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De depressies in thiolmonolagen op goud die worden waargenomen met STM 

zijn gaten in het onderliggende goud gevuld met geordende thiolmoleculen. 

Edinger, K.; Gölzhäuser, A.; Demota, K.; Wöll, CH.; Grunze, M Langmuir 1993, 9, 4-8. 
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Dit proefschrift, hoofdstuk 3. 
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Uit het feit dat bij AFM-metingen aan thiolmonolagen op goud altijd dezelfde 

hexagonale struktuur valt waar te nemen, onafhankelijk van de diameter van het 

molecuul en de struktuur van het onderliggende goud, valt te betwijfelen of 

AFM een geschikte methode is om de struktuur van een monolaag te bestuderen. 

E.U. Thoden van Velzen, proefschrift TUT 1994 
Butt, H.J.; Seifert, K.; Bamberg, E. J. Phys. Chem. 1993, 97, 7316-7320. 
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Ondanks het feit dat in de begin jaren 80 al is aangetoond dat schoon goud 

hydrofiel is, zijn er nog steeds mensen die beweren dat goud hydrofoob is. 

Murphy, O.J.; Wainright, J.S. Langmuir 1989, 5, 519-523. 
Delamarche, E.; Michel, B.; Kang, H.; Gerber, Ch. submitted to Langmuir 1994. 
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Galvanische metaalafzetting op thiol-bedekte goudelektroden is een gevoelige 

en eenvoudige methode om de kwaliteit van de monolaag te testen. 

Dit proefschrift, hoofdstuk 8 
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Het gebruik van di-joodmethaan en 1-broomnaftaleen voor de bepaling van de 

dispersieve component van de oppervlakte vrije energie van vast stoffen is niet 

zinvol. 

Good, R.J. J. Adhesion Sei. Techno!. 1992, 6, 1269-1302. 
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Het met grote zelfverzekerdheid publiceren van ondermaatse karakteristieken van 

lithium-polymeer batterijen resulteert nog niet in een batterij die geschikt is voor 

de consumentenmarkt. 

Croce, F.; Passerini, S.; Scrosati, B. J. Electrochem. Soc. 1994, 141, 1405-1408. 
Passerini, S.; Loutzky, S.; Scrosati, B. / . Electrochem. Soc. 1994, 141, L80-L81. 

-7-
Naast de moderne baby is de moderne promovendus een grootverbruiker van 

papier. 

-8-

Om de objektiviteit van een "reviewer" van een manuscript te waarborgen is het 

verstandig om de naam van de auteur van het artikel weg te laten. 

-9-

Boerenverstand komt ook in de fysische chemie van pas. 

-10-

De enige drijfveer voor de industrie om spontaan iets aan milieuaktiviteiten te 

doen is een economische. 

-11-

Het feit dat de Nederlandse radio een handtekeningenaktie organiseert tegen 

racisme en nationalisme in Duitsland, doet een onderschatting van deze 

verschijnselen in Nederland vermoeden. 

-12-

Het aantal files neemt niet af door het aanleggen van meer wegen. 
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Chapter 1 

Introduction 

1.1. General introduction 

Electrochemistry is widely used in many areas of technology. Typical examples 

in daily life are big batteries for starting one's car or small ones for portable 

radios. Rusting is a result of electrochemical processes. Steel of lampposts and 

crash barriers is often protected from corrosion by a zinc coating. This protection 

is also based on an electrochemical mechanism: the iron can be saved by 

sacrificing the less noble metal zinc. Clothing may be made of nylon, a 

substance produced by an electrochemical process. 

The interest of the electronic industry in electrochemistry concentrates mainly 

on metal deposition and etching processes. In the case of metal deposition, 

usually flat and homogeneous films or patterns are required. Hence, 

understanding of the factors governing the morphology (i.e., the structure) of the 

deposit is very important. One of these factors may be the surface properties of 

the substrate. In this thesis we systematically study the influence of the surface 

tension of the substrate on the morphology of galvanically deposited metal. 

A measure of the surface tension is the degree to which the surface is wetted by 

a liquid. This degree of wetting is termed the wettability. A surface is 

completely wetted by water if the surface tension is high enough. Then water 

will cover the surface and form a thin homogeneous film. Such a surface is 

called hydrophilic. Low surface tensions result in a poor wettability by water. 

On substrates with a low surface tension, also called hydrophobic, the water 

forms drops. 

Similar with liquids, the surface tension of the substrate also influences the 

morphology of galvanically deposited metal: both flat and homogeneous metal 
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films or metal "drops" can be formed. Galvanic metal deposition onto a substrate 

is only possible if that substrate is a conductor. In order to test the influence of 

the surface tension on the morphology of the metal deposit, conducting 

substrates with a variety of surface tensions are required. The choice of suitable 

substrates is not very wide: the surface tension of most metal substrates is very 

high. Substrates with lower surface tensions, like various plastics, are not 

suitable because they are non-conducting and can therefore not be used in 

galvanic deposition studies. 

In this thesis we use a metal surface to have a conducting material, but we apply 

an organic coating to lower the surface tension. We chose gold electrodes 

modified with a film of alkanethiol molecules. These molecules contain a 

sulphur group that forms a chemical bond with gold. In order to be more 

flexible, we used functionalized alkanethiols. Their molecular formula is 

HS(CH2)„_,X. The number of carbon atoms and the type of terminal group X of 

the molecule can be varied. Such molecules form spontaneously an ordered and 

densely packed monomolecular layer or, for short, a monolayer on gold. This 

spontaneous process of ordering is called self-assembly. By covering the gold 

with a monolayer, the "face" of the electrode changes from metallic to plastic. 

This layer is thin enough to transport electrons through the organic layer, yet it 

is thick enough to form an inert and stable layer. By variation of the terminal 

group X the surface tension of the substrate can be changed and the influence of 

the surface tension on the morphology of the metal deposit can be studied 

systematically. By manipulating the surface in this way, we open up a new area 

of interfacial electrochemistry. 

As a basis for the electrodeposition study, we first investigated the influence of 

the state of electrification of thiol-modified gold on its wettability by an 

electrolyte solution. This may be called potential-dependent wetting or 

electrowetting. So far, most electrowetting studies focused on mercury [1]. This 

(liquid) metal is hydrophobic. Most of the other (solid) metals do not exhibit 

such electrowettability because they are hydrophilic. Changing the potential will 

then not result in a measurable change in wettability; the substrate remains 

hydrophilic. By applying a monolayer of thiol molecules, gold becomes 
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hydrophobic and the electrowetting effect, so far primarily observed with liquid 

mercury, becomes relevant for a solid metal. 

In order to successfully use these thiol monolayers in controlled electrochemical 

studies, the molecular structure of the layer should be known. In this work, we 

show that Scanning Tunneling Microscopy (STM) can, under certain 

experimental conditions, provide a rather complete molecular (i.e., microscopic) 

picture of thiol monolayers adsorbed on gold. Additional information on the 

monolayer on a more macroscopic scale is obtained from electrochemical 

measurements, like cyclovoltammetry and capacitance measurements. 

Before discussing in detail the outline of this thesis, an overview of the literature 

on (thiol) monolayers will be given. Hereby we use the title of this thesis 

"electrochemical and structural characterization of self-assembled thiol 

monolayers on gold" as a guide line. First, an overview of the development of 

the research on self-assembled monolayers is presented, followed by the 

structural characteristics of self-assembled thiol monolayers on gold. 

Subsequently, the state of the art of the electrochemistry of such monolayers is 

discussed. In the final section of this introduction the outline and aim of this 

thesis are given. 

1.2. Self-assembled monolayers 

Self-assembled monolayers are molecular assemblies that are formed 

spontaneously by immersion of an appropriate substrate into a solution of an 

active surfactant in a solvent [2,3]. There are two important requirements to 

obtain a self-assembled monolayer. First, the headgroups of the molecules should 

form a strong chemical bond with the substrate. Second, the lateral van der 

Waals interactions between the alkyl chains should be high enough to overcome 

the free energy loss due to a reduced entropy. 

About 50 years ago, self-assembled monolayers were introduced in a paper by 
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Bigelow et al. [4]. These authors showed that a carboxylic acid dissolved in a 

non-polar solvent adsorbs onto a hydrophilic surface immersed in this solvent. 

When this surface is withdrawn from the solvent, it retains an adsorbed and 

ordered layer. In the last two decades many other self-assembling systems have 

been studied. These include carboxylic acids on oxidized metal surfaces and 

glass [5-8], organosilicon compounds on hydroxylated surfaces such as glass, 

quartz, aluminium and silicon [9-12], phosphonates on metallic surfaces [13], 

isonitriles on platinum [14], and thiols and disulfides on metal or semiconductor 

surfaces, like gold, silver, copper, and GaAs [15-20]. The common characteristic 

of all these layers is that the molecules form a chemical bond with the substrate. 

This may be a covalent Si-O or Au-S bond for alkyltrichlorosilanes on silicon 

oxide surfaces or thiols on gold, respectively, or an ionic C02"Ag+ bond in the 

case of carboxylic acids on silver. In order to obtain an ordered and stable 

monolayer the alkyl chains should be sufficiently long. It was found that both 

for carboxylic acids on aluminum [7] and for alkanethiol on gold [16,17] a chain 

containing more than about 10-12 carbon atoms is required. 

1.2.1. Thiol monolayers on gold 

Alkanethiol (HS(CH2)„_1CH3) monolayers on gold are among the most popular 

self-assembling monolayers. Such monolayers can also be formed on other metal 

or semiconductor substrates, like Ag, Hg, W and GaAs [18-21]. On gold, a 

covalent Au-S bond is formed. Various methods like ellipsometry, infrared 

spectroscopy, X-ray photoelectron spectroscopy, electron and helium scattering, 

contact angle measurements, STM, and electrochemical methods have been used 

to study self-assembled monolayers. It has been established that long enough 

alkanethiol molecules on Au(l l l) form densely packed, crystalline-like 

assemblies with fully extended alkyl chains, which are tilted from the surface 

normal by about 30° [16,22]. A schematic representation of such a monolayer 

is given in Figure 1.1. Self-assembly occurs when the number n of carbon atoms 

in the alkane chain becomes larger than about 10-12 [16,17]. Due to the strong 

sulphur-gold interaction, the structure of the monolayer is not affected when the 
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Figure 1.1: Schematic representation of a self-assembled thiol monolayer on gold. 

alkanethiol molecules are substituted with a terminal group X, as long as this 

group is not larger than the cross-sectional area of the alkane tail [23]. By 

changing the terminal group the surface properties of the thiol-modified gold can 

thus be varied. The terminal group may even be electrochemically active (or, for 

short, "electroactive") so that it is possible to reduce or oxidize it without 

affecting the structure of the thiol layer [24]. 

A variety of techniques such as helium diffraction [25], electron and X-ray 

diffraction [26,27] and STM [28] have been used to determine the structure of 

the monolayer. The sulphur head groups of the molecules were found to bind to 

the Au(l 11) surface in a structure commensurate with the Au(l 11) structure. The 

sulphur moieties rest in the threefold hollow sites of the Au(ll l) [27,29] (see 

Figure 1.2). The nearest-neighbour distance between the sulphur atoms is 0.5 

nm, corresponding to a surface density of 4.6 1014 molecules cm 2. 

Employing thiol monolayers as model systems in electrowetting and 

electrodeposition studies requires that these layers are not permeable to 

electrolyte though electrons should be able to penetrate. Hence, the number of 

defects in the monolayer should be largely reduced. Several factors influence the 

structure and quality of thiol monolayers on gold. These factors are, for example, 

the preparation of the gold substrate [30-35], the type of solvent from which the 

thiol is deposited [17,36,37], and annealing of the modified gold electrode after 

deposition [30,38,39]. 
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Figure 1.2: Coverage scheme for alkanethiols on Au(lll). Small circles represent Au 
surface atoms and the larger dark ones chemisorbed sulphur head-groups of thiol 
molecules. 

1.2.2. Electrochemistry of self-assembled thiol monolayers on gold 

Electrochemistry is often used as a characterization technique to obtain 

information about the quality of thiol monolayers. When defects, like small holes 

in the monolayer ("pinholes") or disordered areas of molecules, are present, 

water or ions may penetrate into the monolayer. In such cases, electrochemical 

reactions will take place at the gold/thiol interface. By using redox couples (like 

Fe2+/Fe3+) in solution, it has been checked whether or not the monolayer is 

densely packed and prevents ion penetration [16,40^-6]. If penetration is 

blocked, electrochemical reactions can only take place at the thiol/electrolyte 

interface. Because electron transport through the .aliphatic monolayer is strongly 

hindered, the electrochemical reactions will also be strongly reduced. Hence, the 

rate of charge transfer is a measure for quality of the monolayer. Therefore, 

redox couples can be used to determine the order/disorder transition of self-

assembled monolayers [16]. It was found that for about «>10 the reduction 

current strongly decreased. Monolayers of shorter chains are disordered. This has 

been corroborated by other types of measurements. 
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Besides the electrochemistry of the redox couples, also oxidation of gold has 

been used for determining the passivating properties of the monolayer [40,41]. 

When water penetrates the monolayer and contacts the gold, the gold may be 

oxidized to give gold-oxide at the gold/thiol interface. Although this method is 

able to give information about the penetration of water, it is not very suitable to 

determine the exact number of defects, because the thiol layer becomes highly 

unstable upon oxidation. Due to the formation of gold-oxide, the monolayer may 

be disrupted. 

Not only the penetration of ions, but also the transport of electrons through the 

monolayer is of fundamental interest. For monolayer films free of defects, the 

electron transport through the thiol layers has to occur by electron tunneling or 

hopping through the monolayer film. Miller et al. [43] suggested that for 

hydroxy thiol monolayers of varying chain lengths electron tunneling occurs. A 

problem with the interpretation of this type of studies is that rapid electron 

transport at a few defect sites can hardly be ruled out. By replacing the redox 

couples in the electrolyte by covalently attached electroactive groups [24,47-50], 

this problem is overcome: the electroactive groups can only exchange electrons 

with the electrode across the monolayer. For this purpose, mainly ferrocene(Fc)-

terminated alkanethiol monolayers on gold have been applied [24,48]. Even for 

relatively long-chain ferrocenethiols, like Fc-terminated hexadecanethiol, it was 

found that the Fc group can be oxidized and reduced [50]. For such thick thiol 

layers electron tunneling is not likely to occur [43]. Hence, some other 

mechanism must be responsible for the transport of the electrons through the 

alkyl chain. 

Both ion penetration and electron transport through the thiol layer are of interest 

in model studies of biological membranes [45]. An example of these studies are 

synthetic layers of acidic phospholipids in aqueous solutions, investigated 

intensively in relationship to their membrane functions [51]. When these 

molecules contain a thiol group they can form self-assembled monolayers. 

Electrochemical methods have also been used to determine the concentration of 

molecules at the surface by reductive desorption of the molecules [52,53]. In an 
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alkaline solution (pH>l 1) the gold-thiolate bond (Au-SR) can be reduced by the 

one-electron reaction AuSR + e— ** Au(0) + SR. From measuring the charge 

involved in this reaction, the thiol surface concentration can thus be derived. 

1.3. Outline of this thesis 

1.3.1. Aim 

The principal aim of this thesis is to explore the possibility of applying 

"classical" electrochemical methods, like galvanic metal deposition and potential-

dependent wetting, to a "new" (model) system: thiol monolayers on gold. The 

purpose of the electrodeposition study is to investigate the influence of the 

surface tension on the morphology of galvanically deposited metal. The surface 

tension can be easily changed by varying the terminal group of the monolayer. 

In addition, electrodeposition provides information about the presence of 

(microscopic) defects in the thiol monolayers. 

Most of the classical electrowetting studies have been done on mercury. We 

apply electrowetting to self-assembled monolayers on gold. An intriguing aspect 

is to explore whether the electrowetting effects of the monolayer system can be 

described by traditional interfacial thermodynamics. From the fhermodynamical 

description of this system the background of the electrowetting phenomena on 

both electroinactive and electroactive thiol monolayers can be better understood. 

There are two requirements for the use of thiol monolayers as model system in 

electrochemical studies. First, the monolayers should be densely packed and 

defect-free, and second, electron transport through the alkyl chains must be 

possible. If this is the case, the electrochemical processes take place at the 

thiol/electrolyte interface and the influence of this interface on electrodeposition 

or electrowetting can be studied. To check whether or not the thiol monolayers 

are free of defects, we investigated the characteristics of the monolayers both on 

a macroscopic and microscopic scale. For the macroscopic characterization we 
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used cyclovoltammetry, differential capacitance measurements and contact angle 

measurements. For the microscopic characterization we employed atomically 

resolved STM measurements in air. By combining the results of these 

measurements we intend to find an answer to the question: are thiol monolayers 

suitable model systems? 

1.3.2. Outline of the subsequent chapters 

This thesis is organized as follows. Chapter 2 deals with most of the 

experimental techniques and materials used in chapters 3 to 9. First, the 

synthesis of the thiols that are not commercially available is given. Second, the 

preparation of the thiol monolayers on gold and the characterization of these 

monolayers with sessile drop measurements is described. The purpose of this 

separate experimental chapter is to prevent overlap between the individual 

chapters. Detailed information about the experiments are given in separate 

sections in the individual chapters. 

Chapter 3 deals with the microscopic structure of alkanethiol monolayers on 

gold(lll) in air as studied by STM with atomic scale. This technique revealed 

the nature of the mysterious "holes" in thiol layers as observed in previous STM 

studies. The holes appeared to be holes in the underlying gold resulting from an 

etching process during adsorption. This was confirmed by analysis of the thiol 

solution after adsorption with atomic absorption spectroscopy: small amounts of 

gold could be determined. 

The technique used for measuring the potential-dependent wetting of alkanethiol 

monolayers on polycrystalline gold is presented in chapter 4. These 

measurements were carried out simultaneously with cyclovoltammetry and 

differential capacitance measurements. The (electrochemical) characteristics of 

bare and thiol-modified gold are compared. In chapter 5 the influence of the 

thiol chain length and electrolyte concentration on the potential-dependent 

wetting of alkanethiol-modified gold electrodes is investigated. The relationship 
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between the potential and the change in wettability could conveniently be 

described by interfacial thermodynamics. It is shown that the electrowetting 

effect is mainly caused by the formation of an electrical double layer. The same 

type of measurements were carried out for functionalized alkanethiol monolayers. 

These measurements are discussed in chapter 6. The (functionalized) alkanethiol 

monolayers appeared to be stable when applying an electric field across the thiol 

layer, independent of the thiol chain length (for «>10) and terminal group. 

Electrowetting based on oxidation/reduction of the terminal group of a thiol 

monolayer on gold is described in chapter 7. For this purpose, gold was 

modified by an electroactive ferrocene-terminated alkanethiol monolayer. 

Compared to the electroinactive alkanethiol monolayers, the electrowetting 

effects obtained with ferrocene-terminated monolayers were reversible and much 

larger. The effect of mixing this ferrocene thiol with simple alkanethiols on the 

stability of the monolayer and the magnitude of the electrowetting phenomenon 

is studied. 

Galvanic copper deposition on top of the thiol monolayers is the subject of study 

in chapter 8. The influence of the terminal group of a functionalized alkanethiol 

monolayer and of the chain length of an alkanethiol monolayer on the 

morphology is investigated. The morphology of the deposits is imaged with 

scanning electron microscopy. It appeared that the copper could be deposited on 

top of the thiol layer. It was deposited as hemispherical particles. The 

mechanism involved in electron transport through the thiol layer is discussed. 

Chapter 9 presents an application of thiol monolayers in nanolithography. In this 

chapter the thiol monolayers were used as a resist. The resist is selectively 

removed with an e-beam and subsequently, copper is galvanically deposited in 

the openings in the resist layer. 

Finally, in chapter 10 the results of the STM and the electrowetting 

measurements are compared with the current status of knowledge in the 

literature. Subsequently, results on the structure of the thiol monolayers obtained 

in the separate chapters are compared and discussed. Finally suggestions for 



Introduction 11 

further study are made. 
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Chapter 2 

Materials and experimental methods 

Abstract: In this chapter we describe the materials and several methods that are 
generally used in most of the chapters. The materials and methods that are specific for 
one chapter are described in a separate experimental section in that chapter. 

2.1. Materials 

2.1.1. Gold electrodes 

Gold electrodes used for the electrowetting measurements were prepared by 

cutting a polycrystalline gold plate (99.99%) with a thickness of 0.5 mm into 

pieces of 4.00 cm x 3.00 cm. The pieces were mechanically polished with silver 

polish (Racket) and then thoroughly rinsed with deionized water and hexane. In 

order to remove organic contaminants, the electrodes were subsequently treated 

in a UV/ozone reactor (UVP Inc.; PR-100) for 15 min. Immediately after this 

treatment, 200 nm of gold (99.999%, Williams Gold Ref.) was evaporated onto 

both sides of the electrode. The pressure during evaporation in the cryopumped 

Edwards E306 coating system was less than 9x10~5 Pa. After deposition the 

system was refilled with prepurified argon. 

The surface crystallinity of the gold electrodes was investigated by X-ray 

diffraction (Philips IPD PW1800). It was found that the crystal structure of the 

gold is predominantly of the types (111), (220), and (311). 
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2.1.2. Thiols 

1-Propane thiol (HS(CH2)2CH3), 1-decanethiol (HS(CH2)9CH3), and 

1-dodecanethiol (HS(CH2)nCH3) were obtained from Fluka, 1-octanethiol 

(HS(CH2)7CH3) from Aldrich, and octadecanethiol (HS(CH2)I7CH3) from Janssen 

Chimica. These chemicals were used as received. 1-Docosane thiol 

(HS(CH2)21CH3), 11-mercapto-l-undecanol (HS(CH2)HOH) and 

11-mercaptoundecanoic acid (HS(CH2)10COOH) were prepared according to 

liturature procedures given in references 1, 2 and 3, respectively. 11-Chloro-

1-undecanethiol (HS(CH2)UC1) and 12-mercapto-l-dodecanenitrile 

(HS(CH2)nCN) were prepared according to the synthesis given below. 

Synthesis of 11-chloro-l-undecanethiol 

11-Chloro-l-undecanethiol (HS(CH2)nCl) was prepared in a three-step 

synthesis from 10-undecen-l-ol by chlorination, photocatalyzed thioacetylation, 

and base-catalyzed thioester cleavage. The 10-undecen-l-ol 

(HO(CH2)9CH=CH2) was chlorinated [4] to give 11-chloro-l-undecene 

(C1(CH2)9CH=CH2). A solution of this compound (10.0 g, 53 mmole), thiolacetic 

acid (10.0 g, 132 mmole), and a catalytic amount of AIBN 

(a,oc'-azobis(2-methylpropionitril)) in toluene (200 cm3) was exposed to 

unfiltered UV-radiation of a mercury lamp for 6 h. The reaction mixture was 

washed with a saturated sodium bicarbonate solution (3x) and water (2x). The 

organic layer was dried over magnesium sulphate and concentrated under 

reduced pressure. The yellow oil was subjected to column chromatography (SiOz, 

hexane ethyl acetate 9:1 v/v), yielding 12.57 g (90%) of a yellowish oil 

(11-chloro-l-undecylthiolacetate, Cl(CH2)nSC(0)CH3). 'H NMR (CDC13) 8H 

3.41 (t, 2H, RC//2C1, J = 6.8 Hz), 2.75 (t, 2H, RC//2SAc, J = 7.0 Hz), 2.21 (s, 

3H, RSC(0)C//3), 1.60-1.71 (m, 2H, C1CH2C//2R), 1.40-1.51 (m, 2H, 

RC//2CH2SAc), 1.17-1.34 (m, 14H, CH2). 

To a solution of 11-chloro-l-undecylthioacetate (0.95 g, 3.6 mmole) in degassed 

methanol (150 cm3) potassium carbonate (0.5 g, 3.62 mmole) was added. The 

suspension was refluxed for 30 min, and subsequently quenched with acetic acid 
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(1.05 g, 4.37 mmole). The suspension was filtered, and concentrated under 

reduced pressure. The resulting yellow oil was subjected to flash chromatography 

(SiOz, hexane dichloromethane 3:1 v/v) and yielded 0.6 g (74%) or a colourless 

oil (11-chloro-l-undecanethiol, HS(CH2)nCl). 'H NMR (CDC13) ôH 3.52 (t, 2H, 

RC//2C1, / = 6.7 Hz), 2.47-2.56 (m, 2H, RC#2SH), 1.71-1.84 (m, 2H, 

C1CH2C//2R), 1.52-1.66 (m, 2H, RC#2CH2S), 1.00-1.49 (m, 14H, C//2): Anal 

Calcd for C,,H23C1S: C, 59.30, H, 10.40; found C, 59.39, H, 10.32. 

Synthesis of 12—mercapto-l-dodecanenitrile 

12-Mercapto-l-dodecanenitrile (HS(CH2)nCN) was prepared in a three-step 

reaction from 11-chloro-l-undecene by cyanation, addition of thiolacetic acid 

over the double bond and thioester cleavage. A solution of 11-chloro-

l-undecene (8.00 g, 42.5 mmole) and potassium cyanide (3.0 g, 45 mmole) in 

DMF (200 cm3) was heated at 60°C for 24 h. The reddish solution was 

concentrated under pressure, diluted with diethyl ether and washed with water 

(3x). The organic layer was dried over magnesium sulphate, and concentrated 

under reduced pressure, yielding 6.7 g (88%) of a yellowish oil 

(11-dodecenitrile, CN(CH2)9CH=CH2). 'H NMR (CDC13) 5H 5.88-5.73 (m, 1H, 

RC//=CH2), 5.02 and 4.91 (both d, both 1H, RCH=C//2, / , = 17 Hz, J2 = 10 

Hz), 2.74 (t, 1H, RO/2CN, J = 7.4 Hz), 2.12-2.01 (m, 1H, RC//2CH=CH2), 

1.69-1.85 (m, 1H, RC//2CH2CN), 1.52-1.24 (m, 7H, CH2). 

A solution of 11-dodecenitrile (5.0 g, 28 mmole), thiolacetic acid (8 g, 106 

mmole), and a catalytic amount of AIBN in toluene (200 cm3) was irradiated 

with the unfiltered UV-radiation of a mercury lamp for 12 h. The product was 

washed with a saturated potassium bicarbonate solution (3x). The organic layer 

was dried over magnesium sulphate, and concentrated under reduced pressure. 

The yellow oil was subjected to column chromatography (Si02, hexane ethyl 

acetate 4:1 v/v), giving 5.7 g (80%) of a yellowish oil (12-thioacetyl-

1-dodecanitrile, CN(CH2)uSC(0)CH3). 'H NMR (CDC13) 5H 2.88 (t, 2H, 

RC//2CN, J = 7.5 Hz), 2.37-2.28 (m, 5H, RCH2SC(0)CH3), 1.75-1.48 (m, 4H, 

RC//2CH2CN and RC//2CH2SAc), 1.48-1.22 (m, 14H, CH2). 

To a solution of 12-thiolacetyl-l-dodecanitrile (2.5 g, 10 mmole) in degassed 
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methanol (150 cm3) potassium carbonate (1.5 g, 11 mmole) was added. The 

suspension was refluxed for 30 min, and subsequently quenched with acetic acid 

(0.1 g, 1.6 mmole). The suspension was filtered, and concentrated under 

pressure. The resulting yellow oil was subjected to flash chromatography (Si02, 

hexane dichloromethane 2:1 v/v), yielding 1.7 g (85%) of a colourless oil 

(12-mercapto-l-dodecanenitrile, HS(CH2)nCN). 'H NMR (CDC13) 6H 2.63 (t, 

1H, RC//2CN, J = 7.4 Hz), 2.35 (t, 1H, RC//2SH), 1.73-1.56 (m, 2H, 

RC//2CH2CN and RC//2CH2SH), 1.50-1.22 (m, 7H, CH2). 

2.2. Preparation of the monolayers 

Prior to adsorption, each gold electrode was treated in the UV/ozone reactor, 

each side for 15 min, resulting in hydrophilic gold substrates. This treatment was 

immediately followed by immersion into a freshly prepared solution of 3.5 raM 

thiol in methanol. Because some of the solid long chain alkanethiols are poorly 

soluble in methanol, these thiols were first melted at about 35°C just before 

being added to methanol. The thiol spontaneously adsorbed onto gold. The 

adsorption time varied between 3 h and a few days. In this time period no 

differences in quality of the monolayers were observed. After adsorption, the 

electrode was rinsed in methanol, followed by rinsing in 2-propanol and 

subsequently in hexane in order to remove any physisorbed thiol. 

2.3. Contact angle measurements (sessile drop) 

The contact angles of sessile drops were determined with a video camera system: 

a video camera was connected to a U-matic video recorder, a TV monitor, and 

a video printer. Advancing (6a) and receding (0,.) contact angles were determined 

by depositing a water (or hexadecane) drop onto a surface through a syringe 

without removing the syringe tip. By very slowly adding or removing water, the 

drops were made to grow or shrink. The contact angles were measured just prior 

to movement of the three phase line as judged from the video image. 
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Chapter 3 

Formation of holes in alkanethiol monolayers on 

gold' 

Abstract: Self-assembled monolayers of alkanethiols (C„H2„+1SH; n = 3, 8, 12, 18, and 

22) adsorbed on gold(l 11) are investigated with (atomically resolved) scanning tunneling 

microscopy (STM) and wetting measurements. The characteristic depressions observed 

in these monolayers with STM are proven to be holes in the underlying top gold surface 

layer rather than defects in the thiol monolayer itself. The holes originate from an 

etching process of the gold during adsorption of the thiol molecules: a correlation is 

obtained between the number of holes observed with STM and the amount of gold 

measured with atomic absorption spectroscopy in the thiol solution after adsorption. The 

erosion process is found to vanish as soon as complete self-assembly is observed in STM 

and wetting. For a dodecanethiol monolayer on gold adsorbed from a diluted methanoic 

thiol solution, self-assembly is observed within 10 min adsorption time. The average 

amount of gold in the thiol solution after 10 min corresponds to dissolution of 2% of a 

monolayer Au(l 11). The erosion strongly increases when the dodecanethiol adsorbs from 

undiluted thiol. The amount of holes also increases with decreasing thiol chain length as 

a result of a lower degree of self-assembly. The surface gold atoms underneath the thiol 

layer are highly mobile, which is manifest in STM tip-induced reorganization of the thiol 

layer and in penetration of evaporated gold through the thiol layer. This mobility is 

believed to be crucial in the etching process. Due to the mobility of thiol molecules 

during the adsorption process prior to acquiring a complete self-assembled structure, gold 

dissolves, probably in the form of a gold thiolate complex. 

'This chapter has been published under the same title: Sondag-Huethorst, J.A.M.; 
Schonenberger, C ; Fokkink, L.G.J. J. Phys. Chem. 1994, 98, 6826-6834. Papers related 
to this subject: Schonenberger, C ; Sondag-Huethorst, J.A.M.; Jorritsma, J.; Fokkink, 
L.G.J. Langmuir 1994,10, 611-614. Schonenberger, C ; Jorritsma, J.; Sondag-Huethorst, 
J.A.M.; Fokkink, L.G.J, submitted to J. Phys. Chem. 
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3.1. Introduction 

Alkanethiols (C„H2M+ISH) are known to form densely packed self-assembled 

monolayers on gold [1]. Several characterization techniques, like infrared 

spectroscopy [2], wetting measurements [3-5], and electron diffraction [6,7], 

show the structure of the longer chain (n > 9) thiol monolayers on gold to be 

highly ordered. 

Recently, we used STM in an ultrahigh tunnel resistance (/?,) regime for the 

characterization of the ordering of dodecanethiol adsorbed on gold on a 

molecular scale [8]. Tunneling under these conditions enables imaging of 

individual sulphur atoms of the thiol molecules in the self-assembled structure 

and was found to be truly nondestructive. Under these operating conditions, the 

distance between the tip and the substrate is large enough to result in a 

negligible tip/surface interaction. In this work [8] it was found that after a 

minimum adsorption time of about 10 min, a highly ordered structure of the 

thiol molecules on the gold is obtained. The molecules adopt a hexagonal and 

commensurate (V3xV3)R30° overlayer structure on the Au(l l l) surface. The 

high degree of ordering of the thiol layers makes them suitable as molecular 

model systems for studying e.g. the mechanical and interfacial properties of 

modified metal surfaces. Our interest in self-assembled thiol monolayers is 

mainly aimed at using them as model systems to study the interaction between 

(electrochemically deposited) metals and organic surfaces like polymers. The 

advantage of using self-assembled monolayers in these studies is the 

controllability of the identity and the concentration of surface functional groups. 

These ordered molecular assemblies are also of technical relevance for example 

in the fabrication of (nano)-patterned structures [9,10]. 

STM measurements indicate the presence of defects in the ordered structure. In 

our high R, STM images (Figure 3.1a) they show up in the form of dark lines 

which could be identified as different types of missing row structures [8,11]. 

Two other types of defects can be clearly visualized by operating the STM in the 

usually employed low R, (<100 GQ) tunneling regime (Figure 3.1b). One of the 
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Figure 3.1: STM images of an Au(l l l) surface with an adsorbed self-assembled 
monolayer of dodecanethiol measured on the same 60x60 nm2 area for two different 
tunneling resistances: R, = 660 GQ for (a) and R, = 25 GQ. for (b). Three types of 
defects can be observed: missing thiol rows (dark lines in (a)), monatomic Au step edges 
(visible in image (a) and (b)), and depressions (in (b)). The images are obtained in the 
constant-current mode ( 1.5 pA). 

defects are monatomic steps and can be observed as the border line between two 

different terraces. These steps are steps in the underlying gold and are also 

observed on clean gold samples. However, the most prominent defects observed 
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are depressions (holes) which can be most clearly seen in Figure 3.1b. These 

depressions have been observed by many other research groups [12-16]. The 

holes are of a roughly circular shape and about 2-6 nm in diameter and cover 

about 5-30% of the surface. The depth has been reported to vary between 0.2 

and 1.1 nm [12-16]. These depressions are observed for all thiol chain lengths 

studied. The depressions are not observed on bare gold. 

In ref 8 we have presented evidence that these depressions are holes in the 

underlying Au surface layer. The purpose of this study is to further elucidate the 

origin and the formation mechanism of the holes. In this chapter we will first 

present evidence that the observed depressions are indeed holes in the gold. The 

second part of the chapter concerns the origin of these holes. Aspects like 

adsorption time and thiol chain length will be discussed. In the third part we will 

speculate on the mechanism involved in the generation of these holes. 

3.2. Experimental 

Materials. Information about the thiols is given in chapter 2. In this chapter the 

alkanethiol will be incidently abbreviated as RSH. The gold(l 11) samples were 

prepared by evaporation of a gold layer of 100 nm (99.999%) onto a freshly 

cleaved mica (Muscovite mica, Goodfellow) sheet at 250°C. Gold samples of 

5-cm2 geometrical area were used. All reagents were analytical grade (Merck). 

Preparation of the monolayers. Detailed preparation procedures are given in 

chapter 2. A thiol monolayer was formed on the gold surface by immersion of 

the UV/ozone cleaned gold in a glass Petri dish filled with 8 cm3 of 3.5 mM 

thiol solution in methanol. The temperature of the thiol solution was kept at 

20°C. Occasionally, a dodecanethiol monolayer was deposited from undiluted 

liquid dodecanethiol. After an adsorption time of t minutes, the sample was 

removed from the thiol solution and carefully rinsed with 2-propanol and 

hexane. The monolayers were characterized by advancing (8J and receding (9,.) 

sessile drop contact angle measurements with water and hexadecane (HD) [17]. 
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Determination of gold in the thiol solutions. In cases where the gold 

concentration of the supernatant thiol solution had to be determined, the 

supernatant (8 cm3) was decanted into a 10-cm3 beaker. The gold substrate was 

subsequently rinsed with 0.25 cm3 of 2-propanol and 0.5 cm3 of hexane, 

respectively. The rinsing liquid was combined with the supernatant. The glass 

Petri dish was carefully rinsed with 0.5 cm3 of concentrated (65%) HN03 in 

order to remove any adsorbed gold on the glass tray, if present. The HN03 was 

collected in the beaker. Caution: HN03 reacts violently with most organic-

materials and must be handled with extreme care. The total volume of the 

sample was adjusted to 10 cm3 with 2-propanol. Due to the nitrous vapours that 

develop after the mixing of the organic liquids with the concentrated HN03, the 

solutions acquired a slightly brown colour. 

The total amount of gold in the thiol solution was analyzed with atomic 

absorption spectroscopy (AAS). For this purpose 0.04 cm3 of the thiol solution 

was mixed with 0.01 cm3 of palladium nitrate (10 mg cm"3) solution. The 

mixture was injected in a pyrolytically coated carbon oven and heated from 120 

to 2700°C. The amount of gold was analyzed with a Perkin Elmer 5000 graphite 

furnace absorption spectrophotometer with Zeeman background correction for 

matrix interferences. Gold concentrations of 5 ng or more (in 10 cm3 of solution) 

can be determined following this procedure. 

