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Stellingen 

1 Voor waardplant-bodempathogeen interacties bestaat een positieve 
correlatie tussen de mate waarin het omringende milieu deze 
interacties beinvloedt en het nut van het ontwikkelen van betrouwbare 
in vitro resistentietoetsen voor dezelfde interactie. 

2 Ergosterolbepaling in planten als maat voor resistentie tegen 
schimmelziekten dient vermeden te worden vanwege de 
onbetrouwbaarheid van de resultaten en de grote milieubelasting die 
het met zich meebrengt. 

Gen-om-gen interacties tussen pathogeen- en waardplantgenotypen 
veroorzaken altijd fysiospecificiteit, maar niet altijd fysio's. 

Fusarium oxysporum f .sp. Uni is primair een rotschimmel. 

Het publiceren in een, voor de meeste wetenschappers, weinig 
toegankelijke taal, kan tot gevolg hebben dat foutief citeren en plagiaat 
in de hand gewerkt wordt. 

De waarde van het huidig onderzoek wordt vooral bepaald door de 
snelheid waarmee resultaten verkregen worden en door het prijskaartje 
dat eraan hangt. Daarom heeft het weinig zin zich als toekomstig 
onderzoeker druk te maken over het al dan niet erudiet zijn. 

Van de menselijke drang naar het verkrijgen van gelijke rechten zijn 
diegenen de dupe die hun rechten niet kunnen of niet mogen 
definiëren. 

Zolang de prijs van duurzaam geproduceerd tropisch hardhout nog 
ruim 50% hoger ligt dan die van niet duurzaam geproduceerd tropisch 
hardhout, hoeft men zich geen enkele illusie te maken over het 
succesvol introduceren van duurzame landbouwmethoden in de derde 
wereld. 

Verzorgende beroepen worden in de huidige maatschappij ernstig 
ondergewaardeerd. 



10 Door de eeuwen heen is door de maatschappij een dusdanig groot 
beroep gedaan op huisvrouwen dat het zijn van huisvrouw de status 
van beroep verdient. 

11 Door de mens niet verstoorde natuurontwikkeling is in Nederland 
onmogelijk en wordt vaak ten onrechte als term gebruikt voor het 
aanleggen en/of ontwikkelen van natuurlijk uitziende parken. 

Stellingen behorende bij het proefschrift, getiteld "Aspects of resistance of flax 
and linseed (Linum usitatissimum) to Fusarium oxysporum f.sp. Uni ", door 
G. M. L. W. (Ineke) Kroes 

Wageningen, 15 december 1997 
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General introduction 



General introduction 

FLAX AND LINSEED 

Origin and history 

Flax (Linum usitatissimum L.) is one of the earliest cultivated plant 

species. The progenitor of small seeded flax is considered to be L. tienne L., 

originating from Kurdistan and Iran, while a distinct type of L. bienne with high 

oil content and high seed weight, is supposed to be the progenitor of flax 

originating from the Mediterranean region (Murre, 1955, Zeven and De Wet, 

1982). The latter is also described as L. angustifolium. These species all 

belong to the family of the Linaceae. Flax is the only member of this family 

with economic importance, except for a few species that are grown as 

ornamentals. The crop is annual and self-pollinating. 

Flax must have been domesticated before 6200 BC in the 

Mediterranean coastal area and in Turkestan, Afghanistan, India and South 

Russia (Van Zeist and Bakker-Heeres, 1975; Gill, 1987). About 5000-3000 

BC semi-nomads, originating from the Middle East settled in Flanders and 

introduced flax cultivation. This is considered to be the beginning of flax 

culture in The Netherlands, Belgium, Northern France and Switzerland. 

(Dewilde, 1983). Since flax was domesticated, there has been a preference 

for growing the crop for fiber (linen) in the Western region and for linseed oil. 

in the Eastern region of Eurasia (Gill, 1987). The two types of the crop differ 

much in agronomic characters. Compared with flax grown for fiber, flax grown 

for linseed oil has a shorter statue, more branching and a later harvest time. 

Often the name flax is used for the type grown for fiber, while the other type is 

called linseed. This nomenclature will also be used in the present thesis. 

In the ancient Egyptian (2400-2200 BC), Greek and Roman cultures an 

advanced linen industry was established. Wearing "linen cloth" was 

considered to be a sign of aristocracy. The ancient Egyptians used linen for 

wrapping the royal mummies, additional to embalming the bodies of the 

deceased pharaohs with linseed oil. In The Netherlands and most likely also 

in Belgium and Northern France flax has been grown since the ancient times 

(Dewilde, 1983). In the book Historia Naturalis (29 BC), Plinius praised the 
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quality and fineness of the linen, originating from these regions (Bostock and 

Riley, 1856) and nowadays the finest quality linen still originates from 

Western Europe (Hayward, 1967). Flax fibers are known since 1200 as a 

source for paper industry (Murre, 1955). 

In linseed a distinction has to be made between edible linseed having a 

high content of linolic acid and a low content of linolenic acid, and non-edible 

linseed with a high contents of linolenic acid and a low contents of linolic acid. 

From 700 BC linseed is known to be edible. Historically its flour has been 

used in cakes (Murre, 1955). Seed extracts were used as a domestic remedy 

against several illnesses. Even at present the consumption of linseed is 

considered to improve health. 

Products of flax and linseed also are known to be used in the world of 

art. Since about 1200 (Murre, 1955) the most important base of paints was 

linseed oil (Jaxtheimer, 1984). For instance, many "old masters paintings" 

from Rembrandt, Vermeer and later also Van Gogh and Gaugain, were 

painted with linseed oil based paints, on linen textile. About 150 years ago 

"linoleum", a floor covering based on non-edible linseed, came on the market. 

Linseed, containing a high proportion of linolenic acid is the base of 

environmentally friendly paints nowadays. So, the species name given by 

Lineaus, Linum usitatissimum, which means useful flax is very much to the 

point. 

The market 

Flax 

Flax has always been an important crop for The Netherlands, with an 

acreage of about 30.000 ha since the beginning of this century, and an 

established linen market. The situation of the market for linen changed, when 

enormous amounts of low price Russian flax were introduced on the West 

European market in the late 1950. Next, the introduction of synthetic fibers, 

textiles and textile products, combined with strongly reduced cotton prices, led 

to a collapse of the linen market. Consequently the flax acreage in The 
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Netherlands decreased dramatically to about 3.000 ha in 1980. In 1996 the 

acreage was 3823 ha (Kozlowsky, 1997). 

In the last decades the market of agricultural products in the food sector 

stagnated in the countries belonging to the European Union (Riensema et al., 

1990). This led to a re-orientation of the agricultural sector. At the same time, 

society started to demand a more environmental friendly way of agricultural 

production in Europe. Thus, the interest grew for so-called "alternative" crops, 

new or rarely grown crops which can be cultivated by farmers in addition to or 

instead of the few major crops. Much research has been initiated since to 

develop new industrial crops, and to develop markets for their products 

(Riensema et al., 1990; Van Soest, 1990, 1994a, 1994b; Van Dam et al., 

1994; Van Kemenade et al., 1996). Among the crops investigated, flax is 

considered to be one of the most promising crops for Europe because, 

besides its established market for linen clothing, it has a broad range of 

utilization possibilities for new markets (see Table 1.1). Furthermore, flax 

growing cultivation does not need much fertilizers and agrochemicals, and 

therefore it has an environmental friendly way of production (Vreeke er al. 

1991). In 1996, 134.000 ha flax was grown in Western Europe. The countries 

with acreages of more than 10.000 ha in 1996 were France (44.500 ha), 

Spain (44.000 ha), The United Kingdom (20.500) and Belgium (11.200 ha). In 

other parts of the world, the countries with acreages of more than 10.000 ha 

in 1996 were Russia (135.000 ha), Belarussia (78.500 ha), Ukraine (54.500 

ha) and Egypt (20.000 ha) (Kozlowsky, 1997). 

Linseed 

Although the interest in Western Europe in growing linseed always has 

been much lower than for flax, the production of linseed reached high levels 

in other parts of the world. In the late 1700s in the USA and Canada, the first 

crop that was grown on new land was usually flax. After the World War II a 

large demand for linseed oil developed, with a top of 2.28 million ha 
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Table 1.1 

Plant fibers used or studied in different applications. The numbers represent the 
amount of different applications used or studied per plant fiber, whereby price of the 
fiber, technical and chemical properties, performance and environmental aspects 
were selection criteria (Van Dam, 1994). 

Fibers 

Flax 

Hemp 

Kenaf 

Miscantus 

Jute 

Abaca 

Sisal/Agave 

Coir 

Cotton 

Straw (cereals) 

Wood 

Matrix 

composites 

26 

7 

2 

9 

16 

3 

10 

3 

15 

8 

7 

Textile 

14 

5 

0 

0 

5 

1 

4 

0 

10 

0 

0 

Pulp and 

paper 

14 

7 

7 

7 

2 

8 

5 

2 

10 

10 

0 

Geo-

textiles 

3 

1 

1 

0 

1 

1 

0 

1 

0 

0 

0 

Non-

wovens 

5 

3 

1 

1 

0 

0 

1 

1 

1 

3 

0 

grown in the USA and 1.2 million ha in Canada. Since the late 1950s the 

demand and production of linseed steadily declined (Comstock, personal 

communication). In 1996 about 600.000 ha linseed was grown in Canada and 

120.000 in the USA. 

Breeding and cultivation 

Except for breeding for the usual goals, such as high yield, lodging 

resistance, disease resistance, etc. flax and linseed breeding programs focus 

on various other traits. There are distinct breeding programs for long and fine 

fibers (textile purpose), for edible linseed (reform-food industry), for non-

edible linseed, (paints and linoleum), and breeding for "double-purpose flax", 

short and low weight fibers for geo-textiles and non-wovens combined with 

high yields of linseed (Riensema et al., 1990). Most of the flax and linseed 
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Chapter 1 

breeding programs follow traditional methodology, i.e. crossing, followed by a 

selection process up to the sixth selfed generation (F6), followed by three or 

four multiplication steps. However, methods for genetic transformation and in 

vitro regeneration are available (Mlynârové er al., 1994) and the development 

of transgenic linseed has been successful (McHughen and Holm, 1995). The 

possibilities of doubled haploid techniques, to avoid the time consuming 

selfing process, have been studied (Nichterlein and Friedt, 1993), and this 

breeding method is available and operating. 

Flax and linseed cultivation requires a fine regular soil structure and a 

good drainage, to be able to sow early. The crop needs a low nitrogen level; 

sandy clay or loam is the best soil for growing flax. Flax does well after 

cereals, maize or leguminoses, but after potatoes or sugar beets the soil may 

be too loose and Rhizoctonia may become a problem (Anonymus, 1996, 

Vreekeefa/., 1991). 

The main flax pathogens are summarized in Table 1.2. Furthermore, 

other parasites like thrips (Thrips angusticeps Uzel, Thrips linarius Uzel), flea-

beetles (Longitarsus parvulus (Payk.), Aphthona euphorbiae (Schrank)), leaf 

rollers (Cnephasia communaria (H.-Sch.)) and nematodes (Ditylenchus 

dipsachi Kuehn), Meloidogyne hapla (Chitwoodi) may sometimes cause 

problems in flax growing (Verhoeven, 1961). Therefore a crop rotation is 

recommended of 6-7 years. 

Breeding for disease resistance 

World wide, breeding programs for disease resistance in flax and 

linseed focus on resistance to flax rust (Melampsora Uni) and Fusarium wilt 

(Fusarium oxysporum f.sp. Uni). Resistance to these diseases is very 

important to get a new cultivar accepted on the list of recommended cultivars 

in all parts of the world. In addition, in Western Europe resistance to scorch 

(Pythium megalacantum) is highly desirable for a new cultivar. For the other 

diseases the control is realized by seed treatment, crop rotation, and/or 
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Figure 1.1 Figure 1.2 

Flax wilt nursery in Normandy, France. Resistant and susceptible flax in the flax 
Photo obtained from the Coopérative wilt nursery in Normandy, France. Photo 
Liniere de Fontaine Cany, Fontaine le obtained from the Coopérative Liniere de 
Dun. Fontaine Cany, Fontaine Ie Dun. 

sometimes field applications of fungicides (Vreeke et al., 1991, Anonymus, 

1996). 

Flor (1940) studied both Fusarium wilt and flax rust. Based on the 

studies with flax rust the famous gene-for-gene theory was formulated (Flor, 

1955, 1956). The genes involved in the resistance to flax rust are well 

described now, and cultivars with resistances against all rust races are 

available. 

The genetics and resistance mechanisms of flax wilt were never fully 

described, although high levels of resistance in flax to Fusarium oxysporum 

f.sp. Uni have been obtained by recombination and selection (Amy, 1936). 

Selection for Fusarium resistance occurs in a relatively late stage of the 
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breeding program, in the F5 or F6 generation. For screening, the use of 

nurseries infested with Fusarium oxysoprum f.sp. Uni is common (Fig. 1.1). 

Fusarium wilt 

In 29 BC Plinius was the first to note that flax was, "scorching the ground 

where it is grown and (of) deteriorating the very soil itself" (Bostock and Riley, 

1856). Early work on flax in Flanders (Nypels, 1897) indicated that this 

exhaustion was caused by various diseases, including "vlasbrand" (scorch), 

"dode harrel" (foot rot), and "kouterplaag" (top death of flax). The symptoms 

described for "kouterplaag" are very similar to the symptoms of flax wilt 

(Barker, 1923). The causal agent was assumed to be a fungus called 

Fusicladium //n/'n.sp. Sorauer (Nypels, 1897). In the first half the 20th century 

flax wilt was never a serious threat in the flax growing areas of Western 

Europe, and relatively little West European literature on the subject is 

available (Friederich, 1962). Around 1970 an outbreak of the disease caused 

great losses in Normandy, France and at the same time in Groningen, in the 

north of The Netherlands. Selection for Fusarium wilt resistance on diseased 

fields in North Groningen, The Netherlands, (Trip, personal communication) 

led to 'Natasja', the first wilt resistant flax cultivar in Europe. 

Early work on flax wilt in the USA dates from 1889 by Otto Lugger, in 

Minnesota, USA. Lugger (1890) discovered that old flax straw could be the 

cause of wilt in hitherto wilt free fields, and concluded that the straw itself was 

the cause of flax wilt, instead of an assumed exhaustion of the soil. Snyder 

(1896) came to the same conclusion. In Japan two reports mentioned a 

Fusarium species, causing flax wilt (Hiratsuka 1897; Tochinai, 1925). In 1901 

Bolley demonstrated that flax wilt was caused by a fungus, which he called 

Fusarium Uni. This name changed in 1940 in Fusarium oxysporum f.sp. Uni 

(Snyder and Hansen, 1940). Bolley established the first flax wilt nursery, "Plot 

30" in Fargo, North Dakota, USA in 1894, while in 1913 a plot at the 

University of Minnesota, St. Paul, USA was inoculated with Fusarium 

oxysporum f.sp. Uni. Selection on these plots led to 'Chippewa' and 'Winota', 
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the first wilt resistant linseed cultivars (Amy, 1936). The first reports of flax wilt 

occurrence in Australia date from 1913 (Millikan, 1951), for India from 1923 

(Gill, 1987), for Northern Ireland from 1926 (McKay, 1947) and for Great 

Britain from 1941 (Wilson, 1944). In Eastern Europe the literature is quite 

difficult to access but in 1973 the disease is mentioned in a Russian 

publication (Dudin and Sysoenko, 1973). Flax wilt is well known now in all 

main flax and linseed growing countries and may cause severe losses. 

Fusarium oxysporum f.sp. Uni belongs to the Deuteromycetes (Fungi 

Imperfecti), section Elegans (Snyder and Hansen, 1940). The fungus is 

haploid and can produce three types of asexual spores, uni- (bi-)cellular 

microconidia, multicellular 4-5 septate macroconidia and chlamidospores. 

Chlamidospores can survive for a long period in the soil. Houston and 

Knowles (1949) reported a fifty year survival of Fusarium oxysporum f.sp. Uni 

in the soil in the absence of flax culture. The host range of the fungus is 

restricted to flax and linseed (Borlaugh, 1945; Davis, 1967). 

The main route of infection is through the roots (Nair, 1956).) Boyle 

(1934) described root rot and wilt in flax, both caused by Fusarium oxysporum 

f.sp. Uni. Turlier (1994) described a model of infection and colonization of the 

pathogen in flax root tissue, slightly deviant from most models for Fusarium 

infection and colonization. Wilt symptoms are classified into early wilt, late 

wilt, partial wilt and unilateral wilt (Kommedahl et al., 1970). The symptoms 

can appear through the whole growing season, starting with bending of the 

top (wilting), followed by yellowing of the leaves, often unilateral, then 

necrosis of the leaves and finally the death of the plant (Fig. 1.2). 

Temperature appears to be the most important environmental factor 

affecting wilt, and a temperature of 25-28 °C is mentioned to be the optimum 

for wilt development (Tisdale, 1917). At temperatures of 7-12 °C the fungus 

germinates slowly (Broadfoot, 1926). The effect of temperature may vary with 

the cultivars and with the genotypes of the fungus (Kommedahl et al., 1970). 

Low soil moisture might stimulate the development of wilt but the relationship 
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is not clear. Soil type does not seem to influence the incidence of wilt, since 

wilt has been found on most soil types (Bolley, 1901; Kommedahl et al., 

1970). Greenhouse experiments in Fargo, North Dakota, using soil from the 

flax wilt nursery "Plot 30", indicated that the amount of inoculum in the soil 

need not to be high to cause flax wilt (Kommedahl et al., 1970). However, 

Nair (1956) illustrated that an increase of inoculum resulted in an increase in 

the incidence of wilted plants. Fertilizers may have no direct effect on the wilt 

fungus (Kommedahl et al., 1970). Seed quality seems to be of importance. 

The use of damaged seed stimulates the development of the fungus in the 

seedling stage (Nair and Kommedahl, 1957; Anonymus, 1996). 

Contradictory results were reported concerning the inheritance of flax 

wilt resistance and the durability of the flax wilt resistance (Tisdale, 1917 

Nelson and Dworak, 1926; Burnham, 1932; Knowles and Houston, 1955 

Knowles ef a/., 1956; Kommedahl et al., 1970; Kamptham et al., 1981 

Pavelek, 1983; Goray et al., 1987, Popescu, 1995) but in the majority of the 

reports the resistance was mentioned to inherit quantitatively. Popescu (1995) 

concluded that both additive and non-additive effects are involved in the 

genetics of linseed resistance to Fusarium wilt, but that additivity seems to be 

predominant. 

OUTLINE OF THE THESIS 

In recent years some Dutch flax cultivars were observed to be less 

resistant to Fusarium oxysporum f.sp. Uni when grown in France, compared 

with results obtained six years earlier (Trouvé, unpublished results). This was 

considered to be an indication that a new race of the fungus might have 

developed. Therefore investigations concerning the existence of races in the 

fungus, were started to obtain more detailed knowledge of this host-pathogen 

relationship. 

In the past, screening methods in flax wilt nurseries proved to be too 

variable to be able to detect race specificity (Kommedahl et al., 1970). For 

that reason two in vitro screening methods were developed (Chapter 2). 

11 
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Because of the contradictions in published reports concerning histological 

observations of infection and colonization, as well as the possible existence of 

root rot caused by the same fungus (Tisdale, 1917; Boyle, 1923; Nair 1951; 

Turlier et al., 1994), a detailed study of infection and colonization in a 

resistant and a susceptible flax cultivar was performed. The results are 

described in Chapter 3. Screening methods for disease resistance are mostly 

based on secondary characteristics, which can cause difficulties in the precise 

determination of the nature of the resistance of a genotype. This is also the 

case in Fusarium wilt in flax and linseed. Therefore, the relationship was 

studied between parameters which show the amount of damage, like disease 

index, dry weight, and length reduction, and parameters which show the 

actual presence and quantity of the fungus, the amounts of ergosterol and 

fusaric acid, produced by Fusarium oxysporum (Chapter 4). With the help of 

one of the in vitro screening tests, the evaluation of the possible existence of 

races in the fungus and race specificity in the host could be studied in more 

detail (Chapter 5). In Chapter 6 the results are presented of a world-wide field 

experiment to study host * pathogen * environment interaction. 
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ABSTRACT 

Two types of in vitro seedling tests were developed to evaluate 

resistance in flax (Linum usitatissimum) against Fusarium oxysporum f.sp. Uni. 

In the first test a solid medium was used, seedlings were grown in test tubes 

containing vermiculite. The second test was based on a liquid medium, 

seedlings were grown in two-liter preserving jars of which the inner walls were 

lined with filter paper. Both systems contained a 10% MS-nutrient solution. 

The seedlings were inoculated with spore suspensions of Fusarium 

oxysporum f.sp. Uni. Disease severity was assessed after three weeks, by 

measuring the reduction of sprout length. Both methods proved to be useful 

for screening for resistance, for evaluating race specificity of resistance and to 

study pathogenesis. The test tube method proved to be the most accurate for 

the screening, but the preserving jar method was much less time and labor 

consuming. 

Key words: flax, linseed, Linum usitatissimum, Fusarium oxysporum f.sp. lini, 

in vitro test, resistance breeding, wilt, disease rating. 

INTRODUCTION 

In plant breeding efficient selection for disease resistance depends on 

the availability of representative tests such as infested field tests, greenhouse 

tests and in vitro tests. Much attention has been paid to develop such efficient 

and reliable screening tests, especially when a soil-borne fungus, such as 

Fusarium oxysporum is involved, a pathogen causing wilt and root rot in many 

crops (McCoy, 1988; Stephens and Elmer, 1988; Löffler and Mouris, 1989; 

Islam, 1992; Van Westrhenen era/., 1995). 

The Fusarium wilt disease results in economical damage in flax and 

linseed (Linum usitatissimum L.) (Beaudoin, 1988) and is caused by Fusarium 

oxysporum f.sp. lini (Bolley) Snyd. & Hans.. Within the species Linum 

usitatissimum flax and linseed are two distinguishable groups. Flax is grown 

for fibers while linseed is grown for oil. The two groups differ much in 
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agronomic characteristics. Linseed has a reduced height, more branching and 

a later harvest time. Based on field observations in a flax wilt nursery in 

Normandy, France, the assumption arose that there might be a difference 

between the two groups in Fusarium resistance. 

About the Fusarium-Wax interaction little is known. Also hardly anything 

is known about the infection and colonization process and about the 

resistance mechanisms in flax and linseed, because of the lack of reliable and 

accurate screening tests, especially in vitro ones. 

All over the world Fusarium resistance is a major objective in breeding 

programs for flax and linseed (Liu et al., 1993; Ondrej, 1993; Kenaschuk and 

Rashid, 1993; 1994; Li et al., 1994; Popescu et al., 1994; Gent, 1995). 

Chlamydospores of the fungus are difficult to destroy by agrochemicals and 

resistant cultivars are desired to control the disease. Conventional methods 

for screening of resistance in flax and linseed consist of field trials at infested 

sites (flax wilt nurseries) with visual assessment of wilt development. Such 

trials give highly variable results and therefore require adequate replications, 

both in space and time. 

Most soil types contain different Fusarium species, and the infestation 

patterns of Fusarium oxysporum in the soil can be variable (Tamietti and 

Pramotton, 1987). Because of interactions between pathogenic and non­

pathogenic Fusaria (Davis, 1966) and because the severity of the disease is 

influenced by the soil type (Alabouvette et al., 1982), it is difficult to predict 

how different flax and linseed cultivars react at different locations. Also races 

of Fusarium oxysporum f.sp. Uni have been reported, using field tests, pot 

tests and greenhouse tests (Broadfoot, 1926; Borlaug, 1945; Kulkarni et al., 

1969), but these reports gave rise to discussion. Using a greenhouse test, 

Fouilloux and Chaboche (1996) found no indication of race specificity. The 

genetic system of Fusarium resistance in flax and linseed is complex 

(Popescu, 1995) and a simple and reliable screening test would be of great 

help for detecting the resistance genes involved as well as obtaining insight 

into the infection and colonization process. Davis (1966) pointed out that 
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microfloral contaminants competing with fusarial wilt pathogens and cross 

contamination among formae speciales cannot be excluded using 

greenhouse tests, so in vitro screening methods are highly desirable. 

In the present study two recently developed in vitro tests are evaluated 

for the use in resistance research and breeding. A comparison is made with 

data from a flax wilt nursery in Normandy, France, which nursery serves as a 

guideline for determining Fusarium resistance in cultivars mentioned in the 

French descriptive list for new cultivars (Anonymous, 1992). Furthermore an 

evaluation is made of the suitability of the two tests in studying fundamental 

aspects of the Fusar/um-flax interaction, race specificity, and the infection and 

colonization patterns. 

MATERIALS AND METHODS 

Host 

Flax seeds from 'Ariane', 'Belinka', 'Laura', 'Marina', 'Regina', 'Saskia' 

and 'Viking' (CPRO-DLO stock collection) and 'Hermes' (Landbouwbureau 

Wiersum, Dronten, The Netherlands) and linseed seeds from 'Atalante', 

'Barbara' and 'Linda' (CPRO-DLO stock collection) were used. Directly before 

use the seeds were sterilized for 15 s in 70% ethanol, followed by 15 min in 

1 % hypochlorite. 

