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Stellingen 

Het is nog steeds mogelijk met reeds lang bestaande modellen en technieken tot grote besparing 
van onderzoekskosten te komen. Zo kunnen met een combinatie van lineaire regressie en 
"double sampling" bij de voorspelling van het vleespercentage van varkenskarkassen de 
experimentele kosten worden gehalveerd, zonder verlies van nauwkeurigheid van de schattingen 
van de regressiecoëffrciënten. 

Engel, B., Walstra, P. (1991). Increasing precision or reducing expense in regression 
experiments by using information from a concomitant variable. Biometrics 47, 13-20. 

Engel, B., Walstra, P. (1991). A simple method to increase precision or reduce expense in 
regression experiments to predict the proportion of lean meat of carcasses. Animal Production 
53, 353-359. 

Het gebruik van een drempelmodel waarin een onderliggende variabele een "animal model" 
volgt, en analyse van de data volgens de methoden beschreven in Hoofdstuk 7 van dit 
proefschrift, leiden tot een efficiency verhoging met betrekking tot de genetische vooruitgang 
van 1 a 2 % ten opzichte van analyse met een conventioneel animal model voor normaal 
verdeelde data. Dit is slechts een kleine winst, maar wanneer de beste stieren selectief worden 
ingezet op de beste bedrijven, stijgt de winst tot 7 tot 20 %. Daarmee is aangetoond dat gebruik 
van het statistisch veel verantwoorder drempelmodel, ook voor grote data sets en voor 
resultaten op populatieniveau, in alle opzichten aantrekkelijk is. 

Meuwissen, T.H.E., Engel, B., van der Werf, J.H.J. (1995). Maximizing selection efficiency for 
categorical traits. Journal of Animal Science 73, 1933-1939. 

De Gibbs sampler produceert resultaten waar andere statistische technieken vanwege numerieke 
beperkingen falen. Onderzoekers omarmen tegelijk met dit algorithme schijnbaar probleemloos 
de bijbehorende Bayesiaanse filosofie. Binnen het statistiek onderwijs dient het onderscheid 
tussen frequentistische en Bayesiaanse beschouwingen scherper naar voren te worden gebracht 
opdat een meer bewuste keuze kan worden gemaakt. 

Het gebruik van vertrouwde technieken, waar zij strikt genomen niet van toepassing zijn (denk 
aan variantieanalyse op discrete data), wordt vaak gerechtvaardigd met de opmerking dat "het 
meestal toch niet veel uitmaakt". Dit is de dood in de pot voor de ontwikkeling van nieuwe 
statistische modellen, die genuanceerdere conclusies toelaten. 

Random effecten kunnen een veel grotere rol binnen de toegepaste statistiek spelen dan thans 
het geval is. Random effecten maken het mogelijk om grote aantallen parameters op stabiele 
wijze in een model op te nemen. Gelijkenis tussen experimentele eenheden kan worden 
weergegeven met behulp van een beperkt aantal variantiecomponenten. 

De benaming "improper" voor niet-informatieve a priori verdelingen kan met recht met 
"onfatsoenlijk" vertaald worden: hier worden de regels van het probabilistisch fatsoen 
ruimschoots overschreden. 

7. Een statisticus is niet objectief. Maar een goede statisticus probeert het, altijd weer opnieuw, 
wel te zijn. 



Elk model is een karikatuur van de werkelijkheid. De grove lijnen zijn aanwezig, maar de 
details ontbreken. Er is geen enkele garantie dat de conclusies ontleend aan berekeningen 
binnen het model, relevant zijn voor de werkelijkheid. De enige rechtvaardiging is het succes 
bij gebruik voor praktijkproblemen. Daar er vaak geen alternatieven voor handen zijn, anders 
dan het blind nemen van besluiten, is succes al gauw verzekerd. Dit noopt op zijn minst tot 
bescheidenheid en voorzichtigheid. 

Geld speelt geen rol zou heer Olivier B. Bommel zeggen. Dat geldt helaas niet voor de 
verzamelaars van het werk van Marten Toonder. Mede als gevolg van de adviesprijzen in de 
Bommelbibliografie van H. Matla (uitgeverij en antiquariaat Panda, Den Haag) liegen de 
prijzen voor bommeldingen er niet om. De Marten Toonder Verzamelaars Club zou zich de 
nobele taak moeten stellen om dit opgeschroefde prijsniveau te doorbreken: betaalbare facsimile 
uitgaves in eigen beheer zouden het vroege werk van Toonder weer binnen bereik van de 
oplettende lezertjes brengen. 

10. Zeker in een tijd waar kinderen op school steeds meer moeten leren, mag vereenvoudiging van 
de spelling niet langer een punt van discussie zijn. De taal is in de eerste plaats een 
communicatiemiddel. Historische en culturele argumenten zijn hieraan ondergeschikt. 

De thans nog experimentele wachttijdindicator bij stoplichten voor fietsers dient groot genoeg 
te zijn om in het voorbijgaan te kunnen worden afgelezen. 

12. De wetenschap gaat aan management ten onder. 

13. "De uitvreter" (de Gids, 1911) en "Titaantjes" (Groot Nederland, 1915) van Nescio (pseudoniem 
van J.H.F. Grönloh, 1881-1961) behoren tot de mooiste literatuur die in de Nederlandse taal is 
voortgebracht. 

Stellingen behorende bij het proefschrift "Extending generalized linear models with random effects 
and components of dispersion" door Bas Engel, te verdedigen op 24 januari 1997 te Wageningen. 



Voor Ineke 

"Jelui kerels zijn zo akelig wijs: alles moet een reden en een doel hebben." 

Nescio (J.H.F.Grónloh, 1881-1961), in "De uitvreter" (de Gids, 1911). 



Voorwoord 

Dit proefschrift is een bundeling van artikelen over gemengde modellen, met name voor 
discrete data. Deze artikelen zijn het resultaat van onderzoek verricht binnen het 
onderzoeksprogramma van de Groep Landbouwwiskunde (GLW-DLO) ten behoeve van de 
onderzoeksinstituten binnen de Dienst Landbouwkundig Onderzoek (DLO) van het 
Ministerie van Landbouw, Natuurbeheer en Visserij. 

Mijn dank gaat uit naar mijn collega's die al vele jaren een stimulerende omgeving 
vormen voor onderzoek en consultatie. Vooral Bertus Keen heeft zijn stempel op dit 
onderzoek gedrukt. Zijn inzet, visie en vasthoudendheid zullen mij altijd een voorbeeld zijn. 
Joop de Bree heeft veel van de eerste en tweede versies van de artikelen steeds weer even 
zorgvuldig doorgenomen en mij voor (nog) krom(mer) engels behoed. 

Willem Buist van het Instituut voor Veehouderij en Diergezondheid (ID-DLO) te 
Lelystad ben ik veel dank verschuldigd voor zijn bijdrage aan de verschillende 
simulatiestudies in dit proefschrift. 

De werkgroep Gegeneraliseerde Lineaire Gemengde Modellen (Marijtje van Duijn 
(RU, Groningen), Jan Engel (CQM, Eindhoven), Janneke Hoekstra (RIVM, Bilthoven), 
Hans Jansen (CPRO-DLO, Wageningen), Bertus Keen (GLW-DLO, Wageningen) en Dick 
Wixley (Solvay Duphar, Weesp)) vormde gedurende enkele jaren een welkom klankbord. 

Mijn promotoren Dieter Rasch en Hans van Houwelingen dank ik voor het vertrouwen 
om met mij in zee te gaan. Ook de overige leden van de promotiecommissie wil ik 
bedanken voor hun bereidheid om zich over mijn verzamelde statistische pennevruchten te 
buigen. 

Wanneer ik aan een artikel werk, word ik er op bepaalde momenten niet gezelliger van 
voor mijn omgeving. Ineke, Jasper en Josien bied ik daarom, niet voor de eerste keer, mijn 
excuses aan voor al die momenten waarop ik, ondanks alle goede voornemens, toch met een 
hoofd vol gegeneraliseerde lineaire mixed modellen rondliep. 
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Chapter 1 

Introduction 

Introduction to generalized linear mixed models. Problems with 

evaluation of the likelihood. Introduction to estimation by iterative 

re-weighted restricted maximum likelihood. An outline of this 

dissertation. 



1. Introduction 
For analysis of independent normal data there is the linear model, e.g. analysis of variance 
or linear regression. For analysis of non-normal data there are generalized linear models 
(GLMs) (McCullagh and Neider, 1989), e.g. logistic regression for binary and binomial 
variables or log-linear models for Poisson data. For analysis of dependent normal data there 
are linear mixed models (LMMs) (Searle, Casella and McCulloch, 1992), e.g. the split-plot 
model. But, for analysis of dependent non-normal data, for a long time, little was available, 
except for some particular problems. 

Anderson and Hinde (1988) extended the framework of GLMs to more than one error 
structure to model dependent data. They concentrated on a fitting procedure which combines 
an EM algorithm with numerical integration to obtain maximum likelihood estimates for 
the parameters in the model. We will refer to the new class of models as generalized linear 
mixed models (GLMMs). Maximum likelihood in GLMMs has been considered by a number 
of authors, see Jansen (1993) and references therein. The random effects introduced in the 
extra error structures have to be "integrated out" to obtain the likelihood of the data. In 
contrast with an ordinary LMM, in general this can not be done analytically. Numerical 
integration can be employed for models with one or two nested sets of random effects, but 
numerical problems with more ambitious designs, e.g. crossed random effects, are 
insurmountable. 

In this dissertation an alternative for maximum likelihood estimation in GLMMs is studied 
that avoids high dimensional integration. This estimation procedure is referred to as iterative 
re-weighted restricted maximum likelihood (IRREML). Numerical restrictions are the same 
as for LMMs for normal data. IRREML can be implemented with existing software 
developed for LMMs. In this dissertation, facilities which are offered in the statistical 
language Genstat 5 (1993) are used. An outline of this dissertation is presented in Section 
7. The sections in between offer a (hopefully) gentle introduction to the aforementioned 
LMM, GLM, GLMM and IRREML. 

2 LMMs 
To account for dependence between observations, the linear model can be extended with 
extra random effects. Observations y, and y2, which have one or more of these random 
effects in common, are (positively) correlated, e.g.: 

y, = x,'/S + u + e„ 

y2 =
 x20 + u + e2. 

Here, u is a common random effect and e, and e2 are residual error terms. Elements of the 
vector of unknown parameters ß are referred to as fixed effects, x, and x2 are known design 



vectors. Assuming independence between u, e, and e2, the correlation between the two 
observations is: 

p = a] I (a2 + a2
0), 

where a\ is the variance of u and o^ is the residual variance. Usually, normality is assumed: 

u ~ N(0, a2) and e ~ N(0, CT2). 

Extension towards c sets of random effects with variance components a2, ... a2 is 
straightforward. 

Although observations may be dependent, two of the key-properties of the linear model 
still hold: 

(1) the mean u of an observation y is a linear function of the unknown parameters in 
vector ß: u = x'ß, and 

(2) variances and covariances are functionally independent of the mean, e.g.: Var(y) = 
a2, + Op and Cov(y„y2) = a2 or 0 (the value of the covariance depending on 
whether observations have a common random effect). 

3. GLMs 
For non-normal variables, (1) and (2) are often unrealistic and undesirable. For example, 
for binary observations (y = 0 or 1), the mean n is a probability between 0 and 1, leading 
to difficulties with respect to (1) (unless u is confined to a narrow range), while the variance 
depends on the mean: Var(y) = u(l-u), which clashes with (2) (again, unless (i is confined 
to a narrow range). 

In a GLM, means n are non-linear functions of parameters in ß. All the non-linearity is 
concentrated in the known link function g(.): 

g(u) = r\ = x'ß, or 
PL = G(TI) = G(x'ß), 

where G(.) is the inverse of g(.) and n = x'ß is referred to as the linear predictor. For binary 
data, a popular link function is the logit, which "stretches" the interval (0, 1) into (-oo, +oo): 

logit(u) = log(u/(l-|a)) = n = x'ß. 

Familiar concepts from analysis of variance and linear regression, such as interaction 
between experimental factors, or linear and quadratic terms of an explanatory variable, which 



make little sense on the original scale, can be usefully employed on the link scale. 
Furthermore, variances may depend on the mean through a known variance function V(.): 

Var(y) = V(u). 

For example, for binary data: V(u) = n(l-u). Although (1) and (2) are now considerably 
relaxed, in GLMs correlated observations are not allowed, in contrast to LMMs. 

4. GLMMs 
Clearly, for some applications a combination of features from LMMs and GLMs may be 
needed in modelling the data, e.g. to analyse dependent binary data. An obvious and direct 
way to do so is to introduce additional random effects in the linear predictor r\: 

X] = x'ß + z u . 

Here, the random effects are collected in a vector u and z is a design vector corresponding 
to observation y. For example, for two correlated binary variables with a common random 
effect u: 

E(y, |u) = u,, E(y2|u) = u2, 
Var(y, | u) = V(u,) = ji.O-u,), Var(y21 u) = V(n2) = u.O-u,), 
logit(ni) = ri, = x/0 + u, logit(|a2) = n2 = x2'/S + u, 
u ~ N(0, a*). 

This is an example of a generalized linear mixed model (GLMM). 

5. Maximum likelihood estimation in GLMMs 
The main topic of this dissertation is inference on parameters ß and a\...a2

c in GLMMs and 
we will briefly discuss why this is a problem which deserves special attention. 

In GLMs parameters are estimated by maximum likelihood (ML). In LMMs parameters 
are estimated by a combination of ML and restricted (or residual) maximum likelihood 
(REML). REML (Patterson and Thompson, 1971) is a modified ML procedure for estimation 
of the components of variance CT*...CT^. ML estimators of components of variance may be 
severely biased when the number of elements of ß is relatively large. The likelihood which 
is maximized with REML is not the likelihood of the observations collected in the vector 
y, but of contrasts a'y with E(a'y) = 0. That is, before the components of variance are 
estimated, the fixed effects are "removed" by replacing the observations by a complete set 



of "residuals" a'y. This may reduce the bias of the variance component estimators 
considerably. Elements of ß are estimated by ML, as if the components were known and 
equal to their REML estimates. 

Ignoring, for the moment, the REML modification, consider ML estimation of parameters 
in a GLMM. Suppose that k(u) is the (normal) probability density function (pdf) of random 
effects u and f(y | u) is the pdf of y conditional upon u. The likelihood 1 is equal to: 

1 = I... ƒ f(y | u) k(u) du, 

and involves evaluation of a generally high dimensional integral. When both f(. | .) and k(.) 
are pdf s of normal distributions, integration is straightforward. But, when (y | u) follows 
a non-normal distribution, in most applications, no tractable analytical form is available for 
the likelihood. This means that, still accepting ML estimation as the proper starting point, 
some form of approximation is required. 

One way to proceed is to make judicious choices for f(. | .) and k(.) such that the integral 
can be analytically evaluated. This may be fine for some applications with fairly simple 
correlation structures of two or three nested sets of random effects, see for instance van 
Duijn (1993), and even there considerable mathematical ingenuity is required, but it does 
not generalize to more complicated models. 

Another possibility is to replace integration by summation. An example is Gauss-Hermite 
quadrature, where : 

1 * Z Wi f(y | ai). 

For principles behind the choice of points a,...an, and weights w,...wm, which are extensively 
tabled, see e.g. Dahlquist, Björck and Anderson (1974, §7.4.6) and Abramowitz and Stegun 
(1965, p924). In principle we can approximate the integral as close as we like, simply by 
choosing m large enough. However, although this may be a useful approach for models with 
one or two nested sets of random effects, where elegant algorithms have been developed, 
see for instance Jansen (1993), the computational burden quickly becomes insuperable for 
more ambitious designs, e.g. two crossed random factors. So, clearly with respect to ML 
estimation we do have a problem. 

6. IRREML 
Initially, in Engel and Keen (1994) we did not consider ML as a starting point, but 
concentrated on extension of iterative re-weighted least squares (IRLS), which is a general 
algorithm for estimation in GLMs, see for instance McCullagh and Neider (1989, §2.5). This 
algorithm is based on linearization of the mean u around initial (current) values j30 for ß: 



u * u0 + [du/dTilpJdn/d^'t/S-ft,) = u0 + g'(lO"' x'(/3-(8„), from which 
x'jS * x',80 + g'(|J.0)(n-|J.„), 

where g '() is the derivative of g(.). This implies that the following artificial dependent 
variable Ç, which will be referred to as the adjusted dependent variate, approximately 
follows a linear model: 

ç = *ß0 + g'(n„)(y-n„), 
with 

E(Q * x'ß and Var(Q * g'(u0)
2 VQO. 

Parameters can be estimated by iterative use of weighted regression on Ç with iterative 
weights w = {g'(u0)

2 V(u0)}~'. In a GLM this is equivalent to Fisher scoring and the final 
estimates are ML estimates. 

In a GLMM, the same adjusted dependent variate Ç may be considered. This variate 
approximately follows a LMM and iterated weighted least squares may be replaced by 
iterated weighted REML, employing the same iterative weights as before. Inference based 
on this estimation procedure, which will be referred to as iterative re-weighted REML 
(IRREML), is the principal subject of this dissertation. In addition to being a straightforward 
extension of IRLS, IRREML has the added advantage that it can be implemented with the 
facilities for fitting LMMs in Genstat 5 (1993). As a bonus, methodology developed for 
inference in LMMs is potentially useful for GLMMs, when applied to the adjusted dependent 
variate Ç from the last iteration step. 

Although, as shown in Chapter 11, IRREML can be presented as an approximation to ML, 
it has merit of its own as well. Notably, there is no need for full specification of the 
distribution of y conditional upon u. It suffices to specify the first two conditional moments 
of (y | u). This is a feature which IRREML shares with maximum quasi-likelihood estimation 
(see e.g. McCullagh and Neider, 1990, Ch.9). Although maximum quasi-likelihood 
estimation is less efficient than ML estimation, it may be considerably more robust with 
respect to distributional assumptions. The same can be expected of IRREML versus ML 
estimation. 

7. An outline of this dissertation 
Since many inferential aspects of REML for ordinary LMMs carry over to the approximate 
LMM for the adjusted dependent variate Ç in IRREML, an overview of REML for LMMs 
is presented in Chapter 2. 

IRREML has a lot in common with maximum quasi-likelihood estimation. Therefore, 
maximum quasi-likelihood estimation is the subject of Chapter 3. 



IRREML is introduced in Chapter 4. The method has been proposed independently by 
a number of authors, as an extension of IRLS (Schall, 1991; Engel and Keen, 1994), or as 
an approximation of ML estimation employing Laplacian integration (Breslow and Clayton, 
1993; Wolfinger, 1993; Wolfinger and O'Connell, 1993), or motivated by Bayesian 
arguments (McGilchrist, 1994). 

A first attempt by simulation to increase confidence in estimation by IRREML is presented 
in Chapter 5. A practical problem, involving carcass classification of cattle, is analysed with 
IRREML. The data are fractions y = x / n and the link function is the logit link. The 
variance function is assumed to be the same as for the binomial distribution, but an unknown 
multiplicative over-dispersion parameter § is included in the conditional variance: 

Var(y | u) = * V(u) = * u(l-u) / n. 

In the approximate LMM, parameter § is casted for the role of "residual variance" and 
estimated from the data together with the other components of variance. The distribution 
of (y | u) remains unspecified. The final model fitted to the classification data includes four 
components of variance additional to the multiplicative over-dispersion factor. This extensive 
data set, which is very unbalanced, is used as a basis for a simulation study. Simulation 
results are presented for IRREML and for LMM procedures applied to Ç, in the last iteration 
step. This includes a study of procedures for constructing confidence intervals and 
significance tests for fixed effects and components of variance. IRREML and the modified 
LMM procedures are seen to perform quite satisfactorily. 

Threshold models for binary data are a sub-class of the class of GLMMs. In Chapter 6, 
estimation by IRREML in threshold models is studied, where IRREML is found to perform 
poorly when the number of binary observations per random effect is small. The bias for 
components of variance may be considerable. It is found that, in contrast to results in the 
literature, both under- and over-estimation may occur, depending on the number of fixed 
effects in the model. 

In Chapter 7, IRREML is extended towards threshold models for ordinal data, e.g. scores 
1, 2, 3 or 4 with score 1 for "no damage" to score 4 for "severe damage". These models may 
include both fixed and random effects with associated components of variance on the 
underlying scale. The residual error distribution on the underlying scale is rendered more 
flexible by introducing additional shape parameters, e.g. a kurtosis parameter or parameters 
to model heterogeneous residual variances as a function of factors and covariates. The 
threshold values, and the additional shape parameters, are regarded as parameters in the link 
function. They are estimated by linearizing \x with respect to ß, u and the threshold values 
and additional shape parameters. 

In Chapter 8, we return to the threshold model for binary data. The simulation study of 
Chapter 6 is extended and two methods to reduce bias of variance component estimators, 
one proposed by Breslow and Lin (1995) and the other by Engel, Buist and Visscher (1995), 



are studied. Minimal dimensions for the data are identified, such that bias and root mean 
squared error of intra-class correlation or heritability estimators are of modest size and useful 
inference is feasible. 

In Chapter 9, we return to normal data. Here it is shown how the ideas behind IRREML 
can be applied to a mixed model with heterogeneous variances. Means and variances in this 
model are expressed in terms of fixed and random effects, involving both additive and 
multiplicative effects. The model was developed as a basis for a new national breeding 
evaluation method for Dutch dairy cattle and the estimation procedure was implemented by 
the Dutch Cattle Syndicate in 1995. Datasets in the dairy industry are extremely large, and 
therefore computational aspects are very important. With the estimation procedure developed 
for the new breeding evaluation system, a data set comprising 12,629,403 observations on 
5,819,606 cows from 42,480 herds collected over a period of 16 years is analysed. 

Finally, in Chapter 10, the relationship between IRREML and ML, which is already 
indicated in some of the preceding chapters, is discussed in more detail. This chapter is 
based on a contribution (Engel and Keen, 1996) to the discussion of a paper by Lee and 
Neider (1996). Here, a central role is given to Laplace integration (see e.g. Wolfinger, 1993), 
where the logarithm of the joint pdf of y and u: h(y,u) = log(f(y | u)) + log(k(u)) under the 
integral in the likelihood is approximated. Writing the likelihood in the form: 

1 = j ... 1 exp(h(y,u)) du, 

h(y,u) is approximated by a quadratic in u around the value û where [dh(y,u)/du]d = 0. Now, 
the integral can be evaluated, similar to the case of two normal pdf s. The result is basically 
a single point version of Gauss-Hermite quadrature and can be used to motivate IRREML 
as an approximate ML method. 

8. The future 
In a Bayesian context, Gibbs sampling has been proposed for inference in GLMMs (Zeger 
and Karim, 1991; Karim and Zeger, 1992). Gibbs sampling is a technique to sample from 
a posterior distribution. Its computational demands are much higher than for IRREML. 
Problems and pitfalls such as choice of length of the Gibbs chain, convergence and choice 
of (non-informative) prior distributions are illustrated in Zeger and Karim (1991). 
Occasionally results obtained with the Gibbs sampler are interpreted in a frequentistic way. 
Although conceptually a bit awkward, this allows us to compare results of Gibbs sampling 
and IRREML on an equal footing. For instance with respect to bias and mean square error 
of point estimates, when in case of Gibbs sampling posterior means, modes or medians are 
used. In this light, the Gibbs sampler may be regarded as a powerful numerical integration 
technique and is a serious competitor for IRREML. An important point is whether for 



practical sample sizes a substantial reduction in bias or root mean squared error can be 
obtained with the Gibbs sampler, and to what extent this is at the cost of robustness with 
respect to distributional assumptions. 

There is obviously still a lot to be done in the area of unbalanced mixed models, both 
for normal and non-normal data. Inference on fixed effects still does not properly account 
for estimation of the components of variance. Or in other words, for unbalanced data, there 
are no F-tests for (subsets of) fixed effects. Little is known with respect to general guidelines 
for inference in the form of significance tests and confidence intervals for components of 
variance. This dissertation addresses inference after the data have been collected. All 
examples are from observational studies. In observational studies the structure of the data 
and that of the model employed for the analysis are often complicated. General guidelines 
with respect to design are difficult to give, although to my experience, simulation of 
complicated models for a variety of parameter configurations, including random elements 
in the design, can be very useful. For controlled experiments, in an industrial context for 
instance, "balance" in the data enables the use of particular models and estimation 
procedures, see e.g. Engel (1987). In that case derivation of analytical results with respect 
to efficiency of the design may be feasible and is of obvious importance. 
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The analysis of unbalanced linear models with 

variance components 
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Statistical inference for fixed effects, random effects and components of vari­
ance in an unbalanced linear model with variance components will be dis­
cussed. Variance components will be estimated by Restricted Maximum Likeli­
hood. Iterative procedures for computing the estimates, such as Fisher scoring 
and the EM-algorithm, are described. 

Key Words & Phrases: variance component estimation, analysis of variance, 
mixed model, REML, Fisher scoring, EM-algorithm. 

1. INTRODUCTION 

In a variance component model for a balanced layout, under Normality, exact 
and efficient tests and procedures for constructing confidence intervals for 
location parameters (fixed effects) are available. Estimates of location parame­
ters are simple linear combinations of observations. Estimates of dispersion 
parameters (components of variance) may be obtained by the ANOVA method 
from the sums of squares corresponding to the different sources of random 
variation (random effects) in the model (SEARLE, 1971, 1987). ANOVA esti­
mates may be negative. This can be a complication, especially in comparatively 
small experiments where the probability for a negative estimate can be size­
able, see VERDOOREN (1982). However, generally the analysis of a balanced 
layout is fairly straightforward. For an elegant theoretical framework in terms 
of linear spaces see VERDOOREN (1969). 

In an unbalanced layout the analysis is usually far from straightforward. 
Most of the properties which hold for a balanced layout, such as sums of 
squares following independent (non-central) chi-square distributions under 
Normality, are lost. Only for particular models some exact results for statistical 
inference are still available. Many procedures for estimation of variance com­
ponents have been suggested in the literature. Luckily only a handful have sur­
vived the ravages of time: Henderson's method III (the fitting constants 
method) (SEARLE, 1971, 1987), Maximum Likelihood (ML), Restricted (or 
Residual) Maximum Likelihood (REML) (PATTERSON and THOMPSON, 1971), 
Minimum Norm Quadratic Unbiased Estimation (MINQUE) (RAO, 1971) and 
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Minimum Variance Quadratic Unbiased Estimation (MIVQUE) (LAMOTTE, 

1973). For all these estimation procedures the calculations involved may be 
considerable. 

Harvey's LSML76 program (HARVEY, 1970, 1977) has given a big boost to 
the use of Henderson's method III. Henderson III is an oldtimer, still going 
strong, but slowly clearing the field for its younger competitors, probably 
because it has not much to vouch for, apart from conceptual simplicity. In 
general Henderson III does not offer unique estimates (SEARLE, 1971, 1987). 
Estimators are unbiased, but only when values outside the parameter space are 
allowed. When negative values are replaced by zero the estimators will have a 
positive bias. 

MINQUE and MIVQUE estimates may be negative and replacing negative 
estimates by zero will result in a positive bias. Both MINQUE and MIVQUE 
start from a priori values for the components of variance. For an unbalanced 
layout the estimates will depend on the a priori values. MINQUE with the 
Euclidean norm and MIVQUE under Normality (with any other distribution 
MIVQUE is just a mess), starting from the same a priori values, will produce 
the same estimates. Repeatedly using the estimates as a priori values for a next 
step of MINQUE or MIVQUE has intuitive appeal and removes the depen­
dence on the a priori values. When, after convergence, positive estimates are 
obtained with iterated MINQUE (with the Euclidean norm) or iterated 
MIVQUE (under Normality), REML will produce the same estimates. 

REML is a (modified) maximum likelihood procedure. By definition ML 
and REML estimators are non-negative. ML estimators may have a sizeable 
bias, particularly when the number of fixed effects in the model is large relative 
to the number of observations. REML estimators usually have a much smaller 
bias, possibly, but certainly not always, at the cost of an increase in mean 
squared error. 

For a balanced layout the ANOVA estimates, when they are positive, will 
agree with the estimates from Henderson III, MINQUE, MIVQUE and 
REML. 

Simulation studies and analytical comparisons, see KLOTZ et al. (1969), 
HOCKING and KUTNER (1975), CORBEIL and SEARLE (1976b)1, SAHAI (1976)1, 
HARVILLE (1978)', Li and KLOTZ (1978), SWALLOW and SEARLE (1978)] 
MILLER (1979), Qu AAS and BOLGIANO (1979), LIN and MCALLISTER (1983), 
SWALLOW and MONAHAN (1984) and LEE and KAPADIA (1984, 1989), do not 
indicate a clear-cut winner among the five methods with respect to bias and 
mean-square-error. REML is a reasonable compromise in view of its coherence 
with the other methods. 

This paper will concentrate on REML. However, after some modification, 
much of the contents of this paper will hold for Henderson III, MINQUE, 

1) Non-negativity of maximum likelihood estimators is not taken into account in C O R B E I L and 

SEARLE (1976b) and HARVILLE (1978), see LEE and K A P A D I A (1984). SAHAI (1976) contains an er­

ror, see Li and K L O T Z (1978). 
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MIVQUE and ML as well. In sections 2 and 3 the mixed model and REML 
will be introduced. Section 4 deals with statistical inference for fixed effects, 
random effects and components of variance. Sections 5 and 6 will concern 
derivatives of the log likelihood of REML and an outline of iteration schemes 
such as Fisher scoring and the EM-algorithm. In the calculations storage and 
inversion of large matrices must be avoided and numerical strategies to serve 
that end are discussed in section 7. 

New methods for estimation of variance components still crop up, often 
motivated by a need for numerical simplification in the analysis of large data 
sets, see for instance SCHAEFFER (1986, 1987). For a historical review of vari­
ance component estimation see ANDERSON (1979) and FREEMAN (1979). 
Bibliographies may be found in SAHAI (1979) and SAHAI and KHURI (1985a,b). 

Many details on the contents of this paper may be found in HARVILLE 

(1977), SEARLE (1979), HENDERSON (1986a) and ENGEL (1989) (available from 
the author). 

2. THE MODEL AND SOME NOTATION 

2.1. The model 

In the variance components model a vector/, consisting of n observations, can 
be written as: 

y = Xa + Zibl+Z2b2+-+Zcbc+e, (1) 

where A' is a known n Xp matrix, a a p X 1 vector of unknown constants, Z, a 
known nXqt matrix, bt a q,-X 1 vector of unknown random variables and e a 
n X 1 vector of unknown random variables. 

It is assumed that bx...bc,e are independently Normally distributed: 

bi-N&Aioj) (2) 

e~N(0,Ro2
0), 

where A, and R are known positive definite matrices and al,a2,..., a2
c are 

unknown non-negative constants. 
The vector a represents the fixed effects in the model, b\...bc are the random 

effects, e is a vector of residual error terms and 0I...02. are the components of 
variance. 

It is assumed that X is of full column rank, i.e. 

rank(A-) = p. (3) 

This assumption can always be satisfied by a suitable reparameterization. 
Which of the ingredients in the model are of interest will depend on the par­

ticular problem at hand: 
Some of the elements of a, representing treatment contrasts, may be of 
interest, while b\...bc are introduced to take account of correlations 
between the observations. For example the random effects may represent 
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a block/plot/subplot. . . structure in a field experiment. 
In animal breeding research random effects may represent genetic contri­
butions from parents to their offspring (for instance with respect to milk 
production of cows). The components of variance will indicate to what 
extent the genetic background of an animal is of importance and what is 
to be gained by selection among the parents. Often a will represent 
differences between herds, years and seasons, (HYS-effects), which in this 
context are nuisance parameters. The components of variance are of prime 
interest to determine the heritability and selection response. In a selection 
experiment selection will be based on predictions for the relevant random 
effects. 
In a production system various sources of random variation may be 
quantified by components of variance in a mixed model, indicating possi­
bilities for improvement. A similar example is an inter-laboratory experi­
ment where differences between batches of the same material, between 
laboratories and between analysts within laboratories are some of the 
different sources of variation. From the components of variance measures 
such as reproducibility and repeatability may be derived. For more exam­
ples see ROBINSON (1987b). 

Even when fixed effects are of prime interest, predictions for the random 
effects and residuals may be used to check for departures from model assump­
tions and outliers. The relative sizes of the variance components may suggest 
more efficient designs for future experiments. 

2.2 Notation 

Matrices ZX,...ZC and vectors b\...bc may be collected in a matrix Z = {ZX...ZC) 
and vector b={b\'...bc')'.Z i s a n X ^ matrix and b a qX\ vector where q is the 
total number of levels of the random effects, i.e. q = '2qi. Sometimes it will be 
convenient to collect the components of variance in a (c + l )X l vector: 
a2 =(ao,a?,...,a^)'. The following ratios will be useful: 

yj—aj/al andXi—ol/aj, i—\...c. (4) 

The qXq variance-covariance matrix of vector b scaled by the residual vari­
ance OQ is 

D = Var0)/og = diag(Y,^,). (5) 

The n X n variance-covariance matrix of the vector of observations ƒ is a highly 
structured matrix and a linear function of the components of variance: 

V=Var(y) = olH, where H = ZDZ' + R='2yiZiAiZi' + R. (6) 

Finally the following matrices are important: 

M=I-X(X'X)~iX', P = VTi-V~lX(X'V~1X)~lX'V~\ (7) 

S=R~i-R~]X(X'R-lX)-lX'R-], C=(Z'SZ+D~1)'1. 
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M is the projection matrix on the orthogonal complement of span(X): the 
linear space spanned by the columns of X. P is the Moore-Penrose generalised 
inverse of MVM. For a brief introduction to the Moore-Penrose inverse see 
LOWERRE (1982). In Bayesian context, with a vague prior for a, P is the 
inverse of the variance-covariance matrix of y. S is the Moore-Penrose inverse 
of MRM. Matrix C will be important for prediction of the vector of random 
effects b. The following properties will be useful: 

H-]^R'i-R-lZ(Z'R-lZ + D-l)^Z'R~i (8) 

PX=0, X'P=0, PVP = P 

P = {S-SZ(Z'SZ + D-l)-]Z'S} Oo2 = {S-SZCZ'S}oö2. 

Expressions for H~] and P follow from RAO (1973) (p. 33, exercise 2.9). 

2.3 A restriction 

In agreement with many applications the following simplifying restriction will 
be made in this paper (unless stated otherwise): 

Aj=Iqi i=\...c and R=I„. (9) 

Observe that any model satisfying (1) and (2) may be transformed to satisfy 
(9): 

!_ i_ i_ j _ 

y = R 2y,X=R 2X, Zt = R 2ZtA- , 
i_ i_ 

bi=Ai 2bh ~e = R 2e. (10) 

Notable exceptions to (9) occur in animal breeding. Genetic relationships 
between animals may be represented by A{^=Iq. For examples see HENDERSON 

(1976, 1986b, c) and Qu AAS (1976). In multi-trait models for each animal a 
number of traits are observed. Such a model can be expressed in the form (1) 
with Ai following from variances and covariances between traits and genetic 
relationships between animals, see HENDERSON (1986a, c). In section 7 we will 
look briefly at models which are relevant to animal breeding research with At 

or R unequal to the identity matrix. Observe that under (9) 

S = M (11) 

P = {M-MZ(Z'MZ + D-ly]Z'M) a0"
2 

= {M-MZCZ'M)oö2, with C={Z'MZ + D~X)~\ (12) 
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3. REML 

3.1. Introduction 

Restricted Maximum Likelihood (PATTERSON and THOMPSON, 1971) is a max­
imum likelihood method, however it is not the likelihood of the vector of 
observations y which is maximized, but the likelihood of a vector Qy, where Q 
is any (n —p)Xn matrix satisfying 

rank(Ô) = n-p and QX=(0). (13) 

The log likelihood of Qy, under the assumption of Normality (2), is 

L = -\{n -p)\og(2-n)-\(n -p)\oè(a
2
Q)-~\og(\QHQ'\) 

-^y'Q'(QHQ')-]Qy°ô2- (14) 

It may be shown that 

y'Q'{QHQ>)-xQyov2=y'Py, 

\QHQ'\ = \QQ'\\D\\Z'MZ + D~'\. 

Hence, 

L=-\{n -/>)log(27r)—J(H - ^ l o g ^ - ^ l o g O O O ' l ) 

- ^ logdöD-^logdZ'MZ + D - ' l ) - ^ ' ^ . (15) 

Observe that although Q is not uniquely determined by (13), the log likelihood 
L is determined up to the unimportant constant log(|<2ö'|) m 05). 

3.2. Rationale 

For a random sample y x...y„ from a univariate Normal distribution with mean 
H and variance a2 the ML estimator of a2 is 2(y,—y)2/n. This estimator is 
biased downward: the ML estimator does not take into account the loss of one 
degree of freedom resulting from the estimation of ju by the mean y. The 
REML estimator is obtained by replacing the divisor n by (n — 1) and is 
unbiased. 

In a mixed model the loss in degrees of freedom due to the fixed effects may 
be substantial, resulting in a sizeable bias for ML estimators. REML estima­
tors generally yield a smaller bias, often, but not always, at the cost of a higher 
mean squared error. 

With the transformation (VERDOOREN, 1980): 

\Q 
y y- X'H 
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the log likelihood of ƒ may be written as L + L0, where L is the REML log 
likelihood from (14) and L0 corresponds to X'H~xy. L represents the transla­
tion invariant part of the log likelihood: it does not depend on the fixed 
effects. Since ML estimators of a and H are satisfying 

ànL^X'HM^X'HMtf, (16) 

the part of L0 which depends on y yields 0 after substitution of (16). Hence, 
the ML estimator for a1 also depends on y through Qy only. Both REML and 
ML are using the translation invariant information and there is no obvious 
loss of information by using REML instead of ML for estimation of a1. 

REML may also be obtained by an EM-algorithm, see DEMPSTER et al. 
(1977, 1984): at the start of step (t +1) of the algorithm let the components of 
variance be o\ty Independent prior distributions are assumed: 

a~N(WpJ), b,~N(0,Iqo}lt]), e~N(0,Ino
2
0[t]). 

Then: 

Var(y)=X'XT2 + V[t] and Jim [ VarOOp1 =P 
[<]> 

where V[t] and P[,i correspond to (6) and (7) with simplifications (9), (11) and 
(12). The limit - r ^oo introduces a vague prior for the fixed effects. New 
values for the components of variance are obtained from: 

o?[r + i] =£(&/*>,»/?/, o\t + \)=E{e'e)\y)/n, 

where the conditional expectations are evaluated for the old iterates of,]. When 
the proces converges, the solution will correspond to a stationary point of the 
REML likelihood. 

4. INFERENCE 

4.1. Fixed effects and random effects 

Fixed effects may be estimated by generalized least squares: 

a = (X'H-xX)-lX'H-ly, (17) 

where H is replaced by H obtained by replacing aj by their REML estimates 
â,. The resulting estimator â is unbiased, provided that its expectation exists 
and is finite (KACKAR and HARVILLE, 1981). This also holds when a2 is 
estimated by Henderson III, MIVQUE, MINQUE (replacing negative esti­
mates by zero or a small positive number) or ML. 

Predictions for random effects may be obtained from the regression of b on 

r-
b=DZ'H-l(y-Xa), (18) 

id H are replaced by D 
and a is replaced by â from (17). 
where D and H are replaced by D and H derived from the REML estimates ô, 
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The estimate â and prediction b are satisfying the mixed model equations 
(MMEs) (HENDERSON, 1963): 

X'X X'Z 

Z'X Z'Z+D 

X'y 
z'y (19) 

Observe that replacing (17) and (18) by (19) yields a considerable numerical 
reduction: the matrix H to be inverted in (17) and (18) is of size nXn, while 
the coefficient matrix of (19) is of size (p+q)X(p+q). The equations (19) fol­
low from (17) and (18) by using the expression for H~x in (8). 

Inference on a is often based on a normal approximation of the distribution 
of à: 

â~N(a, (X'V~lX)~]), approximately. (20) 

The upper left-hand part of the inverse of the coefficient matrix of the MMEs 
in (19) multiplied by ô0 is equal to the approximate variance-covariance matrix 
in (20). The lower right-hand part multiplied by ô0 is an approximation for the 
mean squared error E[(b—b)'(b — b)\ 

Predictions for the random effects are important for selection purposes, in 
animal breeding. They are often referred to as Best Linear Unbiased Predic­
tions (BLUP), see for instance THOMPSON (1979), GIANOLA and GOFFINET 

(1982), SEARLE (1985) and GIANOLA et al. (1986). 
In (20) the additional variability due to the estimation of V is not taken into 

account. For linear contrasts 8'a, GIESBRECHT and BURNS (1985) suggest 
replacing the Normal approximation for 

(S'a)/V(8'(X'V~]X)-x8), (21) 

under the hypothesis 8'a — 0, by a Student distribution. The approximate 
number of degrees of freedom follows from a Satterthwaite approximation for 
the approximate variance under the square root in the denominator of (21). 
Simulation in GIESBRECHT and BURNS (1985) and experience with a GEN-
STAT program (ENGEL et al., 1986 and VAN DEN BOL, 1987) indicate that this 
approximation performs well. In KACKAR and HARVILLE (1984) the Normal 
approximation is retained, but the standard error in the denominator of (21) is 
increased. Simulation results indicate that this may be a poor approach 
(KACKAR and HARVILLE, 1984). 

4.2. Components of variance 

The normal distribution with mean a2 and variance-covariance matrix (see sec­
tion 5): 

2[(trace {Z'iPZj Z'jPZ,)))-1 (22) 

may be used as an approximation for the distribution of the REML estimator 
ô . As far as I know there are no papers dealing with the asymptotics of 
REML directly. However, MILLER (1977) dealing with ML and BROWN (1976) 
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dealing with (iterated) MINQUE are closely related to the subject. See also 
RAO and KLEFFE (1988). Little is known about the small sample behaviour of 
this approximation, a modest simulation is reported in GIESBRECHT and BURNS 

(1985), which does not look too bad with respect to the asymptotic variance-
covariance matrix (22). 

For selected models, under the Normality assumption, some exact tests and 
procedures for constructing confidence intervals are available, see SEELY and 
EL-BASSIOUNI (1983), HARVILLE and FENECH (1985), KHURI and LITTELL 

(1987) and VERDOOREN (1988). Nesting is generally a favourable feature. Har­
ville and Fenech discuss models with c — 1, which includes the split-plot design 
as an important representative. Khuri and Littell deal with the unbalanced 
two-way random model with interaction. We will look briefly at models with 
c = 1. A confidence interval for o\ may be derived from the residual sum of 
squares (RSS) for the model with b taken to be fixed: RSS ~ffoX«-/-> where 
r = rank (X,Z). A confidence interval for y, =o\/o\ from (4) may be obtained 
from: 

(c2
0yPy-RSS)/(r-p) 

RSS/(«-r) ~*r-pVt-r, W 

an alternative expression, when o\ ^ 0, is 

qê'ê+M'&]-RSS)/(r-/>) 
RSS/(n-r) ~*r-p;n-r, W 

where e = y — Xa — Zb, (25) 

with â and b solutions of the MMEs in (19). The part between square brackets 
in (24) is similar to a residual sum of squares and may be written as the 
difference between the total sum of squares of the observations and the inner 
product of the right-hand side and the solutions of the MMEs: 

\X'y 
Z'y e'i+\xb'b=y'y-(k\b') 

For o\—0 (23) is equivalent to the traditional F-ratio (observe that b random 
with E(b) = 0 and a? = 0 is equivalent with b fixed and b—0). 

In general (c^2) the F-test from the corresponding fixed effects model or 
from a corresponding balanced layout will not be a valid test for the 
hypothesis o}=0, since: (i) for o}=0 the expectations of the nominator and 
denominator will not agree, (ii) nominator and denominator are not distri­
buted as multiples of chi-square distributions, (iii) nominator and denominator 
are not independent. By some juggling with the sums of squares corresponding 
to the random effects and a Satterthwaite approximation, (i) and (ii) can often 
be overcome, but not (iii). Beware for the likelihood-ratio test for the 
hypothesis oj =0 in combination with a chi-square approximation, see MILLER 
(1977). 
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5. DERIVATIVES OF THE REML LOG LIKELIHOOD 

The first and second order derivatives of the log likelihood L from (14) are 
listed below. All derivatives depend op expressions of the form A 'PB where A 
and B are any two equal or different elements of the collectiony,Zx...Zc, such 
asy'Py,y'PZ\, Z'XPZ2. A'PB is referred to as the W- transform of matrices A 
and B. This is a modification (CÖRBEIL and SEARLE, 1976a) of a transforma­
tion introduced by HEMMERLE and HARTLEY (1973). 

jjg=-\ t ra<* (Z'tPZt)+\(y'PZtZ'iPy), i =0,l...c (26) 

- g ^ j - =\ trace (Z^PZjZ'jPZd-y'PZjZ'jPZ^Py, i,j = 0,l...c (27) 

where Z0 is defined as the unit matrix. 
Expressions resulting from i=0,j—0 or both are also depending on the 

W-transforms only. For instance: i —0 yields trace (P) in (26), since from (8) 
PV=(PVP)V=(PV)(PV), matrix PVis idempotent and 

trace (PF)=rank (PV)= rank (P)-n -p, also 
c 

trace (PF)~2 °2 trace (z'iPzi)+°o trace (P), hence 
l 

trace (P) = {n-p- j±o} trace (Z',PZ,)}a0~
2. (28) 

l 

Fisher's information matrix — £[(32L/3a?3oj)] may be obtained from (27) and 
is given by the inverse of (22). Fisher's information matrix may be determined 
from the W-transforms Z'tPZj. 

When the REML estimates are positive they are a solution of the REML 
equations which are obtained by equating (26) to 0: 

y'PZiZ'tPy=ttotx(Z'lPZi), i=0,l,...c (29) 

The left-hand sides consist of quadratic forms depending on the unknown vari­
ance components. The right-hand sides are the corresponding expectations. It 
follows in particular that: 

h\=(y-Xâ)'H~l(y-Xa)/(n -p), (30) 

where â is the estimator from (17). 
When the model is formulated in terms of a2, and Yi...yc, first and second 

order derivatives and Fisher's information matrix can also be obtained from 
the W-transforms/i>;>, y'PZh Z'iPZj. 

Finally, for later use, we will express the traces and sums of squares of 
observations in the first derivatives (26) and in Fisher's information matrix in 
terms of the solution and inverse of the coefficient matrix of the MMEs in 
(19). Elimination of a from (19) yields the following solution for the random 
effects: 
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b-CZ'My, 

where matrices Ç and M are defined in (7), The inverse of the coefficient 
matrix of the MMEs may be partitioned in correspondence with the fixed and 
random effects, matrix C is the bottom right-hand part corresponding to the 
random effects. From (8) it may be shown that 

trace (Z'iPZjZ']PZi)=\}\)oö4' trace (C^Cß), i.^j, i^Q,j^0 

trace (Z',PZ,Z',/>Z;)=X4ao~4 trace {Cl)-V<hüA trace (C,,) + 

trace (Z',i>Z,)=A,?^2 -A2a0~
2 trace (C„), i ¥= 0, (31) 

where C=KC,y) is partitioned in correspondence with b\...bc. Furthermore 

/PZiZ'iPy-b'ibi/of, i = \...c (32) 

y'Py=(y'y -/Xa-/Zb)/o%, 

where a,b\...bc are solutions of the MMEs (19). 

6. ITERATIVE PROCEDURES 

6.1. Introduction 

Except for some particular models (SWALLOW and MONAHAN 1984 and LEE 
and KAPADIA (1989) for the one-way random model and two-way mixed 
model with an equal number of observations for the levels of the random fac­
tor respectively) no closed expressions foi REML estimates for an unbalanced 
layout are available. In this section some iterative procedures for finding the 
optimum of the REML likelihood (14) will be discussed. Emphasis will be on 
two methods; Fisher's method of scoring (section 6.2) and the EM-algorithm 
(section 6.3). Details of the actual calculations involved will be shown in sec­
tion 7. 

With the first and second order derivatives available from the W-transforms 
the field is wide open for any gradient method to find the optimum, see HAR-
VILLE (1977). A familiar, although not always reliable, method in statistics is 
Newton-Raphson. This method may be combined with (30) to reduce the 
dimension of the optimization problem (CORBEIL and SEARLE, 1976a), resulting 
in a procedure zig-zagging between generalized least squares and Newton-
Raphson (Jennrich and Sampson, 1976). 

For models with c = 1 a one-dimensional search with respect to Yi =O\/OQ 

may be succesful, see SIMIANER (1988). For models with c=2 in SMITH and 
GRÄSER (1986) a method is presented which combines a one dimensional 
search for the optimum of the likelihood with the EM-algorithm. 

