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Stellingen 

1. In de uitdrukking voor de conditionele verwachte aankomsttijd van een toestand 
bij een gegeven gedeelte van de rand van een domein is in Mangel (1979) ten 
onrechte een deling door de aankomstkans achterwege gelaten. 

Mangel, M. (1979), Small fluctuations in systems with multiple steady states, 
SIAM J. Appl. Math, 36, pp. 544-572. 
Dit proefschrift. 

2. Voor een een-dimensionale stroming met een kleine diffusie is de conditionele 
verwachte reistijd naar een rand tegen de stroom in in eerste orde gelijk aan de 
verwachte reistijd in omgekeerde richting. 

Dit proefschrift. 

APA») 

3. f exp[-ctf - ß/t]dt = y/ß/a K^aß ) - _ e x p [ - 2 / c t ß ~ ] (a, ß > 0), 

waarin Ky een gemodificeerde Besselfunctie is. 

4. In het wiskunde-onderwijs is het voor de overdracht van een nieuw begrip 
noodzakelijk de definitie vooraf te laten gaan door een voldoende aantal 
toepasselijke voorbeelden. 

5. Eén van de belangrijkste problemen bij het wiskunde-onderwijs aan studenten uit 
niet-wiskunde studierichtingen is het motiveren van deze studenten. Het gebruik 
van toepassingen uit de desbetreffende richtingen is een belangrijk hulpmiddel bij 
de aanpak van dit probleem. 

Arnoldussen - van der Lugt, A, en O.A. van Herwaarden (1990), Wiskunde in de 
landbouwwetenschappen, Euclides, 66, pp. 105-110. 

6. Analyse van schilderijen van Hollandse meesters uit de 17e eeuw laat zien dat 
correcte toepassing van de lineaire perspectief zich bij de meeste schilders beperkt 
tot het gebruik van één verdwijnpunt. 

7. In de Bijbel gaat het niet om de vraag: wat is de waarheid?, maar: Wie is de 
waarheid? 

8. Het christelijke geloof is niet een religie, maar een relatie. 

O.A. van Herwaarden 
Analysis of unexpected exits using the Fokker-Planck equation 
Wageningen, 11 maart 1996 



Voorwoord 

Dit proefschrift is het resultaat van het onderzoek dat ik vanaf september 
1989 heb verricht als medewerker van de Vakgroep Wiskunde van de Landbouw
universiteit Wageningen. Graag wil ik op deze plaats een aantal personen bedanken 
die op verschillende wijzen hebben bijgedragen aan de totstandkoming van dit 
proefschrift. 

Allereerst wil ik mijn promotor Johan Grasman van harte bedanken. Zonder 
zijn deskundige en stimulerende begeleiding zou dit proefschrift er niet zijn 
gekomen. Ik dank hem dat hij mij de mogelijkheid heeft geboden om naast mijn 
onderwijstaak ook onderzoek te doen. Niet alleen zijn inhoudelijke begeleiding wil 
ik hier noemen. Hij was ook in staat om mij op de juiste momenten en op de juiste 
wijze te inspireren en te motiveren. Bovendien heeft hij, toen het onderzoek naar de 
verwachte uitsterftijd van een infectieziekte vast zat, zich uitermate ingespannen om 
het weer vlot te trekken. 

Mijn vrouw Elsa wil ik van harte bedanken voor haar grote steun en zorg. 
Deze zijn onmisbaar geweest bij het tot stand komen van het proefschrift. Een groot 
gedeelte van het onderzoek heeft plaatsgevonden buiten de reguliere werktijden. Dit 
is slechts mogelijk geweest doordat Elsa de zorgen thuis, vooral die voor onze 
kinderen Ada en Arjen, voor haar rekening heeft genomen. Ada en Arjen bedank ik 
dat ze mijn afwezigheid zo vaak 'voor lief' hebben genomen. 

Mijn ouders wil ik bedanken voor hun zorg door de jaren heen. Mijn vader 
zou het schrijven en voltooien van een proefschrift graag hebben meegemaakt. 

Mijn collega's en oud-collega's van de Vakgroep Wiskunde dank ik voor de 
goede werksfeer. Hun belangstelling voor het vorderen van het proefschrift heb ik 
altijd gewaardeerd. Een aantal van mijn collega's heb ik met name genoemd in de 
acknowledgements van diverse hoofdstukken. Van mijn oud-collega's wil ik hier 
met name noemen Annie Arnoldussen-van der Lugt en Mat Hendriks, bij wie ik 
zowel voor als na hun pensionering (resp. VUT) altijd met vragen over het werk 
terecht kon. 

Ook het plezier bij mijn overige werkzaamheden, vooral het verzorgen van 
het onderwijs, is van grote invloed geweest op het werken aan mijn onderzoek. In 
het bijzonder wil ik de studenten uit de studierichting Moleculaire Wetenschappen 
bedanken voor de prettige verstandhouding. Ik beschouw het als een grote eer dat 
zij mij het afgelopen jaar hebben verkozen tot hun 'docent van het jaar'. 



Graag wil ik ook Bea en Erwin van Wonderen-Tettelaar van harte danken. 
Onze vriendschap en verbondenheid in geloof zijn mij ook bij het werk steeds tot 
grote steun geweest. Ik ben dankbaar dat zij mijn paranimfen willen zijn. Verder 
wil ik Pieter van Kampen en Henk Geertsema bedanken voor het doorspreken van 
een aantal van de stellingen. 

Bij dit alles besef ik hoe betrekkelijk de kennis uit dit proefschrift is. Graag 
verwijs ik naar mijn beide laatste stellingen. Het is belangrijker, met de woorden 
van de apostel Paulus, de liefde van Christus te kennen, die alle kennis te boven 
gaat (Efeziërs 3:19a). 

Wageningen, 27 december 1995 



Abstract 

In this thesis exit problems are considered for stochastic dynamical systems 
with small random fluctuations. We study exit from a domain in the state space 
through a boundary, or a specified part of the boundary, that is unattainable in the 
underlying deterministic system. We analyze diffusion approximations of the 
dynamical systems. The processes are described with a Fokker-Planck equation in a 
continuous state space. Taking the diffusion parameter as the small parameter, we 
determine asymptotic expressions for the probability of exit and the (conditional) 
expected exit time. 

We consider applications in groundwater flow and epidemiology. For a 
contaminant in an advective-dispersive groundwater flow asymptotic expressions are 
derived for the probability of arrival at a well and the expected arrival time. For a 
stochastic S/i?-model describing the spread of an infectious disease in a population 
we determine asymptotic expressions for the following quantities: the probability 
that a major outbreak occurs upon the introduction of the disease into the popula
tion, the probability of extinction of the disease at the end of a major outbreak, and 
the expected extinction time of the disease for an initial state in the stable equilib
rium. Finally, for an interval in a one-dimensional stochastic system we study the 
expected exit time at precisely that end of the interval where exit is not likely, 
including in our analysis initial states outside a boundary layer. 
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Chapter 1 

Introduction 

A large number of phenomena in nature can be modelled as a dynamical 
system. Frequently, an essential feature of these phenomena is formed by stochastic 
fluctuations. In that case we incorporate these fluctuations in the model and study a 
stochastic system. The stochastic system may explain features of phenomena that 
the deterministic system can not account for. In this thesis we study stochastic 
dynamical systems in which the random fluctuations are small. 

In each chapter attention is focused on exit problems. A domain in the state 
space of the dynamical system is considered and exit from this domain through the 
boundary is studied. In particular, we are interested in exit through a boundary, or a 
specified part of the boundary, that is unattainable in the underlying deterministic 
system. For these 'unexpected exits' the probability of exit and the (conditional) 
expected exit time form the main points of interest. 

In this study we analyze diffusion approximations of the dynamical systems. 
The processes are described with a Fokker-Planck (or Kolmogorov) equation in a 
continuous state space. The first order derivatives in this differential equation are 
related to the deterministic motion. The second order derivatives correspond to the 
(small) random perturbations. The probability of exit through a specified part of the 
boundary of a domain in state space, and the (conditional) expected exit time, are 
determined by Dirichlet problems for the backward Fokker-Planck equation. Using 
the theory of singular perturbations, see, e.g., Eckhaus (1973), Kevorkian and Cole 
(1981) and O'Malley (1991), we asymptotically solve these Dirichlet problems, 
taking the diffusion parameter as the small parameter. The asymptotic solutions are 
compared with results obtained by random walk simulations. 

The research of this thesis can be seen as an extension of and a sequel to the 
research of exit problems performed in the last twenty years, see, e.g., Ludwig 
(1975), Schuss (1980), Gardiner (1983) and Roozen (1990). Chapters 2, 3 and 4 
broaden the field of applications. Chapter 5 brings a new element in the more 
theoretical aspects of exit problems. It opens a field of future research that is 
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expected to be interesting both for its mathematical aspects and its applications in 
other sciences. 

We now give an outline of the following chapters. In chapter 2 a study is 
made of the transport of pollution in groundwater. It is not sufficient to model the 
transport of particles by advection only. In addition macroscopic dispersion has to 
be taken into consideration. This accounts for the random motion of individual 
particles in the flow. Because of dispersion pollution may enter a region that is 
unattainable for the advective flow only, e.g., a region with flow towards a well. 
We formulate and asymptotically solve Dirichlet problems for the probability of 
arrival and the expected arrival time of contaminated particles at a well in an 
arbitrary background flow. Since dispersion contributes considerably less to the 
displacement of a particle than advection, the analysis starts with the advective flow 
pattern. In addition inside a boundary layer dispersion is taken into account. Using 
the boundary layer solution and the advective travel time we also construct a 
composite expansion for the expected arrival time that is valid in the region of 
advective flow towards the well. We note that this study can be extended to include 
loss of contamination by, for example, adsorption or radioactive decay, see Van 
Kooten (1994). It is also noted that chapter 2 contains a derivation of the Dirichlet 
problem for the (conditional) expected exit time through a specified part of the 
boundary of a domain in a more dimensional state space. 

This mathematical analysis of exit problems can be used in a broad field of 
applications. In chapters 3 and 4 we study a two-dimensional stochastic system 
modelling the spread of an infectious disease. In this model we consider a popula
tion that is divided in three classes: susceptibles, infectives and removed. The 
population is renewed at a constant rate. We study the case where in the underlying 
deterministic system the disease becomes endemic. In the stochastic system the 
disease can disappear from the population because of stochastic fluctuations. In 
chapter 3 we first study the probability that a major outbreak of the disease does 
not occur upon the entry of one or a few infectives into the population. This 
probability is determined by formulating and asymptotically solving an exit 
problem. In the asymptotic analysis it is assumed that 1/N is a small parameter, 
where N is the size of the population when the disease is absent. We also study the 
expected extinction time of the disease given that it has become endemic. The 
asymptotic solution of the Dirichlet problem for this expected extinction time 
contains one unknown constant. To determine this constant the WKB-method is 
applied to the forward Fokker-Planck equation, the resulting ray equations are 
numerically solved, and use is made of the divergence theorem. 

In chapter 4 we study for this epidemiological model the following question: 
given that a major outbreak occurs upon the entry of one or a few infectives into 
the population, what is the probability that the disease will disappear from the 
population (directly) at the end of the major outbreak? Of particular importance in 
answering this question of epidemic fade-out is the rate at which the population is 
renewed. For a large renewal rate it is likely that the disease will become endemic 
after the major outbreak. If the renewal rate is very small, the disease will die out at 
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the end of the major outbreak with probability close to one. There is a range of 
renewal rate values such that the extinction probability varies from close to zero to 
close to one. In this chapter we deal with this transitional case. We first derive local 
asymptotic expansions for the trajectories of the underlying deterministic system, in 
particular for the deterministic trajectory starting in the saddle point. For small 
renewal rate values the susceptible population is restored only slowly after the 
major outbreak. At this stage of the process diffusion plays an important role and 
extinction of the disease can occur in the stochastic system. Using an approximation 
of the backward Fokker-Planck equation we formulate a boundary value problem 
for the probability that the disease dies out during this part of the process. From the 
solution we obtain an expression for the probability of extinction of the disease at 
the end of the major outbreak. 

After this analysis of exit problems in several, quite different applications, 
we address a more theoretical aspect of exit problems in chapter 5. This aspect 
came up in studying the expected arrival time of pollution at a well in a dispersive 
groundwater flow, see chapter 2. For starting points outside the region of advective 
flow towards the well the asymptotic solution for the expected arrival time derived 
in that chapter is restricted to starting points inside a boundary layer along the 
separating streamline. Outside the boundary layer more refined asymptotic methods 
are required to approximate the small probability that pollution enters the well and 
the expected arrival time. The study of chapter 5 can be seen as a first step to 
approach this kind of problems. For an interval in a one-dimensional state space 
exit is studied at precisely that boundary where exit is not likely. Three fundamental 
cases are considered, the interval containing, respectively, no equilibrium, an 
unstable equilibrium and a stable equilibrium. It is noted that the asymptotic 
expressions reveal essential features of the expected exit time that remain hidden in 
the exact solutions. 

Finally, we note that chapters 2, 3, 4 and 5 have originally been written as 
independent papers. They are, therefore, self-contained and can be read indepen
dently. 
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Chapter 2 

Spread of pollution by dispersive groundwater flow1 

Abstract 

A study is made of the transport of pollution in groundwater. The probability 
that in groundwater a contaminated particle crosses the boundary of a protected 
zone is computed by solving asymptotically the Dirichlet problem for the backward 
Kolmogorov equation describing the random motion of the particle. The randomness 
in the displacement of the particle is due to the dispersive properties of the flow. 
The expected arrival time at the boundary is computed from a corresponding 
nonhomogeneous Dirichlet problem. 

1. Introduction 

In this study we consider the flow of groundwater which is confined in a 
layer, called aquifer. The thickness of this layer is assumed to be small, so the 
transport will be modelled as a 2D-flow problem. For the study of groundwater 
pollution it is not sufficient to consider the transport of particles by advection only. 
We also have to take into consideration the mechanism of macroscopic dispersion. 
This accounts for the random motion of individual particles in the flow. We assume 
the dispersion to be proportional to the velocity with coefficients aL in the longitudi
nal direction and aT in the transversal direction, see Bear and Verruijt (1987). In 
general the value of aT is smaller than the value of aL. 

A situation typical for the discharge of groundwater from the aquifer is 
shown in Figure 1. The region of advective flow towards the well is bounded by 
two separating streamlines which end in a stagnation point. When the groundwater 
is polluted at a site outside the domain of advective flow to the well and far away 

'Published in: SIAM Journal of Applied Mathematics, 54 (1994), pp. 26-41 
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from the separating streamlines, the pollution will not reach the well, because the 
advective component of the flow is much larger than the dispersive component. 
When the site of pollution is just outside this stream domain, contaminated particles 
may enter the well because of the dispersiveness of the flow. The probability for a 
particle to reach the well changes rapidly from close to 0 to close to 1 for starting 
points within a boundary layer along a separating streamline. The asymptotic 
method we present gives detailed results on this rapid change. 

Figure 1. By dispersion a contaminated particle released in P may enter the well W. 
The region of advective flow towards the well is bounded by two separating 
streamlines ending in the stagnation point S. 

Our analysis of the dispersion problem starts from the advection-dispersion 
equation which can be seen as the Fokker-Planck equation corresponding with the 
random motion of a particle, see Uffink (1989). The advection-dispersion equation 
can be obtained, see Bear and Verruijt (1987), by constructing a macroscopic mass 
balance equation and considering an average flux in which are included the 
following macroscopic fluxes: an advective flux and a dispersive flux. It is assumed 
that the dispersive flux can be expressed as a Fickian type law. The advective flux 
is based on the average velocity of the flow; Bear and Bachmat (1990) determine 
an equation of motion for this velocity by averaging the microscopic momentum 
balance equation for a Newtonian incompressible fluid (i.e., Navier-Stokes equation) 
filling the pores. When the advection-dispersion equation is used to model solute 
transport at larger scales, the dispersion arises from heterogeneities of the hydraulic 
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conductivity at a scale which may be large with respect to the macroscopic scale, 
but which is small compared to the geometry of the region that is considered, see 
Figure 1. This assumption is not realistic in all situations, see e.g. Dagan (1989). 
The expression (2.2) for the elements of the dispersion matrix is obtained from Bear 
and Verruijt (1987) for an isotropic porous medium. 

Because dispersion contributes considerably less to the displacement of a 
particle than advection, the dispersion problem is approached by perturbation 
techniques. The advective flow yields a first order approximation. Inside the 
boundary layer a second order approximation is computed by taking into account 
the dispersion. The objective of this study is to compute the probability that 
contaminated particles cross a boundary, e.g., are pumped up at a well. Moreover, 
the expected time of arrival at the boundary is approximated asymptotically. 
Compared with Van Herwaarden and Grasman (1991) the present paper yields an 
improved asymptotic approximation of the problem. In particular, in the asymptotic 
formula for the arrival time with leading order term of 0(-ln aT) it is important to 
include the order unity contribution. 

2. The Fokker-PIanck equation 

Let p(x, t) be the probability density function to find a particle at a point x at 
time t. Then the function p(x, i) satisfies the forward Kolmogorov of Fokker-PIanck 
equation 

ÜL =Mp, (2.1a) 
dt 

M= - JL(vr) + JL^IL), (2.1b) 
dx. dx. ' dx. 

where v is the velocity vector and D is the dispersion matrix. With respect to the 
indices the common summation convention is used. The entries of the symmetric 
matrix D are given by 

*>« = «> |o« + (aL - aT)viV./\v\. (2.2) 

Related to the forward operator M is the backward operator 

L = v.^- + J-(DJ-). (2.3) 
' dx. dx.y " dx/ K ' 

L is the formal adjoint of the forward operator: L = M*. It plays an important role 
in exit problems. Let us consider a domain Q with the boundary dQ composed of 
two parts dQ0 and dQv We are interested in the probability u(x) that a particle 
released in x G Q reaches 3Q the first time at the part dQj. This function u(x) 
satisfies the Dirichlet problem 
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Lu = 0 in Q, (2.4a) 

u = 0 at dQo, « = 1 at dQ» (2.4b) 

see, e.g., Gardiner (1983). For a particle starting in x G Q we are also interested in 
the expected arrival time Tx(x) at dQ with the condition that exit from Q takes place 
at dQv In order to solve this problem we make use of the probability density 
function r(x, x) of leaving Q at x E dQ and the expected arrival time r(x, x) at dQ 
conditional that exit occurs at x S dQ for a starting point x S Q. For these func
tions it is shown in Gardiner (1983) that 

L(xr) = -r in Q, (2.5a) 

xr = 0 at 3Q. (2.5b) 

Defining 

r(x) = f T(X, x)r(x, x)dS (2.6) 

we derive from (2.5) the nonhomogeneous Dirichlet problem 

LT = -u in Q, (2.7a) 

T=0 at dQ. (2.7b) 

For the expected arrival time T^x) at dQ with the condition that exit from Q takes 
place at dQt we have 

Tx(x) = ƒ x{x, x)r(x, x)lu(x)dS, (2.8) 
an, 

so we find 

7\(*) = T(x)lu(x) (2.9) 

with r(x) satisfying (2.7) and «(x) satisfying (2.4). It is noted that in other publica
tions (Mangel (1979)) the term u(x) is not present in (2.9). 

3. Symmetric flow near a stagnation point 

As a starting point we consider the symmetric flow field with velocity vector 

v(x,y) = (-x,y), (3.1) 
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Figure 2. Symmetric flow near a stagnation point. The probability of arrival and the 
expected arrival time at the boundary d^ are computed. 

which has (0, 0) as stagnation point, and the domain 

Q={(x,y)\y>-R} (3.2) 

with R > 0 and y = -R away from y = 0, see Figure 2. As a result of dispersion a 
contaminated particle released in a point (x, y) with y > 0 may cross the separating 
streamline y = 0 and reach the boundary dfiji y = -R. The probability u(x, y) that a 
particle starting in (x, y) e fi reaches y = -R satisfies the differential equation 

dx 'by dxK "bx' bxy *>by} byK v bx' a / » by' 

with boundary conditions 

u(x, -R) = 1, lim u(x, y) = 0. 
y—»00 

The dispersion terms are given by 

*>„ = aT\v\ + (aL - aT)x
2/\v\, 

Dv = <aL - "T)xy/\v\, 

(3.3a) 

(3.3b) 

(3.4a) 

(3.4b) 
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D„ = aT\v\ + (aL - aT)y*l\v\. (3.4c) 

Since the dispersive component of the flow is of a smaller magnitude than the 
advective component, we expect u to change from about 0 to 1 in a small region 
along the oc-axis. Therefore, we assume a boundary layer to be present at this place. 
Outside this boundary layer we may neglect the dispersion and approximate (3.3a) 
by its advective part 

a« , dû n ,~ r\ 
-X-r- + y-r- = 0- (3-5) 

dx dy 
For a particle released in a point (x, y) in the upper half plane outside the boundary 
layer this yields the approximate solution ü = 0 and for a particle starting in the 
lower half plane outside the boundary layer ü = 1. 

To solve the dispersion problem for a particle released in a point (x, y) inside 
the boundary layer we apply a coordinate stretching procedure (Kevorkian and Cole 
(1981)) 

Ti = yNaT. (3.6) 

We will analyze this boundary layer problem for x > 0. The case x < 0 is treated in 
the same way. In our analysis we exclude a small neighbourhood of the origin 
where another approximation has to be made. Its outcome has only very local 
importance and is therefore not analyzed. Substitution of (3.6) in (3.3a) yields for 
aj, aL - • 0 

J« , dû , d2û n .. „ 
-x— + T]— + x = 0. (3.7) 

dx dr\ dr\2 

Matching of the function û(x, r\) to the outer solutions ü = 0 and ü = 1 along the 
characteristics xy = constant of (3.5) leads to the solution 

J - ƒ ü(x, TI) = —L- exp[-t2/2]dt. (3.8) 
T\rf(2x/3) 

We will now solve asymptotically problem (2.7) for the expected arrival time 
at the boundary y = -R. For starting points (x, y) in the upper half plane outside the 
boundary layer we may approximate (2.7) by 

-x%- + yE = 0, (3.9a) 
dx dy 

lim T(x, y) = 0, (3.9b) 
y—»oo 

where the boundary condition is obtained by applying (2.7b) to a boundary y = R 
and letting R -» ». Eqs. (3.9) are satisfied by 
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T = 0. (3.10) 

For particles starting in the lower half plane outside the boundary layer we have the 
approximation 

dT dT ., .„ - - . 
dx dy 

T(x, -R) = 0. (3.11b) 

This is satisfied by 

T(x, y) = -ln(-y) + In R, (3.12) 

which equals the advective travel time to the boundary v = -R. Inside the boundary 
layer T is computed from 

dT ^ dT , d2T ., . « , _ . 
- x — + T i— + x = -u(x, y\), (3.13a) 

dx dr] dr\2 

where T must match with the outer solutions (3.10) and (3.12) along the character
istics xy = constant. This leads to the matching conditions 

T(x, r]) = 0 for TI -» oo and xr\ = c > 0, (3.13b) 

T(x, r\) - - ln(-r|) - l l n aT + In R for x\ « - 1 and xr\ = c < 0. 

