Transport of water, bromide ion, nutrients and the pesticides bentazone and imidacloprid in a cracking, tile drained clay soil at Andelst, The Netherlands

Transport of water, bromide ion, nutrients and the pesticides bentazone and imidacloprid in a cracking, tile drained clay soil at Andelst, the Netherlands

J.H. Smelt R.F.A. Hendriks L.J.T. van der Pas A.M. Matser A. van den Toorn K. Oostindie O.M. van Dijk-Hooijer J.J.T.I Boesten R.P. Scorza Jr

Alterra-rapport 289

Alterra, Green World Research, Wageningen, 2003

ABSTRACT

Smelt, J.H., R.F.A. Hendriks, L.J.T. van der Pas, A.M. Matser, A. van den Toorn, K. Oostindie, O.M. van Dijk-Hooijer, J.J.T.I. Boesten and R.P. Scorza Jr. 2003. *Transport of water, bromide ion, nutrients and the pesticides bentazone and imidacloprid in a cracking, tile drained clay soil at Andelst*, The Netherlands. Wageningen, Alterra, Green World Research. Alterra-rapport 289. 213 pp. 42. figs.; 13 tables; 27 refs. 54 Annexes: 1 CD with data

The aim of this study was to perform a field experiment to collect a high quality data set suitable for validating and improving pesticide leaching models and nutrient leaching models for drained and cracking clay soils. The transport of water, bromide, nutrients and the pesticides bentazone and imidacloprid was studied on a 1.2 ha experimental plot. Moisture profiles and groundwater tables were measured, starting in November 1997. Winter wheat was sown on 23 October 1997 and harvested on 20 August 1998. Bentazone and bromide were applied at 7 April 1998; imidacloprid was applied at 27 May when the soil was almost completely covered by the crop. The amount present in soil was measured within 2 days after application (32 sampling cores) and was found to vary between 80% of the nominal dose (imidacloprid) to 110 % (for bentazone). Manuring and soil cultivations were as usual for the wheat crop. Soil profiles were sampled at eight times (16 cores at each date, last in April 1999). Drain flow was continuously recorded and the water flow proportionally sampled for analysis of the test compounds. Groundwater was sampled periodically from sets of permanently placed filters at four depths at 16 sites. Sorption isotherms of the pesticides were measured with soil from 0-25 cm. Transformation rates of the pesticides were measured at different temperatures in soil material from topsoil and subsoil layers. Soil hydraulic properties and shrinkage characteristics were measured in the laboratory. Meteorological data (i.e. rainfall, air temperature, global radiation, air humidity etc.) groundwater levels and soil temperatures at three depths were monitored continuously. After 56 days, about 80% of the bromide dose was taken up by the crop, which demonstrates that bromide is not a suitable tracer in cropped soil during the growing season. After that time the bromide was gradually released again into the soil. Preferential transport through cracks and macropores of all test compounds was measured both in summer and in winter. This resulted in the highest concentration of bromide and bentazone measured in drain water already 21 days after application following 56 mm rainfall. Imidacloprid was already detected in groundwater at 1.3-1.5 m depth, 11 days after application, following 65 mm rainfall. High peaks in nitrate concentrations in the groundwater at 1.00-1.50 m depth and in the drain water were detected within 14-18 days after the first fertilizer application, following 94 mm of rainfall. Extreme high peaks in concentrations of ortho-P and soluble organic-P were measured in the drain water at respectively 2 days and 37 after slurry application (the only phosphorus application during the experiment). For nitrate concentrations in the drain water there were indications for bypass by preferential flow of 'clean' rainwater to the drains.

Keywords: field experiment, dataset, leaching, modeling, pesticides, bentazone, imidacloprid, bromide, nitrogen, nitrate, phosphorus, phosphate, cropped soil

ISSN 1566-7197

Dit rapport kunt u bestellen door €31,- over te maken op banknummer 36 70 54 612 ten name van Alterra, Wageningen, onder vermelding van Alterra-rapport 289. Dit bedrag is inclusief BTW en verzendkosten.

© 2003 Alterra, Green World Research, P.O. Box 47, NL-6700 AA Wageningen (The Netherlands). Phone: +31 317 474700; fax: +31 317 419000; e-mail: info@alterra.nl

No part of this publication may be reproduced or published in any form or by any means, or stored in a data base or retrieval system, without the written permission of Alterra.

Alterra assumes no liability for any losses resulting from the use of this document.

Project 359-80561.05

Contents

Pre	face	7
Sun	nmary	9
1	Introduction	11
2	Procedures for the field study 2.1 Experimental field 2.2 Application of bromide and test chemicals	13 13 16
	2.3 Application of nutrients and manure2.4 Monitoring crop growth and crop sampling2.5 Monitoring of meteorological data	18 19 20
	2.6 Monitoring soil temperature and air temperature2.7 Monitoring of groundwater level2.8 Monitoring drain discharge	21 22 24
	2.9 Sampling of drain water2.10 Sampling of groundwater2.11 Sampling of soil profiles	25 26 27
	 2.11 Sampling of son promes 2.12 Treatment of soil samples in the lab and procedure for determination of volume fraction of liquid and dry bulk density 2.13 Procedures for extraction and analysis of bromide ion 2.14 Procedures for extraction and analysis of bentazone in soil and water 2.15 Procedures for extraction and analysis of imidacloprid in soil and water 2.16 Procedures for extraction and analysis of nutrients 2.17 Soil chemical properties and texture 	29 30 31 33 35 36
3	 Procedures for laboratory experiments 3.1 Measurements of soil hydraulic properties 3.2 Measurements of shrinkage characteristics 3.3 Transformation rates of the pesticides in three soil layers 3.4 Measurements of sorption of the pesticides in soil water suspensions. 	39 39 39 39 43
4	Numerical descriptions of the results in the files and on cd	45
5	 Results of the field study 5.1 Time series of meteorological data, soil temperature, groundwater level at drain discharge 5.2 Bulk density and soil moisture profiles 5.3 Concentrations of bromide ion in soil, groundwater and drain water 	47 nd 47 50 51
	 5.3 Concentrations of bronnide ion in soil, groundwater and drain water 5.4 Concentrations of bentazone in soil, groundwater and drain water 5.5 Concentrations of imidacloprid in soil, groundwater and drain water <i>Concentration in groundwater</i> <i>Concentration in drain water</i> 	51 54 57 58 59
	 5.6 Concentrations of nutrients in soil, groundwater and drain water 5.6.1 Nitrogen 5.6.2 Phosphorus 	59 59 62

	5.7 Crop growth and dry matter production	63
6	Results of the laboratory studies	91
	6.1 Soil hydraulic functions	91
	6.2 Soil shrinkage characteristics	92
	6.3 Transformation rates of the pesticides	92
	6.4 Sorption of the pesticides in soil water suspensions	93
	6.5 Long-term sorption of imidacloprid	93
Ref	ferences	103
List	t of Annexes	105

Preface

This report describes a field experiment on a drained cracking clay soil and laboratory studies that were done to collect a high quality data set for validating and improving models for simulating the leaching of pesticides and nutrients. The study started in 1997 and was funded by the Dutch Ministry of Agriculture, Nature Management and Fisheries in the frame work of the research programmes DWK 276 and DWK 317

The data have already been used in the frame work of the APECOP project (effective approaches for <u>A</u>ssessing the <u>P</u>redicted <u>E</u>nvironmental <u>CO</u>ncentrations of <u>P</u>esticides, a project funded by the European Union, under Key Action 1: QLK4-CT-1999-01238. The field was one of the six sites selected in Europe to provide data sets for the validation of the present FOCUS groundwater emission models and new PEC models for pesticides (Work Package 2 of APECOP; Establishment of a set of high quality datasets). Therefore, part of the reporting work was funded by the APECOP project.

Data of the pesticide part of the study were also used in preparing the thesis of Rômulo, P. Scorza Jr. (2002). Comparisons between measured and simulated pesticide leaching with PEARL and MACRO are discussed in that thesis

Summary

A field scale leaching experiment was performed in the Netherlands on a cracking, tile drained clay soil to collect a high quality data set suitable for validation of leaching models for pesticides and nutrients. The movement of water, bromide, the nurients N and P and the herbicide bentazone and the insecticide imidacloprid was studied on a 1.2 ha field, sown with winter wheat. Bromide and bentazone were applied at 7 April and imidacloprid on 27 May. Initial soil deposition of the test compounds was measured at both times within two days after application of the compounds. Meteorological data (i.e. rainfall, air temperature, global radiation air humidity etc.) soil temperature, groundwater level and drain flow were monitored continuously. Soil profile was sampled to 1.2 m depth for moisture content and concentration profiles of the three test compounds and nutrients at eight times during the experimental period of 475 days. Concentrations in groundwater at different depths were measured periodically. Drain flow of two sets of tiles (three tiles in each set) was continuously measured and drain water was flow proportionally collected for analyses of the test compounds and nutrients. Additionally, laboratory experiments were carried out to study the transformation of the pesticides in the top layer at three temperatures and in deeper layers (including the saturated one) at ambient temperatures. The adsorption of the pesticides was studied at three temperatures in the arable layer. Soil hydraulic functions and shrinkage characteristics were also measured. The wheat crop took up a surprisingly high fraction (about 80%) of the applied bromide during the first month after application. Most of the bromide was released again into the soil at the end of September (the chopped crop remained on the field !). Three weeks after application, with 56 mm rainfall in some showers, bromide (5 mg dm⁻³) and bentazone (90 µg dm⁻³) were already measured in drain water. At the same time bromide and bentazone appeared in the shallow groundwater (1.0-1.2 m depth) in concentrations of about 1 mg dm⁻³ and 16 μ g dm⁻³, respectively. The concentrations at that time were the highest measured during the whole experimental period. Imidacloprid was detected in half of the groundwater sampling filters (1.3-1.5 m depth) at concentrations of 0.05 to 0.09 μ g dm⁻³, after 65 mm rainfall in the 11-day period after the application on 27 May. No drain flow was measured in this period. All test compounds were measured in fairly constant concentration levels in drain water and groundwater throughout the winter period. The presence of permanent macropores (worm holes and perished roots) was attributed as the main cause for the observed preferential transport of solutes in this soil. The fast decrease of bentazone in the soil profile (0.2%) left after 239 d) indicated that the degradation in the field (DT50 22 d) was clearly faster than expected from the incubation studies. After 115 days 35 % of the imidacloprid dose remained in the soil profile, which fraction remained almost constant until next spring. The field persistence of imidacloprid corresponded well with the half-lives measured in laboratory incubation studies. Extreme high peaks in concentrations of ortho-P and soluble organic-P were measured in the drain water at respectively 2 days and 37 after slurry application (the only phosphorus application during the experiment). For nitrate concentrations in the drain water there were indications for bypass by preferential flow of 'clean' rainwater to the drains.

1 Introduction

Leaching of pesticides and nutrients to groundwater is an important environmental aspect of the use of these chemicals in agriculture. Simulation models are applied for the description of their behaviour in many scenario computations and governmental discussions. The PEARL model (Leistra et al. 2001) is used for pesticide registration since 2001. Before 2001, the PESTLA model (Boesten & van der Linden 1991) was used for that purpose. The model ANIMO (Rijtema & Kroes, 1991; Groenendijk & Kroes 1997) is used for the simulation and prediction of nitrogen and phosphate leaching in relation to agricultural management strategy at the field and regional scale.

In the Netherlands, the registration procedure for pesticides heavily relies on the models PESTLA/ PEARL, which have been tested only on the basis of a data set obtained from a field experiment on a sand soil (van den Bosch et al. 1994). Cracking clay soils may be more worst case with respect to pesticide leaching than sandy soils. However, the validation status of PESTLA/PEARL for Dutch soils is very low as the models has never been tested on these soils. In compact, homogeneous sand soils the transport of water and dissolved compounds in the soil matrix can be described rather well with Darcy's law and the convection-dispersion equation. However, Darcy's approach cannot describe preferential water flow through e.g. macro pores and cracks (Beven and Germann, 1982). Due to the forming of shrinkage cracks on heavier clay soils during dry periods it can not be assumed that hydrological characteristics are homogeneously. Soil cultivations like ploughing also may create macropores, whereas on the other hand cultivations disrupt existing macro pores. Deep cracks formed after long dry periods in summer may persist (partially) for longer time after rewetting in winter (Beven 1981; observations by farmers). From these observations it may be expected that fast preferential transport of water and compounds via cracks and macro pores will occur on clay soils, as well as in summer as in winter. Preferential transport in a clay soil of a bromide tracer applied in November under wet conditions was demonstrated by Hendriks et al. (1999).

As a result of the established low validation status of the pesticide leaching models and the complication of preferential flow on cracking clay soils, the Dutch Ministry of Agriculture, Nature Management and Fisheries asked Alterra (formerly SC-DLO) to conduct a field experiment to test the simulation models for leaching of pesticides on clay soil. At the same time an N-and P-desk study denoted that the environmental losses caused by preferential transport (e.g. in clay soils) should be better quantified. So, a high quality data set was also required for the validation of modelling nutrient leaching with ANIMO on soils with preferential transport.

Objective of the present study was to provide a complete and high quality data set, suitable for validating and improving simulation models describing the transport of water and the transport and transformation of pesticides and nutrients in a drained and cracking clay soil profile. The data should be obtained collected in a field grown with common agricultural crops and the field should be farmed with common

agriculture methods, including manuring and applying of fertilizer. As far as possible all input parameters for the models should be determined either via independent field or lab experiments (minimising need for parameter fitting).

A field experiment and lab experiments were set up to obtain the appropriate data set. The field experiment included a bromide tracer experiment. Two pesticides were selected: a mobile pesticide (bentazone) applied when the soil was hardly covered by the wheat crop (almost bare soil application) and a sorbed, more persistent pesticide (imidacloprid) applied onto a well developed crop that reduced initial soil deposition considerably (representative for a crop application).

The aim of this report is to describe the results of the field and lab studies in such a way that the data set is accessible to interested modellers. Thorough analyses and interpretation of the data as well as performing calculations with models and calculating water and mass balances of the bromide tracer and other compounds were out of the scope of this report.

2 Procedures for the field study

2.1 Experimental field

The field was located near the village Andelst in the province Gelderland in the middle part of The Netherlands near the river Rhine, mainstream "de Waal". (North Latitude 51° 53′ 5292″, East longitude 5° 43′ 4488″, altitude above sea level 8.0 m). The soil is a young Holocene river bank deposit (Gendt 0 to Gendt III) of the river Rhine (Eutric Fluvisol, FAO classification 1988). The clay profile, which reaches to about 3 m depth, is underlain by a thick layer of coarse sand which is in direct contact with the nearby river and therefore acts as a natural drain. The arable layer contains on average 28% clay. The clay content increased with depth from 30% up to 40% at 1.2 m depth. The layers below 1.2 m contains higher clay contents (40-55%) and show occasionally some thin layers with peat material or sand. Detailed information on soil properties for each layer and in space is given in the Annex 42. A description of the structure and morphology of the distinguished soil layers is given in Annex 2. Holes (5-8 mm diameter) were observed frequently in the lower part of the profile during sampling (up to 1.2 m depth). The holes obviously originated from worms or decomposed tree roots The permanently reduced zone starts at about 2.20 m depth. The experimental field was situated on a drained part of a much larger field, which was formed out of two fields that were put together in the past. The field was used as arable land since an old apple orchard was grubbed out in 1977. At the original field where the present experimental field was situated, tile drains (PVC tubing) were installed about 10 years before at a depth between approximately 0.8 to 0.9 m (bottom) with a slope to a ditch at the North-east side of the field. The drain depth was provided by the farmer and checked at three sites and found to be within the given range. The drain pipes had different lengths (185-210 m), because of the triangular border shapes of the original field, and had 10 m intermediate distance (Fig 2.1). The field surface declined slightly to the ditch at the North-east side and the slope was on average 6 cm per 100 m.

The total experimental field comprised the whole catchment area of six tile drains. The exact position of the two most outer tile drains and one of the drains in the middle of the experimental part of the field was checked before the position of the sampling plots was definitively marked out. Therefore, a probe was inserted into the tile drain and the position of the pipe was followed with a detector. The outlets of the drains were coupled with PVC tubing into two sets (drain set D1 and drain set D2) with three drains each (Fig. 2.1). The discharge of each drain set was continuously recorded and the water was proportionally sampled for analysis. The catchment area of drain set 1 was **6 300 m**² and that of drain set 2 was **5700 m**². To ensure full treatment of the total catchment areas, all test chemicals and nutrients were applied well beyond the borders of the catchment area. Within the catchment area of the 6 drains 16 plots were marked out for sampling the soil profile and groundwater. The plots were indicated with the characters A-P (see Fig. 2.1), and were each 40 m long and 10 m wide (equal to the drain distance). For combining

samples for analysis, the experimental field was divided up into four sectors (with numbers 1 to 4), which consisted of four plots each (ABCD, EFGH, IJKL, MNOP). The catchment area of drain set D1 contained the sectors S1 and S2 and so the plots A-H, and the catchment area of drain set D2 the sectors S3 and S4, with the plots I-P. Each plot was sub-divided lengthways into 13 sub-plots (not shown in Fig .2.1) with widths varying as follows: six sub-plots of 3 m wide, one middle subplot of 4 m wide, and again six sub-plots of 3 m wide. In the middle sub-plot a cluster of four groundwater sampling tubes was installed in the middle between two drains.

In the first week of October 1997, the groundwater sampling tubes were installed after the crop (potatoes) was harvested and the field was cultivated with a spring-tine cultivator in two directions to prepare a seedbed for winter wheat. Four tubes were installed in a cluster in the centre of each of the 16 marked plots A to P. The tubes were placed 0.5 m apart in a row parallel to the drains. The polyethene tubes had an inner diameter of 5.0 cm and a filter slitted tube part of 20cm) at the stoppered bottom. Holes (10 cm diameter) were drilled to the desired depths. Casing tubes were not needed because of the stiff nature of the clay and the low groundwater level at that time (about 2.5 m below soil level). The tubes were placed in the holes and filter sand was applied around the perforated filter pieces. The bore hole was further filled up with bentonite clay. The four tubes were fitted with filters at: 0.70-0.90 m; 1.00-1.20 m; 1.30-1.50 m and 1.90-2.80 m depth. The blind tube parts protruded about 0.15 m above the soil level and were closed by a lid. The closed tubes were further permanently insulated with a PVC pipe (diameter 0.12 m; 0.3 m height and a removable lid) to prevent flow of spray liquid and water along the walls of the sampling tubes and to keep the tubes free of splashing soil particles, which favoured clean water sampling. The PVC heads over the sampling tubes were additionally covered with plastic bags during spraying of the test chemicals. The top 0.5 m of the tubes were screwed off temporarily when the field was ploughed. About 0.40 m deep trenches were dug for that handling before and after ploughing.

Filters for continuous registration of the phreatic groundwater level were placed in the plots I and O near the clusters with tubes for groundwater sampling (Fig. 2.1). The filters reached to 2.35 m depth. The tube was slitted over the entire length and surrounded by filter sand. Three tubes (2.5 cm inner diameter) were placed in the sand layer for manual registration of the piezometric level in this layer. The 1 m long filters of these tubes were positioned at 5.0 to 6.0 m depth. The tubes were sealed with Bentonite clay from 5 m depth on. In order to measure the convexity of the groundwater table a row of 12 groundwater tubes was installed perpendicular to the drains at 17 November 1997. The row of tubes was in line with the centre of the cluster of tubes of the plots A, B, I and J (Fig. 2.1). Six tubes were placed at a distance of 0.5 m of the six field drains, and another six at a distance of 1.0 m. The tubes had an inner diameter of 2.5 cm and were fitted with filters at a depth of 0.9-1.1 m.

The height of all sampling tubes, groundwater monitoring tubes, and the soil surface around the tubes was measured with a levelling instrument against one fixed point after installation (6-10-1997) and at the end of the experiment (8-05-1999).

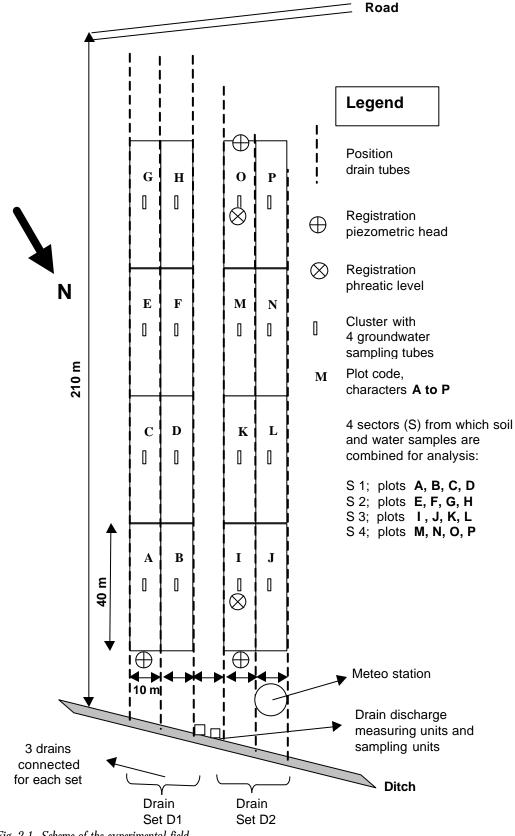


Fig. 2.1 Scheme of the experimental field

Crop growing etc.

On 23 October 1997 winter wheat (variety Vivant) was sawn with a row distance of 0.125 m. The seeds were treated before with the pesticides guazatine triacetate and antraquinone. Narrow stripes along the clusters with the sampling tubes were sown by hand and the seeds were roughly raked in. On 20 February 1998 a nitrogen fertiliser was applied (325 kg KAS ha⁻¹ containing 13% nitrate-N and 13% ammonium-N). The test chemicals bentazone and KBr were applied on 7 April 1998 (for details see chapter 2.2). On 8 May 1998 the crop was sprayed against fungi with Matador, a mixture of tebuconazole and triadimenol; doses of 0.250 and 0.125 kg ha⁻¹ respectively. On 14 May 1988 a second dose of nitrogen fertiliser (200 kg KAS ha⁻¹) was applied. The test chemical imidacloprid was applied on 27 May 1998.

The winter wheat crop had to remain on the field because of the use of not registered chemicals. Therefore, it was not harvested in a normal way but treated with a tractor-trailed straw chopper on 20 August 1998. The straw was further shredded and distributed with a rear-mounted rotary mower (Votex) before the application of pig slurry (23.9 m³ ha⁻¹) on 1 September 1998. The slurry was shallowly incorporated by two rows of spring tines mounted at the applicator. The germinating wheat seeds formed a kind of green manure, which growth was stopped by spraying with Roundup (1.0 kg glyphosate ha⁻¹) on 22 September 1998. On 8 December 1998 the field was ploughed (0.25-0.30 m depth) after a very wet period and again winter wheat was sawn. The wet condition resulted in a very rough seedbed with clearly visible ploughed stripes. On 1 December, a 6 m stripe of the experimental part of the field (of the plots M, N, O and P) was already ploughed (but no wheat was sawn). On 17 March 1999 a nitrogen fertiliser was applied (300 kg KAS ha⁻¹). The field experiment was stopped at 25 May 1999 and all measuring equipment was removed.

2.2 Application of bromide and test chemicals

All chemicals were applied with a tractor mounted, 24 m width field boom sprayer (Delvano) provided with ceramic, 110° flat-bed nozzles (Albuz red) mounted at an intermediate distance of 0.5 m. For spraying the experimental field, the effective spray width was reduced to 20 m by closing the outer nozzles. The 20 m width matched well with the 10 m drain distance and allowed to situate the spray tracks above the drain positions and between the sampling plots (Fig. 2.1). Before spraying, the flow rate from the individual nozzles was measured at a spray pressure of 290 kPa (read on machine manometer). The average flow rate of 19 nozzles was measured in two series and was: 1.69 L min⁻¹, CV 4.3% and 1.69 L min⁻¹, CV 5.8%, respectively. The speed of the sprayer during spraying was measured several times by recording the driving time between marked points in the field with a stopwatch. With the recorded speed and the flow rate from the nozzles, the areic volumes of water (L ha⁻¹) were calculated. The recorded speed was very constant, CV < 1.4%. Spray tracks were prepared beforehand with a loaded sprayer. This action flattened the soil surface and resulted in a perfect horizontal spray boom position and consequently in a very even distribution of the spray liquid.

On 7 April 1998 between 14.00 and 16.20 h the test chemicals bentazone (firstly) and KBr were applied. It was cloudy, air temperature was about 10°C and there was a weak wind from the North-east, which did not disturb the spray pattern. During the early evening and following night there were periods with rain. The total of 5.6 mm rain washed bentazone and KBr probably from the wheat crop. Bentazone was applied as the formulated product Basagran P Duplo[®] (Luxan, the Netherlands), containing 333 g L⁻¹ bentazone. The concentration of bentazone in the spray liquid was estimated to be 3.50 g L⁻¹ on the basis of the litres formulated product added to the tank and the total volume of water in the tank. The sprayed areic volume of water was 380 L ha⁻¹, which gives a calculated dose of bentazone of **1.33 kg ha⁻¹** (based on the nominal concentration of 3.50 g L⁻¹). The concentration of bentazone in the spraying solution was measured in samples collected from the tank and under the outer nozzles during spraying. The measured concentration range was 2.50 to 3.80 g L⁻¹. The lowest value was from a sample taken from the upper layer in the tank before start of spraying when the solution was not yet mixed well.

The spray liquid of potassium bromide was prepared by pre-dissolving 139 kg KBr in warm water which was subsequently pumped into the spray tank and topped up to 940 L total volume. The estimated concentration in the spray liquid was 147.8 g L⁻¹; the measured concentration range was 106 to 148 g L¹. The tractor speed was slowed down to achieve an areic volume of water of 600 L ha⁻¹, which gives a calculated dose of 88.7 kg ha⁻¹ KBr or **59.6 kg ha⁻¹** Br (based on the nominal concentration).

The test chemical imidacloprid was applied on 27 May at 15.00 h. It was dry weather with a half clouded sky and a weak wind from the North-west direction. The soil surface was cracked resulting from a dry foregoing period. The spray liquid was prepared by adding 1.50 kg of the formulation ADMIRE [®] (containing 70% imidacloprid) to a total tank volume of 900 L. The estimated concentration of imidacloprid in the solution was 1.166 g L⁻¹. The concentration range of imidacloprid in samples of the spray liquid taken before, during and after spraying was 1.20 to 1.14 g L⁻¹, on average 1.16 g L⁻¹. The tractor speed was the same as when applying KBr, resulting in an areic volume of water of 600 L ha⁻¹, which gives a calculated dose of imidacloprid of **0.700 kg ha⁻¹** (based on the nominal concentration of 1.166 g L⁻¹). A few raindrops fell about 1 hour after spraying. A thunderstorm (15 mm rain) followed in the evening of 28 May. The wheat crop was already well developed and had a height of 0.45 to 0.60 m. Soil coverage by the crop was about 90% at time of application. Two days later, soil samples were taken and the results showed a high soil deposition of about 80 % (paragraph 5.5).

A 7 to 12 m wide stripe along the drainage ditch (Fig. 2.1) was not sprayed with the test chemicals. Additional spraying of this stripe ("driving out stripe" from spray tracks) would have resulted in an overlap, caused by the angle of the experimental field with the ditch. The drain water collecting units and groundwater sampling tubes were shielded with plastic foil during spraying to avoid contamination. During spraying imidacloprid, plastic sheets of 0.45×0.45 m (with a hole in the centre) were

laid on the cracked soil around the groundwater sampling tubes to avoid direct flow of the compound to the deeper layers and filters.

2.3 Application of nutrients and manure

Applications of nutrients and manure are summarised in table 2.1. The application of the nitrogen fertiliser KAS on 20-02-98 was the first nutrient gift after fertilisation of the preceding potato crop in Spring of 1997. The nitrogen fertiliser, containing 13% nitrate-N (m/m) and 13% ammonium-N (m/m), was applied with a common tractor-mounted spinning disc fertiliser distributor. The uniformity of the distribution was not specially measured after the applications; it met farmers practice.

			-					
Date	Product	Product rate	NO ₃ -N	NH ₄ -N	Total-N	Ortho-P	Total-P	Κ
				1	(kg	ha-1)	1	1
20-02-98	KAS	325 kg ha-1	42	42	48	-	-	-
14-05-98	KAS	200 kg ha-1	26	26	52	-	-	-
01-09-98	Pig slurry*	24 m ³ ha ⁻¹	-	116	144	12.5	14.9	156
17-03-99	KĂS	300 kg ha-1	39	39	78	-	-	-

Table 2.1. Overview application of nutrients (doses kg ha⁻¹)

 * organic part of N and P in pig slurry is total-N – (NO₃-N + NH₄-N) and total-P – ortho-P respectively

Pig slurry was derived from a pig farm that used the "pulp feeding" system, which resulted in comparatively low P contents. Samples for analyses were collected during filling the application equipment. For each tank content of 16 m³, 12 sub samples were automatically taken with an in-line sampler (certified product of the firm Eijkelkamp the Netherlands) and combined to one mixed sample with a total volume of 2 L. Three of these mixed samples were analysed. The average dry matter content was 48.9 kg m⁻³ slurry (s.d. = 1.7), the average organic matter content 18.9 kg m⁻³ slurry (s.d. = 2.1), the average total-N content 6.0 kg m⁻³ slurry (s.d. = 0.3), the average total-P content 0.62 kg m⁻³ slurry (s.d. = 0.01) and the average K content 6.5 kg m⁻³ slurry (s.d. = 0.5).

The pig slurry was applied with a tractor-trailed vacuum spreader tank provided with two vertically mounted spreaders, which spread the slurry over a 4 to 5 m wide strip. The slurry was shallowly "incorporated" by two rows of spring tines, that were mounted at the applicator (tines 0.40 m interspace in each row, so 0.2 m net interspace, and 5 to 10 cm working depth). The straw remnants and the many wheel tracks hindered equal incorporation. An additional cultivation (about 10 c m depth) with a spring tine cultivator was carried out crosswise the previous one to improve the incorporation, which action is compulsory in The Netherlands to reduce NH_3 volatilisation.

2.4 Monitoring crop growth and crop sampling

Crop growth

Due to the mild winter of 1997-1998, the wheat crop was developed well early in Spring 1998 and re-growing of the crop started early in March 1998. A soil coverage of about 17% was estimated around half February. On 30 March the crop was 7 to 10 cm high and covered about 40% of the soil surface (visual estimate). Measuring or estimating soil coverage is not a very suitable method to indicate crop development in wheat, because it is difficult to distinguish between covered and uncovered soil due to the position of the leaves. Measuring the light interception is a more practical method in a wheat crop. From 9 April on, the light interception was determined by measuring the incoming radiation (Ii) above the crop and the radiation at the soil surface (Is) under the crop. The light interception fraction (*f*) was calculated by:

$$f = 1 - \frac{Is}{Ii}$$

The light measuring probe was a 0.90 m long and 1.5 cm width stick with 128 silicium photo cells mounted on it that measured the Photosynthetic Active Radiation (PAR, 400-700 nm). The measurements were done on 12 marked spots in the experimental field on each measuring date, always around 12.00 h, because the position of the sun influences the measurement and this effect is minimal in a row crop when the sun has about its highest position. At each marked spot, 5 to 7 interception fractions were measured and the average value for the spot calculated.

Rooting depth and rooting intensity were not specially measured. They were examined visually by inspection of the sampled soil columns on 15 June and 10 August. Rooting was most intensive up to 0.30 m and decreased then rapidly with depth. Few roots were seen below 0.5 m depth, although strong individual roots were found to up till more than 1 m depth, following cracks and (worm)channels.

Sampling crop

At two times the crop was sampled to determine total dry matter production and the content of Br and nutrients in the plants. The first sampling was carried out on 11 May 1998. At two spots on each of the four sectors (Fig. 2.1). Plants in one row were cut (just above the soil level) over a length of 1.0 m. The two samples per sector were bulked to one sample for determination of total dry weight yield and chemical analysis.

At the second sampling on 5 August on each plot an area of 2.5 m² was cut by hand and the total weight of the sample recorded. Fifty halms were taken from each of the 4 samples per sector to prepare a "composed" sample for each of the four sectors. Straw and grains of that composed samples were separated. The weights of both plant parts were noted and sub samples were prepared for determination of the moisture contents and chemical analysis.

2.5 Monitoring of meteorological data

Precipitation

Measurements at the soil surface level gives more representative values than measurements at greater heights (Beese and Van de Ploeg 1978; Warmerdam 1981). For this reason it was decided to take precipitation measurements at the soil surface as final output data. However, recording rain gauges at soil level were found to be rather sensitive to flooding and contamination with e. g. soil and dust, which lead to inaccurate registration by e.g. tipping bucket types. Therefore only cumulative rainfall was measured at the soil surface and the distribution with time (resolution of about 0.20 mm) was recorded with data loggers from two rain gauges at a higher level.

Three rain gauges were installed at the meteo station on the experimental field (Fig. 2.1) on 17 November 1997. All gauges were of the Hellman type with a surface area of the aperture of 200 cm² and provided with a large collecting vessel. Cumulative precipitation was collected at the soil surface. A gauge (called gauge I) was placed in a well drained pit with a diameter of about 0.5 m. Around the gauge a metal grid (1 m^2) with a hole in the centre (0.30 m diameter) was placed on the soil surface to prevent splashing soil from the surface into the gauge. The grid consisted of vertical iron strips (2 mm thick and 20 mm high) with a mesh width of 30 mm. The aperture of the gauge was flush with the metal grid surface and consequently the soil surface all the time. A circle around the gauge with a diameter of about 3.5 m was kept free from vegetation. The total collected water was measured after periods of 1 to 5 weeks.

Precipitation was continuously recorded with a second gauge (gauge II), which was placed within 6 m of gauge I. Here, the surrounding was also kept free of vegetation. The aperture was located 0.4 m above the soil surface. Gauge II was provided with a tipping bucket system (Rain-o-matic) and the pulses were recorded (with clock time) with a data logger (Hobo). All the water leaving the bucket system was collected and recorded periodically (1 to 5 weeks). This system enables to re-calibrate the mm precipitation per recorded pulse for each period between the times when the data logger was read out. The mm precipitation per pulse differed slightly for each period due to contamination of the bucket with e.g. dust or changing of the balance point by mechanical causes. The precipitation data set was composed with the calibrated mm precipitation per pulse for each sampling period. A third gauge (gauge III) was placed in the wheat crop. This gauge III was also provided with a tipping bucket system, data logger and collecting vessel. The initial height was 0.3 m above soil level and the aperture was raised equal with the crop level to a maximum of 0.8 m. This gauge was installed as a spare in case of malfunction of the other recording one (gauge II) and to measure collected precipitation at crop height.

The collected precipitation of the two recording gauges II an III differed on average less than 1% over the whole experimental period. Gauge III catched on average 1.6% more rain than gauge II in the bare field at 0.4 m in the period when its aperture was about level with the surrounding crop height. However, gauge III catched 9% less precipitation than gauge I at the soil surface in that period (effect of wind).

The final time series of precipitation at the soil surface, with a resolution of individually recorded pulses, was established as follows. For each recording period of 1–5 weeks the quotient of the cumulative precipitation from the recording Hellmann gauge at 0.4 m height on bare soil (gauge II) and the cumulative precipitation from the Hellmann gauge at the soil surface (gauge I) was calculated. The mm precipitation per pulse derived from the recording Hellmann gauge (gauge II) was divided by this quotient to correct for the effect of the 0.4 m height of the recording gauge (wind drift). The average quotient for the time periods during the experimental period was 0.862 (s.d = 0.06, n = 24) with lowest quotients in periods with stormy weather.

For the period from 15-6-98 to 4-7-98 and from 29-1-99 to 26-2-99 both data loggers failed and no pulses were recorded for the gauges II and III. Only cumulative precipitation on the field was known for that periods: 46.0 and 63.5 mm, respectively. For these periods the daily distribution from the total collected precipitation on the field was estimated from the daily readings (at about 7.30 h) of a rain gauge at 1 km distance of the field. No attempts were made to make a more detailed distribution over the day. The total mm rainfall for days with lack of detailed registration was presented as one 'pulse' at 12.00 h in the rainfall intensity time series.

Snow and a hard wind resulted in unrealistic amounts of precipitation in the gauge at the soil surface in the measuring period from 5-1-99 to 28-1-99. For that period the cumulative precipitation of gauge II at 0.4 m height (corrected for the higher position) was taken to estimate the complete time series of precipitation.

Data weather station 'Haarweg' Wageningen

Data on parameters for calculation of potential evapotranspiration were obtained from weather station 'Haarweg' in Wageningen, at about 10 km distance north of the experimental field. This station is managed by Wageningen Agricultural University. The following data were obtained on a daily basis: global radiation, minimum and maximum air temperature, average vapour pressure and average wind speed at 2 m height. All parameters were measured according to WMO (WMO, 2000).

2.6 Monitoring soil temperature and air temperature

Equipment for measuring temperatures was installed at 19 December 1997, but several start problems caused that correct registration started after the first week of January 1998. Soil temperatures were measured in duplicate at 0.05, 0.50 and 1.0 m depth at the experimental field at a spot near the meteo field (Fig.2.1), which was grown with winter wheat and further cultivated like that in the field. Air temperature was measured at 1.5 m height in a weather cabin with walls of slatted blinds. All sensors were thermistors and the signal/temperature relation (range 0-26 °C) was measured for each number before the start of the experiment. The proper function of the thermistors that measured the air temperature was checked at some times by comparing the read out of the logger with a calibrated mercury thermometer. The thermistors that measured the soil temperature at 0.05 m depth were removed at

time of ploughing and were checked before replacing them. The electronically measured temperatures deviated always less then 1.0 °C from the calibrated mercury thermometer. Temperatures were recorded every 2 h with two Tattle[®] data loggers, one for each set of sensors, which consisted of three soil depths and one air temperature. Every two to three weeks, data were collected from the loggers and the daily averages per sensor were computed and the minimum and maximum temperatures per day were also registrated. The final data set for the temperatures were mainly distracted from one sensor/logger combination. The output of the "spare" logger set was used to fill up some periods with missing data of the main logger set (e.g. by dead battery or communication problems). Air temperatures and soil temperatures generated by the two sensor/logger combinations differed less then 1.0 °C. This comparison formed a good check on the proper working and outcome of the temperature measurements. In the periods from 13 until 29 April 1998 and from 16 until 21 September 1998, no complete or no reliable data were obtained for the air temperatures from both loggers, due to communication problems with one of the loggers and malfunction of the air sensor of the other sensor/logger combination at the same time. Minimum and maximum air temperatures measured at the weather station "Haarweg" of the University at Wageningen (10 km distance from the field) were used to fill up the two gaps in the final data set.

2.7 Monitoring of groundwater level

Groundwater level (phreatic level) was measured continuously in two tubes, one on plot O and one on plot I. The loggers were of the type "Arrow 1.0/2.5" which could measure a maximum water column height of 1.0 m with an accuracy of \pm 0.5 cm. The sensors were calibrated with know heights of water columns before installation and the calibration line was checked again at the end of the experiment for possible drift, which appeared to be minimal. The logger recorded the water level 10 times a day (about every 2.4 h). The data were collected from the loggers every two to three weeks and the proper working of the sensors and loggers was then checked at that time. At inspection times, the electronically measured levels differed some times slightly from the manually measured levels but always less than 3 cm. The position of the pressure sensor against the head of the groundwater tube was measured (\pm 1.0 cm) and adapted if needed, e.g. after great fluctuations of the groundwater level. In some periods with rapidly fluctuating water level, the water column above the position of the sensor became higher than 1.0 m and consequently the sensor were out of the correct registration range. These values were searched for and specially marked in the data sets. Problems with the sensors or troubles with the data loggers resulted in some further gaps in the continuously recorded series. Fortunately, most gaps for the two measuring series did not coincide. So, an almost continuous picture of the groundwater level can be constructed.

Periodically, the phreatic level was also measured in the 16 clusters of tubes for groundwater sampling, mainly at sampling times of groundwater and soil. The convexity of the groundwater table was periodically measured in the row of 12 tubes perpendicular to the drains in the period from 1 January until May 1998. The

piezometric level was periodically measured in three tubes with a filter at 500-600 cm depth on the plots A, I and O (Fig. 2.1). The tube at plot A was destroyed by harvesting in August 1998.

All levels were measured from the head of the tube and later calculated against the soil surface by subtracting the height of the tube above the soil surface. The height of the tubes and the height of the soil surface around the tube was measured against one fixed reference point after installation (6-10-1997) and at the end of the experiment (8-05-1999). At both times, the heads of the tubes had the same levels but the levels of the soil surface around the tubes had risen (1.4 to 6.0 cm) due to the ploughing in December 1998 (soil not fully settled) and swelling of the soil matrix. The <u>average</u> of the soil surface levels at both times was used to correct the measured groundwater levels for the length of the tube that protruded above the soil surface. The differences in the (absolute)level of the soil surface for the tubes were as follows: (All values relative to the level near the tube for piezometric level at plot O)

5 cm lower
18 cm lower
17 cm lower
12 cm lower

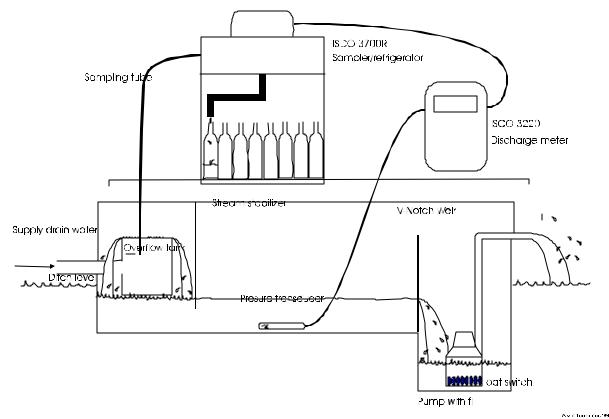


Fig. 2.2 Scheme of drain discharge measuring construction and drain water sampling method

2.8 Monitoring drain discharge

The discharge of each of the two drain sets was measured in an open channel with a V-notch sharp–crested weir with an angle of 30°. A scheme of the drain discharge measuring and sampling construction is given in Fig. 2.2. The discharge was measured with an ISCO model 3220 meter, which recorded the flow rate every 5 min by measuring the pressure head and calculating the flow rate Q with: $Q = K.H^{2.5}$ (K = a known constant depending on angle of notch and units, H = head on the weir). The weir was constructed in a rectangular stainless steel container (1.5 m long), which was anchored in the ditch and loosely covered by a lid. The weir emptied into a build-in and deepened compartment, in which a submerged pump with a float was placed to keep the water level low enough to ensure free outflow of the nappe. The outlet of the pipe, that coupled the three tile drains per drain set, emptied at the side of a 5 L 'overflow' tank that was build in the rectangular stainless steel container. The overflowing water from the 5 L tank filled the flow measuring system. The rim of the overflow tank was clearly above the maximum measurable head level of the weir but 10 cm below the level of the drain outlets so that free outflow of drain water was assumed. The head /discharge relationship of the weirs in the measuring constructions was verified in the laboratory in the 'low head' range (20 to 150 L h⁻¹) and found to deviate less than 15% (7-15%) of the known feeding flow. The accuracy of the higher flows was not measured but may be distracted from the specifications of the pressure sensor and the computed discharges at given heights for an "ideal" constructed 30° V-notch weir. An accuracy 5-10% seems a reasonable estimate for the higher flows. The minimum flow that was reliable measurable was set at 20 L h⁻¹, the maximum measurable flow was restricted by the capacity of the submersed pump. The checked capacity of the pump used for drain set 1 was 6.5 m³ h^{-1} , and that of the pump in drain set 2 was 8.2 m³ h⁻¹. These capacities corresponded with a discharge rate of 24.7 and 34.5 mm day⁻¹ for the catchment areas of drain set 1 and drain set 2, respectively. The minimum flow rates corresponded with drain discharge rates of about 0.08 mm day⁻¹ for both drain sets. Flow rates below 0.08 mm day⁻¹ were considered to be not reliable measurable and consequently set at zero in the final output data.

The continuously measured flow rates $(L h^{-1})$ were stored every 5 min (point measurements) in the data loggers of the flow meters. The discharge data were captured from the loggers weekly or every two weeks, except in Summer. The V-notch weirs were then cleaned (if necessary) and the pressure sensors were calibrated against zero flow, if the discharge rates were low enough to be stopped for a short time.

Problems occurred with correct registration of the drain discharges and fully proportional sampling of the drain water during the experimental period (Table 2.2). Fortunately, one of the two drain sets was measured and sampled correctly in most of the periods with problems. Exceptions were the first weeks of January 1998 (pump failures) and between 28 Oct. and 2 Nov. 1998 after extreme rainfall and consequently extremely high discharge rates, which were beyond the measurable range.

Period	Description of observations and problems							
	Drain set D1	Drain set D2						
31-12-97 to 6-01-98	 Start drain discharge at 3 Jan 98 (visual inspection). No correct registration of discharge due to pump failure. No correct proportional water sampling 	 Start drain discharge at 31 Dec 97 (visual inspection). No correct registration of discharge due to pump failure. <i>No correct proportional water sampling</i> 						
6-01-98 to 12-1-98	Correct registration of discharge.<i>Correct proportional water sampling</i>	 No correct registration of discharge due to pump failure. No correct proportional water sampling 						
6-03-98 to 8-03-98	 Correct registration of discharge Correct proportional water sampling 	 No correct registration of discharge due to pump failure. <i>No correct water sampling</i> 						
26-04-98 to 4-05-98	 Very low discharge, which could not correctly be measured. Water in measuring equipment could be sampled manually (not proportionally) 	 Correct registration of a low drain discharge during a short period. Correct proportional water sampling 						
3-09-98 to 7-09-98	 Drain discharge occurred but no correct registration because discharge tube got disconnected during first discharge. Manually sampling on 7-09 of remaining drain water in measuring equipment (not proportionally) 	 3 Sept 98 (8.25 h) start drain discharge after summer period, correct registration of discharge. <i>Correct proportional water sampling</i> 						
7-09-98 to 15-09-98	Tube connection repaired but data of drain discharge lost by logger problems. Correct proportional water sampling	 Correct registration of discharge and water sampling Correct proportional water sampling 						
28-10-98 to 2-11-98	 Periods in which discharge was slightly higher than max. pump capacity (equivalent 24.7 mm day-1); consequently underestimation of discharge First 10%. of discharge proportionally sampled only. 	 Periods in which discharge was slightly higher than max. pump capacity (equivalent 34.5 mm day-1): consequently underestimation of discharge. First 10%. of discharge proportionally sampled only. 						
1-03-99 to 9-03-99	 Correct registration of drain discharge. One sample bottle filled only due to leakage of sampling tube. 	 Correct registration of discharge Correct water sampling 						

Table. 2.2 Notes concerning problems with registration of drain discharge and sampling of drain water

2.9 Sampling of drain water

The drain water for samples was pumped up from the 5 L tank that was mounted inside the stainless steel container at the end of the drain connecting tube. This intermediate 'sampling tank' was put in to be sure that always water of the latest and actual drain discharge was sampled, which improved correct sampling with low drain discharge rates (no mixing with water in measuring compartment with the weir). The discharge of each drain set was flow proportionally sampled with a cooled ISCO model 3700R sampler (temperature range in cooled room; 4-10°C). The sampler was steered by the ISCO 3220 flow meter. Each of the polythene sampling bottles (1 L) of the sampler was always filled in 10 steps during a time period with a total drain

discharge that corresponded with a pre-set value of 0.5 (Summer), 1.0, 2.0 or 4.0 mm. Those manually set values for the "sampling command" increased with time, depending on the expected or measured drain discharge rate. The 4.0 mm value was introduced on 10-11-98, just after the very high discharge in the weeks before and the value was not changed after that time.

The sample bottles were brought to the laboratory weekly or every two weeks. The test compounds were analysed in each individual bottle or mixed samples that were proportionally composed to get samples which represented longer drain discharge periods. This was done for economic reasons. Time periods for the composition of the mixed samples varied for the test compounds and the exact periods are given with the results for each compound (in the corresponding Annexes). The time periods were chosen after preliminary interpretation of the drain discharge patterns and already existing results of analysis. Water samples were analysed directly or stored at -20 °C for delayed analysis (for analyses of the pesticides mainly).

2.10 Sampling of groundwater

The sampling dates of groundwater and the type of analyses done in the collected samples are summarised in Table 2.3. In general, groundwater was withdrawn from the upper layer of the groundwater. That means, samples were taken from the shallowest of the four filter depths from which water could be collected well on <u>all</u> plots. Now and then one sample was withdrawn from a second, lower filter depth. Only on 4 March 1999, samples were collected from three depths on all plots and analysed. Filters were pumped dry three times, or at least 5 L water was withdrawn, before a sample was taken. Under pressure was applied to a 0.5 L glass flask and water from the filter tube was directly collected in the flask via a stainless steel tube and a short PVC connecting tube. Sub-samples for analyses of nutrients and bromide were poured out from the glass flask into polythene flasks (50 cm³) in the field.

Groundwater samples for P analyses were collected in a different way to prevent oxygen inclusion, which would result in changing chemical balances, and to filter out soil particles in the field. The filter tube was emptied again after collecting the sample for pesticide analyses and a thin PVC tube was placed on the bottom of the filter. Generally, it took < 0.5 min (at the most 2 min) before enough water was in the filter to start sampling of the fresh in-flowing groundwater with a minimum of contact with air.

The PVC tube was connected to a peristaltic pump, which pressed the pumped up water through an in line 0.45 μ m filter (with glass fibre pre-filter). The filtered water was collected in a polythene flask (50 cm³) after sufficient flushing of the pump and filter system to remove air.

Bromide and the nutrients were analysed in each single water sample occasionally. The two pesticides were always analysed in mixed samples per sector. For this purpose, water was collected from the four filters per sector with the same depth and subsequently proportionally mixed for each sector.

Sampling DANU			pplication of	Analyses performed						
date		test chemicals bentazone imida		bromide	bentazone	imida	P-	P-	N-	N-
		& bromide	cloprid	bronnue	Dentazone	cloprid	P- PO ₄	Total	NO ₃	NH ₄
			ciopilu			ciopilu	104	TOtal	-	
03-03-98	62	-35							+	+
10-03-98	69	-28							+	+
30-03-98	89	-8		+ 1)	+ 1)					
07-04-98	97	Appl. ber	ntazone & Br							
29-04-98	119	22		+	+		+		+	+
12-05-98	132	35		+					+	+
27-05-98	147	Appl.	imidacloprid							
29-05-98	149	52	2	+	+	+ 1)			+	+
04-06-98	155	58	8	+	+				+	+
09-06-98	160	63	13	+	+	+			+	+
23-06-98	174	77		+					+	+
10-08-98	222	125	75	+	+	+			+	+
07-09-98	250	153	103	+	+	+	+	+	+	+ Kj)
21-09-98	264	167	117	+	+	+	+	+	+	+ Кј)
06-10-98	279	182		+			+	+	+	+
20-10-98	293	196		+					+	+
18-12-98	352	255	205	+	+	+			+	+ Кј)
28-01-99	393	296	246	+	+	+	+	+	+	+
03-02-99	399	302					+	+		
04-03-99	428	331	276	+	+	+			+	+
18-03-99	442	345	290		+2)	+2)				
20-04-99	475	378	328	+	+	+	+	+	+	+ Кј)

Table 2.3. Sampling dates of groundwater and performed analysis

* **DANU** = day Nr.; day 1 = 1 January 1998

1) water collected for "blank" analyses

2) only one sector (S4) sampled; to collect water for laboratory experiments

Kj) also N-Kjeldal analysis

2.11 Sampling of soil profiles

An overview of the soil sampling dates, including the corresponding days after application of the test chemicals, is given in Table 2.4. Soil profiles were sampled at eleven times in total of which eight times after spraying bentazone and the tracer bromide. At each sampling time, one soil core up to 1.2 m depth was taken from each of the plots A to P. The sampling sites (sub-plots) on each plot were selected randomly before the start of the experiment. A sub-plot could only be used once for soil sampling because of disturbance of the crop and soil surface around the sampling site. A special steel corer was constructed to collect soil cores in PVC tubes (liners) of 1.2 m long and 96.4 mm inner diameter. The steel core tube was provided with a sharp cutting ring with an inner diameter of 94.0 mm. The larger diameter of the PVC liner and its smooth surface resulted in only a small compaction of the soil core (10 to at the most 30 mm). The outer diameter of the cutting ring had a 20 mm larger diameter than the steel tube itself, to reduce friction between soil and tube wall

during pressing the corer into the soil. The PVC liner was sticked between the cutting ring end and a removable head of the steel tube. The steel corer tube was pressed into the soil with a hydraulic wheeled excavator, which also pulled up the corer after exchanging the flat head by one with a welded ring on it for easy connecting a chain. During pulling up the corer, air pressure was applied at the lower end of the cutting ring via a 4 mm tube, which was mounted on the outside of the steel core tube. This hindered slipping out (part) of the soil core. The part of the soil core that was inside the cutting ring was pressed into the PVC liner, which was then pulled out of the steel core tube. The PVC liners with the soil cores were capped at both ends and transported in a horizontal position to the lab, where the cores were split up (within one or two days) and samples for analyses were combined (chapter 2.12).

The tracks of the excavator were situated always at the position of the drain tubes between the plots A to G, B to H, I to O and J to P (Fig.2.1). The cores were taken from a 2 m width band in the middle of the sub-plots. No special attention was given to take the cores between or in the crop rows because the first systematic samplings shortly after application (see below) showed no clear differences between the masses measured between or in the crop row.

The samplings at 8 April and 29 May 1998, shortly after spraying of the test chemicals, were done with a split-tube auger (0.3 m long, inner diameter cutting ring 95 mm; the inner diameter of the split tube was 3 mm more than that of the cutting ring to avoid compression of the soil column). The auger was pressed or hammered into the soil to 0.15 m depth. Subsequently, the auger was carefully dug out and put in a horizontal position. One half of the steel tube was then removed and the soil core was sliced up. These samplings were done to measure the initial concentration in the topsoil most accurately, specially after spraying imidacloprid on a rather developed crop. At these two times with detailed sampling two soil cores were taken on each of the plots A to P, one core between two crop rows and the other with a crop row in the centre of the corer. The above-ground crop parts were removed before with a sharp knife. At 8 April, one day after spraying bentazone and bromide and 5.6 mm rain, the total number of 32 cores were split up into 0.05 m sections in the field and each core section was put into a plastic container for individual analyses of the total soil mass. Soil samples for determination of the soil moisture content and soil bulk density were taken in steel rings (inner diameter 0.05 m, volume 100 cm³) near the spots where the samples for analyses were taken. On 29 May, 2 days after application of imidacloprid and with 15 mm rain in the night before, the cores were divided into a 0.05 m top section and a 0.10 m bottom section. Each core section was put into a plastic bag in the field. The bags were transported to the lab and stored at -25°C until analysis for imidacloprid in January 1999. Each core section was dried at room temperature and then thoroughly mixed. Sub samples of 50 g soil were taken for analysis.

At 21 January 1998 (day 21), during a rainy period, the soil was sampled with a half open faced auger and only moisture contents were measured. Sampling with the

volumetric soil corer was not possible because of the wet conditions and sampling could only be done to about 90 cm depth (groundwater table).

Sampling date	DANU #)		r application chemicals	Analyses performed							
		bentazone & bromide	imidacloprid	bromide	bentazone	imida cloprid	moisture content	P- PO4	N- NO3	N- NH4	
27-10-97	-65	-131					+ scp)				
21-01-98	21	-76					+				
30-03-98	89	-8		+ b)	+ p)	+ p)	+				
08-04-98 a)	98	1		+	+		+		+	+	
29-04-98	119	22		+	+		+	+	+	+	
29-05-98 a)	149	52	2			+	+				
15-06-98	166	69	19	+	+		+	+	+	+	
10-08-98	222	125	75	+	+		+	+	+	+	
21-09-98	264	167	117	+ Br)		+	+	+ ^{t)}	+	₊ Кј)	
02-12-98	336	239	189	+	+	+	+	+ ^{t)}	+	₊ Кј)	
20-04-99	475	378	328	+		+	+	+ ^{t)}	+	₊ Кј)	

Table 2.4. Sampling dates of the soil profile and performed analysis

#) **DANU** = day Nr; day 1 = 1 January 1998

seep) also used to prepare samples for soil chemical analysis by lab at Oosterbeek (4 x 30 cores of 0-20 cm layer) and oxalic extractable total P , Al and Fe

a) sampling with split tube auger to 0.15 m depth, shortly after application of the test chemicals

b collecting soil for "blank" analyses

Br) plots A-H individually analysed for bromide

t) also P-total

𝑘) also N-Kjeldahl analyses

2.12 Treatment of soil samples in the lab and procedure for determination of volume fraction of liquid and dry bulk density

The 16 soil cores in the PVC liners were sliced up in the lab within one to two days after collecting them in the field. The PVC tube was placed in a horizontal position in a mold and the wall was carved on both sides. The upper half of the liner was then removed and 0.10 m sections were marked with a sharp knife. The upper end of the mark stick was fixed with the (visually averaged) soil surface in the PVC tube. No correction was made for the 1 to 3 cm lowering of the soil surface inside the column during field sampling. Sometimes the initial soil surface had to be estimated by reconstruction of the soil in the top, because the soil mass flowed out due to the horizontal position when the soil was dried out or cultivated.

The so marked soil core was sliced up into 0.10 m long sections with a thin round knife, always starting at the lower end of the soil column to avoid contamination. The state of the wet clay soil in the profile of the experimental field allowed us to cut fairly exact slices, that kept their form during further handling. The total weight of each section was noted immediately to avoid evaporation of water. Subsequently, the core section was put in a vertical position and the centre was cut out with a sharp thin cutting tube (inner diameter 0.075 m). This centre core was taken for preparing samples for analyses of the test chemicals, because it can be expected that this part is

not contaminated by handling during sampling in the field and in the lab. The soil of the outer part of the core section was used to determine the moisture content by drying to constant weight at 105 °C. From the total wet weight of the 0.10 m section and the moisture content of its outer part, the volume fraction of liquid and the dry bulk density were calculated. A centre core could not always be taken from the upper 0.20 m layer because of the loose structure. Part of the mixed soil mass within that core section was then separated for analyses. This method is acceptable because these layers have low risks for inter-contamination (high initial contents).

Because pesticide analysis is costly, all 16 soil columns per sampling time were not analysed individually but the corresponding layers of four cores were combined per sector (2.1). An exception was made for the columns taken on 21-9-1999. At that time soil columns taken on the plots A to H were analysed individually for bromide and nutrients. All three 0.10 m sections from the ploughed layer (0.0-0.30 m) were analysed separately. The layers 0.30-0.50 m, 0.50-0.70 m, 0.70-0.90 m and 0.90-1.20 m of each soil column were combined into one soil sample. The soil columns taken on 12 February 1999 were not all 1.2 m long. Therefore, only two 0.10 m sections (between 0.90-1.10 m) were combined to obtain the deepest soil sample at that time. The combined soil samples were dried at room temperature under an air flow, drying took one to maximal two days. The whole masses of the samples were then crushed and mixed well in a Hobart food chopper and sub samples (50 to 150 g) were taken for analysis of the test chemicals and nutrients. A sub sample (0.5 kg) was stored at -25 °C for (delayed) analyses of the pesticides and for possibly re-analysis.

2.13 Procedures for extraction and analysis of bromide ion

Soil and water

Bromide was extracted by shaking 100 g moist soil with 100 or 150 cm³ CaCl₂ (0.01) mol dm³) for 1 h. The soil water suspension was cleared by centrifugation for 10 min at a rotation frequency of 40 s⁻¹ and a small portion of the liquid was withdrawn for analysis. Concentration of bromide ion in the extracts was measured with HPLC using a 'Hypercil ODS' column (25 cm x 4.6 mm i.d), which was operated at room temperature and packed with octadecyl silane; 5 µm; 10% carbon. The mobile phase was water containing 0.855 g L^1 KH₂PO₄, 0.715 Na₂HPO₄ and 0.004 M tetrabutyl ammonium dihydrogen phosphate. This method gave a good separation of the bromide peak with the nitrate peak. The flow rate of the mobile phase was 1.5 ml min⁻¹ and 200 μ l samples were injected. Bromide ion was measured with a spectrophotometer at a wave length of 210 nm. The detection limit in soil, was 0.15 mg kg¹ dry soil. The extraction efficiency was measured from blank soil samples spiked at 5 mg kg⁻¹ and found to range between 90 to 110%. Contents were not corrected for recovery. The limit of quantification (LOQ) was set at 0.3 mg kg¹ dry soil or 0.50 mg dm³ soil (dry bulk density of 1.5 kg dm³). Note that LOQ is set higher than the detection limit because small interferring peaks in the chromatograms made exaxt quantification not always possible at lowest concentrations.

Concentration of bromide ion in groundwater and drain water samples were analysed with the same HPLC method after filtration of the samples over a 0.45 μ m filter. The limit of quantification (LOQ) was 0.25 mg L⁻¹.

Стор

Crop samples were dried, pulverised and well mixed. Sub samples (5 g) were transferred into 10 ml 0.01 M HCl and stored for two weeks. The extracts were then filtered and analysed with HPLC as described for the soil samples. The extraction efficiency was not measured. Instead of recovery experiments, samples were also extracted with 0.1 M HCl after first burning of the sub samples. This method gave considerable lower bromide contents for the grains but identical values for the other crop samples. The results of the method without burning are therefore presented in this report.

2.14 Procedures for extraction and analysis of bentazone in soil and water

Soil

Bentazone was extracted by shaking 100 g to 150 g moist soil with 100 cm³ CaCl₂ (0.01 mol dm⁻³) for 1 h. The soil water suspension was cleared by centrifugation for 10 min at a rotation frequency of 40 s⁻¹ and 40 to 60 cm³ liquid was withdrawn for analysis. Samples were directly injected into the HPLC if the concentrations in the extract were expected to be high (> 0.1 mg L^{-1}). The soil extracts were concentrated in case of low contents. Part of the soil extract (25 to 50 cm³) was acidified by adding 1 cm³ concentrated HCL (12 mol dm³) and bentazone was extracted by shaking with 25 cm³ dichloromethane for 1 h. The dichloromethane layer was collected and evaporated under a nitrogen stream on a water bath at 40 °C. The residue was dissolved in a measured volume of acetone (\pm 2.5 cm³), which was stored at -20 °C until analysis. For HPLC analysis, part of the acetone extract (0.2 to 0.5 cm³) was evaporated in a HPLC sample vial and the residue re-dissolved by adding at first 0.2 cm³ methanol and after some time 0.3 cm³ HPLC water to reach a final volume of 0.5 cm³. The solution was shaken and three times placed in an ultrasonic bath. The solution was further stored at room temperature for at least one day to ensure complete dissolving of bentazone from the residue matrix.

The extraction efficiency was determined for a range of concentrations in a series of experiments with soil samples of different layers during the whole experimental period. Blank soil samples (collected on 30-03-1998 before apllication of bentazone) were spiked with different masses of analytical grade bentazone. The average extraction efficiency for the method with direct HPLC analyses of the extract was 100.6% (s.d=9.4, n=45) with contents from 0.05 to 0.2 mg kg¹. The average extraction efficiency of the method, including the volume reduction step of the extract, was 99.7% (s.d=7.9, n=24) for contents between 0.05 and 0.2 mg kg¹, and 81.9% (s.d=5.3, n=5) for contents between 0.001 and 0.01 mg kg¹. The measured concentration were not corrected for extraction efficiency.

Water

Bentazone was extracted from groundwater and drain water using solid phase extraction. Samples of 800 cm³ were first filtered over two filters (Whatman GF/D 2.7 μ m and Whatman GF/C 1.2 μ m) to remove soil particles. The filtrate was collected in a bottle and 40 g NaCl was dissolved. Phosphoric acid (30%) was added until pH was between 2.55 and 2.66. Subsequently, the filtrate was led through a column packed with 0.5 g Bakerbond octadecyl (C₁₈, 40 µm Prep LC Packing from Baker) at a flow rate of 5 cm³ min⁻¹. The column package was pre-conditioned with two 5 cm³ portions of methanol, followed by two 5 cm³ portions of a sodium acetate buffer (0.025 mol dm⁻³, pH 2.65). NaCl was removed from the C₁₈ material by one washing with 5 cm³ buffer solution and the C₁₈ material was then dried with an air flow. Bentazone was eluted from the adsorbent with two portions of 2 cm³ acetone, which were collected in a 4 cm³ vial. The acetone was evaporated and the residue redissolved in 2.5 cm³ acetone. The vials were sealed by Teflon lined screw caps and stored at -20 °C until analysis. For HPLC analysis, part of the acetone extract (0.2 to 0.5 cm^3) was evaporated and the residue re-dissolved in 0.5 or 1 cm³ methanol/water (V/V 4/6).

The efficiency of the extraction procedure for water was determined for a range of concentrations in a number of analysis series during the experimental period. Bentazone was added to blank samples of groundwater, drain water and tap water, creating concentration in the range between 1 and 12.5 μ g dm³. The not spiked water samples were also analysed for control. The extraction efficiency for the method was on average 100% (s.d = 12, n=17). Concentrations of bentazone in water samples were not corrected for extraction efficiency.

HPLC analysis

Bentazone concentrations were measured with HPLC. The chromatographic system consisted of a Waters[™] 717 auto sampler, a Perkin Elmer series 410 LC pump and a Perkin Elmer LC 90 UV detector, operating at 224 nm. Separation was done at 40 °C on a Nova-Pak C18 column (150 mm length, 4.6 mm inner diameter) provided with a 20 mm long pre-column, which was packed with the same C18 material. The elution liquid (flow rate 1 cm³ min⁻¹) was a mixture of a sodium acetate buffer in HPLC water (0.025 mol dm⁻³, pH 2.65) and methanol (60/40, V/V). A volume of 20 to 100 mm³ was injected. Standard solutions in the range 0.005 to 3 mg dm⁻³ were prepared in HPLC water and in water/methanol (V/V, 60/40). Composition of the liquid of the samples and the standards were always kept identical. The detector signal was processed with the Multichrom[®] data package program. Concentrations were determined on the basis of peak heights or peak areas. The detection limit (for well quantification) of the HPLC method in soil extracts was set at 10 μ g dm⁻³ at a signal/noise ratio of 5. The limit of quantification (LOQ) of bentazone in water samples was set at 0.03 μ g dm³ and in soil samples at 0.5 μ g kg¹ dry soil, corresponding with 0.8 μ g dm⁻³ soil (dry bulk density 1.5 kg dm⁻³).

Stability in frozen samples

Eleven soil samples collected on 29 - 4 - 1998 (content range 0.5 to 5 mg dm³) were re-analysed after storage at -25 °C for 329 days. The average ratio between the first

analysis and those after storage was on average 1.07. Bentazone analysis in groundwater and drain water samples were always performed within two weeks after collection and stored in a refrigerator until extraction.

2.15 Procedures for extraction and analysis of imidacloprid in soil and water

Soil

Imidacloprid was extracted by shaking 100 g moist soil with 100 cm³ of a mixture of acetone /water (V/V, 80/20) on a reciprocating shaker for 1 h. The supernatant liquid was poured off and cleared by centrifugation for 10 min at a rotation frequency of 40 s⁻¹ and a known volume of liquid (40 to 60 cm³) was withdrawn. The collected sample was placed on a water bath at 40 °C and the greatest part of acetone was evaporated under an air stream. Dichloromethane (20 cm³) was added to the remaining liquid and the mixture was shaken for 1 h. The dichloromethane layer was transferred quantitatively into a 25 cm³ tube and evaporated under an air stream. The residue was re-dissolved in 2.5 cm³ acetone and stored at -20 °C until analysis by HPLC.

The extraction efficiency was determined for a range of concentrations (0.01 to 0.5 mg kg⁻¹) in 8 analysis series with spiked soil samples from the top layer and in one series with soil from 0.40 - 0.70 m depth. The spiked samples were stored for at least 2 h at 5°C before extraction. The average extraction efficiency of the method was 104.2% (s.d=10.5, n=32). The measured concentration in the field samples and transformation studies were not corrected for extraction efficiency.

Water

Samples of 500 cm³ were pre-filtered as described for bentazone analysis. The eluate was then led through a column packed with 0.75 g of the material described for the analysis of bentazone. The C_{18} material was pre-conditioned with two 5 cm³ portions of methanol, followed by two 5 cm³ portions of HPLC water. The C_{18} material was dried with an air flow after elution of the water sample. Imidacloprid was eluted from the adsorbent with two portions of 2 cm³ acetone, which were collected in a 4 cm³ vial. The acetone was evaporated and the residue re-dissolved in 2.5 cm³ acetone. The vials were sealed by Teflon lined screw caps and stored at -20 °C until HPLC analysis.

During the analysis series, the extraction efficiency was checked from spiked tap water samples or groundwater samples (concentration range 1 or 10 μ g dm⁻³). The extraction efficiency of imidacloprid was on average 91.7% (s.d = 7.3; n = 17). The not spiked water samples were analysed as controls. Concentration in water samples from the experiment were not corrected for recovery.

HPLC analysis

The concentration of imidacloprid in the prepared extracts was measured with HPLC after the methods described by Fernandez-Alba et al. (1996) and Yoichi Ishii

et al. (1994). Part (0.2 to 0.5 cm³) of the stored acetone extract of a soil sample or water sample was evaporated to dry and the residue re-dissolved in 0.5 or 1 cm³ acetonitrile/water (V/V 25/75). The chromatographic system consisted of a Perkin Elmer ISS 100 autosampler, a Waters 590 pump and a LC 90 UV detector or LC 235 diode array detector, both from Perkin Elmer and operating at 270 nm. Separation was done at 40 °C on a LiChrospher[®] 100 RP18 column (125 mm length, 4.0 mm inner diameter) provided with a 10 mm long guard column, which was packed with the same C_{18} material. The elution liquid (flow rate 1 cm³ min⁻¹) was a mixture of acetonitrile and HPLC water (25/75, V/V). A volume of 20 to 100 µl was injected, depending on the concentration level.

Standard solutions in the range of 0.005 to 3 mg dm⁻³ were prepared in a mixture of acetonitrile and HPLC water (25/75, V/V) or in pure water for measuring concentrations in the water phase with the adsorption measurements on soil (chapter 3.4). The detection limit (for well quantification of peaks) of the HPLC method was 5 μ g dm⁻³ at a signal/noise ratio of 5. The limit of quantification (LOQ) of imidacloprid in water samples was set at 0.05 μ g dm⁻³ and in soil samples at 0.6 μ g kg⁻¹, dry soil, corresponding with 0.9 μ g dm⁻³ soil (dry bulk density of 1.5 kg dm⁻³).

Stability in frozen samples

The stability of imidacloprid in frozen soil samples was checked by re-analysing four field samples that were stored at -25 °C for 302 and 315 days. The contents after storage differed on average less than 2% from the first analysis. A 8.7 dm³ groundwater sample from the experimental field was spiked with imidacloprid to 2.29 µg dm³. The sample was analysed (triplicate) and the remaining volume was divided over three glass flasks and three polythene flask (same types as used for storage of the field samples) and stored at -25 °C for 245 days. The measured concentrations after storage were on average 5% higher than the measured concentrations directly after addition. It was concluded that storage in deep freeze had no effects on the analysis results.