STM. STM is done with an instrument operating under ambient conditions using 

commercial STM electronics (RHK system STM2000 from RHK Technologies, 

Michigan). Typically, samples were imaged within 1 h after monolayer 

deposition, though no characteristic changes have been observed over periods of 

at least 1 week. For imaging, mechanically cut PtPd wires were used and the tip 

potential Vh was typically biased negatively (-0.1, -1 V) with respect to the 

sample. All images were obtained at constant tunneling current /, in the 1-100 

pA domain. 
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3.3. Results and interpretation 

3.3.1. Nature of the depressions 

Here, we will shortly review the arguments that convinced us of the fact that the 

depressions observed with STM are holes in the top gold layer. Most arguments 

are derived from STM measurements. 

Depressions are filled with molecules. Figure 3.1a, b shows STM images of a 

dodecanethiol ("C,2-thiol") layer adsorbed on gold. The STM images show the 

same part of the surface, obtained under different tunneling conditions. The 

image in Figure 3.1a is measured with R, = 660 GQ. and in Figure 3.1b with Rt 

- 25 GQ. Due to the high tunnel resistance in Figure 3.1a (with a relatively 

large distance between tip and gold substrate) it is possible to image the 

individual sulphur atoms of the thiolate [8]. Comparing parts a and b of Figure 

3.1, it is noticeable that most of the depressions in Figure 3.1b are filled with 

ordered thiol. The (V3xV3)R30° structure of the thiol molecules continues in the 

holes [8]. This excludes the possibility that the depressions are empty regions or 

regions of disordered thiol embedded in an ordered assembly as had been 

suggested before [13-16]. 

Depth of the holes. The depth of the holes is found to be about 0.29 nm and is 

independent of the chain length of the adsorbed thiol. This depth equals the 

height of step edges in the thiol-modified gold surface (Figure 3.2) and 

corresponds to the height of Au-Au steps on the bare gold samples. Only 

occasionally a hole was found with a deviating depth (sometimes the depth 

equalled two or three Au-Au steps). In the literature values between 0.2 and 1.1 

nm have been reported for the depth of the holes [12-16,24]. The more recent 

papers, however, consistently report a depth of about 0.2-0.3 nm [12,16b,24]. 

Tip-induced erosion. Under "normal" tunneling conditions (where Rt ~ 1 GQ.), 

the tip-substrate distance is of the order of 0.5-1 nm [8]. The thickness of the 

ordered self-assembled thiol monolayer varies between about 1 nm (for 
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Figure 3.2: STM image (80x80 nm2) of an Au(ll l) surface with a monolayer of 
dodecanethiol. Image (b) shows the profile of the dashed line in (a). Tunnel parameters: 
Vh= 1 Vand/ , = 1.5 pA. 

C10H21SH) and 3 nm (for C22H45SH) [3] and the tip will thus penetrate the layer. 

The resulting interaction forces can become so strong that the scanning tip 

mechanically disrupts the assembly as can be observed in Figure 3.3 (Vb = 100 

mV, /, = 0.1 nA). This erosion process has also been observed by other research 

groups [12-14,24]. 

Figure 3.3 shows a dodecanethiol monolayer through a series of several 

successive scans. During scanning expansion of the depressions occurs. The 
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Figure 3.3: Successive scans (70x80 nm2) of an Au(ll l) surface with an adsorbed 
monolayer of dodecanethiol. Tunnel parameters: Vb = 0.1 V and /, = 0.1 nA. Under these 
tunnel conditions the tip disrupts the monolayer: the holes become larger and new holes 
and step edges appear. 

expanding areas connect to other depressions to form larger depressions (Figure 

3.3b) and eventually connect to step boundaries (Figure 3.3c). On continuing the 

scanning we finally see new depressions appearing within the larger depressions 

that were formed during earlier scans (Figure 3.3d). The depth of both the 

existing and newly formed depressions is found to be indistinguishable from the 
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step edge height. 

Figure 3.4 shows images of the same sample as in Figure 3.3 but on a larger 

scale (300x300 nm2), before (Figure 3.4a) and after (Figure 3.4b, c) erosive 

Figure 3.4: STM images (323x323 nm2) of the dodecanethiol monolayer before and 
after measuring Figures 3.3a-d. The area outlined in (a) represents the scanning area of 
Figure 3 before imaging. Image (b) is measured directly after measuring Figure 3. Image 
(c) is measured 60 min (without scanning) after (b). Tunnel parameters: Vh = 0.1 V and 
/, = 0.1 nA. 
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scanning. The original scanning area of Figure 3.3 (70x80 nm2) is indicated by 

the rectangle. Figure 3.4 shows that erosion takes place mainly within the 

scanning area. The surroundings of this area are hardly affected. Comparing the 

situation before and after scanning, we see that the number of depressions has 

decreased after scanning. Only a few large depressions remain. Two new height 

levels appear: one is a single step height lower than the lowest terrace, the other 

is one step higher than the originally highest terrace. 

After a period of 45 min without scanning, the disrupted structure in Figure 3.4b 

has relaxed (Figure 3.4c): the highest step has disappeared, and the curvature of 

the step edges becomes smoother. Apparently, the tip-induced reorganized 

surface is not stable. This relaxation is possibly driven by a relaxation of stress 

induced in the thiol/gold layer upon scanning. 

Despite the fact that the penetration depth of the tip into the thiol layer is 

effectively larger for longer chains, the etching behaviour is found to be less 

pronounced in that case. This is probably due to the mechanical stiffness and the 

intrinsic stability of the layer, due to the increased lateral van der Waals 

interactions between the long thiol chains. Gold substrates covered with shorter 

chains (C3H7SH or C10H2,SH) were not affected during scanning. In these cases 

the penetration of the tip in the monolayer seems to be too low to cause erosion. 

The merging of the holes with step edges during erosive scanning indicates that 

holes are in fact small terraces, and therefore, the depressions must be one atom 

deep holes in the top Au surface filled with thiol molecules. At present, a 

mechanism explaining the (dis)appearance of holes and the appearance of new 

steps is unknown. However, we speculate that the holes appear as a result of a 

reorganization of gold atoms immediately underneath the thiol. Due to 

mechanically induced stress in the thiol layers during scanning, atoms or 

molecules may reorganize. The weakest bond will be broken first. Apparently, 

this is not the bond between the gold and the sulphur of the alkanethiolate 

(Au-SR bond), but the gold-gold bond between the interfacial gold atoms (with 

chemisorbed thiol) and those in the second layer underneath the adsorbed 

alkanethiolate (Au-AuSR bond) leading to an enhanced mobility of the 
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interfacial gold atoms. The Au-AuSR bond breaking may be facilitated by the 
presence of the chemisorbed thiolate and by the large number of holes (i.e., a 
large number of step edges) in the top Au surface layer. For example, 
Holland-Moritz et al. [18] found a statistical trend that the surface of bare gold 
(evaporated on mica) with the highest density of gold steps is least stable during 
scanning. 

Figure 3.5: STM images of an Au(lll) surface with an adsorbed dodecanethiol 
monolayer after evaporation of a small amount of gold (±1 nm). Image (a) (80x80 nm2) 
is measured directly after evaporation. The black arrow points to the evaporated clustered 
gold, and the white arrow points to the gold that has already penetrated the thiol layer. 
Image (b) (60x60 nm2) is measured 3 days after evaporation: the evaporated gold has 
penetrated the thiol layer. Tunnel parameters: Vh = 0.2 V and /, = 2 pA. 

The mobility of gold underneath an adsorbed thiol layer can also be clearly 

visualized by vapour deposition of a small amount of gold (±1 equiv nm) on top 

of a Cl2-fhiol layer. Directly after deposition of the gold, gold clusters can be 

observed (indicated by the black arrow in the STM image in Figure 3.5a). The 

gold atoms tend to cluster because the adhesion between the hydrophobic 

hydrocarbon layer and the evaporated gold is small. In addition to the clusters, 

we also observed some white islands as indicated by the white arrow in Figure 

3.5a. After a few days all the gold clusters have disappeared. Eventually, the 

gold is found at the thiol/gold interface where it can be observed as white 
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islands (Figure 3.5b). The characteristic holes have disappeared. The height of 

the white islands is equal to a step edge which indicates that the newly formed 

terraces are covered with thiol. This is confirmed by contact angle measurements 

with water and hexadecane as the wetting liquids. The contact angles are 

comparable to those of the sample before evaporation. These observations 

indicate that there has been transport of gold through the thiol layer (probably 

through defect sites). Subsequently, the gold diffuses underneath the thiol layer, 

resulting in surface reconstructions. The amount of gold involved in the transport 

through and the diffusion underneath the thiol layer is equivalent to about 3 

monolayers of Au(ll l) . The gold diffusion experiment proves that gold is 

mobile underneath the thiol layer. The diffusion process is similar to that 

observed by Tarlov [19] for evaporated silver on an octadecanethiol ("C18-thiol") 

monolayer on gold. 

No metallization inside the depressions. Sun and Crooks [15] used thiol-modified 

gold electrodes in their study on electrochemical copper deposition as a function 

of the thiol coverage. No copper deposition was observed inside the depressions, 

when the thiol coverage was at a maximum. To us this indicates that the holes 

are not empty; otherwise metal ions would, due to electrical field effects, have 

preferentially penetrated the holes, resulting in localized metal deposition. 

In summary, the above-mentioned arguments all indicate that the depressions 

observed with STM are neither pinholes nor defects in the thiol monolayer, but 

holes in the outermost layer of the underlying gold substrate. Both during 

nondestructive and erosive scanning, the bottom of the holes is indistinguishable 

from a lower terrace. The holes are filled with ordered thiol molecules as could 

be proven with high tunnel resistance STM [8]. Because these holes are filled 

with ordered thiol molecules, it is not surprising that the electrochemical metal 

deposition in the holes is blocked and that the holes will hardly influence the 

properties of the adsorbed layer. This is in agreement with other macroscopic 

characterization techniques like electrochemical measurements. For example, 

cyclovoltammetry with hydrophobic thiol-modified gold electrodes in aqueous 

electrolytes with redox couples in solution showed strong blocking of the 

electron transfer compared to the case of clean gold [20,21]. From differential 
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capacitance measurements we know that the dielectric constant of the thiol layer 

is very low (=2) [17b]. This value is comparable with dielectric constants for 

solid polymers like polyethylene and suggests a very dense and ordered 

monolayer. Other defects observed with STM, such as step edges and missing 

rows in the self-assembly, apparently do not influence the macroscopic properties 

of the thiol layer. These defects are small enough to prevent ions or molecules 

to penetrate the monolayer. 

In conclusion, the alkanethiol adsorbed on gold behave as rather ideal model 

system. The gold surface is modified in such a manner that the entire gold 

interface is covered by a dense packed layer of thiols, without any significant 

"bare" gold. The surface properties are solely determined by the surface 

functional groups of the thiol. Defects like holes in the top gold layer do not 

influence these properties because they are filled with thiol. An important 

remaining topic is the origin of the holes. This will be discussed below. 

3.3.2. Origin of the holes in gold 

The presence of holes in the surface Au layer after adsorption of the thiol 

suggests a mass transport process of Au atoms initiated by the adsorption 

process. Detection of gold in the thiol solution by Grunze and co-workers [12] 

led to the conclusion that the holes are a result of a yet unknown etching 

process. We systematically studied this erosive behaviour of the thiols with a 

combination of wetting, direct gold determination in thiol solution, and STM 

measurements, in order to confirm the above conclusion and to elucidate the 

etching mechanism. The following aspects will be discussed: influence of 

adsorption time, thiol chain length, and thiol concentration in solution on the 

degree of extent of gold erosion. The etching mechanism will be discussed in the 

next section. 

Influence of adsorption time. The influence of time of immersion of the gold 

substrate into a thiol solution on the erosion process was studied using a 3.5 mM 
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Figure 3.6a,b: Characteristics of a dodecanethiol layer after t min adsorption from a 3.5 
mM thiol solution in methanol, (a) Advancing (filled symbols) and receding (open 
symbols) contact angles measured with water (circles) and hexadecane (squares), (b) 
Amount of gold (mAu) dissolved in the thiol solution (surface Au area in contact with the 
thiol solution was 5 cm2). 

dodecanethiol solution in methanol. The results for the wetting behaviour are 

given in Figure 3.6a and are similar to those obtained by other research groups 

[3]. The wetting is expressed in terms of advancing and receding contact angles 

with water or hexadecane. The standard deviation of the results is relatively large 

for deposition times between 1 and 10 min (±7°) and much lower for longer 

adsorption times (±2°). The influence of adsorption time on the contact angle at 
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Figure 3.6c,d: Characteristics of a dodecanethiol layer after t min adsorption from a 3.5 
mM thiol solution in methanol, (c) and (d) STM images (60 x 60 nm2) measured after 
1 min and after more than 10 min, respectively. The black arrows in (c) point to the 
small holes appearing between individual areas of ordered (A/3XA/3)R30O molecules. 
Tunnel conditions: Vh = 1 V and /, = 1.5 pA. 

this thiol concentration is hardly noticeable. Only the receding contact angle with 

hexadecane (Q"D) still increases between 1 and 10 min and stabilizes after 10 

min. 
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The mass of gold determined (mAJ with AAS due to erosion of the gold in the 

dodecanethiol/methanol solution is given in Figure 3.6b. The results are average 

values for independent observations on at least two different samples. In order 

to obtain reproducible results, we found that care has to be taken that all 

glassware is carefully cleaned, that the gold samples contain no macroscopic 

defects like those induced by imperfect cleavage of the mica, and that the time 

between sample preparation and the AAS measurements is short enough to 

prevent adsorption of the dissolved gold on the glass. Even after all these factors 

have been given ample consideration, the standard deviation of the results given 

in Figure 3.6b remains rather large (±10 ng). This can be only partly due to the 

scatter in the AAS measurements: the deviation is ±5 ng per individual sample. 

Control experiments were carried out where the gold had solely been in contact 

with the solvent methanol for 25 h. In that case the amount of gold in solution 

was below the detection limit (<5 ng). 

Figure 3.6c,d shows two STM images obtained after different adsorption times. 

Figure 3.6c is representative for thiol adsorption during relatively short times (30 

s-10 min) and Figure 3.6d shows the characteristic behaviour for longer 

adsorption times (> 10 min). After 10 min the ordered assembly with holes had 

always appeared. The number and size of the holes differ per individual sample: 

the diameter of the holes varied between 2 and 5 nm and the surface coverage 

of the holes ranged from 5 to 15%. No influence is found of the oxygen 

concentration in the thiol solution on the number and size of these holes. 

Bubbling oxygen (oxygen-rich solution) or nitrogen (oxygen-poor solution) 

through the thiol solution during adsorption had no significant effect on the 

appearance of the samples. 

The exact moment at which the holes first appeared varied largely. During the 

formation of the ordered structure (between 10 s and 10 min), we first observe 

low-density structures and islands with the (V3XA/3)R30° structure. These islands 

become larger and finally coalesce. The space between the islands often becomes 

a small hole (indicated by black arrows in Figure 3.6c). Subsequently, these 

holes grow probably due to stress induced by the different orientation of the 

molecules in the individual islands. The time required to establish the final, 
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ordered, holes containing surface was found to vary largely between about 30 

s and 7 min. Lowering the thiol concentration was not found to change this time 

significantly. 

Comparing the results obtained from the three different techniques, some clear 

trends emerge. After 10 min of adsorption, a self-assembled ordered thiol layer 

is formed: the contact angle, the amount of dissolved gold, and the STM images 

become stable. Between 1 and 10 min the thiol film is being formed as observed 

with STM. The receding contact angle with hexadecane, which is sensitive for 

ordering effects [5], is somewhat lower than the receding contact angle after a 

longer adsorption time, indicating a lesser ordering. Also, the increasing amount 

of dissolved gold between 1 and 10 min indicates that the formation of the 

ordered layer has not yet been completed. 

The average amount of gold dissolved after 10 min of immersion of the 5-cm2 

gold sample in the thiol solution is about 30 ng. Knowing the surface 

concentration of Au atoms, the amount of dissolved gold can be converted to the 

percentage of a monolayer which has been dissolved. From the interatomic 

separation distance between the Au atoms of the (111) plane (0.29 nm [27]) the 

surface concentration of Au atoms can be calculated: 1.4xl015 atoms cm"2. 

Following this procedure, it is calculated that approximately 2% of a gold(lll) 

monolayer is dissolved. This amount of gold does not completely account for the 

surface coverage of holes seen with STM. We observed a surface coverage of 

5-15% of holes on flat parts of the surface. One should realize, however, that 

the holes observed with STM are mainly observed on large terraces. No holes 

were found very close to the step edges. Because our Au/mica samples contain 

large areas with only very small terraces, and consequently with a large amount 

of step edges (about 50% of the total sample), the surface coverage of holes with 

respect to the entire sample is lower (=2.5-7.5%). This is still somewhat larger 

than that corresponding to the amount of gold determined with AAS. Apparently, 

not all the holes result from dissolution of gold. It is likely that part of the holes 

are a result of reorganization or redeposition of gold atoms during the thiol 

adsorption process, probably driven by interfacial energy changes or internal 

stress gradients. 
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The numbers and sizes of the holes vary per sample. This accounts in part for 

the large scatter in the amount of dissolved gold (±10 ng) in the thiol solution. 

The variation in sizes and numbers of holes is also observable when comparing 

STM images of thiol layers obtained by other researchers [12-16], although the 

adsorption conditions (adsorption time, solvent, thiol concentration) are 

somewhat different. This variation suggests that the adsorption and ordering 

process is rather sensitive to the exact adsorption conditions. The moment for 

which the ordering becomes more or less complete will vary between different 

experiments as observed with STM and with receding contact angle 

measurements with hexadecane: a large variation in results occurs for samples 

obtained within the first 10 min. 

Influence of chain length. Figure 3.7a shows the contact angles with water for 

alkanethiol-modified gold substrates of different chain lengths. The thiol 

concentration was 3.5 mM in methanol in all cases and the adsorption time was 

25 h. The standard deviation was ±2°. The dashed lines between the data points 

have no physical meaning but merely serve as a guide to the eye. The contact 

angles become larger with increasing thiol (C„H2„+1SH) chain length due to the 

ordering effect [3,22] until a self-assembled structure is obtained (n>8). Once 

this self-assembled layer is obtained, the contact angles become independent of 

the chain length. However, as a trend, we observe that the receding contact angle 

with hexadecane decreases slightly with increasing chain length, indicating some 

disorder in the C l g- and C22-thiol monolayers. This effect was not observed 

when C22-thiol was deposited from hexane. The disorder may result from 

conformational entropy effects in the long chain thiol layer stimulated by the 

polar solvent methanol. In this solvent the apolar docosane chains will not be 

stretched but folded. Adsorption of the unstretched chains may, for entropical 

reasons, result in some disorder in the adsorbed layer. 

In Figure 3.7b the amount of gold measured by AAS in the thiol solution is 

given. Although the scatter in the amount of dissolved gold in the thiol solutions 

is relatively large (±10 ng), a significant difference in amount between the 

different alkanethiol chains is found. The largest amounts of Au were obtained 

when short thiol molecules were adsorbed. The mass of dissolved gold in a 
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Figure 3.7a,b: Characteristics of an alkanethiol (C„H2„+ISH) layer after 25 h adsorption 
from a 3.5 mM thiol solution in methanol, (a) Advancing (filled symbols) and receding 
(open symbols) contact angles measured with water (circles) and hexadecane (squares), 
(b) Amount of gold (mAu) dissolved in the thiol solution (surface area of gold 5 cm2). 

C22-thiol solution corresponds to about 2.5% of a monolayer. Although Grunze 

and co-workers [12] found a comparable amount of gold in their thiol solutions 

(150 ng per 10 cm2 gold), they erroneously calculated this to correspond to 

about 50% of a monolayer. 
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Figure 3.7c: Characteristics of an alkanethiol (C„H2„+ISH) layer after 25 h adsorption 
from a 3.5 raM thiol solution in methanol. STM image (100x100 nm2) of a propanethiol 
monolayer on gold. Tunnel conditions: Vh = 0.1 V and /, = 0.1 nA. 

Figure 3.7c shows a typical STM image of a C3-thiol monolayer adsorbed on 

gold. The sample deviates significantly from the Cl2-thiol sample (see for 

example Figure 3.1b). The holes are larger (diameter =6 nm), and the shape of 

the holes is less smooth. The coverage of holes is ±15%. The STM images of 

the C22-thiol monolayer do not differ much from the Cl2-thiol images. 

Combining the STM images and the gold dissolution results obtained for the C3-

and the Cl2-thiol, we see that qualitatively the number of holes is linked to the 

amount of dissolved gold. More gold is dissolved when larger or more holes are 

observed. This observation supports our hypothesis that holes are a result of an 

etching process. The etching is stronger when shorter chains are adsorbed. 
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Influence of thiol concentration. The influence of the thiol concentration on the 

erosion behaviour of gold was studied for Cl2-thiol using two extreme 

conditions: a relatively low concentration (3.5 mM in methanol) and undiluted 

thiol. The adsorption time was 25 h in both cases. The results of the contact 

angle and the gold measurements are given in Table 3.1. The contact angles are 

similar, but the amount of gold dissolved in undiluted thiol is much larger. The 

amount of gold obtained after thiol adsorption from the undiluted thiol (=105 ng) 

corresponds to about 5% of a Au monolayer. 

Table 3.1: Influence of the C12-thiol concentration on the properties of an adsorbed 
monolayer on gold after 25 h of adsorption. 

concentration 0/20 (deg) Q,H2° (deg) Qa
HD (deg) Q,HD (deg) AmAu (ng) 

3.5 mM in methanol 112 91 41 26 26 
pure (100%) 112 95 42 31 105 

The STM image of the gold substrate after adsorption of the C12-thiol from the 

undiluted liquid is given in Figure 3.8. The gold surface is strongly eroded. Even 

the step edges are not smooth: holes have formed in the step edges. The surface 

coverage of the holes is about 30%. 

Comparing the STM and the gold erosion results for the two different 

concentrations, we observe, like for the propanethiol, a clear correlation between 

the amount of gold found in the thiol solution and the number of holes: the 

stronger the Au surface is eroded, the more gold is found in the thiol solution. 

The amount of gold in the thiol (solution), however, is less than the amount 

corresponding to the number of holes observed with STM. The relatively high 

contact angles with water and with hexadecane for a C,2-thiol-modified gold 

substrate adsorbed from the undiluted thiol indicate that erosion does not 

negatively affect the self-assembly process. 
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Figure 3.8: STM image (130x130 nm2) of an Au(lll) surface with a monolayer of 
dodecanethiol adsorbed from a 100% thiol solution. Tunnel parameters: Vh = 0.075 V 
and /, = 1.5 pA. 

In summary, it can be concluded that there is a definite and quantitative 

correlation between the number of holes observed with STM and the amount of 

gold found in the thiol solution. The cause of the occurrence of holes is likely 

to be some, yet unidentified, (electro)chemical etching process initiated by the 

adsorption of the thiol on which we will speculate in the following section. 

3.3.3. Etching mechanism 

Our present results clearly show that the depressions observed with STM are 

holes in the underlying gold layer due to etching during thiol adsorption. The 

remaining question is what mechanism causes this erosive process. A more 

systematic study is required to completely unravel the mechanism. For the time 

being, we restrict ourselves to discussing some of the aspects involved in the 

generation of holes and dissolution of the gold and the possible etching 

mechanism. 
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One aspect which is very important in the etching process is the mobility of the 

surface gold atoms. In several cases this mobility was manifested: STM tip-

induced reorganization (Figure 3.4), transport of vacuum deposited gold through 

the thiol layer and incorporation in the underlying gold (Figure 3.5), and 

temperature-induced mobility [11,23]. In the latter two cases (nearly) all holes 

disappeared. The observed mobility indicates that the Au-AuSR bond is 

relatively weak compared to the Au-SR bond. Apparently, an interfacial 

Au-AuSR bond can easily be broken and re-formed. 

This mobility may be crucial when the thiol molecules are adsorbing on the gold 

substrate. As a result of the exothermic headgroup-substrate (S-Au) interactions 

[1], thiol molecules will try to occupy every available binding site on the Au 

surface. In this process they push aside molecules that have already adsorbed [1]. 

Prior to final pinning there has to be some surface mobility to achieve a 

crystalline molecular assembly. As observed with STM during very short 

adsorption times, the assembling first occurs in (V3xV3)R30° structured islands 

which partly cover the Au surface. These islands coalesce, and small holes 

appear between them. The holes become larger with time until a final ordered 

(V3xV3)R30° structure is established. The stress in the Au-thiolate layer 

resulting from the random adsorption of the thiol molecules will induce breakage 

of the relatively weak interfacial Au-AuSR bonds and mobility of the 

Au-thiolate. Once a Au-AuSR bond is broken, the resulting Au-thiolate 

complex may dissolve in the thiol/methanol solution. Such complexes are known 

to be very stable [24,25]. However, not all the holes are caused by dissolution 

of the Au. The amount of gold determined in the thiol solution was always less 

than the amount of gold corresponding to the amount of holes observed with 

STM, pointing to the existence of a secondary effect: a reorganization of surface 

Au-atoms and/or redeposition of Au-thiolate complexes onto the surface. 

We observed the strongest etching effect for the shortest chain (Figure 3.7b, c). 

From the wetting measurements (Figure 3.7a) and other techniques [3,20], it is 

known that monolayers of thiol molecules shorter than about 11 carbon atoms 

are not self-assembled although the surface coverage of the molecules is still of 

the (V3xV3)R30° type [6,26]. Only the longer chains form a self-assembled 
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monolayer. Apparently, the lack of self-assembly of the adsorbed molecules 

stimulates the etching of the gold. This may be due to an exchange of already 

adsorbed thiol with the thiol molecules in solution: a Au-AuSR bond breakage 

instead of a breaking Au-SR bond. The shorter the alkanethiol chain, the better 

the solubility of the Au-thiolate complex in (polar) methanol. However, the 

etching of the gold in the short chain thiol solution is not a continuous process, 

even though no self-assembled structure is formed. It stops within 1 day: the 

amount of gold dissolved after 25 h did not differ significantly from the amount 

observed after 1 week. Apparently, the formation of an ordered (V3xV3)R30° 

structure suffices to prevent further gold erosion. 

The relatively large amount of gold dissolved in a C22-thiol solution (=46 ng) 

seems to contradict the above conclusion (Figure 3.7b). However, the wetting 

measurements showed some disorder (Figure 3.7a) in the C22-thiol monolayer 

as a result of the adsorption of the apolar thiol from a polar solution: the 

docosane chains in methanol will not be stretched but folded. Adsorption of the 

folded chains may induce some reorganization of the adsorbed chains before a 

stable structure is obtained. This reorganization process may increase the etching 

of gold. 

The extent of gold erosion is also affected by the concentration of the thiol 

solution from which adsorption takes place: stronger erosion is observed when 

the thiol is adsorbed from undiluted thiol (Table 3.1, Figure 3.8). At present, it 

is not clear what causes the increased erosion. One aspect which probably plays 

an important role is the solubility of the thiol and of the Au-thiolate complexes 

in methanol compared to the solubility in undiluted thiol. The poor solubility of 

the Au-thiolate complex in methanol [24] may reduce the erosion process. 

No influence was found of the oxygen concentration in the thiol solution on the 

number and size of the holes in the substrate. Apparently, the (electro)chemical 

reaction involved in the erosion process occurs in both oxygenated and 

deoxygenated adsorbate solutions. 

Notwithstanding the uncertainties about the precise chemistry involved in the 
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gold erosion process, it is clear that the formation of holes is catalyzed by stress 

in the Au-thiolate layer: the random adsorption of thiols results in stress in the 

Au/thiol layer. The subsequent movement of the molecules results in 

reorganization of the gold surface and in gold dissolution, probably in the form 

of gold thiolate complexes. 

3.4. Conclusions 

In this chapter we have shown that the depressions or holes observed with STM 

in self-assembled thiol layers on a gold substrate are neither pinholes nor defects 

in the thiol layer, but holes in the outermost layer of the underlying gold 

substrate. The atomically resolved STM measurements showed that the holes are 

filled with thiol. The bottom of the holes is indistinguishable from a lower 

terrace. Because the holes are filled with thiol molecules, the thiol in the holes 

behaves similar to the thiol on the terraces. This makes the adsorbed thiol layers 

rather ideal model systems: the holes will hardly influence the properties of the 

adsorbed thiol layer such as the amount of blocking of electron transfer across 

the layer. 

From the correlation between the amount of gold measured in the thiol solution 

after adsorption and the amount of gold corresponding to the total area of holes 

in STM images, we conclude that the holes result from etching during 

adsorption. However, the amount of gold in the thiol solution was less than the 

amount observed with STM. For a self-assembled dodecanethiol monolayer on 

gold, the amount of gold in the thiol solution is about 2% of a monolayer 

Au(lll) , whereas with STM a number of holes equivalent to 2.5-7.5% was 

found. We believe, that except for dissolution of Au atoms during adsorption of 

the thiols, reorganization of surface Au atoms also plays an important role in 

reaching the final surface morphology. 

The erosion process stops as soon as an ordered structure (not necessarily self-

assembled) is obtained. For dodecanethiol this situation is reached after about 10 
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min of adsorption. Due to a lack of self-assembly, the erosion is stronger for 

shorter thiol chains, like propanethiol. 

Although the exact mechanism is not yet known, it is clear that the mobility of 

gold atoms underneath the thiol plays a very important role in the etching. The 

mobility was observed in STM tip-induced erosion, heating [11], and gold 

evaporation experiments. The mobility indicates weak Au-AuSR bonds that can 

easily be broken. Mobility may also occur during the random adsorption of the 

thiol molecules. The random adsorption results in a stressed gold-thiolate layer, 

and consequently the molecules move before attaining a crystalline molecular 

assembly. This interfacial stress probably catalyses the breaking of Au-AuSR 

bonds, leading to dissolution of Au, presumably in the form of gold-thiolate 

complexes. 
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Chapter 4 

Potential-dependent wetting of octadecanethiol-
modified poly crystalline gold electrodes' 

Abstract: A Wilhelmy plate technique is used to characterize the potential-dependent 

wetting of octadecanethiol (ClgH37SH)-modified polycrystalline gold electrodes in 10~2 

M K2S04. This technique is relatively simple and provides information on the 

electrostatic component of the solid electrode/solution interfacial tension (AySL (£)) and 

the electrocapillary maximum (ecm). Wetting measurements are carried out 

simultaneously with differential capacitance measurements and cyclovoltammetry. In the 

potential range where only double layer charging occurs, the adsorbed, self-assembled 

C|8H37SH layer is found to be very stable. The extreme hydrophobicity, the low 

differential capacitance (-0.7 uF cm"2) and the low double layer current (a factor of 100 

less than for clean gold) are all indicative of the insulating dielectric character of these 

monolayers. By scanning from the ecm at about -0.45 V(SCE) to 0.8 V(SCE), the 

advancing contact angle decreases from 116° to 110°, corresponding to a decrease in ySL 

of 7 mN rrT1. The observed relationship between AySL and E can be conveniently 

described by interfacial thermodynamics. 

'This chapter has been published under the same title: Sondag-Huethorst, J.A.M.; 
Fokkink, L.G.J. Langmuir 1992, 8, 2560-2566. 
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4.1. Introduction 

In the past few years, an increasing number of studies have been devoted to 

alkanethiols adsorbed from organic solutions on solid surfaces like gold. 

Adsorbed alkanethiols, CF^CH^./SH, easily form oriented, ordered structures 

(for n>9), often referred to as "self-assembled" monolayers. Frequent topics of 

study are (electrochemical) stability, structure, insulation properties, and 

wettability of these layers [1-15]. 

The long-chain thiols form monolayers that are quite stable as electrode 

coatings. These layers strongly block electrochemical oxidation of the underlying 

metal and also electron transfer with redox couples in solution [1,3-5,13]. In 

general, electrodesorption of the monolayer is not found in the region of the 

voltammogram where only double layer charging occurs. In this region no 

transfer of charge occurs across the solid/solution interface. Beyond this region, 

oxidation of the metal surface or hydrogen or oxygen evolution is observed to 

parallel the disruption of the monolayer integrity [3,5]. Oxidative and reductive 

desorption of the adsorbed alkanethiols is found in KOH and in H2S04 solutions 

and occurs near the H20 oxidation or reduction potentials. The desorption 

potential depends on the pH of the supporting electrolyte [2,14]. 

Wetting behaviour of thiol-modified surfaces has been frequently used to gain 

more information on the surface energetics of the interface [1,7-12]. In the 

present contribution, the dependence of the contact angle between an aqueous 

electrolyte and a thiol-modified gold electrode on the interfacial potential is for 

the first time reported. Measuring the wettability of thiol-modified electrodes at 

varying electrode potentials (in the double layer region) allows the electrostatic 

component of the interfacial energy to be determined. Together with capacitance 

measurements, the potential dependence of wetting helps to reveal the nature of 

thiol layers at the electrode/electrolyte interface, regarding such aspects as lateral 

homogeneity of the coating and dielectric properties. 

For the determination of the wettability of these modified surfaces as a function 
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of the electrical potential, we used a recently proposed dynamic recording 

technique [16-19]. Basically, the method involves gravimetric measurement of 

the change in wetting characteristics associated with electrocapillary phenomena 

at partly immersed vertical solid electrodes subjected to a linear potential sweep. 

In this way the electrode simultaneously serves as the well-known Wilhelmy 

plate used in conventional surface tension studies. 

In the present study, the tensiometric method is used to measure the change in 

interfacial tension of a gold electrode surface covered with an adsorbed mono­

layer of octadecanethiol molecules. The tensiogram is measured simultaneously 

with the cyclic voltammogram and the differential capacitance. 

It is shown by the use of basic interfacial thermodynamic relations that 

electrostatics consistently account for the change in wettability of the gold/thiol 

interface with potential. 

4.2. Theoretical background 

In recent attempts to study the interfacial tension of solid electrodes [16-19], a 

Wilhelmy plate electrode is used to determine the interfacial tension as a 

function of the potential. Figure 4.1 schematically depicts such an electrode 

(with mass m) partly immersed in electrolyte. A meniscus rise (or depression) 

generally occurs along the perimeter of the electrode. At equilibrium, the tared 

force F acting on the Wilhelmy plate is given by 

F = 2(1 + d)yLVcosQ - ldz0(Ap)g (4.1) 

where / and d are the width and thickness of the electrode, z0 is the depth of 

immersion, Ap is the difference in density between the liquid and the vapour, yLV 

is the surface tension of the electrolyte, and 0 is the contact angle. 

The contact angle is defined as the angle that is formed at the junction of three 

phases. At equilibrium the Young equation may be applied to the three-phase 
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Vapour 
Liquid 

Ysv 

YSL" YLV 

zo 

Figure 4.1: A Wilhelmy plate with thickness d, partly immersed (immersion depth is z0) 
in liquid. The liquid has a surface tension yLV and makes a contact angle 0 with the plate. 
The interfacial tensions with respect to the solid/vapour and solid/liquid interface are ysv 

and ySL, respectively. 

line along the periphery: 

yLV cosG = y 
sv ISL 

(4.2) 

The symbols ySL, yLV, and Ysv denote the surface tensions with respect to the 

boundaries between the solid (5), liquid (L), and vapour (V) phases, respectively. 

The electrode/solution interfacial energy ySL (and thus 0) is a function of the 

electrode potential E. Both yLV and Ysv a r e unaffected by the electrode potential 

[21]. The derivative of equation 4.2 with respect to E becomes: 

'LV-

5 cosG 

5E 
(4.3) 

Taking the derivative of equation 4.1 with respect to E and combining this 

equation with equation 4.3, yields at constant z0 
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-2(1 + d)^L = E (4-4) 
SE BE 

Thus, the Wilhelmy plate technique allows ySL to be determined by measuring 

the change in the force F on the Wilhelmy plate electrode as a function of the 

potential E. Thus, AF is a result of change in ySL and a consequent meniscus rise 

(or depression). The change in F can be determined by measuring the change of 

mass associated with the meniscus rise, Am (AF = Amg where g is standard 

acceleration of free fall). 

The interpretation of the interfacial tension of the solid electrode/electrolyte 

interface is complicated by several factors. In section 4.4 we will give a 

qualitative interpretation of the first results obtained for the C18H37SH/gold 

system. 

4.3. Experimental 

Details about materials and electrode preparation are given in chapter 2. A 

schematic diagram of the experimental apparatus is illustrated in Figure 4.2. The 

complete apparatus is placed on a vibration-isolated table. It consists of a 

Wilhelmy plate suspended with a nonconducting thread from a bottom-loading 

balance (Mettler PM2000 with a sensitivity of 1 mg). The Wilhelmy plate also 

constituted the gold working electrode of a standard three electrode cell. The cell 

rested on a micrometer-controllable lifting table. The cell was connected to a 

potentiostat (Schlumberger 1186 EI/Hi-Tek Instruments PP RI) and a frequency 

response analyzer (FRA, Schlumberger Solartron 1170). The setup enables a 

simultaneous measurement of the force on the Wilhelmy plate electrode by 

measurement of the change of mass associated with the electrolyte meniscus rise, 

the current and the differential capacitance as a function of the potential. 

