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Prepositions 

1. Monosomie addition chromosomes in Beta vulgaris, derived from section 

Procumbentes, are of particular interest to study genes for resistance to 

economically important diseases of sugar beet. 

This thesis 

2. Squash-blot hybridisation with repetitive DNA probes is useful for rapid 

identification of plants of monosomic addition families carrying an extra 

chromosome. 

This thesis 

3. Beta patellaris is an allotetraploid species. 

Walia (1971) Zeitschrift für Pflanzenzüchtung 65: 141-150 

This thesis 

4. Complete resistance to Cercospora leaf spot is conferred by the combined effect 

of genes situated on different chromosomes of Beta procumbens or 

Beta patellaris. 

This thesis 

5. Resistance to Polymyxa betae would complement resistance to beet necrotic 

yellow vein virus in sugar beet, and may provide a more effective and durable 

control of rhizomania. 

Paul (1993). PhD thesis, Wageningen Agricultural University, pp. 1-115 

This thesis 

6. The low degree of DNA homology between species of the sections Beta and 

Procumbentes of the genus Beta supports the idea that the section 

Procumbentes should be classified as a different genus. 

Williams, Scott and Ford-Lloyd (1977), Taxon 26:284 

Jung and Pillen (1992). International Crop Network Series 7, IBPGR, Rome, 

pp. 42-48 



7. To protect the durability of the gene Hs1pro~1, conferring resistance to the beet 

cyst nematode (BCN), it needs to be combined with other BCN resistance 

genes. 

Lange et al. (1993). Fundamental and Applied Nematology 16:447-454 

Klinke et al. (1996). Theoretical and Applied Genetics 93: 773-779 

8. As rhizomania has been reported recently to occur in Iran, the combined growth 

of resistant cultivars and the application of sanitation measures will need to be 

applied to prevent a fast spreading of the disease. 

9. Extension of the use of monogerm seed of sugar beet in Iran will reduce the 

costs of sugar production, but will also require investments for full mechanisation 

and for the training of farmers. 

10. In order to be self-sufficient for sugar production in Iran, both sugar beet and 

sugar cane should be considered as strategic crops. 

11. DNA is DNA, no matter its origin. The nature and message of DNA represent a 

universal language of life on earth. 

Nathony et al. (1993). An introduction to genetic analysis. W. H. Freeman and 

Company, New York, p. 399 

Prepositions, belonging to the PhD thesis of Mahmoud Mesbah, entitled: 

Characterisation of alien chromosomes in monosomic additions of Beta 

Wageningen, June 20, 1997 



Abstract 

Wild Beta species of the section Procumbentes carry genes for several valuable 
agronomical traits, and are considered to be of interest for the breeding of cultivated 
beet (ß. vulgaris subsp. vulgaris). In spite of several barriers, it was shown that gene 
transfer from B. procumbens into sugar beet is possible. In such studies monosomic 
additions (2n=19) in B. vulgaris, harbouring different individual chromosomes of the 
wild species, play a very important role. To select the monosomic addition plants, an 
extensive number of different B. procumbens or B. patellaris derived monosomic 
addition families were screened, using repetitive DNA sequences and a squash-blot 
hybridisation procedure. The extra chromosomes of the monosomic additions were 
identified with the aid of DNA fingerprinting. In B. procumbens derived monosomic 
additions, the chromosome numbers of two additions had to be renamed. Seventy-
five anonymous B. patellaris derived monosomic additions were grouped in nine 
different groups, many of them with two sub-groups. The morphological 
characteristics of the plants of the nine different groups of monosomic additions of B. 
patellaris were described and comparisons were made between these groups and 
the monosomic additions of B. procumbens. Chromosome characterisation also was 
studied using fluorescence in situ hybridisation on mitotic chromosomes and 
extended DNA fibres of a series of monosomic additions of B. procumbens. The 
monosomic additions were evaluated in greenhouse tests for resistance to the beet 
cyst nematode (Heterodera schachtii), Cercospora beticola, Polymyxa betae and 
BNYVV. These experiments permitted the localisation of major genes for resistance 
on specific chromosomes, and the study of some quantitative effects. 
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CHAPTER 1 

General introduction and scope of the thesis 
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General introduction 

The genus Beta is taxonomically devided into the sections Beta, Corollinae, Nanae 

and Procumbentes. In the section Beta, sugar beet, fodder beet, garden beet and 

leaf beet are the cultivated forms, which belong to Beta vulgaris L. subsp. vulgaris. 

The sugar beet crop has spread steadily over all continents around the world, except 

Australia, and has become a crop of major economic importance. About 37% of the 

world's sugar production is currently provided by sugar beet (Bosemark 1993). Since 

the 18th century, major progress in the breeding of sugar beet has been achieved 

(Van Geyt et al. 1990). The yield of sugar has increased continuously, although this 

development has not progressed equally fast in all beet growing areas. Sugar beet 

breeding programmes aim to combine high white sugar yield per unit area with a low 

and balanced content of the impurities, in relation to costs of production (Bosemark 

1989). In the breeding of sugar beet several morphological, physiological, and 

resistance characterstics are desired, such as good seed quality, a round/oval root 

shape, a smooth skin, a small crown, resistance to bolting, and resistance to 

environmental stresses, pests and diseases. 

The sugar beet crop encounters numerous pests and diseases in the widely 

divergent beet growing areas of the world. Diseases have become extremely 

important in the economics of sugar beet and require extensive attention to prevent 

significant reduction in yield and sugar content (Bosemark 1969, Coons 1975, Smith 

& Martin 1978, Payne & Asher 1990, Doney & Whitney 1990, Van Geyt et al. 1990, 

Shane & Teng 1992, Adams et al. 1995, Lange & De Bock 1994, Byford 1996), and 

the principal means of control is through breeding resistant cultivars. However, sugar 

beet is a relatively young crop, with supposedly a narrow genetic base (Van Geyt et 

al. 1990), and the natural variation occurring in sugar beet cultivars is not sufficient 

as a source for all desirable characteristics (Doney & Whitney 1969). Therefore, 

several attempts have been made to introgress economically important characters 

from primitive forms or wild Beta species into the cultivated beet (Munerati er al. 

1913, Bilgen er al. 1968, Bosemark 1969, Doney & Whitney 1990, Savitsky 1975, 

Coons 1975, Heijbroek 1977, Asher & Barr 1990, Van Geyt et al. 1990, Lange & De 

Bock 1994, Jung et al. 1994). 

Wild species of the section Beta, especialy B. vulgaris subsp. maritima (L.) 

Arcang., have been used in crosses with cultivated beet to transfer genes for partial 

résistance to Cercospora leaf spot, the beet cyst nematode and the beet necrotic 

yellow vein virus (BNYVV) into breeding material (Bosemark 1969, Coons 1975, De 
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Bock 1986, Abe & Tsuda 1988, Lange & De Bock 1989, 1994, Van Geyt et al. 1990, 

Whitney 1989, Doney & Whitney 1990, Scholten et al. 1996, 1997). A major problem 

associated with such hybridisations was the predominantly annual character of the 

wild forms. Several attempts have been carried out to hybridise the cultivated beet 

with members of the section Corollinae to introduce genes for monogermity, 

resistances to curly top virus, virus yellows, drought and low temperatures. Many of 

the hybrids showed apomitic reproduction, which hampered further application, 

together with germination problems, and a high level of sterility (Bosemark 1969, 

Coons 1975, De Bock 1986, Van Geyt et al. 1990). The section Nanae, with only 

one diploid species B. nana Boiss & Heldr., has seldom been used in crosses with 

cultivated beet, and there are no reports about successful hybridisation (De Bock 

1986, Van Geyt et al. 1990). The three wild species of the section Procumbentes 

(B. procumbens Chr. Sm., B. webbiana Moq. and B. patellars Moq.) are considered 

to be of particular interest, because of their complete resistance to the beet cyst 

nematode (BCN, Heterodera schachtii Schm.), Cercospora beticola Sacc, and 

Polymyxa betae Keskin (Bosemark 1969, Coons 1975, Fujisawa & Sugimoto 1979, 

Yu 1984, De Bock 1986, Carels etal. 1990, Paul et al. 1992, Barr étal. 1995). 

In spite of several barriers, Savitsky (1975, 1978) was able to produce 

monosomic additions from crosses between triploid interspecific hybrids and diploid 

cultivated beets, with the aim of transfering genes for resistance to the beet cyst 

nematode. The same strategy was followed by Speckmann & De Bock (1982), 

Speckmann er al. (1985), Heijbroek et al. (1983, 1988), Löptien (1984), Jung & 

Wricke (1987), and Lange et al. (1990a). Major efforts have been carried out to 

characterise the alien chromosomes in B. procumbens and B. webbiana derived 

monosomic additions, using morphological, physiological, biochemical and 

cytological analyses (Löptien 1984, Speckmann et al. 1985, De Jong er al. 1986, 

Van Geyt et al. 1988, Lange et al. 1988, Reamon-Ramos & Wricke 1992). For both 

species nine types of monosomic additions in B. vulgaris, representing the nine 

different chromosomes of B. procumbens or B. webbiana, have been identified 

(Lange et al. 1988, Van Geyt et al. 1988, Reamon-Ramos & Wricke 1992). In 

monosomic addition families of B. patellars, of which the origin was described by 

Speckmann & De Bock (1982), the alien chromosomes have not yet been analysed 

and there are no data available concerning the effects of the extra chromosomes of 

ß. patellaris on plant morphology of the monosomic additions. It also is not fully 

understood whether B. patellaris is an autotetraploid or allotetraploid species. The 

effect of the alien chromosomes in B. procumbens derived monosomic additions on 
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plant development in vivo and in vitro was investigated by Lange et al. (1988). All 

additional chromosomes caused a reduction of the growth rate in vivo, which in one 

case was so strong that most of the plants died as seedlings. 

Using monosomic additions, one, two, and three chromosomes harbouring a 

locus for BCN resistance were identified in B. patellaris, B. procumbens, and 

B. webbiana, respectively (Jung et al. 1986, Van Geyt et al. 1988, Lange et al. 

1990a, 1990b, Speckmann et al. 1985, De Jong et al. 1986, Salentijn et al. 1992, 

1994, 1995). A pathotype of H. schachtii was selected that was virulent against the 

gene(s) for resistance on chromosome 1 of B. procumbens (Müller 1992). This 

nematode population also was able to break the gene for resistance on the long-arm 

telosome of chromosome 1 of B. patellaris (Lange et al. 1993). In contrast, the 

monosomic addition with chromosome 7 of B. procumbens was resistant to this new 

pathotype. This led to the conclusion that chromosome 7 carries at least one gene 

for resistance that is different from that derived from chromosome 1 of 

B. procumbens (Lange et al. 1993). It is not clear yet whether such gene(s) is 

present in the monosomic additions of B. patellaris, or whether different mechanisms 

are involved. Using monosomic additions of B. procumbens, it also was found that 

genes conferring resistance to Polymyxa betae are located on chromosome 4 and 8 

(Paul et ai. 1992), but the chromosomal location of resistance to P. betae in 

B. patellaris and B. webbiana is yet unknown. 

In spite of the lack of chromosome homology and the very distant relationship 

between sugar beet and the species of section Procumbentes (Bosemark 1969, 

Speckmann 1985, De Jong 1986), diploid sugar beet material has been obtained, in 

which a part of a B. procumbens chromosome is translocated to one of the sugar 

beet chromosomes (Savitsky 1978, Yu 1981, Jung & Wricke 1987, Heijbroek et al. 

1988, Lange et al. 1990a). The introgression of the alien genes into the genome of 

sugar beet occurred with an extremely low frequency and the transmission of wild 

beet chromosomal material was instable due to meiotic disturbance (Brandes et al. 

1987), resulting in the loss of resistance. Despite these problems intensive breeding 

programmes recently led to the release of commercial cultivars, carrying the gene 

Hs1pro'1 of B. procumbens (Heijbroek pers. comm.). The genetic localisation of three 

resistance genes originating from B. procumbens and B. webbiana was studied 

using segregating F2 populations and RFLP markers (Heller et al. 1996). Although 

the parental lines carrying the wild beet translocations were not related to each 

other, the genes mapped to the same locus, suggesting that the resistance genes 

were incorporated into the sugar beet chromosomes by homoeologous 
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recombination. Studies on monosomic additions were extended with major efforts to 

isolate BCN genes and to transfer them into sugar beet by means of molecular 

techniques (Jung era/. 1990, 1992, 1994, Salentijn et al. 1992, 1994, 1995, Klëin-

Lankhorst et al. 1994). In this way, several Procumbentes specific markers were 

identified that were used in these research programmes. Two repetitive probes, 

PTS1 and PTS2, with a high degree of B. procumbens specificity, were adapted for 

the screening of monosomic additions, carrying an alien chromosome of 

B. procumbens (Schmidt et al. 1990). The same strategy was used to identify 

individuals from monosomic addition families carrying a chromosome fragment. The 

dispersed repetitive DNA probe P643 was chosen to identify nematode resistant 

individuals carrying a Procumbentes chromosome (Jung & Herrmann 1991). Arrays 

of one repetitive sequence have been found physically close to the nematode 

resistance locus, as was shown by analyses of YAC and lambda clones spanning an 

introgressed wild beet chromosome segment in B. vulgaris (Salentijn ef al. 1992, 

1994, Klein-Lankhorst et al. 1994, Kleine et al. 1995). 

The molecular structure, genome organisation and interspecific distribution of 

two non-homologous Procumbentes specific satellite repeats and one family of 

highly repeated sequences have been analysed, and multi-colour fluoresence in situ 

hybridisation (FISH, reviewed by Jiang & Gill 1994, Joos et al. 1994) was used for 

physical mapping of these probes on mitotic metaphase chromosomes of 

B. procumbens (Schmidt & Heslop-Harrison 1996). It was shown that a Sau3A 

satellite hybridised exclusively around or near the centromeres, and since it is known 

that the arrays of this repeat are linked to the BCN resistance gene(s), it was 

concluded that these gene(s) might be located close to the centromere. Recently, 

one of these genes was isolated with the aid of map-based gene cloning (Cai er al. 

1997). This achievement confirmed the possibility of isolating genes from section 

Procumbentes in order to transfer them into sugar beet. 

Scope of the thesis 

Characterisation of the individual chromosomes in sets of Procumbentes derived 

monosomic additions is an essential step for the identification and isolation of 

resistance genes from Beta species belonging to the section Procumbentes. Such 

analyses may also give answers to basic questions of taxonomy and evolution, by 

comparing the chromosomes of the different genomes of section Procumbentes. For 

the characterisation of the alien chromosomes, the first step is the screening of 
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putative monosomic additions in offspring families. The frequencies of plants with 

2n=19 are low and some of them have lethal effects. A few monosomic additions 

can be recognised on the basis of deviating morphology. However, this method is 

not fully reliable, and can only be used in combination with the counting of 

chromosome numbers, which is very laborious. Therefore, methods which lead to a 

rapid identification of monosomic additions are valuable. After the identification of 

plants carrying an extra alien chromosome, these monosomic additions can be used 

in studies on chromosome characterisation and gene localisation. 

The identification and screening of extensive numbers of monosomic 

additions in offspring of B. patellaris and B. procumbens derived addition families is 

described in Chapter 2. The developed technique makes use of repetitive DNA 

probes and both dot-blot and squash-blot hybridisation methods. The application of 

the polymerase chain reaction (PCR) for the identification of monosomic additions 

will also be discussed. 

The application of DNA fingerprinting, using three different Procumbentes 

specific repetitive DNA sequences is reported in Chapter 3. The alien chromosomes 

in a set of monosomic additions of B. procumbens and in seventy-five anonymous 

B. patellaris monosomic addition families could be characterised at the DNA level. 

The morphological characteristics of the B. patellaris monosomic addition families 

will be described and compared with those of the addition families of 

B. procumbens. Finally the relationship between ß. patellaris and B. procumbens, 

based on DNA fingerprinting and morphological characteristics, will be discussed. 

Chapter 4 deals with the application of multi-colour fluorescence in situ 

hybridisation (FISH) of two Procumbentes specific repetitive DNA probes for the 

characterisation and physical mapping of these sequences on the alien 

chromosomes in B. procumbens and in B. procumbens derived monosomic 

additions. The hybridisation patterns of the different addition chromosomes have 

been used for establishing a karyotype of B. procumbens. FISH of one repeat to 

extended DNA fibres of the alien chromosomes was carried out and will be 

discussed. 

In Chapter 5 series of greenhouse tests are described, which were carried out 

for the chromosomal localisation of genes for BCN resistance of ß. patellaris, for 

resistance to Cercospora leaf spot of B. procumbens and B. patellaris, and for 

resistance to P. betae of B. patellaris. The effect of the latter resistance on the level 

of infection with BNYVV also was studied and will be discussed. 
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Abstract 

The distribution of two repetitive DNA probes Sat-121 and PB6-4, specific for section 

Procumbentes of the genus Beta, was tested in 16 B. patellaris monosomic addition 

families using a dot-blot hybridisation procedure. All monosomic additions were 

accurately distinguished from diploid sib plants with both DNA probes. The probe 

PB6-4, with strongest signal after hybridisation, was selected for rapid screening of 

an extensive number of putative monosomic additions in B. patellaris or 

B. procumbens addition families using a squash-blot hybridisation procedure. The 

probe PB6-4 detected 118 monosomic additions in 640 plants (18.4%) in eight 

different B. procumbens addition families. The addition family with chromosome 4 of 

B. procumbens was semi-lethal and could not be tested. The distribution of PB6-4 in 

B. patellaris addition families was confirmed in 63 addition families using the 

squash-blot procedure. In 4580 plants of these addition families 628 individual 

monosomic additions (13.7%) were found. The relationship of the morphological 

characteristics of monosomic addition plants to the results of the squash-blot 

hybridisation (plants with signal) using probe PB6-4 is quite rigorous but not 

complete. The correlation between plants with a signal and chromosome number 

(2n=19) is complete. These results indicate that sequences present on PB6-4 are 

probably present on all chromosomes of B. patellaris and B. procumbens. The 

possibility of utilising the sequence information of Sat-121 for a PCR based assay to 

screen for putative monosomic addition plants was also investigated as an 

alternative to chromosome counting. The DNA amplification profiles using the 

primers REP and REP.INV clearly distinguished monosomic addition plants from 

their diploid sibs. 

Key words: Beta vulgaris, Beta patellaris, Beta procumbens, monosomic additions, 

PCR, repetitive probe 

Introduction 

Sugar beet is a relatively young crop, which supposedly has a narrow genetic base 

(Van Geyt et al. 1990). Three wild species in the section Procumbentes are either 

resistant or immune to the beet cyst nematode (BCN) (Heterodera schachtii Schm.). 

Transfer of nematode resistance from these wild relatives into sugar beet has been 

a serious concern since 1940 (Bosemark 1969, Coons 1975, Nakamura et al. 1991). 
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Savitsky (1975) was the first to produce monosomic additions from crosses 

between triploid interspecific hybrids and diploid cultivated beets. This material was 

then used to transfer the gene(s) for resistance to the genome of cultivated beet 

(Savitsky 1978). The same strategy was followed by Speckmann & De Bock (1982), 

Speckmann et al. (1985), Heijbroek et al. (1983), Löptien (1984), Jung & Wricke 

(1987), Heijbroek et al. (1988) and Lange et al. (1990). 

Two full series of monosomic additions in beet have been described (Lange 

et al. 1988, Van Geyt et al. 1988, Reamon-Ramos & Wricke 1992). In offspring 

families of monosomic additions, plants having 2n=19 occur with frequencies of 

about 10-25%. Several such plants can be recognised on the basis of a deviating 

morphology. However, this method is not 100% reliable, and can only be used in 

combination with the counting of chromosome numbers, which is very laborious. 

Therefore, methods which lead to a rapid and reliable identification of 

monosomic additions are valuable. The so-called squash-dot hybridisation technique 

(Hutchinson ef al. 1985) is particularly valuable in genetics and in breeding 

programmes where large numbers of plants need to be assayed (Flavell 1982). For 

this approach, probes with high specificity, and if possible a high copy number in the 

original genome, are needed (e.g. Hutchinson ef al. 1985, Schmidt etal. 1990). 

The genome of B. vulgaris contains 60% middle and highly repeated DNA 

sequences. Some members of this genome fraction are organised as tandemly 

arranged DNA (satellite DNA and rRNA genes), while others are clusters of simple 

sequence repeats (microsatellites) or dispersed sequence families (Schmidt & 

Heslop-Harrison 1993, Schmidt et al. 1993). The first satellite DNA family in the 

nuclear genome of B. vulgaris was isolated as a ßamHI sequence family (Schmidt & 

Metzlaff 1991). Secondly, a sugar beet satellite DNA was isolated as a EcoRI 

sequence family that showed no homology to the first one and is present in three 

sections (Beta, Corollinae, and Nanae) of the genus (Schmidt et al. 1991). The 

probes (PTS1 and PTS2) with a high degree of B. procumbens specificity were used 

for the squash-blot hybridisation with the aim of screening monosomic additions 

carrying an alien B. procumbens chromosome (Schmidt ef al. 1990). The same 

strategy was used to identify individuals from monosomic addition lines carrying the 

fragmented chromosome. The dispersed repetitive DNA probe (P64S), in 

conjunction with a squash-blot hybridisation, was chosen to identify nematode 

resistant individuals carrying Procumbentes chromosomes (Jung & Herrmann 1991). 

New members of the Procumbentes specific satellite DNA family Sat-121, 

which was isolated from a genome subtraction library of AN5-90 (a BCN-resistant 
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fragment addition (pat-1)), were characterised by Salentijn et al. (1992). The 

organisation of Sat-121 in the vicinity of the beet cyst nematode resistance locus 

Hs1 in B. patellaris and B. procumbens was investigated by Salentijn etal. (1994). 

The present study describes the distribution of the repetitive Procumbentes 

specific DNA probes Sat-121 and PB6-4 in genomes of B. procumbens and 

B. patellaris using both dot-blot and squash-blot hybridisation methods. It reports on 

the identification and screening of extensive numbers of monosomic additions from 

offspring of B. patellaris and B. procumbens addition families using the repetitive 

DNA probe PB6-4 and the squash-blot hybridisation method. The correlation 

between expected monosomic addition morphotype in relation to the results of the 

squash-blot hybridisation (plants with signal), is also described, as well as the 

correlation between plants with signals and the results of counting chromosome 

numbers. Finally, the application of the polymerase chain reaction (PCR) method for 

the identification of monosomic additions, as an alternative to chromosome counting, 

will be discussed. 

Materials and methods 

Plant material 

The plant material consisted of B. vulgaris, the wild species B. patellaris (2n=36) and 

B. procumbens (2n=18), monosomic addition families (2n=19), representing the 

complete set of nine different chromosomes of B. procumbens in diploid B. vulgaris 

(Van Geyt et al. 1988), and 73 unidentified monosomic addition families (2n=19) of 

B. patellaris, of which the origin was described by Speckmann & De Bock (1982). 

Preparation of repetitive DNA probes 

Two highly repetitive DNA probes named Sat-121 (Salentijn et al. 1992, referred to 

as 121-3} and PB6-4, both specific for the section Procumbentes of the genus Beta, 

were used in this study. The probes were kindly donated by Dr. N.N. Sandal, 

University of Aarhus, Aarhus Denmark. Sat-121 (169 bp) was derived from 

chromosome 1 of B. patellaris and PB6-4 was obtained from a genomic library of 

B. procumbens (Salentijn et al. 1994). PB6-4 has a size of 1700 bp and contains 

several Sat-121 core sequences interspersed with anonymous sequences (N.N. 