(3.13c) 
A particular solution for (3.13a) is easily found 

Tp(x, TI) = ü(x, TI) In x. (3.14) 

Setting 

T(x, TI) = Tp(x, TI) + Th(x, TI) (3.15) 

and introducing new coordinates 

T = i x 3 and t, = XT), (3.16) 

we obtain the following homogeneous initial value problem for the function Th(x, £) 

dT. d2T. 
— - = i , (3.17a) 
dx at* 

Th(0, O = 0 for I > 0, (3.17b) 

Th(0, I) = - l l n aT + In R - ln(-Ç) for Ç < 0. (3.17c) 
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This is satisfied by 

oo 

Th(x, Ç) = _ J _ f ( - l i n aT + In R - ln(-Ç + tfîx)) exp[-*2/2]efe. 
y 2 j l Ç/V(2T) 

(3.18) 
Finally, returning to x, ^-coordinates and using (2.9), we find the expected arrival 
time for starting points inside the boundary layer 

T*J& il) = - > a r + In Ä + (3.19) 

- f ln(-n + ti/2x/3) exp[-f2/2] dt I f exp[-f2/2] dt. 
l\NQxlS) Tl/V(2r/3) 

We remark that this solution substantially improves the result derived in Van 
Herwaarden and Grasman (1991), where in the matching procedure not all terms of 
order unity have been taken into account. 

4. Arbitrary flow with a stagnation point 

In this section we generalize the method used in the previous example for an 
arbitrary flow near a separating streamline ending in a stagnation point. The 
stagnation point is an interior point of the domain Q. We assume the flow to be 
free of sources and sinks and irrotational in Q, for which the streamlines leading 
towards and away from the stagnation point are perpendicular. For example, in the 
case of discharge of water from a well we may take Q as depicted in Figure 3a. 
The well is excluded from Q by a circular domain with boundary 3Qt, away from 
the separating streamlines. (For dQt the point denoting the position of the well may 
be taken.) The solution u(x, y) of the Dirichlet problem (2.4) equals the probability 
that a particle released at (x, y) E Q reaches dQ the first time at the part dQv If the 
distance of dQ0 to the well is sufficiently large and (je, y) is not near dQ,,, then 
u(x, y) also equals the probability that a particle released at (x, y) ends in the well. 

4.1 Probability of arrival at dQi 

To analyze the probability u that a particle released at a point near a 
separating streamline ending in a stagnation point reaches dQ1; we introduce new 
coordinates p and v. The coordinate p > 0 is the coordinate along the separating 
streamline and v the one perpendicular to it, see Figure 3b. The stagnation point is 
in (p, v) = (0, 0). Let the velocity vector near the separating streamline be given in 
new coordinates by 

(v(p, v), w(p, v)). (4.1) 
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(a) 

Figure 3. Flow patterns near a well and a stagnation point, (a) Example of a flow 
field with a stagnation point in the case of discharge of water from a well, 
(b) Coordinates p and v along and perpendicular to the separating stream
line, used for starting points near this streamline. 

Along the separating streamline we assume a boundary layer of width 0(VaT). For 
starting points inside this boundary layer we introduce the local coordinate 

Tl = v/Va r . (4.2) 

Switching from the coordinates p and v to p and r\ we obtain from (2.4) after 
letting Oj> aL -* 0 the asymptotic approximation 

v(p, o>i£ + wjp, o ) r | i i - KP, O ) Ü £ = o 
dp dr\ &x\2 

(4.3) 

with «(p, T]) to be matched with the outer solutions ü = 0 and ü = 1 along the 
characteristics of the advective equation 

v(p, v ) _ ü + H<p, v ) _ ü = 0. 
dp dv 

(4.4) 

Making use of the relation >vv = - v at v = 0 for a flow that is free of sources and 
sinks we find the solution 

CO 

ö(p, TI) = _ J _ f exp[-t2/2]dt 
V2jt n^p) 

(4.5a) 

with 
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q(p) = 2 Jv(p, 0)2/v(p, Of dp 

•1/2 

(4.5b) 

It is noted here that the problem of crossing a separatrix for starting points in 
its neighbourhood is also considered by Mangel and Ludwig (1977) and by Mangel 
(1979), who obtain comparable results for the probability of arrival by constructing 
a formal asymptotic series solution suggested by the analysis of a one-dimensional 
version. 

4.2 The expected arrival time at dQ, 

Starting points outside the boundary layer. To find the expected arrival time at 
dQx we solve problem (2.7) asymptotically. For starting points in Q outside the 
boundary layer and not at the same side of the separating streamline as dQy we may 
neglect the dispersion terms. Approximating u by û = 0 we obtain 

T = 0. (4.6) 

For particles starting in Q outside the boundary layer and at the same side of the 
separating streamline as dQt we may neglect the dispersion terms and approximate 
u by û = 1, which yields the advective travel time Ti&l to the boundary 3Q, as 
solution of (2.7). In particular, we are interested in the behaviour of T^ near the 
boundary layer. An expression for this behaviour will be needed for matching 
purposes. To find this expression we will analyze Tldv(p, v) for v close to 0. In the 
analysis we also make use of new coordinates o and \i near the streamline leading 
away from the stagnation point in the direction of dQv see Figure 4. The coordinate 
a < 0 is the coordinate along this streamline and \i the one perpendicular to it. The 
stagnation point is in (a, \i) = (0, 0) and the boundary dQt and this streamline 
intersect in the point (a, \i) = (ab, 0). In these coordinates the velocity vector near 
this streamline is given by 

(r(a, u), s(a, u)). (4.7) 

We now divide Tadv(p, v) into three parts 

r * = T, + T„ + Tin, (4.8) 

where T, is the travel time close to the separating streamline, T„ the travel time near 
the stagnation point and Tm the travel time near the streamline leading away from 
the stagnation point, see Figure 4, where Ô and e are close to 0. For - 1 « v < 0 
and p fixed and letting Ô \ 0, e f 0 we then obtain 

r ' > ' v) - - J L _ l n ( - A 0 + Jreg(p, ab) (4.9a) 

with 
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Figure 4. The contributions to the advective travel time T^ip, v) = T, + T„ + Tm for 
small values ofv, Ô and e. 

T^-^-$&r/U 1 

0) vp(0, 0)p 
-dp + 

+ f_J_- l 

I rip, 0) ro(0, 0)0 
do. (4.9b) 

JAe boundary layer solution. Inside the boundary layer T is computed from 

v(p, 0 ) ^ 1 + W(p, 0 ) r , i l - v(p, 0 ) U I = -û(p, n ) , (4.10a) 
dp 5TI dr]2 

where 7 is matched with the outer solutions (4.6) and (4.9a) along the characteris
tics -T]v(p, 0) = constant of the advective equation. This leads to the conditions 

7(p, TI) = 0 for Ti — oo and -r\v(p, 0) = c > 0, (4.10b) 

r ( p ' *!) " . . /n ^ l n ( ~ ^ a r ) + ^ ( P ' a*) f o r *1 « -1 and -Tiv(p, 0) = c < 0. 

(4.10c) 

vp(0, 0) 
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To solve this problem we can make use of the particular solution of (4.10a) 

f 1 

J KP> 0) 

where y is an integration constant. Setting 

T(p, T|) = Tp(p, Tj) + J4(p, T)) (4.12) 

we obtain a homogeneous problem for Tk(p, r\). Introduction of the new coordinates 

p 

T = fv(p, 0)2dp, (4.13a) 
•i 

Ç = -T)v(p, 0) (4.13b) 

yields for 7 (̂x, Ç) the following initial value problem 

dT„ d2Th 
(4.14a) 

with 

dx dl2 

Th(0, 0 = 0 for Ç > 0, (4.14b) 

T„(0, I) = g(Ç) for Ç < 0 (4.14c) 

i £va_ , i i 

«<£) = f In — + f _ - - dp + 
vp(0, 0) vp(0, 0)Y.-afc J v(p, 0) vp(0, 0)p K 

+ f — î — - Î dâ . (4.14d) 
I r & , 0) ro(0, 0)0 

This is satisfied by 

oo 

Tk{x,r^ = -L- J £(Ç - tfx)exp[-t2/2)dt. (4.15) 

Bringing this solution in p, rç-coordinates and using (4.12) we find the solution for 
T(p, r\). It is noted that by adding Tp(p, i\) the integration constant y is removed. 
Applying (2.9) we finally obtain the boundary layer solution for the expected arrival 
time 

rbound(P' *1) = - ^ l ^ V f l r ) + TJp, ab) + 
vp(0, 0) 
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+ _ J _ f ln(-T| + t/q(p))exp[-t2/2] dt / f exp[-f2/2] dt (4.16) 
v (O, ö) J J 

with rreg(p, ab) given by (4.9b) and q(p) by (4.5b). We remark that this solution 
only depends on the point of intersection of the boundary dQi with the streamline 
leading away from the stagnation point, and not on the particular shape of dQu see 
ob in (4.16). This may be explained intuitively by noting that starting points inside 
the boundary layer are situated on streamlines that approach very closely the 
streamline leading away from the stagnation point. It is expected that in higher 
order approximations more properties of the boundary dQt are contained. 

A composite expansion of the expected arrival time. For particles released in Q in 
the region of advective flow towards dQL we now have found two approximations 
for the expected arrival time at dQj. For starting points inside the boundary layer 
we have the approximation T^^ given by (4.16). For particles starting outside the 
boundary layer we may use the approximation T^,, that is the advective travel time. 
To avoid the difficulty of deciding whether a point is within or outside the bound
ary layer, we construct a composite expansion which is valid both inside and 
outside the boundary layer, see Van Dyke (1975), 

•"comp ~ «dv + •'bound ~ l milch' (4 .1 / ) 

where TmtKi is given by the right hand side of Eq. (4.9a). Inside the boundary layer 
rm.tch cancels radv, so Tmmp reduces to r ^ ; outside the boundary layer T^ 
compensates Tiaad> which results in T^ - r>dv. 

5. A well in a uniform background flow 

As an example the method developed in the foregoing section will be applied 
to analyze the pollution of a well in a uniform 2D-background flow. The complex 
potential for the flow field is 

o)(z) = z - ln(z +1) , z = x + iy. (5.1) 

The velocity vector of the background flow is (1, 0). The well is located in (-1, 0). 
For the velocity components one can derive 

dx = x2 + x + y2 

x dt (1 + xf + y2 ' 

v = ÉL = 'J. (5.2b) 
' dt (1 + x)2 + y2 V ' 

The stagnation point is (0, 0) and the separating streamline is given by 
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Figure 5. Streamlines for a well in a uniform background flow. The well is excluded 
from Ci by a small circular domain with boundary dQt. 

x = - 1 + 
tan y 

(5.3) 

For particles released inside the stream domain of the well the advective travel time 
to the well is given by 

r,dv(*> y) = I"-
sin y 

ln(-
tan y 

x - 1) - x - 1, (5.4) 

see Van der Hoek (1992). We consider the region Q, which is the x, y-plane from 
which we have excluded an arbitrarily small circular domain with boundary dQi 
containing the well, see Figure 5. Because of the symmetry we can restrict our 
analysis to the upper half plane y 2 0. A point (x, y) of the separating streamline 
corresponds in p, v-coordinates with (p, 0), where 

P = - I1 * < 
1 

tan y sin2 y 

1/2 
) ày. (5.5) 

We first consider the probability ö(p, TI) that a particle starting in a point 
(p, TI) of Q ends in the well. It is given by Eqs. (4.5). Using (5.5) it is possible to 
express g(p) in (4.5b) as a function of y. We obtain 
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9(p)= 2 JQW(y)dy/Q(y) 

where 

V l / 2 

(5.6a) 

. 2 /, A 1 J Q(y) = sin2>> 1 + ( _ - _ J _ ) ' (5.6b) 
1 y tan y ' 

and 

Ä(y) = 
V 2 \ 1 / 2 

l + (-^--4-) • (5-6c) 
tan y sin2 _y 

For a particle starting in a point (p, r\) of the boundary layer the expected 
arrival time 7'bO01ld(p, Ï]) at the well is given by Eq. (4.16) with ab = - 1 . It is 
possible to express ^„^(p, T|) as a function of y and TJ. We obtain 

7 tan y 2 y y tan _y ' 2 

(* ln(-Ti + t/q(p))exp[-t2/2]dt I f exp[-t2/2] dt. (5.7) 
i«(p) I«(P) 

This boundary layer solution may be used to construct a composite expansion r ^ p 
according to (4.17), which is valid in the stream domain of the well both inside and 
outside the boundary layer. We obtain 

comp 
= T,* - 4 l n a r + ln(-v) + 

- fln(-T] + t/q(p))exp[-t2/2]dt / (* exp[-t2/2] dt. (5.8) 
i«(p) i«(p) 

For the region outside the stream domain of the well we may use the boundary 
layer solution (5.7) as an approximation of the expected arrival time both inside and 
outside the boundary layer. 

6. The random walk model 

In this section we will compare the results of random walk simulations for 
the probability of arrival and the expected arrival time at a particular boundary dQl 

with the analytical approximations derived in the foregoing sections. The position 
(X(f), Y(t)) of a particle for which the probability density function p(x, y, t) of 
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section 2 applies, satisfies the system of stochastic differential equations of Ito type 

dX = (v + —D + —D )dt + J2a.v JLdW, + •\laTv JLdWT, (6.1a) 
" dx " dy v v L v L v T v r 

rfK = (v, + J L / ^ + JLDJdt + {ïa~^JLdWL - {ïa~ÏJLdWT, (6.1b) 

where Wj(f) and WL(f) are independent Wiener processes. From these equations a 
system of stochastic difference equations can be derived. In Table 1 we give the 
results from N = 1000 simulations at different starting points (X(0), Y(0)) for the 
symmetric flow problem of section 3. These results are compared with the probabil
ities of arrival at the boundary y = -R obtained from the asymptotic approximation 
(3.8) and with the expected arrival times obtained from (3.19). We remark that in 
this special case the composite expansion Tamp of (4.17) equals the boundary layer 
solution J ^ a of (3.19). 

In Figures 6 and 7 we present simulation results for a well in a uniform 
background flow. On the separating streamline the point C with coordinates (p, v) = 
(2.958, 0) is considered, corresponding with (x, y) = (-1.915, 2). For a number of 
starting points on the normal on the separating streamline through C a Monte Carlo 
simulation run (N = 2000) has been made. In this way an approximation has been 
found for the fraction of particles that reaches the well. In Figure 6 this fraction is 
compared with the asymptotic approximation for the probability of arrival at the 
well given by (4.5) and (5.6). 

The simulation results for the expected arrival time at the well are presented 
in Figures 7. In Figure 7a they are compared with values of the boundary layer 
solution Tbima given by Eq. (5.7) and the advective travel time radv given by Eq. 
(5.4), which approximates the expected arrival time in the stream domain of the 
well outside the boundary layer. In Figure 7b these simulation results are compared 
with values of the composite expansion T ,̂,,,, given by (5.8) for starting points 
inside the stream domain of the well, and again with values of T^,, outside this 
domain. For increasing v > 0 the simulation results are based on a decreasing 
number of particles that arrive at the well. Therefore the error in these results 
increases. It is noted that outside the boundary layer T^, and ^„„d do not differ 
much (see Figure 7a). This is due to the regular structure of the uniform back
ground flow. It is expected that for irregular flow patterns this will not be the case. 
Then the composite formula is indispensable for making an accurate approximation. 
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Table 1. The probability of arrival u and the expected arrival time T at the boundary 
y = -R with R = 2 for the symmetric flow problem of section 3. The values 
°f Msimui ane^ ^simui nave ^>een obtained from N = 1000 simulations at each 
starting point (x, y) with x = 4; aL = .125 and aT = .05. The asymptotic 
approximations uxympi and Txyn^ have been computed from (3.8) and (3.19). 

y 
0.4 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

-0.3 

-0.4 

"si mul 

.13 

.24 

.30 

.42 

.51 

.62 

.70 

.80 

.87 

**asympt 

.14 

.21 

.29 

.39 

.50 

.61 

.71 

.79 

.86 

T 
•* simul 

2.84 

2.63 

2.59 

2.44 

2.35 

2.20 

2.01 

1.84 

1.66 

T 
-* asympt 
2.84 

2.73 

2.60 

2.47 

2.32 

2.17 

2.01 

1.84 

1.67 

1.0 i 

-.12 -.06 .06 .12 V—-

Figure 6. The probability of arrival at a well in a uniform background flow from 
N = 2000 simulations at each point (p, v) with p = 2.958 (x); aT = .001 and 
aL = .01. The asymptotic approximation (—) has been calculated from (4.5) 
and (5.6). 
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(a) 

(b) 

Figure 7. The expected arrival time at a well in a uniform background flow from 
N = 2000 simulations at each point (p, v) with p = 2.958; aT = .001 and 
aL = .01. Simulation results are compared with the asymptotic approxima-
tion abound. the advective travel time T^ and the composite expansion 7" 
calculated from (5.7), (5.4) and (5.8), respectively, (a) Simulation 
results (x) compared with T^ (_) and Tbami (—). (b) Simulation results (x) 
compared with T^ (_) and rbound (—). 
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7. Conclusions 

In this paper we have analyzed the dispersion problem by solving 
asymptotically a Fokker-Planck equation. The advective flow yields a first order 
approximation. In addition inside a boundary layer dispersion has been taken into 
account. For a flow field with a stagnation point a formula has been derived for the 
probability that a particle reaches a particular boundary, see Eqs. (4.5). Also for 
starting points inside the boundary layer an expression has been derived for the 
expected arrival time T^^ at the boundary, see Eq. (4.16). It is emphasized that 
this solution only depends on the point of intersection of the boundary with the 
streamline leading away from the stagnation point, and not on the particular shape 
of the boundary. The formula for T^^ may be used to construct a composite 
expansion T^^ which is valid in the entire region of advective flow towards the 
boundary, see Eq. (4.17). 

For the example of a well in a uniform background flow Figures 6 and 7 
show that there is a good correspondence between the simulation results obtained 
by the random walk method and the values of the asymptotic approximations for 
the probability of arrival at the well and the expected arrival time. For the symmet
ric flow problem of section 3 the simulation results are also in accordance with the 
asymptotic approximations, see Table 1. We note that in this example T^p equals 
abound- T° e advantage of the method we have presented above, e.g., the random walk 
method is that the boundary layer structure is taken as starting point and that 
analytical expressions are obtained. From Eqs. (4.5) one can construct confidence 
domains where, e.g., 5% or less of the released pollution reaches the boundary of 
the protected zone. 

The model described in this study may be extended to include loss of 
contamination by, for example, adsorption or radioactive decay, see Van Kooten 
(1994), who also considers the total flux of the polluting particles at the well. For 
the calculation of such a flux, see also Naeh et al. (1990). 

Finally, it is noted that also for numerically obtained advective flow patterns 
the asymptotic solutions for the probability of arrival and the expected arrival time 
are given by the formulas (4.5) and (4.16), which can be computed by numerical 
integration. For that purpose only the velocity along the separating streamline has to 
be taken into account. 
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Chapter 3 

Stochastic epidemics: major outbreaks and the duration of 
the endemic period1 

Abstract 

A study is made of a two-dimensional stochastic system that models the 
spread of an infectious disease in a population. An asymptotic expression is derived 
for the probability that a major outbreak of the disease will occur in case the 
number of infectives is small. For the case that a major outbreak has occurred, an 
asymptotic approximation is derived for the expected time that the disease is in the 
population. The analytical expressions are obtained by asymptotically solving 
Dirichlet problems based on the Fokker-Planck equation for the stochastic system. 
Results of numerical calculations for the analytical expressions are compared with 
simulation results. 

1. Introduction 

In this study we consider a two-dimensional stochastic system that arises in 
epidemiology. It is a model for the spread of an infectious disease in which the 
population is divided in three classes: susceptibles, infectives and removed. We 
consider the case where in the corresponding deterministic system the disease 
becomes endemic. In the stochastic system the disease can disappear from the 
population because of stochastic fluctuations. With probability one this will happen 
within a finite time. In this paper we are interested in answering the following 
questions. If there are one or a few infectives in the population, what is the 

'By O.A. van Herwaarden and J. Grasman. Published (in slightly abridged form) in: 
Journal of Mathematical Biology, 33 (1995), pp. 581-601 
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probability that a major outbreak of the disease will occur? And given that a major 
outbreak of the disease has occurred, what is the expected extinction time of the 
disease? 

In the literature various stochastically perturbed dynamical systems with a 
stable deterministic equilibrium have been described for the case that the stochastic 
fluctuations are small. References are given in the introduction of Roozen (1989). In 
that paper a two-dimensional stochastic system from population dynamics is treated. 
The diffusion matrix of that system becomes singular at the boundary of the region 
under consideration. There, the normal components of the diffusion and the drift 
vanish linearly with the distance to the boundary. In our study the methods used in 
Roozen (1989) are applied to derive asymptotic expressions for the probability that 
a major outbreak of the disease will occur, and for the expected extinction time in 
case it has occurred. In our system the normal components of the diffusion also 
vanish at the boundary. It differs from the system described in Roozen (1989) at the 
following points: the diffusion matrix is nondiagonal and, moreover, at part of the 
boundary the deterministic vector field enters the region under consideration. It also 
turns out that the method cannot be applied to every stochastic population problem 
with a stable deterministic equilibrium. 

In section 2 we describe the stochastic system, formulate the corresponding 
Fokker-Planck (or Kolmogorov) equations and analyze their use in exit problems. In 
section 3 a boundary value problem is formulated and solved asymptotically for the 
probability that a major outbreak of the disease will take place in case the initial 
number of infectives is small. Moreover, for the probability of a major outbreak a 
discrete approximation is given. In section 4 we formulate a boundary value 
problem. Its asymptotic solution forms an approximation of the expected extinction 
time of the disease in case a full epidemic has developed. In section 5 the analytical 
expressions are compared with results obtained by random walk simulations. 

