Dankjewel! Thank you all! 
 

Rogier 
Elspeet, 24-12-2011 



Publications 

144 

List of publications 

 
Peer reviewed journals 

de Jong, R., Schaepman, M.E., de Bruin, S. & Furrer, R. (in preparation). Spatial 
relationship between climatologies and changes in global vegetation activity. 
Global Change Biology 

de Jong, R., Verbesselt, J., Schaepman, M.E., & de Bruin, S. (2012). Trend changes 
in global greening and browning: contribution of short-term trends to longer-term 
change. Global Change Biology, 18, 642-655 

de Jong, R., & de Bruin, S. (2012). Linear trends in seasonal vegetation time series 
and the modifiable temporal unit problem. Biogeosciences, 9, 71-77 

de Jong, R., de Bruin, S., de Wit, A., Schaepman, M.E., & Dent, D.L. (2011). 
Analysis of monotonic greening and browning trends from global NDVI time-
series. Remote Sensing of Environment, 115, 692-702 

de Jong, R., de Bruin, S., Schaepman, M.E., & Dent, D.L. (2011). Quantitative 
mapping of global land degradation using Earth observations. International 
Journal of Remote Sensing, 32, 6823-6853 

 
Other scientific publications 

de Jong, R., Verbesselt, J., Schaepman, M.E., & de Bruin, S. (2011). Detection of 
Breakpoints in Global NDVI time series. 34th International Symposium on 
Remote Sensing of Environment (ISRSE). Sydney, Australia 

de Jong, R. (2011). Trendkaart voor landdegradatie. Kennis in Kaarten, atlas van 
Wagenings onderzoek naar onze groene leefomgeving (pp. 98-99). Environmental 
Science Group, Wageningen University, The Netherlands 

Bai, Z.G., de Jong, R., & van Lynden, G.W.J. (2010). An Update of GLADA - 
Global Assessment of Land Degradation and Improvement. ISRIC report 2010/08. 
ISRIC World Soil information and UN Food and Agricultural Organization, 
Wageningen, The Netherlands 

Wilschut, L.I. (2010). Land use in the Upper Tana – technical report of a remote 
sensing based land use map. Green Water Credits Report 9 / ISRIC Report 
2010/03 (Eds. MacMillan, B., Kauffman, S. & de Jong, R.). ISRIC – World Soil 
Information, Wageningen, The Netherlands 



Publications 

145 

de Jong, R. (2010). The trend in soil degradation publications. IUSS Bulletin, 116, 
21-25 

Bindraban, P.S., Mantel, S., Bai, Z.G., & de Jong, R. (2010). Analytical tools for 
assessing land degradation and its impact on soil quality (EGU2010-14800). 
Geophysical Research Abstracts, 12 

de Jong, R., Bai, Z.G., Dent, D.L., Schaepman, M.E., de Bruin, S., & de Wit, A. 
(2009). Enhanced assessment of global land degradation. 33th International 
Symposium on Remote Sensing of Environment (ISRSE). Stresa, Italy 

de Jong, R., de Bruin, S., & Schaepman, M.E. (2008). Towards quantitative mapping 
of indicators of land degradation in drylands. 7th International Conference of the 
African Association of Remote Sensing of the Environment (AARSE). Accra, 
Ghana 

Hiemstra, P., & de Jong, R. (2006). Estimating leaf water content in Mediterranean 
oak forests for forest fire models: a comparison between empirical and radiative 
transfer model inversion using hyperspectral imagery. MSc thesis, Utrecht 
University, 64p. 

de Jong, R. (2006). Monitoring disturbances and regeneration of Eucalyptus forest in 
South-Western Australia using multi-temporal Landsat imagery. CSIRO & 
Landgate, Perth, Western Australia. MSc thesis, Utrecht University, 50p. 



Biography 

146 

Short biography 

Rogier de Jong was born in Nijmegen, The Netherlands, on January 4th 1983 and 
brought up in the close by village of Elst, where he attended primary school at de 
Ark. In 1995, he started high school at Stedelijk Gymnasium Nijmegen (SGN). His 
spare time was dedicated to outdoor sports, including adventure races and skiing, and 
to the boy scouts. He still is an active member of Laurentiusgroep Bilthoven. 

His career as geoscientist, as for many colleagues, started with collecting fossil 
ammonites and trilobites as well as the most beautiful minerals. He has special 
remembrances of the yellow-green Adamite and the deep-red Realgar crystals which 
contrasted beautifully against the white Dolomite substrate. All of these were 
collected – unhindered by any knowledge of geology or paleontology – in such a way 
that no context was described and that the resulting collection, which still resides in 
boxes somewhere, is useless to science, but nice a decoration. At that time, Rogier 
had the honor of taking part in the excellence track of SGN, as part of which he 
attended the biogeology lectures of Professor Bert van der Zwaan at the University of 
Nijmegen. It was then that he subscribed for the Earth Sciences curriculum at Utrecht 
University (starting 2001). In the first years he went back and forth between geology, 
biogeology and physical geography until he ultimately decided in favor of the latter. 
In the course of these studies, he took part in the renowned Berendsen-fieldwork 
(paleo-reconstruction of the Rhine-Meuse delta), the geomorphology-and-hydrology 
fieldwork in the French Alps and he specialized in environmental remote sensing 
during his MSc fieldwork and theses. Part of the latter was an internship at CSIRO 
and LandGate in Perth (Australia) about Eucalyptus forest regeneration from logging 
and wildfires. His MSc thesis was about quantification of vegetation water content 
using imaging spectroscopy and radiative-transfer models in the Peyne catchment in 
Languedoc, France. 

