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1. Tospovirussen en tenuivirussen zijn via onafhankelijke wegen het plantenrijk binnen­

gedrongen. 

Dit proefschrift. 

2. De conclusie van Yamada et al. dat de ribozym activiteit versterkt wordt door fusie 

van het ribozyme met het Rev Responsive Element wordt niet onderbouwd door 

experimentele gegevens. 

Yamada et al. (1996). A chimeric human imunnodeficiency virus type 1 (HIV-1) minimal Rev 

Response Element-ribozyme molecule exhibits dual antiviral function and inhibits cell-cell transmissi­

on of HIV-1. Journal of Virology 70, 1596-1601. 

3. Het gebruik van de term "coat protein-mediated resistance" voor bescherming van 

planten op basis van het nucleocapside-gen van het tomatebronsvlekkenvirus is 

onjuist. 

Pang et al. (1996). Post-transcriptional silencing and consequent tospovirus resistance in transgenic 

lettuce are affected by transgene dosage and plant development. Plant Journal 9, 899-909. 

4. De bewering van Faretra et al. dat het voorkomen van beide "mating" type allelen in 

isolaten van Botrytis cinerea wordt veroorzaakt door heterokaryose dient ondersteund 

te worden door experimenten met moleculaire merkers. 

Faretra et al. (1996). Genetic studies of the phytopathogenic fungus Botryotina fuckeliana (Botrytis 

cinerea) by analysis of ordered tetrads. Mycological Research 100, 620-6240. 

5. Het is niet duidelijk op grond van welke criteria de International Committee 

on Taxonomy of Viruses nucleopolyhedrovirussen heeft onderverdeeld in soorten 

(species) en mogelijke soorten (tentative species) 

Sixth Report of the International Committee on Taxonomy of Viruses (Murphy et al.) 1995. Springer 

Verlag, Wenen, p. 104-113 en p. 526-527. 

6. De bewering van Windisch et al. dat zij als eersten een uitgebreide biochemische 

karakterisering van de RNase-activiteit van het envelop eiwit E™ van het varkens-

pestvirus beschrijven geeft blijk van onvoldoende kennis van de vakliteratuur. 

Windisch et al. (1996). RNase of classical swine fever virus: biochemical characterization and 

inhibition by virus-neutralizing monoclonal antibodies. Journal of Virology 70, 352-358. 



Hulst et al. (1994). Glycoprotein E2 of classical swine fever virus: Expression in insect cells and 

identification as a ribonuclease. Virology 200, 558-565. 

7. De toegevoegde waarde van een "marker vaccin" bij een gerichte eradicatie van 

infectieziekten komt alleen tot zijn recht indien een bij het vaccin behorende diagnos­

tische test kan worden ontwikkeld die specifiek de geïnfecteerde dieren detecteert in 

een met het marker vaccin gevaccineerde populatie. 

8. Het grote aantal "kits" waarover men tegenwoordig kan beschikken geeft al aan dat 

niet iedere zogeheten standaard moleculair biologische techniek ook standaard werkt. 

9. Het op grote schaal vernietigen van het regenwoud leidt tot het openen van een 

nieuwe (virologische) doos van Pandora. 

10. De uitdrukking "dromen zijn bedrog" moet, na het behalen van de gouden olympi­

sche medaille door de Nederlandse herenvolleybalploeg in Atlanta, grondig worden 

herzien. 

11. Het is te hopen dat kabelexploitant A2000 zich bij de programmering van het pak­

ket, dat naast Sport 7 ook soft porno zal bevatten, zal laten leiden door het motto: 

"geen sex voor de wedstrijd"! 

12. Het groene boekje is zo groen niet meer. 
NRC Handelsblad, 8 augustus 1996. 

13. Wat veelbelovend lijkt moetje veelbelovend laten. 

Stellingen behorend bij het proefschrift: 

On the expression of the tospoviral genome 

Wageningen, 20 september 1996 Frank van Poelwijk 
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CHAPTER 1 

Introduction 

Tomato spotted wilt virus 

Based on molecular analysis previously performed by De Haan (1991) and Kormelink 

(1994) tomato spotted wilt virus (TSWV) has now been recognized as a plant-infecting 

member of the family Bunyaviridae (Murphy et al., 1995). The virus has a wide host range 

spanning over 650 plant species belonging to 72 botanical families (Cho et al., 1987; 

Matthews, 1982; Goldbach and Peters, 1994). TSWV is exclusively transmitted by thrips 

(Thysanoptera: Thripidae) in a propagative manner (Wijkamp et al., 1993). 

TSWV consists of spherical enveloped particles, ranging in diameter from 70-110 nm, 

covered with spikes. Purified virus preparations contain four structural proteins, i.e. a large 

protein of more than 200 kDa, present in minor amounts, two (envelope) glycoproteins of 

78 kDa (Gl) and 58 kDa (G2a) and the nucleocapsid (N) protein of 29 kDa (Mohamed et al., 

1973; Tas et al., 1977a). Often a fifth protein of 52 kDa is observed which is believed to be 

derived from the 58 kDa (G2a) protein and therefore dubbed G2b (Tas et al., 1977b). 

The genome of TSWV consists of three single stranded RNA segments, denoted S (small) 

RNA, M (medium) RNA and L (large) RNA, which are tightly wrapped with the N protein, 

forming pseudo-circular nucleocapsid structures (Van den Hurk et ai, 1977; Mohamed, 

1981; De Haan et al., 1989). Isolated RNA of TSWV is not infectious and does not contain 

poly-(A) sequences (Verkleij et al., 1982). The complete nucleotide (nt) sequence of the 

genome of TSWV isolate BR-01 has been elucidated (De Haan et al., 1989; De Haan et al., 

1990; De Haan et al., 1991; Kormelink et al., 1992c), and revealed that TSWV has a unique 

genome organization among plant viruses (Fig. 1). The S and M RNA display an ambisense 

gene arrangement, each containing two open reading frames (ORFs). The S RNA (2916 nt) 

encodes a non-structural protein of 52.2 kDa (NSs) in the viral sense and the N protein in 

the viral complementary sense (vc) (De Haan et al., 1990). The function of the NSs protein 

has remained unknown, antiserum raised against this protein specifically labeled elongated 

flexible filaments or paracristalline arrays in immunogold decoration studies (Kormelink et 

al., 1991; Kitajima et al., 1992). The M RNA (4821 nt) encodes a non-structural protein 
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Figure 1. Structure and gene expression of tomato spotted wilt virus. The black boxes at the 5' ends of the 
mRNAs represent heterogeneous sequences. 



of 33.6 kDa in the viral sense, which represents the movement protein (Kormelink et al., 

1994; Storms et al., 1995), and a common precursor to the glycoproteins (127.4 kDa) in the 

viral complementary sense. The glycoprotein precursor contains a RGD motif which is 

characteristic for cellular attachment domains (Kormelink et al., 1992c). Both the S and the 

M RNA are translationally expressed via subgenomic mRNAs, transcribed from either the 

viral or viral complementary strands (Kormelink et al., 1992a). These mRNAs probably 

terminate in the intercistronic region, at a long stable A-U hairpin (De Haan et al., 1990; 

Kormelink et al., 1992b). The L RNA (8897 nt) is of complete negative polarity and contains 

a single ORF in the vc sense corresponding with a theoretical translation product of 331.5 

kDa (De Haan et al, 1991). Comparison with the polymerase proteins of other negative-

strand viruses indicates that this protein most likely represents the viral RNA dependent RNA 

polymerase. Expression of the L RNA occurs via the synthesis of a full-length mRNA 

(Kormelink et al., 1992a). All segments contain complementary 3' and 5' termini which can 

be folded in a stable panhandle structure, and are probably responsible for the formation of 

the pseudo-circular nucleocapsids (De Haan et al., 1989; De Haan et al., 1991; Kormelink 

étal., 1992c). 

Although the role of the individual viral proteins in the transcription/replication process 

has not been elucidated for TSWV yet, a comparison to the negative strand RNA viruses 

might shed some light on this. 

Transcription/replication strategies of negative-strand RNA viruses 

Negative-strand RNA viruses are defined by having a genome that by itself is neither 

translatable nor infectious. In order to be infectious the RNA must be tightly associated with 

the nucleocapsid protein and an RNA-dependent RNA polymerase must be provided. Upon 

entry of a host cell this viral RNA dependent RNA polymerase starts transcribing the 

genomic RNA to give rise to primary transcripts. This basic feature is the starting point for 

a range of transcription and replication strategies followed by negative-strand RNA viruses 

as will be discussed in the following paragraphs with emphasis on the genetic manipulation 

of negative-strand RNA genomes. A major distinction is made between viruses whose 

genome consists of a single RNA molecule (Order Mononegavirales, comprising the families 

Rhabdoviridae, Paramyxoviridae and Filoviridae) and those possessing multipartite 

(segmented) genomes (the families Orthomyxoviridae, Arenaviridae and Bunyaviridae). 

Elements essential for replication and gene expression have been retained throughout the 

negative-strand RNA viruses indicating that they have originated from a common ancestor 



(Tordo et al, 1992). 

Non-segmented negative-strand RNA viruses 

The genomic organization of rhabdoviruses as well as of paramyxoviruses share striking 

similarities which point to a common strategy in their gene expression and replication. The 

gene order in the genome of rhabdoviruses, e.g. vesicular stomatitis virus (VSV), is 3' 1-

(leader)-N-NS-M-G-L 5' whereas paramyxoviruses have a similar genetic organization but 

possess more genes. The genes are separated by gene junction sequences which consist of 

a polyadenylation signal, a few non-transcribed nucleotides and a restart signal. 

After infection of a cell by a rhabdo- or paramyxovirus, the ribonucleoprotein complex 

(RNP) serves as a template for primary transcription. The viral RNA dependent RNA 

polymerase, consisting of a catalytic subunit (L) and a non-catalytic cofactor (P), enters at 

the 3' end of the RNA and sequentially synthesizes the short leader RNA, followed by the 

mRNAs for the N, NS, M, G and L genes by terminating and restarting at each gene 

junction region. As a result of this transcription strategy, the molar abundance of each 

mRNA is regulated by the location of its gene, with the N mRNA being the most abundant 

and the L mRNA the least abundant of the transcripts. The mRNAs are capped at their 5' 

end and are polyadenylated at their 3' end. Polyadenylation itself appears to be the result of 

polymerase "slippage" at a short polyuridylate tract. Both capping and polyadenylation are 

intimately coupled with the transcription process; preformed RNAs added to the transcription 

complex or to the polymerase do not undergo these modifications (for detailed reviews see 

Banerjee, 1987; Banerjee andBarik, 1992; Galinski, 1991). The P genes of paramyxoviruses 

express multiple proteins through a mechanism known as RNA editing (Ohmigoto et al., 

1990; Thomas et al., 1988; Vidal et al., 1990). This most likely occurs by a stuttering 

mechanism of the viral polymerase (Vidal et al., 1990). 

At a later stage in infection the transcriptase switches to a replicative mode for synthesis 

of full-length RNA. In contrast to transcription, the replication product is not free RNA, but 

an RNP with an encapsidated full-length RNA. Since constant protein synthesis is a 

prerequisite for replication of all negative-strand RNA viruses, it is assumed that RNA 

polymerization and encapsidation of the growing RNA chain into nucleoprotein are linked. 

Concurrent encapsidation involves the participation of preformed N-P/NP-L and P-L 

complexes (Horikami et al., 1992). The origin of encapsidation is located close to the 3' end 

of the genome (Moyer et al., 1991). The switch from transcription to replication is most 

likely affected by the amount of intracellular, unassembled nucleocapsid RNA (Vidal and 

Kolakofsky, 1989). 

A major drawback in obtaining a manipulatable system for negative-strand viruses has 

been the fact that the viral polymerase, unlike that of positive strand viruses, cannot use 



nucleic acid directly as a template but only after encapsidation with the nucleoprotein. 

Luytjes et al. (1989) were the first who described a system for a negative-strand RNA virus 

that allowed successful generation of biologically active RNPs containing artificial RNA (see 

next section). For non-segmented viruses this in vitro encapsidation is ineffective, which is 

probably due to the tighter RNP structure (Baudin et al., 1994), although a few nucleotides 

corresponding to the genome ends of VSV could be associated in vitro with nucleoprotein 

(Moyer et al. 1991; Smallwood and Moyer, 1993). Park et al. (1991) demonstrated that a 

transfected short, artificial RNA construct could be rescued upon infection of the transfected 

cells by Sendai virus. This model genome contained the CAT reporter gene sequence which 

was bordered by the viral 3'- terminal sequence including the putative promoter for the 

polymerase and the signal(s) involved in leader RNA transcription/release and initiation of 

mRNA transcription. The 5' end contained the transcription stop/polyadenylation signal 

derived from the 5'-terminal cistron (L) and encoded the antigenomic promoter for 

replication. The results obtained with this artificial RNA construct confirmed that all ex­

acting sequences required for encapsidation, initiation of replication and transcription of this 

paramyxovirus reside in the terminal sequences of the genome. Successful rescue of 

transfected RNAs by infectious helper virus has been described for respiratory syncytial virus 

(Collins et al., 1991), parainfluenza virus type 3 (Dimock and Collins, 1993; De and 

Banerjee, 1993) and measles virus (Sidhu et al, 1995). No extra nucleotides are tolerated 

at 3' end of the transcript as replication cannot proceed from an internal site (Collins et al., 

1991; De and Banerjee, 1993), in contrast to the 5' end which appeared to tolerate additional 

nucleotides (De and Banerjee, 1993). Promoter sequences can be studied by using the 

reporter gene assay (Harty and Palese, 1995) as well as internal transcription signals by using 

bicistronic model genomes containing two different reporter genes (Kuo et al., 1994). 

Naturally occurring defective interfering particles (Dis) have extensively been used to 

elucidate the trans-acting factors required for their propagation, especially those of the non-

transcribing copy-back type. These Dis possess the parental 5' terminus and a complementary 

3' end, therefor only allowing replication. Proteins expressed from transfected plasmids 

carrying a 17 promoter in the presence of a recombinant vaccinia virus encoding 

bacteriophage T7 RNA polymerase (vTF7-3; Fuerst et al., 1986) were shown to support 

replication of a VSV DI (Pattnaik and Wertz, 1990) and a Sendai virus DI (Curran et al., 

1991). The minimal set of proteins required for replication consisted in both cases of the N, 

P and L proteins. Moreover, assembly and budding of infectious particles was observed in 

cells co-infected with the VSV DI and recombinant vTF7-3 and expressing all viral proteins 

from transfected plasmids (Pattnaik and Wertz, 1991). This approach not only provided a 

powerful tool for studying the fra/w-acting factors but also obviated the need for helper virus. 

The use of the vaccinia virus/bacteriophage T7 RNA polymerase expression system 



allowed the expression of viral proteins from individual plasmids and the intracellular 

generation of genome analogues from transfected plasmids. A crucial point in this approach 

was the generation of correct termini of transcripts which was achieved by the development 

of plasmid vectors designed to yield genome-like 3' termini by the autolytic activity of 

ribozyme sequences (Ball, 1992; Pattnaik et al., 1992). Expression of the DI-T RNA from 

the transfected plasmid (which contains the DI-T sequence flanked by ribozyme sequences) 

in vTF7-3-infected cells, which also expressed the VSV N, P and L genes from 

simultaneously transfected plasmids, resulted in efficient encapsidation and replication of the 

RNA (Pattnaik et al., 1992). These studies confirmed that a precise 3' end was more crucial 

for VSV replication than a correct 5' end of the transcript. Although transcripts with short 

extensions or deletions were encapsidated no replication was observed. Remarkably, extra, 

non-viral G residues at the 5' end were removed during replication (Pattnaik et al., 1992). 

Constructs corresponding to transcribing or non-transcribing model genomes of several non-

segmented negative-strand RNA viruses have been expressed in the vaccinia virus/bacterio-

phage T7 expression system (for a recent review see Conzelmann, 1996). These studies were 

aimed at the elucidation of cis- and rrans-acting factors and involved promoter mutagenesis 

as well as the analysis of particular properties of the viral polymerase and the viral assembly 

process (Conzelmann, 1996). 

For the recovery of infectious viruses from cloned cDNA the use of antigenome rather than 

genome transcripts was crucial for success (Schnell et al., 1994). A major difference with 

the above described experiments is the presence of N, P and L coding sequences in full-

length transcripts of the genome-sense which may lead to hybridization of large amounts of 

mRNAs encoding N, P and L proteins. Recombinant rabies viruses (Schnell et al., 1994) and 

recombinant VSV viruses (Lawson et ai, 1995; Whelan et al., 1995) were recovered by 

using transcripts from the full-length antigenome. No recovery was possible using the 

plasmids yielding genome-sense transcripts. 

Segmented negative-strand RNA viruses 

Orthomyxoviridae 

Members of the Orthomyxoviridae family contain six (Thogoto virus), seven (Dhori virus 

and members of the genus Influenza Q or eight (members of the genus Influenza A, B) RNA 

segments. This section will focus on influenza A virus. The coding sequences (in negative 

polarity) are flanked in each influenza virus RNA segment by short non-coding regions. The 

first 12 and 13 nucleotides of the 3' and 5' ends of each RNA segment, respectively, are 

highly conserved among different RNA segments of the same virus and also among different 

influenza A virus strains. These ends are partially complementary and are responsible for the 

panhandle structure of viral RNAs, as observed in both virions and infected cells (Hsu et al., 



1987). 

Upon infection of a cell, when released in the cytoplasm, influenza virus nucleocapsids 

directly migrate to the nucleus where transcription and replication takes place. For expression 

of the genome four viral proteins are essential: the nucleoprotein (NP) and the three subunits 

of the polymerase (PB1, PB2 and PA, reviewed by Krug et al., 1989). Influenza virus uses 

a remarkable mechanism for the synthesis of viral mRNAs. In contrast to the polymerases 

of the Mononegavirales, those of the segmented negative-strand viruses do not possess 

capping activity. Therefore, viral mRNA synthesis requires initiation by host cell primers, 

specifically capped (m7GpppNm-containing) RNA fragments derived from host cell RNA 

polymerase II transcripts (reviewed by Krug, 1981). Host cell primers are generated by a 

viral cap-dependent endonuclease that cleaves the capped cellular RNAs 10-18 nucleotides 

from their 5' end preferentially at a purine residue (Krug, 1981), a process commonly 

referred to as "cap-snatching". The PB2 subunit recognizes and binds to the 5' cap-structure 

of the host cell (Blaas et al., 1982; Ulmanen et al., 1981; Braam et al., 1983), and cleaves 

host-cell mRNAs (Shi et al., 1995). This subunit functions only as the trimeric enzyme (Shi 

et al., 1995) and is not required for replication (Nakagawa et al., 1995). Interestingly, 

recombinant influenza virus polymerase requires both 5' and 3' viral ends for endonuclease 

activity (Hagen et al., 1994). Transcription is initiated by addition of a G residue to the 

primer, complementary to the penultimate nucleotide at the 3' end of the viral RNA strand 

(Krug et al., 1989). Chain elongation is performed by the PB1 subunit which proceeds to a 

stretch of U residues 17 to 22 nucleotides away from the 5' end of the viral RNAs, where 

transcription terminates and which serves as a polyadenylation signal (Robertson et al., 

1981). Two of the viral mRNAs (coding for the Ml protein and for the NS1 protein) are 

spliced to form smaller mRNAs (reviewed by Krug, 1989). The switch from viral mRNA 

synthesis to the synthesis of full-length RNAs is regulated by the amount of free 

nucleoprotein in the nucleus (Beaton and Krug, 1986). Later during infection NP accumulates 

in the nucleus which results in transcription antitermination and subsequent formation of viral 

complementary RNAs. These template RNAs are encapsidated, indicating that the 

encapsidation signal is most likely located at the 5' ends of the RNA molecules (Krug et al., 

1989). Transcripts initiated with a capped primer fragment cannot be antiterminated in the 

presence of NP (Beaton and Krug, 1986) suggesting that the capped primer sequence blocks 

the binding of the NP. The nucleus is also the site of vRNA synthesis, the complementary 

RNA strands remain here, whereas the nascent encapsidated viral RNA molecules are 

transported out of the nucleus as nucleocapsid structures to yield progeny virions (Shapiro 

et ai, 1987). 

Amplification, transcription, and rescue of synthetic RNA molecules derived from a 

negative-strand RNA virus was achieved for the first time by Luytjes et al. (1989). A 



biologically active influenza virus RNP complex was reconstituted using synthetic RNA and 

purified viral proteins, and amplification and expression of the reporter gene was driven by 

an influenza helper virus (Luytjes et al., 1989). The results obtained demonstrated that the 

signals required for replication, transcription, and packaging of the viral RNA are located 

in the 26 3' terminal and the 22 5' terminal nucleotides (Luytjes et al., 1989). Different 

methods for in vitro RNP reconstitution have been reported, differing in both the source of 

the NP protein and the helper functions (for a review see Garcia-Sastre and Palese, 1993). 

In all these systems, replication and transcription of the input RNP is driven either by 

superinfection with a helper virus or by the proteins contained in the purified RNP cores, 

which makes it difficult to examine the functions of the individual proteins during replication. 

Using recombinant vaccinia viruses expressing influenza virus proteins the minimum subset 

of influenza virus proteins needed for specific replication and expression of a synthetic NS-

like gene was found to be the three polymerase proteins (PB1, PB2 and PA) and the 

nucleoprotein (Huang et al., 1990). Similar systems have been used to study the trans-acting 

domains of the polymerase proteins involved in replication (reviewed by Garcia-Sastre and 

Palese, 1993). Promoter sequences recognized by the viral polymerase in both vRNA and 

cRNA have been studied by a reverse genetics approach (Li and Palese, 1992; Parvin et al., 

1989; Piccone et al, 1993; Seong and Brownlee, 1992a and b; Yamanaka et al., 1991). 

Promoter sequences have been defined within the first 12-14 nucleotides at the 3' end of the 

vRNAs (Parvin et al., 1989; Piccone et al., 1993; Seong and Brownlee, 1992a and b; 

Yamanaka et al., 1991), and within the first 12-14 nucleotides at the 3' end of cRNAs (Li 

and Palese, 1992; Seong and Brownlee, 1992a; Yamanaka et al., 1991), although there are 

some discrepancies resulting from the polymerase preparation and template used. As 

mentioned before these nucleotide positions are highly conserved in influenza virus RNA 

segments. Luo et al. (1990) showed that a stretch of 5-6 uridine residues close to the 5' end 

of the vRNA and juxtaposed to the RNA panhandle structure is required for efficient 

polyadenylation of the mRNA. Mutations affecting either uridine stretch or the panhandle 

structure reduced mRNA formation. These data support a stuttering mechanism for poly-(A) 

addition of viral mRNAs for which 5 to 7 uridine residues have been shown to be the optimal 

length of the U stretch (Li and Palese, 1994). The upstream sequence at the 5' end is not 

involved in polyadenylation and the optimal distance between the 5' end and the U stretch 

is 16 nucleotides (Li and Palese, 1994). The 5' terminus of the vRNA plays an important 

role in the regulation of transcription as well, as has been shown by Hagen et al. (1994) who 

demonstrated that the endonuclease activity of recombinant polymerase was strictly dependent 

on the presence of a template RNA containing both 3' and 5' viral sequences. Fodor et al. 