Pathogen 

Single spore cultures of Fusarium oxysporum f.sp. Uni (Fof), originating 

from wilted flax straw of 'Regina' grown in a flax wilt nursery at Ingelmunster, 

Belgium (Fof-B2) and from wilted straw from a flax wilt nursery in Normandy, 

France (Fof-F1) were provided by Dr. G. Marshall, The West of Scotland 

College, UK. Stock cultures were kept for long time preservation at -80 °C on 

Protect Bacterial preservers (Technical Service Consultants Ltd., UK). Before 

use, the stock cultures were grown on potato dextrose agar in the dark at 

24 °C for 14 days. In a pilot experiment, the isolates were determined as 

aggressive (Fof-B2) and moderately aggressive (Fof-F1). 
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In vitro screening 

Method 1 

Test tubes of 15 * 250 mm with glass caps were filled with 0.65 

vermiculite and 7.0 ml of a 10% MS-solution (Murashige and Skoog, 1962). 

The pH was adjusted to 5.8. The tubes were autoclaved for 20 min. Per tube 

one seed was sown, and 20 tubes per cultivar per isolate treatment were 

prepared. The tubes were placed in a climate chamber with 16 h light (Philips 

84 HF, 1100 lux) per day, at 22 °C. After six days the seedlings had 

developed just opened cotyledons and of each set of 20 tubes the ten 

seedlings least variable were selected on the basis of equal length (approx. 4 

cm). In this test ten cultivars were exposed to two isolates while in addition 

ten replicates per cultivar were treated with sterile water as a control, so the 

test consisted of ten inoculated replicates per cultivar/isolate combination. 

The selected seedlings were inoculated by adding 1 ml spore suspension of 

one of the two isolates, containing 105 spores per ml, to the vermiculite. For 

the controls 1 ml sterile water was used. To determine the best parameters 

for screening, disease symptoms as well as sprout lengths were measured. 

The following disease symptoms were distinguished: yellowing of leaves, 

brown spots on leaves, bending of the top, death of the top and death of the 

stem. Because of cultivar dependent regeneration after damage, which 

influenced the scores, regeneration as a parameter for disease symptoms 

was taken into account. The different disease symptoms and the occurrence 

of regeneration were scored at day seventeen. Length of the sprout was 

measured at two, four, six, eight, eleven and seventeen days after 

inoculation. Test tubes filled with vermiculite, and 'Laura' are shown in Fig. 

2.1. 

Method 2 

In two-liter preserving jars a 5 cm high strip of filter paper was placed on 

the inside of the wall and 100 ml of a 10% MS-solution was poured into the 

jar. The jars were autoclaved for 20 min. In this test eight cultivars were 
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Figure 2.1 

Method 1, in vitro screening test for 
Fusarium resistance in flax and linseed 
using test tubes with solid medium and 
'Laura'. Tube 1 shows the developmental 
stage at the day of inoculation, tube 2 
shows the healthy control, tube 3 shows 
'Laura' at 17 days after inoculation with 
isolate Fof-B2 and tube 4 shows 'Laura' 
at 17 days after inoculation with isolate 
Fof-F1. 

Figure 2.2 

Method 2, in vitro screening test for 
Fusarium resistance in flax and linseed, 
using a two-liter preserving jar with liquid 
medium, and 16 randomly placed seeds 
of eight cultivars, 7 days after inoculation 
with isolate Fof-B2. 

exposed to the two isolates. Per jar two sterilized seeds per cultivar were 

placed. In total 45 jars were prepared in a randomized block design from 

which fifteen jars were destinated for inoculation with the isolate Fof-B2, 15 

jars with the isolate Fof-F1 and 15 jars were destinated for treatment with 

sterile water as a control. In this way the test consisted of 30 replicates per 

cultivar/isolate combination. The seeds were placed on the upper edge of the 
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paper, so that the young roots could develop between glass and paper. The 

outsides of the jars were covered with aluminum foil to protect the developing 

young roots from direct light (Fig. 2.2). The jars were placed in a climate 

chamber with 16 h light (Philips 84 HF, 1100 lux) per day, at 22 °C. After six 

days the seedlings were inoculated by adding 1 ml spore suspension of 105 

spores per ml close to each seedling, between paper and glass. One ml 

sterile water was used for the controls. Disease symptoms as described for 

method 1 were observed but not in as much details as for method 1, and 

therefore are not presented. The sprout lengths of the seedlings were 

measured 21 days after inoculation. 

Field trial 

To be able to compare with the results of existing screening methods 

(field tests) a comparison was made with data, obtained from observations of 

1991 in a flax wilt nursery in Normandy, France (Beaudoin, 1991). These data 

are presented in Fig. 2.3 and Table 2.2. 

Statistical procedures 

Data of the sprout length measurements from both methods at the final 

days of the respective tests were subjected to an analysis of variance 

(ANOVA) and rating of disease severity per cultivar was determined 

subsequently as % length compared to the average values of the control 

tests. Average disease severity rating per experiment was calculated as the 

grand mean over the results with the isolates used. A correlation matrix was 

calculated from the results of the different data sets, i.e. the best parameter 

for creating a disease index from method 1, the disease severity per cultivar 

per isolate from both in vitro methods, the disease rating from both in vitro 

methods and the two field data sets. Subsequently, for all of these different 

data sets the cultivars were ranked from most susceptible to most resistant 

and from these ranking lists a correlation matrix was calculated as well. 
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Figure 2.3 

Disease symptoms of ten flax and linseed cultivars, inoculated with Fusarium 
oxysporum f.sp. Uni, isolate Fof-B2 or Fof-F1, scored 17 days after inoculation. At 
the x-axis the number of plants with a certain disease symptom observed at day 17, 
using method 1. At the y-axis the cultivars, ordered from most resistant (top) to most 
susceptible (bottom) according to the field data (Beaudoin, 1991). 

RESULTS 

Disease symptoms 

Disease symptoms were scored in detail in the test tube experiment. 

The symptoms varied with the different cultivars. In all cultivars the disease 

was sometimes expressed by a yellowing of the leaves, but not all diseased 

plants showed this symptom. Several plants of some cultivars showed 

development of necrotic spots on the leaves ('Barbara', 'Saskia', 'Atalante' 

and 'Linda'), or reacted with death of the top ('Barbara' and 'Linda'). Cultivars 

'Barbara' and 'Viking' started to wilt first and died shortly afterwards, whereas 

in other cases stem death occurred, followed by death of the seedling or by 

regeneration from the plant parts located under the dead stem part ('Barbara' 

and 'Linda'). Because the disease symptoms were different with the cultivars, 
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Figure 2.4 

Sprout lengths of four cultivars of resistant and susceptible flax ('Saskia' and 
'Regina') and resistant and susceptible linseed ('Linda' and 'Barbara'), inoculated 
with Fusarium isolate Fof-B2 (•), and with sterile water (O), using method 1. 
Standard deviations at error bars. 

no disease scale, based on these symptoms, could be developed. The 

different symptoms were scored separately and were compared with field 

data of the flax wilt nursery in Normandy, France (Beaudoin, 1991). As can be 

seen in Fig. 2.3, no single disease symptom gave a good correlation with 

these field data and neither did the cumulative disease symptoms. The most 

common symptom "yellowing of leaves" had the highest correlation with the 

field data (r = 0.38, n.s.) compared to the other disease symptoms. 
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Table 2.1 
Analyses of Variance (ANOVA) of sprout length measurements of flax and linseed 
seedlings inoculated with Fusarium oxysporum f .sp. Uni isolate Fof-B2, isolate Fof-F1 
or with sterile water using method 1 or method 2. 

Method 

1 

2 

Source of variance 

Isolate (or water) (Is) 

Residual 

Cultivar (Cv) 

Cv * Is 

Residual 

Total 

Block (Bl) 

Cultivar (Cv) 

Isolate (or water) (Is) 

Cv * Is 

Residual 

Bl * Cv * Is 

Total 

D.f. 

2 

27 

9 

18 

243 

299 

14 

7 

2 

14 

322 

360 

719 

S.S. 

1482.7 

46.0 

438.4 

186.6 

669.5 

3565.3 

122.8 

425.6 

287.3 

138.8 

1520.7 

179.9 

2624.2 

M.S. 

741.4 

1.7 

48.7 

10.4 

1.5 

8.8 

60.8 

143.6 

9.9 

5.2 

3.2 

V.r. 

435.1 

32.7 

7.0 

1.7 

11.6 

27.3 

1.9 

1.7 

Fpr. 

<.001 

<.001 

<.001 

<.001 

<.001 

0.003 

Plant length measurements 

Method 1 

A large variation in sprout length was found for all cultivars. The average 

total sprout length of all seedlings at the end of the experiment was 12.2 cm. 

The development of the most resistant and the most susceptible cultivars 

('Saskia' and 'Regina') and the most resistant and most susceptible linseed 

cultivars ('Linda' and 'Barbara'), inoculated with the isolate Fof-B2 and 

compared with the controls is shown in Fig. 2.4. The analysis of variance 

(Table 2.1) showed that most of the variance was due to the main effects, 

isolates and cultivars. The isolate * cultivar interaction was significant, but the 

contribution to the total variance was relatively small. In Table 2.2 the results 

are presented as the average length as % of the control for ten cultivars and 
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Table 2.2 

Disease severity rating of flax (F) and linseed (L) cultivars, given as the % lengths of 
the cultivars compared with controls of the same cultivars, calculated from the results 
of length measurements for two isolates Fof-B2 and Fof-F1 from method 1 or 
method 2, the overall average disease severity rating per experiment (ADR), and 
field data from a flax wilt nursery in Normandy, France (Beaudoin, 1991). The overall 
aggressiveness of the isolates for the two methods is given as the average isolate 
aggressiveness (AIA). 

Cultivar Type 

Linda L 

Atalante L 

Laura F 

Marina F 

Viking F 

Hermes F 

Saskia F 

Ariane F 

Barbara L 

Belinka F 

Regina F 

AIA 

Method 1 

B2 

89.9 

71.8 

69.1 

67.4 

55.8 

-

64.4 

51.5 

54.3 

58.3 

53.0 

63.6 

F1 

93.4 

96.1 

86.5 

91.3 

81.6 

-

92.4 

80.8 

70.9 

91.4 

87.7 

87.2 

ADR 

91.7 

84.0 

77.8 

79.4 

68.7 

-

78.4 

66.2 

62.6 

74.9 

70.4 

Method 2 

B2 

96.6 

82.7 

-

81.0 

79.7 

98.7 

-

88.3 

73.9 

-

74.3 

84.4 

F1 

108.9 

85.8 

-

80.4 

85.9 

100.9 

-

88.9 

85.0 

-

84.8 

90.1 

ADR 

102.7 

84.3 

-

82.8 

82.8 

99.8 

-

88.6 

79.6 

-

79.4 

Field data 

1.3 

1.5 

1.8 

1.8 

2.3 

2.3 

2.8 

5.0 

7.5 

8.0 

9.0 

two isolates. As expected, isolate Fof-B2 was the most aggressive while 

Fof-F1 was less aggressive. 'Barbara' was susceptible, 'Linda' clearly 

resistant to both isolates. For the other cultivars there was more variation 

between isolates. 

Method 2 

Disease symptoms in method 2 showed the same diversification as in 

method 1, and also a large variation in length was found for all cultivars and 

for the two isolates used in method 2 (Table 2.2). The average total length at 

the end of the experiment was 8.3 cm, which was considerably less than the 
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Table 2.3 

Linear correlation coefficients between the disease-parameter "yellowing of leaves" 
(YL), disease severity rating as the % length reduction of the cultivars for the two 
isolates, Fof-B2 (B2) and Fof-F1 (F1) using method 1 (M1) and method 2 (M2), the 
average disease severity rating for the two methods (ADR), furthermore for the 
results from the field data obtained from a flax wilt nursery in Normandy, France 
(FR). 

M1YL 

M1B2 

M1F1 

M1ADR 

M2B2 

M2F1 

M2ADR 

FR 

M1 

YL 

1.00" 

-0.69* 

-0.42 

-0.65* 

-0.63 

-0.33 

-0.49 

0.38 

M1 

B2 

1.00** 

0.62 

0.94" 

0.72* 

0.74* 

0.76" 

-0.69* 

M1 

F1 

1.00** 

0.85" 

0.46 

0.29 

0.39 

-0.42 

M1 

ADR 

1.00" 

0.67* 

0.61 

0.66* 

-0.65* 

M2 

B2 

1.00** 

0.84** 

0.95" 

-0.63 

M2 

F1 

1.00** 

0.96** 

-0.33 

M2 

ADR 

1.00** 

-0.49 

FR 

1.00** 

* Significant correlations at 5% level 
** Significant correlations at 1 % level 

average lengths from method 1, 12.2 cm. The ANOVA again showed that the 

variance for cultivars and for isolates were the major contributors to the total 

variance (Table 2.1), while the cultivar * isolate interaction variance, though 

significant, was small again. Also in this experiment the isolate Fof-B2 was 

more aggressive, and was 'Linda' clearly resistant. The susceptibility of 

'Barbara' was less clear. 

Correlations between screening methods 

In general most significant correlations were found using method 1 and 

isolate Fof-B2, the most aggressive isolate. The parameter which was most 

useful as a disease index, namely "yellowing of leaves", was correlated only 

at a significant level (P = 0.05) with length reduction as caused by isolate 

Fof-B2 using method 1, and the average disease severity rating (ADR) 

determined by method 1 (Table 2.3). Parameters of method 1 (isolate Fof-B2 
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Table 2.4 

Rank correlations between the disease parameter "yellowing of leaves" (YL), disease 
severity rating as the % length reduction of the cultivars for the two isolates, Fof-B2 
(B2) and Fof-F1 (F1) using method 1 (M1) and method 2 (M2), the average disease 
rating for the two methods (ADR), furthermore for the results from the field data 
obtained from a flax wilt nursery in Normandy, France (FR). 

M1YL 

M1B2 

M1F1 

M 1 A D R 

M2B2 

M2F1 

M2ADR 

FR 

M1 

YL 

1.00** 

0.32 

-0.21 

-0.07 

0.35 

0.71 

0.31 

0.36 

M1 

B2 

1.00** 

0.79** 

0.82** 

0.43 

0.18 

0.41 

0.89** 

M1 

F1 

1.00** 

0.96** 

0.54 

0.04 

0.50 

0.75* 

M1 

ADR 

1.00** 

0.61 

0.14 

0.58 

0.79** 

M2 

B2 

1.00** 

0.68* 

0.99** 

0.75* 

M2 

F1 

1.00** 

0.76* 

0.43 

M2 

ADR 

1.00** 

0.74* 

FR 

1.00** 

* Significant correlations at 5% level 
** Significant correlations at 1 % level 

and ADR) correlated well with the French field data, but parameters of 

method 2 did not correlate significantly with the field data (Table 2.3). 

When using rank correlations no significant correlations were found for 

the parameter "yellowing of leaves" (Table 2.4). However, with ranked data 

many significant correlations were found between the in vitro methods and 

the French flax wilt nursery, but not between the two in vitro methods. 

DISCUSSION 

Disease symptoms 

Because of the diversity of disease symptoms between and within 

cultivars (Fig. 2.3) and the lack of correlation with the resistance scores in the 

fields (Table 2.3 and 2.4) these symptoms are not suitable for a 

representative disease rating. Jouan and Sailly (1991) developed an in vitro 

seedling test for Fusarium-Wax, using test tubes with vermiculite, and rating 

based on yellowing of leaves, wilting and death of plants. Fusarium spores 
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were added immediately at sowing. For getting a reliable disease screening 

the incubation time was 70 days, while three different levels of spore 

concentration were needed. However, the authors stated that this in vitro test 

was not an effective way to screen a large number of accessions because the 

test is too laborious. In the in vitro test for Fusarium disease resistance in flax 

developed by Van Westrhenen et al. (1995) rating also was based on disease 

symptoms. It was not clear what kind of disease symptoms were used. The 

results from method 1 in the present study showed that screening for disease 

symptoms is unreliable. 

Length measurements 

Bos and Parlevliet (1995) stated that reduction of growth can be a 

significant disease symptom. In Fusarium assessments of length reduction 

measurements have been used successfully as a parameter for disease 

rating (Löffler et al., 1997). However, a disadvantage of length measurements 

in flax and linseed is that growth differs between cultivars, also because of 

differences in selection criteria for flax and linseed. On average linseed is 

shorter than flax. Linseed is grown for seed production and therefore selected 

for branching while flax is selected for fiber production and therefore selected 

for a long main stem. For that reason a disease rating based on length 

measurements was used by comparing the average length of the diseased 

cultivar with that of the healthy control of the same cultivar, the latter being set 

at 100%. Compared with the French field data (Beaudoin, 1991) this disease 

rating gave good correlations for both methods of the present study (Table 

2.3 and 2.4). Thus, using disease severity rating based on sprout length of 

diseased plants compared with that of controls of the same cultivar, proved to 

be successful for the screening of flax as well as linseed with the in vitro 

methods. 

The isolate Fof-F1 was moderately aggressive and gave moderate 

discrimination between cultivars. Better results were obtained using the more 

aggressive isolate Fof-B2. For both in vitro methods this isolate was capable 
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to distinguish between resistant, moderately resistant and susceptible 

cultivars. The correlation with the field data was better for the aggressive 

isolate Fof-B2 than for the less aggressive isolate Fof-F1. In the field it is most 

likely that the most aggressive Fusarium strains are expressed strongest, 

explaining the better correlation between the in vitro test results of the more 

aggressive isolate and the field data. This suggests that in the French field 

more aggressive Fusarium strains dominate. The French field data 

corresponded well with the Dutch and French descriptive lists of cultivars 

(Anonymous, 1986; 1988; 1990; 1992; 1994; Ebskamp and Bonthuis, 1993, 

1997) Therefore, the use of an aggressive isolate is an important factor for 

reliable and representative results in in vitro screening tests. 

Application of in vitro methods 

Method 1 gave the best correlation with the field data, and gave a better 

discrimination between the cultivars, compared with method 2. This can be 

explained by the fact that in the procedure of method 1 a selection for equal 

sprout length took place at the day of inoculation, removing a source of 

environmental variation. This procedure is not feasible for method 2 because 

of the lack of separate units. However, method 2 consisted of easier 

manageable units to work with and for that reason this method was much less 

time and labor consuming. With method 2, one person could test about three 

times more accessions in the same time compared with method 1. 

Fusarium resistance in flax and linseed is a very important selection 

criterion and it is desirable to select for this trait in an earlier stage than is the 

case at present. In the two in vitro methods 20 or 30 seeds per cultivar-isolate 

combination were required, while in field trials about 1000 seeds are used in 

general. The multiplication rate of flax and linseed is low. This means that 

screening for Fusarium resistance in field trials can be performed only after 

several multiplication steps, i.e. later in the breeding program. Using one of 

the in vitro methods, a test for Fusarium resistance can already be carried out 

in an early stage of the breeding program. While field trials have to be 
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repeated for at least two years, the in vitro tests can be performed within the 

time span of one month. 

Cultivar * isolate interaction was observed but the analysis of variance 

showed that this interaction was of little importance. Although, for both in vitro 

methods it seems possible to trace interaction patterns and the interaction 

seems to be better quantifiable using method 1 (Table 2.1). 

Method 2 was based on a liquid medium, which included that the roots 

stayed intact during the development of the disease. This was in contrast with 

method 1, where the roots almost completely damped off in a very short time. 

So method 2 gives the additional possibility to perform more fundamental 

histological studies for infection and colonization processes of the pathogen. 
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ABSTRACT 

Infection and colonization of flax seedling roots by Fusarium oxysporum 

f.sp. Uni was studied using semi-thin sections of plastic-embedded roots of a 

susceptible and a resistant flax cultivar. Within two days, the fungus colonized 

the calyptra cell layers by intercellular, and subsequently also intracellular, 

growth. Attempted intercellular penetration of calyptra cell layers and 

eventually the epidermis induced the formation of distinct appositions next to 

penetration hyphae. Other cells next to penetration hyphae collapsed, which 

was accompanied by swelling of the neighbouring cells. Invasion of calyptra 

cell layers and growth towards the epidermis was counteracted by enhanced 

production of new layers of calyptra cells by the meristematic epidermis 

(protodermis), and their successive detachment and sloughing off. The 

epidermis and cortex were reached and penetrated in four days, which was 

followed by rapid and massive colonization of the entire root tip. From eight to 

sixteen days after inoculation, the lower parts of the roots were colonized 

throughout and the cortical region was degraded. Colonized tissues were 

severely plasmolyzed. Heavily colonized roots were hollowed out, the only 

remaining tissues being the epidermis and exodermis outside, and the 

colonized vascular tissue inside. Eventually the vascular region was also 

degraded. Upward spread of root rot was restricted in the period studied to 

the first 10 mm from the root tip, the upper parts of the root and the hypocotyl 

being unaffected except for invasion through lateral roots infected at their 

respective tips. Mature roots with a well-developed epidermis and exodermis 

were not invaded from outside. Disease development was similar in resistant 

'Hermes' and susceptible 'Regina', although occlusion of intercellular spaces 

with gum-like components and cell wall enforcement with phenolics seemed 

to be more prominent in the resistant cultivar. 

Keywords: colonization, flax, Fusarium oxysporum f.sp. Uni, infection, Linum 

usitatissimum, root tip, wilt. 
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INTRODUCTION 

Fusarium oxysporum f.sp. Uni (Bolley) Snyder & Hansen, causal agent of 

wilt disease in flax (Linum usitatissimum L), is one of the most important 

diseases in this crop all over the world. The fungus is soil-borne and infection 

takes place mainly through the roots, although the hypocotyl may also be 

infected (Nair, 1956). Several early studies on this disease concerned the 

mode of infection and colonization of flax by F. oxysporum f .sp. Uni (Tisdale, 

1917; Boyle, 1934; Millikan, 1951; Nair, 1956; Nair and Kommedahl, 1957). 

More recently, Turlier et al. (1994) described the infection process in 

hydroponically grown flax seedlings using a G US-transformed strain of the 

pathogen. Based on studies using thick (7 urn) sections of paraffin-embedded 

samples, they concluded that the fungus penetrates into undifferentiated 

protodermis cells and root cap cells, and then reaches the subapical 

meristem where it remains endophytically as a permanent internal site of 

infection for the differentiating xylem. In other host species, however infection 

is supposed to take place through transversal, mainly intercellular, growth of 

hyphae from the epidermis towards the stele (Bishop and Cooper, 1983). The 

present study on semi-thin (2 urn) sectioned samples was carried out to 

obtain further details on the infection process, using both a resistant and a 

susceptible flax cultivar. 

MATERIALS AND METHODS 

Host and pathogen 

Flax seeds from 'Hermes' (Landbouwbureau Wiersum, Dronten, The 

Netherlands) and 'Regina', (CPRO-DLO stock collection) were used. Directly 

before use the seeds were sterilized for 15 seconds in 70% ethanol, followed 

by 15 min in 1% hypochlorite. Single-spore cultures of Fusarium oxysporum 

f.sp. Uni (Fof), isolate Fof-F60 were provided by Dr. G. Fouilloux, INRA 

Versailles, France. Stock cultures were stored at -80 °C on PROTECT 

bacterial preservers (Technical Service Consultants Ltd, UK). Before use, 
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cultures were grown on potato dextrose agar in the dark at 24 °C for 14 days. 

Inoculation of seedlings 

An in vitro test was performed on liquid medium (see Chapter 2) using 

'Hermes' and 'Regina', and the isolate Fof-F60. During the test 16 preserving 

jars were used. Three seeds of each cultivar were randomly placed in each 

jar. After six days of growth the seedlings from 12 jars were inoculated by 

pouring 1 ml spore suspension of 105 spores per ml onto each root, while four 

jars were treated with sterile water as a control. After two, four, eight, and 

sixteen days, nine seedlings of three inoculated jars and three seedlings of a 

control jar were harvested for histological examination. Length of the 

seedlings was determined at harvesting. 

Light microscopy 

Immediately after harvesting, segments of 3 mm length of root tips, 

branched root segments, root segments from the part of the root 1 cm below 

the junction of stem and root, and hypocotyl segments, were fixed in 3% 

glutaraldehyde in 0.025 M phosphate buffer (pH 6.8). Fixed segments were 

dehydrated in a graded ethanol series and embedded in Technovit 7100 

(Heraeus Kulzer GmbH, Friedrichsdorf, Germany). From all harvests, four to 

ten samples of root tips of both cultivars were examined, and two to six 

samples per cultivar of root branching sites, of parts 1 cm below the junction 

of stem and root, and of the hypocotyl. Using a Jung 2040 rotary microtome 

and Ralph glass knives, sections of 1.5 - 2.0 |urn thickness were made at 

various levels of the root tips, from 0.1 mm up to 0.5 cm above the root tips, 

and from the other plant parts described. The sections were stained with 

toluidine blue O (Jensen, 1962) and viewed with a Zeiss Axioplan microscope 

(Zeiss-Nederland B.V., Weesp, The Netherlands) using bright-field light 

microscopy and differential interference contrast. Sections were 

photographed using Zeiss MC-100 photographic equipment and recorded on 

llford Pan F50, Kodak Technical Pan and Kodak Ektachrome 320 T film. 
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Figure 3.1 

Sprout lengths of 'Hermes' and 'Regina', inoculated with Fusarium oxysporum f.sp. 
Uni isolate Fof-F60 (•) or with sterile water (O), using method 2 described in Chapter 
2. Standard deviations (error bars) mostly were very small and consequently have 
disappeared under some of the markers. 

RESULTS 

Macroscopic symptoms 

The fungus showed a distinct preference for the root tip throughout the 

experiment. Two days after inoculation, the fungus was ubiquitously present 

around the root tips but much less so in the zone of elongation or at lateral 

root branches. Three to five days after inoculation, most root tips turned 

purple over the first 1.5 mm, most likely due to the production of fungal 

pigments. After about eight days the root tips decayed and turned brown. 