2. The stochastic model and the Fokker-Planck equations 

2.1 The deterministic model 

In the epidemic model of this study, the population is divided in three 
classes: susceptibles, infectives and removed. The sizes of these classes are S,1 and 
R, respectively. In the deterministic version of the model (see, e.g., Edelstein-Keshet 
(1988)), it is assumed that the rate of transition from susceptibles to infectives is 
proportional with S and I with transmission rate constant ß. The rate of transition 
from infectives to removed is proportional with / with rate constant y, and renewal 
takes place with rate constant \i. The size of the total population is constant: 
N = S + I + R. Our asymptotic analysis is based on the assumption that N is a large 
parameter. See Figure 1 for a diagram of this model. We write 
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\iN psi 

• 

11 

• 

Figure 1. Subdivision of the total population (N) into three classes: susceptibles (S), 
infectives (/) and removed (R). Transitions and renewal take place with rate 
constants ß = $/N, y and u. 

N 
(2.1) 

and assume ß, y and \i to be of order 0(1), where 0(.) denotes the order symbol 
introduced by Landau. Thus, we compare the size of these three parameters with the 
large parameter N and fix them while increasing N indefinitely. 

The dynamics of the deterministic system is, therefore, given by 

f£ = HAT - Isi - nS, 
dt N 

(2.2a) 

£ = Isi - yl - ui, 
dt N 

(2.2b) 

dR r D 

dt 
(2.2c) 

From these equations, it is easily seen that the total population N is constant, 
indeed. We can, therefore, eliminate one variable, say R, and restrict our attention to 
the Eqs. (2.2a) and (2.2b) in the two unknowns S and / . Introducing the scaled 
population sizes 

N 
x. = — 

2 N 

and a new time scale by substituting t for \it, we obtain 

dxy _ _ 
dt 1 2 1' 

dx 
— = (KXj - v - l)x2, 
dt 

(2.3) 

(2.4a) 

(2.4b) 
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where K and v are dimensionless parameters 

K = I , v = I . (2.5) 

We now consider the state space D with 

D = {(x,, x2)\x1>0,x2> 0}. (2.6) 

It is noted that at the boundary x^ = 0 the deterministic vector field enters the region 
D, and that at the boundary Xj = 0 the normal component of the deterministic vector 
field vanishes. The system (2.4), in which the number of parameters has been 
reduced to two, has two equilibria: 

Pt = (1, 0), P2 = <£v *} = ( ^ -11 , —L_ - I ) . (2.7) 

In this study, we are interested in values of the (positive) parameters K and v for 
which the critical point P2 is situated in the first quadrant, that is, we assume 

K > v + 1. (2.8) 

By this assumption, Pl is a saddle point and P2 is a stable equilibrium. Depending 
on the values of K and v, the stable steady point P2 is a node, an improper node or 
a focus. This means for the deterministic model, that, once the number of infectives 
is not equal to 0, the state of the population will develop towards this steady state 
and the disease will not die out. We remark that for the unsealed populations S and 
ƒ the critical points Pl and P2 correspond with the equilibria 

Qf, 0), (JLlü, J U L - £ ) . (2.9a,b) 

2.2 The stochastic model 

In this subsection a stochastic model is introduced corresponding with the 
deterministic model described above. In this model we consider deterministic 
inflow, as above, but the outflow and other transitions are considered to be 
stochastic. To be precise, we assume that in the small time interval (t, t + At) S 
decreases by one and I increases by one because of a transition from the suscept
ibles to the infectives with probability ßS7Af. Furthermore, in the small time interval 
of length At, ƒ decreases by one because of a transition from the infectives to the 
removed with probability y^A'. and because of outflow of an individual the sizes of 
the classes S and I decrease independently by one with probability \tSAt and \tIAt, 
respectively. The probability of more than one transition is of order 0((At)2), and is 
neglected for small At. The deterministic inflow into the class of susceptibles in the 
time interval At is \tNAt with N fixed. We remark that in this stochastic model the 

file:///tSAt
file:///tIAt
file:///tNAt
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parameter N takes a slightly different role: it is the size of the population if the 
disease is absent. Moreover, it is remarked that the method we use cannot be 
applied to a system with deterministic outflow \xSAt. In that case the type of 
singularity of the probability density function in (N, 0) is such that the divergence 
theorem does not hold for that function. 

Introducing again the scaled population sizes (2.3), and using (2.1), we 
obtain the following transition probabilities in the small time interval At: 

fiNx^^t for the transition JCJ -» xl - 1/N, x^ -* x2 + 1/N, 
yNx^àt for the transition x^ -* x^ - 1/N, because of removal, 
\xNxtAt for the transition xl -» xl - 1/N, because of outflow, 
UJVJ^A/ for the transition x2 -*• Xj - 1/N, because of outflow. 

This yields for the first moments of the changes of xl and x2 over the time interval 
At 

£(AXj) = \iAt - —ßNXjX^t - —\xNxfit, (2.10a) 

EiàxJ = IfrNx^t - ±yNx2At - ±\*Nx2At, (2.10b) 
N N N 

and for the second moments 

^((AXj)2) = (nat)2 + -LfiNx^t + —\iNxfit, (2.11a) 
N2 N2 

^ - -LßNx,xAt + JLyNx~At + J_, 
N2 12^ N2 2 N2 

E^Ax^2) = -LßNx^t + -LyNx2At + — uAfr^f. (2.11b) 

We observe that the variances of Axl and Ax2 equal the second moments up to 
O^At)2). So the stochastic process is approximated by the system of stochastic 
differential equations of Ito type 

dx1 = (n - f k ^ - \\x^dt - fafa/N dW1 - jyocJN dW2, (2.12a) 

dx2 = (ßx^2 - yx2 - vu^t + fafc/N dW1 - Jyx2/N dW3 - J\vc2/N dW4 

(2.12b) 
with dW; the increments of the independent Wiener processes W,(t), i = 1, .... , 4. 

From these equations we can obtain the forward Fokker-Planck (or forward 
Kolmogorov) equation, which is a differential equation for the probability density 
function pQc^ x2, t) of finding the system in state (xv x^ at time t. The Fokker-
Planck equation that corresponds with the system of stochastic differential equations 
of Ito type 

file:///xSAt
file://�/xNxfit
file://�/iNxfit
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dx = b\x)dt + ä(x)dW(t), (2.13) 

is given by 

ÊL = - E —(b.p) + I E d2 (â..p), (2.14) 

where 

äit = ( 0 0 % (2.15) 

see, e.g., Gardiner (1983). Here öT denotes the transpose of d. Writing (2.12) in the 
form (2.13) with x and b\x) vectors in R2, W(t) a 4-dimensional Wiener process and 
ö(x) a 2x4 matrix, we obtain the forward Fokker-Planck equation 

ÈL = - * {(u - fiXlx2 - vxt)p} - J-mt - y - tiw) + (2.16) 
at ox1 dx2 

*" dxx 0x^X2 Qx2 

Introducing again the new time scale t instead of \it and the dimensionless parame
ters (2.5), we obtain the forward Fokker-Planck equation 

.g = MP . - i A{fci(*)p} + 1 i *{ajtfp), (2.17) 
dt <=i dx. 2N i>i dx.bx. ' 

where the elements a{j of the diffusion matrix are given by 

an = (KX2 + l)xj, al2 = a2l = - KXfo, a^ = (îocj + v + l)x2, (2.18) 

and the elements bt of the drift vector by 

bi = 1 - KXjjc2 - xt, b2 = (KJCJ - v - l)x2 (2-19) 

corresponding with the associated deterministic system (2.4). 

2 3 The boundary value problems 

Related to the forward operator M in (2.17) is the backward operator L, 
which is the formal adjoint of M. It plays an important role in exit problems. Let us 
consider a domain Q with boundary dQ and let r(x, x) be the probability density 
function for the state of leaving Q the first time at x G dQ, if starting in oc G Q. 
Then between the stationary backward Fokker-Planck (or backward Kolmogorov) 
equation 
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2 3 . . 1 2 

0 = Lu m E b(x)— + J _ £ a.ùc)-ÈJL. in Q (2.20a) 
M ' to. 2tf j > i 'A ' ax.&e. V ' 

• ; 
with boundary condition 

u(x) = h(x) at dQ, (2.20b) 

and r(x, JC) the following relation exists 

u(x) = f r ( i , x)A(jc)dS, (2.21) 

see Schuss (1980). If the boundary 5Q is composed of two disjoint parts dQ0 and 
dQlt this information can be employed to calculate the probability that the state 
reaches dQ the first time at the part dQ1? if starting in x G Q. This probability u(x) 
is given by Eq. (2.21) if h = 1 at dQ{ and h = 0 at dQ0. Therefore, u(x) satisfies the 
Dirichlet problem 

Lu = 0 in Q, (2.22a) 

u = 0 at dQ0, M = 1 at d ^ . (2.22b) 

Eqs. (2.22) will be used in section 3 to formulate a boundary value problem for the 
probability that a major outbreak of the disease will occur in case the number of 
infectives is small. The backward operator L can also be used to determine the 
expected time T(x) for the state to leave the domain Q with boundary dQ, if starting 
in x E Q. This expected exit time satisfies 

LT = - 1 in Q, (2.23a) 

T = 0 at dQ, (2.23b) 

see Schuss (1980). Eq. (2.23a) is the Dynkin equation. The Dirichlet problem (2.23) 
will be used in section 4 to determine the expected extinction time in case the 
number of infectives in the population is not small anymore. 

3. The probability of a major outbreak 

In this section we formulate a Dirichlet problem that answers the question 
about the probability of a major outbreak of the disease, if initially there is a small 
number of infectives. In the deterministic model described above a major outbreak 
of the disease definitely occurs and the disease becomes endemic as soon as there is 
at least one infective. In the stochastic model the disease may disappear from the 
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population before a full epidemic develops. In this section we derive an asymptotic 
expression, for large N, for the probability that a major outbreak of the disease does 
not occur in case the number of infectives is small. For that purpose we consider 
the domain 

Q = {(xv xJ\Xl> 2 L l i , x2 > 0} (3.1) 

and the Dirichlet problem 

Lu = 0 in Q, (3.2a) 

u = 1 at x2 = 0, u = 0 at xx = (v + 1)/K (3.2b) 

with the elliptic operator L defined in (2.20a). The solution u(x) of (3.2) equals the 
probability that the state of the system reaches the boundary dQ the first time at the 
part dQx: x2 = 0, if starting in x E Q. If x E Q is close to x2 = 0 (and not near 
xt = (v + 1)/K), then u(x) also equals the probability that an epidemic does not 
develop for a small initial number of infectives. In particular, we are interested in 
M(JC) for x close to the saddle point /^(l, 0) of the deterministic system, correspon
ding with a population in which the infection has just been introduced. Because of 
the direction of the characteristics of the deterministic vector field and because of N 
being large, we expect u to change rapidly from 1 to about 0 in a small region 
along the *raxis. Therefore, a boundary layer is expected to be present at this 
place. From boundary layer theory (see Kevorkian and Cole (1981)) it is concluded 
that there is a boundary layer of width 0(1/N) along the xraxis. Inside this bound
ary layer another boundary layer region of width 0(l/Nxr2)xO(l/N) is contained near 
the critical point Pl of the deterministic system; see Figure 2. In our analysis we 
exclude a small region near the point ((v + 1)/K, 0). It requires a separate 
asymptotic analysis, which is not important for the problem we presently address. 

To solve problem (3.2) in the outer region we may neglect the diffusion 
terms and approximate (3.2a) by the equation with drift terms only: 

E b.(x)— = 0, (3.3a) 
«=i ' dx. 

u = 0 at Xj = (v + 1)/K, (3.3b) 

which has the solution 

u(x) = 0. (3.4) 

Inside the boundary layer near P{ we introduce the stretched coordinates 

! = (•*!- ! ) ^ . r\=Nx2. (3.5) 
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(v+iyic 

Figure 2. Boundary layer regions for the Dirichlet problem (3.2), used to determine 
the probability that a major outbreak of the disease will not occur. 

Substitution of (3.5) in (3.2) yields for N -» oo 

•r du , , . v du , i d2u , i , i\ d2u _ „, , s 

" ^-St + (K " v " ^ " S T + TT^I + -j(K + v + 1)11—? = 0, (3.6a) 3 | oil 2 d |2 2 5if 

with the boundary condition 

u( | , TI) = 1 at Ti = 0 (3.6b) 

and the matching condition with the outer solution (3.4) 

lim l ig, T)) = 0. (3.6c) 

Separation of variables leads to the boundary layer solution 

«(£, TI) = expt-cxT!] (3.7a) 

with 

(K + V + 1) 
(3.7b) 

see Roozen (1989), where an analogous problem is solved. Inside the boundary 
layer along the Xj-axis, not near PY, we introduce the stretched coordinate 

r\ = Nx2. 

Substitution in (3.2) yields for N -» oo 

(3.8) 
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(1 - xt)^L + («, - v - 1 ) ^ + !(«, + v + 1 ) T Ä = 0, (3.9a) 
axl dr\ dr\ 

with the boundary condition 

ufo, T]) = 1 at Ti = 0. (3.9b) 

The matching condition with the outer solution (3.4) is 

lim u(xv TI) = 0. (3.9c) 
r)-»oo 

Substitution of the similarity solution 

u(xv TI) = exp[-+(xji\] (3.10) 

in (3.9a) yields 

(1 - xfr' + (ictj - v - l>fr - ! ( « ! + v + l»)2 = 0. (3.11) 
2 

. 2 Dividing this equation by <|> we obtain a linear differential equation in 1/(|), which 
can be solved by the method of variation of constants. The solution of this first 
order differential equation contains an integration constant, which we determine by 
matching (3.10) with the solution (3.7) near Pu that is by the condition 

lim «K*,) = 2 /K " V " ^ (3.12) 
*,-i (K + v + 1) 

In this way we obtain 

2(1 - x,^' 
<K*i) = - ; (3-13) 

ƒ (KS + v + 1){(1 - s)/(l - Xl)}
K -v - 2e° ds 

We note that the solution (3.7) in the boundary layer region near Px is contained in 
the solution (3.10), because of the relation (3.12). Therefore, the asymptotic solution 
(3.10) is valid in the boundary layer along the jcraxis, the neighbourhood of P1 

included. For the probability f/(50,10) that a major outbreak of the disease will not 
occur, we now obtain from (3.10) the asymptotic approximation in the original 
population variables 

U(SV 70) - exp[-<KS0/#y0] (3.14) 

where 50 and I0 are the initial numbers of susceptibles and infectives, respectively, 
with ƒ„ small and 50 larger than and not close to (y + u)/ß. 
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We remark that, for large values of N and 50 » (y + n)/ß, we can find 
another approximation for this probability, using the discrete instead of the continu
ous model. Assuming that, for sufficiently large 50, we can take S initially constant, 
we consider the probabilities p and q that I decreases and increases, respectively, by 
one individual. Using the transition probabilities given in subsection 2.2, we obtain 

p= (V + ^ , q = ^ , (3.15) 
atf0 + Y + ny ((tf0 + Y + uy 

so p and q are independent of I. This process can be compared with a linear birth 
and death process with an absorbing state for 1 = 0; see, e.g., Karlin (1966) or Goel 
and Richter-Dyn (1974), who also refer to Kendall (1956) for the result (3.17), 
(3.19) below. For the probability R(I0) of extinction of the disease we find the rela
tion 

ƒ?(ƒ„) = PR(I0 - 1) + qR(I0 + 1), (3.16) 

which is a linear second order difference equation in ƒ„ with constant coefficients. 
Its solution is 

R(I0) = A(Z)° + B, (3.17) 
H 

where the relation q = 1 - p has been used. The coefficients A and B are determ
ined by the conditions 

R(0) = 1, lim R(I0) = 0. (3.18) 

Using p < q for S0 > (y + u)/ß, we obtain 

A = 1, B = 0. (3.19) 

Assuming that, for small values of /0, the extinction probability R(I0) of the disease 
approximates the probability U(S0, ƒ„) that a major outbreak of the disease will not 
occur, we find the approximation 

UQ» h) ~ (^ß^)7 ' for So » (Y + t*yß- (3-2°) 

4. The expected extinction time 

In this section we derive an asymptotic expression for the expected extinction 
time of the disease in the stochastic model for large values of N. In particular, we 
are interested in the expected extinction time for initial states in the neighbourhood 
of the stable equilibrium of the corresponding deterministic system, i.e., after a 
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major outbreak of the disease has occurred and the disease has become endemic. In 
subsection 4.1 we asymptotically solve the Dirichlet problem (2.23) for the expected 
exit time. The solution contains an unknown constant. This constant is determined 
by solving the forward Fokker-Planck equation for the probability density function 
of the quasi-stationary state of the system in subsection 4.2, and applying its sol
ution in the divergence theorem in subsection 4.3. 

4.1 The backward equation 

We consider the state space D with D = {(xu x^ | xv x2 > 0}. For starting 
points i E D , w e study the expected exit time T(x) at the exit boundary JCJ = 0. We 
assume T(x) to be of the form 

T(x) = C(N)f(x) (4.1) 

with C(N) exponentially large. Substitution of (4.1) in the backward Fokker-Planck 
equation (2.23a) with L defined in (2.20a) yields for N -» oo the reduced equation 

i b{x)K = 0. (4.2) 
;=i dx. 

This equation is satisfied by a constant, that we can take 1 (any other constant can 
be taken up in C(N)): 

T(x) = 1, (4.3a) 

corresponding with 

T(x) = C(N). (4.3b) 

This is the outer solution, valid away from x2 = 0. We can explain this solution as 
follows. For a starting point x, away from x2 = 0, we expect the state of the system 
to approach first the stable equilibrium and next to circle in the neighbourhood of it 
for a long time. Large excursions from this equilibrium take place with small prob
abilities. Exit of the state at x2 = 0 occurs during such an excursion and is indepen
dent of the starting point x. 

Boundary layer analysis reveals the existence of a boundary layer of width 
0(1/N) along the Xj-axis, in which is contained a boundary layer region of width 
0(l/Nm)xO(l/N) near the saddle point P^l, 0) of the deterministic system; see 
Figure 3. Inside the boundary layer region near Pl we introduce the stretched 
coordinates J; and r\, given by (3.5). Substitution of these coordinates and (4.1) into 
(2.23a) yields for N -» « 
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t 
* 2 

Q(1MQ 

0(1/N) 

Figure 3. Boundary layer regions used for the determination of the expected exit time 
T(x) at the boundary x2 = 0. The (dashed) line x^ = ô with 0 < ô « UN is 
used in the divergence theorem in subsection 4.3. 

\— + (K 1>1— + 4-ZT + ? ( K + v + i ) 1 ! - ^ = o. (4.4a) 

The boundary condition (2.23b), T(x) = 0, at the exit boundary x2 = 0 leads to 

j ( | , T]) = 0 at Ti = 0, (4.4b) 

and matching with the outer solution (4.3a) requires that the following matching 
condition is satisfied 

lim 71g, n) = 1. (4.4c) 

With T replaced by 1 - u, these equations are similar to the Eqs. (3.6). We thus 
obtain the solution 

T<&, TI) = 1 - exp[-aii], 

corresponding with 

T(xv x2) = C(A0(1 - exp[-aA&J) 

(4.5a) 

(4.5b) 

with a given by (3.7b). Inside the boundary layer along the x raxis, not near Pu we 
introduce the stretched coordinate r\, given by (3.8). Substituting this coordinate and 
(4.1) into (2.23a), we obtain for N -» oo 
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(1 - xjE. + ( « , - v - l)îi-Êl + ' (icx, + v + 1 ) T ! ^ = 0, (4.6a) 

with the condition at the exit boundary 

T{xx, TI) = 0 at ri = 0 (4.6b) 

and the matching conditions with the outer solution (4.3a) and the boundary layer 
solution (4.5a) near Pl3 respectively, 

lim f(xv r\) = 1, (4.6c) 
n i-.» 

lim f(xv x]) = 1 - exp[-ar|]. (4.6d) 

In section 3 this problem is solved with f replaced by 1 - u. We obtain the bound
ary layer solution 

f{xv TI) = 1 - expt-cK^ii] (4.7) 

with ^(x^ given by (3.13). We note that the solution (4.5a) in the boundary layer 
region near Pj is contained in (4.7). Therefore, summarizing (4.1), (4.5a) and (4.7), 
we have the expression for the expected exit time 

T(xv j g = C(iV)(l - expt-Kx^xJ) (4.8) 

valid in the boundary layer along the Xj-axis, the neighbourhood of Px included. The 
subsections 4.2 and 4.3 concern the determination of the unknown constant C(N). 

4.2 The forward equation 

In this subsection we analyze the forward Fokker-Planck equation 

Mp = 0 (4.9) 

with the elliptic operator M defined by (2.17). A solution p(x) of this equation will 
be used in the divergence theorem in subsection 4.3. The function p(x) we choose 
approximates, if appropriately scaled, the quasi-stationary distribution away from 
the boundary. With the quasi-stationary probability distribution we mean the dis
tribution given the system has not reached the boundary of D. 
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The WKB-approximation. For the function p(x) we use a WKB-approximation, see 
Ludwig (1975), 

p{xv x2) = w(xv x2)exp[-NQ(xv xj] (4.10a) 

for large values of N. The positive functions Q(xlf x^ and w(xlf Xj) satisfy the fol
lowing conditions in the stable equilibrium P2 of the deterministic system: 

Q(xlt j y = 0, (4.10b) 

wQc» j y = 1, (4.10c) 

where Xj and x\ are the coordinates of P2, see (2.7). Since P2 is the most likely 
place for the state to be found, Q should have a minimum in P2. Substituting the 
WKB-approximation into (4.9) and rearranging the terms, we obtain to leading 
order 0(N) the equation 

E b&Eß- + 7 * afr)¥¥ = °' (4-U) 

;=i axi
 2 ;,;=i ox. öx. 

which compares to the eikonal equation of the ray theory in optics. Next the terms 
of order 0(N°) constitute the transport equation 

E —{b(x)w} + E [ÊQ- — {a..(x)w} + la.(x)w b*Q ] = 0. (4.12) 
w a*. ' ->i a*, ax. 'A 2 'A ax. ax. 

