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STELLINGEN 

1. Het is mogelijk planten te (pre)immuniseren tegen virussen door ze te 

transformeren met virale sequenties en daarmee een al aanwezig mechanisme 

vroegtijdig te activeren. 

Dit proefschrift; Lindbo ef al. (1993) Plant Cell 5: 1749-1759; Mueller et al. (1995) Plant 

Journal 7: 1001-1013; Sijen et al. (1996) Plant Cell 8: 2277-2294. 

2. Waardplantresistentie tegen het geminivirus ACMV, op basis van transgene 

expressie van het BC1 gen, is waarschijnlijk "RNA-mediated". 

Hong and Stanley (1996) Molecular Plant-Microbe Interactions 9: 219-225 

3. De conclusie dat TSWV glycoproteïnen ophopen aan de plasmalemma van met 

recombinant baculovirus geïnfecteerde Spodoptera frugiperda cellen op basis 

van perifere labeling met glycoproteïne-antilichamen, gaat voorbij aan de 

pathologie van het gebruikte vectorsysteem en is derhalve prematuur. 

Adkins et al. (1996) Phytopathology 86: 849-855. 

4. De titel van een onlangs verschenen proefschrift: "Quantitative Resistance to 

Peanut Bud Necrosis Virus in Groundnut", geeft aan dat met de naamgeving 

van dit tospovirus onzorgvuldig is omgesprongen. 

Buiel (1996) Proefschrift, LU Wageningen. 

5. De opvallend snelle ontwikkeling van een complexe prebiotische "RNA wereld", 

tesamen met indicaties voor fossiele biogene activiteit op Mars, suggereren dat 

de "RNA wereld" niet op aarde is ontstaan. 

Gersteland and Atkins (eds.) The RNA world. (1993) Cold Spring Harbour Press, USA; 

McKay et al. (1996) Science 273: 924-930. 

6. Het promoveren binnen vier jaar wordt extra bemoeilijkt door het beperkte 

aantal geschikte data dat de universiteit daarvoor beschikbaar stelt. 



7. Alle commotie rond de invoering van de nieuwe spelling van de Nederlandse 

taal is nogal overdreven, aangezien door de huidige opmars van de Engelse 

taal als voertaal in Nederland verdere veranderingen in de toekomst 

waarschijnlijk niet meer nodig zullen zijn. 

8. Het architectenbureau Mecano heeft bij het ontwerpen van de nieuwbouw van 

de vakgroep Virologie de brede blik die wetenschappers op de wereld behoren 

te hebben, wel wat erg letterlijk genomen. 

9. Het verdient aanbeveling een nieuw type promotie-onderzoek te introduceren 

als de toekomstige promovendus, na het invoeren van een "studiebeurs", is 

verworden tot de kandidaatsstudent van weleer. 

10. Het gebruik van moleculair-biologische technieken bij de productie van 

virusresistente (transgene) gewassen laat zien dat ook hedendaagse 

plantenvirologie nog steeds "groen" kan zijn. 

Stellingen behorende bij het proefschrift: 

Characterisation of tospovirus resistance in transgenic plants 

Wageningen, 21 februari 1997 Marcel Prins 
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Chapter 1 

GENERAL INTRODUCTION 

Although tomato spotted wilt virus (TSWV) was already identified in 1930 as the causal 

agent of a major viral disease in many crops (Samuel et al., 1930), it was not until the 

1980's that studies on the ecology and molecular biology of this pathogen were 

intensified. This was concomitant with a marked emergence of the virus, due to 

increased world trade and to the rapid expansion of one of its major vectors, the western 

flower thrips (Frankliniella occidentalis). With an estimated annual crop loss of over 

$1,000,000,000 for several crops, TSWV ranks among the ten most detrimental plant 

viruses worldwide (Goldbach and Peters, 1994). 

The increasing importance of TSWV as a plant pathogen, i.e. the rising problems 

concerning the control of its spread, is most likely based on its very broad host range 

on one hand, and on the effective vectoring by thrips, a group of minute insects on the 

other. Since thrips have become resistant against most of the applied insecticides over 

the recent years, they are notoriously hard to control (Bnadsgaard, 1994; Zhao et al., 

1995). 

Therefore, the major future challenge is to develop strategies to restrain TSWV, and 

other tospoviruses, by non-chemical means. A number of possibilities may contribute to 

a durable control of tospovirus diseases, of which a prominent one should be on 

breeding for resistance. Hitherto, only a limited number of natural resistance genes 

suitable for introduction into plant breeding programs have been identified (Boiteux et 

al., 1993; Boiteux and Giordano, 1993; Stevens et al., 1994). 

Molecular biology of Tospoviruses 

Based on structural and physical evidence, TSWV was proposed to be a possible 

member of the family Bunyaviridae (Milne and Francki, 1984). This was further 

substantiated by sequencing the genome of TSWV (De Haan ef al., 1990, 1991; 

Kormelink ef a/., 1992c), which revealed that the genomic organisation of TSWV indeed 

exhibited features similar to those of the animal infecting Bunyaviridae. As a result, 
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TSWV was classified as the type species of a newly designated genus Tospovirus within 

the family Bunyaviridae by the International Committee on Taxonomy of Viruses (Francki 

etal., 1991). Over the past six years, several viruses have been reported that are related 

to TSWV, but distinct in host range, geographic distribution, serology and nucleotide 

sequence. Based on their nucleoprotein gene sequence information, six species have 

now been established within the genus Tospovirus, while at least seven tentative species 

await further identification (Table 1.1) 

Table 1.1: Members of the genus tospovirus 

Established 
Tomato Spotted Wilt Virus 
Tomato Chlorotic Spot Virus 
Groundnut Ringspot Virus 
Impatiens Necrotic Spot Virus 
Watermelon Silverleaf Mottle Virus 
Groundnut Bud Necrosis Virus 

TSWV1 

TCSV2 

GRSV2 

INSV3 

WSMV4 

GBNV5* 

Tentative 
Groundnut Yellow Spot Virus 
Iris Yellow Spot Virus 
Melon Spotted Wilt Virus 
Chrysanthemum Stem Necrosis Virus 
Onion tospovirus 
Zucchini Lethal Chlorosis Virus 
Groundnut Chlorotic Fanspot Virus 

GYSV6 

IYSV7 

MSWV8 

CSNV9 

9 

ZLCV9 

GCFV10* 

'De Haan et al., 1991; 2Àvila et al., 1993; 3Law and Moyer, 1991; "Yen et ai, 1995; 5Satyanarayana et al., 

1996; 6Reddy et al., 1990; 'Peters et al., unpublished; 8Kato, 1995; 9Resende et al., 1995; 10Chen and 

Chiu, 1995. Some papers mention Peanut instead of Groundnut. 

The tospoviral particle consists of a core of nucleocapsids in which three genomic 

RNA molecules are tightly associated with nucleoprotein (Figure 1.1). Typical for 

Bunyaviridae, these nucleocapsids are surrounded by a lipid membrane carrying two 

types of glycoproteins (G1 and G2). Both the nucleoprotein (N) and the precursor to the 



glycoproteins are encoded on the virai complementary strand of the ambisense S and 

M RNAs, respectively. The L RNA is of complete negative polarity, encoding the viral 

RNA dependent RNA polymerase (L). 
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Figure 1.1: Morphology and genome expression of TSWV 



Since tospoviruses are principally negative strand viruses, they require the presence 

of the viral polymerase (L) in the particle. The presence of the L protein, albeit in low 

abundancy, could indeed be confirmed for TSWV (Van Poelwijk et al., 1993). Apart from 

replicating the viral genomic RNAs the L protein is also responsible for the transcription 

of the viral messenger RNAs. For the latter purpose, cap structures plus 12-20 additional 

nucleotides are snatched from host messenger RNAs and are subsequently used to 

prime the transcription reaction (Kormelink ef a/., 1992b; Van Poelwijk er al., 1996). This 

cap-snatching mechanism has also been shown to occur in other Bunyaviridae and 

members of the Arenaviridae and Orthomyxoviridae negative-strand virus families 

(Bishop, 1996). 

On the viral strands of both M and S RNAs, tospoviruses encode the respective non

structural proteins, NSM and NSS. Production of these proteins requires replication prior 

to transcription, which may suggest a late function in the infection process. Whereas the 

function of the NSS protein has remained largely unsolved, evidence is accumulating that 

NSM represents the viral movement protein, necessary for tubule guided cell-to-cell 

transport of tospoviruses (Kormelink ef a/., 1994; Storms ef a/., 1995; Chapter 8). 

Infection cycle of tospoviruses in plant tissue 

In natural infections, tospoviruses enter the plant cell during probing or feeding of 

viruliferous thrips, in which these viruses have been shown to replicate (Wijkamp ef a/., 

1993; Ullman etal., 1993). Under laboratory conditions, virus infection can be mimicked 

by mechanical inoculation using an abrasive (e.g. carborundum powder) to slightly 

damage the leaf tissue. Upon entry of the virus in the cell the virus is relieved of its 

membrane and infectious nucleocapsids are released into the cytoplasm. At this stage 

the viral RNA will be either transcribed or replicated. Based on observations of similar 

processes in the infection cycle of other negative strand viruses (e.g. Banjeree and 

Barik, 1992; Baudin ef a/., 1994), the transcription to replication switch is thought to be 

controlled by the cytoplasmic free nucleoprotein concentrations. At low N concentrations, 

i.e. at the onset of the infection process, the replicase will produce messenger RNAs, 

resulting, after translation, in accumulation of the various viral proteins. Upon subsequent 

elevation of the N protein concentration, the polymerase switches to "replicase-mode" 
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Figure 1.2: Infection cycle of tospoviruses in plant cells. After initial (thrips mediated) entry of the virus 
into the cell, the viral nucleocapsids are released (1). At low N protein concentrations, the polymerase 
produces viral messenger RNAs that can be translated into viral proteins (2). Upon elevation of the N 
protein levels the polymerase switches its mode to replication and viral progeny is produced (3). These 
can either move to an adjacent cell via NSM induced tubules (4) or bud into golgi or ER to form mature 
virus particles (5). These particles can then be taken up by thrips and transmitted to other plants. 



upon which viral genomic RNAs are multiplied. For some isolates the NSS protein 

accumulates to large amounts in paracristalline arrays in the cytoplasm (Kormelink ef a/., 

1991). The purpose of these structures as well as the function of the protein have 

remained unknown. The precursor to the glycoproteins contains a signal sequence that 

allows translation on the RER. After glycosylation and proteolytic cleavage, the 

glycoproteins are transported to the site of budding. 

Replicated viral genomic RNAs associate with N protein to form progeny 

nucleocapsids to which L protein attaches (Van Poelwijk ef a/., 1993). Subsequent 

association of nucleocapsids with the NSM protein allows transport to adjacent cells 

through tubular structures (Kormelink ef a/., 1994; Storms ef a/., 1995). Alternatively, 

nucleocapsid structures can form new virus particles by associating with the 

glycoproteins and budding into the ER or Golgi lumen. Eventually, newly formed particles 

can be taken up by thrips upon feeding. A schematical representation of the tospovirus 

infection cycle in plant cells is depicted in Figure 1.2. 

Scope of the investigations 

Since sources of natural resistance to TSWV are very limited, there is an urgent need 

for novel forms of tospovirus resistance involving plant transformation strategies. The 

aim of the research as described in this thesis was to develop, extend and understand 

at the molecular level, novel forms of host plant resistance against tospoviruses, based 

on strategies involving genetic modifications. Previous research revealed that transgenic 

resistance using the viral nucleoprotein (N) gene can be effective against TSWV (Gielen 

etal., 1991; De Haan, 1991). 

At the onset of this research, the mechanism of N gene-mediated resistance was not 

understood. In contrast to the theory of pathogen-derived resistance that was used to 

devise the nucleoprotein-mediated resistance strategy, the observed resistance in the 

transgenic plants did not reflect the amount of protein expressed. Therefore the 

requirement for the translational expression of the N gene was investigated. In Chapter 

3 it is shown that the transcript of the viral transgene rather than the expressed 

nucleoprotein is responsible for the observed resistance. During the course of this project 

similar features were observed for other viruses, and a general overview of current 



knowledge on "RNA-mediated" resistance to viruses is presented in Chapter 2. 

Because the phenotype of this RNA-mediated resistance against TSWV is 

accompanied by a rather narrow resistance spectrum, it was aspired to extend the 

resistance of transgenic plants to related tospoviruses. This was attempted by 

expressing three different tospoviral N gene sequences at the same time from a single 

locus on the plant genome (Chapter 4). To further expand the possible use of tospoviral 

sequences for transgenic resistance, a large array of other parts of the viral genome 

were expressed in transgenic plants (Chapters 5 and 6). More detailed studies were 

needed to unravel the mechanism of the observed resistance. Nuclear transcription rates 

of resistant and non-resistant plants, were compared to their steady state cytoplasmic 

RNA levels, which revealed a co-suppression type of resistance. Additional experiments 

were carried out to investigate whether the resistance mechanism targets the viral 

genomic RNA or viral mRNAs (Chapter 7). In Chapter 8 it is shown that expression of 

viral proteins can have undesired side-effects, that are nonetheless informative for the 

characteristics of the expressed protein. 



Chapter 2 

RNA-MEDIATED VIRUS RESISTANCE IN TRANSGENIC PLANTS 

In recent years the concept of pathogen-derived resistance (PDR) has been successfully 

exploited for conferring resistance against viruses in many crop plants. Starting with coat 

protein-mediated resistance, the scala has broadened to the use of other viral genes as 

a source of PDR. However, in the course of the efforts, often no clear correlation could 

be made between expression levels of the transgenes and observed virus resistance 

levels. Several reports mentioned high resistance levels using transgenes incapable of 

producing protein, but in these cases even plants accumulating high amounts of 

transgene RNA were not most resistant. To accommodate these unexplained 

observations, a resistance mechanism involving specific breakdown of viral RNAs has 

been proposed. Recent progress towards understanding the RNA-mediated resistance 

mechanism and similarities with the co-suppression phenomenon will be discussed. 

This chapter has been published in a slightly modified form as: Prins, M. and Goldbach, R. (1996) RNA-

mediated virus resistance in transgenic plants. Archives of Virology 141: 2259-2276. 



Concept of pathogen-derived resistance 

As RNA-mediated resistance approaches arose as unforeseen spin off from the concept 

of pathogen-derived resistance, this notion will first be discussed in more detail. 

In their original description of the concept of pathogen-derived resistance (PDR), 

Sanford and Johnston (1985) proposed the possible broad application of pathogen 

originated genes in generating specific host resistance, as had been observed for 

bacteriophage Qß genes expressed in its host. Deliberate expression of such genes at 

e.g. modified expression levels or at untimely stages in the pathogen's life cycle was 

suggested to be applicable in most host-parasite systems. In addition, greater knowledge 

of the "resistance gene" is available, while the isolation of these genes is relatively easy, 

taken into account that the size of the pathogen's genome is generally considerably 

smaller than that of its host. For the described case of the Qß phage, the authors report 

several types of approaches: deriving resistance from the Qß coat protein, using a 

modified replicase, expressing a replicase binding site, using antisense RNA and 

interfering with the maturation of the particle. The blocking of the attachment of the 

phage to the pili of the bacterium, thereby preventing the spread of the pathogen through 

the host population was also mentioned. A prerequisite for the use of PDR, of course, 

is that none of the approaches should interfere with essential host functions. Since all 

parasites require replication of their genome and spread from the original infection site 

through the environment, and encode genes that are essential for these functions, PDR 

was suggested to be widely applicable in host systems that can be modified in such a 

way that they express genes derived from the parasite. Principally there is no restraint 

to the hosts that can be exploited for this purpose, provided its genetic modification can 

be achieved both technically and ethically. 

Besides bacterium-phage combinations, the PDR concept provides excellent 

possibilities for all systems involving viruses, considering the relative simplicity of their 

genomes and the detailed knowledge of many viral gene functions. It is therefore not 

surprising that most applications of PDR have been reported in viral systems, and 

especially those involving plant viruses. The latter seems mainly due to the availability 

of efficient transformation protocols for model plants such as tobacco, which is 

susceptible to most plant viruses. 
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Use of PDR against plant viruses 

Considering the PDR theory there are several targets in the plant viral infection process 

at which resistance can be pursued without interfering with essential host functions 

(Beachy, 1993). Three types of viral genes have been most widely used for PDR: coat 

protein genes, replicase genes and movement protein genes. 

Based on observations involving classical cross protection (Hamilton, 1980; Fulton, 

1982), it was envisaged that the use of viral coat protein (CP) untimely expressed in 

transgenic plants might interfere with the uncoating of the virus in such a way that it 

would be less available for initiation of viral replication (Osbourn et al., 1989). Because 

of the genetic structure of most plant (RNA) viruses, encoding their most abundant 

structural protein (CP) at the 3' terminal part of the genome, clones of these genes were 

first available for genetic studies. Forthcoming information, combined with the fact that 

the CP gene was available in cloned format, resulted in the use of viral CP genes for 

initial strategies of PDR for plant viruses. Indeed, coat protein-mediated resistance has 

been reported to be successful for several viruses as described in numerous previous 

reviews on this subject (Beachy et al., 1990; Wilson, 1993; Hackland ef al., 1994; Hull, 

1994; Kavanagh and Spillane, 1995; Lomonossoff, 1995). In the current review it is, 

therefore, not aimed to describe the outcome of these studies once more, unless the 

RNA of the expressed CP gene played a major role in the observed resistance. 

Replicase-mediated resistance as a PDR concept (Carr and Zaitlin, 1993) was first 

applied by Golemboski and co-workers (1990). By expressing the 54 kilodalton (kD) 

readthrough part from the tobacco mosaic virus (TMV) replicase protein, transgenic 

plants proved highly resistant to the virus. Also other initial reports were focused on the 

role of the (mutated) replicase protein and some evidence was presented for its role in 

resistance, however, in most cases no direct correlation could be made between protein 

expression levels and resistance (Anderson etal., 1992; MacFarlane and Davies, 1992; 

Longstaff ef a/., 1993; Donson ef a/., 1993; Audy ef a/., 1994; Carr ef a/., 1994; see also 

review by Baulcombe, 1994). 

A number of more recent publications strongly suggest the involvement of replicase 

gene RNA sequences, rather than the protein. Resistance to pepper mild mottle 

tobamovirus (PMMV), using its 54 kD protein gene occurred in two phenotypes (Tenllado 
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et al., 1995), one pre-established phenotype resembling immunity and another, induced 

type of resistance, resulting in highly resistant plants after initial infection. This resistance 

was effective against high inoculum doses of PMMV isolates, not related to transgene 

expression levels, and broken by related tobamoviruses like TMV. Also, transgenic 

expression of a truncated 54 kD protein resulted in PMMV resistance (Tenllado et al., 

1996) indicating that the (full-length) protein is not necessary for resistance. Replicase-

mediated resistance against cymbidium ringspot tombusvirus (CyRSV) appeared to 

correlate with low rather than high expression levels and was not functional against 

related viruses such as artichoke mottled crinkle virus (AMCV) and carnation italian 

ringspot virus (CIRV) (Rubino and Russo, 1995) suggesting the involvement of transgene 

RNA rather than protein. Replicase-mediated resistance experiments with potato virus 

X (PVX) revealed similar resistance phenotypes (Braun and Hemenway, 1992; Longstaff 

et al., 1993) and expression of the RNA alone was proven sufficient for resistance 

(Mueller ef a/., 1995). Similarly, untranslatable cucumber mosaic virus (CMV) RNA2 

resulted in high levels of resistance (De Haan, pers.comm.), implying RNA-mediated 

resistance. 

The third important target for PDR is viral movement. Most cases described so far 

discuss the use of mutated movement protein genes and result in an attenuated or 

delayed virus infection. A reduced TMV accumulation at non-permissive temperatures 

was observed in tobacco plants transformed with movement protein sequences derived 

from a temperature sensitive movement mutant (Malyshenko et al., 1993). Inhibition of 

disease symptom development of TMV as well as two other tobamoviruses: tobacco mild 

green mosaic (TMGMV) and sunnhemp mosaic virus (SHMV), in plants expressing a 

defective movement protein lacking three amino acids at its N-terminus, has been 

reported by Lapidot and co-workers (1993). Furthermore, these plants show a delay of 

several days in the appearance of viral symptoms when inoculated with other non-related 

viruses (Cooper et al., 1995). The expression of a mutated form of the white clover 

mottle potexvirus (WCIMV) "triple gene block" movement proteins (Beck ef a/., 1994), 

showed broad resistance to WCIMV and related viruses, even against potato virus S 

(PVS), a Carlavirus, but not against TMV. In conclusion, it seems that the use of 

defective movement proteins results in relatively broad resistance. A type of resistance, 
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however, that is broken with increased inoculum doses. The use of the TSWV movement 

protein gene proved successful for obtaining resistance (Chapter 5), but untranslatable 

transcripts appeared equally effective, suggesting RNA-mediated resistance. 

Discovery of RNA-mediated resistance 

With increasing number of reports on the use of viral genes for PDR as described in the 

previous paragraph, deviations from the original PDR concept became more frequently 

observed. A consistent lack of correlation between expression level of the transgenic 

protein and levels of resistance was reported, which seemed to be in conflict with the 

PDR theorem (e.g. Stark and Beachy, 1989; Golemboski ef ai, 1990; Lawson ef a/., 

1990; Kawchuk ef a/., 1991; Gielen ef a/., 1991; Van der Wilk ef a/., 1991). Some were 

even unable to show any protein product, suggesting that the expression of the protein 

was not essential for resistance. In addition, three reports were published rather 

contemporarily (De Haan et al., 1992; Van der Vlugt ef ai, 1992; Lindbo ef ai, 1992a) 

in which untranslatable sequences were used to confer resistance to tomato spotted wilt 

virus (TSWV), potato virus Y (PVY) and tobacco etch virus (TEV). The observed 

phenotype of the resistance was indistinguishable from plants expressing a translatable 

transgene, yet markedly different from reported cases of strictly protein mediated 

resistance (Powell ef ai, 1990). The phenotype of the resistance in all three cases is 

independent of the inoculum dose and as such resembles immunity, whereas typical 

coat protein-mediated resistance levels decreased with increasing virus titers. Another 

difference was the spectrum of the resistance. RNA-mediated resistance proved to be 

specific for the virus from which the transgene was derived, while protein-mediated 

resistance also has an effect on related other viruses. As for protein expression levels, 

no direct correlation could be made between RNA expression levels of the transgene 

and the levels of resistance against virus infection. For RNA-mediated resistance against 

TSWV a strict, negative correlation was reported (Pang ef a/., 1993). Previous work of 

De Haan and co-workers (1992) using the same transgene (N), did not show such a 

strict correlation between RNA expression levels and resistance. However, also here a 

tendency was observed that resistant plants generally had lower expression levels. This 

was also found in resistant plants expressing TSWV NSM sequences (Chapter 5). These 
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observations, together with others that will be discussed in more detail below, suggested 

that RNA-mediated resistance is not a form of antisense resistance, directed against the 

replicative strand of the virus, but must operate in a different manner. To date, many 

more cases of RNA-mediated resistance have been reported, whereas for many 

(established) cases of pathogen-derived resistance, the contribution of the expressed 

RNA to the resistance has not been examined. 