During experiments, the Wilhelmy plate was electrically connected to the 

potentiostat through a thin silver wire (100 pm in diameter). This arrangement 
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Figure 4.2: Experimental setup for simultaneously measuring current, differential 
capacitance and wetting as a function of the potential: CE, platinum gauze counter 
electrode; RE, saturated calomel reference electrode; WE, Wilhelmy plate working 
electrode partly immersed in electrolyte. 

was found to have no effect on the mass-potential measurements. A high surface 

area platinum gauze was used as the counter electrode. The gauze was bent 

rectangularly such that the distance between the gold working electrode and the 

counter electrode was everywhere about 5 mm. The reference electrode was a 

saturated calomel electrode (SCE). The electrolyte within the cell was deaerated 

with deoxygenized nitrogen gas for at least 1 h prior to the measurement. As 

electrolyte, 10 2 M K2S04 and 0.5 M H2S04 were used. The surface tension of 

both electrolytes was 72 mN m"1. During the measurement the cell was kept 

under a small nitrogen overpressure. 

With the potentiostat switched on (often at -0.35 V (SCE)), the gold electrode 

was partly immersed into the electrolyte by slowly moving the cell upward with 

the micrometer, thus creating an advancing contact angle 6a. After stabilizing the 

position of the electrode for 1 min, a potential scan was started either in cathodic 
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or anodic direction with a scan rate of 10 mV s"1. Such a low scan rate was 

selected to be able to measure quasi equilibrium contact angles as a function of 

the (scanning) potential. The FRA supplied an ac signal with a frequency of 10 

Hz and an amplitude of 10 mV to the working electrode. Data were recorded on 

a X-Y recorder. 

Measurements were done on both clean and modified surfaces of the gold 

working electrode. For the measurements on clean gold, the substrates were 

cleaned for 15 min in the UV/ozone reactor (both sides) just prior to use. 

Experiments with the thiol/gold substrates were carried out on freshly deposited 

monolayers. 

The experiments were carried out at 25 °C. The reagents were analytical grade 

(Merck). All measurements were repeated at least three times. Results given in 

Figures 4.3^.6 display the average values of these measurements. 

4.4. Results and discussion 

4.4.1. Static contact angles 

The measured advancing contact angle 9,, on freshly deposited polycrystalline 

gold is about 60°. After cleaning the gold electrode with UV/ozone, the 

advancing contact angle 9a reduces to less than 5°. The contact angle 9a rises 

rapidly on electrodes exposed to laboratory air. Within 10 min, 9a is about 40°, 

and after 1 day, it is between 50° and 80°. The receding contact angle 9,. always 

remains small (<10-20°), even after longer periods of time. 

The increase in the contact angle results from adsorption of organic 

contamination on the high energy surface of the clean hydrophilic gold [7,23,24]. 

With UV/ozone, organic contaminants are removed, and a hydrophilic substrate 

remains [25]. Besides removing contaminants, UV/ozone may also oxidize the 

surface, inducing an oxide film on gold. This oxide film could also account for 
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the hydrophilicity of the surface. Characteristics of oxide films have been studied 

extensively. It was found that anhydrous or hydrated gold oxide species can 

electrochemically be reduced, as visualized by a reduction peak in the cyclic 

voltammogram [26-28]. The cyclovoltammogram of UV/ozone cleaned gold in 

0.5 M sulphuric acid (Figure 4.3) shows the expected peak due to 

electrochemical reduction of gold oxide at 0.8 V(SCE). Any unexpected peaks 

were not found. Consecutive voltammograms in sulphuric acid were found to be 

reproducible. Since no indication is found for electrochemically active gold 

oxides, we conclude that UV/ozone cleaned gold is hydrophilic because the 

surface is free of organic contaminants. 

E o 
< 

Figure 4.3: Cyclic voltammogram for a UV/ozone cleaned polycrystalline gold electrode 
in 0.5 M H2S04. The sweep rate was 10 mV s~'. 

During the electrochemical measurements, 6a remained less than 10°. Measure­

ments were always carried out within 10 min after cleaning. 

After adsorption of octadecanethiol on UV/ozone cleaned gold, the following 

contact angles are found: 0fl = 117° ± 2° and 9,. = 90° ± 2°. These contact angles 

compare favourably with those found in the literature [1,7,9]. 

4.4.2. Cyclovoltammetry 

Typical cyclovoltammograms for a bare gold electrode and a thiol-modified gold 

electrode in 10~2 M K2S04 are shown in Figures 4.4a and 4.4b, respectively. 



Potential-dependent wetting of octadecanethiol-modified gold 55 

The cyclovoltammogram of clean gold shows the expected gold oxidation and 

reduction peaks at about 0.4 V(SCE) and 0.2 V(SCE), respectively. The 

hydrogen gas evolution on the clean gold starts at -0.5 V(SCE) and the oxygen 

gas evolution at 0.7 V(SCE). 

E(V) vs SCE 

-0.5 

E(V) vs SCE 

Figure 4.4: Cyclovoltammogram of (a) a UV/ozone cleaned gold electrode and (b) a 
C18H37SH-modified gold electrode in 10"2 M K2S04. The starting potential of the sweep 
was -0.35 V(SCE). The sweep rate was 10 mV s~'. 

A comparison between parts a and b of Figure 4.4 demonstrates that the current 

for gold becomes strongly reduced after monolayer adsorption. Formation of 

gold oxide on the modified electrode within the chosen scanning area is 

suppressed. However, by scanning to more anodic potentials (to 0.9 or 1.0 

V(SCE)), the onset of gold oxide formation was observed and a small reduction 

peak appeared at 0.3-0.6 V(SCE) on the backward scan. 
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In order to compare the passivation properties of our modified electrodes with 

those of other researchers [3,4,13-15], cyclic voltammograms were also measured 

in 0.5 M H2S04. It turned out that the gold oxide reduction charge of the 

modified electrode was reduced to 0.1-0.2% of that for clean gold, which is of 

the same order of magnitude as found in the literature. The extent of suppression 

of gold oxidation implies that water penetration in the monolayer hardly occurs. 

The residual oxidation found at potentials higher than 0.8 V(SCE) may be a 

consequence of defect sites in the thiol monolayer. 

4 .4.3. Differential capacitance measurements 

As is the case for the charging currents during cyclic voltammetry, the presence 

of a thiol monolayer causes a dramatic decrease in electrode/electrolyte 

differential capacitance (Figures 4.5a and 4.5b). The differential capacitance C 

in 10"2 M K2S04 is typically about 0.7 pF cm"2, as compared to capacitances 

greater than 50 uF cm'2 for clean gold measured at 10 Hz. The curves shown are 

the average of the cathodic and anodic scans for at least four measurements with 

a standard deviation of less than ±5%. 

For clean gold, C is a pronounced function of the potential. The shape of the 

differential capacitance curve depends on the surface structure [27,29,30]. The 

gold we are dealing with is polycrystalline: the X-ray diffraction analysis 

indicated that the gold surface is predominantly (111), (220), and (311) textured. 

Thus, the prominent crystal orientations on the surface are typical for our 

electrodes, and herewith the shape of the experimental differential capacitance 

curve. Generally speaking, the shape of the differential capacitance curve in 

Figure 4.5a compares with those obtained by others. The potential of zero charge 

(pzc), where the capacitance is a minimum, is situated at about 0 V(SCE). The 

absolute value of C for our bare electrodes, however, is about a factor of 2 

larger than that found by, for example, Hamelin [29]. 

The factors that may account for our high C values obtained in 10"2 M K2S04 
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Figure 4.5. Differential capacitance curve for (a) a UV/ozone cleaned gold electrode, 
and (b) a C|8H„SH-modified gold electrode in 1CT2 M K2S04. The starting potential of 
the sweep was -0.35 V(SCE). The sweep rate was 10 mV s ' . 

solution include: A) surface roughness and B) contamination. 

Ad A) Surface roughness 

Surface roughness effectively increases the surface area and thus decreases the 

capacitance per area. No estimates are made of the roughness factor. Because the 

electrodes are of polished polycrystalline gold, the surface is not perfectly 

smooth on a microscopic scale. 

Metal crystals also exhibit a roughness dependence of the differential 
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capacitance-frequency relation [31-33]. For rough electrodes, the measured 

capacitance varies almost linearly with the reciprocal of the square root of the 

frequency v. the higher the frequency, the lower the measured capacitance. 

Frequency dependence is considerably minimized for electrodes with a smooth 

surface. Although the C°cu~05 relationship was not found for our electrodes, we 

found C to decrease with v (C°^v ~02), suggesting that the surface of the 

electrodes is indeed not very smooth. 

Ad B) Contamination 

Continuous scanning of a clean electrode resulted in a decrease of C with time. 

This is likely due to adsorption of contaminants. For hydrophobic electrodes 

(i.e., electrodes cleaned with UV/ozone and subsequently exposed to laboratory 

air for 24 h) even 3 times smaller capacitances were measured. Adsorbed 

contaminants may partly block the surface, and therefore result in a smaller 

capacitance. 

Because our electrodes were proven to be free of organics, it is expected that 

surface roughness causes the high capacitance. Hamelin et al. [29] payed due 

attention to polishing their electrodes. A difference of a factor of 2 in surface 

roughness seems therefore possible. 

The measured capacitance for the modified surface is almost independent of 

potential. Although the way in which we obtained the capacitance (by impedance 

measurements) is quite different from that of other researchers [1-5], who measu­

red the capacitive current, and from that calculated C, the order of magnitude for 

C is the same in both methods. Neglecting possible defect sites for the moment, 

the overall capacitance Ct of the present system depends on the capacitance of 

the thiol layer ( C, ) and the electrical double layer capacitance ( Cd ). The two 

capacitors are connected in series and the overall capacitance is given by: 

-1 = -L + -L (4.5) 
C C C 
S *-; ^-d 

From the Gouy-Chapman theory it follows that, for electrolyte concentrations in 
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excess of about 10"4 M, Cd is much larger than C,; hence, C, ~ C, for these thiol 

modified electrodes. 

The potential independence of the capacitance resembles the behaviour predicted 

by the Helmholtz theory of the electrical double layer which treats the interface 

as an ideal capacitor with two parallel plates, the medium between the plates 

being octadecanethiol in our case. For this system the capacitance can be 

described by 

C = — (4-6) 

where £, is the relative dielectric constant of the adsorbed thiol layer in 

electrolyte and e0 is the permittivity in vacuum. In air, the thickness of the 

octadecanethiol layer 8 was measured by ellipsometry [1-3,7] and was found to 

be between 2 and 3 nm. Taking 8 = 2.5 nm, we find that £,. = 2 ( compare £, 

= 2.3 for polyethylene). This low value demonstrates the dielectric character of 

the adsorbed layer. Following this procedure, defects, if any, have been smeared 

out in an average £,.. If macroscopically large defects were present in the 

monolayer, the capacitance of the thiol layer would have to be taken in parallel 

with that of the uncoated part of the Au surface in order to obtain Ct. 

AAA. Tensiometry 

Measuring tensiograms on properly cleaned gold is not very informative because 

the advancing contact angle is initially -0° and does not change with potential. 

This finding contrasts comparable measurements of Murphy and Wainright 

[17-19]. In for example, 0.1 M NaF, these researchers measured a tensiogram of 

gold with a pzc of 0.1 V(NHE). Their cleaning procedure [19], however, resulted 

in 8a = 79° (at the pzc). On reproducing this cleaning method with our electrode, 

a similar contact angle was obtained. The hydrophobic character of these 

electrodes indicates that their cleaning procedure did not remove all 

contaminants from the surface. 
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Figure 4.6 gives the tensiogram of the thiol-modified gold (standard deviation 

maximally ±6%), where the variation of the mass of the electrolyte meniscus 

(Am) with the electrode potential is given. Care was taken that never during 

measurements was gold oxide, oxygen, or hydrogen gas formed which would 

have interfered with the wetting measurements. In obtaining the tensiogram of 

the modified gold electrodes, we first determined empirically the minimum of 

the curve. This was situated somewhere between -0.6 V(SCE) and -0.2 V(SCE). 

A potential of -0.35 V(SCE) was chosen arbitrarily as the starting value for the 

dynamic measurements in either the cathodic or anodic direction, also defining 

the starting potential in the voltammogram and the capacitance measurements. 

At the minimum, the contact angle was identical to 60 measured with the sessile 
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Figure 4.6. Variation of the mass of the electrolyte advancing meniscus with electrode 
potential of a Cl8H37SH-modified gold electrode in 10 2 M K2S04. Starting potential of 
the sweep was -0.35 V(SCE). The sweep rate was 10 mV s_1. The inset shows the 
tensiogram for advancing and receding menisci for a single scan: ( ) anodic scan 
direction (advancing); (-•-•) cathodic direction (advancing); (—) cathodic direction 
(receding). 
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drop method (117°): when the potential was switched from open circuit to -0.35 

V(SCE), no increase in Am was found, whereas by switching from open circuit 

to a higher or lower potential, Am always increased to the same value as found 

in the sweep tensiogram. An increase in mass results from a decrease in the 

contact angle. Using a discrete form of equations 4.3 and 4.4, 0 can be 

calculated as a function of E. Although these equations are only applicable under 

thermodynamic equilibrium, the scan speed is low enough for equations 4.3 and 

4.4 to be valid to calculate 9 under scanning conditions. By scanning in the 

anodic direction from -0.35 V(SCE) to +0.8 V(SCE), Am increases by 52 mg 

(Figure 4.6), implying a decrease in 8fl from 116° to 110°. A scan in the 

cathodic direction from -0.35 V(SCE) to -1.0 V(SCE) also resulted in an 

increase in Am (see inset of Figure 4.6). On the backscan to -0.35 V(SCE), Am 

did not decrease but remained constant. Consequently 8 did not increase to its 

initial value. The irreversibility of the sweep tensiogram is a result of the 

existence of contact angle hysteresis. 

Figure 4.7: Schematic illustration of the influence of contact angle hysteresis on a 
tensiogram: (a) for small hysteresis; (b) for large hysteresis. 

Figure 4.7 schematically shows the influence of contact angle hysteresis on the 

tensiogram. In the situation of Figure 4.7a, hysteresis is relatively small. When 
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the potential increases from Ex to E2, 6„ decreases. Scanning back to the starting 

£,, 8 is expected to increase and, consequently, the meniscus to recede. The 

meniscus starts to recede not until than the contact angle becomes smaller than 

the limiting 0,.-value (indicated by the dashed lines in Figure 4.7). For situation 

b, where the hysteresis is much larger, the meniscus will not recede because the 

contact angle remains larger than the limiting receding contact angle. 

The practical situation for the thiol-modified gold, is like Figure 4.7b. At 0.8 

V(SCE) Qa is 110°, much higher than the maximum limiting value for 8,. (90°). 

Although for the present system it is impossible to measure 0,. by continuous 

scanning, we used another way to determine 8,. as a function of E. This was 

achieved by stabilizing the immersed electrode at 0.8 V(SCE). Next, the 

electrode was partially emersed, thus creating a receding contact angle, followed 

by a potential scan in the cathodic direction. Indeed Am started to decrease, 

pointing at an increase in 0,. (see the inset in Figure 4.6 and Figure 4.7b). A scan 

from +0.8 V(SCE) to -0.35 V(SCE) resulted in Am = -34 mg, corresponding to 

an increase in 8;. from 86° to 90°. 

With equation 4.4, Aytt (E) can now be calculated. The results are given in 

Figure 4.8. Only the curve for the advancing contact angle is shown (solid 

curve). The curve is parabolic in shape and yields a maximum at about -0.45 

V(SCE). The exact value of the maximum is difficult to determine because the 

measured Am and herewith Ay5L are zero between -0.6 and -0.2 V(SCE). The 

decrease in ySL is about 7 mN m"1 in the potential range -0.35 to +0.8 V(SCE). 

Comparing this decrease with the absolute value for ySL for water wetted plastics, 

which is about 40-50 mN m"1 [34], this is a decrease of about 15-20%. Thus, a 

relatively small decrease in 8a is a result of a relatively strong decrease in y5L. 

4.4.5. Stability of the octadecanethiol layer 

The self-assembled CI8H37SH monolayer on gold was stable in the potential 
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< 

E(V) vs SCE 

Figure 4.8: Potential dependent change of the surface tension of the gold/C|8H,7SH/ 
electrolyte phase in 10"2 M K2S04. The dashed curve is fitted using equation 4.9, taking 
C, = 0.7 uF cm4 and ecm = -0.45 V(SCE). 

range where only double layer charging occurred. Scanning to potentials 

corresponding to oxidation of gold and the evolution of hydrogen or oxygen 

damaged the monolayers. This resulted in an increase in both current and 

differential capacitance, and in a relatively strong increase of mass of the 

electrolyte meniscus caused by an increased hydrophilicity due to desorption of 

thiol. However, in the double layer range, desorption was never observed to 

occur, in contrast to the results of Widrig et al. [2]. These researchers found a 

reductive desorption of C,8H37SH from a Au(ll l) electrode in 0.5 M KOH 

positive of the potential for the onset of hydrogen evolution (at -1.3 V 

(Ag/AgCl)). The charge involved was equal to the desorption of the complete 

monolayer. Repeating their experiment on our polycrystalline electrodes yielded 

only small double layer currents. The reason for these conflicting results is 

unclear, but is probably related to the fact that their layer was less close-packed 

than ours: their capacitance was larger (-1.7 uF cm"2) and 9a lower (109°). 
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4.5. Interpretation of the tensiogram 

The parabolic shape of the tensiogram (Figure 4.8) suggests a strong similarity 

to the electrocapillary curve of mercury [22]. For mercury, in the absence of 

specific adsorption, the derivative of this curve yields the surface charge and the 

maximum in the electrocapillary curve, the electrocapillary maximum (ecm), 

may be identified as the point of zero charge. 

For the present system it is also observed that ySL depends on the electrode 

potential. From this experimental observation, we conclude that outside the ecm 

(at about -0.45 V(SCE)), a nonzero electrical potential in the wetting plane is felt 

by the solution. Specific adsorption of small hydrophilic ions like K+ and S04
2~ 

on a hydrophobic thiol surface is unlikely; therefore, a diffuse countercharge has 

to develop at the solution side of the interface. In the absence of ion penetration 

in the thiol layer [1], this charge is equal and opposite to the surface charge at 

the gold/thiol interface. If no transport of (ionic) charge occurs through the thiol 

layer and the amount of thiol in the interfacial region remains constant (as is the 

case for the potential region where our wetting experiments were performed), it 

follows from the Gibbs adsorption equation that 

& r = -o0 (4-7) 
SE r,M' ° 

where a0 is the excess (electronic) surface charge density on the gold, E the 

potential difference between the bulk metal and the interior of the solution, u, the 

chemical potential of species i, and T the temperature. Equation 4.7 is the 

Lippmann equation for the thiol-solution interface and is valid if specific 

adsorption of any of the species i does not occur. Although the surface charge 

was not directly measured, it can be obtained from the differential capacitance 

measurements [20]: 

C = A (4-8) 
' k 6E "• 

For the present system, C, is found to be nearly potential independent (Figure 
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4.5b), because C^Cd (equation 4.5). Herewith, equations 4.7 and 4.8 may be 

combined followed by integration, resulting in 

UV - JSL0 - ]ACß - Ef - ySL
 + v ' ( £ ) ( 4 - 9 ) 

where ySL° is the potential-independent (i.e. "chemical") component of the 

interfacial energy and yS[f'(E) (defined as ViC,{E - Ee)
2) is the 

potential-dependent, electrostatic contribution to ySL [35] and Ee denotes the 

potential at the electrocapillary maximum. 

Using the above equation, the change in ySL with E can be calculated from the 

measured total capacitance. In Figure 4.8 it is shown that our results on 

thiol-modified electrodes in 10"2 M K2S04 can be conveniently fitted by the 

approach given in this section. The similarity between the measured and 

calculated curves clearly indicates that the potential-induced change in interfacial 

tension is of an electrostatic nature. The small divergence between the calculated 

and measured curve may possibly be due to conformational changes in the thiol 

layer [36]. 

Before arriving at definitive conclusions, however, the effect of changing the 

thiol chain length, the indifferent electrolyte type and concentration on the ySL 

(E) curve needs to be investigated in detail. The results of this study are reported 

on, together with a detailed double layer model for the gold/thiol/electrolyte 

interface, in chapter 5. 

4.6. Conclusions 

Simultaneous measurement of the current, differential capacitance, and 

solid/liquid interfacial tension as a function of the electrode potential provides 

information on the double layer properties of modified electrode systems. For 

octadecanethiol-modified polycrystalline gold electrodes in 10"2 M K2S04, the 

following is concluded. 

1. Within the potential range where only double layer charging occurs, the self-
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assembled C,8H37SH monolayer is stable and does not desorb to any measura­

ble extent. 

2. Both the low differential capacity (-0.7 uF cm"2) and the low double layer 

current (a factor of 100 less than for clean gold) demonstrate that the 

adsorbed layer acts as a dielectric barrier. 

3. The potential-dependent wettability can be conveniently determined using a 

Wilhelmy plate electrode. The technique is relatively simple and provides 

valuable thermodynamic information on the solid electrode/solution interfacial 

tension and the electrocapillary maximum. 

4. Wetting properties of the modified gold electrode are strongly affected by the 

potential. The electrocapillary maximum is situated at about -0.45 V(SCE). 

By scanning the potential from the electrocapillary maximum to 0.8 V(SCE), 

the advancing contact angle decreases from 116° to 110°. This relatively 

small decrease in the contact angle is caused by a relatively strong decrease 

of the solid/solution interfacial tension by 7 mN m"1, which is a decrease of 

about 15-20%. Potential-dependent wettability of clean gold can not be 

measured because properly cleaned gold is hydrophilic over the entire 

potential range. 

5. Both receding and advancing contact angles are measured as a function of the 

potential and show a similar dependency of the potential. In the 

electrocapillary maximum, the advancing contact angle is 116° and the 

receding angle is 90°. 

6. The tensiogram, giving solid/solution interfacial tension as a function of the 

potential, is of parabolic shape. It can be conveniently described by a 

"Lippmann" approach; the dominating effect for such a potential-dependency 

is the electrostatic effect. 
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Chapter 5 

Electrical double layers on thiol-modified gold 
electrodes1 

Abstract: The solid/liquid interfacial tension, capacitive current, and differential 

capacitance of alkanethiol-modified gold electrodes in K2S04 are measured 

simultaneously as a function of the electrode potential. The chain length of the thiols is 

varied between C10H2]SH and C22H45SH and the ion concentrations range from lO^1 to 

1CT2 M K2S04. It is found that these alkanethiols form extremely dense-packed self-

assembled layers. The potential-dependent wetting of the thiol-modified electrodes 

depends strongly on the chain length of the thiol: the shorter the chain, the stronger the 

influence. From the potential dependence of the contact angle, the Helmholtz energy of 

the electric double layer is derived. It is found that measured double layer capacitances 

are consistent with the model derived from the wetting method: a large and linear 

potential decay takes place within the thiol layer and a diffuse charge develops at the 

electrolyte side of the interface. The relative permittivity of the thiol layer is independent 

of the chain length and is about 2. The K2S04 concentration affects the measured double 

layer capacitance in a consistent manner, but it does not influence the wettability 

significantly. It is concluded that the dependence of the wettability on the electrode 

potential finds its origin in the formation of an electrical double layer and that potential-

induced conformational changes within the thiol layer are insignificant. 

'This chapter has been published under the same title: Sondag-Huethorst, J.A.M.; 
Fokkink, L.G.J. J. Electroanal. Chem. 1994, 367, 49-57. 
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5.1. Introduction 

Long chain alkanethiols, HS(CH2)„.,CH3, adsorb from solution and form densely 

packed self-assembled monolayer films on various metals [1,2]. The self-

assembled monolayers may have important applications in the engineering of 

surface properties, like corrosion inhibition, wetting, adhesion promotion and 

lubrication. A substantial volume of recently published papers on self-assembled 

layers is concerned with the understanding of the factors that govern the 

formation of stable layers. Methods used to study these layers are for example 

ellipsometry, infrared spectroscopy, electrochemical measurements, and wetting. 

These techniques show that self-assembled monolayers are formed when the 

alkanethiol chain is larger than about C10H21SH [3-5]. 

In the present chapter in situ (potential-dependent) wetting measurements [1] in 

combination with more classical electrochemical measurements are used to 

characterize the electrical double layer on thiol-modified gold electrodes. 

Potential-dependent wettability may offer interesting technological applications 

like (local) manipulation of the surface Helmholtz energy and herewith for 

example the local wettability. Another application may be in so-called 

"electrowetting", a phenomenon thus far practically only observed with mercury 

[6]. Furthermore, thiol-modified hydrophobic metal electrodes may serve as a 

well-suited model system in studies concerning the fundamentals of the 

metallization of e.g. plastics [7]. 

This chapter is the second in a series describing the potential-dependent wetting 

of monoalkyl thiol films on polycrystalline gold. In chapter 4, we discussed a 

Wilhelmy plate technique for the measurement of the potential-dependent 

wettability of solid electrodes. Basically, the wetting characteristics of the solid 

electrodes associated with the electrocapillary effect are measured while 

changing the potential. This relatively simple technique provides information 

about the electrostatic component of the solid electrode/solution interfacial 

tension and on the electrocapillary maximum (ecm), when used in combination 

with capacitance measurements and cyclic voltammetry. 
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The change in wetting properties of the electrode/solution phase boundary is 

caused by a potential-dependent change in surface tension of the solid/solution 

interface (Ay5L) resulting in a change in contact angle (AG). This Ay5L is indirectly 

measured by recording the change in the force acting on a partly immersed 

Wilhelmy plate electrode which arises from the change in mass (Am) due to 

meniscus rise. The potential-dependent part of the interfacial tension can be 

calculated using the equation 

Amg = 2(l+d)yLV AcosG = -2(l+d)AySL (5.1) 

with / and d being the length and the thickness of the gold electrode, 

respectively, g the standard acceleration of free fall, and yLV the liquid surface 

tension. 

To a first approximation the interfacial energy ySL may be taken to be composed 

of an electrical (potential-dependent) component ySL
el and a chemical (potential-

independent) component ySL° [8]: 

VSLW = V + JSL" ( 5 - 2 ) 

The electrical part is due to the presence of an electrical double layer at the 

interface. 

The double layer of the gold-thiol-electrolyte system is schematically 

represented in Figure 5.1. This figure shows the electrical potential \\f as a 

function of the distance from the gold surface. The potential at the gold/thiol 

interface V|/0 drops across the thiol layer (with thickness 5). The thiol region is 

assumed to be free of any charges and, therefore, the potential decays linearly 

within this layer. The thiol layer has a relative dielectric constant e,.. The surface 

potential \j/0 is equal to the applied electrode potential E minus the electrode 

potential in the point of zero charge. The potential remaining at the 

thiol/electrolyte interface is \\td. In the electrolyte a diffuse double layer forms. 

The diffuse double layer is taken to begin at the thiol/electrolyte interface. 

The change in the electrostatic contribution to the interfacial tension of the 
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Figure 5.1: Schematic representation of a gold/thiol/electrolyte interface showing the 
potential V|/ as a function of the distance from the gold surface. The charge density in the 
diffuse double layer is <5d and is equal but opposite to the surface charge density o0. 

solid/liquid interface (AYXL
d) equals the change in double layer Helmholtz energy, 

AF„ 

Wd = AV (5.3) 

The change in Helmholtz energy of the double layer results from a change in 

distribution of ions in the electrolyte with changing potential. 

Since an experimental method of determining the Helmholtz energy of double 

layer formation at self-assembled monolayer-modified electrodes is available, 

such double layers are conveniently analyzed along these lines. As derived by 

Verwey and Overbeek [9], the total Helmholtz energy of the solid/liquid 

interface involved in establishing the double layer at constant temperature (7) 

and constant chemical potential (u,) is given by: 



Electrical double layers on thiol-modified gold 73 

Wd = " /«Wo ( 5 4 ) 

with a0 the excess surface charge density on the gold and \|/0 the electric 

potential at the gold/thiol interface. Combination of equation 5.3 and 5.4 yields 

the well-known Lippmann equation. 

The surface charge density in equation 5.4 follows from the differential 

capacitance measurements (for constant T and p,) 

a0 = jc,d(E-E) (5.5) 

where C, is the total capacitance, E is the applied electrode potential and Ee is 

the potential at the electrocapillary maximum. 

The charge per unit area of surface in the diffuse double layer is Gd (Figure 5.1). 

Because the charge balance requires that the total charge of this system is zero, 

excluding specific adsorption, it follows that 

c„ = - a , (5.6) 

The charge of the double layer follows from the Poisson-Boltzmann equation. 

For an electrolyte with nf ions of type j per volume in the bulk, ad is given by 

ad = (sgnyd)<2EkT £ « 0 [ e x p ( I ^ ) - l ] ) 1 / 2 (5-7) 
kl 

with (sgn \\fd) the sign of the potential, £ the permittivity of the electrolyte, and 

k the Boltzmann constant. The valence number zJ is either a positive or negative 

integer. 

The system behaves as a pair of capacitors in series (Figure 5.1). The total 
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capacitance C, is given by 

1 1 i 

(5.8) 
1 

c, 
1 1 

= + 

c. c 

where C, is the capacitance of the thiol layer and Cd the capacitance of the 

diffuse part of the double layer. 

In first approximation, Cd is calculated using the Gouy-Chapman model [10,11]: 

Eft.°zexp( ZjeWd) 
J J K 1ST 

Cd = -^L = (-Sgnyd){^r - - (5-9) 
Wd (E/i /°[exp(^j!l)-l])1 '2 

kl 

Combining equation 5.5-5.9, C, can be calculated according to the following 

procedure. From equation 5.5 a0 is obtained by integration of C, with respect to 

E and subsequently equation 5.6 gives od. From equation 5.7 \\fJ,Gd) and 

subsequently CJ\\fd) can be calculated (equation 5.9). Having both C, and Cd 

available, C, can be calculated as a function of V|/0 with equation 5.8. 

Assuming the chemical (self-assembled) structure of the thiol layer to be 

potential independent, the capacitance of the thiol layer can be considered as the 

capacitance of a parallel flat plate capacitor with the medium between the 

"plates" being the thiol. The capacitance for the parallel plate system is: 

C = f^J. (5.10) 
5 

where £0 is the permittivity of vacuum, £,. is the relative permittivity of the thiol 

layer and 5 the thickness of the thiol layer. Since C, is known for different thiol 

chain lengths (and thus different 8), e;. can be calculated. The value of £,. 

contains information on the degree of packing and on possible defects in the 

thiol layer. 
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The interplay between wetting and electrochemical parameters follows most 

clearly from a combination of equations 5.3, 5.4 and 5.5: 

Aya" = AF, = -jjCt[d(E-Ee )]2 (5.11) 

Thus measuring C, followed by a double integration of C, with respect to the 

potential, provides the electrostatic contribution to ySL. 

One should be aware that possible potential-induced conformational changes of 

the thiol layer may complicate the interpretation. As a first order effect, a change 

in conformation may result in a variation of the capacitance of the thiol layer, 

for example by a change in the permittivity of the layer. Such a variation has a 

direct effect on C, and thus on ySL
e' (equation 5.11). Except for the potential-

induced conformation effect on ySL
el, the change in conformation of the thiol 

molecules may also affect ySL°. In the case of self-assembled alkanethiol 

monolayers it is known that they consists of differently ordered overlayers [12] 

and that the molecules exhibit an average tilt of about 30° on Au( 111) and of 

about 14° on Au(100) with respect to the normal [12]. For the polycrystalline 

gold electrodes we are using, different domains with different average tilt angles 

may be present [15]. From STM work it is known that many defects are present 

[13,14]. Due to the applied potential the overall structure of the thiol layer may 

change, for example by affecting the tilt angle of the individual domains or by 

reorganisation or disordering of the molecules. If this were the case, the 

chemical composition of the interfacial region would change, for instance in 

terms of the ratio of exposed CH2/CH3 groups in the interface [16], thus 

changing the chemical component of the interfacial tension (i.e. the intrinsic 

hydrophobicity of the surface). Strictly speaking, potential induced 

conformational changes may change ySL° without changing the capacitance of the 

thiol layer, thus leaving ySL
el unaffected. We consider it an important issue of 

the present study to investigate whether the electrical potential influences the 

overall structure of self-assembled thiol layers. 

The potential-induced change of ySL° as a result of a change in composition of 
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the thiol/electrolyte interface can only be measured with a method where Ay5t 

is directly measured, such as our Wilhelmy plate wetting method. From the 

capacitance measurements only the change in electrostatic contribution to ySL is 

obtained. Comparison of Ay5i measured with the wetting method to that found 

indirectly via the capacitance measurements provides an indication whether 

potential-induced chemical changes do indeed occur. 

In this chapter we investigate the influence of the thiol chain length and the 

electrolyte concentration on the potential-dependent wetting of thiol-modified 

gold electrodes. 

5.2. Experimental 

The used materials and preparation of the monolayers are described in chapter 

2. The experimental apparatus consists of a thiol-modified (Wilhelmy) gold plate 

suspended with a thread from a bottom loading balance (Mettler PM2000). The 

Wilhelmy plate was used as the working electrode in a three-electrode 

configuration to allow potentiostatic control (with a Schlumberger 1186 

EI/Hi-Tek Instruments PP RI potentiostat). The scan rate was 10 mV s"'. The 

potentiostat was coupled to a frequency response analyzer (FRA; Schlumberger 

Solartron 1170). The FRA supplied an ac signal with a frequency of 10 Hz and 

an amplitude of 10 mV to the Wilhelmy plate working electrode which was 

partly immersed in an aqueous solution of K2S04. The concentrations were lO'4, 

10"3 or 10"2 M. The setup enables simultaneous measurement of the change in 

mass associated with the electrolyte meniscus rise, the capacitive current and the 

differential capacitance as a function of potential. The change in mass is a result 

of the change in ySL as calculated with from equation 5.1. In section 5.3 only the 

results of the advancing meniscus are presented. The receding meniscus showed 

similar dependence on the potential [1]. 

The experiments were carried out at 25°C. The surface tension of the electrolyte 

solutions (yLV) was 72 mN m~'. The reagents were analytical grade (Merck). The 



Electrical double layers on thiol-modified gold 77 

results given in Figures 5.2-5.4, 5.8 and 5.9 display the average values of at 

least four measurements. 

5.3. Results and discussion 

5.3.1. Tensiometry 

The tensiograms for the different thiol chain lengths (C12H25SH, CI8H37SH and 

C22H45SH) are shown in Figure 5.2. The procedure to obtain these tensiograms 

from the measured force acting on the Wilhelmy plate electrode is given chapter 

4. The standard deviation is maximally ±5%. 
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Figure 5.2: Potential-dependent change of the surface tension of the 
gold/thiol(C„H2n+1SH)/electrolyte interface in 10"2 M K2S04, measured with the Wilhelmy 
plate method (n = 12,18,22). The scan rate was 10 mV s"1 

All tensiograms are parabolic in shape and have a maximum at a potential of 

about -0.45 V(SCE), identified as the electrocapillary maximum (ecm). The 

advancing contact angie 9a in this maximum is Qa for water using the sessile 

drop method. The values for the advancing and receding contact angles (6J of 

water and hexadecane measured with the sessile drop method are given in Table 

5.1 (typical standard deviation ±3°). 
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The data presented here were measured in aqueous solutions of K2S04 because 

the use of this indifferent electrolyte enables the maximum (at —0.45 V(SCE)) 

of ySL(E) to be determined: in K2S04 the adsorbed thiol monolayers are stable 

between -1.0 and 0.8 V(SCE). Voltage excursions beyond these limits were 

observed to damage the monolayers due to hydrogen evolution or to oxide 

formation. The 'stable' region is pH-dependent, and shifts in parallel with the 

oxygen/hydrogen evolution potential on clean gold. For solutions of pH=l, the 

limits shift about 0.4 V in the positive direction. For this situation the ecm 

(assuming specific adsorption, which may change the ecm, to be absent) almost 

coincides with the lower limit for stability, and only one branch of the 

tensiogram could be measured. 

Table 5.1: Characteristics of an alkanethiol layer adsorbed on gold in 10"2 M K2S04 

cl2 
c 
c22 

c, 
(pF cm 2) 

1.12 
0.76 
0.61 

Ô* 
(nm) 

1.6 
2.4 
2.9 

£,-

2.0 
2.0 
2.0 

e; 
(deg) 

112 
117 
117 

e; 
(deg) 

88 
90 
88 

ea* 
(deg) 

43 
42 
38 

e; 
(deg) 

28 
22 
17 

'from ref 4 
+with water 
*with hexadecane 

The influence of the chain length on the potential dependence of the solid/liquid 

surface tension is considerable: the shorter the chain length, the more strongly 

ySL decreases with E. For the dodecanethiol (or for short C,2-thiol) a decrease of 

10 mN nT1 is found for a positive scan from -0.45 V(SCE) to 0.8 V(SCE). This 

corresponds to a decrease in contact angle from 112° to 104° (equation 5.1). 