(1994 and 1995), proposed an RNA-fork model involved in the initiation of transcription to 

account for the involvement of both 3' and 5' termini. 
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Arenaviridae 

Members of the Arenaviridae are characterized by a bipartite genome. Both single-stranded 

RNA segments, denoted L (large) and S (small) contain two ORFs in an ambisense gene 

arrangement (reviewed by Bishop, 1990). The genes are separated by a stable secondary 

structure in the form of a hairpin. Viral S mRNA transcription has been shown to terminate 

in the hairpin region in Tacaribe (TAC) virus (Iapalucci et al., 1991) and lymphocytic 

choriomeningitis (LCM) virus (Meyer and Southern, 1993). The mRNAs contain one to five, 

heterogeneous, extra nontemplated bases at their 5' ends, which are capped. Remarkably, the 

5' ends of genomes and antigenomes also contain a single nontemplated G residue. The 

precise mechanism of transcription and replication in the family Arenaviridae is still unclear. 

A model of arenavirus transcription and replication has been proposed based on three 

methods of analysis: primer extensions with TAC and Pichinde (PIC) virus mRNA and with 

genomic and antigenomic templates (Raju et al., 1990), sequence analysis of cDNA clones 

representing the 5' ends of TAC virus NP mRNA and antigenomes (Garcin and Kolakofsky, 

1990) and the 5' and 3' termini of LCM virus mRNAs for the NP and GPC proteins (Meyer 

and Southern, 1993), and in vitro RNA synthesis of LCM and TAC virus RNAs (Fuller-Pace 

and Southern, 1989; Garcin and Kolakofsky, 1992). Initiation of transcription may be 

fundamentally different from that of influenza virus (Krug, 1989) and bunyaviruses 

(Kolakofsky and Hacker, 1991), as the 5'-terminal sequences of arenaviral mRNAs are 

considerably shorter (Polyak et al., 1995). A polymerase slippage model of virus RNA 

replication has been proposed to account for the nontemplated 5'(p)ppG at the ends of 

genomes and antigenomes (Garcin and Kolakofsky, 1992). 

Bunyaviridae 

The genome of members of the Bunyaviridae typically consists of three single stranded 

RNA segments, denoted L, M and S, which are tightly wrapped by the nucleocapsid protein. 

Members of the Phlebovirus and Tospovirus genera contain one or two RNA segments, 

respectively, that display an ambisense gene arrangement (Elliott, 1990; Murphy et al., 

1995). Transcriptase activity has been detected in detergent-disrupted virions of Lumbo virus 

(Bouloy and Hannoun, 1976), Germiston (Gerbaud et al., 1987), La Crosse (Patterson et al., 

1984), Uukuniemi (Ranki and Petterson, 1975), Hantaan (Schmaljohn and Dalrymple, 1983) 

and tomato spotted wilt virus (Adkins et al., 1995). An endonuclease activity was detected 

which cleaved methylated capped mRNAs in vitro (Patterson et al., 1984; Vialat and Bouloy, 

1992). Analysis of viral mRNAs revealed the presence of 10-18 non-viral sequences at their 

5' ends, showing that bunyaviruses, like influenza and arenaviruses, use cap-snatching to 

prime transcription. The bunyaviral mRNAs are not polyadenylated. There seems to be no 

universal signal for transcription termination although it has been suggested that purine-rich 



sequences, which seem to occur around the termination sites, might be involved (Raju and 

Kolakofsky, 1986). The mRNAs are about 60 to 100 nucleotides shorter than full-length 

transcripts. For both La Crosse (Bellocq et al., 1987) and Germiston (Vialat and Bouloy, 

1992) virus a translational requirement for transcription has been reported, which, at least 

for La Crosse virus, has been shown to be cell-type dependent (Raju et al., 1989). A model 

to explain these findings has been proposed, which suggests that interactions between the 

nascent mRNA chain and its template causes premature termination. In the presence of 

concomitant protein synthesis ribosomes moving along the nascent mRNA behind the 

polymerase prevent the mRNA from hybridizing to its template and the polymerase reads 

through to the major termination site (Bellocq and Kolakofsky, 1987). 

Jin and Elliott (1991) described a reverse genetics approach for Bunyamwera virus. 

Recombinant vaccinia viruses containing the complete L gene under control of the vaccinia 

P7.5 promoter or the bacteriophage T7 promoter were obtained. For functional expression 

of the L protein from the latter recombinant vaccinia virus coinfection with a second 

recombinant vaccinia virus which synthesizes T7 RNA polymerase (vTF7-3, Fuerst et ai, 

1986) was required. Both systems express a functional protein as was shown in a 

nucleocapsid transfection assay: recombinant vaccinia virus-infected cells were tranfected 

with purified Bunyamwera virus nucleocapsids, and subsequently, total cellular RNA was 

analyzed by Northern blotting. No Bunyamwera virus RNA was detected in control 

transfections but both positive- and negative-sense Bunyamwera virus S segment was detected 

in cells previously infected with recombinant vaccinia viruses expressing the L protein (Jin 

and Elliott, 1991). This assay was used to study the effect of site-specific amino acid 

substitutions in the L protein. It was shown that residues strictly conserved between the L 

proteins of different viruses in the family Bunyaviridae were obligatory required for activity, 

whereas non-conserved residues could be substituted without abolishing RNA synthesis 

capability (Jin and Elliott, 1992). Furthermore, using the transfection assay it was shown that 

the L protein contains the endonuclease activity which generates the primers required for 

transcription initiation. The results obtained indicate that the recombinant L protein has both 

transcriptase and replicase activities (Jin and Elliott, 1993). 

Studying both cis- and trans-acting signals has become feasible with the development of 

a system for analyzing bunyavirus transcription using a recombinant (BUNSCAT) RNA 

template derived from a cDNA construct containing the exact 5' and 3' untranslated regions 

of the Bunyamwera virus S RNA segment flanking the (negative-sense) reporter gene 

chloramphenicol acetyltransferase (CAT) (Dunn et ai, 1995). The system permits 

investigation of both the protein and RNA sequence requirements for transcription. Only the 

bunyavirus L and N proteins were needed for transcription of the BUNSCAT RNA. 
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Scope of the investigation 

The aim of the research described in this thesis was to gain more insight into the 

transcription/replication process of TSWV. 

At the onset of this research there was only limited information available with respect to 

the synthesis of TSWV RNAs and the viral proteins involved. Preliminary sequence analysis 

of the L RNA revealed a number of motifs, characteristic for RNA-dependent RNA 

polymerases, which indicated that the L RNA most likely encodes the putative viral RNA 

dependent RNA polymerase. The size of the ORF (corresponding with a translation product 

of 331.5 kDa) predicted by this sequence, however, was in conflict with reported sizes (110-

220 kDa) of a large protein co-purifying with TSWV particles (Mohamed et al., 1973; Peters 

et al., 1991; Tas et al., 1977). Sequence analysis of the L RNA of impatiens necrotic spot 

virus (INSV) belonging to a different serogroup within the Tospovirus genus, revealed that 

the L RNA is of comparable size to that of TSWV BR-01, and that its coding product (L 

protein) is the most conserved protein (Chapter 2). To allow unequivocal detection and to 

study the expression of the L protein, antisera were raised against bacterial expression 

products. Using these antisera it was shown that the (331.5 kDa) tospoviral L protein is 

present in an unprocessed form in both purified virus and nucleocapsid preparations (Chapter 

3). 

Partial purification and sequence analysis revealed that the 5' ends of viral mRNAs 

contained non-viral heterogenous sequences, probably derived from (capped) host mRNAs 

via a process referred to as "cap-snatching". Sequence analysis showed that there was no 

strict base preference at the cleavage site as has been reported for some other members of 

the Bunyaviridae (Chapter 4). Stimulated by the finding of Adkins et al. (1995), showing that 

measurable amounts of in vitro polymerase activity can be obtained from purified virus 

particles, studies were initiated to investigate whether this in vitro system would lent itself 

for studying the role of the viral proteins and template requirements in more detail. Thus it 

was shown that the in vitro RNA synthesizing reaction was completely dependent on 

manganese and that mainly S RNA-specific products were formed (Chapter 5). Although the 

in vitro transcription assay will be useful for defining the basic characters of the 

transcription/replication process it appears to be of limited value for the unravelling of all 

cis- and trans-acting factors involved in this process. For that purpose a manipulatable system 

would be required, in which at the one hand the template requirements can be tested by 

adding specific and modified viral genome sequences, and at the other hand the involvement 

of all (viral) proteins can be scrutinously determined. As it was known that TSWV also 

replicates in its insect vector (Wijkamp et al., 1993) it was therefore decided to set up an in 
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vivo reconstitution system based on the expression of TSWV replication genes in Spodoptera 

frugiperda insect cells driven by a baculovirus/bacteriophage T7 hybrid vector system 

(Chapter 6). This system was shown to support the transient expression of heterologous genes 

supplied in T7 promoter-containing plasmids. The attempts to exploit this system for in vivo 

reconstitution of the TSWV trancription/replication machinery failed however, at least within 

the time limits of this Ph.D. research, due to the apparent impossibility to obtain a 

translatable full-length cDNA copy of the TSWV L RNA (Chapter 3). In Chapter 7 

suggestions for successful exploitation of the baculovirus/bacteriophage T7 expression system 

will be discussed, including the possibility to center the approach around INSV in stead of 

TSWV, when cloning of a full-length copy of its L RNA, based on the sequence information 

presented in Chapter 2, may turn out less cumbersome. 
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CHAPTER 2 

Completion of the impatiens necrotic spot virus genome sequence and genetic 

comparison of the L proteins within the family Bunyaviridae. 

Summary 

The nucleotide sequence of the large (L) genome segment of impatiens necrotic spot virus 

(INSV) has been determined, and herewith the complete nucleotide sequence of the entire, 

tripartite genome of this important tospovirus has been elucidated. The L RNA is 8776 

nucleotides long and of negative polarity, containing one large open reading frame (ORF) on 

the viral complementary strand. Comparison of the deduced amino acid sequence of the 

INSV L RNA primary translation product (330.3 kDa) with those of the L RNAs of other 

members of the Bunyaviridae reveals that this protein represents the putative viral RNA-

dependent RNA polymerase. A cluster dendrogram of the (putative) RNA polymerases 

indicates that the genus Tospovirus and the genus Tenuivirus, though both encompassing 

ambisense, plant-infecting viruses, have different affinities to the animal-infecting 

Bunyaviridae, tospoviruses being most closely related to the genus Bunyavirus, and 

tenuiviruses to the genus Phlebovirus, respectively. 

Parts of this drapier have been submitted as: 
Van IVsetoräjjk, F . , Prins, M. and Goldbach, R. (1996). Completion of the impatiens necrotic spot tospovirus 

: sequence and genetic comparison of the L proteins within the family Bunyaviridae. 
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Introduction 

Most members of the Bunyaviridae, a large family of enveloped, arthropod-born RNA 

viruses (Elliott, 1990; Murphy et al., 1995) infect animals but some are able to infect plants. 

These latter bunyaviruses are classified into a separate genus, the genus Tospovirus, named 

after the type species tomato spotted wilt virus (TSWV). Tospoviruses are exclusively 

transmitted by thrips in a propagative manner (Wijkamp et al., 1993; Ullman et al., 1993). 

Due to the recent worldwide spread of one of the most efficient vectors, the Western flower 

thrips {Frankliniella occidentalis Pergande), not only TSWV (Goldbach and Peters, 1994) but 

also a second tospovirus, impatience necrotic spot virus (INSV) has recently emerged and 

is gaining in economic impact, having become a serious threat for the cultivation of 

ornamental plants both in Northern America and in Europe (Law and Moyer, 1990; 

DeAngelis et al., 1994; Vaira et al., 1993). Thusfar molecular studies have been mainly 

focussed on TSWV whereas information on INSV is limited. Both the small (S) and the 

middle (M) segment of the tripartite RNA genome of INSV have been sequenced (De Haan 

et al., 1992; Law et al., 1992) but molecular data on the largest (L) genomic segment were 

lacking. Here we report on the determination of the nucleotide sequence of the INSV L 

RNA, thereby providing the sequence of the complete genome of this tospovirus. 

Materials and Methods 

Virus and plants 

INSV isolate NL-07 (De Avila et al., 1992) was maintained on Nicotiana benthamiana 

plants by mechanical inoculation and nucleocapsids were purified as described by De Avila 

et al. (1990). RNA was extracted as previously described (De Haan et al, 1989). 

Primers and RT-PCR 

Reverse transcription was carried out at 37 °C with viral or viral complementary specific 

primers and Moloney murine leukemia virus reverse transcriptase (M-MLV, Gibco BRL). 

Primer pairs were added to the first strand reaction for both v and vc sense followed by 

amplication using Taq polymerase (Supertaq, SphaeroQ). Primers used to amplify PCR 

fragment PI (1: 5'-TTTTTTTCTAGAGCAATC-3' and 2: 5'-GACAGCATGCTGTATCT 

CC-3'), P2 (3 :5'-AATGGACCCCCAAC-3' and 4: 5'-ATTTGCATCATGTCC-3'), P3 (3 

and 5: 5'-TGTTCTCATCAGCCC-3'), P4 (6:5'-AAAAAGTGTCTGAAG-3' and 7: 5'-TTC 
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AATTTCACATAC-3'), P5 (8:5'-TGGAGCTATTATACC-3' and9:5'-ACACAGCAGTGT 

CC-3'), P6 (10: 5'-GGACAGAAGAACAAG-3' and 12: 5'-AGAGCAATCAGGCA-3') and 

P7 (11: 5'-CAAAGAACTTGATC-3' and 12). PCR amplified fragments were cloned into 

a T-vector (Promega) and sequenced on an ABI 373A automatic DNA sequencing system. 

Results 

Cloning and sequencing of the INSV L RNA 

Sequence information for the primers used in PCR was initially derived from a number 

of cDNA clones that were obtained by random priming of nucleocapsid RNA. The identity 

of these clones was confirmed by Northern analysis. These clones are indicated with L to 

distinguish them from PCR-derived clones, which are marked P. The cloning strategy is 

depicted in Figure 1. Primer pairs 1-2, 3-4, 3-5, 6-7, 8-9, 10-12 and 11-12 were used to 

amplify seven fragments of 421, 593, 1609, 564, 1702, 2071 and 200 nucleotides, 

respectively (Fig. 1). 

0 1 2 3 4 5 6 7 8 9 (kb) 
1 | i J | | l l l i 

H \— 
1 2 3 4 5 6 7 8 9 10 11 12 

— P1 P4 
L1 L20 

P2 P5 
L42 L19 

L36 L5 
L37 P6 

P3 P7 
L6 

Figure 1. Cloning strategy of the INSV L RNA. The viral complementary strand (vRNA) is shown in 5' to 3' 
polarity, the box corresponds with the large ORF. Primers shown (arrowheads) are used for RT-PCR. cDNA 
clones are indicated with L and PCR-derived cloned fragments are indicated with a P. 
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All amplified fragments were cloned into a pGEM-T vector. The first nine terminal 

nucleotides of all tospoviruses sequenced to date (mainly based on S RNA sequences, except 

for TSWV and INSV for which also the M RNA sequence is known) are conserved (vRNA: 

3'-UCUCGUUAG-5'). This feature allowed to design a primer that could be used to amplify 

fragments encompassing both the 5' and 3' ends. This is possible as the termini are 

complementary and both viral and viral complementary strands are present in RNA purified 

from nucleocapsid preparations. The cloned PCR fragments were selected for their size, 

subjected to dideoxy nucleotide sequencing and run on an automatic DNA sequencing system. 

The complete nucleotide sequence of the L RNA was determined from either cDNA- or 

PCR derived clones. Most of the sequence was determined by sequencing both strands, less 

than 5% was determined from one strand only. The entire sequence is shown in Figure 2 and 

is available from the EM6L, Genbank and DDBJ nucleotide databases under the accession 

number X93218. 

1 AGAGCAATCAGGCAACAACAATTTATTCAGAATGAACAATTACAAAGCAAGATTATTM 

M N N Y K A R L L I E N S V T L L S S I D D C 

1 0 1 ATCAAAAGCAATTTAGAGTTAAGCAGAGACCTCCATAAAAAGAACCCAGATGAAATAAGTC^ 
I K S N L E L S R D L H K K N P D E I S E D I I I K N H A K N Y B A 

2 0 1 CTTTAAGAACTCTAATAGCÄAGAATTACTAGGGATGGTGAAGGGATTGAAACAGGATTGGCTACA^ 

L R T L I A R I T R D G E G I E T G L A T V D M K K I S B D M T L 

3 0 1 CCTTGAGCXGAAATATCTTGAAACTGAATTAGCTAGACATGATATGTTC^ 

L E Q K Y L E T E L A R H D M F G E L V S R H L H L K P K K R H D 

4 0 1 GTGGAGATAGAGCATGCTGTCAGAGAGTATTTTGAAGAGCTAAGCAAGAAAG 
V E I E H A V R B Y P 8 E L S K K E C S N R L S E E D F K K V S K E 

5 0 1 AATATGTTGCTACCÄACGCTACTCCTGATAACTTTGTGATATACAA 

Y V A T N A T P D N F V I Y K B S K S G P L C H M I Y D W K I S V 

6 0 1 TGATGCTAAAACAGAAACTAAAAC^ACAGAGAAATATTACAAAAACATATGGAAATCATTGAAAGATG 

D A K T E T K T T E K Y Y K N I W K S L K D V K V K G K S F L E E 

7 0 1 CATCCCATATTCATCTCTATTGTTATTCTTAAACCTATTGGÄ 

H P I F I S I V I L K P I G S M P I V V T T S R V L E K F E D S E S 

8 0 1 CTGCATTGCATGCCAACAGGTTGAGACACGCAAGCCAATCAAAGCT^ 

A L H A N R L R H A S Q S K L V G V S N I G R I I G T T P T V V R 

9 0 1 AGAATTTTATGCAGACACCCAAAAGTTAAAAATTGAATTTAGGAGC*™ 

E F Y A D T Q K L K I E F R S I L G B E F G S K D I F F S H H T N 

1 0 0 1 AAATATAAAGACÄGAGÄTCCAACACAGATTGCTCATTCAGAGGATTTGGAGAAGATAA 

K Y K D R D P T Q I A H S E D L E K I I E S M V T D D I S R B B I V 

1 1 0 1 TCCATTTTATGTTTGGGAATTTTTGCTTGCATATAGAGA 

H F M F G N F C L H I B T M N D Q H I A D R F N G Y R S S C V S L 

1 2 0 1 GAATGTAGAACCTAAGAAAGACATTTCAGAATTAAAGGATCATCTGTTATCTACTAAGGGTTTGTGG^ 

N V B P K K D I S B L K D H L L S T K G L W E S L Y D H H L I K V 

1301 ATGGATAGGATAAAAACGAAAAAACyiAAAAGAAAAGATTATACCTGACATAATGACT 
H D R I K T K K Q K E K I I P D I H T A F N L N A E B Y B K K Y P N 

1 4 0 1 ATTGTTTCACAAGTGATCTCTCTGAAACAAAGACAAATTTTTCTGTC^ 

C F T S D L S E T K T N F S V T W S P C T D M V E L G N Q D Y N N 

1 5 0 1 TGCAGTTATTGATCGGTTCAGGAAAGCTTTCCTTAGCAATCCTAGGATCA^ 

A V I D R F R K A F L S N P R I R Y N S A Y S K B M N V T S K A I C 

1 6 0 1 GATGTGACTGAACTTGTCAGGTCCTGTCTAACAACTCTAAGCTGTGATACAA^ 

D V T E L V R S C L T T L S C D T S G M D P Q Q L E D E I D I S T G 

1 7 0 1 GTGGTATAAAAGTGGAAAGAACTAGCAAATCACAAGAATCGATTAAGJU^AAATGATTGTTTGACT 
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G I K V E R T S K S Q E W I K K N D C L T R N R N E F N M R E T S 

1801 TAAAGATAATAAAGTGATCTATTTCAAAGGTTTGAGTGTTATGAACGTGAGCATGAGT^ 
K D N K V X Y F K G L S V M N V S H S K K K R I I K H E S L K G X 

1901 ATCACAAAAGGTCTAGAATATGATACATCAGAGW^C7&TATT»CC^ 
I T K G L E Y D T S E R Q Y D P N D D Y V S L D L S S F T H A K K L 

2 0 0 1 TTATCAGACATGATAATGAAGAGAGCTTAGAATGGTGCTCACÄGATCCAAGAT^ 
I R H D N E E S L E W C S Q I Q D G L F V L H N S D I R E N C K V 

2 1 0 1 GGCTACTCTTTACMCAATTATACAAAAAATCCTGAAAATCTTTTCACT^^ 
A T V Y N N Y T K N P E N L F T Q S T I I K T B M E T C K K I N K 

2 2 0 1 TTATGCAATGATCTGGCTATATATAATTATGCTGAGGACATGATGCAM^ 
L C N D L A I Y N Y A E D M M Q I S K G L M V A D R Y M T K E S F K 

2 3 0 1 AGATATTGACAACATTCAATACTAGCATGCTAGTTTTGraCTTTTAAAGGAGA 
I L T T F N T S M L V L A F K G D G L N T G G S G V P Y I L V H M 

2 4 0 1 GGTGGAAGAGACTCTATCTGAGCAGTTTAGTGTGTGTTACACAAAAGAAATATATAG^ 
V B E T L S E Q F S V C Y T K B I Y S H F S F G S H V V Y I M R P 

2 5 0 1 CAAAGGCTGAACOWGTTAGACTTCTTAGCCTTTTCAAATCTCCCA^ 
Q R L N Q V R L L S L F K S P S K V P V C F A Q F S K K A H E L E G 

2 6 0 1 GGTCGTTGAAAATAAAAGATATGCAAGAAGTGCAAACACTAAGCATGAGCTCTAATGTAAGAAGAATAATGAGAAATATTGTC 
W L K I K D M Q B V Q T L S M S S N V R R I M R N I V F S S V M I 

2 7 0 1 AGGAACAGTCACAAAGCTTAGCAGGATGGGAATCTTTGACTTCATGM 
G T V T K L S R M G I F D F M R Y A G F L P L S D Y S N I K B Y I 

2 8 0 1 CAAGATAAATTTGATCCAGACÄTAACAAATGTTGCTGACATGTTCTTTGTTGAAGGAATAA 
Q D K F D P D I T N V A D M F F V B G I K K L L L K M E N L N L S T 

