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STELLINGEN 

1. De chronische stress die veroorzaakt wordt door aangebonden 
huisvesting van varkens, leidt tot langdurige veranderingen op het 
niveau van de bijnierschors. 
Dit proefschrift. 

2. Beperking van visuele controle en sociale contacten met soortgenoten 
speelt een belangrijke rol bij de ontwikkeling van veranderingen in de 
functie van de bijnierschors bij aangebonden varkens. 
Dit proefschrift. 

3. De toename in endorfine-activiteit, waargenomen bij aangebonden 
varkens, kan worden gezien als een vorm van 'omgaan' met 
chronische stress. 
Dit proefschrift. 

4. De omstandigheden tijdens de vroege ontwikkeling van een individu 
zijn op latere leeftijd bepalend voor de gevoeligheid van de 
hypothalamus-hypofyse-bijnieras voor stimuli uit de omgeving. 
M.J. Meaneyetal., 1993. Cell. Mol. Neurobiol., 13: 321-347. 

5. Het welzijn van een dier is evenredig met het bewust(-)zijn van mens 
én dier. 
M.S. Dawkins, 1993. Through our eyes only? The search for animal consciousness. 
W.H. Freeman/Spektrum, Oxford. 

6. De hardnekkigheid waarmee diverse handboeken (McDonald, 1989; 
Hafez, 1993) het interval 'begin bronst tot ovulatie' bij varkens 
omschrijven als zijnde constant, staat in schril contrast met de grote 
variatie in de duur van dit interval, zoals die door diverse auteurs (1,2) 
is beschreven. 
1) P.A. Helmond et al., 1986. In: J.M. Screenan and M.G. Diskin leds.l, Embryonic 
mortality in farm animals. Martinus Nijhoff Publishers, The Hague, p. 119-125. 2) N.M. 
Soede eta/., 1994. J. Reprod. Pert., 101: 633-641. 



7. In tegenstelling tot wat wel wordt geclaimd (1,2), zijn lymfocyten 
hoogstwaarschijnlijk niet in staat om via expressie van een eigen pro-
opiomelanocortine-systeem endocriene functies uit te oefenen (3). 
1) J.E. Blalock and E.M. Smith, 1985. Fed. Proc. 44:108-111. 21 B.L. Clark et al., 
1993. Endocrinology 132: 983-988. 3} A.D. van Woudenberg et al., 1993. 
Endocrinology 133: 1922-1933. 

8. Aangezien de Sm-eiwitten in de splicing-factor U1 snRNP essentieel 
zijn voor associatie van U1 -specifieke eiwitten, is het aannemelijk dat 
de Sm-eiwitten in andere snRNP's een vergelijkbare rol spelen. 
R.L.H. Nelissen et al., 1994. EMBO J., 13: 4113-4125. 

9. Modificatie-gerelateerd functieverlies van het prion-eiwit, dat 
noodzakelijk is voor normale synaptische signaaloverdracht, kan 
leiden tot neurodegeneratieve aandoeningen. 
J. Collinge et al., 1994. Nature 370: 295-297. 

10. De bezuinigingskeuzen van opeenvolgende kabinetten illustreren de 
tweeslachtigheid van het Nederlandse wetenschapsbeleid: naast de 
zogenaamde 'stimulansronde' handhaaft men een 'destructiecyclus'. 

11. De aard van het commentaar van een 'referee' op een 
wetenschappelijk manuscript zegt soms meer over de 'referee' dan 
over de kwaliteit van het desbetreffende werk. 

12. Het bedrijven van wetenschap vereist soms meer verbeeldingskracht 
dan kennis. 

13. Het wissen van 'files' is helaas alleen mogelijk op de electronic 
highway. 

C.J.J.G. Janssens 
Chronic stress and pituitary-adrenal function in female pigs 
Wageningen, 13 december 1994 



"Wie zich in wetenschappelijke problemen verdiept, heeft het niet 

gemakkelijk. Achter elk vraagstuk vindt hij een nieuwe complicatie; hij 

schilt een ui waarvan de rokken eindeloos zijn. Geen wonder dat zo 

iemand wel eens de tranen in de ogen springen." 

Godfried Bomans 

aan Rob 

aan mijn moeder 

en 

ter nagedachtenis 

aan mijn vader 
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Chapter 1 

General Introduction 

Introduction 

Charles Darwin used the term "struggle for life" in his evolution theory to 

indicate that life is not always easy. He recognized that organisms have to 

"struggle" in order to survive in a continuously changing and often threatening 

or dangerous environment. According to Darwin, this is the principle of natural 

selection, since only the fittest survive [1]. The struggle against pressures which 

derive from the physical and social environment may be considered as the pivot 

of the concept of stress [2,3]. 

Despite changes in environmental conditions many living species (especially 

mammals) have the ability to keep their internal milieu within fixed limits. This 

relative stability of the "milieu interieur" was first recognized by Claude Bernard 

[4] and termed "homeostasis" by Walter Cannon [5]. Homeostasis of 

physiological systems is secured by specific regulatory systems. Changes in 

environmental conditions may induce a deviation from certain physiological "set-

points" (e.g., body temperature, blood pressure, blood glucose), which are 

mostly determined by the biological constitution of the organism. Generally, this 

will lead to activation of homeostatic mechanisms so that internal variables are 

adjusted towards their "set-point". Activation of regulatory systems in order to 

counteract disturbances in homeostasis is termed "adaptation". 

Once the concept of internal homeostasis was established, research was 

focussed on the response of an individual, whose biological balance is 

threatened or disturbed by external factors in such a way that the capacity of 

homeostatic mechanisms is or may be exceeded. In this type of situations, 

which generally are termed "stressful", additional non-specific defence reactions 

(stress responses) are elicited. These consist of concerted behavioural, 

autonomic and endocrine responses serving to protect the organism against the 

(potentially) harmful situation. 
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The Concept of Stress: History 

Walter Cannon [6] noticed that a variety of physical or emotional stimuli 

signalling threat to homeostasis induce not only behavioural but also 

physiological responses, in which the autonomic nervous system is instrumental. 

In particular, such stimuli lead to activation of the sympathetic branch of the 

autonomic nervous system and of the adrenal medulla. This results in enhanced 

release of catecholamines (adrenaline) into the blood. Circulating catecholamines 

induce, among other things, increased blood sugar, redistribution of blood from 

peripheral tissues to brain, heart and skeletal muscles, and increased blood 

coagulation. Cannon used the term "stress" to describe the status of the animal 

involved, and interpreted the physiological changes as responses preparing the 

animal for action. Since the action can be an emergency reaction like a fight or a 

flight, this response became known as "fight/flight reaction" or "defence 

reaction". 

Selye [7,8] demonstrated with his experiments that a variety of noxious 

physical stimuli induce a characteristic triade of bodily responses, consisting of 

adrenal hypertrophy, thymolymphatic involution, and gastric mucosal lesions. 

Therefore, he conceptualized the stress response as a non-specific response of 

the body to any demand (usually noxious) or to any stimulus causing an 

alteration in homeostatic processes. The above-mentioned stereotyped reactions 

of the body appeared to be independent of the nature of the stressful stimulus, 

and Selye termed them "General Adaptation Syndrome" (GAS), a syndrome 

serving as a defence against the stressor [7]. During prolonged exposure to a 

stressful stimulus three phases of GAS can be distinguished: 1) the alarm 

reaction, characterized by the initial response of the individual to the stressor; 2) 

the stage of resistance or adaptation, in which the initial response has 

diminished or disappeared and the resistance to the stressor has increased; 3) 

the stage of exhaustion, in which the organism has become biologically 

incapable of coping with the demands of the continuing stimulus and in which 

the vulnerability for stressors has increased. During the exhaustion phase 

pathologies may develop, which may even lead to the death of the individual. In 

Selye's stress concept, activation of the pituitary-adrenocortical system, 

evidenced by enlargement of the adrenal cortex and increased blood gluco

corticoid concentrations, plays a pivotal role [7]. 

While Selye emphasized mainly the physical nature of stressors, Mason 

recognized, in the late sixties, that adrenocortical responses are also induced by 

purely psychological conditions, and that the majority of physiological stressors 
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Chapter 1 

(e.g., bodily injury, disease etc.) also contain psychological components [9,10]. 

His observation that in fact psychological stimuli are among the most potent 

activators of the hypothalamic-pituitary-adrenal (HPA) axis led him to conclude 

that certain psychological components are the common denominator of 

stressors [10]. According to Mason, stress responses are not limited to 

activation of the pituitary-adrenocortical system, but rather the entire 

neuroendocrine system is involved and the pattern of the hormonal response 

differs from one type of stressor to another. The properties of the stimulus and 

the appraisal by the individual of it as stressful (signalled by emotions) 

determine the mode of behavioural and neuroendocrine stress responses that are 

relatively specific [10]. 

Around the same time, Weiss provided evidence illustrating the nature of 

psychological factors involved in stress responses. In experiments with rats, he 

demonstrated that the ability of the animal to predict or control (prevent) a 

physical stressor (electric shock), not only reduced the degree of arousal of the 

neuro-endocrine system but also the occurrence of pathophysiological changes 

(e.g., gastric erosions). Weiss defined the psychological factors modulating the 

impact of a stressor as controllability [11] and predictability [12,13]. Thus, 

according to Weiss, the perception of the aversive stimulus and consequently 

the degree of control sensed by the organism is the crucial variable determining 

response, rather than the physical parameters of the stimulus. The process of 

perceiving and handling of the stressor by the organism is referred to as 

"coping" [14]. 

Based on clinical observations and literature studies, Engel [15] postulated 

the existance of two coping strategies or modes of stress response: 1) the 

active defence strategy (referred to as "fight/fl ight" by Cannon) and, 2) a 

passive or "conservation/withdrawal" strategy (comparable with Selye's "non

specific" stress response). During the active defence strategy, contact with the 

environment is increased and energy supplies are used either to come into 

contact with the stressor (fight) or to escape from the stressful stimulus (flight). 

According to Engel, the sympathetic-adrenomedullary system is preferentially 

activated during this active mode of stress response, leading to increased levels 

of circulating glucose, lipids, and sex steroids and increased heart rate, cardiac 

output and arterial blood pressure. In contrast, the "conservation/withdrawal" 

mode of stress response serves to conserve energy and is characterized by 

immobility and suppression of environmentally directed activities. In Engel's 

view, this passive coping strategy is associated with activation of the 

hypothalamic-pituitary-adrenocortical system, increased vagus activity, 
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decreased plasma sex steroid levels and bradycardia [15]. 

The hypothesis of bimodal strategies was supported by Henry [16], who 

investigated effects of psychosocial stress in several species. According to his 

theory, the mode of coping strategy chosen depends on whether the animal 

perceives itself in control of the situation or not. This is consistent wi th the 

ideas of Weiss, mentioned earlier [11-13]. According to Henry, there is a close 

connection between social status and behavioural and/or physiological stress 

responses [16]. An individual will more likely chose a "f ight/fl ight" response 

when it is in control of the situation (e.g., a dominant in a colony) and control is 

under threat. Under those conditions, the organism still has the ability to alter 

the situation through some behavioural response. However, with increasing 

perception that it cannot gain control by an active response and that helpless

ness may occur, there is a shift from active defence to a passive, non-

aggressive, coping strategy. This coping strategy is preferentially chosen by 

subordinate individuals. In practice, combinations of both coping strategies will 

be seen. 

The Concept of Stress: Current Status 

After many decades of stress research, no one has succeeded in providing a 

stringent definition of the phenomenon stress. Stress may be seen as an integral 

part of an adaptive biological system [17]. The "stress cascade" consists of 

three major components: 1) the stimulus input (environmental event); 2) 

perception and appraisal of the stimulus as a stressor; 3) organization of the 

stress response (to re-establish physiological balance). 

An important establishment is that a(n external) stimulus is a stressor, only 

when the individual perceives and evaluates it as a (potential) threat to its 

biological balance [17,18]. As emphasized by Kagan and Levi [19], in this stage 

the central nervous system (CNS) plays a crucial role in: 1) evaluation of a 

stimulus as a stressor (comparison of the new information with that already 

available), and 2) organization of the biological defence against the stressor. 

Whether a stimulus or a certain external event is indeed perceived as a stressor 

and leads to a condition of stress depends on various factors. As to that, not 

only the properties of the stressor itself (intensity, frequency, duration) are 

important, but also factors like genetic constitution (species, selection line, 

gender), prior experiences (history of the individual, learning, memory) and the 

physiological (normal or pathological) and psychological state of the organism at 
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Chapter 1 

that particular moment [17,19,20]. All of these factors do not only play an 

important role in the judgement of the perceived stimulus as a stressor, but also 

in the choice and organization of the biological defence (see Figure 1). 

STIMULUS 

4-
r 

V 

CNS 
' perception 

of stressor 

+ 
organization 
of biological 

defense 

N 

> + 

experience 
genetic constitution 
physiological state 
psychological state 

STRESS 
RESPONSE 

behav iou ra l 
a u t o n o m i c 

n e u r o e n d o c r i n e 

c h a n g e s in 
b i o log ica l 
f unc t i on 

Figure 1. Schematic representation of the response to a potential stressor and factors 
that influence the response (adapted from Moberg [20]). 

The purpose of stress responses is to successfully deal or cope with 

harmful or threatening situations and to eliminate the source of stress [17]. 

Generally speaking, three types of biological response systems can be activated 

by the organism in an attempt to withstand immediate threats to its homeostatic 

balance, namely behavioural, autonomic, and neuroendocrine systems. 

Behavioural responses may be used to approach the stressor or to withdraw 

from it, while autonomic and neuroendocrine changes may alter the 

physiological machinery, thereby providing the energy needed for sucrj 

responses. Altered activity of these three biological response systems represents^ 

the non-specific component of the stress response. Its specific character is the 

result of interactions between the environment, the coping strategy, and thé 
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characteristics of the stressor and of the homeostatic system(s) involved. These 

factors determine the magnitude and the temporal pattern of the behavioural 

and physiological reactions, which then represent the specific component of the 

stress response [21]. The stress response induces a change in biological 

function, thereby affecting future responses directly (by elimination of stressor 

or withdrawal) or indirectly (experience, change of physiological/psychological 

state) (see Figure 1). 

Regulation of the Hypothalamic-Pituitary-Adrenal System 

Since Selye's GAS, the hypothalamic-pituitary-adrenal (HPA) system has 

played a central role in all stress concepts. Along with the autonomic nervous 

system, the HPA axis is recognized as the main neuroendocrine effector system, 

which serves to counteract disturbances in the homeostatic state [2,3] . A 

schematic diagram of the HPA axis is presented in Figure 2. 

The HPA system exhibits three characteristics: 1) it displays a circadian 

rhythm in basal activity (non-regulated activity), entrained by variables such as 

light-dark cycle, awake-sleep rhythm and food. In man and in diurnal animals, 

this rhythm is typified by elevated systemic concentrations of adreno

corticotropic hormone (ACTH) and glucocorticoids in the early morning. These 

concentrations decrease during the day and reach a nadir during the night. In 

nocturnal animals the opposite rhythm is displayed [22-24]; 2) the HPA system 

is activated in response to physical, but in particular to psychological stressors 

(regulated activity) [9,25]; and 3) both the circadian and the stress-induced 

activities of the HPA axis are regulated by feedback inhibition by adrenal 

corticosteroids [26,27]. In addition, the feedback sensitivity of the HPA axis 

changes in a circadian fashion [26,28]. 

As represented in Figure 2, four levels of organization in the anatomy of the 

HPA system can be distinguished: 1) the brain stem, the limbic system and the 

associated cortical areas of the brain, 2) the hypothalamus, 3) the anterior lobe 

of the pituitary (adenohypophysis), and 4) the adrenal cortex. When a stimulus 

is perceived which may be significant for survival, the limbic midbrain system 

induces an arousal reaction. In the limbic (forebrain) system, the novel situation 

is compared with stored information and the significance of the stimulus is 

estimated. If the outcome of this appraisal process is that the stimulus threatens 

the biological balance, the arousal state will be maintained and a decision with 

respect to the kind of biological action has to be taken. 
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c i r c a d i a n 
r h y t h m \ A 

STRESS 

CNS 
brain s tem 

l imb ic /cor t i ca l 
brain s t ructures 

neuro
transmitters 

HYPOTHALAMUS 

V P C R H neuropept ides 

+M+ 4-

CORTISOL 
neural 
input 

ADRENAL 

Figure 2 . Schematic representation of the hypothalamic-pituitary-adrenocortical axis 
The hypothalamus receives stimulatory and inhibitory input f rom several 
extrahypothalamic brain areas. The secretion of ACTH from the anterioi 
pituitary is controlled by CRH, vasopressin and other hypothalami 
peptides. ACTH stimulates synthesis and secretion of Cortisol f rom th< 
adrenal cortex, which exerts negative feedback on the system. The adrena 
cortex also receives neural input, which can modulate the response of the; 
cortex to ACTH [29] . 
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The judgement of the behavioural response (active or passive) to be made 

takes place in the frontal lobe (limbic system). The amygdala plays a crucial role 

in the active behavioural "f ight/fl ight" strategy, which is performed to remove 

the threat and thereby extinguish the arousal reaction. If it is unclear, however, 

which action must be taken (e.g., in novel or unpredictable situations, or when 

an adequate response is not possible), the "conservation/withdrawal" strategy is 

chosen, in which the (septo-)hippocampal system is thought to play an essential 

role. Characteristic for this strategy is the maintenance of a high level of arousal 

and alertness, as well as high activity of the HPA system [30]. 

HPA-activity is thought to be mediated and/or modulated by neurotrans

mitters such as noradrenaline, adrenaline, serotonin, acetylcholine, and K-arnino-

butyric acid [31-35]. Opioid peptides, particularly /^-endorphins, may also be 

important neuromodulators and/or hormones in this respect [36-38]. The effects 

of opioids on the HPA axis are thought to be mediated by altering the synthesis 

and/or release of hypothalamic releasing factors, release-inhibiting factors and/or 

other secretagogues, or by affecting neurotransmitters that can alter these 

factors [38]. Endogenous opioid systems may modulate basal activity as well as 

stress-induced activation of the HPA axis [39]. Although some investigators 

have found that opioids inhibit the activation of the HPA axis in response to 

stressors, others have found the opposite effect, probably as a consequence of 

differences in experimental conditions [38,39]. 

After perception and evaluation of a stimulus as a stressor by the CNS, 

signals are relayed from the limbic system to the endocrine hypothalamus 

inducing the release of corticotropin-releasing hormone (CRH). CRH is thought to 

play a key role in the body's integrated behavioural, autonomic, and 

neuroendocrine responses to stress. Its existence was demonstrated in the 50s 

[40,41] and in 1981 it was isolated from ovine hypothalami and characterized 

as a 41-amino-acid peptide [42]. CRH is generally considered to be the major 

factor responsible for ACTH release from the anterior pituitary. CRH-

immunoreactive cells are widely distributed in the central nervous system [43], 

and in the periphery [44]. CRH directly involved in ACTH regulation is 

synthesized in parvocellular cells of the paraventricular nucleus (PVN) [45]. 

These cells project to the median eminence constituting the link between the 

CNS and the anterior pituitary gland. In the median eminence, CRH and several 

other neuropeptides [46] are released from nerve terminals into the hypophysial 

portal blood and transported to the capillairy bed of the anterior lobe of the 

pituitary. 

In the pituitary, CRH evokes the secretion of 39-amino-acid peptide ACTH 
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and induces the synthesis of pro-opiomelanocortin (POMC), the ACTH precursor 

[47]. POMC contains sequences of several biologically active peptide hormones 

(e.g., ACTH, ß-lipotropin, /ff-endorphin, cr-MSH, K -MSH) . In addition to CRH, 

several other neuropeptides, such as vasopressin, oxytocin, angiotensin II, 

cholecystokinin, vasoactive intestinal peptide, endogenous opioids, and biogenic 

amines, are able to induce ACTH secretion from the anterior pituitary [48-50]. 

Among these substances, which may act to stimulate the pituitary in their own 

right, or potentiate the action of CRH [48,49,51], vasopressin is considered to 

be the most important peptidergic factor regulating ACTH secretion. After 

secretion into the systemic circulation, ACTH, in its turn, acts on adrenocortical 

cells of the zona fasciculata and reticularis to initiate synthesis and release of 

glucocorticoids. In addition, steroidogenesis is mediated by splanchnic nerve 

input to the adrenal, which may modulate cortical sensitivity to ACTH, probably 

in part by changes in blood f low [29] (see Figure 2). Glucocorticoids are 2 1 -

carbon steroids derived from cholesterol. In man and in the pig, Cortisol is the 

predominantly secreted glucocorticoid, whereas in rodents it is corticosterone. 

Once secreted from the adrenal gland, most of the glucocorticoids (approxima

tely 75-80%) bind with high affinity to a specific corticosteroid-binding a2-

globulin known either as corticosteroid binding globulin or transcortin, and an 

additional 15% binds to albumin. Only a small amount (5-10%) of the gluco

corticoids is unbound. The free hormone is the biologically active form, which is 

taken up by target cells by passive diffusion [52]. Glucocorticoids stimulate 

catabolic processes and suppress anabolic processes in order to mobilize 

glucose from various storage sites. They increase blood glucose levels by 

stimulation of hepatic glyconeogenesis and inhibition of glucose uptake by 

peripheral tissues. Also lipolysis and protein catabolism are induced, thereby 

increasing the level of free fatty acids and the availability of amino acids as 

substrates for gluconeogenesis [53,54]. Glucocorticoids synergize with the 

sympathetic nervous system in increasing heart rate and blood pressure, as a 

means to deliver the mobilized energy substrates to the muscles more rapidly. 

Besides mobilization of energy substrates, they also inhibit many functions in 

the immune system [53], and processes such as growth and reproduction [55]. 

Long-term elevated levels of glucocorticoids are potentially harmful to the 

organism, as will be considered later. Therefore, it is important to "turn off" the 

HPA stress response, whether or not the stressor is eliminated. This is achieved 

by glucocorticoid feedback inhibition of ACTH secretion. Additional feedback 

loops include the inhibitory effects of ACTH, ^-endorphin and CRH on the 

hypothalamic CRH neuron [56]. Circulating glucocorticoids control their own 

-19-



synthesis and release by negative feedback at the level of the anterior pituitary, 

the PVN and extrahypothalamic regions, particularly the hippocampus [26,57-

59]. Three major time frames of negative feedback mediated by Cortisol can be 

distinguished [593: 1) the fast feedback of Cortisol (within minutes after stress 

exposure) on the multisynaptic control of ACTH release in the median eminence; 

2) the intermediate feedback (minutes to hours after stress exposure) involving 

the gene mediated intracellular protein synthesis, probably prominent in steroid 

regulated neuronal communication in limbic structures; 3) the slow feedback 

(hours to days after stress exposure) that involves gene mediated blockade of 

CRH and vasopressin expression in the PVN and POMC expression in pituitary 

corticotropic cells. In the CNS there are two steroid receptor types involved in 

glucocorticoid feedback on HPA functioning with different localization and 

steroid affinity: 1) high-affinity (Kd ~ 0.5 nM), type I "mineralocorticoid 

receptors", which bind aldosterone, corticosterone, Cortisol and deoxy

corticosterone equally in vitro and to a greater extent than dexamethasone. 

Type I receptors are predominantly localized in the extrahypothalamic limbic 

system, in particular the hippocampus, and possibly in certain brain stem motor 

nuclei [26,60]. These receptors are thought to control basal ACTH secretion by 

control of CRH and vasopressin expression in the PVN [61] and they are 

involved in the maintenance of circadian rhythmicity of the HPA axis; 2) low 

affinity (Kd ~ 3.0 nM), type n "glucocorticoid receptors", which preferentially 

bind dexamethasone > Cortisol > corticosterone > deoxycorticosterone > 

aldosterone. Type n receptors are widely distributed throughout the brain (limbic 

system, PVN, supra-optic nucleus, cerebral cortex, most brain stem 

monoaminergic nuclei [26,60]) and have been postulated to exert major control 

of stress-induced ACTH secretion [60,61]. 

Chronic Stress 

In order to investigate HPA functioning, a wide variety of acute stressors 

has been used, including cold, ether, footshock, toxic substrate and restraint 

[62]. The common end-point of the acute stress-induced activation of the HPA 

axis is an increase in circulating ACTH and consequently increased secretion of 

glucocorticoids, as described earlier. Most studies concerned with chronic stress 

have been performed in rats, generally using repeated exposures of the animals 

to the same stressful stimulus, e.g., cold, restraint or intermittent footshock [63-

65]. There is ample evidence that chronic stress may lead to changes in 
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synthesis and storage of hormones at different levels of the HPA axis, as well as 

in sensitivity of each tissue to the secretagogues activating it [62,66,67]. 

Increases in adrenal weight and in the capacity of the adrenal gland to respond 

to ACTH have been demonstrated in chronically stressed rats [68]. In response 

to a novel stimulus chronically stressed animals may show greater pituitary-

adrenocortical responses than control animals, despite elevated levels of plasma 

glucocorticoids [68-70]. This suggests the occurrence of a lowered sensitivity of 

the HPA axis to endogenous glucocorticoid feedback signals under these 

conditions, so that further responsiveness of the system is maintained [71]. 