Check imidacloprid analysis with LC/MS

A number of extracts were also analysed with LC-MS by RIKILT DLO , (Dr H van Rhijn personal communication) to identify imidacloprid and to confirm the HPLC-UV measurements. The HPLC separation was performed on a Merck Lichrospher RP18 column (125 x 4.6 mm) with a mobile phase of water acetonitrile (75/25, v/v) at a flow rate of 1 ml min⁻¹. Samples (100 μ l) of analytical standards and extracts were alternately injected. The column was directly coupled to a LCQ mass spectrometer provided with an Apcl interface. The measurements were done in the MS² (tandem)mode in which the daughter ions originating from the molecule-ion are measured. Imidacloprid has four daughter ions: m/z 175, 209, 210 and m/z 212. Quantitative measurements were made with the signal for m/z 210, whereas for identification the ratio between m/z 175.209, 212 and m/z 210 was used. All samples fulfilled the (concept) EU criteria for tandem-MS

The results of the measurements are presented in Table 2.5. The occurrence of imidacloprid was confirmed in all samples tested. Slightly higher concentrations were

measured with LC-MS, which is probably partly caused by concentrating of the small volume of the extracts during storage until LC-MS analysis.

Sample type and code	Sampling date	DANU *	Concentration measured in extract (ng ml ⁻¹)		
			HPLC-UV	LC-MS	
Drain water					
Set D1	3-300.3	280	1.11	1.78	
Set D1	3-383.5	320	1.82	0.50 (0.54) **	
Set D2	4-248.9	245	6.3	12.4	
Set D2	3-300.3	280	1.97	3.16	
Set D2	5-318.4	309	0.25	0.37	
Groundwater					
Sector 3, filter 130-150 cm	09-06-98	160	0.09	0.25	
Sector 3, filter 190-280 cm	10-08-98	222	0.33	0.75 (0.83)	
Sector 1, filter 130-150 cm	07-09-98	250	0.36	0.74	
Sector 2, filter 130-150 cm	07-09-98	250	0.39	0.73	
Sector 4, filter 100-120 cm	04-03-99	428	0.42	0.57 (0.67)	
Soil					
Sector 1, 0.7-0.9 m	21-09-98	264	0.20	0.28 (0.25)	
Sector 3, 0.3-0.5 m	21-09-98	264	0.20	0.28	
Sector 4, 0.5-0.7 m	02-12-99	336	0.10	0.10	

Table 2.5 Results analyses for imidacloprid of soil and water extracts with LC-MS

* DANU = Day Nr; day 1 = 1 January 1998

** Values between parenthesis are duplicate measurements

2.16 Procedures for extraction and analysis of nutrients

Soil and water

Nitrogen (N) and Phosphorus (P) compounds were extracted by shaking 100 g moist soil with 100 or 150 cm³ CaCl₂ (0.01 mol dm⁻³) for 1 h. The soil water suspension was cleared by centrifugation for 10 min at a rotation frequency of 40 s⁻¹ and a small portion of the liquid was withdrawn for analysis. Concentrations of nutrients in the extracts were measured with the same techniques as the concentrations in the groundwater and drain water samples. The latter samples were filtered over a 0.45 μ m filter.

Ammonium (NH₄) was measured on the flow injection analyser (FIASTAR 5000). NH₄ passes a membrane and is induced a pH change in the parallel solvent. The pH influences the color of an indicator (Tecator no. 5000-0295) and this change is a measure for the concentration. For the soil samples the limit of quantification (LOQ) was set at 0.04 mg NH₄ kg⁻¹ dry soil or 0.06 mg NH₄ dm⁻³ soil (dry bulk density of 1.5 kg dm⁻³). The detection limit for the water samples was 0.05 mg NH₄ L⁻¹.

Nitrate (NO $_3$) was measured using the flow injection analyser. Nitrate is reduced to nitrite in a cadmium reductor. Nitrite formed from reduction of nitrate will form a diazo compound. This compound is coupled with N-(1-naphtyl)-Ethylene Diamine

Dihydrochloride (NED) to form a purple azo dye. This azo dye is measured at 540 nm. For the soil samples the LOQ was set at 0.04 mg $NO_3 kg^1$ dry soil or 0.06 mg $NO_3 dm^{-3}$ soil (dry bulk density of 1.5 kg dm⁻³). The detection limit for the water samples was 0.05 mg $NO_3 L^{-1}$.

Kjeldahl-N was measured after destruction according to Kjeldahl using the ammonium methode on the flow injection analyser. The LOQ for the soil samples was set at 0.03 mg Kjeldahl-N kg¹ dry soil or 0.05 mg Kjeldahl-N dm⁻³ soil (dry bulk density of 1.5 kg dm⁻³). The detection limit for the water samples was 0.25 mg Kjeldahl-N L⁻¹.

Ortho-Phosphate (PO₄-P) was measured with the flow injection analyser using the molybdenum bleu method. For the soil samples the LOQ was set at 0.015 mg Ortho-P kg⁻¹ dry soil or 0.02 mg Ortho-P dm⁻³ soil (dry bulk density of 1.5 kg dm⁻³). The detection limit for the water samples was 0.025 mg Ortho-P L⁻¹.

Total-Phosphate was measured using the ICP-AES. The LOQ for the soil samples was set at 0.015 mg Total-P kg^{1} dry soil or 0.02 mg Total-P dm^{3} soil (dry bulk density of 1.5 kg dm^{3}). The detection limit for the water samples was 0.025 mg Total-P L^{1}.

Стор

Nutrient content in crop samples were measured according to standard methods by the Laboratory for Soil and Crop testing at Oosterbeek, The Netherlands.

2.17 Soil chemical properties and texture

Soil samples were taken at 5 depths for determining some soil chemical properties and texture of the soil. On 27-10-1997 soil columns were taken with the sampling procedure for soil profiles as described in section 3.11. The 16 soil columns were split up into the the layers 0-30 cm, 30-50 cm, 50-70 cm, 70-90 cm and 90-120 cm. Samples for analysis were prepared by mixing the soil per depth and per sector.

The following measurements were carried out by the Laboratory for Soil and Crop testing at Oosterbeek, The Netherlands, using standard methods:

- pH-KCL
- pH-water
- content of total phosphate
- content of total nitrogen
- content of N-mineral
- actual cationic exchange capacity
- fraction of organic matter
- fraction of organic carbon
- fraction of calcium carbonate
- fraction of clay

- fraction of silt
- fraction of sand

The resulta are presented in Annex 42.

Oxalic extractable Phosohate (total-P), Aluminium (Al) and Iron (Fe) were measured by Alterra. Extraction was with a solution containing ammoniumoxalatemonohydrate and oxalic acid-dihydrate during 2 hours. Total-P, Al and Fe were measured using ICP-AES.

3 Procedures for laboratory experiments

3.1 Measurements of soil hydraulic properties

Soil water retention curves and unsaturated hydraulic conductivity were simultaneously measured using the evaporation method of Wind (described by Stolte et al., 1997). Both characteristics were obtained by fitting the Van Genuchten functions (Van Genuchten, 1980) to the measured data using the RETC optimisation program (Van Genuchten et al., 1991). Saturated hydraulic conductivity was measured with the constant head method described by Stolte et al. 1997).

Samples for both types of measurements were taken in the same pit at a representative spot at the western side of the experimental field in May 1998. The soil profile was sampled at six depths, 11-19 cm, 22-30 cm, 36-44 cm, 61-69 cm, 96-104 cm and 131-139 cm, by pushing gently PVC cylinders (height: 8 cm; inner diameter: 10.3 cm) into the soil at the right depth. At each depth 4 undisturbed samples were taken: one pair of duplicates for each type of measurement.

During the incubation studies with the pesticides, the moisture content of topsoil at pF 2.0 was determined in triplicate of ring samples from the 0-30 cm layer with a typical bulk density of 1.40 kg dm⁻³. The rings were filled in the laboratory with the soil used for the incubation studies, so these are disturbed samples. The soil was water-saturated and placed on ceramic filter plates with a hanging water column of 100 cm (pF 2.0).

3.2 Measurements of shrinkage characteristics

Shrinkage characteristics of soil aggregates were determined with the SARAN method as suggested by Bronswijk and Evers-Vermeer (1990) [method described by Stolte et al, 1997]. Soil samples were taken from the same pit at the same six depths and at the same time as described in chapter 3.1. At each depth about 10 soil aggregates with a diameter of 2 to 5 cm were taken from the wall of the pit. In the laboratory, for each soil layer, four of the best aggregates were saturated on a sand box, and then prepared for the determination of the shrinkage characteristic.

3.3 Transformation rates of the pesticides in three soil layers

Bentazone

The transformation rate of bentazone was measured in soil samples from the 0-30 cm, 40-70 cm and 80-120 cm layers. An overview of the performed incubation series and the specifications of each series is given in Table 2.6. Data on soil chemical characteristics and particle size distribution of the soil batches used for the studies are presented in Table 2.7. On 30-3-98, soil from the 0-30 cm layer was collected by

taking 10 soil cores (inner diameter 6 cm) on each of the four sectors and mixing all 40 cores to one sample. The soil from the 40-70 cm and 80-120 cm layers was collected proportionally from 16 undisturbed soil columns, taken for determination of blanks for analysis and estimation of the soil moisture profile on 30-3-1998. At sampling time groundwater level was between 1.1 to 1.2 m, but no water flowed out of the columns. The bulked samples per layer were stored in field-moist condition at 5 °C until 12-5-1998. At that time they were placed in a cabinet at 10 °C until further treatment for incubation with bentazone. At 18-5-1998, the soil samples were gently dried at room temperature under a forced air stream while the soil was crumbled and mixed by hand and with a scoop in the mean time. Drying was continued (2.5 to 3.5 h) until the total weight of evaporated water (measured by constant weighing on a balance) corresponded with a loss of about 4 g 100 g¹ moist soil (being the mass of water in which the pesticide was added to the incubated soil portions later). The soil of the 0-30 cm layer was further mixed in a Hobart food chopper. The soil batches of the two deeper layers were not further mixed because of the comparatively wet condition. Maximum size of some of the crumbles was 1 cm.

Characteristic	Soil layer						
	0-30 cm			40-70) cm	80-120 cm	
	5° C	15° C	25° C	10° C	15° C	10° C	10° C*
Bentazone							
Average mass of dry soil (g)	86.3	86.3	86.3	84.7	84.7	82.2	79.1
Average mass of water (g)	17.9	17.9	17.9	19.5	19.5	22.1	40.2
Moisture content (g 100 g ⁻¹) **	20.7	20.7	20.7	23.0	23.0	26.9	Sat.
Added mass of pesticide (µg)	97.7	97.7	97.7	9.45	9.45	0.95	1.66
Imidacloprid							
Average mass of dry soil (g)	66.0	66.0	66.0	-	72.2	69.7	-
Average mass of water (g)	14.5	14.5	14.5	-	17.4	19.8	-
Moisture content (g 100 g ¹)**	22.0	22.0	22.0	-	24.1	28.3	-
Added mass of pesticide (µg)	54.6	54.6	54.6	-	2.18	2.18	-

Table 2.6. Characteristics of the incubation series with bentazone and imidacloprid in soils from three layers.

* water-saturated soil

** moisture content during incubation (dry soil basis).

Characteristic		Bentazone]	1	
	0-30 cm	40-70 cm	80-120 cm	0-30 cm	40-70 cm	80-120 cm
pH-KCl	7.2	7.4	7.5	7.1	7.5	7.6
pH-H₂O	7.9	7.9	8.1	7.2	8.1	8.2
CEC (cmol+ kg-1)	22.4			24.2		
Organic matter (%)	2.3	1.1	1.0	2.5	1.2	1.0
Organic carbon (%)	1.28			1.45		
CaCO ₃ (%)	0.2	4.8	5.6	0.2	2.9	6.6
Clay (%)	27.7	34.1	37.2	28.6	31.9	36.2
Silt (%)	52.9	50.5	47.1	54.3	54.1	48.0
Sand (%)	19.4	15.4	15.8	17.1	13.0	15.8

Table 2.7. Characteristics of the soils used for the transformation and sorption measurements of bentazone and imidacloprid. Adsorption measurements only in soil of the 0-30 cm layer.

Portions of 100 g of moist soils from each soil layer were weighed into 0.25 L glass flasks. While the soil was added to the flasks, soil portions (10 for each batch of a soil layer) were taken periodically for determination of the average moisture content of

the soil in the flasks before adding the pesticide solutions. The flasks were preincubated for 7 days at the corresponding incubation temperature. On 26 May 1998, 4 ml of aqueous solutions containing bentazone were added to the glass flasks. The solution was added with a 5 ml syringe with a long thin needle, which was emptied slowly (drop wise) while rolling and shaking the flasks to get an even initial distribution of the pesticide. While dosing the flasks, 15 portions of 4 ml were taken for analysis of the dose and the average of these measured masses of bentazone are presented in Table 2.6. The average soil moisture contents during incubation were calculated from the total mass of water in the system after application of the pesticide in 4 ml water, the contents are given in Table 2.6.

The total mass of dry soil per incubation flask was very equal; CV (coefficient of variation) = 0.2 to 1.0%, and likewise the total mass of water; CV = 0.6 to 2.0%. The CV for the added mass of bentazone was between 0.3 and 1.3% for the 7 incubation series with bentazone .

The moisture contents during incubation were slightly lower (0.4 to 1.7%) in all three layers than the average contents of the soils when they were collected in the field on 30-03-1998. During two weeks before sampling, only 6 mm rain fell in small portions and the groundwater table gently fall from 80-87 cm at 15-03-1998 to 109-120 cm below soil surface at 30-03-1998. It was assumed that the measured moisture contents in the soil profile were representative for the field in equilibrium with an average water of 1.10 m, which appeared to be quite correct (see chapter 6.1)

Bentazone was also incubated in water-saturated soil from 80-120 cm depth, because this moisture condition could occur for longer times at that depth in the field during the experimental period. The water-saturated condition was obtained by adding 19 ml of a solution of bentazone in water to 100 g moist soil portions. A water layer of a few millimetres thickness resulted on top of the soils. The flasks were not air tight closed, so incubation was aerobic as was expected in the field for the upper layer of the groundwater. The dose of bentazone was increased for the saturated series to obtain comparable concentrations of bentazone in the soil-water phase (about 42 µg L^{-1}) similar to the other incubation series in this soil layer. Only single samples were extracted and analysed with the incubation series in the 40-70 cm layer at 10 °C at the sampling times.

The flasks with the soil portions were covered with an aluminium foil with a 2 mm hole and placed in loosely covered boxes with a water layer on the bottom to prevent evaporation of moisture from the flasks. The boxes were placed in constant temperature cabinets. The initial mass of each flask was weighted and the mass was measured again at the sampling times to estimate possible changes in the mass of liquid. At increasing time intervals duplicate samples (single for series at 10°C in 40-70 cm layer) were analysed to determine the remaining masses of bentazone or stored at -25° C for delayed analysis. Bentazone was extracted by adding 100 ml CaCl₂ solution to the flasks, which were then further treated as described in chapter 2.14. Extracted masses were not corrected for extraction efficiency because this was almost 100% (2.14).

Imidacloprid

For several reasons, among labour capacity, incubation studies and sorption measurements with imidacloprid were started in 1999. Soils collected and prepared for the incubation studies with bentazone has been stored for a too long time at that time. For that reason fresh soils had to be collected outside the treated part of the field. Soil samples for incubation studies (and sorption experiments) with imidacloprid were collected on a 10 m wide strip land along the North side of the experimental field on 3-2-1999. This area was not sprayed with the pesticides but was further cultivated and cropped similar to that of the test area. Therefore, the soil may be seen as being representative for the experimental field.

The transformation of imidacloprid was measured in soil samples from the 0-30 cm, 40-70 cm and 80-120 cm layers. An overview of the performed incubation series and the specific characteristics of each series is given in Table 2.6. Data on soil chemical and particle size distribution of the soil batches used for the studies are presented in Table 2.7. The 0-30 cm layer was sampled by taking soil cores (3 cm diameter) at 30 sites. Soil from the 40-70 cm layer and the 80-120 cm layer was collected at 10 sites. A hole was drilled at each site with an auger (Edelman type, 11 cm diameter) to the top of the layer to be sampled. Soil was then collected with a smaller auger (6 cm) until the lower depth of the layer was reached. Careful handling enabled to collect soil, that was not contaminated with material from other depths. The soil cores were bulked per layer and stored at 10° C until further preparation for incubation. The soils of the three layers were gently air dried to the desired moisture loss and crumbled and mixed as described for bentazone. The mixed samples were stored for at least one day to promote equal moisture distribution before weighing moist soil portions into the incubation flasks. In contrast to the incubations with bentazone, no pre-incubation period was put into practice. This because the soil samples were freshly collected in the field and then stored at 10°C shortly. On 9 and 10 February 1999, 1 or 2 days after preparation of the soils, imidacloprid was applied. 4 ml of aqueous solutions, containing analytical grade imidacloprid at appropriate concentrations, were added to the glass flasks as described with the bentazone incubations. The applied masses of imidacloprid were checked by analysing 4 portions of the 4 ml doses for the incubation series in soil from the 0-30 cm layer (CV = 0.2%) and two portions of the 4 ml doses for the two deeper layers. The averages of the measured masses are presented in Table 2.6. At increasing time intervals duplicate samples were analysed to determine the remaining masses of bentazone or withdrawn flasks were stored at -25° C for delayed analysis. Imidacloprid was extracted by adding 100 cm^3 of a mixture of acetone /water (V/V, 80/20) to the flasks that were than shaken for 1 h. Samples were further treated as described in chapter 2.15. Extracted masses were not corrected for extraction efficiency because this was on average around 100%.

3.4 Measurements of sorption of the pesticides in soil water suspensions.

Bentazone

From preliminary experiments it was known that the sorption of bentazone to the Andelst clay soil was very low (bentazone could be extracted with water with about 100% efficiency). Lowering of the concentration in the water phase in a batch equilibrium study would be hardly measurable and consequently lead to inaccurate sorption values. It was decided to prove the low sorption with an adapted batch study with 4 concentration levels (4 replicates each) with a minimum water/soil ratio (about 1:1) at only one temperature. The soil for this study was taken from the same batch as that used for the incubation study with bentazone in the 0-30 cm layer; properties are presented in Table 2.6. A mass of 50.0 g moist soil was added to centrifuge tubes with a volume of 80 ml. The moisture content of the soil was measured by drying three soil portions at 105 °C and was found to be on average 0.1615 kg kg¹. Then 40.08 ml (s.d 0.05, n = 16) of one of the four bentazone solutions (in CaCl₂, 0.01 mol dm⁻³) was added to the centrifuge tubes (4 replicates for each concentration). The added solutions were prepared from one stock solution. The concentrations of the four solutions were measured in triplicate and found to be: 0.136, 0.650, 2.71 and 13.7 mg dm⁻³. The tubes contained on average 43.06 g (s.d. 0.01, n = 16) solid phase and 47.03 g (s.d 0.05, n = 16) liquid phase. The centrifuge tubes were closed with glass stoppers and placed on a rotating disk, which was at an angle of 1.4 rad. The disk was placed in a cabinet with a constant temperature of 20 °C. The rotating frequency of the disk was 0.3 s⁻¹. After rotating for 24 h, the stoppers were replaced by aluminium foil and the tubes were centrifuged for 20 min at a rotation frequency 33 s¹. This was done in a Varifuge 3.2RS Heraeus centrifuge that was kept at the same temperature as in the cabinet. The concentration of bentazone in the water layer was measured in duplicate by direct injection of the liquid in the HPLC or after 10 times dilution with $CaCl_2$ solution (0.01 mol dm⁻³). Concentration of bentazone in extracts of blank soil was $< 5 \ \mu g \ dm^{-3}$.

Imidacloprid

The sorption of imidacloprid was determined at 5, 15 and 25 °C with soil from the 0-30 cm layer, collected on 3-2-1999, which was also used for the degradation studies with imidacloprid; properties are presented in Table 2.6. Solutions of imidacloprid with measured concentrations (duplicate) of 0.106, 1.07 and 10.6 mg dm⁻³ were made in CaCl₂ (0.01 mol dm⁻³). A mass of 50 g moist soil was added to centrifuge tubes with a volume of 80 ml. The moisture content of the soil was measured by drying 10 soil portions at 105 °C and was found to be 0.159 kg kg⁻¹. Then 50.15 ml (s.d = 0.13, n = 27) of the three imidacloprid solutions was added to the centrifuge tubes (triplicate for each concentration). Each tube contained on average 43.14 g (s.d = 0.009, n = 27) solid phase and 57.01 g (s.d = 0.18, n = 27) liquid phase. The centrifuge tubes were closed with glass stoppers and placed on a rotating disk, which was placed for 24 h in a cabinet with a constant temperature of 5, 15 or 25 °C. The centrifuge tubes were further treated as described for bentazone. The concentration of imidacloprid in the water layer was measured by direct injection of the liquid in the HPLC or after 10 times dilution with a $CaCl_2$ solution (0.01 mol dm⁻³). Concentration of imidacloprid in extracts of blank soil was $< 5 \ \mu g \ dm^{-3}$.

Desorption of aged imidacloprid

Desorption of aged imidacloprid residues by water was measured during the transformation study in soil from the 0-30 cm layer at 25 °C to assess effects of longterm sorption kinetics. After 12, 41, 89, 166 and 285 days incubation time, portions (40-50 g) of the total mass of the soil (about 100 g) in the incubated flasks were transported into centrifuge tubes of the type that were also used with the batchsorption studies. Triplicate samples were prepared at each sampling time. To these soil portions an equal mass (W/W) of CaCl₂ (0.01 mol dm⁻³) was added. Subsequently the centrifuge tubes were closed with glass stoppers and treated as described with the bentazone and imidacloprid sorption experiment. After centrifugation, the concentration of imidacloprid in the supernatant water layer was measured by direct injection of samples on the HPLC. The total mass of dry soil in the centrifuge tube was determined by drying the tube with soil at 105 °C. The remaining mass of soil in the incubation flask was extracted by adding 100 cm³ of a mixture of acetone/water (V/V, 80/20) to the flask, which was then shaken for 1 h. Samples were further treated for analysis as described in chapter 2.15. Extracted masses were not corrected for extraction efficiency because that was on average around 100%. The initial mass of imidacloprid in the centrifuge tube was calculated from the mass of dry soil that was weighted into the centrifuge tube and the measured content of imidacloprid in the soil by extraction with acetone/water. It was assumed that masses of imidacloprid in the two soil portions were proportionally with the masses of soil. The total mass of water in the centrifuge tube was calculated from the mass of CaCl₂ solution added plus the mass of water present in the soil portion that was transferred into the tube. The water content of the soil (mass of water) was known at the start of the incubation and corrected for losses (0 to max 0.9 g) by evaporation during the incubation period (controlled by weighing).

4 Numerical descriptions of the results in the files and on cd

The results of the study are available in digital form on a CD entitled 'Experimental fiel Field Andelst, the Netherlands 1997-1999. This CD is part of this report. The format and the names of the files used to describe the data are based on Van Geelen (1995) who developed it for data sets on nitrate leaching. His format is an improved version of the format set up by Kragt & Jansen (1991). We had to modify the format of Van Geelen (1995) for a number of files and to define additional files with additional formats because his format did not apply fully to studies with pesticides. The files should be self-explanatory. The greatest part of the results described in the files will be described graphically in the chapters 5 and 6. There is (or should be) a 1:1 correspondence of the graphical and numerical results.

Table 4.1 gives an overview of the files and their contents. The first part of each file can be found in the annexes as described in Table 4.1. The names of the variables in the files consist of the two-character codes explained in Annex 1.

Note that the standard error of all measured profiles (bulk density, moisture, solute concentrations) are standard errors of the average, which equals the standard deviations of the individuals divided by the square root of total number of observations. We did so because our samples were not uniform as described in paragraph 2.11: e.g. individual moisture profiles from 16 plots were measured at each sampling time whereas the samples from plots within one sector (see Fig. 2.1) were mixed before pesticide analysis (resulting in four measured profiles).

Name of file	NR Annex	Description of content
NLA00.BEA	4	Adsorption of bentazone to soil of layer 0-30 cm
NLA00.BET	5	Bentazone transformation in soil of layer 0-30 cm, soil of layer 40-70 cm, soil of layer 80-120 cm and water-saturated subsoil of layer 80-120 cm
NLA00.CDC	6	Cumulative and daily drain discharges
NLA00.CLI	7	Meteorological data measured by weather station "Haarweg" in Wageningen. Daily average of: air humidity, wind speed, global radiation and air temperature.
NLA00.CRL	8	Data on crop growth (Light interception)
NLA00.CRY	9	Dry matter production of crop and bromide and nutrients (N and P) in crop parts
NLA00.D1BR	10	Concentration of bromide (BR) in water of drain set D1
NLA00.D1NT	11	Concentration of nutrient compounds (N and P) in water of drain set D1
NLA00.D1PE	12	Concentration of pesticides (PE) bentazone , imidacloprid) in water of drain set D1
NLA00.D2BR	13	Concentration of bromide (BR) in water of drain set D2
NLA00.D2NT	14	Concentration of nutrient compounds (N and P) in water of drain set D2
NLA00.D2PE	15	Concentration of pesticides (PE) bentazone , imidacloprid) in water of

Table 4.1. Explanation of the contents of the files on the data set (CD) 'Experimental field Andelst the Netherlands 1997-1999'. The first page of each file is given in the indicated number of the Annex

		drain set D2
NLA00.DDC	16	Discharge of drain set D1 and drain set D2, at 5 min resolution
NLA00.DLI	17	Instantaneous measurements of water level in drainage ditch
NLA00.GAN	18	Ammonium-N (NH4-N) concentrations in groundwater
NLA00.GBE	19	Bentazone (BE) concentrations in groundwater
NLA00.GBR	20	Bromide (BR) concentrations in groundwater
NLA00.GIM	20	Imidacloprid (IM) concentrations in groundwater
NLA00.GLC	22	Continuous measurements of groundwater levels (phreatic) on plot I & O
NLA00.GLC	23	Daily averages of continuous measurements of groundwater levels
		(phreatic) on plot I and O
NLA00.GLI	24	Groundwater levels (phreatic), instantaneous measurements in clusters of
NLA00.GKN	25	groundwater sampling tubes on each sector Kjeldahl-N concentrations in groundwater
NLA00.GNN	26	
		Nitrate-N (NO3-N) concentrations in groundwater
NLA00.GPP	27	Ortho-P (PO4-P) concentrations in groundwater
NLA00.GTP	28	Total-P concentrations in groundwater
NLA00.IMA	29	Adsorption isotherms of imidacloprid (three temperatures, layer 0-30 cm)
NLA00.IMD	30	De-sorption of aged imidacloprid in soil of layer 0-30 cm
NLA00.IMT	31	Imidacloprid transformation in soil of layer 0-30 cm, soil of layer 40-70 cm, subsoil of layer 80-120 cm.
NLA00.MBE	32	Areic mass of bentazone (BE) in the soil on sampling times
NLA00.MBR	33	Areic mass of bromide (BR) in the soil on sampling times
NLA00.MIM	34	Areic mass of imidacloprid (IM) in the soil on sampling times
NLA00.PDY	35	Daily precipitation at soil level
NLA00.PIT	36	Precipitation intensity, with clock time for each recorded pulse representing each about 0.2 mm precipitation.
NLA00.PLI	37	Piezometric levels in the aquifer: instantaneous measurements at three plots
NLA00.SAN	38	Ammonium N (NH4-N) content profiles in soil
NLA00.SBD	39	Soil dry bulk density profiles
NLA00.SBE	40	Bentazone content profiles in soil
NLA00.SBR	41	Bromide content profiles in soil
NLA00.SCP	42	Soil chemical data and particle size distribution
NLA00.SHC	43	Soil hydraulic conductivity
NLA00.SHP	44	Soil hydraulic parameters (van Genuchten parameters)
NLA00.SIM	45	Imidacloprid content profiles in soil
NLA00.SMM	46	Soil moisture profiles (mass fractions)
NLA00.SMV	47	Soil moisture profiles (volume fractions)
NLA00.SKN	48	Kjeldahl-N content profiles in soil
NLA00.SNN	49	Nitrate-N content (NO3-N) content profiles in soil
NLA00.SPP	50	Phosphate-P (PO4-P) content profiles in soil
NLA00.SOX	51	Oxalic extractable P, Al and Fe in soil
NLA00.STP	52	Total-P content profiles in soil
NLA00.STE	53	Daily average soil temperature at 3 depths and daily min. & max. air temperature at the experimental field
NLA00.SWR	54	Soil water retention characteristics

5 **Results of the field study**

5.1 Time series of meteorological data, soil temperature, groundwater level and drain discharge

Time series of meteorological data

Figure 5.1.1 shows the daily precipitation and cumulative precipitation as measured at the experimental field, starting on 17 November 1997. 1998 was a year with much more precipitation than the long-year average for the region. September, October, and to a lesser extent also November had exceptional high rainfall.

Average daily air temperatures measured at the experimental field were in the range between – 6 and 24 °C (Fig. 5.1.2). Winters of 1997/1998 and 1998/1999 were both very mild with only a few short frost periods. Fig 5.1.3 shows the differences between the minimum and maximum air temperatures at 1.5 m height as measured at the experimental field at Andelst and at the weather station 'Haarweg' in Wageningen. The maximum temperatures at Andelst were quite analogous to that in Wageningen. The minimum temperatures differed somewhat more as could be expected because the field at Andelst was arable land with cropped and not cropped periods whereas the field in Wageningen was a lawn, which affected radiation during the night. These observations indicate that the measurements at the weather station at Wageningen are rather representative for the field at Andelst.

Daily global radiation, average air humidity and average wind speed were not measured at the experimental field, but derived from the weather station 'Haarweg' in Wageningen at 10 km distance. The values are given in Annex 7 starting at 1 November 1997. The minimum and maximum air temperatures at Wageningen are also presented in Annex 7.

Daily average soil temperatures at 5 cm depth were close to the average air temperatures and sporadically fell below zero °C. (Fig. 5.1.4.).

Groundwater level

Figure 5.1.5 shows the fluctuation of the groundwater level in time. The level varied from about 40 cm depth during a very wet period in the first week of November 1998 to about 190 cm depth in dry periods in Summer and Autumn. The convexity of the groundwater table was measured at 11 times until 12 May 1998 drains (see chapter 2.1 and 2.7). The levels in the middle between two drains were always less than 3 cm higher than the levels near the drains (tubes at 0.5 to 1m distance). Only at 8-03-1998 (day 67) the level in the middle between the drains was 4 to 17 cm higher. This was after a period with high rainfall in the preceeding days (77 mm in 5 days), wich resulted in high water tables of about 45 cm below soil surface. (about 40 cm above drain depth).

The piezometric level followed the phreatic level closely and was generally slightly lower. The ditch level was extremely low (almost dry ditch) at the start of the experiment in 1977 due to the low groundwater level in the whole region following a dry summer and autumn in 1997. The maximum ditch level measured was 102 cm below soil surface, but it is possible that it was somewhat higher during short periods in November 1998 with very high discharge by the region.

Drain discharge

Figures 5.1.6 shows the daily and the cumulative drain discharge for both drain sets D1 and D2 (Annex 6). The values are based on the detailed measurements of the flow rate per 5 min (Annex 16). For a few short periods data of one of the two drain sets were missing: set D1: 3-15 Sept. 1998; set D2: 6-12 Jan. and 6-8 March 1998. For these periods the incomplete data set was completed by taking the data of the other, complete set and adjusting these with the average ratio (D1/D2) between the discharge of both drain sets. This average ratio of 0.8 was calculated via linear regression based on all available daily averages of the two drain sets (when complete for the whole day period for both sets). The average of the cumulative discharge of the two drain sets was weighted by the area of the catchment area of both drain sets. (See section 2.1)

Drain discharge was low during the winter time in the beginning of 1998. Two short periods with drain discharge occurred before application of the test chemicals. Only at 7 March (day 66) drain discharge was considerable (20-25 mm). During summer the groundwater table was (far) below the drain level and consequently there was no drain discharge. Only a very low discharge was measured after heavy rainfall for drain set D2 between 26 and 28 April 1998 (day 115–117). With the first heavy rains at 14 September (day 257) drain discharge started again and discharge continued most of the time until the end of the experimental period at 3 April 1999 (day 458). Drain discharge was considerable in the first half of the winter, because of the heavy rains that lasted until the end of 1998. Especially in the period 28 October (day 301) until 12 November (day 316) precipitation was excessive, and consequently drain discharge was extremely high. At two days, 28 October (day 301) and 1 November (day 305), drain discharge was higher than the maximum capacity of the pumps. For these events drain discharge could not be measured (see Table 2.2). Therefore discharge was estimated to be equal to the maximum pump capacity of 24.7 mm day ¹ and 34.5 mm day⁻¹ for drain set D1 and drain set D2, respectively (see also Fig. 5.1.8). The maximum pump capacity is a realistic estimation of the discharge at that moment because only a very restricted outflow of water from the closed container was possible. The total drain discharge during the 450 days experimental period mounted up to 400 mm for set D1, 520 mm for set D2 (average 460 mm).

In general the two drain sets showed the same pattern for the drain discharge. But, despite the smaller catchment area (5700 m² for set D2 against 6300 m² for set D1), the drain outflow of set D2 was always higher than that of set D1. The average ratio between the discharge of set D1 and set D2 was 0.8. This ratio was very constant for the events with high drain discharges. Drain D2 always started discharging earlier than set D1 and kept on discharging for a longer period as well.

At some times these differences between drain set D1 and D2 can be attributed to local differences in the response of the phreatic groundwater level to the regional hydrological influences. In the description of the soil profile (see section "experimental field and application of chemicals"), we mentioned the thick layer of coarse sand at about 3 m depth. This sand layer underlies the clay profile and is in direct contact with the river Rhine and it acts as a natural drain. We observed that this sand layer starts shallower in part of the catchment area of drain set D2 than in the catchment area of D1. This resulted in higher hydraulic conductivities for the subsoil below drain set D2 than below drain set D1. Therefore, the phreatic groundwater levels within the catchment area of drain set D2 responded stronger to the piezometric groundwater levels, which are strongly governed by regional hydrological components like the level of the river Rhine and other water courses. In conclusion, the higher hydraulic conductivities for the subsoil below drain set D2 than below drain set D1 may probably be one of the causes for the larger total drain discharge of drain set 2 than drain set 1. In addition, the enterence resistances of the drains of set 2 may for some reason be smaller than those of drain set 1. A substancial variability of drain discharges at field scale is not uncommon for Dutch soils that are known to be quite heterogeneous due to irregularly shaped sedimentation patterns (Stuyt, 1992)

Fig. 5.1.7 and Fig. 5.1.8 show the reaction of the groundwater table and the drain discharge on the precipitation for two periods with heavy rainfall. In both periods the groundwater table responded very fast to precipitation with a high intensity. Drain discharge started as soon as the groundwater level raised to the level of the drains (0.80-0.90 m below soil surface). In the first period, around 14 September (day 257), the drains were able to transport all the excess precipitation, resulting in a groundwater level equal to or slightly higher than drain depth (Fig. 5.1.7). In the second period, from 27 October (day 300) until 12 November (day 316), recharge of groundwater levels up to 0.5 m above drain level. In this period, peaks in the drain discharge corresponded strongly with peaks in the precipitation and in the groundwater level (Fig. 5.1.8). At 28 October (day 301) and 1 November (day 305) the peaks in drain discharge are cut off, indicating the periods where the drain discharge was set to the maximum pump capacity (see Table 2.2).

Table 5.1.1 gives the precipitation, drain discharge and the excess drain discharge (drain discharge minus precipitation) for both drain sets, cumulated over the periods 26 October 1998 (day 299) until 4 November (day 308), and 4 November until 12 November (day 316). Table 5.1.1 shows that in these periods 18 to 48% of the drain discharge can not be explained by the precipitation. Other sources of groundwater recharge contributed substantially to the drain discharge at that time. Upward seepage was likely the most important source, as in this period the water level in the nearby river was rather high. Fig. 5.1.5 shows that the two piezometric levels at day 306 were higher than the phreatic level, which support this interpretation. Another possible source was lateral groundwater flow from adjacent fields with a higher groundwater level.

Clear indications for runoff were never observed. Even on 7 March 1998 (day 66) and 14 and 15 September 1998 (days 257 and 258), with 45 mm or more rainfall in the preceeding 24 h, no ponding was observed at field inspections.

Table 5.1.1. Precipitation, drain discharge and excess drain discharge (drain discharge minus precipitation) for the periods 26 October (day 299) until 4 November (day 308), and 4 November until 12 November (day 316). All values in mm. Values between brackets are excess drain discharge as % of drain discharge.

Period	Precipitation	Drain set D1		Drain set D2	
(day		Drain discharge	Excess drain	Drain discharge	Excess drain
number)		0	discharge	0	discharge
299-308	115.2	140.5	25.3 (18)	170.6	55.4 (32)
308-316	38.5	54.5	16.0 (29)	74.4	35.9 (48)
299-316	153.7	195.0	41.3 (21)	245.0	91.3 (37)

5.2 Bulk density and soil moisture profiles

Bulk density

Dry bulk density profiles and soil moisture profiles were measured to 1.2 m depth at nine times. The bulk density was fairly constant with depth below the maximum depth of cultivation (about 30 cm). Ploughing in December 1998 resulted in a clear change in the bulk densities for the 0-30 cm layer. Two typical bulk density profiles are shown in Fig 5.2.1, which show clearly the effect of ploughing. The measured bulk densities for the 0-10 cm layers have some uncertainty at all times, which is caused by the arbitrarily definition of the location of the soil surface level in the sampling tube at time of slicing the soil columns (see chapter 2.12 for details). It is proposed that the real bulk densities sometimes found at 110-120 cm is caused by the loss of soil at the bottom of the soil cores during pulling up. This was specially the case at 2 December 1998 (day 336) when soil sampling was done at high groundwater level.

Soil moisture profiles

Figure 5.2.2 shows the volume fractions of liquid at all times when the profile was sampled, except the two samplings with the spilt tube auger (to 15 cm depth) after spraying of the chemicals (8 April and 29 May 1998). At 21 January 1998 (day 21), during a rainy period, the soil was sampled with a half open faced auger and only moisture contents were measured. At that time, sampling with the volumetric soil corer was not possible because of the wet conditions and sampling could only be done to about 90 cm depth (high groundwater table). This time showed the wettest soil profile sampled. The sampling at day 222 (10 August 1998) showed the lowest moisture contents for the top 50 cm of the profile. The top soil was dried out and showed cracks at that time. However, the sampling at 15 June (day 166) showed lower moisture contents at greater depths (below 60 cm) but higher contents in the top 50 cm. A period with dry and warm weather during the weeks before 15 June resulted in a high evapo-tranpiration, which had dried out the profile. However, about 24 mm rainfall during 2 days just before sampling at 15 June had rewetted the upper part of the soil profile.

On day 264 (21 Sept.) the toplayer was very wet because of the high rainfall in the week before and the loose crumbly soil stucture that was caused by the cultivations at application of the pig slurry. Moreover the field was grown with germinated wheat which formed a kind of green "carpet". At day 336 (2 December 1998) the field was sampled after a frost period, at sampling the top layer was still frozen.

5.3 Concentrations of bromide ion in soil, groundwater and drain water

Bromide masses

The average areic mass of bromide in soil at the first sampling time (on 8 April, = day 98; one day after application) was 53.4 kg ha⁻¹, which is 90 % of the applied mass of 59.6 kg ha⁻¹ (Fig 5.3.1). The first sampling was performed with a split-tube auger (9.5 cm diameter, 15 cm sampling depth). The total mass of wet soil in each of the three layers per column was extracted and the measured masses of Br in each layer were summed and the total areic mass was determined. So, soil mass or soil bulk density was not involved in the calculations of the areic mass at the first sampling time. This is in contrast to the other sampling times where the masses per volume were calculated from the Br concentration (mg dm⁻³ soil) and the soil bulk density. The mass of bromide in soil had decreased dramatically at the second sampling time (29 April, = day 119), but a crop sampling at 11 May (= day 131) showed that about 80% of the bromide was taken up by the wheat crop (Fig. 5.3.1). Dry matter production and contents in crop are presented in Annex 9. A second and more extensive crop sampling on 5 August (= day 217) showed that the mass of bromide in the crop had decreased drastically. Soil samplings after that time showed that the mass of bromide in the soil profile had increased again. Apparently the bromide was taken up by the fast growing crop, in the period after application until about half May (day 97 until day 135) and was thereafter released again to the soil profile.

It is known that older plant parts (leaves, roots, fruits) tend to release electrolytes (like potassium) because cell membranes become more permeable. Rain can leach considerable amounts of ions from crops to the soil (Baker & Hall, 1988). There is no specific information for Br⁻ but there are no reasons to suppose that this statement would be invalid for this ion. So our interpretation is that bromide was taken up by the wheat crop in the period of leaf development, whereas it was leached from the crop in the period of seed filling and ripening. Considerable uptake of bromide in plants and subsequent release into the soil during decay of the plant parts was also observed in studies with grass (Owens et al. 1985) and potato (Kung 1990). These observations seriously hamper the use of bromide as a tracer for soil water flow in cropped soil. However, in the present study the behaviour of bromide in the soil profile may be useful to test the solute transport model in autumn and winter, using the soil profile measured after harvest on 21 September1998 (= day 264) as an initial condition.

Concentrations in soil

The average bromide concentration profiles at sampling dates are presented in Fig. 5.3.2. The profiles clearly show the initial decrease (day 119 to day 166) and subsequent increase (day 222) of the concentration in the top 20 cm layer. The leaching of bromide between 10 Aug. (day 222) and 21 Sept. (day 264) by the heavy rainfall (about 250 mm) is clearly represented by the two bromide profiles. On 21 September. the soil cores collected on the plots A-H were analysed individually and the results are given in Table 5.3.1 and the profiles are presented in Fig. 5.3.2.

Depth (cm)	Average plots A-H	Average field (16 cores)	Plot A	Plot B	Plot C	Plot D	Plot E	Plot F	Plot G	Plot H
0-10	7.62	5.92	7.69	3.59	19.19	0.01	4.68	6.48	7.22	5.84
10-20	5.65	7.31	12.29	6.06	3.87	0.36	9.34	5.08	15.75	12.52
20-30	4.66	6.00	10.35	4.66	3.17	0.48	8.94	5.75	8.42	7.13
30-50	3.69	4.03	4.24	5.43	2.36	2.74	2.52	3.51	3.66	6.08
50-70	2.94	2.85	1.34	3.35	2.04	5.02	1.01	2.42	1.30	3.50
70-90	1.33	1.35	0.54	1.55	1.06	2.18	0.64	1.14	0.69	1.33
90-120	0.88	0.93	0.46	0.86	0.84	1.37	0.61	0.77	0.49	0.84

Table 5.3.1 Bromide concentrations (mg dm⁻³ soil) in individully analysed cores taken at day 264 (21 September)

The profiles on plot C (deep leaching) and plot D (major mass still in top 10 cm) differed considerably from the other 6 and from the general pattern of the field average. However, it is assumed that this great spread is more representative for the 21 Sept. sampling rather then for all other sampling times, because of the following observations. The straw remnants on the soil surface were not equally distributed after the application of the pig slurry. Small "bumps" of straw remained besides places without straw and "invisible" tracks were present due to the pig slurry applicator and the subsequent crosswise cultivation with a spring tine cultivator (see section 2.3). During the first weeks after these actions this may have resulted in an irregular water infiltration on the sampling spots, shielding by straw or water collection of water at depressions in tracks.

At the first (deep) profile sampling on 29 April (day 119) most concentrations beneath 20 cm depth were below the limit of quantification, except for the layer 70 to 90 cm. Only one soil sample at 70-90 cm had a concentration of 1.6 mg dm⁻³, the other three samples were below the LOQ (= 0.5 mg dm^{-3}) or slightly above. Probably some showers (total 56 mm) in the weeks before sampling on 29 April (22 days after application) caused preferential transport of bromide to that depth. Drain water collected in that period showed high concentrations of bromide (about 5 mg dm⁻³, see Fig. 5.3.5) and high concentrations also of the pesticide bentazone (Fig 5.4.4). Concentrations in the soil system corresponding with 5 mg dm⁻³ in the liquid phase at 29 April were only found in the top 10 cm layer. This is also a strong evidence for preferential transport of bromide through the soil profile. Concentrations in groundwater at 1.0-1.2 m depth were about 1.0 mg dm⁻³ at that time (Fig. 5.3.4). Apparently the fast transported bromide was redistributed in the soil around the drain depth. The groundwater table had moved upwards to about 0.8 m depth at that time (see Fig 5.1.5).

Groundwater and drain water

The spatial variability of bromide concentrations in groundwater was small for the entire experimental period (Fig.5.3.4). Already 22 days after application bromide was measured at 1.0-1.2 m depth at a concentration of about 1 mg dm⁻³. About 56 mm of rainfall was measured in that period. The bromide concentrations at 1.0-1.2 m and 1.3-1.5 m depth increased to a maximum of about 4 mg dm⁻³ until day 352. Thereafter, the concentrations decreased slightly and remained about 3 mg dm⁻³ until the end of the experiment. For the deep layer (1.9-2.8 m), low concentrations bromide of about 0.15 mg dm⁻³ were measured at two times (day 149 and 222) when the groundwater table was low and other filters could not be sampled. At day 428 all groundwater filters were sampled and the concentration in water from the deepest filter had increased to about 1.5 mg dm⁻³. The bromide concentrations in groundwater were generally somewhat lower than in drain water in periods when the groundwater table was clearly below drain depth. This is probably caused by diluting after preferential flow reaches the groundwater table but perhaps even more by the sampling method of the groundwater. The sampling method leads to mixing of water from at least more than the filter length (20 cm). After about day 300, in periods when the groundwater table fluctuated at the depth of the drain tubes (Fig 5.1.5), bromide concentrations in groundwater (at 1.0-1.5 m) and drain water (Fig 5.3.5) were quite identical (3-4 mg dm⁻³). This confirms the lesser effect of dilution in groundwater in that case.

Bromide concentrations in water from drain set D1 and drain set D2 were remarkably close during the entire experimental period and the variation of these concentrations in time was small (Fig. 5.3.5). Already on 29 April (day 118; 21 days after application) almost the highest bromide concentrations were measured in a very low discharge of drain set D2 (0.4 mm). In total 56 mm rain fell in that period. The bromide concentration of 5 mg dm⁻³ corresponds to only about 0.4% of the applied amount. The discharge of water of drain set D1 was too small to be detectable. However, some water could be collected, which showed a concentration that was almost equal to that in drain set D2. These high concentrations in drain water, 21 days after application, may be attributed to preferential transport

The concentrations in drain water were rather independent of the average drain fluxes in the periods wherein the water samples for analysis were composed (Fig. 5.3.5). Only in periods with very high drain discharges, bromide concentrations tended towards some decrease. A remarkable low bromide concentration (and also bentazone, Fig. 5.4.4) was measured in the discharge of drain set D2 between 6–10 November (day 309-313). Re-analysis of the prepared water samples gave the same results. The drain discharge (44.6 mm) in the 4 days sampling period was the highest of all sampling periods in that very wet month. So, dilution could be a reason for this remarkable low concentration. However, this is in contrast to the general picture that showed no correlation between concentration and flux. Therefore, a mistake with

preparing the sample for analysis may be also not excluded. A check of the raw data could not exclude nor confirm abnormalities in sample preparation.

5.4 Concentrations of bentazone in soil, groundwater and drain water

Bentazone masses

The recovered areic masses of bentazone in the soil are presented in Fig. 5.4.1. On 8 April, one day after application, on average 1.4 kg ha⁻¹ of bentazone was recovered, which is about 10% higher than the nominal applied amount of 1.33 kg ha⁻¹ This deviation is quite within the acceptable variation for field studies. The average masses of the four sectors were quite similar at each sampling time, except for the second sampling time on 29 April (day 119), when a relatively high mass was recovered in the four soil cores from Sector 3. No explanation could be given for this outlier. The decline of bentazone proceeded fast and approximately exponentially with time. On 2 December 1998 (day 336) contents in almost all soil samples (except some samples from the 0-20 cm layer) were below the LOQ (0.8 μ g dm⁻³ soil), which means that less than 0.5% of the dose was left.

Concentration in soil

At day 119 (22 days after application with 56 mm rainfall), most of the bentazone was found in the top 30 cm of the soil profile (Fig. 5.4.2), but concentrations of 2 μ g dm⁻³ were measured already between 70 and 90 cm depth. At day 166 (15 June) concentration in the top 10 cm had drastically decreased by degradation and leaching to the lower part of the ploughed layer. At day 222 (10 August), just before harvesting of the crop, concentrations in the top 50 cm had decreased further and no clear leaching occurred between day 166 and 222 with 83 mm rainfall but distinct evapo-transpiration. Between day 222 and day 336 (2 Dec. '98) concentrations in the 30-90 cm layer decreased with about a factor 10 to below the LOQ. From the incubation studies in soil from the 40-70 cm and 80-120 cm, layers half-lives of about 100 and 600 days can be deduced, respectively. So the observed decrease of the concentrations in the 30-90 cm layer has to be attributed mainly to the leaching of bentazone by the 550 mm rain that fell between day 222 and 336.

Concentrations in groundwater

Already 22 days after application (day 119) bentazone was measured in groundwater at 1.0-1.2 m depth at a concentration of about 16 μ g dm⁻³ (Fig. 5.4.3). At Day 119 bentazone concentrations in soil below 90 cm depth were demonstrated to be present, but below the limit of quantification (0.8 μ g dm⁻³). This corresponds with a maximum bentazone concentration of 2 μ g dm⁻³ in the soil pore water. Hence, the bentazone concentration of 16 μ g dm⁻³ found in groundwater was eight times higher than that in soil below 90 cm depth or about 5 times higher then in the soil at 70-90 cm depth (groundwater level at day 119 had raised to about 75 cm shortly). So, the not sorbed bentazone showed the same fast preferential transport as the bromide ion with 56 mm rainfall in the 22 days period. 20 mm of the 56 mm rain fell two days and four days before sampling. After day 119, groundwater level sank considerably (Figure 5.1.5) and concentrations in groundwater collected from the deeper filters decreased drastically. Concentrations increased again (sampling at day 250) after heavy rainfall in the first week of September. Thereafter concentrations remained rather constant between 1 and 2 μ g dm⁻³ (Fig. 5.4.3).

Concentrations in drain water

Bentazone concentrations in water of drain set D1 and drain set D2 are given in Fig. 5.4.4. The sampling periods and sample composition for analysis are given in detail in Table 5.4.1 and Table 5.4.2, respectively. Bentazone concentrations in both drain sets were remarkably close to each other at all sampling dates and concentrations showed no correlations with average drain flux in the sampling periods (as observed for bromide also). Far the highest bentazone concentrations (about 90 μ g dm⁻³) occurred already 21 days after application, simultaneously with the highest concentration in groundwater at that time (29 April; day 119). The drain discharge of drain set 2 was only 0.4 mm, which would correspond with about 0.02% of the applied amount. The discharge of drain set D1 was too low to be measurable. However, some water could be collected and the concentration was almost equal to that in drain set D2. The bentazone concentration of 2 μ g dm⁻³ soil that was measured between 70 and 90 cm depth at day 119 (Fig. 5.4.2) corresponds with 5 μ g dm⁻³ in the liquid phase

Date Start	Date End	Day Nr start *)	Day Nr end	Discharge (mm)	Bentazone (µg dm³)	Imidacloprid (µg dm ⁻³)
4-26	4-28	115.059	117.705	a)	91.4	b)
9-07	9-07	249.500	249.500	a)	11.0	3.76
9-14	9-15	256.576	257.073	a)	1.4	4.33
9-15	9-15	257.073	257.566	a)	1.2	2.57
9-15	9-18	257.566	260.771	9.7	1.5	c)
10-08	10-13	280.330	285.681	4.3	6.4	
10-14	10-15	286.017	287.743	7.1	4.8	1.11
10-15	10-27	287.743	299.646	13.7	4.1	1.11
10-27	10-28	299.646	300.299	7.9	3.2	
10-28	10-28	300.299	300.490	4.7	2.2	2.10
11-03	11-04	306.500	307.455	10.0	2.7	0.45
11-04	11-06	307.455	309.181	10.0	3.3	1.30
11-06	11-10	309.181	313.733	38.6	2.5	0.70
11-10	11-17	313.733	320.358	23.4	4.6	0.70
11-17	12-28	320.358	361.878	21.0	3.4	1.82
12-28	1-19	361.878	383.479	18.1	2.7	1.02
1-19	3-15	383.479	438.208	58.6	1.9	0.05

Table 5.4.1. Concentration of bentazone and imidacloprid in drain water of drain set D1 Shadowed values are analysed in proportionally combined samples of the discharge in the sampling period

*) Day 1 = 1 January 1998

a) no measurable discharge or not correct measurement

b) before application of imidacloprid

c) not analysed

This reveals that the bentazone concentration of 90 μ g dm⁻³ found in drain water at day 119 (Figure 5.4.4) was 18 times higher than could be found in the soil liquid

phase at the drain depth (i.e. 80-90 cm). Concentrations in the soil system that correspond with 90 μ g dm⁻³ in the liquid phase at day 119 were only found at the top 50 cm. This is evidence for preferential transport of bentazone to the drain depth, which probably must be attributed to permanent macro pores. Clear cracking of the soil was not observed in the period between application and sampling at day 119. The bentazone concentration in drain water was about six times higher than found in groundwater at day 119, probably because water leaching downward via preferential flow paths was diluted after reaching the groundwater. At the other sampling times, concentration in drain water was slightly higher (about two times) than in groundwater (as with bromide). Generally, bentazone and bromide leaching to drains and to groundwater were found to be consistent. So bentazone behaviour confirms that of bromide.

Date Start	Date End	Day Nr start *)	Day Nr end	Discharge (mm)	Bentazone (µg dm³)	Imidacloprid (µg dm-³)
4-26	4-28	115.059	117.705	0.41	89.0	b)
9-03	9-06	245.351	248.916	4.98	10.7	6.3
9-14	9-14	256.576	256.809	2.52		6.43
9-14	9-14	256.809	256.906	2.49	1.81	5.79
9-14	9-14	256.906	256.990	2.53		5.71
9-14	9-15	256.990	257.073	2.64	1.59	5.23
9-15	9-15	257.073	257.139	2.14	1.00	4.69
9-15	9-16	257.622	258.354	6.01	3.20	c)
9-16	9-26	258.354	268.559	10.0	3.95	c)
10-08	10-13	280.264	285.500	6.53	9.88	
10-13	10-17	285.500	289.854	10.8	7.63	1.97
1017	10-27	289.854	299.642	17.0	6.33	1.07
10-27	10-28	299.642	300.292	9.53	3.35	
10-28	10-28	300.292	300.503	7.12	4.01	0.45
11-03	11-04	306.500	307.302	11.3	4.25	0.57
11-04	11-06	307.302	309.500	19.2	3.92	0.53
11-06	11-10	309.500	313.361	44.6	0.69	0.25
11-10	11-15	313.361	318.424	28.8	4.38	0.20
11-15	12-20	318.424	353.434	26.7	4.69	0.32
12-20	1-16	353.434	380.850	33.5	4.16	0.02
1-16	3-01	380.850	424.740	20.2	5.19	0.53
3-01	3-03	424.740	426.139	21.9	3.66	0.40
3-03	4-03	426.139	457.500	28.3	3.56	0.22

Table 5.4.2 . Concentration of bentazone and imidacloprid in drain water of drain set D2 Shadowed values are analysed in proportionally combined samples of the discharge in the sampling period

*) Day 1 = 1 January 1998

b) before application of imidacloprid

c) not analysed

The bentazone concentration in drain water between day 337 and 427 remained at around 4 μ g dm⁻³ (Fig. 5.4.4) whereas the concentration in soil was below the limit of quantification of 0.8 μ g dm⁻³ for the entire soil profile. A concentration of 0.8 μ g dm⁻³

³ soil implies maximum bentazone concentration of 2 μ g dm³ in soil pore water, which is about two times lower than measured in drain water. Therefore the source of the bentazone in the drain between day 337 and 427 is not clear. As the concentrations in groundwater are lower than in drain water the source has to be found in the unsaturated zone. It is possible that the top layer contained a higher total concentration than we could extract with one hour shaking with 0.01 M CaCl₂ solution. It was checked that this procedure gave good recoveries for freshly applied bentazone. However, this is not a guarantee for aged residues (Smith, 1981) and slow sorption may have occurred that was not detected via our extraction method. Between rainfall events there was time available (usually one week) for desorption equilibration, which may have led to concentrations of about 5 μ g dm⁻³ in the pore water of the top layer, the layer with initially far the highest concentration for "uploading" the soil matrix with bentazone. This may have acted as the source for the drain water concentrations. However, this explanation is speculative as no measurable sorption of bentazone was detected in the 24 h adsorption isotherm study (see section 6.4).

5.5 Concentrations of imidacloprid in soil, groundwater and drain water

General

For several reasons, among laboratory capacity, chemical analyses of soil and water samples for imidacloprid could start only in January 1999. Samples were stored in freezers (temperature $< 20^{\circ}$ C) and possible transformation during storage was checked. Storage was found to have not effected the results (see section 2.15). Fourteen extracts were also analysed with LC/MS to confirm the HPLC - UV measurements (Table 2.5; section 2.15)

Imidacloprid masses

The recovered masses of imidacloprid in soil are presented in Fig. 5.5.1. On 29 May 2 days after application on average 0.55 kg ha⁻¹ of imidacloprid was recovered from the soil (0-15 cm depth). This demonstrates that about 80% of the 0.7 kg ha⁻¹ applied had reached the soil by direct deposition at spraying and by wash-off by the 15 mm of rainfall that fell about 1.5 d after application (see section 2.2 for details). At the other three sampling times (to 1.2 m depth) almost equal remaining masses were recovered (0.25 ± 0.02 kg ha⁻¹). So between the end of May and the second sampling on 21 September a decrease of about 55% was observed, but in the subsequent half year (winter period with an average a soil temperature of 5 °C) no further decrease was measured. This field persistence corresponds reasonably well with the laboratory incubation study at 5 °C with topsoil (section 6.3; Fig 6.3.3) which indicate a half-life for imidacloprid of > 500 days at 5 °C.

Concentration in soil

Fig. 5.5.2 shows the concentration profiles of imidacloprid in soil at the sampling times The highest concentrations were found in the top 5-10 cm until the field was ploughed (25 to 30 cm deep) on 2 December 1998 (day 336) just after the third

sampling time. Ploughing caused the more equal distribution of imidacloprid concentrations over the arable layer as measured at the last sampling time at 20 April 1999 (day 475). Already at the first deep sampling time (21 September; day 264) imidacloprid had been transported to 70-90 cm depth, so at the drain depth. At later sampling times, concentrations below the ploughed layer (> 30 cm) showed a clear increase. This was probably caused by the high rainfall, which was much higher than the average for the experimental region in autumn and winter. (Fig. 5.1.1)

Concentration in groundwater

Concentrations of imidacloprid in groundwater are presented as a function of time in Fig. 5.5.3. On 29 May (day 149; two days after application) groundwater samples collected at 1.9-2.8 m depth had no detectable imidacloprid ($<0.05 \ \mu g \ dm^{-3}$), which demonstrates the quality of the sampling procedure in a recently sprayed field. At a few times there was a rather large spatial variability but generally variability was low for a field study. Only one analysis could be done from groundwater collected at 1.0-1.2 m depth at day 250 and also of groundwater collected at 1.3-1.5 m depth at day 442. The other filters at mentioned depths delivered not enough water for sampling at that time. At day 352, water from filters at 1.0-1.2 (hide in Fig. 5.5.3) and 1.3-1.5 m depth were on average about the limit of quantification. This is probably caused by the extreme high rainfall in the preceding period. Concentrations in drain water were also very low at that time (Fig. 5.5.4). At day 428, three filter depths could be well sampled and analysed. There was a consistency in the trend of decreasing imidacloprid concentration as a function of depth, probably by dilution.

On 9 June (day 160), only 11 days after application, concentrations of below LOQ (= $0.05 \mu \text{g} \text{ dm}^{-3}$) to $0.088 \mu \text{g} \text{ dm}^{-3}$ were measured in water collected at 1.3-1.5 m depth from the upper layer of the (risen)groundwater table. Within these 11 days, about 65 mm of rain fell, which was sufficient to transport imidacloprid to 1.3-1.5 m depth. This rapid breakthrough of imidacloprid can only be explained by preferential transport of this compound in the soil, particularly because imidacloprid is a sorbed compound (see section 6.4 and Fig 6.4.2) Imidacloprid was applied after a preceding period with no rainfall but with high evapo-transpiration, which had resulted in a distinct cracking of the soil. (section 2.2., application imidacloprid) The cracks probably accounted for a fast transport of imidacloprid through the soil until about the depth of the cracks. Permanent macro pores in the deeper subsoil contributed probably more for the further fast transport to greater depths. Holes (5-8 mm diameter) were often observed over tens of centimetres in the lower part (up to 1.2) m depth) of the soil columns taken for soil analysis. These permanent "canals" obviously originated from worms or decomposed tree roots from the former apple trees.

The sharp increase of the measured concentration at day 250 took place simultaneously with the start of drain flow (Fig. 5.1.6) and with the highest concentration in drain water (Fig. 5.5.4). Concentrations in the upper layer of the groundwater were always much lower (an order of magnitude) than in drain water. This may be expected because of dilution, but it also indicates that a considerable

fraction of the fast transported imidacloprid has been directly transported to the drains.

Concentration in drain water

Composition of samples for analyses depended more or less on the results obtained for bentazone. Discharge periods for which samples for bentazone analysis were combined were now split up and individually analysed for imidacloprid. The reverse was true for periods in which bentazone concentrations were rather equal. Water samples for analyses were prepared from the stored samples (-20 °C). The drain discharge periods of drain set D1 and D2 for which samples for analysis were composed (proportionally) are given in detail in Table 5.4.1 and Table 5.4.2, respectively (see section 5.4, bentazone in drainwater). The total number of analyses per drain set diferred a few due to the problems with the sampling equipments and different discharge volumes (see section 2.8). Plots of concentration in drain water against average drain flux (mm day⁻¹) in the sampling period showed no correlation for both drain sets, as was noted already with bromide and bentazone.

The highest imidacloprid concentrations in drain water (Fig. 5.5.4) occurred in the first discharge between day 248 and 258 (Fig. 5.1.6 and Fig. 5.1.7), after high rainfall in the first week of September 1998 (Fig. 5.1.1). Thereafter the concentrations decreased sharply and remained relatively low (below 2.0 µg dm 3) for the remaining period of the experiment. The average concentration was about 5 μ g dm⁻³ between day 248 and 258. Assuming, sorption equilibrium using a Freundlich coefficient of 0.75 dm³ kg⁻¹ (this value is based on a K_F value of 1.5 dm³ kg⁻¹, which can be derived from the adsorption measurements for the top layer; see section 6.4) a concentration of 5 μ g dm⁻³ in water corresponds to about 0.02 mg dm⁻³ in the soil system. Fig. 5.5.2 shows that such contents were found only in the top 20 cm at day 264, which indicates that the drain water concentrations for this period resulted from preferential transport. Apparently, imidacloprid was transported preferentially with the water flow via cracks and macro pores. An average imidacloprid concentration of about 1 μ g dm³ in the drain water as found between day 287 and 337 (Fig. 5.5.4) corresponds with about 0.004 mg dm³ of imidacloprid in soil, which is about four times the concentrations measured at 70-90 cm depth and shallower in the soil at day 336 (Fig. 5.5.2). Hence, the concentrations in deep layers cannot explain the drainage water concentrations for this period. Probably, these higher imidacloprid concentrations in drain water between day 287 and 337 were also the result of preferential transport. High rainfall occurred in this period and craks were no longer visible, which show clear evidence of preferential flow through permanent macro pores.

5.6 Concentrations of nutrients in soil, groundwater and drain water

5.6.1 Nitrogen

The results of the measurements of nitrogen compounds in soil, groundwater and drain discharge are presented in Annexes 11, 14, 18, 25, 26, 38, 48 and 49. Because

nitrate was the sole N-compound that was measured in substantial quantities only the results of the nitrate measurements are discussed here. Kjeldahl-N and ammonium concentrations respectively were mostly rather low and generally very low because of the favourable conditions for the oxygen demanding processes mineralisation and nitrification in the unsaturated top 1 meter of the macroporous clay soil

Concentrations in soil

There was a strong distinction between the nitrate concentrations in the soil above and below 30 cm of depth (Fig. 5.6.1). The cultivated layer above the plough pan at about 30 cm depth (see Annex 2) contained the highest concentrations. This cultivated layer contained also the most organic matter, total-N and mineral-N (Annex 42) due to ploughing down of manure and crop remnants in the past. Other reasons for the higher concentrations above the plough pan are that the plough pan may have acted as a barrier for the transport of nitrate downwards and that the cultivated layer in general was the most aerobic layer where conditions for mineralisation and nitrification were better and denitrification was less than in the soil profile below the plough pan.

The highest concentrations in the top layer up to almost 25 mg NO_3 -N dm⁻³ soil were found at day 475 due to the fertilizer application 34 days before at 17-03-1999, and also mineralization and nitrification of organic matter from the slurry applied at 01-09-1998 (see table 2.1). Fertilization was 39 kg NO₃-N ha⁻¹ and 39 kg NH₄-N ha⁻¹, while the areic mass of NO₃-N in the top 30 cm at day 475 was about 60 kg ha⁻¹. Conditions during those 34 days were apparantly such that ammonium fertilizer was nitrificated (hardly any ammonium was present in this layer; see Annex 38), relatively little nitrate was denitrificated and taken up by the crop (crop growth was low at that stage), and little nitrate was transported to deeper layers (concentrations below the plough pan were in the order of those at day 336). The second highest concentrations in the top layer were found at day 119, 68 days after the fertilizer application at 20-02-1998. These high concentrations can not entirely be attributed to this fertilization, since at day 98 (47 days after fertilization) nitrate concentrations were much lower, probably due to denitrification because of wet conditions in this top layer and leaching out of this layer in the period day 58-69 with high and intensive rainfall (see further **Groundwater and drain water**). The high concentrations at day 119 must have been the result of mineralization of soil organic matter and old manure, and nitrification of fertilizer ammonium (at day 98 ammonium concentrations were relatively high). The extreme low concentrations at day 166 were probably caused by crop uptake. In the period between day 119 and day 166 crop growth was the highest (see Fig. 5.7.1). Transpiration was about 160 mm in this period, while in the period before day 119 transpiration was only 28 mm (from calculations with the SWAP model). At the end of the growing season crop uptake was strongly decreased resulting in an increase of the nitrate concentrations in the top layer at day 222 due to high mineralization and nitrification of N from organic matter in this warm period.

In the soil profile below the plough pan, nitrate-N concentrations were around 5 mg dm⁻³ soil. An exception were the very low concentrations at day 166 that must be

attributed to crop uptake. The other exception was the high concentrations at day 119 that coincided with the high concentrations in the top layer at that day. These high concentrations below the plough pan may have been the result of the production of nitrate by mineralisation and nitrification, and chromatographic transport of nitrate from the ploughed layer downwards. But possibly preferential transport played a role as well in causing these high concentrations. Indications for this process are the higher standard errors of the average concentrations than at other days (Annes 49) and the strong indications for preferential flow of bromide and bentazone at this day (see 5.3 and 5.4).

Groundwater and drain water

The spatial variability of nitrate concentrations in the groundwater was rather low for the entire experimental period (Fig. 5.6.2). In general, concentrations were between 10 and 30 mg NO₃-N dm⁻³. There appears to be a relation with depth: the concentrations in the deeper filters were lower than those in the shallower filters, with some exceptions for the filters at 100-120 and 130-150 cm depth. This relation corresponds with the same relation for the concentrations in the soil profile. There was also a relation with fertilization events. The highest concentration of nearly 50 mg NO₃-N dm⁻³ (standard error 2.2 mg NO₃-N dm⁻³) was found in the shallowest filters at day 69, 18 days after the fertilizer application of 20-02-1998. This concentration corresponds with a concentration in the soil of 22.5 mg NO_{3} N dm³ soil (volumic water content at saturation = 0.45) which is extremely high in comparison with the concentration profiles in the soil of Fig. 5.6.1. Possibly preferential flow of rain water containing fertilizer nitrate leached out of the top layer played a role in causing these high concentrations. Rainfall in the period between fertilization and groundwater sampling amounted to 94 mm, concentrated in the 11 days just before the sampling date of day 69. Also after the fertilizer application of 14-05-1998 and the slurry application of 01-09-1998 nitrate concentrations were relatively high. During the winter of 1998/1999 concentrations decreased gradually.

The nitrate concentrations in the drain discharge were in general around 10 mg NO₃-N dm⁻³ (Fig. 5.6.3). This is about a factor 1.5-2 lower than the concentrations in the soil water and groundwater of the same dates, indicating that the drain discharge was a mixture of 'clean' rain water and nitrate containing soil water and groundwater. This could be an indication for preferential flow of clean rain water through macropores. However, this hypothesis is not directly supported by the bromide concentrations in ground and drain water (see 5.3). There was a clear relation between fertilization events and nitrate concentrations in the drain discharge. The highest peak concentrations of 25-32 mg NO₃-N dm⁻³ in the drain discharge of drain set D1 in the period day 65-68 corresponded with the fertilizer application of 20-02-1998 and the period with high and intensive rainfall between day 58 and day 69. These peak concentrations were possibly caused by preferential flow of nitrate from fertilizer leached out of the top 30 cm of the soil profile. Due to pump failure the drain discharge of drain set D2 could not be registrated and sampled in this period (see table 2.2). Also the drain discharge of both drain sets shortly after the slurry application at day 244 showed some peak concentrations.

5.6.2 Phosphorus

The results of the measurements of phosphorus compounds in soil, groundwater and drain discharge are presented in Annexes 11, 14, 27, 28, 50 and 52. Because of indications of very low concentrations in ground and drain water at the beginning of the experiment, the frequency of measurements in ground and drainwater of P-compounds was low until the slurry application at 01-09-1998, which was the sole phosphorus fertilization during the experiment (see table 2.1). When results are presented for total-P and ortho-P in the same sample and the total-P concentrations are lower than the ortho-P concentrations, the results of ortho-P are the most reliable. In these cases the results of total-P are most likely underestimated because of precipitation of P-compounds during conservation of the sample for total-P analysis. In the ortho-P analysis precipitated ortho-P was dissolved by acidifying the sample which is part of the analysis procedure.

Concentrations in soil

Like for nitrogen there was a strong distinction between the phosphorus concentrations in the soil above and below 30 cm of depth (Fig. 5.6.1). The cultivated layer above the plough pan at about 30 cm depth contained the highest concentrations. This cultivated layer contained also the most organic matter and oxalic extractable P (Annex 42 and 49) due to ploughing down of manure and crop remnants in the past. The sum of oxalic extractable aluminium and iron, which is an indication for the potention for phosphate sorption at the soil complex, was also the largest in this layer.