2 9 0 1 CAAGTGCAAAACCTGTGGTTATTGATCATGAGAATGATGTGATAGGGGGAATX^CAAATTTGAACATAAA^ 
S A K P V V I D H B N D V I G G I T N L N I K C P I T G A T L K T 

3001 ATTAGAAGATTTATACAACAATGTTTATTTGGCAATATATATGATGCCT^ 
L E D L Y N N V Y L A I Y M M P K S L H N H F H N L T S L L N V P 

3 1 0 1 GCAGAATCGGAGTTAAAGTTCAGAAAAGAAATGGGGTTTACTTTATTTGAAGATA^ 
A E W E L K P R K E M G F T L F B D I Y P K Q K M F Q D N E L F S I 

3 2 0 1 TAAACGGTGTCTTGAACTTAAAATCTCTTTCTGATTACTATGCATC^ 
N G V L N L K S L S D Y Y A S T V B N V G L M R T E I E N K E D F 

3301 CTTGAGTCCTTGTTACAAGATTTCCACTTTGAAATCTTCAAAAAAGTGTTC 
L S P C Y K I S T L K S S K K C S Q S N I I C S D D I I M C L Q B 

3 4 0 1 GCAAATGTTAGATCACTGGAAGATTTGAGTCCAAAAAATTTGGCTWTCTTGAAA^ 
A N V R S L E D L S P K N L A I L K G L L R T L H E D K N R L Y E F 

3 5 0 1 TTTTTGAAGACCACTCTGAAAACCCrTATTACCTTATGGAAAAAATGAAGACJATCAAATCTTCT^ 
F B D H S E N P Y Y L M B K M K T I K S S B K I T T G K S K T S K 

3 fi 0 1 GTTCATTCGGAATAACCATCCTTTAACAGTGGAAACATACTTG AAGACÄAAATTATATTTC7WKAATAATATAACTGTTCTTAAATCAAAAAAAGTGTCT 
F I R N N H P L T V E T Y L K T K L Y F R N N I T V L K S K K V S 

3 7 0 1 GAAGAACTOTATGACTTAATCÄAACAATACCATAATATCATGGACATAGACATGGAATCTATAATGAATTTAGGGAA^ 
E E L Y D L I K Q Y H N I M D I D M E S I M N L G K G L E G K K H T 

3 8 0 1 CITTCCTGCAAATGTTAGAATTCGTCATGTCTAAAGCTAAAAATGCTTCTGATGCAATA^ 
F L Q M L E F V M S K A K N A S D A I D F L V S V F E K M Q R T K 

3 9 0 1 AACAGATAGAGAAATTTACCTCATGAGTATGAAAGTAAAAATGATGCTTTATTTCATAGAACATACTTTCAAG 
T D R E I Y L M S M K V K M M L Y F I E H T F K H V A Q S D P S E 

4 0 0 1 GCCATATCCATTAGTGGTGACAATAAAATAAGAGCÄTTATCTATGTTGTCGATGGA 
A I S I S G D N K I R A L S M L S M D T I T S Y N D I L K N S K N K 

4 1 0 1 AATCTAAGTTAGCATTTTTATCAGCTGATCAATCTAAGTGGTCAGCT^ 
S K L A F L S A D Q S K W S A S D L T Y K Y I L A I I M N P I L T 

4 2 0 1 ATCAGGTGAGTGCACATTAATGGTTGATTGTCTGATGATGTATGTGAAATTGAAAAAGGTGTGCÄTO 
S G B C T L M V D C L M M Y V K L K K V C I P T D I F L G L R N S 

4 3 0 1 CAAGAGAAATTTGGGACTAATGAAACAGCCATTGGGTTG<^CACCAAAGGTCTTTCTACTAATT 
Q E K F G T N E T A I G L L T K G L S T N S Y P V S M N W L Q G N L 

4 4 0 1 TTAATTATTTATCTTCTGTTTATCATTCTTGCGCTATGAA^ 
N Y L S S V Y H S C A M K A Y H R M L B S Y K K C E F Q T R W I V 

4 5 0 1 CCATTCCGATGACAATGCAACATCTTTAATTGCrGATGGTGACATTGACAAAAlGTTAACAG^ 
H S D D N A T S L I A D G O I D K M L T O F S S K S L S E M V F R 
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4 6 0 1 AGCATTCAATCACÄTTTTAAGAGTTTTTGCATAACTCTGAATCCT^^ 
S I E S H F K S F C I T L N P K K S Y A S S S S V E F I S E R I V N 

4 7 0 1 ATGGAGCTATTATACCCCTATATTGCAGACATTTAGCCAATTGCTGC^^ 
G A I I P L Y C R H L A N C C T E S S H I S Y F D D L M S L S I N 

4 8 0 1 CGTAACAATGCTTTTAAGGAAAGGATGCCCAAATGAAGTCATTCCATTTTCTC^ 
V T M L L R K G C P N E V I P F S Y G A V Q T Q A L S I Y S M L P 

4 9 0 1 GGTGAAATTAATGATACCATGAGGATATGCAAGAAAGCÄGGTCTGAATCTGGAACAT^ 
G E I N D T M R I C K K A G V N L E H N E I P T N L G G W L T A N V 

5 0 0 1 TGGAATCATTGTCACTATTAGGTCCATCATCTAATGATCAGACCATCTATTACAATATAATCAGAGA 
E S L S L L G P S S N D Q T I Y Y N I I R D F L K K D D F E Q V K 

5 1 0 1 ACAAAGCACATCCTCTGAAAGGTlHXrrTGATTTAAGATTTGAAGAACTTAAACAAAAAAA^ 
Q S T S S E R F L D L R F B S L K Q K K E R D K L E L N D K K M I 

S 2 01 TTTTTAATGAATCTATTTGAG<^GTCTTCTGTATCTGAAGATTCTGATGTTT^ 
F L M N L F E Q S S V S B D S D V L N I G M K F Q . T M M T Q I I R L 

5 301 TGCCTCAGTTrATAAATGAAAATGCTTTGTCAAAAATGTCCAGTTATAATC^ 
P Q F I N E N A L S K M S S Y N D F C K L Y P H L R K N Q Q L H N 

5 4 0 1 TAGCACTAAGGAAATCAAGTCTGACGAAGACATGCTGArTGAAGATTTAGATGATTATGAGAA^ 
S T K E I K S D E D M L I E D L D D Y B K I A P A N B M E E V H B 

5501 ATAATGATAAAGAATCCTXSAAACTATTTTAATAGCACCATTAAATGACAGAGATTTTTTGTTAM 
I M I K N P B T I L I A P L N D R D F L L S Q L F L Y T S P A K R N 

5 6 0 1 ATCAATTGTCAAGTCAATCTACTGAGAAATTGGCATTAGACAGGATTTTAAGA 
Q L S S Q S T B K L A L D R I L R S K A R T F I N P D S D T K M T 

5 7 0 1 TTATGATGAAAACTTAGAAAAGAAAATTAGTACAATGAAACCÄTTGAATGAG 
Y D E N L B K K I S T M K P L N E D S V S V F K T C I N L V L K D 

5 8 0 1 GTGAATTTTGCTATGGCTATACaUOTATTGATAACÄTTTATC^ 
V N F A M A I P I I D N I Y P C E A R R R D N Y N F R W F Q T B K W 

5 9 0 1 GGATACCAGTTGTAGAAGGTTCACCAGGATTAGTTGTGATGTACTCAATATATGGTTCTGACTATATAG^ 
I P V V E G S P G L V V M Y S I Y G S D Y I B K L G L K N I P L T 

6 0 0 1 AGATAATAGTATTAATGTTTrAACAGGCACATTTGGATCCAGCTTGATGTTGGAGGATGTAAAATATT^ 
D N S I N V L T G T F G S S L M L B D V K Y Y V K G L B V F E T E 

6 1 0 1 GJ^TTCOUUVATTCTAATAGATGCCAGAGAGCAGTGAAAGCTTGCAATTACATGATAACAGCCCAA^ 
B F Q N S N R C Q R A V K A C N Y M I T A Q N R L L A I N T C F S R 

6 2 0 1 GAAAAAATTTCCCTTTCTATTCTAAATTCAATTTAGGCAGAGGCTTTGTATCAAACAC^ 
K N F P F Y S K F N L G R G F V S N T L A L M S S I Y S K E B S F 

6 301 TCATTTTATGTCAAATGTGCATTrrAAAATAGACAAATCCATAAGAGCTATM 
H P M S N V H F K I D K S I R A I I S A Q Q D L N L E R I L D T A 

6 4 0 1 GTGTACATTTCTGATAAGATGCAAGCTATTTTCCCAGACÄT^ 
V Y I S D K M Q A I F P D I T R F D I H T I L K N V C I D S V S I W 

6501 GGGATACATTAGATTCAAAAATGGATAAAATAAATCÄTGCTATGGAAAGG^ 
D T L D S K M D K I N H A M E R K M T T S N I L L S H N S E L N T 

6 6 0 1 AATTCAGAAACAAATAATTTGGTTGTATAATATGGGTCTATGTTCTAAAAAGACACTGAACTTTGTTATAAGATATATAAGAAGGAGTGATGTCAGATAT 
I Q K Q I I W L Y N M G L C S K K T L N F V I R Y I R R S D V R Y 

6 7 0 1 GTTAGGACAGAAGAACAAGACAGTTTTGGAAACTATGTTTCGGGGACAGT^ 
V R T E B Q D S F G N Y V S G T V Y K I G T M K Q N N Y V Q L M A S 

6801 CTGAAACAGATATTGCAATTTCTTTGAGAACACCATATGATATAAGAGATGAAAG(MATGTGCTA 
B T D I A I S L R T P Y D I R D E R D V L Y S A H K D S I B K L L 

6 9 0 1 ATCÄAAATTTTTGTTTGACAAAGGTAATGTGATACGATCCAAACAGAGCCAAACAGTTrrCCT 
S K F L F D K G N V I R S K Q S Q T V F L N P G Q A C L R T T T D 

7 0 0 1 GGTAAGCTTATTGCAAAAGTAAATCCGACTCCTAAAITGCTGAAAGTTGACAATGTAAAACTAATAATGGACAT^ 
G K L I A K V N P T P K L L K V D N V K L I M D I N Y E N V N S D V 

7 1 0 1 TTTGGTCTATAATAGAGAGTCAAAAACAAATTGATTTAAGACTTCCAGAAACAGGTGAATGTTACTCTGAAATGTAT 
W S I I E S Q K Q I D L R L P E T G E C Y S E M Y K T I D S E Q G 

7 2 0 1 TTTGATTTATGAAATGAAATCTAATTTGATTAAGTCATTGACTTTTATAAACACATTTGCAGA 
L I Y B M K S N L I K S L T F I N T F A D L N B S V Y S I D D B V 

7 3 0 1 ACAAGAGAAACCATTTTTGATTTCATAGATAGTATAAGGAATGATTGTCTAGAAGGTTTAGAAACTTCCAAAA^ 
T R E T I F D F I D S I R N D C L E G L E T S K S V E E Y E E F L D 

7 4 0 1 ACACCCACGGGTTTAGGGAAACTGTTAGCCTTTTTAAAAACATCATAGAGA^ 
T H G F R E T V S L F K N M I E S L E S L D A E Y S P I F L N I T 

20 



7 5 0 1 TGACAAATATCAAAAATTCTCTGAGGATTTAGGAAATTTCAAGTCAATGTTG^ 

D K Y Q K F S E D L G N F K S M L L M L K Y S L V N D A S G F K S 

7 6 0 1 TACAGAGCTACTGGTGCACATGCAATTGGTTTAACAATGAAAAAACATATTC^^ 

Y R A T G A H A I G L T M K K H I B I G B F N L L G L I Q L I K A C 

7 7 0 1 GCGAGTCTTGCCATMTAGTGATTCTATATTGAATCTAGTGAGCTT^^ 

E S C H N S D S I L N L V S L R N V L S K T Y T I S S R K I Q L Y 

7 8 0 1 TTATAATATAAACTTACAGAATGATTTGATGGAGAGGAGTTATGATTTCAAGACÄ^^ 

Y N I N L Q N D L M E R S Y D F K T L V L P D I N L S D Y S K E I 

7 9 0 1 CTGAAAGAAAATGGTTTTGïTGTTTCTGGTCAGAACATAAAAATA^ 

L K E N G F V V S G E N I K I D R B I G D B D F V G L A S F D V M R 

8 0 0 1 GATTGGATGAAGAGCAAATGTTTGATGAGATAGTAAAAGATATGAAAATAAAAAGAAAAAAGAAAGGATATTTC 

L D E E Q M F D E I V K D M K I K R K K K G Y L F P S N T L I L S 

8 1 0 1 CGAAATGATAAAATTCTTGATAAATGGGAATAAAAGGACTAGTTTTGATGTAGAGAGTCTGCTTAGAA^ 

E M I K F L I N G N K R T S F D V B S L L R N S P N V T I F A G S 

8 2 0 1 AGATTAGGGAAAGTAAGCÄCTAGTGTTCCTTCTTTGAAGATCTATTCM 

R L G K V S T S V P S L K I Y S T V F M E Y E K R D C P L N E I S E 

8 3 0 1 AGTGCCTAGAAGGATTTTTAAAAATAACaUUn'CAGAAATTTCTG^ 

C L E G F L K I T K S E I S B P I L E G K L K K V L X Q L R N B K 

B 4 0 1 AAACAAGAGCAAGAAATTCGAAGTCTTTAGAGCAATATATGGGTTTTra^ 

N K S K K L E V F R A I Y G F L S N N P L C L T D K T L Y G R M T 

8 5 0 1 TTTGAAGATATCAACAGATACÄTCATGGAAACTAGAGAAATAATTATAM 

F E D I N R Y I M E T R E I I I N K I K E L D D G D S S D S I E I L 

8 6 0 1 TTTTGAAATATTTGAATGUWGCAAACTAAACAAGAACCAAAAATATTTTTACATGA^ 

L K Y L N E A N * 

8 7 0 1 CATAATTTTGATCTrAATArTAGTTTTATATATTTAGTATGGTTAGATTAAGATTTTAGTTGTGCCTG^ 

Figure 2. The complete nucleotide sequence of INSV L RNA (numbered from the 5' end of the viral 
complementary strand) and its predicted gene product. The deduced amino acid sequence of the protein encoded 
by the viral complementary RNA is written below the RNA sequence. The asterisk (*) indicates the UAA 
termination codon. 

Characteristics of the INSV L RNA sequence 

The INSV L segment is 8776 nucleotides long (Fig. 2) and contains 37% A, 30% U, 14% 

C and 19% G (or 67% AU and 33% GC). The 5' and 3' ends of INSV L RNA are 

complementary and can be folded into a hairpin structure, a typical feature of all segmented 

negative strand viruses, which is thought to play a role in transcription/replication (Fig. 3). 

Predicted gene product of INSV L RNA 

Analysis of the six different reading frames of the viral (v) and viral complementary (vc) 

RNA revealed the presence of one large open reading frame (ORF) in the viral 

complementary strand (Fig. 4). The ORF starts with an AUG codon at position 8744 

(numbered from the 5' end of the viral RNA) and extends to an UAA stop codon at position 

139, resulting in a primary translation product of 2865 amino acids with a predicted 

molecular weight of 330.3 kDa. Analysis of the predicted protein reveals several short 

hydrophobic regions (Kyte and Doolittle, 1982). 
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Comparison of INSV L RNA and TSWV L RNA 

Comparison of the INSV L segment with that of TSWV revealed 68.9% identity in 

nucleotide sequence whereas at the amino acid level 69.5% identity and 83.6% similarity was 

found, using the GAP function of the GCG package from University of Wisconsin. The 

alignment of TSWV and INSV L proteins revealed a frameshift in the L ORF of TSWV. 

Upon resequencing of the original clone 806 (De Haan et al., 1991), an insertion of an U 

residue at position 4206 was found and an U residue at position 4129 was deleted. After 

restoring these errors the reading frame showed 100% match in this region. 

Interestingly, the L RNA sequence of INSV is 124 nucleotides shorter than 

\_/ that of TSWV (8897 nt), resulting in an ORF which is 10 amino acids shorter, 
c u 

<££ . BO lacking the acidic tail (Fig. 5) . Furthermore, the 3 ' nontranslated region of 

Vcc INSV L RNA (vc sense) is 140 nucleotides long whereas for TSWV this region 
cg:*° comprises 242 nts (a duplication of the AUUU sequence at position 55 was 

A-U 

J:« 70 found in the TSWV L sequence). The INSV L sequence was verified by cloning 
G G 

Vu* and sequencing of several PCR fragments in this region derived from 

independent amplification experiments. Primer extension analysis of 

nucleocapsid RNA confirmed that the L RNA of INSV is indeed shorter (data 

not shown). Sequence analysis of US-01 , an American isolate of INSV (Law 

and Moyer, 1990) revealed the same sequence in this region, including the 

shortened ORF (Fig. 5) and 3 ' end (data not shown). 

Analysis of all three RNA segments of INSV and TSWV in a dot plot 

revealed that the L RNA is the most conserved RNA segment, whereas the S 

RNA is least conserved (Fig. 6) . A genetic comparison of individual gene 

products of INSV and TSWV shows that the L protein is the most conserved 

gene product (Table 1). 

A-U 
A C 

U-A 
U-A 
A-U 
U-A 

A-U 
U-A 
U-A 

* c 
U-A 
A -U 
A-U 

Comparison of the INSV L protein with those of other Bunyaviruses 

Comparison of the L protein of INSV with that of Bunyaviridae belonging 

to the other genera (Elliott, 1989; Schmaljohn, 1990; Antic et al.9 1991; 

o Stohwasser et al., 1991 ; Müller et ai, 1991 ; Elliott et al., 1992; Accardi et al., 

1993; Roberts et al., 1995) revealed that significant homology was found with 

£:S Bunyamwera virus L protein and La Crosse 

A-U 
C-C 
G-C 
G-C 
A -U 
C-C 
U-A 
A-U 
A -U 
C-G 
G-C 

G-C 
A-U 

Figure 3. The complementary sequences at the termini of the INSV L RNA. The numbers represent the position 
to the 5' end of the vRNA. 
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L protein. Homology with the other members of the Bunyaviridae was restricted to a shorter 

internal stretch of approximately 200-250 residues. This stretch contains five types of short 

consensus sequences which are characteristic for RNA polymerases that display RNA 

template specificity, the polymerase motifs (Fig. 7)(Poch et al., 1989; Tordo etat., 1992). 

Of these conserved motifs the SDD motif has been shown to be of functional importance in 

both Bunyamwera L protein (Jin and Elliott, 1992) and influenza A polymerase (PB1 subunit, 

(Biswas et al., 1994)). RNA dependent RNA polymerase activity has been demonstrated to 

be associated with purified virus preparations of TSWV (Adkins et al., 1995) and with 

purified nucleocapsid preparations of both TSWV and INSV (see Chapter 5) although direct 

evidence linking RNA polymerase activity to the L protein is lacking. 

Figure 4. Distribution of translation initiation (short vertical bars) and termination (long vertical bars) codons 
in the three possible reading frames of the viral (1, 2, and 3) and viral complementary (-1, -2, and -3) L RNA 
strands. 

HIE 
331.5 kDa 

HUE 

TSWV L 

INSVL 
330.3 kDa 

BR-01 K I S E L D E V V E T D E D N F L L S Y L R G E E D A F D E D E L D E E E D T D * 

NL-07 K I K E L D D G D S S D S I E I L L K Y L N E A N * 

US-01 K I K E L D D S D S S D S I E V L L K Y L N E A N * 

Figure 5. Comparison of the L ORFs and the C-terminal sequences of TSWV (BR-01), INSV (NL-07) and 
INSV (US-01). Polymerase motifs shown in Fig. 7 are depicted as bars. 
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» I 

Insv«.Seq ck: 3. 925. i to *. 972 
InsvS.Seq C*: «.623. 1 to 3.007 

Figure 6. Dot plot comparison of the (a) S RNA, 
(b) M RNA and (c) L RNA segments of INSV 
and TSWV. (Window = 50 and the 
stringency=33.3). Sequences are obtained from 
references in text. 

IM"1.S«0 W. 3.350. 

Discussion 

With the elucidation of the L RNA sequence, INSV is the second tospovirus of which the 

complete genomic sequence has been determined. The INSV L RNA is 8776 nucleotides long 

which is comparable to the size of the L RNA of TSWV. Both tospoviral L RNAs (and their 

corresponding gene products) are significantly longer than those of their animal-infecting 

counterparts. Like the S and M RNA, the L RNA contains complementary 5' and 3' termini 

of about 80 nucleotides that can form a panhandle structure which may be involved in the 

appearance of circular nucleocapsids in virus particles (Peters et al., 1991). 

INSV L RNA contains a single ORF in the viral complementary strand corresponding to 

a protein with a predicted molecular mass of 330.3 kDa, the putative RNA dependent RNA 

polymerase. Comparison of the INSV L protein with that of TSWV (De Haan et ed., 1991) 

reveals 69.5% identity and 83.6% similarity thus being the most conserved protein. 
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Strikingly, the L protein of INSV lacks the typical acidic tail at the C-terminus (Fig. 5.). 

The significance of this extremely acidic C-terminus (5 glutamic acid and 5 aspartic acid 

residues out of 15, see Fig. 5) in the TSWV L protein, and its absence in that of INSV is 

not clear yet, but it is very likely that the exposure and folding of the two tospoviral 

polymerases will be rather different in this region. The acidic tail might be involved in 

interactions with the (basic) nucleocapsid protein, although the lacking acidic residues of the 

INSV L protein do not seem to have an effect on in vitro transcription/replication activity 

(see Chapter 5). 

