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PROPOSITIONS

(1) The progress being made towards the ultimate goal of antomated change
detection and feature extraction should be complemented by an automation
of database updating and consistency enforcement.

- This thesis

@ Terrain cbjects are often spatially coincident; this spatial coincidence should
be explicitly represented in a spatial data model to have richer information
content and faster query realisation.

- This thesis

()] The current practice of delayed reconstruction of topology (after database
updating) should be replaced with an automatic reconstruction (during
updating) to facilitate on-line updating of a spatial database from a (remote)
data acquisition centre.

- This thesis

) An information system loses its reliability once information retrieved from
it is identified as being inconsistent; thus the reliability of the system should
be enhanced throngh the provision of automated procedures for monitoring
and enforcing data consistency.

- This thesis

(5 The subject of automated techniques for map revision and database updating
requires serious attention now that more and more organizations have
completed database construction and are faced with the task of maintaining
these databases with current information,

- 1994 ISPRS Annual Report

6 A GIS will be successful only if it can present the user with an accurate,
consistent and current view of the world as required for his application.
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(8

9)

(10)

1)

(12)

(13)

data consistency in vector GIS

When developing a generic spatial data model, the complexity of a terrain
object (in terms of shape) cannot be predefined (except for application-
specific models); thus the most feasible approach is to model ¢lementary
objects which can then be used as building blocks for complex objects,

An individual without information cannct take responsibility; an individual
with information cannot help but take responsibility.
- Jan Carlson, CEQ, Scarndinavian Air Systems

Stable democracy cannot be realised until the society is ready to invent its
own form of democracy that is rooted in its own realities.

QOuly creative, rather than emulative, socio-political theories can lead to
progress of developing nations.,

The less developed world wiil not become developed through the goodwill
or generosity of the developed powers; it can only become developed
through a struggle against the external forces which have a vested interest
in keeping it undeveloped.

- Kwame Nkrumah, First Posi-independence President of Ghana (1957 -
1966).

The man dies in him who keeps quicet in the face of tyranny.
- Wole Soyinka, 1986 Nobel Laureatte for Literature, in "The Man Died"

You don’t need a good memory if you always speak the truth.




To Taiwo, Mayowa, Dunni and Ope




ABSTRACT

Kufoniyi, 0., 1995. Spatial coincidence modelling, automated database updating and data
consistency in vector GIS. PhD Thesis, Department of Surveying and Remote Sensing,
Wageningen Agricultural University, The Netherlands, 206 pp

This thesis presents formal approaches for automated database updating and consistency
control in vector-structured spatial databases. To serve as a framework, a conceptual data
model is formalized for the representation of geo-data from multiple map layers in which a
map layer denotes a set of terrain objects of the same mapping context, e.g., cadastral, soil
mapping, etc. The necessity for a generalised model arises from the frequent requirement in
spatial analysis and planning for a geometric integration of several different views of the
world, whereas most existing data models were designed from the perspective of a "single
application”, leading to ad hoc and repeated overlay computations (during query processing)
when dealing with an integrated analysis. An alternative model is therefore proposed in this
thesis for the geometric integration of geo-data from multiple map layers. The proposed model
is an object-based, query-oriented 2.5D data model for multi-valued vector maps (DMMVM).

A multi-valued vector map refers to the vector-based representation of terrain objects from
multiple map layers whereby two objects of the same geometric type may be spatially
coincident. Two objects of the same type are spatially coincident if they (partially) overlap
in space. In this model, positions of objects are defined in a 3D metric space but embedded
in 2D topologic space. The model is based on the 2D formal data structure (FDS) for single-
valued vector maps.

Terrain objects play a central role in the terrain description; each object has a thematic
component and a geometric component. In the thematic domain, the objects can be grouped
into thematic classes in which each class has a specific atmbute structure, and in the
geometric domain the object types (points, lines and areas) are distinguished for a 2D or 2.5D
terrain description.

A geometric data type -- the m-dimensional container, or simply m-container, where m €
{0,1,2} -- is then introduced to model spatial coincidence among objects of the same
geometric type. By introducing the container data type, overlapping sections across the layers
are uniquely identified such that they have their own individual geometric data and non-
spatial data, apart from those inherited from the overlapping objects; they can then be main-
tained and manipulated by the DBMS just like single objects. Using graph theory as a
mathematical tool, the three container types are then represented by the topologic primitives
arc and node. A node defines one O-container and/or the beginning or end of an arc, while
an arc defines (part of) one 1-container and/or (part of) the boundary of a 2-container. The
arc is defined by one start node and one end nede, and a node is defined by a coordinate
triplet X,Y,Z. A flexible integration of the model with a DTM is also presented in the thesis,
using an edge-based TIN. Two primitives of the edge-based TIN (edge and vertex) are added
to the data types of the DMMVM to define the integrated model.

Research and development on the updating of geo-information have becn confined mainly to
the aspects of data collection and change detection, with little emphasis on the corresponding
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automated propagation of the updating in the database in a consistent manner. To address the
latter aspect, procedures are formulated in the thesis for a consistent automated updating of
a vector-structured database, using the DMMVM as a framework. Algorithms are provided
for the automated update propagation such that topology is antomatically updated by the
system, while maintaining structural and semantic consistency. This will improve on the
current practice in operational systems, which usually requires a delayed reconstruction of
topology whenever there is a geometric change in the database. Algorithms are developed for
the insertion, deletion or modification of each of the eight data types (area, line, point, 2-
container, 1-container, O-container, arc and node) in the DMMVM. The human operator
interacts with the system at the object-level, while the system propagates the update. The
topology of the database is updated dynamicaily by the system by evaluating, using
computational geometry, the topologic relationship between the new primitive (arc or node)
of an object and the existing primitives in the database. The type of relationship detected will
then activate the relevant consistency rule (including update propagation) to validate the
topology and consistency of the database. The system alerts the human operator if it is not
possible for it to resolve the inconsistency.

To enforce data consistency during geometric updating of the database, consistency rules are
defined to ensure structural consistency, while a monitoring strategy is formulated for
semantic (application-dependent, topologic) constraints. In both cases, topology plays the
central role as an "alerter” of constraint violations. Thus the possible topologic relationships
among the three elementary object types (area, line and point), and among the geometric
primitives (arc and node) in the DMMVM are formalised and algorithms are defined for
detecting the occurrence of any of the elementary relationships for any object combination.
Then the consistency constraints can be translated to topologic relationships and stored in the
database as events, and the corresponding responses of the system to enforce consistency can
be defined as actions, thus giving a rule-based procedure (using the if event then action
convention) for the management of data consistency in spatial databases.

The DMMVM was translated into a relational database structure and an object-oriented
database structure to facilitate implementation in a variety of systems. The object-oriented
data structure and the consistency rules and algorithms were tested experimentally using
Postgres, an extended relational database management system. Data were acquired using the
Kork digital mapping system, on a Planicomp C120 photogrammetric stereoplotter equipped
with a Zeiss Videomap and a Caicomp drawing board digitizer.

The thesis concludes with an evaluation of the proposed model and an outline of areas
requiring further investigations.

Keywords: geographic information system, spatial coincidence, geometric data integration,
data modelling, topologic relationship, consistency rule, database updating.
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INTRODUCTION

1.1 Information System and Geoinformation Production

Information systems (IS), in general, have been widely accepted as efficient tools for the
collection, storage and analyses of various kinds of data and for decision making.

The general concept of the system can be schematically described by Figure 1.1
{(Wintraecken, 1985; Molenaar, 1991b).

In the diagram, "environment"
represents the users (persons,
machines and other information
systems) and the real world pro-
cesses that interact with the
system. The ‘"information
processor” serves as an interface
between the environment and
the information base. Through
it, the system communicates
with the environment to receive
data to be stored in the
information base as well as the
requests of users for information
from the system. In response to
these requests, it retrieves
requested information from the base and supplies it to the user. The "grammar" gives the rules
for the allowable states of the information base and its state transitions. It therefore guides
the information processor in its processes and behaviour.

Figure 1.1 A Conceptualized description of information
system

Relating this general concept of an information system to geographic application, which is
then referred to as a geographic information system (GIS), in the "information base" will be
a structured digital spatial database, the "grammar" will be the rules and algorithms to guide
data input and update and information retrieval from the database while the "environment”
represents the users in the wider sense of it (persons and other GISs). The "information
processor” is, in general, a collection of four interrelated software subsystems respectively
performing the following four functions, namely data collection and input, data storage and
retrieval, data manipulation and analysis, and visnalization and reporting. In other words, the
information processor contains the database management system (DBMS) plus the other appli-
cation software. The spatial database represents the real world objects as seen by an
application. Its design often evolves through the hierarchic processes of conceptualization of
reality in 2 data model, the structuring of this model in a computer-representable format, and
the design of a file structure for the storage of the structured data. The information content
of a database depends therefore on the data model. Obviously, information that has not been
represented in the model, either explicitly or implicitly, cannot be retrieved from the database.
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Consequently, database designers have always placed much emphasis on data modelling. A
common trend, however, is that the data models are often developed for specific tasks even
within a discipline.

A high percentage of the cost of operationalizing GIS for gevinformation production is
attributed to data collection; hence it must be ensured that the quality of the data meets the
technical specifications of the project. The database reflects the "reality” of an application at
a specific time, eg., at the time of aerial photography if acquisition is done by
photogrammerric method of data collection. However, the database is supposed to be reusable
for spatial planning and decision making; thus it must be up-to-date and consistent.
Unfortunately, the termain objects to be represented in the database are generally not static in
time. Therefore the database should be made to efficiently respond to object dynamics through
updating. And because the updating may disturb data consistency, rules should be provided
to guide the system and human operator during the updating. Some of the outstanding
problems in the acquisition and modelling of spatial information that will be addressed in this
thesis are discussed in the following section.

1.2 Need for the Study

Geographic information systems provide the means for a variety of users to handle spatial
data in a wide range of applications. As mentioned above, at the heart of the system should
be a swuctured spatial database representing terrain objects of interest. Because different
applications normally view terrain situations differently, the data model on which the database
design is based is usually tdilored to an application. At the same time, the system offers the
opportunity to bring together hitherto separate disciplines, thus facilitating integrated analysis
of spatial data. For example, it is possible to integrate cadastral information, land uvse data and
soil data in the database. Conventionally, each of them would be regarded as separate
mapping themes and produced as such because of the limitations of traditional map-making
technology. This traditional spatial reasoning, otherwise called the "layer approach”, has been
carried into the digital era, in which most operational GI systems operate on the principles
of layers.

*To integrate the three themes mentioned above, each theme would be modelied as a layer and
the three layers would be intersected by overlay computation during query processing. Apart
from the high overhead cost necessitated by the ad-hoc overlay computations, a lot of
redundant data are collected and stored (e.g., common geometry will be collected and stored
in each layer). Furthermore, one of the advantages of defining a data model for database
design is that the information content of the database system built on that model can be
formalized a priori and a spatial query language developed for the rewieval of such
information. However, if the model is designed for a single layer, the above will hold only
for that layer.

In other words, the information content of an integrated database can be predetermined only
by first defining a data model that can handle spatial coincidence among terrain objects (i.e.,
that is capable of representing multiple layers). In this thesis, two objects are said to be
spatially coincident if they partly or fully share the same location in space. "Normal" spatial
coincidence among objects, such as two objects sharing the same boundary or a line object
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passing through an area object (in the vector domain), are normally taken into consideration
even in the layer models. But they normally exclude the overlapping of two or more objects
of the same geometric type, e.g., two collinear line objects, which unfortunately do exist in
reality. This deficiency in the presently available spatial data models should be eliminated to
derive more benefits from the capabilities of GIS.

Apart from the modelling aspect, maintaining the quality and currency of a spatial database
is also very important. The maintenance includes how to keep the database up-to-date and
consistent. With the advances in research and development in the fields of pattern recognition
and automatic feature extraction in digital photogrammetry and image processing, and in
digital field survey equipment, the total process of data collection for geo-information
production may be automated by also providing a dynamic update propagation facility with
a "topology builder" and the means for enforcing consistency rules. For instance, when a new

- object is digitized, using for example on-screen digitizing, it should not be necessary for the
operator to construct topology off-line (by activating a separate program); rather the system
should be able to reconstruct topology on-line and to propagate the update while enforcing
data consistency. With the assistance of computational geometry, building topology on-line
should not pose much of a problem if the consistent topologic relationships among objects
represented in the data model are formalized beforehand, something which is generally
lacking in many existing spatial data models.

Maintaining data consistency in a spatial database requires major attention because the
database loses its reliability once inconsistent information is retrieved from it, e.g., getting
different values for the length of the same road. At the moment, no operational system wams
the user when (for example) two land parcels erroneously overlap in a cadasmal database;
instead the system, where there is provision for topology building, simply decomposes the two
overlapping parcels into three. The reliability and performance of the system will increase
through the provision of a strategy for the on-line monitoring of such (in)consistencies. It will
even minimize the cost of data acquisition because it will be possible to warn the operator
immediately that a consistency violation occurs such that remeasurement can be done in the
case of erroncous digitizing. Take, for example, a situation in which a national cadastral
database is set up on a main server at the headquarters, and field offices are established for
data collection by field surveyors for the updating of the database. With the availability of
electronic equipment such as the "Total station" (for measurement), and the "Modem™ (for
transmission), the field surveyor can transmit the measured data, in real time, to the main
server. If an automated update propagation facility with consistency rules is provided on the
main server, the transmitted data will be entered into the database and the system can
automatically propagate the update with the possibility of a feed-back to the field officer if
there is any violation of consistency (such as a new parcel overlapping an existing one).
Should the violation be caused by incorrect measurement, the surveyor can immediately repeat
the measurements while still on the site, thereby saving the cost of a revisit to the site which
may be in a remote place. Of course, this example holds for other data acquisition methods
as well.

The problems identified above do not constitute an exhaustive research overview, but rather
the presentation of some of the critical areas in vector-based GIS that will be given priority
in this research project. These are presented as the objectives of this thesis in the next section.




L.3 Objectives of the Thesis

The objectives of this research are:

- To formalize a 2.5D vector data model that is capable of handling spatial coincidence
among terrain objects, i.e., for the integrated representation of muiti-layer geo-data.

- To formalize the basic set of consistency rules for the developed model for the creation and
updating of its database.

- Since terrain objects are not static in time, there is a need to analyze and model the effects
of object dynamics on the database; hence the third objective is to analyze terrain object
dynamics, define their effects on the database structure and consequently propose rule-based
algorithms for the dynamic updating of the database in response to changes in physical terrain
{focusing mainly on the geometric domain).

- To translate the integrated model 1o a prototype database structure for implementations.
1.4 Research Method (see Figure 1.2)

To fulfil the aforementioned objectives, the research tasks are divided into four phases as
described below:

Phase 1: Conceptual Data Modelling

With the availability of many existing vector data models, it is not necessary to start from the
scratch. Thus a review of some of the existing models is made in order to select one that can
be extended to cover representation of a multi-layer terrain situation. In addition, the
mathematical theory that forms the framework of the selected model is reviewed. By
analyzing the basic data types in the selected model, including the functional links among
these data types, we can generalise the model probably by adding extra data types. This
results in a 2.5D data model for vector GIS in which terrain objects from more than one map
layer can be represented. This model is referred to as the data model for multi-valued vector
map (DMMVM) to indicate representation of multi-layer geo-data. Intuitively, the formal data
structure (FDS) for single-valued vector maps (SYVM) (Molenaar, 1989) seems to be the best
candidate for the generalisation.

Because of the importance of DTM in geoinformation praduction and with the absence of full
3D GIS, coupled with the fact that the positions of objects are already defined in 3D in the
above-mentioned 2.5D model, a compatible digital elevation data structure is selected and
integrated with the proposed data model.

In preparation for the second and third phases, the topologic relationships among the basic
data types in the proposed data model are formalized. The relationships are derived at two
levels, namely at the object level i.e., among the elementary object types and at the level of
the geometric primitives i.e., among the geometric primitives. These relationships, apart from
their use in the formulation of spatial query language, are used as tools for maintaining data



consistency and for update
propagation in this thesis.

Phase 2 Formalization of
Consistency Constraints and
Rules

The second phase of the

research deals with the

identification of the basic static
consistency constraints that are
associated with the proposed
data model to ensure the
correctness of the database
(after initial set-up and after
updating), e.g., ensuring that
two nodes do not have the same
coordinates, that each node
appearing in the boundary of a
closed area object has exactly
two incident arcs of the object
(i.e, has degree 2 in graph
theory), etc.

The identified constraints. are
then translated 1o formal
consistency rules making use of
the formalized topologic
relationships. The monitoring
and enforcement of the rules are
based on the conventional if
event then action procedure
where the event represents the
occurrence of an inconsistent
topologic relationship and action
represents the operation to be
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Figure 1.2 Diagram showing the framework of the

research

activated by the system to ensure consistency.

Phase 3: Object Dynamics and Database Updating

This phase deals with the analysis and modelling of terrain object dynamics and formalization
of algorithms for database updating, The main concentration is on the geometric structure of
obiects. Procedures are provided for the propagation of the insertion, deletion or modification
of each of the basic data types in the proposed model. The procedures are amanged in a
hietarchic manner with the procedures for updating of the geometric primitives of the model
serving as the basic set on which the updating of the other data types is based. The aim is that
the user has to operate at only the object level with the system taking care of the database re-

structuring in real-time.




Phase 4: Database Structure and Implementation

Before the data model can be implemented, it has to be translaied to a database structure.
Various data structures are available for handling data in a database, e.g., network, hierarchic,
relatonal and cbject-oriented data structures. The relational structure is the most popular but
it has shoricomings in the handling of spatial data (Date, 1990). The object-oriented structure,
on the other hand, has been recommended for spatial data handling (Alagic, 1989; Hughes,
1991) but operational systems that use this structure are still few. The gap-bridging solution
is the so-called evolutionary approach (Beech, 1988) in which object-oriented concepts are
added on top of a relational model, e.g., Postgres (Postgres, 1994), Thus an object-oriented
implementation can be done in one of two ways (see Figure 1.2): (1) by using an extended
relational system (e.g., Postgres and Iris), popularly called "evolutionary approach" or (2) by
using a "pure” object-oriented system (e.g., Ontos) or building one from the scratch by
programming using an object-oriented programming language, ¢.g., C++ and Smalltalk; this
is popularly referred to as the "revolutionary approach”.

The implementation of the proposed data model is based on the evolutionary approach to
object-oriented database design, Consequently, the data model is translated to a
fully-normalized relational database structure using Smith’s normalization method (Smith,
1985), such that interested users can implement the prototype in either a relational system or
an extended relational system. The data model is then mapped into an object-oriented data
structure with appropriate definition of classes, including the identification of the properties
and operations (or methods) of each class.

For the experimental implementation, a selection is made of the data collection subsystem and
the database management subsystern. The main guiding criteria are (1) a stereo-
photogrammeinc data acquisition method is preferred because it still accounts for the most
accurate and fastest data collection for high- and medium-resolution spatial databases (akin
to large- and medium-scale mapping) and because of the background of the author; (2) an
extended relational (evolutionary object-oriented) database management system is preferred
because of the availability of a standard query language, thus minimizing programming tasks
required in the pure object-oriented approach. For data collection, the Planicomp C120 with
Yideomap superimposition facility is selected, using the Kork Digital Mapping Software
version 8.0 for the digital compilation of terrain objects. And for database management, the
Postgres DBMS version 4.2 is used.

The specific tasks performed during implementation include

- mapping of the object-oriented data structure to the Postgres data model

- preparation for data collection (selection of the data sources (e.g., aerial photographs),
preparation of system configuration (hardware and software), etc)

- data collection and input

- consistency checks on the created database

- sample database updating.

The experiment is then evaluated and conclusions made.



1.5 Limitations of the Study

As reflected in the thesis title, this study is generally limited to vector representation of terrain
objects. Although spatial coincidence modelling implies data integration, only the geometric
aspect of the integration is covered; however, the thematic attributes of the new object
resulting from the spatial coincidence of two or more objects can be derived by propagation
from the atiributes of the coinciding objects.

Although updating of geo-data includes change detection, data collection and database
updating, the main focus of the thesis is on the last aspect, covering the propagation of an
update resulting from the insertion, deletion or modification of objects in the database.

In order to formalize rules for data consistency in this study, the integrity constraints are
analyzed into two groups: static and dynamic constraints. The former relates more to the
structure and semantics of the embedding data model while the dynamic integrity constraints
deal mainly with the allowable transitions from one database state to another (i.e., transaction
management, etc). We focus more on the static constraints in this research because the
dynamic constraints are more related to the systemn environment.

1.6 Organization of the Thesis

This thesis is arranged as follows. A review of some of the concepts and literature related to
this research is made in chapter 2, The formalization of the data model for representing muia-
layer geo-data is described in chapter 3. It also includes the description of an approach for
integrating the formalized model with the edge-based triangulated irregular network (TIN)
structure to enable a flexible integration of a digital terrain model (DTM) with other geo-data.
Because topologic spatial relationships play important roles in the procedures proposed in this
thesis for maintaining data consistency and for database updating, chapter 4 is devoted to the
modelling of topologic relationships in vector maps, including the formulation of an algebra
for detecting the existing relationships between any two elementary objects in the database.
In chapter 5, consistency rules are formalized for ensuring the integrity of a vector-structured
database. These consistency rules are used in chapter 6 as part of the formalized algorithms
for update propagaticn during database updating. For implementation purposes, the proposed
data model is translated to both relational and object-oriented data structures in chapter 7.
Two examples of the experimental implementation of the relational structure are given in this
chapter. The implementation of the object-oriented data structure in Postgres, using
photogrammetric data acquisition method, is described in chapter 8. Examples of database
updating with automatic enforcement of data consistency are also given in this chapter. The
thesis ends with some conclusions in chapter 9.



2

SPATIAL DATA MODELS AND STRUCTURES

The organization of spatial data in computer systems has received a considerable attention in
the field of GIS. In a simplified form, we are interested in knowing what is where and when,
as depicted in Figure 2.1a, using a field-based or an object-based concept of the "real world".
The field-based approach conceptualizes "reality” as a "non-empty" space composed of a
tiling of area units in which thematic data are recorded for each unit, while the object-based
concept views "reality” as an "emnpty"” space filled by individual terrain objects (Ehlers et al,
1989; Goodchild, 1992). On the basis of the object-based concept, we are thus concerned with
an abstraction process involving the handling of terrain objects (what), location (where) and
time (when), and the relationships among them (see Figure 2.1b). To simplify the abstraction
process, one of the three domains is usually kept fixed, one is pre-defined and the third is
measured or observed. In the mapping disciplines, time is often kept constant (except in
spatio-temporal modelling where it is an important variable), an assumption that will be
adhered to in this thesis.

The decision as to which of the other @
two is pre-defined and which is to be

measured then depends on the pre-

ferred mode of geometric representa-

tion, whether "tessellation”, in which

location is pre-defined by partitioning

the space into regular or irregular units

and observing and recording the entity

occurring in each unit, or "vector” in

which the entity is predefined and its (a) General
location measured. Thus before we can

organize spatial data in a computer Figure 2.1 Domains of spatial data modelling
system, we first have to identify and

formalize the elements of the above-mentioned domains, usually with respect to one or more
applications. In order to achieve this task, different levels of data abstraction (or data
modelling) are ofien recognized. We will adopt the four levels proposed by Peuquet (1984),
namely:

(1) Reality - phenomena as they actually exist, including all aspects which may or may not
be perceived by individuals;

(2) (Conceptual) Data model - an abstraction of the real world which incorporates only those
properties thought to be relevant to the application or applications at hand, usually a human
conceptualization of reality;

(3) Data structure - a representation of the data model often expressed in terms of diagrams,
lists and arrays designed to reflect the recording of the data in computer code;

(4) File structure - the representation of the data in storage hardware.

The last three constitute the major steps involved in database design and implementation; thus
they have received much attention in the field of GIS in order to define appropriate
representations of terrain objects in the spatial database.
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Comprehensive treatments of these modelling steps, including examples of the data models
and structures, can be found in Peucker and Chrisman (1975}, Nagy and Wagle (1979}, Ahuja
(1983), Peuguet (1984), Burrough (1986), Samet (1989) and Oosterom (1990). An overview
of some of these data models and structures is the focus of this chapter. Special attention is
given to the vector representation, being the choice for geometric representation in this thesis.
In §2.1, an overview of geometric models of spatial data is presented, while §2.2 focuses on
conventional database structures. In §2.3, a new modelling approach in spatial applications,
object-oriented data modelling, is reviewed. The object-oriented approach has been
recommended for the modelling and management of spatial data (Date, 199(; Hughes, 1991;
Egenhofer, 1992). Despite the acclaimed suitability of the object-oriented approach for spatial
data handling, the method also has some deficiencies, especially the absence of a mature
standard query language in which the relational structure has gained its popularity, maturity
and reliability. Thus a database system which combines the benefits of the relational and the
object-oriented structures is now being considered as more suitable than either of the two.
This approach, calied an object-refational database system (Stonebraker, 1994), is briefly
discussed in §2.4, where some implementation issues concerning the object-oriented structure
are treated. Concluding remarks are given in §2.5.

2.1 Geometric Models of Spa-
tial Data

A spatial data model is a human
conceptualization of reality (z given
geographic space including all the
entities embedded in that space, other-
wise called "universe of discourse"
UCD). The formalization is normally
done without consideration of hard-
ware and other implementation con-
ventions (Peuquet, 1984; Egenhofer
and Hering, 1991). A commonly Figure 2.2 Basic structure of terrain object in a
employed approach in spatial daa GIS

modelling is to separate the data into

geometric and non-geometric data. In other words, having assumed time to be constant, the
terrain objects to be represented in a data model are characterised by their geometric data and
their (non-spatial) atribute data, as shown in Figure 2.2 (Molenaar, 1989). The geometric data
are further classified into locational data, spatial relationships and the shape and size of the
object (see Figure 2.3).

Traditionally, the thematic and geometric components of terrain objects are modelled and
presented for analysis by means of 2D analog models, called maps. In the digital era, the
geometric data are formalized using a tessellation or vector approach; thus the geometric
models of spatial data are often grouped into tessellation data models and vector data models.
Examples from the two groups are summarised in the following sub-sections with more
emphasis on vector data models.
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2.1.1 Tessellation Data Models

In tessellation models, the basic
data unit is a unit of space for
which entity information is expli-
citly recorded in digital form. They
can be broadly classified into reg-
ular and irregular tessellations.

(a) Regular tessellations

In a regular tessellation, the geo-
graphic space is partitioned into
regular cells and each cell is L.
characterised by: (1) the area it Figure 2.3 Components of terrain objects in a GIS
covers and (2) one or several

values describing non-spatial properties of the cell. In surface modelling (i.c., 2D topologic
space), the three common types of cells are square (or regular grid), triangular and hexagonal,
with the square type, popularly called "raster”, being the most commonly used. Regular
tessellations come close to the perception of spatial objects when data are collected by digital
photogrammeiry, remote sensing or other scanning devices. A regular tessellation can be
subdivided into smaller cells of the same shape to have a nested tessellation model, as in a
quadtree which is based on the recursive decomposition of a grid.

(b) Trregular tessellations

These result from the decomposition of the geographic space in irregularly sized cells. An
irregular tessellation therefore gives a variable resolution because the size and density of the
celis vary over space. The basic advantage of the model is that it reduces data redundancy and
it can be tailored to the areal distribution of the data. Three examples are the irregular grid,
triangulated irregular network and thiessen polygons.

2.1.2 Vector Data Models

In vector models, the individual entity is the basic data unit for which spatial information is
explicitly recorded. Thus they are object-based geometric data models. They are usually
classified into two main types, namely spaghetti (unstructured) and topologic models.

(a) Spaghetti model

Analog maps, as a basic data model, hold all their information in the form of graphical
representations, sometimes with different colours used to differentiate the objects, This
traditional view of geographic data formed the basis for many of the earlier GIS which were
actually designed for the purpose of mapping (computer-assisted mapping) rather than spatial
analysis. The process of digitizing from maps was imitated directly in the digital domain,
leading to the unstructured vector mode! popularly called the spagheiti data model, by analogy
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with a plate of disconnected, but intertwined and intertangled pasta. In other words, it is a
direct line-for-line translation of the paper map in which geometry of each line-string is
represented as sequences of straight line segments. Thus a line-string is represented as a
sequence of n connected straight line segments with two end points and n-1 breakpoints
{(vertices). The position of each point is defined by a pair or triplet of coordinates. Since the
model is a direct imitation of the graphical map, it is very efficient for graphical purposes,
as in computer-assisted mapping. However, because the model does not incorporate topology,
it is not efficient for GIS applications.

(b) Topologic model

In this model, the basic logical entity is a line segment. A line segment begins or ends at the
intersection with another line or at a bend in the line, Each line segment is recorded with the
coordinates of its end points, called nodes, as well as the identifier of the polygon on each
side (in 2D topologic space). The more elementary spatial relationships are thus explicitly
stored. With the incorporation of topologic relationships, a more "intelligent” spatial analysis
can be performed and the geometric definitions of ohjects are represented in a non-redundant
manrner (e.g., the common boundary of two adjacent polygons is represented only once). In
addition, the model can serve as a very useful start in automating map generalisation
(Haywood, 1988). Furthermore, it eliminates the double digitization of common boundaries.
The model has served as the basis of many successful proprietary vector GIS, e.g., Arc/Info.
Examples of topologic data models include the Geographic Base File/Dual Independent Map
Encoding (GBF/DIME) model (U.S. Census Bureau, 1970), the Polygon Converter (Polyvrt)
model (Peucker and Chrisman, 1975), the TIGRIS data model (Herring, 1987), the formal data
structure (Molenzar, 1989) and the Authoritative Topographic-Cartographic Information
System (ATKIS) data model (Hesse and Leahy, 1990),

Many of the existing topologic data models are simplified such that two objects of the same
type (e.g., two area objects) do not partially or fully coincide in space. But many GIS users
are concerned with the management of overlapping objects of interest in a single structure of
a vector-based GIS. In other words, it is often of interest to accommodate different views, or
layers, of the same geographic space, as in questions such as "which parcels (represented as
distinct area objects) have a soil type Y (with so0il units also represented as distinct area
objects)?” This spatial coincidence problem is usually handled by an overlay computation
after organizing each of the two layers separately using any topologic data model.

When the frequency of the multi-layer analysis is limited, this solution may be acceptable.
However, in proprietary systems, it has not been practical to manage overlap by using
different layers, often because of the frequency of overlap and the irregular way in which it
occurs (Herring and Pullar, 1993). Alternative methods of handling the problem are (see also
Hoop et al, 1993): (i) to separate the metric information of the layers and precompute (by
overlay) and store topologic relationships among the objects within and across the layers, as
in the "geographic region” data type in Arc/Info (Roessel and Pullar, 1993), (ii) to share
metric information and separate topologic relationships (i.e., topology is explicitly recorded
per layer) as in the ATKIS data modzl and (iii) to combine all the layers in a single topologic
maodel, as proposed in this thesis, in order to derive the benefits of an integrated model (see
chapter 3).
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Most proprictary systems still handle this spatial coincidence problem by overlay computa-
tions. The solution of Arc/Info to the problem is still limited to overlapping two-dimensional
object types (see Roessel and Pullar, 1993). A new feature type, called geographic region, has
been defined in the extended model of the system (as reported in the above-mentioned
reference) to handle overlapping polygons as well as disjoint polygons with identical attributes
as a single region. At present, this solution has not been extended to cover overlapping point
and line object types, which are the two other geometric object types commonly defined in
a 2D topologic data model. In addition, the geometric data redundancy is not solved. The
ATKIS data model provides & mid-way solution for all the three object types by sharing
metric information, but topologic relationships among overlapping objects have to be derived
computationally. This model is summarised in the following section.

The ATKIS data model

ATKIS is the result of a multi-stage research and development project of the Federal Republic
of Germany’s State Survey Working Committee (Adv) in the fields of state survey,
cartography and automation (Hesse and Leahy, 1990). The ATKIS data model describes the
data elements and their relationships within the ATKIS database as required for the
description of the landscape and their representation in maps. I consists of a digital landscape
modet (DLM) and a digital cartographic model (DKM). The former represents topographic
objects and the surface of the landscape; it is thus the primary model of the system. The
DKM is a secondary model consisting of objects derived from the DLM, together with the
cartographic generalisation and symbolisation rules for graphical output from the system. The
DLM is therefore of more interest in this review.

i
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Figure 2.4 The ATKIS DLM Data Model (Hesse and Leahy, 1990)
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The structure of the ATKIS DLM data model (see Figure 2.4) has three levels of data
elements describing three important information aspects (Hesse and Leahy, 1990):

- the semantic aspect of the DLM objects,

- the topologic information aspect of the DLM object parts and

- the geometric information aspect of the DLM geometric elements.

The possible relationships among these data elements are indicated in Figure 2.4, The model
represents real world objects by means of DLM complex objects, objects, object parts, and
vector elements/raster matrices. Being essentially a 2D data model (elevation may however
be incorporated, usually in a separate structure), the DLM objects are geometrically classified
into object types point, line and area (for vector representation) and raster (for raster
representation). Complex objects can then be constructed by means of references to the DLM
objects constituting them. The DLM object parts are formed according to semantic and/or
topologic criteria. They can be of the geometric types area/face, linefedge, point/node or raster
and can have attributes, like a DLM object.

Using object parts makes it possible to represent objects (e.g., a stream) by means of object
parts (e.g., sections along the length of the stream) having different values of certain attributes
_ {e.g., width). The object parts constituting an object can differ in their geometric representa-
tion. The DLM geometric elements that describe the geomery of a DLM object part are
bound 1o the object part by references, while every object part is specified by means of a
reference as being owned by a certain DLM object. The actual bearers of the geometric
information are the two geometric elements DLM vector element and DLM raster matrix. The
vector elements describe lines in terms of the coordinates of points linked by different,
selectable interpolation types. In addition to its horizontal coordinates, the elevation of a point
may also be specified. Geometric data redundancy is reduced because any geometric element
can belong to a number of object parts (i.e., 1:n); a geometric element is defined once. It is
thus possible to represent spatial coincidence among objects of the same type with this model
at the geometric level.

Note that cne object part defines only one DLM object, while one DLM object is defined by
one or more object parts (i.e., one-to-many relationship between object and object parts). Thus
to represent spatial coincidence, each of the overlapping objects will have its own unique
object parts even if the object parts are defined by the same geometric element. This means
that if this model is used to represent terrain objects from two or more map layers, the
vertical topologic relationship (i.e., among objects from different layers) can be retrieved only
by computational means (e.g., by first selecting the object parts of the objects and comparing
their geometric elements). In other words, spatial coincidence is implicitly modelled and the
benefit of explicit representation whereby the overlapping parts can also be treated as new
objects with separate additional attributes cannot be realised with the model. In addition, the
hierarchic many-to-many relationship between geometric elements and object parts can
introduce complexity during updating operations especially with respect to integrity
maintenance.

The intention in this research is to select a generalised topologic model (that is capable of
handling spatial coincidence ameng objects of the same geometric type) as the basis for
formalizing automated database updating and consistency management in vector-based GIS.
Mainly for the reasons stated above, the ATKIS data model cannot be selected. Ancther
existing topologic model which has a rich syntax and semantic structure (Webster and Omare,
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1991; Hoop and Qosterom, 1992) is the formal data structure (FDS) for single-valued vector
maps (Molenaar, 1989). The model does not support spatial coincidence but it can be
generalised to be able to handle this. A review and extension of this model is presented in
chapter 3. Another variant of the extension of the FDS to accommodate a multi-valued terrain
description, proposed in Hoop et al (1993) will also be reviewed in the next chapter.

2.2 Database Structures

An appropriate database structure, or logical data model, is required to organize the data for
storage and retrieval in the computer after developing (or selecting) the most appropriate data
model. Until the recent advent of the object-oriented data structure, three main kinds of
database structures were commonly recognised (Burrough, 1986; Date, 1990). These are the
network, hierarchic and relational database structures. The three types are reviewed in the
following subsections, with emphasis on the relational data structure. More details can be
found in, for example, Date (1990) and Burrough (1986). The new addition to the common
database structures, the earlier mentioned object-oriented data structure, is separately reviewed
in §2.3.

2.2.1 Network Data Structure

The network structure consists of two sets (Date, 1990), a set of records and a set of links,
i.e, a set of multiple occurrences of each of several types of record, together with a set of
multiple occurrences of each of several types of link. Each link type involves two record
types: a "parent” record type and a "child" record type. Each occurrence of a given link type
consists of a single occurrence of the parent record type, together with an ordered set of
multiple occurrences of the child record type. For a particular link type L with parent record
type P and child record type C, each occurrence of P is the parent in exactly one occurrence
of L, and each occurrence of C is a child in at most one occurrence of L. In other words, in
the network structure, a given record may have any number of immediate superiors (parents)
as well as any number of immediate dependents (children), thus allowing for a direct
representation of a many-to-many link type among data types.

The structure is more flexible than the relational and hierarchical structures since it can
accommodate many-to-many relationship which often occurs in applications. However, it is
more complicated and the database is enlarged by the large number of pointers, which must
also be updated every time the database is updated, thereby increasing the overhead cost
(Burrough, 1586).

2.2.2 Hierarchic Data Structure

This is 2 special case of the network siructure. In it, the data are represented by a simple tree
structure where one entity is "superior” (parent) and others "dependent” (children), giving a
one-to-many relationship. The record type at the top of the tree is usually known as the "root”
and a root may have any number of dependents, each of which may have any number of
lower-level dependents. In other words, it is an ordered set consisting of mulnple occurrences
of a single type of tree (Date, 1990). A wree type consists of a single "root” record type,
together with an ordered set of zero or more dependent (lower-level) subtree types and the
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subtree type in turn consists of a single record type (the root of the subtree type) together
with an ordered set of zero or more lower-level dependent subtree types, etc. Each tree
occurrence consists of a single root record occurrence, together with an ordered set of zero
or more occurrences of each of the subtree types immediately dependent on the root record
type, and each of the subtree occurrences in turn also consists of a single record occurrence
(the root of the subtree occurrence) together with an ordered set of zero or more occurrences
of each of the subtree types immediately dependent on that root record type, etc. Naturally,
no child is allowed to exist in the structure without its parent.

The structure naturally models truly hierarchic spatial objects and it is easy to understand and
expand. However, it has some disadvantages, which include lack of flexibility to accommo-
date retrieval requests involving different trees, maintenance of large index files, data
redundancy caused by the fact that certain atiribute values may have to be repeated many
times, and updating problems caused by the dependent occurrence of data.

2.2.3 Relational Data Structure

The relational model of representation has been most widely accepted because of its
simplicity and the availability of a standard language (the structured query language (SQL))
for the manipulation of the database. Various commercial relational systems are available in
the market, e.g., DB2, Oracle, Ingres, etc. In the structure, the data are organized in a single
uniform manner: in the form of relations. It is characterised by such formal terms as relation,
tuple, atribute, candinality, degree, primary key and domain (the terms are schematically
described in Figure 2.5) which respectively mean -informally- table, row or record, column
or field, number of rows, number of columns, unique identifier, and a pool of legal values.
Each relation consists of a number of tuples and a fixed number of attributes with each
attribute having 2 unique domain of values. In other words, a relation is a collection of tuples
(rows), each of which contains values for a fixed number of amributes (columns). Thus given
a set of domains S,, §,, ..., S, (not necessarily distinct), R is a relation on these n sets if it is
a set of n-tuples, or simply tuples, each of which has its first element from S,, its second
clement from S,, etc., i.e., R is a subset of the cartesian product S, * §, * ..* 8. This gives
a relation of degree n, called n-ary relation (for example, a relation of degree 1 is called unary
relation and that of degree 2 binary relation).

A relational structure has certain characteristics which distinguish it from traditional computer
files (Freiling, 1982; Date, 1990); these are:

(a) duplicate tuples are not permitted

(b) each tuple/attribute (row/column) intersection within each relation must contain a single
data field, i.e., multiple values are not allowed

{c) no ordering of tples within a relation is assumed

{(d) no ordering of columns within a relation is assumed

(e) no component of a primary key may be null.

Any relation that has the above-mentioned characteristics is saic to be normalized (actually,
in the first normal form). This means that each relation in the structure must be normalized.
Thus normalization (informally, the process of converting a table with repeating attribute
values in one or more columns to one with atomic attribute values per column) is one of the
important considerations for the strucure. If the relations are not normalized, the structure
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will be vulnerable to major problems, i.e., addition, deletion and update anomalies as well as
unnecessary data redundancy. Inherent benefits have in fact been claimed for relational
structures that are fully normalized (Kent, 1983; Smith, 1985; Roessel, 1986). However, a
fully normalized structure, apart from slowing down retrieval, also intreduces referential
integrity problems which the designer of the database must provide rules to control. Data
concerning a single object are spread over many tables, thus making the structure liable to
integrity violations.

Point | X-coord| Y-coord| Z-Coord

Polri
P1 [istorder [1208.000/946.000 | 123.025| 0.003 | 0.007 \
PS |2nd onder|1258.000/900.400 | 112.020| 0.088 | 0.076 ™~ Tuples
P8
P2

2nd order 1100.000{948.000 | 150.025( 0.080 | 0.097 |/
15t order [1005.800(850.276 | 178.025| 0.020 | 0.017

— -

Degree

Figure 2.5 Key Words in Relational Data Structure

Five normal forms are usuaily defined for a relational structure and a relation that is in the
fifth normal form is said to be fully-normalized. A description of the five normal forms can
be found in Kent (1983) and Date (1990). The most common method of composing fully
normalized relations is the non-loss decomposition procedure (Date, 1990), which progresses
successively from the first normal form (INF) to the highest normal form (usually the fifth
normal form (SNF)) but satisfying the condition that if join operations are performed, the
preceding normal form can be derived without loss of data. The first normal form is usuvally
constructed from an entity relationship diagram (Chen, 1985) of the application.

Another method for composing fully normalized relations was developed by Smith (1983).
It has been acknowledged that Smith’s approach is less tedious than a non-loss decomposition
and yields a fully normalized structure in a rather straightforward manner (Roessel, 1985).
This approach will be used in chapter 7 of this thesis to design a prototype relational structure
for vector maps and is therefore summarised in the following subsection.
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Smith’s Normalization Procedure

This method is based on two important concepts of single-valued and multi-valued depend-
encies among data types (these two terms should not be confused with the terms as used to
describe vector maps where they indicate the relationship between a geometric primitive and
an object, see chapter 3). A single-valued dependence from P to Q (P and Q are either single
or composite data fields) exists if, at any time, a fact about P determines one fact about Q.
Each value of P must then be non-null and unique, but Q may coatain null or duplicate
values. A multi-valued dependence exists if, at any time, a fact about P determines 2 set of
facts about Q. P and QQ must both be non-null, and each combination of P and Q must be
unique. A single-valued dependence is diagrammed by a single headed arrow from the prime-
key (e.g., P) to the target field (e.g., Q) while a multi-valued dependence is diagrammed with
a double headed arrow.

Four major steps are involved in this approach (Smith, 1985), namely

(1) identification of the data fields to be represented in the structure

{2) listing of the dependencies among these data fields as dependency statements

(3) construction of a rigorous dependency diagram from the dependency statements

(4) composing relations from the completed dependency diagram.

Identification of data fields: In this step, all the data types (including attributes) and the
relationships among them are identified. This can be described using an entity-relationship
diagramming convention, for example. However, if a conceptual data model has been
predefined, the data types and relationships defined in the model, as well as the attributes of
the data types, become the data fields.

Guidelines for listing the dependencies: This step consists of the careful identification and
listing of the functional relationships between a data type and al! other data types that depend
on it. Single-valued and multi-valued dependencies among the data fields must be well
defined in the statements. Each data ficld in each statement must be atomic or non-
decomposable 10 satisfy the first normal form agtomatically, and the name assigned to the
field should be chosen such that it satisfies the rules of the computer software that will
implement the database. In addition, an identification number should be assigned in ascending
sequence to each dependency statement. Examples of dependency statements can be found
in §7.1.2.

Guidelines for constructing the dependency diagram: As each dependency statement is
written, field names are posted to a sheet of paper, enclosed inside bubbles (e.g., ellipses), and
arrows are used to diagram the dependencies among the data fields. The arrowheads are
shown only on one end of a line connecting two fiekds to show clearly which data field
(prime-key bubble) determines the other (target bubble). Each fieid should appear only once
in a connected diagram (interlinked bubbles) and the corresponding dependency statement
number should be noted against the relevant arrow. As successive statements are written and
diagrammed, earlier statements and diagrams may be revised, if necessary, as the overall data
requirements of the application become clearer. Double or more bubbles are used to enclose
a data field that panicipates in two or more chains. Transitive dependency occurring in a
diagram must be corrected after correcting the corresponding statement. Figure 7.1 is an
example of a dependency diagram.
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Composing relations from the completed dependency diagram: Fully-normalized relations
are composed from the completed dependency diagram by (a) working the single-valued
dependencies into relations where the prime-key bubble(s) of a chain of linked bubbles
becomes the primary key(s) of a relation, while all the target bubbles of that chain become
other fields in that relation; the fields within the target bubbles become foreign keys of the
relation if they also function as prime-keys of another chain or are tagged with a domain flag
(a domain fiag is used on the dependency diagram to identify data fields that share a common
domain); (b) working the multi-valued dependencies into relations where gach multi-valued
dependency is composed into separate relations and fields within the end-key bubble, the
prime-key bubble, and any/all uplink-key bubble in the same chain become the primary key(s)
of one relation (an uplink-key field is a field on the dependency diagram that has a double-
headed arrow pointing from it to a prime-key field, while the prime-key ficld points to other
fields, and an end-key is a field having a double-headed arrow pointing to it while no arrow
emanates from it); and (c) working the isolated bubbles into relations where fields within an
isolated bubble become the primary key of one relation (an isolated bubble exists if one or
more fields with a multi-valued dependency to one another are enclosed within one bubble
and that bubble has no arrows pointing to or from it),

These four guidelines are applied in chapter 7 to design a prototype relational data structure
for multi-valued vector maps. To take care of the referential integrity problems caused by the
spreading of data concerning a single object over many tables during normalization, rules
must be provided to control data consistency and database updating. This means that the
conceptual data model on which the relational structure is based must have a well-defined set
of consistency rules to enfgree data consistency especially under updating operations. These
rules are often called enterprise rules in the commercial database systems’ environments {e.g.,
banking) where the relational DBMS first made its impact. Chapter 5 of this thesis provides
such rules in the spatial domain, specifically in a vector-based GIS. And with the incorpor-
ation of the rules in the database updating algorithms proposed in chapter 6, a sound
framework is thus provided for the implementation of a spatial relational DBMS.

2.3 Object-Oriented Data Modelling

The spatial data models reviewed in §2.1 concentrate mainly on the geometric aspects of
spatial data. The non-spatial aspects are often modelled separately using a semantic data
modelling approach and the two components linked by some kind of (object) identifier. The
non-spatial component is often implemented in a relational structure, while the geometric
component is handled by another structure (e.g, as in Arc/Info). The need for a unified
representation of all the components of an object and the shortcomings of the traditional data
structures, including relational, in spatial data handling (Alagic, 1989; Oxborrow and Xemp,
1989; Date, 1990; Hughes, 1991; Egenhofer, 1992), have led to the search for a more
appropriate data structure for spatial applications. The reported shortcomings of the
conventional data structures, especially relational, include (a) unacceptable performance when
the database is populated with large quantity of data, (b) inadequate support for the treatment
of complex cobjects such as spatial objects in GIS/LIS, and (c) absence of appropriate
mechanisms for data structuring such that data concerning a single spatial object are not
spread over different parts of the structure as in a relational structure.
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With the development of object-oriented programming languages, popularly called "4th
Generation Languages” (4GL) in computer science, implementation tools are now available
for the implementation and enrichment of the abstraction mechanisms offered by semantic
modelling, thus bridging the gap between the conceptual data model and the data structure
and facilitating a unified representation of geometric and attribute data in a single structure.
This new approach, called object-oriented (O0) data modelling, has been advocated for spatial
applications whereby real world entities and their properties are modelled as objects in order
to support the treatment of complex (geometric) entities. In this approach, the word object is
used (in a wider sense than in topographic science where it is used as synonym for a terrain
feature) for a single occurrence (instantiation) of data describing something that has some
individuality and some observable behaviour (Egenhofer and Frank, 1989). In this section,
some of the principal terms and concepts of the OO approach are introduced. These can be
grouped into: (a) the modelling constructs which include the object/fobject identity and the
four abstraction mechanisms: classification, generalisation/specialization, aggregation and
association and (b) the implementation constructs which include inheritance, propagation,
encapsulation, persistence, absiract data type, polymorphism and overloading.