The eikonal equation is a Hamilton-Jacobi equation and can be written in the form 

2 2 

H(xv x2, pv p2) = E bipi + 1 E a />;p = 0 (4.13) 
;=i z ;,M 

with 

/>. = | £ (4.14) 
ax. 

and Hamiltonian /ƒ. The corresponding system of ordinary differential equations is 
(see, e.g., Courant and Hubert (1962)) 

dx. äff iL 
-L = ^L = b.t + E V . , (4.15a) 
as dpi ;=i 

dp dH 2^ db. , 2 5 a 
- f = - | L = - E ^ p . - 1 E -±P}Pk, (4.15b) 
as ax. ;=i dx. z ;,*=i 3x. 

where s is a parameter along the characteristics. For the rate of change of Q with s 
we have 
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^ = - H(x, p) + E 'p. = 1 E «..ƒ>./>. (* 0). (4.15c) 

The projections of the characteristics on the x^-space are called rays. The Eqs. 
(4.15) are called the ray equations. From Eqs. (4.15a), (4.15b) it is seen that the 
state variables x and p do not depend on Q. The dynamical system (4.15a), (4.15b) 
for the state (xlt x^ pu p^) has an equilibrium 

v + 1 1 1 
( - -, —^-r - - , 0, 0). (4.16) 

K V + 1 K 

The projection of this equilibrium on the x^-space coincides with the stable equi
librium P2 of the deterministic system. The rays can be interpreted as paths of 
maximum likelihood joining P2 with points of the ocjpc2-space, see Ludwig (1975). It 
is noted that two other equilibria of the dynamical system (4.15a), (4.15b) are given 
by 

(1, 0, 0, 0) and (1, 0, 0, -a ) (4.17a,b) 

with a given by (3.7b). The projections of these equilibria on the x1^c2-space 
coincide with the saddle point Pl of the deterministic system. 

Local analysis near the stable equilibrium. Since the function Q(xt, x^ has a mini
mum in the stable equilibrium P2 of the deterministic system, its first order deriva
tives px and p2 vanish in P2. Therefore, we can approximate Q(xv x^ in the neigh
bourhood of P2 by the quadratic form 

Q(xt, x2) ~ ± E C^x. - *,.)(*• - x), (4.18) 

see also (4.10b). In this formula xx and x2 are the coordinates of P2, the coefficients 
Cjj are the elements of a symmetric matrix C. Differentiation of (4.18) yields the 
approximation for p, 

Pi - E C(x - x). (4.19) 
M 

Values for C(ï are obtained as follows. In the neighbourhood of P2 the drift vector 
may be approximated by 

b. ~ E BJx - x), (4.20a) 
j-i 

where the elements Bti of the matrix B are given by 
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B9 = ^L(SV ij, (4.20b) 
dx. 

and the elements ai; of the diffusion matrix may be approximated by their values in 

«;, - «;,<*i> *>)• (4-21) 

The a^Jcj, x^ are the elements of a symmetric matrix A. Substituting the approxima
tions (4.19), (4.20) and (4.21) into the eikonal equation (4.11) and setting the coeffi
cients of the products (x: - JC;)(JC; - xj) equal to zero, we obtain the matrix equation 

CAC + CB + BTC = 0, (4.22) 

where we used the symmetry of A and C and introduced BT denoting the transpose 
of matrix B. Left and right multiplication of (4.22) by the inverse G = C1 yields 

A + BG + GBT = 0. (4.23) 

This matrix equation can be seen as a system of linear equations in the elements of 
the matrix G. Solving this system and inverting G yields the elements C(ï of matrix 
C. It can easily be verified that these two operations can be carried out, indeed. 

From this local analysis near P2 initial values for Q, px and p2 may be 
obtained in case a numerical solution of the ray equations is desired. We note that, 
since pt and p2 vanish in P2, the rays cannot be chosen to emanate from P2. Instead, 
the starting points of the rays (for s = 0) are chosen in a small neighbourhood of P2. 
From Eq. (4.15c) it is seen, that the function Q is nondecreasing along each ray. 

The boundary x2 = 0. To determine the behaviour of Q(xv x2) in the neighbour
hood of the boundary x2 = 0, we substitute the expansion for small x2 

Q(xv x2) = ßo^) + Qfrfa + \Q2{xtë + .... (4.24) 

into the eikonal equation (4.11). Rearranging terms and setting the coefficient of x ' 
equal to zero we obtain 

dQ0 1 

-ST= 2(1 - T} (4-25) 

with solution 

Qo(xi) = 2xj - 21n xx + constant. (4.26) 

From these equations we infer that the only extremum of the function Q(xt, x^ 
along the boundary x2 = 0 is a minimum for xL = 1, that is in the saddle point of the 
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deterministic system Pj(l, 0). Therefore, along the Jtraxis the probability density 
function p, given by (4.10a), is peaked at xt = 1, as is expected from a physical 
point of view. Asymptotically for N -» oo, exit at the boundary x2 = 0 takes place 
near the point Pv The solution is in agreement with the solution of a one-dimen
sional variant of our model (JC2 = 0) that can be calculated explicitly, using the posi-
tivity of the probability density function for xl > 0. We note, that substitution of 
(4.24) into (4.11) also admits the relation dQJdx^ = 0, yielding ßo(xi) = constant. 
This solution does not lead to a probability density function that is in agreement 
with the one-dimensional variant and is, therefore, discarded. 

Local analysis near the saddle point. To determine the behaviour of the WKB-
approximation (4.10a) in the neighbourhood of the saddle point Pu we substitute the 
expansion for small values of fo - 1) and x2 

Q(xv x2) = Q0 + ß1(x1 - 1) + Q2x2 + iQ3(Xl - l )2 + .... (4.27) 

into the eikonal equation (4.11). Rearranging terms and setting the coefficients of 
the powers of (jq - 1) and x2 equal to zero, leads to 

ß i = 0, Q2 = -a, ß 3 = 2, (4.28) 

with a given by (3.7b). This expansion for Q(xv x^ near P , is in accordance with 
the expansion (4.24) along the oc^axis with Q0(x^ given by (4.26), which can be 
seen by expanding (4.26) in a Taylor series around xx = 1 

ßofo) = 2 + {xv - l )2 + .... + constant. (4.29) 

The expansion (4.27), (4.28) corresponds with the equilibrium (1, 0, 0, - a ) , see 
(4.17b), of the system (4.15a), (4.15b) of ray equations for the state (xlt x^ plt p2). 
It is noted, that substitution of (4.27) into (4.11) also admits the values Q2 = 0 and 
Q3 = 0. The solution Q3 = 0 is omitted, because it does not agree with Q0(xi), see 
(4.29). The solution Q2 = 0 corresponds with the equilibrium (1, 0, 0, 0) of the 
system (4.15a), (4.15b), see (4.17a). In numerically solving this system for starting 
points in the neighbourhood of the stable equilibrium P2, as described above, the 
equilibrium (4.17b) is attained, and not the equilibrium (4.17a). Therefore, the sol
ution Q2 = 0 is discarded. We note that the numerical solution of the ray equations 
yields the value of Q0 = g ( l , 0), that is undetermined by the substitution of (4.27) 
into (4.11). 

We next study the transport function w near the saddle point P^l, 0). Intro
duction of the stretched coordinates | and T|, given by (3.5), yields for N -* oo 

4^p) - (K - v - i)4~(w) + f S + ¥K + v + ^ ( w ) = °' 
d | dîl 2 d |2 2 dr\2 

(4.30) 
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which is satisfied by 

p = c o n s t ' exp[-%2 + mi]. (4.31) 

The exponential function in this solution is in agreement with the leading order part 
of the WKB-approximation near Plt which is given by (4.10a) with the expansion 
(4.27), (4.28) for QÇxx, x^- This indicates a singular behaviour of the transport func
tion w 

w ~ —. (4.32) 
x2 

This is in accordance with the singularity found in the analysis by Roozen (1989). 
Substitution of the expansion for small values of (xx - 1) and x2 

w0 + wfa - 1) + w2x2 + IwjCr, - l)2 + .... 
wixv, x} = 1 (4.33) 

X2 

and (4.27), (4.28) into the transport equation (4.12), leads to recurrence relations for 
the coefficients vv;, leaving the constant w0 undetermined. We conclude that near Px 

the behaviour of the WKB-approximation is given by 

pixv x2) = M cxp[-N{(xt - If - ox2}] (4.34) 
x2 

with 

W = w0cxp[-NQ0] (4.35) 

and a as in (3.7b). It is noted that wc and Q0 are computed by integration of the 
eikonal and the transport equation along the ray that connects the stable equilibrium 
with the saddle point. 

The boundary AC1 = 0. At the boundary xi = 0 the drift vector is pointing inward 
into the region D with normal component bL = 1, see (2.19), and the normal compo
nent of the diffusion vanishes, see (2.18). Therefore, the probability density function 
p(x) is small near this boundary compared with the boundary x2 = 0, where the 
normal components of both the drift vector and the diffusion vanish. In Rough-
garden (1979) criteria have been described for a boundary classification for one-
dimensional stochastic systems, originating from Feller (1952). Application of these 
criteria on our stochastic model for fixed values of x2, indicates that the part of the 
boundary x{ = 0 with x2 < (2N - 1)/K is an entrance boundary. Such a boundary is 
unattainable from the interior of the domain, from which we conclude that p = 0 at 
this part of xl = 0. The other part of the boundary xl = 0 is at order 0(N) distance 
from the initial states of the stochastic system, which in view of the deterministic 
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vector field leads to large values for Q at that part of the boundary. We note that 
application of the criteria for boundary classification at the boundary x2 = 0 for 
fixed values of xx yields, indeed, that x2 = 0 is an exit boundary. 

4.3 The divergence theorem 

In this subsection the constant C(N) in the expected extinction time (4.1) is 
determined. Using the divergence theorem, the following integral relation can be 
derived, see Schuss (1980), 

j(pLT - TMp)dDi = 

1 2 a y 3 „ 2 1 2 (ja, 
= f {_L E n.aJp— - T^-) + E n.(b. - - L E —±)pT}dS (4.36) 

J 2N iiM > ,,KF dx. dx/ & jV ' 2N M dx/y ! v ' 

with n- the components of the outer normal on the boundary dD6 of the region Db. 
The region Db is taken slightly smaller than D: 

Dt = {(*!, x2) | x, > 0, x2 > 0} (4.37) 

with 

0 < Ô « -L (4.38) 
N 

(see Figure 3) to avoid evaluating the integrand at the right side of (4.36) at the xr 

axis, where p and its derivatives are singular, see (4.34). We first consider the inte
gral at the right side of (4.36) for the boundary x^ - Ô. The significant contribution 
to this integral comes from the neighbourhood of Pv Using the expressions (4.34) 
for p and (4.5b) for T, and taking the limit ô 1 0, yields after some calculation the 
integral 

--^(JV)C(W)a ("(KXj + v + l)exp[-JV(r1 - l ) 2 ] ^ , (4.39) 

I 
approximating asymptotically the right side of (4.36) for N -» oo. Application of the 
method of Laplace (Erdélyi (1956)) on this integral and using (3.7b), yields the 
expression 

-k(N)C(N)(K - v - iy/^/N. (4.40) 

The contribution of the boundary xl = 0 to the integral at the right side of (4.36) is 
negligible. The part of that boundary with x2 < (2N - 1)/K, where p = 0, gives a 
zero contribution, as can easily be verified. The contribution of the other part of the 
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boundary xx = 0, where Q is large, is not significant compared with the contribution 
(4.40). Using (2.23a) and (4.9) the integral at the left side of (4.36) reduces to the 
integral of -p over the region D6. The main contribution to this integral comes from 
the neighbourhood of the equilibrium P2, where p is peaked. Using the method of 
Laplace for double integrals and the expressions (4.10), we obtain the result 

231 (4.41) 
NyfK 

where A is the determinant of the Hessian matrix of Q in P2. Combining (4.40) and 
(4.41), and using the fact that w0, A and (K - v - 1) are of order 0(1), we find that 
C(N) is of the order 

C(N) ~ _Lexp[ß0AT]. (4.42) 

For the expected exit time T for initial states in the neighbourhood of the determin
istic stable equilibrium we now obtain by (4.3b) the asymptotic expansion, up to 
terms of order 0(ln N) 

In T(x) = Q0N - l i n N. (4.43) 

This answers the question about the expected extinction time of the disease in case 
a major outbreak has occurred. The expansion (4.43) can be improved by adding an 
order 0(1) term containing w0. 

5. A comparison with stochastic simulations 

In this section we compare results of stochastic simulations with the analyti
cal approximations derived in the foregoing sections. The simulations have been 
carried out for the discrete stochastic model described in subsection 2.2, by follow
ing the path of the state (5, 7) for initial states (50,10). For the parameters the values 
p. = 0.2, ß = 0.8 and y = 0.2 have been used, corresponding with K = 4 and v = 1. 

In Tables 1 and 2 we give results for the probability that a major epidemic 
does not develop for small initial numbers of infectives. For initial states (S„, /,) an 
approximation Usim for this probability has been found by carrying out simulation 
runs. For each starting point (S0, ƒ„) 7500 runs have been made. In Table 1 the 
initial states (50, /„) have been chosen in the neighbourhood of the saddle point 
(N, 0), for different values of N. The values of I0 vary from 1 to 5; 50 = N - I0. 
The simulation results Uäm are compared with the asymptotic approximation U„, 
computed from (3.14) and (3.13), and the discrete approximation U^, computed 
from (3.20). We observe that for sufficiently large N the simulation results are in 
good correspondence with the analytical approximations. In Table 2 the analytical 
approximations are compared with simulation results for initial states (50, I0) near 
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the 5-axis, not only near the saddle point (N, 0). The simulations have been carried 
out for N = 104 and 70 = 2; the stable equilibrium of the corresponding determin
istic model is given by (S, 1) = (52, 26). For the parameters used in these simula
tions, we see that the asymptotic approximation Un is in good accordance with the 
simulation results. For the discrete approximation U^, this is only true for large 
values of S„, as expected. We remark that the initial states (50, 70) which are not in 
the neighbourhood of the saddle point, do not correspond with a population in 
which the disease has just been introduced. 

In Figure 4 results are given for the expected extinction time of the disease 
for initial states in the deterministic stable equilibrium. For different values of N, an 
approximation rrim for the expected extinction time has been found by carrying out 
simulation runs. For each starting point (2.9b) 2000 runs have been made. In order 
to compare the simulation results with the asymptotic expansion (4.43), values of 
In 7\m + (In N)/2 have been plotted as a function of N. For sufficiently large values 
of N, these points fit well with a line, as is expected from (4.43). The slope of the 
line fitted through these data points for N > 60 is 0.059. By numerically solving the 
ray equations (4.15) as follows, a value of Q0 = Q(l, 0) is obtained. A ray ending in 
the saddle point Pi(l , 0) is found by a shooting method. Initial points (x1; x^ for the 
rays are chosen on a small circle around the stable equilibrium P2. Corresponding 
initial values for plt p2 and Q follow from the local analysis near P2, as described in 
subsection 4.2. By systematically varying the initial points a ray is found ending in 
(close to) Pj. In this way the value 0.061 is obtained for ß 0 , which is in good ac
cordance with the simulation result. 

Table 1. The probability U that a major outbreak of the disease does not occur for 
small initial numbers of infectives I0 in the neighbourhood of the determin
istic saddle point (N, 0). The values of Uäm have been obtained from 7500 
runs for each initial state (S0, /0); S0 = N - /0. The analytical approxima
tions t/M and Ufa have been computed from (3.14), (3.13) and (3.20); [i = 
0.2, ß = 0.8 and y = 0.2. 

/„=! 
h = 2 
/o = 3 

/o = 4 

/o = 5 

N 

uàm 
.55 

.31 

.19 

.11 

.08 

= 60 

uM 
.52 

.27 

.15 

.08 

.05 

tfda 

.51 

.27 

.15 

.08 

.05 

N 

.51 

.27 

.15 

.08 

.05 

= 120 
Um t/da 

.52 .50 

.27 .26 

.14 .13 

.08 .07 

.04 .04 
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Table 2. The probability U that a major outbreak of the disease does not occur for 
I0 = 2 and N = 104. The values of Uàm have been obtained from 7500 runs 
for each initial state (So, ƒ„). The analytical approximations Um and U&, 
have been computed from (3.14), (3.13) and (3.20); \i = 0.2, ß = 0.8 and 
Y = 0.2. 

So 

Ü -

um 
tfda 

74 

.39 

.37 

.49 

80 

.37 

.35 

.42 

86 

.34 

.32 

.37 

92 

.32 

.30 

.32 

98 

.30 

.28 

.28 

104 

.26 

.26 

.25 

110 

.25 

.25 

.22 

116 

.24 

.23 

.20 

122 

.21 

.22 

.18 

12 

10 + (lnJV)/2 

20 40 60 80 100 N —• 

Figure 4. The expected extinction time of the disease for initial states in the determin
istic stable equilibrium. Values of In 7 ,̂,, + (In N)/2 have been plotted as a 
function of N. The values of Tàm have been obtained from 2000 runs for 
each initial state. The plotted line has been fitted through the data points 
for N > 60; \i - 0.2, ß = 0.8 and y = 0.2. The slope of this line agrees with 
the value Q0 from the asymptotic approximation. 
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The disadvantage of simulations is that for each set of parameter values large 
scale simulation runs have to be made. If N is the only parameter that varies, we 
can use the theoretical results of the previous sections, because the expected extinc
tion time is approximated by 

lnT = AN - ilnN + B. (5.1) 

Thus, carrying out two sets of simulation runs for two different large values of N, 
we are in the position to estimate A and B without going through the rather compli
cated analysis of the ray equations. 

6. Conclusions 

In this paper we have studied a two-dimensional stochastic system modelling 
the spread of an infectious disease. In this model the population is divided in three 
classes: susceptibles (S), infectives (/) and removed (/?). In our asymptotic analysis 
it is assumed that there is a large parameter N, the size of the population when the 
disease is absent. 

By asymptotically solving a Fokker-Planck equation we have derived an 
approximation for the probability that a major outbreak of the disease will occur in 
case the number of infectives is small. For fixed values of N, this approximation is 
valid for a larger range of values of S than the approximation based on the discrete 
model. We have also obtained asymptotic approximations for the expected extinc
tion time of the disease. The value for Q0 = Q(l, 0) in these expressions is obtained 
by numerically solving the so-called ray equations. Using initial conditions that 
follow from a local analysis near the deterministic stable equilibrium P2, a ray is 
found that ends in the deterministic saddle point Pv The asymptotic expression we 
have derived for In T can be improved by including an order 0(1) term involving 
>v0, which is to be obtained by integrating the transport equation along the ray. 

Because of the similarity of the present study with the analysis of Roozen 
(1989) for the closely related stochastic prey-predator equations, one would expect 
that the method and the result in the form of the asymptotic formula for the extinc
tion time hold for a wide class of problems. However, for the case that both the 
inflow and outflow are deterministic in our epidemic model, we did not succeed in 
applying the divergence theorem in the present way, because of the resulting singu
lar behaviour of the probability density function p near Pv We remark that diffusion 
along the jq-axis is absent in that case. 

Finally, it is noted that, for the model analyzed in this paper, there is a good 
correspondence between the results obtained by stochastic simulations and the 
values of the asymptotic approximations we have derived for the probability that a 
major epidemic develops and the expected extinction time in case it has developed. 
The coefficients in the asymptotic formula for the extinction time can also be esti
mated from two sets of simulation runs for two different values of N. Then it is not 
necessary to solve the ray equations, see section 5. 
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Chapter 4 

Stochastic epidemics: the probability of extinction of an 
infectious disease at the end of a major outbreak1 

Abstract 

The aim of this study is to derive an asymptotic expression for the probabil
ity that an infectious disease will disappear from a population at the end of a major 
outbreak ('fade-out'). The study deals with a stochastic S/R-model. Local 
asymptotic expansions are constructed for the deterministic trajectories of the corre
sponding deterministic system, in particular for the deterministic trajectory starting 
in the saddle point. The analytical expression for the probability of extinction is 
derived by asymptotically solving a boundary value problem based on the Fokker-
Planck equation for the stochastic system. The asymptotic results are compared with 
results obtained by random walk simulations. 

1. Introduction 

In this paper we study a two-dimensional stochastic system modelling the 
spread of an infectious disease. In this model we consider a population that is 
divided in three classes: susceptibles, infectives and removed. The population is 
renewed at a constant rate. We consider the case where in the corresponding 
deterministic model a stable equilibrium with coexistence of susceptibles and 
infectives is possible. Then the disease may become endemic. In the stochastic 
model the disease can disappear from the population because of stochastic fluctu
ations. With probability one this will happen within a finite time. In Van Herwaar
den and Grasman (1995) the following questions have been studied for this 
stochastic system. What is the probability that a major outbreak of the disease will 

'Submitted for publication 
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occur upon the entry of one or a few infectives into the population? And, given that 
the disease has become endemic, what is the expected extinction time of the 
disease? In that paper asymptotic expressions have been derived answering these 
questions. 

In the present paper we study the probability of an epidemic 'fade-out'. We 
are interested in answering the following question: given that a major outbreak of 
the disease occurs upon the entry of one or a few infectives into the population, 
what is the probability that the disease will disappear from the population at the end 
of the major outbreak? In the literature the problem of a stochastic fade-out is 
touched upon in, e.g., the classic work by Bartlett (1960); Bailey (1975), and 
Anderson and May (1979, 1991). The analysis in the present paper not only 
answers the question of the extinction probability of the disease at the end of a 
major outbreak following the introduction of the disease into a disease free popula
tion, but also shows how to determine the extinction probability for other initial 
situations. 

Of particular importance in answering the question of epidemic fade-out is 
the rate at which the population is renewed. For a large renewal rate the disease 
will become endemic after a major outbreak with probability close to one. In case 
of a very small renewal rate extinction of the disease at the end of a major outbreak 
is almost certain. There is a range of renewal rate values for which the probability 
of extinction varies from zero to one. The study deals with this transitional case. 

In section 2 the deterministic model is described. In section 3 we construct 
local asymptotic approximations for the trajectories of the deterministic system, in 
particular for the deterministic trajectory starting in the saddle point. In section 4 
the stochastic model is presented, the corresponding Fokker-Planck (or Kolmogo-
rov) equations are formulated and their use in an exit problem is described. In 
section 5 a parabolic boundary value problem is formulated and asymptotically 
solved, using the results of section 3. The solution yields an asymptotic approxima
tion for the probability of extinction of the disease at the end of a major outbreak. 
In section 6 we compare results of numerical calculations for the asymptotic 
approximation with simulation results. In section 7 we indicate how to determine 
the extinction probability of the disease for other initial situations. 

2. The deterministic model 

The population in the epidemic model of this study is divided in three 
classes: susceptibles, infectives and removed, with sizes 5 ,1 and R, respectively. In 
the deterministic version of the model (see e.g. Edelstein-Keshet (1988)) the rate of 
transition from susceptibles to infectives is assumed to be proportional with S and I 
with rate constant ß. The rate of transition from infectives to removed is proporti
onal with I with rate constant y, and renewal takes place with rate constant \i. The 
size of the total population is constant: N = S + I + R. A diagram of the model is 
shown in Figure 1. We assume that the dependence between ß and N is given by 
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\xN psi 

ill 
• 

yi 

VLR 
• 

Figure 1. Diagram of the epidemic model. The total population (N) is divided in 
susceptibles (S), infectives (J) and removed (R). Transition and renewal rate 
constants are ß = jJ/JV, y and u. 