INSV 
TSWV 
La Crosse 
Bunyamwera 
RVFV 
Toscana 
Uukuniemi 
Hantaan 
Seoul 80-39 
Puumala 

MOTIF A 

RSKLAFLSADQSKWS 
KSRLAFLSADQSKWS 
KGLKMEINADMSKWS 
KALKLEINADMSKWS 
PVWTCATSDDARKWN 
SVWTCATSDDARKWN 
HHETVATSDDAAKWN 
KRKLMYVSADATKWS 
KRKLMYVSADATKWS 
KRKLMYVSADATKWS 

MOTIF B 

STNSYPVSMNWLQGNLNYLSSVYH 
TTNTYPVSMNWLQGNLNYLSSVYH 
AO. DVFYKYNWLQGNFNYTSSYVH 
AQ.DVFYKYNWLQGNFNYISSYVH 
.QGHFVTKFGMMQGILHYTSSLLH 
.QGHYVTKFGMMQGILHFTSSLLH 
.QCHHVTKFGMMQGILHYTSSLLH 
P. GDNSAKFNWLQGNLNKCSSLFG 
P. GDNSAKFNWLQGNLNKCSSLFG 
P.GDNSAKFNWLQGNLNKCSSLFG 

INSV 
TSWV 
La Crosse 
Bunyamwera 
RVFV 
Toscana 
Uukuniemi 
Hantaan 
Seoul 80-39 
Puumala 

MOTIF C 

IVHSDDNATSLI 
IVHSDDNATSLI 
LVHSDDNQTSIT 
MVHSDDNQTSLA 
MOGSDDSSMLIS 
MQGSDDSSMIIS 
LQSSDDSGMMIS 
AHHSDDALFIYG 
AHHSDDALFIYG 
AHHSDDALFIYG 

MOTIF D 

SHFKSFCITLNPKKSYAS 
AHFKSFCITLNPKKSYAS 
LTFGC.QA..NMKKTYVT 
LTFGC.QA..NMKKTYIT 
KELGVYLAIYPSEKSTAN 
KSLGTYIGIYPSEKSTPN 
KVIGKYLGIYSSVKSTNN 
LLLGSIKI..SPKKTTVS 
LLLGSIKI..SPKKTTLS 
LLMGSIKI..SPKKTTVS 

MOTIF E 

SSEV.EFIS 
SSEV.EFIS 
NCIK.EFVS 
HTCK.EFVS 
TDFVMEYNS 
TDFVMEYNS 
TLHLLEFNS 
PTNA.EFLS 
PTNA.EFLS 
PTNA. EFLS 

Figure 7. Amino acid homology between Bunyviridae L proteins. Conserved amino acids were identified using 

the GAP and PILEUP options of the GCG package from the University of Wisconsin. Conserved amino acids 

are in bold. The position of the motifs are illustrated in Fig. 5 (see text for references). 

Classification of tospoviruses has been based on serological differences of the (S RNA-

derived) nucleocapsid protein. The L sequence reported here is determined from a Dutch 

isolate, NL-07, obtained from infected impatiens plants, i.e. the same isolate for which also 

the S RNA has been described by De Haan et al. (1992), whereas the M RNA sequence is 

determined from an American isolate, US-01 (Law efa/., 1992). Parts of theMRNAof NL-

07 have been amplified by PCR, cloned and sequenced (results not shown). Out of the more 

than 700 nucleotides sequenced, only few nucleotide changes with the US-01 M RNA 

sequence were found and these changes did not lead to differences on amino acid level. This 

result indicates that the isolates NL-07 and US-01 are almost completely identical. 

Comparison of the L proteins of tospoviruses INSV and TSWV with those of animal-

infecting members of the Bunyaviridae indicates that tospoviruses are most closely related 
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to the genus Bunyavirus (Fig. 8). This is an interesting observation as tospoviruses have an 

ambisense S RNA, a feature they only share with members of the genus Phlebovirus. This 

may suggest that the generation of an ambisense gene arrangement is a relatively late event 

during bunyaviral evolution. The observation that tospoviruses have been adapted to plant 

hosts by inclusion of the NSm gene, in an ambisense arrangement within the M RNA 

segment, supports this hypothesis (Kormelink et al., 1994; Storms et ai, 1995). 

-RVFV 

-TOSC 

UUKU 

I— RSV 

- HAN 

- SEO 

PUU 

Phlebo 

Tenu/' 

Hanta 

ri 

INSV 

TSWV 

r B U N 

LAC 

Tospo 

Buny a 

Figure 8. Genetic comparison of bunyaviral L proteins. The pile-up and growtree options of the GCG package 
from the University of Wisconsin were used to construct the phylogenetic tree. Rift Valley fever (RVFV), 
Toscana (TOS) and Uukuniemi (UUKU) virus belong to the genus Phlebovirus, Hantaan (HAN), Seoul (SEO) 
and Puumala (PUU) virus to the genus Hantavirus, Bunyamwera (BUN) and La Crosse (LAC) virus to the 
genus Bunyavirus, impatiens necrotic spot (INSV) and tomato spotted wilt virus (TSWV) to the genus 
Tospovirus and rice stripe virus (RSV) to the (floating) genus Tenuivirus. 
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Comparison of the bunyaviral L proteins with that of rice stripe virus (Toriyama et al., 

1994), belonging to the floating genus Tenuivirus (Murphy et al., 1995), indicates that 

tenuiviruses have most close genetic relationship to the genus Phlebovirus (Fig. 8) and are 

only distantly related to the tospoviruses. Hence, it seems that these two genera of 

ambisense, plant-infecting viruses have been descended from the animal-infecting 

Bunyaviridae by two independent evolutionary pathways. This observation, together with the 

fact that tenuiviruses have 4 and sometimes even 5 genomic segments, indicates that tenui-

and tospoviruses, though both representing ambisense, plant-infecting RNA viruses, are not 

easily to be harboured in a single virus family. 
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CHAPTER 3 

Detection of the L protein of tomato spotted wilt virus and cloning of its cistron 

Summary 

The 5'-terminal and 3'-terminal parts of the single open reading frame (ORF) in the L 

RNA of tomato spotted wilt virus (TSWV) were expressed using a prokaryotic expression 

system. Using antibodies raised against the obtained translational products, a 330 kDa protein 

could be specifically detected in preparations of purified virions and in nucleocapsid 

preparations from TSWV-infected leaf tissue. The results obtained indicate that the L protein 

of TSWV, though much larger than that of the animal-infecting bunyaviruses, is present in 

virus particles in an unprocessed, intact form. 

A full length cDNA copy of the L RNA was constructed and cloned into an AcNPV 

transfervector. Recombinant baculoviruses were obtained that expressed a 67 kDa protein 

which reacted with a L-specific antiserum. Sequence analysis of the transfervector 

demonstrated that a deletion of 80 basepairs, causing the introduction of two premature stop 

codons, was present in the cloned, viral cDNA, resulting in a truncated L protein. 

Parts of this chapter have been published as: 
VanPoelwijk, F., Boye, K., Oosterfing, R., Peters, D. and Goldbach, R.W. (1993). Detection of the L protein 
of tomato spotted wilt virus. Virology 197, 468-470. 
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Introduction 

Based on both particle morphology and genetic organization of its tripartite RNA genome 

the plant virus TSWV has been placed into the family Bunyaviridae, which comprises a large 

group of arthropod-born, enveloped viruses. TSWV, together with a small number of closely 

related but less characterized viruses, forms a separate genus, denoted Tospovirus, within this 

family (Francki et al, 1991; Peters et al, 1991). Particles of TSWV consist of a lipid 

envelope, containing two glycoprotein species (Gl and G2), in which the genomic RNA 

segments are complexed with nucleocapsid (N) protein to form pseudo-circular structures. 

The S RNA of TSWV (2916 nucleotides (nts)) encodes, like that of phleboviruses, the N 

protein (28.8 kDa) and a non-structural protein (NSs, 52.4 kDa) in an ambisense arrangement 

(De Haan et ai, 1990; Giorgi et al, 1991; Ihara et al, 1984; Kormelink et al, 1992a; 

Marriot et al., 1989; Simons et al., 1990). The M RNA is also ambisense encoding the 

precursor to both glycoproteins (127.4 kDa) and another non-structural protein (NSm, 33.6 

kDa) (Kormelink et al, 1992). 

The L RNA is of complete negative polarity and contains one open reading frame (ORF) 

in the viral complementary (vc) sense, which corresponds with a primary translation product 

of 331.5 kDa which by occlusion most likely represents the viral polymerase (De Haan et 

al, 1991). The predicted protein is homologous to the L proteins of the animal-infecting 

Bunyaviridae and contains several amino acid motifs that are conserved among RNA 

polymerases of negative-strand viruses (De Haan et al, 1991; Poch et al, 1989). 

While the proteins coded for by the M and the S RNA have all been detected in either virus 

particles or infected plant tissues, the L protein, theoretically encoded by the L RNA, has 

not yet been identified. Several reports have claimed the occurrence of a "large" protein in 

purified TSWV preparations with an estimated size varying between 110 kDa and 220 kDa 

(Mohamed et al, 1973, Peters et al, 1991; Tas et al, 1977). 

For some of the animal-infecting bunyaviruses the predicted molecular weight of the L 

protein (deduced from the open reading frame in the L RNA) matches the experimentally 

determined sizes of this protein (as determined by SDS-PAGE), which is about 250 kDa 

(Elliot et al, 1984; Elliott, 1989; Schmaljohn, 1990). The first aim of this research was to 

detect the L protein both in purified TSWV virions and in TSWV-infected plant tissues, and 

to investigate the apparent discrepancy between the predicted (331.5 kDa) and the reported 

sizes (110-220 kDa) for this protein. 

The second aim was to construct a recombinant baculovirus which contains a full-length 

cDNA copy of the ORF encoding the TSWV L protein. Until recently, it has not been 

possible to introduce genetic changes into cloned copies of negative stranded RNA virus 
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genomes and to express infectious transcripts from these clones. A major obstacle to the 

development of such techniques is the fact that deproteinized genomic RNA of negative 

stranded RNA viruses is not infectious. In order to be infectious, the RNA must be 

encapsidated with a nucleocapsid protein to form an active template and provided with the 

RNA dependent RNA polymerase. 

Luytjes et al. (1989) were the first who described a system in which an RNA derived by 

transcription from a cDNA clone, containing a foreign gene flanked by regulatory sequences 

of an influenza virus genome segment, could be introduced into cells and amplified with a 

helper virus. A different reverse genetics approach was introduced for Bunyamwera virus, 

belonging to the genus Bunyavirus (Jin and Elliott, 1991). In this system a recombinant 

vaccinia virus expressing the L protein of Bunyamwera virus was used to transcribe and 

replicate in vivo transfected nucleocapsids which were not infectious by itself. This system 

proved to be very useful to delineate functional domains within the Bunyamwera virus L 

protein (Jin and Elliott, 1992, 1993). Recently, a similar system has been described (Lopez 

et al., 1995) for Rift Valley fever virus (a phlebovirus) where the L protein can rescue viral 

RNP's and transcribe synthetic genome-like RNA molecules. As a first step towards a 

reverse genetics system for TSWV the construction and expression of a full length cDNA 

copy of the L RNA is described. 

Materials and Methods 

Virus purification 

The TSWV isolate BR-01 was maintained on Nicotiana rustica by mechanical inoculation. 

Virus particles and nucleocapsids were purified as described by De Avila et al., (1990). 

Virus was concentrated after sucrose gradient centrifugation by mixing with an equal volume 

of resuspension buffer and subsequent centrifugation for 1.5 hrs at 32000 rpm using a 

Beekman TL100 ultracentrifuge (TL55 rotor). 

Primers and PCR 

PCR fragment L-n (900 bp) was constructed using Taq polymerase (SpheroQ) and primers 

J062 (5'-CCCCCATGGAAATCCAGAAAATACAAAAA-3') and J029 (5'-TGTGGGTGTG 

GTTCCAAC-3'). The PCR fragment L-c (2 kbp) was made using primers ZUP40 (5'-CCC 

ATGGTTGATAAAGTG-3')andJ025(5'-CCCGGATCCTGCAGAGCAATCAGGTACAAC 

TAAAACATATAACCTCTCCAC-3'). P1V is a PCR derived clone which was amplified 
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with Vent DNA polymerase, and primers J035 (5'-TAGCATGATGCTATTAGC-3') and J037 

(5'-GGTATACAAACCTTC-3'). P2 was amplified using primers J038 (5'-AATGTAACAG 

TTTTAAAG-3') and J033 (5'-CCACTTGCTGTTGAATTG-3') PCR fragment P3 (906 bp) 

was constructed using primers M11 (5 ' -CCCGGATCCTGC AGAGC AATCC AG-3 ' ) and J029 

(5-TGTGGGTGTGGTTCCAAC-3'). P5 was amplified using PDH3 (5'-AGGGAACATTTC 

TTGTC-3') and J063 (5'-CCCGGATTCCTGCAGAGCAATCAGGTACAA-3'). 

Plasmid constructions 

All PCR fragments were cloned into a T-vector (Marchuk et al., 1990) and L-n and L-c 

were subcloned as a Ncol-BamUl (N-B) fragment into a pETllt expression vector and 

transformed into Escherichia coli DH5aF'. The inserts were checked by partial sequencing. 

DNA-isolation, digestion with restriction enzymes, and agarose gel electrophoresis were 

carried out using standard procedures (Sambrook et al., 1989). 

Expression of 5'- and 3'- terminal parts of the L ORF in Escherichia coli BL21 cells 

Overnight cultures containing pETl lt/L-n, pETl lt/L-c and pETl It were diluted 1:100 in 

fresh LB-medium containing ampicillin (50 /ig/ml). Cells were grown for 4 hrs at 37 °C and 

subsequently induced by adding isopropylthiogalactoside (IPTG) to a final concentration of 

0.4 mM. Cells were harvested 2 hrs post induction, centrifuged and resuspended in lysis 

buffer (50 mM Tris-HCl, pH=8.0; 5% SDS and lOmM ß-mercaptoethanol). Protein 

expression was analyzed by Coomassie Brilliant Blue (CBB) or silver staining according to 

Morrisey, (1981). 

Antisera production 

Both expression products L-n and L-c were purified from Polyacrylamide gels as described 

(Kormelink et al, 1991). Portions of 50 to 100 /xl of purified protein were emulsified in 

Freund's incomplete adjuvants (Difco Laboratories) and injected into rabbits at days 1, 14, 

and 28. From day 28 on the rabbits were bled several times at two week intervals and 

gamma-globulin fractions isolated as reported (Clark and Adams, 1977). 

Construction and isolation of recombinant baculoviruses 

A full length cDNA copy of the L RNA was cloned as a BamHl fragment into the unique 

BaniHl site of pAcDZl (Zuidema et al, 1990), resulting in the transfervector pAc/L. 

Spodoptera frugiperda cells (Sf-21) were grown in Hink's medium supplemented with 10% 

fetal calf serum (FCS, Vaughn et al., 1977). Sf-21 cells were cotransfected by lipofectin with 

the recombinant transfervector pAc/L and 1 ßg of Bsul cut viral DNA (AcPAK6) per 106 

cells according to Kitts et al. (1993). The virus collected from the cotransfection supernatant 
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5 days post transfection was subjected to three rounds of plaque purification according to 

Zuidema et al. (1990). Two recombinants, denoted AcNPV/Ll and AcNPV/L2, were 

selected, amplified and the titer determined by an end point dilution assay (O'Reilly et al., 

1992). These recombinants were further analyzed for production of L protein after infection 

of either Sf-21 or T. ni 5B1-4 cells by resolving the proteins in a 5-15% Polyacrylamide gel 

and immunostaining using the L-n and L-c antisera. 

Results 

Detection of the L protein of TSWV 

To allow unequivocal identification of the L protein and to study possible post-translational 

cleavages, antibodies were raised against both the N- and C-terminus (Fig. 1A). The N- and 

C-terminal sequences were separately expressed using a prokaryotic expression system (pET 

system; Studier et al., 1986). For this purpose two PCR-fragments were amplified, a 900 

base pair (bp) construct encompassing the N-terminal (L-n) region of the L ORF, and a 1.8 

kbp construct, corresponding with the C-terminal part of the L ORF (L-c). Primers J062 and 

ZUP40 contained a Ncol site (CCATGG) to place the ATG in the proximity of the Shine and 

Dalgarno sequence of the pETllt vector. As a consequence, in construct L-n the second 

codon in the L ORF was changed from A AC (Asn) to GAA (Glu), and in construct L-c the 

second codon was changed from TTT (Phe) to GTT (Val). Expression of these constructs 

resulted in polypeptides of expected size, i.e. 33 kDa for construct L-n and 67 kDa for 

construct L-c, respectively (Fig. IB, lanes 1 and 2). Both products were purified from 

Polyacrylamide gels as described by Kormelink et al. (1991). Antisera were prepared as 

described in Materials and Methods. The titer and specificity of antisera obtained were tested 

with protein blots containing the E. coli expressed L RNA-specific polypeptides (Fig. IB, 

lanes 5 and 6). The detection limit of the antiserum raised against the N-terminal domain of 

the L protein (L-n) was approximately 2 ng and for the antiserum against the C-terminal 

domain (L-c) 4 ng (data not shown). 

Both of the antisera reacted specifically with a large protein in both TSWV virion (Fig. 

2, lanes 2 and 5) and TSWV nucleocapsid (Fig. 2, lanes 4 and 8) preparations. This protein 

comigrated with the 330 kDa protein of the high molecular weight markers. No reaction was 

obtained with healthy plant material (Fig. 2, lanes 3 and 7), indicating that the protein 

detected indeed represents the L protein of TSWV. Especially in nucleocapsid fractions some 

smaller immunoreactive proteins of unknown origin were detected (Fig. 2, lanes 2 and 5). 

These proteins probably do not represent proteolytic processing products of the L protein 

since they reacted both with the L-n and L-c antisera. So far no L protein could be detected 
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Figure IA. Genetic 
organization of the 
TSWV L RNA (vc 
strand) and localization 
of PCR fragments used 
for expression in E. 
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Figure IB. Expression 
of constructs L-n and L-
c in E. coli (BL21) 
cells. Proteins were 
resolved on a 12.5% 
SDS-PAGE and stained 
with Coomassie Brilliant 
Blue (lanes 1-4) or 
blotted on Immobilem 
(lanes 5-7). The protein 
blot was analyzed using 
1 /ig/ml L-n or L-c 
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k D a ) , c a r b o n i c 
anhydrase (30 kDa) and 
trypsin inhibitor (20.1 
kDa). 
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Figure 2. Detection of the L protein in purified virus and nucleocapsid preparations from TSWV-infected 
Nicotiana rustica leaves. After electrophoresis on a linear 5-15% gradient Polyacrylamide gel the proteins were 
analyzed by silverstaining (Morrisey, 1981) or blotted and immunostained, using either anti-L-n (lanes 1-4) or 
anti-L-c (lanes 5-8) immunoglobulins. HMW size markers are indicated on the left. 

in extracts of infected leaf tissue by using either western blotting, ELISA or immuno-gold 

decoration, probably due to the low concentrations in which this protein may occur in 

extracts. 

Construction of a full-length cDNA clone of the L RNA 

The cloning strategy followed to obtain a full-length cDNA clone of the L RNA is 

depicted in Fig. 3. The cDNA clones used in this work are described by De Haan et al. 

(1991); clones indicated with P are PCR derived. PCR fragment P3 (Fig. 3) was amplified 

to obtain the complete 3' terminal sequence (viral sense) including a unique BamHl site to 

facilitate cloning into the baculoviral transfervector pAcDZl. This PCR fragment was cloned 

into a T-vector and subsequently subcloned as a BamHI-Spel fragment into pKS+ (clone P3). 

Clone P3 was extended by the Spel-Hindlll fragment of clone 662 to yield Tl (Fig. 3). Clone 
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T2 was obtained after addition of the EcoRI-Hindlll fragment of clone 803 to an £coRI-

Hindlll linearized clone Tl. P1V is a Vent PCR derived clone, comprising nucleotides 2316-

4262. 
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Figure 3. Cloning strategy used for the construction of a full-length cDNA copy of the L RNA of TSWV. 
cDNA clones are described by De Haan et al. (1991), PCR derived clones are denoted as P. 

The BgHl-Xhol fragment of P1V was subcloned into clone T2 to give rise to clone T3 which 

starts at the 3' end of the viral RNA and encompasses the unique Nhel site. 

PCR fragment P5 was constructed to obtain the 5' end (viral sense) including a BamUl site 

(Fig. 3). The amplified fragment was cloned into a T-tailed EcoRV site of pKS+ (clone P5). 

The Spel-Nrul fragment of clone 266 was added to clone P5, giving rise to clone T4 (Fig. 

3). The Spel fragment of P2 was added to T4 yielding T5 which consists of the region 

corresponding to the 3' terminus of the vc L RNA and encompasses the Nhel site. The full-

length construct was obtained by cloning the Nhel-Xhol fragment of T3 into a Nhel-Xhol 

linearized T5 vector. 

Construction and expression of a recombinant baculovirus containing the L ORF 

The full-length cDNA copy of the L RNA was cloned as a BamUl fragment into the 

unique BamHl site of pAcDZl. The resulting transfer vector, pAc/L, was analyzed by 
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restriction enzyme analysis and nucleotide sequence determination (results not shown). The 

L cDNA clone was transferred to AcNPV by cotransfection of Spodoptera frugiperda cells 

with a mixture of linearized AcNPV PAK6 DNA and the transfervector. DNA was isolated 

from nonoccluded virus and analyzed for the presence of a full-length L gene by BamUl 

restriction enzyme digestion and subsequent Southern blot analysis (data not shown). 

Production of L protein was analyzed by comparing the protein patterns of AcNPV/L 

infected Spodoptera frugiperda cells with that of wild type AcNPV-infected Sf-21 cells. An 

expression product of 67 kDa, present in large amounts, was observed upon infection of Hi5 

cells with AcNPV/L (Fig. 4). However, no product of the expected size (330 kDa) was 

detected. This result prompted us to resequence the transfer vector in the region where a stop 

codon was expected. Analysis of the sequence showed that there was a 80 bp deletion from 

nucleotide position 1715 to 1795, giving rise to two adjacent stopcodons. To reassure 

whether this deletion was the result of a cloning artefact, the original cDNA clone used to 

construct the full-length clone, was resequenced. The same deletion was indeed present in 

the original cDNA clone (clone 662). In order to restore the 80 bp deletion a PCR fragment 

was constructed comprising the 5' terminal 1.8 kb of the vc L RNA. This fragment was 

cloned into pET/llt and the expression product obtained was of the expected size and 

specifically reacted with the L-n antiserum, indicating that this clone contained the correct 

open reading frame. This PCR fragment started at position 34 (same primer used as for L-n), 

thus lacking the leader sequence. To analyze both the influence of the substituted second 

codon and the absence of the leader sequence on expression levels a recombinant AcNPV 

containing this PCR derived fragment was constructed. The expression product obtained after 

expression in either Sf-21 or T. ni 5B1-4 cells could only be detected using L-n antiserum 

(Fig. 4, left panel). This indicates that, although the PCR derived construct is expressed in 

E. coli and the ATG is in a rather optimal context according to the Kozak rules, for 

expression of the L gene in insect cells, a construct including the original leader is favored. 

However, a negative effect of the substituted second codon on the expression level cannot 

be ruled out. 

Discussion 

In previous studies on the protein composition of TSWV conflicting data were reported 

with respect to the molecular weight of the largest structural protein. Moreover, there is a 

considerable discrepancy between the size of the L protein as estimated from protein gels and 
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the predicted size based upon the nucleotide sequence as determined by De Haan et al. 

(1991). To allow unequivocal identification of the L protein, antisera were raised against 

prokaryotic expression products corresponding to the N- and C-terminus. 