As in most non-linear optimization problems convergence to a global max­
imum is seldom guaranteed. 
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6.2 Fisher scoring 

Suppose that the optimum of the REML likelihood corresponds to an inner 
point of the parameter space, i.e. the estimates are positive. Then the estimates 
will satisfy the REML equations (29). With (8) it follows that: 

trace (Z',7>Z,) = trace {Z'{PVPZ^= 2 °] t r a c e (Z'fZjZ'jPZ,). 
y=o 

Hence, (29) may be written as: 

[trace (Z'fZjZ'jPZfto1 = (y'PZtZ\Py). 

By evaluating the vector on the right-hand side and the matrix of traces on the 
left-hand side for the 'old' iterates and solving the set of linear equations for 
the 'new' iterates, an iterative procedure is obtained. In HARVILLE (1977) this 
method is referred to as Anderson's procedure. 

From Fisher's information matrix (this is the inverse of (22)) and the gra­
dient vector in (26), Anderson's procedure may be shown to be equivalent to 
Fisher's method of scoring. The same iteration process also results from iterat­
ing MINQUE and MIVQUE. Pros and cons of the method are: 

pros: - Generally reasonably fast (quadratic convergence), 
- Fisher information readily available for inference. 

cons: - Iterates may be negative. During the iteration process they are 
usually replaced by small positive numbers, see for instance 
ROBINSON (1987a). 

- The amount of calculation and storage required per iteration may 
be too large. 

6.3. EM-algorithm 

Write REML equations (29) as follows: 

y'PZ.Z'fy 

trace ( Z ' ; J PZ , ) ' ' "'C' 

Multiplying both sides with a\, evaluating the left-hand side for the 'old' 
iterates and the right-hand side for the 'new' iterates, we end up with: 

y'PZtZtPy i=Q,i...c (33) _2 ffi[/ + l] trace (Z'',-PZ,-) 
[i] 

This may not look too impressive, but (33) is in fact a modified version of the 
EM-algorithm introduced in section 3.2. The procedure gains considerably in 
intuitive appeal when formulated in terms of the MMEs. The EM-algorithm 
as proposed by DEMPSTER et al. (1977; 1984) reads as follows: 

o% +1] = [b'ibj+ojXj trace (Cu)\t]/qh i = \...c (34) 
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<*0[( + i] = [e'~e+ol{n -al trace {P))\t]/n, 

where the right-hand side is obtained under a2 = a2,] and e is defined by (25). 
Combining 'old' and 'new' values for a2 on the right- and left-hand sides we 
obtain: 

0% +1] = [b'ibj\t]/[qj -X, trace (C,,)][r], / = l...c (35) 
C 

coir + i] = [ê'ê](,]/[« - p - ? + 2>« trace (C„)][r], 
l 

using (28), and (31) for trace (P). Expressions in (33) and (35) may be shown 
to be equivalent with the help of (31) and (32). The algorithm (34) is referred 
to by HARVILLE (1977) as Henderson's procedure. HENDERSON (1986a,b,c) 
derived (34) from MIVQUE quadratics. 

The expression for al in (35) may be found in MEYER (1987). HARVILLE 

(1977) gives a different expression: 

a\t + l] = y'M\y-Zb][t]/(n -p) = \y'"e\t]/(n -p). (36) 

At convergence the difference between a^/.+n from (35) and (36) vanishes to 
zero. A numerically attractive expression for a\t + 1] follows from: 

e'e =y'e-b'D-xb =y'y-y'Xâ-y'Zb-b'D~xb. (37) 

Pros and cons of the EM-algorithm are: 

pros: - The computational burden and amount of storage required per 
iteration may be considerably less than for Fisher scoring. Fisher 
scoring, formulated in terms of the MMEs, additionally to trace 
(C„) also needs traces of the off-diagonal parts of C: trace 

- Shares some good properties with all EM-algorithms, for instance 
the likelihoods corresponding to the successive iterates will not 
decrease, see DEMPSTER et al. (1977). 

- From the formulae in section 3.2 it easily follows that, starting 
from positive values, negative iterates will never be encountered. 
The same holds for (35) (HARVILLE, 1977). 

- Considerable intuitive appeal. 
cons: - Slow, sometimes very slow, especially when the optimum is near 

the boundary of the parameter space, see LAIRD and WARE 
(1982) and DEMPSTER et al. (1977) (R. Thompson in the discus­
sion and the reply by the authors). The algorithm may be 
speeded up, see THOMPSON and MEYER (1986). 
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7. HOW TO PERFORM THE CALCULATIONS 

7.1. Introduction 

Broadly speaking there are two sources of literature on the numerical side of 
parameter estimation in a mixed model: papers of a general statistical nature 
and papers directed at animal breeding research. 

In the statistically orientated papers emphasis is on the W-transforms for 
use in a gradient method to obtain ML or REML estimates or to solve the 
M I N Q U E or MIVQUE equations, see HEMMERLE and HARTLEY (1973), 
THOMPSON (1975), JENNRICH and SAMPSON (1976), CORBEIL and SEARLE 

(1976a), HEMMERLE and LORENS (1976), L iu and SENTURIA (1977), G O O D ­

NIGHT and HEMMERLE (1979), GIESBRECHT (1983) and GIESBRECHT (1986). In 

G O O D N I G H T and HEMMERLE (1979) and GIESBRECHT (1983) similar algorithms 

using sweep-operations are described. The use of sweep-operations will be dis­
cussed in section 7.2. 

In animal breeding emphasis is on the mixed model equations. Popular 
methods are Fisher scoring and the EM-algorithm. Numerical reductions are 
obtained by elimination of sets of effects from the MMEs. This process is 
referred to as absorption. Because of the large size of datasets in animal breed­
ing, the need for reduction of the size of matrices to be stored and /o r inverted 
is particularly pressing, see MEYER and BURNSIDE (1987), MEYER (1986a,b, 

1987), SMITH and GRÄSER (1986). The use of absorption will be discussed in 
section 7.3. 

To what extent numerical reduction is possible depends on the structure of 
the data: nesting is usually a favourable type of structure. In completely nested 
designs only diagonal matrices have to be inverted, see GIESBRECHT (1978), 
LONGFORD (1980, 1986, 1987), KLEFFE and SEIFERT (1984) and R A O and 

KLEFFE (1988). 

7.2. Sweeping a working matrix 

The following working matrix is introduced: 

Z'Z + D~X Z'Z Z'X Z'y 

Z'Z Z'Z Z'X Z'y 

X'Z X'X X'y 

y'Z symm. y'y 

0 = <>o (38) 

Partial Gaussian Ehmination on the upper left-hand part yields for the lower 
right-hand part: 

Z'Z Z'X Z'y 

X'X X'y 

symm. y'y 

which, from (6) and (8), is equal to: 

Z'Z 

X'Z 
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Z'V~lZ Z'V'XX Z'V'xy 

X'V~XX X'V~xy 

symm. y'V~xy 

Application of a sweep operator, see for instance EFROYMSON (I960), pivoting 
on the elements of X'V~ X, using (7), yields: 

Z'PZ -Z'V'XX(X'V~XX)~X Z'Py 

(X'V~XX)-X (X'V-xX)-lX'V~xy 

symm. y'Py 

All elements of this matrix are of interest: the W- transforms 
Z'PZ = (Z'iPZj), Z'Py — (Z'jPy) and y'Py, the generalized least squares esti­
mator (X'V~ X)~xX'V~xy, the corresponding variance-covariance matrix 
{X'V~XX)-X and finally Z'V~lX{X'V~lX)-1, which is used for the calcula­
tion of the approximate number of degrees of freedom in the Mest of GIES-

BRECHT and BURNS (1985) presented in section 4.1. For an introduction to 
Gaussian Elimination and sweeping see GOODNIGHT (1979). 

As a by-product, from the products of the pivot elements, we have the deter­
minants \Z'Z+D~X\ and \X'V~XX\. Since 

\X'X\\Z'MZ +D~X\ = \Z'Z +D~X\\X'V~XX\ ô$', 

we are also able to evaluate the log likelihood (15) up to an (unimportant) con­
stant. 

Following GOODNIGHT and HEMMERLE (1979) the operations may be per­
formed efficiently with minimum storage with respect to the working matrix Q 
in (38). Small values of variance components may give rise to numerically 
dangerously high pivot elements. In the approach followed by GOODNIGHT 

and HEMMERLE (1979) these pivots are recognisable throughout the Gaussian 
Elimination proces. Appropriate action, originally suggested by a referee of 
HEMMERLE and HARTLEY (1973), may be taken. Small pivot elements are 
numerically unacceptable as well and a pivot strategy, see DAHLQUIST and 
BJÖRCK (1974), restricted to the diagonal elements, may be followed. We will 
return to sweeping procedures in section 7.4. 

7.3 Absorption 

7.3.1 Definition and properties. 

For the set of equations 

'Au An 

A2\ A 22 x2 
— 
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élimination of vector x x from the upper part of the set yields: 

X\=Ax~l
l(yl-Al2x2). 

Substitution in the lower part of the set yields a set of equations in x2. 

(A22 -A2XAülA 12)x2 =y2 -A 2XA f,1/, • (39) 

The equations for xx are now absorbed into the equations for x2. 
Some properties: 

(i) Let A=(Ajj) and B=(Btj)=A~x. The coefficient matrix of x 2 after 
absorption of xt is B22, i.e. B22=(A22—A2]A]~^Ai2)~

l = 
A22+A22A2\\A\\—AnA22A2XYXA\2A22. The expression on the 
right-hand side between square brackets is the coefficient matrix of xx 

after absorption of x2. 
(ii) For k sets of equations Ax=y, A ={Atj), x=(xt), y — {yi), absorb vectors 

xx...xm, m<k. Let the resulting set of equations in x* =(x'm + \...x'k)' be 
A*x*=y*. Let B = (Bij)=A~l and B*={Bij*)=A*~\ then 
£,,=£,,*, i=m + l...k. 

Typically the set of equations will be the mixed model equations (19), vectors 
X],x2... will correspond to sets of fixed effects and random effects. Basically 
sweeping and absorption are equivalent, sweeping on the diagonal elements of 
A n yields for the lower right-handside of A the coefficient matrix of (39), see 
MOHAMMAD et al. (1985). 

7.3.2. Reducing the size of matrices to be stored and inverted. 

Let F be a factor with a very large number of levels. Let G be the collection of 
all parameters in the model corresponding with F and interactions with F. 
Suppose that the number of elements in G prohibits storage of the mixed 
model equations and inversion of the coefficient matrix. It will be shown that 
the set of equations after absorption of the elements of G may be constructed 
in one pass through the data, reading the data one level of F at a time. In a 
second pass through the data the complete solution of the MMEs is obtained 
by back substitution. Quadratic forms in the observations and traces of 
matrices for the iteration proces may be obtained without any need for storage 
and inversion of large matrices. When the reduced set of equations is still too 
large further reduction may be possible. This will be discussed briefly in sec­
tion 7.3.3. 

Let F correspond to a random effect. For a fixed effect a similar approach 
may be followed. In the latter case G should correspond to nuisance parame­
ters since variances and covariances involving estimators of parameters in G 
are lost, see ROBINSON (1987a). 

Let Z = (Zl,Z2),D = diag(DuD2),b = (b'ub'2y, where ZUDX and bx 

correspond to G. Absorption of b t from the MMEs yields 
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X'KX X'KZ2 

Z'2KX Z'2KZ2+D2
l 

X'Ky 
Z'2Ky (40) 

where ^T=/ — Z1(Z'1Z1+Df1)~1Z'1 . Matrices Z\ and Dx are block diago­
nal, blocks corresponding to levels of F. Matrix K will be block diagonal as 
well: 

Z, = diag(Z„), Z>, =diag (Z>„), tf=diag (#,), 

where Kj=Im—Zu(Z'uZu+Düi)~lZ'u is an w,Xm, matrix, with w, the 
number of observations associated with the i-th level of F. Let the total 
number of levels of F be m and partition X, Z2 and ƒ correspondingly: 

X=(X'h..X'm)',Z2=(Z'2h..Z'2m)',y=(y'h.y'm)' 

Then 

X'KX= J^X'JKJXJ, X KZ2 = ̂ ,X'iKjZ2i, Z'2KZ2 = ^Z'^KjZ^, 
i i i 

X'Ky = SX'iKp,, Z'2Ky = ^Z^Ky, 
i i 

Hence, (40) may be constructed by reading the data one level of F at a time, 
cumulating the results. Let N — (Njj) be the symmetric inverse of the 
coefficient matrix of (40), i.e.: 

(41) 

Partitioning b\ in correspondence with the levels of F, bi=(b'n...b'lm)' fol­
lows in a second pass through the data from: 

bu=(Z'uZu+DT,lrlZ'u{yt-Xi«-Z2ib2). 

Quadratic forms follow from (32). From (31), for Fisher scoring or the EM-
algorithm, we need traces of parts of matrix C, the inverse of the coefficient 
matrix of the MMEs after absorption of the fixed effects. For notational con­
venience let b2 correspond to a single additional random factor, i.e. c—2. Par­
titioning C=(Cjj) in correspondence with b\ and b2, matrix C22 is equal to 
N22 in (41). We still have to determine traces involving Cn, C u and C12C2i. 
As an illustration trace (Cn) will be determined, for the other traces a similar 
approach may be followed. From properties (i) and (ii) in section 7.3.1: 

(X'X X'Z2 

a 

b2 
= 

Nn Nn 

N2\ N22 

X'Ky ' 
Z'2Ky 

CU=B~' +B~l(Z'lX,Z\Z2) 

[X'ZX ] 

Z'2ZX 
B-\Z',X,Z\Z2) 

(X'Zi 

Z'2ZX 
B 

where B = Z'lZl+XlI. B is a diagonal matrix and easy to invert. The matrix 
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between square brackets is, according to property (i), the coefficient matrix 
after absorption of b i. This is the coefficient matrix of (40) and the inverse is 
matrix N from (41). hence: 

C„ =B~l + £ _ 1 [Z\XNnX'Zx + Z'lXN12Z'2Zl + Z\Z2N2XX'Z\ + 

Z'lZ2N22Z'2Zl]B-\ 

Multiplying each of the terms between square brackets from both sides with 
B ~ ' , the trace of Cu will be a sum of five traces. One of these traces is: 

trace (5_1Z'1A
riV11A"Z1fi-

1) = trace(iVi1A
r'ZlJS-2Z'1X). 

Since 

X'ZXB Z\X='2lX'iZu(Z'uZu+\iIm) Z'uXh 
i 

the trace may be determined in the second pass through the data. 

7.3.3. Further reductions. 

In animal breeding datasets may be very large: in MEYER and BURNSIDE 
(1987) for instance, a data set is reported consisting of observations on 131890 
cows from 599 sires (a random factor in the model) on 3924 farms (tradition­
ally a fixed factor in the model). 

We will have a brief look at an example from MEYER (1987). Offspring is 
observed (y) from sires (b\) and dams (£2)- Animals are housed at different 
farms (ai) and observations are collected in different seasons and years (a2). 
Suppose that the number of farms and dams is very large. Sires may be related 
and dams may be related, i.e. matrices At from (2) are not equal to the identity 
matrix. Suppose that dams are nested within farms and farms may be divided 
into m distinct groups such that animals from different groups are unrelated. 
In one pass through the data, reading the observations one dam within a group 
of farms at a time, the reduced set of MMEs after absorption of dams and 
farms may be constructed and solved. The full solution follows from back sub­
stitution in a second pass through the data. For the EM-algorithm sums of 
squares such as b'iA^xbi and traces of matrices Aj~lCu are needed. Matrices 
A, are block diagonal and inverses A~l follow from HENDERSON (1976) and 
QUAAS (1976). b\A\ b\ follows from direct calculation and b'2A2 b2 from 
the second pass through the data: 

b'2A2
xb2 = '2ib2jA2jb2j, index/ corresponding to groups of farms. 

j 

Similarly 

ê'ê = 2 ê'jêj, where êj=yj-Xljây-X2Jâ2-Zybi-Z2jb2j, 
j 

with Xi=diag(X]j) and X2 = (X'2i...X'2m)' corresponding to a^ and a2 
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respectively, Zx = (Z ' u . . .Z ' l m ) ' and Z 2 = diag(Z2/). The trace of A\XCn fol­
lows from direct calculation. The calculation of trace (A2

XC 22) is very 
cumbersome indeed, taking several pages of algebra. For a detailed account see 
ENGEL (1989). 

7.4. Where sweeping and absorption meet 

In SMITH and GRÄSER (1986) for models with c = 2 and under restriction (9) 
REML estimates are obtained by a combination of sweeping and absorption. 
The model is re-formulated as: 

y = Xa + Zib]+e*, where e* = Z2b2+e and (42) 

Var (e*)=Rol -with R=y2Z2Z'2+I„. 

The estimation procedure consists of two steps. In the 'interior-step' y2 is kept 
fixed and al, a} are estimated by the EM-algorithm applied to (42). In the 
'exterior-step' the optimum of the likelihood corresponding to y2, say /fa)* is 
determined and /(Y2) is optimised with a grid-search or other one-dimensional 
search routine, see SIMIANER (1988). Expressions for the log likelihood and the 
EM-algorithm may be obtained from (15) and (35) respectively with the help 
of transformation (10). The interior step involves a large number of iteration 
steps for the EM-algorithm. In this step partial Gaussian Elimination on a 
working-array is used. A factor with a large number of levels may be absorbed. 
The computational burden is considerably reduced by the use of tri-
diagonalisation (see STOER and BULIRSCH (1973) or PRESS et al. (1986)). 

8. THINGS STILL TO BE DONE 

For inference on components of variance (section 4.2), except for some partic­
ular models, little progress has been made. Little is known about the small 
sample behaviour of the normal approximation. In fact there does not seem to 
be any paper dealing with the asymptotics of REML-estimators directly. 

For sets of fixed effects, tests and confidence regions may be derived from a 
chi-square approximation of (Wald-test): (â0 — a0)'Var(â0) -1(â0—a0)x where ÖQ 
is a sub-vector of a. In this procedure estimation of var(ôo) by Var(ôo), by 
substitution of the REML estimates, is not taken into account. For a single 
contrast an F-distribution may be used (the square of the approximate t-
distribution in section 4.1). For multiple contrasts no similar approach is avail­
able yet. 

The relationship between iterated MINQUE and REML makes it plausible 
that REML may be robust against departures from Normality. At present only 
limited simulation results from LIN and MCALLISTER (1984) seem to be avail­
able. 

Little is known about sensitivity of REML to outliers. For a robust 
approach in this respect see FELLNER (1986). 

There are computer routines available for REML in some of the larger 
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statistical packages such as SAS and BMDP. Probably the most useful general 
purpose program at present is the REML program from the Scottish Agricul­
tural Statistics Service in Edinburgh (ROBINSON, 1987a). At present facilities 
for testing in this program are limited to a normal approximation for single 
contrasts. There are no facilities within the program for data-handling such as 
for instance the use of a log transformation. For models relevant to animal 
breeding, programs from K. Meyer and from L.R. Schaeffer are circulating. 
These specialised programs are able to handle very large data sets. 
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SUMMARY 

Observations from a study of the development of ovulations into embryos for Texel sheep are analysed 
with a model for count data that are under- or overdispersed relative to binomial variation. The 
analysis is based on maximum quasi-likelihood (McCullagh and Neider, 1989, Generalized Linear 
Models, 2nd edition, London: Chapman and Hall), following an approach suggested by Williams 
(1982, Applied Statistics 31, 144-148). The dispersion parameter is developed as a combination of a 
variance component representing shared maternal effects and a correlation, typically negative, between 
ovulations within ewes. The number of ovulations (the binomial denominator) is included as an 
explanatory variable. 

1. Introduction 
In an experiment conducted at the Research Institute for Animal Production "Schoonoord" in The 
Netherlands, the effects of active immunisation against androstenedione on the fertility of Texel ewes 
are studied. The number of fetuses per ewe can be considered as the net result of a process determining 
the number of ovulations and a probability process for these ovulations to yield fetuses. In this paper 
the second process will be modelled and the number of fetuses will be analysed in relation to treatment 
with Fecundin (androstenedione-7a-carboxyethylthioether:HSA), age of the animal, mating period, 
and number of ovulations observed. 

An outline of the experiment and a summary of the data are given in the next section. The full 
data set is presented in Appendix A.l. The model, introduced in Section 3, accounts for random 
variation in embryonic development rate between ewes and correlation (typically negative for this 
problem) between ovulations within ewes. No full distributional assumptions are made; only the first 
two moments will be specified. In Section 4 estimation and testing of parameters will be discussed. 
Parameters will be estimated by a combination of maximum quasi-likelihood for location on the logit 
scale (§4.1) and a method of moments for dispersion (§4.2), utilizing the relationship between 
expectations and variances. Details of the iterative procedure are provided in Appendices A.2 and 
A.3. Results of the analysis are presented in Section S, where an attempt is made to substantiate the 
supposition that the data are underdispersed relative to binomial variation. Finally, in Section 6, 
some alternative approaches are discussed. 

Perhaps because of the opposing effects of overdispersion from shared maternal effects and 
underdispersion from negative correlation between ovulations within ewes, qualitative results were 
rather similar to those obtained from an ordinary logit analysis for independent binomial data. 
However, the more involved analysis, motivated by the biological background of the model, had to 
be undertaken to find out. Furthermore, the approach is not so difficult that it should not be used 
fairly routinely when a binomial distribution is in doubt. 

Key words: Beta-binomial distribution; Beta-correlated-binomial distribution; Correlated binomial 
logistic model; Embryonic development rate; Extra-binomial variation; Maximum quasi-
likelihood; Overdispersion; Ovulations; Underdispersion; Williams Model II. 

43 



Biometrics, March 1993 

2. The Experiment 
From 125 Texel ewes, 63 ewes are treated with Fecundin (kindly donated by Coopers Agrovet B.V. 
Haarlem, The Netherlands). The remaining 62 serve as a control group. The ewes are classified into 
four age classes («.5, .5-1.5, 1.5-2.5, >2.5 years) and there are two mating periods (starting on 
October 1 and October 22, 1986, respectively). Interactions with age are of interest and since a factor 
is easier to handle in this respect than a covariable, age was introduced as a factor. Moreover, it is 
difficult to decide on a proper curve representing age effects, when age is introduced as a covariable. 
The numbers of animals in the four age classes are 25, 44,24, and 32, respectively. The ewes per age 
class are about evenly spread over the combinations of mating periods and treatment groups. 

The ewes are slaughtered 75-80 days after last mating and the number of ovulations and the 
number of fetuses are determined. Ovulation numbers range from 1 to 5. For six animals the number 
of ovulations is not known. These ewes are excluded from the analysis. The raw means and standard 
deviations of the percentages of ovulations yielding fetuses—i.e., averages of ratios of number of 
fetuses and ovulations per ewe multiplied by 100%—are shown in Table 1. 

In a separate analysis, not to be discussed in this paper, it was shown that the number of ovulations 
(and fetuses) is increasing with age and treatment with Fecundin (Te Brake and Oosterom, unpublished 
manuscript). This will be useful later when the results of the analysis are to be interpreted. 

Table 1 
Means and standard deviations (in parentheses) of the percentage of ovulations yielding a fetus and 

estimated means and standard errors (in parentheses) from the analysis 

Mating 
period 

Oct. 1 

Oct. 22 

Treatment 
Fecundin 

Control 

Fecundin 

Control 

Age class 
(years) 

«5.5 
.5-1.5 

1.5-2.5 
>2.5 
«.5 

.5-1.5 
1.5-2.5 
>2.5 

«.5 
.5-1.5 

1.5-2.5 
>2.5 
«.5 

.5-1.5 
1.5-2.5 
>2.5 

Raw mean 
% 

83 (26) 
75 (28) 
78 (25) 
81 (22) 
80 (27) 
80 (23) 
86 (22) 
94 (18) 

64 (24) 
71 (25) 
78 (30) 
88 (23) 

100 (0) 
95 (15) 
83 (6) 
93 (7) 

Number of 
animals 

6 
10 
6 
6 
5 

11 
6 
8 

7 
11 
6 
7 
6 

11 
6 
7 

Estimated 
mean % 

82 (11) 
72 (8) 
81 (9) 
82 (9) 
70 (17) 
78 (8) 
86 (8) 
94 (5) 

58 (14) 
72(8) 
75 (8) 
81 (7) 

100 (1) 
95 (5) 
83 (10) 
94(5) 

3. The Model 
For each ewe let n = the number of ovulations, x = the number of fetuses, and p = the probability 
of an ovulation yielding a fetus. Inference about the number of fetuses x will be conditional upon the 
values observed for the number of ovulations n. The probability p will be the quantity of interest in 
the analysis. For each of the ovulations within a ewe an indicator variable is defined: 

at = {i' when the Ma. ovulation yields a fetus, 
otherwise, k = 1, 2, . . . , n. 

Hence, x = a, + • • • + a„, the number of ovulations yielding fetuses. The probability p will depend 
on treatment (T), age class (A), mating period (M), and on the particular ewe: 

p = Po + e. 

The fixed part po is determined by the factors T, A, and M, and the random part c represents 
the contribution of the ewe. It is assumed that c has expectation 0 and small variance when Po is close 
to 0 or 1 and larger variance when A> is close to .5. A simple variance function meeting these 
requirements is 

var(e) = (72pö(l -Ai)- (1) 
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Of course there are many other possibilities, e.g., when the ewe effect is introduced with constant 
variance a2 on the logit scale, such as in Williams Model III (Williams, 1982), van» = a2(po(\ - po)f 
approximately. Since it is hard to choose between these variance functions, neither from the physical 
background of the problem, nor from plots of residuals, we will adopt the simple variance function 
(1). The scale parameter a2 is assumed to be relatively small. No detailed assumptions about the 
distribution of p are made. The beta distribution (Johnson and Kotz, 1970, Chap. 24) would be a 
candidate. In that case for a (skewed) bell-shaped distribution a2 will have to satisfy <r2 < j . 

We will allow for some "competition" between the ovulations. Suppose that conditional on e (i.e., 
given the value of the ewe effect), p is the correlation between ak and ak-\ 

cov(at; af\c) = pp(l - p), k, k' - 1, 2, . . . , n; k^ k'. 

Typically p will be negative. It is assumed that p is constant, i.e., independent of n and p, and not too 
far from 0. A proper variance-covariance structure for the indicator variables a,, ..., a„ implies at 
least that p must satisfy p > -l/{nmax - 1), where «max is the largest number of ovulations in the data 
set. Dearly, for a wide range of values for n, the assumption of constant p would not have been 
tenable. For the limited numbers of ovulations in the present problem it does not seem to be an 
unreasonable assumption. 

The fixed part poofp may also depend on the number of ovulations n. Since the data set does not 
allow for a very complicated model, the following simplification will be made. Additional to factors 
T, A, and M, a factor N (short for "number") is introduced with two levels corresponding to n a» 2 
and n»3, respectively. The fixed partpo may thus depend on factors T, A, M, and N. 

For modelling po we will use the logit function, which conveniently stretches the interval (0, 1) to 
the whole real line ( -» , +°°): 

l og in» = log(A>/(l - Po)) (2) 
= Grand mean + Main effects + Interactions of T, A, M, and N. 

Since we cannot afford a large number of parameters, no interactions with the factor N will be 
considered. Grand mean, main effects, and interactions are similar to analysis of variance, except 
that they are introduced on a logit scale. 

For the expectation and variance of the number of fetuses x we have 

E(x) = npo, var(x) = npdi - A>X1 + (" - 1)0), (3) 

where <t> = p + (1 - p)a2 is the unconditional (with respect to e, the contribution of the ewe) 
correlation between any two indicator variables ak and ak;k^k', within the same ewe. Observe that 
the variance under the binomial distribution corresponds to 0 = 0. The "overall" correlation <t> may 
be either positive (overdispersion relative to binomial variation) or negative (underdispersion). This 
will depend on the relative sizes of the overdispersion introduced by the ewe effect e (between-ewe 
variation), represented by a2, and the underdispersion introduced by the (conditional) correlation p 
(within-ewe "competition"). 

4. The Analysis 

4.1 Known Dispersion Parameter <t> 
For the moment we will make the unrealistic assumption that the correlation <t> is known. We will 
drop this assumption later. The relationship between the expectation and the variance of the number 
of fetuses x in (3) is now completely known. This is all that is needed for estimation of the grand 
mean, main effects, and interactions in logit(p0) in (2) by the method of maximum quasi-likelihood 
(MQL). MQL is discussed extensively in McCullagh and Neider (1989, Chap. 9), and will be discussed 
briefly below. 

A simple derivation of the algorithm for quasi-likelihood estimation is as follows. Let p, be an a 
priori value (a guess) for Po- Then 

Etx) = npo « np, + n\Jjj) (Ä, - 0.) = np, + np,(\ - p,)b'(0o - /».), 

nntf« the tnip values fnr the crand mean main effects, and interaction« where vector 0o denotes the true values for the grand mean, main effects, and interactions correspond­
ing to po and likewise 0, corresponds to p„ i.e., logit(p0) = b'A>, where the known vector b follows 
from the design of the experiment and corresponds to the ewe concerned. A new (artificial) dependent 
variable y is defined: 

y = ((x - np,)/v,) + b'ß, with v, = np,(\ - p,). 
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Now E(y) = b'/Jo and van» « l/(vvu,), where w = 1/(1 + <j>(n - 1)). With weighted linear regression 
for y an improved estimator for ß0 may be derived. The improved estimator becomes the new ßt and 
the calculations are repeated until subsequent values are alike. 

In each step of the algorithm the following set of normal equations is solved, introducing indices 
i' = 1 , . . . , m for the units and j = 1 , . . . , q for the location parameters in ß: 

5 (y, - heß)w/D,t>,j = 0, j = 1, . . . , q, 

where é,y is they'th element of vector b, and the (i,j)lh element of the design matrix. It is not hard to 
see from the definition of y that the algorithm is actually solving 

2 (x, - n,A«)/(l + *(«.- - !))*(, = 0, J: = 1, . . . , q. (4) 
1-1 

This is a particular instance of the more general set of quasi-likelihood equations: 

,., of \di)i/ 

where m = E(x,), ij, = g{m) = b,'/S, with g the link function and vi the linear predictor, 
a] = var(Xi); IT? may depend on m, i.e., a? = afin)- For the present model: n = npo, v = logit(M/n) = 
log(/i/(n - >•)), dß/dti = M(" - M)/«-

The final estimates correspond to a stationary point, hopefully the maximum, of Wedderburn's 
(1974) quasi-likelihood function. The left-hand sides of expression (4) correspond to the partial 
derivatives of the quasi-likelihood with respect to the elements of ß. Formally the quasi-likelihood Q 
can be defined as 

J"V 
and for the model discussed in this paper: 

(x, - t)l(t(n, - 0) dt 

= I (1 + *(»» - 1))-'(L(«,A»; x,, «,) - £(*; x„ n,)), (5) 

where L(t\ x, n) = x log(r/«) + (n - x)log((n - t)/n). 
The algorithm used is the same as for generalized linear models (GLM) (Neider and Wedderburn, 

1972) for maximum likelihood estimation and a generalisation of an algorithm described in Finney 
(1947, Appendix II) for biological assay. Therefore in a GLM, with a probability distribution from 
the exponential family—e.g., normal, binomial, or Poisson—quasi-likelihood and maximum likeli­
hood estimators are the same. For tf> = 0 for the present model, quasi-likelihood is equivalent to an 
ordinary logit analysis (Cox, 1970, §2.3). 

The calculations are easily performed with the algorithm for GLM models in GENSTAT 5 (GENSTAT 
S Committee, 1987, 1990), when the error distribution is specified as binomial with a logit link 
function and prior weights (1 + tp(n - 1))~'. The GENSTAT code is given in Appendix A.3. A similar 
code in GLIM is given by Williams (1982). 

Maximum quasi-likelihood estimators share many of the (asymptotic) properties of maximum 
likelihood estimators, as shown in McCullagh (1983). In the same paper the quasi-likelihood ratio 
(QLR) test is discussed. The QLR statistic may be used to see whether various subsets of the 
parameters, e.g., the parameters for the interaction TA between factors T and A, contribute 
significantly to the model. Under the null hypothesis H0: TA • 0, the QLR statistic may be compared 
with a chi-square distribution with degrees of freedom equal to the reduction of free parameters: 
( 2 - l X 4 - l ) = 3. 

With GENSTAT, the QLR statistic is easily derived from the difference between the deviance under 
the restricted model (TA • 0) and the model under investigation (including TA); see Appendix A.3. 
For a GLM the deviance D is defined as minus twice the difference between the log-likelihood of the 
model under investigation and the maximum achievable value for the log-likelihood obtained by 
replacing the expectation M of each observation x by the observation itself: 

D = -2(L(/i; x) - L(x; x)), 
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where L denotes the log-likelihood. Replacing ß by its maximum likelihood estimator, D is equal to 
the - 2 log-likelihood ratio statistic comparing the model under investigation, where the restrictions 
Vi = g(ni) = b/0 hold, with the unrestricted model with a separate mean for each observation. For 
binomial counts: 

D - 2 £ \x lofix/inp)) + (n- x)log((/i - x)/(n - np))\. 

Within the exponential family, Q is essentially equal to a log-likelihood ratio, as illustrated by (S) for 
0 = 0: L(np\ x, n) is the log-likelihood of a binomial distribution with probability p and total n 
(except for some unimportant terms depending on the observations only). By analogy, the quasi-
deviance is defined as 

D, = -2Q. 

From expression (5) for the present model: 

D, = 2 1 (1 + 0(H - 1 ))"'(* log(^/(«p„)) + (n - *)log((» - x)/(n - np»))). 

The difference between the déviances of two GLMs, one nested within the other, yields the - 2 log-
likelihood ratio comparing these models. Similarly, the difference between two quasi-deviances yields 
the quasi-likelihood ratio statistic. The deviance of a GLM is standard output in CENSTAT and for 
a binomial error distribution with a log link and prior weights (1 + <j>(n - \))'\ GENSTAT will 
produce Dq. 

In the terminology of McCullagh (1983) and McCullagh and Neider (1989), the factor 
((1 + 0(n - 1)) is included in the variance function V. 

An alternative is the quasi-Wald test based on approximate normality of the parameter estimators 
on the logit scale or a quasi-score test based on approximate normality of the quasi-scores [the left-
hand sides of (4)]; see Breslow (1990). 

4.2 Unknown Dispersion Parameter 0 
Unfortunately 0 is not known. Therefore in the preceding derivation an estimate 0 will be used. The 
estimate is derived by a method of moments based on Pearson's chi-square statistic and suggested by 
Williams (1982). This is also an iterative procedure obtained by manipulation of the residual sum of 
squares in the weighted regression for the artificial dependent variable y. Details are given in Appendix 
A.2. The analysis can then be handled with GENSTAT, as shown in Appendix A.3. At convergence, for 
the estimate 0, Pearson's chi-square statistic will be equal to its degrees of freedom m - q. Actually 
(Moore, 1986) we have simply added an extra equation for the estimation of the dispersion parameter 
0 to the quasi-likelihood equations (4) for the location parameters ß: 

1 \(x, - n,/>o,)7((l + *(«< - l))«,PoKl - Pod) ~(m- q)/m\ = 0. (6) 

Observe that the expectations of the left-hand sides of (4) and (6) are equal to the right-hand sides 
when (m - q)/m is replaced by 1 in (6). The term (m - q)/m is a correction for the loss of degrees of 
freedom due to the estimation of/}. The left-hand sides are estimating functions and more information 
is given in McCullagh and Neider (1989, §9.4). 

Moore (1986) shows that the estimators 4 and 0 are consistent^»! -» <*>) and asymptotically 
normally distributed. The asymptotic variance-covariance matrix of ß is shown to be the same as the 
one obtained when 0 is assumed to be known, i.e., it is unaffected by the estimation of 0. This matrix 
is readily available in GENSTAT. For the present model ß and $ are asymptotically independent. In 
the analysis the estimate for 0 from the largest model fitted will be used for all subsequent models as 
well. 

5. Results 
The largest model studied, in an obvious notation for the grand mean, main effects, and interactions, 
is 

logiKpo) = p+T + A + M+N+TA + T.M + AM + TAM. 

The estimate for the dispersion parameter is 0 = -.0751. This suggests that within-ewe competition 
is present. We will try to substantiate this supposition, i.e., see whether there is evidence to reject the 
hypothesis Ho- 0 = 0, by two approaches. The first approach will be based on the asymptotic 
distribution of 0; the second approach will be based on Pearson's chi-square statistic Xl under the 
null hypothesis Ho. 
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The expression for the asymptotic variance of 0 given by Moore (1986) depends on the third and 
fourth central moments, say p3 and p4, of the distribution of the observations x. Since these moments 
cannot be estimated from the data with any reasonable accuracy, we will resort to a property that 
holds for the cumulants of distributions in the exponential family: /cr+i = ^die/Ac,, r = 1, 2 
Assuming that this property approximately holds for the present problem for r = 2, 3, the following 
expressions can be derived from the first two moments in (3): 

M3 = (1 + <t>(n - l))Vo(l - PoKl - 2pb), 

M4 = (1 + </>(« - l))Vo(l - A)X1 - 6pb0 - A,)) + 3(1 + 0(n - l))2«2pS(l - Pof. 

The standard error of 0 = -.0751 is .075 and with the normal approximation H„ is far from being 
rejected. However, when the model is reduced to main effects only (we shall see later that it is 
reasonable to do so), 4> = -.1175 with standard error .068 and the significance level drops below .10. 
Because the large-sample approximation may be poor (Moore, 1986), we will also try another 
approach. 

This time we will work under H0: <t> = 0 and consider Pearson's Xl as a goodness-of-fit statistic, 
both small and large values being critical. For <j> = 0, XI - 91.1, which is less than 102, the 
corresponding degrees of freedom. To see whether this is significantly less, we need an approximation 
of the distribution of A'2, under 0 = 0. Although for a large number of units Pearson's statistic will 
approach the degrees of freedom (McCullagh and Neider, 1989, §4.5), the conventional approximation 
by a chi-square distribution is not appropriate because of the relatively small totals n. Again we will 
resort to the exponential family, and this time we will assume that the observations are binomial 
counts, which is of course only a particular instance of H0. McCullagh (1985, 1986) argues that the 
appropriate reference distribution for XI is conditional upon the estimates 0. In McCullagh and 
Neider (1989, §4.4.5), expressions for the conditional mean and variance are given. For the largest 
model fitted they are 335.7 and 2,933 respectively. With a normal approximation Xl falls significantly 
below its conditional expectation, in agreement with the negative estimate for 0. When the model is 
reduced to main effects only, Xl = 93.0 with 112 degrees of freedom. The conditional mean and 
variance are 67.2 and 329.9, respectively, and this time the observed value for Xl is in agreement 
with these moments. McCullagh (1985) observes that for low values of the binomial totals n, the 
conditional moments are strongly dependent on the configuration of the data in relation to the model. 
This seems to be so for this problem as well. 

We are now in a tricky position. Evidence that <t> & 0 is not overwhelming and the estimate 0, even 
when based on main effects only, will probably be very inaccurate. On the other hand, from the 
physical background of the problem, 0 * 0 is quite plausible and there does not seem to be any 
particular reason for letting 0 equal 0, except that test procedures for ß will be more conservative 
than with a negative value. Since this analysis is mainly exploratory, it was decided to use the estimate 
0 = -.0751 for all models fitted. Qualitative conclusions for 0 = -.0751 from the largest model 
fitted, 0 = -.1175 from the main effects model, and 0 = 0, with respect to the effects of treatment, 
age, mating period, and number of ovulations, are found to be similar. 

In Table 2 test results for the interaction terms are shown. For example, the test for the two-factor 
interaction TA is based on the déviances of the models 

H+T + A+M + N+TA + T.M + AM (TAM already dropped from the model) 

and 

n + T + A + M + N + TM + AM (TA also dropped from the model). 

These déviances are 104.4 and 105.5, respectively, resulting in QLR = 105.5 - 104.4 = 1.1, as shown 
in the table. In view of the test results in Table 2, the model is reduced to main effects only: 

logit(po) = n+T+A + M+N. 

Interaction 
TAM 
TA 
TM 
AM 

Table 2 
Test results for interactions 

Quasi-likelihood 
ratio QLR 

3.9 
1.1 
2.1 
1.3 

Degrees of 
freedom 

3 
3 
1 
3 

P-value 

.27 

.78 

.15 

.73 
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In the reduced model the P-values for T, A, M, and N are .06, .14, 1.00, and .07, respectively. We 
conclude that there is no apparent effect of the mating period M. When we concentrate on the 
contrast between classes 1 and 4 (the youngest versus the oldest animals), a f-value of .04 is found 
for factors. Hence, the age of the ewe may be of importance. Without factor JV (for the number of 
ovulations) in the model, treatment and control are significantly different (P < .01). On average, the 
ratio x/n is decreased by .12 by using Fecundin. À simple test based on rank numbers within 
combinations of factors A and M of the ratios x/n also gives a highly significant result. This is no 
proof, but adds considerably to the plausibility of the following statement: 

For ewes treated with Fecundin the embryonic development rate is significantly reduced. However, 
this is at least partly due to a decrease in the probability for development of higher numbers of 
ovulations. 

When factor N is not in the model, there are no apparent age effects. Possibly two opposing forces 
are acting: 

(i) Higher age corresponds to a higher number of ovulations. But for higher numbers of ovulations 
the probability for development is reduced. 

(ii) At a fixed number of ovulations, higher age will correspond to a higher probability for develop­
ment. 

Without N in the model, (i) and (ii) largely appear to neutralize each other. Including N in the model 
makes a correction for (i) and consequently (ii) shows up significantly in the analysis. 

Parameter estimates on the logit scale are shown in Table 3. In view of the size of the data set and 
the standard errors in Table 3, it seems ill advised to draw very detailed (quantitative) conclusions. 
Reestimation of 0 in the reduced model yields $ = -.1175. With this alternative estimate, parameter 
estimates are similar to the estimates obtained before; P-values are slightly reduced and just over .05 
for factors N and T. 

It is inherent in the use of link functions that simplification of the model on the scale of the link 
function usually does not simplify the presentation of results on the original scale, e.g., no reduction 
in interaction terms. Often the presentation on the original scale is rather messy. Only a few results 
on the original scale will be presented. Table 3 gives mean percentages for the various factors on the 
original scale. These percentages are averages on the original scale; i.e., estimated means on the logit 
scale are calculated for all combinations of factor levels, then transformed back and averaged on the 
original, natural scale. They are obtained with the directive PREDICT in CENSTAT 5. Averaging is done 
with equal weights for the factor combinations. To obtain an indication of the probability of 
development of a random ovulation for a random ewe corresponding to a particular factor level, 
weighting with the population proportions would be more appropriate, when reliable estimates for 
these proportions are available. Using the (unreliable) sample proportions yields the results in the last 
column of Table 3. Corresponding to the raw means in Table 1, means based on sample proportions 

Table 3 
Estimates and standard deviations (in parentheses) for grand mean and main effects on the logit 

scale and estimated means and standard errors on the original scale (in percentages) 

Grand mean 
Fecundin 
Control 
Age «.5 
Age .5-1.5 
Age 1.5-2.5 
Age »2.5 
Mating per. Oct. 1 
Mating per. Oct. 22 
Ovulations «2 
Ovulations s 3 

Logit scale 

Parameter 
f 
T, 
T2 
A, 
A2 
Ai 
At 
M, 
M2 
N, 
N2 

Estimate 
1.41 (.18) 
-.33 (.18) 

.33 (.18) 
-.55 (.35) 
-.20 (.23) 

.18 (.28) 

.58 (.29) 
-.03 (.15) 

.03 (.15) 

.33 (.18) 
-.33 (.18) 

Original scale 

Estimated mean 
percentage 

Equal 
weights 
79 (3) 
73 (3) 
84(4) 
69 (9) 
76(4) 
82 (4) 
87(4) 
78 (4) 
79(4) 
84(3) 
73(5) 

Sample 
proportions 
as weights 

82 (2) 
75 (3) 
88 (3) 
77 (6) 
79 (4) 
82 (4) 
88 (3) 
81 (3) 
82 (3) 
84(3) 
74(4) 
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with respect to factor N, i.e., (unweighted) averages of ratios it/n of fitted values and numbers of 
ovulations, are shown. 

6. Discussion 
We shall give a brief discussion of some alternatives for the analysis of the model presented. 

The moments in (3) are also valid for the beta-binomial model (Crowder, 1978; Williams, 1982). 
Although derived for a nonnegative correlation 0, the beta-binomial likelihood is also a proper 
likelihood for negative 0 bounded from below, the lower bound depending on po and n and 
approaching 0 for increasing values of n (Prentice, 1986). A quasi-likelihood approximation to 
maximum likelihood, to ease the computational burden, is described by Brooks (1984). For p = 0 
and <t> = a2 > 0, the beta-binomial model would be an appealing candidate to fit the assumptions in 
Section 3, but for 0 < 0 the only thing that remains is a likelihood function satisfying the moments 
in (3). 

The moments in (3) also apply to the correlated binomial (CB) model (Küpper and Haseman, 
1978; Altham, 1978) and the beta-correlated-binomial (BCB) model (Paul, 1987). In the BCB model, 
in the notation of the present paper, the contribution c of the ewe is assumed to follow a beta 
distribution, while conditional upon the probability p, the number of fetuses x is following a CB 
distribution. In the CB distribution the probability for x fetuses out of n ovulations is equal to the 
probability under a binomial distribution multiplied by the "correction" factor 

1 + p((x - npof + x(2po - 1) - np§)/(2po(l - A)))-

For a proper likelihood, p is bounded from below and above, complicating numerical maximization 
of the likelihood. Both the lower and upper bounds depend on po, a2, and n. 

With the use of quasi-likelihood the choice of a particular likelihood is avoided. Furthermore, 
because the method is based on iterative weighted least squares, some robustness can be expected, for 
instance with respect to the assumption that a2 and particularly p are independent of the combination 
of factor levels or the ewe. With the beta-binomial model, when the variance of the beta distribution 
is incorrectly assumed to be constant over the units, maximum likelihood estimators can be seriously 
biased (Küpper et al., 1986; Williams, 1988a). 

An alternative related approach, also based on the moment assumptions (3) only, is Neider and 
Pregibon's (1987) extended quasi-likelihood; see also McCullagh and Neider (1989, §9.6 and Chap. 
10), Davidian and Carroll (1988), Carroll and Ruppert (1988, §§3.3.4, 3.4.4), and Neider and Lee 
(1991). The algorithm for extended quasi-likelihood also consists of a combination of two algorithms: 
the original quasi-likelihood procedure for the location parameters on the logit scale and an algorithm 
for the dispersion parameters), now based on deviance residuals rather than Pearson residuals. 
Williams' approach was preferred because it ties in nicely with the residual sum of squares in the 
iterative weighted regression procedure and because Pearson's chi-square generally seems preferable 
to the deviance for estimation of dispersion parameters when the totals n are relatively small (Williams, 
1988b). For other approaches based on residuals see Carroll and Ruppert (1988, e.g. Chap. 3). 

Although 0 is expressed as a function of p and a2, this is hardly of consequence for the analysis, 
since only the first two moments in (3) are employed. However, the expression for 0 does show that 
interpretation of negative or positive values of 0 with respect to internal competition between 
ovulations is less straightforward than it might seem when (3) is stated directly. Even for p < 0, with 
a sizeable value for the between-ewe variance a2, the overall correlation <j> may be positive. In fact, 
for larger values of« the opportunity for underdispersion becomes more and more remote. Even for 
positive 0, the possible presence of internal competition indicates that the beta-binomial model is 
not as intuitively acceptable as it may seem at first sight. Apparently in the BCB model information 
about a2 and p separately is recovered from higher-order moments than the first two. This seems to 
limit the value of the BCB distribution for practical use; in many cases even the choice of a variance 
function will be difficult, let alone that estimation critically depends on higher-order moments. When 
the ewe effect is introduced with constant variance on the logit scale, a2 in (3) has to be replaced by 
*2Ml - Po)- Now the variance is truly dependent on two dispersion parameters. This variance 
function is not covered by Moore (1986). Similarly to Moore (1987), an extra estimation equation 
may be added to (4) and (6). 