Object/Object Identity:

In object oriented modelling, all conceptual entities are modelled as objects (Worboys, 1992),
An object has a state and a behaviour. The state of an object is implemented through
properties or attributes, but unlike a relational structure, such properties are not restricted to
non-decomposable data types and may in fact be objects themselves. The behaviour of an
object is implemented as a set of procedures {also called methods or operations) that are
encapsulated with the properties within the object. Objects can be as simple or as complex
as the application demands; more complex objects can be constructed from combinations of
existing objects which can, in turn, be simple or complex objects. Every object has a unique
identity which persists through time, although the properties of the object may change.

Classification:

Classification can be defined as the mapping of several objects (instances) to a common class
(Egenhofer and Frank, 1989). The process of classification is central to the object oriented
approach whereby all objects with similar properties and behaviour are grouped into object
classes. In other words, all objects that belong to the same class are described by the same
properties and have the same behaviour, Thus, instead of describing individual objects, the
OO approach concentrates on the patterns of both state and behaviour that are common to an
entire class of objects (Hughes, 1991). The class structure, encompassing both properties and
behaviour, is therefore the natural unit of abstraction in QO systems and may be used to
model both entity objects and relationship objects. This differentiates the QOO approach from
the extended entity relationship (EER) model in which entities are classified according to their
structure, with no regard to their behaviour, and a separate concept, called the relationship
type, is used to model relationships among the entities (Hughes, 1991).

Classification is often referred to as the instance of relationship because the individuals are
instances of the corresponding class. For example, a GIS model of the city of Enschede will
include the classes building, street, park, etc. Each of these classes will have a set of
properties whose values will be evaluated for all instances of the class, in addition to a set
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of behaviour (e.g., create, modify, destroy, etc.). For example, the properties of the class
building may include address, owner, built-date, etc. A single building with the address 350
Boulevard 1945 is an object, i.e., an instance, of the class building; the values of other
properties of the class will be recorded for this instance and all the methods defined for the
class will operate on this object.

Generalisation/Specialisation:

Generalisation as an abstraction mechanism provides views of the same geographic space in
different levels of details. Several classes of objects which have some properties and
behaviour in common are grouped together 10 2 more general class, called superclass. Thus
the terms subclass, the converse relation of superclass, and superclass characterise
gencralization hierarchy in which objects are linked by is a relationship. Subclasses are object
types which share all of the properties and behaviour of another class (the superclass) but
which also possess more specific properties and behaviour not shared by the superclass; they
therefore describe a specialisation of the superclass.

A generalisation hicrarchy may have an arbitrary number of levels in which a subclass has ~
the role of a superclass for another more specific class. The terms superclass and subclass are
abstractions for the same object, and do not describe two different objects (Egenhofer and
Frank, 1989). For example, ail hotels in the city of Enschede may be grouped into the class
hote! because they have some other common behaviour and properties (e.g., standard, usually
expressed as number of stars) that distinguish them from other buildings. And because they
do have all the properties and behaviour of a building, they are a subclass of building. Thus
hotel is a building.

Aggregation:

This is an abstraction mechanism used for modelling composed objects whereby several
objects are combined to form a semantically higher-level object. Each constituent object of
the aggregation has it own properties and operations, and the operations of the aggregate are
usually not compatible with the operations of the parts. The properties of the aggregate are
derived by propagation from the properties of the constituent objects. Thus the aggregation
abstraction is used to build complex objects from elementary objects in a bottom-up fashion
(Molenaar, 1993) i.e., staning from the elementary objects, composite objects of increasing
complexity are constructed in an upward direction,

The aggregation hierarchy is often expressed as a part of relationship because the constituent
objects are part of the aggregate. The inverse relationship is often called consists of, i.e., the
aggregate consists of some constituent objects. In the hierarchy, a constituent object can be
part of more than one aggregation hierarchy. For example, in a model of a city, a complex
object residential district may be defined as an aggregation of objects houses, roads, and
parks which are selected according to some rules. Thus, as expressed by Molenaar (1993),
the generic model for aggregate objects will consist of two components: (a) indication of the
classes of objects that can be aggregated into a composite object and (b) rules to select the
objects from the classes (indicated in (a)) for a particular aggregate object.
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Association:

This is a form of abstraction whereby a relationship among two or more independent objects
is considered as another object. The term set is often used to describe the abstraction and the
associated objects are said to be members of the set. The details of 2 member object are
suppressed and properties of the set object are emphasised at that level of absiraction. Unlike
aggregation and generalisation, association does not build hierarchies and does not follow
strict rules (Molenaar, 1993); it only indicates a set of objects that have something in
common. For example, the International Institute for Aerospace Survey and Earth Sciences
(ITC) and the University of Twentc are associated by the relationship inside Enschede. In
terms of terrain objects in general, topologic relationships among the objects are examples of
association.

Inheritance;

In generalisation hierarchies, the properties and methods (operations) of the subclasses depend
on the properties and structure of the superclasses. Properties that are common to a superclass
and its subclasses are defined only once at the superclass level; the properties are then
transmitted to all the objects of the subclasses. This transitive transmission of properties from
one superclass 10 all related subclasses, and to their subclasses, etc., is termed inheritance.
It is a powerful concept in an object-oricnted system because it reduces data redundancy
(Woelk, 1987). It supports modularity and helps in maintaining integrity since essential
properties of an object are defined once and are inherited at other lower levels in which it (the
object) takes part (Egenhofer and Frank, 1989).

Operations of the superclass are applicable to all objects of the subclass because each object
of the subclass is also an object of the superclass; but operations which are specifically
defined for a subclass are not compatible with superclass objects. The inheritance relation can
be single or multiple. In gingle inheritance, a strict genecralisation hierarchy is defined
whereby each class has at most a single immediate superclass. Multiple inheritance, on the
other hand, permits one subclass to have more than one distinct immediate superclass.

Propagation:

This is the mechanism used in aggregation hierarchies and association to derive values
respectively for complex objects (aggregates) and associated objects (set) from the constituent
objects. It supports complex objects which do not own independent data and is based on the
concept that values are stored only once, for the properties of the component objects which
are then propagated to the properties of the aggregates or associated objects when required.
For example, the population of a city is the sum of the populations of all the districts that are
part of the city.

Apart from the propagated values, the composite object can have property values which are
specifically owned by it and distinct from those of its components. Propagation works in a
bottom-up manner as against the top-down transmission in inheritance. It helps to maintain
consistency because the dependent values of the aggregate are derived and need not be
updated every time a change is made to any of the components - only the constituent objects
need be changed.
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Encapsulation:

The concept of encapsulation is very important in the context of object-oriented programming
languages (Oxborrow and Kemp, 1989). Support for encapsulation of data and operations in
objects enables objects to be defined completely, both in terms of their properiies and in terms
of their behaviour. Thus, for example, if certain actions have to be taken, or rules applied, or
constraints checked, these actions, rules or constraints can be built (encapsulated) into the
definition of the object. The encapsulation concept, when fully applied, means that the only
operations that can be performed on an object of a certain class are those which are declared
in the definition of that class or inherited from its superclass{es).

Persistence:

This means the permanent storage and maintenance of objects which have been created. It is
a concept that has been added to the object-oriented programming language to distinguish it
from conventional programming languages {in which the data created by a program exist only
during the execution of that program) and thus have some functionalities of a conventional
DBMS. Persistence is a nommal feature in conventional DBMS which permanently store
created data in the database.

Polymorphism and Overloading:

These are terms used by computer language specialists in describing some important and
powerful aspects of computer languages, which have consequently been introduced in the
implementation of object-oriented systems. Both relate to the number of ways a name can be
used 1o represent an object or function. Polymorphism means that a name (variable) may
represent at different times different classes of object. Overloading is a related concept which
refers to the multiple functions that a function or operator may represent, depending on the
types of the operands. For example, the function invoked by the "+" operator depends on
whether the types of the operands are floating point, integer, complex, etc.

24 Some Implementation Issues Concerning Object-Oriented Data
Structure

Despite the acclaimed suitability of the OO approach for spatial applications, most proprietary
systems that claim to be object-oriented at the moment are built on a relational structure
because of the lack of a standard object-oriented query language. This means that the
relational structure will continue to play a significant role in database management either in
its conventional form (as a main DBMS) or as a basc for an object-oriented system.
Stonebraker (1994) emphasised the need to harmonise the benefits of the relationai and the
object-oriented approaches to have a powerful database system. According to him, the object-
oriented DBMS vendors have focused on tactics that will best support the applications having
complex data but requiring no query capability, just as the relational DBMS vendors
concentrated on query capability for simple data. The data are said to be simple if they can
be described using the base data types of the SQL, such as integer, character, date and
floating point; they are complex if they cannot be directly described individually by any of
the base data types unless by artificial decomposition.
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To have the query capability in an object-oriented system that is comparable to the SQL, in
addition to the ability to handle complex data, the object-relational DBMS has been
recommended. Stonebraker (1994) defined an object-relational DBMS as one which adds the
following concepts (which include OO concepts) to SQL:

- unique identifiers (i.e., implementation of object identity);

- user-defined types

- user-defined operators

- user-defined access methods

- complex objects

- user-defined functions

- overloading

- dynamic extendibility

- inheritance of both data and functions

- arrays

These concepts are very useful in GIS applications. For instance, the user-defined types can
be used to define such types as point, line and polygon in a spatial DBMS; the user-defined
operators will be useful to provide metric spatial operators, such as area, distance and
direction, and topologic operators for deriving topologic relationships between two spatial
objects and the support for user-defined access methods is essential for efficient searching and
data retrieval in the usually large database. Also, the complex objects will be useful in GIS
for the representation of terrain objects of different shapes and sizes, while the inheritance of
both data and functions concept will be useful in the implementation of a generalisation
hierarchy.

An example of this DBMS' is the (public domain) Postgres DBMS (Postgres, 1994) whose
commercial version is called Illustra (Illustra, 1994). The Postgres DBMS is used to test the
prototype object-oriented data smucture proposed in this thesis (see chapter 8).

2.5 Summary

This chapter has focused on the review of spatial data models and structures for GIS. The
geometric models of spatial data are classified into two groups: the tessellation models and
the vector models. Examples from the two groups are given, with more emphasis on the
vector data models, being the choice in this thesis. The vector approach was chosen because
it is closely related to the more accurate data acquisition methods (e.g., land surveying and
photogrammetry) for large- and medium-resolution spatial databases which are very vital in
many GIS applications (e.g., cadastral applications and urban planning). In the domain of
conventional database structures, the common ones, including relational, and a procedure for
designing the relational structure were also described. The object-oriented data modelling
approach was also reviewed, including aspects regarding its implementation which have given
rise to the call for the use of an object-relational system instead of a "pure” object-oriented
system.

The review made in this chapter is of course not exhaustive; it was limited to aspects that are
more relevant to this thesis and the review of some aspects are also deferred to be treated
under the relevant chapters. The review of the spatial data models indicated that a lot has
been done in the field of spatial data modelling but it also shows the need for a generalised
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spatial data model that can incorporate the explicit representation of spatial coincidence
among terrain objects for an integrated spatial analysis. The database structures defined the
logical representation of data types and relationships defined in a conceptual data model and
provide concepts for minimizing inconsistencies (e.g., by using the propagation concept in the
object-oriented structure, and by normalization in relational) but, being generic database
structures, they cannot indicate the constraints to be enforced and how to enforce them. This
means that the conceptual data model on which the database structure is based must have a
well-defined set of consistency rules to enforce data consistency especially under updating
operations. {These rules are often called enterprise rules in the commercial database systemns’
environments (e.g., banking) where the relational DBMS first made its impact.) Chapter 5 of
this thesis provides such rules in the spatial domain, specifically in a vector-based GIS. And
with the incorporation of the rules in the database updating algorithms proposed in chapter
6, a sound framework is thus provided for the implementation of a spatial DBMS using any
database structure.

In the next chapter, one of the existing vector data models is selected and reviewed, and then
extended to be able to handle geometric integration of spatial data belonging to one or more
mapping themes. The object-oriented data modelling concepts described in §2.3 are applied
in chapter 7 to translate the extended model to a prototype object-oriented data structure. In
the same chapter, a prototype relational structure for the same model is designed using the
normalization method summarised in §2.2.3.
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3

CONCEPTUAL DATA MODEL FOR VECTOR MAPS

In mapping sciences and GIS, different applications normally view terrain situations
differently, thereby extracting only those terrain phenomena which play definite roles within
those applications. For example, a cadastral surveyor will partition a given region into land
parcels with each parcel having its unique atiribute values. The same region will be par-
titioned by a soil scientist into different soil units. This implies a "layered” view of a terrain
situation. However, in spatial analyses and planning it is often necessary to integrate different
views of the world, in which case (part of) a terrain object may play more than one distinct
role in the same database. In other words, two or more objects of the same type (point, line
or area) from different mapping contexis or map layers may spatially coincide. Here we use
the term map layer, or simply layer, to denote a geographic dataset describing a certain aspect
of the real world (Hoop et al, 1993) i.e., the set of objects belonging to the same mapping
context (cadastral, soil mapping, etc). A vector structure which incorporates spatial data from
a single map layer (e.g., cadastral mapping, soil mapping or land use mapping) can be
described as a single-valued vector map. When the structure incorporates data from one or
more layers, it is described as multi-valued vector map.

In this chapter, a conceptual data model for multi-valued vector maps is defined by extending
the formal data structure for single-valued vector maps. The mathematical tool for the
modelling is provided by graph theory. The relevant elements of the theory are summarised
in §3.1, where aspects of simplicial complexes are also given because of their similarity to
some geometric data types used in the conceptual model.

The choice of the FDS for the conceptual modelling instead of other topologic models was
based on the preference for an object-based model which is generic, flexible and extendible.
In the 2D FDS, terrain objects play a central role in the terrain description; each object has
a thematic component and a geometric component (see Figure 2.2). In the thematic domain,
the objects can be grouped into thematic classes in which each class has a specific attribute
structure. The geometric compenent of a terrain object is clearly distinguished into three
independent aspects, namely topology, shape and size, and position (see Figure 2.3). The clear
distinction of the geometric aspects of terrain objects not only facilitates the construction of
a semantically-rich, query-oriented spatial database, it also leads to an extendible and fiexible
data model. For example, having distinguished the semantic characteristics of terrain objects
into thematic and geometric, it follows that the geometry of the same terrain situation can be
represented either by vector elements (arc and node) or by raster elements (see Molenaar and
Fritsch, 1991; Molenaar and Jjanssen, 1992) leading to flexibility in the choice of system
configuration for its implementation and in data exchange.

The clear articulation of the geometric aspects of an object also facilitates key modelling
decisions. (1) It becomes possible to decide on the dimension of the metric space {whether
2D or 3D) independent of the dimension of the topologic space (which also helps our
appreciation of what a 3D spatial data model should be). (2} It also helps in deciding at which
level to integrate geo-data from multiple map layers, i.e., at geometric level or at thematic
level. At the geometric level (the choice in this thesis), it becomes possible to distinguish four
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different approaches to the geometric integration by considering how metric (positional) data
and topologic data of the different layers are handled. The four possibilities are (i) to structure
each layer separately, i.e., combining metric and topology per layer and perform an overlay
of the layers when necessary; (ii) to structure the geometric data such that all layers share the
metric dataset while topology is kept per layer; vertical topologic query will then be done by
overlay computation or by comparison of metric data; (iii) to structure the geometric data
such that all layers share a common topology, while the metric information is structured per
layer; and (iv) to define a model in which both metric data and topology are shared by all
layers as proposed in this chapter.

The FDS is summarised in §3.2, followed by a discussion in §3.3 of the different approaches
for modelling a multi-valued terrain situation and a review of related work on the modelling
of multi-valued vector maps. In §3.4 the FDS is extended to incorporate a multi-valued terrain
situation. In the last section of the chapter, the integration of the proposed data model and a
DTM is described. The integrated model can be used for the establishment of a muldpurpose
vector GIS incorporating multi-layer object data and terrain relief information with minimum
redundancy. Here a vector map refers to a database representation of terrain objects as points,
lines, surfaces (areas), and bodies (volumetric objects) in which positional data of the objects
are given in form of coordinates. In a 2D representation, only the first three types are present.
The fourth exists as an additional type in 3D representation.

3.1 Graph Theory and Simplicial Complexes
3.1.1 Elements of Graph Theory'

A graph is defined abstractly as a pair (V,E) in which V is the non-empty finite set of vertices
of the graph and E is a finite family (permitting the existence of repeated elements) of
unordered pairs of (not necessarily distinct) elements of V, called edges. The graph is said
to be directed if V is a non-empty finite set and E is a finite family of ordered pairs of
elements of V.,

Hereafter, only the directed graph, or simply graph, will be referred to and an edge will be
called arc and a vertex will be called node. Also, it is assumed that E contains distinct
elements and the two elements of V that define an element of E are not equal. Thus a graph
is a collection of two sets:

a set of nodes N = {n;, n,,....}, and

a set of arcs A = {a,, a,,....}

in which for each a € A is a = (n,n,} where n, and n, € N and n, # n,,.

Figure 3.1a is an example of a graph with N = {p,qr,s} and A = {(p,q), (q.1), (1.5), (5,P),
(0}

Let G(N,A) be a graph. A graph G,(N,,A,) is a subgraph of G if A, is a subset of A and N,
is a subset of N such that the arcs in A,, are incident only with the nodes in N,.
Figure 3.1.b shows a subgraph of the graph in Figure 3.1.a

! The materials used in this section are taken from Wilson (1990) and Liu (1986).
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Two nodes of graph G are said to be ad-

Jacent if there is an arc joining them; the R
nodes are then said to be incident to that
arc. Also, two arcs of G are adjacent if they 9
have one node in common. The degree of a q
node n is the number of arcs incident to n.
A node of degree zero is called an isolated
node and a node of degree one is an end-
node. In the graph of Figure 3.1.(b), for ‘
r ®)
(o)

example, the degree of node g is two and  «

that of node p i therefore p is an end-
node()). node pis one ( P Figure 3.1 Examples of a graph

In a graph, a path or walk is a sequence of arcs (a;,, ay,....,a,) Such that the terminal node of
a, coincides with the initial node of 8, for 1 < j < k-1. The path is said to be simple if it
does not include the same arc twice. It is elementary if it does not meet the same node twice
(i.e., no two arcs in the sequence have the same terminal node). The length of a path is the
number of arcs it contains, A graph is said to be connected if there is a path between every
pair of nodes, i.c., if there is a path from any node to any other node; otherwise it is said to
be disconnected. A graph whose set of arcs is empty is called a null graph. The graph is said
to be planar if it can be drawn on a plane so that no arc crosses another (i.e., the two
crossing arcs are decomposed into four arcs meeting at a common node).

In a planar graph, the arcs of the graph divide the plane into planar segments called faces;
thus a face is an area of the plane that is bounded by arcs and is not further divided into
subareas. The relationship between the number of nodes (n), arcs (a) and faces (f) - including
the outerface - that must exist for a graph to qualify as planar is given by Euler’s formula as
follows:

n-a+f=2

This formula holds for only connected planar graphs but it can be extended to include
disconnected graphs (Wilson, 1990) to have

n-a+f=k+1

where k = number of component graphs. Also, in a planar graph, the sum of the degrees of
all nodes must be an even number and twice the number of arcs.

The concepts summarised above are applied in the definition of the FDS and the data model
for muiti-valued vector maps proposed in this chapter in which arc and node serve as
primitives in the geometric representation of terrain objects. The use of the third element of
a planar graph, i.e., face, as a geometric primitive is not necessary in 2D terrain description
because, since planarity is enforced, every arc will have a face on either side, and since a face
will always represent a 2D terrain object, the arc can reference the object directly (which is
not so with arc and node: an arc may represent a linear object or just the boundary of an area
object and a node may represent a zero-dimensional object or just the end-point of an arc).
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3.1.2 Simplexes and Simplicial Complexes

In §3.4, a geometric data type, called m-container, will be introduced for the explicit
modelling of spatial coincidence among objects in a vector map. In a mathematical sense, the
m-containers have some similarities to n-simplicial complexes, although the laiter terms are
not used in the model because of some semantic difference between the two, as will be
explained in §3.4.2. The definitions of simplicial complexes (Giblin, 1977; Worboys, 1992)
are therefore relevant and are given here. The definitions are given for the case of spatial
objects embedded in the Euclidean plane, i.e., for cases of up to two dimensions. Simplicial
complexes are amalgamations of basic building blocks, called simplexes (Worboys, 1992) in
which an n-simplex, n € {0,1,2} is defined as follows:

O-simplex: A set consisting of a (:) T

single point in the Euclidean
plane.

I-simplex: A set consisting of
all the points on a straight line
between two distinct points in
the Euclidean plane, including
the end points.

® ®
2-simplex: A set consisting of
all points on the boundary and (8) = O-simplax {d) and (s} = Examples of simpliclal complexss
i interi i (b} = 1-simplex {0 and (g) = Cenfigurations which are not
in the interior of a triangle |

whose vertices are three hon- (c) = 2-simplax

collinear points. Figure 3.2 Simplexes and simplicial complexes (Wo-

1992
Thus an n-simplex is the convex rboys, 1992)

hull of a set 8§ of n+l linearly

independent points, p,,...,p,, say. Such a simplex is denoted <py,...,p,> or <5>. Furthermore,
the integer » is defined to be the dimension of <S>. Given T ¢ S, then the convex hull of T
is itself a simplex contained in <S> and called a face (not to be confused with the face in
graph theory) of <S>, this is expressed as <T> < <§>, Simplexes serve as building blocks for
larger structures.

A simplicial complex, C, is then defined as a finite set of simplexes satisfying the following
properties:

L. A face of a simplex in C is also in C.
2. The intersection of two simplexes in C is cither empty or is a face of both simplexes.

The dimension of a simplicial complex is the maximum dimension of its constituent
simplexes. In a 2D space, we have (-, 1- and 2-simplicial complexes which are defined as
follows:

- A O-simplicial complex is a complex of dimension zero.
- A I-simplicial complex is a complex each of whose maximal simplicial components is a 1-
simplex.
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- A 2-simplicial complex is a complex each of whose maximal simplicial components is a 2-
simplex.

Examples of simplexes and simplicial complexes are given in Figure 3.2. They are often used
for the geometric modelling of spatial objects (see for example Worboys, 1992) in which a
0-simplicial complex corresponds to a point, a 1-simplicial complex corresponds to an arc or
edge and a 2-simplicial complex corresponds to a polygon, after imposing some constraints.

3.2 Formal Data Structure (FDS) for Single-Valued Vector Maps

The FDS is an object-based terrain description in which the analysis of the terrain is based
on distinct objects such as areas with well defined boundaries, linear terrain structures, and
individual point objects. Only a summary of the model will be given here; comprehensive
descriptions have been published elsewhere (see Molenaar, 1989; 1991c; 1993).

3.2.1 Summary of the Model

The fundamental information structure of the FDS is shown in Figure 2.2. It shows that
distinct terrain objects, represented by object identifiers, have two semantic characteristics,
namely (1) the geometric characteristics and (2) the thematic (non-spatial) characteristics. The
former comprise topology, shape and size, and position (see Figure 2.3) while the latter
indicate the non-spatial atributes of the objects.

To model the thematic com-
ponent of objects, the terrain
objects occurring in a vector
map are grouped into several
distinct classes according to
their thematic characteristics, A [suporiass | ——{ superciase atwib. 1, superciess et | |

list of attributes is connected to uperdioss a1 |

e:ach class and the class is iden- prmes atiributes | veluse) o)
tified by a class label or name. Gioss atrbutes ]

The attribute list of a class gives
the names of the attributes. The deﬂnmﬁl
objects belonging to the same values of class altribuies |
class will have a common at- . .
wribute structure inherited from Figure 3.3 Class and superclass structure of objects
the class (see Figure 3.3a). Thus

each object of that class will have a list containing a value for each attribute in the class
attribute list; the values are taken from the value domains of the individual atributes.

(@)

The FDS supports a class hierarchy in which classes that have some common attributes are
grouped into a superclass, while superclasses having some common atiributes are also grouped
into 2 higher superclass, and so on (see Figure 3.3b). Each (super)class will have its own list
of attributes. At the highest level we have the superclasses with their lists of superclass
attributes which can be split as in Figure 3.3b, because some of these attributes (superclass
attributes j) are evaluated at the next lower level, the class level, and some are evaluated at
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the lowest level, the object level. At the class level, new attributes that are specific to that
class will be defined as class atiributes (in addition to the inherited superclass attributes). At
the object level no new attributes are introduced, but all attributes introduced at the higher
levels will be evaluated as far as they have not been evaluated at class level. If an attribute
is evaluated at class level, it means that all objects belonging to the class do have the same
value for that attribute. The class definition should be mutually exclusive, with each terrain
object belonging to exactly one of the classes, i.e., the classes should be defined so that the
classification system is disjoint and complete. Thus in the FDS, an object can belong to only
cne class and, for simplicity, all objects that belong to one class must be of the same type.

In the geometric domain, the object types points, lines and areas are distinguished for a 2D
or 2.5D terrain description. In the model, the geometry of a terrain object is clearly
distingnished in three independent aspects, namely topology, shape and size, and position (see
Figure 2.3). This geometric dataset has been carefully structured in the FDS, leading to a
semantically-rich, query-oriented and extendible data model in which information on topolegy,
shape and size, and position can be retrieved. The three terrain object types are geometrically
described by their linear characteristics using the two elementary geometric primitives: arc
and node.

The mathematical framework for the geometric description of objects in a vector map is
provided by graph theory (see $3.1.1). Thus the geometry of a vector map is represented by
a planar graph G(N, A) in which

N = {...m,...} is the set of nodes of the map, and

A = {..,a;..} is the set of arcs of the map in which for each g, € A is a; = (n,,n,) with n,,
n, € N; n, and n, are respectively the beginning and end nodes of a;.

Thus each arc is directed and is a subset of N. Furthermore, each arc has an area object on
its left side and one area object on its right side and may represent one line object. The
geometry of each object occurring in the map is thus a subgraph G,(N,,A,) of G where N,
CNand A, c A,

Figure 3.4 represents the formal data structure for single-valued vector maps. In the figure,
the classes are represented only by class labels; the class labels will serve as a link to the
thematic descriptions when the thematic classes are identified during implementation.

3.2.2. Elementary Links Among Objects, Geometric Components and Thematic
Components

Four categories of clementary links (functional relationships) among the three groups of
information represented in Figure 3.4 have been identified and defined in the FDS:

(1) object 1o class links (oc-links)

(2) object to object links (oo-links)

(3) geometry to object links (go-links)

(4) geometry 10 geomeny links (gg-links)

The four categories of link type will be explicitly represenied in the database to facilitate
unambiguous application, analysis of spatial relationships and other query operations in an
FDS database. They facilitate the clear interpretation of the links represented in Figure 3.4
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Object - Class Links (oc-links)

(1) Each point object belongs to a point object class.
(2) Each line object belongs to a line object class.
(3) Each area object belongs to an area object class.

Object - Object Links (oo-links)

(1) A point object may lie inside an area object.

(The explicit representation of this link is necessary because the relationship cannot be
derived without the use of coordinate information.)

(2) A line object crosses another line object. (This is required in 2D topologic space to take
care of linear objects crossing each other, e.g., a road crossing a river.)

Geometry - Object Links (go-links)

{1) One node may represent at most one point object.
(2) One arc may represent at most (part of) one line object.
(3) An arc has only one area object on its left side and only one area object on its right side.

The concept of the single-valued vector maps is emphasised by the three geometry-object
links. The three links clearly indicate that there should be only one occurrence of a link
between a geometric primitive and a terrain object. The first link shows that one node can
represent only one point object but it does not mean that every node must represent a point
object, i.e., this link may be empty for some nodes. The same explanation holds for the
second link. The third link emphasises the fact that planarity must be enforced such that an
arc will always have one area object on its left side and one area object on its right side. This
link cannot be empty.

Geometry - Geometry Links (gg-links)

(1) Each arc starts from a node.

(2) Each arc ends at a node.

(3) Each arc has a shape (represented here as a straight line).

(4) Each node has a position defined by a pair of X and Y coordinates.
The first two links indicate that a node should not contain loops.

The FDS is indicated in Figure 3.4, in which the ellipses represent the elementary data types
and the labelled arrows represent the clementary link types among them. Headed arrows
represent a many-to-one link type in the direction of the arrow, e.g., many area objects may
belong to the same area class, while non-headed arrows represent one-to-one relationships,
e.g., one node defines only one point object. Each data type represents a set. The expression
“elementary” means that these data types and link types cannot be further decomposed. In the
diagram, the thematic data are represented by the class labels. The objects (identifiers) are
represented by the object types, and the geometric data are the arcs, nodes, shapes and
positions (coordinates).
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3.2.3 Conventions of the FDS

The following seven conventions have been defined to complement Figure 3.4 in ensuring the
consistency of an FDS database by defining rules for their monitoring and enforcement (see
chapter 5).

(1) The object classes are mutually exclusive, i.e., each object belongs to exactly one class.
(2) Each class contains objects of only one geometric type.

(3) When a vector map is analyzed as a graph, ali points that are used to describe the
geometry will be weated as nodes.

(4) The arcs of this graph are geometrically represented by straight line segments.

(5) For each pair of nodes there is at most one arc connecting them directly; each of them
may be connected also by one or more chains consisting of two or more arcs.

(6) Two arcs should not intersect; if they do intersect, they should be replaced by four arcs
joining at a node.

(7) A node may represent at most one point object. An arc may be part of at most one line
object. An arc has exactly one area object at its right-hand side and exactly one at its
left-hand side.

Figure 3.4 Diagram representing the FDS for vector maps

A map which has the FDS as shown in Figure 3.4 and fulfils these seven conventions is a
single-valued vector map (Molenaar, 1989).

3.3 Handling Multi-valued Terrain Description

From convention 7 (§3.2.3), it is clear that two objects of the same type are not permitted to
spatially coincide (overlap), and in order to generalise the model to accommodate
representation of objects which are spatially coincident, the model should be extended. The
clear distinction in the FDS of the geometric aspects of terrain objects into topology, shape
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and size, and position gives room for the necessary extension. It facilitates key modelling
decisions. (1) It becomes possible to decide on the dimensions of the metric space (whether
2D or 3D) independent of the dimensions of the topologic space. Here, the extended model
is based on 3D coordinate space (position) and 2D topologic space, ie., a 2.5D data model
(see §3.4). (2) It also helps in deciding at which level to integrate geo-data from multiple map
layers, i.e., at geometric level or at thematic level.

At the geometric level (the choice in this thesis), it becomes possible to distinguish four
different approaches to the geometric integration by considering how metric (positional) data
and topologic data of the different layers are handled. The four possibilities and their pros and
cons are outlined below (see Hoop et al, 1993 for more details). Here, it is assumed that the
layer is structured according to the FDS.

(a) The first, and conventional approach, is to structure each layer separately, i.e., combining
metric and topology per layer and perform an overlay of the layers when necessary. This
results in fast single-layer topologic query and the geometry of objects in a single layer can
be reconstructed more easily. Updating is more straightforward and it is easier to manage data
consistency within an individual layer. It is also easier to implement in existing vector-based
systems.

However, the approach gives room for much data redundancy because common geometric
elements are stored in every layer in which they occur. In addition, vertical topologic queries
{queries involving objects from different layers) can be derived only by on-line map overlay
computations (with the attendant editing problems arising from pseudo polygons and sliver
lines), thus increasing costs.

(b) A second option is to structure the geometric data such that all layers share the metric
dataset while topology is retained per layer. This eliminates metric data redundancy as well
as the problems of sliver lines and pseudo polygons during overlay computations that may
be required to answer vertical topologic queries. However, vertical topologic query can be
realised only by on-line overlay computation or by comparison of metric data, and the
reconstruction of the geomewry of individual objects is slower. In addition, it is necessary to
provide rules that will guarantee consistency of the metric data during updating (note that
consistency rules are also required even in the single-layer approach but at a lower scale),

(c) Another option is to structure the geometric data such that all layers share a common
topology, while the metric information is structured per layer. This leads to faster multi-layer
topologic queries and faster single-layer metric queries. On the other hand, it leads to metric
data redundancy and requires additional rules to guarantee consistency of the topologic data
during updating. Moreover, topologic queries related to a single layer are slower to retrieve.

(d) The fourth approach is to define a model in which both metric data and topology are
shared by all layers as proposed in the next section. This approach is mainly beneficial when
frequent vertical topologic queries are envisaged. In addition, the reconswtruction of the
geometry of an cbject is slower. Because all layers are intersected, overlay computation will
be performed even in areas that may not be required for multi-layer analysis. Mareover,
updating procedure becomes more complex and consistency considerations are very critical.
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But the approach has many advantages, which include the following.

(1} Elimination of redundant data: A single geometric dataset {(positional and topologic) is
kept for all layers.

(2) Reduction in overhead cost because map overlay is computed once during database
creation; thus problems of spurious polygons, etc., are handled once.

(3) Faster multi-layer queries since it will not be necessary to compute an overlay before
answering such queries.

(4) Higher information content, the knowledge of which is known a-priori; thus a query
language can be predefined for retrieval of gec-information from the multi-valued database.

(5) Spatial consistency can be maintained at system level since only one data structure is used
and only one set of geometric data is kept.

(6) If overlapping sections across the layers are uniquely identified, as proposed in §3.4, they
can have their own geometric and non-spatial datasets. Therefore, they can be maintained and
manipulated by the GIS functions just like single objects. Thus it is easier to include them
in aggregation and association abstractions.

Since all options have their individual pros and cons, every solution will be a compromise.
The choice of approach will therefore depend largely on the intended application, The fourth
approach (d) is used in §3.4 to develop a data model for multi-valued vector maps by
extending the FDS. This can then be used in applications that require frequent analysis of
muiti-layer geo-data in which there is a frequent occurrence of spatial coincidence among
objects of the same type. An example of the second approach (b) is the ATKIS model which
was reviewed in §2.1.2.

In the work of Hoop et al (1993), cited above, an example of the extension of the FDS to
accommodate multi-valued vector maps was also given. The extension allows the geometric
primitives arcs and nodes to have many-to-many links with the terrain objects so that objects
from one or more layers can be represented in a single structure. The links are defined as
follows. A node may represent one or more coinciding point features (in this thesis the term
object is used instead). An arc may represent (part of) one or more (partly) coinciding line
features. With » merged structure layers, an arc has » coinciding or overlapping area features
on each side. A point feature may lie in » area features. A line feature consists of onc or
more arcs. An area feature consists of at least three arcs and may additionally contain several
point features in its interior. The structure was designed for implementation in the Postgres
database management system (see chapter 8 for information on Postgres); thus four groups
of Postgres classes were defined for the implementation of a multi-valued vector map as
follows (the classes defined for single-valued vector maps are excluded here):

Data Structure for Multi-valued Yector Maps as Defined by Hoop et al (1993):

/™ PART 1: LAYERS %/

structure_layer {
slayer_id = ini4, /* primary key */
single_valued = bool /* single or multi-valued */
description = char[] )

thematic_layer (
tlayer_id = int4, /* primary key */
slayer_id = in4, /* foreign key structure_layer */
description = charf] )
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/* PART 2: FEATURE CLASSES */
area_feature (
aid = int4, f* primary key */
tlayer = intd,  /* foreign key thematic_layer */
area_class = char(] /* thematic info */ )
line_feature (
lid = int4, /* primary key */
tlayer = intd,  /* foreign key thematic_layer */
linc_class = char[] /* thematic info */ )
f* PART 3B: TOPOLOGICAL CLASSES, MULTI-VALUED */
point_feature_multi (  /* also FEATURE CLASS */
pid = intd, f* primary key */
tlayer = inid,  /* foreign key thematic layer */
point_class = char[] / thematic info */
node_id = imd,  f* foreign key node */
areas = int4]] /* foreign keys area_features */ )
arc_muld ( /* primary key: from_node & to_node */
" from_node = ind, /* forcign key node */
to_node = intd4,  /* foreign key node */
left_areas = intd[], /* foreign keys area_features */
right_areas = intd[], * foreign keys arca_features */
lines = int4(} /* foreign keys line_featores */ )
/* PART 4. METRIC INFORMATION */
node (
node_id = intd, f* primary key */
location = paint F* x,y-coordinates */ )

Like the ATKIS model, this'structure does not explicitly model spatial coincidence among the
overlapping objects so as to derive the sixth advantage listed under the fourth approach (d
above). The many-to-many relationships that exist between the geometric primitives and the
objects may also introduce integrity control problems when implemented in a pure relational
system. In the next section, an alternative model is defined which explicitly models spatial
coincidence among obiects.

3.4 Data Model for Multi-valued Vector Maps

In this section, an extension of the FD§ is proposed to represent spatial data from one or
more map layers, i.e., multi-valued vector maps. The proposed model is a 2.5D (3D position,
2D topology) model that integrates both metric and topologic data of one or more map layers
from the same geographic space. The extended model will be called data model for multi-
valued vector maps (DMMVM). Since positions of objects are defined in a 3D metric space
but embedded in planar topology, only surfaces of objects are represented. The DMMVM is
still based on the fundamental structure shown in Figure 2.2. How the thematic and geometric
components of objects are handled in the DMMVM is shown in the following sections.

3.4.1 Thematic Component

The representation of the thematic aspects of objects remains essentially the same as in the
FDS (see Figure 3.3); only a slight extension is required to accommodate multi-valued
sitaations. In the FDS, each object can belong to only one class. This convention has been
adopted here with respect to individual map layers. Normally, each layer has a distinct
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domain of objects but sometimes an object may occur in more than one layer, In such situa-
tions, the object can be classified in more than one layer in the DMMVM. At a higher level
of abstraction, it is also possible to further identify classes with some common atiribuies and
by that generalise them into superclasses with each superclass having its own set of attributes,
ie., a hierarchic classification of objects. Like objects, a class can belong to only one
superclass at the next higher level in the hierarchy.

Consequent upon the strict classification hierarchy adopted in this model, the following rules
must be observed:

- Cyclic classification is not permitted, i.e., the classification must be a directed acyclic graph;
for example, given three distinct classes A, B and C, C is not allowed to be a subclass of A
if it is a superclass of B when B is a superclass of A.

- The classification must be complete, i.e., all objects must be classified.

- Each object must belong to only one class in each map layer but the object can be classified
in more than one layer.

In the DMMVM, the thematic data will be represented by only class labels because this thesis
concentrates on the geometric component of vector maps. But the model does not preclude
the representation of thematic data. During implementation (when thematic attributes of
objects are identified) the thematic data can be arranged in a hierarchic manner as described
above.

3.4.2 Geometric Component

As in the FDS, the geometry of each object is represented by topologic primitives, arcs and
nodes (see §3.2.1). An arc is defined by a pair of connected nodes while a node is defined
by a set of X, Y and Z coordinates. The fact that the DMMVM integrates objects from one
or more map layers implies that two or more objects of the same geometric type can overlap
in space. This means that each geometric primitive may represent more than one object in
the model, i.e.,

- a node may represent } point objects from J map layers

- an arc represents (part of) X line objects from K layers and has L area objects from L layers
on each side (left and right). Objects may therefore have many-to-many (M:N) relationships
with the geometric primitives.

For example, (part of) many line objects may be represented by the same arc while many arcs
may define a single line object. This is a many-to-many relationship between arcs and line
objects (see Figure 3.5 (a)). It is desirabie to decompose the M:N relationship between objects
and the geometric primitives into components of M:1 relationships to simplify the structure
for easy manipulation, especially with respect to integrity controls. This will also allow the
use of a single set of consistency rules for geometric primitives in both single- and multi-
valued vector maps. Therefore, an additional data type, m-comtainer, m € {012}, is
introduced such that one m-container will represent many objects of corresponding dimension
while a geometric primitive represents only one m-container (se¢ Figure 3.6). In the example
above, many line objects will be represented by a single 1-container (i.e., M:1 relationship),
while an arc defines (part of) only one 1-container; since one 1-container can be described
by many arcs, we have a 1:N relationship between a 1-container and arcs (see Figure 3.5 (b)).
Note, however, that there is still an M:N relationship between an m-container and an object
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with respect to line and area objects. But this is now more at a semantic level than a
geomeiric level. Thus (for example) an arc will still have only one two-dimensional entity on
either side as in the FDS so that the same consistency operation defined for an arc in this
model can also be used for the FDS arcs. By introducing the m-container data type,
overlapping sections across the layers are uniquely identified such that they have their own
individual geometric data and non-spatial data apart from those inherited from the overlapping
objects; they can then be maintained and manipulated by the DBMS just like single objects.
Thus it is easier to include them in aggregation and association abstractions, thereby
improving spatial analyses in GIS.

Layer 1 L!ne10hiect pertof [ ari]

—\J
Layorz [ OoaGHeat [, pete o3 |
Layer 3 Uneoghct J (a)

Laye 1 [ Lo Obf J/ ppe—
| arc2 |
a2 [ TraOtioct | (55

2 1-container 2 12
Leyers | LineObject :l_ ®)

Figure 3.5 Decomposing M:N relationships between arcs and line objects ((2)) to
1:M relationships using 1-container ((b})

8|18

To formally define the m-container, let the metric space covered by terrain objects in the
multi-valued vector map (which is assumed to be 2 closed region) be denoted by E" where
n = 3, i.e, a 3D metric space. Also, the allowable entity (a bounded portion of space in E°)
in the map is denoted by R™ where m e {0,1,2}, i.e,, a 2.5D terrain representation. Thus R™*
denotes an entity in E" where m = dimensionality of R and n = dimensionality of the space
E in which R is located, and m < n. The allowable entities in our 2.5D representation are:
(2) R* : OD entity in E’ space having a position but no spatial extent;

(b) R? : 1D entity in E? space having shape and position but only length as a measurable
spatial attribute;

(c) R**: 2D entity in E’ space having a 2D spatial extent with shape, size and position. Its
measurable spatial atiributes are area, perimeter and centroid,

R*, a volumetric or solid object, does not occur in a 2.5D representation.

The R™ corresponds to the m-container where m € {0,1,2) such that
- one (-container represents J point cbjects from J map layers,



- one l-container represents (part of) K line objects from K layers, and
- one 2-container represents (part of) L area objects from L layers,
where L is the maximum number of layers and J and K may each be less than or equal to L.

The m-containers vV m e {(,1,2} are then structured as a 2.5D graph using the two geometric
primitives, arc and node. A node represents one O-container and an arc represents (part of)
one 1-container andfor boundary of a 2-container. The node is defined by a coordinate triplet
X, Y and Z with respect to some coordinate system, while an arc is defined by a pair of
adjacent nodes. The arc has a shape which is defined here as a straight line.

Thus the geometry of the multi-valued vector map is represented by a planar graph G(N, A)
as defined in §3.2.1. The geometry of each m-container E occurring in the map is thus a
subgraph G (N_,A,) of G where N, — N and A, — A. Note that for 0-container, A, = &.

LAYER 2 LAYER N

Figure 3.6 Representation of geomeitric primitives, m-containers, obhjects and classes
in the DMMVM

Apparently, the m-container, m € {0,1,2}, is similar to the n-simplicial complex, n € {0,1,2}
described in §3.1.2, when m equals n. However, while a (-container is related to a 0-
simplicial complex on a onme-to-one basis, the semantic aspect of 1- and 2-containers
introduces some differences between an m-container, m € {1,2}, and an n-simplicial complex,
n e {1,2} whereby
one n-simplicial complex < one m-comtainer V. m = n; mn e {12}

In other words, a 2-container is a contiguous (connected) set of 2-complexes representing the
same sct of elementary objects of corresponding dimension (the same goes for 1-container
vis-a-vis 1-complex).

Figure 3.7 illustrates this semantic difference. As shown in the figure, suppose we have two
overlapping area objects P and Q (from two layers) with P = (1,8,2,3.4,10,5,6,7} and Q =
{2,34,10,5,11,12,6,9}; a line object L = {8,9,10} intersects P and Q. The situation in the



figure will be represented by one 1-container
(L) and three 2-containers R, S, T (where R
={1,8296,7},5 = {2,3.4.10,569}, and T
= {6,5,11,12]) whereas, in strict mathemat-
ical sense, we have five 2-complexes (each
of the five closed non-overlapping polygo-
ns).

The DMMVM is shown in Figure 3.8 in
which headed arrows represent many-to-one
relationships in the direction of the arrow
(e.g., many arcs may begin from the same
node) while non-headed arrows represent
one-to-one relationships (e.g., one node
defines only one D-container). Data types are
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Figure 3.7 Simplicial complex and m-con-
tainer (see text)

represented by ellipses, each of which represents a set.

............

— geOmelry - m-conisines links
—..— poonctty - gootnetry links
= m-hhh

Figure 3.8 Data model for multi-valued vector maps (DMMVM)

3.43. Elementary Links Among Data Types in the DMMVM

There are four groups of data in the DMMVM, namely objects’ thematic data as represented
by the thematic classes, the objects (identifiers), the m-containers representing the objects, and
the geometric data of the m-containers. Six categories of elementary links among the four
groups of data are presented below. The links indicate the semantic constraints for the model.




Object - Class Links (oc-links)

- Each point object belongs to only one point object class in a given map layer but the object
may be classified in more than one layer.
- Each line object belongs to only one line object class in a given map layer but the object
may be classified in more than one layer.
- Each area object belongs to only one area object class in a given map layer but the object
may be classified in more than one layer.

Object - Object Links (0o-links)

These will be realised through the combination of the following mo-links and mm-links.

m-Container - Object Links (mo-links)

- One m-container, m € {0,1,2}, is part of K m-dimensional objects from K different map
layers.

m-Container - m-Container Links (mm-links)

- One or more {-containers may lie in one 2-container.
- One 1-container may cross one or more other 1-containers at one or more points.

Geometry - m-Container Links (gm-links)

- A node may represent only one O-container.

- An arc may represent (part of) only one 1-container.

- An arc always has just one 2-container on its left side and just one 2-container on its right
side.

Note that the two geometric primitives, arc and node, retain the same structure as in the FDS
(see go-links in §3.2.2) except that they are linked to the m-containers and not the terrain
objects directly.

Geometry - Geometry Links (gg-links)

- Each arc has a beginning node.

- Each arc has an end node.

- Each arc has a shape, defined here as a straight line.

- Each node has a position given by coordinate wiplet X, Y and Z.

Note that the four links are the same as defined in the FDS (see gg-links in §3.2.2).
3.4.4 Conventions of the DMMVM

The seven conventions of the FDS should be modified to fit multi-valued vector maps. The
modified conventions and their relationships with the FDS conventions are as follows:

(1) The object classes are mutually exclusive in each layer, i.e., each object belongs to exactly
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one class in one layer but the object can be classified in more than one layer. This
convention is the same with the FDS convention with respect to individual map layers but
with an added provision to allow an object 10 be classified in another layer if it plays a role
in that layer.

(2) One m-container, m € {(,1,2}, represents K m-dimensional objects from K different map
layers. This 1s a new convention for the added data type m-container that has been introduced
to model! spatial coincidence among objects of the same type.

(3) When a vector map is analyzed as a graph, all points that are used to describe the
geometry will be treated as nodes (same as in the FDS).

(4) The arcs of this graph are geometrically represented by straight line segments (same as
in the FDS).

(S) For each pair of nodes there is at most one arc connecting them directly; each of them
may be connected also by one or more chains consisting of two or more arcs (same as in the
FDS). :

(6) Two arcs should not intersect; if they do intersect, they should be replaced by four arcs
Joining at a node (same as in the FDS).

(7) A node may represent at most one (-contginer.

An arc may be part of at most one I-container.

Anr arc has exactly one 2-container at its right side and exactly one at its left side.
This is structurally the same as in the FDS except that the geometric primitives are linked to
the m-containers and not directly to the terrain objects as in the FDS. Here, the primitives are
linked to the objects through the m-containers (sce convention 2 above).

A vector map which is modelled according to Figure 3.8 and satisfies the conventions above
is termed a multi-valued vector map.