After twelve days, the brown zone extended to 3 - 5 mm from the tip. Decay 

spread right across the root, eventually resulting in hollow roots consisting of 

merely the epidermis as outer coat and, internally, remainders of the stele. 

After sixteen days, decay had spread to maximally 10 mm from the tip, and 

both cultivars had developed disease symptoms such as leaf yellowing and 

necrosis of the shoot apex. Disease development was similar in both 

cultivars, as was shoot length reduction (Fig. 3.1). Only at the end of the 

experiment some distinction was observed between both cultivars, all plants 
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of 'Regina' being reduced in length while several plants of 'Hermes' were not. 

Infection of the root tip 

Two days after inoculation, fungal hyphae proliferated in both cultivars in 

between the cell layers of the root cap as well as inside the cells of the outer, 

senescent and already detached layers of the calyptra (Fig. 3.2A to E). From 

the colonized outer layers, the fungus attempted to invade the inner, healthy 

layers of the root cap and the epidermis (sensu Esau, 1977) or protodermis 

(sensu Weier era/., 1974) itself. In flax, a clear distinction between epidermis 

and root cap cell layers does not exist, because the successive cell layers of 

the root cap are formed by iterative longitudinal division of the epidermis. The 

newly formed inner cells develop into cortex cells, and the outer ones into 

successive layers of root cap cells (this is the so-called body-cap concept; 

Esau, 1977). Fungal hyphae grew through the middle lamella, inside the outer 

wall of calyptra cells or in the mucilage that covered them (Fig. 3.2E). Fungal 

growth in new root cap layers initially was intercellularly only, although rapidly 

followed by intracellular growth in detaching cell layers. 

Figure 3.2 A - E 

Micrographs of roots of 'Regina' (A and B) and 'Hermes' (C to E) seedlings, two days 
after inoculation with Fusarium oxysporum f.sp. Uni. Sections of the meristematic 
zone, 0.25 - 0.30 mm from the tip. Bar = 20 urn. 
A. General view. Fungal hyphae are present abundantly in between the cell layers of 
the root cap. The meristematic epidermis (e), or protodermis, is covered by several 
cell layers that together form the calyptra (c). The cortex (co) consists of isodiametric 
cells. Note meristematic activity in the epidermis and the pericycle (arrow heads). 
B. Detail of A. Cell collapse at the site of invasion (arrow) of a fungal hypha into the 
middle lamella in between anticlinal calyptra cell walls. Cell contents are intensely 
stained with toluidine blue O. Neighbouring calyptra cells are swollen (*), and 
calyptra cells underneath have formed an apposition-like structure (arrow head). 
C. Overview. Note the cell collapse (open arrow) and appositions (black arrow) in 
calyptra cells upon fungal penetration. The calyptra cell layer involved is sloughing 
off. 
D. Detail of an area as shown in C. Note swollen cells (*) next to a collapsed cell 
(open arrow), and the appositions produced in other calyptra cells next to a 
penetration hypha (black arrow). 
E. Detail of C. The penetration hypha (arrow) that has incited apposition (a) 
formation initially grew through the mucilage-like distended outer cell wall (m). 
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Penetration of hyphae into the middle lamellae between the anticlinal 

walls of calyptra and epidermis cells induced the production of disc-shaped to 

globose appositions in these cells (Fig. 3.2C to E), as well as the collapse of 

cells (Fig. 3.2A to D). Collapsing cells were often bordered by swollen cells, 

and had darkly staining contents. Appositions were particularly formed in 

resistant 'Hermes', and stained blue-green with toluidine blue O, indicative of 

the deposition of phenolics (O'Brien and McCully, 1981). Appositions were 

also observed in senescent, plasmolyzed root cap cell layers in the process of 

detachment (Fig. 3.2C and E) and at later stages of pathogenesis often also 

in cells of fully detached root cap layers that had been sloughed off (not 

shown). Fungal attempts to penetrate the root were thus counteracted by 

production and detachment and sloughing off of new layers of root cap cells, 

generated from the epidermis. 

Four days after inoculation (Figs. 3.3, 3.4 and 3.5), the calyptra had 

been massively invaded in both cultivars up to 1.5 mm from the root tip. Most 

calyptra cells, including the ones having produced appositions at an earlier 

stage (Fig. 3.3C), were heavily plasmolyzed and seemed dead. The fungus 

had passed the calyptra and reached the epidermis at several places both in 

'Regina' (not shown) and in 'Hermes' (Fig. 3.3D). Collapsing, darkly staining 

cells neighboured by inflated and swollen ones were at this stage commonly 

observed in or close to the epidermis rather, than in the calyptra (Fig. 3.3B 

and D). 

Figure 3.3 A - D 

Micrographs of roots of 'Regina' (A and C) and 'Hermes' (B and D) seedlings, four 
days after inoculation with Fusarium oxysporum f.sp. Uni. Sections of the 
meristematic zone, 0.25 - 0.30 mm from the tip. Bar = 20 pm. 
A. General view of a superficially infected root. 
B. General view of a more deeply infected root. 
C. Detail of A. Invasion of penetration hyphae through middle lamellae in between 
anticlinal calyptra cell walls. Note the appositions in calyptra cells in the process of 
detachment (arrow). Abbreviations: c, calyptra; e, epidermis. 
D. Detail of B. Many cells have collapsed (open arrows), and their contents are 
intensely stained with toluidine blue O. Neighbouring cells are heavily swollen (#). 
The penetration hyphae (black arrows) have reached the epidermis and the cortex 
(co). 
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Once the cortex was reached by the fungus (Fig. 3.3D), the entire root 

tip was colonized rapidly and massively, as demonstrated in Fig. 3.4 and Fig. 

3.5 for successive sections of the same root tip of 'Hermes' at four days after 

inoculation. From the root tip to 0.20 mm off (Fig. 3.4A), the fungus had 

colonized the root throughout, including the cortical and stelar tissues. 

Cellular disorganization and incipient plasmolysis were observed throughout 

the root. At 0.23 mm from the tip (Fig. 3.4B), the same condition was 

observed except for one side of the root where a single row of living, more or 

less unaffected epidermal cells was present. At 0.26 mm from the tip (Fig. 

3.4C, overview and Fig. 3.5A and B, detail), about two-thirds of the root was 

diseased whereas one third part was unaffected. A sharp boundary existed 

between affected and unaffected cells. No hyphae were present in the 

unaffected region, that apparently connected with the single row of unaffected 

epidermal cells at 0.23 mm from the tip. At 0.30 mm from the tip (Fig. 3.4D), 

the entire root (including the stele) seemed unaffected except for the calyptra. 

Typical appositions were not produced in the cortex (Fig. 3.3D). The cortex 

was colonized intercellularly, although the fungus was also observed inside 

the cell walls and eventually also inside the cell lumina (Fig. 3.5A and B). 

Colonized parts of the cortex underwent plasmolysis and cell contents were 

disorganized (Fig. 3.3D; Fig. 3.5A and B). 

Figure 3.4 A - D 

Micrographs of successive sections from the same root of a 'Hermes' seedling, four 
days after inoculation with Fusarium oxysporum f.sp. Uni. Sections of the 
meristematic zone, 0.20 - 0.30 mm from the tip. Bar = 50 urn. 
A. Section taken at 0.20 mm from the root tip. Hyphae are present abundantly in the 
calyptra layers surrounding the root tip. All parts of the root have been invaded at this 
level. 
B. Section taken at 0.23 mm from the root tip. Same condition as in A, except that 
locally the epidermal cells are unaffected (open arrows). 
C. Section taken at 0.26 mm from the root tip. Two-third of the root is infected as in A 
and B, while a third part (connecting to the healthy epidermal cells shown in B) is 
unaffected. A sharp boundary exists between invaded and unaffected areas (open 
arrows). 
D. Section taken at 0.30 mm from the root tip. The root is unaffected throughout, 
except for the presence of fungal hyphae in the calyptra (arrow). 
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Eight days after inoculation (Fig. 3.6A to D), root tips of both cultivars 

were colonized throughout and the contents of colonized cells stained little or 

not compared with four days earlier. Cell disorganization and plasmolysis was 

more severe than at four days after inoculation. Empty-looking cortical cells 

were colonized both intercellularly and intracellular^, although in the latter 

case upon closer scrutiny fungal hyphae often seemed to grow inside the 

distended cell wall, rather than inside the cell lumen (not shown). Intracellular 

colonization seemed to be preceded by a transient intercellular phase, as 

evidenced by root areas that still were colonized intercellularly only (Fig. 

3.6B). Fungal hyphae were often poorly stained, suggesting a withdrawal of 

fungal cytoplasm from abundantly colonized areas to the colonization front. 

Gum-like compounds were incidentally observed intercellularly in 'Hermes' 

(Fig. 3.6C and D) but not in 'Regina'. 

Sixteen days after inoculation, tissue death was complete up to 10 mm 

from the root tip and, judged from their staining ability, fungal hyphae had 

withdrawn most of their cytoplasm from this region. Dissolution of host cell 

walls was extensive, although remainders of darkly stained cell contents were 

occasionally observed (Fig. 3.7A). A single observation was made of a 

wedge-shaped lateral invasion site in a root, containing severely plasmolyzed 

cells and bordered by cells with blue-green stained walls suggestive of 

phenolics (Fig. 3.7B). 

Figure 3.5 A - B 

Details of Figure 3.4 C. Micrographs of a section of a root of a 'Hermes' seedling, 
four days after inoculation with Fusarium oxysporum f.sp. Uni. Sections of the 
meristematic zone at 0.26 mm from the tip. Bar = 20 urn. 
A. Transition zone from unaffected root tissues (lower part) to invaded ones (upper 
part of micrograph). Fungal hyphae are present abundantly in between cortical cells 
and often also inside these. Affected cells have darkly stained contents and show 
incipient plasmolysis; several of them appear to be largely empty. 
B. Invaded cortical and stelar tissues. Hyphae (arrows) are present abundantly in 
between the cortical and stelar cells, and also inside several cortex cells. Do not 
confuse with cell nuclei (arrow heads). Incipient plasmolysis is seen in many cortical 
cells of which the cytoplasm otherwise seems relatively unaffected (compare with 
lower part of A). 
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Disease development was similar in 'Hermes' and 'Regina', although 

occlusion of intercellular spaces with gum-like components and cell wall 

enforcement with phenolics seemed to be more prominent in 'Hermes'. 

Infection of mature parts of the root 

Behind the zone of elongation (> 2 mm from the root tip), infection via 

the epidermis was not observed, even though fungal hyphae did now and 

then occur on the surface of mature parts of the root (Fig. 3.8A). However, 

roots were often colonized from within, apparently from lower situated 

colonized parts (Fig. 3.8B and C, Fig. 3.9). Intercellular growth of fungal 

hyphae induced severe plasmolysis of neighbouring cortical cells (Fig. 3.9C) 

and preceded intracellular colonization, dissolution of cell walls and decay of 

the colonized tissues (Fig. 3.8B and D). Typically, the cortex of colonized 

roots was hollowed out, the diseased roots being covered by the intact 

suberized exodermis and the epidermis (Fig. 3.8B). Internally, the stele 

remained relatively unaffected, although the protoxylem vessels were clearly 

colonized from out of the cortex (Fig. 3.8B, overview and Fig. 3.9, detail). At 

Figure 3.6 A - D 

Micrographs of roots of 'Regina' (A) and 'Hermes' (B to D) seedlings, eight days after 
inoculation with Fusarium oxysporum f.sp. Uni. Sections of the meristematic zone, 
0.25 - 0.30 mm from the tip. Bar = 30 urn. 
A. Root tip in similar condition as in Fig. 3.3 (four days after inoculation) except that 
cell disorganization and plasmolysis are more severe. Few or no cortical cells have 
normal appearing cytoplasm; rather, cell contents have condensed against the wall. 
Degradation of cell walls is not yet apparent. Fungal hyphae in the calyptra (arrows) 
are poorly stained compared with those in the cortex. 
B. Root tip showing restricted intercellular growth of hyphae in between cortex cells 
(arrow heads). Intracellular growth occurs in the calyptra but not in the cortex. Fungal 
hyphae in the calyptra are poorly stained compared with those in the cortex. 
C. The cortex and stele have been colonized intensely. Note severe plasmolysis in 
otherwise empty-looking cortical cells. Degradation of cell walls is not yet apparent. 
Gum-like compounds are present in some of the intercellular spaces (arrow heads). 
Abbreviations: e, epidermis; co, cortex. 
D. Detail of C. Cortical cells have been heavily colonized and are probably dead. 
Fungal hyphae in the calyptra are poorly stained compared with those in the cortex. 
Note the hypha in between two epidermal cells (arrow heads) touching upon towards 
the exodermis (x). 
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Infection and colonization of flax seedling roots 

the end of the experiment, the vascular area had been completely degraded 

as well (Fig. 3.10A to C). While this was invariably the case in susceptible 

'Regina', degradation was less extensive in 'Hermes', which at this stage had 

often produced gum-like compounds in the intercellular spaces and had 

greenish stained remainders of cortical cell walls (Fig. 3.1 OD). 

In a number of cases, fungal hyphae were encountered inside the cortex 

and xylem of roots at branching sites (not shown). Such observations were 

only made at 16 days after inoculation. Infection in all cases seemed to have 

taken place at the tip of the lateral root. 

Upper root parts and the hypocotyl region 

Throughout the experiment, fungal hyphae remained confined to the lower 

parts of the roots. In the upper parts of the root (10 mm from the hypocotyl) 

and in the hypocotyl region itself no fungal material or defense responses to 

colonization were observed at all. Vessel occlusions were not encountered 

either (not shown). 

DISCUSSION 

Flax seedling roots were infected at the root tip, by invasion of the root 

cap and the epidermal layer that generates the successive cell layers of the 

calyptra. Mature parts of roots, with a fully differentiated epidermis and a 

suberized exodermis, were not subject to infection. Mature roots were 

colonized either from the invaded root tip, or from diseased lateral roots that 

had been invaded at their own tips. These observations support those of 

Turlier et al. (1994), who reported that hyphae of a GUS-marked transgenic 

strain of Fusarium oxysporum f .sp. Uni were particularly active at the root tip 

and the tips of lateral roots, while mycelium was not active on the mature non-

exudating root surface. Resistance of the mature root surface, comprising 

both the epidermis and a suberized exodermis, to infection has also been 

observed in lilies infected by F. oxysporum f.sp. lilii (Baayen and Rijkenberg, 

unpublished results). 
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Figure 3.7 A - B 

Micrographs of roots of 'Regina' (A) and 'Hermes' (B) seedlings, sixteen days after 
inoculation with Fusarium oxysporum f.sp. Uni. Sections of the meristematic zone, 
0.25 - 0.30 mm from the tip. Bar = 50 urn. 
A. Cell wall degradation of the colonized cortex has resulted in incipient hollowing out 
of the root. Fugal hyphae are largely unstained. Note remaining apposition in 
calyptra (arrow). Abbreviations: c, calyptra; e, epidermis; x, exodermis; co, cortex. 
B. Wedge-shaped lateral invasion of the root (open arrows), associated with severe 
plasmolysis of the cells involved and with degradation of their walls. Cells next to the 
invasion front have darkly stained walls. Eventually the entire root has been 
colonized, and plasmolysis has spread throughout the root. 

Figure 3.8 A - D 

Micrographs of roots of 'Regina' (A and C) and 'Hermes' (B and D) seedlings, four 
(A) and eight days (B, C and D) after inoculation with Fusarium oxysporum f.sp. Uni. 
Sections of young parts of roots at 1.3 -1.4 mm from the tip. Bar = 30 urn. 
A. The root is unaffected. Hyphae are incidentally found on the root surface (arrows). 
B. Heavily colonized and partially hollow root. Plasmolysis is visible throughout the 
cortex. Whereas many cell walls are in the process of degradation, others are darkly 
stained with toluidine blue O and are relatively unaffected (left hand part of root). 
Note gum-like materials in intercellular spaces at bottom part of root. A well-
developed exodermis (x) is present. 
C. Intercellular growth of hyphae, although transient, precedes intracellular 
colonization of the cortex. Note severe plasmolysis of cells in the invaded area. 
D. Detail of B, showing colonization of the stele and degradation of the cortex (*). 
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Figure 3.9 

Detail of Fig. 3.8 B. Fungal hyphae 
have colonized the cortical and 
stelar parenchyma, and have 
reached the protoxylem vessels 
(px; arrow heads). Hyphae initially 
colonize parenchyma cells walls 
and, from these, invade the cell 
lumina (arrows). Bar =10 urn. 

Figure 3.10 A - D (page 58) 

Micrographs of roots of 'Regina' (A, 
B and C) and 'Hermes' (D) 
seedlings, sixteen days after 
inoculation with Fusarium 
oxysporum f.sp. Uni. Sections of 
young root parts at 3.0 mm from 
the tip. Bar = 50 urn. 
A. General view of a hollow root. 
The epidermis and exodermis have 
remained. 
B. Detail of A showing remainders 
of protoxylem vessels (arrows). 
C. Detail of A showing epidermis 
(e) and exodermis (x). Except for a 
few darkly stained walls, little 
remains of the cortex (co). 
D. A similar area in 'Hermes' as 
shown in C for 'Regina'. Thickened, 
darkly stained walls (arrow heads) 
and gum-like compounds in the 
intercellular spaces (arrows) are 
slightly more abundant. 
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Invasion of the cell layers of the root cap was counteracted by enhanced 

meristematic activity of the epidermis, and by successive detachment and 

sloughing off of the invaded root cap layers. Although distinct appositions 

were also produced next to penetration hyphae in the root cap cells and the 

epidermal cells, the present observations suggest that enhanced production, 

detachment and sloughing off of root cap layers may be equally effective for 

prevention or retardation of infection. Such a mechanism may be unique to 

plant species in which the root cap is similarly derived from meristematic 

epidermal (protodermal) cells, rather than from an apical root cap meristem. 

In flax, the homology of root cap cells and epidermal cells proper is supported 

by the present observation that appositions were produced in both cell types, 

but never in the cortical cells underneath the epidermis. To the knowledge of 

the authors, such a defense mechanism has not been described previously. 

However, some similarity exists with the sloughing off of occluded xylem 

tissue from roots and incidentally also from the stems of carnations infected 

with F. oxysporum tsp. dianthi (Baayen et al., 1989, 1996). 

Once fungal hyphae had reached the epidermis, colonization of the 

cortex and stele was rapid and massive. The fungus rapidly degraded the 

cortex, hollowing out the root, and eventually also the xylem. While 

protoxylem vessel elements were invaded by the fungus, their colonization 

was no more rapid than that of cortical cells. Colonization and disease in flax 

seedling roots thus resemble root rot such as has been described for lily root 

tips infected by F. oxysporum f.sp. ////'/, including plasmolysis of affected cells 

and degradation of their walls (Baayen, 1992, 1996; Baayen and Rijkenberg, 

unpublished results). Although F. oxysporum f.sp. Uni induces wilt symptoms 

in flax typical root rot symptoms are a well-known part of the disease 

syndrome. Boyle (1934) even considered root rot and wilt of flax to represent 

two distinct types of the disease, each with independently inherited resistance 

factors. Hollowed-out roots as presently described have been observed 

commonly and consistently in field trials of the first author (Kroes, 

unpublished results). During later stages of pathogenesis, the fungus 
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supposedly moves from the rotten parts of the root through the xylem into the 

stem, thus switching to the vascular phase of its life cycle, mentioned by 

previous authors (Millikan, 1951; Turlier et ai, 1994). 

The observations of this study lead to a model of infection and 

colonization that differs from that proposed by Turlier ef al. (1994). These 

authors suggested that the fungus colonizes the undifferentiated cells in the 

meristematic zone and remains viable inside these cells in the form of 

endomycelium. Endophytic fungal growth would follow cell division, the 

hyphae being later eliminated from the differentiated cortex and phloem cells 

while remaining alive in the epidermis, and in and between the vessels and 

the stelar parenchyma. In the present study, however, colonized epidermal 

and cortical cells underwent severe plasmolysis and disorganization of cell 

contents and often suffered cell wall degradation. Shortly, colonized cells 

appeared moribund or dead rather than supportive of endophytic hyphae; 

fungal growth inside cortical cells without apparent damage was at best a 

short transient phase in disease development. Also, the protoxylem was 

reached by a massive front of hyphae, rather than by differentiation of 

endophytically colonized undifferentiated cells into protoxylem vessels. No 

indications at all were obtained that the fungus spreads endophytically into 

the epidermis and cortex, later on to be eliminated from the cortex but not 

from the epidermis. The presence of hyphae in stele and epidermis but not in 

the cortex mentioned by Turlier et al. (1994) may have been due to 

progressive colonization of the stele after onset of the vascular phase of the 

disease, coinciding with restricted invasion of the upper outskirts of the root 

cap. In contrast to the model proposed by Turlier et al. (1994), the 

observations presented here fit closely with earlier models of root infection by 

F. oxysporum (Bishop and Cooper, 1983; Benhamou et al., 1994), in which 

the root tip xylem is reached by centripetal growth of hyphae through the 

cortex and paratracheal parenchyma. 

Appressoria were not observed in the present study. Turlier et al. (1994) 

interpreted short hyphal branches as representing appressorium-like 
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structures, although the mycelium never seemed to penetrate under these 

structures. In the present study fungal hyphae rather invaded the middle 

lamella region of the anticlinal cell walls of calyptra and epidermis cells in the 

same manner as described for lily, pea and tomato infected by F. oxysporum 

f.sp. litt, f.sp. pisi and f.sp. lycopersici, respectively (Baayen and Rijkenberg, 

unpublished results; Bishop and Cooper, 1983). Infection of the inner cell 

layers of the root cap and the epidermis induced the formation of appositions 

in some cells, while other cells collapsed. The reason for these different 

responses is not clear. Swelling of cells adjacent to collapsing ones may be a 

matter of osmotic pressure. 

Disease development in resistant 'Hermes' did not differ appreciably 

from that in susceptible 'Regina', although after 16 days reduction in sprout 

length was more common in 'Regina' than in 'Hermes'. Microscopically, 

differences were minimal as well although some plant reactions, like the 

formation of appositions and intercellular gom-like and phenolic compounds 

were observed earlier in 'Hermes', in general. Differences in pathogenesis 

between susceptible and resistant cultivars have been reported previously, 

the fungus being restricted to the cortex in 20-day-old seedlings of resistant 

'Redwood', whereas the phloem and xylem of susceptible 'Punjab' had been 

invaded by that time (Nair, 1956; Nair and Kommedahl, 1957). A possible 

explanation for the minimal differences found between 'Regina' and 'Hermes' 

may be the development of rot rather than wilt symptoms in the present study. 

Furthermore, it might be plausible that the slight differences in early reactions 

may have larger consequences in later growth stages. 
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ABSTRACT 

Measurements of ergosterol and fusaric acid were carried out, using 

plants of flax ('Hermes' and 'Laura') and linseed ('Culbert' and 'Linda'), all 

cultivars with field resistance to Fusarium oxysporum f.sp. Uni, and of a 

susceptible flax cultivar ('Regina'). Plants were grown in a flax wilt nursery 

and in an in vitro test. Very low concentrations of ergosterol were detected in 

the healthy looking material of the resistant cultivars originating from the field 

test as well as the in vitro test, whereas the concentrations in the diseased 

cultivar were very variable. Fusaric acid was detected in none of the 

experiments in planta. Ergosterol levels appeared too variable to be useful in 

estimating levels of resistance or tolerance in flax. Fusaric acid was not 

detectable at all in these cultivars. As the fungus was present in the 

apparently resistant cultivars in very low levels and in the susceptible cultivar 

in variable, but clearly higher amounts, resistance seems the case for these 

cultivars, rather than tolerance. 

Key words: ergosterol, flax, fusaric acid, Fusarium oxysporum f.sp. Uni, 

linseed, Linum usitatissimum, resistance, tolerance. 

INTRODUCTION 

Flax wilt is one of the most frequent diseases in flax (Linum 

usitatissimum L.), and is caused by the fungus Fusarium oxysporum f.sp. Uni 

(Bolley) Snyder and Hansen. While flax defense mechanisms have been 

studied extensively (Tisdale, 1917; Nelson and Dworak, 1926; Burnham, 

1932; Knowles and Houston, 1955; Knowles era/., 1956; Pavelek, 1983, see 

also Chapter 3), it is still open to discussion whether the plant defense 

mechanism is based on resistance or tolerance, and whether toxins play a 

role in fungal development. According to Agrios (1988) resistance is the ability 

of an organism to exclude or overcome, completely or in some degree, the 

effect of a pathogen or damaging factor, while tolerance is the ability of a 

plant to sustain the effects of a disease without dying or suffering serious 

66 



Chapter 4 

injury or crop loss. Also the amount of toxic residue allowable in or on edible 

plant parts is under the law. 

The fungal sterol ergosterol has been used to quantify the amount of 

fungal material in planta (Seitz et al., 1979; Gretenkort and Ingram, 1993; 

Liljeroth et al., 1996) and in cases where Fusarium was the causal agent of 

the disease, the results indicated good correlations with fungal development 

(Snijders and Krechting, 1992; Gretenkort and Helsper, 1993; Remotti, 

1996a). Remotti (1996a) found that even very small amounts of ergosterol 

were detectable, indicating that quantification of the fungal material by 

measuring the amounts of ergosterol in planta may be used to determine the 

presence of fungal material even in healthy looking plants. 