Ortho(PO₄)-P concentrations were around 0.1-0.15 mg PO₄-P dm⁻³ soil (Fig. 6.5.4). Higher concentrations were found in early spring in both years (day 119 and day 475). Possibly because of the combination of reduced conditions due to high moisture contents, and low crop uptake. Lower concentrations occurred at day 166 probably due to crop uptake (see also 5.6.1). PO₄-P concentrations below the plough pan were generally below the limit of quantification (0.02 mg PO₄-P dm⁻³ soil). The only exception was day 119 when the relatively high concentrations in the top layer gradually decreased downwards in the profile below this layer. This is an indication of leaching down of the PO₄-P in solution from the top layer.

Total-P concentrations were above PO₄-P concentrations at only one occasion: day 264, 20 days after the application of slurry at 01-09-1998. At this day soluble organic-P in the top layer amounted to 0.16-1.04 mg P dm⁻³ soil, or 50-86% of the total-P in solution. This organic-P orginated from the organic P-compounds in the slurry that were not yet mineralised at that day. Part of this soluble organic-P had leached down to the soil layers below the top layer were the concentrations gradually decreased to concentrations of 0.025 mg P dm⁻³ soil.

Groundwater and drain water

Concentrations of P-compounds in groundwater were very low, around the detection limit of 0.025 mg P dm⁻³, except for the period shortly after slurry aplication (Fig. 5.6.5) when concentrations were higher, up to 0.3 mg P dm⁻³. Spatial variability was very high in that period. This can be explained by the spatial variability in application of the slurry (see 5.3). In addition preferential flow may have caused this variability in concentrations. At day 250 P in the groundwater was mainly soluble organic-P while at day 264 PO₄-P was the main compound, possibly due to mineralisation of soluble organic-P. However, this peak in the PO₄-P concentration in the filters at 100-120 cm depth was not confirmed by the concentrations in the soil profile (Fig. 5.6.4). After slurry application the P concentrations decreased in a relatively short period to concentrations just above the detection limit

Concentrations of P-compounds in the drain discharge were also generally rather low (between detection limit of 0.025 mg P dm⁻³ and 0.3 mg P dm⁻³). Exceptions were the high concentrations shortly after the slurry application at day 244. An extreme high PO_4 -P concentration of 1.57 mg P dm⁻³ was measured in drain set D2 at day 246, two days after the slurry application. At day 247 this concentration had decreased to 0.7 mg P dm⁻³ and at day 248 to 0.25 mg P dm⁻³. This peak concentration can only be attibuted to a short event of preferential flow. In drain set D1 a similar preferential flow event may have happened but could not be registrated. Drain discharge occurred also at day 246 until day 250 but could not be measured and automatically sampled because of technical problems (see table 2.2). At day 249 the drain discharge was manual sampled. Concentrations of PO_4 -P were 0.36-0.54 mg P dm⁻³. In comparison with the concentration in drain set D2 at day 248 of 0.25 mg PO₄-P dm⁻³ these concentrations are rather high which could be an indication that at the beginning of this discharge period concentrations may have been as high as or even higher than the peak concentration in the discharge of drain set D2 at day 246. Total-P was not measured in the discharge of both drain sets in this period, but could have been (much) higher than PO₄-P concentrations. Soluble organic-P is more mobile than PO₄-P that can be adsorbed to the soil complex. An indication for this is another preferential flow event in drain set D1 at day 281. Total-P concentrations were high and rapidly decreased in the days after. About 80% of the peak concentrations was soluble organic-P. These peak concentrations must have been caused by preferential flow of soluble organic-P from slurry. In the period day 384-418 an extreme peak of 1.96 mg PO₄-P dm³ occurred in drain set D1. Drain discharge was only 6 mm in these 34 days. Therefore it is not clear if this peak concentration can be attributed to preferential flow. In drain set D2 no peak concentration was measured.

5.7 Crop growth and dry matter production

The results of the measurements of light interception in the wheat crop are presented in Table 5.7.1. On 9 April, the measured interception was clearly higher than on 17 April, which is not expected in a growing crop. A delayed effect of the application of KBr and bentazone on 7 April may have affected leaf position and leaf surface and consequently the light interception on 17 April. However, an interception fraction of 0.70 is unrealistic high for a winter wheat crop on 9 April as can be deduced also from other measurements (Fig. 5.7.1). Despite no indications were found of malfunction of the equipment or unsuitable measuring conditions, the value for interception on 9 April may be seen as an outliner.

Date	Average f	Standard
	(dimensionless)	error *)
03-03-1998	0.10 ^{a)}	
30-03-1998	0.40 ^{a)}	
09-04-1998	0.70	0.009
17-04-1998	0.63	0.011
30-04-1998	0.79	0.008
11-05-1998	0.89	0.006
19-05-1998	0.93	0.006
25-05-1998	0.92	0.005
15-06-1998	0.90 ^{a)}	
10-07-1998	0.50 ^{a)}	

Table. 5.7.1. Light interception fraction (f) by the wheat crop in time

*) standard error (se) of the average of all 71 to 83 measurements each date

a) estimated values

Light interception measurements were not performed during the whole crop growing period. Fig. 5.7.1 presents the results of more completely measured growth curves for winter wheat based on measurements of light interception or LAI (Leaf Are Index) on experimental fields in 1983 and 1984 in The Netherlands (results obtained by personal communication H.G. Smid; Plant Research International, PRI, Wageningen). The light interception was calculated by:

% interception = $100^{*}(1 - \exp(0.6^{*}LAI))$

(litterature: vanKeulen and Wolf, 1986; van Laar et al., 1992)

in cases where only LAI was measured. The measured light interceptions at Andelst are also given in the figures as well as the additional values (estimated), based on visually observations of soil coverage on some dates and expert judgement (J.H. Smelt and H.G. Smid, PRI). Due to the weather conditions in 1998, all wheat crops in the region of the experimental field ripened earlier (1 to 2 weeks) than the long-year average. Reduction of the fraction of green leaves and ripening started earlier on the experimental field than other wheat crops in the region. This was probably caused by an attack of leaf fungi and the combined doses of bentazone and bromide, which resulted in a great number of yellowing leaves in the last part of April and May. Based hereon we estimated that light interception was about 90% at 15 June and 50% at 10 July at the field at Andelst.

The dry matter production of the crop at the two sampling times, 11 May and at 5 August just before harvesting, is given in Annex 9. The dry matter production at the two sampling times reflect well the visible differences between the 4 sectors in the course of the crop growth. The growh of the winter wheat on Sector 3 and to a

lesser extent on Sector 4 was always less than compared to Sector 1 and 2. The reason for the differences is not known.

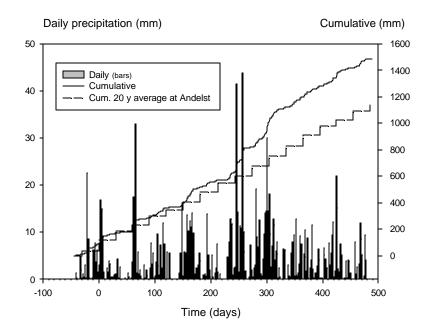


Fig. 5.1.1 Daily and cumulative precipitation as a function of time, measured at the experimental field at Andelst. (bars and solid line) Values represent precipitation at the soil surface, which were calculated with a correction factor from measurements at 0.4 m height. The dashed step line (monthly periods) represents a 20-year average measured at 0.5 km distance of the experimental field. (personal communication J.H. Smelt 2001). Time zero corresponds with 0.00 h at 1 January 1998

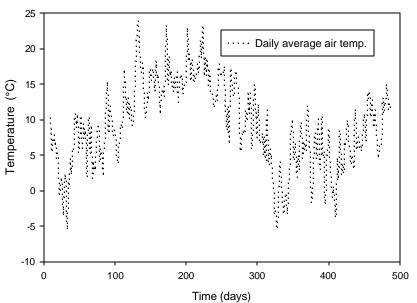


Fig.5.1.2. Daily average air temperature as a function of time, measured at the experimental field at Andelst. Time zero corresponds with 0.00 h at 1 January 1998

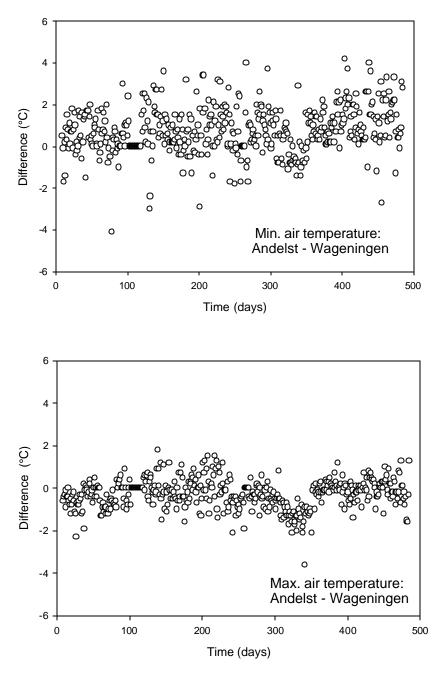


Fig. 5.1.3. Differences between minimum and maximum daily air temperatures as measured at the experimental field at Andelst and the weather station 'Haarweg' in Wageningen at 10 km distance. Time zero corresponds with 0.00 h at 1 January 1998

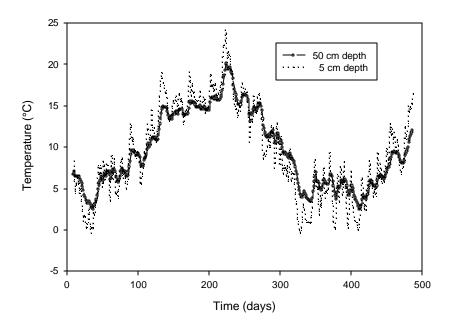


Fig. 5.1.4. Daily average soil temperatures at 5 cm and 50 cm depth as measured at the experimental field at Andelst. Time zero corresponds with 0.00 h at 1 January 1998

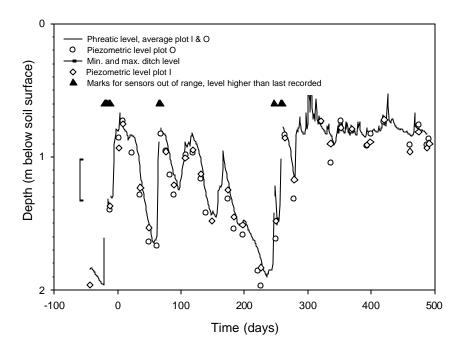


Fig.5.1.5. Daily average groundwater level at the experimental field at Andelst. The solid line is the average value of continuous measurements in the two groundwater filter tubes (Annex 23). Triangles mark days wherein both sensors became out of range, groundwater level may have been (much) higher for a short time. Diamonds and open circles gives the instantaneous measurements of the piezometric level in the groundwater tubes at plot **I** and **O**. The values for the piezometric level at plot I are corrected for the 18 cm lower soil surface level than at plot **O** (chapter 2.7). Time zero corresponds with 0.00 h at 1 January 1998

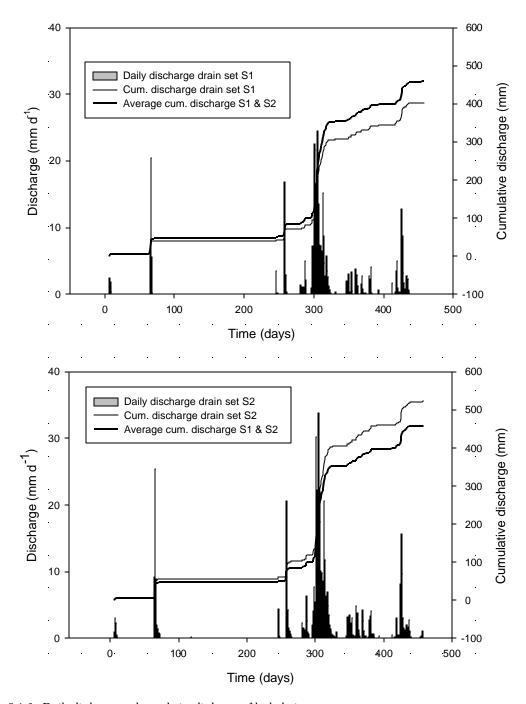


Fig 5.1.6 Daily discharges and cumulative discharges of both drain sets. For a few short periods with missing data of one of the drain sets (D1: 3-15 Sept. 1998; D2: 6-12 Jan. and 6-8 March 1998) the incomplete data set was completed by taking the data of the complete set adjusted with the average ratio between the discharge of both drain sets (D1/D2 = 0.80). The average cumulative discharge was weighted by the area of the catchment area of both drain sets. Time zero corresponds with 0.00 h at 1 January 1998.

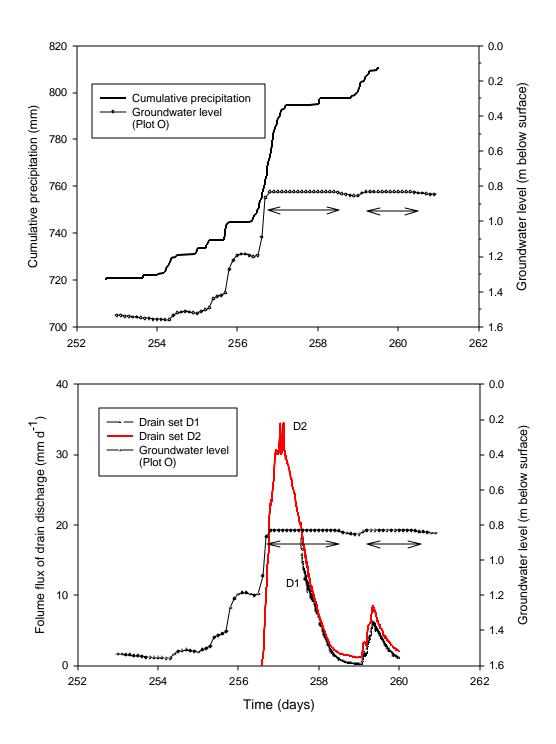


Fig. 5.1.7. Cumulative precipitation, groundwater level and drain discharge for the period between 10 September (day 253) until 17 September 1998(day 260) with heavy rainfall at the experimental field at Andelst. The horizontal arrows indicate periods wherein groundwater sensors became out of range. Therefore, groundwater level may have been higher than the 0.83 m presented in the figure. Note that soil surface at plot I is 0.12 m lower than at plot O, of which the groundwater water level is given in the figure.

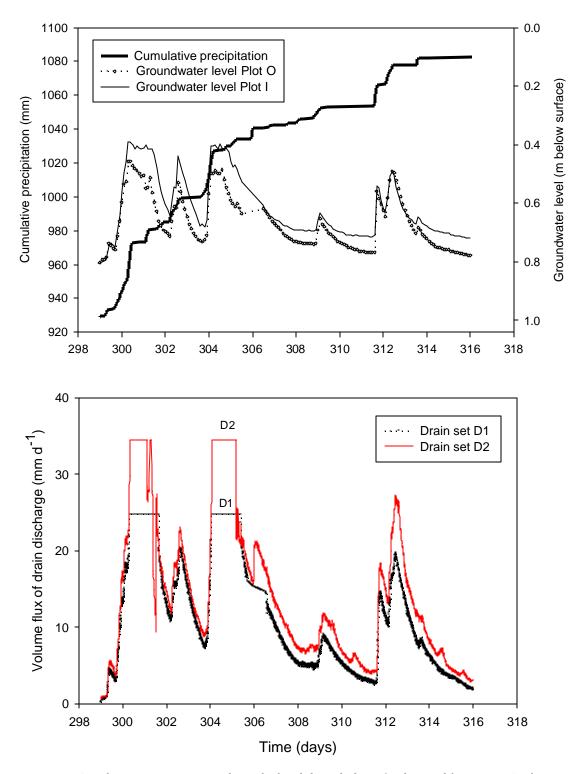


Fig. 5.1.8. Cumulative precipitation, groundwater level and drain discharge for the period between 27 October (day 300) until 12 November (day 316) with extreme rainfall at the experimental field at Andelst. Note that soil surface at plot I was 0.12 m lower than at plot O. The figure is not corrected for this difference.

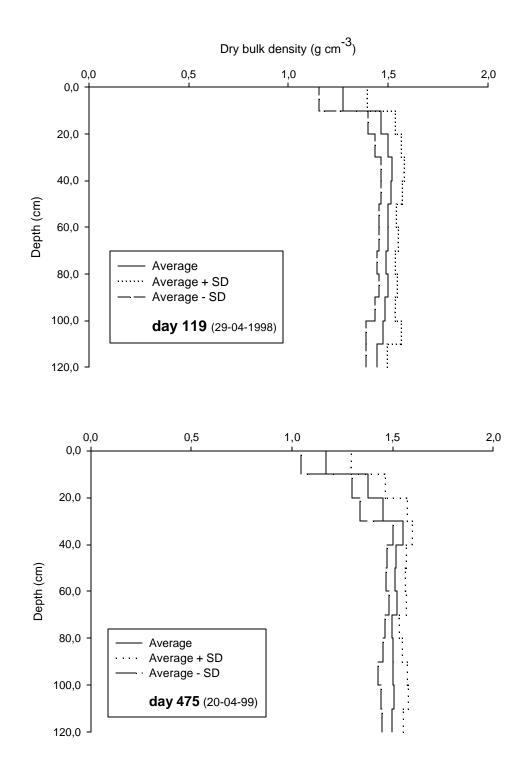


Fig. 5.2.1. Typical dry bulk density profiles as measured at the experimental field at Andelst at day 119 (before ploughing) and day 475 (5 months after ploughing). Time zero corresponds with 0:00 h at 1 January 1998

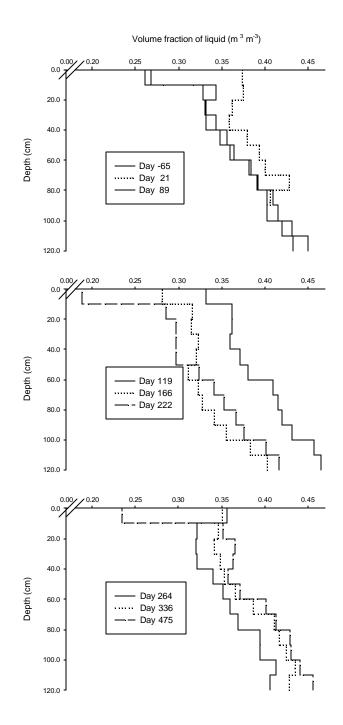


Fig 5.2.2 Average volume fraction of water as a function of depth measured at the experimental field in Andelst, the Netherlands at indicated days. Time zero corresponds with 0:00 h at 1 January 1998.

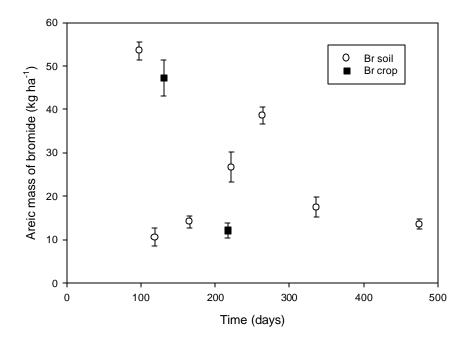


Fig. 5.3.1 Areic mass of bromide in soil and crop as measured at the experimental field in Andelst, the Netherlands. Time zero is 0:00 h at 1 January 1998. Points represent the averages of 31 soil cores at the first sampling time (= day 98) and 4 analyses (mixed samples of 16 columns) at the other times (also 4 for crop samples). Bars represent the standard error.

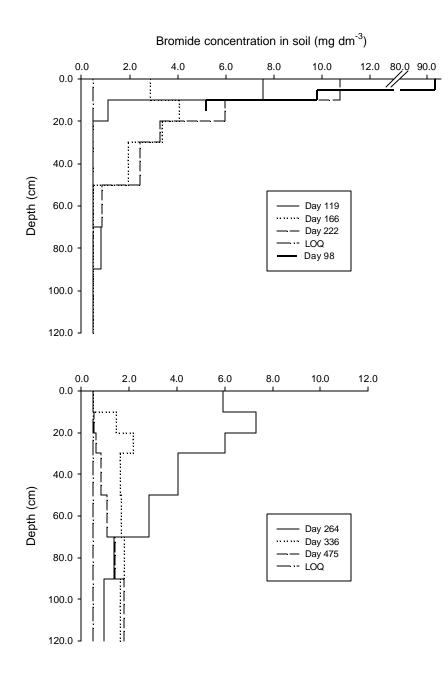


Fig 5.3.2 Average concentrations of bromide as function of depth measured at the experimental field in Andelst, the Netherlands at indicated days. Time zero corresponds with 0:00h at 1 January 1998. Limit of Quantification (LOQ) is indicated in the figures with a vertical dash-dot line.

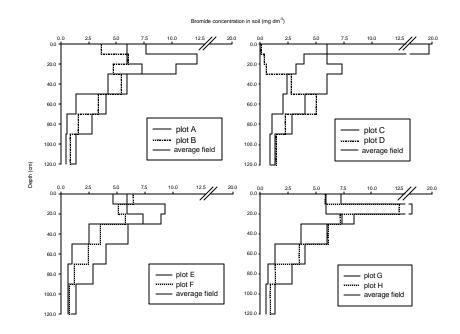


Fig 5.3.3 Measured bromide concentration profiles in eight individual soil cores collected on indicated plots. Sampling date 21 September 1998 (day 264). The thick solid line represents the field-average based on 10 analyses (8 individually analysed profiles and 2 profiles prepaired by mixing soil samples of 4 cores for each profile; see paragraph 2.12).

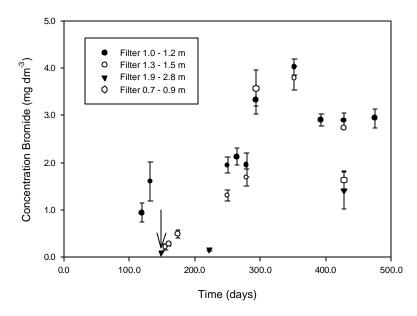


Fig. 5.3.4 Average bromide concentrations in groundwater at different depths and sampling dates as measured at the experimental field in Andelst, the Netherlands. Time zero is 0:00 h on 1 January 1998. Points are the averages and bars represent the standard errors. At day 149 concentrations at 1.9-2.8 m (with arrow) were below LOQ = 0.25 mg dm⁻³.

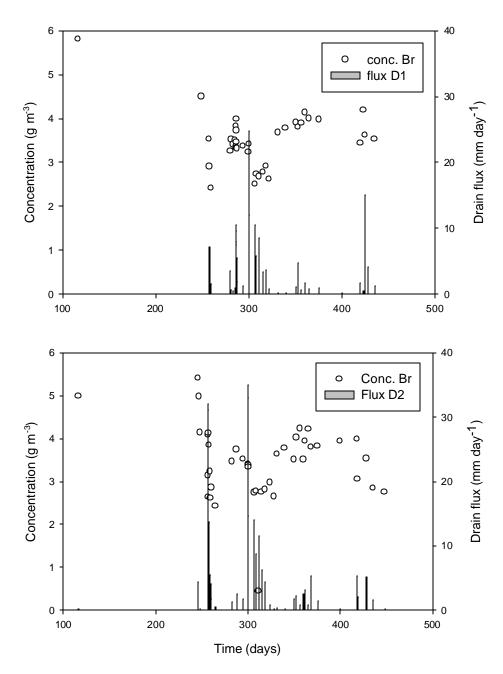


Fig. 5.3.5 Concentration of bromide in water of drain set D1 and drain set D2 as a function of time measured at the experimental field in Andelst, the Netherlands. Drain flux (vertical bars) represents the calculated average flux for the sampling period. Time zero is 0:00 h on 1 January 1998.

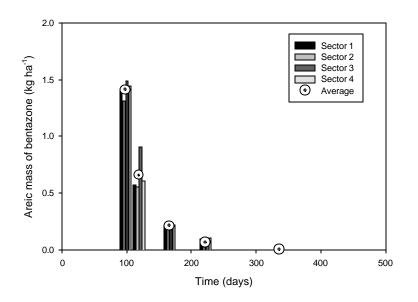


Fig.5.4.1. Areic mass of bentazone in soil, measured at the experimental field in Andelst, the Netherlands. Time zero is 0:00 h on 1 January 1998. Points are the averages for each sampling time and the bars give the values for each sector.

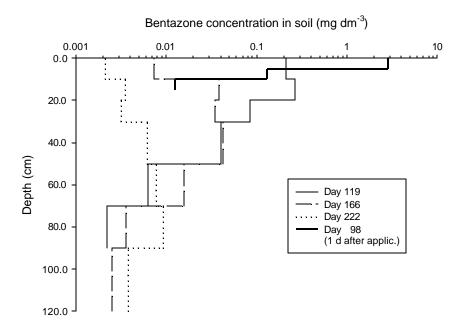


Fig. 5.4.2 Average concentrations of bentazone in soil as measured at the experimental field in Andelst, the Netherlands. Time zero is 0:00h on 1 January 1998. At 2 Dec. 1998 (day 336), contents in all layers were near or below the limit of quantification ($LOQ = 0.0008 \text{ mg dm}^3$) bentazone was only detectable in the 10-20 cm soil layer, but the average was below LOQ.

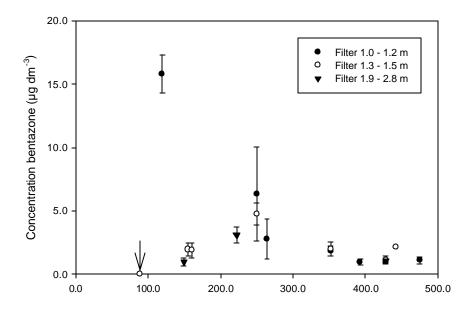


Fig. 5.4.3 Bentazone concentrations in groundwater at different depths and sampling dates as measured at the experimental field in Andelst, the Netherlands. Time zero is 0:00h on 1 January 1998. Points are the averages and bars are the standard errors. Point at day 89 (with arrow) is a sampling before application (blank) with concentrations below $LOQ = 0.05 \ \mu g \ dm^{-3}$.

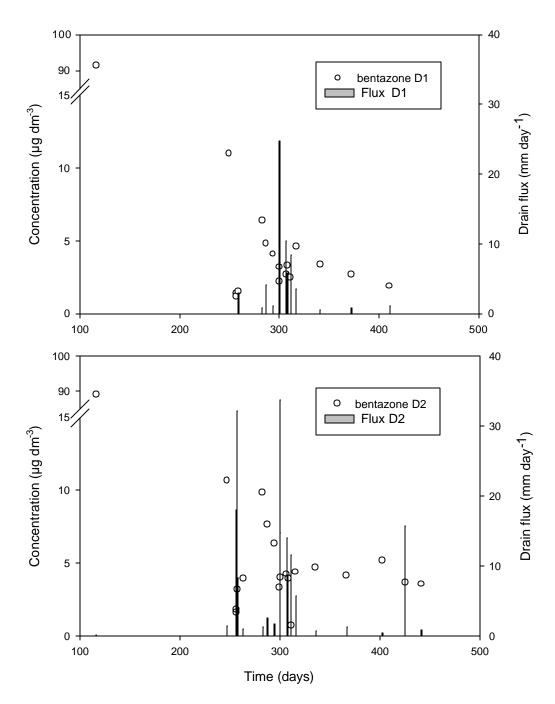


Fig. 5.4.4 Bentazone concentrations in water of drain set D1 and drain set D2 as a function of time as measured at the experimental field in Andelst, the Netherlands. Time zero is 0:00h on 1 January 1998. Note that the left vertical axis is interrupted. Drain flux (vertical bars) represents the calculated average flux for the sampling period

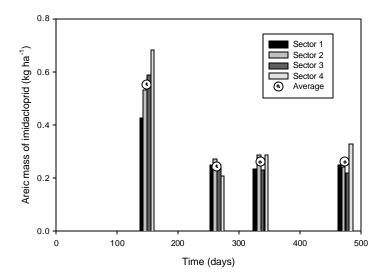


Fig.5.5.1. Areic mass of imidacloprid in soil as measured at the experimental field in Andelst, the Netherlands. Time zero is 0:00h on 1 January 1998. Points are the averages for each sampling time and the bars give the values for each of the fourn sectors.

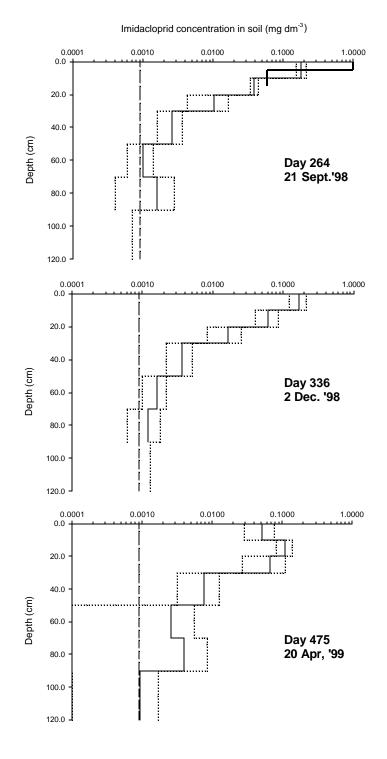


Fig. 5.5.2 Concentration profiles of imidacloprid in soil at the Andelst field, the Netherlands. Dotted lines represent average plus or minus two times the standard error. The thick solid line in the figure for day 264 gives the results of the sampling at two days after application. Time zero is 0:00h on 1 January 1998.

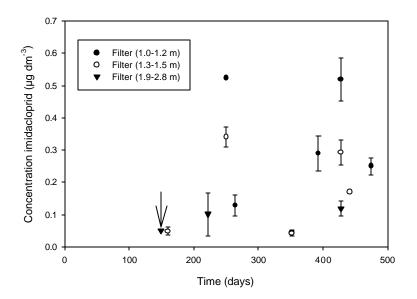


Fig. 5.5.3 Imidaclprid concentrations in groundwater at different depths and sampling dates as measured at the experimental field in Andelst, the Netherlands. Time zero is 0:00h on 1 January 1998. Points are the averages and bars are the standard errors. Point at day 149 (with arrow) is a sampling before application (blank) with concentrations below $LOQ = 0.05 \ \mu g \ dm^3$.

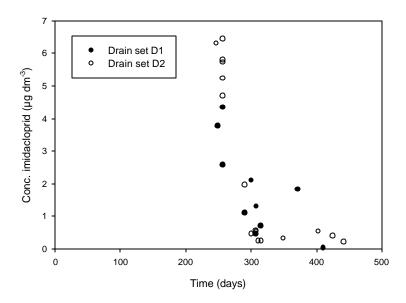
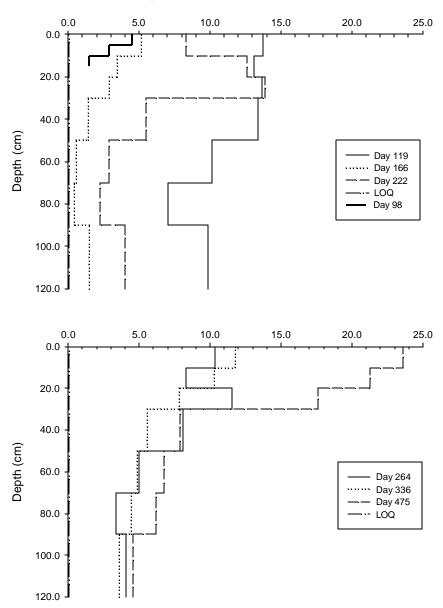



Fig. 5.5.4 Imidacloprid concentrations in drain water as a function of time as measured at the experimental field in Andelst, the Netherlands. Time zero is 0:00h on 1 January 1998.

NO₃-N concentration in soil (mg dm⁻³ soil)

Fig 5.6.1 Average concentrations of nitrate-N in soil as function of depth measured at the experimental field in Andelst, the Netherlands at indicated days (see Annex 49). Time zero corresponds with 0:00h at 1 January 1998. Limit of Quantification (LOQ) is indicated in the figures with a vertical dash-dot line.

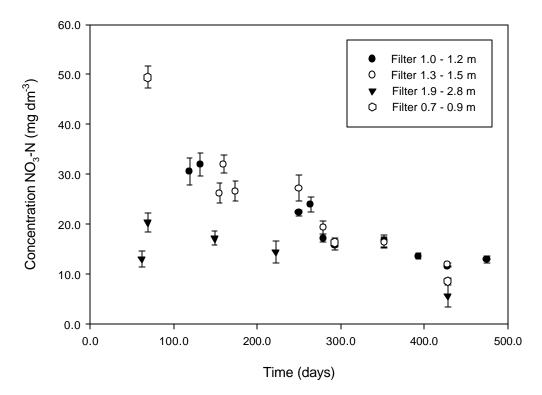


Fig. 5.6.2 Average nitrate-N concentrations in groundwater at different depths and sampling dates as measured at the experimental field in Andelst, the Netherlands (see Annex 26). Time zero is 0:00 h on 1 January 1998. Points are the averages and bars represent the standard errors.

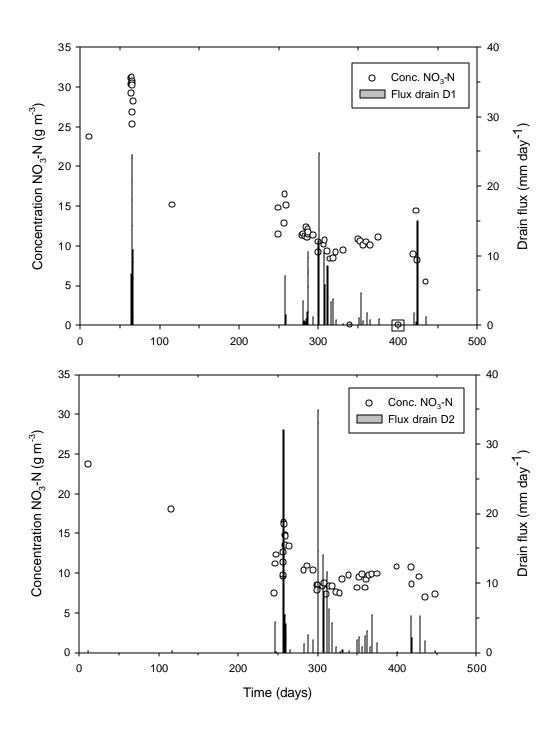


Fig. 5.6.3 Concentration of nitrate-N in water of drain set D1 and drain set D2 as a function of time measured at the experimental field in Andelst, the Netherlands. Drain flux (vertical bars) represents the calculated average flux for the sampling period (see Annexes 11 and 14). Time zero is 0:00 h on 1 January 1998. At day 400 concentration in Drain set 1(in square box) was below LOQ (0.01 mg dm^{-3}).

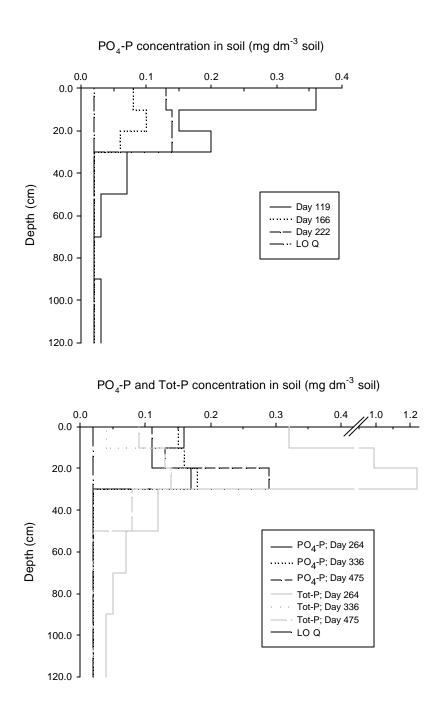


Fig 5.6.4 Average concentrations of phosphorus (PO_4 -P and Total-P) in soil as function of depth measured at the experimental field in Andelst, the Netherlands at indicated days (see Annexes 50 and 52). Time zero corresponds with 0:00h at 1 January 1998. Limit of Quantification (LOQ) is indicated in the figures with a vertical dash-dot line.

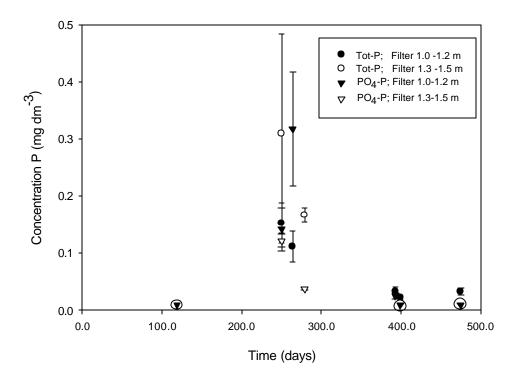


Fig. 5.6.5 Average concentrations of phosphorus (Total-P and PO_4 -P) in groundwater at different depths and sampling dates as measured at the experimental field in Andelst, the Netherlands (see Annexes 27 and 28). Time zero is 0:00 h on 1 January 1998. Points are the averages and bars represent the standard errors. Symbols in cirkels represent concentrations below LOQ (0.025 mg dm $^{-3}$).

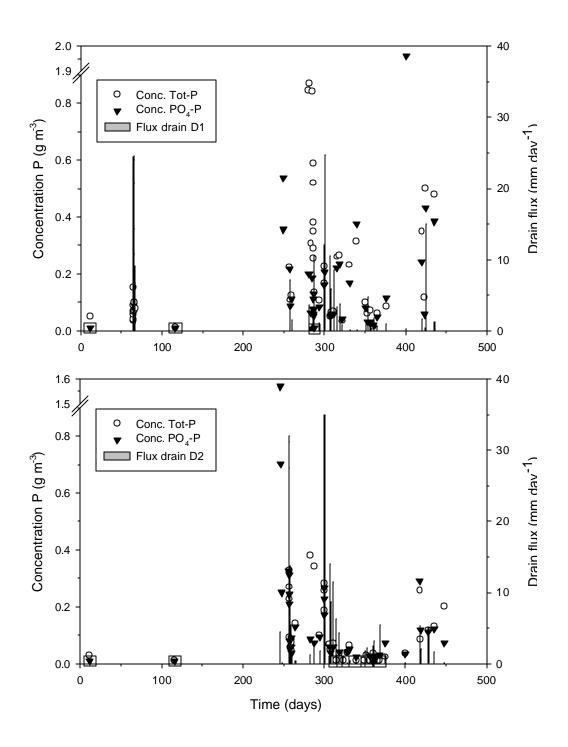


Fig. 5.6.6 Concentration of phosphorus (Total-P and PO₄-P) in water of drain set D1 and drain set D2 as a function of time measured at the experimental field in Andelst, the Netherlands (see Annexes 11 and 14). Drain flux (vertical bars) represents the calculated average flux for the sampling period. Time zero is 0:00 h on 1 January 1998. Symbols in squares represent concentrations below LOQ (0.025 mg dm ³).

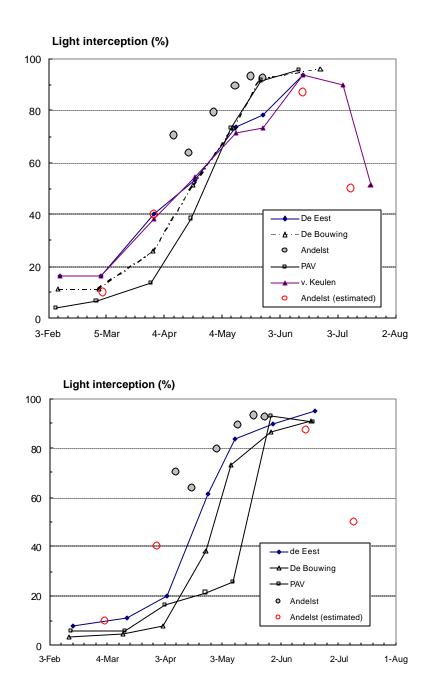


Fig 5.7.1. Light interception measurements for the field at Andelst and measured curves for winter wheat as were measured in 1983 and 1984 on experimental farms in The Netherlands. Open circles (0) represent estimated values for the field at Andelst

6 **Results of the laboratory studies**

6.1 Soil hydraulic functions

Figure 6.1.1 show that the volume fraction of liquid near saturation increases with increasing depth, because of the increase of clay content with depth. In the pressure head range of -1 to about -500 the water retention characteristics differ little between the two duplicates of each depth, as well for the measured values as the fitted lines. For most field conditions this is the relevant range of pressure heads. An exception form the samples 4 and 14 from a depth of 61-69 cm. The results of these two duplicates differ considerably. On the basis of (qualitative) observations during the experiments, sample 14 is considered to be the better sample. The same applies for sample 16 versus its duplicate sample 6 (131-139 cm depth).

During the incubation studies with the pesticides, the moisture content of topsoil at pF 2.0 was determined in triplicate of ring samples from the 0-30 cm layer with a typical bulk density of 1.40 kg dm⁻³. The rings were filled in the laboratory with the soil used for the incubation studies, so these are disturbed samples. The soil was water-saturated and placed on ceramic filter plates with a hanging water column of 100 cm (pF 2.0). The measured moisture content after equilibration was 24.0 kg kg⁻¹ dry soil (s.d = 0.29, n = 3). This is fairly equal to the values from the pF curves measured for this layer.

The relationship between the hydraulic conductivity and the pressure head shows considerable scatter (Fig. 6.1.2). Because of this, the Van Genuchten fits of the hydraulic conductivity function are rather poor. For the fitting the measured saturated conductivity was taken into account. For the samples 4, 14, 5, 15 and 6 the measured saturated conductivity is extremely high for a clay soil (Annex 44). These high values are most likely caused by macropores such as worm holes. Macropores were observed in some samples. In these cases, much lower values for the saturated hydraulic conductivity were considered in the fitting procedure.

It should be considered that the samples were taken at one spot at the Western side of the experimental field. It can be questioned whether the obtained hydraulic characteristics are representative for the average characteristics of the field. Because the average of the measured dry bulk densities (Annex 39) of the four sectors show small standard errors and also the standard deviations of the average textural fractions (Annex 42) are rather small it is expected that the heterogenity of the field concerning the hydraulic characteristics is moderate, and that the measured hydraulic characteristics may be representative for the hydraulic properties of the field.

Furthermore it should be considered that the measured water retention characteristic represents the 'field water retention characteristic' and not the 'soil matrix water retention characteristic'. During the measurements the soil samples shrink because of water loss. The water retention (pF) curve is calculated on the basis of a fixed volume

(the initial volume of the sample which is the volume of the PVC cylinder) and not on the basis of the decreasing volume of the shrinking sample. So the resulting pF curve represents the volume of the shrunken matrix as well as that of the shrinkage cracks, which is the total volume in the field. To obtain the matrix pF curve the field pF curve should be corrected for shrinkage with the shrinkage characteristic. The matrix pF curve is much steeper than the field pF curve (since the shrinkage cracks contain no water the volumic water content of the matrix is greater than the field volumic water content). It depends on the application which curve should be used.

6.2 Soil shrinkage characteristics

Figure 6.2.1 show the shrinkage characteristics for four increasing depths. Void ratio and moist ratio increase with depth, accordingly to the increase of the clay content with depth. Duplicates have about similar shrinkage characteristics, with the standard division in a `normal', a `residual' and a `zero shrinkage' phase (this counts also for the depths that are not shown in Fig. 6.2.1). Samples 4, 14 and 6, 16 show also some 'structural' shrinkage. Exceptions to this general behaviour of clay soil aggregates are samples 2 and 12 (22-30 cm depths; the plough pan). These samples show little 'normal' shrinkage and total shrinkage is considerable less than for the other samples.

6.3 Transformation rates of the pesticides

Bentazone

The results of the incubation studies with bentazone in the 0-30 cm layer show that soil temperature has a distinct effect on the transformation rate with a very slow rate at 5 °C (Fig. 6.3.1). The slight slow down in the transformation rate after about 150 d at 25 °C is probably attributable to a decreasing microbial activity in the incubated soil with time. The effect of temperature is also distinct in soil from the 40-70 cm layer (Fig. 6.3.1). The slower transformation at 15 °C in the 40-70 cm layer (Fig. 6.3.1). The slower transformation at 15 °C in the 40-70 cm layer is probably the effect of lower microbial activity in the deeper layer as well as the effect of the 10 times lower initial content of bentazone in the 40-70 cm layer.

Figure 6.3.2 shows the results of bentazone transformation in soil from the 80-120 cm layer at 10 °C. The transformation is slower than in soil from the 40-70 cm layer at 10 °C, which may be the combined effect of lower microbial activity and the 10 times lower content in the deepest layer. Water-saturation had obviously no measurable effect on the transformation rate. The very low concentration caused more scatter in the analysis results, which hinders accurate estimation of transformation rates.

Imidacloprid

The results of the incubation studies in the 0-30 cm layer at three temperatures are presented in Fig. 6.3.3. The transformation rate of imidacloprid in the topsoil is considerable slower as compared to the rates for bentazone at the same temperature. A similar effect of temperature was seen as with the bentazone transformation series.

A distinct slowing down of the transformation rate of imidacloprid was seen at 25 °C after about two months incubation time. This may be attributed to a decreasing microbial activity or the effect of an increasing adsorption with time, which makes the compound less available for degradation. The incubation series at 5 and 15 °C show some times greater variability between sampling times than between the duplicate samples; this indicate systematic differences between analysis procedures at the different times. This is possible in view of the efficiency of the extraction and analysis procedure measured for the total experimental period (104.2%, s.d 10.5%), for which the results were not corrected.

Figure 6.3.4 shows that the decline of imidacloprid in soil of the 40-70cm layer at 15 $^{\circ}$ C is somewhat slower than that in the topsoil at 15 $^{\circ}$ C. The difference is less pronounced as compared to that for bentazone. There was no measurable decrease of imidacloprid in soil of the 80-120 cm layer at 10 $^{\circ}$ C.

6.4 Sorption of the pesticides in soil water suspensions

Bentazone

It was expected that bentazone would be very weakly sorbed by the clay soil of the experimental field, resulting in a minor decrease of the concentration of bentazone in the liquid phase. The differences between the initial concentration (calculated from the dose) and the measured concentrations are presented as percentage of the initial concentrations and that values are plotted in Fig 6.4.1. It is clear that there was no decrease of the concentration of bentazone after 24 h equilibrium time, therefore no sorption of bentazone. The figure point even more to the opposite: an increase of the concentration as a result of anion exclusion. However, the scatter in the measuring results makes accurate estimation of the percentage anion exclusion impossible. A check of the laboratory analysis learned that it can not be excluded that the spread is partly caused by laboratory procedures. New experiments would be needed to demonstrate anion exclusion with bentazone in this soil.

Imidacloprid

The sorption isotherms for imidacloprid are shown in Fig. 6.4.2. Imidacloprid is clearly sorbed by the clay soil of the experimental field. The isotherms show the normal picture of increasing sorption with decreasing temperature.

6.5 Long-term sorption of imidacloprid

Fig 6.5.1 shows that the variability between aged-residue sorption points was usually small at a given sampling time, except after 41 days. Comparison with the batch adsorption points in the graph shows that the extent of sorption after 285 days was only slightly higher. So this study showed a small effect of long-term sorption equilibration. This was expected because strongest effects of long-term sorption kinetics can be expected for compounds with short half-lives (Boesten , 1987)

whereas imidacloprid is very persistent. Further quantitative interpretation of sorption kinetics is outside the scope of this report.

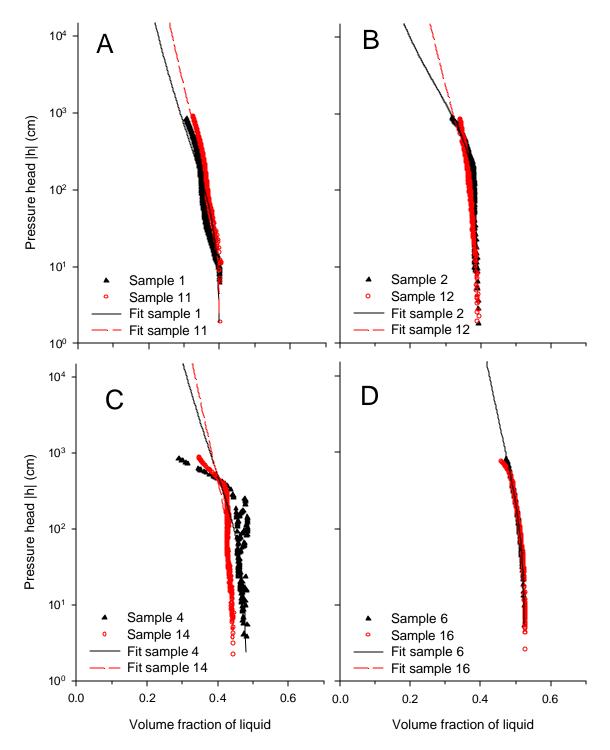


Fig. 6.1.1. Relationship between pressure head and volume fraction of liquid as measured on samples from experimental field Andelst. Part A: samples 1 and 11: 11-19 cm depth; Part B: samples 2 and 12: 22-30 cm (plough pan); Part C: samples 4 and 14: 61-69 cm; Part D: samples: 6 and 16: 131-139 cm. The symbols are duplicate samples measured with the exponentian method. The solid and dotted line are the Van

The symbols are duplicate samples measured with the evaporation method. The solid and dotted line are the Van Genuchten fits (Annex 44). Sample numbers indicate to the corresponding SMNU number in and Annex 54 consequently the results were obtained on the same sample.

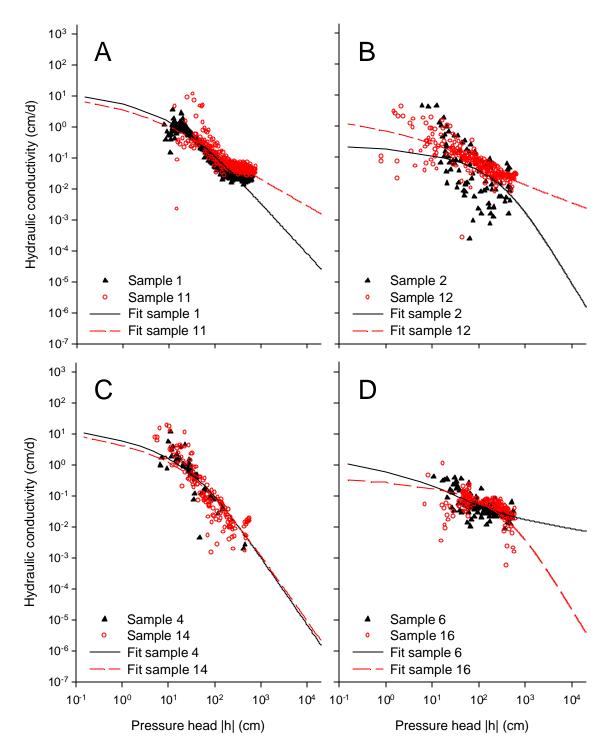


Fig. 6.1.2. Hydraulic conductivity as a function of pressure head as measured on samples from experimental field Andelst. . Part A: samples 1 and 11: 11-19 cm depth; Part B: samples 2 and 12: 22-30 cm (plough pan); Part C: samples 4 and 14: 61-69 cm; Part D: samples: 6 and 16: 131-139 cm.

The symbols are duplicate samples measured with the evaporation method. The solid and dotted line are the Van Genuchten fits (Annex 44). Sample numbers indicate to the corresponding SMNU number in Annex 43 and Annex 44, consequently the results were obtained on the same sample.

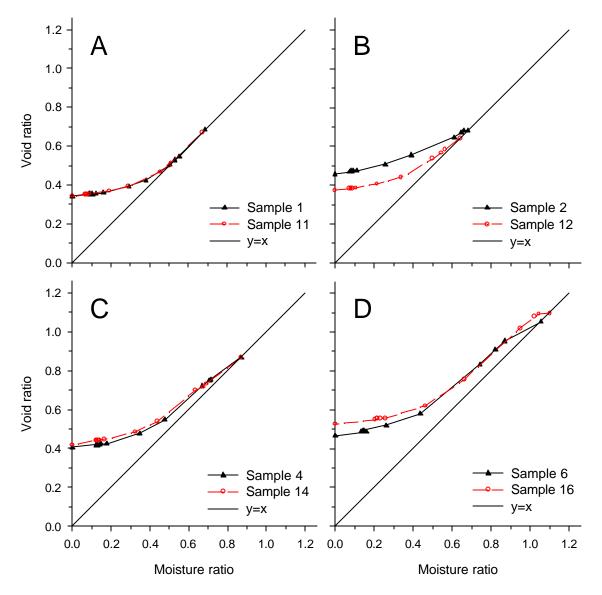


Fig. 6.2.1. Shrinkage characteristics, expressed as void ratio as a function of moisture ratio, as measured on aggregates of experimental field Andelst. Part A: aggregate samples 1 and 11: 11-19 cm depth; Part B: samples 2 and 12: 22-30 cm (plough pan); Part C: samples 4 and 14: 61-69 cm; Part D: samples: 6 and 16: 131-139 cm.

Moisture ratio: volume of water / volume of solids;

Void ratio: volume of pores / volume of solids;

Highest value of moisture ratio expresses (near) saturated conditions.

Samples show (most of) the four phases of the typical shrinkage characteristic of clay aggregates (after Bronswijk, 1988):

1) structural shrinkage (only samples 4, 14 and 6, 16;): near saturation, large water filled pores are emptied without causing any decrease of volume. This causes the normal shrinkage line to move tot the left of the 1:1-line;

2) normal shrinkage (line on or parallel at the 1:1-line) volume decrease of aggregates is equal to loss moisture loss, aggregates remain fully saturated;

3) residual shrinkage (curved line): volume decrease is less than moisture loss;

4) zero shrinkage (horizontal line): no more volume change when moisture decreases.

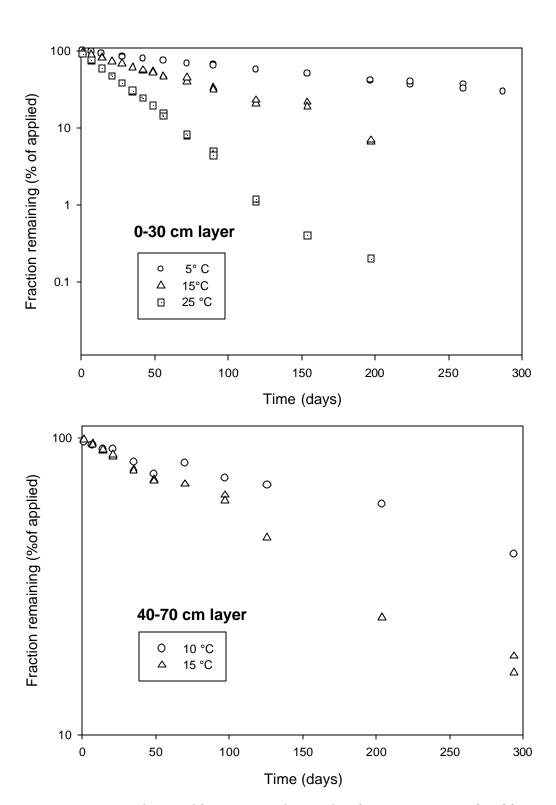


Fig. 6.3.1 Remaining fractions of bentazone as a function of incubation time as measured in laboratory incubations at indicated temperatures with soil collected from the 0-30 and 40-70 cm layers of the experimental field at Andelst

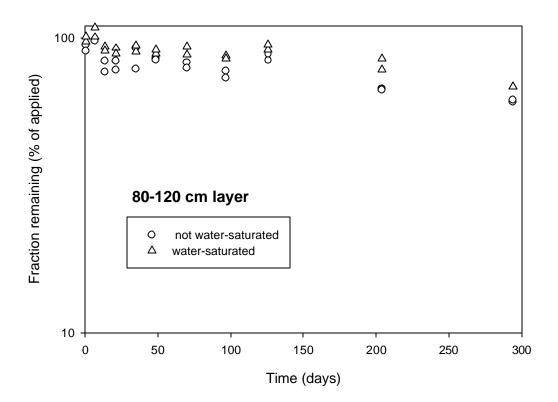


Fig. 6.3.2 Remaining fractions of bentazone as a function of incubation time as measured in laboratory incubations at 10 $^{\circ}C$ with soil collected from the 80-120 cm layer of the experimental field at Andelst. Soil was incubated either moist (not water-saturated) or water-saturated.

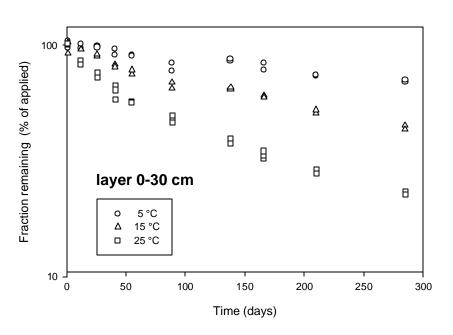


Fig. 6.3.3 Remaining fractions of imidacloprid as a function of incubation time as measured in laboratory incubations at indicated temperatures with soil collected from the 0-30 layer of the experimental field at Andelst

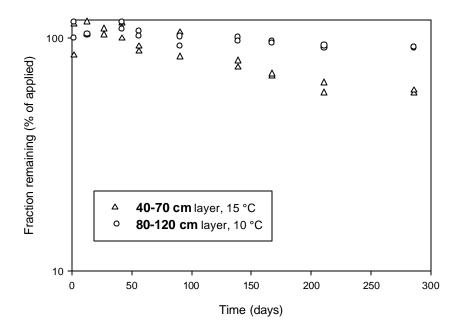
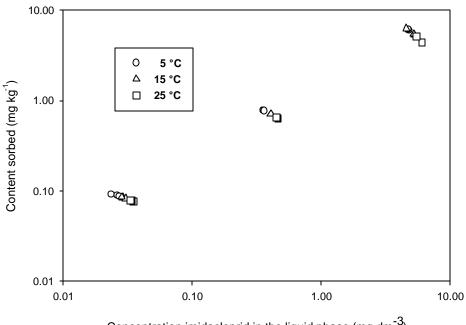



Fig. 6.3.4 Remaining fractions of imidacloprid as a function of incubation time as measured in laboratory incubations at indicated temperatures with soil collected from the 40-70 and 80-120 cm layers of the experimental field at Andelst

Fig. 6.4.1 Change in initial concentration of bentazone in the batch sorption experiment with soil from the 0-30 cm layer of the field at Andelst

Concentration imidacloprid in the liquid phase (mg dm^{-3})

Fig. 6 4.2 Sorption isotherms as measured for imidacloprid at 5, 15, and 25 $^{\circ}C$ in soil from the 0-30 cm layer of the field at Andelst

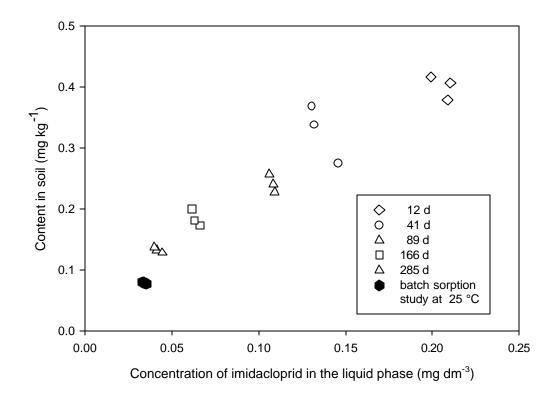


Fig. 6.5.1 Concentration of imidacloprid in the liquid phase versus the content in the soil phase at five indicated times after application of the pesticide in the incubation series at 25 °C (de-sorption study). The value obtained with the batch sorption study at the same temperature and a similar low concentration level is shown for comparison.

References

Baker, D.A. and Hall, J.L. 1988. Solute transport in plant cells and tissues, Longman Scientific & Technical Harlow, UK pages. 378-379.

Beven, K. (1981) Micro-, meso-, macroporosity and channeling flow phenomena in soils. Soil. Sci. Soc. Am. J. 45, 1245.

Beven, K.J., P.Germann. (1982) Macropores and water flow in soils. Water Resour. Res. 18: 1311-1325

Beese, F & R.R. van der Ploeg, 1978. Computermodelle in der Bodenhydrologie- Praktische Ansaetze. Mitteilungen Deutsche Bodenkundlige Gesellschaft 26: 152-172.

Bosch H. van den, Boesten, J.J.T.I., 1994. Validation of the PESTLA model: Field test for leaching of two pesticides in a humic sandy soil in Vredepeel. (The Netherlands). Wageningen, DLO-Staring Centrum. Report 82.

Boesten, J.J.T.I., 1987. Modelling pesticide transport with a three-site sorption sub-model: a field test. Netherlands Journal of Agriculture Science 35: 315-324.

Bronswijk, J.J.B., 1988. Modeling of water balance, cracking and subsidence of clay soils. Journal of Hydrology 97: 199-212.

Bronswijk, J.J.B. and J.J. Evers-Vermeer, 1990. Shrinkage of Dutch clay soil aggregates. Netherlands Journal of Agricultural Science 38: 175-194.

FAO, 1988. Soil of the world, Revised Legend. World Soil Resources Report 64. FAO Rome

Fernandez-Alba, A.R., Valverda, A., Agüera, A., Contreras, M and Chirron S., 1996. J. Chromatogr. A, 721: 97-105.

Geelen, T. van, 1995. Standardization of data files for testing simulation models; Version 1.0; a contribution to the FOMA project 'Nitrate leaching of agricultural areas'. Technical Document 27, DLO Winand Staring Centre, Wageningen, The Netherlands, 74 p.

Genuchten, M.Th. van, 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44: 892-898.

Genuchten, M.Th. van, F.J. Leij and S.R. Yates, 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. USDA, US Salinity Laboratory, Riverside, CA.

Groenendijk, P., J.G. Kroes. 1997. Modelling the nitogen and phosphorus leaching to groundwater and surface water. ANIMO 3.5. Report 144. DLO Winand Staring Centre, Wageningen

Hendriks, R.F.A., K. Oostindie, and P. Hamminga. 1999. Simulation of bromide tracer and nitrogen transport in a cracked clay soil with the FLOCR/AMINO model combination. J. Hydrol. 215:94-115.

Ishii, Y. Kobori, I., Araki, Y., Kurogochi, S., Iwaya, K. and Kagabu, S., 1994. J. Agric. Food Chem. 42: 2917-2921.

Keulen, H. van and J. Wolf (eds), 1986. Modelling of agricultural production: weather, soils and crops. Pudoc Wageningen (page 21)

Kragt, J.F. & E.J. Jansen, 1991. Standardization of data files for the testing simulation models; a contribution to the EC project 'Nitrate in soils'. Report 25, DLO Winand Staring Centre, Wageningen, The Netherlands, 75 p.

Kung, K.J.S. 1990. Influence of plant uptake on performance of bromide tracer. Soil. Sci. Soc. Am. J. 54:975-979.

Laar, H.H. van, J Goudriaan and H. van Keulen, 1992. Simulation of crop growth for potential and water-limited production situations (as applied to spring wheat) Simulation reports 27, CABO-DLO (page 5)

Leistra, M. A.M.A. van der Linden, J.J.T.I Boesten, A.Tiktak and F. van den Berg. 2001. PEARL model for pesticide behaviour and emissions in soil-plant system. Description of processes. Alterra report 013, Alterra, Wageningen, the Netherlands.

Owens, L.B., R.W. van Keuren, and W.M. Edwards. 1985. Groundwater quality changes resulting from a surface bromide application to a pasture. J. Environ. Qual. 14:543-548.

Rijtema, P.E., J.G. Kroes. 1991. Some results of nitrogen simulations with the model ANIMO. Fertilizer Research 27, 189-198.

Smith, A.E. 1981. Comparison of solvent systems for the extraction of atrazine, benzoylprop, flamprop, and trifluralin from weathered field soils. J. Agric. Food Chem. 29:111-115.

Stolte, J. (ed.), 1997. Manual for soil physical measurements. Version 3. Technical Document 37, DLO Winand Staring Centre, Wageningen

Stuyt, L.C.P.M. 1992. The water acceptance of wrapped subsurface drains. Ph. D. Thesis, Wageningen University, Wageningen, The Netherlands. 314 pp.

Warmerdam, P.M.M.,1981. De invloed van de wind op regenwaarnemingen; een vergelijkend regenmeteronderzoek. H₂O 14, 16-20.

WMO, 2000. Guide to meteorological instruments and methods of observation . Geneva : WMO

List of Annexes

1	Explanation of the 2-character codes to describe the names of the variables in the files
1 2	
2	Description of soil structure and morphology
-	Soil and crop management parameters
4	Content of the ASCII file NLA00.BEA.
5	Content of the ASCII file NLA00.BET
6	Content of the ASCII file NLA00.CDC
7	Content of the ASCII file NLA00.CLI .
8	Content of the ASCII file NLA00.CRL
9	Content of the ASCII file NLA00.CRY
10	Content of the ASCII file NLA00.D1BR
11 12	Content of the ASCII file NLA00.D1NT
	Content of the ASCII file NLA00.D1PE
13	Content of the ASCII file NLA00.D2BR
14	Content of the ASCII file NLA00.D2NT
15	Content of the ASCII file NLA00.D2PE
16	Content of the ASCII file NLA00.DDC
17	Content of the ASCII file NLA00.DLI
18	Content of the ASCII file NLA00.GAN
19	Content of the ASCII file NLA00.GBE
20	Content of the ASCII file NLA00.GBR
21	Content of the ASCII file NLA00.GIM
22	Content of the ASCII file NLA00.GLC
23 24	Content of the ASCII file NLA00.GLD
	Content of the ASCII file NLA00.GLI
25	Content of the ASCII file NLA00.GKN
26 27	Content of the ASCII file NLA00.GNN
27	Content of the ASCII file NLA00.GPP
	Content of the ASCII file NLA00.GTP
29 30	Content of the ASCII file NLA00.IMA Content of the ASCII file NLA00.IMD
31	Content of the ASCII file NLA00.IMD
32	
32	Content of the ASCII file NLA00.MBE Content of the ASCII file NLA00.MBR
33 34	Content of the ASCII file NLA00.MIM
34 35	Content of the ASCII file NLA00.PDY
35 36	Content of the ASCII file NLA00.PDY
30	Content of the ASCII file NLA00.PLI
37	Content of the ASCII file NLA00.SAN
30 39	Content of the ASCII file NLA00.SBD
40	Content of the ASCII file NLA00.SBE
40	Content of the ASCII file NLA00.SBR
41 42	Content of the ASCII file NLA00.SCP
42	Content of the ASCII file NLA00.SEC
43	Content of the ASCII file NLA00.SHP
44	Content of the ASCII file NLA00.SIM
40	Content of the ASCII file NLA00.SMM
40	Content of the ASCII file NLA00.SMV
47	Content of the ASCII file NLA00.SKN
10	

49	Content of the ASCII file NLA00.SNN
50	Content of the ASCII file NLA00. SPP
51	Content of the ASCII file NLA00. SOX
52	Content of the ASCII file NLA00.STP
53	Content of the ASCII file NLA00.STE
54	Content of the ASCII file NLA00.SWR

1 CD with all files

Annex 1 Explanation of the 2-character codes to describe the names of the variables in the files

AE	= Areic
AI	= Air
AL	= Aluminium
AN	= Ammonium-N
AV	= Average
BD	= Bulk density
BE	= Bentazone
BR	= Bromide ion
CC	= Calcium carbonate
CD	= Conductivity (hydraulic)
CL	= Clay
СО	= Concentration
CR	= Crop
СТ	= Content
CU	= Cumulative
D1	= Drain (set) 1
D2	= Drain (set) 2
DA	= Day
DC	= Discharge
DP	= Depth
DR	= Drain
DY	= Daily
EC	= Cationic exchange capacity
EN	= End
EQ	= Equilibrium
EV	= Event
FR	= Fraction
GL	= Global
GR	= Grains
GW	= Groundwater
HA	= Halms
HD	= Head
HM	= Air humidity
HO	= Hour
HY	= Hydraulic
IM	= Imidacloprid
IN	= Initial
KC	= KCl
KN	= N-Kjeldahl
LA	= Layers
LI	= Liquid phase
LO	= Lower
LV	= Level
MA	= Maximum
MC	= Matrix

ME	Maagunad
ME	= Measured
MH	= Month
MI	= Minimum
MM	= Moisture mass fraction
MN	= Minute
MO	= Moisture (content)
MV	= Moisture volume fraction
MS	= Mass
NM	= N-mineral
NN	= Nitrate- N (NO ₃)
NU	= Number
OB	= Observations
OC OC	= Organic carbon
OM	= Organic matter
OX	= Organic matter
OR	= Origin
PE	= Pesticides
PE PF	
	= pF
PH	= pH
PP	$= PO_4$
PR	= Precipitation (rainfall)
PS	= Pressure
PZ	= Piezometric level
RA	= Radiation
RE	= Replicate
S1	= Sector 1 of the field
S2	= Sector 2 of the field
S3	= Sector 3 of the field
S4	= Sector 4 of the field
SA	= Sand
SC	= Second
SD	= Standard deviation
SE	= Standard error of average
SI	= Silt
SM	= Sample
SO	= Soil
SR	= Saturated
ST	= Start
TE	= Temperature
TI	= Time
TN	= Total N
TP	= Total N = Total-P
TT	
UP	= Total
	Upper
VA	= Vapour
WA	= Water
WS	= Wind speed
YR	= Year

Annex 2 Description of soil structure and morphology

Depth (cm)	Description
0-12	Strongly developed, fine (2-5 mm), subangular blocky with a macroporosity (4). Lots of biological activity.
12-26	Moderate developed, medium (5- 10 mm), angular blocky with a macroporosity (3). Lots of biological activity.
26-34	Strongly developed, coarse (10-20 mm), angular blocky with a microporosity (1). (ploughpan).
36-43	Strongly developed, medium (20-50 mm), rough prisms composed of strongly developed, coarse (10-20 mm), angular blocky with a macroporosity (3).
43-65	Moderate developed, medium (20-50 mm), rough prisms composed of moderate developed, coarse (10-20 mm), angular blocky with a macroporosity (3).
65-80	Moderate developed, coarse (50-100 mm), rough prisms composed of weakly developed coarse (10-20 mm) angular blocky with a macroporosity (4).
80-100	Moderate developed, very coarse (>100 mm), smooth prisms composed of moderate developed, medium (20-50 mm) prisms with a macroporosity (3). A few big pores on the fractures.
100-125	Strongly developed, coarse (50-100 mm), smooth prisms composed of moderate developed, medium (20-50 mm), prisms with a microporosity (1).
125-140	Weakly developed, very coarse (>100 mm), smooth prisms composed of weakly developed, fine (2-5 mm), angular blocky with a microporosity (l).

LEGEND										
(sub)angular blocky	Size	Prisms Size	Structure grade							
very fine	<5 mm	<10 mm	1. Very weakly							
fine	5-10 mm	10-20 mm	2. Weakly							
medium	10-20 mm	20-50 mm	3. Moderate							
coarse	20-50 mm	50-100 mm	4. Strong							
very coarse	>50 mm	>100 mm	5. Very strong							

Porosity Class

- 1 Weak macroporosity; fracture with smooth micro relief
- 2 Weakly heterogeneous porosity; fracture with a rough micro relief
- 3 Moderate macroporosity; fracture with a smooth micro relief
- 4 Moderate heterogeneous porosity; fracture with rough micro relief
- 5 Strong macroporosity; fracture with a rough micro relief

Annex 3 Soil and crop management parameters etc.