Molecular basis of RNA-mediated resistance 

The first clue on the molecular background of RNA-mediated resistance was revealed 

by Lindbo and co-workers (1993). They observed recovery from TEV infection in 

transgenic plants expressing TEV CP sequences. Diseased plants developed new shoots 

that remained virus free and were resistant to subsequent inoculations. Occurrence of 

recovery coincided with a substantial drop in cytoplasmic transgenic RNA levels. The 

latter phenomenon prompted the investigation of nuclear expression levels of the 

transgenes in these plants. Surprisingly, the run-on assays that were used to differentiate 

nuclear expression of the transgene showed no notable change between unchallenged 

and recovered tissue. It was therefore concluded that an induced, post-transcriptional, 

cytoplasmic activity was responsible for the reduction of transgenic RNA levels and that 

consequently the same activity may be responsible for virus resistance. It was suggested 

that resistant plants that do not show the recovery phenotype utilize the same 

cytoplasmic activity, but in these plants the so called "resistant state" is permanently 

induced. This proposed mechanism also explains the lack of correlation between 

resistance and steady state RNA expression levels, since resistant plants actively 

degrade their transgenically expressed RNA, resulting in low steady state RNA levels. 

In follow up experiments (Dougherty et al., 1994) it was shown that root stocks of 

these resistant plants were unable to transfer the resistance phenotype to grafts of 

susceptible plants. In contrast to systemically acquired resistance (Farmer and Ryan, 

1992; Ryals et al., 1994; Ryals ef a/., 1995) this type of resistance does not involve 

diffusible factors and must therefore be effective at the cellular level. Indeed, protoplasts 

derived from "recovered" tissue proved to block TEV replication. An inverse correlation 

between transgene-derived RNA steady state levels and resistance was observed also 
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in plants expressing untranslatable PVY CP RNAs (Smith et al., 1994). A clear 

correlation was found between methylation of the transgenic DNA, nuclear expression 

levels, steady state expression levels and resistance. Resistant plants showed markedly 

lower steady state transgenic RNA levels, higher nuclear expression levels and 

transgenic DNA sequences were more extensively methylated. This suggested that 

methylation of transgene DNA sequences may be responsible for the induction of 

specific cytoplasmic RNA degradation. 

Some other interesting features of transgenic sequences involved in RNA-mediated 

type of resistance were put forward by Mueller and co-workers (1995). Their work 

involved tobacco plants transformed with various forms of the PVX replicase. Previous 

studies (Longstaff et a/., 1993) had shown that this part of the virus could be exploited 

to induce resistance. Although originally designed to induce PDR based on a mutated 

form of the viral replicase, resistance turned out to be equally effective in plants 

transformed with the wild-type replicase gene sequences. In addition, plants with the 

highest levels of resistance appeared to have the lowest levels of protein accumulation. 

Not only did these plants produce little protein, also RNA expression levels were low 

when compared to sensitive plants. Susceptible transgenic plants, expressing high levels 

of RNA, were crossed with resistant plants displaying low RNA steady state levels. This 

resulted in a reversible resistant phenotype with low RNA expression, showing that the 

resistance conferring locus was capable of frans-silencing its homologue. Whether trans-

silencing of the potentially high expressor locus was regulated at the genomic level by 

blocking transcription or at a post-transcriptional stage by increased turnover rates of 

transgenic transcripts was investigated by nuclear run-on experiments. These proved the 

latter option to be true, confirming earlier observations by Lindbo et al. (1993). Since the 

resistance-conferring locus is capable of post-transcriptionally silencing other genes in 

trans, it was considered feasible that the same mechanism can also degrade incoming 

viral RNAs in trans in the cytoplasm, resulting in a resistance phenotype. Indeed this 

was shown for a recombinant PVX virus carrying bacterial ß-glucuronidase (GUS) 

sequences. Plants transformed with the same bacterial sequences in which the 

transgene was silenced (Hobbs et al., 1993) (see also next paragraph) appeared to be 

resistant against this novel virus (English ef a/., 1996). Moreover, it turned out that 
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primarily the 3' region of this GUS gene in the recombinant PVX virus was targeted, 

coinciding with methylations in this region of the transgene DNA insert in the nucleus. 

RNA-mediated resistance against PVY was also obtained in potato plants expressing 

viral CP gene sequences (Smith et al., 1995). Also here, resistant plants generally had 

lower transgene RNA expression levels and a higher number of transgenic inserts. This 

feature was studied further in TEV resistant tobacco plants (Goodwin et al., 1996). A 

series of plants was made by crossings and doubling of haploid genomes in such a way 

that plants contained zero, one, two or three transgenic inserts in their DNA. Plants 

harbouring one or two transgenes generally displayed a recovery phenotype, while three 

transgenic insertions resulted in plants with a highly resistant phenotype. In all resistant 

plants, a sequence specific post-transcriptional RNA degradation mechanism coincided 

with the resistance. This RNA decline appeared to be initiated by cleaving the target 

RNA molecule at specific sites, for which no consensus sequence or structure was 

observed. An interesting observation was discussed mentioning the complete lack of 

(nuclear) transcription in transgenic plants harbouring more than eight transgenes, 

suggesting that large numbers of homologous transgenes are silenced already at the 

nuclear transcription level. 

Typical RNA-mediated resistance features were observed by Swaney ef al. (1995), 

by expressing another part of the TEV genome, the 6K/21K central region of the viral 

RNA. The authors suggested that principally all (TEV) sequences are amenable for 

inducing resistance, but that the size of the transgene may be important for eliciting the 

response and that, in addition, specific nucleotide sequences or secondary structures 

could play a role. For the bipartite cowpea mosaic virus (CPMV), engineered resistance 

was shown to be directed against the viral RNA from which the transgene was derived 

(Sijen et al., 1995) and could also be induced by untranslatable RNA sequences (Sijen, 

pers. comm.). Also for TSWV, post-transcriptional silencing of transgenes has been 

demonstrated in resistant transgenic tobacco (Chapter 7) and lettuce plants (Pang et al., 

1996). Surprisingly, only transgenic sequences derived from the nucleoprotein (N) and 

movement protein (NSM), were capable of inducing resistance. Transgenes expressing 

antisense and sense RNA, as well as untranslatable versions, were equally effective, 

while RNA sequences derived from other TSWV genes or parts thereof were not 
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(Chapter 6). Two possible explanations for this sequence specificity were proposed. 

First, the relevance of the targeted genes for the infection of plants. Since TSWV also 

replicates in its thrips vector (Wijkamp et ai, 1993; Ullman et ai, 1993) it is envisaged 

that some TSWV genes are not essential for replication and spread in plants. 

Suppressing the expression of these genes (even when successful) would not result in 

resistant transgenic plants, provided that the naked viral mRNAs are target of the 

induced resistance and permanently encapsidated viral genomic RNAs are not. Second, 

the actual primary or secondary structure of the transgenes may be involved in inducing 

the resistance. This might also explain why RNA-mediated resistance has not been 

found for several viruses or some specific viral genes. 

RNA-mediated virus resistance and co-suppression share similar features 

Some unexpected results were obtained when petunia plants where transformed with 

additional copies of endogenous genes involved in the flower pigmentation pathway. 

Instead of an increase, a dramatic decrease in expression levels was observed, resulting 

in completely white flowers (Napoli et al., 1990; Van der Krol et al., 1990). Steady state 

RNA levels even decreased fifty fold when compared to natural expression levels. 

Similar phenomena have been found e.g. in tomato (Smith et al., 1990) and tobacco (De 

Carvalho et al., 1992). The process appeared to be meiotically reversible, was correlated 

to homozygous transgenic insertions (De Carvalho et al., 1992; Hart et al., 1992; Dehio 

and Schell, 1994; Dorlhac de Borne et ai, 1994) and was originally labelled "co-

suppression". An essential functional role of the expressed protein was ruled out by 

expressing non-functional genes that were also capable of inducing co-suppression, 

suggesting involvement of the RNA(Smith era/., 1990; Goring et ai, 1991; Van Blokland 

er ai, 1994). Nuclear run-on experiments showed that expression levels in the nucleus 

were relatively high in co-suppressed plants and did not correlate to RNA steady state 

levels in the cytoplasm. Therefore, the suppression was suggested to operate on a post-

transcriptional level (De Carvalho et ai, 1992; Niebel et ai, 1995a,b; Van Blokland et ai, 

1994). A possible involvement of methylation of transgenes has been suggested by 

Wassenegger and co-workers (1994). In their experiments transgenically expressed 

viroid cDNA copies became extensively methylated only after RNA replication of viroids 
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in these plants. It was suggested that high expression levels of (replicated) RNA 

molecules can be a signal for methylation of corresponding transgenes. The involvement 

of a general mechanism in plants regulating highly expressed genes was discussed with 

respect to frequently observed methylation of transgenes with multiple insertions and co-

suppression of endogenous genes for which this mechanism may also (partly) account. 

A correlation between silencing and de novo methylation of the transgene was also 

shown by Ingelbrecht et al. (1994). RNA-directed methylation of transgenic DNA 

sequences was suggested, involving RNA transcribed from the transgene itself. As a 

result, transgenes were not silenced at the transcriptional level as shown by run-on 

experiments, but steady state RNA levels decreased, confirming a post-transcriptional 

inactivation of these sequences. 

Various potential mechanisms of co-suppression (or post-transcriptional gene 

silencing) have been discussed in a number of reviews on the subject (Kooter and Mol, 

1993; Matzke and Matzke, 1993; Flavell, 1994; Jorgensen, 1995; Matzke and Matzke, 

1995a,b). A biochemical switch model was proposed (Meins and Kunz, 1995) involving 

a threshold RNA expression level at which silencing is induced. This supports most 

observed cases of post-translational silencing, but seems to be contradictory to obser 

ved co-suppression induced by a promoterless transgene or other genes with low 

(nuclear) expression levels (Van Blokland ef a/., 1994). Beside the quantity, also the 

influence of the quality (aberrancy) of expressed transgene RNAs was drawn into the 

discussion (Metzlaff ef a/., 1996). When probing the structure of the transcripts of 

silenced genes it was noted that the 3' terminus of the target sequences was much less 

abundantly transcribed than its 5' end, also deletions were observed in this end of the 

transcript. This prompted the authors to suggest that accumulation of aberrant RNAs 

might be involved in the induction of co-suppression. In addition, small antisense RNAs 

were reported in relatively high abundancy suggesting involvement of these molecules 

in recognition and/or degradation of sense RNA. 

Often, co-suppression has only been observed in plants that were homozygous for a 

transgene and/or carried multiple copies, while heterozygous plants expressing the same 

transgene were not silenced (De Carvalho ef a/., 1992; Hart ef a/., 1992; Dehio and 

Schell, 1994; Dorlhac de Borne ef a/., 1994; Jorgensen, 1995). This suggested a gene 
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dosage effect lifting total expression levels past threshold levels. Not only the number 

of genes present in transgenic plants appears to be important, but also the nature of the 

transgene locus (Hobbs et al., 1993) and even intrinsic properties, like primary or 

secondary structure, of the transgene transcript itself (Elomaa et al., 1995). Plants 

expressing a single gene can give high expression levels, whereas plants harbouring 

complex transgenic insertions can have low expression. By crossing these lines it could 

be shown that silenced genes are capable of frans-silencing genes that are 

transcriptionally active when expressed alone (English et al., 1996). Genes silenced in 

this way also became methylated, like the low expressor transgenes. Homologous genes 

provided in trans by particle bombardment, could thus be silenced. Even when 

sequences homologous to the transgene were provided in trans by a (PVX) viral vector, 

that operates in the cytoplasm, these were silenced. This suggests a cytoplasmic (post-

transcriptional) component of the silencing mechanism, capable of silencing virus 

expressed sequences (English ef a/., 1996). Co-suppression of endogenous genes 

involved in the carotenoid pathway was even suggested to occur in trans by homologous 

sequences (sense or antisense) cytoplasmically expressed from a TMV based viral 

vector (Kumagai et al., 1995). 

An alternative type of transgenic silencing involves extensive methylations of the 

promoter region of the transgene, thereby heritably inactivating the gene at the 

transcriptional level (e.g Meyer and Heidmann, 1994; Park et al., 1996). Even though, 

without doubt, promoter methylation occurs in transgenic plants expressing viral 

sequences, it has not been reported in relation to RNA-mediated resistance, nor can this 

be envisaged mechanistically. Therefore, promoter methylations will not be discussed 

further here. Excellent reading on the subject is provided in several reviews (Matzke and 

Matzke, 1993; Flavell, 1994; Matzke and Matzke, 1995a,b; Meyer, 1995a,b,c). 

Current model for RNA-mediated virus resistance and co-suppression 

Since transgenic RNA-mediated resistance against viruses and co-suppression of 

endogenous genes share so many similarities it is conceivable that they are both 

(induced) manifestations of a basic mechanism residing in plants (and perhaps other 

organisms) that is involved in the regulation of gene (over)expression. Based on current 
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knowledge we will attempt to construct a model explaining (most of the) observed 

phenomena (Figure 2.1). The core of the model is formed by a cellular mechanism that 

can be induced by the expression of transgenes and subsequently leads to sequence 

specific RNA degradation. For both RNA-mediated resistance and co-suppression, 

passing a threshold level of transgenic (nuclear) expression seems an adequate 

explanation for the induction of the silencing mechanism. Some reports, however, 

present strong evidence against this assumption (Van Blokland era/., 1994). Therefore, 

quantitative expression of a transgene may not be the (only) requirement for silencing, 

but also the quality of the transcript (Baulcombe ef a/., 1996; Metzlaff ef a/., 1996). 

Methylations of transgenic loci related to co-suppression, may be induced initially by high 

expression levels of the transgene RNA sequences, either already in the nucleus 

(Wassenegger ef a/., 1994) or after redirectioning of cytoplasmic RNAs to the nucleus 

(Lindbo et al., 1993). Extensive methylations of the transgene may cause aberrations in 

the transcribed messenger RNAs, that subsequently trigger a resident RNA-dependent 

RNA polymerase present in the cytoplasm (Dorssers et al., 1982; Dorssers et al., 1983; 

Van der Meer et al., 1984) to synthesize (short) antisense RNA molecules. These could 

than form the core of the highly specific RNA-degrading complex that can target specific 

cellular or viral RNA molecules in the cytoplasm. Thereby explaining why the mechanism 

is so versatile in targeting different sequences, yet operates in a very sequence specific 

manner. Ribonucleic acids have been described as essential part of enzymes involved 

in RNA cleavage and sequence specific recognition e.g for RNase P and snRNPs 

(Baserga and Steitz, 1993; Kirsebom and Svard, 1994; Altman, 1995; Kirsebom, 1995). 

Antisense transgenes have been shown capable of downregulating expression of 

endogenous genes as efficient as sense genes (e.g. Van der Krol et al., 1988; Van der 

Krol et al., 1990). The original rationale behind the use of antisense transgenes aims at 

the expression of stoichiometric amounts of antisense transcripts that can anneal to 

sense transcripts, thereby making them instable. Even though successful as a concept, 

expression levels of antisense RNA often appeared to be low, displaying features very 

much resembling sense suppression, like reduced steady state levels (Van Blokland, 

1994). This suggests that suppression of sense as well as antisense sequences can lead 

to the post-transcriptional degradation. How silencing of an endogenous gene can be 
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Figure 2.1: Current model for RNA-mediated resistance. Expression of transgenes in the nucleus leads 
to an unacceptable level of (aberrant) transcripts. This is sensed (1) by a cytoplasmic factor that includes 
an RNA-dependent RNA polymerase activity which transcribes short antisense RNAs. These RNAs form 
the core of a sequence specific ribonuclease that targets (2) and degrades (3) sequences identical or 
complementary to the transgene, resulting in low steady state transgene RNA levels. Feedback to the 
nuclear transgene resulting in transgene methylation (m) may cause increased aberration frequencies, 
thereby reinforcing the silencing. Upon entry of the virus, the viral RNAs, which have the same sequence 
as the transgene, are also targeted and degraded, resulting in virus resistance. 
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achieved by post-transcriptionally silencing of its antisense transgene requires the ability 

of the silencing mechanism to operate on both strands. To accomplish this, part of the 

targeted RNA molecule may not be degraded but retained in the RNA degradation 

complex, making it capable of targeting both sense and antisense RNAs. 

Relevance of RNA-mediated resistance: implications for applications 

Even though silencing of transgenes can impose great drawbacks in the transgenic 

expression of proteins in plants (Finnegan and McElroy, 1994), for pursuing virus 

resistance it has turned out to be a very powerful strategy. Endeavouring co-

suppression-like RNA-mediated resistance against plant viruses is a general straight

forward strategy, which remains to be explored for many viruses, even for those in which 

protein expression was initially designed as a means of PDR, but where protein 

expression and resistance levels did not directly correlate. Several distinctive properties 

characterize RNA-mediated virus resistance. First, the observed phenotype resembles 

immunity in that it is not broken by increased doses of virus or application of viral RNA 

instead of virus. Second, it has a narrow scope of operation and can be broken by 

heterologous related viruses. This limitation can be overcome by simultaneous 

expression of multiple RNA sequences (Chapter 4). A third property of this resistance 

based on RNA is that it is expectedly more durable than protein mediated resistance. 

RNA-mediated resistance can be broken by related viruses displaying up to 90% 

sequence homology in the target gene, this still requires substantial modification of the 

viral genome of the homologous virus. In contrast, even a single point mutation in a 

protein has been shown to have major consequences on virus resistance both in 

transgenic and natural resistance gene sources (Turner ef a/., 1991; Santa Cruz and 

Baulcombe, 1994). A fourth, beneficial, aspect of RNA-mediated virus resistance is the 

advantage of deliberate use of untranslatable RNAs, possibly with extra precautions like 

introduced stopcodons. This further decreases the chance of possible unwanted 

recombinations between transgenic transcripts and RNAs of invading viruses, resulting 

in novel viruses (Greene and Allison, 1994). Furthermore transcapsidation (Bourdin and 

Lecoq, 1991; Candelier-Harvey and Hull, 1993; Lecoq ef a/., 1993) cannot occur in 

plants expressing untranslatable RNA of viral coat protein genes. Expression of a viral 
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sequence (not encoding any protein), that induces its own breakdown, resulting in 

(undetectably) low steady state RNA expression levels due to the induction of a resident 

plant response capable of very specifically destroying viral sequences, is biosafe and 

therefore very suitable with respect to public acceptance of genetically modified crops. 

Concluding remarks 

Post-transcriptional silencing of transgenes homologous to viral sequences represents 

a newly discovered phenomenon which can be successfully applied for developing novel 

forms of resistance against plant viruses. Accessibility of the viral RNA to be targeted 

by the silencing mechanism obviously plays an important role. The genomes of plus 

strand RNA viruses are relatively easy accessible. The genomes of negative strand RNA 

viruses are associated with nucleoprotein throughout their replication cycle and may 

therefore be less susceptible to RNA degradation. However viral mRNAs are not 

encapsidated and thus accessible for sequence specific degradation as shown for 

TSWV. Potentially this form of resistance could also operate against DNA viruses (see 

experiments by Hong and Stanley, 1996). Even though replication of these viruses takes 

place in the nucleus, messenger RNAs still end up in the cytoplasm. Targeting of 

mRNAs by the silencing mechanism, thereby preventing the formation of essential 

proteins (e.g. involved in replication and movement), could inhibit virus multiplication or 

spread. 

For the resistance mediated by some viral transgenes only an effect of the protein 

was reported, while plants expressing untranslatable RNAs were all sensitive. Although 

often biased by preselecting for plants expressing high levels of transgenic protein or 

transcripts, these incidents may indicate that not all viral sequences are capable of 

conferring RNA-mediated resistance. In analogy, some transgenes are apparently unable 

to confer co-suppression to endogenous genes (Elomaa et al., 1995). Possibly, a 

requirement for specific primary or secondary structure elements in the expressed 

sequence needs to be met, for which the chance can be elevated by increasing the size 

of the transgene. 

It is not known whether post-transcriptional gene silencing does at all occur in other 

organisms than higher plants, although phenomena very similar to co-suppression have 
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been observed in the filamentous fungi Neurospora crassa (Cogoni et al., 1994) and 

Ascobolus immersus (Barry et al., 1993). In higher vertebrates, the use of short 

antisense oligomers is being used in anti-cancer therapy and treatment of some virus 

infections, but pharmaceutical addition of chemicals is used rather than actual 

transformations of cells. Beside these experiments, successful use of ribozymes flanked 

by antisense sequences in vitro and in cell lines has been reported (Rossi, 1993; 

Yamada et al., 1996). Deliberate transformation of animal cell(-line)s with e.g. (sense) 

viral gene sequences in order to investigate the possibility of co-suppression has not 

been reported so far. 
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Chapter 3 

N GENE-MEDIATED RESISTANCE AGAINST TOMATO SPOTTED WILT 

VIRUS IS BASED ON TRANSCRIPTIONAL EXPRESSION OF THE 

TRANSGENE 

High levels of resistance against tomato spotted wilt virus have been obtained by 

expressing its nucleoprotein (N) gene in transgenic tobacco plants. Protein expression 

levels and degree of resistance did not correlate and prompted the investigation of the 

role of the transgenically expressed viral RNA sequence. It was demonstrated that 

untranslatable tomato spotted wilt virus (TSWV) N gene RNA sequences were equally 

effective in conferring resistance to the virus. Additionally, plants proved resistant when 

viruliferous thrips Frankliniella occidentalis (Perg.) were used for inoculation, but 

appeared sensitive to other tospoviruses. 