Snijders and Krechting (1992) found a reasonable correlation between 

the fungal biomass of Fusarium culmorum (W. G. Smith) Saccardo in wheat 

as determined by ergosterol measurements, and the toxin, produced by this 

fungus, deoxynevalenol (DON) in planta. Remotti (1996b) could not find a 

relationship between the amount of ergosterol in gladiolus, inoculated with 

Fusarium oxysporum f.sp. gladioli (Mass.) Snyder & Hansen, and the toxin 

produced by this fungus, fusaric acid. Fusarium oxysporum f.sp. Uni produced 

large amounts of fusaric acid in vitro, compared with other forma speciales of 

Fusarium oxysporum that cause wilt (Remotti, 1996b). Fusaric acid has been 

found in various crops (Gapilout et al., 1996; Remotti and Löffler, 1996). 

Davis (1969) was able to detect reasonable amounts of fusaric acid in flax in 

planta. Apparently fusaric acid plays a role in the pathogenicity of the fungus. 

With help of ergosterol measurements to quantify the amount of the fungus, 

and by fusaric acid measurements to assess the possible level of 

pathogenicity and disease assessments, it might be possible to see whether 

resistance or tolerance to Fusarium oxysporum f.sp. Uni is operating and if 

there is a relationship between the amount of ergosterol and the amount of 

fusaric acid in planta. 

Field tests at two flax wilt nurseries, and an in vitro test, using five flax 

and linseed cultivars and an isolate of the fungus, were carried out to 
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determine the nature of the plant reaction. Ergosterol as well as fusaric acid 

contents were measured repeatedly and compared with disease ratings in the 

field experiment, and with sprout length measurements in the in vitro 

experiment. 

MATERIALS AND METHODS 

Field experiment 

In a pilot experiment straw of 'Regina' was used, grown at a flax wilt 

nursery at Ingelmunster, Belgium. After harvest, flax straw with severe wilt 

symptoms was collected randomly. The straw was stored in a shed for two 

years. Afterwards the fungus was isolated from the straw, purified and 

characterized by exposing 'Regina' flax seedlings to the fungus in an in vitro 

test, according to the rules of Koch (Agrios, 1988). The seedlings showed the 

wilting symptoms as observed to be caused by Fusarium oxysporum f.sp. Uni 

(see Chapter 2). Three random samples of the straw were used for ergosterol 

extraction. 

In a field experiment seeds of 'Culbert' and 'Hermes' (Coopérative liniere 

de Fontaine Cany, Fontaine Ie Dun, France), 'Laura', 'Linda' and 'Regina' 

(CPRO-DLO stock collection) were used. The cultivars were grown in a flax 

wilt nursery in Normandy, France (see Chapter 1, Fig. 1.1) and in a non-

infested field near this nursery. A split plot design, in three replicates, with the 

factors harvest and cultivar, was used for both fields. The plot size was two 

rows of 2.5 m, 30 cm apart. The density of sowing was 1.0 g m"1. Between 

every harvest-block of five cultivars two rows with a resistant cultivar 

('Hermes') was sown, to prevent possible side effects caused by the 

occurrence of empty spaces from the early harvests. From six weeks after 

sowing, cultivars were harvested every fortnight, after disease scoring 

according to Rashid and Kenaschuk (1993), six harvests in total. The plants 

were counted and freeze-dried. Per sample total dry weight was determined. 

The plants were stored at -20 °C until extraction. The fungus was isolated 

from randomly taken soil and from flax samples and characterized according 
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to the rules of Koch, as in the pilot experiment. 

In vitro experiments 

Seedlings of the same five cultivars were grown in liquid medium, in 

preserving jars (see Chapter 2) and exposed to the Fusarium isolate Fof-F60 

(see Chapter 3). Per jar, 16 seeds of one cultivar were sown. For both 

ergosterol and fusaric acid measurements, 120 jars were inoculated with the 

isolate Fof-F60 and 120 jars with sterile water as a control. Sprout lengths 

were measured before the harvests at one, two and three weeks after 

inoculation. The plants were freeze-dried, dry weight per sample was 

determined and the samples were stored at -20 °C until extraction. The total 

experiment consisted of a randomized block design with five cultivars, two 

treatments (isolate and control), three harvest times, two types of 

measurements (ergosterol and fusaric acid), and two replicates in space and 

two replicates in time. 

Extraction and measurement of ergosterol and fusaric acid 

The assay procedure for ergosterol was a modified version of that of 

Gretenkort and Helsper (1993). Three samples of 0.5 g of the two year old 

'Regina' straw, samples of 0.5 g (in duplo) of harvests one to three of the field 

experiment, and samples of 1.0 g (in duplo) of harvest four to six of the field 

experiment, were cut into pieces and ground in a mortar. The same 

procedure was followed for the total amounts of all dried plants of the in vitro 

experiment. The ground material was transferred to teflon-lined screw-cap 

test tubes and saponified in 5 ml 20% methanolic KOH (w/v), 30 min, 70 °C, 

under constant agitation. After saponification 1.8 ml demi-water and 3.8 ml 

hexane was added to the test tubes and firmly shaken for 5 min. The upper 

hexane-phase was collected in 4 ml vials and dried stepwise at 35 °C, under 

a flow of nitrogen. This step was repeated three times. The residue was 

resuspended in 1 ml methanol. Aliquots of 20 to 100 ul were analyzed by 

reverse-phase HPLC on a Cis column (Spherisorb ODS 2, 125 * 4 mm, 
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particle size 3 urn) heated to 25 °C, with methanol (0.6 ml/min) as the mobile 

phase. 

Where GC analysis was employed to confirm the presence of 

compounds detected by HPLC analysis, aliquots of 1.0 ul were injected 

(injection temperature 300 °C) onto a Chrompack CP Sil5 column (length 

50 m, coating thickness 0.12 urn, oven temperature 250 °C, carrier H2 gas). 

The compounds were detected using a flame ionization detector 

(temperature 300 °C) and analyzed using a Shimadzu CR3A integrator. 

For fusaric acid extraction, samples of 0.5 g (in duplo) of harvests one to 

three of the field experiment, and samples of 1.0 g (in duplo) of harvest four 

to six of the field experiment, were cut into pieces and ground in a mortar. 

The same procedure was followed for the total amounts of all dried plants of 

the in vitro experiment. The ground material was transferred to teflon-lined 

screw-cap test tubes and suspended in 5 ml methanol, adjusted to pH 10 with 

5% NH4OH. After 30 min extraction under constant agitation, samples were 

centrifuged at 1500 rpm for 5 min at 4 °C. The supernatants were stepwise 

collected in 4 ml vials and dried under nitrogen. The cake was resuspended in 

5 ml methanol, re-extracted and supernatants were collected in the respective 

vials and again dried under nitrogen. The residue was methylated with 0.2 ml 

of diazomethane (Furniss et al., 1989). After 5 min, the excess of 

diazomethane was evaporated. The residue was extracted three times with 5 

ml hexane-ethyl acetate (9:1) and supernatant was concentrated to 1 ml, 

under nitrogen. Aliquots of 1 pi were analyzed by GC on a Chrompack CP 

Sil8 column (lenght 25 m, coating thickness 0.12 urn, injection temperature 

200 °C, oven temperature 150 °C for 5 min, then a gradient of 10 °C m"1, and 

final temperature 200 °C, held for 7 min, carrier H2 gas). The compounds 

were detected using a flame ionization detector (temperature 250 °C) and 

analyzed using a Shimadzu CR3A integrator. 
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Data processing 

The numbers of plants recorded in the field experiment were used to 

calculate the average number of plants per cultivar, per harvest time and per 

treatment (infested or not). The averages of the infested fields were divided 

by the corresponding averages of the non-infested fields to obtain the relative 

plant number per cultivar, per harvest time. The same procedure was followed 

for the in vitro experiment. Also the calculation of relative dry weights of the 

field and in vitro experiments, and the relative plant lengths of the in vitro 

experiment were carried out similarly. 

RESULTS 

Field experiment 

In the two years old, heavily infested flax straw of 'Regina', ergosterol 

was found in large amounts with little variation in quantity (0.42 ± 0.05 mg g"1 

straw). 

In the new field experiment in Normandy, 'Culbert', 'Hermes', 'Laura' and 

'Linda' showed hardly any symptoms according to the disease scoring, 

'Regina' however, showed the disease from the fourth harvest date onward 

(Table 4.1). 'Culbert', 'Hermes and 'Linda' had a reduced germination in the 

infested field compared to the uninfected field. 'Laura' germinated nearly the 

same in both fields and 'Regina' germinated slightly better in the infested 

field. Once germinated, the plants grew and developed well until the second 

harvest date in both fields. In the infested field, from the second harvest date 

in 'Regina' and from the fourth harvest date in the other cultivars, individual 

plants started to wilt, showing symptoms like top bowing and necrosis while in 

the non-infested field no signs of wilt were observed until the last harvest 

date. The plants finally seemed to dry out but remained standing. The 

average dry weight of all cultivars in the first harvest was higher for the 

infested field, compared with the non-infested field. After the first harvest the 

relative dry weight decreased for all cultivars, and most drastically for 

'Regina'. 
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Table 4.1 

Disease scores of five flax and linseed cultivars, taken at six harvest times during the 
growing season, according to Rashid and Kenaschuk (1993) in a field experiment at 
a flax wilt nursery in Normandy, France. The relative number of plants was 
determined by comparing the amounts of plants in the infested field with a parallel 
experiment in the same year at a non-infested field nearby. The relative dry weight of 
the plants grown at the infested field are compared with the dry weights of the plants 
from the parallel experiment at the non infested field. Ergosterol was assessed in the 
plants originating from the infested field. 

Cultivar 

Culbert 

Hermes 

Laura 

Linda 

Regina 

Harvest 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

Disease 
scoring 

1.0 
1.0 
1.0 
1.0 
1.0 
1.5 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 
1.0 
1.5 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
3.0 
4.0 
7.0 

Relative number 
of plants 

0.61 
0.66 
0.68 
0.56 
0.56 
0.64 

0.77 
0.86 
0.86 
0.84 
0.65 
0.65 

0.83 
0.98 
0.84 
1.01 
0.98 
0.92 

0.62 
0.59 
0.66 
0.59 
0.86 
0.65 

0.92 
0.98 
1.10 
1.07 
1.02 
1.03 

Relative 
dry weight 

1.59 
0.70 
0.87 
0.33 
0.35 
0.46 

2.23 
0.81 
0.36 
0.40 
0.28 
0.49 

2.15 
1.01 
0.31 
0.91 
0.57 
0.59 

1.68 
0.73 
0.34 
0.47 
0.70 
0.59 

2.86 
0.87 
0.54 
0.29 
0.21 
0.16 

Ergosterol 
mgg"1 

0.000 a1 

0.001 a 
0.001 a 
0.001 a 
0.000 a 
0.001 a 

0.001 a 
0.000 a 
0.000 a 
0.001 a 
0.001 a 
0.001 a 

0.000 a 
0.000 a 
0.000 a 
0.000 a 
0.000 a 
0.001 a 

0.001 a 
0.001 a 
0.000 a 
0.000 a 
0.000 a 
0.000 a 

0.000 a 
0.001 a 
0.001 a 
0.020 a 
0.105 b 
0.182 c 

1 Values in column followed by unlike letters are significantly different at P < 0.05 
according to LSD test; LSD 0.05 = 0.76. 
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Table 4.2 

Relative lengths as a measure of the disease (see Chapter 2), of five flax and 
linseed cultivars in an in vitro experiment. The relative number of plants is 
determined by dividing the average amounts of the germinated plants per cultivar in 
the inoculated jars by the average amounts of germinated plants per cultivar of the 
control jars. The relative dry weight is determined by dividing the average dry 
weights per cultivar in the inoculated jars by the average dry weights per cultivar in 
the control jars. Ergosterol was detected in the plants originating from the inoculated 
jars. 

Cultivar Harvest Relative Relative number Relative Ergosterol 

length of plants dry weight mg g"1 

Culbert i 

2 

3 

Hermes 1 

2 

3 

Laura 1 

2 

3 

Linda 1 

2 

3 

Regina 1 

2 

3 

1 Values in column followed by unlike letters are significantly different at P < 0.05 
according to LSD test; LSD OM = 0.002. 

Ergosterol was not detected in any cultivar in the non-infested field until 

and including the last harvest, and also the amounts of ergosterol in 'Culbert', 

73 

109 

112 

88 

91 

95 

83 

94 

97 

87 

97 

101 

81 

92 

89 

76 

1.05 

1.05 

1.12 

1.05 

1.04 

1.07 

1.11 

1.03 

0.90 

0.96 

1.21 

1.12 

0.98 

1.02 

1.05 

0.89 

0.88 

1.00 

1.09 

1.11 

0.96 

1.12 

1.09 

1.04 

0.93 

0.98 

0.99 

0.98 

1.07 

0.94 

0.001 a' 

0.001 a 

0.002 a 

0.001 a 

0.001 a 

0.002 a 

0.001 a 

0.002 a 

0.002 a 

0.001 a 

0.002 a 

0.002 a 

0.001 a 

0.002 a 

0.003 b 
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'Hermes', 'Laura' and 'Linda', grown in the infested field, were very low or 

negligible (Table 4.1). Ergosterol was detected in clearly higher amounts in 

'Regina', from the fourth harvest of the infested field, but these amounts were 

very variable (respectively 0.020 ± 0.029; 0.105 ± 0.178 and 0.182 ± 0.149). 

Fusaric acid was not detected in any cultivar neither from the non-

infested field, nor from the infested field. 

In vitro experiment 

The parameters, dry weight and number of germinated plants, from the 

in vitro experiment showed less pronounced differences, compared with the 

field test. Germination was equal for all cultivars for non-inoculated and 

inoculated plants. Dry weight did not distinguish cultivars, only length 

measurements gave a difference between 'Regina' and the other cultivars in 

the last stage. 

Ergosterol contents were rather low in this experiment too, but relative to 

the dry weights the amounts of ergosterol were higher than in the field test, 

except for the pilot experiment (Table 4.2). Fusaric acid was not detected in 

any of the samples from the in vitro test. 

DISCUSSION 

The measurements of resistance is dependent on the possibilities of 

measuring the amount of the fungus in planta. To assess the amount of 

fungal material, pathogens can be distinguished in partially visible pathogens 

and pathogens which cause direct effects on the one hand, and pathogens 

with indirect effects, such as for instance wilting and withering, on the other 

hand (Parlevliet, 1993). In the first group of pathogens, assessment of the 

amount of tissue affected, gives a good estimate of the amount of pathogen 

present, so the resistance can easily be determined. For the second group of 

pathogens, with true disease symptoms, no reliable way is available to 

estimate the amount of pathogen present, and in this group it is difficult to 

estimate resistance. The Fusamvm-flax interaction appears to be an 
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outstanding example of the second group, an interaction whereby indirect 

effects are measured, such as disease symptoms, dry weight, sprout length 

measurements, or numbers of dead plants (Table 4.1, Rashid and 

Kenaschuk, 1991). To assess the amount of fungal material by ergosterol 

measurements proved to be an acceptable method to determine the amounts 

of fungal material. Ergosterol was not found in the controls, and was present 

in all inoculated cultivars in the in vitro experiment. Furthermore the ergosterol 

contents of the flax straw, originating from the pilot experiment, showed little 

variation. 

It proved to be difficult to find a relation between the indirect effects and 

the true amount of fungus or its toxin. In the field experiment 'Regina' was 

most affected while the other cultivars were little or not affected at all, 

according to the disease scoring. The relation between the disease scoring 

and the ergosterol measurements was weak, while the relation between 

disease scoring and the other measured indirect effects, relative number of 

plants and relative dry weight, was poor. The relation between the relative 

number of plants and relative dry weight was poor, as was the relation 

between the relative number of plants and the results of the ergosterol 

measurements. However, ergosterol measurements correlated reasonable 

well with sprout length measurements in the in vitro experiment. 

There was measurable damage in the field. The relative dry weights 

decreased in the infested field for all cultivars, up to 40 - 50% for 'Culbert', 

'Hermes', 'Laura' and 'Linda' and up to 84% for 'Regina'. The infested field 

and the control plots had a similar soil composition and were about 300 m 

apart, excluding weather as a differential factor. It is therefore reasonable to 

assume that the decrease of dry weight in the infested field in the healthy 

looking cultivars was caused by Fusarium oxysporum f .sp. Uni. Very low levels 

of ergosterol were found in the resistant cultivars from the field experiment. 

The low level might have been caused by the fact that, while rinsing the soil 

from the roots, rotten root material got lost. In Chapter 3 Fusarium oxysporum 

f.sp. Uni was described as a vessel parasite of flax, which also causes root rot. 
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The present results fit well in this model and the loss of fungal material by 

rinsing the rotten roots might be an explanation of the low levels of ergosterol. 

Only a weak relation between the true disease symptoms and the 

amount of pathogen, as measured by ergosterol, was observed. Sprout 

length reduction in in vitro conditions and dry weight reduction in field 

conditions appeared to be the best way ways to measure resistance. In both 

experiments the amounts of fungus in the susceptible cultivar was higher than 

in the resistant cultivars, indicating resistance in the cultivars with reduced 

disease symptoms. In case of tolerance one would have expected similar 

levels of ergosterol in all cultivars, irrespective of the level of disease 

symptoms, and this was not the case in both experiments. 

Although all in vitro inoculated cultivars contained ergosterol, the 

amounts were too variable to be able to put forward an hypothesis about 

resistance mechanisms based on the ergosterol contents. Variation in 

ergosterol contents also was found in some other ergosterol studies (Nout et 

al., 1987; Lumsden, 1990; Gunnarsson et al., 1996), so it seems that the 

fungus is present in variable amounts in diseased cultivars. The observation 

that completely healthy plants are regularly present in susceptible cultivars, 

(Kroes, unpublished results, see also Chapter 1, Fig. 1.2) indicates, that 

escapes occur even in plots of susceptible plants and this might be a cause of 

the variable amounts of fungal material in 'Regina'. 

The fact that in all in vitro grown cultivars ergosterol was found while 

inoculation took place by adding the fungus close to the roots, indicates that 

the fungus is able to enter the roots of resistant cultivars. 

Although Fusarium oxysporum f.sp. Uni produces high amounts of 

fusaric acid in in vitro cultures (Remotti, 1996b), it was not possible to detect 

any fusaric acid in planta, not even in any harvest of the ergosterol containing 

cultivars, so a relationship between amounts of fungal material and of toxin 

could not be detected. While the amounts of ergosterol, representing the 

amount of fungal material, were very low, it is likely that the amounts of the 

toxin were at least very low too. It is reported that fusaric acid can readily be 
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broken down in planta (Kuo and Scheffer, 1964; Davis, 1969), but the present 

results do not indicate that resistance is related to a possible accelerated 

breakdown of fusaric acid. 
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ABSTRACT 

Prospects of resistance in flax and linseed to Fusarium wilt disease have 

been evaluated by testing the aggressiveness and virulence of 25 isolates of 

Fusarium oxysporum f.sp. Uni towards a number of different sources of 

resistance in flax and linseed (Linum usitatissimum). Isolates differed strongly 

in aggressiveness as did the host in resistance. Significant interaction variance 

was observed between host genotypes and pathogen isolates, but its 

magnitude was small compared to that of the main effects, the resistance of 

the cultivars and the aggressiveness of the isolates. The interactions, probably 

due to race specific effects, were mainly caused by a group of isolates with low 

aggressiveness originating from the American continent. The race specific 

interactions might be are based on minor gene differences among isolates. 

Keywords: flax, linseed, Linum usitatissimum, Fusarium oxysporum f.sp. Uni, 

races, wilt, race specificity, virulence, interaction, in vitro. 

INTRODUCTION 

Flax and linseed {Linum usitatissimum L.) are grown for fibers or oil, 

respectively. Western Europe, North Africa and Asia have a long tradition in 

growing flax for textile manufacturing, whereas North and South America and 

Australia are continents where linseed is grown. An important problem in 

growing flax as well as linseed is the Fusarium wilt disease caused by the soil-

borne fungus Fusarium oxysporum f.sp. Uni (Bolley) Snyder & Hanssen. In flax 

as well as linseed the disease can cause up to 90% losses in yield. The 

predominant symptoms are wilting and withering of the plant in the seedling or 

in the adult plant stage (Kommedahl et al., 1970). The chlamydospores may 

survive in the soil for decades. Houston and Knowles (1949) described an 

outbreak of flax wilt in a field on which flax had not been grown for fifty years. 

The disease can be prevented by seed treatment with fungicides, combined 

with a crop rotation scheme in which flax is grown only once in six years 

(Vreeke et ai, 1991) on not infected soils. Control of the disease by cultivation 
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of Fusarium resistant cultivars will increase the possibilities of growing flax and 

linseed. 

High levels of resistance were found in some Dutch and French flax 

cultivars (Anonymous, 1986; 1988; 1990; 1992; 1994; Ebskamp and Bonthuis, 

1993; 1997) and in some American and Argentinean linseed cultivars 

(Popescu et al., 1994). In flax this resistance is regarded to inherit 

quantitatively (Pavelek, 1983). If durable, these sources of resistance can be 

used to develop new resistant flax and linseed cultivars. However, very little of 

the inheritance of flax wilt resistance and the durability of resistances is yet 

understood, despite extensive research (Tisdale, 1917; Nelson and Dworak, 

1926; Burnham, 1932; Knowles and Houston, 1955; Knowles et al., 1956; 

Pavelek, 1983). Field trials and greenhouse tests indicated that Fusarium 

oxysporum f.sp. Uni may comprise an indefinite number of races (Armstrong 

and Armstrong, 1968; Kommedahl et al., 1970; Islam, 1991), but results may 

also be interpreted to indicate a single common race with minor gene 

differences among isolates. According to Parlevliet (1985) races in parasitic 

fungi can only be defined and designated on the basis of their 

virulence/avirulence pattern on a set of differential host cultivars if the race-

specific effects are sufficiently large. Recent field trials and greenhouse tests 

could not solve the question whether race specificity in flax and linseed and 

thus identifiable races in Fusarium oxysporum f.sp. Uni exist (Fouilloux et al., 

1991;Ondrej, 1993). 

It was observed that some resistant cultivars, like the flax cultivar 

'Natasja' in Western Europe (Sneep et al., 1972; Bonthuis and Ebskamp, 

1992) and the linseed cultivar 'Bison' in the USA (Kommedahl et al., 1970) 

kept their resistance for at least 20 year. The observation that some highly 

resistant flax cultivars like 'Laura' and 'Marina', descendants from 'Natasja', 

lost their resistance in Normandy, France in about six years (Trouvé, personal 

communication) may be an indication that a new race had developed there. In 

the present study a recently developed in vitro seedling tube test for Fusarium-

flax interactions (see Chapter 2) was used to test whether race specificity and 
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identifiable races exist in a group of Fusarium oxysporum f.sp. Uni isolates 

originating from a wide geographical range. It also was studied whether a new 

race in France could be detected by comparing isolates originating from the 

French field where the above mentioned observations were made with an 

isolate from a Dutch Fusarium-Wax nursery. 

MATERIALS AND METHODS 

Host and pathogen 

Seeds from resistant, moderately resistant and susceptible flax and 

linseed cultivars originating from Europe and North and South America were 

used. The origin of the cultivars is summarized in Table 5.1. 

From the flax wilt nursery "Lelystad" the Flevopolder, the Netherlands, 

two soil samples were taken (soil sample 1 and 9, Table 5.2) and from the flax 

wilt nursery "La Gaillarde", Normandy, France, seven soil samples were 

randomly taken (samples 2 - 8, Table 5.2). Spores of Fusarium oxysporum 

were isolated using a slightly modified Komada medium (Komada, 1975), 

according to the method described by Löffler and Mouris (1989), and were 

characterized as Fusarium oxysporum f.sp. Uni by microscope studies and by 

bio-assay, using an in vitro seedling tube test (see Chapter 2). From the soil 

samples 1, 6, 7, 8 and 9 one single spore was isolated and from the soil 

samples 2, 3 and 4 two single spores. From sample 5 one single spore was 

isolated, multiplied and two duplicates were taken from this isolate. The 

cultures of these single spores were stored on PROTECT bacterial preservers 

(Technical Service Consultants Ltd, UK), at -80 °C. 

Isolates of Fusarium oxysporum f.sp. Uni, originating from plant material, 

were obtained from European and North and South American institutes. From 

these isolates single spores were cultivated and stored in the same bacterial 

preservers at -80 °C. 

Isolates selected for virulence tests were revitalized on OXOID potato 

dextrose agar plates (PDA) for 14 days in a growth chamber at 23 °C in dark 

conditions. The spores were rinsed from the PDA plates with sterile water, 
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Table 5.1 

Flax type, origin and resistance levels of the 16 cultivars used in the present study. 
Data ITL are field observations from 1991 of the flax Fusarium wilt nursery "La 
Gaillarde", Normandy, France. Resistance of the cultivars was visually determined 
using a disease severity scale from 1 - 9, whereby 1 = very resistant and 9 = very 
susceptible (Beaudoin, 1991). 

Cultivar 

Ariane 

Atalante 

Barbara 

Bison 

Culbert 

Evelin 

Hera 

Hermes 

Laura 

Linda 

Marina 

Natasja 

Ocean 

Regina 

Tape Parana 

Viking 

Abbr. 

ARI 

ATA 

BAR 

BIS 

CUL 

EVE 

HE1 

HE2 

LAU 

LIN 

MAR 

NAT 

OCE 

REG 

TAP 

VIK 

'Resistance visually 
moderately resistant, 

Type 

flax 

linseed 

linseed 

linseed 

linseed 

flax 

flax 

flax 

flax 

linseed 

flax 

flax 

linseed 

flax 

linseed 

flax 

Origin 

France 

France 

Hungary 

USA 

USA 

The Netherlands 

The Netherlands 

France 

The Netherlands 

France 

The Netherlands 

The Netherlands 

France 

The Netherlands 

Argentina 

France 

determined by Kroes, unpublished 
S = susceptible. 