Date	Description of activities
1 Oct. 1997	Chisel ploughing diagonal over the field after harvesting of the potato crop in
	the last week of September
23 Oct. 1997	Seedbed preparation with rototiller and crumbler roller and sowing winter wheat, all in one combined track
20 Feb. 1998	Application of nitrogen fertiliser (325 kg ha ⁻¹ KAS)
7 April 1998	Spraying herbicide Basagran P duplo [®] containing test chemical bentazone
7 April 1998	Spraying test chemical K Br
8 May 1998	Spraying fungicide Matador [®] ; 1L ha ⁻¹ (tebuconazool + triadimenol)
14 May 1998	Application of nitrogen fertiliser (200 kg ha ⁻¹ KAS)
27 May 1998	Spraying test chemical imidacloprid; product formulation Admire®
20 Aug. 1998	Wheat crop treated with a tractor-trailed straw chopper, whole crop remained on the field
1 Sept. 1998	Further shredding and distributing of the wheat crop remnants with rotary mower (Votex $^{\ensuremath{\mathfrak{B}}}$)
1 Sept. 1998	Application of pig slurry (23.9 m ³ ha ⁻¹), which was subsequently incorporated (not very homogeneously) with a spring tine cultivator to approximately 0.10 m depth
22 Sept. 1998	Spraying Roundup [®] (a.i. glyphosate) for killing germinated wheat
8 Dec. 1998	Ploughing of the experimental field (0.25-0.30 m depth)
8 Dec. 1998	Seedbed preparation with rototiller and crumbler roller and sowing winter wheat,
	all in one combined track. Soil was wet and seedbed remained very roughly with
	clearly visible ploughed stripes
17 March 1999	Application of nitrogen fertiliser (300 kg ha ⁻¹ KAS)

Soil and crop management parameters

Annex 4 Content of the ASCII file NLA00.BEA

```
*File:
               NLA00.BEA
               ASCII
*Code:
*Access:
              sequential
*Author:
              L.J.T. van der Pas, J.H. Smelt
*Version:
               1.0
               20 March 2001
*Date:
*Source:
              Measurements by Alterra
                Sorption of bentazone to soil of the 0-30 cm layer
*
                  at 20°C, Andelst, The Netherlands
*
*
       Description of the quantities and their units:
*
       INCOBE = Initial concentration of bentazone (mg dm**[-3]) in the
*
               liquid phase. INCOBE was calculated by dividing the mass
*
               of bentazone added by the total volume of liquid in the
*
               system (value round off to three digits)
*
       EQCOBE = Concentration of bentazone (mg dm**[-3]) measured in
*
               the liquid phase after 24 h equilibration
*
*
      System properties:
*
          Mass of dry soil
                               = 43.06 g (sd=0.01 g, n=16)
*
                              sd = standard deviation
*
          Mass of total liquid phase = 47.03 \text{ g} (\text{sd}=0.05 \text{ g}, \text{n}=16)
*
         EQCOBE in blank soil was <0.005 mg dm**[-3]
* INCOBE EQCOBE
11.7 10.8
   11.7 12.0
   11.7 12.6
   11.7 12.3
*
   2.312.872.312.50
   2.31 2.51
   2.31 2.47
*
  0.554 0.563
  0.554 0.564
  0.554 0.562
  0.554 0.562
  0.116 0.116
  0.116 0.116
  0.116 0.115
  0.116 0.116
```

Annex 5 Contents of the ASCII file NLA00.BET (first part only)

```
*File:
                        NLA00.BET
*Code:
                       ASCII
                      sequential
*Access:
                       L.J.T. van der Pas
1.0
*Author:
*Version:
*Date:
                        24 Feb 2001
*Source:
                       Measurements by Alterra
                           Transformation of bentazone in soil from three
                           layers, field Andelst, The Netherlands
*
*
            Description of the quantities and their units
           YR = Year
*
           MH = Month
           DA
*
                     = Day within month
*
            ΤI
                     = Time (days) elapsed since application of the chemical
*
          UPDP = Upper boundary (cm) of the layer
*
           LODP = Lower boundary (cm) of the layer
*
           MOST = Soil moisture status at start:(0) not saturated (1) water-saturated
           TE = Temperature (degree Celsius) during incubation
*
          MSBE = Mass of bentazone (micro g) remaining
*
                                 Mass was not corrected for extraction efficiency
*
                                   (being about 100%, see report) with all incubation series
*
           System properties: layer 0-30 cm
                  Mass of dry soil= 86.3 gMass of water= 17.9 g
*
*
                  Mass of bentazone added = 97.7 micro g
*
                 Bentazone was applied on 26 May 1998.
          System properties: layer 40-70 cm
*
*
               Mass of dry soil = 84.7 g
Mass of water = 19.5 g
*
                  Mass of bentazone added = 9.45 micro g
*
                  Bentazone was applied on 19 May 1998
*
           System properties: layer 80-120 cm NOT water saturated
                Mass of dry soil = 82.2 g
*
                                                        = 22.1 g
                  Mass of water
*
                  Mass of bentazone added = 0.950 micro g
                 Bentazone was applied on 19 May 1998
          System properties: layer 80-120 cm water saturated
                  Mass of dry soil = 79.1 g
Mass of water = 40.2 g
*
                  Mass of bentazone added = 1.66 micro g
                  Bentazone was applied on 19 May 1998
* YR MH DA TI UPDP LODP TE MOST MSBE

        1998
        5
        27
        1
        0
        30
        5
        0
        100.0

        1998
        5
        27
        1
        0
        30
        5
        0
        99.7

 1998 5 27

      1998
      5
      27
      1
      0
      30
      5
      0
      99.7

      1998
      6
      2
      7
      0
      30
      5
      0
      95.2

      1998
      6
      2
      7
      0
      30
      5
      0
      95.2

      1998
      6
      2
      7
      0
      30
      5
      0
      96.0

      1998
      6
      9
      14
      0
      30
      5
      0
      90.8

      1998
      6
      9
      14
      0
      30
      5
      0
      90.1

 1998 6 23 28 0 30
                                                   5 0 83.1
 1998 6 23
1998 7 7
                       28 0 30
42 0 30
                                                      5 0 81.4
5 0 78.7

    1998
    7
    7
    42
    0
    30
    5
    0
    78.1

    1998
    7
    7
    42
    0
    30
    5
    0
    78.1

    1998
    7
    21
    56
    0
    30
    5
    0
    74.7

    1998
    7
    21
    56
    0
    30
    5
    0
    74.1

 1998 8 6 72 0 30 5 0 68.4

        1998
        8
        6
        72
        0
        30
        5
        0
        67.5

        1998
        8
        24
        90
        0
        30
        5
        0
        65.6

        1998
        8
        24
        90
        0
        30
        5
        0
        65.6

        1998
        8
        24
        90
        0
        30
        5
        0
        63.4

 19989221190305056.519989221190305055.7199810271540305049.1
 1998 10 27 154 0 30 5 0 49.9
```

Annex 6 Content ASCII file NLA00.CDC (first part only)

*File: NLA00.CDC												
*Code: ASCII												
*Access: Sequential	Sequential											
*Author: R.F.A. Hendriks	R.F.A. Hendriks											
*Version: 1.0	1.0											
*Date: 14 april 2001												
*Source: Measurements by ALTERRA												
	Cumulative drain discharge (mm) of Drain Set 1 and Drain Set 2											
* Andelst, ine Netherlands	Andelst, The Netherlands											
Description of the quantities and their units												
Description of the quantities and their units YR = Year												
* MH = Month												
* DA = Day within month												
* DANU = Day number (value is 1 at 1 January 1998)												
* DYDRDCD1 = Daily drain discharge (mm) of Drain Set 1 (Catchment area = 6300 m**[2])												
* DYDRDCD2 = Daily drain discharge (mm) of Drain Set 2 (Catchment area = 5700 m**[2])												
* CUDRDCD1 = Cumulative drain discharge (mm) of Drain Set 1												
 CUDRDCD2 = Cumulative drain discharge (mm) of Drain Set 2 AVCUDRDC = Average cumulative drain discharge (mm), weighted by area of catchment area of Drain Set 1 & 2 												
*												
* Note: for a few short periods with missing data of one of the drain sets (Drain set 1: 3-15 Sept. 1998;												
* Drain set 2: 6-12 Jan. and 6-8 March 1998) the incomplete data set was completed by taking the data												
* of the other, complete set adjusted with the average ratio between the discharge of both drain sets												
* (set 1/set 2 = 0.80).												
*												
* YR MH DA DANU DYDRDCD1 DYDRDCD2 CUDRDCD1 CUDRDCD2 AVCUDRDC												
1998 1 6 6 0.83 0.98 0.83 0.90												
1998 1 7 7 2.50 3.12 3.32 4.10 3.69												
1998 1 8 8 1.82 2.27 5.14 6.37 5.73												
1998 1 9 9 0.40 0.49 5.54 6.87 6.17												
1998 1 10 10 0.11 0.14 5.65 7.01 6.30												
1998 1 11 11 0.00 0.00 5.65 7.01 6.30												
1998 1 12 12 0.00 0.01 5.65 7.02 6.30												
1998 1 13 13 0.00 0.01 5.65 7.03 6.30												
1998 1 19 19 0.00 0.00 5.65 7.03 6.30 1998 1 20 20 0.00 0.03 5.65 7.06 6.32												
1998 1 20 20 0.00 0.03 5.65 7.06 6.32 1998 3 5 64 0.00 0.00 5.65 7.06 6.32												
1998 3 6 65 7.08 9.18 12.73 16.23 14.39												
1998 3 7 66 20.37 25.46 33.10 41.70 37.18												
1998 3 8 67 5.60 8.85 38.70 50.55 44.33												
1998 3 9 68 0.21 2.02 38.90 52.57 45.39												
1998 3 10 69 0.00 1.48 38.90 54.04 46.09												
1998 3 11 70 0.00 1.34 38.90 55.39 46.73												
1998 3 12 71 0.00 0.74 38.90 56.13 47.08												
1998 3 13 72 0.00 0.63 38.90 56.76 47.38												
1998 4 25 115 0.00 0.00 38.90 56.76 47.38 1998 4 26 116 0.00 0.09 38.90 56.84 47.42												
1998 4 26 116 0.00 0.09 38.90 56.84 47.42 1998 4 27 117 0.00 0.09 38.90 56.93 47.47												
1998 4 28 118 0.00 0.24 38.90 57.17 47.58												
1998 9 2 245 0.00 0.00 38.90 57.17 47.58												
1998 9 3 246 3.58 4.47 42.48 61.64 51.58												
1998 9 4 247 0.24 0.30 42.72 61.94 51.85												
1998 9 5 248 0.16 0.20 42.87 62.13 52.02												
1998 9 6 249 0.01 0.02 42.89 62.15 52.04												

Annex 7 Content of ASCII file NLA00.CLI (first part only)

* W MH DA DANU GLRA ATTEMI AITEMA AVVAPS AVWS 1997 11 1 -60 2684 -3.4 4.6 0.64 1.46 1997 11 2 -59 3062 -0.3 3.6 0.65 1.28 1997 11 3 -58 2383 3.2 9.2 0.76 2.82 1997 11 4 -57 6967 0.7 8.3 0.56 4.79 1997 11 5 -56 4673 5.3 15.1 1.1 3.39 1997 11 6 -55 3009 9.9 13.4 1.19 2.83 1997 11 7 -54 679 7.7 13.8 1.12 5.62 1997 11 8 -53 3126 8.2 12.4 0.94 5.08 1997 11 9 -52 4263 8 12.4 0.93 4.46 1997 11 10 -51 2890 6.9 12 0.93 4.45 1997 11 11 -50 1263 5.4 8.7 0.9 3.46 1997 11 12 -49 3164 0.1 8.1 0.83 1.18 1997 11 13 -48 1734 3.3 6.4 0.81 2.33 1997 11 14 -47 2492 3.3 7.8 0.82 2.75 1997 11 15 -46 666 6.9 10.2 1.05 2.77 1997 11 16 -45 1354 6.6 11.2 1.11 2.74 1997 11 17 -44 4928 2.5 9 0.74 4.34 1997 11 18 -43 5054 1.5 8.7 0.64 5.16 1997 11 19 -42 5003 0.7 5.4 0.48 5.28 1997 11 19 -42 5003 0.7 5.4 0.48 5.28 1997 11 2 -40 1032 5 9.1 0.95 2.09 1997 11 2 -33 3158 4.3 10.8 0.87 1.74 1997 11 2 -40 1032 5 9.1 0.95 2.09 1997 11 2 -34 872 3.8 5.4 0.74 4.28 1997 11 2 -32 -38 2810 -2.1 4.9 0.58 1.95 1997 12 2 -29 1404 0.8 3.3 0.59 2.99 1997 12 2 -20 1404 0.8 3.3 0.59 2	*Acces *Autho *Versi *Date:	<pre>*Code: ASCII *Access: Sequential *Author: R.F.A. Hendriks *Version: 1.0 *Date: 22 February 2001 *Source: Measurements by Wageningen University * weather station 'Haarweg' * Wageningen, The Netherlands * * Description of the quantities and their units * YR = Year * MH = Month * DA = Day within month * DA = Day number (value is 1 at 1 January 1998) * GLRA = Global radiation (kJ m**[-2] d**[-1]) * AITEMI = minimum air temperature * AVVAPS = Average water vapoure pressure (kPa) * AVWS = Average windspeed at 2 m height(m s**[-1])</pre>											

1997112 -59 3062 -0.3 3.6 0.65 1.28 1997113 -58 2383 3.2 9.2 0.76 2.82 1997114 -57 6967 0.7 8.3 0.56 4.79 1997115 -56 4673 5.3 15.1 1.1 3.39 1997116 -55 3009 9.9 13.4 1.19 2.83 1997116 -55 3009 9.9 13.4 1.19 2.83 1997116 -55 3029 9.9 13.4 1.19 2.83 1997119 -52 4263 8 12.4 0.94 5.08 19971110 -51 2890 6.9 12 0.93 4.46 19971112 -49 3164 0.183 1.18 19971112 -49 3164 0.183 1.18 19971113 -48 1734 3.3 6.4 0.81 2.33 19971114 -47 2492 3.3 7.8 0.82 2.75 19971116 -45 1354 6.6 11.2 1.11 2.74 19971114 -47 2492 3.3 7.4 0.48 5.28 19971120 -41 1562 0.5 6.5 0.64 4.95 <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>* * * * * * * * * * * *</td></t<>					-					* * * * * * * * * * * *			
1997113 -58 2383 3.2 9.2 0.76 2.82 1997114 -57 6967 0.7 8.3 0.56 4.79 1997115 -56 4673 5.3 15.1 1.1 3.39 1997117 -54 679 7.7 13.8 1.12 5.62 1997118 -53 3126 8.2 12.4 0.94 5.08 1997119 -52 4263 8 12.4 0.93 4.46 19971110 -51 2890 6.9 12 0.93 4.51 19971111 -50 1263 5.4 8.7 0.93 4.61 19971113 -48 1734 3.3 6.4 0.81 2.33 19971114 -47 2492 3.3 7.8 0.82 2.77 19971115 -46 666 6.9 10.2 1.05 2.77 19971116 -45 1354 6.6 11.2 1.11 2.74 19971118 -43 5054 1.5 8.7 0.64 5.16 19971120 -41 1562 0.5 6.5 0.64 4.95 19971121 -40 1032 5 9.1 0.95 2.09 19971124 -37 3158 2 <t< td=""><td></td><td>11</td><td></td><td>-60</td><td>2684</td><td>-3.4</td><td>4.6</td><td>0.64</td><td>1.46</td><td></td></t<>		11		-60	2684	-3.4	4.6	0.64	1.46				
1997114 -57 69670.78.30.564.791997115 -56 46735.315.11.13.391997116 -55 30099.913.41.192.831997117 -54 6797.713.81.125.621997118 -53 31268.212.40.945.081997119 -52 4263812.40.934.4619971110 -51 28906.9120.934.4619971111 -50 12635.48.70.93.4619971112 -49 31640.18.10.831.1819971113 -48 17343.36.40.812.3319971115 -46 6666.910.21.052.7719971116 -45 13546.611.21.112.7419971118 -43 50541.58.70.645.1619971119 -42 50030.75.40.485.2819971120 -41 15620.56.50.644.9519971122 -39 31584.310.80.871.7419971124 -37 315824.50.663													
1997115 -56 4673 5.3 15.1 1.1 3.39 1997116 -55 3009 9.9 13.4 1.19 2.83 1997117 -54 679 7.7 13.8 1.12 5.62 1997119 -52 4263 8 12.4 0.94 5.08 19971110 -51 2890 6.9 12 0.93 4.46 19971111 -50 1263 5.4 8.7 0.9 3.46 19971112 -49 3164 0.1 8.1 0.83 1.18 19971113 -48 1734 3.3 6.4 0.81 2.33 19971114 -47 2492 3.3 7.8 0.82 2.77 19971115 -46 666 69 10.2 1.05 2.77 19971117 -44 4928 2.5 9 0.74 4.34 19971118 -43 5054 1.5 8.7 0.64 5.16 19971120 -41 1562 0.5 6.5 0.64 4.95 19971121 -40 1032 5 9.1 0.95 2.09 19971123 -38 1032 4.4 6.6 0.85 2.09 19971124 -37 3158 2 $4.$													
1997116 -55 3009 9.9 13.4 1.19 2.83 1997117 -54 679 7.7 13.8 1.12 5.62 1997118 -53 3126 8.2 12.4 0.94 5.08 1997119 -52 4263 8 12.4 0.93 4.46 19971110 -51 2890 6.9 12 0.93 4.51 19971111 -50 1263 5.4 8.7 0.9 3.46 19971112 -49 3164 0.1 8.1 0.83 1.18 19971114 -47 2492 3.3 7.8 0.82 2.75 19971115 -46 666 11.2 1.11 2.74 19971116 -45 1354 6.6 11.2 1.11 2.77 19971118 -43 5054 1.5 8.7 0.64 5.16 19971119 -42 503 0.7 5.4 0.48 5.28 19971120 -41 1562 0.5 6.6 1.74 19971122 -39 3158 4.3 10.8 0.87 1.74 19971123 -36 1324 4.6 6.08 3.29 19971124 -37 3158 2 4.5 0.68 3.29 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
1997117 -54 679 7.7 13.8 1.12 5.62 1997118 -53 3126 8.2 12.4 0.94 5.08 1997119 -52 4263 8 12.4 0.93 4.46 19971110 -51 2890 6.9 12 0.93 4.51 19971111 -50 1263 5.4 8.7 0.9 3.46 19971112 -49 3164 0.1 8.1 0.83 1.18 19971113 -48 1734 3.3 6.4 0.81 2.33 19971114 -47 2492 3.3 7.8 0.82 2.75 19971116 -45 1354 6.6 11.2 1.11 2.74 19971117 -44 4928 2.5 9 0.74 4.34 19971118 -43 5054 1.5 8.7 0.64 5.16 19971120 -41 1562 0.5 6.5 0.64 4.95 19971121 -40 1032 5 9.1 0.95 2.09 19971122 -39 3158 4.3 10.8 0.87 1.74 19971124 -37 3158 2 4.5 0.68 3.29 19971126 -35 2265 -0.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
1997119 -52 4263812.40.934.4619971110 -51 2890 6.9 120.934.5119971111 -50 1263 5.4 8.7 0.9 3.46 19971112 -49 3164 0.1 8.1 0.83 1.18 19971113 -48 1734 3.3 6.4 0.81 2.33 19971114 -47 2492 3.3 7.8 0.82 2.75 19971115 -46 666 6.9 10.2 1.05 2.77 19971116 -45 1354 6.6 11.2 1.11 2.74 19971117 -44 4928 2.5 9 0.74 4.34 19971118 -43 5054 1.5 8.7 0.64 5.16 19971120 -41 1562 0.5 6.5 0.64 4.95 19971121 -40 1032 5 9.1 0.95 2.09 19971122 -39 3158 4.3 10.8 0.87 1.74 19971124 -37 3158 2 4.5 0.66 3.29 19971125 -36 3496 1.7 6.2 0.66 3.29 19971126 -35 2265 -0.6 6.9													
19971110 -51 2890 6.9 12 0.93 4.51 19971111 -50 1263 5.4 8.7 0.9 3.46 19971112 -49 3164 0.1 8.1 0.83 1.18 19971113 -48 1734 3.3 6.4 0.81 2.33 19971114 -47 2492 3.3 7.8 0.82 2.75 19971116 -45 1354 6.6 11.2 1.11 2.74 19971116 -45 1354 6.6 11.2 1.11 2.74 199711 16 -45 1354 6.6 11.2 1.11 2.74 199711 16 -45 1354 6.6 11.2 1.11 2.74 199711 19 -42 5003 0.7 5.4 0.48 5.28 199711 20 -41 1562 0.5 6.5 0.64 4.95 199711 21 -40 1032 5 9.1 0.95 2.09 199711 22 -39 3158 4.3 10.8 0.87 1.74 199711 23 -36 1032 4.5 0.68 1.74 199711 25 -36 3496 1.7 6.2 0.66 3.89 199711 26 -35 2265	1997	11	8	-53	3126	8.2	12.4	0.94	5.08				
19971111 -50 1263 5.4 8.7 0.9 3.46 19971112 -49 3164 0.1 8.1 0.83 1.18 19971113 -48 1734 3.3 6.4 0.81 2.33 19971114 -47 2492 3.3 7.8 0.82 2.75 19971116 -45 1354 6.6 11.2 1.05 2.77 19971116 -45 1354 6.6 11.2 1.11 2.74 19971117 -44 4928 2.5 9 0.74 4.34 19971118 -43 5054 1.5 8.7 0.64 5.16 19971120 -41 1562 0.5 6.5 0.64 4.95 19971121 -40 1032 5 9.1 0.95 2.09 19971122 -39 3158 4.3 10.8 0.87 1.74 19971123 -36 1032 4.4 6.6 0.85 2.09 199711 26 -35 2265 -0.6 6.9 0.66 3.29 199711 26 -35 2265 -0.6 6.9 0.66 3.29 199711 28 -33 970 4.3 8.7 0.91 3.53 199711 29 -32 2300 <td>1997</td> <td>11</td> <td>9</td> <td>-52</td> <td>4263</td> <td></td> <td>12.4</td> <td>0.93</td> <td>4.46</td> <td></td>	1997	11	9	-52	4263		12.4	0.93	4.46				
19971112 -49 3164 0.1 8.1 0.83 1.18 19971113 -48 1734 3.3 6.4 0.81 2.33 19971114 -47 2492 3.3 7.8 0.82 2.75 19971115 -46 666 6.9 10.2 1.05 2.77 19971116 -45 1354 6.6 11.2 1.11 2.74 19971117 -44 4928 2.5 9 0.74 4.34 19971118 -43 5054 1.5 8.7 0.64 5.16 19971120 -41 1562 0.5 6.5 0.64 4.95 19971121 -40 1032 5 9.1 0.95 2.09 19971122 -39 3158 4.3 10.8 0.87 1.74 19971123 -38 1032 4.4 6.6 0.85 2.09 19971124 -37 3158 2 4.5 0.68 1.74 19971126 -35 2265 -0.6 6.9 0.68 3.29 19971128 -33 970 4.3 8.7 0.91 3.67 19971129 -32 2300 8.1 11.4 1.03 3.53 19971129 -32 2300 $8.$													
19971113 -48 1734 3.3 6.4 0.81 2.33 19971114 -47 2492 3.3 7.8 0.82 2.75 19971115 -46 666 6.9 10.2 1.05 2.77 19971116 -45 1354 6.6 11.2 1.11 2.74 19971117 -44 4928 2.5 9 0.74 4.34 19971118 -43 5054 1.5 8.7 0.64 5.16 19971120 -41 1562 0.5 6.5 0.64 4.95 19971120 -41 1562 0.5 6.5 0.64 4.95 19971121 -40 1032 5 9.1 0.95 2.09 19971123 -38 1032 4.4 6.6 0.85 2.09 19971123 -38 1032 4.4 6.6 0.85 2.09 19971124 -37 3158 2 4.5 0.68 1.74 19971125 -36 3496 1.7 6.2 0.66 3.89 19971128 -33 970 4.3 8.7 0.91 3.67 19971128 -33 970 4.3 8.7 0.91 3.67 1997121 -30 4068 -0.7 </td <td></td>													
19971114 -47 24923.37.8 0.82 2.7519971115 -46 666 6.9 10.2 1.05 2.77 19971116 -45 1354 6.6 11.2 1.11 2.74 19971117 -44 4928 2.5 9 0.74 4.34 19971118 -43 5054 1.5 8.7 0.64 5.16 19971120 -41 1562 0.5 6.5 0.64 4.95 19971121 -40 1032 5 9.1 0.95 2.09 19971122 -39 3158 4.3 10.8 0.87 1.74 19971123 -38 1032 4.4 6.6 0.85 2.09 19971124 -37 3158 2 4.5 0.68 1.74 19971125 -36 3496 1.7 6.2 0.66 3.89 19971126 -35 2265 -0.6 6.9 0.68 3.29 19971128 -33 970 4.3 8.7 0.91 3.67 19971129 -32 2300 8.1 11.4 1.03 3.53 19971129 -32 2300 8.1 11.4 1.03 3.53 199712 1 -30 4068 -0.7 <td></td>													
19971115 -46 666 6.9 10.2 1.05 2.77 19971116 -45 1354 6.6 11.2 1.11 2.74 19971117 -44 4928 2.5 9 0.74 4.34 19971118 -43 5054 1.5 8.7 0.64 5.16 19971119 -42 5003 0.7 5.4 0.48 5.28 19971120 -41 1562 0.5 6.5 0.64 4.95 19971121 -40 1032 5 9.1 0.95 2.09 19971122 -39 3158 4.3 10.8 0.87 1.74 19971123 -38 1032 4.4 6.6 0.85 2.09 19971124 -37 3158 2 4.5 0.68 1.74 19971125 -36 3496 1.7 6.2 0.66 3.89 19971126 -35 2265 -0.6 6.9 0.68 3.29 19971128 -33 970 4.3 8.7 0.91 3.67 1997122 -32 2300 8.1 11.4 1.03 3.53 1997121 -30 4068 -0.7 7.7 0.65 1.15 1997122 -29 1404 0.8													
19971116 -45 13546.611.21.112.7419971117 -44 49282.59 0.74 4.3419971118 -43 50541.58.7 0.64 5.1619971119 -42 5003 0.7 5.4 0.48 5.2819971120 -41 1562 0.5 6.5 0.64 4.95 19971121 -40 1032 5 9.1 0.95 2.09 19971122 -39 3158 4.3 10.8 0.87 1.74 19971123 -38 1032 4.4 6.6 0.85 2.09 19971124 -37 3158 2 4.5 0.68 1.74 19971125 -36 3496 1.7 6.2 0.66 3.89 19971126 -35 2265 -0.6 6.9 0.68 3.29 19971127 -34 872 3.8 5.4 0.74 4.28 19971128 -33 970 4.3 8.7 0.91 3.67 1997122 -29 1404 0.8 3.3 0.59 2.99 1997121 -30 4068 -0.7 7.7 0.65 1.15 1997122 -29 1404 0.8 3.3 0.59 2.99 <													
19971118 -43 50541.58.70.645.1619971119 -42 50030.75.40.485.2819971120 -41 15620.56.50.644.9519971121 -40 103259.10.952.0919971122 -39 31584.310.80.871.7419971123 -38 10324.46.60.852.0919971124 -37 315824.50.681.7419971125 -36 34961.76.20.663.8919971126 -35 2265 -0.6 6.90.683.2919971127 -34 8723.85.40.744.2819971128 -33 9704.38.70.913.6719971129 -32 23008.111.41.033.5319971130 -31 6154.890.952.771997121 -30 4068 -0.7 7.70.651.151997122 -29 14040.83.30.592.991997123 -28 2810 -2.1 4.90.581.951997124 -27 1607 -5.3 3.20.57 </td <td>1997</td> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1997	11											
1997 11 19 -42 5003 0.7 5.4 0.48 5.28 1997 11 20 -41 1562 0.5 6.5 0.64 4.95 1997 11 21 -40 1032 5 9.1 0.95 2.09 1997 11 22 -39 3158 4.3 10.8 0.87 1.74 1997 11 23 -38 1032 4.4 6.6 0.85 2.09 1997 11 24 -37 3158 2 4.5 0.68 1.74 1997 11 25 -36 3496 1.7 6.2 0.66 3.89 1997 11 26 -35 2265 -0.6 6.9 0.68 3.29 1997 11 27 -34 872 3.8 5.4 0.74 4.28 1997 11 29 -32 2300 8.1 11.4 1.03 3.53 1997 11 29 -32 2300 8.1 11.4 1.03 3.53 1997 12 1 -30 4068 -0.7 7.7 0.65 1.15 1997 12 1 -30 4068 -0.7 7.7 0.65 1.15 1997 12 2 -29 1404 0.8 3.3 0.59 2.99 1997 12 3 -28 2810 -2.1 4.9 0.58	1997	11	17	-44	4928	2.5	9	0.74	4.34				
1997 11 20 -41 1562 0.5 6.5 0.64 4.95 1997 11 21 -40 1032 5 9.1 0.95 2.09 1997 11 22 -39 3158 4.3 10.8 0.87 1.74 1997 11 23 -38 1032 4.4 6.6 0.85 2.09 1997 11 24 -37 3158 2 4.5 0.68 1.74 1997 11 25 -36 3496 1.7 6.2 0.66 3.89 1997 11 26 -35 2265 -0.6 6.9 0.68 3.29 1997 11 26 -35 2265 -0.6 6.9 0.68 3.29 1997 11 27 -34 872 3.8 5.4 0.74 4.28 1997 11 29 -32 2300 8.1 11.4 1.03 3.53 1997 11 29 -32 2300 8.1 11.4 1.03 3.53 1997 12 1 -30 4068 -0.7 7.7 0.65 1.15 1997 12 1 -30 4068 -0.7 7.7 0.65 1.15 1997 12 2 -29 1404 0.8 3.3 0.59 2.99 1997 12 4 -27 1607 -5.3 3.2 0.57 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
1997 11 21 -40 1032 5 9.1 0.95 2.09 1997 11 22 -39 3158 4.3 10.8 0.87 1.74 1997 11 23 -38 1032 4.4 6.6 0.85 2.09 1997 11 24 -37 3158 2 4.5 0.68 1.74 1997 11 25 -36 3496 1.7 6.2 0.66 3.89 1997 11 26 -35 2265 -0.6 6.9 0.68 3.29 1997 11 27 -34 872 3.8 5.4 0.74 4.28 1997 11 28 -33 970 4.3 8.7 0.91 3.67 1997 11 29 -32 2300 8.1 11.4 1.03 3.53 1997 11 30 -31 615 4.8 9 0.95 2.77 1997 12 1 -30 4068 -0.7 7.7 0.65 1.15 1997 12 1 -30 4068 -0.7 7.7 0.65 1.15 1997 12 3 -28 2810 -2.1 4.9 0.58 1.95 1997 12 4 -27 1607 -5.3 3.2 0.57 1.64 1997 12 5 -26 1801 -5.3 4 0.57 1.64													
19971122 -39 3158 4.3 10.8 0.87 1.74 19971123 -38 1032 4.4 6.6 0.85 2.09 19971124 -37 3158 2 4.5 0.68 1.74 19971125 -36 3496 1.7 6.2 0.66 3.89 19971126 -35 2265 -0.6 6.9 0.68 3.29 19971127 -34 872 3.8 5.4 0.74 4.28 19971128 -33 970 4.3 8.7 0.91 3.67 19971129 -32 2300 8.1 11.4 1.03 3.53 19971130 -31 615 4.8 9 0.95 2.77 199712 1 -30 4068 -0.7 7.7 0.65 1.15 199712 2 -29 1404 0.8 3.3 0.59 2.99 199712 3 -28 2810 -2.1 4.9 0.58 1.95 199712 4 -27 1607 -5.3 3.2 0.57 1.64 199712 5 -26 1801 -5.3 4 0.57 1.64 199712 6 -25 735 -0.1 5.3 0.62 5.01													
1997 11 23 -38 1032 4.4 6.6 0.85 2.09 1997 11 24 -37 3158 2 4.5 0.68 1.74 1997 11 25 -36 3496 1.7 6.2 0.66 3.89 1997 11 26 -35 2265 -0.6 6.9 0.68 3.29 1997 11 27 -34 872 3.8 5.4 0.74 4.28 1997 11 28 -33 970 4.3 8.7 0.91 3.67 1997 11 29 -32 2300 8.1 11.4 1.03 3.53 1997 11 30 -31 615 4.8 9 0.95 2.77 1997 12 1 -30 4068 -0.7 7.7 0.65 1.15 1997 12 2 -29 1404 0.8 3.3 0.59 2.99 1997 12 3 -28 2810 -2.1 4.9 0.58 1.95 1997 12 4 -27 1607 -5.3 3.2 0.57 1.59 1997 12 5 -26 1801 -5.3 4 0.57 1.64 1997 12 6 -25 735 -0.1 5.3 0.62 5.01													
1997 11 24 -37 3158 2 4.5 0.68 1.74 1997 11 25 -36 3496 1.7 6.2 0.66 3.89 1997 11 26 -35 2265 -0.6 6.9 0.68 3.29 1997 11 27 -34 872 3.8 5.4 0.74 4.28 1997 11 28 -33 970 4.3 8.7 0.91 3.67 1997 11 29 -32 2300 8.1 11.4 1.03 3.53 1997 11 30 -31 615 4.8 9 0.95 2.77 1997 12 1 -30 4068 -0.7 7.7 0.65 1.15 1997 12 2 -29 1404 0.8 3.3 0.59 2.99 1997 12 3 -28 2810 -2.1 4.9 0.58 1.95 1997 12 4 -27 1607 -5.3 3.2 0.57 1.59 1997 12 5 -26 1801 -5.3 4 0.57 1.64 1997 12 6 -25 735 -0.1 5.3 0.62 5.01													
1997 11 26 -35 2265 -0.6 6.9 0.68 3.29 1997 11 27 -34 872 3.8 5.4 0.74 4.28 1997 11 28 -33 970 4.3 8.7 0.91 3.67 1997 11 29 -32 2300 8.1 11.4 1.03 3.53 1997 11 30 -31 615 4.8 9 0.95 2.77 1997 12 1 -30 4068 -0.7 7.7 0.65 1.15 1997 12 2 -29 1404 0.8 3.3 0.59 2.99 1997 12 3 -28 2810 -2.1 4.9 0.58 1.95 1997 12 4 -27 1607 -5.3 3.2 0.57 1.59 1997 12 5 -26 1801 -5.3 4 0.57 1.64 1997 12 6 -25 735 -0.1 5.3 0.62 5.01	1997	11						0.68					
1997 11 27 -34 872 3.8 5.4 0.74 4.28 1997 11 28 -33 970 4.3 8.7 0.91 3.67 1997 11 29 -32 2300 8.1 11.4 1.03 3.53 1997 11 30 -31 615 4.8 9 0.95 2.77 1997 12 1 -30 4068 -0.7 7.7 0.65 1.15 1997 12 2 -29 1404 0.8 3.3 0.59 2.99 1997 12 3 -28 2810 -2.1 4.9 0.58 1.95 1997 12 4 -27 1607 -5.3 3.2 0.57 1.59 1997 12 5 -26 1801 -5.3 4 0.57 1.64 1997 12 6 -25 735 -0.1 5.3 0.62 5.01	1997	11	25						3.89				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
1997122-2914040.83.30.592.991997123-282810-2.14.90.581.951997124-271607-5.33.20.571.591997125-261801-5.340.571.641997126-25735-0.15.30.625.01													
1997124-271607-5.33.20.571.591997125-261801-5.340.571.641997126-25735-0.15.30.625.01						0.8	3.3						
1997 12 5 -26 1801 -5.3 4 0.57 1.64 1997 12 6 -25 735 -0.1 5.3 0.62 5.01													
1997 12 6 -25 735 -0.1 5.3 0.62 5.01													

Annex 8 Contents of the ASCII file NLA00.CRL

*File: *Code: *Acces *Autho *Versi *Date: *Sourc *	s: r: on:	NLA00.CRL ASCII sequential J.H. Smelt 1.0 30 March 2001 Measurements by Alterra Light interception by winter wheat crop, field at Andelst, The Netherlands															
*	Descr	escription of the quantities and their units:															
*	YR	= Ye		quanter	0100 ana	onorr ai	1200										
*	мн	= Mc															
*	DA		y within	month													
*	FR01		-		intercer	otion fra	action at	spot 1	(dimens	ionless)							
*	FR02			-	-	otion fra		-	(,							
*	FR03			5	-	ption fra		-									
*	FR04			-	-	ption fra		-									
*	FR05	= fr	action o	of light	interce	ption fra	action at	spot 5									
*	FR06	= fr	action o	of light	intercer	ption fra	action at	spot 6									
*	FR07	= fr	action o	of light	interce	ption fra	action at	spot 7									
*	FR08	= fr	action o	of light	intercep	ption fra	action at	spot 8									
*	FR09					ption fra											
*	FR10	= fr	action o	of light	intercep	ption fra	action at	spot 10	0								
*	FR11			_	-	ption fra		-									
*	FR12	= fr				ption fra											
*					-	measuren		-									
*	AVFR		5	5	-	n fractio											
*	SEFR					rage ligh	nt intero	ception f	Eraction								
*	NUOB	= Nu	umber of	total of	oservatio	ons											
*																	
			FF 0 1											77.01.0			
* YR *****	MH	DA ****	FR01	FR02	FR03	FR04	FR05	FR06	FR07	FR08	FR09	FR010	FR11	FR012	AVFR	SEFR	NUOB
1998	*****				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	• • • • • • • • • • • • • • • • • • •		0 C11	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~	0 F 0 0		~ ~ ~ ~ ~ ~ ~ ~ ~	0.704		
1998	4 4	9 17	0.764 0.607	0.735 0.520	0.771 0.662	0.742 0.718	0.664 0.712	0.654 0.615	0.611 0.629	0.634 0.615	0.733 0.536	0.599 0.565	0.745 0.723	0.787 0.735	0.704 0.632	0.0095 0.0106	71 76
1998	4	30	0.842	0.320	0.857	0.873	0.712	0.013	0.029	0.015	0.330	0.303	0.809	0.893	0.032	0.0100	83
1998	4 5	30 11	0.842	0.808	0.857	0.873	0.794	0.825	0.737	0.711	0.755	0.739	0.809	0.893	0.792	0.0077	82
1998	5	19	0.951	0.904	0.917	0.948	0.911	0.823	0.855	0.874	0.800	0.918	0.940	0.988	0.892	0.0063	83
1998	5	25	0.955	0.946	0.950	0.978	0.927	0.874	0.887	0.851	0.906	0.902	0.964	0.985	0.924	0.0052	83
100	5	23	5.255	5.210	5.250	5.2,5	5.247	5.071	5.007	0.001	3.200	3.202	0.201	0.203	5.221	5.0052	0.5

Annex 9 Content of ASCII file NLA00.CRY

*File: NLA00.CRY *Code: ASCII sequential *Access: *Author: J.H. Smelt, R.F.A. Hendriks *Version: 1.0 *Date: 17 April 2003 *Source: Measurements by Alterra Dry matter production of crop and Br and nutrients (N and P) content in crop parts * Description of the quantities and their units: * YR = Year * MH = Month DA = Day within month * OR = origin of sample: 1 = sector 1, 2 = sector 2, 3 = sector 3, 4 = sector 4DMTT = Total mass of dry matter (kg ha**[-1]) DMHA = Mass of dry matter of halms (kg ha**[-1]) DMGR = Mass of dry matter of grains (kg ha**[-1]) BRCOTT = Br content of total plant (mg kg**[-1]) (mg kg**[-1]) BRCOHA = Br content of halms BRCOGR = Br content of grains mg kg**[-1]) MSBRTT = Mass of bromide in total crop (kg ha**[-1]) MSBRHA = Mass of bromide in halms (kg ha**[-1]) MSBRGR = Mass of bromide in grains (kg ha**[-1]) MSTNTT = Mass of total-N in total crop (kg ha**[-1]) MSTNHA = Mass of total-N in halms (kg ha**[-1]) (kg ha**[-1]) MSTNGR = Mass of total-N in grains (kg ha**[-1]) MSTPTT = Mass of total-P in total crop MSTPHA = Mass of total-P in halms (kg ha**[-1]) MSTPGR = Mass of total-P in grains (kg ha**[-1]) -999 = code for unknown values * YR MH DA OR DMTT DMHA DMGR BRCOTT BRCOHA BRCOGR MSBRTT MSBRHA MSBRGR MSTNTT MSTNHA MSTNGR MSTPTT MSTPHA MSTPGR 1998 5 11 1 5103 -999 -999 10777 -999 -999 54.0 -999 -999 144 -999 -999 27 -999 -999 -999 -999 1998 5 11 2 5030 -999 10841 -999 -999 52.0 -999 -999 140 -999 24 1998 5 11 3 12727 -999 -999 2827 -999 -999 -999 -999 35.2 -999 -999 80 -999 14 1998 5 11 4 4013 -999 -999 12377 -999 -999 47.7 -999 -999 110 -999 -999 20 -999 1998 8 5 1 11388 6269 5119 -999 1508 367 11.3 9.5 1.9 165 61 104 33 13 5 2 12099 6602 5497 1998 8 -999 1914 368 14.7 12.6 2.0 177 63 114 31 9 5 3 10209 5653 4556 1629 370 10.9 9.2 1.7 148 93 1998 8 -999 55 31 12 1998 8 5 4 10057 5693 4364 -999 1752 377 11.6 10.0 1.6 142 52 89 29 10

Alterra-rapport 289

-999

-999

-999

-999

20

21

20

19

Annex 10 Content of ASCII file NLA00.D1BR

NLA00 D1BR *File: *Code: ASCIT *Access: Sequential *Author: R.F.A. Hendriks *Version: 1.0 *Date: 30 January 2001 *Source: Measurements by ALTERRA Concentration of Bromide (Br) in the drain discharge of Drain Set D1 Andelst, The Netherlands Description of the quantities and their units m.i.= measurement interval, is a multiple of 5 min [0.0035 d] YRST = Year at start of measurement interval (m.i). MHST = Month at start of m.i. DAST = Day within month at start of m.i. YREN = Year at end of m.i. MHEN = Month at end of m.i. = Day within month at end of m.i. DAEN CUTIST = Cumulative time (d) at start of m.i. (value is 0.000 at 1 January 1998 0.00 h) CUTIEN = Cumulative time (d) at end of m.i. (value is 0.000 at 1 January 1998 0.00 h) COBRD1 = Concentration of Br (g m**[-3] water) in the drain discharge of Drain Set D1 for the m.i. DRDCD1 = Drain discharge (mm) of Drain Set D1 for the m.i. (Catchment area = 6300 m**[2]) -9.99 = Code for unknown values The sampling and discharge measurements did not result in continuous series because of interruptions in drainflow measurements or flow proportional sampling (details are described in Table 2.2 in Alterra Report 289). Consequently, total bromide load can not be determined exactly, estimates have to be made for the missing periods. At 26 April 1998 very low (not measurable) drain discharge but manual sampling possible At 7 September1998 no registration of discharge, manual sampling of water in flow measuring system was possible "blank" drain water not available, assumed to be identical as blank groundwater(< 0.25 (g m**[-3]) * YRST MHST DAST YREN MHEN DAEN CUTIST CUTIEN COBRD1 DRDCD1 1998 4 26 1998 4 28 115.059 117.705 5.81 0 00 1998 1998 9 249.500 249.500 4 50 0.00 a 7 1998 9 , 1998 9 15 1998 9 16 1998 9 18 7 1998 9 , 1998 9 14 1998 9 15 1998 9 16 256.576 257.566 3.53 -9.99 257.566 258.431 2.91 6.16 258.431 260.771 280.330 280.632 2.42 3.50 1998 10 8 1998 10 8 3 26 1.07 1998 10 8 1998 10 10 1998 10 10 1998 10 12 280.632 282.424 282.424 284.517 3.52 1.06 1.07 3.41 1998 10 12 1998 10 14 1998 10 13 1998 10 14 284.517 285.681 286.017 286.535 3.51 1.07 3.36 0.98 1998 10 14 1998 10 14 1998 10 14 1998 10 14 286.535 286.670 286.670 286.767 3.33 1.01 3.83 1.02 286.767 286.872 1998 10 14 1998 10 14 3.99 1.01 1998 10 1998 10 286.872 287.000 3.73 14 15 1.02 1998 10 15 1998 10 15 1998 10 15 287.000 287.184 3.46 1.00 1998 10 15 1998 10 15 287.184 287.743 3.32 1.06 1998 10 27 1998 10 15 287.743 299.646 3.38 13.73 1998 10 27 1998 10 28 299.646 300.299 3.24 7.88 1998 10 28 1998 10 28 300.299 300.490 3.42 4.73 1998 11 3 1998 11 4 306.500 307.455 2.51 10.00 1998 11 1998 11 307.455 309.181 2.74 4 6 10.01 1998 11 10 1998 11 309.181 313.733 2.68 38.62 6 1998 11 14 1998 11 17 1998 11 10 1998 11 14 313.733 317.205 2.78 11.68 317.205 320.358 2.92 11.69 1998 11 17 1998 11 26 1998 11 20 320.358 323.823 2.62 2.57 1998 11 29 329.962 332.505 3.68 0.39 1998 11 29 1998 12 14 332.505 347.035 3.79 2.05 1998 12 1998 12 348.972 352.781 15 19 3.91 3.97 1998 12 19 1998 12 20 352.781 353.646 3.81 4.05 1998 12 1998 12 353.646 359.556 20 26 3.90 3.95 1998 12 26 1998 12 28 359.556 361.878 4.14 4.01 1998 12 1999 361.878 368.444 4.00 28 1 4 4.80 1 1999 1 1999 2 1999 4 19 368.444 383.479 3.98 13.29 1999 19 22 383.479 417.976 -9.99 6.30
 1999
 2
 22

 1999
 2
 27

 1999
 3
 1
 3.44 1999 2 1999 2 417.976 422.188 22 7.11 3 1 1999 3 1 1999 3 9 1999 3 9 27 422.188 424.580 4.20 1.00 1999 3 1 1999 3 1 424.580 424.993 3.63 6.21 424.993 432.580 -9.99 31.02 1999 3 15 1999 3

432.580 438.208

3.53

6.99

9

Annex 11 Content of ASCII file NLA00.D1NT (only the first part)

NLA00 D1NT *File: *Code: ASCIT *Access: Sequential *Author: R.F.A. Hendriks *Version: 1.0 *Date: 17 April 2003 *Source: Measurements by ALTERRA Concentration of nutrient compounds (N and P) in the drain discharge of Drain Set Dl Andelst, The Netherlands Description of the quantities and their units m.i.= measurement interval, is a multiple of 5 min [0.0035 d] YRST = Year at start of measurement interval (m.i). MHST = Month at start of m.i. DAST = Day within month at start of m.i. YREN = Year at end of m.i. MHEN = Month at end of m.i. = Day within month at end of m.i. DAEN CUTIST = Cumulative time (d) at start of m.i. (value is 0.000 at 1 January 1998 0.00 h) CUTIEN = Cumulative time (d) at end of m.i. (value is 0.000 at 1 January 1998 0.00 h) COTPD1 = Concentration Tot-P (g m**[-3] water) in the drain discharge of Drain Set D1 for the m.i. DRDCD1 = Drain discharge (mm) of Drain Set D1 for the m.i. (Catchment area = 6300 m**[2]) -8.88 = Code for unknown values -9.99 = Values below the detection limit of 0.01 g NO3-N, 0.038 g NH4-N, and 0.025 g PO4-P or Tot-P m**[-3] water. The sampling and discharge measurements did not result in continuous series because of interruptions in drainflow measurements or flow proportional sampling (details are described in Table 2.2 in Alterra Report 289). Consequently, total nutrient compounds loads can not be determined exactly, estimates have to be made for the missing periods. At 26 April 1998 very low (not measurable) drain discharge but manual sampling possible At 7 September1998 no registration of discharge, manual sampling of water in flow measuring system was possible * YRST MHST DAST YREN MHEN DAEN CUTIST CUTIEN COAND1 CONND1 COKND1 COPPD1 COTPD1 DRDCD1 INDI MIDI DADI INDI DADI OLIDI COMUDI COMUDI COMUDI COMUDI COMUDI COMUDI 1998 1 12 1998 1 12 11 566 11 639 0 17 23 71 0 67 -9 990 0 050 0 00 64.438 -8.880 -8.880 1998 3 3 6 1998 3 3 6 64.656 -9.99 28.42 -8.88 -9.990 1.24 1998 6 1998 б 64.656 64.774 0.10 29.86 -8.88 0.057 1.23 1998 3 3 1998 3 64.774 64.851 -9.99 30.06 -8.88 -8.880 -8.880 0.042 6 6 1.23 1.22 1998 1998 3 6 64.851 64.910 -9.99 30.60 -8.88 0.037 6 3 3 64.910 -8.880 -8.880 1998 1998 3 64.962 -9.99 31.00 -8.88 0.073 1.22 6 б 1998 6 1998 3 7 64.962 65.007 -9.99 31.07 -8.88 0.043 1 15 3 1998 7 1998 3 7 65.007 65.045 -9.99 31.09 -8.88 -8.880 0.097 1.05 -8.880 1998 7 1998 3 7 65.045 65.083 -9.99 31.04 -8.88 0.083 3 1.04 3 1998 7 1998 3 7 65.083 65.135 0.04 31.30 -8.88 -8.880 0.058 1.24 1998 3 7 1998 3 7 65.135 65.191 -9.99 31.10 -8.88 -8.880 0.118 1.28 1998 3 7 1998 3 7 65.191 65.247 -9.99 31.01 -8.88 -8.880 0.080 1.27 1998 3 7 1998 3 7 65.247 65.299 -9.99 31.19 -8.88 -8.880 0.067 1.23 3 3 1998 7 1998 3 7 65.299 65.351 -9.99 31.13 -8.88 -8.880 0.093 1.24 1998 7 1998 3 7 65.351 65.399 -9.99 31.32 -8.88 -8.880 0.300 1.17 1998 3 3 7 1998 65.399 65.455 0.05 31.00 -8.88 -8.880 0.148 3 7 1.36 -9.99 1998 7 1998 З 7 65.455 65.510 30.86 -8.88 -8.880 0.081 1.30 3 1998 3 1998 3 65.510 65.569 65.569 65.632 -8.880 -8.880 7 1998 7 -9.99 30.80 -8.88 0.071 1.28 7 1998 3 7 65.569 -9.99 30.73 -8.88 0.052 1.25 1998 3 7 1998 3 7 65.632 65.701 -9.99 30.62 -8.88 -8.880 0.071 1.27

Annex 12 Content of ASCII file NLA00.D1PE

NLAOO DIPE *File: *Code: ASCII *Access: Sequential *Author: R.F.A. Hendriks, J.H. Smelt *Version: 1.0 *Date: 30 January 2001 *Source: Measurements by ALTERRA Concentration of the pesticides bentazone (BE) and imidacloprid (IM) in the drain discharge of Drain Set D1 Andelst, The Netherlands Description of the quantities and their units m.i.= measurement interval, is a multiple of 5 min [0.0035 d] YRST = Year at start of measurement interval m.i. MHST = Month at start of m.i. = Day within month at start of m.i. DAST YREN = Year at end of m.i. MHEN = Month at end of m.i. DAEN = Day within month at end of m.i. CUTIST = Cumulative time (d) at start of m.i. (value is 0.000 at 1 January 1998 0.00 h) Drain Set D1 for the m.i. COIMD1 = Concentration of imidacloprid ($\mu g \ dm^{**}[-3]$ water)in the drain discharge of Drain Set D1 for the m.i. DRDCD1 = Drain discharge (mm) of Drain Set D1 for the m.i. (Catchment area = 6300 m**[2]) -9.99 = Code for unknown values or not analysed The sampling and discharge measurements did not result in continuous series because of interruptions in drainflow measurements or flow proportional sampling (details are described in Table 2.2 in Alterra Report 289). Consequently, total pesticide load can not be determined exactly, estimates have to be made for the missing periods. NOTE: for some successive time periods, water samples were proportionally combined to one sample for analyses. These periods can be identified because they have exactly the same concentration. See also table 5.4.1 in Report 289 At 26 April 1998 very low (not measurable) drain discharge but manual sampling was possible At 7 September 1998 no registration of discharge, manual sampling of water in flow measuring system was possible "blank" drainwater was not analysed, assumed to be the same as blank groundwater, which had concentrations below limits of quantification in water, 0.03 (µg dm**[-3] for bentazone and 0.05 (µg dm**[-3] for imidacloprid * YRST MHST DAST YREN MHEN DAEN CUTIST CUTIEN COBED1 COIMD1 DRDCD1 1998 4 26 1998 4 28 115.059 117.705 91.40 -9.99 0 00
 1998
 4
 26

 1998
 9
 7

 1998
 9
 14

 1998
 9
 15

 1998
 9
 15

 1998
 10
 8

 1998
 10
 14

 1998
 10
 15

 1998
 10
 15

 1998
 10
 27

 1908
 10
 27

 1998
 4
 28

 1998
 9
 7

 1998
 9
 15

 1998
 9
 15

 1998
 9
 15

 1998
 10
 13

 1998
 10
 15

 1998
 10
 27

 1998
 10
 28

 1002
 10
 28

 249.500 249.500 11.00 3.76 0.00 _.00 1.40 1.20 1 50 256.576 257.073 257.073 257.566 4.33 -9.99 2.57 -9.99 257.566 260.771 280.330 285.681 -9.99 9.66 6.40 1.11 4.26 286.017 287.743 4.80 1.11 7.11 287.743 299.646 1.11 1.11 13.73 4.10 299.646 300.299 3.20 7.88 1998 10 28 1998 10 28 300.299 300.490 2.20 2.10 4.73 1998 11 1998 11 306.500 307.455 2.70 0.45 10.00 3 4 1998 11 4 307.455 309.181 309.181 313.733 1.30 0.70 1998 11 3.30 6 10.01 1998 11 10 1998 11 6 2.50 38.62 1998 11 10 1998 11 17 0.70 1.82 1998 11 17 313.733 320.358 4.60 23.37 1998 11 17 1998 12 28 320.358 361.878 3.40 20.99 1999 1 19 1999 3 15 2.70 1.82 1.90 0.05 1998 12 28 1999 1 19 18.09 361.878 383.479 383.479 438.208 58.63

Annex 13 Content of ASCII file NLA00.D2BR (only the first part)

NLAOO D2BR *File: *Code: ASCIT *Access: Sequential *Author: R.F.A. Hendriks *Version: 1.0 *Date: 30 January 2001 *Source: Measurements by ALTERRA Concentration of Bromide (Br) in the drain discharge of Drain Set D2 Andelst, The Netherlands Description of the quantities and their units m.i.= measurement interval, is a multiple of 5 min [0.0035 d] YRST = Year at start of measurement interval (m.i.) MHST = Month at start of m.i. = Day within month at start of m.i. DAST YREN = Year at end of m.i. MHEN = Month at end of m.i. = Day within month at end of m.i. DAEN CUTIST = Cumulative time (d) at start of m.i. (value is 0.000 at 1 January 1998 0.00 h) CUTIEN = Cumulative time (d) at end of m.i. (value is 0.000 at 1 January 1998 0.00 h) COBRD2 = Concentration of Br (g m**[-3] water) in the drain discharge of Drain Set D2 for the m.i. DRDCD2 = Drain discharge (mm) of Drain Set D2 for the m.i. (Catchment area = 5700 m**[2]) The sampling and discharge measurements did not result in continuous series because of interruptions in drainflow measurements or flow proportional sampling (details are described in Table 2.2 in Alterra Report 289). Consequently, total bromide load can not be determined exactly, estimates have to be made for the missing periods. "blank" drainwater not available, assumed to be identical as blank groundwater(< 0.25 (g m**[-3]) * YRST MHST DAST YREN MHEN DAEN CUTIST CUTIEN COBRD2 DRDCD2 ****** 1998 4 28 115.059 117.705 5.00 0.41 1998 4 26 5.41 4.76 4.98 0.01 4.14 0.21 2.64 3.01 3.14 3.05 4.08 3.02 4.13 3.24 3.85 2.98 3.23 4.10 2.61 2.89 2.85 0.58 2.86 2.31 2.43 3.15 3.47 6.53 1998 10 13 1998 10 17 1998 10 17 1998 10 27 285.500 289.854 289.854 299.642 3.75 10.82 3.53 17.03
 1998
 10
 28
 299.642
 300.292

 1998
 10
 28
 300.292
 300.424

 1998
 10
 28
 300.424
 300.503
 9.53 1998 10 27 3.41 1998 10 28 3.38 4.36 1998 10 28 1998 10 28 3.33 2.76

 1998
 11
 4

 1998
 11
 6

 1998
 11
 10

 1998
 11
 13

 1998
 11
 17

 بودید 1998 11 3 1998 11 4 306.500307.302307.302309.500 2.74 11.27 2.78 19.16
 309.500
 313.361

 313.361
 316.188
 1998 11 0.44 44.57 1998 11 6 1998 11 10 1998 11 13 2.75 17.55 316.188 320.472 2.81 18.48 320.472 326.524 1998 11 17 1998 11 23 1998 11 23 1998 11 27 5.17 2.98 326.524 330.021 2.65 0.43 1998 11 27 1998 11 29 1998 11 29 1998 12 13 330.021 332.654 332.654 346.549 1.09 3.22 3.64 3.78 19981215199812181998122019981226
 1998
 12
 18
 348.781
 351.316

 1998
 12
 20
 351.316
 353.434

 1998
 12
 26
 353.434
 359.260

 1998
 12
 28
 359.260
 361.149
 4.49 4.63 3.51 4.03 4.24 4.62 3.51 4.60

Annex 14 Content of ASCII file NLA00.D2NT (only the first part)

NLAOO D2NT *File: *Code: ASCIT *Access: Sequential *Author: R.F.A. Hendriks *Version: 1.0 *Date: 17 April 2003 *Source: Measurements by ALTERRA Concentration of nutrient compounds (N and P) in the drain discharge of Drain Set D2 Andelst, The Netherlands Description of the quantities and their units m.i.= measurement interval, is a multiple of 5 min [0.0035 d] YRST = Year at start of measurement interval (m.i). MHST = Month at start of m.i. = Day within month at start of m.i. DAST YREN = Year at end of m.i. MHEN = Month at end of m.i. = Day within month at end of m.i. DAEN CUTIST = Cumulative time (d) at start of m.i. (value is 0.000 at 1 January 1998 0.00 h) CUTIEN = Cumulative time (d) at end of m.i. (value is 0.000 at 1 January 1998 0.00 h) COKND2 = Concentration Kjeldahl-N (g m**[-3] water)in the drain discharge of Drain SetD2 for the m.i. COPPD2 = Concentration PO4-P (g m**[-3] water) in the drain discharge of Drain Set D2 for the m.i. COTPD2 = Concentration Tot-P (g m**[-3] water) in the drain discharge of Drain Set D2 for the m.i. DRDCD2 = Drain discharge (mm) of Drain Set D2 for the m.i. (Catchment area = 5700 m**[2]) -8.88 = Code for unknown values -9.99 = Values below the detection limit of 0.038 g NH4-N, 0.25 g Kj-N and 0.025 g PO4-P or Tot-P m**[-3] water. The sampling and discharge measurements did not result in continuous series because of interruptions in drainflow measurements or flow proportional sampling (details are described in Table 2.2 in Alterra Report 289). Consequently, total nutrient compounds loads can not be determined exactly, estimates have to be made for the missing periods. * YRST MHST DAST YREN MHEN DAEN CUTIST CUTIEN COAND2 CONND2 COKND2 COPPD2 COTPD2 DRDCD2 1998 1 12
 1998
 1
 12
 11.566
 11.639
 0.12
 23.66
 -9.99
 -9.990
 0.030
 0.02
 1998 4 1998 9 1998 9 1998 9
 1998
 4
 28

 1998
 9
 4

 1998
 9
 4

 1998
 9
 5

 1998
 9
 6
 115.059 117.705 26 0.18 18.00 -8.88 -9.990 -9.990 0.41 245.351 246.422 246.422 247.072 247.072 248.916 1.93 0.66 0.20 1.570 0.701 0.250 7.45 1.19 -8.880 4.76 3 1.19 1.19 4 11.14 -8.880 0.01 5 12.28 -8.880 0.21 1998 9 14 1998 9 14 0.00 -9.99 1998 9 14 1998 9 14 256.576 256.691 256.691 256.733 0.08 10.29 4.30 0.388 -8.88 0.296 0.411 0.48 9.90 0.297 0.54 1998 9 14 1998 9 14 9.52 0.283 0.399 1998 9 14 1998 9 14 256.733 256.764 256.764 256.785 -9.99 -9.99 -9.99 -8.88 0.279 0.51 9.16 -8.88 0.382 0.44 1998 9 14 1998 9 14 1998 9 14 1998 9 14 256.785 256.809 256.809 256.830 0.42 8.70 0.08 9.78 -8.88 0.308 -8.88 0.290 0.290 0.56 0.290 0.49 1998 9 14 1998 9 14 256.830 256.851 -9.99 9.65 -8.88 0.317 0.324 0.50 1998 9 14 1998 9 14 256.851 256.851 0.05 9.50 -8.88 0.323 0.355 0.00 -8.88 256.851 256.889 -9.99 9.47 0.288 0.302 1.00
 1998
 9
 14

 1998
 9
 14

 1998
 9
 14

 1998
 9
 14

 1998
 9
 14

 1998
 9
 14

 1998
 9
 14

 1998
 9
 14
 1998 9 14 1998 9 14 256.889 256.906 -9.99 9.98 -8.88 0.289 0.314 0.50 256.906 256.924 -9.99 9.81 -8.88 0.355 0.356 0.52
 1998
 9
 14

 1998
 9
 14

 1998
 9
 14

 1998
 9
 14

 1998
 9
 14

 1998
 9
 14

 1998
 9
 15
 256.924 256.941 -9.99 10.19 -8.88 0.295 0.311 0.53 256.941 256.958
 -8.88
 0.295

 -8.88
 0.279

 -8.88
 0.203
 -9.99 -9.99 10.66 0.330 0.52 256.958 256.972 11.65 -8.86 -8.88 0.277 0.236 0.226 0.42 -9.99 -9.99 1998 9 14 1998 9 14 256.972 256.990 11.47 0.298 0.53 256.990 257.007 -9.99 11.29 0.260 0.52

Annex 15 Content of ASCII file NLA00.D2PE

*File:	NLA00.I	2PE											
*Code:	ASCII												
	Sequent				. .								
*Author: *Version	R.F.A.	Hendrik	s, J.	H. Sm	elt								
*Date:		ary 200	1										
	Durce: Measurements by ALTERRA												
*	Concentration of the pesticides bentazone (BE) and imidacloprid(IM)												
*	in the drain discharge of Drain Set D2												
*	Anderst, The Netherlands												
*	 * Description of the quantities and their units 												
*	Description of the qualitities and their units												
*	* m.i.= measurement interval, is a multiple of 5 min [0.0035 d]												
*	*												
*	INSI - Teat at statt of measurement interval m.i.												
*	MHST = Month at start of m.i.												
*	DAST YREN	= Day w = Year				01 11.1.							
*	MHEN	= Month											
*	DAEN	= Day w	ithin	mont	h at end o	f m.i.							
*									-	1998 0.00 h)			
*									-	.998 0.00 h)			
*	COREDZ				r bentazon or the m.i		[-3] water)in the d	rain discha	irge of			
*	COIMD2						lm**[-3] wa	ter)in th	ne drain di	scharge of			
*					or the m.i					5			
*	DRDCD2 =			-		ain Set D2	for the m	.i.					
*	0 00	•			ea = 5700 n values	m**[2])							
*	-9.99	= Code	LOT U	IIKIIOW.	n values								
* І	he sampl	ing and	disch	arge	measuremer	nts did not	result in	o continuo	ous series 1	because of			
	-	-		-					ing (detai				
					_		-	-	-	load can not			
* b *	e determ	ined exa	actly,	esti	mates have	e to be mad	le for the	missing p	periods.				
	IOTE: for	some si	ICCESS	ive t	ime period	ls. water s	amples wer	e proport	ionally con	mbined to			
									hey have e				
* 5	ame conc	entratio	on. Se	ee als	so table 5	.4.2 in Rep	ort 289		-	_			
*						1.			, ,				
						assumed to s of quanti			ank groundw	ater,			
).05 (µg dn							
*						(1)							
	HST DAST		MHEN		CUTIST	CUTIEN	COBED2	COIMD2	DRDCD2				
									**********	* * * * * *			
1998 1998	4 26 9 3	1998 1998	4 9	28 6	115.059 245.351	117.705 248.916	89.00 10.70	-9.99 6.30	0.41 4.98				
1998	9 14	1998		14		256.809	1.81	6.43	2.52				
1998	9 14	1998	9	14	256.809	256.906	1.81	5.79	2.49				
1998	9 14	1998	9	14	256.906	256.990	1.81	5.71	2.53				
1998	9 14	1998	9	15	256.990	257.073	1.59	5.23	2.64				
1998 1998	9 15 0 15	1998	9	15 16	257.073	257.139	1.59	4.69	2.14				
1998	9 15 9 16	1998 1998	9 9	16 26	257.622 258.354	258.354 268.559	3.20 3.95	-9.99 -9.99	6.01 10.00				
	10 8	1998	10	13	280.264	285.500	9.88	1.97	6.53				
	10 13	1998	10	17	285.500	289.854	7.63	1.97	10.82				
	10 17	1998	10	27	289.854	299.642	6.33	1.97	17.03				
	10 27	1998	10	28	299.642	300.292	3.35	1.97	9.53				
	10 28 11 3	1998 1998	10 11	28 4	300.292 306.500	300.503 307.302	4.01 4.25	0.45 0.57	7.12 11.27				
	11 3 11 4	1998	11	4 6	308.500	307.302	4.25	0.57	19.16				
	11 6	1998	11	10	309.500	313.361	0.69	0.25	44.57				
1998	11 10	1998	11	15	313.361	318.424	4.38	0.25	28.79				
	11 15	1998	12	20	318.424	353.434	4.69	0.32	26.73				
	12 20	1999	1	16	353.434	380.850	4.16	0.32	33.56				
1999 1999	1 16 3 1	1999 1999	3 3	1 3	380.850 424.740	424.740 426.139	5.19 3.66	0.53 0.40	20.23 21.95				
1999	3 3	1999	4	3	424.740	420.139	3.56	0.40	28.33				
-	-			-				–					

Annex 16 Content of ASCII file NLA00.DDC (only the first part)

*File:	NLA00.	DDC												
*Code:	ASCII													
*Access:	Sequen	Sequential												
*Author:		R.F.A. Hendriks												
*Version:														
*Date:		12 February 2001												
*Source:		Measurements by ALTERRA												
*		Drain discharge (mm) of Drain Set 1 and Drain Set 2												
*	Ande	Andelst, The Netherlands												
*	Description of the monthline and their wit-													
*	Description of the quantities and their units													
*	YRST	YRST = Year at start of measurement interval (m.i.)												
*	(Normally m.i. is 5 min [0.0035 d]; in case of no or unknown flow m.i.													
*	MILOT	can be a multiple of 5 min)												
*	MHST			t of m.i.	с ·									
*	DAST	-		th at start	OI M.1.									
*	YREN		at end of											
*	MHEN		at end o		=									
*	DAEN			th at end of		(malua ia	0.000 at 1 January 1998 0.00 h,							
*	CUITSI						rounded of to 3 decimals)							
*	CULTUREN						e treatment as with start)							
*							.i.(Catchment area = 6300 m**[2])							
*			-				(Catchment area = 5700 m**[2])							
*			-				urements for Drain Set 1 and 2							
*	0.0005			lower than t										
*	0 0860						for Drain Set 1:							
*	0.0000		-	e = or > 0.08			for brain bee it							
*	0.1199						for Drain Set 2:							
*				e = or > 0.12										
*	-9.9999			wn values										
*														
* YRST MH	ST DAST	YREN	MHEN DAEI	N CUTIST	CUTIEN	DRDCD1	DRDCD2							
******	* * * * * * *	******	* * * * * * * * *	* * * * * * * * * * * * *	******	*******	**********							
1998	1 6	1998	1 6	5.594	5.632	0.0000	0.0000							
1998	1 6	1998	1 6	5.632	5.635	0.0000	0.0073							
1998	1 6	1998	1 6	5.635	5.639	0.0000	0.0117							
1998	1 6	1998	1 6	5.639	5.642	0.0000	0.0117							
	1 6	1998	1 6	5.642	5.646	0.0000	0.0116							
	1 6	1998	1 6	5.646	5.649	0.0000	0.0117							
	1 6	1998	1 6	5.649	5.653	0.0000	0.0113							
	1 6	1998	1 6	5.653	5.656	0.0000	0.0110							
	1 6	1998	1 6	5.656	5.660	0.0110	0.0113							
	1 6	1998	1 6	5.660	5.663	0.0112	0.0113							
	1 6	1998	1 6	5.663	5.667	0.0111	0.0113							
	1 6	1998	1 6	5.667	5.670	0.0110	0.0109							
	1 6	1998	1 6	5.670	5.674	0.0108	0.0108							
	1 6	1998	1 6	5.674	5.677	0.0108	0.0098							
	1 6	1998	1 6	5.677	5.681	0.0108	0.0105							
	1 6	1998	1 6	5.681	5.684	0.0101	0.0106							
	1 6	1998	1 6	5.684	5.688	0.0096	0.0105							
	1 6	1998	1 6	5.688	5.691	0.0104	0.0105							
	1 6 1 6	1998 1998	1 6	5.691 5.694	5.694 5.698	0.0104 0.0103	0.0103 0.0102							
	1 6 1 6	1998	1 6 1 6	5.694	5.098	0.0103	0.0102							
	1 6	1998	1 6 1 6	5.701	5.701	0.0102	0.0102							
	1 6	1998	1 6	5.705	5.708	0.0102	0.0096							
	1 6	1998	1 6	5.708	5.700	0.0101	0.0101							
	1 6 1998 1 6 5.712 5.715 0.0100 0.0101 1 6 1998 1 6 5.715 5.719 0.0000 0.0100													
	1 6 1998 1 6 5.715 5.719 0.0099 0.0100 1 6 1998 1 6 5.719 5.722 0.0097 0.0092													
	1 6	1998	1 6	5.722	5.726	0.0097	0.0099							
	1 6	1998	1 6	5.726	5.720	0.0099	0.0098							
	1 6	1998	1 6	5.720	5.733	0.0097	0.0097							
	1 6	1998	1 6	5.733	5.736	0.0096	0.0097							
	1 6	1998	1 6	5.736	5.740	0.0088	0.0097							
	1 6	1998	1 6	5.740	5.743	0.0078	0.0096							
	0		5											

Annex 17 Content of ASCII file NLA00.DLI

*File:		NLA00	DT.T											
*Code:		ASCII	• DIT											
*Acces		Seque	ntial											
*Autho		-		R.F.A. H	endriks									
*Versi	on:													
*Date:			6 November 2000											
*Sourc	e:		easurements by ALTERRA											
*			Ditch water Levels: Instantaneous measurements											
*		And	Andelst, The Netherlands											
*		Descr	iption o	f the qua	ntities	and their units:								
*		YR	= Year	r ene quu	IICICICD									
*		MH	= Mont	h										
*		DA	-	within mo										
*		DANU	-			1 at 1 January 1998)								
*		DWLV				below soil surface)								
*		HIHDD	B = Hydra	auric nead	a under	the ditch bottom (m below soil surface)								
* YR	MH	DA	DANU	DWLV	HYHDDB									

