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L. A numerical result is not a proof, it still can be an artifact.
This thesis

2. The problem of intermittency in canopy climate modelling is caused by the
combined effect of:
1) the existence of a separation in the length scales responsible for transport and
2) the ability of the leaves and the soil as sources and sinks to respond to
temperature and vapour pressure variations due to this intermittency or scale
separation.
This thesis

3. The reason behind the failure of the K theory approach, namely that the length

scale of transport is much larger than the scale of 3% is the same which would lead

to a failure of random walk modelling, since this would lead to non-independent

movement of the particles at different heights.
This thesis

4. The manner in which a well-buffered soil behaves with respect to the input of a
certain pollutant, i.e. the relation between the adsorbed phase to the mobilized
phase, shows that there is a limit to soil tolerance to mismanagement.

Inspired by a curve in Stigliani, W. M., 1995, Global perspectives and Risk
assessment. In: Biogeodynamics of pollutants in soils and sediments, eds. Salomons,
W., and Stigliani, W. M., pp. 331-343. Springer-Verlag, Berlin.

5. In simulating any dynamical system, if any of the scales of intermittency leads to
the creation of nonvanishing correlations between behavioural aspects of the system
components within a time scale less than our step of simulation |, we have to:

1) include the effect of these correlations on the large-time averaged set of

equations describing the system behaviour or

2) reduce our time step of simulation and take account of the correlations explicitly.
This thesis.

6. The maintenance of biodiversity is crucial to the existence and the welfare of this
planet.

7. The use of too much animal protein in the diet of people in developed countries
represents a wasteful conversion of grains to animal protein masses, which could




otherwise be used for securing the food requirements of a large number of people in
the underdeveloped countries.

8. Genetically engineered micro-organisms, which are capable of breaking down
persistent pollutants, could represent a future option of environmental rehabilitation.

9. Rehabilitation of damaged ecosystems and the development of environmental
friendly manufacturing processes will require a lot of capital investment, which will
not be met by research and development departments of multinational companies
alone, unless a decisive power by the people materializes, expressed in market
behavioural trends and their willingness to even sacrifice some of their standard of
living.

10. There were times in history of Mankind when a massive loss of heritage and
knowledge occurred. To prevent such a loss of heritage in future, the role of the
book versus a compact disk or any computer medium as a way of dispersing
knowledge will remain crucial,

11. Power training and condition training are complementary to each other.
12. Dilution is not the solution to pollution.

13. Before Mankind can colonize other planets, it has to answer the question of
achieving a sustainable ecosystem management on planet earth first.

14. To reduce the delay time of an improved management regime for ecosystems, a
stronger public awareness about the extent of the current and projected damage to
these systems and the resulting devalvation of our resources has to be created. A
translation of this awareness into a political decision force has to materialize.

13. Short sighted commercial interests to meet the rising expectations of human
beings and to intreduce an unsustainable way of living should not be allowed to be
the main motivation behind the destruction of our ecosystems.

This thesis

16. A degraded environment will touch everybody's pocket.
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ABSTRACT

Heat , mass and momentum transfer between the canopy air layer and the layer of air above
has a very intermittent nature. This intermitient nature is due to the passage at the canopy top
of coherent structures which have a length scale at least as large as the canopy height. The
periodic passage of these coherent structure at the canopy top leads to the ejection of the air
inside the canopy and the replacement of this air by fresh air from above. It is through this
process of ejection and sweep that the coherent structures become responsible for most of the
large time average flux.

This study considers the effect of these coherent structures on the modelling and the
dynamics of interaction between the plant canopy and the soil with the layer of air above and
the effect of these coherent siructures on the soil temperature profile. so, three parts are
considered: Modelling , mathematical analysis and validation.

In the Modelling part: a discussion of the limitations of the available approaches and a
suggestion of an intermittency approach are given.

First, there is a qualitative analysis of the effect of these coherent structures and their role in
the momentum, heat and mass transfer on the validity of the Eulerian approaches used to
describe canopy flow. We outline the limitations of these approaches and later suggest an
intermittency approach to describe heat and rmass transfer between the canopy layer and the
layer of air above. We describe the used averaging procedure, the resulting correlations, the
closure parameterization used and their justification.

Then we give a discussion of the effect of these coherent structure on the Lagrangian
model approach qualitatively and then quantitatively and a method to correct for this is
suggested.

From this, a mathematical analysis of the effect of coherent structure on the soil
temperature profile is done by first analysing the effect of coherent structures on the mean
temperature and vapour pressure deficit of the air. It is shown from the equations governing
the system's behaviour that there is a pon linearity in the canopy system. The effect of this non
linearity depends on the ratio between the period between consequent gust intrusions into
plant canopy with respect the air time constants. The effect of this non linearity on the soil
temperature profile is shown through its effect on the coefficients of an Eigenfunction
expansion of the soil temperature profile. Different scenarios for the effect of different
parameters such as the stomatal resistance, the turbulent transport coefficient and the period
between gust intrusion are studied and explained.

In the validation part, a comparison of a simulation for 7 days against a data set shows that
the model gives very good agreement between the radiative environment and the temperature
and vapour pressure of the air. Anyhow there is a interplay between three degrees of freedom.
These are represented by the turbulent transport coefficient , the stomatal resistance and the
gust intrusion inte plant canopy.

Subject headings: micrometeorology / Canopy turbulence / Random walk models / Numerical
and Mathematical models; the canopy soil system / Soil heat flux.
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CHAPTER 1
GENERAL INTRODUCTION

In the first part of this chapter, the main aspects for the motivation of undertaking
theoretical studies and modelling of the soil plant atmosphere interaction will be discussed
and an outline of the aim of this work will be given, In the second part of this chapter, a
qualitative description of the exchange processes within the soil plant atmosphere will be
given. In the third part, we will give a general description of the hypothesis used for solving
heat and mass exchange in this thesis. The last part contains a general description of the
organisation of this thesis.

1.1 The importance of theoretical studies for heat and mass exchange in the
Soil-Plant-Atmosphere Continunm and the motivation behind such studies

The demands which are laid on the existing ecosystems by human needs, due to
population growth and rising expectations, are quite enormous and the effects of satisfying
these demands put a large stress on the existing ecosystems. In contrast to older civilizations,
the current civilisation has the power to exert its own demands and fulfil them by the
expenditure of fossil fuel or other forms of energy. In older civilisations, the input of energy
which was exerted by humans on ecosystems was always limited. They managed to survive
and live according to what their ecosystems supplied. There was always a co-existence
between what the human beings wanted and what the eco-system supplied them with. This
co-existence was dictated, sometimes accompanied with harsh facts, by what the eco-systems
could supply (Hillel, 1992). But the main difference here is that modern civilisation can exert
and fulfil its own short term needs without consideration of what the existing eco-system can
sustainably supply. The stress strain relationship of the existing eco-systems is in a much
further range than in earlier times. The relationship between humans and their ecosystems will
still ultimately be dictated by the ecosystem’s ability to meet our demands, but the possibility
of transport of goods has reduced the dependence on local eco-systems with the result that a
feedback on the management regimes of these eco-systems is delayed even further. The final
outcome could even be harsher than in earlier times due to the backlash occurring when a
global failure in the existing ecosystems occurs. This difference is very dangerous. We need
in this case to answer the inevitable question of how we can maximise the degree of
satisfaction of the human expectations without stressing the existing ecosystems to the point
of irreversible damage and to answer the question: how far is this point (i.e. defining the stress
strain relationships of these eco-systems)? And, if our expectations should be reduced
accordingly?!.

So far, there is no scientific quantitative solution to this problem in spite of its urgency.

Optimising our management regimes would require an understanding of how our
ecosystems respond to these regimes. This understanding cannot be achieved by a trial and
error process of trying different management regimes and if it does not work, to try something
different. This is because of two reasons:

1) Ecosystems have very large lime constants and so their response to shifting them from an




already achieved equilibrium, due to an introduction of a certain management regime, will
only show after a cousiderable period of time {few generations),

2} We can not fake the risk of losing the ecosystem in which we live. The state of the new
equilibrium winch this system achieves after a certain disturbance of its equilibrium must be
predicted, since this new equilibrium state should still be life sustaining. This is a question of
survival,

As a consequence of this, we see that in both the more developed (developed) and the
less developed (or underdeveloped) countries, there is a need to have scientifically based
means of managing our own ecosystems in an optimal way. For the time being, we have no
means of predicting all the short and long term ecosystems responses to cerlain management
regimes, so we can appreciate the consequences of our deeds or the disturbances which we
introduce to these ecosystems. We suffer then from a trial and error approach in managing
them. We exert our own demands on the existing ecosystems and expect the tolerance levels
of these systems to be quite high. By the time we find out the consequences of our deeds from
these trial and error approaches, it could be too late to do anything about it.

From the previous paragraphs, we see that our options are very limited. Since
experimenting with an ecosystem can be very dangerous and the time delay in getting a
response could be very long, the trial and error approach would then be useless in optimising
our management regimes. Trying instead to understand the web of physical, chemical and
biological processes which control the response of such a complicated system to a certain set
of environmental conditions {in which the management regime is expressed) and
implementing this understanding in models is the only option we have to predict and manage
our ecosystems. But the problem of validating these models remains: how can we validate a
model whose results can be checked only by a comparison with the real system that needs a
large period of time and that is unique? The only possible way then is trying to understand the
underlying physical processes and the interactions between the different componenis of this
large systemn and putting this understanding into models or submodels describing the eco-
system components. We have to do our best in refining these sub models and validating them
separately and then coupling them together in the right way. In the end, we hope that
everything goes right and the built-up model simulates closely enough the real system.
Another problem which shows up here, is the time scale of the different submodels and the
timne scale of the big model and how to extrapolate from the submodel level describing
submodel processes to the whole eco-system level. This lumping of submodel processes to a
higher level requires the correct inciusion of the effect of the sum of correlations between the
lumped submnodel processes, within the time or the spatial scale of the large model, on the
solution of the higher level model.

The selection of which processes and what level of detail is required to achieve validity
of models at higher levels requires an insight into which processes in the lower level are
decisive in determining the behaviour of the model upper level. All the above underlined
steps require implementing some assumptions by the modeller which reflect his biased view
of how he thinks reality works. This means, which processes he thinks are impertant and
which are not, how the submodels should be coupled or what kind of correlations from the
lower level to the higher one should be included and how they should be parameterized.
Continual validation of these assumptions by comparing against measurements or data sets is




a necessity. The scarcity or complete absence of such data sets with the increase in the time
scale of the simulated processes is a problem which we have. The correct way then of
integrating from lower level to a higher level is not an easy problem to solve. This will be
discussed in chapter 6. But an essential rule is that we should start with submodels which are
valid, i. e. all the physical processes which are described in detail in these submodels should
be modelled correctly.

Due to differences in the time resolution (time steps) of the different scales of models,
these valid submodels can later be used to obtain valid closure parameterization for higher
level models. In these submodels, all the parameterizations included in it, either obtained from
a lower or a higher level models, should also be valid. This chain of parameterizations, which
represents a method of including information from a wide vartety of time scales, without the
need to run the equivalent submodels coupled, should be correct. In the spatial scales, the
integration between different levels should allow for interaction between heterogeneous
subdomains within the integrated domain.

The problem lics as shown from previous paragraphs in how to understand the limiting
physical processes which govern the response of a very dynamical system (the eco-system) to
a certain set of environmental conditions. One point worth mentioning here, is that averting
natural cyclic climatic changes is not the issue, but the point is that these changes or
catastrophes should not be human induced due to mis-management.

To give an example of this, Egypt had an eco-system for a period of ten thousand years.
This eco-system was represented by the Nile flooding its plain once a year. The old Egyptians
built dikes to keep the water of the flood in big basins. Water would then infiltrate into the
soil and saturate the subsoil and in the process leach the amounts of salt accumulated during
the previous year. This amount of water stored within the profile would be used to grow one
crop a year. Then a change in the natural hydrological cycle of that system was introduced by
building a dam. This led to the possibilities of a more frequent irrigation regime and securing
water supply during low flood years. This change here expresses the demands exerted by the
Egyptian people on their eco-system and their way to fulfil this demand. The question now
comes to the response of this ecosystem to this demand and the way of exerting it. I am not
here questioning the need to build such a dam. In fact, this dam helped to save Egypt from
drought in the last few years. This is here an example representing the sometimes justified
expectation of a certain people and their way of exerting this demand from their eco-system.
But one does not want to replace a harsh reality with a delayed much harsher one. The answer
to the question if something like this will exceed the limits of tolerance of this ecosystem
remains to be seen. I am stating here that we neither were nor are aware of the effect which
such changes of the natural hydrological cycle have on our ecosystem. Now we have obtained
a high ground water table which leads to salinization and to a loss of the land which we had
for millennia and which now we are losing due to mismanagement and failure to cope with
the results of changes we have introduced to the hydrological cycle. This ecosystem has not
yet achieved its new state of equilibrium. Tt could be argued that this could have been
foreseen. In fact, some effects have been overseen or predicted already in the preliminary
studies preceding the project (Said 1993, Hemdan 1961), but no one could then have told, nor
can now tell, how the final equilibrium will be. A complete study on the dynamical behaviour
of this ecosystem and its tolerance limits is not available. A compromise has always to be



found between the expectation of a certain people and the disturbances they introduce to their
ecosystems. This compromise has to lie within the tolerance limits of their ecosystems. It is
my concern as an Egyptian (and I think of all the people there) that the new state of
equilibrium should be life sustaining.

To give an example from the more developed or developed countries, the management of
the river Rhine eco-system in Europe has not been very good either. The earlier policy of
dumping high amounts of micropollutants into the river, which were adsorbed to the
suspended solids and later sedimented, led to the formation of highly polluted beds. National
inventories have shown that in Dutch inland waters, 34% of the beds exceed the test value and
27% exceed the warning value (Cuwo, 1990). Dredged spoils between test and warning value
must be stored under Isolate, Store and Monitor (ISM) conditions. If the warning value is
exceeded, then research into the necessity for cleaning and storage under strict ISM
conditions is urgent because of risks to public health and environment. During some 20 years
of environmental incubation, for some higher chlorinated benzines, polychlorinated
biphenols, dioxins and furans, significant losses in the sediment core layers were observed.
The concentration of other few lower chlorinated dioxins and furans and two biphenyls in
core layers that was deposited around 1970 showed no significant differences (Beurskens et
al, 1994), This indicated no disappearance has occurred within the studied period. Downward
transport of some of these pollutants is a very limited possibility because of their hydrophobic
nature, Even with the significant improvement in water quality, the polluted sediment
problem is a serious one. This proves that, due to the memory of the system, a bad
management regime will still leave a scar for a long time to come and that there is a need for
an introduction of rehabilitation measures and new manufacturing processes which are
environmental friendly. The situation has improved a lot during the eighties. In the seventies,
laboratory species suffered acute toxicity after exposure to the Rhine water (Sloof, 1933).
Nowadays, water has to have a 25-fold concentration increase to induce mortality in water
fleas, but less than 5% of the toxicity can be explained by identified compounds (Hendricks
1994 and Hendricks et al , 1994).

From these two given examples, it is shown that both the developed and under-developed
world suffer from problems of ecosystem mis-management. This problem stems most
probably from a lack of understanding and appreciation of how the ecosystem works and how
it should be managed. 1 say most probably since one hopes that short sighted commercial
interests to meet the rising expectations of human beings and to introduce an unsustainable
way of living is not, or will not be, the main motivation behind the destruction of our
ecosysterns. For an appreciation of the extent of the damage to our ecosystems, see e.g.
Seager et al. (1995).

Quantifiable sustainable ecosystem management requires all the efforts and co-operation
between all the people who can do something about it. It also becomes clear that the
difference between what we can call a useful science of immediate benefit to an
underdeveloped country and a more theoretical science, which may seem of no immediate use
to a third world country or an underdeveloped country, is very vague. From my point of view
and from the previous argument, I think that there is no such difference in the aspect of eco-
System management.

I do not deny the fact that there are some problems about which something can and



should be done now, such as the starvation in Africa. We cannot wait till we find all the
answers that we need to know to manage our ecosystem. Those people should be fed right
away. But looking to short term problems should not make us forget the point, that these
countries in the end should be able to develop their own resources and manage their own
ecosysterns in such a way, that they become self-dependent as much as their ecosystem can
sustainably allow. That should not be done by duplication or the adaptation of production
systems, which could lead to environmental degradation, but by self sustaining systems which
are socially and culturally acceptable. In more developed countries, attention should be given
to sustainable management of our ecosystems, rehabilitation of damaged ones and the
development of environmental friendly manufacturing processes.

In a striven-for wise ecosystem management, ecosystem managers should be able to
predict correctly the response of the ecosystem to a certain set of management regimes. From
these, we should be able to choose the ones which are self sustaining in the sense of achieving
enough production or maximising self-sufficiency or human expectations of the population
and keeping the environment intact. From these technically available options, we could
choose, as a society what is socially and culturally acceptable. But first of all, a correct
prediction of the ecosystem response to a certain management regime is needed because it is
on this prediction, that we will base our management decision.

How should we attack the problem of managing such an ecosystem?. T believe that
understanding how such an ecosystem really works in its sub-components, and trying to
integrate all this understanding into how the whole system responds to different management
regimes, is the best way to manage such a system. The point is that our understanding should
be clear because we cannet experiment with ecosystems and check the validity of a large
model describing their behaviour, So, we try to refine our understanding of the governing
processes in the subsystems.

One of these subsystems affecting the dynamical behaviour of the whole ecosystem is the
Soil-Vegetation-Layer of air close above system. This subsystem is the region where the
interaction between the lithosphere, biosphere, hydrosphere and atmosphere takes place. This
interaction and its modelling, on different time scales is what controls the ecosystem
behaviour. The study and modelling of the dynamical behaviour of this subsystem, on a time
scale of second to days, is what constitutes the main theme of this Ph.D. study. The dynamic
behaviour of this subsystem is represented by the radiative and non-radiative (heat and water
vapour) energy and mass (CO2) transfer between the different components of this subsystem
and how it is controlled.

I feel fortunate to have the chance to work in this area of research. The proposed study is
to contribute theoretically, as well as experimentally, to the understanding of these
complicated processes.

1. 1. 1 Aim of the proposed study

The aim of the proposed research is to develop a_dvnamic multi-layered model for
describing radiative and non-radiative energy and mass exchange within and between the soil,
its vegetated layer (aggregates of plants with a spatial arrangement) and the layer of air close
above it,. We would like to have a valid model, describing the physical interaction between the




plants, the soil and its environment. We need to refine our understanding of the effect. which
the intermittency of the turbulent transport within and close above plant canopies and the
resulting coupling of the vegetation layer with the layer above it. could have on the thermal
and moisture regimes of soils. This intermittency is due to the existence of large coherent
structures at the layer of air above the canopy and their interaction with the canopy layer. The
time scale of these coherent structures lies in the range of 40-1000 s. We would like to know
if these small time scale processes have a net residual effect on the integrated behaviour of the
system, represented by the integration of the soil heat flux, thus leading to a different soil
temperature profile through affecting the energy partition at the soil surface. The question
here is equivalent to: What level of detail is needed to model the canopy soil systemn, and do
we lose some information by large-time interval averaging {10-20 minutes averaging) ?
This appreciation or understanding could be achieved by:

1) Formulating an intermittent turbulent transport model which considers the effect of
coherent eddy structures on heat and mass transport within plant canopies and the resulting
coupling of the plant canopy-soil layer to the layer of atmosphere above it. In order to achieve
this, the appropriate set of exchange equattons for momentum, heat and mass (HzO and CO2)
have to be formulated and solved, numericaliy, under a certain set of boundary conditions.
Considerations should be given to the feedbacks involved.

and/or

2) In addition to describing the governing equations and the numerical implementation of
these equations in a completely numerical model, a mathematjcal analysis of the governing
equations, describing heat and mass transfer between the canopy layer and layer of air above,
is used to analyse the behaviour of the system and the effect of turbulent transport
intermittency on that behaviour. This analysis gives a justification to the numerical results of
the model, since a numerical result is not a proof. It is difficult to justify without an analytical
evidence, since, in spite of being highly improbable, it still could be an artifact.

A qualitative analysis of an equivalent system of equations (the averaged Navier Stokes)
will also show some of the limitations of the available approaches used to describe heat and
mass transfer within and close above plant canopies in which no or an implicit account of
intermittency is considered.

1.2 A general description of the interactions of the components of the canopy-soil-
atmosphere system and the feedbacks involved

Within the canopy layer, the plants act as interceptors of the radiant energy in the short
and long wave band and convert this energy into other forms of energy: non-radiative (mainly
sensible and latent heat, and to a much less degree: chemical) or into radiant energy in a
different wave length band.

The partition of this available energy (absorbed energy in the short and long wave bands)
is dependent on the resistances to the fluxes from the plant organs to the surrounding
environment, and on the boundary conditions (i.e. the temperature and the vapour pressure) in
close proximity to the leaves.

The non-radiative energy exchange between the plants and the inter-canopy air stream



determines the amounts of non-radiative energy exchange (sensible and latent) which the
turbulent transport mechanisms, between the canopy air layers (small scale transport) and
between these layers and the layer of air above the canopy (large scale transport), have to
cvacuate.

The exchange processes of momentum, heat and mass between the air layers in close
proximity to the plants and the air stream above the canopy have a very stochastic and
intermittent character. The plants interact with the air flow as obstacles, converting mean
kinetic energy into turbulent kinetic energy and as sources or sinks of heat and mass.

Within the soil layer, the plants modify and alter the soil climate through affecting the
energy and mass input into the soil beneath it through the effect of shading and interception. It
does also alter the thermal characteristics of the soil layers through the roots acting as sinks
with varying strength for H20 in different layers of the soil, altering in the process the
thermal and moisture characteristics of the soil. The plants modify the turbulent transport
between the canopy air layers and between these air layers and the layers of air above it, thus
affecting heat and mass exchange between the soil and the air above it. The plants exudate
supply the heterotrophic microbial population with sources of energy (organic carbon) and so
alter in the process the physical and the chemical environment of the plant roots.

The soil in turn affects plants through its moisture, temperature and salt regimes. The
moisture regime within the soil determines the availability of moisture for plants. This in turn
affects the plant partition of the available energy between the different pathways through its
effect on the stomatal resistance. This is in turn affects the microclimate within the plant
canopy. The soil also affects the root distribution through the soil mechanical and chemical
properties (e.g. root penetration resistance, aeration and pH). All of these processes affect
plant growth and development.

Within the atmosphere layer, the surface properties affect the development and structure
of turbulence in the atmosphere above it, due to the interaction of the soil-vegetation layer
with the radiation field and the subsequent forcing from the ground on the atmosphere above.
This structure of turbulence will affect the canopy soil system through its intermittency. I
think that the development and structure of turbulence in the atmosphere above responds to a
large scale representation of the surface below, so a detailed model of the canopy climate is
not needed to describe the forcing from the ground or the vegetation layer on the atmosphere.
A big leaf model, with a fitted resistance to account for the atmosphere effect on the canopy,
could suffice. The effect of the atmospheric surface layer on canopy microclimate has to be
accounted for, since the large scale eddy structure will determine the intermittency of the gust
penetration into the canopy. That fitted resistance will be a function of the canopy state. That
is not only the stomatal resistance. It will be shown in chapter 4.1 that the canopy responds in
a nonlinear way to the formulation of turbulent transport resistance.

Within the plants, the microclimate in close proximity determines the rate of
physiological processes (e.g. CO2 assimilation) and so the amount of reserves used for shoot
and root growth. The plants respond much more to the average meteorological conditions than
to the instantaneous ones, due to the response time of physiological processes being larger
than the actual time of gust penetration, so a time-averaged profile can be used to model the
potential production process. A detailed description then of the micrometeorology
stochastically is not needed, but the effects of this stochasticity should be included in the time
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mean. The effect of production processes within the plants, as affected by weather, on the soil
shows through the partition of these assimilates between shoot and root growth (source-sink
relationships), which controls within a larger time scale the feed back from plants on the soil.
A functional description is not yet possible, so measured values for that partition are usually
used {e.g. Van Heemst, 1988). The source-sink relationships are controlled genetically and
environmentally. For example, the actual growth of the roots happens where the soil
mechanical resistance is below a certain minimum (a function of the soil structure, porosity
and moisture content: Misra e# al (1988), Dexter (1987), Hillel and Toptaz (1976) , Bar-Yosef
and Lambert (1981)) and where the aeration is good enough (also dependent on moisture
content and pore size distribution, Blackwell and Wells, 1983). This affects the root
distribution within different layers. The active root distribution, and its conductance, control
the regions of water uptake by plant roots, and so the soil moisture regime.

As we can see, the exchange processes between the components of the Soil-Plant
Canopy-Atmosphere Continuum are very complex and there are a lot of feedbacks which
make a suggested numerical procedure to model the physical behaviour of the system quite
complex and lengthy. One main point here, is that time scale differences exist between
different processes. Within one time scale, this requires the integration or inclusion of
processes on a lower level in the correct way and the delivery of a good rtesult {which
simulates reality well) to be integrated on its effect to the higher and lower level. That brings
us to the averaging problem as discussed here and in chapter 3 and 4.

1.2.1 The averaging problem (an elementary discussion)

In the soil layer, averaging is done by assuming a REV (Representative Elementary
Volume) approach, in which this volume is larger than the discontinuities of the pore soil
system, while it is smaller than the scale over which there are gradients in the system. This
justifies the gradient theory, since transport process work on a smaller scale than these
gradients.

In the above soil part, this assumption is not valid, since most of the transport happens in
a very short interval of time by large scale coherent structures (gusts), and the scale over
which this gust works is larger than the distance over which gradients develop.

For the above ground parts, in existing models, we try to model (simplify} this exchange
process by averaging in time and place. So, we eliminate the time variation of this intermittent
process by assuming it averaged in time. This averaging procedure leads to the closure
problem and also to the fact thal we try to represent a very intermittent process in which most
of the transport happens in a small fraction of the averaging time by a continuous term in the
turbulent transport equations. It has been shown by several workers (e.g. Finnigan and
Raupach 1987) that the largest scales of motions (events or coherent structures) are the most
effective ones in the turbulent transport between the canopy air layers and the air stream
above,

Does the large-time interval averaging, in which we lose the details of the process
represent a loss of information which could affect the large-time response of the simulated
system? We suggest, from the nonlinearity of the canopy turbulent transport equations, that a
large-time interval averaged value for a term in these governing equations is not the same as a
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fluctuating in time one with the same mean. So, we think it is important to make a division
between the different time scales (and so implicitly the different length scales of motion and
their contribution to the total transport).

A compromise to be made is to maintain the minimum degree of resolution without
losing details of the flow which may affect the long term response of the system.

I think that there are three approaches to visualise the plants and their role as energy
interceptors, converters and dischargers in the soil atmosphere system.

The first approach is taking the plants as individuals with a given spatial arrangement,
which are interacting with the airflow above with all its intermittency. So the problem here is
treated in all its time intermittency and spatial heterogeneity (after averaging of course for
small scale turbulence). This approach is probably not needed. In the lower limit (no
averaging for small scale turbulence), this approach goes to Direct Numerical Simulation
(DNS) of the Navier-Stokes equations. The spatial and time resolution which is required for
this approach would exceed by far the capabilities of the available computers.

The second approach is applying some kind of averaging spatially, i.e. treating the plants
as a layer in which the variation in the horizontal directions are smoothed out. This spatial
averaging is done to eliminate the horizontal heterogeneity of the canopy elements (a uniform
dense crop with no gaps) or to treat the canopy as composed of two or more uniform
subdomains (e.g. an orchard; row crop or intercropping). In all of these, averaging in time is
within a small time scale. Thus in every time step, a term for the large scale transport will
either be turned on or off depending on the probability of a gust penetrating into the canopy at
the considered time step. In this case, the transport will be separated into one or more length
scales, which will then have two different frequencies,

The third approach, by averaging in place (space scale larger than the small scale of
heterogeneity of the plant canopy and the largest scale of transport) or in time (time interval
larger than the largest time scale contributing to momentum and scalar transport and a space
scale larger than the small scale heterogeneity) and that would lead to a different kind of
closure problem, in which we lose account of the different scales of motion contributing to the
transport and also of the intermittency of the problem. This is the common way of averaging
which is used in the Eulerian approach models. We get terms in the turbulent transport
equation which are assumed to be active all the time. These terms and their parameterization
are obtained from large-time interval averaging. The values obtained are not possible to use
for time steps smaller than the time averaging. So we lose detail of the intermittency of the
problem which is, as we shall see, important to the large term response of the system. At the
same time, these terms can not be used for modelling small scale transport within time steps
smaller that the targe scale transport, since they include in them some of the contribution of
the large scale transport.

Li et al. (1985) tried to describe the transport in two time-averaged components; local
and nonlocal transport in a first order closure model. This approach is also not successful
since it needs a parameterization for the non-local term in an averaged in time process. These
terms are then obtained by optimisation. A curve fitting method is just replaced by another
curve fitting method.

In the present thesis, we follow the second approach. We will show that intermittency
considerations make a difference in the solution depending on the time constants of the
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system, and that the second approach is the minimum required degree of detail. I think that we
would agree when we say that small scale turbulence has a small time scale and small effect
in transporting heat and mass between the canopy air space and the layer above and it would
require a large time to achieve an equilibrium profile. Large scale transpori , on the other
hand, is efficient in achieving most of the transport between canopy layers and the layers of
air above with a larger time scale, and it requires much less time to achieve equilibrium. We
will assume that a separation in the scales of transport exists. The averaging procedure of the
instantaneous turbulent transport equations remains to yield averaged equations, but the
interval of integration will be modified to account for the contribution of different scales of
motion to the total transport. So in the equations a term, which represents the effect of the
gust or large scale of motion has to be introduced. This term has 1o be turned on or off
depending on the probability of a gust penetrating into the plant canopy during a certain time
step. But the question remains how to determine this probability distribution.

To get an answer to which probability distribution one should use to simulate the gust
penetration into plant canopies, one can use two approaches:
The first is observations made by other workers e.g. Shaw and McCartney (1985); Shaw,
Ward and Aylor (1979); who tried to fit measured time series of wind velocities inside plant
canopies to some statistical distributions. But even if they fit, the question of applying these
distributions to general situations (universality) arises, since these wind regimes are functions
of the interaction of the canopy layer with the airflow above.
The second approach is somewhat functional: (rying to describe the interaction between the
canopy layer and the air flow above it. There is an attempt by Raupach et af (1989) to define
the coherent eddy structure within plant canopies in the case of thermally near-neutral
canopies. In their paper, they assumed that the dynamic stability or the shear is the most
important in generating eddies. This assumption ignores the importance of thermal stability
on eddy generation.

In all above mentioned averaging cases, the following steps should be followed:

1) Quantification of the radiant energy interception within the plant canopy and at the soil
surface (this process is the source of all energy transformation within the ecological system).
Averaging in time is done with a time scale small enough to follow the diurnal radiation
changes, if we neglect the effect of leaf fluttering and the wavy movement of the canopy
clements. This means that there are no differences between approach 2 and 3. However, there
are differences between whether or not we average in space, since in the latter we treat the
plants as a turbid homogeneous medium.

2) The partition of this intercepted energy between different pathways (radiative and non-
radiative energy exchanges). That partition determines the amount of source or sink terms for
the non-radiative energy exchanges which has to be discharged or satisfied through the
turbulent exchange processes between the canopy air layers and the air stream above.

Concerning these two sfeps, theory already exists which describes these two steps, and
there are several approaches to calculate the source strengths.
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3) Developing and solving a valid set of equations to describe the canopy turbulent transport
processes. Here, the averaging in time and place will determine the complexity of the
solution. We will do averaging in place and time according to the second approach, since we
would like to study the intermittency of the process and show its effect on the simulated mean
concentration and sources profiles. We would like to take account of the different length
scales (here two categories) and so different time scales and their contribution to the total
transport.

So during gust penetration, a term of large scale transport will be turned on, while in the
interval between gusts (the quiescence periods), the turbulent transport equations will be
solved using different closure assumptions for the small scale turbulence. The effect of using
different approaches on the form of turbulent transport equations and the final solution will be
studied. A parameterization for the local transport during the quiescence period will be used.
This is done according to a statistical distribution of the values of the vertical velocity
variance within time. A modification for a random walk model to account for intermittency
will be shown.

In solving the resultant nonsteady state canopy turbulent transport equations, a nonsteady
solution for the leaves will be used.

4) Quantification of the interaction between the soil and the canopy above it, That is done
through two processes, the effect of the vegetative part of the canopy on the interception of
the short wave coming in, and in incrementing the downward long wave radiation since the
plants are warmer than the sky so the plants increase the long wave coming in. The plants
shield the soil from the colder sky. The second process is through the roots action. This is
done through the use of a root distribution as a function of depth. The sink term in the soil
volume is determined using the solution of the equations for water transport to the leaves
from the soil.

5) Quantification of the energy balance of the different soil Jayers and solving the non-steady
energy balance equation for the different soil layers till the depth where dT/dt =0, taking
account of the sink distribution. Partition between latent and sensible heat fluxes does not
occur only at the surface, but there is a regression of the evaporation front. The model
censiders coupled heat and mass transport through the soil.

The effect of all these processes will be integrated through time and the long term effect
on soil heat storage will be checked.

This model should be able to describe the interactions between a vegetated soil layer with
the atmosphere in semi-arid regions, where the thermal behaviour of the soil is varying
strongly with time due to the variation of moisture content of the soil between subsequent
water applications, and where it to assume a soil profile which is always within the early
stages of drying is not valid anymore,

So in short, in the study, several points will be discussed:

[) The effect of intermittency on the existing available approaches (Eulerian as well
as Lagrangian) used for describing heat and mass transport within the Soil-Plant Canopy-
Layer of air close above system (section 3.3, section 3.7 and section 4.3).
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2) The introduction of an intermittency approach to describe heat and mass transport
within this layer, the parameterization or the used closure assumptions and their justification
{Section 3.6).

3) The development of a complete numerical canopy soil model, using in its
turbulent part an intermittency approach and including the resulting feedbacks (chapters 2, 4
and 5).

4) Analysis of the nonlinearity of the system and also when intermittency does make
a difference in the solution for the canopy air layers (section 4.2.1.1).

5) The effect of this non-linearity on the soil heat flux and the soil temperature
profile (section 4.2.1.2).

6) Analysing the effect of the different forms of the turbulent transport equations
(continuous versus intermittent due to the use of different averaging schernes) on the soil heat
flux, the air temperature and vapour pressure profiles and the sources (MATHCAD® runs
and section 4.2.2).

7) Validation of such a model {Chapter 6).
1.3 The organization of this thesis

This thesis consists of three parts. Two of them are intimately related: a modelling part
indicated by (*) superscript and an analysis part indicated by (**) superscript. The third part is
a validation part (chapter 6). The modelling part is just describing how the modelling and the
consideration of feedbacks between different systems of equations was done without further
analysis of the equations behaviour (e.g. chapter 2 or section 4.1.2). In the mathematical
analysis part, we give an analysis (either quantitatively or analytically) of the systems of
equation describing transport and describe its behaviour and the consequences of this
behaviour on the validity of certain assumptions or on the nonlinearity of the system. (e.g.
section 3.3 and section 4.2, respectively ).

We would like to draw the attention of the reader to the following: In this thesis,
especially, the analysis part, we start with a global view of the problem, discard certain
processes which we think insignificant while going through it, concentrate on some other
processes, derive some conclusion from the different pieces of the problem and then use these
several conciusion from here and there to come to a major conclusion concerning the system
and the approaches used to describe it.

In some parts of the text; we use a different font (letter type) as a way of
explaining things in a more extensive way, we would suggest to skip it during a

i ing, That 1d not disturb the continuity of o]

In chapter 2, we discuss the modelling of the energy sources and sinks within plant
canopies.

In chapter 3, we discuss in a qualitative way the effect of intermittency on the turbulent
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transport of heat, momentum and the validity of available approaches, whether Eulerian or
Lagrangian. We also discuss a suggested intermittent approach and the closure assumptions
used and their justification. The effect of intermittency is considered through its effect on the
turbulent transport correlations.

In chapter 4, we analyse the effect of intermittency on the sources and sinks within plant
canopies and the soil temperature profile. We show a nonlinearity in the system and the effect
of this nonlinearity on the system behaviour (the canopy and the soil) in a semi-analytical
way. We also discuss some modelling aspects concerning soil heat, moisture fluxes. We also
discuss the modelling of plant water uptake and stomatal resistance. The effect of
intermittency here is discussed through its effect on the sources and sinks or on the
correlations between the fluxes and the sources. We will also discuss the sensitivity of an
approximate model to certain parameters.

In chapter 5, we include a description of the numerical model with a reduced listing.

In chapter 6, we discuss the model validity.
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CHAPTER 2

THE QUANTIFICATION OF ENERGY SOURCES AND SINKS
WITHIN PLANT CANOPIES™

In this chapter, we will explain how the energy sources and sinks within the plant canopy
have been quantified. In the first part, an introduction, a qualitative description of the
interactions between the plants and the radiation field in which they exist will be given. In the
second part, we will treat the equations which are used to describe this interaction. In the third
part, we will treat the partition of the total absorbed energy between different pathways. In the
fourth part, we will mention the quantification of the resistances for heat and mass and CO2
sinks or sources within plant canopies.

2.1 Introduction

The mere existence of the plants with their three dimensional configuration, i.e. the stem
carrying the branches with the leaves appended to it, leads to the plants interacting with the
surrounding radiation field. This interaction is represented by the leaves or the plant parts
intercepting radiant energy and then reflecting, absorbing or transmitting this intercepted
energy. The partition of the intercepted energy between reflection, absorption and
transmission depends mostly on the spectral properties of the plant pigments and water.

The amount of absorbed radiant energy in the different regions of the spectrum
determines the radiative energy load which the plants have to dissipate or disperse. This
dissipation takes place through the radiative and non-radiative energy exchange between the
plants and the surrounding medium. The radiative energy exchange is represented by the long
wave emission of the leaves. The non-radiative energy exchange is represented by the
sensible and latent heat which is delivered by the leaves to the inter canopy air stream. The
conditions under which the absorbed radiation load equals the radiative and non-radiative
energy exchange between the leaves and the surrounding media determine the plant organ
surface temperature. Into this balance also goes the contribution of the change of heat storage
within plant tissues.

The temperature and vapour pressure of the air in conjunction with the radiation load on
plant surfaces, given certain surface resistances, determine the temperature of the plant
surfaces and constitute the environmental conditions, which should lie within the domain of
viability of the cytoplasm of the living tissues. We can call the range of these environmental
conditions, under which this condition can be achieved, the domain of existence of plants.
Within these domains of existence, which are species dependent, there will be subranges
within that domain in which conditions for plant productivity are optimised. By plant
productivity, we could mean the net assimilation rate for short time intervals or integrated
over a longer period, the total plant dry matter production or another certain criteria. In this
way, we have expressed a one direction effect of the environmental conditions on the plants.

The environmental conditions are not only the vapour pressure, temperature of the air and
the radiation load. There are other factors like the moisture and salt regimes of the soil. In this
thesis, we will assume that the effect of the other environmental conditions is shown through
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the effect of these other environmental conditions on the resistance of the plant surfaces to
different forms of energy exchanges (i.e. through the stomatal resistance). This will affect the
surface temperature. We consider that the temperature of the surface, in combination with the
short wave radiation load, internal CO2 concentration, tissue water potential and ionic status
of the plant tissue as the window through which the inner plant processes see and respond to
the physical and chemical (abiotic) environment. The effect of nutrient status within the soil
on the plant inner processes is not considered here. We will treat the quantification of the
effect of the other environmental conditions in detail in chapter 4.

Now, to get our qualitative picture of the whole system clear, let us come to the question
if the relation between the environmental conditions, expressed as the temperature, vapour
pressure of the air and the radiation load on the plant, is a one way direction relationship?. i.e.
do they impose a certain load or stress on the plant with no feedback from the plant on them?.

Considering the net result of the feedback between the radiation load and the plant
surface temperature, this feedback is small and is only due to the interaction between the plant
surface temperature and the long wave radiation field. There is no feedback between the plant
surface and the short wave radiation. So the solution of the short wave radiation is
independent of our final solution of the vapour pressure and temperature of the air (i.e. there
is no feedback).

On the other hand, the temperature and vapour pressure of the air are not passive to the
inputs of non-radiative energy from the plant organs into them. The canopy air layers have an
ability to exchange heat, water vapour and other constituents due to turbulent motions which
mix the air between canopy air layers. These turbulent motions are either externally or
internally induced. The internal induction of turbulent motions could be due to the dynamic
effects of the canopy elements. These dynamic effects are represented by the leaves working
as drag media extracting momentum from the flow field, as converters of mean kinetic energy
into turbulent kinetic energy, and mostly as obstacles to the intrusion of air flow from above
the canopy. This last effect leads to the appearance of high positive pressure-velocity
correlation inside the canopy. These high positive velocity-pressure correlations lead to the
coupling of the inner canopy flow to the flow above. We will come to this point in chapter 3.
The thermal induction is due to the effect of density stratification on the degree of mixing
(stability effects).

If the energy load by the leaves on the air layers (i.e. the amounts of delivered sensible
and latent heat from the leaves into them) is not evacuated to the layer of atmosphere above
the canopy, a build-up (whether positive or negative) of vapour pressure and temperature of
the air would result. This build-up would then lead to an enhancement or inhibition of the
exchange of these delivered amounts between the canopy air layers, or between these air
layers and the layer of atmosphere above. This exchange would then lead to relaxation of the
energy load. Somewhere, an equilibrium is achieved depending on the time constants of the
turbulent transport mechanisms and the loading terms. The situation, concerning the air layers
within the canopy, is then represented by an equilibrium between two forces;

The first is a forcing term, which is represented by the non-radiative energy exchange from
the leaves to the inter-canopy air stream.

The second is the non-radiative energy (turbulent) exchange between the canopy air layers,
which tends to relax the first force. The degree of build-up of vapour pressure and air
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temperature, which is required to maintain equilibrium between these two effects, determines
the temperature and vapour pressure of the air. This in turn will control the partition of the
absorbed energy between different pathways, i.e. radiative and non-radiative, and so the
amounts of non-radiative energy which is delivered from the leaves into the canopy air layers.

From the above description, we see that the components of the canopy air system are
interrelated like a system of resistances or springs, and the state of that system will depend on
the forcing terms imposed on its components and the different relaxation terms relaxing these
forcing terms. For canopy air layers, these different relaxation terms are represented by
turbulent transport mechanisms between canopy air layers which tend to relax the energy
sources with the canopy. For the leaves, the forcing term is the radiation loading, while the
relaxing term is the nonradiative energy delivered from the leaves to the air. We can include
the role of the soil in this system through its effect on modifying the resistances of the plant
surfaces to energy exchanges in one direction. In the other direction, the plants affect the non-
radiative energy input to the soil surface, the boundary conditions for the energy budget
solution at the soil surface, and the thermal and moisture characteristics of the soil layers.

Figure 2.1 gives us an overview of the interactions between the plants and its
environment. The circles in the figure represent the leaves within different canopy layers and
their role as interceptors and converters of radiant energy into other forms of energy (i.e. non-
radiative energy or radiant energy in another waveband). The partition depends on the vapour
pressure and temperature of the air and the resistances to the different forms of fluxes. In this
chapter, we will cover these processes in the above-ground part of this figure,

In the next part of this chapter, we will introduce the equations used to guantify the
forcing on the canopy air system due to the leaves. We will assume that the temperature and
vapour pressure of the air and the surface resistance are already known. This means that we
will cover the first part of the system, i.e. the forcing due to radiation loading under a certain
state of environmental conditions {vapour pressure, temperature of the air and plant surface
and boundary layer resistances). The restoring or relaxation mechanisms which are due to the
turbulent exchange between the canopy air layers will be covered in Chapter 3. The effect of
surface resistance on the forcing, due to its effect on the partition between radiative and non-
radiative energy exchange, will be covered in chapter 4.

2.2 The interaction between the plants and the radiation field

The word radiation field in the previous paragraphs is used to describe the fact that for
every point in this field there exists a magnitude and direction. There is a magnitude of the
radiation intensity or radiance, depending on the direction of the beam. In every point in the
Xx.,y,Z space there are infinite number of values for this radiation flux, depending on the
direction of radiation and the width of cone from which this value is integrated. For every
plane passing through a certain point in the x, y, z space, there will be two values (the
irradiances on the upper and lower surfaces) that represent the integrated values from the two
corresponding hemispheres above and below it.

In the case of a plant canopy, we will assume that the plant canopy elements (the leaves)
are represented by a turbid homogeneous medium, dispersed uniforroly in the x, v direction,
but varying in the z direction depending on the profile of the leaf area density (m? leaf at one
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side/m3 air).

The first step in the interaction between a leaf element and a beamn of radiation is the leaf
physically intercepting the incident beam. The probability of interception depends on the
projection of the leaf perpendicular to the direction of the incoming beam, which is the
effective area for interception of radiation and is dependent on the cosine of the angle between
the leaf normal and the incident radiation. So, for a beam of light incident from a certain
direction, the probability of interception of this beam in a certain layer is equal to the area
density projected in the direction of the incoming beam divided by the sine of the angle of
elevation. In equation

|COS ¢i,k|

I; = LAILL.
N sinf3

(2.2.1)

where

B is the angle of elevation of the incoming radiation
LAl is the incremental leaf area index with a surface perpendicular to direction k.
1; ;. is the probability of radiation incident from a direction # being intercepted by LAlg

Sinf determines the effect of the beam angle of inclination on increasing the travel
length through the canopy of the incident beam of light. ®i k is the angle between the

directions of the incident beam and the leaf normal. The cosine of this angle represents the
fraction of the leaf area projected in the direction of the incident beam or equivalently

'cos ‘P:‘,k))

I4 = exp(-LAL,. (2.2.2)

sinf3

where

L4 is the probability of a certain beam incident from a direction i not being intercepted by
a surface with a normal which has a direction &.

A whole canopy layer has a certain probability distribution for its leaf normals and is
subjected to a certain distribution for the incoming radiation from the different zones of the
sky or from the layer above it. To get a representative value of the non-interception
probability coefficient for this layer, a weighed average of the non-interception probability
coefficients for the different leaf angle classes and different zones of the sky should be taken.
In this model, to calculate energy sources and sinks within plant canopies, a multi-directional
reflection and transmission mode! is not needed. The minimum level of detail we have to go
inte, while still maintain a reasonable level of accuracy, is by taking three leaf angle classes
and three different zones of the sky as suggested by Goudriaan (1988).

The projection of the leaves for the different leaf inclination classes is calculated as a
function of the leaf inclination class and the angle of elevation of the incoming radiation using
the following functions:
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‘cos 91 ﬁ’ =MAX(0.25,0.93 sinf )

(2.2.3.2)
}cos 9, ﬁ] = MAX(0.47, 0.68 sinf ) (2.2.3.b)
‘cos ¢3,ﬁ| =1-026 1cos ¢1.ﬁ’ -‘cos "’Z,ﬁ‘ (2.2.3.0)

where :
‘cos ®; B| is the fraction of leaf area in angle class i projected into the direction of the

incoming radiation.
The extinction coefficient, K., ; g.for a leaf inclination class i and radiation angle of

elevation B is equal to
Kexi p = cos ¢; g|/sinB (2.2.4)

Here, we end up with nine K, ; g (three zones of the sky multiplied by three leaf angle

classes) coefficients which determine the relation between the leaf inclination class, the angle
of elevation of the incoming radiation, and the effective leaf area intercepting radiation in the
light path. An average extinction coefficient,K,,, for each of the three zones of the sky is
found by the linear addition of the contribution of the three leaf classes. Goudriaan {1988)
uses a weighted mean of the average extinction functions, exp(K,y LADMID(I) dz(J)), by
multiplying these with the weights of the contributions of the different zones of the sky to the
incoming radiation (0.178, 0.514 and 0.308) for the standard overcast sky. Ladmid(J) is the
average leaf area density in the middle of the layer. The product (Ladmid(I) dz(J)) represents
the leaf area increments within layer (J). The resulting expression gives the probability of
non-interception i.e. that an incident diffuse radiation will not be intercepted by the foliage
elements within layer J.

Once a beam of radiation has been intercepted, it will be reflected (R) (either specularty
Rg or diffusely Ry), absorbed (Rjy) or transmitted (either transparently T or diffusely T4 ).
See figure 2.2, A more detailed discussion is given by Den Dulk (1989). These fractions for
the intercepted beam will be dependent on the angle of incidence. Therefore, in a detailed
canopy radiation model, these fractions cannot be simply introduced as model parameters. But
in this study, we are not interested in simulating the details of the angular distribution of the
reflected and transmitted radiation within the plant canopy. So, we neglect the specular
reflection fraction (which can be significant in a detailed radiation model) and the
transparently transmitted radiation fraction, which is small compared with other fractions
unless the leaves are very thin, this would iead to the reflection and the transmission
coefficients of the leaves mostly dependent on the spectral properties of the plant pigments
and water.

Concerning the spectral properties of the leaves, a leaf reflects and transmits very little
radiation at the ultraviolet and visible wavelengths (an average value for the whole band of
0.1 and 0.1, respectively) and, as a result, has high absorption at the wave length band of 0.4 -
0.7 um except in the green (0.55 um). In the near infrared NIR (0.7-1.4 um), the leaves show
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higher reflectance and transmittance (average values of 0.4 and 0.4, respectively). This is due
to a gap in the absorption spectrum between regions in the ultraviolet and visible wave bands,
where electronic energy transitions dominate the spectrum, and the intermediate and far
infrared (long) (>3.0 pm ) wave band, where vibrational and rotational energy transitions
dominate. The vibration-rotation absorption bands of liquid water enter the spectrom in the
near infrared and, although weak at shorter wavelengths, they begin to dominate the spectrum
at wave lengths greater than 1.4 pm. The result is that reflectance and transmittance of a leaf
rapidly diminish at longer wavelengths, and absorptance increases, with nearly complete
absorptance at wave lengths greater than 2 (Gates, 1980). So, the leaves are almost black
bodies for the long wave radiation, showing reflectance of less than 0.05 and transmittance of
zero. The leaves also act as a source for long wave emission since they, as all other bodies,
emit radiation according to Stephan-Boltzmann law.

Fig, 2.2 Scheme of the distribution of the
radiation I that incidents on a leaf over

the five possible output destinations.

Rs (specular reflection),

Rd(diffuse radiation), A (absorption),

Td (diffuse transmission), Tt{transparent
transmission), Taken from Den Dulk{1989).

With this in mind, the radiation profiles have been calculated for three wave bands; the
visible, the near infrared and the long wave radiation.

2.2.1. The short wave radiation
2.2.1.1 Direct radiation interception

For a direct beam, the probability that a beam of light, incident from a certain direction,
will not be intercepted till a given depth in the canopy is given by

IBB(J)= exp(-0.5 CUMLAIJ) /sinf3) (2.2.5)
and

Ib(I)= exp(-0.5 LADMID(Jy DZJy/sin3) (2.2.6)
where

IBB(J) is the cumulative probability that a direct beam will not be intercepted by the leaf
elements above Layer J, lb(J) is the probability that an incident radiation will not be
intercepted by the leaf elements of layer I, and CUMLAI(J) is the cumulative leaf area in the
layers above layer J.
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In this formula, 0.5 is the projection of the leaves in any direction for a spherical leaf
angle distribution. This coefficient is independent of the angle of incidence of the beam.

2.2.1.2 Diffuse short (Visible or Near Infra Red)

The equations of Norman (1979) have been used to describe the radiation fluxes within
the canopy. They read (for non-overlapping, non horizontal, scattering leaves) as :

Ry b = Ry J41lt x (1-1dy4p) +1dy4]

1
+ Ry 3T [ px (1-1dg4 )]

I (2.2.7)
+fy Ry ob BB 1)(1-Topy g
I
Ry 3T = Ry 3.1 Tl  (1- Idp) + 1dj)
I
+ Ry JL [ py (1-Tdp)] 228)

I
+ Rx,tf IBB()(1- Ibp}px
11

where .

Ry j is the diffuse radiation flux density of wave band X on the upper boundary of the
layer J in Wm-2 ground surface. Idy,, |is the probability that an incident radiation (diffuse)
will not be intercepted by the elements of layer J+1. 1, is The leaf transmittance of the foliage
elements. p, is the leaf reflection of the foliage elements. The coefficient (fh) is the fraction
beamn of the short wave radiation at the upper boundary of the canopy. see fig 2.3.

The first set of equations (eq. 2.2.7) contain three components which contribute to the
downward radiation flux density at the upper boundary of a certain layer (J).

In the first component I, the term between square brackets represents the sum of two
fractions, or equivalently two probabilities, of the diffuse radiation at the upper boundary of
layer (J+1); either being intercepted and then transmitted to the lower boundary of the layer or
going uninterrupted through the canopy layer. This total sum represents the fraction of the
downward radiation at top of the layer {J+1) which managed to pass through the canopy layer
to the layer below. This fraction multiplied by the radiation flux at the top of the layer{F+1)
represents the contribution of the downward radiation flux density at the upper boundary of
the canopy layer (J+1} to the downward radiation flux density at the upper boundary of the
layer below {J).

In the second component (II), the term between square brackets represents the fraction or
equivalently the probability of diffuse radiation being intercepted by the leaf elements in layer
{J+1) and then reflected. This probability multiplied by the upward radiation flux density at
the upper boundary of the layer (J) would represent the contribution of the upward diffuse
radiation flux density at the lower boundary of the layer (J+1) to the downward diffuse
radiation flux density at the upper boundary of the layer (}).
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The third component (IIT) represents the multiplication of IBB(F+1} by [1- Ib(J+1)] which
would represent the joint independent probabilities of a direct beam, which managed to get to
the upper boundary of the layer (J+1), being intercepted by the elements of that layer and so
contributing to the diffuse radiation fluxes at the upper and lower boundaries of this layer.
This joint probability multiplied by the transmiltance (1) of the leaf represents the probability
of a direct beam intercepted in a layer (J+1) contributing to the downward diffuse radiation
flux density at the upper boundary of the layer below (J).

The second set of equations for the upward diffuse radiation fluxes (eq. 2.2.8) contains
three equivalent terms;

The first of these represent the contribution of the upward radiation flux density at the
lower boundary of a canopy layer (J) to the upward radiation flux density at the upper

Rx,J+1T
fb Rx,ti IBB (J+1)

p fb Rx,tl IBB (J+1) (1-IpJ+1)

Ry, J+ 14
Rx,JT 1d]J+1

TRxJT (1-1dJ+1) Rx,J+1) (1-1dj+1)

‘P

upper boundary

1dJ+1 1-1aJ+1
1-1
/——<1 IbJ+1) a+ Laver J+1
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RxJT Rx,J+ 14 1d]+1

Rx,JT (1-1dJ+1
p R JT (1-d)+1) TRxJ+14 (1-1dJ+1)

| RRL Rx,tLIBB (J+1) (1-ThJ+1)
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Fig. 2.3: The components of radiaticn fluxes above and below Layer J+1
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boundary of this layer, after being intercepted and then transmitted, or managing to pass the
canopy layer (J) non-intercepted.

The second of these terms represent the contribution of the downward radiation flux at
the upper boundary of the canopy layer(J) after being intercepted and reflected to the upward
radiation flux at upper boundary of this layer.

The third of these terms represents the contribution of the direct beam of radiation, which
managed to get unintercepted to the upper boundary of layer (J) and then was intercepted
within this layer and subsequently reflected, thus contributing to the upward diffuse radiation
flux density at the upper boundary of the layer(J).

These two sets of equations for the downward and upward diffuse radiation fluxes
represent then a set of discretized numerical equations needed {o describe the downward and
upward diffuse radiation fluxes. These two set of equations are applied for two wavelength
bands (the visible, NIR). They could also be used for the longwave band after taking into
account that the leaves emit radiation in the longwave band, since there is a dispersed source
within the canopy for the fong wave radiation. 7

There is one condition for these two sets of equations: The canopy layers should be thin
enough to ensure that the probability of leaf overlap is negligible. This permits us to make an
estimate of the reflected (or transmitted) radiation from the product of intercepted radiation
and the leaf reflectance or transmittance. If layers are not chosen thin enough (leaf area index
increments in the range of (0.1}, scattering will be overestimated (Norman, 1982).

To increase the thickness of the layer without degrading the radiation profile estimates,
use could be made of two approaches. The first is use of the Poisson’s probability distribution
to describe the probability of leaf overlap within a certain layer and to derive a thick layer

reflection and transmission coefficients as suggested by Norman (1982), where the thick layer
transmnission and reflection coefficients RL, j and Trans, j, respectively, are expressed as:

I=3 I
RL, = 121 px 1d; (-In 1dp) /1! (2.2.9)

133 0 I
Trans, ;= 3 1, 1d) (- In Id)"T!
I=0

(2.2.10)
The layer equations take the form:
RX’JxL = RX,J+1~LTran5X,J+1 + Rx’JT RLX,J_,_]
+fh Rpl(,vL IBB)+1)(1- Ib]_,.lll)'c X (2.2.11)
III
Ry 7T = Ry y. TTransy y+ Ry 4 RLy 5
+ fg Ry ¢l IBB(py(!- Ib])gx (2.2.12)

I1I
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The other approach is to use the analytical solution of Kubelka-Munk equations defining
the thick layer reflection coefficients. From equation 2.2.7 and 2.2.8, not including the
contribution of the direct beam to the diffuse radiation, and substituting d, = (1-Id}) where d; is
the probability of being intercepted for a beam of diffuse radiation, the layer equations take
the form :

Rx,JJ’= Ry 3+ P [T dyag +H1-dg, )]

(2.2.13)
+ RX,JT [Py dryi!
R, (T =R, T It, d, +{1-d))]
xJ x,J-1 x4 1 (22.14)
+Ry g [py 4]
Decomposing and rearranging the equations, we get:
R, g+« R Jaid =Ry pypddpi [t x - 1]
(2.2.15)
+ Rx,]T ds+( Px
and
Ry T- Ry y1T= Ry Tdifr x-11
2.2.16)

+Ry 4 dy py

taking the limit when AZ approaches zero, considering that d; is a decreasing function of z {(+
upwards) opposite also to the direction of forward scattering and equal to

dy =1 -exp(- K;,, Ladmidy dzy) (2.2.17)
or in case of small leaf area increments

dy = K, Ladmidy dzy (2.2.18)

AR =R dd[ 1, - 1]

R,Td
TR EPx (2.2.19)
AR, T =R, Tdrz, -1
+R b dpy
These are exactly the Kubelka-Munk equations (Gates 1980, Den Dulk 1989).
dR,!
dlai |_dd{ w-l  ps ] R (2220)
dRr,t | dal -po Hdn-1] iRt
dlai
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where (ﬂ—d is the derivative of the interception coefficient with respect to dlai (lai is leaf area
ai

Increments)
2.2.2 The long wave radiation

The treatment of the long wave radiation in plant canopies is more complicated since the
plants emit in the long wave region > 3 um , so there is a dispersed source of this radiation
within the canopy.

For calculating the long wave radiation fluxes into different layers, the long wave
emission by the leaves in the long wave band, according to the Stephan-Boltzmann’s law,
should be considered.

With an emissivity of approximately 0.95 in this region, the leaves are almost black
bodies to long wave radiation. By using the same layers equations of Norman (1979) and
taking into account that transmittance is zero and reflectance is almost zero (a value of 0.05),
we will neglect thermal scattering within the canopy (a negligible error). That will simplify
the calculations, since we avoid an iterative procedure to calculate the upwelling and
downwelling long wave radiation profiles.

By substituting the values of T, and p, for the long wave radiation band and inserting the
long wave emission term in the long wave radiation profile equation, the layer equations
expressing the incoming upward and downward long wave radiation into a layer reduce to :

Ridown,] = RidownJ+1 Tdjong,J+1

(2.2.21)
+ €0 Tieafy (I-ldjgng 1)
R =R Id
lup.J lup,J-1 *long,J (2.2.22)
+ €6 Tleary (I-ldigng 3)
where
Ridown,J is the downward long wave radiation flux density at tayer J upper
boundary.
Rlup ] is the upward long wave radiation flux density at layer J upper
boundary.
£ is leaf emissivity (assumed 1.0).
o is Stephan-Boltzmann constant, 5.67-10-8 Wm2K-4
Tleaf ] is the leaf temperature at layer J in K.

The incoming long wave radiation from the sky at the upper boundary of the canopy is
calculated from the sky temperature, the degree of cloudiness and the sky emissivity
{Campbell, 1977) or as measured. Here, the assumption is made for the calculation of long
wave distribution that it follows the uniform overcast sky condition (UQOC). This assumption
was used in calculating the coefficients Id]ong,]

The total amount of absorbed radiative energy was determined by the divergence of the
short wave radiation profile (visible and NIR) plus an equation to determine the amount of the
long wave absorbed by the leaves in different layers.

25



Rlabs,J*L =R]down,J(1‘ Idlong,J) + R]up,]-l (1- Idlong,J)
I II

+€0 Thypy 2 LADMID]DZ; -2 (1- iong 1) € 0 Tyt 1
I v (2.2.23)
where
The different terms are

I = the contribution of the downwelling long wave radiation flux density above the
layer(J) upper boundary to the absorbed long wave within layer J

IT = the contribution of the upwelling long wave radiation above the layer (J-1) upper
boundary to the absorbed long wave radiation within layer I.

1[1= the long wave production per layer, is equal to the long wave emission per m2 leaf
surface multiplied by the leaf area (two sided} contained in the layer.

IV = the contributions of the foliage elements in the layer to the upwelling and
downwelling long wave radiation fluxes.

The difference between III and 1V represents the effect of mutval shading of the leaves
and the un-directional (isotropic) long wave emission by an isothermal foliage element in a
certain layer on long wave radiation, being intercepted by some other foliage elements in the
same layer. The difference between IIT and TV will go to zero when leaf’ area density in the
layer goes to zero.

In these equations, the temperature of the leaf surfaces within different layers is required,
which is not known at the beginning. An iterative procedure was then used in which the
divergence of the short wave radiation profile within canopy layers (independent of the
solution) plus the extinction of the incoming long wave radiation at the upper and lower
boundaries of the canopy were used as a first estimate of the total absorbed (short and long
wave) radiation by the leaves surfaces (i.e. no emission by the leaves). This first estimate and
an initial temperature and vapour pressure of the air were used to evaluate surface temperature
of the leaves at different layers, and a source term for long wave emission within different
canopy layers was added. The calculation of the long wave radiation profile was then possible
and a new total absorbed radiation was estimated. The procedure was repeated till an
equilibrium or steady state solution of the leaf was achieved. This solution was later used as
an initial leaf surface temperature for a non steady energy budget solution for the upper and
lower surfaces of the leaves.

2.3 The energy budget of the leaves™

The energy budget equation of the leaves is a conservation equation which relates the
amount of the total absorbed radiation ( Ry, rq341) OF net radiation (Rpjto the amounts of

radiative and non-radiative energy exchange from the leaves to the surrounding media. We
need to solve this equation under a certain set of environmental conditions {i.e. the vapour
pressure and temperature of the air), given a certain set of surface resistances, to calculate the
delivery of sensible and latent heat from the leaves into inter-canopy air stream. These
delivered amounts represent the sources or sinks for non-radiative energy exchange within the
canopy layers. We mentioned earlier that the vapour pressure and temperature of the air are
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not the only environmental conditions, but we consider, in this thesis, that all the other abiotic
environmental conditions affect the plants through their effect on the surface resistance to
non-radiative energy exchange. This equation for a steady state solution reads as follows:

Rabs,total =P Cp (Tleaves,J - Tair,] ¥Thh,I

I
pCp R s
les(Tleaves 1) - €11 + £ Tp
¥ (Float.v.J +by.5) st lleaves,]) - €] leaf,J 231
I I
or
Rp =p Cp (Tieaves,) - Tair,J V1oh,J + pCp [es(Tieaves,1) - €Jl
’ ’ 7 Y (Teaf,v,J by, 1) i
| I 2.3.2)

where: -
P Cp is the volumetric heat capacity of the air under constant pressure in J m-3K-1, Ticaves.J

is the average temperature of the leaf surface in layer I in 0C or K. Tair,] 1s the average
temperature of the air in layer J. 1y} j is the boundary layer resistance for hgaisin sm- 1
the psychometric constant (67 Pa K-1y. cs(T]eaves,J) is the saturated vapour pressure at the
average leaf temperature in Pa. rlgaf v J 18 the leaf stomatal resistance in layer Jin g m-1.
Ty ] is the boundary layer resistance for water vapour in s m-1. ey is the vapour pressure of
the air in layer J in Pa.
The first term stands for the sensible heat flux (H) from the leaves in Wm™2. The second
term represents the latent heat flux (AE or LE) from the leaves expressed in Wm-2 leaf

surface. The use of one-sided or two-sided leaf area depends on how the resistances in the
above equations were defined and how the value of Ry, is defined. In here, we used the fluxes
defined for one side of the leaf surface

There are several methods to solve the above mentioned energy equation. The most
widely used is, according to Penman (1948), getiing rid of the unknown surface temperature
by using a linearization of the saturated vapour pressure at the leaf temperature, using the
following approximation.

e8(TLeavesj} = eS(Tair,j) +5 {(Tbeaves.j 'Tair,ﬂ 23.3)

where § is slope of the saturated vapour pressure temperature curve at the temperature of the
air. This would lead to the elimination of the wnknown surface temperature and the
determination of LE and H.

SRy +pCpDif
E=" PP H (2.34)
S+Y
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where D is the saturation vapour pressure deficit of the air, A is the latent heat of vaporisation
inJ kg-1-

Y= Tt/ (2.3.5)

From this, an estimate of the surface temperature is made by the use of

Hrph y

Tleaves,] =Tajr,J + oCp

(2.3.6)

Ancther approach as suggested by, Paw U (1987) and Paw U & Gao (1988), is by the use
of a fourth order polynomial function for the saturated vapour pressure at the temperature of
the surface and substitute it into eq. 2.3.1. It is then possible to put the energy equation (for
the steady state) in a fourth order polynomial with the temperature of the surface as the
unknown.

A third approach would be the use of an iterative solution, ¢.g. Newton-Raphson method
(Press et al 1992).

2.3.1 Definition of the boundary conditions for the solution of the leaf energy budget

During day time, the exchange between the canopy air space and the air above is
modulated by the existence of coherent structures at the layer of air above the canopy. These
structures represent the main mechanism of heat and mass transport between the canopy and
the air above (see chapter 3). In the presented model, a gust term in the turbulent transport
equation is introduced. i.e. a sudden intrusion into the canopy air layer by air from above the
canopy. From an assumed refreshment effect of the coherent structure on the air inside the
canopy, the temperature and vapour pressure of the air are known just after the gust intrusion
and the sources or sinks can be calculated. A follow-up of the exchange between the canopy
air layers and the layers of air above keeps track of the buildup of the temperature, vapour
pressure of the air and the consequent source variation within time.

During night time, the situation is much more complicated. The long wave radiation loss
at the upper portion of the canopy leads to the appearance of a radiative energy sink at the
canopy top. The leaves in the top of the canopy start cooling. When the air is not saturated, a
sensible heat flux from the air in close contact with the leaves to the leaves is initiated.
Depending on the sensible heat flux from the air above and below, cooling of the air starts.
The cooling of the air continues till the leaves reach the dew point temperature of the air. In
this stage, a contribution of latent heat flux from the air to the leaves also starts. The
contribution of latent heat flux in comparison to sensible heat flux (Bowen ratio) in supplying
the radiative sink at the canopy top depends on the moisture content of the air brought in
contact with the leaves, and whether that air is left long enough in contact with the leaves, that
it cools enough to reach the air dew point temperature. The contribution of the air above and
below to the air layer in contact with leaves is dependent on the active turbulent transport
mechanism and the feedback from the radiative sink on it.
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The sink in the canopy top leads to a heat flux from the air below in contact with the soil,
which initiates an upward soil heat flux. The unstable profile in the lower part of the canopy
enhances turbulent heat transport from the lower canopy air to the top of the canopy. In the
layer above the canopy, the downward sensible and latent heat flux from the air above to the
upper canopy elements partly compensates for the radiative cooling of the canopy elements.
Such transport is hindered by the stability of the air in this region. In case of light wind speed
at the canopy top, there will be little dynamic coupling between the canopy air space and the
air above. This puts an extra role on the soil as a source to meet the needs of an unsatisfied
sink at the canopy top. The whole equilibrium is achieved anyhow, but at what temperature of
the canopy elements? This is dependent on the radiative cooling and the feedback between
this radiative cooling and the transport processes (a picture of such a flow regime is shown in
page 167). In cases of strong dynamic coupling between the above canopy air and the canopy
{i.e. a strong shear), a gust term is twrned on and the temperature gradient at the layer above
the canopy will be reduced. This increases the relative contribution of the air above the
canopy in meeting the demands of the radiative sink at the canopy top.

The flow regimes can change drastically during night hours; from clear skies to cloudy
skies, stronger wind to lighter wind, or dry air to moist air. All these processes determine the
relative contribution of the sensible and latent heat flux in both of the energy fluxes from
below and above (i.e. Bowen ratio and dewrise to dewfall ratio) 1o the radiative sink.

Shortly after sunrise, the net radiation balance changes sign. The radiative cooling, which
represents the forcing for dew formation, is gone. But it takes some time, till the wind regime
at the canopy top starts picking up and a coupling of the flow between the canopy air space
and the air above is achieved. The realization of this coupling depends on the stability regime
within and close above the canopy. That coupling will enhance the drying process of the
leaves within the canopy. During the drying process, the difference of the surface resistance
between the dry and the wet part of the leaves and the fraction of the wet and dry surface is
important in determining the time constants of the canopy air layers and the value of the
equilibrium vapour pressure of the air layers as shown in sect.4.2. The difference in the
surface resistance between the dry and wet surface of the leaves will depend on the stomatal
resistance of the dry part and how it is controlled (sect.4.5.3). We thus coensidered the
development of the fractional wet area on both the upper and lower surface of the leaves. In

principle, this model can be coupled to an interception model plus a plant pathogen model.

2. 3. 1. 1 The Numerical Implementation

In principle, the above given equations are enough to calculate the energy partition on the
plant surfaces and so the steady state energy sources and sinks within plant canopy. The
thermal time constants of the leaves lie within the cycle of the gust intrusion, and the variation
of the source with time inside the canopy is affected by the storage in the leaves. So we
decided, in the numerical calculation, to use a nonsteady state solution of the leaf surfaces.

A numerical implementation is given here. An analytical treatment of the whole system
of equations (the leaves and the air} is given in sec. 4.2. The energy equation for a certain
surface reads as follows:

29



pC)= aait] --divq + S 237

where: p C; is the volumetric heat capacity of plant material in I m-3 K-! for plant material. It
is assumed that the leaf mass is composed mainly of water, q is the energy flux (whether
radiative or non radiative) to the leal segment. S are the sources and sinks with the leaf

segment or volume in J m-3s-1, % is the ternperature rate of change in K s~ I

This equation expresses the rate of change of energy storage within the plant tissue in the
form of sensible heat due to two effects; the first is negative the divergence of the radiative
and non-radiative energy fluxes. The second effect is the sources and sinks within the plant
tissue. An evaporation flux from the leaf to the surrounding air could be looked at as a sink
term for energy or as a non-radiative energy flux from the leaf surface to the surrounding air,
and so it would be considered as a component in the divergence term.

For the upper boundary of the upper surface of the leaf, we have

t+dt
Ju = - Ry short +PCp (T] " - Tai)/tbh (23.8)

where

g, = is the energy flux at the upper surface of the leaf (+ upwards). Ry, 5ot is the net short
wave radiation. This value was estimated from the divergence of the downward diffuse short
wave radiation flux plus the divergence of the direct radiation {mainly down) flux divided by
the total leaf area increment in the layer (conventionally expressed as one-side). A negative
sign was used since this energy is directed into the upper surface. The second term in the
previous equation represents the sensible heat flux from the leaf to the air (+). The
superscripl, t+dt, expresses the time level of the superscripted variable.

For the lower boundary of the upper segment (half the leaf thickness) of the leaf

Gy =-AVT (2.3.9)

where qy, 1 is the amount of heat conduction from the upper segment leaving through the

lower boundary of that segment. The source term is expressed by

C t+dt t+dt 4
PP leg(T}t9Y - egigl - £ o TH !

¥ (Tleaf,v,J +bv,J) (2.3.10)

S= Rlong, absorbed -

The amount of R]ong,absorbed was determined by the use of eq 2.2.23.

Riong,absorbed,J 4 = Ridown,J (1- Idjong, 1) + Riup,J-1 {1- Wiong 1)

+£0 Thyry 2LADMIDy DZy-2(1- ldjong D€ © Tiaf 1
(2.3.11)

30



this amount was divided by the leaf area increment. The terms are as explained in eq 2.2.23
In the source term expression (eq 2.3.10), we see we had the temperature of the leaf
segment at the end of time step (an implicit approximation). To linearize, we used

pCp t 4
S=R - [eo(T -eqi) - €6 T
long, absorbed Y (r]eaf,v,l +Tbv,J) s\ - Cair leaf
3
. PCp Pes 0| AT - de 6 Thege~ AT (23.12)
Y (fleaf,v,J *tov,]) | dT
where
AT=TH 1 (2.3.13)

The same procedure is done for the lower surface of the leaf. The final discretized
equations will form a set of linearized algebraic equations. These can be solved by the use of
an implicit scheme with the knowledge of the temperature and vapour pressure of the air at
the beginning of the time step and the incoming radiation fluxes. The shortwave radiation flux
is independent of the solution (the temperature of the leaf surfaces). The effect of the solution
on the long wave emission by the leaves is considered within the linearization, while the
effect of the leaf warming on incrementing the upwelling and downwelling longwave
radiation profiles and on the divergence of long wave radiation is considered within another
iteration within the solution of the longwave radiation profiles. Even, if this last effect is not
considered, it is taken care of automatically at the beginning of the new time step. I think the
effect of neglecting this within a single time step would not be important.

The simulation of the amount of dew on the upper and lower surfaces of the leaves at
different height was done. A consideration of the complete qualitative picture, as given in
sect.2.3.1., was done by updating the boundary condition for wind {i.e. the dynamic coupling)
and the incoming long wave radiation. We considered the possible combinations of the upper
and lower surfaces being wet and dry and followed the drying process for the upper and lower
surface of the leaves. A variation of the surface resistances between the upper and lower
surface resistances could also be due to a different response of the upper and lower stomata to
radiation. The different radiation loads, for the upper and lower surface, would be equalized
by the strong coupling between the two surfaces. A leaf in the upper part of the canopy at
night sees the colder sky, while the lower side of the leaf sees the warmer vegetation and the
soil below.

Considering the possible combinations of the upper and lower surfaces of the leaves
being wet or dry, we assumed that for a certain time step there is no correlation between the
position of the wet and dry spots on the upper and lower surface of the leaf, i.e. they have
independent probability distributions. {This correlation through time steps is considered
through the heat conduction from the upper to the lower surface for the different
combinations). This leads to a probability distribution of the leaf segments being the product
of the probability of the upper and lower surface being dry or wet. We had four segments
(w.w), (w.d), (d,w) and (d.d). The first position in an ordered pair stands for the lower surface
and the symbols w and d stand for the surface being wet or dry respectively. So, an ordered
pair (w,d) means a leaf segment with lower surface wet and the upper surface dry. These
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probabilities were determined by multiplying the different combinations of the wet and dry
fractions for the upper and lower surfaces. These fractions were calculated from the total
amounts of dew which were given initially for the first time step or were calculated from the
pervious time step. An assumption was made about a constant average thickness of the water
film layer on the upper and the lower surface of the leaf. From this value, the amount of dew
{initial or calculated) was converted into equivalent wet areas on the upper and lower surfaces
of the leaf. The circular drops were assumed as cylinders with a fixed height. So the
cumulative variation of dew was expressed as an expansion or shrinkage of the wetted area.
Another assumption was made about the ability of the upper and lower surface of the leaf to
hold water. It was assumed arbitrarily that the water film thickness on the leaf upper surface is
twice as large as that of the water film on the lower surface. This is rather arbitrary, but it can
be changed to express the condition of surface wettability.

When the fraction wet area exceeds one, dripping then starts and not before. So there is
no account for stem flow or dew dripping from the leaves due to the leaf fluttering by the
wind.

From the above procedure, we have four combination of leaf segments. For each of them
. we get a temperature of the upper and lower segments with half leaf thickness. The
neighbouring segments could have different temperatures. The coupling between the wet and
dry surface on the same side of the leaf is not as strongly coupled as the coupling between the
upper and lower surface. This coupling was considered explicitly, not implicitly, i.e. as
determined at the beginning of the time step. The importance of the degree of coupling of a
wet and a dry spot on the same side of the leaf is shown by the inverse of this ratio:

nllr? _ r (2.3.14)
n2llrd 2d

where r is the radius of the representative drop diameter for the surface {could be different for
the lower and upper surface). n is the number of drops per m-2 leaf surface. d is the leaf
thickness in m. The coupling or the amount of lateral heat conduction between the wet and
dry spots on the same side of the leaf was considered by the use of the following equation.

Cyg=-A200 rd(TﬂidW)_n
AX
d=Ax (2.3.15)

Cq = ‘)‘vznr(Twet'Tdry) n

% is the heat conduction coefficient of the plant material in W m~IK-1  Ax is the distance
over which the temperature gradient between a dry and a wet spot is taken. This distance can
not exceed the thickness of the leaf so d = Ax. This leads (o the third equation in eq (2.3.15).
This expresses lateral heat conduction for m-2 leaf surface with all its possible combinations.
To express this per m=2 of one combination, we take an averaged weight of lateral heat
conduction from different kinds of neighbours on the same surface for a certain combination.
This equals
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conduby ooy y = r'?“ E 2 PTK,J(TIcaves.i.l,K.J'TLcavcs,i.l,x.y ) (2.3.16)
K=l I=I

where conduh, ..., is the horizontal heat conduction for leaves in leaf layer i, on side |
with wetness condition x, y. Pry ; is the probability of existence of combination K.J and r is

the characteristic diameter of the water drops on side 1.
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Figure 2.4 showing the different combination of wetness for the upper and lower surface.

This term is added then to the heat balance equation of the leaves,i,],x,y for I=1 and 1=2
for the lower and upper surfaces respectively. The non-steady equation is solved and new
values for the temperature of the lower and upper surface of the leaves are obtained.

2.4 The resistances to heat flux from the leaves to the inter canopy air stream

In the energy budget equations, there appear two resistances: the boundary layer
resistance and the stomatal resistance.

The boundary layer resistance is calculated according to the formulas suggested by Gates
(1980) and Monteith & Unsworth (1990) and will be referred to within the computer listing in
the subroutine RESIS or subroutine MOMNTM.

The stomatal resistance is calculated according to:

1) a radiation effect.
2) a soil moisture potential effect which regulates the sensitivity the stomatal resistance to leaf
water potential, as suggested by Tardieu and Davies (1993).

The quantification of CO2 sink within plant canopies was calculated by using a

photosynthetic mode! as explained by Goudriaan (1982).
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CHAPTER 3

TURBULENT TRANSPORT WITHIN AND CLOSE ABOVE PLANT
CANOPIES ***

3.1 Introduction

In this chapter, the governing equations for describing momentum, heat and mass
transport within plant canopies, and the averaging procedures used, will be discussed. Several
approaches, used for modelling heat and mass exchange between the canopy air layer and the
layer of air above it and the assumption behind these approaches, will be covered. The
implications of intermittency on these approaches (Eulerian and Lagrangian) will be
considered.

First, a qualitative presentation of heat, mass and momentum exchange between the
canopy and the layers of air above will be given. From this qualitative presentation, a
qualitative picture of what is wrong with second and higher order closure models will be
given. The governing equations and the averaging procedures used to describe canopy flow
and some of their limitations with long time interval averaging will be shown. A suggested
averaging scheme in which we try to separate between the different contributions of length
scales to the total transport and some of its limitations will be considered. The used closure
assumnptions, in this intermittent approach, will be discussed and justified. Second, a
quantitative picture of the nonuniformity of the (erms in the governing equations will be
given. All of these points give a theoretical justification for the suggested method. Then, a
consideration of the effect of coherent structures existence on the random Lagrangian
approaches used for describing heat and mass transfer within plant canopies will be made.

3.2 A gualitative description of the turbulent transport within plant canopies and its
relation to the governing equations

Momentum, heat and mass transport within and close above plant canopies has a very
intermittent nature. This intermittent nature is due to the passage at the canopy top of

Fig. 3.1 Profiles of temperature{top)
and vapour pressure (bottom} in
Uriarra forest during and after the
passage of a gust.. Baseline for
temperature, 18.5 OC, and for

vapour pressure 6.5 mb. Dashed lines
are contours of constant temperature
and vapour pressure. Arrows depict
the penetration of the gust. Taken
from Denmead and Bradley {1985).
with the kind permission of Kluwer
Academic Publishers.

Time { seconds )
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coherent structures which have a length scale larger than the canopy height and which have a
period of a few minutes. During the passage of these coherent structures at the canopy top,
most of the exchange of sensible, latent heat and a high fraction of momentum exchange
between the canopy air space and the layer of air above take place. In the period of time
between the passage of two consecutive coherent structures, called a quiescence period, a
build up (look at fig.3.1 taken from Denmead and Bradley {1985)) of the temperature and
vapour pressure follows. This build up represenis then the amount of non-radiative energy
and mass which has been delivered by the leaves and the soil surface, representing the
sources or sinks, into the inter canopy air stream and which has not been evacuated by the
turbulent transport processes active then to the layer of air above. In this period, a minor
fraction of the total averaged flux between the canopy air layer and the layer of air above is
observed. Given ample time between the passage of two consecutive coherent structures, an
equilibrium profile would be achieved,

Any how, in the quiescence period, the profiles of temperature, vapour pressure and CO2
reflect the distribution of the non-radiative energy and mass sources within height and they
represent a high value of storage, for the energy and mass exchange of the leaves, within the
canopy air space. The profiles, in the quiescence period, are characterised then by the
existence of a large hump (a positive or a negative one, depending on the sign of our sources).
During the passage of the next coherent structure, the ejection and sweep phases of this
structure would lead to the refreshment or the replacement of the air within the canopy,
partially or fully, with fresh air from above leading in the process to a rapid change in energy
storage within the canopy air layers which represents a high fraction of the total averaged
flux. So, during a very short interval of time compared to the total averaging time, a major
fraction of the total averaged flux is achieved. In an averaging procedure, in which we use
time intervals of averaging larger than the largest time scale of turbulent transport, the
profiles in the quiescence period, in which there is little transport, would deminate the long-
time averaged profiles since those occupy most of the averaging time. The large time interval
averaged flux at the canopy top is controlled mainly by the ejection and sweep phases of the
passage of the coherent structures, which occupy a very short interval (fraction) of the total

. 6 f g Fig. 3.2 Mean profiles of potential
' \ o fe 22054 temperature, ) mixing ratio, r and
N Q'\_ - N ;fr;.\r-}‘ 7 __/ _@’A Co? concentration, ¢, observed in
£ RSN \ Ee238 Fe-023 Uriarra forest over a period of one
5 N, : 3 S o T hour near noon and flux densities of
7] ~— 3 —, ~. L.gf . N 2
T ! o i hY sensible heat, H, (in Wm™<} 4 E,
CY S L N—— ~h- L Latent heat (in Wm*2) and Cog, F¢ (in
H=64 ! AE=59 N - 1 o] mg m~2 571) at different heights.
I 1 11 ] 1
y Taken from Denmead and Bradley
L 00 102 164 aes 329
3 ., {1985) with the kind permission of
c 9/kg ppm

Kluwer Academic Publishers.
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averaging time. This would lead to an anomaly in the {lux profile relationship. An attempt to
fit an in-time-averaged profile to an in-time-averaged flux, which are controlled by two
different processes and which do not occur simultanecusly, leads automatically to the failure
of the K-theory approach to describe heat and mass transport within such a canopy.

A characteristic example of this situation is apparent in fig.3.2, as given by Denmead and
Bradley (1985). Notice the value of the averaging time (one hour). Figure 3.1 expresses a
characteristic sequence of events (an example of heat evacuation during the coherent
structure passage and the buildup during the quiescence period) for a forest. There is no
accompanying flux trace of sensible and latent heat flux at canopy top, but the sudden change
in the non-radiative energy stored in the canopy must have expressed itself in a sudden
increase in the flux between the canopy air space and the layer of air above.

Figure 3.3a shows an identical example of a space-time domain temperature map for a
maize canopy. A space-time domain map is a graph representing on its horizontal and vertical
axis the time and space (height), respectively. This space-time coordinate axis represents an
area which is occupied by different values of temperatures. This is similar to the graphs by
Wilczak (1984) and Gao et al. (1989). By looking at this figure, we see a contour map of
temperature values occupying different regions in the space-time domain. This map was
obtained by using a measurement set which was available at the Meteorology Dept.,
Wageningen Agricultural University, The details of the measurement are given by Jacobs et
al. (1992) and Van Boxel (1988) and will be given briefly in chapter 6 (on validation). These
maps (fig.3.3 a ,b) were obtained by placing temperature sensors and hot bulb anemometers
at different heights which measured, continuously (few hours within certain days) with 5 Hz
and | Hz frequencies the temperature and wind speed signals respectively. The measurement
heights here were (0.1, 0.2, 0.3, 0.4, 0.7,1.0, 1.4 m) within a maize canopy which had a height
of 1.7 metres and which had a cumulative one sided plant area index (PAI} of 3.6. The PAI is
the sum of leaf area index (LAIL) and stem area index.

The map (3.3.a) shows regions or islands of high temperature which are interspersed by
regions of lower temperatures. We see that the heights of the centroid of these temperature
island is centred around the one metre height which corresponds to the maximum plant area
height. Next, we look at the net radiation (Rn) time series graph (fig.3.4) as measured above
the canopy, which is taken as a measure for the incoming short wave radiation at the canopy
top. We sce that in most of the cases there is no correspondence between the two signals (air
temperature and Rn). So, the variation of the air temperature within time was not due to an
intermittency in the sources within the canopy due to time variations of the incoming short
wave radiation due to cloudiness. From a look at a space-time domain map of wind speed
within the canopy (fig.3.3.b), we see that regions of temperature island disappearance
correspond with high wind speed regions inside the canopy. The conclusion we can draw
from this is that the disappearance of the temperature islands is due to the passage of coherent
structures which have accelerated the air within the lower part of the canopy air space and
later replaced all the air within the canopy air space with fresh air from above, thus achieving
a high fraction of the flux. During the passage of these coherent structures, there is an
absence of observable vertical gradients both in temperature and wind speed. In the period
between the passage of two coherent structures, a build up of temperature, shown by
temperature istands, occurs which represents the amount of energy delivered by the leaves
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into the inter canopy air stream and not evacuated by the turbulent transport mechanisms
during that period to the layer of air above the canopy. This process of renewal and buildup
represents an intermittency in the turbulent transport of momentum, heat and mass between
the canopy air space and the layer of air above.

500 . [8607300 experiment Rn ﬁﬂ]
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Fig. 3.4 The behaviour of Rn as a function of time for the shown segment of the data set in fig. 3.3, 3.14
and 3.16.

3.3 IMPLICATIONS OF INTERMITTENCY FOR EULERIAN MODELLING

The problem in first order closure models, as we have seen, is that most of the averaged
flux and the averaged profiles occupy different regions in the time domain, In our procedure
of averaging, we try to fit an averaged profile to an in-time averaged flux. The averaged
profile does not control the direction of most of the averaged flux which occurs mainly
during the ejection and sweep phases of the coherent structure passage. The averaged scalar
profiles are characterised by the existence of a secondary maximum or minimum, depending
on the sign of our sources, while the averaged scalar fluxes are directed upwards or
downwards respectively. This is called counter-gradient transport. Counter-gradient transport
i8 also observed in momentum transport but has a somewhat different explanation due to the
higher role the pressure plays in the momentum transport in comparison to scalar transport
(see Shaw et al , 1990). We will come to this explanation later. There is more than what we
have said to counter gradient transport (Look at Sect. 3.3.1).

The problem of canopy turbulent transport and failure of K-theory approach could also
be expressed in the length scales of turbulent transport within plant canopies in relation to the
canopy scale and the time or space distribution of these length scales. In the period of passage
of the coherent structures at the canopy top, the length scale of the transport is larger than the
canopy height and transport is not controlled by a local gradient. In the quiescence period, the
length scale of transport is quite small in comparison to the canopy height and the source
distribution. This leads to a build up of the storage of non radiative energy within canopy air
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space which reflects the source distribution within height. This buildup of storage establishes
a local gradient which controls the direction of a short-time averaged flux. If turbulence
within plant canopy were small scaled in relation to the source distribution or the canopy
height, this would lead always to the validity of down gradient transport. The Lagrangian
integral time scale would have been small, and the effects of the superposition of
the near field concentration field on the total one would have been minor. We
would not have seen then this cycle of build-up and depletion. We would not have seen a
jump in the scalar fluxes signal above the canopy (see for example Denmead and Bradley
1985, fig. 8). If the length scale of transport were always large compared to the canopy height
or source distribution, we would have seen no or very little build up of the vapour pressure or
temperature of the air within the canopy and no jumnp in the flux signal at the canopy top. In
this case, the Lagrangian treatment would have not been valid (a conclusion we
make from Sect. 3.7). The change of the storage within the canopy would have played no
role in the transformation of the signal at the leaf surface to the signal at the canopy top. The
signal at the canopy top would be coupled more to the forcing signal (the solar radiation)
affected by the time constants of the leaves, and there would be no delay due to turbulent
transport or equivalently due to the storage change within the canopy air,

Meanwhile , we have come to two important questions, which we try to tackle:

la) Is intermittency in turbuient transport due to the existence of coherent structures,
with_a length scale larger than the canopy height and which have a certain frequency. a

characteristic feature of canopy flow ?
2a)What consequences does _this have on the approaches used for modelling heat and
mass transport within plant canopies and their validity ?.

Concerning the first guestion 1a about the universality of coherent structures existence in
canopy flow and their effect on intermittent transport, the work of several authors in
numerous papers shows signs of this universality. Finnigan (1979) in his study on momentum
transfer on wheat crop, had found that most of the transfer occurred when gusts originating
from near the top of the equilibrium boundary layer penetrated the canopy. The velocity and
shear stress profiles at these times were quite different from those during lighter winds. Much
. f the same mechanism appeared to influence the transport of scalars in an experiment in a
Urimira forest (Denmead & Bradley 1985), Shaw ez af .{1983) and Shaw (1983) showed,
from measurements made in a corn canopy, that relatively large fractions of the total
Reynolds stress occurred in a small fraction of the total time. In his example, near the top of
the canopy about 50% of the momentum transfer occurred in 6% of the total time.

Gao ef al. (1989) have shown that time/height cross sections of scalar contours and
velocity vectors portray details of flow structures associated with the scalar ramps. A ramp is
a gradual increase or decrease in the signal terminated by a sudden decrease or increase
respectively, depending on the stability of the air above the canopy. He has concluded from
the magnitude of the temperature drop that the cold air originates well above the canopy
(what he considered at least twice the canopy height) because the mean temperature profile
shows only a slight vertical temperature gradient in the above canopy atmosphere. In the
same study, in a data set which were collected under near neutral stability (run B in the
study), there were ramp patterns in humidity but not in temperature because the mean
temperature gradient was too weak. Although the mean humidity gradient was apparently
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sufficient to allow ramp production, the moisture flux did not contribute to destabilizing the
flow, as indicated by the relatively large magnitude of the Monin-Obukhov length (L=-1063
m). Therefore, without significant buoyancy effects, shear must be the major factor in the
dynarnics of structures associated with the ramps. From the latter study, we see from the ramp
patterns (fig.1.a of the last study} at different heights that the coherent structures associated
with such ramps must have a horizontal and a vertical extension which is larger than the
canopy height. The word horizontal comes here because the highest two measurements were
on a tower 25 metres to the west.

Raupach et al. (1989) give an explanation why coherent structure existence would be a
characteristic feature of canopy flow. They show from examining data on turbulence statistics
in seven uniform, thermally near-neutral canopies that despite their great morphological
variations, these canopies have a number of universal characteristics. One of these
characteristics was the existence of an inflection point in the mean velocity profile U{z) near
z=h. These seven canopies include: two forests, two comn canopies and three wind tunnel
mode! canopies. The height of the canopies (h) varied over a factor of 400 and U* ranged
over a factor of 10 or more. Assuming an analogy between turbulent flows in plane mixing
layer and turbulent flows in the vicinity of plant canopies, and from a linear stability theory
analysis of the eatly stages of transition of this flow to turbulence, theorems due to Rayleigh
second theorem and Fjortoft (Drazin and Reid, 1981) show that a necessary condition for the
Rayleigh equation to have an unstable mode is that the mean velocity U(z) must have an
inflection point at which du/dz is a maximum. Also Tollmien (1929,1931) proved that this is
a sufficient condition. These unstable modes generate transverse vortex motions, called
Kelvin-Helmholtz waves, which are associated with inviscid stability. These transverse
Kelvin-Helmholtz waves constitute an entire family of motions which can grow in a mixing
layer but are not possible in a laminar boundary layer. Following the primary instability
process described by this theory, the subsequent development towards a fully turbulent state
includes several instability processes (Ho and Hurre, 1984), most of them non-linear and not
describable by linear stability theory. The transverse vorticity in the Kelvin waves collects,
under a non-linear self-interaction, into a string of concentrated blobs or cat eyes, linked by
braids of vorticity. The concentrated transverse vortices underge a non-linear, stochastic,
pairing process which introduces irregularities in the spacing between vortices and provides a
mechanism for the vertical spread of mixing layers. The main process leading to a break-up
of the transverse vortices is a three-dimensional secondary instability which produces
longitudinal vorticity (i.e. double roller structures as in fig.6 of Raupach et al. (1989)). These
structures are thought to be essentially those responsible for the main ramp patterns
observable on time traces,

So even if coherent structures were not there initially, they will result as a consequence
of the existence of an inflection point in the velocity profile. This explains the mechanical
induction of the coherent structure.

Coherent structures can be also thermally induced. These coherent siructures could be
small or large. The small ones could result due to inhomogeneities in the surface heating in
the field i.e. hot dry spots (i.e. wide distance between trees in a localized irrigated field). The
appearance of these structures will depend on the magnitude of the shear and its ability to
smear them out. The larger scale thermal coherent structures which are a characteristic of the
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convective mixed layer play also a role in the transport of scalars and momentum while
intruding into plant canopies. The structures which are seen in the graphs (3.a and 3.b) are not
only the ones which result from dynamic induction. The relationships derived from Raupach
ef al (1989) for the frequency of occurrence which relates to U*/h, gives a higher frequency
than the ones seen in fig.3.3.a. The ones in these graph are having also a larger duration of
the gust intrusion.

It is assumed by Raupach that the mechanically induced structures are the main ones
responsible for the ramp patterns observed on time traces. The role of the thermally induced
ones in heat and momenturn in atmospheric surface layer is shown from the work of others
(Schols, 1984 and Wilczak, 1984). These structures would intrude into the plant canopy
leading to the achievement of a large percentage of the flux. The effect of thermal stability on
the coherent structure frequency of occurrence has been investigated by Leclerc et al. {(1991),

The ejection of low momentum fluid, which accompanies the intrusion of the large scale
structure, would lead to the development of somewhat instantaneous inflection points, which
would also lead to the development of smaller scale coherent structures in a mechanism as
explained in Raupach et al. (1989). So, from a large scale coherent structure, there would
develop a smaller one.

Possibly, there are two populations of coherent structures which are working on heat and
mass transport within plant canopies as has been suggested in shear layers (Cantwell, 1981).
The duration and the frequency of both populations will differ. These two populations are
superimposed upon each other.

From the previous two examples, the forest and the maize, we have seen a common
picture of coherent structures with the following characteristic:

1) They have a certain frequency of occurrence.

2) They have a large length scale larger than the canopy height.

3) They intrude into canopy air space, replacing the air inside the canopy with fresh air from
above;

such that they become the main agents for heat and mass transfer (also for momentum , with
a higher role for the pressure correlation). This intrusion leads to the appearance of a
coincidence in the intermittent signals of turbulent transport fluxes at different heights within
plant canopy and also a coincidence in the scalar concentrations.

Concerning the second question 2a about the effects of turbulent transport intermittency
on available approaches used for modelling heat and mass transport within plant canopies,
these available approaches lie mainly under twe main categories: Eulerian approaches and
Lagrangian ones. The Eulerian approaches include local and non-local approaches. The local
approaches include first, second (Wilson and Shaw 1977} and higher (currently maximum
third) order closure models (Meyers and Paw U, 1987). The non-local closure includes the
transilient turbulence approach (Stull, 1988) and the non locality term in a first order closure
approach by Li et al. (1985). The Lagrangian approach include the random walk models (e.g.
Legg & Raupach 1982, Wilson et al , 1981, Flesch and Wilson 1992, Wilsen and Sawford
1995). An evaluation of some of these models is given in Baldocchi (1992).

The aim of all available approaches in their application to canopy flow is to predict the
state variables of the canopy-soil-layer of air above the canopy system {e.g. air and soil
temperature and air vapour pressure at different heights) in response to some forcing
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variables (solar radiation, air temperature and vapour pressure at screen height). The whole
system is divided into several subsystems: a canopy air plant subsystem, a plant
subsystem and a soil plant subsystem. The solution of the state variables
describing this system requires the simulation of the response of the different
subsystems to the forcing imposed on them and the interaction between them. For
the canopy air subsystem, this requires the solution of a coupled set of time- and/or space-
averaged turbulent transport equations describing canopy turbulent transport processes
{Reynolds averaged Navier Stokes equations). A time step of simulation of a few minutes
{e.g. 6-7 minutes) would be good enough to follow a diurnal cycle. In the turbulent transport
subsystem, we assume that the same interval should be good enough to follow the sub-system
dynamics. We use some closure assumptions to parameterize the effect of the correlation
between state variables within this averaging time period on the solution. Within that period,
there should be ne other cycles of intermittency which have a correlation with a behavioural
aspect of our system and which do not in the mean sum up to zero. Ignoring or wrong
parameterizations of correlations which do not sum up to zero would lead to a deviation
between the observed and the simulated behaviour of our system depending on whether the
correlations which affect our system summed up to zero or not, To overcome the problem of
having cycles with an interval less than our time of averaging and which we suspect to have
non vanishing correlations, we have two options:

1} Put these correlations back in the large-time averaged equations and parameterize them
correctly.

or

2) Reduce the time step of simuiation and take account of the intermittency cycle and its
correlations explicitly.

We always try to optimize our calculation by maximizing our time step of simulation
without loss of relevant information. So, we try first to follow the second approach, i.e. large-
time interval averaging.

That brings us to a question: 1b)What assumptions do we need for valid

averages (appendix 1.A) and the effect of deviating from these assumption on the
solution?

The Navier Stokes and their Reynolds averages are nonlinear except for the
instantan scalar eguatj he mean lar e i in which a firs
order closure is used. In the case of a linear equation, the equality

f(x) = f(X)

holds. This means that we can use the mean of an independent variable to
determine the mean value of a function. The same large-time interval averaged
value for a linear function would have been obtained while considering or not
the effect of intermittency on the solution. I think that the justification for using
large-time averages on a non-linear equation could have been that, despite the
nonlinearity of the equation, the terms were assumed to be more or less uniformly
distributed within time. Turbulence was assumed more uniformiy distributed, like
the space distribution of different sizes of sand particles on a sheet of sand paper.
The role of pressure on destroying the correlations, even if they exist, is assumed
to be quite large. The rate of solution convergence by going higher with the
closure level is assumed to be large, i.e. the value of the initial correlations are
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low and more uniformly distributed**. The existence of the coherent structures
with a spatial separation and their role in creating non-uniform correlation at
high order led to the breakdown of that assumption. Reynolds(1894) has shown
that one needs a uniformity of the turbulent* signals within the averaged volume
or time interval to obtain a valid averaging of the momentum equation. The
combination of nonuniformity of the terms and nonlinearity in these equations
make the situation difficult. The averaged system of equation will not be strictly
valid. The correction for the deviation from uniformity is attempted through the
inclusion of the higher order terms equations, till we arrive at a complete
dispersion of the correlations. The solution which we obtain will then be
dependent on the assumptions used to close the equation, their validity and the
effect of the difference between realistic and assumed ones on the divergence
between the simulated and measured behaviour of the system. Adopting valid
assumptions to average and describe the exchange processes and comparing the
results of this assumptions with reality determines if our assumptions are correct.
A difference between the measured and the simulated behaviour could be due to
WO reasons;

1) Ignoring or wrong parameterization of correlation which do not sum up to
zerag,

or

2) High sensitivity of the system to these variables at certain regions of its domain
of solution i.e. small error in the initial value or the closure assumption results in
high error or magnifies with the progression of simulation. That depends on the
path of the system equation solution on its n dimensional phase space and
whether very adjacent paths diverge widely later.