Data ITL 

5.0 

1.5 

7.5 

-

-

1.8 

-

2.3 

1.8 

1.3 

1.8 

3.5 

9.0 

9.0 

-

2.3 

data. R = 

Resistance* 

MR 

R 

S 

R 

R 

R 

S 

R 

MR 

R 

R 

R 

S 

S 

R 

R 

resistant, MR = 

filtered over glass-wool and the spore suspension was adjusted to 10 spores 

per ml, using a Buerker Turk haemocytometer. 

In Table 5.2 the code names of the Fusarium isolates used are given, as 

well as the place of origin, the isolation source and the aggressiveness, 

determined in an earlier in vitro pilot experiment. Fof stands for Fusarium 

oxysporum f.sp. Uni. 
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Table 5.2 

Source, place of origin, source of isolation and aggressiveness of the 25 isolates used 
in the present study. Aggressiveness was determined in an earlier pilot experiment 
(Kroes, unpublished results), ++ very aggressive; + aggressive, ± moderately 
aggressive; -- unknown. 

Code name 

Fof-N4 

Fof-F7 

Fof-F7a 

Fof-F8 

Fof-F8a 

Fof-F9 

Fof-F9a 

Fof-F10 

Fof-F10a 

Fof-F11 

Fof-F12 

Fof-A1 

Fof-A2 

Fof-B1 

Fof-B2 

Fof-C2 

Fof-C3 

Fof-F1 

Fof-F26 

Fof-F60 

Fof-N1 

Fof-N3 

Fof-N10 

Fof-U1 

Fof-U2 

Place of origin 

Lelystad, The Netherlands 

La Gaillarde, France 

La Gaillarde, France 

La Gaillarde, France 

La Gaillarde, France 

La Gaillarde, France 

La Gaillarde, France 

La Gaillarde, France 

La Gaillarde, France 

La Gaillarde, France 

La Gaillarde, France 

Castellar, Argentina 

Castellar, Argentina 

Ingelmunster, Belgium 

Ingelmunster, Belgium 

Morden, Canada 

Morden, Canada 

Rennes, France 

La Gaillarde, France 

Versailles, France 

Wageningen, The Netherlands 

Metslawier, The Netherlands 

Lelystad, The Netherlands 

Torzhok, Russia 

Torzhok, Russia 

Isolation source 

soil sample 1 

soil sample 2 

soil sample 2 

soil sample 3 

soil sample 3 

soil sample 4 

soil sample 4 

soil sample 5 

soil sample 5, 

(duplo of Fof-10) 

soil sample 6 

soil sample 7 

linseed 

linseed 

flax 

flax 

linseed 

linseed 

flax 

soil sample 8 

flax 

flax 

flax 

soil sample 9 

flax 

flax 

Aggressiveness 

--

--

--

-

--

--

--

--

~ 

--

--

+ 

± 

++ 

++ 

+ 

± 

+ 

++ 

++ 

+ 

++ 

++ 

++ 

+ 
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Virulence screening 

Cultivars were screened in two experiments using the in vitro seedling 

tube test (see Chapter 2). Resistance of the cultivars as well as 

aggressiveness of the isolates were expressed as the length of the sprouts of 

the tested plants relative in % to the length of the sprouts of healthy plants of 

the same cultivars. This means that the more susceptible the cultivar or the 

more aggressive the isolate the lower the relative length. 

In the first experiment six plants from eight flax cultivars, all except 

'Hermes', and six linseed cultivars, all except 'Linda', (Table 5.1) were tested. 

Isolates originating from the French and Dutch soil were used in this 

experiment, (Fof-N4, Fof-F7 - 12, including the a-isolates, Table 5.2) and the 

isolate Fof-F60, a highly aggressive isolate used as a standard in French 

greenhouse tests (INRA, Versailles) to determine Fusarium resistance in new 

flax cultivars. The experiment consisted of six randomized blocks, each 

containing a singular sample of all cultivar-isolate combinations, plus a cultivar-

water combination (healthy control). 

In the second experiment all nine flax cultivars and seven linseed 

cultivars (Table 5.1) were inoculated with 14 isolates from a wide geographical 

range, (Fof-A1, Fof-A2, Fof-B1, Fof-B2, Fof-C2, Fof-C3, Fof-F1, Fof-F26, Fof-

F60, Fof-N1, Fof-N3, Fof-N10, Fof-U1, Fof-U2, Table 5.2), thus including the 

French standard isolate Fof-F60. The experiment was replicated three times, 

and each replication included three randomized blocks, each containing a 

singular sample of all cultivar-isolate combinations, and in addition a cultivar-

water combination (healthy control). 

Statistical analysis 

The data were analyzed by an Analysis of Variance, using the GENSTAT 

program and by agglomerative clustering (Corsten and Denis, 1990). Strongly 

interactive cultivar * isolate combinations were indicated, using an adapted 

tetrad module for tracing combinations, significantly deviating from additivity 

(Bradu and Hawkins, 1982; Van Eeuwijk, CPRO-DLO, unpublished results). 
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RESULTS AND DISCUSSION 

Resistance 

In both experiments the average resistance of the different flax and 

linseed cultivars ranked from very resistant to very susceptible. The flax 

cultivars 'Natasja' and 'Hermes' proved to be very resistant while 'Culbert' was 

the most resistant linseed cultivar in this study. The flax cultivar 'Regina' and 

the linseed cultivar 'Ocean' were most susceptible. The measured resistances 

correlated reasonably well with field data from the flax wilt nursery "La 

Gaillarde" obtained in 1991 (Table 5.1); the correlation coefficient, r, between 

these field data and the data from experiment 1, the experiment testing 

isolates originating from this field, was significant at P = 0.05 (r = -0.90*). The 

correlation between experiment 2 and the field data was lower and not 

significant (r = -0.57). The correlation coefficient between the two experiments 

was significant at P = 0.05 too (Fig. 5.1, r = 0.69*), although the good 

correlation was mainly due to two of the 16 cultivars, the extremes: susceptible 

'Ocean' and resistant 'Culbert' (Table 5.1). In flax wilt nurseries small 

differences in levels of attack are registered from year to year, caused by 

differences in temperature (Kikuchi, 1934; 1940) and moisture (Kommedahl et 

al., 1970), or by the influence of various biotic factors (Tursunkhodzhaev, 

1965). Using the in vitro tube test these influences are reduced but not 

excluded. Temperature and moisture are standardized as much as possible, 

but although the seeds are externally sterilized, the incidence of seed-borne 

parasites like Alternaria linicola Groves & Skolko cannot always be excluded. 

This might be a cause of variation. Another cause of variation is that, although 

flax is a self pollinator, the flax genome is not completely stable. Changes in 

the genome can be environmentally induced (Durant, 1972). In this light the 

observed correlations between field data and in vitro data are quite 

acceptable. 

Aggressiveness 

A large variation in aggressiveness of the isolates was found in both 
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Figure 5.1 
Correlation between experiment 1 and experiment 2. Relative sprout length per 
cultivar was plotted on the x-axis for experiment 2 and on the y-axis for experiment 1. 
r = 0.69*, P = 0.05. 

experiments (Tables 5.3 and 5.4). In the first experiment, where different 

isolates from one field were tested, the variation in average aggressiveness 

was less than in the second experiment, where isolates were tested from 

diverse continents. The mean level of attack in experiment 1 was lower than in 

experiment 2. 

In both experiments the French standard isolate, Fof-F60 caused great 

sprout length reductions. In the first test, plants inoculated with this isolate 

reached on average 58% of the length of the control plants, while in the 

second test the relative sprout length of the inoculated plants was only 38%. 

All isolates from the French soil were less aggressive than the isolate Fof-F60. 

In the second experiment two other isolates were found to be more aggressive 
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Table 5.3 

Disease score values, expressed as relative sprout lengths, compared with control 
plants of the same cultivar, of 14 flax and linseed genotypes inoculated with 12 
isolates of Fusarium oxysporum f.sp. Uni, sorted towards decreasing aggressiveness 
of the isolates (horizontally) and towards increasing resistance of the genotypes 
(vertically). Data from experiment 1. AR1 = average resistance per cultivar for 
experiment 1. AA1 = average aggressiveness per isolate for experiment 1. 

OCE 

BAR 

REG 

ARI 

HE1 

LAU 

LIN 

ATA 

VIK 

MAR 

EVE 

BIS 

CUL 

NAT 

AA1 

Fof 

F60 

19 

35 

49 

40 

38 

45 

70 

76 

57 

81 

66 

65 

63 

101 

58 

Fof 

N4 

32 

55 

37 

49 

19 

65 

49 

86 

71 

81 

50 

73 

86 

78 

59 

Fof 

F7 

26 

22 

57 

41 

86 

56 

79 

65 

61 

42 

83 

79 

70 

72 

60 

Fof 

F9 

25 

45 

34 

49 

70 

74 

75 

79 

62 

83 

87 

90 

90 

79 

67 

Fof 

F10 

27 

55 

37 

63 

73 

67 

75 

81 

75 

81 

79 

70 

84 

82 

68 

Fof 

F8a 

33 

47 

40 

51 

94 

82 

88 

56 

90 

82 

86 

82 

74 

66 

69 

Fof 

F7a 

34 

59 

52 

65 

98 

72 

81 

68 

96 

72 

79 

69 

64 

69 

70 

Fof 

F10a 

34 

52 

40 

63 

74 

65 

81 

80 

90 

89 

87 

85 

76 

79 

71 

Fof 

F12 

33 

49 

71 

65 

62 

88 

50 

85 

82 

77 

91 

78 

90 

105 

73 

Fof 

F11 

28 

40 

64 

79 

34 

67 

82 

95 

94 

96 

87 

92 

117 

105 

77 

Fof 

F8 

40 

42 

55 

75 

101 

87 

82 

88 

79 

100 

102 

116 

86 

91 

82 

Fof 

F9a 

51 

76 

94 

104 

96 

96 

97 

97 

109 

112 

105 

114 

104 

105 

97 

AR1 

32 

48 

53 

62 

70 

72 

76 

80 

81 

83 

84 

84 

84 

86 

71 

than Fof-F60, namely the Russian Fof-U1 and the Dutch Fof-N3. Comparing 

the first and the second experiment the ranking order of the cultivars after 

screening with Fof-F60 was not always the same. In experiment 1 'Natasja' 

was not affected at all and in experiment 2 this cultivar showed a more 

intermediate reaction. 'Marina' and 'Atalante' were relatively little affected in 

experiment 1 and rather strongly in experiment 2. 

Isolates originating from one soil sample varied considerably in their 

ability to reduce seedling growth, except the two identical isolates, Fof-10 and 
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Table 5.4 

Disease score values, expressed as relative sprout lengths, compared with control 
plants of the same cultivar, of 16 flax and linseed genotypes inoculated with 14 
isolates of Fusarium oxysporum f.sp. Uni, sorted towards decreasing aggressiveness 
of the isolates (horizontally) and towards increasing resistance of the genotypes 
(vertically). Significant multiple outliers, traced by a tetrad model, are underlined. Data 
from experiment 2. (AR2 = average resistance per cultiuvar for experiment 2, AA2 = 
average aggressiveness per isolate for experiment 2. 

OCE 

HE1 

LIN 

ARI 

REG 

LAU 

BAR 

VI K 

MAR 

EVE 

NAT 

ATA 

TAP 

BIS 

HE2 

CUL 

Fof Fof 

U1 

21 

21 

27 

21 

20 

35 

28 

38 

36 

32 

45 

30 

36 

44 

52 

51 

N3 

13 

25 

23 

35 

35 

25 

27 

37 

37 

34 

41 

51 

45 

53 

54 

73 

Fof 

F60 

16 

18 

22 

13 

22 

38 

37 

36 

43 

32 

35 

43 

52 

57 

78 

73 

Fof 

F26 

12 

36 

21 

37 

40 

33 

36 

43 

41 

40 

42 

39 

40 

45 

65 

74 

Fof 

N10 

22 

15 

27 

26 

44 

28 

31 

39 

29 

55 

41 

51 

64 

48 

56 

93 

Fof Fof 

B1 

23 

23 

42 

19 

23 

53 

29 

42 

47 

47 

58 

56 

51 

52 

80 

87 

B2 

21 

23 

62 

22 

41 

43 

29 

35 

56 

55 

49 

51 

51 

59 

85 

97 

Fof Fof 

U2 

16 

33 

26 

36 

43 

55 

38 

49 

35 

55 

70 

63 

90 

72 

90 

109 

F1 

31 

38 

37 

51 

56 

64 

34 

78 

49 

63 

67 

50 

58 

62 

77 

88 

Fof 

N1 

10 

56 

39 

50 

65 

62 

120 

74 

76 

73 

64 

71 

50 

68 

86 

96 

Fof 

C2 

12 

34 

57 

68 

53 

61 

52 

66 

68 

74 

80 

94 

75 

93 

93 

108 

Fof 

C3 

25 

70 

95 

91 

47 

78 

53 

74 

91 

84 

82 

91 

86 

72 

108 

101 

Fof 

A2 

59 

108 

56 

84 

97 

88 

71 

85 

91 

82 

98 

94 

90 

111 

98 

94 

Fof 

A1 

56 

11 
34 

75 

99 

81 

169 

92 

87 

87 

71 

85 

99 

106 

106 

91 

AR2 

24 

41 

41 

45 

49 

53 

54 

56 

56 

58 

60 

62 

63 

67 

81 

88 

AA2 34 38 38 40 42 46 49 55 57 66 68 78 88 88 56 

FoMOa. These identical isolates of Fof-10 had an average difference in 

aggressiveness of 3% while the other isolates originating from one soil sample 

had mutual differences of 10 up to 30% (Table 5.3). This indicates clearly that 

the isolates in this soil were not genetically identical. It can be concluded that 

in the flax wilt nursery "La Gaillarde" different strains exist closely together in 
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the soil. This phenomenon was described too for the flax wilt nursery at St. 

Paul, Minnesota, where much flax research was performed between 1900 and 

1970 (Kommedahl et al., 1970). 

From the second experiment it can be seen that all isolates originating 

from the European continent caused a higher level of length reduction than the 

isolates from Canada and Argentina (Table 5.4). The Argentinean isolates 

hardly attacked the seedlings, compared with other isolates from experiment 2, 

whereas the Canadian isolates caused intermediate reductions, compared with 

other isolates from experiment 2. The levels of aggressiveness of the 

Canadian isolates were comparable with many isolates of the first experiment. 

Within the group of European isolates, large differences existed between the 

least and the most aggressive isolate originating from one region. Only the two 

Belgian isolates did not differ much in average aggressiveness. Fof-N10 and 

Fof-F26, two isolates originating from soil samples, did not deviate from 

isolates from plant material in their ability to retard seedling growth. 

Interaction; the existence of races 

The main objective of this research was to get information about the 

possible existence of identifiable races of Fusarium oxysporum f.sp. Uni. The 

statistical analyses were therefore focused on interaction effects. In separate 

Analyses of Variance (ANOVA) the cultivar effect, the isolate effect and the 

effect of cultivar * isolate interaction was calculated for each of the 

experiments. The ANOVA showed in both cases that the variance was mainly 

due to cultivar effects and isolate effects, corresponding with resistance of the 

Linum cultivars and aggressiveness of the Fusarium isolates, respectively 

(Table 5.5). The magnitude of the cultivar * isolate interaction variance was 

small but significant in both experiments, indicating the possible existence of 

race-specific effects. 

To detect a pattern in the interaction effects an agglomerative clustering 

(Corsten and Denis, 1990) was performed for both experiments. By this 

clustering process cultivar * isolate interaction patterns were clustered. For 

92 



Chapter 5 

Table 5.5 
Analyses of Variance of sprout length measurements of flax and linseed seedlings 
inoculated with Fusarium oxysporum f .sp. Uni isolates (Table 5.2) or with sterile water 
from experiment 1 and 2 (Table 5.3 and 5.4). 

Exp. 

1 

Source of variation 

Block 

Isolate (or water) (Is) 

Cultivar (Cv) 

Cv* Is 

Residual 

Total 

D.f. 

5 

12 

13 

156 

905 

1091 

S.S. 

27.4 

700.4 

1270.2 

549.9 

1992.0 

4456.4 

M.S. 

5.5 

58.4 

97.7 

3.5 

2.3 

V.r. 

2.4 

25.4 

42.4 

1.5 

Fpr. 

<.001 

<.001 

<.001 

2 Replicates (Rep) 

Residual 

Isolate (or water) (Is) 

Cultivar (Cv) 

Rep * Cv 

Rep * Is 

Cv * Is 

Rep * Cv * Is 

Residual 

Total 

2 

6 

14 

15 

30 

28 

210 

420 

1434 

2159 

279.5 

50.9 

3677.6 

4276.6 

478.1 

171.9 

1304.9 

1239.7 

3030.6 

13379.0 

139.7 

8.5 

262.7 

285.1 

15.9 

6.1 

6.2 

3.0 

2.4 

16.5 

3.6 

109.8 

119.2 

6.7 

2.6 

2.6 

1.2 

0.004 

<.001 

<.001 

<.001 

<.001 

<.001 

0.003 

experiment 1 clusters were formed for the isolates as well as the cultivars (Fig. 

5.2), but there was very little difference between any cluster. The P-value of all 

steps in the clustering procedure was 1.0, so division into any group had no 

significance at all. This means that the interaction patterns found for the 

isolates originating from the flax wilt nursery "La Gaillarde" when clustered with 

the Corsten method had little importance, although the ANOVA showed a 

small but significant interaction variance. 

For experiment 2, the P-values varied inbetween 1.0 and 0.0 indicating 
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Figure 5.2 
Dendrograms produced by the cluster analysis of fungal isolates and host cultivars 
according to Corsten and Denis (1990). The analysis was performed on the sprout 
length measurements of experiment 1. Isolates and cultivars are clustered 
successively according to similarity, in terms of minimal contribution for interaction. 
See Table 5.1 and 5.2 for abbreviations of cultivars and codes for Fusarium isolates 
respectively. 

more difference between clusters, compared with experiment 1. At the level of 

P = 0.001, the cultivars formed five clusters (Fig. 5.3) and the isolates formed 

four clusters at this level (Fig. 5.3). Although the cultivars clustered, no 

recognizable pattern was found. Clustering of the cultivars into fiber flax and 

linseed was not observed, neither of European versus American or resistant 

versus susceptible cultivars (Table 5.6). At the level of P = 0.05, the 

94 



Chapter 5 

Fof-C3 
Fof-C2 
Fof-A1 
Fof-A2 
Fof-N1 
Fof-U2 
Fof-N10 
Fof-F60 
Fof-B1 
Fof-B2 
Fof-F26-, 
Fof-N3 J 
Fof-U1 -
Fof-F1 -

S S.S. 0 

Ï 

20 40 60 fO 100 120 
1 

OCE 
TAP 
CUL 
HE1 
LIN 
BAR 
MAR 
ARI 
ATA 
BIS 
NAT 
LAU 
VIK 
EVE 
REG 
HE2 

Figure 5.3 
Dendrograms produced by the cluster analysis of fungal isolates and host cultivars 
according to Corsten and Denis (1990). The analysis was performed on the sprout 
length measurements of experiment 2. Isolates and cultivars are clustered 
successively according to similarity, in terms of minimal contribution for interaction. 
See Table 5.1 and 5.2 for abbreviations of cultivars and codes for Fusarium isolates 
respectively. (1P = 0.05, 2P = 0.001) 

susceptible linseed cultivars 'Ocean' and 'Barbara' were separated as single 

members of a cluster. The linseed cultivar 'Linda', determined as susceptible 

in experiment 2 (Table 5.4) but resistant in the French flax wilt nursery 
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Table 5.6 

Number of flax and linseed cultivars and of isolates, used in experiment 2 according 
to the method of Corsten and Denis (1990), in each cluster (P = 0.001). 

Cultivars 

Linseed 

Flax 

Europe 

America 

Resistant 

Susceptible 

Fusarium isolates 

Europe 

America 

Aggressive 

Less aggressive 

Cluster 1 

4 

1 

3 

2 

3 

2 

Cluster 1 

2 

2 

Cluster 2 

1 

1 

1 

Cluster 2 

1 

1 

Cluster 3 

1 

2 

3 

3 

Cluster 3 

1 

1 

2 

Cluster 4 

1 

4 

4 

1 

5 

Cluster 4 

9 

9 

Cluster 5 

2 

2 

2 

according to Beaudoin (1991) and Kroes (Table 5.1), was placed in a main 

group. 

All European isolates except the Dutch isolate Fof-N1 were placed in one 

group, the Canadian isolates were placed in one group, the Argentinean 

Fof-A2 and the Dutch Fof-N1 were placed in the same group and the 

Argentinean Fof-A1 was placed apart (Fig. 5.3). The first clustering was 

between the relatively highly aggressive isolates originating from the European 

continent, except Fof-N1, and the lesser aggressive isolates of the American 

continent. The Atlantic Ocean as a barrier would possibly fit well in a situation 

of adaptation. However, some interaction variance may also be caused just by 

the level of the aggressiveness of the isolates. The fact that Fof-N1, which has 

the lowest aggressiveness among the European isolates, was clustered with 
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Table 5.7 
Examples of deviations from the additive pattern, as observed in experiment 2, 
cultivar * isolate interactions in flax and linseed cultivars inoculated with isolates of 
Fusarium oxysporum f.sp. Uni. See Table 5.1 and 5.2 for abbreviations of cultivars 
and codes for Fusarium isolates respectively. 

ARI 

BAR 

VIK 

MAR 

Fof 

F60 

13 

37 

Fof 

B2 

35 

56 

Fof 

C3 

91 

53 

Fof 

F1 

78 

49 

LIN 

ARI 

ATA 

TAP 

Fof 

B1 

42 

19 

Fof 

U2 

63 

90 

Fof 

A2 

56 

84 

Fof 

C2 

94 

75 

LIN 

ARI 

HE1 

LIN 

Fof 

B2 

62 

22 

Fof 

F26 

36 

21 

Fof 

A1 

34 

75 

Fof 

C2 

34 

57 

the American isolates, might be considered as a confirmation of the latter 

conclusion. 

The data set originating from experiment 2 was analyzed in more detail. 

To detect potential races the data set was analyzed in a tetrad module, 

whereby unexpected levels of length reduction were detected. In Table 5.4 and 

5.7 a number of deviations from the additive pattern (absence of cultivar * 

isolate interactions) can be seen. All these possible interactions are fairly 

small, too small to identify reliably possible races, but together they can 

account for part of the observed, small but significant interaction variance. It 

should be realized though, that some of the interaction variance comes from 

incidental and unaccountable deviating values, such as those of 'Barbara' with 

Fof-N1 (120%) and Fof-A1 (169%), values that are considerably higher than 

those of the healthy controls, although 'Barbara' belongs to the more 

susceptible cultivars. 'Barbara' had extremely high sprout lengths, in 

combination with isolates Fof-A1 and Fof-N1, much longer than the controls. 

These high values were not caused by only one extreme value. The data for 

'Barbara' for the three replicates were 45%, 156% and 159% for the 
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combination with Fof-N1 and 69%, 271% and 167% for the combination with 

Fof-A1. The other isolates in combination with 'Barbara' did not give these high 

deviations from the controls. If these extreme data were not taken into account 

'Barbara' would have been ranked as second most susceptible, after 'Ocean', 

the same situation as in experiment 1. 'Barbara' was observed as susceptible 

in the field too (Table 5.1). It is not clear why 'Barbara' in combination with the 

isolates Fof-A1 and Fof-N1 grew this tall in the second and the third replicate 

of experiment 2. 

The French isolates as a group were not distinguishable from the other 

European isolates. None of the isolates originating from the French soil 

showed an increased capability to attack the cultivar 'Natasja', nor the cultivars 

'Laura' or 'Marina', the cultivars which had shown an increased susceptibility in 

the flax Fusarium wilt nursery "La Gaillarde". So no evidence was found for a 

new race in Normandy. The observed increased susceptibility might have been 

caused by other factors than the development of a new race. Furthermore, 

although interaction effects were significant, no major cultivar * isolate 

interaction effect was found in the experiments. Kommedahl et al. (1970) 

stated that Fusarium oxysporum f.sp. Uni may comprise an indefinite number 

of races, but their results may also be interpreted to indicate a single common 

race with minor gene differences among isolates. The results of the present 

experiments indicated that the test with isolates originating from different 

continents, showed greater differences between isolates than the test whereby 

isolates from one field were tested. Fusarium oxysporum is known as a fungus 

with an abundance of forms (Armstrong and Armstrong, 1968; Aloi and 

Baayen, 1993), and is described as a primitive and versatile organism. 

Besides, within the flax genome, induction of genetic variation by 

environmental factors has been described for various characters (Durant, 

1972), which indicates that a relatively fast co-evolution between fungus and 

flax might be possible. 

If the interaction would be caused by a gene-for-gene relationship, in 

which major resistance genes and major avirulence genes are involved, clear 
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and large cultivar * isolate interactions would have been found. As argued by 

Parlevliet and Zadoks (1977) a gene-for-gene relationship may also exist at 

minor gene level, so that adaptation of the fungus to one or more minor 

resistance genes would result in isolates differing slightly from one to another 

in their virulence. The rather small interactions, found in both experiments may 

point in this direction. 

It has been suggested that Fusarium resistance in flax is a quantitatively 

inherited character (Pavelek, 1983; Popescu and Schuster, 1985). A gene-for-

gene relationship at a minor gene level, where genetic adaptations on plant 

and fungal level occur often, is a quantitative system where the individual 

minor genes are difficult to recognize. The results presented fit well in this 

relationship. 