Studies by Sapolsky et al. [72] have demonstrated that under conditions of 

chronic stress hippocampal glucocorticoid receptors are down-regulated, which 

may partly explain the insensitivity for glucocorticoid feedback. Several studies 

in the rat suggest that the release of CRH and AVP into the portal circulation is 

increased during chronic stress [73,74]. In addition, it has been reported that 

repeated activation of the HPA system leads to plastic changes in hypothalamic 

CRH neurons, resulting in increased AVP stores and increased AVP expression 

in CRH-containing vesicles in the median eminence, leading to an increased ratio 

of secreted AVP/CRH [73,75-77]. Since vasopressinergic stimulation of ACTH 

secretion is less sensitive to glucocorticoid feedback than CRH [78], increased 

AVP in the secreted cocktail will act to maintain pituitary responsiveness even 

when circulating glucocorticoid levels are quite high. 

Hypersecretion of Giucocorticosteroids 

Although biological stress responses help the animal to cope with the 

stressor they also have their price, since they involve the redirection of energy 

to those physiological activities that need highest priority. Long-term stress 

responses, therefore, may be biologically costly to the organism. For most 

"daily-life" stressors, the biological cost of coping is relatively small, because 

the change in biological function is capable of eliminating the threat. However, 

when the stressor is severe and persistent (chronic stress) or when the 

organism experiences a series of stressors, the change in biological function 

may represent a serious biological cost and may lead to the development of a 

pathological state [20]. Secretion of glucocorticoids, represents a major 

chemical response of the body to certain stressors, and plays an important role 

in the adaptation of the organism to the stressful situation. Glucocorticoid 

actions are essentially catabolic, they increase the availability of energy 
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Substrates. This process involves the deferment of energy-consuming activities, 

which are not of immediate benefit for the stress response, e.g., growth and 

reproduction. Moreover, glucocorticoids suppress immune system activity. 

Munck and co-workers, however, proposed that in stress, elevated levels of 

glucocorticoids serve to suppress the body's normal defences against stress, 

and thus to prevent them from overreacting and causing damage to the 

organism [53]. Although elevated glucocorticoid levels in the acute phase may 

be an effective means of keeping check on a potentially dangerous endogenous 

activity, hypersecretion may be harmful to the individual if it continues for too 

long. Chronic hypersecretion of glucocorticosteroids is thought to contribute to 

e.g., hypertension, hyperlipidaemia, hypercholesterolaemia, muscle atrophy, 

impaired growth and tissue repair, reproductive failure and immunosuppression 

[54]. In addition, Sapolsky and his co-workers proposed that sustained exposure 

to glucocorticoids may initially down-regulate glucocorticoid receptors in the 

hippocampus and, ultimately, cause hippocampal neuron loss [72,79]. 

Tethered Housing of Female Pigs 

Studies on the effects of stressors on HPA regulation are almost exclusively 

conducted in male (or ovariectomized female) animals, to avoid the confounding 

influence of the variations in neuroendocrine activity associated with the female 

reproductive cycle. As a consequence, information on the activity of the HPA 

axis during the oestrous cycle, and the relevance of stress-induced changes in 

HPA function for reproductive performance in female animals, is largely lacking. 

In the experiments described in this thesis, prolonged tethered housing of female 

pigs was used as a model for chronic stress. In this chronic restraint stress 

paradigm, pigs are tethered by a neck-chain connected to a 50-cm heavy gauge 

chain which is attached to the floor. Tethered housing of pigs is not unusual in 

modern pig breeding farms. This housing system, in which sows are tethered by 

a neck or breast tether, has been introduced in the past three decades when 

there was a change towards intensive housing of livestock. The most important 

advantages of this housing system are the lower costs as a result of saving on 

both space and labour. Since only little floor space is available for each animal, 

tethered housing largely impairs movements and performance of natural 

behaviour of pigs. 

Tethering itself has been recognized as an acute stressor for the animals. 

When first tethered, the animals fiercely resist, scream loudly and try to escape 

-22-



Chapter 1 

by pulling and biting the chain. Besides this breakout behaviour [80], 

physiological reactions such as an increased heart rate and increased plasma 

levels of ACTH, /^-endorphin and Cortisol, characteristic for acute stress, are also 

displayed. Several hours after this initial stress response, the sows seem to calm 

down and heart rate and hormone concentrations gradually return to pre-stress 

levels. 

During prolonged tethered housing the animals are subjected chronically to 

this aversive housing situation, deprived of their main behavioural tools to exert 

control over their environment. As already emphazised by Weiss, loss of control 

is generally recognized as a common denominator of stressful conditions 

[11,12,81]. Along this line, it can be reasoned that long-term tethered housing 

imposes a condition of chronic stress on the animals. This contention is 

supported by observations that behavioural (development of stereotypies, i.e. 

invariant patterns of behaviour performed repeatedly and persistently, having no 

obvious goal or function) [80,82-84], reproductive [85,86] and cardiovascular 

disturbances [83] are frequent in tethered pigs. 

This Thesis... 

In this thesis, the effects of chronic stress on the (re)activity of the HPA 

axis are evaluated in cyclic nulliparous female pigs ( = gilts). To this end, the 

basal as well as the challenge-induced activity of the HPA system were 

investigated under loose housing conditions ("non-stress", control) and during 

tethered housing (chronic stress) of gilts. 

Evidence that hormones of the HPA axis (CRH, ACTH, glucocorticoids) may 

influence the activity of the hypothalamic-pituitary-gonadal axis at several levels 

exists [87,88]. The aim of the study, described in Chapter 2, was to gain more 

insight in the relation between HPA activity and reproductive hormones in the 

female pig and to investigate whether this is affected by chronic stress. In a 

longitudinal study, the plasma Cortisol pattern throughout the 21-day oestrous 

cycle of gilts was determined in relation to the profiles of luteinizing hormone 

(LH), progesterone and prolactin. Hormone profiles of one oestrous cycle of 

loose housing were compared with profiles of one oestrous cycle after 3-6 

weeks of tethered housing. 

Chapter 2 revealed significantly elevated basal Cortisol concentrations after 

3-6 weeks of tethered housing. Based on these results, a subsequent study 
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(presented in Chapter 3) was performed, using a prolonged period of chronic 

stress (up to 18 weeks of tethered housing) to establish whether the hyper-

cortisolaemia is of transient nature. We also investigated whether the effect of 

chronic stress on plasma Cortisol concentrations depends on the time of day, 

since evidence that the adrenocortical response to stress varies in a circadian 

fashion is increasing [89]. Therefore, Cortisol concentrations were measured in 

the morning and the early evening of the 24-hour adrenocortical rhythm. 

The aim of the longitudinal study, presented in Chapter 4, was to 

investigate whether chronic stress (up to 20 weeks) induces changes in 

functioning of the adrenal cortex, which may underlie the hypercortisolaemia, 

described in Chapter 2 and Chapter 3. To this end, the reactivity of the adrenal 

cortex to exogenous ACTH was determined before and during tethered housing. 

Additionally, possible effects of factors other than restraint (social/housing 

conditions) on the adrenocortical response to ACTH were investigated. 

In Chapter 5, the role of endogenous opioid mechanisms in pituitary-

adrenocortical responsiveness to acute stress (nose-sling), before and after 

exposure of the gilts to chronic stress, was studied. Plasma ACTH and Cortisol 

responses were monitored after 15 minutes of challenge with a nose-sling 

during loose housing and after 10-11 weeks of tethered housing. The 

involvement of endogenous opioid peptides in these responses was tested using 

the opioid receptor antagonist naloxone. 

In Chapter 6, we investigated the effect of 10-13 weeks of tethered 

housing on pituitary-adrenocortical responsiveness to exogenous CRH and/or 

lysine vasopressin (LVP). Three experiments were conducted to evaluate the 

potency of CRH and LVP to stimulate ACTH and Cortisol release in gilts and the 

effect of chronic stress on this release. In Experiment 1 and 2, a dose-response 

curve was made for ovine CRH and LVP. In Experiment 3, the pituitary-adreno

cortical response to LVP and oCRH, administered singly or in combination, was 

determined in loose housed and in tethered gilts. 

In Chapter 7, the major findings of the Chapters 2-6 are summarized and 

discussed. 
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Chapter 2 

Plasma levels of Cortisol, prolactin, and 
reproductive hormones during the oestrous 
cycle in the pig: Effects of chronic stress 

Summary 
Plasma concentrations of Cortisol were investigated in relation to those of 

luteinizing hormone (LH), progesterone, and prolactin throughout the oestrous 

cycle in the pig, before and during chronic restraint stress. After a period of 

loose housing in individual pens, gilts were tethered by a neck-chain (chronic 

stress). Blood samples for hormone determination were collected through a 

permanent jugular vein catheter at least twice daily. Plasma Cortisol levels 

showed a marked rhythmicity throughout the oestrous cycle; significantly 

increased concentrations at 4 days prior to the LH peak, a small increase during 

the LH surge and rather stable levels during the luteal phase. A positive 

correlation was found between Cortisol and prolactin levels. We suggest that 

these changes in Cortisol and prolactin concentrations reflect alterations in the 

sensitivity of the pigs for "daily life stress" throughout the oestrous cycle. Three 

to 6 weeks of chronic stress significantly increased Cortisol (10.7 ± 0.4 vs. 

8.2 ± 0.4 ng/ml; P<0.001) and prolactin levels (10.2 ± 0.3 vs. 8.4 ± 0.3 

ng/ml; mean ± SEM; P<0.001) throughout the oestrous cycle. Progesterone 

levels were significantly decreased (10.0 ± 0.3 vs. 10.8 ± 0.3 ng/ml; 

P<0 .05) , whereas neither LH nor the length of the oestrous cycle was affected 

by tethered housing. We conclude that these changes are due to chronic stress, 

since no such alterations in hormone levels were found in control gilts that were 

housed loose throughout the entire experiment. 
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Introduction 

The concentration of glucocorticoid hormones in plasma is widely used as 

an indicator of stress [1]. Indeed, acute stressors invariably activate the 

hypothalamic-pituitary-adrenocortical (HPA) axis, and thereby lead to increased 

secretion of glucocorticoids from the adrenal cortex, both in males and females 

[2]. Studies on the effects of stressors on HPA regulation are almost exclusively 

conducted in male (or ovariectomized female) animals, to avoid possible 

variations in neuroendocrine activity associated with the female reproductive 

cycle. As a consequence, information on the activity of the HPA axis during the 

oestrous cycle in female animals is lacking. 

Evidence exists, indicating considerable cross-talk between the HPA and the 

hypothalamic-pituitary-gonadal (HPG) axes [3,4]. It has been shown that 

hormones of the HPA axis (corticotropin-releasing hormone (CRH), adreno

corticotropic hormone (ACTH), glucocorticoids) can influence HPG activity at 

several levels [3-12]. Administration of glucocorticoids in particular can disrupt 

cyclicity in females depending on the phase of the reproductive cycle [7,11]. In 

addition, glucocorticoids are thought to play an important role in the adverse 

effects of stress on female reproductive functions [3-12]. 

In the pig, the secretory patterns of pituitary gonadotropins, prolactin and 

ovarian hormones during the 21-day oestrous cycle have been well 

characterized [13-19]. Concerning plasma Cortisol levels in this respect, the 

available data indicate fluctuations during the oestrous cycle, suggesting the 

existence of one or more episodes of enhanced secretion [7,15]. Sofar, 

however, relationships between the secretory patterns of Cortisol and those of 

reproductive hormones during the oestrous cycle have not been firmly 

established in the pig. 

The purpose of the present study therefore was to determine the plasma 

Cortisol pattern throughout the oestrous cycle of the pig in relation to the 

profiles of luteinizing hormone (LH), progesterone and prolactin, and in addition 

to investigate whether and how these hormonal profiles are affected by chronic 

stress. Tethered housing was used to induce chronic stress, since it restrains 

the animals and leads to persisting disturbances in behaviour [20-23] and in 

endocrine [24,25] and cardiovascular systems [22]. 
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Materials and Methods 

Experimental Design 

The present study was conducted at the Animal Facilities of the Department 

of Human and Animal Physiology, Wageningen, The Netherlands. One 

experimental and one control group were run. For both groups the complete 

experiment was performed during a period of 3 months in which all of the gilts 

showed 4 complete oestrous cycles (cycle length approximately 21 days), 

labelled A,B,C and D in Figure 1. 

•+ loose housing H-*— 

A B C 
Î 
S 

-1 

° 
I 

I I I 
5 -10 -5 0 E 

- tethered housing — -

D E l 
o ' o ! 

i ' 

I I 
i i i 

-15 -10 -5 0 5 

Figure 1. Experimental Design. 
A,B,C,D,E, consecutive oestrous cycles; S, surgical implantation of jugular 
vein catheter; 0, day of LH surge; I, experimental oestrous cycle (from day 
- 1 5 till day +5) before tethering ( = "non-stress" oestrous cycle); II, 
experimental oestrous cycle (from day - 1 5 till day +5) during tethered 
housing ( = chronic stress oestrous cycle). For the gilts of the control group 
a similar experimental design was employed except for tethering. 

During the luteal phase of oestrous cycle A all gilts were surgically fitted 

with a permanent jugular vein catheter. Blood samples were collected daily at 

1000 h and 1800 h throughout the experiment to determine plasma hormone 

levels. From 3 days before until 3 days after oestrus additional blood samples 

were collected at 0000, 0600, 1200 and 1400 h, in order to monitor the 

preovulatory LH surge (day 0) in gilts of the experimental group. During the 

luteal phase of oestrous cycle C, the gilts of the experimental group were 

tethered by a neck-chain (in the same individual pens) and kept tethered for a 

further period of 6 weeks. 

To facilitate the analysis and the evaluation of interrelationships between 
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the several hormones and the effect of chronic stress on hormone profiles, the 

hormone profiles of the individual animals were synchronized with respect to the 

day of the LH surge (day 0). In that manner it was possible to eliminate the 

individual differences in oestrous cycle length. The experimental oestrous cycles 

I and II thus obtained ranged from 15 days prior to until 5 days after the LH 

surge (see Figure 1). To investigate the effect of chronic stress on hormone 

patterns throughout the oestrous cycle, the hormone patterns of oestrous cycle 

I (before tethering; "non-stress" oestrous cycle) were compared with those of 

oestrous cycle II (during tethered housing; chronic stress oestrous cycle). In gilts 

of the control group both oestrous cycles I and II represent "non-stress" 

oestrous cycles. 

The experiments were approved by the Committee on Animal Care and Use 

of the Agricultural University of Wageningen. 

Animals and Housing 

Fourteen cyclic crossbred gilts (Great Yorkshire x British Landrace, Pig 

Improvement Company, United Kingdom), which had shown two or more normal 

oestrous cycles (18-22 days) prior to the experimental period were used. 

Ambient temperature ranged from 15 to 2 5 ' C and lights were on between 

0730 h and 1900 h (and in addition between 0530 h and 0630 h, and between 

2330 h and 0030 h for blood sampling around oestrus). Twice a day (at 0900 h 

and 1700h) the animals were fed 1 kg of pelleted dry sow ration (12.2 MJ 

metabolizable energy per kg, 15.4% crude protein), which was delivered by 

hand. To prevent the animals from associating the presence of people with 

feeding, they were conditioned with a bell signal that always preceded the 

feeding. Water was available ad libitum through a nipple drinker. Oestrus 

detection was routinely carried out twice daily (0830 h and 1630 h) wi th a 

vasectomized boar, and by inspection of external oestrous signs. Gilts were 

considered to be in oestrus when showing a standing response to the boar 

and(or) showing vulval swelling and redness. 

Experimental Group. Seven gilts (176 ± 18 kg body weight; mean ± SD) 

were housed loose in individual pens of 5.5 m2. The floor was solid concrete, 

covered with straw, except for a 2.5 mz dunging area at the rear of the pens. 

After a 7-week period of loose housing, the gilts were tethered by the neck wi th 

a 50-cm heavy-gauge chain, connected to the fence at the front, at days 6-12 

after the LH surge, i.e. during the luteal phase of oestrous cycle C (see 

Figure 1). They remained tethered in the same pens for a further period of 6 

weeks. 
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Control Group. Seven gilts (109 ± 3 kg body weight; mean ± SD) were 

housed loose during the entire experiment in individual pens, similar to those 

used for the gilts of the experimental group. Due to cannula damage, two gilts 

of the control group could no longer be used for blood sampling at some stage 

during the experiment, and therefore did not yield data. These animals, 

however, remained in the housing system for the rest of the experiment. 

Surgery 
In order to allow repeated blood sampling without disturbing the gilts, an 

indwelling catheter was surgically implanted into the jugular vein as described 

previously [26]. All surgeries were carried out under sterile conditions and under 

general anaesthesia. In order to protect the cannula from damage, which was 

externalized between the scapulae, the gilts were equipped with a harness to 

which they had been habituated during the week before cannulation. The 

harness (23 cm x 20 cm, polyvinyl chloride with nylon; Bizon Chemie, The 

Netherlands) was fixed at the back of the animals with belts tied around the 

chest. From 3 days before surgery till 3 days after surgery, all gilts were treated 

once daily with antibiotics (0.2 ml/kg body weight Engemycine 10%, i.m. bolus 

injection; Mycofarm Nederland BV, The Netherlands), containing Oxytetracycline 

(100 mg/ml). At least 10 days were allowed for the animals to recover from 

surgery and anaesthesia. 

Cannula patency was maintained by flushing thrice weekly and filling the 

cannula with sterile heparinized physiological saline (25 lU/ml 0 .9% saline; Leo 

Pharmaceutical Products, The Netherlands) when not in use. 

Blood Collection and Analyses 
Preceding the experimental oestrous cycle I, the gilts were often handled 

and habituated to the blood collection procedure which has been described 

previously [26]. Blood samples (approximately 10 ml) were collected in ice-

cooled polypropylene tubes, containing 100// I EDTA-solution (144 mg EDTA/ml 

saline; Titriplex'll l, Merck Nederland BV, The Netherlands). They were 

immediately placed on ice and subsequently centrifuged at 2000 x g for 15 min 

at 4 °C . Plasma was collected and stored at - 2 0 ° C until hormone analysis. 

Plasma was assayed by validated immunoassay for Cortisol [26] in 1000 h and 

1800 h samples, and for progesterone [27] and prolactin [28] in 1000 h samples 

taken on each day of the oestrous cycles I and II. LH [13] was determined by 

radioimmunoassay in plasma samples taken around oestrus. Intra- and inter-

assay coefficients of variation were 4.5 and 11.2%, 7.6 and 12.7%, 6.9 and 
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12.3%, and 13.8 and 15.6%, respectively, for Cortisol, progesterone, prolactin 
and LH. 

Analysis of Data and Statistics 

The effects of oestrous cycle (oestrous cycle I vs. II), day of the oestrous 

cycle (according to the numbering in Figure 1), and their interaction on plasma 

concentrations of Cortisol, LH, progesterone and prolactin were tested by an F-

test using a split-plot model, procedure GLM [29]. In this model, the values of 

hormone levels within gilts were taken as repeated measurements and the 

analyses were performed separately for the control and experimental group: 

Yiik = U + e t i + C, + Dk + CxDjk + e2ijk 

where Yijk = hormone value of gilts i during oestrous cycle j at day k of the 

oestrous cycle; /J = overall mean; e,; = error term 1, which represents the 

random effect of gilts (i = 1,..,7); C, = fixed effect of oestrous cycle j 

(j = 1,2); Dk = fixed effect of day k of the oestrous cycle (k = 1,..,21); 

CxDjk = the interaction effect between oestrous cycle j and day k of the 

oestrous cycle; e2ijk = error term 2. The effect of oestrous cycle, day of the 

oestrous cycle and their interaction were tested against error term 2. 

Oestrous cycle length (of oestrous cycles B and D in Figure 1) was 

determined as the interval between two consecutive preovulatory LH surges. 

Wilcoxon Matched Pairs Signed Ranks test (two-way) was used to determine 

the effect of tethered housing on oestrous cycle length. Pearson correlation 

coefficients between the different hormone concentrations were also calculated. 

Both tests were performed using the SPSS statistical package [30]. All results 

are expressed as the mean ± SEM. 

Results 

Oestrous Cycle Length 

No significant difference was found between the length of the oestrous 

cycle before tethering (20.6 ± 0.4 days; oestrous cycle B in Figure 1) and after 

2-5 weeks of tethered housing (21.4 ± 0.9 days; oestrous cycle D in Figure 1). 
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Also no significant effect of tethered housing was found on the time interval 

between the onset of oestrus and the LH surge. In oestrous cycle I of the 

experimental group, the LH surge occurred in 2 of 7 animals at the first day of 

standing oestrus, and in the remaining 5 animals at the second day of standing 

oestrus. In oestrous cycle II, the LH surge occurred in 1 of 7 animals at one day 

prior to standing oestrus, in 3 animals at the first, in 2 animals at the second, 

and in 1 animal at the third day of standing oestrus. Both in the loose housed 

and in the tethered-housed situation all gilts showed normal external oestrous 

signs and oestrous behaviour. In the gilts of the control group the length of 

oestrous cycle B (20.4 ± 0.7 days) was not significantly different from oestrous 

cycle D (20.4 ± 0.5 days). 

Plasma Hormone Levels 

Plasma levels of progesterone, Cortisol and prolactin during oestrous cycle I 

and oestrous cycle II of gilts of the experimental and the control groups are 

shown in Figure 2 and Figure 3, respectively. 

LH. Basal plasma LH levels (determined in the blood samples taken at 2-6 h 

intervals on days - 3 , - 2 , 2 and 3) were relatively constant. Approximately 

10 hours after the onset of the LH surge maximal LH levels (day 0) were 

reached. Neither basal nor peak levels of LH were significantly affected by 3-6 

weeks of tethered housing. Mean basal and mean peak levels of LH were 

2.3 ± 1.7 ng/ml and 8.7 ± 0.8 ng/ml in oestrous cycle I and 2.2 ± 1.4 ng/ml 

and 7.7 ± 1.0 ng/ml in oestrous cycle II (Figure 2). 

Progesterone. During the luteal phase of the oestrous cycle (days 2 until 5 

and days - 1 5 until - 7 in Figure 2A) a rise in plasma progesterone levels was 

observed, reaching a maximum at 7 days prior to the LH surge. Thereafter the 

progesterone concentration rapidly declined and returned to basal ( < 1 ng/ml) on 

day - 3 (Figure 2A). Tethered housing significantly decreased mean plasma 

progesterone levels from 10.8 ± 0.3 ng/ml (oestrous cycle I) to 10.0 ± 

0.3 ng/ml (oestrous cycle II) (P<0.05). The profile of progesterone throughout 

the oestrous cycle, however, remained unaltered (P = 0.135). 

In gilts of the control group the progesterone profile throughout the 

oestrous cycle was similar to that found in oestrous cycle I of the experimental 

group (Figure 3A). No significant difference was found between mean 

progesterone levels of oestrous cycle I (15.7 ± 0.8 ng/ml) and oestrous cycle II 

(14.0 ± 0.6 ng/ml), and there was no interaction between oestrous cycle and 

day of the oestrous cycle (P = 0.871). 
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Figure 2. Plasma levels of progesterone ( 1 0 0 0 h ; Figure 2A), Cortisol (average of 
1000 h and 1 8 0 0 h ; Figure 2B) and prolactin ( 1 0 0 0 h ; Figure 2C) 
throughout oestrous cycle I ( —O —; "non-stress" oestrous cycle) and 
oestrous cycle II ( — • —; chronic stress oestrous cycle) in gilts of the 
experimental group (mean ± SEM; n = 7). The values are plotted by taking 
the day of the preovulatory LH surge as day 0 (Insert: plasma LH 
concentrations from day - 2 through day 2). 
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Cortisol. The profile of daily mean Cortisol levels (as determined from 

1000 h and 1800 h values) during the oestrous cycle is shown in Figure 2B. A 

marked rhythmicity was observed both before and during tethered housing 

(P<0.001). During the luteal phase of the oestrous cycle, when progesterone 

levels were rising (days 2 until 5 and days - 1 5 until - 7 in Figure 2), rather 

stable plasma Cortisol levels were found. A discrete Cortisol peak, however, 

occurred during the early follicular phase, coinciding with the decline of plasma 

progesterone levels. In oestrous cycle I this Cortisol peak was observed at 4 

days prior to the plasma LH surge. A modest but consistent rise (although not 

statistically significant) occurred in both untethered and tethered animals during 

the late follicular phase at the time of the LH surge. 

Tethered housing led to a significant increase in daily mean Cortisol levels 

during oestrous cycle II (10.7 ± 0.4 ng/ml) as compared with pretethering 

levels (oestrous cycle I; 8.2 ± 0.4 ng/ml; P < 0 . 0 0 1 ; Figure 2B). The chronic 

stress-induced hypercortisolemia was particularly evident during the luteal phase 

of the oestrous cycle (10.5 ± 0.6 ng/ml during oestrous cycle II vs. 6.2 ± 

0.4 ng/ml during oestrous cycle I). A significant interaction was found between 

oestrous cycle and day of the oestrous cycle (P<0.001). This interaction was 

induced by the plasma Cortisol peak, which occurred at day - 5 of oestrous 

cycle II, whereas in oestrous cycle I it occurred at day - 4 . 

A similar profile of Cortisol concentrations throughout the oestrous cycle 

was found in the control gilts (see Figure 3B). In these gilts significantly increa

sed Cortisol levels (P<0.001) were found at day - 4 of oestrous cycle I 

(28.3 ± 6.2 ng/ml) and at days - 4 and 0 of oestrous cycle II (25.5 ± 

3.5 ng/ml and 21.7 ± 3.0 ng/ml). No significant difference was found between 

daily mean Cortisol concentrations, measured during oestrous cycles I and II 

(11.9 ± 0.5 ng/ml and 11.7 + 0.5 ng/ml, respectively). In control gilts, there 

was no interaction between oestrous cycle and day of the oestrous cycle 

(P = 0.973). 