Sandal, pers. comm.). 
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Plasmid inserts (Sat-121 was cloned in SK? and PB6-4 in pUC19) were 

digested with Kpn\ (SIC) and EcoRI {pUC19) and separated from the vector by 

agarose-gel electrophoresis followed by purification from the gel by freeze-

squeezing. Inserts were labelled with a randomly primed DNA labelling kit (USB) with 
32P a-dATP. 

Dot-blot hybridisation 

Total genomic DNA was extracted from frozen leaves according to Van der Beek 

et al. (1992). 1.5 ug DNA from each sample was denaturated by heating to 100 °C 

for 10 min and spotted onto dry Hybond-N+ membrane, which was then dried, 

crosslinked with UV light for 45 s and hybridised with the 32P-labelled DNA probes 

Sat-121 and PB6-4. For hybridisation with the Sat-121 probe, five monosomic 

addition plants and their diploid sibs, identified by chromosome counting, were used. 

For PB6-4 sixteen monosomic addition plants and their diploid sibs were used. Total 

DNA samples of B. vulgaris, B. patellaris, B. procumbens and the two plasmid 

inserts Sat-121 and PB6-4 served as controls. 

Squash-blot hybridisation 

For squashing, two sheets of Whatman 3-MM paper were immersed in 0.5 M NaOH 

and placed on a piece of glass. Hybond-N+ membrane was soaked in 0.5 M NaOH 

and laid on the Whatman 3-MM paper. A plastic sheet with small holes in it (5 mm in 

diameter) was placed on the membrane. Leaf pieces from individual seedlings were 

squashed onto Hybond-N+ nylon membrane in two replications. In order to fix 

enough DNA on the filters, leaf pieces were squashed twice on the same spots. For 

each family, if possible, 80 individual seedlings were spotted on each membrane. B. 

vulgaris, B. patellaris and B. procumbens were used as controls on each membrane. 

After squashing of the leaf pieces, the membrane was washed in 2x SSC for 2 min, 

dried overnight and crosslinked with UV light for 45 s. 

Southern hybridisation 

PB6-4 was random primed labelled (Feinberg & Vogelstein 1983) and hybridised 

overnight (60 °C) to the membranes in 1% SDS, 1 M NaCI, 10% dextransulfate, 

50 mM Tris-HCL pH=7.5, 100 ng/ul of denatured salmon sperm DNA after a 2 h 
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pre-hybridisation. Membranes were washed for 1 h in 0.5x SSC followed by 1% SDS 

at 60 °C for 1 h. The membranes were sealed in Saran Wrap and exposed to X-ray 

film (Kodak) at -80 °C for 1-4 days using intensifying screens. 

Chromosome studies 

Based either on strong signals in the squash-dot assay or on morphological 

characteristics (Lange et al. 1988), plants were selected as candidate monosomic 

additions. To verify the presence of the extra chromosomes or chromosome 

fragments, root tips were pre-treated with aqueous 8-hydroxyquinoline (2 mM, 6 h), 

fixed in acetic-ethanol (1:3 v/v), hydrolysed in 1 N HCl at 60 °C for 6 min, squashed 

in 45% acetic acid, and stained by carefully lifting the cover slip and adding a drop of 

1% aqueous crystal violet (Salentijn et al. 1992). 

PCR 

To evaluate PCR markers in different monosomic addition families and their diploid 

sibs, genomic DNA from 16 monosomic additions and their diploid sibs, as well as 

from B. vulgaris, B. patellaris and B. procumbens, was used as template for PCR 

amplification. PCR was carried out using the primers REP: CGTAAGAGACTATGA 

and REP.INV: TGAACACCTTTCAAAT. These primers are designed to amplify the 

interspersed DNA between consecutive Sat-121 monomeric units (Salentijn et al. 

1994). 

Results 

Determination of the specificity and the distribution of the repetitive DNA 

probes PB6-4 and Sat-121 in B. patellaris addition families 

To investigate whether the two repetitive DNA probes {Sat-121 and PB6-4) axe 

randomly dispersed over all chromosomes, their presence was evaluated in 

randomly chosen monosomic additions and their diploid sibs. This was done by dot-

blot hybridisation. Total DNA was extracted from pooled plants of 16 monosomic 

addition families carrying an extra ß. patellaris chromosome and their diploid sibs, of 

which the chromosome number had already been established, and was dot-blotted. 

B. vulgaris, B. patellaris, B. procumbens and the two clones (Sat-121 and PB6-4) 
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were also spotted as controls. Both the repetitive DNA probe PB6-4 and Sat-121 

gave an effective signal in all monosomic additions, B. patellaris and B. procumbens, 

but not in the diploid sibs and in B. vulgaris. Upon cross-hybridisation with each of 

the probes separately, signal was found on the spot of the other plasmids, 

confirming that the two repetitive DNA probes share homology (N.N. Sandal, pers. 

comm.). The repetitive DNA probe PB6-4 gave strong signals in all 16 distinct 

B. patellaris addition families (Fig. 1). This indicates that PB6-4 is dispersed over 

different chromosomes, since the different addition plants carry different 

chromosomes as judged from their morphotypes. No addition plants without a strong 

signal for PB6-4 were found, indicating that the sequence PB6-4 is possibly present 

on all chromosomes. 

Identification of monosomic addition plants with the DNA probe PB6-4 and the 

squash-blot method 

The squash-blot hybridisation method (Hutchinson et al. 1985) was used to 

distinguish putative monosomic addition plants carrying an extra chromosome of 

B. procumbens or B. patellaris from diploid sibs, and for rapid screening of 

numerous plants. The autoradiographs (see Fig. 2 as an example) show a strong 

hybridisation of the DNA probe to the DNA of some of the plants. Such plants are 

the expected monosomic additions, which contain the whole genome of B. vulgaris 

and just one chromosome of B. patellaris or B. procumbens. Squashes of 

B. patellaris and B. procumbens, serving as controls, also gave a strong signal. No 

signals were observed in the squashes of B. vulgaris and of many of the tested 

plants. The latter are thought to be the diploid sibs, not carrying the alien 

chromosome. 

In total among 640 squashed plants from eight B. procumbens addition 

families 118 plants (18.4%) gave signals. The addition family carrying chromosome 

2 of B. procumbens has the highest frequency (26.3%), and the family carrying 

chromosome 6 of B. procumbens has the lowest frequency, of monosomic additions 

(5.0%). In the family carrying chromosome 4 of B. procumbens, plants with the 

expected morphotype died at seedling stage and squash-blotting was not possible. 

The result clearly shows the random distribution of this repetitive DNA probe on at 

least eight different chromosomes of B. procumbens. A total of 4580 candidate 

plants from the B. patellaris addition families were tested yielding 628 plants (13.7%) 

with a positive signal. The family named A3-1-3 has the highest frequency of 
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Fig. 1. Dot-blot hybridisation of 16 different monosomic addition families (1-16), carrying an extra 
chromosome of B. patellaris in B. vulgaris (M) and their diploid sibs (D), to the Procumbentes 
specific repetitive DNA probe (PB6-4). B. vulgaris (vul), B. patellaris (paf), B. procumbens (pro) as 
well as two clones, SK* with a Sat-121 insert and pUC19 with a PB6-4 insert, were spotted as 
controls 

M Family 
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Fig. 2. A squash-blot of 80 individual seedlings from one addition family in two replications and of 
B. vulgaris, B. patellaris and B. procumbens as controls, hybridised to the repetitive DNA probe 
PB6-4. Addition plants carrying an extra chromosome of B. patellaris, as well as B. patellaris and 
B. procumbens, gave a strong signal after autoradiography 
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monosomic addition plants (30.8%), whereas the family B1-1-285 has the lowest 

frequency (1.3%). The addition families A5-1-14, A5-1-24 and B1-1-10 do not have 

individuals giving a signal, suggesting that no monosomic addition plants are present 

in these families. The observation shows that there is variation between addition 

families in relation to the presence of a signal. To test for heterogeneity between 

families, a chi-square test was performed on data classified by the presence or the 

absence of plants with a signal in the different B. procumbens and B. patellaris 

addition families. The %z value in B. procumbens addition families is significant 

(X2=16.58, df=7) at the 5% level (P=0.02). The %z value in B. patellaris addition 

families is also highly significant (x2=208.2, df=65) at the 0.5% level. 

Comparison of putative monosomic addition plants for their morphotype per 

family 

For the B. procumbens families the morphotype of the addition plants has already 

been described (Lange et al. 1988). Therefore the plants with such a morphotype 

could be identified, and the results compared with those of squash-blotting to test in 

how many cases the morphotype does not predict the addition phenotype, 

particularly at the seedling stage. In this respect two classes of morphotype 

(B. procumbens putative monosomic addition morphotype versus plants with normal 

morphotype) were compared with two classes of plants (the addition plants giving a 

signal, 2n=19 versus plants without a signal, 2n=18) in the eight families of 

B. procumbens and in ten of B. patellaris. 

In B. procumbens addition families, among 118 plants giving a signal 98 

plants had the putative morphotype and 20 plants had a nearly normal morphotype. 

Most of the plants (500) showing no signal had the B. vulgaris morphotype, but 

some plants without a signal (22) had a deviating morphotype. The distribution over 

the two morphotypes is shown in Table 1. A 2x2 contingency test was carried out to 

determine whether these two characteristics are independent. The %z values were 

highly significant 

In the B. patellaris addition families most of the plants without a signal (604) 

again showed the normal morphotype, while, as is presented in Table 2, the results 

of plants with a signal varied. Among 115 plants giving a signal, 66 had a deviating 

morphotype and 49 had a nearly normal morphotype. The contingency test showed 

highly significant x2 values, except for the families B3-1-1 and B1-1-10. Among 80 

plants in family B1-1-10 12 candidate plants with the putative morphotype did not 
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Table 1. Proportions of deviating and normal morphotypes among plants with and without a signal in the 

squash-blotting experiments, using B. procumbens addition families, and results of a 2 x 2 contingency test 

Chr. 

no. 

Pro-1 

Pro-2 

Pro-3 

Pro-5 

Pro-6 

Pro-7 

Pro-8 

Pro-9 

Family 

name 

D1-2-13 

D2-2-27 

D3-2-17 

I3-2-24 

D3-2-35 

AU6-1-4 

D3-2-13 

C6-1-3 

Number 

of plants 

80 

80 

80 

80 

80 

80 

80 

80 

With signal (2n= 

Putative 

15 

14 

8 

17 

4 

12 

12 

16 

19) 

Normal 

0 

7 

12 

0 

0 

1 

0 

0 

Without 

Putative 

0 

9 

2 

1 

3 

0 

0 

7 

signal (2n=18) 

Normal 

65 

50 

58 

62 

73 

67 

68 

57 

/ 
(2x2 contingency)1 

73.57*** 

17.55"* 

15.23*** 

68.81*** 

32.70*** 

65.70*** 

72.34*** 

45.31*** 

' Significant at P< 0.001 

Table 2 . Proportions of putative and normal morphotypes among plants with and without a signal in the 
squash-blotting experiments, using B. patellars addition families, and results of a 2 x 2 contingency test per 
family 

Family 

name 

Number With signal (2n=19) 

of plants Putative Normal 

Without signal (2n= 18) £ 

Putative Normal (2x2 contingency)1 

B1-1-8 

B1-1-9 

B1-1-10 

B3-1-1 

D1-1-1 

D1-1-2 

D M - 3 

D1-1-4 

D1-1-5 

D1-1-6 

80 

78 

80 

80 

67 

80 

80 

78 

80 

80 

14 

9 

0 

2 

6 

12 

6 

6 

3 

8 

7 

5 

0 

10 

0 

3 

4 

8 

5 

7 

2 

9 

12 

5 

9 

5 

7 

2 

5 

57 

55 

68 

63 

52 

60 

63 

62 

67 

57 

34.90*** 

13.61*** 

0.25 

18.20*" 

33.87*** 

12.60"* 

15.62"* 

4.27* 

10.38*** 

*and ** Significant at P<0.001 or P<0.05 
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give a signal after hybridisation, indicating that no correlation exists in this family. 

Chromosome counting in this family, however, proved that the plants with the 

putative morphotype had only 18 chromosomes. 

Chromosome studies 

After squash-blot hybridisation, all addition families but three gave clear signals for 

at least some plants, indicating the addition of a chromosome of B. patellaris or 

B. procumbens. To verify the addition, the chromosome number of both putative 

additions on the basis of morphotype and of plants with a signal were compared in 

arbitrarily chosen B. patellaris and B. procumbens addition families. In 13 addition 

families out of 106 plants, 57 plants with an extra chromosome, a telosomic addition 

or a fragment addition, gave a signal, while 49 plants with 2n=18 chromosomes 

lacked a signal. The outcome of the chromosome counting clearly confirms the 

accuracy of the result of the squash-blot hybridisation. 

Apart from plants with the addition of a full chromosome, plants were also 

observed which carried only a part of the extra chromosome. All selected plants with 

a signal in the addition families D1-1-4 and D1-1-5 were telosomic additions. In 

addition family B3-1-1 one plant among 12 selected with a signal appeared to be a 

telosomic addition. In addition family B1-1-9 out of 14 selected plants two with 

divergent morphotype were fragment additions. These types of plants with signals 

but with different morphotypes can be considered as a target for the detection of 

possible fragment additions. 

DNA amplification by the polymerase chain reaction (PCR) 

To assay the possibility of using the polymerase chain reaction (PCR) for the 

identification of monosomic additions as an alternative to chromosome counting, the 

PCR was carried out using primers REP and REP.INV. Genomic DNA from different 

monosomic addition families and their diploid sibs, whose chromosome numbers 

had already been established by counting, was used as a template for PCR 

amplification. DNA from the parents of the addition plants (B. vulgaris, B. patellaris 

and B. procumbens) served as controls. The results of these PCR amplifications are 

shown in Fig. 3. Several bright bands were amplified in B. vulgaris only, clearly 

distinguishing B. vulgaris from both B. patellaris and B. procumbens. The same 

bright bands are also present in all diploid sibs but completely absent in B. patellaris 
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C 1 2 3 D M D M D M D M D M D M D M C 

1 kb 

Fig. 3. PCR patterns obtained with primers REP and REP.REV using genomic DNA from monosomic 
additions and their diploid sibs as a template. Lanes 1, 2 and 3 represent B. vulgaris, B. patellars, and 
B, procumbens, respectively. Addition families and their diploid sibs from left to right are A5-1-24 to 
A5-1-30 (D=diploid and M=monosomic addition; C=1kb ladder). Note the bright band (arrow) amplified 
in B. vulgaris (lane 1 ) 
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or B. procumbens monosomic additions which, like the B. patellaris and 

B. procumbens control, showed a continuous smear. To test the reproducibility of 

the amplification patterns, more addition families were investigated and the results 

obtained were always the same. 

Discussion 

The distribution of two repetitive DNA probes Sat-121 and PB6-4, specific for the 

section Procumbentes of the genus Beta, was tested with a dot-blot hybridisation 

procedure. Both DNA probes gave sufficient signals in all monosomic additions as 

well as in B. patellaris and B. procumbens. No definite cross-hybridisations to diploid 

sibs and B. vulgaris DNA were observed. This indicates that both probes are 

dispersed over different chromosomes, since the distinct addition plants carry 

dissimilar chromosomes as judged both from cytological studies and their diverse 

morphotypes. No addition plants without a strong signal for PB6-4 were found, 

indicating that sequences on the probe PB6-4 are possibly present on all 

chromosomes. Using a squash-blot hybridisation procedure and a repetitive DNA 

probe (PB6-4) an extensive number of putative monosomic additions in B. patellaris 

or B. procumbens addition families was screened rapidly. The presence of PB6-4 

sequences in the addition family carrying chromosome 4 of B. procumbens with 

small seedlings, and showing semi-lethality, is still under study. The location of these 

repetitive sequences is not known and it is not clear whether they are restricted to 

the centromeric and distal regions only or occur all along the chromosomes. The 

location of these sequences may more precisely be established by fluorescence in 

situ hybridisation. 

In the present investigation the correlation between deviating morphotype and 

plants with a signal is high but not complete. There is considerable variation 

between distinct chromosome families. The correlation between plants giving a 

signal after hybridisation with PB6-4 and with chromosome number (2n=19) is 

complete. This shows the accuracy of the results of the squash-dot hybridisation. In 

this experiment 628 individual monosomic additions were found amongst 4580 

plants (13.7%) in B. patellaris addition families, while 118 monosomic additions were 

found in 640 plants (18.4%) in B. procumbens addition families. The screening of 

these large numbers of plants, where the growing of the families was the limiting 

factor, was achieved in a couple of weeks. This confirms that the technique is very 

attractive for the quick screening of large numbers of genotypes. In addition, the 
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technique also provides the opportunity to target telosomic and fragment addition 

plants, which occur at low frequency and show less obvious morphological 

characteristics. The cytological investigation surprisingly showed that all selected 

plants with a signal in the addition families named D1-1-4 and D1-1-5 were actually 

telosomic additions. In addition family B1-1-9, two plants with a signal but with a 

divergent morphotype were identified. Chromosome counting confirmed that these 

plants were fragment additions. 

The possibility of utilising sequence information from Sat-121 for a PCR 

based assay to screen for putative monosomic addition plants was also investigated 

as an alternative to chromosome counting. The amplified products using the primers 

REP and REP.INV (Salentijn et al. 1994) clearly distinguished monosomic addition 

plants from their diploid sibs. In B. patellans and B. procumbens and monosomic 

additions a continuous smear was produced, whereas a few bright bands were 

amplified in B. vulgaris and in all diploid sibs. The origin of the amplified sequences 

is not known exactly, but probably the majority of the amplified products originate 

from DNA sequences interspersing the Sat-121 monomeric units. The result also 

made clear that the repetitive DNA sequences are dispersed strongly over all 

chromosomes of B. patellans or B. procumbens, because monosomic additions 

carrying only one alien chromosome in the background of B. vulgaris yield patterns 

of amplified products identical to the smear like pattern seen in B. patellans and 

B. procumbens. However, the finding of bright-view amplification products in 

B. vulgaris is surprising. Apparently a few Sat-121 or Sat-121 containing sequences 

are present in sufficient close proximity to each other to produce bands on a few 

loci. The presence of the bright bands in monosomic addition plants, which obviously 

have all B. vulgaris chromosomes and thus the potential to produce the bright 

bands, may be concealed because of the competitive amplification of numerous 

other loci on B. patellaris or B. procumbens derived chromosomes. The results 

suggest these primers can be used successfully in general to identify monosomic 

additions of chromosomes of species from the section Procumbentes. An advantage 

of the PCR technique is that amplification products can generally be detected by gel 

electrophoresis followed by staining with ethidium bromide, so that radio-active 

probing as used in the squash-blot method is no longer needed. DNA preparation 

from individual plants may be a time limiting factor, but simple and rapid DNA micro-

extraction methods are already available (e.g. Cheung et al. 1993) enhancing the 

value of the polymerase chain reaction (PCR) for the identification of monosomic 

additions. 
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Abstract 

DNA fingerprinting with three repetitive DNA sequences (OPX2, PB6-4 and Sat-121) 

was carried out on a set of ten monosomic additions of Beta procumbens and 

seventy-five anonymous B. patellaris derived monosomic additions in B. vulgaris, for 

characterisation of the alien chromosomes at the DNA level. The probes are 

Procumbenfes-specific and distributed over all chromosomes. Morphological 

characteristics were also used for the classification of B. patellaris monosomic 

addition families and for comparison with the morphology of the addition families of 

B. procumbens. DNA fingerprinting revealed unique patterns for almost all individual 

addition chromosomes of B. procumbens. However, it was concluded that 

chromosomes 1 and 6 of B. procumbens may be identical with the only difference 

that the chromosome referred to as 6 carries a susceptible allele for beet cyst 

nematode (BCN) resistance. In contrast, it was concluded that the two addition types 

with chromosome 2 are carrying different chromosomes of B. procumbens, so that 

one of them was renumbered to become the new chromosome 6. DNA fingerprinting 

of seventy-five anonymous B. patellaris derived monosomic additions facilitated the 

identification and characterisation of the alien chromosomes and the grouping of 

these additions into nine different groups. Several of these groups could be divided 

in two sub-groups on the basis of small differences in banding patterns. The results 

of the DNA fingerprinting led to the conclusion that ß. patellaris most likely is an 

allotetraploid. It was also deduced that the BCN resistance gene(s) in this species 

are homozygous and located on chromosome 1, while the pair of homoeologous 

chromosomes does not carry such BCN gene(s). Because of the allotetraploid 

nature of ß. patellaris, preferential association occurs between the two homologous 

chromosomes containing the allele(s) for BCN resistance. Each group of 

B. patellaris addition families united by DNA fingerprinting had comparable 

morphological characteristics. Some of these morphological traits appeared to be 

chromosome-specific and were very useful for primary classification of the addition 

families. However, the present study showed that these morphological traits are not 

adequate for the identification of all alien chromosomes without the aid of additional 

markers. Because of similarities observed between molecular characteristics or the 

effects on plant morphology of several chromosomes of B. procumbens and 

B. patellaris it was concluded that B. procumbens could have been involved in the 

evolutionary history of B. patellaris. 
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Introduction 

Wild beets of the section Procumbentes of the genus Beta carry several valuable 

agronomical genes, and therefore are valuable genetic resources for breeding of the 

cultivated beet (B. vulgaris L). Alien monosomic additions in B. vulgaris, harbouring 

one single chromosome of a wild species of the section Procumbentes can be used 

as a bridge to transfer these genes of interest to the genome of cultivated beet. This 

has been done for the gene(s) from B. procumbens Chr. Sm., conferring resistance 

to the beet cyst nematode (BCN) (Heterodera schachtii Schm.) (Savitsky 1975, 

Savitsky 1978, Lange et al. 1990a, Speckmann & De Bock 1982, Speckmann etat. 

1985, Heijbroek er al. 1983, Löptien 1984, Jung & Wricke 1987, Heijbroek et al. 

1988). 

Monosomic additions can also be used for chromosomal localisation of 

specific genes (De Jong et al. 1986, Van Geyt et al. 1988, Lange et al. 1990a, 

1990b, Reamon-Ramos & Wricke 1992, Paul et al. 1992) and for answering basic 

questions of taxonomy by comparing chromosomes of different genomes of the 

section Procumbentes (Reamon-Ramos & Wricke 1992). 

To track the fate of the alien chromosomes in B. procumbens and 

B. webbiana Moq. derived addition families, morphological, physiological, 

biochemical and cytological studies have been carried out (Löptien 1984, 

Speckmann et al. 1985, De Jong et al. 1986, Van Geyt et al. 1988, Lange et al. 

1988, Reamon-Ramos & Wricke 1992). For both species the nine types of 

monosomic additions in B. vulgaris representing the nine different chromosomes of 

B. procumbens or B. webbiana have been identified (Lange er al. 1988, Van Geyt er 

al. 1988, Jung étal. 1986, Reamon-Ramos & Wricke 1992). 

In monosomic addition families of B. patellaris Moq., of which the origin was 

described by Speckmann & De Bock (1982), the alien chromosomes have not yet 

been analysed (with the exception of chromosome 1) and there are no data 

available concerning the effects of the extra chromosomes of B. patellaris on plant 

morphology of the monosomic additions. Only the study of a telosomic addition 

family (AN5), carrying the long arm of chromosome 1 and conferring full resistance 

to the beet cyst nematode, has been of serious concern. This worthwhile addition 



30 Chapter 3 

family aided the localisation of a BCN gene (Speckmann ef al. 1985, Lange et al. 