Although the decrease in contact angle seems small, the decrease in surface 

tension is relatively high: Bain et al. [4] found the critical surface tension of the 

solid/vapour interfacial tension of a C22-thiol layer to be 19 mN m"1. From 
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Young's law, ySL can now be calculated for the thiol/electrolyte interface. For 8 

in the range of 112°-117°, ySL is about 50 mN m"1. Thus for C12-thiol, ySL 

decreases by 20% on scanning from the ecm to 0.8 V(SCE). 

5.3.2. Electrochemical measurements 

Simultaneously with the tensiograms, the capacitive current and the differential 

capacitance were measured as a function of potential. The results are shown in 

Figures 5.3 and 5.4, respectively. The standard deviation of the current 

measurements is within ±20% and of the capacitance measurements within ±5%. 

The presence of the thiol layer causes a dramatic decrease in current and in 

electrode/electrolyte differential capacitance compared to clean gold [1]. The 

capacitance is given at a frequency (v) of 10 Hz and is almost frequency 

independent. For the thiol layers in 10"2 M K2S04 a C <* v~° "'-relationship was 

found in the range 0.5 Hz<v<1000 Hz. 

When a shorter chain length is used (for example C,0-thiol), the layers become 

unstable: both current and capacitance increase during continuous cycling 

presumably due to desorption of the thiol layer. This finding is in agreement 

-8 _ l I L_ 

-0.8 -0.4 0 0.4 

E (V) vs SCE 

0.8 

Figure 5.3: Cyclovoltammograms for a thiol (C„H2„+1SH)-modified gold electrode in 10 
M K2S04 (n = 12,18,22). The scan rate was 10 mV s_1. 
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with results of others [3-5] and is probably a result of penetration of electrolyte 

into the less ordered structure of these monolayers. 

-0.8 -0.4 0 0.4 0.8 
E (V) vs SCE 

Figure 5.4: Total differential capacitance of a thiol (C„H2n+1SH)-modified gold electrode 
in IGT2 M K2S04 (n = 12,18,22). The scan rate was 10 mV s"1. 

Both the cathodic current and the capacitance increase in value when the 

potential goes negative beyond about -0.6 V(SCE). The effect becomes more 

pronounced with decreasing chain length. The increasing current and hence the 

increasing capacitance for potentials below -0.6 V(SCE), is probably caused by 

faradaic currents due to the reduction of hydrogen. As can be seen in Figures 5.3 

and 5.4, the reduction kinetics of the H+/H2 couple depend strongly on the length 

of the thiol. The dielectric barrier becomes more effective as the number of 

methylene groups increases. 

In the region where no faradaic current flows (between about -0.6 and 0.8 

V(SCE); the double layer region), the measured capacitance is almost 

independent of the potential. The capacitance depends strongly on the chain 

length: the longer the chain, the lower the capacitance. The value of the 

capacitance of the thiol layers with varying chain length is similar to that from 

other impedance measurements [16,17]. When C, is determined from capacitive 

currents, a somewhat higher value was found [3,5,18-20]. The latter method is 

probably more sensitive to small faradaic currents, resulting in a higher apparent 
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capacitance. 

With the procedure given in the theoretical section, the capacitance of the thiol 

layer C, was calculated from C, as a function of the electrode potential. The 

results, together with the measured capacitance C, are given in Figure 5.5. The 

C, and C, values are shown for the double layer region only. Outside this region, 

faradaic currents prohibit proper calculation of C,. Due to the relatively high 

diffuse double layer capacitance, C, is only slightly larger than C,. When 

calculated with the Poisson-Boltzmann equation [10,11], Cd has a minimum 

value of 35.5 uF cm 2 in 10"2 M K2S04. 

0 0.4 
E (V) vs SC E 

0.8 

Figure 5.5. The measured total differential capacitance C, ( ) and the derived 
capacitance of the thiol layer C, (—) of a thiol (C„H2n+1SH)-modified gold electrode in 
lO"2 M K2S04 (n = 12,18,22). 

Within experimental error C, is potential-independent and is a function of the 

thickness of the thiol layer only (equation 5.10). This indicates that potential-

induced conformational changes of the thiol layer do not seem to occur. It 

should be noted that the C, values given in Figure 5.5 include the capacitance 

of the Stern layer at the thiol/electrolyte interface. Therefore the true value of the 

capacitance of the thiol layer may be slightly higher. From ellipsometry in air, 

the thickness of these thiol layers is known [4]. These values are given in Table 

5.1. The values of £,. can be calculated from equation 5.10, using the values for 
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C, from Figure 5.5 and the literature values for 5. The value for Ô in our 

electrochemical system, where the thiols are in an aqueous environment, may 

differ from the thickness in air. For example, penetration of electrolyte in small 

defects in the thiol layer may swell the layer, thereby increasing 8 and herewith 

increasing the calculated value of £,.. It is evident, however, that £, is low 

(compare £,. = 2.3 for polyethylene), illustrating the dielectric character of the 

thiol layer. This low permittivity is found for all chain lengths, except for the 

alkyl thiol chains shorter than about 11 carbon atoms, because the shorter chains 

were not stable in the electrochemical environment of our experiments. These 

results are in agreement with results obtained by other researchers, using other 

techniques [3,4,21]. The constant dielectric properties imply that the chemical 

structure of the thiol layer is independent of the chain length for these alkyl thiol 

chains. A similar chemical structure for the different alkyl thiols does not 

exclude the presence of any defects in the thiol layer. When defects are present, 

their influence is smeared out and affects both £,. and 5, and thus C,. 

5.3.3. Comparison of capacitance and wetting measurements: 

influence of thiol chain length 

The surface charge density as a function of the potential can be determined with 

the procedure given in the introduction (equation 5.5). The results of this 

procedure in the double layer region are given in Figure 5.6. At the ecm, the 

surface charge is set zero (specific adsorption is assumed to be absent). The ecm 

is obtained from the tensiogram in Figure 5.2. The values found for a0(E) are 

relatively low due to the dielectric character of the thiol layers. The curves have 

a slope C, (equation 5.5). Because C, is almost potential independent in the 

region shown, G0 is an almost linear function of E. The potential that remains 

at the thiol/electrolyte interface is at most 3% of the applied potential v|/u for the 

C,2-thiol and only 1.5% of \|/0 for the C22-thiol. 

The electrostatic part of the interfacial tension AySL
cl(E) is obtained by graphical 

integration of the curves in Figure 5.6 according to equation 5.11 (Figure 5.7). 



Electrical double layers on thiol-modified gold 83 

1.2 

É 0.8 
o 
O 
3 . 

D° 0.4 

0 

/ C 1 2 

/ 

/ y Cis 

/ ^ -^S-^^ ^22 

/ ^ ^ ^ 

i / i i i i i i i 

-0.8 -0.4 0 0.4 

E (V) vs SCE 

0.8 

Figure 5.6: Surface charge density of a thiol (C„H2„+lSH)-modified gold electrode in 
10"2 M K2S04 (« = 12,18,22). 

Because C, is virtually independent of the potential, the Helmholtz energy of 

double layer formation may, to a good approximation, be written as 

&d = A V ' = -ViCß-Ef (5.12) 

This mathematical integration of a constant C, results in a nearly identical curve 

(not shown). The potential-dependent part of the interfacial tension can also be 

measured directly with our wetting method. The change in ySL found in this way, 

is the sum of the change in the electrostatic part of ySL (due to double layer 

formation) and of the change in the chemical part of ySL (due to orientational 

changes of the molecules in the thiol layer, if any, resulting in a change in 

composition of the thiol/electrolyte interface). The results of both methods are 

compared in Figure 5.7. The curves are parabolic in shape, and both sets of 

results are very similar; the same sequence of the curves for the different thiol 

chain lengths is found. However, the fit is not perfect. Assuming that both 

measurements are made under equilibrium conditions, the agreement should be 

perfect if the change in interfacial tension were purely electrostatic. Whether the 

small deviations observed in our experiments are due to non-equilibrium effects 

in the wetting measurement or caused by a slight chemical change of the 

thiol/solution interface due to the applied potential is hard to say. Our results 
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Figure 5.7: Potential-dependent change of the surface tension of the gold/thiol 
(C„H2„+1SH)/electrolyte interface in 10"2 M K2S04 directly measured with the Wilhelmy 
plate method ( ) and indirectly measured via the capacitance (—) (n = 12,18,22). 

indicate, however, that such changes in the chemical component of the interfacial 

tension, may they occur, do not make a significant contribution. 

5.3.4. Comparison of capacitance and wetting measurements: 

influence of ion concentration 

In order to verify the double layer model as proposed in the previous section, the 

effect of the indifferent electrolyte concentration was tested. The tensiograms for 

C12-thiol measured in 10"2, 10~3, and 10"4 M K2S04 respectively, are given in 

Figure 5.8. The standard deviation is ±5%. The ecm, at -0.45 V(SCE), coincides 

for all ion concentrations. As expected, small hydrophilic ions like K+ and S04
2~ 

do not seem to adsorb specifically on the hydrophobic thiol surface, because 

specific adsorption would have shifted the ecm. The trend is found that 

Y(10"2)>y(10_3)>Y(10^) although the difference between the respective curves is 

extremely low. For C,8-thiol and C22-thiol (not shown) no effect of the ion 

concentration was observed. 

The differential capacitance measured at the different K2S04 concentrations is 
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Figure 5.8: Potential-dependent change of the surface tension of the 
gold/C12H25SH/electrolyte interface in 1(T2, 10~3 and 10"4 M K2S04 measured with the 
Wilhelmy plate method. The scan rate was 10 mV s~'. 

given in Figure 5.9. The difference between the total differential capacitances 

measured at 10"2, 10~3, and 10^ M K2S04 for a C,2-thiol was only small but 

always according to C/(10"2)>C,(10"3)>C,(10^1). When the capacitance in the 

respective concentrations was measured on one single modified electrode, this 

sequence was also reproducibly found. Although less obvious, it was also found 

that for C18 and C22-thiols the total capacitance measured was higher in 10"2 M 

E o 
LL 

ü 

-0.4 0 

E (V) vs SCE 

Figure 5.9: Total differential capacitance of a C|2H25SH-modified gold electrode in 1(T2, 
10"3, and KT4 M K2S04. The scan rate was 10 mV s"1. 
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Figure 5.10: The measured total differential capacitance C, ( ) and the derived 
capacitance of the thiol layer C, (—) of a C|2H25SH-modified gold electrode in 10"2, 
10"3, and 10" M K2S04. 

K2S04 than in 10" M K2S04 (results not shown). 

The C, values calculated as a function of £ from C, with equation 5.8 are given 

in Figure 5.10. Mainly for the lower concentrations (10~3 and 10" M), in the 

neighbourhood of the potential where Cd is minimal, does Cd influence the 

calculated value of C,. For the lowest electrolyte level, Cd calculated from the 

Gouy-Chapman model reaches a minimum of 3.55 uF cm"2 at E = -0.515 

V(SCE). Because this value is of the same order of magnitude as the measured 

C„ the calculated C, values are strongly affected by the exact value of Cd around 

this potential. This effect, although less pronounced, is also found for 10"3 M 

K2S04 where the minimal Cd is 11.2 uF cm 2 (at E = -0.640 V(SCE)). From the 

deviation between the measured C, and calculated C„ it seems that the diffuse 

part of the double layer does not exactly follow the Gouy-Chapman equation. 

This may also explain why C, remains slightly electrolyte concentration-

dependent. 

By double integration of C, to E according to equation 5.11, AySL
el(E) is obtained 

(Figure 5.11). The AySL(E) curves obtained from the capacitance and from the 

wetting measurements differ significantly (in 10~3 M and 10"4 M K2S04), 
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Figure 5.11: Potential-dependent change in the surface tension of the gold/C|2H25SH 
interface in KX"2, 10 3 and KT1 M K2S04 directly measured using the Wilhelmy plate 
method ( ) and indirectly measured via the capacitance (—). 

although the same trends are found: the potential dependency of ySL is more 

distinct for larger ion concentrations. This is in agreement with double layer 

theory: at high electrolyte levels the screening of the potential is more effective, 

resulting in a higher charge density and double layer Helmholtz energy. 

Considering our conclusion in the previous paragraph, it seems unlikely that the 

differences between the respective curves in Figure 5.11 can be explained by the 

role of potential-induced orientational changes. Rather, the differences may be 

caused by the different nature of both methods. The measured capacitance is an 

average thiol film property. The wetting measurements refer to the surface 

properties in the three phase boundary in the meniscus. Because all the processes 

take place in this small and constantly moving area, it is likely that the wetting 

measurements do not refer to the perfect equilibrium condition. 

It is encouraging to find in the capacitance measurements a salt effect that is 

consistent with our simple representation of the interphase as a dielectric (thiol) 

layer and a diffuse layer in the electrolyte: the diffuse potential is more 

effectively screened by raising the electrolyte level and the charge may, thus, 

further increase. 
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5.4. Conclusions 

Comparing the potential-dependent change of the interfacial tension AY5L of fhiol-

modified gold electrodes in K2S04 directly measured with the Wilhelmy plate 

method with AyÄ indirectly obtained from the capacitance measurements shows 

that the results are in reasonable agreement with each other. This is a gratifying 

result given the completely independent nature of both methods. 

Indications for an effect of the potential on the conformation of the adsorbed 

thiol molecules on gold are not found: 

-The capacitance of the thiol layer is found to be practically 

potential-independent: the capacitance only depends on the thickness and 

permittivity of the thiol layer. 

-The agreement between AySi obtained from the wetting measurement and from 

the capacitance measurement points to negligible potential-induced chemical 

changes of the thiol/solution interface. 

Therefore, it is concluded that the sole origin of the potential dependence of 

wetting is the formation of an electric double layer at the thiol/solution interface. 

The potential-dependent change of ySL of thiol-modified gold electrodes depends 

strongly on the chain length: the shorter the chain the stronger the influence. A 

simple representation of the double layer as a dielectric thiol layer and a diffuse 

double layer in the electrolyte accounts well for the observed chain length effect. 

The salt concentration dependence of the total capacitance can be qualitatively 

understood with the model. The salt effect on the potential-dependent wetting 

is less than theoretically expected, presumably due to the fact that the wetting 

measurements are not made under perfect equilibrium conditions. 

The electrocapillary maximum is situated at about -0.45 V(SCE). This value is 

neither influenced by the chain length of the thiol molecules nor influenced by 

the electrolyte concentration. From the latter it is concluded that specific 

adsorption of ions on the hydrophobic thiol surface does not occur. 
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The permittivity of the thiol layer is low and independent of the thiol chain 

length: e,.~2. This low and chain length-independent dielectric behaviour implies 

that the thiol molecules are densely packed and well-ordered and that the 

chemical structure of the thiol layer is independent of the chain length. 

Our conclusions refer to alkyl thiols of chain length longer than 10 carbon 

atoms. The shorter chains were found to desorb under the influence of an 

electrochemical potential, due to the less ordered structure of the layers. 

Monolayer-modified electrodes such as those studied in the present chapter have 

wide potential as model systems, for example in metal deposition studies 

[22,23]. The effect of metal atom-substrate interactions in the initial stages of 

phase formation on the geometry of nuclei can thus be studied in detail. We will 

report on these aspects in chapter 8. 

This study has shown that potential-dependent wetting experiments in 

combination with capacitance measurements and voltammetry offer a powerful 

tool in the characterization of electrical double layers at self-assembled thiol-

modified electrodes. 
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Chapter 6 

Electrochemical characterization of functionalized 
alkanethiol monolayers on gold' 

Abstract: The stability of functionalized alkanethiol monolayers (HS(CH2)„_,X, with X 

= CH3, OH, CN, CI (« = 12) and X = COOH (n = 11)) adsorbed on polycrystalline gold 

electrodes is investigated with capacitive current, differential capacitance and 

electrowetting measurements in indifferent electrolyte. It is found that these monolayers 

are highly stable upon cycling of the modified electrode in a potential region where only 

double layer charging occurs. The COOH-terminated thiol monolayer is electroactive. 

The carboxyl group can in part (5-10% of a monolayer) be cathodically reduced, giving 

the corresponding aldehyde. Occasionally, the reduction is followed by a second step 

giving a methyl-hydroxyl group. Reduction and oxidation occurs without destabilizing 

the thiol monolayer. The difference in the capacitance Cx of the thiol monolayers with 

terminal group X is determined by the dielectric properties of this group and increases 

in the following sequence: CCH3 < Ca < C0H < CCN. No indications are found that Cx is 

affected by a difference in ordering or in packing density of the molecules, except for 

X - COOH. In that case the bulkiness of the COOH group influences the ordering and 

packing of the monolayer, leading to a relatively high capacitance. The potential Ee in 

the electrocapillary maximum of the functionalized thiol monolayer can be obtained from 

electrowetting measurements. The sequence found is Ee
CH3 < Ef' < Et

CN < EfH. The 

differences in Ee are ascribed to the different dipole moments of the terminal group X. 

From the electrowetting measurements, in combination with interfacial thermodynamics 

it is concluded that the "chemical" component of the interfacial tension of the 

thiol/electrolyte is a function of the applied potential for X = CN, OH and CI. This is 

interpreted as a change in the orientation of the molecules, which attempt to align the 

dipoles parallel to the direction of the electric field across the thiol layer. 

This chapter is submitted for publication in Langmuir. 
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6.1. Introduction 

This chapter describes the electrochemical characterization and the potential-

dependent wettability of monolayer films formed through adsorption of 

long-chain alkanethiols on gold. Alkanethiol molecules (HS(CH2)„_1CH3) are 

known to form densely packed and highly ordered monolayers on various metals 

[1-7] and even on semiconductors such as GaAs [8]. The density of packing and 

the tilt angle of the molecules in the monolayer is influenced by the type [9,10] 

and texture [11,12] of the metal substrate. As demonstrated with diffraction 

techniques [13-16] and with STM [3,17], the adsorbed sulphur groups are 

ordered at room temperature in the commensurate (V3xV3)R30° Au-overlayer 

structure. From helium diffraction studies [13] it is known that the tail ends of 

the thiol molecules on Au (111) are ordered at low temperature (<100 K) and 

become disordered at room temperature due to thermal motion. The molecules 

are tilted on this Au(l 11) surface by an average angle of about 30° with respect 

to the surface normal [5,12,18]. The packing is not only influenced by the 

underlying substrate, but also by a terminal group X of the substituted 

alkanethiol (HS(CH2)„_,X). As long as X is relatively small (e.g., NH2 or OH), 

the structure of the monolayer is dominated by the Van der Waals interactions 

among hydrocarbon chains and not by X [12,19]. When X is bulky (e.g., F, 

COOH or ferrocene), the density of packing and the ordering becomes less 

[19-21]. Substituted thiols have been used in several wetting and adsorption 

studies. From these studies it was found that despite the presence of the terminal 

groups the sulphur-gold bonding always occurs and that in all cases the terminal 

groups are located at the outer surface [4,19,22]. 

The present chapter is the third dealing with the potential-dependent wetting of 

thiol-modified polycrystalline gold electrodes. In chapter 4, we described a 

Wilhelmy plate technique to measure the wettability of the hydrophobized gold 

electrodes as a function of the electrode potential (electrowetting). In chapter 5 

this technique was used to determine the electrowettability and electrochemical 

properties (such as the differential capacitance) of the modified electrodes as a 

function of the thiol chain length and the electrolyte concentration. The chain 
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length n was varied between 12 and 22, with X = CH3. It was found that the 

electrowetting properties of these monolayers can be conveniently described by 

interfacial thermodynamics. It was concluded that the dependence of the 

wettability on the electrode potential originates from the formation of an 

electrical double layer at the electrolyte side of the thiol/electrolyte interface. 

Potential-induced conformational changes within the alkanethiol monolayer on 

gold were found to be insignificant. 

In this present chapter we investigate the electrowettability and electrochemical 

properties of substituted thiol monolayers on gold. Simple functional groups are 

used to vary the polarity and wettability of the surface. Four adsorbates with a 

small terminal group are examined here: an unsubstituted alkanethiol 

(HS(CH2)nCH3), a chloroalkanethiol (HS(CH2),,C1), a cyanoalkanethiol 

(HS(CH2),,CN) and an alcohol-thiol (HS(CH2)nOH). As the fifth adsorbate a 

carboxylic acid-thiol (HS(CH2),0COOH) was selected. The chain length of these 

molecules is long enough and the size of the terminal group small enough to 

allow the formation of highly ordered monolayers [19], except for the 

COOH-terminated thiol which has a bulky end group. The thiol monolayers are 

characterized by differential capacitance and electrowetting measurements. The 

model proposed in chapter 5 is used to describe and interpret the results of the 

electrowetting measurements. This model enables exploration of the effect of the 

applied electric field across the thiol layer on the conformation of the molecules. 

The results on the COOH-terminated thiol will be treated separately because the 

COOH group is electroactive which makes the electrochemical characterization 

of this monolayer more complicated. 

The main purpose of this chapter is to determine how these functionalized 

alkanethiol monolayers on gold behave under the application of an electrical 

field. This information is essential if such layers are used as model systems in 

studies of the influence of the surface energy on the morphology of galvanically 

deposited metals, as will be discussed in chapter 8. We like to emphasize that 

the interpretation of some of the measurements presented in this chapter is by 

necessity speculative. In those cases additional measurements are required in 

order to establish definite conclusions. 
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6.2. Experimental 

Materials. Details on the materials and preparation of the monolayers can be 

found in chapter 2. 1-Dodecanethiol (HS(CH2)nCH3) was obtained from Fluka 

and used as received. 11-Mercapto-l-undecanol (HS(CH2)uOH), 

11-mercaptoundecanoic acid (HS(CH2)10COOH) and 11-chloro-l-undecanethiol 

(HS(CH2)UC1) were prepared according to references 23, 24 and 6, respectively. 

12-Mercapto-l-dodecanenitrile (HS(CH2)UCN) was prepared from 10-undecen-

l-ol in a four step synthesis; all chemicals were obtained from Janssen and used 

as received. First, the hydroxyl moiety was tosylated according to a literature 

procedure [25]. Second, nucleophilic substitution of the tosylate by potassium 

cyanide in DMF at 60°C for 24 h yielded 11-dodecenitrile (88% yield). Third, 

photochemical addition of thiolacetic acid to the double bond as described for 

the preparation of 11-chloroundecanethiol [6] gave 12-thioacetyldodecanitrile 

(80% yield). Fourth, deacetylation in degassed methanol with potassium 

carbonate as described for the preparation of 11-chloroundecanethiol produced 

12-mercaptododecanitrile (85% yield). 

Potential-dependent contact angle and electrochemical measurements. Details 

of the experimental set-up are given in chapter 4. This set-up consists of a thiol-

modified (Wilhelmy) gold plate suspended on a wire in a bottom-loading 

balance (Mettler PM2000). The Wilhelmy plate is the working electrode in a 

three-electrode configuration which allows potentiostatic control (with a 

Schlumberger 1186 EI/Hi-Tek Instruments PP RI potentiostat). The scan rate 

was 10 mV s~' (and incidently 1 mV s_1). The potentiostat is coupled to a 

frequency response analyzer (FRA; Schlumberger Solartron 1170). The FRA 

supplies an ac signal with a frequency of 10 Hz and an amplitude of 10 mV to 

the Wilhelmy plate working electrode, which is partly immersed in a deaerated 

aqueous solution of 10~2 M K2S04. The set-up enables simultaneous 

measurement of the change in mass Am associated with the electrolyte meniscus 

rise, of the capacitive current, and of the differential capacitance as a function 

of applied potential E. The change in mass results from alterations in solid/liquid 

interfacial tension AySL [1,2]. In the next section the values of Ay5i as calculated 
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from Am [1] are given. Only the results for the advancing meniscus are 

presented. The receding meniscus showed a similar dependence on the 

potential [1]. 

The experiments were carried out at 25°C. The surface tension yLV of the 

electrolyte solutions was about 72 mN m"1. The reagents were analytical grade 

(Merck). The results given in Figures 6.1, 6.2 and 6.4 display the average values 

of at least 4 measurements. 

6.3. Results and discussion 

6.3.1. Electrochemical measurements 

The type of terminal group X (where X = OH, COOH, CN, CI or CH3) of a thiol 

HS(CH2)nX adsorbed on gold affects the potential-dependent wetting and 

capacitance of these layers. In all cases, except for COOH, the backbone 

contained 11 carbon atoms. For X=COOH this number was 10 (i.e., 

HS(CH2)10COOH). The advancing (8a) and receding (8,.) contact angles measured 

with water (standard deviation ±3°) and other characteristics of the thiol layers 

are given in Table 6.1. Because the carboxyl thiol behaves distinctly different 

from the other thiols, this type of monolayer will be treated separately in a 

following section. 

The capacitive current, measured simultaneously with the differential capacitance 

and the potential-dependent wetting, does not differ significantly for the 

individual terminal groups. At a potential negative of about -0.6 V(SCE), the 

cathodic current starts to increase due to hydrogen evolution. Between about 

-0.6 and 0.7 V(SCE) the current is only due to double layer charging. 

The results of the differential capacitance measurements are given in Figure 6.1 

and Table 6.1. The capacitance is independent of the scan direction. The average 

values of scans in anodic and cathodic direction are given. The standard 
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Figure 6.1: Total differential capacitance of a HS(CH2)i,X-modified gold electrode in 
10~2 M K2S04. The scan rate was 10 mV s_1. The type X of terminal group is indicated 
in the figure. 

deviation of these measurements is within ±5%. The capacitance is nearly 

independent of the potential in the potential region where only double layer 

charging occurs. Outside the regions given in Figure 6.1 the monolayers are 

found to be disrupted. 

Although the chain length of the adsorbed thiols with different terminal groups 

is nearly the same, the capacitance is found to be a function of the type of 

terminalgroup (Table 6.1 and Figure 6.1). We assume that the total capacitance 

C, (per unit area) is given by the capacitance C, of the thiol layer and the 

capacitance Cd of the diffuse part of the electrical double layer in series [2]. For 

the relatively high electrolyte concentration of 1(T2 M, C, approximately equals 

the capacitance of the thiol layer Cf. 

C. « C. 
eoe,- (6.1) 

where £0 is the permittivity of vacuum, e;. the relative dielectric constant of the 

thiol layer, and ô its thickness. 

The sequence of decreasing capacitance is CCN>C0H>CCI>CCH3. A similar 

file:///I___
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sequence was also found by Chidsey [19]. Clearly, the capacitance is affected 

by the terminal group. This may be caused by a difference in ordering and 

density of packing of the thiol monolayer induced by the terminal group. A 

disordered monolayer will less effectively prevent water and ions from 

penetrating into the monolayer. If such penetration would occur, this would 

result in a higher relative dielectric constant and, consequently, in a higher 

capacitance. However, no indications for less dense packing and disorder are 

found: the capacitance as a function of the scanning potential is highly reversible 

for every terminal group studied. If water would penetrate in the monolayer, 

hydrolysis of water at the Au-thiol interface might disrupt this layer, which 

would lead to an (irreversibly) increasing capacitance during scanning. 

Moreover, infrared spectroscopy [19] has shown that the alkanethiol, 

alcohol-thiol and cyano-thiol monolayers have a nearly crystalline packing. 

Therefore, it is not likely that a different ordering due to the terminal group 

causes these differences in capacitance. 

Table 6.1: Characteristics of functionalized thiol (HSCd-y^X) monolayers adsorbed on 
polycrystalline gold in 10~2 M K2S04. 

X 

CH, 
CI 
OH 
CN 

COOH* 

8 / 
(deg) 

112 
95 
24 
69 
45 

0 / 
(deg) 

88 
80 
<5 
51 
<5 

£, 
V(SCE) 

-0.5 
+0.1 
+0.5 
+0.2 

7 

c, 
(uF cm 2) 

1.1 
1.3 
1.9 
2.1 
2.1 

8 
(nm) 

1.53 
1.47 
1.52 
1.56 
1.52 

e,. 
HS(CH2),,X 

1.8 
2.1 
3.3 
3.7 
3.5 

8,. * 
CH3CH,X 

1.61 
9.45 
24.3 
27.2 
3.44 

+measured with water 
*from ref. 26 
*HS(CH2)10COOH 

Most likely the differences in capacitance are due to the differences in dielectric 
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behaviour of the terminal groups. In order to be able to compare e,. of the 

various X-terminated monolayers, e, was calculated with equation 6.1. First, the 

thickness of the monolayer 5 was calculated. This is done by using known bond 

lengths and bond angles [27], assuming the contribution of S" to the total 

thickness of the monolayer to be 0.15 nm and the tilt angle of the molecules to 

be 30° [6]. The results for 5 and £,. are given in Table 6.1. The sequence found 

for e, of the thiol monolayers is the same as that for substituted alkanes in bulk, 

which strongly suggests that indeed the dielectric properties of the terminal 

groups largely determines the capacitance of the monolayer. An exception forms 

the COOH-terminated monolayer. The cause of this exception will be discussed 

in paragraph 6.3.4. For comparison, £, of substituted ethanes (CH^CHjX [26]) is 

included in Table 6.1. 

6.3.2. Tensiometry 

The tensiograms for the different terminal groups are given in Figure 6.2. The 

curves represent the average of at least 5 measurements; standard deviation of 

the average is below ±5%. For most of the curves in Figure 6.2 the shape is not 

parabolic, which is expected for systems where the potential dependency is 

dominated by the electrostatic effect [1,2], like for mercury. The potential Ee at 

the maximum of the curve is usually referred to as the electrocapillary maximum 

(ecm). This potential is the potential at which the surface charge is zero [1,2] 

and is also referred to as the potential of zero charge. The values of Ee are 

tabulated in Table 6.1. At Ee, the advancing contact angle with water is equal to 

the advancing contact angle determined with water by the sessile drop method. 

The maximum of the curve shifts in the anodic direction with increasing 

hydrophilicity of the thiol-modified gold substrate: Ee
CH3<Ee

c'<Ee
CN<Ee

0H. It is not 

likely that specific adsorption of the cation K+ causes this variation in Ee because 

this cation is not expected to adsorb on the rather hydrophobic substrates. 

Moreover, similar values for Ee were found when using H2S04 or KOH as the 

electrolyte. Therefore, we assume the difference in potential of zero charge to 

be caused by the intrinsic properties of the monolayers. As demonstrated in the 
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Figure 6.2: Potential-dependent change of the surface tension of the gold/thiol 
(HS(CH2),,X) electrolyte interface in 1(T2 M K2S04 measured using the Wilhelmy plate 
method. The scan rate was 10 mV s~'. The type X of terminal group is indicated in the 
figure. 

previous section there are no indications that the ordering of the monolayer is 

influenced by the terminal group. Hence, the difference in Ec must be due to the 

type of terminal group. 

The potential drop across the electrical double layer may be decomposed in a 

potential drop associated with free charges at the gold/thiol interface (ionic 

contribution) and a potential drop due to dipoles in the monolayer (dipole 

contribution) [28]. At the potential of zero charge the potential drop associated 

with the free charges is by definition zero [28]. In this case, the potential drop 

is determined by the dipole moment of the monolayer. The dipole contributes 

to a positive surface potential if the positive end of the dipole points to the 

gold/thiol interface. This is the case for the Cl, CN, and OH terminal groups. 

Due to the electronegativity of Cl, N and O, a small negative charge resides at 

these atoms. This charge is compensated by a positive charge on the carbon 

and/or hydrogen in contact with the electronegative atom. Hence, at the point of 

zero charge, the potential is positive with respect to the potential of zero charge 

of the CH3-terminated monolayer, where only a very small dipole moment is 

present in the terminal group. According to the sequence found for the potential 

of zero charge, the dipole contribution should increase in the order 
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CH3>C1>CN>0H. One of the factors determining the dipole moment is the 

electronegativity of the atoms. Indeed, the sequence of increasing Ee follows the 

sequence of increasing electronegativity of the atoms in the terminal group: 

C<C1<N<0 [29]. Therefore, there is a strong indication for the influence of the 

dipole moment on the potential of zero charge of gold covered with a 

X-terminated thiol monolayer. 

One might have expected that this sequence would also apply for the dielectric 

constant of the monolayer because of the correlation between the dipole moment 

and the dielectric constant [30]. However, e,. given in Table 6.1 is the value for 

the entire monolayer whereas the dipole moment as discussed above refers to the 

terminal group only. This may cause the difference in sequence between e, and 

Ee. In addition, other factors than the dipole moment might determine £,. For 

example, the packing density of the molecules in the monolayer could differ 

slightly for the various monolayers investigated. 

6.3.3. Comparison of capacitance and wetting measurements for 
electroinactive terminal groups (Cl, CN, OH, and CH3) 

In chapters 4 and 5 a model was presented to explain the influence of the 

potential on the wetting behaviour of the alkanethiol-modified gold electrodes. 

In this model, the double layer of the alkanethiol-modified gold electrode in an 

indifferent electrolyte is subdivided in a dielectric thiol layer and a diffuse 

double layer in the electrolyte. This model leads to a correlation between the 

capacitance and the potential-dependent wetting. The latter property is expressed 

in terms of the change in the electrical component of the interfacial tension ySL
el 

of the solid/liquid interface. In chapter 5 we derived the following relation: 

A V = -jjc,(d(E-Ee ))
2 (6-2) 

where E is the applied electrode potential and Ee is the potential of the 

electrocapillary maximum. 
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The change in the electrical component of the interfacial tension results from a 

change in the distribution of ions in the electrolyte upon variation of the 

potential. The absolute value ySL of the solid/liquid interfacial tension is, in first 

approximation, taken to consist of an electrical (potential-dependent) component 

ySL
cl and a "chemical" (i.e., potential-independent) component yçL

0: 

ySL(E) = ySL° + v ' ( £ ) ( 6 3 ) 

The chemical component ySL° is the intrinsic interfacial tension. This chemical 

component is only constant if potential-induced changes of the monolayer do not 

occur. From equation 6.3, the change in ySL°, AySL°, can be calculated from direct 

measurements of AySL(E) with a Wilhelmy plate balance, and comparing these 

results with Ay^' obtained from the capacitance measurements (equation 6.2). 

Both Ay^' and Ay5L are changes with respect to ySi in the electrocapillary 

maximum. From the comparison between AySL and Ay^/' it can be concluded 

whether or not y5L° is independent of the potential. For the alkanethiol-modified 

gold electrodes it was found that Ay5z/' obtained from the capacitance 

measurements and AyS£ obtained from the direct Wilhelmy plate measurements 

are in excellent agreement, and it was therefore concluded that the potential has 

no effect on the conformation of the adsorbed molecules [2], hence, Ay„°=0. 

Comparing the results of Ay^ obtained from the wetting method and AySL
e' 

obtained from the capacitance for the alkanethiol substituted with different 

terminal groups, it is found that both sets of results deviate. In all cases the 

effect of the potential on AySL is much less than the effect determined from the 

capacitance measurements. In Figure 6.3 the difference between AySL determined 

with the wetting method and Ay5L
f/ determined with the capacitance method is 

given as a function of the potential. A strong effect of the hydrophilicity of the 

thiol on (AySL - Ayffi'') is found: the more hydrophilic the stronger the effect. 

According to our model, (Ay5L - AyÇL'') equals A.ySL° (equation 6.3). A change of 

Ayçz° as a function of the potential is only possible if the intrinsic interfacial 

tension is influenced by the potential, for example through a change in rotation 

or tilt angle of the molecules. In that case the capacitance of the thiol layer may 
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Figure 6.3: Difference between Aysi as given in Figure 6.1 and AyÄ''' determined with 
the capacitance method as a function of the potential in 10"2 M K2S04 for a HS(CH2)nX-
modified gold electrode. The type X of terminal group is indicated in the figure. 

also change due to a change in 8 and/or £,., but these effects may (in part) 

compensate each other (equation 6.1). From our capacitance measurements 

(Figure 6.1), it was deduced that the capacitance was almost independent of the 

potential. Hence, a change in contact angle as a function of the potential does 

not necessarily imply that the capacitance of the thiol layer has changed. 

We speculate that a change in contact angle as a function of the potential may 

occur when there is enough space for the molecules to adapt their tilt angle. 

According to calculations by Ulman [12], an energy minimum is achieved by 

arranging the monolayer of alkanethiols in a close-packed hexagonal pattern 

with spacing of =0.42 nm and with the molecules normal to the surface. This 

will only occur if the underlying gold is compatible with such a lattice. For 

thiols on gold(l 11), a close-packed structure is obtained for a lattice spacing of 

0.497 nm [12]. To maximize the Van der Waals interaction, the molecules tilt 

by about 30°. This latter value is also experimentally confirmed with infrared 

spectroscopy [5,18]. However, this value is only an average quantity. At room 

temperature, the ends of the alkane tails are still disordered [13]. The disordering 

indicates that there is room for the terminal groups to change their orientation. 

At our polycrystalline gold electrodes (predominantly (111), (200), and (300) 
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textured) an even stronger disordering of the tails may occur due to the different 

tilt angles at domains with different textured gold [11]. 