This chapter has been published in a modified form as: De Haan, P., Gielen, J.J.L., Prins, M., Wijkamp, 

I.G., Van Schepen, A., Peters, D., Van Grinsven, M.Q.J.M. and Goldbach, R. (1992) Characterization of 

RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Bio/Technology 10 (10): 

1133-1137. 

25 



INTRODUCTION 

In the past few years numerous outbreaks of tospovirus infections have been reported 

in many crops and ornamental plant species in the Northern hemisphere (Peters et al., 

1991; De Haan, 1992). In most cases tomato spotted virus (TSWV) isolates were 

identified as the causal agent. TSWV is the type species of the newly designated genus 

Tospovirus within the arthropod-born family of Bunyaviridae (De Haan et al., 1990; Elliot, 

1990; Francki étal., 1991). Several distinct species have been reported within this genus 

(Àvila et al., 1990; Law and Moyer, 1990; Sreenivasulu, et al., 1991; Àvila et al., 1992; 

De Haan, 1992). Due to limited data, economical and ecological impact of these novel 

tospoviruses has remained unclear. Transmission of tospoviruses is mediated by several 

thrips species of which Frankliniella occidentalis is the most important (Sakimura, 1962; 

Paliwal, 1974). Typical for Bunyaviridae the tospoviral particle comprises a lipid envelope 

with glycoprotein protrusions (le, 1964; Kitajima, 1965; Milne, 1970). The tripartite RNA 

genome is wrapped with nucleoprotein (N) to form stable nucleocapsids (De Haan et al., 

1989). The S RNA is 2.9 kilobases (kb) long and codes for the N protein (28.8 kilodalton; 

kD) and a non-structural protein (NSS, 52.4 kD) in an ambisense arrangement (De Haan 

et al., 1990). Also the 4.9 kb M RNA is ambisense, encoding the precursor to the 

membrane glycoproteins G1 and G2 (127.4 kD) and another non-structural protein (NSM) 

of 33.6 kD (Kormelink et al., 1992c). The L RNA (8.9 kb) contains only one ORF in the 

viral complementary strand (331.5 kD), which most likely represents the viral RNA 

polymerase (De Haan er al., 1991). Availability of the TSWV N gene in a cloned format 

created the possibility to investigate its potential for inducing transgenic resistance. 

Indeed, transgenic resistance to this negative strand virus has been reported after 

transformation of tobacco plants (Gielen et al., 1991; MacKenzie and Ellis, 1992). Two 

hypotheses were proposed to explain the molecular mechanism underlying the 

resistance. First, untimely expression of high levels of viral N protein may interfere with 

transcription or replication of the incoming viral genome, by altering the mode of the viral 

polymerase (Beaton and Krug, 1986; Franze-Fernandez et al., 1987; Vidal and 

Kolakofski, 1989). Second, high levels of N gene transcripts in transgenic plants may 

result in antisense inhibition of viral replication (Hemenway et al., 1990; Cuozzo et al., 
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1988; Kawchuk et al., 1991). 

Here we have extended studies on N gene-mediated resistance and focussed on the 

possible role of transgene transcripts in the resistance mechanism. 

RESULTS 

Construction of an N gene-based transformation vector expressing untranslatable RNAs 

Since resistance observed in plants expressing N protein was not correlated to 

expression levels (Gielen etal., 1991), the potential role of the transgene transcript was 

investigated. Two different TSWV nucleoprotein gene transformation constructs have 

been described previously (Gielen ef a/., 1991), comprising the complete N gene 

sequence cloned behind the CaMV 35S promoter. Construct pTSWV N-A contained the 

viral leader sequence, while in construct pTSWV N-B this leader had been replaced by 

the 5' untranslated leader of TMV in order to increase translation. 

To investigate the contribution of the N gene transcript to the observed resistance, an 

untranslatable construct was devised by site-directed mutagenesis of pTSWV N-B. The 

translational startcodon was removed, and a frameshift was introduced at position +8, 

resulting in pTSWV N-C (Figure 3.1). 
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Figure 3.1: Construction of plant transformation vectors pTSWV N-A, N-B and N-C and the origin of the 
used RNA sequences on the TSWV S RNA segment. Point mutations in the N-C construct resulting in an 
untranslatable gene are indicated by asterisks. 
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Analysis of pTSWV N-C transformed plants 

Twenty-three independent transformants were obtained containing the pTSWV N-C 

construct. These were examined for the presence of TSWV specific sequences using 

Northern blot analysis (Figure 3.2). When compared to transgenic plants expressing 

translatable transcripts, both RNA levels and number of plants were comparable. Protein 

expression from alternative startcodons was checked using a polyclonal antiserum in 

DAS-ELISA (Resende ef a/., 1991a) and proved to be negative for all 23 lines. 

* 

ƒ/ /V /./• / ^ / / / / / . / / / 

1.1 kb 

Figure 3.2: Northern blot analysis of the N gene transcripts in pTSWV N-C transformed plants (lines 1001 
through 1024). For reference RNA of non-transformed plants (control) was added as well as RNA isolated 
from pTSWV N-A and N-B transformed resistant lines (12-02 and 129-07 respectively). TSWV infected 
tobacco was added to indicate the size of the S RNA and the N mRNA. The expected length of the 
transcripts is indicated on the right. 

Virus resistance of pTSWV N-C transformed lines 

Transgenic plants were allowed to set seed, and resulting S1 plants were assayed for 

virus resistance. Four pTSWV N-C transformed lines: 1004, 1011, 1019 and 1023 

showed resistance to TSWV. Thirty to eighty percent of the plants escaped infection with 

TSWV (Figure 3.3), and were completely virus-free when tested with DAS-ELISA. 
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Symptoms of infected plants were indistinguishable from those in untransformed plants. 

Also the other 19 pTSWV N-C lines showed identical susceptibility levels as 

untransformed control plants. Both percentage of transgenic lines and levels of 

resistance were comparable to N protein expressor plants. This indicates that previously 

reported N gene-mediated resistance is due to transcription of the transgene rather than 

translation of the viral transgene. 
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Figure 3.3: Development of systemic disease symptoms on the S1 progeny of 23 independent régénérants 
of pTSWV N-C transformed tobacco plants. Four resistant lines are indicated, 19 other lines proved 
completely susceptible and developed symptoms at a severity and timing identical to non-transgenic 
control plants. 

Increased resistance in homozygous transgenic plant lines 

As for pTSWV N-A and N-B lines 12 and 129 respectively (Gielen ef a/., 1991), 

resistance increased to 100% in homozygous S2 lines derived from line 1004. Three 

homozygous S2 lines: 12-02, 129-07 and 1004-02 were used for further experiments 

concerning inoculation with viruliferous thrips and with other tospoviruses. 
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Resistance assays using viruliferous thrips 

Mechanical inoculation experiments revealed that only tobacco plants younger than six 

weeks could be infected efficiently (results not shown). When three viruliferous adult 

thrips were fed on four-week old tobacco plants for an inoculation access period (IAP) 

of three days, typical feeding scars caused by mechanical damage of leaf tissue were 

observed on all plants. Non-transgenic control plants became systemically infected after 

four to five days post inoculation. In contrast, both N protein-expressing and RNA-

expressing lines remained completely healthy (Figure 3.4). Thus transgenic plants are 

not only resistant to mechanical inoculation, but also when the natural vector for TSWV 

transmission is used for inoculating virus. 
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Figure 3.4: Resistance of homozygous pTSWV N-A, N-B and N-C transformed tobacco lines to inoculation 
using viruliferous thrips. Three thrips were allowed to feed for three days on the plants to be tested, and 
the development of the disease symptoms was followed on a daily basis. Non-transformed tobacco plants 
served as a susceptible control. 

30 



100 

80 

6 0 -

i 4 0 -

2 0 -

TSWV 

M g g M= 
5 10 

days after inoculation 
15 

12-02 
129-07 
1004-02 
control 

100 

8 0 -

6 0 -

4 0 -

2 0 -

o -

TCSV 

I I I I * ' I , I I I I I I I I I I 

12-02 
129-07 
1004-02 
control 

5 10 
days after inoculation 

15 

100 

12-02 
129-07 
1004-02 
control 

5 10 
days after inoculation 

15 

Figure 3.5: Inoculation of TSWV resistant S2 plant lines (12-02, 129-07 and 1004-02) with related 

tospoviruses GRSV and TCSV. Untransformed N.tabacum var. SR1 plants serve as susceptible control. 
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Resistance to other tospoviruses 

Beside TSWV, a number of other viruses have been established within the tospovirus 

genus (Law and Moyer, 1990; Àvila et al., 1992). Of these viruses Impatiens necrotic 

spot virus (INSV) seems mainly restricted to ornamentals, while tomato chlorotic spot 

virus (TCSV) and groundnut ringspot virus (GRSV) have a broader host range, similar 

to TSWV. INSV does not spread systemically in N. tabacum, therefore this virus was not 

included in the challenge experiments. TCSV and GRSV share approximately 80% 

sequence homology with TSWV at the N gene RNA level (Àvila er al., 1993). Upon 

inoculation of plants resistant to TSWV with these two other tospoviruses, all plants 

proved fully susceptible and developed symptoms characteristic of these viruses (Figure 

3.5). 

DISCUSSION 

The results shown in this chapter indicate that the previously reported N gene-mediated 

resistance to TSWV (Gielen ef a/., 1991) is to a major degree the consequence of the 

expression of N gene transcripts, since phenotypes of resistant plants incapable of 

expressing N protein are indistinguishable from those expressing detectable amounts of 

protein. Four out of 23 tobacco lines containing the translationally defective pTSWV N-C 

transgenic insert, showed high levels of resistance to TSWV. This ratio closely 

resembles the one previously found for N protein expressing transgenic plants (Gielen 

ef a/., 1991). Furthermore, the levels of resistance within these lines are also similar, 

both in S1 and S2 generation plants. In addition it was shown that plants resistant to 

mechanical inoculation were equally well protected against virus inoculation by 

viruliferous thrips. 

Increased resistance in homozygous S2 lines suggests a gene dosage effect, implying 

the level of resistance may be determined by the amount of transgene DNA copies and 

resulting increase in transcript (or protein) production. However, the expression level of 

transgenic N gene transcripts in individual plants does not correlate with the level of 

resistance. This may be influenced by varying degrees of promoter activity depending 

on tissue and cell type (Benfey et al., 1989a,b). 
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TSWV specific transcripts expressed in all transgenic plant lines (pTSWV N-A, N-B 

and N-C) are of antigenomic polarity with respect to the viral genome. It is therefore 

conceivable that virus replication is blocked by antisense inhibition of the viral S RNA. 

Alternatively or additionally, transcripts may compete for viral and/or host encoded 

(replication) factors. Since the resistance was shown to be primarily RNA-mediated, a 

minimal sequence homology between the transgene and challenging RNA should be 

required. In agreement with this, the N gene sequence of TSWV, which shares 

approximately 80% homology at the nucleotide level with TCSV and GRSV (Àvila et al., 

1993), was unable to confer protection against challenge by these viruses. On the other 

hand, the N gene of TSWV was effective in protecting against a variety of strains and 

isolates of TSWV with less heterogeneity in their N gene sequences. This requirement 

for a high level of sequence homology has practical consequences if one aims at 

engineering broad resistance against tospoviruses. 

Similar to experiments described here, engineered resistance based on transgenic 

expression of viral RNA sequences was found for potyviruses PVY (Van der Vlugt ef a/., 

1992) and TEV (Lindbo and Dougherty, 1992b), indicating RNA-mediated resistance is 

not limited to negative strand viruses. For practical applications it may be favourable to 

use RNA-mediated resistance over protein-mediated resistance, since no foreign protein 

accumulates in the transgenic plants. 

Finally, it is important that transgenic plants also show high levels of resistance to 

TSWV infection upon inoculation by its main natural vector F. occidentalis, one of the 

major causes for the rapid emergence and global spread of TSWV infections. 

MATERIALS AND METHODS 

Viruses and plants 

The different tospovirus strains, i.e. TSWV strain BR-01, TCSV strain BR-03, and GRSV 

strain SA-05, have been described by Àvila er al., (1990, 1992 and 1993) and were 

maintained on systemic hosts Nicotiana rustica var. America. 

Recipient plants used in the transformation experiments were N. tabacum var. SR1 

plants. All manipulations with transgenic plant material were carried out under conditions 

(PKII) imposed by the Dutch authorities (VROM/COGEM). 
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Construction of the mutant N gene sequence expression vector 

Based on construct pTSWV N-B as described by Gielen ef al. (1990), plants 

transformation vector pTSWV N-C was made by site directed mutagenesis. The 

sequence was modified in such a way that the authentic ATG startcodon of the N gene 

open reading frame was replaced by CTG, additionally a frameshift was introduced by 

adding a G residue at position +8 (Figure 3.1). 

Transformation of tobacco 

The pBIN19-derived pTSWV vectors were introduced in Agrobacterium tumefaciens 

strain LB4404 (Ditta ef al., 1990) by triparental mating, using pRK2013 (Horsch ef al., 

1985) as a helper plasmid. 

N. tabacum var. SR1 plants were transformed and regenerated as described by 

Horsch etal. (1985). 

Analysis of protection of transgenic plants against TSWV and other related tospoviruses 

Twenty S1 progeny plants from 24 original pTSWV N-C transformed N. tabacum var. 

SR1 plants, were inoculated with TSWV, approximately 5 weeks after sowing. Inoculation 

was done according to standard procedures (Gielen et al., 1991). The appearance of 

systemic symptoms was monitored on a daily basis. Resistant plants were left to set 

seeds. 

A second experiment involved inoculation of several S2 lines that were completely 

resistant to TSWV (lines 12-02 and 129-07, described by Gielen ef al. (1990) and 1004-

02, this chapter) with related tospoviruses TCSV and GRSV. 

Inoculation of transgenic plants using viruliferous thrips 

Cultures of Frankliniella occidentalis (Perg.) were maintained on bean pods (Phaseolus 

vulgaris). In all experiments thrips were kept in modified Tashiro cages (Tashiro, 1967) 

at 27°C at a photoperiod of 16 hours. Prior to each experiment, first instar (L1) larvae 

(0-12 h after hatching) were allowed to acquire the virus by feeding on TSWV-infected 

Datura stramonium plants for three days. Larvae were subsequently maintained on 

healthy D.stramonium leaves until the adult stage was reached. After emergence, adult 
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thrips were individually tested for infectivity on Petunia hybrida (Allen and Matteoni, 

1991 ). Three viruliferous adult thrips were concomitantly transferred to 20 transgenic and 

10 non-transgenic tobacco seedlings of four weeks old. After an inoculation access 

period (IAP) of three days, thrips were killed by spraying with dichloorvos and plants 

were monitored on a daily basis for the development of local and systemic symptoms. 
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Chapter 4 

BROAD RESISTANCE TO TOSPOVIRUSES BY SIMULTANEOUS 

EXPRESSION OF THREE TOSPOVIRAL NUCLEOPROTEIN GENES 

Transgenic tobacco plants have been obtained expressing nucleoprotein (N) gene 

sequences of three different tospoviruses known to affect vegetable crops: tomato 

spotted wilt virus (TSWV), tomato chlorotic spot virus (TCSV), and groundnut ringspot 

virus (GRSV). The chimaeric plant transformation vector used comprised the three viral 

N gene sequences, each with a copy of the CaMV 35S promoter and the nos terminator. 

Despite the high levels of homology between the different N gene sequences (74-82%) 

and the presence of repeated promoter and terminator sequences in this construct, 

unrearranged copies of this triple N gene construct were stably maintained in both E. coli 

and A. tumefaciens plasmids used during the cloning process, as well as in several 

generations of transgenic tobacco plants. 

A transgenic tobacco line was obtained that exhibited high levels of resistance to all 

three tospoviruses, showing the possibility of producing transgenic plants with a broad 

resistance to tospoviruses by introducing tandemly cloned viral N gene sequences. DNA 

analysis of this transgenic plant line shows that the multivirus resistance trait is confined 

to a single genetic locus, which is very convenient for further breeding purposes. 

This chapter has been published in a slightly modified form as: Prins, M., De Haan, P., Luyten, R., Van 

Veller, M., Van Grinsven, M.Q.J.M. and Goldbach, R. (1995) Broad resistance to tospoviruses in 

transgenic tobacco plants expressing three tospoviral nucleoprotein gene sequences. Molecular 

Plant-Microbe Interaction 8 (1): 85-91. 
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INTRODUCTION 

The tospoviruses are a group of plant-infecting, negative-strand RNA viruses, which form 

a separate genus within the arthropod-borne family of Bunyaviridae (Francki et al., 

1991). Based on serological differences (Àvila et al., 1992) and sequence divergence of 

the nucleoprotein gene (Àvila et al., 1993), four different tospoviruses have so far been 

identified: tomato spotted wilt virus (TSWV), tomato chlorotic spot virus (TCSV), 

groundnut ringspot virus (GRSV), and impatiens necrotic spot virus (INSV). 

The type species of the genus Tospovirus, TSWV, has a very broad host range, 

encompassing more than 400 plant species within 50 families (Peters et al., 1991), 

including many important crops and ornamentals. Also the host ranges of both TCSV 

and GRSV are very broad (Àvila et al., 1992), while the host range of INSV is relatively 

narrow and mainly restricted to ornamental plants (Law and Moyer, 1990). 

Tospoviruses are the only plant viruses that are transmitted by thrips species 

(Thysanoptera) in a propagative manner (Sakimura, 1962; Wijkamp et al., 1993). The 

complete nucleotide sequence of the three genomic RNAs of TSWV, has been 

elucidated (De Haan et al., 1990, 1991; Kormelink et al., 1992c) and revealed the 

presence of five open reading frames that specify six mature viral proteins. The L RNA 

is of negative polarity and encodes the putative viral polymerase of 331.5 kD, present 

in virus particles (Van Poelwijk et al., 1993). The M and S RNAs both have an 

ambisense coding arrangement. The M RNA codes for the precursor of the membrane 

glycoproteins G1 and G2 of 78 kD and 58 kD, respectively, and a non-structural protein 

(NSM) of 33.6 kD, which represents the putative viral cell-to-cell movement protein 

(Kormelink et al., 1994). The S RNA codes for the nucleoprotein (28.8 kD) and another 

non-structural protein (NSS) of 52.4 kD. 

Engineered resistance to tomato spotted wilt tospovirus (TSWV) has been 

accomplished by expressing the viral nucleoprotein (N) gene in transgenic tobacco 

(Gielen et al., 1991; MacKenzie and Ellis, 1992; Pang et ai, 1992) and tomato plants 

(Ultzen et al., 1995). Similar levels of protection have been obtained when an 

untranslatable N gene was expressed, indicating that the resistance is, at least for a 

major part, RNA-mediated (Chapter 3). 
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Tobacco and tomato plants expressing TSWV N gene sequences are only resistant 

to isolates and strains of TSWV but not to other tospoviruses, such as TCSV and GRSV 

(Chapter 3; Ultzen et al., 1995). Although heterologous tospovirus protection in plants 

expressing high levels of TSWV N protein has been reported (Pang et al., 1993, 1994), 

this protection concerned limited delay in symptom development rather than immunity 

as observed for RNA-mediated resistance. Furthermore, delay of symptom development 

was only observed for INSV, but not for TCSV, a virus more closely related to TSWV 

than INSV. 

Although the economical impact of novel tospoviruses remains to be further 

established, it is clear that TSWV resistance should be extended to resistance against 

the other tospoviruses TCSV and GRSV in vegetable crop plants, and to INSV in 

ornamental plants. 

As a first step towards such broad spectrum virus resistance in vegetable crops, a 

DNA construct has been made comprising the N genes of the three different vegetable 

crop-infecting tospoviruses. We here demonstrate that this construct is genetically stable 

and capable of conferring high levels of resistance to all three tospoviruses. 

RESULTS 

Transformation of tobacco with three different tospoviral N genes 

A chimeric DNA construct, pTOSPO 3N-A, was made, comprising three different 

tospoviral nucleoprotein gene sequences, derived from TSWV, TCSV, and GRSV (Figure 

4.1). Each tospoviral N gene was supplied with a copy of the CaMV 35S promoter. The 

original tospovirus-specific leader sequence of 123-124 nucleotides in length was 

maintained in front of all three N genes. At the 3' end of the N cistrons the transcription-

termination signal of the nopaline synthase (nos) gene was inserted. The N gene 

cassettes were subsequently cloned into the binary vector pBIN19 in the order "Left 

Border-TSWV-TCSV-GRSV-NPTII-Right Border". Finally, the combined pTOSPO 3N-A 

cassette was introduced in N. tabacum var. SR1 plants, via A. tumefaciens-med\a\ed leaf 

disk transformation. 
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Figure 4.1 : Construction of the triple N gene containing plant transformation vector pTOSPO 3N-A. A and 
B indicate the construction of progenitor plasmids, while C shows the construction of the final 
transformation construct pTOSPO 3N-A. 

A) Sequences containing the complete open reading frames of the TSWV, TCSV and GRSV 
nucleoproteins were independently cloned in pZU-A vectors. The TCSV and GRSV cDNA clones were 
inserted in the BamHI site of pZU-A(Bam), creating pTCSV N-A and pGRSV N-A, respectively. The TSWV 
N gene had been previously cloned in the Pstl site of pZU-A(Pst) by Gielen et al. (1991) and designated 
pTSWV N-A. B) The expression cassettes of the TSWV and GRSV N genes were subsequently cloned 
into pTCSV N-A by blunt-end ligation of T4 DNA polymerase-treated DNA fragments, since no useful 
compatible sticky restriction sites were available. C) Finally the triple N gene expression cassette was 
cloned between the left and right border sequences of the pBIN19 transformation vector, resulting in 
construct pTOSPO 3N-A. Sites used in the cloning process as well as in the Southern blot analysis (Figure 
4.3A and Figure 4.3B) are indicated. 