1990a, De Jong et al. 1986, Salentijn ef al. 1992) and might offer the possibility for 

map based cloning of this gene (Salentijn et al. 1994). 

To facilitate the characterisation and identification of individual alien 

chromosomes of section Procumbentes derived monosomic additions, DNA 

fingerprinting with dispersed DNA sequences, specific for the section, could be used. 

Such sequences have already been reported and the application of these markers in 

breeding and management of genetic resources of beet has been described 

(Schmidt & Metzlaff 1991, Schmidt et al. 1991, Schmidt ef al. 1990, Schmidt & 

Heslop-Harrison 1993, Jung & Herrmann 1991, Salentijn et al. 1992, Bonavent et al. 

1994). The distribution of one of these dispersed repetitive DNA sequences (PB6-4) 

over all chromosomes of B. procumbens and B. patellars has recently been 

substantiated by dot and squash-blot hybridisation (Mesbah et al. 1996). The 

present study describes the application of DNA fingerprinting, using three different 

repetitive DNA probes (OPX2, PB6-4 and Sat-121), all specific for the section 

Procumbentes, for the characterisation of the alien chromosomes at the DNA level 

in a set of monosomic additions of ß. procumbens and in seventy-five anonymous 

B. patellaris monosomic addition families. The morphological characteristics of the 

B. patellaris monosomic addition families will be described and compared with the 

morphology of the addition families of B. procumbens. Finally the relationship 

between B. patellaris and B. procumbens based on DNA fingerprinting and 

morphological characteristics will be discussed. 

Materials and methods 

Plant material 

Plant material consisted of B. vulgaris (2n=18), the wild species B. patellaris (2n=36) 

and B. procumbens (2n=18), ten monosomic addition families (2n=19), representing 

the complete set of nine different chromosomes of B. procumbens in diploid 

B. vulgaris (Van Geyt ef al. 1988), including two morphologically different families 

both with chromosome 2 (Lange ef al. 1988), and seventy-five anonymous 

monosomic addition families (2n=19) of B. patellaris in diploid B. vulgaris, of which 

the origin was described by Speckmann & De Bock (1982). Plants of the B. patellaris 

and B. procumbens addition families were grown in a greenhouse under uniform 

conditions. Extra plants from the same addition families were also grown under field 
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conditions after vernalisation. Monosomie addition plants were distinguished from 

diploid sibs in offspring families by the squash-blot hybridisation method as 

described previously (Mesbah et al. 1996). 

Repetitive DNA probes 

OPX2 is a middle-repetitive DNA sequence of B. patellaris, which occurs in this 

species with about 100-500 copies. It originated from a RAPD fragment produced 

with the 10-mer oligonucleotide primer (5'-TTCCGCÇACC-3') (Salentijn et al. 1994). 

Sat-121 (169 bp) (Salentijn et al. 1992, referred to as 121-3} was derived from 

chromosome 1 of B. patellaris (Salentijn et al. 1994). PB6-4 was obtained from a 

genomic library of B. procumbens (Salentijn et al. 1994) and has a size of 1700 bp. 

It contains several Sat-121 core sequences interspersed with anonymous 

sequences (N.N. Sandal, pers. comm.). Sat-121 and PB6-4 are both specific for the 

section Procumbentes of the genus Beta, and were kindly donated by Dr. N.N. 

Sandal, University of Aarhus, Aarhus, Denmark. Bacterial clones containing the 

repetitive DNA probes were grown in LB-medium (50 ug/ml ampicillin) and plasmid 

DNA was extracted with a standard minipreparation method (Sambrook et al. 1989). 

The plasmid inserts 0PX2 and Sat-121 were cloned in SIC and PB6-4 in pUC19. 

The clones were digested with EcoRV or Kpn\ (SK*) and EcoRI (pUC19), separated 

from the vector by agarose-gel electrophoresis and purified by freeze-squeezing. 

DNA isolation, digestion and Southern blotting 

Total genomic DNA was isolated from frozen leaves according to a method 

developed by S.D. Tanksley et al. (Cornell University, Ithaca, N.Y., USA) as 

described by Van der Beek et al. (1992). 10 ug DNA from each sample was digested 

with either EcoRI or A/col and restriction fragments were separated at 1.5 V/cm on 

0.8% agarose gels in 1x TBE buffer. DNA was denaturated and transferred onto 

Hybond-N+ nylon membranes by Southern blotting using a Vacuum Blotter 

(BIO-RAD), neutralised for 5 min in 0.2 M Tris pH 7.2, 2x SSC, dried and cross-

linked for 50 s with UV light. 
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M A B C 1 2 3 4 5 6 7 8 9 

1kb 

Fig. 1. EcoRVOPX2 DNA fingerprinting patterns in nine B. procumbens derived monosomic addition 
families, representing different chromosomes of B. procumbens (chromosome 1-9). M=1 kb ladder, 
A=B.vulgaris, B=B.procumbens, C=B. patellars 

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 kb 

Fig. 2. Nco\IOPX2 DNA fingerprinting patterns in fourteen B. patellaris derived monosomic addition 
families of group 1 and patterns of two addition families carrying chromosome 1 and 6 of B. 
procumbens. The numbers 1-14 refer to the families A4-1-1 to B1-1-11 as mentioned in column 1 of 
Table 1, with the exception of A5-1-12, and the numbers 15 and 16 refer to the families with 
chromosomes 1 and 6 of B. procumbens, respectively. M=1 kb ladder 
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Southern hybridisation 

Probes were labelled by random priming (Feinberg & Vogelstein 1983) and 

hybridised overnight (65 °C) to the membranes in 1% SDS, 1 M NaCI, '10% 

dextransulphate, 50 mM Tris-HCI pH 7.5, 100 ng/ul denatured salmon sperm DNA 

after 2 h prehybridisation. Membranes were washed twice 1 h in 0.5x SSC/1% SDS 

at 65 °C. The membranes were sealed in Saran Wrap and exposed to X-ray film 

(Kodak) at -80 ° C for 1 -4 days using intensifying screens. 

Morphological studies 

A series of morphological and developmental characteristics has been studied in 

monosomic addition families of B. procumbens and B. webbiana, and chromosome-

specific characteristics have been reported for the nine chromosomes of 

B. procumbens and B. webbiana (Lange et al. 1988, Reamon-Ramos & Wricke 

1992). This information was used in the present study to describe the plant 

morphology of B. patellaris monosomic addition families. Together with the 

molecular data the morphological characteristics were used to allocate the addition 

families to distinct groups. Whenever possible the same chromosome name was 

given to each group of B. patellaris addition families that had a similar or nearly 

similar morphology and/or molecular pattern as the corresponding monosomic 

addition family of B. procumbens. 

Results 

DNA fingerprinting of the B. procumbens addition families 

The genomic DNA extracted from leaves of plants of B. procumbens addition 

families and the parents of the additions (ß. vulgaris, B. patellaris and 

B. procumbens) was digested with EcoRI, or in some cases with Nco\, and 

hybridised to the three repetitive DNA sequences (0PX2, PB6-4 and Sat-121) 

separately. 

DNA fingerprint patterns of the B. procumbens addition families with 

OPX2/EcoR\ were almost all unique for each individual addition chromosome, with 

the exception of chromosome 5 that unexpectedly showed a smear pattern, 

although the digestion of the DNA looked good (Fig. 1). A similarity between 
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M 3 9 

1 kb 1 kb 

M 2.1 2.2 
M M Ü M H | 

Fig. 3. NccMOPX2 DNA fingerprinting patterns 
of two addition families carrying chromosome 3 
and 9 of B. procumbens. M=1 kb ladder 

Fig. 4. EcoR\/OPX2 DNA fingerprinting 
patterns of the two types witth chromosome 
2 of B. procumbens. M=1 kb ladder 

M A B C 1 2 3 4 5 6 7 8 9 

1kb 

Fig. 5. EcoR\/OPX2 DNA fingerprinting patterns of the nine groups of B. patellaris derived monosomic 
addition families (pattern 1-9). M=1 kb ladder, A=S. vulgaris, B=S. procumbens, C=B. patellaris 
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chromosome 1 and 6 was observed. Also chromosome 3 and 9 looked nearly 

similar, but this similarity was incomplete. A smear pattern was observed in 

B. patellaris and B. procumbens, and no cross-hybridisation to B. vulgaris genomic 

DNA was found. The banding patterns obtained from hybridisation to PB6-4/EcoR\ 

showed similar results. Again similarities between chromosome 1 and 6, and also 

between chromosome 3 and 9 were observed. All other addition families (with the 

exception of chromosome 5) showed clearly unique patterns. A smear pattern was 

observed in B. patellaris and B. procumbens, and no cross-hybridisation to 

B. vulgaris DNA was found after probing with PB6-4. Sat-121 showed similar 

results, but also gave two faint bands in B. vulgaris (data not shown). The 

relationship between chromosome 1 and 6, as well as the relationship between 

chromosome 3 and 9 were investigated with a second restriction enzyme Ned and 

OPX2 as probe. Chromosome 1 and 6 exhibited nearly similar patterns (Fig. 2, 

lanes 15 and 16). Chromosome 3 and 9 also had similar patterns but were not 

identical (Fig. 3). 

Two morphotypes have been reported for chromosome 2 of B. procumbens 

(Lange et al. 1988). The fingerprint patterns of these two types were investigated in 

order to see if these two addition families give similar patterns. DNA from these 

additions were digested with EcoRI and A/col and hybridised to OPX2. The patterns 

were completely different for these additions (Fig. 4), proving that they are carrying 

different chromosomes. 

DNA fingerprinting of the B. patellaris addition families 

The genomic DNA extracted from leaves of plants of seventy-five anonymous 

B. patellaris addition families and the parents of the additions (B. vulgaris, 

B. patellaris and B. procumbens) was digested with EcoRI and Nco\ and hybridised 

to the three repetitive DNA sequences (OPX2, PB6-4 and Sat-121) separately. 

0PX2. DNA fingerprinting with OPX2 yielded a total of nine different discrete 

banding patterns for the B. patellaris monosomic addition families. Seventy-four 

addition families could be assigned to one of these nine different DNA fingerprint 

patterns (Fig. 5), although four addition families (A3-1-3, D1-1-4, B3-1-1 and D1-1-5) 

showed slightly deviating patterns. The family A5-1-12 gave a faint unclear pattern. 

PB6-4 or Sat-121. DNA fingerprinting with PB6-4 or Sat-121 yielded nine 

different ladder patterns in the B. patellaris addition families, which are specific for 

elements arranged in tandem arrays. DNA fingerprinting with PB6-4 and Sat-121 
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probe, although a few addition families showed slight variations in the number of 

bands in their profiles. 

Patterns of cross-hybridisation 

The final results of the grouping, including also the results of morphological studies 

(see later), are presented in Table 1. The patterns are also being compared to those 

in the B. procumbens derived monosomic additions. 

Group 1. Nearly identical OPX2/ EcoRI patterns were observed for fourteen 

addition families. These addition families were also united by their PB6-4/EcoR\ or 

Sat-121/EcoR\ patterns. When genomic DNA of these families was digested with 

A/col and hybridised to OPX2 a polymorphism was observed, suggesting the 

existence of two sub-groups (Fig. 2), named 1.1 and 1.2. The banding patterns in 

this group were very similar to those in the monosomic additions with chromosomes 

1 and 6 of B. procumbens. 

Group 2. The OPX2/EcoR\ banding patterns of four families were similar and 

discriminated these families from others. One addition family (B1-1-5) in group 2 

missed one band when hybridised to PB6-4. The patterns were comparable to the 

patterns obtained in monosomic addition with chromosome 2.2 of B. procumbens. 

Group 3. Similar patterns were observed with all three probes for eight 

families. The patterns of addition family A3-1-3 were similar to the patterns observed 

in the other families in this category but homology was not complete and 

polymorphisms were observed with all three probes. The banding patterns in this 

group were dissimilar to any of the patterns in monosomic additions of 

B. procumbens. 

Group 4. The OPX2I EcoRI banding patterns of seven addition families were 

grossly similar and unique, but the addition family B1-1-54 had an extra band in its 

profile. Addition family D1-1-4 was also assigned to this group, but it missed several 

bands. However, this family was known to be a telosomic addition as judged from 

chromosome counting (data not shown). Hybridisation with PB6-4 and Sat-121 

showed slight variation between addition families B1-1-54, D1-1-4 and the others. 

The patterns did not show similarity to the patterns obtained for any of the 

monosomic additions of B. procumbens. 

Group 5. The DNA patterns of three families were identical after hybridisation 

with all three probes. The patterns showed no similarity to the patterns obtained for 

monosomic additions of B. procumbens. 
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Group 6. Similar patterns were observed with all three probes for a group of 

twelve addition families. A slight variation was observed between five addition 

families (A5-1-8, A5-1-9, A5-1-13, A5-1-16 and A5-1-23) and the other families that 

were united in this group. The patterns were dissimilar to any of the patterns 

obtained from the monosomic additions of B. procumbens. 

Group 7. The PB6-4 and Sat-121 profiles of eight addition families were 

similar and unique. The same families were identical for their 0PX2 patterns, though 

three families (B1-1-4, B1-1-7, B1-1-81) had an extra band in their profile. The 

patterns showed similarity to the patterns obtained from the monosomic addition 

with chromosome 7 of B. procumbens. 

Group 8. For fourteen addition families the profile was similar with all three 

probes. Addition family B3-1-1 had a similar pattern when hybridised with PB6-4 and 

Sat-121 but an extra band was observed after hybridisation to OPX2. The pattern 

showed similarity with that of the monosomic addition carrying chromosome 8 of 

ß. procumbens. 

Group 9. The banding pattern was similar and unique for four addition 

families, with all three probes. Addition family D1-1-5, which is a telosomic addition 

as judged by chromosome counting (data not shown), had patterns similar to the 

other families in this category but missed several bands with all three probes. The 

banding pattern was similar to the pattern obtained from the monosomic addition 

with chromosome 9 of B. procumbens. 

Plant morphology 

The B. patellaris monosomic additions (71 out of 75 families, see Table 1) were 

assigned to eighteen different groups (A-R) on the basis of plant morphology. This 

was done before the results of the molecular grouping was known. The results of the 

morphological grouping were compared with those of the molecular grouping and 

are included in Table 1. It can be concluded that the molecular groups 1, 2, 4, 5, 7, 

8, and 9 match with the morphological groups A+F, B, D, E, G, H, and I, 

respectively, whereas groups 3 and 6 are morphologically less consistent. A general 

morphological description of the nine groups of B. patellaris additions that were 

identified by the molecular analysis, including the comparison with the addition 

families of the B. procumbens (and/or B. webbiana) is given below: 

Group 1 . Plants are small and annual. Often auxiliary branches are produced 

on the roots. Plants are rather uniform, with an open to semi-erect growth pattern, 
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and lack good vigour. The petioles are semi-long to long. The leaves are small and 

narrow with a green to dark green colour. Leaf edges moderately bend downwards. 

Family A5-1-12 was assigned to this group because of its annual growth habit. 

Three addition families in this group (A4-1-1, B4-1-4, B4-1-7) are resistant to the 

beet cyst nematode (Speckmann & De Bock 1982, Speckmann er al. 1985). The 

addition families lacking the resistance appear moderately smaller and weaker and 

often tumours grow on the roots. Morphological characteristics of the plants in this 

group are similar to the addition plants carrying chromosomes 1 and 6 of 

B. procumbens (Lange et al. 1988) and probably 1 and 6 of B. webbiana (Reamon-

Ramos & Wricke 1992). It seems that the plant morphology of this group is 

comparable with monosomic addition type A of Löptien (1984). 

Group 2. Plants are biennial and weak, showing a semi-flat growth. The 

petioles are rather short to semi-long with small auxiliary branches on the roots. The 

leaves are dull green and weak with a moderately rough surface and are fairly broad 

at the base. The leaf edges usually bend down in the middle and turn up at the 

base, giving the leaves an oval appearance. Sometimes small tumours grow on the 

petioles or on the leaf surfaces, causing deformation of the leaves and giving them a 

rosette pattern. Often tumours grow on the roots. The morphological characteristics 

of the plants in this group are nearly similar to those of plants with chromosome 2.2 

of B. procumbens as described by Lange et al. (1988) and chromosome 2 of 

B. webbiana (Reamon-Ramos & Wricke 1992). 

Group 3. Plants are biennial with a dense and upstanding growth, showing a 

tendency to bolt before vernalisation. Often auxiliary branches grow on the roots. 

The petioles are long and the leaves are glossy and narrow at the apex with a dark 

green colour and an undulate surface. The leaf edges curl up, but plants show 

variation for intensity of leaf curling. Often tumours grow on the roots. It seems that 

the plant morphology of this group is similar to that of the monosomic addition family 

with chromosome 3 of B. webbiana (Reamon-Ramos & Wricke 1992) because they 

have the glossiest leaves among the additions. However, Lange et al. (1988) did not 

find such a specific phenotype for the monosomic additions with chromosome 3 of 

B. procumbens. 

Group 4. Plants are biennial and show a strong reduction in growth rate with 

semi-lethality. Some of the plants died a few weeks after germination. The petioles 

are short and the leaves are small, dark green and have a rough surface with a 

round shape at the apex. The plant morphology of this group is similar to the 

monosomic addition family carrying chromosome 4 of B. procumbens (Lange er al. 
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1988), but the sub-lethal effect of chromosome 4 of B. procumbens is much 

stronger. In B. webbiana monosomic additions only one plant with chromosome 4 

has been reported that could continue to maturity (Reamon-Ramos & Wricke 1992). 

Group 5. Plants are biennial and show a semi-erect growth pattern and 

reduction of growth rate. The petioles are short and the leaves are dull green with a 

rough surface and fine texture, a triangle shape at the base and an undulate leaf 

margin. The plants in family A5-1-25 are less vital. The plant morphology of this 

group is similar to the monosomic addition with chromosome 5 of B. procumbens 

(Lange et al. 1988) and B. webbiana (Reamon-Ramos & Wricke 1992). 

Group 6. Plants are biennial with a dense and semi-erect growth pattern and 

grow vigorously. Plants show variation in leaf size and colour. The petioles are long 

and the leaves are fairly broad at the base and round at the apex with an undulate 

surface. In the families A5-1-8, A5-1-13 and A5-1-33 leaves are light green with a 

strong undulate surface. The plant morphology of group 6 is much the same as that 

of addition plants with chromosome 2.1 of B. procumbens. The morphology of group 

6 also is comparable to that of the monosomic additions of group 8 (see below), as 

well as to that of addition plants with chromosome 8 of B. procumbens and 

B. webbiana (Lange er ai. 1988, Reamon-Ramos & Wricke 1992). However, the 

plants of group 6 of ß. patellaris are bigger than the other additions. 

Group 7. Plants are biennial and weak, showing an open or a flat growth. 

They are characterised by long and weak petioles, tending to curve downwards to 

form a droopy growth pattern. The leaves are fairly small and narrow with a dull 

green colour. The phenotype in this group is very similar to that of the addition family 

with chromosome 7 of B. procumbens, which is resistant to the beet cyst nematode 

(Lange er al. 1988). It appears that the phenotype of the plants in this group is also 

similar to the phenotype of the monosomic addition type B of Löptien (1984) and 

monosomic additions carrying chromosome 7 of B. webbiana (Reamon-Ramos & 

Wricke 1992). 

Group 8. Plants are biennial with a dense and erect growth. The petioles are 

short or semi-long and the leaf surfaces are undulate with a green to light green 

colour and are broad at the base and nearly round at the apex. The phenotype of 

this group is similar to that of the addition plants of group 6 (see above) and of 

addition plants carrying chromosome 8 of B. procumbens (Lange et al. 1988) and of 

B. webbiana, which confers resistance to the beet cyst nematode (Reamon-Ramos 

& Wricke 1992). 



Chapter 3 41 

Group 9. Plants are biennial with erect growth, and show a tendency to 

bolting before vernalisation. The petioles are long and the leaves are rather narrow 

with a smooth or a moderate rough surface and wide at the base. The leaf colours 

are green to dark green and shiny. Occasionally the leaf edges curl up strongly. The 

plant phenotype of this group is very similar to the addition family with chromosome 

9 of B. procumbens (Lange et al. 1988). 

Discussion 

DNA fingerprinting of the Procumbentes addition families with the repetitive 

sequences OPX2, PB6-4 and Sat-121, which are Procumbenfes-specific probes, 

was carried out for the characterisation and the identification of the different alien 

chromosomes at the DNA level. DNA fingerprinting of the B. procumbens addition 

families revealed unique patterns for almost all individual addition chromosomes. 

The DNA fingerprint patterns indicated that these repetitive sequences occur on all 

chromosomes of the wild species, but for each probe the number and the location of 

copies differs among the individual chromosomes. However, chromosome 1 and 6, 

as well as chromosome 3 and 9 exhibited nearly similar patterns, although the 

similarity of the patterns were not completely identical. Annuality and nearly similar 

morphological characteristics have been reported for the monosomic addition plants 

carrying chromosome 1 and 6 of B. procumbens, but the monosomic addition plants 

with chromosome 1 differed from the plants carrying chromosome 6 by their 

resistance to the beet cyst nematode. Various studies with isozyme markers have 

been carried out. Chromosome 1 was positive for an ICD (isocitrate dehydrogenase) 

marker, whereas chromosome 6 was positive for PRX (cathodal peroxidase) (Van 

Geyt et al. 1988). Later studies (Lange et al. 1990b) revealed that additions with 

chromosome 1 and 6 were both positive for ICD as well as for DIA (diaphorase). 

Reamon-Ramos & Wricke (1992) found all monosomic additions of the supposed 

type A (chromosome 1) from the three species of section Procumbentes clearly 

positive for both the ICD and PRX markers. The isozyme markers in additions with 

chromosome 3 or 9 of B. procumbens or B. webbiana were reported to be quite 

different (Van Geyt et al. 1988, Reamon-Ramos & Wricke 1992). 

Therefore, it can be concluded that chromosome 1 and 6 of B. procumbens 

may be identical with the only difference that chromosome referred to as 6 carries a 

susceptible allele on the BCN resistance locus. For the original species 

B. procumbens it might then be hypothesised that additional genes for BCN 
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resistance, which are located on chromosome 7, have always concealed the 

segregation of the BCN resistance alleles of chromosome 1. If chromosome 1 and 6 

are actually the same there is a need to find a new candidate for chromosome 6. In 

the present study the two types of chromosome 2 (Lange et al. 1988) showed 

dissimilar DNA fingerprint patterns, indicating that they are carrying different 

chromosomes of B. procumbens. Therefore, it is proposed to renumber the 

monosomic addition with chromosome 2.1 to the new chromosome 6, and to let 

addition 2.2 be chromosome 2. 

From the results for B. procumbens it was concluded that DNA fingerprinting 

could also be used for the grouping of the anonymous B. patellaris derived 

monosomic additions. Such fingerprinting revealed nine different groups of banding 

patterns, although slight variations were observed for the number of bands in the 

profiles of some additions within these groups. Seventy-four addition families could 

be assigned to one of the nine different DNA fingerprint patterns, indicating that the 

addition families showing a similar pattern are carrying an identical homologous or 

homoeologous chromosome of B. patellaris. 