1998	1	12	12	1.33	1.15									
1998	1	19	19	1.21	1.19									
1998	1	22	22	1.21	1.19									
1998	1 2	26 2	26 33	1.22 1.24	$1.18 \\ 1.21$									
1998 1998	2 2	∠ 5	33 36	$1.24 \\ 1.24$	1.21									
1998	2	9	40	1.25	1.24									
1998	2	16	47	1.26	1.25									
1998	2	18	49	1.26	1.27									
1998	2	23	54	1.27	1.26									
1998	3	2	61	1.26	1.30									
1998 1998	3 3	3 9	62 68	1.27 1.12	1.29 1.06									
1998	3	10	69	1.12	1.10									
1998	3	16	75	1.20	1.21									
1998	3	17	76	1.23	1.20									
1998	3	23	82	1.17	1.17									
1998	3	24	83	1.11	1.10									
1998	3	30	89	1.10	1.11									
1998 1998	4 4	17 24	107 114	$1.11 \\ 1.11$	1.10 1.09									
1998	4	29	119	1.11	1.05									
1998	5	12	132	1.12	1.10									
1998	5	29	149	1.15	1.18									
1998	6	23	174	1.14	1.12									
1998	7	3	184	1.15	1.17									
1998 1998	7 8	16 10	197 222	$1.15 \\ 1.17$	1.20 1.23									
1998	8	14	222	1.22	1.23									
1998	9	7	250	1.15	1.16									
1998	9	21	264	1.07	1.05									
1998	10	6	279	1.14	1.14									
1998	10	20	293	1.09	1.08									
1998 1998	11 12	17	321	1.02	0.99									
1998 1999	12	18 5	352 370	1.24 1.23	$1.15 \\ 1.12$									
1999	1	28	393	1.23	1.12									
1999	2	3	399	1.29	1.22									
1999	2	25	421	1.20	1.12									
1999	3	4	428	1.07	1.01									
1999	3	18	442	1.26	1.25									
1999 1999	4 4	6 20	461 475	1.31 1.03	1.25 1.00									
1999	4 5	∠0 3	475	1.03	1.00									
1999	5	7	492	1.03	1.01									

Annex 18 Content of ASCII file NLA00.GAN

<pre>Nonces: Sequences: Sequences</pre>	*File:	NLA00.	.GAN												
<pre>*Author: K. Costindis/ R.P.A. Hendrike 'Version: 1.0 'Date: 7 June 2001 'Source: Measurements by ALTERRA 'Concentration of Ammonium-N (NH4-N) in groundwater 'Andelst, The Netherlands 'Description of the quantities and their units 'N = Yea' 'NH = Nonth DANU = Day number (value is 1 at 1 Junuary 1998) NUFT = Number of filters sampled 'DDP = Dipper boundary of the filter (an below and 1 gurface) 'DDP = Dipper boundary of the filter (an below and 1 gurface) 'DDP = Dipper boundary of the filter (an below and 1 gurface) 'DDP = Dipper boundary of the filter (an below and 1 gurface) 'DDP = Dipper boundary of the filter (an below and 1 gurface) 'DDP = Dipper boundary of the filter (an below and 1 gurface) 'DDP = Dipper boundary of the filter (an below and 1 gurface) 'DDP = Dipper boundary of the filter (an below and 1 gurface) 'DDP = Dipper boundary of the filter (an below and 1 gurface) 'DDP = Dipper boundary of the filters (an below and 1 gurface) 'DDP = Dipper boundary of the filters (an below and 1 gurface) 'DDP = Dipper boundary of the filters at depth's of 100-120, 130-150 and 190-280 cm, 'values are for mixed samples obtained from the 8 plots in the Sectors 1 and 2 'DANS3 = Concentration of NH4-N (g m*'1-3) water) for Sector 2; ''''''''''''''''''''''''''''''''''''</pre>	*Code: *Access:	ASCII Sequer													
<pre>*Date: 7 June 2001 *Source: Keasurements by ALTERRA * Concentration of Ammonium-N (NH4-N) in groundwater * Andelat, The Netherlands * * Description of the quantities and their units * TR = Year * MG = Month * DDNT = Fay mumber (value is 1 at 1 January 1990) * NDRT = Tay mumber (value is 1 at 1 January 1990) * NDRT = Tay mumber (value is 1 at 1 January 1990) * NDRT = Number of filters sampled * UDPP = Upper boundary of the filter (m below soil surface) * COANSI = Concentration of NH4-N (g m**(-3) water) for Sector 1: * in general average of 4 observations (1 observation per plot): * at 04-03-1999: for the filter (m below soil surface) * COANSI = Concentration of NH4-N (g m**(-3) water) for Sector 2: * in general average of 4 observations (1 observation per plot): * at 04-03-1999: for the filters at depth's of 100-120, 130-150 and 190-280 cm, * values are for nixed samples obtained from the 8 plots in the Sectors 1 and 2 * COANSI = Concentration of NH4-N (g m**(-3) water) for Sector 2: * in general average of 4 observations (1 observation per plot): * at 04-03-1999: for the filters at depth's of 100-120, 130-150 and 190-280 cm, * values are for nixed samples obtained from the 8 plots in the Sectors 1 and 2 * COANSI = concentration of NH4-N (g m**(-3) water) for Sector 4: * in general average of 4 observations (1 observation per plot): * at 04-03-1999: for the filters at depth's of 100-120, 130-150 and 190-280 cm, * values are for nixed samples obtained from the 8 plots in the Sectors 3 and 4 * COANSI = Concentration of NH4-N (g m**(-3) water) * GOANSI = Concentration of NH4-N (g m**(-3) water) * GOANSI = Concentration of NH4-N (g m**(-3) water) * COANSI = Concentration of NH4-N (g m**(-3) water) * SECOANS = Standard error (g m**(-3) water) of 100-120, 10-150 and 190-280 cm, * values are for nixed samples obtained from the 8 plots in the Sectors 3 and 4 * ACCOANSI = Concentration of NH4-N (g m**(-3) water) * SECOANS = Standard error (g m**(-3) water) of 100-120, 10-150 and 190-280 cm, * values are for nixed s</pre>		-	K. Oostindie; R.F.A. Hendriks												
<pre>Source: Measurements by ALTERNA</pre>															
<pre> Concentration of Ammonium-N (NH4-N) in groundwater Andelst, The Netherlands Percentration of the quantities and their units YR = Year YR = Year YR = Nonth DA = Day within month COANS1 = Concentration of NH4-N (g m*1-3) water) for Sector 1;</pre>															
<pre>Andelst, The Netherlands Pecoription of the quantities and their units YR = Year MH = Month DA = Day within month DANU = Day number (value is 1 at 1 January 1998) NUFT = Number of filters sampled UUDP = Number of filters sampled UDP = Laper boundary of the filter (rm below soil surface) UDP = Laper boundary of the filter (rm below soil surface) UDP = Uper boundary of the filter (rm below soil surface) COANS1 = Concentration of NH4-N (g m*1-3) water) for Sector 1: in general average of 4 observations (1 observation per plot): at 04-03-1999: for the filters at depth's of 100-120, 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 1 and 2 COANS2 = Concentration of NH4-N (g m*1-3) water) for Sector 3: in general average of 4 observations (1 observation per plot): at 04-03-1999: for the filters at depth's of 100-120, 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 1 and 2 COANS3 = Concentration of NH4-N (g m*1-3) water) COANS4 = CONCENTRATION (MH4-N (g m*1-3) water) COANS4 = CONCENTRATION of NH4-N (g m*1-3) water) COANS4 = CONCENTRATION of the average content (a COCAN) and SECOAN ACCOAN = Average concentration of NH4-N (g m*1-3) water) COANS4 = CONCENTRATION of the average content (g ACCOAN) this value is set at 0.02 g NH4-N m*1-3) water) COANS1 = COANS1 COANS2 COANS3 COANS4 AVCOAN SECOAN NUCE COANS3 = COANS1 = COANS3 COANS4 AVCOAN SECOAN NUCE COANS3 = COANS3 = COANS4 AVCOAN SECOAN NUCE COANS3 = COANS3 = COANS4 AVCOAN SECOAN NUCE COANS3 = COANS3 = COANS4 AVCOAN SECOAN NUCE COANS = COANS3 = COANS3 COANS4</pre>			-												
<pre>YR = Year MH = Month DA = Day within month UPD = Upper boundary of the filter (cm below soil surface) LOOP = Lower boundary of the filter (cm below soil surface) CONNS1 = Concentration of NH4-N (g m*1-3) water) for Sector 1:</pre>	*							5							
<pre>YR = Year MH = Month DA = Day within month UPD = Upper boundary of the filter (cm below soil surface) LOOP = Lower boundary of the filter (cm below soil surface) CONNS1 = Concentration of NH4-N (g m*1-3) water) for Sector 1:</pre>	*			C 11											
<pre>MH = Month DANU = Day Nuther month DANU = Day Nuther (value is 1 at 1 January 1998) UTPP = Upper boundary of the filter (cm below soil surface) UTPP = Upper boundary of the filter (cm below soil surface) COANSI = Concentration of NN4-N (g m**(-3) water) for Sector 1;</pre>	*														
 DANU = Day number of filters sampled UPFF = Upper boundary of the filter (cm below soil surface) UPFF = Upper boundary of the filter (cm below soil surface) COANSI = Concentration of NM4-N (g m*1-3] water) for Sector 1; in general average of 4 observations (1 observations per plot); at 04-03-1999: for the filters at depth's of 100-120, 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 1 and 2 COANSI = Concentration of NM4-N (g m*1-3] water) for Sector 2; in general average of 4 observations (1 observations per plot); at 04-03-1999: for the filters at depth's of 100-120, 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 1 and 2 COANS3 = Concentration of NM4-N (g m*1-3] water) for Sector 3; in general average of 4 observations (1 observations per plot); at 04-03-1999: for the filters at depth's of 100-120, 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 3 and 4 COANS4 = Concentration of NM4-N (g m*1-3] water) for Sector 4 COANS4 = Concentration of NM4-N (g m*1-3] water) for 100-120, 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 3 and 4 COANS4 = Standard error (g m*1-3] water) for the average concentration of NM4-N NUCOS = Number of observations (from othe 8 plots in the Sectors 3 and 4 SECOAN = Standard error (g m*1-3] water) of the average concentration of NM4-N values below the detection limit of 0.038 g NM4+N (0.05 g NM4) m*1-3] water. For calculation of the average contents (AVCOAN SECOAN NUCOAN -9.9 = Values below the detection limit of 0.038 g NM4+N (0.05 g 0.041) n*1-(-3] water) values below the detection limit of 0.038 g N	*														
<pre>NUFI = Number of filters sampled UDP = Upwer boundary of the filter (cm below soil surface) COANSI = Concentration of NH4-N (g m*1-3] water) for Sector 1; in general average of 4 observations (1 observation per plot); at 04-03-1995; for the filters at depth's of 100-120, 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 1 and 2 COANS2 = Concentration of NH4-N (g m*1-3] water) for Sector 2; in general average of 4 observations (1 observation per plot); at 04-03-1995; for the filters at depth's of 100-120, 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 1 and 2 COANS3 = Concentration of NH4-N (g m*1-3] water) for Sector 3; in general average of 4 observations (1 observation per plot); at 04-03-1995; for the filters at depth's of 100-120, 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 3 and 4 COANS4 = Concentration of NH4-N (g m*1-3) water) for Sector 4; in general average of 4 observations (1 observation per plot); at 04-03-1995; for the filters at depth's of 100-120, 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 3 and 4 AVCOAN = Average concentration of NH4-N (g m*1-3] water) SECOAN = Standard error (g m*1-3] vater) for Sector 4; in general average of calculation of AVCOAN and SECOAN -8.88 = Code for unknown values -9.99 = Values below the detection limit of 0.038 g NH4-N (0.05 g NH4) m*1(-3] water. For calculation of the average concentrat; (AVCOAN = KOCAN = NUOB * NUOB = Number of observations for 0.07 0.016 0.07 0.09 0.03 15 1988 3 10 65 2 10 280 -0.99 0.05 0.041 1.0.05 0.041 0.06 0.01 1.6 1988 3 10 65 2 100 280 -0.99 -9.99 -9.99 0.99 0.05 0.01 1.6 1988 5 12 132 1 100 120 0.04 0.03 0.04 0.04 0.04 0.06 0.01 1.6 1988 5 12 132 1 100 120 0.04 0.83 0.99 -9.99 -9.99 -9.99 1.6 1988 6 2 16 1 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 1.6 1988 6 2 16 1 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 1.6 1988 10 22 22 1 100 120 -0.94 0.03 0.04 0.0</pre>	*		DA = Day within month												
<pre>PUPDE = Upper boundary of the filter (cm below soil surface) CCANS1 = Concentration of NH4-N (g m*t^-3) water; for Sector 1; in general average of 4 observations (1 observation per plot); at 04-03-1999: for the filters at depth's of 100-120. 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 1 and 2 CCANS2 = Concentration of NH4-N (g m*t^-3] water; for Sector 2; in general average of 4 observations (1 observation per plot); at 04-03-1999: for the filters at depth's of 100-120. 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 1 and 2 CCANS3 = Concentration of NH4-N (g m*t^-3] water; for Sector 3; in general average of 4 observations (1 observation per plot); at 04-03-1999: for the filters at depth's of 100-120. 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 3 and 4 CCANS4 = Concentration of NH4-N (g m*t^-3] water; for Sector 4; in general average of 4 observations (1 observation per plot); at 04-03-1999: for the filters at depth's of 100-120. 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 3 and 4 AVCCONM = Average concentration of NH4-N (g m*t^-3] water; sectors = Number of observations for calculation of AVCOAN and SECOAN * 0.02 g NH4-N m*t^(-3) water. * P.99 = Values below the detection limit of 0.038 g NH4-N (0.05 g NH4) m*t^-3] water. For calculation of the average contents (AVCOAN) this value is set at 0.02 g NH4-N m*t^(-3] water. * YR MH DA DANU NUFI UPDP LODP COANSI COANS2 COANS3 COANS4 AVCOAN SECOAN NUOB 1998 3 10 69 2 190 280 -0.99 -0.99 -0.99 -0.99 -0.99 -0.99 -0.99 1998 4 115 1 130 150 -0.99 -9.99 -9.99 -9.99 -0.99 -0.99 -0.99 1998 5 12 132 1 100 120 0.040 0.04 0.04 0.06 0.06 0.00 106 1998 5 12 132 1 100 120 0.040 0.04 0.04 0.06 0.06 0.00 106 1998 6 2 31 74 1 130 150 -0.99 -9.99 -9.99 -9.99 -9.99 -9.99 -1.99 1998 10 22 21 190 120 -0.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 1998 10 22 22 1 190 120 -0.99 -9.99 -9.99 -9.99</pre>	*														
<pre>CCANSI = Concentration of NH4-N (g m*t[-3] water) for Sector 1; in general average of 4 observations [1 observation per plot); at 04-03-1999: for the filters at depth's of 100-120. 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 1 and 2 CCANS2 = Concentration of NH4-N (g m*t[-3] water) for Sector 2; in general average of 4 observations [1 observation per plot); at 04-03-1999: for the filters at depth's of 100-120. 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 1 and 2 CCANS3 = Concentration of NH4-N (g m*t[-3] water) for Sector 3; in general average of 4 observations [1 observation per plot); at 04-03-1999: for the filters at depth's of 100-120. 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 3 and 4 CCANS4 = Concentration of NH4-N (g m*t[-3] water) for Sector 4; in general average of 4 observations [1 observation per plot); at 04-03-1999: for the filters at depth's of 100-120. 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 3 and 4 * AVCCONM = Average concentration of NH4-N (g m*t[-3] water) sectors = Number of observations for calculation of AVCOAN and SECOAN * Best code for unknown values * -9.99 = Values below the detection limit of 0.038 g NH4-N (0.05 g NH4) m*t[-3] water. For calculation of the average contents (AVCOAN) this value is set at 0.02 g NH4-N m*t[-3] water. * TR MH bA DANU NUFI UEDP LODP COANSI COANS2 COANS3 COANS4 AVCOAN SECOAN NUOB 1998 3 10 69 2 190 280 -9.99 -0.99 -9.99 -0.99 -0.99 -0.99 -0.99 1998 6 4 155 1 130 150 -9.99 -9.99 -9.99 -9.99 -0.99 -0.99 15 1998 6 4 155 1 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 -1.99 1998 6 4 155 1 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 -1.99 1998 6 2 174 1 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 -1.99 1998 10 22 21 190 120 0.044 0.045 -0.04 -0.04 -0.04 0.02 7 1998 10 22 21 190 120 -0.99 -9.99 -9.99 -9.99 -9.99 -9.99 1998 10 22 22 1 100 120 -0.99 -9.99 -9.99 -9.99 -9.99 -9.99 19</pre>	*		-												
<pre>in general average of 4 observations (1 observation per plot):</pre>	*				-										
<pre>at 04-03-1999: for the filters at depth's of 100-120, 130-150 and 190-280 cm,</pre>	*	COANSI					-				plot);				
<pre>cOANS2 = Concentration of NH4-N (g m*1-3] water) for Sector 2;</pre>	*		-			-				-	-	190-280) cm,		
<pre>in general average of 4 observations (1 observation per plot);</pre>	*	CONNEC					-			-	n the Sec	tors 1 a	and 2		
 values are for mixed samples obtained from the 8 plots in the Sectors 1 and 2 COANS3 = Concentration of NH4-N (g m*t-13) water) for Sector 3; in general average of 4 observations (1 observation per plot); at 04-03-1999: for the filters at depth's of 100-120, 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 3 and 4 COANS4 = Concentration of NH4-N (g m*t-13) water) for Sector 4; in general average of 4 observations (1 observation per plot); at 04-03-1999: for the filters at depth's of 100-120, 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 3 and 4 AVCOAN = Average concentration of NH4-N (g m*t-1-3] water) SECOAN = Standard error (g m*t-1-3] water) of the average concentration of NH4-N NUOB = Number of observations for calculation of AVCOAN and SECOAN SECOAN = Code for unknown values -9.99 = Values below the detection limit of 0.038 g NH4-N (0.05 g NH4) m*t[-3] water. For calculation of the average contents (AVCOAN) this value is set at 0.2 g NH4-N m*t[-3] water. * YR MH DA DANU NUFI UPDP LODP COANSI COANSI COANSI COANSI COANSA AVCOAN SECOAN NUOB * YR MH DA DANU NUFI UPDP LODP COANSI COANSI COANSI COANSA AVCOAN SECOAN NUOB * YI 100 120 0.10 0.05 0.04 0.04 0.06 0.06 0.02 15 1998 3 10 69 2 70 90 0.06 0.04 0.04 -9.99 0.05 0.01 16 161998 5 12 132 1 100 120 0.10 0.05 0.04 0.04 0.06 0.06 0.02 15 1998 6 4 155 1 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 15 1998 6 4 155 1 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 16 1998 6 4 155 1 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 16 1998 6 4 155 1 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 16 1998 6 4 155 1 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 16 1998 10 6 279 2 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 16 1998 10 6 279 2 130 150 -9.99 -9.99 -9.99 -9	*	CUAINS2									plot);				
 COANS3 = Concentration of NH4-N (g m*f[-3] water) for Sector 3;	*							-							
<pre>in general average of 4 observations (1 observation per plot):</pre>	*	COANSE									n the Sec	tors I a	ind 2		
<pre>values are for mixed samples obtained from the 8 plots in the Sectors 3 and 4 COANS4 = Concentration of NH4-N (g m**[-3] water) for Sector 4;</pre>	*											100 000			
 COANS4 = Concentration of NH4-N (g m*f-3] water) for Sector 4; in general average of 4 observations (1 observation per plot); at 04-03-1999: for the filters at depth's of 100-120, 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 3 and 4 AVCOAN = Average concentration of NH4-N (g m*f-3] water) SECOAN = Standard error (g m*f-3] water) of the average concentration of NH4-N NUOB = Number of observations for calculation of AVCOAN and SECOAN -9.99 = Values below the detection limit of 0.038 g NH4-N (0.05 g NH4) m**[-3] water. -9.99 = Values below the detection limit of 0.038 g NH4-N (0.05 g NH4) m**[-3] water. -0.02 g NH4-N m**[-3] water. * 0.02 g NH4-N m*1[0 UPDP LODP COANSI COANSI COANSI COANSI AVCOAN SECOAN NUOB * 0.02 g NH4-N m*1[0 0 280 0.077 0.10 0.016 0.07 0.09 0.03 15 1998 3 10 69 2 190 280 -9.99 0.04 0.11 0.05 0.06 0.02 15 1998 4 29 119 1 100 120 0.10 0.05 0.04 0.06 0.06 0.01 16 1998 5 29 149 1 190 280 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 15 1998 6 4 155 1 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 16 1998 6 2 160 1 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 16 1998 6 2 100 120 0.120 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 16 1998 9 7 250 2 100 120 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 16 1998 9 7 250 2 100 120 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 16 1998 10 6 279 2 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 16 1998 10 6 279 2 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -	*							-							
 at 04-03-1999: for the filters at depth's of 100-120, 130-150 and 190-280 cm, values are for mixed samples obtained from the 8 plots in the Sectors 3 and 4 AVCOAN = Average concentration of NH4-N (g m**[-3] water) SECOAN = Standard error (g m**[-3] water) of the average concentration of NH4-N NUOB = Number of observations for calculation of AVCOAN and SECOAN -8.88 = Code for unknown values -9.99 = Values below the detection limit of 0.038 g NH4-N (0.05 g NH4) m**[-3] water. For calculation of the average contents (AVCOAN) this value is set at 0.02 g NH4-N m**[-3] water. YR MH DA DANU NUFI UPD LODP COANSI COANS2 COANS3 COANS4 AVCOAN SECOAN NUOB YYR MH DA DANU NUFI UPD LODP COANSI COANS2 COANS3 COANS4 AVCOAN SECOAN NUOE YYR MH DA DANU NUFI UPD LODP COANSI COANS2 COANS3 COANS4 AVCOAN SECOAN NUOB YYR MH DA DANU NUFI UPD LODP COANSI COANS2 COANS3 COANS4 AVCOAN SECOAN NUOB YYR MH DA DANU NUFI UPD LODP COANSI COANS2 COANS3 COANS4 AVCOAN SECOAN NUOB YYR MH DA DANU NUFI UPD LODP COANSI COANS2 COANS3 COANS4 AVCOAN SECOAN NUOB YYR MH DA DANU NUFI UPD LODP COANSI COANS2 COANS3 COANS4 AVCOAN SECOAN NUOB YYR MH DA DANU NUFI UPD LODP COANSI COANS2 COANS3 COANS4 AVCOAN SECOAN NUOB YYR MH DA DANU NUFI UPD LODP COANSI COANS2 COANS3 COANS4 AVCOAN SECOAN NUOB YYR MH DA DANU NUFI UPD LODP COANSI COANS2 COANS3 COANS4 AVCOAN SECOAN NUOB YYR MI DA DANU NUFI UPD LODP COANSI COANS2 COANS3 COANS4 AVCOAN SECOAN NUOB YYR MI DA DANU NUFI UPD LODP COANSI COANS2 COANS3 COANS4 AVCOAN SECOAN NUOB YYR MI DA DANU NUFI UPD LODP COANSI COANS2 COANS3 COANS4 AVCOAN SECOAN SECOAN IS YYR MI DA DANU NUFI UPD LODP COANSI COANS2 COANS3 COANS4 AVCOAN SECOAN SECOAN IS YYR MI DA DANU NUFI UPD LODP COANS SECOAN NUOB YYR DANS SECOAN DA SECOAN SECOAN IS Y	*	COANS4	l = Conc	entrat	ion o	E NH4-N	1 (g m**[-3	3] water) for Se	ctor 4;					
values are for mixed samples obtained from the 8 plots in the Sectors 3 and 4AVCOAN = Average concentration of NH4-N (g m**[-3] water)SECOAN = Standard error (g m**[-3] water) of the average concentration of NH4-NSECOAN = Standard error (g m**[-3] water) of AVCOAN and SECOANNUTOB = Number of observations for calculation of AVCOAN and SECOAN- 8.88 = Code for unknown values- 9.99Values below the detection limit of 0.038 g NH4-N (0.05 g NH4) m**[-3] water.For calculation of the average contents (AVCOAN) this value is set at0.02 g NH4-N m**[-3] water.**1998 3 3 62 1 190 280 0.07 0.07 0.16 0.07 0.09 0.03 151998 3 10 69 2 70 90 0.06 0.04 0.04 0.04 -9.99 0.05 0.01 161998 3 10 69 2 190 280 -9.99 0.04 0.11 0.05 0.06 0.02 151998 5 12 132 1 100 120 0.04 0.83 -9.99 -9.99 -9.99 -9.99 151998 6 4 155 1 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 161998 6 4 155 1 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 161998 8 10 222 1 190 280 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 161998 8 10 222 1 190 280 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 161998 8 23 174 1 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 161998 8 10 222 1 190 280 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 161998 8 10 222 1 100 120 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 161998 9 7 250 2 130 150 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.9	*		-			-				-	-	190-280) cm		
<pre> * SECOAN = Standard error (g m**[-3] water) of the average concentration of NH4-N * NUOB = Number of observations for calculation of AVCOAN and SECOAN * -8.88 = Code for unknown values * -9.99 = Values below the detection limit of 0.038 g NH4-N (0.05 g NH4) m**[-3] water. * O.02 g NH4-N m**[-3] water. * O.02 g NH4-N m**[-3] water. * * YR MH DA DANU NUFT UPDP LODP COANS1 COANS2 COANS3 COANS4 AVCOAN SECOAN NUOB ************************************</pre>	*							-							
* NUGB = Number of observations for calculation of AVCOAN and SECOAN * -8.88 = Code for unknown values * -9.99 Values below the detection limit of 0.038 g NH4-N (0.05 g NH4) m**[-3] water. * For calculation of the average contents (AVCOAN) this value is set at 0.02 g NH4-N m**[-3] water. * 0.02 g NH4-N m**[-3] water. * YR MH DA DANU NUFI UPDP COANS1 COANS2 COANS3 COANS4 AVCOAN SECOAN NUOE 1998 3 3 62 1 190 280 0.07 0.07 0.16 0.07 0.09 0.03 15 1998 3 10 69 2 70 90 0.06 0.04 0.11 0.06 0.02 15 1998 4 29 19 1 100 120 0.10 0.25 0.06 0.01 16 1998 5 12 132 100 120 0.10 0.05 0	*			-				-							
 * -8.88 = Code for unknown values * -9.99 = Values below the detection limit of 0.038 g NH4-N (0.05 g NH4) m**[-3] water. * For calculation of the average contents (AVCOAN) this value is set at 0.02 g NH4-N m**[-3] water. * YR MH DA DANU NUFI UPDP LODP COANS1 COANS2 COANS3 COANS4 AVCOAN SECOAN NUOE * YR MH DA DANU NUFI UPDP LODP COANS1 COANS2 COANS3 COANS4 AVCOAN SECOAN NUOE * YR MH DA DANU 10 FI UPDP LODP COANS1 COANS2 COANS3 COANS4 AVCOAN SECOAN NUOE * YR MH DA DANU 10 FI UPDP LODP COANS1 COANS2 COANS3 COANS4 AVCOAN SECOAN NUOE * YR MH DA DANU 10 FI UPDP LODP COANS1 COANS2 COANS3 COANS4 AVCOAN SECOAN NUOE * YR MH DA DANU 10 FI UPDP LODP COANS1 COANS2 COANS3 COANS4 AVCOAN SECOAN NUOE * YR MH DA DANU 10 FI UPDP LODP COANS1 COANS2 COANS3 COANS4 AVCOAN SECOAN NUOE * YR MH DA DANU 10 FI UPDP LODP COANS1 COANS2 COANS3 COANS4 AVCOAN SECOAN NUOE * YR MH DA DANU 10 FI UPDP LODP COANS1 COANS2 COANS3 COANS4 AVCOAN SECOAN NUOE * YR MH DA DANU 10 FI UPDP LODP COANS1 COANS2 COANS3 COANS4 AVCOAN SECOAN NUOE * YR MH DA DANU 10 FI UPDP LODP COANS1 COANS2 COANS3 COANS4 AVCOAN SECOAN NUOE * YR MI DA DANU 10 FI UPDP LODP COANS1 COANS2 COANS3 COANS4 AVCOAN SECOAN NUOE * YR MI DA DANU 10 FI UPDP LODP COANS1 COANS2 COANS4 AVCOAN SECOAN NUOE * YR MI DA DANU 10 FI UPDP LODP COANS1 COANS2 COANS4 AVCOAN SECOAN 100 * YR MI DA DANU 10 FI UPDP LODP COANS1 COANS2 COANS4 AVCOAN SECOAN 100 FINAL SECOAN 100 FINAL	*								-			NH4-N			
For calculation of the average contents (λ VCOAN) this value is set at 0.02 g NH4-N m**[-3] water.*** <th colsp<="" td=""><td>*</td><td></td><td>= Code</td><td>for u</td><td>nknowi</td><td>n value</td><td>s</td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>*</td> <td></td> <td>= Code</td> <td>for u</td> <td>nknowi</td> <td>n value</td> <td>s</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	*		= Code	for u	nknowi	n value	s							
* 0.02 g NH4-N m**[-3] water. * YR MH DA DANU NUFT UPDP LODP COANS1 COANS2 COANS3 COANS4 AVCOAN SECOAN NUOB 1998 3 3 62 1 190 280 0.07 0.07 0.16 0.07 0.09 0.03 15 1998 3 10 69 2 190 280 -9.99 0.04 0.11 0.05 0.06 0.02 15 1998 4 29 119 1 100 120 0.04 0.83 -9.99	*	-9.99							-				iter.		
$\begin{array}{c} \begin{array}{c} 1998 & 3 & 3 & 62 & 1 & 190 & 280 & 0.07 & 0.07 & 0.16 & 0.07 & 0.09 & 0.03 & 15 \\ 1998 & 3 & 10 & 69 & 2 & 70 & 90 & 0.06 & 0.04 & 0.04 & -9.99 & 0.05 & 0.01 & 16 \\ 1998 & 4 & 29 & 119 & 1 & 100 & 120 & 0.10 & 0.05 & 0.04 & 0.06 & 0.06 & 0.02 & 15 \\ 1998 & 4 & 29 & 119 & 1 & 100 & 120 & 0.10 & 0.05 & 0.04 & 0.06 & 0.06 & 0.01 & 16 \\ 1998 & 5 & 12 & 132 & 1 & 100 & 120 & 0.04 & 0.83 & -9.99 & -9.99 & -9.99 & -9.99 & -9.99 \\ 1998 & 6 & 4 & 155 & 1 & 130 & 150 & -9.99 & 0$	*						-			,					
$\begin{array}{c} \begin{array}{c} 1998 & 3 & 3 & 62 & 1 & 190 & 280 & 0.07 & 0.07 & 0.16 & 0.07 & 0.09 & 0.03 & 15 \\ 1998 & 3 & 10 & 69 & 2 & 70 & 90 & 0.06 & 0.04 & 0.04 & -9.99 & 0.05 & 0.01 & 16 \\ 1998 & 4 & 29 & 119 & 1 & 100 & 120 & 0.10 & 0.05 & 0.04 & 0.06 & 0.06 & 0.02 & 15 \\ 1998 & 4 & 29 & 119 & 1 & 100 & 120 & 0.10 & 0.05 & 0.04 & 0.06 & 0.06 & 0.01 & 16 \\ 1998 & 5 & 12 & 132 & 1 & 100 & 120 & 0.04 & 0.83 & -9.99 & -9.99 & -9.99 & -9.99 & -9.99 \\ 1998 & 6 & 4 & 155 & 1 & 130 & 150 & -9.99 & 0$	* * VR MI	a da	DANII	NUET	סחסוז		COANSI	COANS2	COANSS	COANS4	AVCOAN	SECOAN	NIIOB		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					*****	******	********	*****	******						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1998 4	1 29													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5 23		1	130	150									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1998 10) б	279			150		-9.99		-9.99	-9.99	0.01			
1998121835221001200.20-9.990.04-9.990.070.04151998121835221301500.19-9.99-9.99-9.990.060.051519991283931100120-9.990.040.05-9.99-9.990.0115199934428470900.050.050.040.070.050.011619993442841001200.050.050.080.080.060.02219993442841301500.050.050.090.090.070.02219993442841902800.040.040.050.050.040.012															
1998121835221301500.19-9.99-9.99-9.990.060.051519991283931100120-9.990.040.05-9.99-9.990.0115199934428470900.050.050.040.070.050.011619993442841001200.050.050.080.080.060.02219993442841301500.050.050.090.090.070.02219993442841902800.040.040.050.050.050.040.012															
19991283931100120-9.990.040.05-9.99-9.990.0115199934428470900.050.050.040.070.050.011619993442841001200.050.050.080.080.060.02219993442841301500.050.050.090.090.070.02219993442841902800.040.040.050.050.040.012															
19993442841001200.050.050.080.080.060.02219993442841301500.050.050.090.090.070.02219993442841902800.040.040.050.050.050.040.012															
19993442841301500.050.050.090.090.070.02219993442841902800.040.040.050.050.040.012															
1999 3 4 428 4 190 280 0.04 0.04 0.05 0.05 0.04 0.01 2															

Annex 19 Content of ASCII file NLA00.GBE

*File: NLA00 GBE *Code: ASCII *Access: Sequential *Author: J.H. Smelt & L.J.T. van der Pas *Version: 1.1 *Date: 14 February 2002 *Source: Measurements by ALTERRA Concentration of bentazone(BE)in groundwater Andelst, The Netherlands Description of the quantities and their units YR = Year MH = Month DA = Day within month Day number (value is 1 at 1 January 1998)
 Number of filter depths analysed at DANU DANII NUFI = Upper boundary of the filter (cm below soil surface) TIPDP LODP = Lower boundary of the filter (cm below soil surface) COBES1 = Concentration of BE ($\mu g \ dm^{**}[-3]$ water) for Sector 1 COBES2 = Concentration of BE ($\mu g \ dm^*[-3]$ water) for Sector 2 COBES3 = Concentration of BE ($\mu g \ dm^{**}[-3]$ water) for Sector 3 COBES4 = Concentration of BE ($\mu g \ dm^{**}[-3]$ water) for Sector 4 NUOB = Number of observations (analyses) for calculation of AVCOBE and SECOBE -8.88 = Code for unknown values (e. g. no water could be sampled) -9.99 = Values below the limit of quantification of 0.03 µg dm**[-3] water. For calculation of the average concentrations (AVCOBE) this value is set at 0.015 $\mu g \mbox{ dm**[-3]}$ water to get realistic averages. On 4 June 1998 it was not possible to collect enough water from all 4 filters at 130-150 cm depth at each sector. In total five filters could be sampled situated in the sectors 1,2 and 3. Each sample was analysed. On 18-03-1999 water samples collected at sector 4 only, from all 4 tubes (water used for lab studies) Concentrations were not corrected for extraction efficiency, which was on average 100 $\$ (standard deviation =12; n=17) "Blank" groundwater samples, collected 30-03-98, had concentrations below limit of quantification * YR MH DA DANU NUFT UPDP LODP COBES1 COBES2 COBES3 COBES4 AVCOBE SECOBE NUOB ****** 150 1998 3 30 89 1 130 -9 99 -9 99 -9 99 -9 99 -9 99 -9 99 4 1008 Δ 29 119 1 100 120 17.56 11.30 17.47 16.73 15.77 1.50 Δ 0.89 0.2⊥ 0.62 1.66 2.76 0.97 1.96 1998 5 29 149 1 190 280 1.11 0.30 4 1998 б 4 155 1 130 150 2.51 -8.88 0.52 5 1.36 1.08 3.66 1998 9 6 160 1 130 150 1.54 1.910.59 4 1998 8 10 222 1 190 280 4.73 2.77 3.39 1.55 3.11 0.66 4 1998 9 250 2 100 120 -8.88 2.62 10.08 -8.88 3.73 7 6.35 2 7 1998 9 250 2 130 150 4.59 3.05 7.30 4.16 4.77 0.90 4 0.69 1.14 2.48 2.09 1998 a 21 264 1 100 120 0.69 7.40 2.82 1.58 4 1998 12 18 352 2 100 120 1.34 2.78 1.84 0.38 4 1.11 2.73 1998 12 18 352 2 130 150 1.10 3.11 2.01 0.53 4 1999 28 393 1 100 120 0.56 0.55 1.54 1.26 0.98 0.25 1 4 1999 3 4 428 3 100 120 0.58 0.74 1.21 1.46 1.00 0.20 4 4 1999 3 428 3 130 150 0.72 0.72 1.34 1.86 1.16 0.27 4 4 1.18 1.07 1999 3 428 3 190 280 1.21 1.00 0.87 0.08 4 18 1999 3 442 1 1 130 150 -8.88 -8.88 -8.88 2.14 2.14 0.00 1 120 4 20 1.37 1999 475 100 0.48 0.99 1.61 1.11 0.25 4

Annex 20 Content of ASCII file NLA00.GBR

*File:	NLA00.GBR														
*Code: *Access:	ASCII Sequential														
		K. Oostindie; R.F.A. Hendriks													
*Version:															
*Date:	6 June														
*Source: *		rements			-]- (D)		J								
*		entrat elst, T				in groun	dwater								
*	Allue	LIDC, I	ne nec	nerran	lub										
*	Descri	iption	of the	quant	ities a	nd their	units								
*	YR	= Yea													
*	MH	= Mon													
*	DA DANU		within within			at 1 Jan	uary 199	8)							
*	NUFI	-		•	rs samp		uury 199	0)							
*	UPDP					filter (c									
*	LODP					filter (c									
*	COBRSI					m**[-3] v 4 observa				nlot);					
*										0-150 and	190-280	cm,			
*										n the Sec					
*	COBRS2					m**[-3]									
*			0		0	4 observa	,		-	plot); 0-150 and	190-280	Cm			
*										n the Sec					
*	COBRSE					m**[-3]									
*						4 observa				plot); 0-150 and	100 200	am			
*							-			n the Sec					
*	COBRS4					m**[-3]									
*						4 observa					100 000				
*							-			0-150 and n the Sec					
*	AVCOBF					of Br (gi			0 P1000 1		0010 0 0				
*								-		ation of 3	Br				
*	NUOB				vations n value	for calc	ulation	of AVCOB	R and SEC	OBR					
*						s 5 g Br m*	*[-3] wa	ter. For	calculat	ion of					
*						AVCOBR) t					[-3] wat	er.			
* * 37D MT										g Dr m					
* YR MH *******		DANU		UDDD	LODD	COPDC1				-					
		DANU ******	NUFI	UPDP * * * * * *	LODP ******	COBRS1 *******	COBRS2	COBRS3	COBRS4	-	SECOBR	NUOB			
			NUFI				COBRS2	COBRS3	COBRS4	AVCOBR	SECOBR	NUOB			
1998 4 1998 5	******* 29 5 12	******* 119 132	NUFI ***** 1 1	****** 100 100	******* 120 120	********* 0.92 1.83	COBRS2 ******* 0.42 0.69	COBRS3 ******** 1.03 1.86	COBRS4 ********* 1.37 2.04	AVCOBR ********* 0.94 1.60	SECOBR ******* 0.20 0.41	NUOB ****** 16 16			
1998 4 1998 5 1998 5	29 29 12 29 29	******* 119 132 149	NUFI ***** 1 1 1	****** 100 100 190	******* 120 120 280	********* 0.92 1.83 -9.99	COBRS2 ******** 0.42 0.69 -9.99	COBRS3 ******** 1.03 1.86 -9.99	COBRS4 ******** 1.37 2.04 -9.99	AVCOBR ********* 0.94 1.60 -9.99	SECOBR ******** 0.20 0.41 -9.99	NUOB ****** 16 16 15			
1998 4 1998 5 1998 5 1998 6	29 12 29 29 3 29 3 4	******* 119 132 149 155	NUFI ***** 1 1 1	****** 100 100 190 130	******* 120 120 280 150	********* 0.92 1.83 -9.99 -8.88	COBRS2 ******* 0.42 0.69 -9.99 -8.88	COBRS3 ******* 1.03 1.86 -9.99 0.21	COBRS4 ******** 1.37 2.04 -9.99 -8.88	AVCOBR ************************************	SECOBR ******* 0.20 0.41 -9.99 0.06	NUOB ****** 16 16 15 4			
1998 4 1998 5 1998 5 1998 6 1998 6	******** 29 5 12 5 29 5 4 5 9	******* 119 132 149 155 160	NUFI ***** 1 1 1 1 1	****** 100 100 190 130 130	****** 120 120 280 150 150	********* 0.92 1.83 -9.99 -8.88 0.33	COBRS2 ******* 0.42 0.69 -9.99 -8.88 0.20	COBRS3 ******** 1.03 1.86 -9.99 0.21 0.30	COBRS4 ********* 1.37 2.04 -9.99 -8.88 0.30	AVCOBR ************************************	SECOBR ******* 0.20 0.41 -9.99 0.06 0.05	NUOB ****** 16 16 15 4 16			
1998 4 1998 5 1998 5 1998 6 1998 6 1998 6 1998 6	29 12 29 29 29 4 5 9 5 23	119 132 149 155 160 174	NUFI ****** 1 1 1 1 1 1	****** 100 100 190 130 130 130	******* 120 120 280 150 150 150	********* 0.92 1.83 -9.99 -8.88 0.33 0.44	COBRS2 ******* 0.42 0.69 -9.99 -8.88 0.20 0.24	COBRS3 ******** 1.03 1.86 -9.99 0.21 0.30 0.72	COBRS4 ********* 1.37 2.04 -9.99 -8.88 0.30 0.54	AVCOBR ********** 0.94 1.60 -9.99 0.21 0.28 0.49	SECOBR ******** 0.20 0.41 -9.99 0.06 0.05 0.09	NUOB ****** 16 16 15 4 16 16			
1998 4 1998 5 1998 5 1998 6 1998 6 1998 6 1998 6 1998 8	29 12 29 29 3 4 3 9 5 23 8 10	119 132 149 155 160 174 222	NUFI ****** 1 1 1 1 1 1 1	****** 100 100 190 130 130 130 190	******* 120 120 280 150 150 150 280	********* 0.92 1.83 -9.99 -8.88 0.33 0.44 -9.99	COBRS2 ******** 0.42 0.69 -9.99 -8.88 0.20 0.24 -9.99	COBRS3 ******** 1.03 1.86 -9.99 0.21 0.30 0.72 0.27	COBRS4 ******** 1.37 2.04 -9.99 -8.88 0.30 0.54 -9.99	AVCOBR ********** 0.94 1.60 -9.99 0.21 0.28 0.49 0.16	SECOBR ******** 0.20 0.41 -9.99 0.06 0.05 0.09 0.04	NUOB ******* 16 16 15 4 16 16 16 15			
1998 4 1998 5 1998 5 1998 6 1998 6 1998 6 1998 6 1998 8 1998 9	29 12 29 4 5 4 5 9 5 23 8 10 7	**************************************	NUFI ****** 1 1 1 1 1 1 2	****** 100 100 190 130 130 130 190 100	******* 120 120 280 150 150 150 280 120	********* 0.92 1.83 -9.99 -8.88 0.33 0.44 -9.99 0.98	COBRS2 ******* 0.42 0.69 -9.99 -8.88 0.20 0.24 -9.99 1.74	COBRS3 ******** 1.03 1.86 -9.99 0.21 0.21 0.30 0.72 0.27 2.25	COBRS4 ******** 1.37 2.04 -9.99 -8.88 0.30 0.54 -9.99 2.10	AVCOBR ********* 0.94 1.60 -9.99 0.21 0.28 0.49 0.16 1.94	SECOBR ******* 0.20 0.41 -9.99 0.06 0.05 0.09 0.04 0.17	NUOB ****** 16 16 15 4 16 16 16 15 8			
1998 4 1998 5 1998 5 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 9 1998 9 1998 9 1998 9	29 12 29 29 4 9 20 20 20 20 21 22 23 24 25 23 24 25 26 27 27 27 28 29 29 20 20 27	**************************************	NUFI ****** 1 1 1 1 1 1 2 2	****** 100 190 130 130 130 190 100 130	******* 120 120 280 150 150 150 280 120 150	********* 0.92 1.83 -9.99 -8.88 0.33 0.44 -9.99 0.98 1.36	COBRS2 ******** 0.42 0.69 -9.99 -8.88 0.20 0.24 -9.99 1.74 1.06	COBRS3 ******* 1.03 1.86 -9.99 0.21 0.30 0.72 0.27 2.25 1.58	COBRS4 ******** 1.37 2.04 -9.99 -8.88 0.30 0.54 -9.99 2.10 1.20	AVCOBR ********** 0.94 1.60 -9.99 0.21 0.28 0.49 0.16 1.94 1.30	SECOBR ******* 0.20 0.41 -9.99 0.06 0.05 0.05 0.09 0.04 0.17 0.11	NUOB ****** 16 16 15 4 16 16 15 8 16			
1998 4 1998 5 1998 5 1998 6 1998 6 1998 6 1998 6 1998 8 1998 9 1998 9 1998 9	29 5 12 5 29 5 4 5 9 5 23 8 10 7 7 9 21	******* 119 132 149 155 160 174 222 250 250 264	NUFI ****** 1 1 1 1 1 1 2 2 2 1	****** 100 190 130 130 130 190 100 130 100	******* 120 120 280 150 150 150 280 120 150 120	********* 0.92 1.83 -9.99 -8.88 0.33 0.44 -9.99 0.98 1.36 1.89	COBRS2 ******* 0.42 0.69 -9.99 -8.88 0.20 0.24 -9.99 1.74 1.06 1.74	COBRS3 ******* 1.03 1.86 -9.99 0.21 0.30 0.72 0.27 2.25 1.58 2.51	COBRS4 ******** 1.37 2.04 -9.99 -8.88 0.30 0.54 -9.99 2.10 1.20 2.34	AVCOBR ********** 0.94 1.60 -9.99 0.21 0.28 0.49 0.16 1.94 1.30 2.12	SECOBR ******* 0.20 0.41 -9.99 0.06 0.05 0.09 0.04 0.17 0.11 0.18	NUOB ****** 16 16 15 4 16 16 15 8 16 16 16			
1998 4 1998 5 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 9 1998 9 1998 9 1998 9 1998 9 1998 9 1998 10	29 5 12 5 29 5 4 5 9 5 23 8 10 7 7 9 21 0 6	******* 119 132 149 155 160 174 222 250 250 250 264 279	NUFI ****** 1 1 1 1 1 1 2 2 2 1 2	****** 100 190 130 130 130 190 100 130 100 100	******* 120 120 280 150 150 150 280 150 150 120 120	********* 0.92 1.83 -9.99 -8.88 0.33 0.44 -9.99 0.98 1.36 1.89 1.04	COBRS2 ******* 0.42 0.69 -9.99 -8.88 0.20 0.24 -9.99 1.74 1.06 1.74 2.00	COBRS3 ******* 1.03 1.86 -9.99 0.21 0.30 0.72 0.27 2.25 1.58 2.51 2.39	COBRS4 ******** 1.37 2.04 -9.99 -8.88 0.30 0.54 -9.99 2.10 1.20 2.34 -8.88	AVCOBR ********* 0.94 1.60 -9.99 0.21 0.28 0.49 0.16 1.94 1.30 2.12 1.95	SECOBR ******* 0.20 0.41 -9.99 0.06 0.05 0.09 0.04 0.17 0.11 0.18 0.26	NUOB ****** 16 15 4 16 16 15 8 16 16 16 16 8			
1998 4 1998 5 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 9 1998 9 1998 9 1998 9 1998 9 1998 10	29 12 29 12 29 12 29 12 29 12 29 12 12 12 12 12 12 13 10 7 7 10	******* 119 132 149 155 160 174 222 250 250 264	NUFI ****** 1 1 1 1 1 1 2 2 2 1 2 2 2	****** 100 190 130 130 130 190 100 130 100	******* 120 120 280 150 150 150 280 120 150 120	********* 0.92 1.83 -9.99 -8.88 0.33 0.44 -9.99 0.98 1.36 1.89	COBRS2 ******* 0.42 0.69 -9.99 -8.88 0.20 0.24 -9.99 1.74 1.06 1.74 2.00 1.76	COBRS3 ******* 1.03 1.86 -9.99 0.21 0.30 0.72 0.27 2.25 1.58 2.51	COBRS4 ******** 1.37 2.04 -9.99 -8.88 0.30 0.54 -9.99 2.10 1.20 2.34 -8.88 1.54	AVCOBR ********** 0.94 1.60 -9.99 0.21 0.28 0.49 0.16 1.94 1.30 2.12	SECOBR ******* 0.20 0.41 -9.99 0.06 0.05 0.09 0.04 0.17 0.11 0.18	NUOB ****** 16 16 15 4 16 16 15 8 16 16 16			
1998 4 1998 5 1998 5 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 9 1998 9 1998 9 1998 9 1998 10 1998 10 1998 10	29 12 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 20	******* 119 132 149 155 160 174 222 250 250 250 264 279 279	NUFI ****** 1 1 1 1 1 1 2 2 2 1 2	****** 100 100 190 130 130 130 190 100 130 100 130	******* 120 120 280 150 150 150 120 120 120 120 120	********* 0.92 1.83 -9.99 -8.88 0.33 0.44 -9.99 0.98 1.36 1.89 1.04 1.79	COBRS2 ******* 0.42 0.69 -9.99 -8.88 0.20 0.24 -9.99 1.74 1.06 1.74 2.00	COBRS3 ******* 1.03 1.86 -9.99 0.21 0.30 0.72 0.27 2.25 1.58 2.51 2.39 1.66	COBRS4 ******** 1.37 2.04 -9.99 -8.88 0.30 0.54 -9.99 2.10 1.20 2.34 -8.88 1.54 2.27	AVCOBR ********* 0.94 1.60 -9.99 0.21 0.28 0.49 0.16 1.94 1.30 2.12 1.95 1.68	SECOBR ******* 0.20 0.41 -9.99 0.06 0.05 0.09 0.04 0.17 0.11 0.18 0.26 0.18	NUOB ****** 16 15 4 16 16 15 8 16 16 16 16 8 14			
1998 4 1998 5 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 9 1998 9 1998 9 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10	29 12 29 29 29 29 29 30 7 9 7 9 7 9 7 9 6 6 20 20	******** 119 132 149 155 160 174 222 250 250 264 279 279 279 293	NUFI ****** 1 1 1 1 1 1 2 2 2 2 2 2 2 2	******* 100 100 190 130 130 190 100 100 100 100 130 70	******* 120 120 280 150 150 120 120 120 120 120 120 150 90	********* 0.92 1.83 -9.99 -8.88 0.33 0.44 -9.99 0.98 1.36 1.89 1.04 1.79 5.18	COBRS2 ******** 0.42 0.69 -9.99 -8.88 0.20 0.24 -9.99 1.74 1.06 1.74 2.00 1.76 3.20	COBRS3 ******** 1.03 1.86 -9.99 0.21 0.30 0.72 0.27 2.25 1.58 2.51 2.39 1.66 3.44	COBRS4 ******** 1.37 2.04 -9.99 -8.88 0.30 0.54 -9.99 2.10 1.20 2.34 -8.88 1.54	AVCOBR ********** 0.94 1.60 -9.99 0.21 0.28 0.49 0.16 1.94 1.30 2.12 1.95 1.68 3.57	SECOBR ******** 0.20 0.41 -9.99 0.06 0.05 0.09 0.04 0.17 0.11 0.18 0.26 0.18 0.38	NUOB ******* 16 15 4 16 16 15 8 16 16 8 16 16 8 14 10			
1998 4 1998 5 1998 5 1998 6 1998 6 1998 6 1998 6 1998 6 1998 9 1998 9 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10	29 12 29 12 29 12 29 12 29 12 29 12 29 12 29 12 29 12 29 12 23 10 7 21 6 20 20 20 21 20 20 21	******** 119 132 149 155 160 174 222 250 250 264 279 279 293 293	NUFI ****** 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	******* 100 100 190 130 130 190 100 100 100 100 130 70 100	******* 120 120 280 150 150 150 120 120 120 150 90 120	********* 0.92 1.83 -9.99 -8.88 0.33 0.44 -9.99 0.98 1.36 1.89 1.04 1.79 5.18 3.61	COBRS2 ******** 0.42 0.69 -9.99 -8.88 0.20 0.24 -9.99 1.74 1.06 1.74 1.06 1.74 2.00 1.76 3.20 2.92	COBRS3 ******** 1.03 1.86 -9.99 0.21 0.30 0.72 0.27 2.25 1.58 2.51 2.39 1.66 3.44 3.65 3.94	COBRS4 ******** 1.37 2.04 -9.99 -8.88 0.30 0.54 -9.99 2.10 1.20 2.34 -8.88 1.54 2.27 3.21	AVCOBR ********** 0.94 1.60 -9.99 0.21 0.28 0.49 0.16 1.94 1.30 2.12 1.95 1.68 3.57 3.32	SECOBR ******* 0.20 0.41 -9.99 0.06 0.05 0.09 0.04 0.17 0.11 0.18 0.26 0.18 0.38 0.29 0.16	NUOB ******* 16 15 4 16 16 15 8 16 16 8 14 10 15			
1998 4 1998 5 1998 5 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 9 1998 10	29 12 29 12 29 4 9 23 10 7 7 7 6 20 6 20 21 6 20 21 18 21	******** 119 132 149 155 160 174 222 250 264 279 279 293 293 352	NUFI ****** 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	******* 100 100 190 130 130 190 100 100 100 130 100 100 130 70 100 100 100 100 100 100 100 100 100	******* 120 120 280 150 150 120 120 120 120 120 120 120 120 120	********* 0.92 1.83 -9.99 -8.88 0.33 0.44 -9.99 0.98 1.36 1.89 1.04 1.79 5.18 3.61 4.13	COBRS2 ******** 0.42 0.69 -9.99 -8.88 0.20 0.24 -9.99 1.74 1.06 1.74 1.06 1.74 2.00 1.76 3.20 2.92 4.02	COBRS3 ******** 1.03 1.86 -9.99 0.21 0.30 0.72 0.27 2.25 1.58 2.51 2.39 1.66 3.44 3.65	COBRS4 ******** 1.37 2.04 -9.99 -8.88 0.30 0.54 -9.99 2.10 1.20 2.34 -8.88 1.54 2.27 3.21 4.00	AVCOBR ********** 0.94 1.60 -9.99 0.21 0.28 0.49 0.16 1.94 1.30 2.12 1.95 1.68 3.57 3.32 4.02	SECOBR ******** 0.20 0.41 -9.99 0.06 0.05 0.09 0.04 0.17 0.11 0.18 0.26 0.18 0.38 0.29	NUOB ******* 16 15 4 16 16 15 8 16 16 8 14 10 15 16			
1998 4 1998 5 1998 5 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 9 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 12 1998 12 1998 12	29 12 29 12 29 4 9 5 23 10 7 7 21 6 6 6 20 21 8 18 28	********* 119 132 149 155 160 174 222 250 264 279 293 293 352 352	NUFI ****** 1 1 1 1 1 1 2 2 2 1 2 2 2 2 2 2	******* 100 100 190 130 130 130 100 130 100 100 100 100 10	******* 120 120 280 150 150 150 280 120 120 120 120 120 120 120 120	********* 0.92 1.83 -9.99 -8.88 0.33 0.44 -9.99 0.98 1.36 1.89 1.04 1.79 5.18 3.61 4.13 4.31	COBRS2 ******** 0.42 0.69 -9.99 -8.88 0.20 0.24 -9.99 1.74 1.06 1.74 1.06 1.74 2.00 1.76 3.20 2.92 4.02 3.39	COBRS3 ******* 1.03 1.86 -9.99 0.21 0.30 0.72 0.27 2.25 1.58 2.51 2.39 1.66 3.44 3.65 3.94 3.50	COBRS4 ******** 1.37 2.04 -9.99 -8.88 0.30 0.54 -9.99 2.10 1.20 2.34 -8.88 1.54 2.27 3.21 4.00 3.85	AVCOBR ********* 0.94 1.60 -9.99 0.21 0.28 0.49 0.16 1.94 1.30 2.12 1.95 1.68 3.57 3.32 4.02 3.78	SECOBR ******* 0.20 0.41 -9.99 0.06 0.05 0.09 0.04 0.17 0.11 0.18 0.26 0.18 0.28 0.29 0.16 0.25	NUOB ******* 16 15 4 16 16 15 8 16 16 8 14 10 15 16 15			
1998 4 1998 5 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 9 1998 9 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 12 1998 12 1998 12 1999 1	29 12 29 12 29 12 29 12 29 12 29 12 29 12 29 12 29 10 7 10 7 21 6 20 20 21 20 21 20 21 20 21 20 21 20 21 20 21 22 23 24 25 26 27 28 4	********* 119 132 149 155 160 174 222 250 264 279 293 293 352 352 393	NUFI ****** 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	****** 100 100 190 130 130 130 100 100 130 100 100 130 100 10	******* 120 120 280 150 150 120 120 120 120 120 120 120 120 120 12	********* 0.92 1.83 -9.99 -8.88 0.33 0.44 -9.99 0.98 1.36 1.89 1.04 1.79 5.18 3.61 4.13 4.31 2.76	COBRS2 ******* 0.42 0.69 -9.99 -8.88 0.20 0.24 -9.99 1.74 1.06 1.74 2.00 1.76 3.20 2.92 4.02 3.39 3.02	COBRS3 ******* 1.03 1.86 -9.99 0.21 0.27 2.25 1.58 2.51 2.39 1.66 3.44 3.65 3.94 3.50 3.30	COBRS4 ******** 1.37 2.04 -9.99 -8.88 0.30 0.54 -9.99 2.10 1.20 2.34 -8.88 1.54 2.27 3.21 4.00 3.85 2.54	AVCOBR ********* 0.94 1.60 -9.99 0.21 0.28 0.49 0.16 1.94 1.30 2.12 1.95 1.68 3.57 3.32 4.02 3.78 2.90	SECOBR ******* 0.20 0.41 -9.99 0.06 0.05 0.09 0.04 0.17 0.11 0.18 0.26 0.18 0.38 0.29 0.16 0.25 0.12	NUOB ****** 16 15 4 16 16 15 8 16 16 16 8 14 10 15 16 15 16			
1998 4 1998 5 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 9 1998 9 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 12 1998 12 1999 1 1999 1 1999 3	29 12 29 12 29 12 29 12 29 12 29 12 29 12 29 12 29 13 10 7 21 6 20	**************************************	NUFI ****** 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2	****** 100 100 190 130 130 130 100 130 100 130 100 130 100 130 100 130 100 10	******* 120 120 280 150 150 280 120 120 120 120 120 120 120 120 120 12	********* 0.92 1.83 -9.99 -8.88 0.33 0.44 -9.99 0.98 1.36 1.89 1.04 1.79 5.18 3.61 4.13 4.13 4.31 2.76 1.05	COBRS2 ******* 0.42 0.69 -9.99 -8.88 0.20 0.24 -9.99 1.74 1.06 1.74 2.00 1.76 3.20 2.92 4.02 3.39 3.02 2.01	COBRS3 ******* 1.03 1.86 -9.99 0.21 0.30 0.72 0.27 2.25 1.58 2.51 2.39 1.66 3.44 3.65 3.94 3.50 3.30 1.82	COBRS4 ******** 1.37 2.04 -9.99 -8.88 0.30 0.54 -9.99 2.10 1.20 2.34 -8.88 1.54 2.27 3.21 4.00 3.85 2.54 1.65	AVCOBR ********* 0.94 1.60 -9.99 0.21 0.28 0.49 0.16 1.94 1.30 2.12 1.95 1.68 3.57 3.32 4.02 3.78 2.90 1.63	SECOBR ******* 0.20 0.41 -9.99 0.06 0.05 0.09 0.04 0.17 0.11 0.18 0.26 0.18 0.26 0.18 0.29 0.16 0.25 0.12 0.19	NUOB ****** 16 15 4 16 16 15 8 16 16 16 15 16 15 16 15 16 15			
1998 4 1998 5 1998 6 1998 6 1998 6 1998 6 1998 6 1998 6 1998 9 1998 9 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 10 1998 12 1998 12 1998 12 1998 12 1999 1 1999 3 1999 3 1999 3 1999 3 1999 3 1999 3 1999 3 1999 3 1999 3 1999 3 <		**************************************	NUFI ****** 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2	******* 100 100 190 130 130 130 100 100 130 100 100 130 100 10	******* 120 120 280 150 150 120 120 120 120 120 120 120 120 120 12	********* 0.92 1.83 -9.99 -8.88 0.33 0.44 -9.99 0.98 1.36 1.89 1.04 1.79 5.18 3.61 4.13 4.31 2.76 1.05 2.74	COBRS2 ******* 0.42 0.69 -9.99 -8.88 0.20 0.24 -9.99 1.74 1.06 1.74 2.00 1.76 3.20 0.2,92 4.02 3.39 3.02 2.01 2.74	COBRS3 ******* 1.03 1.86 -9.99 0.21 0.30 0.72 0.27 2.25 1.58 2.51 2.39 1.66 3.44 3.65 3.94 3.50 3.30 1.82 3.05	COBRS4 ******** 1.37 2.04 -9.99 -8.88 0.30 0.54 -9.99 2.10 1.20 2.34 -8.88 1.54 2.27 3.21 4.00 3.85 2.54 1.65 3.05	AVCOBR ********* 0.94 1.60 -9.99 0.21 0.28 0.49 0.16 1.94 1.30 2.12 1.95 1.68 3.57 3.32 4.02 3.78 2.90 1.63 2.89	SECOBR ******* 0.20 0.41 -9.99 0.06 0.05 0.09 0.04 0.17 0.11 0.18 0.26 0.18 0.26 0.18 0.29 0.16 0.25 0.12 0.19 0.16	NUOB ****** 16 15 4 16 15 8 16 16 16 15 16 15 16 15 16 15 16 16 2			

Annex 21 Content of ASCII file NLA00.GIM

<pre>*File: *Code: *Access: *Author: *Version: *Date: *Source: * *</pre>	<pre>J.H. Smelt & L.J.T. van der Pas 1.1 14 February 2002 Measurements by ALTERRA Concentration of imidacloprid (IM) in groundwater Andelst, The Netherlands</pre>													
*	Description of the quantities and their units YR = Year													
*	· · ·													
*	DA	= Day w		n month	1									
*	DANU	-				l at 1 Ja	-	,						
*	NUFI				_	ns analys			- · ·					
*	UPDP LODP					filter (filter (
*						ıg dm**[-								
*						1g dm**[-								
*						1g dm**[-								
*	COIMS4					1g dm**[-								
*	AVCOTM			_		only 3 f of imida				-	ral)			
*						3] water					f imidac	loprid		
*	NUOB					(analys					d SECOIM			
*						es (e.g. : of quan			-		dm**[2]	water		
*	-9.999					average						water.		
*						-3] water								
* * "T		-		-			20.02.00				.	c		
1		-		-		ected on groundwat								
*	anciti	cacion,	LINC .	LIISC	(uccp)	groundwat	.ci ballpi		appiica		ZJ May I	550		
						ossible t								
						On 18-03		ater sam <u>p</u>	les coll	ected at	sector	4 only;		
* fi *	rom all	4 tubes	(wate	er used	d for .	lab studi	.es)							
* Co	oncentr	ations w	ere n	ot cor	rected	for extr	action e	efficiend	cy, which	n was on	average	91.7 %		
* (s		; n=32, ;							1		5			
* * YR M *******		DANU N				COIMS1			COIMS4	AVCOIM	SECOIM	NUOB		
	5 29	149	1	190	280	-9.999	-9.999			-9.999		4		
1998	6 9		1	130	150		-9.999	0.088	0.052	0.048	0.013	4		
1998	8 10	222	1	190	280		-9.999		-9.999	0.101	0.067	4		
	9 7	250	2	100	120	-8.888	-8.888		-8.888	0.524	0.000	1		
	9 7 9 21		2	130	150	0.363 -9.999		-8.888	0.266	0.340	0.032	3 4		
	9 21 2 18		1 2	100 100	120 120	-9.9999 0.071	0.170 0.051	0.202 -9.999	0.114 -9.999	0.128 0.043	0.034 0.009	4		
	2 18		2	130	150		-9.999		0.062	0.041	0.009	4		
1999	1 28	393	1	100	120	0.466	0.173	0.264	0.260	0.291	0.054	4		
	3 4	428	3	100	120	0.738	0.404	0.512	0.421	0.519	0.067	4		
1999	3 18		1	130	280 150	0.196 -8.888	0.122 -8.888	0.073 -8.888	0.087 0.171	0.119 0.171	0.024 0.000	4		
1999	4 20	475	1	100	120	0.301	0.228	0.174	0.294	0.249	0.026	4		

Annex 22 Content of ASCII file NLA00.GLC (only the first part)

<pre>*File: *Code: *Code: *Access: *Author: *Uersion: *Date: *Source: * * * * * * * * * * * * * * * * * * *</pre>	16 April Measureme Groundw Andelst Descripti YR = MH =	l die, R. 2003 nts by ater Le , The N on of t Year Month	ALTERRA vels (ph Jetherlan he quant	nreatic): Continuous measurements nds tities and their units:	
* * *	CUTI = GWLVPI =	Cumulat Groundw	ater lev	e (value is 0.0 at 1 January 1998 0 h) vel (m below soil surface), for Plot I vel (m below soil surface), for Plot O	
*		NOTE So	il surfa	ace at Plot I was 0.12 m lower than at plo	t O
* * *	-88.0 = 0 M	Code for eans th	r sensor at actua	n value (failure datalogger or other reaso groundwater level out of measurable range al GW level was HIGHER than last recorded psequent period, marked with code -88.0	
* * YR	MH	DA	CUTI	WLVPI GWLVPO	
				******	* * *
1997	11	17		1.784 -99.000	
1997	11	17		1.784 -99.000	
1997	11	17		1.784 -99.000	
1997 1997	11 11	17 18		1.784 -99.000 1.784 -99.000	
1997	11	18		1.781 -99.000	
1997	11	18		1.781 -99.000	
1997	11	18	-43.7		
1997	11	18	-43.6	1.781 -99.000	
1997	11	18	-43.5	1.777 -99.000	
1997	11	18	-43.4	1.777 -99.000	
1997	11	18	-43.3	1.777 -99.000	
1997	11	18	-43.2	1.777 -99.000	
1997	11	18	-43.1	1.777 -99.000	
1997 1997	11 11	19	-43.0	1.777 -99.000	
1997	11	19 19	-42.9 -42.8	1.773 -99.000 1.773 -99.000	
1997	11	19	-42.7		
1997	11	19	-42.6	1.773 -99.000	
1997	11	19	-42.5	1.773 -99.000	
1997	11	19	-42.4	1.770 -99.000	
1997	11	19	-42.3	1.773 -99.000	
1997	11	19	-42.2	1.770 -99.000	
1997	11	19	-42.1	1.773 -99.000	
1997	11	20	-42.0	1.773 -99.000	
1997 1997	11 11	20 20	-41.9 -41.8	1.770 -99.000 1.770 -99.000	
1997	11	20	-41.7	1.770 -99.000	
1997	11	20	-41.6	1.770 -99.000	
1997	11	20	-41.5	1.770 -99.000	
1997	11	20	-41.4	1.770 -99.000	
1997	11	20	-41.3	1.770 -99.000	
1997	11	20	-41.2	1.773 -99.000	

Annex 23 Content of ASCII file NLA00.GLD (only the first part)