B=BamHI; C=Clal; K=Kpnl; S=Sstl; P=Pstl; 4=blunt after treatment with T4 DNA polymerase. Positions 
of the selection markers NPTII and NPTIII as well as left-(LB) and right border sequences (RB) in the 
pBIN19 and pTOSPO 3N-A vectors are also shown. 
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To determine the amount of transgenically produced tospoviral N proteins, leaf 

extracts of transgenic plants were used in a Western blot analysis. Remarkably, in all 

cases the total amount of N proteins accumulating in the pTOSPO 3N-A transformed 

tobacco plants was low (data not shown) when compared to the amounts in the 

previously analysed TSWV N protein expressing plants (Gielen et al., 1991). In addition, 

low amounts of transgenic transcripts were produced, albeit at an equal level as some 

TSWV resistant lines described in Chapter 3. 

Resistance levels in transgenic tobacco plants 

S1 progeny plants of 22 original transformants were first assayed for resistance to 

inoculation with tomato chlorotic spot virus (TCSV, strain BR-03). Resistance levels of 

up to 65% were observed in these segregating populations. Four of the 22 lines showed 

a considerable level of resistance (30-65% resistance), from each of these lines up to 

eight plants were maintained for seed production after self-pollination. The S2 progeny 

of the resistant lines 3, 6, 10 and 14 was subsequently inoculated with TCSV, TSWV or 

GRSV, and monitored for the development of systemic disease symptoms. Asymptomatic 

plants were tested in ELISA for the presence of NSS protein. In none of these plants 

detectable amounts of NSS protein could be found after virus inoculation, indicating that 

these plants remained free of virus. The levels of resistance in the different transgenic 

tobacco lines to the different tospoviruses are listed in Table 4.1. In all these 

experiments, non-expressing segregants (SR1-c) as well as previously described TSWV 

N gene expressing plants (SR1-12), which are resistant to TSWV only (Gielen et al., 

1991), were used as negative or positive controls, respectively. 

Two lines (lines 10 and 14) showed a clear delay of three to eight days in the 

development of systemic symptoms, but appeared to be only moderately protected to 

the tospoviruses tested. Some S2 progeny lines derived from line 6 displayed immunity 

to inoculation with TCSV, but were more susceptible to the other tospoviruses, which 

might be explained by the initial selection for TCSV resistance in the S1 generation. One 

of the lines (line 3), however, showed, independent of the amount of virus used in the 

inoculations, high levels of resistance to all three viruses separately. Plants of three of 

these S2 lines were also simultaneously inoculated with all three viruses and displayed 
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Table 4.1: Resistance levels to TSWV, TCSV and GRSV inoculation in S2 progeny of 
transgenic tobacco plants transformed with the pTOSPO 3N-A construct. 

Number of resistant plants upon inoculation with 
S2 line TSWV TCSV GRSV 

3-1 
3-2 
3-3 
3-4 
3-5 
3-6 

6-1 
6-2 
6-3 
6-4 
6-5 
6-6 
6-7 

10-1 
10-2 
10-3 
10-4 
10-5 
10-6 
10-7 
10-8 

14-1 
14-2 
14-3 
14-4 
14-5 
14-6 

SR1-C 
SR1-12 

high levels of resistance as listed in Table 4.2 and exemplified in Figure 4.2. 

Immunological analysis (ELISA) confirmed that the symptomless plants remained virus-

free and that the broad protection was based on true immunity. 

10/10 
10/10 
10/10 
10/10 
7/10 
10/10 

0/10 
6/10 
6/10 
3/10 
7/10 
7/10 
1/10 

1/10 
1/10 
1/10 
1/10 
4/10 
5/10 
0/10 
1/10 

3/10 
1/10 
5/10 
0/10 
1/10 
3/10 

0/10 
10/10 

8/10 
7/10 
5/10 
9/10 
5/10 
9/10 

3/10 
10/10 
7/10 
10/10 
4/10 
10/10 
8/10 

1/10 
1/10 
3/10 
1/10 
1/10 
1/10 
0/10 
3/10 

0/10 
0/10 
0/10 
0/10 
2/10 
4/10 

0/10 
0/10 

9/10 
5/10 
8/10 
8/10 
7/10 
9/10 

0/10 
0/10 
5/10 
1/10 
3/10 
6/10 
1/10 

0/10 
0/10 
0/10 
0/10 
0/10 
0/10 
2/10 
0/10 

0/10 
0/10 
0/10 
0/10 
0/10 
0/10 

0/10 
0/10 
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Table 4.2: Resistance levels to simultaneous inoculation with tospoviruses TSWV, TCSV 
and GRSV in S2 progeny of transgenic tobacco plants transformed with the pTOSPO 
3N-A construct. 

Number of resistant plants upon 
simultaneous inoculation with 

S2 line TSWV, TCSV and GRSV 

3-4 20/20 
3-5 15/20 
3-6 20/20 

SR1-C 0/20 
SR1-12 0/20 

Stability of the construct in bacteria and plants 

Three identical copies of the promoter (CaMV 35S) and terminator (nos) sequences are 

present in the pTOSPO 3N-A DNA construct, whereas the different cloned N gene 

sequences are highly homologous (72-84% sequence identity). It was considered that 

the repetition of highly homologous sequences could have caused genetic 

rearrangements in the pTOSPO 3N-A construct in bacteria or in transgenic plants after 

introduction in the genomic DNA. Therefore, the integrity of this construct was carefully 

monitored during passages in E. coli strain DH5aF', and A. tumefaciens strain LB4404, 

respectively. Although recombination in the Rec A' E.coli strain DH5aF' could not be 

expected, the occurrence of recombination in A. tumefaciens still seemed possible. 

Southern blot analyses of total DNA of A. tumefaciens used in the transformation 

experiments, however, always showed the presence of the unaltered pTOSPO 3N-A 

DNA construct (data not shown). 

Finally, Southern blot analyses of S2 progeny plants of original tobacco transformants 

(Figure 4.3A and Figure 4.3B), demonstrated integration of unrearranged copies of the 

triple N gene cassette in the genomes of those plants. Hence, even after several 

generations this construct was stably maintained in the genome of transgenic plants and 

did not undergo major genetic rearrangements, thereby showing that this method is 

useful for introducing resistance to several different viruses by a single transformation. 
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pTOSPO 3N-A p T S W V N-A controV 

Figure 4.2: Phenotype of tobacco plants mechanically inoculated with TSWV, TCSV and GRSV 
simultaneously. pTOSPO 3N-A: plant of multiple tospovirus resistant line 3-6 transformed with the 
pTOSPO 3N-A construct. pTSWV N-A: plant of line 12 transformed with the pTSWV N-A construct, only 
resistant to TSWV, but susceptible to TCSV and GRSV. control: non-transgenic N.tabacum var. SR-1 
plant. 

Number of transgenic insertions 

Southern blot analysis of several transgenic S2 plants revealed a single large DNA 

fragment when genomic plant DNA was digested with Clal and probed with TSWV N 

gene sequences (Figure 4.3A, lanes C). In addition, slight cross-hybridisation to a 2.4 

kb pTOSPO 3N-A specific Clal fragment containing sequences of the GRSV N gene was 

observed. In view of the positions of the two Clal sites in the pTOSPO 3N-A transgene 

insert (Figure 4.1), the observation of only a single genomic DNA fragment containing 

TSWV N gene sequences, demonstrates that the original transformants 3 and 6 

contained a single transgenic insertion in their genome. The insertion sites, however, 

were different for both original transformants, considering the different sizes of the 
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hybridising genomic Clal fragments. The presence of the TSWV N gene used as a 

probe, plus bordering promoter and terminator sequences in the DNA of all transgenic 

plants tested, is shown by BamHI fragments of the expected size of 2.0 kb (Figure 4.3A, 

lanes B). 

3-2 ,3 -3 3-4 6-1 6-2 
B i C ' B C B C B C B C 
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2 — 
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A B 
Figure 4.3: A) Southern blot analysis of genomic DNA of pTOSPO 3N-A transformed S2 tobacco lines 
derived from two different original transformants (3 and 6). Total genomic DNA was isolated from 4 week-
old plants, digested with the appropriate restriction enzymes and fractionated on a 1% agarose gel, 
transferred to a Hybond membrane and hybridised to a 32P-dATP-labeled DNA fragment containing the 
complete TSWV N gene. The numbers above the lanes correspond to the transgenic tobacco lines. Three 
different restriction-enzymes were used in this experiment. 

B=BamHI; C=Clal. Sites in the pTOSPO 3N-A construct recognised by these two enzymes, are indicated 
in Figure 4.1. 

B) Southern blot analysis of plants from S2 lines 3-2, 3-3, 3-4, 6-1 and 6-2 after digestion with both Sstl 
and Kpnl, releasing the complete 5.0 kb insert containing the three N genes with their respective promoter 
and terminator sequences. This shows these lines contain the intact 5.0 kb triple N gene cassette. 
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DISCUSSION 

Previous studies in our laboratory (Gielen et al., 1991; Chapter 3) have shown that 

transgenic plants expressing TSWV viral N gene are only resistant to strains and isolates 

of the homologous virus but not to other tospoviruses, even though there is a 

considerable sequence homology between these viruses with respect to the 

transgenically expressed sequences. This is also true for most other reported cases of 

virus-resistance based on transgenically expressed pathogen-derived sequences 

(reviewed in Wilson, 1993). In only a few cases, low but significant levels of resistance 

have been observed to more than one virus (Stark and Beachy, 1989; Lawson ef a/., 

1990; Donson et al., 1993). 

As a first step towards a broad resistance to tospoviruses, a DNA construct has been 

made to investigate the feasibility of simultaneous introduction of three tospoviral N gene 

sequences. Following this approach, resistance against three tospoviruses was aimed, 

tomato spotted wilt virus (TSWV), tomato chlorotic spot virus (TCSV) and groundnut 

ringspot virus (GRSV). These three tospoviruses have overlapping host ranges and are 

known to infect crop plants such as tomato, (sweet) pepper, lettuce, melon, and peanut. 

Impatiens necrotic spot virus (INSV), was not included in these experiments, since INSV 

is unable to induce systemic symptoms in N. tabacum and is, moreover, not a vegetable 

crop-infecting tospovirus. 

Despite high homologies in the sequences used and identity of the promoter and 

terminator regions, the TOSPO 3N-A construct was stable in E. coli and A. tumefaciens 

and inherited unaltered over several generations of plants. Apparently, the incidence of 

homologous recombination within the triple N gene cassette in the used plant and 

bacterial systems is very low, and only unrearranged forms of multiple N gene 

expressing constructs are present in transgenic plants. The stability of highly 

homologous repeats introduced in plant genomes has not been studied in great depth, 

although several other multiple transgene products with several copies of identical 

promoter/terminator cassettes have been reported and used (e.g. Lawson et al., 1990; 

Yie et al., 1992), apparently without construct stability problems. 
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In this paper it is shown that broad tospovirus resistance can be accomplished by 

transforming tobacco plants with a multiple N gene-expressing DNA construct. Broad 

spectrum resistance to the three different tospoviruses TSWV, TCSV and GRSV has 

been obtained in transgenic N. tabacum var. SR1 plants. Our previous research (Chapter 

3) has shown that N gene based resistance to TSWV is mainly, if not completely, caused 

by the presence of the transgene RNA transcript rather than the translation product, a 

phenomenon also reported for several other plant-virus combinations (Van der Vlugt et 

al., 1992; Lindbo and Dougherty, 1992a). This suggests a resistance mechanism based 

either on antisense inhibition of virus multiplication by direct RNA-RNA interaction 

between transgenic and viral RNAs, or sense inhibition of the N gene messenger or the 

viral complementary strand RNAs, by a mechanism that involves cytoplasmic breakdown 

of specific RNA sequences induced by the expression of transgenic RNA (Lindbo et al., 

1993). The induced breakdown of specific RNA sequences may also explain the low 

amounts of transgenic RNA observed in Northern blot analysis, while, on the contrary, 

the observed levels of resistance are very high. However, it can not be excluded that the 

observed low level of expression of the transgene product (RNA or protein) in leaf 

samples, is the result of variations in activity of the CaMV 35S promoter in various tissue 

and cell types (Benfey ef a/., 1989a,b). 

Although the introduced genes are integrated at the same locus in the plant genome, 

they phenotypically behave as three independent genes in terms of resistance (see 

Table 4.1). Transgenic line 6 for instance displayed a clear difference in the levels of 

protection to the different tospoviruses, while, on the contrary, line 3 exhibited similar 

high resistance levels for all three viruses. Apparently, resistance to one of the 

tospoviruses does not automatically imply that the plant is also resistant to the other 

viruses. Screening for resistance to all three viruses over several generations of 

transgenic plants is necessary, to select the proper transgenic lines. This seemingly 

independent behaviour of the three genes may be the result of the site of insertion in the 

plant genome. Moreover, different levels of resistance to viruses of which the active 

transgenes are incorporated at the same locus in the plant genome, can be caused by 

co-suppression due to the presence of three identical promoter sequences, which may 

favour the expression of one of the three genes (Matzke and Matzke, 1993). 
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In the approach described in this paper, sequences from different viruses are 

transgenically introduced to one locus in the plant genome. The expression of these 

sequences results in high levels of resistance to three different vegetable-infecting 

tospoviruses. This approach may be further extended to other viruses, thereby providing 

a flexible strategy for creating broad spectrum virus resistance in transgenic plants. If 

desired, resistance traits can be stacked by crossing several of these transgenic plant 

lines. 

MATERIALS AND METHODS 

All methods involving DNA or RNA were according to standard procedures (Sambrook 

et ai, 1989). 

Viruses and plants 

The different tospovirus strains, i.e. TSWV strain BR-01, TCSV strain BR-03, and GRSV 

strain SA-05, have been described by Àvila et al. (1990, 1992 and 1993) and were 

maintained on systemic hosts Nicotiana rustica var. America or N. tabacum var. SR1. 

Recipient plants used in the transformation experiments were N. tabacum var. SR1 

plants. All manipulations with transgenic plant material were carried out under conditions 

(PKII) imposed by the Dutch authorities (VROM/COGEM). 

Construction of the multiple nucleoprotein expression vector 

Nucleoprotein gene sequences of TCSV and GRSV were obtained from cDNA clones 

described by Àvila et al. (1993), and cloned in the plant transformation vector pZU-A 

(Gielen et al., 1991) between a copy of the CaMV 35S promoter and a copy of the 

nopaline synthase (nos) terminator. The TSWV N gene construct used has previously 

been described as TSWV N-A (Gielen ef a/., 1991). The TSWV and GRSV expression 

cassettes were subsequently cloned in the TCSV N gene containing vector and finally, 

the triple N gene construct was inserted in the binary vector pBIN19 (Bevan, 1984). 

Details of the cloning schedule are presented in Figure 4.1. 
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Transformation of tobacco 

The pBIN19-derived vector pTOSPO 3N-A was introduced in Agrobacterium tumefaciens 

strain LB4404 (Ditta et al., 1990) by triparental mating, using pRK2013 (Horsch et al., 

1985) as a helper plasmid. 

N. tabacum var. SR1 plants were transformed and regenerated as described by 

Horsch et al. (1985). 

Analysis of protection of transgenic plants against TSWV, TCSV and GRSV 

Twenty S1 progeny plants from 22 original pTOSPO 3N-A transformed N. tabacum var. 

SR1 plants, were inoculated with TCSV, approximately 5 weeks after sowing. Resistant 

plants were left to set seeds. From a selection of S2 progeny lines, ten plants were 

inoculated with each of the three different tospoviruses TSWV, TCSV and GRSV 

independently, and twenty plants with the three viruses simultaneously. Inoculation was 

done according to standard procedures (Gielen et al., 1991). The appearance of 

systemic symptoms was monitored on a daily basis. Plants were scored susceptible 

when leaves younger than the inoculated leaf showed severe stunting and chlorosis, 

usually followed by death of the plant within a week. Approximately 5 weeks after the 

first inoculation, leaf samples from visually healthy plants were collected to check for the 

presence of the NSS gene product using ELISA, using a polyclonal antisera directed 

against TSWV NSS protein expressed in a baculovirus expression system (Kormelink et 

al., 1991 ). This antiserum also strongly cross-reacts with NSS proteins present in TCSV-

and GRSV-infected plant cells. 
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Chapter 5 

RNA-MEDIATED RESISTANCE TO TOMATO SPOTTED WILT VIRUS IN 

TRANSGENIC TOBACCO PLANTS EXPRESSING NSM GENE 

SEQUENCES 

Transgenic Nicotiana tabacum plants expressing RNA sequences of the tomato spotted 

wilt virus NSM gene, which encodes the putative viral movement protein, were found to 

be highly resistant to infection with the virus. Expression of untranslatable as well as 

antisense RNA of the NSM gene resulted in resistance levels as high as those in plants 

expressing translatable RNA sequences. For all three types of transgenic plants 

resistance levels of up to 100% were reached in the S2 progeny. These results indicate 

that the resistance mediated by the NSM gene is accomplished by expression of 

transcripts rather than protein in transgenic plants, similar to previously observed N 

gene-mediated resistance. It is concluded that transgenic expression of NSM RNA 

sequences is a successful strategy to protect host plants against tomato spotted wilt 

virus infection. Possible mechanisms underlying the resistance observed will be 

discussed. 

This chapter has been published in a modified form as: Prins, M., Kikkert, M., Ismayadi, C , De Graauw, 

W., De Haan, P. and Goldbach. R. (1997) Characterization of RNA-mediated resistance to tomato spotted 

wilt virus in transgenic tobacco plants expressing NSM gene sequences. Plant Molecular Biology 33: 235-

243. 
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INTRODUCTION 

The tospoviruses form a distinct genus of phytopathogenic viruses within the arthropod-

borne family of Bunyaviridae (Murphy ef a/., 1995) which is otherwise restricted to 

animals. Based on serological differences (Àvila ef a/., 1992) and sequence divergence 

of the nucleoprotein gene (Àvila ef a/., 1993; Law and Moyer, 1990), four different 

tospovirus species have so far been established: tomato spotted wilt virus (TSWV), 

tomato chlorotic spot virus (TCSV), groundnut ringspot virus (GRSV), and impatiens 

necrotic spot virus (INSV). Based on serological data, groundnut bud necrosis virus 

Reddy ef a/., 1992), watermelon silverleaf mottle virus (Yeh ef a/., 1992) and groundnut 

yellow spot virus (Reddy ef a/., 1990) have been proposed as additional members of the 

Tospovirus genus. Tospoviruses are the only plant viruses that are transmitted by thrips 

species (Thysanoptera; Sakimura, 1962) in a propagative manner (Wijkamp ef a/., 1993; 

Ullman et al., 1993). 

The type species of the genus Tospovirus, TSWV, has a very broad host range, 

encompassing more than 650 plant species belonging to 70 different families (Goldbach 

and Peters, 1994), including many important crops and ornamentals. 

The TSWV particle consists of a nucleocapsid core, in which the three genomic RNAs 

are tightly associated with the nucleoprotein (N), surrounded by a lipid membrane 

containing two types of glycoprotein-protrusions, G1 and G2 (Tas ef al., 1977). In 

addition, several copies of the putative viral RNA-dependent RNA polymerase are 

present in the virus particle (Van Poelwijk ef al., 1993). Nucleotide sequence 

determination revealed five open reading frames in the TSWV genome, specifying six 

mature viral proteins (De Haan ef al., 1990, 1991; Kormelink ef al., 1992c). The L RNA 

is of complete negative polarity and encodes the putative viral polymerase of 331.5 

kilodalton (kD). The M and S RNAs both have an ambisense coding arrangement and 

are translationally expressed via subgenomic messenger RNAs (Kormelink ef al., 1992a). 

The M RNA codes for the common precursor to the membrane glycoproteins G1 and G2 

(of 78 kD and 58 kD, respectively) and a non-structural protein (NSM) of 33.6 kD, which 

represents the putative viral movement protein (Kormelink ef al., 1994; Storms ef al., 

1995). The S RNA codes for the N protein of 28.8 kD and another non-structural protein 
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(NSS) of 52.4 kD. 

When compared to coding arrangements of the genomic RNAs of other members of 

the family Bunyaviridae, tospoviruses are unique in having an ambisense M RNA 

segment. The additional presence of the NSM gene on the viral strand seems to be an 

evolutionary adaptation of Bunyaviridae to the plant kingdom. Results presented by 

Kormelink and co-workers (1994) and Storms and co-workers (1995) indicate that the 

NSM gene product is involved in viral cell-to-cell movement. 

Engineered resistance to TSWV has been accomplished previously by expressing the 

viral nucleoprotein (N) gene in transgenic tobacco plants (Gielen ef al., 1991) and was 

confirmed by others (MacKenzie et al., 1992, Pang ef a/., 1992). Recently, engineered 

TSWV resistance has been introduced in tomato plants (Kim et al., 1994) and tomato 

hybrids (Ultzen ef a/., 1995). Similar levels of protection, i.e. complete protection to the 

virus in homozygous S2 plants, have been observed when an untranslatable N gene was 

expressed, indicating that the N gene-based resistance is, at least for a major part, RNA-

mediated (Chapter 3). This N gene-mediated resistance appeared to be virus-specific 

and is broken by other tospoviruses. Simultaneous introduction of several tospoviral N 

gene sequences to one genetic locus in the plant genome, led to broad-spectrum 

immunity to several tospoviruses (Chapter 4). 

Besides the use of the nucleoprotein of tospoviruses and the widespread use of coat 

protein sequences for positive strand RNA viruses (for references see Wilson, 1993), 

other, non-structural gene sequences have been used to confer engineered virus 

resistance, including replicase, protease and movement protein genes, (e.g. Golemboski 

et al., 1990; MacFarlane ef a/., 1992; Carr ef a/., 1992; Maiti ef a/., 1993; Malyshenko 

ef a/., 1993; Vardi ef a/., 1993; Lapidot ef a/., 1993; Longstaff ef a/., 1993; Carr ef ai, 

1994; Audy ef a/., 1994; Brederode ef a/., 1995; Cooper ef a/., 1995). 