In B. patellaris meiotic pairing of chromosomes results in the formation of 

bivalents only, which could indicate that this species is allopolyploid (Walia 1971). 

This stands in contrast to autotetraploid sugar beet, where besides bivalents also 

univalents, trivalents and quadrivalents have been observed. This kind of 

observations indicate that in the present study, instead of nine groups, eighteen 

different groups might have been expected. The fact that only nine groups were 

found could be explained by the assumption that homoeologous chromosomes are 

very similar so that DNA fingerprinting could not or not clearly differentiate them. In 

that case the addition families showing slight variations in the number of the bands 

in their profiles might carry the different homoeologous alien chromosomes. For 

instance all the addition families in group 1 (Table 1) are annual and three of them 

are known to be resistant to the beet cyst nematode, while the rest of the families 

are susceptible. Combination of three repetitive sequences with EcoRI could not 

differentiate resistant families from susceptible addition plants. After digestion of 

genomic DNA of these families with Ncol and hybridisation to OPX2 a polymorphism 

was observed between addition families carrying the resistance gene(s) and 

susceptible families, although the structures of the patterns remained similar. In 

B. patellaris the gene(s) for resistance to the beet cyst nematode have been 

reported to be located only on chromosome 1 (Lange er al. 1990a) and segregation 

of the resistant alleles in B. patellaris has never been encountered, while in 
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B. procumbens the gene(s) are located on chromosome 1 and 7, and in B. webbiana 

on chromosome 1, 7 and 8 (Lange et al. 1990a, Van Geyt et al. 1988, Reamon-

Ramos & Wricke 1992). From these results and from the supposedly allotetraploid 

nature of B. patellaris, it can be deduced that preferential association occurs 

between two homologous chromosomes that contain homozygous BCN gene(s), 

while the pair of homoeologous chromosomes do not have such BCN gene(s). 

Unfortunately it can not be excluded that not all chromosomes of B. patellaris 

have been transmitted to the B. vulgaris genome (e.g. as effect of semi-lethality or 

abnormality of the alien chromosomes) and do not exist in the addition families 

tested. However, considering the level of similarity with the monosomic additions of 

B. procumbens, it seems very unlikely that exactly nine chromosomes are missing. 

Therefore, the results of the present study support the cytogenetic conclusion that 

B. patellaris is an allotetraploid. 

Each group of addition families as detected by DNA fingerprinting had 

comparable morphological characteristic traits, although slight variations were 

observed between and also within addition families in the same group. These 

variations might result from the genetic background of the recipient parent, 

B. vulgaris. Some morphological traits such as, annuallity, semi-lethality, flat and 

droopy growth pattern, undulated leaf surface, glossy leaves, seem to be 

chromosome-specific and are very useful for primary classification of the addition 

families. However, this study shows that these morphological characteristics are not 

adequate for identification of all alien chromosomes without the aid of additional 

markers. Lange ef al. (1988) also concluded that the morphological plant 

characteristics were not sufficient to identify all the addition types of B. procumbens, 

because chromosome-specific effects are masked by the variability of the recipient 

parent. 

DNA analysis comparisons between the closely related species of the section 

Procumbentes have been carried out in order to investigate the genetic relationships 

between these species. Mita et al. (1991) found very few RFLP differences between 

the three Procumbentes species and none between B. procumbens and 

B. webbiana. A very small genetic distance between B. webbiana and 

B. procumbens was calculated. This indicates that they could be the same species, 

as proposed also by Wagner ef al. (1989). Also Jung et al. (1993) found no DNA 

polymorphism between B. procumbens and B. webbiana using RFLP analysis. 

Salentijn ef al. (1992) reported that the homology between chromosome 1 of 

B. patellaris and chromosome 1 of B. procumbens is not complete because the 
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probe CPRO102 that is specific for B. patellars did not hybridise with 

B. procumbens plant material at all. It also has not yet been explained why in the 

extra chromosome of additions type A (chromosome 1) of B. procumbens, the 

gene(s) for BCN resistance most probably are located on the short arm, while in the 

presumably homoeologous chromosome of B. patellaris these gene(s) appear to lie 

on the long arm (Lange et al. 1990a). 

The banding patterns revealed by DNA fingerprinting of different 

chromosomes of B. procumbens and B. patellaris showed, however, a similarity 

between chromosomes 1+6, 2.2, 7, 8, and 9 of B. procumbens and the patterns of 

group 1, 2, 7, 8, and 9 of B. patellaris addition families, respectively. The addition 

families in group 1, 2, 4, 5, 6, 7, 8, and 9 of B. patellaris showed nearly identical 

plant morphology with addition families with chromosome 1+6, 2.2, 4, 5, new 6 (2.1), 

7, 8, and 9 of B. procumbens, respectively. The combination of the molecular and 

morphological data made it possible to identify and name addition families of 

B. procumbens and B. patellaris that are thought to carry homoeologous extra 

chromosomes. These similarities between the molecular pattern and the morphology 

of addition families with various chromosomes of B. procumbens and B. patellaris 

indicate that B. procumbens could have been involved in the evolutionary history of 

B. patellaris. Reamon-Ramos & Wricke (1992) concluded on the basis of preliminary 

results from isozyme markers with two monosomic additions of B. patellaris that 

possibly earlier in evolution the three species of section Procumbentes had the 

same basic complement, but that B. patellaris had undergone further 

polyploidisation. Since B. webbiana and B. procumbens could belong to the same 

species (Wagner et al. 1989, Mita ef al. 1991), and since it was shown that 

B. patellaris most likely is an allotetraploid (Walia 1971, present study), showing 

incomplete homology with ß. procumbens, it might be inferred that an additional yet 

unknown species could have interacted in the evolutionary history of B. patellaris. 
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Abstract 

The physical localisation and organisation of two Procumbentes specific repetitive 

DNA sequences, PB6-4 and OPX2, on the chromosomes of B. procumbens were 

demonstrated by multi-colour fluorescence in situ hybridisation (FISH), using the 

species itself and a set of B. procumbens derived monosomic addition families in 

B. vulgaris. FISH to mitotic metaphase chromosome spreads of B. procumbens 

revealed that probe PB6-4 predominantly occurred in the centromere region of all 

chromosomes, with substantial differences in the number of sites per chromosome. 

However, the repeat OPX2 showed a dispersed distribution, with different 

hybridisation patterns for each of the chromosomes. Simultaneous hybridisation with 

PB6-4 and OPX2 to mitotic chromosomes of the B. procumbens derived monosomic 

additions revealed that the fluorescent signals were confined to one of the 19 

chromosomes, indicating that no cross-hybridisation with the genome of B. vulgaris 

occurred. The simplified situation of FISH signals on a single chromosome permitted 

to establish the distribution patterns of both repeats for each of the individual 

B. procumbens chromosomes in the background of B. vulgaris. A FISH karyotype of 

the species was constructed. On the basis of known linkage of the repeat PB6-4 with 

the locus Hs1pro'1 for beet cyst nematode resistance, it was concluded that this locus 

is likely to be located in the centromere region of chromosome 1. The results were 

also in agreement with the conclusion of previous molecular studies, which led to 

renaming of some addition families of B. procumbens. FISH of PB6-4 to extended 

DNA fibres of eight different B. procumbens derived monosomic additions indicated 

that each alien chromosome has a different number of PB6-4 copies, and that the 

arrays have different sizes and vary in number among the alien chromosomes. The 

power of both FISH techniques for the molecular analysis of the monosomic 

additions is discussed. 

Key words: Beta vulgaris, Beta procumbens, monosomic additions, Procumbentes, 

fluorescence in situ hybridisation, extended DNA fibres, metaphase, repetitive DNA 

sequences 

Introduction 

Molecular analysis of plant chromosomes is an effective tool for understanding 

genomic evolution, meiotic recombination and karyotypic stability (Heslop-Harrison & 

Schwarzacher 1993). Fluorescence in situ hybridisation (FISH) has been widely 
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applied to identify chromosomes, to detect chromosomal -abnormalities, and to 

determine the chromosomal location of specific sequences for establishing physical 

gene maps (Gall & Paradue 1969, Langer-Safer et al. 1982). The application of 

FISH in genome studies of crop plants has expanded rapidly since the introduction 

of the technique (Trask 1991, Rayburn & Gill 1986, Heslop-Harrison 1991, Jiang & 

Gill 1994, Joos et al. 1994) and allows the assessment of parental chromosomes in 

interspecific hybrids and backcross products. In addition, the techniques can be 

used for identifying alien chromosomes and small introgressed chromosome 

segments carrying important characters (Heslop-Harrison & Schwarzacher 1993). 

The direct visualisation of repetitive or single copy DNA sequences on 

chromosomes of various species has been demonstrated using multi-colour FISH. 

Apart from its use to mitotic metaphase chromosomes, enhanced resolution is 

required, as can be obtained with meiotic prophase chromosomes and stretched 

chromatin on extended DNA fibres (Zhong et al. 1996a, 1996b, Shen et al. 1987, 

Franszefa/. 1996). 

The three wild ßefa species of the section Procumbentes, i.e. B. procumbens 

Chr. Sm., B. webbiana Moq. and B. patellars Moq., are valuable genetic resources 

for the breeding of cultivated beet (ß. vulgaris L. subsp. vulgaris) (Van Geyt et al. 

1990, Lange et al. 1990). Alien monosomic additions to B. vulgaris harbouring single 

chromosomes of one of the Procumbentes species have been produced for 

transferring economically important genes to the genome of cultivated beet 

(Heijbroek et al. 1983, 1988, Lange et al. 1990, Savitsky 1975, 1985, Speckmann & 

De Bock 1982, Speckmann et al. 1985, Jung & Wricke 1987). The alien 

chromosomes in addition families, derived from interspecific hybridisation between 

B. vulgaris and B. procumbens, B. webbiana or B. patellaris, have already been 

identified and characterised with the aid of morphological, physiological, 

biochemical, cytological, and molecular studies (De Jong et al. 1986, Lange et al. 

1989, Reamon-Ramos & Wricke 1992, Salentijn et al. 1992, 1994, Van Geyt et al. 

1988, Mesbah etal. 1997). 

Several repetitive sequences with Procumbentes specificity could be isolated 

and their occurrence tested for the identification and characterisation of individual 

alien chromosomes or introgressed fragments in backcross derivatives from 

interspecific hybrids between B. vulgaris and B. procumbens or B. patellaris 

(Schmidt et al. 1990, Jung & Herrmann 1991, Salentijn ef al. 1992, 1994, Klein-

Lankhorst etal. 1994, Kleine etal. 1995, Mesbah etal. 1997). Repeats, if physically 

close to a desirable gene, can serve as cytological markers for positioning the gene 

on the alien chromosome. An example is given for the repetitive sequences Sat-121 
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and OPX2 nearby the beet cyst nematode resistance locus Hs1, as shown by 

analyses of YAC and lambda clones spanning an introgressed wild beet 

chromosome segment in B. vulgaris (Salentijn et al. 1992, 1994, 1995, Klein-

Lankhorst et al. 1994, Kleine et al. 1995, Cai et al. 1997). The distribution of the 

dispersed repeat family PB6-4 over all chromosomes of B. procumbens and 

B. patellaris has been substantiated by squash-blot hybridisation (Mesbah et al. 

1996), and DNA fingerprinting with three different repetitive probes (OPX2, PB6-4 

and Sat-121) has been used for the identification and characterisation of individual 

alien chromosomes of both B. patellaris and B. procumbens (Mesbah ef al. 1996, 

1997). In addition, the molecular structure, genome organisation and interspecific 

distribution of two other dissimilar Procumbentes specific satellite repeats and one 

family of highly repeated DNA have been analysed, and multi-colour fluorescence in 

situ hybridisation was used for physical mapping of these probes on mitotic 

metaphase chromosomes of B. procumbens (Schmidt & Heslop-Harrison 1996). 

In the present study the application of multi-colour fluorescence in situ 

hybridisation of the two Procumbentes specific repetitive DNA probes OPX2 and 

PB6-4 is described for characterisation and physical mapping of these sequences on 

the chromosomes of B. procumbens and on the alien chromosomes in 

B. procumbens derived monosomic additions. The hybridisation patterns of the 

different addition chromosomes have been used for establishing a karyotype of 

B. procumbens. Size estimations of the arrays of the sequence PB6-4 on extended 

DNA fibres of the alien chromosomes were carried out and will be discussed. 

Materials and methods 

Plant material 

The plant material consisted of a set of monosomic additions (2n=19), containing 

diploid B. vulgaris with an extra chromosome of B. procumbens (Van Geyt et al. 

1988). The nine families represented eight different chromosomes of this species 

and were classified according to the nomenclature of Mesbah ef al. (1997). The 

addition family with chromosome 1 was represented twice (D1-2-13 and D3-2-35), 

the latter being the family that erroneously had been classified to have chromosome 

6. The addition family with chromosome 4 was missing due to lethality caused by the 

alien chromosome. The wild species B. procumbens (2n=18) served as control. 

Plants of the B. procumbens derived monosomic addition families were grown under 

greenhouse conditions. Monosomic addition plants were identified in segregating 
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families by squash-blot hybridisation, using the repetitive DNA probe PB6-4 (Mesbah 

etal. 1996). 

Repetitive DNA probes 

Two repetitive DNA probes, PB6-4 and 0PX2, both specific for the section 

Procumbentes of the genus Beta, were used in this study. PB6-4 was obtained from 

a genomic library of B. procumbens (Salentijn ef al. 1994) and has a size of 1700 bp. 

It contains several Sat-121 core sequences interspersed with unknown sequences 

(N.N. Sandal, pers. comm.). OPX2 is a middle-repetitive DNA sequence with 

100-500 copies in ß. patellaris. It originated from a RAPD fragment produced with 

the 10-mer oligonucleotide primer (S'-TTCCGCCACC-S') (Salentijn er al. 1994). 

Bacterial clones containing the repetitive DNA probes were grown in LB-medium 

(50 ug/ml ampicillin) and the plasmid DNA was extracted with a standard 

minipreparation method. The clone PB6-4 was cloned in pUC19 and OPX2 in SK*. 

Either of these were digested with EcoRI (pUC19) or EcoRI and Hind III (SfC), 

separated from the vector by agarose-gel electrophoresis and purified by freeze-

squeezing. The probes were labelled by random priming using either biotin-16-dUTP 

or digoxigenin-11-dUTP according to the manufacturer (Boehringer, Mannheim, 

Germany). 

Mitotic chromosome preparations 

Mitotic metaphase chromosome spreads were obtained from root tip meristems. 

Young root tips from fast growing plants were pre-treated with 2 mM 

8-hydroxyquinoline for 2.5 h at 17 °C and fixed overnight in acetic-ethanol (1:3 v/v). 

The material was macerated for 1 h at 37 °C in a mixture of pectolytic enzymes, 

containing 0.3% cytohelicase (Sepracor, France), 0.3% cellulase 'Onozuka' RS 

(Yakult Honsha, Tokyo, Japan) and 0.3% pectolyase (Sigma P3026) in 10 mM 

citrate buffer, pH 4.5. Further treatments were performed according to the protocol 

as described by Zhong etal. (1996a). 

Extended DNA fibre preparations 

Nuclei were isolated from young leaves and stored in 50% (v/v) glycerol at -20 °C 

according to the method of Zhong etal. 1996b. The isolated nuclei were spread on a 

slide, air dried and digested with a lysis buffer (0.5% SDS, 5 mM EDTA, and 
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100 mM Tris, pH 7.0) (Zhong et al. 1996b, Fransz et al. 1996). The chromatin 

threads were released from the disrupted nuclear matrix and long fibres on the glass 

surface were obtained by carefully tilting the slides after a 10 minutes incubation. 

The extended DNA fibres were firmly fixed on the slides with acetic-ethanol (1:3 v/v) 

and air dried. 

Fluorescence in situ hybridisation 

The slides with mitotic metaphase chromosomes were pre-treated in succession 

with 100 ug/ml DNAase-free RNAase A in 2x SSC at 37 °C for 1 h, with 5 ug/ml 

pepsin in 0.01 M HCl for 15 min at 37 °C, and with 1% (w/v) alkaline formaldehyde 

(with borate buffer, adjusted to pH 8.6) for 10 min at room temperature. After each 

treatment the slides were washed three times for 5 min in 2x SSC. The chromosome 

preparations were dehydrated in a graded ethanol series (70%, 90%, 98%) and air 

dried. The slides with extended DNA fibres were directly used for fluorescence in 

situ hybridisation without pre-treatment with RNAase, pepsin and formaldehyde. For 

each slide 20 ul of hybridisation mixture (50% formamide, 2x SSC, 10% sodium 

dextran sulphate, 50 mM phosphate buffer, pH 7.0, 1-2 ng/ul probe DNA and 

50-100 ng/ul salmon sperm DNA) was applied. Chromosomes and DNA probes 

were denatured at 80 °C for 2 min, and target and probe DNAs left to hybridise 

overnight at 37 °C. Detection and amplification was according to the protocol of the 

manufacturer (Boehringer, Mannheim, Germany). Digoxigenin-labeled probes were 

detected with fluorescein-conjugated anti-digoxigenin antibodies and amplified with 

fluorescein-conjugated rabbit anti-sheep antibodies. Biotin-labelled probes were 

detected with avidin-Texas Red and amplified with biotin-conjugated goat anti-avidin 

and avidin-Texas Red. Chromosomes were counterstained with DAPI and the slides 

were mounted in Vectashield (Vecta Laboratories) antifade mounting. The 

hybridisation signals were observed under a Zeiss Axioplan microscope equipped 

with epifluorescence illumination and Plan Neofluar optics. Images were 

photographed on 400 ISO colour negative film, using single or triple filter sets for 

DAPI, FITC and TRITC. The negatives were scanned and contrast and brightness of 

their computer images were optimised using commercial image processing software. 

The computer images were used for length measurements and further 

morphological analyses. 
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Results 

FISH on B. procumbens and monosomic additions 

Fluorescence in situ hybridisation with digoxigenin-labelled PB6-4 on metaphase 

spreads of B. procumbens revealed that the distribution of this probe to a great 

extend is confined to the centromere region of the chromosomes, with four to twelve 

signals per chromosome. In addition, interstitial sites for this sequence were found 

on one or both arms of five of the nine chromosome types. In situ hybridisation with 

biotin-labelled OPX2 to mitotic metaphase chromosome spreads revealed different 

patterns of this probe for the chromosomes of B. procumbens, varying from two to 

ten hybridisation sites per chromosome. The results obtained with simultaneous 

fluorescence in situ hybridisation with PB6-4 and 0PX2 to the metaphase 

chromosomes of B. procumbens were in agreement with hybridisation patterns 

obtained for the detection of the individual probes, demonstrating that the probes 

were not co-localised for at least eight of the chromosome types (Fig. 1A and 1B). 

On one pair of chromosomes, each with eight hybridisation sites of OPX2, two 

signals were found that co-localised with a hybridisation site of PB6-4. 

Multi-colour in situ hybridisation of digoxigenin-labelled PB6-4 and biotin-

labelled OPX2 to the chromosomes of all monosomic additions made clear that no 

cross-hybridisation with chromosomes of B. vulgaris occurred, which confirmed the 

species specific nature of the probes. The result of in situ hybridisation with PB6-4 to 

the chromosomes of the monosomic addition carrying chromosome 8 is shown in 

Fig. 1C. Initially, metaphase complements were considered to describe the position 

of the FISH signals. As adjacent fluorescent spots with likely overlap in the highly 

condensed chromosomes, prophase and interphase nuclei of the additions were 

also used for comparison and establishing of more accurate numbers of FISH 

signals. Morphology of the individual alien chromosomes was compared to that in 

three well-spread and highly condensed chromosome complements of 

B. procumbens, thus establishing a FISH karyotype of B. procumbens (Fig. 1D). In 

addition, the chromosomes of the three cells of B. procumbens were measured. A 

general description of the nine chromosomes of B. procumbens is given below. 

Chromosome 1. Two monosomic addition families (D1-2-13 and D3-2-35) 

containing this alien chromosome were tested. The patterns of the hybridisation sites 

were similar in either family. This chromosome has an average length of 4.3 urn, is 

the second longest chromosome in the complement, and has a subterminal 

centromere position. Ten PB6-4 signals and two OPX2 signals could be discerned. 
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Six PB6-4 signals were localised in the centromere region, two dots occurred on the 

short arm, near the centromere, whereas two signals were observed halfway the 

long arm. The two OPX2 signals were localised on the short arm. The maximum 

number of PB6-4 and OPX2 sites on the interphase spreads was ten and four, 

respectively. 

Chromosome 2 (family AU5-1-7). This chromosome is 3.3 urn and has a 

subterminal centromere position. Six PB6-4 signals and two OPX2 signals could be 

detected. All PB6-4 sites were localised at or around the centromere on the short 

arm, and the OPX2 sites coincided with the PB6-4 signals. The maximum number of 

the PB6-4 and OPX2 sites on the interphase spreads were ten and four, 

respectively. 

Chromosome 3 (family D3-2-17). This submetacentric chromosome 

measures 2.9 urn. Two less contracted distal segments were observed at the end of 

the long arm. Six PB6-4 sites were localised in the centromere region. Two OPX2 

signals were observed on the long arm and two on the short arm. The maximum 

number of the hybridisation signals for PB6-4 and OPX2 on the interphase spreads 

were six and four, respectively. 

Chromosome 4. As the monosomic addition with chromosome 4 was not 

available this chromosome was characterised solely on the information that was 

obtained from complete chromosome sets of B. procumbens. The chromosome is 

2.9 urn and has a submedian centromere position. Two less contracted distal 

segments could be observed at the end of the long arm. Four PB6-4 sites were 

localised at or around the centromere and two signals were positioned at the end of 

the long arm. Two clear OPX2 sites could be observed on the long arm and two 

even stronger signals on the short arm. 

Chromosome 5 (family I3-2-24). This chromosome is 4.4 urn and thereby the 

longest in the complement. It has a submedian centromere position, a secondary 

constriction in the short arm and a tertiary constriction in the long arm. A cluster of 

four PB6-4 sites was localised in the centromere region. Two PB6-4 sites also were 

found on the long arm, near the tertiary constriction, while two OPX2 sites were on 

the proximal part of the long arm. The maximum number of the hybridisation signals 

for PB6-4 and OPX2 in the interphase nuclei amounted eight and three, 

respectively. 

Chromosome 6 (family D2-2-27). With a length of 2.8 urn this chromosome 

is the shortest of the complement. It has a submedian centromere position, with two 

small euchromatic distal segments at the short arm. A cluster of six PB6-4 sites was 

localised in the centromere region, whereas two small PB6-4 sites hybridised at the 
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distal end of the short arm. Two OPX2 signals could be observed on the short arm, 

close to the centromere. The maximum number of hybridisation signals for PB6-4 

and OPX2 on the interphase spreads were ten and four, respectively. 

Chromosome 7 (family AU6-1-4). This submetacentric chromosome is 

measuring 3.3 urn and shows a cluster of six PB6-4 sites close to the centromere. 

Two OPX2 signals were detected on the short arm, very close to the PB6-4 sites. 

The maximum number of the PB6-4 and OPX2 signals on the interphase spreads 

were twelve and four, respectively. 

Chromosome 8 (family D3-2-13). This chromosome with a length of 4.2 urn 

is the 3rd longest in the karyotype and has a median centromere position. Six PB6-4 

signals were localised in a more or less linear array, close to the centromere, with 

two smaller sites on the middle of one of the arms. Two small OPX2 signals 

hybridised close to the centromere, in the same arm. The maximum number of the 

PB6-4 and the OPX2 signals on the interphase spreads were ten and four, 

respectively. 