<pre>* YR = Year MH = Month DA = Day within month DA = Day number (value is 1 at 1 January 1998) AVGWLV = Average groundwater level (m below soil surface); daily average of the levels below soil surface on plot I and 0, computed using the continuous measurements; correction made for differences of the soil surface (plot I: + 0.06 m, plot 0: - 0.06 m) * -88.000 = Code for sensor groundwater level out of measurable range. Means that actual GM level that day or part of day was HIGHER than last recorded value * YR MH DA DANU AVGMLV * YR MH DA DANU A</pre>	<pre>*File: *Code: *Access: *Author: *Date: *Source: * * *</pre>	R.F.A. 1.1 16 Marc Measure Groun Andel	ial Hendriks th 2003 ments by A dwater Lev .st, The Ne	els (p therla	hreatic) Inds	: Daily averages of continuous measurements nd their units:
 DA = Day within month DAW = Day within month DAWU = Day number (value is 1 at 1 January 1998) AVCWLV = Average groundwater level (m below soil surface); daily average of the levels below soil surface on plot I and 0, computed using the continuous measurements; correction made for differences of the soil surface (plot I: + 0.06 m) -88.000 = Code for sensor groundwater level out of measurable range. Means that actual GW level that day or part of day was HIGHER than last recorded value YR MH DA DANU AVGNLV YR MH DA DANU AVGNLV 11 17 -44 1.844 1997 11 18 -43 1.833 1997 11 20 -41 1.831 1997 11 21 -40 1.844 1997 11 22 -39 1.852 1997 11 23 -38 1.857 1997 11 24 -37 1.863 1997 11 24 -31 1.863 1997 11 22 -36 1.868 1997 11 28 -33 1.892 1997 11 28 -33 1.892 1997 11 29 -32 1.894 1997 12 2 -29 1.924 1997 12 3 -28 1.933 1997 12 4 -27 1.943 1997 12 4 -21 1.608 1997 12 1 -20 -88.000 1997 12 1 -20 -88.000						
 DANU = Day number (value is 1 at 1 January 1998) AVGMLV = Average groundwater level (m below soil surface); daily average of the levels below soil surface on plot I and 0, computed using the continuous measurements; correction made for differences of the soil surface (plot I: + 0.06 m, plot 0: - 0.06 m) -88.000 = Code for sensor groundwater level out of measurable range. Means that actual GW level that day or part of day was HIGHER than last recorded value VR MH DA DANU AVGWLV VI 1 19 - 42 1.833 1997 11 18 - 43 1.839 1997 11 20 - 41 1.831 1997 11 21 - 40 1.844 1997 11 22 - 39 1.852 1997 11 24 - 37 1.863 1997 11 25 - 36 1.866 1997 11 26 - 35 1.877 1997 11 27 - 34 1.886 1997 11 28 - 33 1.892 1997 11 29 - 32 1.894 1997 12 2 - 29 1.924 1997 12 3 - 28 1.933 1997 12 4 - 27 1.943 1997 12 3 - 28 1.933 1997 12 4 - 27 1.943 1997 12 4 - 27 1.943 1997 12 4 - 27 1.955 1997 12 4 - 21 1.608 1997 12 4 - 21 1.955 1997 12 4 - 21 1.608 1997 12 4 - 19 -88.000 1997 12 1 - 0 - 88.000 1997 12 1 - 19 -88.000 1997 12 1 - 10 - 88.000 1997 12 1 - 10 - 88.000 1997 12 1 - 11 - 20 - 88.000 1997 12 1 - 10 - 1.303 				in mon	+b	
 AVGNELV = Average groundwater level (m below soil surface); daily average of the levels below soil surface on plot I and 0, computed using the continuous measurements; correction made for differences of the soil surface (plot I: + 0.06 m, plot 0: - 0.06 m) -68.000 = Code for sensor groundwater level out of measurable range. Means that actual GW level that day or part of day was HIGHER than last recorded value YR MH DA DANU AVGNUV YR MH DA DANU AVGNUV YI NH DA DANU AVGNUV YI O - 44 1.844 YI 11 19 - 42 1.833 YI 11 20 - 41 1.831 YI 11 21 - 40 1.844 YI 11 22 - 39 1.852 YI 11 23 - 38 1.867 YI 11 24 - 37 1.863 YI 11 25 - 36 1.868 YI 11 26 - 35 1.877 YI 12 - 34 1.892 YI 12 2 - 29 1.924 YI 13 2 - 22 1.894 YI 14 2 - 27 1.943 YI 15 - 36 1.955 YI 12 3 - 28 1.955 YI 12 3 - 28 1.955 YI 12 3 - 28 1.955 YI 12 4 - 27 1.943 YI 12 4 - 27 1.943 YI 12 5 - 26 1.955 YI 12 5 - 26 1.955 YI 12 7 - 24 1.955 YI 13 - 20 -88.000 YI 14 - 20 - 88.000 YI 15 - 16 1.320 YI 14 - 17 - 8.800 YI 14 - 17 - 8.800 YI 15 - 16 1.320 YI 14 - 17 - 8.800 YI 14 - 17 - 8.800 YI 12 10 - 21 1.608 YI 12 10 - 21 1.608 YI 12 10 - 21 - 88.000 YI 12 10 - 21 - 88.000			-			at 1 January 1998)
* $daily^2$ average of the levels below soil surface on plot I and 0, computed using the continuous measurements; correction made for differences of the soil surface [plot I: + 0.06 m, plot 0: - 0.06 m) -88.000 = Code for sensor groundwater level out of measurable range. Means that actual GW level that day or part of day was HIGHER than last recorded value * YR MH DA DANU AVGMLW ************************************	*		-			-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	*		-	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-		-	
* -88.000 = Code for sensor groundwater level out of measurable range. Means that actual GW level that day or part of day was HIGHER than last recorded value * * YR MH DA DANU AVCWLV * 1997 11 17 -44 1.844 1997 11 18 -43 1.833 1997 11 20 -41 1.831 1997 11 22 -40 1.844 1997 11 22 -40 1.844 1997 11 22 -39 1.852 1997 11 24 -37 1.863 1997 11 26 -35 1.877 1997 11 26 -35 1.877 1997 11 29 -32 1.894 1997 11 29 -32 1.894 1997 12 2 -99 1.924 1997 12 2 -99 1.924 1997 12 2 -29 1.924 1997 12 4 -27 1.943 1997 12 4 -27 1.943 1997 12 7 -44 1.955 1997 12 9 -22 1.959 1997 12 4 -27 1.943 1997 12 9 -22 1.959 1997 12 1 -0 -21 1.608 1997 12 1 -0 -88.000 1997 12 1 -1 -1 -88.000 1997 12 1 -1 -38.000 1997 12 1 -1 -38.000 1997 12 1 -1 -38.000 1997 12 1 -2 -88.000 1997 12 1 -2 -88.000 1997 12 1 -2 -88.000 1997 12 1 -3 -88.000 1997 12 1 -3 -88.000 1997 12 1 -3 -88.000 1997 12 1 -2 -88.000 1997 12 1 -1 -3 -3 -8 -88.000 1997 12 1 -1 -1 -3 -8 -88.000 1997 12 1 -1 -1 -3 -8 -88.000 1997 12 1 -1 -1 -3 -8 -88.000 1997 12 2 -1 -1 -1 -3 -8						
<pre>Means that actual GW level that day or part of day was HIGHER than last recorded value HIGHER than last recorded value TYR MH DA DANU AVGWLV MIGHER than last recorded value TIP TI 1 17 -44 1.844 1997 11 18 -43 1.833 1997 11 19 -42 1.833 1997 11 20 -41 1.831 1997 11 22 -39 1.852 1997 11 23 -38 1.857 1997 11 24 -37 1.863 1997 11 25 -36 1.868 1997 11 26 -35 1.877 1997 11 28 -33 1.892 1997 11 29 -32 1.894 1997 11 20 -41 1.904 1997 12 1 -30 1.917 1997 12 2 -29 1.924 1997 12 2 -29 1.924 1997 12 4 -27 1.943 1997 12 4 -27 1.943 1997 12 4 -27 1.943 1997 12 9 -22 1.955 1997 12 9 -22 1.955 1997 12 9 -22 1.955 1997 12 1 -30 -88.000 1997 12 1 -30 -88.000 1997 12 13 -88.000 1997 12 14 -17 -88.000 1997 12 16 -15 1.352 1997 12 17 -44 1.337 1997 12 18 -13 -88.000 1997 12 18 -13 -28.000 1997 12 19 -12 -88.000 1997 12 19 -12 -88.000 1997 12 10 -21 1.608 1997 12 10 -21 1.608 1997 12 12 -19 -88.000 1997 12 12 -19 -88.000 1997 12 13 -18 -88.000 1997 12 14 -17 -88.000 1997 12 14 -17 -88.000 1997 12 12 -19 -80.000 1997 12 12 -19 -12 -88.000 1997 12 12 -19 -80.000 1997 12 12 -19 -13 .302 1997 12 12 -19 -10 .303</pre>		_ 99 000				
<pre>HIGHER than last recorded value</pre>		-00.000				
YR MH DA DANU AVGMLV 1997 11 17 -44 1.844 1997 11 18 -43 1.839 1997 11 19 -42 1.833 1997 11 20 -41 1.831 1997 11 21 -40 1.844 1997 11 22 -39 1.852 1997 11 25 -36 1.863 1997 11 25 -36 1.863 1997 11 28 -33 1.892 1997 11 28 -34 1.886 1997 11 29 -32 1.894 1997 12 2 -29 1.924 1997 12 3 -28 1.933 1997 12 3 -28 1.933 1997 12 4 -27 1.943 1997 12 7<	*					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*					
19971117 -44 1.844 1997 1118 -43 1.839 1997 1120 -41 1.831 1997 1120 -41 1.831 1997 1121 -40 1.844 1997 1123 -38 1.852 1997 1123 -38 1.857 1997 1126 -35 1.877 1997 1126 -35 1.877 1997 1128 -33 1.892 1997 1128 -33 1.892 1997 1129 -32 1.894 1997 121 -30 1.917 1997 121 -30 1.917 1997 122 -29 1.924 1997 123 -28 1.993 1997 124 -27 1.943 1997 126 -25 1.955 1997 127 -24 1.955 1997 1210 -21 1.608 1997 1210 -21 1.608 1997 1212 -19 -88.000 1997 1213 -18 1997 1214 -17 1997 1216 -15 1997 1216 -15 1997 1216 -15 1997 1216 -15 1	110					
19971118 -43 1.839 19971119 -42 1.831 19971120 -41 1.831 19971121 -40 1.844 19971122 -39 1.857 19971123 -38 1.867 19971126 -35 1.877 19971127 -34 1.886 19971129 -32 1.894 19971129 -32 1.894 1997122 -29 1.924 1997123 -28 1.933 1997125 -26 1.950 1997126 -25 1.955 1997128 -23 1.692 1997129 -22 1.952 19971210 -21 1.608 19971211 -20 -88.000 19971211 -20 -88.000 19971214 -17 -88.000 19971215 -16 1.320 19971216 -15 1.352 19971216 -15 1.327 19971216 -15 1.327 19971216 -15 1.320 19971216 -15 1.327 19971216 -13 -88.000 19971216 <td></td> <td></td> <td></td> <td></td> <td></td> <td>* * * * * * * * * * * * * * * * * * * *</td>						* * * * * * * * * * * * * * * * * * * *
1997 11 19 -42 1.833 1997 11 20 -41 1.831 1997 11 22 -39 1.852 1997 11 22 -39 1.852 1997 11 24 -37 1.863 1997 11 25 -36 1.863 1997 11 26 -35 1.863 1997 11 26 -35 1.863 1997 11 28 -33 1.892 1997 11 29 -32 1.894 1997 11 20 -31 1.904 1997 12 1 -30 1.917 1997 12 3 -28 1.933 1997 12 3 -28 1.933 1997 12 6 -25 1.953 1997 12 6 -25 1.955 1997 12 10 -21 1.608 1997 12 10 -21 1.608 1997 12 11 -20 -88.000 1997 12 14 -17 1997 12 16 -15 1997 12 16 -15 1997 12 16 -15 1997 12 16 -15 1997 12 16 -15 1997 12 16 -15 1997 12 16 -15						
1997 11 21 -40 1.844 1997 11 22 -39 1.852 1997 11 23 -38 1.857 1997 11 24 -37 1.863 1997 11 25 -36 1.868 1997 11 26 -35 1.877 1997 11 27 -34 1.886 1997 11 28 -33 1.892 1997 11 29 -32 1.894 1997 11 30 -31 1.904 1997 12 1 -30 1.917 1997 12 3 -28 1.933 1997 12 4 -27 1.943 1997 12 5 -26 1.955 1997 12 7 -24 1.955 1997 12 10 -21 1.608 1997 12 10 -21 1.608 1997 12 11 -20 -88.000 1997 12 13 -18 -88.000 1997 12 14 -17 -88.000 1997 12 16 -15 1.352 1997 12 16 -15 1.326 1997 12 18 -13 -88.000 1997 12 16 -15 1.328 1997 12 16 -12 -88.000 1997 12						
1997 11 22 -39 1.852 1997 11 23 -38 1.867 1997 11 24 -37 1.663 1997 11 25 -36 1.868 1997 11 26 -35 1.877 1997 11 27 -34 1.886 1997 11 28 -33 1.692 1997 11 29 -32 1.894 1997 12 1 -30 1.917 1997 12 2 -29 1.924 1997 12 3 -28 1.933 1997 12 4 -27 1.943 1997 12 6 -25 1.955 1997 12 7 -24 1.955 1997 12 9 -22 1.955 1997 12 10 -21 1.608 1997 12 10 -21 1.608 1997 12 12 -16 1.320 1997 12 14 -17 -88.000 1997 12 15 -16 1.320 1997 12 16 -15 1.352 1997 12 18 -13 -88.000 1997 12 18 -13 -88.000 1997 12 16 -15 1.328 1997 12 16 -13 1.298 1997 12 2	1997	11	20	-41	1.831	
1997 11 23 -38 1.857 1997 11 24 -37 1.863 1997 11 25 -36 1.868 1997 11 26 -35 1.877 1997 11 27 -34 1.886 1997 11 28 -33 1.892 1997 11 29 -32 1.894 1997 11 30 -31 1.904 1997 12 2 -29 1.924 1997 12 3 -28 1.933 1997 12 4 -27 1.943 1997 12 6 -25 1.955 1997 12 7 -24 1.955 1997 12 9 -22 1.959 1997 12 10 -21 1.608 1997 12 10 -21 1.608 1997 12 11 -20 -88.000 1997 12 14 -17 1997 12 14 -17 1997 12 14 -17 1997 12 15 -16 1.327 1997 12 16 -15 1.352 1997 12 18 -13 1997 12 18 -13 1997 12 19 -12 1997 12 10 -1303	1997	11	21	-40	1.844	
1997 11 24 -37 1.863 1997 11 25 -36 1.868 1997 11 27 -34 1.886 1997 11 28 -33 1.892 1997 11 29 -32 1.894 1997 11 20 -31 1.904 1997 12 1 -30 1.917 1997 12 2 -29 1.924 1997 12 4 -27 1.943 1997 12 4 -27 1.943 1997 12 6 -25 1.955 1997 12 6 -25 1.955 1997 12 8 -23 1.955 1997 12 10 -21 1.608 1997 12 10 -21 1.608 1997 12 11 -20 -88.000 1997 12 11 -20 -88.000 1997 12 14 -17 -88.000 1997 12 16 -15 1.320 1997 12 16 -15 1.327 1997 12 16 -15 1.327 1997 12 16 -15 1.327 1997 12 16 -15 1.328 1997 12 10 -12 -88.000 1997 12 16 -15 1.328 1997 12						
1997 11 25 -36 1.868 1997 11 26 -35 1.877 1997 11 27 -34 1.886 1997 11 28 -33 1.892 1997 11 29 -32 1.894 1997 11 20 -31 1.904 1997 12 1 -30 1.917 1997 12 2 -29 1.924 1997 12 3 -28 1.933 1997 12 4 -27 1.943 1997 12 5 -26 1.950 1997 12 6 -25 1.953 1997 12 8 -23 1.952 1997 12 10 -21 1.608 1997 12 10 -21 1.608 1997 12 10 -21 1.608 1997 12 12 -19 -88.000 1997 12 14 -17 1997 12 14 -17 1997 12 16 -15 1997 12 16 -15 1997 12 16 -15 1997 12 18 -13 1997 12 19 -12 1997 12 20 -11 1997 12 16 -15 1997 12 20 -11 1997 12 20 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
1997 11 27 -34 1.886 1997 11 28 -33 1.892 1997 11 29 -32 1.894 1997 11 30 -31 1.904 1997 12 1 -30 1.917 1997 12 2 -29 1.924 1997 12 2 -29 1.933 1997 12 4 -27 1.943 1997 12 5 -26 1.950 1997 12 6 -25 1.953 1997 12 7 -24 1.955 1997 12 9 -22 1.955 1997 12 10 -21 1.608 1997 12 11 -20 -88.000 1997 12 12 -16 1.320 1997 12 14 -17 -88.000 1997 12 16 -15 1.352 1997 12 16 -15 1.352 1997 12 16 -15 1.320 1997 12 16 -15 1.321 1997 12 16 -15 1.322 1997 12 19 -12 -88.000 1997 12 19 -12 -88.000 1997 12 16 -15 1.328 1997 12 16 -15 1.303						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1997	11	28	-33	1.892	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1997	12	4	-27	1.943	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
1997 12 8 -23 1.952 1997 12 9 -22 1.959 1997 12 10 -21 1.608 1997 12 11 -20 -88.000 1997 12 12 -19 -88.000 1997 12 13 -18 -88.000 1997 12 14 -17 -88.000 1997 12 16 -16 1.320 1997 12 16 -15 1.352 1997 12 16 -13 -88.000 1997 12 13 -88.000 1997 12 19 -12 -88.000 1997 12 20 -11 1.298 1997 12 21 -10 1.303						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-21	1.608	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1997	12	11			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
19971217-141.33719971218-13-88.00019971219-12-88.00019971220-111.29819971221-101.303						
19971219-12-88.00019971220-111.29819971221-101.303						
1997 12 20 -11 1.298 1997 12 21 -10 1.303						
1997 12 21 -10 1.303						
1997 12 23 -8 1.297						

Annex 24 Content of ASCII file NLA00.GLI

*File *Code: *Acces *Autho *Versi *Date: *Source	: ss: or: ion: :	1.0 3 Dece Measur	ntial stindie ember 2 rements	by ALTE	RRA						
* * *		4 gi	roundwa	ter samp The Nethe	ling tuk			us measu	rements 1	n 4 cluster	IS OI
*		Descr	iption	of the q	uantitie	es and th	eir unit	s:			
*		YR	= Yea								
*		MH DA	= Mor = Dav	r within i	month						
*		DANU	-			s 1 at 1	January	1998)			
*									-	or Sector 1	
*									-	or Sector 2 or Sector 3	
*									-	or Sector 4	
*							m below s		Eace)		
*		SEGWL\ NUOB		ndard er ber of o		-	roundwate	er level			
*		NUOB	- Null	WEL OI U	DSELVALI	0115					
*	no	corre	ction r	made for	differer	nces betw	veen leve	l of soi	l surface	9	
* * YR *****	MH * * * * *	DA *****					GWLVS4	AVGWLV		NUOB *********	
1997	11	17	-44	1.88	1.96	1.83	1.99	1.91	0.020	15	
1997	12	19	-12	1.33	1.34	1.26	1.34	1.32	0.008	31	
1998 1998	1 1	8 21	8 21	0.75 0.82	0.73 0.78	0.73 0.78	0.77 0.84	0.74 0.81	0.004 0.012	63 16	
1998	1	22	22	0.84	0.80	0.80	0.86	0.82	0.012	62	
1998	2	5	36	1.10	1.10	1.02	1.14	1.08	0.010	47	
1998	2	18	49	1.39	1.44	1.32	1.48	1.40	0.014	28	
1998 1998	3 3	3 7	62 66	1.52 0.52	1.58 0.48	1.45 0.50	1.61 0.47	1.52 0.50	0.018 0.012	18 9	
1998	3	10	69	0.79	0.77	0.78	0.83	0.79	0.0012	63	
1998	3	17	76	0.84	0.80	0.80	0.85	0.82	0.005	63	
1998	3	24	83	0.98	0.98	0.91	1.02	0.97	0.008	47	
1998 1998	3 4	30 17	89 107	1.09 0.91	1.11 0.92	1.02 0.84	1.14 0.91	1.09 0.89	0.008 0.007	46 48	
1998	4	24	114	0.91	0.92	0.84	0.91	0.89	0.007	47	
1998	4	29	119	0.82	0.79	0.79	0.85	0.81	0.005	63	
1998	5	12	132	1.02	1.02	0.96	1.06	1.01	0.007	47	
1998 1998	5 5	19 29	139 149	1.24 1.40	1.25 1.43	$1.18 \\ 1.34$	1.30 1.46	$1.24 \\ 1.41$	0.010 0.011	31 29	
1998	6	9	160	1.25	1.29	1.23	1.34	1.28	0.015	16	
1998	6	15	166	1.17	1.22	1.14	1.25	1.20	0.015	16	
1998 1998	6 7	23 3	174 184	1.16 1.36	1.16 1.39	1.09 1.30	1.22 1.45	1.16 1.37	0.010 0.012	31 31	
1998	7	16	194	1.30	1.59	1.42	1.45	1.37	0.012	26	
1998	8	10	222	1.65	1.71	1.58	1.76	1.67	0.021	15	
1998	8	14	226	1.72	1.79	1.65	1.85	1.75	0.023	15	
1998 1998	9 9	7 21	250 264	1.20 0.80	1.15 0.78	0.95 0.79	1.21 0.83	1.11 0.80	0.023 0.004	39 63	
1998	10	21 6	204	1.15	1.15	1.07	1.21	1.14	0.004	41	
1998	10	20	293	0.86	0.82	0.82	0.88	0.84	0.005	60	
1998	12	18	352	0.77	0.75	0.77	0.80	0.77	0.004	63	
1999 1999	1 1	5 28	370 393	0.75 0.77	0.74 0.74	0.75 0.75	0.79 0.79	0.76 0.76	0.004 0.005	63 47	
1999	2	3	399	0.81	0.78	0.79	0.83	0.80	0.005	47	
1999	2	25	421	0.76	0.73	0.75	0.79	0.76	0.004	47	
1999	3	4	428	0.71	0.70	0.71	0.74	0.71	0.004	63	
1999 1999	3 4	18 6	442 461	0.78 0.85	0.75 0.80	0.77 0.81	0.81 0.85	0.78 0.83	0.005 0.005	47 47	
1999	4	20	475	0.79	0.75	0.77	0.82	0.78	0.005	46	
1999	5	3	488	0.85	0.82	0.81	0.86	0.83	0.005	47	
1999	5	7	492	0.84	0.81	0.78	0.82	0.81	0.004	63	

Annex 25 Content of ASCII file NLA00.GKN

*File: *Code: *Access: *Author: *Version: *Date: *Source: * *	K. Oos 1.0 7 June Measur Conc	tial tindie; R 2001 ements by entration	.F.A. Hend ALTERRA of Kjelda Netherland	ahl-N (F	(j-N) in g	roundwat	cer				
*	Descri	ption of	the quanti	ties ar	nd their u	nits					
*	YR	= Year	1								
*	MH	= Month									
*	DA		thin month								
*	DANU	-	mber (valı			ary 1998	3)				
*	NUFI		of filter								
*	UPDP		boundary o								
*	LODP COKNS1		boundary of tration of								
*	COMBI		1998: valı						in the Se	ctors 1-4	4
*			1998 and 2								
*			1998: valı								
*	COKNS2	= Concen	tration of	Кј-N (g m**[-3]	water)	for Sect	cor 2;			
*			1998: valu								
*			1998 and 2								
*	~~~~~		1998: valı						in the Sec	ctors 1-2	
*	COKNS3		tration of						in the G		4
*			1998: valu 1998 and 2								
*			1998: valı								
*	COKNS4		tration of							2015 5 1	
*			1998: valu						in the Se	ctors 1-4	1
*			1998 and 2								
*		18-12-	1998: valu	ue is fo	or mixed s	amples i	from the	8 plots :	in the Sec	ctors 3-4	
*		-	e concenti								
*			rd error (-			-			Kj−N	
*	NUOB		of observ								
*	-9.99		below the lculation							- at	
*			Kj-N m**[-	oncents	(AVCORN) this va	lue is set	. al	
*		0.10 g		5] Wat							
* YR MH	DA	DANU NU	FI UPDP	LODP	COKNS1	COKNS2	COKNS3	COKNS4	AVCOKN	SDCOKN 1	NUOB

1998 9	7	250	1 130	150	2.36	2.36	2.36	2.36	2.36	0.00	1
1998 9		264	1 100	120	1.18	0.10			1.13	0.61	4
1998 12		352	2 100	150	1.14	1.14		0.82	0.98	0.16	2
1999 4	20	475	1 100	120	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99	4

Annex 26 Content of ASCII file NLA00.GNN

*File:	NLA00	.GNN												
*Code:	ASCII													
*Access:	-	Sequential K. Oostindie; R.F.A. Hendriks												
*Author:		stindie	e; R.F.	A. Hen	driks									
*Version *Date:		e 2001												
*Source:			s by ALI	TERRA										
*					te-N (1	NO3-N) in g	qroundwa	ter						
*			The Net			, -	-							
*														
*		-		quant	ities a	and their u	units							
*	YR MH	= Yea = Mor												
*	DA		y withir	n montl	h									
*	DANU	-	-			l at 1 Janu	uary 199	8)						
*	NUFI	= Nun	nber of	filte	rs samp	pled	-							
*	UPDP					filter (cr								
*	LODP			-		filter (c								
*	CONNS.					N (g m**[-: 4 observat				plot):				
*			-		-	e filters a			-	-	190-280) cm,		
*						samples obt	-							
*	CONNS					N (g m**[-:								
*						4 observat					100 000			
*						e filters a samples obt								
*	CONNS					N (g m**[-:				III the sec	LUISIA			
*						4 observat				plot);				
*						e filters a								
*	CONNIC					samples obt				in the Sec	tors 3 a	and 4		
*	CONNS					N (g m**[-: 4 observat				plot);				
*											100 200			
		at	04-03-1	1999•	cor the	e Illters a	at depth	'S OI IU	U-120, I.	30-150 and	190-280	<i>C</i> m,		
*						samples obt	-			30-150 and in the Sec				
*		val N = Ave	lues are erage co	e for 1 oncenti	mixed s ration	samples obt of NO3-N (tained f (g m**[-	rom the 3] water	8 plots :)	in the Sec	tors 3 a			
*	SECON	val N = Ave N = Sta	lues are erage co andard e	e for n oncent: error	mixed s ration (g m**[samples obt of NO3-N ([-3] water)	tained f (g m**[-) of the	rom the 3] water average	8 plots :) concent:	in the Sec ration of 1	tors 3 a			
* * *	SECONI NUOB	va] N = Ave N = Sta = Num	lues are erage co andard e mber of	e for n oncentr error observ	mixed s ration (g m**[vations	samples obt of NO3-N ([-3] water) s for calcu	tained f (g m**[-) of the	rom the 3] water average	8 plots :) concent:	in the Sec ration of 1	tors 3 a			
* * *	SECONI NUOB	va] N = Ave N = Sta = Num	lues are erage co andard e	e for n oncentr error observ	mixed s ration (g m**[vations	samples obt of NO3-N ([-3] water) s for calcu	tained f (g m**[-) of the	rom the 3] water average	8 plots :) concent:	in the Sec ration of 1	tors 3 a			
* * * * * *	SECONN NUOB -88.8 H DA	val N = Ave N = Sta = Num = Cod	lues are erage co andard e mber of de for u NUFI	e for n oncentr error observ unknown UPDP	mixed s ration (g m**[vations n value LODP	samples obt of NO3-N (-3] water) s for calcu es CONNS1	tained f (g m**[-) of the ulation CONNS2	rom the 3] water average of AVCON CONNS3	8 plots :) concentr N and SE CONNS4	in the Sec cation of C CONN AVCONN	tors 3 a NO3-N SECONN	nd 4 NUOB		
* * * * * YR M ****	SECONN NUOB -88.8 H DA	val N = Ave N = Sta = Num = Cod DANU	lues are erage co andard e mber of de for u NUFI *******	e for n oncentr error observ unknown UPDP	mixed s ration (g m**[vations n value LODP	samples obt of NO3-N (-3] water) s for calcu es CONNS1	tained f (g m**[-) of the ulation CONNS2	rom the 3] water average of AVCON CONNS3	8 plots :) concentr N and SE CONNS4	in the Sec cation of CONN AVCONN	tors 3 a NO3-N SECONN ********	NUOB		
* * * * * YR M *******	SECONN NUOB -88.8 H DA ******* 3 3	val N = Ave N = Sta = Nun = Cod DANU ******	lues are erage co andard e mber of de for u NUFI *******	e for n oncentr observ unknown UPDP ****** 190	mixed s ration (g m**[vations n value LODP ****** 280	samples obt of NO3-N (-3] water) s for calcu es CONNS1 ***********************************	tained f (g m**[-) of the ulation CONNS2 ******** 13.6	rom the 3] water average of AVCON CONNS3 ******** 11.5	8 plots :) concentr N and SE CONNS4 ******** 7.8	in the Sec cation of S CONN AVCONN ********** 13.1	tors 3 a NO3-N SECONN ******* 1.6	NUOB ****** 15		
* * * * YR M ******* 1998 1998	SECONN NUOB -88.8 H DA ******* 3 3 3 10	val N = Ave N = Sta = Num = Cod DANU	lues are erage co andard e mber of de for u NUFI ******* 1 2	e for n oncentr error observ unknown UPDP	mixed s ration (g m**[vations n value LODP	samples obt of NO3-N (-3] water) s for calcu es CONNS1 ********** 18.4 60.3	tained f (g m**[-) of the ulation CONNS2 ******* 13.6 45.5	rom the 3] water average of AVCON CONNS3 ******* 11.5 43.9	8 plots :) concentr N and SE CONNS4 ******* 7.8 47.8	in the Sec cation of CONN AVCONN *********** 13.1 49.4	tors 3 a NO3-N SECONN ********	NUOB		
* * * * * YR M ******* 1998 1998 1998	SECONN NUOB -88.8 H DA ******* 3 3 3 10	val N = Ave N = Sta = Num = Cod DANU ****** 62 69	lues are erage co andard e mber of de for u NUFI *******	e for to oncention observ unknown UPDP ****** 190 70	mixed s ration (g m**[vations n value LODP ****** 280 90	samples obt of NO3-N (-3] water) s for calcu es CONNS1 ***********************************	tained f (g m**[-) of the ulation CONNS2 ******** 13.6	rom the 3] water average of AVCON CONNS3 ******** 11.5	8 plots :) concentr N and SE CONNS4 ******** 7.8	in the Sec cation of S CONN AVCONN ********** 13.1	tors 3 a NO3-N SECONN ******* 1.6 2.2	NUOB ****** 15 16		
* * * * 1998 1998 1998 1998	SECONN NUOB -88.8 H DA ******* 3 3 3 10 3 10 4 29 5 12	val N = Ave N = Sta = Nun = Coo DANU ****** 62 69 69 119 132	lues are erage co andard e mber of de for u NUFI ******** 1 2 2	e for to procents error observ unknown UPDP ****** 190 70 190 100 100	mixed s ration (g m**[vations n value LODP ****** 280 90 280 120 120	samples obt of NO3-N (-3] water) s for calcu es CONNS1 ***********************************	tained f (g m**[-) of the ulation CONNS2 ******** 13.6 45.5 19.9	rom the 3] water average of AVCON CONNS3 ******** 11.5 43.9 12.0	8 plots :) concentr N and SE CONNS4 ******** 7.8 47.8 23.0	AVCONN AVCONN ********** 13.1 49.4 20.4	tors 3 a NO3-N SECONN ******** 1.6 2.2 1.9 2.7 2.3	NUOB ******* 15 16 15 16 16		
* * * * 1998 1998 1998 1998 1998 1998 19	SECONN NUOB -88.8 H DA ******* 3 3 3 10 3 10 3 10 4 29 5 12 5 29	val N = Ave N = Sta = Nun = Coc DANU ******* 62 69 69 119 132 149	lues are erage co andard e nber of de for u NUFI ******** 1 2 2 1 1 1	e for to procents error observing unknown UPDP ****** 190 70 190 100 100 190	mixed s ration (g m**[vations n value LODP ******* 280 90 280 120 120 280	samples obt of NO3-N (-3] water) s for calcu es CONNS1 ***********************************	tained f (g m**[-) of the ulation CONNS2 ******** 13.6 45.5 19.9 29.5 27.9 17.5	rom the 3] water average of AVCON CONNS3 ******** 11.5 43.9 12.0 21.4 22.6 17.3	8 plots :) concentr N and SE CONNS4 ******** 7.8 47.8 23.0 29.2 36.5 11.4	AVCONN AVCONN ********* 13.1 49.4 20.4 30.6 32.0 17.2	tors 3 a NO3-N SECONN ******** 1.6 2.2 1.9 2.7 2.3 1.4	NUOB ******* 15 16 15 16 16 16 19		
* * * * 1998 1998 1998 1998 1998 1998 19	SECONN NUOB -88.8 H DA ******* 3 3 3 10 3 10 4 29 5 12 5 29 6 4	val N = Ave N = Sta = Nun = Coc DANU ******* 69 69 119 132 149 155	lues are erage co andard e mber of de for u NUFI ******** 1 2 2 1 1 1 1 1	e for to poncentrerror observations observations unknown UPDP ****** 190 70 190 100 100 100 190 130	mixed s ration (g m**[vations n value LODP ******* 280 90 280 120 120 280 120 280	samples obt of NO3-N (-3] water) s for calcu es CONNS1 ***********************************	tained f (g m**[-) of the ulation CONNS2 ******* 13.6 45.5 19.9 29.5 27.9 17.5 28.0	rom the 3] water average of AVCON CONNS3 ******* 11.5 43.9 12.0 21.4 22.6 17.3 22.9	8 plots :) concentr N and SE CONNS4 ******** 7.8 47.8 23.0 29.2 36.5 11.4 -8.8	AVCONN AVCONN ********* 13.1 49.4 20.4 30.6 32.0 17.2 26.2	tors 3 a NO3-N SECONN ******** 1.6 2.2 1.9 2.7 2.3 1.4 2.0	NUOB ******* 15 16 15 16 16 19 6		
* * * * 1998 1998 1998 1998 1998 1998 19	SECONN NUOB -88.8 H DA ******* 3 3 3 10 3 10 4 29 5 12 5 29 6 4 6 9	val N = Ave N = Sta = Nun = Coo DANU 62 69 119 132 149 155 160	lues are erage co andard e mber of de for u NUFI ******* 1 2 2 1 1 1 1 1 1	e for to procents error observ unknown UPDP ****** 190 100 100 100 100 130 130	mixed s ration (g m**[vations n value LODP ******* 280 90 280 120 120 120 280 150	samples obt of NO3-N (-3] water) s for calcu- es CONNS1 ***********************************	tained f (g m**[-) of the ulation CONNS2 ******** 13.6 45.5 19.9 29.5 27.9 17.5 28.0 31.7	rom the 3] water average of AVCON CONNS3 ******** 11.5 43.9 12.0 21.4 22.6 17.3 22.9 26.8	8 plots :) concent: N and SE CONNS4 ******* 7.8 47.8 23.0 29.2 36.5 11.4 -8.8 34.6	AVCONN AVCONN ***********************************	tors 3 a NO3-N SECONN ******* 1.6 2.2 1.9 2.7 2.3 1.4 2.0 1.8	NUOB ******* 15 16 15 16 16 19 6 16		
* * * * 1998 1998 1998 1998 1998 1998 19	SECONN NUOB -88.8 H DA ******* 3 3 3 10 3 10 4 29 5 12 5 29 6 4	val N = Ave N = Sta = Nun = Coc DANU ******* 69 69 119 132 149 155	lues are erage co andard e mber of de for u NUFI ******** 1 2 2 1 1 1 1 1	e for to poncentrerror observations observations unknown UPDP ****** 190 70 190 100 100 100 190 130	mixed s ration (g m**[vations n value LODP ******* 280 90 280 120 120 280 120 280	samples obt of NO3-N (-3] water) s for calcu es CONNS1 ***********************************	tained f (g m**[-) of the ulation CONNS2 ******* 13.6 45.5 19.9 29.5 27.9 17.5 28.0	rom the 3] water average of AVCON CONNS3 ******* 11.5 43.9 12.0 21.4 22.6 17.3 22.9	8 plots :) concentr N and SE CONNS4 ******** 7.8 47.8 23.0 29.2 36.5 11.4 -8.8	AVCONN AVCONN ********* 13.1 49.4 20.4 30.6 32.0 17.2 26.2	tors 3 a NO3-N SECONN ******** 1.6 2.2 1.9 2.7 2.3 1.4 2.0	NUOB ******* 15 16 15 16 16 19 6		
* * * * 1998 1998 1998 1998 1998 1998 19	SECONN NUOB -88.8 H DA ******* 3 3 3 10 3 10 4 29 5 12 5 29 6 4 6 9 6 23 8 10 9 7	val N = Ave N = Sta = Nun = Coo DANU ******* 62 69 69 119 132 149 155 160 174 222 250	lues are erage co andard e nber of de for u NUFI ******** 1 2 2 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1	e for to procents error (observing unknown UPDP ****** 190 70 190 100 100 100 130 130 130 130 100	mixed s ration (g m**[vations h value LODP ******* 280 90 280 120 120 280 150 150 150 280 120	samples obt of NO3-N (-3] water; s for calcu es CONNS1 ***********************************	tained f (g m**[-) of the ulation CONNS2 ******** 13.6 45.5 19.9 29.5 27.9 17.5 28.0 31.7 23.8 12.5 21.5	rom the 3] water average of AVCON CONNS3 ******** 11.5 43.9 12.0 21.4 22.6 17.3 22.9 26.8 20.4 9.3 21.9	8 plots :) concentr N and SEC CONNS4 ******** 7.8 47.8 23.0 29.2 36.5 11.4 -8.8 34.6 28.4 11.3 24.4	AVCONN ********** 13.1 49.4 20.4 30.6 32.0 17.2 26.2 32.0 26.6 14.5 22.3	tors 3 a NO3-N SECONN ******** 1.6 2.2 1.9 2.7 2.3 1.4 2.0 1.8 2.0 2.2 0.6	NUOB ******* 15 16 15 16 16 16 16 16 15 8		
* * * * * * * * * * * * * * * * * * *	SECONN NUOB -88.8 H DA ******* 3 3 3 10 3 10 4 29 5 12 5 29 6 4 6 9 6 23 8 10 9 7 9 7	val N = Ave N = Sta = Nun = Coo DANU ******* 62 69 69 119 132 149 155 160 174 222 250 250	lues are erage co andard e nber of de for u NUFI ********* 1 2 2 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1	e for to procents error o observ unknown UPDP ****** 190 70 190 100 100 100 130 130 130 130	mixed s ration (g m**[vations h value LODP ******* 280 90 280 120 280 120 280 150 150 280 150 280 150	samples obt of NO3-N (-3] water; s for calcu es CONNS1 ***********************************	tained f (g m**[-) of the ulation (CONNS2 ******** 13.6 45.5 19.9 29.5 27.9 17.5 28.0 31.7 23.8 12.5 21.5 22.2	rom the 3] water average of AVCON CONNS3 ******** 11.5 43.9 12.0 21.4 22.6 17.3 22.9 26.8 20.4 9.3 21.9 20.6	8 plots : concentr N and SEC CONNS4 ******** 7.8 47.8 23.0 29.2 36.5 11.4 -8.8 34.6 28.4 11.3 24.4 28.5	AVCONN ********** 13.1 49.4 20.4 30.6 32.0 17.2 26.2 32.0 26.6 14.5 22.3 27.2	tors 3 a NO3-N ******** 1.6 2.2 1.9 2.7 2.3 1.4 2.0 1.8 2.0 2.2 0.6 2.6	NUOB ******* 15 16 15 16 16 16 16 16 15 8 16		
* * * * * * * * * * * * * * * * * * *	SECONN NUOB -88.8 H DA ******** 3 3 3 10 3 10 4 29 5 12 5 29 6 4 6 9 6 23 8 10 9 7 9 7 9 21	val N = Ave N = Sta = Nun = Coo DANU ******* 62 69 69 119 132 149 155 160 174 222 250 250 264	lues are erage co andard e nber of de for u NUFI ******** 1 2 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1	e for to procents error o observ unknows UPDP ****** 190 70 190 100 100 130 130 130 130 130 130 130 13	mixed s ration (g m**[vations n value LODP ******* 280 90 280 120 120 280 150 150 150 280 150 280 150 150 280 120	samples obt of NO3-N (-3] water) s for calcu es CONNS1 ***********************************	tained f (g m**[-) of the ulation (CONNS2 ******** 13.6 45.5 19.9 29.5 27.9 17.5 28.0 31.7 23.8 12.5 21.5 22.2 20.5	rom the 3] water average of AVCON CONNS3 ******** 11.5 43.9 12.0 21.4 22.6 17.3 22.9 26.8 20.4 9.3 21.9 20.6 19.7	8 plots :) concentr N and SEC CONNS4 ******** 7.8 47.8 23.0 29.2 36.5 11.4 -8.8 34.6 28.4 11.3 24.4 28.5 24.8	AVCONN ********** 13.1 49.4 20.4 30.6 32.0 17.2 26.2 32.0 26.6 14.5 22.3 27.2 24.0	tors 3 a NO3-N SECONN ******** 1.6 2.2 1.9 2.7 2.3 1.4 2.0 1.8 2.0 2.2 0.6 2.6 1.5	NUOB ******* 15 16 15 16 16 16 16 16 15 8 16 16		
* * * * * * * * * * * * * * * * * * *	SECONN NUOB -88.8 H DA ******** 3 3 3 10 3 10 4 29 5 12 5 29 6 4 6 9 6 23 8 10 9 7 9 7 9 7 9 7 9 21 0 6	val N = Ave N = Sta = Num = Coo DANU ******* 62 69 69 119 132 149 155 160 174 222 250 250 264 279	lues are erage co andard e nber of de for u NUFI ******** 1 2 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1	e for to price the second seco	mixed s ration (g m**[vations n value LODP ******* 280 120 280 120 280 150 150 150 150 150 150 120 280 120	samples obt of NO3-N (-3] water) s for calcu es CONNS1 ***********************************	tained f (g m**[-) of the ulation (CONNS2 ******** 13.6 45.5 19.9 29.5 27.9 17.5 28.0 31.7 23.8 12.5 21.5 22.2 20.5 15.7	rom the 3] water average of AVCON CONNS3 ******** 11.5 43.9 12.0 21.4 22.6 17.3 22.9 26.8 20.4 9.3 21.9 20.6 19.7 17.1	8 plots :) concentr N and SEC CONNS4 ******** 7.8 47.8 23.0 29.2 36.5 11.4 -8.8 34.6 28.4 11.3 24.4 28.5 24.8 -88.8	AVCONN AVCONN ********** 13.1 49.4 20.4 30.6 32.0 17.2 26.2 32.0 26.6 14.5 22.3 27.2 24.0 17.2	tors 3 a NO3-N SECONN ******** 1.6 2.2 1.9 2.7 2.3 1.4 2.0 1.8 2.0 1.8 2.0 2.2 0.6 2.6 1.5 0.8	NUOB ******* 15 16 15 16 16 16 16 16 16 15 8 16 16 16 7		
* * * * * * * * * * * * * * * * * * *	SECONN NUOB -88.8 H DA ******** 3 3 3 10 3 10 4 29 5 12 5 29 6 4 6 9 6 23 8 10 9 7 9 7 9 21	val N = Ave N = Sta = Nun = Coo DANU ******* 62 69 69 119 132 149 155 160 174 222 250 250 264	lues are erage co andard e nber of de for u NUFI ******** 1 2 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1	e for to procents error o observ unknows UPDP ****** 190 70 190 100 100 130 130 130 130 130 130 130 13	mixed s ration (g m**[vations n value LODP ******* 280 90 280 120 120 280 150 150 150 280 150 280 150 150 280 120	samples obt of NO3-N (-3] water) s for calcu es CONNS1 ***********************************	tained f (g m**[-) of the ulation (CONNS2 ******** 13.6 45.5 19.9 29.5 27.9 17.5 28.0 31.7 23.8 12.5 21.5 22.2 20.5	rom the 3] water average of AVCON CONNS3 ******** 11.5 43.9 12.0 21.4 22.6 17.3 22.9 26.8 20.4 9.3 21.9 20.6 19.7	8 plots :) concentr N and SEC CONNS4 ******** 7.8 47.8 23.0 29.2 36.5 11.4 -8.8 34.6 28.4 11.3 24.4 28.5 24.8	AVCONN ********** 13.1 49.4 20.4 30.6 32.0 17.2 26.2 32.0 26.6 14.5 22.3 27.2 24.0	tors 3 a NO3-N SECONN ******** 1.6 2.2 1.9 2.7 2.3 1.4 2.0 1.8 2.0 2.2 0.6 2.6 1.5	NUOB ******* 15 16 15 16 16 16 16 16 15 8 16 16		
* * * * * * * * * * * * * * * * * * *	SECONN NUOB -88.8 H DA ******* 3 3 3 10 3 10 4 29 5 12 5 29 6 4 6 9 6 23 8 10 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 21 0 6 0 6 0 20 0 20	val V = Ave V = Sta = Nun = Coo DANU ******* 62 69 119 132 149 155 160 174 222 250 264 279 279 293 293	lues are erage co andard e mber of de for u NUFI ************************************	e for to oncents error o observ unknows UPDP ****** 190 70 190 100 100 100 130 130 130 130 130 130 13	mixed s ration (g m**[vations n value LODP ******* 280 90 280 120 120 150 150 150 120 150 120 150 120 120	samples obt of NO3-N (-3] water) s for calcu- s for calcu- s (CONNS1 ***********************************	tained f (g m**[-) of the ulation CONNS2 ******** 13.6 45.5 19.9 29.5 27.9 17.5 28.0 31.7 23.8 12.5 21.5 22.2 20.5 15.7 16.5 14.4 14.0	rom the 3] water average of AVCON CONNS3 ******** 11.5 43.9 12.0 21.4 22.6 17.3 22.9 26.8 20.4 9.3 21.9 20.6 19.7 17.1 15.9 15.8 14.3	8 plots :) concent: N and SEC CONNS4 ******** 7.8 47.8 23.0 29.2 36.5 11.4 -8.8 34.6 28.4 11.3 24.4 28.5 24.8 -88.8 20.9 19.5 17.4	AVCONN ********** 13.1 49.4 20.4 30.6 32.0 17.2 26.2 32.0 26.6 14.5 22.3 27.2 24.0 17.2 24.0 17.2 24.0 17.2 24.0 17.2 24.0 17.2 24.0 17.2 24.0 17.2 24.0 17.2 25.3 27.2 24.0 17.2 25.3 27.2 27.2 25.3 27.2 25.5 27.2 25.5 27.2 25.5 27.2 25.5 27.2 25.5 27.2 25.5 27.2 25.5 27.2 25.5 27.5 27	tors 3 a NO3-N SECONN ******** 1.6 2.2 1.9 2.7 2.3 1.4 2.0 1.8 2.0 2.2 0.6 2.6 1.5 0.8 1.3 0.9 0.8	NUOB ******* 15 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16		
* * * * * * * * * * * * * * * * * * *	SECONN NUOB -88.8 H DA ******* 3 3 10 3 10 4 29 5 12 5 29 6 4 6 9 6 23 8 10 9 7 9 7 9 7 9 7 9 7 9 21 0 6 0 6 0 6 0 20 0 20 2 18	val N = Ave N = Sta = Nun = Coo DANU ******* 62 69 119 132 149 155 160 174 222 250 264 279 279 279 293 352	lues are erage co andard e nber of de for u NUFI ************************************	e for to procents error observing observing unknown UPDP ****** 190 70 190 100 100 100 130 130 130 130 130 130 13	mixed s ration (g m**[vations n value LODP ******* 280 90 280 120 120 150 150 150 150 120 150 120 150 120 120 120	Samples obt of NO3-N (-3] water) s for calcu- s for calc	tained f (g m**[-) of the ulation CONNS2 ******** 13.6 45.5 19.9 29.5 27.9 17.5 28.0 31.7 23.8 12.5 21.5 22.2 20.5 15.7 16.5 14.4 14.0 13.7	rom the 3] water average of AVCON CONNS3 ******** 11.5 43.9 12.0 21.4 22.6 17.3 22.9 26.8 20.4 9.3 21.9 20.6 19.7 17.1 15.9 15.8 14.3 13.6	8 plots :) concentr N and SEC CONNS4 ********* 7.8 47.8 23.0 29.2 36.5 11.4 -8.8 34.6 28.4 11.3 24.4 28.5 24.8 -8.8 20.9 19.5 17.4 16.2	AVCONN ********** 13.1 49.4 20.4 30.6 32.0 17.2 26.2 32.0 26.6 14.5 22.3 27.2 24.0 17.2 24.0 26.6 14.5 22.3 27.2 24.0 17.2 24.0	tors 3 a NO3-N SECONN ******** 1.6 2.2 1.9 2.7 2.3 1.4 2.0 1.4 2.0 1.8 2.0 2.2 0.6 2.6 1.5 0.8 1.3 0.9 0.8 1.2	NUOB ******* 15 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16		
* * * * * * * * * * * * * * * * * * *	SECONN NUOB -88.8 H DA ******* 3 3 3 10 3 10 4 29 5 12 5 29 6 4 6 9 6 23 8 10 9 7 9 7 9 7 9 7 9 21 0 6 0 6 0 20 0 20 2 18 2 18	val N = Ave N = Sta = Nun = Coo DANU ******* 62 69 119 132 149 155 160 174 222 250 264 279 279 293 293 352 352	lues are erage co andard e nber of de for u NUFI ************************************	e for to oncents error (observing unknown UPDP ****** 190 70 190 100 100 100 130 130 130 130 130 130 13	mixed s ration (g m**[vations n value LODP ******* 280 90 280 120 120 120 150 150 150 150 150 150 150 120 120 150 120 120 120 120	samples obt of NO3-N (-3] water; s for calcu- s for calc	tained f (g m**[-) of the ulation CONNS2 ******** 13.6 45.5 19.9 29.5 27.9 17.5 28.0 31.7 23.8 12.5 21.5 22.2 20.5 15.7 16.5 14.4 14.0 13.7 12.4	rom the 3] water average of AVCON CONNS3 ******** 11.5 43.9 12.0 21.4 22.6 17.3 22.9 26.8 20.4 9.3 21.9 20.6 19.7 17.1 15.9 15.8 14.3 13.6 13.9	8 plots : concentr N and SEC CONNS4 ******** 7.8 47.8 23.0 29.2 36.5 11.4 -8.8 34.6 28.4 11.3 24.4 28.5 24.8 -88.8 20.9 19.5 17.4 16.2 18.0	AVCONN ********** 13.1 49.4 20.4 30.6 32.0 17.2 26.2 32.0 26.6 14.5 22.3 27.2 24.0 17.2 19.4 16.4 15.7 16.7 16.3	tors 3 a NO3-N SECONN ******** 1.6 2.2 1.9 2.7 2.3 1.4 2.0 1.8 2.0 2.2 0.6 2.6 1.5 0.8 1.3 0.9 0.8 1.2 1.1	NUOB ******* 15 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16		
* * * * * * * * * * * * * * * * * * *	SECONN NUOB -88.8 H DA ******** 3 3 3 10 3 10 4 29 5 12 5 29 6 4 6 9 6 23 8 10 9 7 9 7 9 7 9 21 0 6 0 20 0 20 2 18 2 18 1 28	val N = Ave N = Sta = Nun = Coo DANU ******* 62 69 69 119 132 149 155 160 174 222 250 264 279 293 293 352 352 393	lues are erage co andard e nber of de for u NUFI ************************************	e for to procents error (observing) (UPDP ****** 190 70 190 100 100 100 130 130 130 130 100 100 130 100 10	mixed s ration (g m**[vations h value LODP ******* 280 90 280 120 120 120 150 150 150 120 120 120 120 120 120 120 120 120 12	samples obt of NO3-N (-3] water; s for calcu s for calcu s CONNS1 ***********************************	tained f (g m**[-) of the ulation CONNS2 ******** 13.6 45.5 19.9 29.5 27.9 17.5 28.0 31.7 23.8 12.5 21.5 22.2 20.5 15.7 16.5 14.4 14.0 13.7 12.4 12.0	rom the 3] water average of AVCON CONNS3 ******** 11.5 43.9 12.0 21.4 22.6 17.3 22.9 26.8 20.4 9.3 21.9 20.6 19.7 17.1 15.9 15.8 14.3 13.6 13.9 12.5	8 plots : concentr N and SE CONNS4 ******** 7.8 47.8 23.0 29.2 36.5 11.4 -8.8 34.6 28.4 11.3 24.4 28.5 24.8 -88.8 20.9 19.5 17.4 16.2 18.0 14.7	AVCONN ***********************************	tors 3 a NO3-N SECONN ******** 1.6 2.2 1.9 2.7 2.3 1.4 2.0 1.8 2.0 2.2 0.6 2.6 1.5 0.8 1.3 0.9 0.8 1.2 1.1 0.6	NUOB ******** 15 16 15 16 16 16 16 16 16 16 16 16 16		
* * * * * * * * * * * * * * * * * * *	SECONN NUOB -88.8 H DA ******* 3 3 3 10 3 10 4 29 5 12 5 29 6 4 6 9 6 23 8 10 9 7 9 7 9 7 9 7 9 21 0 6 0 6 0 20 0 20 2 18 2 18	val N = Ave N = Sta = Nun = Coo DANU ******* 62 69 119 132 149 155 160 174 222 250 264 279 279 293 293 352 352	lues are erage co andard e nber of de for u NUFI ************************************	e for to oncents error (observing unknown UPDP ****** 190 70 190 100 100 100 130 130 130 130 130 130 13	mixed s ration (g m**[vations n value LODP ******* 280 90 280 120 120 120 150 150 150 150 150 150 150 120 120 150 120 120 120 120	samples obt of NO3-N (-3] water; s for calcu- s for calc	tained f (g m**[-) of the ulation CONNS2 ******** 13.6 45.5 19.9 29.5 27.9 17.5 28.0 31.7 23.8 12.5 21.5 22.2 20.5 15.7 16.5 14.4 14.0 13.7 12.4	rom the 3] water average of AVCON CONNS3 ******** 11.5 43.9 12.0 21.4 22.6 17.3 22.9 26.8 20.4 9.3 21.9 20.6 19.7 17.1 15.9 15.8 14.3 13.6 13.9	8 plots : concentr N and SEC CONNS4 ******** 7.8 47.8 23.0 29.2 36.5 11.4 -8.8 34.6 28.4 11.3 24.4 28.5 24.8 -88.8 20.9 19.5 17.4 16.2 18.0	AVCONN ********** 13.1 49.4 20.4 30.6 32.0 17.2 26.2 32.0 26.6 14.5 22.3 27.2 24.0 17.2 19.4 16.4 15.7 16.7 16.3	tors 3 a NO3-N SECONN ******** 1.6 2.2 1.9 2.7 2.3 1.4 2.0 1.8 2.0 2.2 0.6 2.6 1.5 0.8 1.3 0.9 0.8 1.2 1.1	NUOB ******* 15 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16		
* * * * * * * * * * * * * * * * * * *	SECONN NUOB -88.8 H DA ******* 3 3 3 10 3 10 4 29 5 12 5 29 6 4 6 9 6 23 8 10 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7	val V = Ave V = Sta = Nun = Coo DANU ******* 62 69 69 119 132 149 155 160 174 222 250 264 279 293 293 352 352 352 393 428 428	lues are erage co andard e mber of de for u NUFI ************************************	e for to oncents error observing observing vunknows UPDP ****** 190 70 190 100 100 130 130 130 130 130 130 100 10	mixed s ration (g m**[vations h value LODP ******* 280 90 280 120 120 280 150 150 150 120 120 150 120 120 120 120 150 120 120 150 120 120 150 120 120 120 120 120 120 120 120 120 12	samples obt of NO3-N (-3] water) s for calcu- s for calcu- s for calcu- tes CONNS1 ***********************************	tained f (g m**[-) of the ulation CONNS2 ******** 13.6 45.5 19.9 29.5 27.9 17.5 28.0 31.7 23.8 12.5 21.5 21.5 21.5 22.2 20.5 15.7 16.5 14.4 14.0 13.7 12.4 12.0 9.1 11.4 12.2	rom the 3] water average of AVCON CONNS3 ******** 11.5 43.9 12.0 21.4 22.6 17.3 22.9 26.8 20.4 9.3 21.9 20.6 19.7 17.1 15.9 15.8 14.3 13.6 13.9 12.5 8.6 11.5 11.5	8 plots : concent: N and SEC CONNS4 ******** 7.8 47.8 23.0 29.2 36.5 11.4 -8.8 34.6 28.4 11.3 24.4 28.5 24.8 -88.8 20.9 19.5 17.4 16.2 18.0 14.7 9.4 11.5 11.5	in the Sec ration of 2 CONN ********** 13.1 49.4 20.4 30.6 32.0 17.2 26.2 32.0 26.6 14.5 22.3 27.2 24.0 17.2 19.4 16.4 15.7 16.7 16.7 16.3 13.6 8.6 11.5 11.9	tors 3 a NO3-N SECONN ******** 1.6 2.2 1.9 2.7 2.3 1.4 2.0 2.3 1.4 2.0 2.3 1.4 2.0 2.2 0.6 1.5 0.8 1.3 0.9 0.8 1.2 1.1 0.6 0.7 0.1 0.4	NUOB ******** 15 16 15 16 16 16 16 16 16 16 16 16 16		
* * * * * * * * * * * * * * * * * * *	SECONN NUOB -88.8 H DA ******** 3 3 3 10 3 10 4 29 5 12 5 29 6 4 6 9 6 23 8 10 9 7 9 7 9 21 0 6 0 20 0 20 2 18 2 18 1 28 3 4 3 4	val N = Ave N = Sta = Nun = Coo DANU ******* 62 69 69 119 132 149 155 160 174 222 250 264 279 279 293 352 352 352 352 393 428 428	lues are erage co andard e nber of de for u NUFI ************************************	e for to poncents error of observing unknows UPDP ****** 190 70 190 100 100 130 130 130 130 100 130 100 130 100 130 100 10	mixed s ration (g m**[vations n value LODP ******* 280 90 280 120 120 280 150 150 150 120 120 150 120 120 150 120 120 150 120 120	samples obt of NO3-N (-3] water; s for calcues CONNS1 ***********************************	tained f (g m**[-) of the ulation (g m**[-) of the ulation (g m**[-) of the ulation (g m**[-) of the (g m**[-) of the (g m**[- 13.6 (45.5) (19.9) (29.5) (27.9) (17.5) (28.0) (31.7) (23.8) (23.8) (25.2) (23.8) (25.2	rom the 3] water average of AVCON CONNS3 ******** 11.5 43.9 12.0 21.4 22.6 17.3 22.9 26.8 20.4 9.3 21.9 20.6 19.7 17.1 15.9 15.8 14.3 13.6 13.9 12.5 8.6 11.5	8 plots : concentr N and SEC CONNS4 ******** 7.8 47.8 23.0 29.2 36.5 11.4 -8.8 34.6 28.4 11.3 24.4 28.5 24.8 -88.8 20.9 19.5 17.4 16.2 18.0 14.7 9.4 11.5	AVCONN AVCONN ********** 13.1 49.4 20.4 30.6 32.0 17.2 26.2 32.0 26.6 14.5 22.3 27.2 24.0 17.2 19.4 16.4 15.7 16.7 16.3 13.6 8.6 11.5	tors 3 a NO3-N SECONN ******** 1.6 2.2 1.9 2.7 2.3 1.4 2.0 1.8 2.0 2.2 0.6 2.6 1.5 0.8 1.3 0.9 0.8 1.2 1.1 0.6 0.7 0.1	NUOB ******* 15 16 15 16 16 16 16 16 16 16 16 16 15 16 15 15 16 16 15 15 16 16 15		

Annex 27 Content of ASCII file NLA00.GPP

*File:	NLA00.GPP														
*Code:	ASCII														
*Access:		Sequential K. Oostindie; R.F.A. Hendriks													
*Author:															
*Version: *Date:	7 June 20	0.01													
*Source:			גיינ												
* Source.		easurements by ALTERRA Concentration of Ortho-P & (PO4-P) in groundwater													
*		t, The Neth		04-P) III	groundwa	LEI									
*	AIGETS	c, me Nech	erianus												
*	Descript	ion of the c	quantities a	nd their	unite										
*	-	Year	quantities a	na cherr	unics										
*		Month													
*		Day within	month												
*			(value is 1	at 1 Jan	uary 199	8)									
*			Eilters samp		uu1 1999	.,									
*			dary of the		m below	soil sur	face)								
*			dary of the												
*	COPPS1 =	Concentrat:	ion of PO4-P	(g m**[-	3] water) for Se	ector 1;								
*		in general	average of	4 observa	tions (1	observa	tion per p	plot)							
*	COPPS2 =	Concentrat:	ion of PO4-P	(g m**[-	3] water) for Se	ector 2;								
*			average of					plot)							
*	COPPS3 =		ion of PO4-P		-	,									
*			average of					plot)							
*	COPPS4 =		ion of PO4-P												
*	ALICODD		average of					plot)							
*			ncentration ror (g m**[ation of							
*			observations						P04-P						
*			nknown value		uración	OI AVCOP	F and SEC	OFF							
*			ow the detec		t of 0.0	25 a PO4	-P m**[-3	l water.							
*			ation of the						et at						
*			4-P m**[-3]	-			,								
*		-													
* YR MH	I DA DAI	NU NUFI (JPDP LODP	COPPS1	COPPS2	COPPS3	COPPS4	AVCOPP	SECOPP	NUOB					
*******	******	*******	*******	*******	******	******	*******	* * * * * * * * *	* * * * * * * * *	*****					
1998 4		19 1	100 120	-9.990	-9.990	-9.990	-9.990	-9.990	-9.990	16					
1998 9		50 2	100 120		-8.880		-8.880	0.142	0.038	2					
1998 9		50 2	130 150	0.119	0.131	0.128	0.098	0.122	0.011	13					
1998 9		64 1	100 120	0.166	0.872			0.318	0.100	16					
1998 10		79 1	130 150	0.045		0.035		0.038	0.003	16					
	1 28 393 1 100 120 -9.990 -8.880 0.027 0.026 0.025 0.005 9 2 3 399 1 100 120 -9.990 -9.990 -8.880 -8.880 -9.990 -9.990 8														
1999 4	e ∠∪ 4	15 1	TOO T70	-9.990	-9.990	-9.990	-9.990	-9.990	-9.990	ΤO					

Annex 28 Content of ASCII file NLA00.GTP

*File: *Code: *Access: *Author: *Date: *Source: * *	ASCII Sequen K. Oos 1.0 7 June Measur Conc	Sequential K. Oostindie; R.F.A. Hendriks											
*	Descri	ption of	f the	quanti	ties a	nd their	units						
*	YR	= Year		-									
*	MH	= Mont	h										
*	DA	= Day w											
*	DANU					at 1 Jan	uary 199	8)					
*	NUFI	= Numbe							(F)				
*	UPDP LODP			-		filter (c filter (c							
*				-		(g m**[-			,				
*	001101								tion per p	olot)			
*	COTPS2					(g m**[-				,			
*		in ge	eneral	avera	ige of	4 observa	tions (1	observa	tion per p	plot)			
*	COTPS3	= Conce	entrat	ion of	Tot-P	(g m**[-	3] water) for Se	ector 3;				
*		9			5		,		tion per p	plot)			
*	COTPS4					(g m**[-							
*	ALCOUD								tion per p	plot)			
*						of Tot-P			concentra	tion of T	Pot D		
*	NUOB								P and SEC		101-2		
*		= Code					aracron	OI AVCOI		011			
*							t of 0.0	25 q Tot	-P m**[-3] water.			
*		For	calcul	lation	of the	average	contents	(AVCOTE) this va	lue is set	t at		
*		0.01) g To	ot-P m*	*[-3]	water.							
*													
* YR MH		-	-	UPDP			COTPS2			AVCOTP		NUOB	

1998 9 1998 9		250 250	2 2	100 130	120 150	-8.880	-8.880 0.687		-8.880 0.147	0.153 0.310	0.035 0.174	2 13	
1998 9		264	1	100	120	0.203	0.115	0.173	0.091	0.112	0.027	16	
1998 10													
1999 1		393	1	100	120		-8.880	0.041		0.034	0.007	9	
1999 2		399	1	100	120	-9.990	0.027		-8.880	0.022	0.003	8	
1999 4	20												

Annex 29 Content of ASCII file NLA00.IMA

*File:		NLA00.IMA	
*Code:		ASCII	
*Access	:	sequential	
*Author	:	L.J.T. van	der Pas, J.H. Smelt
*Versio	n:	1.0	
*Date:		20 March 20	001
*Source	:	Measurement	ts by Alterra
*		Sorption	of imidacloprid to soil of the 0-30 cm layer
*		at three	temperatures. Field at Andelst, The Netherlands
*			
*	Descrip	tion of the	quantities and their units
*	TE	= Temperatur	e (degree Celsius) during the sorption study
*	INCOIM	= Initial co	oncentration of imidacloprid (mg dm**[-3]) in the
*		liquid pha	ase. INCOIM was calculated by dividing the mass
*		of imidacl	oprid added by the total volume of liquid in the
*		system.	
*	EQCOIM	= Concentrat	ion of imidacloprid (mg dm**[-3]) in the liquid
*		phase afte	er 24 h equilibration
*	EQCTIM	= Content of	imidacloprid (mg kg**[-1])in the solid phase
*		after equi	libration (content is defined as mass per
*		mass of dr	y soil), calculated from the added mass of
*		imidaclopri	d and the mass of imidacloprid
*		in the lig	uid phase after 24 h equilibration
*			
*	System :	properties	
*	Mas	s of dry so	il = 43.14 g (sd = 0.009 g, n = 27)
*			(sd = standard deviation)
*	Mas	s of total l	.iquid phase = $57.01 \text{ g} (\text{sd} = 0.18 \text{ g}, \text{n} = 27)$
*			
*	EQCC	IM in blank	soil was <0.005 mg dm**[-3]
* * TE	INCOIM	FOCOTM	EOCTIM
113		EQCOIM	₽7C1TW
5	9.334	4.688	6.14
5	9.334		6.03
5	9.334		6.08
5	0.9424		0.774
5	0.9424 0.9424		0.774
5	0.9424	0.3598	0.770
5	0.0932	0.0262	0.0886
5	0.0932	0.0235	0.0921
5	0.0932	0.0235	0.0872
*	0.0932	0.0272	0:0872
15	9.334	5.264	5.38
15	9.334	5.189	5.48
15	9.334	4.561	6.31
15	0.9424	0.4067	0.708
15	0.9424	0.4087	0.711
15	0.9424	0.4044	0.709
15	0.9424	0.0290	0.0849
15	0.0932	0.0290	0.0849
15	0.0932	0.0284	0.0856
*	5.0752	0.0201	
25	9.334	5.469	5.11
25	9.334	6.011	4.39
25	9.334	5.434	5.15
25	0.9424	0.4617	0.635
25	0.9424	0.4535	0.646
25	0.9424	0.4492	0.652
25	0.0932	0.0351	0.0768
25	0.0932	0.0338	0.0786
25	0.0932	0.0332	0.0793

Annex 30 Content of ASCII file NLA00.IMD

*File:	:	NLA00	.IMD		
*Code:		ASCII			
*Acces	ss:	seque	ntial		
*Autho	or:	J.H.	Smelt, 1	L.J.T. v	van der Pas
*Versi	ion:	1.0			
*Date:	:		rch 200		
*Sourc	ce:			by Alte	
*					d imidacloprid residues in soil of the 0-30 cm layer
*		at	25°C. F:	ield And	delst, The Netherlands
*			- · · ·		
*					es and their units
*	TI			-	pplication of imidacloprid to the soil
*	MSSO				in desorption system
*	MSIM				d (micro gram) in desorption system
*	MSLI				d phase (g) in desorption system
*	EQCOIM				nidacloprid (mg dm**[-3]) in the liquid quilibration.
*	FOOTTM	-		-	prid (mg kg**[-1])in the solid phase
*	EQCIIM			-	ation (content is defined as mass per mass of dry soil),
*					lumns 2 to 5.
*		carc	utaceu i		
*					
*TI	MSSO	MSIM	MSLI	EQCOIM	4 EQCTIM
*****	*******	******	******	******	***************************************
12	33.09	23.22	47.41	0.1991	L 0.4164
12	33.25	23.48	47.30	0.2103	3 0.4069
12	33.10	22.55	48.02	0.2088	3 0.3784
41	33.23	16.05	47.64	0.1459	9 0.2738
41					7 0.3674
41	32.61				0.3376
89	32.63		47.84		3 0.2397
89			48.03		2 0.2569
89	32.72		47.20		4 0.2272
166	40.01	10.78	58.60		3 0.1725
166	38.89	10.71	58.16		2 0.1809
166	40.28	11.61	57.99		5 0.1996
285			48.15		4 0.1313
285			45.20		9 0.1366
285	36.93	6.948	50.18	0.0445	5 0.1277

Annex 31 Content of ASCII file NLA00.IMT (only the first part)

