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1. In hun lijst van mogelijke scenario's voor de anaërobe afbraak van propionaat 

onder sulfaatrijke condities vergeten Uberoi en Bhattacharya het scenario dat in de 

anaërobe waterzuiveringsreactor van de papierfabriek te Eerbeek lijkt op te treden, 

namelijk de afbraak van propionaat door syntrofen en sulfaatreduceerders en de 

afbraak van acetaat en waterstof door sulfaatreduceerders en methanogenen. 
Dit proefschrift, hoofdstuk 7 

Uberoi V, Bhattacharya SK (1995) Interactions among sulfate reducers, acetogens, and 

methanogens in anaerobic propionate systems. 

2. De stelling van McCartney en Oleszkiewicz dat sulfaatreduceerders in anaërobe 

reactoren waarschijnlijk alleen competeren met methanogenen voor het aanwezige 

waterstof, omdat acetaatafbrekende sulfaatreduceerders nog nooit uit anaëroob slib 

waren geïsoleerd, was correct bij indiening, maar achterhaald bij publicatie. 
Oude Elferink SJWH, Maas RN, Stams AJM (1993) Characterization of a newly isolated 

"Desulfobacterium " species, enriched with acetate from an Upflow Anaerobic Sludge Bed 

(UASB) reactor. Bioengineer.l:48. 

McCartney DM, Oleszkiewicz JA (1993) Competition between methanogens and sulfate 

reducers: effect of CODisulfate ratio and acclimation. Water Environ. Res. 65:655-664. 

3. Identificatie van Methanospirillum hungatei in korrelslib met behulp van 

transmissie electronenmicroscopie (TEM) blijft twijfelachtig, ondanks de goed 

gedocumenteerde celkenmerken van M. hungatei. 
Fang HHP, Li YY, Chui HK (1995) Performance and sludge characteristics of UASB 

process treating propionate-rich wastewater. Wat. Res. 29:5-895-898. 

4. Het ontdekken van een nieuwe bacteriesoort is geen kunst, het isoleren en 

karakteriseren wel. 
Amann R, Ludwig W, Schleifer K-H ( 1994) Identification of uncultured bacteria: A 

challenging task for molecular taxonomists. ASM News 60:360-365. 

5. Het aantal sulfaatreduceerders in de mond hoeft, zeker gezien hun fermentatieve 

eigenschappen, niet gelimiteerd te worden door het beschikbare sulfaat. 
Van der Hoeven JS, Van den Kieboom CWA, Schaeken MJM (1995) Sulfate-reducing 

bacteria in the periodontal pocket. Oral Microbiol. Immunol. 10:280-290. 

6. Zelfs de meest gecompliceerde methanogene reactor is slechts een vereenvoudigde 

versie van de pens. 
Van Soest PJ (1994) Nutritional Ecology of the ruminant. 2nd ed. Cornell University Press, 

Ithaca, USA. 



7. Met geloof en vertrouwen is niets mis, zolang het maar niet blind is. 

8. Leuk wetenschappelijk onderzoek voldoet aan dezelfde criteria als een leuk spel. 

Het bevat evolutie en tempo, het is een combinatie van kunde (of behendigheid) en 

toeval, succes kan worden toegeschreven aan eigen briljantie en mislukking aan 

domme pech. 

9. De observatie van Prof. Dr. Andreasen dat succesvol schrijverschap is gerelateerd 

aan depressie, alcoholisme en manische depressiviteit, geeft geen positief beeld 

van AIO's die probleemloos een perfect proefschrift schrijven. 

N. Andreasen. In: De Volkskrant, 4 Oktober 1997. 

10. Natuurreservaat "De Blauwe Kamer" is een mooi stukje groene ruimte. 

11. Met de hondsdagen is het gewoonlijk geen hondeweer. 

12. Vele handen maken wellicht werk. 

13. Een nadeel van sluipverkeer is dat het, anders dan de naam doet vermoeden, vaak 

met grote snelheid voorbij raast. 

14. Netwerken is net werken. 

15. Een slimme meid houdt niet van voorkeursbeleid. 

Stellingen behorend bij het proefschrift: 

"Sulfate reducing bacteria in anaerobic bioreactors. " 

Stefanie J. W.H. Oude Elferink, Wageningen, 22 mei 1998. 



Nature, to be commanded, must be obeyed. 

Sir Francis Bacon 

Aan mijn ouders 
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1. INTRODUCTION 

Since the 1970's the full-scale application of anaerobic wastewater treatment has increased rapidly 

[108,110,134,254]. This interest in anaerobic wastewater treatment was partly due to the increasing 

energy prices and for the other part due to the more stringent legislation for the discharge of 

industrial wastewaters. Contrary to anaerobic wastewater treatment systems, conventional aerobic 

systems demand high energy inputs for aeration, and large amounts of surplus sludge are produced 

during the purification process [196]. A break-through in the application of anaerobic wastewater 

treatment systems came with the development of several new anaerobic reactor types with 

immobilized biomass, e.g. the Upflow Anaerobic Sludge Bed (UASB) reactor [109-111], the 

Fluidized Bed reactor [72,88] and the Anaerobic Filter [254,255]. These reactor types have been 

reviewed by others [71,88,108,196]. The system with the widest application is undoubtedly the 

UASB reactor [110]. At present more than 400 full-scale UASB reactors are in operation for the 

treatment of industrial wastewaters [223]. In the UASB reactor an uncoupling of the solids retention 

time and the hydraulic retention time is achieved by the immobilization of anaerobic bacteria into 

highly active, well-settleable sludge granules [80,109,111], 

Municipal sewage and industrial wastewaters from e.g. sugar-refineries, beer-breweries, potato-

processing factories and slaughterhouses, which contain sulfate concentrations of only about 50-200 

mg/1, are treated satisfactorily in UASB reactors. However, problems may arise when wastewaters 

are treated which contain high concentrations of sulfate or sulfite. Some industrial wastewaters, e.g. 

wastewaters from edible oil industry, paper mills and patato-starch factories, may contain sulfate 

concentrations of several grams per liter [172,173,253], as a result of the use of sulfuric acid, a very 

concentrated and relatively cheap strong acid, or sulfite, a bleaching agent, in production processes. 

During anaerobic treatment of these wastewaters sulfate reduction will interfere with 

methanogenesis. Occurrence of sulfate reduction has several disadvantages: 1) sulfate reducers and 

methanogens compete for substrates resulting in a decrease of methane production [172], 2) sulfide 

is inhibitory for several types of anaerobic bacteria [74,75,100,197], 3) H2S gas is toxic and 

malodorous and can cause corrosion problems in boilers and internal combustion engines [172], and 

therefore it has to be removed from the biogas, 4) sulfide-containing effluents of anaerobic reactors 

can not be discharged at the surface water, because sulfide contributes to the oxygen demanding 

capacity of the water and because of malodor problems. Therefore, a post-treatment of the 

anaerobically purified wastewater will become essential. 

In general occurrence of sulfate reduction in anaerobic bioreactors is undesirable due to the 

problems associated with the process. However, besides the disadvantages, there are also some 

advantages of the occurrence of sulfate reduction: 1) sulfate reduction can be used together with 
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sulfide removal techniques as a biotechnological method for the removal of sulfate 

[29,78,123,188,207], 2) metal-sulfides have extremely low solubilities, a property which can be 

used to precipitate toxic heavy metals, such as Co, Ni, Pb and Zn [46,123,135], 3) problems with 

the anaerobic treatment of sulfite-containing wastewater can be solved by the reduction of sulfite to 

sulfide [173,140]. 

The following introduction will first describe how microbiological processes in mesophilic 

bioreactors are affected by the presence of sulfate. Special attention will be given to the mutualistic 

and competitive interactions between the anaerobic bacteria involved in the degradation of short-

chain fatty acids. Subsequently classical and more advanced techniques for the characterization of 

the microbial sludge biomass will be presented. Finally an outline of the thesis is given. 

2. ANAEROBIC DEGRADATION OF ORGANIC MATERIAL 

2.1 Methanogenic bioreactors 

In methanogenic bioreactors the mineralization of organic material to methane and carbon dioxide 

is accomplished by the concerted action of various metabolic groups of bacteria, as is presented in 

Fig. 1 [61,183]. Biopolymers like carbohydrates, proteins, nucleic acids and lipids are first 

hydrolyzed to mono- and oligomers, and then fermented to products which can be used by 

methanogens directly (acetate, hydrogen, formate) and to reduced organic compounds like 

propionate, butyrate, long-chain fatty acids, alcohols, lactate and succinate. The higher fatty acids 

are anaerobically oxidized by acetogenic bacteria to acetate, C02, hydrogen and formate. Lactate 

and ethanol can be oxidized to acetate by acetogenic bacteria. However, these compounds can also 

be fermented to e.g. acetate and propionate [105,182]. Succinate can be decarboxylated to 

propionate [35,59,184]. In the last stage acetate, formate and hydrogen are converted by 

methanogenic bacteria [183,256,258]. 

Volatile fatty acids are known to be important intermediates in the degradation of organic matter 

under methanogenic conditions. About 70% of the reducing equivalents formed in the anaerobic 

digestion process is transferred via acetate to methane [61]. The importance of propionate and 

butyrate is dependent on the type of digester and the nature of the organic compounds. The 

complete oxidation of propionate and butyrate can account for 20 to 43% of the total methane 

formation [119,120]. 

Most of the reactions carried out by the acetogenic bacteria are highly endergonic at standard 

conditions (Table 1). However, these reactions become exergonic when the H2-partial pressure is 

kept low, as is the case by syntrophic consortia of acetogens and hydrogenotrophic methanogens 
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[38,183]. In natural ecosystems, steady-state H2-partial pressures between 6 and 400 Pa have been 

measured [259]. Syntrophic consortia of acetogenic and methanogenic bacteria grow slowly and 

often they are sensitive to changes in the environmental conditions. Syntrophic degradation and the 

role of interspecies hydrogen transfer in the oxidation of fatty acids has been reviewed [38,183,200]. 

It is possible that in the acetogenic reactions as given in Table 1 not hydrogen but formate is 

formed. In that case formate will be the compound via which reducing equivalents are shuttled from 

the acetogen to the methanogen. Evidence for a role of formate transfer in syntrophic degradation 

was reported [19,40,216]. It was calculated that in suspended cultures the distance between the 

bacteria is too large to explain the conversion rates by a diffusion of hydrogen [19,40,151]. 

However, there is also evidence that in reactors with dispersed or granular sludge the syntrophic 

partners are close enough together to explain the measured degradation rates by hydrogen transfer 

[55,57,58,83,192], and formate transfer is not essential for syntrophic degradation of propionate and 

butyrate [190]. In some cases, the occurrence of formate transfer even can be excluded, because 

methanogens were present which are able to use hydrogen but not formate [2,107,126,202]. Because 

relatively little is known about the growth characteristics of sulfate reducers on formate, this 

introduction is mainly focused on hydrogen. 

Table 1. Acetogenic and methanogenic reactions, and sulfate-reducing reactions involved in the 
degradation of organic matter in methanogenic bioreactors, and sulfate-reducing bioreactors, 
respectively. 

Syntrophic Acetogenic reactions 
Propionate" + 3 H20 
Butyrate" + 2 H20 
Lactate" + 2 H20 
Ethanol + H20 

Methanogenic reactions 
4 H2 + HCO3- + H+ 

Acetate" + H20 

Sulfate-reducing reactions 
4 H2 + S04

2" + H+ 

Acetate" + S04
2" 

Propionate" + 3/4 SO/" 
Butyrate" + 'A S04

2" 
Lactate" + lA S04

2" 
Ethanol + Vi S04

2" 

- Acetate" + HC03' + H+ + 3 H2 

- 2 Acetate" + H+ + 2 H2 

- Acetate" + HC03" + H+ + 2 H2 

- Acetate" + H+ + 2 H2 

- CH4 + 3 H20 
- CH4 + HCO3-

- HS" + 4 H20 
- 2 HCO3" + HS" 
- Acetate' + HC03" +

 3/4 HS" + % H+ 

- 2 Acetate" + 'A HS" + Vi H+ 

- Acetate" + HC03" + V2 HS" + Vi H+ 

- Acetate" + V2 HS" + lA H+ + H20 

AG0'" 
[kJ/ 

+ 
+ 
-
+ 

-
-

-
-
-
-
-
-

mol] 

76.1 
48.3 
4.2 
9.6 

33.9 
31.0 

38.1 
47.6 
37.7 
27.8 
80.0 
66.4 

* AG°'-values are taken from Thauer et al. [215]. 
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2.2 Sulfidogenic bioreactors, competition of sulfate reducers with methanogens and 

acetogens 

When sulfate is present in the wastewater sulfate-reducing bacteria are able to couple the oxidation 

of organic compounds and hydrogen to sulfate reduction. Compared with methanogens, sulfate-

reducing bacteria are very diverse in terms of their metabolic possibilities. The physiology of 

sulfate-reducing bacteria has been reviewed extensively [239-242]. Some of the reactions which can 

be carried out by sulfate-reducing bacteria in anaerobic bioreactors are presented in Table 1. Both 

autotrophic and heterotrophic growth on hydrogen or formate is possible. The classical 

Desulfovibrio sp. require acetate as a source of carbon, whereas e.g. Desulfobacterium sp. can use 

C02 as the sole source of carbon [241,242]. Many sulfate-reducing bacteria degrade propionate and 

butyrate; some oxidize these fatty acids completely to carbon dioxide, whereas others oxidize these 

compounds only to acetate. Other compounds which can be completely or incompletely degraded 

by sulfate reducers are branched and long-chain fatty acids, ethanol and other alcohols, organic 

acids (lactate, succinate, malate) and aromatic compounds like benzoate, catechol, phenol, indole, 

aniline [239,242]. Even compounds without a functional group such as toluene and alkanes can be 

degraded by sulfate reducers [1,16,161]. 

The anaerobic degradation process can become very complex in the presence of sulfate (Fig. 1), 

because sulfate reducers will compete with methanogens for compounds such as formate and 

hydrogen, and with acetogens for compounds like propionate and butyrate [32]. Kinetic properties 

of sulfate reducers, methanogens, and acetogens can be used to predict the outcome of the 

competition for these common substrates [101,113,176,186]. For bacteria growing in suspension, 

Monod kinetic parameters such as the half-saturation constant (KJ and the specific growth rate 

(,umax) can be used. When bacterial growth is negligible, as is often the case in reactors with a dense 

biomass concentration, Michaelis-Menten kinetics may be used to predict which type of organism 

has the most appropriate enzyme systems to degrade substrates. Therefore, both the V^/K,,, and the 

,umax/Ks ratio gives an indication of the outcome of competition at low substrate concentrations 

[176]. Selected kinetic data of methanogens and sulfate reducers for hydrogen and acetate are listed 

in Tables 2 and 3. Based on these data the competition between sulfate reducers and methanogens 

for hydrogen and acetate, can partly be explained, as will be discussed in par. 2.2.1 and 2.2.2. 

Another important factor in the competition sulfaat reducers, methanogens and acetogens is the 

chemical oxygen demand (COD)/sulfate ratio of the wastewater [64], because this ratio determines 

which part of the organic material (based on g COD) can be maximally degraded via sulfate 

reduction. In theory all organic material can be degraded via sulfate reducion if the COD/sulfate 

ratio (g/g) is below 0.66 (mol COD/mol sulfate <0.5). If the COD/sulfate ratio (g/g) is above 0.66, 
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sulfate reducers will not only have to compete with methanogens and acetogens for the available 

substrate, but also with other sulfate reducers for the available sulfate. 

sulfate 
reduction 

( 

H2, C02 

Sof 

COMPLEX BIOPOLYMERS 
(proteins, carbohydrates, lipids) 

hydrolysis 

Y 

MONOMERS 
(sugars, aminoacids, etc.) 

/ fermentation fermentation \ 

• 

INTERMEDIARY PRODUCTS 

(Propionate, butyrate, ethanol, etc.) 

\ ^ methanoge 

\\acetogenesis 

nesis X 

1 CH4, C02 | 

\u-V Jl 

ACETATE 

H 2 \ 

SO4-

- y 

- • 

-> 

) 

sulfate 
reduction 

Figure 1. Anaerobic degradation of organic compounds in the presence of sulfate. 

2.2.1 Competition for hydrogen. 

Studies with sediments and sludge from bioreactors have indicated that at an excess of sulfate 

hydrogen is mainly consumed by sulfate reducers [3,13,77,86,87,113, 124,159,174,247]. In reactors 

with immobilized biomass the activity of hydrogenotrophic methanogens is completely suppressed 

file:////acetogenesis
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within a few weeks when sulfate is added [225]. As hydrogenotrophic methanogens are still present 

in high numbers in the sludge, this effect can not simply be explained by Michaelis-Menten or 

Monod kinetic data (Table 2). It has to be assumed that reactors operate at the threshold value for 

hydrogen of methanogens, and that hydrogenotrophic sulfate reducers have a lower threshold for 

hydrogen. In freshwater sediments a threshold hydrogen concentration of 1.1 Pa has been measured; 

this value was lowered to 0.2 Pa by the addition of sulfate [113]. The effect of threshold values is 

illustrated in Figure 2. 

An alternative explanation for the rapid suppression of methanogenesis is that hydrogen formation 

is not important any more. In the absence of sulfate, acetogenic bacteria form hydrogen during the 

the oxidation of compounds such as lactate, alcohols, propionate and butyrate. In the presence of 

sulfate, all these compounds can be oxidized directly by sulfate reducers without the intermediate 

formation of hydrogen. This explanation can not be the only one because some hydrogen will 

always be formed by fermentative glucose- and amino acid-degrading bacteria. 

100-

75-

50-

25-

0.6-

0A-

0.2-

0-

^^-—-^^suifate reducer 

^-- ' 'metr ianogen 

/ 

/ ^ ^ 

) 1 2 

100 200 300 
PH [Pa] 

Figure 2. Kinetics of hydrogen oxidation by sulfate-reducing bacteria and methanogens. Insert: 
Treshold values for hydrogen oxidation. Kinetic data were taken from [176] and the threshold 
values from [113]. 
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Table 2. Selected growth kinetic data of hydrogenotrophic sulfate-reducing bacteria and methanogenic 
bacteria. 

Bacterial strain 

Sulfate reducers 

Desulfovibrio 
desulfuricansi 

vulgaris* 
strain DG2 
strain G i l 
strain PS 1 

Desulfobacter 
hydrog'enophilus 

Desulfobacterium 
autotrophicum 

Desulfobulbus 
propionicusb 

Desufomicrobium 
escambium 

Methanogens 

Methanobacterium 
btyantii 
formicicumb 

ivanovii 
Methanobrevibacter 

arboriphilus* 
smithii 

Methanococcus 
vannielii 

Methanospirillum 
hungatei 

strain BD 
strain PM 1 
strain PM2 

Methanosarcina 
barken* 
mazei 

Ks 
G.M) 

2.4-4.2 

5.8-7.3 

Hmax 
(l/day) 

1.6-4.3 
0.7-5.5 

1.2-1.6 

1.0 

0.7-1.1 

0.2-1.7 

1.4 

0.3-1.9 
1.2-3.1 
0.8-1.7 

0.7-3.4 
4.1 

4.1 

1.2-1.8 
2.4-2.8 

1.4-1.8 
1.4-1.7 

Yield" 
(g/mol H2) 

1.9 
0.6-3.1 

1.4-2.0 

0.6 
0.9 
1.1 

0.6-1.3 

0.3-0.5 

1.6-2.2 

^ 
(UM) 

1.8-4.0 
1.3-4.0 
1.4 
1.1 
0.7 

2 
14 

6.6 

5.0 

2.5 
4.1 

13 

V 
max (p.mol/min.g) 

88 
30 
23 
65 
65 

70 

90 
6.5 

110 

Reference 

22,33,92,136,176 
11,12,22,114,139,176 
176 
176 
176 

238 

27 

136,246 

187 

9,89,175 
9,181,250 
12,89 

9,10,101,260,261 
9 

9 

176,9 
250 
176 
176 

9,176,193,235 
250 

"The yield is given in gram cell dry weight per mol. When only yprolein was given, we assumed Ypn 

0 S*Y 
"• - ' 1 cell diy weight' 
bSeveral strains. 
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2.2.2 Competition for acetate 

It has been shown that in marine and freshwater sediments acetate is mainly consumed by sulfate-

reducers when sufficient sulfate is present [13,113,195,247]. However, for anaerobic digesters it is 

less clear how acetate is degraded. A complete conversion of acetate by methanogens, even at an 

excess of sulfate, has been reported [77,86,87,159,174,220,221,225,253]. However, in some studies 

a predominance of acetate-degrading sulfate reducers was found [3,62,172,224]. Some factors 

which may affect the competition between sulfate reducers and methanogens are discussed below. 

Table 3. Selected growth kinetic data of acetotrophic sulfate-reducing bacteria and methanogenic 
bacteria 

Bacterial strain 

Sulfate reducers 

Desulfobacter 
curvatus 
hydrogenophilus 
latus 
postgatei* 

strain AcKo 
Desulfotomaculum 

acetoxidans 

Methanogens 

Methanosarcina 
barker? 
mazeib 

Methanosaeta 
soehngeniih 

concilii 
strain MTAS 
strain MTKO 

"The yield is given in 
0 $*¥ 
v.~> L cell dry weight" bSeveral strains. 

Affinity for acetate 

Ks 
(mM) 

5.0 

0.5 

gram cell dry 

r-max 
(1/day) 

0.79 
0.92 
0.79 
0.72-1.11 
0.55 

0.65-1.39 

0.46-0.69 
0.49-0.53 

0.08-0.29 
0.21-0.69 
0.37 
0.38 

Yield' 
g/mol ac.) 

4.3-4.8 

5.6 

1.6-3.4 
1.9 

1.1-1.4 
1.1-1.2 

K . 
(mM) 

0.07-0.23 

3.0 

0.39-0.7 
0.84-1.2 
0.49 
1.17 

V 
max (Hmol/min.g) 

53 

38 
16 
85 
49 

weight per mol. When only Y' ta was given 

Reference 

238 
238 
238 
23,85,186,244 
238 

243 

186,193,194,234,252 
250,252 

81,145,217,257 
145,154,217 
145,147 
145,147 

, we assumed YfMxja = 

Work of Schönheit et al. [186] has indicated that the predominance of Desulfobacter postgatei in 

marine sediments could be explained by its higher affinity for acetate than Methanosarcina barken. 

The K,,, values were 0.2 and 3.0 mM, respectively (Table 3). However, in bioreactors 

9 
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Methanosarcina sp. are only present in high numbers when the reactors are operated at a high 

acetate concentration or operated at a low pH [57]. Generally, Methanosaeta (former Methanothrix, 

[155]) sp. are the most important aceticlastic methanogens in high-rate bioreactors [26,57,80,99, 

118,131,144]. Methanosaeta sp. have a higher affinity for acetate than Methanosarcina sp.; their K, 

is about 0.4 mM [91]. In addition, D. postgatei is a typical marine bacterium which has not yet been 

isolated from freshwater sources. The aceticlastic sulfate reducers that prefer freshwater conditions, 

such as Desulfoarculus baarsii [237], Desulfabacterium catecholicum [209], and Desulfococcus 

biacutus [156] show very poor growth with acetate. Only Desulfobacterium strain AcKo and 

Desulfotomaculum acetoxidans show good growth with acetate under mesophilic conditions (see 

Table 4). Unfortunately no K, or K,,, values are available for these bacteria. 

Seed sludge 

Another factor which should be taken into account is that for most reactor experiments 

methanogenic seed sludge was used. In such sludge aceticlastic methanogens are present in high 

numbers, whereas the initial numbers of aceticlastic sulfate reducers will be low. In UASB reactors 

the sludge retention time can be as high as 0.5-1 year [80], Therefore competition experiments may 

be hampered by the long time which may be needed for one type of bacterium to outcompete others. 

This is especially the case if the initial numbers of the competing bacteria are low, or if the growth 

kinetic properties are only slighty better compared to others. Visser et al. [225] have simulated the 

competition between sulfate-reducing bacteria and methanogens using a biomass retention time in 

the reactor of 0.02 day"1, a maximum specific growth rate of 0.055 and 0.07 per day for the 

methanogen and sulfate-reducing bacterium, respectively, a K,. value for acetate of 0.08 and 0.4 mM 

acetate, respectively, and different initial ratios of bacteria [225]. Starting with a ratio of 

methanogens/sulfate reducers of 104, it will take already one year before the numbers of acetate-

degrading sulfate-reducing bacteria and acetate-degrading methanogens are equal. 

Nevertheless, long-term UASB reactor experiments of Visser [223] showed that sulfate reducers are 

able to outcompete methanogens for acetate, even if the seed sludge initially only contains low 

numbers of aceticlastic sulfate reducers. In his acetate and sulfate fed UASB reactor it took 50 days 

before acetate degradation via sulfate reduction was observed, and another 50 days to increase it to 

10%. The shift from 50 to 90% of acetate degradation via sulfate reduction took approximately 400 

days. 

Utilization of other substrates 

Methanosaeta can only grow on acetate, whereas Methanosarcina can use a few other substrates 

besides acetate, like hydrogen, methanol and methylated amines [20,91]. Aceticlastic Desulfobacter 

sp. also use a limited range of substrates; solely hydrogen, acetate and ethanol provide good growth 
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[238]. However, Desulfotomaculum acetoxidans uses a wide range of substrates such as, formate, 

acetate, butyrate, isobutyrate, butanol, and ethanol [245]. It is not clear to which extent D. 

acetoxidans can grow mixotrophically. During growth on butyrate, isobutyrate, ethanol or butanol 

acetate is even excreted [245]. However, if at low concentrations acetate and other substrates are 

used at the same time the outcome of the competition between Methanosaeta and D. acetoxidans for 

acetate will be affected. Gottschal and Thingstad [56] described a model in which it is shown that 

during competition on mixtures of substrates in continuous cultures not only the specific growth 

rate determines the outcome of a competition, but also the yield on the different substrates. 

The sulfate concentration 

At low sulfate concentrations the growth of the sulfate-reducing bacteria will be sulfate limited. 

Also under conditions of high sulfate concentrations, sulfate limitation of the biomass in the 

anaerobic digester may occur due to mass transfer limitation of sulfate into the biofilm or the sludge 

granule. Thus far insufficient data are available to predict sulfate concentration profiles in biofilms. 

However, Nielsen [142] reported that sulfate limitation could already occur in a biofilm of a few 

hundred ßm. thick when the sulfate concentration in the bulk solution was below 0.5 mM. 

Under sulfate-limiting conditions aceticlasic sulfate reducers will have to compete with other sulfate 

reducers for the available sulfate. Laanbroek et al. [106] experimented with three bacterial strains, 

Desulfobacter postgatei, Desulfobulbus propionicus and Desulfomicrobium baculatum in sulfate-

limited chemostats. They found that D. baculatum was the most successful competitor for limiting 

amounts of sulfate, followed by D. propionicus and then by D. postgatei. The K,,, for sulfate of D. 

postgatei is 200 /uM [85], a value which is much higher than the reported K, and Km values for 

several Desulfovibrio strains (5-77 ßM) [84,139,148]. The affinities for sulfate of Desulfobacter 

strain AcKo and Desulfotomaculum acetoxidans are not known. However, if these species sp. have 

a higher K̂  value than other sulfate reducers, one might speculate that limiting amounts of sulfate 

would result in an oxidation of compounds like hydrogen, formate and butyrate by sulfate-reducing 

bacteria, while acetate is used by the aceticlastic methanogens. 

Competition for sulfate between sulfate-reducing bacteria could explain the results obtained in 

studies with sulfate-limited reactors, where acetate seemed to be the least favoured substrate for 

sulfate reduction, compared to propionate, butyrate and hydrogen [130,219,225]. 

The effect of pH 

Insufficient data are available to predict the effect of the pH on the competition for acetate between 

sulfate reducers and methanogens. Visser et al. [226] showed that at 55 CC a high pH favors acetate 

degradation via sulfate reduction, whereas methanogenesis was favored at a low pH. The effect of 

the pH on the competition between the bacteria can also be indirect. An example is the pH 
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dependence of the toxicity of compounds such as sulfide (as discussed below) or ammonia. 

Toxicity of sulfide 

Sulfate reduction results in the accumulation of sulfide. Sulfide is most toxic in its undissociated 

form, because the neutral molecule can permeate the cell membrane [185]. The pK^-value of the 

dissociation equilibrium of H2S is about 7 at 18°C [233]. Consequently, small pH variations in the 

optimal pH range (6-8) for anaerobic digestion can cause great changes in the degree of inhibition. 

In addition, the concentration of free H2S in the reactor fluid is largely affected by the rate of biogas 

production. A high rate will result in an increased transfer of H2S to the gas phase. The effect of 

sulfide on methanogenesis has been studied extensively, but relatively little attention has been paid 

to the inhibition of sulfate reducers by sulfide. McCartney and Oleszkiewicz [124] found that 

sulfate-reducing bacteria are more sensitive to an increase in the total sulfide concentrations than 

methanogens. Values for the free H2S concentration at which methanogenesis was inhibited for 50% 

vary between 50 mg to 270 mg H2S/1 [94,100,102,124,149]. For sulfate reduction a value of 85 mg 

H2S/1 was reported [124]. A linear correlation between the free F^S concentration and the maximum 

specific aceticlastic methanogenic activity was found between pH 6.4 and 7.2, but between pH 7.8 

and 8.0 the aceticlastic methanogenic activity correlated better with the total sulfide concentration 

[100]. Studies of Visser [223] showed that acetate-degrading sulfate reducers and acetate-degrading 

methanogens were equally inhibited by sulfide at pH values between 7 and 7.5. Fifty percent 

inhibition of the acetate degradation rates as well as the growth rates was obtained at ca. 500 ml/1 

total sulfide. At higher pH values (>8) the acetate-degrading methanogens were significantly more 

inhibited by the total sulfide concentration than the sulfate reducers. Besides a direct toxic effect of 

sulfide, the precipitation of essential metal ions could also lead to a decrease of the metabolic 

activity [168]. However, it was shown that sulfate-reducing bacteria are inhibited directly by H2S 

[167,168]. A complete inhibition of the growth of a Desulfovibrio sp. was achieved at a free H2S 

concentration of 550 mg/1 at a pH of about 6.5. 

The effect of temperature 

Visser et al. [227] found that under mesophilic conditions acetate is rapidly degraded by sulfate 

reducers when the inoculum is pretreated at 65 °C. This could indicate that methanogens are more 

sensitive to temperature increases than sulfate reducers. 

Immobilisation of bacteria 

The principle of modern high rate anaerobic reactors is based on the ability of anaerobic bacteria to 

immobilize into sludge granules or onto solid particles. Bacteria with poor adherence properties are 

washed out of the reactor. Therefore, the competition between the different bacteria will also be 
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determined by the immobilisation properties of the bacteria. Isa et al. [86,87] investigated the role of 

the attachment capacity of sulfate-reducing bacteria and methanogenic bacteria in an anaerobic filter 

reactor fed with acetate or acetate and ethanol, and operated at an excess of sulfate. They showed 

that sulfate-reducing bacteria were poor competitors of methanogenic bacteria for acetate, and 

ascribed this to the superior capability of methanogens to colonize the support material of the 

anaerobic filter. However, their experimentation was criticized [172] because the observed superior 

colonization of the methanogenic bacteria was based on viable cell counts which for immobilized 

bacteria has only a limited accuracy, and on a wrong interpretation of the activity tests. There is 

now even evidence that acetotrophic sulfate-reducing bacteria are well able to attach to solid 

particles and to grow in sludge granules [3,224]. 