N 

with ß independent of N; ß, y and \i are (strictly) positive. 
The deterministic system, therefore, satisfies the differential equations 

^ = M* - *St - M5, 
dt N 

* = lsi-yl- M/, 
dt N 

(2.1) 

(2.2a) 

(2.2b) 

dR 
dt 

= yl -\xR. (2.2c) 

By adding these equations it is easily seen that the total population N is constant. 
We can, therefore, eliminate one variable, say R, and restrict our attention to the 
Eqs. (2.2a) and (2.2b) in the two unknowns 5 and I. Introducing the scaled popula
tion sizes 

S I 
x = —, y = — 

N N 
we obtain 

_ _ = (x - fky - ujc, 
at 

dt 
Y - \*)y-

The system (2.4) has two equilibria: 

(2.3) 

(2.4a) 

(2.4b) 
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P, - <!, 0), P2 - < l | ü , _ £ _ - | ) . (2.5) 

We are interested in values of the (strictly positive) parameters ß, y and y. for which 
the critical point P2 is situated in the first quadrant, that is, we assume 

ß > y + \i. (2.6) 

By this assumption, Pl is a saddle point and P2 is a stable equilibrium. Depending 
on the values of ß, y and u, the stable equilibrium P2 is a node, an improper node 
or a focus. The equilibrium P2 is a focus if 

nß2 - 4(ß - y - u)(Y + H)2 < 0. (2.7) 

At the boundary x = 0 the deterministic vector field enters the first quadrant, and at 
the boundary y = 0 the normal component of the deterministic vector field vanishes. 
We note that, once the number of infectives is not equal to zero, the state of the 
deterministic system will develop towards the stable equilibrium and the disease 
will not die out. 

In this paper we are in particular interested in the development of the disease 
when one or a few infectives are introduced in a population that until then is free of 
the disease. In the deterministic system this development is given by the trajectory 
starting in the point (1, 0), assuming that N is sufficiently large. The aim of this 
paper is to determine the probability that in the related stochastic system the disease 
will die out at the end of a major outbreak following the introduction of one or a 
few infectives into the population. In the deterministic system we, therefore, intend 
to study the case that the trajectory starting in (1, 0) closely approaches the x-axis at 
the end of its first cycle. This case occurs for small values of the parameter \i. 

Let us first consider the limit case \x = 0, i.e., the Kermack and McKendrick 
model (see, e.g., Edelstein-Keshet (1988)), in which no renewal takes place. From 
Eqs. (2.4), that are also valid in the limit case \i = 0, we can obtain an explicit 
expression for the trajectory of the Kermack and McKendrick model starting in 
(1, 0): 

y = 1 - x + 1 lnx. (2.8) 
ß 

This trajectory starts at (1, 0), attains a maximum value for x = y/ß and approaches 
again the x-axis on the interval (0, y/ß). It is noted that in the Kermack and McKen
drick model the vector field vanishes in all points of the x-axis. In the deterministic 
system with 0 < \i « 1 the trajectory starting in (1, 0) closely approaches the x-
axis. In section 3 it will be seen that for small values of \i Eq. (2.8) is a first order 
approximation of this deterministic trajectory up to a distance of order 0(u) from 
the jc-axis. 
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3. The deterministic trajectories 

In this section we study the trajectories of the deterministic system intro
duced in section 2, in particular the trajectory starting in the saddle point Pv We 
construct local asymptotic approximations for these trajectories. Our asymptotic 
analysis is based on the assumption that u. is a small parameter: 0 < \i « 1. The 
parameters ß and Y are assumed to be of order 0(1). For fixed positive values for jj 
and y and sufficiently small values for ji the stable equilibrium P2 is a focus, as 
follows from (2.7) and (2.6). It is noted that the distance of P2 to the x-axis is of 
order 0(n). 

By introduction of the coordinate 

y = L (3.1) 

and a new time scale t instead of \it the system (2.4) is transformed into 

* = 1 - fa? - *, (3.2a) 
at 

»EL = (fa - Y - |i)y. (3.2b) 
at 

We analyze the deterministic trajectories in the (x, y)-plane. In this plane the stable 
equilibrium P2 is given by P2 = ((Y + u)/ß, 1/(Y + n) - 1/ß)- Its distance to the x-
axis is of order 0(1). We note that a Volterra-Lotka system in which one of the 
derivatives is multiplied by a small parameter, is studied by Grasman and Veling 
(1973). In that paper local asymptotic expansions for the closed trajectories are 
derived from the implicit solution, which is available, because the equivalent of the 
inflow term is absent in the Volterra-Lotka system. We derive local asymptotic 
approximations for the trajectories of (3.2) by substituting formal expansions in the 
differential equation for the trajectories 

dp _ (fa - Y - \i)y ( 3 3 a ) 

dx H(l - ßxy - x) 

or 

dx = tfl-fap- x) ( 3 3 b ) 

dy (ßx - Y - n)y 

The first two cycles of the trajectory starting in (1, 0) are divided in different 
segments. In the region y » (1 - x)l(fa) we distinguish the segments A and E, in 
the region 0 < y « (1 - x)/(ßx) the segments C and G, and in the intermediate 
regions the segments B, D and F, see Figure 2. The solutions for these segments 
obtained by substitution of formal expansions into the differential equation, contain 
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constants that will be denoted by Ab B:, ...., depending on the segment. We will 
determine these constants using matching and initial conditions. 

1/fr+tiM/p 

(Y+nVP 

Figure 2. The deterministic trajectory starting in (1, 0) is divided in segments A, B, ... 
The dashed line is the graph ofy = (1 - x)/(ßx), where the tangents of the 
deterministic trajectory are vertical. 

Local expansions. For segments A and E substitution of the expansion 

y\x) = y {x)— + y2(x)in \i + y3(x) + 0 < n « 1 (3.4a) 

into (3.3a) yields differential equations for the functions y,(x). For segment A we 
obtain to leading order the solution 

yft) = -x + — In x + Al 

ß 
and for the higher order terms 

y2(x) = A2 

and 

if (1 -A$s + y(s -sins - 1) 
y3(x) = . ds + A3 

i ß V ( - s + (Y/ß)lns + A J 

(3.4b) 

(3.4c) 

(3.4d) 



The probability of extinction at the end of a major outbreak 57 

For segment E the solution can be written as (3.4) with the integration constants A,-
replaced by Er We note that the 0(ln u) term in the expansion (3.4a), that is not 
suggested by the differential equation, is needed for matching purposes. 

For segments B, D and F we substitute the expansion 

*(y) = xi(f> + X
2(S>) M>ln H + *3(y) H + », 0 < \i « 1 (3.5a) 

into (3.3b). Solving the resulting differential equations we obtain for segment B 

x&) = Bv (3.5b) 

x2(y) = B2 (3.5c) 

and 

&B, 1 - B, 
x3(y) = - —L-L-y + L ]ny + B3. (3.5d) 

ßß, - y jtox - Y 
For the segments D and F the expansions can be written as (3.5) with the constants 
B; replaced by £),• and F ;, respectively. 

For the segments C and G we substitute into (3.3a) the expansion 

y\x) = exptf,(x)/ji + y2(x))n \i + y3(x) + .... ] , 0 < |* « 1. (3.6a) 

For segment C the solutions of the resulting differential equations can be written as 

Sfr) = - ß * - (ß - Y)ln(l - x) + Cv (3.6b) 

y2(x) = C2, (3.6c) 

y3(x) = ln(l - x) + C3. (3.6d) 

For segment G the expansion can be written as (3.6) with the integration constants 
C; replaced by Gt. 

Analysis of an integral. We first analyze the integral 

ƒ(*)= f P - «)ß^ + Y(̂  - s ins - 1 ) ^ ( 3 ? ) 

i ß V ( - s + (Y/ß) In s + a ) 

that appears in the function y3(x) in (3.4d). For matching purposes we need the 
behaviour of I(x) for a > Y/ß - (Y/ß)ln(Y/ß). For these values of a the function 

fis) = -s + (Y/ß) In s + a (3.8) 

in the denominator of the integrand has two zeros x, and x„ satisfying 
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O < x, < - I and 1 < x . (3.9a,b) 
ß ß 

The behaviour of I(x) near x, and xr can easily be found using Taylor expansions. 
We obtain 

1 - x 1 - x 
I(x) iln(x - x,) - i l n ( I - x,) + J(x,) for x \ x, (3.10a) 

ßx, ßx, ß 

and, for a * 1, 

ƒ(*) ~-Jj. ln(x - x) - 1*1 ln(jc - 1 ) + ./(x ) for x f x (3.10b) 
far ' far ' ß 

with 

ƒ(&) = f & -°-)fa + y(s-s\ns -1) x 1 -b 1 Wp ( 3 1 0 c ) 

•i ßV ( - s + (Y/ß)lns + a) ß*> s _ è 

For a = 1 we have xr = 1. In that case the integral 7(x) is convergent for x = xr. 
We now match the expansions for the segments obtained above. 

Matching A and B. We match the expansion y(x) for segment A given by (3.4) 
with the expansion x(y) for segment B given by (3.5), considering (3.4) as the inner 
expansion. Expressing (3.4) and (3.5) in the inner variable 

ri = W (3.11) 
we obtain, respectively, 

r\ = (-x + -Lin x + Aj) + A2\iln \i + y3(x)\x, + .... (3-12) 
ß 

and 

x = 5,(1 + %J (3.13a) 

with 

A ß , 1 - # , Ti B, 
& = - L ri + _ n l n \i + — n l n - i + — n + 

ß X - Y *i B ^ - y ) H B, 
(3.13b) 

We match (3.4) and (3.5) for r\ J 0, n j 0, Ti/(-filn u) -» °° by requiring that 
substitution of (3.13) into (3.12) yields the identity. Using ^ J 0 the following 
matching condition is readily found 

-B + X l n ß , + Al = 0, (3.14a) 
ß 
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so 
B, = xu, (3.14b) 

that is the smaller zero of function fis), see (3.8), with a = Av Then using the 
behaviour of y3(x) for x J xM, which follows from (3.10a), we obtain the matching 
conditions for the higher order terms 

(ßA, - l)x.. + 1 
B2 = - I _ L l id , (3.14c) 

K. - Y 
x2 

1 - x, ß x, fix, 
B3 = — In— - — + - — — (A, + ƒ(*,.)), (3.14d) 

3 K - Y (K-yf K , - Y • 3 

with /(%) given by (3.10c) with a =AV 

Matching B and C. We match the expansion x(y) for segment B given by (3.5) 
with the expansion y(x) for segment C given by (3.6). Expressing (3.5) and (3.6) in 
the intermediate variable 

T| = 9I\> (3.15) 
we obtain, respectively, 

x = ^ ( 1 + y (3.16a) 

with 

B2 1 - 5 , 5 , A 
È = — (ilnji + . UlnOlu) + — M - ^ r -^ TIM.2 + —, 

B, Bimi - y) Bi ßßx - y 
(3.16b) 

and 

Tl = lexp[(-ßx - (ß - v)ln(l - x) + C.)/n + C,ln n + ln(l - x) + C,l. 

(3.17) 
We match (3.5) and (3.6) by requiring that substitution of (3.16) in (3.17) yields the 
identity for r\ = 0(1), \i [ 0. Using ^ I 0 we obtain 

C, = ß ^ + (ß -Y)ln(l -By), (3.18a) 

ßß. - Y 
C2 = - ^ - L - ^ l ^ , (3.18b) 

ß£. - Y 
C3 = - -V-4- i£ 3 - ln(l - BJ. (3.18c) 

1 - Ä j 
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Matching C and D. We match the expansion for segment C, given by (3.6), and 
the expansion for segment D, given by (3.5) with the constants B-, replaced by D;, 
analogously to the matching of B and C. This yields the relations 

ßD1 + (ß -Y)ln(l -£>,) = C p (3.19a) 

1 - D, 
= -

2 

= -
3 

1 r 
ßZ), - y 

1 - D, 
1 (C, + ln(1 - DJ), 

(3.19b) 

(3.19c) 
ßD, - Y 

determining the constants D, when the constants C; are known. 

Matching D and E. The expansions for the segments D and E, given by (3.5) and 
(3.4) with the constants Bi and At replaced by D, and Et, respectively, are matched 
analogously to the segments B and A. Expressing the expansions in the inner 
variable T\ = \iy we obtain expressions analogous to (3.12) and (3.13). Now 
matching to leading order, using ^ f 0, yields the relation 

El = D1 - l]nDv (3.20a) 

We find that Dt is a zero of function j{s), see (3.8), with a = Ev Writing 

Di = xrE (3.20b) 

we have x f x^. Using (3.10b) we obtain the matching relations for the higher order 
terms 

(3.20c) E2 

E3 

ith/fe) 

_ (ß* * - y)D2 + xrE -

farB 

1 - XrE . fart 

= - In 
farE $XrE ~ 

given by (3.10c) with a 

- 1 

+ 
Y)2 

= El. 

KE-

farE 

Y 
D3 - J(xJ, (3.20d) 

Matching other segments. The different types of matching needed to determine the 
deterministic trajectory starting in (1, 0) have now been worked out. The relations 
thus obtained can be used to complete the matching of the expansions for the other 
segments. 

Matching of the expansions for the segments E and F, given by (3.4) and 
(3.5) with the constants A-t and Bt replaced by E-, and F„ respectively, yields analog-
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ously to the matching of A and B the following relations 

P 
Fl + l]nFl + E1 = 0, (3.21a) 

that is 

F1 = xIE, (3.21b) 

the smaller zero of function fis), given by (3.8), with a = E{, 

(ß£, - \)x.F + 1 
F2 = JL2 !.!£ , (3.21c) 

ß*/£ - Y 

F3 = — In —— + — (E3 + J(xlE)), (3.21d) 
fc/E - Y ($*/£ - Y)2 ß*,£ - Y 

with J(x,ß) given by (3.10c) with a = Ev 

Matching of the expansions for the segments F and G, given by (3.5) and 
(3.6) with the constants Bt and C; replaced by F, and Gt, respectively, yields the 
relations 

G1 = ßF1 + (ß - Y ) ln ( l -FJ, (3.22a) 

ßF. - y 
G2 = - ^—^F2, (3.22b) 

1 - bx 

ßF. - y 
G3 = - ^-=^-F3 - ln(l - Fx). (3.22c) 

1 - tx 

Initial condition. The constants Av A2 and A3 of the expansion (3.4) of segment A 
can be determined from the initial condition 

Kl) = 0. (3.23) 

We obtain 

At = 1, A2 = 0 (3.24a,b) 

and 

A3= f T f r - ' 1 ° ' - 1 ) ds, (3.24c) 

Ti ßV(-S + (Y/ß)ln*+ 1) 
where A3 is a convergent integral. We note that in the original x, y-coordinates, see 
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(2.3), the leading order term of expansion (3.4) for segment A corresponds with 
expression (2.8) for the trajectory of the Kermack and McKendrick model starting 
in (1, 0). 

We can combine the matching relations derived above. In particular, we 
obtain the following expression for the expansion of segment C: 

y(x) = Kexp[(-fSx - (ß - Y)ln(l - x))/\i + ln(l - x)] (3.25a) 

with 

K = lexp[(ß*M + (ß - Y)ln(l - *M))/u. + C3], (3.25b) 

where xu * 1 satisfies 

-xIA + 1 In xIA + 1 = 0 (3.25c) 
ß 

and 

.ds. C = - 1 ß*M _ f XIA y (s - s In s - 1) 

fciA - Y i * ~ x " ß s 2 (" s + (Y/ß)ln * + 1) ~ *M 

(3.25d) 
This expression will be used in section 5, when we determine an approximation for 
the probability that in the stochastic model the disease dies out at the end of a 
major outbreak following the introduction of one or a few infectives into the 
population. 

4. The stochastic model and the Fokker-Planck equations 

In this section a stochastic model is introduced corresponding with the 
deterministic model described in section 2. In this model we consider deterministic 
inflow, as above, but the outflow and other transitions are considered to be 
stochastic. To be precise, we assume that in the small time interval (t, t + ht) S 
decreases by one and I increases by one because of a transition from the suscept
ibles to the infectives with probability ßSIAt. Furthermore, in the small time interval 
of length At, I decreases by one because of a transition from the infectives to the 
removed with probability ylAt, and because of outflow of an individual the sizes of 
the classes 5 and I decrease independently by one with probability pSAt and \rfAt, 
respectively. The probability of more than one transition is of order O^At)2), and is 
neglected for small At. The deterministic inflow into the class of susceptibles in the 
time interval At is \iNAt with N fixed. We remark that in this stochastic model the 
parameter N takes a slightly different role: it is the size of the population if the 
disease is absent. Introducing again the scaled population sizes (2.3), and using 

file:///rfAt
file:///iNAt
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(2.1), we obtain the following transition probabilities in the small time interval Ar: 

$Nxybt for the transition x -*• x - 1/N, y -*• y + 1/N, 
yNy&t for the transition y -*• y - 1/N, because of removal, 
\tNxAt for the transition x -» x - 1/N, because of outflow, 
\xNy&t for the transition y -* y - 1/N, because of outflow. 

This yields for the first conditional moments of the changes of x and y over the 
time interval Af 

£(Ax) = uAf - -IpWxyAf - —^NxM, (4.1a) 
N N 

E(ày) = IßNxyto - lyNyM - ±\iNy&t, (4.1b) 
N N N 

and for the second moments 

E((Axf) = (uAf)2 + -LfiAfryA* + -LuAfrAf, (4.2a) 

£(AxA>>) = - -l-frNxybt, (4.2b) 

E(m*) = - j ^ ß M ^ + - ^ Y ^ A ' + -^vMyàt. (4.2c) 

We observe that the variances of Ax and Ay equal the second moments up to 
0((Atf). So, under the assumption of continuity, the stochastic jump process is 
approximated by the system of stochastic differential equations of Ito type 

dx = (fi - fky - \vc)dt - ßxy/N dW1 - J[ix/NdW2, (4.3a) 

dy = (fky - yy - \ny)dt + Jßxy/N dW1 - Jyy/N dW3 - J\iy/NdW4 (4.3b) 

with dW; the increments of the independent Wiener processes W£t), i = 1, .... , 4, 
see Ludwig (1975). 

From these equations we can obtain the forward Fokker-Planck (or forward 
Kolmogorov) equation, which is a differential equation for the probability density 
function p(x, y, t) of finding the system in state (x, y) at time t. When we write the 
system (4.3) in the form 

dz = b(z)dt + o(z)dW(t) (4.4) 

file:///tNxAt
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with z = (x, y)T and b(z) = (b^z), fc2(
z))T vectors in R2, W(t) a 4-dimensional Wiener 

process and o(z) a 2x4 matrix, and define the 2x2 diffusion matrix a{z) by 

a.. = J_(aaT) . . , (4.5) 

then the function p(z, t) satisfies the forward Fokker-Planck equation 

j£ = - i -Lib/top} + ± i *{afo)p}, (4.6) 
of ;=i dz. 2N i>i dz.dz. ' 

see, e.g., Gardiner (1983). Introducing again the new time scale t instead of \it and 
the coordinate y = y/\i, see (3.1), we obtain the forward Fokker-Planck equation 

*L = Mpm- JL{(1 - fay - x)p) - ! A { ( f c - y - \i)yp) + (4.7) 
at dx \i dy 

+ ^ [ - ^ « f r + 1^} - l -*L(fcy/0 + - ^ { ( f c + Y + Vtöp}]-
2N dx2 Vi dxdy u2 df 

Related to the forward operator M in (4.7) is the backward operator L, which 
is the formal adjoint of M: 

L m (1 - fay - x)È- + l(fa - y - \î)y^ + (4.8) 
dx \i dy 

2N dx2 \i dxdy u2 df 

It is noted that the coefficients of the first order derivatives correspond with the 
deterministic vector field (3.2). The operator L plays an important role in exit 
problems. Let us consider a domain Q with the boundary dQ composed of two 
disjoint parts dQ0 and dQ,. We are interested in the probability u(z) that the state of 
the system reaches dQ the first time at the part dQt, if starting in z £ Q . This 
function u(z) satisfies the Dirichlet problem 

Lu = 0 in Q, (4.9a) 

u = 0 at dQ0, u = 1 at dQ„ (4.9b) 

see Schuss (1980). Eqs. (4.9) will be used in section 5 to formulate a boundary 
value problem for the probability that the disease will die out after a major outbreak 
has occurred. 
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5. The probability of extinction after a major outbreak 

In the stochastic model the disease can disappear from the population 
because of stochastic fluctuations. In this section we study the probability that the 
disease will die out at the end of a major outbreak. In particular, we are interested 
in the probability of fade-out after a major outbreak following the introduction of 
one or a few infectives into a disease free population. In the development of the 
disease several stages can be distinguished. In the initial stage after the introduction 
of one or a few infectives it is possible that the disease directly dies out. In x, y-
coordinates this stage corresponds with the state of the stochastic system remaining 
in the neighbourhood of the deterministic saddle point (1, 0), where diffusion plays 
an essential role. The probability of extinction of the disease in this stage of the 
process is studied in Van Herwaarden and Grasman (1995). In case the disease has 
survived this initial period it is likely that a major outbreak of the disease takes 
place. This part of the process is dominated by the deterministic vector field. For 
small values of \i the deterministic trajectory starting at (1, 0) closely approaches 
the x-axis at the end of its first cycle, see section 3. Here diffusion again plays an 
important role and extinction of the infection can occur at this stage of the process. 
We will formulate and solve a boundary value problem for the probability that the 
disease dies out during this part of the process. From the solution we obtain an 
expression for the probability of extinction of the disease at the end of a major 
outbreak. In our asymptotic analysis we assume that 0 < 1/VN « n « 1. 

y 

Y+H)-l/ß 
\ 

Q \ 

\ I 3 . 

VVJ) 
— —' 

\ \ 
\ u=0 

) u-l \P1 

0 (Y+nVß 1 

Figure 3. Domain Q for the boundary value problem (5.3), divided in boundary layer 
and outer region. The solution approximates the probability that the disease 
dies out before a major outbreak occurs. 
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Boundary value problem. In the x, _y-plane we consider the domain 

Q = {(x,y)\0<y<-±- - I } , (5.1) 

see Figure 3. On Q we can approximate Lu, see (4.8), by 

Lu - (i - fop - * ) i ! U i ( f r - y - vtö^ + Tzn& + v + t*#-5f-

We now consider the parabolic boundary value problem 

Lu = 0 in Q, 

u = 1 for _y = 0, « = 0 for _y = 1 
Y + fx 

1 
~Z~ 9 

ß 
x > 

(5.2) 

(5.3a) 

Y + \i 

ß 
(5.3b) 

The solution u(x, y) of this problem approximates the probability that the state of 
the system reaches the boundary of Q the first time at y = 0, if starting in (x, y) E 
Q. We asymptotically solve (5.3) for 0 < x < 1, where the solution u(x, y) yields an 
approximation for the probability that the disease dies out before a major outbreak 
takes place. We are in particular interested in the value of u(x, y) on the determin
istic trajectory starting in (1, 0), at the part where it enters Q at the end of its first 
cycle, that is where segment B (see Figure 2) enters Q. We note that the stochastic 
state is expected to enter Q after a major outbreak along this trajectory. This value 
of u can be used as an approximation for the probability of extinction of the disease 
directly at the end of the major outbreak. 