A change in the tilt angle of the molecules or in the orientation of the terminal 

group may be induced by the very strong electric field across the thiol layer (= 

106 - 107 V cm"1). This field tends to align the dipoles and consequently, (part 

of) the thiol molecules along the field lines to reduce the electrostatic energy 

[30]. Because the dielectric constant and, hence, the dipole moment of the 

substituted thiols is larger than that of the alkanethiols, these functionalized 

molecules are more strongly influenced by the field. The dipole moment 

perpendicular to the surface may increase when the tilt angle of the molecules 

or of the terminal groups of the molecules becomes less. As a consequence, the 

contact angle will change. When the tilt angle is about 30°, the contact angle is 

mainly determined by the terminal group. When the tilt angle of the molecules 

is reduced, the underlying CH2 group may be exposed to the liquid in contact 

with the monolayer. The wettability of the CH2 groups is less than that of the 

CN, OH or CI groups. Therefore, with decreasing tilt angle, the contact angle 

increases. The effect of the increase in contact angle will be most pronounced 

when the difference between the wettability of CH2 and the terminal groups is 

large. This explains the sequence OH>CN>Cl>CH3, as observed in Figure 6.3. 

A similar influence of the underlying CH2 on the contact angle was also 

observed when comparing the (wetting) properties of alkanethiols with an even 

or uneven number of carbon atoms [4,7,18,31-33]. In case the number of 

carbons is even, the terminal CH3-CH2 bond is oriented perpendicular to the 

surface whereas for an uneven carbon number the CH3-CH2 bond is oriented 

more parallel to the surface. This difference in orientation influences the 

wettability of the surface. For alkanethiol modified-gold the wettability with 

water of the "even" alkanethiol monolayers is worse than those consisting of the 

"uneven" compounds. This is caused by the fact that in the former case mainly 

the CH3 group determines the wettability, whereas in the latter case both CH3 

and CH2 contribute to the wettability. Because CH3 groups are slightly less 

wettable by water than CH2 groups, the wettability of the even alkanethiol 

monolayers is less [9,33]. Whether or not the orientation of the molecules does 

indeed change as a function of the applied potential has to be checked with 
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independent in-situ measurements. Then the change in orientation could possibly 

be determined as a function of the potential. Such a technique may be for 

example infrared spectroscopy. To our knowledge, such studies have not been 

performed sofar. 

6.3.4. Comparison of the capacitance and wetting measurements for 

the electroactive terminal group COOH 

There are two important reasons for treating the carboxyl thiol 

(HS(CH2)10COOH) separately from the other thiols. First, the self-assembled 

structure of the adsorbed carboxyl thiol monolayer is less ordered because the 

terminal COOH group is relatively bulky [19]. Second, the COOH group is 

electrochemically active and may be cathodically reduced. 

In Table 6.1 the contact angle of water with the COOH-thiol monolayer is 

given. The contact angle is 45° and is larger than expected. Water is expected 

to completely wet a COOH covered surface, due to the polarity and 

hydrogen-bonding capability of the exposed acid functional group. Other 

researchers [6,19,24,34] found the advancing contact angle with water to vary 

between 0° and 30°. The cause of the deviation between our results and those 

of others may be some disorder in our thiol layer. Such disorder will result in 

some exposure of the underlying CH2 groups to water and, consequently, in a 

larger contact angle. Larger contact angles were also found when adsorbing 

COOH-terminated thiol on Cu [22] or adsorbing dialkylsulfides on gold [24]. 

Ellipsometry and infrared spectroscopy in the latter case showed these layers to 

be less ordered [24]. 

The capacitive current, the differential capacitance and the solid/liquid interfacial 

tension of gold modified with COOH-terminated thiol as a function of the 

potential are given in Figure 6.4. On scanning the potential in the cathodic 

direction, the current and the capacitance show a peak when the potential is 

between about -0.1 and -0.4 V(SCE). By scanning in the anodic direction, a 
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Figure 6.4: The capacitive current (a), the differential capacitance (b) and the interfacial 
tension (c) of the gold/HS(CH2)10COOH electrolyte interface in 10"2 M K2S04, as a 
function of the applied potential, (a), (b) and (c) are measured simultaneously. The scan 
rate was 10 mV s~' (solid curves). The interfacial tension was also measured at a scan 
rate of 1 mV s~' (dotted curve in diagram c). 
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reversible wave is observed in the cyclic voltammogram. From integration of the 

area under the peaks, the amount of charge passed can be calculated. This 

amount is similar for both the anodic and the cathodic scan, and was found to 

vary between 5 and 15 uC cm"2. This electrode process is not very likely to 

result from the reduction of protons, formed by dissociation of RCOOH to 

hydrogen. Reduction of protons would only have resulted in a cathodic peak, 

whereas no or only a small anodic peak on the return scan would have appeared. 

The most likely mechanism for the charge transfer is a cathodic reduction of the 

carboxyl group according to the following steps: 

(1) R-COOH + 2H+ + 2e~ * R-CHO + H20 

(2) R-CHO + 2H+ + 2e- * R-CH2OH 

Where R stands for Au-S-(CH2),0. In step (2), the aldehyde RCHO is reduced 

in a two-electron process to a hydroxy-methyl compound [35]. In about half of 

our measurements, we did indeed observe a second peak or shoulder, but with 

an area smaller than the first peak (see Figure 6.4a). In Figure 6.4a this shoulder 

can be observed at about -0.65 V(SCE). The position of the first and the second 

peak was found to swift by about 60 mV in anodic direction per unit pH 

decrease of the solution. This is in agreement with the above reaction equations. 

If all the COOH groups present at the thiol/electrolyte interface would have been 

reduced, a much larger current would have been observed. From an estimated 

surface concentration of COOH groups of about 4.1014 molecules per cm2 [19], 

the maximum charge transfer would be about 130 uC cm 2. Apparently, only 

5-10% of the COOH groups are reduced to CHO. The main reason for the 

incomplete reduction of the COOH groups may be the presence of the long 

decane chain attached to the COOH group. Due to this aliphatic chain, the 

carboxyl group is deactivated by the electron-releasing alkyl group. According 

to Iverson and Lund [36], the presence of electron withdrawing groups is a 

prerequisite for the reduction of the carboxyl group. However, it was found that 

even acids with the carboxyl group attached to an aliphatic carbon chain can to 

some extent be reduced to the corresponding aldehyde or alcohol [35]. The yield 
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of the conversion is often low. Depending on the experimental conditions, it 

varied between 6% and 35% [35]. For example, the yield of the reduction of 

butyric acid to butanol in 80% sulphuric acid was 6.5% [35]. Hence, our results 

on the adsorbed COOH-terminated thiol monolayers agree with these results. 

The Faradaic current involved in the reduction/oxidation reaction results in an 

increase in the differential capacitance as observed in Figure 6.4b. The 

capacitance in the potential region where no Faradaic current is observed is 

almost equal before and after reduction/oxidation which indicates that the 

structure of the adsorbed layer is not affected by the reaction of the terminal 

group (COOH * CHO). The value of the capacitance in this potential region is 

about 2.1 uF cm"2; this value is included in Table 6.1. Also the calculated values 

of Ô and £,. are given in this table, together with £,. of propionic acid 

(CH3CH2COOH [26]). Upon comparison of the values of e,. for CH3CH2X with 

different terminal groups (Table 6.1), it is found that £, (COOH) is higher than 

£,. for CH3-terminated alkanes, but considerably lower than e,. of the CI, OH, CN 

terminated compounds. Apparently, the influence of the COOH group on £, of 

the COOH terminated alkane is low. However, comparing £,. of the X-terminated 

thiol monolayers, we find that e, of the COOH thiol monolayer is relatively high. 

This may be explained from the lesser ordering and the less dense packing of 

the thiol molecules in the monolayer due to the bulkiness of the terminal 

COOH-group [19] as explained in section 6.3.1. 

At the potential where the COOH group is (partly) reduced to CHO, the 

interfacial tension of the thiol/electrolyte interface decreases (Figure 6.4c). 

Consequently, the contact angle decreases. This may be caused by some 

irreversible reorganization of the thiol layer due to the smaller size of the CHO 

group. It is likely that this reorganization mainly occurs in the terminal groups 

because the capacitance of the thiol layer remains unaffected after 

reduction/oxidation. Upon scanning with a speed of 10 mV s"1, ySL decreases by 

16 mN m~' in the first scan, which corresponds to a decrease in contact angle 

from 45° to 22° [12]. Scanning in the reverse direction, the contact angle 

remains 22°. Scanning again in cathodic direction results in a continuous 

decrease in contact angle from 22° to 18° at about -0.5 V(SCE) (not shown in 
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Figure 4c). After several scans, the contact angle finally reaches 0°, after which 

it remains unchanged upon repeated scanning. If the potential is scanned at 1 

mV s"1 instead of 10 mV s ' , Ay5L decreases irreversibly by about 22 mN m~' 

(Figure 6.4c). This corresponds to a decrease in contact angle from about 45° to 

about 0° already in the first scan. Apparently, the change in contact angle is a 

rather slow process. This is likely to be a result of the mechanism of the charge 

transfer process: the COOH will only be reduced to CHO when the electrolyte 

wets the surface sufficiently. After reduction, the wettability changes and the 

liquid meniscus will move and wet a fresh fraction of COOH surface. This 

process continues until the contact angle of the meniscus with the 

CHO-terminated surface reaches its equilibrium value. 

6.4. Conclusions 

This work has shown that monolayers of X-terminated thiol (HS(CH2)nX, with 

X - CH3, CN, CI, OH) on polycrystalline gold electrodes are highly stable upon 

cycling of the electrode in a potential region where only double layer charging 

occurs. From electrowetting measurements it is found that the electrocapillary 

maximum Ee depends on the electronegativity of the terminal group. With 

increasing electronegativity Ee increases in the order Ee
CHS < Ee

c' < Ee
CN < Ee

0H. 

The capacitance C of the monolayer depends on the dielectric properties of the 

terminal group X and increases in the sequence CCHJ < Ca < COH < CCN. No 

indications are present that the capacitance is influenced by a difference in the 

density of packing and ordering of the molecules induced by the group X. 

The change in ySL as a function of the potential as measured with the Wilhelmy 

balance is smaller than the electrostatic contribution ySL
el as calculated from the 

measured capacitance. The difference between these results (for X - OH, CI, 

CN) are ascribed to the fact that the "chemical" component ySL° of the interfacial 

tension changes as a function of the applied potential. This change in ySL° is 

believed to be due to change in orientation of the molecules or of a part of the 



Electrochemical characterization of functionalized alkanethiol monolayers 109 

molecules when altering the applied electric field across the thiol layer. 

Additional measurements are required to confirm this hypothesis. These 

structural changes, which do affect ySL°, may occur without changing the 

capacitance of the thiol layer. 

It is found that HS(CH2)l0COOH also forms a highly stable monolayer on gold 

electrodes, despite of the relative bulky COOH groups. The COOH group is 

partly (5-10%) reduced to the corresponding aldehyde. Reduction and oxidation 

occurs without affecting the capacitance of the COOH-terminated monolayer. 

The capacitance of the COOH thiol monolayer is higher than expected 

considering the dielectric properties of the COOH group. This is interpreted as 

a less dense and ordered structure of the monolayer. 

In summary, it has been shown that functionalized alkanethiol monolayers on 

gold electrodes are stable in a wide potential region. This makes these layers 

suitable as model systems, for example for studying the influence of surface 

properties on the structure and morphology of electrochemically deposited 

metals. We will report on this subject in chapter 8. 
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Chapter 7 

Potential-dependent wetting of electroactive 
ferrocene-terminated alkanethiolate monolayers on 
gold1 

Abstract: The electrochemical and electrowetting behaviour of ferrocene(Fc)-terminated 

alkanethiol (FcC02CnH22SH) monolayers adsorbed on gold is studied in 1 M HC104. 

The concentration of the ferrocene groups in the monolayer is varied by diluting the 

adsorbed ferrocenethiol with alkanethiol (C„H2„+1SH with n = 8, 12, 16, or 22). The Fc 

group of FcC02C||H22SH can be oxidized to the Fc+ cation while leaving the monolayer 

intact. Upon oxidation, the wettability of the surface increases: the advancing contact 

angle of the FcC02CnH22SH monolayer with the electrolyte (0/"') decreases from 74° 

to 49°, the latter being the advancing contact angle of the oxidized Fc+ cation, 0 / ' . Upon 

renewed reduction the meniscus recedes and the receding contact angle, O,.'"', becomes 

56° and can be continuously stepped between 0,.''"' and BJ'\ Due to contact angle 

hysteresis this potential-dependent change in contact angle is only partly reversible. With 

the number of applied steps, a decrease in 0,.''"' is observed due to disordering of the 

monolayer on continuous oxidation/reduction. This disruptive effect is reduced for a 

mixed FcC02CnH22SH/C12H25SH monolayer. The C12H25SH thiol increases the distance 

between the bulky Fc groups and consequently the monolayer becomes more stable. For 

a mixed monolayer with 60% FcC02CMH22SH and 40% C|2H25SH, the contact angle can 

reversibly be switched between 49° and 59°. We suggest that the change in wettability 

after oxidation/reduction is due to specific interactions of the charged Fc+ ion with anions 

from the electrolyte. Due to the hydrophilic nature of the C104" anion, the wettability of 

the surface increases. 

'This chapter is accepted for publication in Langmuir (appears in vol. 10, no. 12,1994). 



114 Chapter 7 

l.\. Introduction 

The wettability of materials is determined by their surface properties. A well-

known method to change the wettability of a material is through the adsorption 

of (a monolayer of) molecules. Many technological examples exist where the 

wettability is manipulated by such surface modification, for example in order to 

promote adhesion between surfaces [1], to prevent corrosion [2] or for 

lubrication purposes [3]. 

In addition to chemically-induced changes in the wettability, the surface 

wettability can also be adjusted electrochemically. Traditionally, this so-called 

electrowetting has been applied to liquid mercury [4]. Upon changing the 

potential, the diffuse electrical double layer at the electrolyte side of the interface 

adjusts itself. This induces a change in the surface free energy of the system and, 

consequently, a change in wettability [5]. This effect can for example be 

observed as a change in shape of a drop of liquid mercury deposited on a solid 

substrate in an electrolyte solution. The altered wettability of mercury as a 

function of the potential has also been measured using a platinum Wilhelmy 

plate covered with a thin mercury layer connected to a potentiostat (to control 

the potential) which measures the wettability as a function of the potential [6]. 

We used this latter method to determine the potential-dependent wetting of 

hydrophobic thiol-modified gold electrodes [7]. It was found both for mercury 

and thiol-modified gold that the relationship between the wettability and the 

potential could conveniently be described by interfacial fhermodynamical 

relationships. 

In this chapter we describe potential-induced wettability effects due to 

oxidation/reduction of a surface. To that end we modified gold electrodes with 

a ferrocene-terminated alkanethiol layer. As recently reported by Abbott and 

Whitesides [8], oxidation of the ferrocene groups of an adsorbed ferrocene thiol 

monolayer results in a decrease of the contact angle against 0.1 M NaC104 from 

70° to about 43°. After renewed reduction the contact angle becomes 58°. 
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Repeated oxidation/reduction was found to result in progressively decreasing 

response. 

Despite the bulky ferrocene (Fc) groups, the Fc-alkanethiols form a self-

assembled monolayer on gold [8-16]. The ferrocene group of the ferrocenyl 

alkanethiol immobilized on gold may be oxidized to the ferricinium cation (Fc+). 

The potential where oxidation/reduction takes place depends on the length and 

type of the alkanethiol chain connected to the ferrocene group, on the presence 

of other molecules in the monolayer and on the type and concentration of anions 

(Y~) present in the electrolyte [9-12,14,17]. The anion effect has been claimed 

to result from specific interactions with anions (ion pair formation 

[11,13,14,17,18]) compensating the electric charge on the gold surface after 

oxidation: 

(Fc)s * (Fc+)s
 + e (7.1) 

(Fc% + Y' * ( FcT-) s (7.2) 

with (Fc)s, (Fc+)s, and (Fc+Y')s being the ferrocene group, the ferricinium cation, 

and the ion pair immobilized on the surface, respectively. Whether all Fc+ groups 

formed in the monolayer bind an anion, or some charge remains uncompensated, 

still needs to be clarified. The formation of ion pairs is strongly affected by the 

nature of the anions [11,14,17]. Consequently, the electrical potential where 

oxidation of the Fc groups occurs depends on the anions. It was found that this 

potential increases in the order of C104~>N03~>S04
2~. Ion pair formation was 

confirmed by using an electrochemical quartz crystal microbalance [13,18]. Upon 

oxidation of the ferrocene groups, an increased mass was observed which was 

attributed to the association of anions with the self-assembled layer. 

The potential-dependent wetting of the Fc thiol is a direct consequence of 

oxidation/reduction of the Fc groups. The oxidation/reduction influences the 

surface free energy and consequently the surface tension of the solid-liquid 

interface, ySL [7b]. As suggested in ref. 7b, ySL may be taken to be composed of 

an electrical (potential-dependent) component, ySL
e', and a chemical (potential-
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independent) component, y^0 

ySL(E) - V + V"(£) (7-3) 

where E is the applied potential. The chemical part is due to the intrinsic wetting 

properties of the surface. For the ferrocenethiol-modified gold electrode, ySL° will 

be influenced by ion pair formation after oxidation; the associated (hydrophilic) 

anions will largely affect the wettability. However, according to microbalance 

measurements [13,18] it is not clear whether all Fc+ cations in the monolayer are 

associated with anions. Therefore, it is possible that charge remains on the 

monolayer, compensated by ions in the diffuse electrical double layer in the 

electrolyte. This compensation of charge results in a change in ySL
el with 

potential. In this chapter we attempt to unravel how the two components of ySL 

determine the electrowettability of gold electrodes modified with a monolayer 

of co-(ferrocenyl carbonyloxy)-undecanethiol (FcC02CnH22SH or, for short, 

FcC,|). From electrowetting measurements, an impression is thus obtained of the 

extent of charge compensation through ion binding. The influence of mixing the 

FcC|| thiol with alkanethiols (C„H2„+1SH abbreviated as C„ thiol) as a function 

of the relative concentration and the chain length n of the alkanethiols on the 

electrowettability will be discussed. 

7.2. Experimental 

Materials. 1-Octanethiol (C8H17SH) obtained from Aldrich and 1-dodecanethiol 

(C|2H25SH) and 1-hexadecanethiol (C|6H33SH) obtained from Fluka were used 

as received. 1-Docosanethiol (C22H45SH) was prepared following literature 

procedures (supplementary material to ref. 19). The co-(ferrocenyl carbonyloxy)-

undecanethiol (FcC02(CH2)nSH, where Fc is (r|5-C5H,)Fe(r|5-C5H4)) was 

synthesized by esterification of ferrocene carboxylic acid and oo-bromoalcohol, 

and conversion of the bromide to the thiolacetate with sodium thioacetate, 

followed by hydrolysis of the thiolacetate with sodium carbonate (see 

supplementary material to ref. 10). The polycrystalline gold electrodes (of length 

4.4 cm and thickness 0.5 mm) were mechanically polished and subsequently 200 
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nm of gold (99.999%) was thermically evaporated onto both sides of the gold 

substrate in a cryogenically pumped coating system. 

Preparation of the monolayers. Detailed preparation procedures are reported in 

chapter 2. A self-assembled thiol monolayer on a UV/ozone cleaned gold 

electrode was formed by immersing the electrodes in a mixture of ferrocene-

terminated thiol and unsubstituted alkanethiol in ethanol at 5 mM total thiol 

concentration. The relative mole fraction of Fc-terminated thiol to total thiol in 

the solution is denoted xFc and was 0.33, 0.60, and 1.0, respectively. The 

adsorption time was about 24 hours. The monolayers were characterized by 

(advancing and receding) sessile drop contact angle measurements with water 

(see chapter 2). After the electrochemical measurements, the modified electrodes 

were cleaned with UV/ozone to remove the thiol before renewed modification. 

This procedure resulted in reproducible behaviour of the thiol layer. However, 

after repeating this procedure for about 4 or 5 times, the quality of the layers 

became less (large contact angle hysteresis, irreproducible cyclovoltammograms) 

and a fresh gold layer was evaporated on the cleaned electrode after which the 

entire modification procedure could be repeated. 

Potential-dependent contact angle and electrochemical measurements. The 

experimental procedure has been described in detail elsewhere [7a]. In summary, 

the thiol-modified gold electrode was used as a Wilhelmy plate connected to a 

bottom loading balance (Mettler PM2000). To allow potentiostatic control (with 

a Schlumberger 1186 EI/Hi-Tek Instruments PP RI potentiostat), the plate was 

used as a working electrode in a three-electrode configuration, using platinum 

as the counter electrode and a saturated calomel electrode (SCE) as the reference 

electrode. The plate is partly immersed in deaerated 1 M HC104. The scan rate 

was 10 or 100 mV s~'. The capacitive current and the change in mass associated 

with the meniscus rise or fall were sampled (on a personal computer) as a 

function of the potential. The change in mass resulting from alterations in solid-

liquid surface tension was converted to a change in contact angle [7]. 

Before and after a potential sweep, the differential capacitance of the thiol layer 

was measured at 0 V(SCE) using a frequency response analyzer (FRA; 
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Schlumberger Solartron 1170) generating a sinusoidally modulated potential with 

a frequency of 10 Hz and an amplitude of 10 mV to the Wilhelmy plate working 

electrode. 

Besides in the scanning mode, the measurements were also performed in a step 

mode where the potential was switched between 0 V(SCE) and 0.9 V(SCE) in 

order to determine the rate of wettability changes. 

The experiments were carried out at 25°C. The surface tension of the electrolyte 

solutions was about 72 mN m"1. The reagents were analytical grade (Merck). The 

reported results are the average values of at least 3 independent measurements. 

7.3. Results and discussion 

7.3.1. (0-(Ferrocenyl carbonyloxy)undecanethiol 

Figure 7.1a shows the change in current as a function of the applied potential for 

a gold electrode modified with a FcCn thiol monolayer. The applied potential 

is scanned at 10 mV s"1, beginning at 0 V(SCE), where the uncharged ferrocene 

group is stable, and reversing at 0.9 V(SCE), where the ferricinium cation is 

stable. For a scan rate of 100 mV s"1, the shape of the curve (not shown) does 

not differ significantly. The current increases almost linearly with the scan rate 

as expected for a surface bound redox couple [20]. The shape of the 

cyclovoltammograms is symmetrical, indicating that the distribution of the 

reactivity of the ferrocene terminated alkanethiol molecules in the monolayer is 

narrow. 

In addition to the redox peaks always some random sharp current spikes were 

observed in the oxidation/reduction potential region. Outside this region no such 

spikes were observed. The number and value of the current peaks varied per 

sample. Similar peaks were also observed by Uosaki et al. [14]. It was suggested 

that these peaks may either be due to structural changes in the self-assembled 
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Figure 7.1: (a) Cyclovoltammogram for a FcCu thiol modified gold electrode in 1 M 
HC104. (b) Potential-dependent change of the contact angle measured with the Wilhelmy 
method. Two successive scans between 0 and 0.9 V(SCE) are shown, (a) and (b) are 
measured simultaneously. The scan rate is 10 mV s~' (first scan, > and <; second scan, 
> and «). 

monolayer or to strong interactions between the electroactive groups. The former 

is not very likely, because infrared spectroelectrochemical measurements did not 

show detectable changes in orientation of the ferrocenealkyl chains as a function 

of the applied potential [12]. The latter cause seems more probable since the 

electron transport through the alkane tail of the FcCn thiol molecule and the 

subsequent oxidation of the Fc group may influence the oxidation of the 

neighbouring molecules. 
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Repeated scanning does not affect the cyclovoltammograms (including the 

random sharp current spikes), which demonstrates that the monolayers are stable 

in this potential range. The stability of the thiol layers is also confirmed by 

differential capacitance measurements at 0 V(SCE) before and after the 

electrochemical measurements. The value of the capacitance C, (~ 2.0 ±0.1 uF 

cm"2) does not change, indicating that the FcC,, monolayer is not affected by 

oxidation. The absolute capacitance value of the FcC,, monolayer is relatively 

high compared to that of an unsubstituted alkanethiol layer of about the same 

chain length (= hexadecanethiol ("C16 thiol"), for which C, « 0.9 uF cm-2 [7b]). 

The higher capacitance is partly due to the polar character of the ferrocene group 

[7c] and partly to the lower degree of ordering of the FcC,, molecules. 

The surface coverage of the FcC,, thiol can be quantified by integration of the 

current peaks and dividing this area by the scan rate giving the amount of 

transferred charge Q [15]. The result is given in Table 7.1 for the pure FcC,, 

thiol monolayer and several mixed monolayers. Knowing Q and realizing that 

oxidation is a single-electron process (see eq 7.1), the ferrocene surface coverage 

TFc can be estimated (see Table 7.1). The surface coverage is comparable for the 

cathodic and the anodic scan. Per individual sample the surface coverage varies 

between 3.6xl014 and 4.2xl014 molecules cm"2. From geometrical considerations, 

the maximum surface coverage of the Fc-thiol is calculated to be 2.7x1014 cm"2 

[10]. The discrepancy between the measured and calculated value may point to 

the roughness factor of about 1.5 for our gold electrodes which seems to be a 

reasonable number. The relatively large scatter in surface coverage per individual 

electrode is also found by other researchers [12,14,15]. It is probably a result of 

the relatively low ordering of the molecules due to the complex nature of the 

film-formation mechanism imposed by the bulky size of the ferrocene groups. 

Figure 7.1b shows the influence of the potential on the contact angle 6 as 

indirectly determined with the Wilhelmy plate method. The change in contact 

angle was determined simultaneously with the cyclovoltammogram in Figure 

7.1a. The advancing contact angle is initially 74°. On scanning in the cathodic 

direction, the contact angle starts to decrease at a potential of about 0.4 V(SCE), 

just after the oxidation of the Fc group has started at 0.3 V(SCE) (Figure 7.1a). 
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After the oxidation is completed at about 0.8 V(SCE), the contact angle 

continues to decrease slowly (the front of the meniscus advances). In the 

reversed scan direction, the contact angle at first slightly decreases. The 

minimum contact angle reached is about 48°. When more than half of the Fc+ 

cations have been reduced to Fc (at about 0.5 V(SCE)) the meniscus starts to 

recede and the contact angle increases. After the reduction of all the Fc+ ions in 

the monolayer, 0 still slightly increases until an equilibrium is reached. In this 

situation, the final contact angle at the end of the first scan has a value of about 

53° at 0 V(SCE) which is much lower than the original value of 74°. In a 

second scan the contact angle starts to decrease again after more than 50% of the 

Fc groups have been oxidized and reaches about 48° at 0.9 V(SCE). On renewed 

reduction, the contact angle increases to 52°. Repeated scanning shows that the 

contact angle in this system can reversibly be switched between 48° and about 

52°. The background of this change in wettability upon oxidation and reduction 

will be discussed in the next section. 

Table 7.1: Characteristics of a co-(ferrocenyl carbonyloxy) undecanethiol monolayer 
diluted with unsubstituted alkanethiols (C„H2n+1SH) adsorbed on gold. 

Thiol 

FcC„ 
rClwj |/̂ —-12. 

rC l ^ j |/V—-12 

FcC n /C 8 

FcCn /C16 

.rCv^j j / ^22 

Xf, 

1.0 
0.6 
0.33 
0.6 
0.6 
0.6 

Q 
(uC cm"2) 

62+6 
39±3 
26+2 
48±4 
38±3 
20+2 

r f ( x i o 1 4 

(crrf2) 

3.910.3 
2.410.2 
1.610.1 
3.010.3 
2.410.2 
1.310.1 

£mm. 
(V(SCE)) 

0.54+0.01 
0.56+0.01 
0.56+0.01 
0.54+0.01 
0.59+0.01 
0.6110.01 

c, 
(uF cm 2) 

2.010.1 
1.8+0.1 
1.410.1 
1.910.1 
1.410.1 
0.910.1 

e; 
(deg) 

7413 
7613 
8513 
7413 
9313 

11013 

e; 
(deg) 

5513 
5813 
6013 
5113 
7513 
8613 

measured with water 

The partly irreversible behaviour of the potential-dependent wetting of the FcCH 

thiol is due to contact angle hysteresis: the advancing contact angle 8a measured 

with water using the sessile drop method is 74°±3° and the receding contact 
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Figure 7.2: Schematic representation of the hysteresis effect on the potential-dependent 
change in wettability (first scan, > and <; second scan, » and <). Details are given in 
the text. 

angle G,. is 55°±3° (see Table 7.1). Additionally, the contact angles of 1 M 

HC104 with this modified electrode were measured. Although there was a trend 

that the contact angles were lower than those with water, this difference was not 

significant. Figure 7.2 schematically shows the change in advancing and receding 

contact angles as a function of the potential. The meniscus will only move when 

the contact angle has a value beyond the solid lines drawn in Figure 7.2. Starting 

at a potential E0 (at which the ferrocenethiol is in its reduced form) with an 

advancing meniscus with a contact angle Qa
red, the potential is increased to E,. 

At this potential the oxidation of the Fc groups starts and, consequently the 

contact angle begins to decrease. At the potential E2 where all FcCn has reacted 

to Fc+C||, 0a has reached the value of the advancing contact angle of the 

oxidized Fc+Cn thiol Q°x and remains constant. On the reverse scan in anodic 

direction, reduction of the Fc+ cation starts at E2. The contact angle does not start 

to recede at that potential since receding only occurs when the contact angle 

becomes smaller than the equilibrium contact angle Q,(E) a s indicated by the 

solid line drawn in Figure 7.2. At the potential E„ the meniscus will recede and 

the contact angle increases. At E, all Fc+ is reduced, and 0,. becomes constant 

having a value of Ql
red. The contact angle Q,red (at E = E0) is equal to 6,. as 

measured with the sessile drop method. On repeating this cycle, 9 again 
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decreases at E„. On continuous scanning a reversible contact angle loop is 

obtained where 0 switches between 6,'"' and 6/v. For the FcCn monolayer, 0,. 

as measured with the sessile drop method is 55°±3°. This agrees well with the 

er
red (at 0 V(SCE)) found in Figure 7.1b (0/"rf - 53°). 

The situation found in Figures 7.1a and 7.1b does approximately correspond with 

the schematic representation in Figure 7.2. The equilibrium contact angles are 

reached beyond the potential at which all Fc groups are reduced or oxidized. 

Clearly, the change in wetting is slow as compared to the change in charge 

transfer. One should realize, however, that the charge transfer at the surface of 

the macroscopic electrode is not necessarily the same as the charge transfer in 

the (thin) meniscus. 

74 rr 

0 40 80 120 160 200 240 280 320 

t(s) 

Figure 7.3: Change in contact angle of a FcC,, monolayer on gold in 1 M HC104 upon 
stepping the potential between 0 and 0.9 V(SCE) and back. Starting at 0 V(SCE) the 
potential is switched to 0.9 V(SCE) after 4 s. The potential remains at this value during 
30 s and is then switched back to 0 V(SCE). After 30 s the potential is again stepped 
to 0.9 V(SCE). After 5 min this cycle is stopped. The dashed line (—) indicates the 
receding contact angle with water as measured with the sessile drop method. 

The relatively slow movement of the advancing meniscus can be clearly 

observed when stepping the potential between 0 and 0.9 V(SCE). The time 

between the steps was 30 s. The results of these step experiments are shown in 
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Figure 7.3 where the contact angle is shown as a function of step time and 

potential. Initially 9a is 74° (=QJed). After a few seconds the potential is stepped 

to 0.9 V(SCE), and the contact angle immediately starts to decrease. Within 2 

seconds the meniscus is half-way between its initial and final height (th50). 

Within 4 s the meniscus is at 80% of its final height (thli0) and finally the contact 

angle becomes 49° (=8/v)- After 30 s the potential is switched back from 0.9 to 

0 V(SCE) and the contact angle increases from 49° to 56° (=0,red) in th50 = 1.5 

s and tmo ~ 3 s (th50 and thS0 are determined relatively to the difference between 

meniscus height before and after the last step). After another 30 s the potential 

is switched again from 0 to 0.9 V(SCE). The contact angle decreases from 56° 

(0/"') to 49° (9a"
v) in th50 = 2 s and th80 = 4 s. The absolute values between which 

the contact angle is being switched is comparable with those observed in ref. 8b. 

The recession of the meniscus is always faster than the advance. When receding, 

the meniscus passes over a surface where the charge transfer has already 

occurred. On advancing, there is a dynamic quasi-equilibrium in the three phase 

line where charge transfer can only occur when the advancing meniscus has 

passed. Therefore, it is obvious that recession is a faster process than advance. 

The absolute values between which the contact angle is being switched is 

comparable with those observed in ref. 8b. 

Besides the influence of the direction of the meniscus movement on the velocity 

of the meniscus, there is also an effect of the difference in contact angle before 

and after oxidation. This difference, and hence the total meniscus rise, is much 

larger in the first step from 0 to 0.9 V(SCE) than in the second one, whereas the 

time in which the rise takes place is about the same. Hence, the velocity 

(meniscus rise/time) is higher when the driving force, Acos8, is larger. 

The receding contact angle with water 0;. determined with the sessile drop 

method is indicated by a dashed line in Figure 7.3. As was observed for the 

cyclovoltammogram, it is evident that the maximum recession of the meniscus 

when switching from 0.9 to 0 V(SCE) is mainly determined by the receding 

contact angle. However, in Figure 7.3 a constant decrease of 9/"' after several 

cycles is observed. This effect is also seen in Figure 7.1b and is also observed 

by Whitesides et al. [8b]. The cause of this effect will be discussed in the next 
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section where pure FcCn thiol monolayers are compared with FcCn/alkane 

mixed thiol monolayers. 

7.3.2. Coadsorption of ferrocene and dodecanethiols: influence of 

concentration 

It is to be anticipated that mixing of ferrocenethiol with unsubstituted thiol will 

have two important effects on the monolayer [10]. First, assuming that the two 

compounds are homogeneously mixed in the monolayer, the unsubstituted 

alkanethiols may act as a spacer and keep the ferrocene groups laterally well-

separated giving non-interacting sites. Second, the unsubstituted thiols may 

promote a more ordered self-assembled monolayer, resulting in a fixed distance 

between the Fc group and the electrode surface. Due to the bulkiness of the Fc 

group, the ordering of the FcCn thiol monolayer is less than that of 

unsubstituted alkanethiols. On mixing with alkanethiol, the rate of ordering is 

expected to be influenced by the chain length and concentration of the 

unsubstituted thiol. The influence of the concentration was studied by mixing 

co-(ferrocenyl carbonyloxy)undecanethiol with dodecanethiol ("C12 thiol"). The 

dodecyl chain is slightly shorter than the carbonyloxyundecyl tail of the FcCu 

thiol because of the carboxyloxy link, and is therefore expected to separate the 

ferrocenethiol molecules which might have a positive effect on the ordering of 

the Fc groups. 

The results of the electrochemical measurements on gold electrodes modified 

with a monolayer of FcCn thiol mixed with C12 thiol are given in Figure 7.4a. 

The relative mole fraction xFc of FcCn in the ethanol solutions was 1.0, 0.6 and 

0.33, respectively. The characteristics of these layers are given in Table 7.1. The 

surface coverage of the FcCn thiol is determined by integration of the 

Z-E-curve as explained before. Comparing the surface coverage of the pure 

FcC|, thiol monolayer with those in the mixed monolayers, it is easily calculated 

that the relative surface coverage of FcCM thiol is 0.6 for xFc = 0.6 and 0.4 for 

xFc. = 0.33. Hence, there is no significant preferential adsorption of one of the 
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Figure 7.4: (a) Cyclovoltammogram (in 1 M HC104) for mixed monolayers of FcC,, 
thiol and C12 thiol on gold formed from ethanol solutions containing various mole 
fractions of the ferrocene-terminated thiol: xFl. = 1.0 (—), 0.6 (-•-•-) and 0.33 (••••)• 
(b) Potential-dependent change of the contact angle measured simultaneously with (a) 
with the Wilhelmy plate method. The scan rate is 10 mV s~' (first scan, > and <; second 
scan, > and <). The analogous curve for xFl. = 1 is shown in Figure 7.1b. 

two compounds on the gold surface. The position of the maximum in the 

/ -£-curve, Emax, is hardly affected by xFl. (see Table 7.1 and Figure 7.4a). We 

will comment on this point later. 

The differential capacitance C, at 0 V(SCE) of the mixed monolayers depends 



Electroactive ferrocene-terminated alkanethiolate monolayers 127 

on the composition, and decreases with decreasing xFc. Mixing the FcCn 

monolayer with C12 lowers the capacitance primarily because the capacitance of 

a pure C12 thiol monolayer is much lower (~ 1.1 uF cnT2 [7b]). Moreover [21], 

the monolayer will be more ordered because the surface concentration of the 

FcCn thiol with its bulky Fc groups is less. 