If races are defined as a group of similar isolates, causing major 

interaction effects, as Van der Plank (1968) did, no races in Fusarium 

oxysporum could be detected in the present sets of isolates and interaction 

would be caused by differences in aggressiveness only. However, if races are 

defined as a group of isolates, causing race-specific interaction effects not only 

on major but also on minor gene level (Parlevliet and Zadoks, 1977), races in 

Fusarium oxysporum f.sp. Uni may very well exist but cannot reliably be 

identified. 

In this hypothesis it is plausible that races, based on minor gene effects 

exist and that the most important minor differences might be found between 

Fusarium oxysporum f.sp. Uni originating from the European continent and 

Fusarium oxysporum f.sp. Uni originating from the American continent. 
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ABSTRACT 

Thirty flax and linseed cultivars were evaluated for resistance to 

Fusarium oxysporum f.sp. Uni at various flax wilt infested test fields in Europe 

and North America in two consecutive years. Resistance levels of cultivars 

were measured using a standardized protocol, determining disease severity 

on a scale of 1 -9, at four plant stages during the growing season. In analyses 

of variance significant main effects and significant cultivar * environment 

interaction effects were found at all plant stages (P < 0.001). Interactions at 

the seedling and the harvest stage were further investigated by three 

statistical models. Agglomerative clustering was related to cultivar 

susceptibility. A tetrad analyze showed that in the French flax wilt nursery 

interaction specific reactions occurred most frequently. In an Additive Main 

effects and Multiplicative Interaction effects (AMMI) model, interaction was 

written as the product of a cultivar and a environment score. Cultivar * 

environments interaction scores could be described in two terms, which 

indicated a relatively simple interaction pattern. The interaction effects were 

mainly caused by differences in environmental factors and were not linked to 

differences between the wilt nurseries. However, the group of susceptible 

cultivars also caused interaction effects. 

Key words: Additive Main effects and Multiplicative Interaction effects 

(AMMI) model, agglomerative cluster analysis, cultivar by location interaction, 

flax, Fusarium oxysporum f .sp. Uni, Linum usitatissimum, vascular wilt 

INTRODUCTION 

Flax wilt, caused by the host specific fungus Fusarium oxysporum f.sp. 

Uni (Bolley) Snyder & Hanssen, is a major problem in flax and linseed (Linum 

usitatissimum L). Breeding for resistance to this fungus is one of the most 

important activities of flax breeders. High levels of quantitative resistance in 

flax and linseed cultivars have been found (Ebskamp and Bonthuis, 1993; 

Beaudoin, 1991; Popescu et al., 1994), but complete resistance was never 

106 



Chapter 6 

observed. Based on differences in wilt from one location to another 

Kommedahl et al (1970) stated that the fungus comprises an indefinite 

number of races in the field. However, their results might also be interpreted 

to indicate a single common race with minor gene differences among isolates. 

In an in vitro study no evidence was found for race-specificity based on major 

interaction effects, and although races in Fusarium oxysporum f.sp. Uni may 

exist, they could not be identified (see Chapter 5). So it is not known whether 

races of this fungus exist and whether the resistances are race-specific. The 

influence of environmental factors is of unknown importance in the Fusarium-

flax interaction. Several factors, which might cause interaction have been 

studied individually. Kommedahl ef ai. (1970) described different kinds of 

wilting in linseed, early wilt or seedling blight, late wilt and partial wilt. These 

different types of wilting might affect interaction patterns. Seed quality seems 

to have an influence on wilt severity (Nair, 1956; Nair and Kommedahl, 1957). 

Wilt in flax and linseed is influenced by to various environmental factors like 

temperature (Milikan, 1945; Tisdale, 1917; Tochinai and Takee, 1950), 

moisture (Tursunkhodzhaev, 1965), soil type (Kommedahl et al, 1970) and 

inoculum density in the soil (Nair, 1956). A positive direct effect of fertilizers is 

uncertain. Although temperature and moisture seem to be the predominant 

factors in determining wilt development in general, it is not known whether 

variation in these factors can induce interaction patterns. In recent years the 

linseed cultivar 'McGregor' showed a different response in the St. Paul's flax 

wilt nursery in Minnesota, compared with the response in the flax wilt nursery 

in Fargo, North Dakota ("Plot 30") (Hammond, personal communication), but 

the cause is uncertain. In India races of Fusarium oxysporum f.sp. Uni were 

reported (Kulkarni et al, 1969), but these trials were not executed 

simultaneously under similar conditions, so the possible influence of the 

differential effects of environmental factors were not excluded. In a pilot 

experiment carried out in 1994 at flax wilt nurseries in Normandy, France, in 

Flevoland, The Netherlands, and in Manitoba, Canada, very different 

interaction patterns were found for flax and linseed cultivars, especially 
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between Canadian results versus French and Dutch results (Rashid, personal 

communication), but also in this case the tests were not executed 

simultaneously under comparable conditions, so the possible influence of the 

environmental differences were not excluded, and an unambiguous 

interpretation of the results is not possible. 

To obtain an better understanding of the nature and the magnitude of 

the cultivar * environment interactions, a wide ranging international field test 

was carried out in 1995 and 1996 with the use of a standardized protocol and 

seeds from common sources per cultivar. Nine locations in Europe and 

Northern America were involved, and 30 cultivars of fiber flax as well as 

linseed were used. The protocol was designed in such a way that the test 

could be synchronized for the different locations. Three statistical models 

were used to interpret the interaction patterns. 

MATERIALS AND METHODS 

Field trials 

In two consecutive years, cultivar trials for resistance to Fusarium 

oxysporum f.sp. Uni were carried out at nine flax wilt nurseries in Europe and 

North America (Table 6.1). Because the development of the wilt disease per 

location is never identical for different years, each year # location test was 

considered to be one environment. This means that the cultivars were 

exposed to 18 environments. 

Seeds of 30 flax and linseed cultivars, 1.5 kg per cultivar, varying from 

very susceptible to very resistant, and from very distinct origin (see Table 6.2), 

were obtained from different sources in Europe and North America. From this 

seed stock 60 g per cultivar was distributed over the nine nurseries, 30 g for 

each year. A completely randomized block design with three replicates, was 

used for all locations and years. The plot size was two rows of 5.0 m, 30 cm 

apart. The density of sowing was 1 gm"1. 
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Table 6.1 

Location (city and country), abbreviation, soil type, climate and year of introduction of 
the flax wilt nurseries used in the nine international trials on flax wilt in flax and 
linseed in 1995 and 1996. 

City 

Lelystad, 

Flevopolder 

Ingelmunster 

La Gaillarde, 

Normandy 

Asendorf 

Sumperk 

Torzhok 

Fargo ND (Plot 30) 

Morden, Manitoba 

Indian Head, 

Saskatchewan 

Country 

The 

Netherlands 

Belgium 

France 

Germany 

The Czech 

Republic 

Russia 

USA 

Canada 

Canada 

Abbr. 

NL 

BE 

FR 

GE 

CZ 

RU 

US 

CM 

CS 

Soil type 

heavy clay 

loose sandy 

loam 

sandy loam 

sandy loam 

sandy clay 

sandy loam 

silt loam 

black 

chernozemic 

black 

chernozemic 

Climate 

maritime 

maritime 

maritime 

maritime 

continental 

continental 

continental 

continental 

continental 

In use since 

1992 

1972 

1990 

1991 

1974 

1945 

1894 

1916 

1934 

Protocol 

To make the experiments comparable a protocol was developed, based 

on the disease scoring according to Rashid and Kenaschuk (1993). In order 

to be able to take in account the difference in development between the 

cultivars, the cultivar 'Viking' was chosen as a reference, because, compared 

with all other cultivars used, 'Viking' can be considered 'intermediate' for 

many important and/or useful characteristics, medium earliness, medium 

flowering time, medium maturity and moderate resistance to wilt and other 

diseases. Emergence was scored for all cultivars when the seedlings of 

'Viking' were 5 - 10 cm above the ground, to detect possible difficulties in 

adaptation caused by differences in climate, and furthermore to test the 
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Table 6.2 

Name, type, wilt resistance, and origin of the cultivars used in the international trials 
on flax wilt in flax and linseed in 1995 and 1996. 

Cultivar 

Alexim 

Ariane 

Atalante 

Barbara 

Bison 

Culbert 

AC McDuff 

Elise 

AC Emerson 

Escalina 

Evelin 

McGregor 

Hera 

Hermes 

K-5327 

Laura 

Linda 

AC Linora 

Liflora 

Marina 

Natasja 

Nike 

NorLin 

Ocean 

Raisa 

Regina 

Slavny 82 

Texa 

Verne 

Viking 
Foot note see p 

type 

flax 

flax 

linseed 

linseed 

linseed 

linseed 

linseed 

flax 

linseed 

flax 

flax 

linseed 

flax 

flax 

flax 

flax 

linseed 

linseed 

linseed 

flax 

flax 

flax 

linseed 

linseed 

flax 

flax 

flax 

flax 

linseed 

flax 
111 bottom. 

Resistance1 

MR 

S 

HR 

VS 

HR 

HR 

MR 

MR 

MR 

MR 

HR 

MR 

S 

R 

MS 

R 

HR 

MR 

MS 

R 

MS 

R 

MR 

VS 

MR 

VS 

MR 

HR 

HR 

R 

Source2 

VNILL 

CPRO-DLO 

CPRO-DLO 

CEBECO 

USDA-NDSU 

USDA-NDSU 

AAFC-MRC 

Procotex 

AAFC-MRC 

CEBECO 

Wiersum 

AAFC-MRC 

Wiersum 

Wiersum 

VNILL 

CPRO-DLO 

CPRO-DLO 

AAFC-MRC 

DSV 

CPRO-DLO 

CPRO-DLO 

IKWN 

AAFC-MRC 

Lin 2000 

Van de Bilt 

CEBECO 

VNILL 

AGRITEC 

USDA-NDSU 

CPRO-DLO 

Origin3 

Russia 

France 

France 

Hungary 

USA 

USA 

Canada 

The Netherlands 

Canada 

The Netherlands 

The Netherlands 

Canada 

The Netherlands 

France 

Russia 

The Netherlands 

France 

Canada 

Germany 

The Netherlands 

The Netherlands 

Poland 

Canada 

France 

The Netherlands 

The Netherlands 

Russia 

The Czech Republic 

USA 

France 
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quality of the seed material used. A scale was used of 1 - 5, whereby 1 = 

good emergence and 5 = poor emergence. Four times during the growing 

season the cultivars were scored for wilt, using a scale of 1 - 9, whereby 1 = 

healthy, no signs of wilt, and 9 = all plants severely wilted or dead. The dates 

of scoring were related to the moments that the standard cultivar 'Viking' 

reached the following stages: 1 = plants are 5 - 10 cm high, 2 = plants are 30 

cm high, 3 = just before flowering and 4 = green boll stage, the stage of 

development of the seeds. The protocol has been used by all collaborators in 

both years. 

Statistical analyses 

Data regarding emergence and the four wilt scores were subjected 

separately to an analysis of variance (ANOVA), using GENSTAT (1992). To 

study the interactions for early and late wilt and to structure the interactions in 

a more manageable form, the first and the fourth wilt score were analyzed 

using several methods. 

An agglomerative clustering procedure was carried out (Corsten and 

Denis, 1990), structuring rows and columns from a two way table and 

identifying groups in the rows and columns. 

A tetrad module was used for tracing combinations deviating from 

1 Resistance is given according to the information obtained by the source of origin or 
by the descriptive List of Varieties from the country concerned. HR = highly resistant, 
R = resistant, MR = moderately resistant, MS = moderately susceptible, S = 
susceptible, VS = very susceptible. 
2 VNILL = Flax Research Institute, Torzhok, Russia; CPRO-DLO = Centre for Plant 
Breeding and Reproduction Research, Wageningen, the Netherlands; CEBECO = 
CEBECO Seeds, Lelystad, The Netherlands; USDA-NDSU = United States 
Department of Agriculture - North Dakota State University, Fargo, USA; AAFC-MRC 
= Agriculture and Agri-Food Canada, Morden Research Centre, Canada; Procotex = 
Procotex Breeding, St.Jansteen, The Netherlands; Wiersum = Landbouwbureau 
Wiersum, Dronten, The Netherlands; DSV = Deutsche Saatveredelung, Zuchtstation 
Hof Steimke, Asendorf, Germany; IKWN = Institute for Natural Fibres, Poznan, 
Poland; Lin 2000 = Lin 2000, Grandvilliers, France; Van de Bilt = Van de Bilt Zaden, 
Sluiskil, The Netherlands; AGRITEC = AGRITEC Research, Breeding and Services 
Ltd, Sumperk, The Czech Republic. 
3 Country where the cultivar originally was selected. 
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additivity (Van Eeuwijk, unpublished results). This tetrad module is a 

statistical tool for identifying multiple deviant values in row-column 

combinations in a two-way (average) table (Bradu and Hawkins, 1982). The 

multiple deviant values are detected by calculating all possible interactions 

per cell (tetrads) in a robust way. 

Furthermore, the data from the first and the fourth stage were analyzed 

with a two-way Additive Main effects and Multiplicative Interaction (AMMI) 

model The model is written as 
L 

Yijk = \i + pi + yj + S uiivij + e ijk 
i=i 

whereby the multiplicative terms, or scores for the cultivars are given by un, 

those for the environments by vy, while L is the number of multiplicative terms 

needed for an adequate description of the interaction. AMMI-analyses were 

performed using the average tables of wilt scores for cultivars and 

environments. 

RESULTS 

Emergence 

The average emergence of most of the cultivars (data not shown) was 

intermediate. Over all locations, it varied between 1.7 and 3.4. There were no 

cultivars with extremely poor or exceptionally good emergence, except for the 

cultivars 'Hera' and 'Ocean', which emerged relatively poor in all trials in the 

first year. Germination tests proved that the poor germination of 'Hera' was 

caused by poor seed quality. For that reason the seeds of 'Hera' were 

replaced in the second year, resulting in better emergence. The poor 

emergence of 'Ocean' in both years was not caused by poor seed quality. 

Most likely it was caused by the susceptibility of this cultivar for Fusarium. 

Emergence per location (Table 6.3) differed more than emergence per 

cultivar. In 1996 the emergence in the Belgian nursery was very low. Because 

of a period of drought directly after sowing, the seeds germinated in two 

waves. This caused difficulties in the judgment of the disease in the first and 

112 



Chapter 6 

Table 6.3 
Emergence of 30 flax and linseed cultivars at nine flax wilt nurseries located in 
Europe and Northern America, in 1995 and 1996, using a scale from 1 - 5 according 
to Rashid and Kenaschuk (1993). 

1995 

1996 

Mean 

NL1 

2.8 

1.3 

2.1 

BE 

1.9 

4.7 

3.3 
1 for abbreviations see 
-- = data not obtained. 

FR 

--

2.5 

2.5 

US 

--

--

--

Table 6.1 

CZ 

2.8 

2.7 

2.8 

GE 

1.2 

2.4 

1.8 

RU 

--

--

--

CM 

2.7 

2.5 

2.6 

CS 

1.8 

1.4 

1.6 

Mean 

2.2 

2.5 

2.4 

second scoring. However, the difference in plant development within the plots 

was straightened out after the second scoring. 

Disease screening 

Development of the disease in the cultivars 

Results of disease scoring in stage 1 and 4 are summarized in Table 6.4 

and 6.5. Interaction effects between the years were not significant. The 

cultivars which showed high levels of wilting in the first stage viz. 'Ocean', 

'Barbara', 'Hera' and 'Regina', proved to show high levels of wilting in the later 

stages too. The same holds true for the cultivars 'Liflora', 'Slavny 82', 

'K-5327', 'McGregor' and 'Natasja', which were scored moderately affected in 

all stages. Most of the other, more resistant cultivars (Table 6.2) were not or 

barely affected in the first stage, so an estimation of a relationship with wilt 

occurrence in the fourth stage was impossible. The cultivars 'AC Emerson', 

'Atalante' and 'Evelin' were moderately affected in the first stage but proved to 

be hardly affected at the fourth scoring, while 'Bison', 'Viking' and 'Ariane' 

were healthy in the first stage and moderately affected in the fourth stage. 

'AC Linora' and 'Hermes' were healthy at the first scoring and stayed healthy, 

whereas 'Escalina' and 'Laura' were moderately affected in all stages (Tables 

6.4 and 6.5). 
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Table 6.4 

Score 1, average level of attack of 30 flax and linseed cultivars, determined at the 
first stage when plants were 10 -15 cm high, at nine flax wilt nurseries in Europe and 
North America, averaged across 1995 and 1996. A scale was used from 1 - 9 
according to Rashid and Kenaschuk (1993). Cultivars are ordered towards 
increasing level of average resistance in the fourth stage, locations are ordered 
towards decreasing level of average attack of Fusarium oxysporum f.sp. Uni in the 
different nurseries during the fourth stage. Because of the unbalanced data set per 
location no mean was given for the cultivars. 

Ocean 
Barbara 
Regina 
Hera 
Liflora 
Slavny 82 
K-5327 
McGregor 
Natasja 
Elise 
Ariane 
Escalina 
Raisa 
Viking 
Laura 
Alexim 
Texa 
Linda 
NorLin 
Bison 
Culbert 
Marina 
Nike 
Verne 
Hermes 
AC McDuff 
Atalante 
AC Linora 
AC Emerson 
Evelin 
Mean 

US1 FR 
1.5 
1.0 
1.0 
1.7 
1.5 
1.0 
1.0 
1.3 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.3 
1.2 
1.0 
1.0 
1.2 
1.0 
1.0 
1.0 
1.0 
1.0 
1.2 
1.2 
1.0 
1.0 
1.1 

CM 
6.3 
6.3 
5.3 
5.8 
6.7 
5.8 
6.1 
6.0 
5.5 
5.5 
5.3 
5.5 
5.8 
4.7 
5.5 
5.2 
5.3 
5.5 
4.7 
3.8 
5.2 
5.7 
5.5 
5.2 
4.7 
4.8 
5.0 
4.3 
4.8 
6.0 
5.4 

CS 
7.8 
4.8 
3.2 
3.7 
4.8 
2.8 
3.2 
2.2 
3.3 
2.3 
2.0 
2.5 
3.0 
1.7 
2.0 
3.0 
2.0 
2.2 
1.8 
1.8 
2.2 
2.3 
1.7 
2.0 
1.7 
2.2 
2.0 
1.7 
2.5 
1.8 
2.7 

CZ 
3.8 
4.0 
3.7 
3.5 
3.2 
2.7 
3.0 
3.2 
2.7 
2.3 
2.0 
2.2 
3.0 
1.2 
1.8 
2.0 
1.0 
1.7 
2.0 
2.0 
1.3 
2.2 
1.0 
2.0 
1.5 
1.0 
1.3 
1.5 
2.2 
1.7 
2.2 

GE 
2.5 
1.7 
1.5 
2.7 
1.7 
1.5 
2.4 
1.7 
1.2 
1.3 
1.2 
1.2 
1.2 
1.0 
1.5 
1.3 
1.5 
1.0 
1.5 
1.0 
1.2 
1.3 
1.5 
1.5 
1.2 
1.2 
1.3 
1.3 
1.3 
1.2 
1.5 

RU 
~ 

1.0 
2.7 
2.7 
1.0 
1.7 
1.0 
1.5 
2.2 
1.0 
1.0 
1.5 
1.0 
2.0 
2.0 
1.5 
1.0 
1.0 
1.5 
1.0 
1.0 
1.0 
1.0 
1.0 
1.5 
2.5 
2.5 
1.5 
2.5 
1.0 
1.5 

BE 
2.2 
2.5 
2.2 
1.7 
1.8 
1.7 
1.8 
1.3 
1.2 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.3 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.3 

NL 
2.2 
1.3 
1.7 
1.7 
1.5 
1.5 
1.2 
1.2 
1.0 
1.0 
1.0 
1.0 
1.0 
1.2 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.2 
1.0 
1.0 
1.0 
1.2 
1.0 
1.0 
1.0 
1.0 
1.0 
1.2 

for abbreviations see Table 6.1 
-- = data not obtained 
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Table 6.5 

Score 4, average level of attack 30 flax and linseed cultivars, determined at the 
fourth stage, the green boll stage, at nine flax wilt nurseries in Europe and North 
America, averaged across 1995 and 1996. A scale was used from 1 - 9 according to 
Rashid and Kenaschuk (1993). Cultivars are ordered towards increasing level of 
average resistance in the fourth stage, locations are ordered towards decreasing 
level of average attack of Fusarium oxysporum f.sp. Uni in the different nurseries 
during the fourth stage. 

Ocean 
Barbara 
Regina 
Hera 
Liflora 
Slavny 82 
K-5327 
McGregor 
Natasja 
Elise 
Ariane 
Escalina 
Raisa 
Viking 
Laura 
Alexim 
Texa 
Linda 
NorLin 
Bison 
Culbert 
Marina 
Nike 
Verne 
Hermes 
AC McDuff 
Atalante 
AC Linora 
AC Emerson 
Evelin 
Mean 
1 for abbreviations 
2 estimated value, 

US1 

7.5 
7.8 
6.2 
7.0 
6.3 
7.3 
6.9 
7.2 
6.3 
7.8 
5.7 
6.8 
4.7 
6.7 
6.3 
4.3 
5.8 
6.8 
6.8 
6.7 
6.5 
5.8 
4.7 
4.5 
4.7 
7.2 
3.5 
5.3 
5.5 
4.5 
6.1 

FR 
6.5 
5.3 
8.7 
5.8 
8.5 
6.0 
4.5 
6.0 
6.2 
7.8 
7.8 
6.2 
5.3 
5.7 
6.3 
4.2 
5.7 
3.3 
3.3 
4.5 
5.8 
4.5 
3.7 
3.8 
4.8 
4.5 
5.0 
2.8 
3.2 
3.5 
5.3 

CM 
7.7 
7.8 
4.8 
5.5 
7.5 
5.2 
5.5 
4.3 
4.5 
4.2 
4.3 
4.7 
4.8 
3.8 
3.8 
4.7 
5.2 
5.0 
4.2 
2.8 
4.3 
4.3 
5.0 
4.7 
4.5 
3.8 
4.5 
3.3 
3.3 
4.0 
4.7 

see Table 6.1 
data missing 

CS 
8.2 
8.5 
5.5 
5.5 
8.0 
5.4 
5.2 
4.2 
4.5 
3.7 
3.7 
4.2 
5.0 
3.0 
3.7 
3.7 
4.0 
4.5 
3.7 
3.8 
4.3 
4.3 
4.0 
4.8 
3.7 
3.7 
4.0 
4.2 
4.0 
3.5 
4.6 

CZ 
7.8 
8.2 
7.3 
7.7 
6.3 
5.0 
5.5 
6.0 
4.8 
4.5 
4.5 
4.8 
5.2 
3.2 
3.5 
4.0 
2.8 
3.2 
4.3 
3.8 
3.0 
4.0 
3.0 
3.2 
4.0 
3.2 
3.0 
3.5 
3.3 
3.2 
4.5 

GE 
7.7 
7.2 
6.0 
6.0 
5.7 
4.0 
5.9 
5.2 
4.8 
4.2 
4.5 
3.0 
3.5 
3.8 
4.0 
4.7 
4.7 
3.8 
5.0 
4.7 
4.2 
3.0 
7.0 
4.5 
3.5 
2.5 
3.3 
3.7 
2.7 
2.0 
4.5 

RU 
7.02 

3.8 
7.0 
5.3 
4.5 
5.2 
2.7 
4.5 
5.2 
4.5 
4.0 
4.0 
2.5 
5.3 
3.2 
3.3 
1.5 
4.3 
3.2 
3.8 
2.2 
3.5 
1.5 
3.5 
2.2 
3.7 
3.7 
3.3 
3.8 
2.3 
3.8 

BE 
6.3 
5.8 
5.0 
5.0 
4.8 
5.0 
4.7 
3.7 
3.0 
3.3 
2.7 
3.0 
3.0 
2.5 
2.8 
4.0 
2.7 
2.0 
2.5 
2.5 
2.7 
2.5 
2.5 
2.2 
2.8 
2.3 
2.2 
2.3 
1.8 
1.8 
3.3 

NL 
7.8 
5.7 
6.8 
7.0 
3.0 
5.8 
3.5 
2.7 
3.5 
2.3 
2.3 
2.3 
3.0 
2.2 
2.0 
2.7 
3.0 
2.2 
2.2 
1.7 
1.2 
2.0 
1.8 
1.5 
2.2 
1.5 
1.7 
2.0 
1.5 
1.8 
3.0 

Mean 
7.4 
6.7 
6.4 
6.1 
6.1 
5.4 
4.9 
4.9 
4.8 
4.7 
4.4 
4.3 
4.1 
4.0 
4.0 
3.9 
3.9 
3.9 
3.9 
3.8 
3.8 
3.8 
3.7 
3.6 
3.6 
3.6 
3.4 
3.4 
3.2 
3.0 
4.4 
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Table 6.6 

Average development of the Fusarium flax wilt disease in nine flax wilt nurseries in 
1995 and 1996 determined at four stages from young stage (10 -15 cm tall, stage 1) 
to green boll stage (stage 4). The values are determined by taking the average level 
of attack from 30 cultivars in the three replicates, using a scale from 1 - 9 according 
to Rashid and Kenaschuk (1993). 