It is hard to find conclusive evidence that 0 is different from 0 when the totals n are relatively 
small; the large-sample approximation (Moore, 1986) for the distribution of 0 depends on the third 
and fourth central moments and may be poor, McCuUagh's ( 198S, 1986) conditional approach seems 
to behave rather erratically, and conditional moments are available only for members of the 
exponential family. A Monte Carlo study, including a study of the distribution of 0 and the impact 
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of the estimation of <j> on test results for /}, would be of obvious interest and is presently being 
considered as an object of further research. 
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RÉSUMÉ 

Des observations provenant d'une étude de développement d'ovulations en embryons pour des 
moutons Texel sont analysées avec un modèle pour données de comptage qui sont moins (ou plus) 
dispersées par rapport à la variation binomiale. L'analyse est fondée sur le maximum d'une quasi-
vraisemblance (McCullagh and Neider, 1989, Generalized Linear Models, 2ème édition, Londres: 
Chooman et Hall) suivant ainsi une approche suggérée par Williams (1982, Applied Statistics 31, 
144-148). On développe le paramètre de dispersion comme combinaison d'une composante de la 
variance (représentant les effets maternels partagés) et une corrélation, typiquement négative, entre 
ovulations intra-brebis. Le nombre d'ovulations (le dénominateur de la binomiale) est inclus comme 
régresseur. 
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APPENDIX 

A.\ The Data 
Factors T (Treatment; 1 : Fecundin; 2: Control), A (Age; 1 : s . 5 ; . . . ; 4: >2.5 years), M (Mating period; 
1 : October 1 ; 2: October 22), variables n (number of ovulations) and x (number of fetuses) per ewe. 

TAMnx TAMnx TA Mnx TAMnx TAMnx 
1 1 1 2 1 
1 1 1 2 2 
1 1 1 2 2 
1 1 1 1 1 
1 1 1 2 1 
1 1 1 2 2 
1 1 2 2 1 
1 1 2 2 1 
1 1 2 11 
1 1 2 2 1 
1 1 2 2 1 
1 1 2 2 1 
1 1 2 11 
1 2 1 2 1 
1 2 1 2 2 
1 2 1 2 2 
1 2 1 4 2 
1 2 1 3 2 
1 2 1 2 2 
1 2 1 2 2 
1 2 1 2 1 
1 2 1 2 2 
1 2 1 3 1 
1 2 2 2 2 

1 2 2 2 1 
1 2 2 2 2 
1 2 
1 2 
1 2 

2 2 1 
2 3 2 
2 2 2 

1 2 2 3 3 
1 2 
1 2 
1 2 
1 2 
1 3 
1 3 
1 3 
1 3 
1 3 
1 3 
1 3 
1 3 
1 3 
1 3 
1 3 
1 3 
1 4 
1 4 

2 3 2 
2 3 1 
2 3 2 
2 2 1 
1 3 3 
1 3 2 
1 2 1 
1 3 3 
1 2 2 
1 2 1 
2 4 4 
2 4 3 
2 4 1 
2 3 3 
2 3 2 
2 2 2 
1 3 2 
1 2 1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

4 
4 
4 
4 
4 

1 
1 
1 
1 
2 

3 
3 
2 
3 
2 

2 
3 
2 
3 
2 

4 2 4 4 
4 
4 
4 

2 
2 
2 

2 
4 
2 

4 2 2 
4 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 

2 2 

2 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
1 
1 

5 
1 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 

2 
3 
2 
2 
2 

2 
1 

2 2 1 3 2 
2 2 1 2 1 
2 2 1 1 1 
2 2 1 2 1 
2 2 1 2 2 
2 2 1 2 1 
2 2 1 2 2 
2 2 1 3 2 
2 2 1 2 2 
2 2 2 2 1 
2 2 2 2 2 
2 2 2 2 2 
2 2 2 2 2 
2 2 2 2 2 
2 2 2 2 2 
2 2 2 2 2 
2 2 2 11 
2 2 2 2 2 
2 2 2 11 
2 2 2 11 
2 3 1 2 2 
2 3 1 3 3 
2 3 1 2 1 
2 3 1 2 2 

2 3 1 3 2 
2 3 1 2 2 
2 3 2 2 1 
2 3 2 2 2 
2 3 2 2 1 
2 3 2 2 2 
2 3 2 2 2 
2 3 2 2 2 
2 4 1 2 1 
2 4 1 2 2 
2 4 1 2 2 
2 4 1 2 2 
2 4 1 2 2 
2 4 1 3 3 
2 4 1 2 2 
2 4 1 2 2 
2 4 2 2 2 
2 4 2 2 2 
2 4 2 2 1 
2 4 2 2 2 
2 4 2 2 2 
2 4 2 3 3 
2 4 2 3 3 

A.2 Estimation of the Under- or Overdispersion Factor </> 
Let 0 , be an initial guess for 4>a—for instance, 0 , = 0. Determine an estimate for ß, say 
ß„ corresponding to <t>„ with the GLM algorithm. Let p, correspond to ß,. The weights w = 
1/(1 + 0(n - 1)) for the ewes are collected in a diagonal matrix W = diag(w). Similarly, the vectors 
b for the ewes are collected in the design matrix B, each row corresponding to a ewe and its vector b. 
Suppose that W, corresponds to 0» and W0 to the true <fo. 

Pearson's chi-square statistic is defined by 

XI = Z w,(x - np,?/(np,(l - p,)\ 

which can be written as the residual sum of squares 

XI = (Y, - B0.)'W.V,(Y, B/U 
where Y» is the vector of (artificial) dependent variables y corresponding to ß, and 0 , and V, 
diag(u.) with u, = np,(l - p,). Furthermore, 

B/S. = Q,W,V,Y„ where Q. = B(B'W,V.B)'B'. 
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Q, is the variance-covariance matrix of the estimator for the linear predictor î = B/8. Ignoring the 
fact that the elements of V, are random variables, it follows (Searle, 1971, p. 55) that 

E(Xl) = E(trace(^J)) 

= trace|(I - Q,W,V,)'W,V.(I - Q.W,V.XW„V,)-| 

+ «B 'G - Q,W,V,)'W,V,(I - Q,W,V,)B(3„. 

Since W,V.(I - Q»W,V#)B = 0, the expression above simplifies to 

E(Xl) = trace|(I - Q,W,V,)'W,V,(I - Q.W,V.XW.V.)-'W.Wj'| 

= traceld - V,W,Q,)W,W5') = £ w,(\ - v,wtq,)/w0, 

where q, is taken from the diagonal of Q,. The products v,w,q, are the "leverages." An improved 
value for (j> may be solved from 

fl = E*,d -u,»v?,)(' + («- my 
This procedure may be repeated until convergence. At convergence 

X\ = trace(I - VWQ) = m - q, 

since VWQ is an idempotent matrix. An alternative expression for solving </> is given by Moore 
(1987). 

A.3 Some GENSTAT Code 
With the following GENSTAT directives the estimate $ = -.0751 is obtained. The algorithm was 
allowed to run for 20 iterations, which in all cases was enough to obtain convergence. A stop criterion 
may be included. 

CALC phi=0 Start with 0 = 0 

FORrun=l . . . 20 20 runs 

CALCw=l / ( l+phi«(n- l ) ) Prior weights 

MODEL [dist=binoniial ; l ink=logit;weight=w] x; nbin=n Logistic regression with 
prior weights 

FIT [pr=*]T*M»A+N Fitting the model and 
saving results from 
the fit 

RKEEPx; leverage=vwq; Pearsonchi=XP2; 

CALC help=w* ( 1-vwq) Calculation of a new 
value for the parameter <t> 

CALC phi=(XP2-SUM(help) ) /SUM( (n -1 )*help) 

PRINT[ipr=*; sq=y] run ,phi ,XP2; f=8 , (10 )2 ; d=0 ,4 ,2 Print the run number, 
<j>, and Xp 

ENDFOR 

The GLM algorithm may be controlled with the RCYCLE directive—for instance, specifying fitted 
values from an iteration step as starting values for the next one; there was no need for that for the 
embryo data since the algorithm runs smoothly enough as it is. 

The quasi-likelihood ratio test for the interaction T.A was calculated as follows: 

CALC phi = -0 .0751 : & w=l / ( 1+phi« (n -1 ) ) 

MODEL[dist=binoraial ; l i n k= l og i t ;weight=w]x ; nbin=n 

FIT T+M+A+N+T. M+T. A+M. A 

RKEEP x ; deviance=qdevl ; df=df1 

FIT T+M+A+N+T.M+M.A 

RKEEP x ; deviance=qdev2 ; df=df2 

CALCQLR=qdev2-qdevl : & df=df2-df 1 

PRINT QLR, df 
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A broad class of generalized linear mixed models, e.g. variance components 
models for binary data, percentages or count data, will be introduced by 
incorporating additional random effects into the linear predictor of a gen­
eralized linear model structure. Parameters are estimated by a combination 
of quasi-likelihood and iterated MINQUE (minimum norm quadratic un­
biased estimation), the latter being numerically equivalent to REML (restrict­
ed, or residual, maximum likelihood). First, conditional upon the additional 
random effects, observations on a working variable and weights are derived 
by quasi-likelihood, using iteratively re-weighted least squares. Second, a 
linear mixed model is fitted to the working variable, employing the weights 
for the residual error terms, by iterated MINQUE. The latter may be regarded 
as a least squares procedure applied to squared and product terms of error 
contrasts derived from the working variable. No full distributional assump­
tions are needed for estimation. The model may be fitted with standardly 
available software for weighted regression and REML. 

Key words & Phrases: GLMM, categorical data, GLM, components of 
variance, overdispersion, quasi-likelihood, pseudo-likelihood, REML, 
MINQUE. 

1 Introduction 

A linear model (LM) 

y = li + £, H = Xß, 

is a useful tool for the analysis of continuous independently distributed observations 

with variances independent of the means. In a LM the linear predictor Xß is equal to 

the vector of means fi. For statistical inference the residual error terms e are usually 

assumed to be normally distributed with mean 0 and constant variance a2. 

A LM may be extended to a generalized linear model (GLM) (MCCULLAGH and 

NELDER, 1989). In a GLM the mean p is related to a linear predictor /? by means of a 

known link function g: 

g(fi) = r] = Xß. 

In a factorial experiment for binomial data with totals n and probabilities n for instance, 

main effects and interactions may be introduced on a logit scale: 
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logit W = logit(n) = log \TZ~) = xß-

This makes more sense than modelling on the original scale, where means ft are re­
stricted to the interval (0;n). For Poisson data, where (i is restricted to be positive, a 
multiplicative model is often appropriate and a logarithmic link function can be used. 

The distribution of the error terms e is from an exponential family, including the 
binomial, Poisson and normal distribution. Parameters in ß may be estimated by maxi­
mum likelihood. In a GLM the variance of the observations is completely determined 
by the mean, possibly except for a multiplicative constant 0, called the dispersion 
factor: 

Vax{y) = 4V(ji). 

For the binomial and the Poisson distribution 0 = 1 . When no full distributional 
assumptions are made and only the relationship between the variance and the mean 
is specified, parameters may be estimated by maximum quasi-likelihood (QL) 
(MCCULLAGH and NELDER, 1989, Ch. 9). 

Two important properties of a LM are relaxed: the linear predictor is introduced on 
the link scale and variances may depend on the means. The assumption of indepen­
dence between observations is retained. 

Another important extension of a LM is the linear mixed model (LMM) (ENGEL, B., 
1990), which allows the incorporation of additional random effects: 

y = fi + Zu + e, n = Xß, 

where « is a vector of additional random effects with design matrix Z. LMM's are useful 
for the analysis of (positively) correlated observations. For statistical inference, 
elements of u and e are usually assumed to be independently normally distributed. 
Often, when u corresponds to c sources of additional random variation, the covariance 
matrix of w is of a block diagonal form: 

Var (M) = diag (A, a}) and Var (e) = A0 al, 

where in many applications the known matrices A, (/' = 0...c) are equal to identity 
matrices. A well known example of a LMM is the split plot model, where correlation 
between observations on the same whole plot, e.g. a plot, batch, animal or plant, is 
represented by a common whole plot "error" u. In the split plot model there are two 
components of variance: al, representing (residual) variation within whole plots and a\, 
representing variation between whole plots that is not "explained" by the residual 
variation. 

In a LMM only the assumption of independence is relaxed: observations with 
common random terms are positively correlated. Linearity still pertains to the scale 
of the observations and variances and covariances are independent of the means. 

In a number of practical situations both GLM and LMM extensions are needed 
simultaneously, e.g. a split plot design for binomial count data with a factorial structure, 
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introducing main effects and interactions on a logit scale. In the spirit of a GLM, a class 
of generalized linear mixed models (GLMM) will be introduced by adding random 
effects to the linear predictor r\ on the link scale, i.e. on the link scale a LMM structure is 
assumed. 

As an example consider the following experiment where different diluents for boar-
semen are compared with respect to motility of spermatozoa. Semen, used in artificial 
insemination of pigs, was diluted with six different diluents. For each diluent 18 bottles 
are prepared and placed in storage at 18 °C. On six successive days, each day from three 
bottles test tubes are taken. After heating to 37 °C two samples of spermatozoa are taken 
from each test tube. To one sample caffein was added. Caffein possibly reduces the time 
needed to bring spermatozoa to their maximal motility. The fraction of normally 
moving spermatozoa y was determined for each sample. Shared effects within bottles 
and tubes may be represented by a random effect ux with variance a\ on the logit scale 
for the probability of normal movement y.. Assuming variation between samples from 
the same test tube to be a multiple of the binomial variance function, conditional upon 
U\, i.e. for a particular bottle and tube: 

E{y\ux)=n, Var (y | «0 = ^ ( 1 - / " ) and logit (//) = x'ß + uu 

where x'ß represents the effects of diluents, time of storage (days) and caffein on the 
logit scale and 

£(«,) = 0, Var(i/,) = <7?. 

The variance function may be obtained as follows. Suppose that a sample contains n 
spermatozoa. Conditional upon bottles and tubes within bottles, assume that correla­
tion between binary data (1 = normal movement, 0 = otherwise) for individual sperma­
tozoa is constant and equal to </>. Then the conditional variance follows for n->oo. 
Observe that, since tp > — l/(n — l), in the limit 0 > 0. Alternatively, and in line with 
the introduction of the bottle and test tube effects on the logit scale, we may assume 
that correlation within a sample is constant and equal to </> on the logit scale. This is 
equivalent to the introduction of a second uncorrelated random effect with variance <j> 
on the logit scale. We now have approximately: 

E(y\ui)=/x, Var(y\ul) = <pLi2(l-!j)2 and logit iji) = x'ß + u,. 

In both models bottles and tubes are explicitly introduced as a source of correlation 
through the random effects ux. Marginal means and (co)variances follow implicitly 
from the model assumptions. Both models may be analyzed with the estimation pro­
cedure presented in this paper. 

The GLMM has been discussed by a number of authors, including ANDERSON and 
HINDE (1988), PREISLER (1988), IM and GIANOLA (1988) and JANSEN (1990, 1992). The 
method of estimation suggested by these authors is maximum likelihood, assuming 
normality for the random effects. However, since the random effects have to be inte­
grated "out" to obtain the likelihood, this involves cumbersome numerical integration, 
e.g. Gauss-Hermite quadrature (ABRAMOWITZ and STEGUN, 1965, p. 924), with severe 
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limitations on the number and structure of random effects in the linear predictor. 
Numerical problems with two crossed random effects are already insurmountable. 

The Gibbs sampler has been suggested as a Bayesian alternative to maximum likeli­
hood, e.g. ZEGER and KARIM (1991), to relieve some of the computational limitations. 
This is a Monte Carlo method for generating observations from a complex joint poste­
rior distribution, when sampling from the conditional distributions is easier. It involves 
a choice of prior distributions for fixed effects and components of variance and rejec­
tion sampling to avoid integration problems similar to those encountered with maxi­
mum likelihood. Because of the vast amount of computation involved and tricky theo­
retical and numerical aspects, such as choice of priors, correlation between simulated 
values, choice of stopping criteria and efficiency of rejection sampling, the Gibbs 
sampler is not an obvious candidate for a general and practical approach to estimation 
in GLMM's (yet). 

The GLMM is a subject-specific (SS) model: modelling is in terms of subjects or indi­
viduals, rather than in terms of the population as a whole. In the latter case models are 
referred to as population-averaged (PA) models (ZEGER, LIANG and ALBERT, 1988). PA 
models concentrate on parameters characterizing the marginal distribution of the 
observations only. In SS models sources of covariance are explicitly introduced through 
the random effects, implicitly defining a highly structured covariance matrix for the 
observations. In PA models the covariance matrix must be positive definite, but is, in 
principle, unrestricted otherwise. SS models obviously are of particular importance in 
those fields of application where random effects have a direct physical interpretation 
and the components of variance and/or predictions for random effects are of primary 
interest, e.g. animal breeding where random effects refer to familial resemblance due to 
segregation of (many) genes. 

In ZEGER, LIANG and ALBERT (1988) a set of generalized estimation equations (GEE) 
is presented for GLMM models for longitudinal data. The GEE is obtained by extend­
ing the geometrical interpretation of least squares: residuals are required to be ortho­
gonal to the tangent space for the mean with respect to the inner product induced by a 
covariance matrix, along the same lines as for QL (MCCULLAGH, 1991). The GEE is 
based on an approximate PA model derived from a SS model. Estimates for parameters 
in the marginal means of the observations are solved from the GEE. The dispersion 
factor and components of variance are clearly regarded as nuisance parameters and 
moment estimates are obtained from additional estimating equations. This is an 
important difference with the estimation procedure proposed in this paper, which is 
intimately related to the SS nature of the GLMM model and estimates the parameters 
on the link scale, making use of the working variable in the iterated re-weighted least 
squares (IRLS) algorithm originally proposed for GLM's (NELDER and WEDDERBURN, 

1972) and later on also for QL estimation (WEDDERBURN, 1974). 
The mean and covariance matrix of the working variable are approximately of the 

same structure as in a LMM, with weights in the residual error stratum. Therefore many 
of the results for LMM's carry over to GLMM's. Taking advantage of efficient numer­
ical methods derived for LMM's, estimation by the estimation procedure proposed in 
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this paper is straightforward, utilizing standardly available software only. The proce­
dure is a combination of QL and iterated MINQUE (RAO, 1973), the last procedure 
being equivalent to REML (PATTERSON and THOMPSON, 1971), when estimates for the 
components of variance are positive. Facilities for QL and REML are available in 
Genstat 5 (Genstat 5 committee, 1987,1990), which is the statistical package used in this 
paper. Basically the estimation procedure is a combination of several iterated least 
squares procedures and no full distributional assumptions are needed. 

In SCHALL (1991) two estimation procedures for a GLMM are derived, purely by 
mimicking the EM algorithm for maximum likelihood and for REML for an ordinary 
LMM (see ENGEL, B., 1990) for the IRLS working variable. BRESLOW and CLAYTON 

(1991) present a penalized quasi-likelihood method (PQL) for a GLMM, which can also 
be formulated in terms of the IRLS working variable. Both SchalPs REML type algo­
rithm and Breslow and Clayton's PQL approach may be expected to produce results 
similar to those obtained with the method proposed in this paper. They are briefly 
discussed in §6. 

The outline of the paper is as follows. First GLM's and LMM's will be considered in 
more detail in the next section. Then in §3 the class of GLMM's will be introduced. The 
estimation procedure will be discussed in §4. In §5 this procedure will be compared with 
other estimation procedures by re-analysing a number of data sets from the literature. 
Conclusions will be summarized in §6. 

2 GLM's and LMM's 

GLM's 

A GLM may be fitted by iteratively re-weighted least squares (IRLS) (NELDER and 
WEDDERBURN, 1972). A linearization of the mean fi around an a priori value /?„ for ß: 

»--+(t)>-'^-(ii(il<'-« 
motivates the following working variable: 

Cj = (jj - n,j)g'(u*j) + g(ß,j), 

where x) is they'-th row of the design matrix X, corresponding to they-th observation y} 

with mean y.h j = 1... N. Now, to first order: 

E (Cj) « x) ß, Var (£,) » <t>(g'(fj)2 Vfa), 

and /?„ may be improved by weighted least squares on £. Repeated use of weighted least 
squares solves the equations: 

V tij-d) n ; i 

2. Tw-pTT*/*= °' k = \...p, 
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where xjk is the k-th element of x, and p is the number of elements of ß. Within the 
GLM framework these are the maximum likelihood equations obtained by putting 
the first derivatives of the log likelihood equal to 0. More general, when no full distribu­
tional assumptions are made and only the relationship between variances and means is 
specified, these are the quasi-likelihood equations defining the quasi-likelihood Q 
(WEDDERBURN, 1974) as a primitive of the left hand sides: 

N " '(v -t) 

For details see MCCULLAGH (1983, 1991) and MCCULLAGH and NELDER (1989, ch. 9). 
When V(ju) happens to fit within the GLM frame work, e.g. 

V(M)=^^-, V(M) = V\ « = 1,2,3, 

which are variance functions for binomial, Poisson, gamma and inverse Gaussian distri­
butions, quasi-likelihood and maximum likelihood (for these distributions) will yield 
the same results. 

LMM's 

Consider the linear mixed model 
c 

y = [i + Zu + E = Xß+^ZiU,, ZÇj = IN, u0 = s, 

/=o 

u = (u\...u'c)', E(ui) = 0, Var(«,)=^,<T,2, ; =0 . . . c , 

u0, U\... uc independent. 
Minimum norm quadratic unbiased estimation (MINQUE) was proposed by RAO 
(1973) as an estimation procedure for the components of variance of a LMM. MINQUE 
may be derived as a generalized least squares procedure in the dispersion-mean model 
(SEARLE, 1979; see also VERDOOREN, 1980). From N —p linearly independent error 
contrasts (linear combinations of the observations with mean 0) collected in, say, Ky, 
squares and products are formed. These are the elements of the matrix Kyy'K'. The 
elements on and below the diagonal are stacked in a vector s. The expectation of s is 

E(s) = Fo\ 

where F is a known matrix and the elements of the vector a2 are the unknown com­
ponents of variance: a2 = (CTQ, <??, ••• a1)'- Generalized least squares on s, with prior 
values for the components of variance to evaluate Var (s), yields MINQUE. Iterative 
generalized least squares, prior values becoming starting values, yields iterated 
MINQUE. The iterated MINQUE estimates satisfy the following equations: 

y'PZtA.Z'iPy = trace {Z\PZ,A), i = 0... c, 

where 
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p=v~l- v-xx{x'v-^x)-xx'v-\ 
C 

F = Var(>>) = I Z,A,Z',o]. 
1=0 

The same set of equations is obtained when, under normality, the derivatives of the 
likelihood of Ky are put equal to 0, yielding REML estimates. Hence, when the esti­
mates for the components of variance are positive, iterated MIN QUE and REML yield 
the same results. In this paper a Fisher scoring algorithm for REML, implemented in 
Genstat 5, was used. 

3 Formulation of the generalized linear mixed model (GLMM) 

The basic model 
Conditional upon the random vector u = {u\... u'c)', observations yj, j = 1... N, are 
independent with conditional means /Xj and variances V(ßj), where V(-) is a known 
function. The known link function g transforms the conditional expectations to a linear 
scale: 

sinj) = 1j = x'jß + z'j u, 

where x) and z) are known vectors of length/» and q respectively, they'-th rows of design 
matrices X and Z for fixed effects and random effects in the linear predictor. The 
elements of the <?,xl vectors uh i = 1... c, are uncorrelated and 

E(u,) = 0, Vai(u,) = ajlq, 

The total number of random effects is q = 2 / = i Ri- Suppose that Z is partitioned in 
correspondence with u = {u\... u'c)': Z = (Z)... Zc) and let G = Var (u) = diag (aflQi). 

Extension of the model 
V(ju) may be replaced by V(ji, <j>), where </> is an additional unknown dispersion param­
eter. Unless ^ is a simple multiplicative constant, i.e. V(ji, <p) = </> V(M), the estimation 
procedure presented in §4 has to be modified, as will be discussed later on. 

Moments on the original scale 
It is assumed that third and higher order moments ofu\... uc are of order CT,3, or for sym­
metric distributions of order of. Suppose that T = (ẑ  ... r^)' denotes the vector of means 
and D = (djj) the covariance matrix of the observations (ƒ, ...yN)' on the original scale, 
i.e. marginal moments, integrating out the random effects u. 

The dependence of the conditional mean n on the random effects u will be denoted 
as fi(u). T and D will be approximated for small of. Now: 

where Op(a
3) is short for 0,,(max (of)). So 
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^•^^""((âH^ 
Furthermore 

)2„ \ /"a 2 5 ^ \ /a //, 
du du' )Adâh'''h'v'p)z'2'-

where function h denotes the inverse of the link function g, i.e. fij = h(rjj). Con­
sequently: 

zj = f,j(0) + {h"(x'jß)z'JGzj + O(ai). 

Often the elements of z, will be 0 or 1 and: 

r ;=/, ;(0)+}/*"(*;/?) X a,2+0((T3). (1) 
1 = 1 

Before we proceed to the evaluation of covariance matrix D, let's have a look at an 
example: 

Example: g(jj) = log (//), c = 1, e.g. a split plot experiment with a multiplicative struc­
ture for the treatment effects. 

h(rj) = e\h"{x'jß) = e*'>ß=ßJ(Q), 

G = Ia], z'j Gij = a}. Hence 

Tj = exJß(\ + \<72) and log (r,) « \ a] + x) ß. 

To simplify the notation, V(ji{u)) is denoted as V(u) = diag (v,(w)). Now: 

D=Ett(V(u)) + VatMu)). (2) 

First we tackle the expectation on the right hand side of (2). 

v,.(«) = v;(0) + ( M u + \u' l-f%-\ u + Op{a\ 
\au /o \dudu /0 

£ ( v » ) = v,-(0) + i trace ((J^) <?) + 0(a3) and 

9 Vr~) =W;(0)h'(x'Jß)1 + v'i(0)h"(x'jß)}zJz'j, 
du du' )0 

where v)(0) and v"(0) are derivatives with respect to fij evaluated for u = 0, i.e. /Uj = x) ß. 
Now for the variance of the right hand side of (2): 

Piecing it all together: 
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djj = v;(0) + | K(0)A'(x; ß)2 + VjWh'ix} ß) + Ih'ix) /?)2}z; Gz, + 0(a3), 

djj. = h'(x'j ß)h'(x'j.ß)z'j Gzy + 0{o\ j +f. (3) 

Often, z'j Gzj = 2 / = i a^ while z/ Gz,- is a sum of a subset of a]... a2 representing a 
covariance on the link scale. 

Example (continued): let V(p) =/z, e.g. Poisson data. 

h'(x'Jß) = h"(x'Jß) = ex''ß = vJ{0), v;(0) = l, y?(0) = 0. Now 

djj « e"Jß + \\ex'iß + 2e2x''ß)a\ and 

djy»o\e*>f + *l», j±j', 

when^ and yy have one of the random effects in common, 0 otherwise. Hence, ignoring 
terms of order a\: 

dj, ~TJ + <T2T], 

djy^alxjTj' or 0, j±j'. 

Expressions (1) and (3) may give an impression of the impact of the parameters, the 
components of variance in particular, on the original scale. The example illustrates that 
a SS model can motivate the choice of a particular, highly structured, PA model, 
although the latter model will not always show such agreeable features as in this case. In 
general, inference and interpretation of results for the estimation procedure proposed 
in the next section will be mainly restricted to the link-scale. Results on the original 
scale may be obtained from back-transformation by h(-) = g~'(X correcting, up to first 
order, for the components of variance. 

4 Estimation 

The basic algorithm 
Estimation proceeds in two steps. 
Step 1 (GLM step): 

(i) Conditional upon u, the expectations nhj = 1... N, are estimated by QL; or equi-
valently, when the conditional distribution fits within the GLM frame-work, by 
maximum likelihood. The estimates will satisfy the following equations: 

K Ä S ) " - 0 1 -1™«- <4) 

P Q 

Sißj) = X Xikßk + X ZjmUm, j = 1 ... N, 
k=\ m=1 

where x/k and z/m are elements of vectors x, and z, respectively. Although there 

65 



S. Engel and A. Keen 

may not exist a unique solution for ß k, k = 1... p and « ra, m = 1 ...<?, we will assume 
that the solution for pj,j = 1 ...N, is unique. The equations may be solved by 
iterated least squares on a working variate 

where fif1 denotes the current value for n} and fif + ̂  is obtained from weighted 

least squares on ^ ' + 1'. For the final estimates fi/ 

(J = fr) = (yj-fij)g'(fij) + g(AJ). 

For C = (ft... ÇNy, g(fi) = (gfai) - ? W ) ' and V(p) = diag (V(/ij)), to first order: 

£ ( C | « ) ~ g M , VarCClKNdiagtgtu) 2 )^) . 

Step 2 (LMM step): 

(ii) Now the u, will be returned to their proper status as random effects. 

E(0 = Eu(E(C\u)^Eu(g(M)) = Xß 

Var (C) = £„(Var (CI «)) + Var (£„(C | «)) « £„(diag (g'O/)2) V(ji)) + ZGZ'. 

(iii) An estimate is needed, possibly up to an unknown constant o%, of the diagonal 
matrix 

£„(diag (g'iju)2) V(n)) = d W-' = ol diag (w"1). 

For the moment suppose that we have acceptable estimates Wj. Later on it will be 
discussed how these estimates may be obtained. We now have 

E(C)*=>Xß, Var(C) « ZGZ' + W~xol, 

which is the structure of an ordinary LMM with weights WÏOÏ the residual stratum, 
(iv) Estimates for the variance components c2, a}... ff2 are obtained by iterated 

MINQUE, which is yet another iterated weighted least squares procedure, but now 
applied to squared and product terms of error contrasts obtained from Ç. Fisher 
scoring as implemented in Genstat 5, with special features for REML, was used to 
obtain estimates for the components of variance. The following set of equations 
will be solved for a2, a\... a2: 

ÇPZ, Z'jP( = trace {Z\PZ^, i = 0... c, (5) 

with 

p = £r' - Qrxx{x'QrlxYlx'Qr\ 
c 

Q = ZGZ' + W~xal = Y oJZ,Z'i + W~X<JI 

Estimates for fixed effects ß may be obtained from generalized least squares: 

ß = (X'Q-1X)-]X'U-lC, (6) 
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predictions, say û, for random effects may be obtained from regression, similar to 
best linear unbiased prediction (BLUP) in a LMM: 

ü=GZ'U-l(C-Xß), (7) 

where Q and G denote Q and G evaluated at the estimates ÓQ ... ô].. Estimates ß and 
predictions « may be shown to satisfy the mixed model equations: 

X'WX X'WZ \jß\ lx' wc 

Z'WX Z'WZ + CT0G / \ « / \z'wçj 

or in terms of the original observations: 

X' Wûiag (gW(y - fi) = X' W{g{ß) - g{fi)) and (9) 

Z '^d iag (g'(j2))(y - fi) = Z' W(g(ji) - g{fi)) + a jô" 1«, 

where fi is from step 1. 
Observe that when the link function is the identity, such as is the case in the clas­
sical mixed model for normally distributed observations, step (1) simply repro­
duces the original data: £ = y. In the classical mixed model: V{) = 1 and W = I, 
step 2 is simply REML on the original observations. 

Equations (4), (5) and (6) are the estimating equations for steps 1 and 2 of the estimating 
procedure. Since REML is based on a normal likelihood for the error contrasts, the esti­
mation procedure shows some similarity to pseudo-likelihood for independent data 
(CARROLL and RUPPERT, 1988, Ch. 3). 

Extending the basic algorithm 
Step 1 of the algorithm, in some instances, may be rather inefficient. For instance, for 
an observation with a contribution of a random effect which appears only once in the 
data, C will be equal to g(y). In such cases step 1 may have to be modified. For example, 
suppose that offspring of dams are observed, with dam as a random effect, then for off­
spring of litters with littersize 1, observations should not be analysed conditional upon 
the dam effect in step 1, i.e. the dam stratum should be pooled with the lowest stratum 
in the analysis. It is rather tempting to add some extra steps to the estimation procedure, 
employing the results from step 2, such as: 

Step 3a: Update the variable f and weights w and repeat step 2. A prediction of u is 
needed and an obvious candidate is û from (7). We can go even further; 

Step 3b: Repeat step 2, updating Ç and w each time, until convergence. To reduce the 
computational load, iterated MINQUE may be replaced by ordinary 
MINQUE, which actually corresponds with one step of the Fisher-scoring 
algorithm for REML. 

With steps 1,2 and 3b, steps 1 and 2 merely serve to generate proper starting values for 
step 3b. Addition of 3b is intuitively attractive and often computationally feasible. Any 
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theoretical justification of 1,2 and 3b will be asymptotic and will probably also cover the 
combinations of steps 1,2,3a and of steps 1,2. Whether there is any practical gain in 1,2, 
3b or 1, 2, 3a over 1, 2 is not clear yet. 

Modification of the basic algorithm for extended variance functions 
For the extended model, step 2 may have to be modified for the variance function 
V(ß,(f). The variance function <j> V{fi) offers no special problems since it has no bearing 
on W. The scale parameter <t> will be equal to, or part of, the residual component a\. 

For the more general variance function V(fi, <f) several approaches are suggested in 
the literature for estimation of <p. WILLIAMS (1982) suggests a method of moments 
(MM) where 0 is obtained by equating Pearson's chi-square to its degrees of freedom, 
see also MOORE (1986, 1987) and MOORE and TSIATIS (1991). Another, deviance orien­
tated, approach, is extended quasi-likelihood (EQL) (NELDER and PREGIBON, 1987; 
MCCULLAGH and NELDER, 1989, §9.6 and Ch. 10.). Pseudo-likelihood (PL) is yet 
another method which relates both to MM and EQL. For a discussion of PL and EQL 
see DAVIDIAN and CAROLL (1988) and NELDER and LEE (1991, 1992). 

Before we proceed to the estimation of W we will briefly look at a few examples of 
"extended" variance functions (for convenience dropping indices j referring to the 
observations): 

Examples: 
(i) V(M,<p)=U + fa\ 

this is a popular variance function for overdispersed Poisson data (BRESLOW, 1984, 
1989, 1990). It is the variance of a negative binomial distribution and may be 
obtained by sampling the Poisson parameter from a gamma distribution. Ignoring 
higher order terms, it may also be obtained by adding independent error terms, 
with mean 0 and variance 0, to the individual observations on the log scale. 

(ii) V{ii,4)=M{l-?)(l + 4(n-l)), 

this is an example of a variance function for overdispersed binomial data, it is the 
variance of a beta-binomial distribution (CROWDER, 1978; WILLIAMS, 1982, 1988; 
PRENTICE, 1986; KÜPPER et al., 1986) and correlated binomial distribution (KÜPPER 

and HASEMAN, 1978; ALTHAM, 1978) and relates to the correlated beta-binomial 
distribution (PAUL, 1987). For a practical example and some discussion see ENGEL 

and TE BRAKE (1992). By adding independent errors to the individual probabilities 
on the logit scale, again with mean 0 and variance <p, ignoring higher order terms, 
the variance function 

"<"•"-" H IHIHI) 
is obtained. 

When the basic algorithm is extended, parameter <p in the extended variance function 
should be updated as well. For instance, for steps 1, 2 and 3b, by equating Pearson's 
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chi-square to its degrees of freedom, after each repetition of 3b. Note that two of the 
variance functions discussed in examples (i) and (ii) are approximately in line with the 
mixed model structure on the link scale, when 0 is positive: the extra variation may be 
introduced by adding individual error terms on the link scale with variance <p. 

Estimation of W 
We will now turn to the estimation of W. First we will have a look at a number of special, 
but practically relevant, cases. 
1. Log link and quadratic variance function (for quantitative response variables): 

g{n) = \og{n), V{li) = ^2. (11) 

Now w = 1 and <r2 = <p, i.e all weights are equal. This covers e.g. the analysis of 
sample variances under a factorial structure. 

2. Logit link and "quadratic" variance function (e.g. binomial data): 

^)=,ogU-V v^^i^tt. 
\n-pl n 

Again w = 1 and al = <j>. An example is the "leaf-blotch on barley" data, described 
in MCCULLAGH and NELDER (1989), §9.2.4. In this example percentages of leaf area 
affected are observed. The data is not binomial, but with ß a percentage, 
g{/u) = log {nl (100 - n)) and V(p) = ^2((100 - //)/100)2. The variance function may 
be obtained to first order by introducing a random effect with variance 4> f ° r 

logit (u/100) and also follows as the limit for n - oo of Var (lÓOy/n) = ÏOO2 V(ju, <p)/n2, 
with V(ß,<t>) from (10). 

3. When g is the variance stabilizing transformation: 

gU2 l 

the weights are constant. (1) and (2) are special cases. Other, less important, 
examples are the square-root transformation in combination with Poisson data and 
the angular transformation in combination with binomial data. 
Log link and power variance function: 

g(li) = logfa), Vfa) = W, 

with a known. Then: 

' w~l = Evifo-1) = </>Eu{e
(X'^Z'u){a-2)) = <S>ex'^a-1)Eue

z'u cc ^'/»(«-fl 

The weights do not depend on the distribution of u. Estimates for quantities 
(x'i — x'2)ß may be obtained from an ordinary least squares fit on f, ignoring the 
correlation structure. (1) is a special case. 
Logit link and binomial variance function: 

^ ) = L o g U - ) , K ( , ) = ^ ^ , then 
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1 

V(MY 

a property defining canonical link functions, and 

w =E"[w))= • 
When the u's are symmetrically distributed: 

, £„(ezV)cosh(x7J) + l 
W cc , 

and for normally distributed w's: 
Jap 

, e y cosh (x'/?) + 1 
W cc . 

n 

For large a,2 relative to ß: w~l oc cosh (x'/?)/n. For small CT,2 relative to ß: 
w~ ' oc (cosh (x'ß) + l)/n. 
Often for binary data the of are small, x'ß may be estimated by ordinary least squares 
on f. 

Generally, an obvious estimate for w-1 is w~l = V(fi)g'(fi)2, where fi is obtained from 
the first step of the estimation procedure. Observe that V(/2)g'{/2)2 may often be an 
accurate prediction for V(/u)g'(ji)2, but that does not generally imply that it is a con­
sistent estimator for Eu(V(jx)g'(ji)2). To that end the variance components a2 have to 
be relatively small, otherwise w~l may be an asymptotically unbiased but inconsistent 
estimator for w_1. When \î>~] = V(/Î)g'(fi)2, it follows from (4) that the lefthand sides 
of (9) will equal 0 in step 2, or 

X'W(g(jl) - g(/;)) = 0 and Z'W{g(fi) - g(ju)) = <r0
2 G~lu, 

the g{fi) are playing the role of observations on the scale of the link function. 
In many cases it will be possible to improve on w. For the logit link and binomial 

variance function in the context of a split plot, for instance, the following procedure 
may be useful: from estimates for/z (step 1) and Xß (ordinary least squares on Ç after 
step 1), residuals û may be recovered. An improved estimator, say w, may be obtained by 
taking bootstrap samples «(,)... W(fl) and evaluating w~x as the mean of V(fi(s))g'(fi(s))

2, 
s = 1... B, with fi(s) the mean p evaluated in ß and û(sy One advantage of using an im­
proved estimator, more closely approximating Eu{V(ji)g'{ß)2), may be that weights are 
"smoothed", reducing instability due to the presence of a few extreme weights. 

(Asymptotic) properties of the estimators 
Properties of the estimators should follow from the relevant estimation equations, e.g. 
(4), (5) and (6) for steps 1,2. For steps 1,2,3b estimation equations follow from (5) and 
(8) or equivalently (9), replacing fi by ß. Equations (9) simplify to: 
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Z'W diag (g'(ti))(y -p) = ffo2 G'lu. 

Clearly these equations are not easy to tackle. The asymptotics of QL (MCCULLAGH, 

1983) and (iterated) MINQUE (BROWN, 1976; RAO and KLEFFE, 1988), see also MILLER 

(1977), for concistently estimated weights (er,2 -» 0), offer some justification for "large" 
samples and "small" components of variance. Genstat 5 (1987,1990) produces approxi­
mate variances and covariances for estimated fixed effects and components of variance 
and mean squared errors for the predictions of the random effects for a LMM under 
normality. These approximations, obtained after step 2 or its last repeat, may be used 
for the final estimates and predictions in the GLMM. The assumption of normality can 
be relaxed, but at the least the kurtosis should be close to 0 for the random effects. 

Simulation will have to show how well the estimation procedure performs for prac­
tical sample sizes. A Monte Carlo study for over-dispersed binomial data is in progress 
and results will be reported elsewhere. 

With an additional non-multiplicative parameter <j> in the conditional variance 
function, variability due to the estimation of <p is ignored. In some instances this may 
not be a serious problem, e.g. for V{pi, (f) = / / , 0 is usually restricted to the values 
0 = -1,0*, 1,2,3. In other situations, e.g. V(fi,$) =//(l - njn){\ + </>(n - 1)) for 
"binomial data" where 0 is a correlation coefficient, the ignored variability may 
seriously affect test results obtained from step 2. Even for independent data the latter 
problem is still unresolved. 

The use of iterated MINQUE, which is equivalent to REML, may be expected to 
reduce the bias in the estimation of the variance components, relative to maximum 
likelihood, for normally distributed random effects. 

5 Analysis of some data-sets 

The preparation of chocolate cakes 
This is hardly a realistic experiment, but it serves for a comparison with a quasi-likeli-
hood based method for (balanced) data with a multiplicative structure for fixed and 
random effects from FIRTH and HARRIS (1991). The data of this experiment is from 
COCHRAN and Cox (1957), p. 299. Three recipes for preparing the batter for a chocolate 
cake were compared. In addition, six different baking temperatures were tested. From 
a mix made by any recipe, six cakes were baked, one at each temperature. There were 
15 replications, replicates representing time differences. The response variable is a 
"breaking angle", measured for each cake. The 45 batches of cake mix may be con­
sidered as "whole plots", with recipes and replicates as whole plot treatment factors. 
The 6 portions of each batch used to bake the cakes are the "sub plots", with tempera­
ture as a sub plot treatment factor. Firth and Harris estimate fixed effects from the 
quasi-likelihood equations (for non-diagonal covariance matrix of the observations), 
which for this particular type of model is shown to be equivalent to maximum likeli­
hood based on the gamma distribution. Estimates for variance components are 

71 



B. Engel and A. Keen 

obtained from rather arbitrarily chosen quadratic forms. For non-diagonal covariance 
matrices the quasi-likelihood Q is defined by a, generally path dependent, line integral. 
A particular path is chosen and test results are obtained by comparing quasi-deviances 
— 2Q, referring differences to chi-square distributions, using appropriate scaling 
factors. For analysis of balanced models with multiplicative effects and errors see also 
ENGEL, J. (1990) and the next data-set on soldering failures of printed circuit boards. 

Y = exßSiE2, E{E) = 1, Var(fi,) = 0,, / = 1,2, £b£2 independent. 

Conditional upon whole-plot errors ef. 

ß = E{Y\ex) = ex'ß£u 

log Cu) = x'ß + log (e,) = (x'ß - £ 00 + «,, 

V(fi) = Var(y\ei) = 02S, 

where \<j>x is included in the general mean on the log scale, «, is the whole-plot error on 
that scale: U] = log(e,) + \<j>\ and 

£ ( « , ) « 0, Var (Bl) = Var (log (e,)) » Var (e,) = 0,. 

In the notation of this paper: o\ = <p\, the variance component for batches, and 0 = <p2, 
the dispersion parameter of the extended variance function and residual component of 
variance on the log-scale. As was shown in §4, case ( 1 ), expression ( 11 ): w = 1. Estimates 
for the components of variance and F-values for the fixed effects R and T x R (R = 
recipes, T = temperature), are shown in Table 1 for our procedure, for ANOVA on log 
transformed breaking angles and for the analysis of Firth and Harris, f-values for the 
main effects of temperature and replicates are < 0.001 in all analyses and omitted from 
the table. 

Table 1. Some results for the chocolate cake data 

Type of analysis 

GLMM 
log(angle) and ANOVA 
Firth and Harris 

*? 
0.0045 (0.0021) 
0.0048 (0.0022) 
0.004 

02 

0.0191 (0.0019) 
0.0192 (0.0019) 
0.0219 

"T*R 

0.50 
0.52 
0.61 

PR 

0.15 
0.16 
0.12 

GLMM steps 1,2 yield the same results as steps 1,2,3a and steps 1,2,3b. From the table 
it can also be observed that ANOVA on log transformed breaking angles (assuming in 
fact the log-normal distribution with whole-plot variance log(l + ^1) and residual 
variance log (l + 02)) yields virtually the same results as steps 1,2 for the GLMM. This 
is not surprising for observations with relatively small variation in the means (so that 
g(y) and its first order approximation £ are close). 

Soldering failures in print panels 
The data is from an experiment with print panels where for each panel the number of 
soldering failures is observed. The experiment has been carried out with five replica-
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tions at each combination of three soldering locations and two soldering methods. The 
thirty panels are the main plots of a split plot design. The sub-plot factor, applied to 
smaller sub-panels, is the type of copper pattern, at two levels. This data has been 
analysed by ENGEL, J. (1986, 1990). The data is typically Poisson-type, although extra-
Poisson variation may exist. This is the approach taken in ENGEL (1987). In ENGEL 

(1990) a multiplicative model, both for fixed and random effects, similar to FIRTH and 
HARRIS (1991) is assumed. Separate analyses for the error-strata are performed, based 
on a QL approach with a gamma-type variance function and log link, critically depend­
ing on the balance of the design. Estimates for components of variance are obtained by 
equating Pearson chi-square statistics or quasi-deviances to their expectations. The 
analysis in ENGEL (1986) is also a combination of separate analyses on the whole- and 
sub-plot level, employing the Dirichlet multinomial and the negative binomial distri­
bution. At the lowest level, observations are assumed to follow Poisson distributions. 
Some results for various models and methods for analysis are shown in Table 2, a\ is the 
whole-plot variance on the log scale, <j> the (over)dispersion parameter for the sub-plots, 
L x M x P the three factor interaction. 

Table 2. Some results for the print panel data 

Model/analysis 

GLMM Steps 1, 2 
(V(/i,t/>) = fo) Steps 1, 2, 3a 

Steps 1, 2, 3b 

GLMM {V(ii,<p) = <f>fi2) 

ANOVA and Log transformation 
ENGEL (1986) 

ENGEL (1990) Approach QA1 

6\ 

0.163 (0.072) 
0.189 (0.074) 
0.193 (0.077) 
0.260 (0.098) 

0.248 (0.097) 

-
0.205 (-) 
0.199 (-) 

<fi 

0.98 (0.28) 
0.86 (0.25) 
0.90 (0.26) 

0.142 (0.041) 

0.156(0.045) 

Fixed at 1 

0.152 (-) 
0.142 (-) 

'LxUxP 

0.09 
0.06 
0.07 
0.01 

0.02 

0.10 

0.01 

For the approach referred to as QA1 in ENGEL, J. (1990), the first line corresponds to an 
estimate (j> derived from a deviance and the second line to an estimate from an appro­
priate Pearson chi-square statistic. Since the estimator ô\ depends on ij>, there are also 
two estimates for the whole-plot component of variance. For the GLMM with unequal 
weights (V(ji,(j>) = 0//), P-values for the three factor interaction are derived by referring 
the Wald statistic (BUIST and ENGEL, 1991, 1992) to a chi-square distribution. For 
ANOVA on log transformed data and for the GLMM with variance function <j>ß2, where 
weights are equal and the balance of the design carries over to the log scale, .F-tests are 
used. Results for the GLMM with V(ji, <f>) = 0//2 do not change from step 1,2 to step 3a 
or 3b and also are close to the results of the ANOVA on log transformed data and of 
QA1. It is easily shown that for balanced data and the variance stabilizing link function 
the estimate for <j> from step 2 is equal to the traditional estimator obtained from 
Pearson's chi-square in step 1. Inference with respect to the three-factor-interaction to 
some extent does depend on the variance function assumed. It is hard to decide which 
variance function is most appropriate on the basis of the data, although the nature of the 
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problem seems to support the assumption of Poisson variation at the sub-plot level. The 
estimated dispersion factor is in perfect agreement with this assumption. 

Radiation of cancer cells 
The data set originates from an experiment to measure the mortality of cancer cells 
under radiation and is presented in SCHALL (1991). Four hundred cells were placed on a 
dish, and at each of nine occasions three dishes were irradiated. After irradiation the 
number of surviving cells was counted in each dish. To establish the natural mortality 
data corresponding to a zero-dose was analyzed. Our results will be compared with 
Schall's REML type algorithm, see also §6. Considering, apart from the binomial varia­
tion at cell level, with a multiplicative dispersion parameter </>, only one component of 
variance a\ between occasions, at the logistic scale, steps 1 and 2 result in estimates 
â\ = 0.221 (0.144) and 0 = 1.819 (0.606). Estimates obtained by Schall are almost iden­
tical: <T? = 0.225 and <j> = 1.810. Steps 1, 2 and 3b result in estimates â\ = 0.221 and 
0 = 1.817, with standard errors as before. <j> > 1 indicates the presence of extra-binomial 
variation. One way to "explain" the over-dispersion is to introduce an additional com­
ponent of variance a\ between dishes on the logistic scale. Schall still estimates a multi­
plicative dispersion parameter 0 and for comparison we do the same, although now it 
seems natural to fix <p at value 1, i.e. drop </> from the model. With steps 1,2 and 3b, ana­
lysing the binary observations per cell, i.e. n = 1, estimates a\ = 0.221, a\ = 0.0098 and 
$ = 1.002 are found. Schall obtains â\ = 0.222, ô\ = 0.010 and <p = 0.937. 