To date, limited results have been obtained in resistance to viral pathogens using 

transgenic expression of (defective) viral movement protein sequences. Transgenically 

produced movement protein has been proposed as a source for resistance to systemic 

spread of geminiviruses by Von Arnhim and Stanley (1992), based on the observation 

that systemic movement of African cassava mosaic geminivirus in N.benthamiana plants 

is inhibited by co-inoculation with constructs expressing movement protein sequences 

53 



of the related geminivirus tomato golden mosaic virus (TGMV). A reduction of tobacco 

mosaic virus (TMV) accumulation at non-permissive temperatures in tobacco plants 

transformed with movement protein sequences derived from temperature sensitive cell-

to-cell movement mutant Ni2519 has been reported (Malyshenko et al., 1993). Inhibition 

of disease symptom development of TMV as well as two other tobamoviruses (tobacco 

mild green mosaic, TMGMV and sunnhemp mosaic virus, SHMV) in plants expressing 

a defective movement protein lacking three amino acids at its N-terminus, has been 

reported by Lapidot and co-workers (1993). Furthermore, these plants show a delay of 

several days in the appearance of viral symptoms when inoculated with other non-related 

viruses (Cooper ef a/., 1995). In general, interference with cell-to-cell movement or 

systemic spread of the target virus might be a powerful means to protect plants from 

viral pathogens. 

Here we report that high levels of resistance to the negative-stranded tomato spotted 

wilt virus can be obtained in transgenic tobacco plants expressing sequences derived 

from its putative viral movement protein gene, NSM. 

Table 5.1: Resistance levels in NSM sequence expressing transgenic tobacco S1 plants 
and S2 progenies 

progenies 

pTSWV NSM-A 

pTSWV NSM-B 

pTSWV NSM-C 

S1 line 

A2 
A13 
A23 
A30 
29 others 

B3 
25 others 

C14 
C22 
22 others 

#resistant/#tested 

6/20 
2/20 
5/20 
2/20 
0/20 

10/20 
0/20 

10/20 
3/20 
0/20 

100% resistant S2 

4/6 
0/2 
0/5 
2/2 
-

4/10 
-

3/10 
3/3 
-
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RESULTS 

Resistance levels in transgenic tobacco plants 

In total, 85 transformed plants were obtained that expressed NSM-derived sequences. 

Of these plants, 35 expressed NSM-A sequences, 26 the NSM-B insert and 24 

transformants were obtained containing NSM-C. All original transformants were 

maintained for seed production. Twenty plants of the resulting S1 progenies were 

subsequently assayed for resistance to TSWV. Resistant plants were maintained for S2 

seed production and resulting S2 plants were tested for their ability to resist infection by 

TSWV. 

Four of the pTSWV NSM-A transformed plants showed virus disease-like symptoms 

during their development. Whether these malformations are the result of the expression 

of the NSM protein remains to be investigated. From the 35 original transformants two 

plants were unable to set seed and therefore no progeny could be tested. Thirty-three 

51 lines, derived from the remaining transformants were tested and four displayed 

resistance to TSWV (Table 5.1). From the progenies of those plants, six lines displayed 

complete resistance to TSWV, while the other S2 lines displayed partial resistance, 

probably due to segregation of the transgene. Progeny lines derived from fully resistant 

52 lines also displayed complete resistance, suggesting the resistant S2 lines are 

homozygous for the transgene. 

Of the 26 S1 lines transformed with the NSM-B construct, only one showed resistance 

to the virus, albeit at a considerable level of 50% in the S1 generation. In four of the 

resulting ten S2 lines complete resistance was observed in all plants. In two of the 

segregating NSM-C S1 lines resistance levels of up to 50% were observed, and 

resistance levels of up to 100% were reached in six of the resulting S2 lines. No viral 

NSS protein, as a proof for viral replication (Wijkamp ef a/., 1993), was detected by 

ELISA in neither inoculated nor systemic leaves of any of the resistant plants. Figure 5.1 

illustrates the temporal development of symptoms in S1 lines that were most resistant 

to TSWV (A2, B3 and C14) and some of their S2 progeny lines. 
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Figure 5.1 : Development of systemic symptoms in transgenic tobacco plants expressing TSWV movement 
protein (NSM) sequences. The best performing S1 lines of the three different groups of transformants are 
indicated (A2, B3 and C14), as well as some S2 lines derived plants from these S1 lines that show 
complete immunity to tomato spotted wilt virus (lines A2-5, B3-13 and C14-14). N. tabacum var. SR1 
plants from a segregant line lacking transgenic sequences were used as a TSWV susceptible control. 

Resistance to other tospoviruses 

Plants from all 16 S2 lines that displayed immunity to TSWV (derived from S1 lines A2, 

A30, B3, C14 and C22) were inoculated with TSWV, TCSV and GRSV, both 

simultaneously and separately. All plants of these lines were susceptible to TCSV and 

GRSV, and developed disease symptoms typical for these viruses, indicating that the 

NSM gene-mediated resistance, like N gene-mediated resistance, is highly virus-specific 

and does not hold upon inoculation with other tospoviruses. 
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Expression of NSM specific RNA and protein in transgenic plants 

The transcriptional expression of NSM sequences was checked by Northern blot analysis, 

using a 32P-dATP labeled double stranded NSM cDNA probe. In the resistant lines, 

derived from all three different constructs, transgenically produced RNA was detected, 

but in much lower levels than those observed in virus-infected plants. Remarkably, no 

correlation between steady-state expression levels of the transgene RNA and resistance 

levels was observed in any of the NSM expressing lines, as was the case with N gene 

RNA-mediated resistance (Chapter 3). Figure 5.2 shows the steady state RNA 

expression levels for 13 NSM-C lines, and is representative for all NSM transformed plant 

lines. 

In leaf extracts from NSM-A transformed plants no NSM protein could be detected 

neither by Western blot analysis, nor by ELISA techniques. NSM protein, however, may 

have been present in subdetectably low levels. 

«sÄ^* & & i > »& >$> KS >$> >$> <f> oN o*> c{i> o * 

M RNA 

NSM mRNA 

Figure 5.2: Northern blot analysis of 13 lines transformed with the pNSM-C construct. RNA isolated from 
TSWV-infected plant material revealing genomic M RNA and NSM mRNA was added as a control. The lane 
containing RNA of infected plants contained 5 times less material and was exposed 10 times shorter than 
the lanes containing transgenic RNAs, indicating the relatively low abundance of transgenic NSM RNA in 
plants. 
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DISCUSSION 

Viral coat protein and nucleoprotein sequences have been successfully applied to confer 

resistance to the corresponding viruses in transgenic plants. More recently, expression 

of sequences corresponding to other viral genes have become a successful tool for 

inducing pathogen-derived resistance, such as replicase sequences (Golemboski et al., 

1990; Carr ef a/., 1992; MacFarlane et al., 1992; Longstaff et al., 1993; Carref al., 1994; 

Audy et al., 1994; Brederode er al., 1995) protease sequences (Maiti ef al., 1993; Vardi 

ef al., 1993) and (defective) movement protein sequences (Malyshenko et al., 1993; 

Lapidot et al., 1993; Cooper et al., 1995). 

In the research described in this paper we show that, besides expression of N gene 

sequences of tospoviruses (Gielen ef a/., 1991; Chapter 3 and Chapter 4), also 

expression of sequences derived from the NSM gene, the putative tospoviral movement 

protein gene, confers resistance in transgenic tobacco plants. Observed resistance in 

NSM gene sequence expressing plants reaches similar high levels as were observed in 

plants expressing nucleoprotein gene sequences. NSM-A transformed plants did not 

accumulate detectable amounts of NSM protein, but detectable levels of transgene 

transcripts were present in most of the transformed NSM-A lines. The high levels of 

resistance in plants expressing untranslatable (NSM-B) or antisense (NSM-C) RNA 

support the view that in all types of transformants, including the NSM-A lines, the 

transgenically expressed RNA, confers the observed resistance. The manifestations of 

the RNA-mediated resistance phenomenon induced by NSM sequences is similar to that 

of the previously described N gene RNA-mediated resistance. Resistance induced by 

NSM and N sequences both result in high levels of resistance to TSVW in homozygous 

S2 progeny lines. Moreover, they both share the same spectrum of resistance, and only 

hold against the virus (TSVW) of which the transgene sequence was derived. Similar 

characteristics have also been found for RNA-mediated resistance to other viruses, e.g. 

potyviruses TEV (Lindbo ef ai, 1992a) and PVY (Van der Vlugt ef a/., 1992). 

A number of theories have been proposed for the mechanism of such an RNA-

mediated resistance. The transgenically produced RNA may interact with the incoming 

viral RNA or with replicative forms of the virus by an antisense mechanism, involving 
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direct RNA-RNA interactions. Another model implies competition between transgenic 

RNAs and viral RNAs for essential plant or viral factors involved in virus replication. 

Lindbo et al. (1993) proposed a mechanism that implies the induction of an anti-viral 

state in the cytoplasm of transgenic plants, similar to the sense- or co-suppression 

phenomenon observed in transgene expression studies of endogenous genes in plants 

(for review see e.g Matzke and Matzke, 1995a). This co-suppression causes dramatically 

decreased endogenous RNA steady-state levels upon expression of homologous 

transgene sequences as a result of a post-transcriptional RNA-degrading mechanism. 

RNA-mediated resistance in plant lines expressing the TEV coat protein RNA sequences 

that were immune to the virus was suggested to be a result of increased RNA turnover 

of (transgene) viral sequences, since nuclear de novo synthesis in run-on assays 

remained high in these plants, while cytoplasmic steady-state RNA levels were low 

(Dougherty ef a/., 1994). Our results with run-on studies (Chapter 7) suggest that also 

TSWV resistance operates via a co-suppression-like mechanism similar to that described 

for potyviruses Lindbo ef a/., 1993; Dougherty ef a/., 1994). 

As it has now been demonstrated that, besides N gene sequences (Chapter 3), also 

NSM gene sequences can induce virus resistance, the question arises whether any 

randomly chosen sequence from all genomic regions would also induce virus resistance 

upon transgenic expression. This will be discussed further in Chapter 6. 

MATERIALS AND METHODS 

All manipulations with DNA or RNA were accomplished by using standard procedures 

(Sambrookef a/., 1989). 

Viruses and plants 

The different tospovirus strains, i.e. TSWV strain BR-01, TCSV strain BR-03, and GRSV 

strain SA-05, have been described by Àvila (1990; 1992; 1993) and were maintained on 

systemic hosts Nicotiana rustica var. America or N. tabacum var. SR1. 

Recipient plants used in the transformation experiments were N. tabacum var. SR1 

plants. All manipulations with transgenic plant material were carried out under conditions 

(PKII) imposed by the Dutch authorities (VROM/COGEM). 
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Figure 5.3: Construction of plant transformation vectors pTSWV NSU-A, NSM-B and NSM-C. NSM 

sequences were PCR amplified from a genomic cDNA clone of TSWV, using primers that added a BamHI 
restriction site to the 3' end of the gene (Zup014) and a EcoRI site immediately downstream of the original 
startcodon (Zup051). An oligonucleotide linker sequence containing an in frame startcodon was ligated to 
the 5' end of the PCR fragment, thereby restoring the NSM ORF. Directly upstream of the ATG a unique 
Kpnl site is present. This fragment was inserted in the BamHI site of a pUC18 vector, resulting in a Pstl 
site 3' of the NSM sequence. By treating Kpnl linearised DNA with T4 DNA polymerase, blunt ends were 
created to which Pstl linkers were ligated prior to cloning the NSM gene as a Pstl fragment in the Pstl site 
of the pZU-A plasmid in both sense (A) and antisense orientation (C). In the pTSWV NSM-A construct, the 
pZU-A vector had been previously supplied with TMV translation enhancing sequences upstream of the 
cloning site. Incubation with T4 DNA polymerase for a longer time at an elevated temperature resulted in 
the removal of extra nucleotides by the exonuclease activity of T4 DNA polymerase, these extra 
nucleotides included the A residue of the NSM startcodon. Ligation of a Pstl linker yielded an ATG-deficient 
NSM sequence, which is hence not translatable (B). After cloning in the Pstl site of the pZU-A vector, the 
NSM sequences are supplied with a CaMV 35S promoter at the 5' end and flanked at their 3' ends by a 
nopaline synthase terminator. Finally, all three NSM constructs were cloned in the Kpnl and Smal sites of 
binary vector pBIN19. B=BamHI; E=EcoRI; K=Kpnl; P=Pstl; S=Smal; 4=blunt after treatment with T4 DNA 
polymerase. RB and LB are right and left border sequences, respectively. The AATG indicates removal 
of the ATG startcodon. 

Construction of NSM gene sequence expression vectors 

NSM gene sequences of TSWV (Kormelink ef a/., 1992c), were modified using PCR in 

such a way that an EcoRI site was generated immediately downstream of the original 

startcodon, using primer Zup051 (dGGGAATTCTTTTCGGTAACAAGAGGCC) located 

at position 108 to 129 of the viral M RNA and primer Zup014 (dCCCTGCAGGATCCGA-

AATTAAAGCTTAAATAAGTG) located at position 1043 to 1023 of the viral 

complementary M RNA. The resulting PCR fragment was digested with EcoRI and a 

EcoRI/BamHI linker including an internal Kpnl site and an in frame start codon 

5 ' GATCCGGCAACGAAGGTACCATGGG 3 ' 
3' GCCGTTGCTTCCATGGTACCCTTAA 5' 

BamHI Kpnl Ncol EcoRI 

was ligated. This slightly modified NSM gene (starting with aminoacid sequence 

Met.Leu.lle... in stead of Met.Thr.VaL.) was cloned in a pUC18 vector as a BamHI 

restriction fragment. The resulting plasmid was linearised using Kpnl, and Pstl linkers 

were ligated after creating blunt ends using T4 DNA polymerase. The 5' to 3' 

exonuclease activity of T4 DNA polymerase was used to create an untranslatable NSM 

sequence devoid of its start codon. Different reaction temperatures and incubation times 
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were used to vary the extent of 5' to 3' exonuclease degradation. The resulting clones 

were checked by sequence analysis and a clone was selected in which the original 

startcodon was mutagenised to CTG. The Pstl restriction fragments, i.e. one with an in 

frame ATG start codon and the mutant, were ligated in plant transformation vector pZU-A 

(Gielen et al., 1991) between the CaMV 35S promoter and the nopaline synthase (nos) 

terminator. In case of the pTSWV NSM-A construct, the untranslated leader sequence of 

TMV (Gallie et al., 1987) was inserted immediately upstream of the NSM gene. In 

addition, an antisense construct was selected. Finally, three NSM constructs were 

inserted in binary vector pBIN19 (Bevan, 1984), yielding pTSWV NSM-A (sense polarity), 

pTSWV NSM-B (sense/untranslatable) and pTSWV NSM-C (antisense polarity). Details 

of this cloning schedule are presented in Figure 5.3. 

Transformation of tobacco 

The pBIN19-derived vectors pTSWV NSM-A, NSM-B and NSM-C were introduced in 

Agrobacterium tumefaciens strain LB4404 (Ditta et al., 1980) by triparental mating, using 

pRK2013 (Horsch et al., 1985) as a helper plasmid. N. tabacum var. SR1 plants were 

transformed and regenerated as described by Horsch and co-workers (1985). 

Analysis of protection of transgenic plants against TSWV 

Inoculations were done according to standard procedures (Gielen et al., 1991) and 

repeated after two weeks to exclude plants escaping inoculation being scored resistant. 

The appearance of systemic symptoms was monitored on a daily basis until day 35 after 

the first inoculation. Plants were scored susceptible when leaves younger than the 

inoculated leaf showed characteristic tospovirus induced symptoms i.e. severe stunting 

and chlorosis, usually followed by death of the plant within a week. Samples of both 

inoculated and systemic leaves from visually healthy plants were collected to check for 

the presence of the NSS gene product by ELISA, using a polyclonal antiserum directed 

against TSWV NSS protein (Kormelink et al., 1991). This antiserum also recognizes the 

NSS proteins of established tospoviruses TCSV and GRSV. 
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Chapter 6 

ENGINEERED RNA-MEDIATED RESISTANCE TO TOMATO SPOTTED 

WILT VIRUS IS SEQUENCE SPECIFIC 

To test whether the previously reported RNA-mediated resistance to tomato spotted wilt 

virus in tobacco plants expressing viral nucleoprotein (N) or movement protein (NSM) 

gene sequences, can be induced by any randomly chosen viral genome sequence, 

transgenic plants were produced that expressed a wide range of parts of the TSWV RNA 

genome or its complement. Testing the progenies of these plants revealed that only 

those plants that expressed N or NSM gene sequences showed resistance to TSWV. All 

plants expressing other parts of the L, M or S segment were still susceptible to TSWV 

infection irrespective whether these viral sequences contained terminal or internal 

sequences, and translatable or untranslatable regions. The suggested important role for 

N and NSM gene products in early stages of tospovirus infection of plants will be 

discussed. 

This chapter has been published in a modified form as: Prins, M., Resende, R. de O., Anker, C , Van 

Schepen, A., De Haan, P. and Goldbach, R. (1996) Engineered RNA-mediated resistance to tomato 

spotted wilt virus is sequence specific. Molecular Plant-Microbe Interaction 9 (5): 416-418. 
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INTRODUCTION 

Since the first report on pathogen-derived resistance (PDR) against a virus (Powell Abel 

et al., 1986) many reports of coat protein-mediated resistance to plus strand RNA 

viruses have been published (for references see Wilson, 1993). Also expression of the 

nucleoprotein of the negative strand RNA virus TSWV resulted in resistance (Gielen et 

al., 1991; MacKenzie and Ellis, 1992; Pang et al., 1992). More recently, PDR has been 

reported by expressing other (modified) virus genes, e.g. genes encoding replicases, 

movement proteins and other non-structural proteins of various viral sources (for 

references see e.g. Beachy, 1993). 

Many of these reports indicate the involvement of the transgenically produced protein. 

However, a number of reports has shown that transgenic plants also exhibit resistance 

when using untranslatable forms of coat protein sequences (Lindbo etal., 1992; Van der 

Vlugt et al., 1992), and the RdRp gene of PVX (Mueller ef a/., 1995). The same holds 

true for sequences derived from the nucleoprotein gene of the negative strand 

tospoviruses (Chapter 3). Resistance in plants expressing untranslatable forms of coat 

protein and nucleoprotein genes indicate an RNA-mediated type of resistance. Most of 

the proposed mechanisms for this RNA-mediated resistance involve inhibition of viral 

replication by an antisense effect, or by binding factors involved in the replication 

process. Lindbo and co-workers (1993) proposed a process similar to co-suppression 

(Matzke and Matzke, 1993) as a possible mechanism for this RNA-mediated resistance, 

based on their observation of suppression of transgenic RNA levels upon infection with 

the corresponding virus in resistant transgenic plants. 

Tomato spotted wilt virus is the type species of the genus Tospovirus, which 

encompasses the thrips-transmitted plant-infecting members of the Bunyaviridae (Francki 

etal., 1991). 

The genome of tomato spotted wilt virus consists of three RNA species, of which the 

L RNA (8.9 kb) is of complete negative polarity while both the M RNA (4.8 kb) and S 

RNA (2.9 kb) have an ambisense coding strategy. The five viral open reading frames are 

translated from viral messenger RNAs (Kormelink ef a/., 1992a) and specify a total of six 

mature viral proteins, two non-structural proteins (NSS and NSM of 52.4 kD and 33.6 kD 
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resp), the two envelope glycoproteins (G1 and G2 of 78 kD and 58 kD), the putative viral 

polymerase (L of 331.5 kD) and the nucleoprotein (N) of 28.8 kD (De Haan étal., 1990, 

1991; Kormelinkefa/., 1992c). 

In some cases the appearance of defective interfering RNAs (Dis) derived from the 

L RNA have been observed in tospovirus-infected plants. The presence of these Dis 

generally causes an attenuation of viral symptoms (Resende et al., 1991b and 1992). 

In previous studies, translatable N gene sequences were introduced in transgenic 

N.tabacum var. SR1 plants. Several lines of these N protein-expressing plants, produced 

completely immune S2 progeny plants (Gielen etal., 1991). Further studies revealed that 

the presence of transgenic RNA rather than protein is responsible for the observed 

immunity (Chapter 3). Our recent work revealed similar resistance to the virus when 

using sequences derived from the TSWV NSM gene (Chapter 5), which encodes the 

putative viral movement protein (Kormelink etal., 1994; Storms etal., 1995). Expression 

of translatable and untranslatable forms of the NSM gene resulted in immune transgenic 

S2 lines, as did the NSM antisense RNA (Chapter 5). 

The results with the N and NSM gene sequences raises the question whether the 

resulting RNA mediated-resistance is gene specific or whether any, randomly selected 

sequence of the TSWV genome would confer such resistance upon transgenic 

expression. 

RESULTS 

Transformation of tobacco with genomic sequences of TSWV 

To investigate whether RNA-mediated resistance can be obtained by transgenic 

expression of any randomly chosen genomic RNA sequence of TSWV, 14 different viral 

cDNA constructs were made. Together with the previously analysed N and NSM gene 

constructs (Gielen et al., 1991; Chapter 3; Chapter 5), this set of constructs spans over 

70% of the TSWV genome, covering virtually the entire M and S segments and a large 

part of the L segment. The positions of the tospoviral RNA sequences expressed from 

these constructs in the RNA genome of TSWV are indicated in Figure 6.1. 
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Figure 6.1 : Position on the TSWV genome of the viral cDNA constructs used for transformation of tobacco 
plants. Dl encompasses L RNA sequences found in a naturally occurring defective interfering RNA, ML 
spans the middle of the L ORF including the majority of the conserved polymerase motifs. Clone NSm 
encodes the entire NSM ORF. NGp comprises the N terminal third of the precursor to the glycoproteins, 
MGp the central part of this precursor, while Gp transcribes the complete glycoprotein ORF. N and NSs 
clones include the respective genes and with their viral 5' untranslated leader sequences. 1RS contains 
the cDNA of the highly internally basepaired intergenic region of the S RNA. 
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All genomic fragments, supplied with a CaMV 35S promoter and a nos terminator 

sequence, were cloned in binary vector pBIN19 (Bevan, 1984) and subsequently used 

for Agrobacterium tumefaciens-mediated transformation of Nicotiana tabacum var. SR1 

leafdiscs. 

Table 6.1. Resistance levels inoculation in S1 and S2 progenies of transgenic tobacco 
plants expressing parts of the TSWV genomic RNAs. 