2.2.3 Competition for propionate and butyrate 

In anaerobic reactors with high sulfate concentrations, sulfate-reducing bacteria compete with 

acetogenic bacteria for substrates like propionate and butyrate. Little is known about this 

competition. For wastewater with an excess of sulfate it is to be expected that sulfate-reducing 

bacteria become predominant, because of their better growth kinetic properties (Table 4). It is 

obvious that at high sulfate concentrations, sulfate-reducing bacteria grow much faster than the 

syntrophic consortia. Almost no K̂  and K,,, values for propionate and butyrate degradation have 

been reported. Therefore, a comparison of the growth of syntrophic cultures and sulfate reducers at 

low substrate concentrations is not possible. The existence of two subpopulations of propionate 

oxidizers in methanogenic sludge was reported [73], a fast-growing with a ,umax of 1.2 day"1 and a Kg 

of 4.5 mM, and a slow-growing with a higher affinity (A£max of 0.13 day' and a K,. of 0.15 mM). 

Several researchers investigated the competition for propionate and butyrate between sulfate 

reducers and acetogens in anaerobic reactors. However, since mass balances were used to determine 

this competition [3,159,224,225], no destinction can be made between a direct oxidation of 

propionate and butyrate by sulfate reducers or an indirect conversion, whereby the fatty acids are 

oxidized to acetate and hydrogen by the acetogenic bacteria followed by hydrogen conversion via 

sulfate reduction. In this respect it is interesting to mention that sulfate reducers keep the hydrogen 

partial pressure lower than methanogens, and that propionate- and butyrate-degrading acetogens 

grow much faster in coculture with hydrogen-consuming sulfate reducers than with hydrogen-

consuming methanogens [18,126]. Therefore, the reported critical role of sulfate reducers in 

mediating propionate and butyrate degradation [3,64,121,124,130,159,224,225] may be that of a 

hydrogen consumer rather or that of a direct propionate or butyrate oxidizer. 
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Table 4. Specific growth rates (1/day) of sulfate-reducing bacteria and of acetogenic bacteria in 
cocultures with hydrogenotrophic methanogens/sulfate reducers, growing on butyrate or 
propionate. 

Butyrate-degrading strains 

Desulfoarculus baarsii 
Desulfobacterium autotrophicum 
Desulfococcus multivorans 
Desulfotomaculum acetoxidans 
Desulfotomaculum strain Grol 11 

Syntrophomonas sapovorans 
Syntrophomonas wolfei 
Syntrophospora (Clostridium) bryantii 
sporeforming strain FMS2 
sporeforming strain FSS7 
non-sporeforming strain FM4 
non-sporeforming strain Bl 

Propionate-degrading strains 

Desulfobulbus elongates 
Desulfobulbus propionicus" 
Desulfococcus multivorans 

Syntrophobacter strain MPOB 
Syntrophobacter pfennigii 
Syntrophobacter wolinii 
culture PT 
culture PW 

Sulfate-reducing 
culture 

0.4 
0.67-1.11 
0.17-0.23 
1.11 
1.2-1.3 

1.39 
0.89-2.64 
0.17-0.23 

0.02 
0.07 
0.06 

0.23 

Syntrophic 
coculture 
-sulfate + sulfate 

0.6 
0.2 0.3 
0.25 
0.31 

0.34 
0.24 
0.1 

0.15-0.17 
0.07 
0.02-0.10 0.18-0.21 
0.1 
0.14 

Reference 

180 
27 
206 
245 
103 

178 
41,126,127 
205,250,268 
269 
269 
269 
128 

179 
136,204,246 
206 

66,104,201 
41,232 
18,41,231 
250 
250 

"Several strains. 

Recent findings of Harmsen et al. [67] seem to support the direct propionate oxidation by sulfate 

reducers. They followed the population dynamics of propionate-oxidizing bacteria in two UASB 

reactors, inoculated with mefhanogenic sludge, and fed with either propionate and sulfate, or 

propionate only. In the first reactor the number of Desulfobulbus sp. increased rapidly, and in the 

seGOnd reactor the number of syntrophic propionate oxidizers. It seems unlikely that Desulfobulbus 

acted as an hydrogen scavenger in the first reactor, although Desulfobulbus sp. are able to use H2 as 

well as propionate [241], because no syntrophic propionate oxidizers were enriched in this reactor, 

and all Desulfobulbus cells were localized on the ouside of the granule, not intertwined with other 

bacteria. 
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2.3 Competition between sulfate reducers and acetogens in the absence of sulfate 

The role of sulfate-reducing bacteria in the anaerobic digestion in the absence of sulfate has hardly 

been investigated. Yet, recent studies showed that sulfate reducing bacteria can be present in 

methanogenic sludge to upto 15% of the total biomass [164]. It is known that several types of 

sulfate-reducing bacteria have fermentative or syntrophic capacities. Widdel and Hansen [242] gave 

an overview of the fermentative and syntrophic growth of sulfate-reducing bacteria. Growth of 

sulfate reducers in the absence of sulfate could explain the fast response of methanogenic 

ecosystems to the addition of sulfate. Some substrates which can be fermented by sulfate reducers 

are pyruvate [44,82,157,203,246], lactate [205,246], ethanol [105,204], fumarate and malate 

[129,203,210], fructose [150], serine [203], choline [48], acetoin and S-l,2-propanediol [210] and 

propanol + acetate [211]. Sulfate reducers can also grow as acetogens in the absence of sulfate. 

Desulfovibrio sp. oxidize ethanol or lactate to acetate when co-cultured with methanogens 

[28,125,212,218,251]. It has been reported that Desulfovibrio sp. were the main lactate and ethanol-

degrading bacteria in a reactor treating whey in the absence of sulfate [31,267]. However others 

reported that only in the presence of sulfate Desulfovibrio sp. were the dominant lactate degraders. 

In the absence of sulfate lactate was fermented according to the usual fermentation pattern of 

Propionibacterium [159]. Syntrophic formate degradation has been reported for Desulfovibrio 

vulgaris in association with Methanobacterium bryantii [63], and a Desulfovibrio like organism 

could syntrophically degrade alcohols like 1,3-butanediol, 1,4-butanediol, 1-butanol and 1-propanol 

in the presence of 10 mM acetate and Methanospirillum hungatei [210]. 

The role of sulfate-reducing bacteria in propionate degradation becomes more intricate by the recent 

work of Wu et al. [249,250]. They were the first to report that the syntrophic conversion of 

propionate was mainly performed by sulfate-reducing bacteria, and they were able to isolate such an 

organism [250]. This indicates that in the absence of sulfate certain propionate-degrading sulfate-

reducing bacteria are able to oxidize propionate in syntrophic association with H2-consuming 

anaerobes, while in the presence of sulfate they couple propionate oxidation to sulfate reduction. 

This represents a considerable ecological advantage of this type of sulfate-reducing bacteria over 

obligate syntrophic propionate degraders in ecosystems where sulfate is continuously or 

intermittently available. 

Recently several other bacteria have been isolated which are also able to degrade propionate either 

via sulfate reduction or syntrophically, namely Syntrophobacter pfennigii KoProp [201,232], strain 

HP 1.1 [262], and strain Syn7 [66]. Furthermore, two other strains, which already had been isolated 

and had been previously characterized as syntrophic propionate degraders, namely Syntrophobacter 

strain MPOB [66,104,201], and Syntrophobacter wolinii [18,41,231], were also able to grow in pure 

cultures with propionate and sulfate. For S. wolinii this finding is very remarkable because S. 
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wolinii grows as an acetogen in the presence of Desulfovibrio Gl 1 [18,132]. Phylogenetic research, 

based on 16S rRNA sequences, showed that some of these "facultative syntrophic" propionate 

degraders (Syntrophobacter strain MPOB, S. pfennigii, S. wolinii, stain HP1.1, and strain Syn7) are 

belonging to the group of gram-negative sulfate reducers [66,68,70,232,262]. 

Thus far, growth of sulfate-reducers on butyrate in the absence of sulfate but in the presence of 

methanogens was not yet demonstrated. However, Desulfovibrio sp. were detected in a fixed bed 

reactor fed with butyrate without sulfate [264,265]. 

2.4 The microbial sludge composition 

From the information presented above general conclusions about the effect of sulfate in bioreactors 

can be drawn. At an excess of sulfate the better growth kinetic properties of the sulfate reducers 

compared with methanogens and methanogenic consortia should enable the sulfate reducers to 

become predominant. However, specific environmental conditions in the bioreactors are of 

significant importance in this respect. A complete suppression of sulfate reduction at high 

COD/sulfate ratios is difficult to achieve because hydrogen oxidation by methanogens is easily 

taken over by sulfate reducers. However, a complete reduction of sulfate at low COD/sulfate ratios 

is difficult to achieve as well. This because acetate-degrading methanogens are not easily 

outcompeted by sulfate reducers. Futhermore the occurrence of sulfate reduction at limiting 

amounts of sulfate is intriguing because competition among the different types of sulfate reducers 

occurs as well, and several types of sulfate reducers have the ability to grow fermentatively or 

acetogenically. 

Overall it is clear that, in order to get a more detailed insight in the role of sulfate reducers, 

acetogens and methanogens in anearobic bioreactor, it is essential to combine reactor competition 

studies with the characterization of the microbial sludge composition. Some tools which are 

nowadays available for scientists to study the microbial sludge composition will be presented in the 

following paragraph. 

3. CHARACTERIZATION OF MICROBIAL BIOMASS 

3.1 Conventional methods 

Several methods exist to characterize (and quantify) the microbial sludge composition. 

Conventional sludge characterization methods are often based on selective growth media. The Most 

probable Number (MPN) technique for example is a technique in which serial sludge dilutions are 
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inoculated in selective liquid media. By assuming that single cells will grow in the highest dilutions, 

the number of a certain group of microorganisms in the sludge can be estimated [15]. This method 

can give very useful information on bacteria that are present in the sludge in high numbers, and are 

able to grow on artificial media. However, it should be kept in mind that many bacteria cannot be 

cultivated in artificial media. Futhermore this method will underestimate the number of 

microorganisms if the microorganisms are attached to solid substrates or are associated to each 

other, like threaded bacteria such as the methanogenic Methanosaeta sp. [236]. Another group of 

microorganisms which will probably be underestimated with this technique are bacteria which grow 

in syntrophic consortia, like propionate or butyrate-degrading acetogens, because their syntrophic 

partner might for example not be present in the same high numbers. Some researches have 

circumvented this problem with syntrophic propionate and butyrate degraders by adding a 

hydrogen-scavenging methanogen to the MPN-dilution medium [225,250]. 

Substrate conversion rates are also often used for microbial sludge characterization. In wastewater 

treatment plants these rates are usually related to overall sludge parameters such as amount of 

volatile suspended solids or dry weight. These calculated rates give valuable information on the 

maximum possible metabolic activity of the different microbial groups. Unfortunately, they cannot 

be used for the identification or quantification of the microorganisms in the sludge [45,250], and it 

is very questionable if the rates which have been otained with sludge from a certain reactor can be 

applied in other systems, with different reactor operating conditions (e.g. pH, temperature) [14]. 

Direct microscopical analyses have always played an important role in the characterization of 

sludge and biofilms. With some techniques a direct visualization of the sludge is possible, others 

require fixation and staining of the sludge prior to examination. The major drawback of most 

microscope techniques is the fact that the identification of microbes is usually based upon cell 

morphology only, which for most bacteria is not very distinctive. An exception are methanogens, 

since they can be identified with epifluorescence microscopy by detecting the factor F420-

dependent autofluorescence [37]. However some methanogens, like Methanosaeta do not exhibit 

autofluorescence [39]. 

Recently, Surman and coworkers [208] have compared the applicability of several light, 

fluorescence, and electron microscopy techniques such as scanning and transmission electron 

microscopy (SEM and TEM), atomic force microscopy (AFM), and confocal laser scanning 

microscopy (CLSM) for the examination of microbial biofilms. Their conclusion was that no one 

technique was unequivocally better than another. All techniques had their special advantages and 

disadvantages, and the most accurate picture of the true biofilm structure and composition can be 

obtained by combining as many techniques as available. That such a "combined microscopic 

approach" can provide a lot of information has been shown by Zellner and coworkers [263], who 

used SEM, phase contrast microscopy and epifluorescence microscopy of methanogens to study 
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biofilm formation in anaerobic fixed bed reactors. 

Despite their limitations, conventional microbial identification techniques based on isolation, 

cultivation and morphology, have been, and still are, useful for a rough characterization of the 

microbial sludge population. However, for detailed characterization studies direct identification 

methods for microorganisms are essential. Fortunately, in the past decades, such methods have 

become available. These new methods allow a direct identification of microorganisms in the sludge 

by using for example specific antibodies, biomarkers, or nucleic acid probes. 

3.2 Immunodetection 

Immunodetection techniques are based on the fact that bacterial surface cell wall polymers such as 

proteins and lipopolysaccharides have strong antigenic properties which can be used to raise 

antibodies. These antibodies, which are often highly specific, can be produces by injecting rabbits 

or other experimental animals with bacterial cells (polyclonal antibodies). If these antibodies are 

labelled with a fluorescent dye or gold, in combination with respectively fluorescence or electron 

microscopy, they can be used for the specific detection of bacteria. For detailed information about 

the technical apects see Harlow and Lane [65]. Many immunodetection studies have been focussing 

on methanogenic Archaea in anaerobic bioreactors [58,99,115-117,177]. Some other 

microorganisms which have also been succesfully identified in anaerobic sludge are Pseudomonas 

stützen [266], and Clostridium aldrichii [24]. Immunodetection techniques can also be applied for 

the identification of sulfate reducers [189,191]. Fluorescein-labelled antibodies were for example 

used to detect sulfate reducers in marine sediments [112]. However, to our knowledge, these 

immunoprobes for sulfate reducers have not been applied in extensive sludge characterization 

studies. 

Quantification of microorganisms in multilayered biofilms has long been impossible, because it was 

difficult to ensure that the antibodies reacted with all antigens in the biofilm. Recently, Bauer-

Kreisel and coworkers [14] were able to circumvent this difficulty by combining mechanical and 

chemical treatments with an enzyme-linked immunosorbent assay (ELISA) for the quantification of 

Dehalospirillum multivorans in a anaerobic reactor biofilm. 

Immunodetection is certainly a very powerful tool for the identification of microorganisms in 

sludge, it is rather easy to use, inexpensive, and it can be very specific. Furthermore, fluorescently 

labelled antibodies can be used elegantly in combination with flow cytometry to sort viable cells 

from mixed microbial communities [34], Nevertheless it should be taken into account that 

antibodies can cross-react with other non-related strains [116,191]. 
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3.3 Membrane lipid analysis 

Another approach for studying the microbial sludge composition is the identification of 

microorganisms by analysing bacterial components which are specific for individual species. 

Membrane lipids and their associated fatty acids have been used extensively in this respect [60,153]. 

Bacteria (eubacteria) can be characterized by the patterns of their methylated phospholipid ester-

linked fatty acids, known as (PL)FAME-patterns or PLFA profiles. Methanogens are characterized 

via their phospholipid-derived ether lipids (PLEL). Although FAME-patterns are often very useful 

for the characterization of unknown bacterial isolates [21], they are not always suitable for the 

characterization and quantification of microbial sludge biomass. Especially microorganisms which 

lack signature lipid biomarkers will be difficult to distinguish in the sludge profile [170]. 

Furthermore, the detection method is not very sensitive, and therefore microbes which are present in 

lower numbers are beyond detection. Moreover, environmental conditions (e.g. growth substrate 

and temperature) can cause major changes in the microbial FAME-pattern [21,34], which makes an 

accurate quantification of the microbial sludge populations very difficult. Nevertheless, lipid 

analysis have been succesfully applied for the identification [143] and quantification [146] of 

methanogens in natural environments and wastewater digester sludges. Lipid compositions of 

sulfate reducers have also been studied extensively [43,47,98,170,213,222], and PLFA profiles have 

been used to identify (and quantify) sulfate reducers in (marine) sediments [170,214], and biofilms 

[42]. 

3.4 Ribosomal RNA based detection techniques 

3.4.1 Ribosomal rRNA as biomarker 

Without doubt ribosomal RNA (rRNA) based detection and identification methods have become 

extremely important in the unravelling of the microbial composition of sludge from wastewater 

treatment systems. Ribosomes are present in all living organisms, and are essential in protein 

systhesis. Prokaryotic ribosomes consist of three rRNA molecules and approximately 50 ribosomal 

proteins. The 5S rRNA (120 nucleotides) forms together with the 23S rRNA (2900 nucleotides) and 

ca. 30 proteins the 50S large-subunit of the ribosome. The 16S rRNA (1540 nucleotides) and 

approximately 20 proteins form the 30S small-subunit of the ribosome. The rRNAs are encoded by 

an operon, which was first characterized in Escherichia coli by Brosius et al. [25]. The number of 

opérons per chromosome varies between microorganisms from 1 copy (e.g. mycoplasmas) upto 10 

copies (bacilli) [8,90]. The number of ribosomes in the cell is proportional to the growth rate 

[52,95-97,158]. Starving or slowly growing cells contain only low numbers of ribosomes 
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[49,50,54]. Sequence analysis has revealed that ribosomal RNA and the corresponding genes are 

very suitable as (evolutionaty) biomarkers [152], because rRNA molecules are extremely 

conservative in overall structure. Their nucleotide sequence contains highly conserved as well as 

highly variable regions (Fig. 3). Furthermore, RNA molecules have a relative high copy number per 

cell (103-105), and lateral gene transfer of rRNA genes has never been reported. 16S and 23S rRNA 

molecules are especially suitable as biomarkers because they contain sufficient sequence 

information to perform statistically significant comparisons. 

Figure 3. Secundary structure model of 16S rRNA. Adapted from Neefs et al. [137]. The variable areas 
are distinguised by VI to V9. Conserved areas are indicated with bold lines, areas of variable 
sequence and/or length are indicated with thin lines. Helices drawn in broken lines are only 
present in few known sequences. 
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Currently, more than 5000 complete or partially complete 16S rRNA sequences are available [79] in 

the major databases (i.e. GenBank [17], EMBL [169], RDP [121]). 

Ribosomal RNA sequence analysis has had a major impact on our current view of the microbial 

evolution, which nowadays relies for a large part on the comparative and statistical analysis of 

rRNA sequences [248]. Phylogenetic trees based on alignments of 16S rRNA's reveal the enormous 

biodiversity within the prokaryotes, and additionally they suggest that all living organisms can be 

devided into three domains, the Archaea, the Bacteria and the Eukarya (Fig. 4). 

Bacteria Archaea Eucarya 

Animals 

Plants 
Ciliates 

Thermotogales 

Flagellates 

Trichomonads 

Microsporia ia 

Diplomonads 

Figure 4. Rooted phylogenetic tree representing the three domains Bacteria, Archaea and Eukarya 
(taken from Woese [248]). 

3.4.2 rRNA-targeted oligonucleotide probes 

During recent years several identification methods based on rRNA sequences have been developed. 

Some of these methods which can be used for the analysis of the microbial sludge composition are 

depicted in Figure 5. One of these methods is hybridization with rRNA-targeted oligonucleotide 

probes [4,198]. Oligonucleotides are short single stranded oligomers of 15 to 40 nucleotides. They 

can be made chemically by a DNA synthesizer in any desired sequence. The oligonucleotide probes 

sequence has to be complementary to the target sequence (e.g. a 16S rRNA molecule) in order to 

hybridize with it. 
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Figure 5. Strategies based on rRNA sequences for the characterization of sludge microbial 

communities, adapted from Amann et al. [5], and Hugenholz and Pace [79]. RT, reverse 

transcriptase; DGGE, denaturing gradient gel electrophoresis; RFLP, restriction fragment 

length polymorphism. 

The 16S rRNA oligonucleotide hybridization method is most commonly used for sludge 

characterization. For this, oligonucleotide probes, which have been previously labelled (e.g. 

radioactive 32P, fluorescent dye) are used for the specific detection of microorganisms. The best 

probe hybridization will be obtained when all nucleotides bind to the target. One or more 
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mismatches weaken the binding. Under optimal probe incubation conditions only probes which 

perfectly match and hybridize with the target can be made visible. The probes can be applied after 

extraction of the 16S rRNA from the sludge (dot blot hybridization), or can be used in situ in 

combination with fluorescent microscopy, or scanning confocal laser microscopy. 

The major advantage of oligonucleotide hybridization methods over other hybridization methods 

(e.g. immunolabelling) is the fact that the probe specificity can be controlled. Species-specific 

probes can be designed by targeting the most variable regions of the 16S rRNA, while more general 

probes (group/genus) are complementary to the more conserved regions of the 16S rRNA [199]. 

Various groups of microorganisms have been detected (and quantified) with 16S rRNA 

hybridization probes in biofilms and sludge, such as sulfate reducers [7,67,69,93,162,164,166, 

methanogens [67,69,162-164,166] syntrophic propionate oxidizers [67,69], ammonia-oxidizing 

bacteria [230], Acinetobacter [229], and Paracoccus [139]. The most timeconsuming part of the 

16S rRNA hybridization method is the development of probes and the evaluation of their 

specificity. This explains why detailed sludge characterization studies are still hampered by the lack 

of suitable probes. Fortunately, the number of probes suitable for sludge studies still increases. In 

Table 5 a collection of 16S and 23S rRNA probes are presented which can be used in research with 

anaerobic sludge. 

3.4.3 Polymerase chain reaction (PCR) amplification ofrRNA-genes 

With the polymerase chain reaction (PCR) amplification method a few target 16S rDNA genes can 

be amplified to make them detectable and quantifiable [53]. The selection of the PCR primers 

determines which 16S rRNA genes and which part of the 16S rRNA gene will be amplified. By 

combining non-specific PCR primers with cloning and sequence analysis techniques it is possible to 

get information about the microbial sludge composition. For example Ng and coworkers [141] 

applied the PCR technique in combination with 16S rRNA sequencing to identify a whole range of 

anaerobic digester bacteria. If selective primers are used it is possible amplify 16S rRNA-genes 

from specific groups of microorganisms present in the sludge. Hiraishi and coworkers [76] used for 

example PCR amplification with methanogen-specific primers in combination with cloning, and 

restriction fragment length polymorphism analysis to identify the methanogenic population in 

anaerobic sludge, while Voytek and Ward [228] used PCR primers selective for ammonium-

oxidizing bacteria. 
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Table 5. Selection of oligonucleotide probes useful for the microbial characterization of anaerobic 
sludge. 

Probe 

Univl392 

BACTERIA 

EUB338 
ALFlb 
ALF73a 
BET42a 
GAM42a 
SRB385 
SRB385Db 
D687 
D660 
D804 

MPOB1 
MPOB2 
KOP1 
S223 

ARCHAEA 

ARC915 
EURY498 
MG1200 
MS821 
MX825 
MCI 109 
MB1174 

Target group 

Virtually all known organisms 

Bacteria 
Proteobacteria a-subclass' 
Proteobacteria a-subclass1 

Proteobacteria ß-subclass 
Proteobacteria T-subclass 
Gram-neg. mesophilic sulfate reducers2 

Desulfobacteriaceae2 

Desulfovibrio* 
Desulfobulbus 
Desulfobacterium, Desulfobacter, 
Desulfosarcina, Desulfococcus, Desulfobotulus 
Syntrophobacter strain MPOB, Syntrophobacterpfennigii 
Syntrophobacter strain MPOB 
Syntrophobacter pfennigii 
Syntrophobacter wolinii 

Archaea 
Euryarchaeota 
Methanomicrobiaceae and relatives 
Methanosarcina 
Methanosaeta 
Methanococcales 
Methanobacteriaceae 

Reference 

152 

6 
122 
122 
122 
122 
6 
160 
36 
36 
36 

68 
68 
68 
67 

199 
30 
165 
165 
165 
165 
165 

'Probe ALF73a only reacts with part of the alpha-subclass and probe ALFb is not specific only for the 
alpha-subclass [122]. 
2Several non-target organism share the target sequence of this probe [7,160], while some target organisms 
have one or more mismatches with the probe. 
3This probe also hybridizes to a few organisms in the Pelobacter/Geobacter/Desulfuromonas lineage [164]. 

To circumvent the cloning technique it is also possible to separate the PCR products with 

denaturing gradient gel electrophoresis (DGGE) or temperature gradient gel electroporesis (TGGE). 

With these electrophoresis techniques DNA fragments of the same length, but with different 

nucleotide sequences can be separated. The separation of the amplified 16S rRNA genes is based on 

the difference in melting temperatures of the amplified genes and the slower mobility of partially 

melted amplified fragments in comparison to the intact fragments. By using these electrophoresis 
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techniques in combination with selective PCR amplification before electrophoresis, or specific 

DNA probes after electrophoresis, complex microbial populations can be studied [133]. The 

combination of DGGE and specific DNA probes has for example been used to reveal the presence 

of sulfate reducers in anaerobic sludge [133]. The PCR method is a powerful tool for identifying 

microorganisms in sludge. However, if PCR is used for the quantification of microorganisms in the 

sludge or for the elucidation of the microbial sludge composition, it should be taken into account 

that the results can be biased, because the PCR method can preferentially amplify certain 16S rDNA 

molecules. Therefore, 16S rDNA of microbes abundantly present in the sludge could remain 

unamplified [5]. 

3. OUTLINE OF THE THESIS 

The aim of the research presented in this thesis was to investigate the effect of sulfate on the 

presence and activity of sulfate reducers and their acetogenic and methanogenic counterparts in 

sulfate-fed anaerobic bioreactors. 

A key intermediate in the anaerobic degradation of organic material is acetate. In the presence of 

sulfate acetate degradation can proceed either via sulfidogenesis or via methanogenesis. However, 

based on current literature, it is difficult to predict the occurrence of methanogenesis or 

sulfidogenesis from acetate. Therefore, the first part of the thesis has been focused on the 

characterization of acetate-degrading sulfate reducers which are dominantly present in sulfidogenic 

granular sludge. The isolation and characterization of two thus far unknown acetate-degrading 

sulfate reducers, named Desulforhabdus amnigenus and Desulfobacca acetoxidans, is described 

(Chapter 2 and 3, respectively). The growth kinetic properties of these acetate-degrading sulfate 

reducers are compared with those of acetate-degrading methanogens (Chapter 4). While Chapter 5 

describes the isomerisation of butyrate to isobutyrate by Desulforhabdus amnigenus, a property 

which was thus far not described for sulfate reducers. 

The second part of the thesis concerns the microbial sludge composition in sulfate-fed bioreactors. 

Chapter 6 deals with the applicability of PCR amplification and dot blot hybridization for the 

detection and quantification of D. amnigenus in granular sludge. In order to get more insight in the 

effect of the COD/sulfate ratio, and composition of the reactor influent on the microbial sludge 

composition, the presence and role of sulfate reducers, acetogens and methanogens in several 

methanogenic and sulfidogenic sludges is investigated (Chapter 7 and 8). The techniques which are 

used for these sludge characterization studies are 16S rRNA dot blot hybridizations (Chapter 7 and 

8), Most Probable Number (MPN) dilutions (Chapter 7), and phospholipid fatty acid (PLFA) 

analyses (Chapter 8). 
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The results presented in this thesis are summarized in Chapter 9, and the relevance and importance 

of this work for full-scale sulfidogenic reactors is discussed. 
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Abstract From granular sludge of an upflow anaerobic 
sludge bed (UASB) reactor treating paper-mill wastewater, 
a sulfate-reducing bacterium (strain ASRB1) was isolated 
with acetate as sole carbon and energy source. The bac
terium was rod-shaped, (1.4—1.9 x 2.5-3.4 (xm), non-
motile, and gram-negative. Optimum growth with acetate 
occurred around 37° C in freshwater medium (doubling 
time: 3.5-5.0 days). The bacterium grew on a range of or
ganic acids, such as acetate, propionate, and butyrate, and 
on alcohols, and grew autotrophically with H2, C02, and sul
fate. Fastest growth occurred with formate, propionate, and 
ethanol (doubling time: approx. 1.5 days). Strain ASRB1 
clusters with the delta subdivision of Proteobacteria and is 
closely related to Syntrophobacter wolinii, a syntrophic 
propionate oxidizer. Strain ASRB1 was characterized as a 
new genus and species: Desulforhabdus amnigenus. 

Key words Desulforhabdus amnigenus • 16S rRNA • 
Sulfate-reducing bacteria • Upflow anaerobic sludge bed 
(UASB) reactor • Acetate • Wastewater 

Introduction 

Acetate is an important intermediate in the anaerobic 
breakdown of organic matter in methanogenic bioreactors 
(Jeris and McCarty 1965; Smith and Mah 1966; Gujer and 
Zehnder 1983). The two genera of methanogenic Archaea 
known to use acetate as sole energy source are Metha-
nosarcina and Methanosaeta ("Methanothrix") (Whitman 
et al. 1992). Methanosaeta is the dominant acetoclastic 
methanogen in anaerobic habitats with low acetate concen
trations (e.g., anaerobic bioreactors), because of its high 
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affinity and low-threshold value for acetate (Jetten et al. 
1992). In anaerobic reactors treating sulfate-rich waste
waters, such as paper-mill wastewaters or food oil indus
try wastewaters, sulfate-reducing bacteria compete with 
methanogens for acetate. The outcome of this competition 
is not yet clear. In many studies with freshwater or low-
salt systems, acetate conversion via methanogenesis is 
predominant, even with excess sulfate (Isa et al. 1986; 
McCartney and Oleszkiewicz 1991; Visser et al. 1993a). 
However, after long-term operation of the reactors, ac
etate degradation mainly by sulfate reducers has also been 
reported (Alphenaar et al. 1993; Visser et al. 1993b; 
Harada et al. 1994). Factors that affect the outcome of the 
competition between methanogens and sulfate reducers 
have been reviewed by us (Oude Elferink et al. 1994). 

Most of the gram-negative acetate-degrading sulfate 
reducers known prefer marine growth conditions; there
fore, it is unlikely that these bacteria play an important 
role in freshwater anaerobic bioreactors. The gram-nega
tive sulfate reducers that prefer freshwater conditions, 
such as Desulfoarculus baarsii (Widdel 1980), Desul-
fobacterium catecholicum (Szewzyk and Pfennig 1987), 
and Desulfococcus biacutus (Platen et al. 1990) show 
very poor growth with acetate. Only the gram-negative 
Desulfobacter strain AcKo (Widdel 1987) and some gram-
positive Desulfotomaculum species show good growth 
with acetate. However, most of the acetate-degrading 
Desulfotomaculum species prefer enhanced temperatures 
(Widdel 1992; Love et al. 1993). In this paper, we de
scribe the isolation and characterization of a sulfate re
ducer from granular sludge of an upflow anaerobic sludge 
bed (UASB) reactor treating paper-mill wastewater. In this 
reactor, sulfate reduction partially supersedes methano
genesis. The sulfate-reducing bacterium, obtained by di
rect serial dilution of crushed granular sludge in media 
with acetate and sulfate, was present in higher numbers 
than acetoclastic methanogens. 
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Materials and methods 

Source of organisms 

The sulfate-reducing bacterium, strain ASRB1, was isolated from 
the granular sludge of a pilot-scale UASB reactor treating paper-
mill wastewater, in which both sulfate reduction and methanogen-
esis occurred (Pâques Environmental Technology BV, Balk, The 
Netherlands). The wastewater had a chemical oxygen demand 
(COD)/sulfate ratio of 1.1 (g/g) and was treated at approximately 
40° C. The COD (75%) was converted via sulfate reduction; the 
other 25% was converted via methanogenesis. The total COD re
moval efficiency was around 60% (C. J. N. Buisman, personal com
munication). 