By decomposing the signal into a large scale and a small scale which are more
uniformly distributed within the considered intervals, the assumption of
uniformity is more valid during the quiescence period. In the intrusion, we used a
closure assumption for the effect of coherent structures on the refreshment.

To overcome a hump (a secondary maximum or minimum) in the averaged profile and
achieve a flux through it, we need to allow for a higher order term to achieve this and retain
some of the information we have lost. Use of a higher order closure model shows a hump in

**For this remark, LOOK AT APPENDIX 1.A, there is also a segment of the article
which was written by Reynolds (1894) saying that : o
* defining S1 to be such that the space variations of U,V.W_are approximately

constant gver this space, we have putting u'v', & c., for the mean values of the
squares and products of the components of relative-mean-motion, for the
equations of mean-mean-motion,

du—_(dpy + puu+pun)
PI [dx( xx+ P 7[—’
d o, — e
+ S (Pyx + puv+puv)
by Y

d 5. T
+ -4 (Pzx + puw +puw)}
dy

which equations are approximately true at every point in the same sense as that
in which the equations of mean motion are true".
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the large-time averaged profile and maintains a flux through it. One may suggest then that by
the use of higher order closure models, we can then take account of counter-gradient transport
(defined on the mean; there is another definition, look at 3.3.1) and that would explain the
whole story. The question is: if through the use of second and higher order closure models,

we could put back the information we have_lost of non vanishing correlations or phase
relationships in our system and get correct solutions of the equations? We mean by these

phase relationships, that the passage of coherent structures introduces a lot of correlations
(i.e. correlations between vertical wind velocity and heat flux (a third order term) or vertical
wind velocity and temperature(a flux} etc.). All these correlations happen within a coherent
structure cycle which is less than our time step of simulation. In a numerical solution by
second or higher order closure models, two assumptions are made:

1) uniformity of these high order terms within our time step of simulation.

2) that they have no cycles of change which have correlations not vanishing to zero in the
mean or within the time step of simulation. The step of simulation is usually small enough to
follow the boundary conditions changes at canopy top, bui quite coarse for following the
correlations which develop within a coherent structure cycle.

Due to the high nonlinearity of the system, a large-time interval averaged value for a
higher order term within our time step of simulation would not be equivalent to a fluctuating-
in-time value for that higher order term, which has the same mean, in its effect on the
solution. (Appendix 1.A). Also, the behaviour of the higher order terms affects the
assumptions used in their closures. To follow what happens perfectly, we have to: {) go
higher with our closure level to include the correlations and keep our time step large till we
get a complete dispersion of the correlations. or 2} reduce our time step of simulation and
apply the closure assumptions where they are appropriate. This is what we call a continuous
versus intermittent treatment.

In second or higher order closure models, to reduce the importance of third order or
higher order terms respectively, the ideal situation would be that these terms are
homogeneously distributed in time, or, in time and space. If these terms were distributed
homogeneously in time but non-homogeneously in space {i.e. in the vertical), the value of the
divergence in these terms would have a constant value and could have been measured or
parameterized and put directly in the equations. Hence, there would have been no difference
between an intermiftent and continnous treatment of the closures. If these terms were
homogeneously distributed in the time and space domain, the value of the divergence in these
terms would have been zero and their importance in the second or higher order closure
equations nil {negligible). If these terms were randomly distributed, this would lead to zero
correlations and a reduction of the importance of these terms, When neither of the above
conditions is satisfied, an ideal situation would be going higher with the closure level (n) till
we encounter the higher order term (n+1) in this equation which is completely randomiy or
homogeneously distributed. This consequently would guarantee for us the convergence of the
solution and absence of gain from going higher with the closure level.

But what is the situation of second and higher order closures in our cancpy flows? The
existence of coherent structures in canopy flow with their characteristics correlates in their
passage the fluxes of momentum, heat and mass with one another. This will lead to highly
localized values in the time domain map of the correlations between the vertical wind
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Fig. 3.5.a Vertical cross- section of ensemble averaged w'u'w” fields normalized by u*? with contour
interval of 3.5 under unstable condition (L =-138 m),during Run A.. Solid lines represent positive
w'u'w’ and dashed lines represent negative w'u'w’. Taken from Gao ef al 1989, (fig 12.a) with kind
permission of Kluwer Academic Publishers.
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Fig. 3. 5b. The same as fig 3.5a but for w'w’T’ normalized by -T* u*2, with contour intervals of 0.2.
Taken from Gao ef af 1989, with kind permission of Kluwer Academic Publishers.
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Fig 3.6 a Vertical cross-section of 1 -s average momentum flux normalized by the square of the friction
velocity calculated at the top of the forest, for the single structure at Run A as shown in figure 3 of
Gao et al 1989. Centour interval is 2.0. Dashed lines indicate negative u'w’ and solid lines indicate
positive uw'w’. Taken from Gao et al 1989 with kind permission of Kluwer Academic Publishers.

2.5 e t
[ N
&‘/ | ‘ 1’l i
i ]
R
2.0 o gJ ]
Sy
|
£ ™
~N
2 1.9 4 [ r
=y
(2]
: ||
I [\) |
N
= 1.01; \j? t
2
E
[
Q
= A —
0.5 4 -
qu ||||||||| - WY PRI A WA T A Ar N UFIN 0 W0 R SR S S A A W L
30 20 10 0 -10 -20 -30

Timels]
3.6 b. Vertical cross section of 1-s average heat flux normalized by -T*u* calculated at the top of the
forest for the same single structure as in fig 3 of Gao ef al 1989. Contour interval is 2.0. Solid lines
indicate positive w'T” and dashed lines represent negative w'T". Taken with kind permission of
Kluwer Academic Publishers.

46



velocity and the fluxes of heat (sensible and latent) and mass (CO2) or between the different
fluxes (third and fourth order terms respectively). This leads to an increased importance of
the third order terms in the second order equations, and that these third order terms become
highly non-homogeneous (Gao er al. 1989 fig.12.a and 12.b, included here as fig.3.5 a,b).
Still in the third order closure, the fourth order terms would represent a correlation between a
momentum, or a variance and a flux which would still be quite large. (see for example Gao et
al. 1989 fig.8a and 8.b and their superposition included here as fig.3.6). Both pictures
correlate highly since both fluxes occupy almost the same regions in the height-time domain
maps. The directional derivative of these fluxes and their correlations is far from
homogeneous, which would lead to a difference between a continuous and intermittent
treatment. It is important to mention that momentum is transported differently from mass and
heat due to the higher role which the pressure correlation terms play in momentum transport.
This would lead to a dispersion of the correlation between momentum or velocity variances
and scalar fluxes. This would reduce the importance of the fourth order terms, but these
fourth order terms would not be completely randomly distributed. Going higher with our
closure level till we obtain a complete dispersion of the correlations would require the
solution of a large number of equations. It could be that the yield we get in the convergence
of the solution by going one level higher is not rewarding, depending on how fast the
correlations disperse when going higher, due to the relative importance of the pressure
correlation on the momentum and scalar fluxes.

The role of the pressure on dispersing the correlations is a function of the velocity field,
since the pressure signal is controlled by the divergence of the flow fields as given by Poisson
equation. The elliptic behaviour of the momentumn equation makes it difficult to tell what the
cause and the effect of this relation. But anyhow, the fluctuating pressure will disperse the
correlations between scalar and momentumn fluxes around the fringes of the coherent structure
where the vertical derivatives are higher. That is where the effect of the pressure on
dispersing the correlations is more pronounced. So, the more dispersed, or spatially
distributed the events, the better is the dispersion of the correlation by going higher. An
example of a static pressure fluctuations is given in fig.3.7b as taken from Shaw et al. (1990)
and fig.3.7a taken from Conklin and Konner (1994). We see from this figure that the pressure
fluctuations are centred around the passage of the coherent structures at the canopy top. This
is related to the velecity field which controls the pressure field. The pressure distribution
terms will be having a higher effect around the passage of the coherent structures. Since the
occurrence of the coherent structure passage is somewhat disperse and the smoothing by the
pressure is centred around their fringes, the variation in the higher order term will not
smoothed cut by the pressure smoothing. The effect will depend on the distance of smoothing
due to pressure redistribution effect in relation to the spacing distance between coherent
structures. We need an overlap of pressure fields resulting from the passage of subsequent
coherent structures. There must be some kind of an optimum or a maximum in the separation
between the events which can be smoothed out by the pressure redistribution terms. In
canopy flow, the ratio of pressure smoothing distance/distance between coherent structures is
much less than one.

To summarize the situation: There are two opposing factors: the role of coherent
structures tn creating high values for the correlation on higher level and the role of pressure
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Fig 3.7.a. Ensemble average of 17 pressure pulse events . From top to bottom, Horizontal wind
component u’, vertical wind component w’, static pressure p’ and temperatureT’. ++++ above

cancpy at 1.3 times canopy height. x-x-x-x within canopy at 0.6 times canopy height. 0-0-0
surface, Taken from Conklin and Konner (1994).
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Fig 3.7b. Association between ejection/sweep coherent structure identified by fluctuations in
humidity (contour interval (.1g/m3) and by fluctuating velocity vectors {maximum arrow length
represents 2.0 m/s}), and surface static pressure normalized by its unfiltered standard deviation. Each
part of the diagram is an ensemble average of events during 30 min period. Taken from Shaw et al
(1990) with the kind permission of Kluwer Academic Publishers.

correlation in destroying these correlations. It seems to me that due to the large role of
coherent structures in achieving high fraction of the fluxes, their length scales and their time
distribution, that even our fourth order terms are quite large in their variation. Gao et al.
(1989) found that the instantaneous (1 second averages) values reach magnitudes which are
larger than the 30-min mean fluxes by a factor of 10 for momentum flux and 14 for heat flux.
In his ensemble average of 10 events, an attenuation of that factor by a factor of 2 (o 3 was
observed. Probably, this high attenuation was because no attempt was made to adjust the time
scales to match ramps of different duration. This led to smoothing of correlations and
masking coherent structure turbulence into small scale turbulence. Had they matched the
coherent structures according to their duration, they would have obtained less attenuation,
This would have meant a worse situation in the ensemble averages. The adjusting of the time
scales to match ramps of different durations would have led to a scaled time map of the
correlations. This concurrent occurrence will mean directly very high values for the
instantaneous momentum heat flux correlation, which is a fourth order term (wu'w't). The
time map of that fourth order would have regions with very high values. The fourth order
map could be approximated by the multiplication of map 8a and 8b of Gao et al. (1989),
included here as fig.3.6. if we assume that correlations of deviations of instantaneous fluxes
from 1 sec mean are minor. The highest order available closure model is a third order closure,
in which an assumption of the homogeneous distribution of the fourth order term is made. It
is clear from the measurement of Gao ef ol (1989) that this assutnption is far from reality,
The distribution of this fourth order correlations is quite non-homogencous which leads to the
invalidity of the following assumption

u;uj'ul; ui = u;uj' ui(ui +uiul; u'-u]' +uiujl ujul'( 3.3.2)
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which is valid only for homogeneous {or gaussian) turbulence. This assumption is used also
in the closure of the fourth order terms in higher order closure models. Based on this
assumption is the closure of the third order term in second order closure model. The same

applies to invalidity of

uiuj'u]'( 0 = u‘iuj’ u'k(-) +u;u]'( ujﬂ +ui9 ujul'( (3.3.3)

The role of the pressure correlation on destroying the above mentioned correlations is
quite real, but it seems due to the characteristics of the coherent structures that at least till a
fourth order term this role is not effective. In a more homogeneous flow, in which the scales
of transport are less effective in correlating fluxes together, the pressure correlation terms
would have less trouble in destroying the higher order correlations, since they have lower
starting values. The dispersion of these terms when going higher would be quite rapid. The
gain of the remaining information would be based on the use of a closure for this
homogeneous higher order term.

So, there are two problems: the nonlinearity of the system of equations, so the use of a an
averaged value for a higher order term is not the same as a fluctuating term with the same
mean, and the effect of intermittency on the closure assumptions used.

Now, what is the solution to this problem?

In simulating any system, there are many scales of intermittency. If any of these scales has a
correlation which does not sum up to zero with a behavioural aspect (in this case the fluxes
and profiles) within our step of simulation, we have to find a way to include this effect in the
averaged equations used for describing the system or reduce our time step of averaging. We
have seen that the normal way of including the effect with long time interval averaging is
increasing the order of the closure, but our convergence rate will be small and at increasing
computational costs. If we have no other method with high credibility for parameterizing the
effect of the intermittent transport on the closure assumptions, and that is clearly the case, we
have to reduce our time step and take account of the interrnittency of the transport directly.

The problem, we assume, is in the large interval of averaging used in second or higher
order closure without consideration of the circumstances under which the averaging and the
closure assumptions for different time periods are valid. We assume that this is due to the
variation within time of the length scales of transport; a large scale at and around the passage
of the coherent structure and a small scale in the remaining period. This affects the validity of
the averaging procedure and the closure assumptions used in higher order closure models. We
suggest to put the correlations back at early stages of closure levels. We do this by trying to
reduce our time step of simulation and apply the closure assumptions when they are relevant
to the scale of transport. This is what we have done, since we assume a separation between a
large scale transport, represented by the effect of a coherent structure on heat and mass
transport, and a small scale transport, represented by the quiescence period. In the period after
the passage of the coherent structure, we could have a problem to parameterize the interaction
between large scale and small scate transport.

The assumption of homogeneity of turbulence could be valid in the quiescence period,
where the length scale of transport is small compared to the canopy height. It could be that K-
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theory works well, with an assumption, in the period between the passage of two coherent
structures, if the length scale of turbulence in this period is small encugh in comparison to the
length scale of the source distribution within the canopy.

For the parameterization of large scale transport, I would like to quote what Raupach ez
al. (1989) wrote: “It is a truism to say that there is presently no theory capable of predicting
coherent eddy structure in fully developed turbulence, such as double roller or transverse
vortices described above, but there are some theories which provide idealised models of some
facets of coherent structures.” We here use parameterizations for the coherent structures by
including a certain frequency of occurrence, degree of refreshment or intrusion into plant
canopies and duration. With the developments in the flow regime simulation, it could be
possible later to obtain simulated parameterizations for coherent gust intrusion into plant
canopies and put these directly in the model we are suggesting.

In the following pages, we will outline the governing equations for describing
momentum, heat and mass transport within plant canopies, and relate the above qualitative
picture to the different terms in the averaged equations. We will also show the intermittent
nature of the other terms in the flux equation

We will make a comparison between an intermittent and non intermittent approach in
describing canopy transport processes in chapter 4 (only for first order).

3.3.1 COUNTER GRADIENT TRANSPORT

In the previous part, we have shown that counter gradient transport emerges when
averaging is done over an interval larger than the interval between the passage of two
coherent structures. So, while the averaged-in-time profiles are controlled by the profiles at
the quiescence period which are accompanied by very little flux, the averaged fluxes are
controlled mainly by the ejection and sweep events, which result due to the passage of
coherent structures at the canopy top and which occupy a very small fraction of the total time.
So due to the averaging procedure, the large-time averaged profiles will have a secondary
maximum or minimum depending on the sign of our sources while the averaged flux is
positive or negative across this maximum. However, counter-gradient transport occurs not
only due to averaging.

Counter gradient transport can also happen instantaneously. This can be shown by
considering what happens during the passage of a coherent structure. Due to the velocity field
which accompanies the passage of the coherent structure at the canopy top, this leads through
the application of the Poisson equation to the appearance of a pressure maximum at the soil
surface. This pressure maximum leads to the acceleration of the wind at the lower part of the
canopy. There exists then a region of higher wind velocity at the lower part of the canopy
through a region of low fluid momentum. This is also some kind of counter-gradient transport

for momentum (Shaw and Zhang, 1992). The acceleration of the flow at the lower parts of the

canopy leads to the ‘;—“ < 0. Due to the continuity, this leads to aTwz- 0, considering that
X oz

Wyail surface =0> Which then represents an ejection phase. After the passage of the inclined shear

layer at the canopy top, the horizontal pressure gradient is negative; this leads to the
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deceleration of the flow and g Because of continuity, this leads to a sweep phase

X

represented by %—“’< 0. One point worth considering here is that the flow equation is elliptic,
z

so information is transformed upstream and it becomes difficualt to tell what is the cause and
what is the effect. Some would say that the gjection phase leads to an evacuation of the air
mass from the lower layers within the canopy, so, a sweep must occur which replaces the
ejected air. Then, an ejection is a cause and sweep is an effect. In the explanation we have
given, the flow field of the coherent structure leads to a pressure maximum which leads to the
occurrence of the ejection and the sweep. The explanation could depend on the scale of the
coherent structure.

W ([

Wind field above the
canopy

Z=h

Canopy top

Cot_mler gradient Scalar Profile
region W' <0 \
C' =0

Counter gradient
Sweep phase region W' >0
P C'>0

Ejection phase

-y

7. A

Fig. 3. 8 shows the velocity field and the inclined shear layer at the canopy top as shown
by Shaw et al (1990) and the resulting pressure field at the soil surface. The occurrence of an
ejection phase or a sweep phase in the existence of a concentration profile as shown here
leads to an instantaneous counter-gradient scalar transport.
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The existence of ejection and sweep phases during the passage of the coherent structures
leads with the existence of a scalar profile in the flow field to the appearance of instantaneous
scalar counter-gradient transport as shown in fig.3.8. So, the flux in this case has nothing to
do with the concentration gradient {the flux could be counter or pro gradient).

3.4 The Governing Equations

There are three fundamental physical principles upon which all of fluid dynamics is
based: the conservation of mass, momentum and energy. These are expressed by the
fundamental governing equations of fluid dynamics: the continuity, momentum and energy
equations. These equations have different forms depending on the way they were derived.
The general procedure is defining a finite region of the flow (a control volume) which is
bounded by a control surface. The control volume could be moving with the flow such that
the same fluid particles are always within it (Lagrangian) or fixed in space with the fluid
moving through it (Eulerian). These equations for instantaneous values of a an infinitesimal
control volume fixed in space read as :

3.4.1 The continuity equation

op -
a—t+V.(pu)-0 (34.1)

(a list of symbols is given in the appendix 3). Which in the case of canopy or atmospheric
boundary layer flow { Ma2 « 1, i.e. V « 100 m s-1 , low frequency pressure waves nL « a,
MaZ « Fr and a characteristic Jength L « 12 km) reduce to the incompressible form:

Vau=0 (34.2)

3.4.2 The momentum equation

IPpup dpuju o e 19D O
at + axj =- 813g - 2 Sl_]k Q_] I.lk - EE +5ij
| II 111 v Vv V1 34.3)

where:

I represents the storage of momentum,

IT represents the advection of momentum.

IIT is the action of gravity.

IV describes the influence of the earth's rotation.

V describes the pressure gradient forces.

VI represents the influence of viscous stress

To a close approximation, air in the atmosphere behaves like a Newtonian fluid Thus, the
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expression for viscous stress allow us to write term VI as :

9 [ [ou ] o [@L
Term VI_(p)BXj {u{axj' +axJ % (3)1't oxk

which after differentiation equals:

B [0% o (H] 5 o
Term VI={ p) {axj' 0% * dxj {axj' 3 9%

which due incompressibility (eq 3.4.2) reduces to

} (3.4.4)

duy
ﬁﬂ } (3.4.5)

2.
Torm VI=v &% (3.4.6)
Ix2
]
dpuj 9P YUY 1 9p 92u;
= ap-2pa O - LOP L0 347
5 3% 5i3 & - 2 gjjk 2 ug p ox; +v asz (34.7)
I IT III v v VI

This is the form of equation which is most used as a starting point for turbulence derivation.
3.4.3 The energy equation

The first law of thermodynamics is expressed by the energy equation, which reads for a
fixed volume as:

2 2
o] dow e

. dg | 9y Tjj
= -+ i Bi 3438
ot * ox; Pd 9% * axJ' TPUE ( )
I I Im v v VI
where:
I is the time rate of change of a fixed fluid element. That is the sum of its internal energy per
2
G

unit mass ¢ and its kinetic energy per unit mass 7‘

1L is the divergence of energy advection

111 is the volumetric heating due to radiation divergence or chemical processes.

1V is the divergence of heat flux.

V is the contribution by the total work (Tij ) to the rate of energy change. This term is the
deformation work and increase of kinetic energy

V1is the body forces work.
This equation can be decomposed into two equations: one for kinetic energy and the
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other one for internal energy. The internal energy equation reads as:

p%%:-V.q—p(V.u)+¢ (349
1 II IIT 1A%
where:

I represents the internal energy change.

IT represents the divergence of the internal energy flux.
I represents the work by volume expansion

IV represents the viscous dissipation.

3.4.3 The Scalar equation

dc Jdc 92c
B g = @ (3.4.10)

I 1 I
The physical interpretation of the terms is as the previous one. This equation is finear.
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3.5 The Averaging Procedures
The equations given above are the instantaneous conservation equations for a fluid
element (no leaves within it). These equations have to be averaged in some way. There are

several approaches for averaging. These could be one or a combination of:

Ensemble averaging approach.

or

Time averaging approach.
and/or

Continuous volume averaging approach.
or

Control volume averaging approach.

The averaging leads to the appearance of correlations between deviations of the
quantities from their averages. These correlations have to be parameterized or solved
explicitly by developing their own prognostic equation. In developing those latter equations,
stilt higher order terms appear which have to be solved explicitly and so on. This constitutes
the closure problem in turbulence. In this part, we cover the different averaging schemes and
the resulting unclosed correlations. We will also discuss the effect of the intermittency on the
form of these correlations.

In our canopy soil system, there are several scales of inhomogeneities or intermittencies
in the spatial and time domain, respectively. In any time or spatial averaging procedure, the
size of the averaged volume or size of the averaged time interval has to satisfy two main
criteria, namely equations (3.5.1). These criteria are given in Bear and Bachmat (1990) for
spatial averaging in porous media. These criteria would apply automatically to an ensemble
average, since in well behaved natural systems, the satisfaction of these two conditions is
guaranteed. In time averaging or continucus control volume averaging , there must exist
some separation in the scales of inhomogeneities or intermittencies for these two condition to
be satisfied. This is an assumption which we make.

on (x,9) _

T|S=SO_O (351.3)

I1i(x) n¢x+h)l

j(ﬂn_(?;;)ﬂﬂ -0 (3.5.1.0)
I S=SO

where:

n is the property under averaging,

n is the deviation of this quantity from its mean

5 is the volume, time interval or number of ensembles.

S0 is the chosen volume or number of ensembles or length of time interval
x 18 the centroid of the averaging domain.

h is the separation distance.
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In the spatial domain, we start with a fluid element in the canopy air space. Enlarging
that volume to include a representative volume for the air and plant part represents the
averaging volume |. The canopy air space is a multiple interconnected air space, which
means that any closed surface within the air space can not be shiunk to a point without
crossing a solid space. This volume averaging will lead to the appearance of source terms due
to the interaction between the plants and the air. The averaging rules for flow within porous
media are given as eq.3.6.1 and eq. 3.6.2. We end up with cubes, in which the effect of plant
leaves interaction with the air stream are included in the governing equations. Increasing this
volume further to include a representative volume for a certain canopy type with its within
row and between row inhomogeneities represents the secend larger averaging volume. It is
assumed that there are no correlations due to plant geometry which do not sum up to zero
when going higher with our averaging volume from the averaging volume 1 to averaging
yolume 2. Going further with our averaging volume te have a representative volume for a
region with two or three types of vegetation represents the third higher averaging volume. In
all of these volumes, it is assumed that the given above two criteria hold. This is equivalent to
assuming that a separation in the scales of inhomogeneities on the different levels of
averaging exists. For all of these levels, the values of the correlations which result due to
deviation of the averaged quantities from their means should be defined or parameterized.

In the time domain, there is the annual or diurnal cycle of global radiation. The latter one
would represent the cycle of interest in our scale of canopy climate modelling. We need to
average with an interval which is small enough to follow the changes in this diurnal cycle (6-
7 minutes averages). The small turbulent scales of transport lies within this cycle. Small scale
is meant relative to the synoptic scale. Within this time interval lies the different scales
responsible for turbulent transport within the canopy. With the time interval of averaging, the
values of the correlation which result due to time averaging have to be incorporated in the
averaged equations.

There are the several variants in the averaging procedures. Our aim is to have one variant
which has an easy parameterization. With different averaging procedures, different terms in
the averaged equation will resull . Below, we will show the different averaging procedures

Fig.3.9 shows a horizontal extension of a canopy layer with a layer of air above it. This
air layer contains coherent structures which are distributed in some manner in the flow field.
The structures could be thermally or mechanically induced. The structures which are
mechanically induced and the large thermally induced ones will be convected with the flow
field. Given enough averaging time, these structures will pass through every point in the
field. The small size thermally induced structures will be more localized to the hot spots in
the flow field i.e. a hot bare soil surface, They may disperse or move around, with the mean
wind, but they will still be localized. The existence of those structures will depend on the
heterogeneity of heating at the soil surface and the ability of the wind shear to smear out these
small scale thermally induced structures. In a time-spatial average, if they persist in a certain
location they will show as a correlation between a vertical wind velocity spatial deviation
from its mean and a temperature spatial deviation from the spatial mean (equivalent to term
1112 in eq.3.5.2 ) This is called dispersive flux in the case of canopy flow. The value of this
correlation depends on height, since the averaging process by turbulence will need some time
to smear them out. The large scale thermally induced structures, will also be convected all
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over the flow field. So, given enough averaging time, they would not show up as a spatial
deviation from a spatial mean.

We assume that these coherent structures have a double roller structure, as shown in a
more detailed manner in fig.3.10, and that these are the main ones responsible for the major
part of heat, mass and momentum transport.

0
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Fig 3.9. A figure shows coherent structures as represented by the ellipsoidal shapes with a
certain distribution in a layer of air above a horizontal expansion of a canopy layer. The
large parallelepiped volume is the maximum size of averaging volume 2. The inner
parallelepiped represents stacked above each other volumes, which have the minimum size
of the averaging volume 2. It is assumed that increasing the horizontal extent of these
volumes, which are stacked above each other, to a horizontal scale as large as a coherent
structure represents no loss of information. A detailed figure representing an inner
parallelepiped is shown in fig 3.10. The shaded region in fig. 3.10 represents an intermediate
size of averaging volume 2.

In time-averaging procedure, we consider one point in the domain or an averaged
volume (which is larger than small scale canopy inhomogeneities) and do the averaging with
respect to time interval length larger than the largest time scale of transport. The resulting
equation reads as:

[

dlu: u.
8(‘.) e ,?{““} NN/ _ 19 1 2 2
Y ElxJ 0%, Tk ox;j poxj p ax V) V<V '>

I I 1 12 v v VI VI
(3.5.2)
where:
I s the time rate of change of the time mean momentum (component i} of a volume
average.

II is the convection of the time mean momentum of a volume average (LTI) by the spatial
time mean momentum <u__]>

IIT1 is the divergence of the turbulent transport due to spatial time averaged correlation
between time deviations of the instantaneous momentum from its time mean.

1112 is the divergence of the turbulent transport due to spatial time averaged correlation
between deviations of the time averaged momenturn from its spatial time mean (look at
£q.3.6.7) . This term is called a dispersive [lux, and it represents the effect of correlation
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between inhomogeneities in the spatial domain on the total averaged flux

IV is the gradient of the spatial time averaged pressure.

V  is the spatial time averaged gradient of the spatial deviation of pressure time mean from
its spatial time average. This represents the effect of the form drag force by the leaves on
the spatial time averaged momentum.

V1 is the effect of molecular diffusion on the divergence of momentum flux.

VILI is the effect of the spatial time averaged divergence of spatial deviation of time averaged
momenturn from its spatial time averaged values. That term expresses the viscous drag
by the leaves on the flow.

We have seen in this procedure of averaging a complete failure of K-theory approach.
Averaging spatially within a scale larger than plant parts is required to consider the sources
and sinks within plant canopies. So a column or a cube is then considered. Use of second
order or higher to obtain a counter-gradient transport has some assumptions, which are not
fulfilled, concerning the uniformity of the behaviour of the terms within our time step of
sirnulation and the closure assumptions, as we have shown qualitatively in the first part of
this chapter.

Another variant is the spatial averaging procedure with a volume which is larger than the
small scale of inhomogeneities and larger than the largest scale of transport. This averaging
volume will be comparable to the horizontal volume shown in fig.3.9. It is like taking a
snapshot of a representative picture of the flow field.

(LT

Hujj + (uj> i) + M =1 % 1 <al> +VV2(ui) +v<V2ui">

ot J%; 0x; pox p\ox; (3.5.3)
1 1L IH1 1AY v VI VIl
where:

I  is the time rate of change of a spatial average of momentum.

1T  is the convection of the spatial averaged momentum (ui) by <uj>

IIT  is the spatial averaged divergence of turbulent momentum flux due to the spatial
averaged cotrelation of momentum from its spatial averages.

IV is the gradient of the spatial averaged pressure,
V  is the spatial averaged gradient of pressure deviations of the instantaneous values from
its  spatial mean. This represents the effect of the from drag by the leaves on the air flow.

VI is the effect of molecular diffusion on the divergence of momentum flux.

VI is the effect of the spatial averaged divergence of spatial deviation of momentum from its
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spatially averaged values. That term expresses the viscous drag by the leaves on the
flow,

Problems arise due to the quiescence profiles dominating the spatial averaged profile,
since they are represented by a targer number of columns in which there is very little flux,
while the averaged flux is mainly controlled by the columns lying under the coherent
structures. The number of such columns are quite small in comparison to the total number of
columns. This will lead to the same problem as in the time averaging with a time scale larger
than the largest scale of transport.

In an attempt to correct for this, we try to go higher with the closure. The objections for
this has been raised in Sect. 3.3. In Sect. 3.6.C, a measured time behaviour of the terms in the
second order equation is shown.

3.6 AN INTERMITTENCY APPROACH*

We have seen in the first part of this chapter, that the other option for considering the
effect of intermittency on the closure assumptions for the higher order terms is to reduce our
time step of simulation and to take account of the correlations explicitly. In trying to develop
an intermittent turbulent transport model, our averaging volumes and averaging time have to
satisfy the two above mentioned criteria (equations 3.5.1). Since the coherent structures have
a large cross flow dimension, we need to define an averaging volume such that the horizontal
divergence of the fluxes due to the spatial dimension of the coherent structures is equal to
zero. We assume that the cross stream dimensions of the coherent structure are larger than the
scale of canopy inhomogeneity in that direction, and that there is a divergence zone in the
flow which achieves no horizontal divergence of the flux of the momentumn and scalar fluxes.

First, we do the volume averaging till averaging volume 1. That will give us
parallelepipeds stacked above each other, in which the interaction between the leaves and the
air is included. The horizontal layer shown in fig.3.9 constitutes a large number of columns,
each representing such a stack of averaged volumes above each other. Increasing the size of
the averaging volume from volume 1, where the volume averaging is done for air and leaf, to
volume 2 leads, as we have assumed 10 no appearance of correlations between sources at
averaging volume 1 to averaging volume 2. Enlarging the averaging volume from volume 1
to volume 2 then would introduce no loss of information. The averaging volume 2 has a
minimum size which includes small scale canopy inhomogeneity. An intermediate size of
average velume 2 would have a horizontal extension, which is large enough to include small
scale inhomogeneity (i.e. within and between row inhomogeneities) and to be of width as
large as the cross-stream dimensions of the coherent structures. The dimensions along the
flow are such that small distances can be covered in the buildup process of scalars during the
quiescence peried. The averaging volume 2 has a vertical thickness which would allow us
enocugh resolution of the vertical profiles within and above the canopy. This volume is
represented by the shaded region in fig.3.10. The spatial averaging used is a control volume
averaging approach. This process has the same characteristics as the ensemble averaging. In
enlarging the averaging volume from | to 2, we do not have the problem of the
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noncommutivity of spatial averaging and differentiation. We have already done this in
obtaining the averaging volume one.

We assume that the canopy flow is a repetition of cycles of refreshment and build up
which are caused by repeated passage of coherent structures at the canopy top. We do
ensemble averaging on different cycles of coherent structure occurrences by adjusting the
occurrence of the ramps associated with the ensembled structures and adjust time scales to
match ramps of different durations. This will constitute our ensemble average at different
points in the time cycle. This is shown in fig.3.10 by ensemble averaging of three large
volumes, each with a counter-rotating double-roller structure in it. The purpose of using these
larger volumes is to obtain an ensemble representation of ali the stages of the coherent
structure. Our averaging volume (the shaded area in the fig.3.10) will be such that along the

An ensembe average
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Perpinduclar to the flow direction represents different stages
represents an average for each of the cycle

stage

Fig 3.10: An ensamble average of three cycles which were
adjusted for the occurence of the ramp and to match cycles of
different durations.
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direction of the flow, there is not so much variation, while perpendicular to flow direction,
the size should be large enough to have a horizontal divergence of fluxes equal to zero. The
profile represented will be an average of several volumes across the flow.

There are two possibilities for the existence of such a volume depending on the
distribution of the coherent structure in the flow field. In the case of a complete coverage of
the flow field by paralle! lines of these coherent structures, which have the same line of
vorticity, the existence of high pressures regions under the boundary of the double-roller
structures which are counter rotating leads to the satisfaction of condition (eq.3.5.1). In the
case of dispersed distribution of the double-roller coherent structures, perpendicular to the
flow there will exist a region of no horizontal velocity, due to the canopy drag. The difference
in the duration of different gust cycles could be due to a variation in the gust intensity or
simply due to that the passage of the coherent structures by the masts, used in the
measurement, was along different sections.

We could have done our averaging directly on averaging volume 2. We get then an
equation in which the source terms are shown due to the non-commutivity of the spatial
differentiation and volume averaging. We then do ensemble averaging on the volume
averaged equations.

In fig.3.10, it should be noted that there is a transformation: A particular control volume
would occupy different regions in the three big cubes imposed upon each other while keeping
each volume height and relative position in relation to its neighbours the same. Because of
this, one control volume will see different regions in the gust and no-gust region. In this
figure, we tried to superimpose three double-roller coherent structures above each other.

The spatial averaging rules for a multiply interconnected air space with moving
canopy elements read as:

1. For a time derivative:

9 edU = %* U+ eu.n ds (3.6.1)
ot ot
Uoalr) toali) sofD

2. For spatial derivative:

d G
| Gu. dU = Up —L=— - Gy cos(m,1x;) ds
Xi f e Xi cof (3.6.2)

The derivation of these averaging rules are given in Bear and Bachmat (1990). The
application of these averaging rules on the instantaneous equation lead to the instantaneous
volume averaged equations which read as.

ﬂ A uuy) _ i au, 1 i ” K %ds (3.6.3)
at 0% % axJ v s " on
1 I 11 v
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A similar equation with a continuous volume approach is given in Finnigan (1985). The
last term in these equations express the effect of the sources within our averaging volume.

By decomposing the turbulent signal into a small-scale component, which is dominant in
the quiescence period, and a large scale component which is dominant during the gust
intrusion period, we get

uj ={uj) + u] +uf+ uil
" / (3.6.5)
= &
U.J —<U.J> + U.j +u] + U.j

c={g)+¢” +cS+ el

where:
15, are the instantaneous values

;) <uJ> ,{c) are the volume averages of an ensemble mean or the ensemble mean of a volume

mean (that does not matter).

i1} H " . . .
i uj ,¢ are the deviations of an ensemble mean from its control volume average
uf , ujS ,cSare the ensemble deviations due to small scale(s) for uj, uj, ¢ respectively

u]l , ujl ! are ensemble deviations due to large scale(l ) for uj, uj, ¢ respectively

u

where:

ui+uf=0 (3.6.6)
s l =

uJ+ u~| 0

s+l =0

U = {7+ u; (3.6.7)

= i)+

t=[+c"

We assume that small-scale turbulence has a gaussian distribution with a time mean of
zero. The total probability distribution of canopy turbulence, which describes the sum of the
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large scale and small scale turbulence, is positively skewed for the v component and
negatively skewed for the w component due to the effect of coherent structures on turbulence
statistics. Because of the assumption of the gaussian distribution of small-scale turbulence,
the time mean of the probability distribution of large scale turbulence is equal to zero. The
region between the total probability distribution of u' and w' turbulence and the small scale

turbulence, the latter was assumed to be the same for both u' and w', gives a probability

f. uf ! which will also have a mean of zero. In this averaging scheme, we
could have assumed in the division between small-scale and large-scale turbulence that the

ensemble mean of both of them is zero, by definition, but that could mean that our u; ,u;, ¢

distribution for u

would have two different values. We get in the equation for momentum or scalar the
following terms:

!
J
"o 5 " T8 - w i
u uiuj u; u_l y; LlJ a0 c uj c Uj
T o wiud wiud $ Su; o ol
") 17 171 TiY) LY ey crpoeY
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1 2

Ensemble averaging for equations 1 will lead to the disappearance of the last two values
on the first row and the first column. The u; is assumed negligible due to the fact that
coherent structures we are considering are convected, they are moving around and they would
not show in u1 We assume no heterogeneity within our averaging volume. In case of
coherent structures which are due to inhomogeneity in the field, i.e. between row and within

] could be also decomposed to small scale and large scale. Volume averaging will lead

to the disappearance of the second element of the first row and the second element on the first

" " n " '
column. The u;uf uiu! ,ufu., and utu, are terms representing interaction between scale of

i 1] 1)
transport ; small or large and inhomogeneities of the surface or the volume. In case of
complete homogeneities of the volume or inhomogeneities which could be smeared out, the
third and fourth elements of the second row and the second column in the case of
homogeneous canopy are zero,
The first element of the first row represents the advection by the mean flow which is

"o

row, u

quite minor. The element u;u. tepresents some kind of dispersive flux. In case of

. u.
11
homogeneous canopy, it is zero. The instantaneous Reynolds stress tensor for momentum
flux 1s composed of the last four elements. These are the most important ones. They do not
vanish in the ensemble averaging. They represent turbulent fluxes at small and Jarge scale and

interaction fluxes. In the period of coherent structure intrusion into plant canopy, ufujl is

the most important. In the quiescence period, where the scale of transport is quite small
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compared to canopy height, uisuj-ﬁ' is the active flux, ui[uj-s and u'j"ujl are important terms
in the period around (i.e. before and after) the gust passage. These are interaction terms

between two different components of the wind vector. In the case of i=j, these terms are zero

f and uf are mutually exclusive. In the case of i # j, we assume also

that we can include these two terms in the gust parameterization and through an exponential
decay for transport coefficient after the coherent structure passage. So now, for the averaged
equation, we end up with four unclosed terms. This was the case for the momentum equation.

Concerning the scalar equation, the same procedure is appiied. Ensemble averaging will

since, by definition, u

lead to the disappearance of the last two values on the first row and the first column. The uj' is

assumed negligible due to the fact that coherent structures we are considering are convected,
they are moving around and they would not show in uj- Volume averaging will lead to the

disappearance of second element of the first row and the first element on the second row. In
the enlarging process of the averaging volume from 1to 2, ¢” is assumed negligible. There

Number

of

events Total w' turbulence Total u'
negatively skewed turbulence

\ pos?«/ely skewed

scale

- 0 +
ul, V.I, Wl
Fig. 3.11: an assumed behaviour of small scale and large scale turbulence.

are no small scale inhomogeneities in ¢, That will lead to cSuj',cfuj' ,c"uf ,c"uf, which are

inieraction terms, to be zero in the case of homogeneous canopy or if the inhomogeneities
could be smeared out due to the flow being so turbulent or due to being far away from the
forcing surface. These terms express the feedback between the inhomogeneities in the surface
and the flow. We come back to these terms later (Sect. 3.6.B). The first element of the first

row represents advection by mean stream which is quite minor. The element c"uj when

averaged represents some kind of dispersive flux. The last four terms (:SujvT , cSth , cluj-‘ and
{

cluj we assume are the most important ones. They represent the turbulent flux of the scalar.
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The last term is the most important during the gust intrusion. The first is the active flax
during the quiescence period. The other two are interaction fluxes. We will discuss next the
closure assumptions for these four terms for the mean momentum and scalar equations

3.6.1 THE CLOSURE ASSUMPTIONS

There are two ways to parameterize the effect of the gust intrusion on the mean scalar
and the momentum equations:

In the mean scalar equation, the two terms cluj , csuf in the case of one dimensional

flow, are included in the gust intrusion and parameterized, in the first method, by an
integrated value for that flux divergence for every layer at the end of the coherent structure
passage period, so the state variable of the air at the end of the gust period would become
SeeAr= 5t- V. flux = A The value - ¥. flux * A is parameterized by defining a refreshment function
which represents the change of storage in the non-radiative energy exchange before the
intrusion of the gust till the end of the passage period. If the duration of the intrusion is larger
than a certain time step, the plants respond {o the boundary conditions at the canopy top and
there is no storage within the canopy air space.

The second method is by increasing the value of the exchange coefficient (Km) value to
a very high value. That will lead to the same effect.

In figure 3.10, we have identical double-roller structures. But in reality, there will be
variations in the size of these structures. So there will be some arbitrariness in the definition
of the boundaries of what is small and what is large, but all the structures have been
synchronised on the occurrence of the ramp at the downstream end. The dispersion due to
sizes or passage of structures at different cross sections shows in the upstream end and the
sides.

We obtain this refreshment Rf(z,1) from an assumption of the frequency of occurrence by
Raupach, corrected by Paw U et al. (1992}, or from a measured one and a depth of intrusion
and duration. The frequency of intrusion according to Paw U ef al (1992) seems much less
than the parameterization used in Kaviany (1990) or Bergstrém and Hogstrom (1989). We
see from a data set collected by Van Boxel (1988) that a complete refreshment is not far from
reality (fig.3.3). It seems that the air is refreshed completely in the upper layers of the canopy.
This is where most of the leaf area is concentrated. The assumption of complete refreshment
would make a difference in the boundary conditions for energy partition at the soil surface.
This effect depends on the surface resistance of the soil. That will affect the D'/D ratio (i.e.
vapour pressure deficit fluctvuation / mean vapour pressure deficit) , as we shall see in
Sect.4.3. The c*'uj§ is parameterized by using a local gradient approach. The value of K, used

during the quiescence peried could be paramelerized either by:

1) the use of wind speed time domain map (see for example fig.3.3.b). The square of this map
after subtracting a mean value could be assumed to represent a time domain map for turbulent
Kinetic energy. The obtained value could be used to have an idea about the exchange which is
proportional to turbulent kinetic energy. We still need a value for a time scale. This could be
the value of the Lagrangian integral time scale during the corresponding period.

2) The second method is explained in the following section.
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In the momentum equation, we use the second method by defining an increased value of
the turbulent exchange coefficient during the first time step after the gust intrusion. That will
lead to an enhanced momentum exchange between the above canopy air and the intercanopy
air stream. The effect of this on the total solution is quite small due to the effect of the wind
speed on the boundary layer resistance, which is a square root function, The first method does
not werk on the momentur: equation.

3.6.2 THE PARAMETERIZATION OF Ky, VALUES DURING THE GUST AND THE
QUIESCENCE PERIODS

Two detailed data sets, which were collected by Van Boxel (Jacobs ef af 1992 and Van
Boxel 1988) and Van Pul (1992), are used to obtain a picture of the behaviour of Ky during a
coherent structure cycle. For the first data set, details of the measurements are given in Jacobs
and Van Boxel (1988) and in chapter 3 and chapter 6. For the second data set, we used one
dimensional sonic measurements for a certain day (18-8-88) to see the pattern of W’ variance
behaviour. The selected data for analysis represent few hours of measurement (7 hours for
both data sets). For the first data set, a day was selected in which the intermittency in the
forcing signal (i.e. the intermittency in the incoming radiation at the canopy top) was low.
The selected day was 30 July 1986. The general meteorological characters are given in Jacobs
et al. (1992). The measurements started at 13.00 GMT. It was a sunny day with moderate
wind (about 2 m s-1 at 4 m height). A picture of the exchange processes during a period of
time when the intermittency in Rn was low, is shown in figures 3.3 and 3. 14,

We used the one dimensional sonic anemometer measurements at a height of 0.45 h to
parameterize the transport coefficient during the quiescence period and correlated these
values to the time domain maps.

We assumed thai the mean vertical wind velocity is zero. So, by squaring all the values of
vertical wind velocity, we obtained then the contribution of the different measured values to
the averaged value of the w2, We obtained then a mean value of the squared w2, We divided
the different readings by the mean value of w'2. The result gave us a time series of the ratio of
instantaneous w'2 (1 second averages) to the mean w'2- We then did a frequency distribution
analysis on the number of events below a certain threshold and how much they contribute to
the total mean. This gave us e following figures (fig 3.12, 3.13)

We see from figure 3.12 that for the two time series, during 74% and 67% of the time, the
measured instantaneous w'2 was less than the mean and contributed less that 0.19 and 0.2
respectively to the total w variance. Gusts less than 0.1 (0.077 and 0.08) of the events, thus
occupying less than 0.1 of the time, contributed more than 0.51 and 0.37 respectively to the
total variance.

Fig 3.13. shows the relative strength of the events, i.e. the cumulative contribution by a
certain class of events, which is less than a certain limit, to the total variance, divided by the
contributing number of events in the same class. Fig.3.13 is obtained by dividing the solid
line over the dashed line in fig.3.12. Fig 3.13 shows that events, which have as relative
maximum the value of the mean, have a relative strength of 0.25 and 0.3 respectively, while
the events which have a relative maximum of twice the value of the mean had a relative

67



nds. Contour

sponding temperature time domain map with time in secol

ponding wind speed time domain map with time in secor

4]

< -]

B g £y

S =)

o § s
MAU. Ao
(== H o

o A ]

-+ = <+ —
Jm Jm

o )

oo & o & o
iz .5 i .5 I~




3.6.B THE TIME AVERAGING APPROACH

In the previous procedure we used volume averaging to obtain an average for a certain
segment along and perpendicular to the flow. We then did an ensemble average to obtain a
representative average for different gust occurrences. This leads to different gust occurrences
imposed above each other, while the same elementary averaging volume would be occupying
different regions in the different cubes,

J 7 S U7 11 W7
— N i N0 Fi
— i L N i
" Pl
A yd £
\

L~
/ ﬂ/k- djgeetion of ayeragin
/ //

Perpendicular to the flow Along the flow direction
direction represents an average represents different stages
for each stage of the cycle

fig 3.15: The averaging is done with respect to time. The several
occurences of the gust passage are imposed upon each other by the use
of a detection function, e.g. like VITA method or a visual detection.

In the following procedure, we keep our averaging volume the same and get a
representative picture through time averaging.

We decompose the turbulent signal into a small-scale turbulence component which is
dominant in the quiescence period and a large-scale component which is deminant during the
gust intrusion peried. The difference in the division between small-scale and large-scale
deviation depends on some detection function.
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where:
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uj,uj,c are the instantaneous values

o) ,<LTJ> . {€) are the volume averages of a time mean

u uj , ¢" are the deviations of a time mean from its volume average

uis, ujs ,ctare the time deviations due to small scale(s)

uf . ujl <l are time deviations due to large scale(/ ) for vj, uj, ¢ respectively

We get in the equation for momentum or scalar the following terms.
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We use a control volume average plus a time average. Time averaging leads to the
disappearance of the last two elements of the first row and the first column. Volume
averaging will lead to the disappearance of the second element in the first row and the second
element in the first column. Concerning the third and fourth elements of the second column
and the second row, they represent interaction terms between the spatial inhomogeneities and
the small scale and large scale turbulence. These terms are related, with a negative feedback
to the turbulent fluxes, due to the size of the averaging volume. In the case of large scale
coherent structures which are moving around, these structures are not induced by small scale
inhomogeneities of the surface. There are two kinds of these coherent structures: large scale
thermally induced ones and dynamically induced ones. The dynamically induced ones could
be large (Schols 1984 or Run B in Gao ef al 1989) or small. The generation of the small
dynamically induced ones are explained by Raupach e gl(1989). The large scale thermally
induced ones represent a response of the boundary layer above to the forcing from the
underlying surface due to energy partition, so they respond to large scale inhomogeneities. In
the case of small dynamically induced coherent structures, they also represent a response of
the layer of air close to the vegetation to the drag force of the underlying vegetation. These
latter will be responding to somewhat smaller scale forcing. The nonuniformity of this latter
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forcing will be represented by the ratio of the distance travelled during the life time of that
dynamically induced coherent structure to the distance between individual canopy elements
and its relation to the averaging volume. This ratio in a way represent an expression of the
forcing uniformity. The higher this ratio, or the closer it is to one, the less they will show as a
spatial deviation. They will show in the time mean and not in the spatial mean. The decay of
that coherent structures with travelling distance and the generation of a new one to take its
place homogenize this correlation. The value of u”C” becomes a residual non vanishing
correlation. In the first case of a large scale coherent structure, the interaction terms between
the large scale and spatial inhomogeneities will be zero by definition. If we were working
with an averaging volume which represent two different kinds of vegetation, these two terms
would not vanish and they have to be parameterized and the problem would be equivalent to
the interaction between small scale spatial inhomogeneities and coherent structures. In the
case of dynamically induced structures, with non-uniform drag media below, there would be
some interaction between small-scale spatial inhomogeneities and large-scale turbulence.
This problem would be present with averaging volume two. In the case of spatial
inhomogeneities (i.e. hot spots with a field) which lead to generation of small scale thermally
induced coherent structures which will disperse around. The shear will make these coherent
structures decay. The ratio also between the hot spots spacing and the travelling distance over
which the coherent structure is still alive will control the value of this non vanishing
correlation (i.e. the importance of this correlations in our averaging). In this case, a
parameterization for this effect has to be included.

In case of complete inhomogeneities, or homogeneities which could be smeared out, the
third and fourth element in the second row and second column are zero,

As in the ensemble averaging, the first element in the first row represents the mean
convection, the second element in the second row represents the dispersive flux. The third
and fourth elements in the third and fourth row represent Reynolds stress term or turbulent
scalar flux. They are treated in the same manner as in the ensemble averaging.
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3.6.C THE VARIANCES AND TURBULENT FLUX EQUATIONS AND THEIR
TIME VARIATION

In Sect.3.1, we have shown qualitatively the limitations of the second and higher order
closure models by showing the effect of the coherent structure existence on the uniformity
and so on the assumnptions used for parameterizing the higher order terms (n+1) in the higher
order (n) closure. In this part, we will show the time behaviour of the terms in the second
order equations. From this, we will come back to the same conclusions we have derived
earlier. In the following equations, we assurne no plant parts intersecting the flow. We want
to show the intermittency of the terms in the equations.

Our starting point is the turbulent vector or scalar equation which reads as:
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The first two equations are the turbulent fluctuations equations for v and uk,
respectively. The third equation is the turbulent fluctuation for a scalar quantity where:

I is the time rate of change of the concerned quantity.
II is the convection term by the mean wind.
I is the production term due to the interaction between the turbulent fluctuations and the
mean wind gradient.
IV is also a production term due to the interaction between a turbulent fluctuation in the wind
velocity component and the gradient in the turbulent fluctuations of the scalar or the wind
component. So it transports the turbulent fluctuations down into the canopy. After deriving
the variances equation or the momentum or flux equations, this becomes the turbulent
transport term. This term is nonlinear in the first and second equation. In the third equation, it
is also nonlinear through the effect of scalar field on the buoyancy flux (term V in the first
equation)
VII is the pressure fluctuation term. This term is nonlinear since it is related by the Poisson
equation to the velocity field.

The asterisked terms are nonlinear terms in the above equations.
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We will use time domain maps of the temperature as an example of a scalar, and the
wind speed map as an indication for the wind velocity component. The time domain maps
used are included as figures 3.3a,b and 3.14c,b and 3.16a,b. The behaviour of Rn within the
corresponding periods for these time maps is shown in fig. 3.4.

We will define the mean as the average value for 16 minutes for different heights within
and above the plant canopy. The 16 minutes period represents the time duration of one time
map. The regions in the map in which the contour lines are quite separate would have more
weight in representing the mean at a certain height. Strong deviations from that mean would
be represented by regions in which the contour lines are quite crowded. If we assume
Taylor's frozen hypothesis, the time domain maps which give the temperature or wind field
passing through a vertical line or a plane would represent a picture of the flow field along a
horizonral distance at a certain time. The second term in the equations would be representing
the convection by the mean horizontal wind of the turbulent fluctuation, i.e. the role of the
mean wind in carrying the wind variation (in strong cases the gust) around. For the vertical

componeni, that term would have no effect since W =0 The third term is controlled by uji

since the mean profiles for the period under consideration (16 minutes) and so their

derivatives are constants, the third term will be then a function of uj. We can obtain the

turbulent fluctuations map of both wind and temperature by subtracting a mean value for

different heights. uj

dependent constant (i.e. uj(z)). uj is also highly intermittent as can be seen from the same

map (from the following map 3.16.b). q' can be obtained in a similar way by subtracting a
height dependent value (i.e. the mean temperature as a function of height q(z)) from the q

will be similar to uj , since it is obtained after subtracting a height

: ' 9q’ .
map. ¢ is highly intermittent. The fourth term U % represents the interaction between Y
J

and the vertical gradient of the turbulent scalar time [luctuations 99 or the transport of ' by
X
turbulent velocity fluctuations. This also represents the instantaneous scalar flux. The
dug’
44
0x;

difference between this term and

gives the effect of the deviation of minus the

divergence of the instantaneous heat flux from its mean on the value of the scalar deviations.
We can see from the multiplication of the directional derivatives of one map with the other
map that this term 18 highly intermittent, We know also from the measurement of other
researchers that this term is highly intermittent. It could reach values as high as 20 times the
mean flux (Gao ef al. 1989). It is clear that the terms in the equations have cycles of
intermittency or periodicity which relate to the passage of coherent structures. The same goes
for similar terms in the momentumn equation. For the extra terms in the momentum equations,
especially the pressure correlation terms, there is also strong time variation in the pressure
signal due to the passage of coherent structures. An example from a set of measurements of a
pressure pulse at different heights 1s given by Conklin and Konner (1994) and Shaw et al
(1990).
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The existence of intermittency in terms in the equations leads to correlations between
terms, ¢.g. fluctuations and fluxes which may not sum up to zero. Trying to take account of
this correlation will lead us to develop their prognostic equations. This leads to an attemnpt of
going higher with our closures.

By looking at the higher order level equations before averaging, all the terms have time
varying values which is related to the passage of the coherent structures,
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The first term in both equations represents the correlation between a turbulent fluctuation
of a scalar and a velecity component time derivative or a vector fluctuation and scalar time
derivative for eq 3.6.10 , 3.6.11 respectively. The first equation is a nonlinear one. The
second is a linear one except for the effect of the scalar an the density. The sum of these two
terms constitutes the scalar flux which will be nonlinear. The second term in both equations
represents the correlation between g or u; and the convection of u'i or q'by the mean wind
respectively. This is equivalent to the correlation between the ' time domain map multiplied
by a height dependent constant multiplied by the horizontal derivative of the other map. In
case of vertical wind velocity, this constant is zero.

The third term represents the correlation between momentum flux or scalar flux and the
derivative of the mean wind. The momentum or heat flux are highly intermittent signals. We
know this from measurement by other researchers (e.g. Finnigan 1979 and Denmead and
Bradley, 1985). The fourth term represents the instantaneous correlation between turbulent
scalar fluctuations and a divergence of a momentum flux or an instantaneous correlation
between turbulent vector fluctuations and the divergence of heat flux. This represents the
correlation between one of the maps of fluctuations and the flux divergence of the other map
and vice versa. The sum of these two terms (terms IV in €q.3.6.10 and eq.3.6.11} makes the
turbulent transport terrmn. During the period of simulation, this ferm is not uniformly
distributed as shown by measurements by Gao et al. (1989). Flux divergence is related to the
change of storage and the source terms by the general transport eqaation. During the gust
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Normalized height z/h

intrusion period, there is not enough time for the leaves to respond to rapid changes in the
temperature or vapour pressure of the air. So the change in the storage around the gust
passage is mostly related to the flux divergence. This term is non linear. The concurrent
occurrence of a rapid change in q' and u' leads automatically to high values of the triple
correlation terms. Trying to take account of intermittency will lead to the development of a
third order closure equation which will contain a fourth order term, We showed earlier from
the measurements by Gao ef al. (1989) that this fourth order term is highly nonuniform. The
assumption of the uniformity of terms during the time step of simulation is not justified. That
brings us to the question: Would a_large-time jnterval averaged value for a term in these
uations within our time step of simulation. be as good as a varying in time, value for that
term? Due to the high non linearity of these equations, the expected answer to this question is
NO. Now, what can be gained by getting higher in the closure? The dispersion of the
correlation which results from the pressure correlation as explained below will lead to more
uniformity of the higher order terms (n+1) in the (n) closure equation and that could have
allowed, some people, in a way to assume they counteracted the effect of the nonuniformity
of the terms at lower level of closures and so they could have regained then the effect of
nonuniformity of the terms at the lower levels which was lost due to the averaging. That
would have been the case, if not for the nonlinearity of the equations. So, I am not sure that
such an assumptions is correct.
The problem of intermittency will also show in the different terms which result from
spatial averaging with the existence of plant parts intersecting the flow (Finnigan, 1985). The
nonlinearity is even higher there.

3.6.D The importance of pressure fluctuation on the dispersion of the correlations

The dispersion of the correlation comes from the pressure field which leads to
acceleration of the flow in the lower parts of the canopy. This means that the turbulent
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velocity fluctuations in the lower parts of the canopy will have some kind of phase shift
ahead of the temperature or scalar fluctuations. The pressure field (Shaw er al 1990) shows a
maximum in the soil surface coincident with the passage of the coherent structure at the
canopy top. An area of a phase shift in which there a dispersion between momentum and heat
fluxes is shown here in figure 6.a, as taken from Gao ef al. (1989) and included here as figure
3.17 in the area marked by A. Going higher with the closure assumes that there will a rapid
dispersion of the higher order correlation such that the information we have missed could be
obtained back quickly by going not very high with our closure. It seems as have been shown
carlier that this is not happening till the third order closure and that coherent structures and
their role in correlating higher order terms is quite important.

There are some reservoirs in the soil canopy system. In this case the canopy air and its
storage of scalars and vector quantities which, due to the length scale of the coherent
structures, have small time constants for different scalar and vector quantities, That leads to
the high correlation in the values of some terms. If, for example, we were dealing with a non-
ventilated open top chamber which is closed from the sides, the intrusion into this chamber
due to the passage of a coherent structure would have been limited because of the weakness
of the return to isotropy terms, and that would have led 1o lower percent of refreshment and
only in the upper layer of the chamber and to an increase in the time constants of the system
inside this chamber. The correlation of the fluxes during the gust passage would have been
less important in comparison to the quiescence period. The problem of intermittency as we
know in canopy flow would have not been there.

Now: what is the sensitivity of the solution to the difference between an_assumed and
real behaviour of the terms in the turbulent fluxes and variances equations and what is the use
of higher order closure models if it takes so many levels of closure to disperse the
correlations ? It seems that the rate of correlation dispersion is very low, as shown from the
argument presented on Sect. 3.3. It seems, to me, that the use of large-time averaged second
closure models leads to the introduction of flux divergence terms in the first order equations.
These divergences, being not homogeneous with height, lead to something like the
appearance of extra sources or sinks within height and that leads to their simulation of
counter gradient transport. (!?7). That is all, but this really leaves a lot of questions about the
validity of such a solution. The validity of this assumption depends on the answer to the
underlined part of above given question. A complete answer to this guestion needs a
complete description of the behaviour of the Reynolds-averaged Navier-Stokes system of
equations describing the canopy flow. We will try to give an approximate answer to the
underlined part in the appendix 1.A. An attempt to describe the dynamical behaviour of an
equivalent system of equations is given in chapter 4. This attempt proves that an
intermittency in the turbulent transport does not lead to the same solution as a non-
intermittent treatment. A similar mathematical analysis for the second or higher models
would be quite complicated. So, we take the proven nonlinearity in the first order as an
indication for the existence of a similar dependence on intermittency in the solution of the
higher order equations.
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3.7 IMPLICATIONS OF INTERMITTENCY FOR LAGRANGIAN MODELLING AS
APPLIED TO CANOPY FLOW™*

3.7.1. INTRODUCTION

The intrusion of coherent structures into plant canopies leads, during their gjection and
sweep phases, to the displacement of the air inside the canopy upwards outside the canopy
domain. A replacement of the displaced air by air from above the canopy accompanies this
process. The ejected parcels of air from the canopy carry within them the amounts of sensible
and latent heat, which have been delivered by the leaves and the soil to these air parcels while
they were in contact with the feaves. The result of this process is a net transport of the scalar
quantities between the canopy air space and the layer of air above. It has been shown by
different researchers that this process is the one responsible for most of the large-time
averaged flux. In the period of time between the passage of two consecutive coherent
structures, the amount of sensible and latent heat which is delivered by the leaves to the
intercanopy air stream will be dispersed around due to the scales of motion which are existent
then in the flow. These scales of motion are quite small compared to the canopy height. This
leads to a small scale mixing and a buildup of the storage of heat and moisture during the
quiescence period. This buildup controls the large-time averaged profiles.

From this qualitative picture, it is clear that most of the large-time averaged flux occurs
due to scales of motion which have a length scale larger than the canopy height and which
leads , during their intrusion into plant canopices, to correlation in the motion of air parcels all
over the canopy height.

Random walk models are used to describe the averaged concentration field at a certain
point within plant canopies. This concentration field at a certain point results from the
superposition of different plumes originating from different sources lying at different
distances from that point. This superposition of the concentration fields assumes that the
particles are moving independently of each other all the time. This assumes that the scales of
motion responsible for dispersion, are relatively small in relation to the source distribution
within height and that these scales are moving independently. These assumptions are
obviously not valid during the gust intrusion period during which most of the large-time
averaged flux occurs

In here, we discuss the effect of the deviation from these assumptions on the random walk
models as applied to canopy flow. We suggest a method to correct for the effect of the
correlation between directions of motion of particles, which are not close neighbours, on the
mean concentration profile,

3.7.2.  RANDOM WALK MODELS AS APPLIED TO CANOPY FLOW

In random walk models, the following equation is used (Raupach, 1989) and Lamb(1980):
¢ (z.0)=['[77S(h) ce(z.t;h,t-s)dh ds (3.7.1a)
gle
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or

o(z.t)= [_‘ [7S(h) Eg(z.t:hto)dh dig (3.7.1.b)

{t-10)
where

c(z,t} is the mean concentration as function of height z and time (t).

?e(z,t;h,to) is the conditional probability density function that a particle being found at
height z at time t, given it was released at height h at an earlier time tQ . The subscript ¢
means that this function is determined for an elementary source. An elementary source is an
instantaneous {not continuous) point release of unit source released at tQ and z(.

S(h) is the source strength as a function of height.

The above integration is carried out for all heights and all times since release. For an
elementary source, the resulting cloud depth keeps growing as a function of time. The centre
of the cloud moves downstream with a velocity equal to the convective velocity of the air, as
shown in fig.3.18. Fig.3.18 represents the development of clouds which are resulting from

elementary sources, which have been released, all together at a certain moment at the same
height. but at different points along the line BF between p0 and pl. In figure 3.18, four of

these clouds have been drawn, but with a vertical shift as a drawing trick to show, what
happens to each one and the resulting effect on the concentration field at a certain point F,
where the concentration field is measured. The clouds on the inclined line AY represent
clouds which have the same lifetime (t1-tg). They ail have been released at the same moment
and at the same height. In this case, at point F, a sensor does not see any more clouds with a
lifetime less than (t-t(), since these clouds are being carried down from further away
distances, and once they reach point F and continue being carried away, they will not be
reptaced by clouds with the same lifetime. The largest cloud which point F will see is the
cloud which has a lifetime (1-t(} equal to the perpendicular distance between the lines p0 and
pl divided by the average wind velocity. The point F will keep seeing a concentration as if it
wus at the centre of a passing train of progressively older clouds (Eulerian), or equivalently
the concentration at the centre of a convected progressively older cloud (Lagrangian). In the
case of completely homogeneous canopy in the horizontal direction with continuous source
releases at a certain height, the effect of a certain cloud being convected on the change of the
concentration field at a certain point is compensated for by another cloud which would have
the same time-since-release as the cloud which would have just left point F. The net result is
that no changes in vertical depth or concentration are felt due to cloud migration. So, the
effect of convection need not to be considered when we add all times since release in the
above given integral. The shape of the cloud at a certain line PP becomes as shown in fig.3.19
(a continuous plume). This physical picture is clear and expresses the effect of the different
previous times-since-release which are felt at the point under consideration. This time integral
could be looked at as expressing the effect of different sources further away from the point
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under consideraticn on the total concentration field.

For a continuous release at a certain height or instantaneous releases at different heights
for several sources, the assumption of independent movement of the particles in the above
integral is made. This problem will automatically occur when representing the time mean of

life time
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Fig 3.18. shows the concentration field as seen by point F resulting from instantaneous
releases of unit sources at one line BE.

continuous releases at different heights. All the particles should be independently moving all
the time (for separation times which are much larger than the integral time scale Tp,) for all
the heights. In the time mean, which we try to represent by an ensemble mean of particles
moving independently, the question is : are the particles, which are being emanated by the
sources into the canopy air stream, moving independently of each other all the time at all
heights? Or is the time mean, which is reality, well represented by an ensemble mean of
independently moving particles? The

p
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Fig 3.19 The concentration field due to continuous releases.

answer to this question is NO, since measurements show that most of the flux occurs due to
organized motion which has a scale larger than the canopy height, leading to correlations
between the particles motion at different heights. In that integral, it is assumed that the
particles are moving independently of each other, i.e. that the probability of a particle 1
released at height h1 arriving at height z1 at a later time since release t] (Event A) has
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nothing to do with another particle 2 being released at height h) arriving at hetght z7 at a Iater
time since release t2 (Event B). z2 could be equal to z] and also t{ could be equal to t2. In
case of z] equals z2, t] can not be equal to t2, since the particles released a shortt time after
each other at the same height must have a definite correlation in their motion, expressing the
persistence in the motion due to turbulence. This time is related to Lagrangian integral time
scale and is considered already in the Langevin equation for describing the random motion of
a particle. The correlations we are considering are between particles motions at different
heights or motions at the same heights but separated at time with time intervals much larger
than Ty . These correlations are due to large scale motions. In the case of two particles, the
total probability of event particle 1 or particle 2 arriving at a certain height h (h1=h?2) after
some time from release t (t]=t2) equals

P(A U B) = P(A) + P(B) - P(A ~ B) (3.7.2)

The dependence in the motion of the particles affects their destination after a certain time
since release. This correlation, or dependence in the occurrence of the two events, should be
subtracted from the total probability. The intersection of the events is controlled mainly by
the scales of motion which are controlling the dispersion of particle | and particle 2. If it
occurs that, for some time, the length scale of the structures responsible for dispersion is
larger that the vertical distance between hl and h2, the two particles 1 and 2 will be
correlated in their motion, i.e. they will be migrating together. This correlation in the motion
should be subtracted from the total superposition. The time distribution (frequency) or the
space distribution of the coberent structures and their length scale will determine the effect of
these correlations on the total concentration field.

The evaluation of the effect of the correlation on the superposition in a direct way is very
difficule. [ have no solution this way.

An alternative method which is suggested here is based on what happens during a whole
gust cycle, since this will deseribe the time mean, which is what we are trying to obtain, in a
proper way.

3.7.3. A SEQUENCE OF EVENTS

After a gust intrusion into a plant canopy, the whole concentration field is replaced by a
concentration field which is equal to the concentration at the canopy top. After the passage of
a coherent structure, a certain point inside the canopy will start seeing progressively plumes
up to a lifetime(time-since-release) equal to the time interval since the passage of the
coherent structure. The concentration field at this point will be a superposition of the
concentration fields from plumes with life time less than or equal to the time interval since
the coherent structure passage.

During this period, the scales of motion which are responsible for dispersion are quite
small in comparison to the source distribution, so there is independent motion of the particles
which are being emanated to the air during the period between the passage of two coherent
structures. So, the superposition of the concentration fields is possible and eq.3.7.1 would
describe the concentration field at a certain point after a large period of time since the gust
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passage and not the meay concentration at that point. The actual concentration after a time t is
-+

Clz,t) =[; [ Sth) Te(zth,t-s) dh ds (31.3)

where t is the length of the period since the gust passage.

Mean c should be

tperiod
tperiod
[77S(h) Ce(z,t:h,t-s)dh ds dt

c= (3.7.4)
tperiod

eq. 3.7.1 Asymptote

Fig. 3.20 A comparison between the behaviour of eq.3.7.1, 3.7.3 and the mean concentration
as suggested here.

The mean concentration field is a function of height and the length of the period between
the passage of two coherent structures (tperiod). It is a weighted mean of eq.3.7.3. The
difference between the mean concentration field according to €q.3.7.1 and the time mean of
€q.3.7.3 is a larger effect for the earlier stages of the plume development on the mean
concentration field. In eq.3.7.1, there is an equal weight for all the stages of the plume
development, while in the mean of eq.3.7.4 the earlier stages are weighed more heavily. The
author does not know exactly the shape of the development of eq.3.7.3. The curve
representing this relation is an approximation,

Since the time mean is the mean we are interested in, the ensemble mean, obtained from
equation 3.7. 1, should have been equal to the time mean in case of no correlation between
the particles motions. The difference between the time mean as determined by eq.3.7.4 and
the ensemble mean as determined by eq.3.7.1 represents the total effect of the correlation
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between particle motions due to coherent structures on the mean concentration field.

To make the physical picture more clear, we discuss the difference between a time mean
and a spatial mean. In the case of inhomogeneous turbulence, the scales of motion are
nonuniformly distributed. The dispersion of particles at a single instant of time at different
regions of the flow is controlled by the distribution of these length scales. An example of
such a flow is given in fig.3.9. To get a mean spatial picture of the concentration field, we
could have a representative number of pictures of the dispersion in different regions as a
snapshot and average them. In regions where the length scale of motion is quite large in
relation to the source distribution, the movement of all particles emanated now plus all other
particles which have been around is controlled by the motion of the air within this parcel.
Most of the flux between the canopy air layer and the layer above happens there. In all the
other regions, in which the scale of motion is quite small and uniform, particles are being
released and transported within each canopy layer.

Now for the time mean, if we have assumed that all the scales of motion keep moving
around atl over the flow field, one could obtain a time mean concentration field by puiting a
$ensor in a representative spot and then do time averaging. During the passage of a coherent
structure, a sensor will be seeing a concentration field equal to a background concentration.
The sensor will start secing plumes from sources lying close up stream. By the passage of
timne, the sensor will start seeing plumes from sources lying further and further upstream. The
concentration field as a function of time will progressively be an addition of all these
superimposed plumes. A time mean concentration field is a weighted average of all the time
intervals. In case that, the scales of motion responsible for dispersion are not localized, the
time and spatial average are exactly equal,

:>O

Fig. 3. 21a shows the correlation of the motion of the particles emanating at two different
heights due to the passage of the coherent structures. The right hand curve shows the
resulting joint probability distribution between w' (vertical velocity deviation) and D'
(vapour pressure deficit deviation}

Another point worth consideration is that there is a large inhomeogeneity in the value of
Lagrangian integral time scale. For coherent structures, which have coherence in motion and
persistence, the value of Ty, is quite high compared to T[, for small scale turbulence. The
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time behaviour of a dispersing plume at a certain height is simulated by considering the
Eulerian-determined integral time scale is equal to the Lagrangian integral time scale. The
Eulerian integral will see the effect of a coherent structure turbulence passing through the
sensor and small scale background turbulence. The particle which has been subjected to a
large scale coherent motion will experience much larger persistence in its motion. So there
will be some kind of a Lagrangian integral time scale for the coherent motion, which will be
much larger than that for back ground turbulence. The Eulerian-determined Lagrangian
integral scale emerges from some kind of averaging for Lagrangian integral time scales for
both motions. The persistence in the motion during the passage of the coherent structures will
be large enough to remove all the wandering particles exposed to it from our domain of
interest (the canopy air layers) to a height far above the canopy. The life cycle of a coherent
structure is longer than the time required for the particles to be displaced to far above the
canopy. The particles displaced upwards will be diluted. A consecutive structure will bring a
volume of air from higher up to the canopy which has a lesser cencentration. The probability
of a particle displaced upwards to return to the canopy air space will be dependent on random
motions. The resuit is that it is highly improbable that all the displaced particles are returned
back (Entropy Law). So the effect of a coherent structure on the concentration is not forgotien
(irreversible).

D

Fig. 3. 21b shows the independence in the motion of the particles motion at point A and B..
The resulting joint probability distribution.

The persistence in the motion term in the Langevin equation is representing the effect of
the memory of the particle on its motion. The effect of the gust process is included in an
approximate form on the motion of one particle through the generation of its initial velocity,
according to some probability representing the occurrence of extreme events. The effect of
coherent structures on correlating the motions of different particles, released at different
heights and different times which are separated by time intervals much larger than TL, is not
included.

Now, we will discuss the behaviour of the flux as a function of time according to the
above given picture. The flux at a certain boundary between two layers will be due to the sum
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of component fluxes. Each is determined due to the dispersion, in the vertical, of the particles
constituting a certain plume or cloud. The instantaneous flux then at a certain boundary
between layers could be expressed as a time integral for of an ensemble average. The time
integral is done for different sources with different times-since-release while, the ensemble
average is done for a large number of source releases which have the same time-since-release.
The instantaneous flux will be a superposition of different fluxes having different times since
release i.e. a superposition of eq.4.2.9.a. Each component flux (gi} has its own diffusivity,
which is developing as a function of time as given by the term inside the square bracket in the
integral on the left of eq.4.2.9.a. The concentration gradient in eq.4.2.9.a is a concentration
gradient resulting from the concentration field due to sources which have the same time since
release. The integration of eq. 4.2.9.a leads to eq. 4.2.9.b , which expresses the development
of the instantaneous flux as a function of time due to the effect of plumes from sources far
away being convected to the point under consideration. The mean flux is given by averaging
eq.4.2.9.b.
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In the flux equation, there wiil be also a near field flux plus the far field component.

3.7.3.1 WHAT IS THE PROBABILITY OF RANDOM WALK MODEL RUNS
CREATING SUCH CORRELATIONS ON ITS OWN ?

In random walk models, we run random experiments on different particles emanating at
different heights at different times and then we sum the results of all these experiments as an
ensemble average. We assume that this is equivalent to the time mean of running these
experiments on particles released at different heights at the same time. The two main
assumption behind this, are: that the scales of motion responsible for the dispersion of the
scalars are small compared to the vertical distribution of the sources, and that these scales are
not correlated in their motion. These two assumptions lead to the validity of the independent
probabilities of distribution of the dispersing particles from different heights for elementary
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sources. In every time step of all the experiments, we expose the particle to a random motion
generated by a random number with a gaussian distribution and a certain variance. In a
certain time step {let us say n) for one realization, the particle could be exposed to an extreme
random number which, when multiplied by the variance and summed with a mean, leads to
an expression of an extreme event. In another realization on a neighbouring particle, which
starts at time zero and progresses till t >> TL. In the same time step (n) as for the first
realization, if the random number generator has generated the same random number as for the
first realization, that would mean that there is at this moment a correlation between the
movement of particle 1 and particle 2. This would have expressed the fact, that the length
scale of extreme events (i.e. coherent structures of our interest) is much larger than the
canopy height or much larger than the source distribution with the canopy. In this case, we
would obtain a correlation between the movement of the particles at different heights. The
ceincidental occurrence in a random walk model of two extreme events at two heights is
equal to the probability of occurrence 1 * probability of occurrence 2, since both runs of the
random number generator are independent. This will even be less probable for a case of
several heights. If the random occurrence of extreme events at two different heights has a
time lag of t steps, where t: 0- X, where x is very large number, there will be a decay of the
correlation of the particle motion and we will have from the summation independent
realization of the flow. The chance of coincidental occurrence of extreme events at the same
time step at several height at independent runs of a random number general is extremely low.
1t is equal to the multiplication of all the probabilities of occurrence at different heights. The
increase in the time lag between the occurrence of the extreme events in the independent
realization of the random experiment will lead to the disappearance of the correlation in the
displacement of the particles at different heights. This will lead to a difference between the
total sum of all the independent realizations.

In the case of an extreme events passing through, we use a T1, value which is quite
small. It leads to the decay of the effect quite rapidly.

The physical picture of what happens in a plant canopy due to a coherent structure
intrusion, and how a flux is generated, is completely different from results of a random walk
model. In the latter, we get a counter-gradient transport on the mean due to the superposition
of near field dispersion on the far field dispersion. This also happens in real life, but that is
not the whole story. The flux resulting from the passage of a coherent structure is due to the
positive W'C' during both its ejection and sweep phases, which is resulting from collective
motion of particles. The probability of this process, or something similar, within a random
walk medel ts quite low. The diffusion of the particles in random walk is assumed to be due
to the sum of persistence component and a random motion componeat for a large number of
independently moving particles. It is a completely different mechanism,

In randomn walk models, the sequence of events is not considered, This is due to the fact
that we assume ensemble averages are equal to time averages. We forget about the
correlations of the motions at different heights, which play a role in the time averages but
which become randomly occurring with very little probability in the ensemble averages.

It seems to me that the reason behind the failure of K theory approach, i.e. the length
dc

dz

scale of transport is much larger than the scale of =, is the same which would lead to a
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failure of random walk modelling, since this large length scale transport is quite large
compared to the source distribution within height. That would lead to non independent
movement of the particles at different heights.
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Fig. 3.22 shows what happens in reality in a certain time step due to the existence of
coherent structures and the following build up.

The assumptions in random walk models could be valid only in the quiescence period.

To reduce the amount of particle dispersion during the quiescence period, we have to
reduce the value of Gy used in the simulation of the build-up of the temperature and vapour
pressure. That will exclude the occurrence of extreme events during the quiescence period.
That will lead to smaller absolute values of the initial velocities. Use of smaller Ty, will lead
to more effect of the random component on the dispersion.

Here, I would like to quote what G. 1. Taylor wrote in his original article (1921), page
176: “The migration is still a discontinuous one, however. It suffers also from the
disadvantage of depending on a special assumption, namely, that there is a definite
correlation between the direction of moetion in one infinitesimal element of path, and that in
its immediate neighbours, but there is no partial correlation betwgen the directions of motions
in_paths which are not neighbours. “ I think this is in complete agreement with what has been
said here. The objections to the theoretical proof by Lamb (1980} which states otherwise, i.e.
that his derivation is free from any restrictions has been outlined in Appendix 1.b.
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CHAPTER 4

THE INTERACTIONS BETWEEN THE SOIL AND THE CANOPY:
MODELLING* AND MATHEMATICAL ANALYSIS**

In this chapter, the assumptions used for modelling heat (sensible and latent) and mass
exchange between the canopy air space and the soil will be covered. A mathematical analysis
will be made about the effect of intermittency on the dynamical behaviour of the canopy soil
system. We will cover several points:

1) An introduction about the interaction between the plants and the soil and the systems of
equations solved to simulate that interaction.

2) The time scales of intermittency within the canopy soil system and the effect of this
intermittency on the mean temperature and vapour pressure profiles of the air, on their
evaluation and on the evaluation of mean sources and sinks within plant canopies. An
analytical analysis of the system of equation, used to describe the canopy-soil system will be
given. An analysis of the dynamical behaviour of the canopy-soil system under different
situations will be carried out. An analytical analysis of the intermittency effect on the soil heat
flux (G) and its integration will be given.

3) A quantification of the correlation between intermittency of transport and the non radiative
energy sources within the plant canopy represented by the plant leaves and the soil.

4) The assumptions used in solving the energy budget equations for different soil layers.

5} A model for the water uptake by plant roots. This model was used, among other things, to
quantify the effect of plants as sinks of water within different soil layers and to calculate the
leaf water potential. These sinks were included in an equation to describe water flux between
soil layers. We consider the effect of soil water potential on stomatal resistance as suggested
by Tardieu et al (1993) and Tardieu and Davies (1993).

6) The coupling between heat and water transport, gas flux and the soil resistance to vapour
flux under drying conditions.

4.1 THE INTERACTION BETWEEN THE PLANTS AND THE SOIL AND THE
SYSTEMS OF EQUATIONS SOLVED TO SIMULATE THAT INTERACTION*

4.1.1 The interaction

The interaction between the plants and the underlying soil occurs mainly through four
different means (arranged in the length of the process time scale)
1) The plants reduce the input of short wave radiation to the soil surface through shading.
They also increase the long wave radiation down. Both of these effects lead to a medification
of the radiative energy input to the soil {(chapter 2).
2) The above-ground plant parts affect the turbulent transport regime within plant canopy.
They induce the formation of coherent structures, which have a length scale as large as the
canopy height and which are intermittent in nature. They also act as sources of non-radiative
energy. The former effect leads to a modification of the turbulent exchange coefficient
between the canopy air space, the soil surface and the layer of atmosphere above. A
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modification of the mean temperature and vapour pressure profiles results. These two effects
lead to a modified relaxation, i.e. a different ratio of the partition of the radiative energy
absorbed by the soil surface into sensible, latent heat and soil heat flux. Superimposed on this
scale of intermittency is the scale of coherent structures, which is induced by the forcing of
the vegetated surface as a whole on the PBL (Planetary Boundary Layer). The resulting
formation of much larger turbulent coherent structures exerts a large effect on canopy flow.
These large coherent structures, with a scale as large as the PBL height, have a lower
frequency and larger duration than the ones induced dynamically by the shear at the canopy
top. These two kinds of coherent structures affect the temperature, vapour pressure of the air
and the sources within plant canopies. They also medulate the flux between the canopy and
the layer of air above.

3) The piants act through their roots as sinks for H2Q with different strength within different
soil layers, thus affecting the thermal and moisture characteristics of the soil and the heat,
water and vapour flux between soil layers. They modify then the thermal and maoisture
regimes of the soil, which affects the plant surface resistance for latent heat exchange through
its effect on the stomatal resistance (sect. 4.5). The soil moisture and thermal regimes alse
control its salt regime, which controls the ionic environment of the plant roots. This would
affect the plant preductivity or chances of survival through shifting the environmental
conditions into less favourable regions of their dormain of existence.

4) The plants supply the heterotrophic microbial population with sources of energy (organic
carbon) in the form of root exudates and root and plant residues, which in combination with
the contribution of other micro-autotrophs form the source of chemical energy for soil
heterotrophic micro-organisms. This interaction alters the soil physical and chemical
properties.

The second effect has been covered partly in chapter 2 through the quantification of the
canopy sources and sinks for sensible and latent heat. In chapter 3, we considered the
behaviour of the coupling between the canopy and the layer of air above. The limitations
imposed by intermittency of turbulent transport on the available approaches used for
simulating heat and mass transport within and close above plant canopies were considered.
An intermittent approach was thus formulated to consider the effect of intermittency on heat
and mass transfer within this system. A numerical implementation of this approach was used
to model the behaviour of the soil canopy system (chapter 5). In this chapter, we will consider
the effect of coherent structures on the mean source and mean scalar profiles from a
theoretical (analytical or semi-analytical) point of view, and the difference between an
intermittent and non intermittent approaches in simulating these profiles. We will also
consider the effect of this difference on the soil heat flux and the soil temperature profile. We
will also cover the modelling of the plants effect on the soil surface resistance through its
effect on the moisture regime of the soil and the feedback from the soil on the plant stomatal
resistance {the second effect mentioned in point 3 above).

4.1.2 The systems of equations solved to simulate that interaction*®

Quantification of heat and mass transport through any media, whether soil or air,
requires the formulation of the appropriately averaged transport equations, the proper
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parameterization of their coefficients, and solving these equations under a certain set of initial
and boundary conditions. For a dynamic simulation, these boundary conditions have to be
updated. For soil layers, we need to know the boundary conditions at the top and the lowest
soil layers plus the initial conditions below the soil surface. The above soil surface boundary
conditions are the radiative energy input at the soil surface which constitutes the forcing term
and the temperature and yapour pressure of the first air layer ip contact with soil as a function
of time. These last two state variables, in combination with the value of the convective heat
transfer coefficient between the soil surface and first air layer, form the necessary above-
surface parameters needed to calculate the partition of the available energy at the soil surface.
These variables tend to relax the forcing term and determine the soil heat flux (G). A known
flux boundary condition, or a flux specified via a heat transfer coefficient and the temperature
and vapour pressure of the air, could have been used. These boundary conditions are usually
not known, while they have a strong feed back from the simulated system on them within a
time scale as the one we are interested in. So, a high degree of resolution and a small time
step is required.

For the canopy subsystem, the same boundary conditions at the soil canopy interface
are needed to know the amount of sensible and latent heat flux which the soil contributes to
the canopy air space. In this way, the soil and the canopy air space represent two coupled
subsystems. Lack of knowledge of these boundaries makes the partition of the available
energy at the soil surface unknown, and so the amount of available energy which goes to the
soil as heat flux (G)

A better way is to treal the canopy and the soil as one system and then solve for the de-
coupling at the interface (sect. 4.4). The boundary conditions are then defined at e.g. twice the
canopy height and deep enough into the soil, where the temperature of the so0il is known as a
function of time with a good degree of accuracy. Our soil-canopy system would then have no
feedback on the boundary conditions, at least not within the time scale in which we are
interested.

The problem in selving the coupling then is to define the spatial translation of the
boundary conditions from screen height to the soil surface, taking into account the shift and
the damping or the deformation which these boundary conditions suffer in their spatial
translation downwards toward the soil surface. The spatial translation of the radiative energy
input from measured values at screen height to the soil surface is done by considering the
extinction of the short wave radiation profiles and the increase of the down welling long wave
radiation due to the leaf temperatures through the canopy (chapter 2). For the determination
of the temperature and vapour pressure of the air, solving the canopy turbulent transport
equations taking into account all the possible sources and sinks and their time variations
(chapter 3) is done.

Once the amount of soil heat flux (G) is known, it is used as a heat flux boundary
condition for the soil layers or as an extra source in the equation of the first soil layer to
calculate the soil temperature profile. Evaporation or condensation from different soil layers
due to water vapour flux divergence represent sinks or sources in this equation. The
conductivity coefficients for conductive heat flux are determined from the soil texture and an
initial soil moisture content according to De Vries (1963, 1975). These coefficients are
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updated for different time steps as the soil gets drier. The conductivity for water vapour flux
are determined from a tortuosity model as given by Millington and Quirk (1961).

The amount of evaporation from the soil surface is used as a flux boundary condition in
the soil moisture flow equation. Evaporation or condensation and water uptake by plant roots
from different soil layers go as sinks or sources into this equation. The conductivity
coefficients for water are calculated from Van Genuchten’s model {1980), if valid, or from
fitted functions for K{8) or K{(hyp) functions where K is the soil hydraulic conductivity as a
function of moisture content (@) or matric head (hy).

The amount of water uptake by plant roots is calculated from a system of equations
describing the water flow through the plant. For initializing this system of equations, we start
at dawn and assume, that plants could have recovered during the previous night from water
siress developed during the previous day. We could then assume that water potential is the
same as that of the soil at dawn. We use the calculated latent heat flux from the leaves,
imposed on the leaf surfaces at different layers in a mass flux form, as a known water flux
boundary condition. The soil moisture potential at different soil layers is used as a lower
boundary condition {(a known water potential boundary condition). The calculated potential
difference between the soil and the root at different depths is used, in conjunction with the
soil, root and contact resistances, to calculate water uptake from different soil layers. These
latter terms go as sink terms in the water transport equations. It is assumed that the soil
moisture has a larger time constant than that of the plant water simulation. The amount of
water taken up by roots at different soil layers, during one time step of simulation, will not
affect the soil water potential. We can then use the soil water potential as a boundary
condition for the solution of the plant water transport equations during our time step of
simulation.

The whole system of equations is coupled and solved implicitly. using the values of the
conductances as updated from the values calculated at the end of the previous time step. The
validity of this assumption depends on the sensitivity of conductance changes to state
variables changes within the time step of sirnulation.

4.2 Intermittency in the Canopy Soil System™**

In the Canopy Soil System, there are several scales of intermittency superimposed upon
each other. The existence of these scales of intermittency and the ability of some system
components (here the leaves and the soil surface) to respond to them determine the dynamical
behaviour of the system. Intermittency is defined as a change in the value of one of the
forcing or driving, relaxing and state variables which control the system behaviour. This
change could be gradual or sharp depending on the way time is scaled. Some scales of
intermittency are self-induced and have a quick feedback on the canopy system, e.g.
dynamically induced coherent structures. Others are also self-induced but have a slower
feedback on the canopy soil system, since it requires a mechanism of interaction from a
neighbouring system with a larger time constant, e.g. large coherent eddy structures in the
PEL above the canopy. Others are externally imposed and could have been self-induced, e.g.
cloudiness. The daily cycle of extraterrestrial radiation is completely externally induced. For
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the canopy soil system (fig. 4.1), the forcing variable is the shortwave net radiation, R short.
and the long wave radiation, L(z,1), energy load on the plant surfaces and the soil. The short
wave radiation loading as a function of height (z) and time (t) has different scales of
intermittency superimposed upon each other. These constitute the total functional behaviour
of this driving variable. The diurnal cycle of radiation superimposed on it changes by
different degrees of cloudiness or leaf flutter are some examples. Cloudiness intermittency, in
the time scale we are interested in, is difficult to handle because its time scales are not known
and, moreover, it does not have a semi-deterministic form similar to that of the large scale
turbulent transport. A good representation of the radiative energy input is done by updating
the incoming short and long wave radiation on regular intervals for clear or overcast skies. In
other cases, updating a measured incoming short wave radiation signal, once an intermittency
is detected, could be used. The independence of the interaction of the plants with the short
wave radiative field, from the final solution (temperature and vapour pressure of the air),
gives good enough time dependent representation of the short wave energy load Lg(z,t) on the

leaves and the soil. This represents o Rgd Ar in eq.4.2.1, which is the energy budget
equation for the leafl surface. The net long wave radiation load is the second term in this
equation. Leaf lengwave emission, sensible and latent heat flux from the leaves to the canopy
air layers, and their time variations, would depend on the time scale of variations of the
ternperature and vapour pressure of the air and also on the variation of the convective latent
and sensible heat transfer coefficients between the leaves and the surrounding air (rp and rg).
The state variables of the air have, in addition to the diurnal time scale, an extra time scale of
intermittency due to turbulent transport playing a role in the transport of sensible and latent
heat and no role in the transport of radiative energy. So, for energy partition at the leaves and
the soil surface, H(z,t) and LE(z,t) will have a different time behaviour from L(z,t). The scale
of intermittency in the temperature and vapour pressure of the air within the canopy, due to
turbulent transport, is controlled mainly by;

1 the space distribution of the turbulent structures, and how they are convected around in the
flow field. This controls, in a certain point in the flow field, the time distribution or the
occurrence of these coherent structures and the active length scales of the turbulent transport
mechanism and so the time variation of the fluxes

and partly by:

2) the source variation or the source response to this intermittency.

The former tends to mix and move air around leading in the process to scalar quantities
transport. This transport has a quasi-deterministic form or periodicity that achieves most of
the transport of these quantities between the canopy and the layer of atmosphere above. The
induction mechanism of these scales has been briefly discussed in chapter 3. The spatial scale
of the mixing processes is quite large compared to the canopy height due to the large length
scale of these coherent structures. This introduces mixing across regions where there exists a
large difference of these state variables. This leads to a rapid change in the temperature and
vapour pressure of the air. The rapid replacement of air parcels within canopy air space
represents a rapid change in the turbulent transport coefficient. The resulting rapid variation
in the time rate of sterage change of these scalar quantities within canopy air layers represents
arapid time change of the flux of these scalar quantities between the canopy air layer and the
layer of air above. This change of storage affects the partition of the absorbed radiant energy
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at the plant and soil surfaces. The change of storage is shown in fig 4.1 by the curves in the
rectangles representing air layers. This storage change depends on the time scale of
temperature and vapour pressure changes, their duration and the ability of the leaves to

Boundary conditions at screen height
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Fig 4.1 A schematic outline which shows the different subsystems and their forcing, relaxing
and state variables and their scales of intermittency. The amount of energy which is
delivered by the leaves and the soil to the air layers are evacuated by small scale resistance

(rlocal) and a large scale one (r gust) representing the effect of coherent structures. The rest
of the symbols are given in appendix 3.
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respond to such changes. This ability of the canopy sources to respond to such changes and
the coincident reduction in the turbulent transport between the canopy air space and the layer
of air above during the guiescence period, see sect.3.6.2, lead to a significant increase in the
storage of the scalar quantities during the quiescence periods. These last two factors will
relate to the ratio of D'/Dmean as we shall see later (sect 4.2 or £q.4.2.104). This storage
change 1.e. build up will modulate the sources again. This interaction between the sources and
the storage change represents a correlation between the sources and the temperature or vapour
pressure, which we smear out when we average with a time interval larger than the coherent
structures cycle of intermittency.

In fig 4.1, an intermittent signal at screen height is also detected at lower levels. That is
due to the large scale coberent structure bringing air from much higher heights than screen
heights with different temperature and moisture content. Even if the coherent structures were
bringing air from screen height only and not from further up, the difference in the temperature
and vapour pressure profiles within depth, due to the variation in source distribution, would
lead to the appearance of an intermittent temperature and vapour pressure signal at lower
depths.

From the previous discussion, the following questions arise, which have to be
answered:

1.a) Will the resulting variation in the short-time averaged energy partition at the
soil surface and the leaves lead to an appreciable integrated effect in time, on the mean
temperature and vapour pressure of the air, in comparison to a large-time averaged
model (the gust process is either absent, i.e. first order closure model, or implicitly
accounted for, i.e. second or higher order closure models} ?

or equivalently:

1. b) Does intermittency have an effect on the evaluation of the mean sources and

sinks within plant canopies? Or equivalently: Does the mean concentration profile differ

due to the gust effect?
1c) Is the use of a large-time averaged Ky value equivalent to a fluctuating Ky

value with the same mean? or in other words; is the system linear?
1.d)} Under what condition is the difference between an intermittent and non
intermittent approach significant (more than 10%)?

Equivalently, in the case of a large-time averaged model:
2.a) Doces the source build-up correlation affect the evaluation of the large-time
averaged mean source or profiles within plant canopies?

2. b) Do normal (large-time averaged models) approaches consider this effect?

3) What difference does this make on the soil heat flux? The latter, when
integrated, controls the soil temperature profile, and the question is extended to:
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4) What effect does the introduction of an intermittent model have on the mean
temperature of the soil and the air layers?

In general, there are two methods to answer the above given questions quantitatively
either: a) Numerically or b) Analytically or semi-analytically:

a) Numerically by formulating a complete numerical soil-canopy turbulent transport model in
which the interaction between the different components of the system is considered.
Depending on the level of detail of simulation, a detailed description of intermittency could
be included in the model and then numerically integrated or an implicit account of
intermittency is followed.

For the detailed consideration, an intermittent model has been introduced. The effect of
intermittency in the gust model could be considered by allowing the turbulent transport
coefficients to vary as a function of time and/or introducing intermittency as a step function in
the state variables of the air. One would then observe the long time behaviour of the
simulated model, represented by the soil temperature profile and soil heat flux, under
different assumptions. These assumpticns would concern the time behaviour of the turbulent
transport coefficients.

The implicit or less detailed approach or continuous approach, on the other hand, is
done by assuming certain forms of the correlations between the different compoenents of the
system which result due to intermittency and include these within our less detailed model.

The distinction between these two simulation methods can be stated briefly as
follows: In simulating any dynamical system, there are many scales of intermittency. If
any of these scales has a correlation with a behavioural aspect of one of our system
components within a time scale less than our step of simulation and which in the
considered mean does not sum up to zero, we have to: ¢
1) find a way to include or evaluate the effect of this intermittency behavioural aspect
correlation on the large-iime averaged set of equations used to describe the total system
behaviour
or
2) reduce our time step of simulation and take account of the correlation explicitly.

Now, as we talk about the time mean, is it the five minutes mean or the fifteen seconds
mean? The mean value is just a matter of definition, keeping in mind satisfying equations
3.5.1 a,b. In a large-time interval averaging {5-15 minutes mean), the temperature change due
to the gust effect will be represented by a deviation from an assumed or a measured mean. In
a measured data set, the time mean for a certain interval is well defined. In a simulation trial,
the agreement between the simulated and measured mean values of the state variables of the
system depends on the correctness of the assumptions used in the modelling process and the
sensitivity of the model output to these implemented assumptions. In a large-time averaged
model, we need to simulate the corresponding time mean right by putting in and correctly
parameterizing the effect of any missing correlations within our averaged time interval in the
mean equation. The effect of such an assumption in simulating the mean could be quite
severe.
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In chapter 3, we have addressed this problem and introduced two other reasons than the
source build-up correlations, mentioned above, for the introduction of an intermittent
approach. The first is that, due to the nonlinearity of the equations and the nonuniformity of
the terms behaviour within large-time interval averaging, a requirement for correct Reynolds
averaging of the non-linear Navier Stokes equation is not met (Appendix 1.A). The second is
that intermittency leads to a problem with the correlation between the terms during our time
step of simulation. The assumptions used to feed the resulting correlations back into the large-
time averaged solution, and to close the higher order terms in the Reynolds averaged Navier-
Stokes equation, are not met. Intermittency leads to inhomogeneities of these higher order
terms which are not homogenized by going higher with the closure. Under such conditions,
we do not have a theoretically valid large-time averaged system of turbulent transport
equations to describe heat and mass transfer within plant canopies. An intermittent approach
for describing heat and mass transport within plant canopies was thus introduced to take
account of the intermittency and its correlation explicitly.

The numerical method, especially the more detailed one, would allow for a precise

implementation of different scenarios and studying their effect on the behaviour of the
simulated system but this, most of the time, comes on the expense of reducing the visibility of
the systermn behaviour.
b) Analytically or semi-analytically by assuming certain simplifications which would allow
solving a conservalion equation describing a certain aspect of the canopy system behaviour,
The analytical approach allows for better visibility of the system behaviour. The
simplifications implemented should not reduce the system into idealistic cases, which would
make the obtained solution of very limited use. On the other hand, not enough simplifications
may produce a form of the equation which could be only solved by numerical methods.

In this chapter, In sh’aa ALLAH, we will answer the above given questions (1, 3 and 4),
in a close to analytical form. This would give a more theoretical justification and insight to
some of the results reported in sect.4.2 (The MATHCAD® runs). We will cover the
assumptions used in the analysis. Question 2 will be answered by scaling of the different
terrns in the flux equations (sect.4.3)

4. 2. a, DEFINITION OF THE PROBLEM

Since the Penman-Monteith equation {eq.4.1.1) is linear in the vapour pressure deficit,
D, assuming no feedback on the resistances (rp and rg) within a gust cycle, a different form of

the variation from the D while keeping the same value of the D should give the same value of
the mean source, i.e. eq.4.1.2 is valid.

sRpy +pCpDril
oD plplry

3

(4.1.1)

S+Y
E{ﬁ) = E(D) (4.1.2)
where D is vapour pressure deficit, D is its mean and E is energy in the form of evaporation

(AE) or sensible heat (H). If a numerically detailed intermittent approach gives a solution
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different from a continuous one, it must mean then that this is due to a different value of the
simulated mean temperature and vapour pressure of the air, resulting in a different mean D.

Maximum leaf area density
corresponding with secondary

maxima of T, e and minima
of CO2

rd

height

Continuous flux
through that height

Intermittent Flux

through that
height
Temperature, vapour pressure Temperature, vapour pressure
a b

Fig 4.2: Comparison between an intermittent and continuous model approach.

The consideration of the variation in the simulated D and T values at different heights due to
the modelling approach, their feedback on the sources and the agreement with measurement is
crucial here. The value of D and T close to the soil surface, in conjunction with soil thermal
conductivity between soil surface and the layer below it, controls the energy partition at the
soil surface and so the soil surface heat flux (G).

A clear effect of intermittency on the mean sources or mean scalar profiles is that it
allows transport of these scalars through a large-time averaged maximum or minimum by
allowing intermittent discharges of the storage of these scalars below the height of that
maximum or minimum.

In the case of a gust mode! in comparison to first order closure model, a gust model
maintains a flux through the secondary maximum or minimum by the use of the same
mechanism.

