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CHAPTER 1 

General introduction 

OVERVIEW OF ECOLOGICAL RELATIONSHIPS BETWEEN 

PLANTS/INSECTS AND INSECTS/INSECTS 

For an estimated 250 million years, all plants have been under attack by a diversity of herbi­

vores. Plants have developed a wide range of defence mechanisms, both physical and 

chemical, against herbivores. The development of spines, prickles, thorns and stinging hairs 

are examples of morphological adaptations. The reduction of the edibility or nutritive content 

of the leaves or the evolvement of a toxin, an unpleasant taste or an offensive odour are 

examples of chemical armoury. It is thought that many insects responded to these changes in 

plant chemistry by changing their feeding habits thus avoiding the defensive chemicals. Other 

insects have overcome these changes, using the chemicals as essential cues in host location 

and selection. 

In 1959, Fraenkel was one of the first to voice the suggestion that secondary plant 

compounds, which were till then regarded by many plant physiologists as waste products of 

primary metabolism and of no possible use to plants, were directly involved in chemical 

defence against insects. Six years later, after the influential review of Ehrlich and Raven in 

1965, this idea was generally accepted and secondary metabolites became the cornerstone of 

a new theory of biochemical coevolution between insects and plants. 

In 1980, Price et al. launched the idea that a theory on insect-plant interactions could not pro­

gress realistically without consideration of the third trophic level. Until then, mainly bitrophic 

systems like herbivore-plant, predator-prey and parasite-host were investigated separately of 

each other. 

An argument in favour of the view that a study of the interactions between plants and insects 

alone cannot explain the specificity in these interactions is that many processes of resource 

exploitation are interconnected with each other. In the 1980s, ecologists in cooperation with 

researchers from other disciplines started studying the more complex tritrophic interactions 

(Price et al, 1984). 



Information exchange between organisms on the three levels of a tritrophic system occurs by 

means of infochemicals (Dicke and Sabelis, 1988). Infochemicals are categorized into 

allelochemicals and pheromones. An allelochemical is a chemical that mediates an interaction 

between two individuals that belong to different species. Pheromones are infochemicals that 

mediate an interaction between organisms of the same species. 

Recently, it has been found that plants damaged by herbivores may produce volatile 

components which may help parasitoids and predators of the herbivore to locate their 

herbivorous hosts (Karban and Myers, 1989; Turlings et ai, 1990). This can be seen as an 

indirect defence of the plant against herbivores. A positive effect of this indirect defence 

mechanism can be a reduced injury of the plant. When this is the case, the infochemicals 

involved are called synomones. 

HOST SELECTION AND OVIPOSITION 

Phytophagous insects can be divided in three categories according to their level of 

specialisation on host plants: polyphagous, oligophagous and monophagous. Polyphagous 

insects are those that feed on different plant families. Oligophagous insects feed and oviposit 

on related species belonging to one or only a few taxonomically related plant families with 

common phytochemical characteristics, and monophagous species feed and oviposit on only 

one or a few plant species belonging to one genus. 

Host selection behaviour is the subject of much research. Host selection by phytophagous 

insects consists of a sequence of behavioural responses to an array of stimuli associated with 

host and non-host plants. Insects are equipped with mechano-, visual-, gustatory- and olfactory 

receptors (Renwick and Radke, 1988). They select their host plants by using a combination 

of these sensory stimuli (Stadler, 1986; Woodhead and Chapman, 1986). Plant odours have 

been considered to be important cues in host selection for many insects (Visser, 1986). 

After being attracted to a plant, several butterflies display a special behaviour. After landing 

on a leaf, they start drumming, which means that they use their forelegs alternately to drum 

the leaf surface several times per second. On a host plant, this drumming behaviour is often 

followed by oviposition and on a non-host plant by taking off. 



HOST MARKING PHEROMONES 

One of the major activities of an adult female insect is the selection of an oviposition site 

where her offspring can meet the right conditions for maximal growth. When the insect 

accepts only a limited number of specific plant species to feed or oviposit on, as is often the 

case with herbivorous species, there is a fair chance that acceptable oviposition sites are 

independently discovered by several searching conspecific females. To reduce intraspecific 

competition, egg-laying females may deposit a chemical substance on or near the eggs. This 

signals to conspecific females (and also to herself if she happens to visit the same site again) 

that the site is already occupied. This phenomenon constitutes an important element in 

foraging strategies of herbivorous insects, since it prompts an even distribution of eggs over 

available food resources and results in improved resource exploitation (Prokopy et ai, 1976; 

Prokopy, 1981; Roitberg and Prokopy, 1987). Because of their important ecological function 

these marking substances, often labelled as host marking pheromones (HMP's) or as oviposi­

tion deterring pheromones (ODP's), attracted much attention lately, especially since egg-

associated substances also may affect related herbivorous species and natural enemies of the 

herbivores (Prokopy and Webster, 1978; Noldus and van Lenteren, 1985; Schoonhoven et al., 

1990; Roitberg and Lalonde, 1991). 

A more detailed analysis of the ecological role of a HMP requires its chemical identification. 

Thus far only a few attempts to identify a HMP have been successful (Hurter et al., 1987; 

Imai et al., 1990; Thiéry and Le Quéré, 1991). A notable example concerns the cherry fruit 

fly, Rhagoletis cerasi. Females of this species drag their extended ovipositor over the fruit 

surface after the insertion of an egg. During this dragging, a HMP is deposited which contains 

N[15(ß-glucopyranose)-oxy-8-hydroxypalmitoyl]-taurine as the major biologically active 

compound (Hurter et al., 1987). Within the Lepidoptera, which comprise the butterflies and 

moths, several potential uses of a HMP have been reported (Schoonhoven, 1990; Thiéry and 

Le Quéré, 1991). 

The large white butterfly, Pieris brassicae L., a specialized insect of cabbage (Brassica 

oleracea L.) and other cruciferous plants, has been studied in great detail (Rothschild and 

Schoonhoven, 1977; Klijnstra, 1986; Klijnstra and Roessingh, 1986; Klijnstra and 

Schoonhoven, 1987). Oviposition of P. brassicae L. is inhibited when a potential host plant 

carries conspecific eggs or is sprayed with a methanolic egg wash (Rothschild and Schoonho­

ven, 1977; Klijnstra, 1986). Inhibition of oviposition is especially pronounced under 

laboratory conditions when the female butterfly has a choice between HMP-treated plants and 

control plants. Dispersal activity also appears to increase after contacting HMP (Klijnstra and 

Schoonhoven, 1987). 



HOST PLANT/PARASITOID INTERACTION 

One of the large and important groups of natural enemies of herbivorous insects is constituted 

by the parasitic Hymenoptera, which number about 100,000 species worldwide (Whitman, 

1988). One major task faced by a female parasitoid is locating a habitat containing host 

insects. Initially, the parasitoid may seek a certain environment regardless of the presence or 

absence of hosts. However, the hosts occur only in specific locations within the environment 

and a female must locate the micro-habitat where hosts are most likely present. Factors that 

attract a parasitoid to a plant and retain it in the area have a positive selection value for the 

plant due to the parasitoid's beneficial effects in reducing herbivore survival and fitness 

(Karban and Meyers, 1989). 

The parasitoids can be attracted by volatiles from different sources like the host-body, frass, 

scales, honeydew, pheromone gland and so on. However, for long-range attraction, plant 

chemicals are probably the most important cues for host location by parasitic wasps (Vet and 

Dicke, 1992). Behavioural bioassays show that parasitoids are often stronger attracted to 

plants on which their hosts are feeding than to plants without feeding hosts and mechanical 

damage only. Until now, only a few of the attractive chemicals have been identified (Whit­

man, 1988). Recent studies (Whitman and Eller, 1990; Turlings et al., 1990; Turlings et ai, 

1991) show that infested plants release a damage-specific blend of volatiles, which attract 

natural enemies of the herbivorous insects, possibly functioning as an indirect defence. 

The potential value of using natural enemies to control crop pests is great. Especially in 

glasshouses, in which parasitoids are released, their use has proven to be effective, 

inexpensive, long-lasting and environmentally sound (van Lenteren and Woets, 1988). 

CRUCIFER-INSECT RELATIONSHIPS 

Although glucosinolates and their hydrolysis products were early identified as determinants 

of host plant specificity of cruciferous insects, the specificity of interaction is not exclusively 

mediated by this group of compounds (Table 1). Other groups of compounds, like flavonoids 

and cardenolides, also play a role in crucifer-insect interactions. Host plant selection most 

likely is based on a complex chemosensory balance between stimulants and deterrent 

compounds, especially in plants containing both types of compounds. Different Pieris species 

can react differently to the same cruciferous plant (Huang et al., 1993). 

In general, among crucifer-insect relations, it seems that the volatile isothiocyanates are 

involved in the attraction of different insects to their host plants (Table 1). 



Table 1. Attraction, feeding and oviposition stimulants and deterrents isolated from crucifers for 
different specialized crucifer feeding insects. 

Compound 

Glucosinolates 
different glucosinolates 

sinigrin 

glucobrassicin 
glucoiberin/glucochcirolin 
glucobrassicanapin/gluco-
napin and glucobrassicin 
Isothiocyanates 
different isothiocyanates 

allylisothiocyanate 

Cardenolides 
Flavonoids 
Cucurbitacin E and I 
CIF-factor 

Behaviour 

a 
a 
a 
a 

0 

f 
f 
f/o 
0 

f/o 
0 

f 
f 
f 
f 
f 
0 

0 

0 

0 

f/o 

0 

d 

d 

Species 

Delia spp. 
Ceutorhynchus spp. 
Entomoscelis americana Brown 
Phyllotreta spp. 
Plutella xylostella L. 
Pieris spp. 
Plutella xylostella L. 
Ceutorhynchus spp. 
Phaedon cochleariae Fab. 
Phyllotreta armoraciae Koch 
Athalia proximo Klug 
Brevicoryne brassicae L. 
Pieris spp. 
Pieris napi L. 

Delia floralis Fallen 

Ceutorhynchus assimilis Payk. 
Brevicoryne brassicae L. 
Delia spp. 
Phyllotreta cruciferae Goeze 
Pieris spp. 
Phyllotreta spp. 
Phyllotreta nemorum L. 
Delia radicum L. 

Reference 

13, 14 
20,27 
17 
10, 12, 15 
23 
1,6, 11 
2 ,3 
16 
5 
16 
8 
4 
24 
28 

29 

19 
25 
7, 9, 13 
10 
21,22 
15, 18 
15 
26 

a: attraction, o: oviposition stimulant, f: feeding stimulant and d: oviposition deterrent. 
(1) Verschaffelt, 1910; (2) Thorsteinson, 1953; (3) Gupta and Thorsteinson, 1960; (4) Wensler, 1962; 
(5) Tanton 1965; (6) Terofal, 1965; (7) Traynier, 1965; (8) Bogawat and Srivastava, 1968; (9) 
Schnitzler and Muller, 1969; (10) Feeny et al., 1970; (11) Ma and Schoonhoven, 1973; (12) Hicks, 
1974; (13) Nair and McEwen, 1976; (14) Nair et al., 1976; (15) Nielsen 1978; (16) Nielsen et al., 
1979;(17) Mitchell and Gregory, 1981; (18) Larsen et al., 1982; (19) Kozlowski, 1984; (20) Larsen 
et al, 1985; (21) Rothschild étal, 1988; (22) Sachdev-gupta étal, 1989; (23) Reed et al, 1989; (24) 
Traynier and Truscott, 1991; (25) Nottingham et al, 1991; (26) Roessingh et al, 1992a; (27) Larsen, 
1992; (28) Huang et al, 1993; (29) Simmonds et al, in prep. 



Indole glucosinolates seem to be the strongest oviposition stimulants for butterflies, moths and 

flies (Table 1). The CIF-factor (CIF means cabbage inducing factor, a newly isolated non-

glucosinolate oviposition stimulant with still unknown structure) was isolated from Brassica 

oleracea L. Delia radicwn L. appears to be a 1000 times more sensitive to this compound 

than to glucobrassicin, the most active glucosinolate (Roessingh et al., 1992b). This CIF-

factor also stimulates the B-type tarsal chemoreceptors of female Pieris brassicae L. (J.J.A. 

van Loon and A. Blaakmeer, unpubl.). 

For the monophagous weevil species, other glucosinolates than indole glucosinolates stimulate 

feeding and oviposition (Table 1). 

Studies of artificially damaged or insect infested oilseed rape, mustard and kale plants 

(Lammerink et al, 1984; Birch et al., 1990; Koritsas et al, 1991; Bodnaryk, 1992) show 

increased levels of indole glucosinolates. An induced pest-resistance mechanism could be 

responsible for the observed changes in glucosinolate metabolism. Conceivably the sulphur 

containing phytoalexins reported in brassicas (Takasugi et al, 1988) are formed from the 

indole-based glucosinolates. 

INSECT PESTS OF CRUCIFERS 

Different pests can occur in cabbage crops. The most important pests of Brussels sprouts are 

various lepidopterous larvae, the cabbage aphid, the cabbage root fly and the Swede midge. 

The damage not only results in a reduction of the yield but also in a detonated quality and 

market value of the crop. In the past, the pests were controlled by preventive sprayings with 

insecticides. However, total reliance upon pesticides proves in the long run to be counter-

effective. Strict adherence to pesticides and regular repetitive spraying may result in an increa­

sed resistance of insects to pesticides, detrimental effects on non-target organisms, environ­

mental pollution, potential hazard to the labourers applying the pesticide, phytotoxic residues 

on crops, spiralling treatment costs and waste of energy. In recent years, the ultimate objective 

of crop protection extension is the adoption by growers of sound economic crop protection 

practices, that stress efficient production, and minimize pesticide use (Integrated Pest 

Management). 

Integrated pest control systems are developed for aphids, different caterpillars and cabbage 

root fly, whereby spraying is only carried out when a given economically relevant density of 

insects is exceeded (Andaloro et al, 1983). This requires an adequate monitoring of insect 

density by the growers. 

Also, the introduction of seeds coated with insecticides, more selective insecticides and the 

use of entomopathogens, like granulosis virus, help to reduce the total usage of pesticides and 

thus to decrease environmental pollution. 



In The Netherlands, about 26,800 kg insecticide was used in total for the protection of 

cabbage crops in 1990 (i.e. 2.4 kg/hectare, Ministerie van Landbouw, Natuurbeheer en 

Visserij, 1990) 

Herbivore/crucifer interactions have been studied extensively compared to the interactions 

between the complex of cruciferous plants/herbivores and their predators/parasitoids. Until 

now, only few allelochemicals responsible for the attraction of parasitoids to herbivores (very 

few of them involved in crucifer-insect relationships) have been isolated and identified (Read 

et al, 1970; Whitman, 1988; Turlings et al., 1990; Dicke et al, 1990; Turlings et al., 1991; 

Whitman and Eller, 1992). 

PHYTOCHEMISTRY OF CRUCIFERAE 

Almost all plants of the Cruciferae, especially those of the genus Brassica which comprises 

the majority of cultivated plants within this family, are characterised by a wide range of 

secondary plant compounds, known as glucosinolates (Table 2). These glucosinolates and their 

breakdown products cause the characteristic taste and often pungent odours of cruciferous 

plants. 

The glucosinolates can be hydrolysed by the action of myrosinase. Myrosinase, an enzyme 

which gets into contact with its substrate when cells are damaged, hydrolyses glucosinolates 

(I) (Figure 1) by splitting off glucose under formation of an unstable aglucone (II). After 

rearrangement, different products (isothiocyanates (III), thiocyanates (IV), nitriles (V) or 

epithionitriles (VI)) are formed, depending on the R-group, reaction conditions and co-factors 

present in the plant tissue (Figure 1). The hydrolysis products have been extensively studied 

because some of them can affect the thyroid gland. It is known that goitrin (5-vinyloxazolidi-

ne-2-thione)(Figure 2), derived from progoitrin (2-hydroxy-3-butenyl glucosinolate), exerts 

its effect via interference with thyroxine synthesis. Thiocyanates compete with iodine for 

uptake by the thyroid gland. 

Indole glucosinolates can have carcinogenic properties. The hydrolysis products of these 

glucosinolates react with nitrites and give carcinogenic N-nitroso compounds, a group of 

compounds bearing a common functional N-N=0 group (Wakabayashi et al., 1985; Tiedink 

et al., 1991). 

Also anti-carcinogenic properties are ascribed to Brassica vegetables. This fact is based on 

epidemiological evidence (Graham, 1983) and results from animal experiments (Wattenberg, 

1983; Zhang et al, 1992). 



Table 2. Glucosinolatcs isolated from different Brassica species. 

Glucosinolate 

methylthiomethyl 
3-indolylmethyl 
1 -methoxy-3-indolylmethyl 
2-phenylethyl 
propyl 
isopropyl 
1-methylpropyl 
3-methylthiopropyl 
3-methylsulfinylpropyl 
2-propenyl 
butyl 
4-methylthiobutyl 
4-methylsulfinylbutyl 
4-methylsulfonylbutyl 
2-hydroxy-3-butenyl 
3-butenyl 
5-methylthiopentyl 
5-methylsulfinylpentyl 
4-pentenyl 
2-hydroxy-4-pentenyl 
hexyl 
6-methylthiohexyl 
benzyl 
p-hydroxybenzyl 
indole 

Source 

B. oleracea 
B. oleracea 
B. oleracea 
B. oleracea 
B. oleracea 
B. alboglabra 
B. nigra 
B. oleracea 
B. oleracea 
B. oleracea 
B. oleracea 
B. oleracea 
B. oleracea 
B. oleracea 
B. oleracea 
B. oleracea 
B. alboglabra 
B. alboglabra 
B. alboglabra 
B. alboglabra 
B. campes tris 
B. campes tris 
B. oleracea 
B. oleracea 
B. alboglabra 

Reference* 

4 
5 
5 
5 
8 
7 
2 
3 
5 
5 
8 
5 
5 
6 
5 
5 
9 
9 
9 
9 
10 
10 
6 
1 
9 

* Only the first isolation-report is cited; for author names of Brassica's see Table 3. 
(1) Kjaer and Rubenstein, 1954; (2) Nagashima, 1954; (3) Clapp et ai, 1959; 
(4) Baily et al., 1961; (5) Josefsson, 1967; (6) VanEtten et al., 1976; 
(7) Cole, 1976; (8) MacLeod and Nussbaum, 1977; (9) Daxenbichler et al., 1979; 
(10) Kameoka and Hashimoto, 1980 . 
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THE GENUS BRASSICA 

The genus Brassica comprises a number of vegetables with quite different visual appearances 

such as red and white cabbage, broccoli, cauliflower, kohlrabi, turnip, swede and Brussels 

sprouts (Table 3). 

Of all Brassica oleracea varieties that came about by plant breeding, Brussels sprouts has 

been developed most recently and is botanically known as Brassica oleracea L. var. gemmi-

fera. It is an important vegetable in The Netherlands (5,000 hectares in 1989, making up 

about 50 % of the total cabbage area (IKC-AGV, 1990). 

Table 3. List of different Brassica species and varieties (adapted from Fenwick et al., 1983). 

Brassica oleracea L. 
var. gongyloides L. 
var. capitata L. 
var. sabauda L. 
var. gemmifera DC. 
var. alba DC. 
var. botrytis L. 

subvar. cauliflora DC. 
subvar. cytnosa Lam. 

var. acephala DC. 
subvar. millecapitata Thell. 
subvar. medullosa Thell. 
subvar. laciniata L. 