Percentage of resistant plants 
line (# resistant lines/# lines) S1 S2 

N1) (vc/ORF) 4/25 
N2) (vc/ATG-) 4/23 
N (v) 4/24 
1RS (v) 0/17 
IRS(vc) 0/17 
NSS (v/ORF) 0/10 
NSS (vc) 0/22 

NG (v) 0/22 
NG (vc) 0/18 
MG (v) 0/15 
M G (vc) 0/20 
G1/G2(vc/ORF) 0/21 
NSM

3) (v/ORF) 4/33 
NSM

3) (v/ATG-) 1/26 
NSM

3) (vc) 2/24 

ML (v) 0/11 
ML (vc) 0/25 
Dl (v) 0/13 
Dl (vc) 0/7 

25-90% 
30-80% 
10-50% 

0% 
0% 
0% 
0% 

0% 
0% 
0% 
0% 
0% 

10-30% 
50% 
15-50% 

0% 
0% 
0% 
0% 

100% 
100% 
100% 
-
-
-
-

_ 
-
-
-
-
100% 
100% 
100% 

_ 
-
-
-

1) Gielen et al., 1990;2) Chapter 3; 3) Chapter 5 

Testing transgenic plants for resistance to TSWV 

Between 7 and 25 original transformants were obtained for each construct (see Table 

6.1), adding up to a total of 242 transformed plants in addition to the 131 lines tested in 

previously described experiments (Gielen ef a/., 1991; Chapter 3; Chapter 5). The S1 

progenies of these plants were assayed for resistance to TSWV. Subsequently, the S2 
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progenies of surviving plants were also inoculated with the virus. To obtain highly 

resistant progeny, i.e. RNA-mediated resistance phenotype, all plants were inoculated 

twice within a two week interval, using a high titer of virus (TSWV strain BR-01). 

Despite the high inoculum concentrations and repeated inoculations, the amount of 

originally surviving antisense N expressor plants, as well as the number of these lines 

showing resistant plants were comparable to experiments involving the messenger sense 

N and both the sense and antisense NSM sequences. Of plants expressing anti-

messenger sense N sequences, the S2 progenies were completely immune to high 

doses of virus, similar to S2 generation plants expressing messenger sense N gene 

sequences and plants expressing sequences of the NSM gene. These resistant S2 plants 

remained virus free, as verified by ELISA. 

In contrast to the antisense N expressor plants and the previously described N and 

NSM sequence expressor lines (Gielen ef a/., 1991; Chapter 3; Chapter 5), all lines 

expressing other parts of the TSWV genome were completely susceptible to the virus, 

indicating that for TSWV, the RNA-mediated pathogen-derived resistance is sequence 

specific and restricted to plants expressing N or NSM gene sequences (Table 6.1). 

Resistance inducing ability of different TSWV sequences in transgenic plants is 

visualized in Figure 6.2. 

Expression of RNA and protein 

Expression of transgenic RNA in S1 lines was checked by Northern blot analysis and 

always showed low levels of RNA accumulation when compared to RNA levels reached 

during virus infection. Possible expression of the NSS and glycoproteins (G1 and G2) 

when translatable RNAs were expressed in transgenic lines was assayed by ACP and 

TAS-ELISA, respectively, using NSS polyclonal antiserum (Kormelink ef a/., 1991) and 

monoclonal antibodies against glycoproteins (Huguenot ef a/., 1990). In none of the S1 

lines expressing translatable NSS or glycoprotein RNAs detectable amounts of protein 

could be shown, despite the presence of transgenic RNAs. 
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S RH 

Figure 6.2: Susceptibility to virus infection of plants expressing a variety of TSWV sequences. Plants were 
photographed 7 days after inoculation with TSWV. Only plants expressing N or NSM sequences (both viral 
and viral complementary sense) are resistant to the virus. 
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Resistance to other tospoviruses 

The antisense N (i.e. viral RNA strand) expressing S2 progeny plants that were 

completely immune to infection with TSWV, were also challenged with two other closely 

related tospoviruses: tomato chlorotic spot virus and groundnut ringspot virus (TCSV 

strain BR-03 and GRSV strain SA-05; Àvila et al., 1993). All inoculated plants appeared 

to be completely susceptible to both viruses, similar to previous observations with the 

TSWV resistant sense N (i.e. vc strand) expressing plants (Chapter 3) and plants 

expressing NSM sense and antisense sequences (Chapter 5). The other established, 

more distantly related tospovirus, impatiens necrotic spot virus (INSV), was not tested, 

since this virus is not capable of inducing systemic symptoms in N. tabacum. 

DISCUSSION 

Only sequences derived from the N and NSM gene regions of the TSWV genome appear 

to be able to confer resistance to transgenic plants. All other RNA sequences used in 

this extensive experiment, covering most of the TSWV genome, are not able to confer 

resistance to transgenic plants. This sequence specificity indicates that inhibition of virus 

replication by direct interfering with the viral genomic RNAs, based on antisense 

interference as proposed previously (e.g. Chapter 3), seems a less likely model for the 

observed transgenically induced RNA-mediated resistance to TSWV. The explanation 

for the sequence specificity of the resistance should reside in the mode of its action. 

Possibly, the mechanism that causes RNA-mediated resistance can not interfere with the 

viral genomic RNA, as it remains encapsidated in N protein throughout the infection 

cycle, but only with the (non-encapsidated) viral mRNAs. The relevance of the viral 

proteins, encoded by these RNAs, may be crucial for the effectiveness of several of the 

constructs used. A thorough knowledge of the tospoviral infection cycle in plants is 

therefore required. The infection process of tospoviruses in plants is thought to involve 

five major steps (Figure 6.3). First the virus enters the cell through feeding of viruliferous 

thrips and viral nucleocapsids are released. Second, viral mRNAs are transcribed at low 

cellular concentrations of the N protein (i.e. the initial phase of viral infection). From 

these unencapsidated mRNAs, viral proteins are translated (Kormelink et al., 1992a). 
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Upon elevation of the N protein levels the viral RdRp (L) switches its mode to replication 

of vRNAs (step 3). These newly produced RNAs are encapsidated with N protein and 

associate with copies of the L protein. At this stage the nucleocapsid structures are 

either budded in the RER or golgi-membranes (step 4), thereby forming new viral 

particles that can be taken up by feeding thrips. Cell-to-cell movement within plants is 

mediated by association of nucleocapsids with the NSM protein that mediates tubule 

guided movement through modified plasmodesmata (step 5) (Kormelink et al., 1994; 

Storms era/., 1995). 

The observation that RNA-mediated resistance against TSWV is not effective with 

most parts of the viral genome is quite unexpected and seems to contradict some of the 

results obtained with positive strand RNA viruses. For potato virus X (PVX) for instance, 

it has been found that even nonviral (GUS) sequences can induce RNA-mediated virus 

resistance provided only that this sequence has been introduced in the viral genome 

(English et al., 1996). A possible explanation why only the N and NSM sequences of 

TSWV are capable of introducing transgenic resistance may be that its genomic RNA 

segments, like those of all negative stranded RNA viruses, remain packaged with 

nucleocapsid protein throughout the infection cycle. The RNA-mediated resistance might 

therefore not operate on (encapsidated) genomic level but rather on (non-encapsidated) 

viral mRNA level. Along this line the relative importance of the viral protein encoded by 

the different tospoviral mRNAs may be crucial for the effectiveness of several of the 

constructs used. Indeed both the N protein (regulator of transcription-to-replication 

switch) and NSM protein (movement protein, Kormelink et al., 1994; Storms et al., 1995; 

Chapter 8) are essential for systemic host plant infection, while inhibition of some other 

functions (e.g. G1/G2 and NSS) may only interfere with replication in (Wijkamp et al., 

1993) or spread by (Resende et al., 1991b) the insect vector. Sequences derived from 

the putative viral RNA dependent RNA polymerase gene (L) seem to be unable to confer 

resistance, although this protein is obviously indispensable for replication. Perhaps it is 

necessary that the complete open reading frame, or at least most of the RNA sequence 

is expressed in plants in order to give resistance and not just partial gene sequences 

(constructs ML and Dl, Figure 6.1) as used in this experiment. Another possibility may 

be that the limited number of polymerase molecules already present in the virus particle 
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(Van Poelwijk et al., 1993) are sufficient to carry out the initial rounds of replication, 

which may be essential in overcoming the inhibition of virus replication in transgenic 

plants. Alternatively, a small number of catalytic L protein molecules, sufficient for viral 

replication, may be produced despite the suppression of the mRNA. 
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Figure 6.3: Infection cycle of TSWV in plant cells. The following steps can be distinguished: cell entry and 

nucleocapsid release (1), transcription (2), replication (3), budding and virus particle formation (4) and cell-

to-cell movement (5). Processes potentially targeted by successful RNA-mediated resistance strategies 

(involving N and NSM sequences) are marked with a cross. 
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The DI construct used in this experiment contained the cDNA of a naturally occurring 

defective interfering L RNA molecule, which retained 2966 nt of the viral 5' end and 138 

nt of the 3' end. Presence of this Dl L RNA sequence in TSWV isolates attenuates virus 

symptoms. Beside the inability to support RNA-mediated resistance, expression of these 

sequences does not attenuate virus symptoms as wild type Dl molecules do in planta. 

This may be explained by the inability of the transgenic Dl transcript to co-replicate with 

the helper virus, due to the presence of extra nucleotides at both the 5' and 3' ends. 

It seems likely that the transgenically expressed RNAs can interfere with the 

production or translation of the mRNAs of the challenger virus. Since only N and NSM 

sequences can confer resistance, this may indicate that both N and NSM proteins play 

an essential role in tospoviral infection of plants. Interfering with viral messenger RNAs 

and hence production of new viral proteins can occur in two ways, either by antisense 

inhibition and subsequent degradation by a dsRNase, or by sense inhibition, e.g. by a 

mechanism proposed by Lindbo ef al. (1993), which involves the induction by the 

expressed transgenic RNA of a cytoplasmic factor that specifically degrades viral RNA, 

and may act similar to the co-suppression phenomenon observed in various other 

transgene expression systems (for references see Flavell, 1994; Matzke and Matzke, 

1995a). 

A second explanation for the presented data might be that for TSWV the majority of 

the genome does not suit yet unknown criteria needed for induction of or accessibility 

to post-transcriptional transgene silencing, like e.g. short stretches of primary or 

secondary structure in the expressed RNA. Perhaps only the N or NSM gene sequences 

or parts thereof have these capabilities, resulting in resistance of host plants to TSWV. 

This view is supported by the observation that, despite a large number of lines tested, 

no (co-suppression-like) RNA-mediated resistance to potyviruses was observed in plants 

expressing potyviral CI and Nib sequences (Maiti et al., 1993; Audy et al., 1994). 

Furthermore, in numerous transgenic plant lines expressing chalcone isomerase 

sequences no plants were observed that displayed co-suppression (Kooter, personal 

communication). Obviously, further experiments need to be carried out to support or 

exclude the alternative interpretations for sequence specific RNA-mediated resistance 

against TSWV. 
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MATERIALS AND METHODS 

All methods involving DNA or RNA were according to standard procedures (Sambrook 

et ai, 1989). 

Viruses and plants 

The different tospovirus strains, i.e. TSWV strain BR-01, TCSV strain BR-03, and GRSV 

strain SA-05, have been described by Àvilaef al., (1990, 1992 and 1993) and were 

maintained on systemic hosts Nicotiana rustica var. America or N. tabacum var. SR1. 

Recipient plants used in the transformation experiments were N. tabacum var. SR1 

plants. All manipulations with transgenic plant material were carried out under conditions 

(PKII) imposed by the Dutch authorities (VROM/COGEM). 

Construction of expression vectors 

TSWV cDNA fragments situated in the genome at positions indicated in Figure 6.1 were 

cloned as Pstl fragments, either direct or after addition of Pstl linkers in the single Pstl 

site in expression vector pZU-A (Gielen et al., 1991) immediately downstream of a CaMV 

35S promoter and flanked a their 3' ends by a nopaline synthase terminator. For the Dl 

construct an alternative approach was followed. First, it was PCR amplified using primer 

pDH001 (5' CCCCGGATCCTCGAGAGCAATCAGGTAACA 3') which is complementary 

to both ends of the TSWV genomic L RNA and contains a BamHI restriction site. 

Subsequently, this PCR fragment was inserted in a modified pZU-A plasmid. 

Modifications consisted of the addition of TMV translation enhancing sequences (Gallie 

et al., 1987) fused to the CaMV 35S promoter, these sequences were included to 

enhance the expression of the protein that is potentially encoded by the DI RNA 

(Resende et al., 1992). In this modified pZU-A vector, a BamHI cloning site is present 

between the translational enhancer sequences and the nos terminator. All 14 different 

pZU-A derived expression cassettes containing TSWV cDNA inserts were finally cloned 

in pBIN19 transformation vector (Bevan, 1984). 
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Transformation of tobacco 

All TSWV sequence containing pBIN19-derived vectors were introduced in 

Agrobacterium tumefaciens strain LB4404 (Ditta et al., 1990) by triparental mating, using 

pRK2013 (Horsch et al., 1985) as a helper plasmid. N. tabacum var. SR1 plants were 

transformed and regenerated as described by Horsch et al. (1985). 

Analysis of protection of transgenic plants against TSWV 

All original régénérants were allowed to set seed and twenty S1 progeny plants of each 

individual transformed plant were grown and inoculated with tomato spotted wilt virus. 

Inoculations were in essence done according to Gielen et al. (1991), but plants were 

inoculated at a younger stage using higher doses of virus. The appearance of systemic 

symptoms was monitored on a daily basis. Plants were scored susceptible when leaves 

younger than the inoculated leaf showed severe stunting and chlorosis, usually followed 

by death of the plant within a week. Approximately 5 weeks after the first inoculation, leaf 

samples from visually healthy plants were collected to check by ELISA for the presence 

of the NSS gene product, a reporter for viral replication (Wijkamp et al., 1993), using a 

polyclonal antiserum directed against TSWV NSS protein expressed in a baculovirus 

expression system (Kormelink et al., 1991). This antiserum also strongly cross-reacts 

with NSS proteins present in TCSV- and GRSV-infected plant cells. 
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Chapter 7 

FURTHER STUDIES ON THE MECHANISM OF RNA-MEDIATED 

RESISTANCE AGAINST TOMATO SPOTTED WILT VIRUS 

Transgenic host plant resistance against TSWV has previously been demonstrated to 

be mediated by the transgenic RNA and could only be observed when N or NSM gene 

derived sequences were used as transgenes. No correlation was observed between 

steady state RNA expression levels and resistance. Here it is demonstrated that resistant 

plants specifically express high levels of transgenic transcripts at the nuclear level but 

have steady state RNA levels comparable to those of susceptible transgenic plants. This 

indicates the induction of an active sequence-specific RNA breakdown mechanism 

similar to co-suppression, that confers resistance by degrading viral RNA sequences 

identical to the transgene. 

While the phenotypes of the resistance in N and NSM transformed plants are 

indistinguishable, inoculation studies using protoplasts revealed a clear difference at the 

cellular level: protoplasts derived from transgenic plants expressing N gene sequences 

appeared resistant to TSWV infection, while protoplasts from NSM transgenic plants were 

susceptible. Implications for the mechanism of the sequence specific resistance are 

discussed. 

Parts of this chapter concerning the nuclear run-on experiments, have been published in: Prins, M., 

Resende, R. de O., Anker, C , Van Schepen, A., De Haan, P. and Goldbach, R. (1996) Engineered RNA-

mediated resistance to tomato spotted wilt virus is sequence specific. Molecular Plant-Microbe Interactions 

9 (5): 416-418. Protoplast experiments were included in: Prins, M., Kikkert, M., Ismayadi, C , De Graauw, 

W., De Haan, P. and Goldbach. R. Characterization of RNA-mediated resistance to tomato spotted wilt 

virus in transgenic tobacco plants expressing NSM gene sequences. Plant Molecular Biology 33: 235-243. 
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INTRODUCTION 

The concept of pathogen-derived resistance (Sanford and Johnston, 1985) has been 

applied for many virus-plant combinations (see reviews by Beachy et al., 1990; Wilson, 

1993; Scholthof et al., 1993; Lomonossoff, 1995). Following the original design of the 

PDR concept, transgenic expression of large amounts of protein was pursued, and plants 

were pre-selected for their protein production abilities prior to screening for resistance. 

This resulted in operational resistance against a considerable number of viruses, but 

manifestations of the resistance differed greatly, while underlying mechanisms appeared 

to be diverse and not universally applicable. 

As has now been shown for several other virus-plant combinations, transgenic 

resistance against tomato spotted wilt virus was shown to be largely mediated by the 

transgenic expression of viral RNA sequences, and not protein, since untranslatable 

versions of the transgenes resulted in plants with indistinguishable phenotypes when 

compared to their translatable counterparts, as did the antisense versions of these genes 

(Chapters 3 and 5). In all cases, observed resistance correlated neither to protein nor 

to RNA expression levels, suggesting no direct (stoichiometric) interaction between 

expressed RNAs and invading viral RNAs based on antisense interaction with viral 

sequences complementary to the transgene. Work by Lindbo et al. (1993) suggested that 

by transgenic expression of sequences derived from the tobacco etch virus coat protein 

gene, a plant response could be induced, resulting in the specific degradation of the 

expressed sequences. Ultimately this may have resulted in resistance, since viral RNA 

sequences were identical to the transgene and may therefore also be targeted and 

degraded. Similar observations have been made earlier in transgenic plants expressing 

additional copies of resident endogenous genes (Van der Krol er al., 1990; Napoli er al., 

1990; Smith et al., 1990; De Carvalho et al., 1992). In some of these cases, expression 

of the endogene was completely silenced by addition of the transgene and tentatively 

called "co-suppression" (Napoli etal., 1990). From nuclear run-on experiments it became 

clear that this silencing occurred post-transcriptionally, since both the transgene as well 

as the endogene displayed high levels of nuclear transcription, while steady state RNA 

levels were low (De Carvalho et al., 1992; Van Blokland et al., 1994; Niebel ef al., 
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1995a,b). This suggested the induction of a mechanism capable of sequence-specific 

targeting and degradation of transgene transcripts. 

Currently, RNA-mediated resistance has been shown to operate via a mechanism 

similar to co-suppression or post-transcriptional gene silencing for two positive strand 

viruses: TEV and PVX (Lindbo et al., 1993; Mueller et al., 1995). Here we investigated 

whether the observed RNA-mediated resistance against the negative strand virus TSWV 

also operates in a fashion similar to co-suppression. 

Since resistance to TSWV using the N gene was shown to be mediated by the RNA, 

this led to the expectation that also other parts of the viral genome would potentially be 

able to confer resistance. Therefore, the observation that RNA-mediated resistance 

against TSWV was not effective with most parts of the viral genome (Chapter 6) was 

quite unexpected. Two possible mechanisms that may explain this observation have 

been discussed. First it may be possible that the transgenically expressed RNA has to 

meet certain unknown criteria in order to be able to induce the silencing mechanism. 

These may include elements of the transgene like e.g. primary or secondary structures. 

Second, it may be possible that all sequences are principally capable of inducing co-

suppression, but that the targeting and degradation of specific sequences is not effective 

in conferring resistance to the virus. Consequently, since transgenic expression of 

different parts of the genome of TSWV is not equally effective in conferring resistance, 

this implies that the viral messenger RNAs must be targeted by the suppression 

mechanism and not the viral genomic RNAs. Along this line the relevance of the 

suppressed viral genes for plant cell infection could then be critical for acquiring 

resistance or not (Chapter 6). The observation that viral messenger RNAs do not 

associate with nucleoprotein in contrast to their genomic counterparts (Kormelink et al., 

1992a), therefore making them more accessible for RNA degradation, supports this view. 

In this chapter additional evidence is presented that RNA-mediated resistance of the 

transgenic lines operates by targeting viral messenger RNAs, thereby inhibiting specific 

gene functions. 
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RESULTS 

Nuclear run-on assays of transgenic lines 

For studying the nuclear transcription rate of several lines of transgenic plants 

expressing the TSWV N gene RNA in a non-translatable form, nuclei from leaf tissue of 

several plant lines were isolated. Two sensitive and two resistant lines were chosen 

based on similarity in steady state expression levels. Line 1004-01 was chosen as a 

control, since it has an identical history as the other lines, but has lost its transgenic 

copy by segregation. Isolated nuclei of these plants were used in run-on experiments 

and hybridized to single stranded probes, that had been slot blotted on a nylon 

membrane. Single stranded sequences were derived from M13 phages, therefore M13 

sequences were included as control for aspecific hybridisations to these sequences. 

Single stranded DNA complementary to the messenger RNA of the rubisco small subunit 

(SSU) was included to compensate for the varying amount of nuclei per assay. Beside 

the transcription of the transgene driven by the strong CaMV 35S promoter, possible 

transcription of antisense transcripts from plant promoters in the vicinity of the transgenic 

insert was also monitored. As is shown in Figure 7.1, varying degree of SSU was 

compensated for by different exposure times. It became evident that only in resistant 

plant lines, nuclear transcription of the sense N gene greatly exceeded that of the 

internal standard and there was a clear relation between high nuclear transcription levels 

and resistance, in contrast to steady state RNA levels and resistance. Obviously, plants 

that display high nuclear transgene expression, yet have low steady state RNA levels, 

must have an active mechanism for specific breakdown of these (transgene) viral RNA 

sequences, consequently resulting in resistance to the virus. Hence, the observed RNA-

mediated resistance against TSWV resembles the homology dependent gene silencing 

observed in other transgenic plants (De Carvalho et al., 1992; Lindbo et al., 1993; Van 

Blokland et al., 1994). 
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Figure 7.1: Transgene transcription levels in isolated nuclei of TSWV N gene-transformed plants. Steady 
state RNA levels in all lines except segregant line 1004-1, lacking the transgene, are similar. SSU indicates 
the nuclear expression of the small subunit of rubisco, used as an internal standard. M13 accounts for 
aspecific hybridisation to single stranded M13 sequences. N sense and N antisense show hybridisation 
of respective run-on transcript to complementary sequences. N/SSU ratio indicates the relative expression 
level of the transgene compared to the rubisco internal expression, which is assumed constant. No 
hybridisation of antisense N sequences (induced e.g. by a plant promoter) was observed. R and S are 
resistant and susceptible phenotypes of the transgenic plants, respectively. 