Stage 

1 

2 

3 

4 

1 

2 

3 

4 

Year 

1995 

1995 

1995 

1995 

1996 

1996 

1996 

1996 

US1 

-

--

5.1 

6.9 

— 

4.3 

5.3 

5.3 

FR 

1.2 

2.0 

4.3 

6.4 

1.0 

1.1 

1.7 

4.2 
1 for abbreviations see Table 6.1 
-- = data not obtained 

CM 

6.5 

5.2 

4.9 

4.7 

4.3 

4.5 

4.8 

4.8 

CS 

2.8 

--

4.1 

5.1 

2.6 

4.4 

4.3 

4.1 

CZ 

2.2 

3.2 

3.9 

4.5 

2.2 

3.3 

4.2 

4.6 

GE 

1.2 

3.1 

3.7 

4.3 

1.7 

3.2 

4.2 

4.7 

RU 

2.0 

2.4 

2.5 

3.2 

1.0 

--

--

4.4 

BE 

1.1 

1.5 

3.1 

3.4 

1.4 

2.2 

2.8 

3.1 

NL 

1.0 

1.1 

1.9 

3.5 

1.3 

2.3 

2.5 

2.5 

Development of the disease at the wilt nurseries 

In the first stage the wilt scores for the Canadian nurseries and the 

Czech wilt nursery were relatively high compared with the other nurseries, 

where the disease developed mainly in the later stages. Especially the 

nursery in Morden had high levels of disease occurrence in the first stage. 

In stage four the most severe damage was observed in the oldest flax 

wilt nursery, "Plot 30", in North Dakota, USA, but also in the French flax wilt 

nursery the disease developed to rather high levels, particularly in 1995. 

Remarkable were the observations in 1995 in Morden, Canada and in 1996 in 

Saskatchewan, Canada where the disease seemed to diminish during the 

season. The Russian, Belgian and Dutch flax wilt nurseries were the 

nurseries where the lowest average level of Fusarium attack was observed 

(Table 6.6). 

In Belgium and The Netherlands the fungus was not equally dispersed 

116 



Chapter 6 

Table 6.7 
Correlations between nine flax wilt nurseries in Europe and North America, from 
which the level of attack of 30 flax and linseed cultivars was determined at the fourth 
stage, the green boll stage, averaged across 1995 and 1996. A scale was used from 
1 - 9 according to Rashid and Kenaschuk (1993). 

US 

FR 

CM 

CS 

CZ 

GE 

RU 

BE 

NL 

US1 

1.00" 

0.37* 

0.28 

0.36 

0.50" 

0.34 

0.44* 

0.49** 

0.43* 

FR 

1.00" 

0.36 

0.35 

0.32 

0.41* 

0.36 

0.35 

0.44" 

CM 

1.00** 

0.90** 

0.70** 

0.64** 

0.50** 

0.52** 

0.50** 

CS 

1.00** 

0.79** 

0.66** 

0.57** 

0.43* 

0.39* 

CZ 

1.00** 

0.67** 

0.53" 

0.53** 

0.60** 

GE 

1.00** 

0.14 

0.74** 

0.67** 

RU 

1.00** 

0.43* 

0.57** 

BE 

1.00** 

0.88** 

NL 

1.00** 

for abbreviations see Table 6.1 
* Significant correlations at 5% level 
** Significant correlations at 1 % level 

over the nursery (data not shown), which caused deviations in the 

observations. However, in these nurseries the differences between diseased 

and healthy cultivars were reasonably clear. In the Russian flax wilt nursery in 

1995 the fungus caused hardly any wilt in all cultivars in 1995, while in 1996 

the range between healthy and affected cultivars was more clear. The 

observations for the 30 cultivars grown in the flax wilt nurseries in Germany 

and The Czech Republic were similar to the average of all nurseries. 

Correlations between scorings and between nurseries 

Correlations between stage 1 and stage 4 were calculated for the nurseries 

which showed a reasonable wilt occurrence at the first stage, namely for 

Morden, Canada (CM, r = 0.78**), Indian Head, Canada (CS, r = 0.88**) and 

The Czech Republic (CZ, r = 0.94**), these correlations were significant at the 

1% level. 
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Table 6.8 

Analysis of variance (ANOVA) of wilt scores of 30 flax and linseed cultivars over 
1995, from which the data were obtained in the nine flax wilt nurseries, in three 
replicates, during four stages from the young stage (10-15 cm tall, stage 1) to green 
boll stage (stage 4). 

Stage 

1 

2 

Source of variance 

Environment (Env) 
Residual 
Cultivar (Cv) 
Cv * Env 
Residual 
Total 

Environment (Env) 
Residual 
Cultivar (Cv) 
Cv * Env 

D.f.1 

7 
16 
29 

203 
460 
715 

6 
14 
29 

174 

(1) 
(2) 

(29) 
(62) 
(94) 

(2) 
4) 

(58) 

S.S. 

2134.9 
12.5 

174.9 
407.6 
168.8 

2847.7 

1018.1 
31.1 

437.1 
389.8 

M.S. 

305.0 
0.8 
6.0 
2.0 
0.4 

169.7 
2.2 

15.1 
2.2 

V.r. 

388.9 
2.1 

16.4 
5.5 

76.4 
4.6 

31.3 
4.7 

Fpr. 

<.001 

<.001 
<.001 

<.001 

<.001 
<.001 

Residual 404(118) 194.6 0.5 
Total 627(182) 1964.6 

Environment (Env) 8 800.6 100.1 54.7 <.001 

4 

Residual 
Cultivar (Cv) 
Cv * Env 
Residual 
Total 

Environment (Env) 
Residual 
Cultivar (Cv) 
Cv * Env 
Residual 
Total 

18 
29 

232 
519 
806 

8 
18 
29 

232 
516 
803 

(3) 
(3) 

(6) 
(6) 

32.9 
1182.2 
844.3 
327.9 

3164.9 

1211.0 
52.9 

940.7 
928.5 
362.4 

3434.3 

1.8 
40.8 
3.6 
0.6 

151.4 
2.9 

32.4 
4.0 
0.7 

2.9 
64.5 
5.8 

51.6 
4.2 

46.2 
5.7 

<.001 
<.001 

<.001 

<.001 
<.001 

missing values in brackets 

Correlations between the nurseries are shown in Table 6.7. The 

correlation coefficients for the Belgian, the German and the Dutch nurseries 

were acceptable, and between the two Canadian nurseries the correlation 
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Table 6.9 

Analysis of variance (ANOVA) of wilt scores of 30 flax and linseed cultivars over 
1996, from which the data were obtained in the nine flax wilt nurseries, in three 
replicates, during four stages from the young stage (10-15 cm tall, stage 1) to green 
boll stage (stage 4). 

Score Source of variance 

1 Environment (Env) 

Residual 

Cultivar (Cv) 

Cv * Env 

Residual 

Total 

2 Environment (Env) 

Residual 

Cultivar (Cv) 

Cv * Env 

Residual 

Total 

3 Environment (Env) 

Residual 

Cultivar (Cv) 

Cv * Env 

Residual 

Total 

4 Environment (Env) 

Residual 

Cultivar (Cv) 

Cv * Env 

Residual 

Total 

D.f.1 

7 (1) 
16 (2) 

29 

200 (32) 

456 (66) 

708(101) 

7 0 ) 
16 (2) 

29 

197 (35) 

450 (72) 

699(110) 

7 (1) 
16 (2) 

29 

197 (35) 

450 (72) 

699(110) 

8 

18 

29 

225 (7) 

506 (16) 

786 (23) 

S.S. 

756.2 

31.9 

148.7 

171.9 

128.4 

1189.3 

909.8 

45.9 

561.9 

637.4 

619.7 

2672.4 

978.6 

87.8 

754.3 

750.1 

721.3 

3162.0 

565.2 

85.2 

1025.9 

1244.1 

971.3 

3837.3 

M.S. 

108.0 

2.0 

5.1 

0.9 

0.3 

130.0 

2.9 

19.4 

3.2 

1.4 

139.8 

5.5 

26.0 

3.8 

1.6 

70.7 

4.7 

35.4 

5.5 

1.9 

V.r. 

54.3 

7.1 

18.2 

3.1 

45.3 

2.1 

14.1 

2.4 

25.5 

3.4 

16.2 

2.4 

14.9 

2.5 

18.4 

2.9 

Fpr . 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

<.O01 

missing values in brackets 

was good. A certain trend of higher correlations between nurseries which 

have a short geographical distance was noticeable, but did not hold true for 

the French nursery and for "Plot 30" in Fargo, USA. These nurseries had low 
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correlations with all other nurseries. 

Interactions 

For all stages the analysis of variance (ANOVA) showed large main 

effects for the environments and considerable cultivar effects. From stage 1 to 

stage 4 the effect of the cultivars increased, compared with the effect of the 

environments. The interaction effects were clearly present and the interaction 

variance was significant in all stages and in both years (Table 6.8 and 6.9), 

but always of a lesser magnitude than the main cultivar and environment 

effects. 

Agglomerative clustering analysis 

An agglomerative clustering procedure was carried out using the data of 

the first and the fourth stage (Fig. 6.1 and 6.2) 

For the missing data of the first stage from US in 1995 and 1996, and for 

all other individual missing data, the averages per cultivar per year were used 

in the clustering procedure. In the first stage the susceptible cultivars 'Liflora', 

'Barbara' and 'Ocean' were separated from a main group (P < 0.05). The 

second level of clustering did not occur on the base of susceptibility. The 

susceptible cultivars 'Hera' and 'Regina' were clustered in the same group as 

the resistant 'AC McDuff', 'Atalante' and 'AC Emerson'. The locations 

CS-1995 (P < 0.05) but also RU-1995 were isolated by clustering, which is 

difficult to explain. No clustering took place on the basis of year, soil type, 

level of attack, or climate. 

By the clustering procedure for the fourth stage (Fig. 6.2) the susceptible 

cultivars 'Hera', 'Regina', 'Ocean', 'Barbara', 'Slavny 82' and 'K-5367' were 

separated from a more resistant main group (P < 0.05), although the relatively 

susceptible 'Liflora' was placed in the large, more resistant group. For the 

environments no pattern was recognizable for years, soil type, wilting, or 

climate. The environments US-1996, FR-1996 and RU-1995 were placed in a 

small group (P < 0.05), versus the other environments (the main group). 
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Tetrad analysis 

To indicate multiple interactions between cultivars and environments, a 

tetrad analysis was carried out, using the two-way average tables, originating 

from the first and the fourth stage for both years. For the first stage 70 

multiple outliers for cultivars and environments were found (numbers 

mentioned in brackets), 44 combinations in 1995 and 26 combinations in 

1996. For this stage 'Hera' (9), 'Barbara' (6), 'Ocean' (5), 'Liflora' (5) and 

'Raisa' (5) came forward as cultivars with the highest frequency of multiple 

outliers. In 1995 the environments in Russia (13), Saskatchewan, Canada 

(10), Manitoba, Canada (7) and The Czech Republic (6) showed the highest 

numbers of outliers, and in 1996 these were the environments in The Czech 

Republic (8) and Saskatchewan, Canada (6). For the fourth stage 30 multiple 

outliers were found, 9 in 1995 and 21 in 1996. For this stage 'Liflora' (3) came 

forward as the cultivar with the highest frequency of outliers, whereas 

'Barbara', 'Regina', 'Hera', 'Slavny 82', 'K-5327', 'Alexim', 'Texa', 'NorLin' and 

'Atalante' appeared twice in a tetrad, significantly deviating from additivity. In 

1995 the environments in France (3), Russia (2), and The Netherlands (2) 

showed multiple outliers, and in 1996 these were the environments in France 

(10), North Dakota (5), Germany (3) and Russia (2). 

Based on the results of the tetrad analysis and the agglomerative 

clustering analysis, the cultivars as well as the environments were divided into 

groups, the cultivars in groups with letter a and the environments in groups 

with letter b (Fig. 6.3). Cultivars and environments with no significant 

interactions at all and being placed in the main clustering groups were placed 

in group one, group two consisted of cultivars and environments which were 

indicated as multiple outlier more than once and which were clustered in the 

main groups. Group three consisted of cultivars and environments which were 

isolated from the main groups by agglomerative clustering, not of being a 

multiple outlier more than once, and group four consisted of cultivars and 

environments which were isolated from the main groups by agglomerative 
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clustering, and which were indicated as being a multiple outlier more than 

once. 

Additive Main effects and Multiplicative Interaction effects (AMMI) model 

An Additive Main effects and Multiplicative Interaction effects (AMMI) 

model was used to describe the interactions. AMMI-analyses were performed 

using the two-way average tables of wilt scores for cultivars and 

environments, from the data of the first and the fourth stage. 

While for the analysis of the first score 31% of the variance was 

determined by the cultivars, 31% was determined by the environments, for the 

fourth score the variance was determined for 8% by the cultivars and for 76% 

by the environments. 

The results of the analyses indicated that for both analyses two 

multiplicative terms were enough to describe the interaction. The cultivars as 

well as the environments can be represented in a two-dimensional co­

ordinate system per AMMI-analysis, a so-called biplot, whereby the axes 

represent the two multiplicative terms needed to describe the interaction (Fig. 

6.3 and 6.4) The grouping, which was based on the results from the tetrad 

analysis and the agglomerative clustering procedure was integrated in the 

biplots. The cultivars and environments were made visible by closed and 

open marks, respectively. 

In the biplot of the first stage the data which were positioned on the most 

exterior of the biplot were two environments of group 4b (Saskatchewan, 

Canada-95 and Russia-95), indicating that in the first stage these 

environment differences were most predominant. Less predominant but still 

positioned on the exterior was an environment of group 2b (Canada, Morden-

1995). Some cultivars of group 4a ('Hera', 'Regina', 'Ocean' and 'Liflora') were 

placed on the exterior of the biplot too (Fig. 6.3). The other groups of cultivars 

and environments clustered together in the biplot of the first stage, indicating 

no prominent interaction for these cultivars and environments. 

In the fourth stage the most exterior positions were taken up by 
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Figure 6.1 (page 128) 

Adapted bipiot, produced from the AMMI-analysis according to Van Eeuwijk (1996); 
30 flax and linseed cultivars, grown at the nine flax wilt nurseries in 1995 and 1996. 
The analysis was performed on the first stage (plants were 10 - 15 cm tall). The 
cultivars are presented as a closed mark, the locations as an open mark. 
• = group 1a, cultivars not indicated as being outliers by the tetrad analysis, and 
clustered in the main group by the clustering procedure. 
• = group 1b, locations not indicated as being outliers by the tetrad analysis, and 
clustered in the main group by the clustering procedure. 
• = group 2a, cultivars indicated as being outliers by the tetrad analysis, and 
clustered in the main group by the clustering procedure 
o = group 2b, locations indicated as being outliers by the tetrad analysis, and 
clustered in the main group by the clustering procedure. 
A = group 3a, cultivars not indicated as being outliers by the tetrad analysis, and 
clustered in the small group by the clustering procedure. 
A = group 3b, locations not indicated as being outliers by the tetrad analysis, and 
clustered in the small group by the clustering procedure. 
• = group 4a, cultivars indicated as being outliers by the tetrad analysis, and 
clustered in the small group by the clustering procedure. 
o = group 4b, locations indicated as being outliers by the tetrad analysis, and 
clustered in the small group by the clustering procedure. 

Figure 6.2 (page 129) 

Adapted bipiot, produced from the AMMI-analysis according to Van Eeuwijk (1996); 
30 flax and linseed cultivars, grown at the nine flax wilt nurseries in 1995 and 1996. 
The analysis was performed on the fourth stage (green boll stage). Legend as in 
Fig. 6.3. 

environments of group 4b (France-95) and group 3b (France-96 and 

Germany-96), while less exterior but still rather extreme positions were found 

for environments of group 4b (Russia-95 and USA-96). All cultivars of group 

4a ('Regina', 'Slavny 82', 'Hera' and 'Barbara') and one of group 2a ('Ocean') 

were placed on the exterior of the bipiot. Most striking was the difference in 

behavior between the two years of the French flax wilt nursery. They were 

most extreme compared with all others, but while France-95 was placed on 

an extreme place near the x-axis of the bipiot, France-96 was placed on an 

extreme position at the y-axis. 
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DISCUSSION 

Field trials 

The main reason to perform a wide-ranging field experiment was the 

difficulty in the past to fully understand the ftax-Fusarium interaction. Despite 

more than 50 years of research, it is not known whether races exist and how 

environmental factors may affect this host-pathogen interaction (Kommedahl 

et ai, 1970). The scale of the experiment was chosen as wide as possible, in 

order to include as many possible interactions. It covered a wide range of 

cultivars, locations across two continents, and observations at four plant 

stages. Such a wide-scale experiment is expected to have an increased 

frequency and magnitude of interactions, but also an increased error 

variance. This is caused by the differential effects of climate, weather, soil 

type and also pathogen populations between locations, years and cultivars. 

To keep the error variance as small as possible the seed sources were 

standardized as well as the treatment of the seeds before sowing. A well 

defined protocol for scoring was used to diminish the effect of differences due 

to in the staff carrying out the scoring. 

Emergence 

In general the emergence was fairly similar for all fields, the differences 

between most locations being small, so small that possible differences in 

emergence are not expected to influence the scores to a measurable extent 

in most cases. 'Hera' and 'Ocean' emerged poorly in the first year, in all 

nurseries. The replacement of the seeds of 'Hera' in the second year gave a 

better emergence but not clearly different wilt scores for this cultivar, so the 

data of the first year were not eliminated. The drought in the spring of 1996 in 

the Belgian field resulted in two waves of emergence and germination, 

resulting in a very low emergence in 1996. This low emergence did not seem 

to have influenced the scores of the Belgian nursery during the first stage, as 

the wilt scores in 1996 did not deviate much from those in 1995, when the 

emergence was good. 
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Disease screening 

Development of the disease in the cultivars 

The level of Fusarium attack of the cultivars observed in the fourth stage 

agreed quite well with the level of resistance, as indicated by the source of 

origin of the cultivars (Table 6.2). A remarkable deviation of the expected 

resistance was shown by 'Ariane'. In earlier French trials (Beaudoin, 1991) 

this cultivar was assessed to be susceptible, but in the present experiments it 

was moderately resistant to resistant, except in the French nursery. 

The cultivars, assessed as being susceptible during the first stage, were 

also susceptible during the other stages. There was no cultivar susceptible for 

early wilt, which was not susceptible for late wilt too. Kommedahl et al. (1970) 

observed cultivars which differed in resistance against early and late wilt, but 

in the present experiment no evidence was found to justify a difference 

between early and late wilt. In the more susceptible cultivars the disease was 

observed earlier. 

Development of the disease at the locations 

Clear differences in disease severity were observed between the 

locations for the two years, but in all environments the disease did develop 

eventually. Only at the Russian nursery in 1995 the disease was hardly 

visible. 

In Canada the disease developed very early in both years. In 1995 in 

Manitoba there were indications that the plots had more dead plants in the 

early stages. The same trend was also visible after the second observation in 

1996 in Saskatchewan. Because in the more resistant cultivars Fusarium wilt 

is expressed as late wilt, and because wilt occurrence is promoted by high 

temperatures (Milikan, 1945; Tochinai and Takee, 1950), which mainly occur 

later in the season, it is not very likely that Fusarium wilt occurrence in the 

early stage will be followed by a recovery of the plants in later stages. The 

diseased plants responsible for the high disease scores in the early stage 

could die and disappear, while wilt symptoms and disease severity may differ 
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on surviving plants at the end of the season. 

The plants in the American nurseries generally were shorter than those 

in the European trials. The sowing date in the nurseries in North America was 

on average more than one month later than in the nurseries in Europe, but 

the last observations were about one month later as well. The use of the 

standard cultivar helped to compensate for this difference. 

Interactions 

The ANOVAs showed a significant cultivar * environment variance in all 

stages (P < 0.001). The data of the first stage averaged over both years 

(Table 6.4) did not give an indication for clear identifiable interactions, but in 

the fourth stage, four cultivars seemed to cause interactions with locations 

(Table 6.5). 'Linda', 'NorLin' and 'AC McDuff' were much more susceptible in 

the North Dakota wilt nursery, "Plot 30", compared to all other nurseries. 

'Ariane' appeared to be much more susceptible in the French nursery, 

compared to all other nurseries. However, for all four cultivars the trend was 

not statistically significant for the combined results of both years. The 

clustering analysis did not separate these cultivars, and the tetrad analysis did 

not trace them as multiple outliers for both years. Also the AMMI-analysis did 

not place these cultivars apart in the biplot. 'McGregor' showed unstable 

reactions in the nurseries of St. Paul, Minnesota and Fargo, North Dakota 

("Plot 30"), which can not be seen from Table 6.5. In the Czech wilt nursery 

the expected resistance level of 'McGregor' was less than the observed one, 

but this difference was not significant. 

Clustering took place in the first stage for some of the susceptible 

cultivars, whereas in the fourth stage clustering occurred for most of them. 

Also the tetrad analysis indicated the most susceptible cultivars as outliers, 

causing interaction with environments. For the environments no pattern could 

be found, neither in the first stage nor in the fourth stage. In the fourth stage 

two environments from 1996 and one from 1995 were separated, two 

continental and one maritime, two severely diseased and one only slightly 
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diseased, so no recognizable parameter was responsible for the environment 

part of the interaction. 

The tetrad analysis of the first stage showed a very high frequency of 

outliers, indicating a high number of small but significant interactions, whereby 

most of the interactions were found between the susceptible cultivars and the 

environments with the highest wilt occurrence. The same holds true for the 

fourth stage, but to a lesser extend. Also in stage four most of the interactions 

were found between the susceptible cultivars and environments with the 

highest wilt occurrence. The highest amounts of multiple outliers were found 

in the French nursery and in "Plot 30". These results indicate that on the one 

hand a high level of occurrence of flax wilt in the nursery and on the other 

hand susceptibility of the cultivar seem to cause interaction. 

The AMMI-analysis showed that the interaction could be described in 

two imaginary additive environmental terms, and that the main differences 

could be found in the environments. The environments, separated by the 

clustering analysis were not the same as the environments which were 

indicated as interacting highly significantly in the tetrad analysis. Only the 

AMMI-analysis placed all these interactive environments in the extreme 

positions of the biplots. 

CONCLUSIONS 

- No evidence was found for a separate status of early wilt and late wilt, 

neither in susceptibility patterns, nor in interaction patterns. 

- The cultivar * environment interaction effects were clear and 

significant, but mostly visible by differences in environments of the 

susceptible cultivars. 

- In the AMMI model the cultivar * environment interaction scores were 

described in two terms, which indicated a relatively simple interaction pattern. 

- The French flax wilt nursery showed up most strongly in interaction 

patterns. 

- Although the interaction variance was significant no consistent cultivar 
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* environment interactions came forward. Therefore, there is no evidence of 

identifiable races. If race-specific effects, causing cultivar * environment 

interaction exist, they must to be small, too small to be recognized by this type 

of test. 
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SUMMARY 

Flax is a crop which currently is the subject of revived attention of 

agriculture, media and industry, since promising new and environmental 

friendly utilizations of flax fibers have been developed. Although the crop can 

be grown with relatively low amounts of agrochemicals, it may suffer from 

various diseases of which flax wilt is among the most serious ones. Flax wilt, 

caused by the host-specific fungus Fusarium oxysporum f.sp. Uni, is a major 

problem in flax and linseed (Linum usitatissimum), and breeding for 

resistance to this fungus is one of the most important selection targets of flax 

and linseed breeders. High levels of partial resistance exist in some flax and 

linseed cultivars. Conventional screening methods for resistance involve field 

trials at strongly infested fields, and wilt development is visually assessed. 

The results are highly variable and therefore require replicated observations, 

preferably over a few years. More knowledge about the defense mechanisms 

and disease processes of flax and linseed to Fusarium wilt is a prerequisite 

for the improvement of the current selection techniques. However, next to 

nothing is known about the molecular and biochemical background of the 

resistance mechanisms, and little is known about the inheritance of the 

resistance. Neither races of the pathogen nor race-specific resistance have 

been unambiguously reported. About the course of infection and colonization 

some knowledge has been accumulated, but unsufficient for a full insight in 

these processes. Also the influence of environmental factors such as 

temperature and soil type have proven to be very difficult to assess in the 

Fusarium - flax pathosystem. 

The aim of this research project was to study the flax and linseed 

interaction with Fusarium oxysporum f.sp. Uni. Two in vitro screening methods 

were developed to determine more accurately the wilt resistance of flax and 

linseed genotypes and to study the infection and colonization processes. The 

first method consisted of growing seedlings in test tubes, filled with vermiculite 

and a 10% MS-solution. After six days a selection for equal sprout length was 

carried out and the seedlings were inoculated with a spore suspension of the 
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fungus. After 16 days disease severity was assessed, using sprout length 

reduction as a scale. The second method consisted of growing flax and 

linseed seedlings in two liter preserving jars from which the inner walls were 

covered with filter paper and seeds of flax and linseed were sown between 

glass and paper. After six days a spore suspension was added onto the 

seedling roots. Disease severity was assessed after three weeks, again using 

sprout length reduction as a scale. The first method was most suitable for a 

more accurate and quantitative determination of resistance. The second 

method proved to be especially useful for the study of root infection and 

colonization processes. Both methods proved to be more accurate for 

screening for resistance in breeding programs than field trials, and can be 

carried out in earlier generations than field trials. Therefore they can be 

considered an improvement on the present screening methods (Chapter 2). 

A histological study of the colonization and development of the fungus in 

a resistant and a susceptible flax cultivar, gave detailed insight in the 

development of the pathogen and the resulting damage in seedlings. From 

the second day after inoculation root infection occurred, mainly through 

intercellular invading of the root cap by fungal hyphae. The root defense 

consisted of the development of distinct appositions next to penetrating 

hyphae, while other cells next to penetrating hyphae collapsed. Four days 

after inoculation the fungus had reached and penetrated the cortex 

intercellularly, which was followed by a rapid and massive colonization of the 

entire root tip. The fungus did not show a rapid growth towards the stem. 