B. alboglabra Baily 
B. pekinensis (Lour.) Rupr. 
B. chinensis L. 

var. chinensis 
var. rosularis Tsen et Lee 

B. perviridis Baily 
B. campestris 

spp. rapifera (Metzg.) Sinsk 
spp. oleifera (Metzg.) Sinsk 

B. napus L. 
var. napobrassica Reichenb. 
var. napus 

B. nigra (L.) Koch 
B, juncea (L.) Czern et Coss 
B. carinata A.Br. 

Kohlrabi 
Red/White cabbage 
Savoy cabbage 
Brussels sprouts 
Oxheart cabbage 

Cauliflower 
Sprouting broccoli 

Thousand head kale 
Marrowstem kale 
Curley kale 
Chinese cabbage 
Pe-tsai 

Pak-choi 
Other oriental greens 
Tendergreen 

Turnip 
Turnip rape 

Swede, rutabaga 
Winter and summer rape 
Black mustard 
Brown mustard 
Abyssinian mustard 

10 



AIM OF STUDY 

This study is part of the ongoing research on insect/plant relationships and tritrophic systems 

which takes place at the Departments of Entomology and Organic Chemistry. The aim of the 

study is to isolate and identify infochemicals which are involved in Cotesia-Pieris-Ciucifer 

relationships with the prospect of their eventual use in cabbage crop protection. The study 

focused on two topics: regulation of (1) Pieris oviposition behaviour and (2) host selection 

behaviour of parasitoids of Pieris larvae. Both are explained in more detail below. 

The host range of Pieris brassicae L., the large cabbage white butterfly, and the closely 

related Pieris rapae L., the small cabbage white, is limited to the Cruciferae and a few phyto-

chemically related families (Feltwell, 1982), all of which contain mustard oil glucosides 

(glucosinolates). 

Figure 3. Pieris brassicae L. female ovipositing on a leaf of Brussels sprouts. 

Glucosinolates are generally considered as making up the primary chemical defence barrier 

of these plants. Despite the presence of glucosinolates, crucifers are attacked by a wide range 

of insects (Nair et al., 1976; Nielsen et a/., 1989; Landolt, 1989; Reed et al, 1989; Roessingh 

et al., 1992a). 
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After being attracted by visual and possibly olfactory cues, P. brassicae L. lands on the leaf 

surface of a plant. Sensilla located on the tarsi contain several specialized chemoreceptors, 

that can be stimulated by compounds on the leaf surface and/or in the leaf interior. 

The identification of the glucosinolate responsible for stimulation of oviposition behaviour is 

described in chapter 2. 

Egg-laying behaviour of Pieris brassicae L. females is influenced by previously laid eggs 

(Rothschild and Schoonhoven, 1977). Females avoid leaves carrying conspecific eggs. It has 

been suggested that the eggs release chemicals that deter other females from egg-laying at that 

particular place. These chemicals can be extracted by washing the eggs with water or metha­

nol. An egg wash sprayed onto cabbage leaves was found to be much more deterrent than the 

presence of an equivalent number of intact eggs. The identification of the substances involved 

is the subject of chapter 3. 

Structure-activity relationships of the isolated compounds and related synthesized structures 

as oviposition deterrents for P. brassicae L. are described in chapter 4. 

The question how an ovipositing female, after landing on the upper surface of a cabbage leaf, 

can perceive the HMP present on the surface of the eggs normally deposited on the underside 

of the leaf is the subject of chapter 5. 

Two Cotesia species are natural enemies of Pieris larvae. The gregarious endoparasitoid 

Cotesia glomerata L. parasitizes several Pieris species. The solitary Cotesia nubecula 

Marshall is considered as a specialized endoparasitoid of the solitarily feeding larvae of Pieris 

rapae L. Chemical information released by plants on which larvae of both Pieris species are 

feeding, may play an important role in host habitat location by these two parasitoids 

(Steinberg et al., 1992; Kaiser and Cardé, 1992). 

Release of volatiles by cabbage plants infested by caterpillars of both Pieris species and flight 

responses of both Cotesia parasitoids is the subject of chapter 6. 
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Figure 4. Cotesia glomerata L. female parasitizing a first instar larva of Pieris brassicae L.. 

REFERENCES 

Andaloro, J.T., Hoy, C.W., Rose, K.B., Tettc, J.P. and Shclton, A.M. 1983. A review of cabbage pest 
management in New York: from the pilot project to the private sector, 1978-1982. New York's 
Food and Life Sciences Bulletin 105: 1-12. 

Baily, S.D., Bazinet, M,L., Driscoll, J.L., McCarthy, A.I. 1961. The volatile sulfur components of 
cabbage. J. Food Sei. 26: 163-170. 

Birch, A.N.E., Griffiths, D.W. and MacFarlanc Smith, W.H. 1990. Changes in forage and oilseed rape 
(Brassica napus) root glucosinolates in response to attack by turnip root fly (Delia floralis). 
J. Sei. Food Agric. 51: 309-320. 

Bodnaryk, R.P. 1992. Effects of wounding on glucosinolates in the cotyledons of oilseed rape and 
mustard. Phytochemistry 31: 2671-2677. 

Bogawat, J.K. and Srivastava, B.K. 1968. Discovery of sinigrin as a phagostimulant by Athalia 
proximo Klug (Hymenoptcra: Tcnthredinidae). Indian J. Entomol. 30: 89-91. 

Clapp, R.C., Long, L.Jr., Dateo, G.P., Bisset, F.H. and Hasselstrom, T. 1959. The volatile 
isothiocyanates in fresh cabbage. J. Am. Chem. Soc. 81: 6278-6281. 

Cole, R.A. 1976. Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolates 
in Cruciferae. Phytochemistry 15: 759-762. 

Daxenbichlcr, M.E., VanEtten, C.H. and Williams, P.H. 1979. Glucosinolates and derived products in 
cruciferous vegetables. Analysis of 14 varieties of Chinese cabbage. J. Agric. Food Chem. 
27:34-37. 

Dicke, M. and Sabclis, M.W. 1988. Infochemical terminology: based on cost-benefit analysis rather 
than origin of compounds? Fund. Ecol. 2: 131-139. 

13 



Dicke! M., van Beek, T.A., Posthumus, M.A., Ben Dom, N., van Bokhoven, H. and de Groot, Ae. 
1990. Isolation and identification of volatile kairomone that affects acarinc predator-prey 
interactions. Involvement of host plant in its production. J. Chem. Ecol. 16: 282-396. 

Ehrlich, RR. and Raven, P.H. 1965. Butterflies and plants: a study in co-evolution. Evolution 
18: 586-608. 

Feeny, P., Paauwe, K.L. and Demong, N.J. 1970. Flea beetles and mustard oils: Hostplant specificity 
of Phyllotreta cruciferae and P. striolata adults (Coleoptera: Chrysomelidae). Ann. Entomol. 
Soc. Am. 63: 832-841. 

Feltwell, J. 1982. The large white butterfly: biology, biochemistry and physiology of Pieris brassicae 
(Linnaeus). Dr. Junk Publishers, The Hague/London. 

Fenwick, G.R., Heaney, R.K. and Mullin, W.J. 1983. Glucosinolates and their breakdown products in 
food and food plants. CRC Critical Reviews in Food Science and Nutrition 18: 123-201. 

Fraenkel, G. 1959. The raison d'être of secondary plant substances. Science 129: 1466-1470. 
Graham, S. 1983. Toward a dietary prevention of cancer. Epidemiol. Rev. 5: 38-50. 
Gupta, P.D. and Thorsteinson, A.J. 1960. Food plant relationships of diamond-back moth (Plutella 

maculipennis (Curt.)) II. Sensory regulation of oviposition of the adult female. Entomol. Exp. 
App. 3: 305-314. 

Hicks, K.L. 1974. Mustard oil glucosides: feeding stimulants for adult cabbage flea beetles Phyllotreta 
cruciferae (Coleoptera: Chrysomelidar). Ann. Entomol. Soc. Am. 67: 261-264. 

Huang, X., Renwick, J.A.A. and Sachdev-Gupta, K. 1993. A chemical basis for differential acceptance 
of Erysimum cheiranthoides by two Pieris species. J. Chem. Ecol. 19: 195-210. 

Hurter, J., Boiler, E.F., Stadier, E., Blatmann, B., Buser, H.R., Bosshard, N.U., Damn, L., Kozlowski, 
M.W., Schöni, R., Raschdorf, F., Schlumpf, E., Fritz, H., Richter, W.J. and Schreiber, J. 1987. 
Oviposition-deterring pheromone in Rhagoletis cerasi L.: Purification and determination of the 
chemical constitution. Experientia 43: 157-164. 

IKC-PAGV (Informatie- en Kenniscentrum voor de Akkerbouw en de Groenteteelt in de Vollegrond-
Proefstation voor de Akkerbouw en de Groenteteelt in de Vollegrond). 1990. Teelt van spruit-
kool. 

Imai, T., Kodama, H., Chuman, T. and Kohno, M. 1990. Female-produced oviposition deterrents of 
the cigarette beetle, Lasioderma serricorne (F.) (Coleoptera: Anobiidae). J. Chem. Ecol. 16: 
1237-1247. 

Josefsson, E. 1967. Distribution of thioglucosides in different parts of Brassica plants. Phytochemistry 
6: 1617-1627. 

Kaiser, L. and Cardé, R.T. 1992. In-flight orientation to volatiles from the plant-host complex in 
Cotesia rubecula (Hym.: Braconidae): increased sensitivity through olfactory experience. 
Physiol. Entomol. 17: 62-67. 

Kameoka, H. and Hashimoto, S. 1980. Studies on the constituents of the genus Brassica. III. The 
constituents of steam volatile oil from Brassica rapa L. var. laciniifolia Kitamura. Nippon 
Nogei Kagaku Kaishi 54: 865. 

Karban, R. and Myers, J.H. 1989. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 20: 
331-348 

Kjaer, A. and Rubenstcin, K. 1954. Isothiocyanates. VII. Synthesis of p-hydroxybenzyl isothiocyanate 
and demonstration of its presence in the glucoside of white mustard (Sinapis alba L.). Acta 
Chem. Scand. 8: 598. 

Klijnstra, J.W. 1986. The effect of an oviposition deterring pheromone on egg-laying in Pieris 
brassicae. Entomol. Exp. Appl. 41: 139-146. 

Klijnstra, J.W. and Roessingh, P. 1986. Perception of the oviposition deterring pheromone by tarsal 
and abdominal contact chemoreceptors in Pieris brassicae. Entomol. Exp. Appl. 40: 71-79. 

Klijnstra, J.W. and Schoonhoven, L.M. 1987. Effectiveness and persistence of the oviposition deterring 
pheromone of Pieris brassicae in the field. Entomol. Exp. Appl. 45: 227-235. 

Koritsas, V.M., Lewis, J.A. and Fenwick, G.R. 1991. Glucosinolate responses of oilseed rape, mustard 
and kale to mechanical wounding and infestation by cabbage stem flea beetle (Psylliodes 
chrysocephala). Ann. Appl. Biol. 118: 209-221. 

14 



Kozlowski, M.W. 1984. Selective responsiveness of the antennal olfactory system in the cabbage seed 
weevil, Ceutorhynchus assimilis towards host plant volatiles. Acta Physiol. Pol. 35: 5-6. 

Lammerink, J., MacGibbon, D.B. and Wallace, A.R. 1984. Effect of the cabbage aphid (Brevicoryne 
brassicae) on total glucosinolate in the seed of oilseed rape (Brassica napus). New Zealand 
J. Agric. Res. 27: 89-92. 

Landolt, P.J. 1989. Attraction of the cabbage looper to host plants and host plant odor in the laborato­
ry. Entomol. Exp. Appl. 53: 117-124. 

Larsen, L.M., Nielsen, J.K. and S0rensen, H. 1982. Identification of 3-0-[2-0-(ß-D-xylopyranosyl)-ß-
D-galactopyranosyl] flavonoids in horseradish leaves acting as feeding stimulants for a flea 
beetle. Phytochemistry 21: 1029-1033. 

Larsen, L.M., Nielsen, J.K., Ploger, A. and S0rensen, H. 1985. Responses of some beetle species to 
varieties of oilseed rape and to pure glucosinolates, pp. 230-244, in H. S0rensen (ed.). 
Advances in the Production and Utilization of Cruciferous Crops. Martinus Nijhoff/Dr. W. 
Junk Publ., Dordrecht, The Netherlands. 

Larsen, L.M., Nielsen, J.K. and S0rensen, H. 1992. Host plant recognition in monphagous weevils: 
Specialization of Ceutorhynchus inaffectatus to glucosinolates from its host plant Hesperis 
matronalis. Entomol. Exp. Appl. 64: 49-55. 

Ma, W.C. and Schoonhoven, L.M. 1973. Tarsal contact chemosensory hairs of the large white 
butterfly, Pieris brassicae, and their possible role in oviposition behaviour. Entomol. Exp. 
Appl. 16: 343-357. 

MacLeod, A.J. and Nussbaum, M.L. 1977. The effects of different horticultural practices on the 
chemical flavour composition of some cabbage cultivars. Phytochemistry 16: 861-865. 

Ministerie van Landbouw, Natuurbeheer en Visserij. 1990. Rapportage Werkgroep Vollegronds-
groenteteelt: Achtergronddocument Meerjarenplan Gewasbescherming. 

Mitchell, B.K. and Gregory, P. 1981. Physiology of the lateral galeal sensillum in red beetle larvae 
(Entomoscelis americana Brown): responses to NaCl, glucosinolates and other glucosides. J. 
Comp. Physiol. 144: 495-501. 

Nagashima, Z. 1954. Studies on wasabi (Eutrema wasabi, Maxim)I. An acrid substance of wasabi and 
mustard (black mustard). J. Agric. Chem. Soc. Jpn. 28: 119. 

Nair, K.S.S., McEwen, F.L. and Snieckus, V. 1976. The relationship between glucosinolate content 
of cruciferous plants and oviposition preferences of Hylemya brassicae (Diptera: Anthomyi-
idae). Can. Entomol. 108: 1031-1036. 

Nair, K.S.S. and McEwen, F.L. 1976. Host selection by the adult cabbage maggot, Hylemya brassicae 
(Dipera: Anthomyiidae): effect of glucosinolates and common nutrients on oviposition. Can. 
Entomol. 108: 1021-1030. 

Nielsen, J.K. 1978. Host plant selection of monophagous and oligophagous flea beetles feeding on 
crucifers. Entomol. Exp. Appl. 24: 362-369. 

Nielsen, J.K., Larsen, L.M. and S0rensen, H. 1979. Host plant selection of horseradish flea beetle 
Phyllotreta aemoraciae (Colcoptera: Chrysomclidae): identification of two flavonol glucosides 
stimulating feeding in combination with glucosinolates. Entomol. Exp. Appl. 26: 40-48. 

Nielsen, J.K., Kirkeby-Thomsen, A.H. and Petersen, M. 1989. Host plant recognition in monophagous 
weevils: specificity in feeding responses of Ceutorhynchus constrictus and the variable effect 
of sinigrin. Entomol. Exp. Appl. 53: 157-166. 

Noldus, L.P.J.J. and van Lenteren, J.C. 1985. Kairomones for the egg parasite Trichogramma 
evanescens Wcstwood: II. Effect of contact chemicals produced by two of its hosts, Pieris 
brassicae L. and Pieris rapae L. J. Chem. Ecol. 11: 793-800. 

Nottingham, S.F., Hardie, J., Dawson, G.W., Hick, A.J., Pickett, J.A., Wadhams, L.J. and Woodcock, 
CM. 1991. Behavioral and electrophysiological responses of aphids to host and nonhost plant 
volatiles. J. Chem. Ecol. 17: 1231-1242. 

Price, P.W., Bouton, CE., Gross, P., McPheron, B.A., Thompson, J.N. and Weis, A.E. 1980. 
Interactions among three trophic levels: influence of plants on interactions between insect 
herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11: 41-65. 

15 



Price, P.W., Slobodchikoff, C.N. and Gaud, W.S. 1984. A new ecology. Wiley, New York. 
Prokopy, R.J. 1981. Epideictic pheromones that influence spacing patterns of phytophagous insects, 

pp. 181-213, in D.A. Nordlund, R.L. Jones and W.J. Lewis (eds.). Semiochemicals, Their Role 
in Pest Control. John Wiley & Sons, New York. 

Prokopy, R.J., Reissig, W.H. and Moericke, V. 1976. Marking pheromones deterring repeated 
oviposition in Rhagoletis flies. Entomol. Exp. Appl. 20: 170-178. 

Prokopy, R.J. and Webster, R.P. 1978. Oviposition deterring pheromone of Rhagoletis pomonella: A 
kairomone for its parasitoid Opius lee tus. J. Chem. Ecol. 4: 481-494. 

Read, D.P., Feeny, P.P. and Root, R.B. 1970. Habitat selection by the aphid parasite Diaeretiella 
rapae (Hymenoptera: Braconidae) and hyperparasite Charips brassicae (Hymenoptera: 
Cynipidae). Can. Entomol. 102: 1567-1578. 

Reed, D.W., Pivnick, K.A. and Underhill, E.W. 1989. Identification of chemical oviposition stimulants 
for the diamondback moth, Plutella xylostella, present in three species of Brassicaceae. 
Entomol. Exp. Appl. 53: 277-286. 

Renwick, J.A.A. and Radke, CD. 1988. Sensory cues in host selection for oviposition by the cabbage 
butterfly, Pieris rapae. J. Insect Physiol. 34: 252-257. 

Roessingh, P., Stadier, E., Fenwick, G.R., Lewis, J.A., Nielsen, J.K., Hurter, J. and Ramp, T. 1992a. 
Oviposition and tarsal chemoreccptors of cabbage root fly are stimulated by glucosinolates and 
host plant extracts. Entomol. Exp. Appl. 65: 267-282. 

Roessingh, P., Stadler, E., Hurter, J. and Ramp, T. 1992b. Oviposition stimulant for the cabbage root 
fly: important new cabbage leaf surface compound and specific tarsal receptors, pp 141-142, 
in S.B.J. Menken, J.H. Visser and P. Harrewijn (eds). Proc. 8th Int. Symp. Insect-Plant 
Relationships. Kluwer Acad. Publ., Dordrecht. 

Roitberg, B.D. and Prokopy, R.J. 1987. Insects that mark host plants. An ecological, ecolutionary 
perspective on host-marking chemicals. Bioscience 37: 400-406. 

Roitberg, B.D. and Lalonde, R.G. 1991. Host marking enhances parasitism risk for a fruit-infesting 
fly Rhagoletis basiola. Oikos 61: 389-393. 

Rothschild, M. and Schoonhoven, L.M. 1977. Assessment of egg load by Pieris brassicae (Lepidop-
tera: Pieridae). Nature 266: 532-355. 

Rothschild, M., Alborn, H., Stenhagen, G. and Schoonhoven, L.M. 1988. A strophanthidin glycoside 
in Siberian wallflower: a contact deterrent for the large white butterfly. Phytochemistry 
27: 101-108. 

Sachdev-Gupta, K., Renwick, J.A.A. and Radke, CD. 1990. Isolation and identification of oviposition 
deterrents to cabbage butterfly, Pieris rapae, from Erysimum cheiranthoides. J. Chem. Ecol. 
16: 1059-1068. 