Methanospirillum hungatei JF-1 (DSM 864) was obtained from 
the Deutsche Sammlung von Mikroorganismen (Braunschweig, 
Germany). 

Media and cultivation 

A bicarbonate-buffered medium was prepared as described by 
Stams et al. (1993). Unless stated otherwise, bacteria were cultured 
at 37° C in 120-ml serum vials closed with butyl rubber stoppers 
and aluminum crimp seals. The vials contained 50 ml medium and 
a gas phase of 172.2 kPa N2-C02 (80:20, v/v)..The inoculum size 
was 1%. Electron acceptors and donors were added separately by 
syringe from 0.5 or 2.0 M sterile, anoxic stock solutions. Except 
for some heat-labile substrates that were filter-sterilized, all sub
strates were sterilized by heat (20 min, 120° C). For growth with 
H2 as electron donor, the N2-C02 head space was replaced by H2-
C0 2 (80:20, v/v). To test syntrophic growth, exponential-phase 
cells grown on propionate and sulfate (5% inoculum size) were 
cultured together with exponential-phase H2-grown M. hungatei 
cells (10% inoculum size). 

Isolation 

Reactor sludge (10 ml) was diluted with 90 ml basal medium. The 
sludge was disintegrated by pressing it repeatedly through a sy
ringe needle (microlance 25G5/8 0.5 x 16, BBL-Becton Dickin
son, Cockeysville, Md., USA). This crushed granular sludge was 
used to make serial dilutions in liquid media containing acetate and 
sulfate (20 mM each). For each dilution, 5 ml inoculum was added 
to 45 ml medium. The highest dilutions that showed growth were 
used for further isolation. Pure cultures were obtained by repeated 
application of the agar roll-tube-dilution method as described by 
Hungate (1969). To check purity, isolates were inoculated into me
dia with 0.1% yeast extract (BBL-Becton Dickinson), fumarate, 
pyruvate, or glucose as substrates. Additionally, Wilkins-Chalgren 
anaerobe broth (Oxoid, Basingstroke, UK) was used as a test 
medium. After incubation, the cultures were examined microscop
ically. 

Determination of growth parameters 

Growth rates were tested in 1-1 screw-cap bottles with butyl rubber 
stoppers containing 500 ml medium. In most cases, growth was 
followed by measuring substrate utilization and sulfide production. 
Salt tolerance was tested by addition of different amounts of a con
centrated salt solution as described by Widdel and Bak (1992). For 
pH tests, the pH in the media was adjusted by varying the concen
trations of KH2P04-Na2HP04 or NaHC03-Na2CO-, so that the total 
phosphate or inorganic carbon concentration amounted to approx
imately 50 mM. All tests were carried out at least in duplicate. 

Analysis of cell compounds 

Desulfoviridin was determined as described by Postgate (1959). 
Cytochromes were identified in cell extracts by recording reduced-
minus-oxidized difference spectra with a Beekman DU7500 spec
trophotometer. The G+C content of the DNA was determined at 
the DSM (Braunschweig, Germany) by HPLC (Tamaoka and Ko-
magata 1984; Mesbah et al. 1989). DNA was isolated according to 
Cashion et al. (1977). Poly-hydroxybutyrate granules were stained 
with the fluorescent stain Nile blue A (Ostle and Holt 1982). 
Gram-staining was done according to standard procedures 
(Doetsch 1981). 

Chemical analysis 

Most substrates were measured by HPLC as described by Stams et 
al. (1993). Benzoate and indole were measured by HPLC with two 
Chromspher C8 columns (Chrompack, Bergen op Zoom, The Nether
lands) connected in series. The mobile phase was 70% 0.01 N 
H2SO4/30% CH3CN at a flow rate of 0.6 ml/min. The columns 
were used at room temperature. Samples were injected by using a 
Spectra System AS 1000 autosampler, and the eluted compounds 
were quantified with an LKB 2158 Uvicord SD at 206 nm. Hydro
gen, methane, and methanol were determined quantitatively by gas 
chromatography (Stams et al. 1993). Amino acids were analyzed 
as described by Kengen and Stams (1994). Sulfide was determined 
as described by Triiper and Schlegel (1964). The method of Brad
ford (1976) was used for protein determinations in cell-free ex
tracts. 

Enzyme measurements 

All enzyme activities were measured anoxically with anoxically 
prepared cell extracts of cells grown with propionate and sulfate 
and harvested in the late exponential phase. Cell extracts were pre
pared as described by Jetten et al. (1990). Carbon monoxide dehy
drogenase, formate dehydrogenase, and 2-oxoglutarate dehydroge
nase activities were assayed according to Schauder et al. (1986). 

Sequence analysis and phylogenetic tree 

The 16S rRNA gene of strain ASRB1 was amplified selectively as 
described previously (Harmsen et al. 1993), using a set of primers 
corresponding to positions 8-27 (5-CACGGATCCAGAGTTTG-
ATtCArXA/OTGGCTCAG-S') and 1492-1513 (5-GTGCTGC-
AGTACGG(T/C)TACCTTGTTACGACTT-3') of Escherichia coli 
16S rRNA. Amplification products were cloned in M13mpl8. DNA 
sequencing was carried out by the dideoxy chain-termination 
method (Sanger et al. 1977). 

The phylogenetic tree was constructed by Dr. W. Ludwig 
(Technische Universität, Munich). The 16S rRNA gene sequence 
was compared with about 1900 homologous sequences of bacteria 
taken from the ribosomal database project RDP (De Rijk et al. 
1992; Olsen et al. 1992). The position of strain ASRB1 within the 
phylogenetic tree was determined using the maximum parsimony 
approach implemented in the program package ARB (W. Ludwig 
et al., unpublished). The partial tree was based on the result of a 
maximum likelihood analysis (fastDNAml; Larsen et al. 1993) of 
all of the delta subclass, including reference sequences from all 
other bacterial phyla. The topology of this tree was evaluated ap
plying distance matrix, maximum-parsimony, and maximum-like
lihood methods by using the programs NEIGHBOR and DNA-
PARS implemented in PHYLIP (Felsenstein 1982), ARB, and 
fastDNAml. The data sets were changed by successively deleting 
highly variable alignment positions (SEDIS, part of ARB). 
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Results 

Isolation and morphological characterization 

Strain ASRB1 was obtained from 1 x 108-fold diluted, 
crushed granular sludge inoculated in medium with ac
etate and sulfate, and was isolated by repeated application 
of the agar roll-tube-dilution method. In agar, the strain 
grew as brownish, lens-shaped colonies. No formation of 
methane was detected in the highest sludge dilutions (1 x 
107 and 1 x 108) that showed growth. 

Cells of the isolate were non-motile, rod-shaped to el
lipsoidal (1.4-1.9 |xm wide and 2.5-3.4 |Xm long), and ap
peared singly or in pairs. After growth with ethanol, long 
chains of up to 15 cells were observed (Fig. 1). Cells 
stained gram-negative. Spores were never observed. 

Growth and substrate utilization 

The optimum growth temperature for strain ASRB1 on 
acetate was around 37° C. Little growth was observed be
low 25° C or above 45° C. The optimum pH for growth 

A 

was 7.2-7.6; growth was possible between pH 6.6 and 
8.5. Growth in brackish medium was slow (the doubling 
time increased four- to sixfold), and almost no growth was 
observed in marine medium. When vitamins were omitted 
from the media, cultures could be transferred (1% inocu
lum size) at least five times without any growth retarda
tion. 

In the presence of acetate, strain ASRB1 used sulfate 
(20 mM), thiosulfate (20 mM), sulfite (10 mM), or dithio-
nite (1 mM) as electron acceptor. High concentrations of 
sulfite (20 mM) or dithionite (5 mM) inhibited growth. 
Sulfur, nitrate, or fumarate (5 mM each) could not be used 
as electron acceptor with acetate or propionate as electron 
donor. 

The isolate grew chemolithoautotrophically with H2 

and sulfate as energy substrate and C0 2 as sole carbon 
source and grew chemoorganotrophically with a large 
number of organic compounds (Table 1). All substrates 
were oxidized completely to C02 . Complete oxidation of 
acetate (16 mM) led to concomitant formation of 16 mM 
sulfide. With sulfate, an average growth yield of 1.6 g cell 
protein was obtained per mol of acetate oxidized. With 
some substrates, the intermediate formation of acetate and 
propionate was observed (Table 1). During growth on bu-
tyrate (20 mM), an intermediate formation of isobutyrate 
(2 mM) and acetate (18 mM) was observed. Fastest 
growth occurred with formate, propionate, and ethanol 
with a minimum doubling time of about 1.5 days. With 
acetate, doubling times of 3.5-5 days were measured. No 
significant substrate utilization and no methane produc
tion occurred in co-cultures of strain ASRB1 with M. hun-
gatei and propionate or ethanol as substrate. 

• - ' * 

Fig. 1 Phase contrast photomicrograph of strain ASRB 1, grown 
on A acetate or B ethanol. Bar 15 urn 

Table 1 Organic compounds tested as electron donors and carbon 
sources in the presence of 20 mM sulfate. The substrate concentra
tions are given in mM in parentheses 

Utilized: 
H2-C02 (80:20, v/v), formate (20), acetate (20), propionate' (20), 
butyrateb (20), isobutyrate (5), ethanol" (20), propanol' (20), 
butanol' (5), pyruvate (5), lactate' (10) 

Tested, but not utilized: 
Glucose (20), fructose (20), xylose (20), valerate (5), 2-mefhyl-
butyrate (10), 3-methylbutyrate (10), succinate (5), fumarate (5), 
malate (5), oxaloacetate (10), methanol (5). 2,3-butanediol (5), 
glycerol (10), acetone (5), mannitol (10), indole (0.5), catechol 
(2), benzoate (0.5), phenol (0.4), aspartate (5), glutamate (5), 
glycine (5), alanine (5), cysteine (5), leucine (5) 

Tested, but not utilized in the absence of sulfate: 
Ethanol (10), pyruvate (10) 

Tested, but not utilized in co-culture 
with Methanospirillum hungatei: 
Propionate (10), ethanol (10) 

" Intermediate formation of acetate 
b Intermediate formation of acetate and isobutyrate 
c Intermediate formation of acetate and propionate 
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Pigments eind other cell compounds 

Dithionite-reduced versus air-oxidized spectra of cell ex
tracts of ASRB1 exhibited absorption bands with maxima 
at 420, 523, and 552 nm, indicating the presence of c-type 
cytochromes. Desulfoviridin was not detected. The G+C 
content of the DNA was 52.5 (± 0.3) mol%. Large poly-
hydroxybutyrate granules were observed in late-exponen
tial-phase cells grown on acetate, propionate, butyrate, or 
ethanol. 

Key enzymes of acetyl-CoA oxidation 

The specific activities of carbon monoxide dehydrogenase 
and formate dehydrogenase were 0.42 and 0.44 u.mol 
min-' (mg protein)1, respectively. 2-Oxoglutarate dehy
drogenase activity was not detected. 

Phylogenese analysis 

The phylogenetic relationships of strain ASRB1 derived 
from 16S rRNA sequence analysis are depicted in Fig. 2. 
The major groups shown in the tree were supported by the 
vast majority of the analyses. However, a relative branch
ing order for the group with ASRB 1 versus the Pelobac-
ter group and Desulfobulbus could not be unambiguously 
determined. This is indicated by the (near) multifurcation 
of these lines in the tree. The deeper branching of 
Myxobacterium and Desulfovibrio is supported by most of 
the analyses, but not all. Syntrophobacter wolinii is one of 
the closest relatives of ASRB1 (level of similarity, 
93.1%). 

The 16S rRNA gene sequence of strain ASRB1 is de
posited under EMBL accession number X83274. 

Discussion 

Physiology and ecology of the isolated sulfate reducer 

Strain ASRB1 grew on a variety of organic compounds 
that are formed during anaerobic digestion, such as ac
etate, volatile fatty acids, alcohols, formate, and H2/CO2 
(Jeris and McCarty 1965; Gujer and Zehnder 1983). The 
isolation of strain ASRB1 from crushed granular sludge 
using the highest positive dilution of a serial dilution 
range on acetate and sulfate strongly indicates that strain 
ASRB1 is the most abundant acetate-degrading sulfate re
ducer in this sludge. It is possible that acetate degradation 
is not the only activity of strain ASRB 1 in the sludge be
cause growth on several other compounds, such as propi
onate and formate, was much faster than growth on ac
etate. Growth on compounds such as propionate and 
ethanol even led to an intermediate formation of acetate. 
The specific growth rate of ASRB1 (nmax = 0.14-0.20 
day ' ) is comparable to that of most Methanosaeta species 
(|imax = 0.08-0.29 day-1). Methanosaeta species are gener
ally the most important methanogenic acetate degraders in 
anaerobic bioreactors (Jetten et al. 1992; Oude Elferink et 
al. 1994). The high enzyme activity of carbon monoxide 
dehydrogenase and formate dehydrogenase (two key en
zymes of the CO-dehydrogenase pathway), together with 
the absence of 2-oxoglutarate dehydrogenase activity (a 
key enzyme of the citric acid cycle), indicates that strain 
ASRB 1 degrades acetate via the CO-dehydrogenase path
way (Schauder et al. 1986). 

Fig. 2 Distance matrix tree re
flecting the phylogenetic rela
tionships of strain ASRB 1 with 
other sulfate reducers. Only 
alignment positions were used 
that shared identical residues in 
at least 50% of the sequences 
from the representatives of the 
delta subclass of proteobacte-
ria. ßar0.10K.uc 
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Taxonomy 

On the basis of the 16S rRNA sequence analysis, strain 
ASRB1 clusters with the family Desulfobacteriaceae [pro
posed by Widdel and Bak (1992)]. Although strain ASRB1 
is phylogenetically closely related to Syntrophobacter 
wolinii, syntrophic propionate oxidation by strain ASRB 1 
in co-culture with M. hungatei was not observed. Recent 
studies revealed that 5. wolinii is actually a sulfate reducer 
that couples propionate oxidation to sulfate reduction and 
to proton reduction, with the latter process being preferred 
(H. J. M. Harmsen et al., unpublished results; Wallraben-
stein et al. 1994). Two other syntrophic propionate-oxi-
dizing bacteria, strain MPOB and strain KoProp, are also 
closely related to strain ASRB1 and S. wolinii (H. J. M. 
Harmsen et al., unpublished results). 

Although strain ASRB 1 is phylogenetically closely re
lated to S. wolinii and two other syntrophic propionate ox
idizers, its physiology appears to be significantly differ
ent. Therefore, we propose that strain ASRB 1 represents a 
new species of a new genus. We propose Desulforhabdus 
amnigenus gen. nov. sp. nov. 

Genus Desulforhabdus gen. nov. 

De.sul.fo.rhab'dus. L. pref. de from; L. neut. n. sulfur sul
fur; Gr. fern. n. rhabdus rod; M. L. masc. n. Desulforhab
dus rod-shaped sulfate reducer. 

Non-motile, rod-shaped-to-ellipsoidal cells. Sulfate or 
other sulfur compounds, but not elemental sulfur, serve as 
terminal electron acceptor and are reduced to H 2S. Simple 
organic substrates, such as acetate, volatile fatty acids, 
and low-molecular-weight alcohols are completely oxi
dized to C 0 2 via the CO-dehydrogenase pathway. Syn
trophic oxidation of propionate or ethanol was not ob
served. Desulforhabdus belongs to the delta subclass of 
the Proteobacteria; the closest relatives are the syntrophic 
propionate oxidizers Syntrophobacter wolinii, strain MPOB, 
and strain KoProp. 

Desulforhabdus amnigenus sp. nov. 

Am.ni 'ge .nus. L. masc. n. amnis water; L. neut. n. genus 
origin; L. adj. amnigenus coming from water. Cells are 
rod-shaped-to-ellipsoidal, 1.4-1.9 x 2 .5-3 .4 (Xm, occur
ring singly, in pairs, or in long chains. No spore forma
tion. Gram-negative. Cells grow autotrophically with H2, 
C 0 2 , and sulfate. Acetate and other compounds are com
pletely oxidized to C 0 2 . Sulfate, sulfite, thiosulfate, and 
dithionite serve as electron acceptors. The opt imum pH is 
7 .2-7.6; the opt imum temperature is 37° C. Growth is op
timal in freshwater medium. The G+C content of the 
DNA is 52.5 mol%. Habitat is granular sludge from an 
upflow anaerobic sludge bed (UASB) reactor treating sul-
fate-rich wastewater. 
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Desulfobacca acetoxidans gen. nov. sp. nov., a novel acetate-

degrading sulfate reducer isolated from sulfidogenic granular 

sludge. 
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acetoxidans gen. nov. sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic 
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A mesophilic sulfate reducer, strain ASRB2, was isolated with acetate as sole carbon and energy 

source from granular sludge of a lab-scale upflow anaerobic sludge bed (UASB) reactor fed with 

acetate and sulfate. The bacterium was oval-shaped, 1.3 by 1.9 to 2.2 urn, non-motile and Gram 

negative. Optimum growth with acetate occurred around 37°C in freshwater medium (doubling 

time: 1.7-2.2 days). Enzyme studies indicated that acetate was oxidized via the carbon monoxide 

dehydrogenase pathway. Other organic acids, such as propionate, butyrate and lactate, alcohols like 

ethanol and propanol, and hydrogen or formate did not support growth. Sulfite and thiosulfate were 

also used as electron acceptors, but sulfur and nitrate were not reduced. Phylogenetically, strain 

ASRB2 clustered with the delta subdivision of the Proteobacteria. Its closest relatives were 

Desulfosarcina variabilis, Desulfacinum infernum and Syntrophus buswellii. Strain ASRB2 is 

described as a new genus and species, Desulfobacca acetoxidans. 

INTRODUCTION 

Sulfate-reducing bacteria play an important 

role in the degradation of organic matter in 

anaerobic bioreactors treating sulfate-rich 

wastewaters, such as those from paper mills, 

tanneries, or food oil industry (1,2). If 

sufficient sulfate is available, sulfate reducers 

can easily outcompete hydrogenotrophic 

methanogens and syntrophic consortia for 

substrates like hydrogen and propionate (1-3). 

However, the outcome of the competition for 

acetate between sulfate reducers and metha

nogens in anaerobic wastewater treatment 

systems is less clear. In some studies with 

freshwater or low-salt systems, acetate 

conversion via methanogenesis was predomi

nant, even at an excess of sulfate (4-6). Other 

studies report the predominance of acetate 

degradation via sulfate reduction (7-9). Factors 

which could affect the outcome of the 

competition between methanogens and sulfate 

reducers are for example the kinetic properties 

of the bacteria involved, the pH and tempera

ture of the reactor, and the chemical oxygen 

demand (COD)/sulfate ratio of the wastewater 

(1-3). In wastewater with a COD/sulfate ratio 

below 0.67 (g/g) there will be excess of 

sulfate allowing the degradation of all organic 

material via sulfate reduction. 

Acetate is one of the major intermediates in 

the breakdown of organic matter in anaerobic 

bioreactors (10,11). Therefore, it is important 

to know which sulfate reducers can compete 

with the acetoclastic methanogens present in 

the sludge. Although many mesophilic sulfate 

reducers can grow with acetate as sole electron 

donor and carbon source (12,13), only a few 

show good growth with acetate under fresh

water conditions. Among them are the Gram-

positive Desulfotomaculum acetoxidans (14), 

the Gram-negative Desulfobacter strain AcKo 

(15), and the Gram-negative Desulforhabdus 

amnigenus, which was recently isolated from 

granular sludge of an upflow anaerobic sludge 

bed (UASB) reactor treating papermill 
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wastewater (16). In this paper we describe the 

isolation and characterization of a sulfate 

reducer from granular sludge of a lab-scale 

UASB reactor fed with acetate at an excess of 

sulfate. In this reactor sulfate reduction had 

completely superseded methanogenesis after 

one year of reactor operation. 

MATERIALS AND METHODS 

Origin of strain ASRB2. The sulfate-reducing 

bacterium, strain ASRB2, was isolated from 

the granular sludge of a pilot-scale UASB 

reactor (1.7 1) fed with acetate and an excess of 

sulfate. Initially, the reactor was seeded with 

sludge from a 10 1 UASB reactor that had been 

fed with acetate and sulfate for more than two 

years. Detailed characteristics of this seed-

sludge have been described elsewhere (3). The 

reactor influent had a COD/sulfate ratio of 0.6 

(g/g) and was treated at a temperature of 30°C. 

Sludge samples were taken after 6 months and 

1 year of reactor operation. During this 

period acetate degradation via sulfate 

reduction increased from approximately 80% 

to 100%, while degradation via methanoge

nesis decreased from 20% to 0%. 

Media and cultivation. Unless stated other

wise, bacteria were cultured at 37°C in 120-ml 

serum vials containing 50 ml of bicarbonate-

buffered medium, and a gas phase of 172.2 

kPa N2-CO 2(80:20, v/v) as described before 

(16). The inoculum size was 1%. 

Isolation. Granular sludge samples (10 ml), 

taken from the reactor after 6 months and after 

1 year of operation, were 10-fold diluted and 

disintegrated immediately after sampling as 

described previously (16). This crushed 

granular sludge was used to make 10-fold 

serial dilutions in liquid media containing 

acetate and sulfate (20 mM each). For each 

dilution, 5 ml inoculum was added to 45 ml 

medium. The cultures were incubated at 30°C, 

and the highest dilutions which showed growth 

were used for further isolation. Pure cultures 

were obtained by repeated application of the 

agar roll tube dilution method as described by 

Hungate (17). Purity of the isolates was 

checked by microscopic observations and by 

testing anaerobic growth on pyruvate and 

glucose with 0.1% yeast extract (BBL, Becton 

Dickinson, Cockeysville, MD, USA), and on 

Wilkins-Chalgren anaerobe broth (Oxoid, 

Basingstroke, UK). 

Growth experiments. Utilization of carbon 

sources, electron donors, and electron accep

tors were tested in basal bicarbonate-buffered 

medium as described before (16). In most 

cases growth was followed by measuring 

substrate utilization and sulfide production, 

and by visual examination of culture turbidity. 

All tests were performed at a predetermined 

temperature, pH, and salinity allowing optimal 

growth of the isolate (16). 

Analysis of cell compounds. Desulfoviridin 

was detected according to Postgate (18). 
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Cytochromes were identified in cell extracts 

by recording reduced-minus-oxidized dif

ference spectra with a Beekman DU7500 

spectrophotometer, and on sodium dodecyl 

sulfate Polyacrylamide gel (SDS-PAGE gel) 

according to Thomas et al. (19). The G + C 

content of the DNA was determined by HPLC 

at the Deutsche Sammlung von Mikro

organismen und Zellkulturen (DSM, Braun

schweig, Germany). Gram staining was done 

according to standard procedures (20). The 

presence of gas vacuoles was determined by 

microscopic examination of late-exponential 

phase cultures before and after a pressure 

shock treatment in a hypodermic syringe. 

Chemical analysis and enzyme measure
ments. Substrates were measured by HPLC or 

gas chromatography as described by Oude 

Elferink et al. (16). Sulfide was determined as 

described by Triiper and Schlegel (21), and 

protein was measured according to the method 

of Bradford (22). The enzyme activities of 

carbon monoxide dehydrogenase, formate 

dehydrogenase and 2-oxoglutarate dehydro

genase activities were assayed according to 

Schauder et al. (23), using anoxically prepared 

cell extracts (24) of cells grown with acetate 

and sulfate and harvested in the late-

exponential phase. 

Sequence analysis and phylogenetic tree. 
The 16S rRNA-gene of strain ASRB2 was 

selectively amplified as described previously 

(25), using a set of universal 16S rRNA-based 

primers: forward primer (5'CACGGATCCAG-

AGTTTGAT(C/T)(A/C)TGGCTCAG) 

corresponded to positions 8 to 27 of Esche

richia coli 16S rRNA, and the reverse primer 

(5'GTGCTGCAGGGTTACCTTGTTAC-

GACT) corresponded to positions 1493 to 

1510. Amplification products were cloned in 

the pGEMR-T vector according to the 

manufacturers protocol (pGEMR-T Vector 

Systems, Promega, Madison, WI, USA). Plas

mids of the clones were isolated by Wizard 

Plus Minipreps DNA Purifica-tion System 

according to the manufacturers instruction 

(Promega). The inserts were amplified using 

primerset T7 (5'AATACGACTCACTATAG) 

and Sp6 (5'ATTTAGGTGACACTATA). The 

PCR products were sequenced with a LICOR 

4000L sequencer, by using Thermo Sequenase 

fluorescent labelled primer cycle sequencing 

with 7-deaza-dGTP according to the manufac

turers protocols (Amersham, Buckingham

shire, UK). 

The total 16S rRNA gene sequence was 

determined and aligned to those of other 

bacterial sequences, taking into account 

sequence similarity and higher order structure, 

using the alignment tool of the ARB program 

package (26). 

Nucleotide sequence accession number. The 

16S rRNA gene sequence of strain ASRB2 

was deposited under GenBank accession 

number AF002671. 
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RESULTS 

Isolation and morphological characteri
zation. Strain ASRB2 was the dominant 

acetoclastic sulfate reducer in sludge samples 

taken from the reactor after 6 months and 1 

year of operation. The highest sludge dilutions 

(lxlO8 and lxlO9) showing growth on acetate 

and sulfate were used for the isolation of strain 

ASRB2 by a repeated application of the agar 

roll tube dilution method. 

In agar the strain grew in greyish colonies with 

an irregular shape. Cells of the isolate were 

non-motile oval to rod-shaped (1.3 um wide 

and 1.9 to 2.2 um long), and appeared singly 

or in pairs (Fig. 1). Cells stained Gram 

negative. Spores were never observed. Late-

exponential phase or stationary phase cells 

often contained light reflecting inclusions that 

could be destroyed by pressure shock treat

ment, indicating that the inclusions were gas-

vacuoles. 

Growth conditions and substrate utilization. 
The optimum growth temperature for strain 

ASRB2 on acetate and sulfate was between 36 

and 40°C. Little growth was observed below 

27°C or above 47° C. The optimum pH for 

growth was 7.1-7.5; growth was possible 

between pH 6.5 and 8.3. The shortest doubling 

time on acetate was 1.7 to 2.2 days. 

Growth in brackish medium was slow (the 

doubling time increased 4 to 8 times), and no 

growth was observed in marine medium. 

When vitamins were omitted from the media 

cultures could be transferred (1% inoculum 

size) at least 4 times without any growth 

retardation. 

In the presence of acetate, strain ASRB2 could 

use sulfate (20 mM), thiosulfate (20 mM) or 

sulfite (5 mM) as electron acceptor; Sulfur (5 

mM), nitrate (5 mM) or fumarate (10 mM) 

were not used. Strain ASRB2 was specialized 

in the degradation of acetate, and complete 

oxidation of 10 mM acetate led to a con

comitant formation of 9.6 mM sulfide. The 

threshold for acetate was below 15 uM, the 

detection threshold of our gas Chromatograph. 

Compounds tested but not utilized as electron 

donors by strain ASRB2 were: propionate (20 

mM), butyrate (20 mM), lactate (20 mM), H2-

C02 (80:20, v/v) with or without acetate (2 

mM), formate (10 mM) with or without 

acetate (2 mM), ethanol (20 mM), propanol 

(10 mM), butanol (10 mM), pyruvate (20 

mM), fumarate (20 mM), glucose (20 mM), 

crotonate (5 mM), benzoate (1 mM), phenol 

(0.5 mM), aspartate (5 mM), and glutamate (5 

mM). 

The pathway of acetate oxidation was studied 

by enzyme measurements of key enzymes in 

cell-free extracts. The specific activities of 

carbon monoxide dehydrogenase and 

formate dehydrogenase were 0.63 and 0.84 

mol.min'.(mg protein)"1 respectively. 2-Oxo-

glutarate dehydrogenase activity could not be 

detected. 

Pigments and other cell compounds. 
Dithionite-reduced versus air-oxidized spectra 

of cell extracts of ASRB2 revealed absorption 

maxima at 422, 527 and 557 nm, indicating the 

53 



Chapter 3 

FIG. 1. 
Phase contrast photomicrograph of strain ASRB2. The white arrow points out a cell with a gas-vacuole. The 
marker bar represents 10 um. 

presence of c-type cytochromes (27). The 

presence of c-type cytochromes was confirmed 

with the staining procedure on SDS-gel (19) 

(results not shown). Desulfoviridin could not 

be detected. The G+C content of the DNA was 

51.1 (±0.2)mol%. 

phus buswellii were the closest relatives of 

ASRB2; the level of sequence similarity was, 

86.9%, 85.6% and 85.5%, respectively. The 

acetate-degrading sulfate reducer Desulforhab-

dus amnigenus was only moderately related to 

strain ASRB2 (sequence similarity 85.1%). 

Phylogenetic analysis. The phylogenetic rela

tionships of strain ASRB2 derived from 16S 

rRNA sequence analysis are depicted in Fig. 2. 

The 16S rRNA sequence shows that strain 

ASRB2 is a member of the delta sub-division 

of the Proteobacteria. A 16S rRNA sequence 

highly similar to that of ASRB2 was not 

available in the database. Desulfosarcina 

variabilis, Desulfacinum infernum and Syntro-

DISCUSSION 

Physiology, ecology, and taxonomy of strain 

ASRB2. Strain ASRB2 was isolated from 

granular sludge of a lab-scale UASB reactor 

fed with acetate at an excess of sulfate. Cells 

resembling those of strain ASRB2 were 

isolated from the sludge before and after 
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sulfate reduction had superseded methano-

genesis, by using the highest positive dilutions 

of two serial dilution ranges on acetate and 

sulfate. This strongly indicates that strain 

ASRB2 is the most abundant acetate-

degrading sulfate reducer in this sludge and is 

able to outcompete acetate-degrading metha-

nogens. The only two genera of acetate-

degrading methanogenic archaea known are 

Methanosarcina and Methanosaeta (formerly 

"Methanothrix") (28). Methanosaeta species 

generally are the most important methanogenic 

acetate degraders in anaerobic bioreactors, 

because of their high affinity and low thres

hold (7-69 M) for acetate (1,29). The threshold 

of strain ASRB2 (<15 uM) is in the same 

range as that of Methanosaeta sp. However, 

strain ASRB2 has a higher specific growth rate 

(umax= 0.32-0.41 day"1) than Methanosaeta sp. 