```
NLA00.IMT
*File:
           ASCII
*Code:
*Access:
            sequential
           L.J.T. van der Pas & J.H. Smelt
*Author:
*Version:
           1.0
*Date:
            28 March 2001
           Measurements by Alterra
*Source:
             Transformation of imidacloprid in soil from three
*
*
              layers. field Andelst, The Netherlands
*
*
     Description of the quantities and their units
*
      YR = Year
*
      MH
          = Month
*
      DA
          = Day within month
      TI = Time (days) elapsed since application of imidacloprid
*
*
      UPDP = Upper boundary (cm) of the layer
*
      LODP = Lower boundary (cm) of the layer
      TE = Temperature (degree Celsius) during the incubation
*
    MSIM = Mass of imidacloprid (micro g) remaining
*
                 Mass was not corrected for extraction efficiency
                 (being about 100%, see report) with all incubation series
*
*
    System properties: layer 0-30 cm
*
       Mass of dry soil = 66.0 g
                              = 14.4 g
*
         Mass of water
*
        Mass of imidacloprid added = 54.6 micro g
         Imidacloprid was applied on 10 february 1999.
*
     System properties: layer 40-70 cm
*
         Mass of dry soil = 72.2 g
*
         Mass of water
                              = 17.4 g
         Mass of imidacloprid added = 2.18 micro g
*
         Imidacloprid was applied on 9 february 1999.
*
*
     System properties: layer 80-120 cm (not water saturated)
        Mass of dry soil = 69.7 g
*
         Mass of water
                              = 19.8 g
         Mass of imidacloprid added = 2.18 micro g
*
         Imidacloprid was applied on 9 february 1999.
*
* YR MH DA TI UPDP LODP TE MSIM
1999 2 11 1 0 30 5 56.9
     1999
1999
1999
      1999
1999
1999
1999
1999
1999
1999
                    0 30 5 42.0
      5 10 89
1999
      6 28 138
6 28 138
                   0 30 5 46.6
0 30 5 47.8
0 30 5 45.8
1999
1999
1999
       7
          26 166
      7
1999
          26 166
                    0 30 5 44.3
      9
          8 210
8 210
                    0
0
                         30540.430540.5
1999
1999
       9
1999 11 22 285 0 30 5 37.7
1999 11 22 285 0 30 5 38.7
      1999
1999
1999
1999
1999
1999
```

Annex 32 Content of ASCII file NLA00.MBE

*File:		NLA00	.MBE										
*Code:		ASCII											
*Access	3:	sequer	itial										
*Author	r:	J.H. S	Smelt; L.J	.T van d	er Pas								
*Versio	on:	1.1											
*Date:		7 Feb	or 2002										
*Scourd	ce:		rements b										
*			ic mass of										
*		And	elst, The	Netherl	ands								
*													
*			-	-	ntities and	their units							
*		YR	= Year										
*		MH	= Montl										
*		DA		within m									
*		DANU			value is 1 a								
*		UPDP			ry (cm) of t	-	-						
*		LODP			ry (cm) of t	-	-						
*		AEMSE			reic mass of								
*					average of								
*					ampling time				r layer of	the 4 colur	nns)		
*		AEMSE			reic mass of						、 、		
*					average of			lysis per .	layer of t	ne 4 columna	3)		
*		ADMOR			ampling time reic mass of			2.					
*		AEMSE			average of				1	+ h = 4 = = 1			
*					ampling time			alysis per	layer of	the 4 colum	ns)		
*		ADMOD			reic mass of			oston 1.					
*		AEMOE			average of				lowow of	the 4 celum	ng \		
*					ampling time			arysis per	layer or	che 4 colum	.15 /		
*		7.77 FN			c mass of be) in coil (aum of al	l compled la	avora)		
*					r (kg ha**[-				Buill OF AT	I Sampieu Id	AYCE 3/		
*		NUOB			ervations fo								
*		NOOD	- Wallber	L OL ODD	civacionb ic	i cuicuiuci		NODE					
*		_9 99	99 = Valu	e below	limit of qua	antification	n of 0 005	ka ha**[-1]	l; means ti	hat almost			
*					tents below						1		
*			10/010	indu oon		500 11000	- quanciti	0401011 111 0					
*													
*		Dose	of bentazo	one: 1.3	30 kg ha**[-	1], based o	on nominal o	concentrati	ons in spr	ay liquid			
*					5				-				
* YR	MH	DA DA	NU UPDP	LPDP	AEMSBES1	AEMSBES2	AEMSBES3	AEMSBES4	AVAEMSBE	SEAEMSBE	NUOB		
* * * * * * *	* * * * * * *	* * * * * * * * *	******	* * * * * * * *	******	******	*******	*******	*******	*****	*****		
1998	4	8	98 0	15	1.398	1.309	1.491	1.445	1.408	0.0511	31		
1998	4	29 1	.19 0	120	0.5673	0.5564	0.9030	0.6073	0.6585	0.0822	4		
1998	6	15 1	.66 0	120	0.2198	0.2314	0.1716	0.2186	0.2104	0.0132	4		
1998	8	10 2	22 0	120	0.0914	0.021	0.0453	0.1084	0.0665	0.0202	4		
1998	12	2 3	36 0	120	-9.9999	-9.9999	-9.9999	-9.9999	-9.9999	-9.9999	4		

Annex 33 Content of ASCII file NLA00.MBR

*File:		NT. 7.0	0 MBD											
*Code:			NLAOO.MBR ASCII											
*Access	3:		sequential											
*Author			R.F.A. Hendriks; J.H. Smelt											
*Versio		1.0												
*Date:		14 F	14 Febr 2002											
*Scourd	ce:	Meas	Measurements by Alterra											
*		Ar	Areic mass of bromide (BR)											
*		An	delst, The	Nether	lands									
*		Description of the mantities and their writ-												
*			Description of the quantities and their units											
*			YR = Year											
*			MH = Month											
*		DA = Day within month												
*		DANU = Day number (value is 1 at 1 Jan 1998)												
*		UPDP = Upper boundary (cm) of the layer sampled												
*	LODP = Lower boundary (cm) of the layer sampled													
*		AEMSBRS1= calculated areic mass of BR (kg ha**[-1])of sector 1(sum of all sampled layers);												
*			at 08-04-1998: average of 8 observations; at all other sampling times: 1 observation (1 analysis per layer of the 4 columns)											
*		ARMS					ha**[-1])of			OI UNE 4 CC	fulling /			
*		ABHO				of 8 obser		L SECLOI 2/						
*						times: 1 ob								
*		AEMS					ha**[-1])of	f sector 3;						
*			at 08	-04-1998	: average	of 7 obser	vations;							
*			at al	l other	sampling t	imes: 1 ob	servation							
*		AEMS	BRS4= calc	ulated a	areic mass	of BR (kg	ha**[-1])of	E sector 4;						
*			at 08-	-04-1998	: average	of 8 obser	vations;							
*						imes: 1 ob								
*							(kg ha**([-							
*					-		the average							
*		NUOB	= Numbe	er of ob	servations	for calcu	lation of AV	VAEMSBR						
*		- · ·												
*			-				areic masses limits of c		(+0 E					
*							25 g m**[-3]							
*							ass for that	-		-	OI IO CIII)			
*							or all 4 sec							
*				-		s set at ze:		00010 #010	20100 0110	1100 01				
*		quant	1110001011	01120 0	oncene was	, bee at 10	20.							
*		Dose	of bromid	le: 59.6	kq ha**[-	1], (based	on the nomi	inal concen	tration in	spray liqu	uid)			
*					-									
* YR	MH	DA DA	NU UPDP	LODP	AEMSBRS1	AEMSBRS2	AEMSBRS3	AEMSBRS4	AVAEMSBR	SEAVAEMBR	NUOB			
* * * * * * *	* * * * * * *	* * * * * * * * *	* * * * * * * * * *	* * * * * * *	* * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * *	*****			
1998	4		98 0	15	58.87		53.74	52.73		2.11	31			
1998	4		19 0	120	14.43		6.32	8.01		2.01	4			
1998	6		66 0	120	13.15		14.66	10.92		1.41				
1998	8		22 0	120	36.61			24.70		3.45				
1998	9		64 0		36.50		43.23	34.71		1.91				
1998	12 4		36 0 75 0	110 120	21.11		12.35	14.67		2.32				
1999	4	20 4	15 0	1∠0	10.99	12.90	16.90	13.59	13.59	1.23	4			

Annex 34 Content of ASCII file NLA00.MIM

*File: *Code: *Access: *Author: *Version: *Date: *Scource: * *		AS se J.H 1. 8 Me	1 Febr 20 asuremo Areic n	al t; L.J.1 002 ents by	Alterr Imidac	a loprid (IM)						
* * * * * * *		YR MH DA DA UF LC	ANU = ANU = PDP = DDP = CMSIMS1=	= Year = Month = Day w = Day nu = Upper = Lower = calcul	ithin m umber (bounda: bounda: ated a:	value is 1 a ry (cm) of ry (cm) of reic mass o	at 1 Jan 1 the layer the layer f IM (kg h	998) sampled sampled a**[-1])of	sector 1;			
* * * * * *	<pre>at 29-05-1998: average of 8 observations; at all other sampling times: 1 observation (1 analysis per layer of the 4columns) AEMSIMS2= calculated areic mass of IM (kg ha**[-1])of sector 2; at 29-05-1998: average of 8 observations; at all other sampling times: 1 observation (1 analysis per layer of the 4columns) AEMSIMS3= calculated areic mass of IM (kg ha**[-1])of sector 3;</pre>											
 at 29-05-1998: average of 8 observations; at all other sampling times: 1 observation (1 analysis per layer of the 4columns) AEMSIMS4= calculated areic mass of IM (kg ha**[-1])of sector 4; at 29-05-1998: average of 7 observations; at all other sampling times: 1 observation (1 analysis per layer of the 4columns) AVAEMSIM= Average areic mass of imidacloprid (kg ha**([-1]); (sum of all sampled layers) SEAEMSIM= Standard error(kg ha**[-1]) of the average areic mass NUOB = Number of observations for calculation of AVAEMSIM 												
* * * * YR	мн	Dc DA	DANU	imidaclo UPDP	prid:	0.700 kg ha AEMSIMS1					n spray lig SEAEMSIM N	-
			*****			****						
1998 1998 1998 1999	5 9 12 4	29 21 2 20	149 264 336 475	0 0 0	15 120 110 120	0.4251 0.2483 0.2326 0.2477	0.2701		0.2067		0.0312 0.0132 0.0162 0.0238	31 4 4 4

Annex 35 Content of ASCII file NLA00.PDY (only the first part)

*File: *Code:			NLA00.PDY										
*Access:			ASCII sequential										
*Author:			L.J.T. van der Pas & J.H. Smelt										
*Version:			1.0										
*Date:			14 March 2001										
*Source:			Measurements by ALTERRA at field Andelst, The Netherlands										
*		Ι	Daily precipitation at soil surface level										
*													
*													
*		-	stration started on 17 November 1997 at 12.00 h										
*		-	stration ended on 3 May 1999 at 12.00 h										
*	Da	ay si	start at 00.00 h, end at 24.00 h										
*	De	a ar	intior	a of the guantities and their units									
*	YF	escription of the quantities and their units R = year											
*	MF		= mor										
*	DA			y within month									
*	DÆ	ANU	-	y number (value is 1 at 1 January 1998)									
*	PF	ર	= pre	ecipitation (mm/d), rounded off on 0.1 mm									
*													
*YR	MH	DA											

1997	11		-44 -43	.0									
1997 1997	11 11	18 19	-43 -42	.0 .0									
1997	11		-41	1.4									
1997	11	21	-40	.3									
1997	11		-39	.0									
1997	11	23	-38	.0									
1997	11	24	-37	.0									
1997	11	25	-36	.0									
1997	11	26	-35	.0									
1997	11	27	-34	3.8									
1997	11	28	-33	4.9									
1997 1997	11 11	29 30	-32 -31	1.9 .3									
1997	12^{11}	1	-30	.3									
1997	12	2	-29	1.1									
1997	12	3	-28	.0									
1997	12	4	-27	.0									
1997	12	5	-26	.5									
1997	12	6	-25	3.0									
1997	12	7	-24	.0									
1997	12 12	8	-23	.3									
1997 1997	12	9 10	-22 -21	3.0 22.5									
1997	12	11	-20	2.5									
1997				8.5									
1997	12	13	-18	.3									
1997	12	14	-17	.3									
1997	12	15	-16	.0									
1997	12	16	-15	.0									
1997	12	17	-14	.0									
1997	12	18	-13	.0 .3									
1997 1997	12 12	19 20	-12 -11	.3 .0									
1997	12	20 21	-10	6.3									
1997	12	22	-9	.0									
	- 4		-	• •									

Annex 36 Content of ASCII file NLA00.PIT (only the first part)

```
*File:
          NLA00.PIT
*Code:
          ASCII
*Access:
          sequential
*Author:
         L.J.T. van der Pas & J.H. Smelt
*Version: 1.0
*Date:
          13 March 2001
          Measurements by ALTERRA at field Andelst, The Netherlands
*Source:
         Precipitation Intensity
*
*
      Precipition at soil surface level, presented as mm precipitation per event(pulse)of the tipping bucket.
*
      So this is the precipitation collected between the clock time of two consecutive pulses.
*
      For the period from 15-06-98 to 4-07-98 and from 29-01-99 to 26-02-99, only values of daily
      precipitation were available, due to lack of detailed registration by the equipment (see report for details).
      Total rainfall is presented as one "pulse" at 12.00 h on days with precipitation in those periods.
      Registration started on 17 November 1997 at 12.00 h and no precipitation was registrated until 20 November.
      Registration ended on 3 May 1999 at 12.00 h, last day with precipitation was on 22 April
      Description of the quantities and their units
      YR
          = year
      MH
           = month
      DA
          = day within month
      HO
          = hour within day
      MN
         = minute
      SC
           = second
      CUTI = cumulative time (value is 0.000 at 1 January 1998 0.0 h)
      PREV = precipitation(mm per event)
      CUPR = cumulative precipitation
* YR MH DA HO MN SC
                             CUTI
                                      PREV
                                             CUPR
1997 11 20
              8 17 60 -41.654
                                     0.274
                                              0.3
1997 11 20 13 58 49 -41.417
                                     0.274
                                              0.5
1997 11 20 15 2 51 -41.373
                                     0.274
                                              0.8
1997 11 20 15 10 58 -41.367
                                     0.274
                                              1.1
1997 11 20 15 17 15 -41.363
                                     0.274
                                              1.4
1997 11 21 15 1 23 -40.374
                                     0.274
                                              1.6
1997 11 27 13 11 47 -34.450
                                     0.274
                                              1.9
1997 11 27 13 45 51 -34.426
                                     0.274
                                              2.2
1997 11 27 14 3 55 -34.414
                                     0.274
                                              2.5
1997 11 27 14 23 6 -34.401
                                     0.274
                                              2.7
1997 11 27 14 43 53 -34.386
                                     0.274
                                              3.0
1997 11 27 15 5 6 -34.371
                                     0.274
                                              3.3
1997 11 27 15 37 37 -34.349
                                     0.274
                                              3.6
```

Annex 37 Content of ASCII file NLA00.PLI

*Versi(*Date: *Source * * *	s: s r: 1 on: 1 e: 1	K. Oos 1.0 3 Dece Measur Piez Ande Descri	ntial stindie ember 20 rements cometric elst, Th iption o	by ALTER c Levels ne Nether of the qu	RA in the a lands	quifer: I	Instantaneous measurements ir units:				
*	YR = Year MH = Month										
*		MH = Month DA = Day within month									
*	DANU = Day number (value is 1 at 1 January 1998)										
*	E	PZLVPA	a = Piez	cometric i	level (m	below so	oil surface), Plot A,				
*	-	ד רו ז ד דו ר					rvesting crop in Aug. 1999 !!	!			
*							oil surface), Plot I oil surface), Plot O				
*				e for unk			Sir Sarrace, , ride o				
*											
*							er than at plot O				
*	1	Soll s	surface	at Plot	1 was 0.	18 m lowe	er than at plot O				
*	М	leasur	ements	somewhere	e betweer	. 8.00 and	d 18.00 h daytime				
*	NATT	53	DANU		DRIVET	DELIZO					
* YR *****	MH * * * * *		DANU ******	PZLVPA			*****				
1997	11	17	-44	1.82	1.78	2.08					
1997	12	19	-12	1.25	1.19						
1998 1998	1 1	2 8	2 8	0.82 0.63	0.75 0.57	0.86 0.73					
1998	1	22	22	0.85		0.97					
1998	2	5	36	1.10		1.29					
1998	2	18	49	1.39	1.35	1.64					
1998	3	3	62	1.44							
1998 1998	3 3	7 10	66 69	0.50 0.77		-99.99 0.83					
1998	3	17	76	0.83	0.78	0.96					
1998	3	24	83	0.96		1.14					
1998	3	30	89	1.08	1.03	1.29					
1998 1998	4 4	17 29	107 119	0.88 0.82	0.83 0.77	0.99 0.97					
1998	4 5	12	132	1.01	0.95	1.17					
1998	5	19	139	1.21		1.42					
1998	5	29	149	1.34		-99.99					
1998	6	23	174	1.11	1.07	1.32					
1998 1998	7 7	3 16	184 197	1.32 1.38	1.27 1.33	1.54 1.59					
1998	8	10	222	1.61	-99.99	1.86					
1998	8	14	226	1.70	1.65	1.97					
1998	9	7	250	-99.99	1.30	1.62					
1998 1998	9 10	21 6	264 279	-99.99 -99.99	0.68 0.99	0.84 1.32					
1998	11	2	306	-99.99	0.25	0.45					
1998	11	3	307	-99.99	0.26	0.46					
1998	11	17	321	-99.99	0.55	0.74					
1998 1998	12 12	2 18	336 352	-99.99 -99.99	0.72 0.60	1.05 0.73					
1998	1	5	370	-99.99	0.60	0.73					
1999	1	28	393	-99.99	0.73	0.92					
1999	2	3	399	-99.99	0.71	0.83					
1999 1999	2 4	25 6	421 461	-99.99 -99.99	0.54 0.78	0.74 0.91					
1999	4 4	20	401 475	-99.99	0.78	0.91					
1999	5	3	488	-99.99	0.75	0.91					
1999	5	7	492	-99.99	0.72	0.87					

Annex 38 Content of ASCII file NLA00.SAN

*File: NLAOO SAN *Code: ASCII *Access: Sequential *Author: K. Oostindie; R.F.A. Hendriks *Version: 1.0 *Date: 28 December 2000 *Source: Measurements by ALTERRA Concentration of Ammonium-N (NH4-N) in soil Andelst, The Netherlands Description of the quantities and their units YR = Year MH = Month = Day within month DA = Day number (value is 1 at 1 January 1998) DANII = Number of layers sampled NULA TIPDP = Upper boundary (cm) of the layer = Lower boundary (cm) of the layer LODP COANS1 = Concentration of NH4-N (g $m^{**}[-3]$ soil) for Section 1; at 08-04-1998: average of 7 (6 at 0-5 cm depth) observations; at 21-09-1998: average of 4 observations; COANS2 = Concentration of NH4-N (g $m^{\star\star}[-3]$ soil) for Section 2; at 08-04-1998: average of 7 (8 at 5-10 cm depth) observations; at 21-09-1998: average of 4 observations; COANS3 = Concentration of NH4-N (g m**[-3] soil) for Section 3; at 08-04-1998: average of 7 (5 at 10-15 cm depth) observations; COANS4 = Concentration of NH4-N (g m**[-3] soil) for Section 4; at 08-04-1998: average of 8 (6 at 5-10 cm depth; 7 at 10-15 cm depth) observ. AVCOAN = Average concentration of NH4-N (g m**[-3] soil) SECOAN = Standard error (g $m^{**}[-3]$ soil) of the average concentration NUOB = Number of observations (analyses) for calculation of AVCOAN and SECOAN -9.99 = Values below the limit of quantification of 0.05 g NH4-N (0.06 g NH4) m**[-3] soil. For calculation of the average concentrations (AVCOAN) this value is set at 0.025 NH4-N g m**[-3] soil, to get realistic averages. COANS1 COANS2 COANS3 COANS4 * YR MH DA DANU NIILA HPDP LODP AVCOAN SECOAN NUOB ***** * * * : 1 37 1 71 1 17 19 49 98 0 5 6 58 1998 4 8 3 3 77 2.8 1998 4 8 98 5 10 0.92 0.57 0.52 14 18 3.56 2.90 28 3 1998 4 8 98 3 10 15 0 81 0.43 0.21 42 23 11 74 6.84 26 0.35 0.79 -9.99 0.79 0.83 0.53 0.72 1998 4 29 119 7 0 10 0.21 0.15 4 1998 4 29 119 7 10 2.0 0 60 1 4 4 0 29 4 0.61 1998 4 29 119 7 20 30 1.58 0.24 -9.99 0.62 0 35 4 0.06 0.07 1998 4 29 119 7 30 50 0 07 0 09 0 01 4 1998 4 29 119 7 50 70 0.10 0.08 0.06 0 05 0.07 0.01 4 1998 4 29 119 7 70 90 -9 99 0.47 -9.99 -9 99 0 14 0 11 4 1998 4 29 119 7 90 120 0.06 -9.99 0.11 0 17 0 09 0 02 4 1998 6 15 166 7 0 10 0.31 1.25 -9.99 0.40 0.50 0.27 4 0.18 1998 6 15 166 7 10 20 0 05 0.11 -9 99 0 09 0 02 4 1998 6 15 166 7 20 30 0 31 -9.99 -9.99 -9 99 0.10 0.07 4 -9 99 1998 6 15 166 7 30 50 -9 99 -9 99 0 39 0 12 0 09 4 1998 6 15 166 7 50 70 -9 99 -9.99 0.05 0 11 0.06 0.02 4 1998 6 15 166 7 70 ۹n -9.99 -9.99 -9.99 -9.99 -9.99 -9 99 4 -9 99 1998 6 15 166 7 90 120 -9 99 -9.99 -9 99 -9 99 -9 99 4 1998 8 10 222 7 0 10 -9 99 -9 99 0.06 -9.99 -9.99 0 01 4 1998 8 10 222 7 10 2.0 0 07 -9 99 0.13 0 16 0 10 0 03 4 1998 8 10 222 7 20 30 0.09 -9.99 0.29 0.09 0.13 0.06 4 0.12 1998 8 10 222 7 30 50 0 07 0 11 -9 99 0 26 0 05 4 0.11 1998 8 10 222 7 50 70 0.20 0.12 0 17 0.15 0.02 4 1998 8 10 222 7 70 ۹n 0 15 0 09 0.09 -9 99 0 09 0 02 4 1998 8 10 222 7 90 120 -9.99 -9.99 -9.99 -9.99 -9.99 -9 99 4 1998 9 21 264 7 0 10 1.01 5.55 1.54 1.65 2.95 0 93 10 1998 9 21 264 7 10 2.0 0.42 0.63 0.19 0.29 0 47 0 07 10 1998 9 21 264 7 20 30 0.48 0.64 0.29 0.39 0.51 0.12 10 1998 9 21 264 7 30 50 0 80 0.85 0 07 0 65 0 73 0 09 10 1998 9 21 264 7 50 70 0.28 0.49 -9.99 -9.99 0.32 0.07 10 1998 9 21 264 7 70 90 0.42 0.38 0.08 -9.99 0.33 0.09 10 1998 9 21 264 7 90 120 0.04 0.10 -9.99 -9 99 0.07 0.02 10 2 10 1998 12 336 7 0 -9.99 0.27 1.12 -9.99 0.36 0.26 4 1998 12 2 336 7 10 20 -9 99 0.07 0.15 0 14 0 10 0 03 4 1998 12 2 336 7 20 30 -9.99 0.15 -9.99 0.19 0.10 0.04 4 1998 12 2 336 7 30 50 1 21 0 52 0.32 0 77 0 70 0 19 4 1998 12 2 336 7 50 70 0.86 0.92 0.74 0.86 0.84 0.04 4 1998 12 2 336 7 70 90 0.29 0.17 0.43 -9 99 0.23 0.09 4 1998 12 2 336 7 90 120 0.06 0.21 0.14 -9.99 0.11 0.04 4 1999 4 20 475 7 0 10 0.31 0.21 0.35 0.18 0.26 0.04 4 1999 4 20 475 7 10 20 0.29 0.15 0.33 -9.99 0 20 0.07 4 1000 4 20 475 7 20 30 0 58 0.33 1.09 0 27 0.57 0 19 4 1999 4 20 475 7 30 50 0 50 0.34 0.61 0.44 0.47 0.06 4 1999 4 20 475 7 50 70 0.53 0.25 0.05 0.59 0.35 0 13 4 0.13 0.07 0.13 1999 475 70 90 0.28 0.13 0.13 0.16 0.04 4 20 7 4 7 120 -9.99 -9.99 1999 4 20 475 90 0.09 0.02 4

Annex 39 Content of ASCII file NLA00.SBD (only the first part)

*File: *Code: *Access: *Author: *Version: *Date: *Source: * *	1.0 27 Dec Measur Dry 1	tial tindie ember 2	2000 by AL' ensity	TERRA											
*	Descri	ption d	of the	quant	ities a	nd their u	nits								
*		Year		-											
*	MH =	Month													
*		Day w													
*		-					ry 1998)								
*		DANU = Day number (value is 1 at 1 January 1998) NULA = Number of layers sampled UPDP = Upper boundary (cm) of the layer													
*		UPDP = Upper boundary (cm) of the layer													
*		LODP = Lower boundary (cm) of the layer													
*		LODP = Lower boundary (cm) of the layer BDS1 = Dry bulk density (g cm**[-3]), average for Sector 1 BDS2 = Dry bulk density (g cm**[-3]), average for Sector 2													
*		-		-	-	[-3]), ave	-								
*						[-3]), ave									
*						/ (g cm**[-									
*						3]) of the	e average	e dry bul	lk densit	У					
*		Numbe:													
*	-99. =	Code f	tor un	known '	values										
* YR ME	I DA	DANU	NITT.A	UPDP	TODP	BDS1	BDS2	BDS3	BDS4	AVBD	SEBD	NUOB			
	******		*****		******						******				
1997 10	27	-65	12	0	10	1.144	1.231	1.243	1.155	1.193	0.026	16			
1997 10	27	-65	12	10	20	1.499	1.433	1.411	1.501	1.461	0.018	16			
1997 10	27	-65	12	20	30	1.455	1.427	1.501	1.496	1.470	0.019	16			
1997 10		-65	12	30	40	1.561	1.476	1.528	1.548	1.528	0.014	16			
1997 10		-65	12	40	50	1.529	1.469	1.513	1.521	1.508	0.011	16			
1997 10 1997 10		-65 -65	12 12	50 60	60 70	1.485	1.503	1.522	1.535	1.511	0.012	16 16			
1997 10 1997 10		-65	12	70	80	1.510 1.494	1.429 1.432	1.504 1.517	1.528 1.494	1.493 1.484	0.020	16			
1997 10		-65	12	80	90	1.522	1.492	1.496	1.494	1.502	0.015	16			
1997 10		-65	12	90	100	1.488	1.473	1.479	1.506	1.487	0.014	16			
1997 10		-65	12	100	110	1.477	1.423	1.452	1.478	1.458	0.019	16			
1997 10	27	-65	12	110	120	1.457	1.504	1.482	1.467	1.477	0.014	16			
1998 1	21	21	9	0	10	1.491	1.472	1.389	1.284	1.409	0.047	16			
1998 1	21	21	9	10	20	1.716	1.618	1.727	1.650	1.680	0.028	15			
1998 1		21	9	20	30	1.651	1.582	1.656	1.553	1.610	0.044	16			
1998 1		21	9	30	40	1.710	1.664	1.657	1.660	1.674	0.014	15			
1998 1		21	9	40	50	1.616	1.620	1.561	1.683	1.620	0.020	16			
1998 1		21	9	50	60	1.579	1.594	1.563	1.598	1.584	0.017	16			
1998 1		21	9	60	70	1.558	1.567	1.546	1.620	1.573	0.019	16			
1998 1 1998 1		21 21	9 9	70 80	80 90	1.611 1.609	1.584 1.531	1.598 1.634	1.708 1.594	1.625 1.596	0.021 0.016	16 15			
1 0/12	<u> </u>	<u>ل</u> ک	2	00	20	1.009	1.721	1.004	1.024	1.090	0.010	TO			

Annex 40 Content of ASCII file NLA00.SBE

+='1													
*File: *Code:		ASC:	00.SBE										
*Access:			uential										
*Author:		-		L.J.T.	van de	r Pas;							
*Version		1.1											
*Date		8 F	ebr. 200)2									
*Source:		Mea	surement	ts by Al	terra								
*						one (BE) in soil;	;					
*		And	elst, Th	ne Nethe	rlands								
*		-											
*		Des: YR		n of the Zear	quant	ities a	nd their u	inits					
*		MH		lear Month									
*		DA		Day with	in mon	th							
*		DAN					1 at 1 Jan	1998)					
*		NUL		Number c				,					
*		UPDI					f the laye	r					
*		LODI					f the laye						
*		COB				-		BE for se	ctor 1;				
*						-	e of 8 obse						
*		COD							on (1 analy	ysis for 4	columns,	mixed)	
*		COB.				-	e of 8 obs	BE for se	ctor 2,				
*									on (1 analy	vsis for 4	columns	mixed)	
*		COT						BE for se		1010 101 1	0010007	minea,	
*									(a few les	ss at 5-10	cm and 1	0-15 cm)	
*									on (1 analy				
*		COI						BE for se					
*									(a few les				
*							·		on (1 analy			mixed)	
*									**[-3] for				
*		NUOB							e concentra calculatio			CODE	
*							· • ·		ion of 0.00				
*									ion(AVCOBE)				004
*				get rea				oonoener ae.	1011(11100000)	, 01110 (4	Lac wab b	cc uc 0.0	001
*				-		-	-						
*		Con	centrati	ions "bl	ank" s	oil sam	ples, coll	ected 30-0)3-98, were	e below lin	nit of qu	antificat	ion
*													
*									fficiency,				
*		ona	average	between	82% i	or the	lowest con	centration	ns to 100.6	% for the	higher c	ontents.	
* YR	MH	DA	DANU	NULA	UPDP	LODP	COBES1	COBES2	COBES3	COBES4	AVCOBE	SECOBE	NUOB
									* * * * * * * * * * *				
1998	4	8	98	3	0	5	2.6711	2.5089	2.9104	2.5134	2.5600	0.1444	31
1998	4	8	98	3	5	10	0.1112	0.1050	0.0779	0.1691	0.1165	0.0282	29
1998	4	8	98	3	10	15	0.0135	0.0119	0.0098	0.0227	0.0149	0.0028	27
*				_	-								
1998	4	29	119	7	0	10	0.1340	0.3385	0.2224	0.1499	0.2112	0.0466	4
1998 1998	4 4	29 29	119 119	7 7	10 20	20 30	0.2140 0.0936	0.1314 0.0506	0.4744 0.1161	0.2472	0.2668 0.0836	0.0734 0.0140	4 4
1998	4	29	119	7	30	50	0.0561	0.0168	0.0397	0.0479	0.0401	0.0040	4
1998	4	29	119	7	50	70	0.0040	0.0012	0.0053	0.0147	0.0063	0.0029	4
1998	4	29	119	7	70	90	0.0027	-9.9999	-9.9999	0.0053	0.0022	0.0012	4
1998	4	29	119	7	90	120	-9.9999	-9.9999	-9.9999	-9.9999	-9.9999	-9.9999	4
*													
1998	6	15	166	7	0	10	0.0158	0.0058	0.0046	0.0031	0.0073	0.0029	4
1998	6	15	166	7	10	20	0.0503	0.0259	0.0379	0.0411	0.0388	0.0050	4
1998	6	15	166	7	20	30	0.0362	0.0454	0.0229	0.0329	0.0343	0.0047	4
1998	6	15	166	7	30	50	0.0512	0.0478	0.0297	0.0401	0.0422	0.0048	4
1998 1998	6 6	15 15	166 166	7 7	50 70	70 90	0.0068 0.0008	0.0235 0.0058	0.0101 0.0028	0.0223 0.0051	0.0157	0.0042	4
1998	6	15	166	7	90	110	-9.9999	-9.9999	0.0028	0.0031	0.0036 0.0025	0.0012 0.0016	4 4
*	0	15	100	,	20	110	5.5555	5.5555	0.0070	0.0022	0.0025	0.0010	Ţ
1998	8	10	222	7	0	10	0.0019	0.0026	0.0017	0.0021	0.0021	0.0002	4
1998	8	10	222	7	10	20	0.0077	0.0011	0.0040	0.0014	0.0035	0.0015	4
1998	8	10	222	7	20	30	0.0043	0.0023	0.0012	0.0051	0.0032	0.0009	4
1998	8	10	222	7	30	50	0.0076	0.0021	0.0033	0.0113	0.0061	0.0021	4
1998	8	10	222	7	50	70	0.0105	0.0026	0.0011	0.0170	0.0078	0.0037	4
1998	8	10	222	7	70	90	0.0135	0.0015	0.0100	0.0122	0.0093	0.0027	4
1998 *	8	10	222	7	90	120	0.0047	0.0009	0.0032	0.0063	0.0038	0.0011	4
1998	12	2	336	7	0	10	-9.9999	-9.9999	-9.9999	-9.9999	-9.9999	-9.9999	4
1998	12	2	336	7	10	20	0.0008	0.0008	0.0007	-9.9999	0.0007	0.0001	4
1998	12	2	336	7	20	30	-9.9999	-9.9999	-9.9999	-9.9999	-9.9999	-9.9999	4
1998	12	2	336	7	30	50	-9.9999	-9.9999	-9.9999	-9.9999	-9.9999	-9.9999	4
1998	12	2	336	7	50	70	-9.9999	-9.9999	-9.9999	-9.9999	-9.9999	-9.9999	4
1998	12	2	336	7	70	90	-9.9999	-9.9999	-9.9999	-9.9999	-9.9999	-9.9999	4
1998	12	2	336	7	90	120	-9.9999	-9.9999	-9.9999	-9.9999	-9.9999	-9.9999	4

Annex 41 Content of ASCII file NLA00.SBR (only the first part)

NLA00 SBR *File: *Code: ASCII *Access: Sequential *Author: K. Oostindie; R.F.A. Hendriks *Version: 1.1 *Date: 15 February 2002 *Source: Measurements by ALTERRA concentration of Bromide (Br) in soil Andelst, The Netherlands Description of the quantities and their units YR = Year MH = Month DA = Day within month = Day number (value is 1 at 1 January 1998) DANII NULA = Number of layers sampled TIPDP = Upper boundary (cm) of the layer LODP = Lower boundary (cm) of the layer COBRS1 = concentration of Br (g m**[-3] soil) for Section 1; at 08-04-1998: average of 8 observations; at 21-09-1998: average of 4 observations; COBRS2 = concentration of Br $(g m^{**}[-3] \text{ soil})$ for Section 2; at 08-04-1998: average of 8 observations (a few less at 5-10 cm and 10-15 cm depth); at 21-09-1998: average of 4 observations; COBRS3 = concentration of Br (g m**[-3] soil) for Section 3; at 08-04-1998: average of 7 observations (a few less at 5-10 cm and 10-15 cm depth); COBRS4 = concentration of Br (g m**[-3] soil) for Section 4; at 08-04-1998: average of 8 observations (a few less at 5-10 cm and 10-15 cm depth); AVCOBR = Average concentration of Br (g $m^{**}[-3]$ in soil) SECOBR = Standard error (g m**[-3] soil) of the average concentration NUOB = Number of observations (analyses) for calculation of AVCOBR and SECOBR -9.99 = Values below the limit of quantification of 0.5 g m**[-3] soil. For calculation of the average concentrations (AVCOBR) this value is set at 0.25 g m**[-3] soil, to get realistic averages. Concentrations in "blank" soil samples, collected 30-03-98, were below set limit of quantification of 0.5 g m**[-3] soil. * YR MH DA DANU NULA UPDP LODP COBRS1 COBRS2 COBRS3 COBRS4 AVCOBR SECOBR NUOB * * * * * * * * * * * * **** ****** 3 0 1998 4 8 98 5 104.47 85.88 96.62 85.09 92.90 4 17 31 11.24 9.88 2.30 5.1> 7.55 1.10 ~ 99 1998 8 98 3 5 10 8.19 9.49 9.81 1.35 29 4 8.19 6.32 2.59 2.06 15 3 1998 4 8 98 10 2.03 4.34 0.56 27 1998 4 29 119 7 0 10 9.36 11.99 6.28 2.03 4 7 10 7 20 20 0.86 1998 4 29 119 1.25 -9.99 0.38 4 1998 4 29 119 30 0.55 -9.99 0.61 -9.99 -9.99 4 -9.99 1998 119 7 30 50 50 70 4 29 -9.99 -9.99 0.52 -9.99 -9.99 4 1998 4 29 119 7 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 4 50 70 1998 119 7 90 1.63 -9.99 0.53 0.62 0.28 4 29 0.80 4 1998 4 29 119 7 120 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 4 4.70 4.00 4.05 7 1998 10 20 3.43 5.57 2.83 15 166 0 2.94 -9.99 0.94 6 4 2. 3.03 1998 6 15 166 7 10 3.54 4.04 0.55 4 30 1998 6 15 166 7 20 2.72 3.49 3.12 3.34 0.28 4 1998 7 2.23 2.00 6 15 166 30 50 2.45 1.08 1.94 0.30 4 70 1998 б 15 166 7 50 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 4 1998 6 15 166 7 70 90 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 4 1998 6 15 166 7 90 120 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 4 10 20 1998 8 222 7 10.69 13.36 9.06 9.88 10.75 0.93 10 0 4 1998 8 10 222 7 10 8.64 7... 2.44 7.74 3.82 3.73 5.98 1.29 4 1998 8 10 222 7 20 30 4.84 2.50 3.29 3.27 0.56 4 7 -9.99 2.90 1998 8 10 222 30 50 4.26 2.41 2.45 0.83 4 1998 8 10 222 7 50 70 1.96 -9.99 -9.99 1.00 0.87 0.41 4 1998 222 -9.99 7 90 -9.99 -9.99 -9.99 -9.99 -9.99 8 10 70 4 1998 8 10 222 7 90 120 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 4 10 1998 3.17 5.92 9 21 264 7 0 7.62 6.06 1.31 1.67 10 1998 9 21 264 7 10 20 5.65 10.67 6.05 1.80 7.31 1.59 10 1998 9 21 264 7 20 30 4.66 7.56 9.08 2.06 6.00 1.05 10 9 264 7 1998 21 30 50 3.69 3.94 5.63 4.13 4.03 0.42 10 1998 9 21 264 7 70 2.94 2.06 3.49 5.00 2.85 0.46 50 10 1998 9 264 7 90 1.33 2.64 0.22 21 70 0.95 1.76 1.35 10 1.06 1998 9 21 264 7 90 120 0.88 0.68 2.01 0.93 0.15 10 10 1998 12 336 7 0.61 -9.99 -9.99 2 0 1.12 -9.99 -9.99 4 1998 12 2 336 7 10 20 2.07 3.26 -9.99 -9.99 1.46 0.74 4 1998 12 2 336 7 20 30 2.82 4.59 0.66 0.62 2.17 0.96 4 7 7 7 7 7 2 2.13 0.85 1.92 1998 12 336 30 50 2.60 0.83 1.60 0.45 4 1998 12 336 70 1.96 1.25 1.44 1.64 0.18 4 2 50 1.61 1.77 1998 12 2 336 70 90 2.06 1.28 2.13 0.20 4 1998 12 2 336 90 110 1.66 1.19 1.22 2.38 1.61 0.28 4

Annex 42 Content of ASCII file NLA00.SCP

*File:		NLA00.SCP													
*Code:		ASCII													
*Access	:	sequential													
*Author	<u>.</u> :	J.H. Smelt	-												
*Versio	on	1.1													
*Date:		1 May 2001													
*Source	e:	So	il sample	s taken	by Al	terra,									
*		measuremen	ts by th	e Labor	atory :	for Soil	and Ci	rop test	ing at	Ooster	beek,Th	e Nether	lands.		
*		Soil Chemi	.cal prop	erties	and te	xture, f	ield Ar	ndelst,	The Net	cherlan	ds				
*						• .									
*	Descri NULA	ption of th = Number c				units									
*	OR	= Origin d			a										
*	OR				2 2		~ 2 / .		c 1						
*		I - Secto)I I, Z -							1	oator)	takan at	- 27 10	07	
*		1 = sector 1, 2 = sector 2, 3 = sector 3, 4 = sector 4, (soils collected from 16 soil cores (4 per sector) taken at 27-10-97													
*															
*		7 = soil				-			riments	s of he	ntazone	colle	rted 30	-03-98	
*		8 = soil													
*	UPDP	= Upper bo										,			
*	LODP	= Lower bo													
*	PHKC	= pH-KCL				-									
*	PHWA	= pH-water													
*	FROM	= Fraction	n of orga	nic mat	ter (%	of dry	soil ma	ass)							
*	FROC	= Fractior	n of orga	nic car	bon (%	of dry	soil ma	ass)							
*	FRCC	= Fractior					-	l mass)							
*	FRCL	= fractior	-			-	·								
*	FRSI	= Fractior													
*	FRSA	= Fractior													
*	CTTP	= Content							soil)						
*	CTTN	= Content													
*	CRNM EC	= Content = actual c													
*	-99.0	= actual c = code for		-	e capa	CILY (Cu	101+ Kg/	· ^ = I)							
*	-99.0	- code 101	UIIKIIOWII	values											
*NULA	OR	UPDP 10DP	PHKC	PHWA	FROM	FROC	FRCC	FRCL	FRSI	FRSA	CTTP	CTTN	CTNM	EC	
******	******	*******	*******	*****	* * * * * *	******	* * * * * * *	* * * * * * * *	******	* * * * * * *	******	******	* * * * * * *	*****	
5	1	0.0 30.0	7.0	7.5	2.3	-99.0	0.2	27.4	53.5	19.1	192.0	148.0	15.5	-99.0	
5	1	30.0 50.0	6.6	7.4		-99.0	0.3	30.6	52.4		123.0	91.0	7.6	-99.0	
5		50.0 70.0	7.3	7.9		-99.0	2.9	34.2	52.2		125.0	87.0	4.9	-99.0	
5		70.0 90.0	7.5	7.9		-99.0	4.7	34.6	47.8		122.0	81.0		-99.0	
5 *	1	90.0 120.0	7.4	7.9	1.1	-99.0	4.0	37.2	47.3	15.4	133.0	76.0	9.7	-99.0	
^ 5	2	0.0 30.0	7.1	7.7	2.2	-99.0	0.2	27.3	51.7	21 0	194.0	154.0	16.9	-99.0	
5		30.0 50.0	7.3	7.8		-99.0	2.5	28.7	52.4		127.0	90.0		-99.0	
5		50.0 70.0	7.4	8.0		-99.0	7.2	34.3	52.2		123.0	81.0		-99.0	
5		70.0 90.0	7.4	8.2		-99.0	6.6	39.5	50.2		124.0	76.0		-99.0	
5	2	90.0 120.0	7.4	8.2		-99.0	5.6	37.5	45.8		141.0	64.0		-99.0	(continued next page)

Alterra-rapport 289

*																
	5	3	0.0	30.0	7.1	7.8	2.0	-99.0	0.2	29.2	52.9	17.9	211.0	133.0	11.8	-99.0
	5	3	30.0	50.0	7.1	7.8	1.1	-99.0	0.8	31.3	51.6	17.1	126.0	88.0	5.8	-99.0
	5	3	50.0	70.0	7.4	8.1	1.0	-99.0	4.1	36.5	51.7	11.8	125.0	83.0	2.8	-99.0
	5	3	70.0	90.0	7.4	8.1	0.9	-99.0	6.7	35.5	51.0	13.5	126.0	73.0	4.0	-99.0
	5	3	90.0	120.0	7.5	8.2	1.1	-99.0	7.8	36.0	48.0	16.0	142.0	77.0	4.3	-99.0
*																
	5	4	0.0	30.0	7.2	7.7	2.0	-99.0	0.3	27.0	53.5	19.5	216.0	135.0	11.8	-99.0
	5	4	30.0	50.0	7.2	7.8	1.1	-99.0	1.2	29.2	48.3	22.5	133.0	89.0	6.7	-99.0
	5	4	50.0	70.0	7.4	8.0	0.9	-99.0	4.8	34.1	47.5	18.4	114.0	78.0	4.4	-99.0
	5	4	70.0	90.0	7.4	8.1	1.0	-99.0	4.1	40.3	48.4	11.3	123.0	76.0	6.0	-99.0
	5	4	90.0	120.0	7.5	8.2	1.0	-99.0	5.0	38.0	47.1	14.9	133.0	73.0	6.3	-99.0
*																
	5	5	0.0	30.0	7.1	7.7	2.1	-99.0	0.2	27.7	52.9	19.4	203.3	142.5	14.0	-99.0
	5	5	30.0	50.0	7.1	7.7	1.1	-99.0	1.2	30.0	51.2	18.9	127.3	89.5	7.1	-99.0
	5	5	50.0	70.0	7.4	8.0	1.0	-99.0	4.8	34.8	50.9	14.3	121.8	82.3	4.1	-99.0
	5	5	70.0	90.0	7.4	8.1	1.0	-99.0	5.5	37.5	49.4	13.2	123.8	76.5	6.1	-99.0
	5	5	90.0	120.0	7.5	8.1	1.0	-99.0	5.6	37.2	47.1	15.8	137.3	72.5	7.0	-99.0
*	_															
	5	6	0.0	30.0	0.08	0.13	0.15	-99.0	0.05	1.00	0.85	1.28	12.04	10.15	2.60	-99.0
	5	6	30.0	50.0	0.31	0.20	0.05	-99.0	0.94	1.21	1.95	2.57	4.19	1.29	1.05	-99.0
	5	6	50.0	70.0	0.05	0.08	0.10	-99.0	1.81	1.15	2.28	2.84	5.25	3.77	0.91	-99.0
	5 5	6	70.0	90.0	0.05	0.13	0.10	-99.0	1.32	2.84	1.50	3.24	1.71	3.32	1.84	-99.0
*	5	6	90.0	120.0	0.06	0.15	0.10	-99.0	1.61	0.85	0.92	0.78	4.92	5.92	2.27	-99.0
^	1	7	0	30	7.2	7.9	2 2	1 20	1 20	27 2	F2 0	10.0	00 0	-99.0	-99.0	22.4
*	T	/	0	30	1.2	7.9	2.3	1.28	1.29	27.2	53.2	19.2	-99.0	-99.0	-99.0	22.4
Ŷ	3	8	0	30	7.1	7.2	2.5	1.5	1.5	28.6	54.3	17.1	-99.0	-99.0	-99.0	24.2
	3 2	8 8	40	30 70	7.1	7.2 8.1	$\frac{2.5}{1.2}$	1.5 -99.0	1.5 2.9	28.6 31.9	54.3 54.1	17.1 13.0	-99.0 -99.0	-99.0 -99.0	-99.0 -99.0	24.2 -99.0
	3 3	8	40 80	120	7.5	8.1	1.2	-99.0 -99.0	2.9 6.6	31.9	54.1 48.0	13.0 15.8	-99.0	-99.0 -99.0	-99.0 -99.0	-99.0 -99.0
	2	8	80	120	1.0	0.2	1.0	-99.0	0.0	50.2	40.0	10.0	-99.0	-99.0	-99.0	-99.0

Annex 43 Content of ASCII file NLA00.SHC (only the first part)

<pre>*File: *Code: *Access: *Author: *Version *Date: *Source: * * * * * * * * * * * * * * * * * * *</pre>	ASC Sec R.F : 1.0 15 Mea 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	quentia F.A. He) April asureme Goil hy Andelst scripti A = Nu DP = Up DP = Lc E = Nu UU = Sa nc UU = Su NU = Nu	1 ndriks 2001 snts by drauli ;, The on of mber o mber o mber o mple n te tha mber o essure	ALT c co Neth the f la unda unda f rej umbe t SM f mea head	nducti erland yers s ry (cm plicat r (1 a: NU in asuring d (cm)	ties and ampled) of the es nd 11; 2 file NLA g points ; negati	
	PDP I	LODP N	IURE S	MNU	NUMP	PSHD	HYCD

6	11	19	2	1	357	-8.0	1.15E+00
6	11	19	2	1	357	-8.6	3.86E-01
6 6	11 11	19	2 2	1 1	357 357	-9.1 -9.5	6.91E-01
6	11	19 19	2	1	357	-10.3	5.05E-01 5.15E-01
6	11	19	2	1	357	-10.6	1.47E-01
6	11	19	2	1	357	-10.9	3.74E-01
6	11	19	2	1	357	-11.2	5.56E-01
6	11	19	2	1	357	-11.4	7.09E-01
6	11	19	2	1	357	-11.6	8.95E-01
6	11	19	2	1	357		1.06E+00
6	11	19	2	1	357	-12.0	7.34E-01
6	11	19	2	1	357	-12.2	3.54E+00
6	11	19	2	1	357	-12.2	1.21E+00
6	11	19	2	1	357	-12.4	1.24E+00
6	11	19	2	1	357	-12.6	1.34E+00
6	11	19	2	1	357	-12.7	9.59E-01
6	11	19	2	1	357	-12.8	1.82E+00
6	11	19	2	1	357	-12.9	9.99E-01
6	11	19 19	2	1	357	-13.1 -13.1	1.37E+00
6 6	11 11	19 19	2 2	1 1	357 357	-13.1 -13.3	1.32E+00 1.03E+00
6	11	19	2	1	357	-13.4	4.19E-01
6	11	19	2	1	357	-13.5	1.05E+00
6	11	19	2	1	357	-13.6	1.31E+00
6	11	19	2	1	357	-13.8	1.02E+00
6	11	19	2	1	357	-13.9	1.14E+00
6	11	19	2	1	357	-14.0	1.30E+00
6	11	19	2	1	357	-14.3	1.02E+00
6	11	19	2	1	357	-14.4	5.80E-01
6	11	19	2	1	357	-14.5	1.02E+00
6	11	19	2	1	357	-14.7	9.88E-01
6	11	19	2	1	357	-14.8	7.38E-01
6	11	19	2	1	357	-15.0	9.91E-01
6	11	19	2	1	357	-15.3	8.70E-01
6	11	19 10	2	1	357	-15.3	1.00E+00
6 6	11 11	19 19	2 2	1 1	357 357	-15.6 -15.6	9.78E-01 1.00E+00
U	тт	19	4	Ŧ	551	-13.0	T.000F00

Annex 44 Content of ASCII file NLA00.SHP

```
NLA00.SHP
*File:
*Code: ASCII
*Access: Sequential
*Author: R.F.A. Hendriks
*Version: 1.0
*Date: 15 April 2001
*Source: Measurements by ALTERRA
          Soil hydraulic parameters
*
          Andelst, The Netherlands
*
*
         Description of the quantities and their units
*
*
         NUT A
               = Number of layers sampled
         UPDP
               = Upper boundary (cm) of the layer
         LODP = Lower boundary (cm) of the layer
*
         NURE = Number of replicates
         SMNU = Sample number (1 and 11; 2 and 12; etc. are pairs of duplicates;
*
                note that SMNU in file NLA00.SHC refers to the same samples)
*
*
         Van Genuchten parameters optimized on basis of results of the evaporation method,
         as given in file NLA00.SHC:
*
         MOFRRS = Residual volume fraction of liquid (cm**[3] cm**[-3])
*
         MOFRSR = Volume fraction of liquid (cm**[3] cm**[-3]) at saturation
*
         ALPHA = Shape factor (cm^{*}[-1])
         N
               = Shape factor (-)
*
                = Shape factor (-)
         L
*
         HYCDSR = Hydraulic conductivity (cm day[-1]) at saturation
         Direct measurements:
         HYCDSRME = Measured hydraulic conductivity (cm day[-1]) at saturation
*
         Samples for measuring the hydraulic conductivity at saturation were not the same
         as the ones used for the evaporation method
*NULA UPDP LODP NURE SMNU MOFRRS MOFRSR ALPHA
                                                      N L HYCDSR HYCDSRME
11 19 2 1 0.010 0.400 0.0200 1.110 -5.500 42.26 3.7
   6
                                                                    44.47
        11 19
22 30
                        11 0.010
2 0.010
                                     0.400 0.0180 1.080 -16.203
0.390 0.0018 1.240 0.000
   6
                   2
                                                                                  5.5
                 2
                                                                                 0.0
   6
                                                                      0.30
        22 30 2 12 0.010
                                      0.389 0.0080 1.090 -18.012
   6
                                                                      5.81
                                                                                 0.0
        36 44 2
36 44 2
                        3 0.010
13 0.010
                                     0.390 0.0095 1.130 -2.500 14.62
0.390 0.0100 1.118 -3.334 15.65
                                                                               43.2
   6
   б
                                                                                5.7
                         4 0.010 0.480 0.0150 1.088 0.000 61.44
                 2
        61 69
                                                                              696.4
   6
       61692140.0100.4450.01201.0600.00078.8796104250.0100.4430.01801.080-11.00071.29961042150.0100.4370.00181.240-4.2840.96
                                                                              135.5
   6
   б
                                                                                142.7
                                                                      0.96
                                                                                728.7
   6
   6
       131 139 2
                        6 0.010 0.525 0.0088 1.048 -38.024 13.99
                                                                               90.4

      6
      131
      139
      2
      16
      0.010
      0.525
      0.0014
      1.240
      0.000
      0.43
```

0.0

Annex 45 Content of ASCII file NLA00.SIM

*File: *Code:			0.0 0.714										
couc-		ASC	A00.SIM										
*Access:			quential										
*Author:				, L.J.T	. van	der Pas	;						
*Versior	1:	1.2											
*Date:	_		March 2		7 +								
*Source: *	•			nts by A ations			ld (IM) in	the soil;					
*				The Ne				0110 00117					
*													
*					e quar	ntities a	and their u	nits					
*		YR MH		lear Ionth									
*		DA		ay with	uin mor	hth							
*		DAN					l at 1 Jan	1998)					
*		NUL			-	ers samp							
*		UPE					f the layer						
*		LOE					f the layer **[-3]) of		ctor 1;				
*		001					of 8 obsei		0001 1/				
*						-	times: 1 ob		(1 analy	sis for 4	columns,	mixed)	
*		COI				-	**[-3]) of		ctor 2;				
*							of 8 obser times: 1 ob		(1 apala	raia for A	aolumna	mixed)	
*		COT					**[-3]) of			515 101 4	corullins,	(IIIIXeu)	
*							of 8 obsei						
*							times: 1 ob			rsis for 4	columns,	mixed)	
*		COI					**[-3]) of of 7 obset		ctor 4;				
*						5	times: 1 ob		(1 analy	rsis for 4	columns	mixed)	
*		AVC					of imidacl				00100000	minea,	
*		SECO					[-3]) of t			rations o	f imidacl	oprid	
*		NUOE					for calcul			1 446 0			
*		-9.					of quanti average co			-			
*							realistic a		OII (AVCOI	.m) cm13 v	aiuc was		
*						-		-					
*													
*		con	ncentrat	ions in	ı "blar	nk" soil	samples, c	ollected 3	30-03-98,	were bel	ow limit (of quanti:	fication
*		con	ncentrat	ions we	re not	correct	samples, c ced for ext d deviation	raction ef					
*		con (sc	icentrat 1 =10.5,	ions we n=32);	re not sd =	correct standard	ted for ext d deviation	raction ef	ficiency	, which wa	as on avei	rage 104.2	28
* * * YR *******	MH	con (sc DA	ncentrat 1 =10.5, DANU	ions we n=32);	re not sd = UPDP	correct standard LODP	ed for ext d deviation COIMS1	COIMS2	ficiency COIMS3	, which wa	as on aver AVCOIM	secoim	2% NUOB
* * * YR *******		con (sc DA	ncentrat 1 =10.5, DANU	ions we n=32); NULA	re not sd = UPDP	correct standard LODP	ed for ext d deviation COIMS1	raction ef	ficiency COIMS3	, which wa	as on aver AVCOIM	secoim	2% NUOB
* * * * * * * *	******	con (sc DA	DANU	ions we n=32); NULA	re not sd = UPDP	correct standaro LODP	ced for ext d deviation COIMS1	COIMS2	COIMS3	, which wa COIMS4	AVCOIM	secoim	2% NUOB ******
******** 1998 1998 *	******* 5 5	con (sc DA 29 29	DANU 14 =10.5, DANU 149 149	ions we n=32); NULA ******* 2 2	ere not sd = UPDP ****** 0 5	correct standard LODP 5 15	ced for ext d deviation COIMS1 *********** 0.6747 0.0405	COIMS2 ********** 0.9286 0.0670	COIMS3	, which wa COIMS4 ********* 1.2529 0.0545	AVCOIM ********** 0.9871 0.0585	SECOIM ********** 0.0577 0.0103	NUOB ******* 31 31
******** 1998 1998 * 1998	******* 5 5 9	con (sc DA 29 29 21	DANU 149 149 149 264	ions we n=32); NULA ******* 2 2 7	uppp v****** 0 5 0	LODP 5 15 10	ced for ext d deviation COIMS1 	COIMS2 ********** 0.9286 0.0670 0.2156	COIMS3 	, which wa COIMS4 ******** 1.2529 0.0545 0.1436	AVCOIM 	SECOIM 0.0577 0.0103 0.0149	NUOB ******* 31 31 4
******** 1998 1998 * 1998 1998	******* 5 5	con (sc DA 29 29	DANU 149 149 149 264 264	ions we n=32); NULA ******* 2 2	uppp ******* 0 5 0 10	LODP 5 15 10 20	ced for ext d deviation COIMS1 ********* 0.6747 0.0405 0.1802 0.0432	COIMS2 ********** 0.9286 0.0670 0.2156 0.0394	COIMS3 1.0408 0.0662 0.1905 0.0314	, which wa COIMS4 1.2529 0.0545 0.1436 0.0410	AVCOIM 	SECOIM 	NUOB ******** 31 31 4 4
******** 1998 1998 * 1998	******* 5 5 9 9	con (sc DA 29 29 21 21	DANU 149 149 149 264	ions we n=32); NULA 2 2 7 7 7	uppp v****** 0 5 0	LODP 5 15 10	ced for ext d deviation COIMS1 	COIMS2 ********** 0.9286 0.0670 0.2156	COIMS3 	, which wa COIMS4 ******** 1.2529 0.0545 0.1436	AVCOIM 	SECOIM 0.0577 0.0103 0.0149	NUOB ******* 31 31 4
******** 1998 1998 * 1998 1998 1998 1998	******** 5 5 9 9 9 9 9 9 9 9	Con (sd DA 29 29 21 21 21 21 21 21 21	ncentrat 1 =10.5, DANU ******* 149 149 264 264 264 264 264 264	ions we n=32); NULA 2 2 7 7 7 7 7 7 7 7	uppp ****** 0 5 0 10 20 30 50	c correct standard LODP ******** 15 10 20 30 50 70	ced for ext d deviation COIMS1 ********* 0.6747 0.0405 0.1802 0.0432 0.0085	COIMS2 ********** 0.9286 0.0670 0.2156 0.0394 0.0026	COIMS3 ******** 1.0408 0.0662 0.1905 0.0314 0.0148 0.0032 0.0010	COIMS4 COIMS4 	AVCOIM 	SECOIM 	2% NUOB ****** 31 31 4 4 4 4 4 4 4 4
********* 1998 1998 * 1998 1998 1998 199	******* 5 9 9 9 9 9 9 9 9 9 9	Con (sd DA 29 29 21 21 21 21 21 21 21 21 21	ncentrat i =10.5, DANU ******** 149 149 264 264 264 264 264 264 264 264	ions we n=32); NULA ******* 2 2 7 7 7 7 7 7 7 7 7 7 7	re not sd = UPDP ****** 0 5 0 10 20 30 50 70	LODP 5 15 10 20 30 50 70 90	ced for ext d deviation COIMS1 ********** 0.6747 0.0405 0.1802 0.0432 0.0085 0.0034 0.0009 0.0034	COIMS2 ********* 0.9286 0.0670 0.2156 0.0394 0.0026 0.0027 0.0016 0.0014	COIMS3 ******** 1.0408 0.0662 0.1905 0.0314 0.0148 0.0032 0.0010 0.0011	COIMS4 COIMS4 ********* 1.2529 0.0545 0.1436 0.0410 0.0154 0.0012 -9.9999 -9.9999	AVCOIM ********** 0.9871 0.0585 0.1825 0.0387 0.0103 0.0026 0.0010 0.0016	SECOIM SECOIM ********* 0.0577 0.0103 0.0149 0.0026 0.0030 0.0005 0.0002 0.0002 0.0006	2% NUOB ****** 31 31 4 4 4 4 4 4 4 4 4 4 4
******** 1998 1998 * 1998 1998 1998 1998	******** 5 5 9 9 9 9 9 9 9 9	Con (sd DA 29 29 21 21 21 21 21 21 21	ncentrat 1 =10.5, DANU ******* 149 149 264 264 264 264 264 264	ions we n=32); NULA 2 2 7 7 7 7 7 7 7 7	uppp ****** 0 5 0 10 20 30 50	c correct standard LODP ******** 15 10 20 30 50 70	ced for ext d deviation COIMS1 ********** 0.6747 0.0405 0.1802 0.0432 0.0085 0.0034 0.0009	COIMS2 ********* 0.9286 0.0670 0.2156 0.0394 0.0026 0.0027 0.0016	COIMS3 ******** 1.0408 0.0662 0.1905 0.0314 0.0148 0.0032 0.0010 0.0011	COIMS4 COIMS4 	AVCOIM ********** 0.9871 0.0585 0.1825 0.0387 0.0103 0.0026 0.0010 0.0016	SECOIM 	2% NUOB ****** 31 31 4 4 4 4 4 4 4 4
********* 1998 1998 * 1998 1998 1998 199	******* 5 9 9 9 9 9 9 9 9 9 9	Con (sd DA 29 29 21 21 21 21 21 21 21 21 21	ncentrat i =10.5, DANU ******** 149 149 264 264 264 264 264 264 264 264	ions we n=32); NULA ******* 2 2 7 7 7 7 7 7 7 7 7 7 7	re not sd = UPDP ****** 0 5 0 10 20 30 50 70	LODP 5 15 10 20 30 50 70 90	ced for ext d deviation COIMS1 ********** 0.6747 0.0405 0.1802 0.0432 0.0085 0.0034 0.0009 0.0034	COIMS2 ********* 0.9286 0.0670 0.2156 0.0394 0.0026 0.0027 0.0016 0.0014	COIMS3 ******** 1.0408 0.0662 0.1905 0.0314 0.0148 0.0032 0.0010 0.0011	, which wa COIMS4 ********* 1.2529 0.0545 0.1436 0.0410 0.0154 0.0012 -9.9999 -9.9999 -9.9999	AVCOIM AVCOIM 0.9871 0.0585 0.1825 0.0387 0.0103 0.0010 0.0016 -9.9999	SECOIM SECOIM ********* 0.0577 0.0103 0.0149 0.0026 0.0030 0.0005 0.0002 0.0002 0.0006	2% NUOB ****** 31 31 4 4 4 4 4 4 4 4 4 4 4
********* 1998 1998 * 1998 1998 1998 199	******** 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 12 12	CON (SC DA 29 29 21 21 21 21 21 21 21 21 21 21 21 21 21	DANU 14 =10.5, DANU 149 149 264 264 264 264 264 264 264 264 264 264	ions we n=32); NULA ******* 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7	rre not sd = UPDP ****** 0 5 0 10 20 30 50 70 90 0 10	LODP ************************************	ced for ext d deviation COIMS1 *********** 0.6747 0.0405 0.1802 0.0432 0.00432 0.0035 0.0034 0.0009 0.0034 -9.9999 0.1609 0.0467	COIMS2 ********* 0.9286 0.0670 0.2156 0.0394 0.0026 0.0027 0.0016 0.0014 -9.9999 0.2257 0.0384	COIMS3 ******** 1.0408 0.0662 0.1905 0.0314 0.0148 0.0032 0.0010 0.0011 -9.9999 0.1180 0.0774	COIMS4 ********* 1.2529 0.0545 0.1436 0.0410 0.0154 0.0012 -9.9999 -9.9999 0.1634 0.0838	AVCOIM ********** 0.9871 0.0585 0.1825 0.0387 0.0103 0.0026 0.0010 0.0016 -9.9999 0.1670 0.0616	SECOIM SECOIM ********* 0.0577 0.0103 0.0149 0.0026 0.0005 0.0002 0.0002 0.0006 -9.9999 0.0222 0.0112	2% NUOB ****** 31 31 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
********* 1998 1998 * 1998 1998 1998 199	******** 5 5 9 9 9 9 9 9 9 9 9 9 9 9 12 12 12	con (sc DA 29 29 21 21 21 21 21 21 21 21 21 21 21 21 21	DANU DANU 149 149 264 264 264 264 264 264 264 264 264 264	ions we n=32); NULA ******* 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7	rre not sd = UPDP ****** 0 5 0 10 20 30 50 70 90 0 10 20	LODP 5 15 10 20 30 50 70 90 120 10 20 30	ced for ext d deviation COIMS1 ********* 0.6747 0.0405 0.1802 0.0432 0.0035 0.0034 0.0009 0.0034 -9.9999 0.1609 0.0467 0.0073	COIMS2 ********** 0.9286 0.0670 0.2156 0.0394 0.0026 0.0027 0.0016 0.0014 -9.9999 0.2257 0.0384 0.0145	COIMS3 ******** 1.0408 0.0662 0.1905 0.0314 0.0148 0.0032 0.0010 0.0011 -9.9999 0.1180 0.0774 0.0168	COIMS4 COIMS4	AVCOIM 	SECOIM SECOIM 	2% NUOB ****** 31 31 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
********* 1998 1998 * 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998	******** 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Con (sc DA 29 29 21 21 21 21 21 21 21 21 21 21 21 21 21	Dentrat = 10.5, DANU ******* 149 149 264 264 264 264 264 264 264 264	ions we n=32); NULA 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	rre not sd = UPDP ****** 0 5 0 10 20 30 50 70 90 0 10 20 30	LODP 5 15 10 20 30 50 70 90 120 10 20 30 50 50	ced for ext d deviation COIMS1 ********* 0.6747 0.0405 0.1802 0.0432 0.0034 0.0034 -9.9999 0.1609 0.0467 0.0073 0.0031	COIMS2 ********* 0.9286 0.0670 0.2156 0.0394 0.0026 0.0027 0.0016 0.0014 -9.9999 0.2257 0.0384 0.0145 0.0021	COIMS3 ******** 1.0408 0.0662 0.1905 0.0314 0.0148 0.0032 0.0010 0.0011 -9.9999 0.1180 0.0774 0.0168 0.0054	COIMS4 COIMS4 COIMS4 COIMS4 COIMS4 CO545 0.1436 0.0410 0.0154 0.0012 -9.9999 -9.9999 0.1634 0.0838 0.0276 0.0039	AVCOIM AVCOIM 	SECOIM SECOIM 	2% NUOB ******* 31 31 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
********* 1998 1998 * 1998 1998 1998 1998 1998 1998 * 1998 1998 1998 1998 1998 1998	******** 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Con (sc DA 29 29 21 21 21 21 21 21 21 21 21 21 21 21 21	DANU 149 149 264 264 264 264 264 264 264 264 264 264	ions we n=32); NULA ******* 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7	rre not sd = UPDP ****** 0 5 0 10 20 30 50 70 90 0 10 20 30 50 50	LODP 5 15 10 20 30 50 70 90 120 10 20 30 50 70 90 120	colms1 colms1 colms1 colms1 colms1 colms1 colms1 colms1 colms1 colms2	COIMS2 ********* 0.9286 0.0670 0.2156 0.0394 0.0026 0.0027 0.0016 0.0014 -9.9999 0.2257 0.0384 0.0145 0.0021 0.0009	COIMS3 COIMS3	COIMS4 COIMS4 	AVCOIM AVCOIM ********* 0.9871 0.0585 0.1825 0.0387 0.0103 0.0016 -9.9999 0.1670 0.0616 0.0036 0.0016	SECOIM SECOIM 	2% NUOB ******* 31 31 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
********* 1998 1998 * 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998	******** 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Con (sc DA 29 29 21 21 21 21 21 21 21 21 21 21 21 21 21	Dentrat = 10.5, DANU ******* 149 149 264 264 264 264 264 264 264 264	ions we n=32); NULA 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	rre not sd = UPDP ****** 0 5 0 10 20 30 50 70 90 0 10 20 30	LODP 5 15 10 20 30 50 70 90 120 10 20 30 50 50	ced for ext d deviation COIMS1 ********* 0.6747 0.0405 0.1802 0.0432 0.0034 0.0034 -9.9999 0.1609 0.0467 0.0073 0.0031	COIMS2 ********* 0.9286 0.0670 0.2156 0.0394 0.0026 0.0027 0.0016 0.0014 -9.9999 0.2257 0.0384 0.0145 0.0021	COIMS3 ******** 1.0408 0.0662 0.1905 0.0314 0.0148 0.0032 0.0010 0.0011 -9.9999 0.1180 0.0774 0.0168 0.0054	COIMS4 COIMS4 COIMS4 COIMS4 COIMS4 CO545 0.1436 0.0410 0.0154 0.0012 -9.9999 -9.9999 0.1634 0.0838 0.0276 0.0039	AVCOIM AVCOIM 	SECOIM SECOIM 	2% NUOB ******* 31 31 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
******** 1998 19	******** 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Con (sc DA 29 29 21 21 21 21 21 21 21 21 21 21 21 21 21	DANU DANU 149 149 264 264 264 264 264 264 264 264 264 264	ions we n=32); NULA ******* 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7	rre not sd = UPDP ****** 0 5 0 10 20 30 50 70 90 0 10 20 30 50 70 90	LODP LODP 5 15 10 20 30 50 70 90 120 10 20 30 50 70 90 120 10 20 30 50 70 90 120 10 20 30 50 70 90 120 10 10 10 10 10 10 10 10 10 1	ced for ext d deviation COIMS1 ********** 0.6747 0.0405 0.1802 0.0432 0.0035 0.0034 0.0034 -9.9999 0.1609 0.0467 0.0073 0.0031 0.0023 0.0018 0.0016	COIMS2 ********* 0.9286 0.0670 0.2156 0.0394 0.0026 0.0014 -9.9999 0.2257 0.0384 0.0145 0.0021 0.0009 0.0009 -9.9999	COIMS3 ******** 1.0408 0.0662 0.1905 0.0314 0.0148 0.0032 0.0010 0.0011 -9.9999 0.1180 0.0774 0.0168 0.0074 0.0015 -9.9999	COIMS4 COIMS4 (******** 1.2529 0.0545 0.1436 0.0410 0.0154 0.0012 -9.9999 -9.9999 0.1634 0.0838 0.0276 0.0039 0.0018 -9.9999 -9.9999	AVCOIM AVCOIM 	SECOIM SECOIM 	2% NUOB ****** 31 31 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
******** 1998	******** 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Con (sc DA 29 29 21 21 21 21 21 21 21 21 21 21 21 21 21	DANU ******* 149 149 264 264 264 264 264 264 264 264	ions we n=32); NULA ******* 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7	rre not sd = UPDP ****** 0 5 0 10 20 30 50 70 90 0 10 20 30 50 70 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LODP 5 15 15 10 20 30 50 70 90 120 10 20 30 50 70 90 110 10	colms1 colms1 *********** 0.6747 0.0405 0.1802 0.0432 0.0085 0.0034 0.0034 0.0034 -9.9999 0.1609 0.0467 0.0073 0.0031 0.0023 0.0018 0.0016 0.0341	COIMS2 ********* 0.9286 0.0670 0.2156 0.0394 0.0026 0.0027 0.0016 0.0014 -9.9999 0.2257 0.0384 0.0145 0.0021 0.0009 -9.9999 0.0009	COIMS3 COIMS3	COIMS4 COIMS4 	AVCOIM ************************************	SECOIM SECOIM SECOIM SECOIM 0.0577 0.0103 0.0149 0.0026 0.0005 0.0002 0.0005 0.0002 0.0006 -9.9999 0.0222 0.0112 0.0042 0.0003 0.0003 -9.9999 0.0203	2% NUOB ******* 31 31 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
********* 1998 1999 1999	******** 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Con (sc DA 29 29 21 21 21 21 21 21 21 21 21 21 21 21 21	Centrat a =10.5, DANU ******* 149 149 264 264 264 264 264 264 264 264	ions we n=32); NULA ******* 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7	rre not sd = UPDP ****** 0 5 0 10 20 30 50 70 90 0 10 20 30 50 70 90 0 10	LODP LODP 	ced for ext d deviation COIMS1 ************ 0.6747 0.0405 0.1802 0.0432 0.0035 0.0034 0.0009 0.0034 -9.9999 0.1609 0.0467 0.0073 0.0031 0.0023 0.0018 0.0016 0.0341 0.1073	COIMS2 ********* 0.9286 0.0670 0.2156 0.0394 0.0026 0.0027 0.0016 0.0014 -9.9999 0.2257 0.0384 0.0145 0.0021 0.0009 0.0009 -9.9999 0.0303 0.0978	COIMS3 ******** 1.0408 0.0662 0.1905 0.0314 0.0148 0.0032 0.0010 0.0011 -9.9999 0.1180 0.0774 0.0168 0.0054 0.0012 0.0015 -9.9999 0.8044 0.0820	COIMS4 COIMS4 ********* 1.2529 0.0545 0.1436 0.0410 0.0154 0.0012 -9.9999 -9.9999 0.1634 0.0039 0.0018 -9.9999 0.0018 -9.9999 0.0638 0.1474	AVCOIM ************************************	SECOIM SECOIM SECOIM SECOIM C.0577 0.0103 0.0149 0.0026 0.0005 0.0002 0.0005 0.0002 0.0006 -9.9999 0.0222 0.0112 0.0042 0.0042 0.0042 0.0043 0.0003 0.0003 -9.9999 0.0222 0.0120 0.0120 0.0120 0.0139	2% NUOB ****** 31 31 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
******** 1998	******** 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Con (sc DA 29 29 21 21 21 21 21 21 21 21 21 21 21 21 21	DANU ******* 149 149 264 264 264 264 264 264 264 264	ions we n=32); NULA ******* 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7	rre not sd = UPDP ****** 0 5 0 10 20 30 50 70 90 0 10 20 30 50 70 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LODP 5 15 15 10 20 30 50 70 90 120 10 20 30 50 70 90 110 10	colms1 colms1 *********** 0.6747 0.0405 0.1802 0.0432 0.0085 0.0034 0.0034 0.0034 -9.9999 0.1609 0.0467 0.0073 0.0031 0.0023 0.0018 0.0016 0.0341	COIMS2 ********* 0.9286 0.0670 0.2156 0.0394 0.0026 0.0027 0.0016 0.0014 -9.9999 0.2257 0.0384 0.0145 0.0021 0.0009 -9.9999 0.0009	COIMS3 COIMS3	COIMS4 COIMS4 	AVCOIM ************************************	SECOIM SECOIM SECOIM SECOIM 0.0577 0.0103 0.0149 0.0026 0.0005 0.0002 0.0005 0.0002 0.0006 -9.9999 0.0222 0.0112 0.0042 0.0003 0.0003 -9.9999 0.0203	2% NUOB ******* 31 31 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
********* 1998 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999	******** 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Con (sc DA 29 29 21 21 21 21 21 21 21 21 21 21 21 21 21	Centrat 1 =10.5, DANU ******* 149 149 264 264 264 264 264 264 264 264	ions we n=32); NULA ******* 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7	rre not sd = UPDP ****** 0 5 0 10 20 30 50 70 90 0 10 20 30 50 70 90 0 10 20 30 50 70 90 0 10 20 30 50 70 90 0 50 70 90 0 50 70 90 50 70 90 50 70 90 50 70 90 50 70 90 50 70 90 50 70 90 90 70 90 90 70 90 90 70 90 70 90 90 70 90 90 70 90 90 90 90 90 90 90 90 90 90 90 90 90	LODP LODP 5 15 10 20 30 50 70 90 120 10 20 30 50 70 90 110 10 20 30 50 70 90 120 10 20 30 50 70 90 120 10 20 30 50 70 90 120 10 20 30 50 70 90 120 10 20 30 50 70 90 120 10 20 30 50 70 90 120 10 20 30 50 70 90 120 10 20 30 50 70 90 120 10 20 30 50 70 90 120 10 20 30 50 70 90 120 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 10 20 30 50 70 90 70 90 70 70 90 70 70 90 70 70 70 70 70 70 70 70 70 7	<pre>ced for ext d deviation</pre>	COIMS2 ********* 0.9286 0.0670 0.2156 0.0027 0.0016 0.0027 0.0016 0.0014 -9.9999 0.2257 0.0384 0.0145 0.0021 0.0009 -9.9999 0.0303 0.0978 0.0850 0.0021 -9.9999	COIMS3 COIMS4 COIMS4 COIMS4 COIMS4 COIMS4 COIMS4 COIMS4 COIMS4 COIMS4 COIMS4 COIMS4 COIMS4 COIMS4 COIMS6 COIMS4 COIMS6 COIMS4 COIMS6 COIMS4 COIMS6 COIMS4 COIMS6	COIMS4 CO	AVCOIM ********* 0.9871 0.0585 0.1825 0.0387 0.0103 0.0026 0.0010 0.0016 0.0016 0.0616 0.0036 0.0016 0.0012 -9.9999 0.1670 0.0016 0.0012 -9.9999 0.0522 0.1086 0.0676 0.0078 0.0026	SECOIM SECOIM SECOIM C.0577 0.0103 0.0149 0.0026 0.0005 0.0002 0.0005 0.0002 0.0002 0.0002 0.0002 0.0112 0.0042 0.0003 0.0003 -9.9999 0.0222 0.0112 0.0003 0.0003 -9.9999 0.0120 0.0139 0.0203 0.0023 0.0015	2% NUOB ******* 31 31 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
********* 1998 1999 1999 1999 1999 1999 1999 1999	********* 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9	Con (sc DA 29 29 21 21 21 21 21 21 21 21 21 21 21 21 21	Centrat 1 =10.5, DANU ******* 149 149 264 264 264 264 264 264 264 264	ions we n=32); NULA ******* 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7	rre not sd = UPDP ****** 0 5 0 10 20 30 50 70 90 0 10 20 30 50 70 90 0 10 20 30 50 70 90 0 10 20 30 50 70 90 0 10 20 30 50 70 90 0 10 20 30 20 30 30 50 70 90 20 30 30 30 30 30 30 30 30 30 30 30 30 30	LODP LODP 5 15 10 20 30 50 70 90 120 10 20 30 50 70 90 110 10 20 30 50 70 90 110	<pre>ced for ext d deviation COIMS1 ********* 0.6747 0.0405 0.1802 0.0432 0.0034 0.0034 0.0034 -9.9999 0.1609 0.0467 0.0073 0.0018 0.0016 0.0341 0.1073 0.0016 0.0341 0.1073 0.0900 0.0063</pre>	COIMS2 ********* 0.9286 0.0670 0.2156 0.0394 0.0026 0.0027 0.0016 0.0014 -9.9999 0.2257 0.0384 0.0145 0.0021 0.0009 -9.9999 0.0303 0.0978 0.0850 0.0021	COIMS3 ******** 1.0408 0.0662 0.1905 0.0314 0.0148 0.0032 0.0010 0.0011 -9.9999 0.1180 0.0774 0.0168 0.0054 0.0015 -9.9999 0.8804 0.0820 0.0066 0.0126	COIMS4 COIMS4 ********* 1.2529 0.0545 0.1436 0.0410 0.0154 0.0012 -9.9999 -9.9999 0.1634 0.0276 0.0038 0.0276 0.0039 0.0018 -9.9999 0.0638 0.1474 0.0886 0.0102	AVCOIM ************************************	SECOIM SECOIM 	2% NUOB ****** 31 31 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Annex 46 Content of ASCII file NLA00.SMM (only the first part)

*File: *Code:	NLA00. ASCII	SMM												
*Access:	Sequen	tial												
*Author:	-	tindie;	ਸ ਜ ਹ	A Hen	driks									
*Version:		cinare,			ar rito									
*Date:	11 May	2001												
*Source:	-	ements	by ALT	TERRA										
*			-		as mass	fraction								
*	Ande	lst, Th	e Netl	nerlan	ds									
*														
*	Descri	ption o	f the	quant	ities a	nd their (units							
*	YR	= Year		-										
*	MH	= Mont	h											
*	DA = Day within month													
*	DANU = Day number (value is 1 at 1 January 1998)													
*	DANU = Day number (value is 1 at 1 January 1998) NULA = Number of layers sampled													
*	NULA = Number of layers sampled UPDP = Upper boundary (cm) of the layer													
*	LODP					the laye		_						
*						d (g g**[
*						d (g g**[
*						d (g g**[
*					-	d (g g**[-	r Sector	4				
*			-			of liquid			Encation	of Limite				
*	NUOB				vations		le avera	ge mass	Traction	of liquid				
*		= Code												
*	JJ.0	- coue	IOI (1117110 W	u varue	D								
* YR MH	DA	DANU	NULA	UPDP	LODP	MOFRS1	MOFRS2	MOFRS3	MOFRS4	AVMOFR	SEMOFR	NUOB		
*******										******				
1997 10	27	-65	12	0	10	0.229	0.221	0.222	0.203	0.219	0.004	16		
1997 10	27	-65	12	10	20	0.229	0.228	0.228	0.213	0.225	0.002	16		
1997 10		-65	12	20	30	0.234	0.232	0.222	0.213	0.225	0.003	16		
1997 10		-65	12	30	40	0.221	0.234	0.230	0.216	0.225	0.004	16		
1997 10		-65	12	40	50	0.233	0.236	0.243	0.233	0.237	0.004	16		
1997 10		-65	12	50	60	0.244	0.239	0.251	0.232	0.241	0.005	16		
1997 10		-65	12	60	70	0.246	0.261	0.262	0.257	0.256	0.004	16		
1997 10		-65	12	70	80	0.242	0.280	0.260	0.275	0.264	0.005	16		
1997 10		-65	12	80	90	0.248	0.278	0.269	0.279	0.268	0.005	16		
1997 10		-65	12	90	100	0.270	0.272	0.279	0.267	0.272	0.007	16		
1997 10 1997 10		-65	12	100	110	0.277	0.308	0.291	0.282	0.289	0.008	16		
1997 10 1998 1		-65 21	12 9	110 0	120 10	0.303 0.270	0.282 0.264	0.301 0.269	0.291 0.255	0.294 0.264	0.008 0.003	16 16		
1998 1		21	9	10	20	0.270	0.204	0.209	0.235	0.284	0.003	15		
1998 1		21	9	20	30	0.232	0.244	0.240	0.239	0.239	0.004	15		
1998 1		21						0.233						
	21	21	9	30	40	0.224	0.227		0.229	0.228	(1, 0)			
		21 21	9 9	30 40	40 50	0.224 0.236	0.227 0.223		0.229 0.233	0.228 0.234	$0.004 \\ 0.004$	15 16		
1998 1	21	21	9	40	50	0.236	0.223	0.245	0.233	0.234	0.004	16		
1998 1 1998 1	21 21		9 9	40 50	50 60	0.236 0.257	0.223 0.233	0.245 0.257	0.233 0.245	0.234 0.248	0.004 0.004			
1998 1 1998 1	21 21 21	21 21	9	40	50	0.236	0.223	0.245	0.233	0.234	0.004	16 16		
1998 1 1998 1 1998 1	21 21 21 21 21	21 21 21	9 9 9	40 50 60	50 60 70	0.236 0.257 0.252	0.223 0.233 0.251	0.245 0.257 0.263	0.233 0.245 0.252	0.234 0.248 0.254	0.004 0.004 0.004	16 16 16		

Annex 47 Content of ASCII file NLA00.SMV (only the first part)

*File *Code		NLA00 ASCII	.SMV										
*Acce *Auth	ss: or:	Sequer K. Oos		; R.F. <i>I</i>	A. Hen	driks							
*Vers			- 2001										
*Date *Sour		11 May		by ALI	ידססא								
*						as volu	me fracti	on					
*				he Neth				011					
*													
*		Descri	ption	of the	quant	ities a	nd their	units					
*		YR	= Yea										
*		MH	= Mon										
*		DA	-	withir			at 1 Jan	100	0)				
*		DANU NULA	-			s sample		uary 199	0)				
*		UPDP			-	-	the laye	r					
*		LODP	= Low	er bour	dary	(cm) of	the laye	r					
*							uid (cm**						
*							uid (cm**						
*						-	uid (cm**			-			
*						-	uid (cm** n of liqu			-	I SECLOI	4	
*				0] cm**[-3			/	fraction	of liqui	d
*		NUOB				vations		.,					
*		-99.0	= Cod	e for u	ınknow	n value	s						
*												~~~~~	
* YR ****	MH ****		DANU	NULA ******	-	LODP	MOFRS1 *******	MOFRS2	MOFRS3	MOFRS4 *******	AVMOFR	SEMOFR	
1997	10		-65	12	0	10	0.262	0.272	0.276	0.234	0.261	0.007	16
1997	10		-65	12	10	20	0.344	0.327	0.323	0.320	0.328	0.006	16
1997	10	27	-65	12	20	30	0.339	0.331	0.333	0.319	0.331	0.006	16
1997	10		-65	12	30	40	0.344	0.346	0.351	0.334	0.344	0.005	16
1997	10		-65	12	40	50	0.356	0.347	0.368	0.354	0.356	0.005	16
1997 1997	10 10		-65 -65	12 12	50 60	60 70	0.362 0.371	0.359 0.374	0.381 0.393	0.355 0.392	0.364 0.382	0.006 0.008	16 16
1997	10		-65	12	70	80	0.362	0.374	0.393	0.392	0.382	0.008	16
1997	10		-65	12	80	90	0.377	0.414	0.401	0.418	0.403	0.006	16
1997	10	27	-65	12	90	100	0.400	0.401	0.409	0.402	0.403	0.007	16
1997	10		-65	12	100	110	0.408	0.438	0.418	0.415	0.420	0.008	16
1997	10		-65	12	110	120	0.441	0.421	0.444	0.427	0.433	0.008	16
1998 1998	1 1		21 21	9 9	0 10	10 20	0.404 0.398	0.388 0.393	$0.373 \\ 0.414$	0.327 0.295	0.373 0.375	$0.014 \\ 0.027$	16 15
1998	1		21	9	20	30	0.362	0.371	0.373	0.342	0.362	0.010	16
1998	1		21	9	30	40	0.382	0.378	0.387	0.284	0.358	0.025	15
1998	1	21	21	9	40	50	0.381	0.361	0.380	0.392	0.379	0.005	16
1998	1		21	9	50	60	0.406	0.370	0.402	0.392	0.393	0.007	16
1998	1		21	9	60	70	0.393	0.392	0.407	0.407	0.400	0.006	16
1998 1998	1 1		21 21	9 9	70 80	80 90	0.410 0.433	0.440 0.327	0.416 0.433	0.447 0.433	0.428 0.406	0.007 0.028	16 15
1998	3		89	12	0	10	0.286	0.327	0.259	0.257	0.268	0.028	16
1998	3		89	12	10	20	0.339	0.335	0.350	0.347	0.343	0.005	16
1998	3		89	12	20	30	0.343	0.333	0.331	0.321	0.332	0.005	16
1998	3	30	89	12	30	40	0.324	0.323	0.341	0.340	0.332	0.005	16
1998	3		89	12	40	50	0.338	0.346	0.357	0.352	0.348	0.007	16
1998 1998	3 3	30 30	89 89	12 12	50 60	60 70	0.357 0.372	0.346 0.391	0.380 0.398	0.354 0.374	0.359 0.384	0.007 0.006	16 16
1998	3		89	12	70	80	0.359	0.410	0.393	0.403	0.384	0.008	16
1998	3	30	89	12	80	90	0.400	0.416	0.405	0.414	0.409	0.005	16
1998	3	30	89	12	90	100	0.448	0.408	0.421	0.384	0.415	0.009	16
1998	3		89	12	100	110	0.446	0.434	0.443	0.403	0.431	0.008	16
1998	3	30	89	12	110	120	0.435	0.467	0.453	0.447	0.450	0.009	16