Schnitzler, W.H. and Muller, H.P. 1969. Über die Lockwirkung eines Senföls (Allylisothiocyanat) auf 
die Große Kohlfliege, Phorbia floralis Fallen. Z. Angew. Entomol. 63: 1-8. 

Schoonhoven, L.M., Beerling, E.A.M., Klijnstra, J.W. and van Vugt, Y. 1990. Two related butterfly 
species avoid oviposition near each other's egg. Experientia 46: 526-528. 

Schoonhoven, L.M. 1990. Host-marking pheromones in Lcpidoptera, with special reference to two 
Pieris spp. J. Chem. Ecol. 16: 3043-3052. 

Simmonds, M.S.J., Blaney, W.M., Mithcn, R., Birch, A.N. and Fenwick, R. Behavioural and 
chemosensory responses of turnip root fly (Delia floralis) to glucosinolates. In prep. 

Stadier, E. 1986. Oviposition and feeding stimuli in leaf surface waxes, pp 105-121, in B.E. Juniper 
and T.R.E. Southwood (eds.). Insects and the Plant Surface. Edward Arnold, London. 

Steinberg, S., Dicke, M., Vet, L.E.M, and Wanningen, R. 1992. Response of the braconid parasitoid 
Cotesia (= Apanteles) glomerata to volatile infochemicals: effects of bioassay set-up, 
parasitoid age and experience and barometric flux. Entomol. Exp. Appl. 63: 163-175. 

Takasugi, M., Monde, K., Katsui, N. and Shirata, A. 1988. Novel sulphur-containing phytoalexins 
from the Chinese cabbage Brassica campestris L. spp. pekinensis (Cruciferae). Bull. Chem. 
Soc. Japan 61: 285-289. 

Tanten, M.T. 1977. Response to food plant stimuli by larvae of the mustard beetle Phaedon 
cochleariae. Entomol. Exp. Appl. 22: 113-122. 

16 



Terofal, F. 1965. Zum Problem der Wirtsspezifität bei Pieriden (Lep.). Mitt. Manch. Entomol. Ges. 
55: 1-76. 

Thiéry, D. and Le Quéré, J.L. 1991. Identification of an oviposition-deterring pheromone in the eggs 
of the European Com Borer. Naturwissenschaften 78: 132-133. 

Thorsteinson, A.J. 1953. The chemotactic responses that determine host specificity in an oligophagous 
insect (Plutella maculipennis (Curt.) Lepidoptera) Can. J. Zool. 31: 52-72. 

Tiedink, H.G.M., Malingre, CE., van Broekhoven, L.W., Jongen, W.M.F., Lewis, J. and Fenwick, 
G.R. 1991. Role of glucosinolates in the formation of N-nitroso compounds. J. Agric. Food 
Chem. 39: 922-926. 

Traynier, R.M.M. and Truscott, R.J.W. 1991. Potent natural egg-laying stimulant for cabbage butterfly 
Pieris rapae. J. Chem. Ecol. 17: 1371-1380. 

Traynier, R.M.M. 1967. Stimulation of oviposition by the cabbage root fly Erioischia brassicae. 
Entomol. Exp. Appl. 10: 401-412. 

Turlings, C.J., Tumlinson, J.H., Heath, R.R., Proveaux, A.T. and Doolittle, A.T. 1991. Isolation and 
identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cres­
son), to the microhabitat of one of its hosts. J. Chem. Ecol. 17: 2235-2251. 

Turlings, T.C., Tumlinson, J.H. and Lewis, W.J. 1990. Exploitation of herbivore-induced plant odors 
by host-seeking wasps. Science 250: 1251-1253. 

van Lenteren, J.C. and Woets, J. 1998. Biological and integrated pest control in greenhouses. Annu. 
Rev. Entomol. 33: 239-269. 

VanEtten, C.H., Daxenbichler, M.E., Williams, P.H. and Kwolek, W.F. 1976. Glucosinolates and 
derived products in cruciferous vegetables. Analysis of the edible part from twenty-two 
varieties of cabbage. J. Agric. Food Chem. 24: 452-455. 

Verschaffelt, E. 1910. The cause determining the selection of food in some herbivorous insects. Proc. 
Acad. Sei. Wet. Amsterdam 13: 536-542. 

Vet, L.E.M. and Dicke, M., 1992. Ecology of infochemical use by natural enemies in a tritrophic 
context. Annu. Rev. Entomol. 37: 141-172. 

Visser, J.H. 1986. Host odor perception in phytophagous insects. Annu. Rev. Entomol. 31: 121-144. 
Wakabayashi, K„ Nagao, M., Tahira, T., Saito, H., Katayama, M., Marumo, S. and Sugimura, T. 1985. 

l-Nitrosoindole-3-acetonitrile a mutagen produced by nitrite treatment of indole-3-acetonitrile. 
Proc. Jap. Acad. 61: 199. 

Wattenberg. L.W. 1983. Inhibition of neoplasia by minor dietary constituents. Cancer Res. 
43: 2448-2453. 

Wensler, R.J.D. 1962. Mode of host selection by an aphid. Nature 195: 830-831. 
Whitman, D.W. 1988. Plant natural products as parasitoid cuing agents, pp 386-396 in H.G. Cuttler 

(ed.). Biologically Active Natural Products Potential Use in Agriculture. ACS Symp Ser 380, 
American Chemical Society, Washington D.C. 

Whitman, D.W. and Eller, F.J. 1990. Parasitic wasps orient to green leaf volatiles. Chemoecology 
1: 69-75. 

Whitman D.W. and Eller, F.J. 1992. Orientation of Microplitis croceipes (Hymenoptera: Braconidae) 
to green leaf volatiles: dose-respose curves. J. Chem. Ecol. 18: 1743-1753. 

Woodhead, S. and Chapman, R.F. 1986. Insect behaviour and the chemistry of plant surface waxes, 
pp 123-135, in B.E. Juniper and T.R.E. Southwood (eds.). Insects and the Plant Surface. 
Edward Arnold, London. 

Zhang, Y., Talalay, P., Cho, C. and Posner, G.H. 1992. A major inducer of anticarcinogenic protective 
enzymes from broccoli: Isolation and elucidation of structure. Proc. Natl. Acad. Sei. USA 
89: 2399-2403. 

17 



CHAPTER 2 

Leaf surface compound from Brassica oleracea 
induces oviposition by Pieris brassicae 

ABSTRACT 

Chemicals present on the surface of cabbage (Brassica oleracea L.) leaves were extracted by 

dipping these leaves for 3 s in dichloromethane followed by a 3 s dip in methanol. When 

offered in dual choice bioassays using green paper cards as a substrate, the methanol extract 

stimulated oviposition activity by Pieris brassicae L. (Lepidoptera: Pieridae) females. The 

oviposition stimulant was isolated using medium pressure liquid chromatography, reversed-

phase HPLC, ion-pair HPLC and ion exchange chromatography. Using 'H-NMR spectroscopy, 

the stimulant could be identified as glucobrassicin (3-indolyl-methyl-glucosinolate). When 

pure glucobrassicin was offered at a dose identical to that in the crude methanol extract, but­

terflies did not discriminate between these two substrates in a dual choice test. It is argued 

that a high sensitivity for indole glucosinolates as host recognition factors may confer an 

adaptive value for these specialist crucifer feeders. The nutritional significance of their 

precursor tryptophan and the non-volatile nature of the aglycones formed upon enzymic 

hydrolysis in damaged tissues are proposed as properties of indole glucosinolates that 

contribute to this possible adaptive advantage. 

INTRODUCTION 

Most herbivorous insect species accept only a limited number of plant species as hosts. Their 

behavioural decisions to accept or reject a particular plant species as oviposition substrate or 

food source are based largely on the perception of the chemical profile of the plant under 

evaluation (Dethier, 1982). In several cases (but certainly not all, see Jermy, 1984) it has been 

demonstrated that specific plant chemicals, characteristic for the plant taxon under study, 

constitute stimuli that induce acceptance. Chemosensory recognition of such 'token stimuli' 

(Fraenkel, 1959) triggers the behavioural response of oviposition or sustained feeding. One 

of the first examples of this concept has been the relationship between the cabbage caterpillars 

Pieris brassicae L. and Pieris rapae L. and cruciferous plants (Verschaffelt, 1910). Plants 

belonging to the Cruciferae all contain a class of secondary compounds called glucosinolates 
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(VanEtten and Tookey, 1979; Fenwick et al, 1983). Schoonhoven (1967) identified 

chemoreceptors specifically sensitive to glucosinolates on the maxillae of P. brassicae L. 

larvae. As in many herbivorous insects, female Pieris adults rather than neonate larvae 

perform host plant selection. Landing by Pieris females is guided mainly by visual cues 

(Traynier, 1979; Kolb and Scherer, 1982; Renwick and Radke, 1988). After landing on the 

leaf females drum the leaf surface with their tarsi and it is only after this behavioural step a 

decision about acceptance or rejection of the plant ensues. Thus, plant selection seems to be 

based primarily on contact chemoreception (Ma and Schoonhoven, 1973; Renwick and Radke, 

1988). Previous studies on both P. brassicae L. and P. rapae L. adults suggested a role for 

glucosinolates as host plant specific token stimuli for these butterflies and related species 

(David and Gardiner, 1962; Ma and Schoonhoven, 1973; Rodman and Chew, 1980; Renwick 

and Radke, 1983; Traynier, 1984; Traynier and Truscott, 1991). However, none of these 

studies used an isolation procedure starting with extracts prepared from an intact acceptable 

host plant, so that definite conclusions about the actual involvement of glucosinolates in host 

plant recognition by Pieris butterflies are not possible. Furthermore, as females seem to 

evaluate the plant via the leaf surface without contacting the leaf interior (Traynier and Hines, 

1987), it is relevant to investigate those compounds that are present on the surface rather than 

to study total leaf extracts (Stadler, 1986; Chapman and Bernays, 1989). This study was 

designed to isolate and identify oviposition stimulants present on the leaf surface of Brassica 

oleracea L., an acceptable host plant. 

MATERIALS AND METHODS 

Plant material - Brassica oleracea L. var. gemmifera cv. Titurel (Cruciferae) plants were 

reared in a greenhouse until 3 weeks old and then transplanted to a field near Wageningen 

on April 15, 1990. On each of three occasions, 250 leaves were harvested between October 

10 and 17, 1990. 

Insects - P. brassicae L. adults were obtained from a laboratory colony maintained on 

Brassica oleracea L. This culture was established in 1981 and since then 18 generations were 

produced each year. Field collected adults have been introduced several times during this 

period. Rearing conditions were similar to those described by David and Gardiner (1952). 

Bioassays - Oviposition preferences were tested in cages measuring 80 x 50 x 100 cm high. 

The cages were kept in a conditioned greenhouse, with temperatures fluctuating between 22 

and 25 °C. In addition to normal daylight, each cage was illuminated from 7.00 till 15.00 h 

by a 400 Watt mercury vapour lamp hanging 30 cm above the glass roof of the cage. 
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In each cage 8 females and 4 males were present. Females used in the bioassay had been 

given the opportunity to oviposit on leaves of B. oleracea L. for three days. During the 

subsequent two days they were offered green paper cards (surface area 80 cm2) which were 

sprayed with 1 ml of a 10 mM sinigrin solution in water (obtained from Janssen 

Pharmaceutica, Tilburg, The Netherlands) on the upper side only, using a chromatographic 

sprayer (Desaga, Heidelberg, FRG). This two-day training promoted the readiness of females 

to oviposit on cards. Sinigrin-treated cards were likewise offered during days on which no 

bioassay was carried out. In the bioassays, cards were sprayed only on the upper surface and 

the 2 control and 2 treated cards in each cage were placed in diagonally opposite corners, 

alternated between replicate cages, to minimize positional effects. Butterflies were offered 

these cards between 9.00 and 15.00 h. Preference of the butterflies was measured by 

comparing both the number of batches and the total number of eggs deposited on the treated 

substrates with those on the control substrates. The egg distribution occurring in one cage was 

considered a replicate. On any one day 6-8 replicates were run. Results of bioassays replicated 

serially on two consecutive days, were pooled in some cases. The significance of preference 

was tested with the Wilcoxon's matched pairs signed rank test (Siegel, 1956). 

Extraction and fractionation of leaf surface chemicals - Within 30 min after harvest, leaves 

were dipped in 500 ml dichloromethane. The dichloromethane dip lasted 3 s and was followed 

by a dip in 500 ml methanol for another 3 s, after a 5 s interval. The choice of this extraction 

sequence was based on previous experience with a number of apolar and apolar/polar solvent 

dip sequences (Stadler and Roessingh, 1991; van Loon and van Meer, 1991). The three crude 

methanol dip-volumes prepared on the three harvesting occasions were combined and 

subsequently divided into batch I, representing 500 leaves and batch II, representing the 

extracted surface material from 250 leaves. The batch I methanol extract was mixed with 

water (1:1) and then washed with dichloromethane (2 times 50 ml). The batch II methanol 

extract was washed with hexane (3 times with 150 ml). The methanol extract was then 

evaporated to dryness under reduced pressure and dissolved in 10 ml of distilled water. Doses 

are expressed in gram leaf equivalents (gle), being the amount of surface material extracted 

from 1 gram of fresh intact leaf. As the average weight of individual leaves was ca. 6 g and 

their average surface area was 80 cm2 (one side), a dose of 12 gle/artificial leaf corresponded 

to the amount of surface material extracted from two leaves. 

Medium pressure liquid chromatography (MPLC) on Sephasorb - The column (Jobin Yvon, 

Modulprep compression), diameter 40 mm, containing 300 g Sephasorb HP ultrafine (gel 

permeation medium separating molecules in the weight range 100-1500; Pharmacia) was used 

with MeOH-H2O=80-20 as the mobile phase. Flowrate was 10 ml/min. The detector was a 

Kratos Spectroflow 773, wavelength of detection was set at 237 nm. 
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HPLC on C18 - From this point in the separation procedure onwards, the material of batches 

I and II was processed in different ways. The column used in both cases was an RP CI8, 

250 x 10 mm, 5 um particle size, 100 Â pore size (Rainin Instrument Co.). The pumps model 

302 and 303, manometric module 802 C, Dynamic mixer 811 and UV-detector 116 (237 nm) 

were all of Gilson. A software HPLC system manager (model 702) of Gilson was used on an 

Apple II personal computer. During separation of both batches, the flow rate was 0.9 ml/min. 

For batch I, the solvent gradient was changed linearly from 0-70% methanol in water during 

the first 30 min and was then kept at 70% methanol in water from 30-39 min. For batch II, 

the first 5 min water was used as the solvent, then a linear increase to 100% methanol in 20 

min was performed which was maintained during the final 5 min. All separations were 

performed at 0 °C. 

HPLC on C18 using ion-pairing - The same set-up as described above was used for the ion-

pair chromatography. The mobile phase contained 0.005 M tetra-butylammonium-sulphate 

monohydrate (TAS; Betz and Page, 1990). The solvent composition changed in 10 min from 

0% MeOH to 50% MeOH in water. This composition was kept constant for another 10 min. 

Ion-exchange chromatography - A Lewatit S 1080 (Na+ form) (Merck) was used as the cation 

exchange column to remove TAS. Prior to use the column was washed with 15 ml distilled 

water. 

NMR-equipment - The NMR set-up used was a Bruker AC 200E. 
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RESULTS 

The crude methanol-post-dichloromethane extract stimulated oviposition of P. brassicae L., 

as expected (Table 1; van Loon and van Meer, 1991). As a check for possible extraction of 

interior leaf components, a UV absorption spectrum of the methanolic extract was determined. 

The absorption maxima typical of chlorophyll were absent, suggesting that disruption of cells 

in the leaf interior was negligible. 

Table 1. Oviposition on artificial leaves by Pieris brassicae L. females in a dual choice situation 
(control vs. treated). Treatment consisted of spray-applications of methanolic surface extracts and 
fractions obtained from these. 

Treatment 
Fraction/extract 

Batch I 
methanol, crudee 

methanol, CH2Cl2-washede 

Sephasorb-A 
Sephasorb-A 
Sephasorb-B 
Sephasorb-B 
B1+B2 
B1.11+B2.7 
B1.11+B2.8 
(B1+B2)-B1.11 
glucobrassicin (pure) 

Batch II 
Sephasorb-A 
Sephasorb-A 
Sephasorb-B 
Bl, B3, B4, B5 combined 
Bl, B3, B4, B5 combined 
B2.2 

dosec 

12 
6 
6 
18 
6 
12 
12 
12 
12 
12 
12 

12 
12 
12 
12 
2 
12 

control8 

eggs 

195 
228 

0 
20 

315 
678 
194 
131 
340 
213 
238 

592 
295 
842 
207 
346 
469 

batches 

7 
8 
0 
1 

10 
23 
6 
6 
10 
9 
7 

14 
12 
29 
11 
9 

21 

treated 
eggs 

994 
777 
70 
46 

862 
2551 
1542 
1641 
1035 
287 
934 

872 
439 
1514 
506 
283 
949 

batches 

27 
18 
2 
1 

21 
62 
49 
46 
31 
12 
18 

22 
12 
42 
19 
8 

37 

P« 
eggs 

0.005 
0.025 
NS 
NS 
0.05 
0.001 
0.005 
0.005 
0.01 
NS 
0.01 

NS 
NS 
0.005 
0.025 
NS 
0.05 

3 

batches 

0.01 
0.025 
NS 
NS 
0.05 
0.001 
0.005 
0.005 
0.025 
NS 
0.025 

NS 
NS 
0.025 
0.05 
NS 
0.05 

nd 

8 
8 
8 
8 
6 
14 
8 
8 
8 
8 
8 

6 
6 
8 
8 
6 
10 

a - controls were sprayed with water, unless indicated otherwise. 
b - P values refer to the maximum one-tailed probability calculated according to Wilcoxon's 

matched pair signed rank test, under the null hypothesis that total number of eggs or batches 
were distributed evenly over control and treated artificial leaves. NS means P > 0.05. 

c - gram leaf equivalents of surface extract per artificial leaf 
- number of replicate cages used on one day or summed over two consecutive days; each cage 
contained 8 females 

e - controls received methanol 
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Figure 1. Extraction and purification procedure followed for the isolation of oviposition kairomoncs 
for P. brassicae L. from B. oleracea L. leaves (batch I). * indicates that fraction B2 was further 
subdivided into 8 fractions (not shown) none of which contained stimulatory activity. 

After washing the crude methanol extract to remove apolar material, the dichloromethane 

(batch I, Table 1) or hexane (batch II, not shown) fractions lacked stimulatory activity. The 

separation procedure used for batch I is shown in Figure 1. Of the two fractions collected 

during Sephasorb MPLC, only fraction B stimulated oviposition (Table 1). Fraction B was 

further separated into four fractions (Bl-4) by means of the reversed-phase C18-column. 
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Fractions Bl and B2 combined showed stimulatory activity (Table 1), while B3 and B4 did 

not induce oviposition preference for the treated substrate. 

Fraction Bl was subdivided into 12 fractions (Bl.l - B 1.12) and fraction B2 into 8 fractions 

(B2.1 - B2.8). Subsequent bioassays of the subfractions containing the material producing the 

highest extinction values during HPLC (Bl.ll, B1.12, B2.7 and B2.8), showed that 

subfraction Bl . l l was the most stimulatory, and that pooling of all other 19 subfractions 

failed to induce preference for the treated substrates. 