(umax= 0.08-0.29 day"1). This could be one of 

Desulfobacterium vacuolatum 

Desulfobacler 

Desulfosarcina variabilis 

Syntrophus gentian tie 

Syntrophus buswellii 

Desulfobacca acetoxidans 

Desulforhopalus vacuolatus 

Desulfobacterium niacini 

Desulforhabdus amnigenus 

Syntrophobacter wolinii 

Desulfoacinum infernum 

Thermodesulforliabdus norvégiens 

Desulfuromonas palmitatis 

Desulfuromonas acetexigens 

Escherichia coli 

Desulfovibrio 

0.10 

FIG. 2. 
Distance matrix tree reflecting the phylogenetic relationships of strain ASRB2 with other sulfate reducers 
and relatives belonging to the delta subdivision of the Proteobacteria. Marker bar = 0.10 K ^ . 
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the reasons why strain ASRB2 is able to 

outcompete the acetate-degrading methano-

gens in the reactor. Strain ASRB2 seems to be 

specialized in acetate consumption, this in 

contrast to the nutritionally versatile acetate-

degrading Desulforhabdus amnigenus, which 

was recently isolated from a pilot-scale UASB 

reactor treating papermill wastewater using the 

same isolation procedures as described for 

strain ASRB2 (16). Apparently, the acetate-

degrading sulfate-reducing population in the 

lab-scale reactor differs significantly from the 

population in the pilot-scale reactor. This is 

probably due to the different conditions in the 

pilot-scale reactor, such as the limiting sulfate 

concentration (COD/sulfate= 1.1 g/g) and the 

more complex wastewater. The nutritional 

specialization of strain ASRB2 is comparable 

to that of Desulfobacter sp. (15), although 

some Desulfobacter species can use hydrogen 

and ethanol as well. However, the average 

specific growth rate of Desulfobacter sp. 

(umax= 0.8-1.1 day' ) (1) is approximately twice 

as high as that of strain ASRB2. The oxidation 

of acetate in Desulfobacter sp. and in strain 

ASRB2 occurs via different pathways. Desul

fobacter sp. use the citric acid cycle (15), 

while strain ASRB2 degrades acetate via the 

CO-dehydrogenase pathway. This is indicated 

by the high activity in cell-free extracts of 

strain ASRB2, of carbon monoxide dehydro

genase and formate dehydrogenase, two key 

enzymes of the CO-dehydrogenase pathway, 

together with the absence of 2-oxoglutarate 

dehydrogenase activity, a key enzyme of the 

citric acid cycle (23). 

Phylogenetically, stain ASRB2 clusters with 

the delta sub-division of the Proteobacteria. 

Desulfobacter sp. is only distantly related to 

strain ASRB2. The closest relatives are 

Desulfosarcina variabilis (level of similarity 

86.9%), Desulfacinum infernum (level of 

similarity 85.6%), and Syntrophus buswellii 

(level of similarity 85.5%). Physiologically 

and phylogenetically strain ASRB2 differs 

significantly from the syntrophically benzoate-

oxidizing S. buswellii (30), the thermophilic 

Desulfacinum infernum (31), and the 

nutritionally versatile D. variabilis (12). 

Therefore, we propose that strain ASRB2 

represents a new species of a new genus. 

We propose the name Desulfobacca 

acetoxidans gen. nov. sp. nov. for this 

organism. 

Description of Desulfobacca gen. nov. 

Desulfobacca (de.sul.fo.bac'ca. L. pref. de, 

from; L. n. sulfur, sulfur; M.L. pref. Desulfo-, 

desulfuricating, used to characterize a 

dissimilatory sulfate-reducing prokaryote; L. 

fern. n. baca or bacca, berry, especially olive; 

M.L. fem. n. Desulfobacca, a sulfate-reducing, 

olive-shaped bacterium). Non-motile, oval to 

rod-shaped cells. Sulfate or other inorganic 

sulfur compounds, but not elemental sulfur, 

serve as terminal electron acceptor and are 

reduced to H2S. Acetate is the common 

electron donor and carbon source, and is com

pletely oxidized to C0 2 via the CO-

dehydrogenase pathway. 

Desulfobacca belongs to the delta subclass of 

the Proteobacteria; the closest relatives are 
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Desulfosarcina variabilis, Desulfacinum 

infernum and Syntrophus buswellii. 

Description of Desulfobacca acetoxidans sp. 

nov. Desulfobacca acetoxidans (a.cet. 

o'xi.dans. L. n. acetum, vinegar; M.L. part. 

pres. oxidans, oxidizing, M.L. part. adj. 

acetoxidans, oxidizing acetate. Cells are oval 

to rod-shaped, 1.3 x 1.9-2.2 urn, singly or in 

pairs. Cells do not form spores and are Gram 

negative. Acetate is the only electron donor 

and carbon source used. Sulfate, sulfite, and 

thiosulfate can serve as electron acceptors. The 

optimum pH is 7.7-7.5, the optimum tempe

rature is 37°C. Growth is optimal in freshwater 

medium. The G + C content of the DNA is 

51.1 (± 0.2) mol%. Habitat is granular sludge 

from an upflow anaerobic sludge bed (UASB) 

reactor fed with acetate and sulfate. 

The type strain is ASRB2, which has been 

deposited in the Deutsche Sammlung von 

Mikroorganismen, Braunschweig, Germany, 

under accession number DSM 11109. 
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ABSTRACT 

To examine the competition for acetate between sulfate reducers and methanogens in anaerobic 

bioreactors, kinetic parameters of acetate oxidation were determined for the generalist 

Desulforhabdus amnigenus and the specialist Desulfobacca acetoxidans, and compared with those 

of acetate degrading methanogens. The Michaelis-Menten parameters K,,, and Vmm, were 0.6 mM 

and 28 umol min"1 g protein ' for Drb. amnigenus, and 0.6 mM, and 43 umol min "' g protein "' for 

Dbc. acetoxidans, respectively. Compared to Methanosaeta sp. ÇK^= 0.8 ± 0.3 mM, Vmm = 94 ± 58 

Umol min"1 g protein"1), the K,,, values of Drb. amnigenus and Dbc. acetoxidans were slightly better 

than that of most Methanosaeta sp., while the Fmax values were slightly lower. The maximum 

specific growth rate (umax) and the acetate-degradation threshold were 0.14-0.20 day"1, and below 15 

uM i'or Drb. amnigenus, and 0.31-0.41 day'1, and below 15 uM for Dbc. acetoxidans, respectively. 

Compared to Methanosaeta sp. (umax= 0.35 ± 0.11 day', threshold 7-69 uM), the u raax and threshold 

value of Dbc. acetoxidans were better than those of most Methanosaeta sp. The same applied for 

the threshold value of Drb. amnigenus. Mixed substrate studies showed that Drb. amnigenus 

degraded acetate and hydrogen simultaneously, but also indicated that this bacterium preferred 

lactate, propionate and ethanol over acetate. 

Based on the acetate kinetic parameters Dbc. acetoxidans and Drb. amnigenus seem to be able 

outcompete Methanosaeta sp. for acetate in acetate-fed anaerobic bioreactors. However, it should be 

taken into account that the presence of additional substrates, such as lactate, propionate, or ethanol, 

could have a negative effect on the rate of acetate degradation of Drb. amnigenus. 

INTRODUCTION 

Acetate and hydrogen are the key inter

mediates in the breakdown of organic matter in 

anaerobic bioreactors (5, 15). In anaerobic 

reactors treating sulfate-rich wastewaters, such 

as paper mill or food oil industry wastewaters, 

sulfate reducers will compete for these 

compounds with methanogens (3, 11). In order 

to be able to steer the reactor process in the 

direction of either sulfidogenesis or methano-

genesis, it is essential to have a clear insight in 

this competition. Reactor studies have indi

cated that with excess sulfate, hydrogen is 

mainly consumed by sulfate reducers (1, 17, 

18), but the outcome of the competition for 

acetate is not yet clear. Generally, acetate is 

utilized by methanogens (6, 18), but in some 

reactors it is mainly utilized by sulfate 

reducers (1, 17). To explain the apparent 

competitive advantage of acetate-degrading 

methanogens over sulfate reducers, various 

theories have been put forward, including a 

higher growth rate of methanogens compared 

to sulfate reducers (21), a too short duration of 

reactor studies, i.e. not enough time allowed 
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for acetate-degrading sulfate reducers to out-

compete the methanogens (18,19). 

Comparison of acetate degradation kinetics of 

methanogens and sulfate reducers can give 

more insight in the competition for acetate. For 

the two genera of methanogens known to use 

acetate as sole energy source, Methanosarcina 

and Methanosaeta ("Methanothrix") (20)), 

acetate utilization kinetics have been studied 

extensively (7, 10). 

Unfortunately, kinetic data for acetate utili

zation by freshwater sulfate reducers are 

hardly available. Most researchers studied 

acetate oxidation by marine sulfate reducers, 

as reviewed by Oude Elferink et al. (11). It is 

unlikely that these marine sulfate reducers, 

such as Desulfobacter sp., play an important 

role in freshwater anaerobic bioreactors. 

The aim of the present study was to investigate 

the oxidation acetate by freshwater sulfate 

reducers. For our study we used the specialist 

Desulfobacca acetoxidans and the generalist 

Desulforhabdus amnigenus, i.e. Dbc. acetoxi

dans only utilizes acetate (13), whereas Drb. 

amnigenus can use a wide variety of substrates 

such as acetate, propionate, hydrogen, and 

ethanol (12). Both sulfate reducers have been 

isolated from anaerobic granular sludge 

obtained from reactors in which acetate was 

mainly converted via sulfate reduction. 

In our study we determined the Michaelis-

Menten parameters (Kmax and K^) for acetate of 

both sulfate reducers. Furthermore we investi

gated if mixtures of substrates, including 

mixtures of acetate and propionate or hydro

gen, led to sequential substrate utilization in 

batch cultures oîDrb. amnigenus. 

MATERIALS AND METHODS 

Organisms, media and cultivation 

Desulfobacca acetoxidans strain ASRB2 

(DSM 11109) and Desulforhabdus amnigenus 

strain ASRB1 (DSM 10338) were isolated 

previously (12, 13). The bacteria were cultured 

in 1.2-1 glass bottles closed with butyl rubber 

stoppers and aluminum caps, and incubated at 

37°C. The bottles contained 500ml of a bicar

bonate-buffered medium as described before 

(16), and a gas phase of 172.2 kPa N2-C02 

(80:20, vol/vol). The inoculum size was 1%. 

Electron acceptors and electron donors were 

added separately by syringe from 0.5 or 2.0 M 

autoclaved (20 min., 120°C) anaerobic stock 

solutions. 

Acetate consumption in resting cell suspen

sions 

The Michaelis-Menten kinetic parameters Kmax 

and K,,, were estimated from acetate depletion 

curves (acetate consumption versus time) 

obtained with concentrated cell-suspensions. 

The depletion data were fitted to an integrated 

solution of the Michaelis-Menten equation 

V«J*t= So -S + K ln(S0 /S) using nonlinear 

regression analyses, as described by Robinson 

and Characklis (14). In this equation S0 is the 

initial substrate concentration, S is the 

substrate concentration at time /, Fmax the 

maximum consumption rate, and K,,, the half-

saturation constant. 
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Table 1. The effect of mixed substrates on the rate of acetate consumption/production by cells of Drb. 
amnigenus cells, tested in batch cultures with high initial substrate concentrations, starting with a single 
substrate and adding a pulse of second substrate at logarithmic growth phase of the culture. 

Start substrate (mM) Pulse substrate (mM) Acetate Consumption (C)/ Production (P) 

Acetate 
Acetate 
Ethanol 
Propionate 
Propionate 
Lactate 

(18) 
(22) 
(16) 
(17) 
(17) 
(20) 

Propionate 
Hydrogen 
Propionate 
Ethanol 
Lactate 
Propionate 

(17) 
(10) 
(17) 
(11) 
(11) 
(14) 

before pulse 

C 100% 
C 100% 
P 100% 
P 100% 
P 100% 
P 100% 

after pulse 

C 0% 
C 100% 
P 100% (85% via ethanol) 
P 100% (70% via propionate) 
P 100% (80% via propionate) 
P 100% (50% via lactate) 

To obtain concentrated cell suspensions, cells 

were harvested anaerobically by centrifugation 

in the late exponential phase of growth. The 

cells were resuspended and washed twice with 

the bicarbonate-buffered medium, and were 

then transferred to 120-ml serum vials in an 

anaerobic glove box, and sealed with butyl 

rubber stoppers and aluminum crimp seals. 

Cells of Dbc. acetoxidans were concentrated 

approximately 20-fold, and cells of Drb. amni

genus 50-fold, to eliminate the interference of 

growth. 

The vials were preincubated at 37°C for one 

hour, in the presence of 10 mM sulfate, for the 

removal of intracellular acetate. For both 

bacteria four independent acetate depletion 

experiments were carried out, starting with 

respectively 1, 2.5, 4 or 6 mM of acetate as 

initial acetate concentration. The protein con

tent of the cell suspensions was determined at 

the end of each experiment. 

Mixed substrate utilization 

Drb. amnigenus was adapted to acetate, 

propionate, ethanol or lactate by subculturing 

the organism on one of these substrates for at 

least three times. Substrate preferences were 

tested in batch cultures, by growing the cells 

on a single substrate and adding a puis of a 

different substrate as soon as the culture 

reached log phase, according to the scheme 

presented in Table 1. 

For hydrogen pulse experiments the cultures 

were incubated on a rotary shaker (125 rpm), 

and sterile hydrogen gas was added by syringe. 

Chemical analyses 

Hydrogen and other substrates, including 

acetate, were measured by gas chromatography 

and high-performance liquid chromatography 

HPLC, respectively (16). For the substrate 

depletion curves, acetate was analyzed by gas 

chromatography as described by Stams et al. 
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(16), but using a Chrompack CP9001 instead 

of a CP9000 gas Chromatograph. Total cell 

protein was estimated using the method of 

Bradford (2), after disruption of the cells by 

sonification (5 times 20 s with an intermittent 

cooling for 20 s). 

RESULTS 

Acetate consumption by concentrated cell 

suspensions of Dbc. acetoxidans and Drb. 

amnigenus followed Michaelis-Menten 

kinetics. Measured acetate depletion data and 

the constructed Michaelis-Menten plot are 

illustrated in Fig. 1. for a cell suspension of 

Drb. amnigenus and a cell suspension Dbc. 

acetoxidans. Similar fits were obtained with 

the other acetate depletion data. In Table 2 the 

Fmax, K̂  for acetate degradation, and several 

other physiological parameters of Dbc. 

acetoxidans and Drb. amnigenus are compared 

with those of acetate-degrading methanogens. 

Thresholds for acetate consumption by Dbc. 

acetoxidans and Drb. amnigenus were not 

determined, but both strains could reach 

acetate concentrations below the detection 

limit of our GC analysis (15 uM). In mixed 

substrate experiments with Drb. amnigenus a 

simultaneous utilization of substrates was 

observed with combinations of propionate and 

lactate or ethanol (Table 1). In these 

experiments propionate, lactate and ethanol 

were incompletely oxidized by Drb. amni

genus, i.e. for each mole of propionate, lactate 

or ethanol used one mole of acetate was 

formed (Fig. 2). The rate of acetate production 

in propionate, lactate or ethanol grown cultures 

was hardly influenced by addition of a second 

substrate. Furthermore, cultures growing on 

acetate and pulsed with propionate 

immediately switched to incomplete pro

pionate oxidation (Fig. 3a). Acetate was only 

simultaneously consumed in combination with 

hydrogen (Fig. 3b). 

Table 2. Selected acetate kinetic parameters of Desulfobacca acetoxidans, Desulforhabdus amnigenus, and 
the two genera of acetate-degrading methanogens. 

Strain 

Dbc. acetoxidans 
Drb. amnigenus 

Methanosarcina sp. 
Methanosaeta 

soehngenii 
concilii 
strain MTAS 
strain MTKO 

Substrate 
utilization 

specialist 
generalist 

generalist 

specialist 
specialist 
specialist 
specialist 

r^max 

(days') 

0.31-0.41 
0.14-0.20 

0.46-0.69 

0.08-0.29 
0.21-0.69 
0.37 
0.38 

V 
' max 
(umol min"1 

gramprot.'1) 

43 ± 14* 
28 ± 7 ' 

y 

76 
32 
170 
98 

Km 
(mM) 

0.6 ±0.4" 
0.6 ±0.4" 

3.0 

0.4-0.7 
0.8-1.2 
0.5 
1.17 

Threshold 
(UM) 

<15 
<15 

190-1180 

7-69 
_b 

_b 

_b 

Reference 

This study, 13 
This study, 12 

7,11 

7, 10,11 
10,11 
9,10 
9,10 

"Mean of four independent experiments (± SD) 
"TSTot determined 
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6.50 

160 240 

Time (min) 

400 

Figure 1. Acetate depletion curve for a concentrated suspension of Drb. amnigenus cells (•) and of Dec. 
acetoxidans cells (•). The markers represent the measured acetate concentrations, while the solid line is the 
best-fit curve, calculated from the estimates ofK,,,, V^, and the initial acetate concentration (S 0) via 
nonlinear regression analysis. 

DISCUSSION 

Drb. amnigenus and Dbc. acetoxidans were 

both isolated from sulfidogenic bioreactors in 

which acetate was mainly degraded via sulfate 

reduction. For Drb. amnigenus this was an 

upflow anaerobic sludge bed (UASB) reactor 

treating papermill wastewater, while Dbc. 

acetoxidans was isolated from a UASB reactor 

inoculated with mefhanogenic seed sludge and 

fed with a synthetic medium with acetate and 

sulfate. Drb. amnigenus and Dbc. acetoxidans 

were present in higher numbers than acetate-

degrading methanogens and other acetate-

degrading sulfate reducers in these UASB 

reactors (12, 13) indicating that they success

fully competed with these microorganisms for 

the available acetate. 

In most methanogenic bioreactors Methano-

saeta sp. are the dominant acetate-degrading 

methanogens, because of their high affinity 

and low threshold value for acetate, compared 

to Methanosarcina sp. (8). In sulfate reducing 

reactors acetate-degrading sulfate reducers 

have to compete with these Methanosaeta sp. 

for the available acetate. 
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50 100 150 200 250 300 350 400 450 

Time (h) 

Figure 2. Acetate (•) production of Drb. amnigenus growing in batch cultures, with propionate (+), and 
pulsed with A: Ethanol (»); B: Lactate (•). The dotted line represents the calculated acetate concentration, 
assuming an incomplete oxidation of propionate, lactate and ethanol. 
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Figure 3. Substrate consumption of Drb. amnigenus growing in batch cultures with acetate (•), and pulsed 
with A: Propionate (+); B: Hydrogen (•). 
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The theory that methanogens can outcompete 

sulfate reducers for acetate, because of their 

higher growth rate (21) is clearly not valid for 

all reactors, since Dbc. acetoxidans had a 

higher growth rate than most Methanosaeta 

sp., and the growth rate of Drb. amnigenus 

was in the same range as that of Methanosaeta 

soehngenii (Table 2). However, if several 

kinetic properties are compared (i.e. umax, Vmax, 

K,,,, threshold) acetate-degrading sulfate 

reducers from bioreactors only seem to 

have a slight kinetic advantage over Methano

saeta sp. Therefore, in some reactor studies, 

acetate-degrading methanogens may have 

predominated over sulfate reducers due to 

the fact that the duration of the competition 

study was not long enough to allow sulfate 

reducers to become dominant (6, 17). How 

long it can take before sulfidogens have 

outcompeted methanogens was shown in 

reactor studies of Visser (19). He experi

mented with UASB reactors inoculated with 

methanogenic sludge and fed with sulfate and 

a mixture of volatile fatty acids (VFA) or 

acetate. In the reactor fed with acetate and 

sulfate, from which Dbc. acetoxidans was 

isolated, it took about 100 days to increase the 

amount of acetate degraded via sulfate reduc

tion from 0 to 10 %, and 400 days to shift it 

from 50 % to 90 %. In the VFA-fed reactor 

this shift from 50% to 90% was faster, but it 

still took about 250 days. The very slow shift 

from a methanogenic to a sulfidogenic acetate 

degrading reactor was probably due to the 

relative small competitive advantage of Dbc. 

acetoxidans over Methanosaeta sp. (Table 2), 

and the high ratio between the number of Me

thanosaeta and acetate-degrading sulfate 

reducers in the seed sludge. 

In full-scale anaerobic bioreactors acetate is 

not the only organic compound available for 

microorganisms. For Drb. amnigenus the 

presence of compounds such as propionate, 

hydrogen, or lactate will influence the 

competitive advantage of this bacterium over 

acetate-degrading methanogens. From the 

mixed substrate studies it is clear that the 

presence of hydrogen can increase the 

competitive advantage of Drb. amnigenus over 

Methanosaeta, because Drb. amnigenus can 

use acetate and hydrogen simultaneously, 

while Methanosaeta sp. can only use acetate. 

How the presence of propionate, lactate or 

ethanol will influence the competition is less 

clear. The mixed substrate experiments 

showed that acetate consumption stopped if 

these other substrates were present in excess. 

In fact, Drb. amnigenus even started to 

produce acetate and the rate of lactate, 

propionate or ethanol degradation seemed to 

be limited by the rate of acetate production. On 

the other hand it is known that carbon 

substrates which usually lead to diauxic 

growth under batch conditions are used 

simultaneously under carbon limited con

ditions (4). Which condition Drb. amnigenus 

will encounter in the sludge is not clear, 

because substrate availability is not only 

related to the concentrations in the reactor, but 

also to diffusion of the substrate into the 

granule, and the location of the Drb. 

amnigenus cells in the granule. Since Drb. 
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amnigenus outcompeted the acetate-degrading 

methanogens in a bioreactor treating complex 

wastewater, and the kinetic properties of this 

bacterium are similar to those of Methanosaeta 

sp., one could speculate that the ability to use 

other substrates besides acetate gives Drb. 

amnigenus a competitive advantage over 

Methanosaeta sp. 
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Abstract 

The isomerization of butyrate and isobutyrate was investigated for the sulfate reducer Desulforhabdus amnigenus. Nuclear 
magnetic resonance (NMR) studies with 13C-labelled butyrate showed that isobutyrate was formed by migration of the 
carboxyl group, in conformity with the butyrate isomerization reaction reported for methanogenic consortia. In addition to 
D. amnigenus, several other butyrate-degrading sulfate reducers (Desulfobacterium vacuolatum, Desulfoarculus baarsii and 
Desuîfotomaculum sp.) were capable of butyrate isomerization. 

Keywords: Butyrate degradation; Volatile fatty acid interconversion; 13C-NMR; Desulforhabdus amnigenus 

1. Introduction 

Butyrate and isobutyrate are both intermediates in 
the anaerobic degradation of complex organic mat
ter. Butyrate can be formed during the degradation 
of carbohydrates, proteins and lipids [1], while iso
butyrate is mainly produced during valine fermenta
tion [2]. Butyrate and isobutyrate concentrations are 
normally low in well balanced anaerobic bioreactors; 
high concentrations of these compounds in a reactor 
are indicative of process imbalance [3]. 

In methanogenic bioreactors butyrate is degraded 

* Corresponding author. 
Tel.: +31 (317) 482 105; Fax: +31 (317) 483 829; 
E-mail : stefanie.oude-elferink@algemeen.micr.wau.nl 

via ß-oxidation to acetate and hydrogen. This reac
tion is energetically feasible only if the hydrogen 
partial pressure is kept low. Therefore, syntrophic 
consortia of butyrate-degrading acetogens and hy-
drogenotrophic methanogens are essential [4]. In 
anaerobic bioreactors treating sulfate-containing 
waste water, sulfate reducers are able to couple the 
oxidation of butyrate to sulfate reduction [5]. It is 
not completely clear how isobutyrate is degraded in 
methanogenic and sulfidogenic environments. Be
cause isobutyrate cannot be directly degraded via 
ß-oxidation, it has been suggested that under metha
nogenic conditions, isobutyrate is first isomerized to 
butyrate and then degraded further [6,7]. Under sul-
fate-reducing conditions, isobutyrate can be de
graded via propionyl-CoA, as was reported for the 
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sulfate reducer Desulfococcus multivorans [7]. How
ever, the importance of this degradation pathway in 
sulfidogenic bioreactors is not known. 

It is well known that a reversible isomerization 
between butyrate and isobutyrate can occur under 
methanogenic conditions [6,8-11]. Nuclear magnetic 
resonance (NMR) studies with 13C-labelled butyrate 
in a methanogenic enrichment culture [12], and a 
pure culture of a glutarate-fermenting strict anaerobe 
[13] demonstrated that this isomerization was due to 
the migration of the carboxyl group. Recently, we 
reported for the first time that a sulfate reducer, 
Desulforhabdus amnigenus, is able to convert buty
rate to isobutyrate [14]. In this paper, the isomeriza
tion of butyrate by D. amnigenus is investigated by 
"C-NMR. In addition, we show that other pure 
cultures of butyrate-degrading sulfate reducers are 
also able to isomerize butyrate. 

2. Materials and methods 

2.1. Organisms and growth conditions 

Four butyrate-degrading sulfate reducers were se
lected for butyrate isomerization studies. D. amni
genus (DSM 10338) was isolated from mesophilic 
anaerobic granular sludge [14]. Desulfotomaculum 
sp. was isolated at our laboratory from thermophilic 
anaerobic granular sludge, and nutritionally re
sembled Desulfotomaculum kuznetsovii [15] (unpub
lished results). Desulfoar cuius baarsii (DSM 2075), 
and Desulfobacterium vacuolatum (DSM 3385) were 
obtained from the Deutsche Sammlung von Mikro
organismen (Braunschweig, Germany). 

All strains were cultured in 580-ml serum bottles 
containing 250 ml of a bicarbonate-buffered medium 
as described before [14]. The bottles were inoculated 

C 
O 

c 
O 
o c o o 

0 10 20 30 40 50 

time (days) 
Fig. 1. Time course of butyrate degradation by Desulforhabdus amnigenus. Butyrate (•), isobutyrate (•), acetate (A). 
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Table 1 
Stoichiometry of butyrate conversion and sulfide formation by several butyrate degrading sulfate reducers 

Strain Butyrate 
added (mM) 

Butyrate 
consumed (mM) 

Acetate 
formed (mM) 

Isobutyrate 
formed (mM) 

Propionate 
formed (mM) 

Sulfide 
formed (mM) 

Desulforhabdus amnigenus 20.0 
Desulfoarculus baarsii 20.0 
Desulfobacterium vacuolatum 30.5 
Desulfotomaculum sp. 37.5 

20.0 
20.0 
17.2 

11.5 

16.9 
0.19 

15.0 
2.7 

1.7 
0.01 
0.06 
0.26 

nd' 
nd* 
0.05 
0.03 

32 
48 
27 
24 

The acetate, isobutyrate and propionate concentrations reported are the maximum concentrations and not the final concentrations measured 
during butyrate degradation. 
and, not detected. 

with 10% of a butyrate-grown stationary-phase cul
ture. The electron donors butyrate or isobutyrate 
and the electron acceptor sulfate were added sepa
rately by syringe from 2 M sterile, anoxic stock solu
tions in a molar ratio of 1:2.5. D. amnigenus and 
Desulfotomaculum sp. were cultured at 37 and 
55°C, respectively. Da. baarsii and Db. vacuolatum 
were both cultured at 30°C; for Db. vacuolatum the 
basal medium was amended with NaCl (20 g/1), 
MgCl2-6H20 (3 g/1), and CaCl2-2H20 (0.15 g/1) to 
achieve marine conditions. 

2.2. NMR experiments 

The fate of [2-13C]butyrate was studied in batch 
experiments with D. amnigenus, incubated in 30-ml 
vials containing 10 ml medium, under the conditions 
as described above, except that 13C-enriched butyrate 
was used as a substrate. The 13C-labelled compounds 
(>99 atom% 13C) were obtained from Isotec Inc. 
(Pixie Corp. B.V., Tjuchem, The Netherlands). At 
time zero and after 3 weeks of incubation 2 ml of 
the supernatant was sampled, centrifuged, and stored 
at —20°C until analysis with the NMR spectrometer. 
The 13C-labelled compounds were analyzed at 75.47 
MHz with a Bruker AMX-300 spectrometer, 
equipped with a 10 mm 13C probe as described pre
viously [16], except that spectra were acquired at 
20°C during 2 h (14400 scans). The 13C chemical 
shifts were referenced to the C2 of butyrate 
(40.5 ppm). 

2.3. Analytical methods 

The degradation of butyrate and isobutyrate was 
analyzed by gas chromatography [17], sulfide forma

tion being determined as described by Triiper and 
Schlegel [18]. 

3. Results and discussion 

3.1. Butyrate degradation 

Butyrate degradation and isomerization was inves
tigated with pure cultures of D. amnigenus, Da. 
baarsii, Db. vacuolatum, and Desulfotomaculum sp. 
During growth on butyrate, D. amnigenus was the 
only sulfate reducer which excreted large amounts 
of isobutyrate (1.7-2.0 mM) into the medium (Fig. 
1); the other three strains (Table 1) only produced 
small amounts of isobutyrate (0.06-0.26 mM). Thus 
far, D. amnigenus was the only sulfate reducer for 
which butyrate isomerization had been reported 
[14], but the results presented above indicate that 
butyrate isomerization is a more widespread phe
nomenon among butyrate-degrading sulfate re
ducers. In most studies low concentrations of buty
rate (1-10 mM) are used to study butyrate 
degradation [7,19-22]. This might be the reason 
why butyrate isomerization by sulfate reducers was 
not observed before. The four cultures used in this 
study did not produce detectable amounts of isobu
tyrate when grown with 5 mM of butyrate. 

D. amnigenus, Db. vacuolatum and Desulfotomacu
lum sp. all formed large amounts of acetate during 
butyrate oxidation (Fig. 1, Table 1). The intermedi
ate formation of acetate during butyrate degradation 
has been reported for spore-forming [22] as well as 
for non-spore-forming [19-21] completely oxidizing 
sulfate reducers. According to Schauder et al. [20] 
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Fig. 2. High-resolution ^-decoupled 13C-NMR spectrum of culture supernatant from a D. amnigenus culture, recorded after 3 weeks in
cubation with [2-13C]butyrate and sulfate. The letters indicated refer to: A, acetate; B, butyrate; I, isobutyrate. The numbers following 
the one-letter abbreviations give the positions of the labelled carbon in the molecule. 

acetate accumulates during ß-oxidation of activated 
butyrate. 

The small amount of propionate in cultures of Db. 
vacuolatum and Desulfotomaculum sp. is probably 
formed from acetyl-CoA via the reverse pathway of 
propionate degradation [23]. 

3.2. Isobutyrate conversion 

Isobutyrate degradation by cultures of D. amni
genus was studied in batch experiments with 30 
mM isobutyrate and 75 mM sulfate. No intermediate 
formation of butyrate could be detected in these cul
tures and intermediate acetate concentrations were 
maximally 5 mM. Intermediate acetate formation 
during isobutyrate degradation has also been re
ported for Dc. multivorans [7]. 

