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. A numerical result is not a proof, it still can be an artifact. 
This thesis 

2. The problem of intermittency in canopy climate modelling is caused by the 
combined effect of: 
1) the existence of a separation in the length scales responsible for transport and 
2) the ability of the leaves and the soil as sources and sinks to respond to 
temperature and vapour pressure variations due to this intermittency or scale 
separation. 
This thesis 

3. The reason behind the failure of the K theory approach, namely that the length 
3c 

scale of transport is much larger than the scale of ^ - , is the same which would lead 

to a failure of random walk modelling, since this would lead to non-independent 
movement of the particles at different heights. 
This thesis 

4. The manner in which a well-buffered soil behaves with respect to the input of a 
certain pollutant, i.e. the relation between the adsorbed phase to the mobilized 
phase, shows that there is a limit to soil tolerance to mismanagement. 
Inspired by a curve in Stigliani, W. M., 1995. Global perspectives and Risk 
assessment. In: Biogeodynamics of pollutants in soils and sediments, eds. Salomons, 
W., and Stigliani, W. M., pp. 331-343. Springer-Verlag, Berlin. 

5. In simulating any dynamical system, if any of the scales of intermittency leads to 
the creation of nonvanishing correlations between behavioural aspects of the system 
components within a time scale less than our step of simulation , we have to: 
1) include the effect of these correlations on the large-time averaged set of 
equations describing the system behaviour or 
2) reduce our time step of simulation and take account of the correlations explicitly. 

This thesis. 

6. The maintenance of biodiversity is crucial to the existence and the welfare of this 
planet. 

7. The use of too much animal protein in the diet of people in developed countries 
represents a wasteful conversion of grains to animal protein masses, which could 



otherwise be used for securing the food requirements of a large number of people 
the underdeveloped countries. 

8. Genetically engineered micro-organisms, which are capable of breaking down 
persistent pollutants, could represent a future option of environmental rehabilitation. 

9. Rehabilitation of damaged ecosystems and the development of environmental 
friendly manufacturing processes will require a lot of capital investment, which will 
not be met by research and development departments of multinational companies 
alone, unless a decisive power by the people materializes, expressed in market 
behavioural trends and their willingness to even sacrifice some of their standard of 
living. 

10. There were times in history of Mankind when a massive loss of heritage and 
knowledge occurred. To prevent such a loss of heritage in future, the role of the 
book versus a compact disk or any computer medium as a way of dispersing 
knowledge will remain crucial. 

11. Power training and condition training are complementary to each other. 

12. Dilution is not the solution to pollution. 

13. Before Mankind can colonize other planets, it has to answer the question of 
achieving a sustainable ecosystem management on planet earth first. 

14. To reduce the delay time of an improved management regime for ecosystems, a 
stronger public awareness about the extent of the current and projected damage to 
these systems and the resulting devaluation of our resources has to be created. A 
translation of this awareness into a political decision force has to materialize. 

15. Short sighted commercial interests to meet the rising expectations of human 
beings and to introduce an unsustainable way of living should not be allowed to be 
the main motivation behind the destruction of our ecosystems. 

This thesis 

16. A degraded environment will touch everybody's pocket. 
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ABSTRACT 

Heat, mass and momentum transfer between the canopy air layer and the layer of air above 
has a very intermittent nature. This intermittent nature is due to the passage at the canopy top 
of coherent structures which have a length scale at least as large as the canopy height. The 
periodic passage of these coherent structure at the canopy top leads to the ejection of the air 
inside the canopy and the replacement of this air by fresh air from above. It is through this 
process of ejection and sweep that the coherent structures become responsible for most of the 
large time average flux. 

This study considers the effect of these coherent structures on the modelling and the 
dynamics of interaction between the plant canopy and the soil with the layer of air above and 
the effect of these coherent structures on the soil temperature profile, so, three parts are 
considered: Modelling , mathematical analysis and validation. 

In the Modelling part: a discussion of the limitations of the available approaches and a 
suggestion of an intermittency approach are given. 

First, there is a qualitative analysis of the effect of these coherent structures and their role in 
the momentum, heat and mass transfer on the validity of the Eulerian approaches used to 
describe canopy flow. We outline the limitations of these approaches and later suggest an 
intermittency approach to describe heat and mass transfer between the canopy layer and the 
layer of air above. We describe the used averaging procedure, the resulting correlations, the 
closure parameterization used and their justification. 

Then we give a discussion of the effect of these coherent structure on the Lagrangian 
model approach qualitatively and then quantitatively and a method to correct for this is 
suggested. 

From this, a mathematical analysis of the effect of coherent structure on the soil 
temperature profile is done by first analysing the effect of coherent structures on the mean 
temperature and vapour pressure deficit of the air. It is shown from the equations governing 
the system's behaviour that there is a non linearity in the canopy system. The effect of this non 
linearity depends on the ratio between the period between consequent gust intrusions into 
plant canopy with respect the air time constants. The effect of this non linearity on the soil 
temperature profile is shown through its effect on the coefficients of an Eigenfunction 
expansion of the soil temperature profile. Different scenarios for the effect of different 
parameters such as the stomatal resistance, the turbulent transport coefficient and the period 
between gust intrusion are studied and explained. 

In the validation part, a comparison of a simulation for 7 days against a data set shows that 
the model gives very good agreement between the radiative environment and the temperature 
and vapour pressure of the air. Anyhow there is a interplay between three degrees of freedom. 
These are represented by the turbulent transport coefficient, the stomatal resistance and the 
gust intrusion into plant canopy. 

Subject headings: micrometeorology / Canopy turbulence / Random walk models / Numerical 
and Mathematical models; the canopy soil system / Soil heat flux. 
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CHAPTER 1 

GENERAL INTRODUCTION 

In the first part of this chapter, the main aspects for the motivation of undertaking 
theoretical studies and modelling of the soil plant atmosphere interaction will be discussed 
and an outline of the aim of this work will be given. In the second part of this chapter, a 
qualitative description of the exchange processes within the soil plant atmosphere will be 
given. In the third part, we will give a general description of the hypothesis used for solving 
heat and mass exchange in this thesis. The last part contains a general description of the 
organisation of this thesis. 

1.1 The importance of theoretical studies for heat and mass exchange in the 
Soil-Plant-Atmosphere Continuum and the motivation behind such studies 

The demands which are laid on the existing ecosystems by human needs, due to 
population growth and rising expectations, are quite enormous and the effects of satisfying 
these demands put a large stress on the existing ecosystems. In contrast to older civilizations, 
the current civilisation has the power to exert its own demands and fulfil them by the 
expenditure of fossil fuel or other forms of energy. In older civilisations, the input of energy 
which was exerted by humans on ecosystems was always limited. They managed to survive 
and live according to what their ecosystems supplied. There was always a co-existence 
between what the human beings wanted and what the eco-system supplied them with. This 
co-existence was dictated, sometimes accompanied with harsh facts, by what the eco-systems 
could supply (Hillel, 1992). But the main difference here is that modern civilisation can exert 
and fulfil its own short term needs without consideration of what the existing eco-system can 
sustainably supply. The stress strain relationship of the existing eco-systems is in a much 
further range than in earlier times. The relationship between humans and their ecosystems will 
still ultimately be dictated by the ecosystem's ability to meet our demands, but the possibility 
of transport of goods has reduced the dependence on local eco-systems with the result that a 
feedback on the management regimes of these eco-systems is delayed even further. The final 
outcome could even be harsher than in earlier times due to the backlash occurring when a 
global failure in the existing ecosystems occurs. This difference is very dangerous. We need 
in this case to answer the inevitable question of how we can maximise the degree of 
satisfaction of the human expectations without stressing the existing ecosystems to the point 
of irreversible damage and to answer the question: how far is this point (i.e. defining the stress 
strain relationships of these eco-systems)? And, if our expectations should be reduced 
accordingly?!. 

So far, there is no scientific quantitative solution to this problem in spite of its urgency. 
Optimising our management regimes would require an understanding of how our 

ecosystems respond to these regimes. This understanding cannot be achieved by a trial and 
error process of trying different management regimes and if it does not work, to try something 
different. This is because of two reasons: 
1) Ecosystems have very large time constants and so their response to shifting them from an 
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already achieved equilibrium, due to an introduction of a certain management regime, will 
only show after a considerable period of time (few generations). 
2) We can not take the risk of losing the ecosystem in which we live. The state of the new 
equilibrium whlctt this system achieves after a certain disturbance of its equilibrium must be 
predicted, since this new equilibrium state should still be life sustaining. This is a question of 
survival. 

As a consequence of this, we see that in both the more developed (developed) and the 
less developed (or underdeveloped) countries, there is a need to have scientifically based 
means of managing our own ecosystems in an optimal way. For the time being, we have no 
means of predicting all the short and long term ecosystems responses to certain management 
regimes, so we can appreciate the consequences of our deeds or the disturbances which we 
introduce to these ecosystems. We suffer then from a trial and error approach in managing 
them. We exert our own demands on the existing ecosystems and expect the tolerance levels 
of these systems to be quite high. By the time we find out the consequences of our deeds from 
these trial and error approaches, it could be too late to do anything about it. 

From the previous paragraphs, we see that our options are very limited. Since 
experimenting with an ecosystem can be very dangerous and the time delay in getting a 
response could be very long, the trial and error approach would then be useless in optimising 
our management regimes. Trying instead to understand the web of physical, chemical and 
biological processes which control the response of such a complicated system to a certain set 
of environmental conditions (in which the management regime is expressed) and 
implementing this understanding in models is the only option we have to predict and manage 
our ecosystems. But the problem of validating these models remains: how can we validate a 
model whose results can be checked only by a comparison with the real system that needs a 
large period of time and that is unique? The only possible way then is trying to understand the 
underlying physical processes and the interactions between the different components of this 
large system and putting this understanding into models or submodels describing the eco
system components. We have to do our best in refining these sub models and validating them 
separately and then coupling them together in the right way. In the end, we hope that 
everything goes right and the built-up model simulates closely enough the real system. 
Another problem which shows up here, is the time scale of the different submodels and the 
time scale of the big model and how to extrapolate from the submodel level describing 
submodel processes to the whole eco-system level. This lumping of submodel processes to a 
higher level requires the correct inclusion of the effect of the sum of correlations between the 
lumped submodel processes, within the time or the spatial scale of the large model, on the 
solution of the higher level model. 

The selection of which processes and what level of detail is required to achieve validity 
of models at higher levels requires an insight into which processes in the lower level are 
decisive in determining the behaviour of the model upper level. All the above underlined 
steps require implementing some assumptions by the modeller which reflect his biased view 
of how he thinks reality works. This means, which processes he thinks are important and 
which are not, how the submodels should be coupled or what kind of correlations from the 
lower level to the higher one should be included and how they should be parameterized. 
Continual validation of these assumptions by comparing against measurements or data sets is 



a necessity. The scarcity or complete absence of such data sets with the increase in the time 
scale of the simulated processes is a problem which we have. The correct way then of 
integrating from lower level to a higher level is not an easy problem to solve. This will be 
discussed in chapter 6. But an essential rule is that we should start with submodels which are 
valid, i. e. all the physical processes which are described in detail in these submodels should 
be modelled correctly. 

Due to differences in the time resolution (time steps) of the different scales of models, 
these valid submodels can later be used to obtain valid closure parameterization for higher 
level models. In these submodels, all the parameterizations included in it, either obtained from 
a lower or a higher level models, should also be valid. This chain of parameterizations, which 
represents a method of including information from a wide variety of time scales, without the 
need to run the equivalent submodels coupled, should be correct. In the spatial scales, the 
integration between different levels should allow for interaction between heterogeneous 
subdomains within the integrated domain. 

The problem lies as shown from previous paragraphs in how to understand the limiting 
physical processes which govern the response of a very dynamical system (the eco-system) to 
a certain set of environmental conditions. One point worth mentioning here, is that averting 
natural cyclic climatic changes is not the issue, but the point is that these changes or 
catastrophes should not be human induced due to mis-management. 

To give an example of this, Egypt had an eco-system for a period of ten thousand years. 
This eco-system was represented by the Nile flooding its plain once a year. The old Egyptians 
built dikes to keep the water of the flood in big basins. Water would then infiltrate into the 
soil and saturate the subsoil and in the process leach the amounts of salt accumulated during 
the previous year. This amount of water stored within the profile would be used to grow one 
crop a year. Then a change in the natural hydrological cycle of that system was introduced by 
building a dam. This led to the possibilities of a more frequent irrigation regime and securing 
water supply during low flood years. This change here expresses the demands exerted by the 
Egyptian people on their eco-system and their way to fulfil this demand. The question now 
comes to the response of this ecosystem to this demand and the way of exerting it. I am not 
here questioning the need to build such a dam. In fact, this dam helped to save Egypt from 
drought in the last few years. This is here an example representing the sometimes justified 
expectation of a certain people and their way of exerting this demand from their eco-system. 
But one does not want to replace a harsh reality with a delayed much harsher one. The answer 
to the question if something like this will exceed the limits of tolerance of this ecosystem 
remains to be seen. I am stating here that we neither were nor are aware of the effect which 
such changes of the natural hydrological cycle have on our ecosystem. Now we have obtained 
a high ground water table which leads to salinization and to a loss of the land which we had 
for millennia and which now we are losing due to mismanagement and failure to cope with 
the results of changes we have introduced to the hydrological cycle. This ecosystem has not 
yet achieved its new state of equilibrium. It could be argued that this could have been 
foreseen. In fact, some effects have been overseen or predicted already in the preliminary 
studies preceding the project (Said 1993, Hemdan 1961), but no one could then have told, nor 
can now tell, how the final equilibrium will be. A complete study on the dynamical behaviour 
of this ecosystem and its tolerance limits is not available. A compromise has always to be 



found between the expectation of a certain people and the disturbances they introduce to their 
ecosystems. This compromise has to lie within the tolerance limits of their ecosystems. It is 
my concern as an Egyptian (and I think of all the people there) that the new state of 
equilibrium should be life sustaining. 

To give an example from the more developed or developed countries, the management of 
the river Rhine eco-system in Europe has not been very good either. The earlier policy of 
dumping high amounts of micropollutants into the river, which were adsorbed to the 
suspended solids and later sedimented, led to the formation of highly polluted beds. National 
inventories have shown that in Dutch inland waters, 34% of the beds exceed the test value and 
27% exceed the warning value (Cuwo, 1990). Dredged spoils between test and warning value 
must be stored under Isolate, Store and Monitor (ISM) conditions. If the warning value is 
exceeded, then research into the necessity for cleaning and storage under strict ISM 
conditions is urgent because of risks to public health and environment. During some 20 years 
of environmental incubation, for some higher chlorinated benzines, polychlorinated 
biphenols, dioxins and furans, significant losses in the sediment core layers were observed. 
The concentration of other few lower chlorinated dioxins and furans and two biphenyls in 
core layers that was deposited around 1970 showed no significant differences (Beurskens et 
al, 1994). This indicated no disappearance has occurred within the studied period. Downward 
transport of some of these pollutants is a very limited possibility because of their hydrophobic 
nature. Even with the significant improvement in water quality, the polluted sediment 
problem is a serious one. This proves that, due to the memory of the system, a bad 
management regime will still leave a scar for a long time to come and that there is a need for 
an introduction of rehabilitation measures and new manufacturing processes which are 
environmental friendly. The situation has improved a lot during the eighties. In the seventies, 
laboratory species suffered acute toxicity after exposure to the Rhine water (Sloof, 1983). 
Nowadays, water has to have a 25-fold concentration increase to induce mortality in water 
fleas, but less than 5% of the toxicity can be explained by identified compounds (Hendricks 
1994 and Hendricks et al, 1994). 

From these two given examples, it is shown that both the developed and under-developed 
world suffer from problems of ecosystem mis-management. This problem stems most 
probably from a lack of understanding and appreciation of how the ecosystem works and how 
it should be managed. I say most probably since one hopes that short sighted commercial 
interests to meet the rising expectations of human beings and to introduce an unsustainable 
way of living is not, or will not be, the main motivation behind the destruction of our 
ecosystems. For an appreciation of the extent of the damage to our ecosystems, see e.g. 
Seagerefa/. (1995). 

Quantifiable sustainable ecosystem management requires all the efforts and co-operation 
between all the people who can do something about it. It also becomes clear that the 
difference between what we can call a useful science of immediate benefit to an 
underdeveloped country and a more theoretical science, which may seem of no immediate use 
to a third world country or an underdeveloped country, is very vague. From my point of view 
and from the previous argument, I think that there is no such difference in the aspect of eco
system management. 

I do not deny the fact that there are some problems about which something can and 



should be done now, such as the starvation in Africa. We cannot wait till we find all the 
answers that we need to know to manage our ecosystem. Those people should be fed right 
away. But looking to short term problems should not make us forget the point, that these 
countries in the end should be able to develop their own resources and manage their own 
ecosystems in such a way, that they become self-dependent as much as their ecosystem can 
sustainably allow. That should not be done by duplication or the adaptation of production 
systems, which could lead to environmental degradation, but by self sustaining systems which 
are socially and culturally acceptable. In more developed countries, attention should be given 
to sustainable management of our ecosystems, rehabilitation of damaged ones and the 
development of environmental friendly manufacturing processes. 

In a striven-for wise ecosystem management, ecosystem managers should be able to 
predict correctly the response of the ecosystem to a certain set of management regimes. From 
these, we should be able to choose the ones which are self sustaining in the sense of achieving 
enough production or maximising self-sufficiency or human expectations of the population 
and keeping the environment intact. From these technically available options, we could 
choose, as a society what is socially and culturally acceptable. But first of all, a correct 
prediction of the ecosystem response to a certain management regime is needed because it is 
on this prediction, that we will base our management decision. 

How should we attack the problem of managing such an ecosystem?. I believe that 
understanding how such an ecosystem really works in its sub-components, and trying to 
integrate all this understanding into how the whole system responds to different management 
regimes, is the best way to manage such a system. The point is that our understanding should 
be clear because we cannot experiment with ecosystems and check the validity of a large 
model describing their behaviour. So, we try to refine our understanding of the governing 
processes in the subsystems. 

One of these subsystems affecting the dynamical behaviour of the whole ecosystem is the 
Soil-Vegetation-Layer of air close above system. This subsystem is the region where the 
interaction between the lithosphère, biosphere, hydrosphere and atmosphere takes place. This 
interaction and its modelling, on different time scales is what controls the ecosystem 
behaviour. The study and modelling of the dynamical behaviour of this subsystem, on a time 
scale of second to days, is what constitutes the main theme of this Ph.D. study. The dynamic 
behaviour of this subsystem is represented by the radiative and non-radiative (heat and water 
vapour) energy and mass (CO2) transfer between the different components of this subsystem 
and how it is controlled. 

I feel fortunate to have the chance to work in this area of research. The proposed study is 
to contribute theoretically, as well as experimentally, to the understanding of these 
complicated processes. 

1.1.1 Aim of the proposed study 

The aim of the proposed research is to develop a dynamic multi-lavered model for 
describing radiative and non-radiative energy and mass exchange within and between the soil. 
its vegetated layer (aggregates of plants with a spatial arrangement) and the layer of air close 
above it. We would like to have a valid model, describing the physical interaction between the 



plants, the soil and its environment. We need to refine our understanding of the effect, which 
the intermittency of the turbulent transport within and close above plant canopies and the 
resulting coupling of the vegetation layer with the layer above it. could have on the thermal 
and moisture regimes of soils. This intermittency is due to the existence of large coherent 
structures at the layer of air above the canopy and their interaction with the canopy layer. The 
time scale of these coherent structures lies in the range of 40-1000 s. We would like to know 
if these small time scale processes have a net residual effect on the integrated behaviour of the 
system, represented by the integration of the soil heat flux, thus leading to a different soil 
temperature profile through affecting the energy partition at the soil surface. The question 
here is equivalent to: What level of detail is needed to model the canopy soil system, and do 
we lose some information by large-time interval averaging (10-20 minutes averaging) ? 

This appreciation or understanding could be achieved by: 
1) Formulating an intermittent turbulent transport model which considers the effect of 
coherent eddy structures on heat and mass transport within plant canopies and the resulting 
coupling of the plant canopy-soil layer to the layer of atmosphere above it. In order to achieve 
this, the appropriate set of exchange equations for momentum, heat and mass (H2O and CO2) 
have to be formulated and solved, numerically, under a certain set of boundary conditions. 
Considerations should be given to the feedbacks involved. 

and/or 

2) In addition to describing the governing equations and the numerical implementation of 
these equations in a completely numerical model, a mathematical analysis of the governing 
equations, describing heat and mass transfer between the canopy layer and layer of air above, 
is used to analyse the behaviour of the system and the effect of turbulent transport 
intermittency on that behaviour. This analysis gives a justification to the numerical results of 
the model, since a numerical result is not a proof. It is difficult to justify without an analytical 
evidence, since, in spite of being highly improbable, it still could be an artifact. 

A qualitative analysis of an equivalent system of equations (the averaged Navier Stokes) 
will also show some of the limitations of the available approaches used to describe heat and 
mass transfer within and close above plant canopies in which no or an implicit account of 
intermittency is considered. 

1.2 A general description of the interactions of the components of the canopy-soil-
atmosphere system and the feedbacks involved 

Within the canopy layer, the plants act as interceptors of the radiant energy in the short 
and long wave band and convert this energy into other forms of energy: non-radiative (mainly 
sensible and latent heat, and to a much less degree: chemical) or into radiant energy in a 
different wave length band. 

The partition of this available energy (absorbed energy in the short and long wave bands) 
is dependent on the resistances to the fluxes from the plant organs to the surrounding 
environment, and on the boundary conditions (i.e. the temperature and the vapour pressure) in 
close proximity to the leaves. 

The non-radiative energy exchange between the plants and the inter-canopy air stream 



determines the amounts of non-radiative energy exchange (sensible and latent) which the 
turbulent transport mechanisms, between the canopy air layers (small scale transport) and 
between these layers and the layer of air above the canopy (large scale transport), have to 
evacuate. 

The exchange processes of momentum, heat and mass between the air layers in close 
proximity to the plants and the air stream above the canopy have a very stochastic and 
intermittent character. The plants interact with the air flow as obstacles, converting mean 
kinetic energy into turbulent kinetic energy and as sources or sinks of heat and mass. 

Within the soil layer, the plants modify and alter the soil climate through affecting the 
energy and mass input into the soil beneath it through the effect of shading and interception. It 
does also alter the thermal characteristics of the soil layers through the roots acting as sinks 
with varying strength for H2O in different layers of the soil, altering in the process the 
thermal and moisture characteristics of the soil. The plants modify the turbulent transport 
between the canopy air layers and between these air layers and the layers of air above it, thus 
affecting heat and mass exchange between the soil and the air above it. The plants exudate 
supply the heterotrophic microbial population with sources of energy (organic carbon) and so 
alter in the process the physical and the chemical environment of the plant roots. 

The soil in turn affects plants through its moisture, temperature and salt regimes. The 
moisture regime within the soil determines the availability of moisture for plants. This in turn 
affects the plant partition of the available energy between the different pathways through its 
effect on the stomatal resistance. This is in turn affects the microclimate within the plant 
canopy. The soil also affects the root distribution through the soil mechanical and chemical 
properties (e.g. root penetration resistance, aeration and pH). All of these processes affect 
plant growth and development. 

Within the atmosphere layer, the surface properties affect the development and structure 
of turbulence in the atmosphere above it, due to the interaction of the soil-vegetation layer 
with the radiation field and the subsequent forcing from the ground on the atmosphere above. 
This structure of turbulence will affect the canopy soil system through its intermittency. I 
think that the development and structure of turbulence in the atmosphere above responds to a 
large scale representation of the surface below, so a detailed model of the canopy climate is 
not needed to describe the forcing from the ground or the vegetation layer on the atmosphere. 
A big leaf model, with a fitted resistance to account for the atmosphere effect on the canopy, 
could suffice. The effect of the atmospheric surface layer on canopy microclimate has to be 
accounted for, since the large scale eddy structure will determine the intermittency of the gust 
penetration into the canopy. That fitted resistance will be a function of the canopy state. That 
is not only the stomatal resistance. It will be shown in chapter 4.1 that the canopy responds in 
a nonlinear way to the formulation of turbulent transport resistance. 

Within the plants, the microclimate in close proximity determines the rate of 
physiological processes (e.g. CO2 assimilation) and so the amount of reserves used for shoot 
and root growth. The plants respond much more to the average meteorological conditions than 
to the instantaneous ones, due to the response time of physiological processes being larger 
than the actual time of gust penetration, so a time-averaged profile can be used to model the 
potential production process. A detailed description then of the micrometeorology 
stochastically is not needed, but the effects of this stochasticity should be included in the time 
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mean. The effect of production processes within the plants, as affected by weather, on the soil 
shows through the partition of these assimilates between shoot and root growth (source-sink 
relationships), which controls within a larger time scale the feed back from plants on the soil. 
A functional description is not yet possible, so measured values for that partition are usually 
used (e.g. Van Heemst, 1988). The source-sink relationships are controlled genetically and 
environmentally. For example, the actual growth of the roots happens where the soil 
mechanical resistance is below a certain minimum (a function of the soil structure, porosity 
and moisture content: Misra et al (1988), Dexter (1987), Hillel and Toplaz (1976), Bar-Yosef 
and Lambert (1981)) and where the aeration is good enough (also dependent on moisture 
content and pore size distribution, Blackwell and Wells, 1983). This affects the root 
distribution within different layers. The active root distribution, and its conductance, control 
the regions of water uptake by plant roots, and so the soil moisture regime. 

As we can see, the exchange processes between the components of the Soil-Plant 
Canopy-Atmosphere Continuum are very complex and there are a lot of feedbacks which 
make a suggested numerical procedure to model the physical behaviour of the system quite 
complex and lengthy. One main point here, is that time scale differences exist between 
different processes. Within one time scale, this requires the integration or inclusion of 
processes on a lower level in the correct way and the delivery of a good result (which 
simulates reality well) to be integrated on its effect to the higher and lower level. That brings 
us to the averaging problem as discussed here and in chapter 3 and 4. 

1.2.1 The averaging problem (an elementary discussion) 

In the soil layer, averaging is done by assuming a REV (Representative Elementary 
Volume) approach, in which this volume is larger than the discontinuities of the pore soil 
system, while it is smaller than the scale over which there are gradients in the system. This 
justifies the gradient theory, since transport process work on a smaller scale than these 
gradients. 

In the above soil part, this assumption is not valid, since most of the transport happens in 
a very short interval of time by large scale coherent structures (gusts), and the scale over 
which this gust works is larger than the distance over which gradients develop. 

For the above ground parts, in existing models, we try to model (simplify) this exchange 
process by averaging in time and place. So, we eliminate the time variation of this intermittent 
process by assuming it averaged in time. This averaging procedure leads to the closure 
problem and also to the fact that we try to represent a very intermittent process in which most 
of the transport happens in a small fraction of the averaging time by a continuous term in the 
turbulent transport equations. It has been shown by several workers (e.g. Finnigan and 
Raupach 1987) that the largest scales of motions (events or coherent structures) are the most 
effective ones in the turbulent transport between the canopy air layers and the air stream 
above. 

Does the large-time interval averaging, in which we lose the details of the process, 
represent a loss of information which could affect the large-time response of the simulated 
system? We suggest, from the nonlinearity of the canopy turbulent transport equations, that a 
large-time interval averaged value for a term in these governing equations is not the same as a 
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fluctuating in time one with the same mean. So, we think it is important to make a division 
between the different time scales (and so implicitly the different length scales of motion and 
their contribution to the total transport). 

A compromise to be made is to maintain the minimum degree of resolution without 
losing details of the flow which may affect the long term response of the system. 

I think that there are three approaches to visualise the plants and their role as energy 
interceptors, converters and dischargers in the soil atmosphere system. 

The first approach is taking the plants as individuals with a given spatial arrangement, 
which are interacting with the airflow above with all its intermittency. So the problem here is 
treated in all its time intermittency and spatial heterogeneity (after averaging of course for 
small scale turbulence). This approach is probably not needed. In the lower limit (no 
averaging for small scale turbulence), this approach goes to Direct Numerical Simulation 
(DNS) of the Navier-Stokes equations. The spatial and time resolution which is required for 
this approach would exceed by far the capabilities of the available computers. 

The second approach is applying some kind of averaging spatially, i.e. treating the plants 
as a layer in which the variation in the horizontal directions are smoothed out. This spatial 
averaging is done to eliminate the horizontal heterogeneity of the canopy elements (a uniform 
dense crop with no gaps) or to treat the canopy as composed of two or more uniform 
subdomains (e.g. an orchard; row crop or intercropping). In all of these, averaging in time is 
within a small time scale. Thus in every time step, a term for the large scale transport will 
either be turned on or off depending on the probability of a gust penetrating into the canopy at 
the considered time step. In this case, the transport will be separated into one or more length 
scales, which will then have two different frequencies. 

The third approach, by averaging in place (space scale larger than the small scale of 
heterogeneity of the plant canopy and the largest scale of transport) or in time (time interval 
larger than the largest time scale contributing to momentum and scalar transport and a space 
scale larger than the small scale heterogeneity) and that would lead to a different kind of 
closure problem, in which we lose account of the different scales of motion contributing to the 
transport and also of the intermittency of the problem. This is the common way of averaging 
which is used in the Eulerian approach models. We get terms in the turbulent transport 
equation which are assumed to be active all the time. These terms and their parameterization 
are obtained from large-time interval averaging. The values obtained are not possible to use 
for time steps smaller than the time averaging. So we lose detail of the intermittency of the 
problem which is, as we shall see, important to the large term response of the system. At the 
same time, these terms can not be used for modelling small scale transport within time steps 
smaller that the large scale transport, since they include in them some of the contribution of 
the large scale transport. 

Li et al. (1985) tried to describe the transport in two time-averaged components; local 
and nonlocal transport in a first order closure model. This approach is also not successful 
since it needs a parameterization for the non-local term in an averaged in time process. These 
terms are then obtained by optimisation. A curve fitting method is just replaced by another 
curve fitting method. 

In the present thesis, we follow the second approach. We will show that intermittency 
considerations make a difference in the solution depending on the time constants of the 



system, and that the second approach is the minimum required degree of detail. I think that we 
would agree when we say that small scale turbulence has a small time scale and small effect 
in transporting heat and mass between the canopy air space and the layer above and it would 
require a large time to achieve an equilibrium profile. Large scale transport , on the other 
hand, is efficient in achieving most of the transport between canopy layers and the layers of 
air above with a larger time scale, and it requires much less time to achieve equilibrium. We 
will assume that a separation in the scales of transport exists. The averaging procedure of the 
instantaneous turbulent transport equations remains to yield averaged equations, but the 
interval of integration will be modified to account for the contribution of different scales of 
motion to the total transport. So in the equations a term, which represents the effect of the 
gust or large scale of motion has to be introduced. This term has to be turned on or off 
depending on the probability of a gust penetrating into the plant canopy during a certain time 
step. But the question remains how to determine this probability distribution. 

To get an answer to which probability distribution one should use to simulate the gust 
penetration into plant canopies, one can use two approaches: 
The first is observations made by other workers e.g. Shaw and McCartney (1985); Shaw, 
Ward and Aylor (1979); who tried to fit measured time series of wind velocities inside plant 
canopies to some statistical distributions. But even if they fit, the question of applying these 
distributions to general situations (universality) arises, since these wind regimes are functions 
of the interaction of the canopy layer with the airflow above. 
The second approach is somewhat functional: trying to describe the interaction between the 
canopy layer and the air flow above it. There is an attempt by Raupach et al (1989) to define 
the coherent eddy structure within plant canopies in the case of thermally near-neutral 
canopies. In their paper, they assumed that the dynamic stability or the shear is the most 
important in generating eddies. This assumption ignores the importance of thermal stability 
on eddy generation. 

In all above mentioned averaging cases, the following steps should be followed: 

1) Quantification of the radiant energy interception within the plant canopy and at the soil 
surface (this process is the source of all energy transformation within the ecological system). 
Averaging in time is done with a time scale small enough to follow the diurnal radiation 
changes, if we neglect the effect of leaf fluttering and the wavy movement of the canopy 
elements. This means that there are no differences between approach 2 and 3. However, there 
are differences between whether or not we average in space, since in the latter we treat the 
plants as a turbid homogeneous medium. 

2) The partition of this intercepted energy between different pathways (radiative and non-
radiative energy exchanges). That partition determines the amount of source or sink terms for 
the non-radiative energy exchanges which has to be discharged or satisfied through the 
turbulent exchange processes between the canopy air layers and the air stream above. 

Concerning these two steps, theory already exists which describes these two steps, and 
there are several approaches to calculate the source strengths. 
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3) Developing and solving a valid set of equations to describe the canopy turbulent transport 
processes. Here, the averaging in time and place will determine the complexity of the 
solution. We will do averaging in place and time according to the second approach, since we 
would like to study the intermittency of the process and show its effect on the simulated mean 
concentration and sources profiles. We would like to take account of the different length 
scales (here two categories) and so different time scales and their contribution to the total 
transport. 

So during gust penetration, a term of large scale transport will be turned on, while in the 
interval between gusts (the quiescence periods), the turbulent transport equations will be 
solved using different closure assumptions for the small scale turbulence. The effect of using 
different approaches on the form of turbulent transport equations and the final solution will be 
studied. A parameterization for the local transport during the quiescence period will be used. 
This is done according to a statistical distribution of the values of the vertical velocity 
variance within time. A modification for a random walk model to account for intermittency 
will be shown. 

In solving the resultant nonsteady state canopy turbulent transport equations, a nonsteady 
solution for the leaves will be used. 

4) Quantification of the interaction between the soil and the canopy above it. That is done 
through two processes, the effect of the vegetative part of the canopy on the interception of 
the short wave coming in, and in incrementing the downward long wave radiation since the 
plants are warmer than the sky so the plants increase the long wave coming in. The plants 
shield the soil from the colder sky. The second process is through the roots action. This is 
done through the use of a root distribution as a function of depth. The sink term in the soil 
volume is determined using the solution of the equations for water transport to the leaves 
from the soil. 

5) Quantification of the energy balance of the different soil layers and solving the non-steady 
energy balance equation for the different soil layers till the depth where dT/dt =0, taking 
account of the sink distribution. Partition between latent and sensible heat fluxes does not 
occur only at the surface, but there is a regression of the evaporation front. The model 
considers coupled heat and mass transport through the soil. 

The effect of all these processes will be integrated through time and the long term effect 
on soil heat storage will be checked. 

This model should be able to describe the interactions between a vegetated soil layer with 
the atmosphere in semi-arid regions, where the thermal behaviour of the soil is varying 
strongly with time due to the variation of moisture content of the soil between subsequent 
water applications, and where it to assume a soil profile which is always within the early 
stages of drying is not valid anymore. 

So in short, in the study, several points will be discussed: 
1) The effect of intermittency on the existing available approaches (Eulerian as well 

as Lagrangian) used for describing heat and mass transport within the Soil-Plant Canopy-
Layer of air close above system (section 3.3, section 3.7 and section 4.3). 
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2) The introduction of an intermittency approach to describe heat and mass transport 
within this layer, the parameterization or the used closure assumptions and their justification 
(Section 3.6). 

3) The development of a complete numerical canopy soil model, using in its 
turbulent part an intermittency approach and including the resulting feedbacks (chapters 2, 4 
and 5). 

4) Analysis of the nonlinearity of the system and also when intermittency does make 
a difference in the solution for the canopy air layers (section 4.2.1.1). 

5) The effect of this non-linearity on the soil heat flux and the soil temperature 
profile (section 4.2.1.2). 

6) Analysing the effect of the different forms of the turbulent transport equations 
(continuous versus intermittent due to the use of different averaging schemes) on the soil heat 
flux, the air temperature and vapour pressure profiles and the sources (MATHCAD® runs 
and section 4.2.2). 

7) Validation of such a model (Chapter 6). 

1.3 The organization of this thesis 

This thesis consists of three parts. Two of them are intimately related: a modelling part 
indicated by (*) superscript and an analysis part indicated by (**) superscript. The third part is 
a validation part (chapter 6). The modelling part is just describing how the modelling and the 
consideration of feedbacks between different systems of equations was done without further 
analysis of the equations behaviour (e.g. chapter 2 or section 4.1.2). In the mathematical 
analysis part, we give an analysis (either quantitatively or analytically) of the systems of 
equation describing transport and describe its behaviour and the consequences of this 
behaviour on the validity of certain assumptions or on the nonlinearity of the system, (e.g. 
section 3.3 and section 4.2, respectively ). 

We would like to draw the attention of the reader to the following: In this thesis, 
especially, the analysis part, we start with a global view of the problem, discard certain 
processes which we think insignificant while going through it, concentrate on some other 
processes, derive some conclusion from the different pieces of the problem and then use these 
several conclusion from here and there to come to a major conclusion concerning the system 
and the approaches used to describe it. 

In some parts of the text; we use a different font (letter type) as a way of 
explaining things in a more extensive way, we would suggest to skip it during a 
first reading. That would not disturb the continuity of the storv. 

In chapter 2, we discuss the modelling of the energy sources and sinks within plant 
canopies. 

In chapter 3, we discuss in a qualitative way the effect of intermittency on the turbulent 
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transport of heat, momentum and the validity of available approaches, whether Eulerian or 
Lagrangian. We also discuss a suggested intermittent approach and the closure assumptions 
used and their justification. The effect of intermittency is considered through its effect on the 
turbulent transport correlations. 

In chapter 4, we analyse the effect of intermittency on the sources and sinks within plant 
canopies and the soil temperature profile. We show a nonlinearity in the system and the effect 
of this nonlinearity on the system behaviour (the canopy and the soil) in a semi-analytical 
way. We also discuss some modelling aspects concerning soil heat, moisture fluxes. We also 
discuss the modelling of plant water uptake and stomatal resistance. The effect of 
intermittency here is discussed through its effect on the sources and sinks or on the 
correlations between the fluxes and the sources. We will also discuss the sensitivity of an 
approximate model to certain parameters. 

In chapter 5, we include a description of the numerical model with a reduced listing. 
In chapter 6, we discuss the model validity. 
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CHAPTER 2 

THE QUANTIFICATION OF ENERGY SOURCES AND SINKS 
WITHIN PLANT CANOPIES* 

In this chapter, we will explain how the energy sources and sinks within the plant canopy 
have been quantified. In the first part, an introduction, a qualitative description of the 
interactions between the plants and the radiation field in which they exist will be given. In the 
second part, we will treat the equations which are used to describe this interaction. In the third 
part, we will treat the partition of the total absorbed energy between different pathways. In the 
fourth part, we will mention the quantification of the resistances for heat and mass and CO2 
sinks or sources within plant canopies. 

2.1 Introduction 

The mere existence of the plants with their three dimensional configuration, i.e. the stem 
carrying the branches with the leaves appended to it, leads to the plants interacting with the 
surrounding radiation field. This interaction is represented by the leaves or the plant parts 
intercepting radiant energy and then reflecting, absorbing or transmitting this intercepted 
energy. The partition of the intercepted energy between reflection, absorption and 
transmission depends mostly on the spectral properties of the plant pigments and water. 

The amount of absorbed radiant energy in the different regions of the spectrum 
determines the radiative energy load which the plants have to dissipate or disperse. This 
dissipation takes place through the radiative and non-radiative energy exchange between the 
plants and the surrounding medium. The radiative energy exchange is represented by the long 
wave emission of the leaves. The non-radiative energy exchange is represented by the 
sensible and latent heat which is delivered by the leaves to the inter canopy air stream. The 
conditions under which the absorbed radiation load equals the radiative and non-radiative 
energy exchange between the leaves and the surrounding media determine the plant organ 
surface temperature. Into this balance also goes the contribution of the change of heat storage 
within plant tissues. 

The temperature and vapour pressure of the air in conjunction with the radiation load on 
plant surfaces, given certain surface resistances, determine the temperature of the plant 
surfaces and constitute the environmental conditions, which should lie within the domain of 
viability of the cytoplasm of the living tissues. We can call the range of these environmental 
conditions, under which this condition can be achieved, the domain of existence of plants. 
Within these domains of existence, which are species dependent, there will be subranges 
within that domain in which conditions for plant productivity are optimised. By plant 
productivity, we could mean the net assimilation rate for short time intervals or integrated 
over a longer period, the total plant dry matter production or another certain criteria. In this 
way, we have expressed a one direction effect of the environmental conditions on the plants. 

The environmental conditions are not only the vapour pressure, temperature of the air and 
the radiation load. There are other factors like the moisture and salt regimes of the soil. In this 
thesis, we will assume that the effect of the other environmental conditions is shown through 
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the effect of these other environmental conditions on the resistance of the plant surfaces to 
different forms of energy exchanges (i.e. through the stomatal resistance). This will affect the 
surface temperature. We consider that the temperature of the surface, in combination with the 
short wave radiation load, internal CO2 concentration, tissue water potential and ionic status 
of the plant tissue as the window through which the inner plant processes see and respond to 
the physical and chemical (abiotic) environment. The effect of nutrient status within the soil 
on the plant inner processes is not considered here. We will treat the quantification of the 
effect of the other environmental conditions in detail in chapter 4. 

Now, to get our qualitative picture of the whole system clear, let us come to the question 
if the relation between the environmental conditions, expressed as the temperature, vapour 
pressure of the air and the radiation load on the plant, is a one way direction relationship?, i.e. 
do they impose a certain load or stress on the plant with no feedback from the plant on them?. 

Considering the net result of the feedback between the radiation load and the plant 
surface temperature, this feedback is small and is only due to the interaction between the plant 
surface temperature and the long wave radiation field. There is no feedback between the plant 
surface and the short wave radiation. So the solution of the short wave radiation is 
independent of our final solution of the vapour pressure and temperature of the air (i.e. there 
is no feedback). 

On the other hand, the temperature and vapour pressure of the air are not passive to the 
inputs of non-radiative energy from the plant organs into them. The canopy air layers have an 
ability to exchange heat, water vapour and other constituents due to turbulent motions which 
mix the air between canopy air layers. These turbulent motions are either externally or 
internally induced. The internal induction of turbulent motions could be due to the dynamic 
effects of the canopy elements. These dynamic effects are represented by the leaves working 
as drag media extracting momentum from the flow field, as converters of mean kinetic energy 
into turbulent kinetic energy, and mostly as obstacles to the intrusion of air flow from above 
the canopy. This last effect leads to the appearance of high positive pressure-velocity 
correlation inside the canopy. These high positive velocity-pressure correlations lead to the 
coupling of the inner canopy flow to the flow above. We will come to this point in chapter 3. 
The thermal induction is due to the effect of density stratification on the degree of mixing 
(stability effects). 

If the energy load by the leaves on the air layers (i.e. the amounts of delivered sensible 
and latent heat from the leaves into them) is not evacuated to the layer of atmosphere above 
the canopy, a build-up (whether positive or negative) of vapour pressure and temperature of 
the air would result. This build-up would then lead to an enhancement or inhibition of the 
exchange of these delivered amounts between the canopy air layers, or between these air 
layers and the layer of atmosphere above. This exchange would then lead to relaxation of the 
energy load. Somewhere, an equilibrium is achieved depending on the time constants of the 
turbulent transport mechanisms and the loading terms. The situation, concerning the air layers 
within the canopy, is then represented by an equilibrium between two forces; 
The first is a forcing term, which is represented by the non-radiative energy exchange from 
the leaves to the inter-canopy air stream. 
The second is the non-radiative energy (turbulent) exchange between the canopy air layers, 
which tends to relax the first force. The degree of build-up of vapour pressure and air 
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temperature, which is required to maintain equilibrium between these two effects, determines 
the temperature and vapour pressure of the air. This in turn will control the partition of the 
absorbed energy between different pathways, i.e. radiative and non-radiative, and so the 
amounts of non-radiative energy which is delivered from the leaves into the canopy air layers. 

From the above description, we see that the components of the canopy air system are 
interrelated like a system of resistances or springs, and the state of that system will depend on 
the forcing terms imposed on its components and the different relaxation terms relaxing these 
forcing terms. For canopy air layers, these different relaxation terms are represented by 
turbulent transport mechanisms between canopy air layers which tend to relax the energy 
sources with the canopy. For the leaves, the forcing term is the radiation loading, while the 
relaxing term is the nonradiative energy delivered from the leaves to the air. We can include 
the role of the soil in this system through its effect on modifying the resistances of the plant 
surfaces to energy exchanges in one direction. In the other direction, the plants affect the non-
radiative energy input to the soil surface, the boundary conditions for the energy budget 
solution at the soil surface, and the thermal and moisture characteristics of the soil layers. 

Figure 2.1 gives us an overview of the interactions between the plants and its 
environment. The circles in the figure represent the leaves within different canopy layers and 
their role as interceptors and converters of radiant energy into other forms of energy (i.e. non-
radiative energy or radiant energy in another waveband). The partition depends on the vapour 
pressure and temperature of the air and the resistances to the different forms of fluxes. In this 
chapter, we will cover these processes in the above-ground part of this figure. 

In the next part of this chapter, we will introduce the equations used to quantify the 
forcing on the canopy air system due to the leaves. We will assume that the temperature and 
vapour pressure of the air and the surface resistance are already known. This means that we 
will cover the first part of the system, i.e. the forcing due to radiation loading under a certain 
state of environmental conditions (vapour pressure, temperature of the air and plant surface 
and boundary layer resistances). The restoring or relaxation mechanisms which are due to the 
turbulent exchange between the canopy air layers will be covered in Chapter 3. The effect of 
surface resistance on the forcing, due to its effect on the partition between radiative and non-
radiative energy exchange, will be covered in chapter 4. 

2.2 The interaction between the plants and the radiation field 

The word radiation field in the previous paragraphs is used to describe the fact that for 
every point in this field there exists a magnitude and direction. There is a magnitude of the 
radiation intensity or radiance, depending on the direction of the beam. In every point in the 
x,y,z space there are infinite number of values for this radiation flux, depending on the 
direction of radiation and the width of cone from which this value is integrated. For every 
plane passing through a certain point in the x, y, z space, there will be two values (the 
irradiances on the upper and lower surfaces) that represent the integrated values from the two 
corresponding hemispheres above and below it. 

In the case of a plant canopy, we will assume that the plant canopy elements (the leaves) 
are represented by a turbid homogeneous medium, dispersed uniformly in the x, y direction, 
but varying in the z direction depending on the profile of the leaf area density (m^ leaf at one 
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side/m-> air). 
The first step in the interaction between a leaf element and a beam of radiation is the leaf 

physically intercepting the incident beam. The probability of interception depends on the 
projection of the leaf perpendicular to the direction of the incoming beam, which is the 
effective area for interception of radiation and is dependent on the cosine of the angle between 
the leaf normal and the incident radiation. So, for a beam of light incident from a certain 
direction, the probability of interception of this beam in a certain layer is equal to the area 
density projected in the direction of the incoming beam divided by the sine of the angle of 
elevation. In equation 

COS à: J 
I«,* = LAI*-! f1 (2.2.1) 

sinp 

where 
ß is the angle of elevation of the incoming radiation 
LAI/t is the incremental leaf area index with a surface perpendicular to direction k. 
I,- £ is the probability of radiation incident from a direction i being intercepted by LAI& 

Sin/} determines the effect of the beam angle of inclination on increasing the travel 

length through the canopy of the incident beam of light. 0;- ^ is the angle between the 

directions of the incident beam and the leaf normal. The cosine of this angle represents the 
fraction of the leaf area projected in the direction of the incident beam or equivalently 

COS <t>: A 
Id = expC-LAI .̂ ' ^ ) (2.2.2) 

sin/} 

where 
Ij is the probability of a certain beam incident from a direction J' not being intercepted by 

a surface with a normal which has a direction k. 
A whole canopy layer has a certain probability distribution for its leaf normals and is 

subjected to a certain distribution for the incoming radiation from the different zones of the 
sky or from the layer above it. To get a representative value of the non-interception 
probability coefficient for this layer, a weighed average of the non-interception probability 
coefficients for the different leaf angle classes and different zones of the sky should be taken. 
In this model, to calculate energy sources and sinks within plant canopies, a multi-directional 
reflection and transmission model is not needed. The minimum level of detail we have to go 
into, while still maintain a reasonable level of accuracy, is by taking three leaf angle classes 
and three different zones of the sky as suggested by Goudriaan (1988). 

The projection of the leaves for the different leaf inclination classes is calculated as a 
function of the leaf inclination class and the angle of elevation of the incoming radiation using 
the following functions: 
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cos 0j o = MAX(0.25, 0.93 sinß ) (2 2 3 a) 

Icos 02,/jl = MAX(0.47, 0.68 sin/3 ) (2.2.3.b) 

cos 03 fi = 1 - 0.26 cos 0j a\ - cos (fa n\ (2.2.3.c) 

where : 

cos (j>i o is the fraction of leaf area in angle class / projected into the direction of the 

incoming radiation. 
The extinction coefficient, Kex^^.for a leaf inclination class i and radiation angle of 

elevation ß is equal to 

Kex,i,/? = | c o s ^ | / s i n ) 8 (2.2.4) 

Here, we end up with nine Kex , a (three zones of the sky multiplied by three leaf angle 

classes) coefficients which determine the relation between the leaf inclination class, the angle 
of elevation of the incoming radiation, and the effective leaf area intercepting radiation in the 
light path. An average extinction coefficient,Kav, for each of the three zones of the sky is 
found by the linear addition of the contribution of the three leaf classes. Goudriaan (1988) 
uses a weighted mean of the average extinction functions, exp(Kav LADMID(J) dz(J)), by 
multiplying these with the weights of the contributions of the different zones of the sky to the 
incoming radiation (0.178, 0.514 and 0.308) for the standard overcast sky. Ladmid(J) is the 
average leaf area density in the middle of the layer. The product (Ladmid(J) dz(J)) represents 
the leaf area increments within layer (J). The resulting expression gives the probability of 
non-interception i.e. that an incident diffuse radiation will not be intercepted by the foliage 
elements within layer J. 

Once a beam of radiation has been intercepted, it will be reflected (R) (either specularly 
Rs or diffusely Rd), absorbed (Ra) or transmitted (either transparently Tt or diffusely Td ). 
See figure 2.2. A more detailed discussion is given by Den Dulk (1989). These fractions for 
the intercepted beam will be dependent on the angle of incidence. Therefore, in a detailed 
canopy radiation model, these fractions cannot be simply introduced as model parameters. But 
in this study, we are not interested in simulating the details of the angular distribution of the 
reflected and transmitted radiation within the plant canopy. So, we neglect the specular 
reflection fraction (which can be significant in a detailed radiation model) and the 
transparently transmitted radiation fraction, which is small compared with other fractions 
unless the leaves are very thin, this would lead to the reflection and the transmission 
coefficients of the leaves mostly dependent on the spectral properties of the plant pigments 
and water. 

Concerning the spectral properties of the leaves, a leaf reflects and transmits very little 
radiation at the ultraviolet and visible wavelengths (an average value for the whole band of 
0.1 and 0.1, respectively) and, as a result, has high absorption at the wave length band of 0.4 -
0.7 |J.m except in the green (0.55 |j.m). In the near infrared NIR (0.7-1.4 (im), the leaves show 
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higher reflectance and transmittance (average values of 0.4 and 0.4, respectively). This is due 
to a gap in the absorption spectrum between regions in the ultraviolet and visible wave bands, 
where electronic energy transitions dominate the spectrum, and the intermediate and far 
infrared (long) (>3.0 um ) wave band, where vibrational and rotational energy transitions 
dominate. The vibration-rotation absorption bands of liquid water enter the spectrum in the 
near infrared and, although weak at shorter wavelengths, they begin to dominate the spectrum 
at wave lengths greater than 1.4 urn. The result is that reflectance and transmittance of a leaf 
rapidly diminish at longer wavelengths, and absorptance increases, with nearly complete 
absorptance at wave lengths greater than 2um (Gates, 1980). So, the leaves are almost black 
bodies for the long wave radiation, showing reflectance of less than 0.05 and transmittance of 
zero. The leaves also act as a source for long wave emission since they, as all other bodies, 
emit radiation according to Stephan-Boltzmann law. 

Fig. 2.2 Scheme of the distribution of the 

radiation I that incidents on a leaf over 

the five possible output destinations. 

Rs (specular reflection), 

Rd(diffuse radiation), A (absorption), 

Td (diffuse transmission), Tt(transparent 

transmission), Taken from Den Dulk(1989). 

With this in mind, the radiation profiles have been calculated for three wave bands; the 
visible, the near infrared and the long wave radiation. 

2.2.1. The short wave radiation 
2.2.1.1 Direct radiation interception 

For a direct beam, the probability that a beam of light, incident from a certain direction, 
will not be intercepted till a given depth in the canopy is given by 

and 
IBB(j)= exp(-0.5 CUMLAI(j) /sinß) 

Ib(j)= exp(-0.5 LADMID(j) DZ(j)/sinß) 

(2.2.5) 

(2.2.6) 

where 
IBB(j) is the cumulative probability that a direct beam will not be intercepted by the leaf 

elements above Layer J, Ib(j) is the probability that an incident radiation will not be 
intercepted by the leaf elements of layer J, and CUMLAI(j) is the cumulative leaf area in the 
layers above layer J. 
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In this formula, 0.5 is the projection of the leaves in any direction for a spherical leaf 
angle distribution. This coefficient is independent of the angle of incidence of the beam. 

2.2.1.2 Diffuse short (Visible or Near Infra Red) 

The equations of Norman (1979) have been used to describe the radiation fluxes within 
the canopy. They read (for non-overlapping, non horizontal, scattering leaves) as : 

Rx,J^ = Rx,J+l J-ft x (1- Idj+l) + Idj+i] 

+ R x > JT[p x ( l - Id J + 1 ) ] ( 2 2 ? ) 

+ f bRX ; t i lBB ( J + 1 ) ( l - Ibj+ 1 )x x 

III 

RX,JÎ= Rx ,j-iT[Tx(l-ldj) + ldj] 
I 

+ R x i i [ p x ( l - I d j ) ] 

+ fb RxA : 

(2.2.8) 

IBB(J)(1-Ibj)px 

III 

where : 
Rx j is the diffuse radiation flux density of wave band X on the upper boundary of the 

layer J in Wm~2 ground surface. Idj+ j is the probability that an incident radiation (diffuse) 
will not be intercepted by the elements of layer J+l. Tx is The leaf transmittance of the foliage 
elements. px is the leaf reflection of the foliage elements. The coefficient (fb) is the fraction 
beam of the short wave radiation at the upper boundary of the canopy, see fig 2.3. 

The first set of equations (eq. 2.2.7) contain three components which contribute to the 
downward radiation flux density at the upper boundary of a certain layer (J). 

In the first component I, the term between square brackets represents the sum of two 
fractions, or equivalently two probabilities, of the diffuse radiation at the upper boundary of 
layer (J+l ); either being intercepted and then transmitted to the lower boundary of the layer or 
going uninterrupted through the canopy layer. This total sum represents the fraction of the 
downward radiation at top of the layer (J+l) which managed to pass through the canopy layer 
to the layer below. This fraction multiplied by the radiation flux at the top of the layer(J+l) 
represents the contribution of the downward radiation flux density at the upper boundary of 
the canopy layer (J+l) to the downward radiation flux density at the upper boundary of the 
layer below (J). 

In the second component (II), the term between square brackets represents the fraction or 
equivalently the probability of diffuse radiation being intercepted by the leaf elements in layer 
(J+l) and then reflected. This probability multiplied by the upward radiation flux density at 
the upper boundary of the layer (J) would represent the contribution of the upward diffuse 
radiation flux density at the lower boundary of the layer (J+l) to the downward diffuse 
radiation flux density at the upper boundary of the layer (J ). 
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The third component (III) represents the multiplication of IBB(j+i) by [1- Ib(j+i)] which 
would represent the joint independent probabilities of a direct beam, which managed to get to 
the upper boundary of the layer (J+l), being intercepted by the elements of that layer and so 
contributing to the diffuse radiation fluxes at the upper and lower boundaries of this layer. 
This joint probability multiplied by the transmittance (xx) of the leaf represents the probability 
of a direct beam intercepted in a layer (J+l) contributing to the downward diffuse radiation 
flux density at the upper boundary of the layer below (J). 

The second set of equations for the upward diffuse radiation fluxes (eq. 2.2.8) contains 
three equivalent terms; 

The first of these represent the contribution of the upward radiation flux density at the 
lower boundary of a canopy layer (J) to the upward radiation flux density at the upper 

R x J + l î 

1 
p fb Rx,tl IBB (J+l) (1-IfcJ+l) 

RxjT IdJ+1 

IdJ+1 

R x J Î 

TRxJÎ ( l - IdJ+ l ) 

A 

1-IdJ+l 

fb Rx,tlIBB(J+l) 

R x J + l l 

p Rx ,J+U(l - IdJ+l ) 

(1-IbJ+l) 
1-IdJ+l 

pRx jT ( l - I d J+ l ) 

IdJ+1 

-upper boundary 

Layer J+1 

-lower boundary 

Layer J 

' R x J + l l I d J + 1 

TRxJ+U( l - I d J+ l 

x fb Rx,tlIBB (J+l) (1-IbJ+l) 

R x j i 

Fig. 2.3: The components of radiation fluxes above and below Layer J+l 
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boundary of this layer, after being intercepted and then transmitted, or managing to pass the 
canopy layer (J) non-intercepted. 

The second of these terms represent the contribution of the downward radiation flux at 
the upper boundary of the canopy layer(J) after being intercepted and reflected to the upward 
radiation flux at upper boundary of this layer. 

The third of these terms represents the contribution of the direct beam of radiation, which 
managed to get unintercepted to the upper boundary of layer (J) and then was intercepted 
within this layer and subsequently reflected, thus contributing to the upward diffuse radiation 
flux density at the upper boundary of the layer(J). 

These two sets of equations for the downward and upward diffuse radiation fluxes 
represent then a set of discretized numerical equations needed to describe the downward and 
upward diffuse radiation fluxes. These two set of equations are applied for two wavelength 
bands (the visible, NIR). They could also be used for the longwave band after taking into 
account that the leaves emit radiation in the longwave band, since there is a dispersed source 
within the canopy for the long wave radiation. 

There is one condition for these two sets of equations: The canopy layers should be thin 
enough to ensure that the probability of leaf overlap is negligible. This permits us to make an 
estimate of the reflected (or transmitted) radiation from the product of intercepted radiation 
and the leaf reflectance or transmittance. If layers are not chosen thin enough (leaf area index 
increments in the range of 0.1), scattering will be overestimated (Norman, 1982). 

To increase the thickness of the layer without degrading the radiation profile estimates, 
use could be made of two approaches. The first is use of the Poisson's probability distribution 
to describe the probability of leaf overlap within a certain layer and to derive a thick layer 
reflection and transmission coefficients as suggested by Norman (1982), where the thick layer 
transmission and reflection coefficients RLX i and Transx j , respectively, are expressed as: 

RLxJ= X pi Idj (-In Idj)1/!! (2.2.9) 
1=1 

T r a n s ^ Z 3 t x Id j (-lnldj)Vl! 
1=0 (2.2.10) 

l-I Tri |_ Ir. Trl^I/Tt 

The layer equations take the form: 

Rx,jJ-= Rx,J+l^-Transx,J+l + R X , J Î RLx,J+l 

+ f b R X i t i l B B ( j + 1 ) ( l - I b j + 1 ) T x
 ( 2 - 2 - H ) 

III 

R X , J Î = Rx,J-1 ÎTransXjJ + Rx,jJ- RLX ,J 

+ f b R x > t i lBB ( J ) ( l - I b j ) p x
 ( 2 - 2 ' 1 2 ) 

III 
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The other approach is to use the analytical solution of Kubelka-Munk equations defining 
the thick layer reflection coefficients. From equation 2.2.7 and 2.2.8, not including the 
contribution of the direct beam to the diffuse radiation, and substituting dj = (l-Wj) where dj is 
the probability of being intercepted for a beam of diffuse radiation, the layer equations take 
the form : 

R x , J i = R x , J + 1^ ^xdM +d-dj+i)] 
(2.2.13) 

+ R x , J T [ p x d J + i ] 

Rx ,J î = R x , J - l î ftxdj+O-d,)] 

+ Rx,Jl [Px dj] 

Decomposing and rearranging the equations, we get: 

R x , J ^ - Rx,J+l J' = Rx,J+l J' dJ+i tT x - 1 ] 
(2.2.15) 

+ RX>J I dJ+i p x 

and 

R x j T - R x , J - iT= R x > j - i T d j [ T x - i ] 
(2.2.16) 

+ R x J 4 , dj p x 

taking the limit when AZ approaches zero, considering that dj is a decreasing function of z (+ 
upwards) opposite also to the direction of forward scattering and equal to 

d j = l - exp( -K a v Ladmidjdzj) (2.2.17) 

or in case of small leaf area increments 

dj = K a v Ladmidj dzj (2.2.18) 

- A R x i = R x i d [ x x -1] 

+ R x T d p x 

ARX? = R X T d [xx - 1] 

+ R x i d p x 

These are exactly the Kubelka-Munk equations (Gates 1980, Den Dulk 1989). 

/ d R x i 

(2.2.19) 

dlai 

\ dlai / 

dlai \ -px - K - 1 ] M R Î 
dd_ ( x̂ -1 Px (2.2.20) 
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where - ^ - is the derivative of the interception coefficient with respect to dlai (lai is leaf area 
dlai 

increments) 

2.2.2 The long wave radiation 

The treatment of the long wave radiation in plant canopies is more complicated since the 
plants emit in the long wave region > 3 |0,m , so there is a dispersed source of this radiation 
within the canopy. 

For calculating the long wave radiation fluxes into different layers, the long wave 
emission by the leaves in the long wave band, according to the Stephan-Boltzmann's law, 
should be considered. 

With an emissivity of approximately 0.95 in this region, the leaves are almost black 
bodies to long wave radiation. By using the same layers equations of Norman (1979) and 
taking into account that transmittance is zero and reflectance is almost zero (a value of 0.05), 
we will neglect thermal scattering within the canopy (a negligible error). That will simplify 
the calculations, since we avoid an iterative procedure to calculate the upwelling and 
downwelling long wave radiation profiles. 

By substituting the values of xx and p x for the long wave radiation band and inserting the 
long wave emission term in the long wave radiation profile equation, the layer equations 
expressing the incoming upward and downward long wave radiation into a layer reduce to : 

Rldown,J = Rldown,J+l Idlong,J+l 

+ e o TfeafJ O-Mlongj) 

lup,J-l Idlong,J 

e o T feaf ,J ( ]- Idlong,j) 

Rlup,J - R l up , J - l Idlong,J (2 2 22) 

where 
Rldown J ' s t n e downward long wave radiation flux density at layer J upper 

boundary. 
RjUp j is the upward long wave radiation flux density at layer J upper 

boundary, 

e is leaf emissivity (assumed 1.0). 

a is Stephan-Boltzmann constant, 5.67-10~8 Wm"2K"4 

Tjeaf j is the leaf temperature at layer J in K. 

The incoming long wave radiation from the sky at the upper boundary of the canopy is 
calculated from the sky temperature, the degree of cloudiness and the sky emissivity 
(Campbell, 1977) or as measured. Here, the assumption is made for the calculation of long 
wave distribution that it follows the uniform overcast sky condition (UOC). This assumption 
was used in calculating the coefficients I d ] o n g j . 

The total amount of absorbed radiative energy was determined by the divergence of the 
short wave radiation profile (visible and NIR) plus an equation to determine the amount of the 
long wave absorbed by the leaves in different layers. 
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Rlabs,jJ- =Rldown,j(1" Idlong,j) + Rlup,J-lO- Idlong,j) 
I II 

+ e ° Tfeaf,J 2 LADMIDj DZj - 2 ( 1 - Id longij) e c TfeafJ 

IH iv (2-2-23) 

where 
The different terms are 

I = the contribution of the downwelling long wave radiation flux density above the 
layer(J) upper boundary to the absorbed long wave within layer J 

II = the contribution of the upwelling long wave radiation above the layer (J-l) upper 
boundary to the absorbed long wave radiation within layer J. 

111= the long wave production per layer, is equal to the long wave emission per m^ leaf 
surface multiplied by the leaf area (two sided) contained in the layer. 

IV = the contributions of the foliage elements in the layer to the upwelling and 
downwelling long wave radiation fluxes. 

The difference between III and IV represents the effect of mutual shading of the leaves 
and the un-directional (isotropic) long wave emission by an isothermal foliage element in a 
certain layer on long wave radiation, being intercepted by some other foliage elements in the 
same layer. The difference between III and IV will go to zero when leaf area density in the 
layer goes to zero. 

In these equations, the temperature of the leaf surfaces within different layers is required, 
which is not known at the beginning. An iterative procedure was then used in which the 
divergence of the short wave radiation profile within canopy layers (independent of the 
solution) plus the extinction of the incoming long wave radiation at the upper and lower 
boundaries of the canopy were used as a first estimate of the total absorbed (short and long 
wave) radiation by the leaves surfaces (i.e. no emission by the leaves). This first estimate and 
an initial temperature and vapour pressure of the air were used to evaluate surface temperature 
of the leaves at different layers, and a source term for long wave emission within different 
canopy layers was added. The calculation of the long wave radiation profile was then possible 
and a new total absorbed radiation was estimated. The procedure was repeated till an 
equilibrium or steady state solution of the leaf was achieved. This solution was later used as 
an initial leaf surface temperature for a non steady energy budget solution for the upper and 
lower surfaces of the leaves. 

2.3 The energy budget of the leaves 

The energy budget equation of the leaves is a conservation equation which relates the 
amount of the total absorbed radiation ( Rabs total) o r n e t radiation (Rn)to the amounts of 

radiative and non-radiative energy exchange from the leaves to the surrounding media. We 
need to solve this equation under a certain set of environmental conditions (i.e. the vapour 
pressure and temperature of the air), given a certain set of surface resistances, to calculate the 
delivery of sensible and latent heat from the leaves into inter-canopy air stream. These 
delivered amounts represent the sources or sinks for non-radiative energy exchange within the 
canopy layers. We mentioned earlier that the vapour pressure and temperature of the air are 
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not the only environmental conditions, but we consider, in this thesis, that all the other abiotic 
environmental conditions affect the plants through their effect on the surface resistance to 
non-radiative energy exchange. This equation for a steady state solution reads as follows: 

Rabs,total =P CP (Tleaves,J " Tair,J )/rbh,J 
I 

+ vfn ƒ T+ru T̂  C l e ave s , : ) - ej] + e o Tfeaf j 7 <-rleaf,v,J +Tb\,]> (2 3 1) 
II III 

or 
p C P 

Rn =p CP (T l e a v eS ; J - Tair j )/rbh,J + , „ T _,_„ r- [es(Tieaves,j) " ej] 
7 uleaf,v,J +rbv,J/ 

I II (2.3.2) 

where: 
p C„ is the volumetric heat capacity of the air under constant pressure in J rrr^K . T | e a v e s j 

is the average temperature of the leaf surface in layer J in ^C or K. Taj r j is the average 

temperature of the air in layer J. r^h j is the boundary layer resistance for htjfaisin sm~ 

the psychometric constant (67 Pa K"l). es(T]eaves j j is the saturated vapour pressure at the 

average leaf temperature in Pa. qeaf y j is the leaf stomatal resistance in layer J in s m~l. 

rj-, v j is the boundary layer resistance for water vapour in s nW. ej is the vapour pressure of 

the air in layer J in Pa. 
The first term stands for the sensible heat flux (H) from the leaves in Wm~2. The second 

term represents the latent heat flux (X E or LE) from the leaves expressed in Wm~2 leaf 
surface. The use of one-sided or two-sided leaf area depends on how the resistances in the 
above equations were defined and how the value of Rn is defined. In here, we used the fluxes 
defined for one side of the leaf surface 

There are several methods to solve the above mentioned energy equation. The most 
widely used is, according to Penman (1948), getting rid of the unknown surface temperature 
by using a linearization of the saturated vapour pressure at the leaf temperature, using the 
following approximation. 

e s ( lLeaves , j ) — e s ( l a i r j ) + s L( Leavesj " l a i r j j ( 2 . 3 . 3 ) 

where S is slope of the saturated vapour pressure temperature curve at the temperature of the 
air. This would lead to the elimination of the unknown surface temperature and the 
determination of LE and H. 

sRn +pCnDrr3 
XE = ; H (2.3.4) 

S+Y 
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where D is the saturation vapour pressure deficit of the air, 'k is the latent heat of vaporisation 
in Jkg~l-

Y*=Y(rb,v+rs)/rb;h (2.3.5) 

From this, an estimate of the surface temperature is made by the use of 

H r bh , J 
Tleaves,J =Tair,J + c ' (2.3.6) 

Another approach as suggested by, Paw U (1987) and Paw U & Gao (1988), is by the use 
of a fourth order polynomial function for the saturated vapour pressure at the temperature of 
the surface and substitute it into eq. 2.3.1. It is then possible to put the energy equation (for 
the steady state) in a fourth order polynomial with the temperature of the surface as the 
unknown. 

A third approach would be the use of an iterative solution, e.g. Newton-Raphson method 
(Presser al 1992). 

2.3.1 Definition of the boundary conditions for the solution of the leaf energy budget 

During day time, the exchange between the canopy air space and the air above is 
modulated by the existence of coherent structures at the layer of air above the canopy. These 
structures represent the main mechanism of heat and mass transport between the canopy and 
the air above (see chapter 3). In the presented model, a gust term in the turbulent transport 
equation is introduced, i.e. a sudden intrusion into the canopy air layer by air from above the 
canopy. From an assumed refreshment effect of the coherent structure on the air inside the 
canopy, the temperature and vapour pressure of the air are known just after the gust intrusion 
and the sources or sinks can be calculated. A follow-up of the exchange between the canopy 
air layers and the layers of air above keeps track of the buildup of the temperature, vapour 
pressure of the air and the consequent source variation within time. 

During night time, the situation is much more complicated. The long wave radiation loss 
at the upper portion of the canopy leads to the appearance of a radiative energy sink at the 
canopy top. The leaves in the top of the canopy start cooling. When the air is not saturated, a 
sensible heat flux from the air in close contact with the leaves to the leaves is initiated. 
Depending on the sensible heat flux from the air above and below, cooling of the air starts. 
The cooling of the air continues till the leaves reach the dew point temperature of the air. In 
this stage, a contribution of latent heat flux from the air to the leaves also starts. The 
contribution of latent heat flux in comparison to sensible heat flux (Bowen ratio) in supplying 
the radiative sink at the canopy top depends on the moisture content of the air brought in 
contact with the leaves, and whether that air is left long enough in contact with the leaves, that 
it cools enough to reach the air dew point temperature. The contribution of the air above and 
below to the air layer in contact with leaves is dependent on the active turbulent transport 
mechanism and the feedback from the radiative sink on it. 
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The sink in the canopy top leads to a heat flux from the air below in contact with the soil, 
which initiates an upward soil heat flux. The unstable profile in the lower part of the canopy 
enhances turbulent heat transport from the lower canopy air to the top of the canopy. In the 
layer above the canopy, the downward sensible and latent heat flux from the air above to the 
upper canopy elements partly compensates for the radiative cooling of the canopy elements. 
Such transport is hindered by the stability of the air in this region. In case of light wind speed 
at the canopy top, there will be little dynamic coupling between the canopy air space and the 
air above. This puts an extra role on the soil as a source to meet the needs of an unsatisfied 
sink at the canopy top. The whole equilibrium is achieved anyhow, but at what temperature of 
the canopy elements? This is dependent on the radiative cooling and the feedback between 
this radiative cooling and the transport processes (a picture of such a flow regime is shown in 
page 167). In cases of strong dynamic coupling between the above canopy air and the canopy 
(i.e. a strong shear), a gust term is turned on and the temperature gradient at the layer above 
the canopy will be reduced. This increases the relative contribution of the air above the 
canopy in meeting the demands of the radiative sink at the canopy top. 

The flow regimes can change drastically during night hours; from clear skies to cloudy 
skies, stronger wind to lighter wind, or dry air to moist air. All these processes determine the 
relative contribution of the sensible and latent heat flux in both of the energy fluxes from 
below and above (i.e. Bowen ratio and dewrise to dewfall ratio) to the radiative sink. 

Shortly after sunrise, the net radiation balance changes sign. The radiative cooling, which 
represents the forcing for dew formation, is gone. But it takes some time, till the wind regime 
at the canopy top starts picking up and a coupling of the flow between the canopy air space 
and the air above is achieved. The realization of this coupling depends on the stability regime 
within and close above the canopy. That coupling will enhance the drying process of the 
leaves within the canopy. During the drying process, the difference of the surface resistance 
between the dry and the wet part of the leaves and the fraction of the wet and dry surface is 
important in determining the time constants of the canopy air layers and the value of the 
equilibrium vapour pressure of the air layers as shown in sect.4.2. The difference in the 
surface resistance between the dry and wet surface of the leaves will depend on the stomatal 
resistance of the dry part and how it is controlled (sect.4.5.3). We thus considered the 
development of the fractional wet area on both the upper and lower surface of the leaves. In 
principle, this model can be coupled to an interception model plus a plant pathogen model. 

2. 3.1.1 The Numerical Implementation 

In principle, the above given equations are enough to calculate the energy partition on the 
plant surfaces and so the steady state energy sources and sinks within plant canopy. The 
thermal time constants of the leaves lie within the cycle of the gust intrusion, and the variation 
of the source with time inside the canopy is affected by the storage in the leaves. So we 
decided, in the numerical calculation, to use a nonsteady state solution of the leaf surfaces. 

A numerical implementation is given here. An analytical treatment of the whole system 
of equations (the leaves and the air) is given in sec. 4.2. The energy equation for a certain 
surface reads as follows: 
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p q = ^J- = - div q + S (2.3.7) 

where: p Ci is the volumetric heat capacity of plant material in J m~3 K~' for plant material. It 
is assumed that the leaf mass is composed mainly of water, q is the energy flux (whether 
radiative or non radiative) to the leaf segment. S are the sources and sinks with the leaf 

segment or volume in J m~3 s~ 1. -=-!- is the temperature rate of change in K s~ ' . 

This equation expresses the rate of change of energy storage within the plant tissue in the 
form of sensible heat due to two effects; the first is negative the divergence of the radiative 
and non-radiative energy fluxes. The second effect is the sources and sinks within the plant 
tissue. An evaporation flux from the leaf to the surrounding air could be looked at as a sink 
term for energy or as a non-radiative energy flux from the leaf surface to the surrounding air, 
and so it would be considered as a component in the divergence term. 

For the upper boundary of the upper surface of the leaf, we have 

Qu = - Rn,short + PCP ( T l t + * " Tair)/rbh (2-3-8) 

where 
qu = is the energy flux at the upper surface of the leaf (+ upwards). Rn s n o r t is the net short 

wave radiation. This value was estimated from the divergence of the downward diffuse short 
wave radiation flux plus the divergence of the direct radiation (mainly down) flux divided by 
the total leaf area increment in the layer (conventionally expressed as one-side). A negative 
sign was used since this energy is directed into the upper surface. The second term in the 
previous equation represents the sensible heat flux from the leaf to the air (+). The 
superscript,t+dt, expresses the time level of the superscripted variable. 

For the lower boundary of the upper segment (half the leaf thickness) of the leaf 

qu,l = - * V T (2.3.9) 

where qu j is the amount of heat conduction from the upper segment leaving through the 

lower boundary of that segment. The source term is expressed by 

e T> P C P r /rrt+dts , r p t+dt 4 
s = Rlong, absorbed " v (V i r T ,„ , Les(11 ) - eairJ " ^ 1 )eaf 6 Y (rleaf,v,J+rbvj) (2.3.10) 

The amount of Rio n g absorbed w a s determined by the use of eq 2.2.23. 

Rlong,absorbedjJ- = Rldown,J (1- Idlong,j) + Rlup,J-l O Idlong,j) 

+ e G Tfeaf,J 2 LADMIDj DZj - 2 ( 1 - Idlong>j) e a lfeaf j 

(2.3.11) 
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this amount was divided by the leaf area increment. The terms are as explained in eq 2.2.23 
In the source term expression (eq 2.3.10), we see we had the temperature of the leaf 

segment at the end of time step (an implicit approximation). To linearize, we used 

pCp P ̂ P t t ' 
s = Rlong, absorbed " ^7~ ~ + -, [es(Tl) " eairl " e G Tleaf 

p C P 3es (T[) 
3T 

AT- 4eaT{ e a f AT (2.3.12) 
T(neaf,v,J+rbv,j) 

where 

A T = T] t+dt - T{ (2.3.13) 

The same procedure is done for the lower surface of the leaf. The final discretized 
equations will form a set of linearized algebraic equations. These can be solved by the use of 
an implicit scheme with the knowledge of the temperature and vapour pressure of the air at 
the beginning of the time step and the incoming radiation fluxes. The shortwave radiation flux 
is independent of the solution (the temperature of the leaf surfaces). The effect of the solution 
on the long wave emission by the leaves is considered within the linearization, while the 
effect of the leaf warming on incrementing the upwelling and downwelling longwave 
radiation profiles and on the divergence of long wave radiation is considered within another 
iteration within the solution of the longwave radiation profiles. Even, if this last effect is not 
considered, it is taken care of automatically at the beginning of the new time step. I think the 
effect of neglecting this within a single time step would not be important. 

The simulation of the amount of dew on the upper and lower surfaces of the leaves at 
different height was done. A consideration of the complete qualitative picture, as given in 
sect.2.3.1., was done by updating the boundary condition for wind (i.e. the dynamic coupling) 
and the incoming long wave radiation. We considered the possible combinations of the upper 
and lower surfaces being wet and dry and followed the drying process for the upper and lower 
surface of the leaves. A variation of the surface resistances between the upper and lower 
surface resistances could also be due to a different response of the upper and lower stomata to 
radiation. The different radiation loads, for the upper and lower surface, would be equalized 
by the strong coupling between the two surfaces. A leaf in the upper part of the canopy at 
night sees the colder sky, while the lower side of the leaf sees the warmer vegetation and the 
soil below. 

Considering the possible combinations of the upper and lower surfaces of the leaves 
being wet or dry, we assumed that for a certain time step there is no correlation between the 
position of the wet and dry spots on the upper and lower surface of the leaf, i.e. they have 
independent probability distributions. (This correlation through time steps is considered 
through the heat conduction from the upper to the lower surface for the different 
combinations). This leads to a probability distribution of the leaf segments being the product 
of the probability of the upper and lower surface being dry or wet. We had four segments 
(w,w), (w,d), (d,w) and (d,d). The first position in an ordered pair stands for the lower surface 
and the symbols w and d stand for the surface being wet or dry respectively. So, an ordered 
pair (w,d) means a leaf segment with lower surface wet and the upper surface dry. These 
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probabilities were determined by multiplying the different combinations of the wet and dry 
fractions for the upper and lower surfaces. These fractions were calculated from the total 
amounts of dew which were given initially for the first time step or were calculated from the 
pervious time step. An assumption was made about a constant average thickness of the water 
film layer on the upper and the lower surface of the leaf. From this value, the amount of dew 
(initial or calculated) was converted into equivalent wet areas on the upper and lower surfaces 
of the leaf. The circular drops were assumed as cylinders with a fixed height. So the 
cumulative variation of dew was expressed as an expansion or shrinkage of the wetted area. 
Another assumption was made about the ability of the upper and lower surface of the leaf to 
hold water. It was assumed arbitrarily that the water film thickness on the leaf upper surface is 
twice as large as that of the water film on the lower surface. This is rather arbitrary, but it can 
be changed to express the condition of surface wettability. 

When the fraction wet area exceeds one, dripping then starts and not before. So there is 
no account for stem flow or dew dripping from the leaves due to the leaf fluttering by the 
wind. 

From the above procedure, we have four combination of leaf segments. For each of them 
, we get a temperature of the upper and lower segments with half leaf thickness. The 
neighbouring segments could have different temperatures. The coupling between the wet and 
dry surface on the same side of the leaf is not as strongly coupled as the coupling between the 
upper and lower surface. This coupling was considered explicitly, not implicitly, i.e. as 
determined at the beginning of the time step. The importance of the degree of coupling of a 
wet and a dry spot on the same side of the leaf is shown by the inverse of this ratio: 

n n r2
 = _r_ (2.3.14) 

n 2 r i r d 2 d 

where r is the radius of the representative drop diameter for the surface (could be different for 
the lower and upper surface), n is the number of drops per rrf 2 leaf surface, d is the leaf 
thickness in m. The coupling or the amount of lateral heat conduction between the wet and 
dry spots on the same side of the leaf was considered by the use of the following equation. 

CH = - X 2 n rd ( Twe t " T d ry ) n 
Ax 

d = Ax (2.3.15) 

CH = - X 2 n r (Twet - Tdry) n 

X is the heat conduction coefficient of the plant material in W m~lK~l. Ax is the distance 
over which the temperature gradient between a dry and a wet spot is taken. This distance can 
not exceed the thickness of the leaf so d = Ax. This leads to the third equation in eq (2.3.15). 
This expresses lateral heat conduction for m~2 leaf surface with all its possible combinations. 
To express this per m~2 of one combination, we take an averaged weight of lateral heat 
conduction from different kinds of neighbours on the same surface for a certain combination. 
This equals 
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conduh leaves,i,I,x,y ' 

2 2 

I 
K=1 J=l 

^ I S PrK,(T leaves , i,l,K,J" Leaves,i,l,x,y (2.3.16) 

where conduh,,,,,,,,,,. ; , v „ is the horizontal heat conduction for leaves in leaf layer i, on side 1 
ILc lvcb , l , l ,A ,y J ' 

with wetness condition x, y. PrK j is the probability of existence of combination K,J and r, is 

the characteristic diameter of the water drops on side 1. 

W W 

W A 
Figure 2.4 showing the different combination of wetness for the upper and lower surface. 

This term is added then to the heat balance equation of the leaves,i,l,x,y for 1=1 and 1=2 
for the lower and upper surfaces respectively. The non-steady equation is solved and new 
values for the temperature of the lower and upper surface of the leaves are obtained. 

2.4 The resistances to heat flux from the leaves to the inter canopy air stream 

In the energy budget equations, there appear two resistances: the boundary layer 
resistance and the stomatal resistance. 

The boundary layer resistance is calculated according to the formulas suggested by Gates 
(1980) and Monteith & Unsworth (1990) and will be referred to within the computer listing in 
the subroutine RESIS or subroutine MOMNTM. 

The stomatal resistance is calculated according to: 
1 ) a radiation effect. 
2) a soil moisture potential effect which regulates the sensitivity the stomatal resistance to leaf 
water potential, as suggested by Tardieu and Davies (1993). 

The quantification of CO2 sink within plant canopies was calculated by using a 
photosynthetic model as explained by Goudriaan (1982). 

33 



CHAPTER 3 

TURBULENT TRANSPORT WITHIN AND CLOSE ABOVE PLANT 
CANOPIES *,** 

3.1 Introduction 

In this chapter, the governing equations for describing momentum, heat and mass 
transport within plant canopies, and the averaging procedures used, will be discussed. Several 
approaches, used for modelling heat and mass exchange between the canopy air layer and the 
layer of air above it and the assumption behind these approaches, will be covered. The 
implications of intermittency on these approaches (Eulerian and Lagrangian) will be 
considered. 

First, a qualitative presentation of heat, mass and momentum exchange between the 
canopy and the layers of air above will be given. From this qualitative presentation, a 
qualitative picture of what is wrong with second and higher order closure models will be 
given. The governing equations and the averaging procedures used to describe canopy flow 
and some of their limitations with long time interval averaging will be shown. A suggested 
averaging scheme in which we try to separate between the different contributions of length 
scales to the total transport and some of its limitations will be considered. The used closure 
assumptions, in this intermittent approach, will be discussed and justified. Second, a 
quantitative picture of the nonuniformity of the terms in the governing equations will be 
given. All of these points give a theoretical justification for the suggested method. Then, a 
consideration of the effect of coherent structures existence on the random Lagrangian 
approaches used for describing heat and mass transfer within plant canopies will be made. 

3.2 A qualitative description of the turbulent transport within plant canopies and its 
relation to the governing equations 

Momentum, heat and mass transport within and close above plant canopies has a very 
intermittent nature. This intermittent nature is due to the passage at the canopy top of 

Fig. 3.1 Profiles of temperature(top) 
and vapour pressure (bottom) in 
Uriarra forest during and after the 
passage of a gust.. Baseline for 
temperature, 18.5 ®C, and for 
vapour pressure 6.5 mb. Dashed lines 
are contours of constant temperature 
and vapour pressure. Arrows depict 
the penetration of the gust. Taken 
from Denmead and Bradley (1985). 
with the kind permission of Kluwer 
Academic Publishers. 
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coherent structures which have a length scale larger than the canopy height and which have a 
period of a few minutes. During the passage of these coherent structures at the canopy top, 
most of the exchange of sensible, latent heat and a high fraction of momentum exchange 
between the canopy air space and the layer of air above take place. In the period of time 
between the passage of two consecutive coherent structures, called a quiescence period, a 
build up (look at fig.3.1 taken from Denmead and Bradley (1985)) of the temperature and 
vapour pressure follows. This build up represents then the amount of non-radiative energy 
and mass which has been delivered by the leaves and the soil surface, representing the 
sources or sinks, into the inter canopy air stream and which has not been evacuated by the 
turbulent transport processes active then to the layer of air above. In this period, a minor 
fraction of the total averaged flux between the canopy air layer and the layer of air above is 
observed. Given ample time between the passage of two consecutive coherent structures, an 
equilibrium profile would be achieved. 

Any how, in the quiescence period, the profiles of temperature, vapour pressure and CO2 
reflect the distribution of the non-radiative energy and mass sources within height and they 
represent a high value of storage, for the energy and mass exchange of the leaves, within the 
canopy air space. The profiles, in the quiescence period, are characterised then by the 
existence of a large hump (a positive or a negative one, depending on the sign of our sources). 
During the passage of the next coherent structure, the ejection and sweep phases of this 
structure would lead to the refreshment or the replacement of the air within the canopy, 
partially or fully, with fresh air from above leading in the process to a rapid change in energy 
storage within the canopy air layers which represents a high fraction of the total averaged 
flux. So, during a very short interval of time compared to the total averaging time, a major 
fraction of the total averaged flux is achieved. In an averaging procedure, in which we use 
time intervals of averaging larger than the largest time scale of turbulent transport, the 
profiles in the quiescence period, in which there is little transport, would dominate the long
time averaged profiles since those occupy most of the averaging time. The large time interval 
averaged flux at the canopy top is controlled mainly by the ejection and sweep phases of the 
passage of the coherent structures, which occupy a very short interval (fraction) of the total 
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Fig. 3.2 Mean profiles of potential 
temperature, 9, mixing ratio, r and 
C02 concentration, c, observed in 
Uriarra forest over a period of one 
hour near noon and flux densities of 
sensible heat, H, (in Wm ' ' ) X E, 
Latent heat (in Wm"^) and C02, Fc (in 
mg m"2 s~l) at different heights. 
Taken from Denmead and Bradley 
(1985) with the kind permission of 
Kluwer Academic Publishers. 
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averaging time. This would lead to an anomaly in the flux profile relationship. An attempt to 
fit an in-time-averaged profile to an in-time-averaged flux, which are controlled by two 
different processes and which do not occur simultaneously, leads automatically to the failure 
of the K-theory approach to describe heat and mass transport within such a canopy. 

A characteristic example of this situation is apparent in fig.3.2, as given by Denmead and 
Bradley (1985). Notice the value of the averaging time (one hour). Figure 3.1 expresses a 
characteristic sequence of events (an example of heat evacuation during the coherent 
structure passage and the buildup during the quiescence period) for a forest. There is no 
accompanying flux trace of sensible and latent heat flux at canopy top, but the sudden change 
in the non-radiative energy stored in the canopy must have expressed itself in a sudden 
increase in the flux between the canopy air space and the layer of air above. 

Figure 3.3a shows an identical example of a space-time domain temperature map for a 
maize canopy. A space-time domain map is a graph representing on its horizontal and vertical 
axis the time and space (height), respectively. This space-time coordinate axis represents an 
area which is occupied by different values of temperatures. This is similar to the graphs by 
Wilczak (1984) and Gao et al. (1989). By looking at this figure, we see a contour map of 
temperature values occupying different regions in the space-time domain. This map was 
obtained by using a measurement set which was available at the Meteorology Dept., 
Wageningen Agricultural University. The details of the measurement are given by Jacobs et 
al. (1992) and Van Boxel (1988) and will be given briefly in chapter 6 (on validation). These 
maps (fig.3.3 a ,b) were obtained by placing temperature sensors and hot bulb anemometers 
at different heights which measured, continuously (few hours within certain days) with 5 Hz 
and 1 Hz frequencies the temperature and wind speed signals respectively. The measurement 
heights here were (0.1, 0.2, 0.3, 0.4, 0.7,1.0, 1.4 m) within a maize canopy which had a height 
of 1.7 metres and which had a cumulative one sided plant area index (PAI) of 3.6. The PAI is 
the sum of leaf area index (LAI) and stem area index. 

The map (3.3.a) shows regions or islands of high temperature which are interspersed by 
regions of lower temperatures. We see that the heights of the centroid of these temperature 
island is centred around the one metre height which corresponds to the maximum plant area 
height. Next, we look at the net radiation (Rn) time series graph (fig.3.4) as measured above 
the canopy, which is taken as a measure for the incoming short wave radiation at the canopy 
top. We see that in most of the cases there is no correspondence between the two signals (air 
temperature and Rn). So, the variation of the air temperature within time was not due to an 
intermittency in the sources within the canopy due to time variations of the incoming short 
wave radiation due to cloudiness. From a look at a space-time domain map of wind speed 
within the canopy (fig.3.3.b), we see that regions of temperature island disappearance 
correspond with high wind speed regions inside the canopy. The conclusion we can draw 
from this is that the disappearance of the temperature islands is due to the passage of coherent 
structures which have accelerated the air within the lower part of the canopy air space and 
later replaced all the air within the canopy air space with fresh air from above, thus achieving 
a high fraction of the flux. During the passage of these coherent structures, there is an 
absence of observable vertical gradients both in temperature and wind speed. In the period 
between the passage of two coherent structures, a build up of temperature, shown by 
temperature islands, occurs which represents the amount of energy delivered by the leaves 
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Time in seconds 

Fig. 3.3.a A 1 sec averaged temperature time-height domain map representing 1000 sec starting from 
about 13.45 GMT on July 30 1986 within a maize canopy. Notice the temperature islands which 
occupy regions in the domain. Contour interval is 0.1 "C. 

Time in seconds 

Fig. 3.3.b A 1 sec averaged wind speed time-height domain map representing 1000 sec starting from 
about 13.45 GMT on July 30 1986 within a maize canopy. Contour interval is 0.015 m / s . 
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into the inter canopy air stream and not evacuated by the turbulent transport mechanisms 
during that period to the layer of air above the canopy. This process of renewal and buildup 
represents an intermittency in the turbulent transport of momentum, heat and mass between 
the canopy air space and the layer of air above. 

500 H 

r _ TT 
20x10 

Fig. 3.4 The behaviour of Rn as a function of time for the shown segment of the data set in fig. 3.3, 3.14 

and 3.16. 

3.3 IMPLICATIONS OF INTERMITTENCY FOR EULERIAN MODELLING 

The problem in first order closure models, as we have seen, is that most of the averaged 
flux and the averaged profiles occupy different regions in the time domain. In our procedure 
of averaging, we try to fit an averaged profile to an in-time averaged flux. The averaged 
profile does not control the direction of most of the averaged flux which occurs mainly 
during the ejection and sweep phases of the coherent structure passage. The averaged scalar 
profiles are characterised by the existence of a secondary maximum or minimum, depending 
on the sign of our sources, while the averaged scalar fluxes are directed upwards or 
downwards respectively. This is called counter-gradient transport. Counter-gradient transport 
is also observed in momentum transport but has a somewhat different explanation due to the 
higher role the pressure plays in the momentum transport in comparison to scalar transport 
(see Shaw et al, 1990). We will come to this explanation later. There is more than what we 
have said to counter gradient transport (Look at Sect. 3.3.1). 

The problem of canopy turbulent transport and failure of K-theory approach could also 
be expressed in the length scales of turbulent transport within plant canopies in relation to the 
canopy scale and the time or space distribution of these length scales. In the period of passage 
of the coherent structures at the canopy top, the length scale of the transport is larger than the 
canopy height and transport is not controlled by a local gradient. In the quiescence period, the 
length scale of transport is quite small in comparison to the canopy height and the source 
distribution. This leads to a build up of the storage of non radiative energy within canopy air 
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space which reflects the source distribution within height. This buildup of storage establishes 
a local gradient which controls the direction of a short-time averaged flux. If turbulence 
within plant canopy were small scaled in relation to the source distribution or the canopy 
height, this would lead always to the validity of down gradient transport. The Lagrangian 
integral time scale would have been small, and the effects of the superposition of 
the near field concentration field on the total one would have been minor. We 
would not have seen then this cycle of build-up and depletion. We would not have seen a 
jump in the scalar fluxes signal above the canopy (see for example Denmead and Bradley 
1985, fig. 8). If the length scale of transport were always large compared to the canopy height 
or source distribution, we would have seen no or very little build up of the vapour pressure or 
temperature of the air within the canopy and no jump in the flux signal at the canopy top. In 
this case, the Lagrangian treatment would have not been valid (a conclusion we 
make from Sect. 3.7). The change of the storage within the canopy would have played no 
role in the transformation of the signal at the leaf surface to the signal at the canopy top. The 
signal at the canopy top would be coupled more to the forcing signal (the solar radiation) 
affected by the time constants of the leaves, and there would be no delay due to turbulent 
transport or equivalently due to the storage change within the canopy air. 

Meanwhile , we have come to two important questions, which we try to tackle: 
la) Is intermittency in turbulent transport due to the existence of coherent structures. 

with a length scale larger than the canopy height and which have a certain frequency, a 
characteristic feature of canopy flow ? 

2a)What consequences does this have on the approaches used for modelling heat and 
mass transport within plant canopies and their validity ?. 

Concerning the first question 1 a about the universality of coherent structures existence in 
canopy flow and their effect on intermittent transport, the work of several authors in 
numerous papers shows signs of this universality. Finnigan (1979) in his study on momentum 
transfer on wheat crop, had found that most of the transfer occurred when gusts originating 
from near the top of the equilibrium boundary layer penetrated the canopy. The velocity and 
shear stress profiles at these times were quite different from those during lighter winds. Much 
, f the same mechanism appeared to influence the transport of scalars in an experiment in a 
Urhira forest (Denmead & Bradley 1985). Shaw et al .(1983) and Shaw (1985) showed, 
from measurements made in a corn canopy, that relatively large fractions of the total 
Reynolds stress occurred in a small fraction of the total time. In his example, near the top of 
the canopy about 50% of the momentum transfer occurred in 6% of the total time. 

Gao et al. (1989) have shown that time/height cross sections of scalar contours and 
velocity vectors portray details of flow structures associated with the scalar ramps. A ramp is 
a gradual increase or decrease in the signal terminated by a sudden decrease or increase 
respectively, depending on the stability of the air above the canopy. He has concluded from 
the magnitude of the temperature drop that the cold air originates well above the canopy 
(what he considered at least twice the canopy height) because the mean temperature profile 
shows only a slight vertical temperature gradient in the above canopy atmosphere. In the 
same study, in a data set which were collected under near neutral stability (run B in the 
study), there were ramp patterns in humidity but not in temperature because the mean 
temperature gradient was too weak. Although the mean humidity gradient was apparently 
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sufficient to allow ramp production, the moisture flux did not contribute to destabilizing the 
flow, as indicated by the relatively large magnitude of the Monin-Obukhov length (L=-1063 
m). Therefore, without significant buoyancy effects, shear must be the major factor in the 
dynamics of structures associated with the ramps. From the latter study, we see from the ramp 
patterns (fig.l.a of the last study) at different heights that the coherent structures associated 
with such ramps must have a horizontal and a vertical extension which is larger than the 
canopy height. The word horizontal comes here because the highest two measurements were 
on a tower 25 metres to the west. 

Raupach et al. (1989) give an explanation why coherent structure existence would be a 
characteristic feature of canopy flow. They show from examining data on turbulence statistics 
in seven uniform, thermally near-neutral canopies that despite their great morphological 
variations, these canopies have a number of universal characteristics. One of these 
characteristics was the existence of an inflection point in the mean velocity profile U(z) near 
z=h. These seven canopies include: two forests, two corn canopies and three wind tunnel 
model canopies. The height of the canopies (h) varied over a factor of 400 and U* ranged 
over a factor of 10 or more. Assuming an analogy between turbulent flows in plane mixing 
layer and turbulent flows in the vicinity of plant canopies, and from a linear stability theory 
analysis of the early stages of transition of this flow to turbulence, theorems due to Rayleigh 
second theorem and Fjortoft (Drazin and Reid, 1981) show that a necessary condition for the 
Rayleigh equation to have an unstable mode is that the mean velocity U(z) must have an 
inflection point at which du/dz is a maximum. Also Tollmien (1929,1931) proved that this is 
a sufficient condition. These unstable modes generate transverse vortex motions, called 
Kelvin-Helmholtz waves, which are associated with inviscid stability. These transverse 
Kelvin-Helmholtz waves constitute an entire family of motions which can grow in a mixing 
layer but are not possible in a laminar boundary layer. Following the primary instability 
process described by this theory, the subsequent development towards a fully turbulent state 
includes several instability processes (Ho and Hurre, 1984), most of them non-linear and not 
describable by linear stability theory. The transverse vorticity in the Kelvin waves collects, 
under a non-linear self-interaction, into a string of concentrated blobs or cat eyes, linked by 
braids of vorticity. The concentrated transverse vortices undergo a non-linear, stochastic, 
pairing process which introduces irregularities in the spacing between vortices and provides a 
mechanism for the vertical spread of mixing layers. The main process leading to a break-up 
of the transverse vortices is a three-dimensional secondary instability which produces 
longitudinal vorticity (i.e. double roller structures as in fig.6 of Raupach et al. (1989)). These 
structures are thought to be essentially those responsible for the main ramp patterns 
observable on time traces. 

So even if coherent structures were not there initially, they will result as a consequence 
of the existence of an inflection point in the velocity profile. This explains the mechanical 
induction of the coherent structure. 

Coherent structures can be also thermally induced. These coherent structures could be 
small or large. The small ones could result due to inhomogeneities in the surface heating in 
the field i.e. hot dry spots (i.e. wide distance between trees in a localized irrigated field). The 
appearance of these structures will depend on the magnitude of the shear and its ability to 
smear them out. The larger scale thermal coherent structures which are a characteristic of the 
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convective mixed layer play also a role in the transport of scalars and momentum while 
intruding into plant canopies. The structures which are seen in the graphs (3.a and 3.b) are not 
only the ones which result from dynamic induction. The relationships derived from Raupach 
et al (1989) for the frequency of occurrence which relates to U*/h, gives a higher frequency 
than the ones seen in fig.3.3.a. The ones in these graph are having also a larger duration of 
the gust intrusion. 

It is assumed by Raupach that the mechanically induced structures are the main ones 
responsible for the ramp patterns observed on time traces. The role of the thermally induced 
ones in heat and momentum in atmospheric surface layer is shown from the work of others 
(Schols, 1984 and Wilczak, 1984). These structures would intrude into the plant canopy 
leading to the achievement of a large percentage of the flux. The effect of thermal stability on 
the coherent structure frequency of occurrence has been investigated by Leclerc et al. (1991). 

The ejection of low momentum fluid, which accompanies the intrusion of the large scale 
structure, would lead to the development of somewhat instantaneous inflection points, which 
would also lead to the development of smaller scale coherent structures in a mechanism as 
explained in Raupach et al. (1989). So, from a large scale coherent structure, there would 
develop a smaller one. 

Possibly, there are two populations of coherent structures which are working on heat and 
mass transport within plant canopies as has been suggested in shear layers (Cantwell, 1981). 
The duration and the frequency of both populations will differ. These two populations are 
superimposed upon each other. 

From the previous two examples, the forest and the maize, we have seen a common 
picture of coherent structures with the following characteristic: 
1) They have a certain frequency of occurrence. 
2) They have a large length scale larger than the canopy height. 
3) They intrude into canopy air space, replacing the air inside the canopy with fresh air from 
above; 
such that they become the main agents for heat and mass transfer (also for momentum , with 
a higher role for the pressure correlation). This intrusion leads to the appearance of a 
coincidence in the intermittent signals of turbulent transport fluxes at different heights within 
plant canopy and also a coincidence in the scalar concentrations. 

Concerning the second question 2a about the effects of turbulent transport intermittency 
on available approaches used for modelling heat and mass transport within plant canopies. 
these available approaches lie mainly under two main categories: Eulerian approaches and 
Lagrangian ones. The Eulerian approaches include local and non-local approaches. The local 
approaches include first, second (Wilson and Shaw 1977) and higher (currently maximum 
third) order closure models (Meyers and Paw U, 1987). The non-local closure includes the 
transilient turbulence approach (Stull, 1988) and the non locality term in a first order closure 
approach by Li et al. (1985). The Lagrangian approach include the random walk models (e.g. 
Legg & Raupach 1982, Wilson et al , 1981, Flesch and Wilson 1992, Wilson and Sawford 
1995). An evaluation of some of these models is given in Baldocchi (1992). 

The aim of all available approaches in their application to canopy flow is to predict the 
state variables of the canopy-soil-layer of air above the canopy system (e.g. air and soil 
temperature and air vapour pressure at different heights) in response to some forcing 
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variables (solar radiation, air temperature and vapour pressure at screen height). The whole 
system is divided into several subsystems: a canopy air plant subsystem, a plant 
subsystem and a soil plant subsystem. The solution of the state variables 
describing this system requires the simulation of the response of the different 
subsystems to the forcing imposed on them and the interaction between them. For 
the canopy air subsystem, this requires the solution of a coupled set of time- and/or space-
averaged turbulent transport equations describing canopy turbulent transport processes 
(Reynolds averaged Navier Stokes equations). A time step of simulation of a few minutes 
(e.g. 6-7 minutes) would be good enough to follow a diurnal cycle. In the turbulent transport 
subsystem, we assume that the same interval should be good enough to follow the sub-system 
dynamics. We use some closure assumptions to parameterize the effect of the correlation 
between state variables within this averaging time period on the solution. Within that period, 
there should be no other cycles of intermittency which have a correlation with a behavioural 
aspect of our system and which do not in the mean sum up to zero. Ignoring or wrong 
parameterizations of correlations which do not sum up to zero would lead to a deviation 
between the observed and the simulated behaviour of our system depending on whether the 
correlations which affect our system summed up to zero or not. To overcome the problem of 
having cycles with an interval less than our time of averaging and which we suspect to have 
non vanishing correlations, we have two options: 

1 ) Put these correlations back in the large-time averaged equations and parameterize them 
correctly, 
or 
2) Reduce the time step of simulation and take account of the intermittency cycle and its 
correlations explicitly. 

We always try to optimize our calculation by maximizing our time step of simulation 
without loss of relevant information. So, we try first to follow the second approach, i.e. large-
time interval averaging. 

That brings us to a question: lb)What assumptions do we need for valid 
averages (appendix l.A) and the effect of deviating from these assumption on the 
solution? 

The Navier Stokes and their Reynolds averages are nonlinear except for the 
instantaneous scalar equation and the mean scalar equations in which a first 
order closure is used. In the case of a linear equation, the equality 

fW = f(x) 

holds. This means that we can use the mean of an independent variable to 
determine the mean value of a function. The same large-time interval averaged 
value for a linear function would have been obtained while considering or not 
the effect of intermittency on the solution. I think that the justification for using 
large-time averages on a non-linear equation could have been that, despite the 
nonlinearity of the equation, the terms were assumed to be more or less uniformly 
distributed within time. Turbulence was assumed more uniformly distributed, like 
the space distribution of different sizes of sand particles on a sheet of sand paper. 
The role of pressure on destroying the correlations, even if they exist, is assumed 
to be quite large. The rate of solution convergence by going higher with the 
closure level is assumed to be large, i.e. the value of the initial correlations are 
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low and more uniformly distributed**. The existence of the coherent structures 
with a spatial separation and their role in creating non-uniform correlation at 
high order led to the breakdown of that assumption. Reynolds(1894) has shown 
that one needs a uniformity of the turbulent* signals within the averaged volume 
or time interval to obtain a valid averaging of the momentum equation. The 
combination of nonuniformity of the terms and nonlinearity in these equations 
make the situation difficult. The averaged system of equation will not be strictly 
valid. The correction for the deviation from uniformity is attempted through the 
inclusion of the higher order terms equations, till we arrive at a complete 
dispersion of the correlations. The solution which we obtain will then be 
dependent on the assumptions used to close the equation, their validity and the 
effect of the difference between realistic and assumed ones on the divergence 
between the simulated and measured behaviour of the system. Adopting valid 
assumptions to average and describe the exchange processes and comparing the 
results of this assumptions with reality determines if our assumptions are correct. 
A difference between the measured and the simulated behaviour could be due to 
two reasons: 
1) Ignoring or wrong parameterization of correlation which do not sum up to 
zero, 
or 
2 ) High sensitivity of the system to these variables at certain regions of its domain 
of solution i.e. small error in the initial value or the closure assumption results in 
high error or magnifies with the progression of simulation. That depends on the 
path of the system equation solution on its n dimensional phase space and 
whether very adjacent paths diverge widely later. 

By decomposing the signal into a large scale and a small scale which are more 
uniformly distributed within the considered intervals, the assumption of 
uniformity is more valid during the quiescence period. In the intrusion, we used a 
closure assumption for the effect of coherent structures on the refreshment. 

To overcome a hump (a secondary maximum or minimum) in the averaged profile and 
achieve a flux through it, we need to allow for a higher order term to achieve this and retain 
some of the information we have lost. Use of a higher order closure model shows a hump in 

For this remark, LOOK AT APPENDIX l.A, there is also a segment of the article 
which was written by Reynolds (1894) saying that : 
" defining SI to be such that the space variations of u,v,w are approximately 
constant over this space, we have putting u'u', & c , for the mean values of the 
squares and products of the components of relative-mean-motion, for the 
equations of mean-mean-motion, 

Pd-y- = -fjL(Px7+ puu+pu'u') 
dt dx 

+ - i (Pyx + puv +pu v ) 
dy 

+ - i (P zx + puw +pu w )} 
dy 

which equations are approximately true at every point in the same sense as that 
in which the equations of mean motion are true". 
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the large-time averaged profile and maintains a flux through it. One may suggest then that by 
the use of higher order closure models, we can then take account of counter-gradient transport 
(defined on the mean; there is another definition, look at 3.3.1) and that would explain the 
whole story. The question is: if through the use of second and higher order closure models, 
we could put back the information we have lost of non vanishing correlations or phase 
relationships in our system and get correct solutions of the equations? We mean by these 
phase relationships, that the passage of coherent structures introduces a lot of correlations 
(i.e. correlations between vertical wind velocity and heat flux (a third order term) or vertical 
wind velocity and temperature(a flux) etc.). All these correlations happen within a coherent 
structure cycle which is less than our time step of simulation. In a numerical solution by 
second or higher order closure models, two assumptions are made: 
1) uniformity of these high order terms within our time step of simulation. 
2) that they have no cycles of change which have correlations not vanishing to zero in the 
mean or within the time step of simulation. The step of simulation is usually small enough to 
follow the boundary conditions changes at canopy top, but quite coarse for following the 
correlations which develop within a coherent structure cycle. 

Due to the high nonlinearity of the system, a large-time interval averaged value for a 
higher order term within our time step of simulation would not be equivalent to a fluctuating-
in-time value for that higher order term, which has the same mean, in its effect on the 
solution. (Appendix l.A). Also, the behaviour of the higher order terms affects the 
assumptions used in their closures. To follow what happens perfectly, we have to: 1) go 
higher with our closure level to include the correlations and keep our time step large till we 
get a complete dispersion of the correlations, or 2) reduce our time step of simulation and 
apply the closure assumptions where they are appropriate. This is what we call a continuous 
versus intermittent treatment. 

In second or higher order closure models, to reduce the importance of third order or 
higher order terms respectively, the ideal situation would be that these terms are 
homogeneously distributed in time, or, in time and space. If these terms were distributed 
homogeneously in time but non-homogeneously in space (i.e. in the vertical), the value of the 
divergence in these terms would have a constant value and could have been measured or 
parameterized and put directly in the equations. Hence, there would have been no difference 
between an intermittent and continuous treatment of the closures. If these terms were 
homogeneously distributed in the time and space domain, the value of the divergence in these 
terms would have been zero and their importance in the second or higher order closure 
equations nil (negligible). If these terms were randomly distributed, this would lead to zero 
correlations and a reduction of the importance of these terms. When neither of the above 
conditions is satisfied, an ideal situation would be going higher with the closure level (n) till 
we encounter the higher order term (n+1) in this equation which is completely randomly or 
homogeneously distributed. This consequently would guarantee for us the convergence of the 
solution and absence of gain from going higher with the closure level. 

But what is the situation of second and higher order closures in our canopy flows? The 
existence of coherent structures in canopy flow with their characteristics correlates in their 
passage the fluxes of momentum, heat and mass with one another. This will lead to highly 
localized values in the time domain map of the correlations between the vertical wind 
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Fig. 3.5.a Vertical cross- section of ensemble averaged w 'u 'w' fields normalized by u*3 with contour 
interval of 0.5 under unstable condition (L =-138 m),during Run A.. Solid lines represent positive 
w 'u 'w ' and dashed lines represent negative w'u 'w' . Taken from Gao et al 1989, (fig 12.a) with kind 
permission of Kluwer Academic Publishers. 
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Fig. 3. 5b. The same as fig 3.5a but for w 'w'T ' normalized by -T* u*2, with contour intervals of 0.2. 
Taken from Gao et al 1989, with kind permission of Kluwer Academic Publishers. 
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Fig 3.6 a Vertical cross-section of 1 -s average momentum flux normalized by the square of the friction 
velocity calculated at the top of the forest, for the single structure at Run A as shown in figure 3 of 
Gao et al 1989. Contour interval is 2.0. Dashed lines indicate negative u 'w ' and solid lines indicate 
positive u 'w' . Taken from Gao et al 1989 with kind permission of Kluwer Academic Publishers. 
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3.6 b. Vertical cross section of 1-s average heat flux normalized by -T*u* calculated at the top of the 
forest for the same single structure as in fig 3 of Gao et al 1989. Contour interval is 2.0. Solid lines 
indicate positive w 'T ' and dashed lines represent negative w'T'. Taken with kind permission of 
Kluwer Academic Publishers. 
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velocity and the fluxes of heat (sensible and latent) and mass (CO2) or between the different 
fluxes (third and fourth order terms respectively). This leads to an increased importance of 
the third order terms in the second order equations, and that these third order terms become 
highly non-homogeneous (Gao et al. 1989 fig.12.a and 12.b, included here as fig.3.5 a,b). 
Still in the third order closure, the fourth order terms would represent a correlation between a 
momentum, or a variance and a flux which would still be quite large, (see for example Gao et 
al. 1989 fig.8a and 8.b and their superposition included here as fig.3.6). Both pictures 
correlate highly since both fluxes occupy almost the same regions in the height-time domain 
maps. The directional derivative of these fluxes and their correlations is far from 
homogeneous, which would lead to a difference between a continuous and intermittent 
treatment. It is important to mention that momentum is transported differently from mass and 
heat due to the higher role which the pressure correlation terms play in momentum transport. 
This would lead to a dispersion of the correlation between momentum or velocity variances 
and scalar fluxes. This would reduce the importance of the fourth order terms, but these 
fourth order terms would not be completely randomly distributed. Going higher with our 
closure level till we obtain a complete dispersion of the correlations would require the 
solution of a large number of equations. It could be that the yield we get in the convergence 
of the solution by going one level higher is not rewarding, depending on how fast the 
correlations disperse when going higher, due to the relative importance of the pressure 
correlation on the momentum and scalar fluxes. 

The role of the pressure on dispersing the correlations is a function of the velocity field, 
since the pressure signal is controlled by the divergence of the flow fields as given by Poisson 
equation. The elliptic behaviour of the momentum equation makes it difficult to tell what the 
cause and the effect of this relation. But anyhow, the fluctuating pressure will disperse the 
correlations between scalar and momentum fluxes around the fringes of the coherent structure 
where the vertical derivatives are higher. That is where the effect of the pressure on 
dispersing the correlations is more pronounced. So, the more dispersed, or spatially 
distributed the events, the better is the dispersion of the correlation by going higher. An 
example of a static pressure fluctuations is given in fig.3.7b as taken from Shaw et al. (1990) 
and fig.3.7a taken from Conklin and Konner (1994). We see from this figure that the pressure 
fluctuations are centred around the passage of the coherent structures at the canopy top. This 
is related to the velocity field which controls the pressure field. The pressure distribution 
terms will be having a higher effect around the passage of the coherent structures. Since the 
occurrence of the coherent structure passage is somewhat disperse and the smoothing by the 
pressure is centred around their fringes, the variation in the higher order term will not 
smoothed out by the pressure smoothing. The effect will depend on the distance of smoothing 
due to pressure redistribution effect in relation to the spacing distance between coherent 
structures. We need an overlap of pressure fields resulting from the passage of subsequent 
coherent structures. There must be some kind of an optimum or a maximum in the separation 
between the events which can be smoothed out by the pressure redistribution terms. In 
canopy flow, the ratio of pressure smoothing distance/distance between coherent structures is 
much less than one. 

To summarize the situation: There are two opposing factors: the role of coherent 
structures in creating high values for the correlation on higher level and the role of pressure 
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Fig 3.7.a. Ensemble average of 17 pressure pulse events . From top to bottom, Horizontal wind 
component u ' , vertical wind component w', static pressure p ' and temperatureT'. ++++ above 

canopy at 1.3 times canopy height, x-x-x-x within canopy at 0.6 times canopy height. D-D-D 
surface. Taken from Conklin and Konner (1994). 
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Fig 3.7b. Association between ejection/sweep coherent structure identified by fluctuations in 
humidity (contour interval 0.1g/m3) and by fluctuating velocity vectors (maximum arrow length 
represents 2.0 m/s), and surface static pressure normalized by its unfiltered standard deviation. Each 
part of the diagram is an ensemble average of events during 30 min period. Taken from Shaw et al 
(1990) with the kind permission of Kluwer Academic Publishers. 

correlation in destroying these correlations. It seems to me that due to the large role of 
coherent structures in achieving high fraction of the fluxes, their length scales and their time 
distribution, that even our fourth order terms are quite large in their variation. Gao et al. 
(1989) found that the instantaneous (1 second averages) values reach magnitudes which are 
larger than the 30-min mean fluxes by a factor of 10 for momentum flux and 14 for heat flux. 
In his ensemble average of 10 events, an attenuation of that factor by a factor of 2 to 3 was 
observed. Probably, this high attenuation was because no attempt was made to adjust the time 
scales to match ramps of different duration. This led to smoothing of correlations and 
masking coherent structure turbulence into small scale turbulence. Had they matched the 
coherent structures according to their duration, they would have obtained less attenuation. 
This would have meant a worse situation in the ensemble averages. The adjusting of the time 
scales to match ramps of different durations would have led to a scaled time map of the 
correlations. This concurrent occurrence will mean directly very high values for the 
instantaneous momentum heat flux correlation, which is a fourth order term (w'u'w'f). The 
time map of that fourth order would have regions with very high values. The fourth order 
map could be approximated by the multiplication of map 8a and 8b of Gao et al. (1989), 
included here as fig.3.6. if we assume that correlations of deviations of instantaneous fluxes 
from 1 sec mean are minor. The highest order available closure model is a third order closure, 
in which an assumption of the homogeneous distribution of the fourth order term is made. It 
is clear from the measurement of Gao et al. (1989) that this assumption is far from reality. 
The distribution of this fourth order correlations is quite non-homogeneous which leads to the 
invalidity of the following assumption 

U iU iU tU 1 = UjUj UkU, +UjUk UjU, +U;Uj U:Uk a i u j uk l (3.3.2) 
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which is valid only for homogeneous (or gaussian) turbulence. This assumption is used also 
in the closure of the fourth order terms in higher order closure models. Based on this 
assumption is the closure of the third order term in second order closure model. The same 
applies to invalidity of 

UjU-u^B = UjU- u^S +UjUjc u-0 +Uj0 UjÛ  (3.3.3) 

The role of the pressure correlation on destroying the above mentioned correlations is 
quite real, but it seems due to the characteristics of the coherent structures that at least till a 
fourth order term this role is not effective. In a more homogeneous flow, in which the scales 
of transport are less effective in correlating fluxes together, the pressure correlation terms 
would have less trouble in destroying the higher order correlations, since they have lower 
starting values. The dispersion of these terms when going higher would be quite rapid. The 
gain of the remaining information would be based on the use of a closure for this 
homogeneous higher order term. 

So, there are two problems: the nonlinearity of the system of equations, so the use of a an 
averaged value for a higher order term is not the same as a fluctuating term with the same 
mean, and the effect of intermittency on the closure assumptions used. 

Now, what is the solution to this problem? 
In simulating any system, there are many scales of intermittency. If any of these scales has a 
correlation which does not sum up to zero with a behavioural aspect (in this case the fluxes 
and profiles) within our step of simulation, we have to find a way to include this effect in the 
averaged equations used for describing the system or reduce our time step of averaging. We 
have seen that the normal way of including the effect with long time interval averaging is 
increasing the order of the closure, but our convergence rate will be small and at increasing 
computational costs. If we have no other method with high credibility for parameterizing the 
effect of the intermittent transport on the closure assumptions, and that is clearly the case, we 
have to reduce our time step and take account of the intermittency of the transport directly. 

The problem, we assume, is in the large interval of averaging used in second or higher 
order closure without consideration of the circumstances under which the averaging and the 
closure assumptions for different time periods are valid. We assume that this is due to the 
variation within time of the length scales of transport; a large scale at and around the passage 
of the coherent structure and a small scale in the remaining period. This affects the validity of 
the averaging procedure and the closure assumptions used in higher order closure models. We 
suggest to put the correlations back at early stages of closure levels. We do this by trying to 
reduce our time step of simulation and apply the closure assumptions when they are relevant 
to the scale of transport. This is what we have done, since we assume a separation between a 
large scale transport, represented by the effect of a coherent structure on heat and mass 
transport, and a small scale transport, represented by the quiescence period. In the period after 
the passage of the coherent structure, we could have a problem to parameterize the interaction 
between large scale and small scale transport. 

The assumption of homogeneity of turbulence could be valid in the quiescence period, 
where the length scale of transport is small compared to the canopy height. It could be that K-
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theory works well, with an assumption, in the period between the passage of two coherent 
structures, if the length scale of turbulence in this period is small enough in comparison to the 
length scale of the source distribution within the canopy. 