For batch II, MPLC-fraction B was separated into five fractions: BO-5, of which BO was the 

solvent. Subfraction 2 of fraction B2 strongly stimulated oviposition, while the combined 

fractions Bl, B3, B4 and B5 exerted a stimulating effect when applied at a dose of 12 gle/leaf 

but not at 2 gle/leaf. The activity shown by these fractions was not pursued further. 

Subfraction B2.1 contained material causing a peak at a retention time identical to that of 

sinigrin. Its activity was not evaluated. 

By means of 'H-NMR analysis following Na+ - TAS exchange, the fractions Bl. l l from 

batch I and B2.2 from batch II were both identified as pure glucobrassicin. (Table 2; Fig. 2). 

An authentic reference of glucobrassicin gave an identical NMR spectrum and an identical 

retention time with ion-pair chromatography on RP CI8. 

CH2OH 

NOS03H 
W 3 

C-CH2-

Figure 2. Structural formula of glucobrassicin (3-indolyl-methyl-glucosinolate). 

When glucobrassicin was applied in a concentration identical to that in the original methanolic 

surface extract (based on HPLC-peak areas) and females were offered a choice between these 

two substrates, they showed no preference (Table 3). The quantity of glucobrassicin extracted 

was ca. 20 nMol/gle as determined by HPLC. 
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Table 2. Values of 5 from 'H-NMR at 200 MHz in ppm from DSS. 

Position 

Sugar part 
H2 
H3 
H4 
H5 
H6 

Indole part 
H2 
H4 
H5/H6 
H7 
CH2 

S 

3.05 (t) 
2.94 (t) 
3.11 (t) 
2.69 (dt) 
3.33 (d) 

7.21 (s) 
7.39 (br.dd) 
7.00-7.17 (m) 
7.61 (br.dd) 
4.09 (AB quartet) 

coupling constants 

J 2-3=9.3 Hz; J 2-4=9.3 Hz 
J 3-2=9.3 Hz; J 3-4=9.3 Hz 
ƒ 4-3=9.3 Hz; J 4-5=9.5 Hz 
J 5-4=9.5 Hz; J 5-6=3.6 Hz 
/ 6-5=3.6 Hz 

The average surface area of the cabbage leaves was 160 cm2, thus these leaves carried on 

average 0.75 nMol/cm2 glucobrassicin. A dose of 12 gle/artificial leaf corresponded with a 

load of glucobrassicin of 3.0 nMol/cm2. Although the relative effectiveness of sinigrin 

(applied at 125 nMol/cm2) and glucobrassicin as oviposition stimulants was not tested in dual 

choice situations against each other, data on average egg production per female per day in 

situations where females were sequentially offered one compound at a time suggest that 

glucobrassicin was at least 20 times more effective than sinigrin on a molar basis. 

Table 3. Oviposition on artificial substrates by Pieris brassicae L. females in a dual choice situation 
between artificial leaves sprayed with either a total crude methanolic leaf surface extract or pure 
glucobrassicin at a dose equal to that in the crude extract. 

Experiment 

1 

2d 

doseb 

12 

2 

total surface extract 

eggs batches 

3811 63 

2120 57 

glucobrassicin 

eggs batches 

2756 50 

1867 47 

pa 

eggs batches 

NS NS 

NS NS 

nc 

12 

9 

a - P values refer to the two-tailed probability calculated according to Wilcoxon's matched pair 
signed rank test, under the null hypothesis that total number of eggs or batches were distributed 
evenly over control and treated artificial leaves. NS - P > 0.05 

- gram leaf equivalents of surface extract per artificial leaf 
c - number of replicate cages used on one day or summed over two or three consecutive days; 

each cage contained 8 females 
- cage size and number of artificial leaves available were doubled for this experiment 
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DISCUSSION 

This study has revealed that for P. brassicae L. a single compound present on the leaf surface 

may be largely responsible for host plant recognition. Indeed, for the related P. rapae L. and 

Plutella xylostella L. (Lepidoptera: Plutellidae) the situation is very similar (Reed et al., 1989; 

Traynier and Truscott, 1991; Renwick et al., 1992). In contrast, recent studies on three Papilio 

species have shown that the presence of at least two chemically diverse compounds was 

needed together to obtain stimulation of oviposition activity similar to that of crude total leaf 

extracts (Honda, 1986; Feeny et al., 1988). 

The results of our dual choice bioassay employed, which was preceded by an experience with 

sinigrin treated artificial leaves must be interpreted cautiously. This is due to the ability for 

associative learning that has been demonstrated for P. rapae L. butterflies (Traynier, 1984; 

1986). P. brassicae L. females have been found to possess similar learning capabilities (van 

Loon et al., 1992). The involvement of experience in the measurement of oviposition 

preference was indicated by the following observation. When a test substrate was highly 

stimulatory, the control substrate also received many eggs also, a phenomenon reported earlier 

for P. rapae L. (Traynier, 1984 and 1986). In dual choice situations, a significantly positive 

relationship was observed between the number of eggs deposited on control substrates and 

substrates sprayed with the crude methanol extract (Spearman's rho = 0.85, P = 0.007; van 

Loon and van Meer, 1991). This phenomenon will lead to an underestimation of stimulatory 

activity. It also implies that the bioassay possesses a limited sensitivity to demonstrate 

differences between two highly stimulatory substrates, as is the case with the comparison of 

the parent surface extract and pure glucobrassicin (Table 3). A no-choice assay method, that 

measures the probability of oviposition of individual females that were not offered the 

opportunity to associate the visual and mechanosensory quality of the test substrate with a 

pure stimulant prior to the bioassay, would be better suited to compare the activity of the 

parent surface extract with a putative major kairomone like glucobrassicin. Other fractions 

seemed to have some stimulatory activity but were not pursued further (Table 1). There may 

yet be other stimulants that we did not detect using our method. If they do exist, however, 

they play only a minor role (Table 3). Nevertheless it is evident from this study and from the 

data on P. rapae L. reported by Traynier and Truscott (1991) that glucobrassicin is much 

more powerful stimulant than sinigrin. 

The amounts of glucobrassicin calculated to be present on the original cabbage leaf surface 

must be interpreted as a minimum figure. Apart from the usual losses occurring during 

fractionation and purification procedures, the extraction of substances from the intact leaf 

surface has probably been far from exhaustive. 
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For instance, the yield of apolar waxy material in the dichloromethane fraction using a 3 s 

dip was only 20% of the amounts of wax reported for a range of glaucous cabbage cultivars 

(61 ug/cm2, using 3 dichloromethane dips of 10 s each, Eigenbrode et al., 1991). In this study 

short dips were used to keep the cuticle intact and prevent leakage of internal leaf 

components. The amount of glucobrassicin per gle of surface extract is about 34% of that 

found in a surface extract of a cauliflower cultivar by Roessingh et al. (1992). 

The forceful tarsal drumming of the leaf surface by exploring butterflies is well known (Feeny 

et al., 1983; Stadler, 1986) and in view of the presence of large spines on butterfly tarsi it is 

conceivable that a function of this behaviour is penetration of the leaf cuticle. Penetration of 

stomata by chemosensory sensilla is unlikely (Chapman, 1977). The question of damage done 

to the leaf by this drumming or other tarsal contacts, in the sense of penetration of the leaf 

cuticle and the subsequent release of chemicals from damaged cells in the leaf interior has 

been studied in only a few cases with opposite results (Boppré, 1983; Traynier and Hines, 

1987). The approach followed in this study only allows us to conclude that damage is not 

required to perceive the oviposition kairomone, assuming that leakage from the leaf interior 

was indeed negligible. 

The present results add another case to the list of studies that have demonstrated the presence 

of polar compounds at the essentially apolar surface of plants (for review, see Stadler, 1986). 

It is of interest to note that partial removal of the apolar wax layer by chloroform or 

dichloromethane was necessary prior to successful extraction of the oviposition stimulants by 

methanol washings (van Loon and van Meer, 1991). This suggests that the polar compounds 

are present at some depth in the waxy surface layer, maybe in a bound form. At present it is 

unknown how polar compounds that are present in either bound or free form in the apolar leaf 

surface environment become available to the contact chemosensilla of insects. The sensillum 

lymph surrounding chemosensory dendrites has a definite polar and lipophobic character 

(Kaissling and Thorson, 1980), which at first sight seems to make it unadapted for gustation 

of apolar surfaces. However, a recent study has demonstrated the existence of a considerable 

outward flow (>3 um3/s) of sensillum lymph in contact chemosensilla of the fly, which can 

dissolve crystalline sodium chloride (Gödde, 1991). A comparable extrusion of sensillar fluid 

from butterfly tarsal sensilla to the leaf surface is hypothesized in order to understand the 

perception of surface chemicals. 
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Evolutionary aspects 

A number of recent studies have demonstrated that indole glucosinolates are the most 

powerful oviposition kairomones among the glucosinolates for P. brassicae L., P.rapae L. and 

Delia radicwn L. (Diptera; Anthomyiidae) and D. floralis Fallen, all crucifer specialists 

(Renwick et al., 1992; Roessingh et al., 1992; Simmonds et al., in prep.). For Plutella 

xylostella L. glucobrassicin was as stimulatory as aromatic and aliphatic glucosinolates (Reed 

et al., 1989). The high sensitivity for indole glucosinolates of crucifer specialists may be 

hypothesized to have several evolutionary advantages. Firstly, the glucosinolates are 

biosynthetically derived from amino acids (Fenwick et al, 1983) and indole glucosinolates are 

derived from the amino acid tryptophan, which is nutritionally essential to insects (Dadd, 

1985). The tryptophan content of plant proteins is low and may thereby constitute one of the 

factors limiting protein synthesis and growth of larvae. 

Tryptophan levels in B. oleracea L. varieties range between 40 - 72 mg/100 g fresh weight 

(average 50 mg/100 g) and indole glucosinolate content ranges between 15 and 124 mg/100 

g (average 50 mg/100 g; VanEtten and Tookey, 1979; Heany and Fen wick, 1980; Fen wick 

et al., 1983). It follows that the amount of tryptophan channelled into the biosynthesis of 

indole glucosinolates is substantial. Thus it seems of functional significance that ovipositing 

females select plants that contain high levels of tryptophan or its derivatives that may possibly 

be utilized nutritionally by adapted feeders like Pieris larvae. P. brassicae L. and P. rapae 

L. larvae both possess an amino acid receptor cell that is sensitive to tryptophan (van Loon 

and van Eeuwijk, 1989) and glucobrassicin is the most effective stimulus for the lateral 

glucosinolate receptor of P. brassicae L. (Schoonhoven, 1969). In this scenario, glucobrassicin 

would act as a nutritive signal exposed on the plant surface. Unfortunately, despite the 

attention paid to glucosinolates in insect-plant research (Chew, 1988a), virtually nothing is 

known about the metabolic fate of glucosinolates after ingestion by larvae (Chew, 1988b). 

There is evidence that glucosinolates are sequestered (Aplin et al., 1975). It would certainly 

be of interest to investigate which biochemical mechanisms enable Pieris larvae to deal with 

the ingested glucosinolates, in view of their documented toxicity and deterrency to non-

adapted organisms (Fenwick et al., 1983; Chew, 1988b). An additional positive effect of 

indole glucosinolates may be attributed to their potential as precursors of indole compounds 

that have antineoplastic and antimutagenic effects (see for review McDanell et al., 1988). 

A second advantage of glucobrassicin as a host recognition factor could be that the indole 

glucosinolates do not yield volatile aglycones (mustard oils) as products of the enzymatic 

hydrolysis by myrosinase (Fenwick et al., 1983), while most other groups of glucosinolates 

do yield such volatiles. This could represent an important advantage as host plant specific 

volatile products of damage caused by feeding larvae may betray the presence of these larvae 
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to either more specialized natural enemies such as parasitoids or generalist predators that use 

these signals to locate their host or prey (Whitman, 1988; Vet and Dicke, 1992). The 

hymenopterans Cotesia glomerata L. and C. rubecula Marshall in particular are important 

parasitoids of P. brassicae L. and P. rapae L. respectively and can cause considerable 

mortality under field conditions (Laing and Levin, 1982). Electroantennogram studies indicate 

that female wasps can smell several isothiocyanates (A. Blaakmeer and J.J.A. van Loon, 

unpubl. results), although it remains to be shown that the wasps actually use the potential 

information during host location behaviour. 

In conclusion, P. brassicae L. females can make use of the single indole glucosinolate 

glucobrassicin as a host recognition factor, which is present on the surface of cabbage leaves, 

a favoured oviposition substrate. Improvements in phytochemical separation techniques for 

glucosinolates have contributed to the recent discoveries of the special role of indole 

glucosinolates in several insect/crucifer relationships. This justifies renewed interest in the 

differential effects that glucosinolates may have on specialist herbivores. 
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CHAPTER 3 

Isolation, identification and synthesis of miriamides, 

new hostmarkers from eggs of Pieris brassicae 

ABSTRACT 

The large white butterfly, Pieris brassicae L., a herbivorous pest of crucifers, produces egg-

associated chemical markers that inhibit its oviposition. The identification of the marker com­

pounds is reported herein. Separation by means of reversed-phase HPLC demonstrated the 

presence of three active substances, which were identified as frans-2-[3-(3,4,5-trihydroxy-

phenylpropenoyl)-amino]-3,5-dihydroxy-benzoic acid {1}, frans-2-[3-(3,4-dihydroxy-5-ß-

glucopyranose-phenylpropenoyl)amino]-3,5-dihydroxybenzoic acid {2} and trans-2-[3-(3,4-

dihydroxyphenylpropenoyl)amino]-3,5-dihydroxybenzoic acid {3} using mass- and NMR-

spectroscopy and chemical synthesis. This group of compounds has not been reported from 

animal kingdom before. The same compounds are produced by two related Pieris species. 

This is the first report of taxon-specific compounds affecting butterfly oviposition behavior. 

The availability, stability and inhibitory action on colonisation of cabbage plants by butterflies 

make application of these compounds in the protection of cabbage crops feasible and 

comparable with other environmentally safe crop protection strategies. 

INTRODUCTION 

Females of several herbivorous insect species are known to deposit a marking substance on 

or near the eggs (Prokopy et al., 1976; Prokopy, 1981; Roitberg and Prokopy, 1987). This 

substance signals to conspecific females (and also to herself if she happens to visit the same 

site again) that the site is already occupied. This phenomenon constitutes an important 

element in foraging strategies of herbivorous insects, because it prompts an even distribution 

of eggs over the available food resources, results in reduction of intraspecific competition and 

improves resource exploitation. Because of their important ecological function these host 

marking pheromones (HMP's), formerly often labelled as oviposition deterring pheromones 

(ODP's), attract much attention. Egg-associated substances also affect related herbivorous 
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species and natural enemies of the herbivores (Prokopy and Webster, 1978; Noldus and van 

Lenteren, 1985; Schoonhoven et al., 1990; Roitberg and Lalonde, 1991). Oviposition deterring 

activity has also been found in faeces from larvae (Renwick and Radke, 1980; Dittrick et al., 

1983; Klein et al., 1990). A more detailed analysis of the ecological role of an HMP requires 

its chemical identification. Thus far only a few attempts to identify an egg-associated HMP 

have been successful (Hurter et al., 1987; Imai et al., 1990; Thiéry and Le Quéré, 1991). A 

notable example concerns the cherry fruit fly, Rhagoletis cerasi L. (Hurter et al., 1987). 

Within the Lepidoptera, several cases of potential use of an HMP have been reported 

(Rothschild and Schoonhoven, 1977; Schoonhoven, 1990). The large white butterfly, Pieris 

brassicae L., a specialized herbivore of cabbage (Brassica oleracea L.) and other cruciferous 

plants, has been studied in detail (Rothschild and Schoonhoven, 1977; Klijnstra, 1986; 

Klijnstra and Roessingh, 1986). Oviposition by P. brassicae L. is inhibited when a potential 

host plant carries conspecific eggs or is sprayed with a methanolic egg wash (Rothschild and 

Schoonhoven, 1977; Klijnstra, 1986). Inhibition of oviposition is especially pronounced when 

females have a choice between HMP-treated plants and control plants, or when dispersal 

activity can be manifested (Klijnstra and Schoonhoven, 1987). Based on a two-choice 

bioassay the inhibition of oviposition by egg-associated compounds was quantified (Klijnstra 

and Roessingh, 1986). Herein the identification and synthesis of HMP's isolated from eggs 

of Pieris brassicae L. is presented. 

RESULTS 

Eggs of P. brassicae L., freshly laid on cabbage leaves, Brassica oleracea L. var. gemmifera 

cv. Titurel, were collected. Out of 20 HPLC fractions, 4 (9-12) possessed oviposition deterring 

activity (Figure 1). Progressive bioassay-guided purification showed that three different active 

compounds were present in these fractions. 

Fractions 10 and 11 contained the main component 1. Compound 1 was very polar and failed 

to give a molecular ion under normal EI mass spectroscopic conditions. However negative-ion 

FABMS gave an [M-H]" peak at mlz 346.0572, corresponding with a molecular formula of 

C16H13N08. Its nitrogen was expected to be present in the form of a primary or secondary 

aromatic amine or an amide. No alkaloid reaction with Dragendorff reagent was given by 1. 

The high UV absorbance (X^^ (MeOH) 353 nm) suggested a highly conjugated system. The 

'H NMR spectrum (Table 1) was very simple and indicated two aromatic rings with two 
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protons each and one double bond with a trans configuration (.7=15.5 Hz). The chemical shifts 

of the two double bond protons (6.35 and 7.45) are characteristic for a cinnamic acid 

derivative. One ring contained two equivalent protons, whereas the other ring contained two 

non-equivalent protons meta to each other (.7=2.7 Hz). 

dose 
(^ig/leaf) 

miriamide 

5-dehydroxy miriamide 

miriamide 5-glucoside 
i . . . . i 

170 

43 

7 

15 

9 

12 

2 

3 

15 

100 75 50 25 0 25 50 75 100 
control «• % egg batches + treated 

Figure 1. Oviposition preferences displayed by Pieris brassicae L. female butterflies in a dual choice 
situation. Asterisks (*) indicate that treated leaves were significantly less preferred according to Wil-
coxon's matched pair signed rank test (two tailed; 23), under the null hypothesis that the total number 
of batches were distributed evenly over control and treated leaves. 
* 0.01 < P < 0.05; ** P < 0.01. 

The 13C NMR spectrum (Table 2) showed 16 C atoms and was thus in accordance with the 

MS data. The two-dimensional ('H-13C) heteronuclear chemical shift correlation (HETCOR) 

NMR spectrum revealed the proton-carbon correlations, and chemical shifts confirmed the 

presence of a cinnamic acid structure and another substituted benzene ring. 
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The COLOC NMR experiment used for 'H-13C couplings, in this case optimised for 4 and 8 

Hz, respectively (Figure 3), showed one part of the molecule to consist of a substituted cinna-

mic acid, in which two equivalent protons were at position 2 and 6 relative to the double 

bond. 