Prolactin. Figure 2C shows the profile of plasma prolactin (samples taken at 

1000 h) during the oestrous cycle. Significantly increased prolactin levels were 

found during both the early (day - 4 ) and the late (day - 1 until day 1) follicular 

phase, compared with the luteal phase of the oestrous cycle when prolactin 

concentrations remained rather stable (P<0.001). The time interval between the 

first and the second prolactin peak ranged from 3 to 5 days in the individual 

animals. Tethered housing led to a significant increase in mean prolactin levels 

throughout the oestrous cycle from 8.4 ± 0.3 ng/ml to 10.2 ± 0.3 ng/ml 

(P<0.001) . 
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Figure 3. Plasma levels of progesterone (1000h; Figure 3A), Cortisol (average of 
1000 h and 1800h; Figure 3B) and prolactin (1000h; Figure 3C) 
throughout oestrous cycle I (—O—) and oestrous cycle II (—•—) in gilts of 
the control group (mean ± SEM; n = 5). The values are plotted by taking 
the day of the preovulatory LH surge as day 0. 
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In the control gilts, in which the profile of plasma prolactin during the 

oestrous cycle was similar to that found in the gilts of the experimental group, 

mean prolactin levels throughout oestrous cycle I (6.0 ± 0.2 ng/ml) were not 

significantly different from levels measured during oestrous cycle II (6.5 ± 

0.2 ng/ml). Both in gilts of the experimental group (P = 0.993) and control group 

(P = 0.997), corresponding prolactin profiles were observed for oestrous cycle I 

and oestrous cycle II. 

Correlations between Hormones 

Plasma Cortisol and plasma prolactin showed similar profiles throughout the 

oestrous cycle with increased levels around day - 4 and day 0. Both for the 

gilts of the experimental and the control group, a positive correlation was found 

between plasma prolactin and Cortisol concentrations throughout the oestrous 

cycle (experimental group, r = 0.238, P< 0 .001 ; control group, r = 0.248, 

P<0.001) . A negative correlation was found between prolactin and 

progesterone (experimental group, r = - 0 . 3 1 8 , P < 0 . 0 0 1 ; control group, 

r = - 0 . 4 2 7 , P<0.001) . 

Discussion 

The patterns of plasma Cortisol, LH, progesterone and prolactin were 

investigated throughout the oestrous cycle of pigs during loose and tethered 

housing. The profiles of LH, progesterone and prolactin, which were observed 

during the "non-stress" control oestrous cycle in this study, are in accordance 

with data previously reported [13-19]. In addition, this study demonstrates that 

plasma Cortisol levels also show cyclic variation throughout the oestrous cycle 

of the pig (similar to prolactin), with rather stable levels during the luteal phase 

and a Cortisol peak in the early as well as in the late follicular phase of the 

oestrous cycle. McGuire et al. [15] also reported cyclic variations of Cortisol 

during the oestrous cycle of the pig. They observed two broad peaks of plasma 

corticosteroids, one following the decrease of plasma progesterone and the 

second 7-14 days later, but there was a marked variation both within and 

between the animals. Hennessy et al. [7] did not find any relationship between 

plasma Cortisol levels and progesterone concentrations or the stage of the 

oestrous cycle in the pig. 

One possible explanation for the observed discrepancies between these 

data and ours may be the small number of animals used and infrequent blood 
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sampling (one blood sample per day) employed by Hennessy et al. [7] and 

McGuire et al. [15]. Additionally, plasma Cortisol levels vary considerably within 

individual animals, due to pulsatility of pituitary ACTH secretion and slight 

changes in environmental conditions over time [31]. Therefore, we have used 

daily mean Cortisol values, rather than values based on single plasma samples. 

Low sampling frequency may also partly explain why data on Cortisol levels 

during the female cycle obtained in other species [32-35] have yielded 

conflicting results. 

A better explanation for the discrepancies among the findings of the former 

studies [7,15] and the present study may relate to differences in the analysis of 

the data. In our studies, we have used the day of the LH surge to synchronize 

the hormone profiles of the animals, whereas other investigators used either 

oestrous signs [7] or the first day at which progesterone levels were 

undetectable [15]. We and others [13,17,18,27] have found that the interval 

between the onset of oestrus and the LH surge may vary from hours to about 2 

days. Since our data indicate that the time interval between the Cortisol peaks, 

in the early and late follicular phase, and the LH surge is quite stable, the LH 

surge appears to be a better criterion for the synchronization of hormone profiles 

than oestrous behaviour. 

An interesting observation in our study was the positive correlation between 

plasma Cortisol and prolactin levels by similar sequential profiles of these 

hormones throughout the oestrous cycle. Coinciding with the peaks of plasma 

Cortisol and prolactin in the follicular phase of the oestrous cycle, elevated levels 

of plasma ACTH (although this was only determined in two animals) were 

observed. There is ample evidence, that the release of prolactin from the 

pituitary is stimulated during various forms of stress [36-41]. We suggest that 

the elevated plasma hormone levels during the early and late follicular phase of 

the oestrous cycle reflect an increased sensitivity of the animal to "daily life 

stressors" during those days. 

Tethered housing did not induce an alteration in the rhythmicity of the 

hormones during the oestrous cycle. The only exception is the change in timing 

of the Cortisol peak from 4 to 5 days before the LH surge. The basal Cortisol and 

prolactin levels throughout the oestrous cycle were significantly increased 

during tethered housing. This is in accord with other findings [20-25] indicating 

that tethered housing, which in fact restrains the animal, induces chronic stress, 

and with the notion that chronic stress can lead to sustained elevation of 

corticosteroid levels [2,42]. Our observations (data not shown) that the plasma 

levels of ß-endorphin (a peptide hormone that is cosecreted with ACTH from the 
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pituitary corticotropin cell [43]) were not affected by tethered housing, suggest 

that the increase in Cortisol was not caused by increased ACTH release from the 

pituitary. An alternative explanation may be an increase in the sensitivity of the 

adrenal cortex to ACTH. Indeed, there are several reports of elevated gluco

corticoid levels that are not associated with significant increases in plasma 

ACTH [2,44,45]. There is increasing evidence that classical neurotransmitters or 

neuropeptides (e.g., CRH) may directly innervate the adrenal cortex, thereby 

controlling the secretory activity of the adrenal cortex, independent of pituitary 

ACTH release [44,46-48]. 

It has been reported in previous studies that tethered housing of pigs may 

induce reproductive disorders such as reduced rate of oestrus detection and 

reduced pregnancy rate [25,49]. Indeed we have found in the present study that 

3-6 weeks of tethered housing induced a decrease of plasma progesterone 

concentrations during the oestrous cycle. No effects of 3-6 weeks of chronic 

stress, however, were found on plasma LH concentrations, oestrous behaviour 

or on the length of the oestrous cycle. Whether more prolonged tethered 

housing can disrupt LH secretion or ovarian function and thereby adversely 

affect reproductive performance in the pig needs to be investigated. 

In summary, the present study demonstrates a coordinated rhythmicity of 

Cortisol and prolactin during the oestrous cycle of the female pig. Three to six 

weeks of tethered housing (chronic restraint stress) increased plasma Cortisol 

and prolactin levels and decreased progesterone levels throughout the oestrous 

cycle, whereas LH concentrations and length of the oestrous cycle were not 

affected. 
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Chapter 3 

The effect of chronic stress on plasma 
Cortisol concentrations in cyclic female pigs 

depends on the time of day 

Summary 
The influence of tethered housing (a condition of chronic stress) on morning and 

evening basal plasma Cortisol levels was investigated in a longitudinal study in 

cyclic female nulliparous pigs (gilts). After a period of loose housing in individual 

pens ("non-stress" oestrous cycles), six cannulated gilts were tethered by a 

neck-chain and tethered housed for a period of 20 weeks (chronic stress 

oestrous cycles). Blood was sampled twice daily (1000 h and 1800 h) for 

Cortisol determination. Plasma Cortisol levels showed a diurnal rhythm with 

significantly higher levels at 1000 h than at 1800 h. Tethered housing induced a 

significant increase in the 1800 h plasma Cortisol concentrations during the first 

3 oestrous cycles after tethering, whereas the 1000 h plasma Cortisol 

concentrations did not change throughout the experimental period. During the 

period of increased 1800 h levels, Cortisol was still released in a circadian 

fashion, albeit the rhythm was flattened. In control gilts, housed loose during 

the entire experimental period, plasma Cortisol levels at 1000 h as well as at 

1800 h remained unaltered, with 1000 h Cortisol concentrations being 

significantly higher than 1800 h concentrations. Therefore, possible effects of 

the experimental procedure or age-related effects could be excluded. These data 

indicate that in tethered gilts the chronic stress-induced hypercortisolaemia is of 

transient nature, suggesting adaptive changes in regulation of the hypothalamic-

pituitary-adrenocortical (HPA) axis. In addition, the data reveal circadian 

differences in the effect of chronic stress on HPA-function. 
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Introduction 

Circadian fluctuations in circulating glucocorticoid levels have been reported 

for many species, including pigs. In diurnal species such as the human and the 

pig, plasma glucocorticoid levels are high in the early morning and then decline, 

reaching a nadir in the evening. In nocturnal animals an inverse pattern in the 

glucocorticoid level has been observed [1-7]. Circadian patterns of circulating 

Cortisol are thought to result primarily from changes in plasma adreno

corticotropic hormone (ACTH) in response to circadian changes in corticotropin-

releasing hormone (CRH) release [4,8-11]. Since the amplitude of the ACTH 

rhythm is relatively small compared to the Cortisol rhythm, this suggests the 

involvement of other factors that mediate the glucocorticoid release, e.g., the 

sensitivity of the adrenal cortex [12,13], or neural input to the adrenal gland 

[14]. Indeed, it has been found in the rat that the sensitivity of the adrenal 

cortex to ACTH also varies in a circadian fashion [4,10,15-17]. 

Several reports have shown circadian differences in adrenocortical 

responses to acute stressors in a variety of species [14,18-22]. The effects of 

chronic stress on glucocorticoid secretion and circadian rhythmicity in the 

female pig have not been firmly established. Evidence exists that chronic stress 

can lead to changes in the regulation of the hypothalamic-pituitary-adrenal (HPA) 

axis [23,24]. We have found that 3-6 weeks of tethered housing, a condition of 

chronic stress, induces chronic hypercortisolaemia in cyclic gilts [25], indicating 

long-term changes in the regulation of the pituitary-adrenal axis during chronic 

stress. In a subsequent study we have shown that tethered housing of gilts is 

associated with an adaptational increase in adrenocortical steroidogenic 

capacity, which may underlie this hypercortisolaemia [26]. 

The purpose of the present study was to investigate the effect of chronic 

stress on adrenocortical function in cyclic female pigs, in the morning and the 

early evening of the 24-hour adrenocortical rhythm. Prolonged tethered housing 

was used to induce chronic stress, since it has been reported to lead to 

persisting disturbances in behaviour [27-29] and in endocrine [6,30] and 

cardiovascular systems [28]. 

Materials and Methods 

Experimental Design 
A longitudinal design was employed to investigate changes in basal plasma 
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Cortisol levels induced by long-term tethered housing (chronic stress) in 

individual cyclic gilts. The complete experiment was performed during a period 

of 7 months in which all gilts showed 9 complete oestrous cycles (of circa 21 

days each) (see Figure 1). The gilts were surgically fitted with a permanent 

jugular vein catheter for blood sampling (oestrous cycle A, Figure 1). One 

experimental and one control group were run. The gilts in the experimental 

group were first housed loose in individual pens (oestrous cycles A and EL1). 

Then they were tethered by a neck-chain (oestrous cycle B, Figure 1) and kept 

tethered for a period of 20 weeks. 

loose 
housing 
0 0 

A 
t 
S 

EL1 

CL1 

0 

B 
0 

ET1 

te 
h( 

0 

ET2 

CL2 

thered 
Dusing 

0 0 0 

ET3 ET4 ET5 

CL5 

0 

ET6 j 

Figure 1. Experimental Design. 
0, day of LH surge; S, surgical implantation of jugular vein catheter; T, tethering; 
A,EL1,B,ET1,ET2,ET3,ET4,ET5,ET6, consecutive oestrous cycles: A, oestrous cycle 
before tethering; EL1, experimental oestrous cycle before tethering (= control oestrous 
cycle); B, oestrous cycle of tethering; ET1 to ET6, 6 experimental oestrous cycles 
during tethered housing (= chronic stress oestrous cycles); CL1,CL2,CL5, experimental 
oestrous cycles of the gilts of the control group matching oestrous cycles ELI, ET2 and 
ET5, respectively. 

Blood samples were collected twice daily at 1000 h and 1800 h during the 

entire experimental period. Plasma Cortisol was determined by radioimmuno

assay. Plasma LH was determined in the 1000 h and 1800 h samples taken 

around oestrus in order to localize the preovulatory LH surge for analysis. The 

day on which the highest LH value was found was defined as day 0. Cortisol 

profiles of the individual gilts were synchronized with respect to day 0. In that 

manner it was possible to overcome the individual differences in oestrous cycle 

length. For analyses of the data, estrous cycles were defined to range from day 

10 before through day 10 after the LH surge (total 21 days). Basal plasma 
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Cortisol levels of one oestrous cycle of loose housing (EL1, "non-stress" 

oestrous cycle) were compared with 6 oestrous cycles during tethered housing 

(ET1 to ET6, chronic stress oestrous cycles. Figure 1). During oestrous cycles 

EL1 and ET2, additional blood samples were collected around oestrus at 0000, 

0600 and 1200 h. Control gilts were housed loose for the duration of the 

experiment under conditions that were otherwise similar to those applied for the 

experimental group, except for tethering. These animals were of the same age 

as the experimental group and experiments were performed in exactly the same 

season of the year (i.e. February-July). In the control gilts blood was sampled 

frequently during the entire experimental period. Cortisol was only determined in 

the 1000 h and 1800 h blood samples of 3 complete oestrous cycles CL1, CL2 

and CL5, respectively, matching oestrous cycles EL1, ET2 and ET5 of the 

experimental group (Figure 1). The remaining samples were used for other 

determinations. For all gilts, oestrous signs were monitored during the entire 

experiment, and interventions (surgery and tethering) were performed during the 

luteal phase of the oestrous cycle. 

The experiments were approved by the Committee on Animal Care and Use 

of the Agricultural University of Wageningen. 

Animals and Housing 

Twelve crossbred cyclic gilts (Great Yorkshire x British Landrace, Pig 

Improvement Company, United Kingdom) which had shown two or more normal 

oestrous cycles (18 to 22 days) were selected. The body weight of the gilts at 

the start of the experiment was 114.0 ± 6.9 kg (mean ± SD). The gilts were 

randomly assigned to control and experimental stress groups, with 6 gilts each. 

All gilts were housed loose in individual pens of 5 to 6 m2. The floor was 

solid concrete and covered with deep straw, except for a 2.5 m2 dunging area 

at the rear of the pens. After two complete oestrous cycles of loose housing, 

the gilts of the experimental group were restrained by a neck-tether attached to 

a 50 cm heavy gauge chain connected to the fence at the front. They were 

housed tethered in the same pens without straw but with a small quantity of 

wood shavings placed in the area behind the gilts to help to keep them clean. A 

metal plate (1.1 m x 0.8 m; length x height) was placed beside the gilts as a 

partition to reduce floor space to 2.0 m x 0.6 m and thereby further restricted 

their movements. 

For all housing conditions lights were on between 0730 h and 1900 h and 

ambient temperature ranged from 15 to 2 5 ' C . Twice a day (at 0900 h and 

1700h) the animals were fed 1 kg of pelleted dry sow ration (12.2 MJ 

-54-



Chapter 3 

metabolizable energy per kg, 15.4% crude protein), which was delivered by 

hand. To prevent the gilts from associating the presence of people with feeding, 

they were conditioned with a bell signal that always preceded feeding. Water 

was available ad libitum through a nipple drinker. Oestrus detection was 

routinely done twice daily (at 0830 h and 1630 h) with a vasectomized boar and 

by external oestrous signs. Gilts were considered to be in oestrus when they 

showed a standing response to the boar and/or showing vulval swelling and 

redness. 

Surgery 

To allow repeated blood sampling without disturbing the gilts, they were 

surgically fitted with a permanent jugular vein catheter (polyvinyl chloride, 

1.5 mm i.d., 2.1 mm o.d.; Rubber BV, The Netherlands) as described previously 

[26]. Surgery was performed under sterile conditions and under general 

anaesthesia either by i.v. metomidate-azaperone infusion (Hypnodil-Stresnil'"; 

Janssen Pharmaceutica BV, The Netherlands) or inhalation of 0 2 /N 20, enflurane 

(Ethrane": Abott BV, The Netherlands). In order to protect the cannula, which 

was externalized in between the scapulae, from damage the gilts were equipped 

with a harness to which they had been habituated during the week before 

cannulation. The harness (23 cm x 20 cm, polyvinyl chloride with nylon; Bizon 

Chemie, The Netherlands) was fixed at the back of the animals with belts 

around the chest. At least 10 days were allowed for the gilts to recover from 

surgery and anaesthesia. 

Cannula patency was maintained by flushing thrice weekly. When not in 

use, the cannulae were filled with sterile heparinized physiological saline (25 IU 

heparin/ml of 0 .9% saline; Leo Pharmaceutical Products, The Netherlands). 

Blood Sampling 

Prior to the experimental period, all gilts were frequently handled and 

habituated to the blood collection procedure that has been described previously 

[26]. Blood samples (approximately 10 ml) were immediately transferred to ice-

cooled polypropylene tubes, containing 100//I of EDTA-solution (144 mg of 

EDTA/ml of saline; Titriplex'lll, Merck Nederland BV, The Netherlands), 

immediately placed on ice and subsequently centrifuged at 2000 x g for 10 min 

at 4 °C . Plasma was collected and stored at - 2 0 ° C until hormone analysis was 

completed. 
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Radioimmunoassay of Plasma Hormones 
Cortisol. Plasma concentrations of Cortisol were measured in duplicate in 

unextracted 50 /J\ samples using a single-antibody radioimmunoassay (RIA) 

technique as previously described [26]. A specific rabbit antiserum (K7348; 

kindly donated by Prof. Dr. T.J. Benraad, Nijmegen, The Netherlands), raised 

against 11ß,17,21-trihydroxy-4-pregnene-3,20-dione-3-CMO-BSA (Cortisol-

Bovine Serum Albumin-conjugate), was used. The main cross-reacting steroids 

were 21-desoxycortisol (72%), cortisone (59%), prednisolone (53%), 11 -

desoxycortisol (43%), corticosterone (10%), progesterone (2.3%), oestradiol-

17ß, dexamethasone, and triamcinolone acetonide (all < 1%). Cortisol (H 5885; 

Sigma Chemical, St. Louis MO) was used as a standard and [1,2,6,7-3H]cortisol 

(TRK407, specific activity 80.5 Ci/mmol, Amersham, U.K.) was used as the 

tracer. The antiserum was used in a final dilution of 1:96,250, which yielded 

approximately 30% specific binding of the labeled hormone after incubation. 

The sensitivity of the Cortisol assay was 0.5 ng/ml at 90% B/B0. The intra-assay 

coefficient of variation was 7.7%, and the inter-assay coefficient of variation 

was 11.6%. 

LH. Plasma concentrations of LH were measured by a double-antibody RIA 

as previously described by Niswender et al. [31], using porcine LH (LER 786-3, 

potency 0.65 x NIH-LH-SI; obtained from Dr. L.E. Reichert Jr., New York, USA) 

as a standard and for radioiodination (specific activity 130.6 /jC\//jg). Anti-ovine 

LH 614 IV (also obtained from Dr. L.E. Reichert) was used in a 1:180,000 final 

dilution that gave an initial binding of the labeled hormone of approximately 

30%. Goat anti-rabbit immunoglobulin was used as the second antibody. The 

sensitivity of the assay was 0.7 ng/ml at 90% B/B0. The intra-assay coefficient 

of variation was 13.8% and the inter-assay coefficient of variation was 15.6%. 

Analysis of Data and Statistics 
Due to cannula damage that occurred in the course of the experiment, one 

gilt of the control group did not yield sufficient blood samples and was therefore 

excluded from further analysis. This animal, however, remained in the housing 

system for the rest of the experiment. 

All plasma Cortisol data were normalized by log transformation before 

statistical analysis. To examine the effect of tethered housing on plasma Cortisol 

concentrations (at 1000 h and 1800 h), data were analyzed by analysis of 

variance using the General Linear Models procedure of SAS [32], followed by 

Tukey's t post-hoc test. For the analysis of variance, oestrous cycle and day of 

the oestrous cycle (nested within oestrous cycle) were used as main factors. 
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Time was nested within day within oestrous cycle. Based on previous findings 

[25] the period of the oestrous cycle during which progesterone levels were 

rising ( > 1 ng/ml) was defined as luteal phase of the oestrous cycle. This period 

included days 10 until 7 before the LH surge and days 2 until 10 after the LH 

surge. Differences in mean plasma Cortisol concentrations during the luteal 

phase of the oestrous cycle among gilts of the control (oestrous cycles CL1, 

CL2, and CL5) and the experimental group (oestrous cycles EL1, ET2, and ET5) 

were analyzed by Student's f-test (two-tailed) using SPSS statistical package 

[33]. Differences in ratio of 1000 h and 1800 h plasma Cortisol levels measured 

during the luteal phase of those oestrous cycles were also analyzed by 

Student's f-test. In all analyses P<0.05 was used as the criterion for rejecting 

the null hypothesis. 

Data are presented as mean ± SEM of the untransformed data, wi th 

significance symbols derived from statistical analysis of the log transformed 

data. 

Results 

Both during the loose housed and the subsequent tethered housed condition 

morning and evening basal plasma Cortisol concentrations were measured during 

the entire oestrous cycle. Mean 1000 h and 1800 h plasma Cortisol levels of 

oestrous cycle EL1 ("non-stress" oestrous cycle; loose housing) and oestrous 

cycles ET1 to ET6 (chronic stress oestrous cycles; tethered housing) are 

displayed in Figure 2. During loose housing plasma Cortisol levels were 

significantly higher at 1000 h (17.9 ± 3.0 ng/ml) than at 1800 h 

(7.2 ± 1.5 ng/ml; P<0.01) , reflecting a circadian rhythmicity in Cortisol 

secretion. The difference in 1000 h and 1800 h Cortisol concentrations was 

significant during the entire period of tethered housing (P<0.05). Tethered 

housing led to significantly increased 1800 h plasma Cortisol levels during the 

first 3 oestrous cycles after tethering (ET1 to ET3) as compared with 

pretethering values (oestrous cycle EL1) in the same gilts (P<0.05; indicated by 

the asterisks). During the oestrous cycles ET4 to ET6, 1800 h Cortisol levels 

were no longer significantly different from pretethering levels. No significant 

effects of long-term tethered housing were found on 1000 h basal plasma 

Cortisol levels. 
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EL1 ET1 ET2 ET3 ET4 ET5 ET6 

Oestrous cycles 

Figure 2. The effect of chronic stress on 1000 h and 1800 h plasma Cortisol 
concentrations during the oestrous cycle of the pig. 
Mean plasma Cortisol concentrations per oestrous cycle during loose 
housing (EL1 ; "non-stress" oestrous cycle) and during 6 consecutive 
oestrous cycles during tethered housing (ET1 to ET6; chronic stress 
oestrous cycles) in gilts of the experimental group (mean + SEM; n = 6). 
Hatched bars represent 1000 h Cortisol concentrations and closed bars 
represent 1800 h concentrations. Asterisks indicate significant difference 
(P<0.05) when compared with loose housing at that particular time. 