Chromosome 9 (family C6-1-3). This submetacentric chromosome measures 

3.0 urn and shows a cluster of four PB6-4 signals in the centromere region. No clear 

0PX2 signals could be detected on the mitotic metaphase spreads of this 

chromosome. The maximum number of the PB6-4 and OPX2 signals on the 

interphase spreads were seven and six, respectively. 

FISH on extended DNA fibres of B. procumbens derived monosomic additions 

Fluorescence in situ hybridisation was carried out on extended DNA fibres of the 

monosomic additions, using PB6-4, to estimate the size of the arrays of this repeat 

on the individual chromosomes of B. procumbens. Upon hybridisation of biotin-

labelled PB6-4 to extended DNA fibres and amplification of the signals with biotin-

conjugated goat anti-avidin and avidin-Texas Red the hybridisation sites appeared 

as red fluorescent strings. The tracks displayed beaded patterns and are depicted 

individually in Fig. 1E. The results of measurements and counting of the spot 

number per track and per urn fluorescent signal are summarised in Table 1. The 

length of the fluorescent signals within each monosomic addition varied and distinct 

groups could be observed. The maximum and minimum lengths of the signals were 

5 and 50 urn, respectively, with a mean of 22.74 urn. The maximum and minimum 

number of spots per urn fluorescent signal were 1.5 and 0.4, respectively, with a 

mean of 0.79 per urn. Despite this variation there was a significant correlation 

between the length of the tracks and the number of the spots per track (r=0.71, 
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Table 1. 
additions 
Type of 
addition 

Chr. 1 

Chr. 2 

Chr. 3 

Chr. 4 

Chr. 5 

Chr. 6 

Chr. 7 

Chr. 8 

Chr. 9 

FISH of PB6-4 on extended DNA fibres of a set of Beta procumbens derived monosomic 
in B. vulgaris 

Family 
number 

D1-2-13 
D3-2-35 

AU5-1-7 

D3-2-17 

missing 

I3-2-24 

D2-2-27 

AU6-1-4 

D3-2-13 

C6-1-3 

Group' 

A 
B 
C 
D 

A 

A 
B 
C 

A 
B 
C 
D 

A 
B 
C 

A 
B 
C 

A 
B 
C 

A 
B 
C 

Number of 
observations 

6 
1 
7 
6 

4 

1 
2 
1 

1 
1 
3 
2 

4 
5 
1 

2 
5 
1 

4 
3 
1 

5 
3 
4 

Length in 
average 

17.8 
25.0 
37.0 
43.2 

6.0 

6.0 
13.5 
27.0 

5.0 
8.0 

12.5 
23.7 

20.8 
31.7 
41.0 

11.5 
19.2 
31.0 

16.1 
26.0 
47.0 

10.9 
15.0 
23.7 

urn 
range 

16-19 

32-42 
35-50 

6-6 

13-14 

12-13 
22-25 

19-22 
31-32 

11-12 
19-20 

16-17 
25-28 

10-13 
15-15 
23-24 

Number of spots 
average 

11.5 
21.0 
20.1 
19.3 

9.0 

7.0 
16.0 
24.0 

5.0 
12.0 
14.0 
22.0 

11.5 
15.4 
30.0 

10.5 
14.4 
21.0 

9.7 
15.0 
24.0 

10.0 
18.0 
24.5 

range 

10-14 

17-24 
17-22 

9-9 

16-16 

13-15 
21-23 

11-12 
14-17 

10-11 
12-20 

9-12 
14-17 

9-11 
17-19 
23-27 

per urn 

0.64 
0.84 
0.54 
0.45 

1.50 

1.17 
1.19 
0.89 

1.00 
1.50 
1.12 
0.93 

0.55 
0.48 
0.73 

0.92 
0.75 
0.67 

0.60 
0.58 
0.51 

0.93 
1.20 
1.03 

For each monosomic addition the fluorescence tracks with a similar length and spot density were 
clustered in groups, named A-D 

Fig. 1A and 1B. Simultaneous fluorescence in situ hybridisation of PB6-4 (green signals) and OPX2 
(red signals) to the metaphase chromosomes of B. procumbens. Fig. 1C. FISH of PB6-4 (green 
signals) to the chromosomes of a monosomic addition carrying chromosome 8 of B. procumbens. 
Fig. 1D. FISH karyotype (chromosomes 1-9) of B. procumbens, that was established by hybridisation 
of PB6-4 (green signals) or OPX2 (red signals) to three well-spread and highly condensed 
chromosome complements of B. procumbens and comparison with the hybridisation patterns of the 
alien chromosomes in B. procumbens derived monosomic additions. Fig. 1E. FISH of PB6-4 to 
extended DNA fibres of S. procumbens derived monosomic additions. The fluorescence tracks 
displayed beaded patterns and are depicted individually for each of the alien chromosomes. 
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P=0.01). For each monosomic addition the fluorescent signals with equal or nearly 

equal length and with similar density of spots were clustered (A-D). As shown in 

Table 1, different clusters of signals were obtained in each addition type, indicating 

that the number of copies and the location of PB6-4 differs among the individual 

alien chromosomes. 

Discussion 

Distribution and physical localisation of two Procumbentes specific repetitive DNA 

sequences, PB6-4 and 0PX2, on chromosomes of B. procumbens were 

demonstrated by fluorescence in situ hybridisation. FISH to mitotic metaphase 

complements of B. procumbens showed that the repetitive probe PB6-4 occurred 

mainly in the centromere region of all chromosomes, with substantial differences in 

the number of sites per chromosome. In contrast to PB6-4, the OPX2 repeat mostly 

occurred on interstitial sites of all chromosomes. Numbers and positions of the 

hybridisation signals were variable among the B. procumbens chromosomes. The 

distribution of both OPX2 and PB6-4 in a double labelling experiment was in 

agreement with the results of the FISH with the single repeats. In previous studies 

(Mesbah era/. 1996, 1997), the distribution of these repetitive DNA sequences over 

all chromosomes of B. procumbens and B. patellaris has been substantiated by 

squash-blot hybridisation and DNA fingerprinting. Both PB6-4 and OPX2 were used 

for the identification and characterisation of the chromosomes of B. procumbens and 

B. patellaris using the same set of monosomic additions for the former species and 

unidentified additions of B. patellaris. 

Previous molecular analyses showed that PB6-4 contains several Sat-121 

core sequences (Salentijn et al. 1994), interspersed with unknown sequences 

(N.N. Sandal, pers. comm.) and a similar DNA fingerprint pattern has been reported 

for PB6-4 and Sat-121 (Mesbah et al. 1997). Salentijn et al. (1994) reported the 

presence of Sat-121 close to the locus Hs1, conferring resistance to the beet cyst 

nematode (Heterodera schachtii Schm.). Combination of the above-mentioned 

results indicate that the resistance locus is located close to the centromere of 

chromosome 1, as previously suggested by Schmidt & Heslop-Harrison (1996). 

Schmidt & Heslop-Harrison (1996) also studied the genomic organisation and 

chromosomal localisation of three DNA repeat families in B. procumbens by 

fluorescence in situ hybridisation, showing that the repeats occur in large 

heterochromatic and DAPI positive blocks. Two of these non-homologous satellite 

repeats (Sau3A satellite I and II) were localised in the centromere regions of six and 
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eight chromosomes of B. procumbens, respectively, while a third family was 

distributed over all chromosomes of B. procumbens. 

FISH with PB6-4 and OPX2 to mitotic metaphase chromosomes of the 

B. procumbens derived monosomic additions resulted in the localisation of the 

probes exclusively on one of the 19 chromosomes. This indicates that no cross-

hybridisation with the genome of B. vulgaris occurred, which is a confirmation of the 

results of the squash-blot experiments (Mesbah et al. 1996). Since no GISH 

(genomic in situ hybridisation) was performed, there is no certainty about the 

integrity of the alien chromosomes. However, the absence of signals on the 

chromosomes of B. vulgaris and the supposed rare occurrence of homoeologous 

recombination (Lange et al. 1990) both point to the same direction. The physical 

localisation of the probes on the alien chromosomes permitted to distinguish 

unambiguously the individual B. procumbens chromosomes in the background of 

B. vulgaris. Accordingly, eight of the chromosomes of B. procumbens (chromosome 

4 is missing) could be identified on the basis of differences in number and location of 

the signals. Their FISH patterns were described and compared to those in three 

complete chromosome sets of B. procumbens in order to construct a karyotype for 

this species. The results also clearly confirmed the reorganisation of the set of 

B. procumbens derived monosomic additions, as proposed by Mesbah et al. (1997). 

The two families with chromosome 1 (D1-2-13/old 1 and D3-2-35/old 6) showed the 

same pattern, and the families AU5-1-7 (new 2/old 2.2) and D2-2-27 (new 6/old 2.1) 

could easily be distinguished from each other. 

In contrast to the short, rather uniform chromosomes at metaphase, the 

morphology of pachytene chromosomes is much more differentiated, with 

chromosome specific diagnostic heterochromatin segments, as shown by De Jong 

(1981). Mean chromosome length varied from 36.6 to 19.4 urn and centromere 

indexes ranged from 0.42 to 0.20. However, the length and centromere positions 

between chromosomes of the same types proved to vary considerably due to 

differential contraction of chromosome segments during pachytene. The pachytene 

chromosomes were arranged (1-9) based on length, centromere position and 

chromomere pattern. The results of the present studies gave a rough estimation of 

the length of the different chromosomes. However, the chromosomes were very 

condensed, and only six chromosomes per type were measured, so that the 

obtained values must be handled with care. Nevertheless, the data suggest that the 

chromosomes 1, 5, 6, and 8, in the monosomic additions might correspond to the 

chromosomes 2, 3, 9, and 1, respectively, as described by De Jong (1981). It can 

also be concluded that chromosome 5 of the monosomic additions with a secondary 
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constriction at the distal end of the short arm, represents chromosome 3 of the 

pachytene complement, which chromosome harbours the NOR region, as reported 

by De Jong (1981). 

A new technology for stretching DNA across a slide has been developed by 

Heng et al. (1992). Upon fluorescence in situ hybridisation, linear tracks appeared 

on the extended fibres, allowing ordering of contiguous probes and estimating the 

molecular size of the sequences. Although this technique has mostly been 

implemented to examples of human research (Senger et al. 1994, Heiskanen et al. 

1994, Bengtsson étal. 1994, Houseal étal. 1994, Fidleroval et al. 1994, Weier etat. 

1995), its significance has lately been demonstrated for Arabidopsis and tomato 

(Fransz et al. 1996, Zhong ef al. 1996a, 1996b). It was shown that probes from 

cosmids, lambda clones and plasmids, containing repetitive and single-copy 

sequences, can be mapped easily on extended DNA fibres. 

As shown in the present study, FISH of PB6-4 to extended DNA fibres of 

different B. procumbens derived monosomic additions revealed fluorescent linear 

signals, varying within and between the different chromosomes. The results 

indicated that each alien chromosome has a different number of copies of PB6-4, 

which are clustered in several domains with different sizes. Fransz et al. (1996) 

established a stretching degree of the DNA fibres of 3.27 kbp per urn. If this figure is 

applied on the present data, the molecular sizes of classes A, B, C and D of 

chromosome 1 could be estimated at 57 kbp, 82 kbp, 120 kbp and 140 kbp, 

respectively. 

As mentioned before, it is known that PB6-4 contains several Sat-121 core 

sequences. The organisation of Sat-121 in B. procumbens has been investigated by 

Pulsed Field Gel Electrophoresis (PFGE), using a fragment addition (AN1-89) of 

chromosome 1 (Salentijn ef al. 1994). It was reported that in AN1-89 clusters of 

Sat-121 are present on three A/col-fragments of 50 kbp, 100 kbp and 175 kbp, 

respectively. Therefore, it might be concluded that the fluorescent linear signals in 

classes A, C and D of chromosome 1 match with the PFGE-fragments of 50 kbp, 

100 kbp and 175 kbp, respectively. Class B of chromosome 1 could belong to class 

A, or this cluster is present on chromosome 1 but is missing from the fragment 

addition. The data of the present study confirmed that fluorescence in situ 

hybridisation on extended DNA fibres is a reliable and fast technique for the study of 

organisation and size estimation of DNA sequences. 
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Abstract 

Beet cyst nematodes (BCN) (Heterodera schachtii), Cercospora beticola, and 

rhizomania, caused by the beet necrotic yellow vein virus (BNYVV) and vectored by 

the soil-borne fungus Polymyxa betae, are the most serious diseases of sugar beet 

(Beta vulgaris subsp. vulgaris). The wild Beta species of section Procumbentes are 

known to be completely resistant to H. schachtii, C. beticola and P. betae. Alien 

monosomic additions (2n=19), plants of cultivated beet (2n=18) carrying different 

individual chromosomes of ß. procumbens (2n=18) or B. patellars (2n=36), were 

tested in greenhouse experiments for resistance to these pathogens. Gene(s) 

conferring full resistance to the beet cyst nematode in B. patellaris are located on 

chromosome 1.1, and the other tested chromosomes of B. patellaris are not involved 

in the expression of resistance. Artificial inoculation under greenhouse conditions, 

with in vitro produced inoculum of C. beticola and spot-percentage rating of the 

disease intensity, showed that the high level of resistance that was observed in the 

wild species B. procumbens and B. patellaris was not found in any of the 

monosomic additions tested. It was suggested that genes on various chromosomes 

of the wild species are needed to express full resistance, and that the chromosomes 

of group 7 of B. patellaris and chromosome 7 of B. procumbens have the largest 

effect. The greenhouse tests for resistance to P. betae in B. patellaris derived 

monosomic additions showed that the addition families of group 4.1 have a strong 

partial resistance, while the addition families of group 8.1 appeared to be completely 

resistant to the pathogen. Resistance to P. betae in the two wild species as well as 

in the two resistant addition types did not exclude infection with BNYVV, but resulted 

in a considerable reduction of the virus concentration. It was concluded that 

resistance to the vector would complement virus resistance, and may provide a 

more effective and durable control of rhizomania. 

Key words: ßefa vulgaris, Beta patellaris, Beta procumbens, monosomic additions, 

Procumbentes, beet cyst nematode, Heterodera schachtii, Cercospora beticola, 

Polymyxa betae, beet necrotic yellow vein virus, rhizomania 

Introduction 

The sugar beet crop has already encountered numerous pests and diseases in the 

widely divergent beet growing areas of the world, and three of them are extremely 
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important in the economics of sugar beet (Beta vulgaris L. subsp. vulgaris). Beet 

cyst nematodes (BCN, Heterodera schachtii Schm.) form a serious pest in various 

parts of the beet growing area (Lange & De Bock 1994). Cercospora beticola Sacc. 

is a foliar disease, that is gradually extending its area of occurrence, especially in 

warmer climates (Smith & Martin 1978, Shane & Teng 1992, Adams et al. 1995, 

Byford 1996). Rhizomania mainly is a root disease, which is caused by the beet 

necrotic yellow vein virus (BNYVV) and is vectored by the soil-borne fungus 

Polymyxa betae Keskin (Tamada & Baba 1973, Tamada 1975, Payne & Asher 

1990). These diseases require much efforts from growers to prevent significant 

reduction in yield and sugar content, and the most promising means of control is 

through breeding resistant cultivars. High levels of resistance to the beet cyst 

nematode, C. beticola, P. betae, and BNYVV have not been found in cultivated beet 

(Lange & De Bock 1994, Doney & Whitney 1969, Heijbroek 1977, Jung et al. 1994, 

Munerati et al. 1913, Bosemark 1969, Coons 1975, Bilgen étal. 1968, Asher & Barr 

1990). The occurrence of both partial and complete resistance against the above-

mentioned causal agents in wild taxa of the genus Beta has been reviewed by Van 

Geyt et al. 1990. The three wild species of section Procumbentes are considered to 

be of particular interest. 

Partial resistance to BCN occurs in the sea beet, B. vulgaris subsp. maritima 

(L.) Arcang., accession BMH (Mesken & Lekkerkerker 1988, Lange & De Bock 

1994). This kind of resistance appears to be controlled by a polygenic genetic 

system (Hijner 1952, Heijbroek 1977). Complete resistance to BCN was found in 

section Procumbentes, and is possibly controlled by major gene(s) (Hijner 1952, Yu 

1984, Lange et al. 1990a). Using monosomic additions, one, two and three 

chromosomes harbouring a BCN-resistance locus were identified in B. patellans 

Moq., B. procumbens Chr. Sm. and B. webbiana Moq., respectively (Jung et al. 

1986, Van Geyt era/. 1988, Lange et al. 1990a, 1990b). In spite of several barriers, 

the alien monosomic additions could be used to make BCN-resistant diploid sugar 

beets, in which part of a wild beet chromosome is translocated to one of the sugar 

beet chromosomes (Savitsky 1975, 1978, Lange et al. 1990a, Speckmann & De 

Bock 1982, Speckmann er al. 1985, Heijbroek ef al. 1983, Löptien 1984, Jung & 

Wricke 1987, Heijbroek et al. 1988, Brandes etat. 1987, Schondelmaier etat. 1996). 

Recently one of these genes was isolated with the aid of map based gene cloning 

(Caiefa/. 1997). 

The majority of the partial resistance to C. beticola in sugar beet cultivars 

shows quantitative inheritance, and can be traced back to plant materials obtained 
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from crosses between ß. vulgaris subsp. maritima, as a source of leaf spot 

resistance, and sugar beet (Bosemark 1969, Coons 1975, Bilgen et al. 1968). High 

levels of resistance to C. beticola were reported for B. procumbens and B. webbiana 

as compared to B. vulgaris (Carels et at. 1990). It would be interesting to know if 

such resistance in these wild species shows quantitative inheritance, as is the case 

in sugar beet (Smith & Gaskill 1970), or whether different mechanisms are involved. 

B. vulgaris subsp. vulgaris also appears to be universally susceptible to 

P. betae (Asher & Barr 1990, Paul 1993), but some accessions of subsp. maritima 

with partial resistance to P. betae have been identified, and this resistance is 

believed to be quantitatively inherited (Asher & Barr 1990). The resistance to 

P. betae in species of section Procumbentes seems to be dominant and simply 

inherited (Barr et al. 1995, Paul et al. 1992b). Using monosomic additions of 

B. procumbens, it was found that gene(s) conferring resistance to P. betae axe 

located on chromosomes 4 and 8 (Paul et al. 1992b). The chromosomal location of 

resistance to P. betae in B. patellaris and B. webbiana is yet unknown. However, the 

Procumbentes species are believed to be susceptible to BNYVV (Fujisawa & 

Sugimoto 1979). The introduction of resistance to P. betae might complement and 

improve the effect of (partial) virus resistance from other sources (Paul et al. 1992b, 

Barr et al. 1995, Whitney ,1989) 

Recently the chromosomes of diploid B. procumbens and of allotetraploid 

B. patellaris, both in monosomic additions, were identified with the help of DNA 

fingerprinting and using repetitive DNA sequences (Mesbah et al. 1997). For 

B. procumbens the existing classification was improved, whereas for B. patellaris 

nine groups of homoeologous chromosomes were identified, many of them with two 

sub-groups, each including only homologous chromosomes. With these monosomic 

additions greenhouse tests were carried out to investigate the chromosomal 

localisation of gene(s) for BCN resistance of B. patellaris, for resistance to 

Cercospora leaf spot of B. procumbens and B. patellaris, and for resistance to 

P. betae of B. patellaris. The effect of the latter resistance on the level of infection 

with BNYVV also was studied 
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Materials and methods 

Plant material 

Plant material consisted of monosomic additions (2n=19) of B. vulgaris, carrying an 

extra chromosome of B. procumbens or B. patellaris, and their disomic sib plants 

(2n=18). The nine B. procumbens derived families represented eight different 

chromosomes of this species, according to the new number system as proposed by 

Mesbah et al. (1997). Special attention was paid to family D3-2-35, which had been 

renumbered from type 6 to type 1. Because of lethality the addition with 

chromosome 4 was missing. Recently monosomic addition families derived from 

allotetraploid B. patellaris have been described and grouped, on the basis of DNA 

fingerprinting and morphological characteristics (Mesbah et al. 1997). Twenty-seven 

of such families were used in the present study. The first and second figure of the 

type number represent the number of the group and the number of the sub-group, if 

applicable. Monosomic addition plants were identified from disomic sib plants in 

offspring families by a squash-blot hybridisation method, using a repetitive DNA 

probe (PB6-4), as described by Mesbah et al. (1996). For the various experiments 

controls were chosen from the following materials: the wild species B. procumbens 

(2n=18) and B. patellaris (2n=36), the wild beet accession B. vulgaris subsp. 

maritima WB42, the accession Holly-1-4 (inbred from Holly, provided by Dr. R. T. 

Lewellen, USDA, California, USA), a sugar beet hybrid (provided by Dr. A. M. E. 

Nihlgàrd, Novartis Seeds AB, Landskrona, Sweden), the male sterile MS-2, and the 

sugar beet cultivar 'Regina'. 

Greenhouse testing for resistance to the beet cyst nematode 

Nematode testing was carried out according to Toxopeus & Lubberts (1979). Seeds 

were sown in soil. If possible, 160 individual seedlings from each family were 

transplanted into 36 ml PVC tubes, filled with quartz sand, which was moistened with 

a nutrient solution (Steiner 1984). Plants were grown at 22 °C and a relative humidity 

of about 80%. One week later each tube was inoculated with a suspension of 300 

pre-hatched juveniles of H. schachtii, using a veterinary inoculation gun. Monosomic 

addition plants were identified from disomic sib plants in the offspring families during 

the incubation period (four weeks). After this period the root systems of the 

monosomic additions, as well as those of sixteen disomic sib plants per family, were 
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carefully washed free of sand and the number of white female cysts was 

investigated by direct observation under a stereoscopic microscope at x10 

magnification. Plants with less than ten cysts per root system were considered to be 

resistant to the nematode. Since the result of the nematode testing was clear cut, no 

statistical analysis was performed. 

Greenhouse testing for resistance to C. beticola 

Leaves infected with C. beticola were collected from a sugar beet field trial in the 

South of the Netherlands (near Roermond). Leaf disks of 5 mm in diameter, each 

with a single leaf spot, were surface sterilised in 70% ethanol for 30 s, and then for 

1 min in 1% AgN03, followed by rinsing twice in distilled water for 15 min (Carels et 

al. 1990). The leaf samples were placed on petri dishes containing 25 ml sugar beet 

leaf extract agar (SBLEA) (Calpouzos & Stallknecht 1966). Plates were incubated for 

two weeks at 25 °C. For fungal multiplication, small pieces of the colonies were 

transferred onto V-8 juice agar plates (Miller 1955) and incubated for two weeks. To 

obtain enough spores for inoculation, 5 ml of sterile water was added to each plate 

and the agar-surface was rubbed gently with the edge of a microscope slide. This 

spore-mycelium suspension was transferred onto new V-8 plates (0.5 ml/plate) and 

incubated for five days at 25 °C. After the incubation period a new spore-mycelium 

suspension was made, which was passed through a nylon mesh filter. The density 

of the spore-mycelium suspension was adjusted to approximately 50,000 spores/ml, 

using a haemocytometer (Fuch-Rosenthal) and a phase-contrast microscope. 