Table 1. 'H-NMR data of the three miriamidcs 1, 2 and 3.a 

Position 

Benzoic acid part 
H4 
H6 

Cinnamic acid part 
H2 
H5 
H6 

H7 
H8 

Sugar part 
HI 
H2, H3, H4 and H5 
H6 

H6' 

1 

6.57, d, 7=2.7 
7.02, d, 7=2.7 

6.62, s 

6.62, s 

7.45, d, 7=15.5 
6.50, d, 7=15.5 

2 

6.60, d, 7=2.9 
7.03, d, 7=2.9 

6.83, d, 7=1.7 

7.11, d, 7=1.7 

7.52, d, 7=15.5 
6.63, d, 7=15.5 

4.82, d, 7=7.1 
3.30-3.55, br m. 
3.97, dd, 

7=2.1/11.9 
3.74, dd, 

7=5.3/11.9 

3 

6.60, d, 7=2.7 
7.03, d, 7=2.7 

7.07, d, 7=1.9 
6.78, d, 7=8.3 
6.98, dd, 

7=1.9/8.3 
7.54, d, 7=15.5 
6.59, d, 7=15.5 

a - Run at 200 MHz (solvent CD3OD), with chemical shifts in 5 ppm (coupling 
constants in Hz). 

In the other region, two protons were coupled with six carbon atoms, one of which belonged 

to a carboxylic acid (8 is 170.8). This information combined with that from the 'H NMR 

spectra indicated a substituted benzoic acid moiety with the two protons at position 2 and 4 

relative to the carboxylic acid group. The last structural features that had to be solved was 

the connection between the two rings and the position of the nitrogen atom in the molecule. 

A ,3C NMR analysis of the compound with a drop of D2S04 added to the CD3OD gave only 

small chemical shift changes of a few carbons in the 13C NMR spectra (Table 2), thus exclu­

ding the presence of a primary aromatic amine or a primary amide. Only two combinations 

were still possible, a link of both rings via a secondary amine or via an amide. Interpretation 

of NMR spectra of different gallic acids, cinnamic acids and anthranilic acids, especially 
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,3C NMR spectra of 3,4,5-trihydroxybenzoic acid, 3,4,5-trimethoxybenzoic acid and 3,4,5-

trimethoxycinnamic acid, made it clear that the major constituent of the HMP was trans-2-[3-

(3,4,5-trihydroxyphenylpropenoyl)amino]-3,5-dihydroxybenzoic acid {1}, a structure in which 

a benzoic and cinnamic portions are linked via an amide bond as shown in figure 2; The 

trivial name miriamide is proposed for 1, in honour of Miriam Rothschild who was the first 

to notice the oviposition deterrent activity of compounds associated with the eggs of P. 

brassicae L. 

Table 2. 13C-NMR data of 1,1+D2S04, 2 and 3 (synthetic product).3 

Position 

Benzoic acid part 
CI 
C2 
C3 
C4 
C5 
C6 
C7 

Cinnamic acid part 
CI 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 

Sugar part 
CI 
C2 
C3 
C4 
C5 
C6 

1 

124.9 
120.8 
153.2 
110.8 + 
157.0 
110.8 + 
170.8 

127.0 
108.6 + 
147.1 
137.3 
147.1 
108.6 + 
144.7 + 
117.7 + 
168.1 

1+D2S04 

126.0 
115.4 
154.8 
114.0 
158.6 
114.0 
167.6 

128.7 
108.5 
146.9 
138.1 
146.9 
108.5 
147.4 
114.0 
169.9 

2 

124.9 
120.9 
153.3 
110.4 
157.2 
110.9 
170.9 

127.3 
111.9 
147.5 
139.2 
147.5 
110.9 
144.3 
118.6 
168.0 

104.4 
77.7 
78.5 
71.5 
75.0 
62.5 

3 

127.9 
121.0 
153.1 
110.9 
157.0 
110.9 
170.9 

128.0 
115.3 
146.7 
149.2 
122.8 
116.5 
144.5 
117.4 
168.0 

a- Run at 50 MHz (solvent CD3OD), with chemical shifts in 5 ppm. For miriamide 
{1}, carbons which have a proton attached to them are marked with a '+' sign. 
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Fraction 9 contained the second compound 2, whose structure was deduced by comparing its 

spectral data with those of 1. The UV spectrum was identical to that of 1. The 'H NMR 

spectrum (Table 1) indicated two aromatic rings, a double bond with trans configuration 

(7=15.5 Hz) and a sugar. The ring protons of the cinnamic acid region had different chemical 

shifts and were also not equivalent to the corresponding ones in 1. The chemical shifts of the 

other protons were almost identical to those of 1. The "C NMR (Table 2) indicated 22 C 

atoms, six of which belong to a sugar unit. Three carbon atoms of the cinnamic acid part (C-

2, C-4 and C-6) had chemical shifts different from those in 1, while the other 13 carbons 

possessed almost identical chemical shifts as in 1. This is to be expected when there is an 

ether rather than a hydroxy substituent on position 5. Enzymatic hydrolysis of fraction 9 with 

a ß-glucosidase gave miriamide and glucopyranose. In contrast, hydrolysis with an a-glucosi-

dase only gave the starting material back. Thus a ß-glucopyranose had to be attached to the 

ring next to a proton in the cinnamic part. This led to the conclusion that the second 

compound was fra/w-2-[3-(3,4-dihydroxy-5-ß-glucopyranose-phenylpropenoyl)amino]-3,5-

dihydroxybenzoic acid (miriamide 5-glucoside) {2}. 

1 R = OH 
2 R = O-ß-Glucopyranose 
3 R = H 

Figure 2. Molecular stuctures of miriamide (R = OH), 5-dchydroxy miriamide (R = H) and miriamide 
5-glucoside (R = O-ß-glucopyranose). 

Fraction 12 contained the third component 3. The 'H NMR spectrum (Table 1), showed the 

presence of two aromatic rings and a trans double bond (7=15.5 Hz). The chemical shifts of 

the two protons of the benzoic acid unit were identical to the shifts of the analogous region 

of 1. The cinnamic acid part contained three protons (5 is 6.78, 6.98 and 7.07). From the 

coupling constants, the chemical shifts and the lack of symmetry they were deduced to be at 

position 2, 5 and 6, relative to the side chain. It was concluded that this compound was trans-

2-[3-(3,4-dihydroxyphenylpropenoyl)amino]-3,5-dihydroxybenzoic acid (5-dehydroxy miriami­

de) {3}, a structure wherein the hydroxy group at C-5 in the cinnamic acid part was replaced 

by a proton. 
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The structural assignments of miriamide {1} and 5-dehydroxy miriamide {3} were confirmed 

by synthesis (Scheme 1). 

Figure 3. Longe-range 'H/13C connectivities observed in 1 optimised for 4 Hz couplings (above) and 
8 Hz couplings (below). 

Compound 1 was prepared starting from methyl-3,5-dimethoxybenzoate {4} and trans-QA,5-

trimethoxy)cinnamic acid {7a}. Nitration of 4 gave methyl-2-nitro-3,5-dimethoxybenzoate 

(5), and reduction of the nitro group resulted in methyl-2-amino-3,5-dimethoxybenzoate {6}. 

fra«i-(3,4,5-Trimethoxy)cinnamic acid (7a) was converted into its acid chloride 8a with 

thionyl chloride. Reaction of 8a with the amine 6 then gave rra«i-2-t3-(3,4,5-trimethoxyphe-

nylpropenoyl)amino]-3,5-dimethoxybenzoic acid methyl ester {9a}. Saponification of the 

methyl ester 9a with KOH resulted in fra«x-2-[3-(3,4>5-trimethoxyphenylpropenoyl)amino]-

3,5-dimethoxybenzoic acid {10a} and demethylation this acid with BBr3 gave miriamide {1}. 

The synthesis of 5-dehydroxy miriamide 3 was accomplished in the same way starting from 

fra/u-(3,4-dimethoxy)cinnamic acid {7b} and methyl-3,5-dimethoxybenzoate {4}. 
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Scheme 1. Syntheses of 1 and 3. Reagents and conditions: (a) HNO^AcsO; 
(b) 10% Pd/C/MeOH/THF; (c) SOCyC6H6; (d) C H ^ l ^ N ; (e) KOH/MeOH; 
(0 BBiyCH^Lj. 
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DISCUSSION 

Structures of the type described are, to the best of our knowledge, unknown from the animal 

kingdom. Structurally related compounds have been documented from plants and were found 

in Avena coleoptiles (Collins, 1989). 

When miriamide {1} is applied to cabbage leaves at doses of 2.2 ug/leaf and higher (Figure 

4), complete inhibition of oviposition on the treated leaf occured in a large number of repli­

cates. In this dose range the average percentage deterrence is 80%, which means that the 

control leaf receives ten times as many batches as the treated leaf in this relatively crowded 

bioassay set-up. It is also clear (Figure 1 and 4) that 2 is less active then the other two 

miriamides. 

100 
^ o^ 

X 
<D 
C 

• MM 

+* 

c 0) 
1_ 1_ 

o 
•o 

80 

60 

40 

20 

0 L-V - I ' • 

10 
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Figure 4. Oviposition deterrent index in the dual choice oviposition assay as a function of the doses 
of the three pure miriamides. Deterrent index was calculated as: (C - T) x 100 /(C + T), in which C 
is the number of egg batches on control leaf and T the number of egg batches on the treated leaf. 
Means ± standard error of the mean (SEM) of 6-12 replicates are shown. Triangles: 5-dehydroxy 
miriamide; Rectangles: miriamide; Circles: miriamide 5-glucoside. 
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Egg washes made of eggs that were laid on glass also contained the three miriamides proving 

that these are genuinely associated with the eggs. When P. brassicae L. females were offered 

a choice between a leaf treated with a crude wash of 25 eggs (yielding 28 ug of dry matter) 

and a leaf sprayed with the three miriamides in the ratio similar to that in the eggs (1 ug 

together, corresponding to the amount obtained from 25 eggs), no significant preference for 

either leaf was exhibited. This proves that all the three miriamides are together responsible 

for the inhibitory effect of the crude egg wash. 

Analysis of the accessory glands shows that they contain only the less active miriamide 5-

glucoside, whereas the eggs contain all the three miriamides. Behan and Schoonhoven (1978) 

already suggested that the accessory glands contained an inactive or less active form of the 

pheromone. It is likely that after secretion of miramide 5-glucoside onto the egg surface, 

miriamide 5-glucoside is partially converted (enzymatically ?) to the two other more active 

miriamides. 

Previous results indicated that the related Pieris rapae L., a cosmopolitan pest species, also 

produces an HMP (Schoonhoven et al., 1990). Interestingly, the HMP's produced by these 

two butterfly species not only deter oviposition by conspecific females but also by females 

of the other Pieris species, thus reducing interspecific competition for common food 

resources. HPLC-chromatograms and UV-spectra of P. rapae L. and P. napi L. egg washes 

indicated the presence of the miriamides in these eggs as well. Dual choice bioassays with 

P. rapae L. showed that oviposition of this species is also inhibited by miriamide. Eggs of 

the Pierids Aporia crataegi L. and Colias philodice Latreille lacked these compounds. Eggs 

of five other species of Lepidoptera [Spodoptera exempta Walker, 5. exigua Hbn., Mamestra 

brassicae L. (all three Noctuidae); Smerinthus ocellata L. (Sphingidae) and Centra vinuia L. 

(Notodontidae)] were also screened for the presence of these compounds but no miriamides 

could be detected. It is to be stressed that both taxonomie specificity and effectiveness of the 

miriamides are distinctly higher than those of the generally occurring methylated fatty acids 

with HMP activity reported recently from the European corn borer Ostrinia nubilalis Hbn. 

ovipositing on an artificial substrate (Thiéry and Le Quéré, 1991). The latter compounds have 

previously been documented as semiochemicals from hymenopteran insects (Shimron et al., 

1985). With the European corn borer, absolute inhibition was not observed and the maximum 

level of inhibition induced by the latter compounds is low compared to that caused by equiva­

lent amounts of miriamides. 

In small-scale field experiments with crude egg washes the oviposition behaviour of Pieris 

brassicae L. was altered (Klijnstra and Schoonhoven, 1987). These experiments also showed 

the very high persistence of the HMP on plant surfaces (more than one week in the field and 
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greenhouses). Interference with butterfly behaviour in the initial phase of plant colonisation 

is a logical option that can be implemented now that the relevant semiochemicals have 

become available. The high stability and useful biological activity of the miriamides open new 

possibilities for the protection of cabbage crops against Pieris caterpillars in a way compa­

rable with other environmentally safe crop protection strategies. 

MATERIAL AND METHODS 

General experimental methods - HPLC: The pumps, model 302 and 303, manometric module 

802C, Dynamic mixer 811 and UV-detector 116 were all of Gilson. A software HPLC system 

manager (model 702) from Gilson was used on an Apple II personal computer. The columns 

used were a Microsorb RP CI8 250 x 10 mm (flowrate 3 ml/min) and a Microsorb RP C18 

250 x 4 mm (flowrate 1 ml/min), both 5 urn particle size and 100 Â pore size (Rainin In­

strument Co.). 

MR: All 'H NMR spectra were recorded at 200 MHz (Bruker AC-E 200) in CD3OD , CDC13 

or DMSO-d6, and all 13C NMR spectra were recorded at 50.3 MHz (same apparatus). 

MS: Three different mass spectroscopic methods, electron ionization (EI), field desorption 

(FD) and direct chemical ionization (DCI) failed to produce the mol wt of the main 

component 1. However, it was possible to measure a positive fast bombardment mass 

spectrum (FABMS) ([M+H]+, [M+H+glycerol]+) and a negative FABMS ([M-H]\[M-H+glyc-

erol]") of 1 at a Finnigan MAT 95 mass spectrometer, mlz [M-H]" is 346.0572 (calculated for 

C16H12N08 346.0563). 

UV spectra were recorded in MeOH on a Beekman DU-7 spectrophotometer 

(Kna 1 = 353 nm, A^,, 2 = 353 nm and A ^ 3 = 350 nm). 

Plant material - Brassica oleracea L. var. gemmifera cv. Titurel plants were reared in a 

greenhouse (20—30°C, 50—80%RH, 16L:8D) in standard potting soil. Illumination consisted 

of daylight supplemented by high-pressure sodium/mercury vapour lamps hanging 0.75 m 

above pot level. 

Insects - P. brassicae L. adults were obtained from a laboratory colony maintained on 

Brassica oleracea L. This culture was established in 1981 and since then, 18 generations have 

been produced each year. Field collected adults have been introduced several times during this 

period. Rearing conditions were similar to those described by David and Gardiner (1952). 
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Bioassays - Oviposition preferences were tested in cages measuring 80 x 50 x 100 cm high. 

The cages were kept in a conditioned greenhouse, with temperatures fluctuating between 22 

and 25°C. In addition to normal daylight, each cage was illuminated from 7 A.M.—3 P.M. by 

a 400 Watt mercury vapor lamp hanging 30 cm above the glass roof of the cage. Each cage 

held 8 females and 4 males. In the bioassay, leaves were sprayed only on the upper surface, 

and one control and one treated leaf were placed in diagonal opposite corners, alternated 

between replicates, to minimize positional effects. Females could oviposit on the leaves during 

6 h (8 A.M.—2 P.M.) periods. Preference of the butterflies was measured by comparing the 

number of egg batches on the treated leaves and the controls. A repilcate was considered the 

egg distribution occurring in one cage. On any one day 6—8 replicates were run. The signi­

ficance of preference was tested with the Wilcoxon's matched pairs signed rank test (Siegel, 

1956). 

Extraction and isolation - About 150,000 eggs (30 g) were washed during five periods of five 

minutes each with pure methanol. The methanolic egg washes were evaporated to dryness and 

dissolved in a small volume of pure MeOH. This yellow crude egg extract was separated into 

twenty fractions using reversed phase CI8 HPLC. The mobile phase contained 0.05% TFA. 

The solvent composition changed in 30 min linearly from MeCN-H20 (8:92) to MeCN-H20 

(80:20), and was kept at that composition for 10 min. The flowrate was 3.0 ml/min. A frac­

tion was collected every 2 minutes. 

Fraction 9, 10/11 and 12 were further separated with HPLC using the same column with 

different solvent compositions. For 9, 10/11 and 12 solvent compositions were MeCN-H20 

(12:88), MeCN-H20 (20:80) and MeCN-H20 (25:75) respectively. Flowrate of the solvents 

(containing 0.05% TFA) was 3.0 ml/min. 

Hydrolysis of Miriamide 5-glucoside was performed with a-glucosidase (Sigma NO G-6136) 

in 10 mM KH2P04 (pH=6) and with ß-glucosidase (Sigma NO G-4511) in 10 mM KH2P04 

(pH=5), both for one hour at 37°C. 

SYNTHESIS 

Methyl-2-nitro-3,5-dimethoxybenzoate {5} - Concentrated HN03 (40 ml) was added dropwise 

to a stirred solution of methyl-3,5-dimethoxybenzoate {4} (9.8 g, 50 mmol) in Ac20 (100 ml) 

(8°C). The temperature was maintained between 8° and 15°C. After the addition, stirring was 

continued for 1 h and H20 (500 ml) was added. The precipitate was filtered off and was 

washed 3 times with 100 ml of H20. After crystallisation from MeOH, methyl-2-nitro-3,5-

dimethoxybenzoate {5} (10.6 g, 88 %) was isolated. 'H-NMR spectrum (CDC13, 200 MHz); 
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8 6.71 (d, 7=2.5 Hz, H-4), 6.99 (d, .7=2.5 Hz, H-6). 13C NMR-spectrum (CDC13, 50 MHz); 5 

103.0 (C-4), 105.5 (C-6), 125.3 (C-l), 134.7 (C-2), 152.3 (C-3), 160.8 (C-5), 163.6 (C-7). 

Methyl-2-amino-3£-dimethoxybenzoate {6} - Methyl-2-amino-3,5-dimethoxybenzoate {6} was 

prepared from methyl-2-nitro-3,5-dimethoxybenzoate {5} according to the procedure described 

by Klaubert et al. (1981). After reacting for 120 h, the amine was isolated (Yield was 89 %). 