The height of this maximum coincides with the height of maximum light interception.
In a first order closure model, a negative temperature or vapour pressure gradient is required
o maintain an equivalent flux through that height. If we assume that the mean temperature
and vapour pressure do nol differ at that height for both models, this would mean a higher
mean temperature and vapour pressure of the air in the lower part of the canopy in a first
order closure model in comparison to a gust model. On the other hand, if we assume that the
mean temperature and vapour pressure of the air close to the soil surface do not differ in both
approaches, the same condition required to maintain an equivalent large-time averaged flux
across the maximum leaf area density height, would mean a lower value of the temperature
and vapour pressure of the air at the maximum leaf area density height in a nogust model
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compared to the gust model. Both conditions (equality of mean concentrations at the soil
surface and the maximum leaf area density} cannot be met at the same flux, fig. 4.2

Coherent structures achieve a large fraction of the total averaged flux without a required
local gradient. The buildup process which starts after the gust intrusion is due 1o the
enhancement of the sources and the reduced turbulent transport coefficient. After a gust
intrusion, the rate of scalar buildup is higher for maximum source height than for lower
canopy parts. This can be shown from the values of the time constants for the different
canopy layers and the equilibrium values of vapour pressure deficit with heights. These
values, as given by eq.4.2.18, eq.4.2.19 and eq. 4.2.21, show us that the rate of vapour
pressure deficit buildup or decrease (toward equilibrium values) will be higher in the highest
leaf area density height. That leads to entrapment of the nonradiative energy below this height
and a build up process begins. There will be favourable partition toward LE on the expense of
H depending on D' being positive or negative, where D' is the vapour pressure deficit
variation. 1)’ depends on the value of the layer stomatal resistance being lower or higher than
a certain value, as shown on the analysis in the following page or in sect.4.2.1.2. The partition
variation (eq.4.2.83.a) below that height will control the development of D within time. An
average value of D is given by the integration of eq.4.2.20.

If we, as a result, accept fig.4.2.a as a mean concentration profile due to the gust cycle,
a similar profile under a first order closure model means that the heat flux is toward the soil
surface and all latent heat flux delivered from the soil surface to inter canopy air stream has to
remain trapped below the maximum leaf area density height, which reduces the value of D
close 1o the soil surface, as calculated from a nonintermittent first order closure. For a flux
release through that height, a profile like that to the right in fig.4.2 has to develop. So,
equality of fluxes and profiles can not be maintained between the two approaches. The
resulting difference between the two approaches in the mean temperature and vapour pressure
of the air will make a difference in the value of D and the energy partition at the soil surface
and so the amount of (G) soil heat flux.

An increase or decrease in the vapour pressure deficit of the air within depth depends on

(3—“_’[1 T'-e'), being greater or less than zero respectively. ¢ here is ez-e, where e is the vapour

pressure at e.g. screen height and e is the vapour pressure at e.g. soil surface or maximum
leaf area density height. So is the case for T". In the case of a first order closure model, e1 and
T1 can be calculated, assuming a steady state solution.

-1, fz=2
(Rp-GY(1+p ™) [ :
Tp-Ty=-—0 2270 7 14 (4.1.3)
pcp Z=1 Kh
=3
ey-e1= TN - Kedz (4.1.4)

where Kh and Ke represent mean time diffusivities. The decrease of mean vapour pressure

deficit within height depends on -%. |3 here represents an average partition of Rn on plant
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surfaces for the whole canopy, which will show as a ratio between the averaged sensible and
latent heat fluxes above the canopy top.

— R pCDrl
B= (L{_]J Rn pCpE‘r}ll J @.1.5)

AE/ s Ry +pCpDryg

where D is the effective mean vapour pressure deficit which the sources respond to. The rest
of the symbols are explained in the list of symbols. In the case of first order closure, D is
determined from the solution of eq.4.2.21 which represents the steady state solution, while for
a gust model, its average is determined from the integration of eq.4.2.20. From eq.4.1.5, we
obtain

(¥'Rn - pCPD) < ¥ (s Ry + pCpDig) (4.1.6)

dividing both sides by Y"+ s and working it out as has been done by Chen (1984) and shown
in the appendix (A.2.4)

¥Ry <Y Ry - pCpﬁrB] +y/spCp5rBl

@17
Y+s Vs
pCp —=
s & Ry s D (4.1.8)
I +0rg rh+ oL tg

From this expression, we see that for a decrease of mean vapour pressure deficit with height
to occur, this requires

PCp =
rg Ry < oS D (4.1.9.2)
or
pPCp =
— D 4.1.9.b
f's < s Ry ( )

or a critical stomatal resistance is defined, above which there is an increase and not a decrease
of vapour pressure deficit within height. So, if a colierent structure brings a parcel of air
which has the same temperature and vapour pressure deficit as the air at a height twice the
canopy height, and with a stomatal resistance responding to a large-time averaged mean
values of solar radiation, vapour pressure deficit and soil water potential, this air has to attain
equilibrium by reducing or increasing its vapour pressure deficit depending on the above
inequality. Notice that Rn is also a function of height within the canopy.
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In case of comparing a second order closure model to a gust model, the turbulent

transport (2 order) equations (sect.3.6.c} contains a divergence turbulent transport terms (third
order terms) which lead in their steady state solution to a gradient in the second order terms
(fluxes or variances) within height. This is somewhat similar to assuming an extra source (+
or -) within different layers. The assumptions in the averaging and the assumed regaining of
the lost information in the higher order terms have been discussed in chapter 3.

If this can be ignored, an estimation of the effect of intermittency on the simulated mean
of a large-time averaged second or higher order closure model can be shown by extending
these models with a source intermittency correlation or source build-up correlation term and
checking its effect on the magnitude of the assumed mean in a simulation model, or by
scaling the different terms in the higher order equations. This is done in sect.4.3.

4.2.1 A QUANTITATIVE TREATMENT#**: THE NONLINEARITY OF THE
CANOPY SYSTEM.

4.2.1.1 THE EFFECT OF INTERMITTENCY ON THE CANOPY AIR SYSTEM**
For the leal subsystem, the system of equations used to describe the sysiem is the

energy balance equation (for derivation and list of symbols, see appendix 2 and 3,
respectively).

aT pC
Al - Clg 7 10 Rod Act 460 1ag a(Tairrad T - 7o (01 Tair) A
PCp PCp
] ec(TaireAl - — P ¢ (T1Tyi0A 4.2.1
Why+rs) (es(Tair)-ea)Al YIpytrs) (T TaicAl ( )

This equation can be put in the form of (appendix 2)

aTy _
3 —KLT (T Tieg) (4.2.2)
where
C
D U s IS O I I
T Kl,T pgCq thickness [I‘R+l‘bh * Wipytrg) s 1 (4.2.3)

where 1) T represents the thermal time constant of the leaves.

1 or R Tairrad | | ..
Tleq= + + T
l.eq byl 4 1 ¢y PCp R Thh Ar
TR hh  Wrpytg) 424
SR ey L .
oy ty) (es(Tairk-eaip) + Yoy trs) s Tajrl
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or

O RS~L +Tair,rad

- 1
Tj K pCp. R

<4 1 1 1
IR Tbh Krhyts) s

+ﬁ(T_a+T;+T;)

I B 1 T 4T T
Ty OHDD) 4 Lows (Ty 4T o (4.2.5)

Ti,eq represents the equilibriumn temperature of the leaf i.e. the value of the leaf
temperature under which a steady state solution of the energy budget equation is achieved.
The different terms in the square brackets in eq.4.2.1, numerator of both eq.4.2.4 and eq.4.2.5,
represent the effect of different terms within the energy budget on the equilibriuom
temperature of the leat. These different terms represent the effects of the short wave radiation
load, the long wave radiation load, the sensible heat flux from the leaf to the air and the latent
heat flux from the leaf to the air on the leaf equilibrium temperature respectively. The last
effect is represented by the last two terms. The equilibrinm temperature of the leaf is a
weighted mean of the radiative temperature of the environment and air temperature,
depending on their relative conductances, plus the decremental effect of air vapour pressure
deficit and an incremental effect of the short wave radiative loading (the first term has no
resistance). All of these terms contain intermittency as we have discussed before, but the
scales of intermittency are different. The intermittencies in the third, fourth and fifth terms are
the ones we are interested in (i.e. due to coherent structures existence).

T],eq and to a much lesser degree K] ( are time dependent functions. Reducing our time
step of integration and assuming a time separation between a small scale D' or T' and a large
scale D" or T", the last two occur concurrently, the time dependency during one time step is
weakened. An integration of eq.4.2.2 over a small time step, assuming close to constant
values of these two parameters, could be done. The solution of eq.4.2.2 then follows:

t t

Ty =Tjeq(l-e 1) + Ty jnitiate LT (4.2.6)

T),eq will be changing between different time steps due to changes in the third, fourth

and fifth terms (i.e. the buildup of the temperature and vapour pressure of the air). The
importance of T eq is that it dictates the direction of leaf temperature change (see sect.4.2.2)

For the canopy air subsystem, the temperature and vapour pressure of the air have a
similar kind of equation (A.2.2). For the air femperature equation

oTy _ dan .
pCp 5= 3, Toh 427

discretized with respect to space, it reads
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aT
Az pCp —3% = (qj+1- i) +Sh Az (4.2.8)

The instantaneous flux at a certain boundary between layers, according to sect. 3.7, is
expressed as a time integral for of an ensemble average. This is given by eq.4.2.9

! t

t T l [O_-tlr.} a(—ﬁ.ns
I mns d; dt weT|l-e Ty, op 3 de,dt

0 0

L]

Qi 1= = (4.2.9)

The contribution of the near field concentration to the whole concentration field will be
always in the solution and it will lead to non-linearity in the superposition of the flux as a
function of the transport coefficients or the concentraticn, since the behaviour of the transport
coefficient is dependent on the time since source release, which is a classical result of G. I.
Taylor in his original paper (Taylor, 1921).

Inserting that expression (4.2.9.b) in equation 4.2.8, assuming a large-time limit
behaviour leads to (Appendix. 2.2).

T4
*a:m =-Ka,1 Ti + K3 T Tair,eq (4.2.10)
where
1 1 { Ktop . Kpottom _LAD Az
T =KaT = — ﬁ"'—"_"'T @210
a,T Az BXtop 3 Xpottom
K
top Kbottom
< P Tip + < bottom Ti1q
top_, Kbottom | LADAz top , Kpottom ,LAD Az
Tair,eq®) = thop 8 Xbottom Toh SXtop 8 Xpottom fbh
LAD Az
+ K 'bh T
top | Khottom 4LAD Az
6me 8 Xpottom fbh
(4.2.12)
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Tair,eq represents the equilibrium temperature of the air layer. This temperature is a
weighted mean of the temperature of the air layer below and above and the temperature of the
leaves in that layer, The weighting factors depend on the relative strength of the turbulent
coupling between the air layers and the relative strength of the coupling to the source,
expressed by leaf area increments and leaf temperature. The first two weighting factors will
be called the turbulent transport coupling coefficients (symbolized as fiopt, flowert
respectively). Tt is important to notice that Tair,eq is a lincar function of the transfer
coefficients between canopy air layers.

The air layer has two time constants, one active during the gust intrusion and the other
active during the quiescence period.

The solution of the air temperature follows

.t .
Tair=Tair,eq(}-¢ Ta,T )+ Tair,initial® Ta,T (4.2.13)

Tt should be mentioned that Tj-1, Ti4+1 and Tj are functions of time and not constants.
Tair,eq is also a function of time. We assume an integration of eq.4.2.10 over small time
intervals is possible. So, the solution is exponential in Ky within small time intervals. For
large time intervals, the whole solution could be proven to behave exponentially as a function
of Km, but in this case, the behaviour of the solution within this large time interval is missing.
For example, if the air is initially cooled and then warmed up due to vapour pressure deficit
decrease, this behaviour will be missing in our solution. The importance of this is shown in
sect.4.2.1.2.b.I11.2

For the vapour pressure equation,

oe;

a;:]r =-Kae¢i + Ky aireq (4.2.14)
where

L 1 { Kop | Kbotom ,IAD Az
L g -_Ljop , Bbottom ,LAD Az (4.2.15)

Tae  ae Az|8Xop 3Xpoyom (VTS

The solution of this equation is:

ot ot
Cair=taireq(l-e Tae ) +Cinitial® Tae (4.2.16)

where
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Kbottom
op gl + 3 Xpottom
Kiop | Kpotom ,LADMID A Kop . Kpotiom ,LAD Az
Caireq®=| | 3Xtop 9 Xbottom (rpy+rs) 5Xiop 8 Xbottom VS
LAD Az
+ {rhy+is) es(Tp)

Xtop © Xpottom (Tov+Ts)

Kiop Kbottom +LAD Az)

(4.2.17

The equilibrium vapour pressure (eajr,eqpof the air will also be a weighted mean of the
vapour pressure of the air layers below and above, plus a contribution from the saturated
vapour pressure at the temperature of the leaves. The first two terms represent the strength of
the turbulent coupling of the vapour pressure in the air layer below and the air layer above to
the vapour pressure of the layer under consideration. The first two weighting factors will be
called the turbulent transport coupling coefficients for water vapour (symbolized as fiope.

flowere}. The factor of the third term —7%$D+f‘)z represents the strength of the source and its
vTTs

effectiveness in coupling the vapour pressure of the air to that of the leaf. All the three vapour
pressure terms in eq.4.2.17 are function of time, so €air,eq is also a function of time. The
contribution of the es(T]) to eajr,eq depends on the relative weight of the corresponding
conductance. es(T]) is usually much higher than ej+]. The temperature of the leaves has a
much larger time constant than that of the air layer. Notice that Cair,eq value is a linear
function of the transfer coefficients between the canopy air layers.

For the vapour pressure deficit of the ajr, a non-steady vapour pressure deficit equation
can be obtained, as has been done by Chen (1984) for the steady state situation. There is an
assumption here concerning the possibility of using the source term for sensible and latent
heat in equation A.2.2.1, A.2.3.1, as given by the Penman-Monteith equation. This expression
is a steady state solution of the leaf energy budget equation. The effect of this assumption will
be discussed in sect.4.2,1.2.b.III. The derivation is done by multiplying the temperature
equation by (s) and the vapour pressure equation by (- y) and adding both equations. A further
manipulation of the equation, as shown in appendix A.2.4, gives:

D)
a—tl =-Kp Dj +Kp Daireq (4.2.18)
where
! 1 [Kwop | Kpowom , LAD A
—Kkp= L . m . z (4.2.19)
Ta,D Az\8Xop 8 Xpottom HTETs
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The solution of this equation is:

t t

Dajr = Dair,eq (1- e Ta,D) + Dair initial € TaD (4.2.20)
where:
K
_top. Khottom
8%,
- top Diyp + e 8 Xpottom Dj.1
wp Khottom (LAD Az top Kpottom L LAD Az
Dair,eq(t) = 8Xiop 8Xbottom DT 8Xiop  8Xpottom PF*Ts
LAD Az
. I+ O Ty (s a1y Ry
Kiop , Kpotom ,LAD az| ! PCP
8Xiop S Xbottom PTHTs
4221)

where o = (?I—S ). The equilibrium vapour pressure deficit of the air (Dyjp ¢q), as in

the previous two equations, will be a weighted mean of the vapour pressure deficit of the
layer above and the layer below plus a fractional contribution, dependent on the value of

LAD Az 416 (m in the same layer. This last term equals

h+org pCp
S R
sarg Ry Yrs'\l+s. 0y rgEequ
pCp pCp pCp 4.2.22)

It is important to notice that equations 4.2.12, 4.2.17 and 4.2.21 represent the
discretized steady state equation for the temperature, vapour pressure and vapour pressure
deficit for a canopy air layer (i). Solving a system of n equations for n canopy layers where n
takes the value of one or less for the first two equations, while it is greater than one for the
third equation, represents the steady state profile for these three equations.

CONCLUSIONS (4.2.1.1):

From the analysis so far,

1) We get four coupled partial differential equations, namely eq.4.2.2, 4.2.10, 4.2.14
and 4.2.18, describing the behaviour of the canopy system, one for the leaves temperature and
the other three for the air subsystem. There are several variants for solving the canopy leaf-air
subsystem, which lie under two main combinations. These two combinations, each consisting
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of three of these equations, can be used to describe the system behaviour completely with
different degrees of accuracy.

The first three partial differential equations (temperature of the leaf, temperature and
vapour pressure of the air) constitute a complete set of equations which can be used to
describe the dynamical behaviour of the system. In this combination, the equations for
different layers are coupled through the solution of the last two equations (i.e. the profile
solution) i.e. updating the values of Ti4+1, Ti-1, ei+] and ej-| in the eaireq and Taireq
equations. This description is more accurate, but more complicated than an alternative
approach in which the linear dependence of the Penman-Monteith equation on the vapour
pressure deficit is used.

The other combination is the Ry equation, temperature of the air and vapour pressure
deficit equation of the air. This last equation was derived by assuming a steady state solution
of the energy budget equation, so it is less accurate than the first combination.

Concerning the canopy layers, the first combination applies for all canopy layers,
possibly with a modified interpretation of the coefficients, while the second combination
applies for all canopy layers except the first air layer in contact with the soil layer. The first
air layer has its own form of equation {Sect.4.4.2)

2} One learns that the canopy air temperature, vapour pressure of the air and vapour
pressure deficit approach asymptotically a steady state solution (Tajr,eq, €air,eq and Dair,eq
for temperature, vapour pressure and vapour pressure deficit of the air, respectively}. After a

large time interval (usually T—t7w>3—)4) since the introduction of a disturbance to the system
air
equilibrium through the gust effect (a step function), the equilibrium solution (Tair,eq, €air,eq

and Dair,eq) is a linear function of the transfer coefficient between the canopy air layers,
assuming no resulting feedback on the leaf temperature. In early stages of the solution
development, the solution is behaving as an exponential function of the transfer coefficients
and is not linear. The importance of this nonlinearily becomes less once a disturbance due to a
gust is introduced and the system is lefl to attain equilibrium for a long period of time before
a new disturbance is introduced. The importance of the exponential period contribution 1o the
total mean is reduced. But, if the ratio of the inverse of the frequency of gust occurrence to
the time constants of the canopy air layers is in the range of 0.5 to 3.0, the system will be
always in the non-linear part of the solution. The effect of using a mean value of the
Km(transfer coefficients) values is not the same as using a varying in-time value of Km,
which has the same mean, during the whole period or during the lull (the quiescence) period
if the ratio of length scales of transport to the source inhomogeneity is quite large. So,

depending on the ratio of (frequency) l/time constants of the layer (L:E—I), we have a

significant nonlinearity in the solution. In this model we assume two Ky values (one during
the gust intrusion phase and the other during the quiescence period), see sect.3.6.2. If the
interval between the gust occurrences (inverse of the frequencies) is very small in relation to
the time constants, the system will always be close to the initial condition and a linear
assumption could be made due to €*= (1-x) where x=% .
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What we are arguing here is that the solution of the mean in the case of the
f-1

closeness of the T ratio to one will not be a linear function of the transfer

coefficients (Ky). So, a mean value of Ky does not yield the same mean
temperature and vapour pressure profile as a varving, in time, value of Ky which
has same mean. Equivalently, the system is then nonlinear. This case occurs in the
case of a non-stressed canopy (i.e. after irrigation) with moderate wing velocity at
canopy height. If we assume the value of -] is dynamically controlled, i.e. no
thermal stability effects, its value will be dependent mainly on the friction
velacity at the top of the canopy ,or, on U(h) divided by the canopy height, while
the time constants of the canopy layer will be dependent on the contribution of; 1)
the turbulent coupling between canopy layers through a local or short time mean
Km and 2) the stomatal resistance (soil moisture stress dependent) to the value of
the time constant. An irrigation or a rain cycle contains the entire range of %L
ratios. So, the denominator in the above ratio is a variable term. The time
distribution of irrigation or rain events will result in a canopy soil system, being

in the different regions of the ratio % with different time proportions. The

nonlinearity of the solution will always occur. This is an answer to lc mentioned
abaove,

3) The derivation of these equations, (detailed for sensible heat flux equation) shows
that this nonlinearity is not only due to the near field effect, as suggested by Raupach et al
(1989) or Finnigan {1985), based on Taylor’s original paper (1921), in their criticism of the
use of K theory approach to describe canopy turbulent transport processes. The nonlinearity,
which we are considering here, is at least one order of magnitude larger thano the near field
effect.

4) From eq.4.2.20 and eq.4.2.21, one learns that Dajreq being higher or lower than

Dair,initial depends on the value of the third term in 4.2.21 (i;sthn) contributing
P

negatively or positively to Dajreq -1.c. being lower or higher than Di+] or Dair,initjal- These
last two are equal just after the gust passage. Daiy eq being higher or lower than Dair jnitial
depends then on the following equality being satisfied

Diniial PC

rs(z) Rp(z) <%‘ap—5 (4.2.23)
So , if a parcel of air is brought into the canopy air space, which has a vapour pressure

deficit and temperature not in equilibrium with the Dair,eq, then it has to be brought to

equilibrium. This is in complete agreement with the result derived in eq.4.1.9,

m on the

pCp
gust process, rs being a function among other things of the mean vapour pressure deficit
(Jacobs, 1994), the vatue of the Dyijr,eq will be a function of intermittency since the weak

coupling turbulent coefficients during the quiescence period will lead to an increase of the

5) In spite of the apparent constancy or the non dependency of the
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fractional contribution of the third term in €q.4.2.21 to Dair eq. So. the vapour pressure deficit
will be heading toward a different ceiling than that of a no-gust approach. This point is also
shown in sect. 4.2.1.2.b.111

One question which arises here s whether it is possible that there would be no net effect
of intermittency on the mean in spite of the nonlinear behaviour of the canopy state variables
equations due to the change of the ceiling of these state variables, i.e. that the sudden drop
and then the exponential increase to a value higher than the one resulting from a no-gust
model would neutralize each other.

That would require the value of the mean as determined by eq.4.2.24 or eq.4.2.58 to be
equal to the value of the mean as determined by eq.4.2.21, with non-intermittent values for
the turbulent transport coupling coefficient. Even if this occurs for a certain layer, the
requirement of down-gradient or a co-gradient flux in a nonintermittent model, or the
nenequality of the coupling coefficient lead to a deviation between the two approaches for the
lower layers.

Concerning the statement of the apparent constancy or the non-dependency of
sorg Ry

pCp

deficit, as determined by equations given in sect. 4.5.3. Ry is also a weak function of the leaf
temperature, so the increase of the leaf temperature will vent some of total absorbed radiation
as a long wave emission and reduce the net radiation by 4513, for one K (5.7 Wm2K-!. at
293 K). The incoming longwave radiation is not a function of the solution. A decrease in the
outgoing longwave radiation represents an increase in Rpy. This represents a cooling of the
canopy elements, as seen by an infrared thermometer. So, for a Ry increase of 5.7 W m'z, a
decrease of one degree K is required, which represents a lot of storage change. So, even if Ro
is almost constant, the nonsteady state term in the energy budget equation is important as also
shown in section 4.2.1.2.11.2. (page 127)

The effect of the discussed above nonlinearity and the change of the equilibrium
solution, due to coherent structures intermittency on the long term behaviour of the system
shows through its effect on:

1} the soil temperature profile by affecting the soil heat flux and its integration (sect.4.2.1.2)
2)the mean temperature and vapour pressure profile of the air which could affect the
physiolegical process within the plant by changing the values of GDD (Growing Degree
Days). An integration of the latter could show in a pool of interest to us (i.e. a yield quantity
or quality).

We have proven that the vapour pressure deficit behaves nonlinearly as a function of the
transport coefficients. The value of the mean vapour pressure deficit is given by eq.4.2.24 or
by eq. 4.2.58.

on the gust process, rg is a function of the mean temperature, vapour pressure

At i At i 41 4t
= gust duration gust duration a,1> a, D>
D=Dyn —=————— +Dpquilibri i- - D — =
top period +Dequilibrium ( period period)+ AVErage nariod
(4.2.24)

The value of the time constant will be controlied mainly, for the quiescence period, by

the value of i’% in relation to the turbulent coupling in the quiescence period. If the
s
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latter is assumed zero and in case of a canopy with LAI of 5 and rh of 50 sm-! and a stomatal
resistance of 200 sm-! and o of 0.5 gives a time constant of 30 s. With a period of intrusion
of 1.5 minutes, the canopy is in the nonlinear phase of the solution and a use of a large-time
averaged Km i$ not the same as a variable in time Ky, value with the same mean. This gives a
definite answer to question lc and 1b.

An advantage of the use of eq.4.2.18 in comparison to the three equations 4.2.2, 4.2.10
and 4.2.14 is that the equilibrium solution is expressed as a function of Ry which is much less
dependent on time. The other three equations have a larger time dependency due to the
variability of the leaf temperature, air temperature and vapour pressure. So, an integration of
the equation with a larger time interval is possible, but there is a loss of information due to
assuming a steady state solution of the energy budget equation (sect. 4.2.1.2.b II1.2).

The use of the saturation deficit flux as defined by Perrier (1976) and Chen (1984)
shows that

J= H -(y/s) E (4.2.25)
PCP

. D; Ry,

=S (4.2.26)

i+ oG i
Th,i s, 1 b,
fs,i O

An increase in the air vapour pressure deficit, due to the gust intrusion, will lead to a
decrease in the contribution of each layer JI-l to the total flux of J. Using the other expression
of cumulative saturation heat flux J (eq.4.2.25), shows that this is only possible by the
increase of latent heat flux from the leaves to the air at the expense of sensible heat flux. So,
there is a favourable partition of LE at the expense of H depending on the variation of the
mean vapour pressure deficit with height. This variation is dependent on a critical Bowen
ratio. The favourable partition of the LE/H is also shown in page 163 (eq.4.2.99).

We will later see the importance of the variability of the time constants of the layer,
Tair,eq and eair,eq on the solution (sect. 4.2.1.2: The MATHCAD® runs).

4.2.1.2: THE EFFECT OF THE INTERMITTENCY ON THE SOIL TEMPERATURE
PROFILE AND THE SOIL HEAT FLUX**

4.2.1.2.a. THE FORMULATION AND THE SOLUTION OF THE PROBLEM

The soil energy budget equation:

The equation of the soil surface energy budget is very similar in form to the leaf surface
energy budget equation (4.2.1) except for an extra term expressing the soil heat flux into the

lower soil layer.
This equation reads as follows
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(LY _
ot P sCs

( sTa) - T( (es(Ts) ea) - P{Ts -Tgi-1)] (4.2.27)

(o RS~L+ (ec air.rad.a€0TE, )

B is the thermal heat conductivity (in W m-1 K-1) and 8z is the vertical distance between the
centres of the uppermost layer and the layer below it. To obtain an analytical solution, this
equation has to be cast into a boundary condition to our problem.

dTy(L.t)
Br, L =0 Ryl + 4£G'Tgir,rad,aTﬂil‘,l’ad
PCp PCps _ Py
. 422
Ibh Y(rbv"'rs s)) ir by +s ) Dair | Y
PCp pCps

- 480Ta1r rada ¥ Ton fam o0 )Ty

The soil temperature, Ty, as function of space (x) and time (t) is formulated as follows:

dTs
&

aTS

+Q(x,0) (4.2.29

subject to the following boundary conditions:

B aTSé(L oy Ty = L) (4.2.29a)
3T3(f,t) -0 (4.2.29b)

and the initial condition

T(x,0) =g(x) (4.2.29¢)
where
pCp  pCp s pC
f(Ly =0 Rgl + 450’1‘2“ rad,a Tair,rad ( Thh “f(fbvf‘rs J air - by +Ir).; 9 Dair
(4.2.30)
C Ch s
oy =( 4e6T3 P~p, (4.2.31)

air,rad,a* bh m
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Qx,t)=0 xsL and t20 {4.2.32)

The first two terms in f(L, T) express the effect of the short and long wave radiation
loading on the increase of the temperature gradient at the soil surface. The last two terms
express the effect of the temperature and vapour pressure deficit of the air across the
boundary layer of the soil clods on the temperature gradient at the soil surface. The effect of
the soil temperature on the soil long wave emission, the latent and sensible heat flux from the
soil to the air is expressed in the second term of (4.2,29a). For the other soil layers, the most
significant energy flux, neglecting water vapour flux etc., is the conductive soil heat flux.

These boundary conditions (4.2.29a and 4.2.29b) are of the third and second kinds,
respectively.

‘ f(L,t)

Soil surface

x=L

No flux x=0

Fig 4.3 The definition of the problem.

The related homogeneous problem, which is given below, satisfies a Sturm-Liouville
Eigenvalue problem and as such are complete, i.e. any piecewise smooth function can be
expanded in a series of Eigenfunctions. The related homogeneous problem is expressed as:

2

c:i:g' +Adp =0 (4.2.33)
d

BI%? (Ly+ay op(L) =0 (4.2.33a)

dc% 0)=0 (4.2.33b)

The Eigenfunction of the related homogeneous problem is

bp=C1cos «/Z X (4.2.34)

where

«/Emm/ﬂ L}E—L (4235
L

C| is an arbitrary constant.
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The temperature of the soil can then be expressed in the form

N=co

Ti(x,t) = EO bp(on (%) (4.2.36)
n=

The problem now is determining the coefficient by(t) as a function of time and the effect
of intermittency on its value. This problem could be solved by the use of Green’s formula to
obtain the Eigenfunction expansion of the nonhomogeneous problem. The full details of the
solution are given in Appendix 2.5.

The coefficient by(t) has a first-order ordinary differential equation which reads:

dbn(t) gy (1) S0 VA L) L, t) (4.2.37)
BLI dr(xdx
0
where
K 1
K - (4.2.38)
Br. PsCs
Equation (4.2.37) is equivalent to
d [byet) eAust = ehgit €OV L) (L, 1) (4.2.39)
dt L
psCs I $A(x)dx
¢

The integration of this equation requires an initial condition for by} which is obtained
from the initial temperature profile according to

L
j £2(%) 9 ()dx

bpt0y = v {4.2.40)

L 2
J. dn(x)dx
0

The solution of eq. 4.2.39 is given by
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M cos( Vg L) FLT)

L 2
pSCSJ. dn(x)dx
.J 0 0

This completes the solution of the soil temperature profile as affected by (x,t). The f(x,t)
can be decomposed into two terms

by(t) =bp(0)e MKt 4 e-Ankt (4.2.41)

£ = op Rgd +460T3 rad 2 Tairrad (4.2.41a)
PCp pCps pPCp
fpLty = (B YTy - —— Dy (4.2.41b)
2D (rbh MrpvHs,s) 2 WrbyvHsg) o
byy(t) =bp(0)e Kt
t 1
-An Kl
N '37(“:“ cos(¥An L) [ MK (L1 du+ J MK L1y dt
psCs L+ Psb$ Gin (YA, L) cos(¥A, L) WO 0
2 g
(4.2.42)

The physical interpretation of the solution:

To study the physical behaviour of the solution, several remarks can be made:

1) The soil temperature profile is expressed by eq.4.2.36. ¢y, is determined from the solution
of the boundary value problem under the given boundary conditions and is determined by the
initial condition and is not a function of time. So, its space derivative is fixed in time. The
effect of the change of the coefficients bp(t) controls the change within time of the soil
temperature profile and of the soil heat flux. The time development of the solution is a
function of by (t) only.

2) The equality, eq.4.2.36, can not be valid at x=L. since {y, satisfies the homogeneous
boundary condition while T(x,t) _does not. But the derivative at a lower depths is allowed.
Nonetheless. we use the notation = . where we understand that the .. is more proper.

3) The first term on the right hand side of eq.4.2.42 expresses the effect of the initial value of
the coefficients of an Eigenfunction expansion of the soil temperature profile The first term,
between the parenthesis in the same equation, expresses the effect of the short and longwave
radiation loading on the soil temperature profile, f1(L,t). The second term expresses the effect
of the temperature and vapour pressure deficit of the air across the boundary layer of the soil
clods, f2(L,t), on the coefficients of this Fourier series expansion of the soil temperature
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profile. These two terms have different scales of intermittency. The second one is the one
affected by the existence of coherent structures in the layer of air above the canopy.

4) It is important to notice that the effect of intermittency on the coefficients of this expansion
expresses itself in the same way on all wave numbers. So the effect of intermittency needs to

be studied on one component only. This is what will be done.

5) The effect of previous intermittencies in f(L.,T) dies out at a much faster rates for the higher
wave numbers.

6) To evaluate the effect of intermittency on the soil heat flux and the soil temperature profile,
one needs to evaluate the effect of intertnittency on the value of £2(L,t) and how this affects
f(L,t}. That effect shows directly in bp(t), as given by eq.4.2.42. Then, we need to do a scaling
analysis of the different terms in £1(1.,t) and f2(L,T) to see the effect of intermittency on the
values of the boundary condition for the soil heat flux and how much that will affect by(t). A
direct numerical integration of eq.4.2.42 is also possible.

4.2.1.2.b. COUPLING THE SOIL TO THE CANOPY AIR LAYER

I. Assumptions:

There are three assumptions in the following analysis,
1) The first soil layer has a much larger time constant compared to that of the total canopy air
layer or the first air layer. The time rate of the soil surface temperature change is much lower
than that of the canopy air layer. An assumption of a boundary condition for the solution,
eq.4.2.29a, being decoupled from the soil surface temperature for small time interval, is thus
valid. The effect of the turbulent transport intermittency of the canopy air, during small time
intervals, could be checked.
2) The temperature and vapour pressure of the air for the whole period between two gust
intrusions follows an equation similar to eq.4.2.13 and eq.4.2.16, respectively. This can be
shown from MATHCAD® (a mathematical software for programming and solving equations)
runs (fig.4.17.c, fig.4.18.c and fig. 4.19¢). In the derivation for these equations, an integration
for a small time step was used. During this short time step, relative to the time constants of
the canopy air layer, the values of €air,eq and Tair,eq and Tajr,ini and eair,ini in these
equations are assumed constant. During the whole gust cycle, they keep changing as a
function of time. This will affect the time rate of the air temperature and vapour pressure
change for the total period. It will, in reality, be lower for the vapour pressure in earlier stages
of the solution and keep increasing tater. This will not change the exponential behaviour of
the solution. This is the case for vapour pressure, as long as the temperature of the leaves is
higher than the dew peint temperature of the air. For the temperature, the air temperature
could decrease and then increase depending on the vapour pressure of the air being higher or
lower than a critical vapour pressure deficit as defined from Penman-Monteith equation. It is
also assumed that deviations from steady state solutions are not of serious consequences for
the scaling.
3) The third assumption, which is not required for the calculation, but was implemented to
obtain scaled values with a hand calculator in the following calculation, is that in eq.4.2.42 a

multiplication of f(L,t) by e-An K(t-T} is required and then integrated. We assumed in the
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following scaling, that it could be possible to use the mean of £q.4.2.13 and eq.4.2.16 during
a gust interval, with a time period less than the time constant of the soil surface layer to obtain
an accurate enough value for the scaled terms in f(L,t).

All these assumptions could be disregarded in the case of the numerical model, since an
updating of the state variables is possible.

I1. The scaling procedure for a one-laver canopy model:
The analysis procedure is:

1} An equilibrium temperature and equilibrium vapour pressure of the canopy layer is
calculated. These are calculated according to eq.4.2.12 and eq.4.2.17 respectively. There is no
vapour pressure deficit equation for the first air layer, since in the derivation of a vapour
pressure deficit equation, flgwere for the air vapour pressure and air temperature equations
are not similar, so a common factor can not be obtained in step (A2.4.6). The analysis has to
do then with the temperature and vapour pressure equations and obtaining vapour pressure
deficit from their combined solution.

Tair eq = fropt Ti+1 + flowert Ti-1 +fla}'ert Teq (4.2.43)
€air,eq = frope €i+1 + flowere ©i-1 "‘fkayere es(T) eq) (4.2.44)

In these equations, two approaches were used to calculate the coupling coefficients
(flower ftop or fayer), either a parameterization according (o a constant large-lime averaged
Km value or a Kyy, value characteristic of the quiescence period as justified by the analysis
given in sect.3.6.2.

The Tj4+1 is the temperature at the upper boundary for the whole canopy and so is the case
for the vapour pressure. Tj-] is the soil surface temperature and the lower vapour pressure is
the saturated vapour pressure at the soil surface temperature. The required temperature of the
leaves in the canopy were calculated from eq.4.2.4, in which the temperature of the air and
vapour pressure of the air in the canopy layer were eliminated from the equation. This is done
by substituting Tair,eq, €air,eq equations in eq.4.2.4.

The equilibrium temperature of the leaves of the canopy are expressed as

Tpoq = 1 1 (% Rgl , Tair,rad
€4 |5 i flayer,e $ [I‘L+1_ + —8 PCp R
layer T~y ey 'R Tbh YTy+s)
frop, T fbottom, T es(Tair,top) frop,e
Lo = Teoil - : S Toirton 2T ey
* oh Talr,topT soil " ) T Hipytre) | APOP Ty e €air, Top
fhottom e eg(Teoil)*+ flayer e (T, ) _flayer e 8 (T ) (4.2.45)
'Y(rb——-_v +rg) sL1s01 'Y(_ rvars) sk tair,top 4“—?(%‘, +Tg) air,top
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During the gust intrusion phase, the air temperature and vapour pressure becomes equal to
the temperature and vapour pressure above the canopy and this becomes the initial value in
eq.4.2.46 and eq.4.2.47, respectively. The obtained values for the equilibrium temperature
and vapour pressure of the air were replaced in the same equations to obtain the temperature
and the vapour pressure of the air,

-t .

TaiFTair,eq(l‘e TaT )+ Tair initiale Ta,T (4.2.46)
I .

€air=eair,eq(1-¢ Tae Y+ €initial® Ta,e (4.2.47)

Two characteristic ratios (2 and 3 respectively) of the period between two consecutive
gusts to the time constant of the canopy air were used in eq.4.2.46 and eq.4.2.47. An integral
of these last two equations were used in the comparison between the effect of different
parameterization of ftop, flower and flayer in f(L.t}.

In this analysis the canopy layer was assumed well mixed. This simplifies the calculation
for the canopy layer.

In the case studied, we used the following values for the different terms were used:

Oy RSJ« for the soil is zero, for the canopy it is 200 wWm2.
Tair,rad 10 °C for the canopy and for the soil 20 oC.

Tair top 200C.

Tsoil 21°C,

Stop 1500 Pa

TR 210sm-1

tb,h 100 sm™

rs 200 sm™!

Iss 200 sm-1

Km 0.12mZs"!  forano gust model
Km 0.25:(0.12) m2s-1 for a gust model during the quiescence period.
Lad 3 m2m-3

Az Im

The results of the different state variables, under a gust (intermittent) and no-gust (non-
intermittent) approach, are given in the following table:

variable gust no gust
Tleq 32.95 26.53
Tair,eq 25.69 21.28
frop, T 0.429 0.75
flower, T 0.143 0.062
flayer,T 0.429 0.188
fiop,e 0.692 0.9
flower,e 0.077 0.025
flayer,e 0.231 0.075
€air,eq 2389 1673
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Ta 23.23-239 21.28

Cair 2005-2111 1673
f1{L.t} 114 114
f2(L,t) 442 388
f(L,t) 556 502
gust/no-gust 1.108

forcing ratio

The two figures, for the mean temperature and vapour pressure, in the gust model are the
resulting mean values in the case of the quiescence period being twice or three times as large
as the time constant of the canopy layer respectively. The comparison is done for the latter
case.

In this one-layer canopy gust model, the calculations show that due to the stronger
coupling between the leaves and the canopy air in a gust model compared to a no-gust model,
the smailer turbulent transport coefficient during the quiescence period, the resulting higher
equilibrium temperature of the leaves and the large ratio between the quiescence period to the
time constant of the canopy air layers, the mean temperature and vapour pressure of the air
are higher in a gust model compared to a no-gust model.

In this case, that led to an increase in the forcing on the soil temperature profile estimated
to be by about 11%. This was due to a canopy layer which was assumed well mixed. The
effect of the temperature and vapour increase was felt at the soil surface and so led to a
consequent increase in the forcing; f2(L.,t).

Concerning the answer of question 4 about the effect of intermittency on the mean
temperature of the air and the soil layers. For the air layers, the time constant is small relative
to the time rate of change of the boundary conditions, so an integration of the effect could be
shown easily by integrating over small time steps resulting in solutions such as eq.4.2.58.
Concerning the soil temperature, the situation differs due to the time constant of the soil
reservoir much larger than the time rate of change of the forcing function f(L,t) with its
radiative and non radiative components. So, in fact there is no equilibrium temperature but a
modified rate of the temperature change of the soil as affected by intermittency. The effect of
intermittency on the mean temperature is obtained from evaluating eq.4.2.42 over large time
intervals, but it is also shown how the forcing is reduced by following the effect of
intermittency on the fa(L,t)/f] (L,t). The effect of intermittency on the mean can be evaluated
by the value of €q.4.2.36 and averaging. But this will require an integration for a large period
of time. We have some results from an early version of the numerical model which shows the
effect of intermittency on the mean soil temperature profile (see sect. 4.2.1.2).

In case of two canopy layers, an upper one which has most of the leaf area density and a
lower one which has a very low leaf area density, the situation would be reversed. This, we
expect, is due to limited turbulent mixing, which would limit the turbulent transport from the
top of the canopy down. Also, the low leaf area density in lower part of the canopy will lead
to a low equilibrium temperature and vapour pressure of the air and restoration of equilibrium
will require a longer period of time as can seen from eq.4.2.20. This will tead to the effect of
the air, which has been brought by the gust intrusion from well above the canopy, to be felt at
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soil surface, and a resulting reduction of the forcing with respect to no-gust model will occur.
To prove this would require a more numerical model as done in the following section.

CONCLUSIONS (4.2,1.2,B.II):

Before proceeding to study the effect of a two or n layers model, we notice some important
results from the analysis of the one layer canopy model,

1) We have seen from section 3.6.2, that most of the contribution to the large-time averaged
0% comes from events which occupy a very short period of the total time. During most of the
time, a smalt fraction of the total o2 variance is contributing to the small scale dispersion of
the scalars within plant canopies. This leads to a higher coupling, during the quiescence
period, between the leaves as sources or sinks to the temperature, vapour pressure of the
canopy air layer. The equilibrium temperature and vapour pressure of the air at the end of the
quiescence period would have a higher value for a gust model compared to a non-intermittent
model. We have seen from section 4.2.1.1, that a mean Ky value does not lead to the same
temperature and vapour pressure as a fluctwating Km value which has the same mean because
of the exponential behaviour of the equations. In here, we see that the stronger coupling
between the leaves and the air layers lead to a higher equilibrium vapour pressure and

temperature of the air.
2) The values of the variation of the forcing, due to the existence of the coherent structures,

are significant. In this scaling analyse, we are interested in approximate values to show the
importance of the gust process on the behaviour of the system. Detailed numerical modelling
is done in chapter 5.

IMI. A scaling of a two to n layers model:
1. The Approximate form :

In here, we are interested in oblaining the effect of intermittency on the mean
temperature and vapour pressure deficit of the air, and use this to scale the effect of
intermittency on f1(L,t)/f2(L.t) functions. In the case of a multi-layered canopy (two to n
vegetation layers) and the layer of air above the canopy, it is not possible to obtain a complete
elimination of the temperature and vapour pressure of the canopy air layers, as has been done
in eq.4.2.45 for the one layer canopy model. This means that we have to find a way to solve
the canopy equation and scale the effect of intermittency easily.

In Section 4.2.1.1, four equations were derived which could be used to describe the
canopy behaviour completely. Two combinations, each consisting of three equations, could
be used to describe the canopy behaviour with different degrees of accuracy. We will use
these two combinations to scale the effect of intermittency on the average temperature and
vapour pressure deficit of the air. This is done through the effect of intermittency on the
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values of the coefficients of the inverse matrix A~ of the coupling coefficients matrix A
between different canopy layers.

We will start first with the less accurate combination, the vapour pressure deficit
combination and show how this can be used to describe the canopy behaviour and the effect
of intermittency on the soil heat flux. We will call this form the approximate form. In the
appendix 2.6.1, it is shown that

10 0 0 0 0 D Dﬁ’sfé“ layer
E, -F G, 0 0 0 D, 2
0 Ea -F3 Gs 0 0 Dy |_ -C;
0 0 Es -Fqy G4 0 Dy - -C4
0 0 0 Es -Fs Gs Ds C
0 0 00 0 1 Ds S
L Dupper boundary _|
A . D = C

(4.2.48)
E;, Gj are the turbulent transport coupling coefTicient between the layer i and the layer below

and above respectively and given by

K .
E, = potom.i (4.2.49)
b Xpottom,i
K .
G; = —1oP) (4.2.49b)
8Xtop,i
while Fj expresses the layer coefficient and equals
F = Az + top,1 + bottom,i + L/‘\D AZ,. (4.2.49¢)
At ‘SXtop,i 8 Xpottom,i fb,i+ & fs,i
and C; expresses the source effect
¢;=LAD AzSGsORy | Az g (4.2.49d)

(rgotrp)  pCPp

The importance of intermittency shows through decreasing the fractional contribution of
the E; and Gij 1o the Fj term. In case of solving for a steady state selution, this is done by
assuming At-»eo, so the first term in Fj and the last one in Cj go to zero. If we assume that
intermittency has no effect on some of the terms of Cj and Fj especially r5, Ry and less
importantly s, then intermittency effect shows mainly on the values of the inverse matrix of A
(the coupling ceefficient matrix). The indirect effect could show through the effect of
intermittency on the resulting mean temperature and vapour pressure deficit of the air which
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affects the stomatal resistance of the leaves and the value of Ry, {the latter through making the
leaves warmer or colder). The solution of the above system is

ALA D= A'.C (4.2.50)
D=A' C (4.2.51)

What the inverse matrix expresses is the contribution of the different values of Cj to a
certain value of IDj, as given by

n
Di= A G (4.2.52)
j=1

In the example given below, there were no sources with the canopy (i.e. LAD was
turned to zero. What we notice is the higher values in the intermittent system of the

coefficients A‘ij' where i and j # | or # n, i.e. the inner elements of the matrix, while the

elements in the first column or the last one have still the same value as the non-intermittent
system. This means a relative reduction in the role of the upper and lower boundaries of the
simulated domain to the equilibrium solution and a higher contribution of the inner layers to
the solution at a certain height. The lower mixing during the quiescence period leads then to
the establishment of a higher influence of the inner C; elements to the vapour pressure deficit
within a certain layer in comparison to a non gust model, in which a higher value of the
turbulent transport coefficient is active all the time. Whether this leads to a higher or lower
vapour pressure deficit than that of the boundaries depends on the stomatal resistance and Rp
profile, as has been shown on conclusion 4 of sect.4.2.1.1. In the gust approach, the total
mean Ky value is the same as in the no-gust model, but during the gust occurrence, most of
the turbulence occurs while in the quiescence period, the value of Ky is much lower than the

(1 0 0o o o 0 ]
—0.06 012 =006 0 0 0O
0 =006 012 =006 0 0

A= 8] 0 =006 0.12 —006 0O
0 0 Q =0.06 0.12 —0.06
o 0 0 0o o | _ (4.2.53a)
1 0 0 0 0 0
08 13333 10 6.667 3333 0.2
A_l - 06 10 20 13.333 6667 04
0.4 6.667 13333 20 10 0.6
0.2 3333 6667 10 13333 08
0 0 0 0 0 i (4.2.53b)

An example of a matrix with intermittency and its inverse (no sources).
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1 0 0 0 0 0
=0.12 024 —0.12 9 0 0
0 —0.12 024 —0.12 O Q

A= ¢ 0 =012 024 =012 0
0 0 0 -012 024 —0.42
o 0 0o 0o 0 I (4.2.54a)
1 0 0 0 0 0
0.8 6667 5 31333 1667 02
A1 |06 s 10 6667 3333 0.4
0.4 3333 6667 10 5 0.6
02 1667 3331 5 6.667 0.8
o 0o 0o o 0o 1 (4.2.54b)

An example of a matrix with non-intermittency and its inverse {no sources)

mean (0.25-0.3 of the total averaged mean). In this case, LAD was assumed zero for all
layers, so all Cj from i=2 to i=n-1 are zero and the solution leads to a linear interpolation
between Diiry air layer a1d Dypper boundary for different canopy layers. In this case also, there is
no effect for LAD in Fj coefficients, so there is a decrease of the importance of the source
terms in layer coefficient Fj. But the point shown here, is that the contribution of the inner
nodes increases in the final solution in the case of a gust model as compared to that of no
gust.

The resulting change in the values of these coefficients will be used to check the effect
of the closure on the solution (the inverse matrix ALy,

For the air temperature at equilibrium , the following system of equation has to be
solved

1 0 0 0 0 0 T] Tfirsiéi:ir layer
E, -F Gy 0 0 0 T, 2
0 Es -Fi Gy 0 0 Ty |_ -Cs
0 0 Es Fq Gy O Ty |~ Cy
0 0 0 Es -Fs  Gs Ts C
0 0 0 0 0 1 Te -
L Tupperbuundary _
A - T C (4.2.55)

Ej, Gj are the turbulent transport coupling coefficient between the layer i and the layer

below and the layer above respectively and are the same as eq.4.2.49.a and €q.4.2.49.b, while
Fj expresses the layer coefficient and equals

_ Az | Kiop,i  Kbottom,i

F, '
At SXt()p,i & Xpottom,i

(4.2.56a)
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o -1
G = ( YRH—pCfDrL) LAD A z+5Z T! (4.2.56b)
5+ At

T=Al C (4.2.57)

For steady state solution, At—es. The first term in Fj and the last one in Cj go to zero.

The solution is obtained by assuming initially isothermal conditions within the plant
canopy (i.e. the leaf temperatures equal air temperature), so the longwave radiation profiles
and Ry, can be calculated. These values of Ry are used to calculate the values of D according
to eq.4.2.51, These latter can be used to calculate the temperature and vapour pressure of the
air according to eq.4.2.55 and 4.2.57. The amount of sensible heat flux from the leaf to the air
can be calculated by the use of Penman-Monteith equation and the calculated I and the
assumed Rp. This value of Cj can be used to calculate the leaf temperature at different layers.
This will be used to calculate the longwave radiation profile and a new value of Rp. The
process is repeated till the solution converges.

This method of solution could be considered a variant of Chen’s method (1984), in
which the requirement of specifying the saturation heat flux I has been eliminated. D could be
calculated directly.

It is to be noticed that the coefficients of C matrix, for air temperature, have an effect of
intermittency expressed in their values through the effect of the A'l _of equation system

(4.2.48) in the calculation of Di. The calculated T will have an intermittency effect due to

changes in the values of € matrix of system (4.2.55) and the values A1 of that gysiem, so it

is rather a compound effect.

To obtain an approximate value for mean D, it is assumed that we can integrate
eq.4.2.20,

N . .t
Dajr = Dair,eql (1-e 130) +Dair initial ¢ TaD (4.2.20)
resulting in
perivdd
— [ : ot __t
D=pen'0d Dyjedt = period Daireql (1 -¢ Ta D)+ Dairinitial ¢ Ta,D/dt

"

(4.2.58)
Since Dair,eql and Dair_ initial are functions of time, it is difficult to integrate eq.4.2.20. It is
possible, anyhow, to describe the canopy vapour pressure deficit by an equation similar to
4.2.20
peried
B = Dyir eqi+ alr,mmall air,eql T, (- 1 e TaDat
Period T TaD (4.2.592)

o
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. (D' TP b I )’E _period
D = Dair eql* a“"““‘al‘)'crigg’eq' 2D (1 Hh) (4.2.59b)

In case of characteristic period for coherent structure intrusion which equals three times
the time constant,

D= 0.69 Dair,eql+ 0-31Dair,initial (4.2.60)

Dair,eq will be determined from the solution of eq.4.2.48 by the use of a reduced
turbulent transport coefficient, assuming that the value of the C matrix are the same for the
gust and no-gust approach. This is not exactly true, since there is an effect of intermittency on
the mean vapour pressure deficit and temperature of the air, which affects the values of Cj
terms through affecting mainly the stomatal resistance and less importantly the value of Ry
and s.

In case of the period between two gust intrusions being very large, a profile as shown in
fig.4.2.b develops and the resulting D becomes very small due to the required gradient needed
to achieve a vapour pressure deficit flux. The end result could be less vapour pressure deficit
in a gust model in comparison to a no-gust model. Usually, the time period between two
consecutive gust intrusions is usually not large enough for such a profile to develop, so the
diffusion from above of low vapour pressure deficit to the soil surface and the decrease of
vapour pressure deficit is not allowed to continue, and a mean profile will be an inverse of
that shown in fig 4.2.a,

Daireq =A7'.C (4.2.61)
Digust moder=0.69 Agy’  C+031 Dig (4.2.62)

The Matrix C is assumed the same in the gust and no-gust model. The deviation
between a gust and no-gust model depends on

Dyust modeli = X, (0.69A,1515; Ci)+ 0.31D4n (4.2.63)
j=1

being higher or lower than

n
Dnogust model,i = Z A;jl;;)gust_ij Cj (4.2.64)
=l

This will depend on the inverse matrix of the coupling coefficient matrix A and how
much relative weight it gives to the lavers above and below the canopy in determining the

vapour pressure deficit of the air lavers close to the ground. Even if it matches for a certain
layer, the requirement of down-gradient transport will lead to no maitching for the other
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layers. That shows the importance of defining the_inverse matrix symbolically or by the use

of Thomas algorithm as given in Patanker {1980).

The inverse matrix A-1is given symbolically in sect. 4.2.4.

The same procedure is done for the calculation of the mean T by solving the eq.4.2.55
The mean temperature of the air is determined by integrating an equation similar to eq.4.2.13,
yielding

period
o1
(Tair initial- Tair eql) 1 Ta,T
T = Tair eqlt Period “Ta, T (- G) e dt (4.2.65)
L}
= (Tair,initial-Tair,eq1?%a, T _ period
T = Taireq+ ! lperio T q (le 1) (4.2.66 a)
T= 0.69 Tajr,eqit 0-31 Tair, initial (4.2.66b)

with an assumption that the effect of the difference between the values of the time constants
of T and D make no much difference on the solution. The coefficients Matrix C will not be
the same for a gust and no-gust model, because the value of D) entering in the coefficients is
being affected by the turbulent closure.

Tgu,st m()del*(}-69*A‘gus-\tI C+031 Ty (4.2.67)
T“‘)B“St = Anogust C (4.2.68)
THOBUSI model,i = Z Anugusl 1 (4269)
Tgust model,i = 2 (0. 69Agust i Ci)+ 0314 4.2.70)

i=1

The difference of the solution between a gust and no-gust approach for the temperature
and vapour pressure is fed into the solution of the first air layer.

There is one problem with this system: This problem is defining the values of vapour
pressure deficit for the lowest air layer. For this layer, the lower coupling coefficient is
different for the temperature and vapour pressure air equations, so obtaining a common factor
in step A.2.4.6 is not possible. So, the above system of equations apply only to the canopy air
layers from layer number 2 to layer number n. For the first air layer in contact with soil,
obtaining a value of the vapour pressure deficit for the first air layer is done through the use
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of the temperature and vapour pressure equations for the first air layer equations. These
equations are the same as equations A.2.2.7 and A.2.3.5 for temperature and vapour pressure
for the first air layer. The lower coupling coefficient in both these equations have to be
replaced by

Kbottom  __PCP
r -
5 Xbottom bh,soil

(4.2.71a)

C
Kpottom _ P p ' .
8 Xpottom {Tov soil s s0il)

rg soil €Xpresses the soil resistance to evaporation. This resistance is somewhat similar to
the stomatal resistance of the plants, and it has been parameterized as shown in section 4.6.
So we solve the temperature and vapour pressure equations for the first air layer assuming a
rather constant temperature of the soil and a feedback from air layer number 2. The solution
would converge. One point is that we assume, that the temperature or vapour pressure of the
soil are initially the same for the gust and no-gust approach. This method can still be used for
checking the forcing variability with the modelling approach. This forcing will control the
time rate of soil surface temperature change.

It is important to notice that the whole canopy layers and the first soil layer are coupled,
but there is a large difference in the time constants of both systermns. That allows assuming that
the soil surface temperature is almost constant during a short time interval which is much
larger than the time duration of a gust cycle, so the temperature of the soil surface can be
treated as a constant in eq.A.2.2.7 & A.2.3.5. The effect of intermittency on the mean value of
D and T of the first air layer can be calculated. The resulting mean value of the first air layer
D and T will affect the solution of the soil later through eq.4.2.42. So, the whole technique of
analysis here depends on the separation of time scales of different system components.

We will stop here with the analysis for the approximate form and continue with the
analysis for the more exact form because, we think , it is more relevant.

2. The more exact form (the nonsteady state solution)

There is an enhancing aspect of intermittency on the sources and sinks within plant
canopies. The time variation in the turbulent transport coefficient leads, during the gust
intrusion phase, to the time constants of the canopy air layer being very small, and an
equilibrium solution for the canopy air layers is established very rapidly. This equilibrium
during the gust intrusion phase is represented by the canopy air having the same temperature
and vapour pressure deficit as the layer of air above. The leaves on the other hand have a
much larger time constant in comparison to the canopy air time constant during the gust
intrusion phase. So, an equilibrium solution for the air is established within the gust process,
while for the leaves it is not. Once the gust process shuts off, there is a strong reduction in the
turbulent transport coefficient which reduces the coupling between the air layers and the layer
of air above. If the leaves thermal equilibrium had been established before the gust intrusion,
the process of gust intrusion represents then a large shift for the system which has to be
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restored. The energy storage change within the leaves plays an important parl in this. The
systern is far from a steady state solution and the effect of temperature changes within the
system is important.

To estimate the effect of the non-steady term in the energy budget equation of a canopy
with a leaf area index of 2 and leaf thickness of 0.001 m and 75 % moisture content in the
leaves, a decrease or an increase of | K for the leaves would represent about 6270 joules
storage change. If this change happened within 60 seconds, this represents 104 Wm-2. This
would represent a large ratio with respect to the energy partition on the leaf surfaces.

It has been shown by Paw U(1992) that the radiative surface temperature trace reveals a
ramp-like response to the coherent structures. That implies that the value of Ry follows a
ramp-like pattern. So, there is a measured change of energy storage within plant tissues.

If hypothetically, the gust duration period were large enough that the leaves have
achieved thermal equilibrium, the sudden reduction in the turbulent transport coefficient
would lead to the a re-establishment of a new equilibrium. This new equilibrium state would
be due to the different weighting coefficients in eq.4.2.12. So the difference in temperature
between the leaf and the air will contribute in a different ratio to the equilibrinm temperature
of the air. We start then with a system which was in equilibrium already and it shifts from that
equilibrium due to the change in the weighing coefficients in the air temperature and vapour
pressure equilibrium equation. This wiil later have a feedback on the temperature of the
leaves through eq.4.2.5. Things here will go more smoothly than in the previous case, but the
initial hypothesis of long gust duration is unrealistic. So in our analysis we will be dealing
with nonsteady state solutions, and we will show an example of such a solution.

The more exact equation (nonsteady state solution for air temperature and vapour
pressure)

The temperature of the air system follows {A.2.6.2.2)

1 0 0 0 0 0 T] Tfirst-s(U:il layer
E, F G, © 0o 0 Ta 2
0 Ej -Fa Gs 0 0 Ts |[_ -Gy
0 ) Ea -F4 Gy O 1Ty - -Cy
0 0 0 Es -F5s  Gs Ts c
0 0 0 0 0 1 Ts e
L Tupper boundary
A - C = T
(4.2.72)
T=A1 C (4.2.73)
where
E - Kbottom,i_ (4.2.742)
beottom,i
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_ Ktop,i

G, =
8Xtop,i

F, = (Ez__,_ Ktop,i " Kbottom,i +LAD Az

At 8Xigpi 8 Xbottom,i
or

F, =(Al~t_ top,i bottomn,i )
At 8Xiopi  © Xbottom,i

Ci= L LAD Az+dZT!
or
G = ( —(Ti,b'hT‘) ) LAD Az+ 227!

At

Tph

(4.2.74b)

(4.2.74c)

{4.2.744d)

The effect of intermittency shows also, as before, through the effect of the inverse
matrix A1 of the coupling coefficient A on the solution and the memory of the system

through T:. In here the initial temperature of the air is kept in the C matrix, since we are

solving for the nonsteady state source.

The vapour pressure equation has a similar equation (A.2.6.2.b)

1 0 0 0 0
Er, -F; Gy O 0
0 E; -Fa Gy 0
0 0 Evs -Fa Gy
0 0 0 Bs -Fs
0 0 o 0 0
A

where

K .
E = bottom,i

8 Xpottom, i

K .
G{ _ top.1

SXtop,i

Sfirst soil layer

-C,
-Cy
-Cy
_CS
Cupper boundary
C (4.2.75)
(4.2.76)
(4.2.77)
(4.2.78a)
(4.2.78b}
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Fi = [A% , ~topd | “boltomi | JAD Az (4.2.78¢)
At 8Xop,i O Xbottom,i (Tbh + 1)
or

E. _(A_ﬁ ) Ktop,i N Kbottom,i )
11— i T
At 3Xopi B Xbortom.i

C= 0D 1Ap Aze bz (4.2.78d)
(tbh +15) At
or
[
G= | &) yap Aprdz g
{rph +15) At

The temperature of the leaves are determined implicitly (with the knowledge of the T}
and ¢!} by the use of eq.4.2.5 & 4.2.6 or by the use of the numerical implementation as
explained in sect. 2.3.1.1.

This represents the more exact system form to solve the canopy equations. One
advantage is that it applies for all canopy layers, including the first air layer. Soil layers could
be included, if we change the coupling coefficient by the heat conductivity coefficients
between different layers. There are no sources and sinks within the soil except for phase
transformations. In the numerical model (chapter 3), a nonsteady state solution for a system of
discretized equations equivalent to this nonsteady one were used to solve the whole problem.

From here, it seems that the inverse matrix A-1 of the coupling coefficient A will
control the coupling between the canopy layers and the boundaries above and below.

Now, we want to continue with cur scaling analysis and obtain an average vapour
pressure deficit and temperature of the first air layer, so we can determine the effect of
intermittency on the f1(L,t1}/f2(L,t) in the forcing functions, We will come back to the
discussions of the decoupling procedure for system 4.2.72 and 4.2.75, especially at the soil
canopy interface at section 4.4,

A numerical solution by the nse of MATHCAD® for few time steps including three
gust cycles will be used to show the effect of the intermittency on the values of the mean D
and mean T. This model will be run under identical conditions, except for a gust occurring at
every tenth time step from the beginning of the simulation in the gust model, which also has a
reduced turbulent transport coefficient by a factor of (.25 compared to the no-gust model.

This model solves the following systems of equations: eq.4.2.5, system of equations
4.2.72 and system of eq.4.2.75. All the variables in these equations will play a role in the
solution. These variables include : Rn, Tair,rad, Tair, €air, LAD, Ktop, Kbottom. tbh,rs and
rss.

To facilitate a comparison, the values of Rshort, T, will be chosen to represent a rather
constant high radiative loading, while the values of the temperature and vapour pressure of
the air will be varied to allow for the variability of certain climatic regimes, as is explained on
page 143. The leaf area density will be kept constant for all the runs. The values of Ktop,
Kbottem. rs and rgs will be varied to see the sensitivity of the solution (i.e. the f1/f2 function
and the integrated fluxes at the canopy top).
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The effect of intermitiency on the soil heat flux icocf:- 025 dy:- 02 dxtop, = 0.2

from the more exact form: IRshort = 140, dxlowe; = 0.2

The MATHCAD runs: iTairrad: I5. e Thick:= 0.0005
The description of the simulated system: Lad, = Klower - kop, -= Tling:=
A six layer canopy with equal layers thickness of o 008 016 F3.807973]
0.2m is defined. The values of all other variables are [P2] 016 jo.028 [23.986098 |
given in fig4.4.a. In the case shown: a leaf area ; %(;)243 g’g; 233:’:?: ‘
density profile of 0.0 mZm’3 for the lowest two layers o] [om8 D08 RN
and a leaf area density of 4 m? m™ for the uppermost F0] 008 0.08 23490263

four layers was used. A cumulative leaf area index of |
. . cumlai= ¥ Lad-d .
32 results. A short wave radiation absorption Z e Taitop= 200
1

coefficient (ar) of about 0.8 was used. This leads, in 1 20 Tair, ;= 200
the case of Rshort being equal o 140 Wm2 leaf Total Load= cumlaiRshorizar  “%ms © 1500
surface (one side), to a total short wave éadianon Total_Load=716.8 Tai - 20
; *PE #() 8= - ' :

loading of abQut 3.2%2%140.%0.8= -7'16 Wm . 1f0r the chh_ = 100, cair_, = 1500,
whole vegetation layer. No absorption of radiation by = |00 '
the soil surface was assumed. Only the effect of s =400 _
intermittency on the state variables of the air and its | o0 cairiop:= 1300
effect on the forcmgso(r}) the sm;l w? lnl:on;dered. Tleaves - 200 Teoile 11

- T U e I -
Talr,rad was set to 15 7C, a rather high value, to Fig. 4.4.a: The parameters used in the

average for the different longwave radiation loading
on the upper and lower surface of the leaves. The time
step of simulation will be changed in the last run to check the sensitivity of the solution to the
period between gust intrusions into plant canopies, since in this simplified model an intrusion
of air into plant canopy occurs every tenth time step. The difference between the gust and no-
gust approach on the forcing [, functions and the fluxes will be checked. In the no-gust run,
the value of (coeff= 1) was used. Everything else was the same.

The solution procedure of the governing equations is exactly the same as the model
presented in chapter 5, except for the solution of the absorbed radiation. There is no
calculation of the short and longwave radiation profiles. The amount of absorbed radiation is
assumed the same for unit leaf surface for all heights. To avoid the effect of storage change
within the leaves on the solution, the gust mode! was run first using an arbitrary initial leaf
temperature profile and the final temperature of the leaves were used as initial values of the
leaf temperature in a new run. This process was repeated till the difference in storage change
in the leaves didn’t contribute more than 1 Wm™< for the whole canopy layer. The same initial
leaf temperatures profile was also used in the no-gust model. This latter step does not really
matter, since in the comparison between a gust and no-gust model, the equilibrium solution of
the no-gust model (i.e . the final time step) is compared against the mean values of the gust

run.

model.

The results of the run specified in fig.4.4.a is used to show the limitations of the use of the
value of f, functions alone as a criteria for the effect of intermittency on the canopy soil
system. The results for the gust model give a value of 398.1 WmZ for the f2 function, while
for the no-gust model a value of 396.1 Wm'2 was obtained, not a significant difference. The
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The higher turbulent coupling coefficients in the no-gust model (f, opt’ flowert [ tonte
f owere 3 given by €q.4.2.12 and 4.2.17 respectively, couple the canopy layers more to the
boundary conditions above, while for the gust model the higher fy, .. and flayerc couple
these layers during the quiescence period more to the temperature and vapour pressure of the
leaves. These latter are affected by the vapour pressure and temperature of the air as given by
eq.4.2.5. The higher temperature and vapour pressure of the air resulting from the coupling of
these latter to the temperature and vapour pressure of the leaves will affect the temperature of
the leaves further, and a buildup starts,

We notice the higher bulge in the gust model, compared to the no-gust model, in the mean
temperature, vapour pressure and vapour pressure deficit profiles. The first bulge
corresponded 10 a counter-gradient transport, while the existence of a smaller bulge in the no-
gust model corresponded to a negative flux (downwards) due to the temperature of the soil
during the simulation being set to 21 “C. There was also a maximum difference in the mean
temperature of the air of about one degree “C and a difference in the mean temperature of the
leaves in the middle of the canopy of about 0.5 O¢, Looking at the equilibrium air temperature
and vapour pressure profiles (fig.4.4.c), we see that in spite of being initially lower than those
of the nogust model, they pick up rapidly that the mean values of those in the gust model
become higher than the equilibrium ones in the no-gust model.

A new run with a reduced value of the stomatal resistance (300 sm‘l) was done. The other
parameters are as in fig.4.5.a. For the gust model, the resulting 2 function was 397.6 Wm “.
The resulting sensible and latent heat flux from the soil to the air were (.29 and 41.9 W2,
The averaged sensible and latent heat fluxes at the

canopy were: 1269 and 352.1 Wm'z. This coff - 0.25 dxto, = 0.2
corresponded to total sources within the canopy of Rebort - 140 d =02 dxlowe; = 0.2
126.6 and 310.2 Wm'2 (a value of 436. Wm'2 Rn with Tairead - 15, U5 Thick = 0.0005

a Bowen ratio on plant surfaces of 0.41). The values of

Lad; = klower = ktupi Bl Tliny:=
the mean profiles is given in fig.4.5.d.e.

. 008 pots 22.88106
In‘ the case of no-%lst r.no.del, the .rcs'ultllng f2 016 b8 b 9i9830
function was 395.2 Wm'™~. This is also an 1n51gmﬁcant lo.028 0.04 3.131423 |
difference. The resulting sensible and latent heat flux 004 008 23.003414
from the soil to air were: 2.0 and 46.9 Wm™. The 0.08 008 | gz79716d
) 0.08 0.08 2434038

fluxes at the canopy top of sensible and latent heat

were: 138.8 and 362.1 Wm'2. This corresponded to 'C“‘“'“":ZL“di‘dla

total sources within the canopy of 136.7 and 315.2 Tmmp_:zoﬁ

W2 (a value of 451 Wm'2 R, with a Bowen ratio eumlai=3.2 Tn,"”"jl: ]2:00

on plant surfaces of 0.435). The resulting mean Totl Load = cumlaiRshorl2-ar mi

profiles are shown in fig.4.5.d for the no-gust mode]. Toul_Load=7163 Taig, , = 20

So, there is a somewhat large difference between the b= 100 eaig ;= 1500,

gust model and no-gust in the value of Rn and the :':hsjal)((})g

partition on plant surfaces, " eairtop = 1500
In this run, within the gust model, there was a =20

favourable partition toward sensible heat on the Theave =230 Tsoil = 21.

account of latent heat, as can be seen from fig. 4.5.b, Fig4.5.a: A run with a reduced stomtal

resistance.
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in spite of the observed
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pressure of the first air layer and the transport

to the layer above contributes less. This leads
to the buildup of vapour pressure which

0

[
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T
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300,

reduces the soil latent heat flux. The Fig4.5.c: vapour pressure deficit behaviour within
time in seconds*1/2
Mean_Tleaves_sqli Mean_Taireg] Mean_eaireq! Tairmean Eairmean Dmear, Mean_Tleave'i
22.73 21.037 1.825 ]03 20.84 1.745 ]03 721.286 22.723
22.789 21.187 3 21,071 3 782.95 22.786
746107 1.719-10°
22.983 21.476 1.745 101 21.385 7 3 804.3 22.982
72.887 21.328 176710 21.277 1746107 Ig16.154 22.88
22.703) 21.085| 1.728- l(}3 20,637 1.717-10° 829.8 22.702
22.382] 20,663 1.683- 100 20.637 1.605- ]03 829.8 22.379
1.61:10° 1.605-10°

Fig 4.5.d : The mean profiles in the gust model for run 4.5.a

bottleneck of transport then is the turbulent transport between the canopy first air layer and the
air layer which is in direct contact with the soil surface. This latter has a thickness as large as
the displacement boundary layer (about 1 cm thickness). This transport works on moving
latent heat from this air layer to the one above. We notice that the third and higher canopy
layers have higher turbulent transport coupling coefficients. This leads to the lower
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Tleaveseqy’,, Taireq; 4, eaireq] 4 Tair "301 eair 5, Daig 30 Tleaves 5,
22,654 2083 | 704107 20832 poar0 98] [
22.584 20.81 20811 ) .
1672 10° 1672107 e 257
22.544 20.798) 7 20.798 3 806.144 22.543
22.412 20.65 1653 10- 2065 L653-107) (318,525 22412
22293 20.506 1.618-10° 20.506 1618107 |825.208 22.293
22,119 20.289 159107 20289 so10]  [83254d  [2Zn9
1.551-10° 1.551-10%
Fig 4.5.¢ : The equilibrium profiles for the nogust model for run 4.5.a
0 [} [
o o ] 0.667 0.313 0
0489 0 0 0.636 0.364 1
0636 0364 n flopt=| 0.495|  Nowert=| 0.347 fluyer=| 0.158
fropt=| 0.562 foweri=] 0393 flayert=| 0.043 0602 0.301 0.t56
D649 | oz2s 006 463 0463 | 0074
Logw i a9 o2 11463 | 0463} [ u7a]
| a9 | nay .02
o o] 0
u 0 0 0.857 0.143 0
0.96 hod a .66 364 i
0636 0.364 0 flope=[ 0.562(  Nowere=| .39 flayere=| 0.(45
Fope = 0584 flowere=| {1.40% Nuyere=| 0007 0.649 0325 0026
V664 0,332 .04 049 50 -
D49y w.avy 0003 049 "'49 ”'"2
.49y 049y o3 ' ’ '

The nogust madel coupling coefficients

The gust model coupling coefficient

equilibrium vapour pressure in the no-gust model compared to a gust model. The favourable
effect of the gust process on the average flux is through refreshing the air inside the canopy,
which represents a large percentage of the flux. If the time interval between two coherent
structures is quite large, the enhancement of the average flux due to the storage depletion
with the gust passage will be adversely compensated by the lower turbulent transport
coefficient during the quiescence period. The resulting buildup will increase the average
forcing on the soil. This relates to the time period between consequent gust intrusions into
plant canopies in relation the time required for the build-up to occur and the resulting adverse
effect on the soil latent heat flux to express itself. To get an enhanced effect due to the gust
process on the soil heat flux, a parcel of air has to brought in contact with the soil and
maintain, during its contact time, a lower vapour pressure than the one obtained with a no-gust
model such that the resulting mean vapour pressure has to be lower than the one obtained with
a no-gust model. A new gust intrusion will replace this parcel of air with a fresh dry air before
the adverse effect of buildup shows on the forcing. This requires a low leaf area density in the
lower part of the canopy and lower turbulent mixing, which will lead to low diffusion of low
vapour pressure deficit downward. Increasing the thickness of the first air layer in contact
with the soil will lead to the same effect, since the first air layer will require a large period of
time to maintain equilibrium. All of these variables relate to increasing the value of the time
constant of the first or higher air layers in contact with the soil.

To show this, we did another run in which the turbulent transport coefficients were reduced
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as shown in the fig.4.6.a. —— S

) L e dxtop, = 0.2
The value of the obtained f2 function in the gust coeff=025  dz:=02 dxlolj' .
. - . ! =02
model is 395.2 Wm™. The sensible and latent heat L L o
flux from the soil to the air were 4.27 and 40.6 ; EA ore= 190 Thick = (0005
Wm™2. The storage change within the canopy was za;rm_d’ l;’ i ) Tint
Jess than 0.09 W™ for the whole canopy layer. The o0 ok = "
resulting averaged sensible and latent heat fluxes at 0008 00016 | [22.757457
the canopy top were 127.8 and 351.1 Wm™2. This .0016 0028 | 22425896 |
" ‘ 0.0028 0.04 23.263929 |
corresponded to total sources within the cagopy i 004 008 | [3.075605
(excluding the soil) of 123.5 and 310.5 Wm™ for ' 0.08 0.08 22.84354
sensible and latent heat respectively. This 0.08 0.08 22.456774 |
corresponds to a Bowen ratio on plant surfaces of
cumlai= ZLad»dz i -
about 0.4, L Tairtep = 20.0
In the case of no-gust model, 5he value of 12 cumlni=3.1200 Taig, ;= 20.0
function was equal to 4124 Wm™". The resulting 0. 1 o0 cumiaiRshonzar = 1300

sensible and latent hea& flux at the canopy top were
136.7 and. 34.15.8 Wm ™. This cor{'esponded- to total (bh_ - 100, cair_ = 1500.
sources within the canopy (excluding the soil) 1358 o '
and 315.9 Wm2. The resulting Bowen ratio was s =300
about 0.44. So in this case, there was a difference in s 200 cairtop = 1300
the forcing function f2 on the soil surface. The ' ,
. . Tleaves, . = 23.0 Tsoil:= 21.

corresponding value of the boundary condition, _ - .. R

. b 4.2.28 in th £ t model was Fig.4.6.a: A run with reduced turbulent
glven by €q.4.2.25 In the C_azse ola gust mode transport coefficient.
-81.4 versus -64.42 Wm “ for the no-gust model.
The first two terms in eq.4.2.28 represent the radiative energy load. The shortwave radiation
load on the soil was set to zero. In the case of a positive one, the difference of about 17 W m'2
could represent an important difference in the boundary condition for the soil surface.
Looking at the boundary condition, we notice that a calculation of the equilibrivm temperature
of the soil surface, assuming no storage within the soil, would mean in the case of oL (as

 Total_Load=716.300 Taig o = 20

Meau_T]eavcs,_cq;i Mean_Taireqg] Mcan_caireqi‘ Tairmcariw Eairmeaq Dmear, Mean_Tleave;
22,632 20.893 2,138 10° 20556 63107 [660.142 22.62
22.326 21.221 1765 103 20.518 | 605 ]03 812.229 22.323
23,118 21.743 . = 21.602 - 3 819.329 23,117
22.954 21.443 1.798- 10 21389 1.766-10 822.458 22,953
22.749 21.157 1.739. IU3 20.671 1.729-10° 831.16 22.747
22.404 20.697 1.69- 10° 20.671 1.609- I{)3 831.16 22.402
1614107 1.609-10"

Fig.4.6. b The mean profiles for a gust model in run 4.6.a

given by eq.4.2.31) being equal to 26.7, an increase to about 0.7 9. The resulting
temperature difference is calculated from the summation of equation of 4.2.36.
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Tleavescq'i:_ 10 Taireq] 4 eaireq:‘30 Tau; 10 eair 4 Dau; 30 Tleave:
23.185 20.925 1.975-10° 20.924) 1972.107 506.042 23.123
22.756) 20.831 3 20.831 3 703.258 22.719
762-10 T61-10°
22.514] 20779 176 3 20179 1781 '01 814.696 22.504
22393 20.637 1.641-10 20.637 1.641-10 823.433 22386
22280 20,496 1611107 20.496 1611-10° §28.435 22.274)
22.113 20.289] 1.585-10° 20.285 1585.10° 834.144 22.108
1.548-10° 1548107

Fig 4.6.c The equilibrium solution in the nogust model for run 4.6.a

5,30

The resulting mean profiles in the gust model give in fig.4.6.b while for the no-gust model
they are given in fig.4.6.c. There is a difference in the temperature of the leaves about 0.5 Oc.
The value of the time constants for air temperature of the first, second, third and fourth
canopy air layers {excluding the first cm thickness of air in contact with the soil) in this last
run, as given by eq.4.2.11, were 16.6 and 36.36, 2.87 and 1.20 s respectively. Those for the
vapour pressure of the air have values of 21.42, 36.36, 3.47 and 1.29 s respectively. The
duration between gust intrusions into plant canopies was 50 sec. These time constants would

be lower for all layers than the ones calculated
graphlcally for the whole gust cycle since T, te and

aireq keep changing between different time steps So,
the ratio of the period between gust intrusions into the
plant canopy and the time constants was close to one.
That led to a residual effect of the gust intrusion on the
forcing function f2 on the soil. The value of the used
turbulent transport coefficient, in the previous run,
could have been too small , so another run in which the
thickness of the first two layers were increased to 0.6 m
and 0.4m respectively. The value of the turbulent
transport coefficient was increased to the values shown
in fig.4.7.a.

The value of f2 function in the case of the gust
model is 387 1 Wm'2. This corresponded to a value of
-89.5 WmZ for the flux boundary condition given by
eq. 4.2.28. The averaged sensible and latent heat flux at
the canopy top were 131.1 and 359.6 Wm2. This
corresponded to sensible and latent heat sources within
the canopy (excluding the soil) of 125.1 and 311.6
Wm “ respectively. The mean profiles are shown in
fig.4.7b. The values of the air temperature time
constants for the first, second, third and fourth layers
are 26.6, 24.0,3.7 and 1.4 s respectively. The values of
these time constants for the vapour pressure for the
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coetf =025 dz,=02  dator, = 02

Rshort.= 140, dr =

dxlower := 0.2
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dz, =04 dz, = 0.4

Q.2
=04
=02

‘Thick = 0.0005 t
: dater = 0.4 dulower,
Tairrad:= 13, dxtop, = 0.3 dxlower,
dxlower,
Tlini =
22.46175%
22.49327%
23.164818
22.96947
[22.776066
[22.423835
cumlai = Z L'.mdl‘dzl Tairtop:= 20.0
cemlai= 3.200 Tuig ;- 200
Total_Load:= cumlaiRshort 2-ar BT~ 1500
Total_Load =716.800 T;mi) 0 20
- ol = 100, eair = 1500
rbhs = 100,
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eairtop = 1500
s 0= 200
Tleuver, i 23.0 Troil= 21

Fig.4.7a: A run with increased
thickness for the first two layers.



Mcan_Tleavcs_cq'ii Mcan_Taireqiﬂ Meszeaireq; Tairmeari. Eairmcariw Drncari Mea.n,TIeavei
22.37% 20.853 | 950-10° 20.420 1655107 [747.749 22.364
22.385 21.162 3| 20,622 3 822.037 22.382
71810 611-107
23.025 21.659 L7181 3 21.479 LS 101 820.478 23.023
22.861 21.329 1.789-10 21.270 L4510 [324.669 22.860
22.690 21.081 1.720 ]03 20,635 1,708 l(]3 832,125 22.689
22.376 20.660 1.677- ]03 20.635 1.603 107 832.125 22.373
1.60710° 1.603-10°
Tleaveseq'.l‘!m Taireq;v30 eaireq!l‘ao '['mrI 30 eau‘l 1 Dau‘I 10 Tlcaveri’m
22.930 20.945 1.832.10° 20.941 Lezs 10l [652.590 22.874)
22725 20.919 3| 20917 3 755.363 22.689
1.723-10° 10
22.640 20910 723l 3 24909 1722 ]0} 798.742 22.620/
22.395 20.633 1.677-10 20.633 1677107 [820.432 22.384
22.281 20.494 1.614- 107 20494 1.614- l()3 826.450) 22.273
22.114 20.283 1.587- 103 20.283 1.587-10° 833.161 22.108
1.549-10° 1.549-10°
Fig. 4.7.b The mean profiles and the equilibrium ones for the gust and nogust respectively.
same layers are 24.5, 24.0, 4.9 and 1.55 s respectively. 7
For the no-gust model, the resulting f2 function was ¢t =023 dz=02  duop =02
403.8  Wm™ 2Thjs corresponded 10 A  Rehon= 140 di-5.  Mower =02
. R _ .. . dz, -04 dz, -04
value of -72.81 Wm for the bourjgar?f condition given . 00c0s zd“ »
by eq.4.2.28. This is about 17 Wm'“ difference between dutopy =04 TR =T
the gust and no-gust approach with the lower value for Tasmad:= 13, dxtop, = 0.3 dxlowe, = 0.4
g ) dxlower, =
the gust model. This difference represents in the case of lowes =03
oL, as given by eq.4.2.31, being equal to 27 Wm 2ol L Koweo wop- Thing:=
an increase in the no-gust model of about 0.6 Oc. The [0.0] 0004 oc8|  [zasiise
sensible and latent heat flux at the canopy top were % 0‘003 QLU 2249327
, . 014 0.02 23164818
136.0 and 351.5 Wm “. This corresponded to total 0] Y 008 37,5697
sensible and latent heat sources within the canopy |40 008 0.08 22.776066
{excluding the soil) of 135.7 and 314.4 Wm™? (total Rn  [*?] 0.08 0.08 22423835
on plant surfaces of 449.8 Wm-2 with a Bowen ratio of
0.430. cumlai - Zudi'dz- Tairtap - 20.0
Reducing the soil resistance to 100 sm'l (recently cum]ai=3.l200 Tair, ;=200
irrigated) and doing the same run as before, we see that | ug - cumliRshonzar =g = 1500
for the gust model, the vaiue 02f the forcing function 2 1. 1aaa=716.800 Tair, = 20
becoriles equal to 463.23 Wm = with a value of -109.41 rhh, = 100, i - 1500
Wm = for the flux boundary condition g2ven bY s 100,
eq.4.2.28. The storage change was 0.31 Wm™~ for the 1, =30 ) 550
enirtop = 1
whole canopy layer. The sensible and latent heat flux at 1 - 100
the canopy top were 131.2 and 377.5 Wm2, This Tleaver . = 23.0 Tsail - 21

corresponded to total sources within the canopy of about
125.1 and 311.3 Wm™2 with a Bowen ratio on plant

L

Fig. 4.8.a: A run with reduced soil

resistance to evaporation.

139



of 400.5 Wm-2. This corresponded to a value of -76.1 Wm™? for the flux boundary condition
as given by eq.4.2.28. The resulting averaged sensible and latent heat flux at the canopy top
were 52.4 and 274.4 Wm'2. This corresponded to sources within the canopy (excluding the

Mean_Tleaves_eq;i Mean_Taireq] Mean_eaireg; Tairmear; Eairmcar? Dmcari Mean_Tlcaveg
21.494 20.865 5 026-10° 20,657 La3r107  |e08.991 21.515
21327 20,819 3 20.660 3 (699.94] 21.350
801-10° 739-10°
21,528 20.935 1801 03 20.888 1739 '01 684.380 21.550
21.293 20.683 1.808-10 20.668 1.789-10° 722.087 21.316)
21.146 20.538 1.723-10° 20.308 1718107 [783.964 21.169
20.907 20.314) L677-10° 20,308 602107 |783.964) 20.931
1.604-10° 160210
Tleaveseq'iiﬂo Taireqi"m eaimq{,.m_ Eri.sﬁﬂ. eairi,‘m_‘_ Dai"i._m_ Tls:aw:glyJ
21.459 20.650) 1.813-10° 20650 Bl 2100 623.539 21.479
21.168 20.474 7 20474 3 710.108 21.191
1.700- 10
21.043 20.399 101 20.399 1.700 103 747.285 21,066
20.871 20.257 1.652-10° 20.257 165210 782.816) 20.895
20.799 20.197 1.596:10° 20.197 1.596-10° 796.764 20823
20.699 20111 | 57310 200111 1573107 815.983 20.723
1.541.10° 1.541-10°

Fig 4.10.b The mean profiles in the gust model and the equilibrium in the nogust mode for 4.10.a
respectively

soil) of 49.4 and 238.4 Wrn'z. The resulting profiles are given above.

In the case of no gust model, {2 function had a value of 399.4 Wm'2. This corresponded to
a value of -77.2 Wm™> for the flux boundary condition, as given by eq.4.2.28. This is again a
non significant difference. The value of the sensible and latent heat at the canopy top were
53.1 and 292.8 Wm™. This corresponded to sources within the canopy (excluding the soil) of
48.9 and 252.4 W2 corresponding to a Bowen ratio of 0.193. There is a difference in the
value of Rn on the plant surfaces. The values of the mean profiles in the gust model and
equilibrium ones in the no-gust model are given below.
Sq, the effect of the ralio of the time period between two consecutive gust intrusion into plant

canopies with respect to the time constants of the firgt and higher canopy layers, close (o the
] i intrysion 1

To have a global evalvation of the sensitivity of the forcing function f2 and the flux
boundary condition to intermittency, we will show the vaiues of this function under different
temperature and vapour pressure deficit regimes. We mean by these regimes that, depending
on the climatic regime, a tropical, cold humid or dry arid climate, there will be a certain range
of values for the temperature and vapour pressure deficit which can occur simultaneously.
These values will conirol the value of the f2 function and the value of the flux boundary
condition given by eq.4.2.28. The buildup or decrease of the vapour pressure deficit,
depending on the stomatal resistance being higher or lower than the critical one as defined by
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eq.4.1.9, will lead to a certain
equilibrium value. To obtain a pep s(Tair;,) Tair pop

R_valicy o= | 1o, * 7P - w o Dainy,
value for the vapour pressure and rhhe (e ol ity + psoil
air temperature close to the soil
surface, we ran the MATHCAD 644463 641478 638493 635508 632521 629.538 626553]
model using the boundary 665658 652671 659.587 656702 653717 630732 647947

aye - f2_value=| 687374 6R4.380 GRLAN4 678419 675434 672.449 0669
conditions representing the mean - et
75627 T06.642 T03.6357 TU00TZ 697.687 694.702 691716

values of temperature and vapour 3430 TI045 726460 TATS TN40 717505 714520
pressure  for 4 certain  month

. . . Tairt_ = Dairt

(August) for different climatic M =
regime. The selected regimes were a 2l

Cyos . . pep #(Tair ) pep 2]
hot humid climate regime (Djakarta, R_vatue, |-~ «pep———— Tairy - —-Diic, 3

) ) . rbhr ¥(rbv + rasoily ¥-(rbv + msoil
Indonesia, Sukanto, 1969), hot arid ﬁ
(Cairo, Egypt, Griffiths and
Soliman, 1972) and cold humid (De 485.721 473.781 461.841 449.900 437.960 426020 414079
Bllt The Netherlands Arlery ]970 561,795 549855 537.915 525.974 514.034 502094 490.159

’ tively. The d ,'l f h’ f2_value=| 645,583 633.643 521703 509.762 SUT.822 583882 573.941
respectively. The details ol the runs 737956 726016 714075 702135 6%0.195 678.254 666.114
are given in sec4.23. The 839858 827917 EI5977 804037 792097 760,156 768216
temperature and vapour
pressure deficit values at the initial o Tan, - Dan -
8¢ Tail

p 1 .| PeP . m, R - Pop . Dai
and the end of the QUIESCENCE WEre f.uns, oy lFm et T Trrovs vy o]
considered as the range of variation 6o |

in the values going into the f2 414186 408216 402245 396275 190305 384335 386s| (3] |00
function expression. The following rz_mue:[ 436400 L0430 434468 428408 22518 216558 0388 | %
matrices were obtained. These 480174 474.204 468.234 462.264 456294 450323 444.353 m
matrices help to give an ideﬂ on the 515572 508,602 503.632 497.662 491.69) 485721 479751

variation of the value of {2 function which will be integrated by the soil to constitute the soil
temperature.

The change in the value of the soil boundary condition due to gust intrusion will be
represented by the difference the between two entries in these matrices. The first one of these
matrices represents the values obtained for a hot humid region. The second is a dry arid region
and the third is for a cold humid region. The value of the vapour pressure deficit and the air
temperature, specified with the vectors to the right of each matrix, are the ones obtained
within the canopy after the gust intrusion for an air with the specified values given in the runs
at sect.4.2.3. The rows represent the values for a certain value of the temperature vector shown
to the right of the matrix, while the column represent the value for a certain vapour pressure
deficit. Depending on the initial and final temperature and vapour pressure deficit of the air,
the forcing function can experience a large variation as can seen for the elements in the three
matrices.

To show the integrated effect of a gust versus no-gust case on the temperature of the soil
and the mean temperature of the air, we ran a simplified version of the model included in
Chapter 5 for a period of 11 days for a gust and nogust model. This version of the model did
not take account of the effect of water uptake by plant roots or the effect of evaporation on

{333‘419 377448 371478 365508 359.538 153568 37.598] [22]
!
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Fig 4.12.a : The mean temperature difference (a gust - nogut) models for the boundary conditions
specified in fig 4.13.
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Fig. 4.12b The difference in the mean vapour pressure deficit (a gust- no gust) models for the
boundary conditions specified in fig. 4.13.

reducing the moisture content of the soil. The soil resistance to evaporation was minimal (rss
=(.0). The boundary conditions used in the run were somewhat typical of a rather hot sunny
summer day in Egypt. These boundary conditions (i.c. the incoming short wave radiation,
friction velocity, temperature and vapour pressure are shown in fig.4.13). The gust intrusion
during day time was assumed constant with a period of 1.5 minutes. In here, we show the
difference within time between the gust and no gust model in the mean temperature and
vapour pressure deficit for the two models. The results shown (fig 4.12 ab) give the day
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difference of the simulated mean
temperature of the air and the soil and
the vapour pressure deficit between a
gust model and neo-gust model. We
notice in here the very high temperature
and vapour pressure deficit differences (-
9 0C and more than a 1000 Pa) between
the two models. This difference could be
explained on the basis of the used
parameterization for the turbulent
transport coefficients, the low leaf area
density and the higher stomatal
resistance in the lower part of the
canopy. All of these led to an increase in
the time constants of the mean vapour
pressure deficit of the canopy air layers
close to the surface. This increase in the
value of the layers time constants and
the short period (90 seconds) between
consecutive gust intrusions led to the
high vapour pressure deficit
accompanying the gust intrusion, to be
felt at the soil surface. The values of
these high time constants could be seen
from fig.4.14 showing the decrease of
the vapour pressure deficit of the layers
close to the soil. The resulting mean
vapour pressure deficit in the case of a
the gust model was much higher than the
no-gust model. The use of a soil
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fig.4.13 The boundary conditions for the run

resistance to evaporation with a value of zero led to an enhanced effect of intermittency on
the value of 2 function. A zero soil resistance would increase the latent heat flux from the
soil to the air, trying in the process to lower the value of the vapour pressure deficit of the first
air layer, so having a negative feedback on the effect of the vapour pressure deficit on the soil
temperature, but due to the whole dynamics (i.e. the period between two gust intrusions and
its ratio to the time constants of the first air layer) that effect of the higher vapour pressure
deficit, in the case of a gust model, was felt at the soil surface.

The lower turbulent transport coefficient was due to the use of the following

parameterization

n= 2.0

DISPL= Q.63 *Z{IT)

Imix(it) = M1*Karmen*(z(it)-displ)
km(IT) = LMIX(IT) *ustar

KM(I) = KM(IT) * EXPi-n *{1-z{I)/z(IT)))
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The mean values of the simulated vapour pressure deficit in the gust model are much
higher than the value of the mean simulated vapour pressure deficit of the no-gust model.
(283, 343 and 455 Pa for the layer number 1, 2 and 3 respectively) as can be seen from the
fig.14.a . That was a difference of about 1200 Pa. The behaviour of the temperature of the
first air layers is shown in the following figures. The temperature of the soil surface was
about 35 C and 42 C for the gust and nogust model respectively. This would lead to a
difference in the flux boundary condition of at least about 150 Wm-2. The lower loading is
for the gust model. This is a rather high value, but this is due to the high vapour pressure
deficit difference between the two approaches. The difference between the simulated heat
flux for the gust .vs. no gust model is about 100 Wm2 at 0.01 m depth. The cumulative leaf
area index was 2.19. The amount of soil short wave radiation absorbed was 322 Wm2,
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Fig 4.14. a The vapour pressure deficit within the quiescence period
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Fig 4.14. b : The behaviour of temperature f during the quiescence peried.
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4.2.2 AN ANALYSIS OF SOURCE AND SCALAR PROFILE BEHAVIOUR DURING
A GUST CYCLE

1. The scalar profiles

The importance of turbulent transport intermittency is that it brings into the canopy air
space a parcel of air, which has a temperature and a moisture content that is not in equilibrium
with the value dedicated by limited turbulent transport coefficients during the quiescence
period and the leaves stomatal resistance, and leaves this air parcel within the canopy air
space. The maintenance or restoration of a "height-dependent equilibrium” of the temperature
and moeisture content requires a partition of non-radiative energy, from the leaves to the air,
which is different from the equilibrium situation. This constitutes the change in the source.
But what is meant by height-dependent equilibrium'?

There are two options on answering that question, :

1) either using the temperature and vapour pressure equations of the air eq.4.2.12 and 4.2.17
or
2) using the vapour pressure deficit equation of the air. eq.4.2.21,

The ‘height-dependent’ equilibrivm temperature and vapour pressure of the air are given
by eqs. 4.2.12 and 4.2.17. These two equations are the discretized nonintermittent transport
equations and they represent the steady state solution of the air after a large vz. The time
constants for air temperature and vapour pressure are the inverse of eq.4.2.11 and eq.4.2.15
respectively, and they have different values due to the stomatal resistance. The development
of an equilibrium situation depends on the time interval between the gust intrusion into plant
canopies in relation to the air layer time constants.

As long as the air has a dew point temperature which is lower than the leaf temperature,
the humidifying (increase of vapour pressure) of the air occurs as given by q.4.2.16 and
4.2.17. The relative contribution of the different conductance factors in eq.4.2.17 determines
the equilibrium vapour pressure. The warming or cooling of the air depends on the air which
came in, being warmer or colder than the leaves, and the degree of humidifying of the air
within time. The behaviour of D as a function of time, whether it increases or decreases,
depends on the behaviour of Ta(t) and ez(t) for different layers and is given by

D'=s T-¢' {4.2.80)

dD_ JFT o

S ait’ (4.2.81)

For negative aa—]?, this requires

%":\/ §> %}1 (4.2.82)
For condition 4.2.82 to be satisfied, ag?ir, % equations, as given by eq.4.2.10 and

4.2.14 with updating eair eq and Tair,eq and given that Ky <K, T, show that the third factor
in eair,eq €q. 4.2.17 should be high enough to compensate for K, ¢ being lower than K ¢
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The comparison between the expressions of eqs. 4.2.12 and 4.2.17 show that the first and
second coupling coefficients are lower for the temperature equation than those for the vapour
pressure equation. The third coupling coefficient is lower for the vapour pressure than the
equivalent term in the temperature. Even so, the multiplication of the third term by the
saturated vapour pressure under certain combination of D, radiation load and the stomatal
resistance value would be able to compensate for the relative stronger turbulent coupling
coefficients in the vapour pressure equation.

Anyhow, given enough time between consecutive gust intrusions, Dequilibrium 15
reached and it is determined from Dequilibrium =€s{Tl,eq)) -€air,eql- [n the extreme case of
assuming zero (urbulent transport during the quiescence period, one sees that
Dequﬂjbrium=0. That would mean according to Tair,eq that leaf temperature is equal to air
temperature and that air is saturated. This means a complete shutoff of sensible and latent heat
flux from the leaves to the air, so that thermal radiation is the only way to get rid of the short
wave radiation lead. This situation is extreme, since before this equilibrivm is established
and, if there were no coherent structures existent to prevent its realization, the resulting
thermal instability of the air will lead to turbulent transport initiation and that ecuilibrium will
never be established. The actual progress toward that hypothetical equilibrium (i.e.
Dequilibrium =0 and Rp =0) will depend on the degree of turbulent coupling between the
canopy air layers and the air layers above on one side and the leaves stomatal resistance and
leaf area increment on the other side (i.e. the three coefficients in eq. 4.2.17). The turbulent
coupling will vent somme of the totai absorbed radiation as sensible and latent heat flux from
the leaves to the air (Rp). So, the resulting observed value of Ry is due to the existence of
some transport mechanisms which allow some venting of the total absorbed radiation into
sensible and latent heat. There will be an equilibrium between what is delivered by the leaves
into the intercanopy air stream and what is evacuated to the layers above and below. The final
partition will depend on the temperature and vapour pressure buildup which is allowed to
occur, i.e. how much is the temperature and vapour pressure of the leaves is allowed to be
coupled to the air through the effect of the stomatal resistance.

If the integration of eq. 4.2.80 is not zero within the quiescence period, there will be a
time mean decrease or increase of I within depth. The mean vapour pressure deficit D and air
temperature, as given by eqs. 4.2.102 and 4.2.100, respectively, are a weighed time mean of
the air vapour pressure deficit and temperature of the different periods (gust intrusion, buildup
and equilibrium phase 1, 2 in fig.4.23). This controls the time mean source. The mean source
will be different from the source due to the gust intrusion depending on the second term in eq.
4.2.24 being ditferent from Digp. This difference is due to the ability of the canopy to see and
respond to Dtop- If the Dequilibrium did not differ from the Dtop, Dmean will then be equal
to Diop, and the variation of D and Tajy, due to the gust will not affect the evaluation of the
mean source. This could be due to:

1) coherent structures moving air, which has the same D due to small ratio of the length scale
of transport to the source inhomogeneity

or

2) the canopy is too sluggish (very high values of air time constants with respect to the gust
interval) due to a very high stomatal resistance, low leafl area increments and/ or very strong
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turbulent coupling all the time. Another analysis of showing the same effect is shown by the
analysis starting by eq. 4.2.103.
There is another option through the use of the vapour pressure deficit equation. The

equilibrium vapour pressure deficit s given by equation 4.2.21. We see that the third term in

SOTs Rp a;z Rp ), in the case of complete shutoff of the
P

sensible and latent heat flux, becomes equal to the equilibrium vapour pressure. But if there is

vapour pressure deficit equilibrium (

no exchange, Ry is not a constant anymore. Warming of the leaves reduces Ry by 480’[‘3bs
Wm 2K 1 and equilibrium becomes achieved by reducing Ry till D becomes zero. The rest of
the story is the same as in the previous paragraph.

2. The sources:

The leaves as sources respond to intermittency by modifying the energy partition on its
surfaces to retain equilibrium. Equation 4.2.83 represents a Bowen ratio for plant surfaces, a
ratio between H/LE fluxes from the leaves to the inter canopy air layers.