3.4.5 Elementary Objects

The complexity of temrain objects in terms of shape and size will often vary from one
mapping context to another, which creates a problem in the definition of a generic model that
can be used in different applications. A feasible solution is to define a limited set of
elementary (non-decomposable) objects which can then be used as building blocks for
complex objects in different applications (by providing some rules for the aggregation of the
elementary objects). This philosophy can be related to the provision in the English language
of 26 letters (A - Z) which can then be grouped together using defined mles (grammar) to
formulate different words, e.g., the letter Q should always be followed by the letter U in any
word. Thus in the DMMVM, the elementary terrain object types (area, line and point) are
defined and constrained as follows. The mapping of terrain objects to these elementary types
can then be one-to-one or one-to-many.
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Elementary Area Object Type

An instance of this type is defined and constrained as follows:
- A two-dimensional object, F, geometrically represented by the subgraph G{Ng, Ag) where
Ag = [, &, ..., 8} is the set of arcs defining the boundary of the object and j 2 3, ie., a
minimum of three arcs will form a closed polygon since an arc is assumed to be a straight
line segment; and N = [n,, ny, ..., n,] is the set of nodes defining Az 3k =j.
- ¥ n, € N, degreeg(n,) = 2. This implies that

* The start-node = end-node.

* A path must exist between the start-node and the end-node with only one occurrence of
8, € Apin the path, ie., the path must be simple.
- The interior (see Table 4.1) must be fully connected.

Eiementary Line Object Type

Each instance of a simple line object type is defined and consirained as follows:
- A 1D spatial object, L, geometrically defined by the subgraph G (N;, A;) where
A, = {a,, 8, ..., 8;} is the set of arcs defining the geometry of the object L and j 2 1; and
N; = {n,, n,, ..., 0} is the set of nodes defining Ay Dk =j+ 1.
- Exactly two of the nodes N; have degree;(n) = 1
- All other nodes in the set N, have degree {n) = 2. These imply that
* A simple line object can neither intersect nor close back on itself.
* A path must exist between the start-node and the end-node of G;, with only one
occurrence of a; € A, in the path, i.e., the path must be elementary and simple (see §3.1.1).

Elementary Point Object Type

An instance of this type is always a primitive and is geometrically represented by a single
node,

3.5 Integrating the DMMVM with DTM

The DMMVM can easily be extended to cover representation of other spatial information in
vector mode. This section shows its extendibility by incorporating a digital terrain model.
Digital terrain model (DTM) is used here to mean a dataset representing the elevation of a
given terrain. Development of digital terrain modelling techniques started more than three
decades ago (Ebner and Eder, 1992), and program packages are today available covering all
phases from preparation to derivation of DTM products.

With the increasing popularity and use of GIS, attention is being focused on the total integra-
tion of DTM and related packages into GIS such that DTM-specific information can be
derived from the same database, just like any spatial information under a single DBMS.
Recent works on the integration of DTM into GIS include Sandgaard (1988}, Fritsch (1991),
Radwan (1991}, Ebner and Eder (1992), Hohle (1991, 1992), and Pilouk and Tempfli (1993).

A DTM contains two complementary sub-sets (Makarovic, 1988): the skeleton and the filling
information, with the skeleton being largely contained in various terrain objects such as lakes,
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rivers, etc, Therefore, many planimetric objects serve as characteristic objects (breaklines, etc)
and primary data in digital elevation modelling. Thus, in developing this integrated model,
the terrain relief is regarded as a mapping theme such that it (terrain relief) is classified into
geometric classes like other terrain objects. To realise this, the DTM class w0 which an object
belongs can be made a mandatory property of each terrain object in the database. Table 3.1
gives the DTM classification scheme for terrain objects.

Various models have been developed for the digital representation of terrain relief. These
include:

- regular grid,

- irregular grid,

- 1solines (digital contours),

- mangulated irregular network (TIN)

The TIN is an appropriate structure that can be integrated with vector structures since
characteristic points and lines, which form a logical part of the TIN, are often objects in the
vector structure (e.g., rivers, lakes). In other words, TIN, though a tessellation model, can be
seen as a vector topologic structure for representing polygon networks (Burrough, 1986). The
TIN-DTM was therefore chosen for integration with the DMMVM.

Table 3.1. Classification model for DTM objects (modified from Hhle (1992)).

ENTITY DTM CLASSES DEFINITION

TYPE

Point Regular’ Any regular point with xyz coord
Spot Local high and low points. No assumptions are

made on the slope of the surrounding terrain

Peak Specific local high z-value
Pit Specific local low z-value

Linear Break A line which defines a change in slope or a

surface discontinuity

Drain A specific form of the breakline, it is assumed
that the surface on either side of the line object
has an increasing slope

Ridge A specific form of the breakline, it assumes a
decreasing slope on either side of the object

Contour Equal z values along the line

Regular Any line entity which is not a breakline




Area Double-line drain A drainage object which at the map scale is
large enough to be represented as an area
object. Heights decrease uniformly in one
direction.

Water body A hydrographic arca object with assurmed
constant z-value in its interior

Obscure A dead area. Any area object which obstructs
the measurement of heights in its interior, the
values of which cannot be assumed, e.g., dense
forest cover

Regular Any arca object in a relief-homogeneous re-
gion

The primitive topologic entities of a TIN are vertices, edges and mangles. The internal
storage structure of a TIN is therefore usually based on one or a combination of the three
primitives. In a vertex-based TIN, the primary entity is the vertex; for each vertex, the vertex
number is stored with the list of pointers to connected vertices and edges. In triangle-based
TIN, it is possible to store the triangle number with its three vertices and its three neighbours.
For edge-based TIN, a record will comprise the edge number, the two adjoining triangles and
the two vertices that define the edge.

Thus in an edge-based structure, the TIN will be fully described by two geometric primitives,
edges and vertices. This is consistent with the use of arcs (edges} and nodes (vertices) as
topologic primitives in multi-valued vector maps. Thus the proposed integrated model uses
the edge-based TIN structure by adding the data types TIN edge and TIN vertex to the data
types defined in the DMMVM. The integrated data model is shown in Figure 3.9 in which
part B indicates the edge-based TIN data types and their links and part A is the DMMVM
of Figure 3.8, This gives a flexible structure which allows separation of the two parts into two
subsystems in the same database such that geo-information that does not require DTM input
can be retrieved without involving the DTM part. And because they are integrated, objects
in the object-base can contribute to the generation of a DTM with high fidelity, while the
DTM supports the object-base, ¢.g., when updating via mono-plotting techniques, to provide
elevation information for objects whose Z values could not be determined during the data
collection phase, and to provide relief information in general,

With reference to Figure 3.9, the part of link between arc and TIN_edge and is a link
between node and TIN_vertex provide the link between the map base and the DTM at
geometric level. It would appear that the arc and node structure, being similar to the edge and
vertex of the TIN, should be sufficient to handle the geometric information of the joint model
without having a separate TIN structure. We prefer not to do this because a single arc in the
map base may be decomposed into more than one edge after triangulation, as illustrated in
Figures 3.10a and b. For example, using a relational structure, the ARC table in the map base
(Figure 3.10a) will contain a record for arc number 5 in the following form:
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Figure 3.9 Integrated data model for multi-valued vector maps and DTM

Arc id beg end Ift aid rgt aid alid
5 1 4 11 12 10

where 10, 11 and 12 are the m-container identifiers of riverl, culuvatedLand]l and forestl,
respectively. After triangulation (Figure 3.10b), the TIN-EDGE table will include two records,
related to arc number 5, in the following form:

begVertex endVertex lefiTriangle rightTriangle arc id
1 8 1 5 5

8 4 3 8 5

Figure 3.11 shows the block diagram of the procedure for implementing the integrated data
model. First, the data acquisition for the muiti-valued vector map can be done either in multi-
valued mode (ie., from a combined multi-valued data source such as photogrammetric
superimposition of two layers) through screen digitizing, land surveying, etc., or by data
acquisition per layer followed by overlay computation. During data acquisition, objects would
also be classified into DTM classes (apart from their thematic classes). The dataset is then
reformatted and checked for consistency (see chapter 5). The result can then be structured
according to a relational data structure, for example.

To generate the DTM subsystem, the (-, 1- and 2-containers which belong to DTM object
classes are extracted to form part of the DTM skeleton, In other words, the arcs of such 1-
and 2-containers will form part of the TIN edges and the nodes of those O-containers will be
vertices in the TIN. Further sampling is carried out to collect filling data for the interior parts
of 2-containers and for more skeleton data for characteristic lines which have not been




captured as terrain objects during the initial data
acquisition. The coordinate data of other objects in
the database which belong to the DTM class "regu-
lar" (see Table 3.1) are extracted as filling data. The
skeleton and the filling data are then triangulated and
structured as an edge-based TIN. Heights of points
defining the boundaries of 2-containers belonging to
DTM class "obscure” are then derived by inter-
polation. Finally, the relational tables describing the
DTM subsystem (e.g., Tinedge, Tinvertex and Trian-
gle) are filled.

For queries on objects requiring DTM input, the part-
of link between arc and Tin_edge, and is-a link
between node and Tin_vertex (Figure 3.9) would be
used for navigation. With this flexible set-up, non-
DTM-related information will be more efficiently
retrieved. For example, topologic queries at the object
level will not have to search through DTM data.
DTM-related queries involving line and point objects
can be easily handled through the part-of link bet-
ween arc and Tin-edge and the is-a link between
node and Tin-vertex. Deriving DTM-related infor-
mation for area objects is, however, not as straightfo-
rward as in the other two object types, since the
DTM points in the interior of the area object are not
directly linked to the object. To facilitate retrieval of
DTM points for any area object, a routine can be
provided as an integral part of the database. This Figure 3.10 A simple map in the
routine may make use of a "point-in-polygon" subro- Map-base (a) and DTM-base after
utine (in 2D modc) to retrieve all vertices located in  (fictitious) triangulation (b)

the interior of a certain area object and its output will

then serve as input into the derivation of DTM information concerning area objects.

3.6 Summary

In this chapter, a vector data model has been proposed to represent multi-valued terrain
abstraction, especially when frequent spatial analyses across many map layers are envisaged,
i.e., in applications involving frequent analysis of multi-layer geo-information. The proposed
conceptual data model is an object-based 2.5D data model for multi-valued vector maps
(DMMVM). A multi-valued vector map refers to the vector-based representation of terrain
objects from multiple map layers whereby two objects of the same geometric type may be
spatially coincident. Two objects of the same type are said to be spatially coincident if they
(partially) overlap in space. In the model, positions of objects are defined in a 3D metric
space but embedded in planar topology, i.e., a 2.5D model. This means that only surfaces of
objects are represented such that a pair of X and Y coordinates must have a single Z value,
thus a single-elevation model. The model was based on the formal data structure (FDS) for
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Multi-valued data soquis. Data acquisition per layer
(scresn digitizing, stc.) (ﬂ-pdnlﬂilw- photagr.))

Retormatiing overiay and re-formetting
Consistency chacks
.
\mnu:’ Exiract DTM Bkaloton
. h
Extract fliling data Further Sampling
class (intarior of arsa objects, )
Trienguiation
interpolate heights of
abjects ¢ oless "obeocure”! Edge-based TIN

Figure 3.11 Procedure for creating an integrated multi-valued and DTM database

single-valued vector maps. In the 2D FDS (see §3.2), terrain objects play a central role in the
terrain description; each object has a thematic component and a geometric component. In the
thematic domain, the objects can be grouped into thematic classes in which each class has a
specific attribute structure; in the geometric domain, the object types points, lines and areas
are distinguished for a 2D or 2.5D terrain description, subject to a constraint that two objects
of the same type may not be spatially coincident. The three object types are then completely
described by a common set of two types of geometric elements: arc and node, vsing graph
theory as the mathematical framework. In the FDS, the geomeiry of a terrain object is clearly
distinguished into three independent aspects, namely topology, shape and size, and position.
This geometric dataset has been carcfully structured in the FDS, leading to a semantically-
rich, query-oriented and extendible data model in which information on topology, shape and
size, and position can be retrieved.

The FDS was extended in this thesis to allow objects of the same type to be spatially
coincident, thus facilitating the use of a single stuctume for the representation of multi-layer
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geo-data. A geometric data type, m-dimensional container, or simply m-container, where m
€ {0,1,2) was introduced to model spatial coincidence among objects of the same geometric
type. Thus a (-container represents spatially coinciding J poiat objects from J layers, a 1-
container represents (part of) K line objects from K layers and a 2-container represents (pari
of) L area objects from L layers, where L is the maximum number of layers and J and K may
each be less than or equal to L.

By introducing the container data type, overlapping sections across the layers are uniquely
identified such that they have their own individual geometric data and non-spatial data apart
from those inherited from the overlapping objects; they can then be maintained and
manipulated by a DBMS just like single objects. Thus it is easier to include them in
aggregation and association abstractions, thereby improving spatial analyses in GIS.

Using graph theory as a mathematical tool, the three container types are then represented by
topologic primitives arc and node. A node defines one O-container andfor beginning or end
of an arc while an arc defines (part of) one l-container andfor (part of) boundary of a 2-
container, The arc is defined by one start node and one end node, and a node is defined by
a coordinate triplet X,Y,Z.

Thus eight basic geometric data types are defined to represent geo-data from multiple map
layers, namely area, line, point, 2-container, I-container, 0-container, arc, and node. Each data
type plays some specific roles in the model. The area, line and point data types abstractly
represent terrain objects, whereby each terrain object in the application is mapped into one
of the three types during implementation. The mapping can be one-to-one or one-to-many,
depending on the complexity {shape) of the terrain abject, e.g., a two-dimensional object with
a connected boundary and interior will be mapped to one elementary area object type while
a two-dimensional object with disconnected boundaries and interiors will be mapped into two
or more elementary area objects. These related elementary objects will then be aggregated to
reconstruct the parent {original) object during query.

One of the attributes of each of the three object types should be the thematic class of the
object. Although the thematic aspects of objects were given less attention here, the model
does not preclude the representation of thematic data. During implementation (when thematic
attributes of objects are identified) the thematic data can be arranged in a hierarchic manner
as proposed in §3.2.1 and §3.4.1

The m-container, m € {{,1,2}, models spatial coincidence among elementary objects of
corresponding spatial dimension as explained above. Apart from the attribute values inherited
from the spatally ceinciding objects, an m-container data type can have additional attributes
as required by the user. Arc and node, as stated above, play the roles of geometric descriptors
in the model.

An integration of the DMMVM with the TIN-DTM was described in §3.5. The integrated
model provides a unified representation of multi-valued terrain object data and terrain relief
information in a flexible manner. The position of an object can thus be given in 2D or 3D;
when defined in 2D, the height value will be interpolated from the DTM subsystem.

The philosophy behind this integrated approach to spatial data medelling is based on two
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main considerations:

(1) Although data acquisition is usually layer-oriented, subsequent analyses often require
integration of data from more than one layer, leading to ad hoc overlay computations. The
model presented here can be used to organize the result of an initial overlay of all relevant
layers which will subsequently be used for future single-valued or mulii-valued queries.

(2) Most of the skeleton of a DTM is usually contained in terrain objects such as rivers,
roads, lakes, etc.; with the importance of DTM in spatial analyses, it is apparently more
efficient to integrate planimetric and elevation models. Thus objects in the object-base will
contribute to the generation of a DTM with high fidelity while the DTM supports the object-
base, e.g., when updating via mono-plotting technigues, to provide height information for
objects whose Z values could not be determined during the data collection phase, and to
provide relief information in general.

It has been shown here that the DMMVM can be extended to handle DTM information, but
this will not be elaborated further in this thesis. Additional information on the integration of
the DMMVM and DTM can be found in Kufoniyi et al {1994), Kufoniyi and Pilouk (1994),
Pilouk and Kufoniyi (1994), and Kufoniyi and Bouloucos (1994). Subsequent chapters will
focus only on the DMMVM. The translations of the DMMVM to prototype relational and
object-oriented database structures are given in chapter 7. The topologic spatial relationships
supported by the DMMVM are formally derived in the next chapter; they will be used as
tools in chapters 5 and 6 for the provision of consistency rules to guide updating operations.
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4

MODELLING TOPOLOGIC RELATIONSHIPS IN VECTOR MAPS

In chapter three, a conceptual data model for multi-valued vector maps was proposed. The
model described how the geometric and attribute data of objects from different map layers
can be organized in a structure. Part of an object’s geometric data are the spatial relationships
between the object and other objects. They often serve as the main tool for intelligent
analyses and processing in GIS. The relationships can be grouped into three main types
(Kainz, 1990):

(1) Topologic spatial relationships: these are the relationships which remain invariant under
cerain topologic transformations such as rotation, shift and scaling. Examples are
neighbourhood and connectivity.

(2) Spatial order relationships: these concern the representation of the concepts of inclusion
and containment of spatial objects using partially ordered sets and lattices based on
mathematical order theory.

(3) Metric spatial relationships which cover the concepts of distance and direction.

The main focus in this thesis is the first group: topologic spatial relationships. They give more
detailed spatial relationships than the spatial order set (Kainz, 1990). The metric relationships
are normally computed from the database using the coordinates of objects. For example, the
metric relationship distance (euclidean) between two point objects A and B whose positions
are respectively defined in a 3D cartesian space as X,, Y,, Z, and X, Yy, Zy will be
computed using the formula
distance(A,B) = sqrt((Xp-X,)? + (Yg-Y, P + (Zg-Z)P)

All topologic relationships among objects can normally be derived through the use of
coordinate information and analysis, but this approach will slow down operations in the
system.

In topologic data structures, most of the topologic relationships are implicitly or explicitly
represented and can be derived by queries. However, it is useful to formalise the elementary
{basic) set supported by a certzin data model in order to know a-priori the information content
of the database. The elementary set can then be translated into basic topolegic operators as
a fundamental step towards the establishment of an active (dynamic) spatial database. In
general, the topologic operators will be useful for the following operations in an active vector
GIS:

(1) On-line building of topology such that if the geometry of an object changes, topology is
automatically uvpdated. Also, complex topologic relationships and other implicitly represented
relationships can be dynamically derived.

(2) Dynamic checking of spatial consistencies as a step towards consistency enforcement.
{(3) Dynamic building of a consistent multi-valued vector map from two or more single-valued
VECLOr maps.

(4) As wols for constructing complex objects from elementary ones.

This chapter describes the formal derivation of the topologic relationships in vector maps
based on the data model proposed in the preceding chapter. The "9-intersection” formalism



31

(Egenhofer and Herring, 1992) (see §4.1) was used for the derivation. The relationships are
defined at two levels: first, among the elementary objects {(object topology), and second,
among the topologic primitives, arcs and nodes (geometric-primitive topology). The
algorithms for detecting the particular relationship (from the possible set) that exists between
any pair of objects are also formalised. The application of the derived topologic relationships
in automated consistency validation and updating of the geometric saucture of vector maps
is proposed in the next chapter.

The importance of topologic relationships in GIS has made it an active research topic. For
example, Molenaar (1991a) defined the topologic relationships among data types in the FDS
at three levels. The first comprises a set of semantically defined relationships among the three
elementary objects (point, line and area) in single-valued vector maps (see Figure 4.1). The
second level consists of the links provided by the graph structure of vector maps between the
geometric primitives and the objects. The third consists of the connectivity among the
geometric primitives (arc and node).

Figure 4.1 Topologic relationships among elementary objects (Molenaar, 1991a)

Also, Pullar and Egenhofer (1988) applied the point-set topology (Vaidyanathaswamy, 1960)
to define six minimal set of binary relationships (disjoint, meet, overlap, concur, common-
bounds and equals) between two one-dimensional intervals (line segments).

The point-set approach has been formalised as a mathematical framework for the derivation
of topologic relationships between n-dimensional objects by using either the "4-intersection”
model (Egenhofer and Herring, 1990} or the "9-intersection” model (Egenhofer and Herring,
1992). The former distinguishes two parts of an object, the interior and boundary, and
evaluates the set intersection between each part of one object and each part of a second
object. The 9-intersection extends this by including the exterior component of an object. This
approach has become popular among researchers for deriving topologic relationships, e.g.,
Egenhofer and Franzosa (1991), Hadzilacos and Tryfona (1992), Hoop and QOosterom (1992),
Egenhofer and Al-Tahar (1992), Pigot (1991), Clementini et al (1993), Kufoniyi et al (1993,
1994) and Molenaar et al (1994}, The 9-intersection model is used in this thesis to analyze
the topologic relationships in the DMMVM.
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4.1 The 9-Intersection Formalism for Modelling Topologic Relationships

Egenhofer and Herring (1992) proposed the 9-intersection model for formalising binary
topologic relationships between two arbitrary objects. The model was based on point-set
theory of algebraic topology. In the model, an object, O, is represented as a point-set
consisting of the following three components (subsets): the boundary set of G, represented by
00, the interior set of O, represented by °0, and the exterior set of O, represented by 0O,

With the three components of a point-set identified, the modelling proceeds with the following
three main operations:

Step One: Evaluate the set intersections (M) between the boundary, interior and exterior of
one point-set O, and the boundary, interior and exterior of the second point-set O,. This gives
a Y-intersection configuration as shown in Figure 4.2

20,rd0, 00,N°0, dON0,
°0,nd0, °0,~°0, 00,
0,0, OO0, TN,

Figure 4.2 The 9-Intersection configuration

Each element in the nine-element tuple is evaluated as empty, denoted &, or non-empty,
denoted —@. This gives a total of 512 (2°) muwally exclusive candidate binary topologic
relationships between the two arbitrary objects.

Step Two: Eliminate from' the 512 the topologically impossible relationships. Rules are
defined for the elimination, based on the definition of object types in the embedding data
model.

Step Three: Combine the topologically similar relationships in the result of step two. Two
relations are topologically similar if they share the same boundary-boundary, interior-interior
and exterior-exterior specifications, but have opposite boundary-interior and interior-boundary,
and/or boundary-exterior and exterior-boundary, and/or interior-exterior and exterior-interior
specifications.

The third step will yield the topologicatly consistent set of mumally exclusive candidate
binary relationships between the two objects.

This formalism is applied here to derive the topologic relationships between objects and
between geometric primitives in the DMMVM.

4.2 Topologic Relationships in Vector Maps

4.2.1 Relationships among the elements of a planar graph

In chapter three, vector maps are modelled as a planar graph. The relationships among the

elements of this graph, i.c., nodes, arcs and faces, can be defined with a limited number of
relational functions (Molenaar et al, 1994) as follows.
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Nodes and ares
The following relationships can be defined between nodes and arcs:

- Arc a; has node n; as the begin node -+ Beginfa, n] = 1
- Arc a; has node n, as the end node = Endfa, n,] = 1

If loops are not allowed:

Beginfa, n;j = 1 — Endfa, nj = 0
and Endfa, nJ =1 — Beginfa, n] =0

So arcs will have distinct begin and end nodes. Whether n; is a node of arc g can be
investigated by the function:

Nfa, n] = Beginfa, nJ + Endfa, n]

If N[a, n] = 1 then n, is a node of a,
If Nfa,, nj] = 0 then this is not the case.

- The degree of a node can be found through:
Degree(n;) = X;(Nfa;, n;])

Arcs and faces

Each arc will always have one face at its lefthand side and one at its righthand side. These
relationships will be expressed by the following functions:

- Arc a, has face F, at its left-hand side —» Lefa, F,] = 1

For any F, # F, we get then Lefa;, F, ] = 0

- Arc a has face F, at its right-hand side — Rifa;, F, [ = 1

and again for F, # F, we get then Rifq;, F,] =0

If an arc a, is part of the border of F, then only one of the functions Ri and Le is equal to 1
for a,, but not beth. So if we define the function:

Bfa;,, F.} = Lefa;, F,] + Rifa;, F_]

then when a, is part of the boundary of F, we find B/a;, F,] = 1.
The boundary of F, is;

oF = {N,, A} withA,= {a. | Bla., F,] = I} and
N, contains the nodes of the arcs of A,
"." stands for an unspecified index value.
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The arcs that make up the border of a face form a pelygon (ic., a closed chain of arcs). So
for any arc «; that is part of a polygon in a planar graph there are only two faces, so that
Bfa,, F.] = 1, for all other faces Bfa,, F.] = 0.

If an arc a, is part of a polygon then it is
not possible that there is any face F. for
which Bfa,, F.] = 2. If an arc a, does not
belong to a polygon then there must be
a face F. for which Bfa,, F.J = 2. In this
case there are two possible relationships
between an arc & = {n,, n, } and oF,
see figure 4.3:

Figure 4.3: Relationships between an arc on a

f d the bo .
- the arc is not directly connected ace and the boundary

to the boundary:
h,, A, ¢ N a

- the arc is connected to the boundary through one node:
meN, or n,e N, '

Nodes and faces

If the degree of a node n, is Degree[n,] = O, then it is not related to an arc. In that case it
must be contained inside a face F,; this relationship will be expressed by:

ISINfn,, F ] =1

If Degree[n] # O, then there is some arc a for which Nfa;, n;] # 0. This arc will be related
to some face through one of the relationships explained above; the relationship between the
node and that face is then established through the arc.

Face to face

For face F, with a boundary dF, = {N,, A, ) as defined above, and F, with dF,= {N,, A,],
there are four possibilities for the intersection of these subgraphs, see Figure 4.4:
a

not connscted touch adjacent
Figure 4.4: Geometric connections between two faces

combination
ofb. and c.

- there is no geometric connection if there are no common nodes or arcs; thus:
NIﬁN‘?: g and AJﬁA2= @
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- the objects touch if there are one or more common nodes but no common arcs; thus:
NN,z and AnA=0

- the objects are adjacent if there are one or more common arcs, but no common nodes
that do not belong to the common arcs; in that case the objects also have the nodes
of these arcs in common, so it is sufficient to state that: A,N A= &

- the objects have a combination of the touch and adjacency relationships; that means
there are common nodes that do not belong to the common arcs.

4.2.2 Topologic Relationships at Object Level

4.2.2.1 Elementary Objects in the datz model.

The 9-intersection model requires the definition of the boundary, and interior and exterior
components of an object. To define these components for the three object types (point, line
and area) in vector maps, the definitions of the three types (see §3.4.5) are reformulated in
terms of the relational functions of §4.2.1 as follows.

Elementary Area Objects

The geometry of an object of this type is represented by one or more adjacent faces. If a face
F, is part of an area object AQ,, this will be represented by:

PartoffF,. AOj = 1

The relationships between arcs and area objects can be found via their relationship with the
faces by:

Lefa, AO,] = Maxg(Lefa, F J*Partof[F,, AOJ)

Rifa, AQ,] = Max,. [Ri[a, F I*Pariof(F,, AO])

and

Bfa;, AO;] = Lefa,, AO,;] + Rifa,, AO;]

The boundary of AQ; represented by dAQ,, is defined by the subgraph (N, A;) where

A; = {a;/ Bfa;, AO;] = I} and
N; = {n;, n,, ..., n} contains the nodes of these arcs.

The interior of an area object A0, is defined by its faces minus dAO, For an elementary area
object these should be adjacent so that if we eliminate the arcs a; with Bfa;, AG;] = 2 from
the graph, then the object would be represented by exactly one face.
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Elementary Line Objects

When an arc a; is part of a line object LO,, this can be represented by:

Parioffa, LO,] = 1; if the arc is not a part of the line object this function will have the value
=0.

An elementary line object type can then be pragmatically defined as any 1D spatial object,

LO,, geometrically defined by the subgraph G= {N,, A;] where
A; = {ajPartofla, LOJ = 1} 15 the set of arcs defining the geometry of LO, and
N, = {n,, ny, ..., m,} contains the nodes of these arcs.

- Exactly two of the nodes of N, have Degree,(n) = 1; these are the endpoints and they
constitute the boundary, dLO,, of the line object

- All other nodes in the set N, have Degree,(n) = 2; with the arcs in A, they form the
interior of the line object.

Elementary Point Objects

An instance of this type is always elementary and is any point object PO, geometrically
represented by a single node n; where n, € N; this will be expressed as:

Reprn, PO,] = 1, if the node does not represent this object the value of the function will be
= ().

A point object has no interior; n; is the boundary of the point.

Boundary, Interior and Exterior of Elementary Objects
Based on these definitions, the boundary, interior and exterior of each of the three elementary

object types are defined in Table 4.1 . The universal set of points defining the map is
represented by U.

Table 4.1. Boundary, interior and exterior of elementary obhjects

Object Boundary (3) Interior (%} Exterior ()
Type
Point (P) | dP=n/Reprin,Pl=1 No interior point (undefined) P=0U-dP
Line (L) | dl={neN,[Degree,(n)=1) | L =G, -0L = {(N -dL), A;} | L=U-(@L u"L)
Area (R) | aR= G(N, A) °R = {F,Parof[F,R]=1}-3R R=U-@RU°R)
A={aB[a,R]=1}
N={nN[a.n]=1,3,¢ A}
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4.2.2.2 Deriving the Relationships

For n number of elementary objects, there are n’ groups of binary topologic spatial
relationships among them, each group consisting of 512 mutually exclusive candidates. It is
assumed that the order of the objects in the n by n combinations will not be relevant, so
because of their symmetry the number of groups reduces to (n(n+1))/2. For the three
elementary objects, there are thus six groups of candidate relationships, namely Area/Area,
Area/Line, Area/Point, Line/Line, Line/Point and Point/Point.

To eliminate the topologically impossible relationships from the 512 candidates of each object
combination, rules were defined as illustrated with the following three examples. First, two
assumptions were made: (1) all objects are embedded in the same closed geographic space
(similar to a project area in mapping); (2) a situation where only two complementary objects
occupy the whole region does not exist.

Rule i: Based on the two assumptions above, the exteriors of two arbitrary objects must
always intersect.

Rule 2: Considering a point object (p) and a line object (1),
dpndl=-D=aprn®l=CLanddpn 1=

Rule 3: Since the interior of a point object is undefined, all intersections between the point’s
interior and any of the three components of the second object must be empty.

Furthermore, the topologic relationships which are not consistent with the DMMVM, aithough
topologically possible under a different object definition, are ¢liminated. There are two cases
in this category. The first case deals with single-valued vector maps while the second deals
with multi-valued vector maps. After eliminating the topologically impossible set (using the
defined rules) and those that are not consistent with the embedding data model (DMMVM),
the resulting consistent relationships and their intersection configuration for the six object
combinations are presented in Table 4.2,

The graphic representations of the relationships are given in Figures 4.7 to 4.10. No attempt
at linguistic definition of the relationships is made; rather, each of them is coded as the
decimal conversion of the binary number corresponding to its relationship. This is because
relationships with the same topologic structure (9-intersection configuration) will have
different names in different contexts. For example, while the relationship coded as 1220 can
be interpreted as overlap for area/area and linefline, the topologic overlap for point/point is
defined by 1272. This difficulty has also been acknowledged by Mark and Egenhofer (1994).
For the distinct coding, empty intersection is interpreted as bit value 0 and non-empty as bit
value 1. Thus, relation r511 (111111111 in binary digits) represents a tuple where all nine
intersections are non-empty. Likewise, T000 (000000000) represents the relationship in which
all nine intersections are empty. The structure of the nine-field tuple is in the following form:

200,nd0, “0,°0, °0,"d0, 90,N°0, 10,N 0, ION T, °0,N 0, 0,0, OO,

The number of relationships for each object combination can be further reduced by combining
the topologically similar ones (e.g., r179 and r220 between two area objects) in Table 4.2.
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The result of this combination is the limited number of topologic relationships in vector maps
shown in Table 4.3

Note that the 9-intersection model improves on the 4-intersection model {using only boundary
and interior pans) (Egenhofer and Franzosa 1991), because relationships which cannot be
differentiated in the latter model can now be distinguished, e.g., relationships 1252, r253 and
255 between an arca and a line object will be the same relationships in the 4-intersection
model. However, the 9-intersection model can still not eliminate all ambiguities in the types
of relationships. For example, Figure 4.5 shows two (semantically) different spatial
relationships, but they are topologically equal in the 9-intersection model. Both cases are
defined by the same relationship 1287, Thus additional measures, such as the dimension of
intersection, must be applied to resolve this type of ambiguity. But by basing the realization
of the relationships on the elementary set and the relational functions defined for the elements
of a planar graph (§4.2.1), this ambiguity can be taken care of. All simple and complex
object-leve! topologic relationships can then be derived from this elementary set.

However, the use of the elementary relationships between the elements of a planar graph
assumes that the geometry of the map is consistent, ie., all the conventions relating to
geometry (see §3.2.3 and §3.4.4) are observed. An inconsistent geometry can be detected by
checking the topologic relationship between the geometric primitives (arc and node), e.g., by
checking whether two arcs intersect without a node at the intersection point or whether two
nodes overlap. Therefore, it is beneficial to also formalize the relationships between the
geometric primitives. Rules can then be made to resolve any inconsistency that may arise. The
relationships among the geometric primitives are presented in the next subsection.

Table 4.2: Topologic relationships between two simple objects O, and O, in vector maps

Relation Intersection A/A | AlL | AP /L L/P PP
39 P —a—°o- 9~
1026 000011010 - |- |[- ] - |w
1030 000011110 |- [- [w [- [w |-
1031 000011111 fve {vo |- [w |- i
w3 fooo11 1111 |- |w |- |w |- .
1092 |001011100|!- S lw {- Iw |-
1095 oo1o01 1 111 f- |- |- |(w [- .
r127 ooi111 1111 - |- |- |w |- i
9 foroor 1 11 - |- [- fw |- .
rl79 01011 0011 Ym - - Ym - -
ri91 ot1ott1 1111 |- |w |- {w |- :
1220 011011100 [ym |w |- [ym |- |-
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23 forro1 1t J- - - [w |- ]
2 foi111r 1100 |- [w[- [- |- |-
1253 ﬂ011111101 - dw |- ] ] _
£255 011111111 §- Jw (- fwm |- -
272 IIIOOOIOOOO - - ] = | vm
277 100010 10 Sl - e |- ]
279 100010111 fvo |- |- i ]

1284 tooo1 1100 - [- |w |- [w |-
1285 10001 1 101 Jyb |¥o |- ] ] -
1287 10001 1111 fve [w |- Jw |- ]
311 100110111 - |- |- Jw |- ]
1316 100111100 |- [w |- ] ] ]
1317 100111101 |- [w |- ] A i
r319 100111111 - [w |- ] ] _
£349 totot1 1101 - t- {- Jw |- ]
73 to1110101 |- [- |- Jw |- ]
r400 11001 0 0090 Ym - - Ym - -
r412 110011100 [[- [w |- ] ] ]
r415 H110011111 - e e |- ]
35 J110110011 Jym |- |- |wym |- ]
1439 110110111 §- |- |- [Jw |- i
r4dd 110111100 f- [w |- ] ] i
r445 110111101 J[- [w |- . i ]
r447 F110111111 - e |- - A i
r476 111011100 [vym [vo |- Jvm |- -
477 n111011101 - e I - ]
1501 t11110101 - |- - [w |- ]
1508 111111100 |- |[w /|- ] i ]
£509 111111101 f- [w |- ] ) ]
511 111111111 [w |- |- ) ] ]




The symbols in Table 4.2 are as follows
- (dash) = not applicable
Yb = allowed in both single-valued and muhi-valued vector maps
Ym = allowed only in multi-valued vector maps

4.2.3 Relationships Among Geometric Primitives

Two geometric primitives are used in the DMMVM: arc and node. The third primitive, face,
was not required for the modelling in 2D topologic space because, since planarity is enforced,
every arc will have a face on either side, and since a face will always represent a 2D terrain
object, the arc can reference the cobject directly (see §3.1.1). Thus there are three groups of
binary topologic relationships among the primitives, namely arc/arc, arc/node and node/node.

The definitions of the boundary, interior and exierior components of a node are similar to
those of a point object defined above. The boundary of the arc, denoted oda, is defined by its
two end-nodes. The interior, denoted °a, consists of the set of points of the arc, excluding the
boundary points. Since the arc is defined here as a straight line segment, the interior points
are not explicitly represented but can be derived by interpolation. The exterior of the arc,
denoted ~a, = U - (da U °a).

Applying the same procedure as in object-level wopology, the topologic relationships in Figure
4.11 for the two topologic primitives are derived. The "r..." (e.g., 1031) represents the code
of a relationship and the binary value in parenthesis (e.g., 000011111) is the 9-intersection
value of the relationship. The components of the 9-intersection are ordered as in object-level
topology (see §4.2.2.2). The asterisked relationships in the figure are not consistent with the
DMMVM and can therefore not be detected by simple query. Actually, they can occur only
before a consistent vector map, based on the DMMYM, is constructed i.e., during the process
of database creation and updating. Thus they can be detected only by computational geometry,
using coordinate information. They are necessary for two purposes: (1) to detect geometric
inconsistency in the database and (2) for on-line geometric updating of the database. These
are further explained in the next chapter. Note that at this level, the same situation holds for
both single-valued and multi-valued vector maps because each primitive {(arc or node) must
have a one-to-one link with an m-container in the DMMVM (e.g., one arc represents (part of)
just one 1-container).

Table 4.3 Number of allowed object level topologic relationships in vector maps

u Object Combination l Total allowed in SVVM Total allowed in MVVM
e

Area/Area (A/A) 3 7
AreafLine (A/L) 19 19
Area/Point (A/P) 3 3
Line/Line (1/L.) 12 16
Line/Point (L/P) 3 3
Point/Point (P/P) 1 2
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4.3 Algorithms for Detecting the Existing Topologic Relationship

Only one of the candidate relationships derived in §4.2.2.2 can exist between two objects at
any one time. This section describes how to detect the existing relationship between two
objects in a vector map. Generally, topologic relationships between objects stored in a spatial
database can be derived in two ways:

(1) through computational geometry, for non-topologic data structures and during the process
of creating or updating a topologic database, and

(2) through query, for topologic data structures.

In topologic data structures such as the FDS and the DMMVM, most of the topologic
relationships supported will be implicitly represented. Those that would require the use of
computational geometry are usually represented explicitly so that they can be retrieved
without the use of coordinate information (e.g., point-in-polygon). Deriving the implicit
relationships in a spatial database using conventional database management system (DBMS)
may require some programming effort by the user because the query language of the DBMS
often lacks spatial operators. Provision of fundamental spatial operators in a spatial query
language to detect the elementary topologic relationships will improve the performance of the
information systern. This section outlines how the topologic relationships among objects
formalized in §4.2.2 can be realised in a graph-structured vector map. The outlines can be
formulated into topologic relationship operators as a software module in an operational GIS.

The relationships between any two elements of a graph were described in §4.2.1. By
analyzing these relationships and the set intersection between the subgraphs G,(N;, A,) and
Go(Ng» Ag) of two arbitrary elementary objects P and 0, the existing topologic relationship
between the two objects can be detected. The analyses which can be translated (programmed)
into an overloaded spatial operator Relation(P,0) (where P and Q are related to the relevant
object type at run-time, i.e., late binding) consist of the following six main operations.

(1) Evaluate A, N A,
Set intersection, i.e., evaluate whether there are common and/or different elements bet-
ween A, and Ag; this will indicate the possible types of relationships to further
examine, e.g., considering P and Q as area objects, an empty set reduces the possible
types o 1031, r179 and r220 see Figure 4.7

(2} Evaluate Ny 1\ N,
Set intersection: to check whether some nodes are common to both P and Q. If P and
Q have some arcs in common, it implies that they have the nodes of those arcs in
common. But they can also have some nodes in common irrespective of whether or
not they have common arcs (¢.g., se¢ Figures 4.4b, ¢ and d). This is useful, for
example, to determine whether P and QQ intersect, overlap with common boundaries
or touch.

(3) Der_ermine Degree(n) ¥ n. € Np "\ N, with respect to sub_graph G,uU Gy
(This helps to detect differences among similar relationships, e.g., a line object that
branches off another line object will have a common node of degree 3, while
intersecting (crossing) line objects will have 2 common node of degree 4.)
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(4a) Evaluate whether 3 ae A, 2 Bla,Q]=0
(i.e., whether any arc of P lies in the exterior of Q.)

( b}  Evaluate whether 3 ac A, 3 Bla,Q]=1
(i.e., whether any arc of p is part of Q’s boundary.)

( ¢)  Evaluate whether 3 ac A, 3 Bla, Q]=2
(i.e., whether any arc of P lies in Q’s interior.)
The three operations give further indication of the type of relationship, e.g., if each
of the sets derived in a, b and ¢ is not empty with respect to two area objects, it
implies a variant of the relationship 511 (see Figure 4.7). They are necessary for only
area/area and area/line combinations.

(5a) Evaluate whether 3 ag A, 3 Bfa,P]=0
(i.e., whether any arc of Q lies in the exterior of P.)

( b) Evaluate whether 3 a Ay 3 Bfa, P]=1
(i.e., whether any arc of Q is part of P’s boundary.)

{ c) Evaluate whether 3 a,cA, 3 Bla,P]=2
(i.e., whether any arc of Q lies in P’s interior.)
The operations performed for P in 4a, b and ¢ are repeated for Q when dealing with
two area objects. Operation 4 alone will suffice in the case of the area/line abject
combination,

{6) Evaluate °P N N,

(i.e., whether a node of Q lies in the interior part of P; required for only arca/point
combination)

The third operation will return a list of integer values indicating the degrees of node n,, the
sixth operation will return true (T) or false (F), while other operations are evaluated as empty
(2) or not empty, with the elements of the se1 being kept for further analysis if necessary.
Not all the six operations will be required for each object combination. In some cases, the
occurrence of an operation may already be implied by a previcus one. For instance, °P M N
=T = B[y,,Q]=2 where P = area object and Q = linc object, and Ay N Ay # @ = N; N Ny
# . Also, for any point object Q, Ag = &, hence operations 1, 4 and 5 will not be applicable
for combinations involving point objects, i.e., Area/Point, Line/Point and Point/Point. In
addition, operation 6 is required only for Area/Point combination to determine if a point
object is topologically inside an area object. This relationship can be expressed by the fol-
lowing function, where P = area object and @ = point object:

Ng N °P = Repr[n,,QI*ISIN[n,,F,]*PartofF, P] where F, = face a.
Ng n °P = 1 = point object is inside area object, and Ny m °P = 0 means it is not.

The input into the procedure Relation(P,Q) will be the geometric primitives of objects P and
Q and the return value will be the existing topologic relationship between P and Q.

The relevant operations for each object combination are elaborated in the following
subsections.
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4.3.1 Detecting Topologic Relationship Between Two Area Objects

The following expressions should be determined in order to detect the existing relationship
between two area objects in our model. In the expressions, Vi represents the return value of
the expression while the other terms are as defined above.

(D V1=A,nA,
ie., V1 is a set containing the set of arcs which are common to both P and Q
(2} V2 =A,-V1
ic., V2 is a set containing the set of arcs which define geometry of P only
(3) V3i=A,- VI
i.e., V3 is a set containing the set of arcs which define geometry of Q only
(4) V4 =N, n N,
i.e., V4 is a set containing the set of nodes which are common to both P and Q
(5) V5 = {a, € A; 2B[a, Q1 =0)
i.e., the set of arcs of P which intersect the exterior part of Q.
{6) V6 = {3, € A; 3B[3,Ql=1)
1.e., the set of arcs of P which are part of boundary of Q.
(7) V7 = (a, & A, 3 Bla,Q] =2)
i.e., the set of arcs of P which intersect interior part of Q (this is possible only in a
multi-valued vector map; a non-empty set in a single-valued map indicates inconsis-
’ency).
(8) V8 = {a, € Aq I B[&,P] = 0)
i.e., set of arcs of Q which intersect the exterior part of P.
(9) V9 = {a, € Aq 3 B[a,Pl=1)
i.e., the set of arcs of Q which are pant of boundary of P.
(10) V10 = (3, € Aq 3 B(a, P} = 2)
i.e., set of arcs of Q which intersect interior part of P (this is pessible only in a mult-
valued vector map; a non-empty set in a single-valoed map indicates inconsistency).

Each expression is evaluated as empty (&) or non-empty (). The combined values of Vi,
i = 1,10, will be unique for each of the ten elementary topologic relationships, as indicated
by the examples in Table 4.4 (relate the examples with Figure 4.7).

Table 4.4 Values for some relationships between two area objects

Relation

031 @ | L\ || |9 || |9
r179 2 |-~ |D g | |KB|-D|D 7]
287 (touchasinFigure |G | QG (W1 | D |0 |9 | DD 7]
4.5a)

1;2?:)(touch asinFigure |0 |- |2 |@ QG| @10 || (D

"If condition then action” rules can then be formulated in the system based on the values of
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Vi for each relationship. Then, when it is required to find an existing relationship, the values
of Vi will be computed for the object pair and compared with the predefined configuration
to ascertain which of the relationships holds.

The procedure can be further optimised by analyzing the implication of one result for the next

operation. For instance, if V1 # & and V2 =

2 and V3 = &, then Relation(P,Q) = r400 (i.e.,

equal) thus it is not necessary to evaluate the remaining expressions.

4.3.2 Detecting the Topologic Relation-
ship Between an Area Object (P) and a
Line Object (Q)

To detect the existing relationship between
an area object P and a line object Q in our
model, the following expressions should
be determined where V1, V2, V3 and V4
are as defined above. The eight expres-
sions would be analyzed conjunctively to
determine the elementary relationship that
exists between the area object P and the
line object Q. These can be programmed
as spatial operators in the database.

(DV1=A,nA,

(2)V2=A,-V1

(3)Vi=A,-Vi

P V4=NnN,

(5) V5 = {3, € Ay 3 B[a,P]=0)
i.e., set of arcs of Q which inter-
sect the exterior part of P.

(6) V6 = [Degree(n,) | {N[a,n] = 1}], &,
€ Viandn, e N,
(degree computed with respect to
the subgraph G, U G)
V6 is an array containing the de-
gree of cach node n,. The mini-
mum degree will be 1 and the

(a) Two simple area objects touching
at a point 11

4

3 ‘14 13
(b) The two obyjects touch along a line

Figure 4.5 Topologic relationship r287 (touch)
between two simple area objects

maximum will be 4 with two intermediate values 2 and 3. These should be analyzed
funther to determine the location of the endpoints of the line cbject, e.g., two
occurrences of the minimum degree means that the two endpoints of Q are located in
the exterior of P; only one with minimum and one with degree 3 will indicate that one
endpoint of Q is cutside of P and one is probably on the border (confirmed to be on
border if V7 is empty); one minimum and one maximum implies one endpoint outside
and one probably inside of P (confirmed by analysis of V8); two nodes with degree
3 and others with degree 2 implies two endpoints on border of P (confirmed if V7 is
empty); one node with degree 3 and one with maximum degrec with others having
degree 2 implies one endpoint on border and one inside P (confirmed if V7 is not
empty); two nodes with maximum degree and others with degree 2 means the two
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endpoints are inside P.

(7) V7 = {3, € Ay 3 B[a,P] =2}
i.e., arcs of Q which intersect interior part of P

(8) V8 = [Degree(n,) | (N[a,,n,] = 1}], 8, € V7 and n, € N,
V8 is an array containing the degree of each node n,. Like V6, V8 should be analyzed
further 1o determine the location of the endpoints of the line object, e.g., two nodes
with minimum degree means that the two endpoints of Q are located in the interior
of P; only one minimum and one node with degree 3 means one endpoint of Q inside
P and one is probably on the border of P (confirmed to be on border if V5 is empty);
one minimum and one with maximum degree implies one endpoint inside and one
outside P; two nodes with degree 3 and others with degree 2 implies two endpoints
on border of P (confirmed if V5 is empty); one node with degree 3 and one with
maximum degree with others having degree 2 implies one endpoint on border and one
outside P (confirmed if V5 is not empty); two nodes with maximum and others with
degree 2 means the two endpoints are outside P.

For example, let us assume that Figure 4.6 is
part of a consistent vector map (with nodes, say
nl and n2, created at the two points where the
road intersects the boundary of soil al: nl intro-
duced to decompose arcs (1,4) and (11,12) and
n2 to decompose arcs (2,3) and (12,13)). The
relatonship between the soil unit (area object P}
and the road (line object Q) which is similar to
the query " find the area object P through which
the line object Q passes”, i.e., relationship r191 . .
(see Figure 4.8) gives V1 = @, V2 = ~@, v3 = Figure 4.6. A new line object (road)
~3, V4 = (n1,02} G.e,~D ), V5 = {(11,n1), Passing through existing area object
(n2,13)} (i.e., ~D), V6 (for only nodes 11, n1, {50iD)

n2, 13 respectively) =[1, 4, 4, 1], i.e., two nodes

with minimum degree hence endpoints outside, V7 = [(n1,12), (12,n2)}, V8 = [4, 2, 4]
{confirms that the two endpoints are outside). Compare this result with relationship r447 (as
represented in Figure 4.8) which is almost similar to r191. For r447, V1 =&, V2 = ~J, V3
= i, V4 = ~3, V5 = -, V6 = [4, 1] (confirms that one endpoint is outside and one
probably inside), V7 = ), V8 =[3, 2, .., 2, 4] (ie., one node with degree 3, one with
maximum degree and others with degree 2, hence one endpoint on border and one outside.
Note that for both relationships, V1, V2, V3, V4, V5, and V7 are similar, the difference being
realised through the results and analyses of V6 and V8. Thus when translating the eight steps
into a spatial operator for area/line topology, the analyses must be carefully incorporated in
order to distinguish between seemingly similar relationships.