The advancing and receding contact angles have been measured with the sessile 

drop method for the different Fc concentrations and are given in Table 7.1. The 

contact angles are to some extent influenced by the concentration of the 

hydrophobic C12 thiol (9a of Cl2 thiol is 112°[7b]). When xFc = 0.6, the contact 

angle is slightly changed compared to that at xFc. - 1. At larger C12 thiol 

concentrations (xFc = 0.33) the contact angle notably increases. According to the 

Isrealachvili-Gee equation [22,23] the influence of the C12 thiol on the contact 

angle should have been more pronounced if the interface were composed of a 

random molecular mixture of the FcCn and C12 thiol. However, the surface 

region is probably mainly composed of ferrocene due to the bulky Fc groups so 

that the underlying C12 thiol is partly shielded. Only at large C12 thiol 

concentrations is the C12 thiol experienced by the sessile drop. This shielding is 

only effective if the molecules are homogeneously mixed. If the surface would 

have consisted of large patches of relatively pure C12 thiol and FcCn thiol, 

respectively, the advancing contact angle and the contact angle hysteresis are 

expected to have been higher. Therefore, we believe that either the two types of 

molecules are homogeneously mixed as has also been found for other types of 

thiol molecules [23,26,27] or that the patches are too small to be experienced by 

the sessile drop. 

The results of the contact angle measurements obtained simultaneously with the 

cyclovoltammogram in Figure 7.4a, are given in Figure 7.4b. For sake of clarity 

only two curves are shown in this figure: for xFc = 0.33 and xFc = 0.6. The curve 

for xFc = 1 was already shown in Figure 7.1b. For the mixed monolayers, the 

same kind of semireversible behaviour of the contact angle as a function of the 

potential is found as for pure FcC,, thiol (compare Figures 7.4b and lb). 

However, there are some differences. The reversible contact angle loop of the 

monolayer with xFc = 0.33 is much smaller than for xFc = 1. This is directly 
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caused by the lower Fc concentration in the monolayer for xFc - 0.33. Due to 

this lower concentration the difference between Qa
red and 8/A will be less whereas 

the contact angle hysteresis (8/''rf - Q,red) is not affected. Consequently, the 

reversible contact angle loop becomes smaller (see Figure 7.2). Since 8,. of 

water measured with the sessile drop method is 60°, it is surprising that any 

contact angle loop is observed at all. Probably the contact angle determined with 

the sessile drop method differs slightly from Qr
red as determined by the Wilhelmy 

plate. On the other hand, the contact angle loop of the monolayer with xFc - 0.6 

is larger than with xFc = 1: 9 can be switched between 47° (8U"
V) and 57° (9,av) 

whereas for the thiol layer with pure FcC,, thiol 8 can be switched between 48° 

and about 52°. Apparently, Qa
ox is hardly affected by a decreased FcC,, thiol 

concentration in the monolayer whereas Q,red is affected. 

The effect of contact angle hysteresis can also be observed in the 

step-measurements in Figure 7.5 where the potential is periodically switched 

between 0 V(SCE) and 0.9 V(SCE), as in Figure 7.3. For ease of comparison, 

the curve of the latter figure is reproduced in Figure 7.5. The 8,. values 

determined with the sessile drop method are indicated by the dashed horizontal 

er(xFc = 0.33) 
er(xFc = o.60) 
er(xFc = LOO) 

120 160 200 240 280 320 

Us) 

Figure 7.5: Change in contact angle (in 1 M HC104) for mixed monolayers of FcC,, 
thiol and C,2 thiol on gold (xFc = 1 (—), 0.6 (-•-•-) and 0.33 (-•)) while stepping 
the potential between 0 and 0.9 V(SCE). The description of the step procedure is given 
in the legend of Figure 7.3. The dashed horizontal lines (—) indicate the receding 
contact angle with water measured with the sessile drop method. 
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lines. An effect of 9,. on the shape of the curves is observed: the maximum 

recession of the meniscus is largely determined by 0,.. Like in the cyclic 

electrowetting measurements, the largest reversible electrowetting effect is 

observed for xFc - 0.6. In this case the contact angle can be switched between 

49° and 59° (see Figure 7.5). For the potential scanning measurements (Figure 

7.4b) it was found that the contact angle could be switched between 47° and 57°. 

The small difference between these measurements falls within the deviation 

between the individual measurements. 

The absolute difference between the initial contact angle (QJ'ed) and the contact 

angle after the first step from 0 to 0.9 V(SCE), Qa"\ is hardly affected by xFc. 

This is a remarkable result since the surface charge of the undiluted monolayer 

after reduction is much higher than of the monolayer with xFc = 0.33, and 

therefore it is expected that the electrical double layer charge would also be 

much higher. Besides, if the change in electrical double layer would affect the 

electrowettability of the monolayer, this effect would have been larger anyway. 

For an undiluted Fc thiol layer on gold, the surface charge G0 is, after oxidation, 

62±6 uC cm"2. It can be derived fhermodynamically [7] that the change in free 

energy involved in establishing the electrical double layer (AFrf), which is 

equivalent to the change in the electrical component of the solid-liquid interfacial 

tension (ySL
el), is given by 

A/7, = V ' = - J*M(£-£ ) (7-4) 

where Ee is the potential of zero charge. Although we are not able to calculate 

exactly the difference in free energy involved in establishing the double layer at 

the ferrocenethiol-electrolyte interface because the potential of zero charge is 

unknown in this case, it is clear that the large surface charge (being about a 

factor 10-100 larger than that of an alkanethiol monolayer of the same chain 

length) would result in a very large change in ySL
el and, hence, in a very low 

contact angle. Comparing for example the surface charge of a dodecanethiol 

monolayer on gold in 10"2 M K2S04, we found the maximum surface charge to 
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be about 1.4 uC crrr2 [7b] and the corresponding change in ySL
el being about 10 

mN m~', which produced a contact angle shift from 112° to 105°. 

Because the electrowettability effects are smaller than expected according to eq 

7.4, and no measurable effect of the Fc concentration in the mixed monolayer 

on the electrowettability is found, it is concluded that the change in wettability 

is not mainly a result of a change in ySL
e'. According to the model underlying eq 

7.3, the electrowettability must consequently be ascribed to a change in the 

chemical component of ySL, ySL°. This will be a direct result of the wetting 

properties of the anions bound to surface groups. These anions form ion pairs 

with Fc+ after oxidation and give, for the C104" anion, an advancing contact 

angle of about 48°. The charge of the Fc+ groups must be completely 

compensated by the anions because no indications for an influence of the diffuse 

electrical double layer are found. 

The question is whether a surface covered with C104 results in a contact angle 

of about 48°. The hydration properties of Perchlorate anions, which are in fact 

a degree of wetting, are unknown to us. Presumably, the Perchlorate is not fully 

hydrated. For example, many Perchlorate salts are soluble in both organic 

solvents and water. Hence, a contact angle of about 48° for the Perchlorate 

adsorbed on the Fc+ surface seems reasonable. In order to prove that C104" ions 

specifically adsorbed on the Fc+ surface are responsible for the change in 

wettability, we tried to adsorb other types of anions like CI" (from 1 M HCl) or 

F" (from 1 M NaF). These attempts were not successful due to desorption of the 

Fc groups in these environments upon oxidation. This is likely to be caused by 

hydrolysis of the ester group, which is catalyzed by both base and acid [24]. On 

dilution of the Fc-monolayer with the C12 thiol, the contact angle is mainly 

determined by the wetting properties of the FcCn thiol due to shielding effects 

of the large Fc groups. This effect still occurs when the Fc groups are oxidized 

and ion pairs are formed. Therefore, the initial contact angle jump after 

switching the potential from 0 to 0.9 V(SCE) will be hardly affected by the 

absolute FcCM concentration, unless the concentration becomes very low. This 

will be further demonstrated in the next section. 
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The ion pair formation also accounts for the difference between the 

electrowetting results between the monolayers with xFc = 1 and with xFc = 0.6 

(see Figure 7.5). Due to this ion pair formation, 6,/" of the pure FcCn thiol 

monolayer and of the mixed FcCu/C12 (xFl. - 0.6) monolayer are comparable. 

Apparently, the concentration of C104 anions is large enough for completely 

shielding the hydrophobic C,2 thiol. The shielding of the reduced Fc groups 

(without C104" adsorbed) is less effective, resulting in a higher 0,.''fd for the 

mixed monolayer. 

For xFc = 1, a decrease of O,'"' with the number of applied steps is observed. This 

was also observed in ref. 8b. This is not the case for the diluted thiol layers (see 

Figure 7.5). This effect is attributed to the lower degree of ordering of the bulky 

Fc-molecules in the pure FcCn thiol monolayer. Continuous oxidation and 

reduction may induce more disorder stimulated by the relatively high Fc 

concentration in the monolayer, resulting in a lower receding contact angle and 

thus in a lower 8,.'"'. 

7.3.3. Coadsorption of ferrocene- and alkanethiols: influence of 

chain length of alkanethiols 

In this set of experiments, the FcCn thiol was mixed with alkanethiols of 

different chain length: C8, C,2, C16 and C22. The mole fraction of FcCn thiol in 

the solutions was kept constant at 0.6. The results of the electrochemical 

measurements are shown in Figure 7.6a. The chain length has two effects on the 

cyclovoltammograms. First, the longer the unsubstituted thiol, the lower the 

concentration of FcCn thiol in the monolayer (see Table 7.1). The relative 

surface coverages are respectively 0.8 (C8 thiol), 0.6 (C,2 thiol), 0.6 (C,6 thiol) 

and 0.3 (C22 thiol). This preference was also found in the competition of other 

long-chain adsorbates with short-chain compounds [10,11,16,25] and can be 

attributed to the relatively poor solubility of the longer chains in the polar 

solvent ethanol leading to their preferential adsorption on gold. The relative 

concentration of the alkanethiols in the FcC,, monolayer also affects the 
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differential capacitance of the layers. With increasing alkanethiol concentration 

the capacitance becomes lower and eventually approaches that of the pure 

alkanethiol monolayer [7]. Second, with increasing chain length, Emax is shifted 

in the cathodic direction for both anodic and cathodic scans. This can be 

attributed to the hydrophobic environment of the FcC n thiol molecules created 

by the coadsorbed alkanethiol [11]. It is most pronounced when the chain length 
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Figure 7.6: (a) Cyclovoltammogram (in 1 M HC104) for mixed monolayers of FcCM 

thiol and C8 (—), C12 (-•-•-), C,6 (•—) or C22 (-••-••) thiol, respectively, on gold 
formed from ethanol solutions with xFe - 0.6. The relative concentration of the FcCM 

thiol in the monolayer is then respectively 0.8, 0.6, 0.6, and 0.33. (b) Potential-dependent 
change of the contact angle measured simultaneously with (a) with the Wilhelmy plate 
method. The scan rate is 10 mV s~' (first scan, > and <; second scan, > and <). The 
curve for FcCM/C12 (xFt. = 0.6) is shown in Figure 7.4b. 
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of the alkanethiols is equal to or longer than the ferrocenethiol [11]. In our 

measurements this is the case for mixtures of FcCn thiol with C16 or C22 thiol. 

With C,2 thiol, even at high concentrations, Emax is hardly affected (Figure 7.4a). 

Therefore, the main effect of mixing on Emax is due to the creation of a 

hydrophobic environment for the terminal Fc groups by the longer alkanethiols. 

This may be ascribed to a reduced interaction of anions with the hydrophobic 

surface influencing the formation constant involved in the formation of ion pairs 

(eq 7.2). 

The chain length of the alkanethiol strongly influences the contact angle of water 

with the mixed monolayers: the longer the alkane chain, the stronger the 

influence on the contact angles of the mixed monolayers (Table 7.1). For the 

FcCn/C22 mixture, the C22 chain is considerably longer than the FcCn chain, so 

that the Fc groups are almost completely buried in the alkane chains. The contact 

angles do not differ markedly then from those obtained with 100% C22 thiol (0a 

= 117°, 9,. = 88° [7b]). 

The results of the contact angle measurements as a function of the potential of 

the FcCn thiol layer mixed with C8, C16, and C22 thiol (xFc = 0.6), respectively, 

are given in Figure 7.6b. The corresponding result of the FcCn/C12 mixed 

monolayer can be found in Figure 7.4b. The electrowettability of the FcCn/C8 

and FcCn/Cl6 mixed monolayer is (partly) reversible. Due to a much lower 

FcCn concentration in the mixture with C22 thiol, the effect of the potential on 

the contact angle becomes less pronounced for this monolayer. Hence the 

difference between Qa
red and 6U"

V and between Qr
red and 0,."' becomes less. This 

will influence the reversibility of the electrowettability: considering the situation 

sketched in Figure 7.2, the slope of the lines in Figure 7.2 will be less. In case 

8/v is larger than 9,"'rf, the meniscus will not recede upon switching the potential 

from a value where Fc is oxidized to Fc+ to a potential where the Fc+ is reduced. 

This is the case for the FcC,,/C22 mixed monolayer where 8„"v - 103° and Q"11 

= 86°. Therefore, no reversible contact angle loop is found for the FcCN/C22 

mixture; the potential-dependent wetting behaviour of these monolayers is 

completely irreversible. 
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The influence of the alkane chain length on the results of the step measurements 

is shown in Figure 7.7 together with 9,. (dashed horizontal lines). Generally, 

mixing of the FcC,, thiol with C8, C12, or C16 thiol has a positive effect on the 

stability of the monolayer: no effect of the number of potentialsteps on Q,red of 

these mixed monolayers is found (Figure 7.7) whereas for the pure FcCn thiol 

monolayer 8,.''"' decreased with the number of potential-steps (Figure 7.3). 

Comparable with the scanning measurements in Figure 7.6b, it is observed that 

the electrowettability of the FcCn/C22 mixture is irreversible. 

Apart from the hysteresis effect on the potential-step curves, another effect is 

evident. The time frame in which the meniscus advances to arrive at its 

equilibrium position (after switching from 0 to 0.9 V(SCE)) becomes larger with 

increasing alkane chain length or with increasing alkanethiol concentration (see 

Figure 7.5). This observation can be attributed to the hydrophobic environment 

of the Fc groups. After switching from 0 to 0.9 V(SCE) the meniscus will 

attempt to find a new equilibrium position. This cycle is slow because charge 

can only be transferred when the meniscus has passed over the surface. In this 

process it is disadvantageous when the surface also contains hydrophobic groups. 

erFc/c22) 

6r(Fc/C16) 

er<Fc/c12) 

er(Fc/c8) 
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Figure 7.7: Change in contact angle for mixed monolayers of FcC,, thiol and C8 ( ), 
C12 (-•-•-), C16 (-••) or C22 (-••-••) thiol, respectively, on gold (xFc = 0.6) while 
stepping the potential between 0 and 0.9 V(SCE). The description of the step procedure 
is given in the caption of Figure 7.3. The dashed horizontal lines (—) indicate the 
receding contact angle with water measured with the sessile drop method. 
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The hydrophobic molecules will interrupt the cycle of the ferrocene groups 

between charge transfer and meniscus movement and consequently the advance 

of the meniscus becomes slower. 

The time to recede is hardly affected by the alkanethiol chain length. In this case 

there is no dynamic equilibrium between the charge transfer in the meniscus and 

the meniscus movement because all charge (including in the meniscus area) will 

be transferred as soon as the potential is switched from 0.9 to 0 V(SCE). At that 

time the surface becomes an uncharged ferrocene surface with poor wettability 

and the meniscus will drop instantaneously. 

7.4. Conclusions 

The electrochemical and electrowetting characteristics of mixed 

FcC||/alkanethiol monolayers on gold have been studied. It is found that the Fc 

groups can be oxidized or reduced without desorbing from the gold substrate. On 

oxidizing the Fc group to the ferricinium cation Fc+ in a monolayer of pure 

FcCn, the advancing contact angle with 1 M HC104 changes from 74° (Qa
red) to 

49° (Ö/1)- After renewed reduction the contact angle increases to 56° (Q,red) and 

can then be continuously stepped between about 56° and 49°. This partly 

irreversible wetting behaviour is shown to be caused by contact angle hysteresis 

of the monolayer. With the number of applied steps a decrease in 0/'"' is 

observed which is ascribed to disordering of the monolayer due to continuous 

oxidation and reduction. This disruptive effect of the oxidation/reduction on the 

ordering of the monolayer is prevented by mixing the FcCM thiol with a C8, Cl2, 

or C16 thiol, respectively. No indications for clustering of the FcCH thiol and the 

alkanethiol are found. The mixing has a positive effect on the stability of the 

FcCu molecules due to a larger distance between the bulky Fc groups. 

The contact angles of water with mixed FcCu/C„ thiol (with n = 8 or 12) 

monolayers with relatively high FcCu thiol concentration (xF(. > 0.66) are similar 

to those of the pure FcCu thiol monolayers due to shielding of the alkanethiol 
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by the bulky Fc groups. This shielding becomes less effective for longer 

alkanethiols (C16 or C22 thiol) and for lower FcCn thiol concentrations in the 

monolayer. 

Strong indications were found that the electrowettability is a result of ion pair 

formation with (hydrophilic) anions upon oxidation of the Fc groups to 

compensate the surface charge. These anions change the chemical component of 

the solid-liquid interfacial tension, ySL°, and consequently the wettability. The 

absolute amount of Fc groups in the mixed monolayer hardly influences the 

potential-induced wettability change, as long as the chain length of the 

alkanethiol is shorter than the tail of the Fc thiol and as long as the mole 

fraction of FcCn in the solution is above xFc>03. From this finding and from the 

fact that the wettability is smaller than expected on the basis of the change in the 

surface charge, we conclude that the electrical double layer charge compensation 

by the electrolyte is negligible as a result of the low net surface charge due to 

anion adsorption. Therefore, we conclude that the charge of the ferricinium 

cations formed after oxidation is completely compensated by C104" anions. 

The largest reversible contact angle loop is observed when mixing the FcC,, 

thiol with C|2 thiol (with xFc = 0.6). In this case 6 can be switched between 49° 

(e;u) and 59° (9/^). 

The rate with which the wettability changes as a function of the potential is 

found to be influenced by the direction of the meniscus movement. Advance is 

always slower than recession due to the dynamic equilibrium between charge 

transfer and adjustment of the contact angle in the meniscus during the rise of 

the meniscus. This adjustment is hindered by the presence of hydrophobic 

molecules in the thiol layer, the advance becoming slower. The rate of meniscus 

movement is also influenced by the absolute change in contact angle before and 

after oxidation; the larger the difference, the faster the meniscus moves. 

This study has shown that the oxidation/reduction of Fc-terminated thiol 

monolayers provide an elegant method to significantly alter the wettability of 

surfaces. The change in wettability is highly reversible. The reversibility is only 
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limited by contact angle hysteresis. Reduction of contact angle hysteresis in the 

present system will be difficult to achieve due to the large size of the Fc groups. 
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Chapter 8 

Galvanic copper deposition on thiol-modified gold 
electrodes' 

Abstract: Galvanic deposition of copper from 1CT2 M CuS04 on self-assembled 

X-terminated alkanethiol monolayers (HS(CH2)„_1X) on gold is studied. The influence of 

the chain length (X = CH„ n = 12, 18, 22) and of the type of terminal group (A' = OH, 

CI, CN (n = 12), COOH (n = 11 )) on the deposition process is determined using 

cyclovoltammetry and optical and scanning electron microscopy. The presence of a thiol 

layer on gold, independent of the terminal group or thiol chain length, results in 

deposition of hemispherical nuclei whereas deposition on bare gold gives rather 

homogeneous flat copper films. The difference in morphology is ascribed to the 

difference in surface tension between copper and the substrate. Nucleation occurs on top 

of the thiol layer when the self-assembled monolayer is highly ordered. For nucleation 

to occur, an overpotential is required due to the potential drop across the dielectric of 

the thiol layer. As a consequence, the overpotential is found to increase with increasing 

thiol chain length: it is about -210 mV for a HS(CH2)I7CH, layer and -270 mV for a 

HS(CH2)21CH3 layer. The structure of the monolayer affects the potential drop across the 

thiol layer, and therefore the magnitude of the deposition overpotential. This makes 

cyclovoltammetry to a very sensitive method to test the quality of self-assembly. 

Although the overpotential for nucleation on OH-terminated thiol is about the same as 

for CH3-terminated thiol, about 100 times more particles are deposited on the 

OH-terminated thiol. This is ascribed to a combination of a smaller potential drop across 

the OH-thiol layer and a higher chemical affinity of Cu ad-atoms for OH-groups. The 

cyclovoltammograms of the short chain CH3-, CN-, and Cl-terminated thiols do not 

show a distinct overpotential. We believe that this is related to the occurrence of defects 

in the thiol monolayer. 

'This chapter is submitted for publication in the Journal of Physical Chemistry (1994). 
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8.1. Introduction 

Metal/metal and metal/organic interfaces play an important role in many areas 

of technology. These interfaces are relevant both on a macroscopic scale, like in 

the plating industry [1], and on a microscopic scale as in lithographic 

applications [2,3]. An understanding of the factors governing the morphology of 

a metal deposit on solid substrates is vital in order to be able to control the 

morphology of these deposits. Usually smooth and homogeneous metal deposits 

are required. One of the many factors determining the morphology of metal 

deposits is the substrate on which the metal is deposited. For example, galvanic 

deposition of Pb02 on platinum results in a homogeneous and dense film 

whereas deposition of Pb02 on carbon (under the same plating conditions) results 

in hemispherical Pb02 particles [4]. Similarly, the nature of the substrate plays 

an important role when metal is vapour-deposited on, e.g., polymer surfaces [5]. 

The purpose of this study is to investigate the influence of the wettability of the 

substrate on the morphology of metal deposits. For this purpose we use a model 

system for the interface between a metal and an organic material: galvanically 

deposited metal on self-assembled X-terminated alkanethiol (HS(CH2)„_,X) 

monolayers adsorbed on polycrystalline gold. The structure and properties of 

thiol monolayers on gold have been studied extensively [6]. These monolayers 

are known to be highly ordered and densely packed for n>9 [7,8]. The sulphurs 

form a chemical bond with the gold and have a (A/3XA/3)R30° commensurate 

overlayer structure on Au(l 11) [9,10]. The ordering of the monolayers is found 

to be unaffected by the type of terminal group as long as the cross-sectional area 

of this group is comparable to or smaller than that of the polymethylene spacer 

group [11,12]. This is for example the case for X = CH3, CN, CI or OH [13,14]. 

These monolayers are found to be highly stable under electrochemical conditions 

in an indifferent electrolyte as long as only double layer charging occurs. Even 

for a relatively large terminal group like COOH we found the monolayer to be 

stable [14]. 

One of the advantages of self-assembled monolayer-modified electrodes as 
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model systems over organic substrates such as polymers is that metal deposition 

on monolayer-modified surfaces can be studied in a well-controlled galvanic 

manner. Another advantage is that the type and concentration of surface 

functional groups can be controlled to test their reactivity with the metal deposit. 

A prerequisite for using such monolayers as model systems is that defects like 

pinholes are either absent or small enough to prevent penetration of metal (ions) 

into the monolayer. From atomically resolved Scanning Tunneling Microscopy 

(STM) measurements on thiol layers in air, we know that the monolayer contains 

defects on a microscopic scale [10,15]. The most pronounced defects are holes 

in the top gold layer with a depth corresponding to one unit cell. These holes are 

(partly) filled with ordered thiol [10,15]. Another defect observed with STM are 

missing rows of thiol molecules. Incidentally, ill-defined structures with an area 

of a few nm2 are found in the STM-image. These are assumed to consist of 

disordered thiol molecules [16]. However, from extensive electrochemical 

measurements with thiol-modified gold electrodes we found that penetration of 

small ions like H+ is largely blocked due to the shielding of defects by the long 

chain alkane chains [14,17]. Therefore, although defects may be present in air, 

they do not necessarily affect the (surface) properties of the thiol monolayer in 

a wet environment. In the present study we wish to address the question whether 

or not these layers are suitable model systems for studying metal/organic 

material interactions. In other words, does nucleation of the metal occur at the 

thiol/electrolyte interface or at the gold/thiol interface? 

From a previous study [3] we know that it is possible to galvanically deposit a 

metal on the thiol layer. However, large overpotentials are required. In the 

present chapter we investigate systematically the effects of adsorbed organic 

monolayers on the morphology of the galvanically deposited copper. The 

influence of the alkanethiol chain length (HS(CH2)„_,CH3, n - \2, 18, 22) and 

the role of the terminal group of the thiol molecule (HS(CH2)„_,X, X = CH3, CI, 

CN, OH with n = 12 and COOH with n - 11) on the deposition will be studied. 

The results are compared with copper deposited on bare gold. 
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8.2. Experimental 

Materials. 1-Dodecanethiol (HS(CH2)nCH3) from Fluka and 1-octadecanethiol 

(HS(CH2),7CH3) from Janssen Chimica were used as received. 1-Docosanethiol 

(HS(CH2)2 1CH3) , 1 1 -me r c ap t o - l - undec ano l (HS(CH 2 ) n OH) , 

11-mercaptoundecanoic acid (HS(CH2)l0COOH), 11-chloroundecane thiol 

(HS(CH2)nCl), and 11-mercaptododecanitrile (HS(CH2)UCN) were prepared 

according to procedures described in the literature [8,8,18,19,15]. The 

polycrystalline gold electrodes ( lxl cm2) were mechanically polished on one 

side. Subsequently, 100 nm of gold (99.999%) was evaporated onto the polished 

side of the gold substrate in a cryogenically pumped coating system [17]. 

Preparation of the monolayers. Detailed preparation procedures have been 

reported previously [17]. Before modification, the gold electrode was first 

cleaned with HN03 (65%) for 15 min, rinsed with water and ethanol, and then 

cleaned for 15 min in a UV-ozone reactor (UVP Inc., PR-100). Immediately 

afterwards the electrode was immersed in a 3.5 mM thiol solution in methanol. 

The adsorption time was at least 1 day. The monolayers were characterized by 

(advancing and receding) sessile-drop contact-angle measurements with water 

[17]. 

Electrochemical experiments. Cyclic voltammetry was performed with a 

potentiostat (Schlumberger 1186 EI/Hi-Tek instruments PP RI). The (modified) 

gold substrates were mounted horizontally in a conventional three-electrode cell 

with an exposed area of 0.74 cm2. Platinum was used as the counter electrode 

and a saturated calomel electrode (SCE) served as the reference electrode. The 

electrolyte (10-2 M CuS04 in 10"2 M H2S04) is deaerated in the cell. The 

potential was scanned in the cathodic direction from an initial potential of 0.5 

V(SCE) with a scan rate of 10 mV s"'. The final potential was varied between 

-0.15 V(SCE) and -0.35 V(SCE). 

Measurements were done on both bare and modified surfaces of the gold 

working electrode. For measurements on bare gold, the substrates were treated 
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for 15 min in the UV/ozone reactor just prior to use. Experiments with the 

thiol/gold substrates were carried out on freshly deposited monolayers. Before 

and after recording of the cyclovoltammogram, the differential capacitance of the 

thiol layer in 10~2 M K2S04 was measured with a frequency response analyzer 

(FRA, Schlumberger Solartron 1170). The FRA supplied an ac signal with a 

frequency of 10 Hz and an amplitude of 10 mV to the working electrode. 

Incidentally, potential step measurements were carried out. To that end the 

potential was first scanned from 0.5 V(SCE) to -0.15 V(SCE) (or-0.3 V(SCE)) 

with a scan rate of 10 mV s"1. At -0.15 (or -0.3) V(SCE) the potential was 

stepped to -0.1 V(SCE) and the charge passed during deposition was registered. 

After the potential step measurements the metal deposit was imaged with an 

optical microscope and an electron microscope (SEM, Philips 515) in order to 

count the number of particles and to determine the shape and size of the 

particles. 

All experiments were carried out at 25°C. The reagents were analytical grade 

(Merck). The measurements were repeated at least three times. The results given 

in the cyclovoltammograms represent the average values obtained in these 

measurements. 

8.3. Results and discussion 

8.3.1. Comparison of Cu-deposition on bare and thiol-modified 
gold 

The current density (Z)-potential (E) curves for electrodeposition of copper on 

bare gold and on HS(CH2)2ICH3 ("C22 thiol") modified gold are shown in Figure 

8.1. The deviation between the cyclovoltammograms of the individual modified 

electrodes is quite large (±30%) whereas the spread in results for the bare gold 

is much smaller (±5%). The cyclovoltammogram for Cu deposition on the C22 

thiol monolayer differs slightly from the cyclovoltammogram for the same 
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monolayer shown in ref. 3. This is probably due to a difference in the quality 

of the thiol layer caused by the gold substrates: in ref. 3 Au sputtered on Si(l 11) 

was used whereas in the present case evaporated Au on Au substrates is used. 

Because the overpotential at the sputtered gold substrate was somewhat lower, 

we assume that the monolayer on this substrate contains more defects than on 

the evaporated substrates that are used in the present study. 
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Figure 8.1: Cyclovoltammogram of a bare Au electrode (dashed curve, right hand axis) 
and of a HS(CH2)21CH3-modified Au electrode (solid curve, left hand axis) in 10"2 M 
CuS04, 1(T

2 M H,S04. The scan rate was 10 mV s"1. 

The equilibrium Cu2+/Cu or Nernst-potential is 0.04 V(SCE) in 10~2 M CuS04. 

For the bare gold electrode in this electrolyte a monolayer of Cu is deposited at 

a potential positive of the Nernst potential. This phenomenon is referred to as 

under potential deposition (UPD). Bulk copper deposition occurs at potentials 

negative with respect to the Nernst potential and bulk Cu dissolves at potentials 

positive with respect to this potential. The presence of the thiol monolayer 

suppresses the UPD process. The occurrence or absence of UPD can not directly 

be deduced from Figure 8.1 because the currents involved are only small. Only 

at larger magnification the UPD peaks can be observed. The most important 

reason for the absence of UPD with monolayer-modified substrates is that the 

interaction between copper and the hydrophobic alkanethiol is much lower than 

the interaction between the individual copper atoms. Nucleation of copper on the 
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alkanethiol monolayers, which starts at about -0.23 V(SCE), occurs as three 

dimensional nuclei (Figure 8.2a) whereas for nucleation of Cu on bare gold 

rather homogeneous flat films are formed (Figure 8.2b). A detailed discussion 

on the cause of this pronounced difference in morphology of the copper deposit 

will be given later. 

; ä!'*\ ,Js.!'"' # . # 

Figure 8.2: Scanning electron micrograph (under an angle of 0°) of galvanically 
deposited copper on a (a) HS(CH2)10COOH-modified gold electrode and (b) on bare gold 
from 10"2 M CuS04, 1CT2 M H2S04. Deposition conditions: (a) scanning from 0.5 
V(SCE) to -0.35 V(SCE) at 10 mV s"1, and subsequently a potential step to -0.1 
V(SCE) and keeping the potential at this value for 3 min, (b) 2 min at -0.3 V(SCE). 



146 Chapter 8 

The most striking difference between the two cyclovoltammograms is the 

overpotential T| required for copper deposition on the modified gold electrode. 

This overpotential is defined as the difference between the potential where 

nucleation starts and the Nernst potential. In the present work we take r\ as the 

potential in the cyclovoltammogram where the cathodic current starts to increase 

very fast. The nature of this overpotential may be of different origins. First, it 

may be caused by the substantial potential drop across the dielectric of the thiol 

layer. Due to this potential drop, the potential remaining at the thiol/electrolyte 

interface and experienced by the Cu2+ ions, is only small. If this "potential-drop-

mechanism" is effective, it is necessary for electrons to pass through the thiol 

layer in order to reduce the copper ions at the thiol/electrolyte interface. Copper 

will thus be formed on top of the thiol layer (see Figure 8.3a). A second possible 

reason for the overpotential may be due to a resistance for the Cu2+ ions to 

penetrate the thiol layer through pinholes ("penetration mechanism"). Once 

having penetrated, Cu2+ could than be reduced at the Au interface. Nucleation 

occurs through these defects, producing a mushroom-shaped particle (Figure 

8.3b). For homogeneous, conducting surfaces, the overpotential is ascribed to the 

critical free energy required to form a thermodynamically stable nucleus on the 

surface [20,21]. As will be discussed in this chapter, we have strong indications 

that the first nucleation mechanism, i.e., phase formation at the thiol/electrolyte 

interface, is effective in the present systems. 

The reproducibility of the cyclovoltammograms for copper deposition on 

thiol-modified gold electrodes is relatively poor. Between the 

cyclovoltammograms of the individual electrodes a relatively large deviation 

from the average of ±30% is found. This did not improve when the reaction 

conditions under which the thiol monolayers were formed were strictly 

controlled. Although this variation of the cyclovoltammograms was observed at 

any type of thiol-modified electrodes, the reproducibility was found to be good 

enough to differentiate between thiols of different chain length and, in most 

cases, with different terminal groups. The variation between the 

cyclovoltammograms is mainly due to the sensitivity of the current-potential 

measurements for small differences in the thiol monolayer. Especially at cathodic 

potentials with respect to the overpotential, the current is a very sensitive 
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(a) 

(b> '&M£ftzM& 
Figure 8.3: Schematic representation of galvanic copper deposition on gold modified 
with a monolayer alkanethiol. In (a) the copper is deposited on top of the thiol layer and 
electron transport occurs through the thiol layer. In (b) the copper makes electric contact 
with the gold via pinholes in the monolayer that are filled with copper. 

parameter and may vary considerably. Small microscopic deviations in surface 

composition or ordering will then have large effects on the metallization 

behaviour. 

The poor reproducibility is not observed with macroscopic characterization 

techniques like wetting and differential capacitance measurements. According to 

these measurements, the individual samples with the same thiols virtually behave 

identically. Apparently, these macroscopic measurements are not sensitive 

enough to detect microscopic differences in monolayer properties, whereas 

metallization does. 

Adhesion between the Cu-particles and the thiol monolayer is poor, independent 

of the thiol chain length or type of terminal group X. Although no systematic 

adhesion measurements have been carried out yet it was found that, simply by 

touching the particles with a tissue or by rinsing the substrate with water, 

particles could be removed. The poor adhesion was also observed when the 

working electrode was placed vertically instead of horizontally. In that case the 

particles tended to move downwards along the electrode's surface under gravity. 

This poor adhesion points to small chemical interactions between the Cu deposit 
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and the thiol monolayer. In contrast, the adhesion between a copper film and 

bare gold was very good. In that case, we never observed any mechanical 

removal of copper. 

8.3.2. Influence of thiol chain length 

Some characteristics of the alkanethiol (HS(CH2)„ ,CH3 with n = 12, 18, 22) 

monolayers adsorbed on gold are given in Table 8.1. This table shows the 

advancing (0J and receding (9,.) contact angle measured with water and the total 

differential capacitance Ct. As we have shown in ref. 14, C, is almost 

independent of the applied potential. In Table 8.1 the minimum C, values are 

given. The total capacitance is almost equal to the capacitance of the thiol layer 

C, [22]. The capacitance of the thiol layer is inversely proportional to the 

thickness 5 of the thiol layer and directly proportional to the dielectric constant 

£,. of the thiol layer: C, = £0£,./8 [22]. The capacitance was measured at a 

frequency of 10 Hz but is almost frequency independent [22]. 

Table 8.1: Characteristics of thiol monolayers adsorbed on gold in 10 2 M K2S04 [14,28] 

Thiol 9„ (deg) ' 9,. (deg) f C, (uF cm"2) 

88 1.1 
90 0.7 
88 0.6 
80 1.3 
<5 1.9 
51 2.1 
<5 2.1 

^measured with water; standard deviation ±3° 

The cyclovoltammograms for Cu deposition on alkanethiol (abbreviated as C„ 

thiol) modified gold electrodes of different chain lengths are given in Figure 8.4. 

The scanning range was between 0.5 and -0.15 V(SCE) (Figure 8.4a) or between 

HS(CH2)„CH3 

HS(CH2)17CH3 

HS(CH2)21CH3 

HS(CH2)„C1 
HS(CH2),,OH 
HS(CH2),,CN 
IS(CH2)l0COOH 

112 
117 
117 
95 
24 
69 
45 
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0.5 and -0.3 V(SCE) (Figure 8.4b). In both figures a distinct but different 

influence of the chain length on the cyclovoltammograms can be observed. In 

Figure 8.4a the current density at a given potential is higher for shorter chains. 

This is also the case in Figure 8.4b in the potential range between 0.04 and 

about -0.2 V(SCE) but the sequence changes when the potential becomes more 

negative. The capacitance of the monolayers appeared to be unaffected after 

these scans. 
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Figure 8.4: Cyclovoltammograms of gold electrodes modified with a monolayer of 
HS(CH2),,CH3 ( ), HS(CH2)17CH, (---), and HS(CH2)2ICH, (-•-•-), respectively, 
in KT2 M CuS04, 10"

2 M H,S04. The scan rate was 10 mV s"1. (a) Cathodic scan limit 
-0.15 V(SCE), (b) cathodic "scan limit -0.3 V(SCE). 
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Figure 8.5: Scanning electron micrograph (under an angle of 45°) of galvanically 
deposited copper on a HS(CH2)MCH3-modified gold electrode from 10"2 M CuS04, 10"2 

M H2S04. Deposition conditions: potential scan from 0.5 V(SCE) to -0.15 V(SCE) with 
a scan rate of 10 mV s~' subsequently a potential step to -0.1 V(SCE) and keeping the 
potential at this value for 3 min. Under these conditions Cu deposition occurs on defects 
like scratches in the gold. 