In the present study as well as in a previous experiment [25] Cortisol levels 

remained rather stable during the luteal phase of the oestrous cycle compared 

with other parts of the oestrous cycle. As a result, the hypercortisolaemia, 

induced by tethered housing, was most evident during the luteal phase of the 

oestrous cycle. Therefore, this particular phase of the oestrous cycle was used 

to investigate possible effects of increased age, individual housing and blood 

sampling. Figure 3 shows the mean 1000 h (Figure 3A) and 1800 h (Figure 3B) 

plasma Cortisol levels during the luteal phase (days 10 until 7 before the LH 

surge and days 2 until 10 after the LH surge) of 3 oestrous cycles of both the 

control gilts (oestrous cycles CL1, CL2, and CL5) and the gilts of the 
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experimental group (oestrous cycles EL1, ET2, and ET5). In all gilts 1000 h 

Cortisol levels were significantly higher than 1800 h levels during the luteal 

phase of the oestrous cycle (oestrous cycle CL1, CL2, CL5, EL1 and ET5; 

P < 0 . 0 1 ; oestrous cycle ET2; P<0.05) , also reflecting a diurnal rhythm in 

Cortisol secretion. 

control experimental 

CL1 CL2 CL5 EL1 ET2 ET5 

Oestrous cycles 

Figure 3. Plasma Cortisol concentrations in loose and tethered housed gilts. 
Mean plasma Cortisol concentrations per luteal phase of the oestrous cycle 
(mean + SEM) (1000 h; Figure 3A; 1800 h; Figure 3B) of 3 oestrous cycles 
in gilts of the control group (n = 5) and in gilts of the experimental group 
(n = 6). Open bars represent mean (luteal) Cortisol levels of oestrous cycles 
CL1 and EL1, hatched bars represent oestrous cycles CL2 and ET2, and 
closed bars represent oestrous cycles CL5 and ET5, respectively. Asterisks 
indicate significant difference (P<0.05). 
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Whereas significantly increased 1800 h plasma Cortisol levels were found during 

the luteal phase of oestrous cycle ET2 in the tethered housed gilts compared 

with oestrous cycle EL1 (Figure 3B, hatched bar; P<0.05) , 1800 h plasma 

Cortisol levels in the gilts of the control group remained unaltered throughout the 

entire experimental period (Figure 3B). During the luteal phase of ET5, 1800 h 

Cortisol concentrations were not significantly different from EL1 and ET2 

(Figure 3B). Both in gilts of the experimental and control groups no significant 

changes were found in the 1000 h plasma Cortisol levels throughout the whole 

experimental period (Figure 3A). The increased 1800 h plasma Cortisol levels 

during oestrous cycle ET2 resulted in a significantly lower Cortisol ratio (1000 h 

to 1 8 0 0 h ; 1.6 ± 0.2) as compared with oestrous cycle EL1 (2.8 ± 0.5; 

0000 0600 1200 
Hour 

1800 

Figure 4. The effect of chronic stress on diurnal variation in plasma Cortisol 
concentrations in gilts. 
Plasma Cortisol concentrations (mean + SEM, n = 6) at 0000, 0600, 1000, 
1200, and 1800 h during oestrous cycle EL1 ("non-stress" oestrous cycle; 
— O—) and oestrous cycle ET2 (chronic stress oestrous cycle; —•—) in 
gilts of the experimental group (average diurnal rhythm of 3 days: one day 
before the LH surge until one day after the LH surge). The asterisk indicates 
significant difference (P<0.05). 
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P<0.05) , reflecting a flattening of the diurnal rhythm of Cortisol secretion in this 

period. No significant difference was found between the ratio 1 0 0 0 h / 1 8 0 0 h 

Cortisol of oestrous cycle ET5 (2.3 ± 0.4) on the one hand, and oestrous cycle 

EL1 and ET2 on the other. 

When plasma Cortisol levels of oestrous cycles CL1, CL2 and CL5 (control 

group) were compared with oestrous cycles EL1, ET2, and ET5 (experimental 

group) respectively, significant difference (P<0.05; Student's t test) was found 

only between 1800 h plasma Cortisol levels of oestrous cycles CL2 and ET2 

(indicated by the asterisk in Figure 3B). 

We investigated whether the increased evening Cortisol levels during 

tethered housing reflected a shift in diurnal Cortisol secretion instead of a 

flattening of the diurnal Cortisol rhythm. Therefore, Cortisol was determined in 

plasma samples taken around oestrus, when blood was sampled more 

frequently, during oestrous cycles EL1 and ET2 (when chronic stress-induced 

changes are most evident). Figure 4 shows the average diurnal Cortisol profile of 

one day before the LH surge until one day after the LH surge. During this period 

of the oestrous cycle significantly (P<0.05) greater 1800 h plasma Cortisol 

concentrations were found during oestrous cycle ET2 compared with EL1. 

Figure 4 demonstrates that tethered housing did not induce a shift in diurnal 

Cortisol secretion, but that the diurnal rhythm was slightly flattened. 

Discussion 

Plasma Cortisol concentrations were significantly greater in the morning 

(1000h) than in the afternoon (1800 h), reflecting a circadian variation in 

adrenocortical activity, which is in accordance with data previously reported for 

the pig [1,2,5-7]. In the present study, tethered housing induced a significant 

increase in 1800 h plasma Cortisol levels during the first 3 oestrous cycles after 

tethering, whereas 1000 h Cortisol levels were not affected, indicating diurnal 

differences in the adrenocortical response to stress. After 11 weeks of tethered 

housing the hypercortisolaemia was no longer evident, suggesting adaptive 

changes in HPA-regulation attributed to chronic stress. 

During tethered housing of pigs, the animals are largely restricted in their 

movements and behavioural performance, and experience a loss of control over 

their environment [34,35]. Tethered pigs often develop symptoms of chronic 

stress such as behavioural [27,29,35,36], reproductive [30] and cardiovascular 

[28] disturbances. Indeed, we observed that the gilts of the experimental group 
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performed stereotypies during tethered housing (although we did not quantify 

behavioural parameters in our study), whereas these behaviours were not 

displayed by the gilts of the control group. Long-term tethered housing thus 

imposes a condition of chronic stress on the pigs. It has been demonstrated in a 

variety of species that chronic or repeated stress can induce long-term changes 

in the regulation of the HPA axis. Repeated exposure to stressors can produce 

increases in adrenocortical function, as evidenced by increased basal plasma 

corticosteroid concentrations, or increased adrenal weight [23,24,37-40]. 

Indeed we have found in a previous study that exposure of gilts to 3-6 weeks of 

tethered housing results in sustained elevated basal plasma Cortisol 

concentrations [25], indicating long-term changes in the regulation of the 

pituitary-adrenal axis. In the present study we found that the chronic stress-

induced hypercortisolaemia was only present during the evening (in the 1800 h 

samples). This agrees with findings of Martf et al. [41], who reported increased 

corticosterone levels during the circadian trough in rats exposed to chronic 

intermittent immobilization stress. In contrast to our results, Becker and 

colleagues reported increased morning concentrations of Cortisol in tethered 

pigs, whereas the evening Cortisol levels remained unaltered [6]. The 

discrepancies between these data and ours may partly depend on the animals 

used for the experiments. Becker et al. [6] used ovariectomized gilts in their 

experiments, while we used intact cyclic gilts. The effect of ovarian steroids, 

such as oestradiol, has been suggested by Brann. In his model a stimulatory 

effect of oestradiol on ACTH secretion is suggested [42]. In addition or 

alternatively, differences in feeding patterns between both studies may explain 

the observed discrepancies. In the experiment described by Becker and co

workers [6], feeding (once daily) coincided with collection of the morning 

sample for Cortisol determination. It can be reasoned that in tethered pigs, 

which are chronically deprived of their main behavioural tools to exert control 

over their environment, the impact of predictable events such as feeding had 

increased, leading to the elevated morning Cortisol concentrations in that 

experiment. 

In control gilts, blood was collected during 3 complete oestrous cycles but 

1000 h and 1800 h plasma Cortisol concentrations were measured only during 

the luteal phase of the oestrous cycle. During this particular phase of the 

oestrous cycle, when Cortisol levels remain rather stable, chronic stress-induced 

hypercortisolaemia is most evident [25]. In gilts of the control group, which 

were housed loose in individual pens for the duration of the experiment, Cortisol 

levels remained unaltered throughout the experimental period (oestrous cycles 
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CL1, CL2 and CL5). Therefore, the increase in 1800 h Cortisol levels observed in 

tethered gilts is probably not related to effects induced by repeated manipulation 

(e.g., blood sampling), to individual housing per se, or to changes in 

adrenocortical function that are known to occur with increasing age [40,43,44]. 

Thus, we can conclude that the increased evening plasma Cortisol levels 

observed in the tethered housed gilts, indeed resulted from the stress caused by 

tethered housing. In addition, Figure 4 demonstrates that the increase in 1800 h 

Cortisol concentrations, which led to flattening of diurnal adrenocortical 

rhythmicity, cannot be attributed to a chronic stress-induced shift in diurnal 

Cortisol secretion. 

The exact mechanisms that are involved in the circadian variation in the 

adrenocortical response to chronic stress are still unclear. In the rat there is 

evidence suggesting that the sensitivity of the adrenal cortex to ACTH varies in 

a circadian fashion [4,10,15-17]. Armario et al. [39] showed an altered 

ACTH/corticosterone ratio in chronically stressed rats, which could be explained 

by a sensitisation of the adrenal cortex to endogenous ACTH released during 

stress. This accords with the results reported by Martî et al. [41], who showed 

that the increased corticosterone levels during chronic intermittent stress were 

not accompanied by changes in ACTH levels. Neither in the rat nor in the pig 

diurnal variation in the chronic stress-induced corticosteroid levels can be 

explained by changes in metabolic clearance rate of corticosteroids [5,41]. 

Although ACTH is generally considered the most important factor in the control 

of glucocorticoid secretion, it has been reported that neural inputs at the level of 

the adrenal gland can influence the sensitivity of the adrenal cortex to ACTH 

[12-14,45,46]. It has been suggested that endogenous CRH enhances the 

adrenal response to ACTH, possibly by a synergistic action of CRH and ACTH 

on adrenal blood f low [12,47]. Although this has only been described for the 

rat, neural induced changes in adrenocortical sensitivity may in part underlie the 

reduction in amplitude between morning and evening Cortisol concentrations in 

gilts, occurring during tethered housing. 

In conclusion, tethered housing induced a long-term increase in evening but 

not in morning plasma Cortisol concentrations in cyclic gilts, resulting in a 

flattened diurnal rhythmicity of Cortisol. Evening Cortisol levels and diurnal 

adrenocortical rhythmicity were no longer significantly different from the loose 

housing condition after 11 weeks of chronic stress. The transient nature of the 

hypercortisolaemia may indicate development of adaptational changes in the 

HPA system (at the level of the adrenal cortex) during chronic restraint stress. 
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Chapter 4 

Increased Cortisol response to exogenous 
adrenocorticotropic hormone in chronically 

stressed pigs: Influence of housing conditions 

Summary 
In a longitudinal experiment, the influence of tethered housing (a condition of 

chronic stress) on the reactivity of the adrenal cortex to exogenous ACTH was 

investigated in gilts. To that end, the plasma Cortisol response to synthetic 

ACTH (1-24; 10//g/kg of BW; i.v. bolus injection via a permanent catheter) was 

determined before and after prolonged tethered housing. Two systems for 

tethered housing were used, one being more restrictive than the other with 

regard to possibilities for visual and tactile contacts with conspecifics and visual 

control over the environment. The ACTH treatment induced a marked, transient 

plasma Cortisol response in all gilts studied, irrespective of their housing 

conditions. Long-term tethered housing increased the ACTH-induced Cortisol 

response. Possible effects of the experimental procedure or age-related effects 

could be excluded, because in control gilts, which were housed loose during the 

entire experimental period, the Cortisol response to ACTH remained unaltered. 

The chronic stress-induced increase in the ACTH-induced Cortisol response was 

considerably more pronounced and persistent in gilts that were deprived of 

possibilities for social contacts with conspecifics and visual control over the 

environment than in gilts with such possibilities. These data indicate that in 

tethered gilts adaptational changes occur at the level of the adrenal cortex that 

affect the ACTH-induced adrenocortical response. In addition, not only physical 

restraint but also restriction of social contact and visual control play an 

important role in the development of these changes. 
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Introduction 

Long-term tethered housing of female pigs in individual pens is not unusual 

in modern intensive pig breeding. This type of housing is considered stressful, 

because physical restraint largely impairs normal behaviour of the animals and 

thereby their control over the environment, and tethered pigs often develop 

behavioural and physiological disturbances [1]. However, factors in addition to 

physical restraint such as social restriction may contribute to the stressful 

character of the tethered housing condition [2]. Abundant literature indicates 

that chronic stress can lead to changes, at different levels of organization, in the 

regulation of the hypothalamic-pituitary-adrenal (HPA) axis [3,4]. Indeed, we 

have found that tethered housing induces chronic hypercortisolaemia in cyclic 

female pigs [5]. An increase in the corticosteroidogenic response to ACTH might 

well underlie this phenomenon. 

The aim of the present study was to determine 1) whether tethered housing 

affects the adrenal Cortisol response to ACTH, and 2) whether factors other 

than restraint, in particular possibilities to engage in visual and tactile contacts 

with other tethered pigs and to oversee the environment, play a role in the 

effects of tethered housing. 

Materials and Methods 

Experimental Design 

A longitudinal design was used to investigate changes in adrenocortical 

steroidogenic capacity induced by long-term tethered housing (chronic stress) in 

individual cyclic gilts (see Figure 1). Two experimental and two control groups 

were used. The gilts in the experimental groups were first housed loose in 

individual pens for at least two complete oestrous cycles. Then they were 

tethered by a neck-chain for 15 or 20 weeks; the housing conditions of 

experimental Group 1 were more restrictive than those of Group 2 with regard 

to the possibilities for social interactions and the degree of visual isolation from 

the environment. Once during loose housing and twice during tethered housing 

(at 6 to 7 weeks and at the end of the experiment) the adrenocortical 

steroidogenic capacity of the gilts was challenged with i.v. administration of 

synthetic ACTH(1-24), and the subsequent Cortisol response was monitored by 

radioimmunoassay of plasma. The control gilts (control Groups 1 and 2) were 

housed loose for the duration of the experiment under conditions that were 
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otherwise similar to those used for the respective experimental groups. In these 

groups, ACTH challenges were performed with time intervals approximately 

matching those used for the experimental groups. For all gilts, signs of oestrus 

were monitored during the experiment, and interventions (surgery, tethering, 

ACTH challenges) were performed during the luteal phase of the oestrous cycle, 

to prevent interference by changes in adrenocortical activity that are associated 

with the oestrous cycle [5]. 

- loose housing— 
s 

E i E E 

1 
I 

•+ 

E 

tethered housing 

E E E E E 

p. 

E 

t 
I 

. t 
I 

II II II 

Figure 1. Experimental Design. 
E, standing oestrus (oestrous cycle length 20.9 ± 0.2 days; mean + SEM); 
S, surgical insertion of jugular vein catheter; I, ACTH challenges of 
experimental Group 1; II, ACTH challenges of experimental Group 2 and 
control Groups 1 and 2, which were treated similarly to the experimental 
Groups, except tethering. 

Animals and Housing 
Thirty healthy, cyclic, crossbred gilts (Great Yorkshire x British Landrace, 

Pig Improvement Company, U.K.) that had shown two or more normal oestrous 

cycles (20.9 ± 0 . 2 days; mean ± SEM) were used for this experiment. The 

body weight of the gilts at the beginning of the experiment was 114.2 ± 

1.4 kg. 

In all housing systems, lights were on between 0730 h and 1900 h, and 

ambient temperature ranged from 15 to 25°C. The gilts were fed 1 kg of a 

pelleted, nonlactating sow feed, delivered by hand twice a day (at 0900 h and 

1700 h). To prevent the gilts from associating the presence of people wi th 

feeding, they were conditioned with a bell signal that preceded feeding. Water 

was available ad libitum through a nipple drinker. Oestrus detection was done 

routinely once daily (0830 h), and around oestrus twice daily (0830 h and 
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1630 h), wi th a vasectomized boar and by external signs of oestrus. Gilts were 

considered to be in oestrus when they showed a standing response to the boar 

and(or) vulvar swelling and redness. 

Experimental Group 1. Six gilts were housed loose in individual pens 

(3.5 m x 1.4 m). The floor was solid concrete and covered with deep straw 

where the gilts stood, except for a dunging area (1.4 m x 1.4 m) at the rear of 

the pens. Six pens, separated by metal plates (3.5 m x 0.9 m; length x height), 

were placed in a single row in a closed room (11.6 m x 6.0 m). A vasectomized 

boar was housed in the same room, in an additional pen, that was separated 

from the nearest gilt by 1.4 m and two metal plates. Only limited tactile and 

visual contact between gilts in adjacent pens was possible through a 10-cm 

space under the metal partition. View of the environment was limited. 

After two complete oestrous cycles, the gilts were tethered in the same 

pens without straw but with a small quantity of wood shavings placed in the 

area behind the gilts to help to keep them clean. The gilts were restrained by a 

neck tether attached to a 50-cm heavy-gauge chain connected to the floor. An 

extra metal plate (1.1 m x 0.8 m; length x height) was placed beside the gilts as 

a partition to reduce floor space to 2.0 m x 0.6 m, thereby further restricting 

their movements. The extra partition also prevented visual or tactile contact 

between gilts in adjacent pens, which were now separated by two metal plates, 

0.8 m apart. The gilts were subjected to an ACTH challenge once during loose 

housing and after 6 and 20 weeks of tethered housing. 

Control Group 1. Six gilts were housed individually in a similar room with 

pens similar to those used for the experimental Group 1 during the loose 

housing condition. As with experimental Group 1, a vasectomized boar was 

penned in the room with control Group 1. During the entire experiment, Group 1 

controls were housed loose on deep straw. The ACTH challenges were 

performed three times with the same intervals as used for experimental Group 2 

(see Figure 1). 

Experimental Group 2. Twelve gilts were housed loose in individual pens 

(3.0 m x 2.0 m). The floor was solid concrete and covered with deep straw 

where the gilts stood, except for a slatted dunging area (1.0 m x 2.0 m) at the 

rear of the pens. The gilts were equally divided over two rooms, each with eight 

pens in two rows of four. 

After two oestrous cycles, all 12 gilts were tethered by the neck with a 50-

cm heavy-gauge chain in individual tether stalls, each 65 cm wide, and placed in 

a single row of 13 pens, divided by horizontal bars, in a closed 9.0-m x 5.0-m 

room. A small quantity of wood shavings was placed in the area behind the gilts 
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to keep them clean. Both before and during tethered housing, all gilts had a 

good view of the environment and auditory, olfactory, and visual contact was 

possible between the gilts. Tactile contact was possible between gilts in 

adjacent pens. An ACTH challenge was performed once during loose housing 

and after 7 and 15 weeks of tethered housing. 

Control Group 2. Six gilts were housed loose during the experiment on deep 

straw in individual pens (3.0 m x 2.0 m) in one room, which was similar to the 

two rooms used for experimental Group 2 during loose housing. The ACTH 

challenges were conducted with the same time interval as in experimental 

Group 2. The vasectomized boar that was used for oestrus detection of 

experimental and control Groups 2 was housed in a separate room. 

Surgery and Treatments 
To collect serial blood samples, each gilt was surgically fitted with a 

permanent jugular vein catheter. Feed was withheld overnight before surgery. 

Surgery was performed during the luteal phase of the oestrous cycle (Figure 1), 

under sterile conditions and under general anaesthesia. The gilts were 

premedicated with an i.m. injection of 6 mg of azaperone/kg of BW (Stresnif, 

Janssen Pharmaceutica BV, The Netherlands). After 30 min, general anaesthesia 

was induced and maintained either with i.v. metomidate-azaperone infusion 

(Hypnodil-Stresnif, Janssen Pharmaceutica BV) or inhalation of 0 2 /N 20, 

enflurane (Ethrane®, Abott BV, The Netherlands). The catheter (polyvinyl 

chloride, 1.5 mm i.d., 2.1 mm o.d.; Rubber BV, The Netherlands) was inserted 

into the vena jugularis externa toward the superior vena cava. The free end of 

the cannula was passed subcutaneously to the back of the gilt, where it was 

externalized between the scapulae. A one-way luer-lock stopcock (Vygon BV, 

The Netherlands) was secured to the end of the cannula so that a 10-ml syringe 

could be attached easily. To protect the cannula, the gilts were equipped with a 

harness to which they had been habituated during the week before cannulation. 

The harness (23 cm x 20 cm, polyvinyl chloride with nylon; Bizon Chemie, The 

Netherlands) was fixed at the back of the animals with belts around the chest. 

From 3 days before surgery until 3 days after surgery, all gilts were treated once 

daily with antibiotics (0.2 ml/kg of BW Engemycine", i.m. bolus injection; 

Mycofarm Nederland BV, The Netherlands). At least 10 days were allowed for 

the animals to recover from surgery and anaesthesia. 

Cannula patency was maintained by flushing the cannulae thrice weekly and 

filling them wi th sterile heparinized physiological saline (25 IU heparin/ml of 

0 .9% saline; Leo Pharmaceutical Products, The Netherlands) when not in use. 
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Adrenocorticotropin Hormone Challenge 

Each gilt received 10//g/kg of BW synthetic ACTH{1-24) (Organon Int., The 

Netherlands) i.v. through the catheter. The dose of ACTH induced the maximal 

plasma Cortisol response in a dose-response study, performed in loose-housed 

cyclic gilts (data not shown). Before the ACTH treatment, four baseline blood 

samples were collected at 15-min intervals. At 1015 h, the ACTH(1-24) 

(dissolved in 1 ml sterile 0 .9% saline solution) was administered as an i.v. bolus 

injection. At various times after the injection (15, 30, 45, 75, 105, 135, 165, 

225, 285, and 345 min), blood was sampled for plasma Cortisol determination. 

During the loose housed period, all gilts also were treated with an i.v. bolus 

injection of 1 ml of sterile 0 .9% saline, to control for the effects of the infusion 

and blood sampling procedure on Cortisol concentrations throughout the blood 

sampling period. 

Blood Sampling 

Before the experimental period, all gilts were frequently handled and 

habituated to the blood collection procedure. Before a blood sample was drawn, 

the luer-lock stopcock was disinfected with 70% ethyl alcohol, and the cannula 

was flushed with 4 ml of sterile saline (NPBI BV, The Netherlands) to remove 

possible blood clots. Then, approximately 10 ml of blood was collected using a 

sterile syringe (Becton Dickinson, Ireland). Subsequently, the cannula was filled 

with either sterile saline, when blood was sampled frequently, or wi th sterile 

heparinized saline (to maintain cannula patency). Blood samples were 

immediately transferred to ice-cooled polypropylene tubes containing 100// I of 

EDTA-solution (144 mg of EDTA/ml of saline; Titriplex"lll, Merck Nederland BV, 

The Netherlands), immediately placed on ice, and subsequently centrifuged at 

2,000 x fir for 10 min at 4°C. Plasma was collected and stored at - 2 0 ° C until 

hormone analysis was completed. 

Radioimmunoassay of Cortisol 

Plasma concentrations of Cortisol were measured in unextracted plasma 

samples using a single-antibody RIA technique. A rabbit antiserum (K7348; 

kindly donated by T.J. Benraad, Nijmegen, The Netherlands), raised against 

11ß,17,21-trihydroxy-4-pregnene-3,20-dione-3-CMO-BSA (cortisol-bovine serum 

albumin-conjugate), was used. The main crossreacting steroids were 2 1 -

desoxycortisol (72%), cortisone (59%), prednisolone (53%), 11-desoxycortisol 

(43%), corticosterone (10%), progesterone (2.3%), oestradiol-17ß, 

dexamethasone, and triamcinolone acetonide (all < 1%). Cortisol (H 5885; 
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Sigma Chemical, St. Louis, MO) was used as a standard, and [1,2,6,7-
3H]cortisol (TRK407, specific activity 80.5 Ci/mmol, Amersham Int., Amersham, 

U.K.) was used as the tracer. The antiserum was used in a final dilution of 

1:96,250, which yielded approximately 30% specific binding of the labeled 

hormone after incubation. All dilutions were made with PBS (pH 7.4) containing 

0 . 1 % of BSA (wt/vol). 

The following reagents were added to each tube: 50 /J\ of standard (7.8 to 

1000 pg cortisol/tube) or 50 fj\ plasma sample (10x diluted; unknowns or pools); 

50 >ul of cortisol-free porcine plasma (except tubes for total counts); 100// I of 

antiserum (except tubes for nonspecific binding); 50 /vl of [1,2,6,7-3H]cortisol 

(10,000 dpm) and PBS-0.1%BSA buffer to bring the total volume to 

550// l / tube. Incubations were performed overnight at 4 °C. Bound and free 

hormone were separated by precipitation with dextran (Mr 60,000 to 90,000)-

coated charcoal. After centrifugation (2,000 x g, 10 min at 4°C), the 

supernatant, which contained the bound hormone, was aspirated and counted 

for radioactivity in liquid scintillation cocktail (Ultima Gold, Packard Instrument 

Company, Menden, CT). The counting data were evaluated using the computer 

program SECURIA (Packard). Standards were incubated in triplicate, pools and 

unknowns in duplicate. All plasma samples (50-//I sample volume, 10x diluted) 

that were assayed with less than 20% B/B0 were reassayed (50-//I sample 

volume, 100x diluted) to bring them within a reliable portion of the standard 

curve. A pool of porcine plasma, containing 74.9 ± 7.1 ng cortisol/ml, assayed 

in various dilutions (n = 6), were parallel to the standard curve (range, 11 to 

89% B/B0). The sensitivity of the Cortisol assay was 0.5 ng/ml at 90% B/B0. The 

intraassay C.V. was 8.2%, and the interassay C.V. was 14.7%. 

Analysis of Data and Statistics 

Preliminary analysis of the Cortisol data of each experimental and control 

group showed a significant interaction between treatment (saline vs three ACTH 

challenges) and time of sampling. Therefore, analyses of the effect of treatment 

on Cortisol were carried out separately for each time point of sampling. The 

effect of treatment was tested by means of F-test using a split-plot model (GLM, 

[6]). The values for treatment within gilts were taken as repeated 

measurements: 

Yij = // + e,i + Tj + e2ij 

where Y^ = Cortisol value of gilt i at treatment j ; /J = overall mean; e^ = error 
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term 1 , which represents the random effect of gilts (i = 1, .., n; n = number of 

gilts within the group); Tj = the effect of treatment j (j = 1, .., 4); and 

e2ii = error term 2, which represents the random effect within gilts between 

treatments. The effect of treatment was tested against error term 2. Least 

squares mean differences were used for the pairwise comparisons between 

treatments following a significant F-test with an overall confidence level of 0.95. 

All statistical analyses were done separately for each group. 