6 Discussion 

In an ordinary LMM the random effects can be integrated out of the simultaneous like­
lihood of observations ƒ and random effects u analytically. Numerical problems mainly 
involve storage and inversion of large matrices, which to a large extent can be overcome 
by exploiting the structure of the covariance matrix of the observations, see ENGEL, B. 
(1990). 

In a GLMM with full distributional assumptions, e.g. normality for the random 
effects u, integration can generally not be performed analytically and maximum likeli­
hood estimation is often bogged down by cumbersome numerical integration routines. 
Integration is usually by Gauss-Hermite quadrature (ABRAMOWITZ and STEGUN, 1965, 
p. 924), offering serious problems when a large number of quadrature points is needed 
and when there are crossed random effects in the model. Little seems to be known 
about robustness with respect to distributional assumptions for the random effects. 

A distinct advantage of the estimation procedure in this paper is that many of the 
results for LMM's carry over to GLMM's, such as procedures for constructing con­
fidence intervals for components of variance or approximate f-tests for contrasts of 
fixed effects accounting for variation due to estimation of the components of variance, 
see ENGEL, B. (1990). The combination of QL and MINQUE, both least squares pro­
cedures, offers some scope for robustness. Clearly for a number of practical problems, 
e.g. relatively small components of variance and fairly large binomial denominators or 
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Poisson means, steps 1 and 2 should produce acceptable results. Extension of the esti­
mation procedure with step 3a or 3b is intuitively attractive and may remove possible 
inefficiency following from step 1. A formal justification of steps 1,2 and 3b will have to 
be based on the corresponding estimating equations, which is a tough nut to crack. 

Recently, related estimation procedures have been proposed by BRESLOW and 
CLAYTON (1991) and SCHALL (1991). Schall's REML based algorithm is similar to 
an extension of our estimation procedure (steps 1, 2 and 3b), except that MINQUE 
represents a step from Fisher scoring and not from the EM algorithm for REML. The 
random character of the conditional variances V(/j)g'(fi)2, through their dependence on 
the random effects u, seems to be completely ignored: the elements of a supposed co-
variance matrix in expression (2.3) in Schall's paper are actually random variables. 
Breslow and Clayton's PQL approach is motivated by quasi-likelihood arguments. The 
random effects are assumed to be normally distributed, which is equivalent to the use of 
a sum of extended quasi-likelihoods for identity link and constant variance functions 
for the sub-vectors ui...uc of«. The quasi-conditional likelihood ofy given u is replaced 
by a quadratic approximation in terms of the random effects. The quadratic approxima­
tion is around the (current) predictions it. The random effects are easily integrated out 
of the product of the exponentials of the approximate quasi-conditional-likelihood of y 
given u and the quasi-likelihood of«. This yields an approximate marginal quasi-likeli­
hood for the observationsy. In the derivation, where mathematically convenient, some 
terms, e.g. g'{n)2V{n), are assumed to vary slowly with p and ignored. Conditional 
quasi-deviance residuals are replaced by Pearson residuals, which gives a pseudo-likeli­
hood flavour to the method. Not surprisingly the combination of a quadratic approxi­
mation and Pearson residuals leads to a normal log likelihood for the IRLS working 
variable £. A REML type adjustment for loss of degrees of freedom due to estimation of 
fixed effects, rather poorly motivated in this context, finally yields a REML log likeli­
hood. So, although from quite a different starting point, PQL results in the same 
algorithm as steps 1,2,3b, possibly except for (minor) differences in the order in which 
parameter estimates and predictions for the random effects are updated. 

Both the quadratic approximation of the quasi-conditional-likelihood and the 
approximation of quasi-deviance residuals by Pearson residuals in Breslow and 
Clayton's paper will improve under "small dispersion asymptotics", e.g. large totals « 
for binomial data or large means for Poisson data. Similar conditions will improve the 
performance of the MINQUE procedure in steps 2,3a and 3b and the usefulness of the 
working variable from step 1. The assumption, in the derivation of PQL, that g'(jj)2 V (u) 
varies only slowly with fi, also requires that components of variance are relatively small. 

LONGFORD (1991) develops an approximate maximum likelihood method under full 
distributional assumptions, e.g. logistic regression with additional normal random 
effects on the logit scale. He also utilizes a quadratic approximation, but around 0 and 
not around û, again implying that components of variance should not be too large. 

For the data sets we analysed, including the examples in §5, differences with results 
from specialised methods, e.g. for special link and variance functions or for balanced 
designs only, were generally small. Present research includes a simulation study of the 
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prope r t i e s of e s t ima t e s f rom s teps 1,2 a nd 1 ,2 ,3a o r 3b , a nd t h e qua l i ty of a pp rox ima t e 

va r i ances a nd covar iances a nd W a l d t es t s de r ived f rom t h e last R E M L s tep . A compar i ­

son w i th m a x i m u m l ike l ihood for no rma l l y d i s t r i bu ted r a n d o m effects a n d a G L M at 

t h e lowes t s t r a t um, b o t h w i th r e spec t t o efficiency a nd r obus t ne s s , is a l so cons ide red . 

Shou ld t h e e s t ima t i on p r o c edu r e p r e s en t ed in t h i s p ape r ga in in respectabi l i ty , t h e n a 

genera l a nd useful t oo l will h ave b e c o m e avai lable to t ackle p r o b l e m s wh i ch so far a re a 

s ou rce o f c ons ide rab l e d i scomfor t t o m a n y a n appl ied s ta t is t ic ian. 
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Summary 

A class of generalized linear mixed models can be obtained by introducing random effects in the 
linear predictor of a generalized linear model, e. g. a split plot model for binary data or count data. 
Maximum likelihood estimation, for normally distributed random effects, involves high-dimensional 
numerical integration, with severe limitations on the number and structure of the additional random 
effects. An alternative estimation procedure based on an extension of the iterative re-weighted least 
squares procedure for generalized linear models will be illustrated on a practical data set involving 
carcass classification of cattle. The data is analysed as overdispersed binomial proportions with fixed 
and random effects and associated components of variance on the logit scale. Estimates are obtained 
with standard software for normal data mixed models. Numerical restrictions pertain to the size of 
matrices to be inverted. This can be dealt with by absorption techniques familiar from e.g. mixed 
models in animal breeding. The final model fitted to the classification data includes four components 
of variance and a multiplicative overdispersion factor. Basically the estimation procedure is a 
combination of iterated least squares procedures and no full distributional assumptions are needed. A 
simulation study based on the classification data is presented. This includes a study of procedures for 
constructing confidence intervals and significance tests for fixed effects and components of variance. 
The simulation results increase confidence in the usefulness of the estimation procedure. 

Key words: Components of variance; Mixed model; GLMM; REML; 
Overdispersion. 

1. Introduction 

Key properties of the linear model y = \i + e for observations y with means /j, and 

v variances a are (i) linear dependence of the mean ft on parameters ßt,...,ß 
fi = x'ß, with x = (xl...xp)' known and ß = (ß1-..ßp)' unknown, (ii) (functional) 
independence of the variance a2 of the mean fj. and (iii) mutual independence of 
observations y. Important extensions of the linear model are the linear mixed 
model (LMM) (SEARLE, CASELLA and MCCULLOCH, 1992) and the generalized 
linear model (GLM) (MCCULLAGH and NELDER, 1989). 

In a LMM observations may be interdependent, i.e. point (iii) is relaxed. 
Additional to the residual error terms e, random effects ul...uq are introduced in 
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the model: y = x'ß + z'u + e, with z = (z1...z9)' known and u = (u1...uq)' un­
known. Observations with elements of u in common are (positively) correlated. 
An example is the split plot model where the elements of u are the "whole plot 
errors" and the correlation between observations on the same whole plot is 
GIKPI + ffe)> where <r„ and a2

e are components of variance "between" and 
"within" whole plots respectively. In a GLM observations are independent. The 
mean \i still depends on a linear combination x' ß, now referred to as the linear 
predictor rj, but through a known link function g: g{n) = r\ = x' ß. The variance 
may be proportional to a known function of the mean: vax(y) = <f>V(pi). So, (i) 
and (ii) are relaxed. Well known examples are the logistic regression model for 
binomial proportions and the log-linear model for Poisson counts. 

Sometimes both GLM and LMM features are needed, e.g. a split plot model 
for proportions. A class of generalized linear mixed models (GLMM) may be 
obtained by adding random effects to the linear predictor in a GLM structure: 
r\ = x'ß + z'u, see e.g. ANDERSON and H INDE (1988), PREISLER (1988), IM and 
GIANOLA (1988) and JANSEN (1990, 1992). The estimation procedure suggested by 
these authors is maximum likelihood, e.g. for binomial data with normally 
distributed random effects on the logit scale. To obtain the likelihood, random 
effects have to be "integrated out". This involves high-dimensional numerical 
integration, e.g. Gauss-Hermite quadrature (ABRAMOWITZ and STEGUN, 1965, 
p. 924), with severe limitations on the number and structure of random effects in 
the linear predictor. Numerical problems with two crossed random effects are 
insurmountable. In ENGEL and KEEN (1994) an estimation procedure is presented 

that does not suffer from these limitations. This procedure is a straightforward 
extension of the iterative re-weighted least squares (IRLS) algorithm for GLMs 
(for IRLS see e.g. MCCULLAGH and NELDER, 1989, §2.5), replacing repeated use 
of weighted least squares on the adjusted dependent variate by repeated use of 
LMM methodology. This approach is illustrated on carcass classification data. 
Calculations are performed with standard software for GLMs and LMMs in 
Genstat 5 (1993). Some aspects of the data are discussed in section 2. The 
analysis is presented in section 3. Simulation results based on the classification 
data are presented in section 4. Section 5 includes a brief discussion of the 
relation to other alternatives for maximum likelihood estimation, i.e. GIANOLA 

and FOULLEY (1983), HARVILLE and MEE (1984), GILMOUR, ANDERSON and RAE 

(1985), SCHALL (1991), BRESLOW and CLAYTON (1993) and MCGILCHRIST (1994). 

2. The Classification Data 

In slaughterhouses in the European Community cattle carcasses are visually 
assessed according to the EC classification system (WALSTRA, 1991). This in­
cludes visual assessment of conformation, supported by photographic standards. 
There are five main classes for conformation: E, U, R, O and P and each main 
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class may be subdivided into three sub classes. Conformation E corresponds to 

the convex to superconvex profiles, very rounded with exceptional muscle 

development. Conformation P corresponds to the concave to very concave 

profiles, with poor muscle development. The data set comprises 575 batches of 

carcasses from 23 Dutch slaughterhouses. Batch sizes vary from 25 to 51 with an 

average of 46.6. Each batch is independently classified by one of 4 experts and 

one of 52 classifiers. The data set is very unbalanced as illustrated by Table 1. 

Table 1 

Number of batches per classifier and slaughterhouse, illustrating the unbalancedness of the 
data 

Slaughterhouse 
1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 2122 23 Total 

Class. 
1 _ - - — 1 - 6 1 _ - - 1 _. _ _ _ 2 - — - 1 - - 12 
2 - 4 - - - 2 - - - - - - - - - 1 - - 2 - - - 1 10 
3 _ _ _ _ _ _ _ _ _ _ _ H _ _ _ _ _ . _ _ ! _ _ 15 
4 - - - - — — — — — — 1 1 1 - — — — — — — — 1 — 13 
5 - — — - 1 - 1 5 — — 1— — — — - 4 - — - — - - 12 
6 2 3 - - - 1 - - - 2 - - - 4 - - - 1 - - - - 13 
7 - - - - 4 - 4 - - - - - - - 3 - 1 - 1 - - - - - 13 
g _ _ _ _ _ _ 4 _ _ _ _ _ _ _ i _ 7 > _ _ _ _ _ _ 12 
9 - _ _ - _ - 7 - - - l - - - - - 2 - - - - - - 10 

10 - 1 - - - - - - - - - - - - 3 6 - - 3 - - - 1 14 
11 - - - - - - - _ 6 3 - - - 2 - - - 3 - - - - - - 14 
12 - - - - - - 2 1 - - 1 - - - 2 - 2 - - - - - - 8 
13 - - - - - - - - - - - - - - 6 4 - - A - - - - 14 
14 _ _ _ - _ _ ! ! _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2 
15 - - - - - - - - 1 - — - - 2 - — - 1 1 _ - - - - 14 
16 - - - - - 1 - - - - - - - 1 5 - 2 - 4 - - - 2 15 
17 _ _ _ _ _ _ ! _ _ _ _ _ _ _ ! _ _ _ _ _ _ _ _ 2 
18 _ _ _ _ _ _ _ _ _ „ _ _ _ _ _ _ _ _ ! _ _ _ _ 1 
19 - - 3 2 - - - - - - - - - - - 1 - - - - - - - 6 
20 - 4 _ - - - - - - _ _ - _ 4 - - - - - - - - - 8 
21 - - - - - - - - - 1 2 - - - 5 - - - 3 2 - - - - 13 
22 _ _ _ _ _ _ _ _ _ _ _ _ ! _ _ _ _ _ - _ _ _ i 
23 _ _ 9 3 - - - - - - - - - - - 3 - - - - - - - 15 
24 _. - 2 - - - - - - - - - - 1 - - - - - - - - _ 3 
25 - - - - 1 - 2 4 - - - 1 - - - - 7 - - - - - - 15 
26 - _ 6 3 - - - - - - - - - 1 - 1 - - - - - - - 11 
27 - - - - - - - - - - _ _ _ ! _ _ _ _ _ _ _ _ _ i 
28 - 1 - - - - - - - - - - - - - 8 - - 6 - - - 1 16 
29 - 2 - - - 2 - - - - - - - - - 2 - - 4 - - - 3 13 
30 1 - _ - - - _ _ _ 4 - - - 3 _ _ _ - _ 4 _ _ _ 12 
31 _ _ _ _ . - _ _ _ _ _ 2 9 - - - - - - - - l - 12 
32 - - - - - - _ _ _ _ _ 2 12 - - - - - - - 1 - - 15 
33 - - - - - - 5 - - - - 1 _ _ _ _ 5 _ _ _ l _ _ 12 
34 - - - 3 - 4 - - - - 1 - i - _ - - - _ - _ _ 9 
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Table 1 

Class. 
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Proportions of equal scores per batch are analysed, introducing classifiers as 
random effects. Interest lies in variation between classifiers, i.e. in components of 
variance associated with main effects and interactions for classifiers. The "raw" 
mean of the fractions of agreement over all the batches is 0.63. The means for the 
experts are 0.60, 0.61, 0.63 and 0.65. Means for the slaugterhouses vary from 0.52 
to 0.77. 

3. Analysis of the Classification Data 

3.1 Getting started 

Estimation starts with a logistic regression model (Cox and SNELL, 1990), 
including classifier effects as fixed effects. Observation yt for batch t,t=l...N,is 
the fraction of carcasses with an equal score from expert and classifier. Expecta­
tion nt of y, is the probability of agreement between expert and classifier for a 
typical carcass at the particular slaughterhouse. The linear predictor 
r\t = log(Ju,/(l — n,)) is a combination of main effects and interactions for slaugh­
terhouses, experts and classifiers. Visual assessment of conformation is influenced 
by many factors, most of which are not very well known. Over-dispersion is quite 
likely and the variance of an observation is assumed to be: 
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var(y() = 4>/i,(l-/!()/nr, (1) 

where </> is an unknown dispersion factor and nt is the batch size. 
Parameters are estimated by maximum quasi-likelihood (QL) (MCCULLAGH 

and NELDER, 1989, Ch.9) with the IRLS algorithm, using standard software in 
Genstat 5. Quasi-deviances for various models fitted to the data are presented in 
Table 2. Tests for interactions are derived by scaling the difference between the 
déviances of two nested models by an estimate $ for the dispersion factor, 
referring the result to a chi-square distribution. Estimate $ is equal to Pearson's 
chi-square statistic divided by its degrees of freedom (MCCULLAGH and NELDER, 

1989, §4.5. and Ch. 9), evaluated for the largest of the two models. Model 5, with 
main effects and interactions between experts and slaughterhouses and between 
experts and classifiers, describes the data adequately and will be used in 
subsequent steps of the estimation procedure. In this model $=1.29 (0.094), 
where the standard error (in parentheses) is based on approximation by a 
chi-square distribution with 375 degrees of freedom. The same approximation 
shows that 4> is significantly larger than 1. 

Table 2 

Quasi-deviance and Pearson's chi-square statistic for various models fitted to the classifica­
tion data. C, S and E denote main effects for classifiers, slaughterhouses and experts 
respectively, C.S denotes interaction between classifiers and slaughterhouses etc. 

Model Quasi- Degrees of Pearson's 
deviance freedom chi-square 

1 C + S + E + C.S + C.E + S.E + C.S.E 
2 C + S + E + C.S + C.E + S.E 
3 C + S + E + C.S + C.E 
4 C + S + E + C.S +S.E 
5 C + S + E +C.E + S.E 
6 C + S + E 
7 C + S + E +C.E 
8 C + S + E +S.E 

For use in subsequent steps of the estimation procedure note that the adjusted 
dependent variate (, of the IRLS algorithm, corresponding to the fitted values fit, 
is: 

Ct = (y,-ß,)g'(ß,) + g(fi,)-

Approximate mean and variance are: 

£(C,)*g(ju,) and var(Ct)^g'(fit)
2\ar(y,), (2) 

as follows from (ju, — fit) g'(/2,)«g(^,) — g(/î,), where g' is the derivative of the link 
function with respect to /x,. 
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3.2 Fitting a LMM to the adjusted dependent variate 

Classifier effects will now be introduced as random effects on the logit scale. Let 
X and Z = (Zj,Z2) be the design matrices for the vectors ß and u = (u1',u2')' of 
fixed and random effects, respectively. Elements of u are uncorrelated with zero 
means and variances a\ for the classifier main effects in vector Ht and a\ for 
classifier * expert interactions in vector u2. Without loss of generality X is 
assumed to be of full rank. The total variance on the logit scale is a1 = a\ + o\ 
and the correlation between any two random contributions for the same classifier 
but different experts is Q = ó\j{a\ + a\). For a formal derivation of the model see 
section 5. The vector of linear predictors r\ = logit (/i) = X ß + Zu, where 
fi = E(y\u) is the vector of conditional means and y the vector of observations. 
Conditional variances are \&r(yt\u) = 4>nt{\ — nt)/nt = 4> V{ßt), say. 

The mean and variance presented in (2) are conditional upon the random 
effects. The marginal mean and covariance matrix are approximately: 

E(C)xXß and v a r ^ ^ Z / a ? + Z2Z2'a\ + </> W~l, 

where W is a diagonal matrix with diagonal elements wt = (g'(fit)
2 V(fit))~

l. This 
is a LMM structure for £ with weights wt on the "residual" error stratum and 
dispersion factor (j) in the role of a residual error variance. For details see ENGEL 

and KEEN (1994). 
Components of variance and dispersion factor <}> are estimated by Iterated 

Minimum Norm Quadratic Unbiased Estimation (I-MINQUE). 

Dependence of MINQUE (RAO, 1973, §4j) on a priori values disappears when it is iterated, using 
successive estimates as a priori values, yielding 1-MINQUE with more attractive (asymptotic) 
properties (BROWN, 1976). I-MINQUE is essentially an iterated weighted least squares method, see 
SEARLE et al. (1992, Ch. 12), and there is no need for full distributional assumptions. Ignoring 
non-negativity constraints, estimating equations for restricted maximum likelihood (REML) (PAT­
TERSON and THOMPSON, 1971) and I-MINQUE are the same (see e.g. SEARLE et al., 1992, p. 397-399), 
i.e. the two methods are operationally equivalent. We used the REML facilities of Genstat 5. 

Estimating equations for the components of variance are: 

C'PZm^mZ„1'PC = t race(Zm 'PZm^J, m = 0 , l ,2 , (3) 

where P = ß _ 1 - f l _ 1 A' (A ' ' ß _ 1 A' )~ 1 A"ß _ 1 , Q = ZlZi
,a\ + Z2Z2a

2
2 + 4> W~\ 

A0 = W~1 and Z0, Al,A2 are identity matrices. Solutions are: a\ = 0.0144 (0.0081), 
d\ = 0.0062 (0.0083) and #=1.379 (0.096) for the components for classifier main 
effects, classifier * expert interaction and residual (dispersion factor), respectively. 
Standard errors (in parentheses) are obtained with Genstat and based on Fisher 
information under normality for an ordinary LMM, see section 5. 

Estimates ß for the fixed effects and predictions û for the random effects may 
be obtained from the following mixed model equations (MMEs) (see e.g. SEARLE 

etal., 1992, §7.6.): 
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'x'wx x'wz \ (ß\_(x'&£\ 
\Z'WX Z'WZ + (f>Gx) \u)~\Z'tVCj' ( ) 

Here Q and G = Var(u) are evaluated for the estimates à\, à\ and $. 

In a LMM ß is the generalized least squares estimator, û is referred to as the best linear unbiased 
predictor (BLUP) (see e.g. ROBINSON, 1991). The MMEs can be reduced in size by elimination of 
main effects and interactions corresponding to a factor with many levels, typically the classifier main 
effects and expert * classifier interactions in the classification data. In animal breeding theory this 
process is referred to as absorption (see e.g. ENGEL, 1990). Genstat allows to define an absorbing 
factor, interactions with the absorbing factor are automatically absorbed as well. Equations (3) may 
be formed from bits and pieces of the MMEs (4) and their solution (/?', û')'. 

Here the estimation procedure might stop. However, it is quite tempting to 
update the adjusted dependent variate and weights, employing the estimates ß 
and predictions û from (4), and repeat the LMM step until convergence. We will 
do so in the next section. 

3.3 Iterating on 

One step of MINQUE suffices in each repeat of the LMM step. MINQUE is 
equivalent to one step of the Fisher scoring algorithm for REML (SEARLE et al., 
1992, p. 397-399). Genstat uses Fisher scoring and we simply restricted the 
algorithm to perform one step only. Final estimates are a\ = 0.0137 (0.0082), 
a\ = 0.0092 (0.0088) and <f> = 1.364 (0.095), for classifier main effects, classifier * 
expert interaction and residual respectively. These estimates are very similar to 
those obtained in the previous section, as judged by their standard errors. 
The total variance â2 = è\ + a\ = 0.0229 (0.0084) and the correlation 
Q = ô2/(âj + <T̂ ) = 0.60 (0.33). 

With the Wald test (BUIST and ENGEL, 1992), after approximation with a 
chi-square distribution with 44 degrees of freedom, the interaction between 
experts and slaughterhouses is close to significance (P = 0.06). Estimated means 
on the logit scale for the 70 combinations of experts and slaughterhouses vary 
from -0.2291 (0.3564) to 1.2204 (0.4069). One way to proceed is to choose a 
number of typical values for the linear predictor and describe the variation 
between classifiers around those levels. 

Suppose that r\ is one of the typical values for a combination of expert and slaughterhouse. For a 
random classifier an approximate 0.95 prediction interval for the linear predictor is: t\±_ 1.96 â, say 
(r\-\r)+). The corresponding 0.95 prediction interval for the probability of agreement is: 
(1/(1 +exp( — rj_))\ 1/(1 +exp( — »/ + )). For small a2 the average probability of agreement is approxi­
mately: 1/(1 + exp( — rj)), say p(r\), and the range of the interval is: 3.92 op(rj) (1 — p(//)). 

Another approach, followed here, is to assume that slaughterhouse and expert * 
slaughterhouse effects are random as well, with the following results: d\ = 0.0143 
(0.0074), af = 0.0071 (0.0076), 6\ = 0.0092 (0.0078), a\ = 0.0109 (0.0077) and 
$ = 1.379 (0.094) for the classifier main effects, expert * classifier interaction, 
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slaughterhouses main effects, expert * slaughterhouse interaction and residual, 
respectively. The Wald test for experts is not significant (P = 0.14), indicating that 
differences between experts are relatively small. The mean levels for the 4 experts 
on the logit scale are: 0.3942 (0.0625), 0.4432 (0.0692), 0.5295 (0.0488) and 0.5473 
(0.0609). The average standard error of a difference between two experts is 0.0769. 
The overall level is 0.4786 (0.0382). The total variance due to classifiers is 
(T2 = 0.0214 (0.0078) and correlation ^ = 0.67 (0.31). For jj = 0.4786, the approxi­
mate 0.95 prediction interval for the probability of agreement is: (0.548; 0.683). 
Intervals of similar width are obtained for the separate experts. Hence, the range 
of the probability of agreement between classifier and expert is about 0.135 
(0.024), due to differences between classifiers, around an average level of about 
0.62 (0.02). The size of the range indicates that there is still scope for improve­
ment. 

Scaled residuals for Ç are equivalent to Pearson residuals for the original fractions of agreement 
evaluated for ß and û from (4). Plots of these residuals do not indicate that the assumed variance (1) is 
inadequate. A normal probability plot of the residuals does not indicate any serious departures from 
normality for the random effects, which gives some reassurance for the use of the approximate 
variances and covariances (see section 5). 

4. A Monte Carlo Study 

Simulation is based on the classification data. To reduce the amount of calcula­
tion involved, the model is restricted to main effects only. Furthermore, condi­
tional upon the classifiers, data are generated from binomial distributions. 
Consequently the dispersion factor <\> is identical to 1, although it is assumed to 
be unknown in the estimation process. Random classifier effects are generated 
from a N (0, a\) disribution. Several parameter configurations are studied. For 
each configuration 1000 simuations are performed. a\ and <j) are updated until 
the absolute change in successive iterates is less than 0.0001 times the value of the 
last update but one. When this does not occur within 25 iterations, estimates 
from the 25th iteration are considered to be the final estimates. A negative value 
for a\ is replaced by 0.0001 of the estimate for (p. 

Note that in some problems it could make sense to allow the estimates to remain negative, as long as 
the covariance matrix on the link scale remains positive definite, thereby allowing for negative 
correlation on the link scale as well (e.g. SEARLE et al., 1992, §11.2). 

To see how some of the methods available for ordinary mixed models 
perform for a GLMM when applied to the adjusted dependent variate, the 
Wald test for fixed effects, two procedures for constructing a confidence interval 
for the ratio y = a\/(j) (SEELY and EL-BASSIOUNI, 1983; HAR VILLE and FENECH, 

1985) and for the "residual variance" </>, and an F-test for the hypothesis o\ = 0, 
are studied. 
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In "ordinary" over-dispersion models, see e.g. BRESLOW (1990), WILLIAMS (1991), the Wald test, 
quasi-score test and quasi-likelihood ratio test are proposed for testing parameters in the linear 
predictor. Without full distributional assumptions the latter two tests have no obvious direct 
extension to the GLMM model. In BRESLOW and CLAYTON (1993) an approximate quasi-likelihood 
for a GLMM is derived, which motivates the estimating equations for the components of variance. 
However, it is not clear whether this leads to a suitable test criterion. The Wald test easily extends to 
GLMMs. It performs well in a limited simulation study by WILLIAMS (1991) for over-dispersion 
models and is easily calculated from the approximate variances and covariances produced by 
Genstat. Therefore this test was chosen for a first impression of test results for fixed effects in a 
GLMM model. 

In a LMM under normaliy the confidence intervals and the F-test are exact. In a 
GLMM they are approximate. 
In the simulation, to evaluate the coverage probability of the interval for y, we only need to check 
whether the true y is in the interval or not. To this end it is sufficient to check whether the pivotal 
quantity Q(y) = {(£' Wê - RSS)/51}/{RSS/498} is in between the 2.5 and 97.5 percentage points of the 
F-distribution with degrees of freedom 51 (for classifiers) and 498 (for residual). RSS is the residual 
sum of squares in an ordinary analysis of variance on £ with all effects, including classifiers, entered as 
fixed effects and with weights w,. Weights w, are evaluated for y, and residuals ê = f — X 9 — Zû for the 
true y. For the actual construction of the interval, which is most easily done by plotting Q against y, 
an expression from HARVILLE and FENECH (1985) in terms of eigenvectors and eigenvalues is 
appropriate. These eigenvectors and eigenvalues have to be calculated only once and apply to all 
values y considered. The confidence interval for <j> is derived from RSS employing a chi-square 
distribution with 498 degrees of freedom. The approximate F-test for the hypothesis a\ = 0, which is 
closely connected with the pivotal quantity Q, is the F-test for classifiers in the model with fixed 
classifier effects and residual sum of squares RSS. 

4.1 Configurations of parameter values 

The following factors are varied in the simulation: 
The number of batches: 
Nt: number N = 288, "half" of the original design; 
N2: number N = 575, same design as for the actual data. 

The design under N2 for the batches is the same with respect to slaughterhouses, 
experts and classifiers as for the original data. To obtain "half" of this design, for 
N t half of the batches were randomly selected from the original design. This new 
design was used in all simulations involving 288 batches. Due to the random 
selection of batches, for Ni there is one slaughterhouse less than for N2. Batch 
sizes were varied under N1 and N2, as shown below, by dividing the original 
batch sizes by 1, 2, 3, 5 or 10 and rounding to the nearest integer below. 
- The batch sizes: 

Bi: batch sizes n/10 (n= 4.6); 
B2: batch sizes nj 5 (n= 9.3); 
ß3 : batch sizes nj 3 (n = 15.0); 
ß4 : batch sizes nj 2 (n = 23.3); 
ß5 : batch sizes n from the actual data (n = 46.6). 
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Average batch sizes refer to N2. For N t the average batch sizes for Bt to B5 are 
4.7, 9.5, 15.2, 23.7 and 47.5, respectively. 

- The component of variance for classifiers: 
Ci:«r? = 0; 
C2: o-j =0.02 (same order as for the actual data); 
C3:<r? = 0.2. 

The fixed effects for experts: 
Fx: 0, 0, 0,0; 
F2: -0 .11 , -0.05, 0, 0.01 (similar to the actual data); 
F3: -0.22, -0.10, 0, 0.02; 
F4: -0 .33, -0.15, 0, 0.03. 

The contrast between experts 1 and 4, with values 0, —0.12, —0.24 and —0.36 
for Fv F2, F3 and F4 respectively, will be referred to as cE. Estimates and 
estimated standard errors of this contrast are inspected in the simulation. 
Slaughterhouse effects are regarded as nuisance parameters, their values are 
taken from the analysis of the actual data. Pairwise differences between slaugh­
terhouses on the logit scale gradually vary from about 0 to 1. 

Configurations are coded with respect to the factors N, B, C and F and for 
ease of reference also consecutively numbered in Tables 4, 5 and 6. 

4.2 Convergence 

The number of iterations, i.e. repeats of the LMM step, needed to satisfy the 
convergence criterion, is in most cases less than 10. Worst cases are configura­
tions with classifier component a\ = 0 or batch size around 5. 

For these configurations the percentage of simulations where the number of iterations exceeds 10 may 
run to about 15%, with about 3% needing 25 or more interations. For <r?=0, the estimation 
procedure is slowed down because the optimum is close to or on the boundary; some 60% of the 
simulations produce a negative estimate for a\. For small batch sizes, there is little information in the 
data about a\ and about 25% of the simulations may produce a negative estimate for the classifier 
component. 

4.3 Results for bias 

Table 3 shows estimated bias terms for component a\, dispersion parameter <p 
and contrast cE as a percentage of the true value. Also shown are the standard 
error of the bias percentage (in parentheses) and 0.05 and 0.95 quantiles (between 
square brackets) of the estimated parameter values, derived from the 1000 
simulations. 
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Table 3 
Bias of a\, (f> and cE presented as a percentage of the true value, except when the true value is 0 
(underlined). The corresponding standard error is in parentheses. 0.05 and 0.95 quantiles of the 
estimated values for <s\, (j> and cE from the 1000 simulations are between square brackets. The last 
column shows the percentage of negative estimates for a\. 

Conf. a\ <j> cE % 
nr. N B C F %bias (s.e.) [quantiles] %bias (s.e.) [quantiles] %bias (s.e.) [quantiles] comp. 

neg. 

10 
11 
12 
13 
14 
15 
16 

20 
21 
22 
23 
24 
25 
26 

27 
28 
29 
30 
31 
32 
33 

-0.1 
0.0 
0.0 

-0.1 
0.7 
0.8 
0.9 
0.9 

(0.69) 
(0.69) 
(0.69) 
(0.68) 
(1.02) 
(1.03) 
(1.03) 
(1.03) 

[0.13 
[0.13 
[0.13 
[0.13 
[0.01 
[0.01 
[0.01 
[0.01 

0.0006 (0.0000) [0.000: 

-1.1 
-1.0 
-0.9 
0.2 
0.7 
1.1 

(0.72) 
(0.72) 
(0.72) 
(1.32) 
(1.31) 
(1.32) 

[0.13 
[0.13 
[0.13 
[0.01 
[0.01 
[0.01 

0.0014 (0.0001) [0.000 

17 2 3 3 2 
18 2 3 2 2 
19 2 3 1 2 

-0.6 (0.78) 
-1.4 (1.63) 
0.0019 (0.0001) 

1 1 

[0.12 
[0.00 
[0.000: 

[0.12 
[0.13 
[0.12 
[0.00 
[0.00 
[0.00 

0.0033 (0.0002) [0.000 

-0.6 
-0.4 
-0.4 
4.5 
5.4 
5.5 

(0.84) 
(0.84) 
(0.84) 
(2.16) 
(2.16) 
(2.17) 

0.2 
0.5 
0.4 

14.6 
13.5 
13.3 

(1.04) 
(1.04) 
(1.04) 
(3.27) 
(3.30) 
(3.33) 

[0.10 
[0.10 
[0.10 
[0.00 
[0.00 
[0.00 

0.0071 (0.0004) [0.000 

0.28 
0.28 
0.28 
0.28 
0.03 
0.03 
0.03 
0.03 
0.033 

0.28 
0.28 
0.28 
0.03 
0.03 
0.03 
0.006 

0.28 
0.04 
0.009; 

0.29 
0.28 
0.30 
0.05 
0.05 
0.05 
0.015 

0.32 
0.32 
0.32 
0.06 
0.06 
0.06 
0.031 

1.1 (0.20) 
1.1 (0.20) 
1.3 (0.20) 
1.3 (0.20) 
0.6 (0.20) 
0.5 (0.20) 
0.5 (0.20) 
0.4 (0.20) 
0.3 (0.20) 

[0.91 
[0.91 
[0.91 
[0.91 
[0.90: 
[0.90: 
[0.90: 
[0.90; 
[0.90 

1.0 (0.21) [0.91 
1.0 (0.21) [0.90: 
1.0 (0.21) [0.91 
0.3 (0.19) [0.90: 
0.2 (0.19) [0.90: 
0.2 (0.20) [0.90; 
0.2 (0.19) [0.90; 

1.2 (0.20) [0.91 
0.6 (0.19) [0.91 
0.4 (0.19) [0.91 

0.6 (0.19) [0.91 
0.7 (0.19) [0.91 
0.7 (0.19) [0.92 
0.2 (0.19) [0.91 
0.2 (0.19) [0.91 
0.2 (0.19) [0.91 
0.2 (0.19) [0.91 

0.4 (0.17) [0.92 
0.3 (0.17) [0.92 
0.3 (0.17) [0.92 
0.6 (0.17) [0.92 
0.4 (0.17) [0.91 
0.4 (0.17) [0.91 
0.6 (0.17) [0.92 

1.11] 
1.12] 
1.12] 
1.12] 
1.12] 
1.12] 
1.12] 
1.11] 
1.11] 

1.12] 
1.12] 
1.12] 
1.11] 
1.11] 
1.11] 
1.10] 

1.12] 
1.11] 
1.10] 

1.11] 
1.12] 
1.11] 
1.11] 
1.10] 
1.10] 
1.10] 

1.09] 
1.09] 
1.09] 
1.09] 
1.09] 
1.09] 
1.10] 

0.47 
0.71 
1.3 
0.0007 
0.06 
0.25 
0.67 
0.0011 

-0.33 

0.92 
2.5 
0.0019 
0.39 
1.4 
0.0012 
1.6 

0.42 
-1.1 
-1.4 

1.6 
4.1 
0.0036 
0.44 
1.2 
0.0028 
0.77 

2.2 
6.4 
0.0068 
0.25 
2.8 
0.0060 
2.8 

8.4 
0.0101 
2.7 
8.8 
0.0109 
9.4 
0.0116 

-1.8 

2.5 

10.3 
0.0149 

13.8 
0.0209 

13.8 
0.0215 

(0.41) 
(0.61) 
(1.23) 
(0.047) 
(0.38) 
(0.58) 
(1.17) 
(0.045) ( 

(1.15) 

(0.61) 
(1.84) 
(0.002) 
(0.58) 
1.78) 

(0.069) 
(1.72) 

(2.20) 
2.12) 

(2.06) 

(0.91) 
(2.80) 
(0.003) 
(0.87) 
(2.67) 
(0.003) 

(2.58) 

(1.29) 
(3.88) 
(0.005) 
(1.24) 
(3.79) 
(0.005) 
(3.72) 

(2.77) 

(0.003) 
(0.88) 
(2.63) 
0.003) 
2.54) [ 
0.003) [ 

3.09) [ 

4.24) [ 

5.98) [ 
0.007) f 
6.03) [ 
0.007) f 
6.01) [ 
0.007) 1 

;-0.43; 
-0.31; 
-0.20; 

;-0.08; 
;-0.43; 
1—0.31; 
;-0.19; 
;-0.07; 

;-o.i9, 

-0.47; 
-0.22; 

1—0.11; 
;-0.46; 
;-0.22; 
I—0.11; 
;-0.22; 

-0.26; 
;-0.25; 
;-0.25; 

-0.53; 
-0.29; 

;-0.17; 
-0.52; 

;-0.28; 
;-0.16; 
;-0.28; 

-0.59; 
-0.36; 

;-0.23; 
-0.60; 

;-0.36; 
-0.25; 

;-0.36; 

;-0.28; 
-0.17; 

-0.51; 
i-0.27; 
-0.15; 
-0.27; 
-0.15; 

-0.31; 

-0.39; 

-0.50; 
-0.36; 
-0.49; 
-0.37; 
-0.48; 
-0.34; 

-0.28] 
-0.16] 
-0.04] 
0.08] 

-0.29] 
-0.17] 
-0.04] 
0.07] 

-0.24] 
0.00] 
0.12] 

-0.25] 
0.00] 
0.11] 

-0.05] 66 

-0.01] 61 

0.02] 0 
0.01] 3 
0.01] 66 

-0.19] 0 
-0.06] 0 
0.18] 0 

-0.19] 8 
0.05] 8 
0.17] 8 
0.04] 63 

-0.10] 0 
0.14] 0 
0.25] 0 

-0.12] 23 
0.13] 25 
0.24] 25 
0.11] 59 

34 
35 
36 
37 
38 
39 
40 

41 

42 

43 
44 
45 
46 
47 
48 

-0.9 
-0.9 

2.3 
3.1 
3.3 

1 1 

(0.85) 
(0.85) 
(1.96) 
(1.95) 
(1.96) 

0.0027 (0.0001) [0.000: 
0.0027 (0.0001) [0.000: 

[0.12 
[0.12 
[0.00 
[0.00 
[0.00 

1 3 2 2 

1 2 2 2 

1 1 
1 1 
1 1 
1 1 

3 2 
3 1 
2 2 
2 1 

1 1 1 2 
1 1 1 1 

(2.46) [0.00 

(3.54) [0.00 

(1.43) [0.07 
(1.45) [0.06 
(5.42) [0.00 
(5.31) [0.00 

0.0136 (0.0007) ro.00 
0.0135 (0.0007) [0.00 

1.1 

16.6 

1.2 
1.2 

49.3 
47.9 

0.30 
0.30 
0.04 
0.04 
0.04 
0.012 
0.012 

0.05 

0.07 

0.36 
0.37 
0.10 
0.10 
0.06 
0.06 

1.3 (0.30) [0.87 
1.4 (0.30) [0.86 
0.5 (0.29) [0.86 
0.4 (0.29) [0.86 
0.4 (0.29) [0.86 
0.3 (0.29) [0.86: 
0.3 (0.29) [0.86: 

0.3 (0.29) [0.86: 

0.7 (0.30) [0.87 

0.7 (0.26) [0.88 
0.7 (0.26) [0.87 
1.2 (0.27) [0.88 
1.2 (0.27) [0.88 
1.3 (0.27) [0.87 
1.3 (0.26) [0.88 

1.17] 
1.17] 
1.16] 
1.16] 
1.16] 
1.15] 
1.15] 

1.15] 

1.18] 

1.15] 
1.15] 
1.16] 
1.16] 
1.16] 
1.15] 

0.06] 
0.19] 

-0.18] 
0.06] 
0.19] 
0.05] 66 
0.18] 64 

0.07] 15 

0.14] 28 

0.26] 1 
0.41] 0 
0.27] 39 
0.42] 37 
0.28] 62 
0.40] 61 
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Results for JV2 (575 batches) are shown in the top half of the table. Only for small 
batch sizes and small component a\ for classifiers, the percentage bias in a\ is 
sizeable, in all other cases the bias is negligible. The larger bias percentages go 
together with high probabilities for a negative estimate for the classifier compo­
nent, as shown in the last column of the table. For instance in configuration 31 
the estimated probability for a negative estimate is 0.25. But even for this 
configuration, where the estimated percentage bias is 13.5%, the estimates are 
hardly misleading since the corresponding standard errors (see Table 4 discussed 
below) are of the same order as the estimates, reflecting the fact that the data 
convey little information about the component. Although the bias for cE runs to 
6.4% for configuration 28, none of the estimated bias terms is significantly 
different from zero. 

For Nt (288 batches) for small batch size and small classifier component, large 
bias in a\ is found. For configuration 45 the classifier component is over­
estimated by a factor of almost 1.5. The estimated probability for a negative 
estimate for o\ is 0.39 for this configuration. For larger batch sizes, e.g. in 
configuration 37, bias is small. Bias for cE is appreciable and runs to some 14% 
for the smaller batch sizes. However, this is the same order of bias as for ordinary 
logistic regression for data configurations such as these. Configuration 39 for 
instance, shows an estimated bias percentage of 9.4 (2.54) %, while ordinary 
logistic regression on the same data, ignoring classifiers, yields a similar estimated 
bias of 9.8 (2.54)%. 

Although the bias in <j>, for some configurations, is significantly different from 
0, it is negligible in all cases studied. An alternative estimator for </> is SSR 
divided by the appropriate number of degrees of freedom for iVx and N2. Results 
for this estimator are similar to those reported in Table 3. 

4.4 Results for standard errors of estimates 

Table 4 shows the standard errors of the estimates as derived from the 1000 
simulations. These standard errors are referred to as the "empirical" standard 
errors. Also shown are the mean and 0.05 and 0.95 quantiles of the standard 
errors produced by Genstat in the 1000 simulations. 

Observe that for N2 the mean standard error for cf> produced by Genstat is similar to the value 
j/(2/498) = 0.0634 based on a chi-square distribution with 498 degrees of freedom. For decreasing 
batch sizes, the standard error tends to be over-estimated. For small batch sizes the chi-square 
approximation becomes less appropriate (asymptotics are with respect to n—• oo); the true distribu­
tion is somewhat shorter tailed. However, the estimated 0.05 and 0.95 quantiles in Table 3 are about 
0.92 and 1.09 and quite similar to the values 0.90 and 1.11 for the #498/498 distribution, as derived 
with the Wilson-Hilferty approximation (ABRAMOWITZ and STEGUN, 1965, 26.4.14, p. 941). For Nt 

the standard error based on a chi-square distribution with 212 degrees of freedom is 0.0971 and the 
quantiles are 0.85 and 1.16. It seems that a size 0.05 test for over- or underdispersion, employing a 
chi-square approximation, would not do too badly; it tends to be somewhat conservative. 
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Table 4 
Standard errors of estimates. The "true" (empirical) standard error from the 1000 simulations and the 
mean and 0.05 and 0.95 quantiles of the estimated standard errors produced by Genstat. 