Solution of the diffusion equation. Boundary layer analysis (see Kevorkian and 
Cole (1981)) reveals the existence of a boundary layer of width 0(l/(uJV)) along the 
x-axis. In the domain Q outside the boundary layer Lu = 0 reduces to 

(1 - foy - x)^L + I ( f o - Y - |i)yi£ = 0, (5.4) 
dx n ay 

which is satisfied by u = constant along the segments of the deterministic trajec
tories contained in this outer region. In particular, « = 0 along the segments of the 
deterministic trajectories that meet the part of the boundary of Q with boundary 
condition u = 0. 

Inside the boundary layer we introduce the local coordinate 

T, = uJVy. (5.5) 

Substitution of (5.5) in (5.3) yields for N —> oo 



The probability of extinction at the end of a major outbreak 67 

(1 - x)ÈL + I ( ß x - y - (iftiü. + _L(ßx + y + u)r,JÜ!i = 0 (5.6a) 
dx (i 3T| 2(i dr|2 

with the boundary condition 

u(x, T]) = 1 for T| = 0. (5.6b) 

Matching the solution with the outer solution « = 0 along the deterministic trajec
tories, which have the form (3.6), leads to the matching condition 

u(x, r\) = 0 for T|exp[(ß* + (ß - y) ln(l - x))/\i - ln(l - x)] = const, 

T| -* » and x > 1 —. (5.6c) 
ß 

Introduction of new coordinates 
i 

x = _ L f(ßs + Y + u)exp[(ßs + (ß - Y)ln(l - s))/\i - 21n(l - s)]ds, 
N\i2J 

(5.7a) 

£ = -?-T,exp[(ßx + (ß - Y)ln(l " *))/l* " In(l - *)] (5.7b) 

transforms (5.6) into the initial value problem on the domain {(x, Ç) | x > 0, Ç > 0} 

du v d u ze o \ 

*= l w (5-8a) 
M(0, Ç) = 0, u(x, 0) = 1 (5.8b,c) 

with solution 

«(x, Ç) = exp[-Ç/x]. (5.9) 

Bringing this solution in x, r\ -coordinates we obtain 

u(x, t|) = exp[-2jiT|0(x)] (5.10a) 

with 

*(x) = exP[(ß^ + (ß - Y) M 1 - *))/!* - !"(! - *)] (5 - 1 0 b ) 

f (ßs + Y + u)(l - sfi-i-w*exp[fis/\i]ds 
X 

As mentioned above we are in particular interested in the value of u where the 
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deterministic trajectory starting at (1, 0) enters Q at the end of its first cycle, that is 
where segment B of the deterministic trajectory (see Figure 2) enters Q. This value 
is given by the (constant) value of u along the part of the deterministic trajectory 
contained in the outer region. It is obtained by matching the boundary layer solution 
(5.10) with the outer solution u = constant along this deterministic trajectory. Inside 
the boundary layer the deterministic trajectory is given by 

Tiexp[(ß* + (ß - v)ln(l - x))/\i - ln(l - x)] = KN\k, (5.11) 

see (3.25). Matching along this trajectory for T| -» », x < (y + u)/ß yields for the 
outer solution the value 

l 

u = exp[-2/OVy/ f (ßs + y + u)(l - sfi "* " W^e^ds]. (5.12) 

The integral in (5.12) can be expressed in a gamma function. We thus obtain the 
following approximation for the probability of extinction of the disease at the end 
of a major outbreak following the introduction of one or a few infectives into the 
population, given that a major outbreak occurs, 

u = expf-IÖVu^ß/nf -i - ï»*e-ê<*/{(y + u)r((ß - y - u)/u)}] (5.13) 

with K given by (3.25b,c,d). 

6. A comparison with numerical results 

In this section some numerical results are presented for the models described 
above. In particular, the analytical approximation (5.13) for the probability of fade-
out at the end of the first epidemic cycle is compared with results of stochastic 
simulations. For the parameters we use the values ß = 1, y = 0.8, fi = 0.01 and 
N = 50000. The initial numbers of infectives and susceptibles in the population are 
1(0) = 10 and 5(0) = 49990, respectively. 

Deterministic trajectories. By numerically solving the deterministic system 
(2.2a,b) with the above initial values we obtain the trajectory depicted in Figure 4a. 
This deterministic trajectory starts close to the saddle point Pv In Figure 4b the 
number of infectives I in the deterministic system is given as a function of time (. 
The periods with small numbers of infectives are large compared with the periods 
needed to complete the epidemic peaks. 

Stochastic simulation. For the values of the parameters given above we have 
carried out simulations for the discrete stochastic model of section 4 by following 
the path of the state (5, 7), starting in (5(0), 1(0)). For this initial state 10000 
simulation runs have been made. For each run the extinction time Text of the disease 
has been determined. Results are given in the histogram of Figure 4c. 
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Figure 4. Occurrence of epidemic peaks in the deterministic system compared with 
extinction of the disease in the stochastic system for the initial state 1(0) = 
10, S(0) = 49990; \i = 0.01, ß = 1, y = 0.8, N = 50000. The total number of 
simulation runs is 10000. (a) Deterministic trajectory starting near Pv 

(b) Number of infectives from deterministic model, (c) Number of simulation 
runs F with extinction in the specified time intervals. Not shown are 216 
simulation runs with Tcn > 500. 
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Probability that a major outbreak does not occur. Extinction of the disease can 
take place in the initial period after its introduction into the population. Analytical 
approximations for this extinction probability are given by Van Herwaarden and 
Grasman (1995). Using the expression given in that paper (cf. Goei and Richter-
Dyn (1974), Kendall (1956)) 

Uim-m-'wh)m- ( 6 1> 
we obtain the probability of extinction in the initial stage 

Pr{Tat < 32} = 0.1218 (0.1215). (6.2) 

The value between brackets is obtained from the stochastic simulations. In the 
histogram a peak can be distinguished corresponding with extinction in the initial 
period. 

Probability of epidemic fade-out. If a major outbreak takes place, the disease can 
die out at the end of the outbreak. Using expression (5.13) we obtain the (condi
tional) probability of extinction 

Pr{32 < TcM < 204} = 0.89 (0.92). (6.3) 

The value between brackets, obtained from the stochastic simulations, is in good 
accordance with the analytical result. We note that in the histogram a peak can be 
distinguished corresponding with extinction in this period, as well as a (smaller) 
peak corresponding with fade-out at the end of the second cycle. 

7. Extinction probability for other initial states 

Until now we have mainly dealt with a population in which the infection has 
just been introduced. We may also be interested in the extinction probability of the 
disease for other initial situations, e.g., when the disease has survived the first 
epidemic cycle. In that case the state is expected to arrive in the neighbourhood of 
segment D, see Figure 2. We will show how to determine the extinction probability 
if the state is found in the neighbourhood of that segment. 

Say, the state has arrived in (x„, y0) near D. We first determine local expan
sions for the deterministic trajectory starting in (x0, y0). In particular we need the 
expansion near the x-axis. Proceeding along the lines of section 3, we divide the 
trajectory in segments D, É, F, G, with (JC0, _y0) G D, segment É in the region 
y » (1 - x)/($x), segment G in the region 0 < y « (1 - x)/(jßx), and the segments 
D and F in the intermediate regions. The expansion for segment D is given by 
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6D, 1 - D. 
x(y) = D 1 + D2\i]n\i + ( - l-y + L i n y + D 3 )n + ...., 

ßA - Y PD, - Y ( 7 1 } 

as follows from (3.5). By substitution of (*„, y0) in (3.3b) and in the derivative 
dx/dy of (7.1) the constant Dl can be determined. Then using (7.1) we can obtain 
Z52ln \i + Z53. The expansions for the segments É, F and G are given by (3.4), (3.5) 
and (3.6) with the constants Ait B: and C; replaced by É;, F: and Gt, respectively. 
The matching relations between the constants are given by (3.20), (3.21) and (3.22) 
with the appropriate renaming of the constants: D„ Éh F; and G; for Dh E-„ F; and 
G,; X£ and x^ for x£ and xm, respectively. Inspection of these relations and of the 
form of the expansion (3.6) for segment G shows that knowledge of D1 and 
D^n u. + D3 suffices to determine the expansion for segment G. We obtain the 
following result for the expansion for segment G 

y(x) = Kexp[(-ßx - (ß - V)ln(l - *))/(* + ln(l - x)] (7.2a) 

with 

K = exp[(ßx,g + (ß - Y)ln(l - x^)/\i + G2ln \i + G3], (7.2b) 

where 

Xl£ * XrÈ = A (7-2c) 

satisfies 

-*IÊ + 4- In xIÉ + xrÈ - 1 In xrÉ = 0, (7.2d) 
ß ß 

ö = _ %(ß*,s - Y)^ +
 X

IÈ - xrÈ ^ ( 7 2 e ) 

Xri0- - Xli) 'rid - XIÉ) 

ß % ( l - xlÈ) xlE(ßxrE - y) -
G, = - In - D, + 

( ß % - Y)' *rÈ<X - XIÈ) 

x -Cl - x -ï è2x - ßx -
+ J ^ rE> h P ,£ + P«_ ( / ( ) _ / ( ) } ( 7 2 f ) 

with /(JC,£) and J(x,g) given by (3.10c) for a = x^ - (Y/ß)ln Jt,£. We can now 
determine the probability of extinction of the disease at the end of the cycle starting 
in (x,,, _y0). We note that (7.2a) has the same form as (3.25a) for the deterministic 
trajectory starting near Pv Proceeding along the lines of section 5 we obtain the 
approximation (5.13) with K replaced by K, where K is given by (7.2b-f). 

For other initial states the extinction probability can be determined in a 
similar way. By monitoring the state of the system this can be used to forecast if 
the disease will die out at the end of the following cycle. 
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8. Conclusions 

In this paper we have studied a two-dimensional stochastic system modelling 
the spread of an infectious disease. In this model the population is divided in three 
classes: susceptibles, infectives and removed. We have been dealing with an 
approximation of the probability of an epidemic fade-out. For that purpose we have 
considered a small renewal rate of the population, which causes the susceptible 
population to be restored only slowly after a major outbreak. Extinction of the 
disease by stochastic fluctuations is probable at that stage of the process. The case 
studied in this paper with the range of renewal rate values such that the extinction 
probability varies from close to zero to close to one, can be seen as a transitional 
case. It connects the Kermack and McKendrick model with the deterministic SIR-
model with renewal. Due to the risk of fade-out, the model is inherently stochastic. 

For the probability of extinction of the disease at the end of a major outbreak 
following the introduction of one or a few infectives into the population we have 
derived an analytical approximation, see Eq. (5.13). In deriving this expression 
several approximations have been made. It is expected that the inaccuracies caused 
by the asymptotic approximation of the deterministic trajectories are negligible 
compared with the inaccuracies introduced by the diffusion approximation of the 
Fokker-Planck equation in section 5. In computing the extinction probability we 
need the value of % , which has to be calculated by numerical methods. We remark 
that xM represents the final fraction of susceptibles in the corresponding determin
istic Kermack and McKendrick model (renewal rate \i = 0). 

Finally, it is noted that there is a good correspondence between the results 
obtained by stochastic simulations and the asymptotic approximation derived for the 
probability of fade-out at the end of the first epidemic cycle. 
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Chapter 5 

The expected exit time of unexpected exits 

Abstract 

A study is made of the expected exit time from an interval for a one-
dimensional stochastic dynamical system at precisely that boundary where exit is 
not likely. For three fundamental cases the conditional expected exit time is 
determined by asymptotically solving Dirichlet problems based on the Fokker-
Planck equation for the stochastic system for small values of the diffusion parame
ter. The asymptotic approximations reveal interesting features that remain hidden in 
the exact solutions. As the usual method of matched asymptotic expansions with 
local solutions of boundary layer type fails, use has been made of WKB-expansions. 
The analytical expressions are compared with simulation results and with numerical 
values for the exact solutions. 

1. Introduction 

In this study we consider stochastic dynamical systems with small stochastic 
fluctuations. These fluctuations may drive the system against the deterministic flow 
and considerably influence its long time behaviour. Because of the stochasticity, the 
system can leave the domain of attraction of a stable steady state. This exit problem 
has been the subject of many investigations, see e.g. Naeh et al. (1990) and the 
references mentioned in that paper. Because of stochastic fluctuations, the system 
can also leave a domain in the state space at a part of the boundary that can not be 
reached in the corresponding deterministic system. In this study we are interested in 
the (conditional) expected exit time at precisely that part of the boundary of the 
domain where exit is not likely. This problem came up in studying the expected 
arrival time of pollution at a well in a dispersive groundwater flow, see Van 
Herwaarden (1994), for starting points outside the region of advective flow towards 
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the well. This problem is also considered in the appendix of Mangel (1979), where 
the deterministic system of interest contains two stable steady states and a saddle 
point. Mangel focuses his attention on the bifurcation behaviour as two or three of 
the steady states coalesce. 

In the present paper we determine asymptotic solutions for the expected 
(first) exit time at one of the boundaries for three fundamental one-dimensional 
cases. The asymptotic solutions reveal essential features of the expected exit time 
that remain hidden in the exact solutions. Moreover, the methods we present may 
be extended to higher dimensional problems where exact solutions are not available. 
We describe the stochastic process in terms of a Fokker-Planck (or Kolmogorov) 
equation. In section 2 the equations and the boundary conditions for the exit 
problem are formulated for exit of a stochastic process from the interval D = 
{x E R | 0 < x < 1} at the boundary x = 0. In the next sections we determine 
asymptotic solutions for the (conditional) expected exit time at x = 0. In section 3 
the underlying deterministic flow is directed towards x = 1, so in the stochastic 
process the boundary x = 0 is the unlikely exit point for initial states away from this 
boundary. An asymptotic formula for the expected exit time is obtained that is 
simple and intriguing. In sections 4 and 5 the deterministic flow vanishes in one 
point of D. The deterministic steady state in section 4 is unstable. In section 5 we 
consider a stable steady state in D that is chosen such that the boundary x = 0 is the 
unlikely point of exit for initial states away from this boundary. In section 6 the 
asymptotic expressions are compared with numerical results obtained from random 
walk simulations or from the exact solutions. 

2. The Fokker-Planck equation 

We consider a stochastic dynamical system on the domain 

D = {x e R I 0 < x < 1}. (2.1) 

Let p(x, t) be the probability density function to find the state of the system at a 
point x at time t, if initially it is in x E. D. The function p(x, t) satisfies the forward 
Fokker-Planck (or forward Kolmogorov) equation 

ÈL = Mp, p(x, 0) = Hx - x), (2.2a) 
dt 

M = - ±(b(x). ) + 1 e2 JL(a(x) . ) , (2.2b) 
dx 2 dx2 

where b(x) and e2a(x) are the drift and diffusion coefficients, respectively. The 
parameter e is small, 0 < e « 1, indicating that the stochastic fluctuations are 
small. We suppose that a(x) is a positive function. The system can also be described 
by a stochastic differential equation of Ito type 
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dx = b{x)dt + E Ja(x) dW, (2.3a) 

x(0) = x (2.3b) 

with W(t) a Wiener process, see Gardiner (1983). A discretised version of the 
stochastic differential equation can be used to generate simulations for the stochastic 
process, see section 6. 

Related to the forward operator M is the backward operator 

L=b(x)lL + U
2a(x)^-, (2.4) 

dx 2 dx2 

which is the formal adjoint of M. It plays an important role in exit problems. We 
use L to formulate boundary value problems for the exit of the system through a 
particular end of the interval D. Say the system starts in xE.D, what is the 
probability that it reaches the boundary 3D the first time in x = 0? Let u(x) denote 
this probability. It can be shown that u(x) satisfies 

Lu = b{x)— + ie2a(x)— = 0 in D, (2.5a) 
dx 2 dx2 

u(0) = 1, «(1) = 0. (2.5b) 

For an initial state i G f l w e are in particular interested in the expected (first) exit 
time T^x) from D with the condition that exit takes place at x = 0. It can be 
derived, see Gardiner (1983), that 

r,(x) = T(x)/u(x) (2.6) 

with the function T(x) satisfying the boundary value problem 

LT = bQc)— + -e2a(x)— = -u in D, (2.7a) 
dx 2 dx2 

T(0) = 0, 7(1) = 0. (2.7b) 

These boundary value problems can be extended to higher dimensional state spaces. 
It is noted that in Mangel (1979) the denominator u(x) in (2.6) is not present. 

3. Flow without steady states 

In this section we consider a stochastic system on the domain D given by 
(2.1). We suppose that the deterministic flow 
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- ^ = Kx) (3-1) 
at 

is a positive function independent of e: 

b(x)>0 for xED, (3.2) 

so the flow is pointing towards x = 1 and has no equilibria on D. Because the 
fluctuations we consider are small, the boundary point x - 1 instead of x = 0 is 
most likely reached for starting points away from x = 0. The solutions u(x) and 
Tfa) of Eqs. (2.5) - (2.7) represent the probability of exit and the (conditional) 
expected exit time, respectively, at the unlikely exit point x = 0 for starting points 
x G D. We are interested in deriving an asymptotic approximation for T^x) for 
small values of e. 

3.1 An asymptotic expansion of the exact solution 

In this subsection we derive an asymptotic approximation for 7\(x) by 
expanding the exact solution with the method of Laplace (Erdélyi (1956)). Eqs. 
(2.5a) and (2.7a) are first order differential equations in du/dx and dT/dx, respective
ly, and can be solved exactly. Defining 

I(x)=]W°±ds, (3.3) 

the solution u(x) of the boundary value problem (2.5) can be written as 
l 

u(x) = — Uxp[-I(s)/E2]ds (3.4a) 
A J 

x 

with the constant R given by 
l 

= (exp[-I(s)/e2]ds. (3.4b) "I 
For small values of e the main contribution to the integral in (3.4a) comes from a 
neighbourhood of the minimum of I(s), where the integrand is peaked. For the 
deterministic flow b(x) considered in this section, this minimum is found in the end 
point s = x of the integration interval. Applying Laplace's method, by expanding 
I(s) in a Taylor series near s = x, the integral in (3.4a) is approximated. Treating the 
integral (3.4b) for R in the same way, we obtain for x away from 1 

u(x)~M^lcxp[-I(x)/z2]. (3.5) 
a(0) b(x) 

The solution of (2.7) is given by 
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T(x) = — fexp[-/(s)/e2] f ̂ lexp[I(t)/e2]dtds + 

1 1 s 

- L— [exp[-I(s)/e2]ds f exp[-/(s)/e2] f J^lexp[I(t)/e2]dtds. (3.6) 
R s21 I i "(0 

After some manipulations T(x) can be written in a form that is more convenient to 
expand for the present flow field b(x): 

i i 
1 2 IX*) = ±± ƒ fƒ(*, r) exp[-(/(5) + 7(r))/e2]drds (3.7a) 

with 

f(s, r) = f^exp[/(0/e2]<fc. (3.7b) 
J a(t) 

The exponential function in (3.7a) is peaked in (s, r) = (x, 0), whereas f(s, r) 
behaves regularly, see Eq. (3.5). Therefore, the largest contribution to the double 
integral in T(x) comes from a vicinity of (x, 0). Applying Laplace's method for 
double integrals and using the approximation for R, we find 

X 

T(x) - Ä ^ W [_Lds exp[-/(x)/e2], (3.8) 
a(0)b(x)\Ks) 

and, using Tx(x) = T(x)/u(x) and (3.5), 

X 

IK*) 
for x away from 1. This simple result for the expected exit time at x = 0 for a 
starting point x E D, is very intriguing. We note that the integral in (3.9) also 
represents the deterministic travel time from x = 0 to the point x E D, as can easily 
be derived from (3.1). So the first order approximation for the expected exit time 
for diffusion against the flow equals the travel time with the deterministic flow in 
opposite direction. We are not familiar with an explanation for this relation from a 
physical point of view. It is seen that, if we let the deterministic flow increase, the 
expected exit time for diffusion against the flow decreases. This apparent contradic
tion is taken away by considering that Tt is a conditional expected exit time. For an 
increasing deterministic flow, less particles reach the boundary x = 0. An interpreta
tion is that, if we let the deterministic flow increase, the "average particle" that 
reaches the boundary point x = 0 has to travel against the flow faster in order to be 
able to reach that boundary at all. 
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We note that the result (3.9) is in agreement with the following result that 
can be derived for a stochastic process with constant drift u and variance a2 and 
one absorbing barrier at a > 0. For the initial state x = 0 the moment generating 
function of the first passage time at a is given by 

E\s) = {g(t)exp[-st]dt = expKp. - ^u2 + 2so2)/o2], (3.10) i 
see Cox and Miller (1965), with g(t) the (possibly defective) probability density 
function of the first passage time. Expression (3.10) is valid both for drift towards 
the barrier (u. > 0) and for drift away from the barrier (\i < 0). The conditional 
expected exit time Ta at the barrier a is given by -dQn g')/ds, evaluated for 5 = 0, 
and can easily be calculated. The result is 

T. = • £ . (3.11) 

Expression (3.11) also equals the deterministic travel time from x = 0 to x = a with 
drift u. > 0 or vice versa from x = a to x = 0 with drift \i < 0. So we see that in this 
case with one absorbing barrier the conditional expected exit time for diffusion 
against the flow exactly equals the travel time with the deterministic flow in 
opposite direction. From (3.9) we conclude that adding a second absorbing barrier 
can be seen as the introduction of a perturbation that does not affect the first order 
approximation for the expected exit time for diffusion against the flow. We note 
that Cox and Miller (1965) state the result (3.11) explicitly only for \i > 0. There
fore, the remarkable fact that the result also holds for diffusion against the flow has 
remained unnoticed. Moreover, we note that the first order approximation (3.9) for 
T^x) is independent of the diffusion coefficient a(x). 