From protein blot analysis (data not shown) it was deduced that about 2 pig of virus is 

s&r 
205 k D a ^ 

1 1 6 k D a ^ 
97kDal 

6 6 k D a H 

45kDa 

29kDa 

Figure 4. Analysis of expression products obtained after infection of Sf-21 cells with AcNPV/PCR or 
AcNPV/L. Proteins were resolved on a 5-15% PAGE and analyzed by CBB staining (left panel) or blotted and 
immunostained using anti-L-n IgG (right panel). 

needed to detect the L protein. The detection limit of the antiserum is 4 ng for the L-c 

polypeptide which corresponds to 19.8 ng of L protein. This means that approximately 1% 

of the TSWV particle would consist of L protein. Based on this percentage, the diameter and 

density of the virus particle and estimates from silverstained Polyacrylamide gels the number 

of L protein copies was calculated to range between 10-20 per TSWV particle. This number 

is comparable to the estimates that Jin and Elliott (1992) made for the Bunyamwera virus L 

protein (25 copies per virus particle). 

Although the existence of functional, processed forms of the L protein in situ cannot be 

ruled out, our results demonstrate that TSWV virions as well as infectious nucleocapsid cores 

purified from infected cells contain a non-processed, viral L protein of 330 kDa. It is 

tempting to assume that this relatively large size of TSWV L protein reflects an adaptation 
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of this bunyavirus for being able to replicate in plant cells. 

Analysis of the function of the L protein in the transcription/replication process of TSWV 

has been hampered by the lack of a manipulative genome. To unravel the function(s) of the 

L protein in the infection process of TSWV and shed some light on the existence of 

additional domains present on the L protein, a reversed genetics system is required. Several 

approaches have been described for both unsegmented and segmented negative strand RNA 

viruses. Within the family Bunyaviridae two reverse genetics systems have been reported (Jin 

and Elliott, 1991; Lopez et ai, 1995). For both Bunyamwera virus and Rift Valley fever 

virus the L protein is supplied by a recombinant vaccinia virus containing a full-length cDNA 

copy of the L RNA. The functionality of this protein was tested by an in vivo assay in which 

cells are infected with the recombinant vaccinia virus and subsequently transfected with 

natural ribonucleoproteins or artificial genome-like templates. In this chapter the construction 

of a full-length CDNA clone of the L RNA of TSWV is described. This clone is composed 

of both cDNA clones described by De Haan et al. (1991) and of PCR fragments. Upon 

expression of the L gene in insect cells using recombinant AcNPV containing the full-length 

construct an expressed product of only 67 kDa was detected. This product, which specifically 

reacted with the L-n antiserum, was of similar size as the TSWV-specific polypeptide 

expressed by a recombinant AcNPV containing the 1.8 kb N-terminal PCR fragment. Re-

sequencing of this region in the full-length clone revealed a 80 bp deletion, giving rise to two 

adjacent stop codons, which later appeared to be present in the original CDNA clone 662 

also. Comparing the expression levels of the full-length and the 1.8 kb PCR fragment 

revealed that the latter had a much lower expression level. The large difference in expression 

levels of the full-length construct and the 1.8 kb N-terminal PCR-derived construct could not 

be explained, but, in view of similar transcription levels, has to be on the level of translation. 

It has been suggested that extra leader sequences in the chimaeric mRNA might impede 

expression in the baculovirus/insect cell system but this does not seem to be the case here. 

The presence or absence of a leader sequence does not unequivocally account for different 

expression levels of several baculovirus recombinants expressing different genes of TSWV 

(Kormelink, 1994). The low level of expression can also not be explained by an unfavorable 

AUG context (Kozak, 1981, 1986; optimal consensus A/GCCAUGG), as it is rather optimal 

for the recombinant containing the PCR fragment (G at position +4). The N-end rule 

(Bachmair et al, 1989; Tobia et al., 1991), which predicts the turnover speed of proteins 

due to the presence of rather unfavorable N-end amino acid residues downstream the 

methionine codon probably does also not account for the lower expression level as the amino 

acid substitution should decrease this turnover speed. Therefore, the full-length construct has 

to be repaired to overcome the 80 bp deletion and a part of the 1.8 kb PCR fragment can be 

used for this purpose. 
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CHAPTER 4 

Sequence analysis of the 5' ends of tomato spotted wilt virus N mRNAs. 

Summary 

Messenger RNAs transcribed from the tomato spotted wilt virus (TSWV) RNA genome 

have characteristic extra, non-templated heterogenous sequences at their 5' ends which may 

be the result of a cap-snatching event involving cellular mRNAs. In order to investigate the 

genetic origin of these extra sequences and to gain more insight in the process of cap-

snatching as performed by TSWV, nucleocapsid protein (N) mRNAs derived from the TSWV 

S RNA were cloned and sequenced. Twenty clones were obtained which contained 5'-

proximal sequences of non-viral origin, ranging in length from 12 to 21 nucleotides. None 

of the sequences analyzed were identical and no strict base preference at the endonucleolytic 

site was observed. 

Parts of this chapter have been published as: 
Kormelink, R., Van Poelwijk, F., Peters, D. and Goldbach, R. (1992). Non-viral heterogeneous sequences at 
the 5' ends of tomato spottted wilt virus mRNAs. Journal of General Virology 73, 2125-2128. 
Van Poelwijk, F., Kolkman, J. and Goldbach, R. (1996). Sequence analysis of the 5' ends of tomato spotted 
wilt virus N mRNAs. Archives of Virology 141, 177-184. 
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Introduction 

Tomato spotted wilt virus (TSWV) is the type species of the genus Tospovirus, a genus 

belonging to the large family of arthropod-born Bunyaviridae (Francki et al., 1991). The 

tospoviruses differ from the other members of this family by infecting plants instead of 

animals. 

Typical for all bunyaviruses, the enveloped TSWV virion contains three single stranded 

RNA segments, denoted L, M and S, which are tightly associated with the nucleocapsid (N) 

protein. In addition 10-20 copies of the L protein are present per virion (Van Poelwijk et al., 

1993). The L segment is of negative polarity whereas the M and S segments have an 

ambisense gene arrangement. The M segment encodes the glycoproteins and a non-structural 

protein (NSm, the putative movement protein (Kormelink et al., 1992c)), and the S segment 

encodes the N protein and another non-structural protein (NSs) (De Haan et al., 1990; 

Kormelink et al., 1991). The L segment encodes the L protein (331.5 kDa) which is thought 

to be the viral RNA-dependent RNA polymerase, although direct proof is lacking (De Haan 

étal., 1991; Van Poelwijk et al., 1993). 

All segmented negative strand viruses studied so far contain non-viral sequences at the 5' 

ends of their mRNAs, indicating that the viral transcriptase utilizes RNA primers to prime 

transcription (Bishop et al., 1983; Bouloy and Hannoun, 1978; Bouloy et al., 1990; Collet, 

1986; Eshita et al., 1985; Garcin and Kolakofsky, 1990; Gerbaud et al., 1987; Huiet étal., 

1993; Ihara et al., 1985; Kormelink et al., 1992b; Patterson and Kolakofsky, 1984; Raju et 

al., 1990; Simons and Petterson, 1991). These primers are presumably derived from cellular 

mRNAs by a process referred to as cap-snatching, i.e. the 5' end of a cellular mRNA is 

cleaved off by an endonuclease and subsequently used to prime viral transcription. This 

process was first described for influenza virus (for review see Krug, 1981) for which it has 

been proposed that mRNA synthesis is initiated at the penultimate nucleotide of the template 

RNA, and that basepairing between the 3' end of the primer and the template is not required 

(Krug, 1981). Transcriptase activity has been detected in detergent disrupted preparations of 

a number of bunyaviruses (Bouloy and Hannoun, 1976; Gerbaud et al. ,1987; Patterson and 

Kolakofsky, 1984). The low activity, compared to other negative strand viruses such as 

vesicular stomatitis virus, has hampered more detailed analysis of the transcription process. 

Patterson and Kolakofsky (1984) demonstrated that La Crosse virions contained a polymerase 

which was stimulated by dinucleotides (e.g. ApG), cap analogs (e.g. mGpppAm), and natural 

mRNAs (e.g. alfalfa mosaic virus RNA 4). In addition a methylated cap-dependent 

endonuclease activity was detected. Jin and Elliott (1991 and 1993a) were able to transcribe 

and replicate Bunyamwera S RNA in vivo by using the L protein that was expressed from 
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recombinant vaccinia virus. These experiments suggested that the L protein has the 

endonuclease activity which generates the primers needed for initiation of transcription. 

For influenza virus it has been suggested that a specific sub-set of host cell mRNAs are 

used to prime influenza virus mRNA synthesis, given the preference for G-C-A terminated 

primer fragments (the terminal sequence of positive sense RNA is 5'- AGCA, (Shaw and 

Lamb, 1984)). Jin & Elliott (1993b) suggested a controlled polymerase slippage model for 

Bunyamwera virus to account for an apparent preference for the 3' end of a primer which 

resembles the 5' end of the viral RNA. This preference at the 3' end of the primer has also 

been demonstrated for snowshoe hare (Bishop et al., 1983), Germiston (Vialat and Bouloy, 

1992) and Dugbe virus (Jin and Elliott, 1993b) but not for Uukuniemi virus (Simons and 

Petterson, 1991). To gain more insight in the transcription process with TSWV, especially 

in the initiation process, viral mRNAs extracted from infected plants were analyzed. 

Sequence analysis of the 5' ends of TSWV mRNAs should reveal the origin of the extra non-

templated sequences (viral or non-viral) and whether there is a base preference at the 3' end 

of the primer resembling the 5' end of viral RNA. For this purpose the 5' proximal parts of 

N mRNAs were cloned and analyzed. 

Materials and Methods 

Plants, virus and cDNA clones 

The Brazilian isolate BR-01 of TSWV was maintained in Nicotiana rustica by mechanical 

inoculation. Complementary DNA clones representing the different RNAs of TSWV have 

been described previously (De Haan et al, 1989, 1990 and 1991). 

Total RNA extraction 

Young seedlings of Nicotiana rustica were mechanically inoculated with extracts of TSWV 

BR-01 infected leaves. After inoculation, systemically infected leaf samples were taken at 8 

days post infection (p.i.). Total RNA was extracted from TSWV-infected Nicotiana rustica 

according to De Vries et al. (1982). 

Sucrose gradient centrifugation 

Total RNA extracted from TSWV-infected Nicotiana rustica was resolved by 

centrifugation through 15-22.5 % sucrose gradients in 50 mM Tris-HCl, pH 8.0, ImM EDTA 

and 0.5% SDS. Prior to loading, the RNA was denatured with methyl mercuric hydroxide 

at a final concentration of 25 mM. Centrifugation was for 17 hrs at 24,000 rpm at 20°C in 
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a SW41 rotor. RNA was recovered from individual fractions of the gradient and subsequently 

resolved in 1 % agarose gels (Baily and Davidson, 1976). The RNA was blotted onto Hybond 

(Amersham), and hybridized to 32P-labelled strand specific probes corresponding to the 3' 

or 5' terminal region of the S RNA. Relevant fractions were pooled and the RNA was 

ethanol precipitated. 

Cloning 5' ends of mRNAs 

Specific cloning of the 5' ends was essentially done as described by Dumas et al. (1991), 

using the 5'-ampliFINDER™ RACE kit (Clontech). The procedure is schematically 

represented in Fig. 1A. The N mRNA was reversed transcribed using primer SI identical to 

nucleotides 2404-2421 of TSWV S vRNA (5'-CTTAGATTTGATAGTATT-3'), based on 

the sequence as described by De Haan et al. (1990). After removal of the template by 

alkaline hydrolysis the (single stranded) cDNA was purified with GENOBIND glassmilk and 

ligated to the 3' blocked anchor primer 1 ( 3 'NH 3 -GGAGACTTCCAAG<JTCTTAGCTATCA 

CTTAAGCAC-P 5') using T4 RNA ligase. The cDNA was amplified by PCR; 30 cycles of 

denaturation at 94 °C for 1 min, annealing at 53 °C for 1 min and extension at 72 °C for 

1 min using oligonucleotides S2, identical to nts 2473-2493 of vRNA (5'-ATCAAGCCTTC 

TGAAGGTCAT-3'), and anchor primer 2 (5'-CTGGTTCGGCCCACCTCTGAAGGTTCCA 

GAATCGATAG-3'), which is partially complementary to anchor primer 1. 

Results 

Enrichment for subgenomic TSWV N mRNAs 

In previous studies it has been shown that low amounts of S-specific mRNAs and viral 

complementary (vc) S RNA are present relative to the full-length viral (v) S RNA 

(Kormelink et al., 1992a and b). Due to this low abundance partial purification of the 

mRNAs was required in order to obtain relatively enriched fractions. To this end total RNA 

was isolated from infected N. rustica and resolved on 15-22.5% sucrose gradients. Collected 

fractions were analyzed for their absorbance at 254 nm and after ethanol precipitation their 

RNA content was analyzed on a 1% agarose gel (Bailey and Davidson, 1976), transferred 

to Hybond membrane and hybridized to strand-specific probes corresponding to the N coding 

region in TSWV S RNA (Fig. 1). The enriched fractions were pooled. 
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(A) 
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(B) 1 2 3 4 

Figure 1. Sedimentation analysis 
and separation of RNA species 
from TSWV-infected Nicotiana 
rustica plants, 8 days post 
inoculation. Five hundred /tg of 
total RNA from infected tissues 
was layered on a 15-22.5% 
sucrose gradient, (a) Absorbance 
profile of RNA fractions 
collected from the gradient. 
Sedimentation was from the left 
to the right. Two /*g RNA from 
each fraction was resolved on a 
1% agarose gel, transferred to 
Genesereen membrane and 
hybridized to riboprobe S2-v, 
specific for the N gene, (b) 
RNA pellets obtained after 
centrifugation through a CsCl 
cushion, enriched for the N 
mRNA (lane 2) and for the S 
vcRNA (lane 1), analyzed on a 
Northern blot using riboprobes 
S2-v. Riboprobes were prepared 
as described by Kormelink et al. 
(1992a). 

Cloning of 5' ends of N mRNAs 

The pooled, enriched fractions were either used directly for cloning or purified on a CsCl 

cushion according to Kormelink et al. (1992b). In Fig. 2a the strategy for cloning the 

heterogeneous 5' ends of TSWV N mRNAs is depicted. Briefly, first strand synthesis is 

performed using primer SI. Subsequently the RNA is hydrolyzed and anchor primer 1 is 

ligated to the cDNA using T4 RNA ligase. This fragment is then amplified by PCR using 

an upstream S2 primer, which enhances the specificity of the reaction, and anchor primer 2 

which is partially complementary to anchor primer 1. The amplified product had the expected 

size of approximately 450 bp (Fig. 2b) and was cloned into a T-vector (Promega). Plasmids 

containing a cloned insert of the correct size were analyzed by dideoxynucleotide-chain 

termination sequencing using alkali-denatured dsDNA as a template (Sambrook et al., 1989) 

and primer S3 (5'-CCCGCAGTCGTTTCTTAG-3') identical to nts 2832-2849 of S vRNA. 

The sequence data obtained are listed in Fig. 3. The viral sequence is given in capital letters 
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Figure 2. (a) Strategy for cloning the heterogeneous 5' ends of TSWV N mRNAs. Partially enriched mRNA 
fractions were used. Extra, non-viral leader sequences in the mRNA are indicated by a waved line and the 
location of primers used for amplification by boxes. 
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Figure 2. (b) Analysis of the PCR-amplified 
DNA fragments on a 1% agarose gel. A ± 
450 bp product of expected size was obtained 
(lane 2). In lane 1 lambda DNA digested 
with endonuclease Pstl is used as a molecular 
weight marker. 
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whereas the extra, non-templated sequence is given in lowercase letters. The 3' terminal 

sequence of the S RNA as described by De Haan et al. (1989), was confirmed with one 

exception. All clones analyzed revealed a C to U base substitution at position 2908 which is 

within the first nine terminal nucleotides that areconserved within all tospoviruses sequenced 

so far. The substitution occurred in the same position in three independent cloning 

experiments (including independent PCR amplifications) indicating that it is probably not due 

to a misincorporation by Taq DNA polymerase. 

Of 36 cloned cDNA sequences, 20 revealed additional sequences between the 5' end of the 

genomic TSWV S RNA sequence and the anchor primer (Fig. 3). The 16 clones that did not 

contain additional sequences were probably derived from vcRNA, the replicative 

intermediate. The inserts contained the complete 5' end of TSWV S vcRNA (including the 

C to U substitution, data not shown). The mRNA leader sequences obtained were 

heterogeneous, ranging in length from 12 to 21 nucleotides and contained an overall base 

composition of 33% A, 30.4 % U, 19.6% C and 17% G residues (or 63.4% A+U, 36.6% 

G+C). The 3' proximate nucleotide of the primer consists in 9 out of 20 clones of a U 

residue while 4 clones contained an A residue, 4 a C residue and 3 a G residue, suggesting 

a slight preference for a U residue at this position. 

clone -10 +1 

1 gguugauaggaaaau GAGCAAUUGUGU 
2 ggacgucguacuugu GAGCAAUUGUGU 
3 caauucgaauuucg AGAGCAAUUGUGU 
4 aaucugauucaguguggcgau GAGCAAUUGUGU 
5 gaugauaaauacacccuuuc AGAGCAAUUGUGU 
6 caauacuaucaaaucua AGAGCAAUUGUGU 
7 gguauuuaguuauuuu AGAGCAAUUGUGU 
8 gugugugugaauau AGAGCAAUUGUGU 
9 aagcaaaacaaucu AGAGCAAUUGUGU 
10 aauaauauacuaguacu AGAGCAAUUGUGU 
11 gcucuuugcucua AGAGCAAUUGUGU 
12 gauaggcaccgcauucc AGAGCAAUUGUGU 
13 gaucaauagcugg AGAGCAAUUGUGU 
14 uucuugucgcauc GAGCAAUUGUGU 
15 acacgcuaaacaa AGAGCAAUUGUGU 
16 auaacuucacaaacaa AGAGCAAUUGUGU 
17 uacaacccucuu AGAGCAAUUGUGU 
18 aaucgaccagaaguuau AGAGCAAUUGUGU 
19 ggacagcucucucuuc AGAGCAAUUGUGU 
20 ggauauaaauuaaaaag AGAGCAAUUGUGU 

Figure 3. Host-derived sequences at the 5' ends of TSWV N mRNAs. The viral complementary RNA sequence 
is shown in capital letters whereas the non-viral sequences are given in lowercase letters. The ultimate 5' 
nucleotide of genomic TSWV S vcRNA (A, which is complementary to nucleotide 2916 of the vRNA) is at the 
+ 1 position. 
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Discussion 

In this chapter the presence of non-viral heterogeneous sequences at the 5' ends of TSWV 

N and NSs mRNAs has been demonstrated. Primer extension analysis of enriched NSm 

mRNA fractions revealed the presence of 12-18 extra, non-templated nucleotides (results not 

shown). Such extra sequences have previously been found for other members of the 

Bunyaviridae indicating that it can be listed as a family characteristic. In order to gain more 

insight in the process of cap-snatching as performed by TSWV, nucleocapsid protein (N) 

mRNAs derived from the TSWV S RNA were cloned and sequenced. Twenty clones were 

obtained which contained 5'-proximal non-templated sequences, ranging in length from 12-21 

nucleotides, and corresponding to the previously described primer extension products 

(Kormelink et al., 1992b). These leaders must be host mRNA-derived as no homology is 

found with TSWV genomic sequences and therefore most likely result from a cap-snatching 

process. A search in the EMBL databank did not reveal any homology to known plant gene 

sequences. 

For some viruses which utilize cap-snatching a marked preference concerning the identity 

of the 3'-proximate nucleotide (-1 position) in the host mRNAs derived leader sequence is 

observed while for other viruses there is no or hardly any consensus for this position (see 

Table 1). Comparison of the primer sequences of the TSWV mRNAs seems to indicate a 

slight preference for a U residue at the -1 position, as 9 out of 20 clones contain this residue 

at this position (Fig. 3). Remarkably, in 4 cases the A at position +1 was missing (Fig. 3). 

Similar results have been reported for mRNAs of influenza virus (Beaton and Krug, 1981), 

snowshoe hare (Bishop et al., 1983), Germiston (Bouloy et al., 1990), Bunyamwera (Jin and 

Elliott, 1993a) and maize stripe virus (Huiet et al, 1993). This suggests that basepairing of 

the terminal nucleotide may not be absolutely required for an RNA to act as a primer in 

transcription initiation. 

For the genera Bunyavirus, Phlebovirus, Nairovirus and Tospovirus the process of viral 

mRNA synthesis has been investigated and revealed a common mechanism for initiation of 

mRNA transcription. It is interesting that, on the one hand some bunyaviruses (e.g. 

Bunyamwera virus and Dugbe virus) show a strict sequence specificity for the 3' terminal 

nucleotide of the primer, while for Uukuniemi virus there seems to be no consensus at this 

position. Our results indicate that TSWV seems to take an intermediate position in this 

respect, with some preference (9 out of 20 mRNAs) for a U residue. This indicates that, 

although cap-snatching is a commonly used mechanism to prime transcription, there are 

differences in this process, not only between distinct families but even within a given family. 
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CHAPTER 5 

Optimizing in vitro polymerase activity associated with purified nucleocapsid and 

virus preparations of tomato spotted wilt virus 

Summary 

An RNA-dependent RNA polymerase activity was found associated with both purified 

virions and nucleocapsids of tomato spotted wilt virus (TSWV). Trichloroacetic acid-

precipitable products were obtained after incubation of detergent-disrupted TSWV virions in 

a transcriptase reaction mixture containing radiolabeled [a-32P] CTP. The conditions for 

optimal incorporation were investigated. The reaction was manganese dependent and reaction 

products were RNAse sensitive whereas no DNA template was required. Reaction products 

hybridized with all three genomic RNAs of TSWV and with cDNA clones of all five viral 

genes, whereas no hybridization was detected to RNA extracted from healthy plant material. 

No specific inhibition of the in vitro polymerase reaction was observed upon incubation with 

available antisera against TSWV encoded proteins. 
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Introduction 

Tomato spotted wilt virus (TSWV) is the type species of the Tospovirus genus within the 

large family of the arthropod-born Bunyaviridae (Murphy et al., 1995). The virus is 

exclusively transmitted by thrips in a circulative/propagative manner (Wijkamp et al., 1993). 

Virions consist of spherical, enveloped particles ranging in diameter from 80-110 nm. The 

three genomic RNAs, denoted L (large), M (medium), and S (small), are tightly associated 

with the nucleocapsid protein (N) to form ribonucleoprotein complexes (nucleocapsids). 

These nucleocapsids appear as pseudocircular structures in electron microscopy studies due 

to the complementary termini of the viral RNAs resulting in a panhandle formation. In 

addition, the virions contain 10-20 copies of the L protein, the putative viral RNA-dependent 

RNA polymerase (RdRp) (see Chapter 3). 