Annex 48 Content of ASCII file NLA00.SKN

*File:		NLA00.	SKN									
*Code: *Access		ASCII Sequent	+ial									
*Author		R.F.A.		ika								
*Versic			mentar	тир								
*Date:		1.0 28 Dec	ombor	2000								
*Source				by ALT	FBBZ							
*				ion of 1		ahl-N i	n soil					
*				he Neth	-		JI DOIL					
*		Milac	150, 1	iie neeli	CITAIN	ab						
*	I	Descri	ption	of the	quant.	ities a	nd their	units				
*		YR	= Ye		1							
*		MH	= Mo:									
*	Ι	DA	= Da	y withi	n mon	th						
*	Ι	DANU					1 at 1 Ja	nuary 199	8)			
*	1	NULA	= Nu	- mber of	laye	rs samp	led	-				
*	τ	UPDP	= Up	per bou	ndary	(cm) c	of the lay	er				
*]	LODP	= Lo	wer bou	ndary	(cm) c	of the lay	er				
*	C	COKNS12	2 = Co	ncentra	tion d	of Kjel	dahl-N (g	m**[-3]	soil) for	Section	s 1 and 2	2
*							atchment					
*	C	COKNS34					dahl-N (g				s 3 and 4	4
*				-			atchment					
*		AVCOKN		0			of Kjeld			,		
*		SECOKN					[-3] soil					
*		NUOB					s (analys	es) for c	alculatio	n of AVC	OKN and S	SECOKN
*	-	-99.0	= Co	de for	unknov	wn valu	es					
* * YR	MH	DA	DANU	NTLIT D	UPDP	LODP	COKNS12	CONVERS 4	AVCOKN	SECOKN	NUOB	
			-	-	-		CURINSIZ					* * * *
1998	9	21	264	7	0	10	0.94	1.59	1.27	0.33	2	
1998	9	21	264	, 7	10	20	3.71	0.81	2.26	1.45	2	
1998	9	21	264	, 7	20	30	2.13	0.47	1.30	0.83	2	
1998	9	21	264	7	30	50	1.42	0.45	0.93	0.48	2	
1998	9	21	264	7	50	70	0.82	0.22	0.52	0.30	2	
1998	9	21	264	7	70	90	0.79	0.29	0.54	0.25	2	
1998	9	21	264	7	90	120	0.72	0.10	0.41	0.31	2	
1998	12	2	336	7	0	10	17.53	3.93	10.73	6.80	2	
1998	12	2	336	7	10	20	5.02	4.69	4.85	0.17	2	
1998	12	2	336	7	20	30	8.00	5.55	6.77	1.22	2	
1998	12	2	336	7	30	50	4.27	2.89	3.58	0.69	2	
1998	12	2	336	7	50	70	4.66	9.50	7.08	2.42	2	
1998	12	2	336	7	70	90	4.83	3.39	4.11	0.72	2	
1998	12	2	336	7	90	120	5.12	7.99	6.56	1.43	2	
1999	4	20	475	7	0	10	0.11	2.15	1.13	1.02	2	
1999												
	4	20	475	7	10	20	1.36	2.27	1.81	0.46	2	
1999	4 4	20	475 475	7 7	20	30	2.94	2.27 -99.00	2.94	0.46 -99.00	1	
1999 1999	4 4 4	20 20	475 475 475	7 7 7	20 30	30 50	2.94 0.15	2.27 -99.00 1.95	2.94 1.05	0.46 -99.00 0.90	1 2	
1999 1999 1999	4 4 4 4	20 20 20	475 475 475 475	7 7 7 7	20 30 50	30 50 70	2.94 0.15 0.86	2.27 -99.00 1.95 0.26	2.94 1.05 0.56	0.46 -99.00 0.90 0.30	1 2 2	
1999 1999	4 4 4	20 20	475 475 475	7 7 7	20 30	30 50	2.94 0.15	2.27 -99.00 1.95	2.94 1.05	0.46 -99.00 0.90	1 2	

Annex 49 Content of ASCII file NLA00.SNN (only the first part)

<pre>blockes: Require Nuthor: K. Oostindis'R.F.A. Hendriks Vergion: 1.0 Batte: 21 December 2000 *Rource: Measurements by ALTREAN ************************************</pre>	*File: *Code:		NLA00.	SNN												
<pre>*Author: K. Dostindier R.F.A. Hendriks *Version : 0 Date: 28 December 2000 * Source: Measurements by AITERSA *</pre>			ASCII Sequen	tial												
<pre>*Version: 1.0 *Source: Measurements by ALTERNA ************************************</pre>			-		; R.F.A	. Hend	driks									
<pre>Source: Measurements by ALTEREA concentration of Nitrate-N (NO3-N) in soll Andelst, The Netherlands Description of the quantities and their units The State of the quantities and their units</pre>	*Versio	n:	1.0													
<pre> concentration of Nitrate-N (NO2-N) in soll Number of the quantities and their units YR = Year YR = Year YR = Any Within month DA = PauyWithin month DA = PauyWithin month CONNEL = Concentration of NO3-N (g m*1-3) soll) for Section 1; CONNEL = Concentration of NO3-N (g m*1-3) soll) for Section 2; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 21-09-1998: average of 8 (7 at 10-15 cm depth) observations; at 21-09-1998: average of 8 (7 at 10-15 cm depth) observations; at 21-09-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; connest = Concentration of NO3-N (g m*1-3] soll) for Section 4; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; connest = Concentration of NO3-N (g m*1-3] soll) SECONM = Standard error (g m*1-3] soll N (g m*1-3] soll) SECONM = Standard error (g m*1-3] soll N (g m*1-3] soll N (G m*1-10 soll) WUEN = Number of observations (mailer) solution of NUEN NUEN = Number of observations (mailer) solution (mailer) NUEN = Number of observations (mailer) solution of NUEN mailer (mailer) NUEN = Number of observations (mailer) solution (mailer) solution (mailer) NUEN = Number of observations (mailer) NUE</pre>																
 Andelst, The Netherlands Description of the quantities and their units YR = Year MH = Nonth DA = Day within month DAWN = Lay number (value is 1 at 1 January 1998) NULL = Number of layers sampled UDOP = Lower boundary (om) of the layer CONNES = Concentration of NO3-N (g m*1-3) soil) for Section 1: at 08-04-1998: average of 8 (7 at 10-15 on depth) observations: at 21-09-1998: average of 4 observations CONNES = Concentration of NO3-N (g m*1-3) soil) for Section 2: at 08-04-1998: average of 4 observations: at 21-09-1998: average of 7 (5 at 10-15 on depth) observations; at 08-04-1998: average of 7 (5 at 10-15 on depth) observations; at 08-04-1998: average of 7 (5 at 10-15 on depth) observations; at 08-04-1998: average of 8 (7 at 10-15 on depth) observations; at 08-04-1998: average of 8 (7 at 10-15 on depth) observations; CONNES = Concentration of NO3-N (g m*1-3] soil) for Section 3: at 08-04-1998: average of 8 (7 at 10-15 on depth) observations; MUODM = Number of observations (analyses) for calculation of AVCONN AND SECONN NUDE NUOB = Number of observations (analyses) for calculation of AVCONN SECONN NUDE YE MI DA DANU NULA UPOP LODP CONNEL CONNES CONNES CONNES AVCONN SECONN NUDE YE MI DA DANU NULA UPOP LODP CONNEL CONNES CONNES AVCONN SECONN NUDE YE MI DA DANU NULA UPOP LODP CONNEL CONSES CONNES AVCONN SECONN NUDE YE MI DA DANU NULA UPOP LODP AVERAGE AVCONNES CONNES AVCONN SECONN NUDE YE MI DA DANU NULA UPOP LODP AVERAGE AVCONNES AVCONN SECONN NUDE YE MI DA DANU NULA UPOP LODP AVERAGE AVERAGE AVCONNES AVCONNES AVCONNES AVERAGE AV		: 1			-			00 MT) 4								
<pre> Description of the quantities and their units YR</pre>								J3-N) in	SOIL							
<pre>Var the year the year the year the set of the the the terms of terms of the terms of ter</pre>			Ande	ist, i	IIE NEU	ler tall	45									
<pre> YR = Year MH = Month DA = Day within month UPPP = Upper boundary (cm) of the layer LOPP = Lower boundary (cm) of the layer consol = Lower boundary (cm) of NO3-N (gm*t-la) soil) for Section 1; consol = Lower boundary (cm) of NO3-N (gm*t-la) soil) for Section 1; consol = Lower boundary (cm) of NO3-N (gm*t-la) soil) for Section 1; consol = Lower boundary (gm*t-la) soil) for Section 1; consol = Lower boundary (gm*t-la) soil) for Section 2; consol = Lower boundary (gm*t-la) soil) for Section 2; consol = Lower boundary (gm*t-la) soil) for Section 2; consol = Lower boundary (gm*t-la) soil) for Section 2; consol = Lower boundary (gm*t-la) soil) for Section 2; consol = L</pre>	*		Descri	ption	of the	quant	ities ar	nd their u	units							
<pre> DA = Doy.ithin month DAU = Doy number (value is 1 at 1 January 1998) NULA = Number of layers sampled UDP = Upper boundary (cm) of the layer LOP = Lower boundary (cm) of the layer CONNS1 = Concentration of NO3-N (g m*1-3] soil) for Section 1; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; CONNS2 = Concentration of NO3-N (g m*1-3] soil) for Section 2; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; CONNS3 = Concentration of NO3-N (g m*1-3] soil) for Section 3; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; cONNS3 = Concentration of NO3-N (g m*1-3] soil) for Section 3; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; cONNS3 = Concentration of NO3-N (g m*1-3] soil) for Section 4; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; cONNS4 = Concentration of NO3-N (g m*1-3] soil) SECONN = Xverage concentration of NO3-N (g m*1-3] soil) SECONN = Xverage concentration of NO3-N (g m*1-3] soil) SECONN = Xverage concentration of NO3-N (g m*1-3] soil) SECONN = Xverage concentration of NO3-N (g m*1-3) soil) SECONN = Xverage concentration of NO3-N (g m*1-3) soil) SECONN = Xverage concentration of XVCONN and SECONN NUOB = Number of observations; at 08-04-1998: average of 8 (0 at 10-15 cm depth) observations; at 08-04-1998 average of 8 (0 at 10-15 cm depth) observations; at 08-04-1998 average of 8 (0 at 10-13 soil) SECONN = Xverage concentration of NO3-N (g m*1-3) soil) SECONN = Xverage concentration of NO3-N (g m*1-3) soil) SECONN = Xverage concentration of XVCON = Xverage concentration of XVEN = Xverage concentration of XVCON = Xverage concentration of XVEN = Xverage conc</pre>	*					-										
 DNUU = Day number (value is 1 at 1 January 1998) NUUA = Number of layer sampled UEPP = Upper boundary (cm) of the layer CORNS1 = Concentration of NO3-N (g m**(-3) soil) for Section 1; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 21-09-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998 (1 average concentration of NO3-N (g m*t(-3) soil) scoom = Standard error (No3-N (g m*t(-3) soil) of the average concentration scoom = NO3 N (g m*t(-3) soil) of the average concentration scoom = NO3 N (g m*t(-3) soil) of the score average concentration scoom = NO3 N (g m*t(-3) soil) of the score average (g 0 (g m*t) (g m*t																
<pre>NULA = Number of layers sampled UCOP = Upper boundary (cm) of the layer LOP = Lower boundary (cm) of the layer CONNS1 = Concentration of NO3-N (g m*t[-3] soil) for Section 1; at 08-04-1998: average of & (7 at 10-15 cm depth) observations; at 21-09-1998: average of & (7 at 10-15 cm depth) observations; at 21-09-1998: average of & (7 at 10-15 cm depth) observations; at 21-09-1998: average of & (7 at 10-15 cm depth) observations; at 21-09-1998: average of A observations; at 08-04-1998: average of A tobservations; at 08-04-1998: average of A (7 at 10-15 cm depth) observations; at 08-04-1998: average of B (7 at 10-15 cm depth) observations; at 08-04-1998: average of B (7 at 10-15 cm depth) observations; at 08-04-1998: average of B (7 at 10-15 cm depth) observations; at 08-04-1998: average of B (7 at 10-15 cm depth) observations; at 08-04-1998: average of B (7 at 10-15 cm depth) observations; at 08-04-1998: average of B (7 at 10-15 cm depth) observations; at 08-04-1998: average of B (7 at 10-15 cm depth) observations; at 08-04-1998: average of B (7 at 10-15 cm depth) observations; at 08-04-1998: average of B (7 at 10-15 cm depth) observations; at 08-04-1998: average of B (7 at 10-15 cm depth) observations; at 08-04 1998: average of B (7 at 10-15 cm depth) observations; at 08-04 1998 average of B (7 at 10-15 cm depth) observations; at 08-04 1998 average of B (7 at 10-16 cm depth) observations; at 08-04 1998 average of B (7 at 10-17 average cmoentration of NCONN and SECONN NUCL average cmoentration of NO3-N (g m*t-13) soil) 1998 4 29 119 7 10 20 8.31 26.04 8.85 9.26 13.12 4.43 14 1998 4 29 119 7 10 20 8.31 26.04 8.85 9.26 13.12 4.43 14 1998 4 29 119 7 10 20 8.31 26.04 8.85 9.26 13.12 4.31 4 1998 4 29 119 7 10 20 8.31 26.04 8.85 9.26 13.12 4.31 4 1998 4 29 119 7 70 90 6.25 10.17 6.48 5.23 7.03 13.04 4 1998 4 12 119 7 70 90 120 8.38 10.19 4.13 10.</pre>									100	0 \						
<pre> • UPDP = Upper boundary (cm) of the layer • CONNS1 = Concentration of N03-N (g m*t-13) soil) for Section 1;</pre>									uary 1998	8)						
 LOOP = Lower boundary (cm) of the layer CONNSI = Concentration of N03-N (g m**[-3] soil) for Section 1; at 21-09-1998: average of 8 (7 at 10-15 cm depth) observations; at 21-09-1998: average of 4 observations; at 21-09-1998: average of 4 observations; at 21-09-1998: average of 4 observations; at 21-09-1998: average of 1 (5 at 10-15 cm depth) observations; at 08-04-1998: average of 7 (5 at 10-15 cm depth) observations; at 08-04-1998: average of 7 (5 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; secons = standard error (g m**[-3] soil) of the average concentration NUOE = Number of observations (analyses) for calculation of AVCONN SECONN NUOB ** YR MH DA DANU NULA UPP LOOP CONNSI CONNSI CONNSI CONNS4 AVCON SECONN NUOB ** YR MH DA DANU NULA UPP LOOP CONNSI CONNSI CONNSI CONNS4 AVCONN SECONN NUOB ** YR MH DA DANU NULA UPP LOOP CONNSI CONNSI CONNSI CONNS4 AVCONN SECONN NUOB ** YR MH DA DANU NULA UPP LOOP CONNSI CONNSI CONNSI CONNS4 AVCONN SECONN NUOB ** YR MH DA DANU NULA UPP LOOP CONNSI CONNSI CONNSI CONNS4 AVCONN SECONN NUOB ** YR MH DA DANU NULA UPP LOOP CONSI CONNSI CONNSI CONNS4 AVCONN SECONN NUOB ** YR MH DA DANU NULA UPP LOOP CONNSI CONNSI CONNSI CONNS4 AVCONN SECONN AVCONN AVCONN SECONN AVCONN AVCONN AVCONN AVCONN AVCONN AVCONN AVCONN SECONN AVCONN AV	*					-	-		r							
 at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 4 observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 4 observations; at 08-04-1998: average of 1 (5 at 10-15 cm depth) observations; at 08-04-1998: average of 7 (5 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; SECONN = Standard error (g m**1-3] soil) of the average concentration NUOE = Number of observations (analyses) for calculation of AVCONN sECONN WH DA DAVU NULA UPP LOP CONNS1 CONNS2 CONNS2 CONNS4 AVCON SECONN NUOB YR MH 28 98 3 0 5 6.01 4.83 4.13 3.09 4.53 0.91 31 1998 4 8 98 3 10 15 1.89 1.55 0.78 1.45 0.16 26 1998 4 29 119 7 10 10 30.43 10.03 7.58 6.93 13.74 5.60 44 1998 4 29 119 7 10 20 8.31 26.04 8.85 9.26 13.71 3.94 4 1998 4 29 119 7 10 020 8.31 26.04 8.85 9.26 13.71 3.94 4 1998 4 29 119 7 70 90 6.25 10.11 10.19 25.50 13.71 3.94 4 1998 4 29 119 7 70 10 20 8.38 10.71 9.48 10.98 0.87 0.054 4 1998 4 29 119 7 70 10 20 8.38 10.71 9.48 10.90 9.87 0.54 4 1998 4 29 119 7 70 10 20 4.29 2.89 3.68 2.95 3.45 0.33 4 1998 4 29 119 7 70 10 20 4.29 1.96 3.48 10.154 4 1998 4 29 119 7 70 30 50 1.8.0 1.33 0.79 1.66 1.40 0.22 4 1998 4 29 119 7 70 10 20 8.38 10.71 9.48 10.92 0.58 4 1998 4 129 119 7 70 10 20 8.38 10.71 9.48 10.92 0.58 4 1998 4 10 2	*		UPDP = Upper boundary (cm) of the layer LODP = Lower boundary (cm) of the layer													
at 21-09-1936: average of a (har hermations) connect concentration of No3-N (g m*1-3) soll) for Section 2; at 21-09-1938: average of 4 observations; at 21-09-1938: average of 8 (7 at 10-15 cm depth) observations; at 21-09-1938: average of 7 (5 at 10-15 cm depth) observations; at 08-04-1938: average of 7 (5 at 10-15 cm depth) observations; at 08-04-1938: average of 7 (5 at 10-15 cm depth) observations; at 08-04-1938: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1938: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1938: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1938: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1938: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1938: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1938: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1938: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1938: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1938: average of 8 (7 at 10-15 cm depth) observations; *** W MH DA DANU NULA UPDP LODP CONNSI CONNSI CONNSI CONNSI AVCONN SECONN NUOB **** AVCONN = XVENNS AVCONN SECONN NUOB ************************************		(LODP = Lower boundary (cm) of the layer													
CONNS2 = Concentration of NO3-N (g m**[-3] soil) for Section 2: at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; at 08-04-1998: average of 7 (5 at 10-15 cm depth) observations; at 08-04-1998: average of 7 (5 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; CONNS4 = Concentration of NO3-N (g m**[-3] soil) for Section 4; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; XUCONN = Xverage concentration of NO3-N (g m**[-3] soil) for Section 4; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; XUCONN = Xverage concentration of NO3-N (g m**[-3] soil) for Section 4; at 08-04-1998 average of 10 calculation of XUCONN and SECONN NUOB SECONN = Xverage concentration of NO3-N (g m**[-3] soil) for average concentration NUOB = Number of observations (analyses) for calculation of XUCONN and SECONN NUOB * YR MH DA DANU NULA UPDP LODP CONNSI CONNS2 CONNS3 CONNS4 AVCONN SECONN NUOB 1998 4 8 98 3 0 5 6 0.01 4.83 4.13 3.09 4.53 0.91 31 1998 4 8 98 3 10 15 1.89 1.59 1.55 0.78 1.45 0.16 26 1998 4 29 119 7 10 20 8.31 26.04 8.85 9.26 13.12 4.31 4 1998 4 29 119 7 10 0 30 43.10.3 7.58 6.93 13.74 5.60 4 1998 4 29 119 7 0 10 30.43 10.03 7.58 6.93 13.74 5.60 4 1998 4 29 119 7 00 70 9.24 11.88 8.04 11.32 10.12 0.90 4 1998 4 29 119 7 00 70 0.24 4.40 5.16 4.72 5.13 0.40 4 1998 6 15 166 7 0 0 10 6.24 4.40 5.16 4.72 5.13 0.40 4 1998 6 15 166 7 0 0 10 6.24 4.40 5.16 4.72 5.13 0.40 4 1998 6 15 166 7 0 0 10 6.24 4.40 5.16 4.72 5.13 0.40 4 1998 6 15 166 7 0 0 10 0.50 0.42 9 2.89 3.66 2.95 3.45 0.33 4 1998 6 15 166 7 0 0 10 0.50 0.42 9 2.65 0.34 0.39 0.05 4 1998 6 15 166 7 0 0 10 0.50 0.42 9 2.65 0.34 0.39 0.05 4 1998 6 15 166 7 0 0 10 0.50 0.42 9 0.26 0.54 0.10 4 1998 6 15 166 7 0 0 10 0.50 0.45 0.23 0.62 0.54 0.10 4 1998 8 10 222 7 0 0 0 0.50 0.50 0.42 0.22 0.53 0.34 0.39 0.34 4 1998 8 10 222 7 0 0 0 0.50 0.50 0.45 0.23 0.34 0.39 0.34 4 1998 8 10 222 7 0 0 0 0.50 0.50 0.50 0.23 0.34 0.39 0.34 4 1998 8 10 222 7 0 0 0 0.50 0.53 0.							-			-	1) observ	ations;				
<pre></pre>		,	COMMES								tion 2:					
at 21-09-1998: average of 4 observations: at 08-04-1998: average of 7 (5 at 10-15 cm depth) observations; at 08-04-1998: average of 7 (5 at 10-15 cm depth) observations; at 08-04-1998: average of 8 (7 at 10-15 cm depth) observations; Average colspan="2">average of 8 (7 at 10-15 cm depth) observations; Average concentration of N03-N (g m**[-3] soil) for section 4; Average concentration of N03-N (g m**[-3] soil) SECONN = Standard error (g m**[-3] soil) of the average concentration NUOB NUDE COP CONNS3 CONNS3 CONNS3 CONNS4 AVCONN MICE 1998 4 8 98 3 0 5 6.01 4.83 4.13 3.09 4.53 0.91 31 1998 4 8 98 3 10 15 1.89 1.55 0.78 1.45 0.16 26 1998 4 29 119 7 10 20 8.31 26.04 8.85 9.26 13.12 4.31 4 1998 4 29 119 7 10 20 8.31 26.04 8.85 9.26 13.12 4.31 4 1998 4 29 119 7 70 0 6.25 10.17 6.48 5.23 7.03 1.08 4 1998 4 29 119 7 70 0 8.24 1.88 8.04 11.32 10.12 0.12 0.90 4 1998 4 29 119 7 70 0 0 6.25 10.17 6.48 5.23 7.03 1.08 4 1998 6 15 166 7 0 10 6.24 4.40 5.16 4.72 5.13 0.40 4 1998 6 15 166 7 70 0 0.76 0.50 0.29 0.34 0.39 0.05 4 1998 6 15 166 7 70 90 1.80 1.33 0.79 1.66 1.4	*		COMINDZ									ations;				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	*						-			-	1, 025011					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	*	(CONNS3													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	*		0000004									ations;				
AVCONN = AVERAGE CONCENTIATION OF NO3-N (g m**[-3] soil) NUOB = Number of observations (analyses) for calculation of AVCONN and SECONN * NUOB = Number of observations (analyses) for calculation of AVCONN and SECONN * YR MH DA DAN NULA UPPP LODP CONNS1 CONNS2 CONNS3 CONNS4 AVCONN SECONN SECONN 1998 4 8 98 3 0 5 6.01 4.83 4.13 3.09 4.53 0.91 31 1998 4 8 98 3 0 15 1.69 1.55 0.76 1.4.83 4.13 3.09 4.53 0.91 31 1998 4 29 119 7 0 10 30.43 10.03 7.58 6.93 13.71 3.64 4 1998 4 29 119 7 20 30 9.02 10.11 10.13 10.12 0.90 4 1998 4		(CONNS4						- ,			ationa:				
* SECONN = Standard error (g m**[-3] soil) of the average concentration of AVCONN and SECONN NUOB = Number of observations (analyses) for calculation of AVCONN and SECONN NUOB * YR MH DA DANU NULA UPDP LOOP CONNSI CONNS2 CONNS3 CONNS4 AVCONN SECONN NUOB 1998 4 8 98 3 0 5 6.01 4.83 4.13 3.09 4.53 0.91 31 1998 4 8 98 3 5 10 3.12 3.74 2.03 2.54 2.88 0.57 31 1998 4 8 98 3 10 15 1.89 1.59 1.55 0.78 1.45 0.16 26 1998 4 29 119 7 10 20 8.31 26.04 8.85 9.26 13.12 4.31 4 1998 4 29 119 7 10 20 8.31 26.04 8.85 9.26 13.12 4.31 4 1998 4 29 119 7 7 0 0 10 30.43 10.03 7.58 6.93 13.74 5.60 4 1998 4 29 119 7 7 0 0 0 5.13.54 15.16 9.02 15.89 13.40 1.54 4 1998 4 29 119 7 7 0 0 0 9.24 11.88 8.04 11.32 10.12 0.90 4 1998 4 29 119 7 7 0 0 10 6.24 4.10 5.16 4.72 5.13 1.040 4 1998 4 29 119 7 7 0 0 10 0 6.25 10.17 6.48 5.23 7.03 1.08 4 1998 6 15 166 7 10 20 4.29 2.89 3.68 2.95 3.45 0.33 4 1998 6 15 166 7 10 20 4.29 2.89 3.68 2.95 3.45 0.33 4 1998 6 15 166 7 0 10 0 4.29 2.89 3.68 2.95 3.45 0.33 4 1998 6 15 166 7 0 10 20 4.29 2.89 3.68 2.95 3.45 0.33 4 1998 6 15 166 7 0 0 120 8.38 10.71 9.48 10.90 9.87 0.59 4 1998 6 15 166 7 0 10 20 4.29 2.89 3.68 2.95 3.45 0.33 4 1998 6 15 166 7 0 10 20 4.29 2.89 3.68 2.95 3.45 0.33 4 1998 6 15 166 7 0 10 20 4.29 2.89 3.68 2.95 3.45 0.33 4 1998 6 15 166 7 0 10 20 4.29 2.89 3.68 2.95 3.45 0.33 4 1998 6 15 166 7 0 10 20 4.29 2.89 3.68 2.95 3.45 0.33 4 1998 6 15 166 7 0 10 20 4.29 2.89 3.68 2.95 3.45 0.33 4 1998 8 10 222 7 0 10 8.89 10.13 0.79 1.66 1.40 0.23 4 1998 8 10 222 7 0 10 20 11.76 14.58 12.83 11.33 11.34 12.63 0.72 4 1998 8 10 222 7 0 0 10 8.69 10.15 7.90 6.24 8.29 0.83 4 1998 8 10 222 7 0 0 10 8.09 10.55 0.45 0.29 0.34 0.39 0.35 4 1998 8 10 222 7 0 0 10 8.89 10.15 7.90 6.24 8.29 0.83 4 1998 8 10 222 7 0 0 70 3.20 3.58 2.62 1.99 2.35 0.45 0.10 1 1998 9 21 264 7 0 0 10 3.08 4.33 4.59 3.03 3.99 0.34 4 1998 9 21 264 7 0 0 10 20 6.62 11.14 8.32 3.70 11.73 3.80 4 1998 9 21 264 7 0 0 10 20 6.62 11.14 8.32 3.76 1.30 1.30 10 1998 9 21 264 7 0		;	AVCONN								I) ODSELV	actons/				
* YR MH DA DANU NULA UPDP LODP CONNSI CONNS2 CONNS3 CONNS4 AVCONN SECON NUDB 1998 4 8 98 3 0 5 6.01 4.83 4.13 3.09 4.53 0.91 31 1998 4 8 98 3 10 15 1.89 1.59 1.55 0.78 1.45 0.16 26 1998 4 29 119 7 0 10 30.43 10.03 7.58 6.93 13.74 5.60 4 1998 4 29 119 7 10 20 8.31 26.04 8.85 9.26 13.12 4.31 4 1998 4 29 119 7 30 50 13.54 15.16 9.02 15.89 13.40 1.54 4 1998 4 29 119 7 70 90 6.25 10.17 6.48 5.23 7.03 1.08 4 1998 4 29 119 7 70 90 6.25 10.17 6.48 5.23 7.03 1.08 4 1998 4 29 119 7 70 90 120 8.38 10.71 9.48 10.90 9.87 0.59 4 1998 4 29 119 7 70 90 120 8.38 10.71 9.48 10.90 9.87 0.59 4 1998 4 29 119 7 70 90 0.50 13.54 15.16 9.02 15.89 13.40 1.54 4 1998 4 29 119 7 70 90 0.22 10.11 10.19 25.50 13.71 3.94 4 1998 4 29 119 7 70 0 0 6.25 10.17 6.48 5.23 7.03 1.08 4 1998 6 15 166 7 10 20 4.29 2.89 3.66 2.95 3.45 0.33 4 1998 6 15 166 7 10 20 4.29 2.89 3.66 2.95 3.45 0.33 4 1998 6 15 166 7 0 10 6.24 4.40 5.16 4.72 5.13 0.40 4 1998 6 15 166 7 0 0 10 6.24 4.40 5.16 4.25 3.45 0.33 4 1998 6 15 166 7 0 0 10 8.98 10.13 0.79 1.66 1.40 0.23 4 1998 6 15 166 7 0 0 10 0.76 0.50 0.29 0.62 0.54 0.10 4 1998 6 15 166 7 0 10 0 1.78 0.50 1.80 1.33 0.79 1.66 1.40 0.23 4 1998 6 15 166 7 0 120 2.55 0.91 0.95 1.40 1.45 0.38 4 1998 8 10 222 7 10 10 18.89 10.15 7.90 6.24 8.29 0.83 4 1998 8 10 222 7 10 20 11.76 14.58 12.83 11.33 12.63 0.72 4 1998 8 10 222 7 10 20 11.76 14.58 12.83 11.33 12.63 0.72 4 1998 8 10 222 7 0 30 3.36 4 16.02 13.34 12.67 13.92 0.73 4 1998 8 10 222 7 0 30 3.364 16.02 13.34 12.67 13.39 0.35 4 1998 8 10 222 7 0 30 3.364 16.02 13.34 12.67 13.39 0.72 4 1998 8 10 222 7 0 0.10 8.80 13.55 12.88 7.03 3.99 0.34 4 1998 8 10 222 7 0.30 9.98 13.95 12.88 7.03 3.99 0.34 4 1998 8 10 222 7 0.30 9.98 13.95 12.88 7.03 3.99 0.34 4 1998 8 10 222 7 0.30 9.98 13.95 12.88 7.03 3.99 0.34 4 1998 8 10 222 7 0.30 9.98 13.95 12.88 7.03 3.99 0.34 4 1998 12 22 336 7 0 0 10 20 4.67 4.20 2.64 2.68 4.08 0.53 10 1998 9 21 264 7 0 10 20 4.67 4.20 2.64 2.68 4.08 0.53 10 1998 9 21 264 7 0 0 10 20 4.67 4.20 2.64 2.68 4.08 0.53 10 19	*										concentra	tion				
$\begin{array}{c} 1998 & 4 & 8 & 98 & 3 & 0 & 5 & 6.01 & 4.83 & 4.13 & 3.09 & 4.53 & 0.91 & 31 \\ 1998 & 4 & 8 & 98 & 3 & 10 & 15 & 1.89 & 1.59 & 1.55 & 0.78 & 1.45 & 0.16 & 26 \\ 1998 & 4 & 29 & 119 & 7 & 0 & 10 & 30.43 & 10.03 & 7.58 & 6.93 & 13.74 & 5.6 & 4 \\ 1998 & 4 & 29 & 119 & 7 & 20 & 30 & 9.02 & 10.11 & 10.19 & 25.50 & 13.71 & 3.94 & 4 \\ 1998 & 4 & 29 & 119 & 7 & 30 & 50 & 13.54 & 15.16 & 9.02 & 15.89 & 13.40 & 1.54 & 4 \\ 1998 & 4 & 29 & 119 & 7 & 30 & 50 & 13.54 & 15.16 & 9.02 & 15.89 & 13.40 & 1.54 & 4 \\ 1998 & 4 & 29 & 119 & 7 & 50 & 70 & 9.24 & 11.88 & 8.04 & 11.32 & 10.12 & 0.90 & 4 \\ 1998 & 4 & 29 & 119 & 7 & 70 & 90 & 6.25 & 10.17 & 6.48 & 5.23 & 7.03 & 1.08 & 4 \\ 1998 & 4 & 29 & 119 & 7 & 00 & 100 & 6.24 & 4.40 & 5.16 & 4.72 & 5.13 & 0.40 & 4 \\ 1998 & 6 & 15 & 166 & 7 & 10 & 20 & 4.38 & 10.71 & 9.48 & 10.90 & 9.87 & 0.59 & 4 \\ 1998 & 6 & 15 & 166 & 7 & 10 & 20 & 4.29 & 2.89 & 3.68 & 2.95 & 3.45 & 0.33 & 4 \\ 1998 & 6 & 15 & 166 & 7 & 50 & 70 & 0.76 & 0.50 & 0.29 & 0.62 & 0.54 & 0.10 & 4 \\ 1998 & 6 & 15 & 166 & 7 & 50 & 70 & 0.76 & 0.50 & 0.29 & 0.62 & 0.54 & 0.10 & 4 \\ 1998 & 6 & 15 & 166 & 7 & 90 & 120 & 2.55 & 0.91 & 0.95 & 1.40 & 1.45 & 0.38 & 4 \\ 1998 & 6 & 15 & 166 & 7 & 90 & 120 & 2.55 & 0.91 & 0.95 & 1.40 & 1.45 & 0.38 & 4 \\ 1998 & 6 & 15 & 166 & 7 & 90 & 120 & 2.55 & 0.91 & 0.95 & 1.40 & 1.45 & 0.38 & 4 \\ 1998 & 8 & 10 & 222 & 7 & 00 & 10 & 8.89 & 10.15 & 7.90 & 6.24 & 8.29 & 0.83 & 4 \\ 1998 & 8 & 10 & 222 & 7 & 50 & 70 & 3.20 & 3.58 & 2.62 & 1.99 & 2.85 & 0.52 & 4 \\ 1998 & 8 & 10 & 222 & 7 & 50 & 70 & 3.20 & 3.58 & 2.62 & 1.99 & 2.85 & 0.52 & 4 \\ 1998 & 8 & 10 & 222 & 7 & 50 & 70 & 5.64 & 6.73 & 5.25 & 4.23 & 5.46 & 0.52 & 4 \\ 1998 & 8 & 10 & 222 & 7 & 70 & 90 & 1.95 & 3.08 & 2.46 & 1.46 & 2.24 & 0.35 & 4 \\ 1998 & 8 & 10 & 222 & 7 & 70 & 90 & 1.20 & 3.68 & 2.62 & 1.99 & 2.85 & 0.55 & 4 \\ 1998 & 9 & 21 & 264 & 7 & 70 & 90 & 1.20 & 4.67 & 4.20 & 2.64 & 1.46 & 2.24 & 0.35 & 4 \\ 1998 & 9 & 21 & 264 & 7 & 70 & 90 & 1.20 & 4.67 & 4.20 & 2.64 & 1.46 & 2.24 & 0.35 & 4 \\ 1998 & 9 & 21 & 264 & 7 & 70 & 90 & 1$	*	1	NUOB	= Num	ber of	observ	vations	(analyses	s) for ca	alculatio	on of AVC	ONN and S	ECONN			
$\begin{array}{c} 1998 & 4 & 8 & 98 & 3 & 0 & 5 & 6.01 & 4.83 & 4.13 & 3.09 & 4.53 & 0.91 & 31 \\ 1998 & 4 & 8 & 98 & 3 & 10 & 15 & 1.89 & 1.59 & 1.55 & 0.78 & 1.45 & 0.16 & 26 \\ 1998 & 4 & 29 & 119 & 7 & 0 & 10 & 30.43 & 10.03 & 7.58 & 6.93 & 13.74 & 5.6 & 4 \\ 1998 & 4 & 29 & 119 & 7 & 20 & 30 & 9.02 & 10.11 & 10.19 & 25.50 & 13.71 & 3.94 & 4 \\ 1998 & 4 & 29 & 119 & 7 & 30 & 50 & 13.54 & 15.16 & 9.02 & 15.89 & 13.40 & 1.54 & 4 \\ 1998 & 4 & 29 & 119 & 7 & 30 & 50 & 13.54 & 15.16 & 9.02 & 15.89 & 13.40 & 1.54 & 4 \\ 1998 & 4 & 29 & 119 & 7 & 50 & 70 & 9.24 & 11.88 & 8.04 & 11.32 & 10.12 & 0.90 & 4 \\ 1998 & 4 & 29 & 119 & 7 & 70 & 90 & 6.25 & 10.17 & 6.48 & 5.23 & 7.03 & 1.08 & 4 \\ 1998 & 4 & 29 & 119 & 7 & 00 & 100 & 6.24 & 4.40 & 5.16 & 4.72 & 5.13 & 0.40 & 4 \\ 1998 & 6 & 15 & 166 & 7 & 10 & 20 & 4.38 & 10.71 & 9.48 & 10.90 & 9.87 & 0.59 & 4 \\ 1998 & 6 & 15 & 166 & 7 & 10 & 20 & 4.29 & 2.89 & 3.68 & 2.95 & 3.45 & 0.33 & 4 \\ 1998 & 6 & 15 & 166 & 7 & 50 & 70 & 0.76 & 0.50 & 0.29 & 0.62 & 0.54 & 0.10 & 4 \\ 1998 & 6 & 15 & 166 & 7 & 50 & 70 & 0.76 & 0.50 & 0.29 & 0.62 & 0.54 & 0.10 & 4 \\ 1998 & 6 & 15 & 166 & 7 & 90 & 120 & 2.55 & 0.91 & 0.95 & 1.40 & 1.45 & 0.38 & 4 \\ 1998 & 6 & 15 & 166 & 7 & 90 & 120 & 2.55 & 0.91 & 0.95 & 1.40 & 1.45 & 0.38 & 4 \\ 1998 & 6 & 15 & 166 & 7 & 90 & 120 & 2.55 & 0.91 & 0.95 & 1.40 & 1.45 & 0.38 & 4 \\ 1998 & 8 & 10 & 222 & 7 & 00 & 10 & 8.89 & 10.15 & 7.90 & 6.24 & 8.29 & 0.83 & 4 \\ 1998 & 8 & 10 & 222 & 7 & 50 & 70 & 3.20 & 3.58 & 2.62 & 1.99 & 2.85 & 0.52 & 4 \\ 1998 & 8 & 10 & 222 & 7 & 50 & 70 & 3.20 & 3.58 & 2.62 & 1.99 & 2.85 & 0.52 & 4 \\ 1998 & 8 & 10 & 222 & 7 & 50 & 70 & 5.64 & 6.73 & 5.25 & 4.23 & 5.46 & 0.52 & 4 \\ 1998 & 8 & 10 & 222 & 7 & 70 & 90 & 1.95 & 3.08 & 2.46 & 1.46 & 2.24 & 0.35 & 4 \\ 1998 & 8 & 10 & 222 & 7 & 70 & 90 & 1.20 & 3.68 & 2.62 & 1.99 & 2.85 & 0.55 & 4 \\ 1998 & 9 & 21 & 264 & 7 & 70 & 90 & 1.20 & 4.67 & 4.20 & 2.64 & 1.46 & 2.24 & 0.35 & 4 \\ 1998 & 9 & 21 & 264 & 7 & 70 & 90 & 1.20 & 4.67 & 4.20 & 2.64 & 1.46 & 2.24 & 0.35 & 4 \\ 1998 & 9 & 21 & 264 & 7 & 70 & 90 & 1$	*							G0377G1	0000000	0000000	0000004			1000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
19988102227203013.6416.0213.3412.6713.920.7341998810222730505.64 6.73 5.25 4.23 5.460.5241998810222750703.203.582.621.992.850.3541998810222770901.953.082.461.462.240.35419988102227901203.984.334.593.033.990.344199892126470108.4613.686.628.0210.321.50101998921264710206.6211.148.323.768.311.03101998921264730508.078.767.216.168.070.74101998921264750705.354.743.536.115.000.68101998921264770903.813.162.183.473.350.51101998921264770903.813.162.183.473.350.511019989212647901204.67 <td></td>																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1998	8	10	222	7	20	30	13.64			12.67		0.73			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9		264		10		6.62								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
1998122336701021.0614.383.787.7011.733.80419981223367102020.468.386.445.9710.313.42419981223367203010.869.795.914.787.841.4741998122336730506.376.675.273.815.530.6541998122336750704.834.495.604.394.830.2841998122336770903.724.074.925.044.440.324																
19981223367203010.869.795.914.787.841.4741998122336730506.376.675.273.815.530.6541998122336750704.834.495.604.394.830.2841998122336770903.724.074.925.044.440.324	1998	12	2	336	7	0	10	21.06	14.38	3.78	7.70	11.73	3.80	4		
1998122336730506.376.675.273.815.530.6541998122336750704.834.495.604.394.830.2841998122336770903.724.074.925.044.440.324																
1998 12 2 336 7 50 70 4.83 4.49 5.60 4.39 4.83 0.28 4 1998 12 2 336 7 70 90 3.72 4.07 4.92 5.04 4.44 0.32 4																
1998 12 2 336 7 70 90 3.72 4.07 4.92 5.04 4.44 0.32 4																
	1998	12	2	336	7	90	120	2.71	3.12	3.62	4.77	3.55	0.45	4		

Annex 50 Content of ASCII file NLA00.SPP (only the first part)

*File: *Code: *Acces *Autho *Versi *Date: *Sourc	s: or: .on:	1.0 28 Dec Measur Conc	tial tindie cember 2 cements centrati	2000 by ALT lon of 1	ERRA Phospł	nate-P	&(PO4-P) i	n soil;						
*		Ande	elst, Th	ne Neth	erlan	ls								
*		Descri	ption o	of the	quanti	ities a	nd their u	nits						
*		YR	= Year											
*		MH DA	= Mont	th within	month	۰ ۲								
*		DANU					at 1 Janu	ary 199	8)					
*		NULA	= Numb	per of 1	layers	s sampl	ed							
*		UPDP LODP					the layer the layer							
*							(g m**[-3		for Sec	tion 1;				
*		_					of 4 obse							
*		COPPS2					(g m**[-3 of 4 obse			tion 2;				
*		COPPS3				-	(g m**[-3			tion 3;				
*		COPPS4	= Conc	centrat	ion of	E PO4-P	(g m**[-3	3] soil)	for Sec	tion 4;				
*				-			of PO4-P (-3] soil)				tion			
*		NUOB					(analyses					COPP		
*		-9.99	= Valu	les bel	ow the	e limit	of quanti	ficatio	n of 0.0	2 g m**[-	3] soil. B	for calcu		of
*				average get rea			ions (AVCC)PP) thi	s value	is set at	0.01 g m'	**[-3] s	oil,	
*			LU	get rea	alisti	LC aver	ages.							
* YR	MH		DANU	NULA				COPPS2	COPPS3	COPPS4	AVCOPP	SECOPP	NUOB	

1998 1998	4		119 119	7 7	0 10	10 20	0.21 0.07	0.17 0.21	0.92 0.15	0.13 0.15	0.36 0.15	0.19 0.03	4 4	
1998	4		119	7	20	30	0.09	0.10	0.27	0.34	0.20	0.06	4	
1998	4		119	7	30	50	0.04	0.16	0.03	0.05	0.07	0.03	4	
1998 1998	4 4		119 119	7 7	50 70	70 90	-9.99 0.03	0.02 0.03	0.06 0.04	0.05 -9.99	0.03 0.02	0.01 0.01	4 4	
1998	4		119	, 7	90	120	-9.99	0.04	0.07	-9.99	0.02	0.01	4	
1998	6	15	166	7	0	10	0.09	0.13	-9.99	0.11	0.08	0.03	4	
1998 1998	6 6	15 15	166 166	7 7	10 20	20 30	0.10	0.09 -9.99	0.11	0.11 0.03	0.10	0.01	4	
1998	6	15	166	7	20 30	50	0.10 -9.99	-9.99	0.10 -9.99	0.03	0.06 -9.99	0.03 0.00	4 4	
1998	6	15	166	7	50	70	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99	4	
1998	6	15	166	7	70	90	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99	4	
1998 1998	6 8	15 10	166 222	7 7	90 0	120 10	-9.99 0.11	-9.99 0.12	-9.99 0.13	-9.99 0.15	-9.99 0.13	-9.99 0.01	4 4	
1998	8	10	222	7	10	20	0.11	0.12	0.15	0.15	0.14	0.01	4	
1998	8	10	222	7	20	30	0.02	0.17	0.18	0.19	0.14	0.04	4	
1998 1998	8 8	10	222 222	7 7	30 50	50 70	-9.99 -9.99	-9.99 -9.99	-9.99 -9.99	-9.99 -9.99	-9.99 -9.99	-9.99 -9.99	4 4	
1998	8	10 10	222	7	50 70	90	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99	4	
1998	8	10	222	7	90	120	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99	4	
1998	9	21	264	7	0	10	0.12	0.16	0.15	0.25	0.16	0.02	10	
1998 1998	9 9	21 21	264 264	7 7	10 20	20 30	0.08 0.19	0.12 0.13	0.15 0.18	0.19 0.23	0.11 0.17	0.02 0.03	10 10	
1998	9	21	264	7	30	50	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99	10	
1998	9	21	264	7	50	70	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99	10	
1998	9 9	21 21	264 264	7 7	70 90	90	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99 -9.99	10	
1998 1998	9 12	21	264 336	7	90	120 10	-9.99 0.14	-9.99 0.12	-9.99 0.16	-9.99 0.19	-9.99 0.15	-9.99 0.02	10 4	
1998	12	2	336	7	10	20	0.14	0.14	0.17	0.20	0.16	0.01	4	
1998	12	2	336	7	20	30	0.17	0.16	0.19	0.18	0.18	0.01	4	
1998 1998	12 12	2 2	336 336	7 7	30 50	50 70	-9.99 -9.99	-9.99 -9.99	-9.99 -9.99	-9.99 -9.99	-9.99 -9.99	-9.99 -9.99	4 4	
1998	12	2	336	7	70	90	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99	4	
1998	12	2	336	7	90	120	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99	4	

Annex 51 Content of ASCII file NLA00.SOX

<pre>*File: *Code: *Acces *Autho *Versi *Date: *Sourc * * * * * * * * * * * * * * * * * * *</pre>	s: r: on e: Desc: NULA OR UPDP LODP CTTP(CTAL(ASC seq R.F 1.0 17 Mea 0 4 5 6 5 6 6 5 6 6 2 0 1 5 6 6 2 0 2 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	uential March 200 surements; xalic ext ndelst, ' n of the umber of rigin of = secto: = avera; pper boun ower boun ontent o:)3 s by Alter tractable The Nether quantitie layers sa soil samp c 1, 2 = s ge value c ard deviat ndery (cm foxalic e foxalic e	Phosohate clands s and their ampled ble: sector 2, of each so cion of th) of the extractabl	ir units 3 = secto bil proper le average layer layer e total P e Alumini	<pre>minium (Al) and Iron (Fe) or 3, 4 = sector 4, ty for the sectors 1 to 4 values (n=4) chosphate (mmol P kg**-1 dry soil) um (mmol Al kg**-1 dry soil) mol Fe kg**-1 dry soil)</pre>
* *NULA	OR	UPDP	LODP	CTTPOX	CTALOX	CTFEOX	
*****			******		*******	******	************
6 6	1 1	0.0 0.0	25.0 30.0	15.7 17.0	32.8 34.2	43.0 34.9	
6	1	30.0	50.0	4.3	18.7	12.9	
6	1	50.0	70.0	7.2	38.9	20.6	
6	1	70.0	90.0	6.4	41.8	20.1	
6 *	1	90.0	120.0	6.0	47.2	20.2	
6	2	0.0	25.0	18.7	36.9	44.5	
б	2	0.0	30.0	15.6	31.8	37.6	
6	2	30.0	50.0	6.8	40.0	27.1	
6	2	50.0	70.0	8.6	46.4	17.8	
6 6	2 2	70.0 90.0	90.0 120.0	6.2 7.0	38.3 37.7	18.0 17.9	
*	2	20.0	120.0	7.0	57.7	17.9	
б	3	0.0	25.0	20.3	42.5	46.7	
6	3	0.0	30.0	18.3	34.9	39.2	
6 6	3 3	30.0 50.0	50.0 70.0	8.4 7.8	40.5 43.0	24.3 24.2	
6	3	70.0	90.0	7.8	38.4	24.2	
6	3	90.0	120.0	7.6	42.7	23.3	
*							
6 6	4 4	0.0	25.0 30.0	18.7 22.8	33.4 37.6	32.0	
6 6	4 4	0.0 30.0	50.0	8.4	37.6	37.4 24.8	
6	4	50.0	70.0	8.4	50.2	30.5	
6	4	70.0	90.0	6.0	41.3	13.7	
6	4	90.0	120.0	6.2	44.8	15.1	
* 6	5	0.0	25.0	18.4	36.4	41.5	
6	5	0.0	30.0	18.4	34.7	37.3	
6	5	30.0	50.0	7.0	34.5	22.3	
6	5	50.0	70.0	8.0	44.6	23.3	
6	5	70.0	90.0	6.5	39.9	18.4	
б *	5	90.0	120.0	6.7	43.1	19.1	
б	б	0.0	25.0	1.9	4.5	6.5	
6	6	0.0	30.0	3.1	2.4	1.8	
6	6	30.0	50.0	1.9	10.6	6.4	
6	6	50.0 70.0	70.0 90.0	0.6	4.8 1.9	5.5 3.6	
6 6	6 6	70.0 90.0	90.0 120.0	0.7 0.8	4.0	3.6 3.5	
0	0	20.0	120.0	0.0	1.0	5.5	

Annex 52 Content of ASCII file NLA00.STP

*File: *Code: *Access *Authoo *Versic *Date: *Source * *	r: on:	NLA00.STP ASCII Sequential R.F.A. Hendriks 1.0 28 December 2000 Measurements by ALTERRA Concentration of Total-P in soil; Andelst, The Netherlands												
*		Descri	ption	of the	quant	ities a	and their a	units						
*		YR	= Yea		-									
*		MH	= Mo:	nth										
*		DA = Day within month												
*		DANU = Day number (value is 1 at 1 January 1998)												
*		NULA = Number of layers sampled												
*		UPDP = Upper boundary (cm) of the layer												
*		LODP = Lower boundary (cm) of the layer												
*		COTPS1 = Concentration of Total-P (g m**[-3] soil) for Section 1;												
*		at 21-09-1998: average of 4 observations;												
*		COTPS2 = Concentration of Total-P (g m**[-3] soil) for Section 2;												
*		at 21-09-1998: average of 4 observations;												
*		COTPS3 = Concentration of Total-P (g m**[-3] soil) for Section 3; COTPS4 = Concentration of Total-P (g m**[-3] soil) for Section 4;												
*		AVCOTP = Average Content of Total-P (g m**[-3] soil) for section 4,												
*		SECOTP = Standard error (g m**[-3] soil) of the average concentration												
*		NUOB = Number of observations (analyses) for calculation of AVCOTP and SECOTP												
*		-9.99 = Values below the limit of quantification of 0.02 g m**[-3] soil. For calculation of												
*		the average concentrations (AVCOTP) this value is set at 0.01 g m**[-3] soil,												
*		to get realistic averages.												
*														
*														
* YR	MH		DANU	NULA	UPDP	LODP	COTPS1	COTPS2	COTPS3	COTPS4	AVCOTP	SECOTP		

1998	9	21	264	7	0	10	0.39	0.20	0.18	0.56	0.32	0.08	10	
1998 1998	9 9	21 21	264 264	7 7	10 20	20 30	0.93 1.51	0.97 1.07	0.89 1.01	1.43 1.03	0.99 1.24	0.09 0.22	10 10	
1998	9	21	264	7	30	50	0.13	0.11	0.10	0.09	0.12	0.22	10	
1998	9	21	264	7	50	70	0.13	0.07	0.05	0.13	0.07	0.01	10	
1998	9	21	264	, 7	70	90	0.03	0.05	0.07	0.07	0.05	0.01	10	
1998	9	21	264	7	90	120	0.04	0.04	-9.99	0.07	0.04	0.01	10	
1998	12	2	336	7	0	10	0.03	-9.99	0.03	0.08	0.04	0.02	4	
1998	12	2	336	7	10	20	0.19	0.11	0.15	0.19	0.16	0.02	4	
1998	12	2	336	7	20	30	0.14	0.11	0.05	0.26	0.14	0.04	4	
1998	12	2	336	7	30	50	0.05	-9.99	-9.99	-9.99	-9.99	0.01	4	
1998	12	2 336 7 50 70 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 4												
1998	12													
1998	12													
1999											4			
1999		4 20 475 7 10 20 0.09 0.08 0.18 0.17 0.13 0.03 4												
1999	4	20	475	7	20	30	0.11	0.13	-9.99	0.18	0.14	0.02	3	
1999	4	20	475	7 7	30	50	0.08	0.07	0.09	0.09	0.08	0.01	4	
1999 1999	4 4	20 20	475 475	7	50 70	70 90	-9.99 -9.99	-9.99 -9.99	-9.99 -9.99	-9.99 -9.99	-9.99 -9.99	-9.99 -9.99	4 4	
1999	4	20 20	475 475	7	70 90	90 120	-9.99 -9.99	-9.99	-9.99	-9.99	-9.99	-9.99	4	
	-	20	110	'	20		2.22	2.22			2.22	2.25	-	

Annex 53 Content of ASCII file NLA00.STE (only the first part)

*File: *Code: *Acces: *Author *Versic *Date: *Source *	ASC s: seq c: L.J on: 1.0 15 e: Mea Da	uentia .T. va March sureme ily sc	n der 2001 nts by pil tem	ALTERI		chree dep	ths & d	aily air	r tempera	atures		
* * * *	Registration started on 9 January 1998 at 00.00 h and ended on 2 May 1999 at 24.00 h. Minimum and Maximum air temperatures for the periods 13 to 29 April 1998 and 16 to 21 September were taken from the weather station 'Haarweg' at Wageningen at 10 km distance.											
* * * *	Description of the quantities and their units YR = year MH = month DA = day within month DANU = day number (value is 1 at 1 January 1998)											
* * * *	AITEAV = average air temperature (deg. Celcius at 1.5 m height)AITEMI = minimum air temperature (,,AITEMA = maximum air temperature (,,SOTE1 = daily average soil temperature (deg. Celcius) at 0.05 m depthSOTE2 = daily average soil temperature (deg. Celcius) at 0.50 m depth											
 SOTE3 = daily average soil temperature (deg. Celcius) at 1.0 m depth * * * YR MH DA DANU AITEAV AITEMI AITEMA SOTE1 SOTE2 SOTE3 ************************************												
1998 1998 1998 1998 1998	1 1 1 1	9 10 11 12 13	9 10 11 12 13	10.2 7.0 5.5 7.2 6.9	7.3 4.9 0.1 5.1 2.6	11.7 10.5 10.0 10.4 9.6	8.3 6.2 4.5 5.6 5.4	6.7 7.0 6.8 6.4 6.4	7.0 7.1 7.2 7.2 7.2			
1998 1998 1998 1998	1 1 1 1	14 15 16 17	14 15 16 17	8.2 6.5 7.0 5.0	5.1 3.9 5.4 2.5	10.0 8.6 8.7 6.6	6.6 5.5 6.4 4.8	6.4 6.5 6.5 6.5	7.1 7.1 7.1 7.2			
1998 1998 1998 1998 1998	1 1 1 1 1	18 19 20 21 22	18 19 20 21 22	4.8 5.2 3.0 0.3 -0.5	3.5 1.8 1.6 -1.5 -1.4	6.0 6.8 4.3 1.4 0.5	4.5 5.1 3.7 2.5 1.5	6.3 6.1 5.9 5.6 5.2	7.2 7.1 7.0 7.0 6.8			
1998 1998 1998 1998 1998	1 1 1 1 1	23 24 25 26 27	23 24 25 26 27	0.2 1.9 0.6 -1.8 -3.4	-1.6 0.3 -1.2 -4.5 -7.2	1.2 3.5 2.0 1.2 1.1	1.1 1.8 1.7 0.8 0.2	4.7 4.2 4.1 3.9 3.6	6.7 6.5 6.2 6.0 5.8			
1998 1998 1998 1998	1 1 1 1	28 29 30 31	28 29 30 31	0.8 1.2 2.3 0.0	-0.9 0.6 0.8 -4.4	2.0 2.2 3.4 3.3	0.4 0.9 2.4 2.1	3.4 3.2 3.2 3.4	5.7 5.5 5.2 5.2			
1998 1998 1998 1998 1998	2 2 2 2 2	1 2 3 4 5	32 33 34 35 36	-5.1 -3.7 1.0 0.8 2.7	-8.0 -10.5 -1.0 -2.6 0.0	-2.3 1.6 3.7 4.8 6.2	0.5 -0.4 0.3 0.3 0.3	3.4 3.2 2.9 2.7 2.6	5.2 5.1 5.0 4.9 4.7			
1998 1998	2 2	6 7	37 38	4.5 2.4	2.8 0.6	6.9 5.5	2.2 1.8	2.5 2.9	4.6 4.4			

Annex 54 Content of ASCII file NLA00.SWR (only the first part)

<pre>*File: *Code: *Access: *Author: *Uersion: *Date: *Source: * * * * * * * * * * * * * * * * * * *</pre>	R.F.A. Hendriks									
*	PSHD) = Pre	ssure	head	d (cm);	negativ	e values i	Indicate s	suction	
*	MOFF	R = Vol	ume fr	act	ion of	liquid (cm**[3] cr	n**[-3])		
*										
	PDP LO				NUMP	PSHD	MOFR			
								********	******	* * * * * * * * * * *
6	11	19	2	1	492	-6.2	0.401			
6	11	19	2	1	492	-6.8	0.401			
6	11	19	2	1	492	-7.3	0.401			
6	11	19	2	1	492	-7.8	0.401			
6	11	19 10	2	1	492	-8.6	0.401			
6	11	19 10	2	1	492	-8.2	0.401			
6 6	11 11	19 10	2 2	1 1	492 492	-8.9	0.400			
6	11	19 19	∠ 2	1	492 492	-9.2	0.400			
6	11	19 19	∠ 2	1	492 492	-9.4 -9.7	0.400 0.400			
6	11	19 19	∠ 2	1	492 492	-9.7	0.400			
6 6	11 11	19 19	2 2	1	492 492	-10.1 -10.2	0.400			
6	11	19	∠ 2	1 1	492 492	-10.2	0.399 0.399			
6	11	19	2	1	492	-10.4	0.399			
6	11	19	2	1	492	-10.5	0.398			
6	11	19	2	1	492	-9.7	0.398			
6	11	19	2	1	492	-10.7	0.398			
6	11	19	2	1	492	-10.2	0.397			
6	11	19	2	1	492	-10.8	0.397			
6	11	19	2	1	492	-10.6	0.397			
б	11	19	2	1	492	-10.9	0.397			
б	11	19	2	1	492	-11.1	0.397			
б	11	19	2	1	492	-11.5	0.396			
б	11	19	2	1	492	-11.1	0.396			
б	11	19	2	1	492	-11.0	0.396			
6	11	19	2	1	492	-11.9	0.396			
б	11	19	2	1	492	-11.1	0.396			
б	11	19	2	1	492	-11.1	0.396			
б	11	19	2	1	492	-12.2	0.396			
6	11	19	2	1	492	-12.6	0.396			
6	11	19	2	1	492	-11.2	0.396			
б	11	19	2	1	492	-12.9	0.395			
6	11	19	2	1	492	-13.2	0.395			
6	11	19	2	1	492	-11.4	0.395			
6	11	19	2	1	492	-12.2	0.395			
6	11	19	2	1	492	-13.4	0.395			
6	11	19	2	1	492	-11.5	0.394			
6	11	19	2	1	492	-12.5	0.394			
6	11	19	2	1	492	-13.7	0.394			
6	11	19	2	1	492	-11.7	0.394			