3.3. NMR studies 

The chemistry of the butyrate-isobutyrate isomer-
ization reaction by sulfate reducers was studied in 
batch experiments containing 4 mM [2-13C]butyrate, 
16 mM unlabelled butyrate and 50 mM sulfate. D. 
amnigenus was chosen as a model organism, because 

it showed the highest isobutyrate accumulation dur
ing growth on butyrate. The NMR spectrum of the 
supernatant sample, taken after 3 weeks of incuba
tion (Fig. 2), shows peaks of [2-13C]acetate (24.2 
ppm), [4-13C]butyrate (14.2 ppm), [3-13C]- or 
[4-13C]isobutyrate (20.3 ppm), and [2-13C]butyrate 
(40.5 ppm). Proton-coupled 13C spectra showed 
that the peak at 20.3 ppm originated from a Re
labelled carbon-atom surrounded by 3 protons, 
which confirmed that the observed peak was indeed 
[3-13C]- or [4-13C]isobutyrate (20.3 ppm) and not 
[3-13C]butyrate (20.2 ppm). These results clearly in
dicate that butyrate was degraded via ß-oxidation 
[24] and that isobutyrate was formed by migration 
of the carboxyl group (Fig. 3), in analogy to butyrate 
isomerization in methanogenic or fermenting cul
tures [12,13]. Studies with the strict anaerobic gluta-
rate fermenting bacterium strain WoG13 [13] and the 
aerobic bacterium Streptomyces cinnamonensis [25] 
showed that the reversible conversion of butyrate 
to isobutyrate required activation of these fatty acids 
to their CoA derivatives. The migration of the car
boxyl group to the adjacent carbon atom was cata
lyzed by a coenzyme Bi2-dependent isobutyryl-CoA 
mutase. Stereochemical studies with this isobutyryl-

CH3—CH2—CH2—COO- -. CH3—CH-CH3 

COO 

Fig. 3. Scheme of the rearrangement of [2-13C]butyrate to [3-13C]- and [4-13C]isobutyrate by D. amnigenus cells. The labelled C atom is 
marked by a dot. 
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CoA mutase showed that it was not completely 
stereospecific. (2S)-[3-13C]Isobutyryl-CoA was trans
formed predominantly into [2-13C]butyryl-CoA, and 
also at a lower rate into [4-13C]butyryl-CoA [25]. The 
formation of [4-13C]butyrate in a D. amnigenus cul
ture incubated with [2-13C]butyrate (Fig. 2) could 
indicate that a similar isobutyryl-CoA mutase was 
active in this bacterium. 
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species-specific 16S rRNA oligonucleotide probe (ASRB1) was developed for the 
detection of Desulforhabdus amnigenus in anaerobic granular sludge. The presence of 
nucleic acids from cells of D. amnigenus in granular sludge was determined using ASRB1 as 
a specific primer for polymerase chain reaction (PCR) amplification or as a probe for 
dot blot hybridizations. The detection threshold and the reproducibility of these two methods 
were determined with sludge amended with 104-1010 D. amnigenus cells per gram of 
volatile suspended solids (VSS). For D. amnigenus cells with a ribosomal RNA 
content of 15 fg cell -1 , the lowest number of target cells detected by hybridization was 
1 x 108 cells g~' VSS. With the PCR amplification method the lowest number 
of target cells which could be detected was 1 x 10' g~' VSS. This corresponds to a 
threshold level for hybridization of 01-0001%o of the total bacterial sludge population, while 
the threshold level obtained with the PCR approach amounted to 001-00001%o. The 
rRNA content of D. amnigenus was found to be affected by the growth rate and 
the growth phase, and it ranged from 19 fg cell ' in slow-growing cultures to 90 fg 
cell ' in fast-growing cultures. Therefore, the detection threshold of the dot blot 
hybridization method for fast-growing cells is lower than for slow-growing cells. 

INTRODUCTION 

Anaerobic wastewater treatment systems, based on the upflow 
sludge bed principle, represent a proven sustainable tech
nology for a wide range of industrial effluents. The applied 
wastewater treatment systems (e.g. the UASB-reactor) func
tion optimally when the active (granular) biomass consists of 
a well-balanced methanogenic consortium (Lettinga 1995). 
At present, our insight in the microbial composition of this 
anaerobic granular sludge is far from complete. This is partly 
due to the limitations of traditional identification techniques, 
which are often laborious, time consuming or give only lim
ited information about the micro-organisms present in the 
sludge. In past decades, various methodologies have been 
developed that allow a rapid identification and quantification 
of bacteria in anaerobic bioreactors. Examples are detection 

Correspondence to: Jr Stefanie J. W. H. Oude Elferink, DLO-Inslitute for 
Animal Science and Health (ID-DLO), Department of Ruminant 
Nutrition, PO Box 65, 8200 AB Lelystad, The Netherlands (e-mail: 
s.j. w. h. oudeelferink@id.dlo. nl). 

methods based on direct visualization using transmission elec
tron microscopy (Howgrave-Graham and Wallis 1993), use 
of specific antibodies against whole cells (Koornneef et al. 
1990) or analysis of ether-lipids (Ohtsubo et al. 1993; Nishi-
hara et al. 1995). Other well-established techniques which 
specifically detect microbes are based on 16S rDNA or rRNA 
sequences, and include the polymerase chain reaction (PCR) 
and 16S rRNA hybridization approaches (Amann et al. 1995). 
With the PCR approach a few target 16S rDNA genes can 
be amplified to make them detectable and quantifiable (Gio-
vannoni 1991). Hiraishi and co-workers (1995) used the PCR 
technique in combination with restriction fragment length 
polymorphism analysis to identify the methanogenic popu
lation in anaerobic sludge, while Ng and co-workers (1994) 
applied the PCR technique in combination with 16S rRNA 
sequencing to identify several anaerobic digester bacteria. 
The 16S rRNA hybridization technique is directed against 
ribosomal RNA. In active cells, rRNA molecules have a rela
tively high copy number per cell (ÏO'-IO"), and can be 
detected without amplification (Amann et al. 1995). The 16S 
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rRNA hybridization technique has therefore been used in 
many studies, and allowed for the detection and quantification 
of sulphate-reducing bacteria (Amann et al. 1992; Kane et al. 
1993; Raskin et al. 1995a,b) and methanogens (Raskin et al. 
1994, 1995a,b) in anaerobic biofilms and sludge. 

There are several advantages of using 16S rDNA or rRNA 
as target material to detect micro-organisms. Currently, a 
huge database of sequence information is available (Benson 
etal. 1993; Rice et ai 1993; Maidak et al. 1994). This sequence 
information makes it possible to design primers and probes 
which allow for a species-specific or a more general identi
fication (at genus or family level) of a bacterium. Further
more, 16S rDNA primers and 16S rRNA probes can be 
designed and used for the detection of non-culturable bacteria 
(Amann et al. 1995). An additional advantage of 16S rRNA 
hybridization techniques is their potential to monitor changes 
in microbial activity. It has been demonstrated that there is a 
tight correlation between RNA content and growth rate for 
fast-growing bacteria (doubling time of 25 min to a few-
hours) like Escherichia coli (Gausing 1977) and Salmonella 
typhimunum (Kjelgaard and Kurland 1963). This correlation 
between RNA content and growth rate is also observed for 
slow-growing bacteria, like Pseudomonas stutzen (Kerkhof and 
Ward 1993), several marine isolates (Kemp et al. 1993) and 
the sulphate reducer strain PT2 (Poulsen et al. 1993), which 
all could grow with doubling times of a few hours to a 
few days. Starving or slowly growing cells contain only low 
numbers of ribosomes (Flärdh et al. 1992; Givskov et al. 
1994; Fukui et al. 1996). This correlation between RNA 
content and cell activity makes it possible to monitor changes 
in microbial activity rather than cell numbers, using 16S 
rRNA probing techniques. 

In anaerobic systems treating sulphate-containing waste
water, sulphate reducers compete with methanogens for sub
strates like hydrogen and acetate. Mostly, sulphate reduction 
is an unwanted process, but sometimes maximal sulphate 
reduction is desired, e.g. for the removal of oxidized sulphur 
compounds or heavy metals (Oude Elferink et al. 1994). 
Insight into the microbial sludge composition is desired to 
steer a process, either in the direction of methanogenesis or 
in the direction of sulphate reduction. Acetate is an important 
intermediate in the anaerobic degradation process. The out
come of the competition for acetate is not always the same. In 
some reactors acetate is mainly degraded via methanogenesis, 
even at high sulphate concentrations, while in other reactors 
acetate is predominantly degraded \ia sulphate reduction 
(Oude Elferink el al. 1994). Therefore, the detection and 
enumeration of acetate-degrading sulphate reducers in granu
lar sludge had our special interest. Little is known about these 
bacteria in freshwater anaerobic bioreactors. Recently, we 
were able to isolate a novel acetate-degrading sulphate reducer 
from anaerobic granular sludge of an upflow anaerobic sludge 
blanket (UASB) reactor treating papermill wastewater. This 

bacterium, designated Desulforhabdus amnigenus strain 
ASRB1, was present in the sludge in higher numbers than 
aceticlastic methanogens (Oude Elferink et al. 1995a). Here, 
we describe the development of dot blot hybridization and 
PCR amplification, for the detection and enumeration of D. 
amnigenus in anaerobic granular sludge, and evaluate the 
effect of growth rate and growth phase on the cellular rRNA 
content of D. amnigenus. Furthermore we analyse the pres
ence of Ö. amnigenus in some methanogenic and sul-
phidogenic sludges. 

MATERIALS AND METHODS 

Organisms and growth conditions 

Desulforhabdus amnigenus strain ASRB1 was cultured at 37°C 
in 120-ml serum vials containing 50 ml of a bicarbonate-
buffered medium as described before (Oude Elferink et al. 
1995a). Growth was followed by measuring substrate util
ization and sulphide production. Syntrophobacter pfennigii 
(DSM 10092) was kindly provided by B. Schink (Universität 
Konstanz, Germany). Syntrophobacter fumaroxidans strain 
MPOB (DSM 10017) (Harmsen 1996), Clostridium granu-
larum EE121 (Grotenhuis 1992), a thermophilic Desul-
fotomaculum sp. and a mesophilic acetate-degrading sulphate-
reducing strain ASRB2, were all isolated from anaerobic 
granular sludge and were obtained from this laboratory col
lection. All other organisms were obtained from the Deutsche 
Sammlung von Mikroorganismen (Braunschweig, Germany). 

Sludge types 

For enumeration of D. amnigenus in anaerobic granular 
sludge, mesophilic sludge was obtained from a full-scale 
UASB reactor (reactor 1, Table 1 ), treating papermill waste
water (Eerbeek, The Netherlands). In this sludge, acetate was 
mainly degraded via methanogenesis. The number of acetate-
degrading methanogens and sulphate reducers in this sludge, 
estimated via the most probable number method, was 1 x 10" 
and 1 x 10' cells g_1 volatile suspended solids (VSS), respec
tively (Oude Elferink et al. 1995b). 

The presence of D. amnigenus in mesophilic anaerobic 
granular sludges was tested using sludges from 15 methano
genic and five sulphidogenic full-scale and laboratory-scale 
UASB reactors, treating complex industrial wastewaters or 
(mixtures of) volatile fatty acids (VFA). One of the sul
phidogenic sludges was analysed twice, with a 2 year interval. 
During these 2 years the chemical oxygen demand 
(COD)Aulphate ratio had increased from 2-4 (reactor 3a, 
Table 1) to 4 (reactor 3b, Table 1). Granular sludge from the 
pilot-scale UASB reactor from which D. amnigenus originally 
was isolated, was used as a control (reactor 2, Table 1). The 
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Reactor 

1 
2 
3a 
3b 
4 
5 

Reactor scale 

Full-scale 
Pilot-scale 
Full-scale 

Lab-scale 
Lab-scale 

COD/sulphate 
ratio 

9-5 
11 
24 
4 
0-5 
0-5 

Influent 

Papermill waste 
Papermill waste 
Papermill waste 

VFA* 
Acetate 

Hybridization 
signal 

— 
+ 
+ 
-
-
-

Table 1 Summary of the nucleic 
acid extracts of sulphidogenic sludges used 
in this study, and the results of dot 
blot hybridizations with the 
ASRB1 probe 

* Acetate:propionate:butyrate = 1:2:2. 

most probable number of D. amnigenus in this sludge was 
» 10" cells g - ' VSS (Oude Elferink et al. 1995a). 

Analysis 

All organic compounds were measured by HPLC as described 
by Stams et al. (1993). Sulphide was determined as described 
by Triiper and Schlegel (1964). Volatile suspended solids 
were determined according to standard methods (Anon. 
1985). 

Isolation of nucleic acids 

Nucleic acids were extracted from cultures by the following 
procedure: 10ml of a culture were centrifuged at 17000^for 
15 min, the pellet was resuspended in 400/d of autoclaved 
TE buffer (10mmol l"1 T r i s /HCl , 1 mmol T ' EDTA, pH 
80) and transferred to a 1 5 ml Eppendorf tube. Two hundred 
/il of T r i s /HCl buffered phenol (pH 80 ) were added together 
with ca 300 /il of glass beads (diam. 011 mm). The cells were 
disrupted by treatment for 5 min in a cell homogenizer model 
MSK (Braun, Melsungen, Germany) under C 0 2 cooling. 
The aqueous phase of the supernatant fluid, obtained after 
10 min of centrifugation (15 000 g), was extracted with phe-
nol/chloroform/isoamyl alcohol 25:24:1 (v:v:v), followed by 
chloroform/isoamyl alcohol 24:1 (v:v). Subsequently, the 
volume of the sample was adjusted to 0 5 ml, and nucleic 
acids were precipitated with 1 ml of 96% ethanol or 0 5 ml of 

isopropanol, and 40/d of sodium acetate (3 mol 1~', pH 5-2) 
at - 7 0 ° C for 30 min. After 15 min centrifugation (15000g) 
the nucleic acid pellet was washed with 70% ethanol, dried 
under vacuum and resuspended in 100 ßl of TE buffer. This 
mixture of DNA and rRNA was used for PCR and dot 
blot hybridization after judging the quality of the extract by 
agarose gel electrophoresis and ethidium bromide staining. 
Nucleic acids from granular sludge were extracted in essen
tially the same way; 10 ml of each sludge sample were dis
integrated using a mortar and pestle, 100/d (001 g VSS) of 
this crushed granular sludge were used for nucleic acids 
extraction. Besides analysing the sludge nucleic acid extracts 
on agarose gel, the presence of bacterial rRNA in the sludge 
samples was determined by dot blot hybridizations using the 
EUB338 probe, as described below. 

16S rRNA targeted oligonucleotide probes 

An oligonucleotide hybridization probe for Desulforhabdus 
amnigenus strain ASRB1 was designed using a reference col
lection of 16S rRNA sequences of sulphate reducers taken 
from the ribosomal database project RDP (Maidak et al. 
1994), and the EMBL and GenBank data libraries (Benson 
et al. 1993; Rice et al. 1993). The sequences for the ASRB1 
probe and the other probes used in this study, are listed in 
Table 2. All oligonucleotides were synthesized by Pharmacia 
(Uppsala, Sweden). 

The probe specificity of the ASRB1 probe was examined 

Table 2 The oligonucleotide probes used in this study (the number in brackets in the target column refers to the start of the target-
site (Escherichia coli numbering)) 

Name oligo Target Sequence 7"d CQ Reference 

ASRB1 Desulforhabdus amnigenus (454) 
MPOB1 D. amnigenus, (222) 

S. fumaroxidans, S. pjènnigii 
EUB338 Bacteria (338) 

5-GGCCTATTCGACCCCCAATC 58 
5-ACGCAGGCÇCATCCCCGAA* 63 

5-GCTGCCTCCCGTAGGAGT 52 

This study 
Harmsen el al. 1995, 1996 

Amann el al. 1992 

*The underlined C matches with the G of the two Syntrophobacter 16S rRNA but mismatches with an A of the D. amnigenus 16S 
rRNA (Harmsen et al. 1996). 
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with the dot blot hybridization method described below, 
using membranes blotted with nucleic acids from various 
sulphate reducers and from other micro-organisms isolated 
from anaerobic bioreactors. The dissociation temperature 
(Td) of the ASRB1 probe was determined as described by 
Devereux et al. (1992). 

Dot blot hybridizations 

Dot blot hybridization experiments were performed on 
Hybond N + filters (Amersham, Little Chalfont, UK). 
Nucleic acid samples (10/d) were applied to the membrane 
with a Convertible Filtration manifold (Gibco BRL, Life 
Science Technologies, Gaithersburg, MD, USA) and immo
bilized by u.v.-light (4 min). Prior to hybridization, the mem
branes were pretreated with 10 ml of hybridization buffer 
(0-5 mol 1~' phosphate buffer, 7% sodium dodecyl sulphate 
(SDS), 1% bovine serum albumin and 1 mmol 1_1 EDTA, 
pH 72) for 30-45 min. The oligonucleotide probes were 5 '-
end labelled with 32P by using polynucleotide kinase and [y-
,2P]ATP. One hundred ng (1 /il) of the probe were mixed 
with 2/d of 10 x kinase buffer (Sambrook et al. 1989), 1 /il 
(10 U) of T4 polynucleotide kinase (Gibco BRL), 15 /il of [y-
32P]ATP (3000Ci mmol-1, Amersham) and water to obtain a 
total volume of 20/il. This mixture was incubated at 37°C 
for 30 min. 

The membranes were hybridized overnight at a tem
perature of 10°C below the dissociation temperature Td of 
the probe, rinsed once with 1 mmol 1~' EDTA, 5 x SSC 
(1 x SSC = 0-15 mol 1 - ' NaCl, 0015 mol 1 " ' sodium citrate, 
pH 70), and washed in 1% SDS, 1 x SSC at 5°C below the 
Td. The membranes were dried and exposed to a phospho 
storage screen for 2 h, and the screen was scanned for radio
active response on a Phosphor Imager (Molecular Dynamics, 
Sunnyvale, USA). The digital signals were processed and 
quantified by the manufacturer's software (ImageQuant). 
Blots were stripped for reprobing by incubating the mem
branes in 0 1 % SDS, for 30 min at 80°C. 

PCR amplification 

Part of the 16S rRNA gene of D. amnigenus was amplified 
with the PCR technique, using forward primer 8 (5 -
AGAGTTTGATC(C/A)TGGCTCAG) (Lane 1991) or 
forward primer MPOB1 (5-TTCGGGGATGGGCCT-
GCGT) (Harmsen et al. 1995) and reverse primer ASRB1 
(see Table 2). These primer sets amplify nucleotides 8 to 
474 and nucleotides 222 to 474, respectively. Unless stated 
otherwise, the reactions were carried out in sterile 05ml 
tubes containing 50/d of the following buffer: 75 mmol 1~' 
Tris-HCl (pH 9), 01%„ (w/v) Tween 20, 20mmol T ' 
(NH4)2S04, 1-25mmol 1~' MgCl,, 0 1 % (v/v) glycerol, 
20/«nol T ' K,P04, 0-2 mmol r ' NaCl, 0-2/«nol T ' EDTA, 

4/«nol 1~' DTT, 0-5 U of Thermostrong DNA polymerase 
(Integro, Zaandam, The Netherlands), 01 mmol 1_1 (each) 
deoxynucleoside triphosphates, and 50 ng (each) of primers 
ASRB1 and 8 or MPOB1. One/il of template DNA was 
added. PCR amplification was performed by using a DNA 
thermal cycler (Perkin Elmer Cetus, Gouda, The Nether
lands). Amplification was done in 30 cycles of melting DNA 
at 93°C for 1 min, annealing at 54°C for 1 min and elongation 
at 72°C for 2 min. 

Enumeration of D. amnigenus in anaerobic granular 
sludge 

Varying numbers (1 x 102-1 x 108) of D. amnigenus cells 
from a propionate-grown, stationary phase culture, were 
mixed with 100/il of crushed granular sludge before nucleic 
acids were extracted. The experiment was performed in trip
licate. Appropriate dilutions of nucleic acids extracted from 
1 x 10s cells of the same D. amnigenus culture served as a 
control. 

RNA content per cell 

To obtain different growth rates, batch cultures of D. amni
genus cells were grown with acetate, propionate or ethanol as 
a substrate. Growth rates were determined by measuring 
substrate conversion and sulphide production. Nucleic acids 
were extracted from 11 x 108—2-3 x 108 cells from mid-log
arithmic and stationary phase cultures (1 to 2 weeks after 
substrate depletion). A 10/il aliquot of each sample was 
applied on an agarose gel. The gel image was visualized on a 
monitor with a CCD camera, and the signal was captured 
and digitalized using the software packages ColorVision and 
PhotoStyler. The 16S rRNA band signal intensity was quant
ified (ImageQuant). All mid-logarithmic and some stationary 
phase cultures were also analysed via dot blot hybridization 
with the EUB338 probe. An RNA standard curve was made 
with purified Escherichia coli 16S and 23S rRNA (Boehringer 
Mannheim Biochemicals, Almere, The Netherlands), the 
integrity of this commercial preparation was evaluated on an 
agarose gel. The RNA content of the standard samples was 
measured spectrophotometrically (Beekman DU640 spectro
photometer), assuming that an optical density at 260 nm of 1 
was equivalent to 40 /ig ml ~~ '. The ribosomal RNA content of 
the D. amnigenus cells was estimated using the RNA standard 
curve, assuming that the molar ratio between 5S rRNA (120 
nucleotides), 16S rRNA ( » 1600 nucleotides) and 23S rRNA 
(«3500 nucleotides) was 1:1:1 in the nucleic acid extracts. 

RESULTS 

Probe design and characterization 

The 16S rRNA gene sequence of A amnigenus was used to 
develop a specific oligonucleotide probe (Table 2). The 
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ASRB1 probe was developed against a region which had more 
than three mismatches with the sequences present in the 
database. The specificity of the ASRB1 probe for D. amni-
genus was tested by dot blot hybridization. The only pure 
culture nucleic acid extracts which hybridized with the 
ASRB1 probe were from a pure culture of D. amnigenus 
(Fig. 1). This strongly indicates that the ASRB1 probe is 
highly specific for D. amnigenus. 

Quantification of D. amnigenus via dot blot 
hybridization 

To investigate the accuracy and detection threshold of the dot 
blot hybridization method for the detection of D. amnigenus in 
anaerobic granular sludge, different numbers of D. amnigenus 
cells were mixed with crushed granular sludge. The unamen
ded sludge did not react with the ASRB1 probe, but gave 
a reaction with the MPOB1 probe. The intensity of the 
hybridization signal with the ASRB1 probe increased with 

EUB338 ASRB1 

I II 

• 

8 

Fig. 1 Dot blot analysis of the ASRB1 probe specificity. Nucleic 
acids of the reference organisms were immobilized on the 
membranes as follows (column, row): column I - 1, Desulfovibrio 
vulgaris DSM 644; 2, Desutfobacteriutn autotrophicum DSM 
3382; 3, Desulfobacterium vacuolatum DSM 3385; 4, 
Desulfoarculus baarsii DSM 2075; 5, Desulfobulbus propiontcus DSM 
2032; 6, Desulfobacter latus DSM 3381; 7, thermophilic 
Desulfotomaculum sp.; 8, mesophihc acetate-degrading 
sulphate reducer strain ASR.B2; column II - 1, Desuiforhabdus 
amnigenus; 2, Syntrophobacter fumaroxidans DSM 10017; 3, 
Syntrophobacter wolinii DSM 2805; 4, Syntrophobacter pfennigii 
DSM 10092; 5, Bacteroides xylanolyticus X5-1 DSM 3808; 6, 
Clostridium granularum EE121; 7, Syntrophospora bryantii DSM 
3014B; 8, Methanosaeta {Methanothrix) soehngenii DSM 2139 

increasing amounts of target sequences present in nucleic 
acids extracts from mixed sludge samples as well as from pure 
cultures of A amnigenus (Fig. 2). As a control, the same blot 
was also hybridized with the EUB338 probe. The intensity 

cells 

1.102 

1.103 

1.104 

1.105 

1.106 

1.107 

1.10s 

sludge 

f i # M 

• • • 
T | ^ ^ ^F' f̂lr̂  

pure culture 

• • • 
4P4MP' 

Fig. 2 Dot blot hybridization of (a) EUB338 and (b) ASRB1 
probes to nucleic acids extracted from anaerobic sludge mixed 
with Desuiforhabdus amnigenus (first three lanes), and from pure 
cultures of D. amnigenus (last three lanes). On the left, the 
cell number of D. amnigenus in the original sample is shown. 
Each dot from the sludge series represents one extraction. 
The three pure culture dilution series are originating from 10-
fold dilutions of nucleic acids extracted from three samples of 
1 x 108 D. amnigenus cells 
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10: 10° 10° 10 

D. amnigenuscell number 

Fig. 3 Relationship between hybridization signal intensities 
(arbitrary units), determined from the phosphor sereen, and 
Desulforluibdus amnigenus eell numbers. The squares correspond 
to D. amnigenus in pure culture, the triangles correspond to D. 
amnigenus in sludge. The error bars represent the standard 
deviations. The cells contained 15 fg rRNA cell-1 

of the hybridization signal from the ASRB1 probe with pure 
culture extracts of D. amnigenus was comparable to that 
obtained with the EUB338 probe (Fig. 2). The D. amnigenus 
cells used in this experiment contained 15 fg of rRNA per 
cell, as was determined with the rRNA standard curve of E. 
coli rRNA (results not shown). 

The hybridization signals obtained with the ASRB1 probe 
were quantified and showed that the signal obtained with 
1 x 102-1 x 1()4 cells of D. amnigenus in pure culture or in 
sludge was very weak and fell within the range of the back
ground signal intensities. A linear relationship was observed 
between the IX amnigenus cell number and the signal inten
sity, if 1 x 10' or more cells of D. amnigenus were present in 
pure culture or in sludge (Fig. 3). The signal intensity vari
ation from the triplicate sludge samples was higher than for 
the pure culture samples as is indicated by the error bars. 
Furthermore, the signal intensities from the sludge samples 
were lower than that from pure culture samples with the 
same number of D. amnigenus cells. This suggests that the 
recovery of D. amnigenus rRNA from sludge was not as good 
as from pure cultures. 

The presence of D. amnigenus in anaerobic sludges 

'The number of D. amnigenus in different methanogenic and 
sulphidogenic sludges was estimated using the dot blot 

hybridization method and the calibration curve presented in 
Fig. 3. Although all nucleic acid extracts hybridized with the 
EUB338 probe (results not shown), none of the extracts 
from the 15 methanogenic sludges tested, hybridized with 
the ASRB1 probe (results not shown). However, two of the 
nucleic acid extracts from five sulphidogenic sludges, did 
react with the ASRB1 probe (Table 1). One of these extracts 
was obtained from the sludge from which D. amnigenus was 
originally isolated (reactor 2). The number of D. amnigenus 
cells in this sludge was « 2 x 10' g - 1 VSS. In the sludge 
from reactor 3a, the number of D. amnigenus cells was just 
above the detection threshold of the dot blot hybridization 
method, « 3 x 107 cells g"1 VSS. 

Quantification of D. amnigenus via PCR 
amplification 

To investigate the accuracy and detection threshold of the 
PCR amplification for the detection of D. amnigenus in anaer
obic sludge, the same samples were used as for the dot blot 
hybridizations (Fig. 2). PCR amplification with primers 8 and 
ASRB1, using one dilution series of D. amnigenus in pure 
culture and one in sludge, gave a specific PCR product which 
showed the expected size of 470 bp (Fig. 4). The two other 
dilution series yielded similar results. The detection threshold 
of the PCR amplification was * 1 x 10' D. amnigenus cells 
for pure culture samples as well as for sludge samples. With 
pure culture samples the detection threshold for D. amnigenus 
could be lowered to 1 x 10'cells, if the annealing temperature 
was lowered to 51 °C and the number of cycles was increased 
to 35. However, under these conditions many unspecific PCR 
products were obtained with the sludge samples. 

Primer set MPOB1 and ASRB1 was not suitable for the 
detection of D. amnigenus in sludge, because even under 
stringent conditions, unspecific PCR products were visible. 
With pure cultures of D. amnigenus this problem was not 
observed. From dot blot hybridization experiments with the 

pure culture 
kb 

sludge 

M | 1 2 3 4 5 $ 7 | 1 2 3 4 5 6 7 

Fig. 4 Agarose gel electrophoresis of PCR products obtained 
with primer set 8 and ASRB1. Pure culture lanes 1-7 correspond 
to 1 x 102 to 1 x K)M D. amnigenus cells; sludge lanes 1-7 
correspond to I x 10" tu 1 x 10s D. amnigenus cells mixed 
with sludge. Lane M is marker lambda //»/dill, size markers are 
shown on the left 
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MP0B1 and the EUB338 probe it was calculated that ÄS 0-5% 

of the bacterial rRNA hybridized with the MPOB1 probe. 

RNA content per cell 

The RNA content of D. amnigenus cells was determined 
for mid-logarithmic and stationary phase cultures (Table 3). 
Growth rate and rRNA content were related to each other. 
The growth rates on propionate and ethanol are approxi
mately three times higher than the growth rate on acetate. 
Mid-logarithmic propionate and ethanol-grown cells con
tained approximately four times more rRNA than acetate-
grown cells. Stationary phase cultures had a much lower 
rRNA cell content than mid-logarithmic cultures; for pro-
pionate-grown cells, an eightfold decrease was observed, but 
acetate-grown cells only lost half of their original rRNA 
content. Depending on the growth rate and growth phase, 
the rRNA content of D. amnigenus cells varied by a factor 10. 

DISCUSSION 

Dot blot hybridization as well as PCR amplification, using 
primer set 8 and ASRB1, are suitable for the detection of D. 
amnigenus in anaerobic granular sludge. Why PCR ampli
fication with primer set MPOB1 and ASRB1 could be used 
for the quantification of D. amnigenus cells in pure cultures, 
but was not suitable for the detection of D. amnigenus in 
sludge, is not clear. Maybe the presence of MPOB1 target 
sequences in the sludge nucleic acid extract ( « 0 - 5 % of the 
bacterial rRNA hybridized with the MPOB1 probe) influ
enced the PCR amplification results. 

It is well known that the rRNA content of cells is not 
constant, but depends on the growth rate (Causing 1977; 
Kemp et al. 1993; Kerkhof and Ward 1993; Givskov et al. 
1994). Therefore, it is difficult to link a 16S rRNA hybrid
ization signal accurately to a cell number. To estimate the 
effect of the growth rate on our detection and quantification 
results, rRNA contents of mid-logarithmic and stationary 
phase cultures of D. amnigenus were determined. The rRNA 
cell content between slow-growing (acetate) and fast-growing 

Table 3 The rRNA content per cell 

rRNA content rRNA content 
Maximum specific (fg cell-1) (fgcell-1) 
growth rate jUmaï mid-logarithmic stationary 

Substrate (h -1) phase phase 

Acetate 0007 + 0-8 x 10 - ' 19 + 2 
Propionate 0-019+1-3 x 10- ' 90+5 
Ethanol 0-018+1-3x10-' 67 + 5 

9 ± 3 
12 ± 3 
25 ±10 

(ethanol, propionate) cultures ranged from 19 to 67-90 fg 
cel l - 1 . This corresponds to the rRNA range of « 10-60 fg 
ce l l - 1 that Kemp et al. (1993) reported for several marine 
bacteria, although these bacteria reached much higher specific 
growth rates (015 h - 1 ) . In stationary phase (1-2 weeks after 
substrate depletion), cellular rRNA levels decreased to 50% 
(acetate) or 13% (propionate) of the original level. Similar 
results were reported for a marine Vibrio sp. that showed a 
decrease in cellular rRNA levels of 85% after 9 d of glucose 
starvation (Flârdh et al. 1992) and Pseudomonas putida that 
showed a decrease of 7 8% after 30 d of starvation. Recently, 
Fukui et al. (1996) demonstrated that the cellular 16S rRNA 
content of Desulfobacter latus, a marine acetate-degrading sul
phate reducer, decreased exponentially during the first 48 h 
of starvation, but then remained stable at 30% of the 16S 
rRNA level obtained for exponentially growing cells. 