Transcriptase activity has been detected in detergent-disrupted preparations of Lumbo 

(Bouloy and Hannoun, 1976), Germiston (Gerbaud et al., 1987), La Crosse (Patterson et al., 

1984), Uukuniemi (Ranki and Petterson, 1975) and Hantaan virus (Schmaljohn and 

Dalrymple, 1983) representing three of the five Bunyaviridae genera. Moreover, transcriptase 

activity has directly been assigned to the L protein of Bunyamwera virus (Jin and Elliott, 

1991). The transcriptase activity reported was weak compared to those of other viral taxa 

(e.g. Rhabdoviridae and Orthomyxoviridae), which has hampered a more detailed 

understanding of this process. Patterson et al. (1984a) demonstrated that bunyaviral 

polymerase activity can be stimulated by addition of oligonucleotides such as ApG, cap 

analogues (e.g. m7GpppAm) and natural mRNAs (e.g. alfalfa mosaic virus RNA 4) and 

evidence was obtained that these acted as primers for mRNA synthesis. Furthermore, an 

endonuclease activity was detected which cleaved methylated caps in vitro (for review see 

Elliott, 1990). These results correlated with analysis of mRNAs from infected cells, which 

indicated the presence of heterogeneous non-viral sequences at their 5' ends (for review see 

Jin and Elliott, 1993). Both the presence of an unprocessed L protein in purified virus- and 

nucleocapsid preparations of TSWV (Chapter 3) and non-viral sequences at the 5' ends of 

viral mRNAs (Chapter 4) have previously been demonstrated. Recently, Adkins et al. (1995) 

were able to demonstrate in vitro transcriptase activity associated with virions of TSWV. 

Product analysis revealed that predominantly double-stranded RNA products were formed. 

Activity was manganese dependent and independent of a DNA template. Using (a-32P)CTP 

incorporation of up to 300* 103 cpm was obtained in assays containing 13 /xl of a concentrated 

virion preparation. Since it was not known whether this level of incorporation is sufficient 

to allow any further detailed studies with respect to product analysis, involvement of 

individual proteins or inhibition studies, we have tried to optimize the in vitro transcriptase 
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assay. Furthermore, transcriptase activity from two different tospoviruses, TSWV and INSV, 

were isolated from different source plants, as to determine possible host or virus-dependent 

differences. This chapter summarizes the efforts to increase the in vitro transcriptase activity 

and analysis of products formed using both purified virions and nucleocapsids. 

Materials and Methods 

Plants, virus, RNA extractions and cDNA clones 

The Brazilian isolate BR-01 of TSWV was maintained in Nicotiana rustica and Datura 

stramonium. The Dutch isolate NL-07 of impatiens necrotic spot virus (INSV) was 

maintained in Nicotiana benthamiana. Complementary DNA clones representing the different 

RNAs of TSWV have been described previously (De Haan et al, 1989, 1990, 1991; 

Kormelink et al., 1994). RNA extractions were done as described by Kormelink et al. 

(1992b). Alfalfa mosaic virus RNA 4 was kindly donated by Dr. John Bol. 

Virus and nucleocapsids purification 

Young seedlings of N. rustica or D. stramonium were mechanically inoculated with 

extracts of TSWV BR-01-infected leaves whereas N. benthamiana was mechanically 

inoculated with extracts of INSV-infected leaves. TSWV and INSV were purified essentially 

as described by Mohamed et al. (1973) from systemically infected leaves harvested at 10-12 

days post infection (p.i.). Leaf material was homogenized in a blender using 3 ml extraction 

buffer (0.1 M phosphate buffer pH 7.0, containing 0.01 M Na2S03) per gram leaf material. 

The solution was strained through cheesecloth and centrifuged for 10 min at 10,000 rpm in 

a GSA rotor. The pellets were resuspended by stirring gently for 30 min at 4 °C in 1 ml 

0.01 M Na2S03 per gram of leaf material. After centrifugation for 15 min at 10,000 rpm in 

a SS34 rotor, the supernatant was centrifuged for 30 min in a Ti45 rotor at 29,000 rpm. The 

pellet was resuspended in 2.5 ml 0.01 M Na2S03 for 30 min and subsequently centrifuged 

for 45 min on a 10-40% sucrose gradient at 23,000 rpm in a SW28 rotor. The virus band 

was collected, diluted 1:1 with 0.01 M Na2S03 and centrifuged for 45 min at 24,000 rpm in 

a SW41 rotor. The pellet was resuspended in 200 jul 0.01 M Na2S03. 

Nucleocapsids were purified as described by De Avila et al. (1990) with modified buffers. 

The extraction buffer consisted of 0.1 M Tris-HCl, 0.01 M Na2S03, pH 8.0 whereas the 

resuspension buffer contained 0.01 M Tris-HCl, 0.01 M Na2S03, 0.5% Nonidet P-40, pH 

8.0. 
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In vitro polymerase assay 

The reaction was carried out in transcription reaction mixture consisting of 5.0 mM 

MnCl2, 2.5 mM MgCl2) 25 mM Tris-HCl (pH 8.0), 5.0 mM dithiothreitol (DTT), 0.5% 

(v/v) Triton X-100, 1 mM each of ATP, GTP and UTP, 10 /xCi (a-32P)CTP (3000 Ci/mmol, 

Amersham) and 10 ng virus. The reaction mixtures were incubated for 1 hr at 30 °C. 

Assays including reticulocyte lysate were carried out in a 50 ß\ volume, containing 40% (v/v) 

rabbit reticulocyte lysate, 50 ßM tRNA and 20 /xM amino acid mixture (Promega). After 

incubation for 1 hr at 30 °C the reaction mixture was phenol/chloroform extracted twice and 

the RNA subsequently ethanol precipitated. The pellet was resuspended in 10 /il RNase free 

H20 and 5 jtl was analyzed on gel. 

TCA precipitations 

Trichloroacetic acid (TCA) precipitations were essentially done as described by Sahal and 

Fujita-Yamaguchi (1987). In short, the 25 pi reaction mixtures were spotted onto Whatman 

3MM or phosphocellulose Whatman paper (P-81) and the filters washed with cold 10% TCA 

for 20 min on a rotating shaker. Washing was repeated at room temperature with 5 % TCA 

until the washing medium showed insignificant radioactivity (generally twice for 20 min). 

The papers were washed with ethanol, air-dried, squares cut out of the matrix and each was 

counted in a scintillation vial (Cerenkov counting, Beekman scintillation counter). 

Results 

Virus purification 

Intact, enveloped particles of TSWV were purified from both M rustica or D. stramonium 

as described in Material and Methods. 

The entire isolation procedure was 

carried out within 5-6 hrs and at 4 °C as 

to preserve optimal polymerase activity. 

The purity of the virion preparation was 

verified by electron microscopy (Fig. 1) 

and by analyzing the visible virus 

Figure 1. Electron micrograph of TSWV 
particles, purified according to the rapid 
procedure described in Materials and Methods. 
The bar represents 200 nm. 
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band of the 10-40% sucrose gradient for its protein content using SDS-PAGE (results not 

shown). A typical purification from 120 g of TSWV-infected leaf material yielded 

approximately 400 /ig of virus. 

In vitro polymerase activity 

Purified virus was assayed for in vitro transcriptase activity, in principle following the 

assay conditions described by Adkins et al. (1995). Activity associated with purified virions 

could only be detected upon disruption by a non-ionic detergent. Incorporation of [a-32P] 

CTP into TCA-precipitable products increased both in time (Fig. 2) and with increasing virus 

concentration (results not shown). Taken these results into account an incubation time of one 

Figure 2. Time course 
analysis of the in vitro 
transcription assay using 
purified TSWV. For 
description of the assay 
components see 
Materials and Methods. 

20 40 

TIME ( m i n u t e s ) 

hours was chosen. The effects of omitting one or several of the standard transcriptase 

reaction mixture ingredients (see Materials and Methods) on the incorporation level 

were analyzed (Fig. 3). Assays were performed in triplicate as individual TCA precipitations 

can exhibit large variation leading to misinterpretation of the results. Using these assay 

conditions incorporation of up to 45*103 cpm//*g of virion preparation could be reached, 

values (though somewhat higher) that confirm those reported by Adkins et al. (1995). It 

should be noted here that activity varied with the virus batch, the incorporation was on the 

average 30*103 cpm/jtg of virion preparation. Omitting virus from the reaction leads to 

incorporation levels that are near background (Fig. 3). Further proof that the transcriptase 
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Figure 3. Analysis and optimization of the in vitro transcription reaction. The effect of omission of individual 
components of the standard in vitro transcription reaction on [32P]CMP incorporation levels were measured by 
Cerenkov counting in a liquid scintillation counter. 1= standard reaction (see Materials and Methods), 2 = 
-virus, 3 = heat killed virus (20 min pre-incubation at 60°C), 4= + 1% SDS and 100 mM EDTA (final 
concentrations), 5 = - Triton-XlOO, 6 = -DTT, 7 = -MnCl2, 8= -MgCl2, 9 = -MnCl2 and MgCl2, 10= +1 /xM 
CTP, 11= +RNase-free DNase, 12= +Actinomycine D, 13= +RNase (l/*g), 14= blanc, (Whatmann 3MM 
paper only). 

activity was unique for TSWV came from simultaneously treated fractions of healthy N. 

rustica which did not support any incorporation. The virus was effectively heat killed by 

(pre-) incubation for 20 min at 60 °C (Fig. 3). Adding SDS to a final concentration of 1% 

in combination with 100 mM EDTA also effectively abolished all polymerase activity (Fig. 

3). Actinomycine D (a DNA-dependent RNA polymerase inhibitor) did not inhibit the 

reaction at a concentration of 100 /xg/ml (Fig. 3), suggesting that the activity was not 

dependent on a DNA template. 

Attempts to optimize the TSWV transcription assay. 
To further optimize the in vitro CMP-incorporating activity of purified TSWV particles 

the following controls and treatments were carried out. Firstly, it was verified whether all 

virions lysed after the Triton-X100 treatment. Analysis of purified virus preparations before 

and after treatment with 0.5% Triton X-100 by electron microscopy revealed that after 

60 



treatment with this non-ionic detergent no virus particles were observed demonstrating 

complete lysis of the virions (results not shown). 

Secondly, optimal concentrations of the various assay components were tested. Omission 

of DTT reduced incorporation to approximately 65% of the standard reaction (Fig. 3). The 

optimum manganese concentration in the reaction mixture was found to be 5 mM. The 

reaction was completely manganese-dependent as omission of this divalent metal cation 

results in background levels of incorporation (Fig. 3). In contrast, the effect of magnesium 

chloride was less prominent as omission of this component reduced the incorporation 

approximately 40%. The incorporation increased with MgCl2 concentrations and remains at 

a constant level for all magnesium concentrations above 2.5 mM, confirming the results 

obtained by Adkins et al. (1995). If both manganese and magnesium chloride were omitted 

no specific incorporation could be detected. The addition of 1 /iM (and higher concentrations) 

unlabeled CTP caused a reduction of 50% of the incorporation (Fig. 3). 

Table 1. Effect of the source plant and tospovirus species on the in vitro transcription reaction. Nicotiana 
rustica is not a systemic host for INSV, therefore no in vitro transcriptase activity was tested for this 
combination. Reaction conditions are described in the Materials and Methods section. 

VIRUS 

TSWV 

TSWV 

TSWV 

TSWV 

TSWV 

TSWV 

TSWV 

NUCLEOCAPSED 

TSWV 

INSV 

HOST 

Datura stramonium 

Datura stramonium 

Datura stramonium 

D. stramonium + N. rust. 

Nicotiana rustica 

Nicotiana rustica 

Nicotiana rustica 

HOST 

Nicotiana rustica 

Nicotiana benthamiana 

ACTIVITY (Iff3 CPM/pg) 

21 ± 2 

17 ± 1.5 

30 ± 3 

10 ± 1.2 

10 ± 0.5 

32 ± 6 

44 ± 5 

ACTIVITY (Iff3 CPM/jig) 

10 ± 1 

15 ± 2 

Effect of host plant and virus species 

Attempts to optimize the in vitro transcription assay in terms of higher incorporation levels 

also involved analysis of different tospoviruses versus preparations obtained from different 
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plant species e.g. N. benthamiana. Polymerase activity found associated with purified 

nucleocapsids of INSV was comparable to that of TSWV nucleocapsids isolated from N. 

rustica or D. stramonium (Table 1). Virus purification of TSWV from infected D. 

stramonium yielded about twice as much virus compared to purification from infected N. 

rustica. As a consequence more leaf material was used for virus purification from infected 

N. rustica. The observed variation in activity between individual virus preparations may be 

due to several factors, e.g. time of harvesting or synchronicity of virus infection (yield/gram 

leaf material). The variation in transcriptase activity using preparations of a given host is as 

large as the variations between the preparations from two different hosts, indicating that there 

is no host effect (Table 1). The manganese-dependency was less prominent in the 

experiments with nucleocapsid preparations which was probably due to impurities in these 

preparations. In vitro transcription activity was not observed in nucleocapsid preparations that 

were further purified on a CsS04 gradient. This is probably due to the dissociation of the L 

protein from the nucleocapsids. No L protein could be detected in these preparations using 

specific antisera (data not shown). The loss of in vitro transcription activity corresponds to 

the loss of infectivity as tested by a local lesion assay on Petunia leaves. 

Qualitative analysis of the products formed in the in vitro transcription assay. 

In their analysis of the in vitro transcription assay of TSWV, Adkins et al. (1995) describe 

de novo formed RNA products with an average length of 250 nucleotides in the standard 

reaction. These products hybridized to transcripts generated from cDNA clones of parts of 

the TSWV genomic RNAs. A discrete product of approximately 3 kb appeared upon the 

addition of unlabelled CTP in the assay. The addition of wheat germ extract yielded the same 

product profile. Whether this was due to the presence of CTP in the extract or reflects a 

requirement of TSWV in vitro RNA synthesis for ribosome binding to the nascent strand 

remained unclear. 

In the following experiments attempts were made to elucidate the nature and specificity 

of the products obtained by the in vitro transcriptase reaction. 

RNase-free DNase (Fig. 3) did not effect the incorporation indicating that the products 

formed are not DNA. Addition of RNase A (1 /tg), however, drastically reduced the 

incorporation, which was even lower when 5 jug RNase A was added (approximately 10% 

of the standard, results not shown). These results confirm those of Adkins et al. (1995) and 

demonstrate that the templates, products, or both were RNA. 

Genomic RNA of TSWV, total RNA from healthy N. rustica and alfalfa mosaic virus 

RNA 4 (as a control) was spotted onto a Hybond-N filter and hybridized to a 50 pi in vitro 

reaction mixture. Specific hybridization was obtained with TSWV genomic RNA whereas no 

hybridization was obtained with alfalfa mosaic virus RNA 4 or total RNA from healthy N. 
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rustica (Fig. 4a). The reaction products hybridized to all three genomic RNAs (Fig. 4b). The 

intensity of the hybridization signals was strongest for the S RNA and decreased in the order 

of S > M > L RNA. To investigate whether this hybridization pattern reflects the ratio of the 

genomic RNAs in the virus preparations used in the in vitro reaction or reflects a selective 

preference of the polymerase for the individual RNA segments, the RNA was purified and 

analyzed by northern blotting and probed with segment-specific probes (Fig. 4c). The 

hybridization patterns obtained reflect the molar ratio of the segments as observed in 

ethidium bromide stained RNA patterns of purified, enveloped virions. To further dissect the 

signals observed with all three genomic RNA segments, five cDNA clones containing all five 

genes of TSWV, were spotted onto Hybond-N and probed with the in vitro reaction products 

(Fig. 4d). All five genes revealed a specific hybridization pattern whereas no hybridization 

was obtained with control plasmid (Fig. 4d). Spotting equal amounts of DNA led to 

hybridization signals of different intensity, which decreased in the order of N> GP, L> 

nL . 
TSWV 

AIMV-4 

Total RNA 

M * " 
S * • 

L • 

S • 

B D 

Figure 4. Analysis of products of the in vitro transcription reaction, (a) Genomic RNA (0.5 /ig) of TSWV 
(purified from nucleocapsids), alfalfa mosaic virus RNA4 (1 fig) and total RNA (8/xg) from healthy N. rustica 
plants was spotted onto Hybond-N and hybridized to the [32P]-labelled products of an in vitro transcription 
reaction, (b) RNA was extracted from purified virus as described in Materials and Methods, subjected to 
electrophoresis and blotted onto Hybond-N. The [32P]-labeled products of an in vitro transcription reaction were 
used as a probe, (c) As (b) but three segment specific (L, M, S) probes were used, (d) equal amounts (0.5 /ig) 
of cDNA of all five genes of TSWV were spotted onto Hybond-N and hybridized to the in vitro transcription 
reaction. 

63 



NSs> NSm (Fig. 4d). The lower hybridization signal obtained for the NSs and NSm genes 

corresponds with the lower abundancy of viral complementary RNA in the virion (Kormelink 

et al., 1992b). These results suggest that the genomic RNA hybridization pattern as observed 

in Figure 4b reflects the molar ratio of the segments. 

Analysis of the products of the in vitro reaction on a 1 % agarose gel revealed that no major, 

discrete products were synthesized but heterogenous products ranging in size from 400 

nucleotides and smaller. Analysis of these reaction products on a 2.8% sequencing gel 

confirmed the previous observation, revealing several discrete products of 450 nucleotides 

and smaller. This observation is in contrast to the results with in vitro transcription reactions 

with Rift Valley fever virus (RVFV) where only full-length N mRNAs are formed (Dr. M. 

Bouloy, personal communication). The in vitro transcription reaction of RVFV exhibits a 

translational dependency whereas for TSWV this has remained unclear (Adkins et al., 1995). 

PO 

o. 
o 

Figure 5. Effect of alfalfa mosaic virus RNA 4 on the in vitro transcription reaction. Alfalfa mosaic virus RNA 
4 (1 or 5 /tg) or total RNA (8 /ig) from N. rustica was added to the in vitro transcription reaction and analyzed 
for stimulation of transcription. 

Effect of alfalfa mosaic virus RNA 4 
Transcriptase activity of La Crosse virus was stimulated by addition of cap analogues and 

natural mRNAs such as alfalfa mosaic virus RNA 4 (Patterson et al., 1984a). In order to 
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study a possible stimulatory effect of natural mRNAs on the in vitro transcription reaction 

of TSWV, 1.0 or 5.0 fig alfalfa mosaic virus RNA 4 were added to the reaction mixture 

(Fig. 5). However, no significant increase in incorporation was observed. The addition of 

10 jiig total RNA isolated from healthy N. rustica (including capped mRNAs) did not 

stimulate the incorporation either (Fig. 5). Due to the lack of stimulation by capped primers 

it is not possible to discriminate between transcription or replication in these experiments. 

Effect of TSWV specific antisera on the in vitro transcriptase reaction 

Although the in vitro CMP-incorporating activity could not be further improved than 

30*\tf cpm//ig of virus, preliminary experiments with various IgG preparations were 

performed as to investigate the requirement of individual viral proteins in this process. 

Various antisera directed against individual TSWV proteins were tested for their ability to 

inhibit incorporation of the in vitro transcriptase assay. In the initial experiments all reactions 

that contained IgGs (1/jg) showed a slightly decreased incorporation (results not shown). 

Addition of RNase inhibitor (RNasin, Promega) did not have any effect, indicating that the 

decrease was not due to the introduction of RNase activity in the IgG preparations. Upon 

ug - 1 5 1 0 1 5 1 0 1 5 1 0 
i i i i i i 

anti- cpmv N NSs 

Figure 6. Effect of addition of IgGs (directed against cowpea mosaic virus, TSWV- N or NSs) to the in vitro 
transcription reaction. Virions were pre-incubated with 1, 5 or 10 /ig IgG at 30 °C for 15 minutes in the 
presence of Triton X-100. 
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further investigation there was no specific inhibition in incorporation by using up to 10 jug 

of IgGs directed against complete virus, the N protein, the L protein (both anti L-n and L-c, 

Chapter 3), NSs (Kormelink et al, 1991), or NSm (Kormelink et al, 1994) compared to 

unrelated antisera (directed against cowpea mosaic virus). Preincubation of the virus for 15 

min at 30 °C in the presence of 0.5% Triton X-100 and antiserum (directed against N, NSs 

and cowpea mosaic virus) resulted in a decreased incorporation, in a non-specific, IgG 

concentration dependent manner (Fig. 6). The data obtained in these experiments, using the 

currently available antisera, did not allow the assignment of a function of a particular protein 

in the transcription/replication process. 

Discussion 

Recently, polymerase activity associated with purified virus preparations was demonstrated 

using a rapid virus purification procedure (Adkins et al., 1995). In this chapter these results 

have been reproduced and the in vitro transcription activity was further analyzed. The 

reaction requires manganese as has previously been described for Lumbo virus (Bouloy and 

Hannoun, 1976), Uukuniemi virus (Ranki and Petterson, 1975), and Hantaan virus 

(Schmaljohn and Dalrymple, 1983) but is not required for Germiston virus (Gerbaud et al., 

1987) or La Crosse virus (Patterson et al., 1984a). For these latter viruses a translational 

dependency of the transcription process has been reported (Bellocq and Kolakofsky, 1987; 

Bellocq et al., 1987; Vialat and Bouloy, 1992). A mechanism was proposed where ongoing 

translation prevents annealing of the newly synthesized strand to the template RNA thus 

causing premature termination of the transcription process. Adkins and coworkers (1995) 

found a 3 kb reaction product when wheat germ extract was included into the TSWV in vitro 

reaction mixture. The same product was also found when only the CTP concentration was 

increased. These results may indicate that one (or more) component(s) in the reaction mixture 

was limiting. Although in the experiments described in this chapter no 3 kb product was 

obtained the addition of rabbit reticulocyte lysate did not lead to an increased product size. 

Taken these data and those of Adkins et al. (1995) into account, it appears that for TSWV 

transcription is not depending on translation. 

No further improvement in CMP incorporation levels was obtained. Moreover, the 

addition of alfalfa mosaic virus RNA 4 or total RNA of N. rustica did not stimulate the 

incorporation in contrast to what has been found for La Crosse virus (Patterson et al, 

1984a). However, the presence of (co-purified) cap-structures in purified virus preparations 

of TSWV cannot be ruled out. Therefore it should be concluded that in the current in vitro 
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system it is not yet possible to discriminate between transcription and replication. The 

products of the in vitro reaction hybridized to cDNA of all five genes, indicating that, at least 

for the S and M RNA, both viral and viral complementary RNA are present and transcribed. 

The products formed seem to reflect the molar ratio of the RNA segments present in the 

virion. 

Since neither the addition of the antibodies directed against the N- or C-terminal part of 

the L protein nor the addition of antibodies directed against any of the other viral proteins 

did show any significant effect, the developed in vitro transcription assay may be of limited 

value for unravelling the role of the individual viral proteins. 
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CHAPTER 6 

Development of a hybrid baculovirus/bacteriophage T7 transient expression system 

Summary 

A hybrid recombinant baculovirus-bacteriophage T7 expression system was developed for 

transient expression in insect cells of plasmids with foreign genes provided with a T7 

promoter. The coding sequence for T7 RNA polymerase, with or without a nuclear 

localization signal, was inserted into the genome of Autographa californica nuclear 

polyhedrosis virus. Recombinant viruses stably expressed T7 RNA polymerase in insect cells. 