The curves for the Cortisol responses to ACTH treatment were plotted for 

each gilt. A baseline was determined with linear regression using the plasma 

Cortisol values of the four blood samples taken before ACTH injection and the 

Cortisol values that reached preinjection concentrations after the Cortisol 

response. The area under the curve was calculated as the area between the 

baseline and the Cortisol response curve above the baseline. The peak height of 

the Cortisol response was defined as the maximal plasma Cortisol concentration 

minus the corresponding basal Cortisol concentration. Differences in area under 

the curve and peak plasma Cortisol response to three ACTH challenges were 

tested for significance with Student's f-test (paired data) using the Statistical 

Program System for the Social Sciences statistical package [7]. Results are 

given as mean ± SEM. 

Results 

Due to problems with cannula patency and cannula damage during the 

course of the experiment, a number of gilts could no longer be used for blood 

sampling at some stage during the experiment, and therefore did not yield data. 

These gilts, however, remained in the housing system for the rest of the 

experiment. The number of drop-outs in the control groups was greater than we 

expected. After completion of the experiment, data for six gilts of experimental 

Group 1, four gilts of control Group 1, nine gilts of experimental Group 2, and 

five gilts of control Group 2 were available for analysis. 

The mean plasma Cortisol responses of the experimental and control groups 

to i.v. infusion of 10/yg/kg of BW synthetic ACTH(1-24) or 1 ml of saline are 

shown in Figure 2. Saline administration had no effect on plasma Cortisol 

concentrations. Regardless of housing conditions, ACTH induced a time-

dependent increase in plasma Cortisol concentrations in all gilts; the increase 

was highly significant compared with Cortisol concentrations in the same gilts 

after infusion of saline. Considerable differences, especially with respect to the 
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peak height, in the adrenocortical response to ACTH were detected among gilts 

(see Table 1). Within control gilts, however, the Cortisol response remained 

rather stable throughout the experimental period. 
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Figure 2. Mean plasma Cortisol concentrations after i.v. injection of 10^/g/kg of BW 
of ACTH(1-24) ( • ; D; • ) or 1 ml of saline (O) in experimental Group 1 
(Figure 2a; n = 6), control Group 1 (Figure 2b; n = 4; except for loose 
15 weeks, n = 2), experimental Group 2 (Figure 2c; n = 9) and control 
Group 2 (Figure 2d; n = 5). 

Experimental Group 1 (Most Restricted Tethered Housing). After 6 and 

20 weeks of tethered housing, the plasma Cortisol response to ACTH was 

enhanced compared with pretethering values obtained for the same gilts 

(Figure 2a, Table 1). Also, the peak height (after 6 weeks, P<0 .05 ; after 

20 weeks, P<0.05) and the area under the curve (after 6 weeks, P < 0 . 0 1 ; after 

20 weeks, P<0.05) were increased. Further statistical analysis revealed 

significant differences between Cortisol concentrations before and after 6 weeks 

of tethered housing at 135 min, and before and after 20 weeks of tethered 
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housing at 75, 135, 165, and 285 min after the ACTH infusion. No significant 

difference was found between the responses (peak height and area under the 

curve) measured after 6 and 20 weeks of tethered housing. Considerable 

variation was found between individual gilts in the increment of the response 

after tethering. In four of six gilts, 6 and 20 weeks of tethered housing 

increased the area under the curve by 100 to 200% and the peak height of the 

response by 30 to 150%. In the remaining two gilts, the area under the curve 

was increased by approximately 50% at 6 and 20 weeks of tethered housing 

compared with pretethering values. The peak height was increased in one of 

these gilts only after 20 weeks of tethered housing, and peak height remained 

unaltered throughout the experimental period in the other gilt (data not shown). 

Control Group 1 (Loose Housing). In the control gilts, all three ACTH 

challenges yielded similar plasma Cortisol responses (Figure 2b, Table 1), and no 

differences were found in area under the curve or peak height. 

Table 1. Plasma Cortisol response (peak height and area under the curve) to three 
consecutive ACTH challenges for the experimental and control groups. 

Group 

Experimental group 1, n = 6 
Peak height, ng/ml 
AUC, arbitrary units 

Control group 1, n = 4 
Peak height, ng/ml 

AUC, arbitrary units 

Experimental group 2, n = 9 
Peak height, ng/ml 

AUC, arbitrary units 

Control group 2, n = 5 
Peak height, ng/ml 
AUC, arbitrary units 

1 

112.9" ± 16.4 
10,108" ± 1,237 

94.8 ± 5.2 

9,358 ± 717 

119.3" ± 5.8 
12,760" ± 698 

96.5 ± 8.0 
10,151 ± 712 

ACTH-induced Cortisol response3 

2 

162.5° ± 21.3 
21,102e ± 2 ,694 

101.0 ± 11.6 
11,456 ± 1,728 

142 .T ± 9.7 

17 ,225 ' ± 1,233 

94.1 ± 7.6 

9 ,954 ± 898 

3 

182.6e ± 24.8 
24,434° ± 4 ,996 

84.7 ± 32.3d 

10,881 ± 5,123d 

120.5" ± 10.5 
14,626" ± 1,439 

95.6 ± 9.7 
11,583 ± 698 

' 1 , 2, and 3 indicate three consecutive ACTH challenges. 
bcMeans ± SEM within a row lacking a common superscript letter differ (P<0.05). 

Experimental Group 2 (Least Restricted Tethered Housing). After 7 weeks of 

tethered housing, the Cortisol response to ACTH was increased, compared with 
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pretethering conditions (area under the curve, P < 0 . 0 0 1 ; peak height, P< 0.005; 

Figure 2c; Table 1). Further analysis revealed significant differences at 105, 

165, 225, and 285 min after ACTH administration. After 15 weeks of tethered 

housing, the response was not different from pretethering values (Figure 2c; 

Table 1). 

Control Group 2 (Loose Housing). Peak height and area under the curve of 

the Cortisol response did not change significantly during the experimental period 

(Figure 2d, Table 1). At 225 min after ACTH administration, Cortisol 

concentrations were greater (P<0.05) at 15 weeks of loose housing, compared 

with the other challenges. 

Discussion 

In the present experiment, long-term tethered housing enhanced the Cortisol 

response to exogenous ACTH in cyclic gilts, indicating a change in 

adrenocortical function. The increase was considerably more pronounced and 

persistent in gilts that were visually isolated from their environment and 

deprived of possibilities for social (visual, tactile) contacts with conspecifics 

than in gilts wi th such possibilities. These data indicate that in tethered gilts 

adaptational changes occur at the level of the adrenal cortex. Also, restriction of 

social contact and visual control over the environment play an important role in 

the development of these adrenal changes and may contribute to the stress 

experienced by the gilts. 

Tethered housing largely impairs movements and behavioural performance 

of pigs. The pigs are thus deprived of their main behavioural tools to exert 

control over their environment [1]. Loss of control is generally recognized as a 

common denominator of stressful conditions [1,8]. Thus, it can be reasoned that 

long-term tethered housing imposes a condition of chronic stress on the pigs. 

This contention is supported by observations that behavioural [1,9-11], 

reproductive [12], and cardiovascular [13] disturbances are frequent in tethered 

pigs. 

Abundant literature substantiates that chronic stress induces long-term 

changes in the regulation of the HPA axis in a variety of species [3,4,14,15]. In 

line with data reported by Becker et al. [16], we found that prolonged tethered 

housing of cyclic gilts results in a sustained increase in basal plasma Cortisol 

concentrations [5]. Our observations that tethered housing of cyclic gilts 

increases the Cortisol response to exogenous ACTH point to the adrenal cortex 
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as at least one of the sites in the HPA axis where stress-induced adaptational 

changes occur. These changes may underly the hypercortisolemia that occurs 

during tethered housing [5]. 

In the control gilts that were housed loose in individual pens for the duration 

of the experiment, the Cortisol response remained unaltered. Therefore, the 

increase in adrenocortical response observed in tethered gilts cannot be 

attributed to effects induced by experimental procedures (e.g., repeated ACTH 

challenges, repeated blood sampling), to individual housing per se, or to changes 

in adrenocortical function that are known to occur with increasing age [17,18]. 

Moreover, possible effects of variations in sensitivity of the adrenal cortex 

occurring during the diurnal [19] and oestrous cycles [5] can be excluded, 

because the challenges were invariably performed during the midluteal phase of 

the oestrous cycle, when Cortisol levels remain rather stable, at 1015 in the 

morning. Therefore, the change in the ACTH-induced Cortisol response in the 

experimental gilts probably resulted from the stress caused by tethered housing. 

In accord with other investigators [20,21], we found that the Cortisol 

response to ACTH within gilts was consistent during the experimental period, 

indicating that adrenocortical reactivity is an individual characteristic. However, 

there were considerable differences in the responses between individual gilts. 

Such differences seem to be primarily of adrenal origin and probably cannot be 

attributed to changes in metabolic clearance rate of Cortisol [20,22,23]. The 

interanimal differences in Cortisol response were more pronounced during 

tethered housing than during loose housing; this may reflect differences in 

neuroendocrine susceptibility to the stressful situation [1,23,24]. 

The increase in the Cortisol response during tethered housing was 

considerably more pronounced and persistent in the most restricted than in the 

least restricted, tethered group of gilts. These results indicate that housing 

factors other than physical restraint per se affected the response to chronic 

stress. Notably, in the most restricted group, closed partitions between the pens 

precluded tactile and visual contacts between the gilts and severely limited their 

visual range. Perhaps the relative lack of visual information from the 

environment reduced the predictability of environmental changes for these gilts 

and increased uncertainty. Low predictability or uncertainty are generally seen 

as characteristics of stressful situations [8,25]. In addition, there is ample 

evidence that the lack of social interactions with conspecifics can affect stress 

responses, especially with respect to the HPA axis [26]. Thus, both reduced 

visual control and social restriction appear to be important factors contributing 

to the adaptive changes in adrenocortical function observed in the present 
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experiment. 

The exact mechanisms that are involved in the neuroendocrine regulation 

during chronic stress, which results in an increased corticosteroidogenic 

capacity, are still unknown. The findings of the present experiment indicate that 

the adrenal cortex is one of the sites of regulatory changes in the HPA axis 

during tethered housing. Although ACTH is generally considered to be the most 

important factor in the control of glucorticoid secretion from the adrenal cortex, 

there is increasing evidence that neural inputs at the level of the adrenal gland 

influence the sensitivity of the adrenal cortex to ACTH [27,28]. 

Implications 

The results of this experiment indicate that tethered housing of pigs is 

associated with an adaptational increase in adrenocortical steroidogenic capacity 

and support the idea that it represents a chronic stressor for the gilts. In 

addition, housing factors, other than physical restraint per se, affect this 

response to chronic stress. Also, social interactions between gilts and visual 

control over the housing environment can mitigate stress-induced changes in 

endocrine regulation. 
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Chapter 5 

Chronic stress increases the opioid-mediated 
inhibition of the pituitary-adrenocortical 

response to acute stress in pigs 

Summary 
The role of endogenous opioid mechanisms in the pituitary-adrenocortical 

response to acute stress was investigated in a longitudinal study in cyclic female 

pigs, before and after exposure to chronic stress (long-term tethered housing). 

Challenge of loose housed pigs with acute nose-sling stress for 15 min induced 

an activation of the hypothalamic-pituitary-adrenocortical (HPA) axis, evidenced 

by a transient increase in plasma ACTH (98 ± 12 pg/ml; peak height above 

basal; mean ± SEM) and Cortisol (54 ± 3 ng/ml) concentrations. Pretreatment 

with the opioid receptor antagonist naloxone (0.5 mg/kg of body weight; i.v. 

bolus) increased the challenge-induced ACTH and Cortisol responses to 

244 ± 36 pg/ml and 65 ± 5 ng/ml, respectively. This indicates that during 

acute nose-sling stress endogenous opioid systems are activated that inhibit the 

pituitary-adrenocortical response. After exposure of the pigs to chronic stress 

(10-11 weeks of tethered housing) the challenge-induced ACTH response was 

attenuated, whereas the Cortisol response remained unchanged, suggesting an 

increased adrenocortical sensitivity to circulating ACTH. In addition, 

pretreatment with naloxone induced a greater increment in the ACTH and 

Cortisol responses in tethered pigs than in loose housed pigs. Since no such 

changes were found in control animals housed loose during the entire 

experimental period, this indicates that the impact of opioid systems had 

increased due to chronic stress. The increased impact of opioid systems during 

chronic stress may prevent excessive HPA responses to acute stressors, and 

thus may be of adaptive value. 
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Introduction 

It is well established that the hypothalamic-pituitary-adrenocortical (HPA) 

axis is subject to inhibitory control of opioids in a variety of species, including 

pigs [1-4]. This opioid-mediated inhibition of the HPA axis is apparent under 

resting conditions, but is most evident during stress [5-9]. There is abundant 

literature substantiating that chronic stress can lead to changes in the regulation 

of the HPA axis [10,11]. Little is known, however, with respect to the relevance 

of opioid systems for HPA function during chronic stress. 

In the present study we have examined the effect of chronic stress on the 

pituitary-adrenocortical response to challenge with an acute nose-sling stress in 

female pigs. The nose-sling procedure, which is used in veterinary practice for 

temporary immobilization of pigs, represents an acute stressor that activates 

both the HPA axis and endogenous opioid systems [7,9]. Activation of opioid 

systems may have an antinociceptive effect, as evidenced by an opioid-based 

reduction in vocalization and a transient naloxone-reversible hypoalgesia 

following nose-sling stress in pigs [7]. This effect may be related to the apparent 

antinociceptive effect of the nose " twi tch" in horses, in which endogenous 

opioids are also involved [12]. 

Chronic stress was induced by long-term tethered housing of the pigs, since 

this housing condition has been shown to induce changes in pituitary-

adrenocortical activity [13-16], and in autonomic regulatory systems [17]. 

Previous studies have demonstrated that tethered housing can also lead to 

development of behavioural disturbances, stereotypies [17-20]. These 

stereotypies can be blocked by naloxone [19], suggesting an increased activity 

of endogenous opioid systems under these conditions. On account of these 

findings, we investigated whether changes in opioid function that are induced 

by chronic stress affect the pituitary-adrenocortical response to acute nose-sling 

stress. 

Materials and Methods 

Experimental Design 
To investigate the effect of chronic stress (tethered housing) on the 

pituitary-adrenocortical response to an acute stressor (nose-sling) in cyclic 

nulliparous female pigs (gilts), and the involvement of endogenous opioids in this 

response, a longitudinal experimental design was used with one experimental 
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and one control group of animals. All gilts were surgically f itted wi th a 

permanent jugular vein catheter for blood sampling. The pigs of the experimental 

group were housed loose in individual pens for an 11-week period. During the 

second phase of the experiment (11 weeks) they were housed tethered by a 

neck-chain (chronic stress). Twice during loose housing (3 weeks and 2 weeks 

prior to tethering) and twice during tethered housing (after 10 and 11 weeks of 

tethered housing) the animals were challenged with a nose-sling for 15 min, and 

the subsequent plasma ACTH and Cortisol responses were monitored. 

Immediately preceding the nose-sling challenge, the gilts were i.v. treated with 

either physiological saline or naloxone, in order to investigate the role of 

endogenous opioid systems. The gilts of the control group were housed loose 

during the entire experiment under conditions that were otherwise similar to 

those used for the experimental group. In the control group, four nose-sling 

challenges were performed with time intervals matching those used for the 

experimental group. In all animals, oestrous signs were monitored during the 

experiment, and interventions (surgery, tethering, nose-sling) were performed 

during the luteal phase of the oestrous cycle, to prevent possible interference by 

changes in adrenocortical activity that are associated with the oestrous cycle 

[15]. 

The experiments were approved by the Committee on Animal Care and Use 

of the Agricultural University of Wageningen. 

Animals and Housing 

Eighteen healthy cyclic crossbred gilts (Great Yorkshire x British Landrace, 

Pig Improvement Company, United Kingdom) which had shown 2 or more 

normal oestrous cycles (oestrous cycle length 20.6 ± 1.3 days; mean ± SD) 

were selected for this study. The body weight of the pigs at the beginning of 

the experiment was 115 ± 10 kg (mean ± SD). All animals were housed in 

individual pens of approximately 5.5 m2. The floor of the pens was solid 

concrete and covered with deep straw, except for a slatted dunging area 

(2.5 m2) at the rear of each pen. The gilts of the control group (n = 9) were 

housed loose for the duration of the experiment (i.e. 22 weeks). The gilts of the 

experimental group (n = 9) were housed loose for a period of 11 weeks. 

Thereafter, they were tethered by the neck with a 50-cm heavy gauge chain in 

individual tether stalls, each 65 cm wide, placed in a single row in a closed 

9.0 m x 5.0 m room. The floor was solid concrete, with a slatted dunging area 

at the rear of the stalls. A small quantity of wood shavings was placed in the 

area behind the gilts to keep them clean. 
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Lights were on between 0730 h and 1900 h and ambient temperature 

ranged from 15 to 25 °C. Twice a day (0900 h and 1600 h), the pigs were fed 

1 kg of a pelleted, dry sow feed, delivered by hand. To prevent them from 

associating the presence of people with feeding, they were conditioned wi th a 

bell signal that always preceded the delivery of food. Water was available ad 

libitum through a nipple drinker. Oestrus detection was routinely done once daily 

(1630 h) wi th a vasectomized boar and by external oestrous signs. Gilts were 

considered to be in oestrus when showing a standing response to the boar 

and(or) showing vulval swelling and redness. 

Surgery 

To allow for i.v. administration of drugs and repeated blood sampling 

without disturbing the gilts, all animals were surgically fitted with a permanent 

jugular vein catheter under general anaesthesia as has been described previously 

[16]. In order to protect the cannula the gilts were equipped with a harness to 

which they had been habituated during the week before cannulation. The 

harness (23 cm x 20 cm, polyvinyl chloride with nylon; Bizon Chemie, The 

Netherlands) was fixed at the back of the gilts with belts tied around the chest. 

From 3 days before surgery until 3 days postsurgery, all gilts were treated once 

daily with antibiotics (orally; 12 ml of T.S. Sol8, containing trimethoprim and 

sulphamethoxazol; Dopharma, The Netherlands). The animals were allowed at 

least 10 days to recover from surgery and anaesthesia. 

Cannula patency was maintained by flushing thrice weekly and filling the 

cannula with sterile heparinized physiological saline (25 IU heparin/ml of 0 .9% 

of NaCI; Leo Pharmaceutical Products, The Netherlands) when not in use. 

Nose-sling Challenge 

During the nose-sling procedure, which always started at 1015 h, the gilts 

were confined for 15 min by a rope tied around the upper jaw and attached to 

one of the bars of the pen. Immediately after application of the nose-sling, the 

gilts showed resistance by fiercely pulling the rope and screaming loudly, and 

their heart rate was markedly increased. After approximately 5 min the gilts 

became quiet and sedated, and often lay down. During the period of sedation 

heart rate decreased (Loyens, Janssens, Schouten, Helmond and Wiegant, 

unpublished results). Immediately after removal of the nose-sling the gilts 

became active again. 

The gilts were pretreated immediately before the nose-sling was applied 

with an i.v. bolus injection of either 5 ml of sterile physiological saline (0 .9% 

-90-



Chapter 5 

NaCI; NPBI BV, The Netherlands) containing 0.5 mg/kg of body weight naloxone 

(an opioid receptor antagonist) or 5 ml of physiological saline (control), injected 

through the catheter. Subsequently the gilts were restrained for 15 min wi th a 

nose-sling. The order of pretreatment with saline or naloxone was randomized 

(with a 1-week interval between two subsequent nose-slings). Preceding the 

nose-sling, four baseline blood samples were collected at 15-min intervals for 

plasma ACTH and plasma Cortisol determination. Blood was sampled 

immediately after termination of the stress at 15, 30, 45, 75, 135, 165, 225, 

285 and 245 min after pretreatment. 

Blood Sampling 

Prior to the experiment, all gilts were frequently handled and adapted to the 

blood collection procedure, which has been described in more detail previously 

[16]. Blood samples (approximately 10 ml) were immediately transferred to ice-

cooled polypropylene tubes containing 100 /vl of EDTA-solution (144 mg of 

EDTA/ml of saline; Titriplex'lll, Merck Nederland BV, The Netherlands). They 

were immediately mixed and placed on ice, and subsequently centrifuged at 

2,000 x g for 10 min at 4°C. Plasma was collected and stored at - 2 0 ° C until 

analysis of ACTH and Cortisol. 

Determination of Plasma Hormones 
ACTH. Plasma concentrations of ACTH were determined by two-site 

immunoradiometric assay (IRMA), using a commercial testkit (Euro-Diagnostica 

BV, Apeldoorn, The Netherlands). The ACTH assay was performed in singular in 

200 fj\ unextracted plasma, and all samples from an individual gilt were analyzed 

in the same assay. The two control samples provided with the kit yielded values 

within the limits specified by the manufacturer. Details of the method have been 

described by Copinschi [21]. The sensitivity of the assay was 0.8 pg/ml. The 

intra-assay coefficient of variation was 2 .6% and the inter-assay coefficient of 

variation was 4 .7%. 

Cortisol. Plasma concentrations of Cortisol were measured in duplicate in 

unextracted 50 //I samples according to a single-antibody radioimmunoassay 

(RIA) technique previously described by Janssens et al. [16]. The sensitivity of 

the assay was 0.5 ng/ml at the 90% B/B0 level. The intra-assay coefficient of 

variation was 8 .2% and the inter-assay coefficient of variation was 14.7%. 

Analysis of Data and Statistics 
Due to problems with cannulae patency several plasma samples, particularly 
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of some animals in the control group, were missing. From each gilt, however, 

samples of all time points were available from at least 3 nose-sling challenges. 

The curves of the Cortisol response to nose-sling challenge were plotted for 

each animal. A baseline was calculated for each curve with linear regression 

using the plasma Cortisol values of the four blood samples taken before to saline 

or naloxone pretreatment and the Cortisol values that reached prechallenge 

concentrations after the nose-sling procedure. The area under the curve (AUC) 

was calculated as the area between the baseline and the Cortisol response curve 

above the baseline. The peak height of the Cortisol response was defined as the 

maximal plasma Cortisol concentration minus the corresponding basal Cortisol 

value. The ACTH data were analyzed using the same method as described for 

Cortisol. 

Since no effects of repeated challenge and of the sequence of the 

pretreatments were found on the pituitary-adrenocortical response (Kruskal-

Wallis, P>0.05) , the ACTH or Cortisol data with similar pretreatment during the 

same housing period were combined. Differences in peak height and AUC 

between saline and naloxone pretreatment, as well as differences between loose 

and tethered housing were tested for significance by Wilcoxon matched pairs 

signed-ranks test. The Mann-Witney U test was used to test for differences in 

the pituitary-adrenocortical responses between gilts of the experimental and the 

control group. 

All statistical analyses were performed using the SPSS statistical package 

[22]. The criterion for statistical significance was P<0.05 . Results are given as 

mean ± SEM. 

Results 

Experimental Group. Both during the loose housed and the subsequent 

tethered housed condition, gilts were challenged twice with a nose-sling 

procedure, once following pretreatment with saline and once following naloxone 

(0.5 mg/kg of body weight). The time course of the plasma ACTH and Cortisol 

responses is shown in Figure 1. It should be noted that individual differences in 

the timing of the Cortisol peak led to flattened curves of the mean Cortisol 

responses, displayed in Figure 1. The differences in peak height and in AUC of 

the ACTH and Cortisol responses that are represented in Table 1, however, were 

calculated per animal. In all animals, the nose-sling challenge induced a time-

dependent increase over basal levels in plasma ACTH and Cortisol (Figure!; left 
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panels, saline pretreatment). Highest plasma ACTH concentrations were found 

in the samples taken immediately after termination (i.e. 15 min after the 

beginning) of the acute stress, and ACTH returned to basal levels within 

approximately 1.5 hour after termination of the nose-sling challenge (Figure 1; 

upper panels, saline pretreatment). After 10-11 weeks of tethered housing the 

AUC of the ACTH response was significantly decreased (P<0.05) compared 

with values obtained in the same gilts during loose housing (Table 1). Peak 

height of the ACTH response was also reduced, although not to a statistically 

significant extend (P<0.09). Pretreatment of the gilts with naloxone 

significantly increased both peak height and AUC of the challenge-induced 

ACTH response compared with saline pretreatment (Figure 1, Table 1). This 

effect was found both during loose housing (peak height; P < 0 . 0 1 ; AUC; 

P<0.01) and following the chronic stress of tethered housing (peak height; 

P < 0 . 0 1 ; AUC; P<0.01) . No differences were found in the response after 

naloxone pretreatment between loose and tethered housing. 

Highest plasma Cortisol concentrations were either observed in samples 

taken immediately or 15 min after termination of the nose-sling procedure and 

Cortisol levels returned to basal in approximately 2 hours (Figure 1 ; lower 

panels, saline pretreatment). Neither peak height nor AUC of the plasma Cortisol 

response were affected by tethered housing (Table 1). Following pretreatment of 

the gilts with naloxone the Cortisol response was significantly increased 

compared with saline pretreatment, both during loose housing (peak height; 

P<0 .05 ; AUC; P<0.05) and after 10-11 weeks of tethered housing (peak 

height; P<0 .05 ; AUC; P<0.05) . After exposure of the pigs to chronic stress, 

however, the Cortisol response after naloxone pretreatment was significantly 

larger than during the loose housing condition (peak height; P<0 .05 ; AUC; 

P<0.05) . 