For the parameterization of large scale transport, I would like to quote what Raupach et 
al. (1989) wrote: "It is a truism to say that there is presently no theory capable of predicting 
coherent eddy structure in fully developed turbulence, such as double roller or transverse 
vortices described above, but there are some theories which provide idealised models of some 
facets of coherent structures." We here use parameterizations for the coherent structures by 
including a certain frequency of occurrence, degree of refreshment or intrusion into plant 
canopies and duration. With the developments in the flow regime simulation, it could be 
possible later to obtain simulated parameterizations for coherent gust intrusion into plant 
canopies and put these directly in the model we are suggesting. 

In the following pages, we will outline the governing equations for describing 
momentum, heat and mass transport within plant canopies, and relate the above qualitative 
picture to the different terms in the averaged equations. We will also show the intermittent 
nature of the other terms in the flux equation 

We will make a comparison between an intermittent and non intermittent approach in 
describing canopy transport processes in chapter 4 (only for first order). 

3.3.1 COUNTER GRADIENT TRANSPORT 

In the previous part, we have shown that counter gradient transport emerges when 
averaging is done over an interval larger than the interval between the passage of two 
coherent structures. So, while the averaged-in-time profiles are controlled by the profiles at 
the quiescence period which are accompanied by very little flux, the averaged fluxes are 
controlled mainly by the ejection and sweep events, which result due to the passage of 
coherent structures at the canopy top and which occupy a very small fraction of the total time. 
So due to the averaging procedure, the large-time averaged profiles will have a secondary 
maximum or minimum depending on the sign of our sources while the averaged flux is 
positive or negative across this maximum. However, counter-gradient transport occurs not 
only due to averaging. 

Counter gradient transport can also happen instantaneously. This can be shown by 
considering what happens during the passage of a coherent structure. Due to the velocity field 
which accompanies the passage of the coherent structure at the canopy top, this leads through 
the application of the Poisson equation to the appearance of a pressure maximum at the soil 
surface. This pressure maximum leads to the acceleration of the wind at the lower part of the 
canopy. There exists then a region of higher wind velocity at the lower part of the canopy 
through a region of low fluid momentum. This is also some kind of counter-gradient transport 
for momentum £Shaw and Zhang, 1992). The acceleration of the flow at the lower parts of the 
canopy leads to the — < 0. Due to the continuity, this leads to — > o, considering that 

wsoil surface =0> which then represents an ejection phase. After the passage of the inclined shear 
layer at the canopy top, the horizontal pressure gradient is negative; this leads to the 
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deceleration of the flow and — > 0. Because of continuity, this leads to a sweep phase 
3x 

represented by — < 0. One point worth considering here is that the flow equation is elliptic, 
3z 

so information is transformed upstream and it becomes difficult to tell what is the cause and 
what is the effect. Some would say that the ejection phase leads to an evacuation of the air 
mass from the lower layers within the canopy, so, a sweep must occur which replaces the 
ejected air. Then, an ejection is a cause and sweep is an effect. In the explanation we have 
given, the flow field of the coherent structure leads to a pressure maximum which leads to the 
occurrence of the ejection and the sweep. The explanation could depend on the scale of the 
coherent structure. 

Wind field above the 
canopy 

Fig. 3. 8 shows the velocity field and the inclined shear layer at the canopy top as shown 
by Shaw et al (1990) and the resulting pressure field at the soil surface. The occurrence of an 
ejection phase or a sweep phase in the existence of a concentration profile as shown here 
leads to an instantaneous counter-gradient scalar transport. 
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The existence of ejection and sweep phases during the passage of the coherent structures 
leads with the existence of a scalar profile in the flow field to the appearance of instantaneous 
scalar counter-gradient transport as shown in fig.3.8. So, the flux in this case has nothing to 
do with the concentration gradient (the flux could be counter or pro gradient). 

3.4 The Governing Equations 

There are three fundamental physical principles upon which all of fluid dynamics is 
based: the conservation of mass, momentum and energy. These are expressed by the 
fundamental governing equations of fluid dynamics: the continuity, momentum and energy 
equations. These equations have different forms depending on the way they were derived. 
The general procedure is defining a finite region of the flow (a control volume) which is 
bounded by a control surface. The control volume could be moving with the flow such that 
the same fluid particles are always within it (Lagrangian) or fixed in space with the fluid 
moving through it (Eulerian). These equations for instantaneous values of a an infinitesimal 
control volume fixed in space read as : 

3.4.1 The continuity equation 

| + V . ( p u ) = 0 (3.4.1) 

(a list of symbols is given in the appendix 3). Which in the case of canopy or atmospheric 
boundary layer flow ( Ma^ « 1, i.e. V « 100 m s-1 , low frequency pressure waves nL « a, 
Ma^ « Fr and a characteristic length L « 12 km) reduce to the incompressible form: 

V .u = 0 (3.4.2) 

3.4.2 The momentum equation 

3pUi 9 p u j U i _ 2 o l 3p ,ifrij 
a. + a.,. - °i3S z e i i k " i u k „ 3„. +„ ->„. J 6 'JK J K p 3x; p 3xj 

I II III IV V VI (3.4.3) 
dt 3xj 

where: 

I represents the storage of momentum. 
II represents the advection of momentum. 
III is the action of gravity. 
IV describes the influence of the earth's rotation. 
V describes the pressure gradient forces. 
VI represents the influence of viscous stress 
To a close approximation, air in the atmosphere behaves like a Newtonian fluid Thus, the 
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expression for viscous stress allow us to write term VI as : 

1\ T-v'^)4fi+Sh!)' 
which after differentiation equals: 

Term VI =[ —\ < =—=r—+ s— 
\ p / 1 ox; ox; OXJ 

3u; 

3x; 
2 A 
3 3xj 

3uk 
3xk 

9uk 

which due incompressibility (eq 3.4.2) reduces to 

Term VI = v 
32Uj 

3x? 

^ + ^ = - ^ - 2 e i j k . j U k - I ^ v ^ 
at 3x P 3xi 3x? 

V VI 

(3.4.4) 

(3.4.5) 

(3.4.6) 

(3.4.7) 

I II III IV 

This is the form of equation which is most used as a starting point for turbulence derivation. 

3.4.3 The energy equation 

The first law of thermodynamics is expressed by the energy equation, which reads for a 
fixed volume as: 

P(e + ^ ) 

at 
I 

a[puj (e + J-) 

3x; 

II 

aqi ^ujTij 

•= p q " ä x 7 + ax 

m IV V 

+ P Uj gj 

VI 

(3.4.8) 

where: 
I is the time rate of change of a fixed fluid element. That is the sum of its internal energy per 

unit mass e and its kinetic energy per unit mass -J-. 

II is the divergence of energy advection 
III is the volumetric heating due to radiation divergence or chemical processes. 
IV is the divergence of heat flux. 
V is the contribution by the total work (Tij ) to the rate of energy change. This term is the 

deformation work and increase of kinetic energy 
VI is the body forces work. 

This equation can be decomposed into two equations: one for kinetic energy and the 
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other one for internal energy. The internal energy equation reads as: 

p ^ = - V . q - p ( V . u ) + <|> (3.4.9) 
at 
I II III IV 

where: 
I represents the internal energy change. 
II represents the divergence of the internal energy flux. 
III represents the work by volume expansion 
IV represents the viscous dissipation. 

3.4.3 The Scalar equation 

i ii m 
The physical interpretation of the terms is as the previous one. This equation is linear. 
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3.5 The Averaging Procedures 

The equations given above are the instantaneous conservation equations for a fluid 
element (no leaves within it). These equations have to be averaged in some way. There are 
several approaches for averaging. These could be one or a combination of: 

Ensemble averaging approach, 
or 

Time averaging approach, 
and/or 

Continuous volume averaging approach, 
or 

Control volume averaging approach. 

The averaging leads to the appearance of correlations between deviations of the 
quantities from their averages. These correlations have to be parameterized or solved 
explicitly by developing their own prognostic equation. In developing those latter equations, 
still higher order terms appear which have to be solved explicitly and so on. This constitutes 
the closure problem in turbulence. In this part, we cover the different averaging schemes and 
the resulting unclosed correlations. We will also discuss the effect of the intermittency on the 
form of these correlations. 

In our canopy soil system, there are several scales of inhomogeneities or intermittencies 
in the spatial and time domain, respectively. In any time or spatial averaging procedure, the 
size of the averaged volume or size of the averaged time interval has to satisfy two main 
criteria, namely equations (3.5.1). These criteria are given in Bear and Bachmat (1990) for 
spatial averaging in porous media. These criteria would apply automatically to an ensemble 
average, since in well behaved natural systems, the satisfaction of these two conditions is 
guaranteed. In time averaging or continuous control volume averaging , there must exist 
some separation in the scales of inhomogeneities or intermittencies for these two condition to 
be satisfied. This is an assumption which we make. 

a s ' S = S 0 - 0 (3.5.1.a) 

dri(x) ri(x+h)lX0)S)h 

dS 

I 
I = 0 (3.5.l.b) 

I S=S 0 

where: 
n is the property under averaging, 
ri is the deviation of this quantity from its mean 
S is the volume, time interval or number of ensembles. 
So is the chosen volume or number of ensembles or length of time interval 
x is the centroid of the averaging domain, 
h is the separation distance. 
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In the spatial domain, we start with a fluid element in the canopy air space. Enlarging 
that volume to include a representative volume for the air and plant part represents the 
averaging volume 1. The canopy air space is a multiple interconnected air space, which 
means that any closed surface within the air space can not be shrunk to a point without 
crossing a solid space. This volume averaging will lead to the appearance of source terms due 
to the interaction between the plants and the air. The averaging rules for flow within porous 
media are given as eq.3.6.1 and eq. 3.6.2. We end up with cubes, in which the effect of plant 
leaves interaction with the air stream are included in the governing equations. Increasing this 
volume further to include a representative volume for a certain canopy type with its within 
row and between row inhomogeneities represents the second larger averaging volume. It is 
assumed that there are no correlations due to plant geometry which do not sum up to zero 
when going higher with our averaging volume from the averaging volume 1 to averaging 
volume 2. Going further with our averaging volume to have a representative volume for a 
region with two or three types of vegetation represents the third higher averaging volume. In 
all of these volumes, it is assumed that the given above two criteria hold. This is equivalent to 
assuming that a separation in the scales of inhomogeneities on the different levels of 
averaging exists. For all of these levels, the values of the correlations which result due to 
deviation of the averaged quantities from their means should be defined or parameterized. 

In the time domain, there is the annual or diurnal cycle of global radiation. The latter one 
would represent the cycle of interest in our scale of canopy climate modelling. We need to 
average with an interval which is small enough to follow the changes in this diurnal cycle (6-
7 minutes averages). The small turbulent scales of transport lies within this cycle. Small scale 
is meant relative to the synoptic scale. Within this time interval lies the different scales 
responsible for turbulent transport within the canopy. With the time interval of averaging, the 
values of the correlation which result due to time averaging have to be incorporated in the 
averaged equations. 

There are the several variants in the averaging procedures. Our aim is to have one variant 
which has an easy parameterization. With different averaging procedures, different terms in 
the averaged equation will result. Below, we will show the different averaging procedures 

Fig.3.9 shows a horizontal extension of a canopy layer with a layer of air above it. This 
air layer contains coherent structures which are distributed in some manner in the flow field. 
The structures could be thermally or mechanically induced. The structures which are 
mechanically induced and the large thermally induced ones will be convected with the flow 
field. Given enough averaging time, these structures will pass through every point in the 
field. The small size thermally induced structures will be more localized to the hot spots in 
the flow field i.e. a hot bare soil surface. They may disperse or move around, with the mean 
wind, but they will still be localized. The existence of those structures will depend on the 
heterogeneity of heating at the soil surface and the ability of the wind shear to smear out these 
small scale thermally induced structures. In a time-spatial average, if they persist in a certain 
location they will show as a correlation between a vertical wind velocity spatial deviation 
from its mean and a temperature spatial deviation from the spatial mean (equivalent to term 
III2 in eq.3.5.2 ) This is called dispersive flux in the case of canopy flow. The value of this 
correlation depends on height, since the averaging process by turbulence will need some time 
to smear them out. The large scale thermally induced structures, will also be convected all 
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over the flow field. So, given enough averaging time, they would not show up as a spatial 
deviation from a spatial mean. 

We assume that these coherent structures have a double roller structure, as shown in a 
more detailed manner in fig.3.10, and that these are the main ones responsible for the major 
part of heat, mass and momentum transport. 

Fig 3.9. A figure shows coherent structures as represented by the ellipsoidal shapes with a 
certain distribution in a layer of air above a horizontal expansion of a canopy layer. The 
large parallelepiped volume is the maximum size of averaging volume 2. The inner 
parallelepiped represents stacked above each other volumes, which have the minimum size 
of the averaging volume 2. It is assumed that increasing the horizontal extent of these 
volumes, which are stacked above each other, to a horizontal scale as large as a coherent 
structure represents no loss of information. A detailed figure representing an inner 
parallelepiped is shown in fig 3.10. The shaded region in fig. 3.10 represents an intermediate 
size of averaging volume 2. 

In time-averaging procedure, we consider one point in the domain or an averaged 
volume (which is larger than small scale canopy inhomogeneities) and do the averaging with 
respect to time interval length larger than the largest time scale of transport. The resulting 
equation reads as: 

d(üj) ^d(üj) W j , 

I II 

3xj 

rai 

TiUJ 
3xj 

III2 

il. 
P dxj 

IV 

' l ^vV^v^ul ' 
dx 

V VI VII 
(3.5.2) 

where: 
I is the time rate of change of the time mean momentum (component i) of a volume 

average. 
II is the convection of the time mean momentum of a volume average (üj) by the spatial 

time mean momentum (\T;j 

1111 is the divergence of the turbulent transport due to spatial time averaged correlation 
between time deviations of the instantaneous momentum from its time mean. 

1112 is the divergence of the turbulent transport due to spatial time averaged correlation 
between deviations of the time averaged momentum from its spatial time mean (look at 
eq.3.6.7). This term is called a dispersive flux, and it represents the effect of correlation 
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between inhomogeneities in the spatial domain on the total averaged flux 

IV is the gradient of the spatial time averaged pressure. 
V is the spatial time averaged gradient of the spatial deviation of pressure time mean from 

its spatial time average. This represents the effect of the form drag force by the leaves on 
the spatial time averaged momentum. 

VI is the effect of molecular diffusion on the divergence of momentum flux. 

VII is the effect of the spatial time averaged divergence of spatial deviation of time averaged 
momentum from its spatial time averaged values. That term expresses the viscous drag 
by the leaves on the flow. 

We have seen in this procedure of averaging a complete failure of K-theory approach. 
Averaging spatially within a scale larger than plant parts is required to consider the sources 
and sinks within plant canopies. So a column or a cube is then considered. Use of second 
order or higher to obtain a counter-gradient transport has some assumptions, which are not 
fulfilled, concerning the uniformity of the behaviour of the terms within our time step of 
simulation and the closure assumptions, as we have shown qualitatively in the first part of 
this chapter. 

Another variant is the spatial averaging procedure with a volume which is larger than the 
small scale of inhomogeneities and larger than the largest scale of transport. This averaging 
volume will be comparable to the horizontal volume shown in fig.3.9. It is like taking a 
snapshot of a representative picture of the flow field. 

3(U; U; 

?+(^^^|-f)^„^vV) 
I II III IV V VI VII 

where: 
I is the time rate of change of a spatial average of momentum. 

II is the convection of the spatial averaged momentum (UJ) by ( u; 

III is the spatial averaged divergence of turbulent momentum flux due to the spatial 
averaged correlation of momentum from its spatial averages. 

IV is the gradient of the spatial averaged pressure. 
V is the spatial averaged gradient of pressure deviations of the instantaneous values from 
its spatial mean. This represents the effect of the from drag by the leaves on the air flow. 

VI is the effect of molecular diffusion on the divergence of momentum flux. 

VII is the effect of the spatial averaged divergence of spatial deviation of momentum from its 
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spatially averaged values. That term expresses the viscous drag by the leaves on the 
flow. 

Problems arise due to the quiescence profiles dominating the spatial averaged profile, 
since they are represented by a larger number of columns in which there is very little flux, 
while the averaged flux is mainly controlled by the columns lying under the coherent 
structures. The number of such columns are quite small in comparison to the total number of 
columns. This will lead to the same problem as in the time averaging with a time scale larger 
than the largest scale of transport. 

In an attempt to correct for this, we try to go higher with the closure. The objections for 
this has been raised in Sect. 3.3. In Sect. 3.6.C, a measured time behaviour of the terms in the 
second order equation is shown. 

3.6 AN INTERMITTENCY APPROACH* 

We have seen in the first part of this chapter, that the other option for considering the 
effect of intermittency on the closure assumptions for the higher order terms is to reduce our 
time step of simulation and to take account of the correlations explicitly. In trying to develop 
an intermittent turbulent transport model, our averaging volumes and averaging time have to 
satisfy the two above mentioned criteria (equations 3.5.1). Since the coherent structures have 
a large cross flow dimension, we need to define an averaging volume such that the horizontal 
divergence of the fluxes due to the spatial dimension of the coherent structures is equal to 
zero. We assume that the cross stream dimensions of the coherent structure are larger than the 
scale of canopy inhomogeneity in that direction, and that there is a divergence zone in the 
flow which achieves no horizontal divergence of the flux of the momentum and scalar fluxes. 

First, we do the volume averaging till averaging volume 1. That will give us 
parallelepipeds stacked above each other, in which the interaction between the leaves and the 
air is included. The horizontal layer shown in fig.3.9 constitutes a large number of columns, 
each representing such a stack of averaged volumes above each other. Increasing the size of 
the averaging volume from volume 1, where the volume averaging is done for air and leaf, to 
volume 2 leads, as we have assumed to no appearance of correlations between sources at 
averaging volume 1 to averaging volume 2. Enlarging the averaging volume from volume 1 
to volume 2 then would introduce no loss of information. The averaging volume 2 has a 
minimum size which includes small scale canopy inhomogeneity. An intermediate size of 
average volume 2 would have a horizontal extension, which is large enough to include small 
scale inhomogeneity (i.e. within and between row inhomogeneities) and to be of width as 
large as the cross-stream dimensions of the coherent structures. The dimensions along the 
flow are such that small distances can be covered in the buildup process of scalars during the 
quiescence period. The averaging volume 2 has a vertical thickness which would allow us 
enough resolution of the vertical profiles within and above the canopy. This volume is 
represented by the shaded region in fig.3.10. The spatial averaging used is a control volume 
averaging approach. This process has the same characteristics as the ensemble averaging. In 
enlarging the averaging volume from 1 to 2, we do not have the problem of the 
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noncommutivity of spatial averaging and differentiation. We have already done this in 
obtaining the averaging volume one. 

We assume that the canopy flow is a repetition of cycles of refreshment and build up 
which are caused by repeated passage of coherent structures at the canopy top. We do 
ensemble averaging on different cycles of coherent structure occurrences by adjusting the 
occurrence of the ramps associated with the ensembled structures and adjust time scales to 
match ramps of different durations. This will constitute our ensemble average at different 
points in the time cycle. This is shown in fig.3.10 by ensemble averaging of three large 
volumes, each with a counter-rotating double-roller structure in it. The purpose of using these 
larger volumes is to obtain an ensemble representation of all the stages of the coherent 
structure. Our averaging volume (the shaded area in the fig.3.10) will be such that along the 

Perpinduclar to the flow direction 
represents an average for each 

stage 

Along the flow direction 
represents different stages 

of the cycle 

Fig 3.10: An ensamble average of three cycles which were 
adjusted for the occurence of the ramp and to match cycles of 
different durations. 
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direction of the flow, there is not so much variation, while perpendicular to flow direction, 
the size should be large enough to have a horizontal divergence of fluxes equal to zero. The 
profile represented will be an average of several volumes across the flow. 

There are two possibilities for the existence of such a volume depending on the 
distribution of the coherent structure in the flow field. In the case of a complete coverage of 
the flow field by parallel lines of these coherent structures, which have the same line of 
vorticity, the existence of high pressures regions under the boundary of the double-roller 
structures which are counter rotating leads to the satisfaction of condition (eq.3.5.1). In the 
case of dispersed distribution of the double-roller coherent structures, perpendicular to the 
flow there will exist a region of no horizontal velocity, due to the canopy drag. The difference 
in the duration of different gust cycles could be due to a variation in the gust intensity or 
simply due to that the passage of the coherent structures by the masts, used in the 
measurement, was along different sections. 

We could have done our averaging directly on averaging volume 2. We get then an 
equation in which the source terms are shown due to the non-commutivity of the spatial 
differentiation and volume averaging. We then do ensemble averaging on the volume 
averaged equations. 

In fig.3.10, it should be noted that there is a transformation: A particular control volume 
would occupy different regions in the three big cubes imposed upon each other while keeping 
each volume height and relative position in relation to its neighbours the same. Because of 
this, one control volume will see different regions in the gust and no-gust region. In this 
figure, we tried to superimpose three double-roller coherent structures above each other. 

The spatial averaging rules for a multiply interconnected air space with moving 
canopy elements read as: 

1. For a time derivative: 

I tdU = I ^ dU + e u . n 
JUoatt) JUoait) Jsaßit) 

ds (3.6.1) 
IUoa(t) JUoait) Jsafiit) 

2. For spatial derivative: 

r) I 5 G — a ( 
~ - Gju... dU = U09 * ' " - Gjki...cos(n,lXi)<fc 
Huoa 3xi laß (3-6.2) 

The derivation of these averaging rules are given in Bear and Bachmat (1990). The 
application of these averaging rules on the instantaneous equation lead to the instantaneous 
volume averaged equations which read as. 

m+3M = i_/kiM_ i f [[ ku- ds au, ,_ (3-6.3) 
dt 3xj 3XJ \ " " 3 X J / V ^ J J S i " " u 3 n 

I II ill IV 
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a M + 3 ( u 1 c ) = A / aç_\ X J f f 3çds (3.6.4) 

I II III IV 

A similar equation with a continuous volume approach is given in Finnigan (1985). The 
last term in these equations express the effect of the sources within our averaging volume. 

By decomposing the turbulent signal into a small-scale component, which is dominant in 
the quiescence period, and a large scale component which is dominant during the gust 
intrusion period, we get 

Uj =(üj) + U; +uf+ U; 

uJ=\uj / + u j ' + u f + U j 
c=(c) + c" +cs+ c' 

(3.6.5) 

where: 
u;,Uj,c are the instantaneous values 

(üj) ,(u;), (c) are the volume averages of an ensemble mean or the ensemble mean of a volume 

mean (that does not matter). 
U: , Uj , c" are the deviations of an ensemble mean from its control volume average 

uf, uf ^ a r e the ensemble deviations due to small scale(i) for uj, ui, c respectively 1 J J 

u(, uf ,cl are ensemble deviations due to large scale(/ ) for ui, ui, c respectively 1 J J 

where: 

i^_i_ n f • uf+ uf = 0 (3.6.6) 

û + uf = 0 

c*+c^ =0 

üj = (üj) + uj' (3.6.7) 

UJ = \ U J / + UJ 

c = (c) + c" 

We assume that small-scale turbulence has a gaussian distribution with a time mean of 
zero. The total probability distribution of canopy turbulence, which describes the sum of the 
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large scale and small scale turbulence, is positively skewed for the u component and 
negatively skewed for the w component due to the effect of coherent structures on turbulence 
statistics. Because of the assumption of the gaussian distribution of small-scale turbulence, 
the time mean of the probability distribution of large scale turbulence is equal to zero. The 
region between the total probability distribution of u' and w' turbulence and the small scale 
turbulence, the latter was assumed to be the same for both u' and w', gives a probability 
distribution for u', u- ,cl which will also have a mean of zero. In this averaging scheme, we 

could have assumed in the division between small-scale and large-scale turbulence that the 
ensemble mean of both of them is zero, by definition, but that could mean that our u[ ,üT, c 
would have two different values. We get in the equation for momentum or scalar the 
following terms: 

ufUi ufu? ufuj 
'/—\ ' " l s I 

U:(Uj) U:U: ufu? u'u" 
1\ ]/ 1 J "l"j "l"j 

- m 
c ( u i ) 

c \ u i ) 

^ 

tfc 
c " u j 

C-VU: 

C'Uj 

fa 
" s 

c u j 

c u j 

C'Uj 

fa 
C U j 

1- ' 
c u j 

c'Uj 

Ensemble averaging for equations 1 will lead to the disappearance of the last two values 
on the first row and the first column. The U: is assumed negligible due to the fact that 
coherent structures we are considering are convected, they are moving around and they would 
not show in U:. We assume no heterogeneity within our averaging volume. In case of 
coherent structures which are due to inhomogeneity in the field, i.e. between row and within 
row, U: could be also decomposed to small scale and large scale. Volume averaging will lead 
to the disappearance of the second element of the first row and the second element on the first 
column. The U:Û  , UjU- , \X?VL-, and uni; are terms representing interaction between scale of 

transport ; small or large and inhomogeneities of the surface or the volume. In case of 
complete homogeneities of the volume or inhomogeneities which could be smeared out, the 
third and fourth elements of the second row and the second column in the case of 
homogeneous canopy are zero. 

The first element of the first row represents the advection by the mean flow which is 
quite minor. The element U:U: represents some kind of dispersive flux. In case of 

homogeneous canopy, it is zero. The instantaneous Reynolds stress tensor for momentum 
flux is composed of the last four elements. These are the most important ones. They do not 
vanish in the ensemble averaging. They represent turbulent fluxes at small and large scale and 
interaction fluxes. In the period of coherent structure intrusion into plant canopy, uurj is 
the most important. In the quiescence period, where the scale of transport is quite small 
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compared to canopy height, u^u-v is the active flux, una-1 and u-vu- are important terms 

in the period around (i.e. before and after) the gust passage. These are interaction terms 

between two different components of the wind vector. In the case of i=j, these terms are zero 

since, by definition, uj and Uj are mutually exclusive. In the case of i ^ j , we assume also 

that we can include these two terms in the gust parameterization and through an exponential 

decay for transport coefficient after the coherent structure passage. So now, for the averaged 

equation, we end up with four unclosed terms. This was the case for the momentum equation. 

Concerning the scalar equation, the same procedure is applied. Ensemble averaging will 

lead to the disappearance of the last two values on the first row and the first column. The U: is 

assumed negligible due to the fact that coherent structures we are considering are convected, 

they are moving around and they would not show in u-. Volume averaging will lead to the 

disappearance of second element of the first row and the first element on the second row. In 
the enlarging process of the averaging volume from 1 to 2, c" is assumed negligible. There 

Number 
of 
events Total w' turbulence 

negatively skewed 
Total u' 
turbulence 
positwely skewed 

0 + 
u', v', w' 

Fig. 3.11: an assumed behaviour of small scale and large scale turbulence. 

are no small scale inhomogeneities in c. That will lead to c%: ,cAi: ,c"u^,c"uj, which are 

interaction terms, to be zero in the case of homogeneous canopy or if the inhomogeneities 
could be smeared out due to the flow being so turbulent or due to being far away from the 
forcing surface. These terms express the feedback between the inhomogeneities in the surface 
and the flow. We come back to these terms later (Sect. 3.6.B). The first element of the first 
row represents advection by mean stream which is quite minor. The element c "u: when 

averaged represents some kind of dispersive flux. The last four terms c*u^ , c^uj , cAî  and 

c'uj we assume are the most important ones. They represent the turbulent flux of the scalar. 

65 



The last term is the most important during the gust intrusion. The first is the active flux 
during the quiescence period. The other two are interaction fluxes. We will discuss next the 
closure assumptions for these four terms for the mean momentum and scalar equations 

3.6.1 THE CLOSURE ASSUMPTIONS 

There are two ways to parameterize the effect of the gust intrusion on the mean scalar 
and the momentum equations: 

In the mean scalar equation, the two terms c'uj , ĉ Uj in the case of one dimensional 

flow, are included in the gust intrusion and parameterized, in the first method, by an 
integrated value for that flux divergence for every layer at the end of the coherent structure 
passage period, so the state variable of the air at the end of the gust period would become 
St+At= st - v flux * At- The value - V. flux * At is parameterized by defining a refreshment function 
which represents the change of storage in the non-radiative energy exchange before the 
intrusion of the gust till the end of the passage period. If the duration of the intrusion is larger 
than a certain time step, the plants respond to the boundary conditions at the canopy top and 
there is no storage within the canopy air space. 

The second method is by increasing the value of the exchange coefficient (Km) value to 
a very high value. That will lead to the same effect. 

In figure 3.10, we have identical double-roller structures. But in reality, there will be 
variations in the size of these structures. So there will be some arbitrariness in the definition 
of the boundaries of what is small and what is large, but all the structures have been 
synchronised on the occurrence of the ramp at the downstream end. The dispersion due to 
sizes or passage of structures at different cross sections shows in the upstream end and the 
sides. 

We obtain this refreshment Rf(z,t) from an assumption of the frequency of occurrence by 
Raupach, corrected by Paw U et al. (1992), or from a measured one and a depth of intrusion 
and duration. The frequency of intrusion according to Paw U et al (1992) seems much less 
than the parameterization used in Kaviany (1990) or Bergström and Högström (1989). We 
see from a data set collected by Van Boxel (1988) that a complete refreshment is not far from 
reality (fig.3.3). It seems that the air is refreshed completely in the upper layers of the canopy. 
This is where most of the leaf area is concentrated. The assumption of complete refreshment 
would make a difference in the boundary conditions for energy partition at the soil surface. 
This effect depends on the surface resistance of the soil. That will affect the D /D ratio (i.e. 
vapour pressure deficit fluctuation / mean vapour pressure deficit) , as we shall see in 
Sect.4.3. The cV is parameterized by using a local gradient approach. The value of Km used 
during the quiescence period could be parameterized either by: 
1) the use of wind speed time domain map (see for example fig.3.3.b). The square of this map 
after subtracting a mean value could be assumed to represent a time domain map for turbulent 
kinetic energy. The obtained value could be used to have an idea about the exchange which is 
proportional to turbulent kinetic energy. We still need a value for a time scale. This could be 
the value of the Lagrangian integral time scale during the corresponding period. 
2) The second method is explained in the following section. 
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In the momentum equation, we use the second method by defining an increased value of 
the turbulent exchange coefficient during the first time step after the gust intrusion. That will 
lead to an enhanced momentum exchange between the above canopy air and the intercanopy 
air stream. The effect of this on the total solution is quite small due to the effect of the wind 
speed on the boundary layer resistance, which is a square root function. The first method does 
not work on the momentum equation. 

3.6.2 THE PARAMETERIZATION OF Km VALUES DURING THE GUST AND THE 
QUIESCENCE PERIODS 

Two detailed data sets, which were collected by Van Boxel (Jacobs et al 1992 and Van 
Boxel 1988) and Van Pul (1992), are used to obtain a picture of the behaviour of Km during a 
coherent structure cycle. For the first data set, details of the measurements are given in Jacobs 
and Van Boxel (1988) and in chapter 3 and chapter 6. For the second data set, we used one 
dimensional sonic measurements for a certain day (18-8-88) to see the pattern of w' variance 
behaviour. The selected data for analysis represent few hours of measurement (7 hours for 
both data sets). For the first data set, a day was selected in which the intermittency in the 
forcing signal (i.e. the intermittency in the incoming radiation at the canopy top) was low. 
The selected day was 30 July 1986. The general meteorological characters are given in Jacobs 
et al. (1992). The measurements started at 13.00 GMT. It was a sunny day with moderate 
wind (about 2 ms" ' at 4 m height). A picture of the exchange processes during a period of 
time when the intermittency in Rn was low, is shown in figures 3.3 and 3. 14. 

We used the one dimensional sonic anemometer measurements at a height of 0.45 h to 
parameterize the transport coefficient during the quiescence period and correlated these 
values to the time domain maps. 

We assumed that the mean vertical wind velocity is zero. So, by squaring all the values of 
vertical wind velocity, we obtained then the contribution of the different measured values to 
the averaged value of the w'2. We obtained then a mean value of the squared w'2. We divided 
the different readings by the mean value of w'2. The result gave us a time series of the ratio of 
instantaneous w'2 (1 second averages) to the mean w'2- We then did a frequency distribution 
analysis on the number of events below a certain threshold and how much they contribute to 
the total mean. This gave us the following figures (fig 3.12, 3.13) 

We see from figure 3.12 that for the two time series, during 74% and 67% of the time, the 
measured instantaneous w'2 was less than the mean and contributed less that 0.19 and 0.2 
respectively to the total w variance. Gusts less than 0.1 (0.077 and 0.08) of the events, thus 
occupying less than 0.1 of the time, contributed more than 0.51 and 0.37 respectively to the 
total variance. 

Fig 3.13. shows the relative strength of the events, i.e. the cumulative contribution by a 
certain class of events, which is less than a certain limit, to the total variance, divided by the 
contributing number of events in the same class. Fig.3.13 is obtained by dividing the solid 
line over the dashed line in fig.3.12. Fig 3.13 shows that events, which have as relative 
maximum the value of the mean, have a relative strength of 0.25 and 0.3 respectively, while 
the events which have a relative maximum of twice the value of the mean had a relative 
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Fig 3.14.a The time occurrence of extreme events of w'2/w'2 
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Fig 3.14.b The corresponding wind speed time domain map with time in seconds. Contour 
interval is 0.02m/s. 

Time in seconds 
Fig 3.14. c The corresponding temperature time domain map with time in seconds. Contour 
interval is 0.15 °C. 

70 



3.6.B THE TIME AVERAGING APPROACH 

In the previous procedure we used volume averaging to obtain an average for a certain 
segment along and perpendicular to the flow. We then did an ensemble average to obtain a 
representative average for different gust occurrences. This leads to different gust occurrences 
imposed above each other, while the same elementary averaging volume would be occupying 
different regions in the different cubes. 

Perpendicular to the flow 
direction represents an average 

for each stage 

Along the flow direction 
represents different stages 

of the cycle 

fig 3.15: The averaging is done with respect to time. The several 
occurences of the gust passage are imposed upon each other by the use 
of a detection function, e.g. like VITA method or a visual detection. 

In the following procedure, we keep our averaging volume the same and get a 
representative picture through time averaging. 

We decompose the turbulent signal into a small-scale turbulence component which is 
dominant in the quiescence period and a large-scale component which is dominant during the 
gust intrusion period. The difference in the division between small-scale and large-scale 
deviation depends on some detection function. 
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Ui=(üj}+uj'+uf+uj 

uj=( ï ï i}+ uj '+ uI+ uj 
c=(c) + c" +C-S+ c' 

where: 

Uj,u;,c are the instantaneous values 

(üj) ,(u; ), (ë) are the volume averages of a time mean 

U: , U: , c'are the deviations of a time mean from its volume average 

u? uf ,c-?are the time deviations due to small scale(j) 

Uj , u- ,c' are time deviations due to large scale(7 ) for uj, ui, c respectively 
l j j 

We get in the equation for momentum or scalar the following terms. 

uiAuj; W j ,„;*ƒ (UJV 

U j U j UjU* Ujllj 

s/—\ s " VS' s i 
U;(Ui) U;U; U |Uj UjU ' \ J/ U1"J 

' / — \ ' " l S I I 

U,(UJ) u iUj u<u* u ; u j 

C^Uj) Ĉ Uj c-̂ û  c^u' 

•Yüj) c'uj c'u^ c'u' 

We use a control volume average plus a time average. Time averaging leads to the 
disappearance of the last two elements of the first row and the first column. Volume 
averaging will lead to the disappearance of the second element in the first row and the second 
element in the first column. Concerning the third and fourth elements of the second column 
and the second row, they represent interaction terms between the spatial inhomogeneities and 
the small scale and large scale turbulence. These terms are related, with a negative feedback 
to the turbulent fluxes, due to the size of the averaging volume. In the case of large scale 
coherent structures which are moving around, these structures are not induced by small scale 
inhomogeneities of the surface. There are two kinds of these coherent structures: large scale 
thermally induced ones and dynamically induced ones. The dynamically induced ones could 
be large (Schols 1984 or Run B in Gao et al 1989) or small. The generation of the small 
dynamically induced ones are explained by Raupach et a/(1989). The large scale thermally 
induced ones represent a response of the boundary layer above to the forcing from the 
underlying surface due to energy partition, so they respond to large scale inhomogeneities. In 
the case of small dynamically induced coherent structures, they also represent a response of 
the layer of air close to the vegetation to the drag force of the underlying vegetation. These 
latter will be responding to somewhat smaller scale forcing. The nonuniformity of this latter 
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forcing will be represented by the ratio of the distance travelled during the life time of that 
dynamically induced coherent structure to the distance between individual canopy elements 
and its relation to the averaging volume. This ratio in a way represent an expression of the 
forcing uniformity. The higher this ratio, or the closer it is to one, the less they will show as a 
spatial deviation. They will show in the time mean and not in the spatial mean. The decay of 
that coherent structures with travelling distance and the generation of a new one to take its 
place homogenize this correlation. The value of u"C" becomes a residual non vanishing 
correlation. In the first case of a large scale coherent structure, the interaction terms between 
the large scale and spatial inhomogeneities will be zero by definition. If we were working 
with an averaging volume which represent two different kinds of vegetation, these two terms 
would not vanish and they have to be parameterized and the problem would be equivalent to 
the interaction between small scale spatial inhomogeneities and coherent structures. In the 
case of dynamically induced structures, with non-uniform drag media below, there would be 
some interaction between small-scale spatial inhomogeneities and large-scale turbulence. 
This problem would be present with averaging volume two. In the case of spatial 
inhomogeneities (i.e. hot spots with a field) which lead to generation of small scale thermally 
induced coherent structures which will disperse around. The shear will make these coherent 
structures decay. The ratio also between the hot spots spacing and the travelling distance over 
which the coherent structure is still alive will control the value of this non vanishing 
correlation (i.e. the importance of this correlations in our averaging). In this case, a 
parameterization for this effect has to be included. 

In case of complete inhomogeneities, or homogeneities which could be smeared out, the 
third and fourth element in the second row and second column are zero. 

As in the ensemble averaging, the first element in the first row represents the mean 
convection, the second element in the second row represents the dispersive flux. The third 
and fourth elements in the third and fourth row represent Reynolds stress term or turbulent 
scalar flux. They are treated in the same manner as in the ensemble averaging. 
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3.6.C THE VARIANCES AND TURBULENT FLUX EQUATIONS AND THEIR 
TIME VARIATION 

In Sect.3.1, we have shown qualitatively the limitations of the second and higher order 
closure models by showing the effect of the coherent structure existence on the uniformity 
and so on the assumptions used for parameterizing the higher order terms (n+1) in the higher 
order (n) closure. In this part, we will show the time behaviour of the terms in the second 
order equations. From this, we will come back to the same conclusions we have derived 
earlier. In the following equations, we assume no plant parts intersecting the flow. We want 
to show the intermittency of the terms in the equations. 

Our starting point is the turbulent vector or scalar equation which reads as: 

3u| _au: .aar ,au: (e; — mdp' ^ u ; fjUj 
•£ +UJ âxj+UJ3xj +UJ 3xj= Bi^jg+fcSiOTj - ( i ) 4 + v ^ + ^ 

I II III IV* V VI VII* VIII IX* 
(3.6.8) 

K+^JL+U.K+U.K=V #3_Jw) (3.6.9) 
3t J 3x; J dx; J 3x, °1 gx2 3x, 

I II III IV? VIII IX* 

The first two equations are the turbulent fluctuations equations for uj and uk ; 

respectively. The third equation is the turbulent fluctuation for a scalar quantity where: 

I is the time rate of change of the concerned quantity. 
II is the convection term by the mean wind. 
III is the production term due to the interaction between the turbulent fluctuations and the 
mean wind gradient. 
IV is also a production term due to the interaction between a turbulent fluctuation in the wind 
velocity component and the gradient in the turbulent fluctuations of the scalar or the wind 
component. So it transports the turbulent fluctuations down into the canopy. After deriving 
the variances equation or the momentum or flux equations, this becomes the turbulent 
transport term. This term is nonlinear in the first and second equation. In the third equation, it 
is also nonlinear through the effect of scalar field on the buoyancy flux (term V in the first 
equation) 
VII is the pressure fluctuation term. This term is nonlinear since it is related by the Poisson 
equation to the velocity field. 

The asterisked terms are nonlinear terms in the above equations. 
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We will use time domain maps of the temperature as an example of a scalar, and the 
wind speed map as an indication for the wind velocity component. The time domain maps 
used are included as figures 3.3a,b and 3.14c,b and 3.16a,b. The behaviour of Rn within the 
corresponding periods for these time maps is shown in fig. 3.4. 

We will define the mean as the average value for 16 minutes for different heights within 
and above the plant canopy. The 16 minutes period represents the time duration of one time 
map. The regions in the map in which the contour lines are quite separate would have more 
weight in representing the mean at a certain height. Strong deviations from that mean would 
be represented by regions in which the contour lines are quite crowded. If we assume 
Taylor's frozen hypothesis, the time domain maps which give the temperature or wind field 
passing through a vertical line or a plane would represent a picture of the flow field along a 
horizontal distance at a certain time. The second term in the equations would be representing 
the convection by the mean horizontal wind of the turbulent fluctuation, i.e. the role of the 
mean wind in carrying the wind variation (in strong cases the gust) around. For the vertical 
component, that term would have no effect since w = 0 . The third term is controlled by u-

since the mean profiles for the period under consideration (16 minutes) and so their 
derivatives are constants, the third term will be then a function of Uj. We can obtain the 

turbulent fluctuations map of both wind and temperature by subtracting a mean value for 
different heights, u- will be similar to u; , since it is obtained after subtracting a height 

dependent constant (i.e. u;(z)). u- is also highly intermittent as can be seen from the same 
^ J 

map (from the following map 3.16.b). q' can be obtained in a similar way by subtracting a 
height dependent value (i.e. the mean temperature as a function of height q(z)) from the q 

' 3q' map. q is highly intermittent. The fourth term u; 5— represents the interaction between u; 
J OXj J 

and the vertical gradient of the turbulent scalar time fluctuations £3_ or the transport of q' by 
3XJ 

turbulent velocity fluctuations. This also represents the instantaneous scalar flux. The 

a 
difference between this term and 

Ujq 

axj 
gives the effect of the deviation of minus the 

divergence of the instantaneous heat flux from its mean on the value of the scalar deviations. 
We can see from the multiplication of the directional derivatives of one map with the other 
map that this term is highly intermittent. We know also from the measurement of other 
researchers that this term is highly intermittent. It could reach values as high as 20 times the 
mean flux (Gao et al. 1989). It is clear that the terms in the equations have cycles of 
intermittency or periodicity which relate to the passage of coherent structures. The same goes 
for similar terms in the momentum equation. For the extra terms in the momentum equations, 
especially the pressure correlation terms, there is also strong time variation in the pressure 
signal due to the passage of coherent structures. An example from a set of measurements of a 
pressure pulse at different heights is given by Conklin and Konner (1994) and Shaw et al 
(1990). 
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Time in seconds 

Fig. 3.16 .a A 1 sec averaged temperature time-height domain map representing 1000 sec. The starting 
time coordinate for the data series is from about 13.45 GMT on July 30 1986 within a maize canopy. 
Contour interval is 0.1 "C. 

Time in seconds 

Fig. 3.16.b. A 1 sec averaged wind speed time-height domain map representing 1000 sec. The starting 
time coordinate for the data series is from about 13.45 GMT on July 30 1986 within a maize canopy. 
Contour interval is 0.015m/s. 
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The existence of intermittency in terms in the equations leads to correlations between 
terms, e.g. fluctuations and fluxes which may not sum up to zero. Trying to take account of 
this correlation will lead us to develop their prognostic equations. This leads to an attempt of 
going higher with our closures. 

By looking at the higher order level equations before averaging, all the terms have time 
varying values which is related to the passage of the coherent structures. 

.3u: 3u: 
q -=-!- +q u; ^ - i 

3t ^ J 3XJ 

I II 

+q u 
3u[ 

'J dxi +qu 

III 

J 3 X j 

IV 

u-u 
\ ' J / 

s 19vq' 1 c • ' • /1 \ <V ' 3 2 u i ' \ • 
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(3.6.10) 
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I II III IV VIII 

1 3xj 

IX 
(3.6.11) 

The first term in both equations represents the correlation between a turbulent fluctuation 
of a scalar and a velocity component time derivative or a vector fluctuation and scalar time 
derivative for eq 3.6.10 , 3.6.11 respectively. The first equation is a nonlinear one. The 
second is a linear one except for the effect of the scalar on the density. The sum of these two 
terms constitutes the scalar flux which will be nonlinear. The second term in both equations 
represents the correlation between q' or U: and the convection of U: or q'by the mean wind 
respectively. This is equivalent to the correlation between the q' time domain map multiplied 
by a height dependent constant multiplied by the horizontal derivative of the other map. In 
case of vertical wind velocity, this constant is zero. 

The third term represents the correlation between momentum flux or scalar flux and the 
derivative of the mean wind. The momentum or heat flux are highly intermittent signals. We 
know this from measurement by other researchers (e.g. Finnigan 1979 and Denmead and 
Bradley, 1985). The fourth term represents the instantaneous correlation between turbulent 
scalar fluctuations and a divergence of a momentum flux or an instantaneous correlation 
between turbulent vector fluctuations and the divergence of heat flux. This represents the 
correlation between one of the maps of fluctuations and the flux divergence of the other map 
and vice versa. The sum of these two terms (terms IV in eq.3.6.10 and eq.3.6.11) makes the 
turbulent transport term. During the period of simulation, this term is not uniformly 
distributed as shown by measurements by Gao et al. (1989). Flux divergence is related to the 
change of storage and the source terms by the general transport eq.iation. During the gust 
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intrusion period, there is not enough time for the leaves to respond to rapid changes in the 
temperature or vapour pressure of the air. So the change in the storage around the gust 
passage is mostly related to the flux divergence. This term is non linear. The concurrent 
occurrence of a rapid change in q' and u' leads automatically to high values of the triple 
correlation terms. Trying to take account of intermittency will lead to the development of a 
third order closure equation which will contain a fourth order term. We showed earlier from 
the measurements by Gao et al. (1989) that this fourth order term is highly nonuniform. The 
assumption of the uniformity of terms during the time step of simulation is not justified. That 
brings us to the question: Would a large-time interval averaged value for a term in these 

within our time step of simulation, be as good as a varying in time, value for that equations 
term? Due to the high non linearity of these equations, the expected answer to this question is 
NO. Now, what can be gained by getting higher in the closure? The dispersion of the 
correlation which results from the pressure correlation as explained below will lead to more 
uniformity of the higher order terms (n+1) in the (n) closure equation and that could have 
allowed, some people, in a way to assume they counteracted the effect of the nonuniformity 
of the terms at lower level of closures and so they could have regained then the effect of 
nonuniformity of the terms at the lower levels which was lost due to the averaging. That 
would have been the case, if not for the nonlinearity of the equations. So, I am not sure that 
such an assumptions is correct. 

The problem of intermittency will also show in the different terms which result from 
spatial averaging with the existence of plant parts intersecting the flow (Finnigan, 1985). The 
nonlinearity is even higher there. 

3.6.D The importance of pressure fluctuation on the dispersion of the correlations 
The dispersion of the correlation comes from the pressure field which leads to 

acceleration of the flow in the lower parts of the canopy. This means that the turbulent 
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Fig 3.18. Vertical cross section of 
ensemble averaged and fluctuating 
velocity fields, under unstable 
conditions(L = -138 m ) , during Run 
A. Dashed lines are isotherms below 
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isotherms above the mean. Contour 
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velocity fluctuations in the lower parts of the canopy will have some kind of phase shift 
ahead of the temperature or scalar fluctuations. The pressure field (Shaw et al 1990) shows a 
maximum in the soil surface coincident with the passage of the coherent structure at the 
canopy top. An area of a phase shift in which there a dispersion between momentum and heat 
fluxes is shown here in figure 6.a, as taken from Gao et al. (1989) and included here as figure 
3.17 in the area marked by A. Going higher with the closure assumes that there will a rapid 
dispersion of the higher order correlation such that the information we have missed could be 
obtained back quickly by going not very high with our closure. It seems as have been shown 
earlier that this is not happening till the third order closure and that coherent structures and 
their role in correlating higher order terms is quite important. 

There are some reservoirs in the soil canopy system. In this case the canopy air and its 
storage of scalars and vector quantities which, due to the length scale of the coherent 
structures, have small time constants for different scalar and vector quantities. That leads to 
the high correlation in the values of some terms. If, for example, we were dealing with a non-
ventilated open top chamber which is closed from the sides, the intrusion into this chamber 
due to the passage of a coherent structure would have been limited because of the weakness 
of the return to isotropy terms, and that would have led to lower percent of refreshment and 
only in the upper layer of the chamber and to an increase in the time constants of the system 
inside this chamber. The correlation of the fluxes during the gust passage would have been 
less important in comparison to the quiescence period. The problem of intermittency as we 
know in canopy flow would have not been there. 

Now: what is the sensitivity of the solution to the difference between an assumed and 
real behaviour of the terms in the turbulent fluxes and variances equations and what is the use 
of higher order closure models if it takes so many levels of closure to disperse the 
correlations ? It seems that the rate of correlation dispersion is very low, as shown from the 
argument presented on Sect. 3.3. It seems, to me, that the use of large-time averaged second 
closure models leads to the introduction of flux divergence terms in the first order equations. 
These divergences, being not homogeneous with height, lead to something like the 
appearance of extra sources or sinks within height and that leads to their simulation of 
counter gradient transport. (!?). That is all, but this really leaves a lot of questions about the 
validity of such a solution. The validity of this assumption depends on the answer to the 
underlined part of above given question. A complete answer to this question needs a 
complete description of the behaviour of the Reynolds-averaged Navier-Stokes system of 
equations describing the canopy flow. We will try to give an approximate answer to the 
underlined part in the appendix I.A. An attempt to describe the dynamical behaviour of an 
equivalent system of equations is given in chapter 4. This attempt proves that an 
intermittency in the turbulent transport does not lead to the same solution as a non-
intermittent treatment. A similar mathematical analysis for the second or higher models 
would be quite complicated. So, we take the proven nonlinearity in the first order as an 
indication for the existence of a similar dependence on intermittency in the solution of the 
higher order equations. 
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3.7 IMPLICATIONS OF INTERMITTENCY FOR LAGRANGIAN MODELLING AS 
APPLIED TO CANOPY FLOW** 

3.7.1. INTRODUCTION 

The intrusion of coherent structures into plant canopies leads, during their ejection and 
sweep phases, to the displacement of the air inside the canopy upwards outside the canopy 
domain. A replacement of the displaced air by air from above the canopy accompanies this 
process. The ejected parcels of air from the canopy carry within them the amounts of sensible 
and latent heat, which have been delivered by the leaves and the soil to these air parcels while 
they were in contact with the leaves. The result of this process is a net transport of the scalar 
quantities between the canopy air space and the layer of air above. It has been shown by 
different researchers that this process is the one responsible for most of the large-time 
averaged flux. In the period of time between the passage of two consecutive coherent 
structures, the amount of sensible and latent heat which is delivered by the leaves to the 
intercanopy air stream will be dispersed around due to the scales of motion which are existent 
then in the flow. These scales of motion are quite small compared to the canopy height. This 
leads to a small scale mixing and a buildup of the storage of heat and moisture during the 
quiescence period. This buildup controls the large-time averaged profiles. 

From this qualitative picture, it is clear that most of the large-time averaged flux occurs 
due to scales of motion which have a length scale larger than the canopy height and which 
leads , during their intrusion into plant canopies, to correlation in the motion of air parcels all 
over the canopy height. 

Random walk models are used to describe the averaged concentration field at a certain 
point within plant canopies. This concentration field at a certain point results from the 
superposition of different plumes originating from different sources lying at different 
distances from that point. This superposition of the concentration fields assumes that the 
particles are moving independently of each other all the time. This assumes that the scales of 
motion responsible for dispersion, are relatively small in relation to the source distribution 
within height and that these scales are moving independently. These assumptions are 
obviously not valid during the gust intrusion period during which most of the large-time 
averaged flux occurs 

In here, we discuss the effect of the deviation from these assumptions on the random walk 
models as applied to canopy flow. We suggest a method to correct for the effect of the 
correlation between directions of motion of particles, which are not close neighbours, on the 
mean concentration profile. 

3.7.2. RANDOM WALK MODELS AS APPLIED TO CANOPY FLOW 

In random walk models, the following equation is used (Raupach, 1989) and Lamb(1980): 

c(z,t)=f r°S(h) ce(z,t;h,t-s)dh ds (3.7.1a) 
V"°° 

80 



c(z,t)=fl pS(h) ce(z,t;h,to)dh dt0 (3.7.1.b) 
-(t-to) J"~ 

where 

c(z,t) is the mean concentration as function of height z and time (t). 

Ce(z,t;h,t()) is the conditional probability density function that a particle being found at 
height z at time t, given it was released at height h at an earlier time to . The subscript e 
means that this function is determined for an elementary source. An elementary source is an 
instantaneous (not continuous) point release of unit source released at to and zo. 

S(h) is the source strength as a function of height. 

The above integration is carried out for all heights and all times since release. For an 
elementary source, the resulting cloud depth keeps growing as a function of time. The centre 
of the cloud moves downstream with a velocity equal to the convective velocity of the air, as 
shown in fig.3.18. Fig.3.18 represents the development of clouds which are resulting from 
elementary sources, which have been released, all together at a certain moment at the same 
height, but at different points along the line BF between pO and pi. In figure 3.18, four of 
these clouds have been drawn, but with a vertical shift as a drawing trick to show, what 
happens to each one and the resulting effect on the concentration field at a certain point F, 
where the concentration field is measured. The clouds on the inclined line AY represent 
clouds which have the same lifetime (t]-to). They all have been released at the same moment 
and at the same height. In this case, at point F, a sensor does not see any more clouds with a 
lifetime less than (t-to), since these clouds are being carried down from further away 
distances, and once they reach point F and continue being carried away, they will not be 
replaced by clouds with the same lifetime. The largest cloud which point F will see is the 
cloud which has a lifetime (t-to) equal to the perpendicular distance between the lines pO and 
pi divided by the average wind velocity. The point F will keep seeing a concentration as if it 
was at the centre of a passing train of progressively older clouds (Eulerian), or equivalently 
the concentration at the centre of a convected progressively older cloud (Lagrangian). In the 
case of completely homogeneous canopy in the horizontal direction with continuous source 
releases at a certain height, the effect of a certain cloud being convected on the change of the 
concentration field at a certain point is compensated for by another cloud which would have 
the same time-since-release as the cloud which would have just left point F. The net result is 
that no changes in vertical depth or concentration are felt due to cloud migration. So, the 
effect of convection need not to be considered when we add all times since release in the 
above given integral. The shape of the cloud at a certain line PP becomes as shown in fig.3.19 
(a continuous plume). This physical picture is clear and expresses the effect of the different 
previous times-since-release which are felt at the point under consideration. This time integral 
could be looked at as expressing the effect of different sources further away from the point 



under consideration on the total concentration field. 
For a continuous release at a certain height or instantaneous releases at different heights 

for several sources, the assumption of independent movement of the particles in the above 
integral is made. This problem will automatically occur when representing the time mean of 

wind direction 

Fig 3.18. shows the concentration field as seen by point F resulting from instantaneous 
releases of unit sources at one line BF. 

continuous releases at different heights. All the particles should be independently moving all 
the time (for separation times which are much larger than the integral time scale TL ) for all 
the heights. In the time mean, which we try to represent by an ensemble mean of particles 
moving independently, the question is : are the particles, which are being emanated by the 
sources into the canopy air stream, moving independently of each other all the time at all 
heights? Or is the time mean, which is reality, well represented by an ensemble mean of 
independently moving particles? The 

Fig 3.19 The concentration field due to continuous releases. 

answer to this question is NO, since measurements show that most of the flux occurs due to 
organized motion which has a scale larger than the canopy height, leading to correlations 
between the particles motion at different heights. In that integral, it is assumed that the 
particles are moving independently of each other, i.e. that the probability of a particle 1 
released at height hi arriving at height z] at a later time since release l\ (Event A) has 
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nothing to do with another particle 2 being released at height h2 arriving at height Z2 at a later 
time since release t2 (Event B). Z2 could be equal to z\ and also i\ could be equal to t2- In 
case of z\ equals Z2, M can not be equal to t2, since the particles released a short time after 
each other at the same height must have a definite correlation in their motion, expressing the 
persistence in the motion due to turbulence. This time is related to Lagrangian integral time 
scale and is considered already in the Langevin equation for describing the random motion of 
a particle. The correlations we are considering are between particles motions at different 
heights or motions at the same heights but separated at time with time intervals much larger 
than TL. These correlations are due to large scale motions. In the case of two particles, the 
total probability of event particle 1 or particle 2 arriving at a certain height h (hi=h2) after 
some time from release t (t]=t2) equals 

P(A UB) = P(A) + P(B) - P(A n B) (3.7.2) 

The dependence in the motion of the particles affects their destination after a certain time 
since release. This correlation, or dependence in the occurrence of the two events, should be 
subtracted from the total probability. The intersection of the events is controlled mainly by 
the scales of motion which are controlling the dispersion of particle 1 and particle 2. If it 
occurs that, for some time, the length scale of the structures responsible for dispersion is 
larger that the vertical distance between hi and h2, the two particles 1 and 2 will be 
correlated in their motion, i.e. they will be migrating together. This correlation in the motion 
should be subtracted from the total superposition. The time distribution (frequency) or the 
space distribution of the coherent structures and their length scale will determine the effect of 
these correlations on the total concentration field. 

The evaluation of the effect of the correlation on the superposition in a direct way is very 
difficult. I have no solution this way. 

An alternative method which is suggested here is based on what happens during a whole 
gust cycle, since this will describe the time mean, which is what we are trying to obtain, in a 
proper way. 

3.7.3. A SEQUENCE OF EVENTS 

After a gust intrusion into a plant canopy, the whole concentration field is replaced by a 
concentration field which is equal to the concentration at the canopy top. After the passage of 
a coherent structure, a certain point inside the canopy will start seeing progressively plumes 
up to a lifetime(time-since-release) equal to the time interval since the passage of the 
coherent structure. The concentration field at this point will be a superposition of the 
concentration fields from plumes with life time less than or equal to the time interval since 
the coherent structure passage. 

During this period, the scales of motion which are responsible for dispersion are quite 
small in comparison to the source distribution, so there is independent motion of the particles 
which are being emanated to the air during the period between the passage of two coherent 
structures. So, the superposition of the concentration fields is possible and eq.3.7.1 would 
describe the concentration field at a certain point after a large period of time since the gust 
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passage and not the mean concentration at that point. The actual concentration after a time t is 

C(z,t) = 0 7 s ( h ) Ce(z,t;h,t-s) dh ds (3.7.3) 

where t is the length of the period since the gust passage. 

Mean c should be 

'tperiod 

f'period 

C = 

J+JS(h)ce(z,t;h,t-s)dhds dt 

tperiod 
(3.7.4) 

eq. 3.7.1 Asymptote 

Fig. 3.20 A comparison between the behaviour of eq.3.7.1, 3.7.3 and the mean concentration 
as suggested here. 

The mean concentration field is a function of height and the length of the period between 
the passage of two coherent structures (tperiod)- It is a weighted mean of eq.3.7.3. The 
difference between the mean concentration field according to eq.3.7.1 and the time mean of 
eq.3.7.3 is a larger effect for the earlier stages of the plume development on the mean 
concentration field. In eq.3.7.1, there is an equal weight for all the stages of the plume 
development, while in the mean of eq.3.7.4 the earlier stages are weighed more heavily. The 
author does not know exactly the shape of the development of eq.3.7.3. The curve 
representing this relation is an approximation. 

Since the time mean is the mean we are interested in, the ensemble mean, obtained from 
equation 3.7. 1, should have been equal to the time mean in case of no correlation between 
the particles motions. The difference between the time mean as determined by eq.3.7.4 and 
the ensemble mean as determined by eq.3.7.1 represents the total effect of the correlation 
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between particle motions due to coherent structures on the mean concentration field. 
To make the physical picture more clear, we discuss the difference between a time mean 

and a spatial mean. In the case of inhomogeneous turbulence, the scales of motion are 
nonuniformly distributed. The dispersion of particles at a single instant of time at different 
regions of the flow is controlled by the distribution of these length scales. An example of 
such a flow is given in fig.3.9. To get a mean spatial picture of the concentration field, we 
could have a representative number of pictures of the dispersion in different regions as a 
snapshot and average them. In regions where the length scale of motion is quite large in 
relation to the source distribution, the movement of all particles emanated now plus all other 
particles which have been around is controlled by the motion of the air within this parcel. 
Most of the flux between the canopy air layer and the layer above happens there. In all the 
other regions, in which the scale of motion is quite small and uniform, particles are being 
released and transported within each canopy layer. 

Now for the time mean, if we have assumed that all the scales of motion keep moving 
around all over the flow field, one could obtain a time mean concentration field by putting a 
sensor in a representative spot and then do time averaging. During the passage of a coherent 
structure, a sensor will be seeing a concentration field equal to a background concentration. 
The sensor will start seeing plumes from sources lying close up stream. By the passage of 
time, the sensor will start seeing plumes from sources lying further and further upstream. The 
concentration field as a function of time will progressively be an addition of all these 
superimposed plumes. A time mean concentration field is a weighted average of all the time 
intervals. In case that, the scales of motion responsible for dispersion are not localized, the 
time and spatial average are exactly equal. 

Fig. 3. 21a shows the correlation of the motion of the particles emanating at two different 
heights due to the passage of the coherent structures. The right hand curve shows the 
resulting joint probability distribution between w' (vertical velocity deviation) and D' 
(vapour pressure deficit deviation) 

Another point worth consideration is that there is a large inhomogeneity in the value of 
Lagrangian integral time scale. For coherent structures, which have coherence in motion and 
persistence, the value of T L is quite high compared to T L for small scale turbulence. The 
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time behaviour of a dispersing plume at a certain height is simulated by considering the 
Eulerian-determined integral time scale is equal to the Lagrangian integral time scale. The 
Eulerian integral will see the effect of a coherent structure turbulence passing through the 
sensor and small scale background turbulence. The particle which has been subjected to a 
large scale coherent motion will experience much larger persistence in its motion. So there 
will be some kind of a Lagrangian integral time scale for the coherent motion, which will be 
much larger than that for back ground turbulence. The Eulerian-determined Lagrangian 
integral scale emerges from some kind of averaging for Lagrangian integral time scales for 
both motions. The persistence in the motion during the passage of the coherent structures will 
be large enough to remove all the wandering particles exposed to it from our domain of 
interest (the canopy air layers) to a height far above the canopy. The life cycle of a coherent 
structure is longer than the time required for the particles to be displaced to far above the 
canopy. The particles displaced upwards will be diluted. A consecutive structure will bring a 
volume of air from higher up to the canopy which has a lesser concentration. The probability 
of a particle displaced upwards to return to the canopy air space will be dependent on random 
motions. The result is that it is highly improbable that all the displaced particles are returned 
back (Entropy Law). So the effect of a coherent structure on the concentration is not forgotten 
(irreversible). 

D' 

Fig. 3. 21b shows the independence in the motion of the particles motion at point A and B.. 
The resulting joint probability distribution. 

The persistence in the motion term in the Langevin equation is representing the effect of 
the memory of the particle on its motion. The effect of the gust process is included in an 
approximate form on the motion of one particle through the generation of its initial velocity, 
according to some probability representing the occurrence of extreme events. The effect of 
coherent structures on correlating the motions of different particles, released at different 
heights and different times which are separated by time intervals much larger than T L , is not 
included. 

Now, we will discuss the behaviour of the flux as a function of time according to the 
above given picture. The flux at a certain boundary between two layers will be due to the sum 
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of component fluxes. Each is determined due to the dispersion, in the vertical, of the particles 
constituting a certain plume or cloud. The instantaneous flux then at a certain boundary 
between layers could be expressed as a time integral for of an ensemble average. The time 
integral is done for different sources with different times-since-release while, the ensemble 
average is done for a large number of source releases which have the same time-since-release. 
The instantaneous flux will be a superposition of different fluxes having different times since 
release i.e. a superposition of eq.4.2.9.a. Each component flux (qi) has its own diffusivity, 
which is developing as a function of time as given by the term inside the square bracket in the 
integral on the left of eq.4.2.9.a. The concentration gradient in eq.4.2.9.a is a concentration 
gradient resulting from the concentration field due to sources which have the same time since 
release. The integration of eq. 4.2.9.a leads to eq. 4.2.9.b , which expresses the development 
of the instantaneous flux as a function of time due to the effect of plumes from sources far 
away being convected to the point under consideration. The mean flux is given by averaging 
eq.4.2.9.b. 

qi=wc w ^ T L 

tQ-tl 
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dz 
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(4.2.9.C) 

In the flux equation, there will be also a near field flux plus the far field component. 

3.7.3.1 WHAT IS THE PROBABILITY OF RANDOM WALK MODEL RUNS 
CREATING SUCH CORRELATIONS ON ITS OWN ? 

In random walk models, we run random experiments on different particles emanating at 
different heights at different times and then we sum the results of all these experiments as an 
ensemble average. We assume that this is equivalent to the time mean of running these 
experiments on particles released at different heights at the same time. The two main 
assumption behind this, are: that the scales of motion responsible for the dispersion of the 
scalars are small compared to the vertical distribution of the sources, and that these scales are 
not correlated in their motion. These two assumptions lead to the validity of the independent 
probabilities of distribution of the dispersing particles from different heights for elementary 
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sources. In every time step of all the experiments, we expose the particle to a random motion 
generated by a random number with a gaussian distribution and a certain variance. In a 
certain time step (let us say n) for one realization, the particle could be exposed to an extreme 
random number which, when multiplied by the variance and summed with a mean, leads to 
an expression of an extreme event. In another realization on a neighbouring particle, which 
starts at time zero and progresses till t » TL- In the same time step (n) as for the first 
realization, if the random number generator has generated the same random number as for the 
first realization, that would mean that there is at this moment a correlation between the 
movement of particle 1 and particle 2. This would have expressed the fact, that the length 
scale of extreme events (i.e. coherent structures of our interest) is much larger than the 
canopy height or much larger than the source distribution with the canopy. In this case, we 
would obtain a correlation between the movement of the particles at different heights. The 
coincidental occurrence in a random walk model of two extreme events at two heights is 
equal to the probability of occurrence 1 * probability of occurrence 2, since both runs of the 
random number generator are independent. This will even be less probable for a case of 
several heights. If the random occurrence of extreme events at two different heights has a 
time lag of t steps, where t: 0- x, where x is very large number, there will be a decay of the 
correlation of the particle motion and we will have from the summation independent 
realization of the flow. The chance of coincidental occurrence of extreme events at the same 
time step at several height at independent runs of a random number general is extremely low. 
It is equal to the multiplication of all the probabilities of occurrence at different heights. The 
increase in the time lag between the occurrence of the extreme events in the independent 
realization of the random experiment will lead to the disappearance of the correlation in the 
displacement of the particles at different heights. This will lead to a difference between the 
total sum of all the independent realizations. 

In the case of an extreme events passing through, we use a T L value which is quite 
small. It leads to the decay of the effect quite rapidly. 

The physical picture of what happens in a plant canopy due to a coherent structure 
intrusion, and how a flux is generated, is completely different from results of a random walk 
model. In the latter, we get a counter-gradient transport on the mean due to the superposition 
of near field dispersion on the far field dispersion. This also happens in real life, but that is 
not the whole story. The flux resulting from the passage of a coherent structure is due to the 
positive W'C' during both its ejection and sweep phases, which is resulting from collective 
motion of particles. The probability of this process, or something similar, within a random 
walk model is quite low. The diffusion of the particles in random walk is assumed to be due 
to the sum of persistence component and a random motion component for a large number of 
independently moving particles. It is a completely different mechanism. 

In random walk models, the sequence of events is not considered. This is due to the fact 
that we assume ensemble averages are equal to time averages. We forget about the 
correlations of the motions at different heights, which play a role in the time averages but 
which become randomly occurring with very little probability in the ensemble averages. 

It seems to me that the reason behind the failure of K theory approach, i.e. the length 
3c scale of transport is much larger than the scale of —̂, is the same which would lead to a 
dz 

88 



failure of random walk modelling, since this large length scale transport is quite large 
compared to the source distribution within height. That would lead to non independent 
movement of the particles at different heights. 

Time direction 

t= tO +2 dt 

Fig. 3.22 shows what happens in reality in a certain time step due to the existence of 
coherent structures and the following build up. 

The assumptions in random walk models could be valid only in the quiescence period. 

To reduce the amount of particle dispersion during the quiescence period, we have to 
reduce the value of GW used in the simulation of the build-up of the temperature and vapour 
pressure. That will exclude the occurrence of extreme events during the quiescence period. 
That will lead to smaller absolute values of the initial velocities. Use of smaller T L will lead 
to more effect of the random component on the dispersion. 

Here, I would like to quote what G. I. Taylor wrote in his original article (1921), page 
176: "The migration is still a discontinuous one, however. It suffers also from the 
disadvantage of depending on a special assumption, namely, that there is a definite 
correlation between the direction of motion in one infinitesimal element of path, and that in 
its immediate neighbours, but there is no partial correlation between the directions of motions 
in paths which are not neighbours. " I think this is in complete agreement with what has been 
said here. The objections to the theoretical proof by Lamb (1980) which states otherwise, i.e. 
that his derivation is free from any restrictions has been outlined in Appendix 1 .b. 
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CHAPTER 4 

THE INTERACTIONS BETWEEN THE SOIL AND THE CANOPY: 
MODELLING* AND MATHEMATICAL ANALYSIS** 

In this chapter, the assumptions used for modelling heat (sensible and latent) and mass 
exchange between the canopy air space and the soil will be covered. A mathematical analysis 
will be made about the effect of intermittency on the dynamical behaviour of the canopy soil 
system. We will cover several points: 
1 ) An introduction about the interaction between the plants and the soil and the systems of 
equations solved to simulate that interaction. 
2) The time scales of intermittency within the canopy soil system and the effect of this 
intermittency on the mean temperature and vapour pressure profiles of the air, on their 
evaluation and on the evaluation of mean sources and sinks within plant canopies. An 
analytical analysis of the system of equation, used to describe the canopy-soil system will be 
given. An analysis of the dynamical behaviour of the canopy-soil system under different 
situations will be carried out. An analytical analysis of the intermittency effect on the soil heat 
flux (G) and its integration will be given. 
3) A quantification of the correlation between intermittency of transport and the non radiative 
energy sources within the plant canopy represented by the plant leaves and the soil. 
4) The assumptions used in solving the energy budget equations for different soil layers. 
5) A model for the water uptake by plant roots. This model was used, among other things, to 
quantify the effect of plants as sinks of water within different soil layers and to calculate the 
leaf water potential. These sinks were included in an equation to describe water flux between 
soil layers. We consider the effect of soil water potential on stomatal resistance as suggested 
by Tardieu et al (1993) and Tardieu and Davies (1993). 
6) The coupling between heat and water transport, gas flux and the soil resistance to vapour 
flux under drying conditions. 

4.1 THE INTERACTION BETWEEN THE PLANTS AND THE SOIL AND THE 
SYSTEMS OF EQUATIONS SOLVED TO SIMULATE THAT INTERACTION* 

4.1.1 The interaction 

The interaction between the plants and the underlying soil occurs mainly through four 
different means (arranged in the length of the process time scale) 
1 ) The plants reduce the input of short wave radiation to the soil surface through shading. 
They also increase the long wave radiation down. Both of these effects lead to a modification 
of the radiative energy input to the soil (chapter 2). 
2) The above-ground plant parts affect the turbulent transport regime within plant canopy. 
They induce the formation of coherent structures, which have a length scale as large as the 
canopy height and which are intermittent in nature. They also act as sources of non-radiative 
energy. The former effect leads to a modification of the turbulent exchange coefficient 
between the canopy air space, the soil surface and the layer of atmosphere above. A 
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modification of the mean temperature and vapour pressure profiles results. These two effects 
lead to a modified relaxation, i.e. a different ratio of the partition of the radiative energy 
absorbed by the soil surface into sensible, latent heat and soil heat flux. Superimposed on this 
scale of intermittency is the scale of coherent structures, which is induced by the forcing of 
the vegetated surface as a whole on the PBL (Planetary Boundary Layer). The resulting 
formation of much larger turbulent coherent structures exerts a large effect on canopy flow. 
These large coherent structures, with a scale as large as the PBL height, have a lower 
frequency and larger duration than the ones induced dynamically by the shear at the canopy 
top. These two kinds of coherent structures affect the temperature, vapour pressure of the air 
and the sources within plant canopies. They also modulate the flux between the canopy and 
the layer of air above. 
3) The plants act through their roots as sinks for H2O with different strength within different 
soil layers, thus affecting the thermal and moisture characteristics of the soil and the heat, 
water and vapour flux between soil layers. They modify then the thermal and moisture 
regimes of the soil, which affects the plant surface resistance for latent heat exchange through 
its effect on the stomatal resistance (sect. 4.5). The soil moisture and thermal regimes also 
control its salt regime, which controls the ionic environment of the plant roots. This would 
affect the plant productivity or chances of survival through shifting the environmental 
conditions into less favourable regions of their domain of existence. 

4) The plants supply the heterotrophic microbial population with sources of energy (organic 
carbon) in the form of root exudates and root and plant residues, which in combination with 
the contribution of other micro-autotrophs form the source of chemical energy for soil 
heterotrophic micro-organisms. This interaction alters the soil physical and chemical 
properties. 

The second effect has been covered partly in chapter 2 through the quantification of the 
canopy sources and sinks for sensible and latent heat. In chapter 3, we considered the 
behaviour of the coupling between the canopy and the layer of air above. The limitations 
imposed by intermittency of turbulent transport on the available approaches used for 
simulating heat and mass transport within and close above plant canopies were considered. 
An intermittent approach was thus formulated to consider the effect of intermittency on heat 
and mass transfer within this system. A numerical implementation of this approach was used 
to model the behaviour of the soil canopy system (chapter 5). In this chapter, we will consider 
the effect of coherent structures on the mean source and mean scalar profiles from a 
theoretical (analytical or semi-analytical) point of view, and the difference between an 
intermittent and non intermittent approaches in simulating these profiles. We will also 
consider the effect of this difference on the soil heat flux and the soil temperature profile. We 
will also cover the modelling of the plants effect on the soil surface resistance through its 
effect on the moisture regime of the soil and the feedback from the soil on the plant stomatal 
resistance (the second effect mentioned in point 3 above). 

4.1.2 The systems of equations solved to simulate that interaction* 

Quantification of heat and mass transport through any media, whether soil or air, 
requires the formulation of the appropriately averaged transport equations, the proper 
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parameterization of their coefficients, and solving these equations under a certain set of initial 
and boundary conditions. For a dynamic simulation, these boundary conditions have to be 
updated. For soil layers, we need to know the boundary conditions at the top and the lowest 
soil layers plus the initial conditions below the soil surface. The above soil surface boundary 
conditions are the radiative energy input at the soil surface which constitutes the forcing term 
and the temperature and vapour pressure of the first air laver in contact with soil as a function 
of time. These last two state variables, in combination with the value of the convective heat 
transfer coefficient between the soil surface and first air layer, form the necessary above-
surface parameters needed to calculate the partition of the available energy at the soil surface. 
These variables tend to relax the forcing term and determine the soil heat flux (G). A known 
flux boundary condition, or a flux specified via a heat transfer coefficient and the temperature 
and vapour pressure of the air, could have been used. These boundary conditions are usually 
not known, while they have a strong feed back from the simulated system on them within a 
time scale as the one we are interested in. So, a high degree of resolution and a small time 
step is required. 

For the canopy subsystem, the same boundary conditions at the soil canopy interface 
are needed to know the amount of sensible and latent heat flux which the soil contributes to 
the canopy air space. In this way, the soil and the canopy air space represent two coupled 
subsystems. Lack of knowledge of these boundaries makes the partition of the available 
energy at the soil surface unknown, and so the amount of available energy which goes to the 
soil as heat flux (G) 

A better way is to treat the canopy and the soil as one system and then solve for the de
coupling at the interface (sect. 4.4). The boundary conditions are then defined at e.g. twice the 
canopy height and deep enough into the soil, where the temperature of the soil is known as a 
function of time with a good degree of accuracy. Our soil-canopy system would then have no 
feedback on the boundary conditions, at least not within the time scale in which we are 
interested. 

The problem in solving the coupling then is to define the spatial translation of the 
boundary conditions from screen height to the soil surface, taking into account the shift and 
the damping or the deformation which these boundary conditions suffer in their spatial 
translation downwards toward the soil surface. The spatial translation of the radiative energy 
input from measured values at screen height to the soil surface is done by considering the 
extinction of the short wave radiation profiles and the increase of the down welling long wave 
radiation due to the leaf temperatures through the canopy (chapter 2). For the determination 
of the temperature and vapour pressure of the air, solving the canopy turbulent transport 
equations taking into account all the possible sources and sinks and their time variations 
(chapter 3) is done. 

Once the amount of soil heat flux (G) is known, it is used as a heat flux boundary 
condition for the soil layers or as an extra source in the equation of the first soil layer to 
calculate the soil temperature profile. Evaporation or condensation from different soil layers 
due to water vapour flux divergence represent sinks or sources in this equation. The 
conductivity coefficients for conductive heat flux are determined from the soil texture and an 
initial soil moisture content according to De Vries (1963, 1975). These coefficients are 
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updated for different time steps as the soil gets drier. The conductivity for water vapour flux 
are determined from a tortuosity model as given by Millington and Quirk (1961). 

The amount of evaporation from the soil surface is used as a flux boundary condition in 
the soil moisture flow equation. Evaporation or condensation and water uptake by plant roots 
from different soil layers go as sinks or sources into this equation. The conductivity 
coefficients for water are calculated from Van Genuchten's model (1980), if valid, or from 
fitted functions for K(9) or K(hm) functions where K is the soil hydraulic conductivity as a 
function of moisture content (0) or matric head (hm). 

The amount of water uptake by plant roots is calculated from a system of equations 
describing the water flow through the plant. For initializing this system of equations, we start 
at dawn and assume, that plants could have recovered during the previous night from water 
stress developed during the previous day. We could then assume that water potential is the 
same as that of the soil at dawn. We use the calculated latent heat flux from the leaves, 
imposed on the leaf surfaces at different layers in a mass flux form, as a known water flux 
boundary condition. The soil moisture potential at different soil layers is used as a lower 
boundary condition (a known water potential boundary condition). The calculated potential 
difference between the soil and the root at different depths is used, in conjunction with the 
soil, root and contact resistances, to calculate water uptake from different soil layers. These 
latter terms go as sink terms in the water transport equations. It is assumed that the soil 
moisture has a larger time constant than that of the plant water simulation. The amount of 
water taken up by roots at different soil layers, during one time step of simulation, will not 
affect the soil water potential. We can then use the soil water potential as a boundary 
condition for the solution of the plant water transport equations during our time step of 
simulation. 

The whole system of equations is coupled and solved implicitly, using the values of the 
conductances as updated from the values calculated at the end of the previous time step. The 
validity of this assumption depends on the sensitivity of conductance changes to state 
variables changes within the time step of simulation. 

4.2 Intermittency in the Canopy Soil System** 

In the Canopy Soil System, there are several scales of intermittency superimposed upon 
each other. The existence of these scales of intermittency and the ability of some system 
components (here the leaves and the soil surface) to respond to them determine the dynamical 
behaviour of the system. Intermittency is defined as a change in the value of one of the 
forcing or driving, relaxing and state variables which control the system behaviour. This 
change could be gradual or sharp depending on the way time is scaled. Some scales of 
intermittency are self-induced and have a quick feedback on the canopy system, e.g. 
dynamically induced coherent structures. Others are also self-induced but have a slower 
feedback on the canopy soil system, since it requires a mechanism of interaction from a 
neighbouring system with a larger time constant, e.g. large coherent eddy structures in the 
PBL above the canopy. Others are externally imposed and could have been self-induced, e.g. 
cloudiness. The daily cycle of extraterrestrial radiation is completely externally induced. For 
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the canopy soil system (fig. 4.1), the forcing variable is the shortwave net radiation, Rn,short* 
and the long wave radiation, L(z,t), energy load on the plant surfaces and the soil. The short 
wave radiation loading as a function of height (z) and time (t) has different scales of 
intermittency superimposed upon each other. These constitute the total functional behaviour 
of this driving variable. The diurnal cycle of radiation superimposed on it changes by 
different degrees of cloudiness or leaf flutter are some examples. Cloudiness intermittency, in 
the time scale we are interested in, is difficult to handle because its time scales are not known 
and, moreover, it does not have a semi-deterministic form similar to that of the large scale 
turbulent transport. A good representation of the radiative energy input is done by updating 
the incoming short and long wave radiation on regular intervals for clear or overcast skies. In 
other cases, updating a measured incoming short wave radiation signal, once an intermittency 
is detected, could be used. The independence of the interaction of the plants with the short 
wave radiative field, from the final solution (temperature and vapour pressure of the air), 
gives good enough time dependent representation of the short wave energy load Ls(z,t) on the 

leaves and the soil. This represents o c r R s i A r in eq.4.2.1, which is the energy budget 
equation for the leaf surface. The net long wave radiation load is the second term in this 
equation. Leaf longwave emission, sensible and latent heat flux from the leaves to the canopy 
air layers, and their time variations, would depend on the time scale of variations of the 
temperature and vapour pressure of the air and also on the variation of the convective latent 
and sensible heat transfer coefficients between the leaves and the surrounding air (rD and rs). 
The state variables of the air have, in addition to the diurnal time scale, an extra time scale of 
intermittency due to turbulent transport playing a role in the transport of sensible and latent 
heat and no role in the transport of radiative energy. So, for energy partition at the leaves and 
the soil surface, H(z,t) and LE(z,t) will have a different time behaviour from L(z,t). The scale 
of intermittency in the temperature and vapour pressure of the air within the canopy, due to 
turbulent transport, is controlled mainly by; 

1 ) the space distribution of the turbulent structures, and how they are convected around in the 
flow field. This controls, in a certain point in the flow field, the time distribution or the 
occurrence of these coherent structures and the active length scales of the turbulent transport 
mechanism and so the time variation of the fluxes 
and partly by: 
2) the source variation or the source response to this intermittency. 

The former tends to mix and move air around leading in the process to scalar quantities 
transport. This transport has a quasi-deterministic form or periodicity that achieves most of 
the transport of these quantities between the canopy and the layer of atmosphere above. The 
induction mechanism of these scales has been briefly discussed in chapter 3. The spatial scale 
of the mixing processes is quite large compared to the canopy height due to the large length 
scale of these coherent structures. This introduces mixing across regions where there exists a 
large difference of these state variables. This leads to a rapid change in the temperature and 
vapour pressure of the air. The rapid replacement of air parcels within canopy air space 
represents a rapid change in the turbulent transport coefficient. The resulting rapid variation 
in the time rate of storage change of these scalar quantities within canopy air layers represents 
a rapid time change of the flux of these scalar quantities between the canopy air layer and the 
layer of air above. This change of storage affects the partition of the absorbed radiant energy 
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at the plant and soil surfaces. The change of storage is shown in fig 4.1 by the curves in the 
rectangles representing air layers. This storage change depends on the time scale of 
temperature and vapour pressure changes, their duration and the ability of the leaves to 

Boundary conditions at screen height 

Rshort =f(t) 

Tair =f(t) — 

eair=f( t) 

layer 1 

Fig 4.1 A schematic outline which shows the different subsystems and their forcing, relaxing 
and state variables and their scales of intermittency. The amount of energy which is 
delivered by the leaves and the soil to the air layers are evacuated by small scale resistance 
(rlocal) and a large scale one (r gust) representing the effect of coherent structures. The rest 
of the symbols are given in appendix 3. 
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respond to such changes. This ability of the canopy sources to respond to such changes and 
the coincident reduction in the turbulent transport between the canopy air space and the layer 
of air above during the quiescence period, see sect.3.6.2, lead to a significant increase in the 
storage of the scalar quantities during the quiescence periods. These last two factors will 
relate to the ratio of D'/Dmean a s w e shall see later (sect 4.2 or eq.4.2.104). This storage 
change i.e. build up will modulate the sources again. This interaction between the sources and 
the storage change represents a correlation between the sources and the temperature or vapour 
pressure, which we smear out when we average with a time interval larger than the coherent 
structures cycle of intermittency. 

In fig 4.1, an intermittent signal at screen height is also detected at lower levels. That is 
due to the large scale coherent structure bringing air from much higher heights than screen 
heights with different temperature and moisture content. Even if the coherent structures were 
bringing air from screen height only and not from further up, the difference in the temperature 
and vapour pressure profiles within depth, due to the variation in source distribution, would 
lead to the appearance of an intermittent temperature and vapour pressure signal at lower 
depths. 

From the previous discussion, the following questions arise, which have to be 
answered: 

l.a) Will the resulting variation in the short-time averaged energy partition at the 
soil surface and the leaves lead to an appreciable integrated effect in time, on the mean 
temperature and vapour pressure of the air, in comparison to a large-time averaged 
model (the gust process is either absent, i.e. first order closure model, or implicitly 
accounted for, i.e. second or higher order closure models) ? 

or equivalently: 

1. b) Does intermittency have an effect on the evaluation of the mean sources and 
sinks within plant canopies? Or equivalently: Does the mean concentration profile differ 
due to the gust effect? 

lc) Is the use of a large-time averaged Km value equivalent to a fluctuating Km 

value with the same mean? or in other words; is the system linear? 
l.d) Under what condition is the difference between an intermittent and non 

intermittent approach significant (more than 10%)? 

Equivalently, in the case of a large-time averaged model: 

2.a) Does the source build-up correlation affect the evaluation of the large-time 
averaged mean source or profiles within plant canopies? 

2. b) Do normal (large-time averaged models) approaches consider this effect? 

3) What difference does this make on the soil heat flux? The latter, when 
integrated, controls the soil temperature profile, and the question is extended to: 
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4) What effect does the introduction of an intermittent model have on the mean 
temperature of the soil and the air layers? 

In general, there are two methods to answer the above given questions quantitatively 
either: a) Numerically or b) Analytically or semi-analytically: 

a) Numerically by formulating a complete numerical soil-canopy turbulent transport model in 
which the interaction between the different components of the system is considered. 
Depending on the level of detail of simulation, a detailed description of intermittency could 
be included in the model and then numerically integrated or an implicit account of 
intermittency is followed. 

For the detailed consideration, an intermittent model has been introduced. The effect of 
intermittency in the gust model could be considered by allowing the turbulent transport 
coefficients to vary as a function of time and/or introducing intermittency as a step function in 
the state variables of the air. One would then observe the long time behaviour of the 
simulated model, represented by the soil temperature profile and soil heat flux, under 
different assumptions. These assumptions would concern the time behaviour of the turbulent 
transport coefficients. 

The implicit or less detailed approach or continuous approach, on the other hand, is 
done by assuming certain forms of the correlations between the different components of the 
system which result due to intermittency and include these within our less detailed model. 

The distinction between these two simulation methods can be stated briefly as 
follows: In simulating any dynamical system, there are many scales of intermittency. If 
any of these scales has a correlation with a behavioural aspect of one of our system 
components within a time scale less than our step of simulation and which in the 
considered mean does not sum up to zero, we have to: * 
1) find a way to include or evaluate the effect of this intermittency behavioural aspect 
correlation on the large-time averaged set of equations used to describe the total system 
behaviour 
or 
2) reduce our time step of simulation and take account of the correlation explicitly. 

Now, as we talk about the time mean, is it the five minutes mean or the fifteen seconds 
mean? The mean value is just a matter of definition, keeping in mind satisfying equations 
3.5.1 a,b. In a large-time interval averaging (5-15 minutes mean), the temperature change due 
to the gust effect will be represented by a deviation from an assumed or a measured mean. In 
a measured data set, the time mean for a certain interval is well defined. In a simulation trial, 
the agreement between the simulated and measured mean values of the state variables of the 
system depends on the correctness of the assumptions used in the modelling process and the 
sensitivity of the model output to these implemented assumptions. In a large-time averaged 
model, we need to simulate the corresponding time mean right by putting in and correctly 
parameterizing the effect of any missing correlations within our averaged time interval in the 
mean equation. The effect of such an assumption in simulating the mean could be quite 
severe. 
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In chapter 3, we have addressed this problem and introduced two other reasons than the 
source build-up correlations, mentioned above, for the introduction of an intermittent 
approach. The first is that, due to the nonlinearity of the equations and the nonuniformity of 
the terms behaviour within large-time interval averaging, a requirement for correct Reynolds 
averaging of the non-linear Navier Stokes equation is not met (Appendix 1 .A). The second is 
that intermittency leads to a problem with the correlation between the terms during our time 
step of simulation. The assumptions used to feed the resulting correlations back into the large-
time averaged solution, and to close the higher order terms in the Reynolds averaged Navier-
Stokes equation, are not met. Intermittency leads to inhomogeneities of these higher order 
terms which are not homogenized by going higher with the closure. Under such conditions, 
we do not have a theoretically valid large-time averaged system of turbulent transport 
equations to describe heat and mass transfer within plant canopies. An intermittent approach 
for describing heat and mass transport within plant canopies was thus introduced to take 
account of the intermittency and its correlation explicitly. 

The numerical method, especially the more detailed one, would allow for a precise 
implementation of different scenarios and studying their effect on the behaviour of the 
simulated system but this, most of the time, comes on the expense of reducing the visibility of 
the system behaviour. 
b) Analytically or semi-analvticallv by assuming certain simplifications which would allow 
solving a conservation equation describing a certain aspect of the canopy system behaviour. 
The analytical approach allows for better visibility of the system behaviour. The 
simplifications implemented should not reduce the system into idealistic cases, which would 
make the obtained solution of very limited use. On the other hand, not enough simplifications 
may produce a form of the equation which could be only solved by numerical methods. 

In this chapter, In sh'aa ALLAH, we will answer the above given questions (1,3 and 4), 
in a close to analytical form. This would give a more theoretical justification and insight to 
some of the results reported in sect.4.2 (The MATHCAD® runs). We will cover the 
assumptions used in the analysis. Question 2 will be answered by scaling of the different 
terms in the flux equations (sect.4.3) 

4. 2. a. DEFINITION OF THE PROBLEM 

Since the Penman-Monteith equation (eq.4.1.1) is linear in the vapour pressure deficit, 
D, assuming no feedback on the resistances (rD and rs) within a gust cycle, a different form of 
the variation from the D while keeping the same value of the D should give the same value of 
the mean source, i.e. eq.4.1.2 is valid. 

sRn +pCnDrû' 
XE= " P H (4.1.1) 

4 
s+Y 

D=E(D) (4.1.2) 

where D is vapour pressure deficit, D is its mean and E is energy in the form of evaporation 
(kE) or sensible heat (H). If a numerically detailed intermittent approach gives a solution 
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different from a continuous one, it must mean then that this is due to a different value of the 
simulated mean temperature and vapour pressure of the air, resulting in a different mean D. 

Maximum leaf area density 
corresponding with secondary 

height 

maxima of T, e and minima 

Intermittent Flux 
through that 
height 

Continuous flux 
through that height 

Temperature, vapour pressure Temperature, vapour pressure 

a b 

Fig 4.2: Comparison between an intermittent and continuous model approach. 

The consideration of the variation in the simulated D and T values at different heights due to 
the modelling approach, their feedback on the sources and the agreement with measurement is 
crucial here. The value of D and T close to the soil surface, in conjunction with soil thermal 
conductivity between soil surface and the layer below it, controls the energy partition at the 
soil surface and so the soil surface heat flux (G). 

A clear effect of intermittency on the mean sources or mean scalar profiles is that it 
allows transport of these scalars through a large-time averaged maximum or minimum by 
allowing intermittent discharges of the storage of these scalars below the height of that 
maximum or minimum. 

In the case of a gust model in comparison to first order closure model, a gust model 
maintains a flux through the secondary maximum or minimum by the use of the same 
mechanism. 

The height of this maximum coincides with the height of maximum light interception. 
In a first order closure model, a negative temperature or vapour pressure gradient is required 
to maintain an equivalent flux through that height. If we assume that the mean temperature 
and vapour pressure do not differ at that height for both models, this would mean a higher 
mean temperature and vapour pressure of the air in the lower part of the canopy in a first 
order closure model in comparison to a gust model. On the other hand, if we assume that the 
mean temperature and vapour pressure of the air close to the soil surface do not differ in both 
approaches, the same condition required to maintain an equivalent large-time averaged flux 
across the maximum leaf area density height, would mean a lower value of the temperature 
and vapour pressure of the air at the maximum leaf area density height in a nogust model 
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compared to the gust model. Both conditions (equality of mean concentrations at the soil 
surface and the maximum leaf area density) cannot be met at the same flux, fig. 4.2 

Coherent structures achieve a large fraction of the total averaged flux without a required 
local gradient. The buildup process which starts after the gust intrusion is due to the 
enhancement of the sources and the reduced turbulent transport coefficient. After a gust 
intrusion, the rate of scalar buildup is higher for maximum source height than for lower 
canopy parts. This can be shown from the values of the time constants for the different 
canopy layers and the equilibrium values of vapour pressure deficit with heights. These 
values, as given by eq.4.2.18, eq.4.2.19 and eq. 4.2.21, show us that the rate of vapour 
pressure deficit buildup or decrease (toward equilibrium values) will be higher in the highest 
leaf area density height. That leads to entrapment of the nonradiative energy below this height 
and a build up process begins. There will be favourable partition toward LE on the expense of 
H depending on D' being positive or negative, where D' is the vapour pressure deficit 
variation. D' depends on the value of the layer stomatal resistance being lower or higher than 
a certain value, as shown on the analysis in the following page or in sect.4.2.1.2. The partition 
variation (eq.4.2.83.a) below that height will control the development of D within time. An 
average value of D is given by the integration of eq.4.2.20. 

If we, as a result, accept fig.4.2.a as a mean concentration profile due to the gust cycle, 
a similar profile under a first order closure model means that the heat flux is toward the soil 
surface and all latent heat flux delivered from the soil surface to inter canopy air stream has to 
remain trapped below the maximum leaf area density height, which reduces the value of D 
close to the soil surface, as calculated from a nonintermittent first order closure. For a flux 
release through that height, a profile like that to the right in fig.4.2 has to develop. So, 
equality of fluxes and profiles can not be maintained between the two approaches. The 
resulting difference between the two approaches in the mean temperature and vapour pressure 
of the air will make a difference in the value of D and the energy partition at the soil surface 
and so the amount of (G) soil heat flux. 

An increase or decrease in the vapour pressure deficit of the air within depth depends on 

25iT-e' , being greater or less than zero respectively, e' here is e2-ei, where &2 is the vapour 

pressure at e.g. screen height and ei is the vapour pressure at e.g. soil surface or maximum 
leaf area density height. So is the case for T'. In the case of a first order closure model, el and 
Tj can be calculated, assuming a steady state solution. 

P k=\ Kh pcp 

e 2_ep J(Rn-G)/(l+ß)P=2^dz ( 4 1 4 ) 

iz=l p P )z=\ ^ 

where Kh and Ke represent mean time diffusivities. The decrease of mean vapour pressure 
Y deficit within height depends on ß <-. ß here represents an average partition of Rn on plant 

100 



surfaces for the whole canopy, which will show as a ratio between the averaged sensible and 
latent heat fluxes above the canopy top. 

= m = Y-Rn-pCpî5rIj<y ^ 

\E> s Rn +pCpDry 

where D is the effective mean vapour pressure deficit which the sources respond to. The rest 
of the symbols are explained in the list of symbols. In the case of first order closure, D is 
determined from the solution of eq.4.2.21 which represents the steady state solution, while for 
a gust model, its average is determined from the integration of eq.4.2.20. From eq.4.1.5, we 
obtain 

(Y*Rn - pCpDrf,1 ) < I (s Rn + pCpDrj,1 ) (4.1.6) 

dividing both sides by y*+ s and working it out as has been done by Chen (1984) and shown 
in the appendix (A.2.4) 

Y*Rn-YRn ^pCpD-h'+Y/spCpDrh1 ^ ^ 

y*+ s y + s 

pCPp 
h « Rn < _^j ( 4 1 8 ) 
rb +ocrs rb+ a rs 

From this expression, we see that for a decrease of mean vapour pressure deficit with height 
to occur, this requires 

rs R n < - ^ P - D (4.1.9.a) 
a s 

or 

r ^ ^ D " ( 4 1 9 b ) 

or a critical stomatal resistance is defined, above which there is an increase and not a decrease 
of vapour pressure deficit within height. So, if a coherent structure brings a parcel of air 
which has the same temperature and vapour pressure deficit as the air at a height twice the 
canopy height, and with a stomatal resistance responding to a large-time averaged mean 
values of solar radiation, vapour pressure deficit and soil water potential, this air has to attain 
equilibrium by reducing or increasing its vapour pressure deficit depending on the above 
inequality. Notice that Rn is also a function of height within the canopy. 
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In case of comparing a second order closure model to a gust model, the turbulent 
transport (2 order) equations (sect.3.6.c) contains a divergence turbulent transport terms (third 
order terms) which lead in their steady state solution to a gradient in the second order terms 
(fluxes or variances) within height. This is somewhat similar to assuming an extra source (+ 
or -) within different layers. The assumptions in the averaging and the assumed regaining of 
the lost information in the higher order terms have been discussed in chapter 3. 

If this can be ignored, an estimation of the effect of intermittency on the simulated mean 
of a large-time averaged second or higher order closure model can be shown by extending 
these models with a source intermittency correlation or source build-up correlation term and 
checking its effect on the magnitude of the assumed mean in a simulation model, or by 
scaling the different terms in the higher order equations. This is done in sect.4.3. 

4.2.1 A QUANTITATIVE TREATMENT**: THE NONLINEARITY OF THE 
CANOPY SYSTEM. 

4.2.1.1 THE EFFECT OF INTERMITTENCY ON THE CANOPY AIR SYSTEM** 

For the leaf subsystem, the system of equations used to describe the system is the 
energy balance equation (for derivation and list of symbols, see appendix 2 and 3, 
respectively). 

S1 =pÀv [(Xr R s i A , + 4eoTair,rad,a(Tair,rad-Tl) - ̂ ( T , - T a i r ) Ah 

P P ( e s (T a i r ) - e a )A l -—^- s (T!-Tair)Ai] (4.2.1) 
7(rbv+rs) ^ *"' ~ • y(rbv+rs) 

This equation can be put in the form of (appendix 2) 

^ -= -K l i T (T i -T l j e q ) (4.2.2) 

where 

l - i = K = P i-L + -J— + ! s i (4 2 3) 
1 1,T psCs thickness LrR r^, y(rbv+rs) 

where T\ j represents the thermal time constant of the leaves. 

T l 1 a r Rs-l T a i r ; r a d j 
T l ' e 1 - rX + _l_ + 1 s ]

[ pCp rR
 + r b h

T a i r 
LrR rbh 7(rbv+rs)

 J F (4.2.4) 

(es(Tair)~eair) + 7JZ. iTT s ^airl y(rbv+rs) ^ *"' «"" Y(rbv+rs) 
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Tl,eq= , , 1 , ^ + % ^ + ïït^+Ta+^ 
H [-L- + -L- + 1 s 1 P cp R ^>h 

LrR rbh T(rbv+rs) 

•*ikr ( B + D '+ D V*iÄ s '^'^ (425) 

Tl,eq represents the equilibrium temperature of the leaf i.e. the value of the leaf 
temperature under which a steady state solution of the energy budget equation is achieved. 
The different terms in the square brackets in eq.4.2.1, numerator of both eq.4.2.4 and eq.4.2.5, 
represent the effect of different terms within the energy budget on the equilibrium 
temperature of the leaf. These different terms represent the effects of the short wave radiation 
load, the long wave radiation load, the sensible heat flux from the leaf to the air and the latent 
heat flux from the leaf to the air on the leaf equilibrium temperature respectively. The last 
effect is represented by the last two terms. The equilibrium temperature of the leaf is a 
weighted mean of the radiative temperature of the environment and air temperature, 
depending on their relative conductances, plus the décrémentai effect of air vapour pressure 
deficit and an incremental effect of the short wave radiative loading (the first term has no 
resistance). All of these terms contain intermittency as we have discussed before, but the 
scales of intermittency are different. The intermittencies in the third, fourth and fifth terms are 
the ones we are interested in (i.e. due to coherent structures existence). 

T],eq and to a much lesser degree K^t are time dependent functions. Reducing our time 
step of integration and assuming a time separation between a small scale D' or T' and a large 
scale D" or T", the last two occur concurrently, the time dependency during one time step is 
weakened. An integration of eq.4.2.2 over a small time step, assuming close to constant 
values of these two parameters, could be done. The solution of eq.4.2.2 then follows: 

t t 
T, =T1>eq( 1 -e TIT) + TUni t i a le

 T1,T (4.2.6) 

T|,eq will be changing between different time steps due to changes in the third, fourth 
and fifth terms (i.e. the buildup of the temperature and vapour pressure of the air). The 
importance of T)eq is that it dictates the direction of leaf temperature change (see sect.4.2.2) 

For the canopy air subsystem, the temperature and vapour pressure of the air have a 
similar kind of equation (A.2.2). For the air temperature equation 

•*»£-&••<• <4'"' 
discretized with respect to space, it reads 
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PIT 
(4.2.8) 

The instantaneous flux at a certain boundary between layers, according to sect. 3.7, is 
expressed as a time integral for of an ensemble average. This is given by eq.4.2.9 

/•' 

qi+i : 

• 'Ens j . . , w c dti dt 
Mi 

w 2 T L | l - e xL 

top 

ac-j"5' 

az 
dt]dt 

.Jo 
(4.2.9) 

The contribution of the near field concentration to the whole concentration field will be 
always in the solution and it will lead to non-linearity in the superposition of the flux as a 
function of the transport coefficients or the concentration, since the behaviour of the transport 
coefficient is dependent on the time since source release, which is a classical result of G. I. 
Taylor in his original paper (Taylor, 1921). 

Inserting that expression (4.2.9.b) in equation 4.2.8, assuming a large-time limit 
behaviour leads to (Appendix. 2.2). 

3T air 
3t Ka,T

 T i + Ka,T Tair,eq (4.2.10) 

where 

a, T 

K, 
1_=K T = 1 t o p i Kbottom ,LAD Az 

A z \ ÔX tnn 8 X b c — r b h 
Hop bottom 

(4.2.11) 

1 air,eq (0 = 

K, top 

ÔX, top 
K, t 0P , Kbottom jLADAzI 

ÔX t op Ô X b o t t o m
 rbh 

-Ti+1 + 

^bottom 

o X b o t t o m 

K top , K b o t t o m | L A D A z ' 

5X t o p 8 X b o t t o m
 r b n

 ; 

Tj-1 

LAD Az 
rbh 

Kt0P , K b o t t o m | L A D A z | 

5X t o p 8 X b o t t o m
 r b h j 

Tl 

(4.2.12) 
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Tair,eq represents the equilibrium temperature of the air layer. This temperature is a 
weighted mean of the temperature of the air layer below and above and the temperature of the 
leaves in that layer. The weighting factors depend on the relative strength of the turbulent 
coupling between the air layers and the relative strength of the coupling to the source, 
expressed by leaf area increments and leaf temperature. The first two weighting factors will 
be called the turbulent transport coupling coefficients (symbolized as ftopt» flowert 
respectively). It is important to notice that Tair,eq is a linear function of the transfer 
coefficients between canopy air layers. 

The air layer has two time constants, one active during the gust intrusion and the other 
active during the quiescence period. 

The solution of the air temperature follows 

Tair=Tair,eqO-e xa,T ) + Tair,initiale xa,T (4.2.13) 

It should be mentioned that Tj-i, Tj+i and T\ are functions of time and not constants. 
Tair.eq is also a function of time. We assume an integration of eq.4.2.10 over small time 
intervals is possible. So, the solution is exponential in Km within small time intervals. For 
large time intervals, the whole solution could be proven to behave exponentially as a function 
of Km, but in this case, the behaviour of the solution within this large time interval is missing. 
For example, if the air is initially cooled and then warmed up due to vapour pressure deficit 
decrease, this behaviour will be missing in our solution. The importance of this is shown in 
sect.4.2.1.2.b.IIL2 

For the vapour pressure equation, 

^ = - K a > e e 1 + K a , ee a i r ; e q (4.2.14) 

where 

- J - = K =-L-
Ta,e a,e A z 

' K t°P , Kbottom ,LAD Azj (4.2.15) 
5X top 5X b o t t o m (rbv+rs) 

The solution of this equation is: 

t t 
eair~eair,eq( ' "e xa,e ) + einitiale xa,e (4.2.16) 

where 
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K, top 

"air,eq (0 = 

SX, top 
K, top ! ^bottom jLADMID Az 

ÔX t op S X b o t t o m (rbv+rS) 

e i+l + 

^bottom 
0 xbottom 

K t °P , Kbottom ,LAD Az 

ÔX top S X b o t t o m (rbv+rS) 

LAD Az 
(rbv+rs) 

K t °P , Kbottom ,LAD Az 

öX t 0p ô X b o t t o m (rbv+rs) 

es(T]) 

(4.2.17) 

The equilibrium vapour pressure (eair,eq)°f the air will also be a weighted mean of the 
vapour pressure of the air layers below and above, plus a contribution from the saturated 
vapour pressure at the temperature of the leaves. The first two terms represent the strength of 
the turbulent coupling of the vapour pressure in the air layer below and the air layer above to 
the vapour pressure of the layer under consideration. The first two weighting factors will be 
called the turbulent transport coupling coefficients for water vapour (symbolized as ftope> 

flowere)- The factor of the third term LAD A z r e p r e s e n t s the strength of the source and its 
(rbv+rs) 

effectiveness in coupling the vapour pressure of the air to that of the leaf. All the three vapour 
pressure terms in eq.4.2.17 are function of time, so eair,eq is also a function of time. The 
contribution of the es(Ti) to eair,eq depends on the relative weight of the corresponding 
conductance. es(Ti) is usually much higher than e\±\. The temperature of the leaves has a 
much larger time constant than that of the air layer. Notice that eair,eq value is a linear 
function of the transfer coefficients between the canopy air layers. 

For the vapour pressure deficit of the air, a non-steady vapour pressure deficit equation 
can be obtained, as has been done by Chen (1984) for the steady state situation. There is an 
assumption here concerning the possibility of using the source term for sensible and latent 
heat in equation A.2.2.1, A.2.3.1, as given by the Penman-Monteith equation. This expression 
is a steady state solution of the leaf energy budget equation. The effect of this assumption will 
be discussed in sect.4.2.1.2.b.III. The derivation is done by multiplying the temperature 
equation by (s) and the vapour pressure equation by (- y) and adding both equations. A further 
manipulation of the equation, as shown in appendix A.2.4, gives: 

^ - = - K D D j + K D D a j r , e q (4.2.18) 

where 

ta,D 
K D = 1 ( K t °P , Kbottom , LAD A z 

Az ÔX Hop 5X b l ottom r b+a rs 

(4.2.19) 
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The solution of this equation is: 

Dair - D a j r e q ( l - e Tajj) + Dajr)jnj(-jaie Tajj (4.2.20) 

where: 

D air,eq (t) = 

K top 

ÔX, top 
Kt°P , Kbottom | LAD A z 
5X top 5X b o t t o m r b+a r s 

Di+1 + 

LAD Az 
r b+a r s 

^bottom 

° ^bottom 

K t 0P , Kbottom , LAD A z 
ÔXtop ÔX b o t t o m n j+a r s 

KtoP , Kbottom , LAD Az 
5X top 5X b o t t o m r b+ars 

s a r s Rn 

Di-1 

pCP 

(4.2.21) 

where a = ( ). The equilibrium vapour pressure deficit of the air (Dajreq), as in 
Y+ s 

the previous two equations, will be a weighted mean of the vapour pressure deficit of the 
layer above and the layer below plus a fractional contribution, dependent on the value of 

LADAz 
rb + a rs 

from 

pCP 

s a r s Rn 

js a r s Rn 

pCP 

v 
y rs —

s— R 
b Y+s 

pCp 

in the same layer. This last term equals 

Y rsE( equ 
pCP (4.2.22) 

It is important to notice that equations 4.2.12, 4.2.17 and 4.2.21 represent the 
discretized steady state equation for the temperature, vapour pressure and vapour pressure 
deficit for a canopy air layer (i). Solving a system of n equations for n canopy layers where n 
takes the value of one or less for the first two equations, while it is greater than one for the 
third equation, represents the steady state profile for these three equations. 

CONCLUSIONS (4.2.1.1): 

From the analysis so far, 
1) We get four coupled partial differential equations, namely eq.4.2.2, 4.2.10, 4.2.14 

and 4.2.18, describing the behaviour of the canopy system, one for the leaves temperature and 
the other three for the air subsystem. There are several variants for solving the canopy leaf-air 
subsystem, which lie under two main combinations. These two combinations, each consisting 
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of three of these equations, can be used to describe the system behaviour completely with 
different degrees of accuracy. 

The first three partial differential equations (temperature of the leaf, temperature and 
vapour pressure of the air) constitute a complete set of equations which can be used to 
describe the dynamical behaviour of the system. In this combination, the equations for 
different layers are coupled through the solution of the last two equations (i.e. the profile 
solution) i.e. updating the values of Tj+i, Tj-i; ej+i and ej-i in the eair,eq ar>d Tair,eq 
equations. This description is more accurate, but more complicated than an alternative 
approach in which the linear dependence of the Penman-Monteith equation on the vapour 
pressure deficit is used. 

The other combination is the Rn equation, temperature of the air and vapour pressure 
deficit equation of the air. This last equation was derived by assuming a steady state solution 
of the energy budget equation, so it is less accurate than the first combination. 

Concerning the canopy layers, the first combination applies for all canopy layers, 
possibly with a modified interpretation of the coefficients, while the second combination 
applies for all canopy layers except the first air layer in contact with the soil layer. The first 
air layer has its own form of equation (Sect.4.4.2) 

2) One learns that the canopy air temperature, vapour pressure of the air and vapour 
pressure deficit approach asymptotically a steady state solution (Tair,eq> eair,eq a nd Dair,eq 
for temperature, vapour pressure and vapour pressure deficit of the air, respectively). After a 
large time interval (usually —~>3—>4) since the introduction of a disturbance to the system 

Tair 
equilibrium through the gust effect (a step function), the equilibrium solution (Tau-,eq, eaJr,eq 
and Dair,eq) is a linear function of the transfer coefficient between the canopy air layers, 
assuming no resulting feedback on the leaf temperature. In early stages of the solution 
development, the solution is behaving as an exponential function of the transfer coefficients 
and is not linear. The importance of this nonlinearity becomes less once a disturbance due to a 
gust is introduced and the system is left to attain equilibrium for a long period of time before 
a new disturbance is introduced. The importance of the exponential period contribution to the 
total mean is reduced. But, if the ratio of the inverse of the frequency of gust occurrence to 
the time constants of the canopy air layers is in the range of 0.5 to 3.0, the system will be 
always in the non-linear part of the solution. The effect of using a mean value of the 
Km(transfer coefficients) values is not the same as using a varying in-time value of Km, 
which has the same mean, during the whole period or during the lull (the quiescence) period 
if the ratio of length scales of transport to the source inhomogeneity is quite large. So, 

depending on the ratio of (frequency)" 1/time constants of the layer (-—), we have a 
x 

significant nonlinearity in the solution. In this model we assume two Km values (one during 
the gust intrusion phase and the other during the quiescence period), see sect.3.6.2. If the 
interval between the gust occurrences (inverse of the frequencies) is very small in relation to 
the time constants, the system will always be close to the initial condition and a linear 
assumption could be made due to e~x= ( 1 -x) where x=- . 

108 



What we are arguing here is that the solution of the mean in the case of the 
f-1 closeness of the J— ratio to one will not be a linear function of the transfer 
T 

coefficients (Km) . So, a mean value of Km does not yield the same mean 
temperature and vapour pressure profile as a varying, in time, value of Km which 
has same mean. Equivalently, the system is then nonlinear. This case occurs in the 
case of a non-stressed canopy (i.e. after irrigation) with moderate wind velocity at 
canopy height. If we assume the value of f~l is dynamically controlled, i.e. no 
thermal stability effects, its value will be dependent mainly on the friction 
velocity at the top of the canopy ,or, on U(h) divided by the canopy height, while 
the time constants of the canopy layer will be dependent on the contribution of: 1 ) 
the turbulent coupling between canopy layers through a local or short time mean 
Km and 2) the stomatal resistance (soil moisture stress dependent) to the value of 

f"1 

the time constant. An irrigation or a rain cycle contains the entire range of — 

ratios. So, the denominator in the above ratio is a variable term. The time 
distribution of irrigation or rain events will result in a canopy soil system, being 

f-1 in the different regions of the ratio -— with different time proportions. The 
x 

nonlinearity of the solution will always occur. This is an answer to lc mentioned 
above. 

3) The derivation of these equations, (detailed for sensible heat flux equation) shows 
that this nonlinearity is not only due to the near field effect, as suggested by Raupach et al 
(1989) or Finnigan (1985), based on Taylor's original paper (1921), in their criticism of the 
use of K theory approach to describe canopy turbulent transport processes. The nonlinearity, 
which we are considering here, is at least one order of magnitude larger than the near field 
effect. 

4) From eq.4.2.20 and eq.4.2.21, one learns that Dair,eq being higher or lower than 

Dair initial depends on the value of the third term in 4.2.21 ( §—D—) contributing 
pCp 

negatively or positively to Dair,eq i-e- being lower or higher than Dj+i or Dair,initial- These 
last two are equal just after the gust passage. Dair,eq being higher or lower than Dair,initial 
depends then on the following equality being satisfied 

rs(z) Rn(z) < D i n l ^ C p (4.2.23) 

So , if a parcel of air is brought into the canopy air space, which has a vapour pressure 
deficit and temperature not in equilibrium with the Dajrieq, then it has to be brought to 
equilibrium. This is in complete agreement with the result derived in eq.4.1.9. 

5) In spite of the apparent constancy or the non dependency of the ^—— on the 
pCp 

gust process, rs being a function among other things of the mean vapour pressure deficit 
(Jacobs, 1994), the value of the Daj req will be a function of intermittency since the weak 
coupling turbulent coefficients during the quiescence period will lead to an increase of the 
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fractional contribution of the third term in eq.4.2.21 to Dair,eq- So, the vapour pressure deficit 
will be heading toward a different ceiling than that of a no-gust approach. This point is also 
shown in sect. 4.2.1.2.b.III 

One question which arises here is whether it is possible that there would be no net effect 
of intermittency on the mean in spite of the nonlinear behaviour of the canopy state variables 
equations due to the change of the ceiling of these state variables, i.e. that the sudden drop 
and then the exponential increase to a value higher than the one resulting from a no-gust 
model would neutralize each other. 

That would require the value of the mean as determined by eq.4.2.24 or eq.4.2.58 to be 
equal to the value of the mean as determined by eq.4.2.21, with non-intermittent values for 
the turbulent transport coupling coefficient. Even if this occurs for a certain layer, the 
requirement of down-gradient or a co-gradient flux in a nonintermittent model, or the 
nonequality of the coupling coefficient lead to a deviation between the two approaches for the 
lower layers. 

Concerning the statement of the apparent constancy or the non-dependency of 

^—— on the gust process, rs is a function of the mean temperature, vapour pressure 
pCp 

deficit, as determined by equations given in sect. 4.5.3. Rn is also a weak function of the leaf 
temperature, so the increase of the leaf temperature will vent some of total absorbed radiation 
as a long wave emission and reduce the net radiation by 4aTabs for one K (5.7 Wrrr^K'l. at 
293 K). The incoming longwave radiation is not a function of the solution. A decrease in the 
outgoing longwave radiation represents an increase in Rn. This represents a cooling of the 
canopy elements, as seen by an infrared thermometer. So, for a Rn increase of 5.7 W m~2, a 
decrease of one degree K is required, which represents a lot of storage change. So, even if Rn 
is almost constant, the nonsteady state term in the energy budget equation is important as also 
shown in section 4.2.1.2.II.2. (page 127) 

The effect of the discussed above nonlinearity and the change of the equilibrium 
solution, due to coherent structures intermittency on the long term behaviour of the system 
shows through its effect on: 
1) the soil temperature profile by affecting the soil heat flux and its integration (sect.4.2.1.2) 
2)the mean temperature and vapour pressure profile of the air which could affect the 
physiological process within the plant by changing the values of GDD (Growing Degree 
Days). An integration of the latter could show in a pool of interest to us (i.e. a yield quantity 
or quality). 

We have proven that the vapour pressure deficit behaves nonlinearly as a function of the 
transport coefficients. The value of the mean vapour pressure deficit is given by eq.4.2.24 or 
by eq. 4.2.58. 

T=c n Atgust duration ^gust duration 4 t a n 4xaj) 
- U t°P period +Uequilibrium 11 — - j j ^ d ^ a v e r a g e period 

(4.2.24) 

The value of the time constant will be controlled mainly, for the quiescence period, by 

the value of LAD Az ;n r e ] a t j o n to the turbulent coupling in the quiescence period. If the 
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latter is assumed zero and in case of a canopy with LAI of 5 and rD of 50 sm" 1 and a stomatal 
resistance of 200 sm~' and a of 0.5 gives a time constant of 30 s. With a period of intrusion 
of 1.5 minutes, the canopy is in the nonlinear phase of the solution and a use of a large-time 
averaged Km is not the same as a variable in time Km value with the same mean. This gives a 
definite answer to question lc and lb. 

An advantage of the use of eq.4.2.18 in comparison to the three equations 4.2.2, 4.2.10 
and 4.2.14 is that the equilibrium solution is expressed as a function of Rn which is much less 
dependent on time. The other three equations have a larger time dependency due to the 
variability of the leaf temperature, air temperature and vapour pressure. So, an integration of 
the equation with a larger time interval is possible, but there is a loss of information due to 
assuming a steady state solution of the energy budget equation (sect. 4.2.1.2.b III.2). 

The use of the saturation deficit flux as defined by Perrier (1976) and Chen (1984) 
shows that 

J = H -(y/s) A.E (4.2.25) 

• ^ D j R n i 

J: = § — + üi1— (4.2.26) 
1 rb,i+ars,i } | HM 

r s , i« 

An increase in the air vapour pressure deficit, due to the gust intrusion, will lead to a 
decrease in the contribution of each layer Jj to the total flux of J. Using the other expression 
of cumulative saturation heat flux J (eq.4.2.25), shows that this is only possible by the 
increase of latent heat flux from the leaves to the air at the expense of sensible heat flux. So, 
there is a favourable partition of LE at the expense of H depending on the variation of the 
mean vapour pressure deficit with height. This variation is dependent on a critical Bowen 
ratio. The favourable partition of the LE/H is also shown in page 163 (eq.4.2.99). 

We will later see the importance of the variability of the time constants of the layer, 
Tair,eq and eair,eq on the solution (sect. 4.2.1.2: The MATHCAD® runs). 