H _ rpytrs) (Ts-Ta)
1E - aes (4.2.83.a)
1| (es(Tair)'cair)"‘ﬁ (Tg-Ta)
Y= Yrpy ity (4.2.84)
H il
E=F"D—6‘_esm] (4.2.83.b)
(Tg-Ty) oT

This equation requires no condition of a steady state situation in its application. The
fluxes here could be also due to heat storage change in the leaves. The time variation of the
energy partition will be dependent, within the time scale we are interested in, on ther(TTrD?)

sa
variation of the air

The variation of D just after or during the gust passage is related to the height from
which the parcel of air has been brought and the amount of build-up which was allowed to
occur before the gust intrusion. The variation of D within time around the passage of coherent
structures is related to a large distance difference in D. That difference within height, whether
positive or negative is related to a large-time averaged B for the whole canopy being less or
greater than y/s . This relates to the stomatal resistance and Ry profiie, as has been shown in
sect.4.2.1 and conclusion 4 in sect.4.2.1.1 .

In the first case, there will be a sudden increase of D around the passage of the coherent
structure and a decrease in the quiescence period toward an equilibrium value as given by
eq.4.2.21.

The time variation of (Tg-Ty) around the passage of coherent structures is related
mainly to the time variation of air temperature, since the leaf temperature will be almost
constant. T is related then to a large distance difference in Ty,
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A negative deviation of (%} , or, [L‘E—) <0 corresponds to a decrease in Bowen ratio

ot

on plant surfaces (i.e. an increase in latent heat flux in comparison to sensible heat flux). The
behaviour of [%) during the quiescence period is related to the buildup process of D and

(T4-T). the latter being now controlled not only by T,, but also by Tq and how it will manage
to keep track of the equilibrium temperature and the resulting difference (Tg-T,).

The sensitivity of the (%]

dependent on the magnitude of v*

in response to temperature and vapour pressure variation is

oD 3 (Tg-Ty) (aes)
3 ( o ) ot D ot '
LE/ _ "Y* (Te-Ty) (Ts'Ta) (TS'Ta) at (4.2.85)
(Tg-Ty) oT
H
L)

For 5t <0 this requires, neglecting the third term between brackets in the numerator

of eq. 4.2.85 , the following inequality to hold.

5T T

(Ts Ta) 5

> (4.2.86)

Inequality 4.2.86 shows, as can be seen from {(4.2.83.b), that the effect of vapour
pressure deficit increase on increasing latent heat flux has to be higher than the effect of the
air temperature change on increasing the (T¢-T,) difference.

We have several cases depending on the value of B for the whole canopy which
represent then a relation between the sensible and latent heat flux above the canopy top, the

sign of (T,-T,) and M
ot
oD HT,-T)
(TeT»0 = = X, A
(Ts-Ty)
P (4.2.87)
dD  I(Te-Ty)
ot _ ot

(Ts Ta)<0=>—<

(Ts-Ty)

The other case B>y/s would apply for a canopy which is either:
1} having a high value of sensible heat partition in relation to latent heat flux due to high
values of ¥* or
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2) a canopy acting as a sink for both sensible and latent heat, due to radiative cooling at the
canopy top at cold nights, which is compensated less by dewfall than by sensible heat flux
from above.

4.2.2.1) DAYTIME SITUATION (non stressed canopy), B < v/s

During daytime, latent heat flux is pesitive (i.e. upwards) which corresponds mostly to
a negative WD correlation (vapour pressure deficit flux) depending on B < y/s. There are two

possibilities for the corresponding joint probability TD' distribution. The first possibility:

D.l

Ay B1

a b
Fig 4.15: Joint probability between T" and D' for two kinds of situations in which vapour
pressure deficit flux is negative.
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TD'is positive (i.e. downward moving air is usually drier and warmer). This situation implies
a negative sensible heat flux (By). This situation represents a non Stressed canopy in an
advective case, or possibly in a non-advective case. in a warm arid region. The second

possibility: TD' is negative (i.e. downward moving air is usually drier and colder) (A1). This
applies for situations in more humid, colder regions. These two situations represent two
different scenarios {(B1 and A1) in fig. 4.3. There is a third scenario €1 which is similar to

A1, but with much less absolute value of the slope of the correlation line between TD'

representing the situarion in the humid tropics. Since B < s is the required condition for the
time mean decrease of D with height, the time variation of D around the passage of the
coherent structure is positive and then negative in the quiescence peried. Depending on the
T'D" correlation case, T" is determined. In scenario B1, during the gust intrusion, T” is
positive while in scenario A1, T" is negative. During the quiescence period, (T-T,) could be

positive or negative depending on the behaviour of vapour pressure buildup which affects the
behaviour of Tg and on the behaviour of Ty. In the quiescence period, (T-T,) variation is

always positive due to vapour pressure buildup.
T'D'¢" or T,e,Dare related to the time rate of change in T, e, D. During the gust

intrusion period, T'D",¢" are related more to a large-distance difference in D, T, e as shown
by eqgs. 4.2.14, 4.2.10, since then €air,eq and Tair,eq In these equations are equal (o egop,
Ttop. The sign of (Ts-T,) depends on the value of vapour pressure buildup before the gust

intrusion, and whether it exceeds a critical value of D. There are then three possibilities

depending on the value of (T¢-T,) and B.which is still less than < /s

) Above the canopy, the averaged f<0 due to H<0. This represents scenario By. The
time mean of (T -T,} <0., but due to vapour pressure buildup, (T,-T,) is an increasing
function of time during the quiescence period, and could be positive just before the gust

intrusion. Condition (1) in eq.4.2.87 always holds, since @: T, with T' being
positive.

2) The same as |, except that (T-Tyls negative due to vapour pressure buildup being
not high enough, due either to somewhat high stomatal resistance (not very high, otherwise,
we get B>s situation) or to that the period between the gusts is small. So, D before the gust

will be high.

dD  d(Ts-Ty)
ot ot
53 g_(m (4.2.38)

The satisfaction of eq.4.2.87 depends on the build-up which may not be large enough. So D is
relatively high and (T;-T,) is small.

H aD a(Ts'Tn)
. . Mg  H T a
3) ¥s >B>0 = H>0 <(T-T,) >0, A required condition for S <0, is o ETTS_—TJ,

which means that the intruding air is colder than the ejected air (Scenario A1). There are two
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different scenarios here. This also means that the intruding air has to be colder than the
leaves. If that was not the case and the intruding air is warmer than the leaves, we would have
a logical contradiction. Assuming this air is warmer than the leaves, it will start cooling and
humidifying due to vapour pressure buildup B < /s , the vapour pressure deficit will reach a
critical D, the leaves will start being warmer than the air, and a heat source develops and due
to the large contact time between the leaves and the air (i.e. a large interval between gusts) the
air becomes warmer than the air which initially came in (a sensible heat flux positive). The

. . . . AT - Ty . . .
incoming air has to be automatically colder than the leaves. (*T“) is positive with (Ts-
Ta) positive

given:  Tacin<Taic.om sensible heat flux positive

assuming

Tairin™> Tleaves = Tieaves>Tairont = Tairin>Tairout

(4.2.89)
which contradicts our initial assumption.
So, the satisfaction of that condition (4.2.86) depends on the situation.

There is a case of scenario Bi, in which the incoming air is warmer than the air within
the canopy. There would be a negative heat flux with the gust intrusion , but due to an
accidentally large period between two consecutive gust intrusions, the air cooled first and
then warmed, such that the air became warmer than the air which initially came in. The
sensible heat flux at the canopy top due to a local gradient would be positive, and if that lasts
fong enough, it would more than compensate the negative heat flux accompanying the gust
flux. The next coherent structure would not be able to bring a warmer air than the outgoing
one and that would be similar to case Al. The effect is a positive sensible heat flux due to a
gust intrusion and a reduction of the air temperature around the plants. This case corresponds
to the area in quadrant IT in fib. Bj.

4.2.3. A SIMULATION OF THE DIFFERENT SCENARIOS BY THE USE OF MORE
EXACT FORM

The intrusion of coherent structures, with a large length scale in relation to the source
distribution within height, introduces a parcel of air with a different temperature and moisture
content into the canopy air space and leaves it there. The whole canopy air is replaced then by
fresh air from above in a very short time. This is represented by very small time constants for
the exchange processes during the gust intrusion. That expresses the very rapid change in the
uppermost curve in {fig 4.16). The value of T eq, as given by eq.4.2.5 will experience a
sudden change. T| eq change will depend on the net effect of the fourth term in comparison
to the third and the fifth terms in eq.4.2.5. There are four combinations of D’ and T'. These
combinations are shown in fig 4.15 a, b. The upper most regions in Quadrant [ and II1 in the
joint probability distribution represent extreme events. Fig.4.3.a,b represent assumed shapes
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Fig 4.16: A hypothetical case of a gust cycle, showing in the upper graph the behaviour of the state
variables of the air (i.e. temperature and vapour pressure). In the second and the third curves, the
probable behaviour of the sensible and latent heat sources is shown. The lower one represents the
behaviour of the vertical wind speed, being positive during ejection with a low value and highly
negative during the sweep phases. There will be a net result on the w's’
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of the joint probability distribution between T’ and 1), and real measured ones represent the
solution of the conservation equations.

Scenario BI:

This scenaric represents a warm arid region. We will first discuss the time behaviour of
the leaf temperature, the temperature and vapour pressure of the air for a general case, where
the intruding air has a T” > 0 and a D’ > 0 and then proceed with an explanation of a particular
case for this scenario by the use of MATHCAD.

A: gust intrusion phase:

We start with point A on the WD) joint probability distribution (fig.4.15 b). We have
D’>0 and T7>0, the sign of the fourth term shows that AT; . <0 (The leaves are then cooling
or heating at a lower rate depending on Tl aves being hlgher or lower than Tl ) if (s+
Yy H ) < DY/ T air {appendix 2.7). During the active exchange period between the
canopy air and the layer of air above, there will be no or very little build-up of the temperature
and vapour pressure of the air. The value of Tl, after an initial sudden change will be quite
constant, and the sensible and latent heat flux from the leaves will be governed by the
equation A.2.8.1 and A.2.8.6 respectively. During this phase of gust intrusion (Quadrant I),
we will assume then that aTLe is negative. The rapid change in D leads to a change in H/LE
in favor of LE and a reduction of H will result. The leaf temperatures then will be moving
toward a lower new equilibrium temperature. The sensible heat flux from the air to the leaves
could reverse sign, depending on D change. The temperature and. vapour pressure of the air
will respond to the changing leaf temperature according to equation 4.2.10, 4.2.11 and 4.2.12
for air temperature and eq.4.2.14, 4.12.15 and 4.2.17 for air vapour pressure. The coupling
between the canopy air and the air above is very strong. The time constants of the canopy air
layer are then so small and controlled mainly by the first two terms in eq.4.2.11 and 4.2.15.
The air equilibrinm temperatures and vapour pressure, during this phase will be equal to
e,: and T,.. .. This is represented by the upper curve in fig4.16. It is highly
improbable that the leaves manage to attain equilibrium during the intrusion period. The
leaves have a time constant of 100 sec or so, which is quite large in relation to the gust
duration.

B: Quiescence Period (a probable build-up phase):

Once the gust mechanism of exchange is shut off, the quiescence period starts. The
turbulent transport coefficient reduces and the time constant of the canopy air layers increases.
The effect of the leaf temperature terms in eq.4.2.12 and 4.2.17 shows that the sources become
more important in controlling the temperature and vapour pressure of the air. There will be a
start of a build-up of the vapour pressure of the air since es(T}) of the leaves is higher than e;,
(positive latent heat flux due to leaf temperature being higher than dew point temperature) in
€. i aq 35 given by eq.4.2.17. The temperature of the air will cool or warm according to
eq.4.2.12 and 4.2.13 depending on the Tzur eqr DEINE higher or lower than Talr initial’ This
relates to the third term in eq. 4.2.12 (initzal leaf temperature) being higher or lower than
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Tl mmal inthe T, air,e . The slope of AD/AT on the joint probability (fig 4.15.b) is controlled
by eq.4.2.90. With air vapour pressure buildup and the assumed air cooling, the slope of
DE/TC is positive. The canopy air will move to a new coordinate on the T'D’ joint probability

aeair
pe de, 5 (4.2.90)
¢ aT or
T _mAf
ot

distribution figure {(in this case toward the center of the figure 4.15.b}. The resulting change in
D’ and T' will have a feedback on the solution of the leaf eq.4.2.6 through changing Tleg
(eq.4.2.5) into a new value. New ATl,c could be positive or negative. If it is negative, this
means that the equilibrium temperature of the leaf is even deviating further from the one just
after the gust passage. It would mean then that the build-up of the vapour pressure is not
allowed to occur (i.e. the canopy is still coupled to the air above, which contradicts our initial
assumption of weak coupling during the quiescence period or there is a very high value for
stomatal resistance which leads to a decrease of vapour pressure deficit within time, e.g.
fig.4.4.d). But in the latter case, our initial assumption of positive )’ within the gust intrusion
would not be correct. So, ATlLeq must be positive, i.e. the equilibrium temperature of the
leaves is moving back to its initial value before the gust intrusion. Another way of looking at
it is by considering the definition of the equilibrium
temperature of the leaf, as given on page 103 and how it |
relates to the coupling , since a gust will couple the leaf [Ro-10 - 10 ::'ojeor';oz
more to the upper boundary and less to the radiation [|mick-aoos ' .
loading. It brings that upper boundary just across the }de:: 2

boundary iayer resistance of the leaf. A decrease in the
turbulent coupling will couple the leal more to the

leoetf:=0.25  dz =02 dwop, =02

dutcp, = 04 dxlower, = 0.2

4
dxmpZ:DJ dx]ower = Q.

dxlowery := 0.3

Thin} =
radiation field and less to the temperature and vapour 29557'39
pressure of the air above. So, if the equilibrium 38 305683
temperature of the leaves were higher before the gust | o
intrusion, a shutoff of the gust mechanism, with no | 2785413
change in the radiation loading, must mean a return of | T80
the equilibrivm temperature of the leaf to its original | o= 3 Lot _
high value. The temperature of the leaf will move | = Tairtap:- 30.0
toward this new equilibrium level with lower absolute | cumhi=3.280 Tl 7 200
value of the rate as compared (o the rate just after the — Towlloewd- comsiRsbonzar o i7 eIy
gust intrusion, as can be seen from eq.4.2.2. The ;:“L"‘I’;;””'Bm g =30
temperature of the leaf will keep feeding back into the " o0, sairiap = es{18.4)
temperature and vapour pressure of the air. The vapour | w, -3w Teoil - 32,

pressure will keep increasing, while the air temperature .- 200,
L el
will decrease or increase depending on the third term in = Tieaver, < 270 railop = 2.1 1810

eq4.2.12. being higher or lower than the air Flg417aArun for a warm arid
temperature at the beginning of each time step. region
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Anyhow, with time the feedback between eq.4.2.2, eq.4.2.10 and eq.4.2.14 will go on and the
whole system moves back to equilibrium as dedicated by the limited turbulent transport
coefficients and stomatal resistance. The details will differ depending on the particular case.
We will discuss one case later. Anyhow, since our initial assumption is of B< /s, this means
that the build-up of vapour pressure of the air will continue, leading to a negative D’ till a
critical value of D has been reached. At this point, leaf temperature and air temperature will
become equal and sensible heat flux reverses sign. H will be an increasing function of time
and LE is a decreasing one. After the sensible heat flux change, the air starts warming and D
develops according to €q.4.2.90. The solution of the temperature and vapour pressure and leaf
temperature will progress toward an equilibrium solution, given by the solution of system
4.2.2, 4.2.10 and 4.2.14 simultaneously.

In below , we give results of detailed simulations for a canopy of six layers, as was done
with the sensitivity analysis of the f2 function. We now want to see the interaction under
specific boundary conditions between the profiles and the sources. We have three runs
representing a warm arid region (Griffiths and Soliman, 1969), a humid cold region (Arlery,
1970) and a tropical (hot humid) region (Sukanto, 1969). The boundary conditions are shown
in figures 4.17.a, 4.18.a and 4.19.a. The procedure explained in page 131 is the same one used
here to control the run such that no contribution of the leaf heat storage to the fluxes occurs. In
fig. 4.17.b, the upper left figure shows the temperature of the air (Tair), equilibrium
temperature of the leaves (Tleaveseqli), as given by eq. 4.2.5 and temperature of the leaves
(Tleaves) respectively. The upper right figure shows the changes of the equilibrium
temperature of the leaves between different time steps due to the vapour pressure deficit
changes between time steps (delTlegiDair), air temperature changes (delTleqiTair) and the
sum of both (delTleqis). The lowest two figures are the same as the upper ones, except being
for layer number 2.

In fig 4.17 c, most left figures are the same as the upper left figure in figd.17.b, for air
layers 1, 2, 3 and 5. Layer one is the lowest layer in the canopy. The figures in the middle
show the behaviour of the sensible heat sources (Leavesfsh) and latent heat sources
{Leavesflh) for the same layers. The rightmost figures show the behaviour of the vapour
pressure and vapour pressure deficit of the air for the same layers.

One of the early impressions made from these runs that the state variables of the air (i.e.

ature, vapour pressure apour pressure defici ¢ sources follow withj

whole gust cycle an exponential iour. Another impression which can be drawn is the
much larger variation of the value of the equilibrium temperature of the leaves in the lower
layers of the canopy as compared to that in the upper layers. This is due to the lower layers
being less coupled during most of the time to the boundary above, so the gust represents a
large shift from the mean variables of the air, which leads then to a large shift from
equilibrium. For the upper layers, the shift due to the gust is relatively not so strong since they
are more strongly coupled. So, it seems that the gust effect has to do with the ratio of the
deviation to the mean. We will come to this conclusion also in eq.4.2.99.

Fig.4.17.b and fig. 4.17.c show that, for the second air layer, the intruding air was warmer
(T' was posilive and vapour pressure D’ is positive). The change in the equilibrium
temperature of the leaves was negative (delTelqiDair) while that due to air temperature
{delTleqiTair) was positive. The total sum of both components was negative {(condition
A.2.7.4 being satisfied), so the equilibrium temperature of the leaves in that layer experienced
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Fig 4. 17.b: The behaviour of the eﬁuilibriﬁnﬁ iérﬁpéézilure of the leaves

a sudden negative change. That change caused the equilibrium temperature of the leaf curve to
cross the temperature of the leaf curve (the second figure in the first column of fig 4.17.c} Due
to this, the leaf temperature curve in the same figure (Tleaves) suddenly reverted direction.
With leaves cooling, the air started to cool down, since the leaves are acting as a sink in
eq.4.2.12. This was dve to the high vapour pressure deficit of the air which led to
(delTleqiDair) being highty negative. The air was being humidified at the expense of leaf heat
storage and negative sensible heat flux from the air to the leaf. With the gust mechanism shut
off, a large fraction of the water vapour delivered by the leaves to the air accumulated within
the layer and the air cooled. This led to a decrease in the vapour pressure deficit within time
(eq.4.2.90). The feedback on the equilibrium temperature was negative. The leaves within the
next time step were still cooling but with a higher rate {less negative) due to the positive
change in Tl, oq- The air cooled and kept humidifying (D% TC between consecutive time steps
being positive) with a resulting increase in Tl,e . Inevitably, the temperature of the leaves and
the equilibrium temperature of the leaf met with a resulting no further decline in leaf
temperature. In this case, the air temperature was still higher than this meeting point, since the
intruding air was warm enough to maintain a positive temperature difference with the leaf.
The negative sensible heat flux from the leaf to the air will continue, but from now on the ieaf
will start warming, and the heat storage within the leaf will increase. The negative change in
storage with the leaf and the air so far represented the contribution of the storage to the
sources (in this case tatent heat sources). This change represented the variation in the source
which could sum in the average to a value higher or lower than a no-gust model, depending on
the time period between two gust intrusions. Due to the decrease of vapour pressure deficit,
the leaves kept warming till a critical D’ was reached in which the temperature of the air
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becomes equal to the temperature of the leaf. In this case, or scenario, the period between gust
intrusions was not large enough to allow this. This would represent then case 2, discussed
within sect.4.2.2.1 (eq.4.2.88).

The time mean will be controlled mainly, by the build-up during the quiescence period. If
the value of D during the quiescence period is low, compared to the gust intrusion phase, the
numerator in D/(Ts-Ta) will have a large time variation which represents a large variation in
H/LE ratio. The importance of the gust process here is that it leads, due to a large difference in
D profile, to a different solution of the energy budget equation of the leaves and the soil
surface which affect the resulting mean.

The variation of the sources as a function of time is controlied by the feedback between
the profiles and the leaf temperature. The effect of that disturbance depends on the frequency.
of occurrence and the degree of the build-up of temperature and vapour pressure which is
allowed to occur.
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In the following scenario Al and Cl' the same analysis
applies in the sense of the feedback between the system
of eq4.2.2 , 4.2. 10 and 4.2.14 with the differences of
the initial W’d’ coordinate and the effect of this Tleq
and whether this led to a decrease or an increase in the
leaf temperature and the resulting change in the
behavior of the sources and the feedback on the
profiles.

Scenario Aj:

In scenario A, the incoming air will be drier and
colder than the air ejected from plant canopy. The
vatues for this run are obtained from Arlery (1970).
They represent the averaged temperature and vapour
pressure for the month of August for De Bilt, The
Netherlands.

The discussion of this run follows the same line as
above except that the intruding air is colder than the
ejected air (T" negative and D’) positive. In here, the
temperature of the leaves was always higher than air.
So, there was always a positive source within the
canopy. This was due to the lower vapour pressure
deficit compared to scenario Bi. The intrusion led 10 an
increase in both the sensible and latent heat flux from

oetf =025 dz=02  dxtop = 02
Rehore= 100, de= 1p Qe =02
d7, =04 dz,2 04 |
[Thick:= 0.0005
dxmpl =04 :l‘ulcnwrer1 =02
Taicrad:= 15, dntop, = 03 dulower, < 0.4
dxlmwe:! =03
Tlm‘ =
2.121194
21754356
21933505
k1 682033
121.524594
21266762
oumnldi= ) Lad;dz; Taictop:= 200
i o
cumlai=3.280 Talg ;= 200
Toml_Lond = curalsiRshart Zar = 1%
Total_Load = 524.800 Tairy = 20,
rbhm'= 100. cairtop:= 1600
rbhs = 100,
By = 300 Tsoil = 22.
185 = 200, s i
Tiavey = 220 eaiftop = 1.600- 10

Fig.4.18.a Run for a cold humid

region

the leaves to the air. This was achieved at the expense of heat storage within the leaves, which
were trying to adopt to the change in the boundary conditions for the solution of the energy
budget equation of the leaf surfaces. In the process, and due to the lower turbulent coupling
between the air in the middle of the canopy and the air above, the air changed its temperature
and vapour pressure with a resulting feedback on the leaf temperature. So, everything was
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Fig 4.18.b: The behaviour of the equilibrium temperature of the leaves.
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moving back to equilibrivm.
Scenrio C1

The values of the boundary conditions for this run
were obtained from (Sukanto, 1969) The values for this

run are shown in fig.4.19.a,

What is noticed here, especially in fig. 4.19.h, is
that in comparison to fig.4.17.b, the changes in the
equilibrium temperature of the leaves due to vapour
pressure deficit changes were much lower (in absolute
value) than the more negative changes in the

equilibrium

temperature of the

leaves

due to

temperature changes. So the gust process introduces a
reduction of the leaf temperature, due more to the
lower air temperature than due to the higher vapour
pressure deficit introduced by the gust intrusion. So, in
this case, there will an increase in the sensible heat flux

due to the gust process.
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Total_Load= 524.800
 tbhy = 100,

fohs := 100,

™, = W
s = 200,
! Tieavey = 770

coeff= 0.25 dz; = 0.2 dxtop, =02
Rshort = WK k= 10, dulower = 0.2
dr =04 dzz =14
Thick = 105 . ,
dutor, = 0.4 dxlower, := 0.2 :
Tairrad:= 22 dxwrl _oa dxlower, = 0.4
dxlowes; = 0.3
kiop, = Thing. =
29.124384
[28.957318
2898552
28.697913
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28.289065
i !
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. 1 .
! cumiai= 1280 Tag, =274
' Total_Load = cumlaiRshort 2-or Bl = H.BS-es(TAlrm_j)
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Figure 4.19.a run for a humid tropic
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2) NIGHT-TIME SITUATIONS:

Radiative cooling for the canopy elements at night-time and the concentration of these
canopy elements at the upper portion of the canopy, leads to the appearance of a heat sink at
the canopy top. This sink will be filled up by heat flux from the soil, in the form of thermals
transporting warm air from the soil surface to the sink at canopy top. Dew rise, and dew fall
from above, compensate the remaining sink deficit at canopy top. The fractional contribution
of each of these sources to the sink at the maximum leaf area density height is dependent on
the coupling between different heights. The degree of coupling is function of the thermal
stability. The coupling from above the canopy air to the canopy top depends on the occurrence
of intrusions of air from above. This depends on the existence of a critical shear at the canopy
top, which overcomes the thermal stability effects due to the unfilled sink ai the canopy top.
So at night there are two situations, depending on the shear at canopy top, 1} a coupled canopy
or 2) decoupled canopy.

In case of light wind speed at the canopy top, there will be little dynamic coupling
between the canopy air space and the air above. This leads to the soil acting as a source to
satisfy an unfilled sink at the canopy top.

1) Coupled canopy:
The picture here is similar to colder, more humid air coming down
2) Decoupled canopy:

There is no intermittency due to gust intrusion from above, while there will be
circulations of air transporting sensible and latent heat from the warm wet soil surface to the
colder canopy top. Look at fig 4.20 and 4.21. This figure is taken after midnight and shows for
a segment of 1000 sec duration the temperature and the wind field observed within plant
canopies. In this picture, we average the 5 Hz into 1 Hz frequency. The picture clearly shows
the radiative cooling at the upper parts of the canopy plus the high temperature regions at the
lower parts of the canopy. By looking at the simultaneously measured wind speed, one sees
higher values of this absolute wind as measured by hot bulb anemometers. There could be two
explanation for this: the intrusion of coherent structures at the canopy top even at night, which
could be seen at some of the occasions, or the buoyancy term acting as a source for turbulent
kinetic energy, leading to the turbulent transport of heat from lower regions of the canopy to
the upper regions of the canopy. Look at the tongues of the temperature islands which extend
upwards to the canopy air space. This problem is considered,to be similar to the Bernard-
Raleigh convection problem (Jacobs et al. 1994). The centroid of the radiative cooling by the
plants represents the cooler upper surface, and the hotter soil represents the lower hotter
surface.

Most of the generation of turbulence within canopy is due to the positive buoyancy flux
at the soil surface, due to the soil heat flux from the soil to the canopy layers, which is driven
by the residual radiative cooling at the canepy top.
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The average we obtain in a measured dala set is an average of the above explained
processes. If the system is nonlinear, an approximation of these processes in a large-time
averaged model in a functional (cause-effect) manner is not possible. Obtaining an
approximation in a muiti-layered model could be done from a detailed model by inverse
computing of a matrix, which relates the final solution to the initial with a certain set of
averaged sources.

A large-time averaged measured flux could, however, be obtained from a large-time
averaged measured surface temperature by the use of a fitted large-time averaged
conductances. But this conductance can not be used for a smaller time scale than the one it
was obtained from. To obtain conductances means for small time scale, we need to satisfy
equation 3.5.1 a,b by the use of ensemble averaging for identical pericds of the gust cycle.

The effect of intermittency on shift from equilibrium could be shown by the use of
Penman-Monteith equation for latent heat and sensible heat, if storage can be neglected or if
an equivalent resistance can be defined. This method here could be also used as an
approximation to check the sensitivity of the energy partition as defined by Bowen ratio to the
variation in the simulated mean D. Let us decompose D into a mean and a deviation from that
mean due to Jarge scale and small scale turbulence. Penman-Monteith equation for sensible
heat flux reads as

* -1
Ry, -pCpDr
Het 0 PpTH

m (4.2.91)
s+y
and for latent heat as
s Ry, +pCpDril
*+E =n—p*2_ﬂ, {4.2.92)
S+Y
By putting the triple decomposition
D=D+D'+D" 4.2.93)

where D is the instantaneous vapour pressure deficit. b,b" represent time deviations from the
mean due to small scale turbulence and large scale turbulence, respectively,

D+D'=0.0 (4.2.94)

B+D'-D; (4.2.95)
* | -1 "1
R, -pCyyDril-pCoD 13l pC,D'r

1 o RnPCp HPE H PP TH (4.2.96)

S+Y

sRy +pCrDrd +pCLD 13l +pCpD "1l

g X ALy +pLpD) Ty HPCpD Ty (4.297)

*
s+Y
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Dividing

H ='Y*Rn -pCpDIrﬁ -pCpD"ri_}

- o (4.2.98)
AE  sRp +pCpD ey +pCpD iy

Dividing by pCpDIr;{' both numerator and denominator,

H (4.2.99)

The relation between D" and Dy depends on the frequency of refreshment and its value
and the time constants of the canopy layers. D1, or D, is not independent. It will depend on
D" and the period between the passage of two gusts in relation to the time constants of the
canopy air layers. The equations of the mean are given. This relation 4.2.98 could be also
used to see the effect of the estimation of the mean D by assuming that D” is the deviation
between two means determined by two modelling appreaches (e.g. a gust and no-gust
approach). In the foliowing three equations, we use the criterion of being four times the vaiue
of the air layers time constant as an indication for equilibrium establishment.

TaT Algyst duration FTyir on (1- Atgyst duration i 4 Ta,T)+T 4 1T
top period ar.eq period period”  AYCT48C perjod
(4.2.100)
c=e Atgust duration eir (1 Atgyst duration ) 4T3 e 4Tae
- op period areq period period” 2VEMAEL period
(4.2.101)
= Atgyst duration Atgust duration  4%a.D 4,3 D
D = Dygpy —o U | Dy quilibrium (1- —2 -2 p —22
top period equilibrium ( period period) average oo iod
(4.2.102)

The ratio of —2— if we assume a complete refreshment which is satisfied becomes
mean

_n___PropDmean (4.2.103)
Dmcan Dmean

Dmp o1
_D  _Dmean (4.2.104)
Dmcan l
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By looking at the value of Dmean,

Dtop _ Dtop
Dmean Algust durati Atgyst durati 4
D g O 5y ilibriuen (1 —BUS uration 4 3 1D
top —_ped " equilibrium ——perio " _—peri o average period
(4.2.105)
Dequilibrium =& (Tair,eql) ~€air,eql (4.2.106)
| I I
1 | 2 3
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I | | \ D mean
| \J_ O~

Time

Fig 4.22 The assumed behaviour of the vapour pressure deficit within time.

The maximization of this value requires a low value of relative gust duration and a
Minimum Degyilibrium- A low value of Degyilibrium means from

Ko Kbottom
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a canopy with a low stomatal resistance and weak coupling between canopy air layers and the
layers of air above the canopy during the quiescence period. The importance of small scale
mixing leads to increased importance of the coupling between different canopy layers, but for
every one of these the stomatal resistance has to be low to have a high value of eair,eq-
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The problem of stomatal resistance and soil surface parameterization is discussed in the
end of this chapter. The problem of small scale mixing during the quiescence period was
discussed in chapter 3.

In case of a canopy which is strongly coupled all the time, the effect of intermittency
would not be there, since Dygp will be close to Dpean. The value of energy partition will
depend on the value of stomatal resistance.

Statement 1: The problem of intermittency in canopy climate modelling is the
combined effect of: 1) the existence of a separation in the length scales responsible for
transport and 2} the ability of the leaves and the soil as sources and sinks to respond to
temperature and vapour pressure variations due to this intermittency or scale
separation.

Statement 2: The problem of higher order correlations and their non-uniform
distributions within time or space, which we discussed in chapter 3, would not have been
there if the canopy elements were not able to respond to temperature and vapour
pressure variations introduced by gust intrusions.

Explanation of statement 2: During the quiescence period, the amount of sensible and
latent heat energy, which is delivered by the leaves into the intercanopy air stream and which
is not evacuated to the layer of air above, represent a change of storage of nonradiative energy
within the canopy air space. During the gust intrusion phase, the discharge of these stored
amounts represent a flux at the canopy top. During the gust intrusion phase, there is a
downward momentum flux. Correlated with momentum flux, there will be a high latent and
sensible heat flux represented by evacuation of nonradiative stored energy within the canopy
air layers. If the canopy elements were very sluggish (i.e. in an extreme case metallic leaves:
no transpiration and completely reflective non-absorbing leaves), there would be no change of
latent heat storage in the first case, and also no storage of sensible heat in the second case
withio the canopy air space during the quiescence period. That would mean no flux of latent
heat and sensible heat during the gust intrusion phase and so no correlation between
momentum flux and heat fluxes (i.e. fourth order terms). The situation is not so extreme (i.c.
metallic leaves), but the more sluggish the canopy elements, the less is the inhomogeneity of
the time or space distribution of the higher order terms.
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4.2.4 SENSITIVITY ANALYSIS ON THE APPROXIMATE FORM: THE INVERSE
MATRIX A-l

What we want to show here is the effect of intermittency due to the parameterizations of
turbulent transport coefficient during the quiescence period on the inverse matrix A*L It will
be shown that for the steady state solution, all the inner values of the matrix are multiplied by
a coefficient which equals the ratio between the parameterization due to the no-gust model to
that of the gust model. So, if the ratio of Ky value between a gust and no gust approach is
0.25, all the inner elements of the inverse matrix are muitiplied by a ratio of 1/0.25. This is
not a trivial difference.

To show this, the inverse matrix was obtained symbolically for equation system 4.2.72
by the use of Gauss-Jordan elimination. What we want to obtain is a ratio between the values
of the corresponding elements of two inverse matrices for the matrix A , as given by
eq.4.2.72. The matrix A had two parameterizations, one due to the gust model, and the other
one is due to a continuous parameterization, in which the Km value had a higher value (twice
the gust parameterization, but constant in time with large-time interval averaging). To do this,
some intermediate steps are shown in Appendix A.2.10 to obtain these ratios.

The coefficients Ej, G and Fj are defined according to equations 4.2.74. In the case of
a gust model these coefficients have a value (let us assume 1/o0 times as large as the gust

model}. In the case of a steady state solution At—e=, So Fj equals the sum of E;j and G;.

In reducing the second column to a value one for the second row, we get the ratios
-Gaoifa, Eo/Fa2 |, 1/Fa, E3E2/Fa, Fa-(E3Go/F2), E3/F7. The third, the fourth and the fifth terms
are affected by the gust process. 1/F2 is twice as large as the case of a gust model and F3-
(E3G2/F2) is half the value in the case of no-gust model. Later in the derivation, we call this
quantity F3°. E3” which equals E3E2/F2 for a gust model is also half the value of that in a
no-gust model.

In reducing the third column to a value of one for the third row, we get ratios such as :
EiE3’/F3’. This quantity , which we call later Ej’, is also half the value in a gust model
compared to that of the no-gust model. The same applies to Fj-E{G3/F3” which will Jater be
called Fi’. The ratio between the gust and no-gust coefficient appiies to those coefficients
with higher i’s.

Now, looking at the inverse matrix of our system A1, we see that every element of that
matrix consists of an addition of terms. Each of these terms is a multiplication or a division of
Fi,E{,Gj terms. We see that for the inner elements of the inverse matrix, the number of
elements constituting the numerator is always one less than the number of elements
constituting the denominator, so a factor of 1/o, where o has been defined earlier as the ratio
between Ky, values for a gust and no-gust, goes out.

For the elements constituting the first and last columns, we see that the number of
elements going into the numerator and the denominator are the same. So, no reduction comes
out, and these elements of the matrices for the no-gust and gust model are the same,
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4.3 THE RELATION BETWEEN THE LARGE EDDY LENGTH SCALE, D' AND
DMEAN AND THE CORRELATION BETWEEN THE TRANSPORT AND THE

SOURCE

Assume that the canopy has a large vertical extension compared to the scale of the
mixing structure and has a constant source distribution as function of height. A large-scale
structure would mix air layers which would have the same temperature and moisture content,
and this would have made no effect on the source terms of the canopy. The joint probability
distribution of w’ and D' would have then a correlation of zero. All the points of that
probability would lie with the origin. We allow some dispersion due to randomness

0 Canopy top
A Mixing
turbulent
S=Hz) _pm echanism
o
Soil Suiface

The resulting W'D’ joint
probabilty distribution.

Fig 4.23.a shows a hypothetical case of a transport mechanism with a length scale less than
the canopy height with uniform source distribution

This would be close to what is happening with small scale turbulence: mixing the air
inside the canopy which have moisture contents (D' vapour pressure deficit variations)
reflecting the vertical distribution of the sources.

Due to the large scale of the coherent structure in relation to canopy height, vertically
downward moving parcels of air tend to be drier (i.e. lower vapour pressure) and they replace
more humid air from within the canopy, which is pushed upwards. The downward vertically
displaced parcels tend to remain within the canopy air space, so their humidity deficit is felt
for a large period of time by the canopy, while the more humid parcels which were displaced
upwards have left the canopy space so their effect is not felt. In this case, the joint probability
distribution between w’ and D’ has a correlation which is not equal to zero. The outside
regions of this probability represent the effect of extreme events. If the canopy was large
enocugh, this effect would not have been there, since the vertically moving parcels will have a
moisture content which reflects the rather constant source distribution.

In the joint probability distribution W'D, there exists three domains. These are
represented by domain 1, 2 and 3 respectively in the detailed W' D' diagram (fig 4.24), The
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leaves have a very low capacitance for water vapour. They respond immediately to water
vapour deficit of the air. The response magnitude will be dedicated by the magnitude of
stomatal resistance. Domain | and 2 include small scaie deviation of D. Part or none of

Canopy
top

Source=f(z)

Soil surface

The resulting joint probability
distribution

Fig.4.23 b shows a hypothetical case of the joint probability distribution resulting from a
large length scale.

these deviations will not be seen by the leaves. These are represented by the symmetric arca
1. (that area is very small indeed). In case of very sluggish leaves with very high time
constants, they may not even see the deviations due to large scale turbulence D”. This
depends on the limit of the RC multiplication, where R is the resistance of the leaf and C is
the capacitance of the leaf for water vapour and if RC goes to a limit. The first term is very
farge (R) while the second term is very small {C). The part which the leaves see and responds
to is the area between the outer limits of area 3 and area 1. D—l , as has been defined by
£q.4.2.95 could be a spatial mean within small number of layers. That would have been the
mean if the gust process did not oceur.

From eq.4.2.97, it could be shown that the latent heat source

pCpD"ri_%
s Rp +pCyp Dlri{l

AE =AE{ [H @.3.1)

sRp +pCpBrﬁ+pCpD’ri_}

AEq ”
S+Y

where
AE; is the instantaneous rate if there was no low frequency component or if turbulence was
fine-structured, i.e. no large-scale structures,

If there was no large scale turbulence, D would have been zero. Superimposed on the
figure is the line ABCD which represents the points on the joint probability distribution
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which are contributed by an extreme event. Point A represents the start of a sweep phase in
which a high negative vertical wind velocity is coincident with a large vapour pressure deficit

Fig 4.24. Areas in the joint probability distribution of w'd’

valze. This lasts till point B, We notice there could be very small change in D' value during
that period. This is due to the air being actively coupled to the layer of atr above in the case of
a longer duration sweep, since the leaves can not change the moisture content so rapidly
during that stage. After the gust passage, the dry air which has replaced the more humid air
has small absolute values of vertical wind velocity, and at the early stages of build up it has
high positive values of vapour pressure deficit (high D" with low absolute W*). With time the
air starts humidifying, leading to the movement in time along the twisted line from point B to
point C. The twisting in the line is due to small scale mixing within a variable source profile.
With the arrival of the following gust, or the passage of the next coherent structure, the air
will have humidified (a lower D) and will have a positive W" (an ejection) and the line moves
back to point close to point A.

It Is clear that there will be deviation of the source strength due to D" (a Penman-
Monteith result). 8’ (source deviation) is a linear relation in I} or D"(the part inside the
brackets in eq. 4.3.1). If there is a correlation between w’ and D" depending on the shape of
fig 4.24, this correlation will show as correlation in w’s’. The variation of W" with D" is not
linear since there are some periods, as we have explained in which D" is positive and W" is
non existent {after the passage of the coherent structure}. But we usually know that the
contribution of W"d" to the total saturation heat flux (the integration of w'd’) is about 40-50%.

If we assume some form of the joint probability function relating D" to W”, S as given
by 4.3.1 becomes
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PCp {- aw" + random Gw]ri_%

S=8] +$4 (4.3.2)
sRp +pCpD rﬁ
that leads to
, Cpy [- aw" + random gy iy
§ =8 " pl IW]H (4.3.3)
sRy +pCpDp 1y
n Lis -1
. Cpl-a w w +random Gy Jr
WS =8 © pl whil (4.3.4)

sRp +pCpDy rﬁl

The average of this component is not vanishing to Zero. In the case of using time steps
larger than the scale of the source variations due to D" or W", we need to consider the effect
of w’I)Y correlation on the source term which would lead in the end to a correlation between
s’w’. This term will affect the mean source profile. It will go into the turbulent flux equation.

. a !q'

£ 94 W o 9y, 2 T &

Ly +u, UJ axj +u1 u ax_] o ax]' = Vg N +u.1 an +u, k,:a ds
J

(4.3.5)

This equation which represents the multiplication of turbulent velocity component with
the wrbulent scalar equation. This equation is the same as 3.6.11 except for the last term,
which represents the correlation between the source variation and uj variation. This equation
is added to equation 4.3.6 to get the turbulent flux equation (eq.4.3.7). This latter will have
this term (term XT) which will not vanish to zero. If we assume that the large-time averaged
turbulent flux equation is valid, this last term represents the correlation between the sources
and the profiles, which we have lost account of due to the intermittency introduced by the
existence of coherent structures,

,aui Ju. coU; aui
Ta 9 Uiax Wy ;T Oy
1 II 111 Iv*
. , 5 3 uiu.')
=y 2l : )g*'fcﬁlﬁqu q |1 aai +qv le;wq'a%; 436)
v j
V* V1 VII* VI IX*

176



aq'u; _aq'u-; v aﬁ . aﬁl ' Bq'uil
T YT T Y e o
I IT* 1I* 2> Iv*
< \ : ) ug T
Byq o alee L, 9% 9y 'a‘l ) 'a(”)
=0; f :4 ;= = H 1
8,3( a )g+ celﬁqu] q (5 a?-,*“l"q asz +qv asz +1; axJ- +q 8xj
Y V1 VII* IX1 IX2 X1 X2
' ac
+ I ]kc—ds 4.3.7)
S an

X1

This equation is non linear. Averaging this equation, if it is assumed valid (look at appendix
1.a), and assuming stationary, horizontal homogeneity, vertical wind velocity zero, neglecting
Coriolis force term and molecular divergence terms, will lead to the disappearance of the first,
second, sixth, ninth and tenth terms. The remaining terms will represent a balance between
production (III), turbulent transport (IV), buoyancy (V), pressure{VH} and source vertical
velocity correlation term. We neglect the effect of buoyancy, assuming that the coupling by
the gust process of the canopy air layer to the layer above leaves no time or very little time for
thermal stability effects to work. On the other hand, the effect of stability is somewhat
included in the gust process since gust frequency is somewhat controlled by stability effects.
The term (III1}, in the case of assuming horizontal homogeneity, represents a correlation
between a vertical wind velocity variance and a vertical gradient in the concentration. The
second (TH2) is a correlation between a moisture or scalar flux and the mean wind velocity
gradient, The gust process also affects the other terms (I'V, VII} in the equation, as has been
shown on Sect. 3.6.C. The gradient in the turbulent transport term expresses the effect of
turbulent transport on moving the flux. The flux in a steady state situation is equal to the
mean source and estimating the value of the term in eq.4.3.4 could be used to scale the
sources vertical velocity correlation. The coefficient a in eq.4.3 .4 represents the time averaged
slope of the joint probability distribution of W’D’. It has to be a weighed siope of all the
points on fig.4.24. This slope is determined by the general climate since it will determine the
initial value of D after the gust intrusion (i.e. the extreme values at upper left part of the
graph) and the build-up or decrease of the vapour pressure deficit which is allowed to occur
(i.e. the lower right part of the graph). The latter will determine the end value and the period
of time over which the value of D stays at a certain limit. This slope is not the apparent slope
on the joint probability W’D» distribution figure.

In the two examples given below, the values of that slope were determined from a
MATHCAD® runs to calculate the end value of vapour pressuie deficit for point D. Looking
at the values of Dairpqd at page 143, we get an impression of the values of the change of D”
due to gust intrusions. It is about the difference between the first element and the last element
in Dairpg. This gives very close values of the D" and Dyean as the ones assumed in eq.4.3.10
and 4.3.9, for the warm arid and cold humid regions. We assumed that the value of points A
and D in fig 4.24 were accompanied by -0.3 ms-! at the gust intrusion phase and by +0.3ms"!
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in the ejection phase. These Dairng were obtained from MATHCAD® runs, as has been
explained on page 143. This values give a value of the coefficient a in eq.4.3.2 in the order of
- 6000 Pa.m-1. Concerning the random part , which leads to the dispersion of points W'D’
around the line, we assumed that it is related mainly to small scale mixing. The coefficient a
in eq.4.3.2 is the time mean of the relation between D’ and W’, and not the apparent slope on
figure 4.25. This time mean is really difficult to obtain since it relates to the build-up. A
parcel of air could remain still for a large period of time in which its vapour pressure deficit
does not deviate a lot from the ene introduced by the gust intrusion. This increases the actual
slope determined above, compared to the apparent one.

We do not have direct values for this equation, but there are some measurements which
are given in fig.3 of Finnigan 1985, which give some idea of the order of the terms, if we
assume about the same ratio between the terms for the latent heat flux equation. In the
following scaling, we will compare the value of one of the production terms III1 to the
source vertical velocity correlation term. Let assume that the mean latent heat source is 400
Wm2, This leads to a vapour pressure gradient of about (400%67/1200 = 22 Pam-1). Assume
a vertical velocity standard deviation of about 0.3 ms-1. This gives a values of about 2 Pa.
ms-2 for the term {111 in eq. 4.3.8. Now, estimating the W”s” term as given equation 4.3.4,
assuming the same numbers as given below (eq. 4.3.8) and a leaf area density of 1 m2m-3, we
get

Ws™ = 400* 1200 (6000 *0.3 *0.3 /50)/(312*600+1200%1600/50) = 22.9 J m~2 s-2

(4.3.8)
This value would equal about (22.9*67/1200= 1.28 Pam 5-2). So, the resulting variation in
term X1 would be of the same order as term III1.

Solving the averaged equation will yield q'ui for different layers, the divergence of
which will go into the solution of the mean concentration profile (first order). This term will
go into a large-time averaged model, if the averaging is assumed valid.

The problem of obtaining a representative average has shown up also in obtaining
representative values for the transport coefficients between canopy air layers, and these
coefficients obtained within a time resolution larger than the time scale of variations lead to
different solution of the temperature and vapour pressure of the air outside the boundary layer
of the Jeaves than the ones obtained with a time resolution smaller than the time scale of
variations. If this is case, what is the proper procedure for parameterizing the averaged in time
turbulent transport coefficients? We need a separation in scale and ensemble averaging of
characteristic periods. This problem has been dealt with in chapter 3.

There is also the effect of the increase of the absolute wind speed observed during the
intrusion on the boundary layer resistance. We will neglect that effect, assuming that the
sweep duration is not large. That is not always the case. (look at the diagrams where the
duration of the gust can last 10-15 seconds).

Let us come to a measured example which shows the effect. The figures are taken from:
FAO IRRIGATION AND DRAINAGE PAPER 24: "Crop Water Requirements"”, page 17.

Tmax 35 QC, Tmln 22 DC, R.Hmax 80 %, RHmln 30 %,
Tmean 28.50C

178



es at 35 0C 56.2 mbar

ea at noon time 16.9 mbar
es -ea at noon time 39.3 mbar
ey at 28.50C 38.9 mbar
Rn at noon time 600 W m-2

Let us assume that D mean is half of this value and D" will be half of the above given value

)
pCpP Ty 1200 * 1600./50 — o017 (4.3.9)

s Ry +pCp D1 T 312%600 + 1200 * 1600 /50

In the case of Dutch conditions (Goudriaan 1977, p.175), the net radiation ranged from
-84 10 690 W m-2. The temperature ranged from 13.5 to 20.6 9C, humidity ranged from 11.2
to 15 mbar. We took the values at noontime.

"ol
PO TH 1200 * 500 /50 = 0.107 (4.3.10)
SRy +pCy Dyry] 1457690 + 1200 * 500750

The relation between D" and D1 depends on the frequency of refreshment and its value
and the time constants of the canopy layers. D} or Dmean is not independent . It will depend
on D" and the period between the passage of two gusts in relaticn to the time constants of the
canopy air layers.

4.4 ASSUMPTIONS USED IN SOLVING THE ENERGY BUDGET FOR THE SOIL
LAYERS*

In this section, we will deal with the solution of system of eq.4.2.72 and eq.4.2.75 for
the soil part, as has been done in the numerical model. Since the air in the soil pores is almost
saturated, depending on the soil water moisture potential, the solution of the soil temperature
equation and the soil moisture potential gives directly the soil air vapour pressure. The
divergence of water vapour flux accompanied by phase transformations (or the divergence of
liquid water movement within a soil which has a thermal gradient) can lead to extra heat
transport. Water vapour pressure gradient and water vapour diffusivity, as affected by air-
filled porosity and tortuosity, go into determining the water vapour flux between soil layers.
Temperature gradient can lead to moisture flux. So, heat and mass transfer are coupled.
Solving for the temperature and moisture content of the soil requires taking account of the
coupling.

In here, we will deal with this coupling, the parameterization of the heat and mass
fluxes, their conjugate forces, the sinks within soil layers, the forcing at the soil surface due to
energy partition, and the conductivity terms or the diffusivity terms for the different fluxes.
But first, we will talk about differences between heat and mass transfer within the soil and the
canopy air and the resulting consequences of these differences.
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In the soil layers, the scale over which the transport mechanisms works is quite small
compared with the length scale of the gradients of the state variables. The gradient transport
approach is then applicable. Most of the heat transport is done either by conduction through
the contact points between the soil particles and the water films forming a meniscus around
them, or by convection of water, either in its liquid state or by diffusion of water in its vapour
state. The spatial scale of convection is quite small and the time scale for appreciable
transport distances is normally quite large compared with the time scale which is needed for
equilibrium between the moving liquid and the immersed media, so local thermodynamic
equilibrium assumption for the soil layers is valid. A multiphase medium (the soil with its
solid particles, liquid and gaseous phases) can be treated as a single continuum. This can seen
from applying eq.4.2.11 and eq.4.2.15 to the soil layers. These equations were derived for the
canopy layers, but assuming that LAD- dz for the soil layers is the specific soil surface,
multiplied by the soil particles, density multiplied by the soil layer thickness, multiplied by a
reduction factor to account for the active area of exchange between the soil particles and the
surrounding air, make these equations applicable for the soil part. The boundary layer
resistance for heat transfer from the surface of soil particles to the soil air is quite small. Both
of these make the time constant very small. The Ktop and Kpottom here are considered as the
conductive heat transport coefficients, as determined from the De Vries model (1963, 1975).
In applying this heat equation (4.2.12) for the soil layers, there is no coupling between heat
and mass. The coupling comes from the solution of water vapour transport equation and the
soil water transport equation. Water vapour transport depends on the vapour pressure
gradient. The conductivity terms in this equation are the water vapour diffusivity coefficients.
With water convective flux between different layers, the effect of turbulent fluctuation of heat
and scalar within the water (what is called dispersive flux) is quite sinall and we can assume
that the flux happens only due to convection by water in its liquid state. Convective heat flux
by liquid water stream, in non isothermal soil, is very minor with respect to water vapour flux
divergence (Berge 1990).

In the canopy air space, the spatial scale over which the turbulent transport works is
quite large compared with the canopy scale, the local thermodynamic equilibrium approach is
not strictly applicable. During the period of large active scale motion, this assumption is gone
and the leaves will have no time to respond to the rapidly varying temperature and vapour
pressure of the air, but to the final arrangement of these layers after the large scale motion has
reshuffled the vertical arrangement of the air inside the canopy. The existence of temperature
difference between the immersed surface (i.e. the leaves) and the air, which is large compared
to the total temperature difference between the system boundaries, makes a multiphase media
treatment a necessity to take account of the interfacial heat and mass transfer between the leaf
and the surrounding air. So, an equation for the leaf energy budget is required. In the case of
the soil, no such equation is required for the solid phase of the soil. But a specification of the
heat flux at the surface of the soil and the sources within the soil layers is needed. The sources
could be considered as the water phase transformation due to water vapour flux divergence.
What is required here is water vapour diffusivity as determined by air-filled porosity and
tortuosity, which is a function of the soil moisture content.
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4.4.1 THE GOVERNING EQUATIONS

For the heat and mass transfer within soil, there are two available approaches, One is
based on the thermodynamics of irreversible processes (Taylor and Cary, 1964; Cary, 1965;
Weeks et al., 1968; Bolt and Groenvelt, 1972) and the other approach is a mechanistic one
{Krischer and Rohnalter, 1940; Philip and De Vries, 1957) which is based on the
hydrodynamics and heat conduction.

We follow the first one. From the study of entropy production due to irreversible
processes occurring within a system, it is possible to specify the flows and their conjugate
forces such that Onsager reciprocal relationships (1931) of the phenomenological equations
coefficients are satisfied, i.e.

Ly = Lix (44.1)

The flux of a certain entity is

Ji= Y Lic X (4.4.2)

k=1

where Xy is the conjugate force which produces the ith flow andL;; is the direct coefficient
which relates the flux to the driving force Xj. The other Ljk’s relate the different forces (Xk)
to a flux j.

For coupled heat and water transport, the system of equations is

Jw =Lyyw Xw +LywrXT (4.4.3)
Jp =L X7 +LwXw (4.4.4)
Lwr=Lw 4.4.5)

The first term on the right hand side of eq.4.4.3 is the Darcy Buckingham equation and
the following term accounts for the additional contribution to water flow due to the
temperature gradient.

The entropy production term multiplied by temperature, which was called the
dissipation function by Rayleigh, equals (Katchalsky and Curran, 1965).

n .
To=J.grad (-T)+ 3 J; . grad (- py) (4.4.6)
i=1

where Js is the entropy flux . Jj is the mass flux of species i. In here, we will follow the
approach given by Berge (1990} in scaling the different terms within the flux equation as
determined from the entropy divergence term eq. 4.4.7
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Tg=TI+ Y B Jw, (44.7)
i

where Jg is heat flux and Iy are the different mass fluxes of water in its different states i and
fLw, is the chemical potential of the state.
Berge (1990) started with eq.4.4.7 and ended up with eq.4.4.8

aT_ 9, . aT

c - 2T s amy 44.38)
aT 3

pCra= -jaqzﬂ + s (4.4.9)

pcpaj__acﬂe

Plale ey, (4.4.10)

where C is the volumetric heat capacity of the soil in J m~3K-1 at time t. The first term
within brackets on the right hand side of eq.4.4.8 expresses the conductive soil heat flux and
the second one is the divergence of the water vapour flux multiplied by latent heat of
vapourization which then expresses the contribution of latent heat flux divergence to the heat
equation and which could be considered as an extra heat source in the heat flux eguation
within soil layers (4.4.9). Equation 4.4.10 is solved implicitly from the solution of eq.4.4.9
and the solution of the soil water potential model as explained in 4.5. The calculated water
vapour pressure and the use of a tortuosity model as given by Millington and Quirk (1561)
allows the calculation of water vapour flux divergence which goes as an extra sink, in
addition to water uptake by plant roots, in the water transport equation

The coefficients A for heat conductivity between different soil layers were determined
by the use of the textural composition and the moisture content of the soil at the beginning of
each time step by the use of De Vries model. (1963, 1975). The value of pC_ ., was
determined by the knowledge of the soil composition and the initial moisture content (at the
beginning of the time step), according to eq. 4.4.11.

C; =fq Cq +f, Cc +f, Co +8 Cy, +£, C, (4.4.11)

The sensible heat flux equation is discretized equation according to Patanker (1980}, as
shown in the appendix (A.2.11) with the source linearization as a function of the soil water
potential and terperature

r.h=exp(%) (4.4.12)

where r.h. is the relative humidity of the soil air.
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The whole set of equations for the canopy and soil was solved as a single matrix, i.e.
system eq.4.2.72 and eq.4.2.76, with taking account for the different conductivity and
capacitance terms for the soil and the air.

The decoupling of the energy budget equation at soil surface is required to consider the
feedback, as has been explained in sect.4.1 between the canopy layer and the soil.

4.4.2 DEFINING THE ENERGY FORCING ON THE SOIL SURFACE

To define the forcing at the soil surface, a decoupling procedure for the sensible and
latent heat flux at the soil surface was used. For the soil surface (layer number Q), an extra
source goes into the heat equation (eq.4.4.9) due to radiation fluxes

C
Sh =R5~L -RST+RL~L -RLT - B’YJ( ﬂgg;]Alt - ets—oil.l )% (-)ai, filled
t

t t
250 Dot (o ey )25 L=< (44.13)
Y Az ¥ Thv +Tsss0il

where Rg and RY, are the short and long wave radiation flux densities respectively. The
arrows indicate upward and downward directions. The subscript indicate short and long.
wave. The short wave fluxes are independent from the solution. The long wave radiation
fluxes have very weak dependency. The sensitivity of the long wave emission to AT is quite
smal! about 6 Wm-2K-! at 20 OC (4ec T3soi| abs)- S0, an initial soil surface temperature could
be used to calculate the total Ry value for the scil {the sum of the first four terms). The
radiation fluxes have been evaluated from the theory in chapter 2. The fifth term is the change
in the soil temperature due to the change in vapour pressure within the soil air, The sixth term
represents the water vapour flux from the soil layer below to the first soil layer, while the last
term in eq. 4.4.13 stands for the latent heat flux from the soil to the canopy air space. This last
term goes as an extra source term into the equations of the latent heat flux of the first air
layer. It was added to the discretized equation of layer 1 (the first air layer). The value of
latent heat flux from the soil surface was also used as an upper flux boundary condition for
the system of equations describing liquid water flow through the soil.

To estimate this value, an iterative procedure was followed, in which an initial estimate
was made depending on the vapour pressure of the soil, the vapour pressure of the first air
layer, the soil resistance to evaporation and the soil boundary layer resistance.

In the mode!, the effect of soil dryness on the soil surface resistance was included as
explained in section 4.6. The value of the lower boundary transport coefficient for layer 1
equals

bottom =pCp (4.4 1 4)
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where 1, ; is determined from the average wind velocity in the first air layer and using a

characteristic dimension of the soil clods as a characteristic dimension of the soil surface. The
same appreach of using the definition of Nusselt number in defining the resistance terms for
heat transfer from the leaves was used here. The values of r,,; is explicitly defined.

The soil and air temperature equations are solved first, using the initial estimate of the
decoupling for sensible and latent heat flux at the soil surface according to expression 4.4.25.
If the solution of the vapour pressure of the first air layer proves to need a correction, as will
be explained below, a new estimate of the decoupling is done which is used to calculate a new
value of soil heat flux which goes as an extra sink into the first soil layer equation eq.4.4.13.

A problem which shows here is the different time constants or heat and vapour
capacities of the different media constituting the domain of our simulated system. Let us
assume that a parcel of dry air comes in contact with a wet soil, If the soil has a low surface
resistance, the soil will respond to this contact by delivering a high amount of latent heat flux.
If the total amount of delivery is calculated from the initial estimate, the total latent heat flux
to the first air layer could exceed the capacity of the first air layer. This capacity is
represented by this layer not having a vapour pressure higher than the saturated vapour
pressure of the air at the temperature of this layer. In real life, integration is done
instantaneously, and there will be a feedback from the build-up of the vapour pressure in the
first air layer on the latent heat flux from the soil surface to this layer. To follow this process,
we need either to reduce our time step of simulation, or to find a way to have a numerical
feedback in our solution and to obtain an integrated value for the latent heat fiux from the first
soil layer to the first air layer. The source of the problem for the soil layer is that the soil has
very high thermal inertia, which is represented by the pC o5 Az of the first soil layer. This
inertia term represents a large amount of energy, which exceeds by large the net radiation at
the soil surface. A decrease of a fraction of a degree K in the temperature of first soil layer AT
can lead to an energy supply, which exceeds the total net radiation at the soil surface. The
sensitivity of the sensible heat flux to this temperature difference between the first soil and air
layers is quite small. On the contrary, a small change in the temperature of the first soil layer
At is equivalent 10 high amount of latent heat release from the first soil layer to the first air
layer. The time constant of the first soil layer is very large and we have a problem of two
neighbouring elements with very disparate tlime constants.

The first air layer **
To take account of the feedback, we use the latent heat flux equations for the
first air layer.,

PC,oe aq
P™1 _ e
Y ot . + Se,v (4.4.15)

where q, represents the latent heat flux and S, represents the latent heat

v
sources in W m-3
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AZ] TTL(‘]]"JO)"'S&VAZI (4.4.16)

where AZ, is the thickness of the first air layer in m. The latent heat flux at the
upper boundary of layer 1; q; is

W=y dzy (4.4.17)

and the latent heat flux from the soil to the first air layer;  qgis:

_ PG

0= (esoil‘el) (4.4.18)
v (rb,v +rs,soi])

Rearranging leads 1o :

C, K
w2Code PG K, 0G| 0T Ke
Y ot ¥ Zop v (ry Hrggop) Y dzp
C
Pop il +8,AZ (4.4.19)
¥ (rb.v +rs,soi|)
let
=P Kop PG (4.4.20)
¥ dZmp 'Y(Tb,v +rs,50il)
and
C, K C SevAZ
Caireqli,] = %p P i P ¢, +% PLp g + e,vk L (4.4.21)
T UZwp i (rb.v +r ,soil)
Then, the equations take the form:
0 k
e (eceans o) (4.4.22)
pCpAZ
which has the well-known solution
i t

€] = Eaireqli,L (1- €XP ) +Cimitial, 1€XP T (4.4.23)

where

185



1L ky (4.4.24)

T Y CpAZI

and, T is the time constant of the layer. Notice the little dependence of e,ir ¢qii,1 On
the solution. The first and last term have a feedback from the solution.

From this, an account of the effect of the water vapour accumulation on the latent heat
flux from the soil is done through the calculation of the time constant of the first air layer and
the ratio of the time step of simulation to this timme constant. The magnitude of this ratio,
AU Tfirst air jayer- Will determine whether an asymptotic solution (€air,1,eq)) will be achieved. If
At Thiest aic Tayer23 ,the initial state of the water vapour would have a negligible effect on the
water vapour concentration at t+At. The capacity of the layer could be used to determine the
integrated value of latent heat flux from the first soil layer to the first air layer. An asymptotic
flux will be approached, in which the flux from the first soil layer is equal to the turbulent
flux between the first air layer and the second air layer, after deducting for the contribution of
the leaves within the first air layer to this flux and to the water vapour content within the first

air layer. In case of (At/Tsicst air tayer<0.1) we assume there would be no problem of a feedback
which is numerically ignored, and using an initial estimation of the latent heat flux from the
soil surface to the first air layer would offer no problems. In cases of ( 3>AtTgirg aic 1ayer>0.1),
a numerical integration within a time step of 0.1 At of the latent heat flux from the soil to the
first air layer is carried out, assuming very little dependence of the integrated contribution on
the water vapour concentration of the second air layer. The correctness of this assumption can
be checked by the time constant of the second air layer, which is usually much larger than the
time constant of the first air layer. An iteraiive method has been used to find the correct
contribution, since the value of eajr 1 oq7 has little dependency on the solution, This approach
is used for the uncoupling of the sensible and latent heat flux at the soil surface. The
evaluated latent heat flux goes as an extra source for the canopy first air layer and as a sink in
the heat equation of the first soil layer. It is equated after being divided by the length of the
time step to:

PGy (Csonr-ef) (4.4.25)
¥ Thy Hss,soil
in equation (4.4.13).
A question which arises here is the correct choice of thickness for the first air layer and
the frequency of refreshment. Both of these parameters will determine the total integrated
latent heat flux from the first soil layer to the first air layer.
The thickness of the first air layer will be equal to the displacement boundary layer
thickness. This boundary layer has been estimated according to Monteith and Unsworth
(1990). It equals

S/t = 5 (Rey03
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This boundary layer thickness has a value of about 1 cm, assuming a wind velocity close to
the soil of about 0.25 ms-! and characteristic dimension of the soil clods of 0.05 m.

The sensitivity of the integrated latent heat flux from the soil to the air needed to
saturate the first air layer is not high. It can be checked by calculating the amount of latent
heat required to saturate that air layer. Assurning a vapour pressure deficit of 2000 Pa for the
air which comes in contact with the soil, and no temperature difference between the soil and
the air, the latent heat flux from the soil to the air required to saturate that air layer is
1200/67*2000*(0.01. That represents an amount of latent heat extra, averaged over 90 s, of
about 4 Wm-2. So, if we overestimate twice the frequency from once every 90 s to twice
every 90 s, this is the error we get. So, a rather careful assumption of the gust intrusion rate is
enough. It does not have to be very accurate. The most dangerous effect on the calculation
comes though an error in the refreshment of the air within the lower part of the canopy, the
turbulent transport coefficients there and the resistance of the system to latent heat flux and
the effect of all of these on the mean vapour pressure deficit of the first air layer (excluding
this displacement boundary layer) as has been explained by the run of MATHCAD®.

4.5 CALCULATING THE LIQUID WATER FLUX THROUGH SOIL LAYERS*

The value of the latent heat flux from the first soil layer to the first air layer, as
calculated from 4.4, is used as an upper flux boundary condition in a system of equations
describing liquid water transport through the soil. Our starting point is always replacing the
continuity equation of the species under consideration to the general transport equation. We
then discretize and define our conductivity and source or sink terms. The sink term for water
uptake by plant roots from different soil layers will be determined in the next section. The
extra source term which results from a negative value for vapour flux divergence is calculated
explicitly from the soil temperature and soil water potential profiles and from a tortuosity
model according to Millington and Quirk (1961). The conductivity terms for liquid water flux
between different soil layers are calculated explicitly and modelled by the use of Van
Genuchten model (1980) as given by eq.4.5.1, or by the use of fitted function for the
measured values K(hm) and hm(8).

K(®) = K, $"2 (1- (1- §Vmymy? (4.5.1)
hy = # (§Mm _yle (4.5.2)
where

S : '?; (4.5.3)

The water general transport equation which was solved is the following.

a8

=3 K(\lf) (4.5.4)
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where W is the soil water moisture potential and K(y) is the soil hydraulic conductivity
as a function of y. The determination of the divergence of the water flux and water uptake
was used to calculate the new moisture content from the initia} one, to avoid numerical
incompatibilities between the results obtained from different approaches used in the
calculation due to the numerical precision.

4.5.2 QUANTIFICATION OF THE SINK TERM FOR H20 WITH DIFFERENT SOIL
LAYERS#*

The plants as autotrophic organisms need to intercept solar energy, and trap this
radiative energy into chemical energy by transforming H20 and CO2 to energy-rich
compounds. The plant leaves with large specific surface area, m2 kg -1 and coloured
pigments allow the plants to intercept the required radiant energy. The anatomical features of
the leaves allow the plants to exchange CO2 and O3 with the surrounding environment. These
anatomical features (the existence of stomata) let the plants lose water vapour through the
stornata, allowing the plants in the process 1o get rid of a fractional part of their radiation load.
The lost amount of water from the plant leaves has to be replaced, otherwise the leaf water
potential would drop to lower values causing an undesirable water stress on the plant
metabolic processes. The amount of energy or water which is used in the photosynthesis
process is quite negligible compared to the total amount of energy absorbed, or to the amount
of water transpired to the surrounding environment.

When the evaporative demand by the atmosphere or the evacuation of the latent heat,
delivered by the plants into the inler-canopy air stream, to the atmosphere above is quite high
and the scil and water movement through the soil-plant continuum is not a limiting factor, in
the sense that the plants manage to meet this demand under reasonable leaf water potentials
and reasonable leaf temperatures, there would be no problem. But once these leaf water
potentials and leaf water status become limiting, due to too high water potential drop between
the soil and the leaves, the plants would have to respond by increasing their stomatal
resistance as a valve to maintain reascnable turgor pressure, and at the same time they must
have a reasonable partition between sensible and latent heat (meaning reasonable leaf
temperatures) and maintain a reasonable flux of CO2 into the leaves. High drop in water
potential between the soil and the leaves could be due to high flux density or high resistances,
either in the plant or mostly due to the development of high resistances in the soil within the
advanced stages of drying. The ability of the plant to interact with the radiation field in which
it exists, and the resulting radiation load and the partition of this radiation in a way which is
life sustainable, depends on the environmental conditions lying within the domain of
existence of these plants.

The ability of the planis to modify the environment in which they exist is limited and is
affected by the environmental conditions themselves. The survival of the plants or their well-
being depends on the final resulting solution for this feed and feed-back mechanism and if
this solution lies within the domain of existence of plants.

In this thesis, concerning the modelling of water movement within plants, we assumed
the validity of the cohesion theory for explaining water ascent in plants, in spite of some
arguments introduced to the invalidity to this theory by Zimmerman et al. {1993). His
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measurement of water pressures in the xylem do not agree with the cohesion theory.
Following this theory, water pressures which is much less than atmospheric will develop in
the xylem vessels. This will lead to cavitation and embolism. Several explanation were given
for the maintenance of water columns under negative water pressures which are below
atmospheric pressure (Pickard, 1980). Zimmerman et al (1993) argues for several other
mechanisms, which could be responsible for water ascent in plants without the need for very
low negative pressure values as predicted by cohesion theory. These mechanisms include
osmotic forces, capillary forces and the development of gradients in interfacial forces along
gas-liquid interfaces of a necklace of tiny air bubbles adhering to the inner wall of a capillary
and water. These gradients result due to the existence of solute or temperature gradients. This
is called marangoni convection. The required occurrence of air bubbles in the xylem vessels
seems in contradiction, but he argues that the occurrence of moderate cavitation in the xylem
elements lead to the intreduction of these air bubbles and that it could a strategy by the plant
for survival under moderate cavitation. [ wonder if the measurement by a xylem pressure
probe as shown in fig. 5 of his paper does not lead to the leakage of air along the region of
contact between the measuring microcapillary and the plant tissues to the xylem vessel. This
would prevent the development of very low negative tensions, even if it was developing
otherwise, due to the intrusive nature of the measurement. There is a recent study (Pockman
ef al . 1995) showing that xylem conduits remained water-filled and conductive to species-
specific values ranging from -1.2 to below -3.5 MPa. Kramer and Boyer (1995) state that the
main difficulty is that the pressure probe must penetrate the xylem water column while it is
under tension, which may disrupt the tension. Thus, there probably are as many errors in
measurements with pressure probe as with the pressure chamber (Scholander ef al 1964).

Our starting point is the conservation equation for water within plant water transporting
tissues (the xylem elements). Conservation of water , assumed incompressibie, requires that
the rate of change of a cell velume must equal the difference between the inflow rate and the
outflow rate.

N A (V.. 48, @5.3)

where V is the volume change of water the due to water flux divergence. q,, is the water flux
density in ms-1. 3,, are the walter sources or sinks in the plant tissue, expressed in m3 sk

oY
a=K 2 (4.5.6)

K,, is the hydraulic conductance with the plant tissue in m2 5~ MPa-l- ¥ is the tota] water
potential which is the sum of the gravitational, metric and osmotic component potential in
MPa.

To relate this equation to the total water potential, this equation can be expressed (Molz
and Ferrier, 1980) as
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. (4.5.8)
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The modulus of elasticity £ will determine the reduction in the cross-section of the
conducting xylem element due to water tension. With progression of negative water potential,
embolism will occur, that will introduce relief of the tension but will reduce the conductance
of the tissue. IT is the osmotic pressure of the water in the xylem in MPa. S, are water
sources or sinks within the tissue. Since we are solving a one dimensional flow equation, so,
we consider lateral water flow to the storage tissue or the lateral branches as a sink or a
source.

The previous equations are describing water flow through an area with no change in the
cross section (the number of Kylem elements multiplied by the an average area for each xylem
element). In the case of following the water movement through an appreciable length of the
plant, the number of the xylem elements reduces with height due to xylem elements
branching into the plant lateral branches. The area will be given by.

A=I12n (4-5-9)

We will assume a rate of decline with height for the area available to water transport
proportional with the decline of the leaf area with height. There is another source for decline
of the xylem available for water movement. This occurs mainly due to the shrinkage in the
cross sectional area for the xylem elements due fo high water negative potential which
exceeds the negative pressure required to withdraw air through the intervessel pit membranes
or through the wall pores (Zimmermann, 1983). This leads to the introduction of air bubbles
to the system and embolism or cavitation. That effect will be included in the definition of K
(the hydraulic conductance in m? s-1 MPA-1). So, K will be a function of y depending on the
water potential within the xylem.

The resulting equation would read for a certain segment of a plant stem as :

d d
A Az ( t+dt ‘I—’) top (‘U::‘]jl wlu-dt) Kbottom (W?dt Wlnldt) " {\L}L l+ t}[qﬁ;t Ws]
€+1E At 82top Zbottom 5

(4.5.10)

where the last two terms express the exchange of water between the a lateral branch and the
storage tissue within the plant respectively. The RL express the resistance to water flow

between the lateral and the xylem elements of the main stem through the petiole (petiole
resistance). The R§ express the resistance for water flow between the xylem elements and the
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surrounding storage elements in the same segment. We have used the values of the water
potential of the storage tissue at time step t (explicit) since we assumed that during At , which
is 15 seconds, it would not change to affect the solution. The values of the water potential of
the lateral were assumed also at the beginning of the time step.

For the lateral branches, the same equation was assumed. For the first node of the lateral
branch, the water exchange with the main branch was included, while for the other nodes, a
sink term was included through the calculation of transpiration from the leaf surface attached
to that node. The amount of transpiration is calculated from the partition of energy on the leaf
sutface {chapter 2).

The calculation of the water potential in the points of the lateral branching is done
iteratively by calculating the value of the y at the points of branching assuming a certain
potential of the first node in the lateral. Once a value of W in the main stem is determined,
this is used with the latent heat flux at lateral to determine the water potential at the different
nodes. The potential at the first node is thus determined, which is used again to calculate a
new W for the point of branching on the main stem. This whole process is repeated till the
whole solution converges.

For the underground part, we assumed no storage tissue for water, the fourth term in the
right hand side of eq. 4.5.10 is then assumed zero. For the exchange of water between the root
tissue and the soil, we replace the value of R[, (lateral resistance) in the right-hand side by a
total resistance for water transport between the soil outside the draw down region (in the
middle region between two roots) and the root. This total resistance is the series sum of three
resistances: a root resistance, a soil resistance and a contact resistance. The root resistance
was calculated from a root area distribution, which is assumed exponential in depth according
to eq. 4.5.11, by multiplying it with a total root density. From the root area in every soil layer
and a specific conductance for the root tissue for the species under consideration (Glinski and
Lipiec, 1990 and Gerwitz and Page. 1974), we calculated a root resistance. In the model here,
we assumed that the total area of the root surface area is an effective area for water uptake.

pli=e-Tld . F [z (4.5.11)

The soil resistance is dependent of the distribution of the root in the soil volume and is
calculated according to Gardner (1960) by assuming a uniform distribution of the root area in
every soil layer.

Rgqjl =————Inid2) (4.5.12)
4TIK®) Ly

The contact resistance is a resistance due to the development of air pockets between the
root and the soil. With the advanced stages of drying, these air pockets reduce the contact area
between the root surface and the soil. This resistance plays a role in decoupling or reducing
the hydraulic coupling between the root and the very dry soil layers. In this case so far, it was
assumed zero, but it could be implemented by reducing the contact region between the soil
particles and the root by a fraction which equals the air filled porosity, and so also increasing
the draw-down curve around the effective regions of water uptake. This is equivalent to
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increasing the root resistance and soil resistance by multiplying both by (1- air filled
porosity).

Water uptake from different soil layers is calculated by the use of the calculated
difference of water potential at root surface and the soil and the total soil resistance according
to

5= - (Wsoil - Wroot)/ (Troot+ Teontact +Hroot) (4.5.13)

This goes as a sink term into eq.4.5.4. The water potential at the root surface is used
also to calculate the production rate of abscisic acid (ABA), which is used as a signal for soil
dryness detected by the guard ceils which control the stomatal aperture.

4.5.3 THE STOMATAL RESISTANCE OF WATER STRESSED PLANTS

In this part, we will use the approach suggested by Tardien and Davies (1993) to
parameterize the effect of the water stress on plant stomatal resistance.,

We can summarize this approach as follows: the effect of the soil dryness on the
stomatal resistance of maize is mediated through the production of abscisic acid in the root
which is transported through the transpiration stream in the xylem vessels to the leaves. The
sensitivity of the leaf response to the abscisic signal is dependent on the leal water potential.
The concentration of abscisic acid in the xylem vessels is dependent on the production rate of
abscisic acid, which is soil moisture potential dependent, to the water flux density from the
root to the shoot as given by eq.4.5.14. The importance of the abscisic acid (ABA)
concentration in comparison to its flux {concentration - water flux density to the leaf) is
difficult to answer, due to the complex pattern of ABA distribution in apoplast and to the
factors that control membrane permeability (i.e. pH). There is a lot of evidence for the role of
ABA in stomatal control in maize (Tardieu ef al., 1993). The success of Tardieu and Davies
in using the concentration signal is not to say that the role of other factors (e.g. cytokinin, pH
and mineral status is not important, but that role of ABA is central. The importance of the
concentration signal versus the quantity is discussed by Gowing et al . {(1993). Anyhow, the
response functions as suggested by Tardieu (1993) for maize are as follows.

[ABA] = TAB A/ w+b) = (a W)/ (Jy+b) 4.5.14)

5= Zs,min + & xp ([ ABA] B exp (8]) (4.5.15

The values used for these parameters in eqs. 4.5.14 and 4.5.15 are given within the
subroutine PLANT and RESIS , respectively
In the model, we used a multiplicative effect of absorbed light and dryness of the soil.
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4.6 THE COUPLING BETWEEN HEAT AND WATER TRANSPORT, GAS FLUX
AND SOIL RESISTANCE TO VAPOUR FLUX UNDER DRYING CONDITIONS

We now come to the question of defining the soil surface resistance to evaporation as
defined or needed in eq.4.4.13. Here, we used a tortuoesity model as suggested by Millington
and Quirk (1961).

Concerning the effect of the air filled porosity on the diffusivity for water vapour, the
water vapour flux equation was expressed in an energy flux form

de(y,T)
dz

C
Iy =- p—TP— B Dg, (4.5.16)

where ], is the vapour flux in J m-2 -1, and[} is an enhancement factor. In here, we will

assume it equal to 1. For more details, see Berge (1990). Dy is the water vapour molecular
diffusivity in free air. e(y,T) is the water vapour pressure as a function of the soil water
potential and soil temperature. &g is the lortuosity. Tortuosity iries to take account for the
effects which lead to a reduction of the diffusivity from its free air value to the its actual value
in the soil. This reduction comes due to two reasons: the actnal area availabie for diffusion of
water vapour from one location to the other isn’t the same as the apparent area (the total
cross sectjonal area), and the actual length of path which the water vapour molecules have to
follow in its travel from one point to the other is longer than the apparent distance between
two points, These two effects lead to a reduction of the vapour diffusivity from its free value.
Tortuosity depends on soil structure, total porosity and air filled porosity. All of these affect
the three-dimensional structure or configuration of the void space and its continuity. In her,
we will use a model for tortuosity, Millington and Quirk (1961}, to obtain a value for the soil
surface resistance to evaporation.

__PS A Az WD)
), = 7 B D, A N (4.5.17)

where

A, is the apparent area available for diffusion (the whole cross-sectional area). since we are
working with fluxes for unit area, A, equals unity. All the other areas are fraction of this unit
area. A, is the actual or effective area available for diffusion. This latter could be made equal
to

A i
Ac = Aporosty AAM {4.5.18)

porosity

where
Ayporosity 18 the total porosity in a cross-section perpendicular to the direction of the flux. We

assume this equal to the total porosity {a uniform projection of total porosity from three
dimension to two dimension). A fified 1 the air-filled porosity in a cross-sectional area. This
could be also be assumed equal to air-filled porosity.
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According to Millington and Quirk {1961), tortuosity as a function of porosity and air
filled porosity equals

Ee=alW3 /g2 (4.5.19)

where a is the air filled porosity and ¢ is the total porosity. Equating eqs.4.5.16 and
4.5.17, leads to

ég =103/ @ 2_ Aporosity :air filled ‘_A_Z (4520)
porosity A [

and using the approximation of Aairfilled and Aporosity being equal toa and ¢ respectively.
This gives us

Az _gmijgp2 (4.5.21)
Al

This function gives the ratio between the apparent length of the path between two nodes
in the soil column and the actual length which the water vapour travels between the two
nodes. In case of complete dryness of the soil , the air filled porosity equals the total porosity.
So, the above given ratio on the right hand side of eq.4.5.21 should equal one. Thus, we
reduced exponent from 7/3 to 6/3.

For soil layers lower than the first soil layer this equation tells that, when the air filled

porosity becomes equal to zero, the Az goes to zero. That, we would expect for the water
Al
vapour diffusion path within the soil volume. But for the top soil layer, the water films

surrounding soil particles would be filling all the soil pores and the water film would not be
withdrawn into the soil pores. Water vapour would be travelling a distance of zero with

respect to the thickness of the first soil layer. We expect then that Az goes to infinity. Since
Al
the measured distance between the centre of the first soil layer and the soil top would be

overestimating the distance of diffusion which is from the soil surface to the soil surface
(0.0), so, the above given ratio goes to infinity. So for the soil surface resistance we took the
inverse of eq.4.5.21 as an estimate for the ratio between the actual length travelled and the
measured length. In the case of completely dry soil, that ratio goes to one.

To cast this length into a resistance, we used the following equation.

Is,s0il =02(0) %3 / (¢ 2Dy ) (4.5.22)

This rg s0il goes in determining the convective latent heat transfer coefficient between
PCp

————— which is used in
¥ (T, v+ s011)

the soil and the first air layer which is given as Ht, =

eq.4.4.13.
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Concerning the decoupling of energy at lower depths within the soil, the decoupling of
energy at the soil surface as has been explained at Sect. 4.4.2 is the first step. Within every
soil layer, if the moisture content is high enough at the lower surface of this soil layer and low
enough at the upper surface of that layer, and if there is temperature gradient such that there is
a positive water vapour flux divergence, this means that water vapour which is leaving the
upper boundary of this layer is more than what is entering from below. This lower incoming
flux from below is due to the low air-filled porosity at the lower boundary. That flux
divergence will represent a negative water sink at the water conservation equation and a
negative heat sink in the soil temperature equation. This water vapour flux divergence will
come at the expense on the soil heat flux coming from the upper boundary of that layer and
leaving from its lower boundary. So, this model, due to its simulation of water vapour flux
divergence and low thickness of different soil layers, allows for the decoupling of the
available energy (G) into sensible and latent heat flux at different depths automatically.
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THE CANOPY-SOIL-LAYER OF AIR CLOSE ABOVE INTERACTION MODEL

CHAPTER 5

(CANOPY)

5.1 THE LOGICAL ORDER OF THE SOLUTION:

The broad outlines for the logical order of the solution is given here. A detailed order is

shown with the listing.

with the solution, for every time step, since we assume no effect of stability on the

momentum solution, the momentum equation is solved first.

196

Reading some parameters specifying the run.

1)Day number of the year for the beginning of
the simulation, Day number of the year for the
end of simulation.

2) Location of the site.

3) hydrological characteristics of the soil and
how they are fed.

4) Characteristics of the plant cover: Leaf area
density within height.

v

Call Radbou to calculate or read the boundary
conditions for the first interval of simulation.

'

Call INIT to calculate an tnitial temperature
and vapour pressure, CO2 concentration

profile for the canopy and the soil.

'

Call NORMN to calculate the short wave
radiation absorbtion

- v

Call MOMNTM to calculate the wind profile and
turbulent transport coefficient depending on the
situation (gust versus quiescence etc.)




Call RESIS to calculate the boundary layer and
stomatal resistances for different canopy layers
and the soil surface resistance.

Call ENERGD to calculate energy sources
and sinks within plant canopy depending on
the solution of the energy budget equation.

Call PLANT to calculate from the latent
heat flux imposed on the leaves the
plant water potential and the soil water
uptake by plant roots.

Branching point A

(depending on eq. 4.2.24 and the
ratio of timestep to the time
constant for the first air layer).

Call CYCLEI] to calculate temperature, vapour
pressure, Co2 concentration for the canopy
layers and the soil.

Call Flux to calculate heat and mass transfer
between different layers due to small scale
mixing

Integrate within time the fluxes at the
canopy top and within space the storage
within the canopy.

Update the soil moisture and air
temperature, vapour pressure and CO2
concentration
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PROGRAM CANOPY

R R T R RS R RS R 2 Y

CANOPY-SOXL-LAYER OF AIR CLOSE ABOVE INTERACTION
AUTHOR: RUSHDI M. M. EL-KILANI
Dote : June 1939

Updated : Tue Sep 6, 1994 15:27:33
We haope for the best

Monaco 6 (expanded 1.75}

This pragram calculates the rodiotive and non radiative heat and mass
exchange for a plant canopy layer and the exchange between this lgyer and the
soil, and the layer of air close above the canopy { obout twice the canopy height)
In this model, an intermittent approoch is used toc simulate the effect of
coherent structures intrusion into the plant canopy on the partition of the
available energy at the leaves and the s0il and the integration of that effect on
the system.
A complete description of the governing equations, the assumptions used in
their parameterizations and in the modelling are given in the accompanying thesis.
An explanatian of the logic involved in the calculation is shown within this
rogram.
P Tﬁis work was carried cut by the author while studying and working as a
Ph.B. student at the
Meteorology Department
Wageningen Agricultural University
Ouivendaal
Wegeningen
The Hetherlands

This work was carried out under the supervision of

Praf. Or. L. ¥Wartena

Previous Heod Meteorology Department,

¥ageningen Agricultural University.
and

Prof. Dr. J. Goudriaan

Department Gf Theoretical Production Ecolegy,

Wageningen Agricultural University.
and

Dr. Ir. Adrie. F. € . Jacobks

Departwent Of Meteorolagy,

Wageningen Agricultural Untversity.

The auther is very grateful for their supervision and guidance during the
execution of this work.

The current address of the author is:
Rushdi M. M, El-Kilani
S0il Science Department,
Faculty of Agriculture,
Caire University.
Giza, Egypt.
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IMPLICIT NONE
! FOR COMPATIBILITY WITH MACTRAN 3.9
TALIMIT.FOR/L

CAENERG.FOR/L
TAFLUX.FOR/L

DE
DE:ABLANK.FOR/L
DE
DE

UDE:ANRMN.FOR/L

LUDE:ARDBOU.FOR/L
LUDE:ARDOTD . FOQR/L
LUDE:ACCEFF.FOR/L
LUDE: AEQCOE.FOR/L
LUBE: ACONST.FOR/L
LUDE:APLANT .FOR/L
LUDE:ABERGE . FQR/L
LUDE:AHYDROD.FQR/L

INTEGER I1,J),ITRA,ITRM,C(HOTCE K, L
INTEGER QUTPL,INDEX,INDEXC, INDEXS
INTEGER DAY,RU,ITRF,WAYIN,RAININ
INTEGER FREQ1,FREQZ,PASS

INTEGER DAYEND, GUST, COUNT ,INI,INIH

INTEGER FLAG,!.CO0P MSZ SOILIN
INTEGER INDEXI(IS:IK)

CHARACTER®Z1 FILENAME
REAL FACTOR,CHECK4 RAINM,NFTH(1:2)

REAL GL,RLINN,RLOUT
REAL RATIO,TOTEVP

REAL BTNOON,RTIME,TIMER,RA

REAL AVGODLT,BUDLT,NUMDLT

REAL WINDTP,DTEMP WTEMP,SHRTN,WIND25,SHEAR

REAL PS2ISOL(IS:0),VGASCIS: @), FECIS:IH),CPHASECIS:8)
REAL START,TIMEW, TIMEG

REAL HEE(IT,1:2,1:2,1:2)
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REAL TEMPLF(IT,1:2,1:2,1:2), TEMUFN(IT,2:2,1:2,1:2)
JAVGTLFCL:1T)
VRABLT(IH,1:2)
VIDCL:ITY,FRACCL:IT,1:2,1:2),CUMDERCL:IT,1:2)
VRDIR(1:IT,1:2)

REAL TOGTUF
REAL ERRCAH,ERRCAV,ERR
REAL UCQ:ITB) UNEW(O:ITB),DRA(D:ITB), ANAMOM{1:IH)

REAL GRASH(O:IT) NU(B:IT), MUFREE(®:IT)
LNUFORC(O:IT) ,REYNOLCA:ITD

REAL RICHARY,RICHARZ,PHIM1,PHIH1
REAL RICHAR31,RICHAR3Z

REAL TIMECCL1:IND
REAL*S TEMAIN(IS 118), EAIRNW(IS ITB) NCOZ(IS:TTB)
H)

5T H(T POR(I
REAL*S EXTRAS(IS IH) EXTRAL(IS )

REAL NSO(IS:®),XH(IS:B),YH(IS:@)
REAL STORAVCIS:TH),STORACCIS:IKY
REAL TOTALQ,TOTLE,TOTASE,TOTASQ
REAL SATVAFCIS:ITB),VPDATR(IS:ITB)
REAL KLECIS:IH),KCO2(IS:IH)

REAL KRATIO(1:1H) ! KH/K RATID FﬂR THE LOCAL TERM.
REAL*S EM(B:ITB),CM(@: [rs) FM{@:ITB)
REAL DM(@:1TB)

REAL CUMCRN,CUMTRN, CUMBRN

REAL CUMTLE,CUMTQ,CUMTL

REAL STPREHW,STPREV,STPREC
REAL STPRHC,STPRV(,STPRCL
REAL LOCALH,LOCALY,LCCALC

REAL AVGH,AVGLE ,AVGRN AVGTRN AVUBRN
REAL AVGSTH AVGSTE avhsT
REAL AVGL1TH,AVG1TE, AVGITC

REAL CUMSE,{UMSH
REAL AVGSLE,AVGSH

REAL CUMSRM, CUMSS, CUMSG
REAL AVGSRN,AVGSS,AVGSG

REAL AVGTLE,AVGTQ

REAL CUDCRN,CUDTRN,CUDBRN

REAL CUDTLE,CUDTQ,CUDTC

REAL SDPREH,SDPREV,SDPREC

REAL SDPRHC,SDPRVC,SDPRCC

REAL LDCALH,LDCALY,LDCALC

REAL AVDH,AVDLE,AVDRN,AVDTRN,AVDBRN,AVDCO2
REAL AVDSTH,AVDSTE,AVDSTC

REAL AVD1TH,AVD1TE,AVDITC

REAL CUDSE,CUDSH
REAL AVDSLE,AVYDSH

REAL CUDSRN,CUDSS,LUDSE
REAL AVDSRN,AVDS5,AVDSG

REAL AVDTLE,AVDTQ

REAL DT1
REAL GAMMAT(LI:IT),FG{1:IT,1:2)

REAL RLEAFCIT,1:2) HENDCQiIT,1:2),RCOTICIT,2)
REAL LAYERC1:ITD

REAL KSCIL

REAL SOILTM(IS:@
REAL TOTALE,TRNST,EVAPOT EAIRIL

REAL TOTSTH,TOTSTE,TOTSTC

REAL ESAIR2Z,CHECKZ,RATIOS

REAL CAPAL ,CAPAC3, TIMECZ2,DTINT,DELTAC, CUMSLE

REAL ESAIR,EAIRS, (ﬂPﬂ[l CAPA(Z TIMECO , TIMEC3 , TIMECE,RATIOD1
REAL RATIO2 M, NME w

REAL 1EAIR

CHARACTER T

REAL SATUVZ,SATUDZ, X
LOGICAL CH,LN,ON
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$INCLUDE: VALUES.DAT/L

OPEN (36,FILE='INPUTZ.DAT',STATUS="0LD"')
T= CHAR(9)

READC36,*) DAYNUM
READ({36,*) DAYEND

READC36,*) LATI

READC36,%) P,C

READ(C36,%) A,B

READC36,*) AVGDLT

READC36,*) BUDLT

READCI6,*) WAYIN

READCI6,*) SOILIK

READ(36,") annzw

READ(36,%) RAIN

READ(36,*) TMIN(I) TMIN(2)
READC36.*) TM

READC36,*) nauax<1) RHMAX(2)
READC36,%) RHMINC@Y.RHMINCI)
READC26,*) RATNM

IF (WAYIN.NE.1) THEN
OPEN(29 ,FILE='RBOUDI.DAT' ,STATUS='UNKNOWN")
ENDIF

READ(36,*) ITA,IHA,ISA
READ(36,*) FACTOR
READ{I6,*) GUST

READ(36,*) OUTPL
READ(36,*3 CLOUDN
READL36,*) WFTHCL), WFTH(2)
READ(36,*Y LP,NP,ALPHA
READ(36,*) ZROOT
READ(36,*) TROOTD
READ{36,%) SROOTC
READCIE,*S PLANTH
READ{36, ") THICKN
READ{36,*) BASEDI

RADE = PI/180.

! Colculating the declinatian of the sun, doy length, elevation ¢f the sun at noon
! time, time of sun set and air temperature at sun set (if not given in the input

file rboudi.dat)

DECLIN =-{23.45*RADE)*COSCRADE*(I6O"(DAYNUM+103/365))
SINDE aSIH{DECLIN)

DAYLNG =12.+24,  /PI*ASIN{TANCLATI*RADE)*TAN(DECLIND)
NGHTLH =24.0-DAYLNG

BTNOON =PI/Z+DECLIN-LATI*RACE

SINCON =SINCBTNOON)

SUNSET =12+0.5*DAYLNG

BB =12-9.5*DAYLNG+C

TSN =(TMAXR-THINCZI)I*SINC(PI*(DAYLNG-CD)

/(DAYLNG+2*P))+THMINC2)

! reading the depth of different soil layers, their structural composition
! {volume fraction of clay, quartz and organic matter),volumetric moisture content,
: ma;ric hecd, residual mecisture content, saturated hydruu11c conductivity and root
radius
0C 10 I=ISA,
READ (36, *) Z(I),FC(I),FQ ),FO(I),THETA(I},HM(I),
THEThR(I) KSATUCT),RADTUSCI)

POR{I) C-CFCCII+FQCI)+FOCIDY
THEYAS(I)=POR(I)
CONTINUE
! Reading leaf aren density profile and the number of branches per layer
DC 2@ I=0,IHA,1
READ (36,") Z(]) LAD(I) BRANCN(TID
LADCI)=LAD(I}* TOR
CONTINUE

! Regding the initial amount of dew in joules m-2 for lower and upper surfaces of
! the leaves, the wet and dry fractien for the lower and upper surfaces of the
! leaves and the characteristic water drops radius for lewer and upper surfaces
! respectlvely
DO 38 I=1,ITA,

READ(36, ') CUMDEW(I 1) (UMDEU(I 2},FRﬁC(I 1,1),

FRAC(T,2,1),RDI ( ) ROIR(T,2)

FRAC(T,1,2)=1. FRAC(I,

FRA((I,Z,Z)-I.~FRAC(1,2,1)
CONTINUE

! Reading the length of time step for the whole model and for the subroutine PLANT
! (in case cf numericel instabilities due to small leaf thickness)
READ(36,*) DT,DT1

! Reading the depths of soil layers at which o transition of the soil moisture
! characteristics occurs ond the coefficients of the polynomials used to describe
! the Hm(theta) and Ksatu(theta) functions for these different layers.
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DO 31 I=0,HLA,1
READ(36,%) DEPTH(I)
READ(}G 3 HMC(I e) HMC(I, 1), HMC(I 2)
HMECL,3), HMCCT, 4, HMC (T
READ(aa L) xusn(l ®), KUSACT, 1) KUSACT,2)
ACI,3),KUSACT,4), KUSACT,S)
CUNTINUE
DZ(IHA+1) -¢.0
DZ(ISAD -e.9

1 Calculating the depth of the centre of different soil and canopy layers and
1 their thicknesses
0O S@ I=TSA+l,
Z(ENTER(I)-(Z(I)+Z(I 1))/2
DZ{I)=2(I)-2(I-1}
CONTINUE

! Assigning different soil layers to their corresponding moisture characteristics.
INDESOCISA)=NLA

00 23 I=IS5A+1,-1,1
K=NLA
CONTINUE
IF {Z(I).LT.DEPTH{K)) THEN
INDESO{I) = K
ELSE
K=K-1
GOTO 1623
ENDIF

CONTINUE
INDESO(@)=0

Colculating the leaf area density in the middle of each canopy layer, leaf area
increments ond the cumulative leaf area for different layers.

CUMLAICTHA)=®

DO 76 T= IHA,

LADMID(I) (LﬁD(I 1)+LAD(I)}/2

LEAINC(I)=LACMIDCI)*DZ(I)

CUMLAT(I-1)= CUMLAICIJ+LEAINC{I}
{ONTINUE

| calculating the matric heat from volumetric moisture centent, given fitted sotl
! meisture charocteristics.
IF (HYDRIN.NE.1) THEN
DG 333 I= ISA,0,
NSO(I)-THETAS(I)/THETA(I)

XH(I) = ALUGIB{NSO(I))
YH(I) CCINDESO(L),0)

+HMC(INDESO(I),1)‘XH(I)
+HMC{INDESOCI), 2Y*XHCID**2
+HMCCINDESCCI), 33*XHCI)**3
+HMCCINDESC{I), 43 *XHCID**4
+HMC{TINBESGCTY, SY*XHCIN**5
HM{T) —-(18.3**YH(T)
HM{I) —HM(I}/100.

IF{INDESQ(I).EQ.@) THEN
HM(IJ=HM(I)*Z0.@
ENDIF
CONTINUE
ENDIF

PASS= 0
START=REAL(NINT(EB))-@.5

! Starting time of the calculation.
TIME = S5TART

RTIME=TIME

COUNT=0

CORR= MOD(CCOUNT,QUTPLD

! Call RADBOU to calculate or read the boundnry conditions at the canopy tap.
CALL RADBOU(DTEMP,IEAIR,NIKDTP,WIND25,CLOUDN,

RLOUT ,RLINN ,WAYIN,CORR,MINUTE, T, TIMER)

U{THA+1) =WINDTP
TEMAIR(IHA+13}= DTEMP
EAIR{IHA+1) = IEAIR
SHEAR = WIND25/2.2

5 gallhﬁeatdn to calculate root area distribution and root Conductaonce at different
! depths
CALL ROOTDN
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C ! Call INIT to calculaote the initial soil temperoture profile and different plant
C ! hydraulic resistances
CALL TINIT(SOILTM,
ELASTI,O5MOT1
KXYLUM,RLS, RS,
PSIXYL,PSIS,
PSISOL ,HM,DX,
VOLUME , TOTDX,
RADIUS, RDENST,
TIME,KSOIL,
SOILIN)
ITRM= @
ITRA= 8
INDEX=08
SOTLLE=9.0
INTI=2
INIH=0@
C ! The colculating Locp for the number of simulated days.
D0 5800 DAY=DAYNUM,DAYEND,1
C f initializing some daily reserviours
TOTEVP=8.08; STORTH=@.@8, STORTV=0.8; STORT{=0.0
STORHT=0.8; STORVT=@.8; STORCT=0.8@
TOVTSTE=0.0; TOTSTH=0.0; TOTS5T(=0.¢
CNLFGT=0.0; (NLFGV=0.8; (NLFGC=2.6
CHLFST=8.0; {KLFSV=0.0; CNLFSC=0.@
RA=START
RAINC = @
C ' Calculating for every time interval of averaging = AVGDLT = 38 minutes
D0 4500 WHILE (RA.LT.24.0)
NUMDLT=REALCINTCAVGDLT/BUDLTY)D
s tinitializing some reserviours for AVGOLT period.
SDPREH=0_0,; SDPREV=8.0, SCPREC=0.0
SDPRHC=0.0; SDPRV{=0.0; SDPRC(C=0.0
CUDCRN=0.9 CUDTRN=D.0; CUDBRN=28.0
CUDTLE=0. 9 CUDTQ=9.8; CunTC=0.4
LDCALH=2 . 8; LDCALV=0.0; LDOCALC=0.0
CUDSRN=0.0 CUDSE=0.8; CUDSH=9.0
CUDS56G=90.9; CUpss=0.8
C ! Calculating for every interval of time with a length equal to Buldt (period of
C ! updating the boundary conditions) = 15 minutes
DO 4@0@& RU= 1,NUMDLT,
TIME= RA}(REAL(RU 1))’BUDlT
RTIME=TIME
RATIO=AMAX1((SINBTA/SINOON), 2.8)
C ! a counter for output control and on exompie.
CORR=MOC(CCOUNT,QUT PL)
IF {CORR ,EQ. @) THEN
WRITE(FILENMAME, '(I3,A5,F6.3,A3) ' IDAYNUM,
1 "AIRB',TIME, "DAT"'
OPEN(UNIT=4 FILE=FILENAME,STATUS="UNKNONN"')
ENDIF
CH = ({SINBTA.LT.®.8). AND. (INDEX.LT.1))
TN = ({SINBTA.GE.®.98) .OR. (H)
If (CN} THEN
TF(SINBTA.LT.9.0) THEN
C '
INDEX=1
C ! not active par
C CALL FREQM(INTERVAL DURATION,
C 1 INTENSITY REFRE)
ELSE
INDEX=¢
C ! not active part
C CALL FREQM{INTERVAL DURATION,
€ 1 INTENSITY,REFRE)
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ENDIF

! {all NORMK to calculaote the short wave radiation
! profile and +the absorbed short wave per layer
CALL NORMNCIINI,DIRECT,SINBTA,TIME)

ENDIF

[aXal

C | Colculate the pericd between two consecutive gust intrusicns into plant canopy C
| as a function af the measured shear at the canopy top {rather arbitrary)
IF (SHEAR.LE.®.2) THEN
C ! No intrusion
FREQLl=6
FREQZ=19
ELSEIF (SHEAR.LT.@. 4) THEN
C ! once every three minutes.
FREQ1-5
FREQ2=12
ELSEIF (SHEAR.LT.0.8) THEN
C ! ance every Z.5 minutes.
FREQ1l=6
FREQZ2=10
ELSEIF (SHEAR.LT.1.0) THEN
C ! once every 1.5 minutes.
FREQ1= 10
FREQ2=6
ELSEIF (SHEAR.GE.1) THEN
C ! once every 75 seconds.
FREQLl= 12
FREQ2= 5
ENDIF

ON=.FALSE.