Control group. A control group of gilts was loose housed during the entire 

experiment (22 weeks) and challenged with the nose-sling according to a 

schedule identical to that of the experimental pigs. Figure 2 shows the plasma 

ACTH and Cortisol responses in these animals. During the first phase of the 

experiment (Figure 2; left panels; loose 1), in which housing conditions of the 

control group matched those of the experimental group, challenge-induced 

plasma ACTH and Cortisol responses (after either pretreatment with saline or 

naloxone) were not significantly different (P>0.05) from those measured in the 

experimental group. In addition, no significant difference was found between the 

plasma ACTH (peak height; P = 0.35; AUC; P = 0.25) and Cortisol (peak height; 

P = 0.75; AUC; P = 0.92) responses measured during the first (loose 1) and the 
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Figure 1 . Plasma ACTH (upper panels) and Cortisol (lower panels) responses to acute 
nose-sling stress in pigs of the experimental group during loose housing and 
after 10-11 weeks of tethered housing. 
Pigs of the experimental group were challenged w i th an acute nose-sling 
stress for 15 min (hatched bar) before (left panels, loose) and after 10-11 
weeks of tethered housing (right panels, tethered). A t t = 0 m i n , 
immediately preceding the challenge, the pigs were pretreated (i.v.) w i th 
naloxone (0.5 mg/kg of body weight; • ) or w i th saline (5 ml ; O ) . Data are 
presented as mean ± SEM wi th the number of animals in each treatment 
group between parentheses. 
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saline (5 ml ; O) . Data are presented as mean ± SEM wi th the number of 
animals in each treatment group between parentheses. 
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second (loose 2) phase of loose housing (Figure 2; saline pretreatment; Table 2). 

A significantly higher ACTH response was found after naloxone compared 

with saline pretreatment with respect to peak height (loose 1; P<0 .05 ; loose 2; 

P<0.05) and AUC (loose 1; P<0 .05 ; loose 2; P<0.05) . Naloxone pretreatment 

had a similar effect on the Cortisol response (peak height, loose 1; P<0 .05 ; 

loose 2; P<0 .05 ; and AUC, loose 1; P<0 .05 ; loose 2; P = 0.17). Both ACTH 

and Cortisol responses in naloxone pretreated gilts were not significantly 

different between the loose 1 and loose 2 period (Table 2). 

Discussion 

In the present study, the effect of chronic stress and the involvement of 

opioids on the pituitary-adrenocortical response to challenge with an acute 

stressor (nose-sling) was established in female pigs. The challenge-induced 

activation of the HPA axis was enhanced and prolonged in animals pretreated 

with naloxone. This indicates that during the challenge endogenous opioid 

mechanisms are activated that mitigate the response. Exposure of the animals to 

chronic stress (long-term tethered housing) led to attenuation of the challenge-

induced ACTH response, whereas the Cortisol response remained unchanged. 

This suggests adaptive changes in HPA functioning at the pituitary or 

suprapituitary level as well as an increase in adrenocortical sensitivity to 

circulating ACTH. Interestingly, the inhibitory impact of opioid systems on the 

pituitary-adrenocortical response appeared to be increased after prolonged 

tethered housing, which may serve to prevent excessive HPA responses to 

acute stressors during chronic stress. 

Exposure of pigs to the acute physical stress of the nose-sling procedure led 

to both resistance behaviour with marked vocalization and an increase in heart 

rate. Consistent with former studies, we found a challenge-induced stimulation 

of both the HPA axis and endogenous opioid systems that mitigated this 

response [7,9] . Our observations that, after a brief period of resistance, the pigs 

became quiet and sedated, combined with an opioid-based reduction in heart 

rate during nose-sling stress (Loyens, Janssens, Schouten, Helmond and 

Wiegant, unpublished results), support an antinociceptive effect of endogenous 

opioids [7]. 

There is abundant literature substantiating that chronic stress can lead to 

changes in HPA reactivity to further stressful stimulation [10,11]. Although 

divergent effects of chronic stress on HPA function have been reported in 
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literature, probably as a consequence of differences in experimental conditions, 

most of the studies report that the pituitary responsiveness to an acute stress 

stimulus is maintained or even enhanced after chronic stress [10,11,23]. In the 

present experiment, however, long-term tethered housing of the pigs resulted in 

a decrease of the challenge-induced ACTH response as compared with the loose 

housing situation. This effect cannot be attributed to a decreased secretory 

reserve of the corticotrope cells of the pituitary, since a significantly greater 

ACTH response was achieved after pretreatment with naloxone. It has been 

shown in rats that prolonged or repeated stress can lead to enhanced negative 

feedback by circulating corticosteroids [23,24], decreased sensitivity of the 

pituitary to CRH [24], decreased expression of mRNA for CRH [25], or changes 

in hypothalamic signals for ACTH secretion [26]. The reduced ACTH response 

during chronic stress therefore may reflect changes at pituitary and/or 

suprapituitary level and a variety of mechanisms underlying the effect can be 

considered but undoubtedly opioid systems are involved. 

Notwithstanding the reduced ACTH response, the Cortisol response 

remained unaffected by long-term tethered housing. This finding strongly 

suggests that the sensitivity of the adrenal cortex to circulating ACTH had 

increased due to chronic stress. This is consistent with results of our previous 

study, in which we demonstrated that prolonged tethered housing of pigs can 

lead to an enhanced plasma Cortisol response to exogenous ACTH [16]. 

In line with literature reports from several species our data clearly illustrate 

that opioids are involved in the regulation of HPA function, since naloxone 

pretreatment led to an increase in the ACTH and Cortisol responses to acute 

challenge. In animals exposed to the chronic stress of tethered housing, a 

greater increment of the challenge-induced ACTH and Cortisol responses after 

naloxone pretreatment was found than in loose housed animals. No such 

changes were found in the animals of the control group that were housed loose 

throughout the entire experimental period. This indicates that in tethered animals 

the impact of endogenous opioid systems had increased as a result of chronic 

stress. The contention that chronic stress alters the activity of opioid systems is 

supported by other data in tethered pigs. It has been demonstrated that tethered 

pigs often develop stereotypies which can be antagonized by naloxone, 

suggesting that the activity of opioid systems had increased under these 

conditions [17-20,27]. In addition, the opioid-mediated inhibition of feeding-

induced cardiovascular responses is increased during prolonged tethered housing 

[17]. Apparently, chronic stress leads to adaptive changes in opioid systems 

that mediate behavioural as well as physiological reactions [28]. 
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The opioid-mediated inhibition of the pituitary-adrenocortical response to the 

challenge could arise at several levels of the HPA system [29,30]. Since our 

data revealed that naloxone induced parallel enhancement of the Cortisol and the 

ACTH response, it seems likely that the effect on the Cortisol response was 

secondary to that on the ACTH release. This contention is supported by data of 

Estienne era/ . [3] , who did not find an effect of naloxone in stimulating Cortisol 

secretion after hypophysial stalk transsection in gilts. Therefore, they concluded 

that naloxone enhanced Cortisol secretion principally by acting at suprapituitary 

level [3] . Siegel et al. [2] demonstrated that in rats with complete hypothalamic 

deafferentation, naloxone continued to raise plasma ACTH concentrations. This 

points to the hypothalamus as an important central locus of action of naloxone. 

Thus, challenge-induced activation of opioid systems possibly mitigate the HPA 

response most likely including opioid mechanisms at the level of the 

hypothalamus. 

In conclusion, our results provide strong evidence to indicate that chronic 

stress increases the impact of endogenous opioid systems, which mitigate the 

pituitary-adrenocortical response to additional acute stress. This change in 

opioid function may protect the animal from excessive stress responses and 

thus be of adaptive value. 
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Chapter 6 

Chronic stress and pituitary-adrenocortical 
responses to corticotropin-releasing hormone 

and vasopressin in female pigs 

Summary 
Effects of long-term tethered housing (a condition of chronic stress) on pituitary-

adrenocortical responsiveness to exogenous corticotropin-releasing hormone 

(CRH) and lysine8-vasopressin (LVP) were investigated in female pigs. 

Intravenous administration of CRH (dose range 10-440 pmol/kg body weight 

(BW)) or LVP (10-880 pmol/kg BW) elicited transient and dose-related increases 

in plasma concentrations of adrenocorticotropic hormone (ACTH) and Cortisol. 

Comparison of the responses induced by the peptides indicated that CRH is a 

more potent ACTH secretagogue than LVP. LVP treatment produced a five-fold 

greater plasma cortisol/ACTH ratio than CRH, suggesting that in addition to 

stimulating pituitary ACTH release, it enhanced the ability of the adrenal cortex 

to secrete Cortisol in response to ACTH. Whereas concomitant administration of 

10 pmol CRH/kg BW and 20 pmol LVP/kg BW revealed an additive effect on 

ACTH release, synergism between both peptides was found with respect to 

their Cortisol releasing effect. Ten to thirteen weeks of chronic stress did not 

significantly alter the absolute ACTH and Cortisol responses to the two peptides. 

In tethered pigs, the cortisol/ACTH ratio after CRH treatment, calculated from 

the area under the curve, was two-fold of that in loose housed pigs. From these 

observations we conclude that after chronic stress the sensitivity of the 

adrenocortex to circulating ACTH was increased, whereas the sensitivity of the 

pituitary to CRH and/or LVP remained unaltered. 
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Introduction 

A major component of the adaptive response to stress is the activation of 

the hypothalamic-pituitary-adrenocortical (HPA) axis. It is well documented that, 

among other hypothalamic substances, corticotropin-releasing hormone (CRH) 

and vasopressin play an important role in regulating pituitary-adrenal responses 

during stress [1-3]. Both peptides stimulate ACTH secretion from the anterior 

pituitary gland, thereby stimulating secretion of corticosteroids from the adrenal 

cortex. A synergism between CRH and vasopressin has been reported in a 

variety of species [1,4-6]. The relative potency of CRH and vasopressin to 

stimulate ACTH secretion appears to be species specific. While in man and in 

the rat [4,5] CRH is more potent than arginine8-vasopressin (AVP), the opposite 

is documented for the sheep [7,8], and the two peptides are equipotent in the 

cow [9]. Recently, Minton and Parsons [10] demonstrated that in male pigs CRH 

is a more potent ACTH secretagogue than lysine8-vasopressin (LVP), the 

naturally occurring form of vasopressin in the pig [11]. 

There is ample evidence that chronic stress can lead to increased synthesis 

and storage of hormones at different levels of the HPA axis [12-14]. Several 

studies in the rat suggest that the release of CRH and AVP into the portal 

circulation is increased during chronic stress [3,15,16]. It has been reported that 

chronic stress can also lead to changes in the ratio in which these peptide 

hormones are released from the median eminence [17-20]. In addition, stress-

induced changes in the sensitivity of target cells to secretagogues of HPA 

activation have been reported [18,21,22]. The present study evaluates the 

effect of chronic stress, induced by long-term tethered housing [23], on the 

responsiveness of the pituitary-adrenocortical response elicited by CRH and LVP 

in female pigs. 

Materials and Methods 

Animals and Housing 
Twenty-eight healthy cyclic crossbred gilts (93 to 125 kg of BW; Great 

Yorkshire x British Landrace, Pig Improvement Company, U.K.) that had shown 

two or more consecutive normal oestrous cycles (20.8 ± 1.9 days; 

mean ± SD) were used in this study. The pigs were housed loose in individual 

pens (approximately 5.5 m2) throughout the experiments, except for 

Experiment 3, in which half of the animals were housed tethered. The floor was 
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solid concrete and covered with wood shavings, except for a slatted dunging 

area (2 m2) at the rear of the pens. Lights were on between 0730 h and 1900 h, 

and ambient temperature ranged from 15 to 25°C. Twice a day (at 0800 h and 

1600 h) the gilts were fed 1 kg of a pelleted, dry sow feed (12.2 MJ 

metabolizable energy per kg, 15.4% crude protein), delivered by hand. To 

prevent the gilts from associating the presence of people with feeding, they 

were conditioned with a bell signal that preceded feeding. Water was available 

ad libitum through a nipple drinker. 

Surgery 
In order to collect serial blood samples, the gilts were surgically fitted with a 

permanent jugular vein catheter (polyvinyl chloride, 1.5 mm i.d., 2.1 mm o.d.; 

Rubber BV, The Netherlands). Surgery, which has been described previously 

[23], was performed under sterile conditions and under general anaesthesia with 

inhalation of 0 2 /N 2 0, enflurane (Ethrane": Abott BV, The Netherlands). To 

protect the catheter, which was externalized between the scapulae, the animals 

were equipped with a harness to which they had been habituated during the 

week before cannulation. The harness (23 cm x 20 cm, polyvinyl chloride with 

nylon; Bizon Chemie, The Netherlands) was fixed at the back of the animals 

with belts around the chest. From three days before surgery until three days 

after surgery, all animals were treated once daily with antibiotics (orally; 12 ml 

of T.S. Sof, containing trimethoprim and sulphamethoxazol; Dopharma, The 

Netherlands). At least 10 days were allowed for the pigs to recover from 

surgery and anaesthesia. 

Catheter patency was maintained by flushing with saline thrice weekly. The 

catheters were filled with sterile heparinized physiological saline (25 IU 

heparin/ml of 0 .9% saline; Leo Pharmaceutical Products, The Netherlands) when 

not in use. 

Experimental Design 
Three experiments were conducted to evaluate the ability of CRH and LVP 

to stimulate the secretion of ACTH and Cortisol in female pigs, and to 

investigate whether their effects are influenced by chronic stress. In 

Experiment 1, a dose-response curve was made for CRH in six gilts which were 

housed loose. Doses of ovine CRH (oCRH) between 10-440 pmol/kg body 

weight (BW) were administered as an i.v. bolus and the corresponding plasma 

ACTH and Cortisol responses were determined. In Experiment 2, a dose-

response curve was made for LVP in six other gilts, using doses of LVP between 
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10-880 pmol/kg BW. In Experiment 3, doses of oCRH and LVP which evoked 

submaximal responses were used to investigate chronic stress-induced changes 

in pituitary responsiveness and the pituitary-adrenocortical responses to LVP and 

oCRH, administered singly or in combination, were determined in loose housed 

(control) and in tethered gilts (chronic stress). In all experiments, i.v. bolus 

injections of saline in the same animals were used as control. 

Experiment 1 : Dose-Response Curve of oCRH 

Six gilts (106.8 ± 13.5 kg of BW; mean ± SD) were used to assess the 

dose-response curve with oCRH. They were housed loose in individual pens 

during the entire experimental period. Each pig received 0, 10, 20, 110, 220, 

and 440 pmol of synthetic oCRH/kg BW i.v. through the catheter. The sequence 

of the treatments was randomized and performed with an interval of at least 

two days between treatments. Before each infusion of oCRH, four baseline 

blood samples were collected at 15-min intervals. At 1015 h, 5 ml sterile 0 .9% 

saline vehicle or oCRH (Sigma Chemical Co., St. Louis, MO; various doses 

dissolved in 5 ml sterile 0 .9% saline solution) was administered as an i.v. bolus 

injection. Thereafter, approximately 5 ml of sterile saline was used to flush the 

peptide through the catheter to ensure that the entire mass of peptide entered 

the circulation. At various times after the injection (5, 10, 15, 30, 75, 105, 

135, and 165 min), blood was sampled for plasma ACTH and Cortisol 

determination. 

Experiment 2: Dose-Response Curve of LVP 

Six gilts (108.8 ± 2.9 kg of BW; mean ± SD) were used in the LVP dose-

response curve experiment, which was performed in the same way as the dose-

response study described in Experiment 1. At 1015 h, 5 ml sterile 0 .9% saline 

vehicle or various doses of synthetic LVP (kindly donated by Organon Int., Oss, 

The Netherlands; 10, 20, 55, 110, 220, 440, and 880 pmol/kg BW dissolved in 

5 ml sterile 0 .9% saline solution) was administered as an i.v. bolus injection. An 

additional 5 ml of sterile saline was used to flush the peptide through the 

catheter. Due to catheter impatency, the doses of 10 pmol and 20 pmol LVP/kg 

BW could only be administered in three and two gilts, respectively. The intervals 

for sampling of plasma were identical to those in Experiment 1 . 

Experiment 3: Chronic Stress 
Ten weeks prior to the experiment, 16 gilts (108.8 ± 7.9 kg of BW; 

mean ± SD) were randomly assigned to control and chronic stress groups, 
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containing eight pigs each. The animals of the control group were housed loose 

in individual pens during the entire experimental period, while the gilts of the 

chronic stress group were housed tethered. These gilts were tethered by a 50-

cm heavy-gauge neck-chain in individual tether stalls, each 65 cm wide, and 

placed in a single row. After 8 weeks, all gilts were surgically cannulated. Two 

weeks after cannulation, the response of the pituitary and the adrenal cortex to 

treatment with LVP, oCRH, and a combination of both peptides was investigated 

in both groups. 

The gilts were tested according to a randomized block design in which each 

animal received every treatment. The treatments used were: i.v. injection of 

10 ml sterile 0 .9% saline vehicle; 20 pmol LVP/kg BW + 5 ml saline; 10 pmol 

oCRH/kg BW + 5 ml saline; and 20 pmol LVP/kg BW + 10 pmol oCRH/kg BW 

(peptides were dissolved in 5 ml sterile 0 .9% saline solution). These doses of 

peptides were administered as in Experiments 1 and 2. Blood samples for ACTH 

and Cortisol determination were collected before treatment with 15-min intervals 

(three baseline samples) and at various times after treatment (5, 10, 15, 30, 45, 

75, 105, and 165 min). 

Blood Sampling 

The procedure of blood collection has been described previously [23]. 

Before the experimental period, all animals were frequently handled and 

habituated to the blood collection procedure. Blood samples (approximately 

10 ml) were immediately transferred to ice-cooled polypropylene tubes 

containing 100/yl of EDTA-solution (144 mg of EDTA/ml of saline; Titriplex'll l, 

Merck Nederland BV, The Netherlands). They were immediately mixed and 

placed on ice, and subsequently centrifuged at 2,000 x g for 10 min at 4 °C. 

Plasma was collected and stored at - 2 0 ° C until hormone analysis. 

Hormone Analyses 
Plasma samples were analyzed for ACTH and Cortisol by immunoassay. 

ACTH assay was performed in singular, Cortisol assays in duplicate. All samples 

from an individual gilt were analyzed in the same assay. 

ACTH. ACTH was measured in unextracted plasma using commercial two-

site immunoradiometric assay (IRMA) testkits obtained from Euro-Diagnostica 

BV (The Netherlands). Details of the assay have been described by Copinschi 

[24]. The sensitivity of the ACTH assay was 0.8 pg/ml. The intra-assay 

coefficient of variation was 2 .6% and the inter-assay coefficient of variation 

was 4 .7%. 
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Cortisol. Plasma concentrations of Cortisol were measured in unextracted 

50 fj\ samples using a single-antibody radioimmunoassay (RIA) technique as 

described previously [23]. The sensitivity of the assay was 0.5 ng/ml at the 

90% B/B0 level. The intra-assay coefficient of variation was 7.8% and the inter-

assay coefficient of variation was 12.3%. 

Analysis of Data and Statistics 

The curves of the plasma ACTH responses to all treatments were plotted 

for each animal. A baseline was determined for each curve with linear regression 

using the ACTH values of the blood samples taken before treatment (pre-

injection values). The area under the curve (AUC) was calculated as the area 

between the ACTH baseline and the ACTH response curve above the baseline 

during the first 45 min after injection of the peptide(s). This particular time 

period was chosen in order to compare AUC data of all three experiments, since 

for the LVP dose-response curve only ACTH data of the first 45 min after 

injection were available. In this approach the cortisol/ACTH ratios calculated for 

the AUC were not substantially different from the cortisol/ACTH ratios 

calculated for the AUC of the entire sampling period (165 min; tested for all 

oCRH doses). The peak height of the ACTH response was defined as the 

maximal plasma ACTH concentration minus the corresponding basal ACTH 

value. The Cortisol data were analyzed using the same method. 

The Kruskal-Wallis test was used to assess whether treatment induced a 

significant effect on the pituitary-adrenocortical response. Thereafter, 

differences in peak height and AUC of the ACTH and Cortisol responses to 

various doses of oCRH and LVP, and the combination of LVP and oCRH were 

tested for significance by Wilcoxon matched pairs signed-ranks test. The Mann-

Witney U test was used to test for differences in the responses (peak height and 

AUC) between pigs of the chronic stress (tethered housed) and the control 

(loose housed) groups. 

All statistical analyses were performed using the SPSS statistical package 

[25]. The criterion for statistical significance was set at P<0 .05 . Results are 

given as mean ± SEM. 

RESULTS 

Experiment 1 : Dose-Response Curve of oCRH 
Figure 1 shows the mean plasma ACTH and Cortisol responses and their 
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time course following i.v. bolus injection of saline vehicle, or oCRH in doses of 

10 to 440 pmol/kg BW. Saline administration had no effect on ACTH and 

Cortisol concentrations. Regardless of the doses used in this experiment, oCRH 

induced a time-dependent increase over basal (pre-injection) levels in ACTH and 

Cortisol concentrations in all animals; the increase was significant (P<0.05) 

compared with concentrations in the same animals after infusion of saline 

(Figure 1; Table 1). 

100 

-30 0 30 60 90 120 150 

Time from oCRF injection (min) 

Figure 1 . Mean plasma concentrations of ACTH (Figure 1a) and Cortisol (Figure 1b) in 
cyclic gilts (n = 6) before and after i.v. administration of 5 ml saline vehicle 
(O) or incremental doses of synthetic oCRH ( • 10; A 20; • 110; D 220; 
A 440 pmol oCRH/kg BW). 
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Highest ACTH concentrations were found in the samples taken at 5 to 

30 min after oCRH injection. Maximal peak height (61.3 ± 12.2 pg/ml) and 

AUC (2088 ± 322 arbitrary units) of the ACTH response were induced at a 

dose of 110 pmol oCRH/kg BW and greater (see Table 1). ACTH returned to 

pre-injection levels within approximately 2.5 hours after injection of 10 pmol and 

20 pmol oCRH/kg BW, whereas ACTH levels remained elevated throughout the 

sampling period after injection of oCRH doses of 110 pmol/kg BW and higher. 

Peak plasma Cortisol concentrations occurred at 10 to 45 min after 

injection. Similar to ACTH, Cortisol concentrations after injection of low doses of 

oCRH (10 pmol and 20 pmol/kg BW) returned to basai levels within 2.5 hours, 

whereas Cortisol levels remained elevated for at least 165 min after injection of 

high doses of oCRH. Cortisol responses (peak height, 40.7 ± 5.5 ng/ml; AUC, 

1513 ± 217 arbitrary units) reached a plateau at oCRH doses of 110 pmol/kg 

BW and greater (see Table 1). 

Cortisol/ACTH ratios of peak height and AUC remained rather stable 

(approximately 0.8) with increasing doses of oCRH (Table 1). 

Experiment 2: Dose-Response Curve of LVP 

Mean plasma ACTH and Cortisol concentrations before and after LVP 

injection are illustrated in Figure 2. Highest ACTH concentrations were found in 

the samples taken at 5 to 15 min after LVP injection. Neither peak height nor 

AUC of ACTH appeared to have reached a plateau at the highest dose of LVP 

used. Thus, the maximum response of ACTH secretion in response to LVP 

cannot be defined from this study. 

Peak plasma Cortisol concentrations occurred at 10 to 45 min after 

injection. Peak height of Cortisol did not increase significantly above the 

220 pmol/kg BW dose of LVP (see Table 2). The lowest LVP doses (10 pmol 

and 20 pmol/kg BW) were only tested in three and two gilts, respectively, and 

therefore could not be included in the statistical analysis. 

With increasing dose of LVP, cortisol/ACTH ratios of peak height and AUC 

significantly decreased from approximately 7 to 0.5. This decrease in 

cortisol/ACTH ratio was the result of a marked increase in ACTH response with 

increasing doses of LVP, whereas only a minor increase occurred in the 

corresponding Cortisol levels. 

Comparison of the pituitary-adrenocortical responses to equimolar doses 

(110 pmol and 220 pmol/kg BW) of oCRH and LVP, revealed significantly higher 

ACTH responses (peak height; P<0 .05 ; AUC; P<0 .05 ; Mann-Witney U test) 

after oCRH treatment as compared with LVP. In addition, oCRH induced a 
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100 

-30 0 30 60 90 120 150 

Time from LVP injection (min) 

Figure 2. Mean plasma concentrations of ACTH (Figure 2a) and Cortisol (Figure 2b) in 
cyclic gilts (n = 6) before and after i.v. administration of 5 ml saline vehicle 
(O) or incremental doses of synthetic LVP (O 10, n = 3; • 20, n = 2; A 55; 
• 110; D 220; A 440; V 880 pmol LVP/kg BW). 

significantly higher Cortisol response than LVP with respect to the AUC 

(P<0.05) , while peak height was equal. Plasma cortisol/ACTH ratios after LVP 

treatment were approximately five-fold of those obtained with oCRH treatment 

(peak height; P<0 .05 ; AUC; P<0 .05 ; Mann-Witney U test). 
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Experiment 3: Chronic Stress 
Loose and tethered gilts were challenged with saline vehicle, 10 pmol 

oCRH/kg BW, 20 pmol LVP/kg BW, and with a combination of both peptides. 

Mean plasma ACTH and Cortisol responses to the challenges are presented in 

Table 3. Infusion of saline vehicle did not affect ACTH and Cortisol levels. 