4.3.3. Detecting Topologic Relationship Between Area Object and Point Object

To determine the existing relationship between an area object P and a point object Q, the
following expressions, which are a subset of the steps in §4.3, will suffice.

(D VI =Ny n N,
i.e., check if node of Q is an element of the set of nodes of P. Since N, contains only
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one element, V1 will also contain one element if it is not empty. If V1 is not empty,
it means that the relationship 1284 (see Figure 4.10a) exists and the next step is not
required. If V1 is empty, perform the next operation.
2)V2="Pn N,

If V2 is true, it means the existence of 1092 (see Figure 4.10a), while Boolean value
false means the existence of r030 (Figure 4.10a). Note that V2 can be determined only
through computational geometry (e.g., using point-in-polygon algorithm) unless the
relationship is explicitly represented.

4.3.4. Detecting Topologic Relationship between Two Line Objects
The existing relationship between two line objects P and Q can be detected with the following

algorithm consisting of six operations to be determined and analyzed. Vi, i =1,4 is as defined
in §4.3.1.

(1) V1= A, n A,
(2) V2 = Ap- V1
(3) V3= Ag- VI

(4) V4 = N, " N,
(5) V5 = [Degreep(ny, n; € V4]

V5 is an array containing the degree of each node n; in G,
(6) V6 = [Degreeg(n), n; € V4]

V6 is an array containing the degree of each node 0, in G,

The maximum degree of n in V5 and V6 will be 2 (indicating middie of line) and the
minimum will be 1 (indicating endpoint). By comparing the degree of n, in V5 and V4§, it
should be possible to distinguish an intersection at the end of a line object or somewhere in
its middle (like a road branching off another compared with two crossing each other). The
combination of this with the values of Vi, i =1,4, can then be applied to detect the topologic
relationship between two elementary line objects.

For example, compare the values for the five relationships in Table 4.5 (relate with Figure
49

Table 4.5 Values for some relationships between two line objects

Relation (see Figure 4.9) | V1 | V2 | V3 [ V4 | VS V6
1031 o |w|w|d |} (}
095 @ 1-@|-2|2] 2 n
1220 B |2l || 22 [1,1)
400 @\|le @ | |0..1] |[1..1]
rd35 2@ (812 | [1,1] [1,2]
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4.3.5. Detecting Topologic Relationship Between a Line Object and a Point Object

The following two operations will suffice to determine the existing relationship between a line
object P and a point object Q:

() VI =N, "N,
(2) V2 = Degreey(n), n, € V1

V2 is computed only if V1 is not empty and it indicates whether the point lies in the middle
of the line object, wherein V2 = 2 (relationship r(92, Figure 4.10b), or at one of its endpoints,
wherein V2 = 1 (relationship r284). If V1 is empty, it indicates relationship r030.

4.3.6. Detecting Topologic Relationship Between Two Point Objects

Only one operation is required to determine the existing relationship between two point
objects, viz.

Determine V1 =N, n N,

If V1 is empty, it indicates relationship 1026 and non-empty set (with one element) indicates
1272 (see Figure 4.10c).

4.4 Summary

In this chapter, an extensive set of object-level topologic relationships in vector maps has
been derived using 9-intersection point-set algebraic topology. The topologic relationships
between geomeiric primitives were also derived; these can be combined with the graph
stucture of the model and used as the elememary set from which the object-level
relationships are derived. Algorithms are then defined for detecting the occurrence of any of
the elementary relationships for any object combination. The algorithms can be translated to
topologic operators and used for topologic queries, as well as a tool for detecting violation
of and enforcing geometric constraints. In the latter case, the topologic operators will serve
as detectors of inconsistencies. The return value of an operator will trigger the relevant rule
that will enforce consistency if violation occurs. The rules that will enforce the geometric
consistency are presented in the next chapter.
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Figure 4.7 Topologic relationships between two area objects
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Figure 4.8 Topologic relationships between an area object and a line object
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Figure 4.9 Topologic relationships between two line objects
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Figure 4.10 Topologic relationships between (a) an area object and a point object,
{b) a line object and a point object, (¢) two point objects
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Figure 4.11 Topologic relationships between the geometric primitives
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5

MONITORING AND ENFORCING INTEGRITY CONSTRAINTS IN
VECTOR MAPS

For every large data collection intended for repeated production of information, as in GIS,
controls must be installed to check that all incoming data or changes made to existing data
follow some pre-defined rules and do not contradict existing data in the database. Internal
contradictions in the data will canse retrieval of inconsistent information from the database,
which leads to users’ lack of confidence in the data (Frank, 1984). The logical consistency
of data is in fact cne of the main components of data quality in GIS, a constituent of
reliability. The other components of data quality are positional accuracy, atiribute accuracy,
completeness and linecage (DCDSTF, 1988; Aronof, 1989). Like other components, it deserves
seriocus attention in spatial databases, considering the fact that the major cost of setting up a
GIS arises from data acquisition. The logical consistency of the data contained in a database
can be ensured by enforcing integrity constraints. Integrity refers to the (logical) accuracy or
validity of data (Date, 1990). Consistency or integrity constraints are statements that muost
always be true for data items in the database (Zdonic and Maier, 1990), i.e, they can be
regarded as conditions that a correct state of the database is required to satisfy.

Integrity constraints may exist in different forms, from simple (e.g., specifying that all object
identifiers must be represented by a four-byte positive integer), to more complex constraints
(e.g., the boundary polygon'of a land parcel must be closed and must abut a road). While the
former can be enforced at run-time by the system, the latter has to be monitored and enforced
by some kind of user-defined consistency rules. Lack of data integrity can arise from many
different sources (Hughes, 1991), including data entry errors, logical errors in the application
program, errors in system software which result in data comruption, and topologic errors.
Unfortunately, most commercial GIS software does not adequately support integrity
constraints - except for some constraints on the domain of object identifiers, key constraints,
or referential constraints (Date, 1990; Hughes, 1991; Nassif et al, 1991; Kemppainen, 1992) -
and most integrity checking is still done by user-written procedural code. It is preferable 10
specify integrity constraints in a more declarative fashion so that the system can do the
checking. Furthermore, in spatial databases (where terrain objects are the main focus), because
the objects do change with time, it is necessary to update the database, whereas updating
operations always imply the risk of disturbing data consistency. To prevent this, the
information system should be able to monitor its own consistency and to take measures to
preserve it (Molenaar, 1991c). Thus integrity enforcement is an important aspect of GIS
development,

In general, two types of integrity constraints can be distinguished (Nassif et al, 1991;
Hadzilacos and Tryfona, 1992):

(1) Static integrity constraints, which define the valid state of the database.

(2) Dynamic integrity constraints, which are the conditions on the allowable transitions from
one database state to another.

The static constraints are closely related to the structure and semantics of the embedding data
model, while the dynamic constraints relate mainly to the implementation domain, e.g., how
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a multi-user database is managed during an updating session. The focus in this thesis is on
the static consistency constraints.

In a spatial database, an important consideration for detcrmining whether a database state is
correct or not is topology. For example, two neighbouring countries must have a common
border, two land parcels cannot overlap, every parcel must have access to a road, eic, are all
topologic constraints. However, not all constraints are topologic. Some are specific to the
database model used for the implementation of a conceptal data model. For example, the
three types of integrity constraints in a reiational database model, namely (1) domain integrity
which specifies the range of legal values for each field in a relation, (2) intra-relation integrity
which relates to the correctness of relationships among attributes of the same relation and to
the preservation of key uniqueness, and (3) referential integrity constraints, which assert that
a reference in one data item indeed leads to another data item (e.g., when an arc is part of
a road, then a data item for that road must actually exist). Some DBMSs provide triggers to
help enforce some of these database model-related constraints, although mainly for the domain
integrity constraint. In general, to enforce consistency, actions can be initiated on access to
particular data items, either to check that the stated constraints hold or to perform additional
updates to bring the database to a state of consistency.

This thesis focuses on the provision of consistency rules for monitoring and enforcing static
geometric integrity constraints under updating operations in vector-structured spatial databases,
using the DMMVM as a framework. The rules should ensure that the database state after an
update is a correct mirror of the reality that it models. This implies that the database is
assumed to be consistent before an update operation. This assumption will hold where initial
database creation is also regarded as updating, in this case from "zero-level” with enforcement
of consistency during data input. This approach has been adopted in this thesis.

The proposed consistency rules can be grouped into two classes, namely

(1) the consistency rules for the geometric structure of the data model, i.e., structural integrity
rules,

(2) consistency rules related to the application making use of the model, i.e., application-
dependent semantic integrity rules.

The simple constraints in the two groups -- such as uniqueness of identifiers, unique
occurrence of instances of data types -- can easily be checked and enforced during
implementation. These are related to the definition of acceptable values (domain) for the
identifiers, as well as rules for installation-wide uniqueness and existence of the identifiers.
Many systems do provide automatic immutable identification of objects (¢.g., Postgres and
Arc/Info) together with indexing mechanisms to eliminate repeated identifiers where the
identifier is defined by the user. The user-defined identifiers are often mapped to one of the
system’s base types, which are already provided with operators to reject non-valid values.
Thus these simple constraints will not be given attention in this thesis.

In the following section, constraints in the first group will be analyzed with the corresponding
rules for monitoring and enforcing the constraints. The second group will be treated in §5.2.
An approach for their implementation is outlined in §5.3, with a summary in §5.4. The
topologic relationships formalized in the preceding chapter will play a major role in the
monitoring of the two groups of consmraints.
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5.1 Structural Consistency Rules

From the basic structure of terrain objects in figure 3.2, the three components of each object,
namely the object identifier and its two semantic characteristics (thematic and geometric),
represented in the database do have their individual integrity constraints. Because objects from
different layers can overlap in space, the data type m-container was introduced to uniquely
identify overlapping sections of objects; the geometric description of an object is therefore
composed of the geometry of its component m-containers. Each m-container is geometrically
described by the two (gecometric) primitives, arc and node. These m-containers and the
geometric primitives also have integrity constraints which must be monitored and maintained.
In addition, there are consistency rules for the functicnal relationships among these data types.
Therefore, the structural consistency constraints for a vector map that is based on the
DMMVM can be analyzed in different levels of complexity as follows.
(1) Consistency rules for the geometric primitives arc and node.
(2) Consistency rules for the geomemic structure of m-container types.
(3) Consistency rule for the planarity of the map (Euler constant)
(4) Consistency rules for the structure of object types

- rules melated 10 the thematic component of objects,

- mules for the geomeitric descriptions of objects.
(5) Consistency rules for the functional relationships among the data types (node, arc, m-
container, and object).

5.1.1 Consistency Rules for the Geometric Primitives

When the geometry of a terrain object changes or when a new one has to be inserted in the
database, it implies insertion, modification or deletion of some arcs and nodes. This means
that updating operations have to be performed on the set of arcs and nodes related to the
object in a manner that maintains the geometric consistency of the database, i.¢., in a manner
that preserves the topology of geometric primitives. This is the lowest level of consistency
rules for vector maps. It is the lowest level because updating of the geometric primitives
depends on the behaviour of m-containers whose updating depends on the dynamics of terrain
objects. At this level, the system should check that conventions 3 to 6 of §3.4.4 are fulfilled
for each arc or node introduced into the database.

Conventions 3 and 4 can be easily enforced during the data collection phase, i.e., each point
introduced should be treated as a node and each straight line segment should be treated as an
arc. Conventions 5 and 6 are topologic in nature and can therefore be translated broadly into
the following topologic constraints, with an additional one for nodes.
Geometric Primitive Constraint #1 (GPC_1): Nodes must not overlap
Geometric Primitive Constraint #2 (GPC 2): Arcs must not intersect

Geometric Primitive Constraint #3 (GPC_3): Arcs must not overlap

Geometric Primitive Constraint #4 (GPC _4): An arc must be defined by only two adjacent
node.
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The GPC_1 arises from the fact that there is a single-valued link between a node (geometric
primitive) and a 0-container. In addition, because geometric primitives can be shared by
objects, a node that defines a (-container can also be a node of an arc, but with the conditions
that only a single set of coordinates are kept for the node and the identifier must be unigue.
Hence we still have the condition that two nodes may not overlap, This condition is violated
if the position of a new point coincides with that of an existing point. GPC_2 is a planarity
condition in graph theory which formed the basis of cur model (see §3.1.1). GPC_3 is akin
to GPC_1 because an arc must have a single-valued link to a 1-container and/or boundary of
a 2-container. The fourth arises because we treat every point as a node (see convention 3 in
§3.2.3) hence, when a new node (representing a new point object for instance) falls on an
existing arc (but not on its nodes) the existing arc must be decomposed.

Violation of any of the four conditions can be interpreted as an inconsistent topologic
relationship between two geometric primitives. To ensure that the constraints are not violated
during database updating, an automated consistency rule for monitoring and enforcing themn
must be provided. The strategy being proposed here is to use topologic relationships among
geometric primitives as "alerters” and to define the consistency operations that should be
performed by the system in response to each inconsistent topologic relationship in order to
maintain geometric consistency. In other words, when a geomewric primitive is inserted into
the database, the consequent automated updating of the database involves two integrated
operations: (1) evaluation of the topologic relationship between the primitive and each of the
other existing primitives, and (2) the result of the evaluation (type of relationship) triggers the
necessary consistency rules.

When GPC_1 is converted to a topologic relationship between geomeiric primitives (see
Figure 4.11), its violation implies one occurrence of the following set of relationships:
{r272(node,node), r284(arc,node), r287(arc,arc), r400(arc,arc), r435(arc,arc), r476{arc,arc)}.
Violation of GPC_2 means the occurrence of one of the following set of topologic
relationships: {r063(arc,arc), r095(arc,arc), r159(arc,arc) } while a violation of GPC_3 implies
the existence of a member of the topologic relationship set {r179(arc,arc), 1220(arc,arc),
r255(arc,arc), r400(arc,arc), r435(arc,arc), r476(arc,arc)}. The fourth, GPC_4 is violated if
there is occurrence of a relationship € {r092(arc, node), r063(are, arc), r095(arc, arc), r179-
(arc, arc), r22(Xarc, arc), r255(arc, arc), r435(arc, arc), rd476(arc, arc)}. The four topologic
constraints can therefore be represented by a negation (using ) of the applicable relationship,
e.g., -r159(arcl,arc2) means "two arcs must not intersect”.

To detect these inconsistent topologic relationships, computational geometry must be used.
For instance, an algorithm similar to line intersection will be used to check whether two arcs
intersect.

The consistency rules for monitoring and enforcing the three constraints as defined in
Kufonivi et al (1993 and 1994) are described in the following section.
The rules can be translated into the IF condition THEN action convention as follows, using
relation 1272{node, node) as an example,

If Relation{NewNode, OldNode) = r272

Then

do GP_Rule_1

The mandatory time to enforce the rules is during insertion of a geometric primitive. They
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can also be checked, optionally, at some defined intervals to validate the reliability of the
database.

Rules for enforcing consistency of the geometric primitives

The consistency operations that must be performed to maintain the four constraints, GPC_1,
GPC_2, GPC_3, and GPC_4, during (geometric) updating are defined in Table 5.1. The
following notations are used in the table.

Let the universal set of arcs of the map be represented by A where ai € A. Let A be further
subdivided into two subsets P and Q where P = set of arcs already existing in the database
and Q = set of new arcs to be inserted, i.e., A = P U Q. Note that P and Q must be mutually
exclusive 3P N Q = & hence ai € P = ai ¢ Q. In other words, if a new arc already has a
counterpart in the database, the new arc should not be accepted by the system; rather the
affected properties of the existing arc (brought by the new arc) should be only updated to
reflect the changes.

Let the universal set of nodes of the map = N O n € N. Let N be further subdivided into p
and q where p = set of nodes existing in the database and q = set of new nodes to be inserted.
Hence, asinarcs, N=pugandne p=n¢ q.

One existing arc is then defined by P1 = (pl,p2) where pl and p2 are respectively the starting
and ending nodes of the arc, while a new arc is represented by Q1 = (q1,92) where gl and
g2 are respectively the starting and ending nodes of the arc.

The fact that a node of one arc, say ql of QI, intersects the interior (°) of another arc, say
al, is represented as ql1  “al.

Table 5.1 Consistency rules for geometric primitives

Topologic Intersection Violation response Name of Rule
Constraint Rules
-1272(nl, n2) nlepnZeq store the more accurate coord., assign GP_Rule_l1
or v.v. number of existing node to new.
-r092(ai, n) aieQ, nep decompose ai into (ql,n) & (n.q2) GP_Rule_2a
decompose ai into (pl,n) & (n,p2)
aieP, neq GP_Rule_2b
-1063(al, a2) aleP, a2eQ do GP_Rule_2b 2n € {ql,g2} GP_Rule_3
-095(al, a2) aleQ, a2eP do GP_Rule_2a 2n e {pl,p2} GP_Rule_4
-r159(al, a2) aleP, a2eQor  replace al and a2 by four arcs joining GP_Rule_5
vy, at new node, compute and insert
coord. of new node.
-r17%al, a2) aleqQ, a2eP split a2 into (pl,q1), (qi.q2), (q2,p2); GP_Rule_6

update attributes of al

-1220(al, a2) aleP, a2eQ split a2 into (q1,p1), (p1.p2), (p2,92); GP _Rule 7
update attributes of al
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-1255(al, a2)

-r287(al, a2)

-rd00(al, a2)

-r435(al, a2)

-~r476(al, a2)

aleQ, a2eP or
V.V,

aleP, a2eQ or
Y.V,

aleP, a2eQor
v.v.

ale(, a2eP

aleP, a2eQ

If {q2n°a2Aplmeal)

then

replace al by (gql.pl).

do GP_Rule_2b 3n = g2,
update attributes of (p1,g2),
delete a2

Elself (g1n°®a2Aaplncal)
then

replace al by (pl,q2),

do GP_Rule 2b 2n =gql,
update attributes of (pl,ql),
delete a2

Elself (gln°a2Ap2m’al)
then

replace al by (p2.92).

do GP_Rule_2b 3n = ql,
update attributes of (q1,p2),
delete a2

Elself (g2rPa2ap2n©al)
then

replace al by (ql.p2),

do GP_Rule_2b 3 n = q2,
update attributes of (q2.p2),
delete a2

do GP_Rule_1

do 2x GP_Rule_1,

update attributes of al if necessary

do GP_Rule_1,
update attributes of a2

replace al by (n1,n2) 2 nl e {pl,p2-
}Jmln°al, n2 € (ql,q2}m2 ¢ (pl- -

.p2}
do GP_Rule_1,

do GP_Rule_2b 3 n € {q1,q2}, up-
date component of al which = a2,

delete al

GP_Rule_8

GP_Rule_9

GP_Rule_i0

GP_Rule_11

GP_Rule_12
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The 12 consistency operations for the geometric primitives can then serve as elementary
operations on which updating of the geometric aspects of objects can be decomposed, as
shown in the following section.

Application of the Geometric Consistency Rules

The following two examples will illustrate the use of the consistency rules defined in Table
5.1 during updating of vector maps. A more intensive illustration of the application of these
rules during updating will be given in the next chapter.
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(a) With reference to Figure 4.5b, suppose the area object O,, defined by the set of arcs
{(1,2), (2,3), (3.4), (4,1)}], is being newly inserted into the database, and O,, defined by
{(11,12), (12,13), (13,14), (14,11)}, already exists in the database. This situation requires
geometric updating o make the database consistent. This can be effected by the system
without interference of the human operator. First, the system evaluvates the topologic
relationship between each arc of O, and each arc of O, using the procedure Relation(arc],ar-
¢2). The result of this procedure should then trigger the necessary updating rule. In this
particular exarnple, the system enforces geometric consistency in the following ways:

(i) Relation{arcl,arc2) where arcl = (1,2) and arc2 = (14,11) will return 1063 which then
triggers the GP_Rule_3, and

(ii) Relation{arc1,arc2) where arcl = (2,3) and arc2 = (14,2) will return r400 which triggers
the GP_Rule_10.

(b} Suppose in Figure 4.6 that the road, defined by {(11,12), (12,13)}, has been inserted into
a static database (i.e., withont dynamic updating facility) and soil unit al, defined by {(1,2),
(2,3), (3.4) & (4,1)}, exists in the database before the insertion of the road. The situation in
the figure violates the planar graph constraint of our data model because arcs (4,1) and
(11,12) as well as (12,13) and (2,3) intersect without creating nodes at the points of
intersections. As in the previous example, the system evaluates the topologic relationship
between each arc of the road and each arc of soil unit al. Relation(arcl,arc2) where arcl =
(11,12) and arc2 = (1,4) should detect the topologic relationship r159 which then triggers the
GP_Rule_5. Similar operations will be performed for the two arcs (12,13) and (2,3).

5.1.2 Consistency Rules for the Geometric Structure of M-container Types

In this subsection, consistency rules for the geometric structure of the m-container where m
€ (0,1,2] are defined. The rules are at a higher level than the preceding ones since the
behaviour of an m-container affects the geometric primitives that describe the m-container.
They are, however, on a lower level in comparison with the consistency rules for terrain
objects because the dynamics of an m-container depends on the behaviour of the terrain
object(s) which the m-container is pan of. If the DMMVM is used for a single layer, there
will be a 1:1 relationship between the m-container and the terrain object; hence the constraints
defined for the m-container become the constraints for the terrain object of equivalent
dimension.

0-Container

Geometrically, a 0-container is represented by a single node with X, Y and Z coordinates. In
this respect, what needs to be checked is that the node defining the geometry of the 0-
container exists. This can be done by a simple query.

1-Container

The geometry of an instance of this type is defined by the subgraph G, (N;,A{) (see §3.4.2).
The following constraints must hold for each instance, the violation of which will have the
consequence of retrieving the wrong metric and topologic information for the line objects of
which the affected 1-container is a part.
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1-Container Constraint #1 (1CC_1): For each I-contginer, a simple and elementary path
must exist (see §3.1.1).

1-Comainer Constraint #2 (1CC_2): The length of the path in ICC_I must be 2 1.

From the geometric definition of a 1-container L, 1CC_1 translates to the fact that exactly two
elements of N; must have degree, (n) = 1, while all other elements of N, must have degree, (n)
= 2. In other words, a 1-container must not close back on or intersect itself. The two 1-degree
nodes are the end-nodes of the 1-container.

This constraint can be checked after the overlay of two or more layers, i.e., after the creation
of the multivalued spatial database, by retrieving the beginning and end nodes of each element
of A, for the subject 1-container and counting the number of times each node occurs, i.e., the
degree of each node, in the list.

Violation of the constraint may arise from a gap (undershoot), hanging arc or sliver line in
the chain of arcs of the 1-container. These will be manifested in the degrees of the elements
of N,. If a gap exists, there will be a minimum of four elements of N, having degree 1. An
overshoot will give rise to three nodes with degree 1 and at least one node with degree 3. A
sliver line will lead to two connected nodes having degree 3. They may result from a
digitizing error, e.g., a gap may be caused by a digitizing error whereby a node connecting
two adjacent arcs of the l-container is digitized twice (for each arc) with the coordinate
difference between the two being greater than the defined threshold for snapping two nodes.
The undershoot error will arise only if the digitizing is done in multivalued mode, i.e., direct
digitizing of a multi-valued vector map from primary scurces (photographs, images, etc) or
from a hardcopy map. It can also be caused by incorrect coding during manual input whereby
one of the arcs of the I-container is mistakenly omitted. The errors can also be caused by a
failure to georeference all layers on the same system. These types of gross error or blunder
can be eliminated only by remeasuring the 1-container, or recomputation of overlay with new
snapping tolerance, or proper coordinate transformation.

1CC_2 means that set A, must contain at least one element. This implies that A, = &, If A,
=, it implies that N, = & since each element of A, is defined by a subset of N;. Violation
of this constraint therefore means that the geometry of the 1-container is not defined at all and
can be checked first within the consistency mle for 1CC_1.

Consistency Rule for 1-container

The following consistency rule, called 1CC_Rule_1, can be defined to monitor 1CC_1 and
1CC_2. The checking will occur during insertion of a 1-container or after an overlay
computation.

Let Lset be the set of 1-containers with L € Lset defined by subgraph G (Np,Ap).

For each L
Count number of distinct n, & N
If n, < 2 notify user "1-container ill-defined: length of path = 0 or is defined by only
onc point”
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Exit to data input
Else continue
Count occurrence of 3, € Ay
iIf Count{a,) > 1 /* i.e., if a, occurs more than once */
Display crror message: "path not simple"
Display L for interactive editing
continue
For each n, € N
compute degree,(n)
let j € {n, | degree;(n) = 1}
k € {n;| degree,(n) = 2}
m € {n; | degree,(n) > 2}
If 3j =2 and 3k = N, - Xj — consistent
goto next L
Elseif Yj > 2 and Zm =0
display error message: "no path: gap in 1- container”
display L for interactive editing
Elseif ¥j < 20rm >= 1
display error message: "path not elementary, loop or overshoot in 1-
container”
display L for interactive editing
Endif
Next n,
Next L

2-Containers

The geometry of a 2-container is defined by the subgraph Gx(Ng,Ap) (see §3.4.2).
The following constraint must hold for each instance of this type to satisfy the peometric
definition.

2-Container constraint 1 (2CC_I): For all n, € Ny degree,(n)=2

The implications of this constraint are

(a) The start-node and end-node of the 2-container must be equal.

{b) A simple path must exist between its start-node and end-node.

(c) The length of the path must not be less than 3 (because an arc is defined as a straight line
segment here).

(d) The length of the path must be equal to the total number of nodes,

Thus satisfying 2CC_1 will automatically enforce the four implied constraints,

A violation of 2CC_1, as in 1CC_1, occurs if there is a gap (undershoot) or an overshoot,
or sliver polygon. They can be caused by digitizing error or omission of an arc during manual
input, or by incorrect geo-referencing of the layers on the same system. The constraint must
be checked when inserting or modifying a 2-container, and the system should wamn the
operator of a violation so he can perform immediate interactive editing. If acquisition is made
in multivalued mode, a snapping distance can be defined to automatically ensure that the 2-
container is defined by a closed polygon. The consistency rule, called 2CC_Rule_1, for
monitoring this constraint is as follows,
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Consistency Rule for 2-Container

For each 2-container E
For each distinct n; € Ng
compute degreeg(n,)
if 3 n; € N 3 degreeg(n) < 2
display emmor message: "gap in 2-container™
display E for interactive editing
else
if 3 n; & Ng 3 degreee(n) > 2
display error message: "overshoot in 2-container”
display E for interactive editing
endif
next n,
next E

5.1.3 Consistency Rule for the Planarity of the Map

To ensure that the overall geometry of the vector map is consistent as a planar graph, the
Euler constant must be checked. The constants for connected and disconnected planar graphs
are given in §3.1.1. Although it can be assumed that if the constraints at the two lower levels
are enforced, the Euler constant should also follow. Nonetheless, it is preferable to check the
constant at some intervals to ascertain that the overall peometry is consistent. A violation of
the Euler constant definitely implies that one of the constraints at the lower levels has been
violated.

It is assumed that the preceding constraints have been fulfilled. If this assumption holds, the
Euler constant (see §3.1.1) can then be checked for a subset of the map, consisting of the
planar graph in which all arcs having Bla,, AQ,] = 2 are isolated (these individual 1-containers
can be checked separately as described above). Here, a, = arc i and AQ; = 2-container f. The
procedure for monitoring the constant will then be as follows.

Let the map be represented by the planar graph G(M,A) where M is the set of nodes and A

is the set of arcs.

- Subtract {n; € Ml degree(n,) = 0} from M /* eliminate isolated nodes */

- Select {Temp2} = {a, € Al B[a,,AOQ,] = 1} /* select arcs that define boundaries of 2-
containers */

- Let N2 = number of arcs in {Temp2} /* count number of arcs in Temp2 */

- Select {Temp3} = {a, € Al B[2,AQ] = 2] /* select arcs that define only 1-containers
*/

- Let N3 = number of arcs in {Temp3} /* count number of arcs in Temp3 */

- Let {Templ} = {n)(N[a,,n]=1AN{a;,nJ=0, 8, € Temp3, a, € Temp2, k = 1,N3)} /*
select the nodes that define only 1-containers */

- Let {M} = {M} - {Temp!} (i.c., subtract {Temp1] from {M})

- Let N4 = number of nodes in {Templ}

- Let N5 = number of (remaining) nodes in {M])

- Let N6 = number of distinct 2-containers

- Compute E (general Euler constant) as
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E = N5-N2+Né6-1 (i.e., v-e+i-1)
- Analyze value of E:
E = 1 = consistent and connected map
E > 1: investigate presence of subgraphs. Number of subgraphs should equal E else
map is not geometrically consistent.
As an additional check, the total number of arcs must equal N2 + N3,

5.1.4 Consistency Rules for Elementary Object Types

At the next higher level of complexity are the consistency rules for terrain object types. The
semantics of the objects are given by their geometric type and their thematic classes
{Molenaar, 1991c); thus two sets of consistency rules can be defined for each object. These
are:

(1) Rules for the geometric description of individual elementary objects.

(2) Rules related to the thematic component of the object.

Rules for the Geometric Description of Elementary Objects

The geometric definitions of elementary objects in vector maps have been given in §3.4.5 (see
also Molenaar, 1991c). The geometry of each object in a vector map must be consistent with
these definitions, i.e., the topology of individual cbjects must be consistent and must be
preserved. If the consistency rules at the three lower levels have been fulfilled, the rules for
the geometric structure of an object can easily be checked. There are two aspects of these
rules. First, the geometric description of the object must be consistent (i.e., properly defined)
during data capture before it is accepted into the database. The data input and editing routines
of most data acquisition subsystems can handle this. Second, the geometry of the object as
provided by the m-containers representing it must be consistent after insertion. This has to
be done by specified rules as outlined below.

Point Object

For an individual point object, it should be verified that the O-container defining the object
has been created.

Line Object

For an elementary line object, a simple and elementary path (see §3.1.1) must exist between
the beginning and end of the chain of 1-containers defining the object, i.e., the chain of 1-
containers representing the object must be fully connected. In other words, let L, represents
1-container j of line object L;; for the object’s geometry to be consistent after the creation of
its 1-containers, the terminal node of Ly, must be the initial node of L;;, the terminal node
of L; must be the initial node of L;;,;, etc. (Note that if the DMMVM is used for a single
layer, each object will be represented by a single equivalent m-container.) This constraint can
be monitored by evaluating the topologic relationship between pairs of the 1-containers
representing the line object, as illustrated in the following rule LO_Rule_1:
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Consistency Rule for Line Object (LO_Rule_1)

Let {...Li,...} be the chain of 1-containers representing line object L.
If Relation(Ly,Ly;,,)) # 1287 then

display error message

display {....Ly...} for editing.

If the geometry of the object has been correctly measured with accurate georeferencing during
acquisition, then the error can be due only to gap(s) or overshoot(s) during creation of the 1-
containers (e.g., by overlay computation), which can be caused by incorrect tolerance values
for snapping. By displaying the chain, the erroneous segment can be corrected.

Area Object

For an individual area object, the 2-containers representing the
object must be connected and non-overlapping. This constraint can be monitored by
evaluating the topologic relationship between pairs of the 2-containers as follows:

Consistency Rule for Area Object (AO_Rule_1)

Let {....F,...} be the set of 2-containers representing area object F,.
If Relation(F, Fy;,,) € (1279, r285, r287) then

display error message

display {....Fj,...} for editing.

As in the case of line object, if the geometry of the object has been correctly measured with
proper georeferencing during acquisition, then the error can be caused only during creation
of the 2-containers (e.g., by overlay computation), which may be due to incomrect tolerance
values for snapping. By displaying the set of 2-containers, the erroneous parnt can be corrected.

The other components of geometric aspects of an object are the shape and size of the object.
These are constraints such as: a house must be rectangular, the two sides of a road must be
parallel, etc. These constraints can be related to the thematic classes of the object as suggested
by Molenaar (1991c¢).

Rules for Thematic Component of Objects

The thematic data of individual objects are application-dependent. However, apart from the
constraints that will be defined for these data, the constraints described in §3.4.1. must be
enforced for each object to conform with the sirict classification hierarchy of the DMMVM.
These mandatory constraints are:

(a) Cyclic classification hierarchy is not permitted.

(b) The classification must be complete, i.e., all objects must be classified.

(c) The classes must be mutually exclusive, i.e., each object must belong to only one class
in each layer, but if one object appears in more than one layer, the object can be classified
in the other layer as well.
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5.1.5 Consistency Rules for Functional Relationships Among Data Types

The functional relationships among the eight data types of the DMMVM, namely node, arc,
O-container, 1-container, 2-container, point, line and object, are described by the elementary
links of §3.4.3 These relationships should be checked for consistency.

In the preceding sections, consistency ruies have been defined for individual data types and
between arcs and nodes. The functional relationships among different data types can be
verified for consistency by using the relational functions described in §4.2.

5.2 Semantic Consistency

In general, semantic constraints are application-dependent and they are both spatial (e.g., two
adjacent parcels must share a common border) and non-spatial (e.g., a lessee cannot transfer
his right on a leasehold parcel beyond the period of the lease). In the spatial domain, they are
mostly a group of forbidden relationships between pairs of objects. Here the focus will be on
the geomemy-related semantic constraints. These constraints are also important in spatial
databases because the database may be geometrically consistent (satisfying the constraints in
the preceding sections) but semantically inconsistent. For instance, it is topologically in order
for a line object to cross an area object insofar as the geometric constraints are fulfilled. But
this relationship may or may not be consistent, depending on the meaning of the two objects,
i.e., the application for which the data model is being used.

This makes it difficult to provide a generic algorithm for resolving semantic constraints, Bus
a monitoring procedure can be formulated for those that are topologic in nature, especially
between pairs of objects. The monitoring strategy being proposed here is to use topologic
relationships as alerters. The strategy is for only semantic constraints that are geometric in
nature, and it is based on the assumption that the database is structurally consistent. Some of
these constraints are for individual objects, e.g., size and shape constraint. These can be
monitored and enforced by the editing routines of the data acquisition system or with
functions defined as part of the topologic editor.

A scheme for monitoring the constraints between object pairs is as follows (see Figure 5.3).

- Translate the constraint to a set of expected topologic relationships ({E}) which will
maintain the consistency of the map. In practice, this can be done for all semantic
constraints (topologic) in the application and stored in the database.

- On-line derivation of the actual relationship (A) by the system during insertion using
the topologic relationship operator (implementation of the scheme in §4.3)

- System checks for membership of A in the set E

- If A« {E} then violation has occurred and the system should wam the user. The user
can then interactively resolve the violation either by using pre-defined rules (if
applicable) or by taking any other action.

This strategy will be illustrated with some examples of semantic constraints in cadastral

application.




Examples of Constraints in Cadastral Mapping

Constraint #1: A river may not flow into or through a cadastral parcel.
Assuming that a river, represented as line object L, and a parcel, represented as area object
A, exists as depicted in Figure 5.1

Translating the constraint to the expected
topologic relationships (E} gives

{E} = {x031, 1063, 285, r287, 1316, 1317,
319} (see Figure 4.8). The actual relation-
ship A (to be derived by the procedure
Relation(A, L)) = r191. Testing A for mem-
bership of {E} indicates that A ¢ {E} thus
a violation has occurred. The system must
then warn the user about this inconsistency
or execute the relevant rule to enforce con-
sistency if such a rule has been defined. .
Possible causes of this may be incorrect Figure 5.1 A river crossing a cadastral
geo-referencing or incorrect digitizing (by Pparcel

field survey or any other means) of either of

the two objects. Assuming that the geo-referencing is accurate and the digitizing is within
tolerance, then the parcel must be partitioned into two and re-allotment carmried out if
necessary.

A similar constraint to this is that a (residential) building (represented as an area object) must
not be crossed by a (underground) gas pipeline (represented as a line object). If the actual
relationship (A) is not an element of the above set E, then violation has occurred and the
building plan must be disapproved (assuming the digitizing of the two is accurate and geo-
referencing is accurate).

Constraint #2: A parcel must have access 1o a road.

This is an important constraint in modern cadastral layout, a topologic constraint concerning
the connectivity of a land parcel and a road. Let a parcel be represented as an instance A of
area object type and a road an instance L of line object type. The constraint can be monitored
for each parcel being inserted by the system with the following algorithm:

If Relation(AL) ¢ {r063, r285, r287,r316, r317, r319} then display error message: "parcel
A does not abut a road”.

Here, Relation(A,L) will retum the actual relationship (A in Figure 5.3) while the
relationships inside braces are the expected relationships (E) (see Figure 4.8).

If an inconsistency is detected and it is certain that the survey was done accurately, then a
buffer can be defined around the parcel and the parcel together with the objects inside the
buffer displayed to assist the human operator in interactive editing.
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Constraint #3: Two parcels must not overlap.

Given the situation in Figure 5.2 between new parcel Ol and an existing parcel O2.
The expected relationships that will not L 1 2
violate the constraint, ie., {E} = {1031, “
1279, 1285, 1287} (see Figure 4.7). Note that
although r279 and 1285 do not acmally
violate this particular constraint, occurrence
of any of them will not be permitted beca-
use of constraint #2 above. Thus {E} redu-
ces to {r031, r287}. From Figure 5.2, the
actual relationship A = r511. Since A ¢
{E}, the constraint is violated and the sys-
tem should warn the human operator.

The possible actions to be taken by the Figure 5.2 Two overlapping parcels
operator include an adjudication process if

the overlap is caused by what is commonly referred to as "land-in-dispute” in cadastral
surveying, re-measurement of one or both of the parcels, splitting the two parcels into three,
or reduction of the size(s) of one or both of them. This example clearly indicates that human
intervention will still be required to resolve some inconsistencies.

Constraint #4: A building must be contained inside a parcel.

This constraint is normally checked before a building plan is approved. Assuming that
buildings and parcels are represented as arca objects, the expected relationships are {E} =
(r179, 1220, r400, 1435, r476} (see Figure 4.7). The actual relatonship (A) between a given
building and the parcel on which it is to be located (assumed te exist in the database) should
be derived by the procedure Relation(O1, O2). If A ¢ {E] then violation has occurred and
the building plan will not be approved pending the resolution of the conflict.

5.3 Implementation Approach

Figure 5.3 shows the flow-chart of the scheme for spatial consistency management in a vector
GIS. At the core of the GIS is a spatial database which is assumed to be structured according
to the DMMVM. The topologic relationship operators will consist of the automated procedure
to dynamically derive the existing topologic relationships between objects and between
geometric primitives using the algorithms in $4.3 and computational geometry where
necessary. The topologic editor will comprise the automated procedures to carry out topologic
editing of the database in a consistent manner as described in §5.1.1. User-defined operations
will consist of the operations that must be performed when there is a violation of semantic
constraints. The operations may include the use of the topologic editor functions.

The set of expected topologic relationships {E} between geometric primitives that will not
result in constraint violation may be stored as a kind of look-up table (LUT). This should also
be done for the semantic constraints (geometric) between objects. To monitor topologic
consistency, ¢.g., between two objects, the system will then evaluate the actual relationship
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Figure 5.3 Scheme for consistency operations in vector maps

(A) between the two objects, check for its occurrence in the set {E} for that constraint, give
a message if violation occurs, resolve the violation if the operation is provided or call for the
decision of the human operator.

5.4 Summary

A large proportion of the cost of setting up & database for spatial information production is
attributed to data acquisition. To offset the cost and derive profit, the information produced
by that system must be reliable, ie., the quality of the data from which the information is
derived must be wrustworthy. This has made the issue of data quality an important aspect in
GIS. Data consistency is a component of data quality because consistency is essential for the
database’s reliability. This chapter has focused on this issue.

Consistency rules have been formulated to ensure structural constraints, while a monitoring
strategy was proposed for semantic constraints. In both cases, topologic relationships play the
central role as alerters of constraint violations. The next chapter will focus on the handling
of object dynamics in the database in a manner that does not disturb its structural consistency.
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6

OBJECT DYNAMICS AND UPDATING IN VECTOR MAPS

In geo-information production, currency of the data plays a very important role, together with
data quality (accuracy, completeness, consistency), in the reliability of the information. In the
preceding chapter, procedures were defined for monitoring and enforcing one aspect of data
quality: data consistency. This chapter focuses on the maintenance of data currency, iec.,
updating. Database updating is an important aspect of GIS development because the terrain
objects represented in the database are generally not static in time; thus the database should
also respond to such object dynamics through "consistent” updating. By consistent, we mean
that the structural and semantic constraints of the database (see chapter 5) must be enforced
after each update.

In the mapping disciplines, in reaction to the evolution of mapping methods and processes
(from conventional analogue mapping through computer-assisted mapping to digital mapping
and then to GIS), updating of geo-information has evolved from simple graphic map revision
using analogue methods and equipment through digital map revision with the aid of computer
hardware and software but using a spaghetti model and with intensive involvement of the
human operator. The goal is to be able to update a structured database in a GIS with a high
degree of automation, but this last stage is still very much confined to the research and
development domain; this thesis aims at contributing towards achieving that goal.

In principle, it is simple to update a database: remove the outdated data and replace them with
the new data. This used to be largely true when updating was carried out on the (plastic)
master copy of the hardcopy map. The major problem then was on how to detect changes and
what policy to follow for the updating, i.c., whether cyclic, selective or continuous; the actual
change involved peeling off the old data on the master copy and scribing in the new
information. Still, it is an expensive and complex operation which leaves many maps un-
updated, especially in developing countries.

In this digital era when many processes are being automated to take advantage of technologic
developments, and where the interrelationships among terrain objects are also modelled to
make the database more useful, updating has become a more complex operation and
rescarchers are focusing attention on the complete automation of updating procedures starting
with change detection through the extraction of changed data, to database updating including
editing and quality assessment. The general procedure for the updating of geo-information is
represented in Figure 6.1.

For change detection, superimposition techniques and image processing and analysis are
powerful tools. Information about changes in the terrain can also be obtained from local
knowledge, i.e., from people and agencies involved in building and construction. The changes
can be extracted manually or antomatically by means of photogrammetry (mono or stereo),
image processing, head-up (screen) digitizing, field survey, etc. These aspects (change
detection and data collection) are not addressed in this thesis. Rather, the focus is on the
database updating aspect, addressing the issues of update propagation, topologic editing and
consistency enforcement in vector-structured spatial databases. In this context, database
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Figure 6.1 General proceduore for geo-information updating

updating denotes an operation that leads to (a) the insertion of new data into the database, (b)
the modification of some existing data, and (c) the removal {deletion) of obsolete data from
the database. Because the DMMVM is a topologic model, the representation of terrain objects
includes their interrelationships; it is thus possible that an update on one object will effect
another object(s), causing an inconsistent state. To forestall such inconsistency, an update
"propagation” must be effected when any of the three updating operations is carried out.
Intuitively, update propagation means the system should identify all objects that are affected
by a single update and modify them (or give warning to the human operator) to ensure
consistency.

In the DMMVM, three generic types of spatial object are represented: point, line and area
objects. Changes in the database will therefore result from the dynamics of these objects. In
Figure 2.2, an object (O) is uniquely defined by its geometry (G) and the set of its thematic
attributes (T), i.c., O = f{G, T). The dynamics of an object can thus be grouped into two basic
aspects: thematic changes and geometric changes. In addition there can also be a change in
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the aggregation structure of objects (sec Molenaar, 1991). These changes can occur singly or
jointly.

The aggregation aspect of terrain objects indicates how a complex terrain object can be
composed from smaller objects. Since the aggregation structure of objects is not explicitly
represented in the DMMVM (they can be derived through queries), this aspect will not be
considered as a basic updating operation in the database.

The updating of the other two aspects are analyzed in the following sections with emphasis
on the geometric aspects. The procedures for propagating the geometric updates are also
presented in pseudo codes.

6.1 Updating Thematic Data of an Object

Here, the thematic attributes of an object are resiricted 10 its thematic class label in order to
focus on the more complex geometric updating, but the other atributes can be handled as
well, Thus only the class label will require updating, as in the reclassification of an object
(e.g., an area object "parcel” changing from class "vacant" to class "built-up"). It is assumed
that the DBMS of the implementation platform will have facilities (e.g., insert, update, and
delete in RDBMS) for simple updating in which propagation is not required. When a new
object comes into existence, simple insertion of its class label (and other thematic attributes
if any) can easily be done by the DBMS tools. The same holds when an object comes to the
end of its life-span, in which case its thematic information is simply deleted.

However, if hierarchic classification is implemented, then certain rules must be observed
when updating the thematic classes. For class creation, the superclass has 1o be created first
because its atribute structure is expected to be inherited by its subclasses. The consistency
rules defined for thematic data (see §5.1.4) should also be monitored and enforced. The
insertion of the thematic attribute values of the individual objects belonging to the class can
then be effected by the DBMS commands. When it is necessary to remove a class, an
essential rule is that a superclass cannot be deleted unless all its subclasses have been deleted.
And in general, no class should be deleted unless all its instances have been deleted.
Hereafter, the analyses will focus on the updating of geometric aspects of objects.

6.2 Updating of Geometric Components

Changes in the geometric aspects of an object might include a change of position, or size or
shape, or a combination. These changes may also lead to changes in the topologic
relationships amoeng the objects in the database. Thus care has to be taken to ensure integrity
of the database during geometric updating of objects. The main focus of the updating
procedure is therefore on this aspect. In this research, it is assumed that the boundaries of
objects are well-defined (crisp dataset). The objects are also assumed to be correctly geo-
referenced, using the same coordinate reference system and the same resolution.

In the DMMVM, the geometric characteristics of objects are defined by the data types 2-
container, 1-container and 0-container, which are represented by the two geometric primitives:
arcs and nodes. Thus geometric changes directly imply changes in the five data types. The
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updating can be analyzed at three levels. The lowest level concerns the geometric primitives
whose updating is triggered by an updating request from higher level data types by
propagation. The next higher level concerns the m-containers, m e {0,1,2}, whose updating
will also be triggered by propagation from the updating at the highest (i.e., object) level. At
the highest (and user) level arc the individual terrain objects of types point, line and area,
which actually trigger the database updating,

The update propagation path is depicted by Figure 6.2, indicating that the updating must
always be initiated by the need to update (insert, modify, delete) terrain objects. The
expectation in automated database updating is therefore that the system receives an updating
request at the highest (i.e., object) level, together with the necessary input data, and performs
the propagation from the object level to the level of geometric primitives. In addition, for the
database to be geometrically consistent, all the constraints defined in chapter 5 must be
satisfied after each updating. Thus (automated) procedures must be provided to propagate the
update while checking and enforcing the constraints. In the following sections, the update
propagation involving the basic data types (area, line, point, 2-container, 1-container, 0-
container, arc and node) are analyzed at their respective levels, starting from the lowest level
(node and arc), with each level serving as "building block™ for the next higher level.

[AR—— N | [oc]

fedmh A0, LO, PO -AMDM&PMW
. Probablyqﬂtc 2C, iC,0C = 2-, 1-, & O-containers
Propaganonlmnato AR = Arc

O Triggered propagation N = Node

Figure 6.2 Update Propagation Path in the DMMVM; (A) = Area Object’s Path, (B)
= Line Object’s Path, {C) = Point Object’s Path

6.2.1 Notations

We will recall the functions presented in chapter 4 (sec §4.2.1 and §4,2.2) for representing
the functional relationships between data types, and add other ones to completely represent
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the functional relatonships among the data types in the DMMVM (see Figure 3.8) by similar
notations. The functional relaticnships indicate the navigation route among the data types; thus
the functional notations described here will be used in the pseudo codes for the update
propagation procedure described in this chapter.

Link between thematic class and terrain object

The link belongs-to between a terrain object O, and the thematic class TG, can be represented
by:

Belongs-10[TC,, 0} e {0,1}
When the function has the value 1, the object belongs to that class, and when it has value 0,
the object does not belong to that class.

Link between elementary lerrain object and m-container

The links between an elementary object O, (O, € {area, line, point}) and m-container {m €
{2,1,0}) can be represented as follows.