'The calculation MASTER LOOP for every gust cycle (Refreshment and then buildup)
! FREQL times within & BULDT period (i.e. 15 minutes)

00 3600 MIMUTE=1,FREQLl,1

INDEXS5=1

! the first period after the gust passage. (an increases turbulent transport

! coefficient.

fatal

[aXal

IF (MINUTE.EQ.1) TREN
C ' Calculote an initial wind profile for the momentum calculation.
CALL INITALCU,RATIO, TIME,USTAR, NAYTN)
ENDIF

C ! Call MOMNTM to talculate the momentum solution.
CALL MOMNTM(ITRM,INDEXS,FLAG

,DU

LU, UNEW,LMIX,DRA,KM
"ANAMOM, GRASH NU,USTAR
CTIME SHEAR SINBTA
"RICHAR1,RTCHARZ ,PHIM1
LPHIK1,RICHAR3L,RICHAR3Z)

' To calculate the fluxes resulting from mixing due to Richardson number being
' less than ¢ critical value. This did not work, It led to much overestimated
' mixing.
IF ((FLAG.EQ.31) OR.(FLAG.EQ.32)) THEN

CALL FLUX{FLAG,

TEMAIN, EAIRNW , NCO2Z,

STORAH, SH,SL,SINK,

STORAV , STORAC,

PCSOTL,Y¥YGAS,

TUTALQ TOTLE TOTASE,TOTASQ,SOILLE,

DT, TIMEW, SUILRN)

[alalal

C ! Integrating Non Leocal Flux Due to Stability
CHLFST= {NLFST+ NLFLST
CNLFSV= CNLFSVY+ NLFLSV
CNLFS5C= CNLF5C+ NLFLSC

DO 444 I=1,IHA,1
TEMAIR(CID= TEMAIR{IHA+1)
EAIR(IJ = EAIRCIHA+1)
CD2CON{IY= COZCONCIHA+1)
444 CONYINUE

TF (FLAG.EQ.31) THEN
FLAG =1
ELSETF(FLAG.EQ 32) THEN
FLAG=2
ENDIF
ENDIF

' Call RESIS to calculate the boundary layer resistance for the leaves

! and the sc¢il surface resistance under different Regimes

! {(Forced convection, free or mixed) for sensible and latent heat.
CALL RESISCITRM,ITRA,FLAG,

[alala)
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LEFL,RCUTT,

GRASH NU, REYNﬂL NUFORC,NUFREE,
LIGHT UNEW GAMMAT FG, ﬁVGTLF
RB,RST.RLEAF,CUMDEN.
HT,HE,HEND,POR,VEGAS,

PSIS, TIME, ABACON)

Call EMNERGD te cal<ulate the longwave radiation profile and the totdl absorbed €
energy and its partition (i.e. sources sinks with plont canopies ot different
heights)
CALL ENERGDCITRA,RTIME,MS2,

SH,SL,HT HE HEND

TEMPLF , TEMLFN, AVGTLF,

RABL, RABLT

RAB, KﬁV lIGHT ENESAB,

1D, FRAC CuM EH

RDIR NFTH SINBTA RLOUT,RLINN,

DT, TOTENE SOILSH,OK)

Once the omount of lotent heat flux is ¢alculated for the Leaves, Call PLANT

to calculate the water potentiol within different plant parts and Water uptoke

by Plant roots and Abscisic Acid Concentration to be used later for the stomatal
resistance calculatian.

CALL PLANT(INT,

T,0T1,
RADIUS.RADIUZ,LV,KNATER
SL,ROOT

PSISOL

TOTUP, F,RTIME, START, DAYNUM)

initializing certain counters for one gust cycle.
STPREH=0.0; STPREV=0.9; STPREC=0Q.@

STPRHC=9.8; STPRV(C=0.6; STPRCC=0.0

CUMCRN=0.0; CUMTRN=0.9; CUMBRN=2. 0

CUMTLE=0.@; C(UMTQ=9.9; CUMT(=0.0

LOCALH=0.8; LOCALYV=0.0; LOCALC=0 .8

CUMSRN=€.8; CUMSE=d.8; CUMSH=@.2

CUMSG=@.98; CUMSS=0.9

A time counte

TIMEG =TIME+REAL(MINUTE 1)*REAL(FREQZ)*15./3600.
RTIME =TIME

An estimation of the ratio of the time step te the time constant of the

first air layer (section 4.4.1
Gl =PCP/GAMMATKM(1) /(0. 5 (DZ(1)+DZ(Z)))
TIMECS =1./(GL+HE(® ,1, )
RATIC1 =GL*TIMEC3
RATIOZ =HE(C®,1,2)*TIMECS
WM =GL'TIMEC3'EAIR(2

+HEC®@,1,2)*TIMECI*EATIRCAOI+SLCL)*TIMECE
eq.

SOILLE  =HE(®,1,2)*(EATR(B)-EAIRC1))
SOILH =HT{@)*(TEMATR(@-TEMAIR(1})

ESAIR =SATUVZ(SHGL(TEMATR(1)))

EAIRS =SATUVZ{SNGL{TEMAIR(®)))
Calculating the copocitance of the first air layer for water vopour
CAPACL1=PCP/GAMMA*(ESATR-EATR(1))*DZ(1)
CAPhCZ:P(P/GAMMA*(EAIR(&)fEhIR(l))’DZ(l)
CAPAC3I=PCP/GAMMA*(¥M-EAIR(1)I*DZ(1

IF (CAPAC3. LE.B.8) THEN
CAPACcD. 0
TIMECG=0,001
RATIOS=10,

ELSE IF (CAPACZ. LT.D.8) THEN
CAPAT =MIN{CAPACL, CAPAC3)
CHECK4=HE(C®,1,2)*CEAIRC@)-EAIR(1))

+8LC1)-GL*CEAIRCI)-EAIRC

IF (CHECK4 NE.@.@8) THE
TIMECO=- CAPAC/CHECKS

(1)
z3)

ELSE
tc aviod deviding by zero.
TIMECO =10E-1¢
ENDIF

IF (TIHECO.LT.@. 0)THEN
RATIOS =190



ELSE
RATIOS= DT/TIMECO

ENDIF
ELSE
CAPAC =MIN(CCAPAC1,CAPACZ,CAPACS)
CHECK4=HE(®,1,2)*(EAIR(@®)-EAIR(1)}
1 +SL{1)-GL*(EAIR(L)-EAIR(2)]
IF (CHECK4.NE.Q.@) THEN
TIMECO= CAPAC/CHECKS
ELSE
TIMECO =19E-10
EHDIF
IF (TIMECG.LT.@.8)THEN
RATIOS =19.
ELSE
RATIOS= DT/TIMECO
ENDIF
ENDIF
< Y First Branching Point {Bronching Point A depending on section 4.4.1)
IF (RATIOS.GT.3.02 THEN
INDEXC=1
WRITE(C*,*) 'WM HAS BEEN REACHED *
1 , "DURING THE FIRST 15 SECONDS®

DO 145 ITRA=1,28,1

IF (ITR# EQ.1) THEN
SOILLE=PCP/GAMMA* (WM-EATRC1)I*DZ{1)/DT
2

1 “SLC1)+1.@*GL*{NM-EAIR(2Y
ELSE
SOILLE pcprcnuna*(wm EAIR(l)) 2(1)101
1 LC1)+1.@0*GL*{NM-EATRNN{
ENDIF

' Call (YCLE1l to calculate the temperature, vapour pressure and (o2 contentrotion
T profile within the system and the volumetric seil moisture content and the soil
! water potential profile

CALL CYCLEL(INIH,ITRA,PASS

TEMAIN,EAIRNW, NCoZ, VGAS ExTRAS EXTRAL,

PSI50L,AVGTLF,

|LEAF,

GAMM&T FG,RATINM,

PHIM, KRnTIﬂ FE NM INDEXI,TEMPORY

[aKalal

C " (Check the convergence of the solution.
HME =W

L1 =GL*"TIMEC3*EAIRNWN(Z)
+HE(®,1,2)*TIMEC3*EAIRNN(Q)
+5L{1)*TIMEC]

-

ERR =ABS(WM-WME)
IF {(ERR_LE.1).AND.{ITRA.GT.13)THEN
GOTO 146

ENDIF
145 CONTINUE
14¢ CONTINUE

C ! Second optien of (Branching Point A). Initial estimate of SOILLE is good enough
ELSE IF (RATIOS.LT.8.1) THEN
SCTLLE=SOILLE
INDEXC=3

CALL CYCLELCINIH,ITRA,PASS,
TEMAIN,EAIRNW, NCOZ VGAS EXTRhS EXTRAL,
PSISOL AVGTLF.
RLEA
GAMMAT FG,RATNM,
PHIM, KRATIO FE, HM IMCEXT , TEMPQR)

ELSE

C ! Thi{dngfgign of (Branching Point A). (integrate numerically)
N =
Leap =NINT(DT*1@./TIMECD)
LOOP =L00P+1
DTINT =DT/REAL{LOOP)
EAIRL =EAIRC1
ESAIRZ =SATUVZ(SNGL(TEMAIR(Z))D)

TIMEC2 =PCP/GAMMA*(ESAIRZ-EATR(2))*DZ(2)/
1 (GL*{EAIR1-EAIR{Z2})
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-PCP/GAMMA®KM(2)/(8.5*"(DZ2(2)+DZ(3))>
*(EAIR(Z>-EAIR(3))
+SL(2Z))

CHECKZ «TIMECO/TIMEC2

Y

CUMSLE=0.0
Do 1503 I=-1,L00P,1

CUMSLE=DTINT*HE(C@,1,2)*(EATR(Q)- EAIR1)+(UMSLE
DELTAC=DTINT*(HEC®,1, Z)'(EAIR(B) EAIR1)
+SL{1)-PCA/GAMMAPKM(1)
C -(02(1)+D2(2)))-(En1n1 EAIR(Z)))
EAIRL=EAIR1+DELTACTGAMMA/(PCP*BZ(13)

IF (EAIRL .GE. WM) THEW
EATR1=MINCEAIRS, NM)
CUMSLE= PCP/GAMMA‘DZ(l)‘(EAIRl-EdIR(l)}

GO0TD 1584
ENDIF

e

15083 CONTINUE
INDEX(=3
1504 CONTTINUE
SOILLE=CUMSLE/DT
IF CINDEXC.EQ.3) THEN
ITRF=9

ELSE
ITRF=290
ENDIF

DO 147 ITRA=1,ITRF,1

4 ! Remark 1 {calculate the scluticon (state variables and fluxes)

CALL CYCLE1(INIH,ITRA,PASS,
TEMAIN ,EAIRNY, NCDZ VGAS EXTRAS EXTRAL,
PSISOL, AVGTLF
RLEAF,
GAMMAT FG,RAINM
PHIM, KRATIO FE !M INDEXI,TEMFOR)

WHE =WM

WH =GL*TIMEC3®EATRNW(2)
+HEC@,1 ,2)*TIHECI*EAIRNW(0)
+5L(1)"TIMECS

=

ERR =ABS(WM-NME)
IF (CERR.LE.1).AND. (ITRA.GT.1)) THEN
GOTO 148

EKDIF
147 CONTINUE

148 CONTINUE
ENGIF

C ' integrate within conopy height the sensible and latent heat sources
TOTLE =¢.@
TOTALYQ -8.0

DO 222 T=1,IT4
TOTLE=TOTLE+SL(I)
TOTALQ=TOTALQ+SHLI)

222 CONTINUE

! Calculote the resulting fluxes of sensible latent heat and Co2 for the cdanopy-
' s0il system.
CALL FLUX(FLAG,

TEMAIN,EAIRNW, NCOZ,

STORAH, SH, SL,5INK,

STORAY,STORAC,

P[SOIL VGA 5,
TOTALQ, TOTLE TOTASE TOTASQ,50ILLE,
oT, TIMEW SOILRN)

(¥l

[ ! Integrate for all the canopy height end 1% seccnhas time step interval
TRREST ={TOTLE*DT)/LAMDA
EVAPOT =TRNST+(SOILLE*DT)/LAMDA
TOTEVP =TOTEVP+EVAPOT

TOTSTE wTOTSTE+«TOTLE*DT
1 -FLUXVTCTIHAD*DT+50TILLE*DT

TOTSTH =TOTSTH+TOTALQG*DT
1 ~FLUXHT(CIHAX*DT+FLUXHB{1)*DT
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225

149

~e

ERRCAH =TOTALQ-FLUXHTCIHA)+FLUXHB{1}-STORH
ERRCAY =TOTLE-FLUXVT{IHA)+SOILLE-STORY

! Integrate within time of the local ebove the canopy fluxes and the storage within
! the cancpy.

LOCALH =LOCALH+CFLXHT(IHA)

LOCALY =LOCALV+CFLXVT(IHA)

LOCALC =LOCALC+CFLXCT(IHA)

STPREH =STPREH+STOREH

STPREV =STPREV+STOREV

STPREC =STPREC+STQREC

STPRHC =STPRHC+STORHC

STPRV{ =STPRYC+STORVC

STPRCC =STPRCC+STORCC

CUMCRN =LUMCRN+RNETOT*DT

CUMTRN ={UMTRN+(RNSTOP+RLNTOP)*DT
CUMBRHN ={UMERN+(RNSETM+RLNBTM)*DT
CUMTLE =CUMTLE+TOTLE*DT

CUMTQ =CUMTQ +TOTALQ*DT
CUMTL =CUMTC+

CUMS RN =CUMSRN+SOLLRN*DT
CUMSH =CUMSH +FLUXHB(1)*ET
CUMSE =CUMSE +SOILLE*DT
CUMSG =CUMSG +FLUXHB(@®)*DT
CUMSS =CUMSS +STORAH(@)*DT

! An example for output control, i.e. will not be repeated. It is left to the
! user of the model to add such o segment where ever he wants.

IF ((CORR.EQ.®).AND. (MINUTE.EQ.13) THEN
WRITECS, ' (ALY )' ™"
WRITE(C4,*) *(3) I',7,"2{1)" T, TEMAIR',T,
'TEMAIN' , T, EAIR’, T, 'EALRNN' T,'CO2CON',
T,'NCO2™, T, SATVAP, T, "VPDAIR",T

WRITEC4,*) FREQZ
DO 3210 I=ISA,IKA,1

WRITE (4,%3 1,7,ZCI>,T,TEMATR(CI),T,TEMAINCI),T,
EATR{T), T EAIRMWCI),T,COZCONCTY, T NCO2CIY,T,
SATVAP{I) T, VPDATR(I), T

CONTINUE

ENDIF

! Calculotions for the second time steap after the passage of the gust for FREQ2
! times i.e. till the end of the quiescence period with time intervals of 15

! seconds.

DC 2090 ITRM=2,FREQZ2,1

INDEXS=2

! Update the Soil total water potentiel (!lnot including esmotic)
HHM{ISAI=HMNEW(15A)
PSISOL{ISA)=HMNEW(ISA)Y+Z{ISA)

DO 225 I=15A+1,0
IFCHYDRIN.NE.1) THEN
THETACI)=THETANCID)
ENDIF

HM{I)=HMNEK(I)
PSISOLCT)I=HMNNEWCI}+ZCENTER(I)
CONTINUE

! Update the tewmperature, the vapcur pressure and the (oZ concentration
I for the next time stap.

CONTINUE

Calculate the momentum equaticen solution for each interval within the quiescence
period.
CALL MOMNTMCITRM,INDEXS,FLAG

DUy

"U,UNENW, LMIX, DRA,KM
"ANAMOM, GRASH, NU,USTAR
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445

1492
1491
1499

208
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,TIME,SHEAR,SINEBTA
JRICHARL,RICHARZ,PHIML
,PHIH1 RICHAR31 RICHAR32)

! If & Yarge scale mixing occurs due toe Richardson number being less than a
! ¢ritical value =9,2%, this did not work. It lead to tooc much mixing.
IF ((FLAG.EG. 31) OR.(FLAG.EQ.323}) THEN
CALL FLUX(FLA
TEMATN EAIRNU NCOz,
STORAH,SH,SL, SINK
STORAV, STORAC
P(SOIL VGAS
TOTALQ, TDTLE TDTASE ,TOTASQ,SOILLE,
DT, TIME¥, SDILRN)

CNLFST= CNLFST+ NLFLST
CNLFSVe CNLFSV4+ NLFLSV
CNLFSCa CNLFSC4+ NLFLSC

DO 445 T=1,THA, 1
TEMAIR(I)~ TEMAIR(THA+1)
EATR(I) = EAIR{IHA+1)
COZCONCI)= COZCONCIHA+1D
CONTINUE

IF (FLﬁG EQ 31) THEN
FLAG
ELSEIF(FL#G EQ.32) THEN
=2

ENDIF
ENDIF

CALL RESISCITRM,ITRA,FLAG,
LEFL,RCUTT,
GRASH,NU,REYNOL, NUFORC,RUFREE,
LIGHT, UNEW, GAMMAT ,FG,AVGTLF,
RB,RST,RLEAF, CUMDEW,
HT.HE,HEND,POR,VGAS,
psis, TIME, ABACON)

! Update the temperature of the leaves for the different segments,
D0 1498 I=1,ITA,1
DO 1491 J=1,2,1
D0 1492 K=1,2,1
IFCIPR(ILK,J).NE.
TEMPLF(I, LK, J)= TEMLFN(I
TEMPLF(Y,2,],K)m= N(I
ENDIF
CONTINUE
CONTINUE
CONTINUE

! Calculate energy sources and sinks within plant cenopy.
CALL ENERGD(ITRA,RTIME,MS2,
,SL,HT,HE,HEND ,HEE,

TEMPLF, TEMLFHN,AVGTLF,

RABL ,RABLT,

RAB, KAV ,LIGHT ,ENESAB,

ID,FRAC, CUMDEW,

RDIR,WFTH SINBTA,RLOUT,RLINN,

DT, TOTENE,SOTILSN,QON)

CALL PLANT(CINI,

,DT1,
RADIUS,RADIUZ,LV,KWATER,
SL,ROOTRS,

PSISOL,
TOTUP,F,RTIME , START, DAYNUM)

TIME‘eTIME+REAL(MINUTE 1)*REAL{FREQ2)*15./3600.
LCITRM-1)*15/3600.
RTIME-TIME

First option of (Branching Point B)
IFCEATIR(1).EQ, WM) THEN
INDEXC=1
Do 1¢e1 ITRA=1,280,
IF (ITRA .EQ. 1y’ THEN

Calculating the So0il latent heat f1l
SOILLE=PCP/GAMMA* (WM - EAIR(l))‘DZ(l)/DT
+PCP/GAMMA*KM{1)/(0.5°(D2(1)+02(23))
*(NM-EAIR(2})-5L{1)

ELSE

Updating the Seil latent heat flux
SOILLE=PCP/GAMMA™(WM-EAIR(C1)I*DZ(1)/0T
+PCP/GAMMA*KM(13/7(Q,5*(DZ{13+DZ2(2)))
ENDIF *(WM-EAIRNW(CZ))-SL(1)



CALL CYCLEL(CINIH,ITRA,PASS,
TEMAIN,EAIRNW, NCOZ VGAS EXTRAS EXTRAL,
PSISOL,AVGTLF,

RLEAF,
GAMMAT FG,RAINM,
PHIM KRATIO FE, WM INDEXI,TEMPOR)

WME  =WM
LE =GL*TIMEC3*EAIRNN(2

b]
+HE(®,1,2)*TIMEC3*EAIRNW(O)
+SLO1L3*TIMECS

=

ERR =ABS(WM-WME)
IF ((ERR.LE.1) .AND. C(ITRA. GT.1))THEN
GOTO 1116
ENDIF
1401 CONTINUE
1116 CONTTIHUE
C t Second opticon of (Branching peint B).
ELSE
INDEX(C=13

WM =GL*TIMECI*EAIR(2)
1 +HE(C®,1,2)*TIMEC3*EAIR(@®)+«SL(1D*TIMEC3

SOILLE =HE(®,1,2)*(EATIR(@)-EAIR(13)
CALL CYCLEL1(THIH,ITRA,PAS
TEMATN, EATRNW, NCOZ, VGAS, EKTRAS EXTRAL,
PSISOL,AVGTLF,
RLEAF,
GAMMAT , FG,RATRM,
PHIM,KRATIO, FE, WM, INDEXT, TEMPOR)
3185  CONTINUE
IF CEAIRNWC1) .GT.WM) THEN
EAIRNN(C1)= WM
INDEXC=1
DO 16eZ ITRA=1,20,1
IF CITRA .£Q.1) THEN

SOTILLE =P{P/GAMMA*(WM-EAIR(CL1))I*DZ(1)/DT

1 +PCP/GAMMA®KM(1)/(B.5%(DZ{1)+DZ(2)3)
1 *(KM-EATR(2))-5L(1)
ELSE
SOILLE =PCP/GAMMA®(WM-EAIRC1)3*DZ(1)/DT
1 +PCP/GAMMAKM{1) /(8. 5*(CDZ(1Y+BZE(2)))
1 *(WM-EATRNW(23).5LC1)
ENDIF
CALL CYCLEL(INIH,ITRA,PASS,
TEMAIN, EATRNW,NCOZ,VGAS, EXTRAS, EXTRAL,
PSISOL,AVGTLF,
RLEAF,
GAMMAT ,FG RAINM,
PHIM KRATIQ,FE, WM, INDEXI TEMPOR)
WME  =WH
WM =GL*TIMEC3*EATRNW(2Z)
1 +HECD,1,2)*TIMECIFEATRNY(A)
1 +SLC13*TIMECS
ERR =ABS(WM-WME)
IF (CERR.LE.1).AND.(ITRA GT.13) THEN
GOTG 1117
ENDIF
1802 CONTINUE
1117 CONTINUE
ENDIF
ENDTF
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iiae {ONTINUE

C ! Calculate the fluxes between different layers
CALL FLUX{FLAG,
TEMATHN, EAIRNW,NCOZ,
STORAK.SH, 5L, 5INK,
STORAV,STORAC,
PCSOTL,VGAS,
TOTALG,TOTLE, TOTASE, TOTASQ,SOILLE
OT,TIMEW,SOILRN)

DO 3111 I=I5A,IHA,1

SATVAP{ID)=SATUVZ{SNGL{TEMAIRCI)))
YPDATR(ID=SATVAP{ID-SNGLCEAIR{IJ)
3111 CONTINUE
TOTLE =2.90
TOTALQ =0.0
DC 211 I=2,ITA
TOTLE =TOQTLE+SL(IL)
TOTALQ  =TOTALQ+SH{I)
111 CONTINYE
C ! integrate within canopy height the sensible and lotent heat sources
TRNST «(TOTLE*DTD/LAMDA
EVAPOT sTRNST+(SOILLE*DT)/LAMDA
TOTEVP =TOTEVP+EVAPOT
TOTSTE =TOTSTE+TOTLE*DT
1 -FLUXVT{IHAD*DT+SOILLE*DT
TOTSTH =TOTSTH+TOTALQ*DT
1 ~FLUXHTCIHAD*DT+FLUXKB{1)}*DT
ERRCAH =TOTALG-FLUXHT(IKAD+FLUXHE(L1)-STORH
ERRCAV =TOTLE-FLUXVT{IHA)+SOILLE-S5TORV
LOCALH =LOCALH+CFLXHT(CIHA)
LOCALY =LOCALY+CFLXVT(IHA)
LOCALC wl QCALC+CFLXLTCTIHAY
STPREH =STPREH+STOREH
STPREV =STPREV+STOREV
STPREC =STFREC+5TOREC
STPRHC =STPRHC+STORH(
STPRYC =STPRVC+STORV(
STPRCC =STPRCC+S5TORCC
CUMCRN =CUMCRN+«RNETOT*DT
CUMTRN =CUMTRN+(RNSTOP+RLNTOP)*DT
CUHMBRN =CUMBRN+(RNSETM+RLNBTM)"DT
CUMTLE =CUMTLE+TOTLE*DT
CUMTQ =CUMTQ +TGTALQ*DT
C CUMTL =CUMTC+
CUMSRN =CUMSRN+SOTLRN*DT

CUMSH ={UMSH +FLUXHB(1)*CT
CUMSE =CUMSE +S0ILLE*DT

CUMSG =CUMSG +FLUXHB(®)*“DT
CUMSS =CUMSS +STORAH(@B)*DT

2000 COWTINUE
IF ((GUST.EQ.1).AND.(SHEAR.GT.®.23}) THEN

FLAG=4
CALL FLUR(FLAG,
TEMAIN, EATRNW HCOZ,
STORAH,SH,SL, $TNK,
STORAV,STORAC,

PCSOIL,VGAS,
TOTALQ,TOTLUE, TOTASE, TOTASQ, SOILLE,
DT, TIMEW,SOILRND

CHLFGT= CNLFGT+ NLFLGT
CMLFGY= CNLFGV+ NLFLGY
CNLFGC= CMLFGC+ NLFLGC

FLAG=@
0O 2508 I=IHA+1,1,-1
TEMAIR(I) =DTEMP
EATR(I) =IEAIR
CO2CONCI) -390
i500 CONTINUE
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DO 2501 I-ISA,d,1
TEMATR(I) = TEMAIN(I)

EATR(T) = EAIRNN{I)
CO2CONCT) = NCO2(I)
2591 CONTINUE
ELSE
0O 2502, f-IHA+1,ISA, -1
TEMATR(I)=TEMAINCI)
EAIRCII=EAIRNW(CI)
CO2CONCI)=NCO2(I)
2502 CONTINUE
ENDIF
DO 2601 I=ISA,IHA,1
EXTRASCI)=0.0
EXTRAL(ID=0.8
INDEXICT)=0
2601 CONTINUE

HMCTSA)=HMNEN(ISAY
PSTSOL{TISA)=HMNEW{ISA)+Z{ISA)

DO 223 I=1I54A+1,0

C ! Updating the 501l moisture content
IF(HYDRIN.NE.1} THEN
THETACI)=THETAN(ID
ENDIF 7
C ! or Updating the s0il water moisture potential.
HM{IJ=HMNENW(T)
PSISOL(T)=HMNEW(T}+7CENTER(I)
223 CONTINUE
4 ! Obtaining averages over the whole gust cycle for storage of sensible, lotent heat
C f and €02 with the canopy.
AVGLTH =STPREH/{DT*REAL{FREQZ)?)
AVGITE =STPREV/{DT*REAL{FREQ2))}
AVGLTC «STPREC/{DT*REAL{FREQZ))
AVGSTH =STPRHC/{DT*REAL{FREQ2)}
AVGSTE =STPRVC/{DT*REAL{FREQ2))}
AVGSTC =STPRCC/{DT*REAL{FREQ2}}
C ! Obtaining averages aver the whole gust cycle of (?777)
AVGTLE =CUMTLE/{(DT*REAL{FREQZ)}
AVGTQ =CUMTQ /{DT*REAL(FREQZ2))
AVGH =LOCALH/(DT*REALCFREQZ))
AVGLE =LOCALY/{DT*REAL{FREQ2))
AVGRN -CUMCRN/(DT'REAL(FREQZ)}
AVGTRN =CUMTRN/(DT*REAL(FREQZ2))
AVGBRN =CUMBRN/{DT*REAL{FREQ2))
AVGSRN =CUMSRN/{DT*REAL{FREQ2)3
AVGSH =CUMSH/(DT"REALLFREQZ))
AVGSLE =CUMSE/{DT*REALCFREQZ))
AVGSS =CUMSS/(CDT*REAL{FREQZ) )}
AVGSG =CUMSG/{DT*REALCFREQZ))
LGCALH =LDCALH+LQCALH
LBCALY =LDCALV+LOCALY
LoCALC =iDCALC+LOCALC
SDPREH =5DPREH+«STPREH
SDPREV =SDPREV+STPREY
SBPREC =SDPREC+STPREC
SOPRHC =SDPRHC+STPRHC
SDPRYC =SDPRVC+STPRVC
SDPRCC =53DPRCC+STPRLC
CUDCRN =CUDCRN+CUMCRN
CUDTRN =CUDTRN+CUMTRN
CUDERN =CUDBRN+CUMBRN
CUDTLE sCUDTLE+CUMTLE
cCynTQ =CUDTQ +CUMTQ
C cynTC =CUDTC+
CUDSRN =CUDSRN+CUMSRN
CUDSH =(UDSH +CUMSH
CUDSE ={UDSE +CUMSE
CuUDsG =CUDSG +CUMSG
cunss =CUDSS +CUMSS
ITRM =1
C ! Updating the leaf temperatures (old = new)

B0 1485 TI=1,IT4A,
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TEMPLF

1497 CONTINUE
1496 CONTIHNUE
1495 CORTINUE

3a00 CONTINVE
COUNT =CCUNT+1
CORR=MOD(COURT,OUTPL}

< !

CALL RADBOUCDTEMP,IEAIR,NINGTP WIND2S,CLOUDN,
1 RLOUT,RLINN,WAYIN, CORR,MINUTE,T,TIMER)

UCTHA+1) =WINDTP
TEMATR(IHA+1)= DTEMP
EATR(IHA+1) = TEAIR
SHEA - WINDZS/2.2

IF {((GUST.EQ.13.AND.(SHEAR.GT.@.2)) THEN

FLaG=4
CALL FLUX(CFLAG,
TEMAIN,EAIRNK,NCO2,
STORAH,SH,SL,SINK,
STORAY,STORAC,

PCSOTL,VGAS,
TOTALQ,TOTLE, TOTASE, TOTASG,SOTLLE,
DT, TIMEW,SCILRN)

CNLFGT= CNLFGT+ NLFLGT
CNLFGY= CNLFGY+ NLFLGV
CNLFGC= CNLFGC+ NLFLGC
FLAG=0
D0 41€@ I-IKA+1,1,-1
TEMAIRCI) =BT
EATRCID =TEAIR
COZCONTI) -300.
4100 CONTINUE
ELSE
COZCONCTIHA+L) =300.
ENDIF
TF (CORR _EQ. @) THEN
CLOSE(4)
ENDIF
4000  CONTINUE
AVDLTH  =SDPREH/(AVGDLT*360@

2
AVDITE =SDPREV/CAVGDLT*3600)
AVDLITC =SDPREC/CAVGDLT*3600)

AYDSTH =SOPRHC/(AVGODLT*36060)
AYDSTE =SOPRVC/(AVGDLT*36060)
AVDSTC =SDPRCC/(AVGDLT*3608@)
AYDTLE =CUDTLE/(AVGOLT*3608@)
AVDTQ =CUDTQ /(AVGDLT*3690)
AVDH =LDCALH/CAVGDLT*1609)
AVDLE =LDCALV/(AVGDLT*3606)
AVDRN =CUDCRN/(AVGOLT*36Q@)

AVDTRN =CUDTRN/(AVGOLT*3608@)
AVDBRN =CUDBRN/CAVGOLT*3608@)

AVDSRN =CUDSRN/CAVGDLT*®36008)

AVDSH =CUDSH/(AVGDLT*3600)

AVDSLE =(UDSE/(AVGDLT*3600)

AVDSS =CUDSS/CAVGDLT*3608)

AVDSG 2CUDSG/(AVGDLT*3600)
RA=RA+AVGDLT

45900 CONTINUE

DAYNUM = DAYNUM+1

TMINCL) = TMIN(C2)
RHMAXC1)= RHMAX(Z)
RHMIN{@)= RHMINC1)

READ(C36,*) TMIN(Z)
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READ(36,%) TMAX
READC36,*) RHMAX(Z)

READC36,*) RHMIN(1)

READC36.*) RAINM

GECLIN =-(23.45*RADEI*COSCRADE*{36@*(DAYNUM+1B}/365))

SINRE =SIN(CRECLLIN)

CAYLHNG =12.+24.  /PI*ASINCTANCLATI*RADED*TANCDECLIN) )
NGHTLN =24.0-DAYLNG
BTNOCN =Pl1/2+DECLIN-LATI*RADE
SINOCN =SIN(BTNOON)
SUNSET =12+9.5*"DAYLNG
EE =12-0.5*DAYLNG+C
TSN =(THMAX-TMINC2))*SIN{(PI*(DAYLNG-C))
1 F{OAYLNG+2*PID+TMINL2)
TIME=D. @

START=TIME

CALL RADBOUCDTEMP,IEAIR,NINDTP NINDZS5,CLOUDN,
1 RLOUT,RLINN,WAYIN, (ORR MIHUTE T, TTHER )

UCIHA+1) =WINDTP
TEMAIR(CIHA+1)= DTEMP

EAIR(IHA+1) = TEAIR
SHEAR =WIND25/2.2
CLOSE(C2)

IF ((GUST.EQ.1).AND. {SHEAR.GT.®.23) THENM

DO 416 I=THA+1,1,-1

TEMAIR{I) =DTEMP
EAIR(I) =IEAIR
{02CON(I) =300.
4le CONTINUE
ELSE

COZCONCTH+1) =3@8.
ENDIF
COUNT =8

5000 CONTINUE
6000 CONTINUE
7000 CONTINUE
1111 CONTINUE

END

ocecogaoceocececoocccocococcececcecoccecdeccccccccecccocccoccoccececece
¢
SUBROUTINF MOGMNTM{ITRM,6 INDEXS,FLAG
by

,
"U,UNEN,LMIK, DRA, KM
LANAMOM . GRASH,NU . USTAR
JTIME,SHEAR,SINBTA
VRICHARY,RICHARZ,PHIML
VPHINL,RICHAR31, RICHAR32)

[dessqagqaaqaadqsdqagiqsaqednddidandadsandaidadadaisaadadddsdaaaqagdos
IMPLICIT NONE
INTEGER ITRM

$INCLUDE:ALIMIT.FOR/L
$INCLUDE:ABLANK,FOR/L

C ! These variable have a cne to cne correspondence With the Global Variables
C ! within the Call statement of this subroutine.

INTEGER INDEXS,FLAG

REAL*S DUC(C®: IH)

REAL UC@:ITB),UNE
1 ORACO:ITE), M(G
bl

W(@:ITB) ,LMIX(1:2,0:1H),
K TH 3
REAL GRASH(®-TT

3, ANAMOM{1: IH
NUCe:IT)

REAL USTAR,TIME,SHEAR,6 SIKBTA
REAL RICHAR1,RICHARZ,PHIMI1, PHIH1
REAL RICHAR31,RICHAR32

CHARACTER T
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ceeece
< ! Local variables needed for the subroutine calculatien.

INTEGER I,J,K,ILP,ITER,IHELP

REAL UNON{1:5,@:IH) ' wind speed nondimensionalized (ms'l)

REAL UNEWK(1:5,8:IH) | Wind speed {ms 1)

REAL SIGMA!(l IH) ! verticol velocity variance {ms'l)

REAL TL(L: ;) I Lagrangian integral time scale (s)

REAL KMWD{1:5,@:1IH) ! Ke value calculated for every layer by 5 different
C ! nssumptlons

REAL KMDD(1:5,0:IH) | mmwmwhun M R R A A A B A e
4 ! Thomas Algorthin {ocefficients for the momentum eguation.

REAL F(@:ITB)

REAL G(0:1T8)
REAL E(9:1T8)
REAL 0(®:ITB)

REAL KARMEN,CD,FACTOR t Von Karmen constant, Drapg Coefficient, Foctor
L8 I for quiescence respectively

REAL N,DISPL,ZO ' Displacement height(m) and Roughness length(m).

REAL (o,C1,C2 ! Empirical Ceefficients for calculating verticai
< ' velocity variance

' And Lagrangian inéegrul time scole (Raupach ).
REAL WSTAR,FLUXS,ALPHA,GR,ETA

t w*, equivalent flux for the case of free convection
' within the plant canopy.

REAL HSTAR,DCLODS,DIFF,DIFFER

[aTal

' h* (height of the radiative sink at the canopy top ot
Y night)

' charo¢teristic dimension of clods, molecutar

b diffusivity for water.

[alaTatal

REAL SIGMAT,DLEAF I temperoture variance, {haracteristic dimension of
< ! the leaf.

REAL WEIGHT ! A WEIGHTING FACTOR.
REAL ESP
REAL ERRMAX
[ R L TR T

P NN S RN RN RN A AN P R TR PR P RN AN G RN AN E RN F N RS NI S E NN T RPN IS RS NI R RN B Pk

.41
.16

.9000001

.5

(B3 *I(ITAY
L25*CZCITAY-DISPL)
'H
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ch

ESP

N

.81
4 ZE-6
¢.2E-6

QQI—'QNI—'\DQQ@NQQQ

LI B BB B B B UBNUEN B B R

© WP
v

5
5
T=CHAR{9)>

[aXal

1 The pericd after the gust intrusion, an increased turbulent transport
1 coefficient is used.
IFCCINDEXS. EQ 13.AND.(SHEAR.GT.08.2)) THEN
FACTOR=23,
FLAG=@
5 Forsathe; perlnds, a reduced turbulent transport coefficient is used accordirg
! to Sact
ELSELF (SHEAR 6T.9.2) THEN
FACTOR =8.

FLAG=
ELSEIF (SINBTA.GE.O.) THE

N

RICHARSL = GR/(273+TEMAIR(22

CTEMAIR(22)-TEMAIR(

+0.38‘((TEMAIR(ZZ)+Z?3.1 YEATR(2Z

-(TEMAIR( 5)+273.15)“EAIR(153)/10ES)
402,74 ¥SHEAR®¥2)

[aTal

el

{RICHAR31.LT.8.253 AND.(ITRM.NE. @)} THEN
E IS AN EJE{TION

=31
ER = TEMAIR(C@)-TEMAIR(3S)

AAA AA ARASe

m ma A~
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™ Anmnn

faXal

lge

490
941

R LRy P

14e0

1
1
1
1

-

FLAG= 1
CIFFER = TEMAIR(®)-TEMAIR(15)

ENDIF

ELSEIF (SINBTA. LT.®.) THEN
RICHAR32 = GR/(273+TEMAIR({35))
P({TEMAIR(35)-TEMATIR(15))
+0 . 38*((TEMATR(35)+273.153*EAIR(3S)
S (TEMATR{153+273. 15)'EAIR(15))/10E5)
s(Z2.74. *SHEAR®"2)

IF ((RICHAR32.LT.2.2S5).AND.{ITRM.NE.@2}) THEN
THERE IS AN EJECTION

FLAG =32

DIFFER =TEMAIR(®) -TEMAIR(35)

ELSE

FLAG =2
DIFFER= TEMAIR(@)-TEMATR(15)

ENDIF
ELSE
WRITE{26,*) 'THERE IS A MISTAKE LOCGP °*
ENCIF

If (FLAG.EQ.9Y THEN

LMIX(1,8)=0
LMIX(2,8)-9

(19773)
00 300 T-1,T1TA, 1
LMIX(1, 1)« KARMEN * 2(I)/ (1.5 + 2.5 * LAD(I})
LMIX(2.19= (4*DLEAF/(3.14*CLAD(I)+08.01)))*%0.5
CONTINUE
DO 490 T = ITA+1 ,IHA

LMIXCL, 1= LMIX{1,1TA) + KARM
*(Z(ID- Z(ITA))/(1+0 015'(zc1) I(ITAY))

LMIX(2,1) = KARMEN?(Z(I)-DISPL-20)
COKTIKUE
CONTINUE
KMD(3,ITA) =LMIX{2,ITA)*USTAR

WEIGHT =8.5

Do 138@8, K=1,5,1
DO 1358 ITERZ 1 ig,1

IF (ITER.GT.15) THEN

NEIGHT=1.8
ENDIF
Bu{e)= ABS{UCI) UCe))/Ca.5*DZ(1Y)
KMDCK,0)=0.
DO 1400 I= 1,ITA,L
DUCID) = ABSCUCI+1)-UCId)
7€0.5°(D2Z(I+11+D2(I)))
KMDC1,1) = LMIX(I,I)“Z‘DU{I)'FACTOR
KMDC2,I) = LMIXCZ,I3**2*DU{I}*FACT
KMD(3,I) =KMD{3, ITAY*EXP(-N *(1- Z(I)/Z(ITA)))
*FACTOR
KMD(4,I) = B.3**2*FACTOR
SIGMAWCID = UST AR-(ce+(c1 COY*2(II/ZCITAY)
TLC - ZCITAY/
‘AMAXI(CZ,KARMEN*(Z(I) 0ISPL-20)
ECLT*I*T(ITA

KMD({5,I)=STIGMAW(IDX**2*TL{I)*FACTOR

DRACID= D * LADMIDCID® ABSCU{ID}*DZ(I)
CONTINUE

Mixing length determinations with the <canopy (LI et al. (1985) and Goudriaan
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0C 145@¢ I=1ITA+1l,IHA,1
DUCI) = ABS(U(Ifl) uCr)
/CR.5" (DI(I+1)+DZ(I)})

KMD(1,1) = LMIXC1,I)**2*DU{I)“FACTOR
KMD{2,1) = LMIXC2,I37*2*DU{I)*FACTOR
KMO{3,1) = LMIX(2,I1)**2*CU{L)*FACTCR
KMDC4.T) = ©.3*%2*FACTOR
SIGHAW(I) = C1*USTAR
TLCLD = Z{ITA)/USTAR
1 “AMAX1(CZ, KARMEN*(Z(I)-DISPL-20)
1 ZCCL**2*ZCITA)D)
KMD(5,t)=STGMAWCI)**2*TL{I)*FACTOR
DRACT)= CD * LADMID(I)*® ABS{UCID»*DZ(I)
1458 CONTIKUE
EC@)=B.0
G{O)=B. 8
F{e)=1.0
0Co)=0.9 ! THE BOUNDARY CONDITION FOR WIND.
00 1401 I=1,IHA,1
ECI)=KMD{K,T-1)/¢@.5*(0Z(I-1)+DZCI)))
GCI)=KMD{K,T)/(@.5*(DZ(I)+D2{I+1)))
DCIY=9.0 *U{THA+1)*2(1)
FCIY=ECI)+GL{I)+DRACI)
1401 CONTINUE
E(THA+1)=0.0
G(IHA+1)=0. o
FCIHA+1)=1.
DCIHAGL) = U(IHn+1)
CALL THOMM(IHA,E,G,D,F,UNEW)
oo 1789 I= 1, IHA,:
UNEW(I) = (1~ WEIGHT)™ U(I) + WEIGHT® UNEW (I)
UNEWKCK,IY = UNEW(I)
1700 CONTINUE

ERRMAX=0.9
0o 1258 I=1,IH
ANAMOM(I)-fF(I)'UNEW(I)+E(I) UNEW(I+13
+ ECIDY*UNEWCI-1)+0(I)

ERRMAX = MAX{ERRMAX ,ABSCANAMOM{IY))
175@ CONTIKUE

IFCERRMAX . GE. ESP) THEN
DO 1800 IHELP=9,IHA+1
UCIHELP) = UNEW(IHELP)
ls@e CONTINUE

GOTO 135@
ENDIF

GOTO 1375
1358 CONTINUE

1375 CONTINVE

DO 1376 I=1,1H
UNGNCK,T)= NEIK(K I)/USTAR 1 OR CHECK
KMDDCK,I) - KMDCK,I)

1376 CONTINUE

138¢  CONTINUE
D0 1390 I-0,THA,1

KM(I) -KMD(S,I)

1399 CONT
C 'Calculoting stability functions in case of no gust intrusion.
C !{shear at the canopy top .le. @.2

ELSE

RICHARL= GR/(Z73+TEMAIR{383)
“CTEMAIRCIHA+1)}-TEMAIR(30)
/€2 *CCUCIHA+1)-SHEAR*Z.2)

e

b}
F2.5)%*2)
IF (RICHARL, LE.-@.1) THEN

PHIM1 = (1-16*RICHARLY**(-90.25)

PHIH1 = (1-16%*RICHAR13**(-0.5)

ELSE
RICHARL = AMIN1 (0.199, RICHAR1)
PHIM1 = (1-S*RICHAR1) ** (-1)
PHTIH] - (1-5*RICHAR1) ** (-1)
ENDIF
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C ' Grashof npumber determined for the top seil layer taking the temperature
C ! difference over a large distance to avoid feedbacks within short timesteps to C
! avoid possible
C ! instabilities in the sclution
GRASH(O )= GR‘DIFFER‘DCLODS“S/(Z?S‘ETA"2)
E E 2&;9;;1 following formulas are taken from the appendix Of Monteith & Unsworth
IF (DIFFER.LT.®.@) THEN
C ! Mnntelth & Unsworth (199@), Toble A % formula (ii)
UC@) = 9.23* ABS{GRASH(B))“
ELSEIF (DIFFER EQ @.
OIFFER =49.
GRASH(®)= GR’DIFFER'D[LUDS"3/(Z?3'ETA‘*2)
C ! Manteith & Unswarth (199@), Table A.5 formula (i)
NU(B) = 8.5 * GRASH(®)**¢.25
ELSEIF (GRASH(®) .LE. 10E5) THEN
C ! Monteith & Unsworth (1990), Table A.5 formula (ii)
NU(®) = 9.5 * GRASH{@)**@.2Z5
ELSE
C 1 Monteith & Unsworth C1990) Tuble A.5 formula (i)
NUCO) =08.13"GRASH(@}*"¢.
EKDIF
< ! Flux ¢f heat calculated according to that difference
FLUXS = NU(@®)*ABS{CIFFER)™1ZBO"DIFF/DCLODS
C 1 W* calculated to Jacobs et al 1996
W5TAR= (FLUXS*@.7*Z(ITA)*GR/(Z73.+TEMAIR(15)3)%*8.33
4 1 resulting vertical velocity variance
SIGMAT= FLUXS/WSTAR
D0 2598 I=1,ITA,1
< ! LAYER .EQ. 9.7 *I(ITA}
< ' An assumption
UNEW{I} = NSTAR
< ' Equating the flux in Jacobs et al (1996) to a gradient transport equatien
8 ' in the colculotion of Grashof number for the
C ! soil layer, a use of temperature difference over 77 wos used. This leads
< ! galso to slawer feed bock of the temperature of the air an the seil heat flux to
< ! the air at night {stabilzing numerical effect).

KMCI) = SIGMAT**1.5

* (KARMEN®.7%Z(TTA)*GR/(273. +TEMATR(C15)))**0.5
* §.15% 9.7*2(ITA)/ABS{BIFFER)
2508  CONTINGE

-

< 1 Km abave the canapy.
D0 2600 I=ITA+1,IHA,1
UNEW(I) = USTAR/KARMEN*(ALD

C(ZCIY-DISPLY/Z0))
KM{ BISPL
2600 CONTINUE

G
I) = KARMEN*USTAR*{Z(I)-DI J/PHIML

ENDIF

IF CCCORR.EQ.@) .AND. (MINUTE.EQ.1)) THEN

WRITEC2,*) '(1), ITER , I, 2Z¢IY , UNEW(I),UNONCI),
LADCI),ANAMOMCI) , KMCI) *

WRITEC2,*)' U{0)=",U(@)

WRITE(2,*) 'FLAG =',FLAG

DO 1968 I-1,IHA,

IF (FLAG.EQ.B) THENM

NRITE(Z ) ITER, T I T,201),T
L1),7, NCZ,1),T,UNONC3, 1D, T,
uuou(4 1) T uwon(s I) T,
LADCT), T, ANAMOM(I),
KMDD(1,13,7,KMDBC2, 1) T,KMDC(3,1),T,KMDD(4,1),T,

KMDDCS, 13,7
ELSE

WRITE{Z,*) I,T,Z(I),T,
LADCIY, T,KMCI), T,GNERCI),T
ENDIF

1300 CONTINUE
ENDIF
RETURN
END
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[Sddesdetddaqiqdddadditqaqqaddddadaidaqdddadeddddsdssddddadddqidsddddd g day

¢ SUBROGUTINE THOM{IHS,ISS,{T,BT,DT,AT,UNEWT)

E t Thomas Algorthim Solution {according to Patankar 1988)

ECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(C(((CCCCCCC(CC([(CC(CCCC
IMPLICIT NONE

INTEGER THS,ISS
INTEGER I

$INCLUDE:ALIMIT.FOR/L

REAL®8 AT(IS:I7B),BT(IS:ITB)
REAL*E CT({IS:I7B),DTCIS:17B)

REAL*S PCIS:ITB),QCIS-ITR)
REAL*S UNEWT(IS:ITB)
REAL DENOM

(R e )

Solution By Thomas Algorthim

A R R R R L R R L)

P(I55)= BTCISSH/AT(CISS)
QCIS5)= DT(ISS)/AT(ISS]

00 100 I=I55+1,IH3+1
DENOHM =ATCI)-CTCIM*PLI-1)
oM

pCT) ~BTCI/DEN
(I3 ={DTCI}+CT(I)*Q(I-1))/DEKOM
100 CONTINUE

UNEWT(IHS+1) =Q(IHS+1)
D0 20@ T=TIHS, I5%,-1
UNEWT(I)= PUID UNENRT(I+13+Q(I3>
208 {ONTINUE

RETURN
END

[Sideqdqaddqdddiddiddadasdauidadqaqiduigadqaqdusagaqddqaasgdqaqadagsags

¢ SUBROUTINE THOMS{ISS,CT,BT,DT,AT,UNENT)

E[C((C((CCCC(E(({(CC(CC([(CC(CC(CC(C([(CCCC(CCC[([(CCCCC(C([((CCCC(C(ECCCC(
IMPLICIT HONE

INTEGER IHS,ISS
INTEGER I

SINCLUDE:ALIMIT.FOR/L

REAL*8 AT(IS:@),BT(I15:0)
REAL®8 CT(IS:0),DTCIS: @)

REAL*8 P(IS:90),Q(I5:08)
REAL*8 UKEWT(IS:8)
REAL DENOM

R R L S R R L R

PCISS) =BT(ISS)/AT(ISS)
QCISS) =DT(ISS)/AT(ISS)

D0 1808 T-T55+1,8

DENOM ATCI)-CTCIY*PCT-1)

PCI) ~BT(I)/CENOM
COTEI)+CTCII*QCI-13)/BENDM

Q(I3 =
109 CONTINUE
UNEWT(@)= Q(@)
DC 264 I=-1,IS

$,-1
UNEWTCID=P (IO “UNENTCI+1)4Q¢I)
700 CONTINUE

RETURN
END
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CCCCCCCEOCCeCCCCCeCCCCCCCCCCCeCCrCeCeCCrCCCCLCCCCCeCCCeCeCCeCCececeeceececc
c

SUBROUTINE THOMMCIHS,CT,BT,DT,AT,UMENT)
c
CCCCCCCCCLCCrCCECCCCCClCCCCeCCeCCCCCCCCCCrCCeCCCCCCeCCececeececccceeceece

IMPLICIT NONE
INTEGER I, IHS

$INCLUDE:ALIMIT.FOR/L

REAL AT(®:ITB),BT(R:1ITB)
REAL CT(®:ITB),DT(9:ITB)

REAL*8 P(@:1T7B)
REAL*8 Q(e:1T7B)
REAL UNEWT(R:1IT783
REAL DENOM

LR e L e e T L)

P(B)= BT(O)/AT(D)
QC@)= DT(B)/AT(0}
00 180 I=1,IHS+1
DEND =AT(I)-CTCI)*P(CI-1D
P(I) =BT{I)/DENO
G(I) =(DTCI)+CT{ID*QLI-1))/DENOM
190 CONTINUE

UNENT(IHS+1)= Q{IHS+1)

DO 20@ I=IHS,
UNEWT(I) P(I} UNEWT(I+1)+QLI)
20@ CONTINUE

RETURN
END

[dsdqddddadddidadidqidddaisqdsdaddyddadsdqadidddsdiqqsasdddasaaaasssdoasds

¢ SUBROUTINE NORMNCIINI,DIRECT,SINBTA,TIME)

ECC(CC(CCCCCC((C{((C([(((((C(C(CC(C([C({(CC(C(CCCCC((CC((((C(CC(C(ECEC(C
IMPLICIT NONE

$INCLUBE: ALIMIT.FOR/L
$INCLUDE: ABLANK.FOR/L
SINCLUDE: ANRMN.FOR/L

SAVE / ANORMN /
REAL IINIC2),DIRECT(1:2),SINBTA,TIME
CHARACTER T

cceeee

THIS SUBROUTINE CALCULATES THE SHORT KWAVE
RADIATICON PROFILE WITHIN THE CANOPY
ACCORDING NORMAN'S APPROACH (1979,1982)
IMPLEMENTING GOUDRIAAN APPROACH TO CALCULATE
THE KWON-INTERCEPTION FACTORS. THE BARE
BONES OF LEAF ANGLE DISTRIBUTION IN
RADIATION MODELS. AGRICULTURAL AND FOREST
METEDROLOGY 43 (19838) 155- 18%
AUTHOR ;;RUSHDI EL-KILANI.

; 17-1@8-1988,

D
L L o N P T TR L LA I Y]

.DATA ELEMENTS, ..

s latalalalatalatalninia)

INTEGER I J,K,L,RXITR,IHELP

REAL OPR,
REAL KE(l 3,1:3) ARRAY DF CALCULATEDR KEXT.
REAL BSKY (1 3 SKY ZONES ANGLES.

REAL OPRO (1:3,1:3)

I

r

! LEAF AREA PROJECTIGN FOR DIFFERENT ZOMES OF

1
REAL FQ(1:3) ! FREQUENCY DISTRIBUTION OF LEAF AREA ON ANGLE CLASSES.

! .7

1

1

1

1

1

< THE SKY AND DIFFERENT LEAF ANGLE C(LASSES
REAL IDL(1:IH) IDC COEFFICIENTS IN NORMAN EQUATIONS EQ.2.2
REAL RXDWN(1:2,0:IH) RADIATION FLUX DOWNWELLLING IN WATT M-2

< PER CANOPY LAYER SURFACE.

UPWELLING RADIATION FLUX .
UPWELLING RADIATION FLUX (PREVIOUS ITER).
DOWNWELLING RADIATION FLUX (PREVIOUS ITER).

REAL AXUPC1:2,8:IH)
REAL RXU({1:2, 9 IH)
REAL RXDN(1:2,8:IH)
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RXABS(1:2,
RXDAB(1:2,
TRANLF(I H
RXREF(1:2)

ABSORBED RADIATION

DIRECT ABSGREBED RADIATION

LEAF TRANSMITTANC
LEAF REFLECTANCE.

Scatter
PROBABILITY COEFFICIENTS EQ.2.2.6
R R NI - A N

SCATER(1:2
IBLC1:IH)
IBB(e: IH)
RXDIR(1:

RLAYER(l
ABSORBC1:
TURNER(i

RADIATION FLUX DIRECT.
LAYER REFLECTION.
Absorbance

LAYER TRANSMITTION.
SOIL REFLECTION CDEFFICIENT(NIN VISIBLE).
EPP ! THE FULFILLED CRITERIA.

DATA
DATA
DATA
DATA
DATA
DATA

SOILRF/0.3,8.15/
TRANLF/0.4,0.1/

EPF/o. 0001/

RXREF/0.4,0.1/
BS5KY/9.26179,0.73539,1.36899/
FO/98.134,0.366,0.5/

QPROX, L) = X*SINCBSKY(L))

T RN R RN F NN PN R IR I TN PR N AR NN ER R AN SRR R AR LA NI S XA SRR AR TS MM S rd bR d bbb

C CALLULATING OF THE REQUIRED VARIABLES .

L e e e e R R R e s R S R s L

BEAM= MAX(0.601,5INBTA) ! SINE OF THE SOLAR BEAM.
D) 59 I=1,3,1
OPRG(:,I)= HAX(D.

26
OPRG(Z,I)= MAX(D.47
GPRG(3,I)= 1-0.263"

*+ SINCBSKY
*SINCBSKY(

{
I
1,I)-e.722"

,0.93 1)) !
,0.68 )))
OPRO( 0PRO(2,1)

56 CONTINUE
DO 19¢ 3=1,3

DO 200 I-1,3
KECI,J)= OPROCI,JID/SINCBSKY(ID) 1

CONTINUE
CONTINUE

299
180

D0 300 11,
KAV())= FQ(l)‘KE{l 1)+FQL2I*KECZ, 1)
' A WEIGHED MEAN OF THE EXTINICTID
| FOR & CERTAIN ZONE OF THE S5KY
CONTINUE

x4+

ed

DO 498 I-=IHA,1,-1

IBL{I) = EXP(-@.S*LADMID{IX*DZ(I)/BEAHM
10L{I) = (B 178% EXP( KAV{1)“LADMID(I)

8.514* EXP(-KAV(2)* LADMI

H + 0.308*EXP{-KAV(3)*LADMID{

€ ' & WETGHTED AVE EXTINCTION COEFFICIENTS.

IBB(I)= EXP(-@8.5*"CUMLAI{I)/BEAM) ' EQ. 2.2.5

CONTINVE

IBE(®)= Exp( -®.5*CUMLAI(@)/BEAM)
00 598 11,2,
S[ATEK(])‘ TRANLF(])+RXREF(J)

00 S8@ I=THA,
RXDIR(J I) DIRECT(J)‘IINI(J)'IBB(I)
E

see CONTIN

IN THE NEXT PART THE TRANSMITTANCE ANO REFLECTANCE

CF THE LAYERS ARE CALCULATED ACCORDIKG TO

A) NORMAKNC1982) WITH SOME MODIFICATIODN

C B) GOUDRIAAN IN 26-9-1989.
C(CC([CECCCCCCCCCCCCCCCC(CCCCCCC(CC(CCEC(C([(((([((((((C(((CC((((([CCCCCC(CCCCC

ccce
C
C

KH -SQRT((I.-TRANLF(J))"Z-RXREF(J)"Z)
RCROP=(1.-TRANLF{J)-KH)/RXREF(J)
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5e1

510

520

549

532

550

DO 501 I=1,IHA,1
* ACCORDING TO NORMAN(1982)

TRANSM(I 1)- IDLCID+ TRANLF(J)‘IDL(I)'( ALOGCIDLCIDDD

- TRANLFCI)**2*IDLCII*(-ALOGCIDLLI)))**2
*(TRANLFCJ)“S SIDLEIN*C- ALOG(IDL(I)))**B)/G‘EQ 23 1
RLATERCT 1) RAREFCIDSIDLCI) (- ALOGLIDLCI)Y) ST
5 % RXREF(JI)**2*IDL{I)*(-ALOGCIDL(I)))""2
+(RXREF(J}“3 TOLCIY*C-ALOGLIOLEINI* 3/ co. 2.2.9
assoaacr 1) c1 SCATER(J}) C-ALOGCIDLCID) ) T
*SC ER(I)*(1-5% TER(J))'( ALOGCIDLLIDN)**2
o(RXREF(J)"2+TRAMLF(J)' 25
*{-ALOGCIDLCIDDI*"3/6
“ (1-SCATERCJID)
TOTﬁ(I,1)-TRANSM(I,1)+RLAYER(I,1)+ABSORB(I,1)
TURNERCI, 1)=1./TOTACI, 1)
TRANSH(I,l):TRANSM(I,1)’TURNER(I,1}
KLAYER(I,l):NLAYER(I,1)'TURNER(I,1)
AESDRB(I,l):ABSURB(I,1)'TURNER(I,1)
EKDL=IDL{I)**KH I ACCORDING TO JAN GOUDRIAAN

! 26-9-1989
DEEL=(1.-RCRCP* RCROP‘EKDL‘EKDL)

TRANSM(I,2)=EKDL*(1.-RCROP*RCROP)/DEEL
RLAYER(I,2)=RCROP*(1.-EKOL*EKDL)/DEEL
ABSORBCI,2)=C1.-TRANSM{I 2)-RLAYERCI,2))

TOTACT, 2)=TRANSM(I,2)+RLAYER(I, 2]
TURNER(I, 2)=1.8

s

RXUP(], T}
RX
RXDNCI, I

CONTINUE

RXUPCT, @)

DO 558 RXITR =1, 1@0 1

DO 518 1=IHA, 1
RXDWN(], T- 1) RXCWNC), ID*TRANSM({T K3
+RXUP €3,1- 1)‘RLAYER(I K
+RXDIR(J I)‘TRANLF(J) (1 IBL{I))
EQ 3.9

CONTINUE
RXUP(I,0)= RXDHN(J.H)'SOI
XDIR(), )

0O 528 I=1,TH
RAUPC(T, I) RXUP(J I-1) * TRANSM(I,K)
+RXOWN(D, T)*RLAYER(T,
+REDIRCY, I)'RXREF(J)‘(l IBL(T)S
! EQ
CONTINUE
D0 538 IHELP=9,IHA,1

IF (CABSC{RXUF(CJ),IHELP)- RXU(

ELP)).GE.EPP).0OR.
(ABSCREDNNCI, THELP)-RXDN (D, P3).¢G

E.EPP)Y) THEN
DO 540 I=0,THA, 1
RXUC), I)=RXUPCI, I}
RXDN( ], T)=RXDENCI.TY
CONTINUE
GOTO S50
ENDIF
CONTINUE
GOTO 580

CONTINUE
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580 CONTINUE
IF (J.€0.1) THENW

TOTALE=0.0
ENDIF
DC 560 I=IHA,1,-1
C t CALCULATE THE DIVERGENCE OF SHORT WAVE RADIATIVE FLUXES
RXDABC),I,2) = RXDIRCI,IJ-RXDIRCI,I-1)
RXDABC),I,1) = 0.8 { FOR THE TIME BEING
- MOSTLY CORRECT FOR
i ONE OMENSIONAL CASE
RXABSC), 1,2} = RXDWNCJ,T)-RXDWN(],T-1)
AXABSCI.T. 1% = RXUP{I,I-1)-RXUPCI,I)

RXABST(J1,I,1)=RXDAB{J,I,1)+RXABS(],1,1)
RXABST(),I,2)=RXDAB(),I,2)+RXABS(J,I,2)

C T SUMMINMG THE ABSORBED DIRECT AND DIFFUSE RADIATIONS
C T FOR THE VISIBLE AND NIR BAKNDS.
TOTALE=TOTALE+RXABST(J,T,1)+RXABST(),1,2)
560 CONTIRUE
591 CONTINUE
599 CONTINUE
SOTLSN=- (RXDIR(1,B)+«RXDWN(C1,0))2*(1.-50ILRFC1))
+(RXDIRC2,0)+RXDWN(C2,0))* (1. -SOILRF(2)D
G0 68@¢ I=1,1HA,1
LIGHT(I Z) =8 .5"(RADANCZ, I)+RXDWN(Z I-12)
.6*"0.5*(RXDIR(2Z, I)fRXDIR(Z 13
LIGHT{I,1) =@.5* (RXUP(2, I-1)+RXUP{2,I))]
+0.6*0.5*(RXDIRC2,I)+RXDIR(Z,I1-1))
€ I AN AVERAGE VALUE IS5 TAKEN.
C A STRATIFICATICN BY LEIAF ANGLE CLASSES SHOULD BE MADE.

VISIAB{I,1)= RXABST(Z,I,1)
VISIABCI.2)= RXABST(2,71,23
C 1 ABSORBED VISIBLE RADIATION PER CANOPY LAYERS
ENESASCT,1)= VISTAB(I,1)+ RXABST{1,I,
ENESABCT,25- VISTABCT,2)+ RXABST(1.I, )
c ' ABSORBED SHORT WAVE RADIATION.
RAB(T,1)= EMESAB(I,1)/DZ(I)
RAB{I,2)= ENESAB(CI,2)/Dz(I)
€ ' ABSORBED SHORT WAVE ABSORBED PER MA3 CANOPY AIR.

IF (LABMIDCI).GT.@.@)THEN

RABLCT,1)=RABCI,1)/LADMIDCI)
RABLCT,Z)=RABCI, 2/t ADMID(T)
BSD

¢ ' ABSORBED SHORT WAVE ABSCRBED PER MA2 LEAF SURFACE
ELSE
RABL(I,1)=0
RABL(I,2}~0
ENDIF
680 CONTINUE

RMSHRT= RXDIR(L1,IHA)-RXDIRC1,d@3+RXDIR(CZ,IHA)-RXDIR(CZ,2)
+RXDWNCL, IHAY-RXOWNCL,@)+RXUP(1,0) - RXUP(Y, h)
+RXDWNC2; THAD-RXDNNCZ, @3+RXUPC2,0)-RXUP(2, IHA)

RNSTOP = RXDIR(1,THA)+RXDIRC2,TIHA)
+RXDWNCL, IHAY-RXUP(1,IHAY
«RXDANCZ  THAY-RXUPCZ, IHAS

RNSBTM = -RXDIR(1,9)-RXDIR(2Z,8)
+RXUP(1,0)+RXUP(2,0
-RXDWN(1,0)-RXDWK(2,0D

TOTENE=Q. 0
D0 7890 I=IHA,1,-
TOTEHE= TOTENE+ENES§B(I 1)+ENESAB(L,2)
700 CONTINUE

RADERA=TOTENE-RNSHRT
RETURN
END
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[dddddddduiddiddiddidedddddaddddsddadiddidadaadidddaaqedqaqasqaqaeiqadiddsddsddsddadddasaass

SUBROUTINE CYCLEL1(INIH,ITRA,PAS
TEMAIN,EATRNK NCO2, VGAS ElTRﬁS EXTRAL
PSISOL,AVGTLF,

RLEAF,
GnMHAT FG,RATINM,
PHTHM KRATID FE, IH INCEXI,TEMPOR)

[deqdqdddddgddaadidddddddddadddadsddddddddqdsddadidqdaqqssqaqasqsqasdsaqaqaddaddddddddddasa

IMPLICIT NONWE

INCLUDE:ACONST . FOR/L
INCLUDE:ALIMIT.FOR/L
INCLUDE:ABLANK.FOR/L
INCLUDE:AENERG.FOR/L
INCLUDE: AFLUX. FOR/L
INCLUDE: ANRMN.FOR/L
INCLUDE: ARDBEOU. FOR/L
INCLUDE: AROOTD.FOR/L
INCLUDE: ACOEFF.FOR/L
INCLUDE:AEQCOE.FOR/L
INCLUDE: APLANT . FOR/L
INCLUDE: ABERGE. FOR/L
INCLUDE: AHYDRO . FOR/L

A G0 D e G

INTEGER TCHECK,T,TITR
INTEGER INDEXICIS:IH)

REAL™8 TEMAINCIS:ITB) , EAIRNW(IS:ITB),HCO2(IS:1T8>
REAL*B EXTRAS{IS:IH),EXTRALCIS:IH),TEMPOR({IS:IH)
REAL SATVAP(CIS:ITB),VPDAIR{IS:ITB)

REAL YGASCIS:@)

REAL PSISOLCIS:®),AVGTLF(1: IT) RLEAF(IT,1:2)

REAL GAMMATCL:IT) FGCL:IT,1:

REAL KRATIOCL:INY 1 KH/KM RATIO FOR THE LOCAL TERM.

REAL PHIM(1:TH) ! STABILITY CQRRECTION FOR MOMENTUM
REAL FECIS:TH)

M
REAL SATUV2,S5ATURZ,X
REAL RAINM

$INCLUDE:VALUES.DAT/L
DO 151 ITR=1,2,1

n

Call HYDRO to calculate the sclution of the soil water flow eguation taking into
account the sink terms in this esquation due to water uptuke by plant roots and
! the divergence of woter vapour flux,
CALL HYDRO{INIH,TEMAIN,
DT,VGAS,
POR SUILLE sL,
PSISOL ROUTUP RAINM,TIME)

lalal

£{all BERGE to calculate the scil Thermal Conductivity (¥m-1K-1) oand soil thermal
capacities (J M-3 K-1
CALL BERGECISA,VGAS,THETA)

[aXal

[ala)

Cell PHDTO to calculate net Photosynthesis as o sink term in the Co2 Conservation
equati
CALL PHOTO(ITRA

AVGTLF,

RST,RB,RLEAF,

VISIAB GAMMAT FG,STNK)

fall EQCOEH to calculate the temperature of the different soil and canopy layers
teking inot account sources with the canopy ond the soil ( water phase changes).
CALL EQCOEH(TEMAIN,SENFL ,HMNEW,TORTU,RHSOIL, HH

LCHS0IL ,PCSOIL,VGAS,VAPFLT ,YAPFLE, VAPFDY

JEXTRAS,SGILRN PASS, INDEXI)

[aXal

Call EQCOEM to calculate the vapour pressure and C02 concentratioen for different
conopy and soil layers.
CALL EQCOEM(TEMAIN,EAIRNN,NCO2

LHMNEW, UM, TORTU RHSOIL

,VGAS, PHIM KRAYIO FE

,EXTR#L,ﬂM,SOILRM,PASS,INDEXI)

laXal

CALL THOM{IHA,ISA,ELE,GLE,BLE,FLE,EATRNN)
CALL THOM(IHA,ISA,EC02,GC02,DC02,7FC02,NCO2)

ICHECK =@

' A loop te check if any of the layers has an oversaoturation and

' to correct back for this

DG 3102 I=ISA,IHA,1
SATVAP(I)-SATUVZ(SNEL(TEMAIN( J)
VPDAIR{I)=SATVAP(I)-SNGLCEATRNN(

IF (VPDAIRCI>.LT.@.8) THEN

[aXal

)
I3
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INDEXI(I}=1
ENDIF

If (INDEXI(I) EQ.1) THEN
TCI) = SATULZ(SNGL{TEMAIN(I}))

EXTRASCI}=-PCP*VPDAIRCIX*DZ(I)
1 /(DT*GAMMA)

INDEXI(CI)= 1
ICHECK=1
ELSE
EXTRASCI) =EXTRAS(I)
EXTRALCI3 =EXTRALCI)
EWOIF
3182  CONTINUE

IF (ICHECK.EQ.®) THEN

6070 152
ENDIF
151 CONTINUE
152 CONTINUE
RETURN
END

CCCCCCOEErECtCCeCCCCleClCCeCrCCCCCCCCCCCCrerCCseCCCCCCCCCCCCCCCeCCCCCCCCCCCeceCCeCeCceecce
SUBROUTINE BERGECISS,FA,W)

c THIS SUBROUTINE IS TRANSLATED FROM AN CSMP PROGRAM WRITTEN BY

c TEN BERGE TN HIS PH.D THESTS ( HEAT AND WATER TRANSPORT AT

C THE BARE SOIL SURFACE) 1986 PAGE A17

CCCCCCECErCCECCECCCCCCeECCeCECCCCCCClCCCCiCECCCCCeCeCeCCeCCCCCCCCeCCCeCECeeCCeCCeeeCsccs
IMPLICIT NONE
INTEGER N,I,15S

SINCLUDE:ALIMIT.FOR/L

$INCLUDE:ACONST.FOR/L

$INCLUDE: ABERGE. FOR/L
REAL FACIS:0),w(IS:0)

REAL KFCSA(IS: @)

REAL KFSW(I5:R3}
REAL CHSL@2(IS:@),CHSLOS(IS: @)

REAL CHA,CHW, CHG,CHC, CHO

REAL GA,GW,6Q,GC,60

REAL KAN,KQW,KOW,KC¥,KWA KQA,KOA,KCA
CHARACTER T

SINCLUDE:VALUES.DAT/L

GA=0.95; G0=0.5; GW=0.14
6C=90.9,; GQ=0.14
CHA=2 5E-2;{H(=2.92; CHQ=8.8

{HW=0.57; C(HO=B.25
T=CHAR(9)

KAN =@.66/(1. +((CHA/CHN) 1 I*GAT+0. 34/
CL.+((CHA/CHN}-1.)*(1. A)2

KQW  =0.66/{1, +(((HQ/CHN) 1. )*GQ)+G 34/
(1. +((CHQ/CHW)-1.3%C1,-2%G03Y

KOK =0.66/(1. +(((H0/CHN) 1 I*G034+0. 34/
C1.+{CCHO/CHW}-1.)*(1. 03>

kLW =0.66/(1. +((CHC/CHN) 1 I*GCI+0. 347
(1. +((CHC/CHW)-1.)%(1. (D]

KWA =0.66/(1. +(((Hﬂ/CHﬂ) 1 J*GNY+0. 34/
(1. +((CHN/CHAD}-1.)"(1. %)
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KQA  -8.66/(1. .((CHQ/CHA) 1. )'GQ)+0 34/
{1.+((CHQ/CHA) -1, 21, 6Q))

KOA =0 . 66/(1, +((CHO/CHA) 1 I¥GO)+0 . 34/
(1.+(CCHO/CHAD-1.3%(1. 03)

KCA =0.66/(1. +((CHC/CHA) 1 I*GC)+@ . 34/
(1. +CCCHC/CHAD-1. 3%(1. SD]

Do 186 T=0,
FACIY = .-(F((I)+FQ(I)+FO(I)+W(I))
cusmoz(:) 1.257(KNA™D. 02'(Hv+KDA'F0(I)‘CH04
ATFQUID*CHQ+KCA®FCCID*
«(Pon(l) B.02)*CHAY
séxwasa’ 024K0A‘F0(I)+KQA‘FQ(I)
+KCA*FCCTI)+(PORCID-

CHSL®S(I)=(1."9.@5*CHN+KOW"FO(I)*CHO
+KQW*FQ(I)*CHQ+KCN*FLCID"CHC
+KAWT{POR(I)-0.05)%(HA)
/(O.85+KONTFO(I)+KQW*FQ{I)
+KCW*FC(I)+KAN*(POR(I}-0.95))

KFCSACI)=KOA*FOLI)*CHO+KQA*FQCI)*CHY
+XKCA®FC{I)™CHC

KFSACI) =KOA*FOCID+KQA*FQUID+KCA*FCLT)

KFCSWCI)=KON*FOCI)*CHO+KQGW*FQ{I)*CHY
+KCW*FC{IX* CHC

KFSN(I) KOW*FOCT)+KQUW*FQ{T)+KCW*FC(I)
108 CONTIND

DO 15@ I=0,I55,-1
P[SUIL(I)- FC{ID*CCLAY+ ( ) CQUARZ

+ DCI)‘CDRGNC+I(I) TER
WCID.LE.@.02) THEN
CHS (I) 1. 25*CCHN*WCI)"KHA+FA(T)*CHA+KFCSACTY)

FOKFSACT)+KNATH(T)+FACT))
CH50TL(-3)=0.084
ELSE TIF (W{I).LE.@.B5) THEN

CHSOIL(I)=CHSLO2Z2(L)
+{W(I)-8.02)"(CH5LB5(I)-CH5LB2(1)3/0.23
ELSE
CHSOILCID=HWCI)"CHW+FACI)*KAR*CHA+KFCSH{I)/
(WCTI+KAW*FACI)+KFSN(I))
ENDIF
159 CONTINUE
RETURN
END

ECCC(C(C[(C[(([(CC([C(E((C((((C(CCCCCE(CC(C(CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE HYDRO{INIH,TEMAIN,
DT, VGAS,
PﬂR SOTLLE ,5L,
PSISDL ROUTUP RAINM, TIME)

Siddgdquaqadqsdqsqqaqsqasdiddadaddidisdadsdqdaddddddddddddidd i dddddddddddddsd dd g d oo

IMPLICIT MNONE
INTEGER INIH

E:ALIMIT.FOR/L
E:ABLANK.FOR/L
E:ACONST.FOR/L
E:AHYDRO.FOR/L

SAVE /ACONST/

a TEMAIN{IS:ITB),SL{IB:IHK)
X(I5:0),¥Y(Is:9), NSON(IS ay, NSBNN(IS 0),R(IS:2)

EAL VGASCIS'Q)
1 POR(IS: @),
1 PSISOL(TS:8),RO0TUP(IS: @)

REAL*
REAL
R
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REAL DT,SOILLE
REAL SATUVZ,5ATUDZ
REAL RAINM,MOISTU,DIFFER,DIFFEl

cfcecce
INTEGER I1,INDIC,)
REAL*S PSISL(IS el
REAL S(IS: @) I relative saturation.
REAL SPHASECIS @), NPHASE([S )

REAL CPHASE(IS:@) 1
REAL FE(IS:9) 1 hydraulic conductivity at the intephase

REAL THETAD(IS: @) lmolsture content difference between saturation an¢ residual
REAL THETOP(IS:9) ! the some but at the interphase.
REAL THETRP(IS:9) 1 residuol at the interphase
REAL KWATE(IS:8) I hydraulic ¢onductivity
REAL ICSOTL(IS:9)
REAL CSOIL(IS:®) ! d(theta)/d(hm)
REAL THETR(IS:@) ! inverse of the abeve
REAL HMPR{IS:@&
c The coefficients of the discretized equation for woter flow as given Appendix 2.11
REAL*8 C(BLOCK(IS:1TB)
REAL™8 BBLOCK({IS:ITB}
REAL*B DBLOCK(IS:ITB}
REAL*8 ABLOCK({IS:ITB)
CHARACTER T
ceoecccc
$INCLUDE:VALUES.DAT/L
T=CHAR(I)
MP=1-1/NP
< 1 If given Theto calculate according to the non commented part of the loep

D0 28 I=ISA,0,
THETAD(I): THETAS(I)-THETARCI)

C SCI) = (1+(ABSCALPHATHMCI)))**NP)**(-NP)

C ' IF GIVEN HM(I) AND THETA{HM) FUNCTION
SCE) = (THETA{I)-THETAR{I))/THETAD(I)
TFCHYDRIN.EQ.1) THEN

$C1) - (1+(AB$(ALPHn~MM( IIIENPISE(-MP)
t IF GIVEN HM(I) AND THETACHM) FUNCTION

c IFCINIH.EQ.O) THEN

c HM(I)= -1/ALPHA*CSCID**(-1/MP)-1)**(1/NF)

C ENDIF

CSOILCI)=-1*THETADCI)*
C-MP)*C1+CABSCALPHA*HMCID))**NPI**(-MP-1)
“NP*(ABSCALPHA®HMCID))**(NP-1)*ALPHA

ENDIF

THETACI)=SCI)*THETAD(I)+THETARCI) INGT IF THETA IS GIVEN

VGASCIY) =POR(CI)-THETA(I)

20 CONTINUE
SPHASECISA)=SCISA)

WPHASECISA)=THETA{ISA)

DO 30 I=ISA+1,-1,1

WPHASECI)=THETA{I)-DZ{I)
*(THETACI)-THETA(T41))/¢DZCID)+DZ(I+1))

THETOPCI)= THETADCI)- z( )

*(THETAD(IJ-THRETAD(I+1))/(DZ(I)+D2(I+1))

THETRP(I)= THETAR(CI}-DZ{I)

(THETAR(CI}- THETAR(I+1))/(DZ(I)+DZ(I+1))

SPHASECL)=(NPHASECTI)-THETRP(I))/THETOPCI)

IF (HYDRIN.EQ.1) THEN
KWATER(CI)=KSATUCI)*SPHASECI)**LP
*(L-(1-SPHASECII**CL/MPID**MP)I**2

ENDIF

e CONTINUE

IF (HYDRIN.EQ.1) THEN
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o b

KHATER(a)-xSATU(G)'S(G)"
*(1-(1 -5(0)"(1/MP))“MP)“2
ENDIF

IF (HYDRIN NE.1) THEN
33 I= ISa,e,

NSONCIY=THETASCI)/THETACIL)

X(I) = ALOG1@(NSONCID)

KCI} = KUSACINDESO(I) 0)
+KUSACTMDESOCI), 1) *THETACI)
+KUSACTNDESOCI) . 2)*THETACI)**2
+KUSACINDESO(I),3)*THETACLI)**3
+KUSACTNDESOCT), 4)* THETACI)**4
+KUSA{TINDESC(I),5)3*THETACI)**S
KWATECT)=((1@.)**K({I)
KWATE(T)}=KWATECI)*1.16E-7

ICSOILCID=-HM{ID*CALOGC10.))"
(HMCCINDESO(IY,1)
+Z*HMCCINDESOCIY, 2)*K(I)
+3*HMCCINDESOCIS, 39*XCIN**2
+4*HMCCINDESO(IY 494X CE

*3
+5*HMCCINDESOCI),5)*KCI)**4)/THETA(T)
CSOTL{TD=1. /ICSOILLID

CONTINUE
KNATER(@) =KWATE(®)
DO 36 I=ISA,-1,1

FE(I) =DZ(I+13/(D2(I)+DZ(I+1))
KNATER{I}=({1- FE(I))/K!ATE(I)+FE(I)
NATE(CI+2))%*(-1)
CONTINUVE
ENDIF

PSISOLCTSA)=HM(ISAD+Z(ISA)
DO 34 I=TS5A+1,d
PSISOL(I)=HM{I)+ZCENTER(I)

CONTINUE
The coupling coefficients for the water flux eqguation.
EWN(ISA) =0.0 !lower
GW(ISA) =0.9 ! upper
FW({T5A) =1.49 for the layer (look at Patanker 19350)

DWCTSA) =PSTSOL(ISA)

0O 10@ I1-IS5A+1, y 1
EW(I)= KH#TER(I 1)/00.S*(DZ(I-1)+D2(I)2)
GW(I)=KWATER{I)/(0.5*(DZ(I)+0Z{I+1}))
IF CINIH .EQ. 03 THEN

F¥CID=ENCID+GW(ID
+CSOTLCIX*DZCIN/DT

! FIRST ASSUMPTION WO WATER PHASE CHANGES IN THE SOTL LAYERS
DW(I)= CSOIL(I)'DZ(I)/DT' PSISOL({I)
-ROCTUFP(I)
ELSE

FRCID=EN(ID+GH(I)
+CSOILCID*DZ(I}/DT

OW(CI)=CSOILLID*DZ(I)/DT* PSISOL(I)
-ROOTUF(I)
-CSLCID+YAPFDV(I))
F(LAMDA*1000) ! FOR LATER USE
EMDIF

!PER UNIT WEIGHT

CONTINUE

EWCa)- KWATER( 1)/(@.5*(BZ(-1)+DZ(@)))
GW(BI=0.8

IF CINIH .EQ. ©) THEN
FR(Q)=EN(O)+CW (B}
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1 +CS0IL{@)*DZ(@)/DT

DW(0)=CSCILC@I*DZ(8)/DT*PSISOL(@)
1 -SCILLE/CLAMDA*1008)-ROOTUR(R)

ELSE

FW{Q)=EW(D)+GN(O)
1 +C50IL(@)*DZI(@)/DT

CW(B)=CSCIL(B)*DZ{@)/DT*PSISOL(®)
~SOILLE/(LAMDA*1000)
~ROOTUP(®3
~(SL{0)-VAPFLB(0O))
SCLAMDA*1909) ! FOR LATER USE

R

ENDIF
1000 CONTINUE

CALL THOMS{ISA,EN,GN,DW,F¥ PSISL)
HMNEW(ISA)=REAL{PSISLCISA)-2(I5A)
0O 49 I=I5A+1,0,1

HMNEN(I) =REAL(PSISL(I))-ZCENTER(I)

QWATERCI-1)=-ENCI)*(REAL(PSISLLID)
1 -REAL{PSISL(I-1))>>}

QWATER(I-1)=-E¥(ID*{PSISOL{I)
-PSISOL(I-1))

~e
=

H T ACTD

=HH(Q)
=THETA(R)
=8.0

49 CONTINVE

- el

QWATER -13
IS NOT SPECIFIED, CAN BE COUPLED TO A REGICNAL HYDROLOGICAL MODEL.

[aXal

IF (HYDRIN.NE.1) THEN

DO 59 I=I54+1,@,1
4 NKEWTON _RAPHSON METHOD OF SOLUTION
DO 10 J=1,10,1

THETANCI)=THETR{ID+(HMNEW(IJ-HMPR(IDI*CSOIL(CI)

NSCNN(I)=THETASCI)/THETAN(I)

x(I = ALOGIO(NSONN{I)}

Y{I) =« HMOUCINDESO(I
+HMCCINDESO(
+HMC(INDESOC
+HHCCINDESG(

SeC
HMPR(I) =-{1@.)**Y(I)/100.
IFCINDESO{I).EQ.@) THEN
HMPR{I)=HMPR(I)*20.
ENDIF
IF (CABSCHMPRCI}-HMNEN(CI))).GT.3.0@1) THEN
ICSOIL(I)=—HMPR(I)‘(ALOG(1E.))*
(HMC{INDESO(CID, 1
+2*HMCCINDESO(CI)
+3*HMCCINDESOCI)
+4*HMC(CINDESO(CI)
+S*HUMC(TNDESO(L)

CSOILCI) =1./1C50%

THETR{I)}=THETAN(I)}

ELSE

60TC 181

ENDIF
le CONTINUE

11 CONTINUE
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59

(1]

53

[aTal

70

e

e

Pee

L

CONTINUE

ENDIF

DO 6@ I=ISA+1,-1,1
IF (IWIH. EQ. @) THEN
THETNCIY=THETACL)
+(CQWATER(I-1)-QWATERCID)
-ROOTUP(TI})/0Z2CID*DT

! FOR LATER USE
ELSE

THETNCI)=THETACI)
+CCQWATER(T-1)-QWATERCI))
-ROOTUPCI))*CT/DZCI)
~(SLCID+VAPFOV(ID) *DT/D2Z(L)
/(LANDA*1000)

{ FOR LATER USE

ENDIF
CONTINUE
IF (INIH. EQ. 9} THEN

THETN(H)-THETA(G)+((QU&TE%§ 1)-QNATER(S))

upCed)*pT/02(I
-S0ILLE*
/(DZ(@)*LAMDA‘lﬁOB.)

ELSE

THETN(®)= THETA(G)+((Q'ATER( 1)-QWATERCE))
~R0

TUP(@))*BT/DZ(I)
-SnILLE'DT

/CDICB}"LAMDA*1000.)
~(SL{0Y+VAPFLBLB))*D
/{LAMDA*1004) 1 F

T/D2{0)
OR LATER USE

ENDIF
0e 53 I =ISA,0,1

IF (THETAN(CID.LT.THETARCID) THEN

EW(I) =-0.0
GW{l) =0.90
ROOTUP(]) 6.0
FU{I)=
DI{I)-PSISOL(I)
IND
ENDIF

CONTINUE

IF (INDIC. EGQ .1) GOTO 1089

INIH=1
Do 78 TI-1SA,0,1

VGAS(I) =POR{I)-THETN(I)
VGAS(CID =PGR{I)-THETAN(I)
TCRTUCI) = VGAS(I)“(lB /3.0/PORCLI)**2
RHSOTL(T) {SHGLCPSISL{IJ)*GR*MOLE
/(RR‘(SNGL(TEMAIR(I))+Z?3,15)))
CONTINUE

IF ((TIME.GT.12.0@0). AND.(RAINM.GT.2.€)
1

AND. (RAINC.EQ.93)THEN
MOISTU=0.9
DO B9 I=0,ISA,-1
If it ramed humdify the s50i]
MOISTU= MﬂISTU+AHAX1((B
DIFFER=(RAINM*0.9)/10@9, -MOIST
IF (DIFFER.GT.@.@) THEN

THETAN(I)= AMAXLL® .2, THETAN(I})
DIFFEL - DIFFER

ELSE
YHETAN(I)f THETAN(CID+

NM*2.2)/1080. -DIFFEL1)/DZ(I)
GoTO 1311

2-THET AN(I)) e.e)*D2(I)
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1811

ENDIF
CORTINUE
RAINL =1
ENDIF
CONTIKUE
RETURN
END

[ oo o of o o o o o o of o f o of o o o o i o o o o o o 8.6 o o o o ok o o o o o o o o o o oo o o o o o o o o o o o L
C

cc

SUBROUTINE PHOTO({ITRA,
AVGTLF,
RST,RE,RLEAF,
VISIAB GAMHAT FG,SINK)

IMFLICIT NONE
INTEGER ITRA

SINCLUDELALIMIT.FOR/L
$INCLUDE :ABLANK.FOR/L

I atatalatalatalala o Pale Yol ot oot a o Paatatatatal

Il

REAL AVGTLF(IT)
RST(B:TT,1:2),RB{B:IT),RLEAF(IT,1:
VISIAB(IH 1:23, GAMMATCIT)  FGCIT, 2) SINK(IB 1K)

THIS PART OF THF PROGRAM SIMULATES THE
THE SINK TERM FOR (02 . THE NET PHOTOSYNTHESIS
ASSUMING THAT THESE RELATIONS CAN BE APPLIED
FOR SMALL TIME STEPS.

HERE USE IS MADE OF GOUDRIAAN C(HAPTER
"ELEMENTS OF SIMULATICM IN CROP PHYSIOLOGY"
THIS PART OF THE PROGRAM IS5 A TRANSLATION
FROM A CSMP PROGRAM WRITTEN IN THIS CHAPTER

THE PURPOSE HERE IS TO USE THESE RELATIDNS

TO QUANTIFY THE SINK TERM FOR {02 IN THE PLANT

CANGPY. THE APPLICATIONS OF THESE RELATIONS TO

SMALL TIME S5TEPS COULD BE QUESTIONABLE. FOR EXAMPLE

IN THE {ALCULATION OF FGMAX FOR EVERY TIME STEF.
REACTIONS ARE SUPPOSED TO BE RESPONDING INSTnNTANEOUSLY
TO THE ENVIRONMENTAL CONDITIONS.

IT IS ASSUMED THAT ENVIROMNMEHTAL CONDITIONS AT
PERVIOUS TIME STEPS DO MOT AFFECT THE PERFORMANCE
THE PHOTOSYNTHETIC SYSTEM. THE SYSTEM HAS NO HMEMOR

OF
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCC(CCCCCCCCCCCCCCECC

.OATA ELEMENTS..

INTEGER I

REAL RM(1:IT) ! MESOPHYLL RESISTANCE MS-1

REAL GM(1:TT) ! MESOPHYLL CONDUCTANCE IN M/S

REAL FNC{1:IT,1:2) ! NET PHOTOSYNTHESIS AS ALLOWED BY (02 GRADIENT
REAL FNMAX(1:1T,1:2) ! NET PHOTOSYNTHESIS MAXIMUM

REAL FGMAX(1:IT,1:2) ! GROSS PHOTOSYNTHESIS MAXIMUM

REAL RD (1:IT) ! DARK RESPIRATION IN MG C02/ M3 PER SECONE.
REAL EFF{1:IT) ! LIGHT USE EFFICIENCY.

REAL FMM (1:2) !

REAL EFFO(1:2) ! LIEHT USE EFFICIENCY.

REAL RDZ@ (1:2) ARK RESPIRATION FOR (3 AND (4 CROPS AT 20 C
REAL GAMM2S5(1:2) 1002z (OMPENSAleﬂ POINT AT 25 DEGREES CENTIGRADE
REAL H(C1:IT,1:2) 1 ABSORBED LIGHT BY PHOTOSYNTHESIZING TISSUES
REAL FN(1:IH,1:2) ! NET PHOTOSYNTHESI MG C02/M2 LEAF /SECOND.
CHARACTER T

DATA RDZG/B 05 0.085/ 'DARK RESPIRATION IN

€02 PER SQUARE METER PER SECOND.
DATA EFFQ/8.017,0.214/ ILIGHT USE EFFICLENCY IN MG C0Z PER JOULE
DATA FMM/1.2,2/ fIN MG (D2 PER SQUARE METER PER SECOND,
DATA GAMMZIS/58,5/ ! IN PPM FOR (3 AND (4 CROPS RESPECTIVELY.

R Y T T T Ty

C
C
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AR R e e R L R T

T-CHAR(D)

lo@

DC 180 I=1,ITA 1
GM(I)=C.0
GAMMAT(ID=GAMM2S{1)*EXP(@. 07" (AVGTLF{IX-25)>
! IN PPH

IF (CAVGTLF(ID).LE. 2.5 ) .OR.(AVGTLF(I).GE.4G)) THEN
GM{I)=0.0

0
(I) Z 5)/2? 5% 2.085 ! IN M/S

VOTLF(T))>/10%0.005 ! IN M/S
1)

IF (GMCI).EQ. @ ) THEN
FNC{I,i)=0.0
FN(I, 1} =8.8@

FNC(I,2)=0.9
,2) =8.8@

CCI,1)=(C02CONCT)-GAMMAT(T))*1. 833/
CRMLTY+1 . 3*RB(T)+1.6%RST(I,1))

~
—

ELSE

FNECT, 2) (CO2CONCI)-GAMMAT(ID)*1.833/
(RM{I)+1.3*RB(I)+1.6*RET(L,2)}
IN MG PER SQUARE METER PER SECOND.
FNMAKCI,1)= FMM(1) *{1-EXP (-FNCCI, 1)/FHM(1)))

FNMAX(I,2)= FMM{1) *{1-EXP {-FNC(I,2)/FMM(1)))
RD{ID= RDZGC1) SEXP(@.Q7*(AVGTLF(I)-20))

FOMAX(T,1)= FNMAX(I,1)+46.5%RO(I)
FOMANCT,2)= FNMAX(I,2)+0.5%RO(I)

EFF(TY= EFFOCL)*(CO2CONCID-GAMMAT(I)N) /A
(COZCONCTID+2*GAMMAT(I))

H(L,1)= VISTAB(I,13/(DZ{I)*LADMID(I))
HCIL,Z)= VISIAB(IL,Z)/7(0Z(I)*LAOMIDCI))

FGCI,1)= FGMAX(L,1)
*C1-EXPC-EFFCII*ACT, 1)/FGMAXCI,1)))

FNCI,13= FGCI, 1) -@.5%RD(I)

FG(I,2)= FGMAX(I,2)
*C1-EXPC-EFF(IX*H{I,2)/FGMAXC(I,2)))

FNCI,23= FG(I,2) -9.5*RD(I}
ENDIF

SINKCTI)=(FN(I,1)+FN(I,22)%LADMIDCID*DZ{I)}
CONTINUE

RETURN
END

ECCCCCCCCCCCCCCC((C(C((((((CCCCCCC(CCCCCCCCCCCCCCCCCCCCCCC(CCCCCCCCCCCCCCCECCCCCCC([(C[((

SUBROUTINE EQCOEMCTEMAIN,EAIRKN,NCOZ
L HM

NEW, HM, TORTU, RHSOTL
JVGAS,PHIM, KRATIO,FE
JEXTRAL , ¥M_SOILRN,PASS, INDEXD)

[qqasqadqaddaqqdaddiafdddadqdddidddddqdddqddddddadadddddddddddavdddda S JdJ i d df A A d d g A 44
IMPLICIT NONE

$INCLUDE:
$INCLUDE :
$THCLUDE :
$INCLUDE:
$INCLUDE:

ALIMIT.FOR/L
ABLAKK . FOR/L
ACOEFF . FOR/L
AEQCOE.FOR/L
ACONST.FOR/L

SAVE/ ACOEFF/, /ACONST/ /FAEQCOE/
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REAL*B TEMA
REAL*B EXTR
I
¢

REAL VGAS(
REAL HMNEW
REAL WM,SOI
REAL RHSOIL
REAL TORTU(I

H) KRATID(1:1IH]

i
3

1
A
S:
1
L
¢

INTEGER I,IHDEX
INTEGER INDEXI(

REAL LRSRAT(CIH)
REAL*8 EMC@:ITB),GM(@:ITB), FM(D:ITE)
REAL BM{B: ITB) DRA(®:ITB)

REAL FE(IS
REAL SATUVZ SATUDZ X

CHARACTER T

[Hedyaqasqqaqanqedaadadqqaqedaqqasdadagasdassadasqaqnqadadasqanqadasqasagqaaaqss

T=CHARCS)

$INCLUDE: VALUES.DAT/L

28

54

15¢

490
c

alalalalsinlakal

232

IF (PASS .EGQ. B) THEN
GO0 28 I=ISA,IHA,1

EXTRALCI)=0.0
INDEXICI)=@

CONTINUE
ENDIF

0O 59 I=1,IHA,1

KRATIOCI) =1.8
LRSRAT(I)=1.0

CONTINUE
! THE TREATMENT OF THE BOUNDARY {ONDITIONS

ELECISA) = 9.0
GLE(ISA) - 9.2
FLECISA) = 1.9
DLE(ISA) = EATR(ISA)
ECQ2(IS5A) = a.0
GCOZ2(ISA) = 2.0
FCO2(ISA) = 1.8
DCOZ(ISA) = COZ2CON(ISA)

DO 158 I=1,1HA,1

KH(I)= (LMIX{I)/PHIM(CI}*KRATIO({I})**2"DU{I)
KH(I)= KM{1l)

CONTINUE

DO 404 I=1+ITA,THA,1
SH(I) .8

SL(CI) =0.¢
SINK(I} =0.@
CONTINUE

! the coupling coefficients as nos been done in eq. 4.2.74

DO 308 I=ISA+1,0,1
! latent heat treatment
ELECI) =2.0

= DBLECSATUV?2
MNEW(T)*GR*MOLE/

-
m=t

EMAINCID)Y
+27

MATNCT) 3.152))

-SATUVZ(SNGE(TEMAIN(I)))
*(EXP(PSISGL{I)*GR)

SH{I)=-PCP/GAMMA* DZ(I)/DT*VGAS(I) ! source or sink within the so0il
*(RHSOTILCI}*DSOT(I} thumdifying the soil air
*(TEMAIN(I)-TEMAIR{I))



C 1 +EXP(HMNEW(I)*GR*MOLE/{RR*(TEMAIN(CI)+273.15)))
C 1 *SATUV2(SNGLCTEMAIRCIZ))
C 1 SMOLE/CRR*CTEMAINCID+273.15))
C 1 *CHMNENCID-HM{I)3)
C SLCI)=PCP/GAMMA® DZ2LID/DT*VGAS(CID
C 1 *CRHSOIL{I)*DSOTLI)
C 1 *CTEMAIN{I)-TEMAIR(I))
C 1 +EXPCHMNEWCI)*GR*MOLE/(RR*(TEMAIN(I)+273.15)2)
C 1 *SATUVZ(SNGLCTEMATR(T}))
C 1 *MOLE/CRR*(TEMAIN(I}+273.15))
C 1 *(HMNEWCI)-HM(I)))
C SHCI)=-PCP/GAMMA*DSDT(I)*DZ(I)/BT*VGAS(I)
4 1 *(TEMAIN{I)-TEMAIRCID)
[ ECOZ(1)=0.0
C GC02{I)=0.8
C FCO2{I)=1.8@
[ DCE2{I)=CQ2CON(T)
C SINK{I)=0.@
ECOZ{I)=0BLE{COZDIF*TORTUCI))
GC0Z(I)=DBLE{COZDIF*TORTUCI))
FLO2CI)=DBLELECO2CI)+GCO02CI)+DZ(I)/ DT*VGAS(I))
DCO2(I)=CBLE{VGASCI)*DZI{I}/DT*CO2CONCTI))
SINK{I)=0.0
C SINK(1)=0.8 ftLATER AFUNCTION DEPENDENT ON
C SOIL TEMPERATURE
300 CONTINUE
IF (INDEXT(1). EQ.1) THEN
ELE(1) -0.0
0. o
ELSE
ELECL) -0.0
GLE(1) =PCP/GAMMA®KH{1)/(8.5%(D2(1)+DZ(2]))
FLECL)} -ELE(1)+GLE(1)+PCP/GAMMA'D (1)/DT
DLE(1) =DBLE(CSL{1)+S0
1 +PCP/GAMMA‘DZ(I)/DT‘EAIR(I))
¢ DLE(C1) =@.
C 1 +PCP/GAMMA‘DZ(l)/DT'EAIR(l}
ENDIF
ECO2(1)=DBLECCO2DIF*TORTUCA)) ! AN AVERAGING HAS TO BE DONE
GCCZ({1)=DBLECKH{1)/(0.5*(BZ(1)+D2(2))))
FCOZ(1)=DBLECECOZ(1)+GC02(1)+D2(1)}/DT)
DCOZ(1}=DBLEC-SINK(1)/1.833+DZ(1)/DT*CO2CONCL))
c DCOZ(1)=9.0/1.833+DZ/OT*COZCON(L)
DO 5@9 I=2,IHA,1
IF (INDEXI{I). EQ.1) THEN
ELECI) =0.0
GLE(TI) -0.9
FLECI) =1.0@
DLECI)} =DBLE(SATUV2(SNGL(TEMAINCI})))
ELSE
ELE(I)=PCP/GAMMATKH(I-13/(0.5*{D2(I1-1)+D2CI)))
GLE(ID=PCP/GAMMA*KH(CI) /(0. 5%(DZCI)+DZCI+1)))
FLECID=ELE(I)+GLECI)+PCP/GAMMA*DZCI)/DT
DLECID=DBLE(SL{ID+PCP/GAMMA*DZ{TI)/DT*EAIRCI))
C BLECIY=8.@ +PCP/GAMMA®DZ(I)/DT"EAIR(I)
ENDIF
ECOZ(I)=0BLECKH(I-1)/(0.5*(D2CI-1)+DZ{ID))D
GCO2(I)=DBLECKH{I)/ (0.5 (DZ(I)+DZ{TI«1))))
FCO2(I)}=DBLE{ECO2(CI)+GCG2{I)+D2(1)/DT)
DCG2(I)-DBLEL{-SINK(I}/1.833+0Z{1)/DT*CO2CONCI))
C DCO2(I)=-8.8/1 833+DZ(I)/DT*CO2CONCI)

s50@ CONTINUE
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ELECIHA«1) =9.9
GLECIHA+1)  =p.@
FLECIHA+1) =1.0
DLECIKA+1)  =EATR{IHA+1)
E(OZ(IHA+1} -8.@
COZ(IHA+1Y =8.8

F(OZ(IHA+1) =1.0
DCO2(IHA+1) =COZCONCIHA+1)}
PASS =1
RETURN
END

[ddd4dddsddddiqdsdqddaddsigdddddasaqadeddiasgiguqdqianaundaaasgsaguggig gy gus

SUBROUTINE EQCOEHCTEMAIN,SEMFL HMNEW,TORTU,RHSOIL ,HM
,CHSOTIL,PCSOIL, VGAS VAPFLT VAPFLB VAPFD
LEXTRAS ,SOILRN,PASS, INDEXI)

[ddddgdddddddddddidedddddiddddddddqidiqdadqqqedaqdddadadqqaqidagsdaqesdgyqgaass

IMPLICIT NONE

$INCLUDE:ALIMIT.FOR/L
SINCLUDE:ABLANK.FOR/L
SINCLUDE:ACOEFF.FOR/L
SINCLUDE:AEQCOC.FOR/L
$INCLUDE:ACONST.FORSL

cccece

SAVE/ ACOEFF/,/ACONST/,/AEQUOE/

REAL*8 TEMAIN{IS: ITB) SENFL(IB:IH,1:2,1:2,1:2)
REAL*38 EXTRAS(IS:IH)

REAL CHSOILCIS:®),PCSOILCIS:®)
L VGAS(IS: @)

REAL HMMEW(TS:@) HM(TIS:0)

REAL RHSOTL{IS:d%

REAL TORTU(CTS:@)

REAL VAPFLTCIS:d)

REAL VAPFLB{IS:D)

REAL VAPFDV(IS:@)

REAL SATUV2,SATULZ, X
INTEGER INDEXI(IS:IH)

INTEGER PASS
REAL SOILRN
CHARACTER T

INTEGER T
REAL CPHASE(IS: @)

REAL FE(IS:IH)
REAL ENHANC

(Hedgqqaisqsqassdqusssiddqqdesasddaduaqaqaqudddddddaddddddaaddddaddadd g4y 4

$INCLUDE: VALUES.DAT/L

19

28

234

ENHAKNC =1.8@
T-CHARCO)

IF (PASS .EQ. @) THEN
DO 18 I=ISA,0,1
YAPFDV(I)=0.0
CONTINUE

DO 20 I=ISA,IHA,1

EXTRASCI)
INDEXICI)

CONTINUE
ENDIF

DO 5¢ I=-TISA,-1,1

ECL) =D2(TI+1
CFHASE(I) ((1 FE



5@

100

150

[aXalal

R e

bt

BHERe

b

CPHASECL) SFECID)®CHSOIL{I+1)

CONTINUE
! THE TREATMENT OF THE BOUNDARY CONDITIONS
CISAY =0.9
GHCISA) =0.9
(ISA) =1.0
CISAY =TEMAIR(ISA)
HERE DEFINE CPHASE
DO 108 T=ISA+1,-1,1

EH(1)}=CPHASE
GHCI)=CPHASE
DSOT(I)=SATU

FHCID=EHCID+GHCI)
SPCSOTLCIY*D2¢T)/
+PCP/GANMA DZ(I)/DT’VGAS(I)
*(RHS0TL(TI)*0SDT
FEXPCHMNEW{T)*GR*NO E/(RR‘(TEMAIR(I);Z?S.15)))
*0SDTCI)
*MOLE/CRR*{TEMAIR(1)+273,15)}
SGRECHMNEWCTY -HM{T}))

(1-1)/C
(I)/(o.
D2{SNGL
GH

*
"
b
L

OH{I}= OBLE(P(SOIL(I)'DI(I)/DT‘TEMAIR(I)
VAPFOV({I)

+P(P/GAMMA‘DZ(I)/DI'VGAS(I)
“CTEMAIRCID*RHSOILCID*DSDT{I)
CEXPCHMNENCID)*GR*MOLE/(RR*{TEMAIR(I)+273.15)))
*(SATUVZ{SNGLCTEMAIRCI)))-DSOTCIY*TEMAIR(CL)D
*MOLE/CRR*(TEMAIRCI}+273715))
*GR*CHMNE®CI)-HM{IDI))

CONTINUE

0O 15¢ I=1,IHA,1

KH(I)= (LMIXCI)/PHIMCID*KRATIO(I))="2%0U(I)
KH({I)= XM(I)

CONTINUE

EH(B) =CPHASE(- 1)/(0 S*CDZ( 1)+DZ(B3))

GH(0) =0.8 SOIL IS COMPLETELY DECCUPLED.