After MSc graduation, Rogier started as business consultant in the geo/space IT 
domain at Logica NL. He worked on various topics, including asset tracking 
(transport division), remote sensing and military projects. In 2008, he got, supported 
by Logica NL, the opportunity to work on this PhD thesis. In the course of four 
years, he worked on the various topics presented in this thesis and he participated in 
various scientific conferences and MSc-level teaching. As part of the PhD-education 
program, he attended several summer-school courses on entrepreneurship, 
management and leadership. As of March 2012, Rogier moved to Zurich, 
Switzerland, to work as a postdoc with the Remote Sensing Laboratories at the 
University of Zurich. Here, he will continue on the presented work in the ‘Global 
Change and Biodiversity’ project and return to the spectroscopy domain in the 
‘Apex’ / ‘Swiss Earth Observatory Network (SEON)’ project. 

 



 

147 

PE&RC PhD Education Certificate  
With the educational activities listed below the PhD candidate has complied 
with the educational requirements set by the C.T. de Wit Graduate School 
for Production Ecology and Resource Conservation (PE&RC) which 
comprises of a minimum total of 32 ECTS (= 22 weeks of activities)  

Review of literature (4.2 ECTS) 
Quantitative mapping of global land degradation using Earth observations 

Post-graduate courses (4.2 ECTS) 
• Hyper I-net Summer School; GRS (2008) 
• IDL Programming course; GRS (2008) 
• Remote sensing of environment workshop; GRS (2008) 

Laboratory training and working visits (4 ECTS) 
• Mediterranean vegetation dynamics; Utrecht University (2008-2009) 
• Exchange program with University of Zurich (2009-2011) 

Invited review of (unpublished) journal manuscript (2 ECTS) 
• Remote Sensing of Environment (RSE): comparison of trends in GIMMS and MODIS datasets (2011) 
• Remote Sensing of Environment (RSE): impact of sensor degradation on trends in MODIS data (2011) 
• Journal of Applied Earth Observation and Geoinformation (JAG): estimating light-use efficiency (LUE) from remote-

sensing data (2011) 
• International Journal of Digital Earth (IJDE): seasonal patterns in fraction of photosynthetically-active radiation 

(FPAR) (2011) 

Competence strengthening / skills courses (4.5 ECTS) 
• The art of writing; Wageningen Graduate Schools (2009) 
• Entrepreneurial Bootcamp; DAFNE & Wisconsin School of Business (2009) 
• Leadership & Management Summer School; University of Zurich (2010) 

PE&RC Annual meetings, seminars and the PE&RC weekend (3 ECTS) 
• PE&RC Weekend (2008) 
• PE&RC Annual meetings: expect the unexpected (2008), intelligent nature: on the origin of communication (2009), 

innovation for sustainability: what are the neighbours doing? (2011) 
• Other PE&RC symposia: scaling from molecules to ecosystems (2008), 3rd remote sensing symposium; organizing 

committee (2011) 

Discussion groups / local seminars and other meetings (5.1 ECTS) 
• PhD Defense mini-seminars: Raoul Zuritra-Milla, Harm Bartholomeus, Jochem Verelst (2011) 
• Workshop on recent methods for monitoring of forest and land degradation; oral presentation; Wageningen (2011) 
• Colloquium: is our world greening or browning; oral presentation; University of Zurich (2011) 
• Spatial Methods discussion group (2008-2011) 
• Remote sensing thematic group (2008-2011) 

International symposia, workshops and conferences (9 ECTS) 
• 7th African Association of Remote Sensing for Environment (AARSE), international conference; oral presentation; 

Accra, Ghana (2008) 
• 33rd International Symposium on Remote Sensing of Environment (ISRSE); oral presentation; Stresa, Italy (2009) 
• 2nd Dutch Remote Sensing Symposium (RSS); oral presentation; Delft, the Netherlands (2010) 
• Workshop United Nations Convention to Combat Desertification (UNCCD); Bonn, Germany (2010) 
• 1st Spatioal Statistics Symposium; poster; Enschede, the Netherlands (2011) 
• 34rd ISRSE; oral presentation; Sydney, Australia (2011) 
• 9th Swiss Geoscience Meeting (SGM); poster; Zurich, Switzerland (2011)  

Lecturing / supervision of practical’s / tutorials (2.4 ECTS) 
• Academic Master Cluster (AMC) II; 3 days (2008) 
• Remote sensing with ERDAS, introduction; 5 days (2010) 

Supervision of 2 MSc students; 5 days (1.5 ECTS)  
• Vegetation degradation in South Africa 
• Use of degraded land for palm oil in Indonesia 




	Cover_front
	RdeJong_PhDthesis
	Order21746_RdeJong_binnenwerk_v2
	Order_RdeJong
	Order21746_RdeJong_binnenwerk_2
	thesis_print_Alex2
	Order21746_RdeJong_binnenwerk_2

	thesis_print3.pdf
	Order_RdeJong

	Cover_back



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