Treatment with LVP, oCRH, or LVP + oCRH induced a transient increase in ACTH 

and Cortisol concentrations. In both housing groups, 10 pmol oCRH/kg BW 

induced significantly higher ACTH and Cortisol responses (tested for peak height 

and AUC; P<0.05) than 20 pmol LVP/kg BW. No significant differences in 

ACTH and Cortisol responses to LVP, oCRH, or LVP + oCRH were found between 

loose and tethered housed gilts. 

Treatment with LVP + oCRH elicited significantly greater responses than 

either peptide alone (indicated by asterisks in Table 3). In animals of both 

housing groups, combined administration of the peptides produced a Cortisol 

response (with respect to peak height) that was significantly greater than the 

sum of the responses to each of the peptides alone (P<0.05; Table 3), 

indicating synergism. Such a synergistic action of LVP and oCRH was also 

found with AUC as index for the Cortisol response, albeit after pooling of the 

values of loose and tethered housed gilts. The effect of the two peptides on the 

ACTH response (with respect to peak height and AUC) was additive. 

Analogous to experiments 1 and 2, the cortisol/ACTH ratio in loose housed 

gilts after LVP was approximately five-fold of that after oCRH treatment (peak 

height; 5.0 ± 1.9 vs. 0.9 ± 0.3; P<0 .05 ; AUC; 4.8 ± 1.6 vs. 0.6 ± 0.2; 

P<0 .05 ; Table 3). This appeared to be the case also in tethered animals (peak 

height; 2.9 ± 0.5 vs. 1.4 ± 0.3; P<0 .05 ; AUC; 4.0 ± 1.2 vs. 1.2 ± 0.2; 

P<0.05) . In tethered pigs, however, a greater cortisol/ACTH ratio was found 

after oCRH treatment (peak height; 1.4 + 0.3 vs. 0.9 ± 0.3; P<0 .10 ; AUC; 

1.2 ± 0.2 vs. 0.6 ± 0.2; P<0.05) than in loose housed animals. 

Discussion 

In the present study, the influence of chronic stress on pituitary-adrenocor-

tical responsiveness to oCRH and/or LVP was investigated in intact female pigs. 

Our results indicate that at low doses ( < 4 4 0 pmol/kg BW) oCRH is more potent 

in stimulating ACTH release than LVP. LVP, however, elicited a greater Cortisol 

response than oCRH relatively to the ACTH response, pointing to a direct effect 

of this peptide on the adrenal cortex. The results of concomitant administration 
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of the two peptides revealed an additive effect on ACTH release, whereas 

synergism between both peptides was found for their Cortisol releasing effect 

(Table 3), supporting this contention. Chronic stress did not significantly alter 

the absolute ACTH and Cortisol responses to treatment with LVP, oCRH, or 

LVP + oCRH. In tethered animals, however, a significantly greater cortisol/ACTH 

ratio was found after oCRH treatment, compared with loose animals. This 

finding suggests that, as a result of chronic stress, the sensitivity of the adrenal 

cortex to circulating ACTH had increased. 

The concerted action of hypothalamic CRH and vasopressin plays a crucial 

role in regulating ACTH release from the anterior pituitary gland [1,2,26]. 

Relative potencies of the two peptides to activate the pituitary-adrenal axis have 

been found to be species specific [4,5,7-10]. In the present study, we 

demonstrated that administration of oCRH or LVP can induce a transient and 

dose-related increase in plasma ACTH and Cortisol concentrations in female 

pigs. Comparison of the responses to equimolar doses indicated that in (female) 

pigs CRH is a more potent ACTH secretagogue than LVP, which is in line with 

data reported by Minton and Parsons for male pigs [10]. The maximal peak 

height and AUC of the ACTH response with the highest dose of LVP (880 

pmol/kg BW) appeared to be greater compared with the highest dose of oCRH 

(440 pmol/kg BW). We cannot exclude, however, that this effect was due to 

cardiovascular and other effects caused by a high dose of LVP injected. We 

therefore conclude that, with regard to the relative potencies of the two 

peptides in activating the pituitary-adrenocortical axis, the pig resembles man 

and rat [4,5]. 

In comparison with LVP, oCRH had a sustained effect (Figures 1 and 2) on 

ACTH and, consequently, on Cortisol release. Based on data from literature 

[27,28], this can be explained by the fact that CRH, in contrast to vasopressin, 

not only induces secretion of ACTH from the readily releasable pool in the 

pituitary, but induces also synthesis and formation of ACTH. Differences in 

second messenger systems between both peptides may probably account for 

these differences in ACTH secretion: CRH activates adenylate cyclase, the 

enzyme that catalyses the synthesis of cAMP, whereas actions of vasopressin 

on corticotrophs are mediated via the phospho-inoside messenger system 

[1,8,29,30]. Alternatively, the different time course of the ACTH responses may 

be due to differences in plasma half-life of the peptides. In man, considerable 

differences have been reported between plasma half-life for oCRH (circa 1 hour) 

[31,32] and vasopressin (1 to 5 min) [33]. 

In the current study, LVP induced a significantly greater cortisol/ACTH ratio 
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than oCRH, both in loose and in tethered animals. Since both peptides were 

injected intravenously, they can have acted also at sites other than the pituitary. 

We therefore hypothesize that in the (female) pig, vasopressin can stimulate 

corticosteroidogenesis beyond that induced by vasopressin-stimulated ACTH 

release, possibly by a direct effect on the adrenal gland. In support of this 

hypothesis, there is increasing evidence in a variety of species, suggesting that 

vasopressin [34-38] as well as CRH [39] can act directly on the adrenal gland to 

stimulate glucocorticosteroid release. Brooks and Blakemore [36] showed that in 

dogs vasopressin increases plasma Cortisol concentrations in the absence of an 

increase in ACTH, provided that background levels of ACTH are present. 

It has been demonstrated in a variety of species [1,4-6,40] that vasopressin 

and CRH can act synergistically in stimulating ACTH secretion. In our study, no 

synergistic action of LVP and oCRH was found for their ACTH releasing effect, 

but the effect of both peptides was rather additive. This is in agreement with 

data reported by Minton and Parsons in pigs [10]. Unlike their findings, howe

ver, we found that concomitant administration of the peptides produced a 

significantly greater Cortisol increase than the sum of the responses to each 

individual peptide. It can be speculated that this synergism between LVP and 

oCRH resulted from an LVP-induced increase in the sensitivity of the adrenal 

cortex to ACTH. The discrepancies between our findings and those of Minton 

and Parsons [10] may be explained by differences in animals and experimental 

design between their and our study, since they used tethered housed, castrated, 

male pigs that were used for experimentation shortly (4 days) after surgery and 

anaesthesia. 

It is well established that chronic stress can induce changes at different 

levels of organization of the HPA axis [12-14]. Indeed, we have found previous

ly that long-term tethered housing of female pigs induces a protracted hypercor-

tisolaemia [41]. In the current study, no significant differences between loose 

and tethered pigs were found with respect to absolute responses of plasma 

ACTH and Cortisol challenged by exogenous LVP, oCRH, or LVP + oCRH, 

indicating that the sensitivity of the pituitary for these hypothalamic secretago-

gues had not changed. The CRH-induced cortisol/ACTH ratio, however, dis

played a two-fold increase in tethered animals compared with loose animals. In 

line with previous findings in tethered pigs (Janssens et al., accepted for 

publication), these results indicate that the sensitivity of the adrenal cortex to 

circulating ACTH had increased as a result of chronic stress, and point to the 

adrenal cortex as a site where regulatory changes in HPA activity occur during 

chronic stress. This contention is supported by our observations that challenges 
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with synthetic ACTH-(1-24) revealed an enhanced adrenocortical steroidogenic 

capacity in tethered pigs [ 2 3 ] . From th is and our p rev ious f indings, we c onc lude 

t ha t chron ic s tress did no t alter the responsiveness of the p i tu i tary to LVP 

and/or CRH, whereas it increased the sens i t iv i ty of the adrenal co r tex to 

c i rcu la t ing A C T H . 
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Chapter 7 

Summary & General Discussion 

Introduction 

The main purpose of the studies described in this thesis was to gain more 

insight in the regulation of the hypothalamic-pituitary-adrenocortical (HPA) 

system and the mechanisms underlying adaptation to chronic stress in female 

pigs. The function of the HPA axis, which coordinates multiple neuroendocrine 

and metabolic responses to stressors, has been subject of extensive basic and 

clinical research. HPA-activation by stressful stimuli results in an increase in 

circulating adrenocorticotropic hormone (ACTH) and consequently of gluco

corticoid hormones. A brief review of stress and HPA functions is given in 

Chapter 1. 

It has been demonstrated in a variety of species that exposure to chronic or 

repeated stress may induce long-term changes in the regulation of the HPA axis 

[1,2]. These changes may occur at the following levels: 1) extrahypothalamic 

centers modulating the activity of neurons in the paraventricular nucleus of the 

hypothalamus that secrete corticotropin-releasing hormone (CRH) and/or other 

ACTH secretagogues; 2) hypothalamic sites releasing ACTH secretagogues; 3) 

ACTH-secreting cells in the anterior lobe of the pituitary; 4) glucocorticoid 

secreting cells in the adrenal cortex. 

This project was mainly focussed on the regulation of pituitary-adreno-

cortical function during chronic stress. Long-term restraint of female pigs by a 

neck-tether was used as a chronic stress paradigm. Previous studies have 

demonstrated that tethered pigs may develop behavioural, hormonal, and cardio

vascular disturbances characteristic for chronic stress. In Chapters 2 and 3 of 

this thesis we showed that prolonged tethered housing leads to a sustained 

elevation of basal plasma Cortisol concentrations. Chapters 4, 5 and 6 provide 

evidence that chronic stress may induce long-term changes at the level of the 

adrenal cortex, resulting in increased steroidogenic capacity and sensitivity for 

ACTH. No change was found in the sensitivity of the pituitary for CRH or 
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vasopressin. There was no indication for an increase in basal ACTH levels, but 

the ACTH response to a superimposed acute stress appeared to be reduced 

during chronic stress. The hypersecretion of Cortisol may therefore well be a 

consequence of stress-induced changes in adrenocortical function. Moreover, 

chronic stress leads to an increase in the activity of opioid systems that inhibit 

pituitary-adrenal responses to additional acute stressors. These alterations in 

opioid systems may be of adaptive value in that they prevent excessive 

reactions of the pituitary-adrenal system during chronic stress. This may also 

underlie the transient nature of the hypercortisolaemia. 

Pituitary-Adrenocortical Function after Chronic Stress 

Hypercortisolaemia 

There is ample evidence, particularly from studies in the rat, that repeated 

exposure to stressors may produce an increase in the activity of the adreno

cortical system, as evidenced by increased circulating corticosteroid 

concentrations and/or adrenocortical hypertrophy and increased adrenal weight 

[1-4J. Indeed, in female pigs we found that chronic stress induces long-term 

elevated basal Cortisol levels (Chapters 2 and 3). This hypercortisolaemia, which 

develops within the first weeks of tethered housing, is evident in every phase of 

the oestrous cycle of the pigs. It is particularly obvious during the luteal phase 

of the oestrous cycle when Cortisol levels remain rather stable (Chapter 2). In 

addition, our data reveal circadian differences in the effect of chronic stress on 

HPA-regulation. Elevated Cortisol concentrations are most pronounced in the 

evening, i.e. during the nadir of Cortisol secretion, and lead to a flattened diurnal 

rhythm of Cortisol secretion during chronic restraint stress (Chapter 3). These 

findings correspond with observations in rats and in man, that chronic stress-

induced corticosteroid levels are increased during the trough of circadian 

adrenocortical activity [5-7]. Determination of Cortisol over a 24-hour period 

demonstrated that elevated evening Cortisol concentrations during chronic stress 

are not the result of a stress-induced shift in the phase of the Cortisol rhythm 

(Chapter 3). 

Chronic stress may conceivably cause "facilitation" of the HPA system, 

either by increasing its sensitivity to stimulus input or by decreasing its 

sensitivity to negative glucocorticoid feedback, or both, so that elevated 

corticosteroid concentrations are maintained throughout the period of stress [8]. 
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It is well-known that ACTH has a trophic effect on the adrenal cortex. Prolonged 

ACTH stimulation (e.g., during chronic stress) may therefore lead to 

hypertrophic enlargement of the adrenal gland, resulting in increased output of 

glucocorticoids in response to this peptide with time. Furthermore, in rats it has 

been reported that chronic stress may result in a persistent decrease in feedback 

sensitivity to corticosteroids [9]. Akana and co-workers have suggested that 

there is a high sensitivity to glucocorticoid feedback during the trough of the 

circadian corticosteroid rhythm, accompanied by a diminished (or absent) 

circadian-dependent drive to CRH secretion in rats [10]. Moreover, they 

suggested that the circadian rise in plasma corticocosteroid levels is a result of 

stimulated CRH secretion as a consequence of diminished sensitivity to steroid 

feedback. One may speculate that the increase in evening, but not in morning 

plasma Cortisol levels during chronic stress, described in Chapter 3, is in part the 

result of stress-induced changes in feedback sensitivity to circulating Cortisol. In 

other words, the hypothalamus remains insensitive to Cortisol, resulting in 

increased Cortisol levels throughout the day. 

Increased Sensitivity and Capacity of the Adrenal Cortex 

We found that the chronic hypersecretion of Cortisol in tethered pigs does 

not coincide with an increase in plasma levels of ß-endorphin (Chapter 2), a 

peptide co-secreted with ACTH from the pituitary corticotroph cell [11]. It may 

therefore be inferred that the hypercortisolaemia is not a reflection of a 

sustained increase in ACTH release from the pituitary, although basal plasma 

ACTH levels were not measured in those experiments. Several reports in rats, 

showing that elevated glucocorticoid levels during exposure to chronic stress 

are not necessarily associated with significant increases in plasma ACTH 

[1,6,12], support this contention. 

Our data (Chapters 4, 5 and 6) provide evidence for stress-induced changes 

in HPA-regulation. In pigs tethered for a period of 10-11 weeks, the ACTH 

response to a superimposed stressor (acute nose-sling stress) appears to be 

reduced as compared with loose housing, whereas the Cortisol response remains 

unaltered (Chapter 5). These data indicate that the sensitivity of the adrenal 

cortex to circulating ACTH increases as a result of chronic stress. This finding is 

supported by the study described in Chapter 6, in which the cortisol/ACTH ratio 

after CRH treatment in tethered pigs shows a two-fold increase when compared 

with loose housed pigs. Moreover, challenge with exogenous ACTH(1-24) 

reveals that the capacity of the adrenal cortex to secrete Cortisol increases 
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during chronic stress (Chapter 4), which is in line with findings of other studies 

in pigs [13] and other species [14]. This increase in adrenocortical capacity may 

result from a hypertrophic enlargement of the adrenal gland. All in all, our 

observations point to the adrenal cortex as one of the dominant sites where 

functional changes occur during chronic stress. 

We speculate that these changes in adrenocortical function may well 

underlie the hypercortisolaemia in tethered pigs (Chapters 2 and 3). Although 

ACTH is generally considered to be the most important factor in the control of 

glucocorticoid secretion from the adrenal cortex, there is increasing evidence 

that steroidogenesis is also under control of neural inputs at the level of the 

adrenal gland, which can modulate adrenocortical sensitivity to ACTH and 

thereby control the secretory activity of the adrenal cortex [12,15]. In rats it has 

been reported that locally secreted CRH is likely to mediate such an increase in 

adrenal sensitivity to ACTH by stimulating the blood f low through the adrenal 

gland [16,17], although, to our knowledge, no such mechanism has (yet) been 

demonstrated in the pig. In this context, it is interesting to note that a challenge 

with vasopressin in our study produced an approximately five-fold greater 

cortisol/ACTH ratio than a challenge with CRH (Chapter 6). This implies that in 

the pig, vasopressin can stimulate corticosteroidogenesis beyond that induced 

by vasopressin-stimulated ACTH release, possibly by a direct effect on the 

adrenal gland. In addition, our data indicate a synergism between vasopressin 

and CRH in their Cortisol releasing effects, which may also result from a 

vasopressin-induced increase in the responsiveness of the adrenal cortex to 

ACTH. 

Effects of Housing Conditions on Adrenocortical Capacity 

It was interesting to find in our study that housing factors different from the 

physical restraint of tethered housing per se play a role in the development of 

adaptive changes in the steroidogenic capacity of the adrenal cortex during 

chronic stress. We showed that the increase in the Cortisol response to 

challenge with exogenous ACTH(1-24) is considerably more pronounced and 

persistent in tethered pigs deprived of visual and tactile contacts with 

conspecifics and with very limited visual control over the environment, than in 

tethered pigs that have such possibilities, albeit to a limited degree (Chapter 4). 

The least restricted pigs were separated by horizontal bars, thus allowing social 

contacts with neighbouring pigs and visual control over the environment. In the 

most restricted pigs, closed partitions between the pens precluded social 
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interactions and severely limited their visual range. It seems likely that the 

relative lack of visual information from the environment reduces the 

predictability of environmental changes and increases uncertainty for those 

animals, thereby contributing to the stress experienced by the animals. As has 

been discussed in Chapter 1, low predictability or uncertainty is generally 

recognized as a characteristic of stressful situations [18,19]. Furthermore, it has 

been demonstrated that lack of social interactions with conspecifics may affect 

stress responses, especially wi th respect to the HPA axis [20]. Thus, both 

reduced visual control and social restriction are likely to be important factors 

contributing to the changes in adrenocortical function observed earlier. These 

findings underscore the notion that psychological factors are important 

activators of the HPA axis [21]. 

Sensitivity of the Pituitary 

So far, effects of chronic stress on adrenocortical function have been 

emphasized. Studies in rats have provided evidence that chronic stress may also 

lead to changes in the sensitivity of the pituitary for hypothalamic peptides 

regulating ACTH secretion, possibly as a consequence of changes in expression 

and secretion of these secretagogues. Repeated activation of the HPA system 

may lead to plastic changes in hypothalamic CRH neurons, resulting in increased 

expression of vasopressin in CRH-containing neurons and increased 

vasopressinergic stores in vesicles in the median eminence, leading to an 

increased ratio of vasopressin/CRH that is secreted [22-26]. 

Hashimoto et al. [27] found that the pituitary-adrenocortical response to 

vasopressin was enhanced in rats that were chronically immobilized as 

compared with unstressed controls, whereas responses to exogenous CRH 

remained unaltered in these animals. They suggested that chronic stress caused 

a hypersensitivity of the pituitary to vasopressin. In pigs tethered for a 10 to 13-

week period, the absolute ACTH and Cortisol responses to exogenous CRH, 

vasopressin, or a combination of these two peptides (Chapter 6) are not 

significantly altered, as compared with loose housed control animals. The 

cortisol/ACTH ratio after CRH treatment, however, is significantly higher in 

tethered than in loose pigs. 

In summary, chronic stress leads to an increase in the sensitivity and 

capacity of the adrenal cortex to circulating ACTH, whereas the sensitivity of 

the pituitary to stimulation with CRH and/or vasopressin in pigs remains 

unaltered. These findings again point to adaptive changes in adrenocortical 
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function as a consequence of stress, possibly mediated by mechanisms 
modulating adrenocortical sensitivity to ACTH. 

Adaptation to Chronic Stress 

Activation of stress systems results in behavioural and physiological 

changes which allow the organism to adapt. In general, adaptive responses to 

stress involve a redirection of both behaviour and energy [28]. Simultaneously, 

digestion and anabolic processes, such as growth, reproduction and immune 

function are suppressed [29]. It appears that the ability to regulate the stress 

response appropriately may be as important as the ability to initiate it. 

Containment of the stress response is crucial to avoid detrimental consequences 

of excessive mobilization of resources and behavioural responses. 

As stated earlier, chronically stressed pigs develop changes in adreno

cortical function so that further responsiveness of the adrenal system is 

maintained, despite elevated glucocorticoid levels. The hypersecretion of Cortisol 

is maintained for at least three complete oestrous cycles after tethering 

(approximately 9 weeks) and thereafter it gradually disappears (Chapter 3). This 

suggests that adaptive changes occur during chronic stress affecting HPA-

activity and leading to normalization of adrenocortical output. Nevertheless, the 

fact that both the sensitivity and the capacity of the adrenal cortex are 

increased during the same period (Chapters 4, 5, and 6), suggests that 

adrenocortical function has chronically changed. Moreover, the apparent 

adaptation of Cortisol levels during chronic stress does not imply normalization 

of brain mechanisms controlling Cortisol concentrations in response to 

challenges or stressors (Chapter 5). Presumably, adaptation consists in changing 

certain "set-points" in order to meet the new demands [30]. 

The mechanisms responsible for these adaptive changes during chronic 

stress likely include an increase in the activity of endogenous opioid systems. It 

has been demonstrated that tethered sows may develop stereotypies [31] 

associated with and dependent on the activation of opioid systems. 

Administration of naloxone, a specific opiate receptor antagonist, has shown to 

block or reduce the occurrence of this invariant behaviour [32-35]. Although we 

did not quantify behaviour in our experiments, we also observed performance of 

stereotypies such as bar or chain biting and sham chewing in tethered gilts. 

Brain opioid systems, however, are not only involved in the neurochemical 

control of behaviour, e.g., of stereotypies, but have also been implicated in the 
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regulation of the activity of several hormonal systems [36], including the HPA 

axis [37-40]. Thus, chronic stress of tethered housing leads to increased activity 

of endogenous opioid systems and may therefore affect the HPA axis by means 

of opioids. In view of this hypothesis, we subjected both tethered and loose 

housed female pigs to an acute nose-sling challenge. The enhanced and 

prolonged ACTH and Cortisol responses to nose-sling challenge after 

pretreatment with naloxone (Chapter 5) point to an activation of both the HPA 

system and the endogenous opioid systems. This naloxone-dependent increment 

in ACTH and the Cortisol responses are significantly greater in animals tethered 

for a 10 to 11-week period than in loose animals, indicating that the opioid-

mediated suppression of the pituitary-adrenocortical response is increased during 

chronic stress (Chapter 5). It may be speculated that the gradual reduction of 

the hypercortisolaemia, observed during the same period of tethered housing is 

also a consequence of an increase in the impact of endogenous opioid systems. 

Based on our findings and on literature data, we postulate the hypothalamus to 

be a key central site for the mediation of this effect of opioids (Chapter 5). All in 

all, these data indicate that chronic stress of tethered housing leads to adaptive 

changes in opioid systems modifying behavioural as well as endocrine reactions. 

Individual Differences in Pituitary-Adrenocortical Responses 

A major focus of the stress and coping literature has been on individual 

differences in reactivity to stressors under challenging conditions. There is 

ample evidence that not all individuals of the same species experience the same 

situation as stressful, and, vice versa, that the same stressors do not 

necessarily result in identical behavioural and peripheral responses. As 

mentioned in the general introduction, differences between individuals in coping 

wi th stressful situations appear to be related to genetic constitution [41], as 

well as to prior (particularly: early life) experiences, and the actual physiological 

and psychological state of the organism [42-44]. Important in this respect is the 

way in which an individual estimates the situation and its possibilities to cope 

with the situation [30]. 

In the present project, we obtained evidence that pigs express individual 

variability in the (re)activity of the pituitary-adrenocortical system in adapting to 

the chronic stress of tethered housing. There are, for example, great differences 

in basal Cortisol levels between individual pigs during tethered housing 

(Chapter 3), particularly with respect to the moment of disappearance of the 
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stress-induced hypercortisolaemia. In addition, as described in the experiment in 

Chapter 4, considerable differences are found between individual animals in their 

Cortisol responses to challenge with exogenous ACTH. Within the same pigs, 

however, the Cortisol response to repeated challenge with ACTH (measured in 

the loose housed control groups) is consistent during an 18-week period of 

loose housing. This is in good agreement with findings of others in pigs [45,46], 

indicating that the adrenocortical reactivity is an individual characteristic that 

remains stable in t ime. The interanimal differences in the adrenocortical 

reactivity pattern are particularly evident during exposure to chronic stress 

(Chapter 4). It is noteworthy, that the greatest individual differences are 

observed in animals that are tethered housed under the most restricted 

conditions (i.e. lacking possibilities for visual and tactile contacts with 

conspecifics and with very limited visual control over the environment). 

It may be argued that variability among individuals in their ability to adapt to 

conditions inducing stress responses reflects differences in neuroendocrine 

susceptibility to the stressful situation and the degree of control sensed by the 

individuals [35,47,48]. Hessing [49] demonstrated that types of pigs can be 

identified based on individual behavioural characteristics and that those 

characteristics are related to different physiological strategies displayed in 

response to stressors. In addition, Schouten and collaborators not only showed 

individual differences in performance of stress-induced stereotypies between 

tethered pigs, but also in feeding-induced cardiovascular responses during 

prolonged tethered housing [50]. It has been suggested that these differences in 

behavioural and physiological reactions may represent individual coping 

characteristics of the animals involved [34]. 

Practical Implications 

Consequences of Chronic Stress and Hypercortisolaemia 

In the present study, prolonged tethered housing of female pigs was used 

as a chronic stress paradigm. Although this husbandry system, which is used in 

intensive pig farming, may be advantageous from an economical point of v iew, 

the well-being of the animals is lost sight of. Tethered pigs are housed in a 

barren environment with physical restraint and social restriction, which may 

have consequences for the animal's behavioural and physiological performance. 