GH(®) =HT(0) ! nspsunruc ON ONE ASSUMPTION.
DSDT(@) =SATUDZ{SNGL{TEMAIR(EB)))

FHCO)=EH(B)+~GH(D)
+PCSOTLL@)I*DZ(B)/0T
+PCP/GAMMA*DZ{R)/DT*VGAS(R)
“(RHSOTIL{BY*DSBT(O
+EXPCHMNEW(@*GRO*MOLE/ (RR*(TEMATRC@)+273.15)3)
*DSDTCR)
“MOLE/CRR*CTEMALR(@)+273.153)
“GR*(HMNEW(O) -HM(8) S

DH(®)= DBLE( 4
ot

UHU

DH{@)= DBLE(PCP/GAMMA*DZ(@)/DT*VGAS(0)
*(TEMAIR(@)*RHSOI DT(@
-EXPCHMNEWC@)*GR*MOLE/(RR™

L{B)*DS
(TEMAIR(0)+273.15}))

93))-050T(0)
73.15))

*(SATUV2(SNGL(TEMAIRC “TEMAIR(®))
*MOLE/(RR*(TEMAIRCO}+2
TGR*(HMNEW(®)-HM(B)))
+S0ILRN
~SOILLE
-VAPFLEB(®)
+PCSOILCAO*DZ(B} /DT TEHAIR(D))
EH{1)=HT(®)
EH(1)-0.0
GHE1)=PCP*KH{1)/(D. 5*(n2(1)+nz(z)))
FHC1)=EH(1}+GH(1)+PCP*DZ2(1)/DT
DHCL)=DBLECSHC13+PCP*DIC13/DT*TEMATR(L)

RASCLY)
BZ/DT*TEMAIRC1)

0.9
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499 CONTINUE
DO 26@ I=2,IHA,1

EHCI)=PCP*KH{I-1)/(0.5%(0Z(I-13+D2(1)))
GHCT)=PCP*KHCI /(O 5*COZ{I3+DZ(T+13))
FHCIJ=EHCI)+GH{I)+PCP*DZ{I)/0T
DHCI}=DBLE{SH(I)+PCP*DZI(I}/DT*TEMAIR(I)

1 +EXTRAS(I)
C DH(1)=2.@+PCP*DZ(I)/DT*TEMAIR(I)
200 CONTINUE

EH(THA+1) -9

GH{THA+1) -0.e

FH{THA+13 =16

DHCIHAL1S ~TEMATR(IHA+1}

CALL THCM({IHA,ISA,EH,GH,DH,FH, TEMAIN)
DO 39@ I=ISA+1,0,1

SHCI)=-PCP/GAMMA*DZ(I)/DT*VGASCI)
*(RHSOILCI)*DSDT(T)

*{TEMAIN(CI)-TEMAIR(I))
+EXPCHMNEWCIY*GR*MOLEZ(RR*(TEMAIN(I)+273.15)))
*SATUV2(SNGLCTEMAIN(I)))

*MOLE/CRR* (TEMAIN(IY+273.153)
*GR*CHHMNENCIJ-HM(I)))

e e

SLCIY= PCP/GAMMA*DZ(I)/DT*VGAS{I)
*CRHSOILCI®DSDT(I)
"CTEMAINCI)-TEMAIRCID)
+EXPCHMNEWCII*GR*MOL ;ggk*(TEMAIN(I)+2?3.15)})
273

Li5))

*SATUVZ{SNGLCTEMAIHN
*MOLE/{RR*(TEMAIN(I
*GR*CHMNEW( T )-HM(I)

b

IF {I.NE. B) TH
A*VAFPDIF*TORTUCID®
R*CTEMAINCI)+273.15)3)
2;R‘(TEMAIN(I+1)+2?3Alﬁ))))

(SATUYZ(SNGL(TEMAIN
*EXPCHMNEW(IJI*GR*MD
-SATUVZ(SNGL{TEMATN
*EXP{HMNEW(I+1}*GR™*
A{DZ{I}+DI(TI+1}D

E
(I
I+
3
EN
VAPFLT(IL )= ENHAN[’PCPEG
1
LE
(I
MO

AMM
)
/(R
+1)
LE/

e

VAPFLB(I)= ENHANC*PCP/GAMMA*VAPDIF*TORTUCI-13*
CSATUVZCSNGLCTEMAINCI-1))D
SEXP(HMNEW(I-13*GR*MOLE/CRR*CTEMAINCI-13+273.15))3
SSATUVZ(SNGLCTEMAINCIDY)

*EXPCHMNEWCII*GR*MOLE/{RR*CTEMAINCI)+273.15)3))

1

T

e

L
I
L
1
ACDZCT-13+DZ(1))

C
<
J
(
LT(I)-VAPFLB{I)

VAPFDV(I)=VAPF

ELSE

VAPFLTCI) = SOILLE

VAPFLBCT)- ENHANC*PCP/GAMMA*VAPDIF*TORTUCI-1)"
(SATUVZ(SNGLCTEMATNCI-13))
*EXPCHMNEW(T-1)*GR*MOLE/{RR*(TEMAINCI-1)4273.1533)
~SATUYZ(SNGL(TEMAINCI}))
FEXPCHMNEW{I)*GR*MOLE/(RR*(TEMAINCID+273.15})))
7¢DZ{I-1)+D2(I))

R

VAPFOV(I)= VAPFLT(ID-VAPFLB(I) 'IN JOULE M-2 5-1
ENDIF
300 CONTINUE
RETURN
END
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[dedaadqdddedqaqaaqqiqsqasqaiqaqiddsdsddadsddididddddqdssdedddddasddaddddd a4y
<

SUBROUTINE EKERGOCITRA,RTIME, M52
SH,SL,HT,HE HEND KEE,
TEMPLF, TEULEN, AVGTLF,
RABL,RABELT,
RAB, KAV, LIGHT ENESAE,
ID,FRAC,CUMD
RDIR,WFTH, 51ugrn RLOUT ,RLINN,
DT,TOTENE, SOILSH, CN)

[didddndadddaqasqiddsiqddiddddddddididdddadedddddddddadastdidddddddddddddddqdddsds
IMPLICIT NONE

INTEGER LLM,LLB
PARAMETER (LLM=Z,LiB=3)

$INCLUDE: ALIMIT.FOR/L
SINCLUDE: ABLANK,FOR/L
FINCLUDE: AENERG. FOR/SL
JSINCLUBE: ACONST. FOR/L
SAVE /AENERG/,/ACONST/
INTEGER ITRA,CHOICE,WAYIN
REAL RTIME,SINBTA,RLOUT,RLIRN
REAL*8 SHCIB:IH),S5L{IB:IH)
REAL HT{@:IT}, HE(G I7,1:2,3:2),HENDC2:IT,1:2)
1 JHEECIT,1: Z 1: i 2
1 TEMPLF(IT LLH 1 2,1:2),TEMLFNCIT,2:LLM,1:2,1:2)
1 ,AVGTLF(l:I
1 "RABLCTH,1:23 RABLT(TH,1:2}
1 LJRAB{IH,1:2),KAV(3)
1 L,LIGHTC®:IH,1:2),ENESAB{IH,1:2)
1 LIBC1:1T)
1 JFRACCL:IT,1:2, 1 23
1 CUMDE'(i IT 1:2)
1 LRDIRCY:IT, 1: 2) IFTH(Z)
1 ,DT TOTENE SOI
CHARACTER T
LOGICAL ON
ccece
INTEGER I,},K,L,IDE,ITRQ,ITRE,IHELP,JHELP KHELP,INTERS ,INDIC
INTEGER LL,LEB,LA,N,M51 ,MSZ,LHELP,CHECK, ITERI, INDXCO
REAL SATUVZ,SATUDZ, X
REAL*S CBLOCK(IS:ITSB)
REAL*8 BBLOCR(IS:1TB)
REAL*8 DBLOCK{IS:ITHB)
REAL*B ABLOCK{IS:ITB)
REAL*8 TMLF(IS:ITB)
< ! the coupling coefficients for the leaf energy equation solution {(sect 2.3.1.1)
REAL*8 ELH{@:L[LEB)
REAL*B GLHCB:LLE)
REAL*B FLH(®:LLB)
REAL*8 DLH({®:LLB)
REAL*8 ANALG(®:3)
REAL LWLEAF(1:IT,1:2,1:2) ! LONG WAVE EMISSION ONE SIOED LEAF
REAL LWAIR(1:ITD [ A i I T I i
C ! AT AIR TEMPERATURE.
REAL SERC1:I7,1:2,1:2) 1 SENSIBLE HEAT FLUX
REAL LWPROD(C®:1T) ! LDNGNAVE FRDDUCTION PER M-3 CANOPY AIR.
REAL LWLAYR(C®:IT) porrrnesra T T M-2 CANOPY LAYER
C 1 THICKHESS.
REAL RLODOWK(®:IT) 1 LONGWAVE DOWN
REAL RLUP{@:IT) t LONGWAVE UP
REAL RABLW{1:1I7,1:2) ! LONGWAVE ABSORBED.
REAL LE(2:1IT,1:2,1:23 T LATENT HEAT FLUX IN WATT M-2 LEAF SURFACE
C * (ONE SIDE) , LINEAR SOLUTIOCN
REAL ESTAIRC1:IT) ' SATURATED VAPOUR PRESSURE
C ' AT AIR TEMPERATURE IN PASCAL.
REAL SSAIR(L1:IT) * SLOPE OF THE SATURATED VAPOGUR PRESSURE
C 1 AT AIR TEMPERATURE.
REAL RABTOT(1:IT,1:2} ' TOTAL RADIANT ENERGY ABSORBED {SHORT
C 1 AND LONG) IN WATT M-2 CAKDPY LAYER
REAL SSLEAFC1:IT,1:LLM,1:2,1:2)
C ! SLOPE OF THE VAPOUR PRESSURE TEMPERATURE
C ! FUKCTION AT LEAF TEMPERATURE
C ! ENERGY BUDGET.{LOOK AT PAW U 19&7)

REAL TOTAL{1:1IT,1:2,1:2) ! TOTAL ENERGY DISSIPATED IN WATT M-Z
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! LEAF SURFACE (OKE SIDE) LINFAR SOLUTTON.
REAL LWLEFI(C1:IT,1:2,1:2) ! LONG WAVE EMISSION (ONE SIDE) IN NATT MW-2
C ' LEAF SURFACE. LINEAR SOLUTION.
REAL MORMAN(CI:IT,1:2) Y LONG WAVE FLUX DENSITY (UPWKNELLING ANC
C " DOWNWELLING) INCREMENTS IN WATT M-2
C ! CANOPY LAYER SURFACE.
REAL ESTLFF{1:IT,1:2,1:2,1:2)
C | SATURATED VAPOUR PRESSURE AT LEAF
C ! TEMPERATURE IN PASCAL.
REAL CONDUV(L1:1T,1:2,1:2) ! verti<al heat conduction
REAL CONDUH(Ll:IT,1:2,1:2,1:2)thorizental heat conduction
REAL SUM(1:IT7,1:2)
REAL ERR(C1:IT,1:2,1:2,1:2) T ERROR (LINEAR AND NEWTON ITERATION)
REAL ERR3(1:IT,1:2,1:2,1:2)
C ! ERROR {LINEAR AND NEWTON ITERATION)
REAL ERROL(L:IT)
REAL WAMOUN(C1:1IT,2) ! water amcount
REAL DRIP{1:IT,62) tdripping
REAL VOLUMK(1:IT,2) Twater volume
REAL REMAINC1:IT,1:2,1:2,1:2)
C ! REMAINING COMPONENT.

REAL TEMSKY ! TEMPERATURE OF THE SKY

REAL SKYEMS ! SKY EHISSIVITY

REAL CLEARS !

REAL TEMDIF 1

REAL FACTOR

REAL SKYLIN ! INCOMING LONGWAVE RADTATION FROM THE SKY
REAL TOTLE, TOTALQ

TEMPERATURE DIFFERENCE.

REAL TOTPRO(1:ITD | total probability
REAL ITOTPRC1:IT) ! probability (yes 1 or no 6)

REAL CONVER

REAL ESPP ! THE FULFILLED CRITERIA.

REAL KCON

REAL MAXSH

DATA TEWGIF/2.8/

DATA FACTOR/Q.1/ ! A FACTOR CEPENDENT ON THE TYPE COF CLOUDS.

AL L e L A Ll

LINCLUDE:VALUES.BAT/L

KCON =273.1§ ! CONVERTING TO ABSOLUTE TEMPERATURE
ESPP =0.0001

MAXERR =0.8

MAXERL =0.0

T =CHAR(9)

LA =0

Lt L3

LB =LL+1

IF (ITRA.LT.1) THEN
{HECK=9
CHOICE=®
IF (CHOICE.EQ.9) THEN

M51=0
M52=@

ELSE TF(CHOTCE .€Q.1) THEN
MS1=1
MS2=@

ELSE IF(CHOICE,EQ.2) THEN

M51=0
M52=1

ELSE

ENDIF

DO 111 I=1,ITA,1
Do 112 J=1,2,1
D0 113 K=1,2,1
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1132
112
111

212

2il

el
200

TEMPLF({I,1,K,J) =SHGL{TEHWAIR(CI))
TEMPLF{I,2,],K; =SNGL{TEMAIR(CI)}
TEMLFNLI,1,K,)) =SHGLL{TEMAIR(CID)
TEMLFNLI,2,1,K)  =SNGL{TEMAIRLIN)
ESTLFF{I,1,K,1) =SNGLLEAIR{I))
ESTLFF{I,2,],K} =SNGL{EAIR{I))
ESTLF(I,1,K,]1) =SNGL{EAIRCID)Y
ESTLF(L,2,),K) =SNGLCFAIRCID)
LWLFNCI,1,K,1)
LWLFN(I, 2,),K)
NONST(I,1,k,1)
NOMST(I 2,1,K)
CONTINUE
CONTTHUE
CONTINUE
DG 211 I=1,ITA,1
Do 212 J-1,2,1
CUMDNALT, )= CUMDEN(TI,1)/(L EAINC(I)‘LAMDA)
VOLUMDCT 1= PITRDIR(I,J)**2*WFTH(])
NUMDRP(I,J)= CUMDWACI,J)/(VOLUMD(L,J3*1606. 3
FRACCT,),2)= CUMDWACI.13/(1608. *KFTH(IY)
1F {FRAC(I,3,2) .LT.@&.8801) THEN
INDEXD{T,),2) =8
INCEXD{I, ), 1) =1
FRACI, 1,23 =0.000
FRA{I,],13 =1.089
ELSE IFCFRALCI,),2).GE.1) THEN
INDEXOCI,Y,2) =
INDEXD{I, ], 12 =
FRACT, I, 1) =0.a064
FRACT,,2) -1.069
ELSE
INDEXD(I,J,1) =1
INDEXD{I,),2) =1
FRALL, 1,13 =FRACCI,J), 1)
FRALI,D,Z) =FRAC{I,I,2)
ENDIF
CONTINUE
PR(I,1,1)= FRA(CI,1,1)*FRALI,2,1)
PRCI,1,2)= FRACI,1,2)*FRA{1,2,2)
PRCI,2,1)= FRA(I,1,23*FRA(I,2,1)
PRCI,2,2)= FRA{I,1,2)*FRACI,2,2)
IPR{I,1,13= IMDEXD(CI,1,1)*INDEXD(I,2,1)
IPRCI, 1,23 INDEXDCI,1,1)Y*INDEXDCI,2,2)
TPR{Y,?,1%= INREXDCL,1,23*INDEXO(I,2,1)
IPR{T,2,23= THDEXDCI,1,23*TNDEXD(T,2,2)
CONTINUE
Lo 206 I=1,1TA,1
IB(I)= B.25"EXP(-KAV(L )*LEAINE(I))
+B. 5 TEXP{-KAV(2I*LEAINCCIY)
+8.25"EXP(-KAV(3I)TLEATNC(T))
LWATR(I)= EMSSIV*SBOLTZ
*CTEMATR(ID+273.15)*%4
ESTAIR(CIVI=SATUV2Z(SNGL(TEMATIRCIY))
EAIR(I)=ESTALR(I) 1DDODEDDDDDODD

SSATRCI)=SATUDZCSMNGLL{TEMAIRCIDD)

DO Zel1 J=1,LL,1

LEAFLT(Y, )= THICKNAREAL(LL)

CONTINUE
CONTINUE

Do 15sS I=1,TTA,1
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0o 153 1-1,2,1
DO 154 K=1,2,1

IF{IPRCTI,K,2D. NE.®) THEN

TEMPLF
ESTLFF
SSLEAF

ESTLFF

(L
{1
(1
TEMPLF(I
{1
SSLEAF(I
1

[}
DLH(®3= TEMAIR(I}
ELH{1)= HT(I)}
C ELH(1)=0.6 YNO COUPLING DODEDDD

GLH(1)= 4*EMSSIV*SBOLT

*({a. 5‘(TEMPLF(I 1,K ])+TEHPLF(I 2,1,k
+273.15%

+KN/CB.5*CLEAFLT{I ,1)+LEAFLT(I, 232

DLH{1)= RABL(CI,1)
SHECI,1,K)*CESTLFF(I
~EMSSIV*SBOLTZ*(TEMP

T
I,

il

L15)%*4
73.15)%*3
LKD)

+(4%EMSSIV*SBOLTZ*
+HECT,1,K)*SSLEAFC

PR
N

FLH(l)-ELH(l)+G H(1)
ECI,1,K)*SSLEAFCI,
4‘EMSSIV‘SBDLTZ‘(TEMPLF(I,1,

e

2 334273.15)%*3

ELH(LLY = 4*EMSSIV*SBOLTZ*
(0.5*(TEMPLFCI,LL, ], K)+TEMPLF{I,LL-1,K,]))
+273,15)%"

+KW (0, 5*CLEAFLTCI,LL-1)+LEAFLTCL,LL)))

e

GLHCLL) = HT(ID

DLHCLL}= RABL(I,2)
~HE(T, 2 J)*(ESTLFF( ,2, , K-
-EMSSIV*SBDLTZ‘(TEMPLF(I,2
+(4*EMSSTIV*SBOLTZ*(TEMPLF(
+HE(CI,2,1)*SSLEAF(CI,2,],K)

el

i

)

FLHCLL) = ELHCLL)+GLHCLL)+HE(T, Z,J)‘SSLEAF(I 2 J K)
+4*EMSSIV*SBOLTZ*(T EHPLF(I 2,1 5)

ELH{LL+1)
GLHCLL+1)
FLH{LL+1)

[}
@
@
OLH{LL4+13 M

[
—_— oo

.ea
EMAIR(I}

DO 158 N=@,18,1
CBLOCK(N)
BBLOCKCN)

ABLAOCKCN)
DBLOCK(N)

158 CONTINUE

CALL THOM(CLL,LA,CBLOCK,BBLOCK ,DBLOCK,ABLOCK,TMLF)
TEMLFNCI,1,K,))=TMLF{1)

c D0 160 NW=z,LL-1,1
¢ TEMLENCI, N, 2)=THLF{N}
c168 CONTINUE

TEMLENCT,LL, 3, K)=THLF(LL)

0¢ 555 N =1,2,1
ANALGCN)=-FLHCN)*TML F(N)+GLH(N)‘TMLF(N+1)
+ELHCN)*TMLF(N-1)+DLH(N)
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CONTINUE

555

=

L1,K,1)-TEMLF
I,1,K,33-5SNGL

241

b

)3
313

(1
I,%

UP(I,1,K,12
KJ-SNGL(TEMAIR
3).6T.ESPP).GR.
T.ESPPY) THEN

ERD]

OTAE(T,K,22))
]
.6

12,3,
1.2,),K)-TEMLFN(I,
K,

i

+TOTALLCI,2,1,K)

FNCT,1,K,1))

SLINEARCI, 2,1 ,K)-FLUXUP(CI,2,],K)

MAX(MAXER
4

,ABS(TOTALL(I,2

+EUUXBTCT,?,3,K)+S0URL(T,Z,2,K)

SATUV2(TEMLFN(I,2Z,]1,K)>
SATUDZ(TEMLFN(I,2,],K))

+FLUXBTCI, 1,K,)
SATUV2CTEMLENCE,1,K,1))

ESTLFF(I,1,K,1)

ESTLFF(I,2,3,K)

SSLEAF(1,2,1,K)
ENDIF

+4YEMS

*{TEML
TOTALLCI,1,K,))=-LINE

CONTINUE

ELSE

CONTINUE

CONTINUE

CONTINUE

ITERI

ITERIa1

TOTAE(I,K,]2=TOT
ENDIF

TOTALLCI,2,],K)
MAXERR
MAXERR=MAX (MAXERR
IF (M52 _EQ.@3} THEN

INDIC=1
ENDIF
ELSE

169
15
15
155



ENDIF

(H s T NS d N AR N SRR S SR N NS S RS RE R UG RN AN SIS NS FS AN T AR TN SRS s a s Ry

[ SOLUTION BY ITERATION TO SOLVE FOR THE ABSORBED ENERGY
THE SUM OF THE LONG WAVE (7?) AND SHORT WAVE)

R e e e T e T

3 TEMAIR(@)=TEHAIR(IHA
LWPRODC@)=SOILEMSSBC TZ CTEMAIR(D)+273.15)%%4
LKLAYR{8I=LWNPRODC®)

AR LR L)
4 CALCULATION OF THE LONG WAYE UPPER BOUNDARY CONDITION

C ACCORDING TO MONTEITH (1973)

C CALCULATING THE TEWPERATURE OF THE SKY AND THE SKY

C EMSSIVITY GIVEN THE CLOUDINESS OF THE SKY (CAMBPELL 1977)
¢
C

T L L N e e e T T Y P T Y P

1.2*TEMAIR{IRA+1)-21.

TEMSKY =
CLEARS = @.65+8.007"TEMAIR(IHA+1) ! FOR A {OMPLETELY CLEAR SKY.
SKYEMS = CLEARS*(1+ ©@.1 * CLOUDH"*Z}

C SKYEWS = 1.9 icoopboDe

IF(WAYIN.EQ.1} THEN

SKYLIN = SKYEMS$*580LT2Z
*(TEMAIR(CIHA+13+273.15)**4

4 SKYLIN = SBOLTZ*{TEMSKY+273.15)"%4
ELSE
SKYLIN=RLINN
ENDIF
ITRQ=1
DO 2080 ITRO=1,58,2
DO 256 I-1,ITA
D0 251 J=1,2,1
D0 252 K=1,2,1
IFCIPRCI,K,]1).NE.®) THEN
LWLFNCI,1,K,J)= EMSSIV*SBOLTZ

1 “CTEMLFNCI,1,Kk,))+273.15)%%4
SENSHCI,1,K,1)= HTCI)
1 *CTEMLFNQT,1,K,3)-TEMATRCID)

TF (M$2.EQ.8) THEN

ESTLF(I,1,K,1)
1 SATUVZ(TEMLFN(I 1,K,3))
SSLEAF(I,1,K,])=
1 SATUDZ(TEMLENCT,1,K,3))
ELSE
ESTLF(I,1,K,1)=
1 SATUVZ(TEMPLF(I 1,K,137
SSLEAFCI,1,K, )=
1 SATUDZ(TEMPLF(I 1.K,1)
EWDLF
LWLFN(I,2,),K)= EMSSIV*SBOLTZ
1 *CTEMLFNCI,Z,1,K)+273.15)*%4
SENSHCIL,Z,J,K)= HT(CIL)
1 *(TEMLFN(I,2,3,K)-TEMAIRCI))

IF (MS2.EQ.0) THEN

ESTLF{I,2,1,K)=
1 SATUVZ(TEMLFN(I 2,1,K))
SSLEAFCI,Z,),K)=
1 SATUDZ(TEMLFN(I 2,1,K3)
ELSE
ESTLF(I,2,],K)=
1 SATUVZ(TEHPLF(I 2,3,60)
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a3 aTalakal

laXakalal

e e

R e

il

e

-

e

SSLEAF(I,Z2,J,K)=
SAIUDZ(TEHPLF(I 2,2,K2)

ENDIF

CONDUH(T, 1 K,J33 =1./RDIR{I, 1)'
(R L(IFR(I 2,2)3*PRCI, 2, 23"
CTEMLFNEI, 1,2,20- TEMLFN(I 1,K,3)
+REAL(IPR(I 2,1)3°PRCI, 2,1
TEMLFNCI, 1,2, 1) TEMLFM(I 1,K,1))
+REAL(IPR(I 1 2)Y*PRCT, 1, 2)*
WCTD, 1, 1 2) TEMLFN(I 1,K,1))
+REAL(IPR(I 1 1)5*
CTEMLFNCT 1, 1 J1Y-TEMLENCI,1,K, 3003

CONDUH(CI,2,],K) -1. /RDIR(I z)'

(REhL(IPR(I 2 Z))‘PR{ 2y
NCL,2, 2) TEMLFN(I Z2,1,K3)

+REAL(IPR(I 1 z)) T.1,2
NCE, 2 2 13- TEHLFN(I 2,1,K3)

+REAL(IPR(J 2 1)) (1.2,1)°
NET, 2 1 Z) TEMLFN(I 2,1,k

+REAL(IPR(I 1 133+ 1,

CTEMLFNCT, 2, 1 1) TENLFNCI,2,,K3))

CONDUNCIL, 2,2 REALCINDEXD(
“REALCINDEXD(T
*2 . *PI*RDIR(I,
*(TEMLFN{I,Z

e H

CONDUH(TI,2,1)=-CONDUH{IL,2,2

CONDUH(I,1,2)= REALCINDEXDC
*REALCINDEXDCI

1.1 RP(I, 1)
RN ENCI,1,2))

CONDUH(T,1,1)=-CONDUL(IL,1,2)

LEFLUX(I 1,K,J)= HEECI,1,
(SATUVZ(TEMLFN(I 1 K J)) EAIRCI))

LEFLUX(I 2,),K)= HEECI,2,]1,K)
CSATUVZ(TEMLFN(I 2 J K)) EATR(I))

ENERG(I,l,K,J) = lWLFN(I,l,K,J)
SENSH(I,1,K,13
TUEfLuRc, 1 1y
FLUXUP(I 1,K,1)
+RONST(I,1,K,7)

ENERG(I,Z,J,K) = LWLFN(I
ENSHCT, 2,),K3

+iEFLUX(I Z,J.K)
-FLUXBT(I 2,1,K)
+NONSTCI,2,0,K)

W2, 1,K)

ERR(CI,1, K J) RAB ( ,1)+EONDUH(I,1,K.J)
RG(I,l R ! FOR A LEAF SURFACE

ERR(I, 2, I, x) = RABLC(I, 2)+CUNDUH(I,Z,J.K)
ENERG(TI, 2,1 ,K 3 OR A LEAF SURFACE

MAXER1- MAX(MAXERL,FRR{I 1,K,1),ERRCI,2,3,K))

ELSE
CONDUHCI,1,K,J} =0.0
CONDUH{I, 2,1, K3  =0.0
LWLFNCI,1,K,)) =0.0
LWLFENCI,2,2,K) -6.0
LEFLUX{I,1,K,)) =0.0
LEFLUXCI,2,],K) =2.9

ENDIF

CONTINUE

CONTINUE

CONTINUE

CONTINUE

00 1555 ICE=1,1ITA,1l
TOTACO(IDE)=0. ¢
pe 1556 J=1,2,1
Do 1557 K-l 2
TOTACO(IDE)= TOTACD(IDE)
+REAL(CIPR{IDE,K,I))*PR(IDE

K,J)*CONDUHCIDE,
*REAL(IPR(IDE,K,J))'PR(IDE CIDE,

K J)*CONDUH
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IF (LEFLUXCIDE,J,1,K).LT.0.9) THEN
HEECIDE,),1,K) = HT{IDE)/(GAMMA*R .93}
ELSE
MEECIDE,),1,K)=HENDCIDE,J)
ENDIF
WEECIDE,),2,K)=HTCIDE)/(GAMMA®D.93)
1557 CONTINUE
1556 CONTINUE
1555 CONTINUE
D0 1280 1=1,ITA,1
LWPRODCID=C 8
Do 1ze1 1=1,2,1
NORMAN(CT,13=0.9
DO 1282 K=1,2,1
tfif?ﬁ%%’; 5"??92&22(1”(1 3,600
K)'LADMI I

+LWLFN(I 2 K )’ EAL(IPR(I J,K3)
K) LADMID(I)

]

IF{).EQ.1} THEN

NORMANCI, J)- NORMAN(I 1)
LFN{IL,), K, 1

‘REAL(IPR(I ﬁ 1))'PR(I K.1)

NCT, T,
‘REnL(IPR(I K, Z)%EFR(I K,23)

el

ELSE IF{J.EQ.2) THEN

NORMANCI, J)‘ NORMAN(I 1
+CLWLFN(T,1,K, 1)

*REA[(IPR(I 1,K3)"PR (1 1,k)
+LWLF)

K,
*REALCIPR(I, 2 K))'PR(I 2,K3)
*(1-10(1))

Ll

ERDIF
1292 CONTINUE
1201 CONTINUE
LWLAYR(IZ=LNPROD(IX*DZI(I)
1200 CONTINUE

RLDOWNCIT)= SKYLTN
DO 1408 T-I1TA-1,9,-

RLDONN({I)= RLDOWNN(I+1)}*ID(CI+1)
1 +NQ MAN(I+ .12
EQ 2.2,

C !
14989 CONTINUE

RLUP(@)= LWPROD(B)
+(1-SOTLEMI*RLDONNCOY

DL 1508 I=1,ITA,2
RLUP(I)= RLUPCI-1)*IDCTI)+NORMANCT,2)
VEQ. 2.2.22

1588 CONTINUE
CONVER=9.0
DC 1608 I=1,ITA,1

I1)¥(1-10(13)
J-NORMANCY,2) 'UEQ 2.2.23.4

RABLW{I, l) = RLUP({I-13*(1-ID(I))
1 CSYLWLAYRIID-NORMAN(I 1) ! €9 2.2.23.8

RABLW(I 2D = RLDOWN(
1 +0 5*LWLAYR(I

RABTOTCI,1) = ENESAB(CI,1)+RABLNCI,1)
C 1 "UPDATING THE ABSORBED RADIATION
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RABTOT(I.,2) = ENESAB({I,2)+RABLW(I,2)
C ! UPDATING THE ABSQRBEC RACLATICN.

RABLT(I,1) = RABTOT(I,1)/LEAINC(I)
RABLTCI,2) = RABTOT(I,2)/LEAINC(I)

SUM(I,1)=0.0
SUM{T,2)=0.0

00 1601 J=1,
00 1602 K 1 2,1

IF (IPRCI,J,K).NE.®) THEN
SUM{I, 1)- SUM(I, )

1 6(I,1,1,K
1 'REAL(IPR(I 1, K))‘PR(I I,KY
SUM(CI, 2)- SUM(I 2)
1 RGCI,
1 ‘REAL(IPR(I 3], K))‘PR(I 1.K)
ENDIF
1692 CONTINYE
1601 CONTTINGE
ERR2(I,1)= RABLT(I,1)+5UM{I, 1)
ERR2(I,2)= RABLTCI,2)+SUM(I 2)
ER(I,1) = RABL(I,1)+SUM(T,1)
ER(L,2) = RABL(I,2)+SUM(T,2)
CONVER = MAX(CONVER,ERR2(T,1),ERR2(I,2))
16e9 CONTINUE
DO 1708 [<1,ITA,1
Do 1701 J=1,2,1
C IF ((ABS(ERRZ(I 1)-ER(I,1)).GE.ESPP)
C AND.CABSCERRZCI,J)).GT.ESPPY) THEN
V T0 SEE IF THE $OLUTION IMPROVES.
IF ((ABS(RABLT(I 13- RABLCI 1)).GE.ESPP) .OR.
1 CITRQ.EQ. 1)) THE
DO 1710 IHELP= A 1
e 1711 JHE 2,1
RABL(IHELFP, JHELP)
1 =RABLT(IHELP,JHELP)
IF(MSZ.EQ.B) THEN
DO 1712 KHELP=1,2,1
DO 1713 LHELP=1,2,1
TEMPLF{THELP,JHELP KHELP,LHELP)
1 <TEMLFNCIHELP,JHELP KHELP,LHELP)
1713 CONTINUE
1712 CONTINUE
ENDIF
1711 CONTINUE
17149 CONTINUE
INDI(=2
GOTO 2508@
ENDTF
1701 CONTINUE
1704 CONTINUE
GOTO 2100
2508 CONTINUE
DO 165 I=1,ITA,1

D0 163 J1=1,2,1
D0 164 K=1 ,2,1
IF(IPR(I,K,)).KE.@) THEN
B0 179 INTERS=1,ITERI,1

ELH(EY = 8.9
GLHCE) - 8.9
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1.00
= TEMAIR(I}

ELH{1) = HTCID

GLH(1) 4YEMSSIV*SBOLTZ

*(e. 5'(TEHPLF(I 1,K,J)+TEMPLF(I,2,3,K))
+273.15

+KN/(8 . S*(LEAFLT(I,1)+LEAFLT(I,2)))

-

OLH{1} = RABL(I,1)+CONDUH(I,1,K,1)
LKL IYPCESTLRCL, 1, K, JJ-EAIR (I
OLTZ‘(TEMPLF(I 1.K;13+273. )--4

r

);2 .15)%*3
LEAF(I 1,K,1))

J
55
)
LT(I,13/DT*CHATER
)
1

n’(O

B
v
I
K

R e
MASR TV R

Ry
v e L

FLH(1)= ELK(1)sGLHC
+4*EMSSTIV*SBOLTZ
FREALCMSZI*LEAFL

J+HEECT, 1, K, 1) *SSLEAFCT,1,%, 1)
13+272,15)**3
R

e

ELH(LL) = 4*EMSSIV*SROLTZ
(@ 5*CTEMPLFCI,LL,J),K)Y+«TEMPLFCT,1,K,1))
+273.15)**
SKN/CB.S*(LEAFLT(T,LL-1)+LEAFLTLILLL))YD

e

GLHCLL) = HT(I)

RRRPRRER e
[
~
-
m
x
bl

FLHCLL) =ELHCLLD)+GLHCLL)+HEE(T,2,) K)*SSLEAF(I Z, J K3
+4‘EHSSIV‘SBDLTZ‘(TEMPLF(I mn K)+2 )
+REALCMSZ}*LEAFLT(I, LL)/DT‘(WATE

-

(LL+1)= 2.8
ClL+1)= 0.8
CLL+1)= 1.@0
CLL+1)= TEMAIR(I)
DO 161 N=@,Lis+1,1

CBLOCK(
BBLOCK(
ABLOCK(

(

N3
N3
W3
OBLOCKCN

161 CONTTINUE
1116 CONTINUE
CALL THOM(LL,LA,CBLOCK,BBLOCK,DELOCK, ABLOCK, THLF)

TEMLFNCI,1,K,1)=TMLF(1)
C DO 162 N=2z,LL-1,1
C TEMLFN{I,N,1)=TMLF(N)
c162 CONTINUE
TEMLFNCI,LL,D,K)=TMLF(LL)
DO 55 N -1,2,1

ANALGCN)=-FLHCN)*TMLF(N)}+GLHCNI*TMLF{N+1)
+ELH{K)*TMLF(N-1)+DLH(HN)

55 CONTINUE
FLUXUP(CI,1,K,))=GLH(1)*(TEMLFN{Y 1 ,K, J)-TEMLFRCI,Z,],K))
FLUXBT(I,1,K,))=-ELH{L)*(TEMLFN(I,1,K,3)-SNGLCTEMAIRCID)
SOURC(IHEEK J3=RABL(I,13+CONDUHCI,1,K,))

(I1,1,k,1)* JKLCIDTERIRCI
1K, 134273
F

e
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-
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~
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179

164
163

165

2000
21ee

]

]

o

[y

1

*(TEMLFNCI,1,K,1)-TEMPLF(I ,1,K,]1))

NONST(I,1,K,J1)=REAL(MS2)*LEAFLT(I,1)/DT*{WATER
*(TEMLFNCT,1,K,13-TEMPLFCI,1,K,1))

TOTALL( J=-LINEAR({I,1,K,])-NONST(I,1,K, 1)
2}

1,Kk,)
UXUPCT,1,K, 30 +FLUXBT(I,1,K,
URCCT,1,K,1)

FLUXUP(I,2,J,K)=GLHCZY*(TEMLFNCI, 2, ,K3-5KGLCTEMATRCI)))
FLUXBTCI,2,],K)=-ELHC2)*¢{TEMLFN{T,2,) , K)-TEMLFKCI,1,K, 1))

scunccx 2,).K)=RABL{I,2)+CONDUH{I, 2,],%)
ECT,2,),K)®CESTLF(I,2,],K)-EAIRCI})
CEMSSTV*4BOLTZSCTEMPLFCI,LL, ], K)+273.15)"*4
LTNEAR({T,2,],K)= (A*EMSSIV*SBOLTZ
*(TEMPLF(CI,LL,), K)+273.15)**3
+HEE(I,2,) ,K)*SSLEAFCI,Z,],K3)
*(TEMLFN(I, 2,3, KY-TEMPLFCI,2,],K))
NONSTCI,Z,J,K)=REALCMSZ)*LEAFLT(T,LL)/DT*CNATER
“CTEMLFEN{I, 2,1, K)-TEMPLF(I, 2,1 ,K))
TOTALL(I,Z,],K}s-LINEﬁR(I, . ,x) NONST(I 2,1,k
SFLUXUP(CT,2,3,K)+FLUXBT(I LK
+SO0URC(I,2,],K>
TOTAECI,K,3)=TOTALLCI,1,K,33+TOTALL(T,2,],K)
MAXERR=MAX({MAXERR, ABSCTOTALL(CI,1,K,1))
JABSCTOTALLCT,2,),K)), AHS(TOTAE(I K130
If (MSZ.EQ.9) THEN
TEMPLF(I,1,K,J) =TEMLFN(I,1,K,3)
TEMPLF{T,2,],K3 =TEMLFN{I,2,],K3
ESTLF(T,1,K,)) =SATUVZ(TEMLFNCI,1,K,1)3
ESTLF(T,Z,J,K) =5ATUVZCTEMLFENCI,2,),K))
SSLEAF(T,1,K,i)=SATUD2CTEMLFNCI,1,K,]1))
SSLEAF(I,2,],K)=SATUDZCTEMLFN(T,2,],K))
ENDIF
CONTINUE
ENCIF
CONTINUE
CONTINUE
CONTTNUE

MAXSH=MAXER1
MAXERR=0.0
MAXER1=0.0

CONTINUE
CORTINUE

TILL KERE
STORAG=0.2
DO 1300 I=1,ITA,1

LAYSENCI) -8.6
LAYLEF(I) -0.8
STOR(I) =0.8
LWPROD{I) =0.8
DO 1381 J 1,

Z,
DC 13@2 K-l 2,1
IF (IPRCI,K,J).NE.B) THEN

LHLFN(I 1,K,J)= EMSSIV*5BOLTZ
EMLFN(I 1,K,1)+273.153*"4

SENSH(T, 1 JK,1)= HT(ID
=CTEMLFNCI, 1, K, T)-TEMAIR(CIY)

LWLFN(I Z J K)= EMSSIV*SBOLTZ
(T FN(I Z,7,K)+4273.15)*%4

SENSH(I 2,1,K)= HI(I)
MLFN(I 2,1,K)-TEMAIR(CID))
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B

e
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e

e

ENDI

LUPROD{I)- L¥PR
LW

LAYSENCI)=LAYSENCI
+DBLEC{SENSH(T, 1,
*(FR(T,K,J)*REALC

LAYLEF(I)=LAYLE
+DBLEC{LEFL
*(PRCI,K,)

LONTIN
CONTIN

ERR3(I,1,K,J)) = RABL
ERR3(I,2,1,K} RABL(

LEFLUX(
*(SATUV

ey
P
-
me
==
—
.o
2
el ]
—

SH{

. HU

1,1)+CONDUKCT,1,K,
-EHERG(I,l,K,J) F
1,2)+couuuucr 2,

CENERG(T,2,1,K) A

MAXER1= MAX(MAXER1,ERR3({T,1,K,J),ERR3(I,2,],K))

F

UE
UE

LWLAYR(I

LAYBAL

(I

]
)

-LAYSE
-STOR(ID

STORAG=STORAG+SNGL{STORCI))
CONTINUE

TOTLE
TOTALQ

*REAL{IPR{I,K, 1))
ID(1)
*REAL(IPRLILK,1)D
e

4
wr
=
~
-
=z- To

QD{I)*D
C{RABL(
LAYLEF(

LI

@
=0.@

DO 2498 I=1TA,1,-1
SH{ID

1)

-8.0
=@.

SLC e
ERROL(I) =06.0

AVGTLF{I)- 9. S*“REAL(IPR(I,1 1))'PR(I 1 1)

(TEMLFN(I,I,1,1)+TEMLFN(I 1)

R(I,2,2)
WOTEMLENCT,1,2,'2)+TEMLENCT,Z,2,2))

TOTPROCID=PR({I,1,1)+PR{I,1,2)+PR(I,2,1)+PR(T1,2,2)
ITCTPR{I)=REAL{IPRCI,1,1))%PR{I, 1 1)

+REAL{IPR(I 1, 2))‘PR( 2)
L(TPR(T,? 1))'pn(1 2,1)
+REAL(IPR(I z, 2))"PRCT,

PO 2403 J=1,2,1

I

DO 2404 K=1,2,1

F (TPRCI,J,K}.NE.B) THEM

REMAIN{I,1,],K)=0.9
REMAINCI,2,K,1)=0.90

D

DR A LEAF SURFACE
, K)

LEAF SURFACE



2404
z403

2403

TC1 JKI=TEMLFN(T 1,] K)-TEMAIR{T)
T(1 JIY=TEMLFN(I,2,K,1)-TEMATR(I)
SENFLCI,1,3,K) =DBLECSENSHCI,1,J,KI=DZ(I)

i *PRCT,J,K)*REALCIPREL, D, KD)*L ADMID(I})
SENFL(I 2,K,1) =DBLECSENSH(I,2,K,3)*DZ{I)

1 PRCT,T,KI*REALCTPR(T, I, KI)*LADMIDCT))

LEFL(T,1,),K) =DBLE(LEFLUX(T,1,),K)*DZ{L)
7 *PR(I, I, K REALCIPRLI, D KD I*LADMIDCI})

LEFL(I 2,K,1) =DBLECLEFLUX(I,2,K,1)*DZ{I)
1 *PR (I J K)'REAL(IPR(I J, K))'LADHID(I))

REMAIN(CI,1,],K)=REMAINCI,1,],K)
-SENFL(I,1,),K)
-LEFLCI,1,0,K3

J=REMATIN(CI,Z2,K,)}
(I1,2,K,1)
1,2,K,13

,J K)+SENFL ( R
LKI*LEFLCI, 2 ,J)

e

e
- ~r

SENFL(I,1,)],
SENFL{I,2 K,

LEFLCI,1,
LEFL(I,Z,

oD e

K
L3
REMAINCI,1,)
REMAINCE,2,K

ENDIF

CONTINUE
CONTINUE

DG 2406 L=1,2,1
Do 2407 1=1,2,1
Do 2408 K=1,2,1
LTFCLEFLCI,L,),K).LT.0.0) THEN

CUMDENCY, L)=CUMDENCI, LD
1 -SNGLCLEFLCT,L,],K3)"0T

ENDIF

IF((CUMDEN(I L) 6T.9.@).AND.
1 CLEFL{I,L,2,J).G6T.08.8)3 THEN

CUMDEW(T,L)=CUMDEW(T, L)
1 SSNGLCLEFLCI,L,2,3))*DT

CUMDEW(I,L)=AMAX1(CUMDEW{I, L),0.)
ENDIF

CONTINUE
CONTINUE
CONTINUE

ERROL{I)=R
1 -SNGLCSHCT

CONTINUE

ABTOT(I,1)+RABTOT(I,2)
3)-SNGL ( LCID3-LWLAYR(ID

0o 2211 I=1,1
DD 2212 J=1

) = CUMDEW(I,1)/LAMDA
3= CUMDEWCI,J)/CLEAINCCID*LAMDA)
Y= CUMDWACI,J}/(1000.4WFTH(I))

- FRAC{ILIZ)

IF (FRACCI,J,2).6T7.1.) THEN

DRIPCYI,I)

NAMOUN(I 1
1 SLEATNC{T)*

J)*l@ﬂﬁ
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.GT.@.08021) THER
R(I,J J
CI,1)/VOLUMECT, )

RDIRCI,JI)**Z*WFTH(1)
aCl, I,

=1.8-FRAC(I,], 2)

=FRAC(I,J],1)
=FRACL,J,2)

?
=0.0

CUMDW

PI*

TO DROP RUN OFF FROM THE SURFACE

THERE WILL STILL BE A DRIP DUE

INDEXDCI,), 1)

ELSE If (FRAC(I,),2)
ELSE

ENDIF

VOLUMN{I,J)
NUMDRP{I, 1)

CONTINUE
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CTONTINUE
CONTINUE
WRITE(26,*)
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JLAYSENCI) ,LAYLEF(CI) ,STORCI),LWLAYR{I),LAYBAL(I)

3e0® CONTI
WRITE(
WRITE(

[aXatala¥alalsl
=
o
-
-

"ENERER" ,ENERER
ENDIF
M52=1

RETURN
END

[S44ddddisdidaqdqasqaasqaqqaquqdaaqsdasgaqsssadeqqsaadiddidssdaddqqaqqqqssqasaqqsdassqaqqads

SUBROUTINE PLARTCINI,
oT,011,
RADIUS,RADIUZ, LV, KWNATER,
SL,ROOTRS,
PsisoL,
TOTUP, F RTIME ,START,DAYNUM)
[ 44 ddddddddddddddddddidddddddddsdiddidadddddiddddddqaddadddddnddqddddddddadddddddds
IMPLICIT NONE
INTEGER INI
$SINCLUDE: ACONST.FOR/L
SINCLUDE: ALIMIT.FOR/L
SINCLUDE: ABLANK.FOR/L
SINCLUDE: APLANT.FOR/L
SAVE/ APLANT/
REAL*3 SL{I8B:IH)
REAL DT,DT1
RADIUSCIS 0) RADIUZCIB:9),LV(IB:8), KNATERCIS: @),
RODTRS(CIB:
PSISOL(IS:O)
EAL PROD
REAL F
ceeeececece
INTEGER I,],TIHL,ISL,ITER,ITRA,DAYNUM, NUMB,GITRA,GITR
REAL DOSMO(IS ITB,0:5) ! change in osotic potential
REAL QR{IS:8)
REAL PSIXYT(IS ITB,8:5)
REAL AVG(IS:TH,@:4)

REAL C€DX{1:IH,1:5)

< ! The coupling coefficients for water flow within the plant, the ends of the word:
C ! (s) south, {N) north, E (east), W (west), (V) vertical, H {horizontal,and the
< ! beginning letters E, G and F are defined in the same way as 4.2.74 but
c ' for water flow within the plant. 0O is the constant term in the discretized
4 ! equaticon.

REAL*3 EPS{IS:ITB,@:5)

{IS:

REAL*3 FPV{IS:ITB,@:5}

REAL*8 DPV(IS:ITB,0:5)

REAL*8 EPW(IS:ITB,®:5)

REAL*8 GPE(CIS:ITB,0:5)

REAL*3 FPH(CIS:1TEB,8:5)

REAL*8 DPH(IS:ITE,9:5)

REAL*8 ALXV(IS:ITB)

REAL*8 AUXL{IS:ITB)

REAL*8 CBLOCK(IS:ITEB)

REAL*3 BBLOCK(CIS:ITB)

REAL*2 DBLOCK(CIS:ITB)

REAL*R ABLOCK(IS:ITE)

REAL ERROR(IS:IH,B:5)

REAL ALPHAP
B

REAL TOTUFP

REAL TOTUPL

REAL FRARUP(IB:8)

REAL ERRMAX 6 ERRMACG

REAL DIFFER(IS ITB,0:5}

REAL CONVER,CRITR, RATIOX ERRSO
INTEGER M52,MS1, MAXIT
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REAL TIME, START
CHARALTER T

[qidandadaqqaqadqagaqqaqadisasdqadsiigasqqgqaaddqdqqaqaqesqqqqadasqqasdasqasasds
START OF TH CALCULATION
[ddddidaddddqqasisadidagadadidasddadididdfdgsdsqdddadasasdaaigdagagdaagdgagg s

$SINCLUDE:¥YALUES.DAT/L

RATIOX=0.03
ERRS0=2.0
ALPHAP=-1.4E-18
B= 4E-9

T=CHAR(9)

MS2=1

MS1l=1l

MAXITR=40
NUMB=INT{DT/DT1)

IF (CCABS{TIME-START)) . LT.8.5).AND.(DAYNUM.EQ.238))THEN
H5Z2=8

Hs51=0
HMAXITR=30

la¥alalaXataTal

ENDIF

IF (INI .EQ. @) THEN
H52=0
H51=1
H.XITR=30
AR(®,0) = PI*(BASEDI)**2/4*RATICX
=g
D0 19 I=ISA+1,ITA+1,1
IF (I .LE. @) THEN
AR{I-1,1) = AR(®
ARCI, 1) -(f XP(
EX
ELSE
AR(I,1) = AR(@,0)"
(CUM LAI(I)+G 10*Z{IX/EZ(ITA))
/Cumiaide

AR(I,z) = ARCI-1,))-ARCI,JD
AVG(I J)= (AR(I-1,))+AR(I, J)}/Z

=

ENDIF
10 CONTINUE
DO 28 Tel,TTA+1,1
CDX(I,1)=0X(I,83}

Do 36 1-2,5,1

CDX(I,13=C0X(T,1-1)+DX{I,01-1)
ARCT,1)=AR(I,1)
AVG(I, -1)=ARCI,1)

\ THAT DEPENDS ON

* THE DISTRIBUTION OF THE LEAF AREA ALONG THE BRANCH
J=ARCI,1)*(1-COX(I, J)/TnTDx(l))
3-1)=CARCI, I-1)+ARET, 135/2.

! IN THIS CASE A DIFFERENT DISTRIBUTION OF THE

! SINK TERM FOR H2z0 WILL BE GIVEN.

o =T

AnAN AN
»
<
o
~
-

38 CONTINUE
20 CONTINUE

ENDIF
l=0

ITER=0
CRITR=1.0E-19

ERRMAG=0.0
NATERF=0.0
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1801

TOTUP=B.@
TOTUPL=8.0

PO 1801 GITR=ISA4+1,0,1
ROOTUP(GITR}=0.80
CONTINUE
D0 1900 GITRA=1,NUMB,1
EPS(ISA,])

By Luw

ERR50=0.0

}=0

ERRMAX=0.0@

DO 180 T=I5A+1,ITA,1

EPS(I, J) = AR(CI-1,J137AR(D, GJ'KXYLUM(I 1,13
£{0.5*(DZ{I- 1)+DZ{I) b)

GPNC(I, J) -AR(I J)/ARCO,BITKXYLUMCI,))
(@.5* (DZ(I}+DZ(I+1))

IF (I.6GT.@) THEN
IF CITER.EQ.8) THEN

)

DPV(I,J) = PSIXYLCI,1,13/RLS{I)
¢I,1,1)/RS(L,1)

+REA (MSl) * PSIS

1,
JCELASTI(I )+05HUTI(I.],1})
* DZ(I)/DTI‘PSIXYL(I.J bJ

ELSE

DPV(I,))=PSIXYL(T,),2)/RLS(I)
PSISCT,J),1)/RS(TI, 1)

+REAL(MS1

2

+REALCMS2)* AVG{I,))
ZCELASTI(CI, 1)+0SMOTI(I,), 1))
*DZ(1)/DTA*PSIXYL(I,],1)

ENDIF
FPV(I,1)= EPS{I,J)+GPN(T, 2}

1. /RLSCID+REALCMSL Y"1, /RS(T,))
+AVGCT,))/CELASTICT, 1)+05MOTI(T,],1))
*REALCMS2)*DI(I1)/DT1

ELSE

IF((ITER.EQ.8).OR. (INI.EQ.D®)) THEN

CONTRS(I)=0.9
SOILRS(I)=0.0

ELSE

EKDIF

'THEY HAVE TC BE GLOBAL
THEY HAVE TC BE GLOBAL

&
~Am

| contact resistance iszere

I eq. 4.5.12 Gardner (1968&)

6
CONTRS(I}))
1)/RS(T, J)
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1e9

laXalalal

[aTaal

159

254

+REALCMS1)*2/RSCT, J)+REALCMS2Z)*ARLI ,))
JCELASTICI,1)+0SMOTICI, ], 1))
“pZ{I)/DT1

ENDTF

CBLOCKCI) =EPSCI,J)

BBLOCK(1) =GPNCI, )

ABLOCK(I) =FPV¥(I, 1)

DBLOCK(I) =BPV(I, 1)

CONTINUE

RSCITA+1,3}) SHOULD BE VERY LARGE

EPSCITA+L,J)= KXYLUMCITA,J2/(2.5%D2(ITA))

GPN(ITA+%,]2=9.0

DPV{ITA+1,3)=REAL{MS2I"ARCITA+1, 1)/ (ELASTI(ITA+1,1)
+0SMOTI(TITA+L,],
*9.81/BTL*PSIXRYL(ITASL,],1)

DPV(ITA+1,))= 0.0+PSISCITA+1,],13/RSCITA+1,)}
+ARCITA+1,))/(ELASTICITA+1,1)
+0SMOTICITA+1,3,1))

* @.91/DTI*PSIXYL(ITA,),1)

FPY{ITA+1,})= @.0+1/RS{ITA+1,)3 + EPS{ITA+1,))+GPN(ITA+1,2)

+AR{ITA+1,1)/ (ELASTI(ITA+1 1)+USMOTI(ITA+1 J,13)
* 08.01/0T1

FPY(ITA+1,1)= EPS{ITA+1,J)+0GF (IT 1)
+REAL(MSZ)*AR(ITA+L,))/(E ASTI(ITA+1 1)
+0SMOTI(ITA+1,],10)
* 9.81/D71

CBLOCK(ITA+1) = EPSCITA+1,1)
BBLOCK(ITA+1) = GPNCITA+1,1)
ABLOCKCITA+1Y = FPV(ITA+1,1)

DELOCKCTTA+1Y = DPVCITA+1,3)
CALL THOM{ITA,ISA,CBLOCK,BELOCK,DBLOCK,ABLOCK, AULXY)
IF (M52.EQ.8) THEN
PSINYTCITA+1,8) = PSIXYL(ITA+1,0,1)
ELSE IF (ITER.EQ.8) THEN

PSIXYT(ITA+1,8) =0.0

ELSE
PSIXYT(ITA+1,8)=PSIXYL(ITA+1,0,2)

ENDIF

PSIXYLCTIS5A,0,2)=REALCAUXVCISAY)

PSIXYL(ITA+1,8,2)=REAL nuxv<17n+1)}

DIFFERCITA+1,8) = PSIAYL(ITA+1,@,2)-PSIXYT(ITA+1,d]
DO 158 T-TSA+1,ITA
IF (M$Z.EQ.®) THEN
PSIXYTCL,3) = PSIXYL(I,J,1)
ELSE IF (ITER,EQ.8) THEN
PSIXYT(I,]) =0.0
ELSE
PSIXYT(I,))=PSIXYL(I,J,2)
ENDIF
PSIXYL(T,1,2) = REALCAUXV(ID)
ERROR(I.J) - —FPV(I,J)'PSIXYL(I 1,2)
PSCI,I)*PSTIXYLCI-1, 1,23
fGPM(I I3*PSIXYLCI+1, ] LZ3+DPV(T, 1)
DIFFERCI,1)= PSIXYL(I,),2)-PSIXYTCI,])
E:n?o.unxcsan53“5553:??73§§S(°IFFER(1 $3223
CONTINGE
ITER=1

DO 36 1=1,1ITA,1



EPN(I,@} = 8.8
GPE(I,0) = 8.@
DPH(I,B) = PSIXYL(I,e,2}
FPH(I,@) = 1.00

CBLOCKCO) =EPW(
BBLOCKCO) =GPEC
DBLOCKCG) =DPH(
ABLOCK(®) =FPHC

0O 280 1=1,5,1

EEI]

IF C1.EQ.5) THEN

EPW(T, )= KXYLUM{I,1}/(0.5*CDXCI,)-1)+DX{1,1)))
GPECT, )= 0.0

ELSE
EPW(I,J)= KXYLUMCI,))/(0.5*C0XCI,1-1)+DX{T,133)

GPE(I,))= KXYLUM({I,J)+1)
s(e.5* {DX(I J3+0X(T, 3+132)

ENDIF
IF (1.EQ.1) THEN
EPN(I,3)=1./(BRANCNCID*RLSCID)
DPK(I,J)=AR(CI, 1)
/(EL STI(CI,1)+0SMOTICI,),1))
*REAL{MS2)*DX(I .J}fDTl'PSIxYL(I J,1)
+REALCMSLIY*PSISCT, I, 1)/RS(CTI,T)

FPHCIL, 2)=EPWCI,J)+GPECT,3)
+ARCI,)

FCELASTICT, 1)+05HOTI(I 1,133
*REAL(MS2)"0DX(I1,J)/D
+REAL(MS1)"1./R (I,J)

ELSE IF (J.LT.5) THEN

DPHCI, ]) AR(I,J
ZCEL

ASTI(I,1 )+05MDTI(I, . 3)

]
*REAL{MS2)*DX(I, ) ) DTI*PSIXYL{I,),1)
+REAL(MSID*PSTS(I, ), 13/RS5CT,D)
FPH(T,1)=EPN(CI,))+GPE(T, J)+AR(I 1y
CEUASTICT, 1)+05MDTI(I »
FREALCMS2)*DXCT, 13707
+REAL(M51)‘1‘/RS(!,J)
ELSE
DPH(I J)=AR(I, 1)
(ELnSTI(I,1)+OSMOTI(1 3,
*REAL{MS2)*DX{T,)1)/D 1‘PSIXYL([ J 1)
+REAL(MSL)*PSIS(I,),1)/RS{I,1)
-AMAX1I(SNGLCSL{I)),n.@)
/CLAMDA*RHO“BRANCN{I)*PLANTN)
FPHCL, »=EPNCI,J)+GPECT,J)+«ARLI, D)}/
(ELASTI(I.I)fOSMOTI(I,J,1))
SREALCMS2}*0X(I,1)/0T1
+REALCMS1)*1./RS(CI, 1)
ENDIF
CBLOCK(J) =EPW(I,K J)
BBLOCK()) =GPE(CI,])
DBLOCKCI) =DPH(I, )
ABLOCK{)) =FPH{I,J)
CONTINUE

CALL THOM (IHL,ISL,CBLOCK,BBLOCK,DBLOCK,ABLOCK,AUXL)

00 250 1=1,5,1
If (M$2.EQ.83 THEN
PSIXYT(I,J)) = PSIXYL(I,]1,1)
ELSE IF (ITER.EQ.Q) THEN
PSIXYT(I,)) =0.0
ELSE
PSIXYTCI,1)=PSIXYL(T,},2)
ENDIF
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J=REALCAUXLY
- PSIXYLCI,
XCERRMAX, ABS

=N
~aa

258 CONTINUE

00 251 J=1,4,1

ERRSO=MAX(ERRSO,ERROR(I,J)D

251 CONTINUE
100 CONTINVE
IF (ERRMAX .LT. CRITR) THEN
G0 TO 5@@
ENDIF
IF C{ERRMAX.GE.CRITR}.AND.(MSZ.EQ.0)) THEN
1-8
DO 201 I1-1SA+1,ITA,1
PSTXYLCI,J,1)=PSTXYL{T,],2)

CA(T,)) =VOLUME(I,J)
1 /(ELAST[(I 2)+OSMOTI(I 3,13

PSIS(I,,2)=PSI5(I ,1)
1AERCT, 137 (PSIXKYLCE, 1,2)-PSISCI, ), 1))
*1/RSCI, 1)
C PSIS{I,],13 =PSIS(I,J1,2)
01 CONTINUE
DO 458 T=1,ITA,1

00 19004 J=1,5,1

PSTAYLCT, 2, 1)=PSTXYL(T,],2)
CACT, 1) =VOLUMECT, 1)/ CELASTI(CL, 23
+0SMOTICI, 3, 13)
PSISCI,],23=PSISCI,3,1)
A1/CACT, 3y *gpsTivicE, 1, 23-pP515¢T, 1,10
*1/RS{I,1)
¢ PSIS(I,],1)=PSIS(I,],2)
1694 CONTINUE
459 CONTINUE
ENDIF
490 COMTIMUE
5e9 CONTINUE

WATERF - WATERF-GPN(C®,0)}*(PSIXYL(1,0,2)-PSIXYL(®,8,2))
*PLANTN/CUMLAI(CE)

qsqsedasasgdesquaqassasdddaqagsddaddadsdddddqdddddadddd s A S d A
C CALCULATION OF THE NEW VARIABLES
[Hdqsqaasqaqqidqdqasqassdesdiddisdaddddsddddsdddada st dddd sS4 q <4
1=0
DO 69@ I=ISA+1,ITA,1l
CA{L, 1) =VOLUME(I,J)/CELASTI(I,2)+0SMOTI(I,],1)>
VOLMEN(I J)=VOLUME(I J)+(PSIXYL(I 1,2)-PSI5¢(T,2,1)3
L(MS13"1. IRSC 1)
DOSMO(CI,))= REAL(MSl)'DTl’
(PSIXYL(I,),2)-PSIS(TI,]1,1))
F(RSCI, J)‘VOLUME(I J))

< STILL SOMTHING IS MISSING
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OSHMOTI(T,1,2)=0SHMOTICI, ,1)+D0SMO{T,])

CANCI, 1) =VOLMENCI, 3)/CELASTI(CI,2)+0SMOTI(I,],2))
TIMEPL(I,J)= CA(CL,3)*RS(I,)
IF (MS2.£Q.1) THEN
PSIS(I,),2)=PSIS(I, ), 1)
+1/CACT, I3+ (PSIXYL(CI,),23-PSTISCT,1,13)
*1/RS(I,)
ENDIF
Gea CONTINUE

DO 7eé@ I=1,ITA,1
0o 759 J=1,5,1

CALI,)) =VOLUME(CI, 23 /CELASTI(I,2)
+0OSMETI(I,],1))

VOLMENCL, I1)=VOLUME(T, 1)
+REAL(MS1)
*(PSIXYL(T,,2)-PSIS{T,3,1))
*1/RS(I,1)

DOSMO(CT,))=REAL{MS51)*DT1"
SIXYLCL,2,2)-PSXS(I,J,1233
ZFCRSCILI)®VOLUMECI, 1))

OSMDTI(1,J,2)=05M0TI(1,],1)
+DOSMO(T, 1)

CAN{I,D) =VOLHEN(I,l3/
(ELASTI{I,2)+0SMOTI(I,J,2))

TIMEPL(I,3)= CA(I,J}*R5(I,1)
IF(MS2.EQ.B) THEN
PS5I5(I,J,2)=PSIS(I,),1)
+1/7CA

1,12
*(PSIXYLCI,,2)-PSTIS(T,,12))
*1/RS5(I1,3)

ENGIF
750 CONTIRUE
789 CONTINUE

DO 890 [=I34+1,0,1

ROOTUP(CI)=ROOTUP(I)
+(PSTISOLCT)*RHO*GR/1BEG-PSIXYL(T,®,2))
/(ROOTRSCID+SOILRS(II+CONTRS(TD)
TOTUP=TOTUP+ROOTUPCI)
TOTUPL=TOTUPL+AMAXL{ROCTUP(I), 0.8
see CONTINUE
)-8
DC 960 I=ISA,ITA+1,1

PSIXYL(I, ,1)=PSIXYL(I,), 2)
PSIS(CI,J), 1) =PSIS(I,],2)

90¢ CONTINUE
DO 950 I=1,ITA,1
DO 1060 J=1,5,1

PSIXYL{I,J,1)=PSIXYLCI,],2)
PSIS(I,),1)=PSI5CI,],2)

le0e CONTINUE
950 CONTINUE
M52=1
MS1=1
MAXITR=48

ERRMAG=AMAX1(ERRMAX,ERRMAG)
1909 CONTINUE
PROD = 9.0
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DO 810 I=I5A+1,6,1

FRARUP(I) « AMAXICROOTUP(IZ,P.0)/TOTUPL
PROD = PROD + FRARUP(CI)*ALPH P PSISOL{TISA)
1 *RHO*GR

ROOTUP(I)=RODTUR{I)/REAL(NUMB)
214 CONTIHYE
IF (WATERF.LT.@.83 THEN
ABACCN =0.9
ELSE
ABACON=PROD/(AMAX1{(WATERF/REAL(NUMB)) ,0.0)+8)
ENDIF
IF ((ERRMAX.GE.CRITR)) THEN

WRITE{*,*) 'AN ERROR WITH THE CONVERGENCE',
*"OF YHE PLANT WATER MOVEMENT'

WRITEC®, )" ERAMAX,ERRMAG = ' ERRMAX,ERRMAG

WRITEC*,*

WRITEC*.*)" ERRSO= ' ERRSO

WRITEC*,*)

WRITE(26,*) "AN ERROR WITH THE CONVERGENCE ',
" OF TKE PLANT WATER MOVEMEN

WRITE(26,%)" ERRMAX= EnnnAx

WRITE(26,"

WRITE(26,%)’ ERRSG= ', ERRSO

WRITE(26.%)

u

ENCIF
INI=1
3000 CONTINUE

RETURN
END

{4344 1qdaqddaqidsdaddsddsdatdddddididsdaididssaddsiiddddsdddddadadsdddssssddidsdq4a44q 444

SUBROUTINE RESISCITRM,ITRA, FLAG,
LEFL, RCUTT,
GRASH,NU,REYNDL, NUFORC, NUFREE,
LIGHT,UNEW, GAMMAT FG,AYGTLF,
RE,RST,RLEAF, CUMDEN,
HT,HE,HEND, POR ,VGAS |
PSIS, TIME,ABACONK)

Hdddgdisdgsqadiddassqsdiddgdiddsdadsdasdidddddqasddiaadadaadqaqisigagaadddaydaass sy gs
IMPLICIT NCNE

PRPERR-

$INCLUDE: ALIMIT.FOR/L
SINCLUDE: ABLANK.FOR/L
$INCLUDE: ACONST.FOR/L

INTEGER ITRM,ITRA,FLAG

REAL*E LEFL{IB:IH,1:2,1:2,1:2)

REAL RCUTICL:IT,Z)

REAL GRASHC®:IT),NUC@:IT),REYNOL(CO:IT)

REAL NUFORC(@:IT), NUFREECO:IT)

REAL LIGHTCO:IH,1:2),UNEWCO:LTB),GAMMAT(1:1IT

REAL FG(1:IT,1:2), AVGTLECI:IT),RBCO:IT), RST(B IT,1:2)
REAL RLEAFCLITT,1:2), CUMDEWCL IT,1:2

REAL HT(®:IT) HE(®:1T,1:2,1:2) HENDC1:1T,1:2)

REAL PORCIS:2),VGASCIS:0)

REAL PSISCIS:ITB,@:5,1:2)

REAL TIME,ABACON
CHARACTER T
INTEGER I.)
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REAL CRITE
REAL RBOL(

BC
REAL ALPHA
REAL DIFFER

-n Iﬂbﬂ

T=CHAR(2)

IFCITRM . E

ABACON

VGAS(D)
MOLF

GSMAX = 9.

RCQ:ITY
:IT)

,GSMIN DELTA,BETA,GSHAX

Q. @) THEN

eas

DO 209 I~1,ITA,1

[4 1

RCUTICT,
RCUTICT,

IF(LIGHT

1)=2000.
TIT

(I,1).67.90.0@81) THEN

f1(I, 1) 110/(1+103 FLIGHTELI, 1))

ELSE

he light function fnr stomotal resistance.

Fi¢I,1) =6.0

ENDIF
IFCLIGHT

(I,2).GT. B.2901) THEN

F1(I,2)=1.0/(2+1008./LIGHT{T, b2}

ELSE

F1{I,2)=¢.0

ENDIF

IF {ITRM.

£2(1,1)=
F2(I,2)=

ELSE

F2¢I,1)=
F2(I,2)=

ENDIF

F

GT.@) THEN

EXP(-BETA*ABACON*EXP{DELTA* P5S
EXP{-BETATABACON*EXP(DELTA™ PS
! The second term in eq. 4.

-

EXP(-BETA*ABACON*EXP(DELTA* PSISCI,5,13))
EXP(-BETA*ABACON*EXPCDELTA* PSISCI,5,1)))
= GSMIN+(GSMAX-GSMINY*F1(I,1)*F2¢I,1)

= GSMIN«(GSMAX-GSMINY*F1{I,2)*F2(1,23
=1./65¢1,1)

=1./G5CI,25

,1)=65C1I, 1)+1/RCUT (1,13

L25=G5CT, 23+1/RCUTICT, 2)

1)=1./LCONDUCI,1)

2)=1./LCONDUCI, 2)

J= UNEW{I)*DLEAF/ETA

CLE F*(DLEAF/UNENCI)}I**(0.5)

{ITRM.EQ.B8) THEN

NU(L) = 1.068%@ B9*REYNOL(I)**9.5

Look at Monteith & Unsworth (1998) and Gates {(19398)
ELSE

DIFFER = AVGTLF{I)-SNGLCTEMAIRCID)

GRASH(I) = GR * DIFFER
LEAF"B/(Z?B‘ETA"Z)

CRITER(CID = GRASH{ID/REYNDLCID®**2
NUFORCCI) = 1.88%0,.89* REYNOLCID**@.5
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IF {GRASH{I).LT.1@ES5) THEN

HUFREE(I) = ©.40*(ABSCGRASH(I))*@.7)**0.25
ELSE

NUFREECI) = @.13*GRASH(I)"*0.33

ENDIF

IF (CRITER{IY.GE.16.) THEN

NUCI) = NUFREE(CI)

ELSETIF ({CRITER(CID.LT.16.).AND.

1 (CRITERCT).GT.8.1)) THEN
NUCI) =AMAXICNUFREE{I}, MUFORCCID)
ELSE
NUCI)= NUFORCCID
ENDIF
ENDIF

RB{I)= DLEAF/(DIFF*NU(I})
HT{I)=P{P/RB(I)
HECI,1,13=PCP/{GAMMA*{@ 93*RE(T
HECI,2,1)=PCP/(GAMMA*(Q.93*RB(]
4
C

HECI,1,2)=PCP/(GAMMA®O .93 *RB
HECI.2,25~PCP/(GAMMA®0.33*RB

- - f‘n"\

DC 282 J=1,2,1
HEND(I,1)=HECI,],1)
282 CONTINUE
200 CONTINUE
REYNOLC@)= UNEW(C1)*DCLODS/ETA
IFCITRM.EQ.@) THEN
RB(B)=CSOILR*(DCLOGS/UNEW(1))**(@.5)

ELSE
DIFFER =TEMAIR(E)-TEMAIR({1)
GRASH(a) = GR*DIFFE

1 Lons'*z/(273-era-~2)

CRITER(B) = GRASH{B)/REYNOL({B}**2

HUFORC(®) = 1.08%0.89* REYNOL(@)**0.5
IF (DIFFER.LT.®.e) THEN

NUFREE{®) = ©.23% (ABS(GRASH(@)))**0.Z5
ELSEIF {DIFFER.EQ.©.9) THEN

DIFFER =8.
GRASHKH(®R)= GR‘DIFFER‘DCLODS"i/(Z?S‘ETA"Z)

NUFREE(®) = @.5 * (ABS(GRASH(®)J)**9.25

ELSEIF (GRASH({®).LE.18E5) THEN

NUFREE(®) = 0.5 ¥ GRASH(0)**9.25
ELSE

NUFREE(®) =9.13*GRASH{©®)**0.33
ENDIF

IF (CRITER(®).GE.16.) THEN

HU(®) = HUFREE(®)

ELSEIF {(CRITERCB) L7.16.3.
1 (CRITER({®).GT. G 1))THEN

NUC®Y =AMAXL{NUFREEC®),NUFORC{O))
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ELSE
NUC@)= NUFORC{®)

ENDIF
RR(@)= DCLBOS/(CIFF*NUCB3)
ENDIF
HT(@)=PCP/RB(E)
c RST(D,2)=1000000
RSTC@.2)= DZ(@)/VAPDIF*VGAS(B)**(6./3.)/PORCO)**2
HECS,1,2)=PCP/(GAMMA™(@.93"RB(0)+RST(D,2))2
RETURN
END

(444444 didddd s dsddadddddidd i dddddddifadddddddddsddddaddaddddiddddsddddadqsqaqaaqaaqs

SUBROUTINE FLUX{FLAG,
TEMAIN, EALRKW NCO2,
STORAH, SH, 5L, SINK,
STORAV,STORAC,
PCSOIL, VGA
ToTaLQ, TOTLE TUTASE TOTASQ, SOILLE,
DT, TIMEW, SOILRN)

[ddddddqdiddiddaddddddesdgdddddddqdiddddiddadadaddddaddddqsqaidiqdqqaaqiqaqadqaqida sy
IMPLICIT NONE

$INCLUDE:ALIMIT.FOR/L

SINCLUDE:ABLANK.FOR/L

$INCLUDE:AFLUX.FOR/L

$INCLUDE:ACOEFF.FOR/L

STINCLUDE:ACONST.FOR/L
SAVE JACFLUX/,/ACOEFF/
INTEGER FLAG

REAL*8 TEMAIN(IS:TTE),FATRNW(TS:ITB),NCO2(IS:ITB),

1 STORAHCIS:INH),

1 SHCIB:IH),SLCIB:TH)
REAL STORAV(IS:IH),STORAC(CIS:IHD,

1 PCSOIL (IS:8),VGAS(CIS:0),

1 DSDT(IS:IH),SINK(IB:IH)
REAL TOTALQ,TOTLE,TOTASE,TOTASQ,SOILLE
REAL SCILRN
REAL DT, TIMEW
CHARACTER T

ceeeeceee

INTEGER T
SINCLUDE: VALUES.DAT/L
T=CHAR(®)
IF (CFLAG. EQ. ©).0R.(FLAG.EQ.1).0R.CFLAG.EQ.2))THEN
DO 1581 I=ISA+1,IHA,1

MMDE(I)-= FHCID*TEMAINCID+GHCID*TEMAINCI+1)
+EHCI)*TEMAINCI-1)+DH(I)

AMELOG(I)=-FLECI)*FAIRNW(I)+GLECT)*EAIRNWCI+1)
+ELECTI"EATRNN(I-1)+DLECT)

ANACOZ2(I)=-FLOZCI)*NCO2{ID+GCO02(ID*NCO2(TI+1)
+ECOZCII*NCO2(I-1)+0C02(1)

FLUXHT(ID)= GHCI)Y*(TEMAINCI)-TEMAINCI+1))
FLUXVTCI)= GLECI)®CEATRNW(I)-EATRNW(I+1))
FLUXCTCI)= GCOZCIN®(NCOZ{I) NCO2{I+1})
FLUXHBCID= EHC{T) *(TEMAIN{I-1)-TEMAIN(I})
FLUXVB(T)= FELECT) *CEAIRNN{I-13-EAIRNNCID)
FLUXCBCI)= ECO2(CID*CNCO2(T-1)-NCO2CIY)
DELTT(I}=CTEMAINCID-TEMATIR(I))
DELTY(I}=CEAIRNNCI)-EAIR(I)]
DELTCCLD=CNCD2(T)-C02CONC1))
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IF (I. LE.®) THEN

STORAH({I)= PCSOIL{IX*DZCI)*DELTTCI}/DT
STORAV(I)- PCF/GAMMA’DZ(I)‘VGAS(I}

1 *DELTV(I)
STORAC{I)= VGAS(I)'DZ(I)‘DELT((I)/DT

ELSE
STORAHCI)= PCP*DZCIN*
STORAV(ID= PCP/GANMA®
STORACCI)= DZCID*DELT

ENDIF

DELTTCID/CT
DZCIX*DELTV{I>/DT
C(I¥/0T
ENERLH{I)=FLUXHB{I)-FLUXHT{I}+SH(I)-STORAH(I)
ENERLE{I}=FLUXVB{I)-FLUXYT{I)+SL(I)-STORAV(I)
ENERLCCIX=FLUXCB(ID-FLUXCT{I)-SINK(ID}/1.833-5

TORAC(I)
IFCI.EQ.1) THEN
EWERLECII=FLUXVBCI)-FLUXVT{ID+SOILLE+SLCI)-STORAHCID
ENDIF

IFCI.EQ. @) THEN

ENERLHCI)=FLUXHB(I)-FLUXHTC(I)+SHCIX-STORAH(I)
+50ILRN

ENDIF

{FLXHT(I)= FLUXHTCI}*DY
CFLXVT{I)= FLUXVT{I}*DT
CFLXCT(I)= FLUXCT{I)®*DT

CFLXHB(I)= FLUXHB(I)"DT

CFLXVB(I)= FLUAXVB(I)*DT

CFLXCBCI)= FLUXCB(I)*DT
FLOIVHCID=CFLUXHB(I)-FLUXHT(I)D*DT
FLDIVY(CI)=CFLUXVBCID-FLUXVT(I)Z®DT
FLOIVCCI)=(FLUXCB(I)-FLUXCT(I)D"DTY
CHCDPT(I)= FLDIVH{I}+SH(I)*OT
DVYCDT(I3= FLDIVV(I)+SL{I) *DT

IFCI.EQ.1) THEN

DVCOTCI)= FLDIVVCID+SLCIZ*DT+S0ILLE*DY
ENDIF
IF (I. EQ. 93 THEN

DHCDT(I)= FLODIVH{ID+SH{I)*DT +SOLLRN*DT
ENDIF
DCCDTC(ID= FLRPIVC(I)-SINK(IDX*DT/1. 833
IF {I.GT.@) THEN

DELTEM(I)= DHCDI(I/(PCP*DZ(I))
DELVPR(ID= OVCDTCI}/(PLP/GAMMA®DZ(I))
DELCO2(T}= DCCDTCIR/02(I)

ELSE
DELTEM(I)= CHCDT(I)/{PCSOILCID*DZICIY)
DELVPRCI)= DVCDT({I)/(PCP/GAMNMA*DZ(IJ*VGASCI))
PELCOZCI)= DCCDTCIN/COZCII*VEAS(I))

ENDIF

IF {I.GT.@) THEN
CELTTECI)=PCP*DZ(I)*DELTT(ID
DELTVECI)=PCP/GAMNA*DZ(ID*DELTV(I)
PELTCE(I)=DZCID*DELTCCI)

ELSE
DELTTECI}=P(SOLLCID*DZ(I)*0DELTT(I)
CELTVECI )mPCP/GAMMATDZC(I)*VGAS{I}*DELTV{I)
DELTLECI)=DZ{TI)}*VYGAS{I)*DELTCCI)

ENDIF
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STORTH=STORTH+DELTTE(I)
STORTV=STORTV+DELTVE(I)
STORTC=STORTC+DELTCE(I)
STORHT=STORHT +DHCOT{I)
STORVT=STORVT+DVCDT(T)
STORCT=STORCT+DCCOT(T)

1501 CONTINUE

STOREH=0.0
STOREV=0.0
STOREC=0.40
STORHC=¢.0
STORV(=-0.0
STORCC=0.0

DO 1502 I=1,IHA,1

STOREH=STOREH+DELTTE(I)
STOREV=STOREV+DELTVECI)
STCREC=STOREC+DELTCE(CI)
STORHC=STORHC+DHCDT
STCRVC=STORVC+DVIDT

T

¢
¢
(
1
1
STORCC=STORCC+DCCDT(T

£
E
3
[S.9]
CI)
(& 9]
1502  CONTINWUE
STORH=STOREH/DT

STORV=STOREV/DT
STCRHZ=STORHC/DT
STORVZ=STORVC/DT
ELSEIF {(FLAG. EQ. 31).0R.(FLAG.EQ.32)) THEN
NLFL5T=9.8
NLFLEV=2.8
NLFL5C=90.8

D0 1%@,I=1,IHA, 1

KLDLSTCI) = PCP*(TEMAIR({I)- TEMAIR{IHA+1)) *DZ(I)
NLDLSV(I) = PCP/GAMMA*(EAIR{I)-EAIR{IHA+1))*DZ(I)
NLDPLSCCI) = (CO2CON{I)-CO2CON{IAA+1)}*DZ(I)
MLFLST= HLFLST + NLDLST{I)
NLFLSY= HLFLSV + NLDLSV{I)
NLFLSC= NLFLSC + NLDLSC(I)

1e9 CONTINUE

ELSEIF {FLAG .EQ. 4) THEN
NLFLGT= @.0

NLFLGYV= @.9
NLFLGC= @.9

D0 28, I=1,IKA,1

NLOLGT(I) = PCP*(TEMAIR({I)- TEMAIRCIHA+1}) *0Z(I)
NLDLGV{I} = PCP/GAMMA*(CEAIR(CI)-EATR{IHA+1)>}*0Z(I)
NLDLGC(I) = (COZCON(I)-COZCONCIHA+1})*DZ(I}
NLFLGT» NLFLGT 4+ NLDLGT(I)
NLFLGV= NLFLGVY + NLDLGV(I)
KRLFLGC= NLFLGC + NLDLGCCIL)

2ae CONTINUE
ELSE

WRITE(*,*) "THERE I%$ A MISTAKE'
ENDIF

RETURN
END
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[Sesduddgadidagsddddgdidigdaddddadigsasiidddqsddadididdndqdqadaidigasdqiqidasaqadaaaqaisgg
SUBRQUTINE ROOGTDN
IMPLICIT NONWE
$INCLUDE:ALIMIT.FOR/L
$INCLUDE: ABLANK.FOR/L
$INCLUDE:ARCOTD.FOR/L
SAVE ZARQOTDN/
ceecoeeccce
INTEGER I

REAL PERCHWT(IB:B) ! percentage of rocot abave a certain layer (-)
REAL PI

CHARACTER T
T=CHAR({9}

F = 2.303/2R00T ! o coefficient for roct extinction (-2
PI = 4*ATAN(1.)

DO 100 I=ISA+1,0,1

PERCNT{I}=(L-EXP(-F*ABS(Z(I-13)))
-(1-EXP(- F'ABS(Z( 2

RDENST{I)=TROOTC*PERCNT(I) ! m roct length contained in m2 soil layer

Lv( =RDENSTCID/02(1) ! Root density as length of root per unit veluwe.
RADIU2(ID=(PI*LY(I))**(-0.5>

ROOTACI) =2*PI*RADIVUSCI)*RDENST(I)

RCOTRCCID=SROOTC*ROOTALLY

ROOTRS{I)=1. /ROCTRC(I)

10e CONTINUE
RETURN
END

[dadadidasdaidasdasaidadidddqadaididagsqsdiddddadaiqquddasdaasaaguagyaas
C

SUBRDUTINE INITAL1{UINI
ATIO,TIME, USTAR WAYIN)

[Mddisdisdaqdiddddusqsdaddidddigddisdqdasqsqsdidadddadsdddadadyadaadadudaddgs
IMPLICIT NONE

SINCLUDE: ALIMIT.FOR/L
S$INCLUDE: ABLANK.FQR/L

INTEGER 1,1,11,12
INTEGER WAYIN
REAL UINT (@:ITB)
REAL RATIO TIME,USTAR
CHARACTER

ceece
REAL CISPL,ZO
REAL AW,BA

REAL KARMENW

AL R R e T P SR R )

C CALCULATION OF THE INITIAL WIND PROFILE

C ACCORDING TO THE SUUGGESTIOQNS QF VAN BOXEL.{El-Kilani 1989)

CI-Il'#'t"-"-I-t‘“‘-'IllI‘U‘-'a'--l-Ilal%“""'--"l‘t""’.'-‘t.""'-'l-'
T=CHAR(9)

KARMER=9, 41
DISPL= @0.63 *Z(ITA)
Z0 = ©.25 " (ZCITA)-DISPL)

GINICO)= @

USTAR=(0.275*RATI0)+0.0a5

IF (WAYIN _NE. 1) THEN

USTAR= UINICIHA+1)*KARMEN/CALOGCCZCIHAY-DISPLY/ZD)Y)
DO 161 T- 1,IHA,1

UINICI) = UINICIHA+1) * ZCENTER(CID/ZZCIHA)
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101 CONTINVE
ELSE

T2-NINT(REAL(ITA}"0.80)
DG 10 I- IZ+1, IHA, 1
UINI{I) = USTAR /KARMEN * ALOG ((ZCENTER(I)-DISPL}/Z0)
10 CONTINUE
I1-NINT(REAL{ITA)"€.25)
Do 188 1= 1,11,1
UINICI) = USTAR /C1@0*KARMEN )* ALOG(ZCENTER(ID* 108)
10  CONTINUE

BA= Z(ITA)/(4%Z0* ALOG(@.25%Z(ITAY/I0))
AW =EXPC-BA)* USTAR/KARMEN ®A10G ((Z(ITA)-DISPL)/ZO)

DO 289 I-I1+1,12 ,1
UINI(I) = AWTEXP(BATZCENTER({ID/Z(ITA))
zoe CONTINUE
UINICIHA+1)=USTAR/KARMEN* ALOGC(2(TIHA)-DISPL) /203
ENOIF
RETURN
END

[Hddddegqaddddadqdidqdiddaddddysqidsisddgiaqusigsqsgagusadasqaqaquadqqqaas
C

SUBROUTINE INITCSOILTH,
ELASTI,QSMOTYT,
KXYLUM,RLS, RS,
PSIXYL,PSIS,
PSISOL,HM, DX,
VOLUME, TOTDX,
RADTUS,RDENST,
TIME,KSOIL,
SOILIND

coeoeceeoecoocaaeeceacaooceeecaoccreceecoooaoleeececocooccoocoooooeccceccc

IMPLICIT

$INCLUDE :ALTIMIT.
$INCLUDE:ABLANK.
$INCLUDE:ACONST.

NONE

FOR/L
FOR/L
FOR/L

e
-
w
—
wn
o
—

REAL TIME,K50IL

C 1 KS50TL is an ossumed soil thermal diffusivity.
CHARACTER T
REAL SATUwZ,SATUDZ X

cCgoece

INTEGER I,2

REAL AMP®, TSOILA, OMEGA,PERICD

Amplitude of the soil tewpercture wave at the soil surface in
Temperature of the soil

Cyclic frequency.

period of the wave (daily) respectively.

0c

[ataXalsl

REAL HET,VLEAF,VSTEM,CLEAFW CSTEMW
1 ,RSLEAF ,RSSTEM,RXSTEM,RROOT

“

HEI height of the plant in m

VLEAF: volume of the leaves of one plant in m
VSTEM: volume of the stem of one plant

3

fatal
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CLEFX: leaf copocitance in o Mpa-1
CSTEHW stem copoacitance in m Mpa=?
RSLEAF for one leaf in HPa s m_3
RSSTEM for whele stem MPa s m™2
RXSTEM for whale plant MPa s m™ 3
RROOT for whole root MPa s mo

AE A AN

REAL ELAST1 ELAST2,ELASTS
C ' Elosticity modulus for the xylum storage

DATA PERIOD/24.0/
T=CHAR(2)
SINCLUDE: VALUES.DAT
READ(36,*) AMPO,KSOIL,TSOILA
COZCONCIHA+1)=300.
00 380 I=THA,1,-1
TEMAIR(I}= TEMAIR(INA+1)
EAIRCI) = EAIRCIHA+1}
CG2ZCON{I3=CO2CONCIHA+L)
100 CONTINUE
OMEGA=2*PI/(PERIOD*60%60)
PSISOLCISA)=HM{ISA)+Z(ISA)
DO 428 TI-15A+1,8,1
IF (SOILIN .NE.1) THEN
READ(36,*) SOILTH(I)
ELSE
SOTLTM(I)=TSOTLA
+AMPO
TEXP(-1*COMEGA/(Z™KSOIL))*“B.5%ABS(
*SINCCOMEGA* TIME*60*6@) - COMEGA/(2*K
“ABSCZCENTERCIDDD

ENDIF

TEMAIRCID=SOILTH(I)
EATR(I)= SATUYZ(SNGL{TEMAIR(I)}D)
CO2CON{I)=400.0
PSISOL{I)=HM{TI}+ZCENTER(CID

400 CONTINUE
IF (SOILEN .NE.1) THEN

READ(36,") SOILTM{ISA)

ELSE

SOTLTH(ISA)=TS0ILA
+AMPQ
*EXP(-1*(0OMEGA/(2*KS0IL)**@.5*ABS(Z(ISA)D)

*SIN((OMEGA*TIME*6R"EQ)} - (OMEGA/(2*KSOTL})**9.5
*ABSCZCISAL))D
€ SOILTHM(ISA) =25.90

ENDIF

TEMAIRCILISA)=SOILTH(ISA)

EATR{ISA)= SATUVZ{SNGL{TEMAIR{ISA)))

COZCONCISA)=400.2

READ(36,*) HET,VLEAF, VSTEM,CLEAFW,CSTEMN,
1 RSUEAF RSSTEM RXSTEM RROOT

READ(36,*) ELAST1,ELASTZ,ELAST3

J=0
DO 5€@8 I=ISA,IHA,1

PSIXYL(I,),1)= PSISOL(ISA)*RHO*GR/1OESE
PSIS(I,J),1) = PSISOL{ISA)=RHO*GR/1QE6
O0SMOTI(I,),1)= ABS(PSISDL{ISA)'RHD‘GR/10E5~E.3)
KXYLUMCT, 1) = HEI/RXSTEM
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559
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750

7ee

601
65@

80o

ELASTICI,13=ELASTI
ELASTICI,23=ELAST2
ELASTICI,33=ELAST3

CONTINUE

DO 550 I=ISA+1,8,1
VOLUMECT,@)=PT*RADTUS(II**2*RDENST(L)

CONTINUE

DO 698 T-1,THA,1
RS(I,J) = RSSTEM*HEI/DZI(I)
VOLUME(I,® = VSTEM*CZ(I)/HEI

CONTINUE

D0 70¢ I=1,IHA,L

READ(C36,*) OX(T,8),DX(I,13
DX{T,2),0X(1,3),0X{T1,4),DX

(r,s3
pg 750 1=1,5,1
RS(I,1) =RSSTEMTHEI/DX(I,1)
CONTINUE
RLSCI)= DXCI,8)* 2.5%RXSTEM/HET
IT HAS TO BE CQRRECTED FOR THE AREA
CONTINUE
PSIXYL{TIHA+1,0,1)=PSISOL{ISAD*RHO*GR/1BES
PSIS(IHA+1,0,1) =PSISOLCISA)*RHO*GR/1@EE
OSMOTTICIHA+1,0,1)=ABS(PSISOLCISA)*“RHO*GR/1REG-8.3)
ELASTICIHA+1,1)} =ELAST1
ELASTICIHA+1,2) =ELAST2
ELASTI{IHA+1,3} =ELAST3
RSCIHA+1, @)
RLSCIHA+1)

D0 658 I=1,THA,1

TOTDX(T)=DX{T,8)+0X{T,13+0X(I,2)
+DXCT,3)4DX(I,42+DX(1,5)

DO 61 J=1,5,1

PSIXYLCI,),1)= PSISOLCISAY*RHC*GR/10F6
PSISCI, ), 1) "= PSISOL(ISAI*RHC*GR/10EB
KXYLUMCT, 1) = KXYLUM(I,B)
VOLUMECT,J) = DX(I,))/TOTDX{I)*VLEAF
*EAINC(T}/CUMLAI(
OSMOTICL,),1)=ABS(PSISOL{ISA)*RHU*GR/10EG-9.3)

CONTINUE

CONTINUE

J-e

DO 806 I=I5A,@,1
RS(I,))=100E6

CONTINUE

RETURN
END

REAL FUNCTION SATUV2(X)
IMPLICIT NONE

REAL X
SATUVZ2=610.7*EXP(17.4*1/(X+239.))
RETURN

END

REAL FUNCTICN SATUDZ2(X)

IMPLICIT NONE
REAL X
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C SATUDZ=4158.6"SATUVZ(X)/{(X+239)**2
SATUDZ=2539657. *EXP{17.4*X/(X+239.3)
1 *1./(X+239)%*2

RETURN
END

[Seqsassqasqqdqadasdddddsddddadttdaddddidfidqdddasddddeddassddddddddddqada
SUBROUTINE RADBOU(TAIR,BAIR,WINDTP,WIND25,CLOUDN,
RLOUT,RLINN,WAYIN,CORR,MINUTE, T, TIMER)

IMPLICIT NONE

$INCLUDE; ARDBOU.FOR/L
$INCLUDE:ACONST FOR/L

SAVE / ARADBOU /

INTEGER CORR,NAYIN,MINUTE
REAL WINDTP,CLOUDN,MIND2S
CHARACTER T

[44dqd
REAL SATUVZ, SATUDZ,X
REAL TAIR , BAIR,DTEMP,¥TEMP,SHRTN
C
REAL RATID
REAL SCGLARC,SO,TRANAT,SDFSG,R,K i i o
C ! solar censtant, Extraterrestrial solar radiotion, Transmissivity of
C T the atmesphere, fraction @@
REAL ST,SE
C ' fraction of the value of the amplitude.
REAL RLOUT,RLINN,HEIMA1,HEIMAZ, K FUNK,RSHRT
C ! gutgoing longwave radiation, incoming longwave radiation, heimann 1 and heimann 2
C * Funk type netrodiameter value, reflected short wave radiation velue.