4.2.1.2: THE EFFECT OF THE INTERMITTENCY ON THE SOIL TEMPERATURE 
PROFILE AND THE SOIL HEAT FLUX** 

4. 2.1.2.a. THE FORMULATION AND THE SOLUTION OF THE PROBLEM 

The soil energy budget equation: 

The equation of the soil surface energy budget is very similar in form to the leaf surface 
energy budget equation (4.2.1) except for an extra term expressing the soil heat flux into the 
lower soil layer. 

This equation reads as follows 
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[ctr R s l+ (eo'llir>rad>a-eoli,î 
9Ts(L,t)= A 

3t psCs V 

- ̂  (Ts-Ta) - P^P (es(Ts)-ea) - i < T s -TS,M)] (4.2.27) 

ß is the thermal heat conductivity (in W m~l K~') and Sz is the vertical distance between the 
centres of the uppermost layer and the layer below it. To obtain an analytical solution, this 
equation has to be cast into a boundary condition to our problem. 

ßL T ^ ' t ) = a r R s ^ + 4eGTair,rad,aTair,rad 3x 

pCp PCPS , PCP 

+(^+Ä^)Tair" Ä V D " (4-2-28) 

- ( 4eaT3ir raH „ + ?-^- + /
 P p S ^ )TS air,rad,a ^ y(rbv+rS!S)

 s 

The soil temperature, Ts, as function of space (x) and time (t) is formulated as follows: 

a l s _ = K^ i+Q(x , t ) (4.2.29) 
3t 3x2 

subject to the following boundary conditions: 

ß L ^ T ^ + ( X L T S ( L ) = f ( L , t ) (4.2.29a) 

dTs(°ti = 0 (4.2.29b) 

dx 

and the initial condition 

T(x,0) =g(x) (4.2.29c) 

where 

f(L,t) = a r RSI + 4eaTa\ ; rad;aTair ;rad+(^ + _ 0 A _ ^ . _ i ^ _ Daif 

(4.2.30) 

(xL=( 4eoT3jr raH „+ P-^- + , P p S J (4.2.31 ) 
L air,rad,a rbh y(rbv+rs s ) ; 
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Q(x,t) = 0 x < L and t > 0 (4.2.32) 

The first two terms in f(L, T) express the effect of the short and long wave radiation 
loading on the increase of the temperature gradient at the soil surface. The last two terms 
express the effect of the temperature and vapour pressure deficit of the air across the 
boundary layer of the soil clods on the temperature gradient at the soil surface. The effect of 
the soil temperature on the soil long wave emission, the latent and sensible heat flux from the 
soil to the air is expressed in the second term of (4.2.29a). For the other soil layers, the most 
significant energy flux, neglecting water vapour flux etc., is the conductive soil heat flux. 

These boundary conditions (4.2.29a and 4.2.29b) are of the third and second kinds, 
respectively. 

I f(L,t) 

Soil surface 

No flux 

x=L 

x=0 

Fig 4.3 The definition of the problem. 

The related homogeneous problem, which is given below, satisfies a Sturm-Liouville 
Eigenvalue problem and as such are complete, i.e. any piecewise smooth function can be 
expanded in a series of Eigenfunctions. The related homogeneous problem is expressed as: 

d24>n 
dx2 

+X$n =0 

ßL^f(L)+OCjJ)n(L)=0 

# n 
dx 

(0)=0 

(4.2.33) 

(4.2.33a) 

(4.2.33b) 

The Eigenfunction of the related homogeneous problem is 

( ( ^ C I C O S V A ^ x 

where 

VÄ^=cot(V>T hß+ 
ßL 

Cl is an arbitrary constant. 

(4.2.34) 

(4.2.35) 
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The temperature of the soil can then be expressed in the form 

T(x,t)= I bn(t)(»n(x) (4.2.36) 
n=0 

The problem now is determining the coefficient bn(t) as a function of time and the effect 
of intermittency on its value. This problem could be solved by the use of Green's formula to 
obtain the Eigenfunction expansion of the nonhomogeneous problem. The full details of the 
solution are given in Appendix 2.5. 

The coefficient bn(t) has a first-order ordinary differential equation which reads: 

db^t) + À n K b n ( t ) = KcoS(VÀnL)f(L,t) ( 4 2 3 7 ) 

fL 2 
(j)n(x)dx 

Jo 

ßL 

where 

J ^ = - L - (4.2.38) 
ßL PsCs 

Equation (4.2.37) is equivalent to 

d (bn(t) e^nKt) = c > u K t CQS( V^n L) f(L, t) ( 4 2 3 9 ) 

* [L 2 
Ps cs <t>n(x)dx 

JO 

The integration of this equation requires an initial condition for bn(0) which is obtained 
from the initial temperature profile according to 

I 
L 

g(x) <t>nWdx 

bn(0) = - 5 - (4.2.40) 

2 
0n(x)dx 

' 0 

The solution of eq. 4.2.39 is given by 

f 
Jo 
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bn(t) =t>n(0)e_ V « + e-XnKt e^n1" cos( Va,n L) f(L,x) 

Pscs 

dx (4.2.41) 
L 

O 

s <t>nWdx 

This completes the solution of the soil temperature profile as affected by f(x,t). The f(x,t) 
can be decomposed into two terms 

f!(L,t) = ocr R s l + 4€oTâr>rad>aTair>rad (4.2.41a) 

f2(L,t) = (?-2- H P pS
 s )Tair - _,

 P P Da i r (4.2.41b) 
iy rbh -Krbv+rS;S)

 mr 7(rbv+rs,s) ™ 

bn(t) =bn(0)e":)LnKt 

e-A.nKt cos(VX,n L) 

PsCs ^ + ^ T ^ sin ( A n L) cos(V?in L) 
2 2V^n 

/ ft n \ 
e^KXf l (L>T) d T + I e^nKtf2(L.T) dx 

Wo Jo / 
(4.2.42) 

T/ze physical interpretation of the solution: 

To study the physical behaviour of the solution, several remarks can be made: 

1) The soil temperature profile is expressed by eq.4.2.36. (|>n is determined from the solution 
of the boundary value problem under the given boundary conditions and is determined by the 
initial condition and is not a function of time. So, its space derivative is fixed in time. The 
effect of the change of the coefficients bn(t) controls the change within time of the soil 
temperature profile and of the soil heat flux. The time development of the solution is a 
function of bn(t) only. 

2) The equality, eq.4.2.36, can not be valid at x=L. since <l>n satisfies the homogeneous 
boundary condition while T(x,t) does not. But the derivative at a lower depths is allowed. 
Nonetheless, we use the notation = . where we understand that the ~_is more proper. 
3) The first term on the right hand side of eq.4.2.42 expresses the effect of the initial value of 
the coefficients of an Eigenfunction expansion of the soil temperature profile The first term, 
between the parenthesis in the same equation, expresses the effect of the short and longwave 
radiation loading on the soil temperature profile, fl(L,t). The second term expresses the effect 
of the temperature and vapour pressure deficit of the air across the boundary layer of the soil 
clods, f2(L,t), on the coefficients of this Fourier series expansion of the soil temperature 
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profile. These two terms have different scales of intermittency. The second one is the one 
affected by the existence of coherent structures in the layer of air above the canopy. 
4) It is important to notice that the effect of intermittency on the coefficients of this expansion 
expresses itself in the same way on all wave numbers. So the effect of intermittency needs to 
be studied on one component only. This is what will be done. 

5) The effect of previous intermittencies in f(L,T) dies out at a much faster rates for the higher 
wave numbers. 
6) To evaluate the effect of intermittency on the soil heat flux and the soil temperature profile, 
one needs to evaluate the effect of intermittency on the value of f2(L,t) and how this affects 
f(L,t). That effect shows directly in bn(t), as given by eq.4.2.42. Then, we need to do a scaling 
analysis of the different terms in f l(L,t) and f2(L,T) to see the effect of intermittency on the 
values of the boundary condition for the soil heat flux and how much that will affect bn(t). A 
direct numerical integration of eq.4.2.42 is also possible. 

4. 2.1.2.b. COUPLING THE SOIL TO THE CANOPY AIR LAYER 

I. Assumptions: 
There are three assumptions in the following analysis, 

1 ) The first soil layer has a much larger time constant compared to that of the total canopy air 
layer or the first air layer. The time rate of the soil surface temperature change is much lower 
than that of the canopy air layer. An assumption of a boundary condition for the solution, 
eq.4.2.29a, being decoupled from the soil surface temperature for small time interval, is thus 
valid. The effect of the turbulent transport intermittency of the canopy air, during small time 
intervals, could be checked. 

2) The temperature and vapour pressure of the air for the whole period between two gust 
intrusions follows an equation similar to eq.4.2.13 and eq.4.2.16, respectively. This can be 
shown from MATHCAD® (a mathematical software for programming and solving equations) 
runs (fig.4.17.c, fig.4.18.c and fig. 4.19c). In the derivation for these equations, an integration 
for a small time step was used. During this short time step, relative to the time constants of 
the canopy air layer, the values of eair,eq a n d T a j r ieq and Tair,ini a n d eair,ini in these 
equations are assumed constant. During the whole gust cycle, they keep changing as a 
function of time. This will affect the time rate of the air temperature and vapour pressure 
change for the total period. It will, in reality, be lower for the vapour pressure in earlier stages 
of the solution and keep increasing later. This will not change the exponential behaviour of 
the solution. This is the case for vapour pressure, as long as the temperature of the leaves is 
higher than the dew point temperature of the air. For the temperature, the air temperature 
could decrease and then increase depending on the vapour pressure of the air being higher or 
lower than a critical vapour pressure deficit as defined from Penman-Monteith equation. It is 
also assumed that deviations from steady state solutions are not of serious consequences for 
the scaling. 

3) The third assumption, which is not required for the calculation, but was implemented to 

obtain scaled values with a hand calculator in the following calculation, is that in eq.4.2.42 a 

multiplication of f(L,t) by e-̂ -n K(t-t) is required and then integrated. We assumed in the 
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following scaling, that it could be possible to use the mean of eq.4.2.13 and eq.4.2.16 during 
a gust interval, with a time period less than the time constant of the soil surface layer to obtain 
an accurate enough value for the scaled terms in f(L,t). 

All these assumptions could be disregarded in the case of the numerical model, since an 
updating of the state variables is possible. 

II. The scaling procedure for a one-layer canopy model: 
The analysis procedure is: 

1) An equilibrium temperature and equilibrium vapour pressure of the canopy layer is 
calculated. These are calculated according to eq.4.2.12 and eq.4.2.17 respectively. There is no 
vapour pressure deficit equation for the first air layer, since in the derivation of a vapour 
pressure deficit equation, flowere for the air vapour pressure and air temperature equations 
are not similar, so a common factor can not be obtained in step (A2.4.6). The analysis has to 
do then with the temperature and vapour pressure equations and obtaining vapour pressure 
deficit from their combined solution. 

Tair,eq = ftopt Ti+1 + flowert Ti-1 +flayert Tl,eq (4.2.43) 

eair,eq = ftope ei+l + flowere ei-l +Mayere es(M,eq) (4.2.44) 

In these equations, two approaches were used to calculate the coupling coefficients 
(flower,ftop o r flayerX either a parameterization according to a constant large-time averaged 
Km value or a Km value characteristic of the quiescence period as justified by the analysis 
given in sect.3.6.2. 

The Tj+i is the temperature at the upper boundary for the whole canopy and so is the case 
for the vapour pressure. Ti-i is the soil surface temperature and the lower vapour pressure is 
the saturated vapour pressure at the soil surface temperature. The required temperature of the 
leaves in the canopy were calculated from eq.4.2.4, in which the temperature of the air and 
vapour pressure of the air in the canopy layer were eliminated from the equation. This is done 
by substituting Tair,eq> eair,eq equations in eq.4.2.4. 

The equilibrium temperature of the leaves of the canopy are expressed as 

T l , eq =• 
i rocr Rs4 Taj r racj 
i r ' + — ! — e q , , f layer^ [±- + -L- + § ] PCP ^ 

ftop,T fbottom,T es(Tair,top) s _ ftop,e 
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During the gust intrusion phase, the air temperature and vapour pressure becomes equal to 
the temperature and vapour pressure above the canopy and this becomes the initial value in 
eq.4.2.46 and eq.4.2.47, respectively. The obtained values for the equilibrium temperature 
and vapour pressure of the air were replaced in the same equations to obtain the temperature 
and the vapour pressure of the air. 

t t 

Tair=Tair,eq(l-e Ta,T ) + T a i r j i n i t i a le
 Ta,T (4.2.46) 

eair=eair,eq(! "e X a ' e ) + einitiaie * a ' e (4.2.47) 

Two characteristic ratios (2 and 3 respectively) of the period between two consecutive 
gusts to the time constant of the canopy air were used in eq.4.2.46 and eq.4.2.47. An integral 
of these last two equations were used in the comparison between the effect of different 
parameterization of ftop, flower a n d flayer in f(L,t). 

In this analysis the canopy layer was assumed well mixed. This simplifies the calculation 
for the canopy layer. 

In the case studied, we used the following values for the different terms were used: 
a r R s4 for the soil is zero, for the canopy it is 200 Wm~2. 
Tair rad 10 °C for the canopy and for the soil 20 °C. 

Tair.top 
Tsoil 
etop 
rR 
rb,h 
rs 
rss 
Km 
Km 
Lad 

Az 

20 °C. 

21 °C. 

1500 Pa 
210 8 m-1 

100 sm"1 

200 sm"1 

200sm-l 
0.12 m^s" ' for a no gust model 
0.25(0.12) m^s'l for a gust model during the quiescence period 

3 m^m-' 

1 m 
The results of the different state variables, under a gust (intermittent) and no 

intermittent) approach, are given in the following table: 
variable 
Tl,eq 
Tair,eq 
ftop, T 
flower,T 
flayer,T 
ftop,e 
flower,e 
flayer,e 
eair,eq 

gust no gust 
32.95 26.53 
25.69 21.28 
0.429 0.75 
0.143 0.062 
0.429 0.188 
0.692 0.9 
0.077 0.025 
0.231 0.075 
2389 1673 
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23.23-23.9 
2005-2111 
114 
442 
556 

21.28 
1673 
114 
388 
502 
1.108 

"-air 

fl(L,t) 

f2(L,t) 

f(L,t) 
gust/no-gust 
forcing ratio 

The two figures, for the mean temperature and vapour pressure, in the gust model are the 
resulting mean values in the case of the quiescence period being twice or three times as large 
as the time constant of the canopy layer respectively. The comparison is done for the latter 
case. 

In this one-layer canopy gust model, the calculations show that due to the stronger 
coupling between the leaves and the canopy air in a gust model compared to a no-gust model, 
the smaller turbulent transport coefficient during the quiescence period, the resulting higher 
equilibrium temperature of the leaves and the large ratio between the quiescence period to the 
time constant of the canopy air layers, the mean temperature and vapour pressure of the air 
are higher in a gust model compared to a no-gust model. 

In this case, that led to an increase in the forcing on the soil temperature profile estimated 
to be by about 11%. This was due to a canopy layer which was assumed well mixed. The 
effect of the temperature and vapour increase was felt at the soil surface and so led to a 
consequent increase in the forcing; f2(L,t). 

Concerning the answer of question 4 about the effect of intermittency on the mean 
temperature of the air and the soil layers. For the air layers, the time constant is small relative 
to the time rate of change of the boundary conditions, so an integration of the effect could be 
shown easily by integrating over small time steps resulting in solutions such as eq.4.2.58. 
Concerning the soil temperature, the situation differs due to the time constant of the soil 
reservoir much larger than the time rate of change of the forcing function f(L,t) with its 
radiative and non radiative components. So, in fact there is no equilibrium temperature but a 
modified rate of the temperature change of the soil as affected by intermittency. The effect of 
intermittency on the mean temperature is obtained from evaluating eq.4.2.42 over large time 
intervals, but it is also shown how the forcing is reduced by following the effect of 
intermittency on the f2(L,t)/f](L,t). The effect of intermittency on the mean can be evaluated 
by the value of eq.4.2.36 and averaging. But this will require an integration for a large period 
of time. We have some results from an early version of the numerical model which shows the 
effect of intermittency on the mean soil temperature profile (see sect. 4.2.1.2). 

In case of two canopy layers, an upper one which has most of the leaf area density and a 
lower one which has a very low leaf area density, the situation would be reversed. This, we 
expect, is due to limited turbulent mixing, which would limit the turbulent transport from the 
top of the canopy down. Also, the low leaf area density in lower part of the canopy will lead 
to a low equilibrium temperature and vapour pressure of the air and restoration of equilibrium 
will require a longer period of time as can seen from eq.4.2.20. This will lead to the effect of 
the air, which has been brought by the gust intrusion from well above the canopy, to be felt at 
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soil surface, and a resulting reduction of the forcing with respect to no-gust model will occur. 
To prove this would require a more numerical model as done in the following section. 

CONCLUSIONS (4.2.1.2.B.ID: 

Before proceeding to study the effect of a two or n layers model, we notice some important 
results from the analysis of the one layer canopy model, 

1) We have seen from section 3.6.2, that most of the contribution to the large-time averaged 
Gw comes from events which occupy a very short period of the total time. During most of the 
time, a small fraction of the total a» variance is contributing to the small scale dispersion of 
the scalars within plant canopies. This leads to a higher coupling, during the quiescence 
period, between the leaves as sources or sinks to the temperature, vapour pressure of the 
canopy air layer. The equilibrium temperature and vapour pressure of the air at the end of the 
quiescence period would have a higher value for a gust model compared to a non-intermittent 
model. We have seen from section 4.2.1.1, that a mean Km value does not lead to the same 
temperature and vapour pressure as a fluctuating Km value which has the same mean because 
of the exponential behaviour of the equations. In here, we see that the stronger coupling 
between the leaves and the air layers lead to a higher equilibrium vapour pressure and 
temperature of the air. 
2) The values of the variation of the forcing, due to the existence of the coherent structures, 
are significant. In this scaling analyse, we are interested in approximate values to show the 
importance of the gust process on the behaviour of the system. Detailed numerical modelling 
is done in chapter 5. 

III. A scaling of a two to n layers model: 

1. The Approximate form : 

In here, we are interested in obtaining the effect of intermittency on the mean 
temperature and vapour pressure deficit of the air, and use this to scale the effect of 
intermittency on fi(L,t)/f2(L,t) functions. In the case of a multi-layered canopy (two to n 
vegetation layers) and the layer of air above the canopy, it is not possible to obtain a complete 
elimination of the temperature and vapour pressure of the canopy air layers, as has been done 
in eq.4.2.45 for the one layer canopy model. This means that we have to find a way to solve 
the canopy equation and scale the effect of intermittency easily. 

In Section 4.2.1.1, four equations were derived which could be used to describe the 
canopy behaviour completely. Two combinations, each consisting of three equations, could 
be used to describe the canopy behaviour with different degrees of accuracy. We will use 
these two combinations to scale the effect of intermittency on the average temperature and 
vapour pressure deficit of the air. This is done through the effect of intermittency on the 
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values of the coefficients of the inverse matrix A"* of the coupling coefficients matrix A 
between different canopy layers. 

We will start first with the less accurate combination, the vapour pressure deficit 
combination and show how this can be used to describe the canopy behaviour and the effect 
of intermittency on the soil heat flux. We will call this form the approximate form. In the 
appendix 2.6.1, it is shown that 

'-'first air layer 

-c2 

-c3 

-c4 

-c5 
upper boundary 

D = C 

1 

E 2 
0 
0 
0 
0 

0 
-F2 

E3 

0 
0 
0 

0 
G2 

-F3 

E4 

0 
0 

0 
0 
G3 

-F4 

E5 

0 

0 
0 
0 
G4 

-F5 

0 

0 
0 
0 
0 
G5 

1 J 

D, 
D2 

D3 

D4 

D5 

L D 6 D, 

(4.2.48) 
Ej, Gj are the turbulent transport coupling coefficient between the layer i and the layer below 
and above respectively and given by 

Ei=-
Kb iottom,i 

8 Xbottom,i 
(4.2.49a) 

Gl=^sl 
§xtop,i 

while Fj expresses the layer coefficient and equals 

c /AZ; Ktop,i Kbottom,i LAD Az; \ 
Fj = L + + + '— 

[to ÔX top,j 5 X b o t t o m > i
 r b , i + a r S ; i j 

and Cj expresses the source effect 

(4.2.49b) 

(4.2.49c) 

Q : LAD A z s rs a R n , AZJ p t 

rs oc+rb) pC P At 
(4.2.49d) 

The importance of intermittency shows through decreasing the fractional contribution of 
the Ej and Gj to the Fj term. In case of solving for a steady state solution, this is done by 

assuming At—>°°, so the first term in Fj and the last one in Q go to zero. If we assume that 
intermittency has no effect on some of the terms of Cj and Fj especially rs, Rn and less 
importantly s, then intermittency effect shows mainly on the values of the inverse matrix of A 
(the coupling coefficient matrix). The indirect effect could show through the effect of 
intermittency on the resulting mean temperature and vapour pressure deficit of the air which 
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affects the stomatal resistance of the leaves and the value of Rn (the latter through making the 

leaves warmer or colder). The solution of the above system is 

A " 1 . A . D = A-' C 

D = A ' . C 

(4.2.50) 

(4.2.51) 

What the inverse matrix expresses is the contribution of the different values of Cj to a 
certain value of Dj, as given by 

Dj =2> y Cj (4.2.52) 

In the example given below, there were no sources with the canopy (i.e. LAD was 
turned to zero. What we notice is the higher values in the intermittent system of the 
coefficients Aj;1 where i and j * 1 or ^ n , i.e. the inner elements of the matrix, while the 
elements in the first column or the last one have still the same value as the non-intermittent 
system. This means a relative reduction in the role of the upper and lower boundaries of the 
simulated domain to the equilibrium solution and a higher contribution of the inner layers to 
the solution at a certain height. The lower mixing during the quiescence period leads then to 
the establishment of a higher influence of the inner Cj elements to the vapour pressure deficit 
within a certain layer in comparison to a non gust model, in which a higher value of the 
turbulent transport coefficient is active all the time. Whether this leads to a higher or lower 
vapour pressure deficit than that of the boundaries depends on the stomatal resistance and Rn 
profile, as has been shown on conclusion 4 of sect.4.2.1.1. In the gust approach, the total 
mean K m value is the same as in the no-gust model, but during the gust occurrence, most of 
the turbulence occurs while in the quiescence period, the value of Km is much lower than the 

1 0 0 0 0 0 

-0.06 0.12 -0.06 0 0 0 

0 -0.06 0.12 -0.06 0 0 

0 0 -0.06 0.12 -0.06 0 

0 0 0 -0.06 0.12 -0.06 

0 0 0 0 0 1 (4.2.53a) 

1 0 0 0 0 0 

0.8 13.333 10 6.667 3.333 0.2 

0.6 10 20 13.333 6.667 0.4 

0.4 6.667 13.333 20 10 0.6 

0.2 3.333 6.667 10 13.333 0.8 

0 0 0 0 0 1 (4.2.53b) 

An example of a matrix with intermittency and its inverse (no sources). 

A"' = 
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1 0 0 0 o o 

-0.12 0.24 -0.12 0 0 0 

0 -0.12 0.24 -0.12 0 0 

0 0 -0.12 0.24 -0.12 0 

0 0 0 -0.12 0.24 -0.12 

0 0 0 0 0 1 (4.2.54a) 

1 o o 

0.8 6.667 5 

0.6 5 10 

0.4 3.333 6.667 

0.2 1.667 3.333 

0 0 0 

0 0 0 

3.333 1.667 0.2 

6.667 3.333 0.4 

10 5 0.6 

5 6.667 0.8 

0 0 1 (4.2.54b) 
An example of a matrix with non-intermittency and its inverse (no sources) 

mean (0.25-0.3 of the total averaged mean). In this case, LAD was assumed zero for all 
layers, so all Cj from i=2 to i=n-l are zero and the solution leads to a linear interpolation 
between D n r s t air layer a n d D u p p e r boundary f° r different canopy layers. In this case also, there is 
no effect for LAD in F; coefficients, so there is a decrease of the importance of the source 
terms in layer coefficient Fj. But the point shown here, is that the contribution of the inner 
nodes increases in the final solution in the case of a gust model as compared to that of no 
gust. 

The resulting change in the values of these coefficients will be used to check the effect 
of the closure on the solution (the inverse matrix A"*). 

For the air temperature at equilibrium , the following system of equation has to be 

1 first air layer 
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(4.2.55) 

Ej, G; are the turbulent transport coupling coefficient between the layer i and the layer 
below and the layer above respectively and are the same as eq.4.2.49.a and eq.4.2.49.b, while 
Fj expresses the layer coefficient and equals 

Kf, A z L + M o p Kbottom,i 

At ÔX, top,i §X b ( ottom,i 

(4.2.56a) 
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Q = ^«n-PCpD^b1. L A D A z + Az T« ( 4 .2 .56b) 
\ s + Y* / At 

T = A " 1 . C (4.2.57) 

For steady state solution, At—»°°. The first term in Fj and the last one in Cj go to zero. 

The solution is obtained by assuming initially isothermal conditions within the plant 
canopy (i.e. the leaf temperatures equal air temperature), so the longwave radiation profiles 
and R n can be calculated. These values of Rn are used to calculate the values of D according 
to eq.4.2.51, These latter can be used to calculate the temperature and vapour pressure of the 
air according to eq.4.2.55 and 4.2.57. The amount of sensible heat flux from the leaf to the air 
can be calculated by the use of Penman-Monteith equation and the calculated D and the 
assumed Rn . This value of Cj can be used to calculate the leaf temperature at different layers. 
This will be used to calculate the longwave radiation profile and a new value of Rn- The 
process is repeated till the solution converges. 

This method of solution could be considered a variant of Chen's method (1984), in 
which the requirement of specifying the saturation heat flux J has been eliminated. D could be 
calculated directly. 

It is to be noticed that the coefficients of C matrix, for air temperature, have an effect of 
intermittency expressed in their values through the effect of the A'* of equation system 
(4.2.48) in the calculation of Di. The calculated T will have an intermittency effect due to 
changes in the values of C matrix of system (4.2.55) and the values A ' l of that system, so it 
is rather a compound effect. 

To obtain an approximate value for mean D, it is assumed that we can integrate 
eq.4.2.20, 

Dair = Dair,eql 0 " e Ta,D) + Dair,initial e Ta,D (4.2.20) 

resulting in 

Dairdt - ^ _ (Da i r ;eql (1 - e x a J D ) + D a i r ) i n i t i a l e Ta>D] dt 

(4.2.58) 
Since D a i r e q l and D a j f i initial a r e functions of time, it is difficult to integrate eq.4.2.20. It is 
possible, anyhow, to describe the canopy vapour pressure deficit by an equation similar to 
4.2.20 

t =- ^ (Dair,initial"Dair,eql) • i , T ^ .̂  
D = D a ' ^ 1 + Pencd -^ ,D(- ^ X>>™ 
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=S » (Dair,initial-Dair,eql)xa,D „ - E5S2Ë. 
D = Dair?eql+ : p e r i o d ( 1 -e Ta,D ) (4.2.59b) 

In case of characteristic period for coherent structure intrusion which equals three times 
the time constant, 

D« 0.69 Da i r ; eq l+ 0.31Dair;initiai (4.2.60) 

Dair,eq will be determined from the solution of eq.4.2.48 by the use of a reduced 
turbulent transport coefficient, assuming that the value of the C matrix are the same for the 
gust and no-gust approach. This is not exactly true, since there is an effect of intermittency on 
the mean vapour pressure deficit and temperature of the air, which affects the values of Q 
terms through affecting mainly the stomatal resistance and less importantly the value of Rn 

and s. 
In case of the period between two gust intrusions being very large, a profile as shown in 

fig.4.2.b develops and the resulting D becomes very small due to the required gradient needed 
to achieve a vapour pressure deficit flux. The end result could be less vapour pressure deficit 
in a gust model in comparison to a no-gust model. Usually, the time period between two 
consecutive gust intrusions is usually not large enough for such a profile to develop, so the 
diffusion from above of low vapour pressure deficit to the soil surface and the decrease of 
vapour pressure deficit is not allowed to continue, and a mean profile will be an inverse of 
that shown in fig 4.2.a. 

Dair,eql =A ' C (4.2.61) 

Dgustmodei=0.69 Agust' C+0.31 Dini (4.2.62) 

The Matrix C is assumed the same in the gust and no-gust model. The deviation 
between a gust and no-gust model depends on 

Dgust model,, = £ (O-^AgUij Cj)+ 0.31Dini,i (4.2.63) 
j=i 

being higher or lower than 

n 

i-'nogust model,i ~ 2* ^nogust.ij *-"j ( 4 .Z . 04 ) 

j=l 

This will depend on the inverse matrix of the coupling coefficient matrix A and how 
much relative weight it gives to the layers above and below the canopy in determining the 
vapour pressure deficit of the air layers close to the ground. Even if it matches for a certain 
layer, the requirement of down-gradient transport will lead to no matching for the other 
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layers. That shows the importance of defining the inverse matrix symbolically or by the use 
of Thomas algorithm as given in Patanker (1980). 

The inverse matrix A"l is given symbolically in sect. 4.2.4. 

The same procedure is done for the calculation of the mean T by solving the eq.4.2.55 
The mean temperature of the air is determined by integrating an equation similar to eq.4.2.13, 
yielding 

„ „ (Tair,initial~Tair,eql) I . i . V r 
T = T a i ^ l + Period I " T a < T ( - ^ ) e * 

(4.2.65) 

^ „ (Tair,initial-Tair,eql)xa,T , - p e n 0 , , . 0 , , . 
T = Tair,eql+ period ( Xa'T } (4.2.66 a) 

T« 0.69 T a i r e q l + 0.31Tair>initiai (4.2.66b) 

with an assumption that the effect of the difference between the values of the time constants 
of T and D make no much difference on the solution. The coefficients Matrix C will not be 
the same for a gust and no-gust model, because the value of D entering in the coefficients is 
being affected by the turbulent closure. 

Tnogust = A n ' . C (4.2.68) 

TgUStmodei=0.69*Agust
1 C+0 . 31 T i n i (4.2.67) 

r nogust = A n o g u s t 

n 

' nogust model.i = 2 j nogusMj ^ j (4.Z.Ö9) 
j=l 

n 

Tgust model,! = X (°-69Agùst,ij Cj)+ 0.31Tini,i (4.2.70) 
j= l 

The difference of the solution between a gust and no-gust approach for the temperature 
and vapour pressure is fed into the solution of the first air layer. 

There is one problem with this system: This problem is defining the values of vapour 
pressure deficit for the lowest air layer. For this layer, the lower coupling coefficient is 
different for the temperature and vapour pressure air equations, so obtaining a common factor 
in step A.2.4.6 is not possible. So, the above system of equations apply only to the canopy air 
layers from layer number 2 to layer number n. For the first air layer in contact with soil, 
obtaining a value of the vapour pressure deficit for the first air layer is done through the use 
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of the temperature and vapour pressure equations for the first air layer equations. These 
equations are the same as equations A.2.2.7 and A.2.3.5 for temperature and vapour pressure 
for the first air layer. The lower coupling coefficient in both these equations have to be 
replaced by 

J^bottOITL = J ^ ± _ ( 4 2 7 1 a ) 

S ^bottom 

J^bottom_ = P^P (4.2.71b) 
5 xbottom (rbv.s°il+rs.soii) 

rs,soil expresses the soil resistance to evaporation. This resistance is somewhat similar to 
the stomatal resistance of the plants, and it has been parameterized as shown in section 4.6. 
So we solve the temperature and vapour pressure equations for the first air layer assuming a 
rather constant temperature of the soil and a feedback from air layer number 2. The solution 
would converge. One point is that we assume, that the temperature or vapour pressure of the 
soil are initially the same for the gust and no-gust approach. This method can still be used for 
checking the forcing variability with the modelling approach. This forcing will control the 
time rate of soil surface temperature change. 

It is important to notice that the whole canopy layers and the first soil layer are coupled, 
but there is a large difference in the time constants of both systems. That allows assuming that 
the soil surface temperature is almost constant during a short time interval which is much 
larger than the time duration of a gust cycle, so the temperature of the soil surface can be 
treated as a constant in eq.A.2.2.7 & A.2.3.5. The effect of intermittency on the mean value of 
D and T of the first air layer can be calculated. The resulting mean value of the first air layer 
D and T will affect the solution of the soil later through eq.4.2.42. So, the whole technique of 
analysis here depends on the separation of time scales of different system components. 

We will stop here with the analysis for the approximate form and continue with the 
analysis for the more exact form because, we think , it is more relevant. 

2. The more exact form (the nonsteady state solution) 

There is an enhancing aspect of intermittency on the sources and sinks within plant 
canopies. The time variation in the turbulent transport coefficient leads, during the gust 
intrusion phase, to the time constants of the canopy air layer being very small, and an 
equilibrium solution for the canopy air layers is established very rapidly. This equilibrium 
during the gust intrusion phase is represented by the canopy air having the same temperature 
and vapour pressure deficit as the layer of air above. The leaves on the other hand have a 
much larger time constant in comparison to the canopy air time constant during the gust 
intrusion phase. So, an equilibrium solution for the air is established within the gust process, 
while for the leaves it is not. Once the gust process shuts off, there is a strong reduction in the 
turbulent transport coefficient which reduces the coupling between the air layers and the layer 
of air above. If the leaves thermal equilibrium had been established before the gust intrusion, 
the process of gust intrusion represents then a large shift for the system which has to be 
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restored. The energy storage change within the leaves plays an important part in this. The 
system is far from a steady state solution and the effect of temperature changes within the 
system is important. 

To estimate the effect of the non-steady term in the energy budget equation of a canopy 
with a leaf area index of 2 and leaf thickness of 0.001 m and 75 % moisture content in the 
leaves, a decrease or an increase of 1 K for the leaves would represent about 6270 joules 
storage change. If this change happened within 60 seconds, this represents 104 Wm~2. This 
would represent a large ratio with respect to the energy partition on the leaf surfaces. 

It has been shown by Paw U(1992) that the radiative surface temperature trace reveals a 
ramp-like response to the coherent structures. That implies that the value of Rn follows a 
ramp-like pattern. So, there is a measured change of energy storage within plant tissues. 

If hypothetically, the gust duration period were large enough that the leaves have 
achieved thermal equilibrium, the sudden reduction in the turbulent transport coefficient 
would lead to the a re-establishment of a new equilibrium. This new equilibrium state would 
be due to the different weighting coefficients in eq.4.2.12. So the difference in temperature 
between the leaf and the air will contribute in a different ratio to the equilibrium temperature 
of the air. We start then with a system which was in equilibrium already and it shifts from that 
equilibrium due to the change in the weighing coefficients in the air temperature and vapour 
pressure equilibrium equation. This will later have a feedback on the temperature of the 
leaves through eq.4.2.5. Things here will go more smoothly than in the previous case, but the 
initial hypothesis of long gust duration is unrealistic. So in our analysis we will be dealing 
with nonsteady state solutions, and we will show an example of such a solution. 

The more exact equation (nonsteady state solution for air temperature and vapour 
pressure) 

The temperature of the air system follows (A.2.6.2.a) 

1 first soil layer 

-c2 

-c3 

-c4 

-c5 

A upper boundary 

T 

1 
E 2 
0 
0 
0 
0 

0 
-F2 

E3 

0 
0 
0 

0 
G2 

-F3 

E4 

0 
0 

0 
0 
G3 

-F4 

E5 

0 

0 
0 
0 
G4 

-F5 

0 

0 
0 
0 
0 
G5 

1 

Ti 
T2 

T3 

T4 

T5 

L T 6 _ 

- A - l T= A 
(4.2.72) 
(4.2.73) 

where 

E,=-
Kbottom,i 

S xbottom,i 
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öxtop,i 
(4.2.74b) 

F; = (A?L I K t 0P ' ' , Kbottom,i | L A D A z 

[At 5Xtop>i 8X b o t t o m , i rbh 

or 

(4.2.74c) 
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Cj = ^L L A D A z+ 
Tbh 

Az x' 
At 

(4.2.74d) 

or 
C,= f Ü H I O ) L A D A z + ^ T ' 

fbh At 

The effect of intermittency shows also, as before, through the effect of the inverse 
matrix A"l of the coupling coefficient A on the solution and the memory of the system 
through T'. In here the initial temperature of the air is kept in the C matrix, since we are 
solving for the nonsteady state source. 

The vapour pressure equation has a similar equation (A.2.6.2.b) 
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F. = /AZL , Ktop,i , Kbottom,i | L A D A z 

[At ÔXtop;i ÔX b o t t o m i i (rbh + rs) 
(4.2.78c) 

HOp,l 
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The temperature of the leaves are determined implicitly (with the knowledge of the T-
and e') by the use of eq.4.2.5 & 4.2.6 or by the use of the numerical implementation as 
explained in sect. 2.3.1.1. 

This represents the more exact system form to solve the canopy equations. One 
advantage is that it applies for all canopy layers, including the first air layer. Soil layers could 
be included, if we change the coupling coefficient by the heat conductivity coefficients 
between different layers. There are no sources and sinks within the soil except for phase 
transformations. In the numerical model (chapter 5), a nonsteady state solution for a system of 
discretized equations equivalent to this nonsteady one were used to solve the whole problem. 

From here, it seems that the inverse matrix A"l of the coupling coefficient A will 
control the coupling between the canopy layers and the boundaries above and below. 

Now, we want to continue with our scaling analysis and obtain an average vapour 
pressure deficit and temperature of the first air layer, so we can determine the effect of 
intermittency on the fi(L,t)/f2(L,t) in the forcing functions. We will come back to the 
discussions of the decoupling procedure for system 4.2.72 and 4.2.75, especially at the soil 
canopy interface at section 4.4. 

A numerical solution by the use of MATHCAD® for few time steps including three 
gust cycles will be used to show the effect of the intermittency on the values of the mean D 
and mean T. This model will be run under identical conditions, except for a gust occurring at 
every tenth time step from the beginning of the simulation in the gust model, which also has a 
reduced turbulent transport coefficient by a factor of 0.25 compared to the no-gust model. 

This model solves the following systems of equations: eq.4.2.5, system of equations 
4.2.72 and system of eq.4.2.75. All the variables in these equations will play a role in the 
solution. These variables include : Rn, Tair;ra(i, Tair, eajr, LAD, Ktop, KDOttom> rbh»i"s and 
rss-

To facilitate a comparison, the values of Rshort, T, will be chosen to represent a rather 
constant high radiative loading, while the values of the temperature and vapour pressure of 
the air will be varied to allow for the variability of certain climatic regimes, as is explained on 
page 143. The leaf area density will be kept constant for all the runs. The values of Ktop, 
Kbottom* rs a nd rss will be varied to see the sensitivity of the solution (i.e. the f l/f2 function 
and the integrated fluxes at the canopy top). 
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Fig. 4.4.a: The parameters used in the 
run. 

The effect of intermittency on the soil heat flux 
from the more exact form: 
The MATHCAD runs: 
The description of the simulated system: 

A six layer canopy with equal layers thickness of 
0.2m is defined. The values of all other variables are 
given in fig.4.4.a. In the case shown: a leaf area 

2 3 density profile of 0.0 m m for the lowest two layers 
2 -3 and a leaf area density of 4 m m for the uppermost 

four layers was used. A cumulative leaf area index of 
3.2 results. A short wave radiation absorption 
coefficient (ar) of about 0.8 was used. This leads, in 

9 
the case of Rshort being equal to 140 Wm leaf 
surface (one side), to a total short wave radiation 
loading of about 3.2*2* 140.*0.8= 716 Wm"2 for the 
whole vegetation layer. No absorption of radiation by 
the soil surface was assumed. Only the effect of 
intermittency on the state variables of the air and its 
effect on the forcing on the soil was considered. 
T • j was set to 15 C, a rather high value, to 
average for the different longwave radiation loading 
on the upper and lower surface of the leaves. The time 
step of simulation will be changed in the last run to check the sensitivity of the solution to the 
period between gust intrusions into plant canopies, since in this simplified model an intrusion 
of air into plant canopy occurs every tenth time step. The difference between the gust and no-
gust approach on the forcing f2 functions and the fluxes will be checked. In the no-gust run, 
the value of (coeff= 1) was used. Everything else was the same. 

The solution procedure of the governing equations is exactly the same as the model 
presented in chapter 5, except for the solution of the absorbed radiation. There is no 
calculation of the short and longwave radiation profiles. The amount of absorbed radiation is 
assumed the same for unit leaf surface for all heights. To avoid the effect of storage change 
within the leaves on the solution, the gust model was run first using an arbitrary initial leaf 
temperature profile and the final temperature of the leaves were used as initial values of the 
leaf temperature in a new run. This process was repeated till the difference in storage change 
in the leaves didn't contribute more than 1 Wm" for the whole canopy layer. The same initial 
leaf temperatures profile was also used in the no-gust model. This latter step does not really 
matter, since in the comparison between a gust and no-gust model, the equilibrium solution of 
the no-gust model (i.e . the final time step) is compared against the mean values of the gust 
model. 

The results of the run specified in fig.4.4.a is used to show the limitations of the use of the 
value of $2 functions alone as a criteria for the effect of intermittency on the canopy soil 
system. The results for the gust model give a value of 398.1 Wm" for the f2 function, while 
for the no-gust model a value of 396.1 Wm" was obtained, not a significant difference. The 
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The higher turbulent coupling coefficients in the no-gust model (f 
topt' 

f f 
lowert topte fjowere), as given by eq.4.2.12 and 4.2.17 respectively, couple the canopy layers more to the 

boundary conditions above, while for the gust model the higher f j a v e r t and f i a v e r e couple 
these layers during the quiescence period more to the temperature and vapour pressure of the 
leaves. These latter are affected by the vapour pressure and temperature of the air as given by 
eq.4.2.5. The higher temperature and vapour pressure of the air resulting from the coupling of 
these latter to the temperature and vapour pressure of the leaves will affect the temperature of 
the leaves further, and a buildup starts. 

We notice the higher bulge in the gust model, compared to the no-gust model, in the mean 
temperature, vapour pressure and vapour pressure deficit profiles. The first bulge 
corresponded to a counter-gradient transport, while the existence of a smaller bulge in the no-
gust model corresponded to a negative flux (downwards) due to the temperature of the soil 
during the simulation being set to 21 C. There was also a maximum difference in the mean 

0 temperature of the air of about one degree C and a difference in the mean temperature of the 
leaves in the middle of the canopy of about 0.5 C. Looking at the equilibrium air temperature 
and vapour pressure profiles (fig.4.4.c), we see that in spite of being initially lower than those 
of the nogust model, they pick up rapidly that the mean values of those in the gust model 
become higher than the equilibrium ones in the no-gust model. 

A new run with a reduced value of the stomatal resistance (300 sm" ) was done. The other 
parameters are as in fig.4.5.a. For the gust model, the resulting f2 function was 397.6 Wm . 
The resulting sensible and latent heat flux from the soil to the air were 0.29 and 41.9 Wm . 
The averaged sensible and latent heat fluxes at the 

o canopy were: 126.9 and 352.1 Wm This 
corresponded to total sources within the canopy of 
126.6 and 310.2 Wm"2 (a value of 436. Wm"2 Rn with 
a Bowen ratio on plant surfaces of 0.41). The values of 
the mean profiles is given in fig.4.5.d,e. 

In the case of no-gust model, the resulting f2 
2 

function was 395.2 Wm . This is also an insignificant 
difference. The resulting sensible and latent heat flux 
from the soil to air were: 2.0 and 46.9 Wm" . The 
fluxes at the canopy top of sensible and latent heat 
were: 138.8 and 362.1 Wm . This corresponded to 
total sources within the canopy of 136.7 and 315.2 

2 2 
Wm (a value of 451 Wm R with a Bowen ratio 
on plant surfaces of 0.435). The resulting mean 
profiles are shown in fig.4.5.d for the no-gust model. 
So, there is a somewhat large difference between the 
gust model and no-gust in the value of Rn and the 
partition on plant surfaces. 

In this run, within the gust model, there was a 
favourable partition toward sensible heat on the 
account of latent heat, as can be seen from fig. 4.5.b, 
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Fig.4.5.a : A run with a reduced stomtal 
resistance. 
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in spite of the observed 
behavior of decreased vapour 
pressure deficit with time 
during the quiescence period. 
This case corresponds to 
Bowen ratio less than y/s and 
condition 4.2.85 not being 
satisfied. There was a 
maximum difference of 0.5 

C for the temperature of the 
air and the leaves. It is clear 
from fig.4.5.b that the gust 
intrusion leads to an increase 
in the value of R , since it leads to more 
coupling between the plant and the upper 
boundary, but it seems that the adverse effect 
of the lower coupling coefficient during the 
quiescence period dominates. 

Looking at the coupling coefficients for 
this run and the previous one, we see that the 
first air layer of the canopy has a higher 
coupling to the soil vapour pressure in the 
gust model, so the vapour pressure of the soil 
contributes more to the equilibrium vapour 
pressure of the first air layer and the transport 
to the layer above contributes less. This leads 
to the buildup of vapour pressure which 
reduces the soil latent heat flux. The 

Fig.4.5.b: Sources behaviour within time in Wm-2 leaf surface (one 
side) 
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Fig 4.5.d : The mean profiles in the gust model for run 4.5.a 

bottleneck of transport then is the turbulent transport between the canopy first air layer and the 
air layer which is in direct contact with the soil surface. This latter has a thickness as large as 
the displacement boundary layer (about 1 cm thickness). This transport works on moving 
latent heat from this air layer to the one above. We notice that the third and higher canopy 
layers have higher turbulent transport coupling coefficients. This leads to the lower 
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The nogust model coupling coefficients 
The gust model coupling coefficient 

equilibrium vapour pressure in the no-gust model compared to a gust model. The favourable 
effect of the gust process on the average flux is through refreshing the air inside the canopy, 
which represents a large percentage of the flux. If the time interval between two coherent 
structures is quite large, the enhancement of the average flux due to the storage depletion 
with the gust passage will be adversely compensated by the lower turbulent transport 
coefficient during the quiescence period. The resulting buildup will increase the average 
forcing on the soil. This relates to the time period between consequent gust intrusions into 
plant canopies in relation the time required for the build-up to occur and the resulting adverse 
effect on the soil latent heat flux to express itself. To get an enhanced effect due to the gust 
process on the soil heat flux, a parcel of air has to brought in contact with the soil and 
maintain, during its contact time, a lower vapour pressure than the one obtained with a no-gust 
model such that the resulting mean vapour pressure has to be lower than the one obtained with 
a no-gust model. A new gust intrusion will replace this parcel of air with a fresh dry air before 
the adverse effect of buildup shows on the forcing. This requires a low leaf area density in the 
lower part of the canopy and lower turbulent mixing, which will lead to low diffusion of low 
vapour pressure deficit downward. Increasing the thickness of the first air layer in contact 
with the soil will lead to the same effect, since the first air layer will require a large period of 
time to maintain equilibrium. All of these variables relate to increasing the value of the time 
constant of the first or higher air layers in contact with the soil. 

To show this, we did another run in which the turbulent transport coefficients were reduced 
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as shown in the fig.4.6.a. 

The value of the obtained f2 function in the gust 

model is 395.2 Wm . The sensible and latent heat 

flux from the soil to the air were 4.27 and 40.6 
2 

Wm . The storage change within the canopy was 
2 

less than 0.09 Wm for the whole canopy layer. The 

resulting averaged sensible and latent heat fluxes at 
the canopy top were 127.8 and 351.1 Wm" . This 
corresponded to total sources within the canopy 
(excluding the soil) of 123.5 and 310.5 Wm"2 for 
sensible and latent heat respectively. This 
corresponds to a Bowen ratio on plant surfaces of 
about 0.4. 

In the case of no-eust model, the value of f2 
2 

function was equal to 412.4 Wm . The resulting 

sensible and latent heat flux at the canopy top were 
136.7 and 345.8 Wm" . This corresponded to total 
sources within the canopy (excluding the soil) 135.8 
and 315.9 Wm . The resulting Bowen ratio was 
about 0.44. So in this case, there was a difference in 
the forcing function f2 on the soil surface. The 
corresponding value of the boundary condition, 
given by eq.4.2.28 in the case of a gust model was 
-81.4 versus -64.42 Wm" for the no-gust model. 

The first two terms in eq.4.2.28 represent the radiative energy load. The shortwave radiation 
2 

load on the soil was set to zero. In the case of a positive one, the difference of about 17 W m 
could represent an important difference in the boundary condition for the soil surface. 

Looking at the boundary condition, we notice that a calculation of the equilibrium temperature 

of the soil surface, assuming no storage within the soil, would mean in the case of aL (as 
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Fig.4.6.a: A r u n w i t h r e duc ed t u rbu l en t 
t r anspor t coefficient. 
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Fig.4.6. b The m e a n profiles for a gu s t mode l in r u n 4.6.a 

given by eq.4.2.31) being equal to 26.7, an increase to about 0.7 C. The resulting 
temperature difference is calculated from the summation of equation of 4.2.36. 
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The resulting mean profiles in the gust model give in fig.4.6.b while for the no-gust model 
they are given in fig.4.6.c. There is a difference in the temperature of the leaves about 0.5 C. 

The value of the time constants for air temperature of the first, second, third and fourth 
canopy air layers (excluding the first cm thickness of air in contact with the soil) in this last 
run, as given by eq.4.2.11, were 16.6 and 36.36, 2.87 and 1.20 s respectively. Those for the 
vapour pressure of the air have values of 21.42, 36.36, 3.47 and 1.29 s respectively. The 
duration between gust intrusions into plant canopies was 50 sec. These time constants would 
be lower for all layers than the ones calculated 
graphically for the whole gust cycle since T • and 
e • keep changing between different time steps. So, 
the ratio of the period between gust intrusions into the 
plant canopy and the time constants was close to one. 
That led to a residual effect of the gust intrusion on the 
forcing function f2 on the soil. The value of the used 
turbulent transport coefficient, in the previous run, 
could have been too small, so another run in which the 
thickness of the first two layers were increased to 0.6 m 
and 0.4m respectively. The value of the turbulent 
transport coefficient was increased to the values shown 
in fig.4.7.a. 

The value of f2 function in the case of the gust 
9 

model is 387.1 Wm . This corresponded to a value of 
9 

-89.5 Wm for the flux boundary condition given by 
eq. 4.2.28. The averaged sensible and latent heat flux at 
the canopy top were 131.1 and 359.6 Wm" . This 
corresponded to sensible and latent heat sources within 
the canopy (excluding the soil) of 125.1 and 311.6 

9 

Wm respectively. The mean profiles are shown in 
fig.4.7.b. The values of the air temperature time 
constants for the first, second, third and fourth layers 
are 26.6, 24.0,3.7 and 1.4 s respectively. The values of 
these time constants for the vapour pressure for the 
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Fig. 4.7.b The mean profiles and the equilibrium ones for the gust and nogust respectively. 

same layers are 24.5, 24.0, 4.9 and 1.55 s respectively. 
For the no-gust model, the resulting f2 function was 

2 403.8 Wm . This corresponded to a 

value of -72.81 Wm" for the boundary condition given 

by eq.4.2.28. This is about 17 Wm difference between 
the gust and no-gust approach with the lower value for 
the gust model. This difference represents in the case of 

2 1 ocL, as given by eq.4.2.31, being equal to 27 Wm K , 
an increase in the no-gust model of about 0.6 C. The 
sensible and latent heat flux at the canopy top were 
136.0 and 351.5 Wm This corresponded to total 
sensible and latent heat sources within the canopy 
(excluding the soil) of 135.7 and 314.4 Wm"2 (total Rn 
on plant surfaces of 449.8 Wm-2 with a Bowen ratio of 
0.430. 

Reducing the soil resistance to 100 sm (recently 
irrigated) and doing the same run as before, we see that 

for the gust model, the value of the forcing function f2 
9 

becomes equal to 463.23 Wm with a value of -109.41 
2 

Wm for the flux boundary condition given by 
2 

eq.4.2.28. The storage change was 0.31 Wm for the 
whole canopy layer. The sensible and latent heat flux at 
the canopy top were 131.2 and 377.5 Wm" . This 
corresponded to total sources within the canopy of about 
125.1 and 311.3 Wm with a Bowen ratio on plant 

dxlower. = 0.2 

dxlower, - 0.4 

dxlower, - 0.3 

0.0 
00 

to 
4Ü" 
4Ü" 
4Ü" 

0.004 

0.008 

0.014 

0.02 

0.08 

0.08 

0.008 

0.014 

0.02 

0.08 

0.08 

0.08 

22.461759 

22.493279 

23.164818 

22.96947 

22.776066 

22.423835 

cumlai = > Lad 
i 

cumlai= 3.200 

Total_Load = 

Total_Load = 

rbh = 100, 
m 

rbhs = 100. 
rs -- 300 

in 

rss = 100. 

Tleaves . = 2 

dz 

cumlaiRshoil2ar 

716.800 

3.0 

Tairtop = 20.0 

Tair . = 20.0 
m.j 

eair . = 1500 
m.j 

Tair()( | = 20 

eair ,, - 1500 
m.O 

eairtop = 1500 

Tsoil = 21. 

Fig. 4.8.a: A r u n w i t h r e duc ed soil 

res is tance to evapora t ion . 

139 



of 400.5 Wm-2. This corresponded to a value of -76.1 Wm for the flux boundary condition 
as given by eq.4.2.28. The resulting averaged sensible and latent heat flux at the canopy top 
were 52.4 and 274.4 Wm" . This corresponded to sources within the canopy (excluding the 
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Fig 4.10.b The mean profiles in the gust model and the equilibrium in the nogust mode for 4.10.a 
respectively 

-2 
soil) of 49.4 and 238.4 Wm" . The resulting profiles are given above. 

In the case of no gust model, f2 function had a value of 399.4 Wm"', This corresponded to 
a value of -77.2 Wm" for the flux boundary condition, as given by eq.4.2.28. This is again a 
non significant difference. The value of the sensible and latent heat at the canopy top were 
53.1 and 292.8 Wm" . This corresponded to sources within the canopy (excluding the soil) of 
48.9 and 252.4 Wm" corresponding to a Bowen ratio of 0.193. There is a difference in the 
value of Rn on the plant surfaces. The values of the mean profiles in the gust model and 
equilibrium ones in the no-gust model are given below. 
So. the effect of the ratio of the time period between two consecutive gust intrusion into i i plant 

canopies with respect to the time constants of the first and higher canopy layers, close to the 
soil, determine the effect of the gust intrusion on the soil. 

To have a global evaluation of the sensitivity of the forcing function f2 and the flux 
boundary condition to intermittency, we will show the values of this function under different 
temperature and vapour pressure deficit regimes. We mean by these regimes that, depending 
on the climatic regime, a tropical, cold humid or dry arid climate, there will be a certain range 
of values for the temperature and vapour pressure deficit which can occur simultaneously. 
These values will control the value of the f2 function and the value of the flux boundary 
condition given by eq.4.2.28. The buildup or decrease of the vapour pressure deficit, 
depending on the stomatal resistance being higher or lower than the critical one as defined by 
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eq.4.1.9, will lead to a certain 
equilibrium value. To obtain a 
value for the vapour pressure and 
air temperature close to the soil 
surface, we ran the MATHCAD 
model using the boundary 
conditions representing the mean '~v 

values of temperature and vapour 
pressure for a certain month 
(August) for different climatic 
regime. The selected regimes were a 
hot humid climate regime (Djakarta, ß 
Indonesia, Sukanto, 1969), hot arid 
(Cairo, Egypt, Griffiths and 
Soliman, 1972) and cold humid (De 
Bilt, The Netherlands, Arlery, 1970 

f2 

respectively. The details of the runs 
are given in sec.4.2.3. The 
temperature and vapour 
pressure deficit values at the initial 
and the end of the quiescence were 
considered as the range of variation 
in the values going into the f2 
function expression. The following 
matrices were obtained. These 
matrices help to give an idea on the 
variation of the value of f2 function which will be integrated by the soil to constitute the soil 
temperature. 

The change in the value of the soil boundary condition due to gust intrusion will be 
represented by the difference the between two entries in these matrices. The first one of these 
matrices represents the values obtained for a hot humid region. The second is a dry arid region 
and the third is for a cold humid region. The value of the vapour pressure deficit and the air 
temperature, specified with the vectors to the right of each matrix, are the ones obtained 
within the canopy after the gust intrusion for an air with the specified values given in the runs 
at sect.4.2.3. The rows represent the values for a certain value of the temperature vector shown 
to the right of the matrix, while the column represent the value for a certain vapour pressure 
deficit. Depending on the initial and final temperature and vapour pressure deficit of the air, 
the forcing function can experience a large variation as can seen for the elements in the three 
matrices. 

To show the integrated effect of a gust versus no-gust case on the temperature of the soil 
and the mean temperature of the air, we ran a simplified version of the model included in 
Chapter 5 for a period of 11 days for a gust and nogust model. This version of the model did 
not take account of the effect of water uptake by plant roots or the effect of evaporation on 
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Time in hours 
Fig 4.12.a : The mean temperature difference (a gust - nogut) models for the boundary conditions 
specified in fig 4.13. 

Time in hours 

Fig. 4.12b The difference in the mean vapour pressure deficit (a gust- no gust) models for the 
boundary conditions specified in fig. 4.13. 

reducing the moisture content of the soil. The soil resistance to evaporation was minimal (rss 
=0.0). The boundary conditions used in the run were somewhat typical of a rather hot sunny 
summer day in Egypt. These boundary conditions (i.e. the incoming short wave radiation, 
friction velocity, temperature and vapour pressure are shown in fig.4.13). The gust intrusion 
during day time was assumed constant with a period of 1.5 minutes. In here, we show the 
difference within time between the gust and no gust model in the mean temperature and 
vapour pressure deficit for the two models. The results shown (fig 4.12 a,b) give the day 
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difference of the simulated mean 
temperature of the air and the soil and 
the vapour pressure deficit between a 
gust model and no-gust model. We 
notice in here the very high temperature 
and vapour pressure deficit differences (-
9 Oc and more than a 1000 Pa) between 
the two models. This difference could be 
explained on the basis of the used 
parameterization for the turbulent 
transport coefficients, the low leaf area 
density and the higher stomatal 
resistance in the lower part of the 
canopy. All of these led to an increase in 
the time constants of the mean vapour 
pressure deficit of the canopy air layers 
close to the surface. This increase in the 
value of the layers time constants and 
the short period (90 seconds) between 
consecutive gust intrusions led to the 
high vapour p ressure defici t 
accompanying the gust intrusion, to be 
felt at the soil surface. The values of 
these high time constants could be seen 
from fig.4.14 showing the decrease of 
the vapour pressure deficit of the layers 
close to the soil. The resulting mean 
vapour pressure deficit in the case of a 
the gust model was much higher than the 
no-gust model. The use of a soil 
resistance to evaporation with a value of zero led to an enhanced effect of intermittency on 
the value of f2 function. A zero soil resistance would increase the latent heat flux from the 
soil to the air, trying in the process to lower the value of the vapour pressure deficit of the first 
air layer, so having a negative feedback on the effect of the vapour pressure deficit on the soil 
temperature, but due to the whole dynamics (i.e. the period between two gust intrusions and 
its ratio to the time constants of the first air layer) that effect of the higher vapour pressure 
deficit, in the case of a gust model, was felt at the soil surface. 

The lower turbulent transport coefficient was due to the use of the following 
parameterization 

n= 2.0 
DISPL= 0.63 *Z(IT) 
lmix(it) = Ml*Karmen*(z(it)-displ) 
km(IT) = LMIX(IT) *ustar 
KM(I) = KM(IT) * EXP(-n *(l-z(I)/z(IT))) 
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fig.4.13 The boundary conditions for the run 
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The mean values of the simulated vapour pressure deficit in the gust model are much 
higher than the value of the mean simulated vapour pressure deficit of the no-gust model. 
(283, 348 and 455 Pa for the layer number 1, 2 and 3 respectively) as can be seen from the 
fig. 14.a . That was a difference of about 1200 Pa. The behaviour of the temperature of the 
first air layers is shown in the following figures. The temperature of the soil surface was 
about 35 C and 42 C for the gust and nogust model respectively. This would lead to a 
difference in the flux boundary condition of at least about 150 Wm"2. The lower loading is 
for the gust model. This is a rather high value, but this is due to the high vapour pressure 
deficit difference between the two approaches. The difference between the simulated heat 
flux for the gust .vs. no gust model is about 100 Wm~2 at 0.01 m depth. The cumulative leaf 
area index was 2.19. The amount of soil short wave radiation absorbed was 322 Wm~2. 
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Fig 4.14. a The vapour pressure deficit within the quiescence period 
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Fig 4.14. b : The behaviour of temperature f during the quiescence period. 
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4.2.2 AN ANALYSIS OF SOURCE AND SCALAR PROFILE BEHAVIOUR DURING 
A GUST CYCLE 

1. The scalar profiles 
The importance of turbulent transport intermittency is that it brings into the canopy air 

space a parcel of air, which has a temperature and a moisture content that is not in equilibrium 
with the value dedicated by limited turbulent transport coefficients during the quiescence 
period and the leaves stomatal resistance, and leaves this air parcel within the canopy air 
space. The maintenance or restoration of a "height-dependent equilibrium" of the temperature 
and moisture content requires a partition of non-radiative energy, from the leaves to the air, 
which is different from the equilibrium situation. This constitutes the change in the source. 
But what is meant by 'height-dependent equilibrium'? 

There are two options on answering that question, : 
1 ) either using the temperature and vapour pressure equations of the air eq.4.2.12 and 4.2.17 
or 
2) using the vapour pressure deficit equation of the air. eq.4.2.21. 

The 'height-dependent' equilibrium temperature and vapour pressure of the air are given 
by eqs. 4.2.12 and 4.2.17. These two equations are the discretized nonintermittent transport 
equations and they represent the steady state solution of the air after a large t/x. The time 
constants for air temperature and vapour pressure are the inverse of eq.4.2.11 and eq.4.2.15 
respectively, and they have different values due to the stomatal resistance. The development 
of an equilibrium situation depends on the time interval between the gust intrusion into plant 
canopies in relation to the air layer time constants. 

As long as the air has a dew point temperature which is lower than the leaf temperature, 
the humidifying (increase of vapour pressure) of the air occurs as given by eq.4.2.16 and 
4.2.17. The relative contribution of the different conductance factors in eq.4.2.17 determines 
the equilibrium vapour pressure. The warming or cooling of the air depends on the air which 
came in, being warmer or colder than the leaves, and the degree of humidifying of the air 
within time. The behaviour of D as a function of time, whether it increases or decreases, 
depends on the behaviour of Ta(t) and ea(t) for different layers and is given by 

D'=s T'-e' (4.2.80) 

3D 3 T de ,. „ „ , . 
- = r - = s ^ - - T- (4.2.81) 
3t 3t 3t 

. 3D , . 
For negative -=r-, this requires 

^ / s > ^ (4.2.82) 
3t dt 

For condition 4.2.82 to be satisfied, a i r , —^L equations, as given by eq.4.2.10 and 

4.2.14 with updating eair,eq a°d Tair,eq and given that K a e <K a j , show that the third factor 

in eair,eq eq- 4.2.17 should be high enough to compensate for Ka>e being lower than Ka,t 
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The comparison between the expressions of eqs. 4.2.12 and 4.2.17 show that the first and 
second coupling coefficients are lower for the temperature equation than those for the vapour 
pressure equation. The third coupling coefficient is lower for the vapour pressure than the 
equivalent term in the temperature. Even so, the multiplication of the third term by the 
saturated vapour pressure under certain combination of D, radiation load and the stomatal 
resistance value would be able to compensate for the relative stronger turbulent coupling 
coefficients in the vapour pressure equation. 

Anyhow, given enough time between consecutive gust intrusions, Dequilibrium ' s 

reached and it is determined from Dequilibrium =es(Tl,eql) ~eair,eql- ^n t n e extreme case of 
assuming zero turbulent transport during the quiescence period, one sees that 
Dequilibrium=0. That would mean according to Tair,eq that leaf temperature is equal to air 
temperature and that air is saturated. This means a complete shutoff of sensible and latent heat 
flux from the leaves to the air, so that thermal radiation is the only way to get rid of the short 
wave radiation load. This situation is extreme, since before this equilibrium is established 
and, if there were no coherent structures existent to prevent its realization, the resulting 
thermal instability of the air will lead to turbulent transport initiation and that equilibrium will 
never be established. The actual progress toward that hypothetical equilibrium (i.e. 
Dequilibrium =0 and Rn =0) will depend on the degree of turbulent coupling between the 
canopy air layers and the air layers above on one side and the leaves stomatal resistance and 
leaf area increment on the other side (i.e. the three coefficients in eq. 4.2.17). The turbulent 
coupling will vent some of the total absorbed radiation as sensible and latent heat flux from 
the leaves to the air (Rn). So, the resulting observed value of Rn is due to the existence of 
some transport mechanisms which allow some venting of the total absorbed radiation into 
sensible and latent heat. There will be an equilibrium between what is delivered by the leaves 
into the intercanopy air stream and what is evacuated to the layers above and below. The final 
partition will depend on the temperature and vapour pressure buildup which is allowed to 
occur, i.e. how much is the temperature and vapour pressure of the leaves is allowed to be 
coupled to the air through the effect of the stomatal resistance. 

If the integration of eq. 4.2.80 is not zero within the quiescence period, there will be a 
time mean decrease or increase of D within depth. The mean vapour pressure deficit D and air 
temperature, as given by eqs. 4.2.102 and 4.2.100, respectively, are a weighed time mean of 
the air vapour pressure deficit and temperature of the different periods (gust intrusion, buildup 
and equilibrium phase 1, 2 in fig.4.23). This controls the time mean source. The mean source 
will be different from the source due to the gust intrusion depending on the second term in eq. 
4.2.24 being different from Dtop- This difference is due to the ability of the canopy to see and 
respond to Dtop- If the DeqUjiibrium did not differ from the Dtop, Dmean will then be equal 
to Dtop, and the variation of D and Tair, due to the gust will not affect the evaluation of the 
mean source. This could be due to: 

1) coherent structures moving air, which has the same D due to small ratio of the length scale 
of transport to the source inhomogeneity 
or 
2) the canopy is too sluggish (very high values of air time constants with respect to the gust 
interval) due to a very high stomatal resistance, low leaf area increments and/ or very strong 
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turbulent coupling all the time. Another analysis of showing the same effect is shown by the 
analysis starting by eq. 4.2.103. 

There is another option through the use of the vapour pressure deficit equation. The 
equilibrium vapour pressure deficit is given by equation 4.2.21. We see that the third term in 

vapour pressure deficit equilibrium ( ^——), in the case of complete shutoff of the 

sensible and latent heat flux, becomes equal to the equilibrium vapour pressure. But if there is 
no exchange, Rn is not a constant anymore. Warming of the leaves reduces Rn by 4eaT^bs 

WITT^K -1 and equilibrium becomes achieved by reducing Rn till D becomes zero. The rest of 
the story is the same as in the previous paragraph. 

2. The sources: 
The leaves as sources respond to intermittency by modifying the energy partition on its 

surfaces to retain equilibrium. Equation 4.2.83 represents a Bowen ratio for plant surfaces, a 
ratio between H/LE fluxes from the leaves to the inter canopy air layers. 

g_ = Y(rbv+rs) (Ts-Ta) ( 4 2 g 3 a) 

rb (es(Tair)-
eair)+-3Y" (Ts-Ta) 

Y*=Y(<-bv+rS)/rb (4-2.84) 

LE _D ,d£s 
(Ts-Ta) 3T 

(4.2.83.b) 

This equation requires no condition of a steady state situation in its application. The 
fluxes here could be also due to heat storage change in the leaves. The time variation of the 
energy partition will be dependent, within the time scale we are interested in, on the ,„ T 

(Ts"Ta) 
variation of the air 

The variation of D just after or during the gust passage is related to the height from 
which the parcel of air has been brought and the amount of build-up which was allowed to 
occur before the gust intrusion. The variation of D within time around the passage of coherent 
structures is related to a large distance difference in D. That difference within height, whether 
positive or negative is related to a large-time averaged ß for the whole canopy being less or 
greater than y/s . This relates to the stomatal resistance and Rn profile, as has been shown in 
sect.4.2.1 and conclusion 4 in sect.4.2.1.1 . 

In the first case, there will be a sudden increase of D around the passage of the coherent 
structure and a decrease in the quiescence period toward an equilibrium value as given by 
eq.4.2.21. 

The time variation of (Ts-Ta) around the passage of coherent structures is related 
mainly to the time variation of air temperature, since the leaf temperature will be almost 
constant, T" is related then to a large distance difference in Ta. 
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H. 

A negative deviation of I ̂ H , or, l:- - <0 corresponds to a decrease in Bowen ratio 

on plant surfaces (i.e. an increase in latent heat flux in comparison to sensible heat flux). The 

behaviour of l-^-l during the quiescence period is related to the buildup process of D and 

(Ts-Ta), the latter being now controlled not only by Ta, but also by T s and how it will manage 
to keep track of the equilibrium temperature and the resulting difference (Ts-Ta). 

The sensitivity of the l-*M in response to temperature and vapour pressure variation is 

dependent on the magnitude of y 

3D d (Ts-Ta) 

af-H 
ILE 
at = -Y 

at D at *t*> 
(Ts-Ta) (Tg-Ta) (Ts-Ta) at 

D aec 
(Ts-Ta) 3T 

(4.2.85) 

. VlK/ For ~k <0 this requires, neglecting the third term between brackets in the numerator 

of eq. 4.2.85 , the following inequality to hold. 

( T - T ) ^ - D 3 C I V T a ) > 0 
( l s l a ) a t at - u 

(4.2.86) 

Inequality 4.2.86 shows, as can be seen from (4.2.83.b), that the effect of vapour 
pressure deficit increase on increasing latent heat flux has to be higher than the effect of the 
air temperature change on increasing the (Ts-Ta) difference. 

We have several cases depending on the value of ß for the whole canopy which 
represent then a relation between the sensible and latent heat flux above the canopy top, the 

, d(Ts-Ta) sign of (Ts-Ta) and 
at 

ß< 

(Ts-Ta)>0 : 

(Ts-Ta) <0 : 

3D a(Ts-Ta) 
at at 
D ~ (Ts-Ta) 

3D a q v T j 
at 

(4.2.87) 

D - (Ts-Ta) 

The other case ß>y/s would apply for a canopy which is either: 

1) having a high value of sensible heat partition in relation to latent heat flux due to high 

values of y* or 
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2) a canopy acting as a sink for both sensible and latent heat, due to radiative cooling at the 
canopy top at cold nights, which is compensated less by dewfall than by sensible heat flux 
from above. 

4.2.2.1) DAYTIME SITUATION (non stressed canopy), ß < y/s 

During daytime, latent heat flux is positive (i.e. upwards) which corresponds mostly to 

a negative WD correlation (vapour pressure deficit flux) depending on ß < y/s. There are two 

possibilities for the corresponding joint probability TD distribution. The first possibility: 

II 

T'<0 
D>0 3 

/ffiaj 

[C 

I 
T">0 

# A D > 0 

IV 

D'<0 

Ai B1 

Fig 4.15: Joint probability between T' and D' for two kinds of situations in which vapour 
pressure deficit flux is negative. 
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TD is positive (i.e. downward moving air is usually drier and warmer). This situation implies 
a negative sensible heat flux (Bl) . This situation represents a non stressed canopy in an 

advective case, or possibly in a non-advective case, in a warm arid region. The second 
possibility: TD is negative (i.e. downward moving air is usually drier and colder) (Ai). This 

applies for situations in more humid, colder regions. These two situations represent two 
different scenarios (Bl and Al) in fig. 4.3. There is a third scenario C l which is similar to 

A l , but with much less absolute value of the slope of the correlation line between TD 
representing the situation in the humid tropics. Since ß < y/s is the required condition for the 
time mean decrease of D with height, the time variation of D around the passage of the 
coherent structure is positive and then negative in the quiescence period. Depending on the 
T D correlation case, T" is determined. In scenario B l , during the gust intrusion, T" is 
positive while in scenario A l , T" is negative. During the quiescence period, (Ts-Ta) could be 
positive or negative depending on the behaviour of vapour pressure buildup which affects the 
behaviour of T s and on the behaviour of T a . In the quiescence period, (Ts-Ta) variation is 
always positive due to vapour pressure buildup. 

T D ,e" or T ,e ,Dare related to the time rate of change in T, e, D. During the gust 
intrusion period. T D ,e" are related more to a large-distance difference in D, T, e as shown 
by eqs. 4.2.14, 4.2.10, since then eair,eq and Tair,eq ' n these equations are equal to etop, 
Ttop- The sign of (Ts-Ta) depends on the value of vapour pressure buildup before the gust 
intrusion, and whether it exceeds a critical value of D. There are then three possibilities 
depending on the value of (Ts-Ta) and ß.which is still less than ß < y/s 

1) Above the canopy, the averaged ß<0 due to H<0. This represents scenario B l . The 
time mean of (Ts-Ta) <0., but due to vapour pressure buildup, (Ts-Ta) is an increasing 
function of time during the quiescence period, and could be positive just before the gust 

IJ/T"1 T \ 

intrusion. Condition (1) in eq.4.2.87 always holds, since -M^—— =-T", with T" being 
at 

positive. 

2) The same as 1, except that (Ts-Ta)is negative due to vapour pressure buildup being 

not high enough, due either to somewhat high stomatal resistance (not very high, otherwise, 

we get ß>y/s situation) or to that the period between the gusts is small. So, D before the gust 

will be high. 

5D 3(TS-Ta) 

A < ^ L _ (4.2.88) 
D (Ts-Ta) ^ ; 

The satisfaction of eq.4.2.87 depends on the build-up which may not be large enough. So D is 
relatively high and (Ts-Ta) is small. 

^ „ 3D 3(T5-Ta) 

3) y/s >ß>0 => H>0 <=>(TS-Ta) >0, A required condition for —LE- <0, is - ^ - > 
3t ' D (T s-T a) ' 

which means that the intruding air is colder than the ejected air (Scenario Al) . There are two 
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different scenarios here. This also means that the intruding air has to be colder than the 
leaves. If that was not the case and the intruding air is warmer than the leaves, we would have 
a logical contradiction. Assuming this air is warmer than the leaves, it will start cooling and 
humidifying due to vapour pressure buildup ß < y/s , the vapour pressure deficit will reach a 
critical D, the leaves will start being warmer than the air, and a heat source develops and due 
to the large contact time between the leaves and the air (i.e. a large interval between gusts) the 
air becomes warmer than the air which initially came in (a sensible heat flux positive). The 

incoming air has to be automatically colder than the leaves. ^—— is positive with (Ts-

Ta) positive 

given: Tajr?jn<Tair,out sensible heat flux positive 

assuming 

1 air.in'* 1 leaves —^ 1 leaves-* 1 air.out = ^ 1 air,in> * air.out 

(4.2.89) 
which contradicts our initial assumption. 
So, the satisfaction ofthat condition (4.2.86) depends on the situation. 

There is a case of scenario Bl, in which the incoming air is warmer than the air within 
the canopy. There would be a negative heat flux with the gust intrusion , but due to an 
accidentally large period between two consecutive gust intrusions, the air cooled first and 
then warmed, such that the air became warmer than the air which initially came in. The 
sensible heat flux at the canopy top due to a local gradient would be positive, and if that lasts 
long enough, it would more than compensate the negative heat flux accompanying the gust 
flux. The next coherent structure would not be able to bring a warmer air than the outgoing 
one and that would be similar to case Al. The effect is a positive sensible heat flux due to a 
gust intrusion and a reduction of the air temperature around the plants. This case corresponds 
to the area in quadrant II in fib. B ]. 

4.2.3. A SIMULATION OF THE DIFFERENT SCENARIOS BY THE USE OF MORE 
EXACT FORM 

The intrusion of coherent structures, with a large length scale in relation to the source 
distribution within height, introduces a parcel of air with a different temperature and moisture 
content into the canopy air space and leaves it there. The whole canopy air is replaced then by 
fresh air from above in a very short time. This is represented by very small time constants for 
the exchange processes during the gust intrusion. That expresses the very rapid change in the 
uppermost curve in (fig 4.16). The value of Ti,eq, as given by eq.4.2.5 will experience a 
sudden change. Tieq change will depend on the net effect of the fourth term in comparison 
to the third and the fifth terms in eq.4.2.5. There are four combinations of D and T . These 
combinations are shown in fig 4.15 a, b. The upper most regions in Quadrant I and III in the 
joint probability distribution represent extreme events. Fig.4.3.a,b represent assumed shapes 
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concentration, point 
steady state solution 

Actual Mean concentrât 

Approach to equilibrium exponentially 
characterised by time constants of the 
canopy air layers and source variations 

Ste-Jdy heat source in c^se of continuous refreshment | 

Ejection phase 
i 

T^'sO \ 
VS'^O 

Sweep phase 

TIME 
Fig 4.16: A hypothetical case of a gust cycle, showing in the upper graph the behaviour of the state 
variables of the air (i.e. temperature and vapour pressure). In the second and the third curves, the 
probable behaviour of the sensible and latent heat sources is shown. The lower one represents the 
behaviour of the vertical wind speed, being positive during ejection with a low value and highly 
negative during the sweep phases. There will be a net result on the w's' 
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of the joint probability distribution between T' and D', and real measured ones represent the 
solution of the conservation equations. 

Scenario Bj: 

This scenario represents a warm arid region. We will first discuss the time behaviour of 
the leaf temperature, the temperature and vapour pressure of the air for a general case, where 
the intruding air has a T' > 0 and a D' > 0 and then proceed with an explanation of a particular 
case for this scenario by the use of MATHCAD. 

A: gust intrusion phase: 

We start with point A on the WD' joint probability distribution (fig.4.15 b). We have 
D'>0 and T">0, the sign of the fourth term shows that ATi <0 (The leaves are then cooling 
or heating at a lower rate depending on T, being higher or lower than T, ) if (s+ 
y(r. +r )kyvj< D'/T'air (appendix 2.7). During the active exchange period between the 
canopy air and the layer of air above, there will be no or very little build-up of the temperature 
and vapour pressure of the air. The value of T, after an initial sudden change will be quite 
constant, and the sensible and latent heat flux from the leaves will be governed by the 
equation A.2.8.1 and A.2.8.6 respectively. During this phase of gust intrusion (Quadrant I), 
we will assume then that ATi is negative. The rapid change in D leads to a change in H/LE 
in favor of LE and a reduction of H will result. The leaf temperatures then will be moving 
toward a lower new equilibrium temperature. The sensible heat flux from the air to the leaves 
could reverse sign, depending on D change. The temperature and vapour pressure of the air 
will respond to the changing leaf temperature according to equation 4.2.10, 4.2.11 and 4.2.12 
for air temperature and eq.4.2.14, 4.12.15 and 4.2.17 for air vapour pressure. The coupling 
between the canopy air and the air above is very strong. The time constants of the canopy air 
layer are then so small and controlled mainly by the first two terms in eq.4.2.11 and 4.2.15. 
The air equilibrium temperatures and vapour pressure, during this phase will be equal to 
eair ton ant* ^air ton' ^ ' s ^s reP resented by the upper curve in fig.4.16. It is highly 
improbable that trie leaves manage to attain equilibrium during the intrusion period. The 
leaves have a time constant of 100 sec or so, which is quite large in relation to the gust 
duration. 

B: Quiescence Period (a probable build-up phase): 

Once the gust mechanism of exchange is shut off, the quiescence period starts. The 
turbulent transport coefficient reduces and the time constant of the canopy air layers increases. 
The effect of the leaf temperature terms in eq.4.2.12 and 4.2.17 shows that the sources become 
more important in controlling the temperature and vapour pressure of the air. There will be a 
start of a build-up of the vapour pressure of the air since es(Tl) of the leaves is higher than e-, 
(positive latent heat flux due to leaf temperature being higher than dew point temperature) in 
e • as given by eq.4.2.17. The temperature of the air will cool or warm according to 
eq.4.2.12 and 4.2.13 depending on the T^ being higher or lower than T

a i r initial' ^his 
relates to the third term in eq. 4.2.12 (initial leaf temperature) being higher or lower than 
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T- jniHai in the T • The slope of AD/AT on the joint probability (fig 4.15.b) is controlled 
by eq.4.2.90. With air vapour pressure buildup and the assumed air cooling, the slope of 
D c /T c is positive. The canopy air will move to a new coordinate on the T'D' joint probability 

de. 

Dc_des_ dt 

Tc~dT 37\ 

-At (4.2.90) 

dt 
-At 

coeff:= 0.25 

Rshort:= 1O0. 

Thick = 0.0005 

Tairrad:= 22. 

dz. := 0.2 

dt = 10. 
dz, =0.4 

dxtop, = 0.4 

dxtop2 = 0.3 

dxlop( = 0.2 

dxlower = 0.2 

dz2 = 0.4 

dxlower. : = 0.2 

dxlower? := 0.4 

dxlower. := 0.3 

distribution figure (in this case toward the center of the figure 4.15.b). The resulting change in 
D' and T' will have a feedback on the solution of the leaf eq.4.2.6 through changing Tl,eq 
(eq.4.2.5) into a new value. New ATi pn could be positive or negative. If it is negative, this 
means that the equilibrium temperature of the leaf is even deviating further from the one just 
after the gust passage. It would mean then that the build-up of the vapour pressure is not 
allowed to occur (i.e. the canopy is still coupled to the air above, which contradicts our initial 
assumption of weak coupling during the quiescence period or there is a very high value for 
stomatal resistance which leads to a decrease of vapour pressure deficit within time, e.g. 
fig.4.4.d). But in the latter case, our initial assumption of positive D' within the gust intrusion 
would not be correct. So, ATl,eq must be positive, i.e. the equilibrium temperature of the 
leaves is moving back to its initial value before the gust intrusion. Another way of looking at 
it is by considering the definition of the equilibrium 
temperature of the leaf, as given on page 103 and how it 
relates to the coupling , since a gust will couple the leaf 
more to the upper boundary and less to the radiation 
loading. It brings that upper boundary just across the 
boundary layer resistance of the leaf. A decrease in the 
turbulent coupling will couple the leaf more to the 
radiation field and less to the temperature and vapour 
pressure of the air above. So, if the equilibrium 
temperature of the leaves were higher before the gust 
intrusion, a shutoff of the gust mechanism, with no 
change in the radiation loading, must mean a return of 
the equilibrium temperature of the leaf to its original 
high value. The temperature of the leaf will move 
toward this new equilibrium level with lower absolute 
value of the rate as compared to the rate just after the 
gust intrusion, as can be seen from eq.4.2.2. The 
temperature of the leaf will keep feeding back into the 
temperature and vapour pressure of the air. The vapour 
pressure will keep increasing, while the air temperature 
will decrease or increase depending on the third term in 
eq.4.2.12. being higher or lower than the air 
temperature at the beginning of each time step. 

ktop. 

D.l 

5T 
4.0 
4~0 
4.0 
4.0 

0.004 

0.008 
0.014 
0.02 

0.08 
0.08 

0.008 
0.014 
0.02 
0.08 
0.08 
0.06 

29.55739 

28.305683 
28.069028 
27.908253 
27.85413 
27.806613 

" • • • " " - / . ' ' 
cumlai= 3.280 

Total_Load 

Total_Load 

rbhn = 100. 

rbhs:= 100. 
rsm = 300 

rsS = 200. 

Tleaver . = 

= cumlaiRshort2 ar 

= 524.800 

27.0 

Tairtop:= 30.0 

Tair = 30.0 laj 

eair =es(l8.4) 

Tair„ „ = 30. 

eairtop- es( 18.4) 

Tsoil = 32. 

eairlop = 2.118-10 

Fig 4.17.a A run for a warm arid 
region 
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Anyhow, with time the feedback between eq.4.2.2, eq.4.2.10 and eq.4.2.14 will go on and the 
whole system moves back to equilibrium as dedicated by the limited turbulent transport 
coefficients and stomatal resistance. The details will differ depending on the particular case. 
We will discuss one case later. Anyhow, since our initial assumption is of ß< y/s, this means 
that the build-up of vapour pressure of the air will continue, leading to a negative D' till a 
critical value of D has been reached. At this point, leaf temperature and air temperature will 
become equal and sensible heat flux reverses sign. H will be an increasing function of time 
and LE is a decreasing one. After the sensible heat flux change, the air starts warming and D 
develops according to eq.4.2.90. The solution of the temperature and vapour pressure and leaf 
temperature will progress toward an equilibrium solution, given by the solution of system 
4.2.2, 4.2.10 and 4.2.14 simultaneously. 

In below , we give results of detailed simulations for a canopy of six layers, as was done 
with the sensitivity analysis of the f2 function. We now want to see the interaction under 
specific boundary conditions between the profiles and the sources. We have three runs 
representing a warm arid region (Griffiths and Soliman, 1969), a humid cold region (Arlery, 
1970) and a tropical (hot humid) region (Sukanto, 1969). The boundary conditions are shown 
in figures 4.17.a, 4.18.a and 4.19.a. The procedure explained in page 131 is the same one used 
here to control the run such that no contribution of the leaf heat storage to the fluxes occurs. In 
fig. 4.17.b, the upper left figure shows the temperature of the air (Tair), equilibrium 
temperature of the leaves (Tleaveseqli), as given by eq. 4.2.5 and temperature of the leaves 
(Tleaves) respectively. The upper right figure shows the changes of the equilibrium 
temperature of the leaves between different time steps due to the vapour pressure deficit 
changes between time steps (delTleqiDair), air temperature changes (delTleqiTair) and the 
sum of both (delTleqis). The lowest two figures are the same as the upper ones, except being 
for layer number 2. 

In fig 4.17 c, most left figures are the same as the upper left figure in fig4.17.b, for air 
layers 1, 2, 3 and 5. Layer one is the lowest layer in the canopy. The figures in the middle 
show the behaviour of the sensible heat sources (Leavesfsh) and latent heat sources 
(Leavesflh) for the same layers. The rightmost figures show the behaviour of the vapour 
pressure and vapour pressure deficit of the air for the same layers. 

One of the early impressions made from these runs that the state variables of the air (i.e. 
temperature, vapour pressure and vapour pressure deficit) and the sources follow within the 
whole gust cycle an exponential behaviour. Another impression which can be drawn is the 
much larger variation of the value of the equilibrium temperature of the leaves in the lower 
layers of the canopy as compared to that in the upper layers. This is due to the lower layers 
being less coupled during most of the time to the boundary above, so the gust represents a 
large shift from the mean variables of the air, which leads then to a large shift from 
equilibrium. For the upper layers, the shift due to the gust is relatively not so strong since they 
are more strongly coupled. So, it seems that the gust effect has to do with the ratio of the 
deviation to the mean. We will come to this conclusion also in eq.4.2.99. 

Fig.4.17.b and fig. 4.17.C show that, for the second air layer, the intruding air was warmer 
(T' was positive and vapour pressure D' is positive). The change in the equilibrium 
temperature of the leaves was negative (delTelqiDair) while that due to air temperature 
(delTleqiTair) was positive. The total sum of both components was negative (condition 
A.2.7.4 being satisfied), so the equilibrium temperature of the leaves in that layer experienced 
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Fig 4.17.b: The behaviour of the equilibrium temperature of the leaves 

a sudden negative change. That change caused the equilibrium temperature of the leaf curve to 
cross the temperature of the leaf curve (the second figure in the first column of fig 4.17.c) Due 
to this, the leaf temperature curve in the same figure (Tleaves) suddenly reverted direction. 
With leaves cooling, the air started to cool down, since the leaves are acting as a sink in 
eq.4.2.12. This was due to the high vapour pressure deficit of the air which led to 
(delTleqiDair) being highly negative. The air was being humidified at the expense of leaf heat 
storage and negative sensible heat flux from the air to the leaf. With the gust mechanism shut 
off, a large fraction of the water vapour delivered by the leaves to the air accumulated within 
the layer and the air cooled. This led to a decrease in the vapour pressure deficit within time 
(eq.4.2.90). The feedback on the equilibrium temperature was negative. The leaves within the 
next time step were still cooling but with a higher rate (less negative) due to the positive 
change in T. . The air cooled and kept humidifying (Dc/ T c between consecutive time steps 
being positive) with a resulting increase in Ti . Inevitably, the temperature of the leaves and 
the equilibrium temperature of the leaf met with a resulting no further decline in leaf 
temperature. In this case, the air temperature was still higher than this meeting point, since the 
intruding air was warm enough to maintain a positive temperature difference with the leaf. 
The negative sensible heat flux from the leaf to the air will continue, but from now on the leaf 
will start warming, and the heat storage within the leaf will increase. The negative change in 
storage with the leaf and the air so far represented the contribution of the storage to the 
sources (in this case latent heat sources). This change represented the variation in the source 
which could sum in the average to a value higher or lower than a no-gust model, depending on 
the time period between two gust intrusions. Due to the decrease of vapour pressure deficit, 
the leaves kept warming till a critical D' was reached in which the temperature of the air 

158 



becomes equal to the temperature of the leaf. In this case, or scenario, the period between gust 
intrusions was not large enough to allow this. This would represent then case 2, discussed 
within sect.4.2.2.1 (eq.4.2.88). 

The time mean will be controlled mainly, by the build-up during the quiescence period. If 
the value of D during the quiescence period is low, compared to the gust intrusion phase, the 
numerator in D/(Ts-Ta) will have a large time variation which represents a large variation in 
H/LE ratio. The importance of the gust process here is that it leads, due to a large difference in 
D profile, to a different solution of the energy budget equation of the leaves and the soil 
surface which affect the resulting mean. 

The variation of the sources as a function of time is controlled by the feedback between 
the profiles and the leaf temperature. The effect of that disturbance depends on the frequency, 
of occurrence and the degree of the build-up of temperature and vapour pressure which is 
allowed to occur. 
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In the following scenario A. and C., the same analysis 
applies in the sense of the feedback between the system 
of eq.4.2.2 , 4.2. 10 and 4.2.14 with the differences of 
the initial W'd' coordinate and the effect of this Tl,eq 
and whether this led to a decrease or an increase in the 
leaf temperature and the resulting change in the 
behavior of the sources and the feedback on the 
profiles. 

Scenario A 

cumlai:= Laddz. 

cumlai= 3.280 

TotaLLoad - cumlaiRshort2ar 

TotaLLoad = 524.800 

rbhm:= 10O. 

rbhs:= 10O. 
rsm=300 

res := 200. 

Tleaver. . := 22.0 

Tairtop:= 20.0 

Tair . := 20.0 

eair . = 1600 

Tairoo:=20. 

eaiitop:= 1600 

eairtop= 1.600* 10 

In scenario A, the incoming air will be drier and 
colder than the air ejected from plant canopy. The 
values for this run are obtained from Arlery (1970). 
They represent the averaged temperature and vapour 
pressure for the month of August for De Bilt, The 
Netherlands. 

The discussion of this run follows the same line as 
above except that the intruding air is colder than the 
ejected air (T' negative and D') positive. In here, the 
temperature of the leaves was always higher than air. 
So, there was always a positive source within the 
canopy. This was due to the lower vapour pressure 
deficit compared to scenario B1. The intrusion led to an 
increase in both the sensible and latent heat flux from 
the leaves to the air. This was achieved at the expense of heat storage within the leaves, which 
were trying to adopt to the change in the boundary conditions for the solution of the energy 
budget equation of the leaf surfaces. In the process, and due to the lower turbulent coupling 
between the air in the middle of the canopy and the air above, the air changed its temperature 
and vapour pressure with a resulting feedback on the leaf temperature. So, everything was 

dt: = 
dz, 

10. 
= 0.4 

dxtop. := 0.2 

dxlower := 0.2 
i 

dz, := 0.4 

dxtop, = 0.4 

dxtop2 = 0.3 

dxlower. 

dxlower2 

dxlower3 

Lad. :- klower. :- ktop.: = 

:=0.2 

= 0.4 

= 0.3 

Tun:: 

0.1 
0.1 
4.0 
4.0 
4.0 

0.004 

0.008 
0.014 
0.02 
0.08 

0.08 

0.008 
0.014 
0.02 
0.08 
0.08 

0.06 

22.121194 
21.754356 
21.932505 
21.682033 
21.524594 
21.266762 

Fig.4.18.a Run for a cold humid 
region 
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Fig 4.18.b: The behaviour of the equilibrium temperature of the leaves. 
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moving back to equilibrium. 
Scenrio CI 

The values of the boundary conditions for this run 
were obtained from (Sukanto, 1969) The values for this 
run are shown in fig.4.19.a. 

What is noticed here, especially in fig. 4.19.b, is 
that in comparison to fig.4.17.b, the changes in the 
equilibrium temperature of the leaves due to vapour 
pressure deficit changes were much lower (in absolute 
value) than the more negative changes in the 
equilibrium temperature of the leaves due to 
temperature changes. So the gust process introduces a 
reduction of the leaf temperature, due more to the 
lower air temperature than due to the higher vapour 
pressure deficit introduced by the gust intrusion. So, in 
this case, there will an increase in the sensible heat flux 
due to the gust process. 

coeff = (1-25 

Rshort = 1(1(1. 

Thick := 0,0005 

Tain ad = 22. 

dz - 0.2 

dl = 1». 
dz, =«.4 

dxtor, = 

dxtop2 = 

0.4 

0.3 

dxlo^ = 0.2 

dxlower - 0.2 

dz, = 0.4 

dxlower = 0.2 

dxlower, = 0.4 

dxlowe^ - 0,3 

klop. 

II 

in" 

4,0 

().(X>4 

().<X>8 

:>.<>14 

0 . 02 

0.08 

0.08 

0.008 

0.014 

0,02 

0.08 

0.08 

0.06 

29.324384 

28.957338 

28.98552 

28.697913 

28.539547 

28.289065 

E L cumlai= j Laddz. 

cumlai= 3.280 

Totul_Load - ciimlaiR,short2-ar 

Total_Load= 524.800 

rbhm := 100. 

rbhs = 100. 
rsm •= 3(H) 

rss := 200. 

Tleavc' . := 27.0 

Tairtop = 27.0 

Tair -27.0 m,j 

ea i r m . = O.SS-esfTair,, , 
ii. sJ 

T a i r ( U ) : = 2 7 . 

e a i r t op = 0 .85-es (Ta i r top ï -

Tsoi l = 2 9 . 

e a i r t op = 3 . 0 3 6 - 1 0 3 

Figure 4.19.a r u n for a h u m i d t r op ic 
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Fig.4.19.b: the behaviour of the leaves temperature. 
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2) NIGHT-TIME SITUATIONS: 

Radiative cooling for the canopy elements at night-time and the concentration of these 
canopy elements at the upper portion of the canopy, leads to the appearance of a heat sink at 
the canopy top. This sink will be filled up by heat flux from the soil, in the form of thermals 
transporting warm air from the soil surface to the sink at canopy top. Dew rise, and dew fall 
from above, compensate the remaining sink deficit at canopy top. The fractional contribution 
of each of these sources to the sink at the maximum leaf area density height is dependent on 
the coupling between different heights. The degree of coupling is function of the thermal 
stability. The coupling from above the canopy air to the canopy top depends on the occurrence 
of intrusions of air from above. This depends on the existence of a critical shear at the canopy 
top, which overcomes the thermal stability effects due to the unfilled sink at the canopy top. 
So at night there are two situations, depending on the shear at canopy top, 1) a coupled canopy 
or 2) decoupled canopy. 

In case of light wind speed at the canopy top, there will be little dynamic coupling 
between the canopy air space and the air above. This leads to the soil acting as a source to 
satisfy an unfilled sink at the canopy top. 

1) Coupled canopy: 

The picture here is similar to colder, more humid air coming down 

2) Decoupled canopy: 

There is no intermittency due to gust intrusion from above, while there will be 
circulations of air transporting sensible and latent heat from the warm wet soil surface to the 
colder canopy top. Look at fig 4.20 and 4.21. This figure is taken after midnight and shows for 
a segment of 1000 sec duration the temperature and the wind field observed within plant 
canopies. In this picture, we average the 5 Hz into 1 Hz frequency. The picture clearly shows 
the radiative cooling at the upper parts of the canopy plus the high temperature regions at the 
lower parts of the canopy. By looking at the simultaneously measured wind speed, one sees 
higher values of this absolute wind as measured by hot bulb anemometers. There could be two 
explanation for this: the intrusion of coherent structures at the canopy top even at night, which 
could be seen at some of the occasions, or the buoyancy term acting as a source for turbulent 
kinetic energy, leading to the turbulent transport of heat from lower regions of the canopy to 
the upper regions of the canopy. Look at the tongues of the temperature islands which extend 
upwards to the canopy air space. This problem is considered to be similar to the Bernard-
Raleigh convection problem (Jacobs et al. 1994). The centroid of the radiative cooling by the 
plants represents the cooler upper surface, and the hotter soil represents the lower hotter 
surface. 

Most of the generation of turbulence within canopy is due to the positive buoyancy flux 
at the soil surface, due to the soil heat flux from the soil to the canopy layers, which is driven 
by the residual radiative cooling at the canopy top. 
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Time in seconds 

Time in seconds 

Fig 4. 20 Space time domain maps for a coupled canopy at night. The upper figure shows windspeed 
and the lower one shows temperature, contour intervals are 0.01m/s and 0.1 ®C. 
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Time in seconds 

Fig 4. 21 Space time domain maps for a de-coupled canopy at night. The upper figure shows 

windspeed and the lower one shows temperature, contour intervals are 0.005m/s and 0.1 ^C. 
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The average we obtain in a measured data set is an average of the above explained 
processes. If the system is nonlinear, an approximation of these processes in a large-time 
averaged model in a functional (cause-effect) manner is not possible. Obtaining an 
approximation in a multi-layered model could be done from a detailed model by inverse 
computing of a matrix, which relates the final solution to the initial with a certain set of 
averaged sources. 

A large-time averaged measured flux could, however, be obtained from a large-time 
averaged measured surface temperature by the use of a fitted large-time averaged 
conductances. But this conductance can not be used for a smaller time scale than the one it 
was obtained from. To obtain conductances means for small time scale, we need to satisfy 
equation 3.5.1 a,b by the use of ensemble averaging for identical periods of the gust cycle. 

The effect of intermittency on shift from equilibrium could be shown by the use of 
Penman-Monteith equation for latent heat and sensible heat, if storage can be neglected or if 
an equivalent resistance can be defined. This method here could be also used as an 
approximation to check the sensitivity of the energy partition as defined by Bowen ratio to the 
variation in the simulated mean D. Let us decompose D into a mean and a deviation from that 
mean due to large scale and small scale turbulence. Penman-Monteith equation for sensible 
heat flux reads as 

y* Rn -pCDDrd 
H = j n v p H (4.2.91) 

s+Y 
and for latent heat as 

s Rn +pCr)Dr;J 
X E =—" K P H (4.2.92) 

s+Y 

By putting the triple decomposition 

D = D + D + D " (4.2.93) 

where D is the instantaneous vapour pressure deficit. D',D" represent time deviations from the 
mean due to small scale turbulence and large scale turbulence, respectively, 

D +D =0.0 (4.2.94) 

D+D^D] (4.2.95) 

ii_Y*Rn-pCpDri|-pCpD,r|}-pCpD"rij ^ ^ 

S+Y* 

sRn +pC0Drd+pC0D'rd+pCDD"ril 
XE = " P H P H P Ü- (4.2.97) 

S+Y 
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Dividing 

H_Y*Rn-pCpDirjj-pCpD"riJ ^ ^ 

XE sRn+pCpDir^+pCpD"rj| 

Dividing by pCpDir̂ ' both numerator and denominator, 

J-a
pC"°"" "I, ,4.2.«, 

XE _ ^ s R n + 1 + D„ 
pCpDjr-jj D l 

The relation between D" and Dl depends on the frequency of refreshment and its value 
and the time constants of the canopy layers. Dl, or D, is not independent. It will depend on 
D" and the period between the passage of two gusts in relation to the time constants of the 
canopy air layers. The equations of the mean are given. This relation 4.2.98 could be also 
used to see the effect of the estimation of the mean D by assuming that D" is the deviation 
between two means determined by two modelling approaches (e.g. a gust and no-gust 
approach). In the following three equations, we use the criterion of being four times the value 
of the air layers time constant as an indication for equilibrium establishment. 

= _ Atgust duration ^gust duration 4 xa T 4 Ta>j 
1 t0P r ^ d + 1 a i r ' e i ( ' r ^ d period ,+ ' a v e r a g e ~r^d 

(4.2.100) 

_ Atgust duration ^gust duration 4 T a e 4 Tae 
6 - e t°P period + e a i r ' e c l ( ' p^ri^d period a v e r a g e — ^ 

(4.2.101) 

=:_ Atgust duration ^lgust duration 4x an 4 t a j ) 
U ~ U t°P period +uequilibrium ( 1 — ^ period ) a v e r a S e ^eTiod 

(4.2.102) 
The ratio of —ß— if we assume a complete refreshment which is satisfied becomes 

Dmean 

D1 _Dtop-pmean ( 4 . 2 . 1 0 3 ) 

Dmean ^mean 

D1 _ P n 

-'mean 
iüsäa— (4.2.104) 

Dn 
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By looking at the value of Dmean> 

-'top 
Dtop 

_ A'gust duration „ ,. ^'gust duration 4 i , . 4 x utop :—; ••-'equilibrium U : )+L>average 
period period period period 

^equilibrium — &s \ A air.eqlJ "Cair.eql 

(4.2.105) 
(4.2.106) 

Time 
Fig 4.22 The assumed behaviour of the vapour pressure deficit within time. 

The maximization of this value requires a low value of relative gust duration and a 
minimum Dequiiibrium- A low value of Dequiiibrium means from 

/ K to Kbottom 

" Xbottom 
\ 

/ K t0p + Kbottom tLADMID A z j / K t0p + Kbottom +LAD A 

\ 5X t o p 8 Xbottom (rbv+rs) / \ 5X t o p 5 Xbottom (rbv+r; 

ei-l 

LAD.A z 

(fbv+rs) 
Ktop ! Kbottom .,.LAD -A z ' 

SXtop 8 Xbottom (rbv+rs) j 
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a canopy with a low stomatal resistance and weak coupling between canopy air layers and the 
layers of air above the canopy during the quiescence period. The importance of small scale 
mixing leads to increased importance of the coupling between different canopy layers, but for 
every one of these the stomatal resistance has to be low to have a high value of eair,eq-
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The problem of stomatal resistance and soil surface parameterization is discussed in the 
end of this chapter. The problem of small scale mixing during the quiescence period was 
discussed in chapter 3. 

In case of a canopy which is strongly coupled all the time, the effect of intermittency 
would not be there, since Dtop will be close to Dmean- The value of energy partition will 
depend on the value of stomatal resistance. 

Statement 1: The problem of intermittency in canopy climate modelling is the 
combined effect of: 1) the existence of a separation in the length scales responsible for 
transport and 2) the ability of the leaves and the soil as sources and sinks to respond to 
temperature and vapour pressure variations due to this intermittency or scale 
separation. 

Statement 2: The problem of higher order correlations and their non-uniform 
distributions within time or space, which we discussed in chapter 3, would not have been 
there if the canopy elements were not able to respond to temperature and vapour 
pressure variations introduced by gust intrusions. 

Explanation of statement 2: During the quiescence period, the amount of sensible and 
latent heat energy, which is delivered by the leaves into the intercanopy air stream and which 
is not evacuated to the layer of air above, represent a change of storage of nonradiative energy 
within the canopy air space. During the gust intrusion phase, the discharge of these stored 
amounts represent a flux at the canopy top. During the gust intrusion phase, there is a 
downward momentum flux. Correlated with momentum flux, there will be a high latent and 
sensible heat flux represented by evacuation of nonradiative stored energy within the canopy 
air layers. If the canopy elements were very sluggish (i.e. in an extreme case metallic leaves: 
no transpiration and completely reflective non-absorbing leaves), there would be no change of 
latent heat storage in the first case, and also no storage of sensible heat in the second case 
within the canopy air space during the quiescence period. That would mean no flux of latent 
heat and sensible heat during the gust intrusion phase and so no correlation between 
momentum flux and heat fluxes (i.e. fourth order terms). The situation is not so extreme (i.e. 
metallic leaves), but the more sluggish the canopy elements, the less is the inhomogeneity of 
the time or space distribution of the higher order terms. 
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4.2.4 SENSITIVITY ANALYSIS ON THE APPROXIMATE FORM: THE INVERSE 
MATRIX A"1 

What we want to show here is the effect of intermittency due to the parameterizations of 
turbulent transport coefficient during the quiescence period on the inverse matrix A"l. It will 
be shown that for the steady state solution, all the inner values of the matrix are multiplied by 
a coefficient which equals the ratio between the parameterization due to the no-gust model to 
that of the gust model. So, if the ratio of Km value between a gust and no gust approach is 
0.25, all the inner elements of the inverse matrix are multiplied by a ratio of 1/0.25. This is 
not a trivial difference. 

To show this, the inverse matrix was obtained symbolically for equation system 4.2.72 
by the use of Gauss-Jordan elimination. What we want to obtain is a ratio between the values 
of the corresponding elements of two inverse matrices for the matrix A , as given by 
eq.4.2.72. The matrix A had two parameterizations, one due to the gust model, and the other 
one is due to a continuous parameterization, in which the Km value had a higher value (twice 
the gust parameterization, but constant in time with large-time interval averaging). To do this, 
some intermediate steps are shown in Appendix A.2.10 to obtain these ratios. 

The coefficients Ej, Gj and Fj are defined according to equations 4.2.74. In the case of 

a gust model these coefficients have a value (let us assume 1/a times as large as the gust 

model). In the case of a steady state solution At—»°°, So Fj equals the sum of Ej and G\. 
In reducing the second column to a value one for the second row, we get the ratios 

-G2/f2, E2/F2 , I/F2, E3E2/F2, F3-(E3G2/F2), E3/F2. The third, the fourth and the fifth terms 
are affected by the gust process. 1/F2 is twice as large as the case of a gust model and F3-
(E3G2/F2) is half the value in the case of no-gust model. Later in the derivation, we call this 
quantity F3'. E3' which equals E3E2/F2 for a gust model is also half the value of that in a 
no-gust model. 

In reducing the third column to a value of one for the third row, we get ratios such as : 
EjE3'/F3'. This quantity , which we call later Ej', is also half the value in a gust model 
compared to that of the no-gust model. The same applies to FJ-EJG3/F3' which will later be 
called Fj'. The ratio between the gust and no-gust coefficient applies to those coefficients 
with higher i's. 

Now, looking at the inverse matrix of our system A'l, we see that every element of that 
matrix consists of an addition of terms. Each of these terms is a multiplication or a division of 
Fj,Ej,Gj terms. We see that for the inner elements of the inverse matrix, the number of 
elements constituting the numerator is always one less than the number of elements 
constituting the denominator, so a factor of 1/a, where a has been defined earlier as the ratio 
between Km values for a gust and no-gust, goes out. 

For the elements constituting the first and last columns, we see that the number of 
elements going into the numerator and the denominator are the same. So, no reduction comes 
out, and these elements of the matrices for the no-gust and gust model are the same. 
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4.3 THE RELATION BETWEEN THE LARGE EDDY LENGTH SCALE, D' AND 
DMEAN AND THE CORRELATION BETWEEN THE TRANSPORT AND THE 
SOURCE 

Assume that the canopy has a large vertical extension compared to the scale of the 
mixing structure and has a constant source distribution as function of height. A large-scale 
structure would mix air layers which would have the same temperature and moisture content, 
and this would have made no effect on the source terms of the canopy. The joint probability 
distribution of w' and D' would have then a correlation of zero. All the points of that 
probability would lie with the origin. We allow some dispersion due to randomness 

Canopy top 

S =f(z) 

A Mixing 
turbulent 

echanism 

The resulting WD' joint 
probabilty distribution. 

Soil Surface 

Fig 4.23.a shows a hypothetical case of a transport mechanism with a length scale less than 
the canopy height with uniform source distribution 

This would be close to what is happening with small scale turbulence: mixing the air 
inside the canopy which have moisture contents (D' vapour pressure deficit variations) 
reflecting the vertical distribution of the sources. 

Due to the large scale of the coherent structure in relation to canopy height, vertically 
downward moving parcels of air tend to be drier (i.e. lower vapour pressure) and they replace 
more humid air from within the canopy, which is pushed upwards. The downward vertically 
displaced parcels tend to remain within the canopy air space, so their humidity deficit is felt 
for a large period of time by the canopy, while the more humid parcels which were displaced 
upwards have left the canopy space so their effect is not felt. In this case, the joint probability 
distribution between w' and D' has a correlation which is not equal to zero. The outside 
regions of this probability represent the effect of extreme events. If the canopy was large 
enough, this effect would not have been there, since the vertically moving parcels will have a 
moisture content which reflects the rather constant source distribution. 

In the joint probability distribution WD' , there exists three domains. These are 
represented by domain 1, 2 and 3 respectively in the detailed W' D' diagram (fig 4.24). The 
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leaves have a very low capacitance for water vapour. They respond immediately to water 
vapour deficit of the air. The response magnitude will be dedicated by the magnitude of 
stomatal resistance. Domain 1 and 2 include small scale deviation of D. Part or none of 

Canopy 
top 

Source=f(z) 

The resulting joint probability 
distribution 

Soil surface 

Fig.4.23 b shows a hypothetical case of the joint probability distribution resulting from a 
large length scale. 

these deviations will not be seen by the leaves. These are represented by the symmetric area 
1. (that area is very small indeed). In case of very sluggish leaves with very high time 
constants, they may not even see the deviations due to large scale turbulence D". This 
depends on the limit of the RC multiplication, where R is the resistance of the leaf and C is 
the capacitance of the leaf for water vapour and if RC goes to a limit. The first term is very 
large (R) while the second term is very small (C). The part which the leaves see and responds 
to is the area between the outer limits of area 3 and area 1. Di , as has been defined by 
eq.4.2.95 could be a spatial mean within small number of layers. That would have been the 
mean if the gust process did not occur. 
From eq.4.2.97, it could be shown that the latent heat source 

XE=?UEi 1+-
pCpD"rjj 

s R n + p C p D i r ^ 
(4.3.1) 

• - ! _ , 

ÀEi 
_sRn +pCpDr^+pCpD rjf 

s+Y 
where 
XE\ is the instantaneous rate if there was no low frequency component or if turbulence was 
fine-structured, i.e. no large-scale structures. 

If there was no large scale turbulence, D would have been zero. Superimposed on the 
figure is the line ABCD which represents the points on the joint probability distribution 
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which are contributed by an extreme event. Point A represents the start of a sweep phase in 
which a high negative vertical wind velocity is coincident with a large vapour pressure deficit 

Fig 4.24. Areas in the joint probability distribution of w'd' 

value. This lasts till point B. We notice there could be very small change in D' value during 
that period. This is due to the air being actively coupled to the layer of air above in the case of 
a longer duration sweep, since the leaves can not change the moisture content so rapidly 
during that stage. After the gust passage, the dry air which has replaced the more humid air 
has small absolute values of vertical wind velocity, and at the early stages of build up it has 
high positive values of vapour pressure deficit (high D" with low absolute W). With time the 
air starts humidifying, leading to the movement in time along the twisted line from point B to 
point C. The twisting in the line is due to small scale mixing within a variable source profile. 
With the arrival of the following gust, or the passage of the next coherent structure, the air 
will have humidified (a lower D) and will have a positive W" (an ejection) and the line moves 
back to point close to point A. 

It is clear that there will be deviation of the source strength due to D" (a Penman-
Monteith result). S' (source deviation) is a linear relation in D' or D"(the part inside the 
brackets in eq. 4.3.1). If there is a correlation between w' and D" depending on the shape of 
fig 4.24, this correlation will show as correlation in w's'. The variation of W" with D" is not 
linear since there are some periods, as we have explained in which D" is positive and W" is 
non existent (after the passage of the coherent structure). But we usually know that the 
contribution of W"d" to the total saturation heat flux (the integration of w'd') is about 40-50%. 

If we assume some form of the joint probability function relating D" to W", S as given 
by 4.3.1 becomes 
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S=Si +Si 
pCp [- aw" + random Gw]ru 

r-1 
(4.3.2) 

sRn+pCpDj r ^ 

that leads to 

pCp [- aw" + random Ow]rjj 

sRn+pCpDir^ 1 

pCp [- a w" w" + random 0w]r j j 
w"S = Si 

s R n + p C p D ! ^ 1 

(4.3.3) 

(4.3.4) 

The average of this component is not vanishing to zero. In the case of using time steps 
larger than the scale of the source variations due to D" or W", we need to consider the effect 
of w 'D' correlation on the source term which would lead in the end to a correlation between 
s'w'. This term will affect the mean source profile. It will go into the turbulent flux equation. 

• dq ' r r 3 q ' ' 3q • • dq ' d^q u- - ^ - + u xj. _JL_ + u u ^î_ + u u _^_ = u v —i_ + u 
1 3t l J 3xj ! J 3xj ' J 9xj ' q 3x2 ' 3XJ "«If* 

(4.3.5) 
This equation which represents the multiplication of turbulent velocity component with 

the turbulent scalar equation. This equation is the same as 3.6.11 except for the last term, 
which represents the correlation between the source variation and uj variation. This equation 
is added to equation 4.3.6 to get the turbulent flux equation (eq.4.3.7). This latter will have 
this term (term XI) which will not vanish to zero. If we assume that the large-time averaged 
turbulent flux equation is valid, this last term represents the correlation between the sources 
and the profiles, which we have lost account of due to the intermittency introduced by the 
existence of coherent structures. 

• 5 u i Trdui • ' 3 u i ^rJ- +q Uj ^r-L +q U: -=r~
L +q u 

3t M J 3x- H ' 3 - M AJ 
I II 

J 3x; 

III 

3u; 
'j äxj 
IV* 

s e vq z 8 i3h^" 
^v / 

V* 

g+fc£ij3q'uj -q' 

VI 

/ \ 

VII* 

1 ' Vi) ' 3 U;U; 
dp . 0ZU: , 1 J 
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This equation is non linear. Averaging this equation, if it is assumed valid (look at appendix 
l.a), and assuming stationary, horizontal homogeneity, vertical wind velocity zero, neglecting 
Coriolis force term and molecular divergence terms, will lead to the disappearance of the first, 
second, sixth, ninth and tenth terms. The remaining terms will represent a balance between 
production (III), turbulent transport (IV), buoyancy (V), pressure(VII) and source vertical 
velocity correlation term. We neglect the effect of buoyancy, assuming that the coupling by 
the gust process of the canopy air layer to the layer above leaves no time or very little time for 
thermal stability effects to work. On the other hand, the effect of stability is somewhat 
included in the gust process since gust frequency is somewhat controlled by stability effects. 
The term (III1), in the case of assuming horizontal homogeneity, represents a correlation 
between a vertical wind velocity variance and a vertical gradient in the concentration. The 
second (III2) is a correlation between a moisture or scalar flux and the mean wind velocity 
gradient. The gust process also affects the other terms (IV, VII) in the equation, as has been 
shown on Sect. 3.6.C. The gradient in the turbulent transport term expresses the effect of 
turbulent transport on moving the flux. The flux in a steady state situation is equal to the 
mean source and estimating the value of the term in eq.4.3.4 could be used to scale the 
sources vertical velocity correlation. The coefficient a in eq.4.3.4 represents the time averaged 
slope of the joint probability distribution of W D ' . It has to be a weighed slope of all the 
points on fig.4.24. This slope is determined by the general climate since it will determine the 
initial value of D after the gust intrusion (i.e. the extreme values at upper left part of the 
graph) and the build-up or decrease of the vapour pressure deficit which is allowed to occur 
(i.e. the lower right part of the graph). The latter will determine the end value and the period 
of time over which the value of D stays at a certain limit. This slope is not the apparent slope 
on the joint probability W D ' distribution figure. 

In the two examples given below, the values of that slope were determined from a 
MATHCAD® runs to calculate the end value of vapour pressure deficit for point D. Looking 
at the values of Dairnd at page 143, we get an impression of the values of the change of D" 
due to gust intrusions. It is about the difference between the first element and the last element 
in Dairnd- This gives very close values of the D' and D m e an a s t n e ones assumed in eq.4.3.10 
and 4.3.9, for the warm arid and cold humid regions. We assumed that the value of points A 
and D in fig 4.24 were accompanied by -0.3 ms"l at the gust intrusion phase and by +0.3ms~l 
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in the ejection phase. These Dairnd were obtained from MATHCAD® runs, as has been 
explained on page 143. This values give a value of the coefficient a in eq.4.3.2 in the order of 
- 6000 Pa.m"l. Concerning the random part, which leads to the dispersion of points W'D' 
around the line, we assumed that it is related mainly to small scale mixing. The coefficient a 
in eq.4.3.2 is the time mean of the relation between D' and W', and not the apparent slope on 
figure 4.25. This time mean is really difficult to obtain since it relates to the build-up. A 
parcel of air could remain still for a large period of time in which its vapour pressure deficit 
does not deviate a lot from the one introduced by the gust intrusion. This increases the actual 
slope determined above, compared to the apparent one. 

We do not have direct values for this equation, but there are some measurements which 
are given in fig.3 of Finnigan 1985, which give some idea of the order of the terms, if we 
assume about the same ratio between the terms for the latent heat flux equation. In the 
following scaling, we will compare the value of one of the production terms III1 to the 
source vertical velocity correlation term. Let assume that the mean latent heat source is 400 
Wirr2. This leads to a vapour pressure gradient of about (400*67/1200 = 22 Pam~l). Assume 
a vertical velocity standard deviation of about 0.3 ms"l. This gives a values of about 2 Pa. 
ms-2 for the term III1 in eq. 4.3.8. Now, estimating the W"s" term as given equation 4.3.4, 
assuming the same numbers as given below (eq. 4.3.8) and a leaf area density of 1 m2m~3, we 
get 

W"s" = 400* 1200 (6000 *0.3 *0.3 /50)/(312*600+1200* 1600/50) = 22.9 J irr2 s"2 

(4.3.8) 
This value would equal about (22.9*67/1200= 1.28 Pa m s~2 ). So, the resulting variation in 
term XI would be of the same order as term III 1. 

Solving the averaged equation will yield q'u- for different layers, the divergence of 
which will go into the solution of the mean concentration profile (first order). This term will 
go into a large-time averaged model, if the averaging is assumed valid. 

The problem of obtaining a representative average has shown up also in obtaining 
representative values for the transport coefficients between canopy air layers, and these 
coefficients obtained within a time resolution larger than the time scale of variations lead to 
different solution of the temperature and vapour pressure of the air outside the boundary layer 
of the leaves than the ones obtained with a time resolution smaller than the time scale of 
variations. If this is case, what is the proper procedure for parameterizing the averaged in time 
turbulent transport coefficients? We need a separation in scale and ensemble averaging of 
characteristic periods. This problem has been dealt with in chapter 3. 

There is also the effect of the increase of the absolute wind speed observed during the 
intrusion on the boundary layer resistance. We will neglect that effect, assuming that the 
sweep duration is not large. That is not always the case, (look at the diagrams where the 
duration of the gust can last 10-15 seconds). 