Conf. 
nr. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

17 
18 
19 

20 
21 
22 
23 
24 
25 
26 

27 
28 
29 
30 
31 
32 
33 

34 
35 
36 
37 
38 
39 
40 
41 
42 

43 
44 
45 
46 
47 
48 

°î 
N B C F emp. mean [quantiles] 

2 5 
2 5 
2 5 
2 5 
2 5 
2 5 
2 5 
2 5 
2 5 

2 5 
2 4 
2 4 
2 4 
2 4 
2 4 
2 4 

2 3 
2 3 
2 3 

2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 1 
2 1 
2 1 
2 1 
2 1 
2 1 
2 1 

1 4 
1 4 
1 4 
1 4 
1 4 
1 4 
1 4 

1 3 
1 2 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 

3 4 0.0436 0.0435 [0.030 
3 3 0.0435 0.0435 [0.030 
3 2 0.0434 0.0435 [0.030 
3 1 0.0432 0.0435 [0.030 
2 4 0.0065 0.0064 [0.004 
2 3 0.0065 0.0064 [0.004 
2 2 0.0065 0.0065 [0.004 
2 1 0.0065 0.0064 [0.004 
1 2 0.0010 0.0017 [0.001 

3 4 0.0457 0.0462 [0.031 
3 2 0.0456 0.0462 [0.032 
3 1 0.0457 0.0463 [0.032 
2 4 0.0084 0.0083 [0.005 
2 2 0.0083 0.0083 [0.005 
2 1 0.0083 0.0084 [0.005 
1 2 0.0022 0.0035 [0.003 

3 2 0.0496 0.0494 [0.034 
2 2 0.0103 0.0102 [0.006 
1 2 0.0033 0.0054 [0.004 

3 4 0.0529 0.0540 [0.037 
3 2 0.0530 0.0541 [0.037 
3 1 0.0529 0.0541 [0.037 
2 4 0.0136 0.0137 [0.008 
2 2 0.0137 0.0137 [0.008 
2 1 0.0137 0.0138 [0.008 
1 2 0.0056 0.0087 [0.007 

3 4 0.0661 0.0654 [0.043 
3 2 0.0657 0.0656 [0.043 
3 1 0.0655 0.0656 [0.043 
2 4 0.0207 0.0225 [0.015 
2 2 0.0209 0.0224 [0.015 
2 1 0.0210 0.0225 [0.015 
1 2 0.0118 0.0178 [0.015 

0.059] 
0.059] 
0.059] 
0.059] 
0.009] 
0.009] 
0.009] 
0.009] 
0.002] 

0.063] 
0.063] 
0.063] 
0.011] 
0.012] 
0.012] 
0.005] 

0.067] 
0.015] 
0.007] 

0.074] 
0.074] 
0.075] 
0.020] 
0.020] 
0.020] 
0.012] 

0.092] 
0.091] 
0.091] 
0.033] 
0.033] 
0.033] 
0.025] 

3 2 0.0536 0.0528 [0.035; 0.074] 
3 1 0.0535 0.0529 [0.036; 0.074] 
2 4 0.0124 0.0122 [0.007; 0.017] 
2 2 0.0124 0.0122 [0.007; 0.017] 
2 1 0.0124 0.0123 [0.007; 0.018] 
1 2 0.0046 0.0071 [0.006; 0.010] 
1 1 0.0045 0.0071 [0.006; 0.010] 

2 2 0.0156 0.0159 [0.010; 0.024] 

2 2 0.0224 0.0229 [0.015; 0.035] 

3 2 0.0907 0.0881 [0.055; 0.126] 
3 1 0.0918 0.0882 [0.054; 0.126] 
2 2 0.0343 0.0416 [0.030; 0.061] 
2 1 0.0336 0.0416 [0.030; 0.060] 
1 2 0.0226 0.0363 [0.029; 0.051] 
1 1 0.0225 0.0364 [0.029; 0.050] 

4> 
emp. mean [quantiles] 

0.0644 0.0641 [0.058; 0.071] 
0.0647 0.0641 [0.057; 0.071] 
0.0644 0.0641 [0.057; 0.070] 
0.0641 0.0641 [0.057; 0.071] 
0.0644 0.0634 [0.057; 0.070] 
0.0647 0.0633 [0.057; 0.070] 
0.0644 0.0633 [0.057; 0.070] 
0.0641 0.0633 [0.057; 0.070] 
0.0632 0.0624 [0.056; 0.069] 

0.0652 0.0639 [0.057; 0.071] 
0.0652 0.0639 [0.057; 0.071] 
0.0657 0.0639 [0.057; 0.071] 
0.0614 0.0631 [0.057; 0.069] 
0.0614 0.0630 [0.056; 0.069] 
0.0618 0.0630 [0.056; 0.069] 
0.0611 0.0623 [0.056; 0.069] 

0.0628 0.0640 [0.058; 0.071] 
0.0606 0.0631 [0.057; 0.070] 
0.0590 0.0625 [0.057; 0.069] 

0.0602 0.0636 [0.058; 0.070] 
0.0606 0.0636 [0.058; 0.070] 
0.0603 0.0636 [0.058; 0.070] 
0.0599 0.0628 [0.057; 0.069] 
0.0595 0.0627 [0.057; 0.069] 
0.0595 0.0627 [0.057; 0.069] 
0.0597 0.0623 [0.057; 0.068] 

0.0533 0.0632 [0.058; 0.069] 
0.0525 0.0632 [0.058; 0.069] 
0.0532 0.0632 [0.058; 0.069] 
0.0541 0.0628 [0.057; 0.068] 
0.0537 0.0627 [0.057; 0.068] 
0.0537 0.0627 [0.057; 0.068] 
0.0542 0.0626 [0.057; 0.068] 

0.0937 0.0969 [0.083; 1.111] 
0.0941 0.0970 [0.083; 1.112] 
0.0903 0.0946 [0.081; 0.108] 
0.0901 0.0945 [0.081; 0.109] 
0.0903 0.0945 [0.081; 0.108] 
0.0907 0.0930 [0.080; 0.107] 
0.0903 0.0929 [0.080; 0.107] 

0.0909 0.0940 [0.081; 0.107] 

0.0936 0.0941 [0.081; 0.109] 

0.0831 0.0953 [0.083; 0.108] 
0.0836 0.0953 [0.083; 0.108] 
0.0848 0.0941 [0.082; 0.108] 
0.0854 0.0941 [0.082; 0.108] 
0.0847 0.0938 [0.081; 0.107] 
0.0831 0.0938 [0.082; 0.106] 

CE 
emp. mean [quantiles] 

0.0462 0.0474 [0.045 
0.0464 0.0475 [0.044 
0.0468 0.0479 [0.045 
0.0470 0.0483 [0.045 
0.0434 0.0454 [0.043 
0.0438 0.0455 [0.043 
0.0443 0.0458 [0.043 
0.0449 0.0461 [0.044 
0.0437 0.0437 [0.041 

0.0695 0.0669 [0.063 
0.0700 0.0675 [0.063 
0.0709 0.0681 [0.064 
0.0665 0.0636 [0.060 
0.0676 0.0642 [0.061 
0.0682 0.0647 [0.061 
0.0652 0.0620 [0.059 

0.0835 0.0838 [0.079 
0.0803 0.0794 [0.075 
0.0780 0.0773 [0.074 

0.1039 0.1047 [0.099 
0.1062 0.1057 [0.100 
0.1061 0.1066 [0.101 
0.0990 0.0992 [0.095 
0.1014 0.1002 [0.095 
0.1028 0.1010 [0.096 
0.0977 0.0982 [0.093 

0.1468 0.1468 [0.143 
0.1471 0.1500 [0.143 
0.1463 0.1511 [0.144 
0.1411 0.1414 [0.135 
0.1437 0.1428 [0.137 
0.1457 0.1440 [0.137 
0.1411 0.1414 [0.135 

0.050] 
0.050] 
0.051] 
0.051] 
0.048] 
0.048] 
0.048] 
0.048] 
0.046] 

0.071] 
0.071] 
0.072] 
0.067] 
0.067] 
0.068] 
0.065] 

0.089] 
0.083] 
0.081] 

0.110] 
0.112] 
0.113] 
0.104] 
0.105] 
0.106] 
0.103] 

0.156] 
0.157] 
0.159] 
0.148] 
0.149] 
0.151] 
0.148] 

0.10510.1066 [0.098; 0.115] 
0.1062 0.1075 [0.100; 0.116] 
0.1002 0.0979 [0.091; 0.105] 
0.0999 0.0989 [0.092; 0.106] 
0.1009 0.0997 [0.093; 0.107] 
0.0965 0.0960 [0.090; 0.103] 
0.0979 0.0969 [0.090; 0.104] 

0.1172 0.1222 [0.113; 0.131] 

0.1608 0.1550 [0.144; 0.167] 

0.2271 0.2332 [0.217; 0.250] 
0.2306 0.2351 [0.219; 0.252] 
0.2289 0.2223 [0.208; 0.238] 
0.2328 0.2243 [0.209; 0.241] 
0.2280 0.2208 [0.205; 0.237] 
0.2294 0.2228 [0.207; 0.239] 
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When the true value of a\ is zero, which is on the boundary of the parameter 
space, standard errors derived from Fisher information are not appropriate, see 
e.g. configuration 9. Since the estimated standard errors for the contrast cE do 
not account for variability in the estimates for a\ and 4>, they were expected to be 
smaller than the empirical values, but this is not always the case. Differences are 
small. 

By and large, the correspondence between the empirical standard errors and 
the standard errors produced by Genstat, is quite satisfactory. 

4.5 Results for significance tests and confidence intervals 

As an additional check on the usefulnes of the standard error of cE, say sE, as 
produced by Genstat, the coverage probability of the approximate 0.95 confi­
dence interval (cE — 1.96 sE; cE + 1.96 sE) was estimated from the 1000 simulations. 
Coverage probabilities were also estimated for the approximate 0.95 confidence 
intervals for y and </>. Estimated coverage probabilities, and power and size of the 
Wald test for experts and approximate F-test for classifiers are shown in Table 5 

Table 5 
Coverage probabilities of approximate 0.95 confidence intervals for cE, y and </>. Size/power 
of Wald test for experts and F-test for classifiers. 

Conf. 

nr. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

17 
18 
19 

N 

2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 

2 
2 
2 

B 

5 
5 
5 
5 
5 
5 
5 
5 
5 

4 
4 
4 
4 
4 
4 
4 

3 
3 
3 

C 

3 
3 
3 
3 
2 
2 
2 
2 
1 

3 
3 
3 
2 
2 
2 
1 

3 
2 
1 

F 

4 
3 
2 
1 
4 
3 
2 
1 
2 

4 
2 
1 
4 
2 
1 
2 

2 
2 
2 

Coverage probabilities of 

c£ 

0.955 
0.957 
0.957 
0.957 
0.961 
0.962 
0.963 
0.960 
0.956 

0.939 
0.945 
0.949 
0.947 
0.946 
0.938 
0.935 

0.953 
0.947 
0.949 

confidence intervals 
7 

0.950 
0.951 
0.956 
0.953 
0.951 
0.952 
0.955 
0.954 
0.939 

0.952 
0.956 
0.950 
0.952 
0.952 
0.952 
0.950 

0.945 
0.958 
0.941 

<t> 
0.951 
0.948 
0.951 
0.955 
0.943 
0.938 
0.939 
0.946 
0.948 

0.941 
0.938 
0.939 
0.954 
0.952 
0.952 
0.957 

0.949 
0.963 
0.967 

Power or 
Wald test 
for experts 

1.000 
1.000 
0.571 
0.051 
1.000 
1.000 
0.637 
0.050 
0.678 

0.999 
0.327 
0.049 
0.999 
0.366 
0.050 
0.381 

0.210 
0.233 
0.246 

size of 
F-test for 
classifiers 

1.000 
1.000 
1.000 
1.000 
0.997 
0.998 
0.998 
0.999 
0.042 

1.000 
1.000 
0.949 
0.947 
0.954 
0.958 
0.058 

1.000 
0.784 
0.049 
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Table 5 (continued) 

Conf. Coverage probabilities of 
confidence intervals 

N B C F 

Power or size of 
Wald test F-test for 
for experts classifiers 

20 
21 
22 
23 
24 
25 
26 

27 
28 
29 
30 
31 
32 
33 

34 
35 
36 
37 
38 
39 
40 

41 

42 

43 
44 
45 
46 
47 
48 

2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 

1 
1 
1 
1 
1 
1 
1 

1 

1 

1 
1 
1 
1 
1 
1 

2 
2 
2 
2 
2 
2 
2 

1 
1 
1 
1 
1 
1 
1 

4 
4 
4 
4 
4 
4 
4 

3 

2 

3 
3 
3 
2 
2 
2 
1 

3 
3 
3 
2 
2 
2 
1 

3 
3 
2 
2 
2 
1 
1 

2 

2 

3 
3 
2 
2 
1 
1 

4 
2 
1 
4 
2 
1 
2 

4 
2 
1 
4 
2 
1 
2 

2 
1 
4 
2 
1 
2 
1 

2 

2 

2 
1 
2 
1 
2 
1 

0.953 
0.945 
0.950 
0.950 
0.951 
0.946 
0.943 

0.948 
0.951 
0.960 
0.945 
0.940 
0.946 
0.947 

0.945 
0.948 
0.939 
0.942 
0.939 
0.952 
0.942 

0.961 

0.941 

0.961 
0.943 
0.939 
0.948 
0.939 
0.939 

0.958 
0.961 
0.958 
0.945 
0.946 
0.950 
0.950 

0.949 
0.955 
0.947 
0.948 
0.947 
0.945 
0.950 

0.921 
0.914 
0.916 
0.915 
0.915 
0.920 
0.926 

0.926 

0.918 

0.927 
0.923 
0.929 
0.920 
0.930 
0.934 

0.955 
0.961 
0.955 
0.966 
0.967 
0.966 
0.965 

0.978 
0.978 
0.976 
0.973 
0.974 
0.977 
0.974 

0.935 
0.929 
0.937 
0.937 
0.930 
0.928 
0.925 

0.939 

0.923 

0.953 
0.953 
0.933 
0.938 
0.942 
0.947 

0.870 
0.145 
0.040 
0.901 
0.165 
0.053 
0.166 

0.548 
0.095 
0.041 
0.602 
0.114 
0.052 
0.105 

0.114 
0.052 
0.898 
0.149 
0.061 
0.147 
0.062 

0.124 

0.100 

0.055 
0.036 
0.055 
0.039 
0.056 
0.037 

1.000 
1.000 
1.000 
0.539 
0.538 
0.542 
0.056 

0.999 
0.998 
0.998 
0.254 
0.256 
0.254 
0.056 

1.000 
1.000 
0.622 
0.617 
0.626 
0.053 
0.057 

0.384 

0.249 

0.926 
0.924 
0.129 
0.134 
0.043 
0.040 

Overall, the standard error sE gives a fair impression of the accuracy of cE, as 
judged from the coverage probabilities of the simple normal approximation 
confidence interval. Coverage probabilités for 0 for N2 for smaller batch sizes 
tend to be rather high, e.g. 0.978 for configuration 28, in agreement with the 
corresponding estimated standard errors being too high in Table 4. For Nt the 
coverage probabilities for y are appreciably lower than 0.95. Estimated sizes of 
the Wald and F-test are reasonably close to 0.05. The power of the F-test for a 
small classifier component a\ = 0.02 is moderate to high for batch sizes around 
25 or 15, but is considerably reduced for batch sizes around 10 or 5, where the 
discrete nature of the data is becoming more pronounced. 
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Overall, the procedures for confidence intervals and significance tests as 
developed for ordinary LM M s, when applied to the adjusted dependent variate, 
appear to perform well enough for practical use. 

5. Discussion 

Formally the mixed model on the logit scale may be derived following SCHEFFÉ 

(1959, Chap. 8). For details see ENGEL and BUIST (1993). 

With Cfj the total random contribution to the linear predictor for the i-th expert andy'-th classifier, the 
covariance matrix E = (au) of the independent vectors (clj, c2j, c3j, cAj)' is assumed to have the simple 
form: au = a2 and aiv =QO1, i'=H', with O^QfS, 1. Since experts are supposed to be similar with respect 
to classification this is not an unreasonable assumption. In contrast to SCHEFFÉ (1959, Chap. 8), 
random effects are introduced without side conditions, as has become customary in unbalanced 
mixed models, see SEARLE et al. (1992, p. 123-127). 

The estimation procedure, although presented for a logistic regression model 
with components of variance, applies to a variety of GLMMs, as will be clear 
from the general notation. All calculations can be performed with standard 
software available for ordinary LMMs. If necessary, e.g. for binary data, the 
dispersion factor <j> can be fixed at value 1 (Genstat offers an option to do so). 

From (4) it can be shown that at convergence the following equations are 
solved: 

X'W(g'(fi)Q(y-fi)) = 0, 

Z'W(g'(fi)ö(y-ß)) = <l>G-lu, 

where O denotes the elementwise product (Hadamard product). Equations (5) 
are similar to the QL equations for fixed u (with appropriate side conditions) 
except for the term (f)G~1u on the right hand side. It easily follows that (5) may 
be obtained by putting first derivatives with respect to elements of ß and u of 
D + u'G~1u equal to zero, where D is the quasi-deviance conditional upon u and 
u'G~1u acts as a penalty function for the random effects. When the distribution 
of y conditional upon u is in the GLM exponential family, for normal random 
effects, minimization of the penalized quasi-deviance is equivalent to maximiza­
tion of the joint probability density function of y and u, similar to REML in a 
LMM. 

Large sample properties of the estimation procedure should be derived from 
the estimating equations (3) and (4) or (3) and (5). The asymptotics for QL 
(MCCULLAGH, 1983) and MINQUE (BROWN, 1976), cover some cases for 
"large" samples and "small" components of variance. See also MILLER (1977). 
Genstat produces large sample approximations for variances and covariances of 
estimators based on Fisher information under the assumption of normality. At 
least for small-dispersion asymptotics, e.g. large binomial totals or large Poisson 
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means, under normality assumptions for the additional random effects, these 
approximations will behave as for ordinary mixed models. 

It should be possible to relax normality assumptions for these approximations to hold. However, 
results with respect to unbiasedness of the estimates and predictions from (4) (KACKAR and HAR VILLE, 
1981) show that symmetry of the distribution of the random effects in the linear predictor is a 
desirable feature. Furthermore, for realistic sample sizes, the random effects should probably have 
small kurtosis. 

Since MINQUE and I -MINQUE use error contrasts (see SEARLE et al., 1992, 
Chap. 12) they should have less bias in the variance components estimates than 
ML under full distributional assumptions, e. g. binomial or Poisson distributions 
combined with additional normal random effects in the linear predictor. No 
attempt is made to tackle the estimating equations analytically, but the simula­
tion results promote confidence in the usefulness of the estimation procedure and 
further inference based on the approximate LMM for the adjusted dependent 
variate. 

We will briefly discuss some alternatives to ML presented in the literature, in 
relation to the extended IRLS method presented in this paper. In GIANOLA and 
FOULLEY (1983) a Bayesian procedure is presented for threshold models for 
ordered categorical data in animal breeding. An equivalent approach is pres­
ented in HARVILLE and MEE (1984). Restricting attention to binomial data, the 
threshold model is a particular instance of a GLMM. The link function follows 
from the "residual" probability distribution of the "liability", e.g. the standard 
logistic distribution corresponds to the logit link and the standard normal 
distribution to the probit link. Parameter <f> should be fixed at value 1. Estima­
ting equations in GIANOLA and FOULLEY (GF) and HARVILLE and MEE (HM) 
may be shown to be the same as those in ENGEL and KEEN (1994) (EK) and in 
this paper. Algorithms of GF /HM and EK notably differ with respect to the way 
components of variance are updated. In EK MINQUE leads to a Fisher scoring 
update, while in GF /HM a normal approximation of the posterior distribution 
of the random effects leads to an update resembling the EM algorithm for 
LMMs. The latter algorithm is considerably slower than the former. SCHALL 

(1991) proposes two algorithms for GLMMs mimicking the ML and REML EM 
algorithms for LMMs. The REML type algorithm, say SREML, is equivalent to 
GF /HM. A penalized quasi-likelihood (PQL) method based on LaPlacean 
integration, proposed by BRESLOW and CLAYTON (1993), although derived by 
quite a different line of argumentation, is equivalent to EK, both with respect to 
the estimating equations as with respect to the algorithm suggested. Estimation 
in MCGILCHRIST (1994) is based on maximization of the joint probability density 
function of y and u. Consequently, under the assumption stated below (5), this is 
equivalent to the approach illustrated in this paper with respect to ß and u. The 
REML type estimators for the components of variance in MCGILCHRIST (1994) 
are of the same form as the EM type updates in SREML and GF /HM. In 
GILMOUR et al. (1985), in the context of a threshold model for binomial data with 
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a probit link and normal random effects, a QL method (GAR) is proposed which 
is different from the methods discussed above. Rather than using conditional 
moments, as in EK, marginal moments are used, integrating out the random 
effects. Where £ in EK is formulated in terms of conditional moments, the 
adjusted dependent variate of GAR is expressed in terms of marginal moments. 
The marginal quasi-likelihood method presented in BRESLOW and CLAYTON 

(1993) is a generalisation of GAR. 
The major difference between the methods discussed lies in the use of either 

conditional or marginal moments with respect to the random effects. Simulation 
for a simple sire model with small family sizes in GILMOUR et al. (1985) suggests 
that GAR has smaller bias for estimated heritability than GF /HM (and conse­
quently also SREML, PQL and EK). 

Heritability, for e.g. a sire model, is defined as 4(72/(<7f+ T2), where o\ is the sire component and 
T2 = 7i2/3 for the standard logistic and T2 = 1 for the standard normal distribution. 

GF/HM is biased downward. Simulation results in HOESCHELE and GIANOLA 

(1988) however, for a more complex sire model, suggest that GF /HM performs 
better than GAR, both with respect to bias and mean squared error. For both 
methods heritability estimates are severely biased upward. The average progeny 
group size in HOESCHELE and GIANOLA (1988) is 40 and the sire variance for the 
liability, for the standard logistic distribution, rather than the standard normal 
distribution, is about 0.2. This is in the order of the average number of carcasses 
of about 50 per classifier and a\ = 0.2 for B5 and C1 in Table 3. However, in 
Table 3 serious overestimation for a\ only occurs for the smaller number of units 
and the smaller value of 0.02 for the component in configurations 42, 45 and 46. 
The positive bias for these configurations seems to be related to the active 
non-negativity constraint on the component. Configurations referred to as D1 in 
BRESLOW and CLAYTON (1993) contain one component of variance and are to 
some extent comparable with a simple sire scheme and the simulation study in 
this paper. The component is equal to 1 and "family sizes" vary from 7 to 56, 
with a non trivial design for the fixed effects. PQL tends to underestimate the 
variance component. 

The suggestion from the simulation results produced sofar is that in those 
cases where there is little or modest information on most of the individual 
random effects, GF /HM/SREML/PQL/EK has a tendency to overshrink these 
effects. In a simple sire scheme this would happen when e.g. family sizes are 
small. For small components and small binomial totals, the non-negativity 
constraints on the components become "active" and may be a source of positive 
bias. Since results in GILMOUR et al. (1985), BRESLOW and CLAYTON (1993) and 
the present paper do not seem to agree with HOESCHELE and GIANOLA (1988), 
further simulation is needed, especially for areas of research such as animal 
breeding where components of variance and prediction of random effects are of 
first interest. Presently, work is in progress on an application of GLMMs to 
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threshold models for binary data for birth difficulties with sheep and we hope to 
get a clearer impression of the performance of EK and GAR from simulation on 
the basis of that data. 
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Chapter 6 

Inference for threshold models with variance components 
from the generalized linear mixed model perspective 
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Application of IRREML to threshold models for binary data. 

Threshold models for binary data are a sub-class of the class of 

GLMMs. Simulation results indicate that for binary data 

estimators for variance components may be severely biased. 

Contrary to other studies reported in the literature, it is found that 

bias is not necessarily negative. 
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Summary - The analysis of threshold models with fixed and random effects and associated 
variance components is discussed from the perspective of generalized linear mixed models 
(GLMMs). Parameters are estimated by an interative procedure, referred to as iterated 
re-weighted REML (IRREML). This procedure is an extension of the iterative re-weighted 
least squares algorithm for generalized linear models. An advantage of this approach is that 
it immediately suggests how to extend ordinary mixed-model methodology to GLMMs. 
This is illustrated for lambing difficulty data. IRREML can be implemented with standard 
software available for ordinary normal data mixed models. The connection with other 
estimation procedures, eg, the maximum a posteriori (MAP) approach, is discussed. A 
comparison by simulation with a related approach shows a distinct pattern of the bias of 
MAP and IRREML for heritability. When the number of fixed effects is reduced, while the 
total number of observations is kept about the same, bias decreases from a large positive 
to a large negative value, seemingly independently of the sizes of the fixed effects. 

binomial data / threshold model / variance components / generalized linear model / 
restricted maximum likelihood 

Résumé — Inference sur les composantes de variance des modèles à seuil dans une 
perspective de modèle linéaire mixte généralisé. L'analyse des modèles à seuils avec 
effets fixes et aléatoires et des composantes de variance correspondantes est ici placée 
dans la perspective des modèles linéaires mixtes généralisés (GLMMs). Les paramètres 
sont estimés par une procédure itérative, appelée maximum de vraisemblance restreinte re­
pondéré obtenu par itération (IRREML). Cette procédure est une extension de l'algorithme 
itératif des moindres carrés repondérés pour les modèles linéaires généralisés. Elle a 
l'avantage de suggérer immédiatement une manière d'étendre la méthodologie habituelle 
du modèle mixte aux GLMMs. Une application à des données de difficultés d'agnelage est 
présentée. IRREML peut être mis en œuvre avec les logiciels standard disponibles pour les 
modèles linéaires mixtes normaux habituels. Le lien avec d'autres procédures d'estimation, 
par exemple l'approche du maximum a posteriori (MAP), est discuté. Une comparaison 
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par simulation avec une méthode voisine montre un biais caractéristique du MAP et de 
l'IRREML pour l'héritabilité. Quand le nombre des effets fixés est diminué, à nombre to­
tal d'observations constant, le biais passe d'une valeur fortement positive à une valeur 
fortement négative, apparemment indépendantes de l'importance des effets fixés. 

distribution binomiale / modèle à seuil / composante de variance / modèle linéaire 
généralisé / maximum de vraisemblance restreinte 

INTRODUCTION 

In his paper on sire evaluation Thompson (1979) already pointed out the potential 
interest for binomial data in modifying the generalized linear model (GLM) esti­
mating equations to allow for random effects. He conjectured that if modification is 
feasible, generalization towards other distributions such as the Poisson or gamma 
distribution should be easy. The iterated re-weighted restricted maximum likeli­
hood (IRREML) procedure (Schall, 1991; Engel and Keen, 1994) for generalized 
linear mixed models (GLMM) proves to be exactly such a modification. IRREML 
is motivated by the fact that in GLMMs the adjusted dependent variate in the 
iterated re-weighted least squares (IRLS) algorithm (McCullagh and Neider, 1989, 
§ 2.5) approximately follows an ordinary mixed-model structure with weights for 
the residual errors and, in the absence of under- or overdispersion, residual error 
variance fixed at a constant value (typically 1). IRREML is quite flexible and not 
only covers a variety of underlying distributions for the threshold model but also 
easily extends to other types of data such as count data, for example, litter size. 
This entails simple changes in the algorithm with respect to link and variance func­
tion employed. When the residual error variance for the adjusted dependent variate 
is not fixed, it represents an additional under- or overdispersion parameter which is 
a useful feature, for example, under- or overdispersed Poisson counts. Calculations 
in this paper are performed with REML (Patterson and Thompson, 1971) facilities 
for ordinary mixed models in Genstat 5 (1993). Software for animal models such 
as DFREML (Meyer, 1989), after some modification, can be used for IRREML as 
well. 

Methods for inference in ordinary normal data mixed models, eg, the Wald test 
(Cox and Hinkley, 1974, p 323) for fixed effects, are also potentially useful for 
GLMMs, as will be illustrated for the lambing difficulty data. Simulation results 
for the Wald test in a GLMM for (overdispersed) binomial data were presented in 
Engel and Buist (1995). 

For threshold models with normal underlying distributions and known compo­
nents of variance, Gianola and Foulley (1983) observe that their Bayesian maximum 
a posteriori (MAP) approach produces estimating equations for fixed and random 
effects such as those anticipated by Thompson. Under normality assumptions, for 
fixed components of variance, IRREML will be shown to be equivalent to MAP. 
IRREML therefore offers an alternative, non-Bayesian, derivation of MAP. The 
MAP approach was also presented in Harville and Mee (1984), including estima­
tion of variance components. Their updates of the components of variance are akin 
to those of the estimation maximization (EM) algorithm (Searle et al, 1992, § 8.3) 
for REML. The algorithm presented in Engel and Keen (1994), which is used in this 
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paper, is related to Fisher scoring. Both algorithms solve the same final estimating 
equations, but the latter is considerably faster than the former. 

Gilmour et al (1985) presented an iterative procedure for threshold models with 
normal underlying distributions, which also uses an adjusted dependent variate and 
residual weights. This approach, which will be referred to as GAR, is different from 
MAP and IRREML. In the terminology of Zeger et al (1988) MAP and IRREML 
are closely related to the subject-specific nature of the GLMM, while GAR is of a 
population-averaged nature, as will be explained in more detail in this paper. 

A number of authors, eg, Preisler (1988), Im and Gianda (1988), and Jansen 
(1992), have discussed maximum likelihood estimation for threshold models. Apart 
from the fact that straightforward maximum likelihood estimation does not correct 
for loss of degrees of freedom due to estimation of fixed effects, as REML does 
in the conventional mixed model, it is also handicapped by the need for high-
dimensional numerical integration. Maximum likelihood estimation for models with 
several components of variance, especially with crossed random effects, is practically 
impossible. IRREML is more akin to quasi-likelihood estimation (McCullagh and 
Neider, 1989, chap 9; McCullagh, 1991): conditional upon the random effects only; 
the relationship between the first 2 moments is employed while no full distributional 
assumptions are needed beyond existence of the first 4 moments. 

Since practical differences between various methods proposed pertain mainly to 
their subject-specific or population-averaged nature, we will give some attention 
to a comparison between GAR and IRREML. Simulation studies were reported in 
Gilmour et al (1985), Breslow and Clayton (1993), Hoeschele and Gianola (1989), 
and Engel and Buist (1995). Conclusions from the Hoeschele and Gianola study 
differ from conclusions from the other studies with respect to bias of MAP/IRREML 
and GAR. Since the Hoeschele and Gianola study was rather modest in size, it 
was decided to repeat it here in more detail, ie under a variety of parameter 
configurations and for larger numbers of simulations. 

GLMMs and threshold models 

The GLMM model 

Suppose that random effects are collected in a random vector u, with zero means 
and dispersion matrix G, eg, for a sire model G = Aa^, where A is the additive 
relationship matrix and a\ the sire component of variance. Conditional upon u, eg, 
for given sires, observations y are assumed independent, with variances proportional 
to known functions V of the means /x: 

E(y\u)=fjL and Vax(y\u) = <t>V{p) [1] 

For binary data, y = 1 may denote a difficult birth and y = 0 a, normal birth. The 
mean [i is the probability of a difficult birth for offspring of a particular sire. The 
conditional variance is Va,r(y\u) = V(fi) = ß(l — ß) and (j> equals 1. For proportions 
y = x/n, an appropriate choice may be: 

Varfol«) = <f>V{n) = # ( 1 - n)/n [2] 
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Parameter (/> may be included to allow for under- or overdispersion relative 
to binomial variation (McCullagh and Neider, 1989, § 4.5). Observe that [2] is 
inappropriate when n is predominantly small or large: for n = 1 no overdispersion 
is possible and 0 should equal 1 and for n —* oo, [2] vanishes to 0 while extra-
binomial variation should remain. More complicated variances (Williams, 1982) may 
be obtained by replacing <\> in [1] by {1 + (n — 1)CTQ} or by {1 + (n — l)ooM(l ~~ A4)}-
In both expressions cr2, is a variance corresponding to a source of overdispersion 
(for a discussion of underdispersion see Engel and Te Brake, 1993). Limits for 
n —> oo of the variances are OoMl ~~ A*) a n<i °oM2(l — A4)2; respectively. Both can be 
accomodated in a GLMM for continuous proportions, eg, motility of spermatozoa, 
and are covered by IRREML. 

The mean fi is related to a linear predictor rj by means of a known link function g: 
r) = g(n). The linear predictor is a combination of fixed and random effects: 
T] = x 'ß + z'u, where x and z are design vectors for fixed and random effects 
collected in vectors ß and u, respectively. For difficulty of birth, for instance, r\ 
may include main effects for parity of the dam and a covariable for birthweight as 
fixed effects and the genetic contribution of the sire as a random effect. Popular 
link functions for binary or binomial data are the logit and probit link functions: 
logit(^i) = log(/z/(l —/i)) = j] and probit(/x) = $ - 1 ( / i ) = rj, where $ _ 1 is the inverse 
of the cumulative density function (cdf ) of the standard normal distribution. 

The threshold model 

Suppose that r is the 'liability', an underlying random variable such that y = 1 when 
r exceeds a threshold value 9 and y = 0 otherwise. Without loss of generality it may 
be assumed that 0 = 0. Let r\ be the mean of r, conditional upon u. Furthermore, 
let the cdf of the residual e = (r - r)), say F, be independent of u. Then 

(j, = P(y = l\u) = P(r > 0\u) = 1 - F(-r}) and so 77 = - F _ 1 ( l - fi) 

where F _ 1 is the inverse of F. It follows that the threshold model is a GLMM 
with link function g(fi) = —F_ 1( l — fi), which simplifies to #(/x) = F_1(/x) when e 
is symmetrically distributed. Residual e may represent variation due to Mendelian 
sampling and environment. Probabilities fi do not change when r is multiplied by 
an arbitrary positive constant and the variance of e can be fixed at any convenient 
constant value, say a2. When F is the cdf L of the standard logistic distribution, 
ie F(e) = L[e) ~ 1/(1 + exp(-e)), g is the logit link and a2 = 7r2/3. When 
F is the cdf $ of the standard normal distribution, g will be the probit link and 
a2 = 1. Although the logistic distribution has relatively longer tails than the normal 
distribution, to a close approximation (Jonhson and Kotz, 1970, p 6): 

*(*) = L{ct) [3] 

where c = (15/16)7r/\/3- Results of analyses with a probit or logit link are usually 
virtually equivalent, apart from the scaling factor c for the effects and c2 for the 
components of variance. Heritability may be defined on the liability scale, eg, for a 
sire model: h2 = 4<r2/(a2 + a2). As a function of a2/a2 heritability does not depend 
on the choice of a2. Hence, estimates h2 for the probit and logit link are often about 
the same. 
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Conditional and marginal effects 

In a GLMM, effects are introduced in the link-transformed conditional means, ie in 
the linear predictor r/ = g{p). Consequently, effects refer to subjects or individuals. 
The GLMM and the threshold model are both subject-specific models, using the 
terminology of Zeger et al (1988). This is in contrast with a population-averaged 
model where effects are introduced in the link-transformed marginal means g{E(p)) 
and refer to the population as a whole. In animal breeding, where sources of 
variation have a direct physical interpretation and are of primary interest, a subject-
specific model, which explicitly introduces these sources of variation through 
random effects, seems the natural choice. For fixed effects however, presentation 
in terms of averages over the population is often more appropriate. In the threshold 
model, there is no information in the data about the phenotypic variance of the 
liability, allowing a2 to be fixed at an arbitrary value. Intuitively one would expect 
the expressions for marginal effects to involve some form of scaling by the underlying 
phenotypic standard deviation. For normally distributed random effects and probit 
link this is indeed so. From r ~ iV(x'ß, z'Gz + 1) the marginal probability, say p, 
follows directly: 

p = P(y = l) = P(r > 0) = $(x'ß(z'Gz + I ) - 0 5 ) 

Hence, the probit link also holds for marginal probabilities, but the effects are 
shrunken by a factor Ap = (z'Gz + 1 ) - 0 5 . For a sire model Xp = (a2 + 1 ) - 0 5 . That 
the same link applies for both conditional means \x and marginal means p is rather 
exceptional. For the logit link, the exact integral expression for p cannot be reduced 
to any simple form (Aitchison and Shen, 1980). However, from [3] it follows that the 
logit link holds approximately forp, with shrinkage factor XL = ((z'Gz/c2) + l ) - a 5 . 
Without full distributional assumptions, for relatively small components of variance, 
marginal moments may also be obtained by a Taylor series expansion (see Engel 
and Keen, 1994). 

Binary observations y* and jjj corresponding to, for instance, the same sire will 
be correlated. For the probit link the covariance follows from: 

cov(yi, Vj) = Eu(cov(yi, yj\u)) + covu(E(yi\u), E(yj\u)) = covu(m, (jtj) 
= Eu[P(ri > 0, TJ > 0\u)] - PiPj = P(n > 0, rj > 0) - PiPj 

= $2(<\px-ß, V ^ ß ; Pij)-PiPj [4] 

Here $2(0, b; p) is the cdf of the bivariate normal distribution with zero means, 
unit variances and correlation coefficient p, pij is the correlation on the underlying 
scale, eg, in a simple sire model ptj = (T2/(a2 + 1). For the logit link, using [3], Ap 

should be replaced by A^/c, while the value of the correlation, expressed in terms 
of the components of variance in the logit model, is about the same. The double 
integral in $2 may effectively be reduced to a single integral (Sowden and Ashford, 
1969), which can be evaluated by Gauss quadrature (Abramowitz and Stegun, 1965, 
p 924). Alternatively, for small p2, a Taylor expansion (Pearson, 1901; Abramowitz 
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and Stegun, 1965, 26.3.29, p 940) may be used: 

$2(a,6; p) = $(a)$(è) +r(a)r(6) /o + ^ ^ ( ^ r W ^ p ' + V ^ + 1)! [5] 
t = i 

where r ^ is the tth derivative of the probability density function (pdf) r of the 
Standard normal distribution. For a sire model, under normality assumptions, the 
first-order approximation appears to be satisfactory, except for extreme incidence 
rates p (Gilmour et al, 1985). By grouping of n binary observations pertaining to 
the same fixed and random effect, moments for binomial proportions y immediately 
follow from [4], eg: 

Var(y) = p(l - p)[l + (n - l ){$2(Apx'ß, Apx'ß; p) - p2}/p(l - p)]/n [6] 

where p is the intra-class correlation on the liability scale. Expression [6] can be 
simplified by using [5]. Results for the logit link follow from [3]. 

Estimation of parameters 

The algorithm for IRREML 

The algorithm will be described briefly. For details see Engel and Keen (1994) and 
Engel and Buist (1993a). Suppose that ß 0 and uo are starting values obtained from 
an ordinary GLM fit with, for example, random effects treated as if they were fixed 
or with random effects ignored, ie Uo = 0. After the initial GLM has been fitted by 
IRLS, the adjusted dependent variate £ and iterative weights w (McCullagh and 
Neider, 1989, § 2.5) are saved: 

C = {y - MO)S'(MO) + g{lM>) and w = {g'(ßo)2V(p,0)}~ [7] 

where g' is the derivative of the link function with respect to ß, eg, for the probit 
link: w = nr(rjo)2/{A*o(l — ßo)}, C approximately follows an ordinary mixed-model 
structure with weights w for the residual errors and residual variance <j>. Now a 
minimum norm quadratic unbiased estimation (MINQUE) (Rao, 1973, § 4j) is 
applied to C, employing the Fisher scoring algorithm for REML (1 step of this 
algorithm corresponds to MINQUE). From the mixed-model equations (MMEs) 
(Henderson, 1963; Searle et al, 1992, § 7.6) new values ß and û for the fixed and 
random effects are solved: 

X ' W X X ' W Z 

Z 'WX Z'WZ + ^ G " 1 . 
fßl 
u. 

X'WC 

.Z'WC 

Here, X and Z are the design matrices for the fixed and random effects 
respectively, W is a diagonal matrix with weights w along the diagonal and £, 
denotes the vector of values of the adjusted dependent variate. ß 0 and uo are 
replaced by ß and u, £, and w are updated and a new MINQUE step is performed. 
This is repeated until convergence. Note that MINQUE does not require full 
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distributional assumptions beyond the existence of the first 4 moments and may be 
presented as a weighted least-squares method (Searle et al, 1992, Ch 12). 

Some properties of IRREML 

When the MMEs are expressed in terms of the original observations y, it is readily 
shown that at convergence the following equations are solved: 

x%(nr(y-n)) = o, 
z'w(ffvr(y-n)) = 0G-1u [8] 

where * denotes a direct elementwise (Hadamard) product. These equations are 
similar to the GLM equations for fixed u (with appropriate side conditions) except 
for the term (j) G _ 1 u on the right-hand side. Equations [8] may also be obtained 
by setting first derivatives with respect to elements of ß and u of D + u ' G _ 1 u 
equal to zero, where D is the (quasi) deviance (see McCullagh and Neider, 1989, 
§ 2.3 and § 9.2.2.) conditional upon u. The assumption of randomness for u imposes 
a 'penalty' on values which are 'too far' from 0. When the pdf of observations y 
conditional upon normally distributed random effects u is in the GLM exponential 
family, eg, a binomial or Poisson distribution, maximization of Z? + u ' G _ 1 u is easily 
shown to be equivalent to maximization of the joint pdf of y and u. 

Suppose that we have a sire model with q sires and sire variance component a2
s. 

The IRREML estimating equations for a2, and cp (see, for example, Engel, 1990) 
are: 

trace(Z'fcPZfcAfc) = C'PZfcAfcZ'fcPC, fc = 0, 1 [9] 

Here Z0 = I, Zi is the design matrix for the sires, Ao = W - 1 , Ai = A, 
P = fi-1 - Î ^ X f X ' f i - ^ J ^ X ' f i - 1 and Q = ZGZ' + 0W" 1 . The difference with 
ordinary REML equations is that £ depends on the parameter values as well. The 
MINQUE/Fisher scoring update of IRREML can be recovered from [9], by using 
P = P f iP = <rjPZ1AZ'1P + ^ P W - ' P on the left-hand side: 

£ tT^e(Z'klPZkAkZ'kPZk>Akl)a
2
k = £'PZfc,Afc,Z'fc,Pt, k' = 0, 1 [10] 

k 

where a\ = <p and a\ = a2. When (j> is fixed at value 1, the equation for k' = 0 is 
dropped from [10]. Alternative updates related to the EM algorithm may also be 
obtained from [9] (see, for example, Engel, 1990), and will be of interest when other 
estimation procedures are discussed: 

al = {u 'A"1!! + trace(A"1T)}/g [11] 

Here T/<j) is the part of the inverse of the MME coefficient matrix corresponding 
to u. 

With quasi-likelihood (QL) for independent data, it is suggested (McCullagh 
and Neider, 1989, § 4.5 and chap 9) that one can estimate (j> from Pearson's 
(generalized) chi-square statistic. From [9] it may be shown that <j> = X^/d, where 
Xp = ^2j(yj —fij)2/V(p,j) is Pearson's chi-square in terms of conditional means and 
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variances and d = N — rank(X) — {q — trace(A_1T/CTg)} is an associated 'number 
of degrees of freedom'. 

Application to birth difficulties in sheep 

The data are part of a study into the scope for a Texel sheep breeding program 
in the Netherlands employing artificial insemination. Lambing difficulty will be 
analyzed as a binary variable: 0 for a normal birth and 1 for a difficult birth. There 
are 43 herd-year-season (HYS) effects. Herds are nested within regions and regions 
are nested within years. There are 2 years, 3 regions per year, about 4 herds per 
region, and 3 seasons. The 33 sires are nested within regions. The 433 dams are 
nested within herds with about 20 dams per herd. Observations are available from 
674 offspring of the sires and dams. 

Variability on the liability scale may depend on litter size. Therefore, observations 
corresponding to a litter size of 1 and litter sizes of 2 or more are analyzed separately. 
Corresponding data sets are referred to as the S-set (single; 191 observations) and 
M-set (multiple; 483 observations). The M-set is reproduced in Engel and Buist 
(1993) and is available from the authors. Some summary statistics are shown in 
table I. 

Table I. Summary statistics for the lambing difficulty data and 'raw' fractions for difficult 
births and corresponding numbers of progeny for the S- and M-set. 

Year 1 
Year 2 

Season 1 
Season 2 
Season 3 

Overall 

Mean 

0.76 
0.84 

0.78 
0.83 
0.93 

0.82 

S-set 
Number of progeny 

59 
132 

93 
84 
14 

191 

Mean 

0.50 
0.77 

0.64 
0.71 
0.41 

0.66 

M-set 
Number of progeny 

204 
279 

286 
180 
17 

483 

Table II shows some results for components of variance, for models fitted to the 
S- and M-sets. Dam effects are absorbed. To stabilize convergence, the occurrence 
of extreme weights was prevented by limiting fitted values on the probit scale to the 
range [—3.5, 3.5]. In addition to fixed HYS effects, factors for age and parity of the 
dam (P), sex of the lamb (S), and for the M-set a covariate for litter size (L = litter 
size - 2) and included. Levels for factor P consist of the following 6 combinations 
of age and parity: (1;1), (2;1), (2;2), (3; < 2), (4; > 3) and (^ 5; ̂  4). In models 3, 
4 and 5 a factor D for pelvic dimension of the dam ('wide', 'normal' or 'narrow'), 
and in models 4 and 5 a covariate W = birthweight - average birthweight of the 
lamb is also included, with separate averages of 4.27 and 3.63 for the S- and M-sets 
respectively. 

Fixed effects may be screened by applying the Wald test to the values of 
£ saved from the last iteration step. Some results for the M-set are shown in 
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Table II. Estimated components of variance <7g and a^y for sires and dams, h = 4<7g 

(i + 4 + "D)> P = ̂ A 1 + 4 + 4)-

S-set, model 

1. HYS + S + P 
2. HY + S + P 
3. HY + S + P + D 
4. HY + S + P + D + W 
5. HY + S + P + D + W + D x W 

M-set, model 

1. HYS + S + P + L + S x L 
2. HY + S + P + L + S x L 
3. HY + S + P + L + S x L + D 
4. HY + S + P + L + S x L + D + W 
5. HY + S + P + L + S x L 

+D + W + DX W 

/ T 2 

0.25 (0.30) 
0.13 (0.21) 
0.09 (0.24) 
0.10 (0.29) 
0.01 (0.26) 

0.00 ( - ) 
0.00 ( - ) 
0.00 ( - ) 
0.01 (0.09) 
0.00 (0.09) 

0.84 (0.25) 
0.69 (0.20) 
0.69 (0.21) 
0.71 (0.22) 
0.74 (0.22) 

h 2 

0.81 (0.79) 
0.46 (0.66) 
0.34 (0.81) 
0.38 (0.95) 
0.04 (1.00) 

0.00 ( - ) 
0.00 ( - ) 
0.00 ( - ) 
0.02 (0.21) 
0.00 (0.21) 

P 

0.46 (0.07) 
0.41 (0.07) 
0.41 (0.07) 
0.42 (0.07) 
0.43 (0.07) 

Standard errors are in parentheses. S, P and D denote main effects, W and L are 
covariables, S x L and D x W are interactions. When an estimate is negative (—), the 
component is assumed to be negligible and set to 0. 

table III. In all cases, test statistics are calculated for the values of the variance 
components obtained for the corresponding full model, ie model 1-5. Variability due 
to estimation of the variance components is ignored. For each line in the table the 
corresponding test statistic accounts for effects above that line, but ignores effects 
below the line. Referring to a chi-square distribution, in model 1 seasonal effects 
seem to be unimportant and are excluded from the subsequently fitted models. 

In model 3 for the M-set, the following contrasts for pelvic opening (D) are found: 
0.520 (0.231), 2.019 (0.547) and 1.499 (0.531), for 'normal' versus 'wide', 'narrow' 
versus 'wide' and 'narrow' versus 'normal', respectively. Pairwise comparison, with a 
normal approximation, shows that any 2 levels are significantly (P < 0.05) different. 
The effects refer to the probits of the conditional probabilities. For the probits of 
the marginal probabilities, effects have to be multiplied by ( I + C T J + C T Q ) - 0 5 = 0.769 
(from table II). The difference between 'narrow' and 'wide', for example, becomes 
1.55 (0.43). In model 5 for the M-set, separate coefficients for birthweight are fitted 
for the 3 levels of pelvic opening. The estimated coefficient for birthweight for a 
dam with a narrow pelvic opening is 0.72 (0.61); this is about 0.47 (0.63) higher 
than the estimates for the other 2 levels, which are about the same. Although a 
larger coefficient is to be expected for a narrow pelvic opening, the difference found 
is far from significant. Fitting a common coefficient, ie dropping the interaction 
D x W between pelvic opening and birthweight in model 4, gives an estimated 
coefficient for birthweight of 0.28 (0.15), which becomes 0.21 (0.12) after shrinkage. 
By comparison, the coefficient for the S-set, after shrinkage, is 0.92 (0.30). The 
reduced effect of birthweight for the M-set agrees with the negligible values found 
for the component of variance for sires. 
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Table III. Some test results for the fixed effects for the M-set. 

S = sex of lamb 
P = parity / age of dam 
L = litter size 
S x L 

HYS 
Years 
Seasons 
Years x Regions 
Years x Seasons 
Years x Regions x Herds 
Years x Regions x Seasons 
Years x Regions x Seasons x Herds 

Wald statistics 
Model 1 

0.4 
2.8 
2.2 
0.1 

18.0* 
0.9 

20.0* 
1.0 

29.1* 
1.3 
4.4 

Degrees 
of freedom 

1 
5 
1 
1 

1 
2 
4 
2 

16 
5 

12 

B 

Years 
Years x Regions 
Years x Regions x Herds 
S = sex of lamb 
P = parity/age 

of dam 
D (pelvic opening) 
L = litter size 
W (birth weight lamb) 
S x L 
D x W 

Model 2 

18.7* 
21.8* 
46.5* 
3.0 
7.2 

-
2.5 
-

0.1 
-

Wald statistics 
Model 3 

18.0* 
22.6* 
39.7* 
2.6 
5.6 

15.6* 
2.3 
-

0.0 
-

Model 4 

16.2* 
21.8* 
37.6* 
2.7 
5.5 

14.6* 
2.1 
3.3 
0.0 
-

Model 5 

16.7* 
22.0* 
37.5* 
2.7 
5.4 

13.0* 
2.1 
3.2 
0.0 
0.6 

Degrees 
of freedom 

1 
4 

16 
1 
5 

2 
1 
1 
1 
2 

P < 0.05, referring to a chi-square distribution, ignoring effects in the following rows. 

Relation to other methods 

We will mainly concentrate on differences between GAR and IRREML. 
GAR is based on QL for the marginal moments with a probit link and nor­
mally distributed random effects (see also Foulley et al, 1990). QL-estimating 
equations for dependent data are (McCullagh and Neider, 1989, § 9.3) 
D 'Var(y) - 1 (y — p) = 0, where the matrix of derivatives D = (da), da = 
(dpi/dß^j), follows from p = $(Xß„) , and ß 
fixed effects. It follows from [6] that: 

(y — p) = 0) where the matrix of derivatives D = (dij), u,ZJ 

Apß denotes the vector of marginal 

Var(y) = R + B(ZCZ')B' + 0(p2) [12] 
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where R = diag({p(l - p) - pr2(XpXß)}/n), B = diag(-r(ApXß)), C = ApG and 
p represents the appropriate intraclass correlation. Var(y) will be replaced by [12], 
ignoring terms of order p2 and higher. The QL equations may be solved by iterated 
generalized least squares on an adjusted dependent variate, say CGAR: 

CGAR = Xß* + B - ^ y - p) = X ß , + diag(r(Xß J ) " 1 (y - p) 

where B is B evaluated at ß„. By comparison, the adjusted dependent variate from 
[7] is: 

C = Xß + Zu + diag(r(Xß + Zu ) ) - 1 (y - \x) 

The latter variate relates to a first-order approximation of the conditional 
means fi, while the former relates to a first-order approximation of the marginal 
means p. Approximately Var(CcAR) = B- 1Var(y)B- 1 = B ^ R B 1 + ZCZ' = 
W c ^ R + ZCZ', and Gilmour et al (1985) solve MMEs in terms of CGAR and W G A R -

For example, in a sire model with q sires, predictions from these MMEs for Apu, 
say UQAR, are used to update the intraclass correlation p. Analogous to [11] with 
0 = 1 : 

PGAR = {ûG A RA_ 1ûGAR + trace(A - 1TGAR)}/ç [3] 

Both GAR and IRREML are based on an approximate mixed-model structure for 
an adjusted dependent variate. Note however that in GAR, in contrast to IRREML, 
predictions of the random effects are only used to update the components of variance 
and do not enter W Q A R and CGAR directly. At the end of this section we shall see 
that this may be an advantage for GAR over IRREML in situations where there is 
little information in the data about individual random effects, eg, in a sire scheme 
with small family sizes or extreme incidence. The marginal quasi-likelihood method 
(MQL) presented in Breslow and Clayton (1993) can be regarded as a generalization 
of GAR. However, in its more general setting, MQL does not have the benefit of 
some of the exact results for binomial data and underlying normal distributions 
used to derive GAR. 