Because of the large number of plants, two separate experiments were 

carried out, using a complete randomised design with samples of unequal size. If 

available, nine plants were tested for each of the monosomic addition families, 

together with six plants of their disomic sib plants, and nine plants of each of the 

controls. At the beginning of the test the plants were 10 to 12 weeks old, and the 

older leaves were removed. For inoculation about 10 ml spore-suspension was 

applied per plant, by immersing the foliage into the spore-suspension until all leaves 

were thoroughly wetted. After inoculation the whole set of plants was covered with a 

plastic foil and kept under greenhouse conditions, at approximately 100% relative 

humidity and 27/23 °C (day/night). In order to prevent reduction in humidity the 

plants were sprayed with water, two times per day. After five days the plastic foil was 

removed and the humidity reduced to around 70%. 
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Three weeks after inoculation the severity of the attack by C. beticola was 

quantified and scored, using individual leaves, according to the method as described 

by Rossi & Battilani (1989). The whole range of leaf symptoms was subdivided into 

nine classes (0, 1, 5, 10, 20, 40, 60, 80, 100) representing the affected percentage 

of the whole leaf area. Data were used to calculate a spot-percentage rating for 

each plant. For all materials, except for the two Procumbentes species, the class 0 

was excluded, because it consisted solely of new leaves, grown after inoculation. 

The spot-percentage rating values were used for the analysis of variance. LSD 

values were calculated at P=0.05 and 0.01 for the differences between any pair of 

means. 

Greenhouse testing for resistance to P. betae 

A greenhouse test for screening sugar beet for resistance to BNYVV has been 

described by Paul et al. (1992a). This method was used in the present study to 

determine the reaction of different B. patellaris derived monosomic additions to 

BNYVV and to the fungal vector P. betae. Because of the large number of plants, 

two separate tests were carried out. For each experiment a complete randomised 

design with samples of unequal size was used. If available, twelve plants were 

tested for each of the monosomic addition families, together with twelve plants of 

their disomic sib plants and the controls. One month after transplanting the 

seedlings, roots were washed with tap water. The roots of each plant were evaluated 

for the presence of cystosori of P. betae by direct observation under an inverted 

microscope (Zeiss ID02). ELISA was used to determine the virus concentration in 

the rootlets of individual plants (Clark & Adams 1977, Alderlieste & Van Eeuwijk 

1992). Log10 values of virus concentration were used for the analysis of variance. 

LSD values were calculated at P=0.05 and 0.01 for the differences between any pair 

of means. 

Results 

Beet cyst nematode 

Variable numbers of addition plants from 27 families (Table 1), belonging to nine 

different groups, eight of them with two sub-groups, of B. patellaris derived 

monosomic additions (Mesbah et al. 1997), 34 addition plants of a family with 
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Table 1 . Results of testing for resistance to the beet cyst nematode (Heterodera schachtii) in a set 
of Beta patellaris derived monosomic additions in B. vulgaris, and their disomic sib plants 
Type of 

addition 

1.1 
1.2 
1.2 
2.1 
2.1 
2.2 
3.1 
3.1 
3.1 
3.2 
4.1 
4.1 
4.2 
5 
5 
6.1 
6.2 
6.2 
7.1 
7.1 
7.2 
8.1 
8.1 
8.2 
9.1 
9.1 
9.2 

Family 

number 

B4-1-7 
A5-1-19 
A5-1-29 
B1-1-51 
OVP-1-8 
B1-1-5 
A5-1-15 
B1-1-8 
B4-1-2 
A3-1-3 
A5-1-7 
B1-1-192 
B1-1-54 
A3-1-6 
A5-1-25 
A5-1-8 
A5-1-27 
A5-1-28 
A3-1-5 
D1-1-2 
B1-1-4 
D4-1-1 
OVP-1-3 
B3-1-1 
D1-1-1 
D1-1-6 
D1-1-5 

Addition (2n= 

number of 
plants 
7 
9 

10 
13 
16 
17 
31 
25 
22 
24 
11 
19 
7 
1 
3 

30 
25 
7 

25 
31 
3 

40 
16 
27 
27 
29 
16 

=19) 

resistance' 

+ 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Disomic (2n= 

number of 
plants 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 

=18) 

resistance' 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

+ = resistant, - = susceptible (more than 10 cysts/plant) 
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chromosome 1 of B. procumbens (old number 6), as well as control plants, were 

tested for resistance to H. schachtii. In all control plants abundant numbers of cysts 

(more than 50 per plant) were observed. As shown in Table 1 the seven monosomic 

addition plants of group 1.1 (family B4-1-7 = AN110, Mesbah et al. 1997) did not 

have cysts on the root system. All other monosomic addition plants that were tested 

were fully susceptible and abundant numbers of cysts were observed on the root 

systems. The 34 monosomic addition plants of family D3-2-35, carrying 

chromosome 1 of B. procumbens also were completely susceptible to H. schachtii. 

Cercospora beticola 

The first leaf spots appeared approximately nine days after inoculation on the leaves 

of susceptible plants. Since the greenhouse conditions were favourable for the 

development of C. beticola, the infection increased rapidly. The necrotic lesions that 

are typical for Cercospora leaf spot symptoms were not completely absent in any of 

the plants tested (Table 2). In both experiments the two wild species B. procumbens 

and B. patellaris were almost completely resistant. However, a fleck reaction 

together with a few necrotic spots could be observed on the older leaves, usually 

next to the margins. A small difference in leaf spot intensity was observed between 

B. procumbens and B. patellaris. Because of the extremely low leaf spot intensity in 

the two species of section Procumbentes, which also made it unjustified to leave out 

the class 0, the results of scoring of these species were omitted from the statistical 

analysis. In both experiments the controls WB42 and MS-2 showed a clearly 

susceptible reaction. In the second experiment a partial resistant sugar beet hybrid 

of Novartis Seeds AB was included in the test as an additional control. This hybrid 

showed an average rating of 21.02%, which was significantly lower than the average 

value of any of the other materials in this test, with the exception of B. procumbens 

and B. patellaris. The differences between the resistant and susceptible controls 

indicated that the greenhouse test for the evaluation of genotypes in response to 

C. beticola infection appears to be a useful method. Because of the limited 

differences between the results of the two tests, they have been presented together. 

Most of the monosomic addition plants and their disomic sib plants were 

severely infected with the fungus, indicating that these plant materials are 

susceptible. For test 1 the average value of none of the monosomic additions 

differed significantly from that of their disomic sib plants, although the addition family 

of group 4.2 (B1-1-54) showed a tendency to partial resistance. In test 2 some 
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Table 2. Results of testing for resistance to Cercospora beticola in sets of Beta procumbens 
and B. patellaris derived monosomic additions in B. vulgaris, and their disomic sib plants 
Type of 
addition 
B. procumb 
1 
1 
2 
3 
4 
5 
6 
7 
8 
9 

B. patellaris 
1.1 
1.2 
1.2 
2.1 
2.1 
2.2 
3.1 
3.1 
3.1 
3.2 
4.1 
4.1 
4.2 
5 
6.1 
6.2 
6.2 
7.1 
7.1 
7.2 
8.1 
8.1 
8.2 
9.1 
9.1 
9.2 

Controls 
MS-2 
MS-2 
WB42a 

WB42 

Family 
number 

ens 
D1-2-13 
D3-2-35 
AU5-1-7 
D3-2-17 
missing 
I3-2-24 
D2-2-27 
AU6-1-4 
D3-2-13 
C6-1-3 

B4-1-7 
A5-1-19 
A5-1-29 
B1-1-51 
OVP-1-8 
B1-1-5 
A5-1-15 
B1-1-8 
B4-1-2 
A3-1-3 
A5-1-7 
B1-1-192 
B1-1-54 
A3-1-6 
A5-1-8 
A5-1-27 
A5-1-28 
A3-1-5 
D1-1-2 
B1-1-4 
D4-1-1 
OVP-1-3 
B3-1-1 
D1-1-1 
D1-1-6 
D1-1-5 

Novartis hybrid 

B. procumbens4 

B. procumbens 
B. patellaris 4 

B. patellaris 

Test ' 
number 

2 
2 
1 
2 

2 
2 
2 
2 
2 

1 
2 

2 
2 
2 
2 
2 
2 
2 
2 
1 
2 

1 
2 
1 
2 
2 

1 
2 
1 
2 

Addition (2n =19) 
n av. 

6 
8 
8 
5 

8 
9 
2 
7 
4 

6 
4 
7 
7 
9 
7 
9 
9 
7 
9 
2 
9 
5 
1 
9 
8 
2 
6 
9 
2 
9 
9 
9 
9 
9 
9 

53.17 
61.73 
61.30 
73.06 

66.61 
58.04 
49.05 
61.80 
73.10 

60.92 
65.58 
59.67 
74.29 
82.82 
66.27 
59.98 
66.77 
66.43 
66.39 
46.15 
71.68 
48.30 
63.30 
56.20 
57.50 
58.60 
46.40 
52.68 
44.65 
69.02 
57.59 
68.19 
63.49 
66.51 
69.68 

Disomic (2n=18) 
n av. 

6 
6 
4 
6 

6 
6 
3 
6 
6 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
5 
6 
5 
3 
6 
6 
5 
6 
6 
6 

9 
9 
9 
9 
9 

9 
9 
9 
9 

62.12 
67.35 
61.10 
65.45 

59.93 
56.92 
77.70 
73.96 
59.93 

65.07 
66.80 
60.63 
65.63 
68.73 
67.38 
45.87 
64.57 
63.07 
62.20 
51.25 
65.28 
64.43 
65.08 
60.57 
52.93 
56.30 
63.60 
67.78 
62.47 
67.82 
68.07 
71.94 
68.70 
63.02 
60.60 

53.01 
60.16 
66.92 
64.54 
21.02 

0.10 
0.77 
5.60 
1.00 

Dif.' 
(19-18) 

-8.95 
-5.62 
0.20 
7.61 

6.68 
1.12 

-28.65 ** 
-12.16 * 
13.17 

-4.15 
-1.22 
-0.96 
8.66 

14.09 
-1.11 
14.11 
2.20 
3.36 
4.19 
-5.10 
6.40 

-16.13 
-1.78 
-4.37 
4.57 
2.30 

-17.20 ** 
-15.10 * 
-17.82 

1.20 
-10.48 

-3.75 
-5.21 
3.49 
9.08 

for logistic reasons two tests had to be carried out 
* and ** mean significant at P=0.05 and 0.01 
B. vulgaris subsp. maritima 
not included in the statistical analyses 
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statistically significant differences between additions and their disomic sib plants 

showed up (Table 2), these concern chromosome 7 and 8 of B. procumbens 

(families AU6-1-4 and D3-2-13), and the two B. patellaris derived addition families of 

group 7.1 (A3-1-5 and D1-1-2). The observed values for three of these families were 

significantly lower than those of WB42 and MS-2. Addition family B1-1-4 of group 

7.2 also had a lower disease intensity than their disomic sib plants, but this 

difference was not statistically significant, possibly also because of the small number 

of plants tested. The addition families OVP-1-8 (group 2.1) and A5-1-15 (group 3.1) 

were more susceptible than their disomic sibs. The results of the tests indicated that 

the chromosomes of group 7 of B. patellaris and chromosome 7 and 8 of 

B. procumbens may confer partial resistance to Cercospora leaf spot, but the 

individual chromosomes of either B. procumbens or B. patellaris in B. vulgaris did 

not prevent infection by C. beticola to the same level as in the donor species. 

Rhizomania 

Rootlets of 'Regina' (susceptible to vector and virus), and Holly-1-4 and accession 

B. vulgaris subsp. maritima WB42 (both susceptible to the vector and resistant to 

BNYVV), when grown in rhizomania infested soil and examined microscopically, had 

abundant cystosori, or resting spores, of P. betae. Cystosori were not detected in 

roots of either B. procumbens or B. patellaris. As shown in Table 3, cystosori of 

P. betae could not be found in the two monosomic addition families belonging to 

group 8.1 of B. patellaris (OVP-1-3 and D4-1-1), whereas abundant cystosori were 

detected in the roots of the addition family B3-1-1, belonging to group 8.2 of 

B. patellaris. In the roots of the monosomic additions of group 4.1 (A5-1-7 and 

B1-1-192) very low numbers of resting spores could be detected, which differs much 

from the high number in family B1-1-54 of group 4.2. In all other monosomic addition 

plants, as well as in all disomic sib plants, abundant clusters of cystosori could be 

detected. 

The results of the virus assays for both experiments are also summarised in 

Table 3. BNYVV was detected in the rootlets of all plants that were analysed by 

ELISA. However, significant differences were observed. Virus concentrations in the 

two wild species B. procumbens and B. patellaris, as well as in WB42 and Holly-1-4, 

were low, and differed significantly from those in 'Regina'. Among the monosomic 

additions the families belonging to group 4.1 of B. patellaris (A5-1-7 and B1-1-192) 

had a significantly lower virus concentration than their disomic sib plants and 
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Table 3. Results of testing for resistance to Polymyxa betae and the beet necrotic yellow vein 
virus (BNYVV) in a set of Beta patellaris derived monosomic additions in B. vulgaris, and their 
disomic sib plants 
Type of 
addition 
1.1 
1.2 
1.2 
2.1 
2.1 
3.1 
3.1 
3.1 
4.1 
4.1 
4.2 
5 
6.1 
6.2 
6.2 
7.1 
7.1 
7.2 
8.1 
8.1 
8.2 
9.1 
9.1 
9.2 

Controls 
Holly-1-4 
Holly-1-4 
'Regina'7 

'Regina' 
WB428 

WB42 

Family 
number 
B4-1-7 
A5-1-19 
A5-1-29 
B1-1-51 
OVP-1-8 
A5-1-1S 
B1-1-8 
B4-1-2 
A5-1-7 
B1-1-192 
B1-1-54 
A3-1-6 
A5-1-8 
A5-1-27 
A5-1-28 
A3-1-5 
D1-1-2 
B1-1-4 
D4-1-1 
OVP-1-3 
B3-1-1 
D1-1-1 
D1-1-6 
D1-1-5 

B. patellaris 
B. procumbens 

Test' 
number 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 
2 
1 
2 
1 
2 
2 
2 

Addition (2n=19 
n P. betae" 
12 
12 
8 
9 
11 
12 
12 
12 
6 
4 
7 
1 
12 
11 
4 
12 
12 
2 
11 
10 
12 
12 
10 
12 

++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
- + 
- + 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 

++ 
++ 
++ 
++ 

BNYVV* 
2.14 
1.97 
1.89 
1.88 
1.88 
2.16 
2.17 
2.14 
1.57 
1.76 
2.03 
_ 5 

2.40 
2.31 
2.24 
2.41 
2.26 
2.52 
1.81 
1.74 
2.32 
2.31 
2.21 
2.17 

Disomic (2n=18) 
n P. betae0 

12 
12 
11 
11 
12 
11 
12 
12 
12 
10 
12 
12 
12 
12 
4 
12 
12 
4 
12 
12 
11 
12 
12 
11 

12 
12 
12 
12 
12 
12 
12 
12 

++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 
++ 

++ 
++ 
++ 
++ 
++ 
++ 

BNYVV4 

2.03 
2.03 
1.91 
2.11 
2.06 
2.02 
2.21 
1.99 
2.22 
2.09 
2.18 
_ 6 

2.27 
2.48 
2.20 
2.50 
2.28 
2.22 
2.10 
2.24 
2.42 
2.41 
2.44 
2.41 

1.19 
1.75 
2.13 
2.39 
1.10 
1.51 
1.44 
1.43 

Dif. (BNYVV)2 

(19-18) 
0.11 
0.06 
0.02 
0.23 
0.18 
0.14 
0.04 
0.15 
0.65 ** 
0.33 * 
0.15 
-
0.13 
0.17 
0.04 
0.09 
0.02 
0.30 
0.29 * 
0.50 " 
0.10 
0.10 
0.23 
0.24 

for logistic reasons two tests had to be carried out 
2 * and ** mean significant at P=0.05 and 0.01 
3 ++ = many cystosori, - + = very few cystosori, - -= without cystosori 
4 average of log10 virus concentration (original data in ng/ml) 
5 plant died 
6 plants not studied for virus concentration 
7 triploid cultivar 
8ß. vulgaris subsp. maritima 
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'Regina', but no significant difference was observed between these two addition 

families. The same phenomenon was observed for the two monosomic addition 

families belonging to group 8.1 of B. patellaris (D4-1-1 and OVP-1-3). However, the 

two wild species had significantly lower virus concentrations than the four above-

mentioned additions. Finally the virus concentrations observed in the addition plants 

and in the sib plants of the other addition types were high. 

Discussion 

Beet cyst nematode 

Mesbah ef al. (1997) reported that chromosome 1 and 6 of B. procumbens are 

identical with the only difference that the monosomic addition with the chromosome 

referred to as 6 lacks the gene for BCN resistance. Consequently, the monosomic 

addition with chromosome 6 was renamed to be also chromosome 1. To be sure 

about the reaction of this monosomic addition towards BCN, this family (D3-2-35) 

was tested. The observation of abundant cysts in this family confirmed the 

susceptibility of the renumbered monosomic addition family of B. procumbens, and 

also that this resistance locus carries alleles for both resistance and susceptibility. 

Testing for resistance to H. schachtii in 27 addition types of B. patellaris 

resulted in abundant numbers of cysts on the roots of the disomic sib plants, which 

indicated the efficiency of the artificial nematode testing and the susceptibility of the 

disomic sibs. Full resistance to the beet cyst nematode was observed only in the 

monosomic addition family belonging to group 1.1 of B. patellaris (B4-1-7 = AN110, 

Mesbah et al. 1997). These results indicate that the gene(s) conferring full 

resistance to the beet cyst nematode in B. patellaris are located on chromosome 

1.1, and that the other tested chromosomes of B. patellaris are not involved in the 

expression of the resistance. The results correspond with the findings of Lange et al. 

(1990a). In a previous study (Mesbah et al. 1997) two of the susceptible monosomic 

addition families (A5-1-19 and A5-1-29) were classified to belong to sub-group 1.2, 

which is assumed to be homoeologous to chromosome 1.1 of B. patellaris. 

Segregation of BCN resistance in B. patellaris has not been encountered, so that it 

was postulated that B. patellaris is of allotetraploid nature, and that preferential 

association occurs between the two homologous chromosomes 1.1 that contain the 

BCN gene(s) (Mesbah et al. 1997). The results of the present nematode testing are 

in line with this conclusion. 
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The finding of only one chromosome of B. patellaris harbouring gene(s) for 

BCN resistance was surprising. By using a selected pathotype of the nematode 

Lange et al. (1993) demonstrated that chromosome 7 of B. procumbens carries at 

least one gene for BCN resistance that is different from that on chromosome 1 of 

B. procumbens, whereas the gene(s) on the long-arm telosomic addition of 

chromosome 1 of B. patellaris showed the same pattern as the monosomic addition 

of chromosome 1 B. procumbens. Klinke et al. (1996) reported that monosomic 

additions with chromosome 1 from the three species of the section Procumbentes as 

well as translocations with a gene(s) for resistance from chromosome 1 of 

B. procumbens and B. webbiana were susceptible to the selected nematode 

population. Translocations with genes for resistance from chromosome 7 of 

B. procumbens and B. webbiana were also susceptible to the pathotype. However, a 

monosomic addition with chromosome 7 of B. webbiana was resistant to the virulent 

population, indicating the presence of a different gene. The three species of the 

section Procumbentes, B. procumbens, B. webbiana and ß. patellaris, also were 

highly resistant to the this population. Therefore, the existence of two different major 

genes for resistance to H. schachtii in the entire Procumbentes section was 

proposed (Lange et al. 1993, Klinke er al. 1996). In the present study only one 

chromosome of B. patellaris harbouring gene(s) for BCN resistance was found. A 

great similarity has been observed between morphological characteristics and DNA 

fingerprinting patterns of chromosome 7 in both B. patellaris and B. procumbens 

(Mesbah et al. 1997). Therefore, it was expected that addition families of group 7 of 

B. patellaris might exhibit resistance to the BCN, also because it was suggested that 

B. procumbens has played a role in the evolution of B. patellaris. Thus, it might be 

inferred that in the plants of B. patellaris, that were used to make the monosomic 

additions, the alleles of the second gene conferring resistance were absent, or that 

the chromosome with the resistance gene is not present among the available 

monosomic additions of B. patellaris. 

Cercospora beticola 

The artificial inoculation under greenhouse conditions with in vitro produced 

inoculum of C. beticola and the spot-percentage rating for the quantification of the 

Cercospora disease intensity, permitted the evaluation of resistance to C. beticola in 

B. vulgaris and in B. procumbens and B. patellaris derived monosomic addition 

families. The uniformity and consistency of the C. beticola infection in the two 
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controls WB42 and MS-2 in both experiments indicated that the test is reliable. The 

high level of resistance to C. beticola in the wild species of section Procumbentes 

was in agreement with studies by Carels et al. (1990). These authors also reported a 

high level of leaf spot resistance, with an atypical red fleck reaction, for B. webbiana 

and B. procumbens. The red fleck reaction appeared two days after C. beticola 

infection, and the poor fungal growth in the flecks, with a lack of sporulation, was 

linked to an active defence process of the host. This indicates that resistance to 

C. beticola in these species operates in a very early stage. 

The high level of leaf spot resistance that was observed in the present study 

in the wild species B. procumbens and B. patellaris has not been found in any of the 

monosomic additions tested. Monosomie additions with chromosome 7 of 

B. procumbens and those of group 7 of B. patellaris showed partial resistance. Also 

chromosome 8 of B. procumbens and chromosome 4.2 of B. patellaris had a 

tendency towards partial resistance. However, the individual chromosomes of either 

B. procumbens or B. patellaris in B. vulgaris did not induce full protection against 

C. beticola infection. Therefore it might be inferred that genes on various 

chromosomes of the wild species are needed to express the high level of resistance 

against C. beticola, and that the chromosomes of group 7 of B. patellaris and 

chromosome 7 of B. procumbens have the largest effect. In sugar beet it has been 

concluded that leaf spot resistance behaves as a quantitative character, and a 

minimum of four or five genes conferring resistance to leaf spot was estimated 

(Smith & Gaskill 1970). 

The mechanism of Cercospora leaf spot resistance in sugar beet has been 

related with several factors (Schlösser 1969, Rautela & Payne 1971). Various 

chemical components have been associated with Cercospora leaf spot resistance in 

sugar beet and antifungal activities of these products in the lesions of the partial 

resistant cultivars have been reported (Maag er al. 1967, Harrison er al. 1969, 

Rautela & Payne 1969, 1971, Johnson er al. 1976, Martin 1977, Nielsen et al. 

1994a, 1994b). For some of these components four or more genes have been 

estimated (Hecker et al. 1970). The transfer of the high level of leaf spot resistance 

from section Procumbentes into cultivated beets is highly desired, especially 

because it has been documented that strains of C. beticola have developed, which 

are resistant to commercial chemical protectants (Georgopoulos & Dovas 1973, 

Giannopolitis 1978, Bugbee 1995). Thus the development of cultivars with good 

Cercospora resistance is required (Miller era/. 1994). However, the transfer of genes 

from section Procumbentes into sugar beet will not be an easy task, and is 
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hampered by the polygenic nature of the resistance, the lack of chromosome 

homology and the distant relationship between sugar beet and the species of the 

section Procumbentes (Bosemark 1969). 