3.2 An asymptotic treatment of the differential equations 

In this subsection we derive an asymptotic approximation for 7\ without 
using the exact solution. We consider the boundary value problem (2.7). Substitut
ing Tx(x) = T(x)/u(x), see (2.6), into (2.7a) and using (2.5a), we obtain the differen
tial equation for 7\(x) 

u'(x\ àT. , „ d2T, 
(b(x) + e2a(x)iLW)—1 + ie2a(jc) 1 = - 1 . (3.12a) 
V W W u(x) ' dx 2 W dx2 

This equation must be supplemented by boundary conditions. It is seen from the 
boundary conditions (2.5b) for u(x) that we impose sufficient conditions by 
requiring 

^(0) = 0, 7 (̂1) < oo. (3.12b) 

In our asymptotic treatment of (3.12) we use an approximation for u(x) that 
is obtained by asymptotically solving (2.5). We note that solving (2.5) by the 
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familiar method of matched asymptotic expansions with regular expansions on 
subdomains (see, e.g., Eckhaus (1973)), yields an approximation for u(x) that is 
only sufficiently accurate in a boundary layer near x = 0 to be used for the determi
nation of TjQc). Therefore, we use a WKB-expansion for u(x). Substitution of the 
WKB-approximation 

u(x) = w<jc)exp[-Ô(x)/e2] (3.13) 

into (2.5a) yields to leading order 0(e~2) 

Mx)Q'(xX-Kx) + 4«(*)Ô'(*)) = 0 (3.14) 

and to order 0(e°) 

(b(x) - a(x)Q'(x))w'(x) - l.a(x)Q"(xMx) = 0. (3.15) 

Eqs. (3.14) and (3.15) are satisfied by Q(x) = I(x) and w(x) = a(x)/b(x). Using the 
left boundary condition M(0) = 1 we obtain the WKB-approximation 

"(*) = Ä . ^ exp[-/(*)/e2], (3.16) 
a(0) b(x) 

which equals the approximation (3.5) found by expanding the exact solution. We 
note that the right boundary condition u(l) = 0 is satisfied with an exponentially 
small error. 

Substitution of (3.16) into (3.12a) yields 

(-oix) + fa'Wto - WQc)^ + i £ 2 f l ( j c ) ^ i = - i , (3.17) 
V ^ ' b(x) dx 2 K dx2 

valid away from the right boundary point x = 1. For the present flow field b(x) it is 
possible to find a regular expansion in this part of the domain 

Tfr) = Ê t^T^x). (3.18) 
71=0 

Substitution of this expansion in (3.17) yields the differential equation for the order 
0(1) term 

-b(x) ^ = - 1 . (3.19) 
dx 

Using the boundary condition Tm(0) = 0, see (3.12b), we obtain the first order 
approximation 

^ = lik*' (3-20) 
that is the same approximation as we have found above by asymptotically expan-
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ding the exact solution, see (3.9). Higher order terms of the regular expansion can 
be successively obtained in the same way. It is noted that the expression (3.20) can 
also be used as a first order approximation for 7\(x) in the neighbourhood of x = 1. 

4. Flow with an unstable steady state 

We again consider a one-dimensional stochastic system on the domain D 
given by (2.1). In this section we assume that the corresponding deterministic flow 
b(x) has one unstable equilibrium xe in D: 

b(xt) = 0, b(x) < 0 for 0 S Ï < XC, b(x) > 0 for xe < x s 1. (4.1) 

As before, the solutions u(x) and r,(x) of Eqs. (2.5) - (2.7) represent the probability 
of exit and the (conditional) expected exit time, respectively, at the boundary x = 0 
for starting points x E D. We are in particular interested in the behaviour of Tx(x) 
for starting points xe < x < 1, where the deterministic flow points to x = 1 and exit 
at x = 0 is unlikely. As in section 3, the exact solutions for u(x) and Tt(x) follow 
from the expressions (3.4) and (3.6). For the present flow field b(x) it is rather 
complicated to derive an asymptotic approximation of Tjfx) by expanding the exact 
solution. Therefore, we proceed along the lines of subsection 3.2. We 
asymptotically solve (2.5) for u(x) and, using this solution, determine a solution for 
Ti(x) by asymptotically solving the boundary value problem (3.12) for T^x). 

4.1 The probability of exit 

For the flow field considered in this section it is expected that u(x) will 
change rapidly from about 1 to 0 in a small region near the unstable steady state xe. 
So a boundary layer is expected to be present at this place. An examination of 
different stretchings of the coordinate shows the presence of a boundary layer of 
width 0(e) around xe. This boundary layer divides D in three subdomains: the 
boundary layer De, the region D't at the left of De, and the region D*t at the right of 
Dt. In particular for starting points xE.D*e the approximation for u(x) should be 
sufficiently accurate to be used for the determination of T^x). The expression for 
u(x) obtained by the familiar method of matched asymptotic expansions is not 
accurate enough. Therefore, following Cook and Eckhaus (1973), we use WKB-
expansions for u(x) on subdomains. 

We first consider the regions D'e and D\. Substitution of the WKB-approxi-
mation u(x) = w(x)exp[-Q(x)/e2], see (3.13), into (2.5a) again yields the equations of 
the type (3.14) and (3.15). We note that these equations admit the solutions 

Q(x)=J(x) and w(x) = a(x)/b(x), (4.2a) 

Q(x) = constant and w(x) = constant, (4.2b) 
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with J(x) defined by 

2b{s) 
J au 

ds. (4.3) 
{s) 

Taking linear combinations of WKB-approximations we find 

u(x)=Bl + B2^ltxp[-J(xyt2] in Dl, (4.4a) 
b(x) 

u(x)=B3 + B4^â-exp[-J(x)/E2] in Z>e\ (4.4b) 

To find the expansion of u(x) valid in the boundary layer De, we introduce 
the appropriate stretched variable 

1 = (x - xe)/e. (4.5) 

Substitution into (2.5a) yields for e -» 0 

* ' (* . ) !— + ±fl(*,)— = 0, (4.6) 

which has the solution 

% 
u(?-s) = B5 + B6 Uxp[-cy]dv with ce = b'(xe)/a(xe). (4.7a,b) 

Jo 
We note that for the present flow field ce > 0. 

The constants 5, are determined by matching the solutions (4.4a) and (4.4b) 
with (4.7), and by applying the boundary conditions (2.5b). Using the asymptotic 
expansion of the complementary error function, see Abramowitz and Stegun (1965), 
we find that the inner solution M(|) behaves like 

B5±^B6fi^~ - < exp[-cei
2] for § - ±oo. (4.8) 

Expressing the outer solution (4.4a) in the inner variable § and expanding for 
| -* -oo, we see that the outer solution behaves like 

Bx + _ ^ exp [ - c e i 2 ] for \ -* -oo. (4.9) 

Matching (4.4a) and (4.7), using (4.8) and (4.9), yields 

B,=BS- ±B6fit/c^, B2/e = -BJ2. (4.10a,b) 

By matching (4.4b) and (4.7) we obtain in an analogous manner the relations 
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B3 = B5 + lB6f^, BJz = -BJ2, (4.11a,b) 

and by applying the boundary conditions (2.5b) 

» + 5,ü^exp[-/(0)/E2] = 1, B. + B . i ^ exp[-/(l)/e2] = 0. 1 2 6(0) 3 4 6(1) 

(4.12a,b) 
Solving Eqs. (4.10) - (4.12) yields the constants Bt. The expressions (4.4) and (4.7) 
thus obtained for u(x) can be simplified by using appropriate approximations. The 
following asymptotic approximation is then found 

u(x) = 1 + IEJC/K ü^exp[-/(j<:)/e2] in D'e, (4.13a) 
2 K*) 

u(x) = 1 - y/cjn f exp[-cev
2]rfv in De, (4.13b) 

u(x) = UJcfn ( ^exp[ -J (x) /e 2 ] - ^llexp[-7(l)/e2]) in D*. 2 Y e b(x) 6(1) 

(4.13c) 
It is seen from these approximations that u(x) is exponentially small in D*e and 
equals 1 with an exponentially small deviation in D~. 

4.2 The expected exit time 

We now asymptotically solve the boundary value problem (3.12) for T^x). 
Using Eqs. (4.13) we determine solutions of (3.12a) valid on subdomains. The 
unknown constants are obtained by matching the solutions and using the boundary 
conditions (3.12b). 

The region D'e. On D'c the differential equation (3.12a) is approximated by 

6 ( X ) _ L + 1 E 2
Û ( X ) _ ^ . = - 1 , (4.14) 

dx 2 dx2 

as follows from substitution of (4.13a). Taking e = 0 yields the reduced equation. 
Solving this equation and using the boundary condition 7\(0) = 0, see (3.12b), we 
obtain the first term of a regular expansion 

X 

Tfr) = - \-±-ds. (4.15) 

We note that this approximation equals the travel time with the deterministic flow, 
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as is expected for starting points in this part of the domain. For matching purposes 
we need the behaviour of expression (4.15) near the boundary layer De. It is given 
by 

TJW ~ --p^prW** - x) + j r (4-16a> 

with 
xc 

Tl = 1 Ins - f _ L - I ds. (4.16b) 

The region D*c. In D*c we substitute (4.13c) into (3.12a). For x away from 1 we 
find the approximation 

+ £2flW)-W))5 + i e ^ W ^ÎL = -1, (4.17) 
b(x) dx 2 dx2 

equal to Eq. (3.17) for the flow field of section 3. Taking e = 0 and solving the 
equation we obtain 

r'<*> - - M , * • p - (4i8) 

with the constant P to be determined by matching. For this purpose the behaviour 
of (4.18) near the boundary layer De is needed. It is given by 

r (x) i_ln(x - x ) + 7Ï + P (4.19a) 

with 

7Ï = - _ J _ l n ( l - x ) - f—L - 1 ds. (4.19b) 
b'(xe) °' J b(s) b\xtys - *e) 

For the neighbourhood of x = 1 it can be verified that the differential 
equation in the appropriate local variable is satisfied by 7\ = constant. Taking this 
constant equal to P for matching purposes, we can conclude that near x = 1 the first 
order approximation for T^x) is contained in expression (4.18). 

The boundary layer region Dt. We now consider the region De. Substitution into 
(3.12a) of the approximation (4.13b) for u(x) and the boundary layer variable § 
given by (4.5), yields for e -* 0 

(b'(xt% - a(*e)exp[-cj2] / fexp[-cev
2]rfv)_L + \<xt)—L = - 1 . 

? (4.20) 
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This first order differential equation in dijde, can be solved. Its solution is written 
as 

Tfê) = - | - fexp[ce*
2]( jexp[-cev

2]dv)2dt / fexp[-cev
2] dv + 

+ fexp[c t2] fexp[-cy2]dvdt + k I [exp[-cev
2]dv + k2, (4.21) 

°(*e) J0 \ { 
where the constants kt and Jt̂  follow from matching with the outer solutions (4.16) 
and (4.19). The form (4.21) is convenient for matching with (4.19). We investigate 
the behaviour of (4.21) for Ç -* oo. It can be shown that the first term at the right 
side of (4.21) tends to 0 for Ç -* oo. For the second term at the right side of (4.21) 
it can be shown that it behaves like 

1 In £ + 1 (6 + i ln c ) for Ë -» oo (4.22a) 
b'(xe) b'(xcy

 2 °' v 

with 

r, 
ß = lim 2 fexp[T2] fexp[-<t>2]d<|>rft - In Ç. (4.22b) 

The value of ß can be determined numerically, ß = .982. The third term at the right 
side of (4.21) behaves like 

atjC^exptc^2] for % — oo. (4.23) 

Expressing the outer solution (4.19a) in the inner variable | = (x - xe)/e and 
expanding for % -* oo, it is seen that it behaves like 

1 In % + _ L _ l n e + T{ + P for | — oo. (4.24) 
b'(xt) b\xt) 

From (4.23) we see that the third term at the right side of (4.21), which grows 
exponentially for £ -+ oo, can not be matched for kx * 0. Comparing (4.22a) and 
(4.24) it is seen that the second term in (4.21) shows the needed asymptotic 
behaviour for Ç -» oo. We are led to the matching conditions 

*! = 0, (4.25a) 

_ J _ ( ß + i ln c ) + k. = —L_ln e + T{ + P. (4.25b) 
V{\) 2 *>'(*.) 

In order to match (4.21) with the outer solution (4.16) on D'e, we rewrite 
(4.21). After some manipulations and using (4.25a), we can write 
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T(g) = fexp[-c s2] fexp[c t2] fexp[-c v2] dvdtds / fexp[-cev
2]rfv + k2. 

"(*e) { ' Jo J, { 
(4.26) 

Now one can show that Tfä) behaves like 

- 1 ln(-g) - l (6 - 4v /Jx + ±ln c ) + it, for § — -oo 
*>'(*) *'(*.) 2 

(4.27a) 
with 

Y= fexp[-a2] fexptt2] fexp[-<()2]#rftda. (4.27b) 
0 0 T 

The value of y can be determined numerically, y = .307. 
Substituting the inner variable | into the outer solution (4.16a) and expanding 

it for Ç -* -oo, we find that the outer solution behaves like 

1 ln(-|) - 1 In e + T[ for | — -oo. (4.28) 
b'(xj b'(xe) 

Now matching (4.27a) and (4.28) yields 

K = - r ^ r l n e + - J _ ( ß - 4Y / / ^ + I ln cc) + r ; . (4.29) 

We note that, using (4.25b) and (4.29), we can write the constant P in (4.18) as 

P = - - 1 - l n e + * (ß - 2Y I fit + i ln ce) + 77 - 7\\ (4.30) 
& (*.) b (*.) 

We can summarize the results for T^x). In D'c we have the approximation 
(4.15), that is the deterministic travel time. In De we have the boundary layer 
solution Tfä) given by (4.26), with !j given by (4.5) and k2 by (4.29). And in the 
region D*c, that we are in particular interested in, 7\(x) is approximated by (4.18), 
with P given by (4.30). We note that it is possible to construct a composite 
expansion rcomp to avoid the difficulty of deciding whether a starting point is within 
or outside the boundary layer, see Van Dyke (1975): 

••comp = •* outer * •* bound - •'match- ( . 4 .J1 ) 

Here T^^ is given by (4.26). For x < xe the function Tottet is given by (4.15) and 
r»*k by (4-28)> a n d for * > *c we have 70Uter given by (4.18) and rmatell by (4.24). 
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5. Flow with a stable steady state 

In this section we study as third fundamental example a stochastic dynamical 
system with one stable deterministic equilibrium. The stochastic system is given on 
the interval D defined by (2.1). We assume that the deterministic flow b(x) has a 
stable equilibrium jce in D: 

b(xc) = 0, b(x) > 0 for 0 s x < xe, b(x) < 0 for xc < x s 1, (5.1a) 

and that the flow and the diffusion coefficient satisfy 

l 

^ dx > 0. (5.1b) I a(x) 

The corresponding deterministic system will always approach the equilibrium xt 

without reaching one of the boundary points x = 0 or x = 1. Because of the 
diffusion, the stochastic system can leave the domain of attraction of the stable 
steady state and reach the boundary. With probability one this will happen in a 
finite time. Condition (5.1b) implies that for an initial state away from x = 0 the 
boundary x = 1 is most likely reached before JE = 0. So for starting points x away 
from x = 0 the solutions u(x) and 7\(x) of Eqs. (2.5) - (2.7) are the probability of 
exit and the (conditional) expected exit time, respectively, at the unlikely point of 
exit x = 0. We are interested in an asymptotic approximation of 7\(x) for small 
values of e. We note that the exact solution for 7\(x) is known. It is given by 
7\(JC) = T(x)/u(x) where u(x) and T(x) can be written as (3.4) and (3.6), respectively, 
but it gives little insight in the behaviour of T^x). To find the asymptotic expansion 
we proceed along the lines of section 4. We asymptotically solve (2.5) for u(x) and, 
using the solution, asymptotically solve the boundary value problem (3.12) for 
2\(x). 

5.1 The probability of exit 

We consider the boundary value problem (2.5) for u(x). Following Cook and 
Eckhaus (1973), we again use WKB-approximations on subdomains. The same 
subdomains as in section 4 are distinguished. Around the equilibrium xc, where the 
coefficient of du/dx in (2.5a) vanishes, we have the region De of width 0(e). At the 
left and at the right of De we have the regions D'e and D*e, respectively. 

First we find an approximation for u(x) in the regions D'e and £>* by substi
tuting the WKB-approximation u(x) = w(x)exp[-(2(x)/e2] into (2.5a). In the same 
way as in subsection 4.1 we obtain approximations for u(x) that can be written as 

u(x) = A. + A2f^Ù.exp[-K(x)/e2] in D'e, (5.2a) 
b(x) 
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u(x)=A3+A4^lexp[-K(xyt2] in £>e
+, (5.2b) 

b{x) 
with the integral K(x) defined by 

i 

K(x)=-(^ds. (5.3) 
J a(s) 

In the region Dt we substitute the appropriate stretched variable "E, = (x - jce)/e 
and let e -* 0. The resulting equation is of the form (4.6) and has the solution 

u(|) = A5 + A6 fexp[-cev
2]dv with ce = b'(xe)/a(xe). (5.4a,b) + M 

For the present flow field we have ce < 0. For matching purposes we need the 
behaviour of (5.4) for § -» ±». From the asymptotic expansion of Dawson's 
integral, see Spanier and Oldham (1987), it is seen that u(E) behaves like 

A5 - A _ e x p [ - c J 2 ] for | -* ±oo. (5.5) 
2c e | 

In the same way as in subsection 4.1 we can now determine the constants .A,-
by matching (5.2a) and (5.2b) with (5.4), and by using the boundary conditions 
(2.5b). We find the following asymptotic approximation 

u(x)=-Mexp[K(0)/*>](££ - ^Lexp[-K(x)/E2]) in Z>e" and Z)e
+, 

a(0) bil) b(x) 

(5.6a) 

<x)=-^exp[K(0)/t2](£!± + ltxp[-K(xeye2) f exp[-cev
2]rfv) in Dt. 

a(0) 6(1) e J0 

(5.6b) 
We note that the approximation for u(x) that can be found by solving (2.5) with the 
familiar method of matched asymptotic expansions and by using the divergence 
theorem (see Schuss (1980)), is not sufficiently accurate to determine Tv 

5.2 The expected exit time 

Using the solution for u(x), we asymptotically solve the boundary value 
problem (3.12) for T^x). We first consider the coefficient b(x) + t2a(x)u'(x)/u(x) of 
dT^xydx in (3.12a). Because of the term exp[-^(x)/e2] in the expression (5.6a) for 
u(x), the coefficient vanishes in an order 0 ( E ^ neighbourhood of the point x0 with 
0 < x0 < xt characterized by 
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1 2b(x) i a(x) 
dx = 0. (5.7) 

This can be seen from substitution of (5.6a) into the coefficient and considering that 
exp[-K(x)/e2] changes from exponentially large to exponentially small in an order 
0(e2) neighbourhood of x0. This region around x0 divides the domain D in three 
subdomains: the order 0(z*) neighbourhood D0 of JC0, the region D'0 at the left of D0, 
and the region DJ at the right of £)„, see Figure 1. We will determine solutions of 
(3.12a) valid on these subdomains. It is assumed that Tx(x) is of the form 

7\(x) = C(e)c(x) (5-8) 

with C(e) exponentially large. 

Di _ D% 

Figure 1. Subdomains for the solutions of u(x) and T^x) for a flow with a stable 
steady state xe. 

5.2.1 Solutions on subdomains 

We first consider the region D*a. Substitution of (5.6a), (5.6b) and (5.8) in 
(3.12a) yields for x away from 1 the approximation for small values of e 

(b(x) + 2a(x)È^>exp[-K(x)/t2])^. + ^2aQc)^l = - ~ (5.9) 
a(l) dx 2 dx2 C(e) 

Taking the limit e -* 0 yields the reduced equation 

b(x)— = 0. (5.10) 
dx 

This equation is satisfied by a constant that we can take 1 (any other value can be 
taken up in C(e)): 

T(X) = 1. (5.11) 

It can be verified that this solution is also valid near x = 1, by asymptotically 
solving the differential equation (3.12a) in the appropriate local variable. 

In the region Z>0 we obtain by substitution of (5.6a) and (5.8) in (3.12a) the 
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approximating differential equation 

(_Kx) + E2a'(x)b(x) - ajxWJx)^ + _> ^ ^ = _ J_ (5U) 

b(x) àx 2 dx2 C(e) 

Taking the limit e -* 0 we find 

-*>(*)-$• = 0, (5.13) 
ax 

with the solution satisfying the boundary condition 7 (̂0) = 0, see (3.12b), 

T(X) = 0. (5.14) 

We note that in subsection 5.2.3 we will refine this solution. 
We now consider the region D0. Substitution of (5.6a) and (5.8) into (3.12a) 

yields, after introduction of the local variable 

p = (x - x0)/e
2 (5.15) 

and taking the limit e -» 0, the differential equation 

c0(l - 2(1 - c 0 ^ e x p [ 2 c 0 p ] ) - 1 ) ^ + l £ l = 0 (5.16a) 
fe(l) dp 2 dp2 

with the constant 

c0 = K*o)/a(*o) > 0. (5.16b) 

The solution of this equation is 

x(p) = dl + 4,(1 - c ^ e x p ^ p ] ) " 1 . (5.17) 
6(1) 

Matching (5.17) with the solutions (5.11) on D*0 and (5.14) on Do yields the 
constants 

rfj = 1, d2 = - 1 , (5.18a,b) 

respectively. The constant C(e) is yet unknown. Subsection 5.2.2 concerns the 
determination of this constant. 

5.2.2 The constant C(e) 

To determine the constant C(e), we first solve the forward equation 

Mp = 0 (5.19) 

with the operator M defined by (2.2b). A solution p(x) of this equation will be used 
for the determination of C(e). The function p(x) describes, if appropriately scaled, 
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the quasi-stationary distribution. With this quasi-stationary probability distribution 
we mean the distribution given the system has not reached the boundary of the 
domain D. 