In MAP, assuming a vague prior for ß and a normal prior for u, the posterior 

mean for (ß' , u ' ) ' is approximated by the posterior mode. Hence, (ß , û ' ) ' maximize 
the joint pdf of y and u. Under normality this is equivalent to maximization of a 
penalized deviance. Hence, the estimating equations for ß and u for MAP and 
IRREML are the same and given by [8]. As shown in Foulley et al (1987) an 
estimator for, for instance, a sire component cr|, may be solved from: Eo\d/dcr^ 
l°g(/(u l°s))] = 0. Here, /(. | .) denotes a (conditional) pdf for the variables 
indicated, and expectation EQ is with respect to / (u |y , cr|). The latter pdf may be 
approximated by a normal density with mean û and dispersion T. In an iterative 
scheme this leads to the EM-type update [11]. Consequently, MAP and IRREML 
also solve the same final estimating equations with respect to the components of 
variance, although the algorithms used are different. 

The penalized quasi-likelihood method (PQL) presented in Breslow and Clayton 
(1993) is based on Laplace integration. Random effects are assumed to be normally 
distributed. The log pdf of y conditional upon u is replaced by a quasi-likelihood. 
When parameter <j> is involved, the extended quasi-likelihood (Neider and Pregibon, 
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1987) can be used, see Engel and Buist (1993). In the resulting integral expression, 
the logarithm of the integrand in terms of u is approximated by a quadratic 
function around its optimum in Q, employing expected second-order derivatives. 
Now random effects are easily integrated out. Some further approximations, eg, 
approximating conditional deviance residuals by Pearson residuals, result in a 
normal log likelihood for the adjusted dependent variate Ç, from [7]. An REML 
type adjustment for loss of degrees of freedom due to estimation of fixed effects 
finally yields an REML log likelihood, which is maximized by Fisher scoring. Hence, 
although motivated quite differently, PQL is equivalent to IRREML (for details see 
Engel and Buist, 1993). 

A comparison between GAR and MAP/PQL/IRREML by simulation was pre­
sented in Gilmour et al (1985). They consider a simple one-way model, eg, a 
sire model with q unrelated sires, with n offspring per sire, and with a binary 
observation per offspring. An overall mean is the only fixed effect. Gilmour et 
al (1985) observe that there is a tendency for MAP/PQL/IRREML to under­
estimate h2 for small family size n or extreme incidence p. For extreme inci­
dence p, GAR tends to overestimate h2. As also noted by Thompson (1990), for 
this simple set-up, closed-form expressions can be derived from [8] and [11], viz, 
PGAR = {MSB - y{l - y)}/{(n - l ) r ( $ _ 1 (y ) 2 } . Here MSB is the mean sum of 
squares between sires for the binary observations and y is the overall mean. The 
adjusted dependent variable and weights are: CGAR = $~1(V) + {y — V)/T(®~1(y)) 
and WQAR = ,'"(3,-1(17))2/'{j7(l ~ v) ~ P''"(^_1(y))2}- As long as the first-order ap­
proximation from [5] holds, and q is not too small, /5GAR will be nearly unbiased. 
Actually, for this simple scheme, GAR may be shown to be equivalent to Williams' 
method of moments for estimating overdispersion (Williams, 1982). Starting from 
uo = 0 and r)0 = $>~1(y), the adjusted dependent for IRREML is the same as for 
GAR, but the weights w = r ($ _ 1 (y) ) 2 /{y( l — y)} are smaller! Consequently, the 
first estimate 5 | = {MSB —17(1 - y)}/{nT(ß>~ (y))2} underestimates <T| approx­
imately by a factor (n — l ) /n . Simulation results in Gilmour et al (1985) suggest 
that with further iteration underestimation by this factor persists. For extreme 
incidence, say close to 1, IRREML weights are approximately r[T(rj), as follows 
from Abramowitz and Stegun (1965, 26.2.12, p 932). Most of the information is in 
the negative-valued random effects, and over-shrinkage of random effects will yield 
smaller weights in the next iteration, ie 'residual variances' will be too high. There­
fore, underestimation by IRREML may be expected to be more serious for extreme 
incidence, even when the first-order approximation from [5] still holds. Lack of in­
formation about individual random effects, because of small family size or extreme 
incidence, seems a serious problem with MAP/PQL/IRREML. The smaller weights 
in IRREML are a consequence of 'residual variances' being derived from predicted 
values of conditional variances. Alternative weights WQ = E(g' (ß)2V(ß))-1 for IR­
REML are suggested in Engel and Keen (1994). For the logit link evaluation of alter­
native weights is straightforward: w0 = {2 + 2exp(<r2/2) cosh(x 'ß)} - 1 , but for the 
probit link it is problematic. It is suggested that we use iuo = { P ' ( M ) 2 £ ' ( ^ ( M ) ) } _ 1 

instead. Note that in the first step for the simple sire scheme this weight equals 
IUGAR- Simulation results in Breslow and Clayton (1993) also show a negative bias 
for MAP/PQL/IRREML. However, Hoeschele and Gianola (1989) find a positive 
bias. Their simulation study concerns a sire model which includes 135 fixed HYS 
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effects. MAP/PQL/IRREML has smaller bias and smaller mean-squared error than 
GAR. For both methods an upward bias in the order of 20% (based on 45 simula­
tions) of the true h2 = 0.25 is observed. An upward bias is also apparent for some 
of the models simulated in Hoeschele et al (1987). Simulation results for overdis-
persed binomial data in Engel and Buist (1995) only indicate a serious upward bias 
for variance components estimated by IRREML when the true component value is 
small and the non-negativity constraints are active. 

Simulation results 

Data are generated as described in Hoeschele and Gianola (1989) (referred to as 
HG). The 135 HYS effects are generated from a N(0, ^HYS) distribution. For 
each HYS class, a sire has 0, 1 or 2 offspring with probabilities 1 — PHYS> PHYS/2 
and PHYS/2 respectively. The HYS effects and design for sires and offspring are 
generated only once, after which the same HYS values and the same design are 
used in all subsequent simulations. HYS effects are included in the model as fixed 
effects. Other fixed effects are sire group effects: 4 groups with effects —0.40, —0.15 
(the value —0.10 in HG was assumed to be a typing error), 0.15 and 0.40. The 
numbers of sires in the groups are 12, 14, 13 and 11. The 50 independent sire 
effects are generated from an N(0, Og) distribution, where er| = /i2/(4 - h2). The 
residuals for the liability are from an iV(0, 1) distribution. The overall constant on 
the probit scale is — $ - 1(po) (1 + ^HYS + °s)°'5> where p0 determines the overall 
incidence. Suppose that CHYS corresponds to a proportion /HYS of 1 + ojjys + ah 
then 4 Y S = ( 4 /HYS / ( 1 - / H Y S ) ) / ( 4 - h2). In HG, h2 = 0.25, fHYS = 0.30, 
Po = 0.9 and PHYS = 0.2. The expected total number of records is 2 025, with 
about 40 offspring per sire. This is configuration 10, which is presented with some 
of the other configurations of parameter values studied in table IV. 

For each configuration, either 1 or 2 series of 200 simulations are performed. In 
a series, HYS effects, sire-offspring configuration and data are all generated from 
a sequence of random numbers from the same seed. The first series corresponds to 
the same seed for all configurations. Therefore, for the first series, for example for 
configurations 3 and 8, the design is the same. Seeds of the second series are all 
different. In table IV bias (%bias) and root mean square error (%\/MSE) are both 
expressed as a percentage of the true value of h2. In contrast with the results 
in Gilmour et al (1985) and in agreement with Hoeschele and Gianola (1989), 
with one exception, MAP/PQL/IRREML shows a positive bias. The exception 
is configuration 13 where HYS effects are not included, neither in the generation of 
the data nor in the model fitted. The negative value for this configuration indicates 
that, although the bias seems fairly independent of the size of the fixed effects, it 
may depend on the (relative) number of fixed effects in the model. 

Table V shows that this is indeed so. Starting from the original HG scheme, using 
new seeds for generating the data, the number of fixed effects is reduced by factors 
1/3, 1/2, 2/3 and 3/4. A reduction of 1/3, for instance, is effected by combination 
of HYS effects (2, 3), (5, 6), (8, 9) and so forth, replacing the original values for 
2 levels by their mean value. The first series of 200 simulations refers to the same 
design used in all subsequent reductions. In the second series, a new design, which is 
reduced afterwards, is generated for 1, 1/3, . . . . Bias goes from positive to negative. 
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Table IV. Simulation results for the HG sire scheme for IRREML and GAR. Bias and 
mean squared error for estimation of the heritability on the liability scale. 

Configuration 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

h 2 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.40 

0.40 

0.40 

0.40 

0.40 

0.40 

0.40 

0.40 

0.40 

0.40 

0.40 

P0 

0.60 

0.60 

0.60 

0.60 

0.60 

0.60 

0.90 

0.90 

0.90 

0.90 

0.90 

0.60 

0.60 

0.60 

0.60 

0.60 

0.60 

0.90 

0.90 

0.90 

0.90 

0.90 

PHYS 

0.15 

0.20 

0.20 

0.20 

0.20 

0.30 

0.15 

0.20 

0.20 

0.20 

0.30 

0.15 

0.20 

0.20 

0.20 

0.20 

0.30 

0.15 

0.20 

0.20 

0.20 

0.30 

ÎHYS 

0.30 

0.01 

0.02 

0.15 

0.30 

0.001 

0.30 

0.02 

0.15 

0.30 

0.30 

0.30 
-

0.02 

0.15 

0.30 

0.02 

0.30 

0.02 

0.15 

0.30 

0.30 

%bias 
IRREML GAR 

27.7 

7.4 
18.0 

7.8 

9.1 
15.5 

11.3 
16.9 

3.6 
4.5 

50.7 

21.3 

19.2 
24.2 

19.2 
35.6 

10.8 

23.4 

-5 .8 

8.7 
13.0 

9.1 
11.3 

10.1 
15.0 

3.4 
8.7 

36.5 

16.8 

15.5 
21.8 

14.5 
18.6 

7.7 

[3.6] 

;2.6) 
;2.6) 

[2.6] 

[2.7] 
2.9) 

;2.9) 
;2.6) 

;2.i) 
[1.9] 

[4.9] 

{3.9} 

{3.8} 
[3-7) 

[4.2] 
[4.1] 

;3.1) 

(2.6) 

;i.7) 
[2.0] 
(2.i) 

;2.o) 
;2.i) 

(2.2) 
[2.2] 

,1.8) 
;i.9) 

;3.5) 

;2.8) 

;2.9) 
,3.0) 

;3.o) 
;3.o) 
;2.4) 

22.9 

3.8 
13.0 

4.1 

5.1 
10.8 

7.0 
11.8 

-0 .6 
0.1 

52.9 

23.5 

21.1 
24.3 

20.6 
35.6 

9.8 

14.8 

-10.9 

1.6 
4.4 

1.6 
3.1 

2.2 
6.2 

-3 .9 
0.3 

36.6 

16.9 

15.6 
20.7 

13.9 
17.7 

4.8 

(3.3) 

;2.4) 
(2.3) 
[2.4) 

(2.5) 
(2.6) 

(2-7) 
(2-4) 

(1.9) 
(1.8) 

(4.9) 

(4.1) 

(3.9) 
(3.7) 

(4.2) 
(4.0) 

(3.1) 
(2.2) 

(1.5) 

(1.8) 
(1.8) 

(1.8) 
(1.8) 

(1.9) 
(1.9) 

(1.5) 
(1.6) 

(3.4) 

(2.9) 

(2.9) 
(3.0) 

(3.0) 
(2.8) 

(2.3) 

%VMSE 
IRREML GAR 

58.5 

39.9 
40.4 

37.7 

39.6 
43.5 

42.5 
41.2 

29.4 
27.4 

86.1 

59.5 

57.4 
58.2 

62.5 
68.1 

45.6 

44.0 

24.5 

30.2 
32.9 

30.1 
31.5 

32.7 
34.8 

25.0 
28.0 

61.5 

43.2 

43.5 
47.6 

45.1 
45.9 

35.3 

52.0 

34.4 
35.1 

34.2 

35.6 
38.4 

38.2 
36.0 

26.8 
24.7 

86.6 

62.1 

59.3 
58.0 

62.6 
66.2 

44.5 

34.9 

23.5 

25.3 
26.2 

24.9 
25.1 

26.9 
27.4 

21.9 
22.5 

60.0 

43.8 

44.2 
47.1 

44.0 
43.6 

32.7 

Standard errors in parentheses; h = heritability; po = incidence rate; PHYS = probability 
for a sire for progeny in a HYS class; /HYS = proportion of variance explained by the 
HYS effects. 
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The negative bias agrees with the calculations in the preceding section for the 
simple sire model and with the results in Gilmour et al (1985), where an overall 
constant was the only fixed effect in the model. Data for configurations 10 and 16 
was also generated with random HYS effects, with a new set of HYS effects for each 
simulation, and analysed with HYS as a random factor in the model. Estimated 
bias was —35.8 (2.7)% for configuration 10 and —11.8 (1.7)% for configuration 16. 
Corresponding root mean square errors were 52.0 and 27.3%, respectively. Bias 
and root mean square error are reduced when the progeny size is increased, see, 
for example, configurations 18, 21 and 22. Estimators are also less biased when 
incidence is less extreme, eg, configurations 3 versus 8 and 1 versus 7. Differences 
between series within configurations are sometimes greater than would be expected 
on the basis of the standard errors involved, showing that the configuration of sires 
and offspring is also of importance. 

Table V. Simulation results for IRREML, GAR and IRREML (w0) for the HG scheme, 
with smaller numbers of HYS effects. 

Reduction in 
HYS effects 

Original 
scheme 

1/3 

1/2 

2/3 

3/4 

No HYS and 
sire group 
effects 

IRREML 

21.7 (4.1) 
18.7 (3.8) 

0.5 (3.6) 
3.8 (3.5) 

- 5 .3 (3.1) 
-1 .9 (3.2) 

-8 .9 (3.2) 
- 8 .1 (2.9) 

-14.9 (6.0) 
-9 .4 (3.1) 

-13.1 (3.1) 

%bias 
GAR 

21.2 (4.0) 
19.8 (3.8) 

3.5 (3.7) 
6.3 (3.6) 

-3 .8 (3.1) 
1.1 (3.2) 

- 7 .7 (3.4) 
-5 .8 (3.0) 

-13.2 (6.1) 
- 5 .3 (3.3) 

- 2 .7 (3.6) 

IRREML (wo) 

11.6 (3.8) 

-9 .0 (3.1) 

-13.8 (2.7) 

-18.1 (2.9) 

-20.9 (3.0) 

-14.3 (2.8) 

IRREML 

62.4 
58.1 

51.5 
49.6 

43.8 
44.9 

46.5 
41.6 

46.0 
45.3 

45.4 

%VMSE 
GAR IRREML (v/0) 

60.3 
57.7 

52.0 
51.2 

44.0 
45.8 

48.2 
42.7 

46.8 
47.2 

51.1 

54.6 

45.4 

40.4 

44.2 

47.7 

41.8 

Bias and root mean square error for estimated heritability are expressed as a percentage 
of the true value of h . Standard errors in parentheses. 

GAR was programmed, similar to MAP/PQL/IRREML, in terms of Fisher 
scoring for the updates of the sire variance. Estimates are the same as for the 
original method proposed, which uses EM steps, but speed of convergence is 
often increased by at least a factor 10. Some results, using the same seeds as 
for MAP/PQL/IRREML, are presented in tables IV and V. For high incidence 
(po = 0.9) results of MAP/PQL/IRREML and GAR are comparable. For mod­
erate incidence (p0 = 0.6), the bias for GAR is clearly less than for MAP/PQL/ 
IRREML. GAR also has smaller mean square error than MAP/PQL/IRREML at 
the lower incidence, although the difference is less marked. In all cases, the root 
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mean square error is considerably larger than the corresponding bias. Plots of the es­
timated h2 values of MAP/PQL/IRREML against GAR suggest a strong, fairly lin­
ear relationship. Correlations between sire predictions from MAP/PQL/IRREML 
and GAR are high, eg, over 0.99 for the first series of configurations 10 and 16. 

Table V also includes results obtained for IRREML with the alternative weights 
wo = T(7?)2/{f>(l — p) — PT(^pV)2} from the previous section. There is a distinct 
change in the bias due to the change of weights. However, although bias is 
considerably improved for the top lines in the table, underestimation for the bottom 
lines has become more serious. 

In table VI, approximate standard errors of heritability estimates from MAP/ 
PQL/IRREML are compared with standard errors estimated from the series of 
200 simulations (referred to as empirical values). The approximate standard errors, 
based on Fisher information assuming normality for the adjusted dependent variate, 
perform quite well, as was also observed in Engel and Buist (1995). These standard 
errors are standard output in Genstat 5. 

Table VI. Empirical standard errors for h from the simulation compared with approxi­
mate standard errors. 

Configuration 

4 

5 

6 

9 

10 

15 

16 

20 

21 

Empirical stani 

0.096 
0.101 
0.102 
0.094 
0.073 
0.068 
0.135 
0.132 
0.149 
0.145 
0.115 
0.118 
0.124 
0.126 
0.163 
0.169 
0.171 
0.168 

Approximate 
standard error 

Mean Percentage points 

94.4 
92.1 
92.7 

103.3 
100.3 
106.5 
98.7 
98.3 
94.4 
99.5 

101.3 
98.6 
96.4 
96.7 
97.2 
96.6 
95.8 
99.8 

[75.8 
[71.3 
[72.5 
[80.5 
[78.7 
[86.5 
[78.7 
[78.2 
[75.0 
[81.2 
[82.7 
[80.4 
[77.8 
[78.0 
[77.9 
[78.7 
[79.9 
[81.3 

115.7] 
113.4] 
113.4] 
125.0] 
122.2] 
128.6] 
119.5] 
119.0] 
115.2] 
118.7] 
119.8] 
118.8] 
114.5] 
114.0] 
114.9] 
114.0] 
112.4] 
115.6] 

Mean, 10 and 90% percentage points of the approximate standard errors are presented as 
percentages of the empirical value. 

The approximately linear relationship between IRREML and GAR estimates 
within a configuration of parameter values, and the similar standard errors, suggest 
that it should be possible to correct for bias in IRREML, at the least in those cases 
where GAR performs well. For incidence 0.90 and the full set of 135 HYS effects, 
IRREML and GAR have large positive bias of similar size. In this case the direction 
of the bias is in line with results for GLMs, where bias correction often involves 
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shrinkage towards the origin. Possibly, the results of Cordeiro and McCullagh 
(1991), involving an extra i teration s tep for adjusted response variables, may be 

extended to minimization of the penalized deviance, thus improving estimates ß and 
predictions û. This would imply modification of the adjusted dependent variate Ç. 

Users of M A P / P Q L / I R R E M L should be aware of the problems involved when 
family sizes are small, or in the context of an animal model, when many animals are 
only weakly related. Wi th extreme incidence, say over 0.90, and a sizeable number 
of HYS effects, say in the order of 6% of the number of binary observations, MAP, 
PQL, IRREML and GAR are liable to seriously overestimate heritability, and actual 
selection response may be considerably less t han expected on the basis of model 
calculations. 
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IRREML is extended towards threshold models for ordinal data. 

Estimation of additional shape parameters, i.e. parameters 

modelling variance heterogeneity on the underlying scale, is 

included as well. 



Analysis of a mixed model for ordinal data by iterative 
re-weighted REML 

Bertus Keen and Bas Engel 

DLO-Agricultural Mathematics Group (GLW-DLO), P.O.Box 100, 6700 AC 
Wageningen, The Netherlands 

Summary An estimation procedure will be presented for a class of threshold models for 
ordinal data. These models may include both fixed and random effects with associated 
components of variance on an underlying scale. The residual error distribution on the 
underlying scale may be rendered greater flexibility by introducing additional shape 
parameters, e.g. a kurtosis parameter or parameters to model heterogeneous residual 
variances as a function of factors and covariates. The estimation procedure is an extension 
of an iterative re-weighted restricted maximum likelihood procedure, originally developed 
for generalized linear mixed models. This procedure will be illustrated with a practical 
problem involving damage to potato tubers and with data from animal breeding and medical 
research from the literature. 

Keywords: threshold model, variance components, variance heterogeneity 

1. Introduction 
A flexible class of mixed models for ordered categorical data will be presented. Categories 
correspond to intervals defined by cutpoints on an underlying scale. A category is observed 
when an underlying variable is in the corresponding interval. Fixed and random effects with 
associated variance components are introduced for the underlying random variable. 
Parameters are estimated by extending the iterative method proposed for generalized linear 
mixed models (GLMMs) by Engel and Keen (1994). In each iteration step an adjusted 
dependent variate and weights are calculated and parameter estimates are updated applying 
weighted restricted maximum likelihood (REML, see Patterson and Thompson, 1971) to an 
approximate linear mixed model for the adjusted dependent variate. This procedure will be 
referred to as iterative re-weighted REML (IRREML). Estimation is analogous to iterative 
re-weighted least squares for ordinary generalized linear models (e.g. McCullagh and 
Neider, 1989, § 2.5), but with REML methodology replacing weighted least squares. Details 
may be found in Engel and Keen (1994). For GLMMs, IRREML is equivalent to estimation 
procedures presented by Schall (1991) and Breslow and Clayton (1993) (penalized quasi -
likelihood). Standard software for REML, with facilities for introducing weights and 
restricting the residual variance to a fixed value, can be employed. For the examples in this 
paper we used the statistical programming language Genstat 5 (1993). 

The distribution for the residuals on the underlying scale determines a link function for 
the cumulative probabilities of not exceeding a fixed category. Cutpoints are regarded as 
parameters in this link function and estimated by adopting a linearizing strategy due to 
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Pregibon (1980). This amounts to Taylor expansion of cumulative probabilities, or 
equivalently individual category probabilities, both with respect to the fixed and random 
effects and to the unknown cutpoints, ignoring second and higher order terms. In each 
iteration, the approximate linear mixed model for the adjusted dependent variate is extended 
with extra covariates, derived from the expansion, for estimation of the cutpoints. The same 
approach works for additional shape parameters of the underlying residual distribution as 
well. Examples will be given where the underlying residual distribution is from a family 
of Student distributions with unknown number of degrees of freedom as a kurtosis 
parameter, or where the underlying distribution is normal, with a factorial model for the 
logarithm of the heterogeneous residual variances. In addition to the traditional choice of 
an underlying standard normal or standard logistic distribution for the residuals, this offers 
useful tools for checking and improving goodness of fit of the threshold model. 

Without additional random effects and components of variance in the model, IRREML 
is equivalent with maximum likelihood (ML) estimation. With additional random effects, 
this equivalence no longer holds, although estimation by IRREML can be regarded as an 
approximation to ML estimation, with a REML type adjustment for the components of 
variance. However, in contrast to ML estimation, which is quickly bogged down by the 
need for numerical integration, numerical restrictions for IRREML are the same as for 
conventional mixed models for normal data. Restrictions pertain to the size of matrices to 
be inverted. This can be dealt with to a large extent by eliminating (absorbing) factors with 
a large number of levels, see e.g. Engel (1990) for details, and the example in Section 5 for 
an illustration. 

In the next section the estimation procedure will be introduced for the threshold model 
with fixed effects only and normal residuals on the underlying scale. In section 3 additional 
random effects and components of variance will be introduced. In Section 6 the model is 
extended with extra shape parameters for the residual distribution. In Sections 4, 5, 7, 8 and 
9 examples are presented. The connection with ML estimation and other estimation 
procedures from the literature is the subject of Section 10. 

2 A threshold model with fixed effects only 
Consider the linear model: 

z = if + e = Xß + e, 

where X is a design matrix, ß is a vector of unknown effects, e.g. treatment effects, and e 
is a vector of independent normal residuals with mean 0 and variance v2. Suppose that z 
is not observed, but its class j = 1 ... J with respect to cutpoints -oo = 0O < 0, < ... < 0j = 
oo, i.e. y = j is observed when 0j., < z < 0j. We will refer to z as the underlying variable. 
Variable y is the ordered categorical variable which is actually observed. 
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When several individuals or units correspond to e.g. the same treatment, they may be 
grouped together. For the i-th group, let n̂  be the number of observations in class j and 
iij = (nM ... nu)' be the vector of counts, n, follows a multinomial distribution with total N: 

= nM + ... + nu and probabilities: 

ns = oce;) - o(e;,), j = i... J, 0) 

where <I>(.) is the cdf of the standard normal distribution and 0*j = (9j - nf) / v. For 
ungrouped data n̂  = 0 or 1 and N( = 1 for all i. Both for grouped and ungrouped data, we 
will refer to i = 1, 2, ... as the units. 

When the cutpoints are unknown, without loss of generality, v2 may be fixed at any 
convenient positive value, typically 1 in this case. Also, when there is an overall mean in 
ß, one of the cutpoints or the overall mean may be fixed at an arbitrary value. Here, unless 
stated otherwise, 0, = 0. The cutpoints are collected in a vector £. We will first derive 
estimating equations for ß for known £. Then, for unknown £, additional estimating 
equations will be derived for the cutpoints. 

2.1 Estimation for known £ 
In deriving estimating equations we will closely follow the iterative re-weighted least 
squares algorithm for generalized linear models (GLMs) (see e.g. McCullagh and Neider, 
1989, §2.5). The linear combination q = Xß will be referred to as the linear predictor. For 
the i-th unit: û  = N ^ = h^ri,) = h^x^jS), where û  is the mean of count n̂  and function 
h^.) follows from (1). In GLM terminology, functions hjj(.) define an inverse (composite) 
link function. 

Suppose that u ,̂ r\{, ... are evaluated for starting values ß0 for ß. Parameter v will be 
fixed throughout at value 1. An adjusted dependent variate Ç is defined by: 

Ç,j = Tlo i + (nu - ^o ij) / tyCrio (; £), (2) 

where h^Oi; £) is the derivative with respect to t|. For later use, functional dependence on 
£ is included in the notation. It is readily shown, see e.g. Engel and Keen (1994), that 
vector f = (Ç„ ... Çu, Ç2] ... Ç2J, ... ) ' has approximate moments: 

E(f) = Xß and Var(f) = R, (3) 

where X = X<8>1„ ® is the Kronecker product and lj is a vector of length J with all 
elements equal to 1. R is a block diagonal matrix with blocks Rj = B^B, along the 
diagonal. Ej is the covariance matrix of the multinomial distribution for the i-th unit: S, = 
Nj{diag(7t0 j) - ir0 (ir0 / } , where 7ti = (7in ... % ) ' is the vector of probabilities for that unit. 
B| is a diagonal matrix with elements hJClo î  £)"' along the diagonal. Ej is not a full rank 
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matrix. Generalized inverses of E; are of the form: E; = diag(n 0 y) - T1,1J' with x an 
arbitrary constant, see McCullagh and Neider (1989, §5.3.3). Parameters ß are updated by 
weighted regression on Ç After each iteration, f and R are updated for the current estimates 
for ß solved from the normal equations: 

XRXß = X'R-f. (4) 

Because the û  within a unit sum to the fixed total Nj, equations (4) are independent of the 
generalized inverse used. Choosing T = 0, it follows that the equations can be set up as if 
the observations nM ... n^ are independent Poisson counts with means \\u ... \xiy In that case 
R" will be a diagonal matrix of iterative weights 

Wij = hjjOii; if I ns, (5) 

similar to an ordinary GLM. The (composite) link function as an inverse of functions hy(.) 
exists only locally in the neighbourhood of points n with hjj(r|; £) * 0. Points where 
hy(r|; ij) = 0 are obviously problematic. When, similar to the approach in Thompson and 
Baker (1981), the adjusted dependent variate is modified by multiplication with h-j(r|; | ) , 
the regressors, when modified in the same way, become equal to 0. This suggests that 
offending observations may be ignored in an iteration step. For known cutpoints, the 
iteration process can be condensed by employing a "pooled" adjusted dependent variate Ç; 
and "pooled" weights w>: 

Q = EWjjÇij / Sw(j = rij + ZlhyOii; ÉX^-u^/vy} / w( and w< = Swy = Zh;/^; £)2 / nÉj. 
j j j j j 

Pooling reduces the number of "observations" Ç and effectively removes problems with 0 
derivatives. When cutpoints are unknown, which will be discussed in the next section, 
pooling is not possible. Note that the model with known cutpoints has some use in practice, 
for instance when a variable is observed upto the nearest integer. 

2.2 Estimation for unknown £ 
We now have to supply additional estimating equations for the cutpoints in £. In GLM 
terminology, £ can be regarded as a vector of parameters in the (inverse) link function. An 
approach similar to Pregibon (1980) (see also McCullagh and Neider, 1989, §11.3) will be 
used. The means û  are linearized with respect to both n, and £ around current values Ti0i 
and f0: 

Hü * Hoij + [dhijOv; k)ldx\^Ao (r|rr)oi) + [ d h ^ ; !)/ö£];oUo (Ho), 

which implies that: 
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Tloi + (Hij-Hoij) / hij(îloi, lo) œ Tl, + {[5hij(Tii; ^)/ô{];0i>50 / [ôhij(T|L; £)/örii]noUo}(HoX 

and consequently: 

E(Çij) « r,ä + { [Ôh^; |)/ô|]'noUo / [ S h ^ ; O / a ^ W A*, 

where A£ = £ - ij0- This suggests to extend the set of explanatory variables in the weighted 
regression for C, with columns of the matrix X4 with elements [dh^r^; i|)/9Çk] / [dh^rij; 
ÇyôriJ, evaluated for current values »/„ and £0, and with coefficient vector Aif. £ can be 
updated by: i; = ^0

+^?- This can be combined with the iterations in Section 2.1, updating 
Xç as a part of X after each iteration. The necessary derivatives are: 

ahgOiij «/açk = N ^ Ö O ^ ) ^ ) - (arçev .yau» = 

Nj<|)(0*j) when Çk = 9j, -Ni(()(ö*j.]) when t,k = 9j.„ and 0 otherwise, 
and (6) 

ahgOu «/ais =Niwe*ij,)-<|)(e:j)}, 

where ())(.) is the pdf of the standard normal distribution. 
Some algebra shows that the combined iterative proces is equivalent to Fisher scoring for 

maximising the product multinomial likelihood of counts n .̂ Thus, the final estimates $ and 
I are ML estimates. The equivalence with ML estimation no longer holds in the next 
section, where the estimation procedure is extended for additional random effects in the 
linear predictor ij. 

3 A threshold model with additional random effects 
Now, suppose that the underlying variable follows a linear mixed model: 

z = i) + e = Xß + Zu + £, (7) 

where Z is a design matrix for additional random effects collected in vector u; u ~ N(0, G). 
Often G is a blockdiagonal matrix with blocks cr̂ A, ... cr2Ac along the diagonal, where A, 
... Ac are known matrices and cr2 ... a2, are unknown components of variance to be estimated 
from the data. Here, we will assume that A, ... Ac are identity matrices. Again, we start 
under the assumption that cutpoints in £ are known. Moments in (3) still hold, but 
conditional upon u. The first two marginal moments of the adjusted dependent Ç variate 
from (2) are approximately: 

E(f) = Xß and Var(f) = ZGZ' + R, 

127 



where X and R are defined as before and Z = Z®lj. Parameters will be estimated by 
iterative use of REML, as described in Engel and Keen (1994), i.e. iterative weighted 
regression from Section 2 will be replaced by iterative weighted REML. After each iteration 
step, f and R are updated employing current estimates for ß and predictions for u solved 
from the mixed model equations (see e.g. Engel, 1990): 

(8) 
X'R X 

Z'R X 

X'R Z N 

Z'R Z + G"1, 
fp) UJ 

[X'R" C) 

[Z'R- cj 

The mixed model equations (8) replace the normal equations (4). They are independent of 
the generalized inverse R" used. Again, we will choose the diagonal generalized inverse 
with elements w,j from (5). Components of variance will be updated by one or several steps 
of the Fisher scoring algorithm for REML, applied to the approximate linear mixed model 
for Ç with residual weights Wy. Since one step of Fisher scoring, or equivalently one step 
of Rao's MINQUE (Rao, 1973, §4j.), can be formulated in terms of the solution and bits 
and pieces of the mixed model equations (see e.g. Engel, 1990), estimates for components 
of variance are independent of the choice of generalized inverse. In particular it follows that 
estimates are the same for multinomial or independent Poisson counts. For unknown 
cutpoints, again Pregibon's method is used to supply the additional estimating equations. 

With additional random effects in the model, the estimation procedure is no longer 
equivalent to ML estimation. However, for given values of the components of variance, 
estimation of ß and prediction of u is equivalent to maximization of the joint pdf of 
observations and random effects. This implies that the final estimates ß and predictions û 
minimize a penalized deviance D + u 'G'u, where D is the deviance of the observations 
conditional upon the random effects. A similar property holds for IRREML applied to 
GLMMs, see e.g. Engel, Buist and Visscher (1995). An approximate relationship with ML 
estimation will be discussed in Section 10. We will now look at two examples, before we 
extend the threshold model with extra shape parameters. 

4 Footshape in lambs 
The data is reproduced in Gilmour, Anderson and Rae (1987). 2513 lambs are scored in 
three ordered categories based on the presence of deformities in the feet. Fixed effects 
correspond to 2 years and 5 strains nested within years. Random effects correspond to 34 
sires nested within strains. Sires are assumed to be unrelated. Of interest is the heritability, 
which is defined as four times the intraclass correlation p = CT2 / (u2,+l) for underlying 
normal random effects and residuals with v2 = 1. 

Results obtained with IRREML and with the marginal approach of Gilmour, Anderson 
and Rae (1987) are shown in Table 1. Results of the two methods are seen to be very 
similar. 
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Table 1. Estimates and standard errors for the footshape data. For 

coding of fixed effects contrasts Bl, B2 and B3 see Gilmour, Anderson 

and Rae (1987) 

IRREML Gilmour et al. 

Intraclass correlation p 0.056 (0.020) 0.060 (0.019)' 
Thresholds" 0.374 (0.050) 0.370 (0.052) 

1.641 (0.061) 1.603 (0.061) 

Effects : 
Year -0.142 (0.052) -0.139 (0.052) 
Bl -0.377 (0.077) -0.370 (0.076) 
B2 -0.316' (0.104) -0.304(0.103) 
B3 0.099 (0.070) 0.098 (0.070) 

' The standard error is a correction of the value 0.144 in Gilmour, 
Anderson and Rae (1987) (Gilmour, personal communication). 

" In Genstat procedure CLASS the first threshold is normally fixed at 
value 0, but for ease of comparison with the results from Gilmour et 
al. separate values are calculated fixing the overall mean at value 0. 

5 Damage to potato tubers 
Data result from one of a series of experiments to reduce damage to potato tubers due to 
a potato lifter. Experiments were performed at the Institute of Agricultural Engineering 
(IMAG-DLO) in Wageningen, The Netherlands. One source of damage is the type of rod 
used in the lifter. In the experiment under consideration eight types of rod were compared. 
It is an emperical fact that degree of damage varies considerably between potato varieties 
and years. To mimic this variety, two energy levels, six varieties and three weight classes 
were included in the experiment. Observations were obtained for the combinations of rods, 
energy levels, varieties and weight classes. Most combinations involved about 20 potato 
tubers. For some combinations there are no data due to an insufficient number of large 
potatoes. Two combinations are interchanged, resulting in 40 tubers for the one combination 
and none for the other. Tubers were dropped from a height determined by the energy level 
required. To determine the damage, each tuber was peeled and the degree of blue colouring 
was classified into one of four classes (class 1 for no damage to class 4 for severe damage). 
Observations in the form of counts per class and combination are reproduced in Table 2. 

Of interest are overall differences between rods. Other factors are introduced to create 
sufficient variety in experimental conditions and are not of primary interest themselves. 
There is certainly no interest in a detailed description of interaction effects. A pragmatic 
approach was followed where main effects were introduced as fixed effects and interactions 
as random effects. This offers a simple summary in terms of main effects, as well as a 
quick screening device to judge importance of interactions by the size of their 
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Table 2. The potato damage data. Counts n for the four classes from 

damage" to "severe damage" 

Weight 

Var Rod 
1 1 

2 
3 
4 

5 

6 
7 

8 

2 1 

2 

3 
4 

5 

6 
7 

8 

3 1 
2 
3 

4 
5 

6 
7 

8 

4 1 

2 

3 
4 

5 
S 
7 

8 

5 1 
2 

3 
4 
5 

6 
7 

8 

6 1 
2 
3 
4 

5 
6 
7 

8 

Energy 

class 1 

5 

a 
e 
2 

il 

12 

8 
15 

4 

8 
3 

1 

16 
16 
11 

10 

3 
18 

5 
1 

12 

16 
20 
18 

4 
12 

10 
2 

17 

18 

19 
15 

9 
17 

15 
12 

16 
20 

20 
20 

5 

18 
5 
5 

15 
19 
18 

18 

14 

11 
13 

9 
8 

5 
12 

4 

5 

3 
10 

3 

3 
3 

9 
10 

2 
1 
7 
4 
7 

3 
0 
2 

9 
8 

10 

8 

2 
2 

1 
3 

10 
2 

5 
7 

4 

0 

0 
0 

14 
2 

14 
14 

5 
1 
2 
2 

1 
1 

0 
6 

0 
2 

0 
0 

4 

0 

6 
11 

1 
0 

0 
0 

8 
0 
4 

6 
1 

0 
0 

0 

7 

0 
0 
4 

0 
0 

0 
0 

1 

0 
0 
0 

0 
0 

0 
0 

1 

0 
0 
1 
0 
0 
0 

0 

.5 

0 
0 
0 
3 

0 
0 

0 
0 

7 

0 
1 

5 

0 
0 

0 
0 

7 

0 
4 

9 
0 
1 
0 

0 

0 

0 
0 

6 
0 

0 
0 
1 

0 
0 
0 
0 

0 
0 

0 
0 

0 
0 

0 
0 
0 
0 
0 

0 

(Joule 

5 
6 

5 
2 

16 

15 
9 
0 

5 
13 

5 
0 

10 
10 

11 
13 

6 
12 
10 

2 

16 
14 
16 

16 

4 

17 
10 

4 

18 
19 

20 
20 

10 
19 
14 

7 

15 
19 
17 

18 

6 

18 
13 

0 
16 
19 
17 

15 

2 

31 
11 

13 
11 

4 

5 
7 

0 

7 

6 
12 

8 

9 
7 

6 
6 

8 
6 
8 

6 
4 

5 

3 
3 

11 

2 

9 
8 
2 

1 
0 

0 

10 
1 
6 

11 

4 
1 

2 
2 

13 
2 
7 

15 
3 
1 
3 
4 

) 

2 
1 

0 
6 

0 
0 
3 

0 

5 
1 

3 
11 

1 

1 
1 
0 

5 
1 
0 

10 
0 
0 

0 
0 

3 

0 
0 

6 
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Table 3. Components of va r iance for the po ta to damage da ta 

I n t e r a c t i o n term component ( s . e . ) 

rod .energy 0.120 (0.073) 
r o d . v a r i e t y 0.074 (0.031) 
r od .we igh tc l a s s 0.042 (0.022) 
e ne rgy .va r i e t y 0.003 (0.010) 
energy .weigh tc lass 0.013 (0.016) 
v a r i e t y .we i gh t c l a s s 0.011 (0.011) 
r od . ene rgy . va r i e t y 0.039 (0.023) 
r od . ene rgy .we igh tc l a s s ' 
r o d . v a r i e t y .we i gh t c l a s s ' 
e n e rgy . va r i e t y .we igh t c l a s s ' 
r od . ene rgy .va r i e t y .we igh t c l a s s 0.055 (0.024) 

' Negative e s t ima tes (are rep laced by 0 .0001) . 

corresponding components of variance. Normal distributions were assumed with residual 
variance v2 = 1. Four-factor-interaction effects were absorbed when solving mixed model 
equations (8). Estimated cutpoints (standard errors in parentheses) are 0 (fixed), 1.41 (0.03) 
and 2.30 (0.04). Estimated components of variance are shown in Table 3. Estimated rod 
effects as differences with rod number one are: 

Rod: 1 2 3 4 5 6 7 8 
0 -1.26 -0.42 0.55 -1.50 -1.85 -1.76 -2.09. 

Standard errors of differences are approximately 0.43. Estimates in Table 3 show that the 
larger components involve interactions with rods. Estimated rod effects are therefore less 
precise than e.g. estimated variety effects (standard error of difference about 0.20). Despite 
the larger standard errors it may be concluded e.g. that rods 1, 2, 3, 4 are worse than rod 

6 Extending the threshold model 
So far residuals were assumed to follow a normal distribution, corresponding to a probit 
link for probabilities P(yj < j | u) = vj/y. Other popular choices are the logistic distribution 
and extreme value distribution. For the logistic distribution, with v2 = iz2/3, the link function 
is the logit link: 

logit(Vij) = log^/O-Yij)) = 8j - rij. 
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For the extreme value distribution, with v2 = 1, the link function is the complementary log-
log link: 

log(-log(l-Vij)) = Gj - Tl, 

These alternatives, for models with fixed effects only, are discussed in some detail by 
McCullagh (1980) and referred to as the proportional odds and proportional hazards model 
respectively. 

We will now introduce more general link functions, or underlying distributions, allowing 
for additional unknown (shape) parameters. Let the cdf of the underlying variable z from 
(7), conditional upon the random effects u, be F((z-n)/v; X), where X is a vector of 
additional shape parameters. Let f(x) = F'(x; X) be the derivative with respect to x. A useful 
family of distributions, as a robust alternative to the standard normal distribution, is the 
family of Student distributions: f(x) = y[QJ(k-2))fx{yfQJ(X-2))x), for X > 2 and f(x) = fx(x) 
for 0 < X < 2, where fx(.) is the pdf of Student's distribution with X degrees of freedom. For 
use of the Student distribution in statistical inference see e.g. Fraser (1979). Usually n and 
v2 will be the (conditional) mean and variance of z, although these moments do not 
necessarily have to exist, e.g. for the Cauchy distribution (Student distribution with X = 1) 
where f(x) = 1 / {7t(l+x2)}. Typically X is assumed not to depend on the experimental units. 

In addition to TJ, V2 may be modelled in terms of explanatory variables as well: 

gO2) = Vv = Xv7-

Here, g(.) and i/v are the link function and linear predictor for the variance. ^ is a design 
matrix and y a vector of fixed effects for the variance. An obvious choice for g(.) is the 
logarithmic link, see e.g. Aitkin (1987) and McCullagh and Neider (1989, §5.2.2 and 
Ch.10). 

Extra shape parameters are added to vector £ and estimating equations are derived once 
again by Pregibon's method. Derivatives in Xç can be evaluated using the following results: 

dti^K i)idt,k = HKSFO'J ; x)/dçk) - (aF(e*J.,; xyau)}, 

ahijOu D/Srii = N^fO'j.,; X) - f&\, X)} / v. 

Consider for example parameters y in the variances v2: 

5F(e;; X)/dyk = (ÔF(G*j; X)/dv2Xdv2/ônvi)(dnvj/ayk) = - t t f^ ; X) 9^ xvi,k / {g'(v?) v2}. 

For the log link, elements of X4 are of the form: 
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•/2xvi,k {f(e;; xxQ^-m]^ xxe^wiW'ï x) - f(e;,; x)}. 

For a single shape parameter X, it may be more convenient to fit the model for a grid of 
values for X, and inspect the results. For the cutpoints, the following reparameterisation may 
be convenient: 6, = 0, 02 = exp^) , 93 = exp(5,) + exp(52), ... . Elements for Sk in X4 are 
of the form: f(0*j; X) exp(ôj.,) / {f^; X) - f(8*j.,; X)}, when 1 < k = j -1 , or exp(ôk), when 
1 < k < j - 1 , and 0 otherwise. 

Table 4. Results of 50 simulations 

Results for treatment contrasts on the underlying scale: 

i/ = 1 v free 

Contrast True Average s.d. Average s.e. Average 
value of sims. of sims. 

s .d. Average s.e. 

2 - 1 

3 - 1 

4 - 1 

0 

1 

1 

0.09 
0.79 
0.69 

0.23 
0.13 
0.17 

0.21 
0.21 
0.21 

-0 .01 
1.04 
1.01 

0.36 
0.19 
0.32 

0.35 
0.25 
0.37 

Resul t s for e s t imated v±'s (v1 f ixed a t 1 ) : 

Treatment True va lue Average s .d . Average s . e . 

2 

3 

4 

2 

1 

2 

2.02 
1.00 
1.98 

0.36 
0.21 
0.42 

0.40 
0.19 
0.42 

To illustrate the scope for improvement obtained by simultaneous modelling of r| and v2, 
a modest simulation was carried out. Data was generated from four normal distributions, 
representing e.g. four treatments. Combinations of r| and v were (1, 1), (1, 2), (2, 1) and 
(2, 2) respectively. The sample size was 50 in each case. Cutpoints were -1, 0, 1 and 2. 
Estimated differences in means with respect to treatment 1 for homogeneous v2 (fixed at 
value 1) and for heterogeneous v2 (v2 fixed at value 1 for treatment 1 and estimated for 
treatments 2, 3 and 4) are presented in Table 4. In the table average differences over 50 
simulations, corresponding standard deviations as estimated from the 50 simulations and the 
average of the 50 standard errors for the treatment contrasts produced by Genstat are 
shown. The latter standard errors are based on Fisher information under normality for the 
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adjusted dependent variate. Estimated treatment contrasts are seen to be fairly unbiased 
when heterogeneity is taken into account. Note that the standard deviations estimated from 
the 50 simulations and the averages of the standard errors from Genstat are in reasonable 
agreement. Also shown are some results for the estimated v's. Again, estimates are fairly 
unbiased and estimated standard errors on average are quite acceptable. We will look at 
three examples of the extended model. 

7 Therapeutic effect of nootropic agents 
This example is from Uesaka (1993), who used it for illustrating a test for interaction 
between two treatments and a block factor based on logarithmic generalised odds ratios. 
The data is from a multicenter trial on the therapeutic effect of two nootropic agents on 
patients with multi-infarct disease. The effect was evaluated on an ordinal scale of five 
categories and patients were classified a posteriori into four groups according to the 
baseline severity of overall neurological symptoms. Likelihood ratio test statistics (which 
may be referred to an appropriate chi-square distribution) for treatment effects and 
interaction, for different underlying distributions fitted to the fixed effects model are 
presented in Table 5, along with the residual deviance as a measure of goodness of fit. 

Table 5. Therapeutic effect of nootropic agents. Likelihood ratio 

statistics for treatment main effects and interaction and mean 

déviances for various models fitted to the data 

Distribution 

normal 
logistic 
extreme value 

left skew 
right skew 

lognormal 
Student 

1 df 
2 df 
3 df 
5 df 
8 df 

20 df 

Likelihood ratio statistics 

Main effects 
(1 df) 

3.0 
2.5 

2.7 
no convergenc 

2.3 
converges to 
no convergenc 

1.6 
1.9 
2.3 
2.5 
2.8 

Interaction 
(3 df) 

4.4 

4.7 

4.4 
e 

4.0 
the normal 
e 

4.8 
4.8 
4.8 
4.7 
4.5 

distribut 

Mean deviance 

0.85 

0.88 

1.19 

0.85 
ion (df = <») 

1.00 
0.96 
0.91 
0.88 
0.86 
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This illustrates that there is little evidence for the existence of a treatment main effect or 
interaction between treatment and baseline severity. Use of the normal distribution may 
indicate a treatment effect, but this effect is not robust for the choice of underlying 
distribution. 