In none of the plant lines tested, nuclear expression of antisense N gene transcripts 

was observed, indicating that production of antisense in the nucleus is not essential for 

the observed silencing. This in disagreement with one of the proposed models for co-

suppression based on the possible expression of antisense from a plant promoter in the 

vicinity of the transgene (Grierson et al., 1991). 
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Resistance mediated by the N gene operates at the cellular level while NSM-mediated 

resistance does not 

Four transgenic S2 lines that are completely resistant to TSWV at the plant level were 

selected. In two of these lines (12-02 and 1004-02), resistance was mediated by a 

translatable and an untranslatable version of the N gene, respectively (Gielen et al., 

1991; Chapter 3), while in lines A2-05 and B3-13 (Chapter 5) resistance was brought 

about by NSM transgenic sequences. Following the inoculation of the protoplasts, virus 

accumulation was monitored on Western blot using anti N polyclonal antisera (Figure 

7.2) and the percentage of infected protoplasts determined by immunofluorescence 

(Table 7.1). In all cases a N. tabacum var. SR1 segregant lacking a transgenic insert 

was used for reference. 

M control 
0 16 40 64 

12-02 
0 16 40 64 

1004-02 
0 16 40 64 

A2-05 
0 16 40 64 

B3-13 
0 16 40 64 

V 

Figure 7.2: Western blot analysis of TSWV infected protoplasts generated from untransformed control 

tobacco plants and transgenic lines 12-02(N), 1004-02(N), A2-05 (NSJ and B3-13 (NSJ. Virus infection 

was monitored using antibodies against the N protein. V is purified virus, numbers indicate the number of 

hours post inoculation. Sizes of low molecular weight markers (kD) are indicated on the left. 

In the protoplasts expressing NSM sequences, infection percentages and viral antigen 

accumulation levels comparable to those in susceptible control plants were observed. 

In contrast, N gene expressing resistant plants proved immune at the cellular level 

allowing no accumulation of viral nucleocapsids. N protein observed att=0 in lines 12-02 

and 1004-02 resulted from the inoculation and is slowly degraded, the low expression 

of N protein at later times in line 12-02 (Figure 7.2) results from expression of the 

transgene and is also observed in uninoculated protoplasts (results not shown). 
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Table 7.1. Percentage of TSWV infected protoplasts derived from N and NSM transgenic 
tobacco lines. 

S2 tobacco line % infected protoplasts (64 h.p.i.)' 

non-transgenic control 

12-02 (N) 

1004-02 (N) 

A2-05 (NSM) 

B3-13 (NSJ 

80% 

<5% 

<5% 

70% 

50% 

* determined by immunofluorescence using FITC-coupled antibodies against the viral N 
protein. 

DISCUSSION 

For the negative strand virus TSWV, transgenic expression of both N and NSM gene 

sequences of TSWV have been shown to confer resistance to plants (Chapters 3 and 

5). The observed resistance reaches similar high levels for sense and antisense 

expressing plants in both cases. Resistance was also obtained when untranslatable 

sense genes were introduced, indicating an RNA-mediated type of resistance. At the 

whole plant level, the manifestations of the RNA-mediated resistance phenomenon 

induced by NSM sequences are indistinguishable from those caused by the N gene RNA-

mediated resistance and both result in complete resistance to TSWV in homozygous S2 

progeny lines. Moreover, they both share the same spectrum of resistance, and only 

hold against the virus (TSWV) of which the transgene sequence was derived. Similar 

characteristics have also been found for RNA-mediated resistance to other viruses, e.g. 

tobacco etch virus (TEV) (Lindbo et al., 1992a,b), potato virus Y (PVY) (Van der Vlugt 

ef a/., 1992), potato virus X (PVX) (Mueller et al., 1995) and cowpea mosaic virus 

(CPMV)(Sijenefa/., 1995). 

A mechanism for RNA-mediated resistance that implies the induction of an anti-viral 

state in the cytoplasm of transgenic plants was proposed by Lindbo and co-workers 
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(Lindbo et al., 1993), based on similarities to the sense- or co-suppression phenomenon 

observed in transgene expression studies of endogenous genes in plants (for review see 

e.g Matzke and Matzke, 1995a). This co-suppression causes dramatically decreased 

endogenous RNA steady-state levels upon expression of homologous transgene 

sequences as a result of a post-transcriptional RNA-degrading mechanism. In immune 

plant lines expressing TEV coat protein RNA sequences, nuclear de novo synthesis in 

run-on assays remained high, while cytoplasmic steady-state RNA levels were low 

(Lindbo et al., 1993; Dougherty ef a/., 1994). This suggested that RNA-mediated 

resistance was a result of increased RNA turnover of (transgene) viral sequences. Here 

we have shown that also for TSWV resistance operates via a co-suppression-like 

mechanism. Of several transgenic plant lines tested that are expressing the same 

construct to similar steady state cytoplasmic RNA levels, only the plants with a resistant 

phenotype exhibit high nuclear transcription rates, indicating the presence of an active 

RNA-degrading mechanism. This suggests that the co-suppression is caused by high 

expression levels, which are not tolerated by the plant. The mechanism that is thought 

to be responsible for this phenomenon may involve a resident regulatory function of 

plants cells necessary for downregulating overexpressed genes. In this fashion it could 

be involved in developmental regulation of specific genes. Targeting by the resistance 

mechanism is very sequence specific and even sequences up to 80% homology at the 

nucleotide level are not recognized, yet it is very versatile and can be induced by many 

(if not all) transgenic sequences. This suggests antisense RNA may be present within the 

targeting/degrading complex. The source of this antisense RNA does not seem to be 

nuclear, since no antisense production was observed in run-on experiments (Figure 7.1). 

Because co-suppression operates post-transcriptionally, it can be conceived that silencing 

operates in the cytoplasm. This is supported by the effect it has against viruses that 

replicate in the cytoplasm. Possibly, a resident, non-viral RNA-dependent RNA 

polymerase activity as observed in plant cells (Dorssers et al., 1982 and 1983; Van der 

Meer étal., 1984), is involved in the production of short antisense molecules forming the 

core of the specific RNase complex. A current model for the co-suppression-like 

resistance mechanism against TSWV is presented in Figure 7.3 (page 88). 
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Surprisingly, the transgenic expression of the majority of the genome of TSWV does 

not result in virus resistance, indicating gene specific effects (Chapter 6). Unlike positive-

strand RNA viruses, the genomic and anti-genomic RNAs of negative strand viruses 

remain protected by N protein throughout the entire replication cycle (Kormelink ef a/., 

1992a) and may therefore be unaccessible as targets for the resistance mechanism. 

Hence, TSWV resistance in transgenic plants may be conferred by interference with (non-

encapsidated) messenger RNAs. Inhibiting the formation of sufficient amounts of proteins 

essential for e.g. viral replication (N) or movement (NSM) of the virus, may be the basis 

of the observed resistance. Synchronous infection of single plant cells derived from N 

gene transgenic plants revealed a block in the accumulation of virus. Preliminary results 

of Western blot analysis and immunofluorescence studies indicate accumulation of NSS 

protein in inoculated protoplasts derived from N gene transformed plant lines. This 

indicates that the genomic S RNA segments are not targeted, but that the lack of 

replication and accumulation of N protein must have been caused by degradation of the 

N messenger. RNA-mediated resistance does not operates at the cellular level for the 

NSM transgenic plants, because an accumulation of N protein to wild type levels was 

observed, demonstrating that these cells still can support virus replication. Considering 

the phenotype of the NSM gene-mediated transgenic resistance is identical to N gene-

mediated resistance at the whole plant level, this would require an inhibition of cell-to-cell 

movement in these plants due to the inability of the virus to produce sufficient amounts 

of NSM protein required for transport-tubule formation. 

As stated previously (Chapter 6), silencing of other viral genes may not be effective for 

blocking virus replication and/or spread in plants. Additional research can substantiate if 

these sequences indeed are targeted in some transgenic lines, for example by introducing 

the target sequence in viral vectors like e.g. PVX (English et al., 1996) or TMV (Kumagai 

era/., 1995). Transgenic progeny plants incapable of conferring resistance to TSWV can 

be screened for effective silencing of transgenic sequences, consequently resulting in 

resistance against this recombinant (positive strand) virus, due to inserted TSWV 

sequences. In such a way, large amounts of plant lines can be screened for the presence 

of a TSWV specific co-suppression-like RNA degradation mechanism, without the 

necessity to perform labourious run-on experiments for all these (242) lines. 
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Figure 7.3: Current model for co-suppression-like RNA-mediated resistance directed against TSWV N and 
NSM mRNAs. In silenced plants, transgenes are expressed to an "unacceptable" level and may contain 
aberrancies, possibly due to DNA methylations. This is sensed (1) by a cytoplasmic factor, that is able to 
specifically target the transgenic RNA sequences (2) and subsequently degrade it (3). Upon entry of the 
virus, the unencapsidated viral mRNAs, which have the same sequence as the transgene (i.e. N or NSM), 
are also targeted by the cytoplasmic factor and degraded, rendering the virus unable to carry out essential 
functions in replication and movement, respectively. Viral genomic RNAs are protected from degradation 
by encapsidation with N protein. 
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MATERIALS AND METHODS 

Isolation of nuclei 

Nuclei were isolated according to Van Blokland et al. (1994), with slight modifications to 

adapt to larger amounts of leaf material. 

In general, twenty to forty grams of expanded N. tabacum leaves of approximately 

eight week old plants were ground in liquid nitrogen. The powder was slowly 

resuspended in 50 ml ice-cold buffer A (10 mM NaCI, 10 mM MES pH 6.0, 5 mM EDTA, 

0.15 mM spermidine, 20 mM ß-mercaptoethanol, 0.250 M sucrose and 0.6% triton X-

100) while thawing. The suspension was passed twice through Miracloth filter 

(Calbiochem) to remove debris and pelleted at 2,000 g. After washing once with buffer 

A, the pellet was suspended in 88% Percoll (w/w) in buffer A. Centrifugation at 4000 g 

for 10 minutes yielded nuclei floating on top. Collected nuclei were washed with run-on 

transcription buffer (10 mM Tris-HCI pH 7.7, 100 mM (NH4)2S04, 10 mM MgCI2, 5 mM 

ß-mercaptoethanol) resuspended in the same buffer and stored at -80°C after the 

addition of an equal volume of glycerol in 1 ml portions. 

Nuclear run-on assays 

By adding and equal volume of transcription buffer cells were washed and after 

precipitation resuspended in 200 /J\ transcription buffer. Nucleotides (except UTP) were 

added to a final concentration of 0.5 mM each. The actual run-on was performed at 27°C 

for 30 min. after the addition of 100//Ci (0.125 nmol) 32P-UTP. The reaction was stopped 

by adding SDS up to 2.5% and incubating at 50°C for 10 min. After phenol/chloroform 

extraction and ethanol precipitation, DNA was digested with 3 jjg of RNase-free DNase. 

Another phenol/chloroform extraction and ethanol precipitation were carried out prior to 

passing the water-dissolved transcripts through a Sephadex G-50 column. Ethanol 

precipitated transcripts were resuspended in 100 fj\ water and incorporation was 

estimated using scintillation counting. 
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Hybridisation of run-on transcripts 

Single stranded M13 DNA was isolated according to Sambrook et al. (1989). Per slot, 

one jjg of DNA (in 10*SSC) was spotted on Hybond N membrane and UV cross-linked. 

Prehybridisation (in 50% formamide, 5*SSPE, 1% PVP, 0.1% Ficoll, including 50 //g 

tRNA per ml) of filters was at 42°C for at least 5 h. Hybridisation with up to 107 cpm run-

on transcripts was performed at 42°C for 72 h. Filters were subsequently washed with 

1*SSPE (0.1% SDS) at RT, 1*SSPE at 55°C and 0.1*SSPE at 55°C. A phosphorimager 

was used for detection and quantification of 32P activity. 

Preparation of Nicotiana tabacum protoplasts and purification of infectious TSWV 

particles 

Protoplasts of N. tabacum plants were isolated essentially as described for N. rustica 

and Vigna unguiculata (Kikkert et al., submitted). TSWV was isolated in sulfite containing 

buffers using a 10-40% sucrose gradient (Gonsalves and Trujillo, 1986). Purified virus 

was resuspended in water and 10 /vg was used per inoculation of approximately one 

million protoplasts. Inoculation was accomplished by the addition of 40% polyethylene 

glycol (PEG) in 10 mM CaCI2. 
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Chapter 8 

TRANSGENIC TOBACCO PLANTS EXPRESSING THE PUTATIVE 

MOVEMENT PROTEIN OF TOMATO SPOTTED WILT VIRUS EXHIBIT 

ABERRATIONS IN GROWTH AND APPEARANCE 

Within the Bunyaviridae virus family, members of the genus Tospovirus are unique in 

their ability to infect plants. A characteristic genetic difference between tospoviruses and 

the animal-infecting members of this virus family is the occurrence of an additional gene, 

denoted NSM, located on the genomic M RNA segment. This gene has previously been 

implicated in the cell-to-cell movement of this virus during systemic infection. Transgenic 

tobacco plants have been obtained expressing the NSM protein of tomato spotted wilt 

virus (TSWV), the type member of the tospoviruses, from a constitutive promoter. 

Detectable amounts of the NSM protein could be observed in plants from nine different 

lines. The protein was only detectable in fractions enriched for cell wall material. More 

detailed immunogold labeling studies revealed specific association of NSM protein with 

plasmodesmata. Plants accumulating the NSM protein to detectable levels developed 

aberrations in growth, resulting in a significant reduction of size and accelerated 

senescence. In addition, these plants are restricted in their capacity to produce flowers. 

The results presented provide additional evidence that the NSM protein, by modifying 

plasmodesmata, represents the cell-to-cell movement function of tospoviruses. 

Furthermore the phenotype of the NSM transgenic plants suggests involvement of the 

NSM gene product in TSWV symptom expression. 

This chapter has been published in a slightly modified form as: Prins, M., Storms, M.M.H., Kormelink, R., 

De Haan, P. and Goldbach, R. (1996) Transgenic tobacco plants expressing the putative movement 

protein of tomato spotted wilt tospovirus exhibit aberrations in growth and appearance. Transgenic 

Research, in press. 
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INTRODUCTION 

Tomato spotted wilt virus (TSWV) is the type species of the genus Tospovirus, which 

encompasses the plant infecting members of the family Bunyaviridae (Goldbach and 

Peters, 1994; Murphy ef a/., 1995). 

The tripartite RNA genome of TSWV contains five open reading frames that specify 

six mature viral proteins. Typically for Bunyaviridae, the L RNA is of negative polarity and 

encodes the putative viral polymerase of 331.5 kD (De Haan et al., 1991). In contrast, 

the M and S RNAs of tospoviruses are both ambisense (De Haan étal., 1990; Kormelink 

et al., 1992c). The S RNA codes for the nucleoprotein (28.8 kD) and a non-structural 

protein (NSS) of 52.4 kD (De Haan er al., 1990). The M RNA codes for the precursor to 

the envelop glycoproteins G1 and G2, and a non-structural protein (NSM) of 33.6 kD, 

which represents the putative viral cell-to-cell movement protein (Kormelink era/., 1994). 

When comparing the genome arrangements of the Bunyaviridae, tospoviruses are unique 

in having an ambisense M RNA segment, due to the presence of the NSM gene which 

is lacking in the genomes of the animal-infecting members of the Bunyaviridae. Immuno-

cytological detection of NSM protein in TSWV infected leaf-material revealed a specific 

association with nucleocapsid aggregates and with tubular structures extending through 

plasmodesmata, suggesting involvement in cell-to-cell transport of the virus across cell 

walls (Kormelink et al., 1994; Storms ef a/., 1995). 

For some positive strand RNA viruses of plants, detailed information concerning the 

functioning of the viral movement protein has been obtained by studying the effect of 

mutations in this protein using infectious cDNA clones (reverse genetics). For negative 

strand RNA viruses, like TSWV, such studies have been hampered by the impossibility 

to recover infectivity from cloned DNA copies. Since transgenic host plants are a 

potential source of information on the contribution of viral proteins in the virus infection 

cycle, we have transformed tobacco plants with the NSM gene of TSWV. The 

observations made on such plants support the hypothesis that the NSM protein is 

involved in the spread of tospoviruses through plant hosts and, moreover, is involved in 

the induction of tospoviral disease symptoms. 
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RESULTS 

Transformation of tobacco plants with NSM gene sequences 

Two different DNA constructs containing cDNA sequences derived from the TSWV NSM 

gene under the control of a CaMV 35S promoter were made, pTSWV NSM-A, and 

pTSWV NSM-B (Figure 8.1). Construct pTSWV NSM-A contained the intact NSM gene in 

a translatable form, whereas in the pTSWV NSM-B construct the original ATG-start codon 

of the NSM gene was replaced by CTG, creating a non-translatable form of this gene. 

The first alternative ATG codon is located out of frame and translation would result in 

a peptide of only 4 amino acid residues. In addition, the 5' leader sequence of TMV RNA 

(Gallie ef a/., 1987) was cloned in front of the pTSWV NSM-A gene construct, to enhance 

translation of the NSM ORF. The two NSM gene sequence expressor cassettes were 

cloned into the binary vector pBIN19, and transferred to the genome of Nicotiana 

tabacum var. SR1 plants, via Agrobacterium fumefec/'ens-mediated leaf disk 

transformation. 

In total, 61 transformed plants were obtained that expressed NSM-derived sequences, 

as verified by Northern blotting (data not shown). Of these plants, 35 contained NSM-A 

sequences and 26 the NSM-B insert. All original transformants were maintained for seed 

production. 

Phenotype of transgenic plants 

All plants transformed with the NSM-B construct, original transformants as well as S1 and 

S2 progenies, had phenotypes that were indistinguishable from untransformed N. 

tabacum var. SR1 plants. Twenty-nine out of the 35 original transformants of the NSM-A 

type developed normally. The other six pTSWV NSM-A transformed plants (A14, A16, 

A26, A29, A31 and A35) developed extensive chlorosis of leaf tissue during their 

development (see Figure 8.2). Two of these plants (A26 and A31) were unable to set 

seed, therefore no progeny of these plants could be tested. As will be discussed later, 

no NSM protein was produced in the NSM-A plants that developed normally, in contrast 

to the plants with a deviating phenotype. 
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Figure 8.1: Construction of plant transformation vectors pTSWV NSM-A and pTSWV NSM-B 1: NSM 

sequences are PCR amplified from a genomic cDNA clone of TSWV, using primers that add a BamHI 
restriction site to the 3' end of the gene (Zup014) and a EcoRI site immediately downstream of the original 
start codon (Zup051). 2: An oligonucleotide linker sequence containing an in frame start codon is ligated 
to the 5' end of the PCR fragment after BamHI digestion, thereby restoring the NSM ORF. Two nucleotides 
upstream of the ATG a unique Kpnl site is present. By treating Kpnl linearised DNA differentially with T4 
DNA polymerase, blunt ends are created either leaving the start codon intact (A) or destroying it (B). 
Additional ligation of Pstl linkers allows cloning the NSM gene in the pZU-A plasmid (Gielen ef a/., 1991) 
also in antisense orientation (C). Finally, the NSM constructs were cloned in the binary vector pBIN19. 
B=BamHI; E=EcoRI; K=Kpnl; P=Pstl; 4=blunt after treatment with T4 DNA polymerase. RB and LB are 
right and left border sequences, respectively. The AATG indicates removal of the ATG start codon. 
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Progeny plant lines derived from self-pollination of the original pTSVW NSM-A 

transformants revealed a more complicated picture. Nine S1 lines (A2, A11, A13, A14, 

A20, A23, A25, A29, and A35) exhibited morphologically altered plants, in a ratio close 

to 1:3 or 3:1 relative to the morphologically unmodified plants within these lines. These 

ratios indicate the involvement of a single translationally active gene insertion in the 

aberrant phenotype. This was confirmed by kanamycin resistance studies (results not 

shown). 

Among other symptoms such as necrosis and wilting, tobacco plants infected with 

TSWV show chlorotic symptoms and a marked delay in growth, which, based on the 

results obtained with the NSM transgenic plants, may be related to NSM expression. 

Development and further characterisation of S1 progeny of lines A23 and A25 

Growth of plants from S1 lines A23 (segregation ratio 1:3) and A25 (segregation ratio 

3:1) was monitored during the development of these plants. Sizes of plants were 

measured twice a week for a period of eight weeks after sowing, by adding up the length 

of the two largest leaves plus the length of the entire stem. A dramatic difference in 

growth rate within segregating progenies of lines A23 and A25 was observed (Figure 

8.3). Representative selections of plants of lines A23 and A25 are shown approximately 

7 weeks after sowing (Figure 8.3). The presence or absence of TSWV NSM protein in 

plants of lines A23 and A25 was verified by Western blot analysis of purified cell-wall 

material. In plants of line A25 the NSM protein was only detected in small plants and not 

in the segregants with wild type phenotype (results not shown). The presence of the NSM 

gene in the genome of plants of line A23 alone appeared not to be sufficient for inducing 

modifications in morphology. Only one out of four plants developed growth aberrations, 

indicating that in this line only plants homozygous for the NSM gene could reach 

sufficient NSM expression levels to result in retardation in growth. Indeed, kanamycin 

resistance, indicating the presence of the transgene, occurred in two-third of the plants 

that developed normally in this experiment. Somaclonal variation as a possible 

explanation for the observed phenomenon can be ruled out, since the occurrence of 

aberrations strictly coincides with the presence of the NSM gene product. This view is 

confirmed by the observation that plants transformed with untranslatable NSM-B 

sequences never exhibited aberrations in morphology. 
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Figure 8.2: A) Extensive chlorosis of developing transformant A14. Similar observations were made on 

transformants A16, A26, A29, A31 and A35. B) Close-up of a leaf of transformant A14. 

Figure 8.3: Growth curves of S1 plants of two NSM expressing N. tabacum var. SR1 lines displaying a 
segregation in size in two categories, i.e. those developing as wild type and those showing an aberrant 
phenotype. A) Sizes of 38 individual plants of line A23 were measured twice weekly and stopped when 
the first plants started flowering. Plants of this line display a 3:1 segregation ratio with respect to size. B) 
Of line A25, forty individual plants were monitored for development. This line displayed a 1:3 segregation 
ratio. C) and D) Representative selections of plant from lines A23 and A25, respectively, approximately 
seven weeks after sowing. 