In Figure 8.4a it can be observed that for the C12 thiol monolayer a (small) 

cathodic current already flows at a potential just negative of the Nernst potential. 

In order to understand the differences between the curves, the following potential 

step experiment was carried out. First, the potential was scanned with a scan rate 

of 10 mV s"1 from 0.5 to -0.15 V(SCE). Then the potential was stepped to -0.1 

V(SCE) and kept at that value for several minutes in order to allow growth of 

the nuclei formed during scanning. At -0.1 V(SCE) it is assumed that no new 

nuclei are formed and only existing nuclei grow. Afterwards the deposits were 

imaged by SEM. It was found that for the C,2 thiol monolayer Cu had grown 

preferentially on a few defect sites, like scratches in the underlying gold. A 

typical example is shown in Figure 8.5. No Cu is found on other positions. On 

the C,g and C22 thiol layer hardly any copper could be found. Roughened gold, 

like the gold in the scratches, may induce disorder in the monolayer. Apparently, 

the relatively thin C12 thiol layer is not able to completely shield the underlying 

gold in these disordered areas. The copper will be deposited first on these defect 

sites. The current flow just negative of the Nernst potential indicates that defects 
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containing no or only small amounts of thiol are present in the C12 thiol 

monolayer: the electron transfer is not blocked. However, these currents are only 

small. The current density for C12 thiol-modified gold and bare gold differ by 

more than a factor of 100 at -0.1 V(SCE). Therefore, the number of defects is 

only small. The fact that on the Cl8 and C22 thiol monolayer hardly any copper 

could be found and that the current density is lower than for C12 thiol (see 

Figure 8.4a), indicates that these longer chains are better able to mask these 

defects. This shielding is more effective for longer alkane chains so that the 

current density is reduced, as is evident from Figure 8.4a. We like to emphasize 

that the defects present in the C,2 thiol monolayer as discussed above are more 

or less macroscopic in nature. These defects should not be confused with the 

microscopic pinholes as discussed in the previous section and shown in Figure 

8.3b. 

The thickness of the monolayers also has its effect on the cyclovoltammograms 

when scanning between 0.5 and -0.3 V(SCE) (Figure 8.4b). The shape of the 

curve for the C12 thiol monolayer deviates from those of C18 and C22 thiol. 

According to our definition of the overpotential, a distinct overpotential can be 

determined for the C18 and C22 thiol layer, whereas for the C12 thiol layer it is 

very difficult to define an overpotential. For C,8 thiol T| is about -210 mV and 

for C22 thiol rj is about -270 mV. 

The differences between the cyclovoltammograms may be caused by differences 

in morphology of the Cu deposits. To check whether this is the case again an 

additional potential step experiment was carried out. For this purpose the 

potential was first scanned from 0.5 to -0.3 V(SCE) with a scan rate of 10 mV 

s_1. Then the potential was stepped to -0.1 V(SCE) in order to allow growth of 

the nuclei formed in the scan during a period of 3 min without the possibility 

of new particles being formed. Afterwards the particle density and the shape and 

size of the particles was determined by optical and scanning electron 

microscopy. The amount of copper deposited as estimated from the SEM images 

always agreed with the amount of copper as determined from the charge passed 

during deposition. 
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(a) 2 prri 

Figure 8.6: Scanning electron micrographs (under an angle of 80°) of galvanically 
deposited copper from 10"2 M CuS04, 1(T2 M H2S04 on (a) a HS(CH2)MCH3-modified 
gold electrode and (b) on a HS(CH2)21CH3-modified electrode. Deposition conditions: 
potential scan from 0.5 to -0.3 V(SCE) with a scan rate of 10 mV s"1 and subsequently 
a potential step to -0.1 V(SCE) and keeping the potential at this value for 3 min. 

We found that independent of the thiol chain length, hemispherical particles were 

formed. The diameter of the particles are about the same for every chain length 

tested. The results of the two extremes, the "short" C12 thiol and the "long" C22 

thiol monolayers are given in Figure 8.6 and Table 8.2. The only difference 

between the copper deposits on the two monolayers is the particle density which 
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is determined with optical microscopy (Table 8.2): more particles are deposited 

on the C22 thiol than on the C12 thiol monolayer. In conclusion, the morphology 

of the Cu deposits does not account for the difference between the 

cyclovoltammograms. 

Table 8.2: Characteristics of galvanically deposited copper particles on thiol-modified 
gold electrodes. The deposition conditions were scanning in 10"2 M CuS04, 10"

2 M 
H2S04 from 0.5 to -0.3 V(SCE) with a scan rate of 10 mV s~', subsequently a potential 
step to -0.1 V(SCE) and keeping the potential at this value for 3 min. 

Thiol Particle density (cm2) Particle diameter (um) 

2.0-2.8 
2.4-2.8 
1.0-2.2 

We ascribe the differences between the cyclovoltammograms to a difference in 

potential drop across the dielectric of the thiol layer as is schematically shown 

in Figure 8.7. Due to this potential drop, the potential at the thiol/electrolyte 

interface §d is much lower than the applied potential at the gold/thiol interface, 

<j)m. Let us first consider the cyclovoltammograms of the C22 and the C,g thiol 

monolayers where a distinct overpotential could be determined. For the C22 thiol 

layer the potential drop is larger than for the C18 thiol. This is caused by the fact 

that the capacitance of the C22 thiol is smaller than of the C18 thiol layer, because 

of the larger thickness of the self-assembled monolayer (Table 8.1). The 

dielectric constant of the alkanethiol monolayer is equal for the C12, Clg and C22 

thiol monolayers and is about 2 [22]. Hence, the potential drop per unit length 

is equal for both layers. At the same applied potential, the potential at the 

thiol/electrolyte interface (experienced by the Cu2+-ions at that position) is 

smaller for longer thiol chain lengths. Consequently, a higher overpotential is 

required for deposition on a C22 as compared to a Clg thiol monolayer. 

The critical potential r\J with respect to the Nernst potential at the 

thiol/electrolyte interface necessary for Cu deposition can be calculated following 
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Thiol 

(C„) 

Electrolyte 

Figure 8.7: Schematic representation of the potential drop across a HS(CH2)UCH3 (C12), 
HS(CH2)I7SH (C18), HS(CH2)21CH3 (C22) or HS(CH2),,OH (C„OH) modified gold 
electrode in an electrolyte. The applied potential at the gold/thiol interface is <|>m and the 
potential at the thiol/electrolyte ( ) interface is §d with respect to the Nernst potential. 
The potential drop depends on the thiol chain length and on the dielectric constant of the 
thiol layer. 

the procedure given in ref. 28. In summary, in this procedure the overall 

capacitance of the electrical double layer is integrated with respect to E resulting 

in the charge density of the diffuse double layer. Subsequently, the 

Poisson-Boltzmann equation is used to calculate the potential at the 

thiol/electrolyte interface. The potential at the thiol/electrolyte interface is about 

2% of the applied potential for the C l8 thiol and 1.5% for the C22 thiol [22]. 

Thus, TJ / for the C18 thiol monolayer becomes -210x2% = - 4 mV. For the C22 

thiol monolayer the same value is found: -270x1.5% = - 4 mV. Apparently, a 

critical overpotential of about - 4 mV at the thiol/electrolyte interface is required 

for deposition of Cu to occur on top of the hydrophobic CH3-terminated thiol. 
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From Figure 8.7 it can also be deduced that the quality of the self-assembled 

monolayer plays an important role in nucleation. At sites on the surface where 

the monolayer is less ordered or has a lower packing density, the capacitance is 

expected to be higher due to a higher dielectric constant or a lower thickness of 

the thiol layer. Hence, at these sites the potential at the thiol/electrolyte interface 

is higher than at non-defect sites. Consequently, the nucleation at these defect 

sites will occur at a lower overpotential. This makes the nucleation a very 

sensitive means to test the (microscopic) quality of the monolayer. The above 

may also account for the cyclovoltammogram of the C12 thiol monolayer. The 

C|2 thiol is just long enough to produce an ordered monolayer. Hence, it is 

expected that relatively more defects such as disordered areas are present in this 

monolayer compared to the C18 and C22 thiol monolayers. These defect sites 

should be considered as areas where the monolayer is relatively "thin" (see 

Figure 8.7). At these defect sites nucleation will start at a lower overpotential 

than at non-defect sites. Once nuclei are present on these defects, most of the 

Cu2+ ions will be reduced here instead of on the hydrophobic thiol. 

Consequently, less particles are formed on the C,2 thiol monolayer. Because the 

number of particles is less on this surface, the current density will also be less 

as is indeed observed in the cyclovoltammogram. 

If Cu is not deposited in pinholes but rather on top of a thiol layer, electron 

transport through the monolayer is necessary for the reduction of Cu2+ to occur. 

One of the transport mechanisms may be electron tunneling. Whether this is 

possible depends on the alkane chain length [18]. From the oxidation/reduction 

of ferrocene(Fc)-terminated alkanethiol monolayers it is known that electrons are 

indeed able to pass through the alkane tail [23-25]. It is found, quite 

surprisingly, that even for the long Fc-terminated hexadecanethiol the Fc group 

can be reduced and oxidized [25]. Therefore, we believe that electrons do indeed 

pass through the thiol layer and reduce the Cu2+ ions at the thiol/electrolyte 

interface. The exact electron transport mechanism is unknown to us. 

There is no conclusive indication that the overpotentials can also be ascribed to 

the "penetration mechanism". If penetration of Cu ions is required in order to 

reduce the ions at the Au/electrolyte interface (Figure 8.3b) one would expect 
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a destructive effect of the penetration into the monolayer. Then it would be 

expected that in a second scan the overpotential would have been strongly 

reduced. Such an effect was not observed as long as the total charge involved 

in deposition, Qd, remained below 500 uC cm"2. Moreover, if pinholes would be 

the preferred nucleation sites, a strong and specific effect of the chain length on 

the overpotential is to be expected. In that case the shape of the 

cyclovoltammograms for electrodeposition on the C18 and C22 thiol monolayer 

would not be similar. However, although we do not believe that the overpotential 

is determined by the "penetration-mechanism", we found that when larger 

amounts of Cu are deposited (Qd > 1000 pC cm"2, which corresponds to 

deposition of about 0.3 nm of Cu) Cu nuclei may penetrate the thiol layer. In 

that case it is found that Qd is larger than the charge involved in stripping, Qs. 

It is not possible to strip the relatively large amounts of copper instantaneously 

when scanning in the anodic direction. The copper which remains after stripping 

serves as growth nuclei in the second and following scans. Due to this residue 

of copper the overpotential becomes less and the current density increases. The 

reason that (some) copper remains at the electrode when relatively large amounts 

of copper have been deposited may be that the copper has then already 

penetrated the thiol layer. Such penetration was also found when metal is 

vapour-deposited on thiol monolayers [26-31]. For example, penetration of Cu 

into a HS(CH2)nCN monolayer is found to occur when the thickness of the 

deposited layer is larger than about 0.1 nm [26]. Similarly, penetration into a 

HS(CH2)uOH monolayer takes place when the thickness is larger than 0.5 nm 

[27]. In our case we find a comparable thickness where Cu starts to penetrate the 

monolayer (= 0.3 nm). Once Cu has penetrated the monolayer, it may be 

shielded by the thiol tails, and therefore it will be difficult to strip. 

On the reverse scan in Figure 8.4b from -0.3 V(SCE) to the Nernst potential, the 

Cu-deposition continues. It is expected that in the potential range between the 

overpotential and Nernst potential no new nuclei are formed. Only existing 

nuclei grow. Apparently, no overpotential is required for growth on nuclei, even 

with a thiol layer between the copper deposit and the gold substrate. This is 

explained by the fact that the Cu deposition occurs on a Cu surface and thus 

continues until the equilibrium potential is reached. Scanning further in positive 
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direction with respect to the Nernst-potential, the copper is stripped. Because the 

copper is stripped from copper particles, no overpotential for stripping is 

required. 

8.3.3. Influence of terminal group 

The influence of the type of terminal group of a functionalized alkanethiol 

(HS(CH2)„_,A-, with X = OH, CN, CI, CH3 and n = 12 or X = COOH with n = 

11) adsorbed on gold on the galvanic copper deposition process was tested. 

Some relevant characteristics of the thiol layers are given in Table 8.1. 

The cyclovoltammograms for Cu deposition on the functionalized alkanethiol 

monolayers are given in Figure 8.8. For ease of comparison, the 

cyclovoltammogram of the C12 thiol monolayer (X - CH3, n = 12) is reproduced 

in this figure. Figure 8.8a shows scans between 0.5 and -0.15 V(SCE) and 

Figure 8.8b and c those between 0.5 and -0.30 V(SCE). The standard deviation 

is about 30%. When scanning to -0.15 V(SCE) (Figure 8.8a), it follows that the 

largest cathodic current flows when Cu is deposited on the OH-terminated thiol 

layer. This current flows at any potential negative of the Nernst potential for Cu 

deposition (at 40 mV(SCE)). The total anodic current involved in stripping the 

Cu from this substrate is much lower. Probably, a parasitic Faradaic current is 

included in the cyclovoltammogram. This effect is not observed for the other 

functionalized thiol layers. Apparently this Faradaic current is catalyzed by the 

OH-group. We assume that, despite that fact that we used deaerated electrolyte, 

the parasitic current is due to the reduction of oxygen taking place at a potential 

of about 0 V(SCE). The magnitude of charge involved in the anodic stripping 

of Cu is Qs
c"3>QfH>Qf^Qf00H^QfN. 

The deposition of Cu on the CH3-thiol is compared with that on the OH-thiol 

by scanning from 0.5 to -0.15 V(SCE) and then stepping to -0.1 V(SCE) and 

keeping the potential at that value for several minutes. We observed that where 

Cu on CH3-thiol is mainly deposited on (macroscopic) defects, the nucleation 
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Figure 8.8: Cyclovoltammograms of gold electrodes modified with a monolayer of 
HS(CH2)„CH3 ( ), HS(CH2),,OH (—), HS(CH2)IOCOOH (-•-•-), HS(CH2),,C1 
(••••) and HS(CH2),,CN (-•--•-), respectively in 10"2 M CuS04, 1(T2 M H2S04. 
The scan rate was 10 mV s~'. (a) Cathodic scan limit is -0.15 V(SCE), (b) and (c) 
cathodic scan limit is -0.3 V(SCE). Figure (b) does not contain the cyclovoltammogram 
for the OH-terminated monolayer. 
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on the OH-thiol is just beginning to occur as hemispherical particles in a few 

areas on the surface. 

When scanning the potential to -0.3 V(SCE) (Figure 8.8b,c) we observed that 

the cyclovoltammogram of the OH-terminated thiol layer strongly deviates from 

the other groups. The OH-thiol monolayer has a definite overpotential for 

nucleation which is about -240 mV. At more negative potentials, the negative 

current increases very sharply (Figure 8.8c). Because the cyclovoltammogram of 

this monolayer strongly deviates from those of the other monolayers, a potential 

step measurement was carried out where the potential was first scanned from 0.5 

to -0.3 V(SCE) and then stepped to -0.1 V(SCE) and kept there for 3 min. Two 

SEM images of the deposits after this experiment are shown in Figure 8.9. 

Figure 8.9a and 8.9b are images of the same sample. When these results are 

compared with the results obtained under the same conditions for the 

CH3-terminated thiol layers (Figure 8.6), it is found that the shape of the 

particles on the two different types of monolayers are about the same. The 

number and size of the particles differ significantly, though. The particle density 

is about a factor of 100 larger than for the CH3-terminated thiol (Table 8.2). 

This feature explains why the cyclovoltammogram for the OH-terminated 

monolayer deviates so strongly from that of the CH3-thiol. 

As discussed before, one of the factors governing the overpotential is the 

capacitance of the thiol layer, or in other words, the potential drop across this 

layer. Despite the similar chain lengths of the C12 thiol and the OH-terminated 

thiol, it is found that the capacitances of these layers differ by a factor of nearly 

2 (Table 8.1) which is caused by a difference in e,. of these layers [14]. Due to 

the higher capacitance of the OH-thiol, the potential drop across the monolayer 

is less for the OH-thiol. This is schematically illustrated in Figure 8.7. The 

potential remaining at the OH/electrolyte interface is about 5% of the applied 

potential. Hence, T|/ follows as: -240x5% = -12 mV. For the C12 thiol no clear 

overpotential was found probably due to the role of defects as discussed before. 

However, on the other two CH3-terminated surfaces the r\J value could be 

determined and was -4 mV. This is much lower than on the OH-terminated 

surface. 
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Figure 8.9: Scanning electron micrograph of galvanically deposited copper from 1CT2 M 
CuS04, 102 M H2S04 on a HS(CH2)nOH-modified gold electrode. Deposition 
conditions: scanning from 0.5 to -0.3 V(SCE) at a scan rate of 10 mV s"1, subsequently 
a potential step to -0.1 V(SCE) and keeping the potential at this value for 3 min. (a) 
Side view taken under an angle of 80° and (b) top view taken under an angle of 0°. 

The question is what factors cause the difference in particle density and r| ƒ. In 

electrocrystallization, diffusion of ions to the electrodes and incorporation of 

ad-atoms (formed after the reduction of ions) at lattice sites are often considered 

to be crucial steps for growth [20]. Diffusion becomes the growth rate 

determining step when the number of nuclei is high and the electrolyte 
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concentration relatively low. This will be the case under many deposition 

conditions. In our case ion diffusion limitation is not very likely: the 

current-potential curves are all very steep at potentials negative of the 

overpotential. If diffusion limitation would occur, a plateau in the current would 

have been expected. Incorporation of ad-atoms at lattice sites may also influence 

the nucleation as is, for example, found for the nucleation of Pb02 on 

C-microelectrodes [4]. If this were to be the most important step in our case, no 

effect of the thiol terminal group would be expected. Hence, neither explanation 

accounts satisfactorily for observation made in this study. We propose that 

surface diffusion of ad-atoms is an important factor in the nucleation on thiol-

modified electrodes. 

In vacuum deposition studies of Cu onto self-assembled thiol monolayers on 

gold it is deduced from X-ray photoelectron spectroscopy that Cu interacts with 

several terminal groups of the thiol layers [26-30]. Relatively strong interactions 

of Cu with the OH and COOH group are reported. Copper reacts with OH and 

COOH to give Cu-oxide [27] and Cu(II)carboxylate [28], respectively. For the 

Cu deposition on CH3-terminated monolayers no reactions occur [32]. 

Due to the interactions of Cu with the monolayers, surface diffusion of ad-atoms 

will be hindered. When there is no interaction, as for Cu-CH3, the surface 

diffusion is fast. The ad-atoms try to cluster in the form of nuclei in order to 

reduce the contact area with the CH3 surface and to increase the favourable 

cohesive Cu-Cu interactions. Due to this fast surface diffusion, a relatively small 

number of large particles are formed. When the interaction between the terminal 

group and Cu is strong, as is apparently the case for OH-Cu, surface diffusion 

will be much slower. Since all the adsorbed Cu ad-atoms can in principle serve 

as nuclei, the particle density may become much larger on the OH-surface. This 

also affects the nucleation overpotential. At this potential the total free energy 

involved to form a bulk phase and a new surface has reached its maximum so 

that (fhermodynamically) stable nuclei with a certain critical radius are formed 

on the surface [20,21]. Consequently, the growth will continue spontaneously at 

potentials negative of this overpotential. The critical radius depends on the 

interfacial tension y of the three phases involved (Cu, thiol, and electrolyte (el)): 
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Y;wo/-o/> lihioi-eh an(3 Jcu-ei- Because the interfacial tension yCll_el of the newly formed 

interface is much larger than the interfacial tension ylhiol_el of the disappearing 

interface (independent of X, as will be discussed in the next section), the critical 

radius is mainly determined by Yc»-w Hence, the critical radius is comparable for 

the nucleation on CH3- and OH-terminated surfaces under the same nucleation 

conditions. Because for the CH, thiol layer critical nuclei are expected to be 

formed very easily due to the fast surface diffusion, nucleation on this thiol layer 

starts at a lower (critical) potential than at the OH-surface. 

Apart from the chemical effect that influences the particle density, there is also 

an effect of the capacitance of the thiol layer. The number of particles is related 

to the applied overpotential [21]. At the same applied potential of -300 

mV(SCE), for example for the C22 and OH-thiol monolayers r\d is about 

(-3(XM0)xl.5% = -5 mV for the C22 thiol monolayer and about (-300-40)x5% 

= -17 mV for the OH-thiol monolayer. Due to this larger potential at the 

thiol/electrolyte interface, the particle density will also be larger. 
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Figure 8.10: Cyclovoltammogram of gold electrodes modified with a monolayer of 
HS(CH2),,CH3 ( ), HS(CH2)10COOH (-•-•-), HS(CH2),,C1 (••••) and 
HS(CH2),,CN (--•-), respectively in 1(T2M CuS04, 1(T

2 M H2S04. The scan rate was 
10 mV s"1. The cathodic scan limit is -0.35 V(SCE). 

Although Cu is known to form strong bonds with the COOH-group, the 

cyclovoltammogram in Figure 8.8c does not differ strongly from the 
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cyclovoltammogram of the CH3-group. However, when scanning the potential 

up to -0.35 V(SCE) the cyclovoltammogram of the COOH thiol starts to deviate 

from those of the CI, CN and CH, terminated thiol. This is shown in Figure 

8.10. In this figure the cyclovoltammogram of the OH-terminated thiol is not 

shown because of the relatively large current density. From the COOH-curve an 

overpotential for Cu deposition on a COOH thiol layer of about -260 mV can 

be deduced. For this thiol the potential at the thiol/electrolyte interface for this 

thiol is calculated [22] to be about 5.3% of the applied potential; r\d
c = 

-260x5.3% = -14 mV. It may also be that this relatively high value of T|/ is due 

to a strong interaction of Cu with the COOH groups, which is likely to be even 

stronger than the interaction with the OH groups [27]. It may also be that this 

large rj ƒ for Cu deposition is influenced by reduction of the COOH groups of 

the thiol layer. Earlier, we found that at pH=6 COOH is cathodically reduced at 

about -0.2/-0.3 V(SCE), to give the aldehyde compound HC=0 [14]. As a 

second step HC=0 may be reduced at about -0.6/-0.7 V(SCE) to a methyl-

hydroxy group. This reduction is only partial: about 5-10% of the carboxyl 

groups are reduced. In the present electrolyte solution, the pH is 1.7. The 

reduction potential thus shifts with respect to the reduction potentials at pH=6 

by about (6-1.7)x60 mV = +260 mV. Such a shift is indeed found for the 

reduction of COOH to HC=0 (not shown). In the present system, reduction takes 

place at about 0/0.1 V(SCE). However, this reduction is not reversible. 

Apparently, the interaction of Cu with the carbonyl groups formed is strong 

enough to prevent oxidation of the HC=0 to COOH. It may be that the second 

reduction step of HC=0 to CH2OH occurs at about -0.35/-0.45 V(SCE). This 

reduction is difficult to observe in the cyclovoltammogram because at this 

potential also the reduction of large amounts of copper starts. As for the pure 

OH-thiol monolayer it is expected that if COOH is (partly) reduced to CH2OH, 

this formation of OH groups in the COOH monolayer enhances the formation 

of Cu nuclei on this surface. 

In Figure 8.10 it can be observed that the differences between the 

cyclovoltammograms of the CH3, CI and CN thiol monolayers are not very large. 

It is difficult to define an overpotential for these layers because no potential can 

be found where the current density sharply increases. It might be that these 
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monolayers contain more defects, such as disordered areas, than the OH and 

COOH terminated monolayers. Nucleation will then preferentially occur on these 

defects. The effect of defects on the nucleation will probably be reduced when 

longer chain X-terminated thiol layers are used. 

8.3.4. Morphology of deposited metal 

The shape of the Cu-particles deposited on the hydrophobic CH3-terminated 

thiol and on the hydrophilic OH-terminated thiol do not differ markedly 

(compare Figure 8.6 and 8.9), despite the higher affinity of Cu for the OH-group 

and despite the difference in wettability and therefore in surface tension [33] 

between the two surfaces. In order to understand this phenomenon, we use a 

model of the kinetics of the nucleation process developed by Volmer and Weber 

[34] and elaborated by Deutscher and Fletcher [21]. In this model it is assumed 

that the microscopic deposits have the same properties as the bulk material. 

Three phases are involved in the deposition: phase 1 is the nucleated phase, 

phase 2 is the electrode surface and phase 3 is the electrolyte from which 

deposition occurs (see Figure 8.11). According to this model interfacial tensions 

determine the shape of the deposit. The interfacial tensions are assumed to be 

independent of both the crystallographic orientation and the curvature. Phase 1 

is treated as if it were a liquid drop. Any surface stress arising from incoherency 

.Yl3 

Phase 3 

Phase 2 y12 y23 

Figure 8.11: Nucleation of a solid (phase 1) on a solid electrode (phase 2) in an 
electrolyte solution (phase 3) [27]. Phase 1 makes an angle of 0° with the surface of 
phase 2. The symbols y,2, Yi3, and y23 are the interfacial tensions with respect to the 1/2, 
1/3 and 2/3 interfaces, respectively. 
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of the two solid phases 1 and 2 is neglected. These assumptions result in the 

following equation [21]: 

cose = Y23 " Y|2 (8.1) 
Yl3 

where 0 is the angle at the junction between the three phases as indicated in 

Figure 8.11. This equation is the Young equation which is normally only applied 

to liquid drops on solid surfaces. For our situation, where Cu is deposited on the 

thiol-modified electrode from an electrolyte (el), equation 1 becomes: 

COS0 = ^"•'"'-'1 ~ ^thiol-Cu (82) 

'Cu-el 

The surface tension of the thiol/electrolyte interface is known for the 

CH3-terminated thiol: ytMol_e, ~ 50 mN m"1 [17]. For the OH-terminated thiol 

Ithioi-ei is unknown, but following the procedure in [33] where y of the 

solid/liquid interface is deduced from 0, ylhml_ei = 0.54 mN m~'. The surface 

tension of the thiol/Cu interface is expected to be of the same order of 

magnitude as the thiol/electrolyte interface. The surface tension of the 

copper/electrolyte interface is taken to be comparable to the surface tension of 

the copper/vapour interface. The latter is relatively large (>1000 mN m"' [35]). 

Consequently, 0 is largely determined by yCu_el. Due to the fact that yCu_el is very 

large, cos0 is close to zero, and thus 0-90°, largely independent of the terminal 

group of the thiol layer. Such an angle of about 90° is indeed observed for both 

the OH- and the CH3-terminated thiol layer. 

Generally, equation 1 suggests that only on surfaces with a very high surface 

tension (comparable with the surface tension of the metal deposit), flat and 

homogeneous metal films can be deposited [21]. In that case y23 = yl3 resulting 

in cos0 ~ 1 and 0 = 0°, and hence a flat metal film is obtained. This is indeed 

observed for many metal deposits on other metal substrates like Cu on Au. In 

the latter case even UPD occurs. For metal deposition on plastics, such a 

situation can be obtained by pretreating the surface with oxygen or nitrogen 

plasmas [36]. 
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8.4. Conclusions 

The presence of a self-assembled thiol monolayer (HSCCRy^X with X = CH3 

and n = 12, 18, 22, X = OH, CN, CI and n = 12 or X = COOH and « = 11) on 

a gold electrode strongly affects the morphology of galvanically deposited 

copper. On the thiol-modified gold copper is deposited as hemispherical 

particles whereas on bare gold, copper is deposited as a rather homogeneous flat 

film. The morphology of the particles is nearly independent of the type of 

terminal group of the thiol. The difference in morphology of the copper deposit 

is a result of the difference between the surface tension of the Cu and the Au or 

thiol monolayer, respectively. For Cu deposition on the thiol-modified electrode, 

the interfacial tension of the copper in contact with electrolyte yCu_el is much 

larger than the interfacial tension of the thiol/electrolyte interface y,hioi_el. This is 

true for all terminal groups of the thiol tested. The fact that yc„_<.;>Y,/„„;-(,; results 

in Cu particles exhibiting a contact angle of about 90° with the thiol-surface 

regardless of the type of functional group. For copper deposition on bare gold, 

the interfacial tension of both the Au and the Cu with electrolyte are high and 

of comparable magnitude. In that case flat and homogeneous films are formed. 

The general conclusion is that when a metal is deposited onto another material, 

two-dimensional films can be obtained only when the surface tension of that 

material is high. This conclusion is relevant for many industrial applications. 

The chain length of the adsorbed alkanethiol largely determines the overpotential 

required for Cu deposition on the thiol as long as the monolayer is ordered and 

free of defects. Nucleation is believed to occur on top of the thiol layer. The 

overpotential increases with increasing thiol chain length and is about -210 mV 

for C18 thiol and -270 mV for C22 thiol. The influence of the chain length on the 

overpotential is ascribed to the substantial potential drop across the dielectric of 

the thiol layer. The potential remaining at the thiol/electrolyte interface as 

experienced by the Cu2+ ions is only small. This potential drop increases with 

increasing thiol chain length. Consequently, larger potentials have to be applied 

in order to obtain the same potential at the thiol/electrolyte interface. The 

potential at the thiol/electrolyte interface with respect to the Nernst potential 
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where nucleation on top of the CH3-terminated thiol monolayer starts, T| ƒ, is 

calculated to be -4 mV and is found to be independent of the chain length. The 

mechanism responsible for the electron transport through the thiol layer is 

presently unknown to us. For nucleation on the short chain C]2 thiol layer no 

distinct overpotential could be determined. This is ascribed to the presence of 

defects like disordered areas, that may be present in this relatively thin layer. 

The reproducibility of the cyclovoltammograms of copper deposition on the thiol 

layers is only moderate. This is very likely to be due to the fact that the 

current-potential measurements are extremely sensitive for small microscopic 

differences in the quality of the thiol monolayer: small deviations in structure of 

the monolayer cause considerable differences in the potential drop across the 

thiol layer and thus in the overpotential. Additional measurements such as 

in-situ electrochemical STM are required to confirm this hypothesis. Despite 

variations in the cyclovoltammograms, the reproducibility of macroscopic 

characterization techniques like wetting and differential capacitance 

measurements is good. Hence, galvanic copper deposition is a very sensitive 

method to monitor the quality of the self-assembled thiol monolayer. 

The terminal group strongly influences the characteristics of galvanic copper 

deposition. This is evidenced most pronouncedly for the OH-terminal group. The 

overpotential is about the same as for the CH3-terminated thiol (=-240 mV). 

However, due to a higher dielectric constant of the thiol layer, this overpotential 

corresponds to a higher T|/ value (-12 mV). The reason for this higher r\J is 

likely due to the higher affinity of Cu for OH. This leads to a slower surface 

diffusion of Cu ad-atoms formed after reduction of Cu2+. Consequently, 

relatively small (but numerous) Cu clusters are formed on the OH-surface 

whereas on the CH3-surface much larger (and fewer) clusters are obtained. 

Hence, at the OH-surface higher overpotentials are required to obtain nuclei with 

a critical size which are (thermodynamically) stable. A secondary effect of the 

difference in affinity is that the number of particles on OH-terminated thiol is 

larger than on CH3-terminated thiol. Upon scanning from 0.5 V(SCE) to -0.3 

V(SCE) in 10"2 M CuS04, about 100 times more particles are formed on 

OH-terminated thiol as compared to CH3-terminated thiol. 
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As for the C12 thiol, no clear overpotential could be defined for Cu deposition 

on CN- and Cl-terminated thiols (n = 12), which is believed to be due to the 

presence of defects in these monolayers. In order to concentrate on the effect of 

the terminal groups on metallization, it is advisable to use well-ordered longer 

chain thiol monolayers. 
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Chapter 9 

Generation of electrochemically deposited metal 
patterns by means of electron beam (nano)lithography 
of self-assembled monolayer resists1 

Abstract: Submicron metal patterns have been produced by galvanic deposition in 

openings in a monolayer resist generated by electron beam (e-beam) lithography. The 

monolayer resist is a self-assembled docosanethiol (C22H45SH) layer adsorbed on gold. 

Proper removal of the thiol requires an e-beam dose of 10-100 mC cirf2. The positive 

resist pattern was used to selectively deposit galvanic copper. The size of the Cu patterns 

is affected by the galvanic deposition time and the CuS04 concentration in the electrolyte 

solution. The smallest Cu patterns produced were about 75 nm in width. 

Part of this chapter has been published under the same title: Sondag-Huethorst, J.A.M.; 
van Helleputte, H.R.J.; Fokkink, L.G.J. Appl. Phys. Lett. 1994, 64, 285-287. 
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9.1. Introduction 

Recently, self-assembled monolayers (SAMs) have been applied for the 

generation of patterns with different structures or surface properties. There are 

a number of techniques to generate such patterns: laser-desorption [1], 

micromachining [2], microwriting [3], scanning probe lithography [4], and 

electron-beam (e-beam) lithography [5]. For submicron patterns, e-beam 

lithography forms a very promising technique. The ultimate resolution is limited 

by the spot diameter of the e-beam, the forward scattering of electrons in the 

resist and backward scattering from the substrate. The forward scattering may 

be reduced by using ultrathin resist layers [5]. We used self-assembled thiol 

monolayers adsorbed on gold as positive or negative resists in e-beam 

lithography. These thiol layers are known to be very densely packed and ordered 

[6,7]. 

To obtain information about the line width of the patterns after e-beam 

SAM 11 I I 11 / I 111 I I 1-3 nm 
(a) Au 

SAM 
<b) Au 

I e-beam 

00 nr 

WLmMSL 
50-100 nm 

-4. *~ 

SAM / / A C u 

(c) Au 

Figure 9.1: Schematic illustration of the formation of metal patterns in a self-assembled 
monolayer resist structure on gold. The lithographic process sequence is: (a) deposition 
of the self-assembled monolayer, (b) exposure by a scanning e-beam, (c) galvanic metal 
deposition in the openings in the monolayer. 
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exposure, we used a Scanning Electron Microscope (SEM). Due to the contrast 

difference between the exposed and unexposed area, the line width in the SAM 

can be determined [8]. However, this contrast difference can not be taken as a 

prove for the complete removal of the thiol. Additional information on removal 

can be obtained by etching the patterns [5] or by galvanic deposition of metal 

on the uncovered gold. In general, both techniques are also applicable for SAMs 

on substrates other than Au, for example Si, Al or GaAs. In the present work we 

used a galvanic metal deposition technique to demonstrate the successful resist 

removal by e-beam exposure. Figure 9.1 describes the process. Combining 

galvanic deposition and e-beam lithography offers the possibility to selectively 

produce metal structures. These small metal structures may offer interesting 

applications in technologies such as ultra high density recording or disk 

mastering. 

9.2. Experimental 

Materials. Docosanethiol (C22H45SH) and nonadecenethiol (CH2=CHC|7H34SH) 

were prepared following literature procedures (supplementary material to ref. 9). 

The gold films were prepared by evaporation of gold (99.999%) onto single 

crystal silicon(lll) wafers that had been precoated by a 5 nm chromium 

adhesion layer. After evaporation, the wafers were broken into samples of about 

1 x 1 cm2. Detailed information about the preparation of the monolayers is given 

in chapter 2. 

E-beam. Within 1 day after adsorption of a thiol monolayer on gold, the samples 

were exposed to the e-beam. Equidistantly spaced lines with four different 

design widths (10 nm, 100 nm, 400 nm and 1 um) were delineated in the thiol 

using a Gaussian spot, vector-scan e-beam exposure system (Cambridge Instr. 

EBPG 4V-HR). Expocure was carried out at an accelerating voltage of 50 keV 

using a pixel grid of 5 nm for the 10 and 100 nm design widths, corresponding 

to patterns of 2 and 20 pixels wide. Typical beam current was 52 pA, 

corresponding to a 50 nm calculated spot size implying that the width of the 
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smallest line in the thiol will not be determined by the design but by the spot 

size. For the 400 nm design width a 50 nm pixel grid was used with a beam 

current of 820 pA (65 nm diameter spot size) and for the 1 urn design width the 

pixel grid was 250 nm and the beam current 16 nA (280 nm diameter spot size). 

The e-beam exposure dose was varied between 0.1 and 105 mC cm"2. 

Electrochemistry. Electrochemical experiments were carried out in a single-

compartment three-electrode glass cell containing a saturated calomel reference 

electrode (SCE), a Pt counter electrode and the thiol-modified gold working 

electrode. The deoxygenated electrolyte consisted of 10 2 or 10"3 M CuS04 in 

10~2 M H2S04. The copper deposition was controlled with a potentiostat 

(Schlumberger 1186 EI/Hi-Tek Instruments PP RI potentiostat) by pulsing from 

0.5 V(SCE) to a potential negative to the equilibrium potential during t min. 

After deposition, the sample was rinsed with water. Due to the hydrophobic 

character of the sample, it was immediately dry after rinsing. 

Microscopy. The ^-beam exposed and the Cu patterns were imaged by optical 

microscopy and by Scanning Electron Microscopy (SEM, Philips SEM 515). 