Rhizomania 

The greenhouse tests with naturally infested soil elucidated the interaction between 

different B. patellans derived monosomic addition families and P. betae. These 

reactions were compared with those of the wild species B. procumbens and 

B. patellars, and with several other controls. The complete absence of cystosori in 

the roots of either B. procumbens or B. patellahs indicated a high level of resistance, 

which corresponds with the results of previous studies (Fujisawa & Sugimoto 1979, 

Paul era/. 1992b, Barr et al. 1995). However, Abe & Ui (1986) once observed traces 

of cystosori in B. procumbens, grown in one out of the three infested soils tested, 

and Dahm (1993) reported the occurrence of zoosporangia in B. procumbens and 

B. patellahs, but no cystosori. P. betae zoospores appear to attach to and to 

penetrate the roots of the resistant ßefa species, but subsequent development of 

the pathogen was seldom observed. Therefore, the concept of hypersensitive 

resistance was proposed to describe this limitation (Barr et al. 1995). The 

development of a probe and a set of nested PCR primers could be used to improve 

the detection of P. betae, because these techniques are more sensitive than 

microscopic examination (Mutasa era/. 1993, 1995). 

Resistance to P. betae in the wild species of section Procumbentes was 

reported to be dominant and simply inherited, when combined with the genome of 

B. vulgaris (Paul et al. 1992b). Work with B. procumbens derived monosomic 

addition families has demonstrated that genes conferring resistance to P. betae in 

B. procumbens are located on chromosomes 4 and 8 (Paul et al. 1992b). In the 

present study the addition families of group 4.1 of B. patellahs showed a strong 

partial resistance to P. betae, while the addition families of group 8.1 appeared to be 

completely resistant to the pathogen. Although the addition types of group 8.1 gave 

rise to the same level of resistance as found in the wild species, it might be assumed 

that also chromosome 4.1 has a share to suppress the development of the pathogen 

in the wild species. The homoeologous chromosomes 4.2 and 8.2 of B. patellahs did 

not show resistance. These results support the cytogenetic and DNA fingerprinting 

conclusion that B. patellahs originally is an allotetraploid (Walia 1971, Mesbah et al. 

1997). 
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A very low concentration of BNYVV could be detected in extracts of rootlets of 

B. procumbens and B. patellaris when analysed by ELISA. These results correspond 

with the studies of Paul et al. (1992b). The virus has been shown to be located 

within the zoospores (Abe & Tamada 1986, Rysanek et al. 1992) and is transmitted 

by the fungus after penetration (Fujisawa & Sugimoto 1977, Ivanovic 1985, Scholten 

et al. 1994). The structure of the fibrous roots of the two resistant wild species was 

shown to be similar to that of B. vulgaris, and no evidence could be found of a 

mechanical barrier in the epidermal cells of the roots of the resistant species, which 

could prevent penetration by P. betae zoospores (Barr et al. 1995). Therefore, as 

already was suggested by Paul et al. (1992b), it must be concluded that the virus in 

the plants of the wild species is the result of transmission by the vector, without 

development of the fungus towards cystosori. Based on the results of mechanical 

inoculation using leaves (Fujisawa & Sugimoto 1979), it is believed that these wild 

species are susceptible to BNYVV. Resistance to P. betae in the two wild species as 

well as in the addition types of 4.1 and 8.1 resulted in a reduction of the level of 

BNYVV. Such a relation could not be observed for Holly-1-4 and WB42, which are 

resistant to the virus but susceptible to P. betae. Variation in the level of infection 

with P. betae and its effect on infection with BNYVV has been studied in beet 

accessions of the sections Beta and Corollinae (Paul ef al. 1993, 1994). In some 

cases it was found that resistance to P. betae had no effect on the concentration of 

BNYVV. This, and the existence of crossing barriers in the genus Beta, made the 

authors to conclude that the use of resistance to P. betae in breeding for resistance 

to rhizomania seems to be limited. The high levels of resistance to P. betae in 

combination with a lower level of virus found in the experiments reported here, 

suggest nevertheless that the introduction of resistance to the vector would 

complement virus resistance, and may provide a more effective and durable control 

of the disease (Barr et al. 1995). 

In breeding and research programmes a stable introduction of genes for 

resistance from section Procumbentes into sugar beet has already been planned. In 

the last few years major efforts have been put in a practice to isolate such gene(s) 

and transfer them into sugar beet by means of molecular genetics technologies. 

With using monosomic fragment additions and map-based cloning, one of the BCN 

genes has been isolated (Cai et al. 1997). The same technologies might be applied 

for the isolation and transfer of other essential genes from the section 

Procumbentes. 
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Summary and concluding remarks 

The sugar beet (Beta vulgaris subsp. vulgaris) crop is being confronted with 

numerous pests and diseases, such as beet cyst nematodes (BCN, Heterodera 

schachtii), leaf spot (caused by Cercospora beticola) and rhizomania, caused by the 

beet necrotic yellow vein virus (BNYVV) and vectored by the soil-borne fungus 

Polymyxa betae. Such diseases are widely spread in the divergent beet growing 

areas of the world and are extremely important in the economics of sugar beet. 

Thus, the diseases require much effort to prevent significant reduction in yield and 

sugar content. The principal means of controlling is through breeding and growing of 

resistant cultivars. Wild beet species of the section Procumbentes of the genus Beta 

carry genes for resistance to several of the diseases and are considered to be of 

interest for the breeding of cultivated beet. However, the species of the section 

Procumbentes are supposed to be more distantly related to the sugar beet than any 

of the other Beta species. In spite of several barriers, major efforts have already 

been carried out to achieve the transfer of desired genes of the species of the 

section Procumbentes into sugar beet. In such studies chromosomal material of the 

Procumbentes species has been added to the genome of B. vulgaris in the form of 

extra chromosomes (monosomic additions), extra chromosome fragments (fragment 

additions), or has been translocated into the recipient genome. Recently, the first 

gene for resistance against the beet cyst nematode has been isolated. 

The identification of plants with 19 instead of the usual 18 chromosomes, 

could only reliably be achieved by counting the number of chromosomes in mitotic 

cells, while the effect of the extra chromosome on the morphology of the addition 

plants gave no reliable information on which of the Procumbentes chromosomes is 

present. Three repetitive DNA sequences {Sat-121, PB6-4 and OPX2) have been 

described earlier. These sequences are specific for the Procumbentes genomes and 

give no cross-hybridisation signal in B. vulgaris. In this thesis the results of studies 

have been described regarding the distribution of these repetitive DNA sequences 

over the chromosomes of both B. procumbens and B. patellaris, using monosomic 

additions and various techniques, such as dot and squash-blot hybridisation, DNA 

fingerprinting, and fluorescence in situ hybridisation. With squash-blot hybridisation 

on leaf samples it was possible to reliably identify an extensive number of plants 

(1700 individual addition plants among approximately 12000 of their disomic sibs) 

carrying an extra chromosome of B. procumbens or B. patellaris (Chapter 2). The 

results showed that the technique is very attractive for a quick screening of large 

numbers ofaddition plants. In addition, the technique also provided the opportunity to 
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target telosomic and fragment addition plants that occur at low frequency and show 

less obvious morphological characteristics. Further advantages of the squash-blot 

hybridisation technique are that neither isolation nor digestion of DNA is required, 

that the addition plants can be determined shortly after seed germination, and that 

the technique is non-destructive for the plants. It is known that the probes used have 

genetic linkage with gene(s) for resistance to BCN. Therefore, the technique also 

can be used to screen rapidly segregating families, to search for resistant plants, or 

even for recombinants that remained resistant and lost the signals. The possibility to 

utilise sequence information of Sat-121 (the primers REP and REP.INV) for a PCR 

(polymerase chain reaction) based assay to screen for putative monosomic addition 

plants was also investigated. The DNA amplification profiles using these primers 

clearly distinguished Procumbentes derived monosomic addition plants from their 

disomic sibs. An advantage of the PCR technique is that amplification products can 

generally be detected by gel electrophoresis followed by staining with ethidium 

bromide, so that radio-active probing as used in the squash-blot method is no longer 

necessary. The time needed for DNA preparation from individual plants may be the 

limiting factor, but simple and rapid DNA micro-extraction methods are already 

available, enhancing the value of the PCR based assay for the identification of 

monosomic additions. 

In Chapter 3 the results have been described of DNA fingerprinting with the 

three repetitive DNA sequences (OPX2, PB6-4 and Sat-121) on a set of ten 

monosomic additions of B. procumbens and seventy-five anonymous B. patellaris 

derived monosomic additions in B. vulgaris. This study aimed at the identification 

and characterisation of the alien chromosomes at the DNA level. Morphological 

characteristics were also used for the classification of monosomic additions of 

B. patellaris and for comparison with the morphology of the additions of 

B. procumbens. DNA fingerprinting revealed unique patterns for almost all individual 

addition chromosomes of B. procumbens. However, it was concluded that 

chromosomes 1 and 6 of B. procumbens could not be distinguished at the molecular 

level, with the only difference that the chromosome referred to as 6 did not carry the 

allele for BCN resistance. In contrast, it was concluded that the two addition types 

with chromosome 2 are carrying different chromosomes of B. procumbens, so that 

the one that was referred to as 2.1 was renamed to become the new chromosome 6, 

and the other (2.2) remained addition 2. DNA fingerprinting of seventy-five 

anonymous B. patellaris derived monosomic additions facilitated the identification 

and characterisation of the alien chromosomes and the grouping of these additions 

into nine different groups. Several of these groups could be divided into two sub-



90 Chapter 6 

groups on the basis of small differences in banding patterns. It was deduced that the 

BCN gene(s) in this species are homozygous and located on chromosome 1.1, while 

the pair of homoeologous chromosomes, named 1.2, does not carry such BCN 

gene(s). Because BCN susceptibility in B. patellaris has never been found, it was 

concluded that preferential chromosome association occurs between the 

homologous chromosomes containing the allele(s) for BCN resistance. This led to 

the conclusion that B. patellaris most likely is an allotetraploid species. Each group 

of B. patellaris derived addition families united by DNA fingerprinting had 

comparable morphological characteristics. Some of these morphological traits 

appeared to be chromosome-specific and were very useful for primary classification 

of the addition families. However, the present study showed that these 

morphological traits are not adequate for the identification of all alien chromosomes 

without the aid of additional markers. Because of similarities observed between the 

molecular characteristics and the effects on plant morphology of monosomic 

additions, caused by several of the chromosomes of B. procumbens and 

B. patellaris, it was concluded that B. procumbens could have been involved in the 

evolutionary history of B. patellaris. Molecular DNA markers, such as RFLPs, AFLP 

and RAPD markers are powerful tools for studying the genetics of plant growth and 

development. Using such DNA markers, the identified alien chromosomes can be 

analysed in detail, through the development of many different markers for each 

individual chromosome. In this way, the relationship between the wild species of 

section Procumbentes will be clarified in more detail, which may provide a clear 

understanding of the evolutionary history of these species. 

Molecular analysis of the chromosomes is a useful extension of the classical 

karyotype analysis, and can also be applied in genome mapping and in the study of 

the genetic organisation of the chromosomes. In the research programme as 

described in this thesis (see Chapter 4) chromosome identification and 

characterisation also was studied using various techniques of fluorescence in situ 

hybridisation (FISH). This included the use of mitotic metaphase chromosomes of 

B. procumbens, as well as mitotic metaphase chromosomes, interphase nuclei and 

extended DNA fibres of B. procumbens derived monosomic additions. Thus FISH 

enabled the physical localisation of two Procumbentes specific repetitive DNA 

sequences, PB6-4 and OPX2, on the chromosomes of ß. procumbens. Probe PB6-4 

mostly was found in or around the centromere region of all chromosomes of 

B. procumbens, with substantial differences in the number of sites per chromosome. 

OPX2 was localised more dispersed over all chromosomes of ß. procumbens, also 

with variation in the number of hybridisation sites on the different chromosomes. 
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FISH with PB6-4 and 0PX2 to the mitotic metaphase chromosomes of the 

B. procumbens derived monosomic additions constantly resulted in the localisation 

of the probes exclusively on only one of the 19 chromosomes. The individual 

B. procumbens chromosomes in the background of B. vulgaris unambiguously could 

be distinguished and be characterised by number and localisation of the signals. 

These characteristics then were compared to those of three complete chromosome 

sets of B. procumbens, in order to determine a karyotype of this species. The results 

of FISH confirmed the previous conclusion that chromosome 1 and 6 of 

B. procumbens are identical, while the two addition types with chromosome 2 are 

carrying different chromosomes. From other studies it was known that Sat-121, 

which is part of PB6-4, is linked to the gene Hs1pm~\ conferring resistance to BCN. 

This led to the conclusion that this gene might be located close to the centromere of 

chromosome 1. Finally FISH was put in practice on extended DNA fibres of 

B. procumbens derived monosomic additions, in order to estimate the size of the 

arrays of hybridisation sites of PB6-4 on the individual chromosomes of this species. 

The results revealed linear fluorescent signals on the stretched DNA fibres of all 

monosomic additions. The size estimations indicated that different arrays of PB6-4 

occurred, and that the number of types of the arrays varied among the alien 

chromosomes. It was concluded that FISH on extended DNA fibres is a reliable 

technique for mapping, and for the study of organisation and size estimation of DNA 

probes on individual alien chromosomes. A yeast artificial chromosome (YAC) library 

of a B. vulgaris fragment addition is available, containing Procumbentes DNA 

inserts, harbouring gene(s) for resistance to the beet cyst nematode. Multi-colour 

fluorescence in situ hybridisation on mitotic metaphase chromosomes, meiotic 

pachytene chromosomes, or extended DNA fibres of translocation stocks can be 

used for the study of the physical localisation, organisation, and size estimation of 

such clones. Thus the order and the size of overlaps or gaps between them can be 

determined. 

In various tests under greenhouse conditions the monosomic additions were 

evaluated for resistance to the beet cyst nematode (Heterodera schachtii), 

Cercospora beticola, Polymyxa betae and BNYVV (Chapter 5). These experiments 

permitted the localisation of major genes for resistance on specific chromosomes, 

and the study of some quantitative effects. It was concluded that gene(s) conferring 

full resistance to the beet cyst nematode in B. patellaris are located on chromosome 

1.1, whereas the other chromosomes of this species are not involved in the 

expression of resistance. Artificial inoculation under greenhouse conditions, with in 

vitro produced inoculum of C. beticola and spot-percentage rating of the disease 
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intensity, showed that the high level of resistance that was observed in the species 

B. procumbens and B. patellaris was not found in any of the monosomic additions 

tested. It was suggested that genes on several chromosomes of the wild species are 

needed together to express full resistance, and that the chromosomes of group 7 of 

B. patellaris and chromosome 7 of B. procumbens have the largest effect. The 

transfer of the high level of leaf spot resistance from section Procumbentes into 

cultivated beets is highly desired, especially because it has been documented that 

strains of C. beticola have developed, which are resistant to commercial chemical 

protectants. However, the transfer of genes from section Procumbentes into sugar 

beet is not an easy task, because of the lack of chromosome homology and the 

distant relationship between sugar beet and the species of this section. In the case 

of C. beticola gene transfer also is hampered by the polygenic nature of the 

resistance. The greenhouse tests for resistance to P. betae in B. patellaris derived 

monosomic additions showed that the addition plants of group 4.1 have a strong 

partial resistance, while the additions of group 8.1 appeared to be completely 

resistant to the pathogen. The reported development of a probe and a set of nested 

PCR primers will improve the detection of P. betae, because these techniques are 

more sensitive than microscopic examination. Resistance to P. betae in the two wild 

species as well as in the two resistant addition types did not exclude infection with 

BNYVV, but resulted in a considerable reduction of the virus concentration. It was 

concluded that resistance to the vector would complement virus resistance, and 

together this may provide a more effective and durable control of rhizomania. 

As is shown in this thesis, various techniques can be used for the 

characterisation of the individual alien chromosomes in monosomic additions. It 

would be very interesting and important to establish a new set of monosomic 

additions, accommodating the individual chromosomes of sugar beet in a 

Procumbentes background. In this way, the individual chromosomes of sugar beet 

could be identified and characterised more precisely. It also was reported that major 

efforts resulted in the isolation and transfer of a gene for resistance to the beet cyst 

nematode, using alien chromosome additions and map-based cloning technologies, 

thus proving that gene transfer is possible. The same technologies might be applied 

for the isolation aid transfer of the gene(s) for resistance to P. betae or other 

desired genes from the section Procumbentes. 



Samenvatting 

Het gewas suikerbiet (Beta vulgaris subsp. vulgaris) wordt belaagd door talrijke 

ziekten en plagen, zoals het bietencystenaaltje (BCA, Heterodera schachtii), de 

Cercospora bladvlekkenziekte en rhizomanie, veroorzaakt door het bieten-

rhizomanievirus (BNYVV), dat wordt overgedragen door de bodemschimmel 

Polymyxa betae. Deze ziekten zijn wijd verbreid in de verschillende teeltgebieden 

van de suikerbiet in de wereld en zijn een belangrijke economische factor bij de teelt 

van dit gewas. Dit betekent dat deze ziekten veel aandacht vragen, teneinde 

ernstige schade en verliezen te voorkomen. Het kweken en verbouwen van 

resistente cultivars is daarom van groot belang. Wilde bietensoorten van de sectie 

Procumbentes van het geslacht Beta hebben genen voor resistentie tegen 

verscheidene ziekten en zijn daarom van grote betekenis voor de bietenveredeling. 

Deze soorten zijn echter minder verwant aan de suikerbiet dan enig andere Beta 

soort. Ondanks het voorkomen van verscheidene barrières zijn goede vorderingen 

gemaakt in het overbrengen van gewenste genen van de soorten van de sectie 

Procumbentes naar suikerbiet. Chromosomaal materiaal van de Procumbentes-

soorten werd toegevoegd aan het genoom van B. vulgaris in de vorm van extra 

chromosomen (monosome addities) en extra chromosoomfragmenten (fragment 

addities), of werd geïncorporeerd in het genoom van de suikerbiet. Recentelijk werd 

het eerste resistentiegen van B. procumbens geïsoleerd. 

Het opsporen van planten met 19 chromosomen in plaats van het normale 

aantal (18) kon slechts betrouwbaar worden uitgevoerd door het tellen van het 

aantal chromosomen in delende cellen. Het waargenomen effect van de extra 

chromosomen op de morfologie van additie-planten leverde onvoldoende 

betrouwbare informatie op betreffende de identiteit van het aanwezige 

Procumbenfes-chromosoom. Drie reeds eerder beschreven repetitieve sequenties, 

Sat-121, PB6-4 en OPX2, zijn specifiek voor de Procumbenfes-genomen en 

vertonen geen signaal in B. vulgaris. In dit proefschrift worden de resultaten 

beschreven van onderzoek naar het voorkomen van deze repetitieve DNA 

sequenties in de chromosomen van B. procumbens en B. patellaris. Hierbij is 

gebruik gemaakt van monosome addities en van verscheidene technieken, zoals 

dot- en squash-blot hybridisatie, DNA-fingerprinting en fluorescentie in situ 

hybridisatie. Met squash-blot hybridisatie van bladmonsters kon een groot aantal 

planten (1700) met een extra chromosoom van B. procumbens of B. patellaris 

worden onderscheiden van ongeveer 12000 disome zusterplanten (Hoofdstuk 2). Uit 
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deze resultaten bleek dat de techniek zeer aantrekkelijk is voor het selecteren van 

grote aantallen additie-planten. Ook telosome of fragment addities, die in lage 

frequentie voorkomen en minder in het oog springende morfologische kenmerken 

vertonen, kunnen op deze wijze worden opgespoord. Vervolgens is onderzocht of 

monosome addities kunnen worden onderscheiden met sequenties van Sat-121 (de 

primers REP en REP.INV) in een op PCR (polymerase chain reaction) gebaseerde 

toets. DNA-amplificatie met behulp van deze primers leverde patronen op waarmee 

de monosome addities met een Procumöenfes-chromosoom duidelijk van de 

disome zusterplanten konden worden onderscheiden. PCR heeft als voordeel dat de 

producten van de amplificatie kunnen worden herkend na gel-electroforese en 

kleuring met ethidiumbromide, zodat de in de squash-blot techniek toegepaste 

radioactieve probes niet langer nodig zijn. 

In Hoofdstuk 3 zijn de resultaten beschreven van DNA-fingerprinten met de 

drie repetitieve sequenties, OPX2, PB6-4 en Sat-121, op een set van tien 

monosome addities van B. procumbens en vijfenzeventig nog niet geïdentificeerde 

monosome addities van B. patellaris in B. vulgaris. Dit onderzoek had tot doel de 

soortvreemde chromosomen op DNA-niveau te identificeren en te karakteriseren. 

Ook werden morfologische kenmerken gebruikt voor het klassificeren van de 

monosome addities van B. patellaris, en voor vergelijking met de morfologie van 

addities met chromosomen van B. procumbens. Het DNA-fingerprinten leverde 

unieke patronen op voor vrijwel alle individuele additie-chromosomen van 

B. procumbens. Het onderzoek leidde tot de conclusie dat de chromosomen 1 en 6 

van B. procumbens moleculair niet van elkaar zijn te onderscheiden, en dat ze 

slechts van elkaar verschillen doordat het allel voor BCA-resistentie afwezig is op 

chromosoom 6. Voorts werd geconcludeerd dat de twee additie-typen met 

chromosoom 2 verschillende chromosomen van B. procumbens hebben. Degene 

met het nummer 2.1 werd herbenoemd tot additie 6, en die met nummer 2.2 bleef 

additie 2. Het fingerprinten van de vijfenzeventig monosome addities van 

B. patellaris leidde tot het identificeren en karakteriseren van de extra 

chromosomen, en tevens tot de groepering ervan in negen verschillende groepen. 