Heavily colonized roots were hollowed out, followed by fungal penetration of 

the protoxylem. In this experiment the macroscopic disease symptom (sprout 

length reduction) was not very different between the resistant and the 

susceptible cultivar. Also microscopically, disease development in both 

cultivars was similar, although occlusion of intercellular spaces with gum-like 

components and cell wall enforcement with phenolics seemed to be more 

prominent in the resistant cultivar (Chapter 3). 

Quantitative measurements of the fungal sterol ergosterol, and of the 
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toxin of Fusarium oxysporum f.sp. Uni, fusaric acid, in planta, could be a way 

to assess the presence and the aggressiveness of the fungus in this host -

pathogen system. Ergosterol measurements confirmed the presence of the 

fungus in an in vitro experiment and in a field experiment, although the 

correlation between the amount of ergosterol and disease symptoms was low, 

except for sprout length reduction in the in vitro experiment. In the susceptible 

'Regina' the fungus was present in considerably higher amounts than in the 

four resistant cultivars, indicating resistance, i.e. reduced amounts of the 

fungus, more than tolerance (reduced symptoms). However, the amounts of 

ergosterol measured in 'Regina' were very variable between the plants, 

suggesting that the fungus was present in variable amounts in plants of the 

diseased cultivar. Fusaric acid could not be detected in any of the plant 

materials and no indication was obtained that increased breakdown of fusaric 

acid is related to resistance (Chapter 4). 

The possible existence of races in Fusarium oxysporum f.sp. Uni was 

studied with help of the in vitro test tube method. The first experiment 

included 12 single spore cultures of the fungus, mainly originating from the 

same flax wilt nursery and 14 flax and linseed cultivars. In the second 

experiment 14 single spore cultures from six countries, and 15 cultivars of flax 

as well as linseed were used. Analyses of variance and an agglomerative 

clustering analysis indicated the presence of a significant but small interaction 

variance between pathogen isolates and the flax cultivars. There was no clear 

indication for race-specificity (Chapter 5). 

The influence of locations and years (environments) on the development 

of flax wilt were studied in an international field experiment. Thirty flax and 

linseed cultivars were grown at flax wilt nurseries over a two year period at six 

locations in Europe (Belgium, The Czech Republic, France, Germany, The 

Netherlands and Russia) and three locations in North America (Canada, 

Manitoba and Canada, Saskatchewan as well as USA, North Dakota). To 

make the experiments comparable a protocol was developed for disease 

scoring, which has been used by all collaborators in both years. Resistance 
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levels of flax and linseed were measured four times during the growing 

season. The measurements were analyzed by an ANOVA, and showed 

significant main effects for cultivars and environments, and significant cultivar 

by environment interaction for all scorings. A tetrad module, an agglomerative 

clustering procedure and an Additive Main effects and Multiplicative 

Interaction effects (AMMI) model were used to structure the interactions in a 

more manageable form. The interactions showed no correlation with 

resistance and were not reproducible. Thus, no indication was obtained for 

different races in the different locations, nor for race-specificity in flax and 

linseed (Chapter 6). 

Concluding remarks 

The host - pathogen system described in this thesis is an outstanding 

example of a system whereby the assessment of resistance has to be 

performed through indirect effects, explaining why the results of resistance 

screening show considerable variations. Even the attempts to measure the 

amount of fungus directly, through ergosterol measurements, proved to be 

very variable. The development of the two in vitro screening methods yielded 

a better tool to study the plant - pathogen system and the resistance 

mechanisms involved compared with standard field studies. Although some 

questions remained it could be concluded from the work presented in this 

thesis that resistance rather than tolerance plays a role in the relationship 

between flax and linseed and Fusarium oxysporum f.sp. Uni, and that, if race-

specificity exists, it only may work at minor gene level so that the resistance 

appears to be a quantitative characteristic. This knowledge and the in vitro 

tests, represent a significant contribution to improved breeding strategies for 

resistance. 

Many questions, however, remained unanswered. More knowledge is 

needed about the molecular and biochemical aspects of the resistance. The 

role of fusaric acid remained unclear. The fungus was present in low or 

variable amounts, maybe to low to produce fusaric acid in detectable 
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amounts. However, fusaric acid is a non-specific toxin of Fusarium 

oxysporum, while the host - pathogen relationship is very specific. Flax and 

linseed have good defense mechanisms against all other, fusaric acid 

producing formae speciales of Fusarium oxysporum. It would be of great 

advantage to know the specific biochemical factor(s) of the flax - Fusarium 

interaction to understand this complex host - pathogen system. Also the 

identification of molecular markers, for instance PCR or AFLP markers, in flax 

and linseed as well as in the pathogen is a great challenge. Molecular 

markers form a powerful tool to identify genes for resistance in flax and 

linseed and might give more insight in the inheritance of the resistance. 
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Vlas (Linum usitatissimum L) is een gewas dat momenteel opnieuw in 

de belangstelling staat van landbouw, media en industrie doordat recentelijk 

veelbelovende en milieuvriendelijke toepassingen van natuurlijke vezels zijn 

ontwikkeld. Het gewas kan milieuvriendelijk geteeld worden en heeft weinig 

bestrijdingsmiddelen en voedingsstoffen nodig. Echter, bij de teelt kunnen 

een aantal ziekten, waarvan de Fusarium verwelkingsziekte een van de 

belangrijkste is, tot aanzienlijke schade leiden. 

De Fusarium verwelkingsziekte wordt veroorzaakt door de 

bodemschimmel Fusarium oxysporum f.sp. lini. In veredelingsprogramma's is 

resistentie tegen deze ziekte één van de belangrijkste selectiedoelen. Er 

bestaan genotypen met een goede resistentie tegen de schimmel, maar van 

de moleculaire en biochemische achtergrond van deze resistenties is 

nagenoeg niets bekend. Ook is er weinig bekend over de genetica van de 

resistentie. Het is nooit ondubbelzinnig vastgesteld of er fysio's van de 

schimmel bestaan en daaraan gekoppeld, of de resistenties in vezel- en 

olievlas tegen de schimmel fysio-specifiek zijn. Er is op het gebied van 

infectie- en kolonisatiepatronen wel onderzoek verricht, maar dit bleek 

onvoldoende om volledig inzicht te krijgen in deze processen. De gebruikelijke 

methode van selectie vezel- en olievlas cultivars met resistentie tegen 

Fusarium geschiedt door gebruik te maken van proefvelden die met Fusarium 

oxysporum f.sp. Uni zijn besmet. Hierbij wordt de schade visueel vastgesteld. 

Deze methode heeft als nadeel dat de resultaten vaak erg variabel zijn en om 

die reden is het noodzakelijk dat beproevingen met veel herhalingen en bij 

voorkeur over meer jaren worden uitgevoerd. De invloed van 

omgevingsfactoren op het vlas-Fusarium ziekteproces, zoals temperatuur en 

bodemsoort is zeer moeilijk vast te stellen. Meer kennis over 

afweermechanismen en over het ziekteproces van de Fusarium 

verwelkingsziekte in vezel- en olievlas was nodig om de huidige selectie 

technieken te verbeteren. 
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Het doel van het onderzoek dat in dit proefschrift wordt beschreven was 

het uitvoeren van onderzoek naar de interacties tussen vezel- en olievlas en 

Fusarium oxysporum f.sp. Uni. Teneinde resistenties nauwkeuriger te kunnen 

vaststellen en de mogelijkheid te creëren om het infectie- en 

kolonisatieproces in detail te bestuderen, zijn twee in vitro toetsmethoden 

ontwikkeld. Bij de eerste methode werd gebruik gemaakt van testbuizen 

gevuld met vermiculiet en een 10% MS-voedingsoplossing. Hierin werden 

vlaszaden tot kieming gebracht. Na zes dagen werden de zaailingen op 

gelijke spruitlengte geselecteerd, en vervolgens geïnoculeerd met een 

sporesuspensie van de schimmel. Na 17 dagen werd de mate van aantasting 

bepaald door middel van het bepalen van de lengtereductie ten opzichte van 

een gezonde controle. De tweede methode bestond uit het opkweken van 

vlaszaailingen in twee liter weckflessen. Tegen de binnenwand van de 

weckflessen werd filtreerpapier geplaatst zodanig dat de onderrand van het 

papier in een oplossing van 10% MS voedingsoplossing stond. De zaden 

werden geplaatst tussen papier en glas. Na zes dagen werd een 

sporesuspensie van de schimmel aan het systeem toegevoegd, vlakbij de 

vlaswortels. Na drie weken werd de mate van aantasting bepaald, door 

middel van het bepalen van de lengtereductie. De eerste methode bleek zeer 

geschikt voor het nauwkeurig en kwantitatief bepalen van het 

resistentieniveau. De tweede methode lijkt specifiek bruikbaar voor het 

bestuderen van infectie- en kolonisatie processen. Beide methoden bleken 

goed toepasbaar voor selectie op Fi/sam/m-resistentie omdat ze minder 

variabele resultaten opleverden dan veldtoetsen en in vroegere generaties 

van het veredelingsprogramma kunnen worden uitgevoerd. Ze kunnen om die 

reden als een aanwinst worden beschouwd ten opzichte van de huidige 

toetsmethoden (Hoofdstuk 2). 

In hoofdstuk 3 wordt de kolonisatie en ontwikkeling van de schimmel in 

een vatbare en een resistente cultivar beschreven, alsmede de veroorzaakte 

schade in de zaailingen als gevolg hiervan. Vanaf de tweede dag na 

inoculatie was er sprake van intercellulaire penetratie van de schimmelhyfen, 
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hoofdzakelijk in de calyptra. Het verdedigingsmechanisme van de 

calyptracellen bestond uit het vormen van plaatselijke celwandverdikkingen, 

zgn. "appositions", direct naast de penetrerende schimmelhyfen. Van andere 

calyptracellen die in contact kwamen met de schimmel werd de wand 

dusdanig beschadigd dat de cellen lyseerden. Na vier dagen had de 

schimmel de cortex bereikt, gevolgd door snelle en massieve intercellulaire 

invasie van de cortex en vervolgens kolonisatie van de gehele worteltop. Er 

was geen sprake van een snelle verplaatsing van de schimmel in de richting 

van de stengel. De wortels werden in hevige mate gekoloniseerd zodat op de 

plaats van de cortex holtes ontstonden. In dit stadium werd tevens penetratie 

van het protoxyleem waargenomen. Hoewel er in dit experiment zowel 

macroscopisch als microscopisch weinig verschil in reactie te zien was tussen 

de vatbare en de resistente cultivar, werd in de resistente cultivar toch vaker 

waargenomen dat intercellulaire ruimten gevuld werden met gom-achtige 

verbindingen. Ook werden er in de resistente cultivar wat vaker 

celwandverdikkingen gevonden waarbij fenolen gevormd werden (Hoofdstuk 

3). 

Het kwantitatief bepalen van de hoeveelheid van het schimmelspecifieke 

sterol ergosterol, en van het toxine van Fusarium oxysporum f.sp. Uni, 

fusaarzuur, in planta, is een directe manier om de mate van aanwezigheid en 

aggressiviteit van de schimmel of zijn toxine te meten. Door middel van 

ergosterolmetingen aan plantmateriaal afkomstig van een met Fusarium 

oxysporum f.sp. Uni geïnfecteerd vlasveld, en aan plantmateriaal verkregen uit 

een in vitro experiment, kon de aanwezigheid van de schimmel in planta 

worden aangetoond. De correlatie met waargenomen ziekte symptomen 

bleek laag, behalve in het geval van de lengtereductie bij het in vitro 

experiment. In de vatbare 'Regina' was de schimmel in aanzienlijk grotere 

hoeveelheden aanwezig dan in de resistente cultivars, hetgeen duidt op echte 

resistentie (minder schimmel), in plaats van tolerantie (minder symptomen). 

De gemeten hoeveelheden schimmel in 'Regina' waren echter nogal variabel, 

wat tot de conclusie leidt dat de schimmel in variabele hoeveelheden in 
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planten van de vatbare cultivar aanwezig was. Er werd in het geheel geen 

fusaarzuur aangetoond en er is dus geen aanwijzing gevonden dat een 

versnelde afbraak van fusaarzuur gerelateerd is aan resistentie (Hoofdstuk 4). 

Met behulp van de in vitro testbuizentoets is het bestaan van fysio's bij 

Fusarium oxysporum f.sp. Uni onderzocht. Er zijn twee experimenten 

uitgevoerd. Bij het eerste experiment zijn 12 monospore cultures van de 

schimmel gebruikt, hoofdzakelijk afkomstig uit één en hetzelfde geïnfecteerde 

proefveld, waarmee 14 vezel- en olievlas cultivars zijn geïnoculeerd. Bij het 

tweede experiment zijn 14 monospore cultures gebruikt afkomstig uit zes 

landen, en zijn 15 vezel- en olievlas cultivars geïnoculeerd. Uit een ANOVA 

en een agglomeratieve clustering procedure bleek dat er kleine maar 

significante interacties bestonden tussen isolaten en cultivars. Er was echter 

geen concrete aanwijzing voor fysiospecificiteit (Hoofdstuk 5). 

Het effect van locaties en jaren op de FusariumMas interactie is 

bestudeerd door het uitvoeren van een internationale veldtoets. Dertig 

cultivars van vezel- en olievlas zijn getest over een periode van twee jaren, op 

zes, met Fusarium oxysporum f.sp. Uni geïnfecteerde proefvelden in Europa 

(België, Duitsland, Frankrijk, Nederland, Rusland en Tsjechië) en verder op 

drie geïnfecteerde proefvelden in Noord Amerika (Canada, Manitoba en 

Canada, Saskatchewan en de Verenigde Staten, Noord Dakota). Om de 

onderlinge verschillen in waarneming zo klein mogelijk te maken werd een 

protocol geschreven dat door alle medewerkers is gebruikt. Op vier 

momenten tijdens het groeiseizoen werd de aantasting beoordeeld. 

Vervolgens zijn de scoringsdata geanalyseerd met behulp van een ANOVA, 

waarbij significante hoofdeffecten werden waargenomen voor de cultivars en 

de omgevingsfactoren, maar ook significante interactie effecten. Met behulp 

van een tétrade module, een agglomeratieve clustering analyse en een 

AMMI-model werden de interacties meer gedetailleerd onderzocht. De 

interacties bleken geen correlaties te vertonen met resistentie en waren slecht 

reproduceerbaar. Uit de analyses is geen aanwijzing verkregen voor het 

bestaan van verschillende fysio's in de verschillende locaties, noch voor het 
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bestaan van fysiospecificiteit in vezel- en olievlas (Hoofdstuk 6). 
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RESUME 

Le lin (Linum usitatissimum L.) est sujet à un renouveau d'attention de la 

part du monde agricole, des médias et de l'industrie depuis le développement 

de nouvelles applications non polluantes des fibres de lin. Bien que la culture 

du lin ne nécessite que peu d'intrants (fertilisants, pesticides), cette culture 

est sensible à différents parasites parmi lesquels Fusarium oxysporum f.sp. 

Uni, champignon du sol responsable de la fusariose du lin. 

La fusariose étant une des principales limitation de la culture du lin, la 

recherche de génotypes résistants est l'un des principaux objectifs de 

l'amélioration variétale du lin. Certains cultivars de lin présentent de bons 

niveaux de résistance partielle à la fusariose mais les bases biochimiques et 

moléculaires de ces resistances n'étant pas connues il est nécessaire de 

recourir aux essais en champs pour déterminer le niveau de résistance des 

nouveaux cultivars. Ces vatiétés sont ainsi cultivées dans des parcelles 

contaminées par F. oxysporum et les dégâts observés visuellement. Les 

résultats étant relativement variables, les essais nécessitent de nombreuses 

répétitions et doivent être reconduit sur plusieurs années. Très peu de 

données sont disponibles quant à Phéritabilité de ces resistances. Peu de 

connaissances sont également disponibles concernant le champignon 

puisque l'existence de races physiologiques du pathogène et par la même de 

résistances race-spécifiques ne sont pas établie. Bien que l'épidémiologie de 

la fusariose du lin aie fait l'objet de quelques travaux, ceux-ci restent 

insuffisants. Il faut de plus ajouter que les facteurs environnementaux tels que 

la température ou la nature du sol peuvent modifier de façon importante 

l'établissement de la fusariose. Une meilleure connaissance du 

développement de la fusariose et des mécanismes de défense dont dispose 

la plante est donc un prérequis à l'amélioration des techniques de sélection 

du lin. 

L'objectif du travail de recherche décrit dans cette thèse de doctorat est 

l'étude des interactions entre le lin (fibre et graine) et Fusarium oxysporum 
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f.sp. Uni. Deux méthodes de criblage in vitro ont été développées afin de 

tester avec précision la résistance du lin vis-à-vis de la fusariose et d'étudier 

le processus d'infection et de colonisation par le champignon des tissus de 

l'hôte. Dans la première méthode des graines de lin sont mises à germer en 

tube à essais sur vermiculite additionnée d'une solution nutritive (10% MS). 

Après six jours de culture les plantules présentant un développement 

homogène sont sélectionnées et inoculées avec une suspension de spores 

du pathogène. Seize jours après inoculation la longueur des pousses est 

mesurée, la réduction de croissance étant alors prise comme symptôme de la 

maladie. Dans la deuxième méthode, des bocaux à conserve de deux litres 

contiennent une feuille de papier filtre adhérente à la paroi intérieure du bocal 

et imbibée d'une solution nutritive MS 10%. Les graines de lin sont mises à 

germer entre la paroi du bocal et le papier filtre. Six jours après semis, une 

suspension de spores est inoculée à proximité des racines. La longueur des 

pousses est mesurée après trois semaines de culture. La première méthode 

est particulièrement adaptée à la quantification du niveau de résistance du lin 

à la fusariose. La deuxième méthode s'avère plus adéquate pour étudier les 

processus d'infection et de colonisation des racines par le champignon. Les 

deux méthodes se révèlent plus efficaces que les essais aux champs pour 

déterminer les niveaux de résistance du lin à la fusariose, du fait, d'une part 

d'une moindre variabilité des essais in vitro, et, d'autre part, de la possibilité 

de les utiliser plus tôt au cours des schémas d'amélioration variétale. Pour 

ces raisons ces tests peuvent être considérés comme un progrès par rapport 

aux méthodes classiques d'essais aux champs (Chapitre 2). 

Dans le Chapitre 3, l'étude histologique de la colonisation et du 

développement du pathogène chez un cultivar sensible et chez un cultivar 

résistant est présentée. Deux jours après inoculation les hyphes mycéliens 

pénétrent la coiffe racinaire tout en restant localisés entre les cellules. Les 

cellules de la coiffe proches des hyphes réagissent alors par apposition de 

dépôts sur les parois cellulaires, alors que les cellules environnantes 

collapsent. Quatre jours après inoculation, les hyphes atteignent le cortex 
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racinaire et envahissent les cellules. Ceci est alors suivi par une colonisation 

rapide et massive de l'extrémité de la racine mais non de la tige. Le 

dévelopement du champignon dans la racine se traduit par l'apparition de 

cavités et par la colonisation du protoxylème. La réduction de croissance des 

pousses des cultivars résistants n'est que peu différentes de celles des 

cultivars sensibles. L'étude microscopique montre que le champignon se 

développe de façons semblables chez les deux types de cultivars. 

Cependant, chez les cultivars résistants il est possible d'observer plus tôt 

l'accumulation de gommes dans les lacunes intercellulaires et le 

renforcement des parois cellulaires par des composés de nature phénolique 

(Chapitre 3). 

La teneur en un sterol spécifique du champignon, l'ergostérol, et en une 

toxine du champignon, l'acide fusarique, permet de quantifier, in planta, le 

degré de colonisation et l'agressivité du pathogène. La mesure des teneurs 

en ergostérol de plantes cultivées aux champs ou cultivées in vitro confirme la 

présence du champignon, bien que la corrélation entre teneur en sterol et 

symptômes soit faible (excepté pour la réduction de croissance des pousses 

in vitro). Chez le cultivar sensible "Regina", le champignon est présent en 

quantité plus importante que chez les quatre cultivars résistants, indiquant le 

développement de résistances (réduction de la quantité de pathogène), plutôt 

que de tolérances (réduction des symptômes). Cependant les teneurs en 

ergostérol observées dans les plants infestés du cultivar "Regina" sont très 

variables de plante à plante. L'acide fusarique n'a pu être mis en évidence 

dans aucune des plantes testées, et aucune indication quant à une possible 

dégradation de l'acide fusarique en relation avec la résistance n'a été mise en 

évidence (Chapitre 4). 

L'existence de races physiologiques de Fusarium oxysporum f.sp. Uni a 

été recherchée grâce au premier test in vitro décrit. Douze cultures 

monospores du champignon, majoritairement originaires du même champ, 

ont été inoculées à 14 variétés de lin (graine et fibres). Dans une deuxième 

étude, 14 cultures monospores du champignon, originaires de six pays 
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différents, ont été inoculées à 15 variétés de lin à graines et de lin à fibres. 

L'analyse de variances et l'analyse de groupes mettent en évidence la 

présence d'une interaction faible mais significative entre isolats du pathogène 

et cultivars de lin. Aucune indication ne permet d'assurer l'existence de 

résistance race-specifique (Chapitre 5). 

L'effet des interactions entre lieu de l'essai et année de l'essai sur le 

développement de la fusariose du lin a été étudié au cours d'un essai aux 

champs réalisé au niveau international. Trente variétés de lin (graine et fibre) 

ont été cultivées durant deux années dans six pays européens (Allemagne, 

Belgique, France, Pays Bas, République Tchèque et Russie) et trois 

localisations en Amérique du Nord (Manitoba et Saskatchewan, Canada, et 

Dakota du Nord, Etats-Unis). Un même protocole écrit d'évaluation des 

dégâts a été utilisé par tous les collaborateurs au cours des deux années. 

Les niveaux de résistance étaient évalués quatre fois au cours de la période 

de croissance. L'analyse de variances des résultats montre un effet 

significatif du cultivar, de l'environnement et de l'interaction cultivar -

environnement. Les donnés ont été soumises à différentes analyses telles 

que le module des tétrades, l'analyse de groupes et l'AMMI. Les interactions 

ne s'avèrent pas corrélées à la résistance et sont non reproductibles. Nos 

résultats ne mettent en evidence ni l'existence de races physiologiques de 

Fusarium oxyxporum f.sp. Uni, ni l'existence de résistance race-specifique 

chez les lins à graine et à fibre (Chapitre 6). 
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Gewaskennis was ruim aanwezig op het instituut. Ik heb ontzettend veel 
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opzetten van een in vitro vlastoets kwam er schot in het onderzoek. Ellen 

Sommers bleef helaas "mijn" enige student, ze deed uitstekend werk. In 

Frankrijk maakte ik kennis met Jean Paul Trouvé die me aanbood zijn 

proefveld te gebruiken, een aanbod waarvan ik graag en veelvuldig gebruik 

heb gemaakt. De ontmoeting met Khalid Rashid was van zeer grote waarde. 

Samen bediscussieerden we de opzet van een internationale veldtoets. Hij 
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liet mij de organisatie maar adviseerde op de achtergrond. Robert Baayen 

bood mij aan om gebruik te maken van zijn histologische kennis, en verder 

om een genetische studie te doen naar mijn Fusarium isolaten. De histologie 

is afgerond, de studie naar de genetica van de isolaten wordt momenteel 

uitgevoerd. 

Ik moest veel reizen doordat ik mijn proefveld in Frankrijk had, en altijd 

met de dienstauto. Dat gaf nog wel eens wat organisatorische problemen, 

maar Willem Geutjes wist overal een oplossing voor en ik had altijd een auto 

als ik er een nodig had. Het was veel werk en gelukkig waren er altijd mensen 

die hun handen uit de mouwen wilden steken voor mij. Patrizio Remotti, 

Geesje en Härmen van der Werf, Joke Mouris, Cees Krechting, Harrie 

Jonker, Marjan van Harmeien, Marieke Förch en nog vele anderen. Ik kon 

altijd op jullie rekenen. Hartstikke bedankt. 

Naast werken was er de PV (Plezier Voorop!) en daar heb ik veel 

genoegen gehad met het opzetten van de diverse cabarets, kerstconcerten, 

bieravonden en natuurlijk de feestavond op Nergena. Hans Sandbrink was 

hierbij mijn absolute voorbeeld en we hebben uitstekend samengewerkt. 

Ik heb veel nut gehad van de onderzoeksschool Experimental Plant 

Sciences, waarvan ik de ontwikkeling van dichtbij mocht meemaken. De 

contacten met de leden van de AlO-raad waren misschien niet direct van nut 

voor mijn project, maar mensen als Peter Wittich, Ingeborg van Scheurwater 

en Enrico van Lieshout, de kern van de club-in-ontwikkeling, werkten wel mee 

aan het verkrijgen van een echte AlO-mentaliteit, althans zo voelde ik dat. 

Het schrijven viel mij in het begin niet mee, maar Wouter Lange bleek in 

dit stadium van onschatbare waarde, altijd veel kritiek, maar altijd positief. 

Ook bleek mij toen pas goed dat ik een zeer bekwame promotor had 

getroffen in Jan Parlevliet. Van hetzelfde laken een pak, soms veel kritiek 

maar altijd op een prettige manier geserveerd. 

Familie, vrienden en kennissen hebben me in de drukte wel eens vaker 

moeten missen dan hun lief was. Ik kan helaas niet beloven dat daar 

verandering in komt. 
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waren niet altijd blij dat ik zo druk was, maar lieten me toch begaan en 
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