We showed that tethered pigs develop a hypercortisolaemia. Chronic 
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elevation of Cortisol levels may have profound physiological consequences. As 

has been discussed in Chapter 1, chronic activation of the catabolic stress 

response may ultimately lead to various pathophysiological states. The systems 

responsible for reproduction, growth and immunity are directly linked to the 

stress system, and each is profoundly influenced by the effectors of the stress 

response. It has been reported that tethered housing of pigs may induce 

reproductive disorders, such as a reduced rate of oestrous detection (e.g., 

occurrence of silent oestrus) and a reduced pregnancy rate [51,52]. The present 

findings show that 3-6 weeks of tethered housing results in significantly 

decreased levels of plasma progesterone throughout the oestrous cycle 

(Chapter 2). No effects of 3-6 weeks of chronic stress were found on plasma LH 

concentrations, oestrous behaviour or on the length of the oestrous cycle. 

Nonetheless, it is well possible that more prolonged tethered housing may 

disrupt LH secretion or ovarian function and thereby adversely affect 

reproductive performance in the pig. Indeed, Helmond, Soede and Kemp recently 

showed that in tethered sows the duration of oestrous behaviour was 

significantly shorter as compared with loose housed sows (to be published). 

Moreover, the pulsatile LH release in that study seemed to be more "chaotic" in 

the tethered animals. 

Besides suppression of reproductive performance, long-term activation of 

the HPA axis and consequently elevated Cortisol levels may have metabolic 

(myopathy, fatigue, changes in glycemia) and cardiovascular consequences 

(hypertension). Furthermore, compromised growth and tissue repair, and peptic 

ulceration may occur, as well as immunosuppression [29]. In this respect, 

parallels have been drawn between the chronically stressed animal model and 

several human diseases. It has been demonstrated in clinical studies that some 

common psychiatric disorders, such as depression, panic disorder, anxiety and 

anorexia nervosa, may represent disorders occurring in response to stress [53]. 

Hypersecretion of glucocorticoids and resistance to glucocorticoid negative 

feedback have been shown to occur in people with anorexia nervosa [54,55] 

and major depression [55,56]. 

In addition to changes in HPA regulation, long-term exposure of pigs to 

tethered housing may lead to development of stereotypies [31-35,50] and 

persisting disturbances in the hormonal [52,57], cardiovascular [50], and 

immune systems. Von Borell and Ladewig showed that growth rate was reduced 

in tethered sows as compared with loose housed sows, despite the fact that 

both groups had similar food intake [46]. This reduction in growth rate indicates 

disturbed body function, possibly caused by stress related catabolic processes. 
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As described previously, we also found that chronic stress leads to an 

increase in the impact of endogenous opioid systems that mitigate HPA 

responses to additional acute stressors. Besides analgesic effects [58], 

activation of endogenous opioid systems may have a broader adaptive function. 

It has been demonstrated that rats which can turn off shock stimulation show 

no opioid activation, whereas yoked animals, which experience the same electric 

shock without being able to control its offset, give evidence of stress-activated 

opioids [59]. These data indicate that not the physically painful stimulation per 

se, but rather the psychological stress of its uncontrollability seems to be the 

key factor in opioid activation. By blunting the aversive impact of stressors, 

endogenous opioids enable the individual to deal more effectively with 

distressing environmental events. This contention is in line with the idea that 

stereotypies, displayed when loss of control is experienced and associated with 

activation of opioid systems, may serve a de-arousal purpose [47]. Schouten et 

al. [50] showed that the feeding-induced cardiovascular response is decreased 

and shortened in tethered pigs performing stereotypies, and that this effect is 

opioid-dependent. The adaptive alterations in opioid systems in tethered pigs 

may thus be a means of coping with the chronic stress conditions, thereby 

preventing excessive stress responses (e.g., of the hormonal and cardiovascular 

systems). However, all of the above mentioned adaptations in behavioural and 

physiological performance have to be recognized as symptoms of chronic stress. 

Therefore, they indicate that welfare and health of tethered pigs are compro

mised. 

Concluding Remarks 

The experiments described in this thesis provide evidence that long-term 

tethered housing of female pigs induces adaptive changes in adrenocortical 

function and in activity of endogenous opioid systems. Important in this respect 

is the finding that loss of control and predictability by factors, such as lack of 

(visual) information and restriction of social contact, play an important role in 

the development of these changes. It should be kept in mind, that the adaptive 

behavioural and physiological changes, observed in tethered pigs, are in fact the 

symptoms of their "struggle" in order to withstand the environmental demands, 

and thus indicate compromised welfare. Some of these changes may lead to 

increased vulnerability of the animals for diseases. Therefore, it is likely that the 

stress of tethered housing contributes to the high incidence of health problems 

observed in tethered sows. 
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Samenvatting 

Inleiding 

Het doel van het in dit proefschrift beschreven onderzoek was meer inzicht 

te krijgen in de regulatie van het hypothalamus-hypofyse-bijnier (HHB) systeem 

en de mechanismen die aan de adaptatie aan chronische stress in vrouwelijke 

varkens ten grondslag liggen. De HHB-as is het neuro-endocriene systeem dat er 

voor zorgt dat verstoringen van de homeostase in een organisme adequaat 

opgevangen worden. Activatie van de HHB-as door stressoren leidt onder meer 

tot afgifte van de hypothalame neuropeptiden corticotropin-releasing hormoon 

(CRH) en Vasopressine, die op hun beurt de afgifte van adrenocorticotroop 

hormoon (ACTH) uit de hypofyse stimuleren. ACTH stimuleert de aanmaak en 

afgifte van Cortisol uit de bijnierschors, een steroidhormoon dat als een 

belangrijke indicator van stress wordt gezien. Cortisol reguleert zijn eigen 

aanmaak en afgifte via een negatieve terugkoppeling op de hersenen en de 

hypofyse. Hoofdstuk 1 geeft een kort overzicht van stress en het HHB-systeem. 

Dit projekt was voornamelijk gericht op onderzoek naar de invloed van 

chronische stress op de regulatie van het hypofyse-bijnier systeem, en daarvoor 

werd het langdurig aangebonden gehuisveste, vrouwelijke, varken als 

modelsysteem gebruikt. In dit, uit de intensieve veehouderij afkomstige 

huisvestingssysteem, worden varkens aangebonden met behulp van een nek-

beugel, die via een korte ketting verankerd is aan de vloer. Op deze wijze 

worden de dieren naast elkaar gefixeerd op een beperkt vloeroppervlak. Hun 

mogelijkheden tot contact met soortgenoten zijn zeer beperkt en de dieren 

worden sterk belemmerd in het uitvoeren van hun natuurlijke gedragsrepertoire. 

Tijdens langdurig aangebonden huisvesting worden de dieren chronisch bloot

gesteld aan deze aversieve situatie, waarop zij geen invloed hebben. Dit kan 

leiden tot ontwikkeling van afwijkend gedrag (bijvoorbeeld stereotypieën) en 

hormonale en cardiovasculaire stoornissen. Deze veranderingen zijn indicatoren 

voor chronische stress en verstoord welzijn van de dieren. 
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Hypofyse-Bijnierfunctie tijdens Chronische Stress 

Uit de experimenten, beschreven in de hoofdstukken 2 en 3, blijkt dat de 

chronische stress bij vrouwelijke varkens, die veroorzaakt wordt door 

aangebonden huisvest ing, leidt to t langdurig verhoogde basale 

cortisolconcentraties in het bloedplasma. Deze hypercortisolaemie, die reeds 

binnen enkele weken na aanbinden aangetoond kan worden, is evident tijdens 

alle fasen van de bronstcyclus van de dieren en houdt gedurende tenmiste drie 

bronstcycli (ca. 9 weken) aan (hoofdstuk 2). De stress-geïnduceerde toename in 

het basale cortisolniveau is het grootst op het einde van de dag, het moment 

waarop de cortisolconcentratie in het bloedplasma het laagst is (dal van het 

diurnale cortisolritme). Het diurnale ritme in cortisolconcentraties vervlakt, 

doordat het verschil tussen ochtend- en avondconcentraties kleiner wordt 

(hoofdstuk 3). Aangebonden huisvesting leidt dus tot langdurige veranderingen 

in het functioneren van het HHB-systeem. Deze toename in de cortisolafgifte 

gaat waarschijnlijk niet gepaard met een chronisch verhoogde afgifte van ACTH. 

De experimenten, beschreven in de hoofdstukken 4, 5 en 6, tonen aan dat 

chronische stress leidt tot veranderingen op het niveau van de bijnier zelf. In 

varkens die gedurende een periode van 10 tot 11 weken staan aangebonden, is 

de ACTH-respons op een acute stressor (nose-sling stress) verlaagd, vergeleken 

met de respons vóór aanbinden, terwijl de cortisolrespons hetzelfde blijft 

(hoofdstuk 5). Dit wijst op een toegenomen gevoeligheid van de bijnierschors 

voor ACTH ten gevolge van chronische stress. Het feit dat de cortisol/ACTH 

ratio na toediening van CRH twee keer zo groot is in aangebonden als in 

loslopende dieren (hoofdstuk 6), bevestigt dit. Tevens blijkt uit challenge-testen 

met exogeen ACTH, dat de corticosteroidogene capaciteit van de bijnierschors 

significant toeneemt in dieren die langdurig zijn aangebonden, terwijl deze niet 

verandert in dieren die gedurende dezelfde periode los gehuisvest zijn 

(hoofdstuk 4). De capaciteit van de bijnierschors om Cortisol te synthetiseren, 

wordt echter niet alleen door het aanbinden beïnvloed, maar ook door andere 

huisvestingsfactoren. In aangebonden varkens die door middel van massieve 

tussenschotten van elkaar zijn gescheiden, zijn de mogelijkheden tot sociaal 

contact met hun soortgenoten en de visuele controle over hun omgeving nog 

sterker verminderd dan bij dieren die van elkaar gescheiden zijn door horizontale 

stangen. Zij ontwikkelen hierdoor een sterkere en langer aanhoudende toename 

in de cortisolrespons op een ACTH-challenge in vergelijking met de minder 

geïsoleerde varkens. 
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Samenvatting 

Hoofdstuk 6 beschrijft een experiment, waarin onderzocht is in hoeverre 

chronische stress de gevoeligheid van de hypofyse voor de hypothalame 

peptiden CRH en Vasopressine verandert. Er blijkt geen verschil te zijn tussen 

aangebonden en loslopende varkens met betrekking tot hun absolute ACTH- en 

cortisolresponsen op exogeen CRH, Vasopressine, of een combinatie van beide 

peptiden. Opvallend is, dat Vasopressine, ongeacht de huisvestingsconditie (los 

of aangebonden), een beduidend grotere cortisol/ACTH ratio teweeg brengt dan 

CRH. Blijkbaar induceert Vasopressine in het varken meer afgifte van Cortisol dan 

verklaard kan worden op basis van door vasopressine-gestimuleerde hypofysaire 

ACTH-afgifte, waarschijnlijk via een direct effect op de bijnier. Een door 

Vasopressine teweeggebrachte toename in de gevoeligheid van de bijnierschors 

voor ACTH, zou tevens kunnen verklaren waarom de cortisolrespons na 

toediening van CRH + Vasopressine groter is, dan de som van de cortisol

responsen op deze peptiden afzonderlijk. 

Samenvattend, chronische stress leidt tot een toename in de gevoeligheid 

en de capaciteit van de bijnierschors voor ACTH, terwijl de gevoeligheid van de 

hypofyse voor CRH en Vasopressine niet verandert. De veranderingen op het 

niveau van de bijnier liggen mogelijk ten grondslag aan de chronische stress-

geïnduceerde hypercortisolaemie. 

Endogene Opioide Systemen en Hypofyse-Bijnierfunctie 

De hypersecretie van Cortisol in aangebonden varkens verdwijnt geleidelijk 

na een periode van circa 9 weken. Tijdens deze periode hebben veel 

aangebonden varkens zogenaamde stereotypieën ontwikkeld, gedragspatronen, 

die weinig gevarieerd zijn, vaak herhaald worden en geen duidelijk aanwijsbare 

functie hebben. Deze stereotypieën kunnen worden geblokkeerd met naloxon, 

een specifieke opiaatreceptor antagonist, wat er op wijst dat tijdens chronische 

stress de activiteit van endogene opioide systemen is toegenomen. Langdurig 

aangebonden huisvesting leidt dus tot functionele veranderingen in opioide 

systemen, die daardoor mogelijk gevoeliger zijn geworden voor activatie. In 

hoeverre dat relevant is voor de HHB-functie tijdens chronische stress, is 

onderzocht in de studie beschreven in hoofdstuk 5. Hiertoe werden varkens 

zowel vóór (loslopend) als tijdens langdurig aangebonden huisvesting bloot

gesteld aan een acute stressor. Tijdens de "nose-sling" procedure, werden ze 

gedurende 15 minuten strak vastgezet met behulp van een koord dat in een lus 

om de bovenkaak werd gelegd. Deze procedure leidt tot activatie van de HHB-
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as, hetgeen blijkt uit de ACTH- en cortisolresponsen. Voorbehandeling van de 

dieren met naloxon heeft een verhoging en verlenging van deze responsen tot 

gevolg, wat wijst op activatie van Opioide systemen ten gevolge van de nose-

sling stress. De ontremming van de ACTH- en cortisolresponsen na naloxon is 

groter in langdurig aangebonden dieren dan in loslopende dieren. Hieruit blijkt 

dat de impact van endogene Opioide systemen, die waarschijnlijk op het niveau 

van de hypothalamus voor een demping zorgen van de hypofyse-bijnierrespons 

op een acute stressor, is toegenomen tijdens chronische stress. Mogelijk ligt dit 

mechanisme ook ten grondslag aan de geleidelijke verdwijning van de hyper-

cortisolaemie, die vanaf circa 9 weken na aanbinden werd waargenomen 

(hoofdstuk 3). De adaptieve veranderingen in Opioide systemen in aangebonden 

varkens kunnen worden gezien als een vorm van "coping" met de chronische 

stress condities, waardoor extreme, en daardoor schadelijke, responsen van 

hormonale, cardiovasculaire en andere systemen op stressoren worden 

tegengegaan. 

Conclusies 

De in dit proefschrift beschreven experimenten tonen duidelijk aan, dat 

langdurig aangebonden huisvesting van vrouwelijke varkens leidt tot adaptieve 

veranderingen in bijnierschorsfunctie (toegenomen steroidogene capaciteit en 

gevoeligheid voor ACTH), en in de activiteit van endogene Opioide systemen die 

reacties van het HHB-systeem op additionele acute stressoren dempen. 

Belangrijk in dit opzicht is de bevinding, dat verminderde beheersbaarheid en 

voorspelbaarheid van de situatie door factoren zoals gebrek aan (visuele) 

informatie en sociaal contact met soortgenoten, een belangrijke rol spelen bij het 

tot stand komen van deze veranderingen. In feite zijn de adaptieve 

veranderingen in gedrag en fysiologie, die optreden in aangebonden varkens, de 

symptomen van hun pogingen om te overleven onder condities die verre van 

optimaal zijn. Zij duiden er dus op dat het welzijn van de dieren is aangetast. 

Sommige van deze veranderingen kunnen bovendien leiden tot een toegenomen 

vatbaarheid voor ziekten. Het is dan ook aannemelijk dat de chronische stress, 

waartoe langdurig aangebonden huisvesting leidt, bijdraagt tot de hoge 

frequentie van gezondheidsproblemen bij aangebonden zeugen in de praktijk van 

de veehouderij. 

-144-



Publications & Abstracts 

Abeelen J.H.F, van, Janssens C.J.J.G., Crusio W.E., Lemmens W.A. Y-chromosomal 
effects on discrimination learning and hippocampal asymmetry in mice. Behavior 
Genetics 1989; 19: 543-549. 

Tangelder G.J.. Janssens C.J.J.G., Slaaf D.W., oude Egbrink M.G.A., Reneman R.S. In 
vivo differentiation of leukocytes rolling in postcapillary mesenteric venules. American 
Journal of Physiology (in press). 

Janssens C.J.J.G., Houwing H., Helmond F.A., Oudenaarden C.P.J., Wiegant V . M . 
Plasma concentrations of Cortisol during the oestrous cycle in pigs. Proceedings of the 
31th Dutch Federation Meeting, Leiden, 1990: 135 (Abstract). 

Janssens C.J.J.G., Houwing H., Helmond F.A., Oudenaarden C.P.J., Wiegant V . M . 
Increased plasma Cortisol in tethered gilts. Proceedings of the Society for Veterinary 
Ethology, summer meeting, Montecatini Terme, Italy, 1990: 72 (Abstract). 

Janssens C.J.J.G., Helmond F.A., Wiegant V .M . Increased plasma Cortisol response to 
ACTH in tethered gilts. Proceedings of the 32nd Dutch Federation Meeting, Amsterdam, 
1 9 9 1 : 121 (Abstract). 

Janssens C.J.J.G., Helmond F.A., Wiegant V .M . Increased plasma Cortisol response to 
ACTH in tethered gilts. Proceedings of the Society for Veterinary Ethology, summer 
meeting, Edinburgh, Scotland, 1 9 9 1 : 149 (Abstract). 

Janssens C.J.J.G., Helmond F.A., Wiegant V .M . Chronic stress and oestrus in tethered 
gilts. NRLO-rapport nr. 91 /12 , Zeist, 1 991 : 23-24. 

Janssens C.J.J.G., Loyens L.W.S., Schouten W.G.P., Helmond F.A., Wiegant V . M . 
Endogenous opioid dependent plasma Cortisol response to acute stress in chronically 
stressed pigs. Pflügers Archiv, European Journal of Physiology, 1992; 4 2 1 : R39(18) 
(Abstract). 

Janssens C.J.J.G., Loyens L.W.S., Schouten W.G.P., Helmond F.A., Wiegant V . M . 
Involvement of endogenous opioids in the plasma Cortisol response to acute stress in 
chronically stressed pigs. Proceedings of the ISPNE XXIII Congress, Madison, 
Wisconsin, USA, 1992: 155 (Abstract). 

Janssens C.J.J.G., Loyens L.W.S., Schouten W.G.P., Helmond F.A., Wiegant V . M . 
Naloxone-induced increase in the plasma Cortisol response to acute stress in chronically 
stressed pigs. Proceedings of the International Symposium on Stress and Adaptat ion, 
Amsterdam, 1 9 9 2 : 4 1 (Abstract). 

- 1 4 5 -



Janssens C.J.J.G., Houwing H., Helmond F.A., Wiegant V .M . Influence of chronic 
stress on Cortisol, prolactin, and reproductive hormones during the oestrous cycle of the 
pig. Pflügers Archiv, European Journal of Physiology, 1993; 4 2 1 : R5(16) (Abstract). 

Janssens C.J.J.G., Houwing H., Helmond F.A., Wiegant V .M. The effect of chronic 
stress on reproductive hormones, Cortisol and prolactin during the oestrous cycle of the 
pig. Proceedings of the Fourth International Conference on Pig Reproduction, Columbia, 
Missouri, USA, 1993: 87 (Abstract). 

Wiegant V . M . , Schouten W.G.P., Helmond F.A., Wiepkema P.R., Loyens L.W.S., 
Janssens C.J.J.G. Opioids and stereotypies in coping wi th chronic stress. Proceedings 
of the 24th International Narcotics Research Conference (INRC), Skövde, Sweden, 
1993: 237-238. 

Janssens C.J.J.G., Helmond F.A., Wiegant V .M. Chronic stress and pituitary-adrenal 
function in female pigs. Proceedings of the First Congress on Stress, Bethesda, 
Maryland, USA, 1994: 53(100) (Abstract). 

Janssens C.J.J.G., Helmond F.A., Wiegant V .M. Increased Cortisol response to 
exogenous adrenocorticotropic hormone in chronically stressed pigs: influence of 
housing conditions. Journal of Animal Science, 1994: 72(7): 1771-1777. 

Janssens C.J.J.G., Helmond F.A., Wiegant V .M . The effect of chronic stress on plasma 
Cortisol concentrations in cyclic female pigs depends on the t ime of day. Domestic 
Animal Endocrinology (accepted for publication). 

Janssens C.J.J.G., Helmond F.A., Loyens L.W.S., Schouten W.G.P., Wiegant V .M . 
Chronic stress increases the opioid-mediated inhibition of the pituitary-adrenocortical 
response to acute stress in pigs. Endocrinology (accepted for publication). 

Janssens C.J.J.G., Helmond F.A., Wiegant V .M . Chronic stress and pituitary-
adrenocortical responses to corticotropin-releasing hormone and vasopressin in female 
pigs. European Journal of Endocrinology (under revision). 

Janssens C.J.J.G., Houwing H., Helmond F.A., Schrama J.W., Wiegant V .M . Plasma 
levels of Cortisol, prolactin, and reproductive hormones during the estrous cycle in the 
pig: Effects of chronic stress. Submitted for publication. 

Janssens C.J.J.G., Helmond F.A., Schouten W.G.P., Wiegant V .M . Neuro-endocrine 
consequences of chronic stress in pigs. In: Stress, Welfare and Pathology in Animals. 
Schouten W.G.P. and Wiegant V .M. (eds.) (in press). 

- 146 -



Dankwoord 

Het is af..., een bewijs van "coping" met de chronische stress die gepaard 

gaat met promotie-onderzoek. De in dit proefschrift beschreven experimenten 

konden slechts uitgevoerd worden dankzij de inzet en hulp van velen. 

Allereerst wil ik mijn promotor Prof. dr. Wiegant en mijn co-promotoren, 

Dr. Helmond en Dr. Schouten dankzeggen. Beste Victor, Frans en Willem, 

dankzij jullie goede begeleiding heb ik gedurende de afgelopen jaren veel 

geleerd. De talrijke discussies en de waardevolle ideeën van jullie kant vormen 

de basis van dit proefschrift. Ik heb dit onderzoek met heel veel plezier gedaan. 

Mijn kamer- en tevens lotgenoten Peter Weijs en John Dierx bedank ik voor 

hun "social support" (in welke vorm dan ook). Ik reken op jullie steun tijdens 

mijn promotie! 

Corrie Oudenaarden en Leslie Boogerd wil ik bedanken voor de technische 

ondersteuning van dit onderzoek en Johan Schrama voor het oplossen van 

menig statistisch probleem. Dank ook aan Dick van Kleef en Piet van Leeuwen 

voor hun assistentie bij de operaties van mijn varkentjes, en aan alle 

dierverzorgers voor de goede "nazorg". 

Dit onderzoek zou niet uitvoerbaar geweest zijn zonder de hulp van de 

mensen, die er een stukje van hun (kostbare) studententijd in hebben gestoken. 

Leanne, Natasja, Peter, Ellen, John, Jacqueline, Ronald, Taeke, Rob, Anita, 

Johanna, Mike, Wanda, Bart, Igor, Janine, Niels, Stephan en Mirjam, bedankt 

voor het nemen en verwerken van de talloze bloedmonsters en voor de vele 

gezellige uren in de stal en op het lab. 

Naast alle direkt betrokkenen wil ik ook alle collega's van de Vakgroep 

Fysiologie van Mens en Dier bedanken voor hun gezelschap en de verruimende 

discussies tijdens de pauzes en voor hun mateloze belangstelling voor mijn 

"controlegroepen". 

Tot slot, dank aan mijn ouders voor hun steun en voor hun vertrouwen in 

mij en, last but not least, dank aan mijn man. Rob, we vormen al sinds tien jaar 

een perfect team. Mede dankzij jou heb ik het nog ver geschopt... 

CJLCXV 

-147-



Curriculum Vitae 

Cecilia Jozefina Johanna Gerarda Janssens werd geboren op 1 juli 1966 te 

Heerlen. In 1984 behaalde zij het Gymnasium-/? diploma aan het Coriovallum 

College te Heerlen. In datzelfde jaar begon zij met haar studie biologie aan de 

Katholieke Universiteit Nijmegen. Tijdens de doctoraalfase deed zij hoofdvakken 

bij de Vakgroepen Dierfysiologie (KU Nijmegen) en Fysiologie-Microcirculatie 

(Rijksuniversiteit Limburg). In 1989 studeerde zij af in de Medisch Biologische 

richting (als eerste aan de KU Nijmegen) en tevens in de Fysiologisch-

Biochemische richting. 

Van 15 september 1989 tot 1 januari 1994 was zij als assistent in opleiding 

in dienst van de Vakgroep Fysiologie van Mens en Dier aan de Landbouw

universiteit van Wageningen. Tijdens haar AiO-periode behaalde zij de artikel 9 

bevoegdheid Proefdierkunde, en leverde zij een bijdrage aan het onderwijs voor 

de studierichtingen biologie, zoötechniek en humane voeding. 

Naast de jaarlijkse symposia en bijeenkomsten in Nederland werden 

onderzoeksresultaten gepresenteerd tijdens de summer meetings van de Society 

for Veterinary Ethology, in mei 1990 (Montecatini Terme, Italie) en in augustus 

1991 (Edinburgh, Schotland). In augustus 1992 leverde zij een bijdrage aan het 

"XXIII Congress of the International Society of Psychoneuroendocrinology" 

(Madison, Wisconsin, VS) en in mei 1993 aan de "Fourth International 

Conference on Pig Reproduction" (Columbia, Missouri, VS). Tevens bracht zij in 

juli 1990 een bezoek aan de werkgroep van Dr. B.A. Baldwin en Dr. R.F. Parrott, 

Institute of Animal Physiology and Genetics Research (Cambridge, Engeland) en 

in mei 1991 aan de werkgroep van Dr. CR. Barb en Dr. R.R. Kraeling, Animal 

and Dairy Science Department, University of Georgia (Athens, VS). 

-149-