The fact that a 2-container, is part-of an area object AQ, can be represented by
Partof{AO,2-container;] = 1

And if the 2-container is not part of the area object, then
Partof{AO,2-coniainer;] = 0

If a 1-container; is part-of a line object LO,, it will be represented by
PartoffLO,I-containerj = 1

And if the 1-container is not part of the line object, then
Fariof[LOI-container = 0

Also, the link represented by between a point object PO; and a (-container; can be indicated
by the function

Repreby{PO,0-container;] = 1
If the O-container does not represent the point object, then

Repreby[PO,0-container] = 0

Link between m-coniainer and geometric primitives (arc and node)

In the DMMVM, planar enforcement must be satisfied, Thus an arc must always have one
2-container on its left side and one 2-container on its right side. The relationship between an
arc g and a 2-container, can then be depicted as follows.

The existence of the relationship left between arc a, and 2-container; can be represented as
Left{2-container,aj = L

if the 2-container is not on the left of the arc, then
Left[2-container,aj = 0.

And the fact that arc a; has 2-container; on its right side can be represented by
Right[2-container,aj = I;

if the 2-container is not on the right of the arc, then
Right{2-container,af = 0.
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A boundary arc a; of 2-container, can then be found from the function
Boundary{2-container,a;] = Lefi{2-container,a)+Right{2-container a;]

If this function = 1, the arc is part of the boundary of the 2-container, and if = 0 or 2 it is
not.

The fact that arc a, is part of l-container; can be represented by
Parioff I-comtainer,a] = I,

if the arc is not part of the 1-container, then
Partof{1-container,a] = 0.

The fact that node n, represents O-container; can be represented by
Repr{0-container,n;] = 1

If the node does not represent the O-container, then
Repr{0-container,n;} = 0.

Link between arcs and nodes
See §4.2.1.
Other Links

The link crosses between 1-container; and 1-container; can be represented by
Crosses{1-container,I-container;] = I when j crosses i, and
Crosses{1-container;1-container;] = 0 if they do not cross.

Also, the fact that 2-container; contains O-container; can be depicted by
Contains{2-container,0-container,] = 1,

and if it does not contain it, then
Contains[2-container,0-container,] = 0.

From the basic functions above, other transitive links can also be derived, e.g., whether or not

1-container, is part of the border of 2-container, can be found through
Border{2-container,1-container,] = (Left{2-container,a;]+Right{2-con-
tainer,a;j *Partof] I-container,,a;}

If the value of the function = 1, then the 1-container lies on the border of the 2-container; if

the value is 0 or 2 it does not.

Whether or not arc a; is part of area object AQ; can be established from
PartoffAO,aj] =  Partof{AO;2-container,J*(Lefi[2-container a;j+Right[2-con-
tainer,a;f)
If the value of the function = 1, the arc is part of the area object’s geometry; if = 0 or 2, the
arc is not part of the geometry of the area object.

6.2,2 Updating of Geometric Primitives

At the lowest level of the update propagation path are the two geometric primitives. Their
vpdating will normally be an indirect operation triggered by geometric updating at the next
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higher level. The consistency rules defined for the geometric primitives in chapter 5 (sce
Table 5.1) are intended to propagate updating of the primitives while maintaining geometric
consistency. The updating operations (resulting from insertion, deletion or modification)
involving the two primitives are analyzed below. They will serve as the elementary operations
into which the updating of the higher level data types can be decomposed.

Inserting a new node

When inserting a new node in the database, the topologic relationships between the new node
and the existing arcs and nodes should be checked for inconsistent relationships (r272 and
r092 in Table 5.1); if they occur, the necessary consistency operation is performed by the
system; otherwise, the node {and coordinate information) ¢an be inserted. The algorithm for
inserting a node is as follows. The block diagram of the algorithm is given in Appendix 1.1.1.

Algorithm Insert_Node:

begin
get nodeid (nl) and its properties (x, y and z coord and accuracy data)
do while exists n; € NIDegree(n)=0 /* N = existing nodes */
determine Relation(nl,n) /* by comparing coordinates */
if Relation(nl,n) = 1272
do GP_Rule_1
goto end
endif:
end do while
do while exists a, € A /¥ A = existing arcs */
determine Relation(a,nl) /* using coordinate geometry */
if Relation(a,nl) = 92
do GP_Rule_2
goto end
else if Relation(a,,n1) = r284 /* by comparing coord. see Figure 4.11b
*f
do GP_Rule_1
goto end
endif
end do while
insert nl (and its propertics)
end

Deleting an existing node

Before a propagator causes the deletion of a node during update propagation, the system
should check that the node does not define other arc(s) and/or a O-container.

The following is the procedure Delete_Node for deleting a node n, in pseude code (see
Appendix 1.1.2 for the block diagram):
begin
get identifier of n, from propagator
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check for each O-container Oc;
if 3 Oc; 3 Repr{Oc,n] = 1
goto end /* i.e., do not delete /*
else next Oc;
endif
check for each arc g,
if 3 a; 3 (Begla,n] = 1 v End[[a;,n] = 1)
goto end /* ie., do not delete /*
else delete node (and its attributes)
endif
end

Modifying an existing node

The medification request for a node may arise when the value(s) of one (or more) of its
coordinates is (are) to be changed, e.g., because of more accurate measurement. This
modification request is not as simple as it appears becanse the node’s existing topologic
relationships with some arcs (if any) may have resulted from the previous coordinate values.
It may also be defining a (-container which represents more than one point object. It is
therefore necessary to ascertain that this node does not define the position of other arcs or
point objects (same 0-container) before the medification. The most appropriate solution is to
insert the affected node as new (with its new coordinate values) using Insert_Node procedure
and delete the old using the Delete_Node procedure. However, if only the accuracy property
has changed, this can be effected by simple updating facilities of the DBMS. The algorithm
for effecting the modification will therefore be as follows (see Appendix 1.1.3 for the block
diagram):

Algorithm Modify Node

begin
get nodeid and modified properties
select the node and current properties /* as a kind of view */
modify requested values and assign new id
do Insert Node /* with its modified values and unchanged properties */
do Delete_Node /* for obsolete node */
end

Inserting a new arc

To maintain the integrity of the database when a new arc is being insented, the geometric
primitive constraints GPC_i, i € (1,2,3,4) should be enforced through the consistency rules
defined in Table 5.1., i.e., when a new arc is inserted, the system must evaluate the arc’s
topologic relationship with each of the existing primitives in the database and apply the
corresponding consistency rule for any relationship that violates geometric consistency.
The following is the algorithm Insert_Arc for inserting a new arc. The block diagram of the
algorithm is given in Appendix 1.1.4.
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Algorithm Insert_Arc:

begin
get new arc a, (and its properties: id, coords, left, right, 1-container)
assign node numbers for its start and end nodes
do while exists n; € NIDegree(n))=0 /* N = existing nodes */
determine Relation(a,n) /* by coordinate geometry */
if Relation(a;,n) = 1092
do GP_Rule_2
endif
if Relation(a;,n) = 1284 /* by comparing coord. see Figure 4.11b */
do GP_Rule_1
end do while
do while exists 3, € A /* A = existing arcs ¥/
determine Relation(a;,a) /* using coordinate geometry */
Case 1063 do GP_Rule_3
Case 1095 do GP_Rule_4
Case 1159 do GP_Rule_5
Case r17% do GP_Rule_6
Case 1220 do GP_Rule_7
Case 1255 do GP_Rule_8
Case r287 do GP_Rule_9
Case r400 do GP_Rule_10
Case 1435 do GP_Rule_11
Case r476 do GP_Rule_12
goto end
end do while
determine new values for left and right relationship
SIOre &;
insert start and end nodes of g, using Insert_Node
end

Deleting an existing arc

When a delete request is propagated to an arc, the system should first verify that the arc is
not linked to other primitives. An existing arc will have one of the following combinations
of properties at one time:

(1) Lefif2-container,a] = 1 A Right[2-container,,a] = 1 A Partof[l-container,,a] = 1 (A =
logical and), i.c., the arc has the same 2-container on cach side and represents part of a 1-
container. In this case, the arc defines only (part of) a 1-container and can be deleted only if
the 1-container is being deleted or modified.

(2) Left[2-container,a] = 1 A Right[2-container,a] = 0 (or vice versa) A Partof[1-
container,,a,} = 0, which means that the arc demarcates two 2-containers and can be deleted
only if a preceding updating operation would have made left = right.

(3) Left[2-container;,a] = 1 A Right{2-container,a] = O (or vice versa) a Partof[1-con-
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fajnerk,aj] = 1, in which case the arc represents a 1-container and demarcates two 2-containers.
It can be deleted only if the updating operation requires that the 1-container which the arc
represents be deleted, and left and right are first updated to have equal values.

(4) Left[2-container;,a3] = 1 A Right[2-container,,a] = 1 A Partof] 1-container,,a] = 0. This is
& "dangling’ arc which should be deleted from the database.

Thus if an existing arc was deleted, the preceding operations in the update propagation chain
that triggers it would have led to the fourth sitnation; otherwise the arc would have been only
modified. The following algorithm Delete_Arc will do the necessary checking and delete the
arc if it is now redundant (see Appendix 1.1.5 for the block diagram):

Algorithm Delete_Arc:

begin
getarc id — a
if Left[2-container,a;] = 1 A Right{2-containet;,a)] =1 A Partof{ 1-container,, ]
=1 goto end /* do not delete */
if Left[2-container,a] = 1 A Right[2-container,,a}
Partof{ 1-container,,a] = 0 goto end
if Left{2-container,a] = 1 A Right{2-container,.a]
Partof 1-container,.a;) = 1 goto end
if Left{2-conwiner,a] = 1 A Right{2-container,.a] = 1 (where i
Partof[ 1-container, 4] = 0
then
select nll Beg[a,n1] = 1 and n2| End[a,n2] = 1 /* beg & end nodes */
delete 8, /* simple DBMS command to remove record of a; */
do Delete Node(nl)
do Delete_Node(n2)

1 (where i # n) A

i

1 (where i # n) A

n A

endif
end

Modifying an existing arc

During update propagation, the modification of an existing arc may be necessitated by any
of the following situations:

- When the value(s) of the Left and/or Right function(s) of the arc change(s), which may be
caused by the creation or modification of a 2-container.

- If there is a change in the value of the relationship Partof between the arc and a 1-container,
which may be caused by an insertion of a new line object (thus modification or creation of
a 1-container) or deletion of a 1-container.

- When there is a change in the coordinates of one or both of its two nodes. This may arise
from more accurate measurement of the position of the node(s) and, because this may affect
the existing topology, the affected arc should be inserted as a new arc using the Insert_Arc
procedure, thereby recreating the topology (this can be optimised by forcing the system to use
the primitives associated with the former arc and those in that vicinity) and the old arc deleted
using Delete_Arc procedure.

- When a new node or a new arc is inserted and necessitates the execution of any of the
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consistency rules GP_Rule_i, 2 <i < 12 (see Table 5.1). The necessary modification will be
performed within the propagation chain that wriggers the insertion of the new primitive. The
algorithm for modifying an existing arc is given below; the block diagram is shown in
Appendix 1.1.6.

Algorithm Modify_Arc

begin
get arcid and modified properties
if 3 locational change
select the arc and current properties /* as a kind of view */
modify requested values and assign new id to arc and its nodes
do Ingert_Arc /* with its modified values and unchanged properties */
do Delete_Arc /* for obsolete arc */
else
modify affected property /* simple DBMS command */
endif
end

6.2.3 Updating of the m-Containers

At the next level of the update propagation path are the three m-containers: 2-container, 1-
container and O-container. Their updating will normally be an indirect operation triggered by
updating at the highest level, i.e., of individual terrain objects. Like the geometric primitives,
the updating of the m-containers should be automated as much as possible while enforcing
the consistency rules defined for them (see chapter 5). The updating operations (resulting from
insertion, deletion or modification of a terrain object) involving the three types of m-container
are analyzed below.

Inserting a new 2-Container

To satisfy completeness of incidence in the DMMVM as a planar vector map, all 2D
segments (faces) must be classified, i.e., every closed polygon must be (part of) a 2-container;
thus the addition of a new 2-container implies modification or deletion of an existing one.
This means that insertion of a 2-container involves a combination of insert, modify and/or
delete operations. It is thus a complex operation which may still require the use of semantic
information as well as human intervention. For example, in a single-valued vector map, the
new 2-container will be spatially coincident with one or more existing 2-containers. If after
analyzing the semantic information of those 2-containers (through the Partof[area-object, 2-
container] function) it is found that they are part of area objects classified as "vacant™ (or
"unclassified”), then the update propagation can proceed; but if any of those 2-containers is
part of a "real” terrain object then the human operator’s decision is required as to whether that
existing object should be deleted or modified. Also, in the multi-valued situation, it must be
determined first if the overlapping 2-contairers are class-compatible, e.g., a cadastral parcel
cannot overlap a lake. Class-incompatibility can be predefined in a look-up table (LUT), for
example, such that the system consults the table when a new 2-container is being inserted
and, in general, during overlay computation to ascertain if the overlapping 2-containers
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represent compatible objects. The same situation holds for 1-containers and 0O-containers.

Detecting and forestalling such incompatibilities can be handled in two ways: (1) at the
beginning of the update propagation (or overlay computation to derive a multi-valued vector
map), or (2) immediately after the update/overiay computation. The first approach implies that
the checking routine should be part of the algorithm being used for the computation, but it
will require more interaction with the human operator (except if an LUT is provided) during
the updating. The second approach allows the use of any available overlay computation
algorithm, after which the consistency module can check for compatibility. The algorithm
provided here uses the first approach, but this part can be transferred to the end during
implementation if the user so decides.

If the insertion iz allowed, the existing O-containers topologically contained by the 2-
containers should be identified (computationally) in order to make this relationship explicit.
The system should continue the update propagation by inserting one arc of the 2-container
at a time using the Insert_Arc algorithm (defined in the previous section). Some existing arcs
may need to be deleted, while some may require modification. For example, Figure 6.3a
shows a small vector map which has been structured according to the DMMVM,; 2-container
A3 is to be inserted, as shown in Figure 6.3b.

From the figures, it is obvious
that the new 2-container’s posi-
tion has affected the geometry

of 2-containers Al, A2, A3, and ; Mod W m
A4, and also the topology of the M s - AS
l-container representing the y T ‘
railroad. When the algorithm for ,’M A ZA
inserting an area object is used, , ! o

the incorporated algorithm for
inserting an arc will create extra
nodes (11, 12, 13, 14, 15 and
16) and split arcs (9,5) into
(9,16) and (16,5) and (5,4) into Figure 6.3 Insertion of a new 2-container. A = original
(5,13) and (13,4), respectively; Situation; B = 2-container AS is inserted

the algorithm for updating an

arc will update arcs (16,5) and (5,13), while the algorithm for deleting an arc will delete arcs
(12,5), (11,5), (15,5) and (14,5) (arcs having Left{A5,a]=1 and Right[A5,a,]=1 and Partof] 1-
container,,;,...a]=0 where a, is an existing arc). It is therefore obvious that having provided
the basic updating operations for arcs, any complex situation can be decomposed into a set
of elementary updating operations. The generalised algorithm for inserting a new container
is defined below (see Appendix 1.1.7 for the block diagram):

Algorithm for inserting a 2-container: Insert_2-container

begin
do for each new 2-container c2
gCt Gcz(NcZ=Ac?)
do 2CC_Rule_1 /* consistency rule for 2-container */
select all existing 2-containers OC2 for which oc2 € OC2! Relation(c2, oc2)
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e {r179, r220, r400, r435, r476, r511} /* using computational geometry e.g.,
any polygon intersection algorithm */
for each oc2
select area object AQ, for which Partof[AO;,0¢2]=1
if map is single-valued
determine thematic class of AQ;
if class & {"vacant”, "unclassified"}
notify user /* decision € (interactive editing?, next oc2} */
else next oc2
endif
else
if map is multi-valued
determine compatibility between AQ, and new area object
represented by ¢2 /* LUT or user decision */
if class incompatible
notify user /* decision € {interactive editing?, next oc2} */
else next oc2
endif
endif
display all 2-containers EC2 3 ¥V ec2 € EC2 is Relation(ec2,c2) € {r179,
1220, r400, r435, 1476, 1511} /* see Figure 4.7 ¥/
perform interactive updating /modify neighbouring 2-containers which are
affected by the new one and insert arcs and nodes of ¢2; using update
algorithms of lower level data types */
for each ec2 € EC2 where Contains[ec2,c0]=1 /* cO = an existing 0-container
*
determine the new 2-container nc2 3 Contains[nc2,c0]=1
if nc2 exists, store relation as property of nc2 and property of ¢0
next ec2
next c2
end

Deleting a 2-container

Deleting a 2-container may invoive a combination of delete, modify and insert operations. The
delete request may be triggered because an arca object represented by the 2-container is to
be deleted or its location is to be shared among neighbouring 2-containers. In both cases,
modification of the geometry of neighbouring 2-containers will be required by inserting extra
arcs and deleting some obsolete arcs. Moreover, the (-containers inside the affected 2-
container may have a new topology: now inside or on the boundary of a new 2-container. To
handle the operations leading to a consistent database, the procedure for deleting the 2-
container should comprise the following main steps (see the block diagram in Appendix
1.1.8).

Algorithm Delete_2-container:

begin
get id of the 2-container — ¢2
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select the O-container(s) cQ for which Contains[c2,c0] =1

select all existing 2-containers O, for which o, € O Relation(c2, o)
{r179, 1220, 1279, 1285, r287, r400, r435, r476, r511} /* figure 4.7
refers */

modify o, € O, e.g., by inserting new arcs to modify its geometry /* has to be

done interactively but using combinations of Insert_Arc, Delete_Arc and

Modify_Arc */

delete any arc a; for which Left{2-container;,a,}=1 A Right[2-container,,a]=1

 Partof] 1-containes, ,a]=0 where i = m

determine 2-container nc2 for which Contains{nc2,c0}=1 /* using com-

putational geometry e.g., point-in-polygon algorithm */
if True, store as property of nc2 and property of c0

end

For example, 2-container A3 is to be deleied from Figure 6.3b and its former space
apportioned among adjoining 2-containers as shown in Figure 6.3a. This operation involves
- geometric update of 2-containers Al, A2, A3, A4 (by inserting arcs (11,5), (12,5), (14,5),
and (15,5) or new arcs as defined by user’s sharing criterion, which is simply by defining the
position of the common node)

- update of arcs (17,12), (12,13), (13,18), (18,14}, (14,19), (19,15), (15,16), (16,11), (11,17),
(16,5) and (3,13)

- after the immediate step above, the system will delete arcs (17,12), (12,13), (13,18), (18,14),
(14,19), (19,15), (15,16}, (16,11) and (11,17) using the algorithm for deleting an arc since,
in each case, the values of the left and right relationships are equal and the arc is not part of
any l-container.

Modifving an existing 2-container

Modification of an existing 2-container can be triggered in three ways: (1) when a new 0-
container falls in the interior of the 2-container, thereby necessitating the modification of the
value(s) of the relationship Contains{2-container,0-container]; this meodification, being a
secondary update, will be triggered by the Insert_0-container algorithm; (2) as a secondary
modification triggered by an insertion of a new area object, or deletion or (geometric)
modification of another existing one causing the modification of rhis 2-container; this
modification will therefore be wiggered by the primary updat; or (3) as a primary update
triggered by the need to modify the geometry of one of the area objects which the 2-container
is part of (e.g., caused by the expansion of the size of an area object "parcel” from 36 m by
18 m to 36 m by 36 m), or an additional area object (as a result of overlay) is to be
represented by the 2-container, or the area object(s) which the 2-container is part of is (are)
to be deleted.

In the third case, if the modification involves changing only the value(s) of the relationship
Part-of (between area object and the 2-container), this can be effected by simple "add”,
"remove" or modify commands of the DBMS. If geometry is involved and if the change is
substantial, the strategy is to use the algorithm for inserting a 2-container to insert the mod-
ified version and use the algorithm for deleting a 2-container o delete the obsolete one. If
only a few arcs are involved, the affected arcs are isolated from the (retrieved) arc list of the
2-container, the new arcs (to replace the affectsd ones) are added and the new geomewry of
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the 2-container is inserted using the algorithm for inserting a 2-container while the isolated
arcs are deleted using the algorithm for deleting an arc. This can be summarised in the
following algorithm for (primary) modification of a 2-container (see Appendix 1.1.9 for the
block diagram).

Algorithm Modify_2-container:

begin
get 2-container_id -» ¢2
if much geometric change /* subjective decision of user! */
then
insert modified 2-container with Insert_2-container
delete obsolete 2-container with Delete_2-container
else
retrieve G,(N.,.A.,)
isolate affected arcs (A,) from A,
add new arcs (A)) D A, = (A, - A) + A,
(re)insert G,(N,,A,) using Insert_2-container
delete a, € A, using Delete_Arc
endif
end

Inserting a I-container

The insertion of a new 1-container is triggered when a new line object comes into existence
or part of an existing one has a geometric change. As part of the required update propagation,
the class compatibility of the line objects represented by the l-container should be
ascertained; where they are not class-compatible, the insertion should be rejected. For
example, a river and a road cannot be represented by the same 1-container. In addition, the
consistency rule 1CC_Rule_1 (see §5.1.2) should be enforced by the system. If the line
objects which the 1-container is part of are class compatible and the consistency rule has been
enforced, the update propagation can then continue by first determining if there is any existing
1-container having the topologic relationship r139 (see Figure 4.9), ie., crossing, which is
then stored as an instance of the explicit relationship Crosses (see Figure 3.8). Then each arc
of the 1-container is inserted using the Insert_Arc algorithm. The algorithm Insert_1-container,
in pseudo-code, is presented below, and its block diagram is shown in Appendix 1.1.10.

Algorithm Insert_1l-container:

begin
do for each new 1l-container cl

get Gcl(Ncl'Acl)

do 1CC_Rule_1 /* consistency rule for 1-container */

select all existing 1-containers C, for which ¢, & CJ Relation(cl, ¢,) €
{r159, r179, r191, 1220, 1223, 255, rd400, r415, r435,
rd39, r476, 1477, 1501) /* see Flgure 4.9; using com-
putational geometry */
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for each ¢,
select line object LO, for which Partof[LO,c,]=1
if map is single-valued
notify user /* error, requires decision & {interrupt, next ¢;} */
else
if map is multi-valued
determine compatibility between LO; and new line object
represented by ¢, /* LUT or user decision */
if class incompatible
notify user /* error, requires decision € {interrupt, next c,} */
else next c,
endif
endif
endif
determine existing 1-container, ec! for which Relation{cl,ec1)=r159
/* using computational geometry (see Figure 4.9 for r159) */
if ecl exists, store Crosses[cl,ecl]=1 as properties of ¢l and ecl
foreach a, € A,
do Insert_Arc(a)
next a,
next ¢l
end

Deleting a 1-container

The triggered request to delete a 1-container may arise if the line object(s) represented by the
1-container no longer exist or because of substantial locational changes of the objects. When
an existing 1-container c1 is to be deleted, the following operations must be performed:

- check if there is any 1-container ecl for which G'osscs[cl,ccl] 1; if so modify ecl by
setting Crosses[c1,ec1]=0.

- delete the arcs of the 1-container using the algorithm for deleting an arc. An arc that exists
only because of the 1-container will have equal values for its left and right relationships; such
an arc should be deleted. Where these values are not equal, the value of the Parwof
relationship between the 1-container and the arc should be changed to zero or null because
the arc still demarcates two area objects.

These operations can be translated into the following algorithm Delete_l-container for
deleting a 1-container (the block diagram is given in Appendix 1.1.11).

Algorithm Delete_1-container:

begin
get id of the 1-container — c1
select the 1-container ecl for which Crosses[cl.ecl] =1
if exists, set value to zero
for each arc 3, € A, having Partoflcl,a]=1 set value of Partof = 0
for each arc a, € A, /* arcs of the 1-container c1 */
do Delete_Arc(a,)
end
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Modifying a 1-conlainer

Moadification of an existing 1-container can be triggered in three ways: (1) when a new 1.
container crosses a 1-container, thereby necessitating the modification of the value(s) of the
relationship Crosses[1-containerl,!-container2]; this medification, being a secondary updaie,
will be wiggered by the Insert_l-container algorithm; (2) as a secondary modification
triggered by an insertion of a new line object, or deletion or (geometric) modification of
another existing one causing the modification of rhis 1-container; this modification will
therefore be triggered by the primary update; or (3) as a primary update triggered by the need
to modify the geometry of one of the line objects which the 1-container is part of (e.g., Figure
6.4), or 1o delete some of the line objects which the 1-container is part-of.

3 4
[, s I e L
1 2 7 8 1 2 7 8
a. Old situation b. New sitnation
Figure 6.4 Modification of a 1-container

In the latter case, if the modification involves changing only the value(s) of the relationship
Part-of (between line object and the 1-container), this can be effected by simple "add",
"remove” or "modify" commands of the DBMS. If geomemry is invoilved and if the change
is substantial, the strategy is to use the algorithm for inserting a 1-container to insert the mod-
ified version and use the algorithm for deleting a 1-container to delete the obsolete one. If
only a few arcs are involved, the new arcs (1o replace the affected ones) of the 1-container
are inserted using the algorithm for inserting an arc, while the affected arcs are deleted using
the algorithm for deleting arc.

For small changes, it must also be verified whether the 1-container crosses/intersects any other
1-container within the changed segment (in which case the two 1-containers will have a
common node in this segment). Three new possibilities can then be identified:

- the two still intersect/cross at the same point despite the geometric change

- they are now disjoint

- they have a new intersection/crossing point and situation (upper/lower).

The first possibility requires no action. In the second, the value of the relationship Crosses
for the two 1-containers should be set to zero. In the third, the new cross-point of the affected
1-container(s) should be determined and value of Crosses updated to reflect the new situation.
These can be summarised in the following algorithm for (primary) modification of 1-
container. The block diagram of the algorithm is presented in Appendix 1.1.12.

Algorithm Modify_1-container:

begin

get 1-container_id — cl

if much geometric change /* decision of user */

then
insert modified 1-container with Insert_1-container
delete obsolete 1-container with Delete_1-container

else
retrieve G,,(N,A;;)




endif
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determine existing 1-container, ecl for which Relation(cl,ec1)=r159 /*
reference Figure 4.9 for r159) */
if ec] exists set Crosses[cl,ec1]=0
select affected elements of A, (say A,)
for each a, € A, /* A, = the replacement arcs */
do Insert_Arc(a,)
next &,
for each a, € A,
do Delete_Arc(a)
next

determine existing I-container, ecl for which Relation(ci,ecl)=ri59
if ecl exists set Crosses[cl.ecl]=1

end

Inserting a O-container

Before propagating the triggered insemion of a {-container, it is necessary to verify that,
where the O-container represents more than one point object, the objects are class-compatible
(see discussion on inserting 2-container). If the insertion should be propagated, the system
should determine (by using a computational algorithm) if there is any existing 2-container
topologically containing the O-container and register the occurrence. The node defining the
geometry of the O-container should then be inserted using the Insert Node algorithm.

These operations can be translated into the following algorithm Insert_(-container (see the
block diagram in Appendix 1.1.13).

Algorithm Insert_0-container;

begin

do for each new O-container c0
get Gy(Nop A 7* note: Ay =D ¥/
retrieve existing O-container ecO 3 Relation(ec0,c0)=r272

if exists and map is single-valued
notify user /* error, requires operator decision */
endif
else
if exists and map is multi-valued :
select point object(s) PO, for which Repreby[PO,ec0]=1
determine compatibility between (each) PO, and new point
object represented by c0 /* LUT or user decision */
if class incompatible
notify user /* error, requires operator decision */
endif
endif
endif

determine existing 2-container, ec2 for which Contains{ec2,c0] = 1 /* using
computational geometry */
if ecl exists, store Containsjec2,c0]=1 as properties of c0 and ec2
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do Insert_Node(N,)
next ¢0
end

Deleling a O-container

The triggered deletion of a O-container ¢0 may be required if the point object(s) represented
by the O-container no longer exist or because of changes in its/their location(s). Before
effecting the delete operation, the existence of any 2-container ec2 for which Con-
tainsfec2,c0}=1 should be checked; if so, modify the property of ec2 by setting Con-
tainsfec2,c0)=0. Then the O-container can be deleted and its node deleted using Delete_Node
algorithm, These operations can be translated into the following algorithm Delete_0-container
for deleting a (-container (see the block diagram in Appendix 1.1.14),

Algorithm Delete_0-container:

begin
get id of the O-container — c0
select n, for which RepricO,n] = 1
sclect the 2-container ec2 for which Contains[ec2,c0] = 1
if exists, set value to zero
delete c0
do Delete_Node(n,)
end ‘

Modifying an existing 0-container

There are usually three reasons for a triggered modification of a O-container:

(1) When one of the point objects represented by the (-container requires deletion or
positional shifting while the other point objects remain at the same location; this is a
secondary request which involves a simple operation of modifying the value of the Represent-
by relationship between the O-container and the point object that triggers the update.

(2) Change in relationship Contains[2-container;, O-container;} caused by a change in the status
of the 2-container; this requires only a setting of the proper value for the relationship and will
be propagated by the affected 2-container.

(3) Change in its position (this may also involve topologic changes).

In the last case, the best strategy is to treat the modified O-container as new, thereby inserting
it with the Insert_(-container algorithm. The cbsolete version of it is then deleted using the
Delete_O-container algorithm.

These can be translated into the following algorithm Modify_0-container. The block diagram
of the algorithm is given in Appendix 1.1.15.

Algorithm Modify_0-container:

begin
get O-container_id — c0
if 3 positional change
then
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insert modified O-container with Insert_(-container
delete obsolete D-container with Delete_0-container
else

modify affected property of O-container /* simple query */
endif
end

6.2.4 Updating the Elementary Objects

We will now analyze the required updating operations when inserting, deleting, or modifying
a point, line, or area object. The thematic aspects of the objects, such as its layer and thematic
class, can be handled as discussed in §6.1. Here the emphasis will be on geometric aspects.
The geometric update propagation initiated by the updating of a terrain object can be seen as
a message carried by the object concerned into the database; the type of object and type of
update (insert, delete or modify) will signify the message type and thus the actions to be
performed by the system. This can be depicted by the following expression 6.1 (see also
Figure 6.2)

UP(OT, UT) — {PR; . LPUT} & {SR, : LPUT}} (7.1}

where UP = Update propagation message
OT = Object type ( € {point, line, area}}
UT = Update type ( € {Insert (I}, Delete (D), Modify (M)})
— = Triggers
PR, = Primary receiver (affected) data type (i.e., mandatory and definitely affected)
LPUT;, = List of (alerted) propagated update types (e {I,.D,M)) for data type i
SR, = Secondary receiver (consulted/probably affected) data type k
@ = Possibly affected path

Updating Point Obiects

As indicated in Figure 6.2c, any geometric updating of point objects will also trigger updating
of O-container and node data types. It will necessarily involve consultation of the arc data
type, probably leading to the updating of some existing arcs. Thus the algorithms defined for
the affected data types will be part of the update propagation chain for point objects. The
propagation of insertion, modification and deletion of individual point objects in the
DMMVM are discussed below.

Inserting a point object
The expression (7.1) with respect to insertion of a point object is:
UP(PO, I} = {PO: I, 0C: IM; N: I, M] @ (AR: M, 2C: M} (7.1.1)
This implies that the insertion message for a new point object PO triggers the insertion of a

new object of point type, insertion of a new or modification of an existing instance of 0-
container (0C) type, the insertion of & new or deletion of an existing instance of node (N)
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type. The propagation will also consult the arc data (AR) and 2-containers (2C) for possible
modification, e.g., if the position of the point object coincides with a point in the interior of
an arc, thereby necessitating decomposition of the arc (GP_Rule_2b).

After the insertion of the object’s thematic data, the geometric update propagation proceeds
by inserting first the object as an instance of point type. To continue the propagation, the
point object is assigned a temporary O-container identifier and the Insert_0-container algorithm
triggered. This will then trigger any necessary updating that may be required in the chain such
as the updating of node and possibly an arc. The algorithm for inserting a point object will
therefore have the following structure (see the block diagram in Appendix 1.1.16):

Algorithm Insert_Point:

begin
get properties of peint object PO /* id, coords, thematic class, layer, */
insert thematic data
assign O-container identifier — ¢0
do Insert_{-container(c0)
end

Deleting a point object

This will be required when an existing point object comes to the end of its life span, Like an
insert operation, the delete point object operation is an initiator of update propagation which
will have the following interpretation of the expression (7.1):

UP(PO, D) — {PO: D; 0C: D, M; N: D} ® {AR: M; 2C: M} (7.12)

Expression 7.1.2 implies that when a message to delete (D) a point type object (PO) is issued,
the update propagation operation will delete the instance from the point type, trigger updating
of its O-container (to delete or modify the 0-container), which in turn triggers the updating
of an instance of data type node (for possible deletion). The operation on node will wigger
the consultation of arc before the node is deleted and the operation on O-container may
require modification of an instance of the 2-container if the instance contains the O-container.
The algorithm for deleting an object of the Point type is therefore as follows (see Appendix
1.1.17 for the block diagram):

Algorithm Delete_Point:

begin
get id of object — po
delete thematic data of po
select O-container c0 where Repreby[po,c0i=1
select point object pol where Repreby[pol,cO]=1Apo*pol

if pol exists
set Repreby([po,c0]=1 to Repreby([po,c0]=0
goto end

else

do Delete_0-container(c0)
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endif
end

Modifying a Point Object

There are usually three reasons for modifying a point object:

(1) change in the object’s thematic data, e.g., thematic class

(2) consequential change in topologic relationship with other objects brought about by
locational changes of those objects

(3) change in the object’s position (which may also lead to topologic changes).

The first involves a simple operation of replacing the old thematic data by the new. The
second operation will be taken care of by the primary update (which caused the topologic
change). In the third case, if the modification involves positional change, the strategy is to
insert the object as new using the Insert_Point algorithm and to delete the obsolete one with
the Delete_Point algorithm. The update propagation chain for the modification is depicted by
expression 7.1.3, indicating the need for consistent update propagation.

UP(PO, M) = {PO: M; 0C: M DJI; N: DI} @ {AR: M; 2C: M) (7.1.3)
The algorithm for the updating is as follows (see the block diagram in Appendix 1.1.18):
Algorithm Modify_Point

begin .
get id of object (po) and new (modified) data
modify thematic data /* simple DBMS commands */
if positional change

select O-container colRepreby[po,c0]=1

assign new O-container id — ncQ

do Insert_0-container(ncQ)

do Delete_0-container(c()
end

Updating Line Objects

A line object, like the two other generic objects area and point, has three components:

(1) the object’s identity

(2) the object’s non-spatial (thematic) data which are restricted to the object’s class in our
case and can be handled by simple update commands of the DBMS during implementation
(3) the geometric data which can be further split into three:

- the positional data as represented by its 1-containers

- the shape information which is derived from the aggregation of the 1-containers that define
the object

- the topology of the object, which is derived from the topology of its 1-containers.

Thus, as shown in Figure 6.2b, the geometric updating of line objects will trigger updating
of 1-container, arc and node data types. It will necessarily involve consultation of the existing
instances of 2-container data type to derive the left and right properties of the arcs defining
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the line object’s 1-container. Also, instances of 0-container will be chained by operations on
nodes of the line object. Hence updating on line objects will propagate to the two lower
levels. The propagation of insertion, modification and deletion of geometric aspects of
individual line objects in the DMMVM are presented below.

Inserting a Line Object

The insertion of the line object’s geometric data can be decomposed into insertion of the 1-
container that defines the object and the algorithm for inserting 1-container used to insert this
and propagate the insertion of its arcs and nodes. The propagation chain for inserting a line
object is given in expression 7.1.4 below (the secondary path is not involved).

UP(LO, I) = {LO: I; 1C: ILDM; AR: I,.D.M; N: I, D} (7.1.4)

After the insertion of the object as an instance of the line type and its thematic data, the
geometric update propagation proceeds by assigning a temporary 1-container identifier to the
object. The Insert_l-container algorithm is then triggered. This will in turn trigger any
necessary updating that may be required in the chain such as the insertion of new instances
and/or modification of existing instances of arc (AR) type. The algorithm for inserting a line
object will therefore have the following structure (see Appendix 1.1.19 for the block
diagram):

Algorithm Inseri_Line:

begin
get properties of line object LO /* {id, coords, layer, etc. */
insert thematic data
assign 1-container identifier — ¢l
do Insert_1-container(cl)
enforce LO_Rule_1
end

Deleting a Line Object

A line object that has come to the end of its life span should be deleted from the database.
Also, an existing line object may have undergene such a substantial positional change that it
is better to insert it as a new object and delete the obsolete one. The delete propagation chain
for a line object is shown in expression 7.1.5

UP(LO, I} — {LO: D; I1C: DM; AR: DM; N: D) (7.1.5)

The expression indicates that when a delete message is sent to an object of the line type, this
riggers the deletion of the instance from the line type, and triggers the deletion or
modification of its 1-containers. The triggered deletion of a l-container will trigger the
necessary operation on instances of arc AR which propagates to some instances of node N.
These operations are indicated in the following algorithm for deleting a line object. The block
diagram of the procedure is given in Appendix 1.1.20.
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Algorithm Delete_Line:

begin
get id of object —» lo
delete thematic data of lo
select 1-containers C1 3 for each ¢l € C1 is Partof]lo,cl]=1
for each cl
select line object lo1 where Partofflol,cl]=1 A lo#lol
if lo1 exists
set Partofflo,c1]=0
else
do Delete_1-container{c1)
endif
next cl
end

Modifying a Line Object

The need to modify an existing line object may result from one, or a combination, of the
following changes:

(1) thematic changes, e.g., the object’s class; these can be handled by simple updating
commands and require no propagation;

(2) geometric changes.

For geometric changes, sinee a line object is geometrically represented by 1-containers, it is
possible to identify the elements of the set of its 1-containers in which the change has taken
place. The changed segment(s) of the line object can then be inserted using the algorithm for
inserting a 1-container while the obsolete 1-containers should be deleted using the algorithm
for deleting a 1-container. When a major part of the object has changed, the strategy is to
insert the new one using the algorithm for inserting a linc and delete the old object using the
algorithm for deleting a line. In either case, the update propagation chain will be as shown
in expression 7.1.6.

UPLO, M) - {LO: M, IC: ILD.M; AR: 1L,.D.M; N: 1.D} (7.1.6)
This is expressed in algorithmic form as follows (see block diagram in Appendix 1.1.21):
Algorithm Modify_Line

begin

get id of object (lo) and the replacement data

modify thematic data /* simple DBMS commands */

if positional change

select 1-containers C1 2 for each cl € Cl is Pantofflo,cl]=1

if substantial positional change /* decision of hurmman operator */

assign new 1-container id — ncl /* object ueated as one 1-container
*/
do Insert_li-container(ncl)
for each ¢l
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do Delete_1-container(cl)
next cl

else
identify C11 < C1 in which positional changes occur
for each ¢, € C11
do insert_1-container(c;)
next ¢,
for each ¢; € {Cl1 - Cl1}
do delete_1-container(c))

endif

endif
end

Updating Area Objects

Like point and line objects, an area object has two basic properties: thematic and geometric,
Updating of the thematic data, as in the other two types, can be taken care of by DBMS
commands during implementation. In the geometric domain, however, inserting, deleting or
modifying a single area object may lead to further operations on other existing neighbouring
area objects; thus updating of a single arca object is a complex operation. The propagation
of updating operations of inserting, deleting and modifying the geometric data of a single area
object are presented in the following subsections.

Inserting a single area object

The complete classification (completeness of incidence) constraint of the DMMVM implies
that all two-dimensional objects must be classified (even if as class "unclassified"); thus
inserting an area object will always involve a combination of insert operations (for the new
object) and possibly deletion and/or modification of existing area objects which are spatially
coincident with the new object. The insertion of the arca object’s geometric data can be
decomposed into insertion of a 2-container and the algorithm for inserting a 2-container used
to insert this and propagate the insertion of its arcs and nodes. The insert algorithm for the
2-container already has facilities for modifying neighbouring 2-containers if they are affected.
The propagation chain for inserting an area object is given in expression 7.1.7 below.

UP(AG, I) - {AO: ILDM; 2C: IDM; AR: ILDM:N: I,D} & {0C: M} (7.1.7)

This indicates that apart from inserting the area object, other area objects may have to be
deleted or modified; the insertion of the new area object will then trigger the insertion of new
2-containers (2C) with possibie deletion or modification of some existing ones, and similarly
for arc (AR) and node (N) in the propagation chain. Some existing instances of the 0-
container type may have to be modified if they are topologically contained by the new 2-
containers of the area object. The updating operations to be performed on the existing area
objects which are affected by the insertion of the new object cannot be determined by the
system (¢.g., in a cadastral database, if a new parcel, represented as area object, overlaps with
an existing one, the system can only notify the user while the user decides whether to reduce
the existing one or the new one as one of the numerous possible decisions). This aspect has
to be done interactively. The propagation of the insertion will proceed by regarding the area
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object as a new single 2-container. The following algorithm is proposed for inserting an area
object. The block diagram of the algorithm is presented in Appendix 1.1.22.

Algorithm Insert_Area:

begin
get properties of area object AO /* id, coords, thematic class, layer, */
insert thematic data
assign 2-container identifier — c2
do Insert_2-container(c2)
enforce AQ_Rule_1
end

Deleting an Area Object

Deleting a single area object will also involve a combination of delete, update and insert
operations. The operation will be required if an area object has come to the end of its life
span or if an existing one has undergone such a substantial positional change that it is better
to insert it as new object and delete the obsolete one. The updating also requires interaction
with the human operator because of its effects on neighbouring area objects (whether to
allocate its space to only one or among all of its former neighbours).

The delete propagation chain for an area object is shown in expression 7.1.8

UP(AO, D) — {AO: DM, 2C: DM; AR: D.M; N: D} @ {0C: M} (7.1.8)

The expression indicates that when a delete message is sent to an instance of the area type,
it will require not only the deletion of the instance from the area type but also the
modification of neighbouring ones. It will require the deletion or modification of some 2-
containers, which will trigger deletion or modification of some instances of arc AR, which
propagates to some instances of node N. Being an interactive operation, the system should
select the 2-containers representing the area object as well as related 2-containers for the
human operator to decide on the necessary modification of affected neighbours. The human
operator will use any of the updating algorithms defined for the lower level data types (2-
container, arc and node, especially the last two). The outline of the operations is indicated in
the following algorithm for deleting an area object (see Appendix 1.1.23 for the block
diagram).

Algorithm Delete_Area:

begin

get id of object — ao

delete thematic data of ao

select 2-containers C2 2 V ¢2 € C2 is Panoffao,c2])=1

for each c2 € C2
display all 2-containers EC2 3 ¥V ec2 € EC2 is Relation(ec2,c2) €
{r179, 1220, r400, r435, r476, 1511}
perform interactive updating /* using update algorithms of lower level
data types ¥/
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next ¢2
end

Maodifying an Area Object

The need to modify an existing area object may result from one, or a combination, of the
following changes:

- thematic changes, e.g., the object’s class; thesc can be handled by simple uwpdating
commands and require no propagation;

- geometric changes.

Geometric changes will also affect neighbouring area objects; thus the same situation applies
as in the insertion and deletion of area objects. The update propagation path that will guide
in the interactive updating during geometric updating is shown in expression 7.1.9.

UP(AO, M) — {AOC: LDM; 2C: I.D.M; AR: ILDM; N: LD} @ {0C: M} (7.1.9)
This is expressed in algorithmic form as follows (see the block diagram in Appendix 1.1.24):
Algorithm Maodify_Area

begin
get id of object (ao) and the replacement data
modify thematic data /¥ simple DBMS commands */
if positional change
select 2-containers C2 3 V ¢2 € C2 is Parwf[ao,c2)=1
display all 2-containers EC2 3 V ec2 € EC2 is Relation{ec2,c2) € {r179,
1220, r400, r4335, r476, 1511)
perform interactive updating /* using update algorithms of lower level data
types */
endif
end

6.3 Handling Updating of Multiple Objects

The updating procedure described in the previous section covers the eight data types (the
elementary object types area, line and point, the m-containers, m € (0,1,2}, and the two
geometric primitives arc and node) that have been nsed to mode! multi-valued vector maps.
As stated in that section, users operate at the level of the elementary object types: area line
and point; an update on any instance of the three is then dynamically propagated to the other
data types. The procedure implies that terrain objects are being updated on individual basis,
which is in line with the fact that a spatial database stores information concerning a group of
individual terrain objects. It also conforms with the normal practice because the need to
update a spatial database usually arises when (on individual basis), one or more terrain objects
come into existence, require modifications, or become extinct. The collection of the new data
(by whatever method: photogrammetry, land surveying, etc.) is therefore usually object-based,
e.g., recognizing that a new road has been constructed and has to be added to the database.
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Consequently, updating of multiple objects in the database can still be based on the same
algorithms. The implementation of the algorithms can be optimized to efficiently accom-
modate the complexity introduced when many objects are to be updated at the same time, for
example, through the use of efficient search trees and a contiguous storage of related data.
Updating of multiple objects at one time can then be grouped into the following:

- addition, removal or modification of multiple objects of the same generic type (e.g., multiple
point objects)

- addition and/or removat of multiple objects belonging to different generic types.

Updating multiple objects of the same generic type

In this case, the operation is handled by treating one object at a time, within a loop, using the
appropriate algorithm.

Updating multiple objects belonging to different generic types

These involve one or more point objects and/or one or more line objects and/or one or more
area objects. The following strategy can be used to handle the operation:

- insert/delete/modify all the point objects (if any), one at a time, using the relevant algorithm
for point object

- insert/delete/modify all the line objects (if any) using the relevant algorithm for line object
- insert/delete/modify all the area objects (if any) using relevant algorithms.

By grouping objects of the same type together, the same operation (e.g., Insert_Area) can be
performed in a loop instead of changing from one operation to another in an ad-hoc manner.
However, to delete objects in a region (e.2., defined by some coondinates), since some of
those objects may be partially inside the region, the best approach is for the system to retrieve
all objects that are associated with (i.c, fully or partially in) the region for the user to select
those that should be deleted or to even remodify the region to carve out or include more
objects.

6.4 Summary

In geo-information production, the cost of data collection has been said to be about seven to
10 tmes more than the cost of the hardware and software needed to establish the database
(Peled, 1994). Thus it is very important that the accuracy and currency of the data should be
reliable, such that the purpose for setting up the database can be fulfilled with profitable cost
recovery. This chapter aimed at contributing towards achieving this by providing algorithms
for consistent automated update propagation,

Although geo-information updating includes change detection, data collection and database
updating, the focus in the chapter was on automated database updating under the assumption
that the necessary changes have been detected and captured in readiness for input into a
DMMVM-structured database. Ideally, the defined algorithms should be translated into
computer modules within an existing DBMS. However, since most of the operational DBMS
are not capable of accepting user-defined rules and data types, the algorithms may have to
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be programmed in a high-level language and then coupled with the DBMS during
implementation.

It should be noted that, although the final goal is to automate spatial database updating, some
aspects will still have 1o be done interactively (i.e., require human intervention), aided by
graphic visualisation. This limitation is related mostly to the area objects with respect to the
correct decision to take when modifying the neighbouring area objects (of the same layer)
effected by an area object that is being updated.

After the update propagation, the consistency rule for planar enforcement (see §5.1.3) must
be enforced. In addition, some of the other consistency rules (especially semantic) defined in
the last chapter can be enforced immediately after the update and certainly at regular intervals,

For the purpose of updating, in order to improve performance, the geographic space can be
partitioned into different levels of windows (from coarse to fine), for example, using quadtree,
and the list of the geomewric primitives within a window, together with the coordinates of the
window, can then be stored, ¢.g., in a random access file. This information can then be used
when inserting a new object so that the necessary topologic editing is localised instead of
involving the entire geometric primitives in the database.

Some of the proposed algorithms have been experimented in automated update propagation
in single-valued vector maps. The experiment was done by coupling Microsoft Fortran with
an Oracle DBMS in a microcomputer environment at the Department of Land Surveying,
Photogrammetry and Remote Sensing, Wageningen Agricultural University. The algorithms
were translated into Fortran programs, while Oracle served as the RDBMS retrieving the
necessary data from the database into the Fortran program, for updating and consistency
operations, and returning the updated data back into the database. Details of this experiment
can be found in Kufoniyi (1989) and Kufoniyi et al (1993). Further experimentation of the
algorithms are presented in chapter 8 of this thesis, using the Postgres DBMS, an extended
relational database management system.