Op basis van kleine verschillen in het bandenpatroon konden verscheidene van 

deze groepen worden opgedeeld in twee sub-groepen. Uit de resultaten kon worden 

afgeleid dat in deze soort het gen (of de genen) voor BCA-resistentie homozygoot is 

(zijn) en gelocaliseerd op chromosoom 1.1, terwijl deze genen afwezig zijn op de 

homoeologe chromosomen (additie 1.2). Omdat vatbaarheid voor BCA in 

B. patellaris nooit is aangetroffen werd geconcludeerd dat preferentiële 
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chromosoomassociatie optreedt tussen de homologe chromosomen die de BCA-

resistentiegenen dragen. Dit leidde vervolgens tot de conclusie dat B. patellaris een 

allotetraploide soort is. De individuele planten binnen iedere groep van monosome 

addities van B. patellaris vertoonden een sterke morfologische overeenkomst. Een 

aantal van de morfologische kenmerken bleek specifiek voor de extra chromosomen 

te zijn en kon worden gebruikt voor voorselectie van de monosome addities. Zonder 

hulp van additionele merkers bleken deze kenmerken echter niet geschikt voor het 

herkennen van alle soortvreemde chromosomen. De overeenkomsten tussen de 

moleculaire bandenpatronen van verscheidene chromosomen van B. procumbens 

en B. patellaris, gecombineerd met de effecten van deze chromosomen op de 

plantmorfologie van de monosome addities, leidde tot de conclusie dat 

B. procumbens een rol gespeeld kan hebben in de evolutie van B. patellaris. 

Moleculaire analyse van chromosomen vormt een bruikbare uitbreiding van 

de klassieke bestudering van het karyotype. Het kan ook worden toegepast in de 

genoomkartering en ter bestudering van de genetische organisatie van de 

chromosomen. In het onderzoek zoals beschreven in dit proefschrift zijn de 

chromosomen van B. procumbens geïdentificeerd en gekarakteriseerd met behulp 

van verscheidene fluorescentie in situ hybridisatie (FISH) technieken (zie Hoofdstuk 

4). Hierbij werd zowel gebruik gemaakt van mitotische metafase-chromosomen van 

deze soort, als van mitotische metafase-chromosomen, interfase-kernen en 

uitgetrokken DNA-strengen van monosome addities van B. procumbens. Met behulp 

van FISH bleek het mogelijk de Procumbentes-specifieke repetitieve DNA-

sequenties PB6-4 en OPX2 fysiek te localiseren op de chromosomen van 

B. procumbens. PB6-4 hybridiseerde meestal in of bij de regio rond de centromeren 

van alle chromosomen en vertoonde een aanmerkelijke variatie in het aantal 

signalen per chromosoom. De localisatie van OPX2 was meer verspreid over alle 

chromosomen van B. procumbens, eveneens met variatie in het aantal signalen per 

chromoosoom. FISH met PB6-4 en OPX2, en met mitotische metafase-

chromosomen van monosome addities van B. procumbens, vertoonde 

onveranderlijk signalen op slechts één van de 19 chromosomen. De individuele 

chromosomen van B. procumbens konden aldus ondubbelzinnig worden herkend in 

de achtergrond van B. vulgaris en konden ook worden gekarakteriseerd aan de 

hand van aantal en locatie van de signalen. Vergelijking van deze karakteristieken 

met die in drie complete chromosoomsets van B. procumbens leidde tot het 

opstellen van een karyotype van deze soort. De resultaten met FISH bevestigden de 

eerder getrokken conclusie dat chromosoom 1 en 6 van B. procumbens identiek zijn 
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en tevens dat de twee additie-typen met chromosoom 2 verschillende chromosomen 

bevatten. Uit de in ander onderzoek gevonden koppeling tussen Sat-121, een 

sequentie die deel uitmaakt van PB6-4, en het gen Hs1pro'1 voor BCA-resistentie, 

kon de conclusie worden getrokken dat dit gen dicht bij het centromeer van 

chromosoom 1 is gelocaliseerd. Tenslotte werd FISH toegepast op uitgetrokken 

DNA-strengen van monosome addities van B. procumbens, teneinde de grootte van 

de reeksen van hybridisatie-signalen van PB6-4 op de individuele chromosomen van 

B. procumbens vast te stellen. In alle monosome addities werden lineaire 

fluorescerende signalen op de uitgerekte DNA-strengen aangetroffen. Er bleek 

variatie te bestaan in de grootte van de signaalreeksen en in het aantal 

verschillende typen reeksen per additie-chromosoom. 

De monosome addities werden tenslotte in kastoetsen onderzocht op 

resistentie tegen het bietencystenaaltje (Heterodera schachtil), Cercospora beticola, 

Polymyxa betae en BNYVV (Hoofdstuk 5). Aldus werden hoofdgenen voor 

resistentie op specifieke chromosomen gelocaliseerd en werden enkele 

kwantitatieve effecten bestudeerd. Genen voor volledige resistentie tegen het 

bietencystenaaltje zijn gelocaliseerd op chromosoom 1.1 van B. patellaris, terwijl de 

andere chromosomen van deze soort niet betrokken lijken te zijn bij de expressie 

van de resistentie. In de kastoets met C. beticola werd gebruik gemaakt van 

kunstmatige inoculatie met in vitro geproduceerd inoculum en het niveau van de 

aantasting werd geschat op basis van het percentage bladoppervlak dat was 

aangetast. Uit de toets bleek dat het hoge niveau van resistentie dat werd 

aangetroffen in de soorten B. procumbens en B. patellaris niet voorkwam in de 

monosome addities. Daarom werd geconcludeerd dat genen op verschillende 

chromosomen van de wilde soorten nodig zijn voor volledige expressie van de 

resistentie. De chromosomen van groep 7 van B. patellaris en chromosoom 7 van 

B. procumbens vertoonden het sterkste effect. De kastoets voor resistentie tegen 

P. betae in monosome addities van B. patellaris toonde aan dat de additie-planten 

van groep 4.1 een sterke partiële resistentie hebben, terwijl de addities van groep 

8.1 volledig resistent bleken te zijn. De resistentie tegen P. betae in de twee wilde 

soorten en in de twee resistente addities was niet in staat infectie met BNYVV 

volledig tevoorkomen, maar resulteerde wel in een aanmerkelijk vermindering van 

de virus-concentratie. Dit leidde tot de conclusie dat resistentie tegen de vector kan 

fungeren als aanvulling op virus-resistentie, en zou kunnen bijdragen tot een 

duurzamere beheersing van rhizomanie. 
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C^LAS j ' '"-y^AjiJ^ U . "' J 4_JJAJ tjajlniS j ^ •'; xâl j J J L$-4jj^«jj£ jjîjSii^a (Jj^" j Aj jaj 

o j l f l ml JJJA L\*jj_o<«jj£ ŷfLuJJ j t t tLui tj-^JJJ J f j j j Ajuaïj ftJJJJJ JJ j j l j j <j-c j l_uj) ' ̂ J--' L̂£ l£ ̂  ß '*'J J 

Li ^pLäjSÄj 4w«LjjJ *JLJ J J Cj-ujl o j_ti o j l j ÄjjJajJ 4-aLj ( j LL !j^\ j W ^ cL-aàj J ^JJJ^J ^-^ • ̂ j£ j\jP 

jjj_« (>?.jLi. ( ^L^ j j ^ j jS (FISH) fluorecence in «f« hybridisation <-Uä-> ̂ L^jiSj j l »JUI^II 

( ^ U ^ a j j ^ j j S ß. procumbens <k\^a\ SIAJ-UIJJJA J L A U S J J J t j L i l l « i_k_>x j j B. procumbens 

*JJ^ (extended D N A fibers) D N A U .,i/i» ^ U < l i j j j l i j j i j l ^ U AI^A I j l i t L . <k._v» j - ^ tSJ_A>̂  

j l PB6-4 j OPX2 D N A LSJ'J^J ^ L ä j j (^Sjjjä Ja-. U ^j iSj ja ' j ' o-iUüul U .>üäjS j l j ä »JLÎLJI 

D N A 4_*iä ^>J!JI LJJ-O . AJJJS j w i l i 5 . procumbens ÄjjS esW-«JJ>"JJ^ LSJJ Procumbentes OJJS 

4Û.ÛI j j l j i ß. procumbens ^IJ-«J_>OJJS ^Lü ^»JJÖJUÜ i-i l j ial U j >»JJÖJLJ J J IJAOC PB6-4 ^UJ 

J I J-JÜ L-Lojja . JJ_J oüSIJJ B. procumbens (_sL^«jj>»jjS ? L ü (_SJJ J J OPX2 ?jJ Ä-«iä 4_SJU.jJ 

D N A (^JIJ—SJ djL»iaä I-JLJSJJ . JJ-J CJJIÜA < '» fr-^•* ̂ L^ -BJJJAJJS J J ejL*jaä >̂_jl ^ J J ^ U ^L^AI^JLÄ. 

I£JJSJ j l o j l f t j h B. procumbens A iUi l LSJ^J^JJ^» j U b S j l i l i « (^ I j -a j j jx j jS b PB6-4j OPX2 

j l j ä JJ JJJJJ ̂ j ^ J ^ »* j l (jSj LJ I4JJ (jJwaLuoaâ.1 j dul j J_)iaJ (_5jljSj ejblJaä A£ j l J tjLwlJ tjjâ (_$l> 

j j J J J . J ^ ß. procumbens ÄJjS ^ J I J - Ü I ^ L ^ j j ^ a j j S I j ^ i j j tjjl _jl o^Läi^l U ót i l j j IJJ . j iS ^̂ c 

<_£J_ijJJ ̂ gl^il 'iSjirt (JJäjS j l j ä (Ja-a J ^l^xj < f̂l̂  <J Ijpl dlLi^a >uaâ. j j^jLuiLiii AiLjJal <&iA^ijpy* ^ I A U S 

tjj-â 4—3j£ (JALa ^ l̂ A j j j,« j j S j l ( ĵAd <JJ t"il . **i* .* A (j ^ J | j i j l ^ L$-aj j ^ J J ^ OLi*-a j>r>-s . AJJJS tJJ»J 

' ̂  ji^" j l 6 jLîLuil LJ A-Ja ojLi i l L̂-JS A^Jĵ olûLoA . ̂ jjl ÖJ»J < j j^ tjjl ^ ^ j j j j l S l j Cjijh j l j a «Luijlia JJ^A 

ijl—A 4_ä l_Ai.l ^ j - ^ j j j x J J A j ^ ( ^L^o j j j x j jS (DNA fingerprinting) D N A cS jLü i'i .«<il 

. j i j i (_5jliL»Li *\ f»j j j -«j jS ù ' j - ^ '" ' *>"' ̂ - ^ ( » J J J ^ J J ^ J ^ f j j > » j j ^ ù ' j j ' 1 , : : ia : ; B- procumbens 

DNA) D N A csjl—SJ .-i tóil .<; jiS-ijl » j _ ï Ù _ - J J j jLJiJ 'l j i _ > u FISH o i j j j l J ^ U J J U Ü 

A-J Cj-aj Li« ( j L j J j L J j j OISJL> J L J JLüa.1 <ü AS i û LSJJS <a-üi Lu.^i . JJAJ JJJ LJ I J (fingerprinting 

(^j ) j -aj <jtia9 (_5 J-J3JJ OL£JL> AJI XJl î_Loäj '"< fl^ '"' • ' J^JJJJLUI {J_a-o 4j L£JJJJ 1 >jjj*JJ& (S-5J -JjLoJ 
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J_J LJJ . -IJjl ̂  ^ ^ j " j j l-^iji AJÜJAJAA. JüLaJ 4j * j l i « LS WO ^ J ÛJ W D N A (_5jl JSJ t*it»U5 j j j l <£ Ciuii 

. j j j j l i j j j AJI ô^l J Ciui^ j l I j DNA (jj\ JSJ CJULS JJ I U l ^jl o^jUjäb ^ j l i o <£ s-^JJ j * Ù ^ W ^ 

j jLlft l (polymerase chain reaction) PCR ^ jfl~ j l <o1üuil U AâUial ^ ^ J A ^ J J ^ U ^ ^ £ OTT» '*"' <-$'Ji 

ó U ü S j l I j AJL i l Sitj-u.ji* ÓLAWS REP/INV J REP (primers) ü U j S j L i ï j l » J I & J L, DNA 

(j>̂ a\_a. AâLial ' ̂ J * j ' ' j ' j» (jLAuS JJjIjJ (j-a lAjaj l f r i (jjl A£ j l J <jLaJ Tyjbj • Jj*J jjLaxa / j -a j j j -a j j^ NA 

I j „ j_,s JJJSJ ^ L» DNA A_£ I1J-U>I (jjl j j PCR ' Sj,iSa i i u > . JJA J ^ « A I V I I J Procumbentes o j j£ j l 

j l j -a ( j j l J_J Ljj . j l J jj^aja-ijj JAajjj » j j j j j l L D N A (_5JĴ I ^JJ J JJ^JJJ^I Ü j j l ujUdwil U (ĵ _P cj-* 

tjl—aj . AjjàU ̂ j-ftj j L j JJJ* ^JJJ^ (j-4 j l J3 e l̂iüwil ^J^JA SCJUash-blot ' <ƒ«<" j J <_]j«-a JjJaJ AÜ JJJSI JJJ I J 

ôjL_ui (_$L$xu J J Lai Jjl j ia j Aj D jjj£ JjJA-a j j j S l i dlml J£AA (_£jljàjl ^JLALJS j l D N A ^IjàjAjl tj>ljJ >jV 

. j ^ j i PCR >SJVS'I CJJXAI o^y'jä' v ^ - j * - ^ ' J 2 cr« micro-extraction ^SJJSJ j l OJI&UI U D N A ^ I J Ü J 

4_sLil SjtajHijijA o j j l (DNA fingerprinting) D N A csjl^j du i l i l <i i j j > « g j t i i <-> L5J-OJJJ 

<Aii j l » j luuil b fi. patellaris ÀJJS AJ •!=_«>• A i L i l LSJXJJJJJJX V0 J ß. procumbens ÄJJS AJ i j j j ^ 

j ^ j L - l i i ^ J J J ô!1 J1 •-«•» - ^ - 1 -^ '^iç*^-* (Sat-121, PB6-4, OPX2) D N A csjljSs A«J=ä 

j ± j ^^-^jj^oljâ^a CjLL*a . Jj-J D N A gr H m j-1 (a5â.jLÂ. ^ L ^ a j j j 4 j j £ • ^t . ̂ ".̂  I '"«I j . ^ j . -»-̂  gj^j-i. *." 

i i L u j u ù l_i L^jI Â-UIJ LL> j 5 . patellaris Â i j £ j l i_LaLv A i L ^ I L £ ^ ^^y, j U L S (_5ÜJ AiJa ^ j l J J 

. •*• »j^ j l j_ä » ' i°" •••! JJJ-» ß. procumbens ÂJjS A_J i a j j j ^ AJL i l ,<:.'-j •••j' ' j- J L A L S ( j -Sj j j l jà j^ 

( j - l i 5. procumbens AaLól ^ U LSJ^^JJJ^« J J *\ J N ( 0 > » J J £ "^ - ^ L5JjS '^ß U^"J_H C«' O"^'JJ 

A_S ùjl Ö̂ AJÏ tj^jl j S ^Lä .Cluil ^jLû AJ Cwjl ia ^jj Aj iajijA (Jll ^äli A ajj_4Ajj£ A^ cljjliü (jjl L) ^"'-'A 

T i > j j j AJJ^ Ô*\ ^ ^ ^ u JJ ' — ^ CiJJ—^J^J-4 L£'J'^ ^ ^ ^ âLial [j\ A '^J^J ..ij'tjA j l • > J"I j j 

(^I j l j AJL i l tiL«j_Ljjjj^ j j j j l A ^ AJJJS (jn-% 'm ( j j j j j j ( j j l j j L»l i^_i îL ^ ß. procumbens 

iSjLxj^tjjjjt £ j j j J ( j j l j l ,J_SJ (JJIJJ Lu . ALÛL jj-a ß. procumbens ÄJjS j l ^pj l i l« ciW-»jj>»jjS 

(_£jLSi *"i *iS'il .CjàLj >Lj j j jt"i \ '^î-^ ^ j j > - * j j ^ ù ' j - ^ '"' ^" ^J-J 6Aji (_£jl ^LAL T. l ^Lâ A£ AiL-al 

,±*J^ j l j j j Li Jj-«j ^-*l j s I j ^ l i x l j j l ß. patellaris ÀJJS AJ i j j > « A i L i l '<_--j--j ' j- VÛ D N A j l 

^^j j 4Juia t à̂ -i. * OJJS \ J<̂  I j L\j I ( ( j i j l Â Ĉ Wv* JJJ*JJ^ . ̂ .1 • V.̂ . I '"'^J1 " j - -** (.JLUILUJÎ J j j ^J* *•"* 

A_J X»i o^ALii<« L^j I (_ ĵlSJ CliiSjl j j A£ (j-JJ^ Clli ^ j i l (jiiLijI JJ lAj jS (jjl j l {J j l^*J LlojJa . ùjjù 

B. patellaris AJJS J J JJLÙ AJ CLAJIJU ^l-^Jj A£ ^ i L$J£ A •> JT̂  1̂  J">JJJ Ô^' j ' • «^-^ /»j»̂ "» J J J J J J j ^ 

jäLi \.\ homoeologuos ^L^jjj^jß A ^ J La. j j j _ i j l J j l j ä N.N <>jj_«*jjS CSJJ j »J_W ÜJSJJJ^» 

l_jLa. A_J Ajä jAiia. JjLaJ Aj B. patellaris ij\& AjjS I-M..-I ..» JJ jjjio ( j j i j l j S (jjjS IJ . JJjîL jj-a L j j j (Jul 

( j j j j >*) ml JJJJLIJÏJJJÏ tS_i ß. patellaris AJJS J L J J JLüa.1 AJ A ^ XA tjj±& A ^j*i l i J .iij_uil OJJ-»JJJ 

^ L - ^ J J V >1 «J . J—AOJA r 'J 0 ^J>JJ ù^—" '"' >̂ >r' • iA (JJ^JLIA (_gL Îil (JALÄ. A_S I-SJJJAA (_5 L^a J j JA J J S 
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X_jé j-l—jXA JjL-aJ (J-JJä j l <j flV"^ < ^ l — $ J J L « J J j cl>Lil J J J L j Cl_aJ -IJä J ^ ''• ̂  (J j • f i ^ ^ <Jj§ 1 g"l *u j l 

ts-^jJU J-« Le ^JJ-^JJ <-S U i U j j j j j (Cercospora beticola) ^j* A£Î i(Heterodera schachtii) 

J-ïJJ-« Polymyxa betae .iljSLâ, £ jLä i_u>j j j J > ^ j l a J ( B N Y V V ) A S j - i j i» . USJJSJ i j j j j j j j & 

( j L$J> J J ^ I J U ^ jLS» j \ 'iw^ ' a ti'sa 3 ^ L i a j ^ ù-ijo-uiS j j - i a j L$JJL«JJ ^j-si .LJ—uil Ajà j S j l j ä .ijJa ĵ-« 

4_^j3 (JJLS JJJALS j l (^jjLSjisk j j Jâ laJ . ̂ J j l J t j ' j ' j - ^ *—LJAAI .lia jXJÂJK .jL_u<auâl JÙ j Ö.JJJ û . j j£ l j j 

(J-i. o l j ^jjjjJ-uiLw j ÛJJ-S (j—4 CJJJ_UO <_£ j L j j C^Lj-ui ^ - j L$ j jLaj j Û H ' j ' <jr" ^ -JJ3 J ^A jJ (Jj*^i%.a 

unj». j j Procumbentes ojj£ iS^*.j ^ L » 4_ij£ . . i ^ i L ^ ?JlLo ^ l i j l ^SL-al LJJJLSJJ ^jjl J JÜS 

^JL^JJLOJJ 4_j CMJULO i^LjJj J-OL* ijLkLiS ùd' ' j i j ' ^ j ' - 1 "iä jAü». ^ÏL^al j j ^ I j l j ä CIUAI ßeto 

^ i * l j (_£ L A 4_jj5 Beta t j " ''7- (_£ LA 4_ijS JjL_ui L J 4-UIJ lüa J J <S <"i...t ( j j j J J jy*ôi . ̂ lu iü , - A ' àfr~ » 

j j ( j j L j j ^ L j - i 5LJ t JJ_«I« £jl>» (»C.JJÎ& . J J J I J AJäjAüA. U t ^ j j j j J (_sAjLijji Procumbentes ej£ 

I J J I j j .Cijuil <jäjS i i i j j j ^a J_S jAüa. AJ Procumbentes » j j£ ^ l^JjS j l J JÜ j j j * csLpj J lïi j l CJ^JV 

<*_iLil f j j j _ - « j j £ tS—J Ci j j^^a 4_J Procumbentes « j j -S (j\_» 4—ijS ( j—aj j j^ j jS I jL_a d l äjit" 

ü L n i ä CIJJX^I U j (fragment additions) « iL^I u - j j > » j j £ i%.jS ü U iâ i(monosomic additions) 

I j i A l <•_£ ( j jLnJlk. (jJa . i i i j j l o j j î J ü i . B. vulgaris j » j j j 4-J (translocated) ».J-JS L>JL> U->JJJ-«JJ£ 

.Ciml o i i Jïü« ^JäjüiÄ *J j l j » Procumbentes »JJS j l jjL«j <u ^ J UU ,J j ( j j l j l CIJJI <Gàj£ ù j j i - o 

L^ju ^j_i i l j ĵ—a f j j j - ^ J J ^ ft ^>jA c 5 ' j ' J ^ ^ J * " ^ J I A U S j l AiLi-ôl t ^ j f lm j j j ^ ^ I A U S ( jA jâ j j j 

f J J J ^ J J 5 c s ^ J ^ J ä J - CJI J J I «llJla. j J i A i U ^ ^ JVUA iSjy^ i j \ ^ ^ J J , j-«jj>«J_£ o i j L u i i J i A j ' 

( . j j j 4J Procumbentes cîW-»jJ>«jj^ j ' LSJ^I^SASLI J J (jiw I J (jjLiiJal J j l i CJ ICÜLI o^i<àUiil 

Sat-121j PB6-4 >OPX2 ? Li? D N A LSJI>SJ i -«i^ < î . Ü * J ,_,-»: I j Ci^\ t,±à Jîii» ß. vulgaris 

•ij j j j ß. vulgaris ÄjjS U j ü j l J Procumbentes «JJS ^ U -üjS ? j j j -u L>a\inn\ *£ ü l »Ai ^LUIUJÎ 

>̂l—«J ( ^ J J D N A cSjl j-Sj Cjl_«Jaä , j j l ( j^ j jSI J J 4_j i j j j x »JLJJ <u«lj j L j U ( j j l J J . JJJS u-ù j l j i j j 

Jjjä j l uit"A< ( j l^ i- j jSj j l ojUloil U ß. patellaris i i j £ j ß. procumbens ÄJjS ^ L ^ J J J X J J S 

j fluorecence in sj'fw hybridisation isquash-blot hybridisation idot-blot hybridisation 

.CAJJI\ > jû o J I j j j j -a j j Ail^bl .^jn.ii^jjA ( j ^ ^ LSJJ D N A fingerprinting 

f jkl jà ( j L ^ I ilw' <̂ J-àj£ j»l-^jl l i j j ^ U -üj^j ,JJJ A£ squash-blot hybridisation I^JJSJ j l »jlüuil U 

j j _ ^ »US \ \ ' • • U i j î i ( jL^ J J (j-»jjj-«jjS ^^ oUS NV* * ) ^ U U S j l ( j j L j j jUi-iJ JI^XJ û'_« ^ -1" 

j j J L i i J J j j ß. patellaris i-ijS LJ ß. procumbens ÄJJS j l <sLi l ^ j j j x j j S LSJ J«U. A£ 1 J ( ^ U j l 

j J i j Ijj^t ( ^ l ^ j j j j j j !j<iAi*"i i_jljJ Ajl j j ^y^ i SjiS"i j j l A£ j l J j U i j J J I j j •(<> j J ij^aä) - j l J ( j Ä l i j j j JJäJ 

( jLAuS {J'J-*t ^ * ^J j ' f -* ' J ^ ' J û ^ * ' Uta' ÜJ^ '^y^"1 e J -̂«-J • J J P j ' J3 o-jliJwii ^ J J - fr*^-* O^W^* J J 

CjL i ^ j ^a i . j i~i...» fragment LJ J telosomic djj^^u <ÀL±>\ <S^«jj>»jjS CjULä ^ I j l J A£ ( ^ J J U 

4_J j L j j 4_S ' " ' • • ' ^jjll ' <j'<<" ( j j | J S J J ^ L j l j ^ . ̂ j-aj CJLÄJJI j ( - JUJ LI»* I J A j j l J (_£JjLaüu j j f r ^ j j j ^ j ä j ^ 

«LJIJÄ 4 J ^ J * j l AJLJ «Ll^ali vi J i j ' J ^ * ' J *^L-äl ' ̂ j * - ' j ' « j * ^ j lALp J iu iU j—aj D N A (J^JJ J r-1 j ^ " ' » l 
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