9.3. Results and discussion 

9.3.1. SEM images of patterns in the monolayers 

The SEM appeared to be very sensitive to differences in contrast between the 

e-beam exposed and unexposed areas. The exposed areas (where the thiol 

monolayer is removed), were always darker than the unexposed areas. A typical 

SEM image showing the contrast between exposed and unexposed areas is 

shown in Figure 9.2. The 10 nm e-beam design width exposed with a dose of 

10 mC cm"2 results in a 40 nm line width whereas 100 mC cirT2 yields a 60 nm 

line width, in good agreement with the spot size of 50 nm. 

Whitesides and coworkers [8] showed that the brightness of the SEM images is 

also a function of the thiol chain length: the longer the chain the brighter the 
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20 pm 

Figure 9.2: Scanning electron micrograph of patterns generated with e-beam on a 
C22H45SH-modified Au electrode. The e-beam dose was 100 mC cnf2 and the design 
widths were 1 pm (left and right patterns), 100 nm (middle-top patterns) and 10 nm 
(middle-bottom patterns, indicated with a white arrow), respectively. 

image. This is in agreement with our results: the longer the thiol chain the better 

the shielding of the underlying gold surface. 

9.3.2. Negative resist pattern 

By using CH2=CHC|7H34SH as a monolayer resist, we tried to polymerize the 

double bond of the thiol with the e-beam so as to use the thiol layer as a 

negative resist. The polymerized thiol should remain after removal of the non-

polymerized thiol. However, after exposing the alkenethiol layer to different 

£-beam doses, the same behaviour as for the C22H45SH monolayer was observed: 

they both behave as positive resists. The double bonds do not seem to 

polymerize, but rather complete thiol molecules are removed upon exposure. 

9.3.3. Selective galvanic metallization 

Selective galvanic metallization of the uncovered Au features is only possible if 

(i) the thiol layer is stable under the applied electrochemical conditions, (ii) the 
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exposed pattern remains unchanged for sufficient long periods of time, and (Hi) 

no metal deposition occurs on the thiol covered surface. 

(i) From electrochemical studies it has been determined that the self-assembled 

thiol layer is stable in a large electric potential region between hydrogen and 

oxygen evolution [6]. Electrochemical desorption of the layer is only found at 

extreme potentials [6,11]. 

(ii) The Cu patterns deposited immediately after e-beam exposure were identical 

to those deposited 2 days after exposure, indicating that lateral diffusion of thiol 

into the e-beam pattern (which would block the Cu deposition) is slow. 

(Hi) Galvanic metal deposition is possible on top of the thiol layers. However, 

a large overpotential with respect to the bare Au is required. Figure 9.3 shows 

a cyclic voltammogram where the current density / is shown as a function of the 

scanning potential E. Cu deposition occurs when /<0 and Cu stripping occurs 

when />0. Scanning in negative potential direction, bulk Cu is deposited on Au 

at a potential negative of about 0 V (SCE) while a potential negative of about 

-0.2 V(SCE) is required for the deposition on a docosanethiol covered gold 

surface. Therefore, in the potential window between 0 and -0.2 V(SCE) Cu 

deposition occurs on the clean Au only. 
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Figure 9.3: Cyclic voltammograms of a bare Au electrode (dashed curve, right hand 
axis) and of a C22H45SH-modified Au electrode (solid curve, left hand axis) in 10"2 M 
CuS04, 1CT2 M H2S04. The scan rate was 10 mV s~'. Galvanic deposition starts for 
potentials E negative than indicated by the vertical arrows (where the current / becomes 
negative). 
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9.3.4. E-beam dose 

On substrates exposed to an e-beam dose of 10 or 100 mC cm"2 well-defined Cu 

patterns could be deposited, except for the smallest (10 nm) designed pattern, 

where a minimum dose of 100 mC cm"2 was required. A dose of 10 mC cm"2 

equals about 100 electrons per removed thiol molecule. The dose is about a 

factor 100-1000 larger than the dose required to remove self-assembled 

octadecanethiol molecules from a GaAs(100) substrate [5]. The difference is 

presumably due to the relative instability of the As-S bond. Oxidation of the 

GaAs underneath the thiol layer occurs over the course of hours [5] whereas the 

thiol layers on gold remain stable in air for periods of at least one weak. 

Apparently, the bonding between the As-S is relatively weak compared to the 

Au-S bond and the dose required to remove thiol from GaAs is lower. 

Figure 9.4: Scanning electron micrograph of Cu deposited after exposure of the 
C22H45SH thiol layer on gold to a high dose e-beam (1 C cm"2). The Cu was deposited 
from a 10"2 M CuS04 (in 10"2 M H2S04) solution at -0.2 V(SCE) during 3 min. The 
design width of the lines was 500 nm, the length was 10 um, and the period of the 
grating was 5 urn. Due to the scattering of the electrons, a much larger area is exposed 
to the e-beam. 

A dose smaller than 10 mC cm"2 did not remove sufficient thiol to allow proper 

Cu deposition. A dose higher than 100 mC cm"2 resulted in very broad patterns, 

as is shown in Figure 9.4. In this image 7 lines were exposed to the e-beam. 

The Cu is deposited everywhere except for on the exposed lines. Due to the 
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scattering of the electrons, effectively a much larger area is exposed to the 

e-beam. Consequently, the thiol is removed from a much larger area. However, 

no Cu growth is observed on the lines where the <?-beam was focused on. 

Apparently, due to the exposure of the high dose e-beam, some insulating 

material is deposited preventing the Cu to be deposited. This may be carbon-like 

material which is left after decomposition of the thiol. 

20 j jm 

Figure 9.5: Scanning electron micrograph of a clean Au substrate after e-beam exposure 
with dose 1 C cirf2. The design width was 500 nm (upper patterns) and 10 nm (lower 
patterns), respectively. After Cu deposition from a 10 2 M CuS04 (in 10 2 M H2S04) 
solution (-0.025 V(SCE), 1 min), no Cu was observed near these patterns. Only in a 
larger area around the patterns Cu was deposited (some white spots (i.e. Cu particles) 
can be observed). 

The remaining material after high dose e-beam exposure could also be observed 

when a clean gold substrate was exposed to the e-beam (see Figure 9.5). After 

exposure, dark lines were observed with SEM. Cu deposition hardly occurred in 

the area close to the exposed area but only in a larger area surrounding the 

exposed area. Clearly some material is deposited after the exposure preventing 

Cu deposition. Because no thiol was present on the substrate, the deposited 

material will be a result from the (very small) amount of organics present in the 

vacuum chamber of the e-beam system. Although the high e-beam dose in fact 

produces negative resist patterns, these patterns are not useful as resists because 

they are very wide (> 1 pm) and ill-defined. 
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9.3.5. Electrochemical deposition conditions 

Patterns made with doses of 10 and 100 mC cnT2 were used to study the 

influence of the electrochemical deposition conditions (i.e. the electrical 

deposition potential, the deposition time and the CuS04 concentration) on the 

quality and the width of the resulting Cu patterns. Cu patterns were successfully 

grown at potentials ranging from -0.15 to -0.2 V(SCE). Potentials between 0 

and -0.15 V(SCE) only incidently resulted in deposition of Cu on the exposed 

e-beam pattern. Often an incomplete Cu pattern was observed (see Figure 9.6). 

This is probably due to contaminations on the clean Au pattern that to some 

degree block the Cu deposition. The contaminants may be airborne or may 

consist of incompletely removed thiol. As expected from the cyclic 

voltammogram (Figure 9.3), potentials lower than -0.2 V(SCE) resulted in Cu 

deposition on both the exposed pattern and the thiol layer, albeit that the 

structure of the deposits differs markedly for both types of surface (chapter 8). 

Figure 9.6: Optical micrograph of Cu deposited from a 10 2 M CuS04 (in 1(T2 M 
H2S04) solution at -0.1 V(SCE) during 10 min. The e-beam dose was 10 mC cm"2, 
design width of the two patterns was 1 (am and the length 50 urn. Due to the small 
overpotential, the deposition is not complete. 

The degree of overgrowth of the original line width can be controlled by the Cu 

deposition time. Figure 9.7 shows an overgrown Cu pattern deposited from a 



180 Chapter 9 

Figure 9.7: Scanning electron micrograph of an overgrown Cu pattern deposited from 
a 1(T2 M CuS04 (in 10"2 M H2S04) solution at -0.2 V(SCE) during 3 min. The substrate 
was a C22H45SH-modified Au electrode. The e-beam dose was 100 mC cm4 and the 
design width was 400 nm. The width of the Cu pattern is almost twice the height plus 
the design width (400 nm), indicating that the Cu growth is isotropic. 

10"2 M CuS04 solution on a 400 nm e-beam design width. The growth of the 

Cu is isotropic: the width of the Cu pattern (= 2.5 um) is about twice the height 

(=1 .1 urn) plus the design width (400 nm). Shorter deposition times indeed 

reduced the width and height of the Cu lines. However, even for short deposition 

times like 15 s overgrowth of the patterns occurred. 

Smaller Cu patterns were deposited by reducing the CuS0 4 concentration to 10"3 

M. Typical examples of the resulting Cu deposits are shown in Figure 9.8. In 

order to prove the presence of Cu, several samples were treated in a UV/ozone 

reactor which removes the organic thiol monolayer [6] : the SEM showed almost 

identical images before and after removal. The somewhat irregular shape of the 

Cu patterns is characteristic for galvanic Cu deposition from the present solution. 

Figures 9.8a and 9.8b show the same samples, before and after evaporation of 

a thin Au layer (15 nm) for better conductivity. In Figure 9.8a the SEM contrast 

is given by the material contrast. After Au evaporation the topographic contrast 

becomes more pronounced (Figure 9.8b) with respect to the material contrast. 

Figure 9.8c shows a 75 nm Cu pattern before evaporation of gold. After 

evaporation the pattern disappeared into the bulk Au film, illustrating the 
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Figure 9.8: Scanning electron micrographs of Cu patterns deposited from a \Q' M 
CuS04 (in 1(T2 M H2S04) solution at a potential of-0.2 V(SCE) during 1 min (a,b) and 
30 sec (c). The e-beam dose was 100 mC cm"2. The design width was for (a,b) 1 pm 
(left) and 10 nm (right) and for (c) 10 nm. Image (b) shows the same sample as (a) after 
evaporation of a thin Au layer (15 nm). 

thinness of the pattern. The width of the Cu pattern is almost as small as the 

original line width observed by SEM (60 nm). The ultimate resolution of the Cu 
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patterns in our experiments is determined by the spot size of the e-beam and not 

by the galvanic deposition conditions. 

9.4. Conclusions 

The work presented in this chapter demonstrates that self-assembled monolayers 

can be used as a positive resist for producing well-defined metal patterns. The 

docosanethiol monolayer adsorbed on gold can be selectively removed with an 

£-beam with a dose of 10-100 mC cm"2. The SEM appeared to be a very useful 

tool in imaging the e-beam exposed patterns before and after Cu deposition. The 

smallest width of the Cu patterns deposited galvanically after removal of the 

thiol with the e-beam was about 75 nm. This width is determined by the spot 

size of the e-beam. We believe that smaller patterns are possible by optimizing 

the e-beam exposure. Further work should be carried out to evaluate the ultimate 

limit for galvanic deposition of metal patterns by e-beam lithography. 
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Chapter 10 

Conclusions and outlook 

Abstract: In this chapter a discussion is given of the work described in the previous 
chapters about self-assembled thiol monolayers on gold electrodes. The conclusions on 
the experimental chapters are split into two parts. First, the most pertinent results of the 
subsequent chapters will be discussed and compared with the current status of knowledge 
in the literature. Subsequently, new insights into the structure of the monolayer will be 
discussed. This chapter ends with some suggestions for further research. 

10.1. New insights 

10.1.1. General 

In this thesis, the application of STM with atomic resolution using extremely 

high tunnel resistances (~TQ) is described. Using these high tunnel resistances, 

we were able to elucidate the nature of the mysterious holes observed in self-

assembled monolayers in previous STM studies. In those studies the holes were 

proposed to be either empty holes in the monolayer, areas with disordered thiol 

molecules or holes in the underlying gold layer. Our STM images, obtained at 

ultrahigh resistance, revealed that the molecules on Au(l 11) arrange themselves 

in (V3xV3)R30° domains which is in agreement with earlier results from electron 

diffraction and helium diffraction. However, these domains are separated by 

different type of rows with molecules missing from the ordered structure. The 

ordered structure is maintained in the holes. Hence, it was concluded that the 

holes are depressions due to holes in the underlying Au. The presence of gold 

in the thiol solution led to the conclusion that the latter holes are mainly caused 

by an etching process. We systematically studied this erosive behaviour and 

found that there is a direct correlation between the number of holes and the 

amount of gold measured in the thiol solution after adsorption. The fact that the 
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holes are due to the underlying gold is important for applications of the thiol 

monolayer in fundamental studies and in technology: if these holes, which 

occupy 5^-0% of the surface, would have been genuine defects in the thiol 

layer, this layer would be useless for many applications. Further details on the 

structure of self-assembled monolayers will be presented in paragraph 10.1.2. 

Next, we focused on the effect of the electrical potential on the wettability of the 

self-assembled monolayers. The earliest comprehensive investigation of 

potential-dependent wetting or electrowetting is that by Lippmann for mercury 

in contact with an electrolyte solution. Scattered data are available for other 

liquid metal phases, like various amalgams or liquid gallium. Measuring the 

electrowettability of solid metals is, in principle, also possible by using a 

Wilhelmy plate technique as presented in chapter 4. However, almost all clean 

metals are hydrophilic so that no differences in electrowettability can be 

observed. By modifying a metal with an organic monolayer or even by thicker 

layers, the metal can be made hydrophobic and the electrowettability effect can 

be determined. We reported results for the potential-dependent wetting of gold 

electrodes modified with a self-assembled thiol monolayer. The electrowetting 

is due to changes in the electrical double layer. Experimental electrowetting 

effects could be conveniently described by (classical) interfacial thermodynamics. 

Understanding electrowetting is not only interesting from a fundamental point 

of view. By variation of the potential, the wettability of a surface can be 

controlled which is of potential interest for many technological applications. 

A second method to change the wettability is by oxidation/reduction of the 

surface. The oxidation and reduction of a terminal group of a self-assembled 

ferrocene-terminated monolayer was described in the literature several years ago. 

Recently, Whitesides et al. showed that oxidation/reduction also has 

consequences for the wettability of this system. We elaborated this idea in some 

detail and concluded that the electrowetting effect is large and (partly) reversible. 

The reversibility is limited by contact angle hysteresis. The change in wetting 

was shown not to be caused by changes in the electrical double layer, like is the 

case for alkanethiols (HS(CH2)„_[CH3), but by specific interactions of the 

oxidized ferrocene ion with anions from the electrolyte. The stability of the 
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monolayer upon continuous oxidation/reduction is considerably improved by 

mixing the ferrocenethiol with an unsubstituted alkanethiol of about the same 

chain length. This feature could be used to increase the electrowetting effects 

even more. 

We have shown that metals can be galvanically deposited onto a self-assembled 

monolayer. This may seem strange in view of the numerous publications about 

the ability of monolayers to block the oxidation/reduction of redox couples 

present in solution. However, we found that metal deposition does occur, 

provided a sufficiently high potential, which should exceed a certain 

overpotential, is applied. 

The electrodeposition of copper on self-assembled thiol monolayers provided 

new insights into the role of the substrate on the morphology of the deposited 

metal. It was concluded that only when the surface tension of the substrate is 

high, flat and homogeneously deposited films can be obtained. For metal 

deposition on plastics this situation may be achieved by pretreating the surface 

with an oxygen or nitrogen plasma. When the surface tension of the substrate is 

relatively low, the metal is deposited as individual particles. 

10.1.2. Structure of the self-assembled monolayer 

The present study provided new insights into the structure of self-assembled 

thiol monolayers on gold. As discussed in the previous section, STM with high 

tunnel resistances showed that the observed holes are depressions in the 

underlying gold. The sulphur atoms of the thiol molecules arrange themselves 

in V3xV3 domains, separated by different rows of missing molecules. These 

microscopic measurements provide only information about the ordering of the 

sulphur atoms, and (unfortunately) not of the tails. 

The ordering of the tails is important in (wet) electrochemical measurements 

where electrolyte may penetrate the thiol layer. With macroscopic 
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electrochemical measurements like cyclovoltammetry and differential capacitance 

measurements in an indifferent electrolyte with thiol-modified electrodes, 

information about the resistance of the thiol layer against penetration can be 

obtained. It was found that the dielectric constant, as determined from 

differential capacitance measurements, was low (e,~2) and independent of the 

applied potential and the thiol chain length (provided «>10). For short chains 

(«<10), it was found that the monolayer is disordered. The penetration of water 

and ions like H+ and K+ in the ordered monolayers was shown to be largely 

blocked. The low capacitance and the strong resistance against ion penetration 

are due to the shielding of defects (like missing rows as found by STM) by the 

long alkane chains. Therefore, although defects may be present in air, they do 

not necessarily affect the (surface) properties of the thiol monolayer in an 

electrochemical environment. The combination of cyclovoltammetry, differential 

capacitance measurements and potential-dependent wetting measurements 

revealed that the structure of an alkanethiol monolayer is not affected when 

applying an electric field across the thiol layer, as long as only double layer 

currents flow. The stability of the monolayer is not affected when the thiol 

molecules are functionalized with small terminal groups like OH, COOH, CN 

or CI. However, there are some indications that the orientation of these 

molecules changes when an electric field is applied across the layers. 

According to the above measurements, the individual thiol layers behaved 

comparably. Nevertheless, the reproducibility of the cyclovoltammograms of 

galvanic metal deposition on top of the thiol layers was poor. We suggest that 

differences in the structure of the monolayer cause local differences in the 

potential drop across this layer and, consequently, in the overpotential. This 

makes cyclovoltammetry a very sensitive method for monitoring local 

microscopic differences in the structure of the monolayer. Analysis of the 

amount of gold in the thiol solution after immersion of the gold electrode also 

showed considerable scatter. The dissolved gold is released during an etching 

process related to thiol adsorption, leaving holes in the gold substrate. 

Having obtained this structural information from macroscopic and microscopic 

measurements, we are now in the position to revisit the question stated in the 
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introduction of this thesis: are thiol layers suitable model systems? From the 

results of the electrochemical and wetting experiments in this thesis and from 

many other studies published in the literature, it may be safely concluded that 

self-assembled thiol monolayers are ordered and densely packed on the 

macroscopic scale. However, with atomically resolved STM in air and from 

galvanic metal deposition measurements, it was found that the local microscopic 

structure deviated. Hence, an unequivocal answer to the question cannot be 

given. 

In our potential-dependent wetting measurements, the monolayer behaved highly 

ideal and the electrowetting effect could be described by a simple theoretical 

model. The monolayer is not perfect when used as a model system for studying 

the influence of the surface energy on galvanic metal deposition. Here, 

deviations in the local structure of the monolayer produce large differences in 

metallization behaviour, which makes the interpretation of these measurements 

rather complicated. 

10.2. Suggestions for further research 

It is often assumed that the preparation of high quality thiol monolayers is very 

simple. However, we found that even under strict control of the reaction 

conditions, the galvanic copper deposition on the individual samples showed 

considerable variations. Hence, there are some, as yet uncontrolled, parameters 

that influence the structure. A systematic investigation of the parameters 

affecting the structure of the monolayer, such as the temperature during and after 

adsorption, the solvent for the thiol, and the detailed structure of the gold 

substrate, would be useful to better control the structure of the monolayer. A 

simple method to test the quality of the monolayer is galvanic metal deposition 

on the monolayer. 

The etching mechanism involved in the formation of holes in the top gold layer 

underneath the thiol monolayer needs to be verified in detail. In the mechanism 
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proposed in chapter 3, the holes were associated with the mobility of gold atoms, 

whereby we assumed that gold dissolves in the form of a gold-thiolate complex. 

The latter might be verified by analysing the thiol solution after adsorption with 

a technique like infrared spectroscopy. An understanding of the mechanism of 

the formation of such holes may give the possibility to minimize their 

occurrence, so that more perfect layers will be produced. 

Furthermore, it is interesting to study the first stages of nucleation of 

galvanically deposited metal on a thiol monolayer in-situ using an 

electrochemical STM with atomic resolution. This would help to reveal the role 

of the defects in the molecular structure of the thiol layer in the nucleation 

process. If metal is preferentially deposited in such defects, this may offer 

interesting applications for the production of nanometer-sized patterns. 
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Summary 

Self-assembled alkanethiol monolayers on gold are used as model systems in a 

fundamental study of the potential-dependent wetting and of the galvanic metal 

deposition. For using such monolayers as model systems, well-defined and 

ordered monolayers are required. In order to control the quality of the 

monolayer, its structure was studied on a microscopic and a macroscopic scale. 

The experimental methods were scanning tunneling microscopy (STM), wetting 

and electrochemical measurements. The chain length and the type of terminal 

group of the monolayer molecules were varied systematically. 

The microscopic structure of monolayers of alkanethiol (HS(CH2)n_,CH3 with n 

= 3, 8, 12, 18, and 22) on Au(l 11) is the subject of chapter 3. This structure is 

investigated with atomically resolved STM and wetting measurements. The 

characteristic depressions in these monolayers as observed with STM are proven 

to be holes in the underlying top gold surface layer. These depressions are filled 

with thiol. The holes originate from an etching process of the gold during the 

adsorption of the thiol. A distinct correlation is found between the number of 

holes and the amount of gold in the thiol solution after adsorption, as measured 

with atomic absorption spectroscopy. The etching which generates these holes 

is believed to be related to the mobility of the gold-thiolate molecules during the 

adsorption process, prior to self-assembly. 

In chapter 4, the potential-dependent wetting of thiol-modified gold electrodes 

is for the first time presented. A Wilhelmy plate technique is used to determine 

the potential-dependent wetting of the modified electrodes. These measurements 

are carried out simultaneously with differential capacitance measurements and 

cyclovoltammetry. For alkanethiols with «>10, the monolayer is very stable in 

the potential range where only double layer charging occurs. The extreme 

hydrophobicity, the low dielectric constant (~2 for «>10), and the low double 

layer current (about a factor of 100 less than for clean gold) are all indicative of 

the dielectric character of these monolayers. 
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Chapter 5 reports on the influence of the alkanethiol chain length on the 

electrowetting effect of the self-assembled monolayer. It is found that the shorter 

the chain the stronger the wettability changes as a function of the potential. A 

simple representation of the electrical double layer as a dielectric thiol layer in 

series with a diffuse double layer in the electrolyte accounts well for the 

observed chain length effect. The effect of the salt concentration can be 

qualitatively understood with the model. It is concluded that the 

potential-dependent wetting finds it origin in the formation of an electrical 

double layer and that potential-induced conformational changes within the thiol 

layer are insignificant. 

Functionalizing the alkanethiols with a terminal group (HS(CH2)„_!X, X = OH, 

CN, CI and COOH) is found not to affect the stability of the monolayer, as 

follows from chapter 6. All thiols used are electroinactive except for the COOH 

group which can in part (5-10%) be reduced to the aldehyde compound. The 

difference in the capacitance of these thiol layers is determined by the different 

dielectric properties of the terminal group. The capacitance increases according 

to the sequence CH3<Cl<OH<CN. The potential in the electrocapillary maximum 

as determined from the electrowetting measurements also depends on the 

terminal group; this potential increases according to the sequence 

CH3<Cl<CN<OH. There are some indications that the orientation of the 

molecules changes with applied potential for thiols with CN, OH, and CI as 

terminal group. 

Larger electrowetting effects are obtained by oxidation/reduction of a 

ferrocene-terminated alkanethiol monolayer, as described in chapter 7. Strong 

indications were found that the electrowettability is a result of specific anion 

binding upon oxidation of the ferrocene groups. This ion binding occurs to 

compensate the surface charge. The monolayers are not stable upon continuous 

oxidation/reduction of the ferrocene groups. The stability is strongly increased 

by mixing the ferrocenethiol with an alkanethiol of about the same chain length. 

The reversibility of the electrowetting is limited by contact angle hysteresis. 

The presence of a self-assembled thiol monolayer on a gold electrode strongly 
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influences the morphology of galvanically deposited copper. This topic is 

discussed in chapter 8. On bare gold, copper is deposited as a rather 

homogeneous flat film, whereas on thiol-modified gold, independent of the type 

of terminal group, copper is deposited as hemispherical particles. The difference 

in morphology is ascribed to the difference between the surface energies of 

copper and the solid substrate. Generally, when a metal is deposited onto a solid 

material, flat films can only be obtained when the surface tension of the solid 

is high. Nucleation occurs on top of the thiol layer as long as the self-assembled 

monolayer is highly ordered. An overpotential is required to overcome the 

potential drop across the dielectric of the thiol layer. This potential drop 

increases with increasing thiol chain length and hence, the overpotential 

increases likewise. The influence of the terminal group of the thiol layer on 

galvanic copper deposition shows up most pronouncedly for the OH terminal 

group. About 100 times more particles are deposited on OH-terminated thiol 

compared to CH3-thiol. This is explained by a combination of a smaller potential 

drop across the thiol layer and a high chemical affinity of Cu atoms for the 

OH-group, thus decreasing surface diffusion. 

In the potential range between the equilibrium Nernst potential and the 

overpotential, no copper is deposited onto the monolayer. This makes the layers 

suitable as monolayer resists. In chapter 9 we focus on possible applications in 

this area. First, a thiol monolayer is treated by electron beam lithography to give 

very narrow patterns where the thiol has been removed. Subsequently, submicron 

metallized patterns can be produced by galvanic copper deposition in the 

openings. The smallest width of the copper patterns produced is about 75 nm. 

The width is determined by the spot size of the electron beam. By optimizing 

the electron exposure, we expect that even finer patterns can be produced. Such 

fine metal structures may offer interesting applications in technologies such as 

ultra-high-density recording or disk mastering. 

This thesis concludes with an overview of this study and a comparison of our 

results with the current status of knowledge in the literature. In chapter 10, the 

information on the structure of the thiol monolayer as obtained with the various 

techniques is summarized. We conclude that methods like STM and metallization 
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indicate the presence of small microscopic defects in the self-assembled 

monolayers. However, with electrochemical techniques like cyclovoltammetry 

and differential capacitance measurements it was shown that on a macroscopic 

scale the monolayers are ordered and densely packed. From the macroscopic 

point of view, the minor defects are shielded by the long chain alkane tails. 

Therefore, we have to conclude that the question whether a thiol monolayer can 

be considered as a model system depends on the particular type of goal one has 

in mind. In this thesis, we have demonstrated that thiol monolayers behaved as 

genuine model systems in the areas of electrowetting and monolayer lithography. 
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Samenvatting 

Heel dunne laagjes materiaal die zich op het oppervlak van een ander materiaal 

bevinden kunnen de oppervlakte-eigenschappen drastisch veranderen. Een 

dergelijk dun laagje hoeft niet dikker te zijn dan één miljoenste van een 

millimeter. Als het laagje slechts één molecule dik is, praten we over een 

monolaag. Monolagen spelen een rol in ons dagelijks bestaan, ook al realiseren 

de meeste mensen zich dat niet. Een voorbeeld: ruiten in huizen en auto's blijken 

na een wasbeurt goed te worden bevochtigd door water. Onder bevochtiging 

wordt verstaan dat een vloeistof, in dit geval water, spreidt over het oppervlak. 

Het oppervlak wordt hydrofiel genoemd (letterlijk, uit het Grieks: 

"waterminnend"), als het goed door water bevochtigd wordt. Echter, na verloop 

van tijd worden de ruiten meestal vanzelf weer vettig ofwel hydrofoob 

("watervrezend") zodat het water niet meer over het oppervlak spreidt maar als 

druppeltjes blijft liggen of hangen. Het vettig worden van de ruit is een gevolg 

van het blijven kleven van vetachtige moleculen. Dit blijven kleven van 

moleculen aan een oppervlak heet adsorptie. Adsorptie kan plaatsvinden vanuit 

lucht, zoals in het voorbeeld van de ruiten, maar ook vanuit een vloeistof zoals 

in dit proefschrift het geval is. De mate van bevochtiging hangt onder andere af 

van de zogenaamde grensvlakspanning van het onderliggende materiaal, in dit 

geval de al dan niet vervuilde ruit. Hoe hoger de grensvlakspanning hoe beter 

de bevochtiging. Kennelijk verlagen vetmoleculen op een ruit de 

grensvlakspanning. Dit is een algemeen verschijnsel en zelfs een belangrijke 

natuurwet: door adsorptie wordt de grensvlakspanning lager. Ook vloeistoffen 

hebben een grensvlakspanning. Door deze grensvlakspanning kan bijvoorbeeld 

een schaatsenrijdertje (Gerris lacustris) op water "lopen" en blijft een eend 

drijven. 

In dit onderzoek adsorberen we met een bedoeling en goed gecontroleerd een 

monolaag van thiolmoleculen op een goudoppervlak. Deze moleculen bevatten 

een zwavel-kopgroep die met goud een chemische binding vormt. Hun 

chemische formule kan geschreven worden als HSCCHJ^CH,. We varieerden 
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de ketenlengte n van 3 tot 22. We hebben ook thiolen gebruikt, waarin de CH3 

groep vervangen is door X. Voor substituent X hebben we gekozen voor een 

hydroxyl- (OH), chloor- (Cl), cyanide- (CN) of carboxylgroep (COOH). Als 

thiolmoleculen in contact gebracht worden met goud, adsorberen ze spontaan en 

vormen daarbij onder bepaalde condities een geordende dichtgepakte monolaag. 

Dit proces heet "zelf-ordening" of in het Engels "self-assembly". Onze interesse 

in deze lagen komt voort uit het feit dat deze monolagen zeer stabiel zijn en 

daardoor geschikt zijn als modelsysteem in verschillende onderzoeken. Tevens 

zijn deze lagen interessant omdat slechts één monolaag nodig is om het goud te 

maskeren. De oppervlakte-eigenschappen van het bedekte goud, zoals de 

bevochtiging, worden nu volledig bepaald door de geadsorbeerde moleculen. 

Door de eindgroep X van het thiolmolecuul te variëren, kan een goed of een 

slecht bevochtigend oppervlak worden gemaakt. 

In dit proefschrift zijn thiolmonolagen op goud gebruikt als een modelsysteem 

voor het bestuderen van a) het elektrisch beïnvloeden van de mate van 

bevochtiging (elektrobevochtiging) en b) het langs elektrolytische weg verkrijgen 

van een metaalafzetting (elektrodepositie). Op beide aspecten wordt hierna 

teruggekomen. 

Om zelf-ordenende thiollagen als modelsysteem te kunnen gebruiken, is het 

noodzakelijk dat de lagen dichtgepakt en geordend zijn. Een zeer nauwkeurige 

microscopische techniek (STM), bevochtigingseigenschappen en 

elektrochemische metingen zijn in dit proefschrift gebruikt om te controleren of 

dit inderdaad het geval is. De informatie die uit de verschillende methodes 

verkregen wordt, is verschillend van aard. De techniek STM is door ons onder 

zeer uitzonderlijke condities gebruikt, waardoor voor het eerst groepen 

individuele moleculen waargenomen konden worden. Deze techniek verschaft 

dus informatie over de moleculaire structuur van de laag. De monolagen blijken 

een zeer regelmatig geordende structuur te hebben. Op sommige plaatsen op het 

oppervlak worden defecten in de monolaag waargenomen, zoals rijen 

ontbrekende moleculen. In het onderliggende goud kunnen gaten gezien worden. 

Deze zijn net zo diep als de dikte van één goudatoom en gevuld met thiol. Deze 

gaten blijken het gevolg te zijn van de etsende werking van thiol tijdens de 
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adsorptie: er lost een heel klein beetje goud op tijdens de adsorptie dat kan 

worden aangetoond in de thioloplossing van waaruit de monolaag is aangebracht. 

Kennelijk vinden er twee processen tegelijkertijd plaats: adsorptie en oplossen 

van het goudoppervlak. 

Bevochtigingseigenschappen en elektrochemische metingen geven informatie 

over de macroscopische eigenschappen van de lagen maar geen direct inzicht in 

het gedrag van individuele moleculen. Bij de elektrochemische metingen bevindt 

het thiol-bedekte goud zich in een zoutoplossing die positieve en negatieve ionen 

bevat. Uit elektrochemische metingen blijkt dat de defecten in de monolaag zoals 

gevonden met STM bij deze "macroscopische" metingen nauwelijks een rol 

spelen: de ionen die in de oplossing aanwezig zijn, dringen de thiollaag niet 

binnen. De monolagen zijn macroscopisch gezien dichtgepakt en geordend. 

De resultaten voor de structuur van de thiolmonolaag beschouwende, kunnen we 

dus concluderen dat op macroscopische schaal de monolaag dichtgepakt en 

geordend is, terwijl toch op moleculaire schaal defecten in de laag worden 

gevonden. Of een dergelijke thiollaag gebruikt kan worden als een geschikt 

modelsysteem hangt af van het beoogde doel. In ons geval zijn de monolagen 

zeer geschikt gebleken bij elektrobevochtiging en lithografie. Beide termen 

zullen hierna worden toegelicht. 

Elektrobevochtiging aan geadsorbeerde monolagen wordt in dit proefschrift voor 

het eerst beschreven. Om deze elektrobevochtiging te kunnen meten is gebruik 

gemaakt van een goudplaatje bedekt met thiol. Het goudplaatje staat in contact 

met een zoutoplossing. Door de elektrische spanning te variëren verandert de 

bevochtiging van het thiol-bedekte goudplaatje door de zoutoplossing. We 

hebben de invloed van de thiolketenlengte, zoutconcentratie van de oplossing en 

eindgroep X van het thiol molecuul op de elektrobevochtiging bestudeerd. Om 

de metingen te interpreteren hebben we het effect beschreven met behulp van 

thermodynamische berekeningen. Er werd gevonden dat de gemeten en de 

berekende waarden goed overeenstemden. 

Voor praktische toepassing van dit elektrobevochtigingseffect kan men 
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bijvoorbeeld denken aan het vullen en ledigen van smalle capillaire buisjes. Bij 

goede bevochtiging van de wanden van het capillair zal de vloeistof in het buisje 

opstijgen, bij slechte bevochtiging niet. Door met behulp van elektrisch 

spanningsverschillen de bevochtiging van de wand te sturen, kan men er voor 

zorgen dat vloeistof in het capillair stijgt of juist daalt. Op deze manier is al eens 

een soort micropompje gemaakt. Dit zou bijvoorbeeld gebruikt kunnen worden 

als koelsysteem in microelektronica. 

Het tweede thema in dit proefschrift heeft betrekking op het langs elektrolytische 

weg afzetten van koper op met thiol bedekt goud. Hierbij hebben we de rol van 

het grensvlak thiol/zoutoplossing op de metallisatie bestudeerd. Voor industriële 

toepassingen worden meestal gladde en vlakke metaallagen vereist. Of dergelijke 

lagen inderdaad gevormd worden hangt onder andere af van de 

grensvlakspanning. In dit onderzoek hebben we de eindgroep X van het thiol (en 

daarmee de grensvlakspanning) gevarieerd en het metallisatiegedrag op zulke 

thiollagen op goud vergeleken met de metallisatie op een schoon goudoppervlak. 

We hebben gevonden dat koper op schoon goud wordt afgezet als een vlakke 

homogene laag, terwijl koper op thiol-bedekt goud leidt tot afzetting van 

halfronde deeltjes. Dit gedrag hangt niet meetbaar af van de soort eindgroep. Dit 

verschil wordt toegeschreven aan een verschil in grensvlakspanning tussen het 

koper en het materiaal waarop het koper wordt afgezet. Alleen als de 

grensvlakspanning van dat materiaal hoog en vergelijkbaar met die van koper is, 

worden vlakke films gevormd. 

Voor het afzetten van koper op het thiol blijkt een hogere elektrische spanning 

nodig te zijn dan op schoon goud. Hiervan hebben we gebruik gemaakt bij het 

maken van fijne metaalspoortjes. Dit is gedaan door met een elektronenbundel 

selectief thiolmoleculen uit een monolaag te verwijderen. Op deze plaatsen komt 

het onderliggende goud weer bloot te liggen. Vervolgens is koper elektrolytisch 

afgezet. Door de juiste elektrische spanning te kiezen wordt koper alleen afgezet 

in de openingen in de thiollaag. Deze manier van selectief metaal afzetten wordt 

lithografie genoemd. Er zijn zeer smalle spoortjes gemaakt met een breedte van 
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75 nanometer. Deze smalle metaalstructuren zijn potentieel uiterst interessant 

voor toepassingen bij het opslaan van informatie in zeer hoge dichtheden. 

In dit onderzoek hebben we veel geleerd over thiolmonolagen op goud. Vele 

stukjes van de puzzel zijn samengevallen en we hebben een goed beeld gekregen 

van de eigenschappen van deze monolagen. Nu moet er nog hard gewerkt 

worden aan de industriële toepassingen voortvloeiend uit dit onderzoek. 
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.of hoe een boerendochter toch weer in de landbouw terechtkomt. 
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