We seek a solution of (5.19) in the form of a WKB-approximation 

p(x) = r(x)exp[-S(x)/e2] (5 2 0 a ) 

with the conditions in the equilibrium point xe 

S(xe) = 0, r(xe) = l. (5.20b,c) 

Since xe is the most likely place for the state to be found, S(x) should have a 
minimum in xt. Substituting the WKB-approximation into (5.19) and rearranging 
terms, we obtain to order 0(e°) two equations, that can be solved for the functions 
S(x) and r(x). We obtain 

p(x) = 0^cxp[(K(x) - K(XC))/B2]. (5.21) 

This function p(x) will be used in the following relation that can easily be 
derived 

J. 
\(pLT - TMp)dx = [bpT + ±e2(apT' - ap'T - a'pT)] (5.22) 

(divergence theorem). By (2.7a) and (5.19) the left side reduces to an integral that, 
after substitution of (5.6) and (5.21), can be evaluated with the method of Laplace. 
The result is 

È^l!*L1 J-n/c e exp[/C(0)/e2]. (5.23) 
a(0) b(l) V e yi W J V ' 

The right side of (5.22) can be simplified and expressed in T^x) with (2.7b), (2.6) 
and (2.5b). Then using the results for u(x), T^x) and p(x) derived in this section, we 
obtain the approximation for the right side 

- a ^ ^ Ê C& exPt(*(0) - *(*e))/£2]• (5-24) 
a(0) 

Combining (5.23) and (5.24) we find 

C<£) = " T7TT /-*/(&'(*eM*e)) E ̂ p [ ^ e ) / e 2 ] . (5.25) 

Summarizing we have thus far obtained the following asymptotic results for 
Tj(x). In the region D'0 we have the approximation T^(x) = 0, see (5.14). In the 
region Dl we have obtained 7\(;c) = C(e) with C(e) given by (5.25), while in the 
boundary layer D0 we have the approximation T^p) given by (5.8), (5.17), (5.18). 
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We remark that the exact value for 7\(1), which is determined by the relation 
T^x) = T(x)/u(x) with u(x) and T(x) written as (3.4) and (3.6), respectively, can be 
evaluated for small values of e using Laplace's method. The result thus obtained is 
equal to the value (5.25) for C(e). In the following subsection the approximation for 
Tt(x) in D~9 will be refined. 

5.2.3 A refinement of the solution in Djj 

We are not content with the very rude approximation T^x) = 0 we have 
obtained thus far for the expected exit time at x = 0 for starting points in the region 
Dl. This solution will now be improved. The solution (5.17), (5.18a) for t(p) in the 
region D0 behaves like 

1 + 4,(1 + c0-gl> exp[2c0p]) for p - -oo. (5.26) 
6(1) 

This suggests an approximation for x(x) in the region DjJ in the form of a WKB-
expansion 

x(x) = v(jc)exp[-P(x)/e2]. (5.27) 

Substitution in the differential equation (5.12) for x(x) and comparison with the 
value (5.25) of C(e) show that, as long as 

P(x) < K(xe), (5.28) 

the differential equation can be seen as a homogeneous equation for small values of 
E. Under the assumption (5.28) we obtain in the way of subsection 4.1 the linear 
combination of WKB-approximations 

x(x) = d3 + dA M cxp[K(x)/t2]. (5.29) 
a(x) 

To match this solution with (5.26) we express (5.29) in the inner variable p = 
(x - x0)/e

2 and expand it for p -» -oo. We find that this outer solution behaves like 

d3 + 44c0exp[2c0p] for p -» -oo. (5.30) 

So matching (5.30) and (5.26) yields two relations from which d3 and d4 can be 
expressed in c^. We obtain the WKB-solution 

x(x) = 1 + 4, + 4, a ( 1 ) ^ exp[K(x)/e2]. (5.31) 
2 2 b(l) a(x) 

Now we can distinguish two cases. 
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Case 1. If 

J0 a(x) J a(x) 

then -UT(0) < /f(xe) and assumption (5.28) is satisfied for x E D'0. In that case (5.31) 
is valid for i £ D j and the boundary condition J^O) = 0, see (3.12b), determines 
a\. Carrying out appropriate approximations we find that the solution for x(p) in £>0 

remains unchanged and is given by (5.17), (5.18), and that in D\ we have the 
improved approximation 

x(x) = . ^ Ä exp[A:(0)/E2] - È& exp[tf(*)/e2]). (5.33) 
6(1) a(0) a(x) 

Case 2. If 

î^.teâ*. (5.34, 
{ «(*) J a(x) 

then there is a point 0 s x1 < x0 characterized by 

* 0 2b(x) . _ ? 7Hx) rzmdx= f^W^ (5.35) 

J a(x) J a(*) 
1 o 

In that case assumption (5.28) is satisfied for xx < x < x0 and solution (5.31) is still 
valid for xE.D~9 with x > xt. For x s xt we asymptotically solve the inhomogeneous 
differential equation, that in Dô is given by 

(-*(*) + *''<&& - W'M)^ + i * 2 « ( * ) ^ = - 1 , (5.36) 
V ^ ' 6(x) <£t 2 <£c2 V ' 

see (5.12). Taking 6 = 0 and using the boundary condition 7\(0) = 0, see (3.12b), 
we find for x s xl the first order approximation 

X 

IK*) 
in correspondence with expression (3.20) for the flow field without steady states. 
This solution can be matched with (5.31) in xv We obtain 

i 
1 ds = C(e)(l + d^. (5.38) 

6(5) 

The asymptotic solution in £>0 remains unchanged and is given by (5.17) and (5.18), 
whereas the solution in D'0 for x > x^ is approximated by 
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T (x) = { — ds-C(E)^lÈ^}. exp[K(x)fc2]. (5.39) 

We can summarize the asymptotic results we have obtained for 7\(x) in this 
section. In the region DJ we have found T^x) = C(E) with C(e) given by (5.25). In 
the boundary layer D0 we have the approximation 7\(p) given by (5.8), (5.17), 
(5.18). In the region DJ w e n a v e m C3&e 1 t n e approximation (5.8), (5.33), and in 
case 2 we have in Dô the approximation (5.39) for x > xl and (5.37) for x s xv 

5.2.4 A comparison of exit times at different boundaries 

Above we have obtained results for the conditional expected exit time 7\(x) 
at the unlikely exit point x = 0 for starting points x E D. It is interesting to compare 
these results with the conditional expected exit time T0(x) at the other boundary 
point x = 1. The function T0(x) is determined by 

TJx) = J(x)/(1 - u(x)) (5.40) 

with T(x) satisfying the boundary value problem 

LT=-(l-u) in D (5.41a) 

r(0) = 0, J(l) = 0. (5.41b) 

Here u(x) denotes the exit probability at x = 0, determined by the boundary value 
problem (2.5). The solution for u(x) is given by (5.6). In the same way as we 
obtained a solution for T^x) we can determine an asymptotic solution for T0(x). A 
boundary layer of width 0(E*) is found near x = 1. Outside this boundary layer we 
obtain 

T0(x) = C(e), (5.42a) 

inside this boundary layer 

J0(x) = C(e)(l - exp[-26(l)(* - l)/(«(l)e2)]). (5.42b) 

Using the divergence theorem we obtain the same value (5.25) for C(e) as we found 
for the expected exit time Tfa) at the unlikely exit point x = 0. So for starting 
points x E DJ, away from x = 1, we have the interesting result that the (conditional) 
expected exit times at the unlikely exit point x = 0 and the most probable exit point 
x = 1 are equal in first order approximation. An interpretation is as follows. For a 
starting point x E DJ, away from x = 1, we expect the system to approach first the 
stable equilibrium and to remain in the neighbourhood of it for a long time. Large 
excursions from the equilibrium take place with small probabilities. Exit at the 
boundary occurs during such an excursion. Now it is expected that the exit time at 
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x = 0 equals the exit time at x = 1 in first order approximation, because if, say, the 
exit time at x = 0 were considerably larger exit would already have occurred at 
x = 1. 

We note that for the determination of r0(x) it is not necessary to use a WKB-
approximation for u(x) as obtained in subsection 5.1, but that an approximation of 
u(x) found by solving (2.5) with the familiar method of matched asymptotic 
expansions and using the divergence theorem is sufficiently accurate. 

The conditional expected exit times can also be compared with the expected 
exit time T(x) at the boundary 3D regardless of the point where exit takes place. It 
immediately follows from the information in section 2 that for a starting point 
x G D the expected exit time T(x) from D where we do not distinguish between exit 
at x = 0 or at x = 1, satisfies 

LT=-l in D, (5.43a) 

T(0) = 0, 7(1) = 0. (5.43b) 

Solving (5.43) we find boundary layers of width order 0(e*) near x = 0 and x = 1. 
In the boundary layer near x = 0 we obtain 

T(x) = C (E ) (1 - exp[-2fc(0)x/(a(0)e2)]), (5.44a) 

outside the boundary layers 

T(x) = C(e), (5.44b) 

and inside the boundary layer near x = 1 

T(x) = C(e)(l - exp[-2fc(l)(x - l ) /(a(l)e2)]). (5.44c) 

The divergence theorem again yields the value (5.25) for C(e). We can use this 
result to examine the asymptotic approximations we have derived in this section by 
verifying the relation 

Tj« + r 0 ( l - u) = T. (5.45) 

By substitution in the left side of (5.45) of the asymptotic solutions derived for u(x), 
Tt(x) and T0(x) the approximation (5.44) for T(x) is obtained, indeed, with an 
exponentially small relative error. 

6. A comparison with numerical results 

In this section the analytical approximations derived in the foregoing sections 
are compared with numerical results. First we present results of stochastic simula
tions for the flow without steady states. The stochastic differential equation (2.3a) 
can be approximated by the stochastic difference equation 
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Ax = b(x)M + eja(x) 2=(f)/ÄT, (6.1) 

where §(<) is normally distributed with zero mean and unit variance, see Gardiner 
(1983). Using (6.1) the stochastic process can be simulated. In Tables 1 and 2 we 
give simulation results for the one-dimensional flow of section 3. By carrying out 
simulation runs for starting points 0 < x < 1, we have found approximations uslm and 
TUim for the probability that exit occurs at x = 0 and for the conditional expected 
exit time at this boundary point, respectively. These simulation results are compared 
with the asymptotic approximations u,s and Tlxj, computed from (3.5) and (3.9), or 
(3.20), respectively. In Table 1 we are interested in the x-dependence of the 
asymptotic approximations. For each starting point 25000 runs have been made; 
e2 = .1 , b(x) = .5 and a(x) = 1. In Table 2 we attempt to investigate the indepen
dence of a(x) of the first order approximation (3.9) for the expected exit time T^x). 
For each (constant) function a(x) 40000 runs have been made, with starting point 
x = .13; e2 = .05 and b(x) = .5 + .5x. It is seen that the asymptotic approximations 
are in good accordance with the simulation results. 

Table 1. The probability u of exit and the expected exit time T^ at the boundary point 
x = 0 for a flow without steady states. The values of uäm and Tläm have 
been obtained from N = 25000 runs at each starting point x with 0 < x < 1; 
E2 = .1, b(x) = .5 and a(x) = 1. The asymptotic approximations uœ and Tlx 

have been computed from (3.5) and (3.9). 

X 

uàm 

"» 

Msim 

^ l a s 

.05 

.57 

.61 

.11 

.10 

.10 

.35 

.37 

.21 

.20 

.15 

.21 

.22 

.30 

.30 

.20 

.13 

.14 

.41 

.40 

.25 

.077 

.082 

.50 

.50 

.30 

.047 

.050 

.62 

.60 

.35 

.028 

.030 

.71 

.70 

.40 

.017 

.018 

.85 

.80 

.45 

.009 

.011 

1.0 

.9 

.50 

.007 

.007 

1.1 

1.0 

.55 

.003 

.004 

1.3 

1.1 

Table 2. The probability u of exit and the expected exit time TY at the boundary point 
x = 0 for a flow without steady states. For each (constant) function a the 
values of uàm and Tläm have been obtained from N = 40000 runs with 
starting point x = .13; E2 = .05 and b(x) = .5 + .5x. The asymptotic approxi
mations ux and rias have been computed from (3.5) and (3.9). 

a 

"sim 

"»s 

M a m 

Mas 

.67 

.013 

.014 

.23 

.24 

1.0 

.052 

.056 

.23 

.24 

1.5 

.13 

.14 

.22 

.24 
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Figure 2. The expected exit time at the boundary point x = 0 for a flow with an 
unstable steady state xc. The composite expansion T^^ (—), calculated from 
(4.31), is compared with the exact solution 7, (—), given by (2.6), (3.4) 
and (3.6); E2 = .04, b(x) = -sin((5x + 1)^/4) and a(x) = 1. 

0.2 x0 0.4 0.6 i 0.8 
e 

Figure 3. The expected exit time at the boundary point x = 0 for a flow with a stable 
steady state xe. The asymptotic approximation for 7\ (—) obtained in subsec
tion 5.2, is compared with the exact solution 7\ (--), given by (2.6), (3.4) 
and (3.6); E2 = .006, b(x) = .5 - .75* and a{x) = 1. 
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The asymptotic approximations we have derived for the conditional expected 
exit time at x = 0 for the flow problems in sections 4 and 5 are compared with the 
exact solutions. The exact solutions for T^x) are given by T^x) = T(x)/u(x), see 
(2.6), where u(x) and T(x) are of the type (3.4) and (3.6), respectively. In Figure 2 
we have plotted the composite expansion Tmmp, given by (4.31), and the exact 
solution for T^x) for the flow field b(x) = -sin((5x + l)n/4), which has the unstable 
steady state jce = .6; e2 = .04 and a(x) = 1. The deviation near x = 1 is caused by 
higher order terms. In Figure 3 we compare the asymptotic approximation obtained 
for 7\(JC) in subsection 5.2 with the exact solution for the flow b(x) = .5 - .75*; 
e2 = .006 and a(x) = 1. This flow field has the stable equilibrium xe = .67; x0 = .33 
and xl = .20. The difference between the functions for x > x0 diminishes for e -» 0, 
see the remark in subsection 5.2.2. 

7. Conclusions 

In this paper we have studied the (conditional) expected exit time from a 
domain in a one-dimensional stochastic dynamical system at the unlikely exit 
boundary. For three fundamental cases we have determined asymptotic solutions for 
the expected exit time for small values of the diffusion parameter by solving 
boundary value problems based on the Fokker-Planck equation for the stochastic 
system. The asymptotic solutions reveal the essential features of the expected exit 
time, whereas the exact solutions give little insight in the behaviour. Moreover, no 
numerical problems are involved in calculating the asymptotic solutions. For the 
flow without steady states we have found the interesting result that the expected 
exit time for diffusion against the flow equals in first order approximation the travel 
time with the deterministic flow in opposite direction. This type of solution is met 
again on a subdomain in the example of a flow with a stable steady state. In that 
example the solution for the expected exit time at the unlikely exit point exhibits a 
boundary layer at the rather unexpected place x0 determined by the relation (5.7). 
An other interesting feature of this example is that for starting points in the 
subdomain containing the stable equilibrium the conditional expected exit times at 
the unlikely exit point and at the most probable exit point are equal in first order 
approximation. 

We have determined the approximations by asymptotically solving the 
differential equations. For the determination of the expected exit time at the unlikely 
exit boundary an accurate approximation is needed for the probability of exit, which 
is very small. The usual method of matched asymptotic expansions with regular 
expansions on subdomains does not provide us with such an approximation. 
Therefore, we have made use of WKB-expansions on subdomains. In the example 
of flow with a stable steady state the divergence theorem has been used to deter
mine the exponentially large value of the expected exit time for starting points in 
the subdomain containing the stable equilibrium. The method may be extended to 
higher dimensional problems. Finally, we note that the analytical results we have 
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derived are in good correspondence with simulation results for the example without 
steady states and with numerical values of the exact solutions for the examples with 
a stable and an unstable equilibrium. 
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Samenvatting 

Analyse van onverwachte uittredingen met de 
Fokker-Planck-vergelijking 

Vele verschijnselen in bijvoorbeeld de biologie of de natuurkunde kunnen 
worden gemodelleerd als een dynamisch systeem. Dikwijls vormen toevalsfluctua-
ties een essentieel deel van deze verschijnselen. Het is dan wenselijk stochastische 
dynamische systemen te beschouwen. Stochastische systemen laten gedrag toe dat is 
uitgesloten in het corresponderende deterministische systeem. Zo kan de rand (of 
een gedeelte van de rand) van een domein in de toestandsruimte bereikbaar zijn in 
het stochastische systeem, maar onbereikbaar in het deterministische systeem. We 
bestuderen in dit proefschrift stochastische dynamische systemen waarin de toevals-
fluctuaties klein zijn. 

We gebruiken voor de stochastische systemen in dit proefschrift een diffusie
benadering. De systemen worden beschreven met een Fokker-Planck-vergelijking. 
De eerste-orde afgeleiden in deze differentiaalvergelijking corresponderen met de 
deterministische beweging, de tweede-orde afgeleiden met de (kleine) stochastische 
fluctuaties. Met behulp van de (achterwaartse) Fokker-Planck-vergelijking worden 
uittredingsproblemen geformuleerd. Hierbij beschouwen we in het bijzonder 
uittreding uit een domein bij (een gedeelte van) een rand, waar in het deterministi
sche systeem geen uittreding kan plaatshebben. Voor deze 'onverwachte uittredin
gen' bepalen we de uittredingskans of de verwachte uittredingstijd. Hiertoe lossen 
we het bijbehorende Dirichlet-probleem asymptotisch op, gebruik makende van 
singuliere storingsrekening, met de diffusieparameter als kleine parameter. We 
vergelijken de asymptotische oplossingen met resultaten van random walk simula
ties. 

In hoofdstuk 2 bestuderen we het transport van vervuiling in grondwater. 
Hierbij is het niet voldoende alleen advectief transport te beschouwen. We dienen 
ook rekening te houden met macroscopische dispersie. Als gevolg van dispersie kan 
vervuiling een gebied bereiken, dat onbereikbaar is voor de advectieve stroming. Zo 
kan vervuiling worden opgepompt in een drinkwaterput, terwijl deze vervuiling in 
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het grondwater is terechtgekomen buiten het advectieve aanstroomgebied van de 
put. Voor een put in een willekeurige achtergrondstroming bepalen we asymptoti
sche uitdrukkingen voor de kans dat verontreiniging de put bereikt en voor de 
verwachte aankomsttijd in de put. Omdat dispersie aanzienlijk minder bijdraagt aan 
de verplaatsing van de verontreiniging dan advectie, gaan we uit van het advectieve 
stroompatroon en nemen de invloed van de dispersie mee in een grenslaag langs de 
separatrix in de richting van het stagnatiepunt. Voor het advectieve aanstroomgebied 
van de put construeren we voor de verwachte aankomsttijd in de put bovendien een 
composiete oplossing, die zowel binnen als buiten de grenslaag geldig is. Van het 
Dirichlet-probleem voor de verwachte uittredingstijd bij een specifiek deel van de 
rand van een domein in een meer-dimensionale toestandsruimte wordt in dit 
hoofdstuk een afleiding gegeven. 

In de hoofdstukken 3 en 4 beschouwen we een geheel ander toepassingsge
bied van deze wiskundige analyse van uittredingsproblemen. Het betreft een model 
uit de epidemiologie voor de verspreiding van een infectieziekte. We beschouwen 
een populatie, bestaande uit vatbaren, besmettelijken en herstelden, die wordt 
vernieuwd met constante snelheid (vervangingsgraad). We bestuderen het geval 
waarbij in het corresponderende deterministische systeem de ziekte endemisch 
wordt. In het stochastische systeem kan de ziekte uitsterven als gevolg van de 
stochastische fluctuaties. Wanneer de ziekte in de populatie wordt geïntroduceerd, 
heeft er in het stochastische model niet noodzakelijk een grote uitbraak plaats. In 
hoofdstuk 3 bestuderen we de kans dat de ziekte uitsterft voordat een grote uitbraak 
plaatsvindt. We bepalen voor deze kans een asymptotische uitdrukking voor grote 
populatieomvang. Bovendien bestuderen we in dit hoofdstuk de verwachte uitsterf
tijd van de ziekte, wanneer deze endemisch is geworden. De asymptotische oplos
sing van het bijbehorende Dirichlet-probleem bevat een onbekende constante, die 
we bepalen door de WKB-methode toe te passen op de voorwaartse Fokker-Planck-
vergelijking, de stralenvergelijkingen numeriek op te lossen en de divergentiestelling 
toe te passen. Wanneer in dit epidemiologische model de vervangingsgraad klein is, 
herstelt de vatbare populatie zich slechts langzaam na een grote uitbraak van de 
ziekte. In deze fase is uitsterven van de ziekte zeer wel mogelijk. In hoofdstuk 4 
bepalen we een asymptotische uitdrukking voor de kans dat de ziekte uitsterft na 
een grote uitbraak volgende op de introductie van de ziekte in de populatie. 

Hoofdstuk 5 van dit proefschrift houdt zich bezig met een (vooralsnog) meer 
theoretisch aspect van uittredingsproblemen, namelijk het probleem van de 'eigen
wijze deeltjes'. We stootten hierop bij het bepalen van de verwachte aankomsttijd 
van vervuiling in een put in hoofdstuk 2. Voor vervuiling die in het grondwater is 
terechtgekomen buiten het advectieve aanstroomgebied van de put, beperkt de door 
ons afgeleide oplossing zich tot stortplaatsen in de grenslaag langs de separatrix. 
Buiten deze grenslaag zijn meer verfijnde methoden nodig voor het bepalen van de 
(kleine) kans dat vervuiling de put bereikt en de verwachte aankomsttijd. Hoofd
stuk 5 is een eerste stap in het onderzoek van dergelijke problemen. Voor een 
interval in een een-dimensionale toestandsruimte bestuderen we uittreding bij juist 
die rand waar uittreding het minst waarschijnlijk is. Voor drie fundamentele 
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gevallen bepalen we de verwachte uittredingstijd, namelijk voor, respectievelijk, een 
interval zonder evenwicht, een interval met een instabiel evenwicht en een interval 
met een stabiel evenwicht. We merken op dat de afgeleide asymptotische uitdruk
kingen meer inzicht geven in de verwachte uittredingstijd van de 'eigenwijze 
deeltjes' dan de exacte oplossingen. 



104 



105 

Curriculum Vitae 

Onno Arjen van Herwaarden werd op 16 juni 1956 te Apeldoorn geboren. 
Hij bezocht het Stedelijk Gymnasium te Breda van 1967 tot 1973. Na een verblijf 
van een jaar in de Verenigde Staten ging hij in 1974 studeren aan de Rijksuniversi
teit Utrecht. In 1981 behaalde hij het doctoraal examen wiskunde met bijvak 
natuurkunde. Hij studeerde af in de projectieve meetkunde bij prof. dr. G.J. Schelle
kens. Tijdens zijn studie behaalde hij de onderwijsbevoegdheden wiskunde en 
natuurkunde. Van 1982 tot 1989 was hij part-time medewerker van de Vakgroep 
Wiskunde van de Landbouwuniversiteit Wageningen met een onderwijstaak. Tevens 
was hij gedurende deze periode als wiskunde-docent verbonden aan de Gemeentelij
ke Hogere Technische Avondschool (later Hogeschool Utrecht, Sector Elektrotech
niek en Werktuigbouwkunde) te Utrecht. Vanaf september 1989 is hij full-time 
universitair docent bij de Vakgroep Wiskunde van de Landbouwuniversiteit, met 
naast onderwijs en onderzoek o.a. de coördinatie van het propaedeuse wiskunde
onderwijs als taak. Het vanaf september 1989 onder leiding van prof. dr. ir. J. 
Grasman verrichte onderzoek heeft geleid tot het voor u liggende proefschrift. 