Let us come to a measured example which shows the effect. The figures are taken from: 
FAO IRRIGATION AND DRAINAGE PAPER 24: "Crop Water Requirements", page 17. 

Tmax 35 °c, T m i n 22 °c, R.Hmax 80 %, R.Hmin 30 %, 
Tmean 28.5 °C 
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es at 35 °C 56.2 mbar 
ea at noon time 16.9 mbar 
es -ea at noon time 39.3 mbar 

e a at 28.5 °C 38.9 mbar 

Rn at noon time 600 W m-2 

Let us assume that D mean is half of this value and D" will be half of the above given value 

P C P D rH = 1200*1600/50 _ Q 1 7 , 4 3 m 
s R n + p C p D ^ 1 312*600+1200 * 1600/50 " K ' ' > 

In the case of Dutch conditions (Goudriaan 1977, p. 175), the net radiation ranged from 
-84 to 690 W m"2. The temperature ranged from 13.5 to 20.6 °C, humidity ranged from 11.2 
to 15 mbar. We took the values at noontime. 

P C P D ^ = 1200*500/50 = a l 0 7 ( 4 . 3 1 0 ) 

s R n + p C p D i r ^ 145*690+1200*500/50 

The relation between D" and D] depends on the frequency of refreshment and its value 
and the time constants of the canopy layers. D1 or D m e an is n o t independent. It will depend 
on D" and the period between the passage of two gusts in relation to the time constants of the 
canopy air layers. 

4.4 ASSUMPTIONS USED IN SOLVING THE ENERGY BUDGET FOR THE SOIL 
LAYERS* 

In this section, we will deal with the solution of system of eq.4.2.72 and eq.4.2.75 for 
the soil part, as has been done in the numerical model. Since the air in the soil pores is almost 
saturated, depending on the soil water moisture potential, the solution of the soil temperature 
equation and the soil moisture potential gives directly the soil air vapour pressure. The 
divergence of water vapour flux accompanied by phase transformations (or the divergence of 
liquid water movement within a soil which has a thermal gradient) can lead to extra heat 
transport. Water vapour pressure gradient and water vapour diffusivity, as affected by air-
filled porosity and tortuosity, go into determining the water vapour flux between soil layers. 
Temperature gradient can lead to moisture flux. So, heat and mass transfer are coupled. 
Solving for the temperature and moisture content of the soil requires taking account of the 
coupling. 

In here, we will deal with this coupling, the parameterization of the heat and mass 
fluxes, their conjugate forces, the sinks within soil layers, the forcing at the soil surface due to 
energy partition, and the conductivity terms or the diffusivity terms for the different fluxes. 
But first, we will talk about differences between heat and mass transfer within the soil and the 
canopy air and the resulting consequences of these differences. 
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In the soil layers, the scale over which the transport mechanisms works is quite small 
compared with the length scale of the gradients of the state variables. The gradient transport 
approach is then applicable. Most of the heat transport is done either by conduction through 
the contact points between the soil particles and the water films forming a meniscus around 
them, or by convection of water, either in its liquid state or by diffusion of water in its vapour 
state. The spatial scale of convection is quite small and the time scale for appreciable 
transport distances is normally quite large compared with the time scale which is needed for 
equilibrium between the moving liquid and the immersed media, so local thermodynamic 
equilibrium assumption for the soil layers is valid. A multiphase medium (the soil with its 
solid particles, liquid and gaseous phases) can be treated as a single continuum. This can seen 
from applying eq.4.2.11 and eq.4.2.15 to the soil layers. These equations were derived for the 
canopy layers, but assuming that LAD- dz for the soil layers is the specific soil surface, 
multiplied by the soil particles, density multiplied by the soil layer thickness, multiplied by a 
reduction factor to account for the active area of exchange between the soil particles and the 
surrounding air, make these equations applicable for the soil part. The boundary layer 
resistance for heat transfer from the surface of soil particles to the soil air is quite small. Both 
of these make the time constant very small. The Kt0p and Kbottom here are considered as the 
conductive heat transport coefficients, as determined from the De Vries model (1963, 1975). 
In applying this heat equation (4.2.12) for the soil layers, there is no coupling between heat 
and mass. The coupling comes from the solution of water vapour transport equation and the 
soil water transport equation. Water vapour transport depends on the vapour pressure 
gradient. The conductivity terms in this equation are the water vapour diffusivity coefficients. 
With water convective flux between different layers, the effect of turbulent fluctuation of heat 
and scalar within the water (what is called dispersive flux) is quite small and we can assume 
that the flux happens only due to convection by water in its liquid state. Convective heat flux 
by liquid water stream, in non isothermal soil, is very minor with respect to water vapour flux 
divergence (Berge 1990). 

In the canopy air space, the spatial scale over which the turbulent transport works is 
quite large compared with the canopy scale, the local thermodynamic equilibrium approach is 
not strictly applicable. During the period of large active scale motion, this assumption is gone 
and the leaves will have no time to respond to the rapidly varying temperature and vapour 
pressure of the air, but to the final arrangement of these layers after the large scale motion has 
reshuffled the vertical arrangement of the air inside the canopy. The existence of temperature 
difference between the immersed surface (i.e. the leaves) and the air, which is large compared 
to the total temperature difference between the system boundaries, makes a multiphase media 
treatment a necessity to take account of the interfacial heat and mass transfer between the leaf 
and the surrounding air. So, an equation for the leaf energy budget is required. In the case of 
the soil, no such equation is required for the solid phase of the soil. But a specification of the 
heat flux at the surface of the soil and the sources within the soil layers is needed. The sources 
could be considered as the water phase transformation due to water vapour flux divergence. 
What is required here is water vapour diffusivity as determined by air-filled porosity and 
tortuosity, which is a function of the soil moisture content. 
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4.4.1 THE GOVERNING EQUATIONS 

For the heat and mass transfer within soil, there are two available approaches, One is 
based on the thermodynamics of irreversible processes (Taylor and Cary, 1964; Cary, 1965; 
Weeks et al, 1968; Bolt and Groenvelt, 1972) and the other approach is a mechanistic one 
(Krischer and Rohnalter, 1940; Philip and De Vries, 1957) which is based on the 
hydrodynamics and heat conduction. 

We follow the first one. From the study of entropy production due to irreversible 
processes occurring within a system, it is possible to specify the flows and their conjugate 
forces such that Onsager reciprocal relationships (1931) of the phenomenological equations 
coefficients are satisfied, i.e. 

Lkj=L jk (4.4.1) 

The flux of a certain entity is 

J; = JT L ik Xk (4.4.2) 
k=l 

where Xk is the conjugate force which produces the ith flow andLjj is the direct coefficient 
which relates the flux to the driving force Xj. The other Ljk's relate the different forces (Xk) 
to a flux j . 

For coupled heat and water transport, the system of equations is 

Jw =Lww Xw +LWTXT (4.4.3) 

JT =LTT X J H-LTWXW (4.4.4) 

LWT = LTW (4.4.5) 

The first term on the right hand side of eq.4.4.3 is the Darcy Buckingham equation and 
the following term accounts for the additional contribution to water flow due to the 
temperature gradient. 

The entropy production term multiplied by temperature, which was called the 
dissipation function by Rayleigh, equals (Katchalsky and Curran, 1965). 

Ta-J s .grad(-T) + Xj i .grad(-ti i) (4.4.6) 
i= l 

where Js is the entropy flux . Jj is the mass flux of species i. In here, we will follow the 
approach given by Berge (1990) in scaling the different terms within the flux equation as 
determined from the entropy divergence term eq. 4.4.7 
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Jq = T Js + £ Uw, JWi (4.4.7) 

where Jq is heat flux and JWiare the different mass fluxes of water in its different states i and 
(XWi is the chemical potential of the state. 

Berge (1990) started with eq.4.4.7 and ended up with eq.4.4.8 

c ¥ = "^ ( " X ¥" , v A H v ) (4A8) 

' <# -£ • •> <4A9> 

where C is the volumetric heat capacity of the soil in J irr-'K"! at time t. The first term 
within brackets on the right hand side of eq.4.4.8 expresses the conductive soil heat flux and 
the second one is the divergence of the water vapour flux multiplied by latent heat of 
vapourization which then expresses the contribution of latent heat flux divergence to the heat 
equation and which could be considered as an extra heat source in the heat flux equation 
within soil layers (4.4.9). Equation 4.4.10 is solved implicitly from the solution of eq.4.4.9 
and the solution of the soil water potential model as explained in 4.5. The calculated water 
vapour pressure and the use of a tortuosity model as given by Millington and Quirk (1961) 
allows the calculation of water vapour flux divergence which goes as an extra sink, in 
addition to water uptake by plant roots, in the water transport equation 

The coefficients X for heat conductivity between different soil layers were determined 
by the use of the textural composition and the moisture content of the soil at the beginning of 
each time step by the use of De Vries model. (1963, 1975). The value of pCsojj was 
determined by the knowledge of the soil composition and the initial moisture content (at the 
beginning of the time step), according to eq. 4.4.11. 

i^ s
 = i q l~q T"TC \--c + Io ^ o "*~" ^ w """la ^ a 

The sensible heat flux equation is discretized equation according to Patanker (1980), as 
shown in the appendix (A.2.11) with the source linearization as a function of the soil water 
potential and temperature 

r h = e x p ( ^ ) (4.4.12) 

where r.h. is the relative humidity of the soil air. 
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The whole set of equations for the canopy and soil was solved as a single matrix, i.e. 
system eq.4.2.72 and eq.4.2.76, with taking account for the different conductivity and 
capacitance terms for the soil and the air. 

The decoupling of the energy budget equation at soil surface is required to consider the 
feedback, as has been explained in sect.4.1 between the canopy layer and the soil. 

4.4.2 DEFINING THE ENERGY FORCING ON THE SOIL SURFACE 

To define the forcing at the soil surface, a decoupling procedure for the sensible and 
latent heat flux at the soil surface was used. For the soil surface (layer number 0), an extra 
source goes into the heat equation (eq.4.4.9) due to radiation fluxes 

Sh =Rsi -RST+RL4 -RLT - ̂  ( e^ft - e ^ , , ) ̂  9air fllled 

y M 

p C p D v a p o u r p C p ( e so j lJ - e j) 
+ ~ T ( esoii,2 - esoii.i )--zr-^—à — (4.4.13) 

Y A Z Y rb,v +rss,soil 

where Rs and RL are the short and long wave radiation flux densities respectively. The 
arrows indicate upward and downward directions. The subscript indicate short and long, 
wave. The short wave fluxes are independent from the solution. The long wave radiation 
fluxes have very weak dependency. The sensitivity of the long wave emission to AT is quite 
small about 6 Wrrr^K'l at 20 ^C (4ea T3^ abs). So, an initial soil surface temperature could 
be used to calculate the total Rn value for the soil (the sum of the first four terms). The 
radiation fluxes have been evaluated from the theory in chapter 2. The fifth term is the change 
in the soil temperature due to the change in vapour pressure within the soil air. The sixth term 
represents the water vapour flux from the soil layer below to the first soil layer, while the last 
term in eq. 4.4.13 stands for the latent heat flux from the soil to the canopy air space. This last 
term goes as an extra source term into the equations of the latent heat flux of the first air 
layer. It was added to the discretized equation of layer 1 (the first air layer). The value of 
latent heat flux from the soil surface was also used as an upper flux boundary condition for 
the system of equations describing liquid water flow through the soil. 

To estimate this value, an iterative procedure was followed, in which an initial estimate 
was made depending on the vapour pressure of the soil, the vapour pressure of the first air 
layer, the soil resistance to evaporation and the soil boundary layer resistance. 

In the model, the effect of soil dryness on the soil surface resistance was included as 
explained in section 4.6. The value of the lower boundary transport coefficient for layer 1 
equals 

K PCn 
p C bottom & _ P (4.4.14) 

P d zbottom rb,h 
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where rb h is determined from the average wind velocity in the first air layer and using a 

characteristic dimension of the soil clods as a characteristic dimension of the soil surface. The 
same approach of using the definition of Nusselt number in defining the resistance terms for 
heat transfer from the leaves was used here. The values of rb h is explicitly defined. 

The soil and air temperature equations are solved first, using the initial estimate of the 
decoupling for sensible and latent heat flux at the soil surface according to expression 4.4.25. 
If the solution of the vapour pressure of the first air layer proves to need a correction, as will 
be explained below, a new estimate of the decoupling is done which is used to calculate a new 
value of soil heat flux which goes as an extra sink into the first soil layer equation eq.4.4.13. 

A problem which shows here is the different time constants or heat and vapour 
capacities of the different media constituting the domain of our simulated system. Let us 
assume that a parcel of dry air comes in contact with a wet soil. If the soil has a low surface 
resistance, the soil will respond to this contact by delivering a high amount of latent heat flux. 
If the total amount of delivery is calculated from the initial estimate, the total latent heat flux 
to the first air layer could exceed the capacity of the first air layer. This capacity is 
represented by this layer not having a vapour pressure higher than the saturated vapour 
pressure of the air at the temperature of this layer. In real life, integration is done 
instantaneously, and there will be a feedback from the build-up of the vapour pressure in the 
first air layer on the latent heat flux from the soil surface to this layer. To follow this process, 
we need either to reduce our time step of simulation, or to find a way to have a numerical 
feedback in our solution and to obtain an integrated value for the latent heat flux from the first 
soil layer to the first air layer. The source of the problem for the soil layer is that the soil has 
very high thermal inertia, which is represented by the pC SOJI Az of the first soil layer. This 
inertia term represents a large amount of energy, which exceeds by large the net radiation at 
the soil surface. A decrease of a fraction of a degree K in the temperature of first soil layer AT 
can lead to an energy supply, which exceeds the total net radiation at the soil surface. The 
sensitivity of the sensible heat flux to this temperature difference between the first soil and air 
layers is quite small. On the contrary, a small change in the temperature of the first soil layer 
At is equivalent to high amount of latent heat release from the first soil layer to the first air 
layer. The time constant of the first soil layer is very large and we have a problem of two 
neighbouring elements with very disparate time constants. 

The first air layer ** 
To take account of the feedback, we use the latent heat flux equations for the 

first air layer. 

P c
p ae , dqp 
P J = - - f r + S e v (4.4.15) 

y dt dz e ' v 

where q represents the latent heat flux and S represents the latent heat 

sources in W m"3 
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A Z ' T ^ = -(qrqo) + se ,vA Z i <4-4-16' 

where AZ. is the thickness of the first air layer in m. The latent heat flux at the 
upper boundary of layer 1; qj is 

Y d z t q / 1 2> (4.4.17) 

and the latent heat flux from the soil to the first air layer; qg is : 

qo= ^ (esoii-ei) (4.4.18) 
Y (rb,v +rs,soii) 

Rearranging leads to : 

A Z p _ C L 3 e I = p Cp Ktop | p Cp p Cp Ktop ^ 
1 Y 3t Y dz top Y(rb,v+rs,soi l) T d ztoP 

+ ^ esoil +Se,vAZi (4.4.19) 
Y(rb,v+rs,soil) 

let 

k = ( p Cp Ktop + p_Cp } (4.4.20) 

Y dz top y ( rb v +rs s o i l) 

and 

= 11 P Cp Ktop I P Cp , Se,yAZi 
ea,r,eql.,l ~ Ï7 ~ V ~ H? 2 V~f 7 " ° k (4.4.^1) 

^k Y dz top
 kY(rb,v+rs,Soii) k 

Then, the equations take the form: 

^ = ^ (eair.eqli.1 -e,) (4.4.22) 
* p C p A Z , 

which has the well-known solution 

ei = eairieqii,i (1- exp 7) +eimltial, jexp 7 (4.4.23) 

where 
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J- = (4.4.24) 
T p CpAZ, 

and, T is the time constant of the layer. Notice the little dependence of eair,eqii,i o n 

the solution. The first and last term have a feedback from the solution. 
From this, an account of the effect of the water vapour accumulation on the latent heat 

flux from the soil is done through the calculation of the time constant of the first air layer and 
the ratio of the time step of simulation to this time constant. The magnitude of this ratio, 
At/Tfjrstair layer* will determine whether an asymptotic solution (eair>i>eqi) will be achieved. If 
At/Tfirst aj r iayer̂ 3 ,the initial state of the water vapour would have a negligible effect on the 
water vapour concentration at t+At. The capacity of the layer could be used to determine the 
integrated value of latent heat flux from the first soil layer to the first air layer. An asymptotic 
flux will be approached, in which the flux from the first soil layer is equal to the turbulent 
flux between the first air layer and the second air layer, after deducting for the contribution of 
the leaves within the first air layer to this flux and to the water vapour content within the first 
air layer. In case of (At/Tfjrst air iayer<0-1) w e assume there would be no problem of a feedback 
which is numerically ignored, and using an initial estimation of the latent heat flux from the 
soil surface to the first air layer would offer no problems. In cases of ( 3>At/Tfjrst aj r iayer>0.1), 
a numerical integration within a time step of 0.1 At of the latent heat flux from the soil to the 
first air layer is carried out, assuming very little dependence of the integrated contribution on 
the water vapour concentration of the second air layer. The correctness of this assumption can 
be checked by the time constant of the second air layer, which is usually much larger than the 
time constant of the first air layer. An iterative method has been used to find the correct 
contribution, since the value of eajr?ijeqi has little dependency on the solution. This approach 
is used for the uncoupling of the sensible and latent heat flux at the soil surface. The 
evaluated latent heat flux goes as an extra source for the canopy first air layer and as a sink in 
the heat equation of the first soil layer. It is equated after being divided by the length of the 
time step to: 

pCp ( e ^ i - e f ) 
Y rb,v +rSs,soil 

in equation (4.4.13). 
A question which arises here is the correct choice of thickness for the first air layer and 

the frequency of refreshment. Both of these parameters will determine the total integrated 
latent heat flux from the first soil layer to the first air layer. 

The thickness of the first air layer will be equal to the displacement boundary layer 
thickness. This boundary layer has been estimated according to Monteith and Unsworth 
(1990). It equals 

8/L = 5 (Re)"05 
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This boundary layer thickness has a value of about 1 cm, assuming a wind velocity close to 
the soil of about 0.25 ms" ' and characteristic dimension of the soil clods of 0.05 m. 

The sensitivity of the integrated latent heat flux from the soil to the air needed to 
saturate the first air layer is not high. It can be checked by calculating the amount of latent 
heat required to saturate that air layer. Assuming a vapour pressure deficit of 2000 Pa for the 
air which comes in contact with the soil, and no temperature difference between the soil and 
the air, the latent heat flux from the soil to the air required to saturate that air layer is 
1200/67*2000*0.01. That represents an amount of latent heat extra, averaged over 90 s, of 
about 4 Wm"2. So, if we overestimate twice the frequency from once every 90 s to twice 
every 90 s, this is the error we get. So, a rather careful assumption of the gust intrusion rate is 
enough. It does not have to be very accurate. The most dangerous effect on the calculation 
comes though an error in the refreshment of the air within the lower part of the canopy, the 
turbulent transport coefficients there and the resistance of the system to latent heat flux and 
the effect of all of these on the mean vapour pressure deficit of the first air layer (excluding 
this displacement boundary layer) as has been explained by the run of MATHCAD®. 

4.5 CALCULATING THE LIQUID WATER FLUX THROUGH SOIL LAYERS* 

The value of the latent heat flux from the first soil layer to the first air layer, as 
calculated from 4.4, is used as an upper flux boundary condition in a system of equations 
describing liquid water transport through the soil. Our starting point is always replacing the 
continuity equation of the species under consideration to the general transport equation. We 
then discretize and define our conductivity and source or sink terms. The sink term for water 
uptake by plant roots from different soil layers will be determined in the next section. The 
extra source term which results from a negative value for vapour flux divergence is calculated 
explicitly from the soil temperature and soil water potential profiles and from a tortuosity 
model according to Millington and Quirk (1961). The conductivity terms for liquid water flux 
between different soil layers are calculated explicitly and modelled by the use of Van 
Genuchten model (1980) as given by eq.4.5.1, or by the use of fitted function for the 
measured values K(hm) and hm(0). 

K(6) = Ks S
1/2 (1- (1- S1/m)m)2 (4.5.1) 

(4.5.2) 

(4.5.3) 

The water general transport equation which was solved is the following. 

hm = -i-(S-1/m-
a 

where 

s- e "6r 

0 S - 0 r 

l ) 1 / n 

187 



where \|/ is the soil water moisture potential and K(\|/) is the soil hydraulic conductivity 
as a function of \|/. The determination of the divergence of the water flux and water uptake 
was used to calculate the new moisture content from the initial one, to avoid numerical 
incompatibilities between the results obtained from different approaches used in the 
calculation due to the numerical precision. 

4.5.2 QUANTIFICATION OF THE SINK TERM FOR H2O WITH DIFFERENT SOIL 
LAYERS* 

The plants as autotrophic organisms need to intercept solar energy, and trap this 
radiative energy into chemical energy by transforming H2O and CO2 to energy-rich 
compounds. The plant leaves with large specific surface area, m^ kg ~1 and coloured 
pigments allow the plants to intercept the required radiant energy. The anatomical features of 
the leaves allow the plants to exchange CO2 and 02 with the surrounding environment. These 
anatomical features (the existence of stomata) let the plants lose water vapour through the 
stomata, allowing the plants in the process to get rid of a fractional part of their radiation load. 
The lost amount of water from the plant leaves has to be replaced, otherwise the leaf water 
potential would drop to lower values causing an undesirable water stress on the plant 
metabolic processes. The amount of energy or water which is used in the photosynthesis 
process is quite negligible compared to the total amount of energy absorbed, or to the amount 
of water transpired to the surrounding environment. 

When the evaporative demand by the atmosphere or the evacuation of the latent heat, 
delivered by the plants into the inter-canopy air stream, to the atmosphere above is quite high 
and the soil and water movement through the soil-plant continuum is not a limiting factor, in 
the sense that the plants manage to meet this demand under reasonable leaf water potentials 
and reasonable leaf temperatures, there would be no problem. But once these leaf water 
potentials and leaf water status become limiting, due to too high water potential drop between 
the soil and the leaves, the plants would have to respond by increasing their stomatal 
resistance as a valve to maintain reasonable turgor pressure, and at the same time they must 
have a reasonable partition between sensible and latent heat (meaning reasonable leaf 
temperatures) and maintain a reasonable flux of CO2 into the leaves. High drop in water 
potential between the soil and the leaves could be due to high flux density or high resistances, 
either in the plant or mostly due to the development of high resistances in the soil within the 
advanced stages of drying. The ability of the plant to interact with the radiation field in which 
it exists, and the resulting radiation load and the partition of this radiation in a way which is 
life sustainable, depends on the environmental conditions lying within the domain of 
existence of these plants. 

The ability of the plants to modify the environment in which they exist is limited and is 
affected by the environmental conditions themselves. The survival of the plants or their well-
being depends on the final resulting solution for this feed and feed-back mechanism and if 
this solution lies within the domain of existence of plants. 

In this thesis, concerning the modelling of water movement within plants, we assumed 
the validity of the cohesion theory for explaining water ascent in plants, in spite of some 
arguments introduced to the invalidity to this theory by Zimmerman et al. (1993). His 
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measurement of water pressures in the xylem do not agree with the cohesion theory. 
Following this theory, water pressures which is much less than atmospheric will develop in 
the xylem vessels. This will lead to cavitation and embolism. Several explanation were given 
for the maintenance of water columns under negative water pressures which are below 
atmospheric pressure (Pickard, 1980). Zimmerman et al (1993) argues for several other 
mechanisms, which could be responsible for water ascent in plants without the need for very 
low negative pressure values as predicted by cohesion theory. These mechanisms include 
osmotic forces, capillary forces and the development of gradients in interfacial forces along 
gas-liquid interfaces of a necklace of tiny air bubbles adhering to the inner wall of a capillary 
and water. These gradients result due to the existence of solute or temperature gradients. This 
is called marangoni convection. The required occurrence of air bubbles in the xylem vessels 
seems in contradiction, but he argues that the occurrence of moderate cavitation in the xylem 
elements lead to the introduction of these air bubbles and that it could a strategy by the plant 
for survival under moderate cavitation. I wonder if the measurement by a xylem pressure 
probe as shown in fig. 5 of his paper does not lead to the leakage of air along the region of 
contact between the measuring microcapillary and the plant tissues to the xylem vessel. This 
would prevent the development of very low negative tensions, even if it was developing 
otherwise, due to the intrusive nature of the measurement. There is a recent study (Pockman 
et al. 1995) showing that xylem conduits remained water-filled and conductive to species-
specific values ranging from -1.2 to below -3.5 MPa. Kramer and Boyer (1995) state that the 
main difficulty is that the pressure probe must penetrate the xylem water column while it is 
under tension, which may disrupt the tension. Thus, there probably are as many errors in 
measurements with pressure probe as with the pressure chamber (Scholander et al 1964). 

Our starting point is the conservation equation for water within plant water transporting 
tissues (the xylem elements). Conservation of water , assumed incompressible, requires that 
the rate of change of a cell volume must equal the difference between the inflow rate and the 
outflow rate. 

^ =A (-V. qw) +SW (4.5.5) 

where V is the volume change of water the due to water flux divergence. qw is the water flux 
density in ms" ' . Sw are the water sources or sinks in the plant tissue, expressed in m-̂  s" ' . 

q w = - K ^ (4.5.6) 

Kw is the hydraulic conductance with the plant tissue in nfi s~' MPa'l • ¥ is the total water 
potential which is the sum of the gravitational, metric and osmotic component potential in 
MPa. 

To relate this equation to the total water potential, this equation can be expressed (Molz 
and Ferrier, 1980) as 

189 



3v|/ at ax2 

^ Vo 

(4.5.7) 

(4.5.8) 

The modulus of elasticity 't, will determine the reduction in the cross-section of the 
conducting xylem element due to water tension. With progression of negative water potential, 
embolism will occur, that will introduce relief of the tension but will reduce the conductance 
of the tissue, n is the osmotic pressure of the water in the xylem in MPa. Sw are water 
sources or sinks within the tissue. Since we are solving a one dimensional flow equation, so, 
we consider lateral water flow to the storage tissue or the lateral branches as a sink or a 
source. 

The previous equations are describing water flow through an area with no change in the 
cross section (the number of xylem elements multiplied by the an average area for each xylem 
element). In the case of following the water movement through an appreciable length of the 
plant, the number of the xylem elements reduces with height due to xylem elements 
branching into the plant lateral branches. The area will be given by. 

A= n r2 n (4.5.9) 

We will assume a rate of decline with height for the area available to water transport 
proportional with the decline of the leaf area with height. There is another source for decline 
of the xylem available for water movement. This occurs mainly due to the shrinkage in the 
cross sectional area for the xylem elements due to high water negative potential which 
exceeds the negative pressure required to withdraw air through the intervessel pit membranes 
or through the wall pores (Zimmermann, 1983). This leads to the introduction of air bubbles 
to the system and embolism or cavitation. That effect will be included in the definition of K 
(the hydraulic conductance in m^ s~l MPA~1). So, K will be a function of V|/ depending on the 
water potential within the xylem. 

The resulting equation would read for a certain segment of a plant stem as : 

1 A :Az ( v |+dt l ) = 
K„ 

At 

t-i _ top 

8 z t o p 
(Vtf-O K, bottom 

8z, 
^ro 

bottom L R L J 
W;dws] 
1 R s J 

(4.5.10) 

where the last two terms express the exchange of water between the a lateral branch and the 
storage tissue within the plant respectively. The RL express the resistance to water flow 
between the lateral and the xylem elements of the main stem through the petiole (petiole 
resistance). The Rs express the resistance for water flow between the xylem elements and the 

190 



surrounding storage elements in the same segment. We have used the values of the water 
potential of the storage tissue at time step t (explicit) since we assumed that during At , which 
is 15 seconds, it would not change to affect the solution. The values of the water potential of 
the lateral were assumed also at the beginning of the time step. 

For the lateral branches, the same equation was assumed. For the first node of the lateral 
branch, the water exchange with the main branch was included, while for the other nodes, a 
sink term was included through the calculation of transpiration from the leaf surface attached 
to that node. The amount of transpiration is calculated from the partition of energy on the leaf 
surface (chapter 2). 

The calculation of the water potential in the points of the lateral branching is done 
iteratively by calculating the value of the V|/ at the points of branching assuming a certain 
potential of the first node in the lateral. Once a value of i|/ in the main stem is determined, 
this is used with the latent heat flux at lateral to determine the water potential at the different 
nodes. The potential at the first node is thus determined, which is used again to calculate a 
new \\i for the point of branching on the main stem. This whole process is repeated till the 
whole solution converges. 

For the underground part, we assumed no storage tissue for water, the fourth term in the 
right hand side of eq. 4.5.10 is then assumed zero. For the exchange of water between the root 
tissue and the soil, we replace the value of RL (lateral resistance) in the right-hand side by a 
total resistance for water transport between the soil outside the draw down region (in the 
middle region between two roots) and the root. This total resistance is the series sum of three 
resistances: a root resistance, a soil resistance and a contact resistance. The root resistance 
was calculated from a root area distribution, which is assumed exponential in depth according 
to eq. 4.5.11, by multiplying it with a total root density. From the root area in every soil layer 
and a specific conductance for the root tissue for the species under consideration (Glinski and 
Lipiec, 1990 and Gerwitz and Page. 1974), we calculated a root resistance. In the model here, 
we assumed that the total area of the root surface area is an effective area for water uptake. 

P(i)=e-fN-e-f|z(i-|)| (4.5.11) 

The soil resistance is dependent of the distribution of the root in the soil volume and is 
calculated according to Gardner (1960) by assuming a uniform distribution of the root area in 
every soil layer. 

R s o i i = ! inW2/r2) (4.5.12) 
4 n K(8) La 

The contact resistance is a resistance due to the development of air pockets between the 
root and the soil. With the advanced stages of drying, these air pockets reduce the contact area 
between the root surface and the soil. This resistance plays a role in decoupling or reducing 
the hydraulic coupling between the root and the very dry soil layers. In this case so far, it was 
assumed zero, but it could be implemented by reducing the contact region between the soil 
particles and the root by a fraction which equals the air filled porosity, and so also increasing 
the draw-down curve around the effective regions of water uptake. This is equivalent to 
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increasing the root resistance and soil resistance by multiplying both by (1- air filled 
porosity). 

Water uptake from different soil layers is calculated by the use of the calculated 
difference of water potential at root surface and the soil and the total soil resistance according 
to 

S = " (Vsoil " Vroot ) / (rroot+ rcontact +rroot) (4.5.13) 

This goes as a sink term into eq.4.5.4. The water potential at the root surface is used 
also to calculate the production rate of abscisic acid (ABA), which is used as a signal for soil 
dryness detected by the guard cells which control the stomatal aperture. 

4.5.3 THE STOMATAL RESISTANCE OF WATER STRESSED PLANTS 

In this part, we will use the approach suggested by Tardieu and Davies (1993) to 
parameterize the effect of the water stress on plant stomatal resistance. 

We can summarize this approach as follows: the effect of the soil dryness on the 
stomatal resistance of maize is mediated through the production of abscisic acid in the root 
which is transported through the transpiration stream in the xylem vessels to the leaves. The 
sensitivity of the leaf response to the abscisic signal is dependent on the leaf water potential. 
The concentration of abscisic acid in the xylem vessels is dependent on the production rate of 
abscisic acid, which is soil moisture potential dependent, to the water flux density from the 
root to the shoot as given by eq.4.5.14. The importance of the abscisic acid (ABA) 
concentration in comparison to its flux (concentration • water flux density to the leaf) is 
difficult to answer, due to the complex pattern of ABA distribution in apoplast and to the 
factors that control membrane permeability (i.e. pH). There is a lot of evidence for the role of 
ABA in stomatal control in maize (Tardieu et al., 1993). The success of Tardieu and Davies 
in using the concentration signal is not to say that the role of other factors (e.g. cytokinin, pH 
and mineral status is not important, but that role of ABA is central. The importance of the 
concentration signal versus the quantity is discussed by Gowing et al . (1993). Anyhow, the 
response functions as suggested by Tardieu (1993) for maize are as follows. 

[ABA] = JABA'Uw+b) = (a H>r)/(Jw+b) (4.5.14) 

gs = gs,min + <x exp [ABA]ßexp(8>Pi) (4.5.15) 

The values used for these parameters in eqs. 4.5.14 and 4.5.15 are given within the 
subroutine PLANT and RESIS , respectively 
In the model, we used a multiplicative effect of absorbed light and dryness of the soil. 
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4.6 THE COUPLING BETWEEN HEAT AND WATER TRANSPORT, GAS FLUX 
AND SOIL RESISTANCE TO VAPOUR FLUX UNDER DRYING CONDITIONS 

We now come to the question of defining the soil surface resistance to evaporation as 
defined or needed in eq.4.4.13. Here, we used a tortuosity model as suggested by Millington 
and Quirk (1961). 

Concerning the effect of the air filled porosity on the diffusivity for water vapour, the 
water vapour flux equation was expressed in an energy flux form 

Jv = - — P DgÇg gz (4.5.16) 

where Jv is the vapour flux in J m~2 s" 1, andß is an enhancement factor. In here, we will 
assume it equal to 1. For more details, see Berge (1990). Dg is the water vapour molecular 
diffusivity in free air. e(\|/,T) is the water vapour pressure as a function of the soil water 
potential and soil temperature. eg is the tortuosity. Tortuosity tries to take account for the 
effects which lead to a reduction of the diffusivity from its free air value to the its actual value 
in the soil. This reduction comes due to two reasons: the actual area available for diffusion of 
water vapour from one location to the other isn't the same as the apparent area (the total 
cross sectional area), and the actual length of path which the water vapour molecules have to 
follow in its travel from one point to the other is longer than the apparent distance between 
two points. These two effects lead to a reduction of the vapour diffusivity from its free value. 
Tortuosity depends on soil structure, total porosity and air filled porosity. All of these affect 
the three-dimensional structure or configuration of the void space and its continuity. In her, 
we will use a model for tortuosity, Millington and Quirk (1961), to obtain a value for the soil 
surface resistance to evaporation. 

J ^ - ^ P D ^ ^ ^ ) (4.5.17) 

where 
Aa is the apparent area available for diffusion (the whole cross-sectional area), since we are 
working with fluxes for unit area, Aa equals unity. All the other areas are fraction of this unit 
area. Ae is the actual or effective area available for diffusion. This latter could be made equal 
to 

A, porosity 
Aair fllled (4.5.18) 
A, porosity 

where 
Aporosity is the total porosity in a cross-section perpendicular to the direction of the flux. We 
assume this equal to the total porosity (a uniform projection of total porosity from three 
dimension to two dimension). Aajr fjned is the air-filled porosity in a cross-sectional area. This 
could be also be assumed equal to air-filled porosity. 
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According to Millington and Quirk (1961), tortuosity as a function of porosity and air 
filled porosity equals 

Çg=«1 0 / 3 /<P2 (4.5.19) 

where a is the air filled porosity and (p is the total porosity. Equating eqs.4.5.16 and 

4.5.17, leads to 

^ =a 10/3 / <p 2 = Apo ro s i t y ^ f i j i ed Az_ ( 4 5 2 0 ) 

aporosity A (_ 

and using the approximation of Aairfilled a n d Aporosity being equal to a and (p respectively. 
This gives us 

^ - = a 7 / 3 / <p 2 (4.5.21) 
A^ 

This function gives the ratio between the apparent length of the path between two nodes 
in the soil column and the actual length which the water vapour travels between the two 
nodes. In case of complete dryness of the soil, the air filled porosity equals the total porosity. 
So, the above given ratio on the right hand side of eq.4.5.21 should equal one. Thus, we 
reduced exponent from 7/3 to 6/3. 

For soil layers lower than the first soil layer this equation tells that, when the air filled 

porosity becomes equal to zero, the ^-^- goes to zero. That, we would expect for the water 
A^ 

vapour diffusion path within the soil volume. But for the top soil layer, the water films 
surrounding soil particles would be filling all the soil pores and the water film would not be 
withdrawn into the soil pores. Water vapour would be travelling a distance of zero with 

respect to the thickness of the first soil layer. We expect then that ^-2- goes to infinity. Since 
M 

the measured distance between the centre of the first soil layer and the soil top would be 
overestimating the distance of diffusion which is from the soil surface to the soil surface 
(0.0), so, the above given ratio goes to infinity. So for the soil surface resistance we took the 
inverse of eq.4.5.21 as an estimate for the ratio between the actual length travelled and the 
measured length. In the case of completely dry soil, that ratio goes to one. 

To cast this length into a resistance, we used the following equation. 

r s , so i l=dz(0)a6/3/ ( ( p2D g ) (4.5.22) 

This rS;SOil goes in determining the convective latent heat transfer coefficient between 

the soil and the first air layer which is given as Hte = — which is used in 
Y (i"b,v+rs,soii) 

eq.4.4.13. 
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Concerning the decoupling of energy at lower depths within the soil, the decoupling of 
energy at the soil surface as has been explained at Sect. 4.4.2 is the first step. Within every 
soil layer, if the moisture content is high enough at the lower surface of this soil layer and low 
enough at the upper surface of that layer, and if there is temperature gradient such that there is 
a positive water vapour flux divergence, this means that water vapour which is leaving the 
upper boundary of this layer is more than what is entering from below. This lower incoming 
flux from below is due to the low air-filled porosity at the lower boundary. That flux 
divergence will represent a negative water sink at the water conservation equation and a 
negative heat sink in the soil temperature equation. This water vapour flux divergence will 
come at the expense on the soil heat flux coming from the upper boundary of that layer and 
leaving from its lower boundary. So, this model, due to its simulation of water vapour flux 
divergence and low thickness of different soil layers, allows for the decoupling of the 
available energy (G) into sensible and latent heat flux at different depths automatically. 
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CHAPTER 5 

THE CANOPY-SOIL-LAYER OF AIR CLOSE ABOVE INTERACTION MODEL 
(CANOPY) 

5.1 THE LOGICAL ORDER OF THE SOLUTION: 

The broad outlines for the logical order of the solution is given here. A detailed order is 
shown with the listing. 

with the solution, for every time step, since we assume no effect of stability on the 
momentum solution, the momentum equation is solved first. 

Reading some parameters specifying the run. 

l)Day number of the year for the beginning of 
the simulation, Day number of the year for the 
end of simulation. 
2) Location of the site. 
3) hydrological characteristics of the soil and 
how they are fed. 
4) Characteristics of the plant cover: Leaf area 
density within height. 

! 
Call Radbou to calculate or read the boundary 
conditions for the first interval of simulation. 

I 
Call INIT to calculate an initial temperature 
and vapour pressure, C02 concentration 
profile for the canopy and the soil. 

I 
Call NORMN to calculate the short wave 
radiation absorbtion 

I 
Call MOMNTM to calculate the wind profile and 
turbulent transport coefficient depending on the 
situation (gust versus quiescence etc.) 
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Call RESIS to calculate the boundary layer and 
stomatal resistances for different canopy layers 
and the soil surface resistance. 

Call ENERGD to calculate energy sources 
and sinks within plant canopy depending on 
the solution of the energy budget equation. 

Call PLANT to calculate from the latent 
heat flux imposed on the leaves the 
plant water potential and the soil water 
uptake by plant roots. 

Branching point A 
(depending on eq. 4.2.24 and the 
ratio of timestep to the time 
constant for the first air layer). 

Call CYCLE 1 to calculate temperature, vapour 
pressure, Co2 concentration for the canopy 
layers and the soil. 

Call Flux to calculate heat and mass transfer 
between different layers due to small scale 
mixing 

Integrate within time the fluxes at the 
canopy top and within space the storage 
within the canopy. 

Update the soil moisture and air 
temperature, vapour pressure and C02 
concentration 
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P R O G R A M C A N O P Y 

C A N O P Y - S O I L - L A Y ER O F A I R C L O S E A B O V E I N T E R A C T I O N 
A U T H O R : R U S H D I M . M . E L - K I L A N I . 

D a t e : J u n e 1 9 8 9 
U p d a t e d : Tue Sep 6, 1 9 9 4 1 5 : 2 7 : 3 3 
We h o p e for the best 

•co 6 ( e x p a n d e d 1 . 7 5 ) 
T h i s p r o g r a m c a l c u l a t e s the r a d i a t i v e and non r a d i a t i v e h e a t and m a s s 

e x c h a n g e for a p l a n t c a n o p y l a y e r and the e x c h a n g e b e t w e e n t h i s l a y e r and the 
s o i l , and the l a y e r of air c l o s e a b o v e the c a n o p y C a b o u t t w i c e the c a n o p y h e i g h t ) 

In t h i s m o d e l , an i n t e r m i t t e n t a p p r o a c h is used to s i m u l a t e the e f f e c t of 
c o h e r e n t s t r u c t u r e s i n t r u s i o n into the p l a n t c a n o p y on the p a r t i t i o n of the 
a v a i l a b l e e n e r g y at the l e a v e s and the soil and the i n t e g r a t i o n of t h a t e f f e c t on 
the s y s t e m . 

A c o m p l e t e d e s c r i p t i o n of the g o v e r n i n g e q u a t i o n s , the a s s u m p t i o n s used in 
t h e i r p a r a m e t e r i z a t i o n s and in the m o d e l l i n g are g i v e n in the a c c o m p a n y i n g t h e s i s . 
An e x p l a n a t i o n of the l o g i c i n v o l v e d in the c a l c u l a t i o n is s h o w n w i t h i n t h i s 
p r o g r a m . 

T h i s w o r k w a s c a r r i e d out by the a u t h o r w h i l e s t u d y i n g and w o r k i n g as a 
P h . D . s t u d e n t at t h e 

M e t e o r o l o g y D e p a r t m e n t 
W a g e n i n g e n A g r i c u l t u r a l U n i v e r s i t y 
D u i v e n d a a l 2 
W a g e n i n g e n 
The N e t h e r l a n d s 

T h i s w o r k was c a r r i e d out u n d e r the s u p e r v i s i o n of 

P r o f . D r . L. W a r t e n a 
P r e v i o u s Head M e t e o r o l o g y D e p a r t m e n t , 
W a g e n i n g e n A g r i c u l t u r a l U n i v e r s i t y , 

and 
P r o f . D r . J. G o u d r i a a n 
D e p a r t m e n t Of T h e o r e t i c a l P r o d u c t i o n E c o l o g y , 
W a g e n i n g e n A g r i c u l t u r a l U n i v e r s i t y , 

and 
D r . Ir. A d r i e . F. G J a c o b s 
D e p a r t m e n t Of M e t e o r o l o g y , 
W a g e n i n g e n A g r i c u l t u r a l U n i v e r s i t y . 

The a u t h o r is v e r y g r a t e f u l for t h e i r s u p e r v i s i o n and g u i d a n c e d u r i n g t h e 
e x e c u t i o n of t h i s w o r k . 

T h e c u r r e n t a d d r e s s of the a u t h o r is: 
R u s h d i M. M. E l - K i l a n i 
Soil S c i e n c e D e p a r t m e n t , 
F a c u l t y of A g r i c u l t u r e , 
C a i r o U n i v e r s i t y . 
G i z a , E g y p t . 

I M P L I C I T N O N E 
! FOR 

S I N C L U O E : A L I M I T . F O R / L 
S I N C L U D E : A B L A N K . F O R / L 
S I N C L U D E : A E N E R G . F O R / L 
S I N C L U D E : A F L U X . F O R / L 
S I N C L U D E : A N R M N . F O R / L 
S I N C L U D E : A R D B O U . F O R / L 
S I N C L U D E : A R O O T D . F O R / L 
S I N C L U D E : A C O E F F . F O R / L 
S I N C L U D E : A E Q C 0 E . F O R / L 
S I N C L U D E : A C O N S T . F O R / L 
S I N C L U D E : A P L A N T . F O R / L 
S I N C L U D E : A B E R G E . F O R / L 
S I N C L U D E : A H Y D R 0 . F O R / L 

C O M P A T I B I L I T Y W I T H M A C T R A N 3. 

I N T E G E R I , J , I T R A , I T R M , C H O I C E , K , L 
I N T E G E R O U T P L , I N D E X , I N D E X C . I N D S X S 
I N T E G E R D A Y , R U , I T R F , W A Y I N , R A I N I N 
I N T E G E R F R E Q 1 , F R E Q 2 , P A S S 
I N T E G E R D A Y E N D , G U S T , C O U N T , I N I , INIH 
I N T E G E R F L A G , L O O P , M S 2 , S O I L I N 
I N T E G E R I N D E X I C I S : I H ) 

C H A R A C T E R * 2 1 F I L E N A M E 

REAL F A C T O R , C H E C K 4 , R A I N M , W F T H ( 1 : 2 ) 

REAL G L , R L I N N , R L O U T 
REAL R A T I O , T O T E V P 

REAL B T N O O N , R T I M E , T I M E R , R A 

REAL A V G D L T , B U D L T , N U M D L T 
REAL W I N D T P , D T E M P , W T E M P , S H R T N , W I N D 2 5 , S H E A R 
REAL P S I S O L ( I S : 0 ) , V G A S ( I S : 0 ) , F E ( . I S : I H ) , C P H A S E ( I S : C ) 
REAL S T A R T , T I M E W . T I M E G 
REAL H E E C I T , 1 : 2,1 : 2,1 : 2 ) 
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REAL T E M P L F C I T , 1 : 2 , 1 : 2 , 1 : 2 ) , T E M L F N C I T , 1 : 2 , 1 : 2 , 1 : 2 ) 
1 , A V G T L F C 1 : I T ) 
1 , R A B L T ( I H , 1 : 2 ) 
1 , I D ( 1 : I T ) , F R A C ( 1 : I T , 1 : 2 , 1 : 2 ) , C U M D E W C 1 : I T , 1 : 2 ) 
1 , R D I R C 1 : I T , 1 : 2 ) 

REAL T O T U P 

REAL E R R C A H , E R R C A V , E R R 

REAL U C 8 : I T B ) , U N E W C 0 : I T B ) , D R A C 8 : I T B ) , A N A M O M C 1 : I H ) 

REAL 
, NU 

REAL 
REAL 

REAL 

R E A L ' 

R E A L ' 

REAL 
REAL 
REAL 
REAL 
REAL 

REAL 
REAL 
REAL 

G R A S H ( 0 : I T ) , N U C 0 : I T ) , N U F R E E ( 8 : I T ) 

F O R C C 0 : I T ) . R E Y N O L C 0 : I T ) 

R I C H A R 1 , R I C H A R 2 , P H I M 1 , P H I H 1 
R I C H A R 3 1 , R I C H A R 3 2 

T I M E C ( 1 : I H ) 

'8 T E M A I N ( I S : I T 8 ) , E A I R N W ( I S : I T B ) , N C 0 2 ( I S : I T B ) , 
5 T O R A H C I S : I H ) , T E M P O R C I S : I H ) 

E X T R A S C I S : I H ) , E X T R A L ( I S : I H ) 

N S O C I S : 0 ) , X H C I S : 0 ) , Y H C I S : B ) 
S T O R A V C I S : I H ) , S T O R A C C I S : I H ) 
T O T A L Q , T O T L E , T O T A S E , T O T A S Q 
S A T V A P C I S : I T B ) , V P D A I R C I S : I T B ) 
K L E C I S : I H ) , K C 0 2 C I S : I H ) 

K R A T I O C 1 : I H ) ! KH/KM RATIO FOR THE LOCAL TERM. 
"8 E M C 0 : I T B ) , G M C O : I T B ) , F M C O : I T B ) 

D M C 8 : I T B ) 

REAL C U M C R N , C U M T R N , C U M B R N 

REAL C U M T L E , C U M T Q , C U M T C 
REAL S T P R E H , S T P R E V , S T P R E C 
REAL S T P R H C , S T P R V C , S T P R C C 
REAL L O C A L H , L O C A L V , L O C A L C 

REAL A V G H , A V G L E , A V G R N , A V G T R N , A V G B R N 
REAL A V G S T H , A V G S T E , A V G S T C 
REAL A V G 1 T H , A V G 1 T E , A V G 1 T C 

REAL C U M S E , C U M S H 
REAL A V G S L E . A V G S H 

REAL C U M S R N , C U M S S , C U M S G 

REAL A V G S R N , A V G S S , A V G S G 

REAL A V G T L E . A V G T Q 

REAL C U D C R N , C U D T R N , C U D B R N 

REAL C U D T L E , C U D T Q , C U D T C 

REAL S D P R E H , S D P R E V , S D P R E C 
REAL S O P R H C , S D P R V C , S D P R C C 
REAL L D C A L H , L D C A L V , L D C A L C 
REAL A V D H , A V D L E , A V D R N , A V D T R N , A V D B R N , A V D C 0 2 
REAL A V D S T H , A V D S T E , A V D S T C 
REAL A V D 1 T H , A V D 1 T E , A V D 1 T C 

REAL C U D S E . C U D S H 
REAL A V D S L E . A V D S H 

REAL C U D S R N , C U D S S , C U D S G 
REAL A V D S R N , A V D S S , A V D S G 

REAL A V D T L E , A V D T Q 

REAL DTI 

REAL G A M M A T C 1 : I T ) , F G C 1 : I T , 1 : 2) 
REAL R L E A F C I T , 1 : 2 ) , H E N D C 1 : I T , 1 : 2 ) , R C U T I C I T , 2 ) 
REAL L A Y E R C 1 : I T ) 

REAL K S O I L 
REAL S O I L T M C I S : 0 ) 
REAL T O T A L E , T R N S T , E V A P O T , E A I R 1 

REAL T O T S T H , T O T S T E , T O T S T C 

REAL E S A I R 2 , C H E C K 2 , R A T I O S 
REAL C A P A C , C A P A C 3 , T I M E C 2 , D T I N T , D E L T A C , C U M S L E 
REAL E S A I R , E A I R S , C A P A C 1 , C A P A C 2 , T I M E C 0 , T I M E C 3 , T I M E C E , R A T I 0 1 
REAL R A T I 0 2 , WM , WME , IV 
REAL I E A I R 

C H A R A C T E R T 
REAL S A T U V 2 , S A T U D 2 , X 
L O G I C A L C H . C N . O N 
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S I N C L U D E : V A L U E S . D A T / L 

O P E N ( 3 6 , F I L E . ' I N P U T 2 . D A T ' , S T A T U S = ' O L D ' ) 

T = C H A R ( 9 ) 

R E A D ( 3 6 , * ) D A Y N U M 
R E A D ( 3 6 , * ) D A Y E N D 
R E A D ( 3 6 , * ) LATI 
R E A D ( 3 6 , * ) P,C 
R E A D ( 3 6 , * ) A , B 
R E A D ( 3 6 , * ) A V G D L T 
R E A D ( 3 6 , * ) B U D L T 
R E A D ( 3 6 , * ) « A Y I N 
R E A D ( 3 6 , * ) S O I L I N 
R E A D C 3 6 , * ) H Y D R I N 
R E A D ( 3 6 , * ) R A I N I N 
R E A D ( 3 6 , « ) T M I N ( l ) , T M I N ( 2 ) 
R E A D ( 3 6 , * ) TMAX 
R E A D C 3 6 , * ) R H M A X ( l ) , R H M A X ( 2 ) 
R E A D ( 3 6 , * ) R H M I N ( 8 ) , R H M I N ( l ) 
R E A D ( 3 6 , * ) R A I N M 

IF ( W A Y I N . N E . l ) THEN 
0 P E N ( 2 9 , F I L E - ' R B O U D I . D A T ' . S T A T U S - ' U N K N O W N ' ) 

E N D I F 

R E A D C 3 6 , 
R E A D ( 3 6 , 

) I T A . I H A . I S A 
) F A C T O R 

R E A D ( 3 6 , * ) G U S T 
R E A D ( 3 6 , * ) O U T P L 
R E A D ( 3 6 , * ) C L O U D N 
R E A D ( 3 6 , * ) W F T H ( 1 ) , * F T H ( 2 ) 
R E A D ( 3 6 , * ) L P , N P , A L P H A 
R £ A D ( 3 6 , ' ) Z R O O T 
R E A D ( 3 6 , * ) T R O O T D 
R E A D C 3 6 , * ) S R O O T C 
R E A D C 3 6 , * ) P L A N T N 
R E A D C 3 6 , ' ) T H I C K N 
R E A D C 3 6 , ' ) B A S E D I 

RADE - P I / 1 8 8 . 

! C a l c u l a t i n g the d e c l i n a t i o n of the sun, day l e n g t h , e l e v a t i o n of the sun at noon 
! t i m e , t i m e of sun set and air t e m p e r a t u r e at sun set Çif not g i v e n in the i n p u t 
f i l e r b o u d i . d a t ) 
D E C L I N - - ( 2 3 . 4 5 * R A D E ) * C 0 S ( R A D E , ( 3 6 e * ( D A Y N U M + 1 8 ) / 3 6 5 ) ) 
S I N O E - S I N ( D E C L I N ) 
D A Y L N G - 1 2 . + 2 4 . / P I ' A S I N ( T A N ( L A T I * R A D E ) * T A N C D E C L I N ) ) 
N G H T L N = 2 4 . 0 - D A Y L N G 
B T N O O N » P I / 2 + D E C L I N - L A T I * R A D E 
S I N O O N » S I N ( B T N O O N ) 
S U N S E T « 1 2 + 8 . 5 * D A Y L N G 
BB = 1 2 - 0 . 5 * D A Y L N G + C 
TSN » ( T M A X - T M I N ( 2 ) ) * S I N ( ( P I " ( D A Y L N G - C ) ) 

/ ( D A Y L N G + 2 * P ) ) + T M I N ( 2 ) 

r e a d i n g the d e p t h of d i f f e r e n t soil l a y e r s , t h e i r s t r u c t u r a l c o m p o s i t i o n 
( v o l u m e f r a c t i o n of c l a y , q u a r t z and o r g a n i c m a t t e r ) , v o l u m e t r i c m o i s t u r e c o n t e n t , 
m a t r i c h e a d , r e s i d u a l m o i s t u r e c o n t e n t , s a t u r a t e d h y d r a u l i c c o n d u c t i v i t y and root 
r a d i u s . 

DO 18 I - I S A , 8 , 1 
R E A D ( 3 6 , * ) 2 ( I ) , F C ( I ) , F Q ( I ) , F 0 ( I ) , T H E T A ( I ) , H M ( I ) , 

T H E T A R ( I ) , K S A T U ( I ) , R A D I U S ( I ) 

P O R ( I ) - 1 . - ( F C ( I ) + F Q ( I ) + F O ( I ) ) 
T H E T A S O ) . P O R ( I ) 

C O N T I N U E 

! R e a d i n g l e a f area d e n s i t y p r o f i l e and the n u m b e r of b r a n c h e s per l a y e r 
DO 28 1 - 8 , I H A , 1 

R E A D ( 3 6 , * ) Z ( I ) , L A D ( I ) , B R A N C N ( I ) 
L A D ( I ) . L A D ( I ) * F A C T O R 

C O N T I N U E 

R e a d i n g the i n i t i a l a m o u n t of dew in j o u l e s m - 2 for l o w e r and u p p e r s u r f a c e s of 
the l e a v e s , the wet and dry f r a c t i o n for the lower and u p p e r s u r f a c e s of the 
l e a v e s and the c h a r a c t e r i s t i c w a t e r d r o p s r a d i u s for l o w e r and u p p e r s u r f a c e s 
r e s p e c t i v e l y . 

DO 38 1 = 1 , I T A , 1 
R E A D ( 3 6 , * ) C U M D E * ( I , 1 ) , C U M D E W ( I , 2 ) , F R A C ( I , 1 , 1 ) , 

F R A C ( I , 2 , 1 ) , R D I R ( I , 1 ) , R D I R ( I , 2 ) 
F R A C ( I , 1 , 2 ) = 1 . - F R A C ( I , 1 , 1 ) 
F R A C ( I , 2 , 2 ) = 1 . - F R A C ( I , 2 , 1 ) 

C O N T I N U E 

! R e a d i n g the l e n g t h of t i m e step for the w h o l e m o d e l and for the s u b r o u t i n e P L A N T 
! (in case of n u m e r i c a l i n s t a b i l i t i e s due to small l e a f t h i c k n e s s ) 
R E A D ( 3 6 , * ) D T . D T 1 

R e a d i n g the d e p t h s of soil l a y e r s at w h i c h a t r a n s i t i o n of the soil m o i s t u r e 
c h a r a c t e r i s t i c s o c c u r s and the c o e f f i c i e n t s of the p o l y n o m i a l s used to d e s c r i b e 
the H m ( t h e t a ) and K s a t u ( t h e t a ) f u n c t i o n s for t h e s e d i f f e r e n t l a y e r s . 
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DO 31 1=0,NLA,1 
READC36,*) OEPTH(I) 
READC36,*) HMC(I,0),HMC(I,13,HMC(I,2) 

1 ,HMCCI,3),HMCCI,4),HMCCI,5) 
READC.36,*) KUSACI,0),KUSA(I,1),KUSACI,2) 

1 , KUSA(I,3),KUSACI,4),KUSACI,5) 
31 CONTINUE 

DZCIHA+1) =0.0 
DZ(ISA) =0.0 

C ! Calculating the depth of the centre of different soil and canopy layers and 
C ! their thicknesses 

DO 50 I=ISA+1,IHA,1 
ZCENTER(I)-(Z(I)+Z(I-l))/2 
DZCI)-ZCI)-Z(I-l) 

50 CONTINUE 

C ! Assigning different soil layers to their corresponding moisture characteristics. 

INDESO(ISA)=NLA 

DO 23 I-ISA+1,-1,1 
K = NLA 

1023 CONTINUE 

IF (Z(I).LT.DEPTH(K)) THEN 
INDESO(I) - K 

ELSE 

GOTO 1023 
ENDIF 

23 CONTINUE 
INDESOf0)=0 

Calculating the leaf area density in the middle of each canopy layer 
increments and the cumulative leaf area for different layers. 
C U M L A I ( I H A ) . 0 
DO 70 I- I H A , 1 , - 1 

L A D M I D ( I ) = C L A D C I - l ) + L A D ( I ) ) / 2 
L E A I N C C I ) = L A D M I D ( I ) * D Z C I ) 
CUMLAI(I-l). C U M L A K D + LEAINCCI) 

CONTINUE 

leaf area 

C ! calculating the matric heat from volumetric moisture content, given fitted soil 
C ! moisture characteristics. 

IF (HYDRIN.NE.1) THEN 
DO 333 1= ISA.0 , 1 

NSO(I)-THETAS(I)/THETA(I) 

XH(I) = ALOG10(NSO(I)) 
Y H ( I ) . H M C C I N D E S O ( I ) , 0 ) 

+ H M C ( I N D E S O ( I ) , 1 ) * X H ( I ) 
+ H M C ( I N D E S O ( I ) , Z ) * X H ( I ) * * Z 
+ H M C ( I N D E S O ( I ) , 3 ) * X H ( I ) * * 3 
+ H M C O N D E S 0 O ) , 4 ) * X H ( I ) » * 4 
+ H M C ( I N D E S O ( I ) , 5 ) * X H ( I ) * * 5 

HM(I) 
HM(I) 

.-(10.)*'YHCI) 
=HM(I)/100. 

IF(INDESO(I) EQ.0) THEN 
HM(I)=HM(I)'20.0 

ENDIF 
CONTINUE 

ENDIF 

PASS- 0 
START=REALCNINTCBB))-0.5 

! Starting time of the calculation. 
TIME = START 
RTIME-TIME 
COUNT-0 
CORR. MODCCOUNT , OUTPL) 

! Call RADBOU to calculate or read the boundat 
CALL RADB0U(DTEMP,IEAIR,WINDTP,WINDZ5,CL0UDN, 

RLOUT.RLINN.WAYIN,CORR,MINUTE,T,TIMER) 

y conditions at the canopy top. 

UCIHA+1) -WINDTP 
TEMAIRCIHA+1). DTEMP 
EAIRCIHA+1) = IEAIR 
SHEAR = WIND25/Z.Z 

! Call Rootdn to calculate root area distribution and root Conductance at different 
! depths 
CALL ROOTDN 
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C ! Call INIT to calculate the initial soil temperature profile and different plant 
C ! hydraulic resistances 

CALL INITCSOILTM, 
ELASTI,0SM0TI, 
KXYLUM,RLS,RS, 
PSIXYL,PSIS, 
PSISOL.HM.DX, 
VOLUME,TOTDX, 
RADIUS,RDENST, 
TIME,KSOIL, 
SOILIN) 

ITRM- a 
ITRA- 0 

INDEX-0 
SOILLE.0. 0 
INI-0 
INIH=0 

C ! The calculating Loop for the number of simulated days. 
DO 5000 DAY-DAYNUM,DAYEND,1 

C ! initializing some daily reserviours. 

TOTEVP-0.0; STORTH-0.0; STORTV-0.0; STORTC=0.0 

STORHT=0.0; STORVT=0.0; STORCT=0 

TOTSTE=0.0; TOTSTH=0.0; TOTSTC=0 

CNLFGT=0.0; CNLFGV-0.0; CNLFGC=0 

CNLFST.0.0; CNLFSV=0.0; C N L F S C 0 

RA-START 

RAINC = 0 
! Calculating for every time interval of averaging 
DO 4500 WHILE (RA.LT.24.0) 

NUMDLT«REAL(INT(AVGDLT/BUDLT)) 

some reserviours for AVGDLT period. 

AVGDLT - 30 minutes. 

linitializin 
SDPREH=0 

SDPRHC-0 

CUDCRN=0 

CUDTLE-0 

LDCALH.0 

CUDSRN-0 

CUDSG=0. 

SDPREV-0.0 

S D P R V C 0 . 0 

CUDTRN-0.0 

CUDTQ=0.0| 

LDCALV-0.0 

CUDSE.0.0 ; 

CUOSS-0.0 

S D P R E C 0 . 0 

S D P R C C 0 . 0 

CUDBRN=0.0 

CUDTC-0.0 

LDCALC=0.0 

CUDSH=0.0 

! Calculating for every interval of time with a length equal to Buldt (period of 
! updating the boundary conditions) = 15 minutes 
DO 4000 RU. l.NUMDLT.l 

TIME-RA+(REAL(RU-1))*BUDLT 
RTIME-TIME 

RATIO-AMAX1((SINBTA/SIN00N),0.0) 

a counter for output control and an example. 
CORR-MOD(COUNT.OUTPL) 
IF (CORR .EQ. 0) THEN 

WRITE(FILENAME,'(I3,A5,F6.3,A3)')DAYNUM, 
•AIRB',TIME,'DAT' 

0PEN(UNIT.4,FILE=FILENAME,STATUS-'UNKNOWN') 
ENDIF 

CH 
CN 

((SINBTA.LT.0. 
((SINBTA.GE.0. 

IF (CN) THEN 
IF(SINBTA.LT. 

INDEX.1 

)). AND. (INDEX.LT.1)) 
)) .OR. CH) 

8) THEN 

! not active part 
CALL FREQMONTERVAL , DLPRATION, 

INTENSITY,REFRE) 
ELSE 

INDEX=0 

! not active part 
CALL FREQMONTERVAL , DURATION, 

INTENSITY , REFRE) 
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! Call N O R M N to c a l c u l a t e the s h o r t w a v e r a d i a t i o n 
! p r o f i l e and the a b s o r b e d s h o r t w a v e per l a y e r . 
CALL N O R M N f l l N I , D I R E C T , S I N B T A , T I M E ) 

C a l c u l a t e the p e r i o d b e t w e e n two c o n s e c u t i v e g u s t i n t r u s i o n s i n t o p l a n t c a n o p y C 
as a f u n c t i o n of the m e a s u r e d s h e a r at the c a n o p y top ( r a t h e r a r b i t r a r y ) . 

IF ( S H E A R . L E . 0 . 2 ) T H E N 
! No i n t r u s i o n 
F R E Q 1 - 6 
F R E Q Z = 1 0 

E L S E I F ( S H E A R . L T . 0 . 4 ) T H E N 

! o n c e e v e r y t h r e e m i n u t e s . 
F R E Q 1 - 5 
F R E Q 2 = 1 2 

E L S E I F ( S H E A R . L T . 0 . 
! o n c e e v e r y 2. 
F R E Q 1 - 6 
F R E Q 2 . 1 0 

E L S E I F ( S H E A R . LT . 1 . 
! o n c e e v e r y 1 
F R E Q 1 = 10 
F R E Q 2 . 6 

E L S E I F ( S H E A R . G E. 1 ) T H E N 
! o n c e e v e r y 75 s e c o n d s . 
F R E Q 1 - 12 
F R E Q 2 = 5 

ENDIF 

i) T H E N 
5 m i n u t e s . 

)) T H E N 
5 m i n u t e s . 

O N . . F A L S E . 

!The c a l c u l a t i o n M A S T E R L O O P for e v e r y gust c y c l e ( R e f r e s h m e n t and then b u i l d u p ) 
! F R E Q 1 t i m e s w i t h i n a B U L D T p e r i o d ( i . e . 15 m i n u t e s ) . 
DO 3 0 0 0 M I N U T E . 1 , F R E Q 1 , 1 
I N D E X S . l 
! the f i r s t p e r i o d a f t e r the g u s t p a s s a g e , (an i n c r e a s e s t u r b u l e n t t r a n s p o r t 
! c o e f f i c i e n t . 

IF ( M I N U T E . E Q . 1 ) T H E N 
! C a l c u l a t e an i n i t i a l w i n d p r o f i l e for the m o m e n t u m c a l c u l a t i o n . 

CALL I N I T A K U , R A T I O , T I M E , U S T A R . W A Y I N ) 
ENDIF 

C a l l M O M N T M to c a l c u l a t e the m o m e n t u m s o l u t i o n . 
CALL M O M N T M O T R M , I N D E X S , FLAG 

, DU 
, U , U N E W , L M I X , D R A , K M 
, A N A M O M , G R A S H , N U , U S T A R 
, T I M E , S H E A R , S I N B T A 
, R I C H A R 1 , R I C H A R 2 , P H I M 1 
, P H I H 1 , R I C H A R 3 1 , R I C H A R 3 2 ) 

To c a l c u l a t e the f l u x e s r e s u l t i n g from m i x i n g due 
l e s s t h a n a c r i t i c a l v a l u e . T h i s did not w o r k , It 
m i x i n g . 

IF ( ( F L A G . E Q . 3 1 ) . O R . ( F L A G . E Q . 3 2 ) ) T H E N 
CALL F L U X ( F L A G , 
T E M A I N , E A I R N W , N C 0 2 , 
S T O R A H , S H , S L , S I N K , 
S T O R A V , S T O R A C , 
P C S O I L , V G A S , 

T O T A L Q , T O T L E , T O T A S E , T O T A S Q , S O I L L E , 
D T , T I M E » , S O I L R N ) 

to R i c h a r d s o n n u m b e r b e i n g 
led to m u c h o v e r e s t i m a t e d 

! I n t e g r a t i n g Non Local Flux Due to S t a b i l i t y 
C N L F S T . C N L F S T + N L F L S T 
C N L F S V « C N L F S V + N L F L S V 
C N L F S C - C N L F S C + N L F L S C 

DO 4 4 4 1 = 1 , I H A , 1 
T E M A I R ( I ) . T E M A I R O H A + 1 ) 
E A I R ( I ) . E A I R ( I H A + 1 ) 
C 0 2 C 0 N O ) . C 0 2 C 0 N C I H A + 1 ) 

C O N T I N U E 

IF ( F L A G . E Q . 3 1 ) T H E N 
FLAG =1 

E L S E I F ( F L A G . E Q . 3 2 ) T H E N 
F L A G = 2 

E N D I F 
ENDIF 

Call R E S I S to c a l c u l a t e the b o u n d a r y l a y e r r e s i s t a n c e for the l e a v e s 
and the soil s u r f a c e r e s i s t a n c e u n d e r d i f f e r e n t R e g i m e s 
( F o r c e d c o n v e c t i o n , free or m i x e d ) for s e n s i b l e and l a t e n t h e a t . 
CALL R E S I S O T R M , I T R A , FLAG , 
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L E F L , R C U T I , 
G R A S H , N U , R E Y N O L , N U F O R C , N U F R E E , 
L I G H T , U N E W , G A M M A T , F G , A V G T L F , 
R B , R S T , R L E A F , C U M D E W , 
H T , H E , H E N D , P O R , V G A S , 
P S I S . T I M E , A B A C O N ) 

C ! Call E N E R G D to c a l c u l a t e the l o n g w a v e r a d i a t i o n p r o f i l e and the t o t a l a b s o r b e d C 
! e n e r g y and its p a r t i t i o n ( i - e . s o u r c e s s i n k s w i t h p l a n t c a n o p i e s at d i f f e r e n t 

C 1 h e i g h t s ) 
CALL E N E R G D Ç I T R A , R T I M E , M S 2 , 

S H . S L , H T , H E , H E N D , H E E , 
T E M P L F . T E M L F N , A V G T L F , 
R A B L , R A B L T , 
RAB, K A V , L I G H T , E N E S A B , 
I D , F R A C , C U M D E H , 
R D I R , W F T H , S I N B T A , R L O U T , R L I N N , 
D T . T O T E N E , S O I L S N . O N ) 

O n c e the a m o u n t of l a t e n t heat flux is c a l c u l a t e d for the L e a v e s , Call P L A N T 
to c a l c u l a t e the w a t e r p o t e n t i a l w i t h i n d i f f e r e n t p l a n t p a r t s and W a t e r u p t a k e 
by P l a n t r o o t s and A b s c i s i c Acid C o n c e n t r a t i o n to be used l a t e r for the s t o m a t a l 
r e s i s t a n c e c a l c u l a t i o n . 
CALL P L A N T ( I N I , 

D T , 0 T 1 , 
R A D I U S , R A D I U 2 , L V , K W A T E R , 
S L , R O O T R S , 
P S I S O L , 
T O T U P . F , R T I M E , S T A R T , D A Y N U M ) 

i n i t i a l i z i n g c e r t a i n c o u n t e r s for one gust c y c l e . 
- - - - S T P R E C - 0 . 0 S T P R E H . 0 

S T P R H C = 0 

C U M C R N = 0 

C U M T L E = 0 

L O C A L H - 0 

C U M S R N = 0 

C U M S G - 0 . 8 

S T P R E V - 0 . 0 

S T P R V C ^ B . 0 

C U M T R N - 0 . 0 

C U M T Q . 0 . 0 ; 

L O C A L V - 0 . 0 ; 

C U M S E - 0 . 0 ; 

C U M S S - 0 . 0 

S T P R C C - 0 . 0 

C U M B R N - 0 . 0 

C U M T C - 0 . 0 

L O C A L C - 0 . 0 

C U M S H - 0 . 0 

! A t i m e c o u n t e r . 
T I M E G « T I M E + R E A L ( M I N U T E - l ) * R E A L ( F R E Q 2 ) « 1 5 . / 3 6 0 0 . 
R T I M E - T I M E G 

! An e s t i m a t i o n of the r a t i o of the t i m e step to the time c o n s t a n t of the 
! f i r s t air l a y e r ( s e c t i o n 4 . 4 . 1 ) . 

GL . P C P / G A M M A * K M ( 1 ) / ( 0 . 5 * ( D Z ( 1 ) + D Z ( Z ) ) ) 
T I M E C 3 » 1 . / ( G L + H E C 0 , 1 , 2 ) ) 
R A T I 0 1 - G L * T I M E C 3 
R A T I 0 2 . H E ( 0 , 1 , 2 ) * T I M E C 3 
WM = G L * T I M E C 3 ' E A I R ( 2 ) 

+ H E ( 0 , 1 , 2 ) * T I M E C 3 * E A I R ( 0 ) + S L ( 1 ) * T I M E C 3 
! eq. 

S O I L L E 
S O I L H 

. H E ( 0 , 1 , Z ) * ( E A I R ( 0 ) - E A I R ( 1 ) ) 
- H T ( 0 ) * ( T E M A I R ( 0 ) - T E M A I R ( 1 ) ) 

E S A I R - S A T U V 2 ( S N G L ( T E M A I R ( 1 ) ) ) 
F A I R S = S A T U V 2 ( S N G L ( T E M A I R ( 0 ) ) ) 

C a l c u l a t i n g the c a p a c i t a n c e of the first air layer for 
C A P A C 1 . P C P / G A M M A * ( E S A I R - E A I R ( 1 ) ) * D Z ( 1 ) 
C A P A C 2 . P C P / G A M M A « ( E A I R ( 0 ) - E A I R ( 1 ) ) » D Z ( 1 ) 
C A P A C 3 = P C P / G A M M A « ( W M - E A I R ( 1 ) ) » D Z ( 1 ) 

IF ( C A P A C 3 . L E . 0 . 0 ) T H E N 
C A P A C = 0 . 0 
T I M E C O = 0 . 0 0 1 
R A T I O S - 1 0 . 

ELSE IF ( C A P A C 2 . L T . 0 . 0 ) THEN 
C A P A C - M I N C C A P A C 1 . C A P A C 3 ) 

C H E C K 4 - H E C 0 , 1 , 2 ) * C E A I R C 0 ) - E A I R C D ) 
+ S L ( 1 ) - G L * ( E A I R ( 1 ) - E A I R ( 2 ) ) 

IF C C H E C K 4 . N E . 0 . 0 ) THEN 
T I M E C O - C A P A C / C H E C K 4 

E L S E 
to a v i o d d e v i d i n g by z e r o . 

T I M E C O - 1 0 E - 1 0 
E N D I F 

IF ( T I M E C O . LT . 0 . 0 ) T H E N 
R A T I O S = 1 0 . 

va t e r v a p o u r 
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ELSE 

E N D I F 
R A T I O S - D T / T I M E C O 

C A P A C - M I N C C A P A C 1 , C A P A C 2 , C A P A C 3 ) 

C H E C K 4 = H E ( 8 , 1 , 2 ) * ( E A I R ( 8 ) - E A I R ( 1 ) ) 
+ S L ( 1 ) - G L * ( E A I R ( 1 ) - E A I R ( 2 ) ) 

IF ( C H E C K 4 . N E . 8 . 8 ) THEN 
T I M E C O - C A P A C / C H E C K 4 

ELSE 
T I M E C O - 1 8 E - 1 8 

E N D I F 

IF ( T I M E C O . L T . 8 . 8 ) T H E N 
R A T I O S - 1 8 . 

ELSE 
R A T I O S - D T / T I M E C O 

E N D I F 

F i r s t B r a n c h i n g P o i n t ( B r a n c h i n g P o i n t A d e p e n d i n g on s e c t i o n 4 . 4 . 1 ) 
IF ( R A T I O S . G T . 3 . 8 ) T H E N 

I N D E X C - 1 
W R I T E ( « , * ) 'WM HAS BEEN R E A C H E D ' 

, ' D U R I N G THE F I R S T 15 S E C O N D S ' 

DO 1 4 5 I T R A = 1 , 2 8 , 1 

IF ( I T R A . E Q . 1 ) THEN 
S 0 I L L E = P C P / G A M M A * ( W M - E A I R ( 1 ) ) » D Z ( 1 ) / D T 

1 - S L C O + 1. 8 » G L * ( W M - E A I R ( 2 ) ) 
ELSE 

S O I L L E . P C P / G A M M A ' ( W M - E A I R ( l ) ) , c D Z ( l ) / D T 
1 - S L ( 1 ) + 1 . 8 * G L « ( W M - E A I R N W ( 2 ) ) 

E N D I F 

C a l l C Y C L E 1 to c a l c u l a t e the t e m p e r a t u r e , v a p o u r p r e s s u r e and Co2 c o n c e n t r a t i o n 
p r o f i l e w i t h i n the s y s t e m and the v o l u m e t r i c soil m o i s t u r e c o n t e n t and the soil 
w a t e r p o t e n t i a l p r o f i l e 

CALL C Y C L E K I N I H , ITRA, PASS , 
T E M A I N , E A I R N W , N C 0 2 , V G A S , E X T R A S , E X T R A L , 
P S I S O L , A V G T L F , 
R L E A F , 
G A M M A T , F G , R A I N M , 
P H I M . K R A T I O , F E , W M , I N D E X I, T E M P O R ) 

145 
146 

C h e c k the c o n v e r g e n c e of the s o l u t i o n . 
WMF — W M 
WM = G L * T I M E C 3 * E A I R N W ( 2 ) 

+ H E ( 8 , 1 , 2 ) " T I M E C 3 * E A I R N W ( 8 ) 
+ S L ( 1 ) « T I M E C 3 

ERR - A B S ( W M - W M E ) 

IF ( ( E R R . L E . 1 ) . A N D . ( I T R A . G T . 1 ) ) T H E N 
GOTO 146 

E N D I F 
C O N T I N U E 
C O N T I N U E 

! S e c o n d o p t i o n of ( B r a n c h i n g P o i n t A ) . I n i t i a l e s t i m a t e of S O I L L E is good e n o u g 
ELSE IF ( R A T I O S . L T . 8 . 1 ) THEN 

S O I L L E - S O I L L E 
I N D E X C - 3 

CALL C Y C L E I O N I H , ITRA, PASS , 
T E M A I N , E A I R N W , N C 0 2 , V G A S , E X T R A S , E X T R A L , 
P S I S O L , A V G T L F , 
R L E A F , 
G A M M A T , F G , R A I N M , 
P H I M . K R A T I O , F E , W M . I N D E X I , T E M P O R ) 

! T h i r d o p t i o n of ( B r a n c h i n g P o i n t A ) , ( i n t e g r a t e n u m e r i c a l l y ) . 
I N D E X C - 2 

LOOP = N I N T ( D T * 1 8 . / T I M E C O ) 
LOOP « L 0 0 P + 1 
D T I N T > D T / R E A L ( L 0 0 P ) 
E A I R 1 . E A I R ( l ) 
E S A I R 2 = S A T U V 2 ( S N G L ( T E M A I R ( 2 ) ) ) 

T I M E C 2 = P C P / G A M M A » ( E S A I R 2 - E A I R ( 2 ) ) * D Z ( 2 ) / 
( G L « ( E A I R 1 - E A I R ( 2 ) ) 
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1 - P C P / G A M M A * K M ( 2 ) / C 8 . 5 ' ( D Z ( 2 ) + D Z ( 3 ) ) ) 
1 * ( E A I R ( 2 ) - E A I R ( 3 ) ) 
1 + S L ( 2 ) ) 

C H E C K 2 - T I M E C 0 / T I M E C 2 

C U M S L E = 8 . e 

DO 1 5 8 3 I - l , L O O P , l 

C U M S L E = D T I N T * H E ( 8 , 1 , 2 ) * ( E A I R ( 8 ) - E A I R 1 ) + C U M S L E 
D E L T A C = D T I N T ' ( H E ( 8 , 1 , 2 ) * ( E A I R ( 8 ) - E A I R 1 ) 

1 + S L ( 1 ) - P C P / G A M M A * K M ( 1 ) / 
1 ( 8 . 5 * ( D Z ( 1 ) + D Z ( 2 ) ) ) * ( E A I R 1 - E A I R ( 2 ) ) ) 

E A I R 1 = E A I R 1 + D E L T A C * G A M M A / ( P C P * D Z ( 1 ) ) 

IF C E A I R 1 .GE. H M ) T H E N 
E A I R l » M I N ( E A l R S , K M ) 
C U M S L E . P C P / G A M M A « D Z ( 1 ) * ( E A I R 1 - E A I R ( 1 ) ) 

G O T O 1 5 8 4 
E N D I F 

C O N T I N U E 

I N D E X C - 3 

C O N T I N U E 

S O I L L E = C U M S L E / D T 

IF C I N D E X C . E Q . 3 ) THEN 
I T R F - 9 

ELSE 
I T R F - 2 8 

E N D I F 

DO 147 I T R A - 1 , I T R F , 1 

147 

148 

! R e m a r k 1 ( c a l c u l a t e the s o l u t i o n ( s t a t e v a r i a b l e s and f l u x e s ) 

CALL C Y C L E 1 ( I N I H , I T R A , P A S S , 
T E M A I N , E A I R N W , N C 0 2 , V G A S , E X T R A S , E X T R A L , 
P S I S O L , A V G T L F , 
R L E A F , 
G A M M A T , F G , R A I N M , 
P H I M . K R A T I O , F E , W M . I N D E X I , T E M P O R ) 

W M E —WM 
WM - G L ' T I M E C 3 » E A I R N W ( 2 ) 

1 + H E ( 8 , 1 , 2 ) * T I M E C 3 , E A I R N W ( 8 ) 
1 + S L ( 1 ) ' T I M E C 3 

ERR - A B S ( » M - W M E ) 

IF ( ( E R R . L E . 1 ) . A N D . 
GOTO 148 

E N D I F 
C O N T I N U E 

C O N T I N U E 
E N D I F 

( I T R A . G T . 1 ) ) T H E N 

C • i n t e g r a t e w i t h i n c a n o p y h e i g h t the s e n s i b l e and l a t e n t heat s o u r c e s . 
T O T L E - 8 . 8 
T O T A L Q - 8 . 8 

DO 222 1 = 1 , I T A 
T O T L E » T O T L E + S L ( I ) 
T O T A L Q - T O T A L Q + S H ( I ) 

222 C O N T I N U E 

C ! C a l c u l a t e the r e s u l t i n g f l u x e s of s e n s i b l e l a t e n t heat and Co2 for the c a n o p y -
C ! soil s y s t e m . 

CALL F L U X ( F L A G , 
T E M A I N , E A I R N W , N C 0 2 , 
S T O R A H , S H , S L , S I N K , 
S T O R A V . S T O R A C , 

P C S O I L . V G A S , 
T O T A L Q , T O T L E , T O T A S E . T O T A S Q . S O I L L E , 
D T . T I M E W . S O I L R N ) 

C ! I n t e g r a t e for all the c a n o p y h e i g h t and 15 s e c o n d s time step i n t e r v a l 
T R N S T . ( T O T L E * D T ) / L A M D A 
E V A P O T « T R N S T * ( S O I L L E * D T ) / L A M D A 
T O T E V P - T O T E V P * E V A P O T 

T O T S T E - T O T S T E + T O T L E ' D T 
1 - F L U X V T ( I H A ) * D T + S O I L L E » D T 

T O T S T H - T O T S T H + T O T A L Q ' D T 
1 - F L U X H T ( I H A ) * D T + F L U X H B ( 1 ) ' D T 
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E R R C A H . T 0 T A L Q - F L U X H T ( I H A ) + F L U X H B ( 1 ) - S T 0 R H 

E R R C A V - T O T L E - F L U X V T ( I H A ) + S O I L L E - S T O R v 

! I n t e g r a t e w i t h i n t i m e of the local a b o v e the c a n o p y f l u x e s and the s t o r a g e w i t h i n 

! the c a n o p y . 
L O C A L H = L O C A L H + C F L X H T ( I H A ) 
L O C A L V - L O C A L V + C F L X V T C I H A ) 
L O C A L C = L O C A L C + C F L X C T ( I H A ) 

S T P R E H = S T P R E H + S T O R E H 
S T P R E V - S T P R E V + S T O R E V 
S T P R E C - S T P R E C + S T O R E C 

S T P R H C - S T P R H C + S T O R H C 
S T P R V C = S T P R V C + S T O R V C 
S T P R C C - S T P R C C + S T O R C C 

C U M C R N - C U M C R N + R N E T O T ' D T 
C U M T R N . C U M T R N + ( R N S T O P + R L N T O P ) « D T 
C U M B R N - C U M B R N - K R N S B T M + R L N B T M ) * D T 

C U M T L E - C U M T L E + T O T L E » D T 
C U M T Q - C U M T Q + T 0 T A L Q * D T 
C U M T C = C U M T C + 

C U M S R N = C U M S R N + S O I L R N * D T 
C U M S H « C U M S H + F L U X H B ( 1 ) * D T 
C U M S E « C U M S E + S O I L L E * D T 
C U M S G - C U M S G + F L U X H B ( 0 ) • D T 
C U M S S - C U M S S + S T O R A H ( 0 ) * D T 

An e x a m p l e for o u t p u t c o n t r o l , 
u s e r of the m o d e l to add such 

i.e. will not be r e p e a t e d . It is left to the 
s e g m e n t w h e r e ever he w a n t s . 

IF ( ( C O R R . E Q . 0 ) . A N D . C M I N U T E . E Q . 1 ) ) THEN 
1ÏRITEC4, ' C A 1 ) ' ) • •' 
W R I T E C 4 , ' ) ' ( 3 ) I' ,T, ' Z ( I ) ' ,T, ' T E M A I R ' ,T, 
' T E M A I N ' ,T, 'EAIR' ,T, 'EAIRNW' ,T, ' C 0 2 C 0 N ' , 
T, ' N C 0 2 ' ,T, ' S A T V A P ' ,T, ' V P D A I R ' ,T 

«IRITEC4,«) F R E Q 2 

DO 3 2 1 0 I - I S A . I H A . l 

WRITE ( 4 , * ) I , T , Z C I ) , T , T E M A I R C I ) , T , T E H A I N C I ) , 
E A I R ( I ) , T , E A I R N W ( I ) , T , C 0 2 C 0 N ( I ) , T , N C 0 2 C I ) , T , 
S A T V A P ( I ) , T , V P O A I R C D . T 

C O N T I N U E 

E N D I F 

C a l c u l a t i o n s for the s e c o n d t i m e step a f t e r the p a s s a g e of the gust for F R E Q 2 
t i m e s i.e. till the end of the q u i e s c e n c e p e r i o d w i t h t i m e i n t e r v a l s of 15 
s e c o n d s . 

DO 2 0 0 0 I T R M - 2 , F R E Q 2 , 1 

U p d a t e the Soil t o t a l w a t e r p o t e n t i a l C'!not i n c l u d i n g o s m o t i c ) 
H M ( I S A ) . H M N E W C I S A ) 
P S I S O L ( I S A ) . H M N E « C I S A ) + Z ( I S A ) 

DO 225 I = I S A + 1 , 0 
I F C H Y D R I N . N E . 1 ) T H E N 

T H E T A ( I ) - T H E T A N ( I ) 
E N D I F 

H M ( I ) - H M N E W ( I ) 

P S I S 0 L C O = H M N E W ( I ) + 2 C E N T E R C I ) 
C O N T I N U E 

t h e v a p o u r p r e s s u r e a n d t h e C o 2 c o n c e n t r a t i o n C ! U p d a t e t h e t e m p e r a t u r e , 
C ! f o r t h e n e x t t i m e s t e p . 

D O 1 4 9 I - I S A , I H A , 1 
T E M A I R ( I ) - T E M A I N C I ) 
E A I R ( I ) - E A I R N W ( I ) 
C 0 2 C 0 N C I ) = N C 0 Z ( I ) 
E X T R A S C D - 0 . 0 
E X T R A L ( I ) - 0 . 0 
I N D E X I ( I ) = 0 

149 C O N T I N U E 

C ! C a l c u l a t e the m o m e n t u m e q u a t i o n s o l u t i o n for each i n t e r v a l w i t h i n the q u i e s c e n c e 
C ! p e r i od. 

CALL M O M N T M C I T R M , I N D E X S , F L A G 
: , DU 

, U , U N E « , L M I X , D R A , K M 
, A N A M O M , G R A S H , N U , U S T A R 
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, T I M E , S H E A R , S I N 8 T A 
, R I C H A R 1 , R I C H A R 2 , P H I M 1 
, P H I H 1 , R I C H A R 3 1 , R I C H A R 3 2 ) 

If a l a r g e s c a l e m i x i n g o c c u r s due to R i c h a r d s o n n u m b e r b e i n g less t h a n a 
c r i t i c a l v a l u e = 0 . 2 5 , this did not w o r k . 

IF ( ( F L A G . E Q . 3 1 ) . O R . ( F L A G . E Q . 3 2 ) ) T H E N 
CALL F L U X ( F L A G , 

T E M A I N , E A I R N W , N C 0 2 , 
S T O R A H . S H , S L , S I N K , 
S T O R A V . S T O R A C , 

P C S O I L , V G A S , 
T O T A L Q , T O T L E , T O T A S E , T O T A S Q , S O I L L E , 
D T , T I M E H , S O I L R N ) 

C N L F S T . C N L F S T + N L F L S T 
C N L F S V . C N L F S V + N L F L S V 
C N L F S C = C N L F S C + N L F L S C 

It lead to too m u c h m i x i n g . 

00 4 4 5 1 . 1 , I H A , 1 
T E M A I R ( I ) . T E M A I R C I H A + 1 ) 
E A I R ( I ) - E A I R ( I H A + 1 ) 
C 0 2 C 0 N ( I ) = C 0 2 C 0 N ( I H A + 1 ) 

C O N T I N U E 

IF ( F L A G . E Q . 3 1 ) THEN 
FLAG -1 

E L S E I F ( F L A G . E Q . 3 2 ) THEN 
F l A G - 2 

E N D I F 
E N D I F 

CALL R E S I S ( I T R M , I T R A , F L A G , 
1 L E F L . R C U T I , 
1 G R A S H , N U , R E Y N O L , N U F O R C , N U F R E E , 
1 L I G H T , U N E W , G A M M A T , F G . A V G T L F , 
1 R B , R S T , R L E A F , C U M D E W , 
1 H T , H E , H E N D , P O R , V G A S , 
1 P S I S . T I M E . A B A C O N ) 

C ! U p d a t e the t e m p e r a t u r e of the l e a v e s 
DO 1 4 9 8 1 = 1 , I T A , 1 

DO 1 4 9 1 J-l, 2 , 1 
DO 1 4 9 2 K - 1 , 2 , 1 

I F ( I P R ( I , K , J ) . N E . 0 ) T H E N 
T E M P L F O ,1,K, J ) - T E M L F N ( I ,1,K, J ) 
T E M P L F d , 2, J , K)= T E M L F N ( I , 2 , J , K ) 

E N D I F 
1 4 9 2 C O N T I N U E 
1 4 9 1 C O N T I N U E 
1 4 9 0 C O N T I N U E 

for the d i f f e r e n t s e g m e n t s . 

! C a l c u l a t e e n e r g y s o u r c e s and s i n k s w i t h i n p l a n t c a n o p y . 
CALL E N E R G D O T R A , R T I M E , M S 2 , 

S H , S L , H T , H E , H E N D , H E E , 
T E M P L F . T E M L F N , A V G T L F , 
R A B L , R A B L T , 
R A B , K A V , L I G H T , E N E S A B , 
I D , F R A C , C U M D E W , 
R D I R , W F T H , S I N B T A , R L O U T , R L I N N , 
D T . T O T E N E , S O I L S N , 0 N ) 

CALL P L A N T C I N I , 
D T , D T I , 
R A D I U S , R A D I U 2 . L V . K I Ï A T E R , 
S L , R O O T R S , 
P S I S O L , 
T O T U P . F , R T I M E , S T A R T , D A Y N U M ) 

T I M E W . T I M E + R E A L ( M I N U T E - 1 ) * R E A L ( F R E Q 2 ) * 1 5 . / 3 6 B B . 
1 + R E A L ( I T R M - l ) * 1 5 / 3 6 0 0 . 

R T I M E . T I M E « 

! F i r s t o p t i o n of ( B r a n c h i n g P o i n t B ) . 
I F ( E A I R ( 1 ) . E Q . W M ) THEN 

I N D E X C - 1 
DO 1 0 0 1 I T R A - 1 , 2 0 , 1 

IF (ITRA . E Q . 1 ) T H E N 

! C a l c u l a t i n g the Soil l a t e n t heat flux 
S 0 I L L E - P C P / G A M M A « ( W M - E A I R ( 1 ) ) ' D Z ( 1 ) / D T 

1 + P C P / G A M M A * K M ( 1 ) / ( 0 . 5 * ( D Z ( 1 ) + D Z ( 2 ) ) ) 
1 * ( W M - E A I R ( 2 ) ) - S L ( 1 ) 

ELSE 

! U p d a t i n g the Soil l a t e n t heat flux 
S O I L L E . P C P / G A M M A » ( W M - E A I f ! ( l ) ) * D Z ( l ) / D T 

1 + P C P / G A M M A * K M ( 1 ) / ( 0 . 5 * ( D Z ( 1 ) + D Z ( 2 ) ) ) 
1 * ( W M - E A I R N « ( 2 ) ) - S L ( 1 ) 

E N D I F 
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CALL C Y C L E I C I N I H , I T R A , P A S S , 
T E M A I N , E A I R N W , N C 0 2 , V G A S , E X T R A S , E X T R A L , 
P 5 I S 0 L , A V G T L F , 
R L E A F , 
G A M M A T , F G , R A I N M , 
P H I M . K R A T I O , F E , W M . I N D E X I , T E M P O R ) 

WME = WM 

WM - G L « T I M E C 3 * E A I R N W C 2 ) 
+ H E C 0 , 1 , 2 ) * T I M E C 3 * E A I R N W ( 0 ) 
+ S L C 1 ) * T I M E C 3 

ERR « A B S ( W M - W M E ) 

IF ( ( E R R . L E . 1 ) .AND. 

GOTO 1 1 1 6 

E N D I F 

( I T R A . G T . 1 ) ) T H E N 

1 0 0 1 C O N T I N U E 
1 1 1 6 C O N T I N U E 

C ! S e c o n d o p t i o n of ( B r a n c h i n g p o i n t B ) . 
ELSE 
I N D E X C = 3 

KM , G L * T I M E C 3 * E A I R ( 2 ) 
1 + H E C B , 1 , 2 ) * T I M E C 3 « E A I R ( B ) + S L ( 1 ) * T I M E C 3 

S O I L L E - H E C 0 , 1 , 2 ) ' C E A I R C 0 ) - E A I R C 1 ) ) 

CALL C Y C L E I C I N I H , I T R A , P A S S , 
T E M A I N , E A I R N W , N C 0 2 , V G A S , E X T R A S , E X T R A L , 
P S I S O L , A V G T L F , 
R L E A F , 
G A M M A T , F G , R A I N M , 
P H I M . K R A T I O , F E , W M . I N D E X I , T E M P O R ) 

3185 C O N T I N U E 

IF ( E A I R N W ( l ) . G T . W M ) THEN 

E A I R N W ( l ) - WM 

I N D E X C = 1 

DO 1 8 0 2 I T R A . 1 , 2 0 , 1 

IF C I T R A . E Q . 1 ) T H E N 

S O I L L E - P C P / G A M M A * ( W M - E A I R ( 1 ) ) * D 2 ( 1 ) / D T 
1 + P C P / G A M M A * K M ( 1 ) / ( 0 . 5 * C D 2 ( 1 ) + D 2 C 2 ) ) ) 
1 * ( ! » M - E A I R ( 2 ) ) - S L ( 1 ) 

S O I L L E - P C P / G A M M A « ( W M - E A I R C 1 ) ) * D Z ( 1 ) / D T 
+ P C P / G A M M A * K M ( 1 ) / C 0 . 5 ' ( D Z ( 1 ) + D Z ( 2 ) ) ) 
* ( W M - E A I R N W ( 2 ) ) - S L C 1 ) 

E N D I F 

CALL C Y C L E I C I N I H , I T R A , P A S S , 
T E M A I N , E A I R N W , N C 0 2 , V G A S , E X T R A S , E X T R A L , 
P S I S O L . A V G T L F , 
R L E A F , 
G A M M A T , F G , R A I N M , 
P H I M . K R A T I O , F E , W M . I N D E X I , T E M P O R ) 

WME .WM 
WM = G L * T I M E C 3 * E A I R N W ( Z ) 

+ H E ( 0 , 1 , 2 ) * T I M E C 3 * E A I R N W ( 0 ) 
+ S L ( 1 ) • T I M E C 3 

ERR = A B S C W M - W M E ) 

IF ( ( E R R . LE. 1) .AND. (ITRA . GT. 1 ) ) THEN 

G O T O 1 1 1 7 

1 0 0 2 
1 1 1 7 

C O N T I N U E 
C O N T I N U E 

E N D I F 

E N D I F 
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1 1 0 0 C O N T I N U E 

C ! C a l c u l a t e the f l u x e s b e t w e e n d i f f e r e n t l a y e r s . 
CALL F L U X C F L A G , 

T E M A I N , E A I R N W . N C O Z , 
S T O R A H , S H , S L , S I N K , 
STORAV , S T O R A C , 

: P C S O I L , V G A S , 
T O T A l Q , T O T L E , T O T A S E , T O T A S Q , S O I L L E , 
D T . T I M E W , S O I L R N ) 

DO 3 1 1 1 I - I S A . I H A . l 

S A T V A P C D = S A T U V Z C S N G L C T E M A I R ( I ) ) ) 
V P D A I R ( I ) = S A T V A P ( I ) - S N G L ( E A I R ( I ) ) 

T O T L E - 0 . 0 
T O T A L Q = 0 . 0 

DO 111 I - l . I T A 

T O T L E 
T O T A L Q 

- T O T L E + S L C D 
- T O T A L Q + S H C I ) 

111 C O N T I N U E 

C '. i n t e g r a t e w i t h i n c a n o p y h e i g h t the s e n s i b l e and l a t e n t heat s o u r c e s . 
T R N S T . ( T O T L E ' D T V L A M D A 
E V A P O T . T R N S T + ( S O I L L E * D T ) / L A M D A 
T O T E V P - T O T E V P + E V A P O T 

T O T S T E - T O T S T E + T O T L E ' D T 
1 - F L U X V T ( I H A ) * D T + S O I L L E * D T 

T O T S T H - T O T S T H + T O T A L Q ' D T 
1 - F L U X H T ( I H A ) « D T + F L U X H B C 1 ) * D T 

E R R C A H = T O T A L Q - F L U X H T ( I H A ) + F L U X H B ( l ) - S T O R H 
E R R C A V = T O T L E - F L U X V T ( I H A ) + S O I L L E - S T O R V 

L O C A L H = L O C A L H + C F L X H T ( I H A ) 
L O C A L V - L O C A L V + C F L X V T C I H A ) 
L O C A L C = L O C A L C + C F L X C T C I H A ) 

S T P R E H - S T P R E H + S T O R E H 
S T P R E V - S T P R E V + S T O R E V 
S T P R E C = S T P R E C + S T O R E C 

S T P R H C - S T P R H C + S T O R H C 
S T P R V C -STPRVC-fSTORVC 
S T P R C C - S T P R C C + S T O R C C 

C U M C R N - C U M C R N + R N E T O T ' D T 
C U M T R N - C U M T R N i - C R N S T O P t R L N T O P J ' D T 
C U M B R N = C U M B R N + C R N S B T M + R L N B T M 3 ' D T 

C U M T L E - C U M T L E + T O T L E ' D T 
C U M T Q = C U M T Q + T O T A L Q * D T 

C C U M T C - C U M T C + 

C U M S R N - C U M S R N + S O I L R N * D T 
C U M S H - C U M S H + F L U X H B ( 1 ) * D T 
C U M S E » C U M S E + S O I L L E * D T 
C U M S G « C U M S G + F L U X H B ( 0 ) * D T 
C U M S S - C U M S S + S T O R A H ( 0 ) * D T 

C O N T I N U E 

IF C C G U S T . E Q . 1 ) . A N D . ( S H E A R . G T . 0 . 2 ) ) THEN 

F L A G = 4 
CALL F L U X C F L A G , 
T E M A I N , E A I R N W , N C 0 2 , 
S T O R A H , S H , S L , S I N K , 
S T O R A V , S T O R A C , 

P C S O I L , V G A S , 
T O T A L Q , T O T L E , T O T A S E . T O T A S Q . S O I L L E , 
D T , T I M E W , S O I L R N ) 

C N L F G T - C N L F G T + N L F L G T 
C N L F G V - C N L F G V + N L F L G V 
C N L F G C = C N L F G C t N L F L G C 

F L A G - 0 

DO 2 5 0 0 I - I H A + 1 , 1 , - 1 
T E M A I R ( I ) = D T E M P 
E A I R ( I ) = I E A I R 
C O Z C O N ( I ) - 3 0 0 . 

C O N T I N U E 
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D O 2 5 0 1 I - I S A , e , l 
T E M A I R ( I ) = T E M A I N ( I ) 
E A I R ( I ) = E A I R N « I ( I ) 
C 0 2 C O N C I ) - N C 0 2 ( I ) 

C O N T I N U E 

D O 2 5 8 2 , I - I H A + 1 , I S A , -1 
T E M A I R C I ) - T E M A I N ( I ) 
E A I R C I ) - E A I R N W ( I ) 
C O 2 C O N ( I ) = N C O 2 ( I ) 

C O N T I N U E 

E N D I F 
DO 2 6 8 1 I - I S A , I H A , 1 

E X T R A S ( I ) « 0 . 0 
E X T R A L ( I ) . e . 0 
I N D E X I C D - 0 

C O N T I N U E 

H M C I S A ) . H M N E W ( I S A ) 
P S I S O L ( I S A ) = H M N E W C I S A ) + Z ( I S A ) 

D O 2 2 3 I - I S A + 1 , 0 

! U p d a t i n g t h e s o i l m o i s t u r e c o n t e n t 

I F C H Y D R I N . N E . 1 ) T H E N 
T H E T A ( I ) - T H E T A N Ç I ) 

E N D I F 
! or U p d a t i n g t h e s o i l w a t e r m o i s t u r e p o t e n t i a l . 

H M C I ) = H M N E « C I ) 
P S I S O L ( I ) - H M N E W ( I ) + Z C E N T E R ( I ) 

! O b t a i n i n g a v e r a g e s o v e r t h e w h o l e g u s t c y c l e f o r s t o r a g e o f s e n s i b l e , 
! a n d C 0 2 w i t h t h e c a n o p y . 

A V G 1 T H - S T P R E H / C D T * R E A L ( F R E Q 2 ) ) 
A V G 1 T E . S T P R E V / ( D T * R E A L ( F R E Q 2 ) ) 
A V G 1 T C . S T P R E C / C D T * R E A L ( F R E Q 2 ) ) 

A V G S T H = S T P R H C / ( D T * R E A L ( F R E Q 2 ) ) 
A V G S T E - S T P R V C / ( D T « R E A l ( F R E Q 2 ) ) 
A V G S T C = S T P R C C / ( D T « R E A L ( F R E Q 2 ) ) 

! O b t a i n i n g a v e r a g e s o v e r t h e w h o l e g u s t c y c l e of (? ? ? ? ) 
A V G T L E = C U M T L E / ( D T » R E A L ( F R E Q 2 ) ) 
A V G T Q = C U M T Q / C D T • R E A L ( F R E Q 2 ) ) 
A V G H - L O C A L H / ( D T » R E A L C F R E Q 2 ) ) 
A V G L E = L O C A L V / ( D T ' R E A L ( F R E Q 2 ) ) 
A V G R N - C U M C R N / C D T * R E A L C F R E Q 2 ) ) 
A V G T R N = C U M T R N / C D T * R E A L ( F R E Q 2 ) ) 
A V G B R N - C U M B R N / C D T " R E A L C F R E Q 2 ) ) 

A V G S R N = C U M S R N / ( D T * R E A L ( F R E Q 2 ) ) 
A V G S H = C U M S H / C D T " R E A L ( F R E Q 2 ) ) 
A V G S 1 E = C U M S E / C D T » R E A L C F R E Q Z ) ) 
A V G S S = C U M S S / C D T ' R E A L C F R E Q 2 ) ) 
A V G S G - C U M S G / ( D T * R E A l ( F R E Q 2 ) ) 

l a t e n t h e a t 

L D C A L H 
L D C A L V 
L D C A L C 

- L D C A L H + L O C A L H 
- L D C A L V + L O C A L V 
= L D C A L C + L O C A L C 

S D P R E H 
S D P R E V 
S D P R E C 

• S D P R E H + S T P R E H 
= S D P R E V + S T P R E V 
= S D P R E C + S T P R E C 

S D P R H C 
S D P R V C 
S D P R C C 

= S D P R H C + S T P R H C 
= S D P R V C + S T P R V C 
= S D P R C C + S T P R C C 

C U D C R N 
C U D T R N 
C U D B R N 

- C U D C R N + C U M C R N 
- C U D T R N + C U M T R N 
= C U D B R N + C U M B R N 

C U D T L E 
C U D T Q 
C U D T C 

» C U D T l E t C U M T L E 
- C U D T Q » C U M T Q 
» C U D T C + 

C U D S R N 
C U D S H 
C U D S E 
C U D S G 
C U D S S 

- C U D S R N + C U M S R N 
= C U D S H + C U M S H 
- C U D S E + C U M S E 
- C U D S G + C U H S G 
= C U D S S + C U M S S 

I T R M 

! U p d a t i n g t h e l e a f t e m p e r a t u r e s C o l d = n e w ) 
D O 1 4 9 5 1 = 1 , I T A , 1 
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1 4 9 7 
1 4 9 6 
1495 

DO 1496 J . 1 , 2 , 1 
DO 1 4 9 7 K - 1 , Z , 1 

I F f l P R C I , K , J ) . N E . 0 ) T H E N 
T E M P L F C I , 1 , K , J ) . T E M L F N C I , 1 , K , J ) 
T E M P L F O , 2 , J , K)= T E ML F N ( I , 2 , J , K ) 

E N D I F 
C O N T I N U E 

C O N T I N U E 
C O N T I N U E 

C O N T I N U E 
C O U N T - C O U N T + 1 
C O R R - M O D C C O U N T . O U T P L ) 

CALL R A D B 0 U ( D T E M P , I E A I R , W I N D T P , W I N D 2 5 , C L 0 U D N , 
R L O U T , R L I N N , W A Y I N , C O R R , M I N U T E , T , T I M E R ) 

U C I H A + 1 ) = * I N O T P 
T E M A I R C I H A + 1 ) . D T E M P 
E A I R C I H A + 1 ) - I E A I R 
SHEAR = » I N D 2 5 / 2 . 2 

IF ( ( G U S T . E Q . 1 ) . A N D . ( S H E A R . G T . 0 . 2 ) ) THEN 

F L A G = 4 
CALL F L U X C F L A G , 
T E M A I N , E A I R N W , N C 0 2 , 
S T O R A H . S H . S L , S I N K , 
S T O R A V . S T O R A C , 

P C S O I L , V G A S , 
T O T A L Q , T O T L E , T O T A S E , T O T A S Q , S O I L L E , 
D T , T I M E * , S O I L R N ) 

C N L F G T . C N L F G T + N L F L G T 
C N L F G V - C N L F G V + N L F L G V 
C N L F G C C N L F G C + N L F L G C 

DO 4 1 0 0 I . I H A + 1 , 
T E M A I R ( I ) 
E A I R ( I ) 
C 0 2 C O N ( I ) 

C O N T I N U E 

= D T E M P 
= I E A I R 
- 3 0 0 . 

C 0 2 C O N ( I H A + l ) - 3 0 0 . 

E N D I F 

IF ( C O R R .EQ. 0 ) THEN 
C L O S E ( 4 ) 

E N D I F 

C O N T I N U E 

A V D 1 T H - S D P R E H / ( A V G D L T » 3 6 0 0 ) 
A V D 1 T E - S D P R E V / ( A V G D L T * 3 6 0 0 ) 
A V D 1 T C . S D P R E C / ( A V G D L T « 3 6 0 0 ) 

A V D S T H - S D P R H C / ( A V G D L T * 3 6 0 0 ) 
A V D S T E - S D P R V C / C A V G D L T ' 3 6 0 0 ) 
A V D S T C = S D P R C C / ( A V G D L T * 3 6 0 0 ) 

A V D T L E « C U D T L E / ( A V G D L T * 3 6 0 0 ) 
A V D T Q » C U D T Q / ( A V G D L T « 3 6 0 0 ) 
A V D H » L D C A L H / ( A V G D L T * 3 6 0 0 ) 
AVDLE - L D C A L V / ( A V G D L T » 3 6 0 0 ) 
AVDRN - C U D C R N / ( A V G D L T « 3 6 0 0 ) 
A V D T R N « C U D T R N / ( A V G D L T * 3 6 0 0 ) 
A V D B R N - C U D B R N / ( A V G D L T * 3 6 0 0 ) 

A V D S R N = C U D S R N / ( A V G D L T » 3 6 0 0 ) 
A V D S H - C U D S H / ( A V G D L T * 3 6 0 0 ) 
A V O S L E = C U D S E / ( A V G D L T * 3 6 0 0 ) 
A V D S S - C U D S S / ( A V G D L T * 3 6 0 0 ) 
A V D S G » C U D S G / ( A V G D L T « 3 6 0 0 ) 

R A = R A + A V G D L T 

C O N T I N U E 

D A Y N U M . D A Y N U M + 1 

T M I N ( l ) = T M I N C 2 ) 
R H M A X ( l ) . R H M A X ( 2 ) 
R H M I N ( 0 ) » R H M I N ( l ) 

R E A D C 3 6 , » ) T M I N C 2 ) 

212 



READ(36,*) TMAX 
READC36,*) RHMAX(2) 
READC36,«) RHMIN(l) 
READ(36,«) RAINM 

DECLIN =-(23.45'RADE)'COS(RADE*(360*(DAYNUM+10)/365)) 
SINOE .SIN(DECLIN) 
DAYLNG .12.+24./PI«ASIN(TAN(LATI*RADE)*TAN(DECLIN)) 
NGHTLN -24.0-DAYLNG 
BTNOON =PI/2*DECLIN-LATI'RADE 
SINOON -SIN(BTNOON) 
SUNSET -12+0.5"DAYLNG 
BB -12-0.5*DAYLNG+C 
TSN >CTMAX-TMINC2))'SIN((PI*CDAYLNG-C)) 

/(DAYLNG+2«P))+TMIN(2) 

TIME-0.0 
START.TIME 

CALL RADBOU(DTEMP,IEAIR,HINDTP,WIND25,CLOUDN, 
RLOUT,RLINN,WAYIN,CORR,MINUTE,T,TIMER) 

U(IHA+1) .«INDTP 
TEMAIRÇIHA+1)- DTEMP 
EAIRCIHA+1) = IEAIR 
SHEAR .KIND25/2.2 

CLOSE(2) 

IF ((GUST.EQ.1).AND. 

DO 410 I.IHA+1,1,-1 

(SHEAR.GT.0.2)) THEN 

410 

5000 
6000 
7000 
1111 

TEMAIR(I) 
EAIR(I) 
C02C0N(I) 

CONTINUE 

ELSE 

C02CON(IH+l) 

ENDIF 

COUNT .0 

CONTINUE 
CONTINUE 
CONTINUE 
CONTINUE 

-DTEMP 
=IEAIR 
= 300. 

= 3 0 0 . 

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

c 
S U B R O U T I N E M O M N T M ( I T R M , I N D E X S , F L A G 

, DU 
, U , U N E W , L M I X , D R A , K M 
, A N A M O M , G R A S H , N U , U S T A R 
, T I M E , S H E A R , S I N B T A 
, R I C H A R 1 , R I C H A R 2 , P H I M 1 
, P H I H 1 , R I C H A R 3 1 , R I C H A R 3 2 ) 

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

I M P L I C I T N O N E 

I N T E G E R I T R M 

S I N C L U D E : A L I M I T . F O R / L 
S I N C L U D E : A B L A N K . F O R / L 

! T h e s e v a r i a b l e h a v e a one to one c o r r e s p o n d e n c e w i t h the G l o b a l V a r i a b l e s 
! w i t h i n the Call s t a t e m e n t of t h i s s u b r o u t i n e . 
I N T E G E R I N D E X S , F L A G 
R E A L * 8 D U ( 0 : I H ) 

REAL U ( 0 : I T B ) , U N E W ( 0 : I T B ) , L M I X ( 1 : 2 , 0 : I H ) , 
D R A ( 0 : I T B ) , K M ( 0 : I H ) , A N A M O M ( 1 : I H ) 

REAL G R A S H ( 0 : I T ) , N U ( 0 : I T ) 

REAL U S T A R , T I M E , S H E A R , S I N B T A 
REAL R I C H A R 1 , R I C H A R 2 , P H I M 1 , P H I H 1 
REAL R I C H A R 3 1 , R I C H A R 3 2 

C H A R A C T E R T 
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cccccc 

c ! Locol v a r i a b l e s needed for the s u b r o u t i n e c a l c u l a t i o n . 

INTEGER I, J , K , I L P , I T E R , I H E L P 

REAL U N 0 N ( 1 : 5 , 0 : I H ) 
REAL U N E W K C 1 : 5 , 0 : I H ) 

! wind speed n o n d i m e n s i o n a l i z e d (ms ) 
! Wind speed (ms ) 

REAL S I G M A W ( 1 : I H ) 
REAL T L ( 1 : I T B ) 

REAL K M D ( 1 : 5 , 0 : I H ) 

REAL K M D D ( 1 : 5 , 0 : I H ) 

vertical velocity v a r i a n c e ( m s ) 
Lagrangian integral time scale ( s ) 

Km value calculated for every layer by 5 d i f f e r e n t 
a s s u m p t i o n s 

! T h o m a s A l g o r t h i n C o e f f i c i e n t s for the momentum e q u a t i o n . 
REAL F ( 0 : I T B ) 
REAL G ( 0 : I T B ) 
REAL E ( 0 : I T B ) 
REAL D ( 0 : I T B ) 

REAL K A R M E N , C D , F A C T O R 

REAL N . D I S P L . Z O 

REAL C 0 , C 1 , C 2 

REAL W S T A R , F L U X S . A L P H A , G R , E T A 

Von Karmen constant, Drag C o e f f i c i e n t , Factor 
for q u i e s c e n c e r e s p e c t i v e l y 
D i s p l a c e m e n t h e i g h t ( m ) and R o u g h n e s s l e n g t h ( m ) . 

Empirical C o e f f i c i e n t s for c a l c u l a t i n g vertical 
velocity v a r i a n c e , 
And Lagrangian integral time scale (Raupach ) . 

equivalent flux for the case of free c o n v e c t i o n 
• within the plant canopy. 

REAL H S T A R . D C L O D S . D I F F , D I F F E R 

REAL S I G M A T . D L E A F 

REAL W E I G H T 
REAL ESP 
REAL ERRMAX 

h* (height of the radiative sink at the canopy top at 
n i g h t ) 
c h a r a c t e r i s t i c dimension of c l o d s , m o l e c u l a r 
d i f f u s i v i t y for water. 

temperature v a r i a n c e , C h a r a c t e r i s t i c d i m e n s i o n of 
the leaf. 

A WEIGHTING FACTOR. 

*************** 

KARMEN 
CO 
ESP 
N 
OISPL 
ZO 
DCLODS 
GR 
ETA 
DIFF 
C0 
CI 
C2 
OLEAF 
T.CHARC9) 

= 
= 
= s 

= 
= m 

= 
= 
= 
1= 

= 
= 
= 

e.41 
0.16 
8.8080081 
2. 5 
0.63 * Z ( I T A ) 
0 . Z 5 * C Z ( I T A ) - D I S P L ) 
0.05 
9.81 
14.ZE-6 
Z0.ZE-6 
0. 25 
1. Z5 
0. 3 
0.05 

! The period after the gust i n t r u s i o n , an increased turbulent t r a n s p o r t 
! c o e f f i c i e n t is used. 
I F ( C I N D E X S . E Q . l ) . A N D . C S H E A R . G T . 0 . 2 ) ) THEN 

F A C T O R . 3 . 0 
FLAG-0 

! For other p e r i o d s , a reduced turbulent transport coefficient is used a c c o r d i n g 
! to S e c t . 3 . 6 . 2 . 
ELSEIF ( S H E A R . G T . 0 . 2 ) THEN 

FACTOR =0.25 
FLAG-0 

ELSEIF C S I N B T A . G E . 0 . ) THEN 

R I C H A R 3 1 - G R / ( 2 7 3 + T E M A I R ( 2 2 ) ) 
1 * C C T E M A I R C 2 2 ) - T E M A I R C 1 5 ) ) 
1 * 0 . 3 8 * C C T E M A I R ( Z Z ) t Z 7 3 . 1 5 ) , E A I R ( 2 Z ) 
1 - C T E M A I R C 1 5 ) i - Z 7 3 . 1 5 ) * E A I R C 1 5 ) ) / 1 0 E 5 ) 
1 /C2./4.'SHEAR"2) 

IF (ÇRICHAR31.LT.8.25).AND.(ITRM.NE.0)) THEN 
THERE IS AN EJECTION 

FLAG -31 
DIFFER - TEMAIRC0)-TEMAIR(3S) 
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FLAG- 1 
DIFFER - TEMAIR(0)-TEMAIR(15) 

ELSEIF (SINBTA. LT.0.) THEN 

C RICHAR32 - GR/(273+TEMAIR(35)) 
C 1 »((TEMAIR(35)-TEMAIR(15)) 
C 1 +8.38*((TEMAIR(35)+273.15)*EAIR(35) 
C 1 -(TEMAIR(15)+273.15)« E AIR(15))/10E5 ) 
C 1 /(2./4.'SHEAR**2) 

IF ((RICHAR32.LT.0.25).AND.(ITRM.NE.0)) THEN 
THERE IS AN EJECTION 
FLAG -32 
DIFFER -TEMAIRC8J -TEMAIR(35) 

ELSE 

FLAG -2 

DIFFER. TEMAIR(0)-TEMAIR(15) 

ENDIF 

ELSE 

HRITE(26,*) 'THERE IS A MISTAKE LOOP ' 

ENDIF 

IF (FLAG.EQ.0) THEN 

LMIX(1,0).0 
LMIX(2,0)-0 

C ! Mixing length determinations with the canopy (II et al. (1985) and Goudriaan 
C ! (1977)) 

DO 300 I-l.ITA, 1 
LMIX(l.I). KARMEN • Z(I)/ (1.5 + 2.5 • LAD(I)) 
LMIX(2,I)= (4*DLEAF/(3.14*(LAD(I) + 0.01)))"0.5 

300 CONTINUE 

00 I - ITA+1 ,IHA 

LMIX(1,I)= LMIX(l.ITA) t KARMEN 
*(Z(I)-Z(ITA))/(1+0.015'(Z(I)-Z(ITA))) 

LMIX(2,I) 

400 CONTINUE 

901 CONTINUE 

KMD(3,ITA) -LMIX(2,ITA)*USTAR 

. KARMEN«(Z(I)-DISPL-ZO) 

«EIGHT -0.5 

DO 1380, K-1,5,1 
DO 1350 ITER=1,30 

IF (ITER.GT.15) THEN 

WEIGHT.1.0 

OU(0). ABS(U(1)-U(0))/(0.5*DZ(1)) 
KMD(K,0)-0.0 

DO 1400 I- l.ITA.l 
DU(I) . ABS(U(I + 1 ) - U ( D ) 

/(0.5'(DZ(I+1)+DZ(I))) 
KMD(l.I) - LMIX(1,I)'*2«DU(I)*FACT0R 
KMD(2,I) - LMIX(Z,I)* * 2*DU(I)* FACTOR 
KMD(3,I) -KMD(3,ITA)*EXP(-N *(1 -Z(I)/Z(ITA))) 

•FACTOR 
KMD(4,I) - 0.3**2*FACTOR 

SIGMAW(I) = USTAR*(C0+(C1-C0)«Z(I)/Z(ITA)) 
TL(I) - Z(ITA)/USTAR 

•AMAXl(CZ,KARMEN*(Z(I)-OISPL-ZO) 
/(C1*'2'Z(ITA))) 

KMD(5,I).SIGMAW(I)«*2*TL(I)*FACTOR 

DRA(I). CD » LADMID(I)' AB S(U(I))*DZ(I) 
CONTINUE 
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DO 1 4 5 0 I = I T A + 1 , I H A , 1 
O U ( I ) - A B S C U ( I t l ) - U C I ) ) 

/ ( 0 . 5 * C D Z U + 1 ) + D Z C I ) ) ) 

K M D C 1 . I ) - L M I X ( l , I ) * * 2 * D U C D * F A C T O R 
K M D ( 2 , I ) = L M I X C 2 , I ) * * 2 * D U ( I ) * F A C T O R 
K M D C 3 . I ) = I M I X C 2 , I ) * * 2 * D U C I ) * F A C T O R 
K M D C 4 . I ) = 0 . 3 * * 2 * F A C T 0 R 

S I G M A W C I ) - C 1 * U S T A R 
T L C D = Z ( I T A ) / U S T A R 

* A M A X 1 ( C 2 , K A R M E N * C Z C I ) - D I S P L - Z 0 ) 
/ C C 1 * * Z * Z C I T A ) ) ) 

K M D ( 5 , I ) - S I G M A W C I ) * * 2 * T L ( I ) * F A C T O R 

D R A C D = 
CONTINUE 

E ( 0 ) - 0 . 0 
G ( 0 ) - 0 . 0 
F ( 0 ) - 1 . 0 
D C 0 3 - 0 . 0 

CD • L A D M I D C D * A B S C U C D ) * D Z C D 

! THE BOUNDARY C O N D I T I O N FOR W I N D . 