8 Severity of nausea in chemotherapy 
Data on the severity of nausea (in 6 ordered categories from "none" to "severe") 
experienced by 219 patients with cancer while undergoing chemotherapy, is taken from 
Farewell (1982). Patients were classified as to whether their chemotherapy included or did 
not include cisplatin. Farewell introduces overdispersion by allowing a random shift of the 
cutpoints for each patient. Within a patient all 0's are shifted by the same amount, i.e. shifts 
can also be considered as random main effects u for patients. Farewell starts with a 
proportional hazards model and conveniently assumes that exp(u) is from a gamma 
distribution. This allows the u's to be integrated out of the probabilities n for severity of 
nausea. The likelihood is optimized over a grid of values of the index parameter c of the 
gamma distribution. The mean deviance for the extreme value distribution, without the u's 
(c = oo), is 2.91 on 4 degrees of freedom (10 parameters for the saturated model minus 6 
for the threshold model) and the proportional hazards model is rejected at the 0.05 level 
employing the likelihood ratio test with a chi-square distribution on 4 degrees of freedom. 
For the normal distribution the mean deviance is 1.99, for the logistic distribution: 1.65 and 
for the Student distribution with X = 1 (Cauchy distribution): 0.45. Neither distribution leads 
to rejection of the model by the likelihood ratio test on either 3 or 4 degrees of freedom at 
the 0.05 level. For Farewells model with random shifts (c = 1), the mean deviance is 1.60 
on 3 degrees of freedom. The ratios of the ML estimates for the cisplatin effect ß and its 
estimated standard error (ignoring variability in additional paramaters, i.e. X for the Student 
distribution and c for Farewell's model) on the underlying scale for the Student (X = 1), 
normal and logistic distribution and Farewell's overdispersion model are 3.6, 3.3, 3.3 and 
3.9 respectively. Although Farewell did not intend to present a general model for ordinal 
data, and only used the example as an illustration of the random shift model, it can be 
concluded that an improved fit can just as easily be obtained by a change of residual 
distribution (or link function for cumulative probabilities) as by introduction of variability 
in the cutpoints. Note that when patient and residual effects on the underlying scale are 
from the normal distribution, they can be pooled and the model remains essentially the 
same. A similar result approximately holds for normal and logistic effects as well. 

9 Damage to potato tubers, continued 
As a point of interest the assumption of a common residual variance on the underlying scale 
was checked. Adding dependence of v2 on type of rod results in the following estimates for 
v: 1 (fixed), 0.90 (0.06), 0.86 (0.05), 0.76 (0.04), 0.89 (0.07), 1.09 (0.09), 0.85 (0.07) and 
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1.00 (0.10) for rods 1 to 8 respectively (standard errors in parentheses). Comparisons may 
be made on the log scale. However, allowing for heterogeneity does not entail important 
changes in conclusions about the differences between rods. 

10 Discussion 
McCullagh (1980) discusses the fixed effects threshold model. Thompson and Baker (1981) 
show how these models can be fitted into the GLM framework for ML estimation. ML 
estimation for threshold models with normal random effects, employing numerical 
integration by Gauss-Hermite quadrature (Abramowitz and Stegun, 1965, p.924), is 
presented in e.g. Jansen (1990, 1992). Iterative re-weighted REML is more akin to quasi-
likelihood estimation. Estimation only depends on the first two moments and no full 
distributional assumptions are needed. When for grouped data the residual variance in the 
mixed model for the adjusted dependent variate is not kept at a fixed value, it may represent 
an additional multiplicative under- or overdispersion parameter with respect to the 
covariance matrix of the multinomial distribution (McCullagh and Neider, 1990, §5.5). 
Application of GLMM methodology to the one-threshold model (J = 1) for binomial data 
is discussed in Engel, Buist and Visscher (1995). They show that the estimate for the 
additional dispersion parameter may be expressed in terms of Pearson's chi-square statistic 
evaluated for predicted random effects with an "effective" number of degrees of freedom 
estimated from the data. 

In the context of animal breeding, Gianola and Foulley (1983) present a Bayesian 
approach to inference about ß, u and 8 = (0, ... 0,.,)' for known components of variance. 
The aim is to evaluate animals on the basis of their predicted genetic merit û. Thresholds 
and fixed effects are nuisance parameters. Vague priors for 6 and ß and a normal prior 
density for u are assumed, ß, u and 0 are estimated by the mode of their joint posterior 
density, i.e. by the values that maximize the joint pdf of y and u. Maximization is by Fisher 
scoring. Some algebra shows that this is equivalent to the use of equations (8) extended 
with the covariates in Xç for Ai- = A0 as following from Pregibon's correction. The 
Bayesian procedure presented in Harville and Mee (1984) is equivalent to Gianola and 
Foulley (1983), but also includes estimation of components of variance. See in this respect 
also Foulley, Im, Gianola and Hoeschele (1987). An update of the components of variance 
can be shown to correspond to one step of an EM algorithm for conventional mixed models 
applied to the adjusted dependent variate Ç, see e.g. Engel, Buist and Visscher (1995). This 
solves the same set of final estimating equations as the Fisher scoring algorithm for REML 
employed in this paper. 

Optimization of the joint pdf of y and u is the basic principle behind the estimation 
procedure suggested by McGilchrist (1994). McGilchrist presents three possible estimators 
for the components of variance referred to as: BLUP, ML and REML estimators. The 
REML estimators are of the EM type, similar to estimation of the components in Harville 
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and Mee (1984) and Foulley, Im, Gianola and Hoeschele (1987), and equivalent to the 
IRREML estimators. 

For normally distributed random effects u, IRREML estimates ß and predictions û are 
maximum hierarchical likelihood estimates, according to the definition by Lee and Neider 
(1996) of hierarchical likelihood (h-likelihood) as the logarithm of the joint pdf of y and 
u. Use of the h-likelihood is motivated by Laplace integration. For Laplacian integration 
in nonlinear mixed models see also Wolfinger (1993) and for GLMMs Breslow and Clayton 
(1993). In the discussion of Lee and Nelder's paper, the relationship between maximum h-
likelihood and ML estimation is commented upon by Engel and Keen (1996). These 
comments include estimation of components of variance by maximum adjusted profile h-
likelihood estimation in relation to ML estimation, and cover the present case of ordinal 
data as well. 

Estimation as presented in Gilmour, Anderson and Rae (1987) is a generalization of their 
approach for one-threshold models (Gilmour, Anderson and Rae, 1985) for an underlying 
standard normal distribution. There is a strong similarity to IRREML, except that their 
adjusted dependent variate and weights are expressed in terms of marginal rather than 
conditional moments with respect to u. A comparison, which includes extensive simulation 
results, between the marginal and conditional approaches for the one-threshold model is 
presented in Engel, Buist and Visscher (1995). The example about foot shape in lambs in 
Section 4 offers a numerical comparison. 

Since the fixed effects ß are introduced on the same underlying scale as the random 
effects u, the model is subject specific in the terminology of Zeger, Liang and Albert 
(1988). The interpretation of effects ß is in terms of conditional probabilities and not in 
terms of marginal probabilities. The latter follow by integrating out the random effects. In 
the threshold model, with F(.) equal to the cdf of the normal distribution, v2 = 1 and u 
~ N(0, G), marginal effects on the probit scale follow by shrinking elements of ß by a 
factor (l+u]+...+aly'À. When F(.) is the cdf of the standard logistic distribution and v2 = 
7i2/3, for the marginal probabilities, the logit scale holds only approximately, and an 
approximate shrinkage factor may be derived from the close connection between the normal 
and logistic distribution, see e.g. Engel, Buist and Visscher (1995). In general, expressions 
for marginal effects may be derived by Taylor series expansion, see Engel and Keen (1994). 

Approximation by Laplace integration is not sufficiently accurate for estimation of 
components of variance when the amount of information per individual random effect is 
low, irrespective of the number of random effects. Simulation results in Engel, Buist and 
Visscher (1995) show that in that case IRREML does not perform well for the one-
threshold model for binary data. A similar result can be expected for thresholds models for 
ordinal data. The chemotherapy data in Section 8 offer an extreme example. The threshold 
model with an underlying extreme value distribution for the residuals and random normal 
patient effects is, in view of the similarity between the lognormal and the gamma 
distribution, an obvious contender to Farewell's random shift model. IRREML produces an 
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estimated cisplatin effect of 0.32, with an estimated standard error of 0.20. This suggests 
that cisplatin has no significant effect, in contrast to the various models fitted in Section 8, 
which is undoubtedly a consequence of the fact that to each shift u there corresponds only 
one ordinal observation. When the u's are integrated out, resulting in a link function with 
additional index parameter c, the algorithm from Section 2 can be applied. 
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Chapter 8 

Bias reduction of heritability estimates in threshold models 
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The simulation study from Chapter 6 for threshold models for 

binary data is extended and two methods for bias-correction are 

studied. 
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Summary Penalized quasi-likelihood and iterated re-weighted REML estimates for 
heritability (or intra-class correlation) in threshold models for binary data with extra random 
components can be seriously biased. Recent approaches to correct for this bias are studied 
by simulation, with emphasis on animal breeding models for binary data. Scope for 
reduction of bias is found to be slim, because of the commonly large number of fixed 
effects in animal breeding models. Minimal dimensions for the data are identified, such that 
bias and root mean squared error are of modest size, and useful inference on heritability (or 
intra-class correlation) is feasible. 

Keywords: binary data, threshold model, heritability, bias, mixed model, REML, PQL 

1 Introduction 
A threshold model for binary or binomial data with fixed and random effects and associated 
components of variance can also be presented in the form of a generalized linear mixed 
model (GLMM) or a hierarchical generalized mixed model (HGLM). General estimation 
procedures for GLMMs and HGLMs proposed by Schall (1991), Breslow and Clayton 
(1993) (penalized quasi-likelihood or PQL), Engel and Keen (1994) (iterated re-weighted 
REML or IRREML), McGilchrist (1994) (the method referred to as the REML approach) 
and Lee and Neider (1996) (maximum adjusted profile h-likelihood or MAPHL), and the 
Bayesian maximum a posteriori (MAP) approach proposed by Gianola and Foulley (1983) 
and Harville and Mee (1984) are equivalent for threshold models for binary data (see Engel, 
Buist and Visscher, 1995; Keen and Engel, 1996). All these methods avoid the problem of 
high dimensional numerical integration in evaluation of the likelihood (or a posterior 
distribution). Basically, all of them, implicitly or explicitly, involve a normal approximation 
of the distribution of the random effects conditional upon the observations, which can be 
motivated by Laplace integration, see Lee and Neider (1996), Engel and Keen (1996) and 
for MAP: Foulley, Im, Gianola and Hoeschele (1987). That the same estimating equations 
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can be derived in many different ways suggests that MAP / PQL / IRREML / MAPHL is 
a proper method for estimation of components of variance, intra-class correlation or 
heritability in threshold models for binary data. Unfortunately, simulation studies (e.g. 
Gilmour, Anderson and Rae, 1985; Engel et al., 1995) show that estimates so obtained can 
be seriously biased. Gilmour et al. (1985) were the first to observe bias problems. They 
studied a simple one-way model, e.g. a sire model with unrelated sires, with m offspring 
per sire, and with a binary observation per offspring. On the underlying scale, normal 
distributions were assumed for the independent genetic sire effects and the residual effects, 
with an overall mean as the only fixed effect. The simulation results suggest that with 
MAP / PQL / IRREML / MAPHL the sire variance is underestimated approximately by a 
factor (m-1) / m, irrespective of the number of sires. Informal arguments for this factor are 
given in Thompson (1990) and Engel et al. (1995). In more realistic models with more 
fixed effects and varying family sizes, bias is of a more complex nature, and positive bias 
may occur as well, depending on the number of observations per fixed effect, as found by 
Engel et al. (1995). 

For small family sizes (small numbers of binary observations per random effect, in a 
more general formulation), variance and heritability estimates may seriously err, even when 
the number of families (the number of random effects) is very large. Reduction of this bias 
is paramount in animal breeding, where a poor heritability estimate will give a wrong 
impression of potential genetic gain under selection and may affect estimated breeding 
values (i.e. predictions for individual genetic random effects used in selection). Breslow and 
Lin (1995) proposed a bias correction for PQL estimates for a variance component in 
GLMMs. In this paper the performance of this correction applied to heritability estimates 
in a sire model for binary data is studied by simulation and compared with another method, 
presented in Engel et al. (1995), based on a change of iterative weights in IRREML. 
Minimal dimensions are identified for the data, such that useful inference on heritability or 
intra-class correlation is feasible. 

2 Bias correction 
Although, for convenience, notation for a sire model is adopted, the formulae presented 
apply to an animal model (see e.g. Henderson, 1984, Ch.22) with a general additive 
relationship matrix as well. Vector r of values for the liability on the underlying scale is 
expressed as: 

r = Xj8 + Zu + e = ij + €. (1) 

Here, ß and u are vectors of p fixed effects (for e.g. combinations of herds, years and 
seasons: HYS effects) and q random sire effects, respectively, u _ N(0, Aa|), where A is 
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the (known) additive genetic relationship matrix and cr| is the (unknown) sire component 
of variance. X and Z are design matrices, i; is the linear predictor in the corresponding 
GLMM. Independent residuals in vector t follow a standard normal distribution. A positive 
value for the liability of an offspring of a sire corresponds to an observation y = 1, and a 
negative value to y = 0. Conditional upon sire effects, mean and variance are: E(y | u) = u. 
and Var(y | u) = V(u) = u(l-u), where u is a conditional probability for e.g. an offspring 
to be alive at a certain age in a mortality study, denoted by û  for the j-th offspring of the 
i-th sire, and V(.) is the (conditional) variance function. 

The bias correction factor in Breslow and Lin (1995) is derived for small values of the 
variance component for a GLMM with a canonical link function and independent normally 
distributed random effects. For a sire model for binary data this implies a logistic 
distribution for the residuals, i.e. cdf L(e) = 1 / (l+exp(-e)), and normal genetic effects for 
unrelated sires, i.e. A is an identity matrix. To extend the correction factor to related sires, 
the random part Zu of (1) is written as: (ZL)(L"'u) = Zû. L is a lower triangular matrix 
such that LL' = A, see Quaas (1976) and Henderson (1976). Elements of fl are 
independent and we just have to replace design matrix Z by Z in expressions for the 
correction factor. The corrected variance estimator is: ô | „ = f ô\, where ô\ is the MAP 
/ PQL / IRREML / MAPHL estimator, and factor f follows from: 

f = a / (a+b), (2) 
where 

a = lq'(L'Z'W0ZL)(2) lq / 2 = trace(Z'W0ZAZ'W0ZA) / 2 
and 

b = [lq'(L'Z')(2»{W2 - W1X(X'W0X)-'X'W,}(ZL)<2» lq] / 4. 

lq denotes a q x 1 vector of ones. For any matrix M with elements m ,̂ M<2) is the matrix 
with elements m2j, i.e. the direct (Hadamard) product of M with itself. W0, W, and W2 are 
diagonal matrices with elements noij(l-u0ij), n0ij(l-u0ij)(l-2n0jj) and Ho,ij(l-̂ o,ij)(6u2

0ij-
6|i0ij+l), respectively. (J.oij is fXjj evaluated for the estimated fixed effects and sire effects 
replaced by 0, i.e. ;*„ = (l+exp(-X$))"' for logistic residuals. To a close approximation 
(Johnson and Kotz, 1970, p6): L(ct) = O(t), where O is the cdf of the standard normal 
distribution, and c = (15/16)roV3. This implies that (2) approximately holds for normal 
residuals as well, with fi0 = 0(X$). 

In the simple sire model of Gilmour et al. (1985), discussed in the introduction, a = 
qm2(i20(l-n0)

2/2, b = - qm|io(l-u0)
2/2 and f = a / (a+b) = m / (m-1), which is an encouraging 

result. For a more realistic model we take resort to simulation, extending studies reported 
in Hoeschele and Gianola (1989) and Engel et al. (1995), involving an unbalanced sire 
model for binary data with a relatively large number of fixed effects. Sire effects and 
residual effects are generated from normal distributions, since this is a more familiar choice 
than the combination of normal and logistic distributions. 
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In Engel et al. (1995) use of the following alternative iterative weights in IRREML is 
suggested: 

w0 = {g'(u)2 E(V(u))}-\ (3) 

where g' is the derivative of the link function g. 
Both from the corrected component â|>corr and from the IRREML estimate with weights 

w0, estimated heritabilities will be calculated. For a sire model the heritability h2 is: 

h2 = 4 a2 / (a2
s+l) = 4p, 

where p is the intra-class correlation on the underlying scale. 

3 The simulated data 
The fixed HYS effects are initially sampled from a N(0, CĴ YS) distribution. For each HYS 
combination a sire has 0, 1 or 2 offspring with probabilities 1 - p^s , pHYS / 2 and pHYS / 2 
respectively. Values for pHYS are 0.025, 0.05, 0.10, 0.20, 0.25 and 0.30. The HYS effects 
and design for sires and offspring are generated only once, after which the same HYS 
values and the same design are used in all subsequent simulations. Other fixed effects are 
sire group effects: 4 groups with effects -0.40, -0.15, 0.15 and 0.40. The number of fixed 
effects p is either 139 (= 135 HYS + 4 sire groups), 38 (= 34 + 4) or 1 (just an overall 
mean). Independent sire effects are sampled from a N(0, o|) distribution, where a\ = h2/(4-
h2) and h2 = 0.25. The number of sires q is either 50 (12, 14, 13 and 11 for the sire groups) 
or 200 (48, 56, 52 and 44 for the sire groups). For p = 139 fixed effects, simulation results 
for q = 100 sires (24, 28, 26 and 22 for the sire groups) were collected as well. Residuals 
are from a N(0, 1) distribution. The overall constant on the underlying scale is: -O"'(P0) 
(l+o"2

HYS+a|)0'5, where ?o = 0-90 is the overall incidence. The proportion of variance 
explained by the HYS effects, CT2

HYS / (1+CT2
HYS+CT2

S) = o2
HYS / (a

2
HYS+(4/(4-h2)) = 0.30 for h2 

= 0.25. Calculations are performed with Genstat 5 (1993), employing procedure IRREML 
(Keen, 1994). Expression (2) simplifies, since for the simulation 

a = E {S ^(l-Mcij)}2 / 2 and b = [I Z M ^ M ^ V ^ + l ) - d'X(X'W0X)-'X'd] / 4, 
i j ' j 

where d is a vector with elements u0ij(l-u0ij)(l-2u0ij). The alternative weights from (3) are: 

w0 = <Kn)2 / {P(l-P) - p «H".)2}, 

where <|> is the pdf of the standard normal distribution, P = P(y=l) = 0(r|.) is the marginal 
probability and n* = x'ß I \f(l+o\) is the marginal linear predictor. 
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4 Simulation results 
Simulation results for heritability based on 200 runs for each parameter configuration are 
shown in Table 1. Results without correction (bold face in the table) will be discussed first. 
Within each column, when the average number m of observations (offspring) per random 
effect (sire) increases (going from bottom to top in the table), the absolute bias and root 
mean squared error decrease. The bias vanishes, which agrees with consistency for p and 
q fixed and m -> oo. Within a row, when the number of fixed effects q is reduced from 139 
to 38 to 1, or the number of sires p is increased from 50 to 200, the bias starts with a 

ble 1 Simulation results for heritability. Bias and root mean squared error are expressed as a percentage of the true value, 

ults in the form: bias (s.e. bias) / root mean squared error. First line is the uncorrected result (bold face), second line is the 

lit after use of the correction factor, third line is the result with the alternative weights. Heritability h2 = 0.25. Incidence P0 = 

). Number of fixed effects p is 139, 38 or 1. Number of sires q is 50, 100 (p = 139 only) or 200. Number of offspring per sire 

1, 51, 41, 20, 10, 5 (pHYS = 0.30, 0.25, 0.20, 0.10, 0.05, 0.025). The total number of observations within a row is about the 

e for the same number of sires, e.g. in the first row for q = 50 both for p = 139, 38 and 1: m = 60.75. 

1er of 
Kl HYS 
cts p 

er of 
s q 50 sires 

er of 
pring 
sire n 
) 

139 fixed effects 

100 sires 

38 fixed effects overall fixed constant only 

200 sires 50 sires 200 sires 50 sires 200 sires 

14.5 (3.6)/ 52.2 
0) 17.8 (3.6)/ 54.5 

1.1 (3.1)/ 44.3 

15.0 (3.7)/54.1 
5) 18.7 (3.8)/56.7 

3.6 (3.2)/45.1 

35.0 (4.1)/ 67.8 
0) 41.0 (4.3)/ 73.0 

22.0 (3.6)/ 55.3 

68.4 (7.3)/123.2 
83.4 (7.91/138.7 
61.9 (7.5J/122.1 

241.0(15.1)/321.9 
5) 306.6(17.5)/393.5 

341.9(22.6)/460.4 

508.4(20.41/584.3 
25) 660.1(23.61/739.4 

543.1(45.5)/594.2 

5.1 (2.0)/ 28.7 
7.8 (2.1)/ 30.0 

-3.6 (1.7)/ 24.7 

5.9 (2.1)/ 30.2 
9.3 (2.2)/ 32.5 

-2.4 (1.8)/ 25.6 

5.0 (2.11/ 30.6 
9.0 (2.2)/ 32.5 

-1.7 (1.9)/ 27.3 

34.6 (4.5)/ 72.2 
47.1 (4.9)/ 83.4 
35.3 (4.4)/ 71.1 

96.1 (7.4J/142.3 
126.6 (8.55/174.3 
118.0 (9.0J/173.2 

288.0(13.6)/346.0 
387.6(16.1)/449.3 

-(*) 

•2.1(1.4)/ 19.2 
0.4(1.4)/ 19.5 

-7.8(1.2)/ 18.5 

-1.7(1.4)/ 20.1 
1.3(1.5)/ 20.6 

-6.1(1.3)/ 18.6 

•2.2(1.7)/ 23.4 
1.6(1.7)/ 24.2 

-5.6(1.5)/ 21.5 

3.1(2.5)/ 35.7 
10.7(2.7)/ 39.7 
6.9(2.4)/ 34.8 

28.4(4.8)/ 73.6 
50.0(5.6)/ 92.9 
52.2(5.41/ 91.8 

0.5 (3.1)/ 44.1 
3.2 (3.21/ 45.3 

-7.8 (2.81/ 39.6 

-6.2 (2.9)/ 40.7 
-3.1 (2.91/ 41.6 

-12.8 (2.61/ 38.4 

5.7 (3.1)/ 44.2 
9.9 (3.21/ 46.6 
1.8 (2.91/ 41.2 

8.3 (4.7)/ 67.3 
16.2 (5.1)/ 73.4 
5.0 (4.6)/ 65.7 

48.1 (9.D/136.7 
74.3(10.6)7166.4 
63.6(10.11/155.5 

104.0(7.4)/147.3 143.7(13.4)/237.5 
161.0(9.21/206,7 214.6(16.71/318.3 

-(*) 204.7(16.91/312.5 

-4.2(1.2)/ 18.0 
-1.9(1.3)/ 18.0 
-8.4(1.1)/ 17.8 

-5.4(1.4)/ 20.2 
-2.4(1.4)/ 20.2 
-6.7(1.3)/ 18.8 

•9.7(1.7)/ 25.8 
-6.0(1.8)/ 25.5 
-8.6(1.5)/ 23.1 

•9.0(2.2)/ 32.6 
-2.4(2.4)/ 33.6 
2.5(2.2)/ 31.4 

•6.5(3.8)/ 53.9 
7.7(4.31/ 61.7 

24.6(4.51/ 68.1 

•10.9(4.91/ 70.4 
12.5(6.2)/ 87.8 
31.7(6.7)/100.1 

•4.2(2.5)/ 35.3 
-2.8(2.51/ 35.7 

-12.3(2.11/ 31.9 

•6.9(2.6)/ 37.0 
-5.2(2.61/ 37.4 

-13.2(2.21/ 33.9 

-7.4(2.9)/ 41.0 
-5.3(2.91/ 41.5 

-11.6(2.51/ 37.3 

•9.0(3.6)/ 51.5 
-5.1(3.7)/ 53.0 
-6.5(3.3)/ 46.8 

•12.8(5.2)/ 73.9 
-5.8(5.6)/ 78.5 
4.5(5.6)/ 78.5 

-22.3(6.4)/ 93.0 
-10.9(7.35/103.0 
11.0(8.35/118.0 

-4.9(1.2)/17.0 
-3.5(1.25/16.8 

-11.8(1.01/18.3 

•9.1(1.2)/18.6 
-7.4(1.2)/18.1 

-14.2(0.9)719.4 

-9.4(1.45/21.6 
-7.3(1.41/21.1 

-12.0(1.15/20.1 

-13.7(1.95/30.5 
-9.8(2.05/30.0 
-4.9(1.85/26.0 

-21.5(2.75/44.3 
-15.0(3.05/44.3 

4.6(3.15/44.2 

-28.5(4.25/65.0 
-17.5(4.7)/69.1 
19.6(5.85/83.8 

Jo convergence. 
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positive value, but in most cases turns negative. This agrees with asymptotic under­
estimation for p and m fixed and q —> <x>, i.e. with respect to these asymptotics the estimator 
for heritability is inconsistent. The root mean squared error decreases with decreasing p or 
increasing q. Note that within a column of the table, the decrease in root mean squared 
error is getting smaller with increasing number of offspring m. The most effective reduction 
is obtained with a larger number of sires. 

Possibilities for inference on h2, with or without correction, seem to be limited when the 
number of sires is in the order of 50, even with a relatively small number of fixed effects 
in the model. Likewise, with less than 40 observations per sire, we cannot estimate h2 with 
reasonable accuracy. Although the bias in some instances may be acceptable, the root mean 
squared error is very high. For an animal model this suggests that individuals should at least 
roughly fall into more than 50 clusters, and preferably into as much as 200, with an average 
clustersize of more than 40, and strong familial relationships within clusters, i.e. many half 
sibs. We conjecture that for the first column and the bottom two rows, no useful inference 
is possible with MAP / PQL / IRREML / MAPHL or any other estimation procedure. 
Discussion will be restricted to the remaining part of the table. Even then, as a consequence 
of the large, but realistic, incidence of 0.90, root mean squared errors remain sizeable. 

In a number of instances, where the bias is negative, the correction factor alleviates the 
bias. The reduction in absolute bias for p = 38 or 1 and q = 200 varies from about 25 to 
75 %. This implies that for many "ordinary" statistical problems, with a relatively small 
number of fixed effects and a large number of random effects, the bias correction factor is 
a useful asset. The factor is derived under the asymptotics: p and m fixed and q -> oo. With 
a smaller number of random effects, e.g. q = 50, or a larger number of fixed effects, e.g. 
p = 139, these asymptotics do not always apply. The bias may be positive, in which case 
it will be increased by the correction factor which is larger than 1. In that case, with the 
alternative weights, the bias is often reduced. Since a large number of fixed effects is a 
common feature in animal breeding, the bias correction factor is of little use for animal 
models. Although for estimates obtained with the alternative weights, the root mean squared 
error is often smaller than for estimates without correction or after use of the correction 
factor, neither correction method seems to affect the root mean squared error to any great 
extent. For q = 50 sires, estimates under the alternative weights often have smaller absolute 
bias as well. However, for ample offspring per sire, e.g. m = 61, there is a tendency 
towards a sizeable negative bias, which is clearly an undesirable feature. 

5 Discussion 
Scope for reduction of bias by employing the Breslow and Lin (1995) correction factor for 
MAP / PQL / IRREML / MAPHL estimates for heritability or intra-class correlation in 
threshold models for animal breeding data seems slim for large numbers of small families, 
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because of the large number of fixed effects involved. Use of the alternative iterative 
weights (3), as suggested in Engel et al. (1995), may alleviate the bias and reduce root 
mean squared error, but for larger numbers of offspring per sire tends to produce a sizeable 
negative bias. For applications outside animal breeding, with much smaller numbers of 
fixed effects, the bias correction factor can be quite successful. Approximation of the 
(posterior) distribution of the random effects conditional upon the observations, which is 
at the root of the problem (for p and m fixed and q —> <x> approximation by Laplace 
integration breaks down), can be circumvented by use of Markov chain Monte Carlo 
(MCMC) techniques, such as Gibbs sampling, see e.g. Zeger and Karim (1991) and Karim 
and Zeger (1992). That is, if one is prepared to use (some) Bayesian concepts. Simulation 
results in Zeger and Karim (1991) (for data far from representative for animal breeding), 
suggest that posterior means for variance components, obtained with Gibbs sampling, are 
positively biased by 20 - 30%. For the binary salamander mating data (McCullagh and 
Neider, 1989, §14.5) analysed with Gibbs sampling in Karim and Zeger (1992), the medians 
of the posterior distributions of the components of variance are much larger than the MAP / 
PQL /IRREML /MAPHL estimates (Drum and McCullagh, 1993). Computational demands 
of Gibbs sampling are high. Problems with respect to choice of length of the Gibbs chain, 
convergence (which can be very slow for animal models due to the correlation between the 
random effects) and the use of non-informative priors are summarized in Zeger and Karim 
(1991). McCulloch (1994) applies a combination of the EM algorithm and Gibbs sampling 
to the salamander mating data to derive (non-Bayesian) maximum likelihood estimates. 
Finally, MAP / PQL / IRREML / MAPHL have quasi-likelihood features in the sense that 
estimation can be formulated in terms of first and second moments only. IRREML, for 
instance, in Engel and Keen (1994) is motivated by iterative use of MINQUE, which can 
be re-formulated as iterative use of least squares on squares and products of error contrasts 
(i.e. contrasts with zero expectation). An important point is to what extent any reduction 
of bias and/or root mean squared error with MCMC techniques is at cost of lack of 
robustness with respect to distributional assumptions. 
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Summary Evaluation of Dutch dairy data showed serious discrepancies between breeding 
values based on progeny records and expected values based on parent averages. Apparent 
heterogeneity of variances between herds offered a possible explanation for these 
differences. This paper describes the development of a national breeding evaluation method 
for Dutch dairy cattle that accounts for variance heterogeneity. With the new method the 
mean difference between estimated breeding values and parent averages was reduced by 38 
% compared with evaluation under the traditional assumption of homogeneous variances. 
The improved method is computationally feasible for the large scale data sets which are 
commonly used in the dairy industry. Problems with application to Dutch milk yield data, 
comprising 12,629,403 records, are discussed. 

Keywords: BLUP, multiplicative mixed model, variance heterogeneity, Laplace integration 

1. Introduction 
In many countries, breeding values for dairy cattle are estimated employing a mixed 
analysis of variance model, referred to as an 'animal model' (see e.g. Henderson, 1984, 
Ch.22). In this model, breeding values, which express the genetic potential of individuals 
for milk production, are represented by random effects. Due to selection of the best animals 
for mating, animals may be strongly related to each other. The animal model includes 
correlations between the random genetic effects due to familial relationships. When all 
animals involved in selection over the years are present in the data, non-random sampling 
will be accounted for by these correlations (Henderson, 1984, Ch.13). Also, when records 
of relatives are included, improved estimates for breeding values will be obtained. 
Therefore, data sets employed for evaluation of breeding values are commonly extremely 
large. Animals are selected on the basis of best linear unbiased predictions (BLUPs) (Searle, 
Casella and McCulloch, 1992, Ch.7; Robinson, 1991) of their breeding values. BLUPs have 
attractive properties for selection purposes (see e.g. Searle et al., 1992, Ch.7 for references). 
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Data on 305-day milk yield from Dutch dairy cows as analysed by Van der Werf, 
Meuwissen and De Jong (1994) showed serious discrepancies between predicted breeding 
values (expressed in kilograms milk) and values expected on the basis of parent averages. 
For black and white bulls for instance, estimated breeding values were on average 157 kg 
lower than expected on the basis of parent means. One of the assumptions underlying the 
animal model is homogeneity of variances. Heterogeneity of variances in combination with 
selection of the best animals for mating may explain at least part of the discrepancies found. 
For instance, when bull dams with a high production are selected for mating they will tend 
to be selected from the more variable herds. Test daughters of the bulls are tested on 
average herds. Consequently, evaluations of the bulls will tend to be lower than expected 
on the basis of their parent averages. Heterogeneity of within herd variances was found in 
a number of studies (for references see Meuwissen, De Jong and Engel, 1996), and was 
apparent in the study of Van der Werf et al. (1994) as well. Not in the least because of 
large financial interests involved it was paramount to account for this heterogeneity in the 
Dutch breeding value evaluation system. 

This paper describes the development and implementation of the new evaluation system 
and its application to Dutch milk yield data. The new system is computationally feasible 
for large data sets. Data analysed in this paper comprised 12,629,403 milk yield records and 
is summarized in Section 2. The model is discussed in Section 3. Both means and variances 
are expressed in terms of fixed and random effects, involving both additive and, through 
the use of scaling factors, multiplicative effects. A similar model was proposed by Kachman 
and Everett (1993), but with a different choice of (prior) distribution of the random effects, 
and different, computationally challenging, estimating equations. In contrast to Foulley, San 
Cristobal, Gianola and Im (1992), heterogeneity in the model is not restricted to the residual 
(environmental) variance, but applies to the genetic variance as well. Predicted breeding 
values based on scaled records are derived in Section 4. Problems encountered in the 
application to the Dutch dairy data are discussed in Section 5. Simulation results are 
presented in Section 6. In Section 7, employing the Laplace approximation for the 
likelihood, estimating equations are shown to be approximations of the maximum likelihood 
equations. 

2. The Dutch milk yield data 
Milk production data was obtained from the Dutch Cattle Syndicate (NRS) from cows 
freshening in The Netherlands between July 1978 and December 1994. Data was collected 
from first to third lactation, if available, and comprised 12,629,403 records from 5,819,606 
cows in 42,480 herds. The number of herd-year combinations was 499,608. The number 
of years per herd varied from 1 to 17, with an average of 11.8. For almost half of the herds 
the number of years was 15 or more. Some summary statistics are shown in Table 1. 
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Table 1. Summary statistics of the Dutch dairy 
data. Percentile points and means for average 
production, standard error for production and 
number of lactations (cows) per herd, per year' 

10% 
per herd, per year: 

average production (kg) 3946 

standard deviation 
for production (kg) 

number of cows 

456 

mean 90% 

5027 6276 

693 947 

25.3 47 

' A year i s from October to next September. 

In Figure 1, sample variances are plotted against squared sample means for the years. 

Squared means were chosen for later use in Section 5. Clearly, the variance increases with 

the mean. 

Figure 1. Sample va r iances p l o t t e d aga ins t squared sample means (* 10"4) for 
each of the years i n the Dutch da i ry da ta . 
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3. The model 
For the i-th herd-year (HY) class, i = l...p, the vector y( of milk yield data is modelled by: 

y, = (X;b + ZiU + ei) <>„ (la) 

where b, u and e; are vectors of fixed effects, genetic effects (breeding values) and residual 
(environmental) effects respectively, X( and Zt are design matrices, and <j>( is a scaling 
factor. Fixed effects in b include effects for differences between herds, years and seasons. 
Scaling factors allow for variance heterogeneity between HY classes. Furthermore: 

u ~ N(0, Aa2J and e, ~ N(0, IjCr2). (lb) 

Variance components a2 and a2 represent variation due to genetic and environmental 
effects, respectively. Matrix A, the additive relationship matrix, accounts for correlations 
between genetic effects of relatives. For instance, covariance between halfsibs, e.g. cows 
with the same sire but different dams, is '4 a2 and V4 will be entered in the appropriate 
position in matrix A. I; are identity matrices of appropriate sizes. 

An important concept in animal breeding is heritability, which is the amount of variance 
'explained' by genetic effects relative to the total variance. Here, heritability is assumed to 
be the same across HY classes: 

h2 = a2 / (a2
a+a2). 

Without loss of generality a\ may be fixed at value 1. In evaluation of breeding values, h2 

is usually assumed to be known. The value for h2 is based on analyses of previous data sets 
(typically much smaller than those used for evaluation of breeding values). In principle, 
there is no problem in providing an estimating equation for h2 as well, but we will not do 
so and assume h2 and consequently a2 to be known. 

Heterogeneity factors are assumed to follow a log linear model: 

log(tf) = t;e, (ic) 

where 8 is a vector of dispersion parameters, including a constant, and tj is a design vector. 
Initially, 6 will be assumed to consist of fixed effects only and maximum likelihood (ML) 
equations will be derived in Section 4.1. Since the number of HY classes will be large, with 
a modest number of observations per HY class, it is profitable to introduce random effects 
in 8. Since heterogeneity factors for successive years are expected to be similar, in Section 
4.2. the analysis will be extended towards a first order autoregressive correlation structure 
for years within herds. 
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4. Estimation of parameters and prediction of breeding values 

4.1 Estimation and prediction for non-random scale factors 
The 'complete' log likelihood Lc is taken to be (the kernel) of the logarithm of the joint pdf 
of y and u: 

Lc = - V2 E n; log(^) - Vi E eje, - Vi u A 'u / a\, 

where n; is the number of records in the i-th HY class. Derivatives with respect to b and 
u, when set equal to 0, yield what is commonly referred to as the mixed model equations 
(Searle et al., 1992, Ch. 12), expressed in terms of scaled records y. = (y,,'...y.p')' = (y,7 

4>i-yPv <t>p)': 

x'x 
z'x 

x'z 
Z ' Z H iZ'y 

(2) 

ML equations for b are of the form E[9LC / ôb) |y] = 0 (Louis, 1982). Since (2) is linear 
in u, it follows that solutions b and û are ML estimates of b and predictions E(u | y) 
(evaluated for b) of u, respectively. Matrix A is very large and can be inverted with 
techniques developed by Henderson (1976) and Quaas (1976). ML equations E[(ôLc / 
36) | y] = 0 for 0 are: 

EtiZj = 0, where z( = (y.,'ê; - n{) I 2 and ê, = y.( - Xib - Z(û. (3) 

Considering Zj = (y .^ - n^ 12, i = l...p, as estimating functions for 0, combination into one 
equation (see e.g. McCullagh and Neider, 1989, §9.4.2), conditional upon u, also leads to 
(3). Because z, = {dLJdr\) is a score function, where r̂  = log(<|>?): Var(Z| | u) = 
E[(ÖLc/ÖT)i)

21 u] = - E[(52Lc/ar|i) | u] = - E[dzjdr\t | u] = {2n( + (Xjb+Z^XXib+ZiU)} / 4 
= W|, say. Expansion of z = (z,...zp)' around initial estimates 0 yields: z ~ z - WT(0-0) or 
W"'z + T0 » W 'z + T0, where W = diag(Wi) and T = (t,...tp)'. Hence, the following vector 
Ç of "pseudo-observations", approximately follows a linear model: 

f = W'z + T0, with E(f | u) « T0 and Var(f | u) * W' . (4) 

Employing (4), equations (3) may be solved with repeated use of weighted regression on 
Ç. After each regression step, f and w, are updated, employing current estimates and 
predictions. This is equivalent to Fisher scoring. An obvious approach is to alternate 
between solving (2), for current values of (j),, and solving (3), for current values of b and 
u. This is similar to the see-saw algorithm for extended quasi-likelihood suggested in 
McCullagh and Neider (1989, §10.2). 
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4.2. Estimation and prediction for random scale factors 
Let 6 consist of fixed effects ß and random effects ô, with design matrices B and D 
respectively: 

21ogO) = B/S + Do, where </> = (<t>,...<|>p)' and Ô ~ N(0, CT2
5 R). 

The auto-correlation matrix R depends on the unknown correlation p between random 
effects 8 in successive years within herds. Equations (2) will be retained, employing 
predicted scaling factors. Equations (3) will be modified and additional equations for o\ and 
p will be derived. Moments in (4) are still valid, but conditional upon B as well, with T = 
(B, D) and 6 = (ß', &')''. Marginally with respect to Ô, f approximately follows a linear 
mixed model, with fixed effects ß, random effects 6, "residual variance" equal to 1 and 
"residual weights" Wj. Weighted regression is replaced by weighted restricted maximum 
likelihood (REML; Patterson and Thompson, 1971), similarly to modification of iterative 
re-weighted least squares in generalized linear mixed models (e.g. Schall, 1991; Engel and 
Keen, 1994; Engel, Buist and Visscher, 1995; Engel and Buist, 1996). Mixed model 
equations for 0, in terms of f, are: 

(T'WT + diag(0, R-'CTJ2))^ = T'Wf. (5a) 

Substitution of f from (4) shows that at convergence the following equations are solved: 

STiZi = diag(0, of R"'§). (5b) 

Lc now includes the quadratic - V2 ô'R'ô crj2 and derivatives of Lc with respect to ß and 5, 
when set to 0, also yield (5b). With respect to the fixed effects model for the scaling factors 
in Section 4.1., a\ and p may also be considered as smoothing parameters for the estimated 
heterogeneity factors, employing a quadratic penalty function. Each iteration a\ is updated 
by: 

ô2
8 = {S'R-'ô + trace(R-'C)} / q. (6) 

Here, C is the part of the inverse of the coefficient matrix of (5a) corresponding to the q 
elements of ô, and the right-hand-side is evaluated for current parameter values and 
predictions. This is an approximate ML equation, as will be shown in Section 6. Similarly, 
p is updated by: 

p = Z {2 S k jAj + traceCq.,,)} I {à\ E %x $. (7) 
j k 

Here, 5kj is the element of S for the j-th year and k-th herd, Cj., j is a submatrix of C, 
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restricted to the q̂ , j herds common to the subsequent years j-1 and j . Note that (6) and (7) 
are approximate moment estimators. E.g. in expression (6), S'R'S = ô'R'ô - (S-iyR'^l-S) 
+ 2(S-ô)'R"'S, with expected values qcr2s, -trace(R'C) and 0 for terms on the right-hand-side, 
if S is evaluated for the true parameter values under the approximate linear mixed model 
forÇ. 

In the application to the Dutch dairy data, constant ß is the only fixed effect for the 
scaling factors, B = 1 is a vector with all elements equal to 1 and D is an identity matrix. 
Equations (5a) can be rewritten as: 

(W + R-'of)« = W(f - ßl), (8a) 
ß = 2 w ^ - ô;) / Sw, (8b) 

Equations (8a) can be solved for ô, evaluating the coefficient matrix and the right-hand-side 
for current estimates and predictions, and then ß can be updated from (8b), using the new 
values for 5. Since (8a,b) are only part of the total iteration process, it suffices to do this 
once or a few times only. Data can be ordered as years within herds and read one herd at 
a time, taking advantage (Press, Teukolsky, Vetterling and Flannery, 1992, §2.4) of the 
tridiagonal structure of R"' (see Wade, Quaas and Van Vleck, 1993). Note that trace(R'C) 
in (6) equals: 

Ztrace(Rk-
|(Wk+Rt

lÔ52)-0+{£<(Wk+^^^ 

where vector wk and diagonal matrix Wk contain the weights for herd k. R is blockdiagonal 
with block Rk for herd k. Thus trace(R"'C) can be evaluated reading the data one herd at 
a time. 

5 Application to the Dutch milk yield data 
In the model fitted to the Dutch milk yield data, fixed effects were included for 
combinations of parity, herd, year and season of calving, for combinations of month and 
year of calving and for genetic groups. For the use of fixed genetic group effects see Quaas 
(1988). In addition to additive genetic animal effects the model included permanent 
environmental effects. The latter effects account for correlation between environmental 
effects for observations on the same animal. Inclusion of these random effects in (la) is 
straightforward. Heritability was taken to be 0.35. Permanent environmental variance 
relative to the total variance was set to 0.20, i.e. correlation between observations on the 
same animal was 0.35 + 0.20 = 0.55. A diagonal matrix of residual prior weights related 
to preadjustment of the data as described by Van der Werf et al. (1994) was included as 
well. 

Sofar, for the mean y of a random herd within a year, E(y | (|>) = a<j> and Var(y | <|)) = y<)>2, 
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say. Marginally, under some regularity conditions on a and y, E(y) = E(oc) E(<|)) = m, say, 
and Var(y) = {E(y)+Var(oc)} E((|)2) + E(a)2 Var(<(>). From properties of the lognormal 
distribution it follows that Var(y) is a linear function of m2. The relationship between 
sample variances and squared means for the years is indeed fairly linear, as can be seen in 
Figure 1. 

The iteration process showed a tendency for p to exceed value 1. Although unexpected, 
p = 1 may be realistic, simply indicating that the more simple model with only random herd 
effects for the heterogeneity factors would be sufficient. A trend over the years in the log 
linear model for the scale factors was considered, but inclusion of fixed year effects just 
slowed the iteration process down, without improvement. A numerically more robust 
version of (6) and (7) was implemented. Separate updates for variances and covariances for 
the J different years and pairs of consecutive years were calculated and combined 
afterwards: 

o2
8j = {Sj'Sj + traceCq)} / qj5 a8j., i = {S okj.,ôkJ + trace(Cj., j)} / q̂ , p 

(9) 
Ô2 = S a2

8j / J and p = Z {a5j.,, I (o&jAv&yl)} I (J-l) = Z ft / (J-l). 

Here, qj is the number of herds involved in subvector dj of Ô and Cy is a submatrix of C, 
for year j . A stable procedure to solve the estimating equations was found to be the 
following (where [t] denotes the current iteration number): 

1. Update breeding values from (2), performing one iteration cycle with an efficient 
method proposed by Schaeffer and Kennedy (1986); 

2. If Q = (ûpj-ûp.^Xûfl-ûp.,]) / û[t]'û[t] < 10"8 solve ß from (8b), else solve (8a) as well. 
Go back to 1, unless Q < 10"8 for 5 iterations in a row; 

3. Solve d2
[t] from (9). If {(â^-ô2^,,)2 / ô4

6[t]} > 10"10 go back to 1; 
4. Solve p[t] from (9). If {(p[t]-p[t-i])

2 / P2[q} > 10"10 go back to 1, else stop. 

Results for the Dutch milk yield data are shown in Table 2. Although the separate updates 
from the last iteration show a slight dip around 1986, all are close to their respective 
averages p = 0.984 and ô2

6 = 0.10. 
The coefficient of variation for the heterogeneous variances is 1/{exp(ô2

i)-l} = 0.33, 
which is close to the estimated value 0.31 of Van der Werfet al. (1994). p = 0.984 is near 
enough to 1 to suggest that under the present circumstances the simpler model with only 
random herd effects for the heterogeneity factors would be adequate. The new evaluation 
method had to be operational on short notice early 1995 and it was decided to implement 
(9). A decision, on the basis of simulation results obtained afterwards, we did not have to 
regret. 
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Table 2. a2
6j, p}, ö\ and p f rom 

( 9 ) f o r t h e Dutch d a i r y d a t a . 

y e a r j ' pi â2
6i 

1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 

0.992 
0.991 
0.990 
0.988 
0.984 

0.977 
0.974 
0.967 
0.970 
0.976 
0.982 
0.985 
0.991 
0.992 
0.994 

-

0.107 
0.108 
0.108 
0.105 
0.102 
0.100 
0.095 
0.092 
0.091 
0.092 
0.093 
0.099 
0.104 
0.110 
0.114 
0.114 

a v e r a g e 0 . 984 0 . 102 

' A y e a r i s from Oc tobe r t o 

n e x t S ep t embe r , e . g . j = 1978 

d e n o t e s Oc t obe r 1978 t o 

Sep tember 1979 . 

Some results for estimated breeding values are summarized in Table 3. Differences between 
estimated breeding values (EBV) and parent averages (PA) are reduced by 38 % ( = (1-
78/126) * 100 %) when heterogeneity is taken into account. The prediction error variance 
(not shown) decreased by 18 %. EBVs and PAs were obtained from the same run of the 
model. Therefore, differences can be expected to be somewhat smaller than when PA's are 
derived from an earlier analysis. The average reduction in EBV - PA for p = 0.50 of 35 % 
suggests that the value for p is not too critical. 

6 Simulation results 
Records were generated according to (la, b, c). The model for analysis included herd-year 
effects in b. These effects were not included in the data generation, i.e. their true values 
were 0 . Individuals were unrelated, i.e. A was an identity matrix. 
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Table 3. Estimated breeding values (EBV) minus parent averages (PA') 
Differences in kg milk for 1520 progeny tested Black and White bulls 
born between 1981 and 1990 without heterogeneity correction and for 
p = 0, 0.50, 0.75, 0.984 and a2, = 0.10. 

EBV-PA, no correction -126 (kg) 
EBV-PA, p = 0 -113 
EBV-PA, p = 0.50 - 81 
EBV-PA, p - 0.75 - 78 
EBV-PA, p = 0.984 - 78 
(EBV without correction) - (EBV for p = 0.984) for sires of bulls - 41 

for dams of bulls - 57 

' PA = (EBVBlre + EBVdam) / 2. EBV and PA are from the same analysis. Their 
average difference should be close to 0. 

Heterogeneity factors § were generated with constant ß = 0. The two schemes employing 
(6) and (7) or (9) were studied. 