Detection thresholds presented below were calculated for 
stationary phase propionate-grown cultures, containing 15 fg 
rRNA cell - 1 . Thresholds for D. amnigenus in sludge were 
almost the same for dot blot hybridization and PCR ampli
fication detection, and were 1 x 10* and 1 x 107 cells g - 1 

VSS, respectively. For dot blot hybridization, this detection 
threshold corresponds to a D. amnigenus rRNA concentration 
of 1500 ng g - 1 VSS. A detection threshold concentration of 
1 x ÎOM x 10" cells g - 1 VSS is quite satisfying for the 
detection of dominant microbes in sludge, especially if the 
total number of micro-organisms per g VSS of anaerobic 
granular sludge is taken into account. Viable cell numbers of 
1 x 1012 to 1 x 1014 g - 1 VSS are reported (Dubourguier et 
al. 1988). This indicates that even with the dot blot method, 
D. amnigenus can still be detected if only one out of 1 x 104-
1 x 106'sludge bacteria is a D. amnigenus cell, provided that 
the total number of D. amnigenus cells in the sample is at least 
1 x 10'. For fast-growing cells, this detection threshold will 
probably be lower, because of the higher rRNA content of 
these cells; for mid-logarithmic phase propionate-grown cells 
(90 fg cell " '), the detection threshold can even be up to sixfold 
lower. 

The described PCR amplification method, using primer 
set 8 and ASRB1, was only 10 times more sensitive than 
the dot blot hybridization method, but this threshold can 
probably be lowered further, if two D. amnigenus-specihc 
primers are used, instead of only one. 

The quantification of D. amnigenus cells in sludge, via 
the dot blot hybridization method or the PCR amplification 
method, is not affected by the presence of acetate-degrading 
methanogens. This gives both methods an advantage over 
the MPN technique. The MPN technique is based on the 
assumption that each single cell will grow in high dilutions. 
However, if the acetate-degrading sulphate reducers are out
numbered by the acetate-degrading methanogens in the 
sludge, this will hamper an accurate estimation of the total 
number of acetate-degrading sulphate reducers present, and 
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the characterization of the dominant acetate-degrading sul
phate reducers. 

For quantification of D. amnigenus in sludge, both dot blot 
and PCR approaches could be used. The dot blot method 
showed a linear correlation between cell number and hybrid
ization signal. The calibration curve presented in Fig. 3 can 
be used to estimate the number of D. amnigenus cells in a 
sludge sample. However, the accuracy of the enumeration 
will be influenced by the rRNA content of the cells. The 
calibration curve was determined with cells containing IS fg 
rRNA cell '. An overestimation of the cell number is pos
sible, if cells contain more rRNA per cell. 

With PCR amplification, no linear correlation between cell 
number and amount of PCR product was measured. To use 
PCR for quantification of D. amnigenus in sludge, serial (10-
fold) dilutions of the purified nucleic acids from the sludge 
sample should be amplified, in order to calculate the number 
of cells in the original sample. 

The dot blot hybridization method was used to determine 
the presence of D. amnigenus in anaerobic sludges. Desul-
forhabdus amnigenus could not be detected in the methano-
genic sludges. This was expected, because very little sulphate 
was present in these reactors, and to our knowledge D. amni
genus has no fermentative or syntrophic capacities (Oude 
Elferink et al. 1995a). Desulforhabdus amnigenus could be 
detected in two of the sulphidogenic sludges. One of these 
sludges was the sludge from which D. amnigenus was ori
ginally isolated (reactor 2). The number of D. amnigenus 
cells in this sludge, estimated with the dot blot hybridization 
method (2 x 10' g~' VSS), was in the same range as the 
number of D. amnigenus cells estimated by serial dilutions 
(10* g~' VSS) (Oude Elferink et al. 1995a). The other sludge 
in which D. amnigenus could be detected was also from a 
reactor treating papermill wastewater (reactor 3a). Two years 
later the same reactor was analysed again (reactor 3b), but D. 
amnigenus could no longer be detected in the sludge. Maybe 
this decrease of the D. amnigenus population was due to the 
increase of the COD/sulphate ratio in this reactor. Under 
sulphate-limited conditions, D. amnigenus has to compete 
with methanogens for acetate, but also with other sulphate 
reducers for the available sulphate. The fact that D. amnigenus 
could not be detected in the sludge from reactors 4 and 5, 
although these reactors operated at an excess of sulphate, 
and part of the acetate in these reactors was degraded via 
sulphidogenesis (unpublished results), strongly indicates that 
D. amnigenus is not the only acetate-degrading sulphate 
reducer which can play a role in sulphidogenic reactors. 

In conclusion, both dot blot hybridization and PCR ampli
fication can be used for the detection and quantification of 
D. amnigenus in anaerobic sludge. The PCR amplification 
technique showed a lower detection threshold for D. amni
genus cells, but was less quantitative than the dot blot hybrid
ization method. The dot blot hybridization method might 

also be suitable for determination of major activity changes 
of D. amnigenus cells in sludge, because the method is suf
ficiently sensitive to detect the variation in the cellular rRNA 
content of fast-growing, slow-growing or starving D. amni
genus cells. This offers interesting possibilities to monitor 
microbial activity of a reactor rather than cell numbers. How
ever, the method does not allow the detection of small changes 
in rRNA concentrations. This may be realized with an rRNA-
based PCR amplification approach, using reverse tran
scriptase to make double-stranded rRNA (RT-PCR) (Amann 
et al. 1995). 
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the characterization of the dominant acetate-degrading sul
phate reducers. 
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genus cells. This offers interesting possibilities to monitor 
microbial activity of a reactor rather than cell numbers. How
ever, the method does not allow the detection of small changes 
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based PCR amplification approach, using reverse tran
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Chapter 7 

Abstract 

To gain more insight in the competitive and syntrophic interactions between sulfate-reducing 

and syntrophic methanogenic consortia in sulfate-limited anaerobic reactors, the microbial 

population in granular sludge from a full-scale upflow anaerobic sludge blanket (UASB) reactor 

was studied, by using the 16S rRNA dot-blot hybridization method in combination with most 

probable number (MPN) estimates. The wastewater which was treated in the UASB-reactor 

contained mainly starch, acetate, propionate, butyrate and formate, and had a chemical oxygen 

demand (COD)/sulfate ratio of 9.5. Evidence was obtained that acetate was mainly degraded by 

Methanosaeta-like bacteria, while propionate was the preferred substrate for sulfate reduction. The 

Desulfobulbus-like propionate-degrading sulfate reducers in the sludge competed with Syntropho-

bacter-like bacteria for the available propionate. Hydrogen and formate were probably mainly 

degraded via methanogenesis by members of the order of Methanobacteriales. Hydrogen, formate 

and butyrate-degrading sulfate reducers could not be characterized with the 16S rRNA probes 

available to date. The same was true for syntrophic butyrate degraders. 

1 Introduction 

It has long been recognized that the 

degradation pathway of complex organic com

pounds in anaerobic wastewater treatment 

systems is strongly influenced by the presence 

of sulfate in the wastewater. The first steps in 

the anaerobic degradation process are the 

hydrolysis and fermentation of biopolymers 

like carbohydrates and proteins to inter

mediates such as propionate, butyrate, formate 

and H2 + C02 by fermenting bacteria. In the 

absence of sulfate, propionate and butyrate are 

degraded by acetogens to acetate, formate, and 

hydrogen, which are then converted by 

methanogens [1,2] according to the equations 

shown in Table 1. Because the conversion of 

propionate and butyrate by acetogens is 

thermodynamically only favourable at a low 

H2 partial pressure and a low formate 

concentration, acetogens degrade these com

pounds in syntrophy with hydrogenotrophic 

methanogens [2]. In the presence of sulfate the 

anaerobic degradation process becomes more 

complex, because sulfate reducers will 

compete with acetogens and methanogens for 

propionate, butyrate, acetate, hydrogen and 

formate (Table 1), by coupling the oxidation of 

these compounds to sulfate reduction [5,6]. 

The chemical oxygen demand (COD)/sulfate 

ratio of the wastewater determines which part 

of the COD can be degraded via sulfate 

reduction. In theory all COD can be degraded 

via sulfate reduction if the COD/sulfate (g/g) 

ratio is below 0.66 (mole COD/ mole sulfate 

<0.5). Studies on the competition between 
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Table 1. Stoichiometry of some anaerobic degradation reactions 

Reaction 

Syntrophic acetogenic reactions 
propionate' + 3 H20 
butyrate' + 2 H20 
propionate" + 2 HC03' 
butyrate" + 2 HC03" 

Methanogenic reactions 
acetate" + H20 
H2 + 0.25 HCC)/ + 0.25 H+ 

formate" + 0.25 H20 + 0.25 H+ 

Sulfidogenic reactions 
propionate" + 0.75 S04

2" 
butyrate" + 0.5 S04

2" 
butyrate" + 1.5 S04

2" 
acetate" + S04

2" 
H2 + 0.25 S04

2" + 0.25 H+ 

formate" + 0.25 S04
2" + 0.25 H+ 

Reaction 
number 

- acetate" + HC03" + H+ + 3 H2 

- 2 acetate" + H+ + 2 H2 

- acetate" + 3 formate" + H+ 

- 2 acetate" + 2 formate" + H+ 

0.25 CH4 + 0.75 H20 
0.25 CH4 + 0.75 HCO," 

- acetate" + HC03" + 0.75 HS" + 0.25 H+ 

- 2 acetate" + 0.5 HS" + 0.5 H+ 

- acetate" + 2 HC03" + 1.5 HS" + 0.5 H+ 

- 2 HCO," + HS" 

- 0.25 HS" + HCO, 

9 
10* 
11 
12 
13 

Several completely oxidizing sulfate reducers form (some) acetate during butyrate degradation [3,4]. 

sulfate reducers and methanogens for hydro

gen, showed that in anaerobic reactors 

operated with excess sulfate, hydrogen was 

completely used by the sulfate reducers [7,8]. 

For acetate the outcome of the competition is 

less clear. In some reactors a predominance of 

sulfidogenic acetate conversion has been found 

[8-10], whereas in other reactors acetate was 

mainly converted by methanogens, even at an 

excess of sulfate [7,10-12]. 

Little is known about the competition 

between acetogens and sulfate reducers for 

propionate and butyrate, because in most 

reactor studies mass balances were used to 

determine the competition between sulfate 

reducers and syntrophic consortia [7,8,10-12]. 

Therefore, no distinction could be made 

between a direct propionate and butyrate 

conversion via sulfate reduction (reaction 8 

and 9, Table 1), or an indirect conversion, 

whereby propionate and butyrate are first 

degraded to acetate and H2 or formate (reaction 

1 and 2, or 3 and 4) by acetogens, followed by 

H2 or formate conversion via sulfate reduction 

(reaction 12 or 13). However, many reactor 

studies indicated that the, direct or indirect, 

conversion of propionate and butyrate via sul

fate reduction is very important in sulfidogenic 

bioreactors with low COD/sulfate ratios [8,10, 

12-14]. 

In sulfate-limited reactors the degra

dation pathway of organic compounds can 

become very complex. Besides the "normal" 

competition between sulfate reducers and syn-
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trophic consortia as described above, sulfate 

reducers will compete with each other for the 

available sulfate. In competition studies with 

sulfate-limited anaerobic reactors, acetate 

seemed to be the least favoured substrate for 

sulfate reduction. Unfortunately, a preference 

for propionate, butyrate or hydrogen was not 

determined [12,14, 15]. Furthermore, some 

sulfate reducers have fermentative or syntro-

phic capacities, and can grow in the absence of 

sulfate on compounds such as propionate, 

lactate, and ethanol. These fermentative and/or 

syntrophic sulfate reducers have been shown to 

play an important role in sulfate-depleted 

reactors [16-18]. 

In general, our knowledge about the 

competition between sulfate reducers and 

methanogenic consortia, especially in sulfate-

limited reactors, is still very limited, and only 

fragmentary information is available on the 

species which are involved. This lack of 

knowledge hampers the development of 

practical procedures to control sulfate reduc

tion and methanogenesis in the bioreactor. The 

aim of this study was to gain more insight in 

the competitive and syntrophic interactions 

between sulfidogenic and syntrophic consortia 

in sulfate-limited reactors. For this purpose, 

the microbial population in granular sludge 

from a full-scale anaerobic bioreactor, which 

had been fed with papermill wastewater 

(COD/sulfate= 9.5) for more than 5 years, was 

examined by using the 16S rRNA hybridizati

on technique in combination with the con

ventional most probable number (MPN) 

enumeration technique, and microscopical 

examinations. 

2 Materials and methods 

2.1 Granular sludge origin 

Granular sludge was obtained from a 

full-scale (2500 m3) upflow anaerobic sludge 

blanket (UASB) reactor treating sulfate-rich 

papermill wastewater. The COD/S04
2" ratio of 

the wastewater was 9.5, the total COD load of 

the wastewater was 1.7 g/1, and the pH of the 

effluent was approximately 6.9. The reactor 

was maintained at a constant hydraulic reten

tion time (HRT) of 4.6 hours, and a tempe

rature of 30°C (winter) to 37°C (summer). The 

COD and sulfate removal efficiencies were 

approximately 70% and 95%, respectively. 

The major constituents of the papermill 

wastewater fed to the UASB reactor were (mg 

COD l"1): carbohydrates (mainly starch) (850); 

acetate (500); propionate (300); butyrate (45); 

formate (20). The composition of the reactor 

effluent was as follows (mg COD l"1): carbo

hydrates (350); acetate (30); propionate (80); 

butyrate (1). 

2.2 Organisms and growth conditions 

Desulforhabdus amnigenus (DSM 

10338) and Syntrophobacter strain MPOB 

(DSM 10017) [19] were from our laboratory 

collection, and cultured at 37°C in 120-ml 

serum vials, containing 50 ml of a basal bicar

bonate-buffered medium as de-scribed before 

[20]. This medium was supplemented with 20 

mM propionate and 20 mM sulfate for D. 
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amnigenus, and with 40 mM fumarate for S. 

fumaroxidans. All other strains were obtained 

from the Deutsche Sammlung von Mikro

organismen (Braunschweig, Germany). 

2.3 Most probable number (MPN) estimates 

The different physiological types of 

bacteria were enumerated using the MPN 

technique (n=3). For this purpose reactor 

sludge (10 ml) was diluted with 90 ml basal 

bicarbonate-buffered medium and disinte

grated by pressing it repeatedly through a 

syringe needle as described before [20]. This 

crushed granular sludge was used to make 

serial dilutions in 120-ml serum vials contai

ning 45 ml bicarbonate-buffered medium, with 

20 mM acetate, formate, propionate or butyrate 

as substrate, and with or without 20 mM 

sulfate. The gas phase consisted of N2/C02 

(4:1). Hydrogenotrophic bacteria were quanti

fied using a H2/C02 (4:1) gas phase. In the 

series with propionate or butyrate without sul

fate, 5 ml of a H2-grown culture of Methano-

bacterium formicicum (DSM 2639) was added 

to allow steady H2 and formate consumption. 

After 3 months of incubation (37°C) methane 

production, substrate depletion, and sulfide 

formation were determined. The most probable 

number of methanogens (determined by 

methane production) and sulfate reducers 

(determined by sulfide production) in the 

sludge, was estimated according to Hurley and 

Roscoe [21]. Furthermore, the cultures were 

examined microscopically, and nucleic acids 

were extracted for dot blot hybridization 

analyses. 

2.4 Nucleic acids isolation and dot blot 

hybridizations 

Nucleic acids were extracted from the 

MPN dilution series (10 ml samples) and from 

homogenized inoculum sludge (0.1 ml), using 

glass beads and a cell homogenizer as de

scribed previously [25]. The extracts were 

purified by phenol-chloroform-isoamylalcohol 

extraction and ethanol precipitation. The 

purified extracts were transferred to mem

branes with a dot-blot manifold, and hybri

dized overnight with radiolabelled 16S rRNA 

hybridization probes (Table 2). A detailed de

scription of the nucleic acid isolation and dot-

blot hybridization procedure was published 

previously [25]. The hybridization temperature 

was 10°C below the reported probe dissocia

tion temperature (Td) (see references in Table 

2). The final washing temperature of each 

hybridization experiment equalled the Td of 

the probe used. Hybridization responses were 

quantified by using a Phosphor screen and a 

Phosphor Imager (Molecular Dynamics, 

Sunnyvale, CA). The total amount of bacterial 

rRNA in the sludge was quantified with the 

EUB338 probe in combination with Esche

richia coli rRNA standards (Boehringer Mann

heim Biochemicals, Almere, NL). The total 

amount of archaeal rRNA was quantified with 

the ARC915 probe in combination with 

Methanospirillum hungatei (DSM 864) 

standards. The rRNA content of the E. coli 

RNA standards was measured spectrophoto-

metrically, and the RNA content of the M. 

hungatei standards was determined by quanti

fying the signal intensity of the 16S rRNA 
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band on an agarose gel as described before 

[25]. The relative abundance of 16S rRNA 

from sulfate reducers, acetogens, and methano-

gens was expressed as a percentage of the total 

bacterial 16S rRNA, in the case of sulfate 

reducers and acetogens, and as a percentage of 

the total archaeal 16S rRNA in the case of me-

thanogens. Hybridization results obtained with 

dilution series of nucleic acid extracts from 

reference organisms were used as standards as 

described before [30]. Besides extracts from E. 

coli and M. hungatei, nucleic acids extracts 

from the following reference organisms were 

used: Desulforhabdus amnigenus (DSM 

10338), Desulfobacterium vacuolatum (DSM 

3385), Desulfobacterium phenolicum (DSM 

3384), Desulfovibrio vulgaris (DSM 644), 

Desulfobulbus propionicus (DSM 2032), 

Desulfobacter latus (DSM 3381), Desulfoto-

maculum acetoxidans (DSM 771), Syntropho-

bacter wolinii (DSM 2805), Syntrophobacter 

strain MPOB (DSM 10017), Syntrophobacter 

pfennigii (DSM 10092), Methanobacterium 

formicicum (DSM 2639), Methanococcus 

jannaschii (DSM 2661), Methanosarcina 

barkeri (DSM 800), and Methanosaeta 

(Methanothrix) soehngenii (DSM 2139). 

2.5 Chemical analyses 

Volatile fatty acids and sulfate were 

analyzed by HPLC as described previously 

[10,31]. Hydrogen and methane were deter

mined quantitatively by gas chromatography 

[31]. The volatile suspended solids (VSS) 

content of the sludge, and the COD of the 

wastewater were analyzed according to the 

Dutch Standard Methods [32]. Sulfide was 

measured colorimetrically as described by 

Triiper and Schlegel [33]. 

3 Results and discussion 

3.1 Enumeration of the sulfate reducers, 

acetogens and methanogens in the sludge. 

The different trophic groups of micro

organisms in the sludge were estimated with 

the MPN method (Table 3). With this method 

sulfate reducers and methanogens could be 

easily discriminated. Hydrogen-, formate-, and 

acetate-utilizing methanogens clearly outnum

bered their sulfate-reducing counterparts. In 

the MPN dilution series with sulfate and pro

pionate or butyrate, it was not possible to make 

a distinction between a direct propionate or 

butyrate degradation by sulfate reducers 

(reaction 8 and 9, Table 1), or an indirect 

degradation through "interspecies electron 

transfer" (reaction 1, 2, 3, 4, and 12 and/or 13). 

The exact number of acetogens in the MPN 

series with propionate and sulfate could not be 

determined, but it was maximally 1.4xl08-

1.2xl09 cells/g VSS (Table 3). This number of 

acetogens is thousand times lower than the 

number estimated via the MPN series with 

only propionate. A similar (500-fold) diffe

rence was found between the number of buty-

rate-degrading acetogens in the MPN series 

with butyrate and sulfate, and in the series with 

butyrate only (Table 3). These results indicate 

that the MPN method underestimates the 

number of acetogens in the sludge, when the 

dilution series are not supplemented with 
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hydrogenotrophic methanogens. Apparently, 

this occurs even if the total number of hydro

genotrophic methanogens in the sludge 

exceeds the number of acetogens. Similar 

observations were made before [12]. 

3.2 The sulfate-reducing potential of the 

sludge 

The sulfate-reducing potential of sludge 

under non-sulfate-limiting conditions (Table 

4), was calculated using the substrate 

consumption, sulfide production, and methane 

production in the lowest dilutions of the MPN 

series (100-fold diluted sludge), and the 

conversion stoichiometrics of Table 1. The 

maxi-mum percentage of acetate, hydrogen 

and formate degradation via sulfate reduction 

could be calculated directly from the measured 

substrate consumption, sulfide production, and 

methane production. 

Table 2. Summary of the oligonucleotide probes used in this study 

Probe 

EUB338 
ARC915 

SRB385 
D687 
D660 
D221 
D129 
ASRB1 
D804 

MPOB1 
KOP1 
S223 
117 

MB1174 
MCI 109 
MG1200 
MS821 
MX825 

Target group 

kingdoms 
Bacteria 
Archaea 

sulfate reducers 
Gram-neg. sulfate reducing bacteria (SRB)' 
Desulfovibrio 
Desulfobulbus 
Desulfobacterium 
Desulfobacter 
Desulforhabdus amnigenus 
Desulfobacterium, Desulfobacter, Desulfosarcina, 
Desulfococcus, Desulfobotulus 

acetogens 
Syntrophobacter strain MOPB, S. pfennigii, D. amnigenus 
S. pfennigii 
Syntrophobacter wolinii 
Syntrophic propionate oxidizer SYN7 

methanogens 
Methanobacteriales2 

Methanococcales1 

Methanomicrobiales 
Methanosarcina 
Methanosaeta (Methanothrix) 

Reference 

22 
23 

22 
24 
24 
24 
24 
25 
24 

26 
26 
27 
27 

28 
28 
28 
28 
28 

Several non-target organisms share the target sequence of this probe [22], while some target organisms 
(e.g. D. amnigenus) have several mismatches with the probe. 
2Probes MB 1174 and MCI 109 could be considered as family-specific probes for Methanomicrobiaceae and 
Methanococcaceae, when used in mesophilic environments [29]. 
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However, to calculate the percentage of pro

pionate and butyrate-degradation via sulfate-

reduction, the following assumptions were 

made: All propionate and butyrate is first 

degraded to acetate, via (a combination of) 

reaction 1, 3 and 8, or reaction 2, 4 and 9, 

respectively. Furthermore, acetate, hydrogen 

and formate, which are formed in the MPN 

vials during the degradation of propionate and 

butyrate, are further degraded via sulfate 

reduction and methanogenesis in the same way 

as in the vials with only acetate, hydrogen or 

formate, i.e. respectively 3%, 28% and 19% 

via sulfate reduction and the rest via methano

genesis. 

The maximum amount of sulfate reduced 

in the reactor was calculated to be 2.2 mM, 

based on the results of Table 4 and the 

substrate consumption in the reactor. It should 

be mentioned that the percentage of butyrate 

conversion via sulfate reduction as presented 

in Table 4, would decrease drastically (from 

30-38% to 8-11%) if it is assumed that 

butyrate-conversion mainly proceeds via 

reaction 10, and not via reaction 9 (Table 1). 

However, this would not change the calculated 

sulfate reduction largely, because butyrate was 

only present in the reactor in small amounts. 

Surprisingly, the calculated maximum 

amount of sulfate reduced (2.2 mM), was only 

slightly higher than the actual amount of 

sulfate reduced in the reactor, which was 1.9 

mM. It was expected that the maximum sulfate 

reducing potential of the sludge would be 

much higher than the actual sulfate reduction 

in the sludge. Apparently, the sludge is well 

adapted to the available sulfate, and does not 

have a large overcapacity of sulfate reduction. 

It is clear that acetotrophic sulfate 

reducers endure a strong competition from 

acetotrophic methanogens. In the reactor, 

acetate seems to be mainly degraded via 

methanogenesis. This corresponds with the 

acetate-degradation pattern found by Mulder 

and by others [7,11,12]. Interestingly, hydro

gen also seemed to be mainly degraded by 

methanogens. This differs from the hydrogen 

oxidation in sulfidogenic bioreactors, operated 

with an excess of sulfate, where hydrogen is 

mainly degraded via sulfate reduction [7,8]. 

The only substrate which appeared to be 

mainly degraded via sulfate reduction was 

propionate. These results could indicate that 

propionate, rather than hydrogen is the 

preferred substrate for sulfate reduction in this 

sulfate-limited reactors. 

3.3 Characterization of the microbial sludge 

population 

In order to characterize the different 

groups of microorganisms present in the 

sludge, and to obtain more insight in their 

physiological role, the 16S rRNA compo

sitions of the sludge and the MPN dilution 

series (Table 3) were analyzed with the 16S 

rRNA dot blot hybridization method. The total 

bacterial and archaeal rRNA in the sludge 

nucleic acid extract was 1.6 ± 0.1 ug ml"1 and 

11.1 ± 2.8 ug ml"1, respectively. This 

corresponds to a ratio of 0.14 between 

bacterial and archaeal rRNA in the sludge. The 

low ratio between bacterial and archaeal rRNA 
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Table 4. Partitioning of substrate degradation by sulfate reducers, acetogens and methanogens, under non-
sulfate-limiting conditions. 

Substrate 

Hydrogen 
Formate 
Acetate 
Propionate 
Butyrate 

% degraded via1: 
sulfate reduction 

28 
19 
3 
60-652'3 

30-382 

methanogenesis 

72 
81 
97 
-
-

acetogenesis 

-
-
-
35-4023 

62-702 

Average of three independent experiments, the SD is always below 2%, unless indicated otherwise. 
2 Percentage range; first percentage: assuming only interspecies hydrogen transfer; second percentage: 
assuming only formate transfer. 
3 SD ± 13% 

could indicate that methanogens are the largest 
group of microorganisms in the sludge, which 
seems to correspond with the results of the 
MPN estimates (Table 3). 

Methanosaeta sp. were the dominant 
acetate-degrading methanogens in the sludge. 
They could be detected in all MPN series 
where acetate had been degraded. In the sludge 
80 ± 3% of the total archaeal 16S rRNA was 
from Methanosaeta. Nucleic acid extracts from 
the sludge and the MPN dilutions did not 
hybridize with the MS825 probe, which 
indicated that acetate-degrading Methanosar-
cina sp. were not present or present only in 
low numbers. The dominance of Methanosaeta 
in the sludge, could be due to the low acetate 
concentration (0.4 mM) in the reactor. In 
anaerobic bioreactors with low acetate con
centrations, Methanosaeta sp. are often the 
dominant acetate-degrading methanogens. 
According to Jetten et al. [34] the competitive 
advantage of Methanosaeta over Methanosar-
cina can be explained by their higher affinity 
and lower threshold for acetate. 

Acetate-degrading sulfate reducers were 
only present in the sludge in low numbers. To 

which group these sulfate reducers belong, 
could not be determined with the available 
probes, because none of the probes for sulfate 
reducers (Table 2) hybridized with the RNA 
extracts from the MPN series with acetate and 
sulfate. At present probes for acetate-degra
ding sulfate reducers belonging to the Gram 
positive, sporeforming Desulfotomaculum sp. 
[35] are not available. However, the presence 
of sporeforming bacteria could not be con
firmed by microscopic examinations. Instead 
small coccus-shaped cells and thick vibrio-
shaped cells were observed in the MPN bottles 
with acetate and sulfate, in addition to the long 
filaments typical for Methanosaeta [36], 

Based on hybridization studies the 
dominant hydrogen and formate-consuming 
methanogens in the sludge belonged to the 
order of the Methanobacteriales. Under the 
microscope, mainly thin, rod-shaped cells, 
resembling Methanobacterium sp. were obser
ved in the MPN cultures with hydrogen or 
formate. Based on MPN estimates Methano
bacteriales cells outnumbered Methanosaeta 
cells by far, but only a low amount of 
Methanobacteriales rRNA (2% relative 
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abundance) was found in the sludge, compared 
to Methanosaeta rRNA (80% relative abun
dance). It is possible that the Methanobac-
teriales cells were not very active in the 
sludge, and therefore only contained a low 
amount of rRNA. However, it is known that 
MPN tests underestimate the number of 
Methanosaeta cells present, due to incomplete 
dispersion of the Methanosaeta filaments into 
single cells [37]. In addition, due to the slow 
growth of Methanosaeta sp., an incubation 
period of three months might not be long 
enough to determine the true numbers in the 
MPN tests. This underestimation of Methano
saeta cell-numbers by MPN tests seems to be a 
more likely explanation for the difference 
between cell-numbers and RNA abundance of 
Methanobacteriales and Methanosaeta. 

Methanogens of the order Methano-
microbiales or Methanococcales could not be 
detected in hybridization studies with the 
sludge extract. Nevertheless, the Methano-
microbiales probe MG1200 did react with 
some of the lower dilutions of the MPN series 
with propionate, indicating that Methanomi-
crobiales were present in the sludge in low 
numbers. It remains unclear why Methanobac
teriales sp. and not Methanomicrobiales sp. 
seem to be the dominant H2 and formate 
consuming methanogens in the sludge. Up to 
now, nothing is known about the competition 
between Methanobacteriales and Methano
microbiales species for H2 and formate in 
anaerobic sludge. In some studies Methano
bacteriales, such as Methanobacterium and 
Methanobrevibacter are reported to be the 
dominant hydrogen and formate consuming 
methanogens [16-18,30], while other studies 
show that Methanomicrobiales can also be 

present in the sludge in high numbers [38] and 
can even be more abundant than Methano
bacteriales [29,39]. 

Hydrogen and/or formate-consuming 
sulfate reducers could not be characterized. 
This is partly due to the fact that only a small 
percentage of hydrogen (<7%) and formate 
(<6%) was converted via sulfate reduction in 
the higher dilutions of the MPN series with 
sulfate, and hydrogen or formate. The bacterial 
16S rRNA in these higher dilutions, repre
sented only a small fraction (5-14%) of the 
total 16S rRNA. In some vials, up to 50% of 
this bacterial 16S rRNA could be attributed to 
Gram-negative sulfate reducers. In most vials 
small, vibrio-shaped cells, and short, thin, rod-
shaped cells were observed, in addition to 
Methanobacterium-Wke cells. The Desulfo-
vibrio probe (D687) did not hybridize with the 
sludge extract nor with any of the MPN-
extracts. Recently, we have reported that the 
Desulfovibrio probe D687 is not very sensi
tive for the detection of Desulfovibrio sp. 
[40], and a relative Desulfovibrio rRNA abun
dance of at least 1-1.5% is required for a 
positive hybridization signal. Nevertheless, the 
hybridization results with the Desulfovibrio 
probe indicate that Desulfovibrio sp. are not 
present in the sludge in high numbers. 

Propionate could be degraded in the 
sludge via three different pathways, as was 
demonstrated in the MPN series with pro
pionate and with or without sulfate. In the 
absence of sulfate, propionate was degraded by 
syntrophic propionate degrading bacteria and 
hydrogen/formate-scavenging Methanobacte
riales and Methanomicrobiales. These syntro
phic propionate oxidizers could be Syntropho-
bacter strain MPOB, because the nucleic acid 
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extracts of the MPN cultures hybridized only 
with the MPOB1 probe, and not with the 
KOP1 or ASRB1 probe. In the lower dilutions 
of the MPN series with propionate and sulfate, 
propionate was mainly degraded by Desulfo-
bulbus sp, the acetate which was formed as an 
intermediate was degraded by Methanosaeta. 
This was in accordance with earlier findings of 
Harmsen et al. [27]. In the higher dilutions no 
methane production was observed, thus 
propionate had been directly or indirectly 
degraded via sulfate reduction. The latter 
seemed to be the case, because Desulfobulbus 
16S rRNA was absent, but 16S rRNA of S. 

fumaroxidans and Gram-negative sulfate 
reducers was present in high amounts. These 
Gram-negative sulfate reducers, which were 
vibrio-shaped, were probably the hydrogen or 
formate-consuming sulfate reducers in these 
cultures. However, it cannot be ruled out that 
these vibrio-shaped sulfate reducers were pro
pionate degraders, because S. fumaroxidans is 
not restricted to syntrophic propionate degra
dation, but can oxidize propionate with sulfate 
as electron acceptor [41]. In the sludge ap
proximately 5.3 ± 0.1% of the bacterial 16S 
rRNA could be attributed to Desulfobulbus, 
0.5 ± 0.2% to S. fumaroxidans, and 18 ± 1% to 
Gram negative sulfate reducers. 