'H-NMR spectrum (CDC13, 200 MHz); S 5.72 (s, NH2), 6.53 (d, 7=2.7 Hz, H-4), 6.89 (d, 

7=2.6 Hz, H-6). "C-NMR spectrum (CDC13, 50 MHz); 6 102.1 (C-4), 104.0 (C-6), 108.7 (C-

1), 136.6 (C-2), 147.9 (C-3), 149.3 (C-5), 168.1 (C-7). 

trans-(3,4$-Trimethoxy)cinnamoylchloride (8a) - S0C12 (15 ml) was added to a solution of 

fra«j-(3,4,5-trimethoxy)cinnamic acid {7a} (7.14 g, 30 mmol) in C6H6 (25 ml). The mixture 

was refluxed for 2 h. Removal of the excess SOCl2 by azeotropic distillation followed by bulb 

to bulb distillation of the residue gave f/-ans-(3,4,5-trimethoxy)cinnamoylchloride (8a) (7.05 

g, 92 %). 'H-NMR spectrum (CDC13,200 MHz); 5 6.58 (d, 7=15.4 Hz, H-8), 6.83 (s, H2/H6), 

7.79 (d, 7=15.5 Hz, H-7). "C-NMR spectrum (CDC13, 50 MHz); 5 106.1 (C-2/C-6), 121.0 (C-

8), 128.1 (C-l), 141.6 (C-4), 150.5 (C-7), 153.3 (C-3/C-5), 165.9 (C-9). 

trans-2-[3-(3,4£-Trimethoxyphenylpropenoyl)amino]-3,5-dimethoxybenzoic acid methyl ester 

{9a} - A solution of methyl-2-amino-3,5-dimethoxybenzoate {6} (1.27 g, 6 mmol) in CH2C12 

(10 ml) was added dropwise at 0°C to a stirred solution of fraws-(3,4,5-trimethoxy)cinnamoyl 

chloride {8a} (1.7 g, 6.6 mmol) in CH2C12 (15 ml) and Et3N (758 mg, 7.5 mmol). After stir­

ring for 16 h at room temperature, the mixture was poured into 75 ml of a satd. NaHC03 

solution. The aqueous layer was extracted three times with CH2C12 (25 ml). After drying and 

evaporation, fra«s-2-[3-(3,4,5-trimethoxyphenylpropenoyl)amino]-3,5-dimethoxybenzoic acid 

methyl ester {9a} (1.95 g, 75 %) was crystallized from EtOAc. Mp. 173°-174°C. 'H-NMR 

spectrum (CDC13, 200 MHz); 5 6.51 (d, 7=15.5 Hz, H-8), 6.65 (d, 7=2.8 Hz, H-4), 6.73 

(s, H-2/H-6), 6.93 (d, 7=2.8 Hz, H-6), 7.58 (d, 7=15.5 Hz, H-7), 8.09 (s, NH). '3C-NMR 

spectrum (CDC13,50 MHz); Benzoic acid part: 5 103.1 (C-4), 104.8 (C-6), 119.7 (C-2), 126.6 

(C-l), 154.2 (C-3), 157.6 (C-5), 167.4 (C-7). Cinnamic acid part: 5 105.0 (C-2/C-6), 120.0 

(C-8), 130.3 (C-l), 139.6 (C-4), 141.8 (C-7), 153.3 (C-3/C-5), 164.2 (C-9). 52.3, 55.6, 56.1 

and 60.9 (OCH3). Anal, found; C 61.0, H 5.7, N 3.1; calcd for C ^ N O g , C 61.2, H 5.8, N 

3.3. 

'H-NMR spectrum (CDC13, 200 MHz) of 9b; Benzoic acid part: 8 6.63 (d, 7=2.8 Hz, H-4), 

6.91 (d, 7=2.6 Hz, H-6). Cinnamic acid part: 8 6.47 (d, 7=15.5 Hz, H-8), 6.81 (d, 7=8.2 Hz, 

H-5), 7.03 (dd, 7=1.6/3.7 Hz, H-6), 7.08 (d, 7=1.9 Hz, H-2), 7.60 (d, 7=15.5 Hz, H-7), 8.05 

(s, NH). 
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"C-NMR spectrum (CDC13, 50 MHz) of 9b; Benzoic acid part: 5 103.1 (C-4), 104.8 (C-6), 

119.8 (C-2), 126.5 (C-l), 154.1 (C-3), 157.5 (C-5), 167.5 (C-7). Cinnamic acid part; Ô 109.6 

(C-2), 110.9 (C-6), 118.5 (C-8), 122.2 (C-5), 127.8 (C-l), 141.7 (C-7), 149.0 (C-3), 150.6 (C-

4). 164.5 (C-9). 52.3, 55.7, 55.8 and 56.1 (OCH3). Anal, found; C 62.5, H 5.6, N 3.3; calcd 

for CÎ .HJJNCS C 62.8, H 5.8, N 3.5. Mp. 1680-168.5°C. 

trans-2-[3-(3,4J-Trimethoxyphenylpropenoyl)amino]-3,5-dimethoxybenzoic acid {10a} - A 

solution of franj-2-[3-(3,4,5-trimethoxyphenylpropenoyl)amino]-3,5-dimethoxybenzoic acid 

methyl ester {9a} (862 mg, 2.0 mmol) in MeOH (10 ml) was stirred with 1 M KOH (5 ml) 

for 4 h and then poured into 1 M HCl (10 ml). The precipitate was filtered off and was 

washed successively with H20 (15 ml) and CHC13 (25 ml). After drying trans-2-[3-(3,4,5-

trirnethoxyphenylpropenoyl)amino]-3,5-dimethoxybenzoic acid {10a} (760 mg, 90 %) was 

collected. 'H-NMR spectrum (CD3OD, 200 MHz) of 10a; Benzoic acid part: 8 6.71 (d, 7=2.8 

Hz, H-4), 6.95 (d, 7=2.6 Hz, H-6). Cinnamic acid part: 8 6.78 (d, 7=15.7 Hz, H-8), 6.92 (s, 

H-2/H-6), 7.50 (d, 7=15.7 Hz, H-7). 

trans-2-[3-(3,4J-Trihydroxyphenylpropenoyl)amino]-3J-dihydroxybenzoicacid{l} A solution 

of IM BBr3 (8ml, 8 mmol) in CH2C12 was added dropwise to a stirred suspension of trans-2-

[3-(3,4,5-trimethoxyphenylpropenoyl)amino]-3,5-dimethoxybenzoicacid {10a} (510 mg, 1.22 

mmol) in dry CH2C12 (15 ml) at — 78°C. After stirring for 2 h at 0°C, the reaction was quen­

ched with 1 M HCl (15 ml). The mixture was centrifuged and the residue was washed with 

0.02 M HCl ( 2x5 ml) and H20 ( 3x5 ml). After drying frawi-2-[3-(3,4,5-trihydroxyphenyl-

propenoyl)amino]-3,5-dihydroxybenzoic acid (Miriamide) {1} was isolated (395 mg, 90 %). 

'H-NMR spectrum (DMSO-d6, 200 MHz); 8 6.48 (d, 7=2.4 Hz, H-4), 6.52 (d, 7=15.5 Hz, 

H-8), 6.53 (s, H-2/H-6), 6.70 (d, 7=2.4 Hz, H-6), 7.21 (d, 7=15.5 Hz, H-7), 8.64 (s, OH), 9.11 

(s, OH), 9.50 (s, OH), 9.86 (s, OH). 'H-NMR spectrum (CD3OD, 200 MHz) of 1; Benzoic 

acid part: 8 6.60 (d, 7=2.8 Hz, H-4), 7.03 (d, 7=2.8 Hz, H-6). Cinnamic acid part: 8 6.54 (d, 

7=15.6 Hz, H-8), 6.65 (s, H-2/H-6), 7.47 (d, 7=15.5 Hz, H-7). '3C-NMR spectrum (CD3OD, 

50 MHz) of 1; Benzoic acid part: 8 110.8 (C-4/C-6), 120.9 (C-2), 124.9 (C-l), 153.2 (C-3), 

157.1 (C-5), 170.9 C-7). Cinnamic acid part: 8 108.6 (C-2/C-6), 117.7 (C-8), 127.0 (C-l), 

137.4 (C-4), 144.8 (C-7), 147.2 (C-3/C-5), 168.2 (C-9). Anal, found; C 54.5, H 3.7, N 3.8; 

calcd for C16H13N08, C 55.3, H 3.8, N 4.0 

'H-NMR spectrum (CD3OD, 200 MHz) of 3; Benzoic acid part: 8 6.60 (d, 7=2.8 Hz, H-4), 

7.03 (d, 7=2.9 Hz, H-6). Cinnamic acid part: 8 6.56 (d, 7=15.5 Hz, H-8), 6.77 (d, 7=8.2 Hz, 

H-5), 6.96 (dd, 7=1.8/8.2 Hz, H-6), 7.05 (d, 7=1.8 Hz, H-2), 7.53 (d, 7=15.5 Hz, H-7). '3C-

NMR spectrum (CD3OD, 50 MHz) of 3; Benzoic acid part: 8 110.9 (C-2/C-4), 121.0 (C-2), 

127.9 (C-l), 153.1 (C-3), 170.9 (C-7). Cinnamic acid part: 8 115.3 (C-2), 116.5 (C-6), 117.4 
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(C-8), 122.8 (C-5), 128.0 (C-l), 144.5 (C-7), 146.7 (C-3), 149.2 (C-4), 168.0 (C-9). Anal. 

found; C 58.1, H 4.0, N 4.0; calcd for C16H13N07, C 58.0, H 3.9, N 4.2. 
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CHAPTER 4 

Structure-activity relationship of isolated avenanthramide 

alkaloids and synthesized related compounds as 

oviposition deterrents for Pieris brassicae 

ABSTRACT 

The structure-activity relationship of compounds isolated from the eggs of Pieris brassicae 

L., the large cabbage white butterfly, and eight synthesized related compounds as oviposition 

deterrents for this insect was studied. The activity of all structures was tested in a dual choice 

bioassay. The two most active oviposition deterrents for P. brassicae L. were frans-2-[3-(4-

hydroxyphenylpropenoyl)amino]-3,5-dihydroxybenzoic acid {8) and trans-2-[3-Çi,4-

dihydroxy-phenylpropenoyl)arnino]-3,5-dihydroxybenzoic acid {2}. Substituents of the 

cinnamic acid part of the molecule affected the oviposition deterring activity more profoundly 

than changes in the way both ring systems were connected. Changes in the anthranilic acid 

part of the molecule resulted into a lower oviposition deterring activity. 

INTRODUCTION 

The cabbage white butterflies, Pieris brassicae L. and P. rapae L., herbivorous pests of 

crucifers, produce egg-associated chemicals that can inhibit their oviposition (Rothschild and 

Schoonhoven, 1977). These chemicals can be collected by washing the eggs with water or 

methanol. Oviposition by P. brassicae L. and P. rapae L. is inhibited when a potential host 

plant is sprayed with such an egg wash (Schoonhoven et al., 1990; Schoonhoven, 1990). Inhi­

bition of oviposition is especially pronounced when females have a choice between treated 

plants and control plants, or when dispersal activity can be manifested (Klijnstra and 

Schoonhoven, 1987). Recently the compounds responsible for the oviposition deterring effect 

of a crude egg wash, were isolated and identified as fran.s-2-[3-(3,4,5-trihydroxyphenylpro-

penoyl)amino]-3,5-dihydroxybenzoic acid {1}, fra/u-2-[3-(3,4-dihydroxyphenylpro-

penoyl)amino]-3,5-dihydroxybenzoic acid {2} and frans-2-[3-(3,4-dihydroxy-5-glucopyranose-

phenylpropenoyl)amino]-3,5-dihydroxybenzoic acid {3} (Blaakmeer et al., 1994). 
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These were three previously unknown avenanthramide alkaloids (amides of cinnamic and 

anthranilic acids) (Collins, 1989; Niemann et al., 1992; Niemann, 1993). Substances that 

modify the oviposition behaviour oiPieris butterflies might have practical value in preventing 

colonization of cabbage by these specialized insects (Klijnstra and Schoonhoven, 1987). In 

order to determine whether there are more active or simpler structures than the natural 

deterrents identified so far, a limited SAR study was undertaken. Eight structurally related 

compounds, with changes in either both ring systems or the way they are coupled, were 

synthesized and their oviposition deterring activity was measured quantitatively. In this paper, 

we describe the results of these studies. 

RESULTS AND DISCUSSION 

The tested compounds were rra«s-2-[3-(3,4,5-trihydroxyphenylpropenoyl)amino]-3,5-di-

hydroxybenzoic acid {1} (syn.: miriamide), fran.s-2-[3-(3,4-dihydroxyphenylpropenoyl)amino]-

3,5-dihydroxybenzoic acid {2}, frwis-2-[3-(3,4-dihydroxy-5-glucopyranose-phenylpropenoyl)-

amino]-3,5-dihydroxybenzoic acid {3}, rra/is-2-[3-(3,4,5-trimethoxyphenylpropenoyl)amino-

3,5-dimethoxybenzoic acid methyl ester {4}, fraw5-2-t3-(3,4,5-trihydroxyphenylpropenoyl)-

amino]-3-hydroxy-5-methoxybenzoicacid{5),/raM5-2-[3-(3,4,5-trihydroxyphenylpropenoyl)-

amino]-3,5-dihydroxybenzoic acid methyl ester (6), fra/u-2-[3-(3,4,5-trihydroxyphenylprope-

noyl)amino]-4,5-dihydroxybenzoic acid (7), fran.s-2-[3-(4-hydroxyphenylpropenoyl)amino]-

3,5-dihydroxybenzoic acid {8), rra«s-2-[3-(4-hydroxyphenylpropenoyl)amino]-4,5-dihydroxy-

benzoic acid {9}, 2-[3-(3,4,5-trihydroxyphenylpropionyl)amino]-3,5-dihydroxybenzoic acid 

{10} and 2-[(3,4,5-trihydroxybenzoyl)amino]-3,5-dihydroxybenzoic acid {11} (Figure 1). 

Oviposition deterrency was quantified by means of an oviposition deterrent index (ODI) (see 

experimental). The dose-response curves are given in Figure 2. The concentration at which 

ODI equals 50% (ED50) was calculated for each compound by the method of Spearman and 

Kärber (Spearman, 1908; Finney, 1978). The ED50 values with their 95 % confidence intervals 

are given in Figure 3. We considered compounds to exert a significantly different deterrent 

effect when there was no overlap between the confidence intervals of their ED50 values. When 

comparing the ED50 value of compound 1 with the ED^ values of the other compounds, three 

groups with different ED50 could be distinguished (Figure 3). The ED50 of compound 4 could 

not be calculated because the oviposition deterring activity was only 28% at the highest dose 

tested (10 ug/leaf). 
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Figure 1. Molecular structures of the isolated and synlhesizxd compounds. 

Removal of one or two hydroxy-groups (from position 3 or from positions 3 and 5) of the 

cinnamic part of the parent molecule 1 (structures 2 and 8) increases deterrency (Figure 3). 

Neither reduction nor removal of the double bond (10 and 11) affects activity compared to 

1. When at the same time two hydroxy-groups are removed from positions 3 and 5 of the 

cinnamic part of the molecule and one hydroxy-group is shifted from position 3 to 4 at the 

anthranilic part (compound 9), deterrency remains equal to that of compound 1. Methylation 

of one of the hydroxy-groups of the anthranilic part of the parent molecule 1, which gives 

compounds 5 or 6, or changing the position of one hydroxy-group from position 3 to 4 at the 

anthranilic part of the molecule (structure 7), reduces effectiveness compared to 1. When a 

glucose-group is linked to the cinnamic part of the molecule (3) deterrency is drastically 

reduced relative to that of 1. 
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Figure 2. Dose response curves of the tested compounds. 
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In conclusion, modification of the groups linked to the anthranilic part of the molecule leads 

to a lower effectiveness compared to 1. Methylation of 1 and glucosylation of the 5-OH of 

the cinnamic part likewise reduce deterrency, while it was found that changes in the way both 

ring systems were linked has no influence on effectiveness. In contrast, mono- and dihydroxy 

substituted cinnamic parts of the molecule increase its deterrent activity. 

A study of the chemoreception of phenolic acids by larvae of P. brassicae L. and P. rapae 

L. showed that ortho dihydroxyphenolic acids were the most active stimulants for lateral and 

medial sensilla (van Loon, 1990). It will be of interest to test monohydroxybenzoic acids or 

monohydroxycinnamic acids, which have not been tested by van Loon (1990), on both larvae 

and adults to see if these compounds have a higher activity. 

In field experiments, carried out at the same time as this SAR study, with cabbage plants 

sprayed with pure miriamide 1 no oviposition deterring or dispersal activity could be 

measured (van Loon, pers. comm.). Additional laboratory experiments demonstrated that 

compound 1 was unstable when exposing it to direct sunlight. The instability is probably due 

to the high UV absorption which is caused by the strongly conjugated structure of 1. 

In order to find more simple compounds which can be used effectively to prevent colonization 

of cabbage by cabbage butterflies, the synthesis of less conjugated derivatives like compound 

10 or less substituted compounds or esters of cinnamic and benzoic acids will be the subject 

of further research. Photostability of the other compounds described in the present study and 

the compounds that will be synthesized should be investigated. 

MATERIAL AND METHODS 

General experimental methods - All 'H and 13C NMR spectra were recorded at a Bruker AC-E 

200. Microanalyses were carried out on a Carlo erba elemental analyzer mod. 1106. 

UV spectra were recorded on a Beekman DU-7 spectrophotometer. 

Plant material - Brassica oleracea L. var. gemmifera cv. Titurel plants were reared in a 

greenhouse (20-30°C, 50-80%RH, 16L:8D) in standard potting soil. Illumination consisted of 

natural daylight supplemented by high pressure sodium vapour lamps hanging 0.75 m above 

pot level. A voucher specimen (van Setten 1073) has been deposited at the Herbarium 

Vadense (WAG), Wageningen, The Netherlands. 

Insects - Pieris brassicae L. adults were obtained from a laboratory colony maintained on 

Brassica oleracea L. This culture was established in 1981 and since then 18 generations have 

been produced each year. Field collected adults have been introduced several times during this 
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period. Rearing conditions were similar to those described by David and Gardiner (1952). 

Voucher specimen 378,421 has been deposited at the insect collection of the Department of 

Entomology, Wageningen Agricultural University. 

Bioassays - The bioassay was the same as described by Blaakmeer et al. (1994), except that 

there were 2 males and 4 females present in each cage and on any one day 12-16 replicates 

were run. The oviposition deterrent index was calculated in the following way: ODI = (C-T) 

x 100 / (C+T), where C and T represent the number of egg batches laid on control and treated 

leaves. All doses of each compound were tested in an increasing concentration series on one 

generation of butterflies. 

ISOLATION AND SYNTHESIS 

The isolation of 1, 2 and 3 and the synthesis of 1 and 2 have already been described (5). 

Compound 4 (fran,s-2-[3-(3,4,5-trimethoxyphenylpropenoyl)amino-3,5-dimethoxybenzoic acid 

methyl ester) was an intermediate in the synthesis of 1 (for spectral data of 1, 2, 3 and 4 see 

Blaakmeer et al. (1994)). 

trans-2-[3-(3,4£-Trihydroxyphenylpropenoyl)amino]-3-hydroxy-5-methoxybenzoic acid {5}. 

Compound 5 was a by-product in the synthesis of 1 (Blaakmeer et al., 1994). After treatment 

of rra/«-2-[3-(3,4,5-trimethoxyphenylpropenoyl)amino]-3,5-dimethoxybenzoic acid with BBr3 

90 % of 1 and 10 % of 5 was isolated. 'H NMR-spectrum (CD3OD, 200 MHz) of 5; Benzoic 

acid part: 5 3.73 (OCH3), 6.67 (d, 7=2.7 Hz, H-4), 7.08 (d, 7=2.7 Hz, H-6). Cinnamic acid 

part: 5 6.48 (d, 7=15.5 Hz, H-8), 6.60 (s, H-2/H-6), 7.42 (d, 7=15.5 Hz, H-7). "C-NMR 

spectrum (CD3OD, 50 Mhz) of 5; Benzoic acid part: S 56.0 (OCH3), 109.3 (C-4/C-6), 122.0 

(C-2), 124.9 (C-l), 153.3 (C-3), 159.3 (C-5), 170.8 C-7). Cinnamic acid part: S 108.6 

(C-2/C-6), 117.6 (C-8), 126.9 (C-l), 137.4 (C-4), 145.0 (C-7), 147.2 (C-3/C-5), 168.1 (C-9). 