DO 1 4 0 1 I - l . I H A . l 
E ( I ) - K M D C K , I - 1 ) / C 0 . 5 * C D Z C I - 1 ) + D Z C I ) ) ) 
G C I ) = K M D ( K , I ) / C 0 . 5 * C D Z C I ) + D Z C I + 1 ) ) 5 
D C D - 0 . 0 * U C I H A + 1 ) * Z ( I ) 
F C O - E C D + G C D + D R A C I ) 

CONTINUE 

E ( I H A t l ) = 0 . 0 
G ( I H A * 1 ) . 0 . 0 
F ( I H A + 1 ) - 1 . 0 
D C I H A t D - U C I H A - t l ) 

CALL T H O M M C I H A , E , G , D , F , U N E * ) 

DO 1 7 0 0 1= 1, I H A . l 
U N E W ( I ) - ( I - W E I G H T ) * 
U N E W K ( K , I ) = U N E W ( I ) 

C O N T I N U E 

UCO W E I G H T * UNEW C D 

E R R M A X - 0 . 0 

DO 1 7 5 0 I » l , I H A , 1 
A N A M 0 M C D = - F ( I ) * U N E W C I ) + G C I ) * U N E W C I + 1 ) 

+ E C I ) * U N E W C I - 1 ) + D C I ) 

ERRMAX 
C O N T I N U E 

M A X C E R R M A X . A B S C A N A M O M C I ) ) ) 

I F C E R R M A X . G E . E S P ) THEN 

DO 1 8 0 0 I H E L P - 0 , IHA + 1,1 
U C I H E L P ) = U N E W C I H E L P ) 

C O N T I N U E 

GOTO 1 3 5 0 

1 3 5 0 

1 3 7 5 

G O T O 1375 
C O N T I N U E 

C O N T I N U E 

DO 1 3 7 6 1 = 1 , IHA , 1 
U N 0 N C K , I ) = U N E W K C K , D / U S T A R ! OR CHECK 
K M D D C K . I ) - K M D C K . I ) 

1 3 7 6 C O N T I N U E 

1 3 8 0 C O N T I N U E 
DO 1 3 9 0 1 = 0 , I H A , 1 

K M C D - K M D C 5 . I ) 
1 3 9 0 C O N T I N U E 

C Î C a l c u l a t i n g s t a b i l i t y f u n c t i o n s in case of 
C !(shear at the c a n o p y top .Le. 0 . 2 ) 

ELSE 

R I C H A R 1 - G R / C 2 7 3 + T E M A I R C 3 0 ) ) 
1 * C T E M A I R C I H A + 1 ) - T E M A I R C 3 0 ) ) 
1 / C 2 . * C C U C I H A + l ) - S H E A R * 2 . 2 ) / 2 . 5 ) * * 2 ) 

IF C R I C H A R 1 . L E . - 0 . 1 ) T H E N 
P H I M 1 - C l - 1 6 * R I C H A R l ) * * C - 0 . 2 5 ) 
P H I H 1 = C l - 1 6 * R I C H A R l ) * * ( - 0 . 5 ) 

ELSE 
R I C H A R 1 = A M I N I C 0 . 1 9 9 , R I C H A R D 
P H I M 1 = C 1 - 5 * R I C H A R 1 ) ** C - l ) 
P H I H 1 » C 1 - 5 * R I C H A R 1 ) ** C - l ) 

E N D I F 

g u s t i n t r u s i o n . 

216 



G r a s h o f n u m b e r d e t e r m i n e d for the top soil layer t a k i n g the t e m p e r a t u r e 
d i f f e r e n c e o v e r a l a r g e d i s t a n c e to a v o i d f e e d b a c k s w i t h i n s h o r t t i m e s t e p s to C 
a v o i d p o s s i b l e 
i n s t a b i l i t i e s in the s o l u t i o n . 
G R A S H ( 8 ) = G R ' D I F F E R * D C L 0 D S * * 3 / ( Z 7 3 * E T A , « Z ) 
All the f o l l o w i n g f o r m u l a s are t a k e n from the a p p e n d i x Of M o n t e i t h & U n s w o r t h 
( 1 9 9 8 ) 
IF ( D I F F E R . L T . 8 . 8 ) T H E N 
! M o n t e i t h & U n s w o r t h ( 1 9 9 8 ) , T a b l e A . 5 f o r m u l a ( i i ) 

N U ( 8 ) = 8 . 2 3 * A B S ( G R A S H ( 8 ) ) * * 0 . 2 5 
E L S E I F ( D I F F E R . E Q . 8 . 8 ) THEN 

D I F F E R - 8 . 2 
G R A S H ( B ) « G R * D I F F E R * D C L 0 D S , * 3 / ( 2 7 3 * E T A * * Z ) 

! M o n t e i t h & U n s w o r t h ( 1 9 9 8 ) , T a b l e A . 5 f o r m u l a ( i ) 
N U ( 8 ) - 8.5 * G R A S H ( 8 ) * ' 8 . 2 5 

E L S E I F ( G R A S H ( 0 ) .LE. 1 B E S ) THEN 
! M o n t e i t h & U n s w o r t h ( 1 9 9 0 ) , T a b l e A . 5 f o r m u l a ( i i ) 

N U ( 8 ) - 0.5 • G R A S H ( 8 ) * * 0 . 2 5 
E L S E 
! M o n t e i t h & U n s w o r t h ( 1 9 9 8 ) , T a b l e A . 5 f o r m u l a ( i ) 

N U ( 0 ) . 0 . 1 3 * G R A S H ( 0 ) * ' 8 . 3 3 
E N D I F 
! Flux of heat c a l c u l a t e d a c c o r d i n g to that d i f f e r e n c e 
F L U X S - N U ( 0 ) * A B S ( O I F F E R ) * 1 2 0 0 * D I F F / D C L O D S 

! W* c a l c u l a t e d to J a c o b s et al 1 9 9 6 
W S T A R = ( F L U X S ' 8 . 7 » Z ( I T A ) » G R / ( Z 7 3 . + T E M A I R ( 1 5 ) ) ) * * 0 . 3 3 
! r e s u l t i n g v e r t i c a l v e l o c i t y v a r i a n c e 
S I G M A T = F L U X S / W S T A R 

DO 2 5 0 0 I - 1 , I T A , 1 
C ! L A Y E R .EQ. 0.7 * Z ( I T A ) 
C ! An a s s u m p t i o n 

U N E W ( I ) = W S T A R 
C ! E q u a t i n g the flux in J a c o b s et al ( 1 9 9 6 ) to a g r a d i e n t t r a n s p o r t e q u a t i o n 
C ! in the c a l c u l a t i o n of G r a s h o f n u m b e r for the 
C ! soil l a y e r , a use of t e m p e r a t u r e d i f f e r e n c e over ?? was u s e d . T h i s l e a d s 
C ! a l s o to s l o w e r feed back of the t e m p e r a t u r e of the air on the soil heat flux to 
C ! the air at n i g h t ( s t a b i l z i n g n u m e r i c a l e f f e c t ) . 

K M ( I ) - S I G M A T * * 1 . 5 
1 • ( K A R M E N ' 0 . 7 * Z ( I T A ) * G R / ( 2 7 3 . + T E M A I R ( 1 5 ) ) ) * « 0. 5 
1 * 0 . 1 5 * 0 . 7 * Z ( I T A ) / A B S ( D I F F E R ) 

2 5 0 0 C O N T I N U E 

! Km a b o v e the c a n o p y . 
DO Z 6 0 0 I - I T A + 1 , I H A . l 

U N E W ( I ) - U S T A R / K A R M E N * ( A L O G ( ( Z ( I ) - D I S P L ) / Z O ) ) 
K M ( I ) - K A R M E N * U S T A R * ( Z ( I ) - D I S P L ) / P H I M 1 

C O N T I N U E 

E N D I F 

IF ( ( C O R R . E Q . 0 ) .AND. ( M I N U T E . E Q . 1 ) ) THEN 
* R I T E ( Z , * ) ' ( 1 ) , ITER , I, Z ( I ) , U N E « ( I ) , U N 0 N ( I ) , 

L A D ( I ) , A N A M O M ( I ) , K M ( I ) ' 

* R I T E ( 2 , * ) • U ( 0 ) - ' , U ( 8 ) 

W R I T E ( 2 , * ) •F1AG = ' , F L A G 
DO 1 9 0 0 I - 1 , I H A , 1 

IF ( F L A G . E Q . 0 ) T H E N 

H R I T E C 2 , * ) I T E R , T , I , T , Z ( I ) , T , 
U N O N ( l , I ) , T , U N O N ( 2 , I ) , T , U N O N ( 3 , I ) , T , 

U N 0 N ( 4 , I ) , T , U N O N ( 5 , I ) , T , 
1 A D ( I ) , T , A N A M O M ( I ) , T , 
K M D D ( 1 , I ) , T , K M D D ( 2 , I ) , T , K M D D ( 3 , I ) , T , K M D D ( 4 , I ) , T , 
K M D D ( 5 , I ) ,T 

ELSE 

W R I T E ( 2 , * ) I , T , Z ( I ) , T , 
L A D ( I ) , T , K M ( I ) , T , U N E W ( I ) , T 

C O N T I N U E 

E N D I F 

R E T U R N 
END 

217 



cccc 
c 

c 
c 
c 
cccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

S U B R O U T I N E T H O M ( I H S , I S S , C T , B T , D T , A T , U N E W T ) 

! T h o m a s A l g o r t h i m S o l u t i o n ( a c c o r d i n g to P a t a n k a r 1980 

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

I M P L I C I T N O N E 

I N T E G E R I H S , I S S 
I N T E G E R I 

« I N C L U D E : A L I M I T . F O R / L 

R E A L * 8 A T C I S : I T B ) , B T ( I S : I T B ) 
R E A L * 8 C T C I S : I T B ) , D T Ç I S : I T B ) 

R E A L * 8 P C I S : I T B ) , Q ( I S : I T B ) 

R E A L * 8 U N E * T ( I S : I T B ) 

REAL O E N O M 

******************************** 
S o l u t i o n By T h o m a s A l g o r t h i m 

P ( I S S ) = B T C I S S ) / A T C I S S ) 
Q C I S S ) - D T C I S S ) / A T ( I S S ) 

DO 1 0 0 I - I S S + l . I H S + l 

D E N O M - A T C I ) - C T C I ) « P C I - 1 ) 
P C I ) - B T ( I ) / D E N 0 M 
Q C D - ( D T C I ) + C T ( I ) « Q C I - l ) ) / D E N O M 

C O N T I N U E 

U N E « T ( I H S + 1 ) . Q C I H S + 1 ) 

DO 2 0 8 I - I H S . I S S , -1 

U N E W T ( I ) » P C I ) * U N E » T ( I + 1 ) + Q C I ) 

C O N T I N U E 

R E T U R N 

END 

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

S U B R O U T I N E T H O M S ( I S S , C T , B T , D T , A T , U N E W T ) 

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

I M P L I C I T N O N E 

I N T E G E R I H S , I S S 
I N T E G E R I 

« I N C L U D E : A L I M I T . F O R / L 

R E A L ' 8 A T C I S : 0 ) , B T C I S : 0 ) 
R E A L ' 8 C T C I S : 0 ) , D T ( I S : 0 ) 

R E A L ' 8 P C I S : 0 ) , Q ( I S : 0 ) 

R E A L ' 8 U N E » T C I S : 0 ) 

REAL D E N O M 

C C C C 
C 

C 
C C C C 

P ( I S S ) - B T C I S S ) / A T C I S S ) 
Q ( I S S ) - D T C I S S ) / A T ( I S S ) 

DO 1 0 0 I - I S S + 1 , 0 
D E N O M - A T C I ) - C T C I ) * P C I - D 
P C D = B T C I ) / D E N O M 
Q C I ) » ( D T ( I ) + C T ( I ) » Q ( I - 1 ) ) / D E N 0 M 

C O N T I N U E 

U N E W T C 0 ) - Q C 0 ) 

DO 2 0 0 I - - 1 , I S S , -1 
U N E W T ( I ) - P C I ) * U N E W T ( I + 1 ) + Q ( I ) 

C O N T I N U E 

R E T U R N 
END 
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c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 
c 

SUBROUTINE THOMM(IHS,CT,BT,DT,AT,UNEWT) 
C 

c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 
IMPLICIT NONE 
INTEGER I.IHS 

$INCLUDE:ALIMIT.FOR/L 

REAL AT(8:ITB),BT(0:ITB) 
REAL CT(8:ITB),DT(0:ITB) 

REAL*8 P(0:ITB) 
REAL*8 Q(0:ITB) 

REAL UNEWTC8:ITB) 

REAL DENOM 

P C O ) . BT(8)/AT(0) 
Q ( 0 ) . DT(8)/AT(0) 

DO 100 I-l.IHS+1 
DENOM -AT(I)-CT(I)*P(I-1) 
P(I) -BT(I)/DENOM 
Q(I) =(DT(I)+CT(I)*Q(I-1))/DEN0M 

CONTINUE 

UNE*TCIHS*1). Q(IHS-fl) 

DO 208 I-IHS,8,-1 
UNEWT(I).P(I)*UNEWT(I+1)+Q(I) 

CONTINUE 

RETURN 
END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

c 
SUBROUTINE NORMNCIINI,DIRECT,SINBTA,TIME) 

C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

IMPLICIT NONE 

«INCLUDE : ALIMIT.FOR/L 
«INCLUDE : ABLANK.FOR/L 
SINCLUDE:ANRMN.FOR/L 

SAVE / ANORMN / 

REAL IINI(2),DIRECTC1:2) ,SINBTA,TIME 

CHARACTER T 

THIS SUBROUTINE CALCULATES THE SHORT WAVE 
RADIATION PROFILE WITHIN THE CANOPY 
ACCORDING NORMAN'S APPROACH (1979,1982) 
IMPLEMENTING GOUDRIAAN APPROACH TO CALCULATE 
THE NON-INTERCEPTION FACTORS. THE BARE 
BONES OF LEAF ANGLE DISTRIBUTION IN 
RADIATION MODELS. AGRICULTURAL AND FOREST 
METEOROLOGY 43 (1988) 155- 169. 
AUTHOR :RUSHDI EL-KILANI. 
DATE : 17-18-1988. 

.DATA ELEMENTS... 

INTEGER I,J,K,L,RXITR,IHELP 
REAL OPR.X 
REAL KE(1: 3,1 : 3) 
REAL BSKY (1:3) 
REAL OPRO (1:3,1:3) 

REAL FQ(1:3) 
REAL IDL(1:IH) 
REAL RXDWN(1:2,0:IH) 

REAL R X U P O : 2 ,8: IH) 
REAL RXU(1:2,8:IH) 
REAL RXDN(1: 2,8:IH) 

ARRAY OF CALCULATED KEXT. 
SKY ZONES ANGLES. 
LEAF AREA PROJECTION FOR DIFFERENT ZONES OF 
THE SKY AND DIFFERENT LEAF ANGLE CLASSES. 
FREQUENCY DISTRIBUTION OF LEAF AREA ON ANGLE 
ID COEFFICIENTS IN NORMAN EQUATIONS EQ.2.2.7 
RADIATION FLUX DOWNWELLLING IN WATT M-2 
PER CANOPY LAYER SURFACE. 
UPWELLING RADIATION FLUX . 
UPWELLING RADIATION FLUX (PREVIOUS ITER). 
OOWNWELLING RADIATION FLUX (PREVIOUS ITER). 
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REAL R X A B S Ç 1 : 2 , 1 : I H , 1 : 2 ) ! A B S O R B E D R A D I A T I O N 
D I R E C T A B S O R B E D R A D I A T I O N . 
LEAF T R A N S M I T T A N C E . 
LEAF R E F L E C T A N C E . 
S c a t t e r 
P R O B A B I L I T Y C O E F F I C I E N T S E Q . 2 . 2 . 6 

EQ 2.2.6 
R A D I A T I O N FLUX D I R E C T . 
L A Y E R R E F L E C T I O N . 
A b s o r b a n c e 

REAL R X O A B C 1 : 2 , 1 : I H , 1 : 2 ) ! 
REAL T R A N L F ( 1 : 2 ) 
REAL R X R E F ( 1 : 2 ) 
REAL S C A T E R C 1 : 2 ) 
REAL I B L ( 1 : I H ) 
REAL I B B C 0 : I H ) 
REAL R X D I R C 1 : 2 , 8 : I H ) 
REAL R L A Y E R C 1 : I H , 1 : 3 ) 
R E A L A B S O R B ( l : I H , l : 3 ) 
REAL T U R N E R C 1 : I H , 1 : 3 ) ! 
REAL T O T A ( l : I H , l : 3 ) 
REAL KH 
REAL EKDL 
REAL DEEL 
REAL R C R O P 

REAL R A D E R R 

REAL T O T A L E 
REAL R X A B S T f l : 2 , 1 : I H , 1 : 2 ) 
REAL T R A N S M C 1 : I H , 1 : 3 ) ! L A Y E R T R A N S M I T T I O N . 
REAL S O I L R F ( l : 2 ) ! SOIL R E F L E C T I O N C O E F F I C I E N T ( N I R , V I S I B L E ) . 

REAL EPP 
REAL BEAM 

THE F U L F I L L E D C R I T E R I A . 

D A T A S O I L R F / e . 3 , 0 . 1 5 / 
D A T A T R A N L F / 0 . 4 , 0 . 1 / 
D A T A E P P / 0 . 0 0 0 1 / 
D A T A R X R E F / 0 . 4 , 0 . 1 / 
D A T A B S K Y / 0 . 2 6 1 7 9 , 0 . 7 8 5 3 9 , 1 . 3 0 8 9 9 / 
D A T A F Q / 0 . 1 3 4 , 0 . 3 6 6 , 0 . 5 / 

O P R ( X . L ) . X ' S I N Ç B S K Y C L ) ) 

C* 
C CAL 
C* 

BEAM = M A X ( 0 . 0 0 1 , S I N B T A ) 

DO 50 1 - 1 , 3 , 1 

O P R O ( l , I ) . M A X ( 0 . 2 6 , 0 . 9 3 * S I N ( B S K Y C I ) ) ) 
O P R O C 2 . I ) . M A X ( 0 . 4 7 , 0 . 6 S * S I N ( B S K Y ( I ) ) ) 
OP-ROC3 , I ) . 1 - 0 . 2 6 8 * O P R O ( 1 , I ) - 0 . 7 3 2 * O P R O ( 2 , I ) 

SINE OF THE SOLAR BEAM. 

! EQ 2.2.3 
EQ 2. 
EQ 2. 

. A 
2. 3.B 
2. 3.C 

DO 1 0 0 J . 1 , 3 
DO 2 0 0 1-1,3 

K E C I , J ) = O P R O C I , J V S I N C B S K Y O ) ) '• EQ 2 . 2 . 4 

2 0 0 C O N T I N U E 
1 0 0 C O N T I N U E 

DO 300 J » l , 3 
K A V C J ) . F Q C D * K E C l , J ) t F Q C 2 ) , K E ( 2 , J ) + F Q C 3 ) * K E C 3 , J ) 

! A W E I G H E D MEAN OF THE E X T I N I C T I O N C O E F F I C I E N T S . 
! FOR A C E R T A I N ZONE OF THE SKY 

3 0 0 C O N T I N U E 

DO 4 0 0 I - I H A , 1 , - 1 

I B L C D - E X P C - 0 . 5 * L A D M I D C D * D Z C I ) / B E A M ) ! EQ 2 . 2 . 6 

I D L ( I ) = ( 0 . 1 7 8 * E X P ( - K A V C 1 ) * L A D M I D ( I ) * D Z ( I ) ) 
* 0 . 5 1 4 * E X P C - K A V C 2 ) * L A D M I D C I ) * D 2 C I ) ) 
t 0. 3 0 8 * E X P C - K A V C 3 ) * L A D M I D C D * D Z C D ) ) 

C < A W E I G H T E D A V E R A G E OF THE E X T I N C T I O N C O E F F I C I E N T S . 

I B B C I ) - E X P C - 0 . 5 * C U M L A I ( I ) / B E A M ) ! EQ. 2.2.5 

4 0 0 C O N T I N U E 

I B B ( 0 ) = E X P C - 0 . 5 * C U M L A I C 0 ) / B E A M ) 
DO 5 9 0 J - 1 , 2 , 1 

S C A T E R ( J ) . T R A N L F ( J ) + R X R E F ( J ) 

DO 500 I - I H A , 0 , - 1 
R X D I R C J , I ) - D I R E C T C J ) * I I N I C J ) * I B B C D 

500 C O N T I N U E 

C C C C IN THE N E X T P A R T THE T R A N S M I T T A N C E AND R E F L E C T A N C E 
C OF THE L A Y E R S ARE C A L C U L A T E D A C C O R D I N G TO 
C A ) N 0 R M A N C 1 9 8 2 ) WITH SOME M O D I F I C A T I O N 
C B ) G O U D R I A A N IN 2 6 - 9 - 1 9 8 9 . 
C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

KH - S Q R T C C 1 - T R A N L F C J ) ) * * 2 - R X R E F C J ) * * 2 ) 
R C R O P = C l - T R A N L F ( J ) - K H ) / R X R E F ( J ) 
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DO 501 I - l . I H A . l 
i A C C O R D I N G TO N O R M A N C 1 9 8 2 ) 

T R A N S M ( I , 1 ) . I D L ( I ) + T R A N l F ( J ) * I D L ( I ) * ( - AL O G ( I D L C I ) 5 ) 
+ 0 . 5 * T R A N L F ( J ) * « 2 « I D l ( I ) * C - A L O G ( I D L ( I J ) ) * * 2 
+ C T R A N L F ( J ) * * 3 * I D L C I ) * C - A L O G C I D L ( I ) ) ) * * 3 ) / 6 

!EQ. ; 
R L A Y E R ( I , 1 ) = R X R E F C J ) * I D L ( I ) * ( - A L O G C I D L C I ) ) ) 

+ 0 . 5 * R X R E F ( J ) , * Z * I D L ( I ) , ( - A L O G ( I D L ( I ) ) ) « » 2 
• C R X R E F C J ) * * 3 • I D L C n * C - » L O G ( I D L ( I ) ) ) « » 3 ) / 6 

! EQ. 
A B S O R B Ç I , l J = ( l - S C A T E R ( J , ) ) * C - A L O G ( I D L C I ) ) ) 

t 0 . 5 * S C A T E R C J ) * ( l - S C A T E R C J ) ) * C - A L O G C I D L C I ) ) ) * * 2 
+ C R X R E F C J ) * * 2 t T R A N L F C J ) * * 2 ) 
• C - A L O G C I D L C D ) ) * * 3 / 6 
• ( 1 - S C A T E R C J ) ) 

T O T A C I , l ) - T R A N S M C I , l ) + R L A V E R C I , l ) + A B S O R B C I , l ) 

T U R N E R C I , l ) - l . / T O T A C I , l ) 

T R A N S M C I , 1 ) - T R A N S M ( I , 1 ) * T U R N E R C I , 1 ) 
R L A Y E R C I , 1 ) - R L A Y E R C I , 1 ) * T U R N E R ( I , 1 ) 
A B 5 0 R B ( I , l ) ' A B S O R B ( I , l ) * T U R N E R ( I , l ) 

E K D L - I D L C D * * K H 
! 2 6 - 9 - 1 9 8 9 

D E E L = C l . - R C R O P * R C R O P ' E K D l * E K D L ) 

T R A N S M C I , 2 ) = E K D L ' C l . - R C R O P * R C R O P ) / D E E L 

R L A Y E R C I , 2 ) « R C R O P * C l . - E K D L * E K D L ) / D E E L 

A B 5 0 R B ( I , 2 ) - ( 1 . - T R A N S M C I , 2 ) - R L A Y E R ( I , 2 ) ) 
T O T A ( I , 2 ) - T R A N S M C I , 2 ) + R L A Y E R C I , 2 ) 
T U R N E R C I , 2 ) . 1 . 0 

R X U P C J , I ) - 0 . 0 
R X U C J , 1 ) = 0 . 0 
R X D N C J , I ) . 0 . 0 

C O N T I N U E 

R X U P C J , 0 ) . 0 . 0 
R X U C J , 0 ) - 0 . 0 
R X D N C J , 0 ) - 0 . 0 
R X D * N , ( J , I H ) - ( 1 - D I R E C T ( J ) ) ' I I N I ( J ) 

A C C O R D I N G TO JAN G O U D R I A A N 

DO 591 K.l ,2,1 
T O T A L E . 0 . 0 
R X I T R - 0 

DO 550 R X I T R -1 , 100 , 1 
DO 5 1 0 I = I H A , 1 , - 1 

R X D W N C J , I - 1 J = R X D W N C J , I J * T R A N 5 M C I , K ) 
+ R X U P C J , I - 1 ) * R L A Y E R C I , K ) 
+ R X D I R C J , I ) * T R A N L F C J ) * C 1 - I B L C I ) ) 

! EQ 3.9 
C O N T I N U E 

R X U P C J , 0 ) - R X D W N C J , 0 ) ' 5 O I L R F C J ) 
+ R X D I R C J , 0 ) " 5 O I L R F C J ) 

DO 5 2 0 1 = 1 , I H A , 1 
R X U P C J , D - R X U P C J , 1 - 1 ) * T R A N S M C I . K ) 

+ R X D W N Ç J , I ) * R L A Y E R ( I , K ) 
+ R X O I R C J , I ) * R X R E F C J ) * C l - I B L C I ) ) 

! EQ 3.10 
C O N T I N U E 

DO 530 I H E L P = 0, IHA, 1 

IF ( ( A B S ( R X U P ( J , I H E L P ) - R X U ( J , I H E L P ) ) . G E . E P P ) . O R . 
C A B S C R X D W N C J . I H E L P ) - R X D N C J , I H E L P J J . G E . E P P ) ) THEN 

DO 540 1 = 0 , I H A , 1 
R X U C J , I ) - R X U P C J , I ) 
R X D N C J , I J - R X D W N C J , 1 ) 

C O N T I N U E 

GOTO 550 

E N D I F 

C O N T I N U E 

G O T O 580 

C O N T I N U E 
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C O N T I N U E 

IF O • £ Q . 1 ) THEN 
T O T A L E . 0 . 0 

E N D I F 

.60 I.IHA ,1,-1 
< C A L C U L A T E THE D I V E R G E N C E OF SHORT WAVE R A D I A T I V E F L U X E S . 

R X D A B C J , I , 2 ) - R X D I R C J , I ) - R X D I R ( J , 1 - 1 ) 
R X D A B C J , 1 , 1 ) - 0.0 ! FOR THE TIME B E I N G 

! M O S T L Y C O R R E C T FOR 
! ONE D M E N S I O N A L CASE 

R X A B S f J , I , Z ) 
R X A B S C J , 1 , 1 ) 

R X D W N ( J , I ) - R X D I I N ( J , I - 1 ) 
R X U P f J , I - 1 ) - R X U P ( J , I ) 

560 
591 
590 

R X A B S T C J , 1 , 1 ) . R X D A B C J , I , 1 ) + R X A B S C J , 1,1) 

R X A B S T ( J , I , 2 ) - R X D A B C J , I , 2 ) + R X A B S ( J , I , 2 ) 

! S U M M I N G THE A B S O R B E D D I R E C T AND D I F F U S E R A D I A T I O N S 
! FOR THE V I S I B L E AND NIR B A N D S . 

T O T A I E - T O T A L E + R X A B S T O , I , 1 ) + R X A B S T ( J , I , 2 ) 

C O N T I N U E 
C O N T I N U E 

C O N T I N U E 

SOIL SN- ( R X D I R ( 1 , 0 ) + R X D W N C 1 , 0 ) ) * ( 1 . - S O I L R F C 1 ) ) 
+ C R X D I R C 2 , 0 ) + R X D * N C 2 , 0 ) ) » C 1 - S O I L R F ( 2 ) ) 

DO 6 0 0 I » l , I H A , 1 
L I G H T ( I , 2 ) - 0 . 5 ' C R X D W N C 2 , I ) + R X D W N ( 2 , 1 - 1 ) ) 

+ 0 . 6 * 0 . 5 * ( R X D I R ( 2 , I ) + R X D I R ( 2 , I - 1 ) ) 

L I G H T C I . l ) = 0 . 5 * ( R X U P C 2 , I - 1 ) + R X U P ( 2 , I ) ) 
+ 0 . 6 * 0 . 5 * ( R X D I R ( 2 , I ) + R X D I R ( 2 , I - 1 ) ) 

! AN A V E R A G E V A L U E IS T A K E N . 
A S T R A T I F I C A T I O N BY LEAF A N G L E C L A S S E S S H O U L D BE M A D E . 

V I S I A B C I , 1 ) - R X A B S T C 2 , I , 1 ) 
V I S I A B O , 2 ) . R X A B S T ( 2 , I , 2 ) 

! A B S O R B E D V I S I B L E R A D I A T I O N PER C A N O P Y L A Y E R S . 
E N E S A B C I , 1 ) - V I S I A B C I , 1 ) + R X A B S T C 1 , I , 1 ) 
E N E S A B C I . 2 ) . V I S I A B C I , 2 ) + R X A B S T C 1 , I , 2 ) 

! A B S O R B E D S H O R T WAVE R A D I A T I O N . 
R A B C I , 1 ) = E N E S A B C I , 1 ) / D Z C I ) 
R A B C I . 2 ) . E N E S A B C I , 2 ) / D Z C D 

! A B S O R B E D S H O R T WAVE A B S O R B E D PER M * 3 C A N O P Y A I R . 

IF C L A D M I D C D . GT . 0 . 0 ) T H E N 

R A B L C I , 1 ) = R A B C I , 1 ) / L A D M I D C D 
R A B L C I , 2 ) » R A B C I , 2 ) / L A D M I D C I ) 

! A B S O R B E D S H O R T WAVE A B S O R B E D PER M * 2 LEAF S U R F A C E . 

R A B L C I , 1 ) = 0 . 0 
R A B L C I , 2 ) - 0 . 0 

E N D I F 

C O N T I N U E 

R N S H R T . R X D I R C 1 , I H A ) - R X D I R C 1 , 0 ) + R X D I R C 2 , I H A ) - R X D I R C 2 , 0 ) 
+ R X O W N C 1 , I H A ) - R X D W N C 1 , 0 ) + R X U P C 1 , 0 ) - R X U P C 1 , I H A ) 
+ R X D W N C 2 , I H A ) - R X D W N C 2 , 0 ) + R X U P C 2 , 0 ) - R X U P C 2 , I H A ) 

R N S T O P - R X D I R C 1 , I H A ) + R X D I R C 2 , I H A ) 
+ R X D W N C 1 , I H A ) - R X U P C 1 , I H A ) 
+ R X D W N ( 2 , I H A ) - R X U P C 2 , I H A ) 

R N S B T M - - R X D I R C 1 , 0 ) - R X D I R C 2 , 0 ) 
+ R X U P C 1 , 0 ) + R X U P C 2 , 0 ) 
- R X D W N C 1 , 0 ) - R X D W N C 2 , 0 ) 

T O T E N E . 0 . 0 

DO 700 I.IHA, 1,-1 
T O T E N E - T O T E N E + E N E S A B C I , l ) + E N E S A B C I , 2 ) 

C O N T I N U E 

R A D E R R = T O T E N E - R N S H R T 

R E T U R N 
END 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
S U B R O U T I N E C Y C L E I C I N I H . I T R A . P A S S , 

T E M A I N , E A I R N K , N C 0 2 , V G A S , E X T R A S , E X T R A L , 
P S I S O L , A V G T L F , 
R L E A F , 
G A M M A T , F G , R A I N M , 
P H I M . K R A T I O , F E , K M , I N D E X I , T E M P O R ) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

I M P L I C I T N O N E 

S I N C L U D E 
S I N C L U D E 
S I N C L U D E 
S I N C L U D E 
S I N C L U D E 
S I N C L U D E 
S I N C L U D E 
S I N C L U D E 
S I N C L U D E 
S I N C L U D E 
S I N C L U D E 
S I N C L U D E 
S I N C L U D E 

A C O N S T 
A L I M I T 
A B L A N K 
A E N E R G 
A F L U X 
ANRMN 
A R D S O U 
A R O O T D 
A C O E F F 
A E Q C O E 
A P L A N T 
A B E R G E 
A H Y D R O 

FOR/L 
FOR/L 
FOR/L 
FOR/L 

F O R / L 
F O R / L 

F O R / L 
F O R / L 
F O R / L 
F O R / L 
F O R / L 
FOR/L 
F O R / L 

I N T E G E R I C H E C K . I . I T R 
I N T E G E R I N D E X I C I S : I H ) 

R E A L * 8 T E M A I N C I S : I T B ) , E A I R N W ( I S : I T B ) , N C 0 2 ( I S : I T B ) 
R E A L ' 8 E X T R A S C I S : I H ) , E X T R A L C I S : I H ) , T E M P O R ( I S : I H ) 
REAL S A T V A P C I S : I T B ) , V P D A I R C I S : I T B ) 

REAL V G A S C I S : 8 ) 

:2) REAL P S I S O L ( I S : 0 ) , A V G T L F ( 1 : I T ) , R L E A F ( I T , 1 : 
REAL G A M M A T C 1 : I T ) , F G C 1 : I T , 1 : 2 ) 
REAL K R A T I 0 C 1 : I H ) ! K H / K M RATIO FOR THE LOCAL TERM. 
REAL P H I M ( 1 : I H ) '• S T A B I L I T Y C O R R E C T I O N FOR M O M E N T U M 
REAL F E C I S : I H ) 
REAL KM 
REAL S A T U V 2 , S A T U D 2 , X 
REAL R A I N M 

$ I N C L U D E : V A L U E S . D A T / L 

DO 151 I T R . 1 , 2 , 1 

Call H Y D R O to c a l c u l a t e the s o l u t i o n of the soil w a t e r f l o w e q u a t i o n t a k i n g i n t o 
a c c o u n t the sink t e r m s in t h i s e q u a t i o n due to w a t e r u p t a k e by p l a n t r o o t s and 
the d i v e r g e n c e of w a t e r v a p o u r f l u x . 
CALL H Y D R O C I N I H . T E M A I N , 
D T , V G A S , 
P O R , S O I L L E , SL , 
P S I S O L , R O O T U P , R A I N M , T I M E ) 

and soil t h e r m a l Call B E R G E to c a l c u l a t e the soil T h e r m a l C o n d u c t i v i t y C K m - l K - 1 ) 
c a p a c i t i e s O M - 3 K - l ) . 
CALL B E R G E C I S A , V G A S , T H E T A ) 

Call P H O T O to c a l c u l a t e net P h o t o s y n t h e s i s as a sink term in the Co2 C o n s e r v a t i o n 
e q u a t i o n . 
CALL P H O T O C I T R A , 

A V G T L F , 
R S T . R B , R L E A F , 
V I S I A B , G A M M A T , F G , S I N K ) 

Call E Q C O E H to c a l c u l a t e the t e m p e r a t u r e of the d i f f e r e n t soil and c a n o p y l a y e r s 
t a k i n g inot a c c o u n t s o u r c e s with the c a n o p y and the soil C w a t e r p h a s e c h a n g e s ) . 
CALL E Q C O E H C T E M A I N , S E N F L , H M N E K , T O R T U , R H S O I L , H M 

, C H S O I L , P C S O I L , V G A S , V A P F L T , V A P F L B , V A P F D V 
, E X T R A S , S O I L R N , P A S S , I N D E X I ) 

Call E Q C O E M to c a l c u l a t e the v a p o u r p r e s s u r e and C02 c o n c e n t r a t i o n for d i f f e r e n t 
c a n o p y and soil l a y e r s . 
CALL E Q C O E M C T E M A I N , E A I R N K . N C 0 2 

, H M N E K , H M , T O R T U , R H S O I L 
, V G A S , P H I M , K R A T I O , FE 
, E X T R A L , K M , S O I L R N , P A S S , I N D E X I ) 

CALL T H O M C I H A , I S A , E L E , G L E , D L E , F L E , E A I R N K ) 
CALL T H 0 M C I H A , I S A , E C O 2 , G C O 2 , D C 0 2 , F C 0 2 , N C 0 2 ) 

I C H E C K -8 

! A loop to c h e c k if any of the l a y e r s has an o v e r s a t u r a t i o n and 
! to c o r r e c t back for t h i s 
DO 3 1 9 2 I - I S A , I H A , 1 

S A T V A P C D - S A T U V 2 C S N G L C T E M A I N C I ) ) ) 
V P D A I R C D - S A T V A P C D - S N G L C E A I R N K C D ) 

IF C V P D A I R C I ) . L T . 0 . 8 ) T H E N 
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I N D E X I C D - l 

151 
152 

I f ( I N D E X I ( I ) . E Q . l ) THEN 
D S D T C O - S * T U D 2 C S N G L ( T E M A I N ( I ) ) ) 

E X T R A S C I ) - - P C P ' V P D A I R C I ) * D Z C I ) 
/ C D T ' G A M M A ) 

I N D E X I C I ) -

I C H E C K - 1 

ELSE 
E X T R A S ( I ) 
E X T R A L ( I ) 

E N O I F 

C O N T I N U E 

IF ( I C H E C K . E Q . 8 ) THEN 

G O T O 152 

E N D I F 

C O N T I N U E 
C O N T I N U E 

. E X T R A S ( I ) 
• E X T R A L C D 

R E T U R N 
END 

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

S U B R O U T I N E B E R G E C I S S , F A , W ) 

T H I S S U B R O U T I N E IS T R A N S L A T E D FROM AN CSMP P R O G R A M W R I T T E N BY 
TEN B E R G E IN H I S P H . D T H E S I S C H E A T AND H A T E R T R A N S P O R T AT 
THE B A R E SOIL S U R F A C E ) 1 9 8 6 PAGE A 1 7 

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

IMPL 
INTE 

{ I N C L U D E :AL 
{ I N C L U D E : AC 
{ I N C L U D E : AB 

I C I T N O N E 
GER N , I , I S S 

I M I T . F O R / L 
O N S T . F O R / L 
E R G E . F O R / L 

REAL F A ( I S : 8 ) , W ( I S : 

REAL 
REAL 
REAL 
REAL 

K F C S A ( I S : 8 ) 
K F S A C I S : 8 ) 
K F C S * ( I S : 8 ) 
K F S W C I S : 8 ) 

REAL C H S L 8 2 C I S : 8 ) , C H S L 8 5 ( I S : 8 ) 

REAL C H A , C H W , C H Q , C H C , C H O 
REAL G A , G « , G Q , G C , G O 
REAL K A « , K Q * , K O H , K C H , K W A , K Q A , K O A , K C A 

C H A R A C T E R T 

{ I N C L U D E : V A L U E S . D A T / L 

G A - 8 . 
GC = B . 

G O - 8 . 5 ; 
G Q = 8 . 1 4 

CHA. 
CHW. 

2 . 5 E - 2 ; C H C - 2 . 9 2 ; 
8 . 5 7 : C H O - 8 . 2 5 

C H Q . 8 . 8 

T . C H A R C 9 ) 

KAW - 0 . 6 6 / ( 1 . + C C C H A / C H » ) - l . ) ' G A ) + e . 3 4 / 
C 1 . + C C C H A / C H W ) - 1 . ) * ( 1 . - 2 * G A ) ) 

KQW . 8 . 6 6 / ( 1 . 4 - ( ( C H Q / C H W ) - l . ) * G Q ) + 8 . 3 4 / 
( l . + ( C C H Q / C H « ) - l . ) * C l . - 2 * G Q ) ) 

KOW - 8 . 6 6 / C l . + C ( C H 0 / C H W ) - l . ) * G 0 ) + 8 . 3 4 / 
C 1 . + C C C H 0 / C H W ) - 1 . ) ' C 1 . - 2 * G 0 ) ) 

KCW . 8 . 6 6 / ( l . + ( ( C H C / C H W ) - l . ) * G C ) + 8 . 3 4 / 
C 1 . + C C C H C / C H » ) - 1 . ) , ( 1 . - 2 * G C ) ) 

KHA . 8 . 6 6 / ( l . + ( ( C H W / C H A ) - l . ) , G W ) + 8 . 3 4 / 
( l . + ( ( C H W / C H A ) - l . ) * ( l . - 2 ' G « ) ) 
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KQA - 0 . 6 6 / ( l . + ( ( C H Q / C H A ) - l . ) , ' G Q ) + 0 . 3 4 / 
( l . + C ( C H Q / C H A ) - l . ) * C l . - 2 ' C Q ) ) 

KO A = 0 . 6 6 / ( l . + ( ( : C H O / C H A ) - l . ) * G O ) + 0 . 3 4 / 
C l . + ( ( C H O / C H A ) - l . ) ' ( l . - 2 * G O ) ) 

KCA - 0 . 6 6 / ( 1 . + ( ( C H C / C H A ) - l . ) * G C ) + 0 . 3 4 / 
( l . + ( ( C H C / C H A ) - l . ) * ( l . - 2 * G C ) ) 

DO 180 1-0, I S S , -1 
F A O ) - l . - C F C C I 5 + FQCI5 + F O C I ) + * C I ) 5 

C H S L 0 2 ( I ) = 1 . 2 5 * ( K W A * 0 . 0 2 * C H W + K O A * F O ( I ) , ' C H O + 
K Q A » F Q ( I ) ' C H Q * K C A * F C ( I ) * C H C 

• ( P O R ( I ) - 0 . 0 2 ) * C H A ) 
/ ( K W A * 0 . 0 2 * K O A * F O C I ) + K Q A * F Q ( I ) 
+ K C A * F C ( I ) * C P O R ( I ) - 0 . 0 2 ) ) 

C H S L 0 5 ( I ) - C 1 . * 0 . 0 5 * C H W + K O * ' F O C I ) ' C H O 
+ K Q * * F Q ( I ) * C H Q + K C H * F C ( I ) * C H C 
+ K A H * ( P O R ( I ) - 0 . 0 5 ) , ' C H A ) 
/ C 0 . 0 5 + K O W * F O C D + KQiy«FQ(I) 
+ KCI»*FC(I) + K A W ' ( P O R ( I ) - 0 . 0 5 ) ) 

K F C S A C I ) - K O A » F O C I ) * C H O + K Q A » F Q ( I ) * C H Q 
+ K C A » F C ( I ) » C H C 

K F S A C I ) = K O A * F O ( I ) + K Q A » F Q ( I ) + K C A * F C ( I ) 

K F C S W ( I ) » K O « * F O ( I ) » C H O + K Q « * F Q ( I ) * C H Q 
+ K C W « F C ( I ) * C H C 

K F S W ( I ) = K 0 » * F O ( I ) + K Q W » F Q ( I ) + K C « * F C ( I ) 
C O N T I N U E 

DO 150 1 - 0 , I S S , - 1 
P C S O I L ( I ) - F C ( I ) * C C L A Y + F Q ( I ) * C Q U A R Z 

+ F O ( I ) * C O R G N C + W ( I ) * C W A T E R 

I F C W ( I ) . L E . 0 . 0 2 ) T H E N 
C H S O I L ( I ) . 1 . 2 5 * C C H W » W ( I ) * K * A + F A ( I ) * C H A + K F C S A ( I ) J 

/ ( K F S A ( I ) + K H A * W ( I ) + F A ( I ) ) 

C H S O I L ( - 3 ) - 0 . 0 0 4 

ELSE IF ( W ( I ) . L E . 0 . 0 5 ) THEN 

C H S O I L ( I ) - C H S L 0 2 ( I ) 
+ ( W ( I ) - 0 . 0 2 ) ' ( C H S L 0 5 C I ) - C H S L 0 2 ( I ) ) / 0 . 0 3 

C H S O I L ( I ) = » ( I ) * C H « + F A ( I ) * K A W * C H A + K F C S I I ( I ) / 
C « C I ) + K A W * F A ( I ) + K F S W C I ) ) 

E N D I F 

C O N T I N U E 

R E T U R N 
E N D 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

S U B R O U T I N E H Y D R O C I N I H . T E M A I N , 
D T , V G A S , 
P O R , S O I L L E , SL , 
P S I S O L , R O O T U P , R A I N M , T I M E ) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

I M P L I C I T N O N E 

I N T E G E R INIH 

S I N C L U D E : A L I M I T . FOR/L 
S I N C L U D E : A B L A N K . F O R / L 
S I N C L U D E : A C O N S T . F O R / L 
S I N C L U D E : A H Y D R O . F O R / L 

SAVE / A C O N S T / 

R E A L ' 8 T E M A I N C I S : I T B ) , SL( I B: I H ) 
REAL X ( I S : 0 ) , Y O S : 0 ) , N S O N ( I S : 0 ) , N S O N N ( I S : 0 ) , K ( I S : 0 ) 

REAL V G A S ( I S : 0 ) , 
1 P O R ( I S : 0 ) , 
1 P S I S O L C I S : 0 ) , R O O T U P ( I S : 0 ) 
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REAL D T . S O I L I E 
REAL S A T U V 2 , S A T U D 2 
REAL R A I N M . M O I S T U , D I F F E R , D I F F E 1 

INTEGER I,INDIC,J 

REAL*8 P S I S L C I S : 0 ) 
REAL S ( I S : 0 ) <• relative saturation. 
REAL S P H A S E C I S : 0 ) , W P H A S E C I S : 0 ) 
REAL STT.CTT 
REAL C P H A S E C I S : 0 ) ! 
REAL F E ( I S : 0 ) ! hydraulic conductivity at the intephase 

m o i s t u r e content difference between saturation and residual 
the same but at the interphase, 
residual at the interphase 
hydraulic conductivity 

d ( t h e t a ) / d ( h n O 
inverse of the above 

REAL T H E T A D C I S : 0 ) 
REAL T H E T D P ( I S : 8 ) 
REAL T H E T R P C I S : 0 ) 
REAL K W A T E ( I S : 0 ) 
REAL I C S O I L ( I S : 0 ) 
REAL C S O I L C I S : 0 ) 
REAL T H E T R ( I S : 0 ) 
REAL H M P R C I S : 0 ) 

c The c o e f f i c i e n t s of the discretized equation for water flow as given Appendix 2.11 
REAL*8 C B L O C K C I S : I T B ) 
REAL*8 B B L O C K C I S : I T B ) 
REAL*8 D B L O C K C I S : I T B ) 
REAL*8 A B L O C K C I S : I T B ) 

CHARACTER T 

CCCCCCCC 

S I N C L U D E : V A L U E S . D A T / L 

T - C H A R C 9 ) 
M P . l - 1 / N P 

C ! If given Theta calculate according to the non commented part of the loop. 
DO 20 I=ISA,0,1 

T H E T A D C D « T H E T A S ( I ) - T H E T A R C I ) 
C S C D - ( 1 * ( A B S C A L P H A * H M ( I ) ) ) » * N P ) * * ( - M P ) 
C ! IF GIVEN H M ( I ) AND T H E T A ( H M ) FUNCTION 

sen ( T H E T A ( I ) - T H E T A R C I ) ) / T H E T A D C I ) 

I F C H Y D R I N . E Q . 1 ) THEN 

S ( I ) - C 1 + C A B S ( A L P H A * H M ( I ) ) ) * * N P ) * « ( - M P ) 
! IF GIVEN H M ( I ) AND T H E T A ( H M ) FUNCTION 

I F C I N I H . E Q . 0 ) THEN 

H M C D - - 1 / A L P H A * C S ( I ) * * ( - 1 / M P ) - 1 ) , « ( 1 / N P ) 

ENDIF 

C S O I L C D . - l ' T H E T A D C I ) ' 
C - M P ) * C 1 + C A B S C A L P H A * H M ( I ) ) ) * * N P ) * * C - M P - 1 ) 
* N P « C A B S C A L P H A * H M C I ) ) ) * * ( N P - 1 ) * A L P H A 

ENDIF 

T H E T A ( I ) « S Ç I ) " T H E T A D C I ) + T H E T A R ( I ) 

V G A S C I ) - P O R C D - T H E T A C I ) 

CONTINUE 

S P H A S E C I S A ) = S ( I S A ) 
W P H A S E C I S A ) = T H E T A C I S A ) 

INOT I F THETA I S G I V E N 

DO 3 0 I . I S A + 1 , - 1 , 1 
W P H A S E C D - T H E T A ( I ) - O Z C I ) 

* ( T H E T A C I ) - T H E T A C I + 1 ) ) / C D Z C I ) + D Z C I + D ) 

T H E T D P ( I ) . T H E T A D ( I ) - D Z C I ) 
• C T H E T A D ( I ) - T H E T A D C I + 1 ) ) / ( D Z ( I ) + D Z C I + 1 ) ) 

T H E T R P ( I ) - T H E T A R C D - D Z C D 

• ( T H E T A R C I ) - T H E T A R ( I + 1 ) ) / C D Z ( I ) + D Z C I + D ) 

S P H A S E ( I ) = ( * P H A S E C I ) - T H E T R P ( I ) ) / T H E T D P C I ) 

IF C H Y D R I N . E Q . 1 ) THEN 
K W A T E R ( I ) - K S A T U ( I ) * S P H A S E ( I ) * * L P 
• C 1 - C 1 - S P H A S E C D * * C 1 / M P ) ) * * M P ) ' « 2 

ENDIF 
C O N T I N U E 

IF C H Y D R I N . E Q . 1 ) THEN 
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K H A T E R ( 0 ) . K S A T U ( 0 ) * S ( 0 ) * * L P 
• ( 1 - ( 1 - S ( 0 ) * * C 1 / M P ) ) * * M P ) * * 2 

IF C H Y D R I N . N E . 1 ) T H E N 
DO 33 I- I S A . 0 , 1 

N S O N ( I ) . T H E T A S ( I ) / T H E T A ( I ) 
X ( I ) . A L O G 1 0 C N S O N C I ) ) 

K ( I ) - K U S A ( I N D E S O ( I ) , 0 ) 
+ K U S A ( I N O E S O ( I ) , l ) * T H E T A ( I ) 
• K U S A ( I N O E S O ( I ) , 2 ) * T H E T A ( I ) * ' Z 
+ K U S A C I N D E S O ( I ) , 3 ) ' T H E T A C D " , 3 
+ K U S A ( I N D E S 0 ( I ) , 4 ) * T H E T A ( I ) * * 4 
t K U S A ( I N D E S O C I ) , 5 ) ' T H E T A ( I ) « » 5 

K W A T E ( I ) = ( ( 1 0 . ) * * K C D ) 
K » A T E C D - K W A T E C D * 1 . 1 6 E - 7 

I C S O I L C D = - H M ( I ) * C A L O G C 1 0 . ) ) * 
( H M C ( I N D E S O ( I ) , 1 ) 
+ 2 ' H M C ( I N D E S 0 ( I ) , 2 ; > * X ( I ) 
+ 3 * H M C ( I N D E S O ( I ) , 3 ) * X ( I ) " 2 
+ 4 « H M C ( I N D E S 0 ( I ) , 4 ) * X ( I ) * « 3 
+ 5 * H M C ( I N D E S O ( I ) , 5 ) » X ( I ) » " ' 4 ) / T H E T A ( I ) 

C S O I L C D - 1 . / I C S O I L ( I ) 

C O N T I N U E 

K W A T E R ( O ) - K W A T E C 0 ) 

DO 36 I = I S A , - 1 , 1 

F E C I ) - D Z ( I + l ) / ( O Z ( I ) + D Z C I + l ) ) 
K W A T E R C D - C C 1 - F E C I ) ) / K W A T E C I ) + F E ( I ) 

/ K K A T E ( I + 1 ) ) * * ( - 1 ) 

C O N T I N U E 
E N D I F 

P S I S O L ( I S A ) . H M ( I S A ) + Z ( I S A ) 

DO 34 I = I S A + 1 , 0 

P S I S O L ( I ) . H M ( I ) + Z C E N T E R ( I ) 

C O N T I N U E 
The c o u p l i n g c o e f f i c i e n t s for the w a t e r flux e q u a t i o n . 

E W ( I S A ) - 0 . 0 lloxer 
G W ( I S A ) . 0 . 0 ! upper 
F W ( I S A ) = 1 . 0 for the layer Clook at P a t a n k e r 1 9 8 0 ) 
D W ( I S A ) - P S I S O L ( I S A ) 

DO 100 I.ISA + 1,-1,1 
E W C I ) = K « A T E R ( I - 1 ) / C 0 . 5 * C O Z C I - 1 ) + D Z C I ) ) ) 
G W ( I ) - K * A T E R ( I ) / C 0 . 5 * ( D Z C I ) + D Z ( I + 1 ) ) ) 

IF ( I N I H .EQ. 0 ) THEN 

FW(I).E«f(I) + G W ( I ) 
+ C S O I L ( I ) * D Z ( I ) / D T 

! F I R S T A S S U M P T I O N NO WATER P H A S E C H A N G E S IN THE SOIL L A Y E R S 

D W ( I ) = C S O I L ( I ) * D Z ( I ) / D T » P S I S O l ( I ) 
- R O O T U P ( I ) 

F H ( I ) - E » K I ) + G W ( I ) 
+ C S O I L ( I ) * D Z ( I ) / D T 

O W C I ) = C S O I L C I ) * D Z ( I ) / D T * P S I S O l ( I ) 
- R O O T U P ( I ) 
- C S L C D + V A P F D V C D ) 
/ ( L A M D A ' 1 0 0 0 ) ! FOR L A T E R USE 

ENDIF 

!PER U N I T W E I G H T 

E W C 0 ) = K W A T E R C - 1 ) / C 0 . 5 * C D Z C - 1 ) + D Z C 0 ) ) 5 
G W C 0 J - 0 . 0 

IF ( I N I H .EQ. 0 ) THEN 

FW(0).EII(0) + G W ( 0 ) 
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< - C S O I L C « ) ' D Z ( e ) / D T 

D W C e ) . C S O I L C 0 ) * D Z ( 0 ) / D T * P S I S O L C 8 ) 
- S O I L L E / C L A M D A ' 1 0 e e ) - R O O T U P ( B ) 

1 t C S O I L ( 8 ) * D Z ( 0 ) / D T 

D W C e j - C S O I L C B J ' D Z C e V D T ' P S I S O L C B ) 
1 - S O I L L E / C . L A M D A ' 1 0 0 0 ) 
1 - R O O T U P ( 0 ) 
1 - C S L C 0 ) - V A P F L B C 0 ) 5 
1 / ( L A M D A * 1 0 0 0 ) ! FOR LATER USE 

E N D I F 

CONTINUE 

CALL T H O M S ( I S A , E W , G « , D W , F W , P S I S L ) 

H M N E * ( I S A ) . R E A L C P S I S L C I S A ) ) - Z C I S A ) 

0 0 4 0 I - I S A + 1 , 0 , 1 

CONTINUE 

HMNEWCD . R E A L C P S I S L C D ) - Z C E N T E R ( I ) 

Q W A T E R C I - l ) - - E W C I ) ' ( R E A L C P S I S L C I ) ) 
- R E A L C P S I S L Ç I - l ) ) ) 

Q W A T E R C I - 1 ) = - E W C D * C P S I S 0 L C D 
- P S I S O L ( I - l ) ) 

H M P R C D - H M C D 
T H E T R C D - T H E T A C I ) 

HMPRC0) 
THETRC0) 
QWATERC0) 

.HM(0) 
=THETA(0) 

QWATER(ISA-l) 
IS NOT SPECIFIED, CAN BE COUPLED TO A REGIONAL HYDROLOGICAL MODEL. 

IF (HYORIN.NE.13 THEN 

DO 59 I=ISA+1,0,1 

NEWTON _RAPHSON METHOD OF SOLUTION 

DO 10 J-1,10,1 

THETANCD = THETRCI) + CHMNE*CI)-HMPR(I))*CSOILCI) 

NSONN(I).THETASCI)/THETAN(I) 
X(I) . ALOG10(NSONN(D) 
Y(I) - HMC(INDESO(I),0) 

• HMCCINDESOCD, 1)*X(I) 
*HMCCINDESO(I),2)*XCI)**2 
•HMCCINDES0(I),3)*X(I)»«3 
tHMCCINDES0CI),4)'X(I)«*4 
+HMCCINDESO(I),5)»XCI)**5 

HMPR(I) --C10.)**Y(I)/100. 

IF(INDESOCI).EQ.0) THEN 

HMPRCD-HMPR(I)»20. 

ENDIF 

IF CCABSCHMPRCIJ-HMNEWCI))).GT.0.001) THEN 

ICSOILCI) = -HMPRCD*CALOGC10.))* 
(HMC(INDESOCI),1) 
+ 2'HMC(INDES0CD,Z)«X(I) 
+3*HMCCINDES0CI),3)«X(I)»«2 
+4«HMC(INDES0CI),4)«XCI)**3 
+ 5*HMCCINDES0CI),5)*XCI)**4VTHETAN(I) 

CSOILCD -1 . /ICSOIL(I) 

10 

101 

T H E T R ( I ) . T H E T A N ( I ) 

ELSE 

G O T O 101 

ENDIF 
C O N T I N U E 

C O N T I N U E 
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CONTINUE 

ENDIF 

00 60 I-ISA+1,-1,1 

IF (INIH. EQ. 8) THEN 

T H E T N ( D = THETA(I) 
+CCQWATER(I-1)-Q1ATER(I)) 
-ROOTUP(I))/OZCI)*DT 

ELSE 
FOR LATER USE 

T H E T N C D - T H E T A C D 
+CCQ*ATERCI-1)-QWATERCI)) 
-ROOTUPCD)*DT/DZCI) 
-CSLCI)+VAPFDV(I))*DT/DZCD 
/(LAMDA»1000) 

! FOR LATER USE 

ENDIF 

IF (INIH. EQ. 0) THEN 

THETN(e).THETACe)+CCQ*ATERC-l)-Q«ATERC0)) 
1 -ROOTUP(0))'DT/DZ(I) 
1 -SOILLE'DT 
1 /(DZ(0)*LAMDA«1000.) 

ELSE 

THETNC0)-THETAC03+CCQ*ATERC-1)-Q«ATERC0)) 
-ROOTUPC0))*DT/DZ(I) 
-SOILLE'DT 
/(DZ(0)*LAMDA*1000.) 
-CSL(0)+VAPFLBC0))*DT/DZC0) 
/(LAMDA*1000) ! FOR LATER USE 

ENDIF 
13 I -ISA.0,1 

IF (THETAN(I).LT.THETAR(I)) THEN 

EH(I) - 0 0 
G*(I) -0.0 
ROOTUP(I)-0 . 0 
FW(I).l . 0 
DW(I)-PSISOLCI) 
INDIC =1 
ENDIF 

CONTINUE 

IF (INDIC. EQ .1) GOTO 1000 

INIH=1 

DO 70 I.ISA, 

VGAS(I) 
VGAS(I) 

= P 0 R ( I ) - T H E T N ( I ) 
-PORO)-THETAN(I) 

TORTU(I) = VGAS(I)"(10./3. )/P0R(I)**2 
RHSOIL(I) -EXP(SNGL(PSISL(I))*GR'MOLE 

/CRR*(SNGLCTEMAIR(I))+273.15))) 

CONTINUE 

IF ((TIME.GT.12.00).ANO.(RAINM.GT.2.0). 
AND.CRAINC.EQ.0))THEN 

MOISTU-0.0 

DO 80 1.0,ISA, -1 
If it rained , humdify the soil. 
MOISTU=MOISTU+AMAX1((0.Z-THETAN(I)), 
DIFFER.(RAINM'0.9)/1000.-MOISTU 

.0)*DZ(I) 

IF (DIFFER.GT.0.0) THEN 

THETAN(I). 
DIFFE1 

AMAX1(0.2, 
DIFFER 

THETAN(I)) 

THETAN(I). THETAN(I)+ 
((RAINM*0.93/1000. 

GOTO 1011 
-DIFFE1)/DZ(I) 
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E N D I F 

C O N T I N U E 

R A I N C -1 

E N D I F 

C O N T I N U E 

R E T U R N 

END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

S U B R O U T I N E P H O T O Ç I T R A , 
A V G T L F , 
R S T , R B , R L E A F , 
V I S I A B . G A M M A T , F G . S I N K ) 

I M P L I C I T N O N E 

I N T E G E R ITRA 

S I N C L U D E : A L I M I T . F O R / L 
S I N C L U D E : A B L A N K . F O R / L 

REAL A V G T L F ( I T ) , 
R S T ( e : I T , l : 2 ) , R B C 8 : I T j , R L E A F ( I T , l : 2 j , 

: V I S I A B C I H , l : 2 ) , G A M M A T ( I T ) , F G ( I T , 2 ) , S I N K ( I B : I H ) 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
CC 

T H I S P A R T OF THE P R O G R A M S I M U L A T E S THE 
THE SINK TERM FOR C 0 2 . THE NET P H O T O S Y N T H E S I S 
A S S U M I N G T H A T T H E S E R E L A T I O N S CAN BE A P P L I E D 
FOR SMALL T I M E S T E P S . 

H E R E USE IS MADE OF G O U D R I A A N C H A P T E R 
" E L E M E N T S OF S I M U L A T I O N IN CROP P H Y S I O L O G Y " 
T H I S P A R T OF THE P R O G R A M IS A T R A N S L A T I O N 
FROM A CSMP P R O G R A M W R I T T E N IN T H I S C H A P T E R 

THE P U R P O S E HERE IS TO USE T H E S E R E L A T I O N S 
TO Q U A N T I F Y THE SINK TERM FOR C02 IN THE P L A N T 
C A N O P Y . THE A P P L I C A T I O N S OF T H E S E R E L A T I O N S TO 
SMALL T I M E S T E P S C O U L D BE Q U E S T I O N A B L E . FOR E X A M P L E 
IN THE C A L C U L A T I O N OF FGMAX FOR EVERY T I M E S T E P . THE 
R E A C T I O N S ARE S U P P O S E D TO BE R E S P O N D I N G I N S T A N T A N E O U S L Y 
TO THE E N V I R O N M E N T A L C O N D I T I O N S . 

IT IS A S S U M E D T H A T E N V I R O N M E N T A L C O N D I T I O N S A T 
P E R V I O U S T I M E S T E P S DO NOT A F F E C T THE P E R F O R M A N C E 
OF THE P H O T O S Y N T H E T I C S Y S T E M . THE S Y S T E M HAS NO M E M O R Y . 

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

..DATA E L E M E N T S . 

I N T E G E R I 

M E S O P H Y L L R E S I S T A N C E M S - 1 
M E S O P H Y L L C O N D U C T A N C E IN M / S 
NET P H O T O S Y N T H E S I S AS A L L O W E D BY C02 G R A D I E N T 

! NET P H O T O S Y N T H E S I S M A X I M U M 
! G R O S S P H O T O S Y N T H E S I S M A X I M U M 

D A R K R E S P I R A T I O N IN MG C 0 2 / M3 PER S E C O N D . 
L I G H T USE E F F I C I E N C Y . 

L I G H T USE E F F I C I E N C Y . 
! D A R K R E S P I R A T I O N FOR C3 AND C4 C R O P S AT 20 

C02 C O M P E N S A T I O N P O I N T AT 25 D E G R E E S C E N T I G R A D E 
A B S O R B E D LIGHT BY P H O T O S Y N T H E S 1 2 1 N G T I S S U E S . 
NET P H O T O S Y N T H E S I MG C 0 2 / M 2 LEAF / S E C O N D . 

C H A R A C T E R T 

DATA R D 2 8 / 0 . 0 S , 0 . 0 5 / !DARK R E S P I R A T I O N IN 
! MG C02 PER S Q U A R E M E T E R PER S E C O N D . 

D A T A E F F O / 0 . 0 1 7 , 8 . 8 1 4 / ' L I G H T USE E F F I C I E N C Y IN MG C 0 2 PER J O U L E 

REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
R E A L 
REAL 
REAL 

R M ( 1 : I T ) ! 
G M ( l : I T j ! 
F N C C 1 : I T , 1 : 2 ) ! 
F N M A X C 1 : IT , 1 : 2 ) 
F G M A X C 1 : I T , 1 : 2 ) 
RD CI : I T ) i. 
E F F ( 1 : I T ) ! 
FMM C l : 2 ) ! 
E F F O ( l : 2 ) ! 
R D 2 8 CI : 2 ) 
G A M M 2 5 ( 1 : 2 ) ! 
H C l : I T , 1 : 2 ) ! 
F N C 1 : I H , 1 : 2 ) ! 

DATA F M M / 1 . 2 , 2 / 

DATA G A M M 2 5 / 5 8 , 5 / 

!IN MG C02 PER S Q U A R E M E T E R PER S E C O N D . 

IN PPM FOR C3 AND C4 C R O P S R E S P E C T I V E L Y . 

THE C A L C U L A T I O N OF THE SINK TERM FOR C02 
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T-CHARC9) 

DO 180 1=1,ITA,1 

G M C D - 0 . 0 

GAMMATCI)-GAMM25Cl)'EXPC0.07*CAVGTLF(I)-25)) 
! IN PPM 

IF ((AVGTLF(I). LE.2.5 ) .OR.(AVGTLF(I).G E.40)) THEN 

GM(I).0.0 

ELSE 
IF (AVGTLFCI).LE.30) THEN 

GM(I)= (AVGTLF(I)-2.5)/27.5' 
RM(I). 1/GMCD 

ELSE 
GM(I) . (40- AVGTLF(I))/10*e 
RM(I) = 1/GM(I) 

ENDIF 

IN M/S 

IF (GM(I).EQ. 0 ) THEN 
FNC(I,1).0.0 
FN(I,1) -0.0 

FNC(I,2)-0.0 
FN(I,2) =0.0 

ELSE 
FNC(I,l)»(C02CON(I)-GAMMAT(I))*1.833/ 

(RM(I)+1.3«RB(I)+1.6»RST(I,1)) 

FNC(I,2)=(C02CON(I)-GAMMAT(I))»1.833/ 
(RM(I)+1.3*RB(I)+1.6«RST(I,2)) 
! IN MG PER SQUARE METER PER SECOND. 

FNMAX(I.l). FMM(l) «Cl-EXP C - F NCCI,1)/F MMC1))) 

FNMAXCI,2)= FMM(l) 'Cl-EXP C - FNCCI , 2)/F MMC1))) 
RD(I)= RD20C1) «EXPC0.07*(AVGTLFCI)-20)) 

F G M A X C I , 1 ) - FNMAXCI , l ) + 0 . S ' R D C D 

F G M A X C I , 2 ) - FNMAXCI , 2 ) + 0 . S ' R D C D 

E F F C D = E F F O C D * ( C 0 2 C O N C I ) - G A M M A T ( I ) ) / 
C C 0 2 C O N ( I ) + 2 * G A M M A T ( I ) ) 

H ( I , 1 ) . V I S I A B C I , 1 ) / C D Z C I ) * L A D M I D ( I ) ) 
H C l , 2 ) . V I S I A B C I , 2 ) / C D Z C I ) * L A D M I D C D ) 

F G C I , 1 ) - F G M A X C I , 1 ) 
• C 1 - E X P C - E F F C I ) * H C I , 1 ) / F G M A X C I , 1 ) ) ) 

F N C I , 1 ) = F G C I , 1 ) - 0 - S ' R D C I ) 

F G C I , 2 ) . F G M A X C I , 2 ) 
* C 1 - E X P C - E F F C D * H C I , 2 ) / F G M A X C I , 2 ) ) ) 

F N ( I , 2 ) . F G C I , 2 ) - 0 . S ' R D C I ) 

S I N K C D = C F N C I , 1 ) + F N C I , 2 ) ) " L A D M I D C I ) * D Z C I ) 
C O N T I N U E 

R E T U R N 
END 

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

c 
S U B R O U T I N E E Q C O E M C T E M A I N , E A I R N « , N C 0 2 

, H M N E W , H M , T O R T U , R H S O I L 
, V G A S , P H I M , K R A T I O , F E 
, E X T R A L , W M , S O I L R N , P A S S , I N D E X I ) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
I M P L I C I T N O N E 

$ I N C L U D E : A L I M I T . FOR/L 
S I N C L U D E : A B L A N K . F O R / L 
S I N C L U D E : A C O E F F . F O R / L 
S I N C L U D E : A E Q C O E . F O R / L 
S I N C L U D E : A C O N S T . F O R / L 

S A V E / A C O E F F / , / A C O N S T / , / A E Q C O E / 
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R E A L * 8 T E M A I N C I S : I T B ) 
R E A L * 8 E X T R A L ( I S : I H ) 

REAL V G A S C I S : 0 ) , P H I M C 1 : I H ) , K R A T I O C 1 : I H ) 
REAL H M N E * ( I S : B ) , H M ( I S : 0 ) 
REAL W M . S O I L R N 
REAL R H S 0 I L ( I S : 8 ) 
REAL T O R T U C I S : 0 ) 

I N T E G E R I , I N D E X C , P A S S 
I N T E G E R I N D E X I C I S : I H ) 

REAL L R S R A T C I H ) 

R E A L * 8 E M C 0 : I T B ) , G M C 0 : I T B ) , F M C 0 : I T B ) 

REAL D M C 0 : I T B ) , D R A ( B : I T B ) 
REAL F E ( I S : I H ) 
REAL S A T U V 2 , S A T U D 2 , X 

C H A R A C T E R T 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

T » C H A R ( 9 ) 

S I N C L U D E : V A L U E S . D A T / L 

IF C P A S S .EQ. 8 ) T H E N 

DO 20 I - I S A , I H A , 1 

E X T R A L C D - 0 . 0 
I N D E X I ( I ) - 0 

20 C O N T I N U E 

E N D I F 

00 50 1 = 1 , I H A , 1 

K R A T I O ( I ) - 1 . 0 
L R S R A T C D - 1 . 0 

C O N T I N U E 

THE T R E A T M E N T OF THE B O U N D A R Y C O N D I T I O N S 

E L E C I S A ) 
G L E ( I S A ) 
F L E C I S A ) 
D L E ( I S A ) 

E C 0 2 ( I S A ) 
G C 0 2 C I S A ) 
F C 0 2 C I S A ) 
D C 0 2 ( I S A ) 

1. 0 
E A I R ( I S A ) 

1. 0 
C 0 2 C 0 N C I S A ) 

DO 150 1 - 1 , I H A , 1 

K H ( I ) . C L M I X C I ) / P H I M C D * K R A T I O C I ) ) * 
K H ( I ) = K M ( I ) 

' 2 * D U ( I ) 

DO 4 0 0 I - l + I T A , I H A , 1 
S H C D - 0 . 0 
S L C I ) - 0 . 0 
S I N K ( I ) = 0 . 0 

C O N T I N U E 
! the c o u p l i n g c o e f f i c i e n t s as has been done in eq. 4 . 2 . 7 4 

DO 300 I « I S A + 1 , 0 , 1 
! l a t e n t heat t r e a t m e n t 

E L E ( I ) » 8 . 0 
G L E C I ) - 0 . 0 
F L E ( I ) - 1 . 0 
D L E C I ) - D B L E ( S A T U V 2 ( S N G L ( T E M A I N ( I ) ) ) 
* E X P C H M N E W C I ) * G R ' M 0 L E / C R R » ( T E M A I N C I ) + 2 7 3 . 1 5 ) ) ) ) 

E L E ( I ) - V A P D I F ' T O R T U C I ) 
G L E C I ) - V A P D I F ' T O R T U C I ) 
F L E C D - E L E C D + G L E C I ) + 
D L E C D - S A T U V 2 C S N G L C T E M A I N C I ) ) ) 

1 ' C E X P C P S I S O L C I ) * G R ) 

S H C I ) - - P C P / G A M M A » D 2 C I ) / D T * V G A S C D 
1 ' C R H S O I L C I ) * D S D T C I ) 
1 * C T E M A I N C D - T E M A I R C I ) ) 

! s o u r c e or sink w i t h i n the soil 
! h u m d i f y i n g the soil air 
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C 1 + E X P ( H M N E W C I ) * G R » M 0 L E / C R R ' C T E M A I N ( I ) + 2 7 3 . 1 5 ) ) ) 
C 1 * S A T U V 2 ( S N G L ( T E M A I R C I ) ) ) 
C 1 • M 0 L E / ( R R ' ( T E M A I N ( I ) + 2 7 3 . 1 5 ) ) 
C 1 * ( H M N E W C D - H M C I ) ) ) 

C S L C D - P C P / G A M M A ' D Z C D / D T * V G A S C D 
C 1 « ( R H S O I L ( I ) ' D S D T C I ) 
C 1 * ( T E M A I N ( I ) - T E M A I R C D ) 
C 1 + E X P ( H M N E W ( I ) * G R * M 0 L E / C R R * ( T E M A I N C I ) + 2 7 3 . 1 5 ) ) ) 
C 1 * S A T U V 2 ( S N G L C T E M A I R C D ) ) 
C 1 * M O l E / ( R R * ( T E M A I N ( I ) + 2 7 3 . 1 5 ) ) 
C 1 • ( H M N E W C O - H M C I ) ) ) 

5 H C I ) - - P C P / G A M M A * D 5 D T C I ) * D Z C I ) / D T , V G A S ( I ) 
* C T E M A I N ( I ) - T E M A I R ( I ) ) 

E C O 2 C D - 0 . 0 
G C O 2 C D - 0 0 
F C 0 2 ( I ) - 1 . 0 
D C 0 2 ( I ) = C 0 2 C 0 N ( I ) 
S I N K ( I ) = 0 . 0 

E C 0 2 ( I ) « D B L E ( C O 2 D I F « T 0 R T U ( I ) ) 
G C 0 2 C D = D B L E C C 0 2 D I F « T 0 R T U C D ) 
F C 0 2 C I ) « D B L E ( E C 0 2 C I ) + G C 0 2 C I ) + D Z ( I ) / D T * V G A S C I ) ) 
D C 0 2 ( I ) = D B L E C V G A S C I ) , D Z C I ) / D T * C 0 2 C 0 N ( I ) ) 
S I N K C D - 0 . 0 
SINKCD-0.0 !LATER AFUNCTION DEPENDENT ON 

SOIL TEMPERATURE 

CONTINUE 

IF (INDEXI(l). EQ.l) THEN 

E L E C D 
GLE(l) 
F L E C D 
DLEC1) 

ELSE 

=OBLE(SATUV2CSNGLCTEMAIN(l)))) 

ELE(l) 
GLE(l) 
FLE(l) 
DLEC1) 

=PCP/GAMMA*KH(1)/(B.5*(DZ(1)+DZ(2))) 
.ELECD + GLE(1) + PCP/GAMMA*DZC1)/DT 
• DBLECSLCD + SOILLE 

»PCP/GAMMA'DZC1)/DT'EAIR(1)) 

D L E C D «0. 
tPCP/GAMMA*DZ(l)/DT'EAIR(l) 

E C O 2 C D - D B L E ( C O 2 D I F * T O R T U C 0 ) ) ! AN AVERAGING HAS TO BE DONE 
G C O 2 C l ) - D B L E ( K H ( l ) / ( 0 - 5 * ( D Z ( l ) + D Z ( 2 ) ) ) ) 
F C 0 2 ( 1 ) - D B L E ( E C 0 2 C 1 ) + G C 0 2 ( 1 ) + D Z C 1 ) / D T ) 
D C O Z ( l ) . D B L E C - S I N K ( l ) / 1 . 8 3 3 + D Z C l ) / D T * C 0 2 C O N ( l ) ) 
D C O 2 ( 1 ) . 0 . 8 / 1 . 8 3 3 + D Z / D T « C O 2 C O N C 1 ) 

DO 5 0 0 1 = 2 , I H A , 1 

I F C I N D E X I ( I ) . E Q . 1 ) THEN 

ELE(I) =0.0 

GLE(I) -0.0 
FLECI) =1.0 
D L E C D =DBLECSATUV2CSNGLCTEMAINCD))) 

ELSE 

E L E C D = P C P / G A M M A * K H C I - D / C 0 - 5 * C D Z ( I - 1 ) + D Z C D ) ) 
G L E C I ) = P C P / G A M M A « K H C I ) / C 0 . 5 * C D Z C D + D Z C I + 1 ) ) ) 
F L E C D - E L E C I ) t G L E C I ) + P C P / G A M M A » D Z C I ) / D T 
D L E C I ) = D B L E C S L C I ) + P C P / G A M M A * D Z C I ) / D T » E A I R C I ) ) 

D L E C I ) = 0 . 0 + P C P / G A M M A * D Z C D / D T * E A I R C D 

E N D I F 

E C O 2 C D = D B L E C K H C I - 1 ) / C 0 5 * C D Z C I - 1 ) + D Z C I ) ) ) ) 
G C O 2 C D = D B L E C K H C I ) / C 0 . 5 ' C D Z C D + D Z C I + D ) ) ) 
F C 0 2 C D - D B L E C E C 0 2 C D + G C 0 2 C D + D Z C D / D T ) 
D C O 2 ( D - D B L E C - S I N K ( I ) / 1 . 8 3 3 + D Z C I ) / D T " C O 2 C 0 N C D ) 
D C O 2 C D = - 0 . 0 / 1 . 8 3 3 + D Z C I ) / D T » C O 2 C O N C D 
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E L E ( I H A + 1 ) 
G L E C I H A + 1 ) 
F L E ( I H A t l ) 
D L E C I H A + 1 ) 

= 1 . 0 
= E A I R ( I H A + 1 ) 

E C 0 2 C I H A t l ) .0.0 
G C 0 2 C I H A + 1 ) -0.0 
F C 0 2 ( I H A + 1 ) .1.0 
D C 0 2 C I H A + 1 ) - C 0 2 C 0 N C I H A + 1 ) 

PASS =1 

RETURN 

END 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

S U B R O U T I N E E Q C O E H ( T E M A I N , S E N F L , H M N E I Ï , T O R T U , R H S O I L , H M 
, C H S O I L , P C S O I L , V G A S , V A P F L T , V A P F L B , V A P F D V 
, E X T R A S , S O I L R N , P A S S , I N D E X I ) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

IMPLICIT NONE 

S I N C L U D E : A L I M I T . FOR/L 
$ I N C L U D E : A B L A N K . F O R / L 
$ I N C L U D E : A C O E F F . F O R / L 
S I N C L U D E : A E Q C O E . F O R / L 
S I N C L U D E : A C O N S T . F O R / L 

SAVE/ A C O E F F / , / A C O N S T / , / A E Q C O E / 

REAL*8 T E M A I N ( I S : I T B ) , S E N F L ( I B : I H , 1 : 2 , 1 : 2 , 
REAL*8 E X T R A S C I S : I H ) 

REAL C H S O I L C I S : 0 ) , P C S O I L C I S : 0 ) 
1 , V G A S ( I S : 0 ) 

REAL H M N E W C I S : 0 ) , H M C I S : 0 ) 
REAL R H S O I L C I S : 0 ) 
REAL T O R T U ( I S : 0 ) 
REAL V A P F L T ( I S : 0 ) 
REAL V A P F L B C I S : 0 ) 
REAL V A P F D V ( I S : 0 ) 

REAL S A T U V 2 , S A T U D 2 , X 
INTEGER I N D E X I C I S : I H ) 

INTEGER PASS 
REAL SOILRN 
CHARACTER T 

1:2) 

REAL C P H A S E O S : 0 ) 
REAL F E CI S : IH) 
REAL ENHANC 

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

SINCLUDE : V A L U E S . DAT/L 

ENHANC -1.0 

T - C H A R C 9 ) 

IF CPASS .EQ. 0 ) THEN 

DO 10 I-ISA,0,1 

V A P F D V C D - 0 0 

10 CONTINUE 

DO 20 I - I S A , I H A , 1 

E X T R A S ( I ) » 0 . 0 
I N D E X I C D - 0 

2 0 CONTINUE 

ENDIF 

DO 50 I - I S A , - 1 , 1 

F E C I ) - D 2 C I + 1 ) / C D Z C I ) + D 2 C I + D ) 
C P H A S E C I ) = C C 1 - F E C D ) / C H S 0 I L C I ) + F E C I ) 
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C P H A S E ( I ) 
/ C H S O I L C I + 1 ) ) * " C - 1 ) 
= F E ( I ) * C H S O I L ( I ) + C l - F E C I ) ) « C H S O I L ( I + l ) 

E H ( I S A ) 
G H ( I S A ) 
F H ( I S A ) 
D H ( I S A ) 

! T H E T R E A T M E N T OF T H E B O U N D A R Y C O N D I T I O N S 

- 0 . 0 
« 0 . 0 
» 1 . 0 
- T E M A I R ( I S A ) 

HERE D E F I N E C P H A S E 

I - I S A + 1 , -1,1 

E H C I ) = C P H A S E ( I - 1 ) / C 0 5 * ( D Z C I - 1 ) * D Z C I ) ) ) 
G H ( I ) . C P H A S E C I ) / ( 0 . 5 * ( D Z ( I ) * . D Z ( I + 1 ) ) ) 
D S D T ( I ) - S A T U D 2 ( S N G L ( T E M A I R ( : i ) ) ) 

F H ( I ) = E H ( I ) + G H ( I ) 
+ P C S O I L ( I ) * D Z ( I ) / D T 
+ P C P / G A M M A « D Z ( I ) / D T * V G A S ( I ) 
* ( R H S O I L ( I ) * D S D T ( I ) 

+ E X P ( H M N E K ( I ) " ' G R " ' M O L E / ( R R * ( T E M A I R ( I ) + 2 7 3 . 1 5 ) ) ) 
* D S D T ( I ) 
• M O L E / ( R R » ( T E M A I R ( I ) + 2 7 3 . 1 5 ) ) 
• G R ' C H M N E W ( I ) - H M C I ) ) ) 

D H ( I ) - D B L E ( P C S O I L ( I ) * D Z ( I ) / D T * T E M A I R ( I ) 
- V A P F D V C I ) 
+ P C P / G A M M A * D Z ( I ) / D T » V G A S ( I ) 
* ( T E M A I R C I ) * R H S O I L ( I ) * D S D T ( I ) 

- E X P ( H M N 6 W C I ) * G R * M O L E / ( R R * ( T E M A I R C I ) + 2 7 3 . 1 5 ) ) ) 
» ( S A T U V 2 ( S N G L < ; T E M A I R ( I ) ) ) - D S D T ( I ) « T E M A I R ( I ) ) 
* M O L E / ( R R * ( T E M A I R ( I ) + 2 7 3 . 1 5 ) ) 
* G R * C H M N E W ( I ) - H M ( I ) ) ) ) 

DO 158 1-1, I H A , 1 

K H ( I ) = ( L M I X ( I ) / P H I M C I ) * K R A T I O ( I ) ) * * 2 * D U ( I ) 
K H ( I ) = K M ( I ) 

E H ( 0 ) » C P H A S E C - 1 ) / C 0 . 5 * C O Z C - 1 ) + D Z ( 0 ) ) ) 
G H ( 0 ) = 0 . 0 ! THE SOIL IS C O M P L E T E L Y D E C O U P L E D . 
G H C 0 ) - H T ( 0 ) ! D E P E N D I N G ON ONE A S S U M P T I O N . 

D S D T C 0 ) . S A T U D 2 ( S N G L ( T E M A I R ( 0 ) ) ) 

F H ( 0 ) - E H ( 0 ) + G H ( 0 ) 
1 + P C S O I L ( 0 ) * D Z ( 0 ) / D T 
1 + P C P / G A M M A * D Z ( 0 ) / D T * V G A S ( 0 ) 
1 * ( R H S O I L ( 0 ) » D S D T ( 0 ) 
1 + E X P C H M N E W C 0 ) * G R * M O L E / C R R * C T E M A I R C 0 ) + 2 7 3 . 1 5 ) ) ) 
1 * D S D T ( 0 ) 
1 * M O L E / ( R R * ( T E M A I R ( 0 ) + 2 7 3 . i s ) ) 
1 * G R » ( H M N E * ( 0 ) - H M ( 0 ) ) ) 

D H ( 0 ) = D B L E ( P C S O I L ( 0 ) * D Z ( 0 ) / D T * T E M A I R C 0 ) 
+ 0 . 0 * D S D T ( 0 ) » T E M A I R ( 0 ) ) 

D H ( 0 ) - D B L E ( P C P / G A M M A * D Z ( 0 ) / D T , ' V G A S ( 0 ) 
» ( T E M A I R ( 0 ) * R H S O I L ( 0 ) * D S D T ( 0 ) 

- E X P ( H M N E « ( 0 ) * G R * M O L E / ( R R » ( T E M A I R ( 0 ) + 2 7 3 . 1 5 ) ) ) 
* ( S A T U V 2 ( S N G L ( T E M A I R ( 0 ) ) ) - D S D T ( 0 ) * T E M A I R ( 0 ) ) 
* M O L E / ( R R * ( T E M A I R ( 0 ) + 2 7 3 . 1 5 ) ) 
• G R * ( H M N E W C 0 ) - H M ( 0 ) ) ) 

+ S O I L R N 
- S O I L L E 
- V A P F L B ( 0 ) 
+ P C S O I L ( 0 ) * D Z ( 0 ) / D T » T E M A I R ( 0 ) ) 

E H ( 1 ) = H T ( 0 ) 
E H ( 1 ) = 0 . 0 
G H ( 1 ) - P C P * K H ( 1 ) / ( 0 . S » ( D Z ( 1 ) + D Z ( Z ) ) ) 
F H ( 1 ) - E H C 1 ) + G H C 1 ) + P C P * D Z C 1 ) / D T 
D H ( l ) . D B L E ( S H ( l ) + P C P * D Z f l ) / D T * T E M A I R f l ) 

+ E X T R A S ( l ) ) 
D H ( l ) - 0 . 0 + P C P ' D Z / D T * T E M A I R C D 

DO 4 0 0 I = I T A + 1 , I H A , 1 

S H C D 
S L ( I ) 
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DO 200 I - 2 , I H A , 1 

E H C I ) - P C P * K H C I - l ) / C 8 . S * ( D Z ( I - l ) - f O Z ( I ) ) ) 
G H C I ) - P C P » K H C I ) / C e . 5 * ( D Z ( I ) t O Z C I + l ) ) ) 
F H ( I ) = E H ( I ) + G H C I ) + P C P " D Z C I ) / D T 
D H C D - D B L E C S H ( I ) t P C P * D Z ( I ) / D T * T E M A I R ( I ) 

+ E X T R A S C D ) 

c 
200 

D H C I ) = 0 . 8 + 

C O N T I N U E 

E H C I H A + 1 ) 
G H C I H A + 1 ) 
F H C I H A + 1 ) 
D H C I H A + 1 ) 

PCP * D Z C I ) / D T * T E M A 

» 0 . 0 
-0 . 0 
= 1.0 
- T E M A I R C I H A + 1 ) 

CALL T H O M C I H A , I S A , E H , G H , D H , F H , T E M A I N ) 

DO 300 I - I S A + 1 , 0 , 1 

S H ( I ) . - P C P / G A M M A « D Z C I ) / D T » V G A S ( I ) 

* ( R H S O I L ( I ) * D S D T ( I ) 
« ( T E M A I N ( I ) - T E M A I R C I ) ) 
+ E X P C H M N E W ( I ) ' G R ' M O L E / C R R * C T E M A I N C I ) + 2 7 3 . 1 5 ) ) ) 
• S A T U V 2 C S N G L C T E M A I N C I ) ) ) 
• M O l E / ( R R * ( T E M A I N ( I ) + 2 7 3 . 1 5 ) ) 
* G R " ( H M N E W C I ) - H M C I ) ) ) 

S L C I 3 - P C P / G A M M A * D Z ( I ) / D T » V G A S ( I ) 
* C R H S O I L C I ) ' D S D T ( I ) 
» C T E M A I N ( I ) - T E M A I R C I ) ) 
+ E X P C H M N E * ( I ) * G R * M O L E / C R R * C T E M A I N C D + 2 7 3 . 1 5 5 ) ) 
* S A T U V 2 ( S N G L ( T E M A I N ( I ) ) ) 
* M O L E / ( R R * C T E M A I N ( I ) i - 2 7 3 . 1 5 ) ) 
* G R * C H M N E W ( I ) - H M C I ) ) ) 

I F C I • N E . 0 ) THEN 

V A P F L T C D - E N H A N C * P C P / G A M M A ' V A P D I F * T O R T U ( I ) » 
( S A T U V 2 ( S N G L ( T E M A I N ( I ) ) ) 
* E X P C H M N E W C I ) * G R * M 0 L E / C R R * ( T E M A I N C I ) + 2 7 3 . 1 5 ) ) ) 
- S A T U V 2 ( S N G L ( T E M A I N ( I + 1 ) ) ) 
* E X P ( H M N E * C I + l ) * G R * M O L E / ( R R * C T E M A I N C I + l ) + 2 7 3 . 1 5 ) ) ) ) 
/ C D Z C D + D 2 C I + D ) 

V A P F L B ( I ) = E N H A N C * P C P / G A M M A * V A P D I F * T O R T U ( I - l ) * 
C S A T U V 2 C S N G L ( T E M A I N ( I - 1 ) ) ) 
* E X P C H M N E y v ( I - l ) » G R * M O L E / C R R * ( T E M A I N C I - l ) + 2 7 3 . 1 5 ) ) ) 
- S A T U V Z ( S N G L ( T E M A I N ( I ) ) ) 
* E X P C H M N E W ( I ) » G R * M 0 L E / ( R R * C T E M A I N C I ) t 2 7 3 . 1 5 ) ) ) ) 
/ C D Z C I - 1 5 + D Z C D ) 

V A P F D V ( I ) = V A P F L T ( I ) - V A P F L B ( I ) 

ELSE 

V A P F L T ( I ) = S O I L L E 
V A P F L B ( I ) . E N H A N C * P C P / G A M M A , V A P D I F * T O R T U C I - D * 

( S A T U V 2 C S N G L ( T E M A I N ( I - 1 ) ) ) 
* E X P C H M N E W ( I - l ) « G R * M O L E / ( R R ' C T E M A I N C I - l ) + 2 7 3 . 1 5 ) ) ) 
- S A T U V 2 ( S N G L ( T E M A I N C I ) ) ) 
• E X P ( H M N E W C I ) * G R « M O L E / C R R * ( T E M A I N C I ) + 2 7 3 . 1 5 ) ) ) ) 
/ C D Z ( I - 1 ) + D Z ( I ) ) 

V A P F D V ( I ) = V A P F L T ( I ) - V A P F L B C I ) 

ENDIF 

! IN J O U L E M - 2 S-l 

R E T U R N 
END 
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c 

SUBROUTINE E N E R G D ( I T R A , R T I M E , M S 2 , 
S H , S L , H T , H E , H E N D , H E E , 
T E M P L F . T E M L F N , A V G T L F , 
R A B L , R A B L T , 
R A B . K A V , L I G H T , E N E S A B , 
I D , F R A C , C U M D E W , 
R D I R , W F T H , S I N B T A , R L O U T , R L I N N , 
D T , T O T E N E , S O I L S N . O N ) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

I M P L I C I T N O N E 

I N T E G E R L L M . L L B 

P A R A M E T E R ( L L M - 2 , L L B - 3 ) 

S I N C L U D E : A L I M I T . F O R / L 
J I N C L U D E : A B L A N K . F O R / L 
$ I N C L U D E : A E N E R G . F O R / L 
J I N C L U D E : A C O N S T . F O R / L 

SAVE / A E N E R G / . / A C O N S T / 

I N T E G E R I T R A , C H O I C E , W A Y I N 

REAL R T I M E , S I N B T A , R L O U T , R L I N N 

R E A L * 8 S H ( I B : I H ) , S L ( I B : I H ) 

REAL H T ( 0 : I T ) , H E ( 0 : I T , 1 : 2 , 1 : 2 ) , H E N D ( 1 : I T , 1 : 2 ) 

1 , H E E C I T , 1 : 2 , 1 : 2 , 1 : 2 ) 
1 , T E M P L F ( I T , 1 : L L M , 1 : 2 , 1 : 2 ) , T E M L F N ( I T , 1 : L L M , 1 : 2 , 1 : 2 ) 
1 , A V G T L F ( 1 : I T ) 
1 , R A B L C I H , 1 : 2 ) , R A B L T C I H , 1 : 2) 
1 , R A B ( I H , 1 : 2 ) , K A V ( 3 ) 
1 , L I G H T ( 0 : I H , 1 : 2 ) , E N E S A B ( I H , 1 : 2 ) 
1 , I D ( 1 : I T ) 
1 , F R A C C 1 : I T , 1 : 2 , 1 : 2 ) 
1 , C U M D E W ( 1 : I T , 1 : 2 ) 
1 , R D I R ( 1 : I T , 1 : 2 ) , W F T H C 2 ) 
1 , D T , T O T E N E , S O I L S N 

C H A R A C T E R T 
L O G I C A L ON 

I N T E G E R I , J , K , l , I D E , I T R Q , I T R E , I H E L P , J H E L P , K H E L P , I N T E R S , I N D I C 
I N T E G E R L L . L B , L A , N , M S I , M S 2 . L H E L P , C H E C K , I T E R I . I N D X C O 

REAL S A T U V 2 , S A T U D 2 , X 

R E A L ' 8 C B L O C K C I S : I T B ) 
R E A L * 8 B B L O C K C I S : I T B ) 
R E A L * 8 D B L O C K C I S : I T B ) 
R E A L » 8 A B L O C K C I S : I T B ) 
R E A L * 8 T M L F C I S : I T B ) 
! the c o u p l i n g c o e f f i c i e n t s for the leaf e n e r g y e q u a t i o n s o l u t i o n ( s e c t 2 . 3 . 1 . 1 ) 
R E A L « 8 E L H ( 0 : L L B ) 
R E A L * 8 G L H ( 0 : L L B ) 
R E A L « 8 F L H ( 0 : L L B ) 
R E A L ' 8 D L H ( 8 : L L B ) 
R E A L * 8 A N A L G ( 0 : 3 ) 

REAL L * L E A F ( 1 : I T , 1 : 2 , 1 : 2 ) 
REAL L W A I R C 1 : I T ) 

REAL S E N C 1 : I T , 1 : 2 , 1 : 2 ) 
REAL L H P R O D C 0 : I T ) 
REAL L W L A Y R C 0 : I T ) 

REAL R L D O W N ( 0 : I T ) 
REAL R L U P ( 0 : I T ) 
REAL R A B L W C 1 : I T , 1 : 2 ) 
REAL L E C 1 : I T , 1 : 2 , 1 : 2 ) 

REAL E S T A I R C 1 : I T ) 

REAL S S A I R C 1 : I T ) 

REAL R A B T O T C 1 : I T , 1 : 2 ) 

REAL S S L E A F C 1 : I T , 1 : L L M . l : 2 

REAL T O T A L Ç 1 : I T , 1 : 2 , 1 : 2 ) 

LONG WAVE E M I S S I O N ONE S I D E D LEAF 

AT AIR T E M P E R A T U R E . 
S E N S I B L E HEAT F L U X . 
L O N G W A V E P R O D U C T I O N PER M - 3 C A N O P Y A I R . 
• • ' • • • ' • • M - 2 C A N O P Y L A Y E R 
T H I C K N E S S . 
L O N G W A V E DOWN 
L O N G W A V E UP 
L O N G W A V E A B S O R B E D . 
L A T E N T H E A T FLUX IN WATT M - 2 LEAF S U R F A C E 
(ONE S I D E ) , L I N E A R S O L U T I O N . 
S A T U R A T E D V A P O U R P R E S S U R E 
AT AIR T E M P E R A T U R E IN P A S C A L . 
S L O P E OF THE S A T U R A T E D V A P O U R P R E S S U R E 
AT AIR T E M P E R A T U R E . 
T O T A L R A D I A N T E N E R G Y A B S O R B E D ( S H O R T 
A N D L O N G ) IN W A T T M - 2 C A N O P Y L A Y E R 

2 ) 

S L O P E OF THE V A P O U R P R E S S U R E T E M P E R A T U R E 
F U N C T I O N AT LEAF T E M P E R A T U R E 

E N E R G Y B U D G E T . ( L O O K AT PAW U 1 9 8 7 ) . 
T O T A L E N E R G Y D I S S I P A T E D IN W A T T M - 2 
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REAL L W L E F I C l 

REAL N 0 R M A N ( 1 : I T 

I T , 1 : 2,1 : 2 ) 

1:2) 

REAL E S T L F F C 1 : I T , 1 : 2,1 : 2,1 : 2) 

LEAF S U R F A C E (ONE S I D E ) L I N E A R S O L U T I O N . 
LONG WAVE E M I S S I O N CONE S I D E ) IN W A T T M-
LEAF S U R F A C E . L I N E A R S O L U T I O N . 
LONG WAVE FLUX D E N S I T Y ( U P W E L L I N G A N D 
D O W N W E L L I N G ) I N C R E M E N T S IN W A T T M - 2 
C A N O P Y L A Y E R S U R F A C E . 

S A T U R A T E D V A P O U R P R E S S U R E AT LEAF 
T E M P E R A T U R E IN P A S C A L . 

REAL C O N D U V C 1 : I T , 1 : 2,1 : 2 ) ! v e r t i c a l heat c o n d u c t i o n 
REAL C O N D U H C 1 : I T , 1 : 2,1 : 2,1 : 2 ) < h o r i z o n t a l heat c o n d u c t i o n 
REAL S U M C 1 : I T , 1 : 2 ) 
REAL E R R Ç 1 : I T , 1 : 2 , 1 : 2 , 1 : 2 ) ! ERROR ( L I N E A R AND N E W T O N I T E R A T I O N ) 
REAL E R R 3 C 1 : I T , 1 : 2,1 : 2,1 : 2 ) 

! E R R O R ( L I N E A R AND N E W T O N I T E R A T I O N ) 

REAL E R R O L ( l : I T ) 
REAL W A M O U N ( l : I T , 2 ) 
REAL D R I P ( 1 : I T , 2 ) 
REAL V O L U M N ( l : I T , 2 ) 
REAL R E M A I N ( 1 : I T , 1 : 2 , 1 : 2 , 1 : 2 ) 

! w a t e r a m o u n t 
!d r i pp i ng 
! w a t e r v o l u m e 

R E M A I N I N G C O M P O N E N T . 

REAL T E M S K Y 
REAL S K Y E M S 
REAL C L E A R S 
REAL T E M D I F 
REAL F A C T O R 
REAL S K Y L I N 
REAL T O T L E . T O T A L Q 

REAL T O T P R O ( 1 : I T ) 
REAL I T O T P R ( l : I T ) 

! T E M P E R A T U R E OF THE SKY 
! SKY E M I S S I V I T Y 

! T E M P E R A T U R E D I F F E R E N C E . 

! I N C O M I N G L O N G W A V E R A D I A T I O N FROM THE SKY 

! t o t a l p r o b a b i l i t y 
! p r o b a b i l i t y (yes 1 or no 0 ) 

REAL C O N V E R 
REAL ESPP 
REAL KCON 
REAL M A X S H 
DATA T E M D I F / 2 . 8 / 
DATA F A C T O R / 8 . 1 / 

THE F U L F I L L E D C R I T E R I A . 

! A F A C T O R D E P E N D E N T ON THE T Y P E OF C L O U D S . 

S I N C L U D E : V A L U E S . D A T / L 

KCON . 2 7 3 . 1 5 

ESPP -0.81 
M A X E R R - 8 . 8 
M A X E R 1 = 8 . 8 

T - C H A R C 9 ) 

! C O N V E R T I N G TO A B S O L U T E T E M P E R A T U R E 

LL 
LB 

.2 
= LL + 1 

IF ( I T R A . L T . 1 ) THEN 

C H E C K . 0 

C H 0 I C E . 8 

IF ( C H O I C E . E Q . 0 ) THEN 

M S 1 - 8 
M S 2 . 8 

ELSE I F ( C H O I C E . E Q . l ) THEN 

M S l - 1 
M S 2 . 8 

ELSE I F ( C H O I C E . E Q . 2 ) THEN 

M S I - 8 
M S 2 = 1 

M S 1 . 1 
M S 2 - 2 

DO 111 I . l . I T A . l 
DO 112 J = 1,2 , 1 

DO 113 K . l , 2 , 
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TEMPLFCI,1,K,J) - S N G L O E M A I R O ) ) 
TEMPLFO , 2 , J , K) .SNGLCTEMAIR(I)) 
TEMLFNCI,1,K,J ) -SNGLCT E MA IR(I)) 
TEMLFNCI,2,J,K) »SNGlCT E MA IRC I )) 

ESTLFFCI,1,K,J) 
ESTLFFCI,2,J,K) 

ESTLFO,1,K,J) 
ESTLFCI,2,J,K) 

- S N G L C E A I R C I ) ) 
- S N G L C E A I R C I ) ) 

- S N G L C E A I R C I ) ) 
- S N G L C E A I R C I ) ) 

13 
12 
11 

LWLFNCI 
LWLFNCI 
NONSTCI 
NONSTCI 

CONTINUE 
CONTINUE 

CONTINUE 

1 
2 
1 
2 

K 
J 
K 
3 

J) 
K) 
J) 
K) 

DO 2 1 1 1 - 1 , I T A , 1 
DO 2 1 2 J = l , 2 , 1 

C U M D W A C I . J ) - C U M D E W C I , J ) / C L E A I N C C D * L A M D A ) 
V O L U M D O . J ) - P I * R D I R C I , J ) * * 2 * W F T H C 3 ) 
N U M D R P C I . J ) - C U M D W A C I , J ) / ( V O L U M D C I , J ) * i e e e . ) 
F R A C C I . J . 2 ) . C U M D W A ( I , J ) / C 1 0 0 0 . * W F T H C J ) ) 

I F C F R A C C I . J . 2 ) . L T . 0 . 0 0 0 1 ) THEN 

INDEXDCI,J,2) -0 
INDEXDCI,J,1) -1 
FRACI,J,2) -0.000 
FRACI,J,1) -1.000 

ELSE IFCFRACCI,J,2).GE.1) THEN 

INDEXDCI,J,2) 
INDEXDCI,J , 1) 
FRACI,J,1) 
FRACI,J,2) 

= 1 

INDEXDCI,J,1) =1 
INDEXDCI,J,2) -1 
FRACI,J,1) -FRACCI,J,1) 
FRACI, J,2) -FRACCI, J ,2) 

ENDIF 

CONTINUE 

PRCI,1,1)= FRACI , 1, D'FRACI, 2, 1) 
PR(I,1,2)- FRACI , 1 , D'FRACl , 2, 2) 
PRO,2,1)= FRACI ,1, 2)*FRACI , 2, 1) 
PRO,2,2)= FRACI , 1 , 2)*FRACI , 2 , 2) 
IPRCI.1,1)- INDEXDCI, l,l)*INDEXDO, 
IPRCI.1,2). INDEXDCI, l,l)*INDEXDO, 
IPRO,2,l)= INDEXDCI, l,2)*INDEXDO, 
IPRCI,2,2)= INDEXDCI, l,2)»INDEXDO, 

CONTINUE 

DO 200 1=1,ITA,1 

I D O ) = 0.25*EXPC-KAVCD*LEAINCCI)) 
1 +0 . 5"EXPC-KAVC2)*LEAINCCD) 
1 +0 . 25*EXPC-KAVC3)»LEAINCO)) 

L W A I R C D - EMSSIVSBOLT2 
1 'CTEMAIRCD + 273 . 15)»»4 

ESTAIRCD-SATUV2CSNGLCTEMAIRCI))) 

EAIRCD-ESTAIRCI) ! D DDDDDDDDDDDD 

SSAIRCD-SATUD2CSNGLCTEMAIRCI))) 

DO 201 J-l , LL , 1 

LEAFLTO,J)= THICKN/REALCLL) 

201 

200 

CONTINUE 

CONTINUE 

1-1,ITA,1 
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DO 153 J-l ,2,1 
DO 154 K = l ,2,1 

IF(IPR(I , K , J ) . NE.0) THEN 

TEMPLFCI,1,K,J)--273.18 
ESTLFFCI,1,K,J)-0.0 
S S L E A F C I , 1 , K , J ) = 0.0 

TEMPLFCI,2,J,K)--273.10 
E5TLFFCI,2,J,K)-0.0 
SSLEAFCI,2,J,K)=0.0 

DO 169 INTERS.1,10,1 

ELHC0)=0.0 
GLHC0)=0•0 
FLHC0)-1.00 
D L H C 0 ) = T E M A I R C D 

E L H C D - HTCI) 

E L H C D = 0- 0 !NO COUPLING DDDDDDD 

C L H ( l ) - 4*EMSSIV*SBOLTZ 
1 * C 0 . 5 * C T E M P L F C I , 1 , K , J ) + T E M P L F C I , 2 , J , K ) ) 
1 •273.15)**3 
1 * K * / C 0 5 ' C L E A F L T C I , 1 ) + L E A F L T C I , 2 ) ) ) 

D L H C D - R A B L ( I , 1 ) 
1 - H E C I , 1 , K ) * C E S T L F F C I , 1 , K , J ) - E A I R ( I ) ) 
1 -EMSSIV*SB0LTZ*CTEMPLFCI,1,K,J)+273.15)**4 
1 + C 4 * E M S S I V * S B O L T 2 * C T E M P L F C I , l , K , J ) + 2 7 3 . 1 5 ) * * 3 
1 + H E C I , 1 , K ) * S S L E A F C I , 1 , K , J ) ) * T E M P L F C I , 1 , K , J ) 

F L H C D - E L H C 1 ) + G L H C 1 ) 
1 + H E C I , 1 , K ) * S S L E A F C I , 1 , K , J ) 
1 + 4 * E M S S I V * S B O L T Z * C T E M P L F C I , l , K , J ) + 2 7 3 . 1 5 5 * * 3 

E L H C L L ) • 4 * E M S S I V * S B 0 L T Z * 
1 C 0 5 * C T E M P L F C I , L L , J , K ) + T E M P L F C I , L l - l , K , J ) ) 
1 + 2 7 3 . 1 5 5 * * 3 
1 + K W / C 0 . 5 * C L E A F L T C I , L L - 1 ) + L E A F L T C I , L L ) ) ) 

G L H C L L ) - H T C I ) 

D L H C L L ) = R A B L C I . 2 ) 
1 - H E C I , 2 , J ) * C E S T L F F C I , 2 , J , K ) - E A I R C D ) 
1 - E M S S I V * S B 0 L T Z * C T E M P L F C I , 2 , J , K ) + 2 7 3 . 1 5 ) * * 4 
1 + C 4 * E M S S I V * S B 0 L T Z * C T E M P L F C I , 2 , J , K ) + 2 7 3 . 1 5 ) * * 3 
1 + H E C I , 2 , J ) * S S L E A F C I , 2 , J , K ) ) * T E M P L F C I , 2 , J , K ) 

F L H C L L ) - E L H C L L ) + G L H C L L ) + H E C I , 2 , J ) * S S L E A F C I , 2 , J , K ) 
1 + 4 * E M S S I V * S B O L T Z * C T E M P L F C I , 2 , J , K ) t 2 7 3 . 1 5 ) * * 3 

E L H C L L + 1 ) = 0.0 
G L H C L L + 1 ) - 0.0 
F L H C L L + 1 ) - 1.00 
D L H C L L + 1 ) = T E M A I R C I ) 

00 158 N- , LB, 1 

C B L O C K C N ) « ELHCN) 
B B L O C K C N ) - GLHCN) 
A B L O C K C N ) = FLHCN) 
DBLOCKCN) = DLHCN) 

CONTINUE 

CALL THOMCLL,LA,CBLOCK.BBLOCK.DBLOCK,ABLOCK,TMLF) 

TEMLFNCI,1,K,J)-TMLF(l) 

C 

C 

C160 

DO 160 N = 2,LL -1,1 

TEMLFNCI,N,J)=TMLFCN) 

CONTINUE 

TEMLFNCI,LL, ],K)-TMLFCLL) 

DO 555 N -1,2,1 

ANALGCN)--FLHCN)*TMLFCN)+GLHCN)*TMLFCNtl) 
+EIHCN)*TMLFCN-1)+DLHCN) 
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C O N T I N U E 

F L U X U P ( I , 1 , K , J ) = G L H C 1 ) * ( T E M L F N C I , 1 , K , J ) - T E M L F N C I , 2 , J , K ) ) 
F L U X B T C I , 1 , K , J ) - - E L H C D * C T E M L F N C I , 1 , K , J ) - S N G L ( T E M A I R ( I ) ) ) 
S O U R C C I , 1 , K , J ) - R A B L C I , 1 ) 

1 - H E ( I , 1 , K ) « ( E S T L F F C I , 1 , K , J ) - E A I R ( I ) ) 
1 - E M S S I V ' S B O L T Z * ( T E M P L F C I , l , K , J ) + 2 7 3 . 1 S ) * « 4 

L I N E A R C I , 1 , K , J ) = C H E ( I , 1 , K ) * S S L E A F ( I , 1 , K , J ) 
1 + 4 * E M S S I V * S B 0 L T Z ' ( T E M P L F C I , 1 , K , J ) + 2 7 3 . 1 5 ) * , 3 ) 
1 • C T E M L F N ( I , 1 , K , J ) - T E M P L F ( I , 1 , K , J ) ) 

T O T A L L C I , 1 , K , J ) - - L I N E A R ( I , 1 , K , J ) - F L U X U P ( I , 1 , K , J ) 
1 + F L U X B T ( I , l , K , J ) + S O U R C ( I , l , K , J ) 

F L U X U P ( I , 2 , J , K ) . G L H C 2 ) * C T E M L F N ( I , 2 , J , K ) - S N G L C T E M A I R C I ) ) ) 
F L U X B T ( I , 2 , J , K ) . - E L H ( 2 ) * ( T E M L F N ( I , Z , J , K ) - T E M L F N ( I , 1 , K , J ) ) 

S 0 U R C ( I , 2 , J , K ) . R A B L C I , 2 ) 
1 - H E ( I , 2 , J ) ' ( E S T L F F C I , 2 , J , K ) - E A I R C I 3 ) 
1 - E M S S I V « S B 0 L T 2 * ( T E M P L F C I , 2 , J , K ) + 2 7 3 . 1 S ) « * 4 

L I N E A R C I , 2 , J , K ) . ( H E C I , 2 , J ) * S S L E A F ( I , 2 , J , K ) 
1 + 4 * E M S S I V * S B O L T Z * C T E M P L F ( I , 2 , J , K ) + 2 7 3 . 1 5 ) * , 3 ) 
1 » C T E M L F N C I , 2 , J , K ) - T E M P L F ( I , 2 , J , K ) ) 

T O T A L L C I , 2 , J , K ) . - L I N E A R C I , 2 , J , K ) - F L U X U P C I , 2 , J , K ) 
1 + F L U X B T ( I , 2 , J , K ) + S O U R C ( I , 2 , J , K ) 

T O T A E C I . K . J ) . T O T A L L C I , l , K , J ) + T O T A L L C I , 2 , J , K ) 
M A X E R R = M A X ( M A X E R R , A B S C T O T A L L C I , l , K , J ) ) 

1 , A B S C T 0 T A L L C I , 2 , J , K ) ) , A B S ( T 0 T A E C I , K , J ) ) ) 

E S T L F F C I , 1 , K , J ) = 
1 S A T U V 2 C T E M L F N C I , 1 , K , J ) ) 

S S L E A F Ç I , 1 , K , J ) = 
1 S A T U D 2 C T E M L F N C I , 1 , K , J ) ) 

E S T L F F C I , 2 , J , K ) . 
1 S A T U V 2 C T E M L F N ( I , 2 , J , K ) ) 

S S L E A F C I , 2 , J , K ) . 
1 S A T U D 2 ( T E M L F N ( I , 2, J , K ) ) 

IF ( ( A B S C T E M P L F C I , l , K , J ) - T E M L F N C I , l , K , J ) ) . G T . E S P P ) . O R . 
1 C A B S C T E M P L F C I , 2 , J , K ) - T E M L F N ( I , 2 , J , K ) ) . G T . E S P P ) ) T H E N 

T E M P L F ( I , 1 , K , J ) = T E M L F N ( I , 1 , K , J ) 
T E M P L F ( I , 2 , J , K ) « T E M L F N ( I , 2 , J , K ) 

C O N T I N U E 
ELSE 

F L U X U P C I , 1 , K , J ) 
F L U X B T C I , 1 , K , J ) 
S O U R C C I , 1 , K , J ) 
L I N E A R C I , 1 , K , J ) 
T O T A L L C I , 1 , K , J ) 

F L U X U P C I , 2 , J , K ) 
F L U X B T C I , 2 , J , K ) 
S O U R C C I ,2,J , K ) 
L I N E A R C I , 2 , J , K ) 
T O T A L L C I , 2 , J , K ) 
T O T A E C I , K , J ) = T O T A L L C I , l , K , J ) 

• T O T A L L C I , 2 , J , K ) 
M A X E R R = M A X C M A X E R R , A B S C T O T A E C I , K , J ) ) ) 

E N D I F 

H E E C I , 1 , K , J ) = H E C I . l , K ) 
H E E C I , 2 , J , K ) » H E C I , 2 , J ) 

154 
1 5 3 

C O N T I N U E 
C O N T I N U E 

C O N T I N U E 

I N D I C - 1 

ENDIF 

IF C M S 2 . E Q . 8 ) THEN 

I T E R I = 4 
ELSE 

I T E R I - 1 
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******** S O L U T I O N BY I T E R A T I O N TO S O L V E FOR T H E A B S O R B E D E N E R G Y 
( T H E S U M OF T H E L O N G « A V E ( ? ) A N D S H O R T W A V E ) 

T E M A I R ( 0 ) « T E M A I R ( I H A ) 
L W P R O D ( 0 ) . S O I L E M * S 8 O L T Z ' ( T E M A I R ( 0 ) + 2 7 3 . 1 S ) > 
L * l A Y R C 0 ) = L * P R O D ( 0 ) 

C A L C U L A T I O N OF T H E L O N G W A V E U P P E R B O U N D A R Y C O N D I T I O N 
A C C O R D I N G T O M O N T E I T H ( 1 9 7 3 ) 
C A L C U L A T I N G T H E T E M P E R A T U R E OF T H E S K Y A N D T H E S K Y 
E M S S I V I T Y G I V E N T H E C L O U D I N E S S OF T H E S K Y ( C A M B P E L L 1 9 7 7 ) 

T E M S K Y - 1 . 2 * T E M A I R ( I H A + 1 ) - 2 1 . 
C L E A R S - 0 . 6 5 + 0 . 0 0 7 ' T E M A I R ( I H A + l ) ! 
S K Y E M S - C L E A R S « ( 1 + 0 . 1 * C L O U D N ' * 2 ) 
S K Y E M S - 1 . 0 1 D D D D D D D D 

I F C W A Y I N . E Q . 1 ) T H E N 

S K Y L I N . S K Y E M S * S B O L T 2 

•(TEMAIR(IHA + 1) + 2 7 3 . 1 S ) * M 

SKYLIN . SBOLTZ*(TEMSKY+273.15)**4 

ELSE 

SKYLIN.RLINN 

ENDIF 

ITRQ-1 

DO 2000 ITRQ-1,50,1 

DO 250 I-l.ITA 
DO 251 J-1,2,1 

DO 252 K-l ,2,1 
I F ( I P R ( I , K , J ) . N E . 0 ) THEN 

FOR A COMPLETELY CLEAR SKY. 