The next chapter focuses on the translation of the DMMVM into two prototype database
souctures (relational and object oriented). If the relational prototype is used for an
implementation, then the update propagation algorithms and consistency rules would have to
be handled by a high-level programming language and coupled with the RDBMS as in the
experiment cited above, since most operational RDBMSs are not capable of handling user-
defined rules. If the object-oriented (OQ) prototype is chosen, the algorithms have been
defined as class methods, which should then be programmed using the programming language
of the OO system.
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7
DATABASE STRUCTURES FOR MULTI-VALUED VECTOR MAPS

A conceptual data model is normally developed without consideration of the type of system
that will implement it. This also holds for the object-based conceptual data model developed
in chapter 3. However, for implementation purposes, it is necessary to translate the model into
a prototype database structure, based usually on a database model (e.g., relational, network,
etc.). A review of the common database models was presented in chapter 2, with the relational
model being the most popular. Most of the present-day operational GI systems are built on
the relational model, noted for its simplicity and standard query language. Another database
model which is fast gaining importance in GIS is the object-oriented model, which has been
acclaimed to be more suitable for spatial applications than the relational model (see chapter
2). However, mature operational object-oriented systems are not yet common.

The approach in this thesis is therefore to translate the DMMVM into two prototype database
structures, one relational and the second object-oriented. The relational structure can serve for
immediate implementation while the object-oriented structure can be implemented with the
availability of mature operational object-oriented systems. In addition, the relational system
can be upgraded into an evolutionary object-oriented (object-relational) systems by building
an object shell on top of the relational systern or by implementing the structure in an extended
relational system (see §7.2.3). §7.1 describes the prototype relational database structure for
multi-valued vector maps while the object-oriented data structure is presented in §7.2.

7.1 Relational Database Structure for Muiti-valued Vector Maps

In this section, the translation of the DMMVM into a prototype relational database structure
is presented. Smith’s method for relational database design is used for the ranslation. This
method was reviewed in chapter 2 and comprises four main steps, namely:

(1) identification of the basic data types and relationships to be represented by the database
structure;

(2) listing of the functional dependency statements among the data types, showing the single-
and multi-valued dependencies;

(3) construction of the dependency diagram; and

(4) construction of relations (tables) from the dependency diagram.

7.1.1 Identification of Data Types

The data types in the DMMVM are indicated in Figure 3.8. Since the identifier of an object
in one layer may be the same as that of another object in another layer, it is necessary to add
the thematic layer from which an object originated and the geographic name of the object as
additional data types. Also, the planimetric and vertical accuracies as well as the lineage (e.g.,
source and method of acquisition) of the point are added as optional data (see also Chhatkuli,
1993 and Bouloucos et al, 1994 for modelling of geometric data quality in multi-valued vector
maps).
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7.1.2 Dependency Statements

The identified data types together with the elementary links among the data types (see §3.4.3),
are translated into the following dependency statements. The data types and the link types to
be explicitly represented in the data structure are in bold characters. The total number of
layers is represented by N;.

(1)  One l-container, identified by a OneC, represents / Lobj line objects (I £ Np), each
of which originates from a map Layer, has a name Lname, and belongs to one Lelass
thematic class in the layer.

(2)  One 2-container, identified by an identifier TwoC represents k Aobj area objects (&
= N,), each of which originates from a map Layer, has a name Aname, and belongs
to one Aclass thematic class in the layer.

(3)  One O-container, identified by ZeroC, represents j Pobj point objects (j € N,), each
of which originates from a map Layer, has a name Pname and belongs to one Pclass
thematic class in the layer.

(4}  Each ZeroC is geometrically represented by one Pnode node number and may lie in
one TwoC 2-container.

(5)  An arc, identified by an Arcor, is defined by one Bnode starting node and one Enode
end node and has one LATwoC left 2-container identifier and one RgtTwoC right 2-
container identifier and represents one AOneC 1-container.

{6}  Each Nodenr node has a position given by a triplet of Xcoord, Yeoord, and Zeoord
coordinates, and optionally has a Pace planimetric accuracy, a Vacc height accuracy,
a P_Ing planimetric lineage and a V_Ing elevation lineage.

(7)  Two 1-containers identified by Ulc upper 1-container and L1c lower 1-container may
cross each other at a Crosspt point {crosspt belongs to the domain of nodenr).

7.1.3 The Dependency Diagram.

The dependency diagram constructed from the above dependency statements is given in
Figure 7.1. Each data type is represented in an ellipse (or double ellipses w0 facilitate the
representation of links) and the link between two data types is numbered according to the
dependency statement from which the link is taken. Links may have single or double-headed
arrows depending on whether the link represents single-valued or multi-valued dependencies
(not to be confused with the same terms in vector maps, see §2.2.3 and §3.0). Related fields
may be combined in a single bubble (cllipse) by using the "+" symbol. The domain flags,
triangles with numbers inside them, casily identify all fields with a common domain and
facilitates referential integrity rules at the implementation stage. Optional data types are
written in lower-case letters.

7.1.4 Composing Fully Normalised Relations from the Dependency Diagram

The following seven relations are composed directly from the dependency diagram in Figure
7.1. Table names are written in upper-case letters and primary keys are underlined. The fields
in square brackets are optional. Figure 7.2 shows the relational structure and the links among
the tables.
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AREA (twoC, aobj, layer, aname, aclass)

LINE (oneC, lobj, layer, Iname, Iclass)

POINT (zeroC, pobij, layer, pname, pclass)

POINTNODE (zeroC, twoC, pnode)

ARC {arcnr, bnode, enode, IfiTwoC, rgtTwoC, aOneC)

NODE (nodenr, xcoord, ycoord, zcoord [,pacc, vace, p_Ing, v_Ing])
LINCROSS (ulce, Llc, crosspt)

7.L.5 Implementing the Relational Structure

The prototype relational stucture developed above can then be implemented in any relational
system by creating a damabase consisting of the scven base tables in which the columns of
each table are mapped into the system’s built-in data types (¢.g., numeric, character, etc.). The
database will then be manipulated with a RDBMS.

In order to incorporate additional thematic information for the objects, extra tables should be
created, one for each thematic class with each attribute of the class becoming one column of
the table. The object identifiers (aobj, lobj, pobj) and layer identifier (layer) should be
included as columns in the thematic tables in order to link the object’s geometric and non-
spatial data sets.

In the first experimental implementation of this prototype (with 2D position), an integrated
land use and soil database was created in a micro-computer environment using dBase-IV as
RDBMS. In the experiment, the land use map and the soil map ¢hard copies) covering the
same geographic space and at the same scale were manual overlaid and coded into a dBase-1V
DBMS to test the information content of the model. Details of the experiment can be found
in Ayugi (1992) and Bouloucos et al (1993),

Another experimental implementation of the prototype, with objects’ position still defined in
2D metric and topologic space but with incorporation of geometric data quality parameters,
was carried out on Arc/dBase-IV configuration in which PC ArcfInfo was used as the data
acquisition subsystem and dBase-1V was used for the database management. For this
experiment, "segment” was introduced as an additional data type (defined as a straight line
between two adjacent vertices) to define the shape of an arc (which has been assumed to be
straight in this prototype and in the first experiment). After performing the data acquisition
and the necessary overlays in Arc/info, both the geometric and thematic data were transferred
into the dBase-IV DBMS and structured according to our relational prototype (with the
necessary modifications to accommodate quality parameters and the segments) and then used
for single- and multi-layer queries. Thus both the geometric and thematic datasets were
organized in the same structure and managed by a single DBMS.

The inoduction of the segment improved the performance of topologic queries because a
reduced number of geometric primitives (arcs and nodes) are searched in comparison with an
implementation of arcs as straight lines. However, a lot of computational effort was required
to achieve the integrated structure because of the layer approach of Arc/Info. Details of this
implementation can be found in Chhatkuli {1993) and Bouloucos et al (1994). Also, an
example of the design and implementation (using Oracle RDBMS) of a prototype relational
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database structure for single-valued vector maps can be found in Kufoniyi (1989 and
Bouloucos et al (1990).

A system that appears more promising for the implementation of this relational prototype is
the System 9 which uses a different kind of layer-approach in which a geographic layer is
built on top of a standard relational DBMS (Eck and Uffer, 1990). This facilitates the
integrated storage of spatial and non-spatial data, thus allowing to take benefit of consistency
and concurrency control mechanisms on both kinds of data (Boursier and Faiz, 1993). The
system defines three basic geometric data types for the representation of simple geographic
objects, from which more complex objects can also be derived. The three generic primitives
are node, line and area, which are comparable 10 our elementary object types point, line and
area respectively.

All the experiments indicated that a relational system can be used for the implementation of
vector maps. However, such issues as graphic output of query results, update propagation and
integrity maintenance must be handled by user-written {or any third party) procedures.
Algorithms for the automated update propagation and consistency enforcement in a relational
data structure for single-valued vector maps (which were tested by coupling editing
procedures written in Fortran with Oracle DBMS) have been proposed by the author (see
Kufoniyi, 1989 and Kufoniyi et al, 1993). Similar approach can be used to implement the
consistency rules provided in chapter 5 and the updating procedure of chapter 6 for this
prototype, ic., by using any programming language (e.g., C, Pascal, Fortran, etc) that is
compatible with the chosen RDBMS to program the consistency rules and updating algorithms
and then couple these with the RDBMS,

Figure 7.1 Dependency diagram for designing relational structure for the DMMVM
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Figure 7.2 Relational database structure for multi-valued vector maps

7.2 Object-Oriented Data Structure for Multi-vailued Vector Maps

In chapter 2, the main features of object-oriented data modelling were described. Some of the
modelling constructs (classification, generalisation, aggregation and association), together with
the concepts of inheritance and propagation, will be applied here to map the data model
shown in Figure 3.8 to an object-oriented data structure.

7.2.1 Class Definitions and Modelling

From the basic structure of spatial objects shown in Figure 2.2, two classification domains
are distinguished, namely thematic domain and geometric domain. Thus each terrain object
will be an instance of one of the thematic classes and an instance of one of the geometric
classes as shown in Figures 7.3 (i.e., double inheritance). The mapping of the DMMVM
(Figure 3.8) to an object-oriented data model is represented in Figure 7.4 in which the classes
are represented by rectangles and the links among the classes by arrows. The ellipses show
the separation between the two classification domains and emphasise the central focus of
terrain objects in the medel.

The thematic classification domain deals with the non-spatial characteristics of an object. In
the scheme, objects with common non-gpatial attributes are mapped into a common thematic
class within one mapping layer (see Chapter 3) such that each object belongs to only one
thematic class in that layer. Each class will have a list of properties (atributes) whose values
are then evaluated during application for each object belonging to that class. Here, the
classification may be hierarchical, such that at & higher level classes that share common
properties are also generalised into a superclass.
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The actual classification and instantiation in |

the semantic domain can be done only

during application. Thus the thematic clas- superclass
sification line will be restricted to the class

labels of each object which are symbolically 1

represented by Linthemclass, Arthemclass
and Pntthemclass in Figure 7.4, and further <>
attention will be focused on the geometric
domain. During application, the three class
labels can then be e¢xpanded and structured m
as described in §3.2.1 and §3.4.1

) o ) thematic geometric
The geometric classification line deals with class class

the geometric characteristics of an object. In
this domain, objects are classified into three
geometric classes in a 2D topologic space.
The three classes, also referred to as object
types, are:

- Pointtype: 0D objects having position but
no spatial extension.

- Linetype: objects having shape, position
and 1D spatial extension.

- Areatype: objects which extend over two terrain
spatial dimensions having -position, shape obiect
and size,

Each terrain object (indicated as Lineobj, gigure 7.3 Classification structure for spa-
Areaobj and Pointobj in Figure 7.4) will be  4iq1 objects

mapped onto only one type (either on one-

to-one basis or one-to-many) of these three

geometric classes and the classification is not hierarchical. Note, however, that aggregation
hierarchies can be defined to group objects of different types into a more complex object
when the model is used to implement complex applications.

The three geometric classes are regarded as aggregated objects with five subordinate classes
(2-container, 1-container, O-container, arc and node) to define the geometric characteristics
of each instance, 28 shown in Figure 7.4 and described below. In the figure, "instance-of"
represents classification, "part-of” indicates aggregation, "member-of” indicates association
and "is-a" represents generalisation. The constraints for each class are not repeated here since
they have been treated under the consistency rules in §5.1. The major constraints to be
monitored and enforced are translated into class methods (operations).

Areatype

An instance of this class is a complex object in the sense of geometric representation. It is
composed of one or more 2-containers (sce Figure 7.4), The geometric properties (positional
information, metric area, etc.) of the object are derived by propagation from the geometric
properties of the component 2-containers, e.g., the metric area of an instance of Areatype is
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the sum of the metric area of each of its component 2-containers. Some properties will still
require explicit representation. These properties are the object identifier of the instance, its
thematic class label (instance-of), its layer, and the set of its component 2-containers. It is
necessary to mention that if the structure is used to model a single-valued vector map, then
an instance of the Areatype will have only one 2-container component (the same goes for
Linetype and Pointtype vis-a-vis 1-container and 0-container).

An (explicit topologic) association (member-of) exists between two instances of the class if
they have one or more common 2-containers. The topologic relationships (see §4.2.2.2)
between an instance of the class and an instance of the same class or Linetype class or
Pointtype class define other types of association, One of these is the explicit representation
of topologic containment of an instance of Pointtype by an instance of this class as a property
of the (-container class. The other topologic relationships will be dynamically derived by
predefined methods using the algorithms proposed in §4.3.

The properties (attributes) and the operations (methods) of this class are presented in §7.2.2.

instance_of sicmce_of instgnee_of
LINETYPE AREATYPE FOINTTYPE

I N Y e (Y et of
e

member_of - menbar_of

1-CONTAINER 2-CONTAINER O-CONTAINER

mﬂ..nf

Figure 74 Object-oriented data model for multi-valued vector maps

Linetype

An instance of the Linetype is an aggregation of one or more instances of the 1-container
class (sce Figure 7.4). Its geometric properties are therefore derived by propagation from the
geometric properties of the component 1-containers. The explicit properties of the class
include the obiject identifier, its thematic class, its layer, and the set of its component 1-
containers (sce the database schema in §7.2.2). As in Areatype, an association exists between
two instances of the class if they have one or more common 1-container. The topologic
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reladonships (see §4.2.2.2) between an instance of the class and an instance of the same class
or Areatype class or Peinttype class define other types of association, one of which is made
explicit as Linecross class at the level of l-container (for explicit representation of the
crossing of two instances of Linetype class). The other topologic relationships will be
dynamically derived by predefined methods using the algorithms in §4.3.

Pointtype

This is the third geometric class to which a terrain object can belong. An instance of the class
is a member of an association defined by an instance of the (-container class. The
corresponding O-container defings an association between two or more instances of Pointtype
if those instances are spatially coincident (ie., overlap in space). The geometric properties
(e.g., position) of the member Pointtype are then derived from the geometric properties of the
corresponding O-container. The explicit properties of the class include the object identifier,
its thematic class, its layer, and the identifier of the 0-container of which it is a member (see
the database schema in §7.2.2). As in the above classes, the topologic relationships (see
§4.2.2.2) between an instance of the class and an instance of the same class or Areatype class
or Linetype class define other types of association. One of these, the topologic containment
of an instance of Pointtype by an instance of Areatype, is made explicit at geometric level
as a property of the O-container class. The other topologic relationships will then be
dynamically derived by predefined methods using the algorithms proposed in §4.3.

2-Container

The 2-container class models a geometric association between spatially coinciding instances
of Areatype. An instance of the class is part of one or more instances of the class Arcatype.
The introduction of this class is very useful in multi-valued analysis because the thematic
properties of an instance are the elements of the set union of the thematic properties of the
member instances of class Arcatype (similarly for 1-container/Linetype and O-con-
tainer/Pointtype). Put differently, given instance A of class Areatype with properties’ set P,,
an instance B of the same class with properties’ set Py, and an instance C of class 2-container
modelling spatial coincidence between A and B, the properties P of C < (P, U Py). Object
C can then be manipulated as a unique object in the database. To the extent that a simple
object of class Areatype is isomorphic to an instance of class 2-container (especially in single-
valued vector map representation where there is a one-to-one mapping between an Arcatype
object and a 2-container object), some methods defined for the former may be applicable to
the latter e.g., checking for the graph-closure of the object.

The class is at a lower level compared with the Areatype class because instances of the class
exist only if instances of the Areatype exist. An instance is geometrically an aggregation of
onc or more instances of class Arc; the positional information as well as some geometric
properties arc therefore derived from the Arc class by propagation. The properties and
methods of the class are presented in the database schema in §7.2.2.

1-Container

As in the 2-container class, the 1-container models a geometric association between spatially
coinciding instances of Linetype and an instance of the class is part of one or more instances
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of the class Linetype. The properties of the instance are the elements of the set union of the
properties of the member instances of class Linetype. Also, some methods defined for the
Linetype may be applicable to the 1-container class, e.g., checking that the object’s graph is
simple and elementary.

The class is at a lower level compared with the Linetype class since they come into existence
only when instances of the Linetype exist. An instance is geometrically an aggregation of one
or more instances of class Arc; thus the positional information as well as some geometric
properties are derived from the Arc class by propagation. The properties and methods of the
class are presented in §7.2.2.

0-Container

The O-conminer class is defined as a subclass of the class Node; thus it inherits the properties
of the Node class (i.e., the node-id and coordinate triplet). The class also models a geometric
association between spatially coinciding instances of Pointtype. In addition to the properties
inherited from the node class, the class derives its (thematic) properties from the set union
of the thematic properties of its member Pointtype objects by propagation. It sends positional
information to the member Pointtype objects.

The explicit properties of the class and its methods are presenied in the database schema in
§7.2.2.

Are

This class participates in a double aggregation hierarchy (in the upward direction, see Figure
7.4). One aggregation hierarchy is the link between the Arc class and the 1-container class.
In this scheme, an instance of class Arc is part of one 1-container object. The second scheme
is the link between the Arc and the 2-container. Here, one instance of the class can be part
of at most two instances of 2-container class (i.e., as a boundary of two adjacent 2-
containers). The instances of the class are geometric primitives of instances of the 1-container
and 2-container classes; thus an instance of the class will not exist unless a corresponding 1-
container or 2-container exists. It therefore sends geometric properties to the -container and
2-contatner classes.

An instance of the class is itself, geometrically, an aggregate object, being composed of two
instances of the Node class. The positional information of the instance is therefore derived
from the Node class by propagation. The properties and methods of the class are given in
§7.2.2.

Node

This is an atomic class whose properties are the coordinate information of the vector map.
The planimetric accuracy, vertical accuracy, and planimetric and vertical lineage (¢.g., source
and method of acquisition) of the node can be added as additional properties if desired.
The class is treated as a superclass of O-container and an instance of the class is (optionally)
part of an instance of the Arc class. The properties and methods of the class are given in the
schema below,
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7.2.2 Object-Oriented Database Schema

[1] Class: Areatype

Properties:
- AreaObjld (OID, i.e., object’s identity)
- instance-of ArThemClass (its thematic class)
- Layer (from which layer i.e., layer identifier)
- 2-containerList: setof member 2-containers (OIDs of its 2-containers)
Operations:
- Insert (Area) /* inserts a new instance of the class and enforces topologic &
geometric (i.e., spatial) constraints */
- Retrieve (Area) /* retrieves an instance of the class */
- Delete (Area) /* deletes an instance of the class and enforces spatial
constraints */
- Modify (Area) /* modifies instance of the class and enforces spatial
constraints */
- Relaton(P,Q) /* determines topologic relationship between two instances of
the class, or an instance P of the class and an instance Q of Linetype or
Pointtype */
- ComputeMetricArea /* computes metric area of an instance by propagation
of metric area values of member instances of 2-container */
- ComputePerimeter /* computes and returns the perimeter of an instance of
the class as aggregation of the lengths of arcs defining the boundary of the
instance by propagation from member 2-containers */
- Retrievesubgraph (Area) /* retrieves the arcs and nodes defining the
boundary of the instance by propagation from member 2-containers */
- graphCheck / consistency check for the connectedness of boundary of an
instance */

[2] Class: Linetype

Properties:
- LineObjld (OID)
- instance-of LinThemClass (object’s thematic class)
- Layer (its layer)
- 1-containerList: setof member 1-containers (OIDs of its 1-container)
Operations:
- Insert (Line) /* inserts a new instance of the class and enforces spatial
constraints */
- Retrieve (Line) /* retrieves an instance of the class */
- Delete (Line) /* deletes an instance of the class and enforces spatial
constraints */
- Modify (Line) /* modifies instance of the class and enforces constraints */
- Relation(P,Q) /* determines topologic relationships between two instances
of the class, or between instance P of Areatype and an instance Q of the class,
or instance P of the class and an instance Q of Pointtype */
- ComputeLength /* computes metric length of the instance as aggregation of
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lengths of member 1-containers */
- Retrievesubgraph (Line) /* retrieves the arcs and nodes defining the geometry
of an instance of the instance by propagation from member i-containers */

- graphCheck(Line) /* checking consistency of the graph (simple and
elementary) of an instance */

[3]1 Class: Pointtype

Propertics:
- PointObjid (OID)
- instance-of PntThemClass (object’s thematic class)
- Layer (object’s layer)
- O-containerld (OID of its {)-container)

Operations:
- Insert (Point) /* inserts a new instance of the class and enforces constraints
*f
- Retrieve (Point) /* retrieves an instance of the class */
- Delete (Point) /* deletes an instance of the class and enforces constraints */
- Modify (Point) /* modifies instance of the class and enforces constraints if
necessary */
- Relation(P,QQ) /* determines topologic relationship between two instances of
the class, or between instance P of Areatype or Linetype and instance Q of the
class */
- ComputeDistance /* computes euclidean distance between the instance and
another instance */

{4] Class: 2-container

Properties:
- 2-containerld (OID}
- RepresentAreatype: set of associated instances of class Areatype (OIDs of
member Areatype cbjects)
- composedofArcs: RetrieveGeometry() (indicates that geometry is retrieved by
a function)

Operations:
- CreateContainer (2-container) /* creates a new instance of the class and
enforces constraints */
- DestroyContainer (2-container) /* destroys an instance of the class and
enforce constraints */
- AmmendContainer (2-container) /* modifies instance of the class and
enforces constraints */
- ComputeMetricArea /* computes metric area of an instance */
- RetrieveGeometry (2-container) /* retrieves the arcs and nodes defining the
geometry of the instance */
- graphCheck /* consistency check for the connectedness of boundary of an
instance */
- RetrieveContainer (2-container) /* retrieves an instance of the class */



127

[8) Class: 1-container

Properties:
- l-containerld (OID)
- RepresentLinetype: set of associated instances of class Linetype (OIDs of
member Linetype objects)
- composedofArcs: RetrieveGeometry() (geometry represented as a function)
Operations:
- CreateContainer (l-container) /* creates a new instance of the class and
enforces constraints */
- DestroyContainer (1-container) /* destroys an instance of the class and
enforce constraints */
- AmmendContainer (1-container) /* modifies instance of the class and
enforces constraints */
- ComputeLength (1-container) /* computes metric length of the instance as
aggregation of lengths of defining arcs*/
- RetrieveGeometry (1-container) /* retrieves the arcs and nodes defining the
geometry of an instance */
- graphCheck /* consistency check for connectedness (simple and elementary
path) */
- RetrieveContainer (1-container) /* retrieves an instance of the class */

[6] Class: 0-container

Properties:
- 0-containerld (OID)
- RepresentPointtype: set of associated instances of class Pointtype (OIDs of
member Pointtype objects)
- isaNode: Nodenr (OID of node for positional information)
- insideZcontainer: 2-containerid (OID of 2-container object in which it lies,
or computational procedure t0 determine this, e.g. point-in-polygon routine)
Operations:
- CreateContainer ((-container) /* creates a new instance of the class and
enforces constraints */
- DestroyContainer (0-container) /* destroys &n instance of the class and
enforce constraints */
- AmmendContainer (O-container) /* modifies instance of the class and
enforces constraints */
- RetrieveContainer (0-container) /* retrieves an instance of the class */
- RerieveGeometry (0-container) /* retrieves geometry (nodenr & coord) of
an instance of the class */

[71 Class: Arc

Properties:
- Arcld (OID)
- NodePartofArcl: start nodenr (OID of start node)
- NodePartofArc2: end nodenr (OID of end node)
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- Partof2containeri: left2-containerld (OID of 2-container on its left)
- Partof2container2: right2-containerld (OID of 2-container on its right)
- PartOflcontainer: 1-containerld (OID of the 1-container which the instance
is part-of)

Operations:
- Insert (Arc) /* inserts a mew instance of the class and enforces spatial
constraints */ :
- Retrieve (Arc) f* retrieves an instance of the class */
- Delete (Arc) /* deletes an instance of the class and enforces spatial
constraints */
- Modify (Arc) /* modifies instance of the class and enforces constraints */
- Relation(P,Q) /* computationally determines topologic relationship between
a new instance of the class and an existing instance of the class or an existing
instance of class Node*/
- ComputeLength /* computes metric length of the instance */
- consistencyCheck (Arc) /* consistency check of an instance: no dangling or
redundant arc, existence of node, etc. */

[8] Class: Node

Propertics:
- Nodenr (OID)
- Xcoordinate (value of x coordinate)
- Ycoordinate (value of y coerdinate)
- Zcoordinate (value of z coordinate)
- HasPlanAccuracy: PlanimetricAccuracy /* optional */
- HasHeightAccuracy: HeightAccoarcy  /* optional */
- HasPlanLineage: PlanimetricLineage /* optional */
- HasHeightLineage: HeightLineage  /* optional ¥/
Operations:
- Insert (Node) /* inserts a new instance of the class and enforces constraints:
uniqueness */
- Retrieve (Node) /* retrieves an instance of the class */
- Delete (Node) /* deletes an instance of the class ¥/
- Modify (Node) /* modifies instance of the class */
- Relation(P,Q) /* computationally determines topologic relationship between
an existing instance of class Arc or this class and a new instance of the class
*f
- consistencyCheck (Node) /* consistency check of an instance: no redundant
node (single Z per pair of X & Y except at crossings, uniqueness of instance)
*f

[9] Class: LineCross /* optional, not required for 3D metric space */

Properties:
- Upperlcontainerld (OID of higher 1-container object)
- LowerlcontainerId {OID of lower 1-container object)
- Crosspoint: nodenr (OID of node where crossing occurs)
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Operations:

- InsertLineCross /* inserts a new instance of the class */
- RetrieveLineCross /* retrieves an instance of the class */
- DeleteLineCross /* deletes an instance of the class */

- ModifyLineCross /* modifies instance of the class */

7.2.3 Implementing the Prototype Object-Oriented Structure

To implement the structure defined above, the classes would translate to abstract data types
or modules or classes and the properties of each would be mapped onto the base types of the
system to be used {e.g., Xcoordinate as double in a c++ based OODB system). If the system
does not provide a complete set of base data types to cover all properties, the user can use
the systemn’s facility (if available) vo provide user-defined types for the remaining properties,
otherwise, some programming will be required to define them. The operations, as well as
other operators and functions that will manipulate the user-defined types, must also be
defined.

The object-oriented implementation can be done in one of two ways (see Figure 1.2): (1) By
using an extended relational (or object-relational) system (e.g., Postgres and Iris), often called
"evolutionary approach” in which object-oriented features are added to the SQL featres of
the relational database model (see §2.4), In its simplest form, this is ofien done by some kind
of simutation in which an object-oriented shell is built on top of a relational system, i.e., the
SQL itself is not exiended to accommodate object-oriented features as described in §2.4,
instead, the SQL commands are packaged together as macro-commands and encapsulated
within the object definition in the shell; the underlying structure of the database is therefore
relational. This "layered approach” has the advantage of using the standard relational query
language but the geographic data must submit to relational database constraints e.g.,
normalization). In the case of truly extended relational systems (e.g., Postgres), the system
allows the definition of abstract data types and fonctionalities. The system itself can also be
extended. For example, Posigres has been used to develop a research-criented GIS prototype
GEQ++ (Vijlbrief and van Qosterom, 1992). (2) By using a "pure” object-oriented system
(e.g., Smallworld and Ontos) or building one from the scraich by programming using an
object-oriented programming language, e.g., C++ and Smalltalk; this is popularly referred to
as the revolutionary approach. As stated in §2.4, a standard query language comparable to the
SQL is not yet available, which makes a true object-oriented implementation difficult at the
moment. Moreover, the object-oriented database management systems still have to prove their
efficiency over the relational DBMS (Boursier and Faiz, 1993).

Thus in this research, the structure will be tested in the extended relational database system
Postgres which provides an evolutionary approach (with extended SQL) to object-oriented
database implementation. In addition to other facilities, such as support for data of array type,
the software supports some object-oriented modelling concepts to improve upon conventional
relational DBMS. It supports object identity, muitiple inheritance, operator overloading, user-
defined types and functions, support of set type (acceptance of a set of values as an attribute
in a relation), versioning, user-defined rules, etc. (see §8.1.2.2).
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7.3 Summary

In this chapter, the conceptual data model for multi-valued vector maps (DMMVM) (see
chapter 3) has been translated into two families of database structures, namely (1) relational
database structure and (2) object-oriented database structure.

The prototype relational database structure for multi-valued vector maps was designed using
Smith’s method for relational database design (Smith, 1985). The method comprises four
steps, namely: (1) identification of data types and relationships in the application; (2) listing
the single-valued and multi-valued dependencies among the data types as dependency
statements; (3) translating the dependency statements to dependency diagram; and (4)
composing normalised relations from the diagram. Using this method, a total of seven base
tables have been developed for multi-valued vector maps. Additional thematic data of the
objects can be introduced by creating extra tables for the thematic classes. Some experimental
implementations carried out with the prototype indicate its usability for multi-layer spatial
data modelling. The relational prototype can then be implemented in a relational system, or
in an extended relational system. When used in an extended relational system in which a shell
15 built on top of a relational database, the relations can be implemented directly as base
tables. If the system supports direct object-oriented queries through the extension of SQL, the
proposed relations will translate to classes in which the attributes of each relation become the
static properties of its corresponding class.

For the object-oriented prototype, two classification lines (thus double inheritance) were
distinguished for terrain objécts, namely (1) thematic classification line for non-spatial aspects
and (2) geomertric classification line for geometric aspects of terrain objects. Attention was
focused on the latter classification, which yielded a total of nine classes for the object-oriented
data structure for multi-valued vector maps. The consistency rules and updating procedure
proposed respectively in chapters 5 and 6 become operations (methods) of the classes. Also,
the topologic relationships derived in chapter 4 are expected to be dynamically detected in
the system by translating the proposed algorithms for detecting topologic relationship (also
in chapter 4) into class methods.

An experimental implementation of the object-oriented database structure is described in the
next chapter.
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8
IMPLEMENTATION

The translation of the DMMVM into two families of database structures was described in the
last chapter. This chapter focuses on the implementation of the object-oriented data structure
(see §7.2) using an evolutionary object-oriented (¢xtended relational) DBMS. The objectives
of the implementation are:

(1) To test the use of the prototype database structure in the establishment of an integrated
database using a combination of photogrammetric workstation (for data acquisition) and an
object-relational (extended relational) system (for database management).

(2) To verify the algorithms for consistency rules.

(3) To verify the update propagation algorithms,.

To meet the stated objectives, the implementation was done in two main phases:

{a) creation of an integrated database based on the object-oriented structure, including data
acquisition by photogrammetric means, and verification of consistency rules,

(b) database updating with automatic update propagation and consistency enforcement.

The impiementation platform and material resources used are outlined in the next section. The
two parts of the experiment are described in §8.2 and §8.3 with an summary in §8.4

8.1 Materials and System Configuration used for the Implementation
8.1.1 Materials

(1) A soil map of Goult, Southern France at scale 1:50000, published in 1978.
(2) Near vertical aerial photographs of 1989 of the same region with a nominal focal length

of 152mm and an approximate photo scale of 1:30000. The chosen test area is covered by two
models.

(3) Ground control points (X, Y and Z),
8.1.2 System Configuration

The system (hardware and software) configuration for the implementation is shown in Figure
8.1. It consists of two parts: the data acquisition subsystem and the database management
subsystem.

8.1.2.1 Data Acquisition Subsystem:
This censists of the following specific hardware and software.

Hardware

(1) Planicomp C120 analytical photogrammetric stereoplotter
(2) Zeiss VideoMap

(3) Calcomp drawing board

(4) Mirror stereoscope

{5) Graphics plotter

(6) Microcomputer with 80386 processor running on DOS 5.2
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Calcomp DATA ACQUISITION
Drawingboard SUBSYSTEM
Planicomp
G120 | ?863585 || Graphics
with - KDMS Plotter
Videomap )
DATABASE
HP 9000/ 700 series | MANAGEMENT
- HPUX 9.02 SUBSYSTEM
- Postgres DBMS
- C Compiler

Figure 8.1 System configuration for the implementation

As stated in chapter 1, a stereo-photogrammetric data acquisition method was chosen because
it accounts for the most accurate and fastest data collection for high- and medium-resolution
spatial databases (akin to large- and medium-scale mapping) and because of the background
of the author.

Software
(1) Planicomp C120 orientation (inner, relative and absolute) software
{2) Kork Digital Mapping System (KDMS) version 8.0

8.1.2.2 Database Management Subsystem

Hardware
Hewlett Packard (HP) model 9000 series 700 running on HPUX 9.02

Software
(1) Postgres DBMS version 4.2
(2) C compiler

The Postgres database management system was chosen because it supports object-oriented
concepts and rule management; it also has a guery language, thus minimizing programming
tasks required in the pure object-oriented approach. It is public domain research software, so
information about it may be limited. A summary of the essential features of the software is
given in the following subsection.
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The Postgres Database Management System

Postgres is a database research project from the University of California at Berkeley. It is an
evolutionary object-oriented (extended relational) DBMS built on top of the Ingres relational
DBMS. Its query language is called POSTQUEL. It runs on the following computers: Digital
Equipment Corporation (DEC) computers based on MIPS R2000 and R3000 processors (under
Utrix 4.2A and 4.3A), DEC based on Alpha AXP (DECchip 21064) processors (under OSF/1
1.3), Sun Microsystems based on SPARC processors (under SunOS 4.1.3), Hewlett-Packard
(HP) mode! 9000 series 700 and 800 based on PA-RISC processors (under HPUX 9.0x (x =
()), and International Business Machines (IBM) RS/6000 based on POWER processors (under
AIX 3.2.5). Postgres has also been ported by users to many other architectures and operating
systems, including NeXTSTEP, IRIX, Solaris 2.2, Linux and NetBSD.

erminal Main server
Monitor e A Backend
(Frontend -] Postmaster
user interface) /[communlcatlon
1~ manager)
/i’
LIBPQ Frontend Terminal Monitor:
FFrontend Advanced - user interface for postquel queries
b
Programmer’s . Postmasttetr: oot _
- communication between user s
Interface) terminal monitor arnd Backend
Backend:
User Interface - database manipulation & management
LIBRFQ:

- database queries froma C program

Figure 8.2 Postgres DBMS architecture

The system architecture of Postgres is illustrated with Figure 8.2, The architecture comprises
threc main parts:

(a) The Postgres Backend which runs on the main server where Postgres and the databases
reside. It manages and manipulates the database. One backend can host one or more
databases.

(b) The Postmaster which serves as the communication link between the front (user) end and
the backend. Only one postmaster should run on one backend irrespective of the number of
databases on that backend.

(c) The Frontend Moritor and LIBP(: These are the user interfaces. The monitor is used for
interactive queries with Postgres using the Postquel query language. The LIBPQ is the
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interface for a user who wishes to interact with Postgres through C (or C++) programming
language; Postquel commands can be directly executed in the user’s program using this
interface. One or more frontends (running on the same or different servers) can communicate
with the same backend (through a common postmaster).

Postgres Data Model:

Posigres’ data model is based on the relational database model but extended with two main
capabiliies (Rowe and Stonebraker, 1987; Postgres Group, 1994):

- object management capabilities

- rule management capabilities

Object management capabilities:

Four basic object-oriented constructs were added on top of the conventional relational
constructs:

{a) Classes:

The fundamental notion of Postgres is that of a class. A class is a named collection of objects.
Each object, or instance, of a class has the same collection of named atiributes, and each
atiribute is of a specific type (base type or instances of other classes). Each instance has a
unique system-defined object identifier (oid). Classes can inherit data and functions from one
or more other classes.

(b) Inheritance

In Postgres, a class can inherit from zero or more other classes (multiple inheritance) and a
query can reference either all instances of a class or all instances of a class plus all of its
descendants. The inheritance hierarchy is a directed acyclic graph. Functions defined for the
parent class are also inherited. If an inheritance conflict occurs (when the same attribute name
is inherited from more than one parent), the inheritance of that attribute is disallowed. When
a function (or procedure) inheritance conflict arises, the system uses the function defined for
the first parent of the class in its inheritance precedence list (IPL). IPL is a list of all the
parenis of a class constructed by the system.

{c) Types

The data types supported by Postgres are classified into three groups:

- Base types which include int2, intd, floatd, float8, bool, char, abstime, reltime, date, and
postquel.

- Abstract data types (ADT): These are user-defined arbitrary base types. They can be defined
by specifying the type name, the length of the internal representation in bytes, procedures
(functions) for converting from an external to internal representation for a value and from an
internal to external representation. The procedures are coded in a conventicnal programming
language, such as C, and defined to the system using the define procedure command. The
user must also define the operators on ADTs (see functions).

- Constructed types: These are the user-defined classes (classes are weated as data types also).
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(d) Functions

Functions are classified into three groups in Postgres:

- Normal functions and procedures (programming language functions): Users can define an
arbitrary collection of normal functions in a conventional programming language (e.g., C),
apart from the predefined ones. Operands of a function can be any of the three Postgres types
(ie., base types, ADT’s or classes).

- Operators: Users can define new unary or binary operators which operate on any Postgres
type, especially ADT. The creator of the operator becomes its owner. Operator overloading
is supported.

- Posiquel functions (query language functions): A collection of commands in the POSTQUEL
query language. A postquel function returns one or more instances of a class or one or more
base types; thus Postquel functions are automatically constructed types (classes). They are
useful for constructing composite types.

Rule management capabilities:

Postgres supports two rule systems:

- Instance-level rule system which uses "markers” placed in each instance in a class to
"trigger” rules. It is more efficient if there are many rules on a single class, each covering a
small subset of instances. This is the default system.

- Query rewrite rule system which modifies queries to take rules into consideration. It is more
efficient when rules affect most of the instances in a class.

8.2 Creation of an Integrated Database using the DMMVM

A multi-valued spatial database, integrating a soil database (showing soil units and soil sample
points) and a topographic database (showing major land uses and land cover types) was
created based on the prototype object-oriented database structure described in §7.2. This
aspect of the implementation consists of the following main phases:

- The translation of the proposed database structure to the Postgres DBMS’s data model.

- The data acquisition phase using a photogrammetric workstation.

- The creation and instantiation of classes using Posigres.

- Checking data consistency.

- Database query

The second, third and fourth phases are illustrated with Figure 8.5

8.2.1 Translation of the Object-Oriented Database Structure to Postgres Data Model

For this implementation, the object-oriented database structure presented in §7.2 was mapped
into the Postgres data model. The fact that the Postgres data model is based on the (extension
of) relational model played a significant role in the wanslation process because some
properties of a class can be derived through the relational join of two or more classes. Thus
the 2-CONTAINER class was represented as the "twoC_id" property of the area (Areatype)
class; the 1-CONTAINER class was represented as the “"oneC_id" property of the line
(Linetype) class and the 0-CONTAINER class was represented as the "zeroC_id" property of
the pointf class (named pointf 10 avoid a conflict with the Postgres base type point). Three
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new classes were created: pointnode, accuracy and lineage. The pointnode class was created
to explicitly represent the POINTINAREA (see Figure 7.4) association between (- and 2-
containers and to store the node identifier of the O-containers. The accuracy and lineage
classes were created from the node class to reduce data redundancy because most of the
nodes will have the same accuracy and lineage, having been digitized with the same
instrument and by the same human operator.

The mapping produced the nine classes shown in Table 8.1. The properties of cach class were
mapped into base data types in Postgres and class methods were defined as Postquel or C
functions (see Appendix 1.2).

Table 8.1 Creation of classes in Postgres

Class Name Properies  Base type Description of Property
area woC_id int4 identifier of the area object’s 2-container (nonnuil)
aobjid int4 identifier of the area object (nonnuil)
layer charlé name of the map layer of the object (nonnull)
aname charl6 geographic name of the object
aclass text the thematic attribute class of the object (nonnull)
line oneC_id int4 identifier of the line object’s 1-container (nonnull)
lobjid int4 identifier of the line object (nonnull)
layer " charl6 name of the map layer of the object (nonnull)
Iname charlé geographic name of the object
Iclass text thematic attribute class of the object (nonnull)
pointf zeroC_id ind identifier of the point object’s Q-container (nonsull)
pobijid int4 identifier of the point object (nonnull)
layer charl6 name of the map layer of the object (nonnuil}
pname charl6 geographic name of the object
pclass text thematic attribute class of the object (nonnull)
poinmode zeroC int4 identifier of each (unique) O-container in pointf class
(nonnull}
twolC in4 identifier of the 2-container that topologically con-
tains the O-container (value = 0 if none)
pnode int4 identifier of the O-container’s node (nonnull)
arc arc_id int4 identifier of an instance (nonnull)
snode int4 start node of the instance (nonnull)
enode int4 end node of the instance (nonnull)
IftTwoC int4 identifier of 2-container on its left (nonnull)
gtTwoC in4 identifier of 2-container on its right (nonnull)
aOneC int4 identifier of 1-container which the arc is part of (null
or 0 if it represents only boundary of area)
node node_id int4 identifier of a node (nonnull)
xcoord float8 % coordinate (nonnull)
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ycoord float§ y coordinate (nonnull)

zcoord flpatf z coordinate (nonnull)

ac_id intd4 identifier of the accuracy of the object

lin_id int4 identifier of the object’s lineage
linecross upperlC int4 identifier of upper 1-container {(nonnull)

lowerlC int4 identifier of lower 1-container (nonnull)

crosspt int4 node id of crossing point (nonnull)

lower_H float8 z coordinate of lower 1-container (interpolated from

heights of the two adjacent nodes of the 1-container)

accuracy ac_id int4 identifier of the instance

pl_acc floatd4 value of planimetric accuracy

ht_acc float4 value of height accuracy
lineage lin_id int4 identifier of the instance

pl_lin text lincage of planimetric coordinates

ht_lin text lineage of height coordinates.

Some of the class operations can be handled by simple queries (e.g., insertion and retrieval
of instances of a class) using the Postquel query language without necessarily defining them
as functions. However, the operations that are constantly required and the complex ones (e.g.,
geometric consistency enforcement) were defined as functions (see the list and descriptions
of the functions in Appendix 1.2). The functions include those required for monitoring and
enforcing data consistency and those required for update propagation; they were based on the
algorithms presented in chapters 5 and 6.

8.2.2 Data Acquisition Dain Soquelion per mop Byer

data acquisition
soreen ?ﬁ.,&) (mep dightzing, photogramm.,)
Data acquisition for a muli- ﬁﬂ
Data Conversion
(Reformetting)

valved database can be made in
one of two ways, as shown in
Figure 8.3, The first procedure
is to digitize each map layer
separately, in the format of the

mapping software, and then Consistency checks I‘_
perform map overlay of all the
layers, The output of the map
overlay can then be structured

in the format of the DMMVM
(see Chhatkuli, 1993 for a deta-
iled example using Arc/Info).
This approach requires less
preparation compared with the
second method and is easier to
implement in any existing system. However, it will require more editing (e.g., removal of
spurious polygons and sliver lines) and consistency checks (e.g., checking for compatibility
among objects that are spatiaily coincident; a lake and a football field may not overlap for
instance) during and after the overlay operation. Moreover, if the mapping software has no

mra;ud
re-formnadiing

Figure 8.3 General procedure for multi-valued data
collection
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map overlay facility, then an extra third-party software (acquired or developed by the user)
is required, thereby increasing the overhead cost.

In the second approach, data acquisition is made in multi-valued mode. This requires more
extensive planning than the separate digitizing approach. A compilation guide has to be
prepared during the planning phase, incorporating all the map layers including the annotation
and identification (coding) of all m~containers (m € {0,1,2}). The compilation of the multi-
valued map can then be done by cartographic digitizing, screen (head-up) digitizing (if all
boundary lines of objects can be identified) and stereo-photogrammetry, using "optical
overlay” by superimposition if necessary. This method minimizes the editing task because
problems of sliver lines and spurious polygons are dealt with during data collection. In
addition, no extra overlay software is required since map overlay is not involved. On the basis
of our experience during the data collection phase, it is believed that this method will become
more labour-intensive and less cost-effective as the number of map layers increases, especially
in a large project because of the extensive preparation work required.

The choice of approach will therefore depend on the size of project area, number of layers
10 be integrated and the system configuration (hardware and software) that is available for
data acquisition. For a large mapping project or many map layers or both, it appears that the
first approach will be more feasible; the structural and semantic consistency of the overlay
result can then be checked as described in chapter 5. Conversely, for a limited number of map
layers and not too large project area, especially in the absence of a system with map overlay
capability, the second approach can be used. Obviously, there is still the need to properly
investigate the cost-benefits of the two approaches to guide in the selection of the appropriate
one.

In database updating, the data can be collected per layer and the objects input into the
database using the updating procedures proposed in chapter 6.

The second approach was chosen for this implementation mainly to test the approach (the first
being the common practice though the overiay result is usually not structured).

The data acquisition phases for this implementation are summarised in the following sections.
More details can be found in the work of Essayah (1994).

8.2.2.1 Preparation

Two map layers - a topographic layer showing major land use and land cover types to be
derived from aerial photographs and a soil layer to be derived from a soil map - were selected
for this experimental implementation. A test area of approximately 5 km by 5 km, covered
by two stereo models, was chosen in the Goult region of southern France on the basis of the
availability of raw data (photographs with ground control points and a seoil map). The
following tasks were performed in preparation for data collection:

- The table digitizer (Calcomp drawing board) to be used for initial digitizing of the soil map
and the stereoplotter (Planicomp C120 with Zeiss Videomap superimposition system) were
coupled for the actual 3D compilation of both map layers. The Kork-KDMS was already
installed on a PC and linked with the Planicomp.
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- Checking of the Planicomp C120 using the system’s calibration program.

- Preparation of the photographic materials and control data of the chosen ares, including
marking the control and tie points on the phetographs.

- Preparation of the compilation guide. This includes the selection, classification and
annotation of terrain objects of interest (to form the topographic layer) on the photographs
using mirror stereoscope and the manual overlay of the two layers on a wransparency. The m-
containers were then identified on the transparency and used as a guide during the stereo-
compilation.

- Formulation of a coding system to facil-
itate collection of explicit topologic infor-
mation during stereo-compilation. The data
structure of the Kork system (see Kork,
1992} was designed mainly for computer-
assisted mapping without adequate support
for topologic data acquisition. Map details
are collected as (aggregates of) strings (a
string is a chain of straight-line segments
used for the representation of polygon boun-
daries and line objects), symbols (for point
objects and map symbols) and annotaticn
(for place names, eic). Each string repres- LEGEND
ents a single object in Kork and is assigned

the code of the object' Since we are wor- 24: 1-Container identifier
king in 2D topologic space, each string does #57: String number

have a polygon on the left and & polygon on
the right and may represent a linear object.

+12: 2-Container identifier

Assuming we digitize string #57 from left to
right, the feature code for the siring Is

Thus a different coding scheme was devised 241314

for the strings in order to digitize the strings <= Identifier of 2-contalner on tha right
in an approximate topologic format. This | Identifier of 2-container on the left
coding format (see Figure 8.4) was derived identifier of the 1-contalnet

from the combination of Kork’s colour code

and feature code for strings (see Table 8.2

for a sample output in Kork’s format) as  pjgyre 8,4 Example of feature coding during

follows. A Kork manuscript contains 12 digitizing, for automatic topology building.
fields per record (Kork, 1992) where field 1

represents the nature of the point (whether

part of string, STR, or single point, SYM, or annotation, ANN), field 2 represents the string
number, field 3 represents the sequential number of the points in a string, field 4 the total
number of points in the string, field 5 the X coordinate, field 6 the Y coordinate, field 7 the
Z coordinate, field 8 the rotation angle of symbols and annotations, field 9 the pen status (0
for pen up and 1 for pen down), field 10 the colour code, field 11 the feature code of the
terrain object represented by the string (negative value means permanent feature and positive
means temporary feature), and field 12 represents the line code. Kork allocates one digit (U
€ {1,2,..9}) for the colour code and a 2-byte integer (with five digits VXXYY) for the
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feature code. By concatenating the two codes, a six-digit code (UVXXYY) can be derived in
which the first (left justified) two digits (UV) are used as an integral colour code and 1-
container identifier, i.e., the colour code is synchronised with the 1-container identifier. By
facing the direction in which the sming is being digitzed, the next two digits (XX) contain
the identifier of the 2-container on the left side of the string while the last two digits (YY)
contain the identifier of the 2-container on the right side of the string. Each string will
therefore be digitized only once. For example, string number 510 (having nine points) in
Table 8.2 has colour code 6 and (permanent) feature code -10735 which, in our coding
methed, translates to code 610735, meaning that the string is pant of the 1-container with
identifier 61, has 2-container with identifier 7 on the left and 2-container id 35 on the right.