The most obscure process in the sludge 
was butyrate conversion. Without doubt a 
major part of the butyrate in the sludge was 
degraded by syntrophic butyrate degraders 
(Table 4). Unfortunately, probes to charac
terize syntrophic butyrate degraders, such as 
Syntrophospora and Syntrophomonas [2] are 
not available. In the MPN cultures with 
butyrate, sporeforming rods, resembling Syn
trophospora could be observed, but small, 

bulbus-shaped bacteria were present as well. 
Because none of the probes for sulfate-
reducers hybridized with the extracts from the 
MPN series with butyrate and sulfate, it 
cannot be concluded if butyrate is directly or 
indirectly degraded via sulfate reduction. In 
addition to the bacteria observed in the MPN 
series without sulfate, thick vibrios and thick 
short rods were observed. These bacteria could 
have been the sulfate-reducing bacteria. 

A small percentage (4 ± 1%) of the bac
terial 16S rRNA from the sludge hybridized 
with the D804 probe, for Desulfobacterium 
and relatives. The role of these bacteria in the 
sludge is unclear, especially because they were 
not detected in any of the MPN extracts. 

3.4 Concluding remarks. 
The aim of this study was to gain more 

insight in the competitive and syntrophic 
interactions between sulfate-reducing, metha-
nogenic and acetogenic bacteria in sulfate-
limited reactors. From the results presented in 
this paper it is clear that the bacterial 
interactions in such sulfate-limited reactors are 
very complex. No substrate seemed to be 
completely degraded by sulfate reducers, 
methanogens or acetogens only. However, 
there was evidence that in this reactor acetate 
was mainly degraded by methanogens and 
propionate was the preferred substrate for 
sulfate reducers. Further studies are needed to 
reveal if these results can be extrapolated to 
other sulfate-limited reactors. The characte
rization of the bacteria in the MPN series, 
helped to get more insight in the role of the 
different bacterial groups in the sludge. The 
methanogenic population could be characte-
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rized relatively well with the available probes. 

Our results indicated that Methanosaeta sp. 

were the dominant acetate degraders, while 

Methanobacterium sp. were the dominant 

hydrogen and formate-consuming methano-

gens. Desulfobulbus sp. and Syntrophobacter 

sp. were important for propionate degradation. 

However, new probes have to be developed to 

get a better picture of the sulfate-reducing and 

acetogenic sludge populations. For example, 

probes for Gram positive sulfate reducers and 

syntrophic butyrate degraders would be very 

useful in this respect. 
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Identification of sulfate reducers and Syntrophobacter sp. in 

anaerobic granular sludge by fatty-acid biomarkers and 16S 

rRNA probing. 

In press as: 

Oude Elferink SJWH, Boschker HTS, Stams AJM. Identification of sulfate reducers and 

Syntrophobacter sp. in anaerobic granular sludge by fatty-acid 

biomarkers and 16S rRNA probing. Geomicrobiol. J. 
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The sulfate-reducing bacterial sludge population in anaerobic bioreactors, treating different types of 

wastewater in the presence or absence of sulfate, was evaluated by polar-lipid fatty acid (PLFA) 

analyses, and by 16S rRNA dot blot hybridizations using specific 16S rRNA-targeted oligo

nucleotide probes for sulfate reducers and Syntrophobacter sp. The 16S rRNA dot blot 

hybridizations were useful for estimating the relative amount of sulfate reducers in the sludge. The 

PLFA profiles of the sludge were useful to obtain a quick general impression of the total bacterial 

sludge composition, but were less suitable for an accurate characterization and quantification of the 

sulfate-reducing population in the sludge. This was due to the lack of selective biomarkers for these 

bacteria. 

The combined results of the PLFA analysis and 16S rRNA dot blot hybridizations showed 

that presence of sulfate reducers in the sludge was not dependent on the presence of sulfate in the 

wastewater. This may be explained by the syntrophic and/or fermentative capacities of some sulfate 

reducers in the absence of sulfate. Desulfobulbus sp. were important in reactors with carbohydrates 

and/or volatile fatty acids containing wastewater. These bacteria could play a role in propionate 

degradation in these reactors. Desulfobacter sp. did not seem to be important for acetate degradation 

in any of the sulfate-fed reactors. In the acetate and sulfate-fed reactor, Desulfotomaculum 

acetoxidans-like bacteria seemed to play a role in acetate degradation. 

Introduction 

Anaerobic wastewater treatment systems 

are suitable for the treatment of a wide range 

of industrial wastewaters (Lettinga, 1995). In 

the anaerobic digestion process organic mate

rial is mineralized to methane and C02 by the 

concerted action of various metabolic groups 

of bacteria. Important inter-mediates of the 

anaerobic digestion process are hydrogen, 

formate, acetate, and volatile fatty acids 

(Gujer and Zehnder, 1983). Dependent on the 

type of anaerobic bioreactor the bacteria are 

aggregated in floes, granules or biofilms. The 

microbial composition of these aggregates is 

influenced by the type of carbon sources and 

electron acceptors present in the wastewater. 

In methanogenic bioreactors, propionate and 

butyrate conversion is only feasible at a low 

H2-partial pressure and a low formate 

concentration. Therefore, propionate- and 

butyrate-oxidizing acetogens can degrade these 

compounds only in syntrophy with H2 and/or 

formate scavenging methanogens (Stams, 

1994). Anaerobic bioreactors are also used for 

the treatment of sulfate-rich waste streams. 

The presence of sulfate in the reactor leads to a 

competition between sulfate-reducing bacteria 

and syntrophic bacteria for compounds such as 

propionate and butyrate, and a competition 

between sulfate reducers and methanogens for 

acetate, hydrogen and formate (Oude Elferink 

et al., 1994). 

Recently, it was found that syntrophic 
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propionate oxidizers, belonging to the genus 

Syntrophobacter, are able to grow without a 

syntrophic partner, with propionate plus 

sulfate as electron acceptor (Wallrabenstein et 

al., 1994; 1995; van Kuijk and Stams, 1995; 

Zellner et al, 1996). Based on 16S rRNA 

analyses Syntrophobacter species belong, 

together with Gram-negative sulfate reducers, 

to the delta subclass of the proteobacteria 

(Harmsen et al, 1995; Wallrabenstein et al, 

1995). A close relative of the genus Syntro

phobacter is Desulforhabdus amnigenus, a 

sulfate reducer which is not able to grow on 

propionate syntrophically (Oude Elferink et 

al, 1995). Syntrophobacter sp. can be present 

in methanogenic bioreactors in high numbers 

(Harmsen et al, 1996b), but their presence 

and role in sulfate-reducing bioreactors is not 

clear. 

The aim of this study was to gain more 

insight in the sulfate-reducing bacterial sludge 

population in anaerobic bioreactors treating 

different types of wastewater in the presence 

or absence of sulfate. Several sludge-types 

were analysed with the 16S rRNA dot blot 

hybridization method and their polar-lipid fatty 

acid (PLFA) profile was determined. Both 

characterization methods have been success

fully applied for the identification of sulfate 

reducers in complex ecosystems (Taylor and 

Parkes, 1985; Parkes et al, 1993; Raskin et al. 

1995; 1996). The lipid composition of sulfate-

reducing bacteria has been studied extensively 

(e.g. Taylor and Parkes, 1983; Dowling et al, 

1986; Vainshtein et al, 1992; Kohring et al, 

1994), but PLFA compositions of Syntro

phobacter sp. are not known. We determined 

PLFA profiles of three Syntrophobacter sp. 

(i.e. S. wolinii, S. pfennigii, and strain MPOB) 

(Boone and Bryant, 1980; Stams et al, 1993; 

Wallrabenstein et al, 1995; Harmsen, 1996) 

and also of D. amnigenus. Species-specific 

16S rRNA probes already available for the 

detection of these organisms were also used to 

analyse the sludges (Harmsen et al, 1995; 

Harmsen et al, 1996a; Oude Elferink et al, 

1997). 

Materials and Methods 

Granular sludge types 

Granular sludge samples were taken 

from one full-scale upflow anaerobic sludge 

blanket (UASB) reactor, fed with papermill 

wastewater, and several lab-scale UASB 

reactors, fed with synthetic wastewater (Table 

1). The lab-scale reactors fed with sulfate had 

been running for more than 3 months before 

the sludge samples were taken. The other lab-

scale reactors had been running for more than 

one year, and the full-scale reactor for more 

than five years. A part of each sludge sample 

was homogenized with a mortar and pestle and 

used immediately for nucleic acids extraction, 

the remainder was stored at -20°C for PLFA-

analysis. 

Organisms and growth conditions 

Desulforhabdus amnigenus strain 

ASRB1 (DSM 10338) and Syntrophobacter 

sp. strain MPOB (DSM 10017) (Stams et 

al, 1993; Harmsen, 1996) were from our 
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Sulfate reducers and syntrophs in sludge 

laboratory collection. Syntrophobacter wolinii 

(DSM 2805), and Syntrophobacter pfennigii 

(DSM 10092) were obtained from the 

Deutsche Sammlung von Mikroorganismen 

(Braun-schweig, Germany). All strains were 

grown at 37°C, in 120-ml serum vials or 1-1 

screw-cap bottles, containing 50 and 500 ml, 

respectively, of a bicarbonate-buffered 

medium as described previously (Oude Elfe-

rink et al., 1995). D. amnigenus was grown 

with either 20 mM acetate, propionate, lactate 

or ethanol as electron donor and sulfate (40 

mM) as electron acceptor. The Syntropho

bacter sp. were cultured syntrophically on 

propionate (20 mM) with Methanospirillum 

hungatei (DSM 864) as hydrogen scavenger. 

PLFA analysis 

Lipids were extracted by a modified 

Bligh and Dyer extraction using 50-ml screw-

cap centrifuge tubes (Guckert et al., 1985). 

Bacterial cultures (100 to 500 ml) were 

harvested by centrifugation (20,000 g, 20 min., 

4°C) and pellets were directly extracted. UASB 

sludges were homogenised with a mortar and 

pestle, and approximately 1 g (wet) was ex

tracted. The total lipid extract was fractionated 

on silicic acid, and mild alkaline trans

methylation was used to yield fatty acid 

methyl esters from the polar lipid fraction 

(Guckert et al., 1985). The fatty acid methyl 

esters (FAME) were determined by capillary 

GC-FID using both an nonpolar column 

(Hewlett-Packard Ultra-2, 50 m x 0.32 mm x 

0.17 mm) and a polar column (Scientific Glass 

Engineering BPX-70, 50 m x 0.32 mm x 0.25 

mm). Internal FAME standards of both 19:0 

and 12:0 were used. Identification of PLFA 

was based on comparison of retention time 

data from both analytical columns with known 

standards or previously characterised extracts 

from bacterial cultures. Additional identi

fication was done by GC-MS using a 

Hewlett-Packard Mass Selective Detector (HP 

5970). 

PLFA nomenclature 

Fatty acids are designated as A:BwC, 

where A is the number of carbon atoms, B the 

number of double bonds, and C the position of 

the double bond from the aliphatic (o>) end. 

Unsaturated bonds may occur in either cis (c) 

or trans (t) configurations. The prefixes "i" and 

"a", refer to iso- and anteiso-methyl branching, 

respectively. Mid-chain methyl branches are 

designated by "Me", preceded by the position 

of the branch from the acid end. A cyclopropyl 

ring is indicated as "cy". The roman numbers 

indicate a mono-unsaturated PLFA with un

known double bond position, or a PLFA with 

an unknown position of the cyclopropyl ring. 

No appropriate standards were available for 

these compounds. 

Nucleic acids isolation and dot blot 

hybridizations 

Nucleic acids were extracted from 10 ml 

of a late logarithmic culture or 0.1 ml of 

homogenized granular sludge, using glass 

beads and a cell homogenizer in the presence 

of phenol. The extracts were purified by 

phenol-chloroform-isoamylalcohol extraction 
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and ethanol precipitation as described pre

viously (Harmsen et al., 1995). The 16S rRNA 

composition of the (duplicate) sludge samples 

was analysed via dot blot hybridization, using 
32P-labelled 16S rRNA probes (Table 4), 

according to Oude Elferink et al. (1997). The 

dot blots were hybridized overnight at 10°C 

below the probe dissociation temperature (Td). 

The final wash temperature of each hybri

dization experiment equalled the Td of the 

probe used. Hybridization responses were 

quantified by use of a Phosphor screen and a 

Phosphor Imager (Molecular Dynamics, 

Sunnyvale, CA). Total bacterial 16S rRNA 

was quantified by hybridization of extracted 

nucleic acids and dilution series of the rRNA 

of the reference organisms, with the general 

bacterial probe EUB338 (Amann et al., 1990). 

The resulting standard curves were used to 

calculate the concentration of 16S rRNA for 

the different groups of microorganisms as 

described before (Raskin et al., 1994). Nucleic 

acid extracts from the following reference 

organisms were used: 

Escherichia coli (Boehringer Mannheim Bio-

chemicals, Almere, NL), Desulforhabdus 

amnigenus, Desulfobacterium vacuolatum 

(DSM 3385), Desulfobacterium phenolicum 

(DSM 3384), Desulfovibrio vulgaris (DSM 

644), Desulfobulbus propionicus (DSM 2032), 

Desulfobacter latus (DSM 3381), Desulfoto-

maculum acetoxidans (DSM 771), Syntropho-

bacter wolinii, Syntrophobacter pfennigii and 

Syntrophobacter sp. strain MPOB. 

Results and discussion 

PLFA composition of bacterial cultures 

The PLFA compositions of the three 

Syntrophobacter species, and of the sulfate 

reducer D. amnigenus, were analysed to find 

possible biomarkers for these phylogenetically 

closely related organisms. Although belonging 

to the same genus, the PLFA pattern of Syntro

phobacter sp. strain MPOB was very different 

from that of S. wolinii and S. pfennigii (Table 

2). Major PLFA in strain MPOB were 15:1 

(III) and 15:0, whereas patterns of the other 

two strains were dominated by il5:0, 16:0 and 

il7:lw7. The patterns of S. wolinii and S. 

pfennigii were similar to that generally found 

in Desulfovibrio sp. (Vainshtein et al., 1992). 

As a result, specific detection of these two 

Syntrophobacter strains will be difficult and 

il7:lo)7, an uncommon compound which was 

considered as specific marker for Desul

fovibrio sp. (Taylor and Parkes, 1983; 

Vainshtein et al., 1992), can only be used as a 

combined marker for Desulfovibrio sp. and the 

two Syntrophobacter strains. Strain MPOB 

contained 20% of 15:1 (III), which was not 

further characterized for double bond position, 

because no appropriate standards were 

available. Since the exact identity of this 

monounsaturated PLFA is not known, it is 

unclear if it can be used as a specific marker 

for strain MPOB. On the other hand, since this 

compound is not a major component in the 

PLFA patterns of UASB sludges analysed (see 
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Table 2. PLFA composition of several recently isolated propionate-oxidizing bacteria, the major PLFA's are 
in bold. 

PLFA D. amnigenus Syntrophobacter 
strain MPOB 

S. wolinii 

Mol % 

5. pfennigii 

13:0 
14:1 
14:0 
il5:0 
al5:0 
15:1 (III) 
15:1 (IV) 
15:0 
16:lo)7c 
16:10)5 
16:0 
il7:lo>7 
10Mel6:0 
il7:0 
al7:0 
17:lco8 
17:lw6 
cyl7:0 (II) 
17:0 
il8:l 
18:lo)9c 
18:lo)9t 
18:lo)7c 
18:1 (II) 
18:1 (III) 
18:0 

1.6 
4.2 

1.3 
17.4 

2.9 
11.7 

0.5 
12.0 
11.0 
11.8 
4.9 

0.3 
0.7 
14.5 
2.5 

0.9 
1.5 
8.4 
2.2 

19.5 

22.0 
2.4 
2.3 
6.7 
1.3 

0.5 
7.5 
1.2 

9.9 

2.9 
1.5 

6.3 

3.1 
37.8 
1.6 

8.7 
1.6 

12.2 
15.7 

2.4 

1.5 
27.9 
0.6 

11.3 

7.8 
25.6 
2.3 
1.9 

3.1 

4.3 
2.8 

3.5 

8.4 

1.6 

9.7 

Total 97.3 97.0 96.8 98.6 

Figure 1), it might be used as a marker for 

determining the maximum amount of strain 

MPOB present. 

The PLFA pattern of Desulforhabdus 

amnigenus grown on acetate, was specific 

(Table 2). Especially the equal amounts of 

17:lw6, cyl7:0 (II), and a not further 

characterised 18:1 (III) were not found in any 

other PLFA pattern of sulfate-reducing bacte

ria (Taylor and Parkes, 1983; Dowling et al., 

1986; Vainshtein et al., 1992; Kohring et al., 

1994). PLFA analysis of D. amnigenus 

cultures grown with propionate, lactate or 

ethanol as electron donor resulted in similar 

PLFA patterns (results not shown). 17:lw6 

was proposed as a marker for the genus 

Desulfobulbus (Taylor and Parkes, 1983) and 

it is found in much higher amounts in UASB 
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Figure 1. PLFA compositions of granular UASB sludge from several anaerobic reactors ((A) C+S, (B) 
VFA+S, (C) Ac+S, (D) C and (E) VF A) and UASB effluent from reactor Ac+S (F). 
PLFA legend: 1, 13:0; 2, il4:0; 3, 14:1; 4, 14:0; 5, il5:0; 6, al5:0; 7, 15:1 (I); 8, 15:1(11); 9, 15:1 (III); 10, 
15:1 (IV); 11, 15:0; 12, il6:l; 13, il6:0; 14, 16:lw9c; 15, 16:lw7c; 16, 16:lw7t; 17, 16:lw5; 18, 16:0; 19, 
il7:lw7; 20, 10Mel6:0; 21, al7:l; 22, il7:0; 23, 17:0; 24, 17:lco8; 25, 17:lw6; 26, cyl7:0 (I); 27, 
cyl7:0(II); 28, 17:0; 29,118:1; 30, 18:1 (I); 31, 18:lco9c; 32, 18:lw9t; 33, 18:lu7c; 34, 18:1 (II); 35, 18:1 
(III); 36, 18:0;37,cyl9:0. 
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sludges than the other two characteristic 

PLFA's (see Figure 1). This suggested that 

17:lu6 cannot be used as a marker for 

Desulforhabdus amnigenus. We therefore used 

cyl7:0 (II) as a marker to determine the 

maximum abundance of this organism present 

in sludge. 

A comparison ofPLFA analysis and 16S rRNA 

dot blot hybridizations for the detection of 

sulfate reducers and Syntrophobacter sp. in 

UASB sludge 

The sulfate-reducing and syntrophic 

populations in granular sludge from several 

UASB reactors, fed with complex or defined 

wastewaters, were characterized by PLFA 

analysis and 16S rRNA dot blot hybridi

zations. For the PLFA analysis several com

pounds were selected as possible marker 

molecules for sulfate-reducing bacteria in 

reactor sludge (Table 3). The selection was 

based on literature data (Taylor and Parkes, 

1983; Vainshtein et al., 1992; Kohring et al., 

1994) and on our own analysis of bacterial 

cultures. 

The results of the PLFA analysis and dot 

blot hybridizations (Table 3+4 ) showed large 

differences in the estimated relative amounts 

of the sulfate-reducing and syntrophic popula

tions. The relative amount of sulfate reducers 

in sludge, estimated from sludge PLFA 

patterns, using specific biomarkers, does not 

seem very accurate. For example with the 

PLFA analysis, an unlikely high amount of 

Desulfobacter sp. was estimated when lOMe-

16:0 was used as a biomarker (Table 3). When 

the more general cyl7:0 (I) was used as a 

marker for this genus, this resulted in a much 

lower apparent abundance, especially for the 

sulfidogenic reactors VFA+S and Ac+S. These 

results suggested that 10Mel6:0 overestimated 

the true numbers of Desulfobacter present in 

the sludge. This could have been caused by the 

presence of this compound in other types of 

bacteria (e.g. Desulfobacterium autotrophi-

cum, Vainshtein at al., 1992). However, it 

could also be that the Desulfobacter sp. 

present in sludge, contain higher levels of this 

fatty acid than reported in literature. Parkes et 

al. (1993) reported that 10Mel6:0 was not a 

suitable biomarker for Desulfobacter in 

estuarine sediments. Our results suggest the 

same for the use of 10Mel6:0 as biomarker for 

Desulfobacter in sludge. 

The amounts of different groups of 

sulfate reducers in sludge, estimated with the 

dot blot hybridization method, probably are 

more accurate than the amounts estimated 

from sludge PLFA patterns. This in particular 

because of the lack of specificity of the fatty 

acid biomarkers, and the possible variation of 

the biomarker content in the target organisms. 

However, estimation errors with the dot blot 

hybridization method occur as well. Although 

the 16S rRNA probes have been tested for 

their specificity, it cannot be excluded that 

(thus far unknown) non-target organisms share 

the target sequence of a certain 16S rRNA 

probe, or that target organisms have mis

matches with the target sequence of the probe. 
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Sulfate reducers and syntrophs in sludge 

Presence of sulfate reducers and Syntropho-

bacter sp. in different sludge types 

Although the PLFA biomarker analysis 

did not seem very useful to estimate the 

relative amount of sulfate reducers in sludge, 

the complete PLFA patterns (Fig. 1) were 

useful for an overall impression of the 

bacterial sludge composition, and a quick 

comparison of the different sludge types. For 

example the presence or absence of sulfate in 

reactors with a complex influent did not seem 

to have a large effect on the PLFA patterns 

(compare Fig. 1A and ID), which suggested 

that the bacterial populations in these reactors 

were rather similar. Dot blot hybridization 

results (Table 4) confirmed that the relative 

amounts of the sulfate-reducing populations in 

reactor C and C+S were in the same range. 

The presence or absence of sulfate in 

VFA-fed reactors had a large effect on the 

PLFA patterns (compare Fig. IB and IE), 

which suggested that the bacterial populations 

in these reactors differed. However, the con

centration of the biomarker PLFA's (except the 

10Mel6:0 concentration), and the results of 

the dot blot hybridizations were both rather 

similar for the two sludge types (Table 3 + 4). 

This indicated that the bacterial groups which 

were mainly influenced by the presence or 

absence of sulfate, were not the groups of 

sulfate reducers which hybridized with our 

probes. Whether these groups were sulfate 

reducers or other bacteria could not be de

duced from our results. 

In the reactor with only acetate and 

sulfate in the influent (Reactor Ac+S, Fig. 1C) 

the PLFA pattern showed a relatively high 

amount of certain 16-carbon and 18-carbon 

PLFA, and a low amount of 17-carbon PLFA 

characteristic for Gram-negative sulfate-

reducers. Interestingly, the effluent of the 

Ac+S reactor had a rather simple PLFA pattern 

(Figure IF); it contained mainly PLFA's that 

also were present in high levels in the sludge 

of this reactor (Figure 1C). This suggested that 

only a part of the sludge population was also 

dominantly present in the effluent. A large part 

of the effluent population consisted of 

spindle-like, polarly flagellated bacterial cells 

with spores, resembling the Gram-positive, 

acetate-degrading sulfate reducer Desulfoto-

maculum acetoxidans (Widdel, 1992). Al

though the PLFA pattern of the effluent 

contained mainly very common compounds 

(16:l(o7c, 16:0 and 18:lo)7c), this pattern 

indeed resembled that of Desulfotomaculum 

acetoxidans (Dowling et al. 1986). Spindle

like cells similar to those observed in the Ac+S 

effluent were also observed in the Ac+S 

sludge, but they were not the dominant cell 

type. Unfortunately, no 16S rRNA probe is 

available for Desulfotomaculum sp. to confirm 

our tentative identification. 

It cannot be excluded that these Desul

fotomaculum acetoxidans-like bacteria were 

present in the effluent in high numbers, 

because they did not play a role in the Ac+S 

reactor and were therefore washed out of the 

reactor sludge. However, if this is true, it is 

difficult to explain why this occurred more 

than three months after reactor start-up. There

fore it seems more likely that these bacteria do 
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Sulfate reducers and syntrophs in sludge 

play a role in the Ac+S reactor. Maybe their 

outflow from the reactor is compensated by a 

higher biomass production compared to the 

other species in the sludge. Our dot blot 

hybridization results also seem to indicate 

Gram-positive sulfate reducers, such as 

Desulfotomaculum acetoxidans-like bacteria, 

could indeed be playing a role in the Ac+S 

reactor, because the relative amount of 16S 

rRNA of Gram-negative sulfate reducers was 

very low (i.e. 4-7% in the sludge and 2-4% in 

the effluent), while the COD conversion via 

sulfate reduction was high (40%). 

In marine sediments Desulfobacter sp. 

have been reported to be the main acetate-

utilizing sulfate reducers (Taylor and Parkes, 

1985), but in our Ac+S reactor Desulfobacter 

sp. did not play an important role if we 

assumed that cyl7:0 (I) and not 10Mel6:0 was 

a the most reliable biomarker. Our results 

agree with the results of Raskin et al. (1996) 

who observed that Desulfobacter sp. were not 

important for the acetate degradation in their 

anaerobic reactors. Since most Desulfobacter 

sp. prefer marine conditions for growth 

(Widdel and Bak, 1992), they suggested that 

the growth of Desulfobacter sp. was hampered 

due to the lack of high levels of sodium and 

magnesium chloride in the reactors. 

The PLFA patterns (Table 3) as well as 

the dot blot hybridization results (Table 4) 

showed that mesophilic Gram-negative 

sulfate-reducing bacteria were present in all 

sludges, even if the reactor influent did not 

contain sulfate. In the absence of sulfate, 

several SRB can ferment compounds such as 

ethanol and pyruvate (Widdel, 1988), or grow 

syntrophically with a methanogenic partner 

(e.g. Syntrophobacter sp., and the Gram-

positive, spore-forming strain PT (Wu et al., 

1992)). This could explain the high levels of 

SRB in the reactors without sulfate in the 

influent. Our results partly corroborate the 

findings of Raskin et al. (1996), who reported 

that the presence of SRB in anaerobic fixed-

bed reactors was independent of the presence 

of sulfate in the reactor. However, in the 

presence or absence of sulfate in the influent, 

they mainly found Desulfovibrio and Desul-

fobacterium sp. In our reactors Desulfobulbus 

sp. were the dominant Gram-negative SRB in 

most sludges (based on hybridization results), 

and Desulfobacterium sp. and relatives (D804) 

could only be detected in the reactors with 

sulfate in the influent. 

The maximum relative amount of Desul

fobulbus 16S rRNA was found for VFA+S 

sludge, where ± 80% of the SRB385 signal 

could be attributed to Desulfobulbus (D660). 

No Desulfobulbus 16S rRNA was detected in 

the reactor fed with acetate and sulfate (Ac+S). 

Since Desulfobulbus sp. does not utilize 

acetate or butyrate (Widdel and Bak, 1992), 

the substrate for Desulfobulbus sp. in the 

VFA+S reactor was probably propionate. It is 

known that Desulfobulbus sp. can be the 

dominant propionate-degrading organism in 

anaerobic bioreactors (Harmsen et al., 1996a). 

The 16S rRNA probes KOP1 and 

ASRB1 did not hybridize with any of the 

sludge samples. This indicated that the hybri

dization results obtained with the MPOB1 
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probe are originating from strain MPOB 16S 

rRNA and not from D. amnigenus or S. 

pfennigii 16S rRNA. S. wolinii (probe S223) 

was not detected in any of the sludge samples. 

Based on dot blot hybridization results 

Desulfovibrio sp. was not very abundant in the 

different sludge types. However, the presence 

of the marker PLFA il7:lw7 in the sludge 

PLFA patterns, and the absence of detectable 

amounts of S. wolinii and S. pfennigii 16S 

rRNA, seems to contradict the results of the 

dot blot hybridizations. What causes this 

discrepancy between the two methods is not 

exactly clear. It is possible that the marker 

il7:lco7 is not only present in Desulfovibrio, S. 

wolinii and S. pfennigii, but also in other 

bacteria. It is also possible that the Desulfo

vibrio 16S rRNA probe does not hybridize 

with all Desulfovibrio species. Furthermore, 

we cannot exclude that the relative amount of 

Desulfovibrio sp. in the sludge was under

estimated, because we found that the Desulfo

vibrio probe D687 was not very sensitive for 

the detection of Desulfovibrio sp. The hybridi

zation signal intensities we obtained with the 

D687 probe, and 16S rRNA from pure cultures 

of Desulfovibrio vulgaris or D. desulfuricans, 

were always lower (approx. 5-fold) than the 

signal intensities obtained with the EUB338 

probe. This was surprising, because the hybri

dization signal intensities obtained with the 

other 16S rRNA probes and pure cultures of 

their target organisms were always comparable 

to the EUB338 probe hybridization signal 

intensity. The reason for this discrepancy 

between the D687 and EUB338 hybridization 

signal is unclear, but we can exclude the 

hypothesis that it was caused by impurities of 

the Desulfovibrio cultures or a wrong nucleo

tide sequence of our D687 probe. 

Concluding remarks 

In this study insight was obtained into 

the sulfate-reducing population in anaerobic 

bioreactors, by using the 16S rRNA dot blot 

hybridization method and by characterizing the 

PLFA profile of different sludge types. The 

dot blot hybridization method seemed to be the 

most useful method for estimating abundances 

of sulfate reducers in sludge. The PLFA 

profiles were useful for a quick general 

impression of the total bacterial sludge 

composition, but our results indicated that 

PLFA biomarkers for characterization and 

quantification of the sulfate-reducing sludge 

population should be used with care, and 

preferentially in combination with other quan

tification data. 
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Chapter^ 

SUMMARY AND CONCLUDING REMARKS 

The treatment of industrial wastewaters containing high amounts of easily degradable organic 

compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in 

addition to organic compounds also contain sulfate can be treated in this way. For a long time, the 

occurrence of sulfate reduction was considered to be undesired. However, there are some recent 

developments in which sulfate reduction is optimized for the removal of sulfur compounds from 

waste streams. In the treatment of wastewaters which contain sulfate and organic compounds, 

sulfate reduction interferes with methanogenesis. Both mutualistic and competitive interactions 

between sulfate-reducing bacteria and methanogenic bacteria have been observed. Sulfate reducers 

can compete with methanogens for substrates such as hydrogen, formate and acetate, and with 

acetogens for substrates such as propionate and butyrate. On the other hand sulfate reducers can also 

assist propionate- and butyrate-degrading acetogens by acting as hydrogen scavenger, and in the 

absence of sulfate some sulfate reducers are even able to grow fermentatively or in syntrophic 

association with methanogens. 