Expression of NSM specific RNA and protein in transgenic plants 

The presence of NSM gene-specific transcripts in S1 lines was checked by Northern blot 

analysis of pooled leaf material, using a 32P-dATP labeled double-stranded NSM cDNA 

probe. Transgenically produced NSM RNA could be detected in all lines tested (results 

not shown), albeit at low levels when compared to levels reached in TSWV infected 

plants. 

ç8r^-N Qrqri&i^ £* 

43.0 

30.0 

20.1 
t 

« 

1 1 
1 

a 

Figure 8.4: Western blot analysis of subcellular fractions of a morphologically aberrant plant, using NSM 

specific antiserum. A) Morphologically aberrated plant of S1 line A25. 

B) unmodified plant from the same line. Various subcellular fractions of crushed leaves as described by 
Kormelink ef al. (1994), P-1: crude cell wall material collected at 1,000 g; P-30 pellet of previous 
supernatant after 30,000 g centrifugation; S-30 supernatant of this fraction; S-30P pellet of previous 
fraction after 125,000 g centrifugation through a 30% sucrose-cushion (reveals nucleocapsids in virus 
infected plants). 
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In leaf extracts from NSM-A transformed plants, NSM protein could neither be obser 

ved by Western blot analysis, nor when ELISA techniques were used. Only after 

fractionation of these extracts into cellular components, NSM protein could be observed 

in cell wall-enriched fractions, but not in other fractions, indicating that this protein 

accumulated to low levels in cell wall material (Figure 8.4). This was further confirmed 

by immuno-cytological data. 

Figure 8.5: Immunogold decoration studies on approx. seven weeks old plant tissue, using gold labeled 

NSM antibodies showing specific association of the transgenically expressed NSM protein with 

plasmodesmata (A) and the branched morphology of these plasmodesmata (B). Bar indicates 200 nm. 

In situ analyses of NSM protein transgenically expressed in tobacco. 

To gain insight as to how the transgenically expressed NSM protein could have led to the 

observed phenotypic aberrations, cytological analyses of leaf tissue of NSM protein-

expressor plants were performed at the electron microscopical level using 

immunocytochemistry as well as structural analysis of the tissue morphology. Ultrathin 

sections of transgenic leaf tissue probed with antiserum against the NSM protein clearly 

illustrated that the NSM protein was only detectable in the cell wall, confirming the 
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Western immunoblot analyses. More specifically, the protein was found in clear 

association with plasmodesmata (Figure 8.5A). A detailed quantification revealed that 

in the NSM expressing lines, approximately 80% of the plasmodesmata contained NSM 

protein, a majority of these NSM-positive plasmodesmata clearly showing a branched 

morphology (Figure 8.5B). The transgenically expressed NSM protein was detected along 

the entire length of the plasmodesma and never formed tubular structures as found in 

plasmodesmata of TSWV-infected tissue (Kormelink et al., 1994). When analysing 

different tissues, NSM-containing plasmodesmata were observed in mesophyll tissue, 

between mesophyll and bundle sheath cells as well as in vascular tissue. 

DISCUSSION 

Morphological aberrations have been observed in transgenic tobacco plants expressing 

the putative movement protein of tomato spotted wilt virus. Modifications in growth and 

appearance were only observed in plant lines expressing translatable NSM RNA (NSM-A 

lines). The majority of the NSM-A transformed plants did not accumulate detectable 

amounts of NSM protein. Plants that did express NSM protein to a detectable level always 

developed morphological aberrations, indicating that accumulation of this viral protein 

has a negative effect on the growth of the plant, resulting in the deviating phenotype. 

The modified plants might be either the homozygous NSM expressor plants (e.g. in line 

A23), expressing the protein to such a level that it influenced the morphology of the 

plant, or also hemizygous plants with a single, but more actively translated NSM 

transgene (e.g. in line A25). In all cases tested, expression levels of the transgenic 

protein were low and protein was only observed in fractions enriched for cell wall 

material derived from stunted plants. Possibly, higher expression levels than those 

observed are lethal to plants, and therefore no such plants were recovered during the 

transformation and regeneration process. Immuno-cytological analyses of transgenic 

tissues revealed that the NSM protein was specifically associated with plasmodesmata. 

Random distribution among plasmodesmata of leaf tissue was observed, illustrating that 

the NSM protein was expressed in all leaf cell-types. This is not surprising considering 

the use of the CaMV 35S promoter. In addition, it can be concluded that NSM protein 
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expressed in various tissues behaves in similar manner with regard to association with 

plasmodesmata. In contrast to the constitutive expression in transgenic plants, the level 

of NSM expression during viral infection seems to be regulated. Expression levels of NSM 

are low during the early stages of infection, in which the NSM protein is probably 

associated with both viral nucleocapsids and plasmodesmata, and can be observed in 

both P1 and P30 fractions (Kormelink ef a/., 1994). Higher expression levels are reached 

later in the infection process, coincidental with the formation of tubular structures in the 

plasmodesmata (Storms er al., 1995). Since the NSM protein in transgenic plants can 

only be detected in Western blot analysis after concentrating the cell wall fractions, the 

level of protein expression seems significantly lower than during virus infection. This 

could be the reason why in transgenic plants no tube-like extensions are observed in 

tissue. However, association of the NSM protein with plasmodesmata as such, even 

without forming tubular structures, most likely underlies the inability of these plants to 

develop normally. Indeed, it is well recognized that plasmodesmata play an important 

role in development and supracellular organisation of plants (Lucas ef a/., 1993). 

In contrast to what has been found in transgenic tobacco plants expressing the 30K 

movement protein of TMV, the NSM protein was observed along the entire length of the 

plasmodesma and not specifically associated with the central cavity of structurally 

modified secondary plasmodesmata (Ding ef al., 1992). Morphologic changes have not 

been reported for plants expressing the TMV movement protein, although an increase 

of the size exclusion limit was demonstrated, which is a clear indication of the 

modification of the plasmodesmata. Also transgenic plants expressing the 3a movement 

protein of CMV showed an increased size exclusion limit, while no change was observed 

in the morphology of the plant (Vaquera ef a/., 1994). However, transgenic tobacco 

plants expressing the BL1 movement protein of the geminivirus SqLCV, like TSWV NSM 

expressors, display a clearly visible change in the morphology of the plant. Plants 

expressing this viral protein exhibited symptoms comparable to viral infection, potentially 

caused by association of the expressed protein with plasmodesmata, because the 

protein was demonstrated to be associated with cell wall fractions (Pascal ef a/., 1993). 

Since also the cell-to-cell movement of gemini viruses has been suggested to involve 

tubules (Kim and Lee, 1992), the aberrant development of transgenic plants might be 

characteristic of tubule-forming movement proteins. 
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The occurrence of aberrations in the morphology of plants expressing the TSWV NSM 

protein, together with a clear association of this protein with plasmodesmata, present 

further evidence of the involvement of this protein in cell-to-cell movement of tomato 

spotted wilt tospovirus through modified plasmodesmata. Additional studies will be 

carried out to reveal the effect of this transgenically expressed protein on the size 

exclusion limit of plasmodesmata. 

MATERIALS AND METHODS 

All manipulations involving DNA or RNA were done according to standard procedures 

(Sambrook et al., 1989). 

Preparation of subcellular extracts of transgenic plants and western immunoblot 

analyses were according to Kormelink ef al. (1994). 

Viruses and plants 

Tospovirus strains, BR-01 (TSWV), BR-03 (TCSV), and SA-05 (GRSV), have been 

described by Àvila ef al. (1990, 1992 and 1993) and were maintained on systemic hosts 

Nicotiana rustica var. America or N. tabacum var. SR1. 

Recipient plants used in the transformation experiments were N. tabacum var. SR1 

plants. All manipulations with transgenic plant material were carried out under conditions 

(PKII) imposed by the Dutch authorities (VROM/COGEM). 

Construction of NSM gene sequence expression vectors 

NSM gene sequences of TSWV (Kormelink et al., 1992c), were modified using PCR in 

such a way that an EcoRI site was generated immediately downstream of the original 

start codon, using primer Zup051 (dGGGAATTCTTTTCGGTAACAAGAGGCC) locate 

d at position 108 to 129 of the viral M RNA and Zup014 (dCCCTGCAGGATCCGAAATT-

TAAGCTTAAATAAGTG) located at position 1043 to 1023 of the viral complementary M 

RNA. The resulting PCR fragment was digested with EcoRI and a EcoRI/BamHI linker 

including an internal Kpnl site and an in frame start codon 
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5 ' GATCCGGCAACGAAGGTACCATGGG 3 ' 
3' GCCGTTGCTTCCATGGTACCCTTAA 5' 

BamHI Kpnl Ncol EcoRI 

was ligated. This slightly modified NSM gene (starting with amino acid sequence 

Met.Leu.lle... in stead of Met.Thr.VaL.) was cloned in pMON999 and successfully 

checked for tubule inducing ability in transfected protoplasts (Storms ef a/., 1995), 

although an effect of these single aminoacid changes on other functions of the protein 

can not be completely excluded. Simultaneously, the fragment was ligated in pUC18 as 

a BamHI restriction fragment. The resulting plasmid was linearised using Kpnl, and Pstl 

linkers were ligated after creating blunt ends using T4 DNA polymerase. In addition, the 

exonuclease activity of T4 DNA polymerase was used to create an untranslatable NSM 

sequence. The resulting clones were checked by sequence analysis and beside a 

translatable clone, a clone was selected in which the original start codon was 

mutagenised to CTG. The Pstl restriction fragments, were ligated in plant transformation 

vector pZU-A (Gielen ef a/., 1991) between the CaMV 35S promoter and the nopaline 

synthase (nos) terminator. In addition, the translation enhancing TMV untranslated leader 

(Gallie ef a/., 1987) was ligated in front of the translatable NSM-A construct. Finally, the 

NSM constructs were inserted in binary vector pBIN19 (Bevan, 1984), yielding pTSWV 

NSM-A (translatable) and pTSWV NSM-B (untranslatable). Details of this cloning schedule 

are presented in Figure 8.1. 

Transformation of tobacco 

The pBIN19-derived vectors pTSWV NSM-A and NSM-B were introduced into A. 

tumefaciens strain LB4404 (Ditta ef a/., 1980) by triparental mating, using pRK2013 

(Horsch ef a/., 1985) as a helper plasmid. N. tabacum var. SR1 plants were transformed 

and regenerated as described by Horsch and co-workers (1985). 

Immunocytochemistry 

Both transgenic N. tabacum plants expressing the TSWV NSM protein as well as non-

transgenic tobacco plants were used for immunocytological analyses at electron 

microscopy level. Leaf samples were fixed in 2% (w/v) paraformaldehyde/ 0.01% 

glutaraldehyde (w/v) in phosphate citrate buffer, dehydrated, imbedded in London Resin 
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Gold at -25°C and UV-polymerized. Ultrathin sections were made and processed for 

immunogold labeling using antiserum against the NSM protein (Van Lent et al., 1990; 

Kormelink et al., 1994). Specimens were examined using a Philips CM 12 electron 

microscope. 
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Chapter 9 

SUMMARY AND CONCLUDING REMARKS 

Over the past two decades tomato spotted wilt virus (TSWV) has become increasingly 

important as a pathogen in many crops. This can be attributed to intensified world trade 

and concomitant spread of one of the most important vectors of the virus, the thrips 

Frankliniella occidentalis. Moreover, this vector species has become resistant to most 

insecticides. Efforts using conventional breeding to include resistance into major crops 

generally are laborious and time-consuming, and moreover, suitable sources of natural 

resistance against TSWV are very limited. Alternative strategies for conferring virus 

resistance to plants are therefore urgently needed. 

The main topic of the research described in this thesis concerns the development and 

improvement of transgenic resistance in crop plants against tomato spotted wilt virus 

(TSWV) and related tospoviruses. From previous investigations it was known that 

resistance against TSWV could be obtained by expressing the nucleoprotein (N) gene 

of the virus in transgenic tobacco plants. In the initial hypothesis, the observed 

resistance was attributed to the expressed viral protein. In contrast to this general theory, 

however, plants expressing the highest amounts of protein were not most resistant. In 

Chapter 3 evidence is presented that the expression of the viral N protein in transgenic 

plants is not essential for resistance, since expression of a translationally defective N 

gene RNA results in plants with identical resistance phenotypes, indicating a novel, RNA-

mediated, form of resistance. 

The specificity of this RNA-mediated resistance appeared to be high and was only 

functional against the homologous virus (TSWV), not against the related tospoviruses 

TCSV and GRSV. By simultaneous expression of the three nucleoprotein genes from 

these viruses, it was demonstrated that it is possible to introduce a broad resistance 

against tospoviruses by expressing multiple sequences from a single insertion in the 

genome (Chapter 4). 

To answer the question whether any part of the TSWV genome is capable of inducing 

RNA-mediated resistance in transgenic plants and thereby further expanding the possible 
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use of tospoviral sequences for transgenic resistance, a large array of viral genome parts 

was expressed in transgenic plants. This proved to be successful only when sequences 

derived from the previously mentioned N gene and the viral movement protein gene, 

NSM, were used as transgenes (Chapter 5). In contrast, all other parts of the TSWV 

genome, when expressed in transgenic plants, did not induce resistance, suggesting 

gene-specific resistance induction (Chapter 6). More detailed studies revealed that 

nuclear transcription rates of transgenes in resistant and susceptible plants differed 

considerably, while their steady state cytoplasmic RNA levels were the same. This 

suggested that the expressed sequences were actively broken down in resistant plants 

by a mechanism that could also degrade incoming viral RNAs (with sequences identical 

to the transgene). This mechanism is similar to the "co-suppression" phenomenon 

observed in other transgenic plants where endogenous genes could be silenced by 

transgenes. By studying the effect of virus inoculation on protoplasts it appeared that 

virus replication could be blocked in N gene transgenic protoplasts, whereas this was not 

observed in protoplasts isolated from NSM transgenic plants. Considering these plants 

are resistant at the tissue level, this implies inhibition of virus transport. Differences in 

resistance mechanisms at the cellular level support the explanation that the resistance 

specifically operates on the (N or NSM) mRNA level in the respective transgenic plants 

(Chapter 7). 

In Chapter 8 it is shown that transgenic expression of viral proteins can have 

unwanted side-effects, that are nonetheless informative for the biochemical activity and 

function of the expressed protein. Plants expressing the NSM protein to detectable levels 

showed aberrations in growth, probably as a result from specific accumulation of this 

transgenically expressed protein in plasmodesmata, cytoplasmic channels connecting 

neighbouring cells. Specific association of this protein with plasmodesmata gave further 

evidence that this protein is involved in cell-to-cell transport of the virus, and moreover 

that part of the typical TSWV symptoms may be attributed to this protein. 

Some of our preliminary data have shown that RNA-mediated resistance can compete 

with - and even beat - the scarcely available sources of natural resistance. Transgenic 

tomato plants expressing N gene sequences were challenged with a TSWV isolate 

capable of overcoming a natural source of resistance (Sw-5) in tomato (kindly provided 
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by Dr. G. Thompson, Pretoria, South Africa). It was shown that despite the capacity to 

break natural resistance genes in tomato plants, this TSWV isolate was unable to infect 

transgenic plants. Anticipating the breaking of transgenic resistance by mutant TSWV 

isolates, transgenic resistance provides a more flexible approach when compared to 

natural resistance, since genes derived from future resistance-breaking isolates can be 

swiftly and efficiently used to breed a new generation of resistant plants. 

Exploiting transgenic resistance based on co-suppression-like RNA-mediated 

resistance as described in this thesis, minimizes chances of unwanted genetic exchange 

between transgenes and incoming viruses. First of all, no transgenic protein is produced, 

and second, the produced transgenic RNA is rapidly broken down already in the 

transgenic plant cell, reducing any possible recombination to the utmost minimum. 

In conclusion, forms of transgenic resistance as described in this thesis, provide a 

useful tool to combat tospovirus diseases in crop plants in the future. 
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SAMENVATTING 

Gedurende de afgelopen twee decennia is het tomatenbronsvlekkenvirus (Engels: 

tomato spotted wilt virus, TSWV) in toenemende mate belangrijk geworden als 

pathogeen van veel land- en tuinbouwgewassen. Dit kan onder andere worden 

toegeschreven aan geïntensiveerde wereldhandel en de daarmee samenhangende 

verspreiding van één van de belangrijkste vectoren van het virus, de trips Frankliniella 

occidentalis, die bovendien resistent is geworden tegen de meeste bestrijdingsmiddelen. 

Pogingen om met gebruik van conventionele veredelingstechnieken resistentie te 

verkrijgen in belangrijke gewassen zijn in het algemeen arbeidsintensief en tijdrovend, 

bovendien zijn er bijzonder weinig geschikte bronnen van natuurlijke resistentie tegen 

TSWV beschikbaar. Alternatieve strategieën voor het verkrijgen van virusresistentie zijn 

daarom dringend nodig. 

Het hoofdonderwerp van het onderzoek beschreven in dit proefschrift betreft de 

ontwikkeling en verbetering van transgene resistentie in landbouwgewassen tegen het 

tomatenbronsvlekkenvirus en verwante tospovirussen. Uit voorgaand onderzoek was 

gebleken dat resistentie tegen TSWV verkregen kon worden door het nucleoproteïne (N) 

gen van TSWV tot expressie te brengen in transgene tabaksplanten. Aanvankelijk was 

de hypothese dat de waargenomen resistentie gebaseerd was op transgene expressie 

van het virale eiwit. In tegenstelling tot de algemene theorie bleek echter dat planten met 

de hoogste eiwitexpressie niet het meest resistent waren. In hoofdstuk 3 wordt 

aangetoond dat de expressie van het virale eiwit in de plant niet cruciaal is voor 

resistentie, omdat ook de expressie van onvertaalbare RNAs identieke resistentie 

fenotypes bewerkstelligt, wat wijst op een nieuw soort, op RNA gebaseerde, resistentie. 

De specificiteit van deze resistentie bleek hoog te zijn en slechts functioneel tegen het 

homologe virus (TSWV) en niet tegen de verwante tospovirussen TCSV en GRSV. Door 

gelijktijdige expressie van de nucleoproteïnegenen van deze drie virussen werd 

aangetoond dat het mogelijk is brede resistentie te introduceren tegen tospovirussen 

door meerdere sequenties tot expressie te brengen vanaf een enkele insertie in het 

genoom (hoofdstuk 4). 
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Om een antwoord te geven op de vraag of ieder willekeurig deel van het tospovirale 

genoom in staat is om resistentie te induceren, waardoor het mogelijk gebruik van 

tospovirussequenties verder zou worden uitgebreid, werd een verzameling van virale 

cDNA klonen, die samen 70% van het virale genoom omvatten, tot expressie gebracht 

in transgene planten. Opvallend genoeg bleken alleen sequenties van het eerder 

genoemde N gen en het gen coderend voor het virale transporteiwit, NSM (hoofdstuk 5), 

in staat transgene resistentie te induceren en alle overige sequenties niet (hoofdstuk 6). 

Nader onderzoek gaf aan dat de kerntranscriptieactiviteit van het virale transgen 

aanmerkelijk hoger was in resistente planten ten opzichte van gevoelige planten, terwijl 

cytoplasmatische RNA concentraties vergelijkbaar waren. Dit suggereert dat tot 

expressie gebrachte transgene RNA sequenties actief worden afgebroken in resistente 

planten door een mechanisme dat ook in staat is binnendringende virale RNA moleculen 

(die dezelfde sequentie hebben) af te breken. Dit is vergelijkbaar met het "co-suppressie" 

fenomeen dat is aangetroffen in planten waarin expressie van (endo)genen kon worden 

stilgelegd door expressie van identieke transgenen. Door het effect van virusinoculatie 

op protoplasten te bestuderen bleek dat virusvermeerdering werd geblokkeerd in N gen 

transgene protoplasten, terwijl dat niet het geval was in protoplasten geïsoleerd uit NSM 

transgene planten. Dat deze laatste planten toch resistent zijn duidt op een blokkering 

van virustransport op weefselniveau. De verschillen in resistentiemechanismen op 

cellulair niveau ondersteunen de verklaring dat de resistentie specifiek gericht is tegen 

virale (N of NSM) boodschapper RNAs in de respectievelijke transgene planten 

(hoofdstuk 7). 

Hoofdstuk 8 geeft aan dat transgene expressie van virale genen ook ongewenste 

verschijnselen kan veroorzaken, die niettemin informatief kunnen zijn over de 

biochemische activiteit en functie van het tot expressie gebrachte eiwit. Planten die NSM 

eiwit tot meetbare hoeveelheden aanmaakten bleken altijd groeiafwijkingen te vertonen, 

waarschijnlijk als gevolg van specifieke ophoping van dit eiwit in plasmodesmata, de 

cytoplasmatische verbindingskanalen tussen aangrenzende cellen. Deze specifieke 

associatie gaf nieuwe aanwijzingen voor de functie van dit eiwit in het transport van het 

virus en gaf bovendien aan dat een deel van de typische TSWV symptomen kan worden 

toegewezen aan dit eiwit. 
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De mogelijke doorbreking van de transgene resistentie kan in de toekomst niet 

worden uitgesloten, maar in dit geval kunnen genen van dit resistentie doorbrekende 

isolaat gebruikt worden om snel en efficiënt een nieuwe generatie resistente transgene 

planten te produceren. 

Het gebruik van transgene resistentie gebaseerd op het induceren van 

(virus)specifieke RNA afbraak in transgene planten, zoals beschreven in dit proefschrift, 

minimaliseert de kans op ongewenste interacties tussen transgene planten en infectieuze 

virussen. Ten eerste wordt geen transgeen eiwit geproduceerd en ten tweede wordt het 

transgene RNA al in de plant actief afgebroken, waardoor mogelijke recombinaties tot 

het absolute minimum worden beperkt. 

Samenvattend kan gezegd worden dat vormen van transgene resistentie zoals 

beschreven staan in dit proefschrift een bruikbaar instrument vormen om 

tospovirusziekten in landbouwgewassen in de toekomst te kunnen bestrijden. 
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