This coding scheme, due to the limitation of the Kork system (version 8.0), constrains the
maximum nuomber of 2-containers to 99 and the maximum number of 1-containers to 27. This
was more than adequate in our implementation but another coding device must be designed
for a very large project area with high density of different terrain objects. This constraint can
be overcome by using one of the following feature coding methods:

(a) By using digitizing software that supports 4-byte integer for feature codes, therchy
increasing substantially the number of 1- and 2-container identifiers that can be coded. In the
Kork system, this can be done by changing the computer length (from 2-byte to 4-byte
integer) of the feature code in the source program (in collaboration with Kork).

(b) After preparing the compilation guide, all the m-containers, m € {0,1,2} are assigned
unique identifiers. Then, a look-up table (LUT) of feature codes is defined. The LUT will
consist of four fields per record, each field being a 4-byte integer long. Each record will then
contain the topologic information of each string as follows (the order can be rearranged):
. field #1: the string number (this should tally with the feature code assigned to the
siring during digitizing and serves to relate the LUT sirings with the coordinates of
the sirings in the system) and must be non-null if other fields have values,
. field #2: the identifier of the 2-container on the left side of the string (non-null),
. field #3; the identifier of the 2-container on the right side of the string (non-null),
. field #4: the identifier of the 1-container which the string is part of. If the string does
not represent a !-container, then a value 0 is recorded.
This LUT can be filled up in one of two ways:

(i) During digitizing, the operator enters information about each string as a record of the LUT.
As he digitizes the string, the same feature code entered in the system for the string is also
recorded as the first field of the string’s record in the LUT, and the 1- and 2-container
identifiers are also recorded in their respective fields as indicated above. If the system permits
intervention and temporary transfer of control, this recording can be done on the system,
otherwise it has to be done on paper. The actual assignment of the 1- and 2-containers to the
strings will then be done during the data conversion phase using a computer program. This
method requires less effort during the preparation phase (strings do not have to be pre-coded)
but has the disadvantage of slowing down the operator.

(ii) The strings are also coded and annotated on the compilation guide like the m-containers.
The LUT can then be filled up for all strings before the digitizing process. During digitizing,
the operator will then enter the comresponding string number on the LUT as the feature code
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of the string being digitized. As in the first method, the LUT will be related to the strings’
coordinate information during data conversion and formatting. This method requires less effort
by the operator during digitizing but more work is involved in the preparation phase. Coding
errors and string omission can also be more easily checked in this approach.

8.2.2.2 Data Collection

The major data collection operations consist of the tasks shown in the upper part (above the
dashed line) of Figure 8.5. and are outlined in the following:

- The soil map of the chosen test area was initially digitized in "spaghetti" format on a
Calcomp drawing board using the Track module of the Kork system. Boundary lines of soil
units (as arca objects) and sample points (as point objects) were digitized with approximate
height (average eievation of the area) to reduce shift between the digitized map layer and the
stereo model of the topographic layer during superimposition. Collection of all line objects
appearing on the soil map was deferred till the stereo compilation of the topographic layer
since they occur on the photographs which are more recent than the soil map.

- The second map layer, the topographic map showing major land uses and land cover types,
was derived from two stereomodels of the same area covered by the soil map layer. The first
model was set up and oriented for digitizing in multi-valued mode on the Planicomp C120
using the 3D Track module of the KDMS. Through the videomap, the digitized soil map was
superimposed in another colour on the stereomodel, thus facilitating a combined (multi-
valued) stereocompilation of the two map layers. Every closed polygon on the stereomodel
becomes (part of) a 2-container representing a certain soil unit in the soil map layer and a
certain area object in the topographic map layer. Likewise, line and point objects are mapped
into component 1-containers and (-containers, respectively. Using the compilation guide
prepared during the preparation phase and the devised feature coding system, the 1-containers
and boundaries of the 2-containers were digitized as strings while the O-containers were
digitized as symbols. The identifier (code) of the 2-container topologically containing the 0-
container being digitized was assigned as a symbol code (user defined), while the symbol
number (system generated) served as the identifier of the (-container. Snapping functions are
provided by the software 10 snap onto an already digitized node.

A check plot of the manuscript was then made followed by editing before changing the
model, The editing phase took care of some consistency checks which are within the
capabilities of Kork. These include undershoot and overshoot errors. The second model was
digitized using the same procedure. The two models were then combined with the Merge
command of Kork. The hard copies of the two map layers and the multi-valued map are
shown in Figures 8.6 (soil map layer), 8.7 (topo map layer) and 8.8 (the multi-valued map).
The maps were plotted by the Plothp program of Kork. The multi-valued digital map was then
converted to an ASCII file in the Kork output format (.LST) using the PTLIST command.
Table 8.2 shows a sample of the output.
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2D Digitizing of Soil Map Digital Manuscript of
Soil Map
Orimtionofstemomodcl&\ 3D (stereo) digitizing of main
superimposition of soil layer topographic features & the
boundaries of soil units

Editing and ascii file generation
.fsciiouq{mo.fmulﬁvalued Conversion to DMMVM
digital map in Kork’s format (topologic) format

instantiation of cl Consistency checks

Figure 8.5 Procedure for creating the integrated topographic and soil database
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Table 8.2 Sample Ascii output of the digital manuscript in Kork’s format

Coordinate output for file: MVVMGL

¥ork Digital Mapping System Data File

4

'

!

H

H

1 File Name: MVVMGL

! Manuscript Wame:

1 Operator: KORKTRAN
4 Data: Z9-AUG-9%4
! Project Kumber:

! Project Nama: Goult

! Modal Number: 62/64/66
!

!

'

1

!

!

Number of centroids is 16 Next unusad STR raecord is 1266
Number of strings is 389
X coordinate range iz from 832025.6 to 837662.9
Y coordinate range is from 173725.7 to 179669.38

1
STR 504 2 11 836468.778 177764.000 160.89 1 6-10707 60D
STR 504 3 11 836185.332 177715,333 166.89 1 6-10707 600
STR 504 4 11 836112.889 177702.333 167.44 1 6=10707 600
STR 504 1] 11 836066.444 177689.222 168.00 1 6-10707 600
STR 504 6 11 $35952.333 177649.667 168.00 1 6-14707 600
STR 504 7 11 $35849.667 177612.889 . 162.89 1 6-10707 600
STR 504 8 11 835664.111 177547.333 161.00 1 6-10707 &00
STR 504 9 11 835566.778 177508.778 163.11 1 6-10707 600
STR 504 1.0 11 £835511.444 177474.889 162.00 1 6=10707 600
STR 504 11 11 835463.444 177438.333 162.56 1 6-107Q7 600
STR 508 1 F4 B835463.444 177438.333 162.56 0 6~-10707 600
STR 508 2 2 835403.889 177386.444 161.89 1 6-10707 600
aTR 510 1 9 835403.889 177386.444 161.89 ¢ 6-10735 600
STR 510 2 9 B35365.667 177359.556  161.67 1 6-10735 600
STR 510 3 9 835304 .667 177329.889 160.56 1 §-10735 €00
STR 510 4 9 835164.111 177272.333 156.56 1 6=10735 600
STR 510 5 9 835025.667 177217.556 154.56 1 6=10735 600
STR 510 6 9 B34945.718 177184.333 152.89 1 6-10735 600
STR 510 7 9 B34908.444 177164.444 152.67 1l 6-10735 600
STR 510 8 9 834886.333 177152.778 150.67 1 6-10735 600
STR 510 g 9 834877.111 177142.889 150.67 1 6-10735 600
STR 513 1 3 835388.333 17752%9.111 167,11 ¢ 5-10735 500
STR 513 2 3 B835471.444  177474.778  162.11 1 5-10735 500
STR 513 3 3 835463.444 177438.333 162.56 1 5=-10735 500
STR 515 1 3 835463.444 177438.333 162,56 0 7-13535 700
STR 515 2 3 835408.222 177462.111 162.78 1 7=-13535 700
STR 515 3 3 835344.444 177491.778 173.44 1 7-13535 700
1 1 1 i i { 1 11 1 1
1 2 3 4 5 6 7 8 9 10 11 12 - fields

8.2.3 Creation of the Integrated Database

This phase involved the instantation of the database and consistency checks. Before
instantiating the classes, the ASCII output of the Kork manuscript was converted to the format
of the DMMVM.

8.2.3.1 Conversion of the Kork output to DMMVYM format

With the aid of the devised feature coding method, the output of the data acquisition phase
contains the necessary topologic information, with each string carrying information about the
2-containers on ¢ach side and the 1-container which it is part of (this value will be 0 if the
string is not part of any l-container). Although the snapping function was used during
digitizing, the software still recorded the coordinates of the common point for each string in
which the point occurs. On the other hand, the DMMVM format treats each line segment as
an arc (thus all points as nodes), and coordinates of a node, irrespective of the degree of the
node, must be recorded once. A conversion program was therefore developed to map the Kork
output into a format that is compatible with the DMMVM such that each point became a
node, duplicate nodes were eliminated and each line segment became an arc, each arc having
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Figure 8.6 The soil map of Goult
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Figure 8.7 Topographic map of Goult showing major features




146

Polygon Boundary

\ Number (e.g., 68) represents 2-contalner id. J

¥
Figure 8.8 Multi-valued vector map of Goult showing soil units and land use/ land cover
types
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a unique arc identifier, a start and an end node, the identifiers of the 2-containers on its sides,
and the identifier of the 1-container which the arc is part of. By ensuring uniqueness of each
arc and each node during the conversion process and converting each line segment to an arc,
the four geometric primitives constraints (GP_Rule_i, 1 = 1,4, see §5.1.1) were antomatically
enforced.

8.2.3.2 Database Creation

After creating a database (called Goult) in Postgres using the createdb command, the nine
classes (see Table 8.1) representing the multi-valued vector map were created using Posquel’s
create command. The output of the format conversion program described above was then
copied into the arc and node classes using the Postquel copy command. The other classes
were also instantiated. Some instances of the nine classes are shown in Appendix 2.

8.2.4 Consistency Checks

Although a lot of care was taken during the data acquisition phase to ensure geometric
consistency and some data consistency rules were enforced during the editing and format
conversion phases, it is still essential to check the structural consistency of the database after
its creation because of the limitations of the data acquisition software (e.g., lack of provision
for node snapping in 3D) and because some inconsistencies may have been introduced during
data conversion and, indeed, some may escape detection during the editing phase. This will
also verify the effectiveness of the consistency rules. Thus the following consistency rules
were monitored and enforced after creating the database:

(a) Consistency rules for the geometric primitives. Postquel functions checkArcLoop(),
checkRedArc() and checkDupArc() (see Appendix 1.2) were used to monitor the consistency
of the geometric primitives. No violation was detected at this level because line segments
were automatically treated as arcs, all points as nodes and redundant arcs and nodes were also
eliminated during the data conversion.

(b) Consistency rules for the m-containers. The consistency rule for (-container was checked
by simple query. The consistency rules for 1-containers (1CC_Rule_1) and 2-containers
(2CC_Rule_1) were monitored using the function mCgraph() (see Appendix 1.2). The function
checks the degree of each node of a subgraph {the input subgraph can be the geometry of a
line object, area obiect, 1-container or 2-container) and reports the node of the subgraph that
has an incorrect degree.

The function was used to check the rule 1CC_Rule_1 for each of the 1-containers in the
tlatabase. It found a violation of the rule for one I-container (with oneC_id 91) in which there
was a vertical gap (two adjacent interior nodes have the same x and y coordinates but
different z values). The violation arose because the height tolerance value set in the program
for node snapping in height was too small compared with the measuring precision of the
(inexperienced) human operator (the data acquisition software (KDMS)'s snapping function
works only in 2D). The mean height of the two nodes was then taken as the most probable
value and one of the two nodes was deleted while redefining the node identifiers of the twe
affected arcs.
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The function mCgraph() was then used to check the 2CC_Rule_1 for all the 2-containers in
the database. There was no violation of the constraint. However, to ascertain the effectiveness
of the function (and thus the algorithm), one arc was manually removed to create a gap in the
boundary polygons of two adjacent 2-containers and the function activated again. This time
the two 2-containers were returned as violating the structural constraint for 2-containers.
Because of the absence of an on-line graphic facility in Postgres as installed, it was possible
to retrieve the arc(s) and node(s) in error only in alphanumeric form for examination and
editing.

(c) Consistency rules for the elementary objects. The same function mCgraph() was used to
check the graph consistency of individual line and area objects in the database because an m-
container is topologically isomorphic to an n-dimensional object where m = n. Note, however,
that the input geometric data into the functions will be different except when, for instance,
a l-container represents only one line object. The topology of each elementary object was
consistent most probably because consistency has been enforced at the lower levels {m-
containers and geometric primitives).

(d) Euler constant for planar maps. The algorithm for checking the planar enforcement of the
database (see §5.1.3) was translated 10 a Postquel function. As indicated in §5.1.3, the return
value of the algorithm should equal the number of component graphs if the map is consistent.
When the function was administered on the Goult database, we had:

v = 1988, e = 2063, f = 80
thus E=1988-2063+80-1=4
Relating the value to the hardcopy of the database in Figure 8.8, it is true that there are four
component graphs in the map because 2-containers 11, 55 and 57 are disconnected from the
others (none of the nodes defining each of the three subgraphs can be reached from any other
nodes except from those defining the subgraph). Thus they form three additional component
graphs (the fourth is the main map minus the three). The result proved the planar enforcement
of the map and the effectiveness of the algorithm.

To graphically compare the database after the consistency monitoring operations with the
output of the Kork software (before database structuring), a perspective view of the database
was produced (sec Figure 8.9). The isolated point objects are not shown because the
visualisation program was designed only for connected lines. A comparison of this map with
Figure 8.8 further confirms the consistency of the database. Figures 8.9, 8.10, 8.11, 8.12 and
8.13 were produced mainly by the PC-based 3D visualization software (Pilouk 1993) and
Grasp version 4.0 (Bridges 1991).

To maintain data integrity during subsequent updating of the database, the rules listed in
Table 8.3 were defined to guide against invalid insertion to and deletion from the database
classes. Two examples are given below.

(1) /* if new node coincides with existing node within the defined tolerance, the system
rejects the insertion */

define rule node_rule 2 is
on append to node
where float8abs(new.xcoord - node.xcoord) <= 0.02 and



149

float8abs(new.ycoord - node.ycoord) <= 0.02 and
float8abs(new.zcoord - node.zcoord) <= 0.03
do instead nothing \g

(2) /* for any arc, arc_id, snode, enode, UftTwoC, rgtTwoC must be nonnull nor zero */

define rule arc_rule_3 is

on append to arc

where new.arc_id ISNULL or new.snode ISNULL or new.enade ISNULL or new.IftTwoC
ISNULL or new.rgtTwoC ISNULL or new.arc_id = 0 or new.snode = 0 or new.cnode =0 or
new.IftTwoC = 0 or new.rgtTwoC = 0

do instead nothing \g

Table 8.3 Data integrity rules defined in Postquel

Name of Rule Target Class  Description of Rule

arca_rule_1 area Disallows values of the properties twoC_id,
aobjid, layer and aclass of the Area class from
being NULL or zero

area_rule_2 area Enforces that a new instance of Area class is not
assigned the identity of an existing instance of
that class

line_rule_1 line Ensures that values of the properties oneC_id,
lobjid, layer and lcass of the Line class are not
NULL or zero

line_rule_2 line Ensures that 2 new instance of the Line class is
not assigned the identity of an existing instance
of that class

point_rule_1 point Ensures that values of the properties zeroC_id,
pobjid, layer and pclass of the Pointf class are
not NULL or zero, and that the new instance is
not assigned the identity of an existing instance
of the same class

point_rule_2 point Ensures that values of the properties zeroC and
pnode of the Pointnode class are not NULL or
zero and that the new instance is not assigned the
identity of an existing instance of the class; in
addition, the new instance must exist in the po-
intf class

leross_rule_1 linecross Enforces the condition that the values of the
properties upperlC, lowerlC and crosspt of the
Linecross class are not NULL or zero; and that
the upperlC and lowerlC must exist in the Line
class
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node_rule_1 node Enforces that the property node_id of a new
instance of the Node class is non-null or zero

node_rule_2 node If new instance of the Node class spatially coin-
cides with an existing instance of the class within
defined tolerance, the new node object is not
inserted

node_rule_3 node If a new Node object is mistakenly assigned an
existing node_id property value, the insertion
should be rejected

node_rule_4 node Enforces that a shared Node object cannot be
deleted until it is no longer required

arc_rule_1 arc Ensures that if a new Arc object has equal values
for the HiTwoC and rgiTwoC properties, then the
value of the property aOneC should not be 0

arc_rule_2 arc Enforces that the values of the propertics snode
and enode of a new Arc object are not equal (the
arc forms a loop if they do)

arc_rule_3 arc For any Arc object, values of the properties
arc_id, snode, enode, IftTwoC, rgtTweC must be
nonnull nor zero

arc_rule 4 arc If a new Arc object is mistakenly assigned the
arc_id value of an existing instance, the new arc
should be rejected

arc_rule_5 arc Ensures that an Arc object is deleted only when
the values of the properties IftTwoC = rgtTwoC
and aOneC =0

These rules are used in combination with the consistency rules for geometric primitives
(GP_Rule_1 to GP_Rule_12, see Table 5.1) which are implemented in C programming
language (see Appendix 1.2).

8.2.5 Query Example

Having ensured data consistency, we can then query the database. An example of a topologic
query involving the two map layers which would have necessitated map overlay during the
query is given here. The query was:

> Select all farmlands that have calcimagnesic soil type

This query requests all area objects belonging to area class "farm_land" (from the topo layer)
and have instances of area class "calcimagnesic_soils” (from the soil layer). The geographic
names of the farm_land objects and the seil units are required in addition to a graphic output
of the objects. The alphanumeric result of the Postquel query is shown in Table 8.4 while
Figure 8.10 shows the selected objects.
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8.3 Examples of Database Up- Table 8.4 All farmlands that have calcimag-

dating Operations nesic soil type
To verify the updating algorithms presented §"°C_id gi?mame 33;1“3‘“3
in chapter 6, four examples of database , FL1 v22
updating operations were performed on the 6 FL2 v22
created database, as described below. In line  §; o v
with the proposed procedures for automated 12 FL1 vaz
database updating (see chapter 6) while 14 FL1 vaz
. H . 28 FL1 vae
enforcing geometric consistency (see chapter 55 FL1 V22
5), the algorithms for inserting a new geom- 39 FL1 v23
etric primitive (node or arc) were transiated 2 e g%g
into C functions (see Appendix 1.2). Thearc ¢4 FL1 V25
insertion function (Insarc()} calls other 73 FL7 V26

functions which computationally detect the 74 FL7 V26

existing topologic relationship between a
new arc and an existing primitive (arc or node). The return value of the function activates the
function that enforces consistency. For example, if Insarc() detects relationship r287(new arc,
old arc) (i.e., meet) the function Alternode() will be activated to assign correct values for the
properties (left and right 2-containers, 1-container id and the start and end nodes) of the new
arc. These functions are then used for inserting a new object (point, line or area). One
example of each is given here to illustrate the insertion of point, line and area objects using
these functions. Before the insertion examples, an example of a delete operation is given.

8.3.1 Example of a Propagated Delete Operation

To give an example of the automated update propagation algorithms for delete operations, the
algorithm for deleting a line object (Delete_Line algorithm, §6.2.4) was translated to a
Postquel function. The following query was then executed with the function:

> Delete line object "railwayl” from layer "topo”
Figure 8.9 shows the graphic representation of the database before the query was run. Figure
8.11 shows the graphic representation of the database after the update propagation while
Appendix 3 shows the instances of the Line and Linecross classes after the deletion.
8.3.2 Example of a Propagated Point Insertion Operation

The Insert_Point algorithm (see §6.2.4) was translated to a C function and used to insert a
new point object having the following properties:

Object Identifier: 79, Layer: Topo, Geographic name: gps_siationi, Thematic class:
geodetic_controls, xcoord: 834402.022, ycoord: 176596472, zcoord: 215325. (The point has
the same lineage and accuracy as the original dataset.)

At the end of the update operation, relation 1092(2-container, new node) was detected and the
program assigned the identifier of the 2-container (7) as the value of the twoC property of the
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object in class Pointnode. A new node number was assigned as the value of the pnode
property of the object and a new (-container identifier for properties zeroC_id in class Pointf
and zeroC in class Pointnode. Appendix 4 shows some instances of the Pointf, Pointnode and
Node classes after the insertion.

8.3.3 Example of a Line Insertion Operation.

As an example of a line insertion operation, the geometry of the deleted railwayl was
maodified and reinserted into the database. The line object’s data, including its new geometry,
now with eight line segments instead of the previous 22, is shown in Appendix 5A. The
algorithm Insert_Line (see §6.2.4) was wanslated into a C program. The program makes use
of the Insarc() function. Each line segment of the line object was inserted as an arc. The
program generates the Postquel function that appends the new and modified geometric
primitives into the database while deleting the obsolete ones. Appendix 5B shows the
instances of the Line and Linecross classes and some instances from the Arc and Node classes
after inserting the new railway. The perspective view of the database after the insertion is
shown in Figure 8.12.

8.3.4 Example of an Area Insertion Operation

To test the algorithm for inserting an area object, one area object with the locational and
attribute data as shown in Appendix 6A was inserted into the database. It was assurned that
the object will displace the existing arca objects of the same layer that it (partially or fully
) overlaps (if this is a full overlap, the existing object will cease to exist, and for partial
overlap, the existing area object’s size will be reduced). Because of the absence of an on-line
graphic display facility in Postgres, the insertion was done in two stages. First each line
segment of the new object was inserted, one at a time (the program actually checks and
enforces all the geometric primitives rules, see Table 5.1, and writes the result into a Postquel
command macro file which is then used to update the database in the next stage), vsing the
Insarc() function, and the existing arcs located in the interior of the new arca object were
detected by running the Ptin2c() function. The Insarc() function displays the identifiers and
names of the existing area objects which the new object overlaps for the user’s decision on
compatibility (semantic consistency) and a prompt to continue or stop the updating operation.
Figure 8.13 shows the graphic representation of the database after the insertion with the new
area object (now decomposed into two 2-containers in black and red colours at the top right
corner of the map). The relevant instances of the new object in the Area, Arc and Node
classes are shown in Appendix 6B.

8.4 Summary

~ This chapter described the test implementation of the object-oriented data structure for multi-
valued vector maps presented in §7.2 using the extended relational (evolutionary object-
oriented) database management system Postgres version 4.2. Data acquisition was done with
a Planicomp C120 photogrammeiric stereoplotter equipped with a Zeiss Videomap (for
superimposition) and a Calcomp drawing board digitizer. The stereo-compilation was done
with the aid of the Kork digital mapping system version 8.0.
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The implementation aimed at three objectives: (1) to illustrate the usage of the proposed data
structure for multi-valued vector maps (see chapters 4 and 7), (2) to test some of the
consistency rules presentsd in chapter 5 and (3) to test some of the updating algorithms (see
chapter 6). Without loss of gencrality, the data structure was tested with two map layers: a
s0il map layer and a topographic map layer showing major land use and land cover types. The
geo-data from the soil layer were initially digitized on a Calcomp drawing board. The digital
manuscript was then superimposed on the stereo-model which contained the geo-data of the
second layer. The superimposition resulted in the intersection of the two layers such that
closed polygons became 2-containers (representing (part of) a certain area object in the soil
layer and (part of) an area object in the topographic layer), line objects were decomposed into
1-containers and point objects became 0-containers. Thus the two layers were compiled in
multi-valued mode.

A method was designed to assign a feature code to each string (an aggregation of connected
line segments representing (part of) a certain line object or boundary of an area object) such
that the code contains the identifier of the 1-container represented by the string (or zero if
none) and the identifiers of the 2-containers on its sides. The coding method was devised by
combining the colour and feature codes of a string in which the colour code, concatenated
with the first (left justified) digit of the feature code represents a 1-container identifier, the
next two digits of the feature code represent the identifier of the 2-container on the left side
of the string and the last two digits of the feature code represent the identifier of the 2-
container on the right. A more general coding method was proposed in the chapter whereby
a look-up table (LUT) is prepared before digitizing. The LUT, containing four fields per
record, will then store the string identifier as one field, the identifier of the 2-container on the
left side of the string as the second field, the 2-container on the right as the third field, and
the identifier of the 1-container represented by the string (0 if none) as the fourth field. The
LUT will then be related to the lacational data of the strings as part of the data conversion
program before instantiating the database.

The digital manuscript was then converted from Kork format to the format of the DMMVM
(shared geometry; line segments as arcs) and used to instantiate the nine classes obtained after
the mapping of the object-oriented data struciure (§7.2) 1o the Postgres data model,

The consistency rules proposed in chapter 5 were then verified on the created database using
a combination of C functicns and Postquel queries. The only geometric inconsistency detected
{a vertical gap in one 1-container caused by the constraint in Kork for node snapping only
in 2D while digitizing in 3D} was corrected by taking the average height of the two affected
nodes. Rules were then defined in Postquel to enforce structural integrity of the database
during subsequent updating.

An example of a topologic guery involving the two map layers was given to illustrate the
capability of the model for multilayer spatial analysis without the need for overlay operation
during query processing, as is conventicnally done in operational sysiems at present.

Some of the uvpdating algorithms proposed in chapter 6 were also tested on the created
database. The algorithms (translated to C functions and Postquel queries) were used to (a)
delete an existing line object, (b) insert a new point object, (c) insert a new line object and
(d) insert 2 new arca object. The database remained consistent after the update operations,
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indicating that the algorithms can be translated into an operational software module in a GIS.
However, the experiment confirmed (as indicated in the algorithm) the need for the decision
of the human operator during insertion of area objects as to the fate of existing area object(s)
in the same layer which are (partly) in the same location as the new object, apart from the
semantic consistency situation with the objects from the other layers (which can be handled
by rules as proposed in this thesis). The operator should be assisted in this task by a graphic
display of the objects involved, a facility which was not available in the DBMS (Postgres)
used in this experiment. In the experiment, it was assumed that a new area object takes over
the (common) location of the existing area object of the same layer it overlaps with, The
semantic consistency was checked by displaying the name(s) of the spatially coinciding area
objects from other layers and requesting a prompt from the user to proceed with the updating
or to stop.

The Postgres DBMS, though an experimental, public domain software, proved to be effective,
especially in rules management, but like most DBMS, a visualization module in the system
will improve its capabilities in spatial database management.

This implementation has also proved that the data model for multi-valued vector maps,
proposed in this thesis, can indeed be operationalized, this being the third experiment in
different systems’ environments. In the first experiment, the map layers were manually
overlaid and coded into a dBase-IV DBMS to test the information content of the model (see
Ayugi 1992}, The second experiment used an Arc/Info system for data acquisition and dBase-
IV for database management to test the usage of the model in an operational GIS environment
(see Chhatkuli 1993). The third experiment reported here (see Essayah 1994 for more details)
has been carried out using a photogrammetric workstation for data acquisition and an object-
relational system for database management. The data model together with the consistency
rules and updating algorithms can therefore be recommended for operational use in GIS and
mappng,
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Figure 8.9 Graphic representation of the database (perspective view)

- = All farmlands that have calcinagnesic soil tyre

Figure 8.10 All farmlands (from topo layer) having calcimagnesic soil type (from
soil layer)
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Figure 8.11 Graphic representation of the database after deleting the railway
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Figure 8.12 Graphic representation of the database after inserting the railway
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Aathar colowrs are usaed 1o distinguish a 2—container from its nalighbowrs. The two 2—containars in black
and red colours at tha top right cornar of the map resrasent the newly insarted area object

Figure 8.13 Graphic representation of the database after inserting a new area object
(the new area object was decomposed into the two 2-containers shown in red and
black colours during the update propagation)
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9

CONCLUSIONS

This chapter concludes the research work reported in this thesis and indicates further
extensions and improvements. The research aimed at developing a formal approach for
automated consistency controls during updating operations in a vector-based GIS. To serve
as framework, a generalised conceptual data model was developed for a vector representation
of a multi-layer terrain situation. The data model was based on the formal data structure for
single-valued vector maps (Molenaar, 1989). In order to test the model and the concepts
developed in this thesis and for their future implementation, the extended model was
translated to relational and object-oriented data structures {logical data models). Concluding
remarks on how these tasks were achieved, including comments on furiher research and
development in this area, are presented in the following sections. A summary of the research
work is given in §9.1, followed by an evaluation of the prototype data structure in §9.2.
Future research and development are discussed in §9.3.

9.1 Summary of the Research Work
9.1.1 Development of a Data Model for Multi-valued Vector Maps

Geographic information sysiems are often classified (according to hardware and software
aspects) into four main subsystems for handling the four interrelated phases in information
processing, namely data collection and input, data storage and retrieval, data manipulation and
analysis, and visvalization and reporting. When the system is set up for geo-information
production, the most vital component on which the four subsystems operate is the spatial
database. The database, which represents the real world as seen by the application, must be
well-structured and consistent in order to meet the objectives of the system,

To design the database, it is common to view the data at four levels of abstraction, namely
reality, conceptual data model, data structure and file structure (Peuquet, 1984). The way the
reality (phenomena as they actually exist) is conceptualized in the data model (usually
categorised into tesseliation and vector) is often tailored to a given application, i.e., different
applications normally view a terrain situation differently, thereby extracting only the terrain
data that play definite roles within the application. For example, a cadastral surveyor will
partition a given region into land parcels with each parcel having unique attribute values. The
same region will be partitioned by a soil scientist into different soit units. This implies a
layered view of the terrain situation meaning that terrain objects belonging to different
applications are spatially coincident in reality, However, spatial analyses and planning often
require integration of different views of the world, ie., to integrate geo-data from different
map layers. The term map layer is used to denote a geographic dataset describing a certain
aspect of the real world (Hoop et al, 1993), ie., the set of objects belonging to the same
mapping context, e.g., cadastral, soil mapping, etc.

At present, the common approach to achieve an integrated analyses in an application
involving the use of spatial duta from muluple map layers is to structure each layer separately
and then perform an overlay operation when joint analysis is desired. The consequences of




159

this solution include an increase in overhead cost needed for the ad-hoc, repeated overlay
computations and the difficulty of predefining the spatial relationships among features from
different map layers (vertical topology). For example, to answer a spatial query like " select
all cadastral parcels having a soil type V with land use type W, situated within distance X
of place Y and having a metric area of not less than Z square units” in the layer approach will
involve the overlay of soil and cadastral maps during the query processing. Any time such
a query (involving multiple map layers) is submitted to the system, an overlay will have to
be computed.

In chapter 3, an alternative approach was proposed in which a single model was developed
to represent a multi-valued terrain abstraction, especially when frequent spatial analyses across
many map layers is envisaged, i.e., in applications involving frequent analysis of multi-layer
geo-information. The proposed conceptual data model is an object-based 2.5D (3D position,
2D topology) data model for multi-valued vector maps (DMMVM). Here, a vector map refers
to a database representation of the terrain situation as points, lines, surfaces (areas) and bodies
in which positional data are given in the form of coordinates of isolated points and the end-
points of line segments. A multi-valued vector map then refers to the vector-based
representation of termain objects from muitiple map layers whereby two cbjects of the same
geometric type may be spatially coincident. Two objects of the same type are said to be
spatially coincident if they (pardally) overlap in space. The mathematical framework for the
modelling is provided by graph theory, the relevant elements of which were described in §3.1.

In this model, positions of objects are defined in a 3D metric space but embedded in 2D
topologic space, ic., a 2.5D model. This means that only surfaces of objects are represented
such that a pair of X and Y coordinates must have a single Z value, thus a single-elevation
model. The model was based on the formal data structure (FDS) for single-valued vector
maps (Molenaar, 1989). In the 2D FDS (see §3.2), terrain objects play a central role in the
terrain description; each object has a thematic component and a geometric component. In the
thematic domain, the objects can be grouped into thematic classes in which each class has a
specific attribute structure (see Molenaar, 1993), and in the geometric domain, the object
types points, lines and areas are distinguished for a 2D or 2.5D terrain description, subject
to a constraint that two objects of the same type may not be spatially coincident. The three
object types are then completely described by a common set of two types of geometric
elements (arc and node), using graph theory as the mathematical framework. In the model,
the geometry of a terrain cbject is clearly distinguished into three independent aspects, namely
topology, shape and size, and position (see Figure 2.3). This geometric dataset has been
carefully structured in the FDS, leading to a semantically-rich, query-oriented and extendible
data model in which information on topology, shape and size, and position can be retrieved.
The FDS was extended in this thesis to allow objects of the same type to be spatially
coincident, thus facilitating the use of a singie structure for the representation of multi-layer
geo-data.

A geometric data type, the m-dimensional container, or simply m-container, where m €
{0,1,2} was introduced to model spatial coincidence among objects of the same geometric
type. Thus a 0-container represents spatiatly coinciding J point objects from J layers, a 1-
container represents (part of) K line objects from K layers and a 2-container represents (part
of) L area objects from L layers, where L is the maximum number of layers and J and K may
each be less than or equal to L.
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By introducing the container data type, overlapping sections across the layers are uniquely
identified such that they have their own individual geometric data and non-spatial data, apart
from those inherited from the overlapping objects; they can then be maintained and
manipulated by the DBMS just like single objects. Thus it is easier to include them in
aggregation and association abstractions, thereby improving spatial analyses in GIS.

Using graph theory as a mathematical tool, the three container types are then represented by
the topologic primitives arc and node. A node defines one 0-container and/for beginning or end
of an arc, while an arc defines (part of) one 1-container and/or (part of) a boundary of a 2-
container. The arc is defined by one start node and one end node, and a node is defined by
a coordinate triplet X,Y,Z. The geomeiry of the map is thus represented by a planar graph
G(N,A) where A is the set of arcs of the graph and N is the set of nodes. Each m-container
C, m e {0,1,2), is then a subgraph of G such that the geometry of C is represented by
G (N_,A) where N. c N and A, c A. For a O-container, A_ = &.

Thus cight basic geometric data types are defined to represent geo-data from multiple map
layers, namely area, line, point, 2-container, 1-container, O-container, arc, and node. Each data
type plays some specific roles in the model. The area, line and point data types abstractly
represent terrain objects whereby each terrain object in the application is mapped into one of
the three types during implementation. The mapping can be one-to-one or one-to-many,
depending on the complexity (shape) of the terrain object, e.g., a two-dimensional object with
a connected boundary and interior will be mapped to one elementary area object type, while
a two-dimensional object with disconnected boundaries and interiors will be mapped into two
of more elementary area objects. These related elementary objects will then be aggregated to
reconstruct the parent {(original) object during query.

One of the attributes of each of the three object types should be the thematic class of the
object. Although the thematic aspects of objects were given less attention in the thesis, the
model does not preclude the representation of thematic data. During implementation (when
thematic attributes of objects are identified) the thematic data can be arranged in a hierarchic
manner as proposed in Molenaar (1993),

The m-container, m € ((,1,2}, models spatial coincidence among elementary objects of equal
spatial dimension, as explained above. Apant from the attribute values inherited from the
spatially coinciding objects, an m-container data type can have additional attributes as
required by the user. For example, in a mult-valued vector map that integrates land use map
and soil map data, apart from the auribute values propagated to a 2-container by the two
spatially coinciding area objects from the two layers, the 2-container can have additional
attributes such as metric area, aliemnative land uses (based on factors such as type of soil,
neamess to certain utilities, etc) etc.

Arc and node, as stated above, play the roles of geometric descriptors in the model. The
proposed DMMVM can thus be used to organize the result of an initial overlay of all relevant
map layers for subsequent single-valued or multi-valued queries.

Spatial relationships (topologic, metric and order) provide the main framework for spatial
analysis in GIS. Thus vector data models place preat emphasis on the modelling of the
topologic spatial relationships among objects. However, linle effort is usually made to
formalize the consistent set of relationships which a given data model can support in order
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to have a priori knowledge of the information content of the model and to provide a spatial
query language for retrieving such information. Apart from this acknowledged role of
topologic relationships in GIS, they can also serve as useful tools in automated database
updating and the maintenance of data consistency in GIS as shown in this thesis.

The possible topologic relationships among the three elementary object types arca, line and
point, and among the geometric primitives arc and node in the model proposed in this thesis
were formalised in chapter 4 using the 9-intersection model (Egenhofer and Herring, 1992)
as interpreted for graph-structured vector maps (Molenaar et al, 1994). Algorithms are then
defined for detecting the occurrence of any of the elementary relationships for any object
combination. The algorithms can be translated to topologic operators and used for topologic
queries, as well as providing a tool for detecting violation of and enforcing geometric
constraints. When used as a tool for maintaining consistency, the topologic operators will
serve as detectors of inconsistencies. The return value of an operator will trigger the relevant
rule that will enforce consistency if violation occurs. The rules that enforce the geometric
consistency were presented in chapter 5.

An integration of the DMMVM with a DTM was described in §3.5, indicating the
extendibility of the model to relief modelling. The integrated model provides a unified
representation of multi-layer terrain object data and terrain relief data in a flexible manner,
such that DTM specific information can be derived from the same database as any other
spatial information under a single database management system, while retaining the ability
to perform non-DTM related spatial analysis without involving DTM informetion. The
integration is based on the consideration that most of the skeleton of a DTM is usually
contained in terrain objects such as rivers, roads, lakes, etc., and with the importance of DTM
in spatial analyses, it is apparently more efficient to integrate geographic and elevation mod-
els. The terrain relief is therefore regarded as a mapping layer during data acquisition so that
the terrain surface is classified into DTM object types in form of point, line and area on the
basis of relief characteristics (slope and height). The DTM class can then become one of the
mandatory properties of each terrain object.

The edge-based triangulated irregular network (TIN) was selected for the digital representation
of the terrain relief since it can easily be linked with the topologic stucture of the DMMVM
via the geometric primitives arc and node which are isomorphic, respectively, to the
primitives edge and veriex of the edge-based TIN. Thus in addition to the eight data types in
the DMMVM, two exira data types, edge and vertex, were added to represent terrain relief
in the integrated model. An edge is defined by two adjacent TIN vertices and has one triangle
on each side. A vertex is defined by a coordinate triplet X, Y and Z. The geometric
connection between the edge-based TIN and the DMMVM is provided by the links among
the geometric primitives arc, node, edge and vertex. A TIN edge can be part of zero or one
arc while a vertex can be a node.

An algorithm can be provided for deriving relief information in the interior of area objects
(see Kufoniyi and Bouloucos, 1994 for an example) because these cannot be resolved through
the links among the geometric primitives. The position of an object can therefore be given
in 2D or 3D; when defined in 2D, the height value can be interpolated from the DTM
subsystem. Thus objects in the object-base can contribute to the generation of a DTM with
high fidelity, while the DTM supports the object-base, e.g., when updating via monoplotting
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techniques, to provide height information for objects whose Z values could not be determined
during the data collection phase, and to provide relief information in general. Additional
information on the integration of the DMMVM and DTM can be found in Kufoniyi et al
(1994), Kufoniyi and Pilouk (1994), Pilouk and Kufoniyi (1994), and Kufoniyi and Bouloucos
(1994).

9.1.2 Translation of the Model to Database Structures for Implementation

A conceptual data model is normally developed without a consideration of the type of system
that will impiement it. However, for implementation purposes, it is necessary to transiate the
model into a prototype database structure, based, usually on a database model (e.g., relational,
network, etc.). Thus the conceptual data model for multi-valued vector maps (DMMVM) was
translated into two families of database structures, namely (1) a relational database structure
and (2) an object-oriented database structure (see chapter 7).

The prototype relational database structure for multi-valued vector maps was designed using
Smith’s method for relational database design (Smith, 1985). The method comprises four
steps, namely (1) identification of data types and the relationships among them, (2) listing the
single-valued and multi-valued dependencies among the data types as dependency statements,
(3) wanslating the dependency statements to a dependency diagram, and (4) composing
normalised relations from the diagram. Using this method, seven base tables were developed
for creating a relational database for multi-valued vector maps. Additional thematic data of
the objects can be introduced by creating exwra tables for the thematic classes. Some
experimental implementations carried out with the prototype indicate its usability for multi-
layer spatial data modelling (see Ayugi, 1992; Bouloucos et al 1993; Chhatkuli, 1993 and
Bouloucos et al, 1994). However, if the relational prototype is used for an implementation,
then the consistency rules (chapter 5) and the update propagation algorithms (chapter 6)
would have to be handied by a high-level programming language {e.g., C or Fortran) and
coupled with the RDBMS (see Kufoniyi, 1989 and Kufoniyi et al, 1993 for examples) since
most operational RDBMSs are not capable of handling user-defined rules.

The relational structure can serve for immediate implementation given the wide availability
of operational relational DBMS as compared with object-oriented systems. Because of the
shortcomings of the relational model in handling spatial data (see chapter 2), the model was
also translated to an object-oriented data structure (which has been acclaimed to be more
suitable for spatial applications than the relational model). The object-oriented modelling
constructs classification, generalisation, aggregation and association, together with the
concepts of inheritance and propagation, were applied te translate the data model to an object-
oriented data structure.

From the basic structure of spatial objects whereby each temain object has two main
characteristics, geometric and thematic, two classification domains were distinguished for the
object-oriented modelling, namely (1) thematic domain and (2) geometric domain. Thus each
terrain object will be an instance of one of the thematic classes and an instance of one of the
geometric classes (i.e., double inheritance). Attention was focused on the latter classification
which yielded a total of nine classes (each of the eight data types -- area, line, point, 2-
container, 1-container, O-container, arc and node — as a class plus the explicit representation
of the topologic relationship "cross” between two l-containers as a class) for the object-
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oriented data structure. The consistency rules and updating procedure proposed respectively
in chapters 5 and 6 become operations (methods) of the classes. Also, the topologic
relationships derived in chapter 4 are expected to be dynamically detected by the system. This
can be done by translating the proposed algorithms for detecting a topologic relationship (see
chapter 4) into operations of the classes.

9.1.3 Development of Procedure for Spatial Database Updating

Another aspect of this research was to formulate procedures for a consistent automated
updating of a vector-structured database, using the DMMVM as a framework. In geo-
information production, the cost of data collection has been said to be about seven to ten
times more than the cost of the hardware and software needed to establish the database
(Peled, 1994). Thus it is very important that the accuracy and cumrency of the data should be
reliable, such that the purpose for setting up the database can be fulfilled with profitable cost
recovery. This thesis aimed at contributing towards achieving this by providing algorithms
for automated update propagation (see chapter 6) such that topology is automatically updated
by the system in a consistent manner. This will improve on the current practice in operational
systems, which usually requires a delayed reconstruction of topology whenever the geometry
of an existing object changes or when a new one is inserted. In other words, there is usually
a time-lag between the time the geometric state of the object changes and when the topology
is reconstructed, often by the user having to issue a command for the reconstruction.

Although geoinformation updating includes change detection, data collection and database
updating, the focus in the thesis was on antomated database updating, under the assumption
that the necessary changes have been detected and captured in readiness for input into a
DMMVM-structured database. Algorithms were developed for the insertion, deletion or
modification of each of the eight data types (area, line, point, 2-container, 1-container, 0-
container, arc and node) in the DMMVM. The updating of the two geometric primitives (arc
and node) are at the lowest level upon which the updating of other data types are based.

The topology of the database is updated dynamically by the system during the updating by
evaluating, using computational geometry, the topologic relationship between the new
primitive (arc or node) of an object and the existing primitives in the database. The type of
relationship detected will then activate the relevant consistency rule (including update
propagation) to validate the topology and consistency of the database. Ideally, the defined
algorithms should be translated into computer modules as an integral part of an existing
DBMS. However, since most of the operational DBMS are not capable of accepting user-
defined rules and data types, the algorithms may have to be programmed in a high-level
language and then coupled with the DBMS during implementation.

9.1.4 Handling Data Consistency in Spatial Databases

This research also addressed the problem of data consistency in spatial databases. A large
proportion of the cost of setting up a database for spatial information production is attributed
to data acquisition. To achieve the aims of setting up the database, the information produced
by that systemn must be reliable, i.e., the quality of the data from which the information is
derived must be reliable. This has made the issue of data quality an important aspect in GIS.
Data consistency is a component of datz quality because consistency is essential for the




164

database’s reliability. Consistency can be categorised into two types: static and dynamic
consistencies. The thesis focused on static consistency which can also be analyzed into
structural and semantic consistencies (see chapter 5). For a vector map to be structurally
consistent, the topology of individual objects represented in the database must be consistent.
In addition, the topology of the geomeiric descriptors of the objects must be preserved.

. Furthermore, if the objects are embedded in a 2D topologic space as in the model developed
in this thesis, the planarity of the map must be enforced by ensuring that the generalised Euler
constant (see §5.1.3) holds at any time.

The semantic consistency, on the other hand, deals with topologic consistency between pairs
of objects and the application-dependent constraints attached to individual objects. In chapter
5, consistency rules were formulated to ensure smructural constraints, while a monitoring
strategy was proposed for semantic constraints. In both cases, topology plays the central role
as an "alerter” of constraint violations. As shown in chapter 5, the conditions can be manslated
to topologic constraints (for single objects) and topologic relationships (for object pairs) and
stored in the database as events. The corresponding responses of the system to enforce
consistency can then be defined as qctions, thus giving a rule-based procedure (using the if
event then action convention) for the management of data consistency in spatial databases.

9.1.5 Experimentation of the Prototype Data Structure

An experimental implementation of the proposed model as translated to an object-oriented
data structure in §7.2 was carried out using the extended relational (evolutionary object-
oriented) database management system Postgres, version 4.2 (see chapter 8). Data acquisition
was done with a Planicomp C120 photogrammetric stereoplotter equipped with a Zeiss
Videomap (for superimposition) and a Calcomp drawing board digitizer. The stereo-
compilation was done with the aid of the Kork digital mapping systemn, version 8.0.

The implementation aimed at three objectives: (a) to illustrate the usage of the proposed data
structure for multi-valued vector maps (see chapters 3 and 7), (b) to test some of the
consistency rules presented in chapter 5 and (c} to test some of the updating algorithms (see
chapter 6). Without loss of generality, the data structure was tested with two map layers: a
soil map layer and a topographic map layer showing major land use and land cover types. The
geo-data from the soil layer were initially digitized on a Calcomp drawing board. The digital
manuscript was then superimposed on the stereo-model which contained the geo-data of the
second layer. The superimposition resulted in the intersection of the two layers such that
closed polygons became 2-containers {representing (part of) a certain area cbject in the soil
layer and (part of) an area object in the topographic layer), line objects were decomposed into
1-containers and paint objects became O-containers. Thus the two layers were compiled in
muiti-valued mode.

A method was designed to assign a feature code to each string (an aggregation of connected
line segments representing (part of) a certain line object or boundary of area object) such that
the code contains the identifier of the 1-container represented by the string (or zero if none)
and the identifiers of the 2-containers on its sides. The coding method was devised by
combining the colour and feature codes of a string in which the colour code, concatenated
with the first (left justified) digit of the feature code represents a 1-container identifier, the
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next two digits of the feature code represent the identifier of the 2-container on the left side
of the string and the last two digits of the feature code represent the identifier of the 2-
container on the right.

A more general coding method was proposed in chapter 8 whereby a look-up table (LUT) is
prepared before digitizing. The LUT, containing four fields per record, will then store the
string identifier as one field, the identifier of the 2-container on the left side of the string as
the second field, the 2-container on the right as the third field, and the identifier of the 1-
container represented by the string (0 if none) as the fourth field. The LUT will then be
related to the locational data of the strings as part of the data conversion program before
instantiating the database.

The digital manuscript of the compiled multi-valued map was then converted from Kork
format to the format of the DMMVM (shared geometry and line segments as arcs) and used
to instantiate the nine classes obtained after the mapping of the object-oriented data structure
(§7.2) 1o the Postgres data model.