Initially we intended to update p by regression, but since convergence for the dairy data 
proved to be problematic, this approach was abandoned. It was however included in the 
simulation. Our first idea was to update p by regression of Ç̂  on Çk j . , for herd k and 
subsequent years j-1 and j . The estimating functions approach (see e.g. McCullagh and 
Neider, 1989, §9.4) yielded the estimating equation: E S hkj akj (Ckj.,-ß) / vkj = 0, where hkj 

= (Ckj-ß) - P «kj (Ckj-i-ß). <*kj = {CTV K+w'Lj.,)}, vkj = a2
5 + w-'kJ - pV8akj and weights w, 

are renumbered as wkj for herd k and year j . An update which follows directly from this 
equation, is: 

p = {Z S akj (CkJ.,-ß) (CkJ-ß) vk]} / {2 S a2
kj (Ck,,-ß)2 vk]}. (10) 

Some results for p and a\ are shown in Table 4a. For regression scheme (6) and (10) 
estimates of p (and of a\ as well) oscillated strongly before settling down after a very large 
number of iterations, as shown in Figure 2. This can be avoided by halving the steplength 
for p from one iteration to the next, i.e. p[t] = (p[t.,, + p) / 2, where p is solved from (10). 
Results in Table 4a are satisfactory for a wide range of values for p, including values close 
to 1. In Table 4b results are presented for a\ = 0.1, which is more in line with the Dutch 
dairy data. The regression estimators, especially for n = 10 animals per H Y class, are 
severely biased. The other two schemes perform well enough with virtually identical results. 
They differ however with respect to the number of iterations required to satisfy the 
convergence criteria. 
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Table 4a. Some simulation results for p and a\ for 1000 herds, 
10 years per herd, a\ = 1, p from 0.95 to 0.05 and h2 = 0.30. 

true 
value 
P 

regr. approach 
and (7) and (9) 

P 

100 animals per 

0.95 
0.90 
0.75 
0.50 
0.25 
0.10 
0.05 

0.948 
0.899 
0.751 
0.511 
0.251 
0.121 
0.045 

10 animals per 

0.95 
0.90 
0.75 
0.50 
0.25 
0.10 
0.05 

0.946 
0.914 
0.757 
0.498 
0.254 
0.094 
0.036 

o\ 

herd per 

0.983 
1.009 
1.009 
0.998 
1.011 
1.006 
0.992 

herd per 

0.967 
1.034 
0.971 
0.993 
1.024 
1.017 
0.983 

robust 
approach (10) 
P 

year 

0.950 
0.898 
0.746 
0.511 
0.251 
0.121 
0.045 

year 

0.938 
0.906 
0.750 
0.502 
0.253 
0.094 
0.037 

o\ 

1.006 
0.998 
0.993 
0.997 
1.011 
1.006 
0.992 

0.947 
1.013 
0.960 
0.995 
1.024 
1.017 
0.983 

expressions 
(7) and 

P 

0.950 
0.898 
0.747 
0.512 
0.252 
0.122 
0.045 

0.943 
0.915 
0.762 
0.522 
0.282 
0.136 
0.076 

(8) 
o\ 

1.005 
0.999 
0.997 
0.999 
1.012 
1.007 
0.992 

0.961 
1.041 
0.983 
1.017 
1.050 
1.049 
1.009 

Table 4b. Some simulation results for p and a\ for 1000 herds, 
10 years per herd, a2, - 0.1, p from 0.95 to 0.05 and h2 = 0.30. 

true 
value 
P 

100 anima 

0.95 
0.90 
0.75 
0.50 
0.25 
0.10 
0.05 

regr. approach 
and (7) and (9) 

P 

Is per 

0.887 
0.849 
0.737 
0.496 
0.223 
0.090 
0.049 

o\ 

herd per ye 

0.181 
0.156 
0.131 
0.110 
0.103 
0.103 
0.103 

robust 
approach (10) 
P 

ar 

0.959 
0.897 
0.767 
0.500 
0.224 
0.091 
0.050 

o\ 

0.102 
0.097 
0.103 
0.100 
0.098 
0.099 
0.099 

expressions 
(7) and 

P 

0.959 
0.898 
0.768 
0.503 
0.228 
0.092 
0.052 

(8) 
o\ 

0.102 
0.097 
0.104 
0.101 
0.098 
0.099 
0.100 

10 animals per herd per year 

0 . 9 5 0 . 452 0 . 300 0 . 9 0 1 0 . 098 0 . 902 0 . 098 
0 . 90 0 . 477 0 . 294 0 . 878 0 . 098 0 . 877 0 . 098 
0 . 75 0 . 432 0 . 296 0 . 750 0 . 099 0 . 752 0 . 099 
0 . 50 0 . 289 0 . 269 0 . 479 0 . 098 0 . 476 0 . 098 
0 . 2 5 0 . 117 0 . 252 0 . 179 0 . 097 0 . 176 0 . 097 
0 . 10 0 . 046 0 . 243 0 . 0 7 1 0 . 096 0 . 076 0 . 096 
0 . 05 - 0 . 0 0 4 0 . 2 43 - 0 . 0 0 8 0 . 095 - 0 . 0 1 4 0 . 965 
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Scheme (6) and (7) converges faster for high values of p, while (9) is faster for low values 
of p. Results for 500 simulated sets of data are shown in Table 5, confirming the 
breakdown of the regression scheme. It seems that the regression approach does not 
properly account for shrinkage in the predictions of the random effects which are used to 
calculate Ç. This becomes apparent for small a8 and small n. 

Table 5. Simulations for p = 0.90 and a\ = 1 and 0.1. Average 
values for p and à\ from 500 simulations. 0.05 (.) and 0.95 
[.] percentile points of the 500 estimates are shown below the 
averages. Simulations are for a 1000 herds, 10 years per herd 
and 10 animals per herd per year. 

true 
value 
of o\ 

1 

0.1 

regression 
approach (7) 
and (9) 

'P à\ 

0.910 
(0.897) 
[0.921] 

0.486 
(0.455) 
[0.517] 

1.008 
(0.966) 
[1.047] 

0.309 
(0.295) 
[0.322] 

robust approach 
equations (10) 

P à\ 

0.903 
(0.889) 
[0.917] 

0.897 
(0.859) 
[0.930] 

0.992 
(0.945) 
[1.038] 

0.099 
(0.098) 
[0.100] 

equations 
(7) and (8) 

P à\ 

0.903 
(0.888) 
[0.917] 

0.897 
(0.860) 
[0.931] 

0.992 
(0.945) 
[1.039] 

0.099 
(0.098) 
[0.101] 

7 Discussion 
From a Bayesian view point, $ and % from (5b) are joint posterior modes. Equations (5b), 
rewritten in terms of Ä = 0new-0O|d and z, resemble equations (3.26) in Foulley et al. (1992) 
under their "normal approximation", with weights from their equation (3.16). Because in 
our paper heterogeneity applies both to genetic and residual variances, the Zj's are similar 
but not equal to the corresponding quantities in Foulley et al. (1992). The lognormal 
distribution for the scale factors, which implies a lognormal distribution for <|>, <)>2 and §A, 
is similar to the inverted gamma prior in Kachman and Everett (1993). For the small value 
of 0.33 for the coefficient of variation, degrees of freedom v of the inverted chi-square 
distribution correspond to 2/«j|, after scaling such that E((|>"2) = 1. The first two moments 
of the lognormal and inverted chi-square distributions are about the same: E(<|>) = 
exp(3a2

8/8) + 0(G4
8) = 1 + 3/(4v) + 0(v2) and Var(<|>) = a2

8/4 + 0(a4
8) = l/(2v) + 0(v2). The 

main difference between the two estimation procedures is in the use of the approximate 
linear mixed model for variate Ç, which simplifies matters considerably and offers an 
opportunity to introduce any useful extension of the linear mixed model, e.g. an 
autoregressive process, into the model for the heterogeneity factors. 

Finally, we will briefly discuss the relationship with ML estimation, largely following 
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Engel and Keen (1996) in the discussion of Lee and Neider (1996). For ease of notation 
functional dependence on the unknown parameters is suppressed. The likelihood l(y) is 
obtained by integration of exp(Lc(y,é)) over the random effects e = (u', S')'. This integral 
can be approximated by Laplace integration. To that end, Lc is approximated by a quadratic 
function in e by Taylor expansion around ë, where [<3Lc(y, u)/de]8 = 0. It follows that: 

L(y) = log(l(y)) * Lc(y, Ï) - «/2log(det(-[ô2Lc(y, e)l Ôtde],)) - Vzm log(27t), 

where m is the number of elements of e. This implies that the pdf f of e conditional upon 

y can be approximated by a normal pdf with mean ê and dispersion matrix fl = 

[-^(y, e)/dede'n • 

log(f(€ |y)) = Lc(y, £) - L(y) * -*4(e-ï)'0-'(e-ë) - V2log(det(ß)) - Vim \og(2n). 

Employing this normal approximation in the estimating equations for a = (b', /?')': 

0 = 5Lc(y, e)/da « ôL(y)/3a + (dl/8a)ü'\e-ê), and for predictions for e: 

0 = ÔLc(y, e)/3e = df(e \ y)/de « - ft\e-t). 

It follows that â =(b', ^ ' ) ' approximates the ML estimator, while predictions ê = (û', S')' 
= I approximate E(e | y), evaluated at a. The ML equation (Louis, 1982) for a\ is: 

E(ÔLc(y, e)/da\ \ y) = Vz a\ E(bR[S \ y) - Vz qo5
2 = 0, leading to 

o« = {E(S | y)'R'E(ô | y) + trace(R-' Var(ô | y))} / q. 

Now, in the normal approximation for (e | y), first matrix fi is replaced by 
[-E(92Lc(y, e)/dede' \ e)]j', which simplifies the part corresponding to ô, and second the 
(sparse) upper right-hand and lower left-hand parts, involving derivatives with respect to 
elements of both u and b, are ignored in taking the inverse. This way, Var(5 | y) is 
approximated by (DWD' + R'cj)"1. Finally, as an approximate REML correction for 
estimation of ß, this last expression is replaced by C. This yields (7). Update (8) for p is 
chosen as an analagon of (7). Since ß is an overall residual variance, in a future 
implementation, a REML correction for ß may be considered as well. 
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Chapter 10 

IRREML and ML 

Based on: 

Engel, B., Keen, A. (1996). Contribution to the discussion of Lee and 

Neider (1996). Hierarchical Generalized Linear Models. Journal of the 

Royal Statistical Society B 58, 656-657 

and 

Engel, B., Keen, A. (1996). An introduction to generalized linear 

mixed models. Invited paper. Proceedings Xlllth International 

Biometrie Conference. Amsterdam. 

The approximate relationship between IRREML and maximum 

likelihood estimation is discussed in some detail. A simple 

example is presented to illustrate inconsistency of IRREML 

variance component estimators under certain asymptotic 

conditions. 



1 A general outline of the relationship between IRREML and ML 
It will be shown that estimation by IRREML can be derived as an approximation to ML 
estimation. For ease of notation attention is restricted to one component of variance er2 for 
random effects Uj ... u collected in vector u. Let f(y | u) be the pdf of y conditional upon 
u with unknown vector of parameters ß and let k(u) be the pdf of u with unknown 
parameter ou

2. To simplify the notation, functional dependence of the pdf s on the unknown 
parameters is suppressed. Let 

h(y,u) = log(f(y|u))+log(k(u)) 

be the logarithm of the joint pdf of y and u. The likelihood l(y) is: 

l(y) = ƒ...ƒ exp(h(y,u)) du. 

We start with estimation of ß (and prediction of u). For fixed a2, from a well known 
property of efficient scores, ML equations for ß are (see also Louis, 1982): 

dlog(l(y))/ô/î = Ölog(l(y))/Ö0 + E(aiog(r(u | y))/dß | y) = E(dh(y,u)/301 y) = 0, 

where r(u | y) is the pdf of u conditional upon y, i.e. log(l(y)) + log(r(u | y)) = h(y,u)). For 
normal u, the IRREML equations for ß and u are: 

Öh(y,u)/Ö|8 = 0, (1) 

3h(y,u)/ôu = 0. (2) 

The latter equation is equivalent to: 

Ôlog(r(u|y))/Ôu=0. (3) 

When equations dh(y,u)/d/S = 0 are linear in some monotonie function m(u) and m(.) 
evaluated at the mode of (u | y) equals the mean of (m(u) | y), it directly follows that the 
ML and IRREML estimators for ß are the same and that m(.) evaluated at the solution û 
of (2) (or (3)) is a prediction of the form m(û) = E(m(u) | y) evaluated for the ML / 
IRREML estimate ß. For non-normal u, the same argument (Engel and Keen, 1996) holds 
for Lee and Neider's (1996) hierarchical likelihood estimators for ß and u that maximize 
h(y,u). 

Now, with the Laplace integral approximation, temporarily suppressing dependence upon 
y in the notation: 
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1 = I.. . 1 exp(h(u)) du * \ ... J exp(h(û) + Vfc(u-ü)' h"(ü)(u-ü)) du = 

(271)^1 Vdet((-h"(ü))-') exp(h(ù» x 
xi ...l exp(-%(u-û)'(-h"(û))(u-û)) (27t)-,/4<l (lA/dettf-h'Xû))-1) du = 

(2«)%q VdetCC-h'XO))-1) exp(h(ù)), 

where h'(û) = [dh(u)/du]ü = 0, and h"(û) denotes the matrix of second order partial 
derivatives with respect to u evaluated at fl. Note that Q is a function of both y and ß. It 
follows that: 

log(r(u | y)) * h(y,u) - h(y,fl) - Vi\og{tel{(-W{ü)yx)) - V4q log(2n) * 
- !/2(u-ü)' (-h"(ü)) (u-û) - ^logCdetC-h'Xû)-1)) - Viq log(2n) = 
- >/2(u-û)' O'1 (u-û) - V41og(det(Q)) - Vzq log(27i), 

where 0 = (-h'Xû))"1. So, approximately: 

( u | y )~N(û , 0 ) . 

When f(y | u) is from the GLM exponential family: 

h'(u) = 31og(f(y | u))/9u - CTJ2 u and 

h"(u) = Z'Wg'(/t)'(ô(y-/*)/ôu) + Z'(a(Wg'(^))/Öu)(y-M) - GU-2I. 

Here, W is the diagonal matrix of iterative weights {g'(n)2V(u)}_1, g(.) is the link function 
and V(.) the variance function. The second term on the right-hand side equals 0 for a 
canonical link function, e.g. for the logit link for binomial data or log link for Poisson data, 
and its expectation conditional upon u equals 0 for any link function. Replacing ß by 0* 
= [E(-h"(u) | u)]ü

_1 = [Z'WZ + a^IJjj"1, and ignoring the functional dependence of fl* on 
j3 through the matrix of iterative weights W, it follows from (2) and (3) that approximately: 

dh(y,u)/50 = dlog(l(y))/d0 + (öü/öjS)ïrl(u-ü) and 
dh(y,u)/5u = - fl"\,(ii-ü). 

Hence, the IRREML estimator ß from (1) and (2) (or (3)) approximates the ML estimator, 
while û = ü « E(u | y) evaluated at ß. 

Now, consider estimation of CTU
2. The ML equation for CJ 2 is: 

E(3h(y,u)/dau
2 | y) = E(Slog(k(u))/dciu

2 | y) = 0. 
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For normal u this is equivalent to: 

- q / (2a u
2 ) + E(u'u|y)/(2cru

4) = 0,or 
au

2 = {E(u | y)'E(u | y) + trace(Var(u | y))} / q * (û'û + trace(T)) / q. (4) 

Here, q is the number of elements of u and T is the part of the inverse of the coefficient 
matrix of the mixed model equations in terms of the adjusted dependent variate Ç that 
corresponds to the random effects. T replaces fl„, because now estimation of ß is taken into 
account as well, as a "REML type" adjustment of the ML equations. Solving the equation 
iteratively yields the EM type algorithm for the IRREML estimator (see expression (11) in 
Chapter 6). For non-normal u, a similar argument can be followed after log(k(u)) is 
approximated by a second order Taylor expansion around û. 

The kernel of the log likelihood L is approximately equal to: 

L * -Vi log(det(Z'WZ+CTu-
2I)) - Vi D - Vi û'û / cru

2 - Vi q log(ou
2), (5) 

where D = -21og(f(y | u)) is the conditional deviance, and D is D evaluated at Û. 
Following Breslow and Clayton (1993), further approximation of L is possible, offering 

an alternative derivation leading to the IRREML algorithm. First, consider D for a single 
observation y: 

D oc -2 1 (y-t)/V(t) dt. 
y 

This is the area between y and ^ on the t-axis and the curve 2(y-t) / V(t). It may be 
approximated by the area (y-u ) /V(u) of the triangle between y and u on the t-axis and the 
point (u, 2(y-u) / V(u)). This suggests that D may be replaced by Pearson's generalized 
chi-square statistic: Z(y-u)2/V(u). Next, we add -1/2log(det(W"1)), again ignoring 
dependence of W on ß, and treating the extra term as a constant. Now, employing (for 
details see Engel, 1989, p57, A5 (ii) and (iii); p82, C6): 

log(det(Z'WZ + cu
2I)) + log(det(W1)) + q log(cTu

2) = log(det(H)), 

where H = ZZ'au
2 + W 1 , and 

Z(y-u)2/V(u) + Û'Û / GU
2 = (Ç-TD'W-HÇ-fî) + û'û / au

2 = 

(Ç-fD'W-^-r,) + û'Z'(Ç-ri) = (Ç-Xfr'W-'K-Xfl-ZÛ) = (Ç-Xfo'H-'K-Xfr, 

it follows that the kernel of the log likelihood is approximately equal to: 

- >/2 (Ç-XjâyH-^-Xft - Vi log(det(H)). 
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The last expression is the kernel of the log likelihood obtained when the adjusted dependent 
variate Ç is assumed to be normally distributed with mean X/3 and variance-covariance 
matrix H. Following Breslow and Clayton (1993), adding a REML adjustment term 
-V2log(det(X'H X)), updating the component of variance from this approximation yields 
the IRREML algorithm, with the same final estimates as from iteration based on (4). 

When there is a multiplicative dispersion factor T in the conditional variance of 
observations y, and the conditional error distribution is not fully specified, an extended 
quasi-likelihood (McCullagh and Neider, 1989, Ch. 9; Neider and Pregibon, 1987) may be 
defined. The extended quasi-likelihood is obtained by replacing log(f(y | u)) by a 
(conditional) quasi-likelihood Q(y | u) and adding a term -Vi S log(27ixV(y)) for estimation 
of x. The same approximations as before can be carried through, with D a (conditional) 
quasi-deviance, when H is redefined as: H = ZZ'ou

2 + W T. 

2 A simple illustration 
Consider a GLMM for binary observations with a probit link, q independent normally 
distributed random effects Uj ... u with mean 0 and variance a,2, and two binary 
observations yjj and yi2 per random effect uf, i = 1 ... q: 

(vij lui) ~ BernouHi(u-j), conditionally independent, j = 1, 2, 
probit(Hj) = <&-'(Hi) = Tij = c + Uj, 
Uj ~ N(0,CTy), independent, i = 1 ... q. 

The overall mean c on the probit scale is the only fixed effect in the model. In Chapter 6 
it is shown that this model can also be formulated as a threshold model for an underlying 
variable z: 

z- = c + u- + e-, ij i i j ' 

where Uj, e-, i = 1 ... q, j= 1, 2, are independent and ejj ~ N(0, 1). We observe y^ = 1 when 
Zjj > 0 and y^ = 0 otherwise. 

The normal approximation for the pdf of (u | y) is the crucial point in the derivation of 
IRREML as an approximate ML procedure. Therefore, we will first take a look at the exact 
conditional pdf and its normal approximation. Let r(u( | Vj,, yi2) denote the conditional pdf 
of (uj | Vjj, yi2) and k(uj) the pdf of Uj. Then (where possible, dropping index i for ease of 
notation): 

r(u | y„ y2) = {P(y=y, | u) P(y = y2 | u) k(u)} / Eu{P(y=y, | u) P(y=y2 | u) k(u)} = 
{u* (l-u)2"x exp(-'/2au-

2u2) ( c ^ n ) " 1 } / {px (l-p)2'" + (-l)x Var(u)}, 
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where x; = yjj + yi2 and p is the marginal probability P(y;= = 1): 

p = E(ji) = P(y = 1) = P(z > 0) = 0(cV(l+au
2)) = O(Xc), 

where À, = 1 / ->/(1+CTU
2) is a shrinkage factor. Furthermore: 

Var(u) = Var(P(z > 0 | u)) = Eu(P(z > 0 | u)2) - p2 = 
Eu(P(z > 0, z' > 0 | u)) - p2 = 02(kc, Xc; p) - p2 , 

where z and z' are assumed to be i.i.d. conditional upon u, p = a 2 /(l+a2) is the intraclass 
correlation on the underlying scale in the threshold model and <£2(a, b; p) denotes the 
bivariate normal cdf with zero means, unit variances and correlation p. 

It is assumed that the "true values" of the parameters are: c = 0 and o 2 = 1/9, which 
implies p = 0.5 and p = 0.1. 

To determine the approximate conditional pdf, first the IRREML estimate for c and 
predictions for the random effects Uj ... u will be derived. To this end we maximize the 
logarithm of the joint pdf of observations and random effects: 

S h(y„y2,u) = I {log(P(y=yi | u)) + log(P(y=y2 | u)) + log(k(u))} = 
S {x log(n) + (2-x) log(l-p.) - V2 u2 / au

2 - Vi log(ou
2) - Vi log(27t)}. 

The estimating equations are: 

(xj/pi) 4Kc+Ui) - ((2-Xi)/(l-pi)) (̂c+Uj) - Uj / a 2 = 0, i = 1 ... q, and 
S (x/Hj) «c+Uj) - ((2-Xiy(l-Hi)) ^(c+Uj) = 0, 

where <j>(.) is the standard normal pdf. There are only three possible values for a prediction 
Û, depending on whether x equals 0, 1 or 2 and they will be denoted by Ç0, Çt and Ç2, 
respectively. The limiting behaviour of IRREML for q -> oo will be studied. Under these 
conditions the second estimating equation implies that: 

Po Cf) + P l Si + P2 ^2 = 0' 

where, under the parameter values specified, P0 = P(x = 0) = O2(0, 0; 0.1) = 0.2659, Pj = 
P(x = 1) = 1 -2P0 = 0.4681 and P2 = P(x = 2) = P0 = 0.2659. It follows that: 

c = 0, ^ = %, 4, = 0 and Ç2 = -Ç, 

where £, is solved from the non-linear equation: 
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% = -2 «Ç) CTU
2 / (l-O(Ç)), 

which yields, after straightforward iteration, E, = -0.15586. We have now determined the 
approximate conditional means E(u | y1;y2) = E(u | x). 

Next, we derive approximate variances from the second order derivatives of h(yj,y2,u): 

h"(yi>y2.u) = -{(x/u)-(2-x)/(l-u)} (c+u) <|)(c+u) - {(x/^i2)+(2-x)/(l-n)2} .(.(c+u)2 - au
2, 

where (partial) differentiation is with respect to u. For c = c = 0 this becomes: 

h"(yi.y2.u) = -{(xAD(u))-(2-x)/(l-<D(u))}u<Ku) - {(x/<D(u)2)+(2-x)/(l-<D(u))2} <|>(u)2 - a j 2 . 

For the conditional mean, E(x | u) = 2u = 2<D(u) implies that: 

E(-h"(yi,y2,u) | u) = 2 <Ku)2 / {0(u)(l-(D(u))} + o-J2. 

Since the iterative weights are equal to w = <j>(c+u)2 / {<D(c+u)(l-0(c+u)}, this is equal to 
the diagonal element of Z'WZ + <rJ2I, as it should be, when evaluated for c and ûj...û . 
The "REML modification", i.e. employing submatrix T from (4), is of order 0(q"'). So for 
q —» co this modification may be ignored. The approximate conditional variance 
Var(u|y,,y2) = v2(x) is: 

v2(x) = E(-h"(y1>y2,u) | u)-1 = [2 <KÇX)
2 / {<D(ÇxXl-4>tëx))} + crj2]"1. 

The approximate pdf, conditional upon x, is: 

v(x)"1
 (2TI)-,/2 exp(-V2(u-Çx)

2/v2(x)). 

Some function evaluations for the exact and approximate conditional pdf, on the log scale, 
are shown in Table 1. They seem to be well matched, but, as we shall see in a moment, not 
well enough for proper estimation of a2 . 

It was already noted in Chapter 6 that in this simple model IRREML underestimates a2 

by about a factor Vi. The equation to be solved for a 2 is: 

au
2 = {S Û2 + Z v2(Xi)} / q, 

and for q —> oo this becomes 

au
2 = P0Ç

2
0 + P^ 2 , + P2Ç

2
2 + P0v

2(0) + P,v2(l) + P2v
2(2) = 
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Table 1. Comparing the exact and approximate conditional pdf on the log scale 

u 

-1.0000 

-0.9000 
-0.8000 
-0.7000 

-o.eooo 
-0.5000 
-0.4000 
-0.3000 

-0.2000 

-0.1000 

0.0000 
0.1000 
0.2000 
0.3000 
0.4000 

0.5000 

o.eooo 
0.7000 
0.8000 

0.9000 
1.0000 

logpdf 

x = 0 

-3.341 
-2.548 
-1.852 

-1.255 
-0.757 

-0.359 

-0.061 
0.136 

0.232 
0.226 

0.118 
-0.093 
-0.407 

-0.825 
-1.347 

-1.973 
-2.703 

-3.539 
-4.479 

-5.526 
-6.678 

appr.logpdf 
x » 0 

-3.411 

-2.596 
-1.884 

-1.274 
-0.767 

-0.362 

-0.061 
0.139 

0.235 
0.229 

0.121 
-0.091 
-0.404 

-0.821 
-1.340 
-1.962 

-2.686 
-3.513 
-4.443 

-5.475 
-6.610 

logpdf 
x = 1 

-4.882 

-3.909 
-3.038 
-2.269 

-1.603 
-1.038 

-0.576 
-0.217 

0.040 
0.194 

0.245 
0.194 

0.040 
-0.217 
-0.576 

-1.038 
-1.603 

-2.269 
-3.038 
-3.909 
-4.882 

appr.logpdf 
x - 1 

-4.891 

-3.915 
-3.042 
-2.271 

-1.603 

-1.038 
-0.576 
-0.216 

0.040 
0.194 

0.246 
0.194 
0.040 

-0.216 
-0.576 
-1.038 

-1.603 
-2.271 

-3.042 
-3.915 

-4.891 

logpdf 

X a 2 

-6.678 

-5.526 
-4.479 

-3.539 
-2.703 

-1.973 
-1.347 
-0.825 

-0.407 

-0.093 
0.118 

0.226 
0.232 

0.136 
-0.061 

-0.359 
-0.757 

-1.255 
-1.852 

-2.548 
-3.341 

appr.logpdf 
X = 2 

-6.610 

-5.475 
-4.443 
-3.513 

-2.686 
-1.962 

-1.340 
-0.821 

-0.404 

-0.091 
0.121 

0.229 
0.235 
0.139 

-0.061 

-0.362 
-0.767 

-1.274 
-1.884 

-2.596 
-3.411 

2P0(Ç
2+v2(0)) + (l-2P0)v

2(l). (6) 

This equation is nearly solved by the true value 1/9 for the component, but as the plot of 
the right-hand side of (6) against various values of a 2 in Figure 1 shows, this holds for 
many values for the component. The solution of (6) can be obtained by simple iteration, as 
shown in Table 2. The program shown is in Genstat 5 (1993) and self explanatory. The 
solution is à = 0.05245, which indeed nearly equals half of the true value. 

How does maximum likelihood estimation work out in this simple setting? The log 
likelihood is: 

L = 2 logCf P(y=y, | u)P(y=y2 | u)k(u) du) = 2 log(px (l-p)2"x + (-1)" Var(u)). 

The ML estimator for c converges to 0 for q -» oo. The profile log likelihood for a,2 

(substitute p = Vi) divided by q converges to: 

2P0 log(O2(0,0;p)) + (1-2P0) log(>/2-a>2(0,0;p)). 
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CO 

0.200-

0.175-

0.150-

0.125 

0.100-

0.075-

0.050-

0.025-

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 

variance component 

Figure 1 Right-hand side of expression (6) versus variance component 

Table 2. Solving for the component of variance 

JOB 'variance component' 
CALC P0=CLBVARIATENORMAL(0;0;0.1) 
CALC var = 0.11111 
CALC uO - -0.15586 
CALC pi = C('pi') 
CALC iter = 0 
FOR[ntimes = 2500] 
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FOR[ntimes 
CALC uO 

ENDFOR 
CALC vO 
CALC vO 
CALC vO 
CALC vl 
CALC var 
CALC iter 
CALC crit 

5] 
-2*var*(EXP(-uO*uO/2)/SQRT(2*pi))/CUNORMAL(uO) 

= (2*EXP(-uO*uO)/(2*pi)) 
= (vO/CLNORMAL(uO))/CUNORMAL(uO) + (l/var) 
= 1/vO 
= 1 / ((4/pi) + d/var)) 
= 2*P0*(u0*u0+v0)+(l-2*P0)*vl 

iter+1 
= 50*INTEGER(iter/50)-iter 

IF (crit.EQ.O) 

PRIN iter, uO, var 
END IF 

ENDFOR 
STOP 

itera­
tion 

0 
50 

100 
150 
200 
250 
300 
350 
400 
450 
500 
600 
700 
800 
900 

1000 
1250 
1500 
1750 
2000 
2250 
2500 

û at x=0 

-0.1559 
-0.1251 
-0.1104 
-0.1018 
-0.09615 
-0.09221 
-0.08933 
-0.08716 
-0.08549 
-0.08419 
-0.08315 
-0.08164 
-0.08065 
-0.07999 
-0.07953 
-0.07922 
-0.07880 
-0.07864 
-0.07857 
-0.07854 
-0.07853 
-0.07852 

öl 

0.1111 
0.08657 
0.07554 
0.06920 
0.06510 
0.06225 
0.06017 
0.05861 
0.05741 
0.05648 
0.05574 
0.05466 
0.05396 
0.05349 
0.05316 
0.05294 
0.05265 
0.05253 
0.05248 
0.05246 
0.05245 
0.05245 
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-1.384-1 

-1.385-

-1.386 

-1.387-
o 

-1.388-

-1.389-

-1.3904 
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 

variance component 

0.200 

Figure 2 The profile likelihood for o\ (_ 
approximation (...) for q -+ =°. 

) (divided by q) and its Laplace 

The M L equation is: 

<D2(0,0;p) = P0, 

which yields the correct answer p = 0.1. Hence, the ML estimator for cru, in contrast to the 
IRREML estimator, is consistent. In Figure 2 the profile likelihood for au and its Laplace 
approximation, for q -» °o, are plotted. Clearly, the two curves are markedly different. 
Obviously, consistency (q —> oo) will also hold for a posterior mode estimator. This suggests 
that in more realistic problems, where the asymptotics q -> °o apply, the Gibbs sampler may 
produce more acceptable estimates. 
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We will finish with a brief look at GAR and MQL (see Chapter 6). In the QL equation 
for c* = X.C (see Chapter 6), matrix D equals <t>(c*)l2q, where l2q is a vector with 2q 
elements which are all equal to 1. Var(y) is a block diagonal matrix, and blocks are 
approximated by: 

'p(i-p) <K<oV 

<Kc,)2p p ( i -p) . 

The solution is: c» = O'^y), i-e. p = y. The adjusted dependent variate and weights are: 

ÇGAR = ô* + (y-P)f <K0*) md WGAR = $(c*)2 I {P(l-P)-P<t»(c*)2} = f/(l-pf), 

where f = <|>(c»)2 / {p(l-p)}. The mixed model equations in terms ofÇGAR are: 

2qf/(l-pf) 2f/(l-pf)lq ^ 

2f/(l-pf)lq ( (^(l-pfM+p-1)!^ 

(r \ 

vuv 

(2qf/(l-pf))(c,+(y-p)/d)(c,)) 

(2f/(l - p f ) )^ -p...yq-p)/
+(2f/(l - Pf))c,lq 

where u, = Xu and c* and p are evaluated for the current iterates. It is not hard to show that 
this is equivalent to iteratively solving: 

/ 
2q 2i: / v« \ 

21n (2+*)I„ u . . 

2qy 

where u„» = u* (|)(c*), \\i = (1-pf) / (pf) and yj = V2 x(. These are the mixed model equations 
as if the data were following a LMM with a "between" component of variance <j>(c»)2p = 
fpp(l-p), "residual variance" (l-fp)p(l-p) and "total variance" p(l-p). They yield solutions 
for p and u*„. The intra-class correlation corresponding to these equations is a multiple f 
of p (see Gilmour, Anderson and Rae (1985) for references to Robertson's correction factor 
f). Solutions are: pG A R = y, c» GAR = 0_1(y) and û; GAR = 2 (2+y)"1 cKc*)"1 (yry), i = 1-q-
In the EM type update for p (see Chapter 6): trace(T) = p (n+qy) (n+11/)'1. After 
substitution it follows that: 

AGAR = {MSBetween - y(l-y)} / W W , 

where MSBetween is the "mean square between random effects u" for the original binary 
observations. When the Taylor approximation for the bivariate normal cdf (see Chapter 6) 
holds, this estimator is nearly consistent (q -> 00). The same estimator is found when 
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Pearson's chi-square statistic is set equal to its degrees of freedom (Williams, 1982). 
Now, once we know that GAR is nearly consistent, it is simple to make plausible that 

IRREML under-estimates by Viau
2. We already noted that wGAR = <|>(c*)2 / {p(l-p)-

p<|>(c*)2}, which in this case is equal to: (Vin - CTU
2)-1. This amounts to a "residual variance" 

(Virc - CTy) in the approximate LMM for ÇGAR. For IRREML: w]RREML = <|>(c)2 / {u(l-|a)}, 
which equals 21%, when we start with all random effects equal to 0 and p = y « Vi. This 
amounts to a residual variance Vm for ÇIRREML. The adjusted dependent variâtes for 
IRREML and GAR are the same for the starting values assumed. In this example IRREML 
is equivalent to iterated re-weighted ANOVA. a 2 is estimated by subtracting the residual 
variance from the mean sum of squares between pairs of observations and dividing by 2. 
Hence, we subtract Via,2 too much and consequently the IRREML estimator for a 2 is Viau 

too low. The same can be expected to hold for MQL since WMQL = <|>(c*) / {p(l-p)}. 
Obviously, the approximation for Var(y) is extremely important for the performance of the 
variance component estimator. GAR will do well as long as the Taylor expansion for the 
bivariate cdf holds, i.e. as long as p is small and p is not too extreme (see Gilmour, 
Anderson and Rae, 1985). MQL fails because of the poor approximation to Var(y). 
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Summary 

This dissertation was born out of a need for general and numerically feasible procedures 
for inference in variance components models for non-normal data. The methodology should 
be widely applicable within the institutes of the Agricultural Research Department (DLO) 
of the Dutch Ministry of Agriculture, Nature Management and Fisheries. Available 
methodology employing maximum likelihood estimation, due to numerical limitations, was 
too restricted with respect to the choice of random structures. Modification of the iterative 
re-weighted least squares (IRLS) algorithm, which is widely used for estimation in 
generalized linear models (GLMs), seemed a promising alternative to maximum likelihood. 

The class of generalized linear mixed models (GLMMs) studied in this dissertation, is 
a straightforward extension of GLMs. The proposed estimation procedure for GLMMs, 
obtained by replacing least squares by linear mixed model (LMM) methodology, is a 
straightforward extension of the IRLS procedure for GLMs. The new procedure, involves 
iterative use of restricted maximum likelihood (REML) and is referred to as iterative re-
weighted restricted maximum likelihood (IRREML). REML is an estimation procedure for 
ordinary normal data LMMs. Software for REML is widely available. In this thesis facilities 
for REML in the statistical programming language Genstat 5 are employed. In each iteration 
step of IRREML, REML is applied to an approximate LMM for an artificial dependent 
variate. This variate and corresponding residual weights, referred to as the "adjusted 
dependent variate" and the "iterative weights" (adhering to GLM terminology), are up-dated 
after each iteration. Numerical restrictions for IRREML are the same as for REML for 
ordinary normal data mixed models and pertain to the size of matrices to be inverted. These 
can be dealt with to a large extent by eliminating (absorbing) factors with a large number 
of levels. The estimation procedure, programmed in Genstat 5, is available through the 
Genstat Procedure Library of the Agricultural Mathematics Group (GLW-DLO). By now 
it has been widely used both within and outside the institutes of DLO. 

After the introduction in Chapter 1, inference for LMMs, with emphasis on REML, and 
for over-dispersed GLMs, illustrating maximum quasi-likelihood estimation, is discussed 
in Chapters 2 and 3. 

IRREML is introduced in Chapter 4. As can be seen from the discussion in that chapter, 
and from later chapters, a number of statisticians independently have approached the 
estimation problem from different starting points, ending up with the same estimating 
equations. A Bayesian approach for prediction of random (genetic) effects for binary, 
binomial and ordinal data, was presented as early as 1983 by Gionola and Foulley. 

In Chapter 5, a first attempt is made to assess the quality of IRREML by simulation. 
Simulated data was based on a practical problem involving carcass classification of cattle. 
For this problem, observations analysed were proportions of agreement between classifiers. 
Although the data set was large and highly unbalanced, a GLMM with four components of 
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variance and an over-dispersion parameter could be fitted without problems. The simulation 
study included various procedures for the construction of confidence intervals and 
significance tests. These procedures, which were originally derived for LMMs under 
normality, were applied to the adjusted dependent variate in the last iteration step of 
IRREML. IRREML and the modified LMM procedures performed satisfactorily. 

In Chapter 6, the analysis of threshold models for binary and binomial data is considered. 
These threshold models are part of the class of GLMMs. A simulation study, mimicking 
an animal breeding experiment for binary data, indicated that IRREML may perform poorly 
when the number of observations per random effect is small. In terms of the animal 
breeding experiment: IRREML estimates of heritability may be considerably biased when 
the data set consists of a large number of small families. In contrast to other results in the 
literature, it was found that both under- and overestimation may occur, depending on the 
relative number of fixed effects in the model. In an animal breeding experiment, fixed 
effects usually represent a very large number of herds, years and seasons, which are all 
nuisance parameters, since interest centers on variance components and predicted random 
effects for animals (representing their genetic merit). 

In Chapter 7, IRREML is extended towards threshold models for ordinal data. Estimation 
includes additional shape parameters for a wide class of underlying distributions. For 
instance, heterogeneity of residual variances of an underlying normal distribution may be 
modelled in terms of factors and covariates employing a logarithmic link function. 

In Chapter 8, the simulation study for binary data from Chapter 6 is extended and two 
methods for bias correction of variance component estimators are studied. Minimal 
dimensions of the data set are identified, such that useful inference about components of 
variance is feasible. 

In Chapter 9, prediction of random effects in a model for normal data with heterogeneous 
variances is considered. In this model, both means and variances are expressed in terms of 
fixed and random effects, involving both additive and multiplicative effects. The estimation 
procedure was developed as a basis for a new national breeding evaluation method for 
Dutch dairy cattle. It was implemented by the Dutch Cattle Syndicate in Arnhem in 1995. 
Data sets in the dairy industry are extremely large, and therefore computational aspects 
were very important. A data set comprising 12,629,403 milk records was analysed. Ideas 
behind IRREML were used to motivate the estimation procedure. The performance of the 
procedure was assessed by simulation. 

In Chapter 10 the relationship between estimation by IRREML and maximum likelihood 
(ML) estimation, is discussed in some detail. Employing Laplace integration, IRREML may 
be shown to be an approximate ML procedure. The poor asymptotic properties of IRREML 
when the number of binary observations per random effect is limited and the number of 
random effects is large, are illustrated by a simple over-dispersion model for binomial data. 
Since ML was seen to perform well, the Gibbs sampler, as a powerful numerical integrator 
to derive approximate ML estimates, seems a promising technique for datasets of this kind. 
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Gegeneraliseerde- lineaire modellen met extra stochastische termen en 
bijbehorende variantiecomponenten (samenvatting) 

Dit proefschrift bestaat uit een reeks artikelen die zijn voortgekomen uit een behoefte aan 
statistische methodologie voor modellen met variantiecomponenten voor niet-normaal 
verdeelde waarnemingen. Deze methodologie zou algemeen toepasbaar moeten zijn binnen 
het onderzoek verricht door de instituten verbonden aan de Dienst Landbouwkundig 
Onderzoek (DLO) van het Ministerie van Landbouw, Natuurbeheer en Visserij, met zo min 
mogelijk numerieke beperkingen. Beschikbare algorithmen voor het berekenen van 
"maximum likelihood" (ML) schatters, als gevolg van numerieke beperkingen, maakten 
slechts analyse van betrekkelijk eenvoudige correlatiestructuren mogelijk. Aanpassing van 
het iteratieve gewogen kleinste-kwadraten-algorithme (iterative re-weighted least squares, 
afgekort IRLS), een veelgebruikt algorithme voor gegeneraliseerde lineaire modellen 
(generalized linear models, afgekort GLMs), leek een veelbelovend alternatief. 

De klasse van modellen die in deze dissertatie wordt beschouwd, verder aangeduid als 
GLMMs (generalized linear mixed models), vormt een directe uitbreiding van de klasse van 
GLMs. De schattingsprocedure voor GLMMs, verkregen door de kleinste kwadraten 
methode te vervangen door methodologie voor lineaire gemengde modellen (lineair mixed 
models, afgekort LMMs), is een directe uitbreiding van het IRLS algorithme voor GLMs. 
De nieuwe procedure, verder aangeduid als IRREML (iterative re-weighted restricted 
maximum likelihood), is gebaseerd op iteratief gebruik van restricted maximum likelihood 
(REML). REML is een schattingsmethode ontwikkeld voor "gewone" LMMs voor normaal 
verdeelde waarnemingen. Programmatuur voor gebruik van REML is ruimschoots 
voorhanden. In dit proefschrift is gebruik gemaakt van voorzieningen binnen de statistische 
programmeertaal Genstat 5 (het standaard statistisch pakket binnen DLO). In elke 
iteratiestap van IRREML, wordt REML toegepast binnen een benaderend LMM voor een 
nieuwe afhankelijke variabele. Deze variabele en bijbehorende residuele gewichten, die de 
"adjusted dependent variate" en de "iterative weights" worden genoemd (waarbij we 
vasthouden aan de GLM terminologie voor overeenkomende grootheden in het IRLS 
algorithme), worden na ieder iteratieslag opnieuw berekend. Numerieke beperkingen zijn 
dezelfde als voor REML in LMMs voor normaal verdeelde waarnemingen en hebben 
betrekking op de omvang van matrices die moeten worden geïnverteerd. Deze beperkingen 
kunnen in belangrijke mate worden weggenomen door gebruik te maken van zogenaamde 
absorptietechnieken, wat neer komt op eliminatie van effecten behorende bij een factor met 
een groot aantal niveaus. De schattingsprocedure, geprogrammeerd in Genstat 5, is 
beschikbaar via de Genstat 5 procedurebibliotheek van de Groep Landbouwwiskunde 
(GLW-DLO) en is inmiddels veelvuldig binnen en buiten de DLO instituten gebruikt. 

Na de introductie in hoofdstuk 1, volgt in hoofdstukken 2 en 3 een discussie van LMMs 
voor normale data, met de nadruk op REML, en van over- en ondergedisperseerde GLMs, 
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met een illustratie van het schatten van parameters met behulp van de maximum quasi-
likelihood methode. 

IRREML wordt geïntroduceerd in hoofdstuk 4. Zoals blijkt uit de discussie in dit 
hoofdstuk, is de schattingsmethode onafhankelijk ontwikkeld door een aantal statistici, 
vanuit verschillende uitgangspunten, maar resulterend in dezelfde schattingsvergelijkingen. 
In een Bayesiaanse context is een predictiemethode voor de stochastische effecten in 
modellen voor binomiale gegevens en ordinale gegevens al in 1983 voorgesteld door Daniel 
Gianola en Jean-Louis Foulley. Deze methode geeft dezelfde predicties als IRREML. 

In hoofdstuk 5 wordt een eerste aanzet gegeven tot validatie van de schattingmethode op 
basis van simulatieresultaten. De simulatie is gebaseerd op een praktijkprobleem betreffende 
Massificatie van runderkarkassen. De waarnemingen werden geanalyseerd als fracties die 
de mate van overeenstemming tussen klassifïcateurs weergeven. Ofschoon de dataset 
omvangrijk en zeer ongebalanceerd was, kon een GLMM met vier variantiecomponenten 
en een overdispersieparameter zonder problemen aan de data worden aangepast. In de 
simulatie werden ook verschillende procedures voor de constructie van 
betrouwbaarheidsintervallen en significantietoetsen meegenomen. Deze procedures, die 
oorspronkelijk zijn ontwikkeld voor LMMs, zijn toegepast binnen het benaderende LMM 
voor de nieuwe afhankelijke variabele in de laatste iteratiestap. IRREML en de (aangepaste) 
procedures voor LMMs blijken goed te presteren. 

In hoofdstuk 6 worden drempelmodellen voor 0-1 gegevens en binomiale waarnemingen 
beschouwd. Deze drempelmodellen behoren tot de klasse van GLMMs. Uit de resultaten 
van een simulatiestudie, waarin een fokkerij experiment voor 0-1 gegevens wordt 
nagebootst, blijkt dat IRREML slecht presteert wanneer het aantal waarnemingen per 
stochastisch effect gering is. In termen van het fokkerij experiment: IRREML-schattingen 
voor variantiecomponenten en erflijkheidsgraden kunnen zeer onzuiver zijn wanneer de 
gegevens afkomstig zijn van een groot aantal kleine families. In tegenstelling tot andere 
simulatieresultaten uit de literatuur blijkt dat zowel onderschatting als overschatting van de 
variantiecomponenten kan optreden. Dit hangt samen met het aantal vaste effecten in het 
model. In modellen gehanteerd binnen de fokkerij representeren vaste effecten een 
doorgaans groot aantal bedrijfs-, jaar- en seizoenseffecten, waarbij de interesse uitgaat naar 
de variantiecomponenten en voorspellingen voor de stochastische diereffecten (welke het 
genetisch potentieel van de dieren vertegenwoordigen). 

In hoofdstuk 7 wordt IRREML uitgebreid zodat ook drempelmodellen voor ordinale data 
kunnen worden geanalyseerd. Vormparameters voor een breed scala van onderliggende 
verdelingen kunnen ook worden geschat. Zo is het bijvoorbeeld mogelijk heterogene 
restvarianties van onderliggende normale verdelingen op log-schaal te modelleren in termen 
van factoren en verklarende variabelen. 

In hoofdstuk 8 wordt de simulatiestudie uit hoofdstuk 6 uitgebreid. Twee methoden voor 
correctie voor onzuiverheid worden bestudeerd. De minimale omvang van een dataset, die 
betrouwbare conclusies omtrent variantiecomponenten toelaat, wordt aangegeven. 
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In hoofdstuk 9 wordt de voorspelling van stochastische effecten in een model voor 
normaal verdeelde gegevens met heterogene variantiestructuur besproken. In het model 
worden zowel verwachtingswaarden als varianties weergegeven als functie van vaste en 
stochastische effecten, waarbij zowel additieve als multiplicatieve effecten een rol spelen. 
De schattingsmethode is ontwikkeld als basis voor een nieuwe nationale methode voor het 
berekenen van fokwaarden voor melkproductie en door het Nederlands Rundvee Syndicaat 
te Arnhem in 1995 geïmplementeerd en in gebruik genomen. Datasets betreffende 
melkopbrengst zijn zeer groot en numerieke aspecten spelen een overheersende rol. Een 
dataset met 12629403 melkproductiegegevens werd met de nieuwe methode geanalyseerd. 
Ideeën achter IRREML vormden de basis voor de voorspellingsmethode. Uit simulatie­
resultaten werd een gunstige indruk verkregen omtrent de kwaliteiten van de methode. 

In hoofdstuk 10 wordt de samenhang tussen IRREML en ML schatters, in meer detail 
dan in enkele van de voorafgaande hoofdstukken het geval is, beschreven. Met behulp van 
Laplace-integratie kan IRREML als een benaderende ML methode worden afgeleid. De 
magere prestaties van IRREML, wanneer het aantal 0-1 gegevens per stochastisch effect 
gering is, worden aan de hand van een eenvoudig overdispersiemodel voor binomiale 
gegevens geïllustreerd. Daar de ML methode wel goed presteert, kan worden geconcludeerd 
dat Gibbs-sampling, als een krachtige numerieke integrator voor een benaderende ML 
oplossing, voor deze situatie een veelbelovende aanpak is. Daarbij moet worden 
aangetekend dat Gibbs-sampling een reken- en ervaringsintensieve methode is, met eigen 
lastige problemen, zoals (trage) convergentie, afhankelijke trekkingen uit de posterior 
verdeling en gevolgen van de keuze van (niet-informatieve) a priori verdelingen. 
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