DATA SOLARC/137e./
$INCLUDE:VALUES .DAT/L
SINBTA= SINCLATI*RADE)*SINDE+COSCLATI*RADEX*COSCDECLINY
1 *COSCRADE*(15*(TIME-12)))
RATIO=AMAXLI((SINBTA/SINOOK),0.8)
USTAR=(®.25"RATIO)+0.05
IF (WAYIN.NE.1} THEN

READC29,*)TIMER ,WINDZ2S , WINDTP ,DTEMFP ,WTEMP, SHRTR
1 oRSHRT  FUNK,HETIMALl HEIMAZ

ENDIF

IF (SINBTA.GT.0.0) THEN

5S¢ = SOLARC*(1+0.033"COSCRADE*360. "DAYNUM/I65. ))*SINBTA
TRANAT = A +BE * SINBTA

SGLOBL = 50 *TRANAT

R = 4.847-1.61*SINBTA+1.G4* SINBTA**2
K = (1L.47-R)/1.86

IF CTRANAT.LE. ©.22) THEN
SDFSG =1.
ELSE If (TRANAT.LE.®.35) THEN
SDFSG =1-6.4"CTRANAT-0,22)**2
ELSE IF (TRANAT.LE.K) THEN

SDFSG = 1.47-1.66*TRANAT
ELSE

SDFSG = R
ENDIF

IF (WAYIN.EQ.1) THEN

IINI{1)= 8.5*SGLOBL
IIKIC2)= ®.5*SGLOBL
E

SHRTN= AMAX1{SHRTN,0.8)
RSHRT=AMAX1(RSHRT ,€.0)
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IINI{1)= @.5*SHRTN

LIINIC23= @.5*SHRTHN

CLOUDN = 1. -S5HRTW/SGLOBL
RLOUT=-8.95*SBOLTZ*((HEIMALI+HEIMAZ2)/2.9+273.15)*%4
RLINN=FUNK-CSHRTN-RSHRT)-RLOUT

ENDIF

DIRECT(2)=1-HIN(1.4*SDFSG,1.8)

DIRECT(1)= 1-({2*SDFSG-MIN(1.4*50FSG,1.0))
ELSE

IINI(C1) =@.¢ep0l

IINIC2) =0.0e001

TRANAT =0.0

SDFSG =-6.0

DIRECT(1)=0.0

BIRECT(2)=0.2

IF (WAYIN.NE.1) THEN
RLOUT=-0.95%S80LTZ*((HEIMAT+HETMA2)/2,04273.15)""4
RLINN=FUNK-RLOUT

ENDIF

ENOIF

IF (WAYIN.EQ,1) THEN

IF((TIME.GE.RB).AND.(TIME. LE.SUNSET)ITHEN

5T = SIN{PI*(TIME-BB)/(DAYLNG+2*P))

IF {TIME.LT.(12+P)) THEN

TAIR = (TMAX-TMINC1))*ST+TMIN(1)

RH = (RHMIN(C1)-RHMAXCLJ*EXP(-{12+P-BB)/2)

+(RHMAX (1) -RHMINC1))*EXF(-CTIME-BB)/2))/
(1-EXP(-C12+P-BBY/2)

ELSE
TAIR = (TMAX-THINC2)I)*ST+TMINC2)
SE = SINCPI*CTIME-(12+P))/{2%(12+BB-P)))
RH = SE*CRHMAX{2)-RHMINCID}+RHMIN(1)
ENDIF
BATR =RH * SATUVZ(TAIR)
BAIR = 2000

ELSE IF ((TIME .GT.SUNSET).AND.(TIME.LE.24.08)) THEN
TAIR=CTMIN(C2)-TSK*EXP(-{NGHTLN+C)/43
+(TSH-THINCZ2})*EXP{-{TIME-SUNSETY/4)}/
(1-EXP(-(NGHTLN+C)/4))

+B88 P)))

SE SINCPI*(TIME-(124P}3/(2
133+ H(1

RH = SE*CRHMAX(2)-RHMIN(
BAIR=RH *SATUV2(TAIR)
ELSE
SE = SINCPI*(TIME+12-P)/(2*(12+BB-P)))
TAIR«(TMIN(1)-TSN*EXP(-{NGHTLN4+C)/4)
SCTSN-TMINCLI)*EXP(-(TIME+NGHTLR/2)/4))/
(1-EXP{-CNGHTIN+C)/4))

= SE*(RHMAX{1)-REMINCB)D+RHMIN(R)
BAIR RH * SATUV2(TAIR)

ENDIF
ELSE

TAIR =DTEMP

IF {DTEMP.GT WTEMP) THEN

EL%EIR =SATUYZ(NTEMP) - GAMMA*(DTEMP-HTEMP)
BAIR =SATUVZ(WTEMP)

ENDTF

ENDIF
RETURN

END
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THE COMMON FILES
Alimit. for
INTEGER IT,IM,IS,IL,IB,ITB,nla,poly
PARAMETER(IT 24,IH=35,I5=-23,IL=-24
=-22,ITB= 36 nla=3 poly-S)

ablank.for
INTEGER ITA,IHA,ISA
INTEGER CORR
REAL*S TEMAIR(CIS:ITB),EAIRCIS:ITB),CO2CONCIS:TTB)
REAL DZ(IS:ITB),Z{IS5:IH),ZCENTER(IB:

LADCO:TIH), LADMID(l TH),LEAINC(L: IH) [UMLAI(B:IH)

COMMON //TEMAIR,EAIR,CO2C0N

D2,Z,ZCENTER,LAD,LADMID, [EAINC,CUMLAT,CORR,
ITA, IHA, 1SA

ABERGE.FOR

REAL FC(I5:8),FQ(T ),FD I5:8),PORCIS: @),
PCSOTL(IS:@3,CHS 1 L{15:983

COMMON FABERGE/ FC,FQ,F0,POR,

PCSOIL, CHSOILL

ACOEFF.FOR

REAL™8 EH(IS:ITB),GHCIS:ITB) ,FH{IS:ITB),DH(IS:ITB),
ELECIS:ITB), GLECIS:ITB),FLECIS: ITB),DLECIS:IT8),
ECO2(IS:ITBY,GC02¢IS:1T83,FC02(IS:ITB),0C02{T5:ITB)

COMMON/ ACOEFF/EH,GH,FH,DH,
ELE,GLE,FLE,DLE,
ECOZ GCﬂZ F(OZ fcoz

ACONST.FOR

REAL PCP,GAMMA, LAMDA, RHO KW, GR

REAL CWATER,CQUARZ, CCLAY,CORGNC
PI

REAL VAPDIF

REAL CLEAF,DLEAF,CSOILR,0CLODS
REAL EMSSIV,SBOLTZ,SOILEM

real co2dif,mole,RR

COMMON /ACGNST/ PCP, GAMMA,LAMDA , RHO,KN,GR,
CWATER, CQUARZ, CCLAY, CORGNE

PI

VAPDIF,

CLEAF,BLEAF,CSCILR,BCLODS,

EMSSIV SBULTZ S50ILEM,
co2dif,mole, RA

AENERG. FOR
INTEGER IKDEXD{1T,2,2),IPR(IT,2,2)

REAL*8 SEMFL(IB:IK,1:2,1:2,1:2),LEFL({IB:TIH,1:2,1:2,1:2),
laylef{1:1T), lnysen(l IT) laybal(l IT), stur(l lt)

REAL ESTLF(1: IT 1:2,1:2,1:2) ,DELTAT(L:1T,2:2,1:2,1:2)
2)

JLEAFLTCL-TT,1:2),PRCT:IT,1:2,1:
LSENSHC1:IT, 1 . L1:2), LEFLUX(l IT,1:2,1:2,1; 2)
LLWLFN(L: IT 1:2,1:2,1:2),ENERG(1 T,1,2,1.2,1.2
SFRA(1:17,1:2,1:2) DT(ON(I'IT ,1:2%
CUMD*A(I'IT 1:2), LUMD(l IT,1: 2) NUMDRP(1:1IT,1:2)
LERR2(1:1T,1:2),ERC1:1T,1:2)
real fluxuvp(it,1:2,1:2,1:23, fluxbt( t,1~ ,1:2,1:2),
linear(it,1: 2,1 2,1:23, SDurc(lt $2,1:2,1:2),
nunst[it,l:l 1:2,1:2),
totall(it,l:z.l 2z, 2).totae(1t 2,2),totace{1l:it)

REAL RLNET RLNTOP,RLNBTHM,RNETOT,ENERER
CLOUDN,SOILLN,SOILRN,TRANSP,STORAG,
THICKN,MAXERR , MAXER1

COMMON/ AENERG/INDEXD,IPR
LSENFL,LEFL
,loylef,laysen,laybal,stor
yESTLF,DELTAT,LEAFLT, PR
LSENSH, LEFLUX,LNLFN,ENERG,FRA, TOTCON
, CUMDWA ,YOLUMD , NUMDRP
,ERR2,ER,fluxup, fluxbt,linear,sourc
,nonst
,totall totae,totaco
yRLNET ,RLNTOP ,RLNBTM,RNETCT ,ENERER
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CLOUDN,SOLELLN,S01L RN TRAKSP,STORAG
THICKN,MAXERR, MAXE

AEQCOE. FOR
REAL*8 DUC@:IH),SH(IB:IH),SL{IB:IN)
REAL LMIX(1:2,8:IHD),KM(®:IH),Kh(IS:IK),
HTC@:IT), HECD: 11,1,2,1.23
RB{@:IT}, RST(R:T 23,
SOURCL(1:THY, snuncu(1 IH),STNK(IB:IH),
DSDTCIS:IH)

REAL SOILLE,SOILH,DT
COMMON /AEQCOE/ DU,SH,SL,

LMIX,KM,Xh,
HT HE,
RB,RST
SOURCL SOURCH,SINK,
DsoT,
SOILLE SOILH,DT

AFLUX.FOR

REAL*8 ANALOG(CIS:IH),anelog(IS:IH), ﬁNACOZ(IS'IH),
DELTTCIS: IH),BELTVCIS: IH),DELTCCLS
DELTEM(IS: IH),DELVPR(IS:IH),DELCOZ(IS IH),
FLDIVHCIS:IH},FLDIVV{IS:IH),FLDIVC(IS:IH)

REAL FLUXHT(CIS:IH},FLUXVT{IS:IH),FLUXCTCIS:IH),
FLUXHBCIS:IH),FLUXVB{IS:IH) FLUXCB(CIS :TH),
CFLXKT{IS: IH) , CFLXVT{IS:TH) CFLXCT(TIS: IH)
CFLXHBCIS:IH) ,CFLXVB(IS:TH),CFLXCB(IS:IH)
OHCOTCIS:IH),DVCDTCIS:IH) , DCCDT(IS IHS,
OFLTTE{IS:IH),0ELTVECIS:IH),DELTCECIS: IH),
ENERLH{IS :IH},ENERLECIS: IH),ENERLCCIS: IH)
nldts€{1:1H),nldlsv(1:IH), nldlsc{l:IH),
nldigt(l:1H),nldlgv(1:IH),nldigc(1:1H)

REAL STOREH,STOREV,STCREC,
STORHC , STORVL, STORCC,
STORTH,STORTV,STORTC(,
STORHT,STORVT,STORCT,
STORH,STORV,STORH2,5TORV2,
nlflst,nlflsv,nlflsc,
nlflgt,nlfigv,nlflgc,
cnlfgt,cnlfgv,cnlfge,
chlfst,enlfsv,cnlfsc

COMMON /ACFLUK/ ANALOG,anelog,ANATO2,
DELTT,DELTY ,DELTC,DELTEM, DELVPR,CELCO2Z,
FLDIVH, FLOIVY FLDIVC, FLUXHT ,FLUXVT,FLUXCT,
FLUXHB, FLUXVB ,FLUXCB,CFULXHT,CFLXVT,CFLXCT,
CFLXHB, CFLXVB,CFLXCB,DHCDT,DVCDT, DCCDT,
DELTTE,DELTVE, DELTCE ENERLH ENERLE ENERLC
nldlst,nldlsy, ntdlse nldlgt nldlgv nldlgc,
STOREH,STUREV,STORE( STORHC STORVC STDRCC
STORTH,STORTV,STORT(,STORHT,STORVT,STBRCT,
STORH,STORV,STORH2Z ,STORY2,
nlflst,nlflsv,nlflsc,nlflgt,nlflgv,nlflge
cnlfgt,cnlfgv,cnlfgec,cnlfst,cnlfsv,cnlfsc

AHYDRO . FOR

recl*8 ew(is:0),gw(is: @), fw(is:0),DW(is:0)

REAL hm(is:®),tortu(is:0),rhsotil(is:0@),
Kwater(is:83,qwater(i5:8),thetan(is:0),thetn(is:0),
THETA{1s:2),thetas(1s:0),thetar{is:@),hmnew(is:9),
Ksatuf{is: @)

real voapflt(is:@),vapflb{is:0),vapfdv(is: @)

REAL 1p,mp,np,alpha

REAL hme(@:nla,d: poly} depth(@:nla)

recl kusa(9: nla @:pol )

integer hydrin,indeso{is:8),rainc

COMMON /AHYDRO/ew,gw, fw, DN,
hw,tertu,rhsoil,
Kwater,qwater ,thetan,thetn,
THETA,thetos,thetar,hmnew,
Ksatu,
vapflt,vapflb,vapfdy,
lp,mp.np,atpha,
hme depth,
kusa,
hydrin,indeso,rainc

ANRMMN. FOR
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REAL (IGHF(@:IK,1:2),
1 RAB(1:IH,1:2),RABL(1:IH,1:2),KAV(Ll:3),
1 ENESABCL1:IH,1:2),VISIAB(CL1:IH,1:2),
1 TOTENE,RNSHRT ,RNSTOP ,RNSETH,
1 SOILSN

COMMON/ ANORMN / LIGHT,
RAB,RABL,KA
ENESAB VISIAB
TOTEKE,RNSHRT ,RNSTOP,RNSETM,
SOTLSH

[

< APLANT.FOR
INTEGER BRANCN(®:IH)

REAL DX{T5:IH,8:5),
AR(IS:ITE,®:53, ELASTI(IS 1T8,1:3),
OSMOTI(IS:ITB B 5,
KXYLUM(IS:IH,@8:5), RLS(IS ITB),RS5(IS:ITE,92:5),
PSIXYL(CIS: ITB ﬂ 5,1:2), PSIS(IS ITE,0:5, 1 23
CA(IS:IH,B: 5) CAN([S IH g:5),
VDLUME(IS:IH.@'S).VOL EN(IS IH,©:5),
RCOTUP{IS:@},CONTRS(IS:8),
SOTILRSCIS:9),{50IL{I5:8),
TOTDXC1:IH)D,
WATERF,abacon,
PLANTN,BASEDI,
timepl(Is:ih,8:5)

COMMON FAPLAKT/BRANCH,
ox,
AR ,ELASTI,
QSMOTI,
KXYLUM,RLS,RS,
PSTIXYL,PSIS,
CA,CAN,
VYOLUME ,VOLMEN,
ROOTUP,CONTRS,
SOTILRS,CSOIL,
TOTOX,
WATERF,abacon,
PLANTN,BASEDI
timepl

C ARDBOU.FOR
INTEGER DAYNUM
REAL SINBTA,LATI,DECLIN,TIME,SINDE,
DAYLNG, NGHTLN RAD
DIRE(T(I 27, Ilnl(l 2),RHMAX(1:23 ,RHMINC@:1), TMIN(L: 23

REAL TMAX,SUNSET,TSH,RH,B3,P,C,
1 SINOON,USTAR,A,B,SCLOEL

-

COMMON/ ARACBOU/ DAVNUM,SINBTA,LATI,DECLIN,TIME,SINDE,
DAYLNG ,NGHTLN,RADE,
CIRECT, Iini,RHMAX, RHMIN, TMIN,
TMAX,SONSET.TSN,RA,BB,P.C,
SINOOK,USTAR,A,B,SGLOBL

o

< AROOTDR.FOR
REAL RDENST(IB:9),
ROOTA(IE:8), RADIUS(IS @),RADIVZ(IB:®),
LV({IB:02, ROOTRC(IS az, ROUTRS(IB 8)

REAL ZROOT,TROQTD,SROOTC,F

COMMON /ARCOTON/ RCENST,
ROOTA,RADIUS,RADIUZ,
LV,ROCTRC,RO0TRS,
ZROOT,TROOTD,SROOTL,F

C the file Values.dat

Ir>0
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! kg mole-1
! joule mole k-1
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Symbol

A

ABACON
ALPHA

ANACO?Z

AHALQG

ANAMOM
ANELOG

AR
AVD1TC

AVOATE
AVEI1TH
AVDBRN
AVDH
AVDLE

AVDRN
AVDSG
AVDSH
AVDSLE
AVDSRN
AVDSTC
AVD3TE

AVDSTH
AVDSS
AVDTLE

AVDTRN
AVDTQ

AVGLTC
AVGITE
AVGLlTH

AVGERN
AVSDLT

AVGH
AVGLE
AVGRN
AVGSG
AVGSH
AVGSLE
AVGSRN
AVGSS
AVGSTC

AVGSTE
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Yariable name

1
1
t
1]
!
1
t
!
!
]
]
]
]
1
'
1
!
1
]
'
!
!
]
1
1
1
1
1
'
1
1
!
1
1
t
!
)
]
)
)
'
'
1
1
'
'
'
1
1
]
'
'
1
1
]
!
'
1
1
1
!
1
1
1]
]
]
]
1
1
]
1
1
1
'
1
1
!
1
1
1

Subroutine name

& for Equation

number in the

C-)

amole m~

ppmy ms

wig-2

Wn~Z

@l

ppmy ms"

Wn-2
w2
w2
wm-2
wn 2
wn~Z
Wn-2
wm-2
Wm-2
-2
Ppmv
wnZ
-2
Wm-7

Wm-2

Wm-2

LR

Units

3

1

1

pragram

A coefficient in the atmosphere transmissivity equation RADBOU
for light for the simuloted site.

Abscisic acid concentration in the xylem sap. PLANT
A coefficient in Van Genuchten model for soil moisture
characteristics. HYDRO
The sum of the terms in the discretized [0 conservation FLUX
equdaticen i.e. the solution error (Appendix A.2.11).

The sum of the terms in the discretized sensible heat FLUX
conservation equation i.e, the solution error

{Appendix A.2.11).

The sum of the terms in the discretized momentum equation MOMNTM
.i.e. the solution error (Appendix A.2.11)

The sum of the terms in the discretized latent heat FLUX
conservation equaticn (Appendix A.2.11)

(ross sectional area of the xylem elements in the stem. PLANT
An average of (0; storage within the canopy air leyers MAIN
during One AVGDLT (38 min) period.

An average of latent heat storage within the cenopy air MAIN
layers during One AVGDLT (36 min) period.

An cveraoge of sensible heat storage within the canopy air MAIN
layers during One AVGDLT (3@ min) period.

An gverdge over an AYGDLT time duraetioen for pet radictiaen MAIN
for the canopy lower boundary (1.e. net radictien so0il)

An averdge over an AVGDLT pericd duration eof loacal MAIN
transport ot the coanopy tep of sensible heat.

An averoge over an AVGODLT period duration of local MAIN
transport at the canepy top cof latent hegt.

An average over an AVGDLT periced duration for net rodiation MAIN
for the canapy la{er only (not including the soil)

an average of soil heot flux (ot ©€.€¢1 m depth) aver one MAIN
AVGDLT period.

An average of s0il sensible heat flux te¢ the canopy oir MAIN
over omne AVGDLT period.

&n overdge of soil latent heat flux to the cancpy air MAIN
(s0il evoporation) over one AVGODLT period.

An average of net radiotion of the soil over one AVGDLT MAIN
period.

An average of (0 flux divergence and scurces MATN
for the canopy layer during One AVGDLT (3@ min) period.

An average of latent heat flux divergence and saurces MAIN
for the cancpy layer during One AVGDLT (3@ min) period.

An average of sensible heat flux divergence and scurces MAIN
for the canapy layer during One AVGOLT (3@ min) period.

An average of net radiation of the soil over one AVGDLT MAIN
period.

An average latent heat scurces within the canapy ever one MAIN
AVGDLT peried.

An average over aon AVGDLT period duration for net rodiaticon MAIN
for the canopy top (includes the cancepy and the so0il)}

An overage cof sensible heat sources of the cancpy over MAIN
one AVGDLT period.

An overage of (O, storage within the canopy air layers MAIN
during one gust cycle period,.

An average of latent heat storage within the canopy MAIN
air layers during One gust cycle period

An average of sensible heat storage within the canopy MAIN
oair leyers during One gust cycle period.

An average over one pust cycle for net radiation MAIN
for the canopy lower boundary (i.e. net radiation scil)

An averaging perio¢ to ke regcd from an input file MAIN
{(in this cese, it was 38 minutes).

An average over cone gust cycle of local transpert at the HAIN
cancpy top of sensible heat.

An gveraoge over one gust cycle of local transport at the MAIN
canopy top of latent heat.

An average cver one gust cycle for net radiation MAIN
for the canopy layer only {mnot including the soil).

A time average for s0il Heat flux G at ©.01 m depth

storage and heat flux MAIN
A time averadage over one gust cycle of soil sensible heat MAIN
flux te the air.

A time gverage over one gust <ycle of soil latent heat HAIN
{evaporation).

A time avercege of Avercge soil net radiation (rn) over MAIN
one gust cycle.

¢ time averoge of soil heat storage of the seil top layer MAIN
over one gust cycle

An averoage of C0Z flux divergence and sources MAIMN
for the canopy layer during One gust cycle period

An average of sensible heat flux divergence and sources MAIN

for the canopy layer during One gust period.



AVGSTH
AVGTLE

AVGTLF
AVOTRN

AVGTYQ
B
BASEDI
BB
BRANCN

BETNOON
BUDLT

C

CA
CAN
CAPAC

CAPACL
CAPACZ
CAPAC3

CCLAY
{FLXCB

CFLXCT
CFLXHB
CFLXHT
CFLXVE

CFLXVT
CH

CHECKZ
CHECK4

CHSOIL
CHOICE

CLEAF
CLOUDN

N
CNLFGC
CNLFGT

CNLFGY
CNLEFSC

CNLFST
CNLFSY

CQZ2CON
COZDIF
CONTRS

CQUARZ
C(SOIL

CSOILR
CUDBRN

CUDCRN
CUDSE
Cunse
CUDSH

An average of sensible heat flux divergence and sources
for the canopy layer during One gust cycle periad.

A time average for total sum of latent heot sources for
the canopy layer {rot including the sail).

Average tewmperature of the leaf.

An overage over one gust cycle for net radiatian
for the canopy tep (includes the concpy 6nd the soil).
AVERAGE TOTAL sensible heat of the whole canopy

A coefficient in the otmosphere transmissivity equatian
for light at the simulated site.

Base dicmeter of the plants at soil surfaoce.

Time of minimum oir temperature.

Number of branches per plant segment at different
leyers.

Angle of the sun elevation at sclar noon.

Time intervol for boundary candition updated (boundary
delt t}. In the validation runs, it was 15 minutes.

Time delay after sunrise FOR minimum air temperature to
cccur.

cld Capacitance of the plant tissue.

Hew Capacitance of the plant tissue.

Capacitance of the first air loyer for water vgpour
determined in different ways

Capacitance of the first air layer for water vapour
Capacitance of the first air layer for water vapour
Capacitance of the first air layer for water vapour
Volumetric heat capacity of clay.

Cumulative flux of co2 at a loyer bottom within one
time step. i )

Cunulative flux of co2 at o layer top within one time
step.

Cumulative flux of sensible heat at a layer bottom.
within one time step.

Cumulative flux of sensible heat ¢t a layer top
within ene time step.

Cumulative flux of vapour et a loyer bottom within one
time step.

Cumulative fFlux of water vapour at a layer top within
one time step.

Logical indicator (on or off) to decide the need or not
to update the absorbed short wave rediation calculation
by going through the subrowtine NORMN,

check of the ratio between time constants of the first and

second canepy air layer

sum of vapcur flux divergence and sources withia the first

air layer.

Thermal heat conductivity coefficiant for soil loyers

A logical indicator (yes c¢r no) tc determine the choice
of a steady or non steady state sclution for the leof
Leaf coefficient for boundary loyar resistance.
Cloudiness (assumed for the whole dey}.

Legical indicatoer (on or off) to decide the need or not
to update the absorbed short wave radigtion colculatien
by going through the subroutine NORMN.

Cumuilative non tocal flux due to a gust of (a2
Cumulative non locgl flux due to o gust of Heat
Cumulotive non lecel flux due te a gust of water vapour

;umulative non lecal flux due to stability (no gust active)

MAIHN
MAIN

ENERGD
MAIN

TXTTXZTT =
Do
HHBHR®e O
FZzXTTZT ®
A~ - o

MAIN

PLANT
PLANT
MAIN

MAIN
MAIN
MAIN

BERGE
FLUX

FLUX
FLUX
FLUX
FEUX

FLUX
MAIN

i.e. by the use ef critical Richardsen number (it did not work)

of Co2
The same as above , but for heat
The some as above but for water vapour

Co2 concentration.

Co2 diffusion ceoefficient in air

Contact resistance between the rocts and the soil
Volumetric heat capoacity of soil organic matter,

a integer to determine writing to files (8) or not (else).

counting the number of executing the lcop which has an
indicotor value of 4€860. It has o time period of BUDLT.
Yolumetric heat capacity for JQuartz.

ihverse of the Slope of the Hm{theta) fumction
(differential Capacity)

Characteristic dimension of soil clods

Time Cumulative net radiation ot the bottom of the
conapy over gne AYGDLT period.

Time Cumulative net radiation of the conopy over ane
A¥GCLT {38 min) pertiod.

Time Cumulative of soil latent heat flux tc the canopy
air {soil evaporation) over ones AVGDLT pericd.

Time Cumulative of soil heat flux (at 0.81 m depth)
over one AVGDLT period.

Time Cumulative of s5c0il sensible heat flux to the
canepy air cver cone AVGDLT pericd.

-2

rod
hour

m-2s-1

Wm-1g-1

-

I 3g-1

m

Jm-2
Im-2
Im-2
Im-2
Im-2
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LUBSRN
CuUDSS

CudTC

CUDTLE
CUDTRN
cupTR

CUMBRN
CUMCRK
CUMDEW
CUMD¥A

CUMLATL
CUMTC
CUMTLE
CUMTRN
CUMTQ
CUMSE
CUMSG
CUMSH
CUMSHN
CUMSS
CUMSLE

CWATER

DAY

DAYEND
DAYLNG
DAYNUM

0CceoT

DCLODS
DCoe

DECLIN
DELCOZ

DELTAC

DELTAT
DELTC

DELTCE
DELTEM

DELTT
DELTTE

DELTY
DELTVE

GELVPR
DEPTH

eH

DHLDT

DIRECT
DLE

DLEAF
DRA
nDsoT
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Time €umulative net rodiation of the soil over one

AVGDLT period.

Time Cumulative net rodintion of the soil over ane

AVGOLT period.

A value For accumuleting Co2 flux within time (it was
not implemented) for AVGODLT

Time fumulative lagent heat sources within the canopy

over ong AVGDLT period,

Time Cumulative net radiation at the top of the canopy
over one AVGELT period.

Time Cumulative sensible heat sources of the canopy

over one AVGDLT pericod.

Time Cumulotive net radiaotion at the bottom of the
canopy bver cne gust cycle,

Time Cunulative net radiation of the canopy over chne
gust cycle.

Cumulative dew on the upper (2) and lower (13 leaf
surfaces expressed in gmounts of energy

Cumulative dew at upper (2> and lower (1) leaf surface
expressed as o wetted area.

Cumulative leaf area index above the upper boundary of
a certain layer.

A value for accumulating CoZ flux within time (it was
not implemented) for one gust cycle.

Time Cumulative latent heat sources of the canopy
over ane gust cycle.

Time Cumulative net radiation at the tep of the canopy
aver ofae gust cycle.

Time Cumulative sensible heot sources of the canopy
over one gust cycle.

Time Cumulative of sceil lotent heat flux to the cangpy
air (soil evaperaticon) over one gust cycle.

Time Cumulotive of s0il heat flux fat B.@1 m depth)
over che gust cycle.

Time Cumplative of s0il sensible heat flux to the
cahopy air over one gust cycle.

Time Cumulative net radiotion of the soil over ane
gust cycle.

Time Cumulaotive of scil heat storoge (within the

the uppermost ©.81 m depth) over one gust cycle.
Cumulotive soil latent heat flux during a certain
time interval

Heat capacity for water

Doy number of the year being simulated.

Doy number of the year for the simulation end.

Day length in hours

Doy number of the yeor for the simulation beginning.
The sum of time inte%ruted flux divergence and time
integrated scurces of CD2 within o layer over one time
step.

Characteristic dimens{on for soil clods
D coefficient for the CoZ conservation esquation.

Declination of the sun. X

€02 concentraticn change within time step determined
from the continuity equation for a layer

Charge in energy content due to water vapour flux
divergence and the scurces within the first air layer
determined numerically.

Temperature change within a time step

C0Z concentration chaonge within cne time step.

€02 guantity change due tc CoZ concentration change
within time step.

Temperature change within one time step determined

from the continuity equation for a layer.

Air tempernture chonge for a layer within one time step.
Energy change for a layer due to temperature change
within one time step

Ygpour pressure change for a tayer within one time step
Energy change for o layer due to vapour pressure change
within cne time step.

vapour pressure change within one time step determined
from the continuity equaticn for a loyer.

The depth of the interface between sc1l layers with
different soil maisture characteristics.

D Coefficient of Thomas algorithm for sensible heat
equation

The sum of time integrated flux divergence and time
integrated sensible heat sources within a layer over one
time step.

Direct fracticn of the two short wave radiatien bands
the visible (1) and MNear Infra Red (2) at canopy top.

b coefficient for Thomas Algorithm for latent heat
equation,

Charocteristic dimension of the leaf.

Momentum sink with canopy loyers divided by windspeed
S5lope of the saturated vapour pressure curve

MAIN
MAIN

MAIN
MAIN
MAIN
MAIN
MALK

ENERGD
HNORMN/
ENERGD

MAIN
MAIN
MAIN
HAIN
MAIN
MAIN
MAIN
MAIN

BERGE

METETE
Lo % 8 5 ]
o
X ETIEIXTXT

RESIS
EQCCEM

MALIN
FLUX

EQCOEHN

FLUX

RADBOU

EQCOEM

RESXIS
MOMNTM
EQCOEM

Jm-2
Im-2

Im-2
Im-2
Jm-2
Im-2
Jm-2

Im

CLURED]

In-2
Im-2
Im-2
Im-2
Im-2
In-2
Im-2
Im-2

ppmy ms 1

or ppmv
rad
ppRv



DT
0T1

DTINT
DTEMP
bu

oveDT

Dw
DX
DZ

EAIR
EAIR]

EATIRS
EATRNW

ECO2

EH

ELASTI
ELE

ENERER
ENERLC
ENERLE

ENERLH
EKERG

ENESAB
EMSSIYV
ERR
ERRCAH
ERRCAV
ESAIR
ESAIR2
EXTRAS

EXTRAL

EW
EVAPOT

F
FACTOR

FC
FCC2Z
FE
FG
FH

FLAG

FLDIVC
FLDIVH
FLDIVYV
FLE

FLUXBT
FLUXCEB
FLUXCT
FLUXHB
FLUXRT

FLUXYP
FLUXVB

Time step for the simulation.

A reduced time step for subrautine PLANT in cose

of numerical instabilities, due to very thin leaves
An integral value for a Time step.

dry temperature of the air at the canopy top (6.5 m}
¥ind gradient within height.

The sum of time integrated flux divergence and time
integrated Lotent heat sources within a layer over
one time step,

The constant term in the discretized equation fer
liguid water transport within the soil.

Distonce between the nodes along the lateral branch

Thickness of the different layers

Vapour pressure of air layers ot the beginning cf each
time step.
Vapour pressure of the air for layer 1 (an iterotive value)

New Calculated vapour pressure of air layers (at the
end of time step).

lower turbulent coupling coefficient for a layer for Co?

Sensible heat coupling coefficient with the lower layer
(turbulent within the air or thermal conduction within
the soil).

Elasticity modulus or coefficient of the plant tissues
Latent heat coupling coefficient for @ layer with the
lower one (turbulent for air or diffusion within scil)
Total energy error for the whole canopy loyer

Error for a layer in (0;.

energy error in latent heat for a tayer within ane

time step.

energy error in sensible heat for a layer within one
time step.

Energy sum for a leaf segment (sum of long wave emission,
latent heat, sensible heat, flux from a neighbouring leaf
segment and sensible heat storage changel.

Energy absorbed in the short wave bands per m-2 cancpy
layer,

Em{ssivtty of the leaves (1.@)

Difference between Wm in two consequent iterations,

Error in the solution of sensible heat for the

whole cancpy

Error in the solution of lotent heat for the

whole cancpy

Saturated vopour pressure for the first air layer
Saturated vapour pressure for the first soil layer

@n extra source (+) which goes intc the sensible heot
equation in cose of over saturation with the next iteration
an extra sink (-) which goes intc the latent heat

equation in case of ever saturation with the next iterction.

Coupling coefficient for water flow to the layer below
fvapotranspiration integrated within one time step

A coefficient for determining root extinction within depth.
a multiplication factor fer 1ncreasing or decreasing the
leaf area density prcfile from the standard one.

velumetric fraction of clay.

F coefficient for Thomas Algorithm for C0o2 equation.

Ratio of soil loyer thickness the soil layer above.
Gross photosynthesis

F coefficient of Thomas Algorithm for sensible heot
equation.

An integer indicator of the occurrence of o refreshment
and due to what reascn (shear at conopy top .vs. thermal
instobility}.

Flux divergence for different layers of C0; integrated
aver one time step.

Flux divergence of Sensible heat for different layers
integrated aver one time step.

Flux divergence of Latent(v) heat fer different layers.
integrated over one time step.

F coefficient of Thomas algorithm for Latent heat equation
for different layers.
Flux of Sensible Heat at a leaf segment lower (bottom)

boundary.

Flux of €0; at a layer lower {bBottom) boundary.

Flux of Cap at the top of different layers.

Flux of sensible heat at a layer lower (bottom) boundary.
Flux of sensible heat at a layer upper (top) boundary.
Flux of Sensible Heat ot a leaf segment upper boundary.
Flux of water Yapour at ¢ layer lower (bottom) beundary.

MAIN
PLANT

MAIN
RADBOU
MOMNTM
FLUX

EHD T
»>Er

HEH> @
E—-Hx ™

MAIN/
Eqcoeh
HAIN

CYCLEL

EQCOEM

EQcoeh

INIT
EQCDEM

ENERGD
FLUX
FLUX

FLUX

NORMN
ENERGD

EQCUEH
MOMNTM
FLUX
FLUX
FLUX
EQCOEM
ENERGD

FLUX
FLUX

Pa

Pa

Pa

m o571
or (-)
wn- 2k 1
or (-)

wn-Zpat
or (-3
ppmy ms'1
Wn- 2

-3

Wm-12
Wm-2Z
¥m-2

Pa
Pa
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FLUXVT
F

GAMMA
GAMMAT

G602

GH
GL

GLE

GR
GRASH

GUST
(3]

KT
HE
HEE
HEND

HM

HMC
HMHEW
HYDRIK

1

1B

10
IEAIR

IH
IHA

IINI
IL
INDEXD
INDEX
INDEXC
INDESO

HDEXTI
HDEXS

1
I
1
I
I

o=

1
IH
R

e
-
»

ITA
IT8E
ITRA

ITRM
ITRF

K
KAY
KH
KM
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1
1
t
'
1
'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
]
!
!
)
'
'
1
1
1
1
1
1

Flux of water Vapour at o layer upper (top) boundary.
Yolumetric fraction of organic matter

VYolumetric fraction of Quoartz or sand

wet ar dry fracticn on the upper (2) and lower (1)
surfoces of the leaf at different layers.

wet or dry fractien on the upper (2) and lower (1)
surfaces of the leaf at different loyers.

number of turns fer the outside loop with a 3002 index
{i.e. number of gust intrusion during BUDLT period)
number of turns for the inner loop with a 2808 index
{i.e. number of time steps within one gust cycle)

F Coefficient of the Thomos Algorithm for the seil
liquid water flux eguatiogn.

Psychometric constont

Light <ompensation point.

Co2 coupling coefficient for a leyer with the upper one.
(turbulent for air or thermal diffusion within the soil).

Sensible heot Coupling coefficient with the upper layer
(turbulent for air ar thermal diffusion within the soil).
Conductivity coefficient for water vopour between the
soil and the first air layer

latent heat Cowpling coefficient with the upper layer
(turbutent for air or diffusion for soil).
Gravitational constant

Grashef number determined for the leaves and the soil
clods.

Gust integer for the run {Yes (1) oar no(®))

1iquid Water transport coupling coefficient with

the upper soil layer

Leaf Convective sensible hent transfer coefficient.

Lteof Convective latent heat transfer coefficient.

Leaf Convective latent heat transfer coefficient.

Leaf Convective latent heat transfer coefficient.

in case of dew . .

Soil Matric Head at the bepinning of each time step.
coefficients of the hm{theta) polynomial for soil layers
Seil Matric Head at the e&nd of each time step.

way of inputting the scil meisture characteristics.

{(1) van Genuchten model or else a measvred function).

index

Number of the soil layers just above the lowest soil layer
Probability of non interception for tong wave radiation
within different canopy layers.

Initial vapour pressure of the air {(ofter the gust
intrusien).

Maximum total number of air loyers

Actuel total number of lavers within the Air

Incoming visible {1) and near infrared (2) radiation at
the canopy top.

number of the soil layer belew the maximum number
simulated domain.

A logical indicator tec determine

An index (® or 1) foar indication the gccurrence of
Indicator integer for showing the first gir layer solutian
(i.e. analytically, numerically or the initial rate of
water vepour flux from the soil is good enough.

An Index allocating to each soil layer the corresponding
s0il moisture characteristics functions.

An integer which has a value of 1 for the gust intrusion
phase and 2 for the quiescence period.

integer

integer

Yes or no {1 or @) Probability coefficient for wet or dry
fraction of leaf surfeoces

Maximum number of soil layers (negative)

Actual number of soil layers (negative)

Moximum number of canopy layers

Actual number of Plant Canopy layers (the highest layer
with a leaf area density larger than zero).

Integer for iteration count.

Iteration number at different parts of the program.
Number of the time step simulated within the gust cyclie.
Iteraotion number

integer

integer

an average extinction ccefficient which depends en the leaf
class and the zone of the sky.

Kh velues {scalar turbulent diffusivities)

Km Yalues (mowentum turbulent diffusivities) between
different loyers.

MAIN
PHOTO

EQCOEM

or (-)
EQCCEH

MAIN

MAIN

NORMN

MOMNTM

pa k-1

m s

-2
m2s-1

misl



KSATUL

KSOIL
KUSA

KXYLUM
KW
K¥ATER

L
LAD

LADMID

LAYBAL
LAYLEF
LAYSEN
LDCALC

LDCALH
LOCALV

LEAFLT
LEAINC

LINEAR
LMIX

LoCAaLC

LOCALH
LOCALY
LOOF
LP
LWLFN
LV
MAXER1

MAXERR
MINUTE

MOLE
MP

MSsZ

K02
NGHTLHN
NLA

NLDLSC

1
!
1
1
1
1
1
'
i
i
1
t
i
'
i
i
4
!
!

Water Hydraulic conductivity as a function of meisture HYDRO ms™ !
tentent (theta) for different soil layers

An assumed s5cil thermal diffusivity for ipnitialization. INIT nls1
Coefficieats of the hydraulic conductivity (theta) HYDRO
function.

Hydraulic conductivity of the plant xylem tissue INIT
Molecular heat tronsfer coefficient of water we 1g-1
$0il hydraulic conductivity Hydre ms1
Integer. MAIN (]
teaf area denszity ot the upper interface of different MAIN wln-3
conopy layers (one sided). MAIN (m’l)
Leaf area density at the middle of the layer. MAIN (m’l)
Latent heat cof vapourization ] kg'1
Ltotitude of the simulated site. MAIN deg

The canopy air layer energy balance residual (to check

for errors very close to zero.

one Canopy air layer latent heat

one canopy ¢ir layer sensible heat

Cumulative locdal traonspert due to a local gradient of MAIN Im-2
{02 at the canopy top during one AVGDLT period.

Cumulotive 1oc¢al transport due to a local gradient MAIN Im
of henot at the canopy top during one AVGDLT period.

Cumulotive local transport due to o local graodient of MAIN Im-2
lutgn; hegt (v} at the canopy tap during one AVGDLT

peric

-2

Leaf zegment.

Leaf area increments at different layers.

latent heat flux from the leaf to the air

Latent heat flux

visible light intensity on the lower (1) and upper(2)
surfaces of the leaf in a certain layer

Linear solution of the energy budget egquation.

Mixing length for a lecal transport

(determined in different ways)

Cumulative local transport dve to & local greadient of
Cop at the canopy top during one gust cycle.

Cuwulative local transport due to ¢ local gradient MAIN In
of heat at the canopy tcp during cne gust cycle

Cumulative tocal transport due te ¢ locoal gradient of MATIN Im-2
latent heat {v) ot the canopy top during one gust cycle.

number of time step within

A coefficient in Van Genuchten eguation HYDRO

Long wave emission by the leaves {one side) ENERGD H#nm-2

roct density at (m roct per m3 soil) at different layers. ROOTDN n

xm
»z
-m
=0
~

\
A

= Em
» oz o
- Xm =
x xm T
—-—a =z
4=

Maximum errar in leaf energy solution for different ENERGD
leaf layers.

The number of the current simulated gust cycle within MAIN -3
the FREQ1

molar weight of water Kg mole”

A coefficlent in van Genuchten model for Soil moisture

charecteristics.

A logicel indicator fer a steady cor non steady state ENERGD (-2
solution for the leaf temperature.

Hew (0, concentration for different loyers (ot the end EQCOEM ppmv
time step).

Night length in hours, MAIN hour
Number of soil layers with different soil moisture HYDARO (-3

characteristics.

Nonlocal flux of (o2 frem different layers due to
stobility effects (i.e. Richardson number being less
than a critical value) It didn’t work. It leads to teo much
mixing.

the same a5 gbove except being for heat.

the same os above except being for water vapour
Nenlecal flux from different layers due to the

gust process of Co2 within the gust cycle

Nonloeel flux of (o2 from different layers due to the
gust process of heat within the gust cyele

Nonlecal flux of Co2 from different layers due to the
gust process of water vapeur within the gust cycle.

Nonlocal flux from different layers due to the

thermal stability or Richardson number being less than

a critical value of CoZ within the gust cycle.(it did not work}
The same os above but for heat

The same os above but for water vapour

Integration of NLDLGC over conepy layers.
Integration of NLDLGT over canopy layers
Integration of NLDLGY over canopy layers
A coefficient in Van Genuchtem Model. HYORD
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number cf BUDLT intervals within one AVGDLT.

non steady state change in the leaf energy budget solution.
Ratio of volumetric soil moisture at saturation to

soil moisture content.

Musselt number as determined by forced convection regime.
Nusselt number os determined by free concevection regime

NMusselt number determined for the leaves and the sail
clods.
Number of water drops for the lower and upper surfaoces

A logical indicater
The period in heours in which output to files 1s done
Oswotic pressure of the plant water

Time in hours after solor noon at which maximum air
temperature is observed.

number of passes for the sclution of

Volumetric heat capacity of @ir at censtant pressure
volumetric heat capacity of the seil

stability correction for momentum.

stability carrection for hent.

PI (3.14153

number of plant per square m.

Polynomicl coefficients for the soil

So0il porosity

numerical probobility of the leaf upper and lower
surfaces being wet or dry.

Tetal Water potenticl (Psi) eof the plant storage tissue
Totol soil Water potential (Psi) of the layers far encugh
from the root surface (asmotic potential assumed zerol.
Total Water Potential (PSI) of the plant xylem Tissue

liquid Water flux between different so0il laoyers

Time in BUDLT increments.

Absorbed short wave radiation per unit volume of air
Absorbed Rodiation for m2 leaf surface (old volue)
Absorbed Aodiation for m2 leaf surface {new volue)
conversion from degrees to radian.

ratio of the current sun elevation to its noon elevation
Ratie of the time step of simulation to the time
constant of the first cir layer.

rgtiec of turbulent transpert at the upper boundary of first
air layer to the value of the total of its sum and the soil
convective latent heat transfer coefficient.

ratio of the soil convective latent heat transfer
coefficient to the vatue of the total of its sum and,
turbulent transport at the upper boundary of first air
tayer.

characteristic rpot rodivs for gdifferent soil layers
chorocteristic distence between neighbouring roots.

Rain indicater for the calculatien of soil moistening,
Indicater for rain fall {was net used).

Amount ¢f rain for the simulated day in mm

Boundary layer resistance for the leaf

Cuticular resistance fer the upper (2) and lower (1)
surfoce of the leaf.

Roat density (per unit soil surface) at different soil
tayers.

A chorg¢cteristic diaometer of dew woter drops on the lecf
upper (2) and lower (1) surfaces

Reyncids number for the leaves and the soil clods

relative humidity

Maximum relotive humidity of the day.

Minimum relaotive huwmidity of the doy.

Density of Water

Relative Humidity of soil air

Richardson number determined in coase of nogust intrusion
at night time (free convection regime within the laower
part of the canapy.)

Richardson number determined in case of nogust intrusion
during daytime.

Richardson number determined in cose of nogust intrusion
during daytime.

Leaf resistance for water transport.

Incoming tong wave radistion at the canapy top.

Net long wave radiation at the lower boundary aof the
cagnopy (Net long wave faor the s0il}

Net long wave radiation for the whole canapy layer

Net leng wave radioticn at the canopy top

(includes the soil),

Lutgoing long wave radiation gt the cancpy top.
Resistance for woter transport between the main stem and
the first latergl node.

Tatal absorbed radiative energy (short and long wave)
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RNSBTM
RNSHRT

RNSTOP

ROOTA
ROOTRC

ROQTUP

ROOTRS

RR
RS

RST
RTIME
RU

SATUD2

SATUV2
SATVAP

SBOLYZ

SDPRCC
SDPREC
SDPREH
SDFREV
SDPRHC

SDPRVC
SENFL
SENSH
SGLOBL
$H

SHEAR
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SOILLN
SOILRN
SOTLRS

SOILSH
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SOURC
SROOTC
START
STOR
STORAC
STORAG
STORAH
STORAY
STORCC
STORCT
STOREC

STOREH

STOREV

STORH

1
1
1
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1
1
1

for the canopy ltayer

canopy layer Met short radieoticn at its lower boundary
Met short wave radiation for all the canopy layer

(not including the seil).

Net short wave radiation at the cancpy top

(includes the soil).

Reot area contained within different 35011 layers.
Reot conductance

Roct water uptake from different soil layers

Roct resistance

Gas Constant

Resistance for woter flux between the storage tissue
and the xylem vessels in ¢ certain plant segment.
Stematal resistance for the upper {2) and lower (1)
surfaces of the leaf at different loyers.

time of the simulation in BUDLT increments expressed

as a real number.

An integer number of the BUOLT intervel, within AVGDLT,
currently simulated.

Slope ef saturaoted vapour pressure dependence con
temperature.

Saturated Vapour pressure at air temperature
saturoted vepour pressure ot air temperature.

Stephan Boatsmann (aonstant.

The same as SDPREC but determined differently as a check

Storage of Cop during an AVGDLT period.
Storage of sensible heat during an AVGDLT period.
Storage of latent heat during an AVGOLT period.

The same as SDPREH but determined differently as a check
The same as SDPREY but determined differently as a check

Latent heat flux from the leaf to the air
Sensible heat flux from the leaf to the air.
Global Radicticn.

sensible hegt source within different layers.
Shear ot about the cancpy height (at 2.5 m)

Sine of the angle of sun elevation.

sine of sun declination

Sink term for CCZ within different canopy layers
sine of the sun elevation at solar noon time.
lotent heat sources within different layers
Seil emissivity

Soil sensible heat flux toc the canopy air. )

an integer for determining the way of inputting the
initial scil tempercture (measured (1)

or {any other value) estimated)

S0il1 latent heet Flux (seil evaporation)

Soil net radiation.
S01l resistance fer water transport to the roots

Soil net short wave radigtion

Initial Scil temperature prefile
{to be read fore a file or calculated)

Amount of heat used to roise the temperature of the leaf

and for sensible heat.

Specific roat conductance
starting time of the day for the simulation.

rate of storage of (0 within a layer due to
cancentration change within one time step

Stornge of heat within plant leaves in different
layers during one time step

rate of Storage of sensible Heat within a layer

due to temperoture change within one time step

rate of Storage of Latent Heat within o layer

due to vapour pressure change within cne time step.
The same as STOREC but determined from the coninuity
equation,

THE SAME AS STORTC, but determined from the addition of
ce2 flux divergence and C0z sources.

A spatinl integral of Co2 quantity due to its
concentration change over all canopy layers within one
time step

A spatial integral of energy storage due to temperaturs
change over all canopy layers within one time step.

A spatial integral of energy storage due to vapour
pressure change over all concpy layers within one

time step.

Rate of storage change of sensible heat for all canopy
layers within one time step

NORMN
NORMN

MORMN

ROCTODN
ROOTDN

PLANT

ROQOTON

PLANT/
INIT
RESIS

MAIN
MAIN

saTuDR2

SATUVZ
MAIN

ENHERGD

MAIN
MAIN

EE -
Sane
oo

HEXTmMm IGEDE AmmE
o2 =

EPP ZZ I
o MM O T
—EZEZ IR ETHAZIRE

B oren o o

Main

FLUX
FLUX
FLUX
FLUX

FLUX

FLUX

FLUX

Wm-2
wm?

TR
2 1
m (i)

m7s”
MPa-l

w35 MPa

sn
hour

-2

« 3
~N

(R R RN

32
~

lat-Eat Tala ald
~

ms " tupa-?l

hour

ppmy,ms

wn-2

L1
ppmy m
ppmyY m

ppmy W

1

281



STORHZ
STORHC

STORHT
STORTC

STORTH
STORTYV
STORY

STORVL
STORVZ

STORVT
STPRCC

STPREC
STPREH
STPREV

STPRHEC

STPRVC

SUNSET

T
TEMAIN

TEMAILIR
TEMLFN

TEMPLF
THETA

THETAN
THETAR

THETAS
THETK

THICKN
TIME
TIMEC
TIMEC(2Z
TIMEC3
TIMECO

TIMEG
TIMEPL
TIMER
TIMEW

THAX

TMIN
TOTAE
TOTALL
TOTALG

TOTCOK
TOTENE

TOTEVP
TOTLE

TOTSTC
TOTSTE
TOTSTH
TOTDX
TORTU

TOTUP
TRANSP

282

Sum of flux divergence and scurces of sensible heat

for all canopy layers within one time step

The same as STOREH but determined from the continuity
equation.

THE SAME AS STORTH, but determined from the addition of
sensible heat flux divergence and sensible heat sources
Sum of total daily storage of C0p for the whole system
determined frem COz change.

Sum of total daily storage of sensible heat for the whole
system determined from tempernture change.

Sum of toctel donily storage of lotent heat for the whole
system determined from vapour pressure change

Rate of storage change of latent heat for all canopy
layers within one time step.

The same as STOREY but determined froem the continuity
equotion.

Sum of flux divergence and sources of lotent heat

for all canopy layers within one time step.

THE SAME AS STORTV, but deterwined from addition of
latent flux divergence and latent heot sources.

Time integratien of the sum of lateat heat flux
divergence and the sources for the canopy layers

over one gust cycle.

€0z storage within the canopy air during one

gust cycle determined concentration change.

Sensible heat storage within the canopy air during one
gust cycle determined from temperature change.

Latent heat storage within the canopy air during ene
gust cycle determined from vapour pressure change.
Time integraticn of the sum of sensible heat flux
divergence and the sources for the canopy laoyers

over one gust cycle.

Time integration of the sum of lotent heat flux
divergence and the sources for the canopy layers

over one gust cycle.

Time of sun set.

A Tab {character @) separator.
New Temperature of the air (at the end of each time step)

air temperoture at the beginning of egch time step.
New Temperature of the leaves (at the end of each time
stepl}.

0ld temperature of the leaves

volumetric moisture <¢cntent of the soil,

New volumetric moisture content (theta)

residual volumetric moisture content as defined by
Van Genuchten (mestly zero).

Saturated volumetric moisture content of the soil.
New volumetric moisture content of the soil.
calculated in a different way than THEATN
Thickness of the leaves.

Time.

Time coefficients.

Time constants for the second air layer.

Time ccefficient of the first air layer in contact with
the soil,

Time counter

Time censtant for plant parts voluwme

Time {(read from a file)

Time counter

Maximum air temperature of the day.

Minimum air temperoture cf the day

Error in the scluticen (the total of in ang out is zerg)
for both sides of the lecf

Error in the solution (the totnl of in and ocut is zero)
for one side of the leaf

Total sum of sensible heat sources within the cancpy
layers (not including the soil).

An integration of total absorbed short waove energy for
all cancpy layers

cumulotive evaopotranspiration for the whole day.

Total sum of latent heat sources within the conopy.
layers {not including the soil).

Total (0 storage for above the scil layers.

Total daily latent heat storage for obecve the soil loyers

Total daily sensible heat storage for obove the soil
layers.

Total length of the loteral at different layers
Tortuosity coefficient

Total water uptake by plant roots

Transpiration.
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Transpiration of the plant canopy within one time step
Total root length per unit surface soil.
air temperature at sunset.

Wind speed for different heights

(old value within ¢n itergtive solution)
initiol wind speed used in the iteration
Wind speed for different heights

(New value within an iterctive solution)
U* U star {friction velocity).

water vapour diffusion coefficient in air.

Water vapour flux at the lower houndary ¢f a s0il layer
water vapour flux at the upper boundory of o soil layer
woter vopour flux divergence.

Vlioumetric air content (gas filled porosity)

Absorbed Visible rediation at different canopy layers.
Volume of wnter drops on the upper (2} and lower (1)
surface of the leaf {at the beginning of the timestep).
volume of plant parts (roots, stems) for different
heights at the beginning of each time step.

volume of plants ports for different heights at the

end of each time step.

canopy air Vapour pressure deficit at different heipghts

Nay of inputting the boundary conditions

{(1) Simulated, else read from o file}

Nater flux between different nodes within the plant

Dew woter film thickness on the leaf surfaces

{(1l) lower surface and (23 upper surface).

Wind speed ot 2.5 m height.

¥indsped ot the upper boundary of the simulated domain
(6.5mY).

The new equilibrium water vapour pressure for the first
¢ir layer as determined by eq.4.2.23.(as determined from
gn iteratian).

The old equilibrium water vapour pressure for the first
air layer os determined by eq.4.2.23

Wet bulb temperature at the canopy top.

Height of the top of different layers.

Height of the centre of different layers

depth fer the rcot for determining the root density
extinction within depth.

legarithm of the ratio of velumetric soil moisture at
saturation te voluwetric soil wmoisture content.
saturation to actual soil moisture

The logarithm of the soil matric heod.
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Chapter 6
Measurements & Model Validation

In this chapter, the validity of the model will be checked. Two data sets will be used for
this purpose. The first data set has been collected by Van Boxel (Jacobs et af 1992) during the
growing season of 1986 for a maize experiment and the second data set has been collected by
Van Pul during 1988 (Van Pul, 1992).

We will first discuss what is required of a good model.

A brief description of the two data sets will be given and how one of them (Jacobs et al
1992) was used to obtain some parameters in the model, while the other one was used to
check the model.

In the final part, we will give a comparison for two runs between the simulation and the
measurement. The first run is for a three days period. The second one is for seven days in
which some functional corrections, based on the results of the first run, have been
implemented. We will see the effects of this corrections on the model behaviour and its
agreement with the measurements and mention some possibilities for improvement.

6. 1. Introduction;

Validation means checking if a model simulates or comes close to simulating reality.
Validation is the last step in the continuous loop of checking a model. Checking a model is
checking the basic assumptions in the model, their numerical implementation, the effect of
these assumption on the model behaviour and the closeness of the model results to reality. A
model which gives close agreement with measurement is not necessarily correct. The basic
assurmnption included in the model should be correct and the agreement with the measurement
should also be good.

The problem in a simulation model is that we want to calculate or simulate reality. An
abstraction of reality is always required, since we can not simulate everything. Selection of
the most significant processes which should be included in a model is so required. An
assumption of what is important and what is not, is affected by the viewpoint of the modeller
and the way he sees or thinks reality works. This way of seeing reality, by the modeller, also
includes how he thinks submodels should be coupled, or what kind of correlations from the
lower level or the submodel level to the higher level or the model level should be included
and how they should be parameterized. A loop then of selection of the most important
processes, as seen by the modeller, their parameterization, modelling {implementing these
assumptions in a numerical code) and the results which this selection has on the behaviour of
the model and comparison against a good measurement is thus a necessity. Validation and
madel building in fact includes all these processes.

In a simulation trial, the governing equations concerning heat and mass transfer are not a
point of discussion. These equations are always valid. It is the parameterization of the active
processes within these equations and the coupling between the different components of the
system is what important here. Thig coupling controls the time constants and its response to
intermittency. An example of these are the turbulent transport coefficients for the averaged
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equations, the stomatal resistance and root distribution. The first control the coupling between
the canopy air layers and the layer of air above, the second controls the coupling of the plants
to the air vapour pressure and temperature. The latter control the hydraulic coupling between
the soil and the plants and has a feedback on the stomatal resistance. All these processes and
how they are controlled and their different parameterizations, depending on the model scale of
averaging, is what important.

The selection of which processes and what level of detail is required to achieve validity
of models at higher levels requires an insight into which processes in the lower level or
submodel processes are decisive in determining the behaviour of the model upper level. This
insight can be obtained by studying the governing equations of energy and mass transfer at
the higher system level and their solution either mathematically or numerically.

A mathematical attempt to express the solution of these equation in a close to analytical
form could help us in determining which parameters in these equations are important in
determining the response of the system. All processes in the lower level or submeodel
processes which affect these parameters should be given careful attention while being
included in the submode] components and in the integration upwards.

This way of studying the solution is superior to studying the numerical simulations only,
since it gives us more insight to the behaviour of the numerical model, its range of validity or
regions of high sensitivities in its domain of solution. The use of this knowledge while
building simulation models would save us time in building more accurate models while
integrating from a lower level to a higher one. The problem here is that quite often it is not
possible to have an analytical form of the solution. In the case of absence of this guidance,
and due 1o the fact that the way of seeing reality by the modeller could be biased, the basic
assumptions by the modeller of what is important and what is not and the dependence of the
numerical solution results on these assumption, have always to be checked against a good
data set.

A numerical study of the sensitivity of the numerical model to its parameters or to the
interaction between its submodels is somehow an equivalent means to the mathematical
analysis in helping to obtain more valid models. This is quite laborious, and this kind of
sensitivity analysis does not give absolute values of the model behaviour since it is a function
of the range of the model domain of solution. A contribution of a physical insight into the
governing exchange processes, their mathematical representation plus numerical runs are all
complementary to each other.

In chapter 1, the importance of obtaining submodels which are valid was discussed.
There is a lot of work involved in the integration upwards from different spatial and temporal
scales, so the more we can optimize the procedure of integration by analytical insight, the
better.

We belicve that it is the basic assumptions which have to be checked. We believe that as
long as the basic assumptions in a model are correct and the numerical implementations of
these assumptions numerically is correct, the model should be able to simulate reality. The
first step is the crucial one since the correct numerical implementations of the conservation
equation is a programming problem and a choice of a numerical scheme,
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6. 2. Validation

In this thesis, a numerical intermittency model for describing heat and mass transfer
within the plant canopy and between the canopy, the soil, and the layer of air close above has
been introduced. So in validating this model, three things have been done:

a) checking the basic assumption in the model. In this case, the nature of the dynamic
coupling between the canopy air and the layer of air above and the effect of this coupling on
the system behaviour.

b) checking the numerical implementation of the governing equation.

¢) comparing the model runs to an independent data set

a) checking the basic assumption in the model has been done by the use of Van Boxel
turbulence data (Jacobs ef al 1992), collected during 1986 within a maize canopy during few
selected days. This data set included a high frequency detailed measurements of the
temperature by thermnocouples and of wind speed by hot bulb anemometers and by cup
anemometers within and above the maize canopy respectively. It also included observation
with a three dimensional sonic above and one dimensional sonic within the maize canopy.
Also, measurements of Ry were done above the canopy. These measurements were used to
obtain a picture of the flow field within and close above plant canopies as have been shown in
chapter 3 and 4. These flow field pictures gave us an idea about the depth of intrusion of the
gusts (i.e. the refreshment function) and the value of Ky during the quiescence period, as has
been explained in 3.6.2. The importance of this intermittency on the behaviour of the system
from an analytical point of view has been explained in section 4.2.1. The importance of
intermittency on the nonuniformity of the terms has also been discussed in chapter 3. The
importance of missing correlation within our interval of averaging on the validity of the
available approaches and on the resulting solution of our equations has been discussed

In the model, some parameters are needed namely:

1) A wiggering condition required for the gust process to start and continue occurring. This is
represented by a critical shear (0.27 s-1 in the first run and 0.20 s-1 in the second run) at the
canopy top above which the gust process starts. This is somewhat arbitrary but it is shown
also by fig. 6.1 in Jie Qiu ef al (1994). The stability effect on the transport could be
considered through increasing or decreasing the gust occurrence frequency. The suggestion of
the dependence of the gust frequency on the stability regime is given by Leclerc ef al (1991),
2) An assumption of a degree of refreshment for the air inside the canopy due to a coherent
structure intrusion. A complete refreshment of the air inside the canopy was assumed. This is
justified by the use of a continuous turbulence measurement within plant canopies collected
by Van Boxel (Jacobs et al 1992) and the analysis given in section 3.2 and 3.6.1. The analysis
of the temperature time domain maps for several days of turbulence measurement showed,
that complete refreshment of the air inside the canopy is the dominant pattern.

3) A recurrence interval of the gust occurrence. This was assumed constant in the first run,
This assumption is not completely correct. It affects the degree of coupling between the
canopy air space and the layer of air above, as has been shown by MATHCAD® runs. In the
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second run, a gust frequency of occurrence depending on wind shear at the canopy top was
implemented. -
4) The effectiveness of the small-scale transport during the quiescence period on moving the
amounts of energy (sensible and latent), which has been delivered by the leaves to the
intercanopy air stream, to the layer of air above the canopy. This effectiveness, represented by
a local turbulent transport coefficient, will determine the ratio between the storage build-up of
the scalar quantities during the quiescence period to that of their local fluxes at the canopy
top. The local flux is defined as the flux between the canopy air space and the Iayer of air
above it due to the smali size eddies. These small-scale eddies are the ones dominant during
the quiescence period. The local flux requires a build-up of a local gradient. This is done
according to sect. 3.6.2.
3) A characteristic dimension or a thickness of the first air layer in contact with the soil which
is strongly coupled to the soil. At the upper boundary of this air layer, the turbulent transport
within the air controls the exchange between this air layer and the layer above it. So, in
principle, the turbulent transport will work as a controller on the exchange between the humid
air in contact with the soil and the layers of air within the canopy. This thickness was
assumed equal to the displacement boundary layer thickness of the soil clods. The
characteristic dimensions of the soils were assumed 0.05 m. The displacement boundary layer
thickness was assumed about 1 cm thickness. This thickness is very reasonable, assuming a
constant wind velocity close to the soil surface of 0.23 ms~! during the quiescence period.
The solution for this air layer and its small time constant in relation to the length of the
time step of simulation, especially in the first time step of simulation, led to the use of a semi-
analytical solution for this layer Section 4. 4.2).

b) The numerical implementation of the governing equation, in chapter 3, has been checked.

i.e. the closure of energy balances, radiative and nonradiative, for different layers and for the
whole canopy and their integration within time. There is also the possibility of comparing an
analytical form of the model to the numerical results.

¢) Once the assumptions mentioned in point {a) are based on reasonable arguments, we
started comparing the model runs to an independent data set to compare the measured and
simulated behaviour.

6.3 THE DATA SETS USED TO VALIDATE THE MODEL:

Parallel to the measurement by Van Boxel (Jacobs et al 1992), there was a continuous
measurement campaign of the radiation fluxes, the wet bulb and dry bulb temperatures, but
we did not use this data set in the comparison since the highest measurement level was very
close to the height of the canopy, so it was considered that the upper boundary of the system
is affected by the canopy elements.

The comparison of the numerical model against measurement was done by the use of a
second data set collected by Van Pul during his Ph.D. work. A complete description of the
data set is given in Van Pul (1992). The aim of the experiment was 1o determine the fluxes of
ozone, nitrogen dioxide, carbon dioxide, momentum, sensible heat and latent heat with the
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profile and Bowen ratio techniques. Therefore, profiles of wind velocity, temperature,
humidity and the above mentioned gases along with net radiation and soil heat flux were
measured. These measurements were made throughout the growing season, i.e. from
sprouting of the seeds in May up to two weeks after harvesting time in October. The sensors
used in the measurement in the profile are slow response sensors with which a high accuracy
of mean quantities is obtained. Values of the mean quantities were kept on tape as 15 minutes
averages for the whole season.

For the validation, a period was used in which the crop had it maximum height of 2.2
meters with a corresponding leaf area index of 4 (mid August)

There were two data sets collected parallel within this experiment. The first one is similar
to the one collected by Van Boxel, but we could not use it due to a measurement error in the
thermocouple measurement. However, the hot bulb anemometers gave an impression of a
flow regime similar to the one obtained by analysing of the data set by Van Boxel. We
assumed the dynamic picture given by the data set Van Boxel (Jacobs er al 1992) valid within
the 1988 experiment. The second data set, which is a continuous one, was the one used in the
comparison. The upper measurement was at a higher level than that of Jacobs (three times the
canopy height). The soil temperature measurements at two heights were compared against the
model runs. In these measurements, there were only three depths of soil temperature
measurements; the lowest was used as a boundary condition {120 cm depth).

6.3.1 COMPARISON AGAINST MEASURED DATA:

6.3.1.1: The boundary conditions for the simulation run

These boundary conditions are given in the following figures (fig.6.1, 6.2, and 6.3). The
zero time coordinate corresponds to 0040 hours UTC, day number 230 of the year 1988. Fig.
6.1, and fig.6.2 show the boundary condition for the windspeed, wet and dry bulb
temperatures.

The boundary conditions for radiation:

The incoming short wave radiation was measured using a solarimeter (Kipp & Zonen CM
11} For the incoming long wave radiation, the incoming long wave radiation was calculated
from a balance of the net radiometer (Funk), a Heimann for measuring the radiative
temperature of the surface during night-time. During daytime in addition to the above, two
solarimeters (Kipp), one of them inverted to measure the reflected shortwave radiation, were
used to calculate the incoming Jongwave radiation.

The initialization for the soil temperature profile was done by the use of initial
measurements at depths of 0.02, 0.08 and 1.2 meters and a linear interpolation for the depths
in between.

The initial seil moisture content was assumed uniform, The initial value was measured
gravimetrically for the top soil surface layer (2 cm thickness). The soil moisture
characteristics of the different soil layers, i.e. K{8) and hm(8) (3 layers) were fed into the
model.

A leaf area density profile, as measured in the field, was used and is given in the input file
(Appendix. 4)
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Fig 6.1 The windspeed at 6.5 and 2.5 metres height.
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Fig 6.2 The wet and dry bulb temperatures at 6.5 meters height.
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6.3.2. RESULTS
6.3.2.1. THE FIRST RUN:

6.3.2.1.1 The radiative environment:
Figures 6.4, 6.5 and 6.6 show a good success in simulating the net short wave radiation at

the canopy top, the total net radiation and the radiative temperature of the leaves respectively,
except in midday (2 maximum difference of 20 wm-2 and about 1 CO respectively).
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Fig. 6.4 : The Rn short {simulated .vs. measured} . Measured
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Fig. 6.5: Total Rn {canopy +soil) fk1147 (measured 2)
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Fig. 6.6 : The outgoing long wave radiation * Measured (heimann}
5.7 Wm*-2 represents about one degree K error.

6.3.2.1.2 The temperature and the vapour pressure of the air:

The temperature of the air at different heights showed a good agreement between the
measured and the simulated. Fig. 6.7 shows the comparison for the heights of 4.5, 2.5, 1.5,
0.5 and 0.1 metres respectively. 1.5 meters height is the height of maximum leaf area density.
It seemed from the calculation that there is an underestimation of the temperature of the air ,
especially at midday.

The vapour pressure simulation at different heights showed an overestimation at all
heights, except at the lowest level (0.15 metre) where there is an underestimation. It has a
maximum difference of 200 Pa of the vapour pressure between the simulated and the
measured at the maximum leaf area density height. The worst situation for the comparison
happened for the height of 0.5 meters, with deviations as far as 300 Pa.
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Fig 6.7.a : The air temperature (simulated .vs. measured)  * Measured (4.5 m)
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Fig 6.7.d: The air temperature (simulated .vs. measured)
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Fig. 6.9. e : The air vapour pressure (simulated .vs. measured)

The simolated soil temperature at 2 cm depth showed a very good agreement with the
measured, while for the 8 cm depth there was a phase shift and more damping of the soil
temperature wave.

DISCUSSION (THE FIRST RUN}:

The explanation of the discrepancy between the measured and simulated values of the
temnperatures and vapour pressure of the canopy air during different times of the day, we
think, is related to the interplay of two factors:

1) the frequency of gust intrusion into plant canopies, which was assumed constant, and how
much this affected the exchange.
2} the values of the modelled stomatal resistance.
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The first factor which is dependent on wind shear was assumed constant, once a critical
shear at the canopy top was achieved. For the mid-day time periods (e.g. at 35 hours for
example), a comparison of the measured and simulated stomatal resistance showed that the
simulated stomatal resistance of the lower surface of the leaves came within less than one

200 h(tTi:ﬁNL‘ : E T
-

P

150 ~ ]

g Bt 11 -
L -] } :
o - i : o
z { i e S
o 2
= | fol e §
50 7 - o e
i 7 [N
o A T
i : LT i
i
0 i %. i i
0 400 800 1200 1600 2000

Stomatal resistance in 5 m-1

—&— 15 16/8 upper

—=— 15 16/8 +sd upper

—— s16/8 upper -sd upper
° simulated 16/8 lower
L] simulated [6/8 upper

B : ; ’
=i \
'El) N W i :
= 1
= >+- “ﬁt
L 4 \- -
; il ] |
- ot NN RN
R i HEEERENE

800 1200 1600 2000 2400 2800
Stomatal resistance in sm-1

—&— s 16/8 lower
= 5 [6/8 lower +5d lower
—— s 16/8 -sd Jower
© simmulated §6/8 lower
[ ] simulated 16/8 upper
Fig. 6.10 : The stomatal resistance {measured T one standard deviation .vs. simulated) for the lower and upper
leaf surfaces respectively.
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standard deviation of the measured ones. For the upper surface of the leaves, the simulated
resistance was about half of the measured one. This is due to an error in the calculation of Fl
function which is used to calculate the stomatal response to light. A coefficient of curvature
of 40 in stomatal resistance on light was used. This was an underestimation for Maize. That
led to the stomatal conductance responding more rapidly to light, especially to medium values
of visible light intensity. There was also an etror in the distribution in the direct light
distribution on the upper and lower surface of the leaves. The leaf angle distribution is
assumed spherical. But in the direct light distribution, we assumed that the upper surface of
the leaves sees direct light and the lower not. That led to a reduced simulated stomatal
resistance for the upper surface of the leaves in comparison to the lower surface.

During the quiescence period, a turbulent transport coefficient which was independent of
height and equals (0.3*0.3*factor) was used, This factor was set to .35 during the whole
period if no gust process occurs, due to low shear during daylight time, or during the
quiescence period (if a gust process occurs), During night-time with no gust process
occurring, or during the quiescence period if a gust process occurs due to a high shear at the
canopy top, this factor was set to 0.20.

The effect of this interplay of the above two mentioned factors is affected by the boundary
conditions at the canopy top (i.e. the incoming shortwave radiation, the vapour pressure
deficit and shear at the canopy top) since these affect the turbulent transport coefficient and
the stomatal resistance. The following explanation could be biased, but it is based on the
obtained discrepancies between measured and simulated and tries to relate these to the change
in the boundary conditions of the simulated domain. [t is a hypothesis.

In the first day of simulation, as can be seen from figures .1, 6.2 and 6.3, it was a very
sunny, especially in the later part of the day, with very low wind, especially in early part of
the day. Fig.6.10 a and b show the stomatal resistance for the first day. There was an
underestimation for the stomatal resistance, especially for the lower parts of the canopy since
the effect of a lower curvature coefficient shows most noticeably in medium light intensities.
The upper leaves would have reached their maximal leaf conductance in higher light
intensities, so the effect of the using the wrong parameter of curvature does not show. The
reduced stomatal resistance, in the early part of the day, led to high latent heat flux from the
leaf to the air in the lower part of the canopy. The assumed coupling through a constant
frequency of the gust intrusion was a little bit higher than what it should be (why? This can be
seen from reading the third day of simulation), especially in the earlier part of the day. But it
seems that it did not compensate the effect of increased latent heat on increasing the vapour
pressure deficit of the air which leads to higher leaf temperatures. So, there are two opposing
effects: the delivery from the leaves to the air and the transport between different air layers to
the upper boundary. The balance was toward the higher delivery.

In the second part of the day, the higher light intensity reduced a little bit the effect of low
curvature coefficient probably in the upper parts of the canopy ,but not in the lower part of the
canopy. So, the effect of lower stomatal resistance was still there. There was also a pickup of
wind speed, so probably the intrusion frequency was less than or may be close what it should
he. But the reduction of the stomatal resistance did more than compensate this. This lead to
reducing the vapour pressure, with resulting cooler leaves, This led also to increased latent
heat flux from the leaves at the expense of sensible heat flux and a reduced leaf temperature,
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but not as severe as in the second day because vapour pressure deficit was lower compared to
the second day. This period was at about 10 hours from the beginning of the simulation.

During the night of the first day of simulation {15 till 27 hours from start of simulation),
we see from fig. 6.5, fig. 6.6 and fig. 6.7.b and fig. 6.7.c that the simulated R; was lower
than the measured one, and so was the case for simulated outgoing longwave radiation and air
temperature. The outgoing longwave radiation is calculated assuming an emissivity of one.
What a Heimann sees is a real canopy with an emissivity lower than one, so some of the
incoming longwave radiation contributes to the outgoing longwave. This has been considered
in the calculation of the incoming longwave boundary condition, but in the simulation of the
outgoing longwave an emissivity of one is assumed. If this correction is applied to fig. 6.6, it
would make the situation worse. What we see on fig. 6.6 implies cooler canopy than what it
should be. We assumed this is due to lower mixing during this night. This led to lower
sensible heat flux from the air the radiatively canopy elements. We thought a more active
transport should be activated during night time, especially in this low wind speed, so a
convective regime should develop within the canopy, which increases the heat flux from the
lower parts of the canopy or the warm soil to the radiatively-cooled upper parts of the canopy.
We then implemented such a description in the calm nights for the second run. We will
discuss the results of this in the second run,

In the second day, the underestimated stomatal resistance, especially with lower incoming
solar radiation, led to more transpiration on the account of less sensible heat flux from the
leaves to the air and so lower temperature of the leaves. This can be seen, as the simulated air
temperature is Jower than the measured at all heights, The simulated vapour pressures are also
higher than the measured ones, at almost at all heights, except at the lowest level, at all times
and at 0.5 m height at most of the time. From the wind speed fig. 6.1, we see that wind speed
was such that the assumed critical shear was exceeded most of the time. Maybe, the used gust
intrusion was right most of the time, otherwise, if the frequency was higher than what it
should be, it would have more than compensated for the increased vapour pressure due to
reduced stomatal resistance. The vapour pressure deficit was the highest during that day
compared to the whole period. That made the effect of the underestimated stomatal resistance
more pronounced.

During the second night, the wind shear at the canopy top was also higher than the first
night, with the resulting consequence of enhanced turbuient coupling of the canopy layer to
the air above. This increased heat flux from above and below the height of radiatively-cooled
canopy elements to that height. So, the simulated total Ry, Radiative temperature and air
temperature were better than the previous night. This gave us more justification for the
implementation of convective flow regime with the second run.

During the third day, it was very windy day, with high humidity and low radiation
intensity. We see that the trend (between 40 and 60 h) in the difference between simulated
and measured leaf and air temperature at 1.5 m reversed. At 60 hours the air was more humid
than the other two days and light intensity was the lowest, so the effect of the an
underestimated stomatal resistance on increasing the latent heat flux from the leaves to the air
was not present. The used intrusion of the gust was probably lower than what it should be,
since the wind shear at the canopy top was very high. So the refreshment frequency was
lower than what it should have been. Humidity of the air was also high. The simulated
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temperature of the leaves were higher than the measured ones. This gave us an indication that
an gust intrusion once every two and half minutes was less than it should be with this high
shear and probably it was a good average value for the second day. In the second run , we
varied the frequency of gust intrusions into plant canopies around the inverse of that number.

Concerning the bad agreement between the measured and simulated vapour pressure at
height 0.5 and 0.1 metre, we thought that maybe due to the implemented uniform turbulent
transport coefficient with height. we are ventilating too much and that leads to the
underestimation. So, that is why we thought maybe it is good to implement a vertical velocity
variance.

6.3.2.2, THE SECOND RUN

To check the reasoning behind the discrepancy between the measured and the simulated
variables, some corrections were implemented in the model.
These included:
1) Using the right curvature coefficient in the F1 function for the stomatal resistance
dependence on light.
2) Correcting the distribution of light on the upper and lower surface of the leaf (look at the
code) NORMN subroutine
3) A parameterization of the turbulent transport coefficient according to Raupach (1988)
implementing a vertical velocity variance.
4) We also implemented a gust frequency of intrusion as a function of the shear at the canopy
top. This function was rather arbitrary, but we thiok it is good enough.
5) Implementing a free convection regime to describe the exchange processes within the
canopy during night-time with low wind speed at the canopy top.
The implemented corrections are shown in the listing in comparison to the old
parameterization.

6.3.2.2.1 The radiative environment:

Figures 6.11, 6.12 show very good agreement in simulating the radiative environment of
the canopy, but it seemed that there is still a problem with the first night. The outgoing
longwave radiation seems higher than the measured, the effect of the emissivity on reducing
the simulated outgoing radiation to bring it closer to the measured will make some of this
discrepancy disappear. But it seems that the effect of an error in our parameterization of a free
convection regime at the first night shows through looking at the temperature of the soil at
0.02m depth. We see there a lower temperature of the soil compared to the previous run. It
meant for us that the modelled contribution of soil to warming the canopy air was
overestimated. That effect even shows in the soil temperature at 0.08 m. So, there was an
overestimation of the contribution of the soil heat flux lo warming up the radiatively-cooled
canopy elements.
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6.3.2.2.2 The temperature and vapour pressure of the air:

The temperatures of the air at different heights show on general a very good agreement
between the measured and the simulated for different height for the seven days of simulation,
except for two 15 minutes averages at the end of the first and second nights. This discrepancy
shows mainly in the figure 6.14.f for the difference between the measured and the simulated.
Fig. 6.14 shows the comparison for heights for 4.5, 2.5, 1.5, 0.5, 0.1. The agreement was
very good.

The vapour pressure simulation at different heights showed a much better agreement than
the first run between the measured and simulated for 4.5, 2.5 and 1.5 m heights. For the
lowest two layers, there were more deviations.

The soil temperature at -.02 behaved worse than the first run, especially during the first
night and noontime of the second day.

The soil temperature at -0.08 m was similar in its agreement with the measured
temperatures for the first run.
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Fig. 6.14.a: The air teraperature (simulated .vs, measured),
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Fig.6.14.b: The air temperature {(simulated.vs. measured) * 2.5 metres (measured)
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DISCUSSION (THE SECOND RUNj):

We will discuss the most apparent discrepancies between the measured and the simulated
results and show what we think could be a reason.

Looking at the difference between the measured and the simulated curves (fig. 6. 14. £,
6.14.g, 6.15.f. and 6.15.g) for both the temperature and vapour pressure of the air, we see two
problems.

The first is that the agreement between the measured and the simulated for the 0.1 and 0.5 m
heights is not as good as the other heights.

The second problem is that the agreement between the measured and the simulated gets worse
for all heights at mainly two specific periods corresponding to about 5 and 29 hours from the
beginning of the simulation.

We will discuss the second problem first.

Concerning the air temperature within these two period, we notice that the measured
teraperature in the air layers above the canopy (i.c. heights 4.5 and 2.5 metres) are higher than
the simulated ones. In the lower part of the canopy (heights 0.1, 0.5 and 1.5 metres), the trend
is reversed. These two major deviations between the measured and the simulated coincided
with the occurrence of radiative cooling at the upper part of the canopy at the end of the first
and second nights. The wind speed at the canopy top was very low (look at fig.6.1). That led
to the dynamic decoupling of the canopy layer from the layer of air above the canopy (i.e. the
shear was below the assumed minimum value (0.2 s-1), required to initiate the gust process).
This reduced the heat flux from the air above to the top of the canopy. The stability
corrections for the turbulent exchange coefficient at the layer of air above the canopy
accentuated this decoupling. This led to the development a steep temperature gradient at the
layer of air above the canopy. In the layers of air below the canopy top, the exchange
processes were driven by the warmer soil. We also see from the soil temperature graphs that
the simulated soil temperature were also lower than the measured, especially for these two
periods. We think that the deviations have to do with the effect of convective flow regime
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within plant canopy during the first and second nights. It seemed that the parameterization of
the convective regime overestimated the flux from the warm soil to the top of the canopy. The
used parameterizations (look in the listing) assumed no hindrance for the convective cells
which transport heat from the lower part of the canopy to the radiatively cooled upper part.
May be, the plant parts {leaves etc.) would represent some hindrance for that movement and
that would represent a reduction for the flux from the lower part of the canopy to the top. This
led to the simulated temperature of the air below the radiative cooling height being higher
than the measured.

So, the convective flow regime in the lower part of the canopy was contributing much
more 1o the flux while the layers above the canopy were contributing less. So, we think there
is a need to correct for the effect of stability on decoupling the air flow above the canopy
from that within the canopy during stable conditions. It could also be with low wind shear at
the canopy top and radiative cooling, that coherent structures intrude into plant canopies
rather sporadically which prevents the severe decoupling of the canopy air layer from the
layer above. in the case of low shear, We tried to implement a criterion for an initiation of an
ejection of air from the canopy to the layer of air above, in case of the soil being warmer that
the radiatively cooled canopy top and also being warmer than the air above the canopy at
night. This was done by implementing a critical Richardson concept over a large distance.
But this caused far too much mixing.

Concerning the first problem, there seems to be a correlation between the deviation
between the measured from the simulated and the value of Rp for the canopy. This is
especially true for the vapour pressure deviations all the time and for the temperature
deviations at the first three days. We attribute this to the parameterizations for the turbulent
transport coefficient, Raupach 1988, which led to low values for the

200

= (1.5m - 0.5m) simulated

100

Vapour pressure in Pa

1) e —————— T T T T
0 24 48 72 96 120 144 168
Time in hours

Fig 6.18.f The difference between the simulated values at i.5 and 0.5 metres

turbulent diffusion of water vapour and heat from the upper parts of the canopy and the soil
surface to the heights of 0.1 and 0.5 respectively. This is especially true in the case of water
vapour, since the vapour at the soil temperature and the upper part of the canopy is higher
than 0.5 m. If turbulent transport was high, it would have allowed more diffusion to the
middle layers of the canopy. The gradient in vertical velocity variance was too steep. It led to
very low values in the lower parts of the canopy. So, the difference between measured and
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simulated is still the same like the first run, but the reason for discrepancy is different, The
first is too much diffusion and the second too little diffusion. Concerning the vapour pressure
at other heights and times, the deviations between the measured and the simutated were of the
order of 100 Pa.

200 7 T 1 i
] ° [
_ 150 ‘ X
& ] ¢ § o~ [
% ] o? [
& 100 L
: ] o B Z
<« 1 i [
1 P e L
50 5
A T I I L
- b
4 oy | e
o i
0 500 1500 2000
i Stomatal resistance in sm-1
88— 5 16/8 upper
| —®— s 16/8 +sd upper
—8&— r516/8 upper -sd upper
b secondrun upper
200 7 HEE = 1 T
] I A ‘; {
ERERRE EREEEE
] meai R | ] |
50 JU | 3
= 1 . oe | i H i { ] : i
2Ol N RN
© 1 [ : Mo ! i [
21007 1 NU LN S ? y
g ] “Nt \:’B‘\. \1&\.. E ; [
< TN N T ]
J i
50 L | \.E\\;‘ ‘ L
1 [ ] L — H
] N T 3
J : el ! i 5 |
O H H H - L H 5
H 400 800 1200 1600 2000 2400 2800

Stomatal resistance in sm-1
—B— s 16/8 lower
—®— 5 16/8 lower +sd lower
— = s 16/8 -sd lower

second ren [ower

Fig 6.19: The behaviour of the stomatal resistance for the upper and lower surface.
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We attribute the better behaviour to the corrected parameterization of the stomatal
resistance due to correct distribution of direct light on the upper surface of the leaves, correct
curvature coefficient, The effect of these corrections on the measured versus. the simulated
stomatal resistance is shown on fig. 6.19. It was better than the first run , but not very good
either.

The use of a varying gust intrusion into plant canopy was also good in making the model
more valid.

The discrepancy between the measured and simulated soil temperatures, we think, is due to
a wrong parameterization of the thermal diffusivity of the soil. We see there is stronger
damping in the simulated wave with respect to the measured. This could be due to wrong
initial moisture content. In the run, we used the value of the gravimetric moisture content
measured at 2 cm depth as the initial moisture content for the whole profile. The agreement in
the amplitude of the wave in the third, fourth, fifth, sixth and seventh days was better, but
there is a delay. We think a better agreement could be to the effect of the amount of rain
during these days which was used to humidify the upper layers of the soil. So, it erased any
uncertainties concerning the moisture content of the upper soil layers. In the fourth day,
rainfall was about 12 mm. (Van Pul 1992) (look at the input file). The re-wetting of the upper
soil layers was done at 12.00 noon time of the day in which there was rain (look at HYDRO
subroutine). Maybe, that is the reason in the delay.

CONCLUSIONS :

The results of the model validation show in general a very good agreement between the
measured and simulated radiative environment and leaf temperature and air temperature.
There is, however an interplay between the gust frequency which determines the degree of
build-up of the scalar profiles which is allowed to occur and the stomatal resistance which
controls the time rate of the profiles build-up for the vapour pressure and temperature. This
affects the energy budget solution of the leaves. The turbulent transport parameterization play
an important role in controlling the values of the temperature and vapour pressure in the
middle layers of the canopy. This interpretation can be seen from the semi-analytical
treatment of the canopy, given in chapter 4.2. We think that a better parameterization of these
three degrees of freedom will allow even a better simulation of the plant canopy
microclimate.

There are a lot of variables in this model which have not been validated (e.g. plant water
potential and soil moisture content). They seem to be working but this has not been validated
experimentally.
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APPENDIX 1. A

Navier Stokes equations constitute a non-linear system of equations. Use of a large time
interval averaged value for a term in that system of equations is not the same as the use of a
variable in time (fluctuating)} term with the same mean. It will not yield the same answer,
since the equality

f(x) = £(X) Alla
does_not hold_for a nonlinear function. i.e. the mean of a function is not the same as the

function of the mean. The problem we have with the large-time interval averaging is that the
following invalid assumption is made,

£1(Fg00° T=F ) Fot* T Al.lb

These two expressions (Al.l.a and A.1.1.b} are the same, except that x in Al.l.a is an
operator fy function in Al.1.b. To show the analogy between this expression and the
Reynolds—avcraged Navier-Stokes equation, we start with a nonlinear term or a nonlinear

operator like u=—1 . and do the averaging on it. The nonlinearity of this term shows more

8
clearly when i=j. When i j, uj is coupled to Y through the continuity and the pressure

correction equation.

Let uj have two different values Aj,B; which have to be averaged. There will

A; 0B
correspond to these two values of A; , B two different values of aax axl and two different
J ]
values of Aj s Bj depending on the solution of the flow equation. Let us assume, for the time
being, that y; is the instantaneous value or a small volume mean value of u and we want to do

the averaging for a larger volume average. The left hand side of the above equality is

1 BAI + B dB; AL2
2 axj Jaxj

That represents the average for two values of uj. Reynolds (1894) has done his averaging
by decomposing the value into a mean and a deviation from that mean as given by,

A= Mi+A;
Aj= Mj+Aj
Bj= Mj+B;
Bj= Mj+Bj
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where

M; is the mean of both values Aj,Bj
The mean value of the function i.e. the left hand side of the above equality is

B(M, +A d|M; +B;
L (a8 +BJaB1 =L (v +A] +{M +B, )F
2 ax x| 2 J ox;
j i §
e Mg P, M P9 A;
=Mj—= - 9%: {MJ a +AJ ox; AJ Ix;
i ] j
aB; oM

+Mi - L+B; +B; —1}
] axj ) axj 1 axj Al4

In the case that uj is the instantancous value, the third and the sixth terms inside the
brackets represent two values for the Reynolds stress. Increasing the size of the averaging
volume to include the largest scale of transport is equivalent to increasing the number of
averaged cubes (n is very large). Once there is compliance with eq.3.5.1, this contribution is

, 0 u
zero and the sum of Reynolds stress converges. The term u. — is also non-linear. The total

] axJ'

auJ

averaging of the terms i.e. u i
%

goes into the Reynolds-averaged Navier-Stokes equation,

u.
i.e. the mean non linear momentum equation, due to U.l = e and u; 1 in this equation. It is a
X

Ja
conservation equation, the total sum of Reynolds stress divergence determines the change in
the mean momentum. So, from the above, it seems that the total sum of the Reynolids stress is
what matters and how that total sum is achieved should not matter. But what about the
nonlinearity of the equation ? There is some circular logic here since the validity of this
conservation equation requires certain assumptions in it

So, in principle, it should not matter how the total sum of Reynolds stress is achieved as long
as the requirement for the averaging is achieved.

i 0T, g 9P a7 )
™ +Uj o = 613g+fcelj3Uj-§a+v ax? - %

AlS
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aFAt aQU At B(u % )

T—AL aUl 1
p axl Bx BXj

0%

fl((u ) )— Uj 6i3g+fCElj3Uj -

=Uy

Alb

where At is the interval of integration, could be small s or large {. In the right hand side of
eq.Al.6, the integration of this equation is equivalent to fl("_m)operator in the above
expression. The values of the Reynolds stress represent the f(x) in the above equation,
while the effect of this value on the mean momentum is represented by fq[fo(x)] expression.
The superscript next to the ™ ® determines the interval of averaging, small or large.

In the derivation of this equation, Reynolds (1894) has shown that the uniformity of the
(turbulent ) signals is a required condition for the validity of the averaging. He has done this
through the Taylor expansion of the signals behaviour around the centre of mass of the
averaged volume and has shown that to achieve the mean momentum condition, i.e. that the

integration of all Z PU', 2 PV' ,z pPW' over all volume or time intervals to be respectively

and severally zero, the first order derivaiives of the U,v,w within our subvolumes or time
intervals with respect to x,y,z should be constant. This is equivalent to assuming that the
mean motion is steady, or uniformly varying with time.

Fig. A.1.1. A variation of the mean signal along a line connecting two control
volurnes, the first dx1 is conntecting two control volumes which constitute
subvolumes in a large control volume,

He concluded “that the closeness of the approximation with which the motion of any
system can be expressed as a varying mean-motion together with a relative-motion, which
when integrated over a space of which the dimensions are a,b,c, has no momentum increases
as the magnitude of the periods of u,v,w in comparison with the periods of u’,w’,v" and is
measured by the relative orders of magnitude to which these perieds betong.” This seems to
me as a statement of eq.3.5.1. So, did we understand wrong?. What about the legitimacy of
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the raised point concerning the behaviour of the terms, as shown through the nonlinearity of
the systems of equations and the strong time variations of its terms?

There are two points to answer this. The first, we conclude from Reynolds paper: it
depends on the size of subvolumes composing the whole volume of averaging, as shown by
the previous graph, to determine what is mean and what is deviation. The variation of the
mean signal along the two subvolumes connected by dx1 represent, with respect to the two
larger subvolumes connected by dx2, a variation within the larger subdomain one. If
condition 3.5 is not achieved yet, in a way, it represents a variation of the turbulent signal
along the larger subdomain Or more correctly, it represents the increase in the turbulent
signal due to the volume increase from volume 1 to volume 2.

The second is that the separation of the scale required for the validity of averaging is a
required condition for all subvolumes which could be averaged. In case of uniform
distribution of the length scale, the increase of the turbulent transport with the increase of the
volume of averaging or the length of time step will be an increasing function of the spatial
dimension or the time interval with a uniform slope. Within this averaging volume, there is
an increase of the flux till we reach a platean. The uniformity of the slope implies uniformity
of the term's behaviour within the volume of averaging. The correlation between any two
signals will be uniformly distributed. So, Reynolds by specifying this condition of uniformity
met also the conditions required for averaging a non-linear equation. The problem happens
when there exists a change of the slope or a separation of the scale within our averaging
volume.

A uniform distribution of the turbulent transport signals at lower level, i.e. ulo,c' ,will
lead to a uniform distribution of the double and triple correlation between variables, i.e. u’,
¢’. This will eliminate the effect of intermittency on the correlation. Two completely non-
correlated signals along a certain direction lead to zero turbulent flux in that direction. In the
horizontal direction, assuming no mean horizontal component, that implies complete
homogeneity of the concentrations or the conserved quantities. In the case of a non-random
correlation, which is uniformly distributed, this implies a rather uniform flux in a certain
direction (no contribution to the flux divergence along that direction).

For the equality of the above equation A.1.b to be achieved for a nonlinear operator f1, it

is required that f0(X)° terms are equal during the short time intervals comprising the large
time intervals.
For the equality of the dependent variables in eq.A.1.1.b, the dependent variables have to

be equal within our volumes. To have the equality A1.1.b valid, the variance of the fo(x)"
should be zero or a variance minimization principle.

i=lf s 12

oo
=]
"?1: i1

=

The derivation of an averaged equation for
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For example, a second order term, uiul'( : the derivation of an equation for
(g ) = (ujuy ) vy

which we try to include in the turbulent transport equation is by multiplying it by its self or
by a turbulent transport term which maintains the effect of the deviation. This is similar to a
derivation of a higher order term prognostic equation.

The minimization of the variance of this value is achieved, when we have identical
volume. Strictly speaking, the equality of eq. Al.1.a is then achieved when we are averaging
identical averaging volumes or identical time steps. The variance is then equal to zero. The
equality of the terms is the strict required condition for equality of Al.1.b. The effect of
variation between the samples shows in the above non-equality.

L — 1l
fg(x)s] - ||Tp(x)%| represents the error in the solution due to our

approximations. The total difference depends on our system of equation and how much is the
difference.

The sum of f
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APPENDIX 1.b: Random Walk models.

In a random walk model, we have a problem concerning the effect of coherent structures
on the concentration field and whether the derivation of these models include in them an account
of the resulting correlation in the motion between particles on the concentration field.

In this appendix, we review the derivation given by Lamb (1980) and we show where a
misunderstanding may arise.

THE DERIVATION BY LAMB (1980):

Consider a dispersion experiment in which three particles are released from given points
r, 1.1 at time t=0. Once the particles are released, they are carried by the fluid to new

locations rl(t), rz(t), rB(t\.

Let v be a volume, which we shall call the sample volume, centred at a given point r. The
size of v is arbitrary, although we shall assume it is small in the analysis.
The sample volume and particle positions at time t and t=0 are illustrated in his fig.A.1.b.1
{which is included here for clarity.)

Lamb(1980) introduces two definitions that will serve as the sole basis of the Lagrangian
diffusion equation. The first is the definition of the concentration ¢ itself. He defines

m(r,t)
v

e(et) = A.lb.l

where m is the number of particles in v at time t. The second definition is the joint probability
density p(rl,rl,ryt | rm,rm,rw,to) that the particles are at the specified pointsr_ r, r, atime t

17273
given that they were atr .ot , respectively, at time ty=0. The function p is a Lagrangian
property of u’ family and is defined as follows:

N
=1 1 3

p(rl,rz,r3,t I rm,rm,rm,to) = llmNﬁmN ;El U /() Alb2

= | if the n-th member of the u' family is such that three particles

released at (r1 o Do rw) at tp=0 are simulataneously in small
volumes &v centred at given points ry,r2, r3 respectively at
time t;

Un =

= (); otherwise

Alb.3
In the three-particle problem under consideration, the concentration ¢ can have only one of

four values at any point in space and time -- ¢ =m/v, m=0,1,2.3. Then, to determine the
probability w(m} that the concentration in the sample volume has the value m/v.
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Fig Al.b.1 illustration of the sample volume V and positions for the three particles initially
and at time t. taken from Lamb (1980).

Considering first the case of m=1 (one particle in the volume), there are three events which

can lead to this value: either particle 1 is in v alone, or particle 2 is there alone, or 3 is present in
v alone. By virtue of the definition of p we have

l"‘I = probability of particle 1 in v alone = ‘walvp123drldr2dr3 A.lb4

where, for brevity

Py = p(rl,rz,rs,t | rm,rm,rm,to) A.1b.S5

The integration domain represents all space outside the volume v centred at r. v is assumed

small enough that p varies little as r,, T, [ vary over regions of size v centred at each point. In

this case, the inner integral is simply Py V-
The integral over y can be written in the form

I()dmj()dr—I()dr Alb6

where f denotes integration over all space. Using this equation and the definition of the so
called marginal densities P, and P i.e.

kaE’ pjlddrr A.lb7

pjs] Piy; drk dr! Al1b.8

equation A.1.b.4 is reduced to the form
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= - 2
P, —] [PV - P Vil dr, A.1b.9

v

and repeating this operation, we get
= Y R 3
ST TR 5 PR PR P

The same procedure is repeated for Pz’ 13'3 A.1b.10

Since the occurrence in v of any one of the three particles is mutually exclusive of all other
possible events, it follows that

3
w(l)=) Pp=v (P+ Py +Py) -2 VAP, o+ P +Py) + 3D, A.1b.11
n=1
The steps leading to the expression for w(2) are similar to those just described, first

p,, = Probability of particle 1 and 2 only in v = lwlvlva} dr, = vi P,- v3 P sy
A.lb.12

There are three mutually exclusive pairings of the three particles that give c=2/v -- (1,2),
(1,3) ,(2,3). Consequently

w(2) =P +P +P, = v2 (P, + P+ Py} - 3 v3 D3 A.1.b.13

Finally, since all three particles must be in v to cause ¢=3/v, we have

w(3)=p]23 v3 A.lb.14

and since m=0,1,2,3 are the only 4 possible events,

w() =1 - w(l) - w(2) - w(3) A.l.b.15
These are the exact forms of the probability distribution w(c) for this simple model. Now,

to determine the ensemble averages or the moments of the concentration. The mathematical
expectation of the n order moment is given by:

3
(mo= Y m" w(m) A.1b.16

m=0
The mean concentration, i.e. the zeroth order moment, is given in this three particle system by

©={my/v=w(l)+2 w2+ 3 w(3) A.1b.17
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summing the corresponding expression for w(I), w(2) and w(3), we end up

& =p +p,+p, Alb.18

i.e. the sum of the marginal densities of the different particles in the system. In Lamb(1975), it
is shown that in the limit as the number of particles becomes very large, equation A.1.b.18
becomes equal to

Cr.0) =] [pt 1 e srt) drae A.1b.19

which is equivalent to eq. 3.7.1a or 3.7.1b.

Here ends the derivation given by Lamb(1980); and now where is the misunderstanding in

the derivation and that the effect of coherent structures is thought to be alr included?

The joint density function p 1oy A8 defined by eq.A.1.b.2 and A.1.b.3, includes in it all the

possible correlations between the particle locations after some time since release, which could
result due to the effect of different scales of motion, including large scale coherent structures.
Small-scale structures do not lead to non-vanishing correlations between particles at different
locations or between particles which have a time separation larger than the Lagrangian integral

time scale.
The problem is that the marginal density functions p1, p2, p3 will not be equal to each

other. Since, it is by definition that in the case of independent events, i.c. the event of particle 1
being in location r after time t has nothing to do with particle 2 being in location T, after time t,

and both of these events or any of them have nothing to do with particle 3 being in location r3
after time t, requires then the possibility of expressing the function p(rI Fal gt It

IO’rZU’TSD’tO)
as a multiplication of the PPy P, which are the marginal density functions for particles 1, 2

and 3 respectively. If the migration of the three particles are correlated, the expressing of

3
P, 3=l"[ p, where p= pz = p3 is not possible and the resulting summation in eq. A.1.b.18 is
!

not of identical terms.