The consistency rules proposed in chapter 5 were verified during implementation using a
combination of C functions and Postquel queries. The geometric inconsistency detected was
corrected and rules were defined in Postquel to enforce structural integrity of the database
during subsequent updating. In addition, computer programs were developed for detecting the
topologic relationships ameng geometric primitives (i.e., between a new arc and an existing
arc, between a new arc and an existing node (or vice versa) and between a new and an
existing node) during updating such that the detected relationship will activate the
corresponding C function that enforces geometric consistency.

An example of a topologic query involving the two map layers was given to illustrate the
capability of the model for multi-layer spatial analysis without the need for an overlay
operation during query processing as is conventionally done in operational systems at present.
Information relating to a single layer can also be easily retrieved (see Essayah, 1994 for
examples).

Some of the updating algorithms proposed in chapter 6 were also tested on the created
database. The algorithms (translated to C functions and Postquel queries) were used to (a)
delete an existing line object, (b} insert a new point object, {c) insert a new line object and
(d) insert a new area object. The database remained consistent after the update operations,
indicating that the algorithms can be translated into an operational software module in a GIS.
However, the experiment confirmed (as indicated in the algorithm) the need for the decision
of the human operator during insertion of area objects as to the fate of existing area object(s)
in the same layer which are (partly) in the same location as the new object, as well as the
semantic consistency situation with the objects from the other layers.

The human operator should be assisted in this task by a graphic display of the objects
involved, a facility which was not available in the DBMS (Postgres) used for the experiment
in this thesis. In the experiment, it was assumed that a new area object takes over the
{common) location of the existing area object of the same layer it overlaps with. The semantic
consistency was checked by displaying the name(s) of the spatially coinciding area objects
from other layers and requesting a prompt from the user to proceed with the updating or to
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stop. An earlier, related experiment on automated update propagation, using a subset of these
algorithms, was also performed on a single-valued vector map by the author. The experiment
was done by coupling Microsoft Fortran with an Oracle DBMS in a microcomputer
environment at the Department of Land Surveying, Photogrammetry and Remote Sensing,
Wageningen Agricultural University. The algorithms were translated into Foriran programs,
while Oracle served as the RDBMS retrieving the necessary data from the database into the
Fortran program, for updating and consistency operations, and returning the updated data back
into the database. Details of this experiment can be found in Kufoniyi (1989) and Kufoniyi
et al (1993).

The Postgres DBMS, though an experimental, public domain software, proved to be effective
especially in rules management, but like most DBMS, a visualization module in the system
will improve its capabilites in spatial database management.

The experimental implementation of the data model for multi-valued vector maps proposed
in this thesis has also proved that the model can indeed be implemented, this being the third
experiment in different systems’ environments. In the first experiment, the map layers were
manually overlaid and coded into a dBase-IV DBMS to test the information content of the
model (see Ayugi, 1992). The second experiment used an Arc/Info system for data acquisition
and a dBase-IV for database management to test the usage of the model in an operaticnal GIS
environment (see Chhatkuli, 1993). The third experiment reported here (see Essayah, 1994
for more detajls) was carried out using a photogrammetric workstation for data acquisition
and an object-relational system for database management. The data model, together with the
consistency rules and updating algorithms, can therefore be recommended for operational use
in GIS and mapping.

Although the DTM aspect of the data model was not addressed in the experiment, a
subsequent decision to create a DTM of the same area will not require much extra effort
because the locations of objects have been defined in 3D. First, two extra classes, namely
Edge and Vertex, should be created in the database with the class Edge having mandatory
properties edge-id, beg-vertex, end-vertex, left-triangle, right-triangle and arc-id (identifier of
the arc which the edge is part of; this will be zero if none), and class Vertex having properties
vertex-id, x-coordinate, y-coordinate and z-coordinate including accuracy and lineage if
desired. Then the stereomode] will be set up again using the existing orientation parameters
of the model and the digital manuscript superimposed to determine the DTM classes of the
already digitized objects and to acquire additional skeleton data as well as filling data. Based
on the DTM classes just determined for the objects, the coordinates of those objects would
be retrieved from the database and combined with the acquired skeleton and filling data to
triangulate the project area (using any tiangulation software) and structure the result
according to the structure proposed in chapter 3.

9. 2 Evaluation of the Model

As stated earlier in this chapter, the proposed data model for multi-valued vector maps
{(DMMVM) was based on the 2D formal data structure (FDS) for single-valued vector maps.
The extension of the FDS now facilitates the use of a single structure to represent spatially
coinciding objects of the same type, i.e., terrain objects from different map layers.
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The clear distinction in the FDS of the geometric aspects of terrain objects into topology,
shape and size, and position not only facilitates the construction of a semantically-rich, query-
oriented spatial database, it also leads to an extendible and flexible data model. For example,
having distinguished the semantic characteristics of terrain objects into thematic and
geometric, it follows that the geometry of the same terrain situation can be represented either
by vector elements (arc and node) or by raster elements (see Molenaar and Fritsch, 1991 and
Molenaar and Janssen, 1992), leading to flexibility in the choice of system configuration for
its implementation and in data exchange. The flexibility and extendibility of the model have
also been demonstrated in this work. The clear articulation of the geometric aspects of an
object facilitated key modelling decisions. (1) It became possible to decide on the dimension
of the metric space (whether 2D or 3D) independent of the dimension of the topologic space.
Here, the extended model was based on 3D coordinate space (position) and 2D topologic
space, i.e., a 2.5D data model. (2) It also helped in deciding at which level to integrate geo-
data from maltiple map layers, whether at geomeiric level or at thematic level.

At the geometric level (the choice in this thesis), it becomes possible to distinguish four
different approaches to the geometric integration by considering how metric (positional) data
and topologic data of the different layers are handled. The four possibilities are (i) to structure
each layer separately, i.e., combining metric and topology per layer and perform overlay of
the layers when necessary; (ii) to structure the geometric data such that all the layers share
a metric dataset while topology is kept per layer; vertical topologic guery will then be done
by overlay computation or by comparison of metric data; (iii) to soucture the geometric data
such that all layers share a common topology, while the metric information is structured per
layer; and (iv) to define a model in which both metric data and topology are shared by all
layers as proposed in this thesis. The pros and cons of the four geometric approaches are
given in chapter 3 (see also Hoop et al, 1993) but some remarks are in order about the fourth,
for which a data model has been proposed in this thesis. The advantages of this approach
include the following:

(1) Elimination of redundant data because a single geometric dataset is kept for all layers
instead of storing geometric components {position and/or topology) separately for each layer.
(2) Faster multiple-layer queries since it will not be necessary to compute an overlay before
answering such queries.

(3) Reduction in overhead cost: overlay is computed once, whereby problems of spurious
polygons, sliver lines, etc. are handled once, although there is the disadvantage of performing
overlay computation where it is not required (see subsequent paragraphs).

(4) Higher information content, the knowledge of which is also known a-priori; thus a query
language can be predefined for retrieval of such information.

(5) Spatial consistency can be maintained at system level since only one data structure is used
and only one geometric data set is kept.

(6) Because the overlapping parts among objects of the same type are uniquely identified with
their own geometric and non-spatial datasets, they can be maintained and manipulated just
like single objects; thus it is easier to include them in aggregation and association
abstractions.

Thus the proposed data model is query-oriented, giving high performance efficiency when
used in applications that frequently require analysis of multi-layer geo-data with a high
density of spatial coincidence among the objects. Even when an implementation starts with
separate layers, the proposed database structure can be used later to organize the result of an
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overlay computation during query if it is desired to make the overlay result persistent for
future queries.

Using the data mode! to organize a multi-layer terrain situation, however, means that overlay
computation would have to be performed in all parts of the geographic space, including areas
that may not require it, thereby introducing some unnecessary increase in the storage and
computational costs. Note also that query operations conceming a single layer will be slower
in the integrated model than in scparate structures. Thus it is necessary to have a priori
knowledge of the extent of the spatial coincidence among objects in the application and how
frequent the "vertical” spatial analysis will be required. If it is possible to model terrain
objects in a multi-layer application such that no two objects of the same type overlap in
space, then the FDS will be more suitable. And if it is certain that only a limited number of
objects will be spatially coincident in the application or more single-layer queries are
envisaged with vertical queries required only seldomly, then the layers are best structured
separately.

Note that using the FDS instead of the DMMVM, as mentioned in the paragraph above, does
not significantly invalidate the consistency rules and update propagation algorithms developed
here, since they were formulated at the conceptual level with terrain objects, as defined in the
FDS, as the main focus. In addition, an m-container is topologically isomorphic to an n-
dimensional elementary object with m = n; it is thus easy to harmonize the operations defined
for the m-containers with those of the elementary objects.

The DMMVM is more query-oricnted than data acquisition-oriented (except where it is
possible to derive all input data from the same source) because data acquisition is usually
done within a certain context and by a specialist in that particular discipline. For example, to
set up an integrated database incorporating soil and cadastral geo-datasets, the classification
and sampling of soil units will be performed by a soil scientist, while the demarcation and
survey of the cadastral parcels will be done by a land surveyor. The collection of data for
updating will also follow the same trend: the data will be collected per layer and it is easier
to update a single layer than a combination of layers.

In a DMMVM-based GIS, the addition of a new object means a further segmentation of the
geographic space, leading to higher storage and overhead cost, but this is relevant only if the
model is used in a situation where vertical spatial analysis is not often required. When used
to organize muiti-layer geo-data for continual vertical spatial analysts, it solves the problem
of the much higher overhead cost that will occur if overlay is computed for every query.
Intuitively, it would also appear that overlay computation will be required each time the
database is being updated. This is not necessarily so because the updating algorithm proposed
here eliminates the need for overlay computation during updating; the updating is propagated
just as it would in a single-layer vector structure. This has been made possible by using the
same geometric structure for single- and multi-valued vector maps.

The experience gained during the experimentation with the model indicates that elaborate
planning is required to create the database but, as pointed out earlier, the faster multi-layer
query and richer information content of the database compensate for this. Data consistency
is also ensured because inconsistencies are identified and comected during the creation or
updating of the database.
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If this model is compared with other models of its type, e.g., the ATKIS DLM data model
(see §2.1.2) and another variant of the FDS extension proposed by Hoop et al (1993) (see
§3.3), the DMMVM has a potentially richer information content because of the explicit
representation of overlapping sections among objects, which can then be assigned additional
attribute values apart from the ones they inherit from the overlapping objects. These are
implicitly represented in the two cited examples and will therefore require extra computations
to derive them during query.

The provision of conventions for the FDS, with extensicns of the conventions as required by
the DMMVM, facilitates an unambiguous mapping of the terrain situation to a DMMVM-
structured database, making it possible to implement the proposed data structure in any
existing GI systems, albeit with additional operations (such as programming} or slight
modification of conventions. For example, many existing systems represent an arc differently,
usually as an aggregation of straight-line segments; thus additional operations will be required
to restructure topelogy if we keep to the assumption that an arc is a straight-line segment.
This, in addition, introdnces some data redundancy. Because it does not invalidate the
conceptual model (an arc can have any shape subject to the constraints that it is not self-
intersecting and it does not close back on itself), this convention can be relaxed during
implementation to accommeodate a different shape definition for an arc (Molenaar, 1992).

In addition, it is possible to also relax the convention that constrains all objects belonging to
the same thematic class to be of the same geometric type, to allow for the construction of
complex thematic classes. The requirement for additional operations often arises because the
data models of many of the existing systems often lack the topologic richness that is found
in the FDS. For example, in order to realise an object-level topology in Arc/Info, such as
knowing all the cities (with each city represented as an area object) through which a certain
road (with roads represented as line objects) passes, will require the overlay of the line and
polygon coverages. The topologic relationships that are explicitly represented in the
conceptual data model will therefore be pre-computed in the same manner and stored.

The power of the data structure developed here is in the fact that it can be used in any vector-
based application being a generic model. It can be used to set up the primary database and
then define aggregation rules (see Richardson, 1993 for an example) to derive databases of
lower resolutions from the basic stucture.

9.3 Further Research and Development

Much work has been done in this research to meet the stated objectives, but there are still
areas for further research and development. As with every prototype, the relational and object-
oriented data structures proposed in this thesis still require more experiments before actual
implementation. Experiment is needed to formulate the optimum procedure to collect data
using any data source (aerial photographs, digital images, etc.) and data acquisition method
(photogrammentry, digital image processing of remotely sensed data, land surveying, etc.).
Since the main aim is to automate much of the processes involved in the production of geo-
informartion, the data collection procedure should, as much as possible, include dynamic
building of topology and consistency enforcement as the data are entered into the system. The
consistency rules and update propagation algorithms, together with the topologic coding
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methad proposed in this thesis, will serve this purpose by translating them into software codes
as part of the data collection software for the implementation of the structure.

Not all the developed rules and algorithms were tested during the experimental phase of the
thesis because not all the formalized situations occurred during the experiment. Moreover, the
extensiveness of the rules and algorithms implies that more time is required to translate all
of them into software codes and test them with real data. More extensive tests are therefore
required to verify all the possibilities covered in the consistency rules and the update
propagation algorithms, The consistency rules and updating algorithms have been defined for
a 2D topologic space. It is necessary to extend them to cover a 3D topologic situation, using,
for example, the 3D FDS (Molenaar, 1990) as the framework. This can be done by first
extending the topologic relationships to cover 3D topologic space (see for example Hoop et
al, 1993), which will then be used as tools for consistency operations using the approach in
this thesis as guidelines.

On the basis of the experience articulated in this thesis on the extension of the 2D FDS (for
single-valued vector maps) to a 2.5D data medel for multi-valued vector maps (DMMVM),
it should be possible to also extend the 3D FDS to accommodate multi-valued terrain
representation.

A basic assumption made in the modelling process is that time is considered constant such
that, during updating, the old data are treated as obsolete and deleted, and only the current
data are kept. Although it is possible to archive these obsolete data, because the basic data
model does not incorporate time as a variable component of objects, spatio-temporal analysis
cannot be performed. This aspect is now very important in GIS; thus it is necessary to extend
the proposed model to accommodate the temporal dimension of objects. In the same vein, the
boundaries (positions) of objects are assumed to be well-defined (i.e., crisp dataset) in this
work; it is also important and relevant to investigate and formalize the aspect of objects with
fuzzy boundaries which will then be incorporated in the consistency rules and updating
procedure.

9.4 Thesis Recapitulation
9.4.1 Condlusions

- A 2.5D query-oriented spatial data model for multi-valued vector maps was developed by
extending the 2D formal data structure (FDS) for single-valued vector maps.

- Three geometric data types, namely O-container, 1-container and 2-container were added to
the five basic data types (area, line, point, arc and node) in the FDS to facilitate representation
of geo-data from multiple map layers.

- The addition of the m-container, m € {(,1,2}, facilitated an explicit representation of spatial
coincidence among objects of the same geometric type, meaning that an m-container can be
handled as an individual object with distinct geometric and atiribute properties for spatial
analysis.
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- The proposed model gives faster and richer multi-layer topologic queries in a vector GIS.

- Overlay is computed only once at the time of database creation (if data collection is made
per layer) and not during query processing as presently done in most commercial systems;
thus production cost is reduced, while increasing the information content of the database.

- By using an edge-based TIN, the model can be integrated with a DTM in a flexible manner
as demonstrated in the thesis.

- A method was proposed for the coding, during data collection, of the elementary topologic
relationships to be made explicit in the database.

- Consistency constraints in vector-structured spatial databases were identified and analyzed.

- Rules were then defined for monitoring and enforcing the constraints during database
creation and updating. Topologic relationships served as a tool in the rule-based scheme; they
are used as inconsistency detectors which activate the corresponding operations to be
performed by the system to validate consistency.

- The possible topologic relationships in vector maps were formalized for the above-
mentioned purpose but they also serve their traditional role in topologic queries.

- The thesis addressed the issue of database updating by providing a procedure for automated
updating of the database while maintaining data consistency.

- Algorithms were provided for the updating of the basic data types in a vector-structured
spatial database using the proposed data model as a framework. Complex updating operations
can then be decomposed into the formalized elementary operations.

- Having translated the proposed model to a relationat structure and an object-oniented data
structure, implementation in a variety of systemns is made possible.

- An experimental implementation of the object-oriented prototype indicated that the model
and the consistency rules and the updating algorithms can be used in a production
environment. For the experiment, data were acquired by analytical photogrammetry, while an
extended relational DBMS (Postgres) was used for database management.

- For frequent spatial analysis across many layers, the proposed model is very suitable.
9.4.2 Recommendations

- Because the proposed model requires a complete segmentation of the combined layers, even
in areas where vertical topologic queries will not be performed, it is necessary to have a priori
knowledge of the extent of spatial coincidence among objects in the application and how
frequent the "vertical” spatial analysis will be required in order to decide on the optimum data
model for multi-layer representation.
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- If it is possible to model terrain objects in a multi-layer application such that no two objects
of the same type overlap in space, then the FDS will be more suitable. And if it is certain that
only a limited number of objects will be spatially coincident in the application or more single-
layer queries are envisaged with vertical queries required only seldormly, then the layers are
best structured separately.

- To facilitate easier implementation of the model (and the FDS on which it is based) in
commercial systems, and to further minimize data redundancy, the arc can be implemented
as an aggregation of straight-line segments.

- Experiments are needed to formulate the optimum procedure to collect data for multi-valued
vector maps using any data source (aenal photographs, digital images, etc.) and data
acquisition method {photogrammetry, digital image processing of remotely sensed data, land
surveying, etc.); the coding method proposed in the thesis can be used for such an experiment.

- More cxtensive tests are required to verify all the possibilities covered in the consistency
Tules and the update propagation algorithms.

- The proposed 2.5D data model for multi-valued vector maps (together with the rules and
algorithms) should be extended to full 3D, e.g., by extending the 3D FDS to accommodate
multi-valued terrain representation following the same approach used here.

- To be able to handle spatio-temporal analysis, the temporal dimension of objects have to
be accommodated in the proposed model.

- It is also important and relevant to investigate and formalize the aspect of objects with fuzzy
boundaries so as to incorporate this aspect in the consistency rules and updating procedure.
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APPENDIX 1.1 Block Diagrams of the Updating Algorithms
(see Chapter 6 for the notations and algorithms)
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1.1.4 Insert Arc
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1.1.5 Delete Arc 1.1.6 Modify Arc
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1.1.8 Delete 2-container 1.1.9 Modify 2-container
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1.1.16 Insert Point 1.1.17 Delete Point
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1.1.20 Delete Line
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1.1.23 Delete Area
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Descriptions of Selected C and Postquel Functions Written for the
Implementation (see chapters 6 & 7 for the algorithms)

Function Name Language Argoment {input}  Output Description
checkArcLoop Postquel arc class null (if no viol- consistency check
ation) or arcs with  for arc loop
snode = enode (if
violation occurs)
checkDupArc Postquel arc class null or duplicate congistency check
arcs for duplicate arcs
checkRedArc Postquel arc class null or redundant  consistency check
arcs for arcs that carry
no information
(dangting arcs)
e.g. fiTweC =
rgtTwoC but
aOneC =0
mCgraph() C subgraphs of all 1-  identifiers and monitoring 1CC_-
containers or 2- nodes of 1- or 2- 11CC_2 and
containers or line  containers or line  20C_1 (see §6.-
objects or area or area ohject that  2.2)
cbjects violatc graph
structure
insarc() C arc of new line or  property values monifor and
area object and all  (snode, enode, enforce GP_Ru-
existing arcs (incl- MiTwoC, rgtTwoC  le_1 to GP_Rule-
uding coordinates)  and aOneC) of _12 (sec Table
new arc, and data  6.1)
file for updating
databasc geomctry
arctopo() C properties (includ-  topologic relation-  computation of
ing coord.) of new  ship between new  existing topologic
arc; properties of arc and an existing relationship
all existing arcs arc between a new
and an existing arc
using computation-
al geometry
meet() C new arc and exist-  existing arc for compulation of
ing arcs which 1287 (new relation 1287 (new
arc, existing arc) arc, existing arc)
is True; O if none
arcint() C ncw arc and exist-  existing arc for computation of
ing arcs which r063 or relations r063 and
r159%(new arc, r159 between two
existing arc) is arcs

True




ptin2c()

interlr(}

alternodelr(}

equallr()

insidelr()

containslr(}

indentir(}

outdenttr()

coveredbylr()

coversir(}

touchesir()

new node and
existing 2-con-
tainers and their
locational data

new arc and the
existing arc having
relation 1159

new arc and the
existing arc having
relation 1287

new arc and the
existing arc having
relation r400

new arc and the
existing arc having
relation 1179

new arc and the
existing arc having
relanon 220

new arc and the
existing arc having
relation 1255
(indents)

new arc and the
existing arc having
relation 1255 (out-
dents)

new arc and the
existing arc having
relation r435

new arc and the
cxisting arc having
relation 1476

new arc and the
existing arc having
relation 1063

cxisting 2-con-
tainer in which the
new node lies

property values of
new arc; modified
version(s) of cxist-
ing arc

property values of
new arc; modified
version(s) of exist-
ing arc

property values of
new arc; modified
version(s) of exist-
ing arc

property values of
new arc; modified
version(s) of exist-
ing arc

property values of
new arc; modified
version(s) of exist-
ing arc

property values of
new arc; modified
version(s) of exist-
ing arc

property valaes of
new arc; modified
version(s) of exist-
ing arc

property values of
new arc; modified
version{(s) of exist-
ing arc

property values of
new arc; modified
version(s) of exist-
ing arc

property values of
new arc; modified
version(s) of exist-
ing arc
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point-in-polygon
compulation

enforces GP_Ru-
le_5 (see Table
6.1) and assigns

property values (o
new ar¢

enforces GP_Ru-
le_9 and assigns
property values o
new arc

enforces GP_Rule-
_10 and assigns
property values to

new arc

enforces GP_Ru-
le_6 and assigns
property values to
new arc

enforces GP_Ru-
le_7 and assigns

property values to
new ar¢

enforces GP_Ru-
le_8 and assigns

propesty values w
new arc

enforces GP_Ru-
le_8 and assigns
property values to

new arc

enforces GP_Rule-
_11 and assigns

property valves o
new arc

enforces GP_Rule-
_12 and assigns

property vatues 1o
new arc

enforces GP_Ru-

le_3 and assigns

property values 1o
new arc




touchedbylr()

r272mn()

r092an()

arcnodecoord

enler

delline

inspt()

insline()

Postquel

Postquel

Postquel

new arc and the
existing arc having
relation 1095

coordinates of new
point object and
all existing nodes
with degree 0

new node and
existing arcs

arc and node
classes

area and arc
classes

id and layer of
line object

coordinates, object
id, name, layer
and class of the
new point object

as in inspt but for
line object

as above, for area
object

property values of
new arc; modified
version(s) of exist-
ing arc

existing node for
which 272 (new
node, existing
node) is True

existing arc for
which r092(exi-
sling arc,new
node) is True;
retums 0 if none

G(N,A) of the
map (database)
including
coordinates
Number of com-
ponent graphs of
the map

file containing

property values
with enforced
consistency rules;
the file is run as
Postquel guery file
10 propagate the
update

as above

as above

185

enforces GP_Ru-
le_4 and assigns
property values to
new arc

computation of
relation 1272
between new node
and existing nodes
{with degree ()

to compute 1092(-
arc,node)} between
a new node and an
existing arc

to retrieve the
arcs, nodes and
coordinates in the
database

to ascertain planar
enforcement

to delete a given
line object &
propagate the
update

insertion of new
point object while
maintaining con-
sistency

as above, for linc
object

as above, for area
object
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Appendix 2 Samples from the Database

Arc Claas

arc id snode enode 1ftTwoC rgtTwoC aOneC

967 1096 1097 i 7 92

968 1057 1098 ? 7 92

97¢ 186 1101 53 53 92

971 1101 1102 53 53 g9z

1070 679 12006 39 35 21

1071 1206 1207 - 3% 3% 21

1106 1244 124¢ 10 27 71

11067 1246 1247 190 27 71

1112 1252 1253 3z 27 71

1155 1299 1300 30 30 71

1156 1300 1302 30 30 71

1157 1300 1304 30 30 9t

1167 1314 1315 2 26 91

1 1 2 99 5 0

2 2 4 99 [3 0

Area Class

twol id acbiid layer aname aclass

1 1 topo FL1 farm_land

80 6 topo FL& farm land

13 7 topa FL? farm land

81 12 topo Fl12 forest

82 12 topo Fl12 forast

49 21 topo MLF21 mixed 1d for

30 72 topo 872 built up_area

82 1 =0il Il llttle weathered | nonclimatic mineral soils
84 1 s0il i1 little weathered nonclimatic _mineral soils
9 i1 s0il 1111 slightIy developed nonclimatic_. soils”
21 13 soil 1113 slightly developed nonclimatic_soils
31 22 soil vaz calcimagnesic_soils

32 22 scil vz2 calcimagnesic_soils

16 32 soil VII32 brown=-earth soils

63 a3 soil VII33 brown-anrth so0ils

24 41 soil IX41 lron—sasquloxlde—rlch soils

71 42 soil IX42 iren-sesquicxide-rich_soils

53 51 scil XI51 hydromorphic_soils

58 61 soil Cé6l complex un;ta and_associations
€5 [ 38 soil C6l complax units and |_associations
99 99 acil 099 out_area

Line Class

oneC id lobjid layer lname lelass

11 1 topo railwayl railway

41 2 topo riverl river

42 3 topo river2 river

61 4 topo N100 road

22 10 topo D105 road

42 3 soil river2 river

61 4 soil N1Q0 road

92 13 so0il D108 road

Lineacross Class

upperlC lowerll grosspt lower ht

8% 41 1033 149.89

Bl 11 1028 156.11

71 42 1303 135.33

61 42 1886 133.33

21 41 - 2051 137.33

11 41 ) 2005 133.33

21 11 2p48 139.11
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Acouracy Class
ac_id pl acc ht acc
1 0.45 0.68

Pointf Claas

zeroC id pobijid layer priame pclass

1 1 topo bridgel rd_river bridge
2 2 topo bridge3 rd river bridge
12 12 so0il pt_samplel80 palnt_sample

13 i3 so0il pt_samplel79 point_sample

14 14 s0il pt_samplel?8 point_sample

15 15 soil pt_sample3é peint_sample

zaroC twoC pnode
1 7 1033
2 30 1302
3 7 1886
4 7 2051
5 7 1028
Linsage Class
lin | pl_lin ht_lin
id
1 The soil data were extracted from the *Pedclogique | The height infor-
map of atlas No2 , South-Est Sector at scale of mation was
1/50.000. The map was issued by the Ministry of extracted by using
Agriculture of France, 'Directicn Departementale the phogrammetric
de l'Agriculture de Vaucluse’ ,in 1978. The fea- techniques {during
tures of intereat were ipitially digitized by the stereocompila-
using a 2D taklet digitizer and the centrol peoints | tien} and from the
used for coordinate transformaticn were taken from | same data
the topographic map of Cavaillon at 1/50.000 ,re--— | sources (aerial
aedited by IGN of France in 1988. For map projec-— photos. The flying
tion, the ellipsoid of Clarke 1880, Lambert coni- height of the used
que conform projecticn was used. The topographie photographs is
layer informations (major land use/cover types} about 4560 metexa,
ware extracted from aerial photograghs at scale of | and by using Plan~
1/30.000, which were taken in 1988, with a focal icomp €120 , the
lengch of 152.00 mm. The two layers were superis— expected height
posed and 3D digitizing of the outcome multivalued | accuracy is : 0.10
map was made in stersomade using Planicomp €120, to 0.15 per mil of
with RORK-KDMS aoftware, in August 1994. the flying height.
Hode Class
node id xcoord yecoord zeoord ac id lip jd
1 834800.875 175542.4375 268.89%0015 1 1
2 835732.6875 179587.671875 243.440002 1 1
4 835964.6875 179604.108375 227.110001 1 1
6 836144.6875 179609.106375 227.110001 1 1
2959 832303.875 175914.109375 199.220001 1 1
2960 832236.125 175768.4375 192.220001 1l 1
2965 832232.4375 175682.671875 193.440002 1 H
2966 832226.000 175666.000 193.110001 1 1
2963 832226.125 175725.5625 192.000 1 1
2964 832229.6875 175703.78125 192.559998 1 1
2967 832215.125 175659.890625 193.440002 1 1
2974 832740.6875 178054.000 143.559998 1 1
2975 832740.4375 178080.4375 147.110001 1 1
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Appandix 3 Some instances from the Line and Linecrcas after deleting an
existing line object (railwayl)

Instances of the Line class aftar the automatic deletion of the line abject:

oneC id lobijid layer lname lelass

41 2 tope riverl river
42 3 topo river2 river
61 4 topo N100 road
21 5 topo D106 road
31 6 topo D109 road
71 7 topo D145 road
81 8 topo D36 road
91 9 topo D60 road
22 1¢ cope D1G5 road
iz 11 tope D218 road
72 12 tapo D104 road
92 13 topo Dige road
41 2 soil riverl river
42 3 soil river2 river
61 4 soil N100 road
21 5 soil D106 road
31 6 soll D109 read
71 7 soil D145 road
81 8 soil D36 road
91 9 soil D&0 read
22 10 soil D105 road
32 11 soil D218 road
72 12 soil D104 road
92 13 seil D108 read

Instancas of the Linecroaa class showing that the system has deleted the property
valuas of the line cbjact:

upperlc lowerlC crosspt lower ht

81 41 1033 149.89
71 42 1303 135.33
61 42 1886 133.33

21 41 2051 137.33
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Appendix 4 Some instances from the Pointf, Pointnode and Node classes
after inserting new point cbject

Some instances of the Noda class aftar insarting the point object (its node_id = 3181)
by propagation:

node id xcoord ycooxd zcoord ac id iin_id
3137 837109.25 177420.890625 161.320007 1 1
3178 834357.4375 178006.5625 220.600006 1 1
3179 B834526.75 177746.890625 217.160004 1 1
3180 B835836.875 177542.890625 155.639999 1 1
3181 834835.6875 176707.046875 247.7749%%4 1 i

Instances f£rom Fointnode class after propagating the insertion of the point object
(ite zearoC id = 16):

gnode

zeroC twoC

1 7

2 30 1302
3 ? 1886
4 1 2051
5 ? 1028
6 ? 2048
7 7 2005
8 8 3038
9 9 3037
10 53 3041
11 7 3137
12 7 3180
13 28 3179
14 28 3178
15 7 3036
16 7 3181

Instances of the Pointf class after inserting a new point ocbject:

zeroC i objid laver class

1 tope  bridgel rd_river bridge
2 2 tope bridge3 rd_river bridge
3 3 tope bridged rd_river bridge
4 4 topc  bridgeS rd river bridge
5 5 topo  bridge2 rd_road bridge
6 6 topo bridge? rd_road bridge
12 12 soil pt_sampleld0 point_ sample
13 13 seil pt_samplel79 point_sample
14 14 soil pt_samplel?8 point_sample
15 15 acil pt_sample3é point_sample
16 19 tope gps_stationl geodetic_controla
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Appendix 5A Data of the new line object for insertion

Type of Object: Line

Geographic name: railwayl

Thematic class: railway

Layer: topo

Geometry:

Segment# Points X Y 1

1 1 8375%2.250000 177319.671875 167.88999%
2 836953.750000 177149.781250 161.779999

2 1 836953.750000 177149.781250 161.779999%
2 836071.312500 176917.109375 156.110001

3 1 836071.312500 176917.109375 156.110001
2 835466.437500 176753.000000 155.559998

4 1 835466.437500 176753.000000 155.559998
2 834735.562500 176568.437500 149.559998

5 1 834735.562500 176568.437500 149.559998
2 833341.312500C 176821.000000 139.110001

6 1 833341.312500 176821.000000 139.110001
2 832892.437500 176931.328125 138.779999

7 1 832892.437500 176931.328125 138.779999
2 832645.750000 177072.328125 138.559998

8 1 832645.750000 177072.328125 138.559998
2 832122.125000 177401.562500 134.559998

New l-container Id: 93

Appendix 5B Some instances from the Line, Linecross, Arc and Noda

clasges after inserting new line object

Instances of the Line class after inserting the line object (it has oneC _id =» 93):

oneC id lobjid layer lname lclass
41 2 topo riverl river
42 3 topo river2 river
61 4 topo N100 road
21 5 topo D106 road
31 6 topo D10% road
71 7 topo D145 road
81 8 topo D36 road
91 9 topo D60 road
22 10 topo D105 road
32 il topo D218 road
12 12 topo D104 road
92 13 tope D108 road
41 2 soil riverl river
42 3 soil river2 river
61 4 soil N100 road
21 5 s0il D106 road
3l [ soil D109 road
71 7 scil D145 road
81 8 soil D36 road
91 9 s0il D60 road
22 10 soil D105 road
32 11 soil D218 road
72 12 s0il D104 road
92 13 soil plos road

93 1 topo railwayl railway
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Instances of the Linecross class after inserting "railwayl” (it now has oneC_id = 93}:

upperlC lowerlC crosspt lower ht
a1 4] 1033 149.89

71 42 1303 135.33
61 42 1886 133.33
21 41 2051 137.33
81 93 i028 156.110001
21 93 2048 139.110001
93 41 2005 133.33

Scma instances of tha Ara claaz showing aracz of the new railway:

arc id snode enode LfLTwoC rgtTwol afneC
2683 1 3 7 93

2684 3182 1028 7 7 93
2685 1028 3185 7 7 93
2686 3185 3186 7 7 93
2687 3186 2048 7 7 93
2688 2048 3187 7 7 93
2689 3187 2005 7 7 93
2690 2005 3189 7 7 93

Instances of the Hoda oclass showing nodes of the new railway:

node id xcocrd coord zooord ac id lin id
17 837592.25 177319.611815 167.889999 1 1

1028 836071.3125 176917.108375 160.440002 1
2005 832645.75 3137072.328125 138.559998 1
2048 833341.3125 176821.000 143.889999 1
3182 836953.75 177149.78125 161.779999 1
3185 835466.4375 176753.000 155.559998 1
3186 834735.5625 176568.4375 149.555998 1
3187 832892.4375 176931.328125 138.779999 1
3189 832122.125 177401.5625 134.559998 1

L el il e
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Appendix 6A Data of the new area cbject for insertion

Object Name:
Thematic class: Farm land
Layer: Topo
Object_Identifier 74
Locational data:

Potato_farm

Segment # Point X Y 4
i 1 837350.5000 179500.050 189.127
2 837512.0000 179486.225 193.400
2 1 837512.0000 179486.225 193.400
2 837568.1156 178205.515 184.005
3 1 837568.1150 178205.515 184.005
2 837357.0080 178425.375 184.113
4 1 837357.0080 178425.375 154.113
2 837350.5000 179500.050 189.127
Appendix 6B Some instances of the Area, Arc and Node classes after

inserting the new area object

Area Class showing addition of 2Z-containars 26 and 87 after inserting new arsa object
"potato farm”: :

twoC id acbijid layer aname aclass

81 12 topo Fl2 forest

82 12 topo Fl2 foreat

84 1 soil Il little weathered nonclimatic mineral scils
83 23 soil V23 caleimagnesic_soils

g8l 43 soil IX43 iron-sesquioxide-rich_seils

86 32 soil VII3z brown_earth soils

87 21 soil V21 calcimagnesic_soils

85 11 tape F11 foraest

85 61 sail C61 complex_units_and associations
86 74 tepo petato farm farm land

87 74 tope potato_farm farm land

Soma instances from the Ara alass showing aros related to the insarted area object:

arc id snode encde 1ftTwoC rgtTwoC adneC
86

2633 3192 3194 16 0
2696 3194 3195 16 86 0
2697 3195 3187 16 86 0
2700 3197 233 87 86 0
191 233 234 87 86 1
192 234 235 87 86 0
163 235 236 87 86 o]
2694 236 3182 87 86 o]
2691 3190 3191 8 87 0
2692 3191 3192 8 87 Q
2698 3197 31%0 8 a7 0
2700 3197 233 87 86 0
191 233 234 87 86 4]
192 234 235 87 86 0
193 235 236 a7 86 0
2694 236 3192 a7 86 0

Instances £rom the Hodae class showing nodes and locational data of the "potato farm':

nede id xcocrd ycoord zcoord ac id lin id
233 837376.3125 179142.5625 1845.669998 1 1
234 £37448.5625 179144.32B125 183.559998 1 1
235 837485.4375 179161.000 190.440002 1 1
236 837509.6875 179176.78125 192.669998 1 1
31%0 837350.5 179500.046875 185.126999 1 1
3191 B37512.000 179486.21975 193.399994 1 1
3192 B837523. 689453 179198.6503091 193.7865942 1 1
3194 837568.125 178105.515625 184.005005 1 1
3195 837357.000 178225.375 184.113007 1 1
3197 837352.307129 179145.720703 187.733231 1 1
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De modellering van samenvallende ruimtelijke objecten, de geautomatiseerde bijhouding
van databases en data consistentie in een vector GIS.

Samenvatting

In deze dissertatie zijn formele procedures ontwikkeld voor de automatische controle van
dataconsistentie en voor het bijhouden van databases in een vectorgestructureerd GIS. Het
kader daarvoor wordt gegeven door een conceptueel datamodel voor de representatie van een
terreinbeschrijving in meerdere lagen in een vectorstructuur. Om het model en de ontwikkelde
concepten te testen en om de implementatie mogelijkheden te onderzoeken, is het model
vertaald naar relationele en objectgestructureerde gegevensstructuren.

Geografische informatie systemen (GIS) geven de mogelijkheid voor ruimtelijke gegevensver-
werking voor een breed scala van toepassingen. Het hart van zo'n systeem is de ruimtelijke
database, daarin wordt de wereld gerepresenteerd zoals die vanuit de toepassingen gezien
wordt. Deze database moet goed gestructureerd en consistent zijn. Bij het ontwerp van de
database worden de gegevens op vier abstractie niveaus bekeken: de werkelijkheid, het
conceptuele datamodel, de datastructuur en de filestructuur. De wijze waarop de werkelijkheid
in een conceptueel datamodel wordt afgebeeld hangt meestal sterk van de toepassing af.
Ruimtelijke analyse en planning vereisen meestal dat verschillende visies op de wereld
geintegreerd worden, dit betekent meestal de integratie van verschillende "kaartlagen"”. De
term "kaartlaag” wordt hier gebruikt voor een verzameling geo-data, die een bepaald aspect
van de wereld beschrijven. Tegenwoordig wordt meestal iedere laag apart gestructureerd,
integratie wordt dan via overlays gerealiseerd. Deze oplossing leidt vaak tot een toename van
de overheadkosten voor herhaalde ad-hoc overlay berekeningen (tijdens query bewerkingen),
bovendien is het moeilijk om in dit geval van tevoren relaties te defini€ren tussen objecten
uit verschillende lagen (verticale topologie).

In deze dissertatie wordt een alternatief gegeven met een conceptueel model voor een
vectommepresentatie  voor meerwaardige terreinabstracties, vooral wanneer veelvuldig
ruimtelijke analyses worden uitgevoerd over meerderc lagen. Dit model is een object
gestructureerd 2.5D datamodel voor meerwaardige vectorkaarten (DMMVM); dit is een
vectorgestructureerde representatic van terrein objecten uit meerdere kaartlagen, waarbij
objecten van hetzelfde geometrische type kunnen samenvallen, ie., elkaar overlappen. In dit
model is de positic van objecten in 3D cotrdinaten gegeven, terwijl hun topologie door een
2D vlakken graaf beschreven wordt; dit geeft een 2.5D model. Het model is gebaseerd op de
2D formele datastructour (FDS) voor enkelwaardige vectorkaarten (Molenaar, 1989). In de
FDS spelen terrein objecten een centrale rol; ieder object heeft een thematische- en een
geometrische beschrijvingscomponent. Thematisch gezien worden objecten ingedeeld in
klassen, waarbij iedere klasse een eigen specificke attribuutstructuur heeft. Geometrisch
worden de punt-, lijn- en viakobjecten onderscheiden, de geometrie van deze objecten kan
worden uitgedrukt in knooppunten en zijden waarvan de samenhang volgens de regels van
de grafentheorie kan worden bestudeerd. De FDS werd in deze dissertatie uitgebreid zodat
objecten van hetzelfde type elkaar kunnen overlappen, zodat geodata vit meerdere kaartlagen
in een structuur gebracht kunnen worden. Dit gebeurde door de introductie van het begrip m-
container (m duidt de dimensie aan). Een O-container representeert samenvallende
puntobjecten wit meerdere lagen, een l-container samenvallende lijnobjecten en een 2-
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container samenvallende vlakobjecten. Voor vlakken worden altijd alle lagen betrokken, bij
punt- en lijnobjecten kunnen dat minder lagen zijn. Via de containers worden de samenval-
lende delen van objecten geidentificeerd, deze delen kunnen hun eigen geometrie en thematick
hebben naast die van de oorspronkelijke objecten. Ze kunnen door de database als aparte
(sub)objecten behandeld worden, zodat ze in aggregatie en associatie operatie gebruikt kunnen
worden.

De geometric van de containers wordt ook beschreven door middel van knooppunten en
zijden: een knooppunt beschriift een 0-container en/of het begin of einde van een zijde, terwijl
een zijde een deel kan zijn van een l-container en tegelijkertijd van de grens van een 2-
container. Een zijde wordt gedefinieerd door de begin- en eindknooppunten, een knooppunt
heeft een positic uitgedrukt in X,Y,Z-cobrdinaten. De geometric van een kaart wordt
beschreven door een viakke graaf G(N,A), daarin is A de verzameling van alle zijden en N
van alle knooppunten. Iedere m-container C wordt beschreven door een subgraaf van G, van
G met G.(N_,A,) met N_ is een deelverzameling van N en A_ is een deelverzameling van A.
Voor een O-container is A, leeg.

De geo-data in multi-kaartlagen worden dus beschreven door acht basistypes van geometrische
gegevens: punt-, lijn- en vlakobjecten, 0-, 1- en 2-containers en knooppunten en zijden. Ieder
gegevenstype speelt haar eigen rol in het datamodel. Net als in de FDS representeren de
punten, lijnen en viakken de terreinobjecten, ieder object kan op een of meer van deze typen
worden afgebeeld, de m-containers worden gebruikt om overlappende delen van objecten te
beschrijven, terwijl de feitelijke geometrische beschrijving van de objecten wordt uvitgedrukt
in de knooppunten en zijden.

In dit mode! konden DTM’s geintegreerd worden via een op zijden (edges) gebaseerde TIN
representatie, de twee geometrische primitieven van TIN, te weten edges en vertices werden
aan de acht datatypen van het DMMVM toegevoegd. De topologische relaties tussen de
punten, lijnen, vlakken, knooppunten en zijden werden geformaliseerd. Daama werden
-algoritmen gedefinieerd voor het opsporen van de mogelijke elementaire relaties tussen
objecten. Deze algoritmen kunnen vertaald worden in topologische operatoren voor het
uitvoeren van topologische bevragingen, maar ze vormen ook het gereedschap voor het
opleggen van topologische voorwaarden aan de gegevens. Als de topologische operatoren
gebruike worden voor het handhaven van consistentie regels, dan kunnen er inconsistentic mee
opgespoord worden. Ingeval van inconsistentie activeert de operator de relevante regels
waarmee de consistentie hersteld wordt.

De DMMVM werd vertaald naar rwee types van database-structuren, het relationele en een
objectgestructurcerd model. Het prototype in het relationele model werd genormaliseerd met
de methode van (Smith, 1985). Zeven basistabellen werden gedefinieerd, waarin experimentele
implementaties werden gercaliseerd om de bruikbaarheid van het multi-lagen model te toetsen.
De consistentie en bijhoudingsoperaties werden in C geprogrammeerd en aan de RDBMS
gekoppeld. Het relationele model kan direct geimplermenteerd worden omdat er vele
RDBMSen beschikbaar zijn, dat is minder het geval voor het object-georiénteerde model.

Omdat relationele databases vele tekortkomingen hebben voor het behandelen van mimtelijke
gegevens, werd het model ook geimplementeerd in een object-gestructureerde database.
Hierbij werden negen objectklassen gedefinieerd, voor ieder van de acht genoemde
geometrische elementtypen één plus één voor het onderscheid tussen kruisende en snijdende
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lijnobjecten. De consistentie en bijhoudingsoperaties werden als aan deze klassen verbonden
methoden behandeld.

Dit onderzoek richtte zich ook op gegevensconsistentie in ruimtelijke databases. Er zijn twee
typen van consistentie, de dynamische en de statische. Hier werd vooral gekeken naar de
statische consistentie, welke uitgesplitst kan worden in structurele en semantische consistentie.
Er werden regels geformuleerd om structurele voorwaarden te handhaven, terwijl een strategic
werd voorgesteld voor de monitoring van de semantische regels. In beide gevallen speelt de
topologie een belangrijke rol voor het opsporen van inconsistenties. Deze dissertatie toonde
aan dat de consistentie regels vertaald kunnen worden in topologische voorwaarden voor de
afzonderlijke objecten en topologische relaties tussen paren van objecten. Overtredingen
kunnen in de database opgeslagen worden als "events” en de overcenkomstige respons als
"actie"; hiermee kan een rulebased procedure ontwikkeld worden met de conventie "IF event
THEN actie".

In de dissertatie werden procedures ontwikkeld op basis van het DMMVM voor de consistente
automatische bijhouding van vectorbestanden. Hierbij werden algoritmen ontwikkeld om
bijhoudingscperaties automatisch zo te laten doorwerken dat topologische relaties consistent
blijven. Hierdoor wordt de huidige praktijk verbeterd, waarbij de systemen later een
herstelslag moeten uitvoeren als de geometrie in de database is bijgewerkt. Er zijn algoritinen
ontwikkeld voor het invoegen, verwijderen en veranderen van alle acht geometrische typen
in DMMVM. De interactie tussen mens en machine vindt daarbij op objectniveau plaats, de
verandering van objecten wordt dan door de machine doorvertaald naar de andere
gegevenstypen. De topologie van de database wordt door het sysicem onder bij-
houdingsoperaties dynamisch bijgewerkt. Hierbij wordt gebruik gemaakt van "computational
geometry”, de topologische relatie tussen de nieuwe ingevoerde geometrische primitieve van
een object en de al aanwezige. De gevonden topologische relaties activeert dan de relevante
consistentic regel, zodat de consistentie van de database hersteld wordt. Het systeem
waarschuwt de operateur als het er zelf niet uitkomt.

Een experimentele implementatie van object-georiénteerde datastructuur werd in Postgres
versie 4.2 gerealiscerd. De data acquisitic werd gedaan met een Planicomp C120, een
fotogrammertrische stereoplotter voorzien van een Zeiss Video Map en een Calcomp digitizer.
De stereocompilatie werd uitgevoerd met een Kork digital mapping system, versie 8.0. Het
datamodel werd getest voor een situatie met twee lagen: een bodemkaart en een topografische
laag (met de belangrijkste landgebruik en landbedekkingstypes). De consistentie regels werden
geverifieerd met behulp van C-functies en Postquel queries, een aantal consistentie regels
werden ook getest.

De ervaring met deze experimenten leerde dat deze methodiek een grotere inspanning vraagt
voor het ontwerp van een database, dat wondt dan gecompenseerd door snellere query
afhandeling in het multi-lagen model en door het grotere informatiegehalte van de database.
Dataconsistentie is bovendien verzekerd doordat inconsistenties al bij de creatie en bijhouding
van de database gevonden worden en doordat topologic dynamisch door het systeem wordt
bijgewerkt.

De conventies van de FDS aangevuld met de conventies van de DMMVM ondersteunen een
eenduidige afbeelding van terreinsituaties op de databases, de voorgestelde datastructuur kan
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in ieder bestaand vector-GIS worden geimplementzerd, ook al is het soms met toegevoegde
operaties of met een lichte aanpassing van de conventies. Veel systemen representeren zijden
bijvoorbeeld verschillend, meestal als een aggregaat van rechte lijnstukken; aanvullende
operaties zijn dan nodig om de topologie te herstructureren als we de veronderstelling dat een
zijde recht is willen handhaven. Hiermee worden dan wel wat dataredundanties ingevoerd. De
conventie dat zijden recht moeten zijn kan wel ontspannen worden door ook andere vormen
toe t¢ laten.

De experimentele implementatic toonde aan dat het datamodel met de consistentie regels en
bijhoudingsalgoritmen geimplementeerd kunnen worden. Ze kunnen daarom aanbevolen
worden voor implementatie in GIS en kaarteringssystemen, daartoe moeten de algoritmen en
consistentie regels aan het DBMS toegevoegd worden,
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