Upon transfection of infected insect cells with plasmids containing the genes for 

chloramphenicol acetytransferase (CAT), the hepatitis B virus precore-, core- or e- antigens 

under control of the T7 promoter, transient expression of these genes was detected by 

ELISA. The results obtained indicate that this baculovirus/T7 system provides a simple and 

widely applicable tool for transient gene expression studies. 

This chapter has been published in a slightly modified form as: 
Frank van Poelwijk, René Broer, Graham J. Belsham, Peter Oudshoorn, Just M. Vlak and Rob W. Goldbach. 
A hybrid baculovirus/bacteriophage T7 transient expression system. Bio /Technology 13, 261-264. 
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Introduction 

Heterologous and controlled expression of cloned genes has become an important and 

widely used technique in molecular biology. There are various expression systems available 

today, derived from both prokaryotic and eukaryotic cells. Prokaryotic expression systems 

are efficient and easy to apply but they impose a number of limitations for synthesis of 

eukaryotic proteins. Protein folding, proteolytic processing, glycosylation, phosphorylation, 

secretion and subunit assembly may not occur properly, if at all. Therefore eukaryotic 

expression systems, employing virus vectors such as vaccinia virus and baculovirus, are often 

preferred for functional expression of eukaryotic genes (Moss, 1992; Luckow and Summers, 

1988). 

The baculovirus-insect cell expression system is widely used and perhaps the most efficient 

for the high-level production of eukaryotic proteins. The expression system relies on the 

construction of recombinant baculoviruses through homologous recombination of wild type 

virus and special transfer vectors (Luckow and Summers, 1988). Some applications however, 

e.g. the construction of a large number of recombinant baculoviruses, or expression of toxic 

products, are either time consuming, or can only be obtained with great difficulty. Transient-

expression of foreign genes in a hybrid vector system that would utilize the highly active and 

specific T7 RNA polymerase in a eukaryotic environment might therefore offer an attractive 

alternative for rapid screening and analysis. 

Several attempts have been made to exploit bacteriophage polymerases for expression of 

RNA or proteins in yeast and mammalian cells, although there are differences in structure, 

mode of synthesis, processing and modification of prokaryotic and eukaryotic mRNAs (Chen 

et al., 1987; Deuschle et al., 1989; Elroy-Stein et al, 1989; Fuerst et al., 1986, 1987 and 

1989; Lieber et al., 1989; ). Fuerst et al. (1986) described a hybrid vaccinia virus/T7 system 

for transient expression of foreign genes. In this system T7 RNA polymerase is produced by 

a recombinant vaccinia virus. 

We have now combined the convenience of the baculovirus expression vector system with 

the advantages of T7 RNA polymerase. This hybrid system could be a useful tool, for 

instance for co-expression of more than one protein or for rapid testing of (cDNA) constructs 

prior to engineering of viral recombinants. Since baculoviruses replicate in the nucleus of 

insect cells, two recombinant baculoviruses were constructed, one expressing T7 RNA 

polymerase in the cytoplasm and the other expressing T7 RNA polymerase targeted to the 

nucleus by the presence of a nuclear localization signal (NLS). In this paper we show that 

both recombinants support the transient expression of genes (chloramphenicol 

acetyltransferase, hepatitis B virus (HBV) precore-, core- and e- antigens) from plasmids 
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containing a T7 promoter. 

Materials and Methods 

General. 

Cell culture, DNA techniques, SDS-polyacrylamide gel electrophoresis, blotting and 

immunostaining were done as described by Sambrook et al. (1989) and Zuidema et al. 

(1990). Plasmids pARl 173 (Davanloo et al., 1984), pAR3283 (Dunn et al, 1988; Kalderon 

et al., 1984) and polyclonal rabbit anti-T7 RNA polymerase were kindly provided by Dr 

F.W. Studier, Brookhaven National Laboratory, Upton, New York, U.S.A. 

Construction and isolation of recombinant baculoviruses. 

The T7 gene 1 (pAR1173, Davanloo et al., 1984) was cloned as a 2.65 kb BamHl 

fragment into the unique BamUl site of transfer vector pAcDZl, resulting in the transfer 

vector pAcT7-l. The T7 gene 1 plus twelve additional codons (at the N-terminus, pAR3283) 

coding for the SV40 T antigen nuclear location signal (NLS) (Dunn et al., 1988; Kalderon 

et al., 1984) were inserted as a BamYH-Bgïil fragment into the unique BamHl site of 

pAcDZl, yielding transfer vector pAcT7-NLS. Spodoptera frugiperda cells (Sf-21) were 

grown in Hink's medium supplemented with 10% fetal calf serum (FCS)(Vaughn et al., 

1977). Sf-21 cells were cotransfected by lipofectin with the recombinant transfervectors 

pAcT7-l or pAcT7-NLS and 1 ng Bsul cut viral DNA (AcPAK6) per 106 cells according to 

Kitts et al. (1993). The virus collected from the cotransfection supernatant 5 days post 

transfection was subjected to three rounds of plaque purification according to Zuidema et al. 

(1990). Two recombinant viruses from each of the two transfections containing the T7 gene 

were selected and further analyzed for expression of T7 RNA polymerase by ELISA and 

immunostaining. Pure recombinant viruses were then amplified and the titer determined by 

an end point dilution assay (O'Reilly et al., 1992). Titers of the stocks were 1.1*108 

TCID50/ml for AcT7-l and 2*108 TCID/ml for AcT7-NLS, respectively. 

Immunofluorescence. 
Cells were infected with AcPAK6 and recombinant AcMNPV, attached to a coverslip and 

grown until 48 hr p.i. Cells were fixed by immersion in 100% acetone at -70 °C, hydrated 

in phosphate buffered saline (PBS) for 15 min and blocked for 1 hr with PBS containing 1 % 

BSA. The cells were then incubated with rabbit antiserum against T7 RNA polymerase 

(kindly provided by Dr F.W. Studier, Brookhaven National Laboratories, Upton, New York) 
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for 1 hr at room temperature. Cells were washed three times with PBS and incubated for 1 

hr with fluorescein isothiocyanate-labeled (FITC) goat anti-rabbit antiserum. Cells were 

washed three times with PBS, covered with glycerine/PBS cityfluor and visualized by 

fluorescence microscopy. 

In vitro transcription reactions. 

Sf-21 cells were infected with recombinant AcT7-l. Cells were grown in Hink's medium 

with 10% FCS and harvested 24 or 48 hr p.i. Cells were washed three times with PBS and 

finally resuspended in 200 /xl PBS, lysed by sonification and used for in vitro transcription. 

This was carried out at 37 °C for 1 hr in 25 /xl reactions containing 1 /xg of a BamHI-

linearized DNA template containing a T7 promoter, the gene encoding alfalfa mosaic virus 

RNA4 and 5 /xl cell extract lx T7/T3 transcription buffer (Promega), 30 mM DTT, 40 U 

RNasin, ImM of each ATP, CTP, GTP and UTP. Reaction was stopped by phenol/ 

chloroform extraction and RNA was precipitated with ethanol. RNA was resuspended in 10 

/xl Tris/HCl-EDTA (10 mM/1 mM) pH=8.0, of which 5 /xl was analyzed on a 1% agarose 

gel, blotted and hybridized to an insert specific probe. As a control T7 RNA polymerase 

(Promega) was used. 

Transient expression of foreign genes 

Sf-21 cells were infected with AcT7-l and AcT7-NLS with a m.o.i. of 10 and transfected 

using lipofectin with a plasmid containing the CAT gene (pGEM-CAT), the hepatitis B 

precore-(pET-HBpcAg), core- (pET-HBcAg) and e- (pET-HBeAg) antigens under control of 

a T7 promoter at t=4 hrs p.i. Cells were harvested at t=64 hrs p.i., lysed and a dilution 

series was made. CAT expression was assayed by ELISA according to suppliers instruction 

(Boehringer Mannheim); hepatitis B pre-, core- and e- antigens were assayed by ELISA using 

specific antisera. 

Results 

Development of two recombinant baculoviruses expressing T7 RNA-polymerase. 

The T7 gene 1 (2.65 kb) (Davanloo et al, 1984) was cloned into the Autographa 

californica multi-nucleocapsid nuclear polyhedrosis virus (AcMNPV) transfer vector pAcDZl 

(Zuidema et al., 1990), downstream of the polyhedrin gene promoter, to produce the 

recombinant plasmid pAcT7-l (Fig. 1). Cloning of the T7 gene 1 provided with the coding 

sequence (36 bp) for the nuclear localization signal of SV40 T antigen (Dunn et al., 1988; 
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Kalderon et al., 1984) resulted in construct pAcT7-NLS (Fig. 1). The orientation of the 

inserts was confirmed by restriction enzyme analysis and sequencing of the region spanning 

the polyhedrin-promoter/T7 polymerase junction. Cotransfection of Sf-21 cells with transfer 

vector DNA and AcMNPV-PAK6 DNA, linearized with Bsul at the polyhedrin locus (Kitts 

et al., 1993), produced LacZ-positive recombinant viruses, which were isolated by plaque 

purification. The recombinants, denoted AcT7-l and AcT7-NLS, contained the complete 17 

RNA polymerase gene in the presence (AcT7-NLS) or absence (AcT7-l) of the nuclear 

localization signal respectively, as confirmed by restriction enzyme analysis and Southern 

hybridization analysis (results not shown). 

tco HI . „ -
EcoR i \ N l r s , E c o R V 

EcoRI 
Hind 111' 

Pst I C-,1 "i \ PVU I 
b a " Hind 111 

Figure 1. Structure of AcMNPV transfer vectors pAcT7-l and pAcT7-NLS. The T7 gene 1 was excised from 
pAR1173 (Davanloo et al., 1984) as a BamUl fragment and inserted into the BamUl site of transfer vector 
pAcDZl (Zuidema et al., 1990), resulting in pAcT7-l. T7 gene 1 containing the nuclear location signal (NLS) 
from the large SV40 T-antigen (Dunn et al., 1988; Kalderon et al., 1984) (indicated as a black box) was 
inserted as a BamHl-Bglll fragment in the BamUl site of pAcDZl, resulting in pAcT7-NLS. Hsp, Drosophila 
melanogaster heat shock promoter; SV40t, terminator sequence of SV40, AcMNPV DNA sequences are 
indicated as single lines. 

T7 RNA polymerase expression. 
To demonstrate the expression of T7 RNA polymerase in insect cells, Sf-21 cells infected 

with recombinants AcT7-l or AcT7-NLS were harvested and the proteins resolved in a 10% 

SDS-polyacrylamide gel. Western blot analysis using antiserum against T7 RNA polymerase 

revealed the presence of a 100 kDa protein in extracts from cells infected with each of the 

recombinant viruses (Fig. 2A, lanes 1 and 2). The specific reaction products were of the 

expected size and comigrated with commercial T7 RNA polymerase (Fig. 2A, lane 4). No 

reaction with uninfected Sf-21 cells or Ac-PAK6 infected cells (Fig. 2A, lanes 3 and 6) was 

observed. 
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Activity of baculovirus-expressed T7 RNA polymerase. 

An in vitro assay was used to demonstrate the activity of the recombinant T7 RNA 

polymerase. Sf-21 cells were harvested 24 and 48 hr p.i. with AcT7-l. Extracts of infected 

Sf-21 cells were used for in vitro transcription of a linearized plasmid containing 

,Â> 

=.«• 

°̂ 
I I I U I 

(A) (B) 

Figure 2. Detection and activity of T7 polymerase produced in AcT7 or AcT7-NLS infected Sf-21 cells. 
Panel A: Immunostaining of extracts from cells infected with recombinant virus expressing T7 RNA 
polymerase. Sf-21 cells were infected with recombinants AcT7-l or AcT7-NLS, harvested 60 hrs p.i., subjected 
to electrophoresis in a 10% SDS-polyacrylamide gel and immunostained with polyclonal rabbit anti-T7 RNA 
polymerase antibody (second antibody goat anti-rabbit, conjugated with alkaline phosphatase). Lane 1: AcT7-
NLS, lane 2: AcT7-l, lane 3: AcMNPV/PAK6, lane 4: commercial T7 RNA polymerase, lane 5: wild type 
AcNPV, lane 7: uninfected Sf-21 cells; T7 RNA polymerase is indicated with an arrow. Panel B: In vitro 
transcription using baculovirus-expressed T7 RNA polymerase. Sf-21 cells infected with AcT7-1 were harvested 
and extracts were used for in vitro transcription of a BamHl linearized plasmid containing a T7 promoter and 
subsequently analyzed on northern blot (experimental protocol). Lane 1: cells harvested 48 hrs p.i., lane 2: cells 
harvested 24 hrs p.i., lane 3: no plasmid added to reaction mixture, lane 4: plasmid only (no extract added), 
lane 5: commercial T7 RNA polymerase, lane 6: mixture of T7 RNA polymerase and Sf-21 cells. 

a T7 promoter. Transcripts of the expected size were observed in each case. The highest in 

vitro T7 RNA polymerase activity was detected using cell extracts made at 48 hr p.i. (Fig. 

2B). 
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Localization of T7 RNA polymerase in insect cells. 

Immunofluorescence was performed to determine the intracellular localization of T7 RNA 

polymerase in cells infected with recombinants AcT7-l and AcT7-NLS. Specific labelling 

with antiserum against T7 RNA polymerase was obtained in nuclei of cells infected with 

AcT7-NLS (Fig. 3, panel A). This nuclear localization was confirmed by DAPI staining 

(Fig. 3, panel B). T7 RNA polymerase expressed by AcT7-l (lacking the NLS), accumulated 

exclusively in the cytoplasm (Fig. 3, panel C). No immunofluorescence was seen in Ac-

PAK6 infected cells (Fig. 3, panel E). This result indicates that the nuclear location signal 

of the SV40 large-T antigen is not only functional in mammalian and yeast cells but also in 

insect cells. 

Figure 3. Subcellular location of T7 
RNA polymerase expressed by 
baculovirus recombinants. Sf-21 cells 
were infected with AcT7-l or AcT7-
NLS, and fixed. T7 RNA 
polymerase was visualized using 
rabbit antiserum raised against T7 
RNA polymerase and stained with 
fluorescein-labeled goat anti-rabbit 
serum. Panels a, c and e are 
immunofluorescence micrographs, 
panels b, d and f, respectively, 
represent DAPI stained nuclei of the 
s a m e c e l l s . I n t h e 
immunofluorescence micrographs, 
AcT7-NLS clearly expressed the T7 
RNA polymerase in the nucleus (a) 
as confirmed by DAPI staining (b). 
T7 RNA polymerase expressed by 
AcT7-l was located in the cytoplasm 
(c, d), whereas no fluorescence was 
detected in AcMNPV/PAK6 infected 
cells (e, f). 

Transient expression of foreign genes. 

The next step in establishing a transient expression system was to investigate whether 

(AcT7-l or AcT7-NLS) infected insect cells could drive the expression of a plasmid-born 

foreign gene under the control of a T7 promoter. The chloramphenicol acetyltransferase 

(CAT) gene is commonly used to monitor expression levels. The expression of the CAT gene 

can be quantitated by measuring the ability of the enzyme in cell extracts to acetylate 

chloramphenicol in the presence of acetyl CoA, by ELISA (Fig. 4A) or immunostaining (Fig. 

4B). Transient expression of the CAT gene depends on expression of T7 RNA polymerase 
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by the baculovirus/T7 recombinants, intracellular functioning (and localization) of this 

enzyme, the production of translatable mRNA from a T7 promoter and the synthesis of the 

prokaryotic CAT. 

Expression of CAT was only observed from cells infected with AcT7-l or AcT7-NLS, 

which express a functional T7 RNA polymerase (Fig. 4A and B). ELISA values obtained 

from several independent experiments (data not shown) demonstrated that recombinant AcT7-

NLS gave consistently a slightly higher expression of CAT than AcT7-l. Under optimum 

conditions 3.6 ng of CAT was produced per 106 AcT7-NLS-infected cells, 64 hrs p.i. 

After having established a test system for transient expression using this hybrid 

baculovirus-T7 RNA polymerase system the feasibility of the system was further analyzed, 

by expressing a series of clinically relevant antigens. To this end the coding sequences for 

the three major core proteins of hepatitis B virus ( the precore-, core- and e- antigens) were 

cloned separately into pET vectors and transfected into Sf-21 cells using the AcT7-NLS as 

T7 polymerase-supplying virus. All three cotransfected constructs were indeed expressed, 

resulting in HBV antigens which were easily detected by ELISA (Fig. 4C). 

Discussion 

In this report the baculovirus expression vector system was tailored for transient 

expression utilizing the prokaryotic bacteriophage T7 transcription machinery. Functional T7 

RNA polymerase, a single subunit enzyme, which is highly specific for its own promoter and 

having a 5-fold faster elongation rate than Escherichia coli RNA polymerase (Chamberlin and 

Ryan, 1982; Dunn and Studier, 1983), was expressed by recombinant baculoviruses under 

the control of the polyhedrin promoter. It is shown that this system can effectively drive the 

transient expression of foreign genes provided with a T7 promoter. 

Fuerst and coworkers (1986) were the first to describe this strategy for vaccinia virus in 

a hybrid vaccinia virus/T7 transient expression system. In a report by Benton et al. (1990) 

the application of T7 RNA polymerase in yeast cells was described. Although intact mRNA 

was produced in this system no translation of target mRNAs could be detected. In the system 

described here we show successful translation of insert-specific mRNA in insect cells. Sf-21 

cells, infected with recombinant baculoviruses expressing T7 RNA polymerase, are shown 

to produce CAT, as well as a series of hepatitis B antigens upon transfection with plasmids 

containing these genes under control of a T7 promoter. These results show that, despite the 

76 



E c 
IO 
o 

O 
c « 

.o 
< 

- PLASMID + PLASMID 

I I l 1 
.V \ <^ -A \ <^ 

MOCK PAK6 AcT7-1 ACT7-NLS 

(A) (B) 

Figure 4. Transient 
expression of CAT and 
major core antigens of 
hepatitis B virus (HBV) 
driven by the baculovirus/ 
T7 expression system. 
Panels A and B: Transient 
CAT production. Sf-21 cells 
were infected with AcT7-l, 
AcT7-NLS or AcPAK6 and 
subsequently transfected 
with a plasmid (pGEMCAT) 
containing the CAT gene 
under control of a T7 
promoter CAT production 
was monitored by (A) 
E L I S A a n d ( B ) 
immunostaining. Lanes in 
panel A: 1, mock infected 
Sf-21 cells; 2, wild type 
AcMNPV; 3, AcT7-l; 4, 
AcT7-NLS. Lanes in 
panelB: 1 and 4, AcNPV; 2 
and 5, AcT7-l; 3 and 6, 
AcT7-NLS. 

Lanes 1-3 represent mock transfeeted cells (- plasmid) whereas lanes 4-6 show cells transfected with pGEMCAT 
(+ plasmid). Panel C: Transient expression.of HBV core proteins as followed by ELISA. Three different HBV 
core antigens, i.e. the precore-, core- and e-arfligens, were transiently expressed from pET vectors containing 
the individual coding sequences, using AcT7-NLS as T7 polymerase donating baculovirus. 
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absence of cap structures, translatable mRNAs were produced. The various steps leading to 

the transient expression of foreign, plasmid-born genes in Sf-21 cells using baculovirus 

recombinant AcT7-NLS are schematically illustrated in Fig. 5. Note that transcription of the 

foreign gene takes place in the nucleus and that it is anticipated that non-capped mRNAs are 

produced. 

The results obtained with both the CAT and the HBV major antigen genes demonstrate that 

the baculovirus/bacteriophage T7 expression system now developed can be exploited for 

Figure 5. Schematic representation of the 
baculovirus/T7 transient expression system 
driving the expression of the chloramphenicol 
acetyltransferase (CAT) gene. T7 RNA 
polymerase is produced upon infection of an 
insect cell with a recombinant AcMNPV 
containing the coding sequence for T7 RNA 
polymerase behind the polyhedrin promoter 
(pPH). The enzyme is directed to the nucleus 
due to the presence of a nuclear localization 
signal (NLS). It is anticipated that upon 
transcription of the foreign gene uncapped 
mRNAs are produced. 

transient expression of desired proteins, including products toxic to insect cells. Furthermore, 

the system can be applied to assay protein encoding constructs at an early stage prior to 

engineering of recombinants. It has also become possible now to use recombinant 

baculoviruses containing a target gene under control of the T7 promoter. This will allow the 

design of recombinants expressing products, which are inhibitory to AcMNPV replication 

and expression, upon dual infection of insect cells with AcT7-l or AcT7-NLS. The 

exploitation of the T7 RNA polymerase system further enhances the versatility of the 

baculovirus expression vector system. 

In summary it has been shown that the baculovirus/bacteriophage T7 RNA polymerase 
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system provides a simple and useful tool for rapid expression of genes cloned in T7-promoter 

containing plasmids. It can now be used for the in vivo reconstitution of complex processes 

which involve an intimate cooperation of multiple factors as has been described for vesicular 

stomatitis virus employing the vaccinia/bacteriophage T7 system (Pattnaik et ai, 1992). A 

more specific application in the near future would be the reconstitution of the replication and 

transcription process of tomato spotted wilt virus, a plant virus which has been shown to 

replicate in insect cells (Wijkamp et al, 1993). 
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CHAPTER 7 

General discussion and concluding remarks 

With the growing awareness of its economic impact tomato spotted wilt virus (TSWV) has 

gained increasing interest by virologists during the past ten years. This has led to the 

elucidation of its genomic organization, coding functions and expression strategy. A major 

part of these molecular studies have been compiled in the theses of De Haan (1991) and 

Kormelink (1994). The unravelling of the molecular biology of TSWV also led to the 

definitive identification of this pathogen as a member of the Bunyaviridae, a large family of 

arthropod-born viruses which were originally supposed to be restricted to the animal 

kingdom. To date we know that more bunyaviruses are able to infect plants, and these 

viruses have been classified into a distinct genus, the genus Tospovirus (Murphy et al, 

1995). 

The aim of the Ph.D. research described in this thesis was to gain more insight in the 

transcription and replication of the tospoviral RNA genome. A crucial viral protein in these 

processes is, of course, the viral polymerase. As TSWV, in spite of having two ambisense 

genome segments (De Haan et al., 1990; Kormelink et al., 1992), has all properties typical 

of negative-strand RNA viruses, it was anticipated that this enzyme was localized in the virus 

particle. At the onset of the research there were rather contradictory data published with 

respect to the occurrence and size of a large protein species in purified virus particles. 