Anal, found; C 51.5, H 4.5, N 3.6; calcd for C17Ht5N08x2(H20), C 51.4, H 4.8, N 3.5. 

UV Xnn (MeOH) = 355 nm. 

trans-2-[3-(3,4$-Trihydroxyphenylpropenoyl)amino]-3\5-dihydroxybenzoic acid methyl ester 

{6} - A solution of 1 M BBr3 (8 ml, 8 mmol) in CH2C12 was added by drops to a stirred 

suspension of fra«i-2-[3-(3,4,5-trimethoxyphenylpropenoyl)amino]-3,5-dimethoxybenzoic acid 

methyl ester (4) (216 mg, 0.5 mmol) in dry CH2C12 (15 ml) at -78°C. After stirring for 2 h 

at 0°C, the reaction was quenched with 1 M HCl (15 ml). The mixture was centrifuged and 

the residue was washed with 0.02 M HCl ( 2 x 5 ml) and H20 ( 3 x 5 ml). 

55 

file:///5-dihydroxybenzoic


After drying rra/w-2-[3-(3,4,5-trihydroxyphenylpropenoyl)amino]-3,5-dihydroxytenzoic acid 

methyl ester {6} (179 mg, 99 %) was collected. 'H-NMR spectrum (CD3OD, 200 Mhz) of 

6; Benzoic acid part: 5 3.83 (OCH3), 6.59 (d, 7=2.6 Hz, H-4), 6.90 (d, .7=2.8 Hz, H-6). 

Cinnamic acid part: 8 6.56 (d, 7=15.9 Hz, H-8), 6.64 (s, H-2/H-6), 7.44 (d, 7=15.5 Hz, H-7). 

"C-NMR spectrum (CD3OD, 50 Mhz) of 6; Benzoic acid part: 8 52.9 (OCH3), 110.1 (C-4/C-

6), 119.7 (C-2), 126.1 (C-l), 153.7 (C-3), 157.2 (C-5), 169.3 (C-7). Cinnamic acid part: 5 

108.7 (C-2/C-6), 117.8 (C-8), 127.1 (C-l), 137.3 (C-4), 144.6 (C-7), 147.1 (C-3/C-5), 168.3 

(C-9). 

Anal, found; C 51.8, H 4.5, N 3.4; calcd for C17H15N08xl.5(H20), C 52.8, H 4.7, N 3.6. 

UV X^ (MeOH) = 343 nm. 

Compounds 7-9. These compounds were prepared in the same way as described for 1 

(Blaakmeer et al., 1994). For 7 the starting material was 3,4-dimethoxybenzoic acid methyl 

ester and frart.s-(3,4,5-trimethoxy)cinnamic acid. Nitration of 3,4-dimethoxybenzoic acid 

methyl ester gave 2-nitro-4,5-dimethoxybenzoic acid methyl ester (yield 92 %) and reduction 

of the nitro group resulted in 2-amino-4,5-dimethoxybenzoic acid methyl ester (yield 94 %). 

For 8 the starting material was frans-(4-methoxy)cinnamic acid and 3,5-dimethoxybenzoic 

acid methyl ester. fra/w-(4-Methoxy)cinnamic acid was converted into its acid chloride (yield 

98 %) with thionyl chloride. rra«s-(4-Methoxy)cinnamic acid and 3,4-dimethoxybenzoic acid 

methyl ester were the starting materials for the synthesis of 9. 

trans-2-[3-(3,4£-Trihydroxyphenylpropenoyl)amino]-4£-dihydroxybenzoic acid {7} - Yield 

of the coupling of the acid chloride with the amine, yield of the saponification of the methyl 

ester and yield of the demethylation were respectively 25, 84 and 48 %. 'H-NMR spectrum 

(CDjOD, 200 Mhz); Benzoic acid part: 5 7.50 (s, H-3), 8.22 (s, H-6). Cinnamic acid part: 8 

6.38 (d, 7=15.8 Hz, H-8), 6.63 (s, H-2/H-6), 7.42 (d, 7=15.6 Hz, H-7). "C-NMR spectrum 

(CD3OD, 50 Mhz); Benzoic acid part: 8 108.4 (C-3), 119.5 (C-6), 131.0 (C-2), 141.9 (C-5), 

152.3 (C-4), 171.5 (C-7), (C-l not observed). Cinnamic acid part: 8 108.5 (C-2/C-6), 118.4 

(C-8), 127.0 (C-l), 137.2 (C-4), 143.7 (C-7), 147.1 (C-3/C-5), 166.7 (C-9). Anal, found; 

C 50.5, H 4.4, N 3.6; calcd for C16H13N08xl.9(H20), C 50.4, H 4.4, N 3.7. 

UV \ „ m (MeOH) = 349 nm. 

trans-2-[3-(4-Hydroxyphenylpropenoyl)amino]-3$-dihydroxybenzoic acid {8} - Yield of the 

coupling of the acid chloride with the amine, yield of the hydrolysis of the methyl ester and 

yield of the demethylation were respectively 71, 95 and 98 %. 

'H-NMR spectrum (CD3OD, 200 Mhz); Benzoic acid part: 8 6.60 (d, 7=2.9 Hz, H-4), 7.04 

(d, 7=2.8 Hz, H-6). Cinnamic acid part: 8 6.63 (d, 7=15.6 Hz, H-8), 6.80 (d, 7=8.6 Hz, 
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H-3/H-5), 7.47 (d, 7=8.6 Hz, H-2/H-6), 7.60 (d, 7=15.6 Hz, H-7). "C-NMR spectrum 

(CD3OD, 50 Mhz); Benzoic acid part: S 110.8 (C-4/C-6), 121.0 (C-2), 124.6 (C-l), 153.1 

(C-3), 157.0 (C-5), 170.7 C-l). Cinnamic acid part: 8 116.8 (C-3/C-5), 117.4 (C-8), 127.4 

(C-l), 131.1 (C-2/C-6), 144.1 (C-7), 161.0 (C-4), 168.1 (C-9). Anal, found: C 56.8, H 4.4, 

N 4.1; calcd for CI6H13N06xl.3(H20), C 56.7, H 4.6, N 4.1. UV X*,,, (MeOH) = 319 nm. 

trans-2-[3-(4-Hydroxyphenylpropenoyl)amino]-4J-dihydroxybenzoic acid {9} -Yield of the 

coupling of the acid chloride with the amine, yield of the hydrolysis of the methyl ester and 

yield of the demethylation were respectively 78, 94 and 83 %. 

'H-NMR spectrum (CD3OD, 200 Mhz) Benzoic acid part: 8 7.51 (s, H-3), 8.22 (s, H-6). 

Cinnamic acid part: S 6.48 (d, 7=15.6 Hz, H-8), 6.81 (d, 7=8.3 Hz, H-3/H-5), 7.50 (d, 7=9.8 

Hz, H-2/H-6), 7.55 (d, 7=15.6 Hz, H-7). "C-NMR spectrum (CD3OD, 50 Mhz); Benzoic acid 

part: 8 115.4 (C-l), 108.5 (C-3), 119.5 (C-6), 137.2 (C-2), 141.9 (C-5), 152.3 (C-4), 171.5 

(C-7). Cinnamic acid part: 8 116.8 (C-3/C-5), 118.4 (C-8), 127.5 (C-l), 130.9 (C-2/C-6), 

143.0 (C-7), 160.9 (C-4), 166.7 (C-9). Anal, found; C 61.3, H 4.2, N 4.2; calcd for 

C16H13N06, C 61.0, H 4.2, N 4.4. UV Xmm (MeOH) = 336, 315 nm. 

Synthesis of 2-[3-(3,4J-trihydroxyphenylpropionyl)amino]-3J-dihydroxybenzoic acid {10}. 

2-[3-(3,4£-Trimethoxyphenylpropionyl)amino]-3,5-dimethoxybenzoic acid methyl ester - DCC 

(1.44 g, 7 mmol) was added to a stirred solution of 3,4,5-trimethoxyphenylpropionic acid in 

DMF (25 ml) and the mixture was stirred at room temperature under N2. After 1 h, 2-amino-

3,5-dimethoxybenzoic acid methyl ester (1.12 g, 5.3 mmol) in DMF (10 ml) was added to the 

solution. After 48 h, the mixture was poured into IM HCl (50 ml). The aqueous layer was 

extracted three times with EtOAc (75 ml). After drying and evaporation, 2-[3-(3,4,5-

trimethoxyphenylpropionyl)amino]-3,5-dimethoxybenzoic acid methyl ester (290 mg, 13 %) 

was isolated. 

2-[3-(3,4£-Trimethoxyphenylpropionyl)amino]-3\5-dimethoxybenzoic acid - A solution of 2-[3-

(3,4,5-trimethoxyphenylpropionyl)amino]-3,5-dimethoxybenzoic acid methyl ester (270 mg, 

0.62 mmol) in H20 (25 ml) and MeOH (25 ml) was stirred with KOH (140 mg, 2.5 mmol) 

at room temperature. After 24 h, the reaction was quenched with 1 M HCl (3 ml). The 

precipitate was filtered off and was washed with H20 (5 ml). After drying 2-[3-(3,4,5-

trimethoxyphenylpropionyl)arnino-3,5-dimethoxybenzoic acid (190 mg, 73 %) was collected. 

2-[3-(3,4,5-Trihydroxyphenylpropionyl)amino]-3^-dihydroxybenzoic acid {10} - A solution 

of IM BBr3 (6.5 ml) in CH2C12 was added dropwise to a stirred suspension of 2-[3-(3,4,5-

trimethoxyphenylpropionyl)amino]-3,5-dimethoxybenzoic acid (180 mg, 0.43 mmol) in dry 

CH2C12 (15 ml) at —78°C. After stirring for 2 h at 0°C, the reaction was quenched with 1 M 

HCl (10 ml). The mixture was centrifuged and the residue was washed with 0.02 M HCl 
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( 2 x 5 ml) and H20 ( 3 x 5 ml). After drying 2-[3-(3,4,5-trihydroxyphenylpropionyl)amino]-

3,5-dihydroxybenzoic acid {10} was isolated (40 mg, 27 %). 'H-NMR spectrum (CD3OD, 200 

Mhz); Benzoic acid part: S 6.56 (d, 7=2.8 Hz, H-4), 6.96 (d, 7=2.7 Hz, H-6). Cinnamic acid 

part: 5 2.66 (2H), 2.77 (2H), 6.24 (s, H-2/H-6). Anal, found; C 46.4, H 4.8, N 3.1; calcd for 

C16H15N08x3(H20), C 47.6, H 5.3, N 3.5. UV ^ „ (MeOH) = 321 nm. 

Synthesis of 2-[(3,4,5-trihydroxybenzoyl)amino]-3,5-dihydroxybenzoic acid {11}. 

3,4J-Trimethoxybenzoyl chloride - SOCl2 (15 ml) was added to a solution of 3,4,5-

trimethoxybenzoic acid (5.1, 21.1 mmol) in QHs (25 ml). The mixture was refluxed for 1.5 

h. Removal of the excess SOCl2 by azeotropic distillation followed by bulb to bulb 

destination of the residue gave 3,4,5-trimethoxybenzoyl chloride (4.6 g, 83 %). 

2-[(3,4,5-Trimethoxybenzoyl)amino]-3J-dimethoxybenzoic acid methyl ester - A solution of 

2-amino-3,5-dimethoxybenzoic acid methyl ester (1.27 g, 6 mmol) in CH2C12 (10 ml) was 

added dropwise at 0°C to a stirred solution of 3,4,5-trimethoxybenzoyl chloride (1.27 g, 5.5 

mmol) in CH2C12 (15 ml) and Et3N (758 mg, 7.5 mmol). After stirring for 48 h at room 

temperature, the mixture was washed with IM HCl (50 ml), satd. NaHC03 solution (50 ml) 

and satd. NaCl solution (50 ml). After drying and evaporation, 2-[(3,4,5-trimethoxybenzoyl)-

amino]-3,5-dimethoxybenzoic acid methyl ester (1.6 g, 79 %) was crystallized from EtOAc. 

2-[(3,4,5-Trimethoxybenzoyl)amino]-3\5-dimethoxy benzoic acid - A solution of 

2-[(3,4,5-trimethoxybenzoyl)amino]-3,5-dimethoxybenzoic acid methyl ester (1.22 g, 3.0 

mmol) in H20 (25 ml) and MeOH (25 ml) was stirred with KOH (674 mg, 12 mmol) for 4 

h at 40°C and then poured into 1 M HCl (12 ml). The precipitate was filtered off and was 

washed successively with H20 (15 ml) and CHC13 (25 ml). After drying 2-[(3,4,5-

trimethoxybenzoyl)amino]-3,5-dimethoxybenzoic acid (1.1 g, 95 %) was collected. 

2-[(3,4,5-Trihydroxybenzoyl)amino]-3,5-dihydroxybenzoic acid {11} - A solution of IM BBr3 

(8 ml, 8 mmol) in CH2C12 was added dropwise to a stirred suspension of 2-[(3,4,5-

trimethoxybenzoyl)amino]-3,5-dimethoxybenzoic acid (810 mg, 2.07 mmol) in dry CH2C12 (15 

ml) at —78°C. After stirring for 2 h at 0°C, the reaction was quenched with 4 M HCl (7.5 ml). 

The mixture was centrifuged and the residue was washed with 0.02 M HCl ( 2 x 5 ml) and 

H20 ( 3 x 5 ml). After drying 2-[(3,4,5-trihydroxybenzoyl)amino}-3,5-dihydroxybenzoic acid 

{11} was isolated (630 mg, 95 %). 'H-NMR spectrum (CD3OD, 200 Mhz); Benzoyl part: 5 

7.07 (H-2/H-6), Benzoic acid part: 8 6.63 (d, 7=3.0 Hz, H-4), 7.10 (d, 7=3.0 Hz, H-6). 

"C-NMR spectrum (CD3OD, 50 Mhz); Benzoyl part: 8 108.9 (C-2/C-6), 125.2 (C-l), 139.6 

(C-4), 147.4 (C-3/C-5), 169.3 (C-7). Benzoic acid part: 5 111.6 (C-6), 112.1 (C-4), 122.4 

(C-2), 124.0 (C-l), 153.2 (C-3), 157.3 (C-5), 171.8 (C-7). Anal, found; C 47.8, H 3.7, N 4.1; 

calcd for C14H„N08xl.7(H20), C 47.8, H 4.1, N 4.0. UV A*,„ (MeOH) = 340, 297, 264 nm. 
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CHAPTER 5 

Plant response to eggs vs. host marking pheromone as factors 
inhibiting oviposition by Pieris brassicae 

ABSTRACT 

Pieris brassicae L. butterflies secrete miriamides onto their eggs. These avenanthramide 

alkaloids are strong oviposition deterrents when sprayed onto a cabbage leaf. However, these 

compounds could not be detected in cabbage leaves from which egg batches had been 

removed 2 days after deposition and that still showed oviposition deterrency. It was 

concluded that the miriamides were not directly responsible for the avoidance by females of 

occupied leaves while searching for an oviposition site. Evidence was obtained that cabbage 

leaves themselves produce oviposition deterrents in response to egg batches. Fractions contai­

ning potent oviposition deterrents could be isolated from surface extracts of leaves from 

which previously laid egg batches had been removed. The term Host Marking Pheromone that 

was used previously is not applicable in this case. 

INTRODUCTION 

Several phytophagous insect species belonging to different orders, deposit chemical markers 

on or around their eggs. These markers are called Host Marking Pheromones (HMP's) and 

constitute a chemical signal that deters conspecific females from egg-laying at that site 

(Prokopy et al., 1976; Roitberg and Prokopy, 1987). The chemical nature of the substances 

involved has been established in only a few cases and was found to be profoundly different 

for different insect species (Hurter et ai, 1987; Imai et al., 1990). 

Already more than a century ago (Kirby and Spence, 1863) observed that oviposition by 

Pieris brassicae L., commonly occurring on cruciferous plants, was influenced by the 

presence of previously laid eggs. Rothschild and Schoonhoven (1977) confirmed this 

observation under more controlled conditions. In a choice situation between cabbage leaves 

with or without conspecific eggs, the butterfly prefers to oviposit on the latter. 
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An oviposition deterring mixture can be collected by washing the eggs with water or 

methanol. A methanolic egg wash of 100 eggs, when sprayed onto cabbage leaves, is much 

more deterrent to females than the presence of 100 intact eggs (Klijnstra and Schoonhoven, 

1987). Recently Blaakmeer et al. (1994) isolated and identified three novel avenanthramide 

alkaloids, which together explained the oviposition deterring effect of a crude egg wash. The 

compounds were found to be secreted onto the eggs by the accessory gland of the female 

during oviposition (Blaakmeer, unpubl. results). The question arises how the deterrent signal 

is spread over the leaf, as from the behaviour it is clear that a female perceives the presence 

of an egg batch without actually contacting it. Moreover, the miriamides are not volatile at 

all (Blaakmeer et al., 1994). This study was aimed at investigating putative translocation of 

these molecules through cabbage leaves. At the onset it already became clear that no such 

translocation occurred. This led us to look into the possible involvement of chemicals in the 

leaf surface, induced by previously laid egg batches, that deter P. brassicae L. females from 

oviposition. 

MATERIAL AND METHODS 

Plant material - Brassica oleracea L. var. gemmifera cv. Titurel plants were reared in a 

greenhouse (20-30°C, 50-80%RH, 16L:8D) in standard potting soil. Illumination consisted of 

natural daylight supplemented by high pressure sodium vapour lamps hanging 0.75 m above 

pot level. 

Insects - Pieris brassicae L. adults were obtained from a laboratory colony maintained on 

Brassica oleracea L. This culture was established in 1981 and since then 18 generations have 

been produced each year. Field collected adults have been introduced several times during this 

period. Rearing conditions were similar to those described by David and Gardiner (1952). 

Bioassays - Oviposition preferences were tested in wooden cages with walls of muslin and 

doors of glass measuring 80 x 50 x 100 cm high. The cages were placed in a conditioned 

greenhouse, with temperatures fluctuating between 22 and 25°C. In addition to natural 

daylight, each cage was illuminated from 7.00 till 15.00 h by a 400 Watt sodium vapour lamp 

hanging 30 cm above the glass roof of the cage. In each cage 8 females and 4 males were 

introduced just after eclosion. The butterflies were repeatedly used for bioassays during 10 

days. In the bioassays, 1 ml of solvent or fraction was sprayed on the upper leaf surface only 

using a chromatographic solvent sprayer. One control and one treated leaf were placed in 

diagonally opposite corners and positions were alternated between replicate cages to minimize 
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positional effects. In the first isolation attempt of putative deterrents, control leaves were 

sprayed with leaf surface extracts of control plants and fractions obtained from it. In the other 

attempts control leaves were sprayed with methanol only. Females could oviposit on the 

leaves during 5 h (8 AM - 1 PM). The preference of the butterflies was measured by compa­

ring the number of egg batches deposited on the leaves sprayed with different fractions with 

that on the control leaves. On any one day 8 replicates were run. The significance of 

preference was tested using the Wilcoxon's matched pairs signed rank test (Siegel, 1956). 