If we accept that the fluxes of the scalar quantities represent the migration of particles
between different location and that these fiuxes resulting from the existence of coherent
structures represent correlation between particle emigration at different heights, we end up with
the conclusion that the particles motions are correlated and so

p(rl'rz‘rg’“’"n*“TIOJZOJW--,THO,IO) can _not bhe expressed as a_multiplication of
Pi23..0a=P1-P1-P2-----Pn

where
Pi1=p2= ... =py = p(r,t | It

To get a fitting, you need one of these functions to be obtained by fitting.
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APPENDIX 2 (A.2):
2.1} The energy equation of the leaves:

The energy budget of the leaves reads as

JT PCp pC
pSCS v '?tl =0y Rs‘L AI‘ - ﬁ (Tl‘Ta) Ah - rrmgr?) (eS(T])—ea)Aﬁ (Edrgll' a ] A!‘
A2.1.]

assuming
es(T]) =e5(Tajr) + (T1 Tair) A2.12
and
(a air,rad,a " E5(7-[‘1111) 48dl-'alr rad,a Tair,rad-T1} A213
The energy budget equation of the leaves can be put in the following form:
M ) T A
7 CsV [ar Rgd At 4£GTa]r rad,aTair,rad-T1) - —( Tair) An

C A214

9 pC _Ptp  dey .
Y(T"bv +r ) (eg(Tair)-eaA] - Y( T Fid (TrTaipAYl

which can by rearranging the terms be put in the following form

aT pC p
71— 5Cs V [or Reb Ar+ 4€°'ra1r rad,a Tair,rad+ rbt[: Tair Ap - m(es(Talr) €air)A|
PCp _ des o PCp PCp_ e
P 4e0T3; Ap + o
‘Y(rbv+rs) 31 TairAll - CsV psCs v | e0Tairrad.a* oh 1 p(rpytrs) O Al
A2l15
Putting
pC de
K= A 460 A —E A o A .
I,T pscs v [ air,afM I'bh h 'Y(rbV'H‘S) aT l] AZ2l6
and
PCp
R A217
4e0T5ir rad a
and
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Ar=Ap=Aj= A A218

PCp deg

1 - 1.1 L, 1 % A2.19
YT KI,T psCy thickness [TR+fbh * Hipytrg) dT ]
Defining
PCp o Rgl  Tairrad 1 1
= + — + =T, - ————— (eg(Tyaip)-€aj
Tieq Kl,T psCs thick * pCp TR thh 2 Yrhy+s) (e5(Tair)-Cair)
1 .
+————58 Tyl
Mrpy+rg) T
A2.1.10
T .
1 or Rgl airpad =~ .
T = + +‘_Ta_lr
I,Cq []_+L + 1 Qei pCp rR rbh
R 'bh  Yirpytrg) OT A2.1.11
b (e(Taip)eair) + —L— 93T']
,Y(rbv+rs) ( S( all') alr. 'Y(l'bv*'l's) aT ailr.
The equation for the leaves reads as
O Kyp (T - Theq) A2112
o LT l,eq' e
the solution of which is
S -
Ty =Ty eql1-e TLT)+T1,initiale ur A2l1.13
2.2) The sensible heat equation of the canopy air layers
The sensible heat balance equation reads as
dTqir _ a_q
pCp T + 8p A22.1
Discretized with respect to space, it reads as
A C aTair_ . .
z pCp —5, " = (ai+1- a)) +5h Az A222
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acy
az

t
_17113“5 J |2 ( tO 1
q=we, Lil-e L

t

t . to-ty —ens
a5 1.=J weoS gt = Uw'z ‘EL{ l—eT} } 83 ) dt
; o o top] 92

' t

t o t(]'tl}
J woens dt; dt w<Tll-e 1L top dtldt
o 0
4di+1= t = L
—_ LRIl -
~ens _ C
we = Tl L }topg A223

The above equation expresses the development of the flux as a function of time. The
ensemble average here means an average over the same time since release or the average of a
large number of measurements, taken at the same period after the passage of a gust. The
actual flux will be a superposition of different times since release.

The mean flux:

. . g e
J- w'e®nS dt WL L top az
—. _ (8] _
Gir1=T A2.2.4
Putting
l Itop
gi+1 = pCp o {T-Tit1) A225
and
o ot
weTile
L L bottom
=pCp {Ti-1-Ti) A226
3 Xbottom
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leads to

) ot)
dTy wErLle o top
Az pCp —it It = pcp (Tis1-Ti)
X
top
—_ ot
w2 il T
+pCp bottom (;_ 1-T1)+ (Tl T)LAD Az A227
0 Xpottom
Rearranging
= |, to-tl} - ll gt
w1 1L w<T) 1€ T
Az pCp aetur = pCp op | bottom % T
8Xtop 8 Xpottom
" | —to'll} S tptg
wet|l-e g w2 \l-e
top T 'votiom T) LAD Az
+pCp Tiv1 + T Toh
8Xt0p 6 Xbottom
A228
In the far field region Of >5 where 7 is the Lagrangian time scale which has a
w2
. . L TL[U]J
maximum value of 1 sec. The equations reduce to the
aXtop
ITair = __1 Kiop Kb(:ottom +LAD AZ)TI
ot Az 6me 8Kbottom 'bh
Kio K T| LAD Az
o P T e T e A229
az 5Xtop 8 Xpottom
K
. 1 _Ka T = 1 top ' Kbottom +LAghA Z) A22.10
a, T Az thop 8 Xpottom
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A1

.. Az
S = KaTTi+KaT

Ko K| T| LAD Az
P Tis] + bottom Ti.| + l o~
5Xtop 8 Xpottom

1

Az

Krop_, Knottom_ +M)
SXtop 3 Xpottom Tbh

A22.11

0T,
a‘?r =-Ka,T T + K3 T Taireq A2212

The behaviour of the equation is exponential in a range of values which exceeds
the Lagrangian integral time scale by an order of magniinde. The effect of the non-
linearity we are considering in the solution is not only a near field effect.

The solution of this equation follows. The assumption of the constancy of Tair,eq could
be justified by applying the integration for a short timestep in which the values of Tair,eq and
Ka,T arc almost constant. For every time step, the values of Tajr,eq will keep changing. This
equation describes the behaviour during such an interval.

S - .t
T T
Tair=Taireq(l¢ &1 )+ Tajginiiate &1 A22.13
where
ﬂ Kpottom
6Xtop Tost + 8 Xhottom T
K K i+l K. i-1
top , Kbottom ,LADA z] top , Kbottom LAD A z)
Tair,eq(t) = 5Xt0p & Xpottom "bh 8Xtop 3 Xbottom foh
LAD Az
+ 'bh Ty

Kiop , Kpottom ,LAD Az)
5Xtop 8 Xbottom "h

A22.14
There are two time constants for the layer. One active during the gust intrusion and the
other during the quiescence period.
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2.3) The latent heat equation of the canopy air layers
The latent heat balance equation reads as

PCp deyir _ _dae

S
v %t - o e

Discretized with respect to space

Cp oe
Az pyp a‘f“ {Qi+1- i) +Sle Az
Putting
C
Qe,it] =5 pCp & P (eieia)
T 8X top
and

Cp K
Ge,i= o0 Dottom (g, )
T 8 Xbottom
Az PCp ag?r PCP top (ej+1 e:)"‘p P Knottom {ei-1-ei)
T T 8 top 78X Xbottom
PCp
———{es{T|)-e) LAD Az
'Y( Thy+s)
Rearranging
deair _ 1 [ Ktop | Kporom ,LAD Az,
ot Az SX[QP beottom (Tbh"'l's)
K
L1 [ Dwp eip] + Kbottom ol + cs(Tl) LAD Az
Az \8Xiop 8 Xhottom (ThyHs)
1 g -1

Keop . Kpottom ,LAD Az)

fae ae  Az|8Xp O Xbotom (thy+rs)

A231

A232

A233

A234

A23.5

A236

A237
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Ko K]
PPy - DOMOM ¢y 4 LAD Az es(T1))
e air i Az 5Xl0p 8 Xbottomn ThvHTs
FTa Kaeei+Kae K
1 { ™Mop | Kpottom ,LADMID Az
Az | 8Xiop 6 Xbottom (rov+s)
A238
deair,i
pm —=-Kae€airi + Kae aireq A239
where
K
_top Kbottom
SXT.OP et + 8 Xbottom &l
Kiop . Khottom ,LADMID Az) Kiop | Kbottom ,LAD Az
aireq0=| | SXtop 8Xboom (VI 8Xiop & Xbottom (TbVHTS)
LAD Az
t () es(T))
top , Khottom ,LAD Az
8Xiop S Xbottom (tby+s)
A2310
-t .
T T
eair=€air,eqll-€ %) +¢€initiale e A23.11

There are two time constants for the canopy air layer. One during the gust intrusion and the
other during the quiescence period.

2.4) The vapour pressure deficit of the canopy air layers

C : Cp K
Az p_gaci = PLp Mtop (eir1-8i)+ &_Kbgﬂﬂ(e-_l_e-) + L (es(T])-e,) LAD Az
Y o ¥ 5 R T Arpy ) 2
Xiop Xbottom Vs
A241
. K R -1
Az pCp af‘g:]r = pCp “top {ej+1-2i) +—pCP Koottom . (ej.1-ei} + e Bl s +fCPDrh LAD Az

Al42
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: K *R,, - pCpDr; !
Az pCp a%‘fl = pCp P (Ti41-Ti) + pCp Bbowom (1, -1+ % LAD Az
top bottorn Y +s
A243
I . . _deg
Multiplying the first equation by (- ) and the second by s {s= B_T)
dT4; Kio K
Az spCp =ik =pCps P (Tj41-Tj) + pCps —2OUOM(T;_1.T})
top | bottom A244
* -
R - pCpD
M M YL PN
T +s
-1
deg; Ky K s R + pCpDr
82 pCp =L = pCp —(ejyy-¢)) - pCp MM ej ¢p)-y — ———- n
top Xbottom T+
A245
I(sTair-eai Ky,
AzpCp (S—aa";eﬂrl =pCp — P ((sTiw1- eis1) - (sTi- 1)
Xtop
K
+pCp —DAUOM((eT; - g1} - (5T - )
8 Xhottom
* -1 -1
Ry - +pCpD
sV Rn-PCPDry _ SRa* PCPDTh ) f \p 4,
Y +s Y +s
A246
D(Ty) = ey(T,) - e, A247
D(Ty) = es(Tp) +s T,y -5 Ty - e A2AS8

where Tp is some reference temperature,

Adding and subtracting eg(Tp) - s Tp to (sTair-eair} for layer i+1 and layer i in the left and

right hand side of the equation gives

Kio

KbOﬂOm (Dl-l -Dl)

Xbottom

LAD Az

A249

dD);
Az pCp —==pCp P (Djy1 -Dj)+pCp
top
. ¥Ry, - pCpDr;] . Ry, + pCpDrj!
S -
Y+ Y+s

dividing the whole equation by s

LAD Az



As pCp 8D1 pCp top 9P b,y oDy + PCP Kbottom Dy -Dy)
) 3
s -1 -
R, - pCpD R, + pCpD
Y n*PPfh TS “*"Prh LAD Az A24.10
Y+s s Y+s
working out the third term between brackets as shown in Chen(1984)
YR -pCpDri! ¥ sRy+pCpDril | v*Rp-vRy DCPfo,]"'gPCPDrB]
Y+s § v+s T+ Y+
YRy-YRy _ Yoy Rn-¥hRy  yrgRy - Rp
v+s ¥ (fp,vHg)+ S Th ¥ (Th,vHIg)+ S Th 1+I;£( 1+8)
s i
___Rn Rn @Ry A24.11
ry Y +s 1+.b rgotry
1+?‘S‘ ( Y ) rs o
C
pCpDrj + 1 pCpDryl _ pCpD(*Y 7 ' —"EPD PP s
Y+s (‘! +s) rb""Y rs I‘b"‘“‘Y““ rg b+ &t o
S+Y
' K
Az p(sip aa% _ pfp 0 (b, _Di)+P(§P Kbowom (p, ; -y
axtop 6 Xb()ttol’l’l
oCp A2413
r, 0 Ry 5 D
LAD Az
Ig O+ Ip+ QI
where
_. X
= (v+ o) A24.14
dD; i
Az T] P (D 1-Dj+ b°“°m (Dj1 - Dl)+{ & s & Ry D AD Az
8Xtop bottom PEP TsO¥ b fh+ Oy
A24.15
Rearranging :
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KIOP Diy] + Kbholtom Di

aﬂ _ 1 Kiop + Kpottom +LAD Az D+ L |8Xiop d Xbottom
* Az BXtop 8 Xpottom T *Ts Az + [_S_ Ts& Ry LAD Az
pCp (15 0+ 1)
A24.16
| oxp= L Kwop . Kpottom ,LAD Az A24.17
TaD Az\8Xiop 8Xpoom THFHTS
Di _ kpD+5D. L Kiop Djyq + —bottom 1y, | =5 ——‘frsﬂf“))LAD Az)
at KD Az 8Xop 3 Xpottom PLP bHes
A24.18
K
;Xﬁ-)l Kbottom TAD Az
aD; 1 top 8 Xbottom {rptorg } [50‘ fg Rn]
il R ; - ; Dy +
2 Kp Dj +Kp LK Diy) + KD i-1 KD pCp
A24.19
oDy
== KD Dj +Kp Dair eq A2420
E‘E Kbottom
86X,
top Diy| + = 8 Xpottom Dj.|
Kiop + Bbotiom ,LAD Az top , Kbotom ,LAD Az
Dair eq(t) = 8Xtop 8 Xpottom bt s Xiop 3 Xpottom br s
LAD Az
Tht+ O Ig (50”5 Ry )
Ktop + Kbottom LAD_AL] PCP
8Xtop O Xpottom BT TS
A24.21
bt __t
Dajr = Dair,eq (1 - e Ta,D) + Dair initial € TaD A2422
R
sarg Ry | Sg+s D ¥t Eequ A2423
pCp pCp pCp '

In this derivation, which is a variant of Chen (1984}, there is no need for defining J
(saturation heat flux). The system is directly solvable to obtain a D value.
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2.5) The Soil temperature equation solution and the effect of intermittency on the
change of the boundary condition for the energy equation at the soil surface

Remark: The solution introduced here is standard mathematics, The formulation
of the problem (eq. A.2.5.1 to eq. A.2.5.7) and the nonhomogenous solution is done by

the author

The soil temperature as function of space (x) and time (t} is formulated as follows:

oty _ 92T
—== +Q(x.t A25.1
TR Qx.1)
subject to the following boundary conditions:
B aTsa(L t) +0‘LT5(L) f{L,t) A25.1a
dT4(0.1) -0 A251b

ax
and the initial condition
T(x,0) =g(x} A25.1¢
where

PCp pCh s pC
F(Lot) = oty Rd + 46073 g T +—P 7 T, - P p
(Lty=0r Rg air,rad,a ' air,rad (l'bh YehyHs, s)) A Yrpytrg o) T
A252
pCp pCp s

o (4EGT — A253
L= air,rad,a* hh T(rbv‘”s s)
Qx.H=0 x<L and t20 A2514d

and g(x) is the initial temperature profiie.

The related homogenous problem{A.2,5.4), satisfies a Sturm-Liouville Eigenvalue
problem and as such is complete, i.e any piecewise smooth function can be expanded in a
series of Eigenfunctions(A.2.5.8). The related homogenous problem is given by :

d2

—q)z“ +hdy =0 A25.4
X

BL (L)+0tL¢n(L) =0 A254a

d

¢" () =0 A254b

The Eigenfunction of the related homogenous problem is
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o(x,t) =Cjeos VAp x +Cosin VAp x A255

using the boundary condition at x=0 eq.A.2.5.1 ,Cp =0

on=Cicos Vap x A256

where

Vg =cotV Ay L)E—L A256a
L

The soil temperature can then be expressed as

==co

T(x,t) = 3 bp(Don(x) A237
n=0

The equality is actually not valid at x=L since ¢n(x) satisfies the homogenous boundary
condition there while T(x,t) does not. So, the required term by term differentiation of T(x.t)
with respect to x is not valid, while the derivative with respect to time is possible (from
A25.1 and A2.5.7).

< db 92T
2 n (X) =K A258
n=o dt tn ax2
dby, . - . . . 2T .
3 s the coefficients of an Eigenfunction expansion of K—ui, using the orthogonality of the
X

Eigenfunctions of this expansion

L
2
KQ-T— bp(x) dx
0 8)(2
dbp _

= A259
dt L
2
f dp(x) dx
0
Using Green ‘s formula which states that
f [uL(v)-vL(u)]dx=| (u%—:-v%—:)l‘ A25.10

where
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L any Sturm-Lioville operator L = % (Pi) +q , in this case q=0 and p=1.

L
8 d
oINS P E RN T
0 0
o L (0 T ) L T L
= T(L)B (cotVAg L) smf L- cos (w/1 a T “‘)
-—cos\/_L[aLT(L)+[3LaT(L)]
PL
= - L cos(Vag L) (L) A25.11
L
L t 2
| 0,22L ax =x [Taﬂ-% ]| %% 4 A25.12
ax2 ox2
Using equation A 2.5.4
2 L
dex=-kn|c T o dx A25.13
ox2 :
and“since bp(t) is the coefficient of an Eigenfunctions expansion of T{x.t}, so by definition
f T (1) §p, dx
by (t) == A25.14
02(x) dx
0
t L
-anJ T ¢y dx =Ankbn I 920x) dx A25.15
[} 0
Using equation A.2.5.15, A. 2.59
- K?—T dp(x)dx K Vi L 2
X2 —cos( An L) f(L,t) -A, Kby, Op(x) dx
dbpy _ 70 _Bu 0
dt - L = L
f ¢r21(x) dx f ¢%(X) dx
0 0
A25.16
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dbp(®)
dt

i cos( VA L) f(L, 1)

+hnKby ()=

L 2
BLI Pn(x)dx
0

d [bn(t) ehnm] _ bkt SO( Vg LY (L, 1)

di L
pSCSI ¢%(x)dx
0

t

br(t) =bp(0)e A<t 4+ c-Apxt KT cos(Viy L) LD

L 2
pSCSI Pn(x)dx
0 0
L
f 8(x) op(x)dx
by(0) = 2>
¢%(x)dx
0
bn(t) =bn(0)¢-lnKt
t
. &Mkt cos(VAy L) ( [ Mg (LT dt +
0

psCs L+ 2555 gin (Wag Ly cos(¥n L)
2 o,

A2517

A2518

A25.19

A2.520

t
I eMnKTe (L 1) d'r)
0

A25.21
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2.6.1) The approximate form:
2.6.1.a) The vapour pressure deficit equation for an n layered canopy.

Our starting point is equation A. 2.4.16, which reads,

ap; K
Az Tl= top (Dli:f]l'ﬁ_DiHAt)_,_ Khottom (DET,“-D{*A‘)
SXtop 8 Xhottom
+( s 5ORy D yapag A26.1.1
pCp (15 0+1p)  1p+Org

The superscript t+ac means that the values of D are evaluated at the end of each timestep
(implicit approach).

AZ (Dli+At_Dil) = KtOp (D[:]m_Dinm + Kbottom (Dti-fiﬁt_D_lHAt)
At 6Xop 9 Xpottom

Atort
s rsORy  DF LAD A A26.12
*(PCP(TSOH'rb} Iyt ¢TIy z

K
it = top DAL 4 Kpottom DLAl
SXtop 8 Xphottom

+LAD A7 5150 Ry A26.13
(15 o4+m,)  pCp

(Q Ko Khottom ,LAD Az
At 8Xiop d Xbotiom o+ &1y

Kiop i Az | Ktop . Ebottom JLAD Az|pyear Kbottom Dti+fn
i+ ' ' -
8Xiop At 8Xiop OXpottom "PTETs 8 Xpottom
__LAD Az5Ts @Ry
(rso+rp)  pCp

E D{" -ED*™+ G;DYM =-C A26.1.4
. Kigpy K i )
F = éﬁ+ top.i + bottom,i +L@ Az,.] A26.14.a
At 8Xiop,i & Xbottom,i Th,it & Ts,i
K .
E, =oottom,i_ A26.14b
8 Xbottom,i
K .
Gy =—oBL A26.14c
SXtop,i
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C, = LAD Az STs @Ry +£D}

A26.14d
(rgotmy)  pCp At
1 0 0 0 0 0 D, Dfirsi (a:ir layer
E; -B G, 0 0 0 D, 2
0 E 3 Ga 0 0 D; | _ G
0 0 By B4 Gy 0 D, = Sy A26.15
0 0 0 ES 'F5 Gs D5 C
¢ 0 ¢ 0 0 1 Dy 5 5
L upper boundary _|
A D = C A26.1.5.b
ATAD= Al C
Daireat =A™ € A26.16

The values of Rn are obtained by initially assuming isothermal condition i.e. the
temperature of the leaves are equal to the air temperature which is assumed equal to the
boundary above. These values will be updated after the solution of A.2.6.2.5.

2.6.1.b) The temperature of air for an n layered canopy (Penman-Monteith equation)
for steady state solution.

In a similar manner to the derivation above for the vapour pressure deficit equation,

. * -1
o le _ Kiop (rrdepiasy, Khottom (pieatpteary +[ MDL LAD Az
Xtop % Xpottom s+Y
A26.21
* |
Az (T:iﬂlt_TD - KIOP Tti:?l_Tli+Al)+ Mm_(w{n,wm) + m_ ) LAD Az
At Xtop 8 Xbottom s+Y
A2622
KIOP T (A_z N KtOP N Kpottom A &MT{-*’At
— b4 T T 1 i-1
8Xtop At 8Xiop & Xbottom & Xpottom
* R - -1
= | 1 2nPEP LT pcf Dt ) LaD Az-A2 T
s+ At
A2623
ETH -FT™+ GTY =-G A2624
. Kioni K i
F, = (A%, topd , “bottomi ) A2624a
At 8Xyopi & Xpottom,i
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O

K .
E, = oo A2.624b
BXbottom,i
K .
G= A2624b
5XtDp,i
#
R, - pCp Dr;!
G =(Y—“p—fi—) LAD Az+ A2 T A2624c
s+ At
10 0 0 0 0 7 Tfirsiéi:r oyer |
E; -F; G, O 0 0 T, 2
0 E3 -F3 G3 4] ] T3 _ -C3
0 0 E. F: G, 0 T P
0 0 0 Es -Fs  Gs Ts e
0 0 0 0 0 1 Te 5
L Tupper boundary
A T = C
A2625
ATA T= A C
T=a'C A2626

In the matrix C, the value of D in different layers are obtained from the solution of
A.2.6.1. 6, so the temperature of air at equilibrium can be obtained, and the temperature of the
leaves as a function of D by the use of Penman-Monteith equation.

2.6.1.c) The vapour pressure of air for an n layered canopy (Penman-Monteith
equation) for steady state solution.

The derivation of this equation follows on the same line as the one for temperature. The
terms will be the same except for the source term of latent heat.
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2.6.2) THE MORE EXACT FORM
2.6.2.a) the temperature of air for an n layered canopy for a non-steady state solution

Az (TUN-TF) KIOP (T1+Ar T1+A1 Y+ Kbottom (-1-[+];At_T;+Al) + (T - Ty) LAD Az
H 1 - H Iy
At SXiop SXbottom oh
A262al
Kiop T _(Az 4 top Ktop + Kbottom )T‘i““‘ + Kbottom i
0Xiop At Xtop E‘Xbottom 8 Xbottom
( Gi-T) ]LAD Az-Az
Iph At
A262a2
T1.+A{ F TH—.N G T 1AL =-C,
Es *GTL =G A262a3
- Kiopg K ;
Fi =(§ﬁ+&¢ bottomi LAghM A262a3.a
At 8Xiopi O Xbottom,i
or
F = Az J_Ktopi + Kbottom,i )
1
At 8Xop,i ®Xbotiom,i
K N
E, = oottom.i_ A262a3b
& Xbottom,i
K .
G =Pl A262a30
ESXtop,i
C = rTl LAD Az+ Azt A262a3d
or
Ci= ( (T‘r £l ) LAD Az+42 T
bh At
1 0 0 0 0 0 T i Tfirst_s(o:il layer ]
E, -F G, O 0 0 T2 2
0 E3 -F3 G3 0 0 T3 - -C3
0 0 E, -F4 Gy O Ty -Cy
0 0 0 Es -Fs  Gs Ts -
0 0 0 0 0 1 Te 3
L Tuppcr boundary |
A C = T A26.2a4
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AlAT= AlC
T=A' C A262a5

In this case , we solve the nonsteady temperature of the air equation, so At #eo.

2.6.2.b) The vapour pressure of air for an n layered canopy for a non-steady state
solution

K e
Az (e*Aiely = —tO'IJ"(ctiri'\'t'ei“m)* —ottom_(ewm_eum) + (eg(Ty) - &) ] LAD Az

At Xtop 8 Xpottom (bh + 1)
A.2.6.2.b.1
Kiop. ettt {&M+M]e§+m + Kbootiom et
8Xtop At 8Xop 8 Xpottom 3 Xbottom
( (e -e) |1 apy Az-DZ
(Tph + 1) At
A262b.2
Ei el - FeM*M+ Gieft =-C A262b3
Kiop i K
¥, = (Az op,i | Sbottom,i . 1AD Az A262b3a
At 8Xiopi 8 Xbottom,i (l'bh +s)
or
= Az; LKtop,i . Kpottom,i )
1=\ 7T T
At 8Xiop,i O Xbottom,i
K .
F, = pottomi A262b3Db
8 Xbottom,i
K .
G, = top A262b3.c
ESXtop,i
= es(Th) LAD Az+ A_Ze}l A262b3d
(rph +15) At
or

~ et
Ci= [ (esM) ) | ap Apsdzel
{rph +15) At

338




| 0 0 0 0 0 € Efirst soil layer
E, -F; Gy O 0 0 €2 -Cy
0 E; -F3 G 0 0 e | _ -C3
0 0 Ey, -Fu Gy © es | -Cy
0 0 0 Es -Fs  Gs es -Cs
0 0 0 0 0 1 =l Cupper boundary
A e = C
A262b4
A'Ae= AT C
ez Al C A2.6.2b.5

In this system of equation, we need the leaf temperature which is equation A.2.1.1.3
and is solved explicitely.

t t

1 1
T|=Tjeq(le 1)+ Tiiniciale

or solved by the use of eq.2.3.8 to eq.2.3.13. (this later solution was used in MATHCAD®)

2.7) The change in the equilibrium temperature of the leaves

Changes in T] eq due to changes in Rs, RL do occur, but we take account of them by
updating the boundaries whenever a change is detected. AT eq changes due to changes in

the third, fourth, fifth (i.e due to coherent structures) are the ones considered here. For AW, <0

Loyl (e (Taien) + % 1 < A27.1
I'bh 2 VrpyHg) s oanTa Vipy+is) oT ar

des.
1 Apa T 1 AT, <0 A272
Yy +s) Yrpy+rs)  Tbh

12 Woy*s) e ar . < AD A273
aT bh

In case of apz 0 and AT, >0 (i.e drier warmer air) or D">0 and T">0 (Quadrant I in fig
4.4). ap=D7 -Dj. D'is with respect to the total mean. We follow the changes of Tleaves,eql
with respect to the total mean.

fOr A T <0 if (%5 UV o AD Quadrant I in fig 4.3
ar “bh ATqir
A274
for ATLeqtotal <O if (8 YOSy o D A275
' T ‘bh T

air
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In case aD= 0 and AT, <0 (i.e drier colder air} or D">0 and T"<0 (i.e drier colder air).
This represents Quadrant Il in fig 4.3.

ATepq €0 if 25TV 45 _aD A276
ar Tbh ATair
ATieegi om €0 if (Z5100VHS) 5 D A277
T ‘b T.a':r

which is always true, since the left hand side is always positive. 50, A Tieeqi < 0 is always
negative.

In case of AD or D' is negative, for the latter in the final stages of buildup and aT,; or T'
is positive. This represents quadrant TV in fig 4.3.

ATieeq <0 if (Jes JObu*19)) o _AD A28
daT Tbh ATsir

des Ypyts), o D
A T]e,eqli Jtotal <0 lf [ﬁs Thh } s f ‘
ar

A279

which can never be satisfied, which means A Tieeqi 20 OF A Tie.eqi ol 2 0

in case of aD or D' is negative, and aTy, or T' is negative. This represents quadrant ITI in fig
4.3

ATieeq ot 0 if [—a-eiqm] > L A2710
o bh Tair
ATieeqi 0 if {acs iy *s) }z ~AD A2T11
oT  Tbh ATy
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A. 2. 8)The fluxes from the leaves to the air (the sources)
The behaviour of the sources as function is given by the following equations:

1) The sensible heat source:

C ot S St . )
H (6) leaves = Erpr( (Tieqtl-e o1, + Thinitiale  vT,3) - (Taireqli-¢ o ) + Tair,injtiale @ A28.1

After and during the gust intrusion, the temperature of the air becomes equal to
temperature of air above. Since in this sitvation tr, is very small, the Tgrinjya) 1.€

the
the

temperature of the air just before intrusion is completely replaced by the new Tajr eq which is
equal to the temperature of air above. So, the second term in the large brackets equals Tair top
and the temperature of the leaves is equal to Ty jpjis) Wwhich may be equal to the equilibrium

ternperature at the end of the previous cycle.

2) The latent heat source:

1 t
PCp ( 1 ) )
LE(=—""F _|edTp - { eqir egil € T2 ) +eui0e T22)
rpyts) ] air,eq initiaf A2821
pCp (( L -L) deg )
LE® = (Ty) - { €aip agll- F— Y+ =5 (Tg-Ty) A28272
iy His) stTa) - Ceaireqll e te ) ¢ Siniial® e ag " °

C
LEgust= P | Dropr—25 (15 Ta) A2823
Wy Hs) aT1, equitbrium
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A. 2.9 ) The mean temperature, vapour pressure and vapour pressure deficit of the air

_ At i At i 41 4t
gust duration gust duration a,T a,T
T=Tigp —= = +T4j - - L
top period *Taireq (1 period period)"’Tavcrage period
At T
gust duration period
riod
Taverage = %" Tajr dt
Atgugt duration
se Atgnst duration teninon(1- Atgust duration 4 Tae Je 472
Ctop period air.eq period period”  AYET3E€ period
41,0
Atgygt duration*‘;em
riod
Caverage™ [f,r“f Eajr dt
Atgyst duration
= Atgust duration Atgust duration 47a,D 413D
D _ D g D P - g - g D L
top ——period equilibrium (1 period period)+ average p——eriod
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A 2. 10) The inverse matrix A-1;

Some early steps will be only shown here

i o 0 ¢ 4] 0 0
-Ez F2 Gz 0 0 i} 0
Q -E3 F3 -G3 0 1] o
0 [ G0 0
4 4 0 Fiy1 0
0 40 0 -G,
0 10 0 0 0 1

maltiplying the first row by B2 and adding tothe sscond row

] [ 0 0 0 )
o F2 Gy O [} 0 [}
0 -E3 F3 -Gy 0 0 o
0 0 -E F G 0 0
o ¢ 0 ¢
4 o 0 0 -Gn-1
0 o 0 0 )] [ 1

! ¢ ] 0 o 0
o 1 G g | 0 ]
o ¢ F3-EGFfp Gy 0 0
0 [ Ei F G0
Q [ 9 Ei+l  Fai

o o 0 0 “En-l

0 Q 0 [V 0 0

o o o

s o o m

=3

(== .=

= - -

E2Fs
(E3E2/Fy)
[/

¢

(== =]

(S -]

152
E3F 2

e o o

=3

2 o o

o o O ©

=}

< o
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F3' =F3 (E3Ga/f2)
E3 ~(E3EXFY

divinding the third row by F2'

1 aQ 0 [1] [} 9 a 1 0 0 ] o 9 0

0 1 R 0 [ 0 0 E2F 1F3 0 6 ¢ 0 0
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A.2.11) Discretization of the transport equations:

The implicitly discretized equation reads as

ALt

pC Az j—-j:pC Kmp( AL t+.:‘.l) pC M( 1+A1 1+.‘.‘.t] +8y,
P At pdztop el ” P dzyiom -0,

(4.8)

which leads to

K A K K A
pCp £+(Ii(zti+dzbﬂltom )91” ! PCp dtop ®+1 +pC dbmom ®t+ I+S]:
At top bottom Zottom
+pC, O, ‘Az
At
4.9)

where dz stands for the vertical distance between two node points. The subscript denotes an
upper or lower neighbouring point. Az is the thickness of layer J in m. 8, is the source term in
W m-2. The superscript denotes the time level.
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APPENDIX 3 : (List Of Symbols)

Symbol Quantity

A Event Af
Area of the leaf (cne side)
Area of the soil surface/
Area available for diffusion within a cross section of the soil.
Subscripts:

ArAh, A} Areas for energy exchange
subscript radiative, sensible heat and latent heat respectively.

Az Apparent area available for diffusion.

Ae Actual area available for diffusion

Aporosity Total porosity projected in a cross section perpendicular to the
direction of the flux

Aqjirfilled Air filled porosity projected in a cross section perpendicular to
the direction of the flux.

A Coupling coefficients matrix
subscripts:

Agust The coupling coefficient matrix determined according to the gust
parameterization of Km values.

Anogust The coupling coefficient matrix determined according to the no-gust
parameterization of Km values.

Ajj Element of the coupling coefficient matrix.

Agustij Element of Agysg matrix.

Anogusl‘ij Element of Apggnst matrix.

Al Inverse of coupling coefficients matrix

B Event B

by The coefficient of an Eigen function expansion of the soil
temperature function for a certain wave number n.

by(0) The initial value of the ceefficient of an Eigen function expansion
of the soil temperature.

br(t) The vatues of the coefficient of an Eigen function expansion of

the soil temperature as a function of time.

C Concentration of a scalar quantity/
Capacitance of the plant tissue for water/
Capacitance of the leaf for water vapour

superscripts:
C Deviation of a concentration from its time mean.
! . . A
Cc Deviations of a concentration from its time mean or ensemble mean
due to large scale fluctuations.
5 . . o
< deviations of a concentration from its time mean or ensemble mean
due to small scale
subscripts:
C arbitrary constant.
Ch lateral heat conduction between neighbouring spots on the same
side of the leaf.
C(zt) Concentration as function of height and time.
Cel(z.;h,t-5) Conditional probability density function for a unit source.
P Y 34

l'l'lS'1

KorOC
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COﬂdUhleavas, ilx,y

CUMLAIT,

D
D’
D”
D
Dair
Dair,eq
i
Dinitial
Diop. Daverage
De

Dvapour
dy

D
Dajr,eq
Dini

Dgust model

Dgust model,i
ds

di/
dz(qy

E
Eequ
Ej
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specific heat capacity of the air (constant pressure)
specific heat capacity of the leaf

specific heat capacity of the bulk soil.

Constant coefficients matrix for the canopy air system:
There are five of these:

Three for the approximate form

Two for the more exact form.

Subscripts.

Element of the C column vector.

Horizontal heat conduction in leaf layer i, on side | with
wetness condition X,y

cumulative leaf area in the layers above layer J in m?2 leaf m2 soil.
(one side).

vapour pressure deficit i.e. (es(Tair)-eair)/

Diffusivity for water vapour/

Diameter of water drops.

subscripts:

Mean vapour pressure deficit of the air.

Vapour pressure deficit deviation from the mean (i.e. fluctuations)
due to smali scale turbulence.

Vapour pressure deficit deviation from the mean (i.e. fluctuations)
due to large scale structures.

The sum of mean and small scale fluctuations

Vapour pressure deficit of the air,

Equilibrium vapour pressure deficit of the air.

Air vapour pressure deficit at a certain layer

Initial air vapour pressure deficit just after the gust intrusion.
Vapour pressure deficit at about twice the canopy height and the
average on¢ during the build-up period respectively.

Change of vapour pressure deficit within one time step.

Water vapour diffusivity

Leaf thickness/

Condition of dryness.

Prohability of being intercepted for diffuse radiation by the leaf
elements in a certain layer.

Vapour pressure deficit matrix {Unknown).

subscripis:

A column vector containing the values of the equilibrium
vapour pressure deficit at different layers,

A column vector containing the values of the initial vapour
pressure deficit.

A column vector containing the time averaged values of the
vapour pressure deficit determined according to the gust model.

An element of Dgust model  matrix.
change of time since release/
surface element bounding a volume.

volume element.
thickness of the layer

evaporation.
Equilibrium evaporation

Lower turbulent transport coupling coefficient

Tkeg 1K1
Tkg 1kl
Tkg 1kl

Pa

Pa
Pa
Pa
Pa
Pa
Pa

Pa

Pa

Pa



(]

¢z, e]
€a, Cair
€initial
€1.€i+1,6i-1

el

Cair,eq
Cair,top
es(Taip)es(T)

es{Tieaves,))
e

13
il
f(x)
f(x)

(3]
fiL,t)

fl(L.0),f1
fa(L.0,f2
fb

Fr
fuppmrl: fuppen:

flowert, lowere

flayert: flayere

Gikl

g
g(x)

b

It

internal energy/

extensive quantity/

Vapour pressure

Subscripts:

vapour pressure at height 2 and ! respectively.

air vapour pressure

initial vapour pressure of the air.

vapour pressure of the air at layer i, i+1 and i-1 respectively.
Vapour pressure of the air in layer I.

Equilibrium vapour pressure of the air

vapour pressure high above the canopy top.
saturated vapour pressure at Tair, Tl respectively.

Saturated vapour pressure at the mean leaf temperature.
Vapour pressure matrix

The layer coefficient

Inverse of gust frequency intrusion into plant canopy.
function of the mean variable x.

mean function of the variable x.

function of time.

The forcing functien for radiative and non-radiative energy at the
soil surface as a function of time.

The radiative forcing at the soil surface as a function of time.

The non-radiative forcing at the soil surface as a function of time.

fraction beam of the short wave radiation at the upper boundary
of the canopy.

Froude number.

The weighing coefficient for the layer i+1 in determining the
temperature and vapour pressure of layer i respectively.

The weighing coefficient for the layer i-1 in determining the
temperature and vapour pressure of layer 1.

The weighing coefficient for the leaf elements in a certain layer
in determining the layer temperature and vapour pressure
respectively.

Soil heat flux.
Turbulent transport coupling with the upper layer
Tenscrial quantity.

Gravitational acceleration.
Initial soil temperature profile.

Sensible heat flux from the leaf to the air per unit leaf surface
(one side).

Canopy height/

distance shift/

height of release of a source.

Matric head.

layer number/
probability.
factorial L.

Pa

Pa
Pa

Pa
Pa
Pa
Pa
Pa

Pa
Pa
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The probability of radiation incident from a direction £ being
intercepted by leaves with a surface perpendicular to direction k..
probability that an incident direct radiation will not be intercepted
by the leaf ¢lements of layer J.

The cumulative probability that a direct beam wil] not be intercepted
by the leaf elements above Layer J.

The probability that an incident radiation (diffuse) will not be
intercepted by the leaf elements of layer I.

or

The probability that an incident radiation from direction i will not be
intercepted by the leaf elements of layer J which has a surface

with a normal of direction k.

Probability that long wave incident radiation will not be intercepted
by the elements of layer J.

Layer number/

Total saturation heat Aux/

Vapour flux

Entropy flux

Mass flux of water flux in its different states

The change of saturation heat flux due to a contribution of a certain
layer.

Soil hydraulic conductivity/

CGeneral turbulent transport coefficient/
Extinction coefficient for light/

coefficients for air layers and leaf equations

Subscripts:

Average extinction coefficients
Extinction coefficients for leaf angle class i and zone of the

sky g .

coefficient for equation.

subscripts:

coefficient for Jeaf temperature, gir vapour pressure and
air temperature air vapour pressure deficit respectively.
Spherical extinction coefficient/

Saturated hydraulic conductivity.

General turbulent ransport cocfficient/

Turbulent transport for momentuom.

Turbulent transport for sensible heat.

Turbulent transport for latent heat.

Turbulent transport coefficients for heat at the top and botom
of an air layer,

Molecular diffusivity for momentum.

Molecular diffusivity for a scalar c.

Obkhouv length/
characteristic length/
coefficients of the phenomenological equations

-

)

o

)

Wm2
Wm-2
wm-2K-!

Wm2
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Length of the soil column from zero to the top of the soil. m

L{z.t} Longwave radiation loading as function of height and time. Wm2
Ly A coefficient expressing the effect of the a conjugate force
j on the flux of k.(has the units of Flux/cenjugate force)
Lg(z,t) short wave radiation loading as function of height and time. W2
LADMID Leaf area density in the middle of the layer {one side) (m'l)
LAI Lea Area Index (m? leaf area one side/ m2 Soily/ )
Leaf area increments )
subscript :
LAl Leaf area increment with surface perpendicutar (-)
to direction k.
LE Latent heat flux from the leaves to the air. W2
Ma Mach Number. =)
MAX A function for the selecting the maximum value out of two
numbers.
n number of drops per m~2 on the upper m2
and lower surface of the leaf/
property under averaging/ -)
frequency,/ Hz
n direction of vector normal to the surface.
n deviations of the quantity from its mean.
P static air pressure
P(A) Probability of event A occurring. (-}
PAl Plant area Index m2 {leaf + stem area)y/m2 soil.. {-)
Pr probability of occurrence for a certain combination of leaf wetness,  (-)
Pyx Stress along surface
Period period between two consecutive gust intrusions s
Q(x.t) Heat sources within the soil Ks!
q Heat generation due to radiation absorption or chemical reactions.
q a Scalar quantity
q Heat or scalar flux
qi, 9i+1 heat flux at the Jower boundary and upper boundary of the Wm2
layer (i) respectively.
q deviations of a scalar quantity from its time mean,
agh sensible heat flux.
qle Latent heat flux
qi i flux at a certain boundary between layers which results from the

superposition of compenents fluxes due to the fluxes resulting
from plumes with different life times.

Qi+l Mean flux at the upper boundary of a layer.

R reflected radiation
subscripts:

Ra. Rd. Rs Abscrbed radiation, diffusely reflected and specularly -)
reflected radiation.

or

R Radiation flux density for unit ground surface. W m2

subscripts:

351



Rabs, totat
Ridown, 1

Rlup,_[

Riabs,J, Or
Rlong, absorbed
RLx,j

)

Rl

Ryt

3

Rshort

rn.r2
Tbh. Thv, I's, IR

Tbv,j
Tby,seil
Thh,J

Ileaf,v,j
Mocal
fgust
'H

I5,s
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Total absorbed (short+long} wave radiation within layer J.
Down welling long wave radiation flux density at a

layer I upper boundary.

Up welling long wave radiation flux density at a layer J
upper boundary.

Absorbed long wave radiation in layer J.

Thick layer reflection coefficient for layer j

Long wave radiation leaving a surface

Long wave radiation falling on a surface

Total incoming radiation flux density at the canopy top of wave
band x.

down ward radiation flux density.

upward radiation flux density.

down welling radiation flux density in wave band X at a
layer J upper boundary.

up welling radiation flux density in wave band X at a layer
T upper boundary.

Net radiation.

Net radiation for a certain layer.

Short wave radiation falling on a surface.

short wave radiation reflecting from a surface.
Short wave radiation at the canopy top.

resistance/

radius of water drops on the leaf surfaces.

subscripts:

Characteristic radivs of drops on the lower and upper surface
respectively.

boundary layer resistances for heat, vapour, stomatal
resistances and radiative resistance respectively

boundary layer resistance for vapour of the leaves in layer j.
boundary layer resistance for the soil clods

boundary layer resistance for heat of the leaves in layer j

resistance of the leaves for vapour transfer in layer j.
turbulent resistance to scalar transport due to local transport.
turbulent resistance to scalar transport due to the gust process.

Heat resistance, as defined in Penman-Monteith equation.
Soil surface resistance to evaporation.

Source strength in a conservation equation/

surface of a leaf or a volume to be averaged/
Volume size or number of ensembles/

number of time intervals used in the averaging/
Relative saturation of the soil/

Storage of heat or mass.

Wm2

Wm-2

W2
Wm-2
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Sh, Ste
S¢h}

T

T

T2.T1

Ta: Tair
Tair,in
Tair,out
Tair,J
Tair,rad
Tair,rad.a
Tair, initial

Tairtop
Tieq» Tair,eq

T1, Tieaves,J
Tlcavcs,f
Tleaf

Tieat s
Ti.initial

Ti, Ti-1, Ti+)
Tupper boundary
Trirst soil layer

T,

"

Ta

L
Ts

Tdry
Twet
T

(+At
Tj

Tnogust

subscripts:

The chosen volume or number of ensembles or length of time interval.

Sensible heat and latent heat source respectively.
Source distribution as a function of height.

Slope of the saturated vapour pressure as a function of temperature.

Temperature

subscripts :

Mean air temperatore,

Air temperature at height 2 and 1 respectively.
Air temperature.

Incoming air

Outgoing air (ejected air due to gust process)
Air temperature at layer J.

Mean air temperatuare at layer J.

Radiative temperature of the air.

Absolute radiative temperature of the air

Air temperature just before the gust intrusion
or just at the beginning of the quiescence period
or at the beginning of each time step.

Air temperature high above the canopy (op.
Equilibrium temperature of the leaf and
equilibrium temperature of the air respectively.
leaf temperature, or leaf temperature at layer J
Mean leaf temperature at layer J.

Absolute leaf temperature

Mean absolute leaf temperature at layer 1.
Initial temperature of the leaf just after the gust
passage or at the beginning of each time step.
Air temperature at 1, i - I, i+1 layer number,
Air temperature at the upper boundary.
Temperature of the first soil layer.

Air temperature deviations from the mean
(i.e. fluctuations) due to small scale turbulence.

Air temperature deviations from the mean
(i.e. fluctuations) due to large scale structures.
Lagrangian integral time scale.

Instantaneous surface temperature/

Soil temperature

temperature of dry segment of the leaf.
Temperature of wet segment of the leaf.
change of temperature within one time step.

temperature of the leaf at time step t+At.

Temperature of the air matrix (Unknown).
subscripts:

Matrix containing the average temperature of the air

determined according to the no-gust approach.

Wm 2
Wm-2
PaK!

K Oc.

0c
0c

0c
Oc
0¢
K

Oc
Oc

Oc
0¢

Oc
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gust moadel

Tnogusl model.i

Tgust model i

Tini,i

thickness
Transx,J

t
15, 11

U(z)
U*
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Matrix containing the average temperature of the air
determined according to the gust approach.

The average temperature at layer i determined according to
no-gust approach.

The average temperature at layer i determined according 1o
gust approach.

initial temperature at layer i, just after the occurrence of the
gust or at the beginning of each time step.

leaf thickness.

Thick layer transmission coefficient for radiation of wave band x.
for layer ).

time.

release time, current time, the difference between them represents
the travel time.

Mean wind velocity as function of height (z)
friction velocity.

Instantaneous wind velocity in direction x,
Subscripts

instantaneous, mean, deviations of the
instantaneous wind velocity from its time mean along direction i

deviations due to large scale turbulence.

deviations due to small scale turbulence.

volume average of an ensemble mean or the volume average of a
time mean for ui and uj respectively.

The deviation of a time mean from its volume average or the
deviation of an ensemble mean from its control volume average.

wetness condition.
Vertical wind velocity.
turbulent vertical wind velocity fluctuations.

centroid of the averaging domain/

distance along the soil column (positive upwards) and has a zero
value at a depth where no flux boundary condition applies/
Conjugate force

Conjugate force for water flux

Conjugate force for heat flux

average of a certain variable x

height

leaf volume/

(

'
—

ms” 1
ms~!



Operators:
(O

E')'ens

Q)

(0

Greek Symbals:

o

O
oL

BL
Sz

5i ij
axlop-ﬁxboltum

T.T: TaT:Tae:Ta,D

Soil bulk volume

wind speed in m seconds,
Volurne of averaging.

Spatial averaging
ensemble averaging.
time deviation or ensemble deviation.

spatial deviation

(Y +8)
or the ratio between Km values for a gust and no-gust model/

Coefficient alpha in Van Genuchten model/
Air filled porosity of the soil

absorption coefficient for short wave radiation
Radiative and convective heat transfer coefficient

inclination of the sun in radians/

Bowen Ratio {sensible/ latent heat flux)/

phenomenological enhancement diffusion coefficient for water
vapour/

thermal conductivity of the soil

thermal conductivity at the soil surface.
vertical distance between the centres of the uppermost soil layer
and the layer below it.

Kronecker Delta

distance between the centre of the layer and the centre of the layer
at the top and bottom of this layer.

thickness of the air layer

Change of a certain variable

time step.

psychometric constant

modified psychometric constant

Thermal diffusivity of the soil.

volumetric moisture content/

Virtual air temperature.

leaf transmittance of the foliage elements for radiation of wave
band x.

leaf thermal time constant, time constants of air temperature,
air vapour pressure, and air vapour pressure deficit respectively.

Latent heat of vapourization/

Heat conductivity coefficient of the soil or of the leaf./
Eigen value

Eigenvalue for a certain wave number n

dynamic viscosity
The leaf reflection of the foliage elements for radiation of

Pak-!
PaK-!
mzs'l
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%k

waveband x

density of dry air.

density of the leaf material/
bulk density of the soil

the angle between the directions of the incident beam i and the
leaf normal £.

energy dissipation.

Eigen function for a certain wave number n
Total porosity.

leaf emissivity (assumed 1.0).

Alternating unit tensor.

Lagrangian integral time scale

Kinematic viscosity

molecular diffusivity for a scalar ¢.
Stephan-Boltzmann constant (5.67 E-8)
Entropy production.

Standard deviation of vertical velocity

Shear stress
time since a certain time reference.

Soil thermal diffusivity.

List of Symbols nsed in MATHCAD ®:

i

i

m

mm
Coeff
culmlai

Dairi,30

Dmeani
delTleqi

delTleqiTair
delTleqiDair
dt

dzi

eairp,j
eaireqlj 30
Eairmean;j
eairtop

fropti

frope

flowert

356

number of layers.

number of time steps.

number of layers and two boundaries.

number of time step

The ratio between Km for a gust and no-gust model.
cumulative leaf area density

Vapour pressure deficit of the air at different layers at time
step 30.

Mecan vapour pressure deficit at different heights.

Change in the equiiibrium leaf temperature due to the changes
in air temperature and vapour pressure within one time step.
Change in the equilibrium leaf temperature due to air
temperature change within one time step.

Change in the equilibrium leaf temperature due to air vapour
pressure deficit change within one time step.

time step of simulation.

Thickness of different canopy layers.

Vapour pressure of the air at different layers m and time steps j
{a matrix).

equilibrium vapour pressure of the air at different layers at
time step 30.

Mean vapour pressure of the air.

The vapour pressure at the canopy top (upper boundary).
The weighing coefficient for the laver i+1 in determining
the temperature of layer i.

The weighing coefficient for the layer i+! in determining
the vapour pressure of layer i.

The weighing coefficient for the layer i-1 in determining
the temperature of layer i.

kg m-3
kg m

rad

'
—

m25'1

mzs‘1

Wm 2K
Im3g-1sl
ms'l

k356 m-1s-1,

8
mzs']

Pa
Pa

Pa
Pa




ltowere

Nayert
flayere

kiower;j

ktop;

Lad;

Leavesfsh
Leaveslh
Mean_eaireql;
Mean_Taireq);
Mean_Tleaves;
Mean_Tleaves_eqi;
Rshort

rbhm,

rbhs

IS

158

Tairmeanj
Tairrad

Tairtop

Tairg

Tairg,0
Tlinij

Tleaves; j

Thick

Total _load
Tsoil
Tleaveseql; 30

Taireqli, 30

Acronyins
357357

NIR

uocC
1730contribution

i730ccount
118888contribution

i18888count
relato730¢

retat | 888 8si
8607300Rn 4.0

The weighing coefficient for the layer i-1 in determining
the vapour pressore of layeri.

The weighing coefficient for the leaf elements in a certain
layer in determining the layer temperature.

The weighing coefficient for the leaf elements in a certain
layer in determining the layer vapour pressure.

Turbulent transport between a layer i and the layer below it. m2s1
Turbulent transport between a layer i and the layer above it. m2s-1
Leaf area density for different layers. m-1
Sensible heat sources within the canopy. Wm-2
Latent heat sources within the canopy. Wm-2
Mean equilibrium vapour pressure of the air. Pa
Mean equilibrium temperature of the air Oc
Mean temperature of the leaves at different layers Oc
Mean equilibrium temperature of the leaves. O¢
Short wave radiation lcad (one side of the leaf). Wm2
boundary layer resistance for heat at different layers. sm-1
Boundary layer resistance for svil. sm™]
Stematal resistance for different layers. smt
Soil surface resistance for evaporation, sm-]
Mean temperature of the air. Oc
Radiative temperature of the air. Oc
Temperature of the air at the canopy top (upper boundary). s
Temperature of the air at different heights m and time steps j Oc

{a matrix).

initial value at scil surface at the beginning of the simulation.

Initial temperature of the leaves at layer i. Oc
Temperature of the leaves at different layers i and different Oc
time steps (a matrix).

Leaf thickness. m
Total short wave radiation load. Wm2
Temperature of the soil {constant during the simulation). 0c
equilibrium temperature of the leaves at different layers 0c

at time step 30.

equilibrium temperature of the air at different layers at titne s
step 30,

Near Infrared Radiation

Uniform overcast sky

The contribution of a certain class of events to the total verticat
velocity variance with experiment 7300 for 1.V. B. Boxel.
(scaled)

The contribution of a certain class of events to the total vertical

velocity variance with experiment 188888si for W.A.J. van Pul.

(scaled}

Number of of events within with ¢xperiment 188888si

for W.A.J. van Pul (scaled)

realtive strength of classes of events with 7300 experiment

retative strength classes of events with 18888si experiment

Experiment of Van Boxed inwhich Rn at 4.0 m was measured in 30-7-1986
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Appendiax 3:

* Input file for the validation run.
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Summary

The aim of the work is to describe heat and mass transfer between the soil, the plant
canopy and the layer of air close above. This transfer has a very intermittent nature, due to the
existence of large scale coherent structures in the layer of air close above the canopy. The
periodic passage of these coberent structures at the canopy top and their large length scale with
respect to the canopy height, lead to the refreshment of the air within the canopy with fresh air
from far well above the canopy. This makes the coherent structures responsible for a dominant
fraction of heat and mass exchange between the canopy air and the layer of air close above.
Coherent structures are also responsible for a large fraction of momentum exchange between
the canopy air layer and the layer of air close above. There is a gap of knowledge concerning
the effect of these coherent structures on the soil canopy system as a whole. This study was
dedicated to the investigation of the effect of these coherent structures on the long-time
behaviour of the canopy soil system represented by the soil temperature and moisture regimes.

This present research involves five steps:

1) Formulating a numerical multi-layered canopy-soil model which takes into account
radiative and non-radiative energy and mass exchange between the different components of the

canopy-soil-atmosphere system. In that model, an emphasis was given to the effect of
intermittency in the exchange processes on the behaviour of the soil system while, giving at the
same time ample consideration to other processes which are also significant such as stomatal
resistance and soil resistance (o evaporation. The consideration of intermittency in a direct way
makes the model unique since it is the first attempt to formulate, on basics of fluid mechanics,
an intermittency approach for describing heat and mass transfer within plant canopies (El-Kilani
el al 1994 a,b). The theoretical formulation gives a solid basis in Fluid mechanics for the gust
approach as first explained by Goudriaan (1989) and suggested by El-Kilani (1989) and El-
Kilani (1991).

2)_Addressing the earlier attempts to consider this process in an indirect way such as by,
higher order closure models or random walk models. An analysis in a qualitative or quantitative
way shows some of the limitations of these approaches.

3) A mathematical analysis of the cangpy air -soil system governing equations is used, to
obtain a physical insight into the significance of the intermittency of the processes of heat and
mass exchange on the behaviour of the canopy soil system and its dynamics. The mathematical
analysis shows that the interaction between coherent structures and the canopy leads to the
appearance of a non-linearity in the canopy-soil system behaviour, This nonlinear behaviour
necessitates an intermittent approach to the canopy-soil system. This nonlinearity is analysed
and its effect on the long-term behaviour of the system is considered.

4) A sensitivity analysis of the equations describing the system and also of a simplified
model of the system shows the effect of several parameters on the time constants of the lower
canopy air layers, and how the time period between gust intrusions affects the behaviour of the
system,

3) A valjdation of the devgloped meodei against existing data sets was done. The results of
the model show a very good agreement with the measurements. The values of the parameters
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needed to run the model are not difficult to obtain and have a theoretical justification. The model
represents a significant improvement over the existing models but requires intensive calculation.

We will cover the five steps underlined above, and mentien the main points achieved or
conclusions obtained from this study.

1) Formulatin umerical multi-layered canopy soil tnod

This part is covered in chapter 2, sect. 3.6, Sect. 4.1.2, Sect. 4.4, Sect. 4.5, Sect.4.6 and
chapter 5.

The solution of the canopy and soil climate requires, for the canopy air layers, the solution
of a set of averaged turbulent transport equations. The time interval and the space domain over
which the averaging is done determine the kind of correlations which have to be parameterized.
There are several variants for averaging the conservation equations. In the problem under
consideration, an averaging procedure was introduced which separates between the large scale
turbulent fluctuations and the small scale ones. The large scale trbulent velocity and scalar
fluctuations are due to the existence of coherent structures in the flow field. These coherent
structures, depending on their length scale and the mechanism of their generation and
destruction, keep moving around the flow field, so that their effect on the momentum, heat and
mass transfer all over the domain is significant. The small scale turbulent velocity and scalar
fluctuations are the ones due to small scales of motion. These scales are mainly active during
the quiescence period or occupy the regions between the large scale moving-around coherent
structures,

The introduced averaging procedure, takes directly account of intermittency and the
resulting feedback on the system behaviour, The averaging procedure leads to the appearance of
correlations between the large scale and small scale turbulence and canopy inhomogeneities for
both the momentum and the scalar equations. The defined averaging volumes, the averaging
procedures, lead to terms in the averaged equations that are easier to parameterize.

In the case of a homogeneous canopy, we get four terms, which do not vanish in the
ensemble average or in the time average. These terms represent the turbulent fluxes of
momentum and scalars due to large scale, small scale and interaction fluxes. The first is mainly
active during the period of the gust intrusion into the plant canopy, while the second is active
during the quiescence period. The interaction fluxes are important terms in the period around
(i.e. before and after) the passage of the coherent structures at the canopy top.

For the scalar equation, the parameterization for the large scale turbulent flux and the two
interaction fluxes is done by assuming a refreshment function which gives the change of the
scalar storage just before the intrusion of the gust till the end of the passage period. This gives
an integrated value for the flux divergence at the end of the coherent structure passage.

Since we assume some degree of refreshment of the air within the canopy due to the
passage of the coherent structure, the value of the turbulent transport coefficient during the
quiescence period will be very important in determining the storage buildup within the air inside
the canopy. With the arrival of the next coherent structure, the storage change will represent the
value of the gust flux. So, a valid parameterization of the turbulent transport coefficient during
the quiescence period is very important in determining the profiles and the sources within the
canopy. We have assumed a complete refreshment which is not far from reality, as is shown
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from an analysis of the time domain maps of windspeed and temperature within a maize canopy
(Chapter 3}

To obtain a value {or that turbulent transport coefficient, a frequency distribution analysis
on the ratio of the instantaneous (1 second average) vertical velocity variance to the mean

vertical velocity variance was used. We considered this ratio as an indicator of the behaviour of
the Ky value.

It is shown for two time series, each of a duration of about 7 hours, that during about 70%
of the time, the measured instantaneous w 2 was less than the mean and contributed less than
20% to the total w variance. On the other hand, gusts occupying less than 10% of the time,
contributed about 60% to the total variance. It is shown from the analysis, that the Km value
during the quiescence period was about 27% of the commonly used parameterization.

It is shown that this method of parameterizing the Ky value refiects the sequence of events
characteristic of a coherent structure passage cycle (i.e. depletion during the passage of the
coherent structure and buildup during the guiescence period). This was done by the use of the
ratio between the instantancous w 2 to the mean which clearly corresponded with the
disappearance of temperature islands and the increase in the absolute windspeed in the timne
domain maps.

In chapter 2, the solution of the energy budget for the leaves is used to parameterize the
interaction terms between the leaf and the air which result from the volume averaging procedure
of the turbulent transport equations within a multiply interconnected air space.

In Sect. 4.4, the decoupling of the energy equation at the soil surface is done through the
calculation of the ratio of the time step of simulation to the time constant of the first air layer in
contact with the soil. Depending on this ratio, either an analytical solution of the equilibrium
vapour pressure of that air layer is used for decoupling the energy equation, or a numerical
solution is used. The soil surface resistance to evaporation is calculated from the soil total
porosity and its air filled porosity.

The decoupling of the energy equation at lower fayers within the soil is done through the
calculation of the water vapour flux divergence within different soil layers.

The calculation of the water flux between different soil layers, either in its liquid or vapour
states, is done to calculate the soil water potential. This potential will affect the sensitivity of the
stomata to the leaf water potential through the production by the plant roots of soil moisture
dependent Abscisic acid (ABA).

A complete submodel for plant water movement is introduced.

2) Addressing earlier attempts

This part is covered in Sect. 3.3 and Sect. 3.7.

These attempts liec mainly under two different categories: Higher order Eulerian closure
models or Lagrangian random walk models.

In a large-time-interval averaged Eulerian model, the direction of the flux and minus the
gradient do not fit. Trying to counteract this problem is by increasing the order of the closure,
This is done by taking account of the turbulent transport term in the higher order equations and
the effect of this on the gradient of the turbulent flux in the lower order equation.
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One of the assumptions here is that all the terms within these equations have a constant
averaged value during the time step of simulation. It is shown from the analysis of some papers
and some data sets, that this is far from reality. Due to the high nonlinearity of these equations,
we expect that the time fluctuating behaviour of the terms will give a different solution than the
same terms having non fluctuating values with the same mean.

It appeared that the assumption of retaining the lost information, due to averaging, by
going higher with the closure is not correct. This is due to the role of the coherent structures in
correlating the fluxes i.e. creating correlations at higher order which is not counteracted by the
role of pressure in destroying these correlations. The role of the pressure in destroying these
correlations is centred around the passage of the inclined shear layer at the canopy top. In
canopy flow, the ratio between the pressure smearing distance/ distance between coherent
stracture is much less than one. This automatically invalidates some assumptions for closing the
higher order terms.

Another problem is also the requirement for the validity of averaging a nonlinear equation.
Reynolds averaging has a requirement conceming the uniformity of the terms within the period
of averaging. The high variation in time or space of the signals make the fulfilment of this
requirement in doubt.

Therefore, the validity of the obtained results from second and higher order closure models
for canopy flow must be doubted.

Another approach used in modelling canopy flow is Lagrangian modelling which simulates
the trajectories of a large number of independently moving particles and sums up the results as
representing the mean concentration profile within the canopy.

The superposition of the concentration field overlooks the fact that the intrusion of the
coherent structure into plant canopy leads to the creation of correlation between motion of the
particles all over the canopy height. So, the particles are not moving independently all the time.
This correlation should be subtracted from the total superposition.

The argument that random walk models take account already of the correlation between
particles motions due to coherent structure existence in the flow field, is discussed in the
objection to the theoretical derivation of Lamb (1980) in Appendix1.h.

The problem is that the joint density function for a large number of particles cannot be
expressed as a multiplication of marginal density functions for all the particles which are equal
to each other.

An approach for superposition of the concentration fields, as seen by a sensor which is
immersed in the flow field and which starts to see progressively older clouds, is suggested in
this thesis, to take account of this process.

3) A mathematical analysis of the canopy:soil system governing equations

This part is covered in Sect. 4.2,

The aim of this part was to answer, in a semi-analytical way, if a constant turbulent
transport coefficient will result in the same mean temperature and vapour pressure of the air as a
fluctuating turbulent transport coefficient which has the same value of the mean. It is analysed if
this leads to a difference on the soil heat flux and the soil temperature profile.
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For the canopy air system, this analysis involved transforming four coupled partial
differential equations describing the system behaviour into ordinary ones. These are the leaf
temperature, air temperature, vapour pressure and vapour pressure deficit equations. It is
shown from the analysis that after a gust intrusion into a plant canopy, the leaf temperature, air
temperature, vapour and vapour pressure deficit approach asymptotically a steady state solution
which is a linear function of the transport coefficient. So, in the early stages of the solution
development toward equilibrium, there will be a non linear dependence on the turbulent
transport coefficient due to the exponential behaviour of the equations. Use of a large time
averaged turbulent transport coefficient is not similar to the use of a non averaged one which
has the same mean. The importance of this nonlinearity on the mean behaviour of the canopy
depends on the ratio between the period between two consecutive gust intrusions in relation to
the canopy air time constants. If this ratio ranges between 0.5 to 3.0, the canopy will always be
in the nonlinear part of the solution. Depending on the dominance of this process, the canopy
systern could be in the nonlinear domain of the solution for a significant part of the time.

Due to the changes within time of the ratio between the inverse of the gust intrusion
frequency into the plant canopy to the time constants of the systems, the canopy system will be
scanning, within time, different regions in the nonlinear or linear part of the solution. The
frequency of gust intrusions into plant canopies is assumed to be dynamically controiled i.c.
controlled by the shear at the canopy top while the time constants of the canopy air layers are
affected mainly by the stomatal resistance of the plants and how it is controlled {e.g. water
potential in the soil and light etc.). So, an irrigafion cycle will span the different regions of the
nonlinear and linear dependence of the solution.

It is also shown , that the above mentioned nonlinearity exceeds by at least one time order
of magnitude the near field effect, as explained by Raupach (1989) or Finningan (1985), in
their criticism of the use of Ky theory to describe canopy turbulent transport processes. So, the
non linearity is the canopy system is not only due to the near field effect.

The next step in the mathematical analysis was analysing the response of the soil to this
nonlinearity. It is shown from a mathematical sclution of the nonhomogeneous problem of the
soil temperature profile that the soil integrates the effect of intermittency in the values of the
coefficients of an Eigenfunction expansion of the soil temperature .i.e. Fourier series
expansion.

It is shown from the mathematical expression for these cocfficients that they see all sources
of intermittency; either due to changes in the radiative forcing or changes in the temperature and
vapour pressure deficit of the air close to the soil surface.

Each value of the coefficients of the Eigenfunction expansion of the soil temperature is
composed of an initial component which decays exponentially within time and a component
which integrates both the radiative forcing signals and the nonradiative forcing signals (i.e, the
air temperature and vapour pressure deficit close to the soil surface ). The nonradiative forcing
is the one affected by coherent structures.

The rate of decay for the initial component and for previous intermittencies decreases at a
much faster rate for the higher wave numbers. It is also shown that the effect of intermittencies
on the coefficients of the Eigenfunction expansion expresses itself in the same way in all wave
numbers. So the effect of intermittency needs to be studied for one wave number only. The
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effect of intermittency on the integrated value of the non radiative forcing quantifies the effect of
intermittency on the soil. The mathematical solution integrates all the details of intermittencies in
the radiative and nonradiative forcing.

4) A sensitivity analysis

This part is covered in Sect. 4.2.1.2b,4.2.2 , 423,424 and 4.3.

To simplify the analysis and to obtain a physical insight to the effect of the intermittency on
the system, we assumed a separation in the time scale of the response of the air layers and the
soil layers. That allowed us to integrate the effect of the nonlinearity on the mean temperature
and vapour pressure deficit of the air layers close to the soil and feed that effect into the
equations describing the coefficients of an Eigenfunction expansion of the soil temperature. To
calculate the mean temperature and vapour pressure deficit of the air layers close to the ground,
a combination of several situations was assumed.

The first of these were: a steady state and nonsteady state situations. In the steady state {
what we call the approximate form) situation, the effect of the heat storage change with the
canopy elements was ignored while in the nonsteady state (what we call the more exact form),
that effect was accounted for.

The second of these, either a single layer canopy or a multi-layered canopy was assumed.
In the single layer canopy, the canopy layer was assumed well mixed while in the multi-layered
canopy, several layers each having a different leaf area density and turbulent transport
coefficients were assumed. In the nonsteady solution, only a multi-layered canopy was used,

In the calculation of the mean temperature and vapour pressure deficit, a constant Km value
was assumed. This Ky value was four times higher for the no-gust model than that for the gust
model. In the gust model, most of the contribution to the Ky value occurs during the gust
intrusion phase, while in the quiescence period, the value of Ky is much lower than the mean
of the no-gust model. In the gust model, an initial profile after the passage of the coherent
structure profile was set equal to the temperature and vapour pressure at about twice the canopy
height.

In the case of single layer, and the approximate form solution, the results show that the
gust model had a higher value of the nonradiative forcing on the soil due to the lower turbulent
transport coefficient which couples the leaf temperattire more Lo the radiation forcing than to the
temperature and the vapour pressure of the air well above the canopy. This will increase the
equilibrium temperature of the leaves. That will have a feedback on the temperature and the
vapour pressure of the canopy air since the coupling coefficients of the sources within the air
layers to the air temperature and vapour pressure is higher in the gust model compared to the
no-gust model. The end result is that unless that the period between consequetive gust
intrusions is small compared to the time constant of the canopy air, the lower mixing during the
quiescence period will increase the temperature and the vapour pressure of the air in comparison
to a no-gust model. The well mixed layer assumption will lead to the increase in the temperature
and vapour pressure of the air, being felt at the soil surface. This will increase the mean
nonradiative forcing at the soil surface and will counteract the effect of the refreshment, due to
the gust intrusion, on relieving the nonradiative forcing on the soil.
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In the approximate form, for a multi-layered canopy, it is shown that the inverse matrix
which controls the equilibrium solution of the air layers have its inner elements multiplied, for
the case of a gust model, by the ratio of the Km value in the no-gust model to the Ky, value in
the gust model. This matrix has to be multiplied by a C matrix which expresses the source
terms within each canopy layer. This C matrix, depending on which system (Vapour pressure
deficit or air temperature system), is independent of the solution. This means a relative
reduction in the role of the upper and lower boundaries of the simulated domain to the
equilibrium solution and a higher contribution of the inner layers to the solution at a certain
height. The lower mixing during the quiescence period leads then to the establishment of a
higher influence of the inner C elements to the temperature and vapour pressure of the air within
a certain layer in comparison to a no-gust model in which a higher value of the turbulent
transport coefficient is active all the time. Whether this leads, in the case of vapour pressure
deficit equation, to a higher or a lower vapour pressure deficit than that of the boundaries
depends on the stomatal resistance and Ry, profile.

In the more exact solution, only a multilayered model was used. This was done ¢ither by
the use of a Mathcad program or a simplified complete numerical model. The Mathcad code was
using the samne method of solution for the leaf temperature, air temperature and vapour pressure
as in the more detailed numerical model. It has less number of layers and was run only for a
short period {i.e. three gust cycles which have a period of 150 seconds each). The soil surface
temperature was assumed constant and the effect of the gust process was integrated on the value
of the nonradiative forcing and the boundary condition for the soil heat flux. These Mathcad
runs are also part of the sensitivity analysis discussed in the next point. The simplified complete
numerical model is exactly the same as the model given in chapter 3, except that it has no feed
back of the soil dryness on the solution (i,e. the soil surface resistance to evaporation was
assumed zero all the time i.e. 11 days run).

The results from the Mathcad runs show that for the soil heat flux and the nooradiative
forcing on the soil surface, a lower leaf area density in the lower parts of the canopy and a
lower turbulent transport coefficient increase the difference between the gust and no-gust
model. This reiates to increasing the time constant of the lowest air layer and decreasing the
ratio between the inverse of the gust intrusion frequency into plant canopy and the time constant
of the lowest air layers close to the soil. The effect of air introduced by the gust on relieving the

nonradiative forcing on the soil surface will be felt at the soil surface.

The results of the simplified complete numerical model, which was run for a typical hot
summer day in Egypt, show a significant difference between the gust and no-gust
parameterization on the soil temperature and the soil heat flux. That difference at noon time
were about -9 C in the air temperature for the gust minus the no-gust model and higher vapour
pressure deficit (+1000 Pa for the gust minus the no-gust) in the lower part of the canopy. The
gust intrusion period was constant and equals 1.5 minutes. The reason behind this high
difference was the large time constant of the lower air layers close to the soil. This large time
constants were due to the used turbulent parameterizations, the lower leaf area density in the
lower part of the canopy and the higher stomatal resistance which was light dependent.

The results of the Mathcad runs show that it is possible that there is no difference in the
forcing on the soil surface, while there s one in the energy partition on plant surfaces.
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A complete analysis of the interaction between the leaves and the air for typical situations
representing different climatic regions is also done. The dynamics of that interaction and the
importance of the nonsteady term on the solution are shown. Tt is shown the state variables of
the air (i.e. the temperature, vapour pressure and vapour pressure deficit ) and the gourges
follow wijthin the whole gust cycle an exponential behaviour.

In sect. 4.3, it is shown from the scaling of the large-time averaged flux equation that the
source vertical velocity correlation, which results from the interaction between the air which
comes into plant canopies and the source, has the same order of magnitude as the production
term of the flux, So an account of that correlation due to the intrusion of coherent structures
should be included.

5) Validation of the developed model
This part is covered in Chapter 6.

The results of the model validation show in general a very good agreement between the
measured and simulated radiative environment and leaf temperature and air temperature. There
is, however an interplay between the gust frequency which determines the degree of buildup of
the scalar profiles which is allowed to occur and the stomatal resistance which controls the time
rate of the profiles buildup for the vapour pressure and temperature. This affects the energy
budget solution of the leaves. The wrbulent transport parameterization play also an important
role in controlling the values of the temperature and vapour pressure in the middle layers of the
canopy. A better parameterization of the gust frequency, stomatal resistance and turbulent
transport will allow even a better simulation of the plant canopy microclimate.
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Samenvatting

Het doel van het onderzoek is het beschrijven van het transport van warmte en massa tussen
de bodem, plant en de atmosfeer direct boven het gewas. Dit transport heeft een sterk
intermittent karakter t.g.v. de aanwezigheid van grootschalige coherente structuren in de
luchtlaag aangrenzend aan het gewas. De periodieke passage van deze coherente structuren
aan de bovenkant van het gewas en haar grote lengteschaal ten opzichte van de gewashoogte,
leidt tot de verversing van lucht binnen het gewas met lucht van ver boven het gewas. Dit
maakt de coherente structuren verantwoordelijk voor het overheersende deel van het
transport van warmte en massa van de lucht binnen het gewas en de lucht daar boven.
Coherente structuren zijn ook verantwoordelijk voor een groot deel van het impulstransport
tussen gewaslaag en de lucht daar boven. Er bestaat een leemte in kennis omtrent het effect
van deze coherente structuren op het transport binnen het systeem bodem, gewas en
atmosfeer. Deze studie is gewijd aan het onderzoek van het effect van deze coherente
structuren op het langetermijn gedrag van de van de bodemtemperatuur en het -vochtregime.

Het onderzoek omvat vijf stappen:
1) Het formuleren van een numeriek meer-lagen gewas-bodemmodel

Dit model houdt rekening met zowel stralingstermen als andere energetische termen en houdt
rekening met de massa-uitwisseling tussen het bodem-gewas-atmosfeer systeem. In het
model is veel aandacht geschonken aan het intermittente karakter van het
transportmechanisme en het effect hiervan op het gedrag op de bodem. Ook is rekening
gehouden met andere van belang zijnde processen zoals het gedrag van stomataire weerstand
van de planten en de bodemweerstand. Het direct meenemen van intermittentie in het
transportmechanisme maakt het model uniek want het is de eerste keer dat, op basis van de
stromingsleer, dit is meegenomen in het transportmechanisme voor massa, impuls en warmte
{El-Kilani, 1994a,b). De theoretische formuleringen betreffende de vlaagbenadering zijn
gebaseerd op de basisvergelijkingen uit de stromingsleer zoals dat aanvankelijk verklaard is
door Goudriaan {1989) en voorgesteld is door El-Kilani (1989, 1991).

2) Bespreking van benaderingen van anderen
Veelal is dit proces op een indirecte manier benaderd, bijvoorbeeld met behulp van hogere

orden sluitingsmodellen of random walk modellen. In een kwalitatieve of kwantitatieve
analyse worden de beperkingen van deze benaderingen aangetoond.

3) Een mathematische analyse van de vergelijkingen voor het bodem-gewas-atmosfeer
sysieem .
Deze analyse is toegepast om inzicht te krijgen in het belang van intermittentie voor de
vitwisselingsprocessen van warmte, massa en haar dynamica. De mathematische analyse laat
zien, dat de interactie tussen coherente structuren en het gewas leidt tot het optreden van niet-
lineariteiten in het gewas-bodem-systeem. Dit niet-lineaire gedrag maakt het noodzakelijk
deze intermittentie ook in het systeem in te brengen. Deze niet-lineariteit is geanalyseerd
alsmede het gedrag hiervan op het systeem op de lange termijn.

369



4) Een gevoeligheidsanalyse
Het systeem wordt beschreven en besproken en er wordt een vereenvoudigd systeem

gegeven, dat het effect van verschillende parameters laat zien op de tijdconstanten van de
onderste lagen van het gewas. Tevens is het effect op het systeem van de periode tussen twee
vlagen beschreven.
5) Een validatie van het model

Deze is uvitgevoerd met bestaande gegevensbestanden, De modelsimulaties geven een zeer
goede overeenkomst met de metingen. De waarden van de modelparameters die nodig zijn
om het model te draaien zijn eenvoudig te verkrijgen en hebben ook een fysische betekenis.
Het huidige model is een aanzienlijke verbetering t.o.v. reeds bestaande modellen maar
vereist wel veel rekentijd. De bovenstaande punten worden vervolgens kort besproken.

Ad 1) Het formuleren van een numeriek meer lagen gewas-bodemmodel.
Dit deel bevat hoofdstuk 2 en 5, en de paragrafen 3.6, 4.1.2, 4.4, 4.5 en 4.6. De oplossing

voor de gewasklimatologie vereist voor de gewaslaag de oplossing van een stelsel
gemiddelde turbulente transportvergelijkingen. Het tijdsinterval en het ruimtedomein
waarover de middeling wordt uitgevoerd bepaalt de soort correlaties welke moeten worden
geparametriseerd. Er zijn verschillende varianten voor het middelen van de behoudswetten.
In het onderhavige geval is er een middelingsmethode ingevoerd, welke onderscheid maakt
tussen de grote en de kleine schaal van de turbulentie. De grote schaal van de turbulente
snelheidscomponenten en scalaire grootheden worden veroorzaakt door de coherente
structuren van het stromingsveld. Deze coherente structuren blijven, afhankelijk van hun
lengteschaal en het mechanisme dat deze genereert en afbreekt, bewegen in het
stromingsveld, zodat het effect hiervan op de impuls, warmte en massa over het gehele
domein belangrijk is. De kleine schaal turbulente snelheidscomponenten en scalairen worden
veroorzaakt door de kleinschalige bewegingen. Deze schalen zijn voornamelijk actief
gedurende de kalme periode of in de gebieden tussen de grootschalige structuren.

De ingevoerde middelingsprocedure houdt direct rekening met de intermittentie en de
hieruit voorkomende terugkoppeling op het systeem. De middelingsprocedure leidt tot het
ontstaan van correlaties tussen de grote en kleine schaal van de turbulentie en inhomogenitei-
ten in het gewas voor zowel voor de impuls- als de scalaire vergelijkingen. Het gedefinieerde
middelingsvolume geeft extra termen in de gemiddelde vergelijkingen die eenvoudig zijn te
parametriseren.

In het geval van een homogeen gewas krijgen we zo vier extra termen. Deze termen
representeren de turbulente fluxen van impuls en scalaire grootheden ten gevolge van de
grote schaal, de kleine schaal en de interacties hiertussen. De eerste term is meestal actief
gedurende de periode dat een vlaag in het gewas binnendringt, terwijl de tweede actief is
gedurende de kalme periode. De interactieve fluxen zijn belangriike termen gedurende de
overgangsperioden.

Voor de scalaire vergelijkingen zijn de parametrisaties voor de grote schaal turbulentie
en de twee interactieve fluxen verkregen door het invoeren van een z.g. verversingsfunctie
welke de verandering van de scalaire opslagterm geeft, juist voordat de, viaag het gewas
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binnendringt tot het eind van de passage van de vlaag. Dit geeft een geintegreerde waarde
voor de divergentie van de flux op het einde van de passage van de coherente structuur.

Omdat we een zekere mate van verversing van lucht binnen het gewas veronderstellen
ten gevolge van de passage van de coherente structuur, zal de waarde van de turbulente
uitwisselings-coéfficiént gedurende de kalme periode erg belangrijk zijn voor het bepalen
van de opslag van warmte en waterdamp binnen het gewas. Bij de aankomst van de
volgende coherente structuur, zal de verandering van de opslag overeenkomen met de waarde
van de flux van de betreffende grootheid tijdens vlaagperiode. Dus een geldige
parametrisering van de turbulente transportcoifficiént gedurende de kalme periode is zeer
belangrijk voor het bepalen van de profielen en brennen/putten van de betreffende
grootheden. Er is een volledige verversing verondersteld, hetgeen dicht bij de werkelijkheid
komt zoals is aangetoond in hoofdstuk 3.

Om een numerieke waarde te krijgen voor deze uitwisselingscogfficiént, is een analyse
van de frequentieverdeling gemaakt tussen de verhouding van de momentane (1s gemiddeld)
verticale snelheidscomponent en de verticale snelheidsvariantie. Deze verhouding
beschouwen we als een indicator voor het gedrag van de Km-waarde.

Voor twee tijdreeksen, ieder van een duur van ongeveer 7 uur, is aangetoond dat
gedurende ongeveer 70% van de tijd, de gemeten momentane w'2 minder was dan de
gemiddelde bijdrage en minder dan ongeveer 20% bij droeg aan de totale w variantie. Aan
de andere kant nemen de vliagen minder dan 10% van de tijd in beslag, maar dragen ongeveer
60% bij aan de totale variantie. Uit de analyse wordt aangetoond, dat de Km-waarde
gedurende de kalme periode ongeveer 27% was van de waarde waarmee gewoonlijk wordt
geparameteriseerd.

Aangetoond is dat deze parametrisatiemethode van de Km-waarde het verloop van de
gebeurtenissen weergeeft, karakteristiek voor de passage van een vlaag; met andere woorden
ledigen/verversen gedurende de passage van de vlaag en de opbouw gedurende de kalme
periode). Dit is nitgevoerd door gebruik te maken van de verhouding tussen de momentane
w'2 tot het gemiddelde, hetgeen duidelijk overeen blijki te komen met het verdwijning
temperatuur "eilandjes” en de toename van de absolute windsnelheid in het tijdsdomein.

In hoofdstuk 2, wordt de oplossing voor de energiebalans voor de bladeren gebruikt om
de interactieve fluxen tussen blad en lucht te parametriseren, heigeen het resultaat is van de
ruimtelijke middelingsprocedure van de turbulente transportvergelijkingen binnen een
meervoudig verbonden luchtruimte.

De ontkoppeling van de energievergelijking aan het bodemoppervlak, in paragraaf 4.4, is
verkregen door het berekenen van de tijdstap van de simulatie en de tijdconstante van de
eerste luchtlaag welke in contact staat met de bodem. Athankelijk van deze verhouding wordt
ofwel een analytische evenwichtsoplossing voor de dampspanning gebruikt voor de
ontkoppeling van de energievergelijking ofwel wordt er een numerieke oplossing gebruikt.
De opperviakteweerstand voor verdamping wordt berekend uit de totale porositeit van de
bodem and de met lucht gevulde porositeit.

De ontkoppeling van de energievergelijking voor de lagere bodemlagen is vitgevoerd
door het berekenen van de divergentic van de waterdampflux in de verschillende
bodemlagen. Het berekenen van de waterflux tussen de verschillende bodemlagen, zowel in
de vloeibare fase als in de dampfase, is uitgevoerd m.b.v. de waterpotentiaal. Deze potentiaal
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zal de gevoeligheid van de stomata van de bladeren beinvloeden door de produktie van
Abscissinezuur ABA door plantenwortels onder invloed van bodemvocht. Een volledig
submodel voor de waterbeweging in de plant is geintroduceerd.

Ad.2) Bespreking benaderingen van anderen

Dit onderdeel wordt besproken in par. 3.3 en 3.7.

Hierin zijn voornamelijk twee richtingen in aan te geven: Hogere orde Euleriaanse
sluitingsmodellen en Lagrangiaanse random walk modellen.

In een Euleriaans model over een lange periode, komt het teken van de gradiént niet
overeen met de richting van de fluxen. Om dit probleem op te lossen wordt overgegaan naar
een hogere orde sluiting. Dit gebeurt door gebruik te maken van de turbulente transportter-
men in de hogere orde vergelijkingen en het effect hiervan op de gradiént van de turbulente
flux in de lagere orde vergelijking.

Een van de veronderstellingen is hierbij dat alle (ermen van deze vergelijkingen een
constant gemiddelde hebben gedurende het simulatie-interval. Uit de analyse van enkele
artikelen en gegevensbestanden wordt aangetoond dat dit verre van de werkelijkheid is. Ten
gevolge van de hoge male van niet-lineariteit van de vergelijkingen moeten we verwachten
dat het fluctuerende gedrag in de tijd van deze termen een andere oplossing geeft dan
dezelfde termen die geen fluctuerende waarde t.0.v. het gemiddelde hebben.

Het blijkt dat de aanname dat de bij middeling verloren informatie terug zou komen door
gebruik te maken van een hogere orde sluiting niet juist is. Dit komt door het effect van de
coherente structuur op de kruiscorrelaties, met andere woorden het cre€ren van correlaties bij
hogere orden welke niet tegengewerkt worden door de druktermen die deze correlaties willen
vernietigen. De rol van de druk om deze correlaties te vernietigen is speelt vooral rondom de
passage van een hellende schuifspanningslaag aan de bovenkant van het gewas. Bij de
stroming in het gewas is de verhouding tussen de afstand waarover drukfluctuaties worden
vitgesmeerd en de afstand tussen coherente structuren veel kleiner dan één. Dit maakt
automatisch enige veronderstellingen ongeldig bij het gebruik van hogere orde sluiting.

Een ander probleem is de geldigheid van de middelingsprocedure bij niet-lineaire
vergelijkingen. Reynoldse middeling vereist uniformiteit van de termen binnen de
middelingsperiode. De hoge mate van variatie in de tijd of in de ruimte noopt tot twijfel aan
deze veronderstellingen.

Daarom moet getwijfeld worden aan de geldigheid van het resultaat dat verkregen wordt
met tweede en hogere orde sluitingen.

Een andere manier van modellering binnen gewassen is gebruik te maken van de
Lagrangiaanse modellecing, welke de trajectorién simuleert van een groot aantal
onafhankelijk bewegende deeltjes en deze op te tellen als eindresultaat.

Deze optelling ziet echter over het hoofd dat bij het binnendringing van een coherente
structuur in een gewas er een sterke correlatie aanwezig is tussen al de deeltjes binnen het
gewas. De deeltjesbeweging gedurende een zekere tijd is dus beslist niet onafhankelijk. Deze
correlatie moet van de totale superpositie worden afgetrokken.

Het argument dat random walk modellen al rekening houden met de correlatie tussen de
deeltjes t.g.v. het aanwezig zijn van coherente structuren in het stromingsveld, wordt
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besproken in Lamb (1980). De moeilijkheid is dat de gezamenlijke dichtheidsfunktie voor
een groot aantal deeltjes niet uitgedrukt kan worden als een vermenigvuldiging van marginale
dichtheidsfunkties welke aan elkaar gelijk zijn.

Een benadering voor de superpositie van concentratievelden, zoals dat gevoeld wordt
door een sensor in een stromingsveld en die steeds oudere concentratiewolken ziet, wordt in
dit promotieverslag voorgesteld.

Ad 3) Een mathematische analyse van de vergelijkingen voor het bodem gewas systeeimn.

Paragraaf 4.2 behandelt op een semi analytische wijze, de vraag of een constante turbulente
transportcoéfficiént zal resuiteren in dezelfde gemiddelde temperatuur en dampdruk als een
fluctuerende turbulente transport coéfficiént met een zelfde gemiddelde waarde. Bekeken
wordt of deze twee benaderingen leiden tot verschillen in de bodemwarmtestroom en het
bodemtemperatuurprofiel.

Voor het gewas-atmosfeer systeem betekent dat 4 gekoppelde partiéle
differentiaalvergelijkingen getransformeerd zijn in gewone differentiaal vergelijkingen,
waarbij het hier gaat om de vergelijkingen voor bladtemperatuur en Juchttemperatuur, de
dampdruk en het dampdrukdeficit. Met deze analyse wordt gedemonstreerd, dat na het
binnendringen van een windvlaag in het gewas, de blad- en luchttemperatuur, de dampdruk
en dampdrukdeficit asymptotisch naderen tot een evenwichtstoestand, die een lineaire functie
is van de turbulente transportcoéfficiént. In de loop naar deze evenwichistoestand, zal er
echter een niet-lineaire athankelijkheid van de turbulente transportcoéfficiént bestaan ten
gevolge van het exponentiéle gedrag van de vergelijkingen. Het gebruik van een gemiddelde
waarde voor een turbulente transportcoéfficiént is dus niet hetzelfde als een fluctuerende
waarde met hetzelfde gemiddelde. Het belang van de niet-lineariteit op het gemiddelde
gedrag van het gewas hangt af van de verhouding tussen het interval van twee opeenvolgende
binnendringende windvlagen en de tijdconstanten van de lucht in het gewas. Ligt deze
verhouding tussen de 0.5 en 3.0, dan zal de oplossing voor binnen het gewas zich altijd in het
niet-lineaire gedeelte van de oplossing bevinden. Afthankelijk van het belang van dit proces
kan de oplossing zich, voor een aanzienlijke periode van de tijd, in het niet lineaire domein
bevinden.

De frequentie waarmee windvlagen het gewas binnendringen wordt dynamisch bepaald
door de windschering aan de top van het gewas. De tijdconstanten van de luchtlagen binnen
het gewas daarentegen, worden voornamelijk bepaald door de stomataire weerstand van de
ptanten en hoe deze wordt beheerst (b.v. water potentiaal in de bodem en lichtintensiteit).

Tevens wordt aangetoond dat de genoemde niet-lineariteit de grootte van het nabije veld
effect met minimaal één orde overtreft. Het nabije veld effect, wordt beschreven door
Raupach (1989) en Finnigan (1985) in hun kritiek op het gebruik van Km-theorie bij de
beschrijving van turbulente transportprocesses binnen een gewas.

De volgende stap van de mathematische analyse is het beschrijven van de reactie van de
bodem op deze niet-lineariteit. De wiskundige oplossing van het niet homogene probleem
van het bodemtemperatuurprofiel laat zien dat de bodem het effect van intermittentie
integreert in de waarden van de coéfficiénten van een Eigenfunctie ontwikkeling van de
bodemtemperatuur; met andere woorden een Fourier reeks ontwikkeling.
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Wiskundige uitdrukkingen voor deze coéfficiénten, demonstreren dat alle bronnen van
intermittentie worden waargenomen, enerzijds door veranderingen in straling of anderzijds
door veranderingen in temperatuur of dampdrukdeficit van de lucht vlak bij het
grondoppervlak. Elke waarde van de coéfficiénten van de eigenfunctie ontwikkeling voor de
bodemtemperatuur bestaat uit een initieel en een integrerend bestanddeel. De eerste neemt
exponentieel af in de tijd en de tweede integreert de opgelegde straling en andere grootheden,
zoals de luchttemperatuur en het dampdrukdeficit nabij het grondoppervlak. Het zijn deze
laatste grootheden die beinvloed worden door coherente structuren.

De afnamesnelheid van de initi€le componenent en de afname van de invloed van
voorgaande intermittenties gaan voor de hogere golfgetallen veel sneller. Een ander effect
van intermittenties op de coéfficiénten van de Eigenfuncticontwikkeling is dat deze zich voor
alle golfgetallen op een zelfde manier uitdrukken. Het effect van intermittentie hoeft dus
maar voor één golfgetal bestudeerd te worden. Het effect van intermittentie op de
geintegreerde waarde van de drijvende krachten anders dan straling kwantificeren het effect
van intermittentie op de bodem. De wiskundige oplossing integreert alle details van de
aandrijvende krachten van intermittentie.

Ad 4) Een gevoeligheidsanalyse
Paragraaf 4.2.1.2.b. tot en met 4.3 behandelt de gevoeligheidsanalyse. Om de analyse te

vereenvoudigen en om fysisch inzicht te verkrijgen in het effect van intermittentie op het
systeem, hebben we aangenomen dat er onderscheid is in de tijdschaal waarin de luchtlagen
en bodemlagen reageren. Dit stelt ons in staat het effect van de niet-lineariteit op de
gemiddelde temperatuur en dampdruk van de luchtlagen nabij het grondoppervlak te
integreren en deze te gebruiken om de vergelijkingen te beschrijven van coéfficiénten van de
Eigenfunctieontwikkeling van de bodemtemperatuur. Om de gemiddelde bodemtemperatuur
en het dampdrukdeficit van de luchtlagen nabij het grondoppervlak te berekenen, worden
een combinatie van verschillende situaties aangenomen,

De eerste combinatie is een evenwichts- en een nict-evenwichtstoestand. In de
evenwichtstoestand wordt het effect van veranderende warmteopslag met de gewas
elementen verwaarloosd, maar wordt in de niet-evenwichtstoestand wel meegenomen. Een
tweede combinatie is een één-laag of een meer-lagen gewas. In het eerste geval is
aangenomen dat de Jucht in het gewas goed gemengd is. Bij het tweede geval is aangenomen
dat iedere iaag een verschillende bladoppervlaktedichtheid en turbulente
uitwisselingscogfficiént heeft. Bij de niet-evenwichtstoestand is alleen een meer lagen model
gebruikt.

Bij de berekening van de gemiddelde temperatuur en dampdrukdeficit, is een constante
Km waarde aangenomen. Deze waarde is ongeveer vier maal zo groot in het géén
windvlagen model ten opzichte van het windviagen model. In het windvlagen model is
tijdens het binnendringen van een vlaag de bijdrage aan Km het grootst, terwijl gedurende
een kalme periode Km veel kleiner is dan de gemiddelde Km in het géén windvlagen model.
In het windvlagen model wordt, na de passage van een coherente structuur, het initi€le profiel
gelijk gemaakt aan de temperatuur en dampdruk die heerst op ongeveer 2 maal de
gewashoogte.
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In het geval van de combinatie met één enkele laag en de combinatie met een
evenwichtstoestand, laat het resultaat zien dat het windvlagen model een hogere waarde geeft
voor de aandrijving anders dan straling op de bodem als gevolg van een lagere turbulente
transportcoéfficiént. Deze maakt dat de blad temperatuur meer afhankelijk van is
stralingsaandrijving dan van de temperatuur en de dampdruk van de lucht ver boven het
gewas. Dit zal de evenwichtstemperatuur van de bladeren doen toenemen. Dit zal weer
gevolgen hebben voor de temperatuur en dampdruk van de lucht, immers de
afhankelijkheidscoéfficignten van de bronnen van temperatuur en dampdruk in de luchtlagen
is groter in het windvlagen model dan in het géén windvlagen model. Het eindresultaat is dat,
tenzij de periode tussen twee opeenvolgende binnendringende windvlagen klein is ten
opzichte van de tijdconstante van lucht in het gewas, de lagere menging tijdens een kalme
periode de temperatuur en dampdruk van de lucht zal laten stijgen ten opzichte van het géén
windvlagen model. De aanname van de goed gemengde laag zal leiden tot een toename in de
temperatuur en dampdruk van de lucht, waargenomen door het grondoppervlak. Dit zal de
gemiddelde niet-stralingsaandrijving aan het grondoppervlak laten toenemen waarna dit het
effect van verversing door het binnendringen van de windvilaag zal tegenwerken door een
niet-stralings aangedreven forcering op de bodem uit te oefenen.

In de evenwichistoestand, voor een meer lagen gewas, laat een inverse matrix, die de
evenwichtsoplossing van de luchtlagen controleert, zien dat bij een vlagen model de
binnenste elementen vermenigvuldigd zijn met de verhouding tussen de Km-waarde in een
géén vlagen model en de waarde van Km in een vlagen model. Deze matrix moet
vermenigvuldigd worden met een C-matrix, die de brontermen in elke laag van het gewas
vertegenwoordigen. Deze C-matrix is onafhankelijk van de oplossing. Dit betekent een
relatieve vermindering van de rol van de onderste en bovenste randvoorwaarden van het
gesimuleerde domein en een grotere bijdrage van de binnenste lagen tot de oplossing op een
bepaalde hoogte. De geringere menging gedurende de kalme periode leidt dan tot het
bereiken van een grotere invloed van de binnenste elementen van de C-matrix op de
temperatuur en dampdruk van de lucht op een zckere hoogte, in vergelijking met een géén
vlagen model waarin constant een hogere waarde voor de turbulente transportcoéfficiént
actief is. Of dit leidt, in het geval van de dampdruk vergelijking, tot een hogere of lagere
dampdrukdeficit dan die aan de randen, hangt af van de stomataire weerstand en het netto
straling profiel.

In een meer exacte oplossing, is alleen een meer lagen model gebruikt. Dit is gebeurd
behulp van MathCad, een mathematisch computerprogramma, of een gesimplificeerd
compleet numeriek model. Het MathCad programma gebruikt dezelfde oplossingsmethode
voor zowel de biadtemperatuur, de luchttemperatuur als de dampdruk. Het heeft minder lagen
en simuleert een kortere periode dan het numerieke model. De bodem temperatuur is constant
genomen en het effect van het binnendringen van de vlagen is geintegreerd in de waarde van
de niet-stralings forcering en de randvoorwaarden voor de bodemwarmtestroom. Deze
MathCad runs zijn onderdeel van de gevoeligheidsstudie die in het volgende besproken
wordt. Hel numerieke model is hetzelfde als in hoofdstuk 5, behalve de invloed van de
droogte van de bodem op de oplossing. Met andere woorden, de bodemweerstand voor
verdamping is altijd nul genomen.
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Het resultaat van de MathCad runs laten zien dat voor de bodemwarmtestroom, de niet-
straling forcering op het bodemoppervlak een lagere bladoppervlakiedichtheid in de onderste
lagen van het gewas en een lagere turbulente uitwisselingscoéfficiént het verschil tussen
vlagen en een géén vlagen model laat toenemen. Dit staat in verband met het verhogen van
de tijdconstante van de onderste luchtlagen en het verhogen van de verhouding tussen de
inverse van het binnendringen van de vlaag in het gewas en de tijd constante van de onderste
luchtlaag nabij het grondoppervlak.

Het resultaat van het gesimplificeerde complete numerieke model, die een typische
warme zomer dag in Egypte simuleert, laat een significant verschil zien in de vlaag en géén
vlaag parametrisatie op de bodemwarmtestroom en de bodemtemperatuur. Het verschil rond
12 vur in de middag, lag rond -9°C en +1000 Pa voor het vlaag model ten op zichte van géén
vlaag model, voor respectievelijk de temperatuur en de dampdruk in de onderste lagen van
het gewas. Hierbij is de periode van het binnendringen constant gehouden en op 1.5 minuut
gesteld. De oorzaak van dit grote verschil ligt in de grote tijd constante van de onderste
luchtlagen nabij de grond. Deze is zo groot ten gevolge van de gebruikte turbulente
parametrisatie, de [agere blad oppervlakie dichtheid in de onderste lagen van het gewas en
een hogere licht afhankelijke stomataire weerstand.

Het resultaat van de MathCad run laat zien dat het mogelijk is dat er geen verschil is in
de forcering van de grond, maar wel in de partitie van het plantoppervlak.

Een complete analyse van de interacties tussen de bladeren en de lucht voor typische
klimatologische situaties is ook geanalyseerd. De dynamica van deze interactie en het belang
van de niet-stationaire termen op de oplossing wordt aangetoond. De toestandsvariabelen
(0.a. de temperatuur, de dampdruk en -deficit) en de bronnen, volgen binnen een gehele
vlaagcyclus een exponentieel gedrag.

In paragraaf 4.3 wordt getoond uit schaling van de lange-tijd-gemiddelde
fluxvergelijking dat de correlatic van de verticale bronsnelheid, die het resultaat is van de
interactie tussen de lucht die het gewas binnentreedt en de bron, dezelfde orde van grootte
heeft als de produktieterm voor de flux. Dit betekent dat bij het binnendringen van coherente
structuren deze correlatie moet worden meegenomen.

Ad5) Validatie van het ontwikkelde model.

Dit onderdeel wordt behandeld in hoofdstuk 6. Het resultaat van de modelvalidatie vertoont
in het algemeen een zeer goede overeenkomst tussen de gemeten en gesimuleerde
stralingsomgeving, de blad- en luchttemperatuur. Er is echter interactie tussen de
vlaagfrequentie, die de mate van de opbouw van de scalaire profieclen bepaalt, en de
stomataire weerstand, die bepalend is voor het verloop van de opbouw van temperatuur en
dampdruk. Dit bepaalt de oplossing van de energiebalans van de bladeren. De parametrisatie
van het turbulente transport speelt een belangrijke rol voor de waarde van de temperatuur en
dampdruk in de middelste lagen van het gewas. Een betere parameterisatie van frekwentie
van de vlagen, de stomataire weerstand en het turbulente transport zal een nog betere
simulatie opleveren van het gewasmicroklimaat,
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