L W L F N ( I , 1 , K , J ) . EMSSIV'SBOLTZ 
"(TEMLFN(I,1,K,J)+Z73.15)**4 

S E N S H ( I , 1 , K , J ) . H T ( I ) 
* ( T E M L F N ( I , 1 , K , J ) - T E M A I R ( I ) ) 

IF ( M S 2 . E Q . 0 ) THEN 

ESTLFCI,1,K, J ) . 
SATUV2(TEMLFN(I,1,K,J)) 

S S L E A F C I , 1 , K , J ) . 
S A T U D 2 ( T E M L F N ( I , 1 , K , J ) ) 

ESTLFCI,1 , K , J ) . 
SATUV2(TEMPLF(I,1,K,J)) 

SSLEAFCI,1,K,J)= 
S A T U D 2 ( T E M P L F ( I , 1 , K , J ) ) 

L W L F N C I , 2 , J , K ) . EMSSIV'SBOLTZ 
* ( T E M L F N ( I , 2 , J , K ) + 2 7 3 . 1 S ) * M 

S E N S H ( I , 2 , J , K ) . HT(I) 
• ( T E M L F N ( I , 2 , J , K ) - T E M A I R ( I ) ) 

IF ( M S 2 . E Q . 0 ) THEN 

E S T L F C I , 2 , J , K ) . 
SATUV2(TEMLFN(I,2,J,K)) 

S S L E A F C I , 2 , i , K ) . 
SATUD2(TEMLFN(I , 2,J , K)) 

ESTLFCI,2,J,K) = 
S A T U V 2 C T E M P L F C I , 2 , J , K ) ) 
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5 S L E A F C I , 2 , J , K ) . 
S A T U D 2 C T E M P L F C I , 2 , J , K ) ) 

ENDIF 

C O N D U H C I , 1 , K, J ) . 1 . / R D I R C I . l ) * 
1 ( R E A L ( I P R ( I , 2 , 2 ) ) * P R C I , 2 , 2 ) ' 
1 C T E M L F N C I , 1 , 2 , 2 ) - T E M L F N C I , l , K , J ) ) 
1 + R E A L ( I P R ( I , 2 , 1 ) ) * P R ( I , 2 , 1 ) « 
1 C T E M L F N C I , 1 , 2 , 1 ) - T E M L F N C I , 1 , K , J ) ) 
1 + R E A L C I P R C I , 1 , 2 ) ) « P R ( I , 1 , 2 ) ' 
1 C T E M L F N C I , 1 , 1 , 2 ) - T E M L F N C I , 1 , K , J ) ) 
1 + R E A L ( I P R ( I , 1 , 1 ) ) ' P R C I , 1 , 1 ) * 
1 ( T E M L F N C I , 1 , 1 , 1 ) - T E M L F N ( I , 1 , K , J ) ) ) 

C O N D U H C I , 2 , J ,K) - 1 . / R D I R C I , 2 ) * 
1 C R E A L C I P R C I , 2 , 2 ) ) * P R ( I , 2 , 2)« 
1 ( T E M L F N ( I , 2 , 2 , 2 ) - T E M L F N ( I , 2 , J , K ) ) 
1 + R E A L C I P R C I , 1 , 2 ) ) * P R C I , 1 , 2 ) * 
1 ( T E M L F N C I , 2 , 2 , 1 ) - T E M L F N ( I , 2 , J , K ) ) 
1 + R E A L ( I P R C I , 2 , 1 ) ) * P R C I , 2 , 1 ) * 
1 ( T E M L F N ( I , 2 , 1 , 2 ) - T E M L F N ( I , 2 , J , K ) ) 
1 + R E A L C I P R C I , 1 , 1 ) ) * P R C I , 1 , 1 ) * 
1 ( T E M L F N ( I , 2 , 1 , 1 ) - T E M L F N C I , 2 , J , K ) ) ) 

C C O N D U H C I , 2 , 2 ) - R E A L C I N D E X D C I , 2 , 1 ) ) 
C 1 ' R E A L C I N D E X D C I , 2 , 2 ) ) 
C 1 » 2 . " P I ' R D I R C I , 2 ) * N U M D R P C I , 2 ) 
C 1 » C T E M L F N C I , 2 , D - T E M L F N C I , 2 , 2 ) ) 

C C O N D U H C I , 2 , 1 ) . - C O N D U H C I ,2 , 2 ) 

C C O N D U H C I ,1 , 2 ) . R E A L C I N D E X D C I , 1, D ) 
C 1 ' R E A L C I N D E X D C I , 1 , 2 ) ) 
C 1 ' 2 ' P I ' R D I R C I , D ' N U M D R P C I , 1 ) 
C 1 ' C T E M L F N C I , 1 , 1 ) - T E M L F N C I , 1 , 2 ) ) 

C C O N D U H C I , 1 , 1 ) . - C O N D U H C I , 1 , 2 ) 

L E F L U X C I , 1 , K , J ) = H E E C I , 1 , K , J ) 
1 * C S A T U V 2 C T E M L F N C I , 1 , K , J ) ) - E A I R C D ) 

L E F L U X C I , 2 , J , K ) - H E E ( I , Z , J , K ) 
1 * ( S A T U V 2 ( T E M L F N ( I , 2 , J , K ) ) - E A I R ( I ) ) 

E N E R G C I , 1 , K , J ) = L W L F N C I , 1 , K , J ) 
1 + S E N S H C I , 1 , K , J ) 
1 + L E F L U X C I , 1 , K, J ) 
1 + F L U X U P C I , 1 , K , J ) 
1 + N O N S T C I , 1 , K , J ) 

E N E R G C I , 2 , J , K ) - L W L F N C I , 2 , J , K ) 
1 + S E N S H C I , 2, J ,K) 
1 + L E F L U X C I , 2 , J , K ) 
1 - F L U X B T C I , 2 , 3 , K ) 
1 + N O N S T C I , 2 , J , K) 

E R R C I , 

E R R C I , 

, J ) = R A B L C I , l ) + C O N D U H C I , 1 , 
- E N E R G C I , 1 , K , J ) ! FOR A 

t, J ) 
LEAF S U R F A C E 

, J , K ) - R A B L C I , 2 ) + C O N D U H C I , 2 , J , K ) 
- E N E R G C I , 2 , J , K ) ! FOR A LEAF S U R F A C E 

M A X E R 1 « M A X C M A X E R 1 , E R R C I , 1 , K , J ) , E R R C I , 2 , J , K ) ) 

C O N D U H C I , 1 , K , J ) 
C O N D U H C I , 2 , J , K ) 
L W L F N C I , 1 , K , J ) 
L W L F N C I , 2 , J , K ) 
L E F L U X C I ,1 , K, J ) 
L E F L U X C I , 2 , J , K ) 

2S2 
251 
2S8 

C O N T I N U E 
C O N T I N U E 

C O N T I N U E 

C O N T I N U E 

DO 1555 I D E » 1 , I T A , 1 
T O T A C O C I D E ) = 0 . 0 
DO 1 5 5 6 J - l , 2 , 1 

DO 1 5 5 7 K » l , 2 , 1 
T O T A C O C I D E ) - T O T A C O C I D E ) 

1 + R E A L C I P R C I D E , K , J ) ) * P R C I D E , K , J ) « C O N D U H C I D E , l , K , J ) 
1 + R E A L C I P R C I D E , K , J ) ) * P R C I D E , K , J ) ' C O N D U H C I D E , 2 , J , K ) 
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IF C L E F L U X C I D E , J , 1 , K ) . L T . 0 . 0 ) T H E N 

H E E C I D E , J , 1 , K ) - H T C I D E V C G A M M A ' 0 . 9 3 ) 

ELSE 

H E E ( I D E , J , 1 , K ) - H E N D ( I D E , J ) 

ENDIF 

H E E C I D E , J , 2 , K ) « H T C I D E ) / C G A M M A * 0 . 9 3 ) 

1 5 5 ? 
1 5 5 6 
1 5 5 5 

C O N T I N U E 
C O N T I N U E 
C O N T I N U E 

DO 1 2 0 0 I - 1 , I T A , 1 

L W P R O D C I ) - 0 . 0 

DO 1 2 0 1 3 . 1 , 2 , 1 

N O R M A N C I , J ) . 0 . 0 

DO 1 2 0 2 K - 1 , 2 , 1 

L W P R O D C I ) . L W P R O D C D 
1 + L » L F N ( I , 1 , J , K ) * R E A L ( I P R ( I , J , K ) ) 
1 ' P R O , J , K ) » L A D M I D C I ) 
1 t L W L F N C I , 2 , K , J ) * R E A L ( I P R C I , J , K ) ; 
1 * P R ( I , J , K ) « L A D M I D ( I ) 

I F C J • E Q . 1 ) THEN 

N O R M A N C I , J ) - N O R M A N C I , J ) 
1 + C L W L F N C I , J , K , 1 ) 
1 ' R E A L C I P R C I , K , 1 ) ) * P R C I , K , 1 ) 
1 + L W L F N C I , J , K , 2 ) 
1 » R E A L C I P R C I , K , 2 ) ) * P R C I , K , 2 ) ) 
1 ' C l - I D C I ) ) 

E L S E I F C J • E Q . 2 ) T H E N 

N O R M A N C I , J ) - N O R M A N C I , J ) 
1 + C L W L F N C I , J , K , 1 ) 
1 « R E A L C I P R C I , 1 , K ) ) * P R ( I , 1 , K ) 
1 + L W L F N C I , J , K , 2 ) 
1 • R E A L C I P R C I , 2 , K ) ) * P R C I , 2 , K ) ) 

1 • C l - I D C I ) ) 

E N D I F 

1 2 0 2 C O N T I N U E 

1 2 0 1 C O N T I N U E 

L W L A Y R C I ) - L W P R O D C I ) ' D 2 C I ) 

1 2 0 0 C O N T I N U E 

R L D O W N C I T ) = S K Y L I N 
DO 1 4 0 0 I - I T A - 1 , 0 , - 1 

R L D O W N C D = R L D O « N C I + l ) * I D C I + l ) 
1 + N O R M A N C I + 1 , 1 ) 

C ! EQ 2. 2 . 21 
1 4 0 0 C O N T I N U E 

R L U P C 0 ) - L W P R O D C 0 ) 
t C l - S O I L E M ) * R L D O W N C 0 ) 

C 
DO 1 5 0 0 1 - 1 , I T A , 1 

R L U P C I ) . R L U P C I - l ) * I D C D + N O R M A N C I , 2 ) 
C ! EQ. 2 . 2 . 2 2 

1 5 0 0 C O N T I N U E 

C O N V E R - 0 . 0 

DO 1 6 0 0 1 = 1 , I T A , 1 

R A B L W C I . 2 ) . R L D O W N C O ' C l - I D C I ) ) 
1 + 0 . 5 « L I Ï L A Y R C D - N O R M A N C I , 2 ) 

R A B L W C I . l ) . R L U P C I - D ' C l - I D C D ) 
1 + 0 . 5 * L W L A Y R C D - N O R M A N C I , 1 ) 

R A B T O T C I . l ) - ENESABCI , D + RABLWCI , D 
C ! UPDATING THE ABSORBED R A D I A T I O N . 

EQ 2 . 2 . 2 3 . A 

EQ 2 . 2 . 2 3 . B 
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R A B T O T C I , 2 ) = E N E S A B C I , 2 J + R A B L K C I , 2 ) 
! U P D A T I N G THE A B S O R B E D R A D I A T I O N . 

R A B L T C I , 1 ) 

R A B L T C I , 2 ) 

• R A B T O T C I , 1 J / L E A I N C C I ) 

- R A B T O T C I , 2 ) / L E A I N C C I ) 

S U M ( I , 1 ) = 0 . e 
S U M C I , 2 ) . 8 . 0 

DO 1 6 0 1 J - 1 , 2 , 1 
DO 1 6 8 2 K - l , 2 , 1 

IF ( I P R O , J , K ) . N E . 0 ) THEN 

S U M C I , 1 ) = S U M C I , 1 ) 
- E N E R G C I , 1 , J , K ) 

* R E A L C I P R ( I , J , K ) ) * P R C I , J , K ) 

S U M C I , 2 ) = S U M C I , 2 ) 
- E N E R G C I , 2 , K , J ) 

• R E A L C I P R ( I , J , K ) ) * P R ( I , J , I O 

1 6 0 2 
1 6 0 1 

1713 
1 7 1 2 

1 7 1 1 

1 7 1 0 

1 7 0 1 
1 7 0 0 

C O N T I N U E 
C O N T I N U E 

E R R 2 C I . 1 ) - R A B L T C I . D + S U M C I , 1 ) 
E R R 2 C I . 2 ) . R A B L T C I , 2 3 + S U M C I , 2 ) 

E R C I . l ) 
E R C I . 2 ) 

C O N V E R 

C O N T I N U E 

R A B L C I , 1 ) + S U M C I , 1 ) 
R A B L C I , 2 ) t S U M C I , 2 ) 

M A X ( C O N V E R , E R R 2 ( I , l ) , E R R Z ( I , 2 ) ) 

DO 1 7 0 0 1 = 1 , I T A , 1 
DO 1 7 0 1 J = l ,2,1 

IF C C A B S C E R R 2 C I , J ) - E R C I , J ) ) . G E . E S P P ) 
. A N D . ( A B S ( E R R 2 ( I , J ) J . G T . E S P P j ; THEN 
! TO SEE IF THE S O L U T I O N I M P R O V E S . 

IF C C A B S C R A B L T C I , J ) - R A B L C I , J ) ) • G E . E S P P ) .OR. 
C I T R Q . E Q . 1 ) ) THEN 

DO 1 7 1 0 I H E L P = 1 , I T A , 1 
DO 1 7 1 1 J H E L P - 1 , 2 , 1 

R A B L C I H E L P , J H E L P ) 
» R A B L T C I H E L P , J H E L P ) 

I F C M S 2 . E Q . 0 ) THEN 

DO 1 7 1 2 K H E L P - 1 , 2 , 1 
DO 1713 L H E L P . l , 2 , 1 

T E M P L F C I H E L P , J H E L P , K H E L P . L H E L P ) 
= T E M L F N C I H E L P , J H E L P , K H E L P , L H E L P ) 

C O N T I N U E 
C O N T I N U E 

ENDIF 

C O N T I N U E 

C O N T I N U E 

I N D I C - 2 
GOTO 2 5 0 0 

E N D I F 

C O N T I N U E 
C O N T I N U E 

G O T O 2 1 0 0 

C O N T I N U E 

DO 16S I - 1 , I T A , 1 
DO 163 J = l , 2 , 1 

DO 164 K«l ,2,1 

I F C I P R C I , K , J ) . N E . 0 ) THEN 

DO 179 I N T E R S . 1 , I T E R I , 1 

E L H C 0 ) = 0.0 
G L H C 0 ) . 0.0 
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F L H C 0 ) - 1 . 0 0 
D L H ( 0 ) = T E M A I R ( I ) 

E L H ( l ) H T C I ) 

G L H C D - 4 ' E M S S I V ' S B O L T Z 
1 * C 0 . 5 * ( T E M P L F C I , 1 , K , J ) + T E M P L F C I , 2 , J , K ) ) 
1 + 2 7 3 . 1 5 ) * * 3 
1 + K * / ( e . 5 * C L E A F L T ( I , l ) + L E A F L T ( I , 2 ) ) ) 

D L H ( l ) - R A B L ( I , 1 ) + C 0 N D U H C I , 1 , K , J ) 
1 - H E E C I , 1 , K , J ) * C E S T L F C I , 1 , K , J ) - E A I R C D ) 
1 - E M S S I V * S B 0 L T Z » C T E M P L F ( I , 1 , K , J ) + 2 7 3 . 1 5 ) , * 4 
1 - K 4 * E M S S I V * S B 0 L T Z 
1 « C T E M P L F C I , 1 , K , J > + 2 7 3 . 1 5 ) * » 3 
1 + H E E C I , 1 , K , J J ' S S L E A F C I , 1 , K , J ) ) 
1 " T E M P L F C I , 1 , K , 0 ) 
1 + R E A L ( M S 2 ) * L E A F L T C I , 1 ) / D T ' C W A T E R 
1 » T E M P L F C I , 1 , K , J ) 

F L H ( 1 ) = E L H ( 1 ) + G L H C 1 ) + H E E C I , 1 , K , J ) * S S L E A F C I , 1 , K , J ) 
1 + 4 * E M S S I V ' S B 0 L T Z ' C T E M P L F C I , l , K , J ) + 2 7 3 . 1 5 j * * 3 
1 + R E A L ( M S 2 ) * L E A F L T C I , 1 ) / D T * C W A T E R 

E L H C L L ) = 4 * E M S S I V * S B O L T Z 
1 • C 0 . 5 * C T E M P L F ( I , L L , J , K ) + T E M P L F ( I , 1 , K , J ) ) 
1 + 2 7 3 . 1 5 ) * « 3 
1 + K * / C B . S * C L E A F L T C I , L L - 1 ) + L E A F L T C I , L L 3 ) ) 

G L H ( L L ) = H T C I ) 

D L H ( L L ) » R A B L C I , 2 )+ C 0 N D U H C I , 2 , 3 , K ) 
1 - H E E C I , 2 , J , K ) « C E S T L F C I , 2 , J , K ) - E A I R C I ) ) 
1 - E M S S I V * S B 0 L T Z * C T E M P L F C I , L L , J , K ) t 2 7 3 . 1 5 ) * * 4 
1 + C 4 ' E M S S I V « S B 0 L T Z 
1 » ( T E M P L F C I , L L , : , K ) • 2 7 3 . 1 5 ) ' * 3 
1 + H E E C I ,2,J , K ) « S S L E A F C I , 2 , J , K ) ) 
1 » T E M P L F C I , L L , J , K ) 
1 + R E A L C M S 2 ) ' L E A F L T C I , L L ) / D T * C W A T E R 
1 « T E M P L F C I , L L , J , K ) 

F L H C L L ) - E L H C L L ) + G L H C L L J + H E E C I , 2 , J , K ) * S S L E A F C I , 2 , J , K ) 
1 + 4 * E M S S I V , S B O L T Z * C T E M P L F C I , L L , J , K ) t 2 7 3 . 1 5 ) " * 3 
1 + R E A L C M S 2 ) ' L E A F L T C I , L L ) / D T * C W A T E R 

161 

1116 

E L H C L L + 1 ) = 0.0 
G L H C L L + 1 ) . 0.0 
F L H C L L t l ) . 1.00 
D L H C L L t l ) . T E M A I R ( I ) 

DO 161 N . 0 , L L + 1 , 1 

C B L O C K C N ) - E L H C N ) 
B B L O C K C N ) - G L H C N ) 
A B L O C K C N ) . F L H C N ) 
O B L O C K C N ) . D L H C N ) 

C O N T I N U E 

CALL T H O M C L L , L A , C B L O C K . B B L O C K . D B L O C K , A B L O C K , T M L F ) 

T E M L F N C I . l , K , J ) = T M L F C 1 ) 

C DO 162 N = 2 , L L - 1 , 1 

C T E M L F N C I . N , J ) = T M L F C N ) 

C 1 6 2 C O N T I N U E 

T E M L F N C I , L L , J , K ) - T M L F C L L J 

DO 55 N . 1 , 2 , 1 

A N A L G C N ) . - F L H C N ) * T M L F C N ; + G L H C N ) » T M L F C N + I ) 
+ E L H C N ) » T M L F C N - 1 ) + D L H C N ) 

5 5 C O N T I N U E 

F L U X U P C I , 1 , K , J ) = G L H C 1 ) * C T E M L F N C I , 1 , K , J ) - T E M L F N C I , 2 , J , K ) ) 

F L U X B T C I , L , K , J ; » - E L H C L ; ' C T E M L F N C I , L , K , J ) - S N G L C T E M A I R C I ) ; ) 

S O U R C C I , l , K , J ) . R A B L C I , l ) + C O N D U H C I , l , K , J ) 
1 - H E E C I , l , K , J ) * C E S T L F C I , l , K , J j - E A I R C I ) ) 
1 - E M S S I V * S B O L T Z * C T E M P L F C I , l , K , J ) + 2 7 3 . 1 5 ) * * 4 

L I N E A R C I , 1 , K , J ) = C H E E C I , 1 , K , J ) * S S L E A F ( I , 1 , K , J ) 
1 + 4 * E M S S I V ' S B 0 L T Z * C T E M P L F C I , 1 , K , J ) + 2 7 3 . 1 5 ) * * 3 ) 
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1 * ( T E M L F N C I , 1 , K , J ) - T E M P L F ( I , 1 , K , J ) ) 

N 0 N S T C I , 1 , K , J ) = R E A L ( M S 2 ) * L E A F L T ( I , 1 ) / D T , C W A T E R 
1 * ( T E M L F N C I , 1 , K , J ) - T E M P L F ( I , 1 , K , J ) ) 

T 0 T A L L ( I , 1 , K , J ) . - L I N E A R ( I , 1 , K , J ) - N 0 N S T C I , 1 , K , J ) 
1 - F L U X U P ( I , 1 , K , J ) + F L U X B T ( I , 1 , K , J ) 
1 + S O U R C C I , 1 , K , J ) 

F L U X U P C I , 2 , J , K ) = G L H C 2 ) * C T E M L F N ( I , 2 , J , K ) - S N G L C T E M A I R ( I ) ) ) 

F L U X B T C I , 2 , J , K ) » - E L H ( 2 ) * ( T E M L F N ( I , 2 , J , K ) - T E M L F N C I , 1 , K , J ) ) 

S O U R C ( I , 2 , J , K ) = R A B L ( I , 2 ) + C O N D U H ( I , 2 , J , K ) 
1 - H E E ( I , 2 , J , K ) * ( E S T L F ( I , Z , J , K ) - E A I R C I ) ) 
1 - E M S S I V * S B 0 L T Z * C T E M P L F ( I , L L , J , I O + 2 7 3 . 1 5 ) » * 4 

L I N E A R ( I , 2 , J , K ) - ( 4 « E M S S I V * S B 0 L T Z 
1 « ( T E M P L F C I , L L , J , K ) + 2 7 3 . 1 5 ) " * 3 
1 + H E E ( I , 2, J , K ) * S S L E A F ( I , 2 , 3 , K ) ) 
1 * ( T E M L F N C I , 2 , J , K ) - T E M P L F C I , 2 , J , K ) ) 

N 0 N S T ( I , 2 , J , K ) = R E A L C M S 2 ) * L E A F L T ( I , L L ) / D T » C « A T E R 
1 * ( T E M L F N ( I , 2 , J , K ) - T E M P L F ( I , 2 , J , K ) ) 

T 0 T A L L ( I , 2 , J , K ) - - L I N E A R ( I , 2 , J , I O - N 0 N S T ( I , 2 , J , K ) 
1 - F L U X U P ( I , 2 , J , K ) + F L U X B T ( I , 2 , J , K ) 
1 + S O U R C C I , 2 , J , K ) 

T 0 T A E ( I , K , J ) = T 0 T A L L ( I , 1 , K , J ) + T 0 T A L L ( I , 2 , J , K ) 

M A X E R R - M A X C M A X E R R , A B S C T 0 T A L L ( I , 1 , K , J ) ) 
1 , A B S C T 0 T A L L C I , 2 , J , K ) ) , A B S ( T 0 T A E ( I , K , J ) ) ) 

IF ( M S 2 . E Q . 0 ) THEN 

T E M P L F C I , 1 , K , J ) - T E M L F N C I , 1 , K , J ) 
T E M P L F ( I , 2 , J , K ) -T E ML FN ( I , 2 , J , K ) 
E S T L F ( I , 1 , K , J ) = S A T U V 2 ( T E M L F N C I , 1 , K , J ) ) 
E S T L F ( I , 2 , J , K ) = S A T U V 2 C T E M L F N ( I , 2 , J , K ) ) 
5 S L E A F C I , 1 , K , J ) = S A T U D 2 C T E M L F N ( I , 1 , K , J ) ) 
S S L E A F C I , 2 , J , K ) - S A T U D 2 C T E M L F N ( I , 2 , J , K ) ) 

164 
163 

165 

2 0 0 0 
2 1 0 0 

C 

C O N T I N U E 
C O N T I N U E 

C O N T I N U E 

M A X S H = M A X E R 1 
M A X E R R = 0 . 0 
M A X E R 1 - 0 . 0 

C O N T I N U E 
C O N T I N U E 

TILL HERE 

S T O R A G - 0 . 0 

DO 1 3 0 0 1-1,IT/ 

L A Y S E N ( I ) 
L A Y L E F ( I ) 
S T O R ( I ) 
L W P R O D ( I ) 

DO 1 3 0 1 J-l , 2,1 
DO 1 3 0 2 K - l , 2 , 1 

IF C I P R O , K , J ) . NE . 0 ) THEN 

L K L F N C . I , 1 , K , J ) = E M S S I V » S B O L T Z 
• ( T E M L F N C I , 1 , K , J ) + Z 7 3 . 1 5 ) * * 4 

S E N S H C I , 1,K, J)= H T ( I ) 
• ( T E M L F N ( I , 1 , K , J ) - T E M A I R ( I ) ) 

L W L F N C I , 2 , J , K)= E M S S I V ' S B O L T Z 
* ( T E M L F N ( I , 2, J , K ) + Z 7 3 . 1 5 ) « * 4 

S E N S H O , 2 , J , K ) . H T ( I ) 
• ( T E M L F N C I , 2 , J , K ) - T E M A I R ( I ) ) 
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L E F L U X C I , 1 , K , J ) . H E E ( I , 1 , K , J ) 
» C S A T U V 2 C T E M L F N C I , 1 , K , J ) ) - E A I R C I ) ) 

L E F L U X C I , 2 , J , K ) = H E E C I , 2 , 1 , K ) 
* C S A T U V 2 ( T E M L F N ( I , 2 , J , K ) ) - E A I R C I ) ) 

E N E R G C I , 1 , K , J ) - L U L F N C I , 1 , K , J ) 
+ S E N S H C I , 1 , K , J ) 
+ L E F L U X C I , 1 , K , J ) 

+ F L U X U P C I . 1 . K , J ) 
+ N O N S T C I , 1 , K , J ) 

E N E R G C I , 2 , J ,K) - LHl F N C I , 2 , J , K ) 
+ S E N S H Ç I , 2 , J , K ) 
+ L E F L U X C I , 2 , J , K ) 
- F L U X B T C I , 2 , J , K ) 
+ N O N S T C I , 2 , J ,K) 

E R R 3 C I , 1 , K , J ) - R A B L ( I , 1 ) + C 0 N D U H ( I , 1 , K , J ) 
- E N E R G C I , 1 , K , J ) ! FOR A LEAF S U R F A C E 

E R R 3 C I , 2 , ] , K ) = R A B L ( I , 2 ) + C O N D U H ( I , 2 , J , K ) 
- E N E R G C I , 2 , J , K ) ! FOR A LEAF S U R F A C E 

M A X E R 1 . M A X C M A X E R 1 , E R R 3 C I , 1 , K , J ) , E R R 3 C I , 2 , J , K ) ) 

L W P R O D C I ) - LWPRODCI ) 
1 + L W L F N C I , 1 , K , J ) « R E A L C I P R C I , K , J ) ) 
1 * P R ( I , K , J ) * L A D M I D ( I ) 
1 + L W L F N ( I , 2 , J , K ) * R E A L C I P R C I , K , J ) 5 
1 ' P R C I , K , J ) * L A D M I D C I ) 

L A Y S E N C D - L A Y S E N C I ) 
1 + D B L E C C S E N S H C I , 1 , K , J ) + S E N S H C I , 2 , J , K ) ) 
1 * C P R C I , K , J ) * R E A L C I P R C I , K , J ) ) * L E A I N C C D ) ) 

L A Y L E F C D - L A Y L E F C I ) 
1 + D B L E ( ( L E F L U X ( I , 1 , K , J ) + L E F L U X ( I , 2 , J , K ) ) 
1 » C P R C I , K , J ) * R E A L C I P R C I , K , J ) ) * L E A I N C C I ) ) ) 

S T O R C D - S T O R C I ) 
1 + D B L E C C N O N S T C I , l , K , J ) + N O N S T C I , 2 , J , K ) ) 
1 • ( P R ( I , K , J ) * R E A L ( I P R ( I , K , J ) ) n E A I N C C I ) ) ) 

1 3 0 2 C O N T I N U E 
1 3 0 1 C O N T I N U E 

L W L A Y R ( I ) = L » P R O D ( I ) * D Z ( I ) 
L A Y B A L C I ) - D B L E C C R A B L C I , 1 ) + R A B L C I , 2 ) ) * L E A I N C C D ) 

1 - L A Y S E N ( I ) - L A Y L E F ( I ) - D B L E Ç L * L A Y R ( I ) ) 
1 - S T O R ( I ) 

S T O R A G = S T O R A G + S N G L C S T O R C D ) 

1 3 0 0 C O N T I N U E 

T O T L E - 0 . 0 
T O T A L Q = 0 . 0 

DO 2 4 0 0 I . I T A , 1 , - 1 

S H C I ) - 0 . 0 
S L C D - 0 . 0 
E R R O L C D = 0 . 0 

A V G T L F C I ) - e . 5 * R E A L ( I P R C I , l , l ) ) * P R ( I , l , l ) 
• C T E M L F N ( I , 1 , 1 , 1 ) + T E M L F N ( I , 2 , 1 , 1 ) ) 

+ 0 . S * R E A L C I P R C I , 1 , 2 ) ) * P R C I , 1 , 2 ) 
* C T E M L F N C I , 1 , 1 , 2 ) + T E M L F N C I , 2 , 2 , 1 ) ) 

+ 8 . 5 * R E A L ( I P R C I , 2 , 1 ) ) * P R C I , 2 , 1 ) 
* C T E M L F N C I , 1 , 2 , 1 ) + T E M L F N C I , 2 , 1 , 2 ) ) 

+ e . 5 ' R E A L ( I P R ( I , 2 , 2 ) ) * P R ( I , 2 , 2 ) 
* C T E M L F N C I , 1 , 2 , 2 ) + T E M L F N C I , 2 , 2 , 2 ) ) 

T O T P R O ( I ) = . P R ( I , l , l ) + P R C I , l , 2 ) + P R ( I , 2 , l ) + P R C I , 2 , 2 ) 

I T O T P R C I ) - R E A L C I P R C I , l , l ) ) * P R C I , l , D 
1 + R E A L C I P R C I , 1 , 2 ) ) * P R C I , 1 , 2 ) 
1 + R E A L C I P R C I , 2 , 1 ) ) * P R C I , 2 
1 + R E A L C I P R C I , 2 , 2 ) ) » P R C I , 2 , 2 ) 

1) 

DO 2 4 0 3 J-l 
DO 24 

2 , 1 
4 K . l , 2 , 1 

IF C I P R C I , J , K ) . N E . 0 ) T H E N 

R E M A I N C I , 1 , J , K ) - 0 . 
R E M A I N C I , 2 , K , J ) = 0 . 
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D E L T A T ( I , 1 , 3 , K ) = T E M L F N ( I , 1 , J , K ) - T E M A I R ( I ) 
D E L T A T C I , 2 , K , J ) = T E M L F N C I , 2 , K , 3 ) - T E M A I R C D 

S E N F L C I , 1 , 3 , K ) . D B L E C S E N S H C I , 1 , 3 , K ) " D Z C I ) 
* P R C I , 3 , K ) » R E A L C I P R C I , 3 , K ) ) * L A D M I D C I ) ) 

S E N F L C I , 2 , K , J ) - D B L E C S E N S H C I . Z . K . J J ' D Z C D 
* P R C I , 3 , K ) » R E A L C I P R C I , 3 , K ) ) * L A D M I D C I ) ) 

L E F L C I , 1 , 3 , K ) - D B L E ( L E F I U X C I , 1 , J , K ) * D Z ( I ) 
« P R C I , J , K ) * R E A L C I P R C I , J , K ) ) * L A D M I D C I ) ) 

L E F L C I , 2 , K , 3 ) - D B L E ( L E F L U X ( I , 2 , K , J ) ' D Z C I ) 
* P R C I , 3 , K ) « R E A L C I P R C I , 3 , K ) ) n A D M I D C D ) 

R E M A I N C I , 1 , 3 , K ) - R E M A I N C I , 1 , 3 , K ) 
- S E N F L C I , 1 , 3 , K ) 
- L E F L C I , 1 , 3 , K ) 

R E M A I N ( I , 2 , K , J ) . R E M A I N C I , Z , K , J ) 
- S E N F L C I , 2 , K , 3 ) 
- L E F L C I , 2 , K , 3 ) 

S H C I ) = S H C I ) t S E N F L C I , l , J , K ) + S E N F L C I , 2 , K , J ) 
S L C I ) - S L C I ) + L E F L C I , 1 , 3 , K ) + L E F L C I , 2 , K , 3 ) 

2 4 8 4 
2403 

S E N F L C I , 1 , J 
S E N F L C I , 2 , K 

K ) 
3 ) 

L E F L C I , 1 . 3 , K ) 
L E F L C I , 2 , K , 3 ) 

R E M A I N C I , 1 , 3 , K ) = 
R E M A I N C I , 2 , K , 3 ) = 

C O N T I N U E 
C O N T I N U E 

DO 2 4 0 6 l-l, 2,1 
DO 2 4 0 7 3 = 1 , 2 , 1 
DO 2 4 0 8 K - l , 2 , 1 

I F C L E F L C I , L , 3 , K ) . L T . 0 . 0 ) THEN 

CUMDEIÏCI,L) = C U M D E W C I , L ) 
- S N G L C L E F L C I , L , 3 , K ) ) ' D T 

I F C C C U M D E W C I , L ) . G T . 0 . 0 ) . A N D . 
C L E F L C I , L , 2 , 3 ) . G T . 0 . 0 ) ) THEN 

C U M D E W C I , L ) - C U M D E W C I , L ) 
- S N G L C L E F L C I , L , 2 , J ) ) * D T 

C U M D E W C I , L ) = A M A X 1 C C U M D E W C I , L ) , 0 . ) 

ENDIF 

2 4 0 8 
2 4 0 7 
2 4 0 6 

C O N T I N U E 
C O N T I N U E 
C O N T I N U E 

E R R 0 L C D - R A B T 0 T C I , 1 ) + R A B T 0 T C I , 2 ) 
- S N G L C S H C I ) ) - S N G L C S L C O ) - L W L A Y R C I J 

C O N T I N U E 

DO 2 2 1 1 1 - 1 , I T A , 1 
DO 2 Z 1 2 3 - 1 , 2 , 1 

W A M O U N C I . J J - C U M D E H C I , 3 ) / L A M D A 
C U M D W A C I , ) ) - C U M D E W C I , 3 ) / C L E A I N C C I ) ' L A M D A ) 
F R A C C I , J , 2 ) = C U M D W A C I , 3 ) / C 1 0 0 0 . * H F T H C ) ) ) 
F R A C I , 3 , 2 ) . F R A C C I , 3 , 2 ) 

IF C F R A C C I , 3 , 2 ) . G T . 1 . ) THEN 

D R I P C I , 3 ) = W A M O U N C I , 3 ) 
- L E A I N C C I ) ' « F T H C 3 ) * 1 0 0 0 . 

F R A C C I , 3 , 2 ) = 1.0 
F R A C I , 3 , 2 ) = 1 . 0 
F R A C C I , 3 , 1 ) - 0 . 0 
F R A C I , 3 , 1 ) - 0 . 0 
I N D E X D C I , 3 , 2 ) « 1 
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I N D E X O C I , J , i ) - e 

ELSE IF ( F R A C C I , J , 2 ) . C T . 8 . 8 0 8 1 ) T H E N 

D R I P ( I . J ) - 0 0 
F R A C C I , J , 1 ) - 1 . 8 - F R A C C I , J , 2 ) 
F R A C I , J , 1 ) - F R A C C I , J , 1 ) 
F R A C I , J , 2 ) - F R A C I , J , 2 ) 
I N D E X D C I , J , 1 ) = 1 
I N D E X D C I , J , 2 ) - l 

D R I P C I , J ) 
F R A C C I , J , 1 ) 
F R A C I , J ,1) 
F R A C I , J , 2 ) 
I N D E X D C I , J , 1 ) - 1 
I N D E X D C I , J , 2 ) . 8 

1.8 
1.8 

T H E R E WILL S T I L L BE A DRIP DUE 
TO DROP RUN OFF FROM THE S U R F A C E 

V O L U M N C I , J ) 
N U M D R P C I , J ) 

. P I ' R D I R C I , J ) * * 2 * W F T H C J ) 

. C U M D H A C I , J ) / V O L U M D C I , J ) 

C O N T I N U E 

P R C I . 1 , 1 ) - F R A C I , 1 , 1 ) * F R A C I , 2 , 1 ) 
P R C I . 1 , 2 ) = F R A C I , 1 , 1 ) * F R A C I , 2 , 2 ) 
P R O , 2 , 1 ) - FRACI , 1 , 2 ) * F R A ( I , 2 , 1 ) 
P R O , 2 , 2 ) - FRACI , 1 , 2 ) * F R A C I , 2 , 2 ) 
I P R C I . 1 , 1 ) - I N D E X D C I , 1 , 1 ) * I N D E X D C I , 2 , 1 ) 
I P R C I . 1 , 2 ) . I N D E X D C I , 1 , 1 ) * I N D E X D C I , 2 , 2 ) 
I P R C I . 2 , 1 ) . I N D E X D C I , 1 , 2 ) * I N D E X D C I , 2 , 1 ) 
I P R C I , 2 , 2 ) . I N D E X D C I , 1 , 2 ) « I N D E X D C I , 2 , 2 ) 

T O T P R O C D - P R C I , l , l ) + P R C I , l , 2 ) * P R C I , 2 , l ) + PRCI 
I T O T P R C D - R E A L C I P R C I , l , l ) ) * P R C I , l , l ) 

1 + R E A L ( I P R C I , 1 , 2 ) ) * P R ( I , 1 , 2 ) 
1 + R E A L C I P R C I , 2 , 1 ) ) * P R C I , 2 , 1 ) 
1 + R E A L C I P R C I , 2 , 2 ) ) ' P R C I , 2 , 2 ) 

C O N T I N U E 

2 , 2 ) 

DO 2 5 1 1 I - 1 , I T A , 1 

T O T L E - T O T L E + S L C I ) 
T O T A L Q . T O T A L Q + S H C D 

T R A N S P - T O T L E / L A M D A 

R L N T O P - R L D O W N C I T A ) - R L U P C I T A ) 
R L N B T M - R L U P C 8 ) - R L D O « N C 0 ) 
R L N E T = R L D 0 W N C I T A ) - R L D 0 * N C 8 ) + R L U P C 8 ) - R L U P C I T A ) 
R N E T O T = T O T E N E + R L N E T 
E N E R E R - R N E T O T - T O T L E - T O T A L Q - S T O R A G 
S O I L L N = R L D O « N C 0 ) - R L U P C 8 ) 
S O I L R N - S O I L L N t S O I L S N 

IF C E N E R E R . C T . 1 . ) T H E N 

DO 3 0 0 0 I - l . I T A . l 
DO 3 8 8 1 , K - l , 2 , 1 

DO 3 0 0 2 J - 1 , 2 , 1 

H R I T E C 2 6 , ' ) I,K,J, L W L F N C I , 1 , K , J ) , S E N S H C I , 1 , K , J ) 
1 , L E F L U X C I , l , K , J ) , F L U X U P C I , l , K , J ) , N O N S T C I , l , K , J ) 
1 , E N E R G C I , 1 , K , J ) , E R R C I , 1 , K , J ) , R A B L C I , 1 ) 
1 , E R R C I , 1 , K , J ) 
1 , L W L F N C I , 2 , J , K ) , S E N S H C I , 2 , J , K ) , L E F L U X C I , 2 , ) , K ) 
1 , F L U X B T C I , 2 , J , K ) , N O N S T C I , 2 , : , K ) , E N E R G C I , 2 , J , K ) 
1 , E R R C 1 , 2 , J , K ) 
1 , R A B L C I , 2 ) , C O N D U H C I , l , K , J ) , C O N D U H C I , 2 , J , K ) 

W R I T E C 2 6 , * ) 
W R I T E C 2 6 , * ) 
W R I T E C 2 6 , ' ) ' S E C O N D S E G M E N T ' 

« R I T E C 2 6 , « ) I , L * L F N C I , 1 , K , J ) , L » L F N C I , 2 , J , K ) , S E N S H C I , 1 , K , J ) 
1 , 5 E N S H C I , 2 , J , K ) , L E F L U X C I , 1 , K , J ) , L E F L U X C I , 2 , J , K ) 
1 . N O N S T C I , 1 , K , J ) , N O N S T C I , 2 , J , K ) 
1 , E R R C I , 1 , K , J ) , E R R C I , 2 , J , K ) 

C 3 8 0 2 
C 3 0 0 1 

C O N T I N U E 
C O N T I N U E 

K R I T E C 2 6 , « ) 
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cc 
c 
c 
c 
C 3 0 0 0 
c 
c E N E R E R ' , E N E R E R 

W R I T E C 2 6 , * ) 
W R I T E ( 2 6 , • ) 

W R I T E C 2 6 , * ) I , L A Y S E N ( I ) , L A Y L E F ( I ) , S T O R ( I ) , L * L A Y R ( I ) , L A Y B A L ( I ) 
W R I T E C 2 6 , * ) 
C O N T I N U E 
W R I T E C 2 6 , • ) 
W R I T E C 2 6 , * ) 

E N O I F 

M S 2 - 1 

R E T U R N 
END 

c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 

S U B R O U T I N E P L A N T C I N I , 
D T , D T 1 , 
R A D I U S , R A D I U 2 , L V , K W A T E R , 
S L . R O O T R S , 
P S I S O L , 
T O T U P , F , R T I M E , S T A R T , D A Y N U M ) 

c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 

I M P L I C I T N O N E 

I N T E G E R INI 

$ I N C L U D E : A C O N S T . F O R / L 
$ I N C L U D E : A L I M I T . F O R / L 
S I N C L U D E : A B L A N K . F O R / L 
$ I N C L U D E : A P L A N T . F O R / L 

S A V E / A P L A N T / 

R E A L * 8 S L ( I 8 : I H ) 

REAL D T . D T 1 , 
R A D I U S C I S : 0 ) , R A D I U 2 ( I B : 0 ) , L V ( I B : 8 } , K W A T E R ( I S : e ) , 
R O O T R S C I B : 0 ) , 
P S I S O L Ç I S : 0 ) 

REAL P R O D 
REAL F 

C C C C C C C C C C C 

I N T E G E R I , J , I H L , I S L , I T E R , I T R A , D A Y N U M , N U M B , G I T R A , G I T R 

REAL D O S M O C I S : I T B . 0 : S ) ! c h a n g e in o s o t i c p o t e n t i a l 
REAL Q R ( I S : 0 ) 
REAL P S I X Y T C I S : I T B , 0 : 5 ) 

REAL A V G C I S : I H , 0 : 4 ) 

REAL C D X C 1 : I H , 1 : 5 ) 
The c o u p l i n g c o e f f i c i e n t s for w a t e r flow w i t h i n the p l a n t , the e n d s of the w o r d : 
C s ) s o u t h , ( N ) n o r t h , E ( e a s t ) , W ( w e s t ) , ( v ) v e r t i c a l , H C h o r i z o n t a l , a n d the 
b e g i n n i n g l e t t e r s E, G and F ore d e f i n e d in the same way as 4 . 2 . 7 4 but 

D i s the c o n s t a n t term in the d i s c r e t i z e d for w a t e r f l o w w i t h i n the p l a n t . 
e q u a t i o n . 

R E A L ' 8 E P S C I S : I T B . 0 : 5 ) 
R E A L * 8 G P N C I S : I T B . 8 : 5 ) 
R E A L ' 8 F P V ( I S : I T B , 0 : 5 ) 
R E A L * 8 D P V C I S : I T B , 0 : 5 ) 
R E A L ' 8 E P W ( I S : I T B , 0 : 5 ) 
R E A L * 8 G P E C I S : I T B . 0 : 5 ) 
R E A L * 8 F P H C I S : I T B , 0 : 5 ) 
R E A L * 8 D P H C I S : I T B . 0 : 5 ) 

R E A L * 8 A U X V C I S : I T B ) 
R E A L ' 8 A U X L ( I S : I T B ) 

R E A L * 8 C B L O C K C I S : I T B ) 
R E A L * 8 B B L O C K C I S : I T B ) 
R E A L * 8 D B L O C K Ç I S : I T B ) 
R E A L * 8 A B L O C K C I S : I T B ) 

REAL E R R O R C I S : I H , 8 : 5 ) 
REAL A L P H A P 
REAL B 
REAL T O T U P 
REAL T O T U P L 
REAL F R A R U P ( I B : 8 ) 
REAL E R R M A X , E R R M A G 
REAL D I F F E R C I S : I T B , 0 : 5 ) 
REAL C O N V E R , C R I T R , R A T I O X , E R R S O 
I N T E G E R M S 2 , M S I . M A X I T R 
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REAL T I M E , S T A R T 
C H A R A C T E R T 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C S T A R T OF TH C A L C U L A T I O N 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

J I N C L U D E : V A L U E S . D A T / L 

R A T I O X - 0 . 0 3 
E R R S O = 0 . 0 
A L P H A P = - 1 . 4 E - 1 8 
B= 4 E - 9 

T = C H A R ( 9 ) 

M S 2 - 1 
M S 1 = 1 
M A X I T R - 4 0 
N U M B - I N T C D T / D T 1 ) 

IF C ( ( A B S C T I M E - S T A R T ) ) . L T . 0 . 5 ) . A N D . C D A Y N U M . E Q . 2 3 e ) ) T H E N 

M S 2 - 8 
M S 1 - 0 
M A X I T R - 8 8 

IF C I N I .EQ. 0 ) T H E N 

M S 2 -
M S 1 -
M'.XI 

A R ( 0 

1=8 

DO 1 

IF 

1 
TR = 88 

,8) - P I * C B A S E D I ) * ' 2 / 4 * R A T I 0 X 

) I . I S A + 1 , I T A + 1 , 1 

CI .LE. 0 ) THEN 

A R ( I - l . J ) - A R C 8 . 0 ) * E X P C - F * A B S C Z ( I - 1 ) ) ) 
A R ( I , 1 ) = C - E X P C - F " A B S C 2 C I - 1 ) ) 3 

+ E X P C - F » A B S C Z C I ) ) ) ) * A R C 0 , 0 ) 

A R C I , J ) - A R ( 0 , 0 ) * 
1 C C U M L A I C D + 0. 1 0 ' Z C I ) / Z C I T A ) ) 
1 / C U M L A I C 8 ) 

A R C I . l ) = A R C I - 1 , J ) - A R ( I , J ) 
A V G C I . J ) - C A R C I - 1 , J 5 + A R C I , J ) ) / 2 . 

E N D I F 

C O N T I N U E 

DO 20 1 . 1 , I T A + 1 , 1 

C D X C I . l ) . 0 X 0 , 8 ) 

DO 38 J - 2 , 5 , 1 

C D X C I , J ) - C D X C I , J - 1 ) + D X C I , J - 1 ) 
A R C I , J ) = A R C I , 1 ) 
A V G C I , J - D - A R C I ,1) 

! T H A T D E P E N D S ON 
i. THE D I S T R I B U T I O N OF THE LEAF AREA A L O N G THE B R A N C H 

A R C I , J ) - A R C I , 1 ) * C 1 - C D X C I , J ) / T 0 T D X C D ) 
A V G C I , J - l ) - C A R C I , 3 - l ) + A R C I , J ) ) / 2 . 

! IN T H I S CASE A D I F F E R E N T D I S T R I B U T I O N OF THE 
! SINK TERM FOR H20 »ILL BE G I V E N . 

38 
20 

C O N T I N U E 
C O N T I N U E 

I T E R - 8 
C R I T R . l . 8 E -

I H L - 5 
I S L - 8 
E R R M A G - 0 . 0 

W A T E R F - 8 . 0 
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TOTUP.e.a 

TOTUPL.0.0 

DO 1881 GITR=ISA+1,0,1 

ROOTUP(GITR).0.8 

CONTINUE 

DO 1908 GITRA=1,NUMB,1 
EPSCISA,JJ - 8 . 8 
GPNCISA,J) . 8 . 8 
FPVCÏSA,J) = 1 . 0 
DPVCISA.J) - PSIS0L(ISA)*RH0'GR/18E6 

CBLOCKÇISA) - EPS(ISA.J) 
BBLOCK(ISA) - GPN(ISA.J) 
ABLOCK(ISA) - FPV(ISA,J) 
DBLOCK(ISA) • DPV(ISA.J) 

DO 488 ITRA.l.MAXITR,1 

ERRSO-8.8 

J-8 

ERRMAX-0.0 

DO 100 I = ISA + 1,ITA, 1 

E P S O . J ) = ARCI-1, J)/AR(0,0;*KXYLUM(I-1, J) 
/C0.5*CDZ(I-1)+DZ(I))) 

GPNCI, J) -ARCI,J)/ARC8,e)*KXYLUMCI,J) 
.5«CDZ(I)+DZCI+1))) 

IF (I.GT.0) THEN 

IF CITER.EQ.0) THEN 

DPVCI.J) - PSIXYLCI,1,1)/RLS(I) 
•REAL(MSl) • PSISCI, J.D/RSCI, J) 

+REAL(MS2)*AVGCI,J) 
/CELASTI(I,l)+OSMOTICI,J,l)) 

* DZ(I)/DT1'PSIXYLCI,J,1) 

DPVCI,J)»PSIXYLCI,1,2)/RLSCI) 
+REALCMS1) • PSISCI,J,1)/RS(I,J) 

+REALCMS2)' AVGCI.J) 
/(ELASTICI,l)+OSMOTI(I,J,l)) 
*OZCI)/DTl*PSIXYLCI,J,l) 

FPV(I,J)= EPS(I , JJ-tGPNO , J) 
+1./RLS(I)+RE»LCMS1)«1./RS(I,J) 
+AVG(I,J)/CELASTI(I,l)+OSMOTI(I,J,l)) 
•REAL(MS2)*DZ(I)/DT1 

IFCCITER.EQ.85.OR.CINI.EQ.0)) THEN 

C 0 N T R S C D = 8 . e ITHEY HAVE TO BE GLOBAL 
S O I L R S ( I ; « 0 . 0 ITHEY HAVE TO BE GLOBAL 

C O N T R S Ç I ) = 0 . 8 ! c o n t a c t r e s i s t a n c e i s z e r o 
S O I L R S Ç I ) - R H O • G R * 

A L 0 G C R A 0 I U 2 C I ) / R A D I U S C D J 
/ C 1 * D Z ( I ) * Z * P I * K W A T E R ( I ) 
• L V C D * 1 8 E 6 ) 

! e q . 4 . 5 . 1 2 G a r d n e r ( I 9 6 0 ) 

O P V C I , J ) - P S I S O L C D * R H O ' G R / C 1 0 E 6 
• P L A N T N ' C R O O T R S C U t S O I L R S C I J - t C O N T R S C I ) ) ) 

+ R E A L C M S l ; * P S I S ( I , J , l ) / R S C I , J ) 
+ R E A L ( M S 2 ) * A R ( I , J ) 
/ ( E L A S T I C I , l ; + O S M O T I ( I , J , l ) ; 
* D Z C D / D T l ' P S I X Y L C I , J , l ; 

F P V ( I , J ) - E P S C I , J ) + G P N C I , J ) + 1 / 
( P L A N T N « ( R O O T R S ( I ) + S O I L R S ( I ) + C O N T R S ( I ) ) ) 
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+ R E A L C M S 1 ) * 1 / R S ( I , J ) + R E A L ( M S 2 ) , A R ( I , J ) 
/ C E L A S T I C I , 1 ) + 0 S M 0 T I C I , J , 1 ) ) 
* D Z ( I ) / O T l 

ENDIF 

C B L O C K C I ) 
B B L O C K C I ) 
A B L O C K C I ) 
D B L O C K C I ) 

CONTINUE 

• E P S C I , J ) 
• G P N ( I , J ) 
. F P V C I , J ) 
= D P V ( I , J ) 

R S C I T A + l . J ) SHOULD BE VERY LARGE 

E P S C I T A + l . J ) . K X Y L U M C I T A , J ) / C B . 5 ' D Z ( I T A ) ) 
G P N C I T A + 1 , J ) . 0 . 8 
O P V C I T A + l , J ) . R E A L C M S 2 ) * A R ( I T A + l , J ) / ( E L A S T I C I T A + l , l ) 

+ O S M O T I C I T A + 1 , J , 1 ) ) 
* 0 . 0 1 / D T 1 « P S I X Y L C I T A + 1 , J , 1 ) 

D P V C I T A + l . J ) . 0 . 0 + P S I S C I T A + l , J , l ) / R S C I T A + l , J ) 
+ A R C I T A + 1 , J ) / C E L A S T I C I T A + 1 , 1 ) 
+ O S M O T I C I T A + 1, J , 1 ) ) 
» 8 . 0 1 / D T 1 * P S I X Y L ( I T A , J , 1 ) 

F P V C I T A + 1 , J ) . 0 . 0 + 1 / R S C I T A + l , J ) + E P S C I 1 A + l , J ) + G P N ( I T A + 1 , J ) 
: + A R C I T A + l , J ) / C E L A S T I C I T A + l , l ) + O S M O T I C I T A + l , J , l ) ) 

* 0 . 0 1 / D T 1 

F P V C I T A + 1 , J ) = E P S C I T A + 1 , J ) + G P N C I T A + 1 , J ) 
+ R E A L C M S 2 ) * A R C I T A + 1 , J ) / C E L A S T I C I T A + 1 , 1 ) 

+ O S M O T I C I T A + 1,J , 1 ) ) 
• 8 . 0 1 / D T 1 

C B L O C K C I T A + 1 ) - E P S C I T A + l . J ) 
B B L O C K C I T A + 1 ) « G P N C I T A + 1 , J ) 
A B L O C K C I T A + 1 ) - F P V C I T A + 1 , J ) 

D B L O C K C I T A + 1 ) = O P V ( I T A + l , J ) 

CALL T H O M C I T A , I S A , C B L O C K . B B L O C K . D B L O C K , A B L O C K , A U X V ) 

IF C M S 2 . E Q . 8 ) THEN 

P S I X Y T C I T A + 1 , 0 ) . P S I X Y L C I T A + 1 , 0 , 1 ) 

ELSE IF C I T E R . E Q . 0 ) T H E N 

P S I X Y T C I T A + 1 , 0 ) - 0 . 0 

ELSE 

P S I X Y T C I T A + 1 , 8 ) = P S I X Y L C I T A + 1 , 0 , 2 ) 

E N O I F 

P S I X Y L C I S A , 0 , 2 ) - R E A L C A U X V C I S A ) ) 
P S I X Y L C I T A + 1 , 0 , 2 ) - R E A L C A U X V C I T A + l ) ) 

D I F F E R C I T A + 1 , 8 ) - PS I X Y L C I T A + 1 , 8 , 2 ) - P S I X Y T C I T A + 1 , 8 ) 

DO 158 I - I S A + 1 , I T A 

IF C M S 2 . E Q . 0 ) THEN 

P S I X Y T C I , J ) = P S I X Y L C I , J , 1 ) 

ELSE IF C I T E R . E Q . 8 ) THEN 

P S I X Y T C I , J ) = 8 . 8 

E L S E 

P S I X Y T C I , J J - P S I X Y L C I , J , 2 ) 

E N D I F 

P S I X Y L C I , J , 2 ) . R E A L C A U X V C D ) 

E R R O R C I . J ) = - F P V C I , J ) * P S I X Y L C I , J , 2 ) 
+ E P S C I , J ) * P S I X Y L C I - 1 , J , 2 ) 
+ G P N C I , J ) ' P S I X Y L C I + 1 , J , 2 ) + D P V C I , J ) 

D I F F E R C I . J ) - P S I X Y L C I , J , 2 ) - P S I X Y T C I , J ) 
ERRMAX . M A X C E R R M A X , A B S C D I F F E R C I , J ) ) ) 
E R R S O - M A X C E R R S O , E R R O R C I . J ) ) 

C O N T I N U E 

I T E R . l 

DO 300 1 = 1,ITA, 1 
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E P W ( I , 0 ) . 8.0 
G P E C I , 0 ) - 0.0 
D P H C I , 0 ) = P S I X Y L C I , 0 , 2 ) 
F P H C I , 0 ) = 1.00 

C B L O C K C 0 ) = E P W C I , 0 ) 
B B L O C K ( 0 ) - G P E C I , 0 ) 
D B L O C K C 0 ) - D P H C I . 0 ) 
A B L O C K C 0 ) - F P H C I , 0 ) 

DO 200 J - l , S , 1 

IF C J • E Q . 5 ) T H E N 

K X Y L U M C I , J ) / C 8 . 5 * C D X ( I , J - 1 ) + D X C I , J ) ) ) E P W C I , I ) -
G P E C I , J ) ' 

E L S E 

E P W C I , J ) - K X Y L U M C I , J ) / C 0 5 * C D X C I , J - 1 ) + D X C I , J ) ) ) 

G P E C I , I ) = K X Y L U M C I , J + l ) 

/ C 0 . 5 ' C D X C I , J ) + D X C I , J + 1 ) ) ) 

E N D I F 

IF C J • E Q . 1 ) T H E N 

E P W C I , J ) - 1 . / C B R A N C N C I ) " R L S C I ) ) 
D P H C I , J 3 - A R C I , J ) 

/ C E L A S T I C I , 1 ) + O S M O T I C I , J , 1 ) ) 
* R E A L ( M S 2 ) * D X ( I , J ) / D T 1 * P S I X Y L ( I , J , 1 ) 
+ R E A L C M S 1 ) ' P S I S C I , J , 1 ) / R S C I , I ) 

F P H C I , J ) = E P W C I , J ) + G P E C I , D 
• A R U , I ) 
/ C E L A S T I C I , 1 ) + O S M O T I C I , 3 , 1 ) ) 

*REALCMS2)*DXCI ,JVDT1 
+REALCMS1)*1 . /RSCI ,J ) 

ELSE IF C I . L T . 5 ) THEN 

D P H C I , J ) - A R ( I , J ) 
/ C E L A S T I C I , l ) + O S M O T I C I , J , D ) 

* R E A L C M S 2 ) * D X C I , J ) / D T 1 ' P S I X Y L C I , J , 1 ) 
+ R E A L C M S 1 ) ' P S I S C I , J , 1 ) / R S C I , J ) 

FPHCI ,J ) .EPWCI , . ) ) + GPECI,J) + A R C I , J ) / 
C E L A S T I C I , l ) + O S M O T I C I , J , D ) 
*R6ALCMS2)*DXCI ,J ) /DT1 
+REALCMS1)* ! . /RSCI , J ) 

D P H C I , J ) - A R ( I , J ) 
/ C E L A S T I C I , l ) * O S M O T I C I , J , D ) 

* R E A L C M S 2 ) * D X C I , J ) / D T 1 ' P S I X Y L C I , J , 1 ) 
+ R E A L ( M S l J * P S I S ( I , J , l ) / R S ( I , J ) 
- A M A X 1 C S N G L C S L C 1 ) 5 , 0 . 0 ) 
/ C L A M D A ' R H O » B R A N C N C I ) * P L A N T N ) 

F P H C I , J ) . E P W C I , J ) + G P E C I , J ) + A R C I , J ) / 
C E L A S T I C I , l ) t O S M O T I C I , J , l ) ) 
» R E A L C M S 2 ) * D X C I , J ) / D T 1 
• R E A L C M S 1 ) ' ! . / R S C I , J ) 

C B L O C K C J ) . E P W C I , J ) 
B B L O C K C J ) - G P E C I , I ) 
D B L O C K C J ) - D P H C I , J ) 
A B L O C K C J ) - F P H C I , J ) 

CALL T H O M C I H L , I S L , C B L OC K , BB LO C K , DBL OC K , AB L OC K , AU X L ) 

DO 250 J-l , 5,1 

IF C M S 2 . E Q . 0 ) THEN 

P S I X Y T C I . J ) - P S I X Y L C I , J , 1 ) 

ELSE IF C I T E R . E Q . 0 ) T H E N 

P S I X Y T C I , J ) = 0 . 0 

ELSE 

P S I X Y T C I , J ) - P S I X Y L C I , J , 2 ) 

ENDIF 

255 



P S I X Y L ( I , J , 2 ) . R E A L ( A U X L ( J ) ) 
D I F F E R ( I , J ) - P S I X Y L ( I , J , 2 ) - P S I X Y T ( I , J ) 
ERRMAX - M A X ( E R R M A X , A B S ( D I F F E R ( I , J ) ) ) 

C O N T I N U E 

00 2 5 1 J = l , 4 , 1 

E R R 0 R C I , J ) = - F P H ( I , J ) ' P S I X Y L C I , J , 2 ) 
+ E P W ( I , J ) * P S I X Y L ( I , J - 1 , 2 ) 
+ G P E C I , J ) ' P S I X Y L ( I , J + l , 2 ) 
+ D P H C I , J ) 

E R R S 0 « M A X C E R R S 0 , E R R 0 R C I , J ) ) 

251 C O N T I N U E 

3 0 0 C O N T I N U E 

IF ( E R R M A X .LT. C R I T R ) THEN 

GO TO 500 

ENDIF 

IF ( ( E R R M A X . G E . C R I T R ) . A N D . ( M S 2 . E Q . 0 ) ) THEN 

J.0 

DO 9 0 1 I - I S A + 1 , I T A , 1 

P S I X Y L ( I , J , 1 ) . P S I X Y L ( I , ] , 2 3 

C A ( I , J ) - V O L U M E C I . J ) 
1 / ( E L A S T K I , 2 ) + 0 S M 0 T I ( I , J , 1 ) ) 

P S I S ( I , J , 2 ) - P S I S ( I , J ,1) 
+ 1 / C A ( I , J ) * ( P S I X Y L ( I , J , 2 ) - P S I S ( I , J , 1 ) ) 
• 1 / R S ( I , J ) 

C P S I S O , J ,1) - P S I S ( I , J , 2) 

9 0 1 C O N T I N U E 

DO 4 5 0 1-1 , I T A , 1 

DO 1 0 0 4 J « l , 5 , 1 

P S I X Y L ( I , J , 1 ) - P S I X Y L ( I , J , 2 ) 
C A ( I , J ) = V 0 L U M E ( I , J ) / ( E L A S T I ( I , 2 ) 

+ O S M O T K I , J , 1 ) ) 

P S I S ( I , J , 2 ) - P S I S ( I , J , 1 ) 
+ 1 / C A ( I , J ) * ( P S I X Y L ( I , J , 2 ) - P S I S ( I , J , 1 ) ) 
* 1 / R S ( I , J ) 

C P S I S O , J , 1 ) - P S I S ( I , J , 2 ) 

1 0 0 4 C O N T I N U E 

4 5 0 C O N T I N U E 

E N O I F 

4 0 0 C O N T I N U E 

500 C O N T I N U E 

W A T E R F - * A T E R F - G P N ( 0 , 0 ) * ( P S I X Y L ( 1 , 0 , 2 ) - P S I X Y L ( 0 , 0 , 2 ) ) 
1 » P L A N T N / C U M L A I ( 0 ) 

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 
C C A L C U L A T I O N OF THE NEW V A R I A B L E S 
C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

DO 6 0 0 I - I S A + 1 , I T A , 1 

C A ( I , J ) - V 0 L U M E ( I , J ) / ( E L A S T I ( I , 2 ) + 0 S M 0 T I ( I , J , 1 ) ) 

V 0 L M E N ( I , J ) = V 0 L U M E ( I , J ) + ( P S I X Y L ( I , J , 2 ) - P S I S ( I , J , 1 ) ) 
* R E A L ( M S 1 ) * 1 . / R S C . I . J ) 

D 0 S M 0 ( I , J ) . R E A L ( M S 1 ) * D T 1 * 
( P S I X Y L ( I , J , 2 ) - P S I S ( I , J , 1 J ) 
/ ( R S ( I , J ) * V O L U M E ( I , J ) ) 

STILL S O M T H I N G IS M I S S I N G 
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0SM0TI(I,J,2J=0SM0TI(I,J,1)+D0SM0(I,J) 

CANCI,J) 
TIMEPLCI,J) = 

.V0LMENCI,J)/CELASTICI,2)+0SM0TICI,J,2)) 
CACI,J)'RSCI , J) 

IF (MS2.EQ.1) THEN 

PSISCI,J ,2)-PSISCI, J ,1) 
+1/CACI,J)-(PSIXYL(I , J 
•1/RSCI,J) 

ENDIF 

CONTINUE 

2)-PSISCI , J , D ) 

DO 700 1 = 1,ITA,1 
DO 750 J = l,5,1 

CACI, J) »VOLUME(I,J)/CELASTI(I,2) 
tOSMOTICI,J,1)) 

VOLMENCI,J)-VOLUME(I, J) 
+REALCMS1) 
*CPSIXYL(I,J,2)-PSIS(I,J,1)) 
•1/RSCI,J) 

DOSMOCI,J)-REALCMSl)*DTl* 
CPSIXYLCI,J,2)-PSISCI,J,D) 

/(RSCI,J)'VOLUME(I,J)) 

05MOTICI,J,2)=OSMOTI(I,J,l) 
+ DOSMOCI , J) 

CANCI.J) =VOLMEN(I,J)/ 

CELASTI(I,2)+OSMOTI(I,J,2)) 

TIMEPLCI,])- CACI,J)*R5CI,J) 

IFCMS2.EQ.0) THEN 
P5ISCI , J ,2)=PSISCI,J,1) 

+ 1/CACI, J) 
*(PSIXYL(I,J,2)-PSIS(I,J,1)) 
•1/RSCI , J) 

ENDIF 

CONTINUE 

CONTINUE 

DO 800 I=ISA+1,0,1 

100 

950 

ROOTUPCD-ROOTUPCI) 
+CPSISOLCI)*RHO*GR/10E6-PSIXYLCI,0,2)) 

/CROOTRSCI) + SOILRSCD + CONTRSCI)) 

TOTUP-TOTUP + ROOTUPCD 

TOTUPL=TOTUPL+AMAX1CROOTUPCI),0.0) 

CONTINUE 

J=0 

DO 900 I=ISA, ITA + 1,1 

PSIXYLCI,J,1)-PSIXYLCI,J,2) 
PSISCI,J,1) -PSISCI,J,2) 

CONTINUE 

DO 950 1=1,ITA,1 

DO 1000 J-l,5,1 

PSIXYLCI,J,D-PSIXYLCI,J,2) 
PSISCI , J , D-PSISCI , J , 2) 

CONTINUE 

CONTINUE 

MS2 = 1 
MS1 = 1 
MAXITR-40 

ERRMAG=AMAX1CERRMAX,ERRMAG) 

CONTINUE 

PROD = 0.0 
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DO 8 1 0 L I S A . 1 , 0 , 1 

F R A R U P ( I ) = A M A X 1 ( R O O T U P C I ) , 0 . 0 ) / T O T U P L 
PROD - PROD + F R A R U P ( I ) * A L P H A P * P S I S O L ( I S A ) 

"RHO'GR 

R O O T U P C D - R O O T U P C D / R E A L C N U M B ) 

CONTINUE 

I F ( W A T E R F . L T . 0 . 0 ) THEN 

ABACON - 0 . 0 

ELSE 

A B A C O N = P R O D / C A M A X 1 C C W A T E R F / R E A L C N U M B ) ) , 0 . 0 ) + B ) 

E N D I F 

IF C C E R R M A X . G E . C R I T R ) ) THEN 

W R I T E C * , * ) 'AN ERROR WITH THE C O N V E R G E N C E ' , 
' OF THE P L A N T WATER M O V E M E N T ' 

W R I T E C * , * ) ' E R R M A X , E R R M A G - ' ,ERRMAX,ERRMAG 
W R I T E C * , * ) 
W R I T E C ' , * ) ' ERRSO= ',ERRSO 
W R I T E C » , * ) 
W R I T E C 2 6 , * ) 'AN ERROR WITH THE C O N V E R G E N C E ' , 

' OF THE PLANT WATER M O V E M E N T ' 
W R I T E C 2 6 , * ) ' E R R M A X . ',ERRMAX 
W R I T E C 2 6 , * ) 
W R I T E C 2 6 , * ) ' ERRSO= ',ERRSO 
W R I T E C 2 6 , 

ENDIF 

I N I . l 

C O N T I N U E 

') 

RETURN 

END 

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

S U B R O U T I N E R E S I S C I T R M , I T R A , F L A G , 
1 L E F L , R C U T I , 
1 G R A S H , N U , R E Y N O L , N U F O R C , N U F R E E , 
1 L I G H T , U N E W , G A M M A T , F G .AVGTLF , 
1 R B , R S T , R L E A F , C U M D E W , 
1 H T , H E , H E N D , P O R , V G A S , 
1 P S I S , T I M E , A B A C O N ) 

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

I M P L I C I T NONE 

I I N C L U O E : A L I M I T . F O R / L 
» I N C L U D E : A B L A N K . F O R / L 
» I N C L U D E : A C O N S T . F O R / L 

I N T E G E R I T R M , I T R A , F L A G 

R E A L * 8 L E F L C I B : I H , 1 : 2,1:2,1 : 2) 
REAL R C U T I C 1 : I T , 2 ) 
REAL G R A S H C 0 : I T ) , N U C 0 : I T ) , R E Y N O L C 0 : I T ) 
REAL N U F O R C C 0 : I T ) , N U F R E E C 0 : I T ) 
REAL L I G H T C 0 : I H , 1 : 2 ) , U N E W C 0 : I T B ) , G A M M A T C 1 : I T ) 
REAL F G C 1 : I T , 1 : 2 ) , A V G T L F C 1 : I T ) , R B C 0 : I T ) , R S T C 0 : I T , 1 : 2 ) 
REAL R L E A F C 1 : I T , 1 : 2 ) , C U M D E W C 1 : I T , 1 : 2 ) 
REAL H T C « : I T ) , H E C 0 : I T , 1 : 2 , 1 : 2 ) , H E N D C 1 : I T , 1 : 2 ) 
REAL P O R C I S : 0 ) , V G A S C I S : 0 ) 
REAL P S I S C I S : I T B , 0 : 5 , 1 : 2 ) 

REAL T I M E , A B A C O N 

C H A R A C T E R T 

I N T E G E R I , J 
REAL ETA 
REAL DIFF 

REAL G S C 1 : I T , 2 ) 
REAL L C O N D U C I T . 2 ) 
REAL C 0 2 S E T C 2 . I T ) 
REAL F 1 C 1 : I T , 1 : 2 ) 
REAL F 2 C 1 : IT,1 : 2) 
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REAL C R I T E R ( 0 : I T ) 
REAL R B O L ( 0 : I T ) 

REAL BC 
REAL A L P H A , G S M I N , D E L T A , B E T A , G S M A X 
REAL D I F F E R 

S I N C L U D E : V A L U E S . D A T / L 

A L P H A . 0 . 2 S 4 4 6 8 
D E L T A . 2 . 9 8 
B E T A - 0 . 0 0 0 1 2 0 
G S M I N . 0 . 0 0 0 5 
ETA - 1 4 . 2 E - 6 
D I F F . 2 0 . 2 E - 6 

T - C H A R ( 9 ) 

I F C I T R M .EQ. 0 ) T H E N 

A B A C O N . 0 . 0 
V G A S ( 0 ) . 0 . 0 

E N D I F 

GSMAX = 0 . 0 0 5 

DO 200 1 - 1 , I T A , 1 

R C U T I C I , 1 ) . 2 0 0 0 . 
R C U T I ( I , 2 ) = 2 0 0 0 . 

I F C L I G H T C I , 1 ) . G T . 0 . 0 0 0 1 ) THEN 

F l ( I , l ) . l . 0 / ( 1 + 1 0 0 . / L I G H T ( I . l ) ) 
!The l i g h t f u n c t i o n for s t o m a t a l r e s i s t a n c e . 

ELSE 

F 1 ( I , 1 ) . 0 . 0 

E N D I F 

I F ( L I G H T ( I , 2 ) . G T . 0 . 0 0 0 1 ) THEN 

F 1 ( I , 2 ) . 1 . 0 / ( 1 + 1 0 0 . / L I G H T ( I , 2 ) ) 

ELSE 

F 1 ( I , 2 ) = 0 . 0 

E N D I F 

IF ( I T R M . G T . 0 ) THEN 

F 2 ( I , 1 ) . E X P ( - B E T A * A B A C O N * E X P ( D E L T A * PS I S ( I , 5 , 2 ) ) ) 
F 2 C I . 2 ) . E X P ( - B E T A * A B A C O N * E X P C D E L T A « PS I S ( I , 5 , 2 ) ) ) 

! The s e c o n d term in eq. 4.S.1S 
ELSE 

F 2 ( I , 1 ) . E X P ( - B E T A * A B A C O N * E X P ( D E L T A * PS I S ( I , 5 , 1 ) ) ) 
F 2 ( I , 2 ) . E X P ( - B E T A * A B A C O N * E X P ( D E L T A * PS I S C I , 5 , 1 ) ) ) 

G S C I . l ) - G S M I N + ( G S M A X - G S M I N ) * F 1 ( I , 1 ) * F 2 C I , 1 ) 
G S ( I , 2 ) - G S M I N + ( G S M A X - G S M I N ) * F 1 ( I , 2 ) * F 2 ( I , 2 ) 

R S T C I , 1 ) = 1 . / G S ( I , 1 ) 
R S T C I , 2 ) - l . / G 5 ( I , 2 ) 

L C O N D U ( I , l ) = G S ( I , l ) + l / R C U T I ( I , l ) 
L C O N D U ( I , 2 ) « G S C I , 2 ) + l / R C U T I ( I , 2 ) 

R L E A F ( I , l ) - l . / L C O N D U ( I , l ) 
R L E A F ( I , 2 ) » l . / L C O N D U ( I , 2 ) 

R E Y N O L ( I ) - U N E W ( I ) * D L E A F / E T A 
R B O L ( I ) = C L E A F * ( D L E A F / U N E W ( I ) ) * * ( 0 . 5 ) 

IF ( I T R M . E Q . 0 ) T H E N 

N U ( I ) - 1 . 0 8 * 0 . 8 9 * R E Y N O L ( I ) * * 0 . 5 

! Look at M o n t e i t h & U n s w o r t h ( 1 9 9 0 ) and G a t e s ( 1 9 8 0 ) 
ELSE 

D I F F E R - A V G T L F ( I ) - S N G L ( T E M A I R ( I ) ) 

G R A S H ( I ) - GR * D I F F E R 

* D L E A F " 3 / ( 2 7 3 * E T A ' * 2 ) 

C R I T E R ( I ) = G R A S H ( I ) / R E Y N O L ( I ) * * 2 

N U F O R C ( I ) - 1 . 0 8 * 0 . 8 9 ' R E Y N O L ( I ) * • 0 . 5 
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IF C G R A S H C I ) . L T . 1 8 E 5 ) THEN 

N U F R E E ( I ) - 0.48*CABSCGRASHCI))'B.7)"*«. 25 

ELSE 

N U F R E E ( I ) - 0. 1 3 ' G R A S H U ) * * 0 . 33 

ENDIF 

IF CCRITERCI).GE. 16.) THEN 

NUCI) - N U F R E E ( I ) 

ELSEIF C C C R I T E R C I ) • L T . 1 6 . ) . A N D . 
1 C C R I T E R C I ) . G T . 0 . 1 ) ) THEN 

N U C I ) - A M A X I C N U F R E E C D . N U F O R C C D ) 

ELSE 

N U C I ) - N U F O R C C D 

ENDIF 

ENDIF 

R B C D - D L E A F / C D I F F ' N U C I ) ) 

H T C D - P C P / R B C I ) 

H E C I , 1 , 1 ) » P C P / C G A M M A , C « . 9 3 ' R B C I ) + R L E A F C I , 1 ) ) ) 
H E C I , 2 , 1 ) = P C P / C G A M M A « C 8 . 9 3 * R B C I ) + R L E A F C I , 2 ) ) ) 

H E C I , l , 2 ) . P C P / C G A M M A * e . 9 3 * R B C D ) 
H E C I , 2 , 2 ) = P C P / C G A M M A * 0 . 9 3 * R B C D ) 

00 282 J - l , 2 , 1 

HENOCI , D - H E C I , J , 1) 

202 CONTINUE 

288 CONTINUE 

R E Y N O L C 0 ) - UNE*C1)*DCL0DS/ETA 

I F C I T R M . E Q . 0 ) THEN 

R B C 0 ) - C S O I L R » C D C L O D S / U N E W C D ) * * C 0 . 5 ) 

ELSE 
DIFFER . T E M A I R C 0 ) - T E M A I R C 1 ) 

G R A S H C 0 ) - GR'DIFFER 
1 ' D C L 0 D S * ' 3 / C 2 7 3 * E T A * * 2 ) 

C R I T E R C 0 ) - GRASHC0)/REYNOLC0)**2 
N U F 0 R C C 8 ) - 1.81*0.89* REYNOLC0)**0 . 5 

IF C D I F F E R . L T . 8 . 0 ) THEN 

N U F R E E C 0 ) = 0.23' C AB S C G R ASH C0) ) ) * * 0 . 2 5 

ELSEIF COIFFER. EQ. 8.0) THEN 

DIFFER -0.2 
GRASHC0)= G R * D I F F E R * O C L O D S * * 3 / C 2 7 3 * E T A * * 2 ) 

N U F R E E C 0 ) - 0.5 * CABSCGRASH(8)))**0.25 

ELSEIF C G R A S H C 0 ) . L E . 1 0 E 5 ) THEN 

N U F R E E C 0 ) - 8.5 * GRAS HC0)**0.25 

ELSE 

N U F R E E C 8 ) =0.13*GRASHC0)**0.33 

ENDIF 

IF C C R I T E R C 0 ) . G E . 1 6 . ) THEN 

NUC0) = N U F R E E C 0 ) 

ELSEIF C C C R I T E R C 8 ) . L T . 1 6 . ) . A N D . 
1 CCRITERC0).GT.8.1))THEN 

N U C 0 ) = A M A X 1 C N U F R E E C 0 ) , N U F O R C C 8 ) ) 
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ELSE 

N U ( 0 ) - N U F O R C ( B ) 

ENDIF 

R B ( 0 ) . D C L O O S / ( D I F F * N U ( 0 ) ) 

H T ( 0 ) - P C P / R B ( 0 ) 
R S T ( 0 , 2 ) . 1 0 8 0 0 0 0 
R S T ( 0 , 2 ) . D Z C 0 ) / V A P D I F ' V G A S C 0 ) * * C 6 . / 3 . ) / P O R C 0 ) ' 
H E ( 0 , l , 2 ) = PCP/(GAMMA*C0.93*RB(0)-fRST(0,2))) 

RETURN 

END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

S U B R O U T I N E FLUXCFLAG, 
T E M A I N , E A I R N W . N C 0 2 , 
S T O R A H , S H , S L , S I N K , 
S T O R A V , S T O R A C , 

P C S O I L . V G A S , 
T O T A L Q , T O T L E , T O T A S E , T O T A S Q , S O I L L E , 
D T . T I M E W , S O I L R N ) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
IMPLICIT NONE 

S I N C L U D E : A L I M I T . FOR/L 
$ I N C L U D E : A B L A N K . F O R / L 
$ I N C L U D E : A F L U X . F O R / L 
S I N C L U D E : A C O E F F . F O R / L 
I I N C L U D E : A C O N S T . F O R / L 

SAVE / A C F L U X / , / A C O E F F / 

INTEGER FLAG 

REAL'8 T E M A I N ( I S : I T B ) , E A I R N W ( I S : I T B ) , N C 0 2 C I S : I T B ) , 
1 S T O R A H C I S : I H ) , 
1 S H C I B : I H ) , S L ( I B : I H ) 

REAL S T O R A V ( I S : I H ) , S T O R A C ( I S : I H ) , 
PCSOIL ( I S : 0 ) , V G A S ( I S : 0 ) , 
D S D T C I S : I H ) , S I N K C I B : I H ) 

REAL T O T A L Q , T O T L E , T O T A S E , T O T A S Q , S O I L L E 
REAL SOILRN 

REAL DT,TIMEW 
CHARACTER T 

CCCCCCCCC 

INTEGER I 
S I N C L U D E : V A L U E S . O A T / L 

T = C H A R ( 9 ) 

IF ((FLAG. EQ. 0 ) . O R . ( F L A G . E Q . 1 ) . O R . ( F L A G. EQ.2))TH EN 

DO 1 5 0 1 I - I S A + 1 , I H A , 1 

A N A L O G ( I ) - - F H ( I ) " T E M A I N ( I ) + G H ( I ) , T E M A I N ( I + l ) 
+ E H ( I ) " T E M A I N ( I - 1 ) + D H ( I ) 

A N E L O G ( I ) . - F L E ( I ) * E A I R N * ( I ) + G L E ( I ) « E A I R N * l ( I + l ) 
+ E L E ( I ) ' E A I R N * ( I - 1 ) + D L E ( I ) 

A N A C 0 2 ( I ) - - F C O 2 ( I ) ' N C O 2 ( I ) * G C O 2 ( I ) * N C O 2 ( I + l ) 
+ E C 0 2 ( I ) * N C 0 2 ( I - 1 ) + D C 0 2 ( I ) 

F L U X H T ( I ) = G H ( I ) * ( T E M A I N ( I ) - T E M A I N ( I + 1 ) ) 
F L U X V T ( I ) . G L E ( I ) * ( E A I R N W ( I ) - E A I R N W ( I + 1 ) ) 
F L U X C T ( I ) = G C 0 2 ( I ) * ( N C 0 2 ( I ) - N C 0 2 ( I * 1 ) ) 

F L U X H B ( I ) . E H ( I ) * ( T E M A I N ( I - 1 ) - TE MA I N ( I ) ) 
F L U X V B ( I ) = E L E ( I ) * ( E A I R N « ( I - 1 ) - E A I R N W ( I ) ) 
F L U X C B ( I ) . E C 0 2 ( I ) * ( N C 0 2 ( I - 1 ) - N C 0 2 ( I ) ) 

D E L T T C I ) - ( T E M A I N ( I ) - T E M A I R ( I ) ) 
D E L T V ( I ) - ( E A I R N W ( I ) - E A I R ( I ) ) 
D E L T C C I ) - ( N C 0 2 ( I ) - C 0 2 C O N ( I ) ) 
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IF CI• LE.0) THEN 

STORAH(I). PCSOILCI)*DZ(I)*DELTTCI)/DT 
STORAVCI)- PCP/GAMMA'DZ(I)*VGAS(I) 

«DELTVCD/DT 
STORAC(I). VGAS(I)»DZCI)*DELTCCI)/DT 

S T O R A H ( I ) . P C P * D Z ( I ) » D E L T T C I ) / D T 
S T O R A V ( I ) = P C P / G A M M A * D Z ( I ) ' D E L T V ( I ) / D T 
S T O R A C ( I ) . D Z C D * O E L T C ( I ) / D T 

E N E R L H C I ) = F L U X H B C I ) - F L U X H T C D + S H C I ) - S T O R A H ( I ) 
E N E R L E C I ) = F L U X V B C D - F L U X V T ( I ) + 5 L C I ) - S T O R A V C I ) 
E N E R L C C I ) - F L U X C B C D - F L U X C T C I ) - S I N K ( I ) / 1 . 8 3 3 - S T O R A C C I ) 

I F ( I . E Q . 1 ) THEN 

E N E R L E C I ) - F L U X V B C I ) - F L U X V T ( I ) + S O I L L E + S L C I ) - S T O R A H ( I ) 

E N D I F 

I F ( I . E Q . 8 ) THEN 

E N E R L H C I ) - F L U X H B C I ) - F L U X H T C I ) + S H C I ) - S T O R A H ( I ) 
+ S O I L R N 

C F L X H T C D - F L U X H T C I ) * D T 
C F L X V T ( I ) . F L U X V T C D ' D T 
C F L X C T C I ) - F L U X C T C D ' D T 

C F I X H B ( I ) . F L U X H B C I ) * D T 
C F I X V B ( I ) - F L U X V B ( I ) * D T 
C F 1 _ X C B ( I ) = F L U X C B C D ' D T 

F L D I V H ( I ) - C F L U X H B C I ) - F L U X H T ( I ) ) * D T 
F L D I V V ( I ) - C F L U X V B ( I ) - F L U X V T C I ) ) * D T 
F L D I V C ( I ) . ( F L U X C B C I ) - F L U X C T ( I ) ) * D T 

D H C D T C D - F L D I V H C I ) * S H ( I ) * D T 
D V C D T ( I ) . F L D I V V C I ) t S L ( I ) *DT 

I F Ç I . E Q . 1 ) THEN 

DVCDTCD« FLDIVV(I) + SL(I)"DT + SOILLE*DT 

ENDIF 

IF (I. EQ. 0) THEN 

DHCDTCI)- FLDIVH(I)+SH(I)*DT +S0ILRN'DT 

ENDIF 

D C C D T ( I ) = F L D I V C C I ) - S I N K C D * D T / 1 . 8 3 3 

I F ( I . G T . 0 ) THEN 

D E L T E M ( I ) . D H C D T C I ) / C P C P ' D Z ( I ) ) 
D E L V P R ( I ) . D V C D T C I ) / ( P C P / G A M M A » D Z C I ) 5 
D E L C 0 2 C I ) - D C C D T C I V D Z ( I ) 

D E L T E M C I ) . D H C D T C I ) / C P C S O I L C I ) « D Z C I ) ) 
D E L V P R ( I ) . D V C D T ( I V C P C P / G A M M A * D Z C I ) * V G A S C D ) 
D E L C 0 2 C I ) . D C C D T ( I ) / ( D Z ( I ) ' V G A S C D ) 

I F ( I . G T . 8 ) THEN 

D E L T T E C I ) . P C P * D Z ( I ) * D E L T T C I ) 
D E L T V E ( I ) = P C P / G A M M A * D Z ( I ) » D E L T V ( I ) 
D E L T C E ( I ) . D Z C D * D E L T C C D 

D E L T T E C I ) . P C S O I L C I ) ' D Z ( I ) « D E L T T C I ) 
D E L T V E C I ) . P C P / G A M M A ' D Z ( I ) * V G A S ( I ) * D E L T V C I ) 
D E L T C E C I ) - D Z C I ) * V G A S ( I ) ' D E L T C ( I ) 
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S T O R T H - S T O R T H + D E L T T E Ç I ) 
S T O R T V = S T O R T V + D E L T V E ( I ) 
S T O R T C = S T O R T C + D E L T C E ( I ) 

S T O R H T - S T O R H T + D H C D T ( I ) 
S T O R V T - S T O R V T + O V C D T C D 
S T O R C T - S T O R C T + D C C D T ( I ) 

1 5 8 1 C O N T I N U E 

S T O R E H = 0 . 0 
S T O R E V = 0 . 0 
S T O R E C 0 . 0 

S T O R H C - 0 . 0 
S T O R V C - 0 . 0 
S T O R C C » . 0 

DO 1 5 0 2 I = 1 , I H A , 1 

S T O R E H = S T O R E H + D E L T T E ( I ) 
S T O R E V » S T O R E V + D E L T V E ( I ) 
S T O R E C - S T O R E C + D E L T C E d ) 

S T O R H C = S T O R H C t D H C D T ( I ) 
S T O R V C S T O R V C + D V C D T C I ) 
S T O R C C - S T O R C C t D C C D T ( I ) 

S T O R H = S T O R E H / D T 
S T O R V - S T O R E V / D T 
S T 0 R H 2 - S T 0 R H C / D T 
5 T 0 R V 2 - S T 0 R V C / D T 

E L S E I F ( ( F L A G . EQ. 3 1 ) . O R . ( F L A G . E Q . 3 2 ) ) THEN 

N L F L S T - 0 . 0 
N L F L S V . 0 . 0 
N L F L S C 0 . 0 

DO 1 0 0 , 1 - 1 , I H A , 1 

N L D L S T ( I ) - P C P « ( T E M A I R ( I ) - TE M A I R ( I HA + 1 ) ) ' D Z ( I ) 
N L D L S V ( I ) - P C P / G A M M A « ( E A I R ( I ) - E A I R ( I H A t l ) ) * D Z ( I ) 
N L D L S C ( I ) - ( C 0 2 C 0 N ( I ) - C 0 2 C 0 N ( I H A + 1 ) ) * D 2 ( I ) 

N L F L S T = N L F L S T + N L D L S T ( I ) 
N L F L S V = N L F L S V + N L D L S V ( I ) 
N L F L S C N L F L 5 C + N L D L S C ( I ) 

C O N T I N U E 

E L S E I F ( F L A G .EQ. 4 ) THEN 

N L F L G T - 0.0 
N L F L G V = 0.0 
N L F L G C 0 . 0 

DO 2 0 0 , I - 1 , I H A , 1 

N L D L G T ( I ) - P C P ' ( T E M A I R d ) - T E MA I R( I H A +1 ) ) * D Z ( I ) 
N L D L G V ( I ) = P C P / G A M M A * ( E A I R ( I ) - E A I R ( I H A + 1 ) ) « D Z ( I ) 
N L D L G C ( I ) - ( C 0 2 C O N ( I ) - C 0 2 C O N ( I H A * l ) ) * D Z ( I ) 

N L F L G T - N L F L G T 
N L F L G V - N L F L G V 
N L F L G C » N L F L G C 

C O N T I N U E 

N L D L G T ( I ) 
N L D L G V ( I ) 
N L D L G C ( I ) 

ELSE 

I Ï R I T E C 

E N D I F 

•) 'THERE IS A M I S T A K E ' 

R E T U R N 

END 
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c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 

S U B R O U T I N E ROOTDN 

I M P L I C I T NONE 

1 I N C L U D E : A L I M I T . F O R / L 
»INCLUDE :ABLANK.FOR/L 
S I N C L U D E : A R O O T D . F O R / L 

SAVE / A R O O T D N / 

C C C C C C C C C C C 

INTEGER I 

REAL P E R C N T ( I B : 8 ) 
REAL PI 

CHARACTER T 

T » C H A R ( 9 ) 

F 
PI 

2 . 3 8 3 / Z R 0 0 T 
4 ' A T A N ( 1 . ) 

p e r c e n t a g e of root above a certain layer (-) 

a coefficient for root e x t i n c t i o n (-) 

DO 108 I-ISA+1,8 ,1 

P E R C N T C I ) - ( l - E X P C - F ' A B S C Z C I - l ) ) ) ) 
- C l - E X P ( - F * A B S ( Z C n ) ) ) 

R D E N S T C I ) - T R O O T D » P E R C N T C I ) 
L V ( I ) - R D E N S T C D / D Z C D 
R A D I U 2 C I ) - C P I * L V C I ) ) * * C - 0 . 5 ) 
R O O T A C I ) » 2 * P I ' R A D I U S C I ) » R D E N S T C I ) 
R O O T R C ( I ) - S R O O T C ' R O O T A C I ) 
R O O T R S C D - l . / R O O T R C C I ) 

C O N T I N U E 

RETURN 

END 

! m root length contained in m soil layer. 
! Root density as length of root per unit v o l u m e . 

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

c 
S U B R O U T I N E I N I T A 1 C U I N I , 

1 R A T I O , T I M E , U S T A R , W A Y I N ) 

c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 
I M P L I C I T NONE 

S I N C L U D E : A L I M I T . F O R / L 
J I N C L U D E : A B L A N K . F O R / L 

INTEGER I,J,II,12 
INTEGER WAYIN 
REAL UINI ( 8 : I T B ) 

REAL R A T I O , T I M E , U S T A R 
CHARACTER T 

REAL O I S P L . Z O 

REAL AW.BA 

REAL KARMEN 

C A L C U L A T I O N OF THE INITIAL WIND PROFILE 

ACCORDING TO THE S U U G G E S T I O N S OF VAN BOX EL.(E 1 - KiI ani 1 9 8 9 ) 

T - C H A R C 9 ) 

K A R M E N . 8 . 4 1 
D I S P L - 8.63 * Z ( I T A ) 
ZO - 8.25 • C Z C I T A ) - D I S P L ) 

U I N I C 8 ) . 8 
U S T A R . ( 8 . Z 5 * R A T 105+8.85 

IF C"AYIN .NE. 1 ) THEN 

U S T A R . U I N I ( I H A + l ) * K A R M E N / C A L O G ( ( Z ( I H A ) - D I S P L ) / Z O ) ) 

DO 181 I- l.IHA.l 

U I N I ( I ) . UINICIHA + 1) « Z C E N T E R C D / Z C I H A ) 
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181 CONTINUE 

ELSE 

I2»NINTCREAL(ITA)*0.80) 

DO 10 I- 12+1, IHA, 1 

UINI(I) - USTAR /KARMEN • ALOG (CZCE NT ERCI)-DI SPL)/ZO) 

CONTINUE 

I1-NINTCREAL(ITA)*0.25) 

DO 100 I- 1,11,1 

UINI(I) = USTAR /C100*KARMEN ) • ALOGCZCE NT ER(I)• 100) 

CONTINUE 

BA- Z(ITA)/(4*ZO' ALOGC0.25 *Z(I TA)/ZO)) 

AW -EXPC-BA)* USTAR/KARMEN 'ALOG CCZCITA)-DI SPI)/ZO) 

DO 200 1-11+1,12 ,1 

U I N I f l ) = A W * E X P ( B A * Z C E N T E R C D / Z C I T A ) ) 

CONTINUE 

U I N I ( I H A + 1 ) = U S T A R / K A R M E N * A L O G ( ( Z ( I H A ) - D I S P L ) / Z O ) 

E N D I F 

RETURN 

END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

c 
SUBROUTINE INIT(SOILTM, 

ELASTI.OSMOTI , 
KXYLUM,RLS,RS, 
PSIXYL,PSIS , 
PSISOL,HM,DX, 
VOLUME,TOTDX, 
RADIUS,ROENST, 
TIME.KSOIL, 
SOILIN) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

IMPLICIT NONE 

SINCLUDE: ALIMIT. FOR/L 
SINCLUDE :ABLANK.FOR/L 
SINCLUDE:ACONST.FOR/L 

REAL SOILTMCIS: 0) , 
1 ELASTI(IS:ITB,1:3),OSMOTICIS:ITB,0:5,1:2), 
1 KXYLUM(IS:IH,0:5),RLS(IS:ITB),RS(IS:ITB,0:5), 
1 PSIXYL(IS:ITB,0:5,1:Z),PSIS(IS:ITB,0:5,1:2), 
1 PSISOL(IS:0),HM(IS:0),DX(IS:IH,0:5), 
1 VOLUMECIS : IH,0: 5) ,TOTDX(l:IH), 
1 RADIUSCIS : 0),RDENSTCIB:0) 

REAL TIME.KSOIL 
! KSOIL is an assumed soil thermal diffusivity. 
CHARACTER T 
REAL SATUV2,SATUD2 , X 

INTEGER I , J 

REAL AMP0, TSOILA, OMEGA,PERIOD 
Amplitude of the soil temperature wave at the soil surface 
Temperature of the soil 
Cyclic frequency. 
period of the wave Çdaily) respectively. 

REAL HEI,VLEAF,VSTEM,CLEAFW,CSTEMW 
,RSLEAF,RSSTEM,RXSTEM,RROOT 

HEI height of the plant in m 
VLEAF: volume of the leaves of one plant in m 
VSTEM: volume of the stem of one plant 

265 



C L E F W: l e a f c a p a c i t a n c e in m 3 MPa 

C S T E M W stem c a p a c i t a n c e in m M P a * 

R S L E A F for one l e a f in MPa s m " 3 

R S S T E M for w h o l e stem MPa s m - 3 

R X S T E M for » h o l e p l a n t MPa s m " 3 

R R O O T for w h o l e root MPa s m •3 

REAL E L A S T 1 , E L A S T 2 , E L A S T 3 
C ! E l a s t i c i t y m o d u l u s for the x y l u m s t o r a g e 

DATA P E R I O D / 2 4 . 0 / 

T = C H A R ( 9 ) 

J I N C L U D E : V A L U E S . D A T 

R E A D C 3 6 , ' ) A M P 0 , K S O I L . T S O I L A 

C O 2 C O N C I H A t l ) « 3 0 0 . 

DO 3 8 0 I - I H A . 1 , - 1 

T E M A I R ( I ) . T E M A I R ' I H A + 1 ) 
E A I R ( I ) - E A I R C I H A + 1 ) 
C 0 2 C 0 N C I ) - C 0 2 C O N C I H A + l ) 

3 0 0 C O N T I N U E 

OMEGA.2'PI/(PERIOD»60«60) 

PSIS0L(ISA).HM(ISA)tZ(I5A) 

DO 400 I»ISA+1,0,1 

I F C S O I L I N . N E . 1 ) THEN 

R E A D C 3 6 , * ) S O I L T M C D 

ELSE 

S 0 I L T M ( I ) . T S 0 I L A 
• AMP0 

* E X P ( - 1 " C O M E G A / C 2 * K S O I L ) ) * * 0 . 5 * A B S ( Z C E N T E R ( I ) ) ' 
* S I N ( C O M E G A « T I M E * 6 0 * 6 0 ) - C O M E G A / C 2 * K S O I L ) ) * , 0 . 5 
• A B S ( Z C E N T E R C I ) ) ) 

E N D I F 

T E M A I R ( I ) = S O I L T M ( I ) 

E A I R ( I ) . S A T U V Z C S N G L C T E M A I R C D ) ) 

C O 2 C O N C D - 4 0 0 . 0 

P S I S O K D - H M C n + Z C E N T E R O ) 

C O N T I N U E 
IF C S O I L I N . N E . 1 ) THEN 

R E A D C 3 6 , - ) S O I L T M C I S A ) 

ELSE 

S OI L T M ( I S A ) - T S 0 I L A 
+ A M P 0 
* E X P C - 1 * C O M E G A / C 2 » K S O I L ) ) » « 0 . 5 « A B S C Z C I S A ) ) ) 

• S I N C ( O M E G A ' T I M E * 6 0 * 6 0 ) - ( O M E G A / C 2 » K S O I L ) ) * * ( 
" A B S ( Z ( I S A ) ) ) 

S O I L T M C I S A ) = 2 5 . 0 

E N D I F 

T E M A I R C I S A ) . S O I L T M C I S A ) 

E A I R C I S A ) . S A T U V 2 C S N G L C T E M A I R C I S A ) ) ) 

C O 2 C O N C I S A ) - 4 0 0 . 0 

R E A D C 3 6 , ' ) H E I , V L E A F , V S T E M , C L E A F » , C S T E M » , 
R S L E A F , R S S T E M , R X S T F M , R R O O T 

R E A D C 3 6 , " ) E L A S T 1 , E L A S T 2 , E L A S T 3 

DO 500 I-ISA, IHA , 1 

P S I X Y L C I . J . D - P S I S O L C I S A ) ' R H O * G R / 1 0 E 6 
P S I S C I . J . l ) - P S I S 0 L ( I S A ) * R H 0 * G R / 1 8 E 6 
O S M O T I C I , J , l ) - A B S C P S I S O L C I S A ) " R H O * G R / 1 0 E 6 - 0 . 3 ) 
K X Y L U M C I . J ) = H E I / R X S T E M 
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E L A S T I C I , D - E L A S T 1 
E L A S T I C I , 2 ) = E L A S T 2 
E L A S T I C I , 3 ) = E L A S T 3 

5 0 0 CONTINUE 

DO 5 5 0 I - I S A + 1 , 0 , 1 

V O L U M E ( I , 0 ) « P I * R A D 1 U S ( I ) * * 2 * R D E N S T C I ) 

550 C O N T I N U E 

DO 6 0 0 I « l , I H A , 1 

R S C I . J ) - R S S T E M * H E I / D Z ( I ) 
V O I U M E ( I , 0 ) == V S T E M ' D Z C I V H E I 

6 0 0 CONTINUE 

DO 7 0 0 I - 1 , I H A , 1 

R E A D C 3 6 , * ) D X ( I , 0 ) , D X ( I , 1 ) , 
1 D X ( I , 2 ) , D X C I , 3 ) , D X C I , 4 ) , D X C I , 5 ) 

DO 7 5 0 J = l , 5 , 1 

R S C I . J ) = R S S T E M « H E I / D X C I , J ) 

750 C O N T I N U E 

R L S ( I ) = D X ( I , 0 ) * 2 . S ' R X S T E M / H E I 

C IT HAS TO BE C O R R E C T E D FOR THE AREA 

700 C O N T I N U E 

P S I X Y L C I H A + 1 , 0 , 1 ) = P S I S O L C I S A ) » R H O » G R / 1 0 E 6 
P S I S C I H A + 1 , 0 , 1 ) = P S I S O L ( I S A ) * R H O » G R / 1 0 E 6 
O S M O T I C I H A + l , e , l ) - A B S ( P S I S O L C I S A ) * R H O ' G R / i e E 6 - e . 3 ) 
E L A S T I C I H A + 1 , 1 ) = E L A S T 1 
E L A S T I C I H A + 1 , 2 ) » E L A S T 2 
E L A S T I C I H A + 1 , 3 ) - E L A S T 3 
R S C I H A + 1 , 0 ) - 5 6 E 6 
R L S C I H A + 1 ) « 1 0 E 8 

DO 650 1 - 1 , I H A , 1 

T O T D X ( I ) - D X ( I , 8 ) + D X ( I , l ) + D X ( I , 2 ) 
1 + D X C I , 3 ) + D X C I , 4 ) + D X ( I , 5 ) 

DO 6 0 1 J - l , 5 , 1 

P S I X Y L C I , J , 1 ) = P S I S O L C I S A ) * R H O * G R / 1 0 E 6 
P S I S C I . J . l ) - P S I S O L C I S A ) ' R H O * G R / 1 0 E 6 
K X Y L U M ( I , J ) = K X Y L U M C I . 0 ) 
V O L U M E C I , ! ) - D X C I , J ) / T O T D X C I ) * V L E A F 

• L E A I N C C D / C U M L A I C 0 ) 
O S M O T I C I , J , l ) » A B S C P S I S O L C I S A ) * R H O * G R / 1 0 E 6 - 0 . 3 5 

601 

650 

800 

C O N T I N U E 

C O N T I N U E 

J=0 

DO 8 0 0 I = I S A , 0 , 1 

R S C I , J 5 - 1 0 0 E 6 

C O N T I N U E 

R E T U R N 

END 

REAL F U N C T I O N S A T U V 2 C X ) 
I M P L I C I T N O N E 

REAL X 

S A T U V 2 = 6 1 0 . 7 ' E X P C 1 7 . 4 » X / C X + 2 3 9 . ) 5 

R E T U R N 
END 

REAL F U N C T I O N S A T U D 2 C X ) 

I M P L I C I T NONE 
REAL X 
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S A T U D 2 - 4 1 5 8 . 6 ' S A T U V 2 ( X ) / ( X + 2 3 9 ) * * 2 
S A T U D 2 » 2 5 3 9 6 5 7 . ' E X P ( 1 7 . 4 * X / ( X + 2 3 9 . ) ) 

* l . / ( X . f 2 3 9 ) * * 2 

RETURN 
END 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
S U B R O U T I N E R A D B O U ( T A I R , B A I R , W I N D T P , W I N D 2 5 , C L O U D N , 

1 R L O U T , R L I N N , W A Y I N , C O R R , M I N U T E , T , T I M E R ) 

I M P L I C I T N O N E 

$ I N C L U D E : A R D B O U . F O R / L 
S I N C L U D E : A C O N S T . F O R / L 

SAVE / A R A D B O U / 

I N T E G E R C O R R . W A Y I N , M I N U T E 

REAL * I N D T P , C L O U D N , « I ND 25 

C H A R A C T E R T 

REAL S A T U V 2 , S A T U D 2 , X 
REAL T A I R , B A I R . D T E M P , « T E M P , S H R T N 

REAL R A T I O 
REAL S O L A R C , S O . T R A N A T , S D F S G , R , K 
! S o l a r c o n s t a n t , E x t r a t e r r e s t r i a l solar r a d i a t i o n , T r a n s m i s s i v i t y of 
! the a t m o s p h e r e , f r a c t i o n @ @ 
REAL S T , S E 
! f r a c t i o n of the v a l u e of the a m p l i t u d e . 

REAL R L O U T . R L I N N , H E I M A 1 . H E I M A 2 , F U N K , R S H R T 
! o u t g o i n g l o n g w a v e r a d i a t i o n , i n c o m i n g l o n g w a v e r a d i a t i o n , h e i m a n n 1 and h e i m a n n 2 
! Funk t y p e n e t r a d i a m e t e r v a l u e , r e f l e c t e d short w a v e r a d i a t i o n v a l u e . 

DATA S O L A R C / 1 3 7 0 . / 

t I N C L U D E : V A L U E S . D A T / L 

S I N B T A - S I N ( L A T I * R A D E ) * S I N D E + C O S ( L A T I * R A D E ) * C O S ( D E C L I N ) 
1 * C 0 S ( R A D E ' ( 1 5 ' ( T I M E - 1 2 ) ) ) 

R A T I O - A M A X 1 ( ( S I N B T A / S I N O O N ) , 0 . 0 ) 
U S T A R - ( 0 . 2 S * R A T I O ) + 0 . 0 5 

IF ( W A Y I N . N E . l ) THEN 

R E A D ( 2 9 , ' ) T I M E R , W I N D 2 5 , W I N D T P , D T E M P , * T E M P , S H R T N 
1 , R S H R T , F U N K , H E I M A 1 , H E I M A 2 

E N D I F 

IF ( S I N B T A . G T . 0 . 0 ) THEN 

SO = S O L A R C « ( 1 * 0 . 0 3 3 * C O S ( R A D E ' 3 6 0 . ' D A Y N U M / 3 6 5 . ) ) « S I N B T A 
T R A N A T . A +B * S I N B T A 
S G L O B L = SO " T R A N A T 

R - 0 . 8 4 7 - 1 . 6 1 * S I N B T A * 1 . 0 4 » S I N B T A " 2 
K . ( 1 . 4 7 - R ) / l . 6 6 

IF ( T R A N A T . L E . 0 . 2 2 ) THEN 

S D F S G » 1 . 

ELSE IF ( T R A N A T . L E . 0 . 3 5 ) THEN 

SDFSG - 1 - 6 . 4 * ( T R A N A T - 0 . 2 2 ) « * 2 

ELSE IF ( T R A N A T . L E . K ) THEN 

SDFSG - 1 . 4 7 - 1 . 6 6 » T R A N A T 
ELSE 

SDFSG 
E N D I F 

IF ( W A Y I N . E Q . l ) THEN 

I I N I ( 1 ) = 0 . 5 - S G 1 0 B L 
I I N I ( 2 ) . 0 . 5 ' S G I O B L 

S H R T N = A M A X K S H R T N , 0. 0 ) 
R S H R T . A M A X K R S H R T , 0 . 0 ) 

268 



I I N I ( l ) . 0 . 5 ' S H R T N 
I I N I C 2 ) . 0 . 5 ' S H R T N 
C L O U D N = 1. - S H R T N / S G L O B L 

R L O U T - - 0 . 9 5 * S B O L T Z > C C H E I M A l + H E I M A 2 ) / 2 . 0 + 2 7 3 . 1 5 ) * 
R L I N N . F U N K - ( S H R T N - R S H R T ) - R L O U T 

E N D I F 

D I R E C T ( 2 ) = 1 - M I N ( 1 . 4 * S D F S G , 1 . 0 ) 
D I R E C T ( l ) . 1 - ( 2 ' S D F S G - M I N ( 1 . 4 * S D F S G , 1 . 0 ) ) 

I I N I ( l ) = 0 . 0 0 0 0 1 
I I N I ( 2 ) = 0 . 0 0 0 0 1 
T R A N A T = 0 . 0 
S D F S G - 0 . 0 
D I R E C T ( l ) - 0 . 0 
D I R E C T ( 2 ) - 0 . 0 

IF ( W A Y I N . N E . l ) THEN 

R L O U T = - 0 . 9 5 * S B O L T Z * ( ( H E I M A l + H E I M A 2 ) / 2 . 0 + 2 7 3 . 1 5 ) ' * 4 
R L I N N - F U N K - R L O U T 

E N D I F 

E N D I F 

IF ( H A Y I N . E Q . 1 ) T H E N 

I F C C T I M E . G E . B B ) . A N D . C T I M E . L E . S U N S E T ) ) T H E N 

ST - S I N ( P I ' ( T I M E - B B ) / C D A Y L N G + 2 « P ) ) 

IF ( T I M E . L T . ( 1 2 + P ) ) THEN 

T A I R - ( T M A X - T M I N ( 1 ) ) * S T + T M I N ( 1 ) 
RH • ( R H M I N C l ) - R H M A X ( l ) , E X P C - C 1 2 + P - B B ) / 2 ) 
+ ( R H M A X ( l ) - R H M I N ( l ) ) * 6 X P C - C T I M E - B B ) / 2 ) ) / 

( 1 - E X P C - C 1 2 + P - B B J / Z ) ) 

T A I R - ( T M A X - T M I N ( 2 ) ) * S T + T M I N ( 2 ) 
SE - S I N ( P I » C T I M E - C 1 2 + P ) ) / ( 2 , C 1 2 + B B - P ) J ) 
RH = S E * ( R H M A X ( 2 ) - R H M I N ( 1 ) ) + R H M I N ( 1 ) 

B A I R 
B A I R 

-RH 
= 20 

S A T U V 2 C T A I R ) 

ELSE IF ( ( T I M E . GT . SU N S E T ) . AND . (T I ME . L E . 24 . 0 ) ) THEN 

T A I R = ( T M I N ( 2 ) - T S N * E X P ( - ( N G H T L N + C ) / 4 ) 
1 + ( T S N - T M I N ( 2 ) ) * E X P ( - ( T I M E - S U N S E T ) / 4 ) ) / 
1 ( l - E X P ( - ( N G H T L N + C ) / 4 ) ) 

SE = S I N ( P I « ( T I M E - ( 1 2 + P ) ) / ( 2 * ( 1 2 + B B - P ) ) ) 
RH = S E « ( R H M A X ( 2 ) - R H M I N ( 1 ) ) + R H M I N ( 1 ) 

B A I R = R H 

ELSE 

* S A T U V 2 ( T A I R ) 

SE - S I N ( P I « ( T I M E + 1 2 - P ) / ( 2 » ( 1 2 + B B - P ) ) ) 
T A I R - ( T M I N ( 1 ) - T S N * Ë X P ( - ( N G H T L N + C V 4 ) 

+ ( T S N - T M I N ( l ) ) * E X P ( - ( T I M E + N G H T L N / 2 ) / 4 ) ) / 
( l - E X P ( - ( N G H T L N + C ) / 4 ) ) 

RH = S E * ( R H M A X ( 1 ) - R H M I N ( 0 ) ) + R H M I N ( 0 ) 
B A I R . R H » S A T U V 2 ( T A I R ) 

E N D I F 
ELSE 

T A I R = D T E M P 

IF ( D T E M P . G T . » T E M P ) T H E N 

S A T U V 2 ( W T E M P ) - G A M M A " ' ( D T E M P - W T E M P ) 

S A T U V 2 ( W T E M P ) 

ENDIF 

B A I R 
ELSE 

BAIR 

E N D I F 
R E T U R N 
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C T H E C O M M O N F I L E S 
C A l i m i t . f o r 

INTEGER I T , I H , I S , I L , I B , I T B , n l a , p o l y 

P A R A M E T E R C I T . 2 4 , I H - 3 5 , I S - - 2 3 , I L = - 2 4 
I , I 8 = - 2 2 , I T B = 3 6 , n l a - 3 , p o l y - 5 ) 

a b l a n k . f o r 
INTEGER I T A . I H A . I S A 

INTEGER CORR 

R E A L * 8 T E M A I R ( I S : I T B ) , E A I R ( I S : I T B ) , C 0 2 C O N ( I S : I T B ) 

REAL D 2 ( I S : I T B ) , 2 ( I S : I H ) , 2 C E N T E R ( I B : I H ) , 
1 L A D ( 0 : I H ) , L A D M I D C 1 : I H ) , L E A I N C ( 1 : I H ) , C U M L A I ( 0 : I H ) 

C O M M O N / / T E M A I R , E A I R , C 0 2 C O N , 
1 D Z . Z . Z C E N T E R , L A D , L A D M I D . L E A I N C . C U M L A I , C O R R , 
1 I T A . I H A . I S A 

A B E R G E . F O R 
REAL F C ( I S : 0 ) , F Q C I S : 0 ) , F O ( I S : 0 ) , P O R ( I S : 0 ) , 

P C S O I L ( I S : 0 ) , C H S O I L ( I S : 0 ) 

C O M M O N / A B E R G E / F C , F Q , F O , P O R , 
P C S O I L . C H S O I L 

A C O E F F . F O R 
R E A L ' S E H ( I S : I T B ) , G H ( I S : I T B ) , F H ( I S : I T B ) , D H ( I S : I T B ) , 

1 E L E ( I S : I T B ) , G L E ( I S : I T B ) , F L E ( I S : I T B ) , D L E ( I S : I T B ) , 
1 E C O 2 ( I S : I T B ) , G C O 2 ( I S : I T B ) , F C 0 2 ( I S : I T B ) , D C O 2 ( I S : I T B ) 

C O M M O N / A C O E F F / E H , G H , F H , O H , 
E L E . G L E , F L E . D L E , 
E C 0 2 , G C 0 2 , F C 0 2 , D C 0 2 

A C O N S T . F O R 
REAL P C P , G A M M A , L A M D A , R H O , K W , G R 
REAL C W A T E R , C Q U A R Z , C C L A Y , C O R G N C 
REAL PI 
REAL V A P D I F 
REAL C L E A F , O L E A F , C S O I L R , D C L O D S 
REAL E M S S I V , S B O L T Z , S O I L E M 
real c o 2 d i f , m o l e,RR 

C O M M O N / A C O N S T / P C P , G A M M A , L A M D A , R H O , K W , G R , 
C W A T E R , C Q U A R Z , C C L A Y , C O R G N C , 
PI , 
V A P D I F , 
C L E A F , D L E A F , C S O I L R , D C L O D S , 
E M S S I V , S B O L T Z , S O I L E M , 
c o Z d i f,mol e,RR 

A E N E R G . F O R 
I N T E G E R I N D E X D ( I T , 2 , 2 ) , I P R C I T , 2 , 2 ) 

R E A L * 8 S E N F L C I B : I H , 1 : 2 , 1 : 2 , 1 : 2 ) , L E F L ( I B : I H , 1 : 2 , 1 : 2 , 1 : 2 ) , 
1 l a y l e f ( l : I T ) , l a y s e n ( l : I T ) , l a y b a l ( l : I T ) , s t o r ( l : i t ) 

REAL E S T L F ( 1 : I T , 1 : 2 , 1 : 2 , 1 : 2 ) , D E L T A T ( 1 : I T , 1 : 2 , 1 : 2 , 1 : 2 ) 
1 , L E A F L T ( 1 : I T , 1 : 2 ) , P R ( 1 : I T , 1 : 2 , 1 : 2 ) 
1 , S E N S H ( 1 : I T , 1 : 2 , 1 : 2 , 1 : 2 ) , L E F L U X ( 1 : I T , 1 : 2 , 1 : 2 , 1 : 2 ) 
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S y m b o l V a r i a b l e n a m e S u b r o u t i n e n a m e 
& /or E q u a t i o n 
n u m b e r in the 
p r o g r a m 
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A c o e f f i c i e n t in the a t m o s p h e r e t r a n s m i s s i v i t y e q u a t i o n 
far l i g h t for the s i m u l a t e d s i t e . 

A b s c i s i c acid c o n c e n t r a t i o n in the x y l e m s a p . 
A c o e f f i c i e n t in Van G e n u c h t e n m o d e l for soil m o i s t u r e 
c h a r a c t e r i s t i c s . 

T h e sum of the t e r m s in the d i s c r e t i z e d CO2 c o n s e r v a t i o n 
e q u a t i o n i.e. the s o l u t i o n e r r o r ( A p p e n d i x A . 2 . 1 1 ) . 

The sum of the t e r m s in the d i s c r e t i z e d s e n s i b l e heat 
c o n s e r v a t i o n e q u a t i o n i.e. the s o l u t i o n e r r o r 
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for t h e c a n o p y l a y e r only (not i n c l u d i n g the s o i l ) . 
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An a v e r a g e of n e t r a d i a t i o n of the soil over o n e A V G D L T 
p e r i o d . 
An a v e r a g e of C O 2 f l u x d i v e r g e n c e and s o u r c e s 
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An a v e r a g e of s e n s i b l e heat flux d i v e r g e n c e and s o u r c e s 
for t h e c a n o p y l a y e r d u r i n g O n e A V G D L T ( 3 0 m i n ) p e r i o d . 
An a v e r a g e of n e t r a d i a t i o n of the soil over o n e A V G D L T 
p e r i o d . 
An a v e r a g e l a t e n t heat s o u r c e s w i t h i n the c a n o p y o v e r one 
A V G D L T p e r i o d . 

An a v e r a g e o v e r an A V G D L T p e r i o d d u r a t i o n for net r a d i a t i o n 
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An a v e r a g i n g p e r i o d to be read from an i n p u t f i l e 
(in t h i s c a s e , it was 30 m i n u t e s ) . 

An a v e r a g e o v e r one gust c y c l e of local t r a n s p o r t at the 
c a n o p y t o p of s e n s i b l e h e a t . 

An a v e r a g e o v e r o n e g u s t c y c l e of local t r a n s p o r t at the 
c a n o p y t o p of l a t e n t h e a t . 

An a v e r a g e o v e r o n e gust c y c l e for net r a d i a t i o n 
for t h e c a n o p y l a y e r only (not i n c l u d i n g the s o i l ) . 
A t i m e a v e r a g e for soil Heat flux G at 0.01 m d e p t h 

s t o r a g e and heat flux 

A t i m e a v e r a g e o v e r o n e g u s t c y c l e of soil s e n s i b l e heat 
flux to t h e a i r . 

A t i m e a v e r a g e o v e r one gust c y c l e of soil l a t e n t h e a t 
( e v a p o r a t i o n ) . 

A t i m e a v e r a g e of A v e r a g e s o i l net r a d i a t i o n ( r n ) over 
one g u s t c y c l e . 
a t i m e a v e r a g e of soil heat s t o r a g e of the soil top l a y e r 
o v e r one g u s t c y c l e 

An a v e r a g e of C02 flux d i v e r g e n c e and s o u r c e s 
for the c a n o p y l a y e r d u r i n g One gust c y c l e p e r i o d . 

An a v e r a g e of s e n s i b l e heat flux d i v e r g e n c e and s o u r c e s 
for t h e c a n o p y l a y e r d u r i n g O n e g u s t p e r i o d . 
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A V G S T H 

A V G T L E 

A V G T L F 

A V G T R N 

A V G T Q 

B A S E D I 

B R A N C N 

B T N O O N 
B U D L T 

An a v e r a g e of s e n s i b l e heat flux d i v e r g e n c e and s o u r c e s 
for the c a n o p y l a y e r d u r i n g O n e gust c y c l e p e r i o d . 

A t i m e a v e r a g e for t o t a l sum of l a t e n t heat s o u r c e s for 

the c a n o p y l a y e r (not i n c l u d i n g the s o i l ) . 

A v e r a g e t e m p e r a t u r e of the l e a f . 

An a v e r a g e o v e r o n e g u s t c y c l e for net r a d i a t i o n 
for the c a n o p y top ( i n c l u d e s the c a n o p y and the s o i l ) . 
A V E R A G E T O T A L s e n s i b l e heat of t h e w h o l e c a n o p y . 

A c o e f f i c i e n t in the a t m o s p h e r e t r a n s m i s s i v i t y e q u a t i o n 
for l i g h t at the s i m u l a t e d s i t e . 
B a s e d i a m e t e r of the p l a n t s at soil s u r f a c e . 
T i m e of m i n i m u m air t e m p e r a t u r e . 
N u m b e r of b r a n c h e s per p l a n t s e g m e n t at d i f f e r e n t 
l a y e r s . 
A n g l e of the sun e l e v a t i o n at s o l a r n o o n . 
T i m e i n t e r v a l for b o u n d a r y c o n d i t i o n u p d a t e d ( b o u n d a r y 
d e l t t ) . In the v a l i d a t i o n r u n s , it was 15 m i n u t e s . 
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w i t h i 
C u m u l 
w i t h i 

C u m u l 
t i m e 

C u m u l 
o n e t 
L o g i c 
to up 
by go 
c h e c k 
se con 

d e l a y a f t e r s u n r i s e FOR m i n i m u m air t e m p e r a t u r e to 

a p a c i t a n c e of the p l a n t t i s s u e . 

a p a c i t a n c e of the p l a n t t i s s u e . 

i t a n c e of the f i r s t air l a y e r for w a t e r v a p o u r . 

m i n e d in d i f f e r e n t w a y s . 

i t a n c e of the f i r s t air l a y e r for w a t e r v a p o u r . 

i t a n c e of the f i r s t air l a y e r for w a t e r v a p o u r . 

i t a n c e of the f i r s t air l a y e r for w a t e r v a p o u r . 

e t r i c heat c a p a c i t y of c l a y . 
a t i v e f l u x of c o 2 at a l a y e r b o t t o m w i t h i n one 
s t e p . 
a t i v e f l u x of c o Z at a l a y e r t o p w i t h i n one t i m e 

T h e r m 
A lo 
of a 
L e a f 
C l o u d 

a t i v e 
n o n e 
a t i v e 
n one 
a t i v e 
s t e p . 
a t i v e 
i me st 
al i nd 
d a t e t 

ng t h 
of th 

d c a n o 
f v a p o 
aye r . 
a 1 hea 
i ca I i 
s t e a d y 
c o e f f i 
i nes s 

f l u x of 
t i m e s te 
f l u x of 
t i m e ste 
f l u x of 

f l u x of 
e p . 
i cat or ( 
he a bsor 
r o u g h th 
e r a t i o 
py air 1 
u r flux 

t c o n d u c 
n d i c a t o r 

or non 
c i ent fo 
( a s s u m e d 

s e n s i b l e h e a t at a l a y e r b o t t o m . 
). 
s e n s i b l e h e a t at a l a y e r t o p 

j . 

v a p o u r at a l a y e r b o t t o m w i t h i n one 

w a t e r v a p o u r at a l a y e r t o p w i t h i n 

on or o f f ) to d e c i d e the need or not 
bed s h o r t w a v e r a d i a t i o n c a l c u l a t i o n 
e s u b r o u t i n e N O R M N . 
b e t w e e n t i m e c o n s t a n t s of the f i r s t and 
a y e r . 

d i v e r g e n c e and s o u r c e s w i t h i n the f i r s t 

t i v i t y c o e f f i c i e n t for soil l a y e r s 
( y e s or n o ) to d e t e r m i n e the c h o i c e 

s t e a d y s t a t e s o l u t i o n for the leaf 
r b o u n d a r y l a y e r r e s i s t a n c e . 

for the w h o l e d a y ) . 