Thus far it has been difficult to steer the wastewater treatment process in sulfate-fed bioreactors in 

the desired direction (i.e. in the direction of sulfidogenesis or of methanogenesis). Therefore, the 

aim of the research presented in this thesis was to investigate the effect of sulfate on the presence 

and activity of sulfate reducers and their acetogenic and methanogenic counterparts in sulfate-fed 

anaerobic bioreactors, in order to get a better grip on the treatment process. 

Acetate-degrading sulfate reducers 

Acetate is a key intermediate in the anaerobic degradation of organic material. Thus far, information 

about the competition between sulfate reducers and methanogens for acetate in anaerobic 

bioreactors has been scarce, and contradictory. Furthermore, information on the type of acetate-

degrading sulfate reducers in reactor sludge was not available, which made predictions over the 

outcome of competition between sulfate reducers and methanogens difficult. 

Therefore, the research first focused on the characterization of acetate-degrading sulfate reducers 

which are dominantly present in sulfidogenic granular sludge. This led to the isolation and 

characterization of two thus far unknown acetate-degrading sulfate reducers, now named 

Desulforhabdus amnigenus strain ASRB1 and Desulfobacca acetoxidans strain ASRB2 (Chapters 2 

and 3, respectively). Desulforhabdus amnigenus was isolated from granular sludge of a pilot-scale 

upflow anaerobic sludge bed (UASB) reactor treating papermill wastewater, while Desulfobacca 

acetoxidans was isolated from a lab-scale UASB reactor fed with acetate and sulfate. In the pilot-

scale reactor the COD/sulfate ratio (g/g) was approx. 1.1, and 75% of the degraded COD was 

degraded via sulfate reduction. The lab-scale reactor was operating at an excess of sulfate 
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(COD/sulfate ratio (g/g)= 0.6), and all acetate was degraded via sulfate reduction. Both acetate-

degrading sulfate reducers were isolated from the highest serial dilutions of sludge which showed 

growth on acetate and sulfate. This indicated that these bacteria are the dominant acetate-degrading 

sulfate reducers in the two respective sludge-types. Based on 16S rRNA analyses both sulfate 

reducers phylogenetically cluster with the delta subdivision of the Proteobacteria, but they are not 

closely related to each other (Fig. 1). There are large differences between the physiological 

characteristics of D. amnigenus and D. acetoxidans. D. amnigenus is a substrate generalist, which 

besides acetate, can use a wide variety of other substrates, such as propionate, butyrate, lactate, 

H2+C02, and alcohols, while D. acetoxidans is a substrate specialist, which only utilizes acetate as a 

carbon and energy source, 

Desulfobocterium vacuolatum ^ jpesulfobacterium niacin! 

Desulfobacter 
Desulforhabdus amnigenus 

Syntrophus gentianae 

Syntrophus buswellii 

Desulfobacca acetoxidans 

Desulfosarcina variabilis \ / ^ - Syntrophobacter wolinii 

Desulfoacinum internum 

Desulfuromonas palmitatis 

Desulfobulbus species — — ' . ^ / \\ K ^ " " ^ Desulfuromonas acetexigens 

Desulforhopalusvacuolatus ^ / \ \ „ . . 

Escherichia coli 

Figure 1. A 16S rRNA based phylogenetic tree reflecting the relationships of Desulforhabus amnigenus and 
Desulfobacca acetoxidans with other sulfate reducers and relatives belonging to the delta subdivision of the 
Proteobacteria. Marker bar = 0.10 K^. 
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A special characteristic of D. amnigenus is its ability to isomerize butyrate to isobutyrate (Chapter 

5), a property which was thus far not described for sulfate reducers. Nuclear Magnetic Resonance 

(NMR) studies with 13C-labelled butyrate showed that isobutyrate was formed by a migration of the 

carboxyl group, conform the butyrate isomerization reaction reported for methanogenic consortia. 

Further investigations showed that the capacity of D. amnigenus to isomerize butyrate was not 

unique among sulfate reducers. Several other butyrate-degrading sulfate reducers, including 

Desulfobacterium vacuolatum, and Desulfoarculus baarsii, were to a lesser extent also capable of 

butyrate isomerization. 

Competition for acetate 

Important factors for the outcome of the competition for acetate between methanogens and sulfate 

reducers are the acetate degradation properties of the bacteria involved. 

To examine the competition for acetate between D. amnigenus, D. acetoxidans, and acetate-

degrading methanogens, the kinetics of acetate degradation was studies for both sulfate reducers and 

the kinetic properties were compared with those of acetate-degrading methanogens (Chapter 4). The 

Michaelis-Menten parameters for D. amnigenus (1^= 0.2-1 mM, Vnax = 21-35 umol min"1 g 

protein"1), and D. acetoxidans (1^= 0.2-1 mM, Vmax= 29-57 umol min "' g protein "' ) were in the 

same range or slightly better than those of most Methanosaeta sp. (Km= 0.4-1.2 mM, Vm!a= 32-170 

umol min"1 g protein"1 ). The same applied for the Monod kinetic parameter umax and the acetate-

degradation threshold, which were 0.14-0.20 day"1 and <15 uM for D. amnigenus, 0.31-0.41 day"1 

and <15 uM for D. acetoxidans, and 0.08-0.69 day"1 and 7-69 uM for Methanosaeta, respectively. 

Compared with Methanosarcina sp. (Km=3.0mM, threshold= 0.19-1.2 mM, u max=0.46-0.69 day"1), 

D. amnigenus and D. acetoxidans had much better K,,, and threshold values, but only D. acetoxidans 

had a comparable umax value. Based on the acetate kinetic parameters of D. amnigenus and D. 

acetoxidans compared to those of Methanosaeta sp. and Methanosarcina sp., it can be predicted 

that D. amnigenus can slowly outcompete Methanosaeta sp., while D. acetoxidans can even 

outcompete Methanosarcina sp. 

Generally, Methanosaeta sp. are the dominant acetate-degrading methanogens in methanogenic 

bioreactors under acetate-limiting conditions. Such acetate-limiting conditions also prevailed in the 

papermill UASB-reactor. This could explain why D. amnigenus became the dominant acetate-

degrading sulfate reducer in the papermill UASB-reactor, and also why a long adaptation time was 

needed before sulfate-reduction became the dominant process in this reactor. Unfortunately, the fact 

that D. amnigenus is a substrate generalist makes it difficult to draw clear conclusion about the 

exact role of D. amnigenus in the sludge, because batch studies with mixed substrates indicated that 

acetate was one of the least preferred substrates of D. amnigenus (Chapter 4). Although it is known 

that carbon substrates which provoke diauxy under batch conditions are used simultaneously under 
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carbon limited conditions, it cannot be excluded that the presence of substrates, such as lactate, 

propionate, or ethanol, could have a negative effect on the acetate degradation rate of D. amnigenus 

in the sludge. 

The microbial composition of sulfidogenic granular sludge 
From the characterization studies presented above it became clear that reactors treating different 

wastewaters also contained different sulfate-reducing populations. Two factors which play an 

important in the microbial composition of sludge are the composition of the organic components in 

the wastewater and the COD/sulfate ratio of the wastewater. In order to investigate the effect of 

these factors on the presence and activity of sulfate reducers and their acetogenic and methanogenic 

counterparts in sludge, good sludge characterization methods are indispensable. Fortunately, to date 

several sludge characterization methods are available, including conventional methods such as Most 

Probable Number (MPN) methods, but also more modern methods such as polar-lipid fatty acid 

(PLFA) analyses, specific PCR amplifications, and 16S rRNA dot blot hybridizations. In Chapter 6, 

7 and 8 the sludge from various methanogenic and sulfidogenic reactors was characterized using the 

different sludge characterization methods. This research did not only improve our knowledge on the 

effect of wastewater composition and COD/sulfate ratio on the microbial sludge composition, but it 

also showed the advantages and disadvantages of the different characterization methods. 

Very useful methods for the species, genus or group-specific detection of microorganisms in sludge 

are the PCR amplification method, and the dot blot hybridization method. This is shown in Chapter 

6 describing the development of a 16S rRNA oligonucleotide probe, probe ASRB1, for the species-

specific detection of D. amnigenus in sludge. If this probe was used in dot blot hybridization 

studies, D. amnigenus could still be detected if approx. 0.1 to 0.001 %o of the total bacterial sludge 

population was D. amnigenus. If the probe was used as a PCR primer the sensitivity was even 10 

times higher. It is not possible to use the dot blot hybridization method for the exact quantification 

of the number of bacterial cells in the sludge, because it is based on the rRNA content in the cell. 

For D. amnigenus as shown that this rRNA content was affected by the growth rate and the growth 

phase, and that it ranged from 19 fg cell' in slow-growing cultures to 90 fg cell"' in fast-growing 

cultures. This also indicates that the detection threshold of the dot blot hybridization method for 

fast-growing cells is approximately 5-fold lower than for slow-growing cells. 

Many sludge-types were analyzed for the presence of D. amnigenus. Unfortunately this bacterium 

could only be detected in the sludge from the pilot-scale reactor from which is was originally 

isolated, and in the sludge which was used as seed-sludge for this pilot-scale reactor. This seems to 

indicate that D. amnigenus plays no important role in other sulfidogenic bioreactors. This could be 

due to the absence of D. amnigenus in the seed sludge of the sulfidogenic bioreactors. 

In Chapter 7 granular sludge from a full-scale UASB reactor was studied, by using the 16S rRNA 
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dot blot hybridization method in combination with MPN estimates. The wastewater which was 

treated in the UASB-reactor contained mainly starch, acetate, propionate, butyrate and formate, and 

had a COD/sulfate ratio of 9.5. Under these conditions acetate seemed to be mainly degraded by 

Methanosaeta-\ike bacteria, while propionate was the preferred substrate for sulfate reduction. 

However, the Desulfobulbus-like propionate-degrading sulfate reducers in the sludge, competed 

with Syntrophobacter-like bacteria, for the available propionate. Hydrogen and formate were 

probably mainly degraded via methanogenesis by members of the order of Methanobacteriales. Dot 

blot hybridization studies of the MPN enrichments showed that the hydrogen, formate and butyrate-

degrading sulfate reducers in the sludge could not be characterized with the 16S rRNA probes 

available to date. The same was true for syntrophic butyrate degraders. This clearly demonstrates 

that, although the dot blot hybridization method is very useful for sludge characterization studies, it 

does not (yet) give a complete picture of the total sludge composition, and it should be used in 

combination with other methods to avoid missing important groups of microorganisms in the 

sludge. 

A method which also gives insight in the sludge composition is the PLFA method. In Chapter 8 this 

method was combined with the dot blot hybridization method to study the sulfate-reducing and 

acetogenic population of several methanogenic and sulfidogenic sludges. The results show that 

PLFA analyses of the sludge were useful to obtain a quick general impression of the total bacterial 

sludge composition, but were less suitable for an accurate characterization and quantification of the 

sulfate-reducing population in the sludge. This was due to the lack of selective biomarkers for these 

bacteria. The combined results of the PLFA analysis and 16S rRNA dot blot hybridizations showed 

that presence of sulfate reducers in the sludge was not dependent on the presence of sulfate in the 

wastewater. This may be explained by the syntrophic and/or fermentative capacities of some sulfate 

reducers in the absence of sulfate. Desulfobulbus sp. seemed to be important in reactors with 

carbohydrates and/or volatile fatty acids containing wastewater. In the presence of sulfate these 

bacteria could play a role in propionate degradation, while in the absence of sulfate they might play 

a role in lactate and ethanol fermentation. Desulfobacter sp. did not seem to be important for acetate 

degradation in any of the sulfate-fed reactors. Apparently, most Desulfobacter sp. are typical marine 

organisms. In the acetate and sulfate-fed reactor, Desulfotomaculum acetoxidans-like bacteria 

seemed to play a role in acetate degradation. 

Conclusions 

The results which were presented in this thesis improved our knowledge of the effect sulfate on the 

microbial sludge population in anaerobic reactors. As already mentioned it has been, and still is, 

difficult to steer the wastewater treatment process in sulfate-fed bioreactors in the direction of 

sulfate reduction or methanogenesis. However, from this thesis a few conclusions can be drawn 
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which are useful for optimization of the reactor process, and for future sludge research. 

1. There appears to be a thight competition between acetate-degrading sulfate reducers and 

acetate-degrading methanogens (mainly Methanosaeta sp.) in anaerobic reactor sludge. It 

will therefore take a long time before acetate-degrading sulfate reducers have outgrown 

acetate-degrading methanogens, even if there is an excess of sulfate. 

2. In sulfate-limited bioreactors sulfate reducers compete with each other for the available 

sulfate. Under sulfate limitation acetate seems to be one of the least, and propionate one of 

the most favoured substrates for sulfate reduction. 

3. Based on 16S rRNA analyses Desulfobulbus-like bacteria can be found in high numbers in 

many reactors, even in methanogenic reactors. 

4. There is a large variation in the microbial composition of granular sludge. The choice of a 

seed sludge for a new reactor will probably not only affect the initial, but also the final 

purification efficiency of the reactor. 

5. All sludge characterization methods have their advantages and disadvantages. The best 

picture of the microbial sludge composition can be obtained by combining as many of them 

as possible. 
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SAMENVATTING EN CONCLUSIES 

Het in anaërobe bioreactoren zuiveren van industrieel afvalwater met hoge gehaltes aan snel 

afbreekbare organische stoffen is een gebruikelijke methode. Ook afvalwater dat naast organische 

stoffen tevens sulfaat bevat kan zo worden behandeld. Het optreden van sulfaatreductie was lange 

tijd ongewenst. Maar tegenwoordig zijn er ook enkele methoden waarbij sulfaatreductie juist is 

geoptimaliseerd om zo zwavelverbindingen uit het afvalwater te kunnen verwijderen. Bij het 

zuiveringsproces van afvalwater dat zowel sulfaat als organische stoffen bevat, beïnvloedt 

sulfaatreductie de methaanproductie. De interacties tussen sulfaatreduceerders en methanogene 

consortia kunnen zowel competitief als mutualistisch zijn. Sulfaatreduceerders kunnen competeren 

met methanogenen voor substraten als waterstof, formiaat en acetaat en met acetogenen voor stoffen 

als propionaat en butyraat. Sulfaatreduceerders kunnen echter ook optreden als syntrofe partner van 

propionaat en butyraat oxiderende acetogenen. In de afwezigheid van sulfaat kunnen sommige 

sulfaatreduceerders fermentatief of, in combinatie met methanogenen, zelfs syntroof groeien. 

Tot nu toe was het moeilijk om het afvalwaterzuiveringsproces van sulfaat bevattend afvalwater in 

de gewenste richting te sturen (d.w.z. in de richting van sulfaatreductie of methanogenese). Het doel 

van het in dit proefschrift gepresenteerde onderzoek was om na te gaan hoe de aanwezigheid van 

sulfaat in afvalwater de aanwezigheid en de activiteit van sulfaatreduceerders en methanogene 

consortia beïnvloedt, om zo meer grip te krijgen op het zuiveringsproces. 

Acetaat-afbrekende sulfaatreduceerders 

Acetaat is één van de belangrijkste intermediairen in het afbraakproces van organische stoffen. Tot 

dusver was er weinig bekend over de competitie tussen sulfaat-reduceerders en methanogenen voor 

acetaat en studies over dit onderwerp spraken elkaar tegen. Verder was onbekend welke acetaat-

afbrekende sulfaatreduceerders in reactorslib kunnen voorkomen. Hierdoor was het erg moeilijk om 

te voorspellen hoe de competitie voor acetaat tussen sulfaatreduceerders en methanogenen zou 

verlopen. 

Het onderzoek heeft zich daarom eerst gericht op het karakteriseren van acetaat-afbrekende 

sulfaatreduceerders die dominant aanwezig zijn in sulfaatreducerend slib. Dit heeft geleid tot de 

isolatie en karakterisatie van twee tot dusver onbekende acetaat-afbrekende sulfaatreduceerders, nu 

Desulforhabdus amnigenus stam ASRB1 en Desulfobacca acetoxidans stam ASRB2 genaamd 

(Hoofdstuk 2 en 3, respectievelijk). Beide bacteriestammen werden geïsoleerd uit korrelslib van 

een "opstroom anaëroob slibbed" reactor, beter bekend als een upflow anaerobic sludge bed 

(UASB) reactor. Desulforhabdus amnigenus werd geïsoleerd uit slib van een pilot-schaal UASB 

reactor die afvalwater uit een papierfabriek zuiverde, terwijl Desulfobacca acetoxidans werd 
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geïsoleerd uit slib van een lab-schaal UASB reactor die werd gevoed met acetaat en sulfaat. De 

verhouding tussen chemisch zuurstofverbruik (CZV) en sulfaat was ongeveer 1,1 (g/g) in de pilot-

schaal reactor en 75 % van het CZV werd afgebroken via sulfaatreductie. In de lab-schaal reactor 

was sulfaat in overmaat aanwezig (CZV/sulfaat ratio= 0.6 (g/g)) en werd alle acetaat via 

sulfaatreductie afgebroken. Om de acetaat-afbrekende sulfaatreduceerders uit het korrelslib te 

isoleren, waren seriële slibverdunningen gemaakt. Beide sulfaatreduceerders werden geïsoleerd van 

de hoogste verdunning die groei vertoonde met acetaat en sulfaat, wat aangaf dat deze bacteriën de 

dominante acetaat-afbrekende sulfaatreduceerders in de respectievelijke reactoren waren. Gebaseerd 

op 16S rRNA analyses behoren beide sulfaatreduceerders tot de delta subdivisie van de 

Proteobacteria, maar zij zijn niet nauw verwant aan elkaar (Fig. 1). Er zijn grote verschillen tussen 

de fysiologische eigenschappen van D. amnigenus en D. acetoxidans. D. amnigenus kan naast 

acetaat nog een scala van andere substraten gebruiken, zoals propionaat, butyraat, lactaat, H2+C02 

en alcoholen. D. acetoxidans daarentegen is gespecialiseerd in acetaat-afbraak en kan voor zo ver 

kon worden onderzocht geen andere substraten gebruiken. Een speciale eigenschap van D. 

amnigenus is de capaciteit om butyraat te isomeriseren (Hoofdstuk 5). Deze eigenschap was tot 

dusver nog niet beschreven voor sulfaatreduceerders. Nucleaire Magnetische Resonantie (NMR) 

studies met 13C-gelabelde butyraat lieten zien dat isobutyraat, net als bij methanogene consortia, 

werd gevormd door de migratie van de carboxylgroep. Vervolgonderzoek liet zien dat niet alleen D. 

amnigenus, maar ook andere sulfaatreduceerders, waaronder Desulfobacterium vacuolatum en 

Desulfoarculus baarsii in staat waren butyraat te isomeriseren, zij het in mindere mate. 

Competitie voor acetaat 
Belangrijke factoren in de competitie voor acetaat tussen methanogenen en sulfaatreduceerders zijn 

de kinetische parameters voor acetaat-afbraak van de betrokken bacteriën. Om de competitie voor 

acetaat tussen D. amnigenus, D. acetoxidans en acetaat-afbrekende methanogenen te onderzoeken 

werden van beide sulfaatreduceerders de kinetische parameters voor acetaat-afbraak bepaald en 

vergeleken met die van acetaat-afbrekende methanogenen (Hoofdstuk 4). De Michaelis-Menten 

kinetische parameters voor D. amnigenus (1^= 0.2-1 mM, Vma= 21-35 umol min"1 g eiwit"1), en D. 

acetoxidans (1^= 0.2-1 mM, VmBûl= 29-57 umol min"1 g eiwit') lagen in de zelfde orde van grootte 

of waren iets beter dan die van Methanosaeta sp. (1^= 0.4-1.2 mM, ^ = 32-170 umol min"1 g 

eiwit"1). Dit gold ook voor de Monod kinetische parameter umax en de drempel concentratie voor 

acetaat-afbraak, deze waren respectievelijk 0.14-0.20 dag"1 and <15 uM voor D. amnigenus, 0.31-

0.41 dag"1 en<15 uM voor D. acetoxidans, en 0.08-0.69 dag _1 en 7-69 uM voor Methanosaeta. 

Vergeleken met Methanosarcina sp. (!£„,= 3.0 mM, drempel concentratie= 0.19-1.2 mM, ^^=0.46-

0.69 dag"1), hadden D. amnigenus en D. acetoxidans veel betere K,,, en drempel waarden, maar 

alleen D. acetoxidans had een vergelijkbare umax waarde. Op basis van de acetaat kinetische 
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parameters van D. amnigenus en D. acetoxidans in vergelijking met die van Methanosaeta sp. en 

Methanosarcina sp., kan worden voorspeld dat D. amnigenus Methanosaeta sp. kan verdringen uit 

het slib, terwijl D. acetoxidans waarschijnlijk zelfs Methanosarcina sp. kan verdringen. 

Normaal gesproken zijn, onder acetaat-limiterende condities, Methanosaeta sp. de dominante 

acetaat-afbrekende methanogenen in methanogeen korrelslib. Dergelijke acetaat-limiterende 

condities waren ook aanwezig in de pilot-schaal reactor die papierfabriek afvalwater zuiverde. 

Mogelijk kan dit verklaren waarom D. amnigenus na een lange adaptatieperiode van het slib, 

uiteindelijk de dominante acetaat-afbrekende sulfaatreduceerder werd in deze reactor. Omdat D. 

amnigenus naast acetaat ook andere substraten kan gebruiken is het moeilijk om precies vast te 

stellen welke rol D. amnigenus speelt in het zuiveringsproces, zeker gezien de resultaten van de 

gemengde substraatstudies, die aangaven dat D. amnigenus andere substraten zoals propionaat en 

ethanol prefereerde boven acetaat (Hoofdstuk 4). Hoewel het bekend is dat substraten, die in batch 

cultures leiden tot diauxie, in koolstof gelimiteerde continue cultures vaak wel simultaan worden 

afgebroken, kan niet worden uitgesloten dat de aanwezigheid van substraten zoals lactaat, 

propionaat of ethanol in de reactor een negatief effect heeft op de acetaat afbraaksnelheid van D. 

amnigenus. 

De microbiële compositie van sulfidogeen korrelslib. 

Uit het hierboven beschreven onderzoek naar acetaat-afbrekende sulfaatreduceerders werd duidelijk 

dat reactoren die verschillende typen afvalwater zuiveren, ook verschillende sulfaatreducerende 

populaties bevatten. Twee factoren die een belangrijke rol spelen bij de microbiële compositie van 

slib zijn de samenstelling van organische verbindingen in het afvalwater en de CZV/sulfaat ratio 

van het afvalwater. Goede slibkarakterisatie is onontbeerlijk om te kunnen onderzoeken welk effect 

genoemde factoren nou precies hebben op de aanwezigheid en de activiteit van sulfaatreduceerders, 

methanogenen en acetogenen in het slib. Een onderzoeker heeft tegenwoordig een aantal 

verschillende methoden beschikbaar voor slibkarakterisatie, waaronder conventionele methoden 

zoals de "Most Probable Number" (MPN) test, maar ook wat moderne methoden zoals fosfolipide-

vetzuur (PLFA) analyses, specifieke "Polymerase Chain Reaction" (PCR) technieken en 16S rRNA 

dot-blot hybridisatie technieken. In hoofdstuk 6,7, en 8 is slib van verschillende sulfidogene en 

methanogene reactoren onderzocht met behulp van combinaties van slibkarakterisatie methoden. 

Dit onderzoek gaf niet alleen informatie over het effect van de afvalwatersamenstelling en de 

CZV/sulfaat ratio op de microbiële samenstelling van slib, maar liet ook de voor- en nadelen van de 

verschillende slibkarakterisatie methoden zien. 

Hele bruikbare methoden voor de species-, groep- of genus-specifïeke detectie van micro

organismen zijn de PCR en de dot blot hybridisatie methode. Dit blijkt bijvoorbeeld uit de 

resultaten van hoofdstuk 6, waarin de ontwikkeling van een 16S rRNA probe (probe ASRB1) wordt 
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beschreven voor de species-specifieke detectie van D. amnigenus in slib. Wanneer de probe werd 

gebruik in dot blot hybridisatie studies kon D. amnigenus zelfs nog in slib gedetecteerd worden als 

deze slechts 0.1-0.001 %o van de totale bacteriepopulatie uitmaakte. Als de probe werd gebruikt als 

PCR primer was de gevoeligheid zelfs nog 10 keer beter. Het is niet mogelijk om de dot blot 

hybridisatie methode te gebruiken voor het exact kwantificeren van celaantallen, omdat de methode 

is gebaseerd op het rRNA van cellen en het rRNA gehalte van cellen is niet constant. Het rRNA 

gehalte van D. amnigenus cellen bleek beïnvloed te worden door de groeisnelheid en de groeifase 

van de cellen en het varieerde van 19 fg cel"1 in langzaam groeiende cellen tot 90 fg cel"1 in snel 

groeiende cellen. Dit geeft ook aan dat de dot blot hybridisatie methode ongeveer 5 keer gevoeliger 

is voor snelgroeiende dan voor langzaam groeiende cellen. 

Alhoewel er veel subtypen zijn onderzocht op de aanwezigheid van D. amnigenus, kon deze 

bacterie toch alleen maar aangetoond worden in het slib van de reactor waaruit zij oorspronkelijk 

was geïsoleerd en in het slib dat was gebruikt om deze pilot-schaal reactor mee op te starten. Dit 

geeft aan dat D. amnigenus waarschijnlijk geen rol speelt in andere sulfidogene bioreactoren. 

Mogelijk was D. amnigenus ook al niet aanwezig in het startslib van deze reactoren. 

In hoofdstuk 7 is onderzoek beschreven met korrelslib uit een praktijk-schaal UASB reactor. De 

microbiële compositie van dit korrelslib werd geanalyseerd via 16S rRNA dot blot hybridisaties en 

MPN schattingen. Het afvalwater van de UASB reactor was afkomstig van een papierfabriek, het 

bevatte voornamelijk zetmeel, acetaat, propionaat, butyraat en formiaat en had een CZV/sulfaat 

ratio van 9.5 (g/g). In deze reactor werd acetaat voornamelijk afgebroken via methanogenese door 

Methanosaeta-achtige bacteriën. Propionaat werd vooral geoxideerd via sulfaatreductie, alhoewel 

de Desulfobulbus-achtige propionaat-afbrekende sulfaatreduceerders moesten competeren met 

Syntrophobacter-acYùige syntrofe propionaat afbrekers. Waterstof en formiaat werden vooral 

afgebroken door methanogenen behorende tot de orde Methanobacteriales. Dot blot hybridisatie 

studies met de MPN ophopingscultures toonden aan dat de waterstof-, formiaat- en butyraat-

afbrekende sulfaatreduceerders niet konden worden gekarakteriseerd met de momenteel beschikbare 

16S rRNA probes. Dit gold ook voor de syntrofe butyraat oxideerders. Dit onderzoek maakte 

duidelijk dat de dot blot hybridisatie techniek goed bruikbaar is voor slibkarakterisatie, naar tot nu 

toe nog geen compleet beeld geeft van de totale slibpopulatie. Deze techniek moet dus gebruikt 

worden in combinatie met andere karakterisatie technieken, om zo te voorkomen dat belangrijke 

slibpopulaties niet worden opgemerkt. 

Een andere methode die ook inzicht geeft in de slib compositie is PLFA analyse. In hoofdstuk 8 is 

deze methode gecombineerd met dot blot hybridisaties om sulfaatreduceerders en acetogenen in 

sulfidogeen en methanogeen slib te detecteren. De resultaten toonden aan dat de PLFA analyses 

bruikbaar zijn om snel een algemene indruk te krijgen van de totale microbiële slibsamenstelling, 

maar niet zo geschikt zijn voor nauwkeurige karakterisatie en kwantificatie van de 
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slibsamenstelling. De belangrijkste oorzaak hiervoor is het gebrek aan selectieve biomarkers voor 

de verschillende sulfaatreduceerders en acetogenen. Uit de gecombineerde resultaten van de PLFA 

analyses en de dot blot hybridisaties bleek dat de aanwezigheid van sulfaatreduceerders in slib niet 

afhankelijk was van de aanwezigheid van sulfaat in het afvalwater. Het is bekend dat sommige 

sulfaatreduceerders fermentatief of syntroof kunnen groeien, dit zou de aanwezigheid van 

sulfaatreduceerders in de afwezigheid van sulfaat kunnen verklaren. Desulfobulbus sp. leek een van 

de belangrijkste sulfaatreduceerders te zijn in reactoren waar koolhydraten of vluchtige vetzuren in 

het afvalwater aanwezig waren. In de aanwezigheid van sulfaat zou deze bacterie een rol kunnen 

spelen bij de afbraak van propionaat, terwijl zij in de afwezigheid van sulfaat ethanol en lactaat zou 

kunnen fermenteren. Desulfobacter sp. leek in geen enkele sulfidogene reactor een rol te spelen bij 

de afbraak van acetaat. Klaarblijkelijk zijn de meeste Desulfobacter sp. marine organismen. 

Desulfotomaculum acetoxidans-achtige bacteriën leken wel een rol te kunnen spelen bij de afbraak 

van acetaat in sulfidogene reactoren. Deze bacteriën werden namelijk aangetroffen in slib van een 

met acetaat en sulfaat gevoede reactor. 

Conclusies 

De resultaten die in dit proefschrift werden gepresenteerd hebben geholpen ons inzicht te vergroten 

in het effect van sulfaat of de microbiële slibsamenstelling van anaërobe reactoren. Zoals reeds is 

genoemd, was het en is het nog steeds moeilijk om het afvalwaterzuiveringsproces in sulfaat 

gevoede bioreactoren te sturen in de richting van sulfaatreductie of methanogenese. Echter, uit dit 

proefschrift kunnen enkele conclusies worden getrokken die gebruikt kunnen worden om het 

reactorproces te optimaliseren en het slibonderzoek te verbeteren. 

1. Acetaat-afbrekende sulfaatreduceerders en acetaat-afbrekende methanogenen (voornamelijk 

Methanosaeta sp.) competeren met elkaar voor het in anaërobe bioreactoren aanwezige 

acetaat. Aangezien de competitieve eigenschappen van de acetaat-afbrekende 

sulfaatreduceerders nauwelijks beter lijken te zijn dan die van acetaat-afbrekende 

methanogenen, duurt het lang voordat deze sulfaatreduceerders de methanogenen uit het slib 

hebben verdrongen, zelfs indien er een overmaat aan sulfaat beschikbaar is. 

2. In sulfaat gelimiteerde bioreactoren is er onderlinge competitie tussen de verschillende 

soorten sulfaatreduceerders voor het beschikbare sulfaat. Onder sulfaat gelimiteerde 

condities lijkt propionaat als substraat de meeste voorkeur te genieten en acetaat de minste. 

3. Desulfobulbus-achtige bacteriën kunnen, gebaseerd op 16S rRNA analyses, zowel in 

sulfidogene als in methanogene bioreactoren in grote hoeveelheden voorkomen. 

4. Er is een aanzienlijke variatie in de microbiële samenstelling van korrelslib. De keuze van 

het startslib voor een nieuwe reactor zal waarschijnlijk niet alleen het initiële, maar ook het 
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uiteindelijke zuiveringsrendement van de reactor beïnvloeden. 

Elke techniek voor slibkarakterisatie heeft zijn voor- en nadelen. Het beste beeld van de 

microbiële slibsamenstelling wordt verkregen door zoveel mogelijk technieken te 

combineren. 
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