Reported sizes for the putative TSWV polymerase ranged from 110 to 220 kDa (Mohamed 

et al, 1973; Tas et al, 1977; Peters et al, 1991). With the elucidation of the L RNA 

sequence (De Haan et al, 1991) the confusion became even worse since the open reading 

frame in this genome segment would predict a polymerase of 331.5 kDa. Therefore the first 

goal was to clarify this point and to demonstrate or exclude that the relatively large TSWV 

polymerase would undergo proteolytic cleavages. By expressing both the 5'-terminal and 

3'-terminal parts of the open reading frame of the L RNA in E. coli, antibodies were 

produced which allowed unequivocal detection of the TSWV polymerase. From the results 

obtained it was concluded that, compared to the polymerases analysed for animal-infecting 

bunyaviruses, the TSWV polymerase is, indeed, a large protein (330 kDa), which apparently 

does not undergo further cleavages (Chapter 3). Sequence analysis of another tospovirus, 

impatiens necrotic spot virus (INSV), indicates that a large polymerase is characteristic for 

tospoviruses (Chapter 2). Parsimony trees based on the L proteins indicate that, within the 
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Bunyaviridae family, the genus Bunyavirus is more closely related to the tospoviruses, than 

it is to the other (animal-infecting) genera, Hanta- and Phlebovirus (Elliott, 1989; Roberts 

et al., 1995 and Chapter 2), despite their non-overlapping host ranges. This strongly suggests 

that bunyaviruses have not strictly co-evolved with their hosts but rather that tospoviruses 

represent bunyaviruses which have relatively recently invaded the plant kingdom. Indeed, 

comparison of the genetic maps indicates that tospoviruses seem to have acquired one extra 

gene, the NSm gene (Kormelink et al., 1992; Law et al., 1992), suggesting that tospoviruses 

represent specialized derivatives of their animal-infecting counterparts. Recent studies in our 

laboratory provide strong evidence that the product of this additional gene represents the viral 

"movement protein", involved in viral passage of the cell wall barrier during systemic 

infection of a plant (Kormelink et al., 1994; Storms et al., 1995), a function not required for 

infection of animals. 

The close relationship between tospoviruses and members of the genus Bunyavirus is 

surprising as tospoviruses share the ambisense nature of their S RNA with members of the 

genus Phlebovirus. Another interesting observation is the highest degree of homology 

between the putative polymerase (336.9 kDa) encoded by RNA 1 of rice stripe virus (RSV, 

Toriyama et al., 1994), the prototype of the floating genus Tenuivirus, and the L proteins of 

members of the genus Phlebovirus (Chapter 2). Like the tospoviruses tenuiviruses are plant-

infecting viruses, but with four to five RNA genome segments of which three segments 

display an ambisense gene arrangement. The terminal eight nucleotides of each RNA segment 

of the tenuiviruses are identical to those of members of the genus Phlebovirus. Furthermore, 

there is weak homology between the nucleocapsid proteins of RSV and Punta Toro 

phlebovirus and, moreover, the putative 94K protein encoded by RNA 2 of RSV also shares 

homology with the glycoproteins of Punta Toro and Uukuniemi phleboviruses. The 

significance of the homology of the putative 94K protein is not clear as tenuiviruses seem to 

lack an envelope. Though tospo- and tenuiviruses are both groups of ambisense plant viruses, 

their distinct affinities to the Bunyaviridae (to the genera Bunyavirus and Phlebovirus, 

respectively, see Fig. 8 in Chapter 2) suggests that they descended from the animal 

bunyaviruses by two independent events. 

Tospoviral L proteins are significantly larger than their animal infecting counterparts 

analyzed sofar but similar in size to the tenuiviral putative polymerase. It is tempting to 

associate the large size of these polymerases with an adaptation to the plant host. The large 

L protein of tospoviruses may comprise both the RNA synthesizing enzyme activity (core 

polymerase) and the endonuclease activity, involved in transcription initiation. Such activity 

is involved in tospoviral genome transcription as sequence analysis of TSWV mRNAs 

revealed the presence of 12 to 21 extra, nontemplated nucleotides of non-viral origin 

(Chapter 4). For both Bunyamwera and Rift Valley fever virus the endonuclease activity, 
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required to obtain the 5' capped leader sequences of the host cell mRNAs, was indeed shown 

to reside in the L protein (Jin and Elliott, 1993; Lopez et al., 1995). For influenza virus, for 

which this process of transcription initiation (commonly referred to as "cap-snatching") was 

first described (for review see Krug, 1981), it was recently shown that the PB2 subunit is the 

actual endonuclease (Shi et al., 1995). However, association with the other two enzyme 

subunits, PB1 (the core polymerase) and PA seems to be required for PB2 to function. For 

both La Crosse and Germiston bunyaviruses in vitro transcription experiments demonstrated 

the presence of an endonuclease acitivity in purified virions, which was shown to be 

methylated cap-dependent (Patterson et al., 1984; Vialat and Bouloy, 1992). Indirect 

evidence for this phenomenon has been obtained by sequence analysis of the 5' ends of viral 

mRNAs (Chapter 4). Similar results were reported for maize stripe tenuivirus (Huiet et al., 

1993), followed by the observation that viral mRNAs (containing 5' non-viral sequences) of 

rice hoja blanca virus, another member of the tenuivirus group, were immunocaptured with 

an antiserum directed against methylated caps (Ramirez et al., 1995). Accumulating evidence 

indicates that all segmented negative or ambisense stranded RNA viruses, irrespective of their 

animal or plant host, appear to have this remarkable mechanism for mRNA synthesis. For 

TSWV, sequence analysis of the 5' ends of N mRNAs at the endonucleolytic site indicated 

a slight preference for an U residue at the -1 position (Chapter 4). During cap-snatching, the 

viral polymerase is believed to bind to the capped 5' end of a host cell mRNA, to cleave this 

end off and to use it as a primer for mRNA synthesis. The general heterogeneity in leader 

sequences observed probably reflects the variation in host mRNAs which serve as a source 

of the capped primers. However, for some members of the Bunyaviridae a marked base 

preference for the cleavage site has been reported (Jin and Elliott, 1993; Garcin et al., 1995). 

One possible explanation for this phenomenon is that the preferred sequence at the 3' end of 

the primer represents a cleavage preference of the viral endonuclease. Alternatively, Jin and 

Elliott (1993) suggested a polymerase slippage model similar to that proposed to account for 

the apparently nontemplated pppG present at the 5' ends of arenavirus genomes (Garcin and 

Kolakofsky, 1990; Garcin and Kolakofsky, 1992). The data obtained for hantaan virus 

mRNA initiation supported this model which was dubbed "prime-and-realign" mechanism 

(Garcin et al., 1995). The highly speculative consequences of this proposed model extend to 

the initiation of genome replication of hantavirus postulating a role for the endonuclease. The 

proposed difference between the arenavirus and hantavirus mechanisms is that the 

endonuclease activity of the hantaviral polymerase would cleave the unpaired pppG at the -1 

position. The nucleotide preference at the 3' end of the primers used for initiation of 

tospoviral mRNA synthesis is not as striking as described for Dugbe virus and Hantaan virus, 

indicating that this mechanism might not apply to TSWV. 

Transcriptase activity has been detected in detergent-disrupted preparations of several 
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members of the Bunyaviridae. The recently observed in vitro transcriptase activity of TSWV 

(Adkins et al., 1995), and that of INSV (Chapter 5) is completely manganese dependent, a 

feature shared with Lumbo virus and Uukuniemi virus. For both La Crosse and Germiston 

virus (Vialat and Bouloy, 1992) a translational dependency of transcription has been reported, 

which at least for La Crosse virus seems to be cell-type dependent (Raju et al, 1989). 

Remarkably, in the absence of reticulocyte lysate Germiston virus polymerase activity could 

be detected only by elevating the incubation temperature and increasing the magnesium 

concentration or replacement by manganese. In contrast to these observations the results of 

Adkins et al. (1995) revealed that the effect of wheat germ extract could be substituted by 

the addition of CTP suggesting that concomitant translation is not required for TSWV. The 

results presented in Chapter 5 demonstrate the major drawback of this in vitro system, i.e. 

it is not manipulatable and will be of limited value for identifying template requirements or 

proteins involved. 

The construction of a full-length cDNA copy of the L RNA (Chapter 3) is a first step 

towards a manipulatable reversed genetics system. Unfortunately, upon expression of the 

cloned full-length cDNA employing the baculovirus expression system, only a 67 kDa protein 

was detected, which specifically reacted with the L-n antiserum described in Chapter 3. 

Attempts to repair the 80 basepairs deletion which was subsequently deleted in the cDNA, 

failed, probably due to instability of the newly formed construct, suggesting intramolecular 

recombination. Similar observations have been reported for rice stripe virus RNA 1 by 

Toriyama and coworkers (1994). A possible deleterious effect of the protein on host cell 

metabolism cannot be ruled out. The construction and subsequent expression of a full-length 

cDNA of the INSV L RNA may provide a feasible alternative. 

It is clear that further studies on the tospoviral RNA transcription/replication process are 

hampered by the lack- of a cloned, functional L gene. The remaining TSWV genes have all 

been cloned and successfully expressed in the baculovirus expression system (Kormelink, 

1994). All other tools for studying the role of individual proteins in transcription/replication 

are thus available. For Bunyamwera virus (Jin and Elliott, 1991) and Rift Valley fever virus 

(Lopez, 1995) it was shown that after transfection of transcriptase-depleted nucleocapsids in 

cells infected with a recombinant vaccinia virus, expressing the L protein, transcriptase 

activity was restored. Analysis of the transcription process using a synthetic genome-like 

RNA revealed that at least the N and the L protein are required and sufficient to reconstitute 

the transcriptase activity. Furthermore, amino acid substitutions in the conserved polymerase 

domain of the L protein of Bunyamwera virus abolished polymerase activity (Jin and Elliott, 

1992) as was assessed by employing a vaccinia virus/bacteriophage T7 transient expression 

system (Fuerst et al, 1986). The development of this system has greatly improved the 

possibilities to study the cis- and fr<ms-acting factors involved in the transcription/replication 
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process and has been used intensively over the last years. 

Tospoviruses replicate in their insect host (Wijkamp et al., 1993), which provided the 

rationale for the development of a baculovirus/bacteriophage T7 transient expression system 

as described in Chapter 6. Analogous to the previously mentioned vaccinia virus/ 

bacteriophage T7 system, this system directs the transient co-expression of genes, cloned 

under control of the T7 promoter, in an insect cell background. Although successful 

expression of foreign genes was obtained, the system could not be tested for 

transcription/replication of TSWV due to the lack of a functional full-length L protein. It is 

therefore crucial to obtain a translationally functional cDNA clone from either TSWV or 

INSV L RNA in the near future. The baculovirus/bacteriophage T7 expression system may 

provide a useful tool for selecting those cDNAs from which functional L protein is 

expressed. Moreover, a rapid method for testing amino acid substitutions affecting 

polymerase activity would be available, obviating the need to produce recombinant 

baculoviruses. The expression of a functional transcriptase complex will open the way for 

analysis of all as-acting elements involved in transcription/replication and packaging. This 

process can be studied by using defective interfering particles (Dis, for a review see thesis 

of Resende, 1993) as a model template, as has been described for vesicular stomatitis virus 

(Pattnaik et al., 1992), or using a synthetic RNA as described for Bunyamwera virus by 

Dunn et al. (1996). 
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Summary 

The work described in this thesis was aimed at the unravelling of the molecular biology of 

tospoviruses, with special emphasis on the process of replication of the tripartite RNA 

genome. 

At the onset of the research the complete genome sequence of tomato spotted wilt virus 

(TSWV), type species of the genus Tospovirus, became available. These sequence data 

indicated that the tospoviruses represent plant-infecting members of the large family of the 

arthropod-born Bunyaviridae. Genome sequence comparisons indicated however that the L 

RNA segment of TSWV would encode a much larger viral polymerase (331.5 kDa) than, as 

far as known, its animal-infecting counterparts (reported sizes of 241 to 259 kDa). To verify 

whether a large polymerase represents a characteristic i.e. genus-specific property of 

tospoviruses the complete sequence of the L RNA segment of a second tospovirus, impatiens 

necrotis spot virus (INSV), was elucidated (Chapter 2). These sequence data revealed that 

the L RNA of INSV appeared to be comparable in size to that of TSWV (8675 nucleotides 

versus 8897 for TSWV), containing an open reading frame with a predicted size of 330.3 

kDa of the INSV polymerase. Therefore the next question to be answered was whether the 

large primary translation product of the tospoviral L RNA acts as an unprocessed polymerase 

or whether this protein would undergo some cleavages to obtain smaller, functional 

replication proteins. Answering this question was even more necessary since the theoretical 

size of the TSWV L RNA ORF greatly exceeded previously determined sizes (110 to 220 

kDa) for a large protein reported to copurify with TSWV particles. To this end both the 

5'-terminal and 3'-terminal parts of the ORF in the TSWV L RNA were expressed in 

Escherichia coli and antibodies raised against these regions. Using these tools it could be 

established that the polymerase (L protein) of TSWV, though significantly larger than that 

of other bunyaviruses, is present in virus particles (10 to 20 copies per virion) in an 

unprocessed, full length form (Chapter 3). To allow further analyses of the TSWV 

polymerase, attempts were made to clone and express the complete L RNA ORF in the 

baculovirus/insect cell system. In spite of all efforts, only a shorter translation product of 67 

kDa was obtained from a baculovirus recombinant containing a complete DNA copy of the 

TSWV L RNA (Chapter 3). Sequence analysis of the cloned copy revealed a 80 basepairs 

deletion, resulting in two premature stop codons, which most likely have led to the resulting 

truncated L protein. 

To gain more insight in the "cap-snatching" event which takes place during initiation of 

tospovirus transcription, nucleoprotein (N) mRNAs were partially purified from 

TSWV-infected N. rustica leaves and cloned (Chapter 4). Sequence analysis of the cloned, 
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5'-proximate regions of 20 cloned mRNAs showed the presence of extra, non-templated 

sequences, ranging in length from 12 to 21 nucleotides, confirming our earlier primer 

extension studies. As these sequences were of non-viral origin a cap-snatching mechanism 

for tospoviral transcription initiation could thus be definitively identified. None of the host-

derived leader sequences analyzed were identical and only limited sequence specificity at the 

endonucleolytic site was observed (some preference for cleavage at a U residue). During the 

course of this Ph.D. research, Adkins et al. (1995) reported that in vitro transcriptase activity 

was associated with freshly isolated TSWV particles. It was investigated (Chapter 5) whether 

the reported levels of in vitro activity could be further improved and whether this system 

would lend itself for analysis of the viral proteins involved by e.g. inhibition studies using 

specific antibodies. Trichloroacetic acid-precipitable products could consistently be obtained 

after incubation of detergent-disrupted TSWV virions under the assay conditions reported by 

Adkins et al. (1995) and using (a-32P)CTP. No significant improvement in CMP incorpora­

tion levels could be achieved by testing variable conditions and varying concentrations of 

assay components. The reaction products obtained hybridized with clones from all three 

genomic RNA segments. No discrimination between transcription and replication could be 

made however, and since none of the available specific antibodies directed against any viral 

protein had an inhibitory effect, it was concluded that the current in vitro system will be of 

limited value for unravelling the RNA synthesizing process and the role of the individual 

viral proteins therein. 

As a first step towards a manipulatable transcription/replication system, a hybrid 

baculovirus/bacteriophage T7 vector system was developed for transient expression in insect 

cells of all factors involved in TSWV genome transcription and replication. The results 

obtained (Chapter 6) illustrate the potential of the system. Although various foreign genes 

could successfully be expressed to measurable amounts, the reconstitution of a TSWV 

transcription/replication complex was hampered due to the apparent impossibility (Chapter 

3) to clone the complete polymerase gene. Finally, in Chapter 7 (General discussion and 

concluding remarks), the results obtained are compared with the data reported for animal-

infecting bunyaviruses, leading to a discussion of some evolutionary aspects. Furthermore, 

suggestions are made to circumvent some of the problems encountered during the course of 

the studies presented in this thesis. 
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Samenvatting 

Het onderzoek, dat in dit proefschrift beschreven is, was gericht op de opheldering van 

de moleculaire biologie van tospovirussen, waarbij de nadruk op de transcriptie/replicatie lag. 

Bij de aanvang van dit onderzoek kwam, dankzij het promotieonderzoek van De Haan (1991) 

en Kormelink (1994), de volledige nucleotidenvolgorde van het genoom van het tomatebrons-

vlekkenvirus (Engels:tomato spotted wilt virus, afgekort TSWV) beschikbaar. Uit deze 

gegevens kwam naar voren dat tospovirussen plant-infecterende leden zijn van de Bunyaviri-

dae, een virusfamilie die zich verder beperkt tot het dierenrijk. Uit sequentievergelijkingen 

bleek dat het L RNA segment van TSWV potentieel voor een groter viraal polymerase (331.5 

kDa) codeert dan dat van de andere, dier-infecterende leden van deze familie (gerapporteerde 

groottes variëren van 241 tot 259 kDa). Een groot polymerase zou kenmerkend voor leden 

van het genus Tospovirus kunnen zijn. Om hier meer inzicht in te verkrijgen werd de 

volledige basenvolgorde van het L RNA segment van een tweede tospovirus, het "impatiens 

necrotic spot" virus (INSV), opgehelderd (Hoofdstuk 2). De verkregen data bevestigden dat 

het L RNA van INSV (8675 nucleodtiden) inderdaad overeen kwam in grootte met dat van 

TSWV (8897 nucleotiden) en een open leesraam bevatte dat voor het virale polymerase 

codeert, een eiwit met een bijbehorend molekuulgewicht van 330.3 kDa. Vervolgens werd 

bestudeerd of dit grote, primaire translatieproduct als geheel als polymerase fungeert of dat 

dit eiwit, na klieving, resulteert in kleinere functionele eenheden. 

Het beantwoorden van deze vraag was des te belangrijker omdat de theoretische grootte 

van het translatieproduct van het TSWV L RNA veel groter is dan de in de literatuur 

gerapporteerde groottes van een eiwit (variërend van 110-220 kDa) dat meezuivert met 

virusdeeltjes. Hiertoe werden zowel het 5'- als het 3'- deel van het open leesraam van het 

TSWV L RNA tot expressie gebracht in Escherichia coli en antilichamen tegen deze eiwitten 

opgewekt. Met behulp van deze antilichamen kon aangetoond worden dat het L eiwit van 

TSWV, alhoewel groter (330 kDa) dan dat van andere bunyavirussen, in een intacte vorm 

in virusdeeltjes aanwezig is (10-20 copieën per virion). Om het polymerase van TSWV 

verder te onderzoeken werd getracht het complete open leesraam van het L RNA te kloneren 

en tot expressie te brengen in het heterologe baculovirus/insectecel-systeem. Ondanks 

verschillende pogingen werd slechts een klein eiwit (67 kDa) verkregen na infectie van 

insectecellen met een baculovirus recombinant die een complete cDNA kopie van het L RNA 

bevatte (Hoofdstuk 3). Na analyse van de nucleotidenvolgorde van deze copie bleken twee 

opeenvolgende stopcodons te zijn ontstaan als gevolg van een deletie van 80 basen, hetgeen 

resulteert in de vorming van het (te) kleine eiwit. 

Om meer inzicht te krijgen in transcriptie-initiatie van tospovirussen, een proces dat ook 

wel "cap-snatching" wordt genoemd, werden mRNA's coderend voor het N eiwit gezuiverd 

89 



uit geïnfecteerde Nicotiana rustica bladeren en vervolgens gekloneerd (Hoofdstuk 4). Analyse 

van het gekloneerde 5'-uiteinde van 20 mRNA's toonde aan dat er additionele, niet virus-

gecodeerde nucleotiden aanwezig waren, in lengte variërend van 12 tot 21 nucleotiden. Met 

de bepaling van de nucleotidenvolgorde van deze "leaders", die van niet-virale oorsprong zijn 

maar gestolen van gastheer mRNA's, kon definitief vastgesteld worden dat TSWV gebruik 

maakt van "cap-snatching". De leaders waren niet identiek en er lijkt slechts een lichte 

voorkeur te zijn voor een U residue op de plaats waar het endonuclease klieft. 

Tijdens dit promotieonderzoek werd door Adkins en medewerkers (1995) een in vitro 

transcriptase activiteit beschreven die geassocieerd is met gezuiverde TSWV deeltjes. De 

experimenten zoals beschreven in Hoofdstuk 5 waren erop gericht om deze activiteit te 

verhogen en om te onderzoeken of dit systeem geschikt zou zijn om de rol van de 

verschillende virale eiwitten in de transcriptie/replicatie te ontrafelen, bijvoorbeeld met 

inhibitiestudies waarbij specifieke antilichamen gebruikt worden. Trichloorazijnzuur-

precipiteerbare produkten werden verkregen na incubatie van virusdeeltjes (behandeld met 

een niet-ionisch detergens) met (a-32P) CTP, waarbij de reactieomstandigheden zoals 

beschreven door Adkins en medewerkers werden gebruikt. Na het testen van verschillende 

reactieomstandigheden en verschillende concentraties van componenten van het 

reactiemengsel werd geen verhoging van de CMP-incorporatie niveau's waargenomen. De 

verkregen reactieprodukten hybridiseerden met cDNA kloons van alle drie de genomische 

RNA segmenten. Er kon geen onderscheid gemaakt worden tussen transcriptie en replicatie. 

Bovendien bleek het niet mogelijk met de beschikbare antilichamen tegen de individuele 

virale eiwitten remming te verkrijgen waaruit geconcludeerd werd dat het in vitro systeem 

in de huidige vorm niet geschikt is om het RNA synthetiserende proces en de rol van de 

individuele virale eiwitten daarin te ontrafelen. 

Als eerste stap tot het ontwikkelen van een manipuleerbaar systeem, om de rol van alle 

factoren van belang voor transcriptie en replicatie van TSWV te bestuderen, werd een 

hybride baculovirus/bacteriofaag T7 transient expressie systeem ontwikkeld. De verkregen 

resultaten zijn beschreven in Hoofdstuk 6 en laten de mogelijkheden van dit systeem zien. 

Alhoewel verschillende heterologe genen detecteerbaar tot expressie konden worden gebracht 

was het helaas niet mogelijk om reconstitutie van een transcriptie/replicatie complex te 

verkrijgen. Dit hing samen met de kennelijke onmogelijkheid om het volledige polymerase-

gen te kloneren (Hoofdstuk 3). Tenslotte wordt in de algemene discussie (Hoofdstuk 7) 

verder ingegaan op de onderlinge samenhang van de tijdens dit promotieonderzoek verkregen 

resultaten en de in de literatuur gerapporteerde gegevens met betrekking tot dier-infecterende 

bunyavirussen. Hierbij worden tevens enige aspecten van de evolutionaire verwantschap van 

tospovirussen met de dier-infecterende leden van de Bunyaviridae en tenuivirussen nader 

belicht. 
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