M A I N 

P L A N T 

P L A N T 

M A I N 

M A I N 

M A I N 

M A I N 

8 E R G E 
F L U X 

F L U X 

F L U X 

F L U X 

F L U X 

F L U X 

M A I N 

h o u r 

m 3 UD 

J . - 1 

J m - 2 

J m " 2 

J m " 3 

p p m v . m 

C-) 

L o g i c a l i n d i c a t o r (on or o f f ) to d e c i d e the need or not 
to u p d a t e the a b s o r b e d s h o r t w a v e r a d i a t i o n c a l c u l a t i o n 
by g o i n g t h r o u g h the s u b r o u t i n e N O R M N . 
C u m u l a t i v e n o n local flux due to a gust of Co2 
C u m u l a t i v e n o n local flux due to a gust of H e a t 
C u m u l a t i v e n o n l o c a l flux due to a g u s t of w a t e r v a p o u r 
c u m u l a t i v e non local flux due to s t a b i l i t y (no g u s t a c t i v e ) 
i.e. by the use of c r i t i c a l R i c h a r d s o n n u m b e r (it did not wo 
of C o 2 
T h e s a m e as a b o v e , but for heat 
T h e s a m e as a b o v e but for w a t e r v a p o u r . 

Co2 c o n c e n t r a t i o n . 

Co2 d i f f u s i o n c o e f f i c i e n t in a i r . 

C o n t a c t r e s i s t a n c e b e t w e e n the r o o t s and the s o i l . 

V o l u m e t r i c h e a t c a p a c i t y of soil o r g a n i c m a t t e r . 
a i n t e g e r to d e t e r m i n e w r i t i n g to f i l e s ( 0 ) or not ( e l s e ) . 
c o u n t i n g the n u m b e r of e x e c u t i n g the loop w h i c h has an 
i n d i c a t o r v a l u e of 4 0 0 0 . It has a t i m e p e r i o d of B U D L T . 

V o l u m e t r i c h e a t c a p a c i t y for Q u a r t z . 
i n v e r s e of the S l o p e of the H m ( t h e t a ) f u n c t i o n 
( d i f f e r e n t i a l C a p a c i t y ) 
C h a r a c t e r i s t i c d i m e n s i o n of soil c l o d s . 
T i m e C u m u l a t i v e n e t r a d i a t i o n at the b o t t o m of the 
c a n o p y o v e r o n e A V G D L T p e r i o d . 
T i m e C u m u l a t i v e n e t r a d i a t i o n of the c a n o p y o v e r one 
A V G D L T ( 3 0 m i n ) p e r i o d . 
T i m e C u m u l a t i v e of soil l a t e n t heat flux to the c a n o p y 
air ( s o i l e v a p o r a t i o n ) o v e r one A V G D L T p e r i o d . 
T i m e C u m u l a t i v e of soil h e a t f l u x (at 0.01 m d e p t h ) 
o v e r o n e A V G D L T p e r i o d . 
T i m e C u m u l a t i v e of soil s e n s i b l e heat flux to the 
c a n o p y air o v e r one A V G D L T p e r i o d . 

M A I N 

B E R C E 
E N E R G D 

RE S I S 
M A I N / 
E N E R G D 
M A I N 

J m - V 1 

W m " 1 K " 1 

CO 

CO 

CO 

F l u x / M a i n 
F l u x / M a i n 
F L U X / M A I N 

rk) 

M A I N 

E Q C O E M 

P L A N T S 
B E R G E 
M A I N 
M A I N 

ppmv 
mV1 

n , " 1 

J m " 3 K 
CO 
CO 

H Y D R O 
RE S I S 
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M A I N 

M A I N 

M A I N 

m 
J m - 2 

J m - 2 

J m - 2 

J m - 2 
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C U D S R N 

C U D S S 

C U D T C 

C U D T L E 

C U D T R N 

C U D T Q 

C U M B R N 

C U M C R N 

C U M D E W 

C U M D W A 

C U M L A I 

C U M T C 

C U M T L E 

C U M T R N 

C U M T Q 

C U M S E 

C U M S G 

C U M S H 

C U M S R N 

C U M S S 

C U M S L E 

C W A T E R 

T i m e C u m u l a t i v e n e t r a d i a t i o n of the soil over one 
A V G O L T p e r i o d . 
T i m e C u m u l a t i v e n e t r a d i a t i o n of the soil o v e r o n e 
A V G D L T p e r i o d . 
A v a l u e for a c c u m u l a t i n g Co 2 flux w i t h i n t i m e (it was 

not i m p l e m e n t e d ) for A V G D L T 
T i m e C u m u l a t i v e l a t e n t heat s o u r c e s w i t h i n the c a n o p y 
o v e r o n e A V G D L T p e r i o d . 
T i m e C u m u l a t i v e n e t r a d i a t i o n at the t o p of t h e c a n o p y 
over one A V G D L T p e r i o d . 
T i m e C u m u l a t i v e s e n s i b l e heat s o u r c e s of the c a n o p y 
o v e r o n e A V G D L T p e r i o d . 
T i m e C u m u l a t i v e n e t r a d i a t i o n at the b o t t o m of the 
c a n o p y o v e r o n e g u s t c y c l e . 
T i m e C u m u l a t i v e n e t r a d i a t i o n of t h e c a n o p y o v e r one 
gust c y c l e . 

C u m u l a t i v e d e w on t h e u p p e r ( 2 ) and l o w e r ( 1 ) leaf 
s u r f a c e s e x p r e s s e d in a m o u n t s of e n e r g y . 
C u m u l a t i v e d e w at u p p e r ( 2 ) and l o w e r ( 1 ) leaf s u r f a c e 
e x p r e s s e d as a w e t t e d a r e a . 

C u m u l a t i v e l e a f a r e a i n d e x a b o v e the u p p e r b o u n d a r y of 
a c e r t a i n l a y e r . 
A v a l u e for a c c u m u l a t i n g C o 2 flux w i t h i n t i m e ( i t was 
not i m p l e m e n t e d ) for one g u s t c y c l e . 
T i m e C u m u l a t i v e l a t e n t heat s o u r c e s of the c a n o p y 
o v e r o n e g u s t c y c l e . 
T i m e C u m u l a t i v e n e t r a d i a t i o n at the t o p of the c a n o p y 
o v e r o n e g u s t c y c l e . 
T i m e C u m u l a t i v e s e n s i b l e h e a t s o u r c e s of the c a n o p y 
o v e r o n e g u s t c y c l e . 
T i m e C u m u l a t i v e of soil l a t e n t heat flux to t h e c a n o p y 
air ( s o i l e v a p o r a t i o n ) o v e r one g u s t c y c l e . 
T i m e C u m u l a t i v e of s o i l h e a t f l u x (at 0.01 m d e p t h ) 
o v e r one g u s t c y c l e . 
T i m e C u m u l a t i v e of soil s e n s i b l e heat flux to the 
c a n o p y air o v e r o n e g u s t c y c l e . 
T i m e C u m u l a t i v e n e t r a d i a t i o n of the soil o v e r o n e 
g u s t c y c l e . 
T i m e C u m u l a t i v e of soil heat s t o r a g e ( w i t h i n t h e 

31 m d e p t h ) over one g u s t c y c l e , 
l a t e n t heat flux d u r i n g a c e r t a i n 
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H e a t c a p a c i t y for w a t e r 
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D E L T V E 

D E L V P R 

D E P T H 

DH 

D H C D T 

D I R E C T 

DLE 

D L E A F 

DRA 

D S D T 

Day n u m b e r of the y e a r b e i n g s i m u l a t e d . 
D a y n u m b e r of the y e a r for the s i m u l a t i o n e n d . 
Day l e n g t h in h o u r s . 
Day n u m b e r of the y e a r for the s i m u l a t i o n b e g i n n i n g . 

The sum of t i m e i n t e g r a t e d flux d i v e r g e n c e and t i m e 
i n t e g r a t e d s o u r c e s of C 0 2 w i t h i n a l a y e r o v e r o n e t i m e 
step . 

C h a r a c t e r i s t i c d i m e n s i o n for soil c l o d s . 

D c o e f f i c i e n t for the CoZ c o n s e r v a t i o n e q u a t i o n . 
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c h a n g 
one t 
p r e s s 
c h a n g 
o n e t 
p r e s s 
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urne r i 
c h a n g 
a t i on 

chan 
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c h a n g 
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ure c 
e for 
ime s 
ure c 
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ime s 
ure c 
t i nui 

the 
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t of 

c h a n g e w i t h i n t i m e step d e t e r m i n e d 
ty e q u a t i o n for a l a y e r , 
c o n t e n t due to w a t e r v a p o u r flux 
e s o u r c e s w i t h i n the f i r s t air l a y e r 
c a l l y . 
e w i t h i n a t i m e s t e p . 

c h a n g e w i t h i n one t i m e s t e p . 
e due to Co2 c o n c e n t r a t i o n c h a n g e 

e wi 
ty e 
h a n g 

a I 
t e p . 
h a n g 

a I 
t ep . 
hang 
t y e 
i n t e 
i st u 
Thorn 

t h i n one t i m e step d e t e r m i n e d 
q u a t i o n for a l a y e r . 

e for a l a y e r w i t h i n one t i m e s t e p , 

ayer due to t e m p e r a t u r e c h a n g e 

for a l a y e r w i t h i n one t i m e s t e p , 

ayer d u e to v a p o u r p r e s s u r e c h a n g e 

e w i t h i n one t i m e step d e t e r m i n e d 
q u a t i o n for a l a y e r . 
r f a c e b e t w e e n soil l a y e r s w i t h 
re c h a r a c t e r i s t i c s . 

as a l g o r i t h m for s e n s i b l e h e a t 

ime i n t e g r a t e d flux d i v e r g e n c e and t i m e 
e n s i b l e h e a t s o u r c e s w i t h i n a l a y e r o v e r o n e 

ion of the two s h o r t w a v e r a d i a t i o n b a n d s 
( 1 ) and Near I n f r a Red ( 2 ) at c a n o p y t o p . 
t for T h o m a s A l g o r i t h m for l a t e n t h e a t 

ic d i m e n s i o n of the l e a f . 

k w i t h c a n o p y l a y e r s d i v i d e d by w i n d s p e e d . 

s a t u r a t e d v a p o u r p r e s s u r e c u r v e 
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J m " 2 

R E S I S m 

E Q C O E M ppmv ms " 
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DT 
DTI 

D T I N T 

D T E M P 

DU 

D V C D T 

DU 

DX 

DZ 

T i m e step for the s i m u l a t i o n . 
A r e d u c e d t i m e step for s u b r o u t i n e P L A N T in case 
of n u m e r i c a l i n s t a b i l i t i e s , due to very thin l e a v e s . 
An i n t e g r a l v a l u e for a T i m e s t e p . 

dry t e m p e r a t u r e of the air at the c a n o p y top ( 6 . 5 m ) 

W i n d g r a d i e n t w i t h i n h e i g h t . 

The sum of t i m e i n t e g r a t e d flux d i v e r g e n c e and t i m e 
i n t e g r a t e d L a t e n t heat s o u r c e s w i t h i n a layer over 
one t i m e s t e p . 

The c o n s t a n t term in the d i s c r e t i z e d e q u a t i o n for 
l i q u i d w a t e r t r a n s p o r t w i t h i n the s o i l . 
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( t u r b u l e n t for air or t h e r m a l d i f f u s i o n w i t h i n the s o i l ) . 
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l a t i v e l o c a l t r a n s p o r t due to a local g r a d i e n t of 
nt heat ( v ) at t h e c a n o p y top d u r i n g one g u s t c y c l e . 
er of t i m e step w i t h i n 
e f f i c i e n t in V a n G e n u c h t e n e q u a t i o n 

w a v e e m i s s i o n by the l e a v e s ( o n e s i d e ) 

d e n s i t y at (m root per m3 s o i l ) at d i f f e r e n t l a y e r s . 

M A I N 

M A I N 

M A I N 

M A I N 

M A I N 

m 2 m - 3 
C m " 1 ) 
C m " 1 ) 
J k g " 1 

d e g 

M A I N J m - 2 

M A I N J m " 2 

M A I N J m - 2 

E N E R G D 
M A I N ( - ) 

E N E R G D 
M O M N T M m 

M A I N pp 

M A I N Jm 

M A I N Jm 

H Y D R O 
E N E R G D Wm-2 

R O O T D N m~ 2 

MAXERR 
MINUTE 

M O L E 
MP 

M S 2 

M a x i m u m e r r o r in l e a f e n e r g y s o l u t i o n for d i f f e r e n t 
l e a f l a y e r s . 

The n u m b e r of the c u r r e n t s i m u l a t e d gust c y c l e w i t h i n 
the F R E Q 1 

m o l a r w e i g h t of w a t e r 
A c o e f f i c i e n t in van G e n u c h t e n m o d e l for Soil m o i s t u r e 
c h a r a c t e r i s t i c s . 
A l o g i c a l i n d i c a t o r for a s t e a d y or non s t e a d y s t a t e 
s o l u t i o n for t h e leaf t e m p e r a t u r e . 

M A I N C O 

Kg m o l e " 

E N E R G D (-) 

N C 0 2 

N G H T L N 
NLA 

N L D L S T 
N L D L S V 
N L D L G C 

N L F L S T 
N L F L S V 

N L F L G C 
N L F L G T 
N L F L G V 

M A I N 
H Y D R O 

N e w C O 2 c o n c e n t r a t i o n for d i f f e r e n t l a y e r s ( a t t h e end 
t i m e s t e p ) . 
N i g h t l e n g t h in h o u r s . 
N u m b e r of soil l a y e r s with d i f f e r e n t soil m o i s t u r e 
c h a r a c t e r i s t i c s . 
N o n l o c a l flux of C o 2 from d i f f e r e n t l a y e r s due to 
s t a b i l i t y e f f e c t s ( i . e . R i c h a r d s o n n u m b e r being less 
t h a n a c r i t i c a l v a l u e ) It d i d n ' t w o r k . It l e a d s to t o o m u c h 
m i x i n g . 
the s a m e as a b o v e e x c e p t b e i n g for h e a t . 
the s a m e as a b o v e e x c e p t b e i n g for w a t e r v a p o u r . 
N o n l o c a l flux from d i f f e r e n t l a y e r s due to t h e 
g u s t p r o c e s s of CoZ w i t h i n the gust c y c l e . 
N o n l o c a l flux of C o 2 from d i f f e r e n t l a y e r s due to the 
g u s t p r o c e s s of h e a t w i t h i n t h e g u s t c y c l e . 

N o n l o c a l flux of C o 2 from d i f f e r e n t l a y e r s due to the 
gust p r o c e s s of w a t e r v a p o u r w i t h i n the gust c y c l e . 

N o n l o c a l flux from d i f f e r e n t l a y e r s due to the 
t h e r m a l s t a b i l i t y or R i c h a r d s o n n u m b e r being less than 
a c r i t i c a l v a l u e of C o 2 w i t h i n the gust c y c l e . ( i t did not w o r k ) 
The s a m e as a b o v e but for heat 
The s a m e as a b o v e but for w a t e r v a p o u r . 

I n t e g r a t i o n of N L D L G C o v e r c a n o p y l a y e r s . 
I n t e g r a t i o n of N L D L G T o v e r c a n o p y l a y e r s 
I n t e g r a t i o n of N L D L G V o v e r c a n o p y l a y e r s 
A c o e f f i c i e n t in V a n G e n u c h t e m M o d e l . H Y D F 

E Q C O E M pprr 

h o u r 

CO 
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NUMDLT ! number of BUDLT intervals within one AVGDLT. 
NONST ! non steady state change in the leaf energy budget solution. 
NSO ! Ratio of volumetric soil moisture at saturation to 

! soil moisture content. 
NUFORC ! Nusselt number as determined by forced convection regime. 
NUFREE ! Nusselt number as determined by free concevction regime. 

NU ! Nusselt number determined for the leaves and the soil 
! clods. 

NUMDRP ! Number of water drops for the lower and upper surfaces 

M A I N CO 

CO M A I N / 
H Y D R O 
RE SI S/ ( O 
RE SI S/ (-) 
M O M N T M 

R E S I S / (-) 
E n e r g d 

ON ! A logical indicator. 
OUTPL ! The period in hours in which output to files is done. 
OSMOTI ! Osmotic pressure of the plant water. 

M A I N 
I N I T 

hour 
MPa 

PASS 
PCP 
PCSOIL 
PHIM1 
PHIH1 
PI 
PLANTN 
POLY 
POR 
PR 

PSIS 
PSISOL 

qwa ter 
RA 
RAB 
RABL 
RABLT 
RADE 
RATIO 
RATIOS 

RATI01 

RADIUS 
RADIU2 
RAINC 
RAININ 
RAINM 
RB 
RCUTI 

RDENST 

RDIR 

REYNOL 

RH 
RHMAX 
RHMIN 
RHO 
RHSOIL 
RICHAR1 

RICHAR31 

RICHAR32 

Time in hours after solar noon at which maximum air 
temperature is observed. 
number of passes for the solution of 
Volumetric heat capacity of air at constant pressure 
volumetric heat capacity of the soil. 
stability correction for momentum. 
stability correction for heat. 
PI ( 3 . 1 4 1 5 ) 
number of p l a n t per square m . 
Polynomial coefficients for the soil 
Soil porosity 
numerical probability of the leaf upper and lower 
surfaces being wet or dry. 
Total Water potential (P s i ) of the plant storage tissue 
Total soil Water potential (P s i ) of the layers far enough 
from the root surface (osmotic potential assumed z e r o ) . 
Total Water Potential (PSI) of the plant xylem Tissue 

liquid Water flux between different soil layers 
Time in BUDLT increments. 
Absorbed short wave r a d i a t i o n per unit volume of air 
Absorbed Radiation for m 2 leaf surface (old v a l u e ) 
Absorbed Radiation for mZ leaf surface (new v a l u e ) 
conversion from degrees to radian. 
ratio of the current sun elevation to its noon elevation 
Ratio of the time step of simulation to the time 
constant of the first air layer. 
ratio of turbulent transport at the upper boundary of first 
air layer to the value of the total of its sum and the soil 
convective latent heat transfer coefficient. 
ratio of the soil convective latent heat transfer 
coefficient to the value of the total of its sum and 
turbulent transport at the upper boundary of first air 
layer. 
characteristic root radius for different soil layers. 
characteristic distance between neighbouring roots. 
Rain indicator for the calculation of soil moistening. 
Indicator for rain fall (was not u s e d ) . 
Amount of rain for the simulated day in mm 
B o u n d a r y layer resistance for the leaf 
Cuticular resistance for the upper (2) and lower (1) 
surface of the leaf. 
Root density (per unit soil surface) at different soil 
1 aye r s. 
A characteristic diameter of dew water drops on the leaf 
upper (2) and lower (1) surfaces. 
Reynolds number for the leaves and the soil clods. 

relative humidity 
M a x i m u m r e l a t i v e humidity of the day. 
M i n i m u m relative humidity of the day. 
Density of Water 
Relative Humidity of soil air 
Richardson number determined in case of nogust intrusion 
at night time (free convection regime within the lower 
part of the canopy . ) 
Richardson number determined in case of nogust intrusion 
during daytime. 
Richardson number determined in case of nogust intrusion 
during daytime. 

B E R G E 
B E R G E 
M O M N T M 
M O M N T M 
M A I N 
P L A N T 

H Y D R O 
E N E R G D 

P L A N T 
H Y D R O 

P L A N T 

H y d r o 
M A I N 
NO RMN 
E N E R G D 
E N E R G D 
M A I N 
M A I N 

J m " 3 « - 1 

CO 
CO 

m"2 

CO 
CO 

MPa 
m 

MPa 

m s " 1 

hour 
» • " ' 

W m ~ 2 

rad deg 
CO 

M A I N C O 

M A I N C O 

R O O T D N 
R O O T D N 
H Y D R O 

H Y D R O 
R E S I S 
R E S I S 

m 
m 
(O 

mm* 1 
sm" 1 

sm" 1 

CO 
CO 

R O O T D N m m" 

E N E R G D ni 

R E S I S / ( O 
MOMNTM 
RADBOU 
R A D B O U 
RADBOU C O 
IN I T Kg m~ 
H Y D R O C O 
M O M N T M C O 

M O M N T M C O 

M O M N T M C O 

RLEAF ! Leaf resistance for water transport. 
RLINN ! Incoming long wave radiation at the canopy top. 
RLNBTM ! Net long wave radiation at the lower boundary of the 

! canopy CNet long wave for the soil) 
RLNET ! Net long wave radiation for the whole canopy layer 
RLNTOP ! Net long wave radiation at the canopy top 

! Concludes the soil). 
RLOUT ! Outgoing long wave radiation at the canopy top. 
R L S ! Resistance for water transport between the main stem and 

! the first lateral node. 
RNETOT ! Total absorbed radiative energy Cshort and long w a v e ) 

RADBOU Hi" 

R A D B O U !•"' 
P L A N T / MPa s m" 
I N IT 
E N E R G D Wm"2 
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! for the c a n o p y l a y e r 
R N S B T M ! c a n o p y l a y e r Net s h o r t r a d i a t i o n at its l o w e r b o u n d a r y 

R N S H R T ! Net s h o r t w a v e r a d i a t i o n for all the c a n o p y l a y e r . 
! ( n o t i n c l u d i n g the s o i l ) . 

R N 5 T 0 P ! Net s h o r t w a v e r a d i a t i o n at the c a n o p y t o p . 
! ( i n c l u d e s t h e s o i l ) . 

N O R M N 

N O R M N 

R O O T A ! Root a r e a c o n t a i n e d w i t h i n d i f f e r e n t soil l a y e r s . 

R O O T R C ! Root c o n d u c t a n c e 

R O O T U P ! R o o t w a t e r u p t a k e from d i f f e r e n t soil l a y e r s 

R O O T D N • ' t ! ) 

R O O T D N > J s " 
,-1 

RR 
RS 

RST 

R T I M E 

RU 

Root r e s i s t a n c e 

Gas C o n s t a n t 
R e s i s t a n c e for w a t e r flux b e t w e e n t h e s t o r a g e t i s s u e 
and t h e x y l e m v e s s e l s in a c e r t a i n p l a n t s e g m e n t . 

S t o m a t a l r e s i s t a n c e for the u p p e r C 2 ) and l o w e r C I ) 
s u r f a c e s of the leaf at d i f f e r e n t l a y e r s . 
t i m e of the s i m u l a t i o n in B U O L T i n c r e m e n t s e x p r e s s e d 
as a real n u m b e r . 
An i n t e g e r n u m b e r of the B U D L T i n t e r v a l , w i t h i n A V G D L T , 
c u r r e n t l y s i m u l a t e d . 

R O O T D N m 3 s MPa 

P L A N T / 
I N I T 

R E SI S s m " 1 

M A I N hour 

M A I N ( O 

S A T U V 2 
S A T V A P 
S B O L T Z 

S O P R C C 
S D P R E C 

S D P R E H 

S D P R E V 

S D P R H C 

S D P R V C 
S E N F L 
S E N S H 
S G L O B L 
SH 

S H E A R 
S I N B T A 
S I N D E 
SINK 
S I N O O N 

SL 
S O I L E M 

S O I L H 
S O I L I N 

S O I L L E 
S O I L L N 
S O I L R N 
S O I L R S 
S O I L S N 
S O I L T M 

S O U R C 

S R O O T C 
S T A R T 
STOR 
S T O R A C 

S T O R A G 

S T O R A H 

S T O R A V 

S T O R C C 

S T O R C T 

S T O R E C 

S T O R E H 

S T O R E V 

S l o p e of s a t u r a t e d v a p o u r p r e s s u r e d e p e n d e n c e on 
t e m p e r a t u r e . 
S a t u r a t e d V a p o u r p r e s s u r e at air t e m p e r a t u r e 
s a t u r a t e d v a p o u r p r e s s u r e at air t e m p e r a t u r e . 
S t e p h a n B o o t s m a n n C o n s t a n t . 

EC but d e t e r m i n e d d i f f e r e n t l y as < 
u r i n g an A V G D L T p e r i o d . 

ble heat d u r i n g an A V G D L T p e r i o d , 

t heat d u r i n g an A V G D L T p e r i o d . 

EH but d e t e r m i n e d d i f f e r e n t l y as i 

EV but d e t e r m i n e d d i f f e r e n t l y as ( 
from the l e a f to t h e a i r . 

ux from the leaf to the a i r . 

u r c e w i t h i n d i f f e r e n t l a y e r s . 

he c a n o p y h e i g h t Cat 2.5 m ) 
le of sun e l e v a t i o n . 
i nati on 
2 w i t h i n d i f f e r e n t c a n o p y l a y e r s 
e l e v a t i o n at s o l a r noon t i m e . 

ces w i t h i n d i f f e r e n t l a y e r s 

at flux to the c a n o p y a i r . 
e t e r m i n i n g the w a y of i n p u t t i n g the 
p e r a t u r e ( m e a s u r e d ( 1 ) 
l u e ) e s t i m a t e d ) 

Flux Csoil e v a p o r a t i o n ) 

Soil net r a d i a t i o n . 

Soil r e s i s t a n c e for w a t e r t r a n s p o r t to the r o o t s . 

Soil net s h o r t w a v e r a d i a t i o n . 

I n i t i a l Soil t e m p e r a t u r e p r o f i l e 
(to be read form a f i l e or c a l c u l a t e d ) . 
A m o u n t of h e a t used to r a i s e the t e m p e r a t u r e of the l e a f . 
and for s e n s i b l e h e a t . 
S p e c i f i c r o o t c o n d u c t a n c e 
s t a r t i n g t i m e of the day for the s i m u l a t i o n . 

S A T U D 2 Pa K" 

T h e same 
S t o r a g e 

S t o r a g e 

S t o r a g e 
T h e same 

T h e same 
L a t e n t h 
S e n s i b l e 
G l o b a l R 
s e n s i b l e 
S h e a r a t 
S i n e o f 
s i n e o f 

a s 
o f 

o f 

o f 
a s 
a s 

e a t 

SDPR 
C o 2 d 

s e n s i 
l a t e n 

SDPR 

SDPR 
f l u x 

h e a t f l 
a d i a t i on 

h e a t s o 
a b o u t t 
t h 

s u n 
S i n k t e r m f 
s i n e o f t h e 

l a t e n t h e a t 

e a ng 
d e c l 

o r CO 
s u n 
s o u r 

S o i l e m i s s i v i t y 
S o i l s e n s i b l e he 
an i n t e g 
i n i t i a l 
o r ( a n y 

e r 
s o i 
o t h 

S o i l l a t e n t 

f o r d 
I t e rn 
e r v a 

h e a t 

c h e c k . 

c h e c k . 
c h e c k . 

S A T U V 2 
M A I N 

E N E R G D 

M A I N 
M A I N 

M A I N 

M A I N 

M A I N 
M A I N 
E N E R G D 
E N E R G D 
R A D B O U 

M A I N 
R A D B O U 
M A I N 
P H O T O 
M A I N 

E N E R G D 
E N E R G D 

Pa 
Pa 

Wm~2K~ 

ppmv m 
ppmv m 

J . " 2 

J m " 2 

J m " 2 

J m " 2 

Wm-2 

s " 1 

CO 
(-) 
C-) 
W m " 2 

r a t e 
con ce 
S t o r a 
l a y e r 
r a t e 
due t 
r a t e 
due t 
The s 
e q u a t 
THE S 
c o 2 f 
A spa 
c o n c e 
t i m e 
A spa 
c ha ng 
A spa 
p r e s s 
t i m e 
R a t e 
l a y e r 

of s t o r a 
n t r a t i o n 
g e of hea 
s d u r i n g 
of S t o r a 
o t e m p e r a 
of S t o r a 
o v a p o u r 
ame as ST 
i o n . 
AME AS ST 
lux d i v e r 
t i a l i n t e 
n t r a t i o n 
step 

tial i n t e 
e over a I 
t i a l i n t e 
ure chang 
s t e p . 
of s t o r a 
s w i t h i n 

ge of C O 2 w i t h i n a l a y e r due to 
c h a n g e w i t h i n one t i m e s t e p . 
t w i t h i n p l a n t l e a v e s in d i f f e r e n t 
one t i m e step 

ge of s e n s i b l e H e a t w i t h i n a l a y e r 
t u r e c h a n g e w i t h i n one t i m e s t e p . 

ge of L a t e n t H e a t w i t h i n a l a y e r 
p r e s s u r e c h a n g e w i t h i n one t i m e s t e p . 
O R E C but d e t e r m i n e d from the c o n i n u i t y 

O R T C , but d e t e r m i n e d from t h e a d d i t i o n of 
g e n c e and CO2 s o u r c e s . 
gral of C o 2 q u a n t i t y due to its 
c h a n g e o v e r all c a n o p y l a y e r s w i t h i n one 

gral of e n e r g y s t o r a g e due to t e m p e r a t u r e 
I c a n o p y l a y e r s w i t h i n one t i m e s t e p , 
gral of e n e r g y s t o r a g e due to v a p o u r 
e o v e r all c a n o p y l a y e r s w i t h i n o n e 

e c h a n g e of s e n s i b l e heat for all c a n o p y 
one t i m e s t e p . 

M A I N / C O 
I N I T A 

R O O T D N ms M P a " 
M A I N 

F L U X 

E N E R G D 

F L U X 

F L U X 

F L U X 

F L U X 

F L U X 

F L U X 

F L U X 

h o u r 

p p m v . m s ~ 

W m " L 

ppmv m 

ppmv m 

ppmv m 

Jm 
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STORHZ 

STORHC 

STORHT 

STORTC 

STORTH 

STORTV 

STORV 

STORVC 

STORV2 

STORVT 

STPRCC 

STPREC 

STPREH 

STPREV 

STPRHC 

STPRVC 

TEMAIR 
TEMLFN 

TEMPLF 
THETA 
THETAN 
THETAR 

THETAS 
THETN 

THICKN 
TIME 
TIMEC 
TIMEC2, 
TIMEC3 
TIMECO 

TIMEG 
TIMEPL 
TIMER 
TIME« 
TMAX 

TMIN 

TOTAE 

TOTALL 

TOTALQ 

TOTCON 
TOTENE 

TOTEVP 
TOTLE 

TOTSTC 
TOTSTE 
TOTSTH 

TOTDX 
TORTU 
TOTUP 
TRANSP 

Sum 
for 
The 
equa 
THE 
sens 
Sum 
det e 
Sum 
syst 
Sum 
syst 
Rate 
1 aye 
The 
equa 
Sum 
for 
THE 
late 
Time 
dive 
over 
co2 
gust 
S e n s 
g u s t 
L a t e 
g u s t 
T i m e 
d i v e 
o v e r 
T i m e 
d i v e 
o v e r 

of f 
all 
s a m e 
t i on 
S A M E 
i b l e 
of t 
rmi n 
of t 
em d 
of t 
em d 

of 
r s w 
s a m e 
t i on 
of f 
all 
S A M E 
nt f 

int 
r gen 

o n e 
s t ö r 

eye 

i b l e 

eye 

nt h 
eye 
int 

r gen 
o n e 

int 
r gen 

one 

lux d i v e r g e n c e and s o u r c e s of s e n s i b l e heat 
c a n o p y l a y e r s w i t h i n one t i m e s t e p , 

as S T O R E H but d e t e r m i n e d from the c o n t i n u i t y 

AS S T O R T H , but d e t e r m i n e d from the a d d i t i o n of 
heat flux d i v e r g e n c e and s e n s i b l e heat s o u r c e s . 

o t a l d a i l y s t o r a g e of CO2 for the w h o l e s y s t e m 
ed from C O j c h a n g e . 

o t a l d a i l y s t o r a g e of s e n s i b l e heat for the w h o l e 
e t e r m i n e d from t e m p e r a t u r e c h a n g e , 
o t a l d a i l y s t o r a g e of l a t e n t h e a t for the w h o l e 
e t e r m i n e d from v a p o u r p r e s s u r e c h a n g e , 
s t o r a g e c h a n g e of l a t e n t h e a t for all c a n o p y 
i t h i n one t i m e s t e p . 

as S T O R E V but d e t e r m i n e d from the c o n t i n u i t y 

nee and s o u r c e s of l a t e n t heat 
rs w i t h i n one t i m e s t e p . 

but d e t e r m i n e d from a d d i t i o n of 
nee and l a t e n t h e a t s o u r c e s . 

the sum of l a t e n t heat flux 
s o u r c e s for the c a n o p y l a y e r s 

t h e c a n o p y air d u r i n g one 

ed c o n c e n t r a t i o n c h a n g e . 

ge w i t h i n the c a n o p y air d u r i n g one 

ed from t e m p e r a t u r e c h a n g e . 
w i t h i n the c a n o p y air d u r i n g o n e 

ed f r o m v a p o u r p r e s s u r e c h a n g e . 
the sum of s e n s i b l e heat flux 

s o u r c e s for the c a n o p y l a y e r s 

the sum of l a t e n t h e a t flux 
s o u r c e s for t h e c a n o p y l a y e r s 

lux 
c a n o 

AS 
lux 
eg r a 
ce 

gu s 
a g e 
le d 

hea 
le d 
eat 
le d 
e g r a 
ce 

gus 

e g r a 

d i v e r g e 
py l a y e 
S T O R T V 
d i v e r g e 
ti on of 
nd the 
t c y c l e 
w i t h i n 
et e rmi n 
t s t o r a 
e t e r m i n 
s t o r a g e 
et e rmi n 
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Chapter 6 

Measurements & Model Validation 

In this chapter, the validity of the model will be checked. Two data sets will be used for 
this purpose. The first data set has been collected by Van Boxel (Jacobs et al 1992) during the 
growing season of 1986 for a maize experiment and the second data set has been collected by 
Van Pul during 1988 (Van Pul, 1992). 

We will first discuss what is required of a good model. 
A brief description of the two data sets will be given and how one of them (Jacobs et al 

1992) was used to obtain some parameters in the model, while the other one was used to 
check the model. 

In the final part, we will give a comparison for two runs between the simulation and the 
measurement. The first run is for a three days period. The second one is for seven days in 
which some functional corrections, based on the results of the first run, have been 
implemented. We will see the effects of this corrections on the model behaviour and its 
agreement with the measurements and mention some possibilities for improvement. 

6.1. Introduction: 

Validation means checking if a model simulates or comes close to simulating reality. 
Validation is the last step in the continuous loop of checking a model. Checking a model is 
checking the basic assumptions in the model, their numerical implementation, the effect of 
these assumption on the model behaviour and the closeness of the model results to reality. A 
model which gives close agreement with measurement is not necessarily correct. The basic 
assumption included in the model should be correct and the agreement with the measurement 
should also be good. 

The problem in a simulation model is that we want to calculate or simulate reality. An 
abstraction of reality is always required, since we can not simulate everything. Selection of 
the most significant processes which should be included in a model is so required. An 
assumption of what is important and what is not, is affected by the viewpoint of the modeller 
and the way he sees or thinks reality works. This way of seeing reality, by the modeller, also 
includes how he thinks submodels should be coupled, or what kind of correlations from the 
lower level or the submodel level to the higher level or the model level should be included 
and how they should be parameterized. A loop then of selection of the most important 
processes, as seen by the modeller, their parameterization, modelling (implementing these 
assumptions in a numerical code) and the results which this selection has on the behaviour of 
the model and comparison against a good measurement is thus a necessity. Validation and 
model building in fact includes all these processes. 

In a simulation trial, the governing equations concerning heat and mass transfer are not a 
point of discussion. These equations are always valid. It is the parameterization of the active 
processes within these equations and the coupling between the different components of the 
system is what important here. This coupling controls the time constants and its response to 
intermittency. An example of these are the turbulent transport coefficients for the averaged 
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equations, the stomatal resistance and root distribution. The first control the coupling between 
the canopy air layers and the layer of air above, the second controls the coupling of the plants 
to the air vapour pressure and temperature. The latter control the hydraulic coupling between 
the soil and the plants and has a feedback on the stomatal resistance. All these processes and 
how they are controlled and their different parameterizations, depending on the model scale of 
averaging, is what important. 

The selection of which processes and what level of detail is required to achieve validity 
of models at higher levels requires an insight into which processes in the lower level or 
submodel processes are decisive in determining the behaviour of the model upper level. This 
insight can be obtained by studying the governing equations of energy and mass transfer at 
the higher system level and their solution either mathematically or numerically. 

A mathematical attempt to express the solution of these equation in a close to analytical 
form could help us in determining which parameters in these equations are important in 
determining the response of the system. All processes in the lower level or submodel 
processes which affect these parameters should be given careful attention while being 
included in the submodel components and in the integration upwards. 

This way of studying the solution is superior to studying the numerical simulations only, 
since it gives us more insight to the behaviour of the numerical model, its range of validity or 
regions of high sensitivities in its domain of solution. The use of this knowledge while 
building simulation models would save us time in building more accurate models while 
integrating from a lower level to a higher one. The problem here is that quite often it is not 
possible to have an analytical form of the solution. In the case of absence of this guidance, 
and due to the fact that the way of seeing reality by the modeller could be biased, the basic 
assumptions by the modeller of what is important and what is not and the dependence of the 
numerical solution results on these assumption, have always to be checked against a good 
data set. 

A numerical study of the sensitivity of the numerical model to its parameters or to the 
interaction between its submodels is somehow an equivalent means to the mathematical 
analysis in helping to obtain more valid models. This is quite laborious, and this kind of 
sensitivity analysis does not give absolute values of the model behaviour since it is a function 
of the range of the model domain of solution. A contribution of a physical insight into the 
governing exchange processes, their mathematical representation plus numerical runs are all 
complementary to each other. 

In chapter 1, the importance of obtaining submodels which are valid was discussed. 
There is a lot of work involved in the integration upwards from different spatial and temporal 
scales, so the more we can optimize the procedure of integration by analytical insight, the 
better. 

We believe that it is the basic assumptions which have to be checked. We believe that as 
long as the basic assumptions in a model are correct and the numerical implementations of 
these assumptions numerically is correct, the model should be able to simulate reality. The 
first step is the crucial one since the correct numerical implementations of the conservation 
equation is a programming problem and a choice of a numerical scheme. 
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6.2. Validation 

In this thesis, a numerical intermittency model for describing heat and mass transfer 
within the plant canopy and between the canopy, the soil, and the layer of air close above has 
been introduced. So in validating this model, three things have been done: 
a) checking the basic assumption in the model. In this case, the nature of the dynamic 
coupling between the canopy air and the layer of air above and the effect of this coupling on 
the system behaviour. 
b) checking the numerical implementation of the governing equation. 
c) comparing the model runs to an independent data set 

a) checking the basic assumption in the model has been done by the use of Van Boxel 
turbulence data (Jacobs etal 1992), collected during 1986 within a maize canopy during few 
selected days. This data set included a high frequency detailed measurements of the 
temperature by thermocouples and of wind speed by hot bulb anemometers and by cup 
anemometers within and above the maize canopy respectively. It also included observation 
with a three dimensional sonic above and one dimensional sonic within the maize canopy. 
Also, measurements of Rn were done above the canopy. These measurements were used to 
obtain a picture of the flow field within and close above plant canopies as have been shown in 
chapter 3 and 4. These flow field pictures gave us an idea about the depth of intrusion of the 
gusts (i.e. the refreshment function) and the value of Km during the quiescence period, as has 
been explained in 3.6.2. The importance of this intermittency on the behaviour of the system 
from an analytical point of view has been explained in section 4.2.1. The importance of 
intermittency on the nonuniformity of the terms has also been discussed in chapter 3. The 
importance of missing correlation within our interval of averaging on the validity of the 
available approaches and on the resulting solution of our equations has been discussed 

In the model, some parameters are needed namely: 
1) A triggering condition required for the gust process to start and continue occurring. This is 
represented by a critical shear (0.27 s~l in the first run and 0.20 s"* in the second run) at the 
canopy top above which the gust process starts. This is somewhat arbitrary but it is shown 
also by fig. 6.1 in Jie Qiu et al (1994). The stability effect on the transport could be 
considered through increasing or decreasing the gust occurrence frequency. The suggestion of 
the dependence of the gust frequency on the stability regime is given by Leclerc etal (1991). 
2) An assumption of a degree of refreshment for the air inside the canopy due to a coherent 
structure intrusion. A complete refreshment of the air inside the canopy was assumed. This is 
justified by the use of a continuous turbulence measurement within plant canopies collected 
by Van Boxel (Jacobs et al 1992) and the analysis given in section 3.2 and 3.6.1. The analysis 
of the temperature time domain maps for several days of turbulence measurement showed, 
that complete refreshment of the air inside the canopy is the dominant pattern. 
3) A recurrence interval of the gust occurrence. This was assumed constant in the first run. 
This assumption is not completely correct. It affects the degree of coupling between the 
canopy air space and the layer of air above, as has been shown by MATHCAD® runs. In the 

286 



second run, a gust frequency of occurrence depending on wind shear at the canopy top was 
implemented. 
4) The effectiveness of the small-scale transport during the quiescence period on moving the 
amounts of energy (sensible and latent), which has been delivered by the leaves to the 
intercanopy air stream, to the layer of air above the canopy. This effectiveness, represented by 
a local turbulent transport coefficient, will determine the ratio between the storage build-up of 
the scalar quantities during the quiescence period to that of their local fluxes at the canopy 
top. The local flux is defined as the flux between the canopy air space and the layer of air 
above it due to the small size eddies. These small-scale eddies are the ones dominant during 
the quiescence period. The local flux requires a build-up of a local gradient. This is done 
according to sect. 3.6.2. 
5) A characteristic dimension or a thickness of the first air laver in contact with the soil which 
is strongly coupled to the soil. At the upper boundary of this air layer, the turbulent transport 
within the air controls the exchange between this air layer and the layer above it. So, in 
principle, the turbulent transport will work as a controller on the exchange between the humid 
air in contact with the soil and the layers of air within the canopy. This thickness was 
assumed equal to the displacement boundary layer thickness of the soil clods. The 
characteristic dimensions of the soils were assumed 0.05 m. The displacement boundary layer 
thickness was assumed about 1 cm thickness. This thickness is very reasonable, assuming a 
constant wind velocity close to the soil surface of 0.25 ms"l during the quiescence period. 

The solution for this air layer and its small time constant in relation to the length of the 
time step of simulation, especially in the first time step of simulation, led to the use of a semi-
analytical solution for this layer Section 4. 4.2). 

b) The numerical implementation of the governing equation, in chapter 5, has been checked. 
i.e. the closure of energy balances, radiative and nonradiative, for different layers and for the 
whole canopy and their integration within time. There is also the possibility of comparing an 
analytical form of the model to the numerical results. 

c) Once the assumptions mentioned in point (a) are based on reasonable arguments, we 
started comparing the model runs to an independent data set to compare the measured and 
simulated behaviour. 

6.3 THE DATA SETS USED TO VALIDATE THE MODEL: 

Parallel to the measurement by Van Boxel (Jacobs et al 1992), there was a continuous 
measurement campaign of the radiation fluxes, the wet bulb and dry bulb temperatures, but 
we did not use this data set in the comparison since the highest measurement level was very 
close to the height of the canopy, so it was considered that the upper boundary of the system 
is affected by the canopy elements. 

The comparison of the numerical model against measurement was done by the use of a 
second data set collected by Van Pul during his Ph.D. work. A complete description of the 
data set is given in Van Pul (1992). The aim of the experiment was to determine the fluxes of 
ozone, nitrogen dioxide, carbon dioxide, momentum, sensible heat and latent heat with the 
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profile and Bowen ratio techniques. Therefore, profiles of wind velocity, temperature, 
humidity and the above mentioned gases along with net radiation and soil heat flux were 
measured. These measurements were made throughout the growing season, i.e. from 
sprouting of the seeds in May up to two weeks after harvesting time in October. The sensors 
used in the measurement in the profile are slow response sensors with which a high accuracy 
of mean quantities is obtained. Values of the mean quantities were kept on tape as 15 minutes 
averages for the whole season. 

For the validation, a period was used in which the crop had it maximum height of 2.2 
meters with a corresponding leaf area index of 4 (mid August) 

There were two data sets collected parallel within this experiment. The first one is similar 
to the one collected by Van Boxel, but we could not use it due to a measurement error in the 
thermocouple measurement. However, the hot bulb anemometers gave an impression of a 
flow regime similar to the one obtained by analysing of the data set by Van Boxel. We 
assumed the dynamic picture given by the data set Van Boxel (Jacobs et al 1992) valid within 
the 1988 experiment. The second data set, which is a continuous one, was the one used in the 
comparison. The upper measurement was at a higher level than that of Jacobs (three times the 
canopy height). The soil temperature measurements at two heights were compared against the 
model runs. In these measurements, there were only three depths of soil temperature 
measurements; the lowest was used as a boundary condition (120 cm depth). 

6.3.1 COMPARISON AGAINST MEASURED DATA: 

6.3.1.1: The boundary conditions for the simulation run 
These boundary conditions are given in the following figures (fig.6.1, 6.2, and 6.3). The 

zero time coordinate corresponds to 0040 hours UTC, day number 230 of the year 1988. Fig. 
6.1, and fig.6.2 show the boundary condition for the windspeed, wet and dry bulb 
temperatures. 

The boundary conditions for radiation: 
The incoming short wave radiation was measured using a solarimeter (Kipp & Zonen CM 

11) For the incoming long wave radiation, the incoming long wave radiation was calculated 
from a balance of the net radiometer (Funk), a Heimann for measuring the radiative 
temperature of the surface during night-time. During daytime in addition to the above, two 
solarimeters (Kipp), one of them inverted to measure the reflected shortwave radiation, were 
used to calculate the incoming longwave radiation. 

The initialization for the soil temperature profile was done by the use of initial 
measurements at depths of 0.02, 0.08 and 1.2 meters and a linear interpolation for the depths 
in between. 

The initial soil moisture content was assumed uniform. The initial value was measured 
gravimetrically for the top soil surface layer (2 cm thickness). The soil moisture 
characteristics of the different soil layers, i.e. K(6) and hm(0) (3 layers) were fed into the 
model. 

A leaf area density profile, as measured in the field, was used and is given in the input file 
(Appendix. 4) 
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Fig 6.1 The windspeed at 6.5 and 2.5 metres height. 
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Fig 6.2 The wet and dry bulb temperatures at 6.5 meters height. 
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Fig. 6.3 The incoming short and net radiation at 6 meters height. 
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6.3.2. RESULTS 
6.3.2.1. THE FIRST RUN: 

6.3.2.1.1 The radiative environment: 

Figures 6.4, 6.5 and 6.6 show a good success in simulating the net short wave radiation at 
the canopy top, the total net radiation and the radiative temperature of the leaves respectively, 
except in midday (a maximum difference of 20 Wm~2 and about 1 C" respectively). 

24 36 
Time in hours 

Fig. 6.4 : The Rn short (simulated .vs. measured) 
Simulated 

Measured 

« 

Time in hours 

Fig. 6.5: Total Rn (canopy +soil) 
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fk776 (measured 1) 

fkl 147 (measured 2) 
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Fig. 6.6 : The outgoing long wave radiation 
5.7 WmA-2 represents about one degree K error. 
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6.3.2.1.2 The temperature and the vapour pressure of the air: 
The temperature of the air at different heights showed a good agreement between the 

measured and the simulated. Fig. 6.7 shows the comparison for the heights of 4.5, 2.5, 1.5, 
0.5 and 0.1 metres respectively. 1.5 meters height is the height of maximum leaf area density. 
It seemed from the calculation that there is an underestimation of the temperature of the air , 
especially at midday. 

The vapour pressure simulation at different heights showed an overestimation at all 
heights, except at the lowest level (0.15 metre) where there is an underestimation. It has a 
maximum difference of 200 Pa of the vapour pressure between the simulated and the 
measured at the maximum leaf area density height. The worst situation for the comparison 
happened for the height of 0.5 meters, with deviations as far as 300 Pa. 
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Fig 6.7.a : The air temperature (simulated .vs. measured) * Measured (4.5 m) 
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Fig 6.7.b : The air temperature (simulated .vs. measured) 
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Fig 6.7.c : The air temperature (simulated .vs. measured) 
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Fig 6.7.d: The air temperature (simulated .vs. measured) 
Simulated (0.50 m) 

Measured (0.50 m) 
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Fig. 6.7.e: The air temperature (simulated .vs. measured) 
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Fig. 6.8.a : The soil temperature (simulated.vs. measured) 
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Fig 6.8.b : The soil temperature (simulated .vs. measured) 
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Fig 6.9.a : The air vapour pressure (simulated .vs. measured) 
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Fig 6.9.b : The air vapour pressure (simulated .vs. measured) 
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Fig 6.9.C : The air vapour pressure (simulated .vs. measured) 
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Fig. 6.9. e : The air vapour pressure (simulated .vs. measured) 

The simulated soil temperature at 2 cm depth showed a very good agreement with the 
measured, while for the 8 cm depth there was a phase shift and more damping of the soil 
temperature wave. 

DISCUSSION (THE FIRST RUN): 

The explanation of the discrepancy between the measured and simulated values of the 
temperatures and vapour pressure of the canopy air during different times of the day, we 
think, is related to the interplay of two factors: 
1 ) the frequency of gust intrusion into plant canopies, which was assumed constant, and how 
much this affected the exchange. 
2) the values of the modelled stomatal resistance. 
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The first factor which is dependent on wind shear was assumed constant, once a critical 
shear at the canopy top was achieved. For the mid-day time periods (e.g. at 35 hours for 
example), a comparison of the measured and simulated stomatal resistance showed that the 
simulated stomatal resistance of the lower surface of the leaves came within less than one 
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Fig. 6.10 : The stomatal resistance (measured + one standard deviation .vs. simulated) for the lower and upper 
leaf surfaces respectively. 
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Standard deviation of the measured ones. For the upper surface of the leaves, the simulated 
resistance was about half of the measured one. This is due to an error in the calculation of Fl 
function which is used to calculate the stomatal response to light. A coefficient of curvature 
of 40 in stomatal resistance on light was used. This was an underestimation for Maize. That 
led to the stomatal conductance responding more rapidly to light, especially to medium values 
of visible light intensity. There was also an error in the distribution in the direct light 
distribution on the upper and lower surface of the leaves. The leaf angle distribution is 
assumed spherical. But in the direct light distribution, we assumed that the upper surface of 
the leaves sees direct light and the lower not. That led to a reduced simulated stomatal 
resistance for the upper surface of the leaves in comparison to the lower surface. 

During the quiescence period, a turbulent transport coefficient which was independent of 
height and equals (0.3*0.3*factor) was used. This factor was set to 0.35 during the whole 
period if no gust process occurs, due to low shear during daylight time, or during the 
quiescence period (if a gust process occurs). During night-time with no gust process 
occurring, or during the quiescence period if a gust process occurs due to a high shear at the 
canopy top, this factor was set to 0.20. 

The effect of this interplay of the above two mentioned factors is affected by the boundary 
conditions at the canopy top (i.e. the incoming shortwave radiation, the vapour pressure 
deficit and shear at the canopy top) since these affect the turbulent transport coefficient and 
the stomatal resistance. The following explanation could be biased, but it is based on the 
obtained discrepancies between measured and simulated and tries to relate these to the change 
in the boundary conditions of the simulated domain. It is a hypothesis. 

In the first day of simulation, as can be seen from figures 6.1, 6.2 and 6.3, it was a very 
sunny, especially in the later part of the day, with very low wind, especially in early part of 
the day. Fig.6.10 a and b show the stomatal resistance for the first day. There was an 
underestimation for the stomatal resistance, especially for the lower parts of the canopy since 
the effect of a lower curvature coefficient shows most noticeably in medium light intensities. 
The upper leaves would have reached their maximal leaf conductance in higher light 
intensities, so the effect of the using the wrong parameter of curvature does not show. The 
reduced stomatal resistance, in the early part of the day, led to high latent heat flux from the 
leaf to the air in the lower part of the canopy. The assumed coupling through a constant 
frequency of the gust intrusion was a little bit higher than what it should be (why? This can be 
seen from reading the third day of simulation), especially in the earlier part of the day. But it 
seems that it did not compensate the effect of increased latent heat on increasing the vapour 
pressure deficit of the air which leads to higher leaf temperatures. So, there are two opposing 
effects: the delivery from the leaves to the air and the transport between different air layers to 
the upper boundary. The balance was toward the higher delivery. 

In the second part of the day, the higher light intensity reduced a little bit the effect of low 
curvature coefficient probably in the upper parts of the canopy ,but not in the lower part of the 
canopy. So, the effect of lower stomatal resistance was still there. There was also a pickup of 
wind speed, so probably the intrusion frequency was less than or may be close what it should 
be. But the reduction of the stomatal resistance did more than compensate this. This lead to 
reducing the vapour pressure, with resulting cooler leaves. This led also to increased latent 
heat flux from the leaves at the expense of sensible heat flux and a reduced leaf temperature, 
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but not as severe as in the second day because vapour pressure deficit was lower compared to 
the second day. This period was at about 10 hours from the beginning of the simulation. 

During the night of the first day of simulation (15 till 27 hours from start of simulation), 
we see from fig. 6.5 , fig. 6.6 and fig. 6.7.b and fig. 6.7.C that the simulated Rn was lower 
than the measured one, and so was the case for simulated outgoing longwave radiation and air 
temperature. The outgoing longwave radiation is calculated assuming an emissivity of one. 
What a Heimann sees is a real canopy with an emissivity lower than one, so some of the 
incoming longwave radiation contributes to the outgoing longwave. This has been considered 
in the calculation of the incoming longwave boundary condition, but in the simulation of the 
outgoing longwave an emissivity of one is assumed. If this correction is applied to fig. 6.6, it 
would make the situation worse. What we see on fig. 6.6 implies cooler canopy than what it 
should be. We assumed this is due to lower mixing during this night. This led to lower 
sensible heat flux from the air the radiatively canopy elements. We thought a more active 
transport should be activated during night time, especially in this low wind speed, so a 
convective regime should develop within the canopy, which increases the heat flux from the 
lower parts of the canopy or the warm soil to the radiatively-cooled upper parts of the canopy. 
We then implemented such a description in the calm nights for the second run. We will 
discuss the results of this in the second run. 

In the second day, the underestimated stomatal resistance, especially with lower incoming 
solar radiation, led to more transpiration on the account of less sensible heat flux from the 
leaves to the air and so lower temperature of the leaves. This can be seen, as the simulated air 
temperature is lower than the measured at all heights. The simulated vapour pressures are also 
higher than the measured ones, at almost at all heights, except at the lowest level, at all times 
and at 0.5 m height at most of the time. From the wind speed fig. 6.1, we see that wind speed 
was such that the assumed critical shear was exceeded most of the time. Maybe, the used gust 
intrusion was right most of the time, otherwise, if the frequency was higher than what it 
should be, it would have more than compensated for the increased vapour pressure due to 
reduced stomatal resistance. The vapour pressure deficit was the highest during that day 
compared to the whole period. That made the effect of the underestimated stomatal resistance 
more pronounced. 

During the second night, the wind shear at the canopy top was also higher than the first 
night, with the resulting consequence of enhanced turbulent coupling of the canopy layer to 
the air above. This increased heat flux from above and below the height of radiatively-cooled 
canopy elements to that height. So, the simulated total Rn> Radiative temperature and air 
temperature were better than the previous night. This gave us more justification for the 
implementation of convective flow regime with the second run. 

During the third day, it was very windy day, with high humidity and low radiation 
intensity. We see that the trend (between 40 and 60 h) in the difference between simulated 
and measured leaf and air temperature at 1.5 m reversed. At 60 hours the air was more humid 
than the other two days and light intensity was the lowest, so the effect of the an 
underestimated stomatal resistance on increasing the latent heat flux from the leaves to the air 
was not present. The used intrusion of the gust was probably lower than what it should be, 
since the wind shear at the canopy top was very high. So the refreshment frequency was 
lower than what it should have been. Humidity of the air was also high. The simulated 
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temperature of the leaves were higher than the measured ones. This gave us an indication that 
an gust intrusion once every two and half minutes was less than it should be with this high 
shear and probably it was a good average value for the second day. In the second run , we 
varied the frequency of gust intrusions into plant canopies around the inverse of that number. 

Concerning the bad agreement between the measured and simulated vapour pressure at 
height 0.5 and 0.1 metre, we thought that maybe due to the implemented uniform turbulent 
transport coefficient with height, we are ventilating too much and that leads to the 
underestimation. So, that is why we thought maybe it is good to implement a vertical velocity 
variance. 

6.3.2.2. THE SECOND RUN 

To check the reasoning behind the discrepancy between the measured and the simulated 
variables, some corrections were implemented in the model. 
These included: 
1) Using the right curvature coefficient in the Fl function for the stomatal resistance 
dependence on light. 
2) Correcting the distribution of light on the upper and lower surface of the leaf (look at the 
code) NORMN subroutine 
3) A parameterization of the turbulent transport coefficient according to Raupach (1988) 
implementing a vertical velocity variance. 
4) We also implemented a gust frequency of intrusion as a function of the shear at the canopy 
top. This function was rather arbitrary, but we think it is good enough. 
5) Implementing a free convection regime to describe the exchange processes within the 
canopy during night-time with low wind speed at the canopy top. 
The implemented corrections are shown in the listing in comparison to the old 
parameterization. 

6.3.2.2.1 The radiative environment: 

Figures 6.11, 6.12 show very good agreement in simulating the radiative environment of 
the canopy, but it seemed that there is still a problem with the first night. The outgoing 
longwave radiation seems higher than the measured, the effect of the emissivity on reducing 
the simulated outgoing radiation to bring it closer to the measured will make some of this 
discrepancy disappear. But it seems that the effect of an error in our parameterization of a free 
convection regime at the first night shows through looking at the temperature of the soil at 
0.02m depth. We see there a lower temperature of the soil compared to the previous run. It 
meant for us that the modelled contribution of soil to warming the canopy air was 
overestimated. That effect even shows in the soil temperature at 0.08 m. So, there was an 
overestimation of the contribution of the soil heat flux to warming up the radiatively-cooled 
canopy elements. 
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6.3.2.2.2 The temperature and vapour pressure of the air: 
The temperatures of the air at different heights show on general a very good agreement 

between the measured and the simulated for different height for the seven days of simulation, 
except for two 15 minutes averages at the end of the first and second nights. This discrepancy 
shows mainly in the figure 6.14.f for the difference between the measured and the simulated. 
Fig. 6.14 shows the comparison for heights for 4.5, 2.5, 1.5, 0.5 ,0 .1 . The agreement was 
very good. 

The vapour pressure simulation at different heights showed a much better agreement than 
the first run between the measured and simulated for 4.5, 2.5 and 1.5 m heights. For the 
lowest two layers, there were more deviations. 

The soil temperature at -.02 behaved worse than the first run, especially during the first 
night and noontime of the second day. 

The soil temperature at -0.08 m was similar in its agreement with the measured 
temperatures for the first run. 
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Fig. 6.14.a: The air temperature (simulated .vs. measured). 
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Fig. 6.14.e: The air temperature (simulated .vs. measured). 
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Fig.6.15.f: The difference between the measured and the simulated values. 

Time in hours .-s (0.1) 
i-s (0.5) 

Fig.6.15.g: The difference between the measured and the simulated values 

"i—'—<—'—r 
72 96 
Time in hours m-s 0.1 

m-s (0.5) 
funk/300 

Fig 6.16 The difference between measured and simulated values and measured Rn 

306 



600 

400 

200 

-200 

72 

Time in hours 

144 168 

m-s(O.l) 
' m-s (0.5) 

funk 1147 

Fig 6.17. The relation between (measured-simulated) difference and measured Rn 

DISCUSSION (THE SECOND RUN): 

We will discuss the most apparent discrepancies between the measured and the simulated 
results and show what we think could be a reason. 

Looking at the difference between the measured and the simulated curves (fig. 6. 14. f., 
6.14.g, 6.15.f. and 6.15.g) for both the temperature and vapour pressure of the air, we see two 
problems. 
The first is that the agreement between the measured and the simulated for the 0.1 and 0.5 m 
heights is not as good as the other heights. 
The second problem is that the agreement between the measured and the simulated gets worse 
for all heights at mainly two specific periods corresponding to about 5 and 29 hours from the 
beginning of the simulation. 

We will discuss the second problem first. 
Concerning the air temperature within these two period, we notice that the measured 

temperature in the air layers above the canopy (i.e. heights 4.5 and 2.5 metres) are higher than 
the simulated ones. In the lower part of the canopy (heights 0.1, 0.5 and 1.5 metres), the trend 
is reversed. These two major deviations between the measured and the simulated coincided 
with the occurrence of radiative cooling at the upper part of the canopy at the end of the first 
and second nights. The wind speed at the canopy top was very low (look at fig.6.1). That led 
to the dynamic decoupling of the canopy layer from the layer of air above the canopy (i.e. the 
shear was below the assumed minimum value (0.2 s~l), required to initiate the gust process). 
This reduced the heat flux from the air above to the top of the canopy. The stability 
corrections for the turbulent exchange coefficient at the layer of air above the canopy 
accentuated this decoupling. This led to the development a steep temperature gradient at the 
layer of air above the canopy. In the layers of air below the canopy top, the exchange 
processes were driven by the warmer soil. We also see from the soil temperature graphs that 
the simulated soil temperature were also lower than the measured, especially for these two 
periods. We think that the deviations have to do with the effect of convective flow regime 
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within plant canopy during the first and second nights. It seemed that the parameterization of 
the convective regime overestimated the flux from the warm soil to the top of the canopy. The 
used parameterizations (look in the listing) assumed no hindrance for the convective cells 
which transport heat from the lower part of the canopy to the radiatively cooled upper part. 
May be, the plant parts (leaves etc.) would represent some hindrance for that movement and 
that would represent a reduction for the flux from the lower part of the canopy to the top. This 
led to the simulated temperature of the air below the radiative cooling height being higher 
than the measured. 

So, the convective flow regime in the lower part of the canopy was contributing much 
more to the flux while the layers above the canopy were contributing less. So, we think there 
is a need to correct for the effect of stability on decoupling the air flow above the canopy 
from that within the canopy during stable conditions. It could also be with low wind shear at 
the canopy top and radiative cooling, that coherent structures intrude into plant canopies 
rather sporadically which prevents the severe decoupling of the canopy air layer from the 
layer above, in the case of low shear, We tried to implement a criterion for an initiation of an 
ejection of air from the canopy to the layer of air above, in case of the soil being warmer that 
the radiatively cooled canopy top and also being warmer than the air above the canopy at 
night. This was done by implementing a critical Richardson concept over a large distance. 
But this caused far too much mixing. 

Concerning the first problem, there seems to be a correlation between the deviation 
between the measured from the simulated and the value of Rn for the canopy. This is 
especially true for the vapour pressure deviations all the time and for the temperature 
deviations at the first three days. We attribute this to the parameterizations for the turbulent 
transport coefficient, Raupach 1988, which led to low values for the 
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Fig 6.18.f The difference between the simulated values at 1.5 and 0.5 metres 

turbulent diffusion of water vapour and heat from the upper parts of the canopy and the soil 
surface to the heights of 0.1 and 0.5 respectively. This is especially true in the case of water 
vapour, since the vapour at the soil temperature and the upper part of the canopy is higher 
than 0.5 m. If turbulent transport was high, it would have allowed more diffusion to the 
middle layers of the canopy. The gradient in vertical velocity variance was too steep. It led to 
very low values in the lower parts of the canopy. So, the difference between measured and 
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simulated is still the same like the first run, but the reason for discrepancy is different. The 
first is too much diffusion and the second too little diffusion. Concerning the vapour pressure 
at other heights and times, the deviations between the measured and the simulated were of the 
order of 100 Pa. 
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We attribute the better behaviour to the corrected parameterization of the stomatal 
resistance due to correct distribution of direct light on the upper surface of the leaves, correct 
curvature coefficient. The effect of these corrections on the measured versus, the simulated 
stomatal resistance is shown on fig. 6.19. It was better than the first run , but not very good 
either. 

The use of a varying gust intrusion into plant canopy was also good in making the model 
more valid. 

The discrepancy between the measured and simulated soil temperatures, we think, is due to 
a wrong parameterization of the thermal diffusivity of the soil. We see there is stronger 
damping in the simulated wave with respect to the measured. This could be due to wrong 
initial moisture content. In the run, we used the value of the gravimetric moisture content 
measured at 2 cm depth as the initial moisture content for the whole profile. The agreement in 
the amplitude of the wave in the third, fourth, fifth, sixth and seventh days was better, but 
there is a delay. We think a better agreement could be to the effect of the amount of rain 
during these days which was used to humidify the upper layers of the soil. So, it erased any 
uncertainties concerning the moisture content of the upper soil layers. In the fourth day, 
rainfall was about 12 mm. (Van Pul 1992) (look at the input file). The re-wetting of the upper 
soil layers was done at 12.00 noon time of the day in which there was rain (look at HYDRO 
subroutine). Maybe, that is the reason in the delay. 

CONCLUSIONS : 

The results of the model validation show in general a very good agreement between the 
measured and simulated radiative environment and leaf temperature and air temperature. 
There is, however an interplay between the gust frequency which determines the degree of 
build-up of the scalar profiles which is allowed to occur and the stomatal resistance which 
controls the time rate of the profiles build-up for the vapour pressure and temperature. This 
affects the energy budget solution of the leaves. The turbulent transport parameterization play 
an important role in controlling the values of the temperature and vapour pressure in the 
middle layers of the canopy. This interpretation can be seen from the semi-analytical 
treatment of the canopy, given in chapter 4.2. We think that a better parameterization of these 
three degrees of freedom will allow even a better simulation of the plant canopy 
microclimate. 

There are a lot of variables in this model which have not been validated (e.g. plant water 
potential and soil moisture content). They seem to be working but this has not been validated 
experimentally. 
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APPENDIX 1. A 

Navier Stokes equations constitute a non-linear system of equations. Use of a large time 
interval averaged value for a term in that system of equations is not the same as the use of a 
variable in time (fluctuating) term with the same mean. It will not yield the same answer, 
since the equality 

f(x) = f(X) A l . l a 

does not hold for a nonlinear function, i.e. the mean of a function is not the same as the 
function of the mean. The problem we have with the large-time interval averaging is that the 
following invalid assumption is made, 

7/ * TfTTÜ^/ 
flffoW^tfoMT A l l b 

These two expressions (Al.l.a and A.l.l.b) are the same, except that x in A 1.1.a is an 
operator frj function in Al.l.b. To show the analogy between this expression and the 
Reynolds-averaged Navier-Stokes equation, we start with a nonlinear term or a nonlinear 

operator like " j ^ - and do the averaging on it. The nonlinearity of this term shows more 
C/Xj 

clearly when i=j. When i* j , Uj is coupled to u; through the continuity and the pressure 

correction equation. 

Let u; have two different values Aj, B; which have to be averaged. There will 

correspond to these two values of A; , B; two different values of ̂ - ,^~ and two different 
dxj dxj 

values of A; , B; depending on the solution of the flow equation. Let us assume, for the time 
being, that u; is the instantaneous value or a small volume mean value of u and we want to do 
the averaging for a larger volume average. The left hand side of the above equality is 

A3Aj aBj1 

A1.2 

That represents the average for two values of uj. Reynolds (1894) has done his averaging 
by decomposing the value into a mean and a deviation from that mean as given by. 

Aj= Mj+Aj 

Aj=Mj+Aj 

Bj= Mj+B-

A1.3 
Bj=MJ+Bj 
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where 

Mj is the mean of both values Aj, Bj 
The mean value of the function i.e. the left hand side of the above equality is 

3Ai 3Bi _! 
J3xj J3xj 2 

Mj+Aj 
ajMj +Aj 

"3x7~ 
+| Mj +Bj 

d Mj +Bj :l\ 
3x; 

= M lJ 3xj V ™ 8xj J 3xj +AJ 3xj 

. , dB\ . 3Mj • 3Bj . 

A1.4 

In the case that uj is the instantaneous value, the third and the sixth terms inside the 
brackets represent two values for the Reynolds stress. Increasing the size of the averaging 
volume to include the largest scale of transport is equivalent to increasing the number of 
averaged cubes (n is very large). Once there is compliance with eq.3.5.1, this contribution is 

zero and the sum of Reynolds stress converges. The term U: -^-^ is also non-linear. The total 

3u : 
averaging of the terms i.e. u; -=r-J- goes into the Reynolds-averaged Navier-Stokes equation, 

J ox; 

_ 3 Ü j ,duj 
i.e. the mean non linear momentum equation, due to U; -̂ —^ and Ui-~- in this equation. It is a 

J dxj Jdxj 
conservation equation, the total sum of Reynolds stress divergence determines the change in 
the mean momentum. So, from the above, it seems that the total sum of the Reynolds stress is 
what matters and how that total sum is achieved should not matter. But what about the 
nonlinearity of the equation ? There is some circular logic here since the validity of this 
conservation equation requires certain assumptions in it. 

So, in principle, it should not matter how the total sum of Reynolds stress is achieved as long 
as the requirement for the averaging is achieved. 

^ t J äxj =-5i3g+fceij3Uj _ 3 x ] 
3p a2TJi 3(uiuj') 
^— +v—-1 ^ ~ dxf 3x; 

A 1.5 
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fl((u|uj')Al)=| -U :At dUj At At i 3PAt ,„32ÜjAt d ^ 

p 3 xi 
o f T^~At 1 Or 

-ô i3g+fceij3UjAt-i^— +v 3x? 3x; 
dt 

A 1.6 

where At is the interval of integration, could be small s or large /. In the right hand side of 
eq.Al.6, the integration of this equation is equivalent to fi( At)operator in the above 
expression. The values of the Reynolds stress represent the f0(x) in the above equation, 
while the effect of this value on the mean momentum is represented by f j [f0(x)] expression. 
The superscript next to the s determines the interval of averaging, small or large. 

In the derivation of this equation, Reynolds (1894) has shown that the uniformity of the 
(turbulent ?) signals is a required condition for the validity of the averaging. He has done this 
through the Taylor expansion of the signals behaviour around the centre of mass of the 
averaged volume and has shown that to achieve the mean momentum condition, i.e. that the 

integration of all X Pu ' X Pv ' ^ Pw o v e r a)l volume or time intervals to be respectively 
and severally zero, the first order derivatives of the ïï,v, w within our subvolumes or time 
intervals with respect to x,y,z should be constant. This is equivalent to assuming that the 
mean motion is steady, or uniformly varying with time. 

Fig. A. 1.1. A variation of the mean signal along a line connecting two control 
volumes, the first dxl is conntecting two control volumes which constitute 
subvolumes in a large control volume. 

He concluded "that the closeness of the approximation with which the motion of any 
system can be expressed as a varying mean-motion together with a relative-motion, which 
when integrated over a space of which the dimensions are a,b,c, has no momentum increases 
as the magnitude of the periods of u,v,w in comparison with the periods of u',w',v' and is 
measured by the relative orders of magnitude to which these periods belong." This seems to 
me as a statement of eq.3.5.1. So, did we understand wrong?. What about the legitimacy of 
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the raised point concerning the behaviour of the terms, as shown through the nonlinearity of 
the systems of equations and the strong time variations of its terms? 

There are two points to answer this. The first, we conclude from Reynolds paper: it 
depends on the size of subvolumes composing the whole volume of averaging, as shown by 
the previous graph, to determine what is mean and what is deviation. The variation of the 
mean signal along the two subvolumes connected by dxl represent, with respect to the two 
larger subvolumes connected by dx2, a variation within the larger subdomain one. If 
condition 3.5 is not achieved yet, in a way, it represents a variation of the turbulent signal 
along the larger subdomain Or more correctly, it represents the increase in the turbulent 
signal due to the volume increase from volume 1 to volume 2. 

The second is that the separation of the scale required for the validity of averaging is a 
required condition for all subvolumes which could be averaged. In case of uniform 
distribution of the length scale, the increase of the turbulent transport with the increase of the 
volume of averaging or the length of time step will be an increasing function of the spatial 
dimension or the time interval with a uniform slope. Within this averaging volume, there is 
an increase of the flux till we reach a plateau. The uniformity of the slope implies uniformity 
of the term's behaviour within the volume of averaging. The correlation between any two 
signals will be uniformly distributed. So, Reynolds by specifying this condition of uniformity 
met also the conditions required for averaging a non-linear equation. The problem happens 
when there exists a change of the slope or a separation of the scale within our averaging 
volume. 

A uniform distribution of the turbulent transport signals at lower level, i.e. Uj,c' ,will 
lead to a uniform distribution of the double and triple correlation between variables, i.e. u', 
c'. This will eliminate the effect of intermittency on the correlation. Two completely non-
correlated signals along a certain direction lead to zero turbulent flux in that direction. In the 
horizontal direction, assuming no mean horizontal component, that implies complete 
homogeneity of the concentrations or the conserved quantities. In the case of a non-random 
correlation, which is uniformly distributed, this implies a rather uniform flux in a certain 
direction (no contribution to the flux divergence along that direction). 

For the equality of the above equation A. 1 .b to be achieved for a nonlinear operator f 1, it 

is required that f()(x) terms are equal during the short time intervals comprising the large 
time intervals. 

For the equality of the dependent variables in eq. A. 1.1 .b, the dependent variables have to 
S 

be equal within our volumes. To have the equality Al.l.b valid, the variance of the frj(x) 
should be zero or a variance minimization principle. 

i=l/s 

I 
~ n=l 

i\ i 
foM* 

\ 

• 

- foM* f 
, 

i-1 

The derivation of an averaged equation for 
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f0M-y - fo«* 

For example, a second order term, U:Uk : the derivation of an equation for 

(uiuk)=(UjUk)-UjUk 

which we try to include in the turbulent transport equation is by multiplying it by its self or 
by a turbulent transport term which maintains the effect of the deviation. This is similar to a 
derivation of a higher order term prognostic equation. 

The minimization of the variance of this value is achieved, when we have identical 
volume. Strictly speaking, the equality of eq. A 1.1.a is then achieved when we are averaging 
identical averaging volumes or identical time steps. The variance is then equal to zero. The 
equality of the terms is the strict required condition for equality of A 1.1.b. The effect of 
variation between the samples shows in the above non-equality. 

il 
' represents the error in the solution due to our The sum of f ] fo«J -f foMJ 

approximations. The total difference depends on our system of equation and how much is the 
difference. 
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APPENDIX l.b: Random Walk modeis. 

In a random walk model, we have a problem concerning the effect of coherent structures 
on the concentration field and whether the derivation of these models include in them an account 
of the resulting correlation in the motion between particles on the concentration field. 

In this appendix, we review the derivation given by Lamb (1980) and we show where a 
misunderstanding may arise. 

THE DERIVATION BY LAMB (1980): 

Consider a dispersion experiment in which three particles are released from given points 
r r r at time t=0. Once the particles are released, they are carried by the fluid to new 
locations r (t), r (t), r (tV 

Let v be a volume, which we shall call the sample volume, centred at a given point r. The 
size of v is arbitrary, although we shall assume it is small in the analysis. 
The sample volume and particle positions at time t and t=0 are illustrated in his fig.A.l.b.l 
(which is included here for clarity.) 

Lamb(1980) introduces two definitions that will serve as the sole basis of the Lagrangian 
diffusion equation. The first is the definition of the concentration c itself. He defines 

c(r,t) : m(r,t) A.l.b.l 

where m is the number of particles in v at time t. The second definition is the joint probability 
density p(r r r ,t I r ,r ,r ,t ) that the particles are at the specified points r r r a time t 
given that they were at r r r , respectively, at time to=0. The function p is a Lagrangian 
property of u' family and is defined as follows: 

p(r,,r ,r , t l r ,r ,r , t ) = lirn - I Un/(5v)J 

n=i 
A.l.b.2 

1 if the n-th member of the u' family is such that three particles 
released at (r1Q, r r ) at t0=0 are simultaneously in small 

volumes 8v centred at given points ri,r2, rç respectively at 
time t; 

= 0; otherwise 

A.l.b.3 

In the three-particle problem under consideration, the concentration c can have only one of 
four values at any point in space and time - c =m/v, m=0,l,2.3. Then, to determine the 
probability w(m) that the concentration in the sample volume has the value m/v. 
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Fig Al.b.l illustration of the sample volume V and positions for the three particles initially 
and at time t. taken from Lamb (1980). 

Considering first the case of m=l (one particle in the volume), there are three events which 
can lead to this value: either particle 1 is in v alone, or particle 2 is there alone, or 3 is present in 
v alone. By virtue of the definition of p we have 

P{ = probability of particle 1 in v alone = LLj vP 1 2 3
d r i d r2 d r3 A.l.b.4 

where, for brevity 

Pl23=P ( rr r2V l r ,O' r20' r30' tO ) A.l.b.5 

The integration domain represents all space outside the volume v centred at r. v is assumed 
[1 enough that p varies little as r , r r vary over regions of size v centred at each point. In 
case, the inner integral is simply p v. 
The integral over \j/ can be written in the form 

A.l.b.6 I ( )dr= J ( ) d r - | ( )dr 

where I denotes integration over all space. Using this equation and the definition of the so 
called marginal densities p. and p , i.e. 

j Jk 

Pjksj Pjk/
dr/ 

Pfjp
JkAdr/ 

equation A. 1 .b.4 is reduced to the form 

A.l.b.7 

A.l.b.8 
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= f [ p 1 3 v - : P l=MP.3V -P .23^ d r3 A l b 9 

and repeating this operation, we get 

P, = V P l - v 2 p i 3 - v 2 p i 2 + v3p i23 

The same procedure is repeated for P , P A. 1 .b. 10 

Since the occurrence in v of any one of the three particles is mutually exclusive of all other 
possible events, it follows that 

3 

w(l) = X P n = V(P1+P2 + P 3 ) - 2 v2(Pl2+Pl3+P23 ) + 3v3pi23 A. 1 .b. 1 1 
n=l 

The steps leading to the expression for w(2) are similar to those just described, first 

p12 = Probability of particle 1 and 2 only in v = }vjv)vP123 dr3 = v2 p{2 - v3 p m 

A.l.b.12 

There are three mutually exclusive pairings of the three particles that give c=2/v — (1,2), 
(1,3) ,(2,3). Consequently 

w(2) =P +P, +P„ = v2(p, +p, ,+ p , J - 3 v3p,„„ A.l.b.13 
v ' 12 13 23 V i 12 M 3 VV>' v\n 

Finally, since all three particles must be in v to cause c=3/v, we have 

w(3) = p l 2 3v 3 A.l.b.14 

and since m= 0,1,2,3 are the only 4 possible events, 

w(0)=l - w(l) - w(2) - w(3) A.l.b.15 

These are the exact forms of the probability distribution w(c) for this simple model. Now, 
to determine the ensemble averages or the moments of the concentration. The mathematical 
expectation of the n order moment is given by: 

3 

I 
m=0 

;mn)= £ mnw(m) A.l.b.16 

The mean concentration, i.e. the zeroth order moment, is given in this three particle system by 

(c) = (m)/v = w(l) + 2w(2) + 3w(3) A.l.b.17 
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summing the corresponding expression for w(l), w(2) and w(3), we end up 

( c )=P,+P 2 + P3 A.l.b.18 

i.e. the sum of the marginal densities of the different particles in the system. In Lamb(1975), it 
is shown that in the limit as the number of particles becomes very large, equation A.l.b.18 
becomes equal to 

(C(r,t))=fjp(r,t I r',t') s(r',t') dr'dt' A.l.b.19 

which is equivalent to eq. 3.7.1a or 3.7.1b. 

Here ends the derivation given by Lambfl980): and now where is the misunderstanding in 
the derivation and that the effect of coherent structures is thought to be already included? 

The joint density function p , as defined by eq.A.l.b.2 and A.l.b.3, includes in it all the 
possible correlations between the particle locations after some time since release, which could 
result due to the effect of different scales of motion, including large scale coherent structures. 
Small-scale structures do not lead to non-vanishing correlations between particles at different 
locations or between particles which have a time separation larger than the Lagrangian integral 
time scale. 

The problem is that the marginal density functions pi, p2, p3 will not be equal to each 
other. Since, it is by definition that in the case of independent events, i.e. the event of particle 1 
being in location r after time t has nothing to do with particle 2 being in location r after time t, 
and both of these events or any of them have nothing to do with particle 3 being in location r 
after time t, requires then the possibility of expressing the function p(r r r t I r,n>

r,n>
r,n>

t
n) 

as a multiplication of the p. .p..p, which are the marginal density functions for particles 1, 2 
and 3 respectively. If the migration of the three particles are correlated, the expressing of 

3 

p , 2 ,= I1 Pn where pi= P2 = P3 is not possible and the resulting summation in eq. A.l.b.18 is 
l 

not of identical terms. 
If we accept that the fluxes of the scalar quantities represent the migration of particles 

between different location and that these fluxes resulting from the existence of coherent 
structures represent correlation between particle emigration at different heights, we end up with 
the conclusion that the particles motions are correlated and so 

P( rr r2'V••' rn' l ' rio'r20'r30'"'rnO'V c a n n o t b e expressed as a multiplication of 
Pl23...n = Pl-Pl-P2 Pn 

where 
Pi=P2= .... =Pn = P(r,t I r',t') 

To get a fitting, you need one of these functions to be obtained by fitting. 
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APPENDIX 2 (A.2): 

2.1) The energy equation of the leaves: 

The energy budget of the leaves reads as 

psCs v | = a r R s l A r - ^ ( T i - T a ) Ah-^E_(esC[ï)-ea)A1+ ( e ^ a-eoTf>a) Ar 
Y(rbvT1s--

assuming 
A.2.1.1 

es(Tl) =es(Tair) + ̂  (T,-Tair) A.2.1.2 

and 

eöTlir,rad,a " ^ a ) = 4^Tair,rad,a(Tair,rad-Tl) A.2.1.3 

The energy budget equation of the leaves can be put in the following form: 

^ — l — [<*r ^ Ar+ 4eaT3 i r i rada(Tair)rad-T1) - ̂  ( T , - ^ ) Ah 

A.2.1.4 
3t psCs V

 L~r s ' r ^ air,raü,av * air.raa * i, rfeh 

which can by rearranging the terms be put in the following form 

? " = PÀV [Ctr R&i A f + 4£OTair,rad,a Tair,rad+ ^ f Tair Ah - ̂ ^ (es(Tair)-eair)A! 

• p C P 3 e S T . A l 1 1 M r f T T 3 J | p C P A.. I p C p 3 e S Ail T. 
+ 7(rbv+rs) 3T J™^ psCs V

 [4eaTair,rad,a + ̂  A h + ^ ^ y j f A l ] T l 

A.2.1.5 
Putting 

and 

pcp 
fR= ^ A.2.1.7 

and 
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Ar=Ah=A|=A A.2.1.8 

p CP r i j . 1 3eg L = K , T = - ^ : ^ , — - l± + 7*r + r ^ T T ^ ] A.2.1.9 
T 

x, T 1,T psCs thickness fR «"bh Y(rbv+rs) ^T 

Defining 

T, K - p C p r a r R&i i T a i r ' m d • 1 T — L f e r r - l e - l 
Ti'eq V - P s c s t h i ck [ ~ ^ + ~ ~ T T ~ + ? b h T a "Ä^J( s( air) ^ 

+^ky s T a i r ] 

A.2.1.10 

~ 1 ra r R s l Tair>rad j 
T l ' e q =

 r1 , 1 , 1 3 e s ~ [ ^ c T + ^ ^ " + ^ T a i r 

rR rbh 7(rbv+rs) 3T A.2.1.11 

^ ^ ( e s ( T a i r ) - e a , r ) + ̂ b ^ ^ Tair] 

The equation for the leaves reads as 

^ U - K ^ T d ï - T ^ q ) A.2.1.12 

the solution of which is 

t t 

Tl=Ti>eq(l-e
 T>'T) + TUni t i a le

 T , 'T A.2.1.13 

2.2) The sensible heat equation of the canopy air layers 

The sensible heat balance equation reads as 

Discretized with respect to space, it reads as 

A z pCP -JääL = . (q i+1 . qj) +s h A z A 2.2.2 
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qj=wc w'2xLll-e iL 3cT 
dz 

> >ens j . i wc dt = •o i ^ w2TL|l-e TL 
top 

a^idt, 
8z 

qi+i= 

w c dt] dt 
w2xL | l -e XL 

top 
as 

3z 
l— 'dtidt 

y.i 

wc = w ^ L 1-e xi 3 -
| L topaz 

A.2.2.3 

The above equation expresses the development of the flux as a function of time. The 
ensemble average here means an average over the same time since release or the average of a 
large number of measurements, taken at the same period after the passage of a gust. The 
actual flux will be a superposition of different times since release. 

The mean flux: 

ƒ' 
•»o 

' >ens ,t wc dt 
w'2 TL { • * } , 

qi+i= 

Putting 

qi+i = pep 

V 2 T L 1-e TL 

ÔX 
(Ti-Ti+i) 

top 

3c 
3z 

dt 

A.2.2.4 

A.2.2.5 

and 

- i r ( ÎQZLL\ 
W 2 T L l-e TL , 

^ bottom 
q i = pCP J i (Tj.j-Ti) 

° xbottom 

A.2.2.6 
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leads to 

w 2 t L | l - e XL 

A z pcp^ir = pcp M 
* 5X t o p 

(Ti+1-Tii 

+ p C P 

Rearranging 

,„ , toil 
w 2 x L | l - e XL pc. 

b e ü Q m L (Ti I-Ti) + '—Z- (Ti-Tj) LAD A z 
ô X b o t t o m 'bh 

A.2.2.7 

Az pCp 
3T 

' - ^ | !Q±J —- ! fr'ij 
w 2 x L ( l - e x L J w ^ ^ - e T L ) , 

air _ 
3t 

p C P 
'top bottom LAD Az 

ÔX top ö xbottom 
rbh 

Ti 

w2xL( l - e XL 

+ pCp 
top , 

w 2 x L | l - e XL 

ÔX, top 

T + hflBBBlT +
 T l L ^ A z 

ô X b o t t o m ^ 

A.2.2.8 
In the far field region Of -L > 5, where TL is the Lagrangian time scale which has a 

maximum value of 1 sec. The equations reduce to the -

3T; air _ 
di 

\ I K top [ Kbottom ,LAD A z W 

L '"toi 

äXtop 

Az lSX top 5 X b o t t o m
 rbh 

rbh 
1 t 0P T- • ! Kbottom T . , , T| LAD A z 

s 1 + 1 s 1_1 " ^ 
Az ^ôX t0p ôXbottom 

1 = K _ 1 / K top , K b o t t o m | L A D A z 

\ T
 a ' A z ( o X t o p 6 X b o t t o m ™ 

A.2.2.9 

A.2.2.10 
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^ = - K a , T T i + Ka;T LJ2E 

1 f K t°P T- , i Kbottom T . , , T 1 L A D A z \ 
0 ^bottom 

3T. air 
3t 

= -Ka,TTi + K a > TT a i 

rbh 

air,eq 

! / Ktop | Kbottom ,LAD Az 
Az \SX t o p ÔX b o t t o m

 rbh 

A.2.2.11 

A.2.2.12 

The behaviour of the equation is exponential in a range of values which exceeds 
the Lagrangian integral time scale by an order of magnitude. The effect of the non-
linearity we are considering in the solution is not only a near field effect. 

The solution of this equation follows. The assumption of the constancy of Tair,eq could 
be justified by applying the integration for a short timestep in which the values of Tair,eq a nd 
Ka;T are almost constant. For every time step, the values of Tair,eq will keeP changing. This 
equation describes the behaviour during such an interval. 

Tah~Tair.ea(l"e ' ) + Tai 1 a i r - l air,eq' 

where 

air,initiale 

t 
ta,T 

Tair,eqW -

K top 

SX top 
Ktop ! Kbottom ,LADA; 

5X top ô XDottom Tbh 

Ti+1 + 

A.2.2.13 

^bottom 

" ^bottom 
Ktop , Kbottom ,LAD A; 

ôXt0p 5 Xbottom f b h 

Ti-1 

LAD Az 
rbh 

Ktop , Kb o t t o m | L A D Az 

ÔXtop 8X b o t t o m
 r b h 

Tl 

A.2.2.14 
There are two time constants for the layer. One active during the gust intrusion and the 

other during the quiescence period. 
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2.3) The latent heat equation of the canopy air layers 

The latent heat balance equation reads as 

p Ç p 3 e ^ _ a q i e + s 

y dt dz 

Discretized with respect to space 

A z ^ P ^ i t = - ( q i + 1 - q i ) + S l e Az A.2.3.2 

Putting 

^ , ^ ^ ( e i % l ) A.2.3.3 

and 

q e i =
 p C p Kbottom (eil_e.) A.2.3.4 

^ § xbottom 

A z PCpggäir = PgP_j^ ( e i+1 ,e i ) + PgP Kbottom ( e M_ e . 
y dt y 5x t o p y oX b o t t o m 

+ p (es(Ti)-ea) LAD Az 
Y(rbv+rs) 

Rearranging 

3eair = 1 
31 Az^ top 

/ Ktop | Kb o t t o m +LAD_Az)ej 

[8X t o p 5X b o t t o m (n>h+rS)J ' 

i ' ( K t 0 p c i+1 i
 Kbo«om e j i i e s ( T l ) L A D A 

Az \ôX t op
 1+ ÔX b o t t o m '" (rbv+rs) 

z 

A.2.3.5 

A.2.3.6 

1 = K = 1 / Kt°P , Kb o t t o m | L A p Az | A.2.3 7 
ta,e a,e A z \ 8X top ôX b o t t o m (rbv+rs) 
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3e. air _ ir P. , v 
-v _ " "-a,e e i + ^a .e 

1 

Az 

( J ^ L e i + 1 +
 Kbottom + LAELAz e s ( T l ) \ 

^8X t0p 5 X b o t t o m (rbv+rs) ) 

1 / K top t K b o t t o m |LADMip Az 

Az \ s x t o p ÔXbottom (rbv+rs) 

A.2.3.8 

3e air,i _ 
~5: - " ̂ -a,e eair,i + ^-a,e eair,eq A.2.3.9 

where 

eair,eq( l) -

K, top 

SX top 
e i+l + 

^bottom 

° ^bottom 
K top , K b o t t o m ^ADMID A z | / K top [ K b o t t o m | L A D A Z 

5X t o p 5 X b o t t o m (fbv+>-s) ) [ 8 X t o p 5 X b o t t o m (rbv+rs) 

LAP Az 
^ ( rbv+rs) 

ei-1 

K top , K b o t t o m | L A D Az 

5X t o p 6 X b o t t o m (rbv+rS) 

es(Ti) 

eair - eair,eq(l~e ' ) + einitiale 

A.2.3.10 

A.2.3.11 

There are two time constants for the canopy air layer. One during the gust intrusion and the 
other during the quiescence period. 

2.4) The vapour pressure deficit of the canopy air layers 

A z P ^ P ä e a i t _ p C p j^ top_ , , pCp K b o t t o m P Cp 
Y dt ~ y g x

 1 1 + 1 e i , + ^ ^ ~ (ei-i-ei)-1-,,,,. L, 

A z 

top Y S X b o t t o ^ ' ' " YO-bv+rs) 

p Ç p g e ^ ^ p C p Ktop_ ( e i + i_ e i ) + pCp K b o t t o m ( e , _ i e i ) + s R n + P CpDr^ ^ A 

(es(T])-ea) LAD A z 

A.2.4.1 

1 

Y 3t Y 5X, top 
Y § xbottom 

* Y +s 

A.2.4.2 
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A z pCpg^r = pCp-^gP-(T i+1-Ti) + pCp K b o t t o m (Ti.i-Ti) +
 Y R n " P C p D r h LAD A; 

dt 5X top §Xbottom Y + s 
A.2.4.3 

3e 
Multiplying the first equation by (- 7) and the second by s (s= -^) 

Az s p C p ^ = p C p s ^ g B - ( T i + i - T i ) + P C p s K b o t t o m (Ti_i-Ti) 
8 x top SXbottom A.2.4.4 

y*Rn - pCpDrC1 

+ s I—n K ^ h L A D A z * y + s 

-1 

3 t 5X top 8X b o t t o m Y + s 

A.2.4.5 

A z pep 3 ( s T ^ r - e a i r ) = p C p J^22_((STi+1- e i+1) - (sTj- q)) 
3 t 5X top 

+ PCp K b o t t o m ((sT i.1-e i.i)-(sTi-e i)) 
8 ^bottom 

/ Y X - p C p D T h 1 ^ »RiL-HpCpDrh1] L A D A z 

\ Y*+
 s Y*+ s / 

A.2.4.6 

D(Ta) = es(Ta) - ea A.2.4.7 

D(Ta) = es(Tp) + s T a - s T p - e a A.2.4.8 
where Tp is some reference temperature, 

Adding and subtracting es(Tp) - s Tp to (sTair-eair) for layer i+1 and layer i in the left and 

right hand side of the equation gives 

A z p C p ^ = P c^ i ^ (D i + 1 -D i ) + pCp-Rattan-Pi.,-Di) 
§xtop ° xbottom 

/ y*Rn - pCpDrjl1 s Rn + pCpDru1 \ 
+ s — » " - y — * — L A D A z A.2.4.9 

\ y*+ s y*+ s / 

dividing the whole equation by s 
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A z pCp^ = pCp K t o p , ^ ^ p ^ J W ^ Dj) 

8xtop 8 xbottom 

Y*Rn - pCpDrf,1 y s Rn + pCpDr;1 \ 
1—" K v h . 1 n_ t_È_J î_ LAD Az A.2.4.10 

* c * I 

Y +s y +s / 
working out the third term between brackets as shown in Chen(1984) 

1 ,, c R x nfnnr." 1 Y*Rn - pCpDrj,1 Y s Rn + pCPDrh 

y +s Ä y +s 

Y*Rn-YRn pCpDrj^lpCpDr^l 

Y*+ s Y*+ s 

Y*Rn-YRn Y ^ . v + ^ R n - y r h R n = y r s R n = Rn 

Y*+s ~ Y(rb,v+rs)+srh ~ Y (rb,v+rs)+s rh i+Eb f 1+s_) 
h Y 

_ Rn _ Rn _rs a Rn 

, ,rb J + s ^ 1+^b- r s a + r b 
A.2.4.11 

Y*+s (Y+s)rb+yrs Y ¥ « r s 

A z P^ |L=p^J^ (D i+ i_Di ) + p ^ J C t o t c ^ ( D i l . D i ) 

5 x top 8 xbottom 

r ry R D 

+ Es_a_ün s L A D A z 

\ rs
 a + r b H3+ « rs / 

A.2.4.13 

where: 

a = (-^— ) A.2.4.14 
Y+s 

A z ^ i = i ^ o p _ p D ) + J ^ f l J t aBL^ ^ ) J _ A _ i o R n D L _ | L A D A Z 

* 5X top 8X b o t t o m IPCP r s a + r b r b + a r s ] 

A.2.4.15 

Rearranging 
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3Dj_ = j _ / K t o p _ + ^Kbottom_ + LAD_Az\ D . + J_ 

3t Az \8X t o p SX b o t t o m r b + « ' s j Az 

/ K ^ p i + 1 +
 Kbottom D i l \ 

SXtop $ ̂ bottom 
+ ( s r s a Rn | L A D A z 

\ ipCp (r sa+rb; 

J _ = K _ _ j _ ( 3 ° P | Kbottom , LAP Az 
%,P D Az \SX t o p 8X b o t t o m r b+a r S j 

A.2.4.16 

A.2.4.17 

3D, 
3t 

^ n . , K D 1 ( i ^ g L r v ^ + Kbottom D J . s a r s Rn \ L A D A z | 

A.2.4.18 

/K, 

^ U - K D D i + K D ^ 
* Az 

top Kbottom 
8Xt°P n- 1 j . 5 Xbottom u i + l + 

LAD Az 

\ KD KD 

n . , (rh+arS) ( s a r s R n\ 
Dl-! KD \ pCP j | 

A.2.4.19 

^ U - K D D i + K D D a i r , e q A.2.4.20 

K, top Kbott< om 

Dair,eqW _ 

SX, top 
Di+l + 

S Xfaottom 
Ktop ,. Kb o t t o m t LAD A z 

ôX top 8X b o t t o m
 r b+« r s 

LAD Az 
_, rb+« rs 

Ktop , K b o t t o m t LAD A z 

5X top ô Xbottom r b + a *s 

Di-l 

Ktop | Kb o t t o m | LAP A z ^ p C p 

5X top 5Xbottom t>+«rs 

s « r s Rn 

Dair= Dair,eqO " e Ta,P) + Dair,initial e Ta,P 

A.2.4.21 

A.2.4.22 

s a rs Rn 

pCp 

Y r: R s Y + s ' x n _ y r s E ( equ 
pCP pCp 

A.2.4.23 

In this derivation, which is a variant of Chen (1984), there is no need for defining J 
(saturation heat flux). The system is directly solvable to obtain a P value. 
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2.5) The Soil temperature equation solution and the effect of intermittency on the 
change of the boundary condition for the energy equation at the soil surface 

Remark: The solution introduced here is standard mathematics, The formulation 
of the problem (eq. A.2.5.1 to eq. A.2.5.7) and the nonhomogenous solution is done by 
the author 

The soil temperature as function of space (x) and time (t) is formulated as follows: 

^ I s = K ^ f + Q ( x , t ) A.2.5.1 

subject to the following boundary conditions: 

ß L 3 T ^ 0 + a L T s ( L ) = f (L>t) A.2.5.1.a 

« = 0 A.2.5.1.b 
dx 

and the initial condition 

T(x,0)=g(x) A.2.5.1.c 

where 
f(L,t) = a r R s i + 4 £ a T ^ r a d , a T a i r , r a d + ( ^ + ^ 2 - ^ ) T a i r - ^ J ^ . D a i r 

A.2.5.2 

« L K 4 e a T 3 a i r ; r a d ! a + ^ + ^ ^ ) 

Q(x,t) = 0 x < L a n d t > 0 A.2.5.1.d 

and g(x) is the initial temperature profile. 
The related homogenous problem(A.2.5.4), satisfies a Sturm-Liouville Eigenvalue 

problem and as such is complete, i.e any piecewise smooth function can be expanded in a 
series of Eigenfunctions(A.2.5.8). The related homogenous problem is given by : 

^4r+M>n=0 A 2.5.4 
dx^ 
P L ^ f (L)+aL<t>n(L) =0 A 2.5.4.a 

^ ( 0 ) = 0 A2.5.4.b 
dx 
The Eigenfunction of the related homogenous problem is 
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())(x,t)=Cicos'VÀn x+C2sin V^n x A 2.5.5 

using the boundary condition at x=0 eq.A.2.5.1 , C2 =0 

(t)n=CicosV?in x A 2.5.6 

where 

Àn=cot(V^ L ) ^ A 2.5.6.a 
P L 

The soil temperature can then be expressed as 

n=°° 
T(x,t)= I bn(t)4>n(x) A 2.5.7 

n=0 

The equality is actually not valid at x=L since (|)n(x) satisfies the homogenous boundary 
condition there while T(x,t) does not. So. the required term by term differentiation of T(x.t) 
with respect to x is not valid, while the derivative with respect to time is possible (from 
A.2.5.1 andA2.5.7). 

X ^ T 4>n« = Ä A 2.5.8 
n=0 d t 3\2 

d b 3^T 
-—2- is the coefficients of an Eigenfunction expansion of K——, using the orthogonality of the 
dt 9x2 

Eigenfunctions of this expansion 

a2T 

Jo l - . 1-'t
lnWd'1 

°xz 

* > = - A 2.5.9 
dt f L r 

îj(x) dx t>n( 
Jo 

Using Green 's formula which states that 

r [u L (v) - v L (u)] dx= I (u i ^ - v i ü f A 2.5.10 
I dx dx I 

where 
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** is any Sturm-Lioville operator L = - p (p-f4 + q , in this case q=0 and p= 1. 

r L T 

Jo o 

=- T (L ) ^ (cot VTT L) sinVxT L- cos (VÄT L)9 ^ ( L ) 

ßL
 9 x 

= - J - co sVVL[ aLT(L) + ß L ^ l ^ - ] 
ßL

 3 x 

= - J - cos( V V L) f(L,t) A 2.5.11 
ßL 

Kl < Ä X = - K [ T ^ - ^ / V K I T ^ d x A.2.5.12 i 
< <t>n' 

Jo 0 
Using equation A 2.5.4 

r ^ n K | T 0 n 

Ji) 

dx = - ^ K | T(|>ndx A 2.5.13 
3x2 

and since bn(t) is the coefficient of an Eigenfunctions expansion of T(x,t), so by definition 

f 
_Ji) 

T (t) 4>n dx 

bn(t)=^ A.2.5.14 

r 
Jo 

2 
<t>n(x) d x 

C (h 2 
-XnK I T <)>n dx =-?*.„ Kbn I <|)n(x) dx 

/, Jo 
Using equation A.2.5.15 , A. 2.5.9 

K H * n ( x ) d x ^cos(V^L)f(L,t)-ÀnKbn f OnWdx 
d bn(t) = ^ = ßL Jo 

^ " (L 2 ' (L 2 
())n(x)dx <t>n(x)dx 

Jo Jo 

A.2.5.15 

A.2.5.16 
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dt r\. 

J <l>n ßL (tó(x)dx 

d (bn(t) e^nKt) = ^ cos( VA,n L) f(L, t) 

dt " ,T . 

PsQ 
fL 2 

; <t>n(x)dx 

;o 

/ • ' 

bn(t) =bn(0)e"X'nKt + e-XuKt 
ï^n* 1 cos( V y L) f(L,x) 

dx 

, 

3 <l>n Ps cs <Ki(x)dx 

b„(0) = r g(x) (|)n(x)dx 

( L 2 
(|)n(x)dx 

h 
bn(t) =bn(0)e-AnKt 

A.2.5.17 

A.2.5.18 

A.2.5.19 

A.2.5.20 

e-^nKt cos(V^.n L) 

P s c s - + ̂ ^ - s i n ( ^ n L) cos(VA,n L) 
2 2<Xn 

In rt 

Wo Jo 
f 2 (L ,T) dx 

A.2.5.21 
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2.6.1) The approximate form: 
2.6.1.a) The vapour pressure deficit equation for an n layered canopy. 

Our starting point is equation A. 2.4.16, which reads, 

À z ^ = -^E_(D£At-D<+At)+ Kbottom (D^'_Di
t+At) 

§xtop 8 Xbottom 
rsocRn _ D j 1 L A D A z A2.6.1.1 

pCp(r sa+r b ) r b+ar s j 

The superscript t+At means that the values of D are evaluated at the end of each timestep 
(implicit approach). 

^ (D;+At-D[)= ^^(D t
i : f

t-D i
t + A t)+ bottom (DHAt_Dt+At) 

At SX top ô X5 0 t t 0 m 

s_ rs aK n _ Uj l L A D A z A.2.6.1.2 
pCP ( r sa+rb) rb+ar s 

Az , K t oP , Kbottom ,LAD Az]Dt+At _ Ktop Dt+At + bottom Dt+At 
At 5X t o p 8 X b o t t o m

 rb+ a rs J 5X t o p 5 X b o t t o m 

, LAD A z s rs a Rn A 2 6 1 3 
(rsa+rt,) pCP 

K t 0P Dt+At _[AZ , Kt°P , Kbottom ,LAD AzjDt+At + Kbottom D
t+At 

JM - = = - + -t- + = ^ = \u\ -i- i->\.\ 

ÔXjop \At ÔXtop ô Xbottom r b + a r s / 5 Xbottom 
_ LAD A z s rs a Rn 

( r sa+r b ) pCP 

EiDt^ - F i D / ^ + G i D ^ = - Q A.2.6.1.4 

F. = [ M +
Ktop,i +

 Kbottom,i + L A D A Z l | A 2 6 { A& 

\M 5Xtop,i 5Xbottom,i r b , i + a r s , i j 

E|=Kbottom,i A.2.6.1.4.b 

S xbottom,i 

G, = K t ° P ' ' A.2.6.1.4.C 
SXtop,i 
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c = LAD A z s rs « R n , AZJ p t 
' ( r s a + r b ) pC P A t ' 

A.2.6.1.4.d 

1 

E 2 

O 
O 
O 
o 

o 
-F2 

E3 

O 
O 
o 

o o 
G2 O 
-F3 G3 

E4 -F4 

O E5 

O O 

0 
0 
0 
G4 

-F5 

0 

0 
0 
0 
0 
G5 

1 J 

D, 
D2 

D3 

D4 

D5 

L D 6 

Dfirst air layer 

-c2 

-c3 
-c4 

D, 
-c5 

upper boundary 

D = 

A.2.6.1.5 

A.2.6.1.5.b 

A 1 A D = A-' C 

*^air,eql — A i^ A.2.6.1.6 

The values of Rn are obtained by initially assuming isothermal condition i.e. the 
temperature of the leaves are equal to the air temperature which is assumed equal to the 
boundary above. These values will be updated after the solution of A.2.6.2.5. 

2.6.l.b) The temperature of air for an n layered canopy (Penman-Monteith equation) 
for steady state solution. 

In a similar manner to the derivation above for the vapour pressure deficit equation, 

d T i _ K t o p , -pt+Atrpt+At^ b o t t o m /Tt+At T t + A u , ( Y* R n - P C P D r b ' j L A D Az ^ - = —^-ÇV. 
dt ôX t o p 

-CT' l+l ' i >• VA i-1 M 

° xbottom s + y 
Az 

A.2.6.2.1 

Az ,-pt+At-Th = t 0P (T?+At-T-+At)+ ^bottom /-pt+At Tt+AK + 
/ ,,* 

At ÔX top S xbottom 

y Rn-pCpDr-b ' 

s + y 
LAD Az 

A.2.6.2.2 

Kh t 0P -pt+At I Az , t 0P ! Kbottom j Tç+At + Kbottom Tt+At 

ÔX, 
l i+ l 

top At ôX t o p ô Xbottom / 

^t+At 
i M l - t^j 1 1 + ( j j l i + 

r- /AZJ Kfop i Kbottom,i 
Fj = | — L + * — + 

At §X t 0p ;i 8 Xt,ottom,i 

- Q 

o ̂ bottom 

/ y Rn-pCpDrb ' 

I s+Y* 
LAD A z - ^ T | 

/ At 
A.2.6.2.3 

A.2.6.2.4 

A.2.6.2.4.a 
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^bottom, i 

8 X b >ottom,i 
A.2.6.2.4.b 

K, top,i 

ÔX top,i 
A.2.6.2.4.b 

/ R n - pCpDr b ' | L A D A z + A ^ T | 

S + Y At 
A.2.6.2.4.C 

1 
E 2 
0 
0 
0 
0 

0 
-F2 

E3 
0 
0 
0 

0 
G2 

-F3 

E4 

0 
0 

0 
0 
G3 

-F4 

E5 

0 

0 
0 
0 
G4 

-F5 

0 

0 
0 
0 
0 
G5 

1 J 

T, 
T2 

T3 

T4 

T5 

L T 6 

A 'A T : 

T = 

1 first air layer 

-c2 

-c3 

-c4 

-c5 
A upper boundary 

c 
A.2.6.2.5 

T= A"1 C A.2.6.2.6 
In the matrix C, the value of D in different layers are obtained from the solution of 

A.2.6.1. 6, so the temperature of air at equilibrium can be obtained, and the temperature of the 
leaves as a function of D by the use of Penman-Monteith equation. 

2.6.1.c) The vapour pressure of air for an n layered canopy (Penman-Monteith 
equation) for steady state solution. 

The derivation of this equation follows on the same line as the one for temperature. The 
terms will be the same except for the source term of latent heat. 
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2.6.2) THE MORE EXACT FORM 
2.6.2.a) the temperature of air for an n layered canopy for a non-steady state solution 

Az (T-t^t.-rj) = J^top (Tt+At_Tt+At) + Kbottom(Ttr|At.Tt+At) + (Ti - T;) L A D ^ 

At Sx, top 8xbottom 
rbh 

Kt, t0P Tt+At _ I Az ! t 0P , Kbottom j jt+At +
 Kbottom jt+At 

A.2.6.2.a.l 

8 x top \A t 8 x top 8xbottom 

t+At E T^t+At c rp t+At , /~> T t+At _ r-\ 

8 xbottom 
(T i -T j ) 

fbh 
LAD A z - ^ T j 

At 
A.2.6.2.a.2 

A.2.6.2.a.3 

. _/AZL , Ktop,i (
 Kbottom,i + LAD_AZ 

At XY. S Y , .. rbh At 8X top i i SXbl ottom.i 
A.2.6.2.a.3.a 

r- (Azi *H0p,i Kbottom,i 
Fj = — L + — + 

\ At 8X t0pj 8 Xbottom,i 

Ei = 
Kbottom,i 

8 xbottom,i 
A.2.6.2.a.3.b 

8Xtop,i 
A.2.6.2.a.3.c 

C,= ^L LAD A z + ^ T ! 
l"bh At 

A.2.6.2.a.3.d 

Q = I Ü L l I l l | LAD A z + ^ T ! 
rbh At 

1 
E 2 
0 
0 
0 
0 

0 
-F2 

E, 
0 
0 
0 

0 
G2 

-F3 

E4 

0 
0 

0 
0 
G3 

-F4 

E5 
0 

0 
0 
0 
G4 

-Fs 
0 

0 
0 
0 
0 
G5 

1 

Ti 
T2 

T3 

T4 

T5 

L T 6 

c = 

1 first soil layer 

-c2 

-c3 
-c4 

-c5 
1 upper boundary 

T A.2.6.2.a.4 
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A 1 A T= A"1 C 

T = A * C A.2.6.2.a.5 

In this case , we solve the nonsteady temperature of the air equation, so At =̂>°. 

2.6.2.b) The vapour pressure of air for an n layered canopy for a non-steady state 
solution 

^ (ej+At-e»)= - ^ . ( e l i f - e ^ H bottom (et+At̂ .t+At) + ( (es(T0 - ei) ) L A D A 

At SX top 5X b o t t o m \ (rbh + rs) / " ^bottom 

t0P et+At. [ Az ! t0P , Kbottom J et+At +
 Kbottom et+At 

8 ^bottom 
( ^ ( T l ) - ? ) L A D A z - ^ e S 
(rbh + rS) ' At 

"i+l - T T T ~ c i T " 
8 x top \A t öX top oXbottom/ 8xbottom 

Ejeff* -F iej
t+At+ d e f t * = - Q 

F. = (AZL , Ktop,i , Kbottom,i f L A D A z 

At 8X top; i 5 X b o t t o n U (rbh + rs) 

A.2.6.2.D.1 

A.2.6.2.b.2 

A.2.6.2.b.3 

A.2.6.2.b.3.a 

T- /Az; ^top,i Kbottom,i Fj = —L+ c—+ 

\ At ôXtop;i 8 Xbottom,i 

Kbottom.i Ej = 

5 xbottom,i 

G j =Ktop : i_ 

8xtop,i 

c
 es(T ') L A D Az+AZ-ej 

(rbh + rs) At 
or 

c . = ( (es(Ti) - eD ] L A D Az+^eS 
\ (rbh + rs) / At 

A.2.6.2.b.3.b 

A.2.6.2.b.3.c 

A.2.6.2.b.3.d 
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1 

E 2 

0 
0 
0 

L o 

A"1 A e 

e = A"1 

0 
-F2 

E3 

0 
0 
0 

= A 

C 

0 
G2 

-F3 

E4 

0 
0 
A 

C 

0 
0 
G3 

-F4 

E5 

0 

0 
0 
0 
G4 

-F5 

0 

0 
0 
0 
0 
G5 

1 

r ei i 
e2 

e3 

e4 

es 

L e 6 J 

^first soil layer 

-c2 
-c3 
-c4 
-C5 

eupper boundary 

e C 
A.2.6.2.b.4 

A.2.6.2.b.5 

In this system of equation, we need the leaf temperature which is equation A.2.1.1.3 
and is solved explicitely. 

t t 

Tl=Ti,eq(l-e
 T , 'T) + TUni t i a le

 XW 

or solved by the use of eq.2.3.8 to eq.2.3.13. (this later solution was used in MATHCAD®) 

2.7) The change in the equilibrium temperature of the leaves 

Changes in T\eq due to changes in Rs, RL do occur, but we take account of them by 

updating the boundaries whenever a change is detected. AT] e q changes due to changes in 

the third, fourth, fifth (i.e due to coherent structures) are the ones considered here. For AWm<o 

rbh T(rbv+rs) 
(es(Tair)-ea) < 

é)es 

Krbv+r s) 3T 
T a i r < 0 

Y(rbv+rs) 
-AD+I 

3es 

t'bv+'s) rbh 
+ - ! - ) A T a i r < 0 

A.2.7.1 

A.2.7.2 

, jgL , ^ r b v ^ ' ) * A T a i r < AD 
3T rbh 

A.2.7.3 

In case of AD> 0 and ATajr >0 (i.e drier warmer air) or D">0 and T">0 (Quadrant I in fig 
4.4). AD = D2 -D\. D' is with respect to the total mean. We follow the changes of Tieaves,eql 
with respect to the total mean. 

fo r A Tle.eq.i < 0 if { ^ i ^ b v ^ s ) , < ^ D 
3T rbh ATa 

for AT,.eq ,to,al ^0 if { | ^ Ä £ s l ) < J i 
9T 

Quadrant I in fig 4.3 

A.2.7.4 

A.2.7.5 
rbh 
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In case AD> 0 and ATajr <0 (i.e drier colder air) or D">0 and T"<0 (i.e drier colder air). 
This represents Quadrant II in fig 4.3. 

A Tleeqü < 0 if fa I ̂ ^ ) > -*&- A.2.7.6 
5T rbh ATa i r 

AT,e,eqluo«al<0 i f f a Ä ^ ) > j L A . 2 . 7 . 7 
3T rb h T ' . 

'air 

which is always true, since the left hand side is always positive. So, A Tie,cqii < 0 is always 
negative. 

In case of AD or D' is negative, for the latter in the final stages of buildup and ATajr or T' 
is positive. This represents quadrant IV in fig 4.3. 

A T,e eqi, < 0 if fa J(rbv+rs>} < ^ D _ A.2.7.8 
3 T rbh ATa i r 

,3e s T ( rbv+ rs) i^ D 
A T,e,eqH ,to,a, < 0 if < ~ + ^ > S "f" A.2.7.9 

which can never be satisfied, which means A Tie,eqii > 0 or A Tie.eqii .total ^ 0 

in case of AD or D' is negative, and ATajr or T' is negative. This represents quadrant III in fig 
4.3 

AT,e,eq,i,,„,al<0 if fa I ̂ V + ' s ) ) > JOL_ A . 2 . 7 . 1 0 
3T rbh T ' 

'air 

A Tleeqii < 0 if fa ^ ( rbv+rs> } > , A D _ A . 2 . 7 . 1 1 
3T rbh ATa i r 
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A. 2. 8)The fluxes from the leaves to the air (the sources) 

The behaviour of the sources as function is given by the following equations: 

1) The sensible heat source: 

pCp/ —L_ __L_ . J _ _ J_ \ 
H (0 leaves = ~ - J i \ (Tl.eqC-6 tT,a) + Tl,initiale TT,a ) " ( Tair,eq( ' "e Tr > + Tair,initiale rr-)/ A O Q t 

rbh A Z.o. 1 

After and during the gust intrusion, the temperature of the air becomes equal to the 
temperature of air above. Since in this situation xjy3 is very small, the Ta;r>jnitjai i.e the 
temperature of the air just before intrusion is completely replaced by the new Tair,eq which is 
equal to the temperature of air above. So, the second term in the large brackets equals Tair,top 
and the temperature of the leaves is equal to Tiiinjtjai which may be equal to the equilibrium 
temperature at the end of the previous cycle. 

2) The latent heat source: 

J= P C p U(T|)-(e a l r | e q(l-e Ta,e) + einitiale *a,e)j LE(t)= r ^ es(T|) - ( eair_eq(l-e ^a,e ) + einitiale
 la,e )J A 2 8 2 1 

T(rbv+rs^ 

LE( t )= - i^ - j es(Ta)-(eai ̂ ( l - e ^ > + «Hiritial« " "4>)+ I r * " 1 ^ A.2.8.2.2 
Y(rbv+rs)\ 3Ts ' 

LE g u s t =^^L DT + * s ( T r T a ) j A.2.8.2.3 
T(rbv+rs) 1 3 T1, equilbrium 
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A. 2.9 ) The mean temperature, vapour pressure and vapour pressure deficit of the air 

= _ T
 Atgust duration Atgust duration 4 Ta,T^ 4 Ta,T 

1 _ l t ° P period +1air,eqU- p e r i o d " period)+laveraSeperiod 

At 4 T a , T 
^tgust d u r a t i o n + ^ j 

_ _ period | 
average- 4 I ^ ï r 0 1 

^gust duration 

- _ ^lgust duration .. ^gust duration 4 xa ,e . 4Ta,e 
6 - e t°P period +eair,eq(l ^ — ^ a v e r a g e ^ - j 

4xa,e 
Atgustduration+pg—^ 

riod J 
Ta,e J 

Atgust duration 

_ period L , 
eaverage_ , T I eaira t 

=:_ ^lgust duration ^gust duration 4xa,D 4Tarj 
U ~ D t°P period +Dequilibrium ( 1 — H p^ iod ) + D a v e r ag e period 
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A.2.11) Discretization of the transport equations: 

The implicitly discretized equation reads as 

t+At t 

PC„AZ J J - =pC„— 1 ^ - ( t+At t+AtU pC -bottom./ t+At t+At\ + S 
P p At P p d z t o p l 0 J + 1 - e j ) p p dzbottom (0J -eyl ) h 

(4.8) 

which leads to 

ps [f ^+£—•) <C- ps £*• «C+ ps é " - eH ' *s»' 
F VAt dZtop Ûzbottom / F ÛZtop F azbottom 

+PC @M 
P JAt 

(4.9) 
where dz stands for the vertical distance between two node points. The subscript denotes an 
upper or lower neighbouring point. Az is the thickness of layer J in m. S h is the source term in 
W m~2. The superscript denotes the time level. 
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APPENDIX 3 : (List Of Symbols) 

Symbol 

A 

Ar,Ah,Al 

A a 

Ae 
Aporosity 

Aairfilled 

A 

Agust 

Anogust 

A" -
^gust.rj 

Anogust.ij 

A"! 

Quantity units 

Event A/ (-) 
Area of the leaf (one side)/ nfi 
Area of the soil surface/ m^ 
Area available for diffusion within a cross section of the soil. wr-
Subscripts: 
Areas for energy exchange m^ 
subscript radiative, sensible heat and latent heat respectively. 
Apparent area available for diffusion. nfl 

Actual area available for diffusion m^ 
Total porosity projected in a cross section perpendicular to the (-) 
direction of the flux 
Air filled porosity projected in a cross section perpendicular to (-) 
the direction of the flux. 
Coupling coefficients matrix 
subscripts: 
The coupling coefficient matrix determined according to the gust 
parameterization of Km values. 
The coupling coefficient matrix determined according to the no-gust 
parameterization of Km values. 

Element of the coupling coefficient matrix. ms" ' 

Element of AguSt matrix. 

Element of Anogust matrix. 
Inverse of coupling coefficients matrix 

B 
b„ 

bn(0) 

bn(t) 

Event B 
The coefficient of an Eigen function expansion of the soil 
temperature function for a certain wave number n. 

The initial value of the coefficient of an Eigen function expansion 
of the soil temperature. 

The values of the coefficient of an Eigen function expansion of 
the soil temperature as a function of time. 

Kor°C 

c' 

Ci 
C H 

C(z,t) 
Ce(z,t;h,t-s) 

Concentration of a scalar quantity/ 
Capacitance of the plant tissue for water/ 
Capacitance of the leaf for water vapour 

superscripts: 

Deviation of a concentration from its time mean. 

Deviations of a concentration from its time mean or ensemble mean 
due to large scale fluctuations. 

deviations of a concentration from its time mean or ensemble mean 
due to small scale 
subscripts: 
arbitrary constant. 

lateral heat conduction between neighbouring spots on the same 
side of the leaf. 
Concentration as function of height and time. 

Conditional probability density function for a unit source. 

(-) 

(-) 
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Cl 

Cs 

c 

UJ 
Conduhieaves, i,l,x,y 

CUMLAI(j) 

specific heat capacity of the air (constant pressure) 

specific heat capacity of the leaf 

specific heat capacity of the bulk soil. 
Constant coefficients matrix for the canopy air system: 
There are five of these: 
Three for the approximate form 
Two for the more exact form. 
Subscripts: 
Element of the C column vector. 
Horizontal heat conduction in leaf layer i, on side 1 with 
wetness condition x,y 
cumulative leaf area in the layers above layer J in m^ leaf- m"^ soil. 
(one side). 

Jkg-'K"1 

Jkg- 'K ' 1 

Jkg-'K"1 

(-) 

D 

D 
D' 

Dl 
Dair 
Dair.eq 
Di 
Dinitial 
Dtop. Daverage 

D c 

Dvapour 
d 

dj 

D 

Dair,eq 

Dini 

"gust model 

Ugust model.i 
ds 

dU 
dz(j) 

vapour pressure deficit i.e. (es(Tair)-eair)/ Pa 
Diffusivity for water vapour/ i rA 
Diameter of water drops. m 
subscripts: 
Mean vapour pressure deficit of the air. Pa 
Vapour pressure deficit deviation from the mean (i.e. fluctuations) Pa 
due to small scale turbulence. 
Vapour pressure deficit deviation from the mean (i.e. fluctuations) Pa 
due to large scale structures. 
The sum of mean and small scale fluctuations Pa 
Vapour pressure deficit of the air. Pa 
Equilibrium vapour pressure deficit of the air. Pa 
Air vapour pressure deficit at a certain layer Pa 
Initial air vapour pressure deficit just after the gust intrusion. Pa 
Vapour pressure deficit at about twice the canopy height and the Pa 
average one during the build-up period respectively. 
Change of vapour pressure deficit within one time step. 
Water vapour diffusivity m^s 
Leaf thickness/ m 
Condition of dryness. 
Probability of being intercepted for diffuse radiation by the leaf (-) 
elements in a certain layer. 
Vapour pressure deficit matrix (Unknown). Pa 
subscripts: 
A column vector containing the values of the equilibrium Pa 
vapour pressure deficit at different layers. 
A column vector containing the values of the initial vapour Pa 
pressure deficit. 

A column vector containing the time averaged values of the Pa 
vapour pressure deficit determined according to the gust model. 

An element of "gust model matrix. Pa 
change of time since release/ s 
surface element bounding a volume. m^ 
volume element. m-' 
thickness of the layer m 

cequ 

evaporation. 
Equilibrium evaporation 
Lower turbulent transport coupling coefficient 
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e internal energy/ Jm"-' 
extensive quantity/ 
Vapour pressure Pa 
Subscripts: 

e2, ej vapour pressure at height 2 and 1 respectively. Pa 
ea, ea j r air vapour pressure Pa 
ejnjtial initial vapour pressure of the air. 
ej,ei+],ej_i vapour pressure of the air at layer i, i+1 and i-1 respectively. Pa 
ej Vapour pressure of the air in layer J. Pa 
eajr>eq Equilibrium vapour pressure of the air Pa 
eair,top vapour pressure high above the canopy top. Pa 
es(Tair).es(T]) saturated vapour pressure at Tair, Tl respectively. Pa 
e s \ leaves.J^ Saturated vapour pressure at the mean leaf temperature. Pa 
e Vapour pressure matrix Pa 

Fi 
f-1 

m 
f(x) 
f(t) 
f(L,t) 

fl(L,t),f] 

f2(L.t).f2 

fb 

Fr 
f,i t.f uppert-'uppere 

flowert, flowere 

flayert- flayere 

The layer coefficient 

Inverse of gust frequency intrusion into plant canopy. 

function of the mean variable x. 

mean function of the variable x. 
function of time. 
The forcing function for radiative and non-radiative energy at the 
soil surface as a function of time. 
The radiative forcing at the soil surface as a function of time. 
The non-radiative forcing at the soil surface as a function of time. 
fraction beam of the short wave radiation at the upper boundary 
of the canopy. 
Froude number. 
The weighing coefficient for the layer i+1 in determining the 
temperature and vapour pressure of layer i respectively. 
The weighing coefficient for the layer i-1 in determining the 
temperature and vapour pressure of layer i. 
The weighing coefficient for the leaf elements in a certain layer 
in determining the layer temperature and vapour pressure 
respectively. 

ms 
s 

Wm"z 

Wm"2 

Wm"2 

(-) 

(-) 
(-) 

(-) 

(-) 

G 
Gi 
Gjkl 
g 
g « 

Soil heat flux. 
Turbulent transport coupling with the upper layer 
Tensorial quantity. 

Gravitational acceleration. 
Initial soil temperature profile. 

Wm'2 

H 

h 

Sensible heat flux from the leaf to the air per unit leaf surface Wm" 
(one side). 
Canopy height/ m 
distance shift/ m 
height of release of a source. m 
Matric head. (m) 

layer number/ 
probability, 
factorial I. 

(-) 
(-) 
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IBBj 

ld 

Wlong.J 

The probability of radiation incident from a direction i being (-) 
intercepted by leaves with a surface perpendicular to direction k.. 
probability that an incident direct radiation will not be intercepted 
by the leaf elements of layer J. 
The cumulative probability that a direct beam will not be intercepted (-) 
by the leaf elements above Layer J. 
The probability that an incident radiation (diffuse) will not be (-) 
intercepted by the leaf elements of layer J. 
or 
The probability that an incident radiation from direction i will not be (-) 
intercepted by the leaf elements of layer J which has a surface 
with a normal of direction k. 
Probability that long wave incident radiation will not be intercepted (-) 
by the elements of layer J. 

J 

Jv 

Js 
Jwi 
J! 

Layer number/ 
Total saturation heat flux/ 
Vapour flux 
Entropy flux 
Mass flux of water flux in its different states 

The change of saturation heat flux due to a contribution of a certain 
layer. 

(-) 
Wm"2 

Wrn"2 

Wm-2K-' 

Wm"2 

Soil hydraulic conductivity/ 
General turbulent transport coefficient/ 
Extinction coefficient for light/ 
coefficients for air layers and leaf equations 

Subscripts: 

av, Average extinction coefficients 
e x ,- a Extinction coefficients for leaf angle class i and zone of the 

skyj3 . 
coefficient for equation. 
subscripts: 

Ki x> Ka e , Ka T, Krj coefficient for leaf temperature, air vapour pressure and 
air temperature air vapour pressure deficit respectively. 
Spherical extinction coefficient/ 
Saturated hydraulic conductivity. 
General turbulent transport coefficient/ 
Turbulent transport for momentum. 
Turbulent transport for sensible heat. 
Turbulent transport for latent heat. 

Turbulent transport coefficients for heat at the top and bottom 
of an air layer. 
Molecular diffusivity for momentum. 

Molecular diffusivity for a scalar c. 

K 

K 

Kh 
Ke 
Ktop> ^bottom 

ku 

kc 

(-) 
s-1 

(-) 

(-) 

S"' 

(-) 

2 -1 m s 

Obkhouv length/ 
characteristic length/ 
coefficients of the phenomenological equations 

m 
m 
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Length of the soil column from zero to the top of the soil. 
L(z,t) Longwave radiation loading as function of height and time. 
Lkj A coefficient expressing the effect of the a conjugate force 

j on the flux of k.(has the units of Flux/conjugate force) 
Ls(z,t) short wave radiation loading as function of height and time. 
LADMID Leaf area density in the middle of the layer (one side) 
LAI Lea Area Index (mr leaf area one side/ m2 Soil)/ 

Leaf area increments 
subscript : 

LAIjt Leaf area increment with surface perpendicular 
to direction k. 

LE Latent heat flux from the leaves to the air. 

m 
Wrn"2 

Wm"z 

(m-1) 

(-) 
(-) 

(-) 

Wm"2 

Ma 
MAX 

Mach Number. 
A function for the selecting the maximum value out of two 
numbers. 

(-) 

number of drops per m"2 on the upper 
and lower surface of the leaf/ 
property under averaging/ 
frequency,/ 
direction of vector normal to the surface. 
deviations of the quantity from its mean. 

m-2 

(-) 
Hz 

P 
P(A) 
PAI 
Pr 
Pyx 
Period 

static air pressure 
Probability of event A occurring. (-) 
Plant area Index m2 (leaf + stem area)/m2 soil.. (-) 
probability of occurrence for a certain combination of leaf wetness. (-) 
Stress along surface 
period between two consecutive gust intrusions s 

Q(x,t) 

q 
q 
q 
qi, qi+i 

q' 
qh 

qie 

«t. 

Heat sources within the soil 

Heat generation due to radiation absorption or chemical reactions. 
a Scalar quantity 
Heat or scalar flux 
heat flux at the lower boundary and upper boundary of the 
layer (i) respectively. 

deviations of a scalar quantity from its time mean. 
sensible heat flux. 
Latent heat flux 
flux at a certain boundary between layers which results from the 

superposition of components fluxes due to the fluxes resulting 
from plumes with different life times. 

Ks" 

Wm" 

qi+i 

R 

Ra> Rd. Rs 

or 
R 

Mean flux at the upper boundary of a layer. 

reflected radiation 
subscripts: 
Absorbed radiation, diffusely reflected and specularly 
reflected radiation. 

Radiation flux density for unit ground surface. 
subscripts: 

(-) 

Wirf-
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Rabs,total 
Rldown, J 

RlupJ 

RlabsJ, or 
Rlong, absorbed 

RLx,j 

R L Î 

R [ i 

Rx,t 

R x l 

RXT 

R x j i 

Rx, j î 

Rn 
Rn,i 

Rsl 

Rsî 
Rshort 

Total absorbed (short+long) wave radiation within layer J. 
Down welling long wave radiation flux density at a 
layer J upper boundary. 
Up welling long wave radiation flux density at a layer J 
upper boundary. 

Absorbed long wave radiation in layer J. 

Thick layer reflection coefficient for layer j 

Long wave radiation leaving a surface 

Long wave radiation falling on a surface 
Total incoming radiation flux density at the canopy top of wave 
band x. 

down ward radiation flux density, 

upward radiation flux density. 

down welling radiation flux density in wave band X at a 
layer J upper boundary. 

up welling radiation flux density in wave band X at a layer 
J upper boundary. 
Net radiation. 
Net radiation for a certain layer. 

Short wave radiation falling on a surface. 

short wave radiation reflecting from a surface. 
Short wave radiation at the canopy top. 

Wm" 

(-) 

Wnr 2 

Wnr 2 

Win"2 

Wnr 2 

WITT2 

Wirf2 

Wnr 2 

Wm"2 

Wirf2 

Wm"2 

rbh> rbv, rs, <"R 

rbvj 
rbv,soil 

rbh,J 

rleaf,v,j 

•"local 
rgust 

rH 
rs,s 

resistance/ 
radius of water drops on the leaf surfaces. 
subscripts: 
Characteristic radius of drops on the lower and upper surface 
respectively. 
boundary layer resistances for heat, vapour, stomatal 
resistances and radiative resistance respectively 
boundary layer resistance for vapour of the leaves in layer j . 

boundary layer resistance for the soil clods 

boundary layer resistance for heat of the leaves in layer j 

resistance of the leaves for vapour transfer in layer j . 
turbulent resistance to scalar transport due to local transport, 
turbulent resistance to scalar transport due to the gust process. 
Heat resistance, as defined in Penman-Monteith equation. 
Soil surface resistance to evaporation. 

sm 
m 

Source strength in a conservation equation/ 

surface of a leaf or a volume to be averaged/ 
Volume size or number of ensembles/ 
number of time intervals used in the averaging/ 
Relative saturation of the soil/ 
Storage of heat or mass. 

Wm" 
Kg m ' s ' 

(-) 
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so 
Sh, Sie 
S(h) 

subscripts: 
The chosen volume or number of ensembles or length of time interval. 
Sensible heat and latent heat source respectively. Wm~2 
Source distribution as a function of height. Wm~2 
Slope of the saturated vapour pressure as a function of temperature. Pa K" ' 

T 
T2,Ti 

Ta> Tair 
Tair.in 
Tair,out 

TairJ 
Tair,J 

Tair,rad 
Tair,rad,a 
Tair, initial 

tair,top 
Tl,eq> 'air.eq 

Tl, T[eaves,J 

1 leaves,J 

Tleaf 

T|eaf,J 

T],initial 

T i ,T j . i ,T i + i 

Tupper boundary 

Tfirst soil layer 

T' 

TL 

TS 

Tdry 

Twet 
Tc 

yt+At 

T 

1 nogust 

Temperature 
subscripts : 
Mean air temperature. 
Air temperature at height 2 and 1 respectively. 
Air temperature. 
Incoming air 
Outgoing air (ejected air due to gust process) 
Air temperature at layer J. 

Mean air temperature at layer J. 
Radiative temperature of the air. 
Absolute radiative temperature of the air 
Air temperature just before the gust intrusion 

or just at the beginning of the quiescence period 
or at the beginning of each time step. 
Air temperature high above the canopy top. 
Equilibrium temperature of the leaf and 
equilibrium temperature of the air respectively, 
leaf temperature, or leaf temperature at layer J 

Mean leaf temperature at layer J. 
Absolute leaf temperature 

Mean absolute leaf temperature at layer J. 
Initial temperature of the leaf just after the gust 
passage or at the beginning of each time step. 
Air temperature at i, i -1, i+1 layer number. 
Air temperature at the upper boundary. 
Temperature of the first soil layer. 

Air temperature deviations from the mean 
(i.e. fluctuations) due to small scale turbulence. 

Air temperature deviations from the mean 
(i.e. fluctuations) due to large scale structures. 
Lagrangian integral time scale. 
Instantaneous surface temperature/ 
Soil temperature 
temperature of dry segment of the leaf. 

Temperature of wet segment of the leaf, 

change of temperature within one time step. 

temperature of the leaf at time step t+At. 

Temperature of the air matrix (Unknown). 
subscripts: 

Matrix containing the average temperature of the air 
determined according to the no-gust approach. 

K,0C. 

0C 

0C 

oC 

K 
0C 

0C 

0C 

0C 

oC 

oC 

K 

K 

0C 

OC 
OC 
OC 

°C 

«e 

s 

°c 
°c 
°c 
oC 
OC 

353 



1 gust model 

T, nogust model.i 

L gust model ,i 

1 ini.i 

Matrix containing the average temperature of the air 
determined according to the gust approach. 

The average temperature at layer i determined according to 
no-gust approach. 

The average temperature at layer i determined according to 
gust approach. 

initial temperature at layer i, just after the occurrence of the 
gust or at the beginning of each time step. 

thickness 
TransxJ 

to.ti 

leaf thickness. m 
Thick layer transmission coefficient for radiation of wave band x. (-) 
for layer j . 
time. s 
release time, current time, the difference between them represents s 
the travel time. 

U(z) 
U* 

Mean wind velocity as function of height (z) 
friction velocity. 

u i ,u i ,U i , 

u i 

Uf 

Instantaneous wind velocity in direction x. 
Subscripts 

instantaneous, mean, deviations of the 
instantaneous wind velocity from its time mean along direction i 

deviations due to large scale turbulence, 

deviations due to small scale turbulence. 

W 

volume average of an ensemble mean or the volume average of a 
time mean for ui and uj respectively. 

The deviation of a time mean from its volume average or the 
deviation of an ensemble mean from its control volume average. 

wetness condition. 
Vertical wind velocity. 
turbulent vertical wind velocity fluctuations. 

X 
X W 

X T 

X 

centroid of the averaging domain/ 
distance along the soil column (positive upwards) and has a zero 
value at a depth where no flux boundary condition applies/ 
Conjugate force 
Conjugate force for water flux 
Conjugate force for heat flux 
average of a certain variable x 

height 

leaf volume/ 
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Operators: 

Soil bulk volume 
wind speed in m seconds. 
Volume of averaging. 

/ \ens 

()' 
()" 

Greek Symbols: 

a 

Spatial averaging 

ensemble averaging. 

time deviation or ensemble deviation 

spatial deviation 

y/(y+s) 

aL 

or the ratio between Km values for a gust and no-gust model/ 
Coefficient alpha in Van Genuchten model/ 
Air filled porosity of the soil 

absorption coefficient for short wave radiation 
Radiative and convective heat transfer coefficient 

(-) 
(-) 
m-1 
(-) 
(-) 
Wirf: 

ßL 
ôz 

SXt0p,8Xbottom 

AZ 
A 
At 

K 

e 

Tl.T. xa,T,Ve,Ta,D 

inclination of the sun in radians/ 
Bowen Ratio (sensible/ latent heat flux)/ 
phenomenological enhancement diffusion coefficient for water 
vapour/ 
thermal conductivity of the soil 

thermal conductivity at the soil surface. 
vertical distance between the centres of the uppermost soil layer 
and the layer below it. 

Kronecker Delta 

distance between the centre of the layer and the centre of the layer 
at the top and bottom of this layer. 
thickness of the air layer 
Change of a certain variable 
time step. 
psychometric constant 
modified psychometric constant 
Thermal diffusivity of the soil. 
volumetric moisture content/ 
Virtual air temperature. 

leaf transmittance of the foliage elements for radiation of wave 
band x. 

leaf thermal time constant, time constants of air temperature, 
air vapour pressure, and air vapour pressure deficit respectively. 

rad 
(-) 
(-) 

Wm-'K"1 

Wm-'K"1 

m 

m 

s 
PaK"1 

PaK"1 

2 -1 m^s ' 

(-) 

(-) 

^n 

Px 

Latent heat of vapourization/ 
Heat conductivity coefficient of the soil or of the leaf./ 
Eigen value 

Eigenvalue for a certain wave number n 

dynamic viscosity 

The leaf reflection of the foliage elements for radiation of 
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Summary 

The aim of the work is to describe heat and mass transfer between the soil, the plant 
canopy and the layer of air close above. This transfer has a very intermittent nature, due to the 
existence of large scale coherent structures in the layer of air close above the canopy. The 
periodic passage of these coherent structures at the canopy top and their large length scale with 
respect to the canopy height, lead to the refreshment of the air within the canopy with fresh air 
from far well above the canopy. This makes the coherent structures responsible for a dominant 
fraction of heat and mass exchange between the canopy air and the layer of air close above. 
Coherent structures are also responsible for a large fraction of momentum exchange between 
the canopy air layer and the layer of air close above. There is a gap of knowledge concerning 
the effect of these coherent structures on the soil canopy system as a whole. This study was 
dedicated to the investigation of the effect of these coherent structures on the long-time 
behaviour of the canopy soil system represented by the soil temperature and moisture regimes. 

This present research involves five steps: 
1 ) Formulating a numerical multi-layered canopy-soil model which takes into account 

radiative and non-radiative energy and mass exchange between the different components of the 
canopy-soil-atmosphere system. In that model, an emphasis was given to the effect of 
intermittency in the exchange processes on the behaviour of the soil system while, giving at the 
same time ample consideration to other processes which are also significant such as stomatal 
resistance and soil resistance to evaporation. The consideration of intermittency in a direct way 
makes the model unique since it is the first attempt to formulate, on basics of fluid mechanics, 
an intermittency approach for describing heat and mass transfer within plant canopies (El-Kilani 
et al 1994 a,b). The theoretical formulation gives a solid basis in Fluid mechanics for the gust 
approach as first explained by Goudriaan (1989) and suggested by El-Kilani (1989) and El-
Kilani (1991). 

2) Addressing the earlier attempts to consider this process in an indirect way such as by, 
higher order closure models or random walk models. An analysis in a qualitative or quantitative 
way shows some of the limitations of these approaches. 

3) A mathematical analysis of the canopy air -soil system governing equations is used, to 
obtain a physical insight into the significance of the intermittency of the processes of heat and 
mass exchange on the behaviour of the canopy soil system and its dynamics. The mathematical 
analysis shows that the interaction between coherent structures and the canopy leads to the 
appearance of a non-linearity in the canopy-soil system behaviour. This nonlinear behaviour 
necessitates an intermittent approach to the canopy-soil system. This nonlinearity is analysed 
and its effect on the long-term behaviour of the system is considered. 

4) A sensitivity analysis of the equations describing the system and also of a simplified 
model of the system shows the effect of several parameters on the time constants of the lower 
canopy air layers, and how the time period between gust intrusions affects the behaviour of the 
system. 

5) A validation of the developed model against existing data sets was done. The results of 
the model show a very good agreement with the measurements. The values of the parameters 
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needed to run the model are not difficult to obtain and have a theoretical justification. The model 
represents a significant improvement over the existing models but requires intensive calculation. 

We will cover the five steps underlined above, and mention the main points achieved or 
conclusions obtained from this study. 

11 Formulating a numerical multi-layered canopy soil model 
This part is covered in chapter 2, sect. 3.6, Sect. 4.1.2, Sect. 4.4, Sect. 4.5, Sect.4.6 and 

chapter 5. 
The solution of the canopy and soil climate requires, for the canopy air layers, the solution 

of a set of averaged turbulent transport equations. The time interval and the space domain over 
which the averaging is done determine the kind of correlations which have to be parameterized. 
There are several variants for averaging the conservation equations. In the problem under 
consideration, an averaging procedure was introduced which separates between the large scale 
turbulent fluctuations and the small scale ones. The large scale turbulent velocity and scalar 
fluctuations are due to the existence of coherent structures in the flow field. These coherent 
structures, depending on their length scale and the mechanism of their generation and 
destruction, keep moving around the flow field, so that their effect on the momentum, heat and 
mass transfer all over the domain is significant. The small scale turbulent velocity and scalar 
fluctuations are the ones due to small scales of motion. These scales are mainly active during 
the quiescence period or occupy the regions between the large scale moving-around coherent 
structures. 

The introduced averaging procedure, takes directly account of intermittency and the 
resulting feedback on the system behaviour. The averaging procedure leads to the appearance of 
correlations between the large scale and small scale turbulence and canopy inhomogeneities for 
both the momentum and the scalar equations. The defined averaging volumes, the averaging 
procedures, lead to terms in the averaged equations that are easier to parameterize. 

In the case of a homogeneous canopy, we get four terms, which do not vanish in the 
ensemble average or in the time average. These terms represent the turbulent fluxes of 
momentum and scalars due to large scale, small scale and interaction fluxes. The first is mainly 
active during the period of the gust intrusion into the plant canopy, while the second is active 
during the quiescence period. The interaction fluxes are important terms in the period around 
(i.e. before and after) the passage of the coherent structures at the canopy top. 

For the scalar equation, the parameterization for the large scale turbulent flux and the two 
interaction fluxes is done by assuming a refreshment function which gives the change of the 
scalar storage just before the intrusion of the gust till the end of the passage period. This gives 
an integrated value for the flux divergence at the end of the coherent structure passage. 

Since we assume some degree of refreshment of the air within the canopy due to the 
passage of the coherent structure, the value of the turbulent transport coefficient during the 
quiescence period will be very important in determining the storage buildup within the air inside 
the canopy. With the arrival of the next coherent structure, the storage change will represent the 
value of the gust flux. So, a valid parameterization of the turbulent transport coefficient during 
the quiescence period is very important in determining the profiles and the sources within the 
canopy. We have assumed a complete refreshment which is not far from reality, as is shown 
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from an analysis of the time domain maps of windspeed and temperature within a maize canopy 
(Chapter 3) 

To obtain a value for that turbulent transport coefficient, a frequency distribution analysis 
on the ratio of the instantaneous (1 second average) vertical velocity variance to the mean 
vertical velocity variance was used. We considered this ratio as an indicator of the behaviour of 
the Km value. 

It is shown for two time series, each of a duration of about 7 hours, that during about 70% 
of the time, the measured instantaneous w'2 was less than the mean and contributed less than 
20% to the total w variance. On the other hand, gusts occupying less than 10% of the time, 
contributed about 60% to the total variance. It is shown from the analysis, that the Km value 
during the quiescence period was about 27% of the commonly used parameterization. 

It is shown that this method of parameterizing the Km value reflects the sequence of events 
characteristic of a coherent structure passage cycle (i.e. depletion during the passage of the 
coherent structure and buildup during the quiescence period). This was done by the use of the 
ratio between the instantaneous w 2 to the mean which clearly corresponded with the 
disappearance of temperature islands and the increase in the absolute windspeed in the time 
domain maps. 

In chapter 2, the solution of the energy budget for the leaves is used to parameterize the 
interaction terms between the leaf and the air which result from the volume averaging procedure 
of the turbulent transport equations within a multiply interconnected air space. 

In Sect. 4.4, the decoupling of the energy equation at the soil surface is done through the 
calculation of the ratio of the time step of simulation to the time constant of the first air layer in 
contact with the soil. Depending on this ratio, either an analytical solution of the equilibrium 
vapour pressure of that air layer is used for decoupling the energy equation, or a numerical 
solution is used. The soil surface resistance to evaporation is calculated from the soil total 
porosity and its air filled porosity. 

The decoupling of the energy equation at lower layers within the soil is done through the 
calculation of the water vapour flux divergence within different soil layers. 

The calculation of the water flux between different soil layers, either in its liquid or vapour 
states, is done to calculate the soil water potential. This potential will affect the sensitivity of the 
stomata to the leaf water potential through the production by the plant roots of soil moisture 
dependent Abscisic acid (ABA). 

A complete submodel for plant water movement is introduced. 

2) Addressing earlier attempts 
This part is covered in Sect. 3.3 and Sect. 3.7. 
These attempts lie mainly under two different categories: Higher order Eulerian closure 

models or Lagrangian random walk models. 
In a large-time-interval averaged Eulerian model, the direction of the flux and minus the 

gradient do not fit. Trying to counteract this problem is by increasing the order of the closure. 
This is done by taking account of the turbulent transport term in the higher order equations and 
the effect of this on the gradient of the turbulent flux in the lower order equation. 

363 



One of the assumptions here is that all the terms within these equations have a constant 
averaged value during the time step of simulation. It is shown from the analysis of some papers 
and some data sets, that this is far from reality. Due to the high nonlinearity of these equations, 
we expect that the time fluctuating behaviour of the terms will give a different solution than the 
same terms having non fluctuating values with the same mean. 

It appeared that the assumption of retaining the lost information, due to averaging, by 
going higher with the closure is not correct. This is due to the role of the coherent structures in 
correlating the fluxes i.e. creating correlations at higher order which is not counteracted by the 
role of pressure in destroying these correlations. The role of the pressure in destroying these 
correlations is centred around the passage of the inclined shear layer at the canopy top. In 
canopy flow, the ratio between the pressure smearing distance/ distance between coherent 
structure is much less than one. This automatically invalidates some assumptions for closing the 
higher order terms. 

Another problem is also the requirement for the validity of averaging a nonlinear equation. 
Reynolds averaging has a requirement concerning the uniformity of the terms within the period 
of averaging. The high variation in time or space of the signals make the fulfilment of this 
requirement in doubt. 

Therefore, the validity of the obtained results from second and higher order closure models 
for canopy flow must be doubted. 

Another approach used in modelling canopy flow is Lagrangian modelling which simulates 
the trajectories of a large number of independently moving particles and sums up the results as 
representing the mean concentration profile within the canopy. 

The superposition of the concentration field overlooks the fact that the intrusion of the 
coherent structure into plant canopy leads to the creation of correlation between motion of the 
particles all over the canopy height. So, the particles are not moving independently all the time. 
This correlation should be subtracted from the total superposition. 

The argument that random walk models take account already of the correlation between 
particles motions due to coherent structure existence in the flow field, is discussed in the 
objection to the theoretical derivation of Lamb (1980) in Appendix l.b. 

The problem is that the joint density function for a large number of particles cannot be 
expressed as a multiplication of marginal density functions for all the particles which are equal 
to each other. 

An approach for superposition of the concentration fields, as seen by a sensor which is 
immersed in the flow field and which starts to see progressively older clouds, is suggested in 
this thesis, to take account of this process. 

3) A mathematical analysis of the canopy-soil system governing equations 
This part is covered in Sect. 4.2. 
The aim of this part was to answer, in a semi-analytical way, if a constant turbulent 

transport coefficient will result in the same mean temperature and vapour pressure of the air as a 
fluctuating turbulent transport coefficient which has the same value of the mean. It is analysed if 
this leads to a difference on the soil heat flux and the soil temperature profile. 
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For the canopy air system, this analysis involved transforming four coupled partial 
differential equations describing the system behaviour into ordinary ones. These are the leaf 
temperature, air temperature, vapour pressure and vapour pressure deficit equations. It is 
shown from the analysis that after a gust intrusion into a plant canopy, the leaf temperature, air 
temperature, vapour and vapour pressure deficit approach asymptotically a steady state solution 
which is a linear function of the transport coefficient. So, in the early stages of the solution 
development toward equilibrium, there will be a non linear dependence on the turbulent 
transport coefficient due to the exponential behaviour of the equations. Use of a large time 
averaged turbulent transport coefficient is not similar to the use of a non averaged one which 
has the same mean. The importance of this nonlinearity on the mean behaviour of the canopy 
depends on the ratio between the period between two consecutive gust intrusions in relation to 
the canopy air time constants. If this ratio ranges between 0.5 to 3.0, the canopy will always be 
in the nonlinear part of the solution. Depending on the dominance of this process, the canopy 
system could be in the nonlinear domain of the solution for a significant part of the time. 

Due to the changes within time of the ratio between the inverse of the gust intrusion 
frequency into the plant canopy to the time constants of the systems, the canopy system will be 
scanning, within time, different regions in the nonlinear or linear part of the solution. The 
frequency of gust intrusions into plant canopies is assumed to be dynamically controlled i.e. 
controlled by the shear at the canopy top while the time constants of the canopy air layers are 
affected mainly by the stomatal resistance of the plants and how it is controlled (e.g. water 
potential in the soil and light etc.). So, an irrigation cycle will span the different regions of the 
nonlinear and linear dependence of the solution. 

It is also shown , that the above mentioned nonlinearity exceeds by at least one time order 
of magnitude the near field effect, as explained by Raupach (1989) or Finningan (1985), in 
their criticism of the use of Km theory to describe canopy turbulent transport processes. So, the 
non linearity is the canopy system is not only due to the near field effect. 

The next step in the mathematical analysis was analysing the response of the soil to this 
nonlinearity. It is shown from a mathematical solution of the nonhomogeneous problem of the 
soil temperature profile that the soil integrates the effect of intermittency in the values of the 
coefficients of an Eigenfunction expansion of the soil temperature .i.e. Fourier series 
expansion. 

It is shown from the mathematical expression for these coefficients that they see all sources 
of intermittency; either due to changes in the radiative forcing or changes in the temperature and 
vapour pressure deficit of the air close to the soil surface. 

Each value of the coefficients of the Eigenfunction expansion of the soil temperature is 
composed of an initial component which decays exponentially within time and a component 
which integrates both the radiative forcing signals and the nonradiative forcing signals (i.e. the 
air temperature and vapour pressure deficit close to the soil surface ). The nonradiative forcing 
is the one affected by coherent structures. 

The rate of decay for the initial component and for previous intermittencies decreases at a 
much faster rate for the higher wave numbers. It is also shown that the effect of intermittencies 
on the coefficients of the Eigenfunction expansion expresses itself in the same way in all wave 
numbers. So the effect of intermittency needs to be studied for one wave number only. The 
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effect of intermittency on the integrated value of the non radiative forcing quantifies the effect of 
intermittency on the soil. The mathematical solution integrates all the details of intermittencies in 
the radiative and nonradiative forcing. 

4) A sensitivity analysis 
This part is covered in Sect. 4.2.1.2.b , 4.2.2 , 4.2.3, 4.2.4 and 4.3. 
To simplify the analysis and to obtain a physical insight to the effect of the intermittency on 

the system, we assumed a separation in the time scale of the response of the air layers and the 
soil layers. That allowed us to integrate the effect of the nonlinearity on the mean temperature 
and vapour pressure deficit of the air layers close to the soil and feed that effect into the 
equations describing the coefficients of an Eigenfunction expansion of the soil temperature. To 
calculate the mean temperature and vapour pressure deficit of the air layers close to the ground, 
a combination of several situations was assumed. 

The first of these were: a steady state and nonsteady state situations. In the steady state ( 
what we call the approximate form) situation, the effect of the heat storage change with the 
canopy elements was ignored while in the nonsteady state (what we call the more exact form), 
that effect was accounted for. 

The second of these, either a single layer canopy or a multi-layered canopy was assumed. 
In the single layer canopy, the canopy layer was assumed well mixed while in the multi-layered 
canopy, several layers each having a different leaf area density and turbulent transport 
coefficients were assumed. In the nonsteady solution, only a multi-layered canopy was used. 

In the calculation of the mean temperature and vapour pressure deficit, a constant Km value 
was assumed. This Km value was four times higher for the no-gust model than that for the gust 
model. In the gust model, most of the contribution to the Km value occurs during the gust 
intrusion phase, while in the quiescence period, the value of Km is much lower than the mean 
of the no-gust model. In the gust model, an initial profile after the passage of the coherent 
structure profile was set equal to the temperature and vapour pressure at about twice the canopy 
height. 

In the case of single layer, and the approximate form solution, the results show that the 
gust model had a higher value of the nonradiative forcing on the soil due to the lower turbulent 
transport coefficient which couples the leaf temperature more to the radiation forcing than to the 
temperature and the vapour pressure of the air well above the canopy. This will increase the 
equilibrium temperature of the leaves. That will have a feedback on the temperature and the 
vapour pressure of the canopy air since the coupling coefficients of the sources within the air 
layers to the air temperature and vapour pressure is higher in the gust model compared to the 
no-gust model. The end result is that unless that the period between consequetive gust 
intrusions is small compared to the time constant of the canopy air, the lower mixing during the 
quiescence period will increase the temperature and the vapour pressure of the air in comparison 
to a no-gust model. The well mixed layer assumption will lead to the increase in the temperature 
and vapour pressure of the air, being felt at the soil surface. This will increase the mean 
nonradiative forcing at the soil surface and will counteract the effect of the refreshment, due to 
the gust intrusion, on relieving the nonradiative forcing on the soil. 
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In the approximate form, for a multi-layered canopy, it is shown that the inverse matrix 
which controls the equilibrium solution of the air layers have its inner elements multiplied, for 
the case of a gust model, by the ratio of the Km value in the no-gust model to the Km value in 
the gust model. This matrix has to be multiplied by a C matrix which expresses the source 
terms within each canopy layer. This C matrix, depending on which system (Vapour pressure 
deficit or air temperature system), is independent of the solution. This means a relative 
reduction in the role of the upper and lower boundaries of the simulated domain to the 
equilibrium solution and a higher contribution of the inner layers to the solution at a certain 
height. The lower mixing during the quiescence period leads then to the establishment of a 
higher influence of the inner C elements to the temperature and vapour pressure of the air within 
a certain layer in comparison to a no-gust model in which a higher value of the turbulent 
transport coefficient is active all the time. Whether this leads, in the case of vapour pressure 
deficit equation, to a higher or a lower vapour pressure deficit than that of the boundaries 
depends on the stomatal resistance and Rn profile. 

In the more exact solution, only a multilayered model was used. This was done either by 
the use of a Mathcad program or a simplified complete numerical model. The Mathcad code was 
using the same method of solution for the leaf temperature, air temperature and vapour pressure 
as in the more detailed numerical model. It has less number of layers and was run only for a 
short period (i.e. three gust cycles which have a period of 150 seconds each). The soil surface 
temperature was assumed constant and the effect of the gust process was integrated on the value 
of the nonradiative forcing and the boundary condition for the soil heat flux. These Mathcad 
runs are also part of the sensitivity analysis discussed in the next point. The simplified complete 
numerical model is exactly the same as the model given in chapter 5, except that it has no feed 
back of the soil dryness on the solution (i.,e. the soil surface resistance to evaporation was 
assumed zero all the time i.e. 11 days run). 

The results from the Mathcad runs show that for the soil heat flux and the nonradiative 
forcing on the soil surface, a lower leaf area density in the lower parts of the canopy and a 
lower turbulent transport coefficient increase the difference between the gust and no-gust 
model. This relates to increasing the time constant of the lowest air layer and decreasing the 
ratio between the inverse of the gust intrusion frequency into plant canopy and the time constant 
of the lowest air layers close to the soil. The effect of air introduced by the gust on relieving the 
nonradiative forcing on the soil surface will be felt at the soil surface. 

The results of the simplified complete numerical model, which was run for a typical hot 
summer day in Egypt, show a significant difference between the gust and no-gust 
parameterization on the soil temperature and the soil heat flux. That difference at noon time 
were about -9 C in the air temperature for the gust minus the no-gust model and higher vapour 
pressure deficit (+1000 Pa for the gust minus the no-gust) in the lower part of the canopy. The 
gust intrusion period was constant and equals 1.5 minutes. The reason behind this high 
difference was the large time constant of the lower air layers close to the soil. This large time 
constants were due to the used turbulent parameterizations, the lower leaf area density in the 
lower part of the canopy and the higher stomatal resistance which was light dependent. 

The results of the Mathcad runs show that it is possible that there is no difference in the 
forcing on the soil surface, while there is one in the energy partition on plant surfaces. 
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A complete analysis of the interaction between the leaves and the air for typical situations 
representing different climatic regions is also done. The dynamics of that interaction and the 
importance of the nonsteady term on the solution are shown. It is shown the state variables of 
the air (i.e. the temperature, vapour pressure and vapour pressure deficit ) and the sources 
follow within the whole gust cycle an exponential behaviour. 

In sect. 4.3, it is shown from the scaling of the large-time averaged flux equation that the 
source vertical velocity correlation, which results from the interaction between the air which 
comes into plant canopies and the source, has the same order of magnitude as the production 
term of the flux, So an account of that correlation due to the intrusion of coherent structures 
should be included. 

51 Validation of the developed model 
This part is covered in Chapter 6. 

The results of the model validation show in general a very good agreement between the 
measured and simulated radiative environment and leaf temperature and air temperature. There 
is, however an interplay between the gust frequency which determines the degree of buildup of 
the scalar profiles which is allowed to occur and the stomatal resistance which controls the time 
rate of the profiles buildup for the vapour pressure and temperature. This affects the energy 
budget solution of the leaves. The turbulent transport parameterization play also an important 
role in controlling the values of the temperature and vapour pressure in the middle layers of the 
canopy. A better parameterization of the gust frequency, stomatal resistance and turbulent 
transport will allow even a better simulation of the plant canopy microclimate. 
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Samenvatting 

Het doel van het onderzoek is het beschrijven van het transport van warmte en massa tussen 
de bodem, plant en de atmosfeer direct boven het gewas. Dit transport heeft een sterk 
intermittent karakter t.g.v. de aanwezigheid van grootschalige coherente structuren in de 
luchtlaag aangrenzend aan het gewas. De periodieke passage van deze coherente structuren 
aan de bovenkant van het gewas en haar grote lengteschaal ten opzichte van de gewashoogte, 
leidt tot de verversing van lucht binnen het gewas met lucht van ver boven het gewas. Dit 
maakt de coherente structuren verantwoordelijk voor het overheersende deel van het 
transport van warmte en massa van de lucht binnen het gewas en de lucht daar boven. 
Coherente structuren zijn ook verantwoordelijk voor een groot deel van het impulstransport 
tussen gewaslaag en de lucht daar boven. Er bestaat een leemte in kennis omtrent het effect 
van deze coherente structuren op het transport binnen het systeem bodem, gewas en 
atmosfeer. Deze studie is gewijd aan het onderzoek van het effect van deze coherente 
structuren op het langetermijn gedrag van de van de bodemtemperatuur en het -vochtregime. 

Het onderzoek omvat vijf stappen: 
1 ) Het formuleren van een numeriek meer-lagen gewas-bodemmodel 

Dit model houdt rekening met zowel stralingstermen als andere energetische termen en houdt 
rekening met de massa-uitwisseling tussen het bodem-gewas-atmosfeer systeem. In het 
model is veel aandacht geschonken aan het intermittente karakter van het 
transportmechanisme en het effect hiervan op het gedrag op de bodem. Ook is rekening 
gehouden met andere van belang zijnde processen zoals het gedrag van stomataire weerstand 
van de planten en de bodemweerstand. Het direct meenemen van intermittentie in het 
transportmechanisme maakt het model uniek want het is de eerste keer dat, op basis van de 
stromingsleer, dit is meegenomen in het transportmechanisme voor massa, impuls en warmte 
(El-Kilani, 1994a,b). De theoretische formuleringen betreffende de vlaagbenadering zijn 
gebaseerd op de basisvergelijkingen uit de stromingsleer zoals dat aanvankelijk verklaard is 
door Goudriaan (1989) en voorgesteld is door El-Kilani (1989, 1991). 

2) Bespreking van benaderingen van anderen 
Veelal is dit proces op een indirecte manier benaderd, bijvoorbeeld met behulp van hogere 
orden sluitingsmodellen of random walk modellen. In een kwalitatieve of kwantitatieve 
analyse worden de beperkingen van deze benaderingen aangetoond. 

3) Een mathematische analyse van de vergelijkingen voor het bodem-gewas-atmosfeer 
systeem . 
Deze analyse is toegepast om inzicht te krijgen in het belang van intermittentie voor de 
uitwisselingsprocessen van warmte, massa en haar dynamica. De mathematische analyse laat 
zien, dat de interactie tussen coherente structuren en het gewas leidt tot het optreden van niet-
lineariteiten in het gewas-bodem-systeem. Dit niet-lineaire gedrag maakt het noodzakelijk 
deze intermittentie ook in het systeem in te brengen. Deze niet-lineariteit is geanalyseerd 
alsmede het gedrag hiervan op het systeem op de lange termijn. 

369 



4) Een gevoeligheidsanalyse 
Het systeem wordt beschreven en besproken en er wordt een vereenvoudigd systeem 
gegeven, dat het effect van verschillende parameters laat zien op de tijdconstanten van de 
onderste lagen van het gewas. Tevens is het effect op het systeem van de periode tussen twee 
vlagen beschreven. 

5) Een validatie van het model 
Deze is uitgevoerd met bestaande gegevensbestanden. De modelsimulaties geven een zeer 
goede overeenkomst met de metingen. De waarden van de modelparameters die nodig zijn 
om het model te draaien zijn eenvoudig te verkrijgen en hebben ook een fysische betekenis. 
Het huidige model is een aanzienlijke verbetering t.o.v. reeds bestaande modellen maar 
vereist wel veel rekentijd. De bovenstaande punten worden vervolgens kort besproken. 

Ad 1) Het formuleren van een numeriek meer lagen gewas-bodemmodel. 
Dit deel bevat hoofdstuk 2 en 5, en de paragrafen 3.6, 4.1.2, 4.4, 4.5 en 4.6. De oplossing 
voor de gewasklimatologie vereist voor de gewaslaag de oplossing van een stelsel 
gemiddelde turbulente transportvergelijkingen. Het tijdsinterval en het ruimtedomein 
waarover de middeling wordt uitgevoerd bepaalt de soort correlaties welke moeten worden 
geparametriseerd. Er zijn verschillende varianten voor het middelen van de behoudswetten. 
In het onderhavige geval is er een middelingsmethode ingevoerd, welke onderscheid maakt 
tussen de grote en de kleine schaal van de turbulentie. De grote schaal van de turbulente 
snelheidscomponenten en scalaire grootheden worden veroorzaakt door de coherente 
structuren van het stromingsveld. Deze coherente structuren blijven, afhankelijk van hun 
lengteschaal en het mechanisme dat deze genereert en afbreekt, bewegen in het 
stromingsveld, zodat het effect hiervan op de impuls, warmte en massa over het gehele 
domein belangrijk is. De kleine schaal turbulente snelheidscomponenten en scalairen worden 
veroorzaakt door de kleinschalige bewegingen. Deze schalen zijn voornamelijk actief 
gedurende de kalme periode of in de gebieden tussen de grootschalige structuren. 

De ingevoerde middelingsprocedure houdt direct rekening met de intermittentie en de 
hieruit voorkomende terugkoppeling op het systeem. De middelingsprocedure leidt tot het 
ontstaan van correlaties tussen de grote en kleine schaal van de turbulentie en inhomogenitei-
ten in het gewas voor zowel voor de impuls- als de scalaire vergelijkingen. Het gedefinieerde 
middelingsvolume geeft extra termen in de gemiddelde vergelijkingen die eenvoudig zijn te 
parametriseren. 

In het geval van een homogeen gewas krijgen we zo vier extra termen. Deze termen 
representeren de turbulente fluxen van impuls en scalaire grootheden ten gevolge van de 
grote schaal, de kleine schaal en de interacties hiertussen. De eerste term is meestal actief 
gedurende de periode dat een vlaag in het gewas binnendringt, terwijl de tweede actief is 
gedurende de kalme periode. De interactieve fluxen zijn belangrijke termen gedurende de 
overgangsperioden. 

Voor de scalaire vergelijkingen zijn de parametrisaties voor de grote schaal turbulentie 
en de twee interactieve fluxen verkregen door het invoeren van een z.g. verversingsfunctie 
welke de verandering van de scalaire opslagterm geeft, juist voordat de, vlaag het gewas 
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binnendringt tot het eind van de passage van de vlaag. Dit geeft een geïntegreerde waarde 
voor de divergentie van de flux op het einde van de passage van de coherente structuur. 

Omdat we een zekere mate van verversing van lucht binnen het gewas veronderstellen 
ten gevolge van de passage van de coherente structuur, zal de waarde van de turbulente 
uitwisselings-coëfficiënt gedurende de kalme periode erg belangrijk zijn voor het bepalen 
van de opslag van warmte en waterdamp binnen het gewas. Bij de aankomst van de 
volgende coherente structuur, zal de verandering van de opslag overeenkomen met de waarde 
van de flux van de betreffende grootheid tijdens vlaagperiode. Dus een geldige 
parametrisering van de turbulente transportcoëfficiënt gedurende de kalme periode is zeer 
belangrijk voor het bepalen van de profielen en bronnen/putten van de betreffende 
grootheden. Er is een volledige verversing verondersteld, hetgeen dicht bij de werkelijkheid 
komt zoals is aangetoond in hoofdstuk 3. 

Om een numerieke waarde te krijgen voor deze uitwisselingscoëfficiënt, is een analyse 
van de frequentieverdeling gemaakt tussen de verhouding van de momentane (Is gemiddeld) 
verticale snelheidscomponent en de verticale snelheidsvariantie. Deze verhouding 
beschouwen we als een indicator voor het gedrag van de Km-waarde. 

Voor twee tijdreeksen, ieder van een duur van ongeveer 7 uur, is aangetoond dat 
gedurende ongeveer 70% van de tijd, de gemeten momentane w'2 minder was dan de 
gemiddelde bijdrage en minder dan ongeveer 20% bij droeg aan de totale w variantie. Aan 
de andere kant nemen de vlagen minder dan 10% van de tijd in beslag, maar dragen ongeveer 
60% bij aan de totale variantie. Uit de analyse wordt aangetoond, dat de Km-waarde 
gedurende de kalme periode ongeveer 27% was van de waarde waarmee gewoonlijk wordt 
geparameteriseerd. 

Aangetoond is dat deze parametrisatiemethode van de Km-waarde het verloop van de 
gebeurtenissen weergeeft, karakteristiek voor de passage van een vlaag; met andere woorden 
ledigen/verversen gedurende de passage van de vlaag en de opbouw gedurende de kalme 
periode). Dit is uitgevoerd door gebruik te maken van de verhouding tussen de momentane 
w'2 tot het gemiddelde, hetgeen duidelijk overeen blijkt te komen met het verdwijning 
temperatuur "eilandjes" en de toename van de absolute windsnelheid in het tijdsdomein. 

In hoofdstuk 2, wordt de oplossing voor de energiebalans voor de bladeren gebruikt om 
de interactieve fluxen tussen blad en lucht te parametriseren, hetgeen het resultaat is van de 
ruimtelijke middelingsprocedure van de turbulente transportvergelijkingen binnen een 
meervoudig verbonden luchtruimte. 

De ontkoppeling van de energievergelijking aan het bodemoppervlak, in paragraaf 4.4, is 
verkregen door het berekenen van de tijdstap van de simulatie en de tijdconstante van de 
eerste luchtlaag welke in contact staat met de bodem. Afhankelijk van deze verhouding wordt 
ofwel een analytische evenwichtsoplossing voor de dampspanning gebruikt voor de 
ontkoppeling van de energievergelijking ofwel wordt er een numerieke oplossing gebruikt. 
De oppervlakteweerstand voor verdamping wordt berekend uit de totale porositeit van de 
bodem and de met lucht gevulde porositeit. 

De ontkoppeling van de energievergelijking voor de lagere bodemlagen is uitgevoerd 
door het berekenen van de divergentie van de waterdampflux in de verschillende 
bodemlagen. Het berekenen van de waterflux tussen de verschillende bodemlagen, zowel in 
de vloeibare fase als in de dampfase, is uitgevoerd m.b.v. de waterpotentiaal. Deze potentiaal 
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zal de gevoeligheid van de stomata van de bladeren beïnvloeden door de produktie van 
Abscissinezuur ABA door plantenwortels onder invloed van bodemvocht. Een volledig 
submodel voor de waterbeweging in de plant is geïntroduceerd. 

Ad 2) Bespreking benaderingen van anderen 
Dit onderdeel wordt besproken in par. 3.3 en 3.7. 

Hierin zijn voornamelijk twee richtingen in aan te geven: Hogere orde Euleriaanse 
sluitingsmodellen en Lagrangiaanse random walk modellen. 

In een Euleriaans model over een lange periode, komt het teken van de gradiënt niet 
overeen met de richting van de fluxen. Om dit probleem op te lossen wordt overgegaan naar 
een hogere orde sluiting. Dit gebeurt door gebruik te maken van de turbulente transportter
men in de hogere orde vergelijkingen en het effect hiervan op de gradiënt van de turbulente 
flux in de lagere orde vergelijking. 

Een van de veronderstellingen is hierbij dat alle termen van deze vergelijkingen een 
constant gemiddelde hebben gedurende het simulatie-interval. Uit de analyse van enkele 
artikelen en gegevensbestanden wordt aangetoond dat dit verre van de werkelijkheid is. Ten 
gevolge van de hoge mate van niet-lineariteit van de vergelijkingen moeten we verwachten 
dat het fluctuerende gedrag in de tijd van deze termen een andere oplossing geeft dan 
dezelfde termen die geen fluctuerende waarde t.o.v. het gemiddelde hebben. 

Het blijkt dat de aanname dat de bij middeling verloren informatie terug zou komen door 
gebruik te maken van een hogere orde sluiting niet juist is. Dit komt door het effect van de 
coherente structuur op de kruiscorrelaties, met andere woorden het creëren van correlaties bij 
hogere orden welke niet tegengewerkt worden door de druktermen die deze correlaties willen 
vernietigen. De rol van de druk om deze correlaties te vernietigen is speelt vooral rondom de 
passage van een hellende schuifspanningslaag aan de bovenkant van het gewas. Bij de 
stroming in het gewas is de verhouding tussen de afstand waarover drukfluctuaties worden 
uitgesmeerd en de afstand tussen coherente structuren veel kleiner dan één. Dit maakt 
automatisch enige veronderstellingen ongeldig bij het gebruik van hogere orde sluiting. 

Een ander probleem is de geldigheid van de middelingsprocedure bij niet-lineaire 
vergelijkingen. Reynoldse middeling vereist uniformiteit van de termen binnen de 
middelingsperiode. De hoge mate van variatie in de tijd of in de ruimte noopt tot twijfel aan 
deze veronderstellingen. 

Daarom moet getwijfeld worden aan de geldigheid van het resultaat dat verkregen wordt 
met tweede en hogere orde sluitingen. 

Een andere manier van modellering binnen gewassen is gebruik te maken van de 
Lagrangiaanse modellering, welke de trajectoriën simuleert van een groot aantal 
onafhankelijk bewegende deeltjes en deze op te tellen als eindresultaat. 

Deze optelling ziet echter over het hoofd dat bij het binnendringing van een coherente 
structuur in een gewas er een sterke correlatie aanwezig is tussen al de deeltjes binnen het 
gewas. De deeltjesbeweging gedurende een zekere tijd is dus beslist niet onafhankelijk. Deze 
correlatie moet van de totale superpositie worden afgetrokken. 

Het argument dat random walk modellen al rekening houden met de correlatie tussen de 
deeltjes t.g.v. het aanwezig zijn van coherente structuren in het stromingsveld, wordt 
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besproken in Lamb (1980). De moeilijkheid is dat de gezamenlijke dichtheidsfunktie voor 
een groot aantal deeltjes niet uitgedrukt kan worden als een vermenigvuldiging van marginale 
dichtheidsfunkties welke aan elkaar gelijk zijn. 

Een benadering voor de superpositie van concentratievelden, zoals dat gevoeld wordt 
door een sensor in een stromingsveld en die steeds oudere concentratiewolken ziet, wordt in 
dit promotieverslag voorgesteld. 

Ad 3) Een mathematische analyse van de vergelijkingen voor het bodem gewas systeem. 
Paragraaf 4.2 behandelt op een semi analytische wijze, de vraag of een constante turbulente 
transportcoëfficiënt zal resulteren in dezelfde gemiddelde temperatuur en dampdruk als een 
fluctuerende turbulente transport coëfficiënt met een zelfde gemiddelde waarde. Bekeken 
wordt of deze twee benaderingen leiden tot verschillen in de bodemwarmtestroom en het 
bodemtemperatuurprofiel. 

Voor het gewas-atmosfeer systeem betekent dat 4 gekoppelde partiële 
differentiaalvergelijkingen getransformeerd zijn in gewone differentiaal vergelijkingen, 
waarbij het hier gaat om de vergelijkingen voor bladtemperatuur en luchttemperatuur, de 
dampdruk en het dampdrukdeficit. Met deze analyse wordt gedemonstreerd, dat na het 
binnendringen van een windvlaag in het gewas, de blad- en luchttemperatuur, de dampdruk 
en dampdrukdeficit asymptotisch naderen tot een evenwichtstoestand, die een lineaire functie 
is van de turbulente transportcoëfficiënt. In de loop naar deze evenwichtstoestand, zal er 
echter een niet-lineaire afhankelijkheid van de turbulente transportcoëfficiënt bestaan ten 
gevolge van het exponentiële gedrag van de vergelijkingen. Het gebruik van een gemiddelde 
waarde voor een turbulente transportcoëfficiënt is dus niet hetzelfde als een fluctuerende 
waarde met hetzelfde gemiddelde. Het belang van de niet-lineariteit op het gemiddelde 
gedrag van het gewas hangt af van de verhouding tussen het interval van twee opeenvolgende 
binnendringende windvlagen en de tijdconstanten van de lucht in het gewas. Ligt deze 
verhouding tussen de 0.5 en 3.0, dan zal de oplossing voor binnen het gewas zich altijd in het 
niet-lineaire gedeelte van de oplossing bevinden. Afhankelijk van het belang van dit proces 
kan de oplossing zich, voor een aanzienlijke periode van de tijd, in het niet lineaire domein 
bevinden. 

De frequentie waarmee windvlagen het gewas binnendringen wordt dynamisch bepaald 
door de windschering aan de top van het gewas. De tijdconstanten van de luchtlagen binnen 
het gewas daarentegen, worden voornamelijk bepaald door de stomataire weerstand van de 
planten en hoe deze wordt beheerst (b.v. water potentiaal in de bodem en lichtintensiteit). 

Tevens wordt aangetoond dat de genoemde niet-lineariteit de grootte van het nabije veld 
effect met minimaal één orde overtreft. Het nabije veld effect, wordt beschreven door 
Raupach (1989) en Finnigan (1985) in hun kritiek op het gebruik van Km-theorie bij de 
beschrijving van turbulente transportprocesses binnen een gewas. 

De volgende stap van de mathematische analyse is het beschrijven van de reactie van de 
bodem op deze niet-lineariteit. De wiskundige oplossing van het niet homogene probleem 
van het bodemtemperatuurprofiel laat zien dat de bodem het effect van intermittentie 
integreert in de waarden van de coëfficiënten van een Eigenfunctie ontwikkeling van de 
bodemtemperatuur; met andere woorden een Fourier reeks ontwikkeling. 
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Wiskundige uitdrukkingen voor deze coëfficiënten, demonstreren dat alle bronnen van 
intermittentie worden waargenomen, enerzijds door veranderingen in straling of anderzijds 
door veranderingen in temperatuur of dampdrukdeficit van de lucht vlak bij het 
grondoppervlak. Elke waarde van de coëfficiënten van de eigenfunctie ontwikkeling voor de 
bodemtemperatuur bestaat uit een initieel en een integrerend bestanddeel. De eerste neemt 
exponentieel af in de tijd en de tweede integreert de opgelegde straling en andere grootheden, 
zoals de luchttemperatuur en het dampdrukdeficit nabij het grondoppervlak. Het zijn deze 
laatste grootheden die beïnvloed worden door coherente structuren. 

De afnamesnelheid van de initiële componenent en de afname van de invloed van 
voorgaande intermittenties gaan voor de hogere golfgetallen veel sneller. Een ander effect 
van intermittenties op de coëfficiënten van de Eigenfunctieontwikkeling is dat deze zich voor 
alle golfgetallen op een zelfde manier uitdrukken. Het effect van intermittentie hoeft dus 
maar voor één golf getal bestudeerd te worden. Het effect van intermittentie op de 
geïntegreerde waarde van de drijvende krachten anders dan straling kwantificeren het effect 
van intermittentie op de bodem. De wiskundige oplossing integreert alle details van de 
aandrijvende krachten van intermittentie. 

Ad 4) Een gevoeligheidsanalyse 
Paragraaf 4.2.1.2.b. tot en met 4.3 behandelt de gevoeligheidsanalyse. Om de analyse te 
vereenvoudigen en om fysisch inzicht te verkrijgen in het effect van intermittentie op het 
systeem, hebben we aangenomen dat er onderscheid is in de tijdschaal waarin de luchtlagen 
en bodemlagen reageren. Dit stelt ons in staat het effect van de niet-lineariteit op de 
gemiddelde temperatuur en dampdruk van de luchtlagen nabij het grondoppervlak te 
integreren en deze te gebruiken om de vergelijkingen te beschrijven van coëfficiënten van de 
Eigenfunctieontwikkeling van de bodemtemperatuur. Om de gemiddelde bodemtemperatuur 
en het dampdrukdeficit van de luchtlagen nabij het grondoppervlak te berekenen, worden 
een combinatie van verschillende situaties aangenomen. 

De eerste combinatie is een evenwichts- en een niet-evenwichtstoestand. In de 
evenwichtstoestand wordt het effect van veranderende warmteopslag met de gewas 
elementen verwaarloosd, maar wordt in de niet-evenwichtstoestand wel meegenomen. Een 
tweede combinatie is een één-laag of een meer-lagen gewas. In het eerste geval is 
aangenomen dat de lucht in het gewas goed gemengd is. Bij het tweede geval is aangenomen 
dat iedere laag een verschillende bladoppervlaktedichtheid en turbulente 
uitwisselingscoëfficiënt heeft. Bij de niet-evenwichtstoestand is alleen een meer lagen model 
gebruikt. 

Bij de berekening van de gemiddelde temperatuur en dampdrukdeficit, is een constante 
Km waarde aangenomen. Deze waarde is ongeveer vier maal zo groot in het géén 
windvlagen model ten opzichte van het windvlagen model. In het windvlagen model is 
tijdens het binnendringen van een vlaag de bijdrage aan Km het grootst, terwijl gedurende 
een kalme periode Km veel kleiner is dan de gemiddelde Km in het géén windvlagen model. 
In het windvlagen model wordt, na de passage van een coherente structuur, het initiële profiel 
gelijk gemaakt aan de temperatuur en dampdruk die heerst op ongeveer 2 maal de 
gewashoogte. 
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In het geval van de combinatie met één enkele laag en de combinatie met een 
evenwichtstoestand, laat het resultaat zien dat het windvlagen model een hogere waarde geeft 
voor de aandrijving anders dan straling op de bodem als gevolg van een lagere turbulente 
transportcoëfficiënt. Deze maakt dat de blad temperatuur meer afhankelijk van is 
stralingsaandrijving dan van de temperatuur en de dampdruk van de lucht ver boven het 
gewas. Dit zal de evenwichtstemperatuur van de bladeren doen toenemen. Dit zal weer 
gevolgen hebben voor de temperatuur en dampdruk van de lucht, immers de 
afhankelijkheidscoëfficiënten van de bronnen van temperatuur en dampdruk in de luchtlagen 
is groter in het windvlagen model dan in het géén windvlagen model. Het eindresultaat is dat, 
tenzij de periode tussen twee opeenvolgende binnendringende windvlagen klein is ten 
opzichte van de tijdconstante van lucht in het gewas, de lagere menging tijdens een kalme 
periode de temperatuur en dampdruk van de lucht zal laten stijgen ten opzichte van het géén 
windvlagen model. De aanname van de goed gemengde laag zal leiden tot een toename in de 
temperatuur en dampdruk van de lucht, waargenomen door het grondoppervlak. Dit zal de 
gemiddelde niet-stralingsaandrijving aan het grondoppervlak laten toenemen waarna dit het 
effect van verversing door het binnendringen van de windvlaag zal tegenwerken door een 
niet-stralings aangedreven forcering op de bodem uit te oefenen. 

In de evenwichtstoestand, voor een meer lagen gewas, laat een inverse matrix, die de 
evenwichtsoplossing van de luchtlagen controleert, zien dat bij een vlagen model de 
binnenste elementen vermenigvuldigd zijn met de verhouding tussen de Km-waarde in een 
géén vlagen model en de waarde van Km in een vlagen model. Deze matrix moet 
vermenigvuldigd worden met een C-matrix, die de brontermen in elke laag van het gewas 
vertegenwoordigen. Deze C-matrix is onafhankelijk van de oplossing. Dit betekent een 
relatieve vermindering van de rol van de onderste en bovenste randvoorwaarden van het 
gesimuleerde domein en een grotere bijdrage van de binnenste lagen tot de oplossing op een 
bepaalde hoogte. De geringere menging gedurende de kalme periode leidt dan tot het 
bereiken van een grotere invloed van de binnenste elementen van de C-matrix op de 
temperatuur en dampdruk van de lucht op een zekere hoogte, in vergelijking met een géén 
vlagen model waarin constant een hogere waarde voor de turbulente transportcoëfficiënt 
actief is. Of dit leidt, in het geval van de dampdruk vergelijking, tot een hogere of lagere 
dampdrukdeficit dan die aan de randen, hangt af van de stomataire weerstand en het netto 
straling profiel. 

In een meer exacte oplossing, is alleen een meer lagen model gebruikt. Dit is gebeurd 
behulp van MathCad, een mathematisch computerprogramma, of een gesimplificeerd 
compleet numeriek model. Het MathCad programma gebruikt dezelfde oplossingsmethode 
voor zowel de bladtemperatuur, de luchttemperatuur als de dampdruk. Het heeft minder lagen 
en simuleert een kortere periode dan het numerieke model. De bodem temperatuur is constant 
genomen en het effect van het binnendringen van de vlagen is geïntegreerd in de waarde van 
de niet-stralings forcering en de randvoorwaarden voor de bodemwarmtestroom. Deze 
MathCad runs zijn onderdeel van de gevoeligheidsstudie die in het volgende besproken 
wordt. Het numerieke model is hetzelfde als in hoofdstuk 5, behalve de invloed van de 
droogte van de bodem op de oplossing. Met andere woorden, de bodemweerstand voor 
verdamping is altijd nul genomen. 
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Het resultaat van de MathCad runs laten zien dat voor de bodemwarmtestroom, de niet-
straling forcering op het bodemoppervlak een lagere bladoppervlaktedichtheid in de onderste 
lagen van het gewas en een lagere turbulente uitwisselingscoëfficiënt het verschil tussen 
vlagen en een géén vlagen model laat toenemen. Dit staat in verband met het verhogen van 
de tijdconstante van de onderste luchtlagen en het verhogen van de verhouding tussen de 
inverse van het binnendringen van de vlaag in het gewas en de tijd constante van de onderste 
luchtlaag nabij het grondoppervlak. 

Het resultaat van het gesimplificeerde complete numerieke model, die een typische 
warme zomer dag in Egypte simuleert, laat een significant verschil zien in de vlaag en géén 
vlaag parametrisatie op de bodemwarmtestroom en de bodemtemperatuur. Het verschil rond 
12 uur in de middag, lag rond -9°C en +1000 Pa voor het vlaag model ten op ziehte van géén 
vlaag model, voor respectievelijk de temperatuur en de dampdruk in de onderste lagen van 
het gewas. Hierbij is de periode van het binnendringen constant gehouden en op 1.5 minuut 
gesteld. De oorzaak van dit grote verschil ligt in de grote tijd constante van de onderste 
luchtlagen nabij de grond. Deze is zo groot ten gevolge van de gebruikte turbulente 
parametrisatie, de lagere blad oppervlakte dichtheid in de onderste lagen van het gewas en 
een hogere licht afhankelijke stomataire weerstand. 

Het resultaat van de MathCad run laat zien dat het mogelijk is dat er geen verschil is in 
de forcering van de grond, maar wel in de partitie van het plantoppervlak. 

Een complete analyse van de interacties tussen de bladeren en de lucht voor typische 
klimatologische situaties is ook geanalyseerd. De dynamica van deze interactie en het belang 
van de niet-stationaire termen op de oplossing wordt aangetoond. De toestandsvariabelen 
(o.a. de temperatuur, de dampdruk en -deficit) en de bronnen, volgen binnen een gehele 
vlaagcyclus een exponentieel gedrag. 

In paragraaf 4.3 wordt getoond uit schaling van de lange-tijd-gemiddelde 
fluxvergelijking dat de correlatie van de verticale bronsnelheid, die het resultaat is van de 
interactie tussen de lucht die het gewas binnentreedt en de bron, dezelfde orde van grootte 
heeft als de produktieterm voor de flux. Dit betekent dat bij het binnendringen van coherente 
structuren deze correlatie moet worden meegenomen. 

Ad 5) Validatie van het ontwikkelde model. 
Dit onderdeel wordt behandeld in hoofdstuk 6. Het resultaat van de modelvalidatie vertoont 
in het algemeen een zeer goede overeenkomst tussen de gemeten en gesimuleerde 
stralingsomgeving, de blad- en luchttemperatuur. Er is echter interactie tussen de 
vlaagfrequentie, die de mate van de opbouw van de scalaire profielen bepaalt, en de 
stomataire weerstand, die bepalend is voor het verloop van de opbouw van temperatuur en 
dampdruk. Dit bepaalt de oplossing van de energiebalans van de bladeren. De parametrisatie 
van het turbulente transport speelt een belangrijke rol voor de waarde van de temperatuur en 
dampdruk in de middelste lagen van het gewas. Een betere parameterisatie van frekwentie 
van de vlagen, de stomataire weerstand en het turbulente transport zal een nog betere 
simulatie opleveren van het gewasmicroklimaat. 
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/ i^ 'o l l £ £ » i l l , j j . f f>ÜJ (j-Lurî LSJ (j1 L;,̂ . IBr'llif-lAI ..Tl-.il ^ ^ r̂̂ J f j ^ j l l ^ i » i l l i t l i ' ^ > ^ l l 

• rit*l^.n ^LLuiSk ..ll-i^.i rUÀJ j LJli. ï i L i j l l .zriLii>»JI ,j*. r } jUu ^j —*\" cti->-

ß^i fjaJI 'l^yiLxlfl JiLïill > i i J j "rilntn ï j j r b ( j - ^ l l ^ I jUapI iUa J ^ . "„ - * - - • * ; ^ül ^ > i i Jijry. 

.ÜL^jll i l i a ^̂ n Irh.ilr J t - iyi l l f^i rjall ^.la.Lia-.'aij L ^ j l ^ l 

:fjaUi ^Uai ^ l i ï , j a / jnlif.l-.ll Ss^.!=ut fr^j ^ i » J j i ^ ä > r j ^Uu (\ 
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-'jï. s t -t <•>}. j TA-t .«ja. j l . r ^ j i . j äiLu JJI ^ j^làll J A £ 1 I frä IR''Vi tri-i .=*>a 'n Kif lil si-Si 
. J - J 1̂ 11 J ^ ü l j T i .»ja. j 0-t 

•na j i . ^ L O I I .CUÜJI j ^ i i J^ÄJI ^ÜL^=J -H--^ . ï f jaj i j a îL-iii *LU£JI £u>i ja . j ^ J ^ = ^ J I <jj 

j i tyx^U k^Mt J j * l i ' ia j^JI 'Ü4^>J "ïaUaJIj ïiLjII JÜLul - l o ^ l " - • - ' ; • ' • ) " i t ^ ^ i ^ J I ,^£11 ^".^U<JI ^ 

äfa*«,»aoll j^JUX _,L«a. La^,.lf ^ $alUI ,JJlÄ^JI i -Ai l j i 'cUjUJII g jaUl ( j j . (J^SJI) ' i ^ l j i . ' ü j i . 

.I2^1x>^l " ' j . ; . — ' ^la^l - ta^ $aUilj Ifiijlm-» . j " - ]" alj.jT-lpll (1>T^ 'iapLill jnH-ilrijJII £^1 k>±»^i 

i2 - jJ= £l>aai *a *-""»• <jLa*'!ll ; *aa ilAA^JI ^ i j .^MibL>ll i l la l - ü i ^ ^ i j ^ 3 i i i . 'a J j l , g u i i i ^ l 

<jjL i t j . ; - - " ^ l a i j i ^a i j J ^ ^ a « ! çf*. ü j^ÊJI uläljaa4l l l > ^ J*»ia ^üibLjA ü la l a U » A i i ^ ' ü 

i j jA j a j Ü j " ^ - y - ".;)•*•' J j " " 'itijui fl>â (üLi-i^li l) Ja*y l̂<>ll j j j ; jjj.;..-*.ll üAalji^lMI , j j .J=^u^i>ll 

' i ^ l j i J I j i lA j i j l i i^a.^1 n^ .-il j i n ( ^ J X J A I I • i j m ^ j l (jJli j l ' i-^ti j l l j1 ïjl>^il) ä.••••!.{ ifII - i l . ; o-SN 

îU£ ' L i a ^ u .j^aJI ï j * * & ö^ l j^J I ^LiUAJI j1 "L^l^U jalÀ j a j l ^ j .^L.>xJI J i a . ^3 ^ r ^ 1 «>*-*> 

>Ä. j j j i l a ( j p i t l ü j J i ^ i l J A J U K i t i V U tM^a .^a^t iä j ^S^i'Läu li-^..il'*...n ^ j frjAAll / B / l l h i J J 

<sp ï j ^ i t J I ^ l a i j a a j l l Lii .JJLaJI .«A.j1 J A gJl ,L&. ,,1 t ^ u £ * c ^ ï i M j iA jStll i ^ JLïaiJ J-* 

ï j a ü Jäx i i j . ; *—" ^ O U = L J I iUa h A vi l i j . ; *—" äA j a j l ^L3U=J JJ ja . j a L&op j ^ jall.j ' it j * J I 

,^- j üüäl^ll ^ L i i l i $3 j1 saUill *lh>±l\ ï >a ^ Ï ^ I^SJ I ^ L L ^ J I J J J J juljaâ ^^u a ; l . , i l l ^ j>£JI 

->^JI B_>TJ^> ' Ü ^ I ^ & J I "Jil.j^ill ü?.l^a E^I^S 

^t^lu J J ; I £ L j ^ ä i a ^ " . ; - * - " " " ï j ^ l^ i ï ï ^ j l a - (jl.nn>!! ^a i i x i a a i jaX>l l ^Uxf^a^ll iL^i ï ^ j t » ( j j 

>3Ail ïj^uâJI u l j i u b ü j Ä I Ä ja^l <i>-j üLtLujMI ^ £»i j >S-ü JJ ' i ï ^ j i J I ^ila (ji.^3 .^ükill 

j ' ü j^JI Ï ^ J - A L̂£- juJli>lju ^ J i i ^ a^L-iil ^LKJJI ^ I j i i J u l i . Ä.jil-^tll zul^LaJI j Ï J ^ K B J I ^ 

^Lt i^^i j l l i l l a i i i i ïlLj j l a j ^Uaix^a«!! i i : i 'üJt>c l a > . ; ' ' -Tjx'a ä^ill > ^ ^ l l ij^âa .".i.;•••!.;ïll A L ^ ^ J I 

.L&J ä-^> J ^ L I Ü i>L^ij jJa J£^.1 Ï K ^ ^ U K J I ^ M i b ^ l (jÜ .»!*«£> J-H J^ia^ll JJ 

(jJl !)*»•'• '» J-^Lï-3 JÎ <̂L«ô > iüujl J-A J»-»%1 Lup i^Hil^-in j äLJ .cUaJt ^ * ^ j ïlla. ( j^ j 

•ü , ja^l .̂CäUaJ .i^.j-ii ï ^ y L ^ l l ^ - L J ^ J I J ÖÄ ja^ll ' i f ^ J ^ JAJ (j^l^iJI j i ^l_>t-óJ/l (jà^iJI j i 

J i ü u U I ^ J I ^LUâJI jda^aj agio« J U i JjM1 j l i i ^ l t A i ^ . / fr i . ; . . J i l iaJ I j ï j -Jual l j ï J — Ä J I 

^uLL^âJI ^Lvi^j ^iljaü ^«^ ä ^ a ^ajl ^>ul l ^ i ^ J I Sjail JUa: ^Jlail j l^Xgi hdhi.; t ^ i ^ ^ L a i l 

0 j ^ - ; " < Ï J ^ ^ Ù J I J S j^âJ I i ^ j ^ l ^Lau^i <i>-- J j l iaJI ( ^ ^alill ^^11 UI .^LaJI M K T I I Ï - J I > S J I 

.j>aLAll ^LbJJI '1)3 is-u ï^il>BJI A L L ^ U I J J J J J^ij ^ — a gall ï j aa i l jJi *L:LEi. 

^aLill ^ I jJaöMJ ( jLj j -JI - i ö ^ l ^^Slinjll j jiT'lll ^ p <ä.; •••!.• ï l l a l . ; a •Sil ^IXj ï l ^ l x ^ J I T ' I . I L ^ 

B J . ; . ^ " ï± j a j l ^-ÖLto ( l h e JjiUail ( j i ^l^aUII dUL.>uJI ^ ^^11 ï j—Al l i^ l^^JI ^.bL^JI ^ 

^ j^fàail j l iJL: gJadta ^ i l l j ^ l > 2 J i J ü i ï J jli=Jä-= - 3 j * a Vül±. >l--,\i...j y-L-1 J j i ^ ^ ï j ^ ù J l j 

ijaLLjl - " - * " ï ^ l ^ a J I ^iÜLjAJI ^Lvi^l • i - l i - ( ^ jaLiJI ^ILÄII J i : l i i i j a« l l ä , ^U£ l l SrfoAII jl^JLi 

ï jaÜ 'ijLSJ |J^ iBiliinl^ aifih ^1 J-d t^^ (jLijxJI J j l l ï > ^ jJaX^ j.jT'lll li-Ex .IBi-l jlShl j a ^ ^ 

. ' i^l^gjl ÜLILJAJI j ^ j j 

. Ï^ I^SJI ^LUâJ I JjJ.>i ' I jÜJ S^Lill ^UÜll Jä!b> »l>2JI i u i a ^ l ^ "ril.jTil ö&.ji> j b j a i l Lu'M I J Ü J J 

• • . • •V ' gil 'i^Lill 'ÙLBL ( j^Aa J^*y a..... ill i j i ^ J I ï j a â JMa: ,JJIJJ=J=!1I JLïaj^MI J j b u ï<^a ^ p 

.JlaJI ,sJI>aJI (jL^éJI wi=Jf-j .^aLjJI -LfcJJI J i l i ('Ü^L^ÜI ^L^AII) ïiLjJIj Ö J I J ^ (^iV^ll jl±^> 
( j p i U i J j .,jJil>SJI yjL^JI jj.j-3 <JJ è^iLJI t>-i-SJI JAJia ^>y. ' i l j iwll ^l^o^JI ^Ua ^ j - i a J I ^ p 

*i.jT%'i ij-ä liLi. L̂&k j . im ill i j i iEJI i i jaâ JSli: ju l j luàHI JJLSL>U ^..>t-i ^1 -̂<XLU J . I I T - I ^KS'imj 

^ . i ^ i ^ i » J J I ^ U i a^ Lu£>^J ^^ a ^ l ^ i - " - * " J^:l±> äiLJIj ïaLUU J^LQ-JJI j ^LtLtJül jl^JL: 

J . ; ^ " ^ ^t£ ^ i^i L>& MJf..y>ll _aL>j j ^ ( jbljaaüj i ü ü (ji ^ULJ£II ^ ^ ± ^ ^ J>SJI J J I A 

. iT j A a ) ï j i J JÜ J i l i ï j l j ^ l l ^ ^L. j l l i t j - J i ^ U j I I i ^ l j ^ l 

S.... lil - Ï A I ^ I I i j j l jAaJI t^ j^al l ^ I A & J J^^iVi ^ I j i j >a i=JLLä . J J L ^ J I i U ü ^ 3 J-t J o V ^AJ 

j i ^ i " • • ' i l i l i a Lij j a i j i=JÜ .^L. j l l ' i w i j l l i£ j * J I ^^LaJ " i—j - ' , « ^^£11^ n.i Mi%lll . P ^ Ï I I ( i>-^ 

. ^ I j t ^ M j JLÏajMJ J J L J ^ Jjx>aJ 

JUi: u i ."Jml.. jfll ,j4 ISJUXIM frété Ja«a L J À U J A . ( j . r i . i inj WJ. I '» . IT I J.il%-ill i t l i ^ ^ ( j ^ a i - ï i j 

'i>-JÜI ( ^ J31 i^jLé. J.L, j l l ' ü n i j l l ' it >uJI (^La i • i-ü^ll ".: ^ - ^ I I I ?+Zi\ ( j p ^a^ l l ( ^ xV. J l ^ i 
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üLs^jJI loXu .^L; j t l ' i ^ I j J I Ï£ >uj| çfeiLa £ » - V JW^J uH "f- ( ^ L P 1 ^ "<aS< U j 'liKui^atil 

^ x) * ^ J 3 1 - i l T \ I UjJI^EJI ^ L L ^ J I j j j j ^ A^ybJI äiuisw&ll äj-SI^SJI Ü L Ä J ^ J I j l Ï ^ I ^ A J I 

.£.(-, j l l VLuyijll 'lc>uJI ^ L a £,»3vi J ^ J uH * "1 * j ' ^ V -̂ M-SiLu, U ü é J j J^JI ^ ä ^ l l 

. JU^i^UI «JLAJI j * j lxaJI ^ 

j - « — ' ,j-l>±MbJJj JUfcuilj ^LIUM "a-:-a JU=,»I j ~ l x a f ^ ^ l Ï 2 - j i J I i l l a <j1 'bä^i ' j S . M ij£l 

'<LuuU£ll .̂1 i)-SII ^ j j ^ i -3L>u*^lll ï j j a |j1 ) Ï ^ I^SJ I suliU&M J J J J ä j j&l ölixJI AiliAlll ^ i j 3 

JJJI i U i ^ L i J pä i JJ .(j......lil jji=JiJI ä jüJ JUa: ( j j j ^ J I i U i i iL-, ^ i $al*i1l M=£i\ A&&. ^Lï-J= ,jJi 

LSJ£Jäl̂ l_j £.L| j l l ' u u l j l l i t j i J I t^lfii ïta^y^ijJI s^-£llj " .J^V" >^£ll (jfcJJ 'lijm ill ^Klj-liiij (>J_>±a 

" , ; " j " ia^lja^l (jJ ^L< j l l 'i*j** Ï^Lj j 3 -^L^j '.LJUdl ï j l jA i l j * - i " îL<-ï ( ^ Ma JJ ^ iJ jJ> 

j-J»Lï<JI _ï*a,$l ,UoÄ M l £ l J Ö ^ I ^.Lill j l j j ' i l 'i^UsJI i-JljrfJ j ' * — ; • / ü iJUà <r J & ä fl-ä^ 

. i J l ^ a ai i ^ i . i j ^ a J i (;H1 ^ap»l ^ I j l u b ü j JlZaiJII ^Uib^J 

i»3 aiJiLo ' ï aL t j j j y j 'iuLA 'i2Ua JJ "à* j» l l ^ i u . ü i i iLijJI -iaiiai/ äSjatall tflä ,l..l ,*u3 $£3 

3Til-ill fl-ijjll ^LiLill j »LÄLvjiJ ' ü^ i j l l äj>hijll ^^u 'liimill - .Lui £^ j i a ^ (jln..%ll £Ü Bi^:i ^a 

i l ^ j^ü J^Lvi J& Lij /KV»« i j ß^Xf, alla .'i^uAll i l i n JIÜÏKJ *U#aj ."ii j a l l j ^ t ^ J SJJU^JJI Jj 'MI '<LiJI>âJI 

ï j^iJI 'ü jUL) -.Lui. ß^i tJSla .üijlLcJIj ïuL£JI üj l j i^l ^ lU i ibu , ^ u Jjo^ll ( j^o.i K - * .B I J tfjLlt-JI 

" . ̂ i * ^ » î > -̂  . j i . . .^j " . j * ^ * d^i^JI " • <i... jii jii-^-^.,.1 ^ • j i— ^ ^ j ^ . i i 

J J J J I _il*ui J^>Jb ^ i l i i ^ i iJiia > ,L,_HJI a U L b J ^ l i . ^a ^^^i^Lxoll iUa ^^ J*>i l l ";•••''; Lal 

•ÄVlTSall ï^jnJI aUU> ï u Q j ï j ^ ^^u Açtt j bé ( j iuâ ^ 

/*--;•'•••'; .LijLÈil j i 'iLjLuJI n̂ JL̂  , j j Lij " " " - u " ü ^ J I •••"'•'- (1>Tfj JLJII J > J j l ^ L J « _ ILU& ^ j 

XSj^ll j ^ i i •ri.jmlin-» J J ; j i ^ j _3>- ï j j i l i (J^ î= j / l "1 Ri>ll IJL&L -'ùjail ^ > t j J I *-.Bi>ll -iLui. (ju 

j j i i ï j j Q j ï s j .--r^ j^ai ,>h>â. ( ^ ^ U O ^ J üLiJi j j i i ^uisj ^ j i > fj*. ' ïaj^u ( j - i^ t^ i • IB<>II 

.^LiJI J^li'^MJI ' ü j i J*»>l J^L& j ^ j â ^ i » i J ^ J LÓ-.1 jji ±2i 

:ÏÏ^LuJI juUjU^n Ï J ^ L V J ir 

Jüi^MI Ï^JlxJI ( ^ . l i (jJI^S. s ^ - ^ ^ S ĴD '^JjJL-.ai è^Lo^l \J.: '..-••'-•' ^ . i ' l^m» SA3 s ^ l 

.jJI>&xJI (jLi^uJI ü l i <^J>Vij $JI>Sk ^ 3 ^ I n - i (S îil) ".ij i>1ljj»UI ^ i L ^ J I j 

. j j i > : J j j k i^a i flj-'-* ï i L i j - >^i " r A A ) " i i i ^ j i ä i j i v «jj - l ï - i ^a i j -Ä J ^ I I ^ j ü «Mvai - J L M J 

Ï J b J I i-^jJI ^.y^bu ^ ^ l > b y à ^ l JULÜ^ÜJ -iol,>ll j l^J^ll ^L^^l l ^ i ü 'M I ^^Jfc. ^ i t J i / ^ 

•SJi-ai u j ib^i i ,jji a - i > i M = ^ i jüLu^m ^ j ^ J J I jiiJL^i ü j * ; j j ^ j 

iJJ i ^1 « j>i i»l l i ,Lv'ai ( ^ j ^ J - l ^ i ( ^ L j S J i l tJü .üUiLwil "ifi-i j l l ü>t^yi JlLv ^ l i ' i l .^^^1 

^ h v , ^1 £ ^ ^ u l iSp ^Mibi^JI ^ILJ .LJbül ".; •—^" / i J J " I jüJ j "*.;*^" <j* < J ^ Ä - Li ^ j^ i ( j b l j ^ U I 

jyi . ir>i iL t i jUL .Jilti^^jijJI i i i "^.jliTl 'li^.jTl .Bia>iÜ>JI JÜLJ^LE^JI £ L j b L (jalj^Ü^ai ^1 j i - U j 

l i t T e ü L t L ü j l ^ j i a jJi i^l>SJI A L L ^ £ J I „ i JJ i ü i t ^ > - j •;..•%<-' Jri-i t jbl jääj Jüi^MI 

Ĵ3 J•*•„••*'•' — „"' il>àJI JsJuà j j ia- L&i^llaÜU fH-i M (J-i1 ^^ll lf l J ^ JJ.I l-ili-ljj ^ ^ ^ s gi! Ü L L O U J I 

" l i ^ j j u^^-j ^ L t L a j ^ l ^tla .̂jl-1%-1 ,s^ a ^ . ! • ' ' ' • " J 1 ^l*aJI U à j j i j j j .^LtLaj^ai i l i a ^^t^vs 

^LUÜI J ^ l i <I^J1 yiLj^JI J J i i a ^ j .^iUiJI J h v l l 'i>^ ^ ÏL1M c^-^11 "".-1- Jj.>^ £*>>» J ü 
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jj_fj î Lu^JI JJ iüLtaLü ĵ MI ^yui j i ^.jTl'li JùaàJI Ifh.. 'a /,»£-. $all Ï3LU4»1I y^u ö^^JI ^13 ,a- ï l , i l l 

i ,bbl>i^!ll <J±SL. Jxfrn 'li.i^-ili^al äjs**i ÜÄ. .i^>.lj ( ^ J.;1)-*.,! J21 n.i»-vïal ^ l > 2 J I juLL^JI 

"•\.;*\— >jA Ö-Jbdl ^^LiLjJI £1x1 " " - - ; • ' • • • ) " 

^.Ua^^ijJI i s ' l l 'id^LU>ll .uUaljaA^M ^ ü l j >2i BiÄ. L u l U gJI j ^ ^ - ' ^ i l l $>a:MI " i l A ^ l j 

51—\; L>-p ^ i U t l j a i l . " - ' \ ; i J^UJ "ÜLi j±aJ 'buS ü l lüy^i j i l i i l ^J .'li.j h v j - i J I juü±>bh>ll 

..iLi, J Ä ^ . * I >J1 1 - J A I I itl£ ^ii.••>•••! J j t ^ j ^.LU^jä«« LSJ i^ -L j l l j - i U y i ^JL^OJI ^1/j 

a - ^ l ü £iL>ill ^ <5^L^il <LU£1J üiL-j-JI J lb^ l • * . ; • - Jt-.yï>ll $^Lull i l i a ï ^ o , j jü <.£lJ£Jj 

..iUs Jan" ^ ^ ^ a ^ i i - « A U * <*- J^'W j i 5 ^ ^ ' 
i j ^ j (S^L^JI ̂ UaJül Ja:fe> ^Li j - J I J c ) l 'l^^^ouu, 0 > x 1 ï ï - > l = ^ Vi. j^>lj»il ülLiii^jJI 4 

üUJ i^ l l üi.l>a £31»! 3 U T ill £4^3 j I B I T ^ J ^ , j ü Äiy-iiiiall JULU>^1I l i > j j ^ > i»*»* jtu«a a ^ ' V ' 

' i^l^fiJI ^LsL^JI JjX* j1 ^ I > Ü : ] <jï ^ a ^ L i ^ j u L ^ j ^ l ^ j ^ £ s a J j , jÄ ja i l J > £ i ïâLâJ ^ j 

. ^LaJI .clbJJI f l i a j j J^J= J * ^ L p J ^ I ïé> j i ^ ^ ^LULsjJ i i l ^ a JJ £i»àri <joLiAll <LU±1I J Ä I ± J 

^ ^ J 2.U>L^j^HI l̂.n.1%11 $3 i-JL\JI L S d j ^ b ^ i ' b 'i^l^dudl 'ü^AJI ^Ü**** ^ 'iluL^i\ ^J 

(jlil^u^UI s^ i^-^A-ai,, ^ (1|Lj>yJI JXä. (J-3 Ä-S.»la->a« 'i^il^SJI uLL^J I i^.l^> ^ ï^sbJI uLfSj^ll 

^ ^ j . ; ; - ^ i i j d ÖAj^ i lo i r iJL^l i^ l ia i iL iJ I ÏJ l i ^1 ^ J V i - i O^A«) -^M JLÏA&1 ^ nl̂ dhall 

5^1 I j ^ L ^ ^ l l J£J 'lédjLOIji ' i -üyil öal^£JI Jl^iJ - j ó Jx>tV& L&-" j .j.T-ill , ^ 9 ^ » ^Li^i^JI 

.>K'JU IBilrt J^i "iijUus ( j^ÄJ 

JJii. §2 J » Ä J (jüLui. y i ^ . ï t^u,l^ L S ^ J j ^ ^ L ^ . . ^ & ^ J I J ^ i i . j - j^l 'i£-tj±* &>iït f^ i ^ J 

•£äu>iJ j i aUu i > a . j Ä>.j-» _ ' l » i / i^ai üLLVy ' i -^ j ^a ^ j j i ^ i l L i^u,i a ü l j i ^ i > ^ l l 

. Ü ^ J I j ^ L i J I ^LUàll sLL^J ï>ALiJ1 ü ü i L ^ U a^L, jJ I J . j ^ i l l iT 

X.l -JA. j^ i ^ i i j l i l i i 'ri.ihT'1 JU4^ isJU 

J ; ' J ' - - 1 - J JLSLuj J jLi i j ,jLé. l i j L>JI t'rLuàLjj ^1 ".;'.;''t -' B J ^ Q - . Ï J U ^ Ü I ^2.. ^>>JI - i t l i ( ^ -2faJtJI (jJ 

J-aLlL^Ä J>£xU L̂jJI jL4j h t i 1 ! sl Bjlji^l 'itiu.^ijJI ,^JÜI u-JU JJl Jj>t-.%ll Jl ^ia^ri J ä > " 'rf-iJ J - ^ ^ 

JJ 9 i . a - i ü ü (jLÄ ( j j J-ia^'Lb-,1 ^J i=Jüj . i ^ ^ v J I y - iu d iJ£Jj L^uj - i - i i ^ j - l j i a j à j JULuJ 

.a. j i i i i j j i^^i £U=JÜIJ 9 J i_^ i (jL-^-ii ï * - a a^ -aaaaj 

'rï.|liPil»-i ^ ï ï ü u ^ j l J ^ ^ V i , 3tx^ (jj^LijJI J ; '^ - ' " ( j p . ^ iL i l l ^Uuül Ji:li> A»£JI /Ll^il n,.,nlL, 

L ia iL t j . 'Oj^ll ï j l j i . ' i liiüu ^Èi üMib^JI BiÄ. , j j . ' L ï U n.iliMt^ ^MiL i^ JJ ^U^ill 'ilxalj ' i ^ i i 

c ^ i i j J>SJ1 (jjL^JI J^LóJIj i l^SJIj -£3j^ll ä j l j i ^ß .(S^Li-iJI ^LUill Ja:lä Jl j^ l j£k d L ^ J ^ ï i 

J iJ I li-E- . ^ L J I J^ll J i ^ a ^ ^ ^ H a-iLEo!tll - i l j ^ a ^ l jJa i i : L i J^SJl ^ M jL*J j^SiaJI i^Lt. 

J lüi^MI JUILILU J-c g^a: ^üt i L>üJ iJLi2i ^ ^ é ^ ^ ^ . a^ l^MI ) ^ l i J I JiJU iü<->il ^<-ïJI 

Jiy-i^MI J-:U<J - i t ^ ^ u ï j ^ ^ l i ^ i - J ^ p JUULj .^MiLx^U (j-,"ül ^J^L-il ' I j ü j ^ I jJ^A^ai 

(^l>aJI iL>ll j t i ^ 1-iTlSj J>SJI_j JuLllI Bjlji.) J A J I Ù>-J" a h T ' ' UP ' ^ - » ^ 'liT)-lJJ BJ^JÏ J J I ^ i j t j i ^ a i 

J A i t la " ; ' - ' ; » ; u 'iï.ioiM ^J .J-^u^i-jII ,juJu LaJ ^ J l ^ JJLI.JJI i U ü " ' — j j " j i f ü l ^>JUI ^Kij'iiiilA 

- I - I .en /a i , -^« J ^ i J J .Liia^ll a jüiill y^Y " . • ' " J-A .'la'iT'i ^iLiJI ^Uaxll ^t^luj ÏU^^jijJI KL21\ 

1iéMii\ i t ln ^ iLÀ l i p iS^UlJI ^LUxll -l>Ex - . i».t- i ï^^i iJI i^l^iJI j j ^ L L J I ^LUiJI J j ^ l i ' igJIj^JI 

j j ' L i ^ i ^ j .J^yXI j ^ £j>â: j^fcJI ^iiyJI (jJä ' L ^ l i t j^ iw - a > - S^l^JI ^LUiJI , j p T Jl T\> ^ u ^ 

»i^J J A J I U H S ^ ^ JTt^J' jL^-^1 0^ cM^i ^ 3 (j^Uiil .cLUxJI ^U^i ^ p ''üJLvxJI ALks ï^Luf $±>J 
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j j p tfU^iü ' üx i j / l ^ul^iU 'üujjL ( jJj i l l jbäjäll j a ^ u u (i(Ti- Vi..... -ill ^a^ l l JUi: - l j . ; - ^ 1 1 *l j ü - l j 

iJLI^ .J^U flJ^lj fl^a: ^^Àll £Ï^LM1\ Q2 « H T ^ H £JUlu j^it^ll j - : ^ , , J l > . a^l^ÜI .cUUxJI pULi 

,5-1 ;i..^... ii^.±i ï j ^ . i ^ / * I V I H ^^-. (S^LLJI rihTii j ^ i tJ ^ . L U A I I J ^ ^ J $ U J I I ü>a i i ^1 ^ j ^ a n 

JÄI±> J^2JI ••'»;'-' " . : ' * j " ^-.l^ill L>i~ â LoJI Jfaill "i>3 ±u* £L..>U (^!JI j ' * - * * J-i -32,»^ oji 
±b£k^JI *lüs) '»• : " ; * • ( • ' • ' ^ J l J^l^xllj ^.LlLoll ïji^xAJI 'iajüLjJL. 'jLutiLol B J J A . J £'Lu $^Lùll - " - * " 

j h l - j j l l 2»L>ajiJU ' Ü L Ü K J I >LaU)ll ^ h i ' ) -3>« ( j j « j j i y ip - i ü ü j .(£IJ - * t J l i ï ;>a l i ( j ->t . jJI 

J-t^^ilt J-s bu " i i jÜJ ^ l^y imj l ^ i L ï ü J gji < (UAO) ( j l>.;ï1 J1 U V A ) JÜJIJ ï t - ^ l ^ L£ü.>i, _ î L>sï, 

J a l i . "„•'-•'i" pi**. ^ p i t l ü ^ . ^ L ^ l l - " - - • • Juli» j - l .>jUiiJII JUÜU^ll JUUXOJI J o j (jJ ( i t ï - j l i i ) 

. - u j jül JJUil j r f i l a i J=Jt3 äna.lj » J - " - - ' • 

liH t^*?3 ^ ^ j . i l iS " . j ' - ' i " }±xl 'L. jïl\ "-'^•'••-J J . ; 'V ' J U l ^ joaLijl l J . ; ' y " gÜ '.LJLllI j f j 1 - ^ " ^J 

^ "• - • -*•«• ^'a JatsVa a, jail ^1 -̂  jall (}jl_Ail L̂bJÜJ i ^ t ^ u ^à l l ilAA^i ^ L , jJI JaJI 
.4^j>a J l j i i l ^ ü j $i -^^ill ï jljAi (iPe^ J ' j^ ^^^A 'ü>U(ll JH1L.I»V>II ^21 

a l l a A&M " . ; - ' - ' ' " " jj>«=» j1 j ^ l c u JsS> I J J J >S-ii A.JLabb>ll iULii $JÈU,>1I J.J.IT-ÏII ^ «j»*^ i^£ij 

' i j j iJ I ^ h , . , ( ^ - ~ j £J I ^l^2JI B j l j i (J-3 jalj..T-ll ÏK i - l j j1 $jtlx£JII J . j iV ïH gil Jalj.jt-tl ï x i . l j 

•E.iA-ïll ^ Ĥ La JLSJ ' --• '- ,_f=JLlj1 

ï j ^ u a-üta,. ^ I ^ ^ J <jâ. , j j '^_>nil äjljAj (>^ii J l j i il^-Siol ^.ÜJLC^JI i t t J i ^ a J ^ . ( j .yVi-i 

J^SJI ü j l j i . ) (JJILKÄJ J--K1I J , ^ v i l l j (jjibüSl^ai J - o A ^ I it^»Ly J^l^u >x i ^ j i j ^JJjJI JJ •̂ rf—'i 

j i ' o - ^iiJI >Ei j^ l&Aj »JJ I J^foA^i'i .Ig.iiii'ill ^ »-La J U J Jana ^faJLïji ï - j ^ i l gh . . . ^ 1 - j ^ jJiJI 

. ÏJLJÜIÖ&»JI , ü j ' a j j i i ( j^^i is^Mi a-a ö^LuJi ̂ i.jTi-.y^ii ^iüü-zai <>a,ii JLÓ^Ü^ÜI j i ^ u ^j 

I.;o7 (J-̂  Ï J ^ Ö J I l j>- !>'; —•->' ^ jfKr! ( iAi'ï - > J ^ - ' " jaMfllyn JJ Ä ;T h if'lil j ^ L ^ ^ i ' L Ó J I ^Jr̂ f3 ^^ S 

j - i ' i a ^J .J=̂ La i i i l j ï i . > j p i j ^ ^ 1 , . " .;-*- »•'" j - i t a 'UIjJsJ g.L^li.^1 ^Ü) £Ï1±1S :iz.&lt /G i j i j t ^ 

Ji>JI , j ! .öd^JI J J " •-•-K^n j ^ L i 'L^é, i i ^ V i (S-*1*̂ JJ j^JJI J . Ü V ^ I I ï ^ l ^ J I 'i>-Jül J-t S.JTI-I¥-I I I 

r . i . i . r . t . r . r . i . r.r.t. -.r.\.r.t j**z ^ ^ijji i t ^ ï , ;h t ' i ^ i=jü 
t i ó j ^ ü j i i l à ^U^ i l J-t n-.T(-.?ill >^i'oJ aJL. j^t J4&3 j1 ^£JI J-t Jx^V S ^ J J.j<>ill i-u^^l ^ÄJ 

j . . i -y-Mi ' ü^J I ^.LLJ= i l ^ L - j a^LuJI ^LbjJI J ^ -sA^LfL, ii^. ^ l ^ i u . ^ (jJ^ill jL t -J I ^ J J E ^ 

'ii j ^ l l g, h.... <JJ _u>£JI J^2JI i i j l j i . i -a .^u j i i ih-\ l l ^. i j ; j ^ k i JJL£^J Ù^'U i l J i U ^ u i-äü 

^«^,.1 Jlji» i t ^ ^ i ^.ttjLvJ ü ö l ^ l l aUülxoll jjtil^JI i l J i jpLs^J^ ^il^JI ^t. a-U j t ^ i ù i à t j - ^ ' j 

jLv. hi-tS c ^ - " j ' ^ ^ l ^ <->!•• ( ^ --L-̂  j-SJI J^&JI BJI>^1 öluu^i^il ^jJUI -1<11%^ ^ i J j - i i j ^ l ï j l^^i 

._2GII>i i^x. iJj Ï L i ^ a ( jäl jaaj ^i laMä .g.A'ill ^ B̂ La 

, j j l ja ,« l JaJI ÏJLa. ^ . ^ i l l J J j ^ u J A ^i d^ljaj J*- ±*l*> <> l^i i l l : -aai»I I i l l a J^1 

^h ioifLj iuLil\ Aj*.i J ^ l i . Bjlj^vll u M ^ p ^a J ^ T - I I I J-^L>a ^ üLä (^ujJLi J i . ault. £L±^U^S) 

.^l;...>ll ^ä B iÄl ^ i ^ j ^ l - J I i L l i ^ p i ('ï^ia _A^Î J i - A ^ £l±*lLlïZ±3 ) J . IT->QI J^ll 

is^ia-i j1 " » • ! - " ia^i . j U > ^ é . j ^ L i l l ^LfcJJI Ï L S U J ^ L . aJp I j A ^ ^LuJI (JjliJI (jal^lâ^ill ^ j 

^ Lj^u J=JiUI ï i ^ â . " y . 1 - 1 1 iUn <ji ( jbl^iâj p ^Üi / i i^ tJ I i - l , ^JLLI <LU2 ÏIL>. j j l j ...nf.uii 

J-aLïuj -J >!•>•«;. ' i ^ l j j Ï Ü L Ü LÄOJ J i J ^.Lï-Lt. à'ijl , j i l>i^J ^ aJp .^.L^jUll i ^ i - t $aLull ^LbJül 'ilLi 

• - I » : » - I I i_.i-t IJ^LLI -LKi t>l>ii1J i=JUt ^1 aJp j-jJUi-jJI J A J I 'üLi ( j^ j .g^ljJajBj JÜLuj 

" ) . ; ' " / '•-^•'•••J ß^a i l Lil ; • * • ' » ^ B̂ La j l i ^ i ù l â g^aJLl j - I^SJI B j l > ^ 'i^JS> lsyu.^U _.Lvu^ ^Sl^ 

JiLi. ill ^ . i » J i'i^ljj^JI n-jilll J^^S-a gjl LSjj; (âJI>£JI JiLi^MI >i-n ^ » » 'i^JÎI>âJI n-jilll b&l^ l 

j>4» JJLs: ü a p ,5- l j l .aà^l JLSLu^MI JjbtoJ ä ^ W I - J i i ^ p . ^ I^SJ I JJLi^J« ££&, t*ä3 
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' i , - ^ < jp , i l J i <?•?•! (j^JI j ; • • • ' " JJJ-JSJI ï ^ i â a - 3 1 * ^ iŜ aLLiJI MsJJl il—Ljo.,11 (S^I>BJI ^L^&JI /laASJ 

(jÜ., .^JI^SJI JUi.^1 /±»* ^ i » J a^ LS-aj^Üj t — ^ u ^ j . j * ! - ^ . J21 ^ j ^ i ^Iji^-Ó^MI JLZa^jfl J^bu 

^ üLL-a^l j ü j*--;•'•••]" J>£JJ <M j t * , JsJuiij ï j l j j j 0jb»a,Jil £Ü=JU| <jp <g l̂>&JI JMaJII £A»J 

^U>xll f l i a j j - 1 *A j l u , £ l i a j j J-i J^SJl Û>ll j la^ J=Ja»,, BJ!_H\I % jl-^J ( jL i a^l>ÈJI ( jU^JI J J > J 

j ^ i i ij-Sl^aJI JUa. Jll è i » s ^1 a-^ ^ U ü l l ^ta . a - - j 2 a Ja. j ' l £ ^ l l U4Z.J QXLI JJai. i i -J^a a ^ j 

a - l j ± ^ J f l J l ïa^i f l Jjb^J ja 'MI ^JUl -ljü-1 1 1 ^ 0 ^ ï j jaJI J-t a^lxAJ ^uül J-oa^U j * £ 1 ^ ^ 

jUy l-,Ti^j sjl>a. ïa.ji=u l ü u j j j j i ^eLKii^MI J . o y t l L j ü i ' ïaj^ll ï j l j i . ï i j i » Jfcuj Jl g^^a a3".» 

U ^ - - Î , » - -ÏS j * U ö j j l j a Jll ïjl^AJI ïa. j i &*.,>- - â ^ l i l A . . ^ L L U I *U»ÜI J>3 "LJLi A^Ji A4U 

J^jJI ^.iLiüu ^'K ' l>ü-i (j^L^il ^U>xil Ja.li» J^aJI ^ M jla^ Jb^J^j üjl>a. J-i 0>xa.j > - i ^ üJ iü 

iaa.1^1 &̂y£ £ ^ » J a^ 1 & J J 1 ' i^l>SJI 'ia^iill £ A » a a^ J-*1 Ü » - * ^ 4#*>JI IUIS+L* JJ i ^ o l j ^aLfcJI j iLc -^ 

J.• '" '—*- ^ L ^ I ^ £ L ^bL^é. J^JJJ ( l h M ' ü l t j l l Bjaill ( ^ a ^1 l i j all «.jUBilll ï a ^ l i l l j .'<L<JÎ 2JI 'ia^iill 

j . — «" ^i=*SJI *>a3 JUa: J . ; ' • ' - • • <s-il*Siil l=Jayi ^Jü <-U^JI ^LÏ^bJ ï^u^JI J U I ^ I L ï i j l ï ^ iL ï ^ f ù a 

ïVi-ill ^a.1^3 p^t. £ i » l i ïijLiLjlL (jüLtlil J K T I I Jatlü -I>2J1 A>JI j L y I - IT ISJ ï j l>a. ^ j g -3>u« 

^lla ,j1 Jl a * â - - * > " (S^1^1 -3!L iJJ ö^^-* 1 1 Byjl-»ll ±^yll J=J3" ^ I j a J i ( j p JLJL^ . Ï^ I>EJ I 

. Ï J > ^ J I { h m J-i (ju'a,'^ - 3 > Ü -l>ôJJ iLjll j la^ L i à j äjl^ajl 2a.jia a^ « ^ J " 

j^JI " ..•••»•-il ' U ^ I K , ! ! ^1 jLSOi J u ^ « ^ u p . jalifjhll i u u ^ L J ^Lb j j j ^ j i i J I Ja,JI Äi^J^i a-3^ 

a-<l.»£JI jaa. ,«l ^^*»J ïlla. â > V i - > * " 'i-J^liJI L ^ J ^ L L S ^I>SJI j^LLJaJ a^>^>^> c W S-ä > * i y i 

<j*. y+x.'^ a^ j i j (^ui^aii ï a ^ i c ^ ' i j u ^ , ±.) •järfr.,! isu>>b _»a^ ö a j ^ c i i uiLfe. .a-ii>sji j ü i . a i 

^ü iL j i j ^LÜJ £i J-i ' L O ^ u < tii) "*3>—o« Bi-à. .(S-̂ Lull -3UiJ> a-̂  ' 1 £ ^ a J ^ J ^ l i a J ^ M I Jt!^1^3 

JaJI J-i Bi->ü-i j j f i <(J>sJI ïjl>a. j1 J^SJI giA-ill ^ JkJI jla> h y i i ,̂ >JLi >IÜJ ) da^ ^.*ï i 

aoi ia j i J A J I a-a a^U'-jJi ^ I Ü ^ U j - i - J i , , L J ^ I I ^ ^ i ^ i j ^ a^x^ i j ^ ^ s - 1 ^ - ^ ^ o«j .(J-SLB^JI 

" * . ; - • "sf.1- a^ JA^ ".:''•''-" ^I>EJI —**.-'—' J-A^ " j ^ '•••-j 

a^ -üla;l±JI >e.LuUJ J-ii j - i ' o i ^ ü JJ a ^ ^ a^> é J I " ^^^> » > ^ J 1 1 ^ J^"«" J-^l-^l i^UJI ^J 

s i l l j a-5I^JI J U i , y i / i=^ ^ i » i i ïijü£^JL ï h T i iJLA~ a-S l̂>SJJ <L>1I j la^ t ^ o j äjljAJ (i-) ï â ^ b ^ l 

•i>-P a-a j ] a^àrf - ^ ^ <̂̂ > L ^ 1 • ^ a ^ 1 J ^ > - ü ^ 4 " a - i j i ^ . ^ 1 J Ü L U J I I j-=i^>i j - i i ï « ^ ^ ^ Ü <*a 
J-i JLä^i,. i l i i ^ p ..pü^ill ia^i^ajl a-S iLLa ^ g*&2j| ^ il>SJJ ^ M jla^ Jü iä g^JLJ J ^ i j i J-ii 

§ J L S X / ' • - ' ; • ' - J ; i l i i ^3 1*21 -JnHf.il-ill i u u ^ i » J ^i^^-.- j i Jü i ^ ü p S i l j^£>'ül ïlla. a-^J 

^ i j ^ J j1 CLuàL jJI JALSl̂ JI J^la. /-u-jj Ja^ ISinl-iij-inij l ifA->- a ^ 1 -^A;.1»'^11 è^'-W uH i> i^ l^- iL j ) 

B j l j i - i ' ïaj^ll B j l j i . ïa. j±J j A l l ' i ^ > t a (_»»«J" iLÜLjJL a>^>" è^LljJI >^N-i»M i - ïJj .J=-u»VJ a -^J 

^ j ^ ü ^ t j | ^^ j a i UL^. Jj. i lA iLJ I ^ L M a^^- 1 ^ J •(S-^^1 $^^>ilL& l̂̂ &OJ L̂«ll j la^ J=Juàj 

.Ci^l i > * * j jT^ in- i Là-u J À <ï^l^2JI 'ia^JI i-;jiAj ^"I j j i . i i U i ï i^J a1> J 0 ^ 1 'i!^J B j^i l » i . j i . a 

ï « ^ J-i ï-^l^öJI ï a ^ l l j ^ i a J J I ^ J ^ 3 J ä>üiil i i l ^ Jüa; ' i i j l i ï ^^J I ï j l ja . ^1 Luàjoaj i J J j 

ttH 'i-öa. Ä l Ä i M JHLJ>V4 (J^^äj •*(J^U a - j ' ^ ' u'rfJ-*'1 ±>JJ»A" i = > 4 j a^1*^] ->!**" J#>a»a" 
h.KML i ^ i j >Si J=uu>7<>U a->2 JJI $^»-ii> uij -'üiLJI "lil-iifïll a-ä iBiA'Sliini a^ill ^Ukill •^!n.l..i-yll a—lj i 

ai> j a j i j ^ V > ^ J I ^bu4. -äLiaj a ^ ^ j J T ^ ^ ^ o ^ 1 u 1 ' ^ ^ ^ 'o-jLsyi j ö - ü i a-3 S - ^ J 1 1 ^ i » ^ ^ 

. ( /> . \ ) ätÄLa^JI ä>ia J ^ , j i t a jiyJI ï i j i l l äjjUL: ^ i ( jàl^iâj ^1 oii 

{I-mi J ^ a-41"^] >^ i J ' J.;o>"'Hj ä«>uU a j ' j ^ ' iJ^J-^ 1 'liimilL ,̂ 1 jBiHi-t i l Ä i L j ^ ^JLull j j j 

'̂ ff .t-.ll a-"iJI ^-Lii l ï i L - j J j t^. j - l i l ^ j .a^l^SJI Jüa.f!ll ^±^^ Jüa.^1 ^ - i * ) J <j+l J j^ l l ^ > 

^ I > S J I j - i ' i ^ ^ p J I ^ I - J ' ^ J ^ J I ^ (iH ï^i>£ii J j £J i a i u a a-1^11 ss-1-1^1 -^>^i> J J s ^ 1 ^ 1 ' U U J J 

{hiui i L ü (JM'V^ -3.**" VU^IÏJI » ' — J J : aJi 'x^J Jrf^1 J . ; i*i~" a.; i*^'' J J 'i,ul^&JI ïa^ i l l 'lil-iinl^j ^äJ^^il 
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'ii jülI üjljÄ. J ^ 'ÜJI^SJI n%illl i ^ b ü p^i-i Ï J J I ^ E J I i^i i / l ^ UÄ ^LL I j jÜ I ü >Te J ^ I M J>ä jR,tVl 

ä j l j i . ' ii.jia £Ü <3>ill ö ^ ^ i ^ l ^ - j i V äj.jBiKill Ü ^ J (jJi 3J-SJI j L i JUj . i.>all ^ j l> \ i l ^Lj^^JI^ 

+ ) j4i<l,*2JJ ^Ljll JHJ ijifs <_pj£l j 'ii-SI^ZJI •|i>i^ll ü i l ^ i ^ Ü J ' Û J I ^ S J I " ^ > ' " ^ i i » J ç ^ J^aJI 

( J J j à y j l ^^Jl j j | CL>JI>&JI rt>tlll üi.l^J ?i=*t3 ä -^ I^J I •|i%illl ( j i i ; » J (^u J j i l l Jl^imj > * • • 

j j L i ±JUâ . ' i U ä \ , 0 i^l^SJI ia^JI i i jàA. j l j ü l ä j j iJ I J l j i a ^ J • j3Ü ^ L £ *JUj .^^LoJI A±=LÜ\ 

j i „ J | J^£J| ^.UUaJ ä j ^ e J I i-Aj,ill ^^l^ill JJ ' L t i l j ( ^ , - i . i » ! ] ! tl>iLi >*u±l\ j j i l l l £ Ä $Jl -e*""" 

J j lx«! "la^yim»!! >e-£ij JJ £JLÄ.IJ äj.j.i-MI L u jJI ii^l^iJI .iUa .stilÀ äJUj . i j ^ i l ^ L a i ^ 'ü,j>£ll 

i - j ü J I i^üL^l j d^i^JI A1=>±1\ ^ JJUJI ^jaj l ^ A 1^1,11 U t j ^ l l ^Lä lüJ I .(j-I^J^Ä.ai JULuJfl 

.^^cJI üiiAJ 211^ JIULÄ gi l l i j ä-Jbül 

j - i '<L^JI J-t $2U>JI J. ioVil l Q* -a!tü:j J M I Ä . ui^uJI (j1 (^^K-JJ» c^ u i ±>lé^M zJLfj&i j B i H n j 

.•liH-vjn %Läiixa ,>fali>l äirf<H= ä - W » -£äl*>l 4»&ll ^ j i j l u i ^»^ J i l i a l l J^IÄ J - I^a Jja.1 >a i J ü j 

^ i 'Ltb^iLi >EJi1 i J ü j .Jzfl J-* - ^ l i j r f i l l jLtJkJI ï^-vSii^ JjlLïuil -ilJiJ ^L jÄ j l i - i J I - ' j a M i J ü j 

ĴJL Od ̂ LjJI jla^ h,Tl»i t>a-2-l^ ^ iLjll jb( j I I T I S J .l>EJI ä j l j i $1) J>BJI äJL̂ J ' ü o l ^ l — » J . ; - • ' ] " 

. j—"i it^Li, 'ÜJI^2JI ^LlLi^JI j j j j ä j j i , ä jaü J A Jüa: j ^ i a B^Mi "ïSli»llji»Us*>llj C^jA-ill 

i jÄX;JI ^ I j l ^ b ^ l .jLi j - J I ili>Lu ^a ^.äUUil a^-iJI yij^ll -i^LyjL ^ L, j ^ ü i iJU^, T . i ^ ä ( j^ j 

(JiJlj i^Lj j l l ' i i iyi j l l ÄC>uJI j ï±>Mj 'ïaUUll jiba-jll ( l f ^ tL^j^MI ^ i ÄL< îa 'ijäal Ji»„^l^JI l a>.;'" 

j - i l i j i L Ä " . : ) - * -" t^-i i ol ijiLo^JI^ ^iLiiil -iLbJdl J i l i JJ ^ 1 % . j i J I J^2JI ( i(Tjj JjltiaJI ^JJ g ju, . 

üUaxJI Jsli> JJ '<L,JI^2JI ^ibL^JI J>Xial ">„••" ial^ij^MI iJJ i i i i i -L^i a j p i ü i J j . ^U j - J I "^-"o" 

• (JIMH%II a-a ^LLiJI 

' ; ' ' • * , " *".:.-" «H J^> u*̂ 4 'iT!liJJ is>^^ ä * 1 ^ ^ ^ ^ jSiHi'^l ^ i » l i l 2^*» ^ j ' y " $-SLu ^J 

(S^I^JI ^LjAil J ^ i ü j a ^ . ^ J i t i a J l i . $ i j j i i l t iÄ. ^1Ä &JU .J^^JI ^üLd> j £äj^ll ä j l ^^ j 

Ï J O Ü J I ÏJJLLJJI U H ^ J •li.iml.jifll ^JL^>£JI —i-n-iti LS-i ^ Ja-')" •'LM' ' i ^ j ^ i»i=^a S ^ ' j 5 ^ ^ ' - " - - " 

^Lä ^ / * - V " &Z 'l^LS- * I J J ^ --^Ll ^ l j t x . ^ 1 JJLJI üLaljü^J , j j . U L A I I j l j j ' H ï^ l i>l l ' i ^ i l ^ 9 

^ . L L ^ J I J^_H Ü J ^ J j ^ ^ i J B J mj .(S^LJJI iübj j j ^ia^.^11 • ' * ; ' - " ^a <i«ii j t ^ U à ^ «jij^Ji 
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