Deterrency of leaves that had carried egg batches - To determine the degree of avoidance of 

leaves that had carried egg batches (previously documented by Rothschild and Schoonhoven 

(1977)), we used a bioassay in which the oviposition preference of about 40 individuals was 

measured. In this bioassay, females were given a choice between control leaves and leaves 

from which egg batches (3-15 batches per leaf, an average batch consists of 45 eggs) that had 

adhered to the leaf during 24, 48 or 72 h since oviposition, were removed just prior to the 

bioassay. These leaves had been on intact plants and were excised just prior to removal of the 

eggs. After a female butterfly had made a choice for one of the leaves and had started to lay 

eggs, the female and the one or two eggs she had already deposited were immediately remo­

ved. Significance of preference for control leaves was tested by a Chi-square test for expected 

frequencies (Sokal and Rohlf, 1981). 

HPLC - The pump models 302 and 303, manometric module 802C, Dynamic mixer 811 and 

UV-detector 116 were all of Gilson. A software HPLC system manager (model 702) from 

Gilson was used on an Apple II personal computer. The column used was a Microsorb RP 

CI8 250 x 10 mm, 5 urn particle size and 100 Â pore size (Rainin Instrument Co.). 

Extraction and fractionation of surface of leaves which had carried egg batches - Eggs were 

laid by P. brassicae L. on leaves of intact B. oleracea L. var gemmifera cv. Titurel plants (8-

10 weeks old). After 48 h, leaves carrying 4 to 6 egg batches were harvested. The egg batches 

were gently removed with a brush and the leaves were dipped in 500 ml dichloromethane for 

3 s followed by a dip in 500 ml methanol, also for 3 s. The crude methanol dips of 1,000 (ca. 

6000 g) leaves collected during the months June, July and August were combined. 

The methanol extract was then evaporated to dryness and redissolved in 10 ml of methanol. 

This crude methanol extract was separated into 6 fractions using reversed phase CI8 HPLC. 

The mobile phase contained 0.05% trifluoroacetic acid (TFA). The solvent composition 

changed in 20 min linearly from MeCN/H20: 10/90% to MeCN/H2Or 70/30% and was kept 

at that composition for 5 min, at a flow rate of 3.0 ml/min. After four min, a fraction was 

collected every 3 min (in total 6) . 
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Fractions 4, 5 and 6 were further separated by means of HPLC using the same column but 

different gradients. The flow rate of the solvents (containing 0.05% TFA) was 3.0 ml/min. 

For fraction 4 the solvent composition changed in 30 min linearly from MeCN/H20: 20/80% 

to MeCN/H20: 35/65%. After 4 min, a fraction (in total 4) was collected every 5 min. For 

fraction 5 the solvent composition changed in 30 min linearly from MeCN/H20: 25/75% to 

MeCN/H20: 55/45%. After 4 min, 2 fractions were collected each for 8 min. For fraction 6 

the solvent composition changed in 25 min linearly from MeCN/H20: 35/65% to MeCN/H20: 

65/35%. After 4 min, 3 fractions were collected each for 6 min. 

RESULTS 

Cabbage leaves from which egg batches had been removed after 24,48 or 72 h of egg-laying 

were avoided as an oviposition substrate in favour of clean cabbage leaves in dual choice 

situations (Table 1). In dual choice situations the crude methanol extract of the leaf surface 

still deterred oviposition (Figure 1). 

Table 1. Oviposition deterrence of leaves that had carried egg batches during the time indicated 
(treated leaves). Groups of 6-8 females were observed individually while having a choice between 
treated and control leaves. As soon as a female started to oviposit, she was removed from the cage. 
This was repeated for seven groups. Numbers of ovipositions are totals over seven groups. 

Number of egg 
batches 

7 
15 
5 
8 
3 

Residence time (h) 
of egg batches on 
leaves 

24 
24 
24b 

48 
72 

number of ovi­
positions on 
treated3 leaves 

15 
4 
14 
11 
14 

number of ovi­
positions on 
control leaves 

33* 
36* 
30* 
29* 
36* 

• treatment signifies the adherence of egg batches (numbers indicated in the first column) during 
the periods indicated in the second column 

• egg batches were removed after 24 hours and leaf was tested 24 hours later. In all other cases, 
leaves were offerd directly after removal of the egg batches. 

• Number of ovipositions on treated leaves significantly lower than that on control leaves 
(Chi-square test). 

Surprisingly, HPLC analysis of the crude methanol extract of the leaf surface failed to demon­

strate the presence of the three miriamides which are the only oviposition deterring 

compounds obtained from the egg washes of P. brassicae L. (Blaakmeer et al., 1994). 
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Figure 1. Oviposition preferences displayed by PierLs brassicae L. female butterflies in a dual choice 
situation. Results obtained during the first isolation attempt. Asterisks (*) indicate that treated leaves 
were significantly less preferred according to Wilcoxon's matched pair signed rank test (two tailed; 
Siegel, 1956), under the null hypothesis that egg batches were distributed evenly over control and 
treated leaves. The amount of dry material applied to test the activity of a certain fraction originated 
from fractionation of dry material present in the original mcthanolic leaf dip of two cabbage leaves. 
* P < 0.05; ** P < 0.02; *** P < 0.01. 

The separation procedure used to isolate oviposition deterring fractions/compounds of the 

crude methanol extract is shown in Figure 2. The methanol extract was separated into six 

fractions using reversed phase CI8 HPLC. Fraction 3, 4, 5 and 6 contained oviposition 

deterring activity (Figure 1), while fractions 1 and 2 did not. Fraction 3 was not further 

analyzed because of the low oviposition deterring activity compared to the three other fracti­

ons. Fraction 4 was further subdivided into four fractions and only fraction 4.2 showed 

oviposition deterring activity. Fraction 5 was further separated into two fractions, of which 

only 5.1 contained oviposition deterring activity. Fraction 6 was separated into three fractions 

of which only 6.1 contained oviposition deterring activity. The oviposition deterring activity 

was lost by further purification of the three active subfractions. Two other attempts to isolate 

and identify components responsible for the oviposition deterring activity in the methanol 

extracts of leaves which had carried egg batches for two days (removed prior to extraction), 

gave exactly the same result, i.e. activity was reproducibly found in the same sub-fractions 

but vanished when further purification was undertaken. 
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Figure 2. Purification scheme of the methanol surface extract and the dry material distribution (%) 
in the fractions obtained. Fractions significantly deterring oviposition are marked with a "+" sign. 
The 9% loss of dry material during fractionation was caused by sampling errors in weighings. 

DISCUSSION 

The strongly oviposition deterring miriamides, which are constituents of eggs of P. brassicae 

L. (Blaakmeer et al., 1994), could not be detected in surface extracts from leaves from which 

egg batches had been removed (detection limit of the miriamides is 0.15 ug/leaf). Because at 

least 1.5 ug/leaf of one of the two most active miriamides is necessary to get an oviposition 

deterring activity comparable to that reported here (Blaakmeer et al., 1994), we conclude that 

the miriamides are not responsible for the oviposition deterring activity of a leaf after 

oviposition by P. brassicae L. It is doubtful whether the three miriamides are involved in the 

avoidance of leaves carrying an egg batch under natural conditions. It may be possible that 

the miriamides associated with an egg batch remain tightly bound to the leaf surface after 

removal of egg batches. However, in separate experiments, application of a droplet containing 

the three pure miriamides in a dose equivalent to 100 eggs at the lower side of a leaf at 5 

different spots did not render this leaf less acceptable to the females when tested two days 

later. This is additional evidence for the absence of a role for the miriamides in inducing the 

apparent changes in leaf surface chemistry. Therefore the term HMP does not correctly descri­

be the phenomenon of Pieris butterflies avoiding hosts plants already carrying conspecific 

eggs (Schoonhoven, 1990). 
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The loss of oviposition deterring activity after purification of the subfractions 4.2, 5.1 and 6.1 

could be due to instability of the active compounds. Lack of synergism can be excluded as 

a cause for the loss of activity because recombination of fractions of the subfractions 4.2, 5.1 

and 6.1 did not show any oviposition deterring activity. 

We interprète these behavioural effects of leaf surface fractions as deterrency caused by plant 

compounds and not by compounds of insect origin. We can exclude the possibility that the 

adherence of eggs to the leaf surface reduces the concentrations of glucosinolates, known to 

be the major oviposition stimulants to P. brassicae L. (van Loon et ah, 1992). We first 

assured that spray application of exogenous glucosinolates, doubling the amount present on 

the surface of a normal cabbage leaf, did not induce a preference for leaves thus treated. This 

justified that in the second and third isolation attempts we sprayed the control leaves in the 

dual choice assay with methanol only. Nevertheless, females significantly preferred the latter. 

This proves that the glucosinolates applied only on the treated leaves, albeit in reduced 

amounts, cannot account for the preference for the control leaves. 

The HPLC procedure used was identical to that described by Blaakmeer et al. (1994) for the 

separation of the crude egg wash. The HPLC fractions of the crude surface leaf dip that con­

tained the activity was compared with the corresponding fractions of an egg wash. The latter 

was found to contain only the three miriamides as active compounds. 

In the bioassay used, the reaction to the egg batches was studied only in those leaves that 

actually had carried eggs, but not in other leaves of the same plant. However, when a more 

sensitive bioassay was used in which individual females were followed, other leaves of the 

same plant were found to become less acceptable than control leaves from a plant which 

never received any eggs (van Loon, unpublished observations). 

A hypersensitivity reaction to eggs is also found for other Brassica species (Shapiro and 

DeVay, 1987). Some individual plants of B. nigra L. produce a necrotic zone at the base of 

freshly laid eggs of P. rapae L. and P. napi L., thereby desiccating them. 

In contrast to what we suggested previously (Blaakmeer et al., 1994) the ecological function 

of the miriamides on the egg surface of P. brassicae L. eggs remains unclear. The avenanthra-

mides, compounds related to miriamides, isolated from oat groats and hulls (Collins, 1989) 

and from infected carnation stems (Niemann, 1993), have strong anti-fungal activity. 

Miriamides could possibly protect the eggs of P. brassicae L. against various fungal diseases 

or against certain predators. The egg-induced changes in leaf surface chemistry documented 

here are to our knowledge the first example of a plant response to an insect product and a 

subsequent effect on insect behaviour without prior injury being inflicted to the plant. 
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In conclusion, the three miriamides, isolated from the eggs of P. brassicae L. (Blaakmeer et 

al., 1994) are not responsible for the oviposition deterring effect of leaves which carry egg 

batches. Instead, evidence was obtained that the leaves react to contact with eggs or to 

compounds emanating from the eggs, which then act as elicitors. The elicitors of insect origin 

and the mechanism via which they operate to cause chemical changes in the plant surface will 

be subject to future studies. 

REFERENCES 

Blaakmeer, A., Stork, A., van Veldhuizen, A., van Beek, T.A., de Groot, Ae., van Loon, J.J.A. and 
Schoonhoven, L.M. 1994. Isolation, identification and synthesis of miriamides, new host 
markers from eggs of Pieris brassicae (Lepidoptera: Pieridae). J. Nat. Prod. 57: 90-99. 

Collins, F.W. 1989. Oat phcnolics: Avenanthramides, novel substituted Af-cinnamoylanthranilate 
alkaloids from oat groats and hulls. J. Agric. Food Chem. 37: 60-66. 

David, W.A.L. and Gardiner, B.O.C. 1952. Laboratory breeding of Pieris brassicae L. and Apanteles 
gtomerata L. Proc. R. Entomol. Soc. Lond. (A) 27: 54-56. 

Hurler, J., Boiler, E.F., Stadler, E., Blattmann, B„ Buser, H.-R., Bosshard, N.U., Damm, L., 
Kozlowski, M.W., Schöni, R., Raschdorf, F., Dahinden, R., Schlumpf, E„ Fritz, H., Richter, 
W.J. and Schreiber, J. 1987. Oviposition-deterring pheromone in Rhagoletis cerasi L.: Purifica­
tion and determination of the chemical constitution. Experientia 43: 157-164. 

Imai, T., Kodama, H., Chuman, T. and Kohno, M. 1990. Female-produced oviposition deterrents of 
the cigarette beetle, Lasioderma serricorne (F.). J. Chem. Ecol. 16: 1237-1247. 

Kirby, W. and Spence, W. 1863. An introduction to Entomology, 7th ed. Longman, Green, Longman, 
Roberts and Green, London. 

Klijnstra, J.W. and Schoonhoven. L.M. 1987. Effectiveness and persistence of the oviposition deterring 
pheromone of Pieris brassicae in the field. Entomol. Exp. Appl. 45: 227-235. 

Niemann, G.J., 1993. The anthranilamidc phytoalexins of the Caryophyllaceae and related compounds. 
Phytochemistry 34: 319-328. 

Prokopy, R.J., Reissig, W.H. and Moericke, V. 1976. Marking pheromones deterring repeated 
oviposition in Rhagoletis flics. Entomol. Exp. Appl. 20: 170-178. 

Roitberg, B.D. and Prokopy, R.J. 1987. Insects that mark host plants; an ecological, evolutionary 
perspective on host-marking chemicals. BioScience 37: 400-406. 

Rothschild, M. and Schoonhoven, L.M. 1977. Assessment of egg load by Pieris brassicae 
(Lepidoptera: Pieridae). Nature 266: 532-535. 

Schoonhoven, L.M. 1990. Host-marking pheromones in Lepidoptera with special references to two 
Pieris spp. / . Chem. Ecol. 16: 3043-3052. 

Shapiro A.M. and DeVay J.E. 1987. Hypersensitivity reaction of Brassica nigra L. (Cruciferae) kills 
eggs of Pieris butterflies (Lepidoptera: Pieridae). Oecologia 71: 631-632. 

Siegel, S. 1956. Nonparametric Statistics for the Behavioral Sciences. John Wiley, New York. 
Sokal, R.R. and Rohlf, F.J. 1981. Biometry. The principles and practice of statistics in biological 

research. 2nd ed. W.H. Freeman & Comp., New York, 
van Loon, J.J.A., Blaakmeer, A., Griepink, F.C., van Beek, T.A., Schoonhoven, L.M. and de Groot, 

Ae. 1992. Leaf surface compound from Brassica oleracea (Cruciferae) induces oviposition by 
Pieris brassicae (Lepidoptera: Pieridae). Chemoecology 3: 1-6. 

68 



CHAPTER 6 

Comparative headspace analysis of cabbage plants damaged 
by two species of Pieris caterpillars: Consequences for 

in-flight host location by Cotesia parasitoids 

ABSTRACT 

Headspace composition, collected from intact cabbage plants and cabbage plants infested with 

either Pieris brassicae L. or P. rapae L. (Lepidoptera: Pieridae) first instar larvae, was 

determined by GC-MS. Twenty-one volatiles were identified in the headspace of intact plants. 

Twenty-two volatiles were identified in the headspace of plants infested by P. brassicae L. 

larvae, 2 of which, ds-3-hexenyl butyrate and m-3-hexenyl isovalerate, were not detected in 

the headspace of either intact or P. rapae L. damaged plants. In the headspace of the latter, 

21 compounds were identified, all of which were also produced by intact plants. No signifi­

cant quantitative differences were found between headspace composition of the plants 

damaged by one or the other caterpillar species. Major differences between intact and 

caterpillar damaged plants in contribution to the headspace profile were revealed for hexyl 

acetate, ri.s-3-hexenyl acetate, myrcene, sabinene and 1,8-cineole. The larval endoparasitoid 

Cotesia glomerata L. was attracted by the volatiles emanating from Brassica oleracea L. 

damaged by P. brassicae L. first instar larvae. C. rubecula Marshall, a specialized larval 

endoparasitoids of P. rapae L., was attracted by the volatiles released from the B. oleracea -

P. rapae L. plant-host complex. This shows that cabbage plants kept under the conditions of 

headspace collection produce attractive volatiles for both parasitoids. 

INTRODUCTION 

Chemical communication between plants and natural enemies of plant feeding arthropods 

receives increasing attention (Dicke and Sabelis, 1988; Turlings et al, 1990a; Whitman and 

Eller, 1990). Plants damaged by herbivores release volatiles at higher rates than intact plants 

(Dicke et al., 1990; Turlings et al, 1990a; Whitman and Eller, 1990). Especially the green 

leaf odours (six-carbon alcohols, their esters and aldehydes) become more abundant when 

69 



plant tissue is damaged (Saijo and Takeo, 1975; Wallbank and Wheatly, 1976; Buttery et al., 

1985; Tollsten and Bergström, 1988). Volatiles released upon damage may guide carnivorous 

insects during their search for herbivorous hosts. This active release has been viewed as an 

indirect defence response of the plant, the herbivore-induced volatiles thus functioning as 

synomones (Whitman, 1988; Dicke et al., 1990; Turlings et al., 1990a; Whitman and Eller, 

1990; Takabayashi et al., 1991). 

Chemical information from the plant is considered to be more easy to detect than volatile cues 

emanated from the host larvae, while the latter provide the parasitoid with more reliable infor­

mation about host presence (Vet and Dicke, 1992). Behavioural studies have led to the 

suggestion that herbivore-induced synomone production by the plant is affected by the species 

of herbivore feeding (Sabelis and van de Baan, 1983; Dicke, 1988; Turlings et al, 1993). 

The gregarious Cotesia glomerata L. and the solitary C. nubecula Marshall (Hymenoptera: 

Braconidae) are important larval parasitoids of P. brassicae L. and P. rapae L. caterpillars, 

both specialized herbivores of cruciferous plants (Laing and Levin, 1982). C. glomerata L. 

accepts both caterpillar species (Richards, 1940; Laing and Levin, 1982), while C. rubecula 

Marshall is considered to be a specialized parasitoid of P. rapae L. (Nealis, 1986, 1990; 

Wiskerke and Vet, 1991; Kaiser and Cardé, 1992; Geervliet et al, 1993). 

The present study was aimed at chemical analysis of headspace composition of volatiles 

released by (1) intact cabbage plants over the different seasons and (2) cabbage plants 

damaged by either caterpillar species. The first set of analyses was performed to determine 

an optimal period for sampling headspace volatiles from greenhouse-reared plants. The latter 

part served to assess to what extent the parasitoids could use differential chemical information 

emanating from the two plant-host complexes when discriminating between hosts. 

MATERIAL AND METHODS 

Plant material - Brassica oleracea L. var gemmifera cv. Titurel plants were reared in a 

greenhouse (20-30"C, 50*80% RH, 16L:8D) from seed till 8 weeks old in potting soil. 

Illumination consisted of natural daylight supplemented by 400 Watt high pressure sodium 

vapour lamps hanging 0.75 m above pot level. Lights were turned on (9 W/m2, maximal 16 

h) when daylight intensity was lower than 6 W/m2. Plants were fertilized weekly. Intact 

individually potted plants (pot volume 0.8 1) and potted plants infested with known numbers 

of first instar larvae (24 h post-hatching) of either P. brassicae L. or P. rapae L. were used. 
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Insects 

Caterpillars - First instar larvae of P. brassicae L. and P. rapae L. had hatched from eggs 

deposited on B. oleracea L. plants from which samples were obtained. Eggs originated from 

laboratory reared female butterflies of both species maintained on the Brussels sprout cultivar 

mentioned above. Colonies of both species have been maintained in our laboratory since 1981 

and approximately 18 generations were reared each year. Rearing conditions were similar to 

those described by David and Gardiner (1952). 

Parasitoids - Parasitoid colonies were based on field material collected in the vicinity of 

Wageningen. C. glomerata L. were reared in a greenhouse compartment at 22-26°C, 50-70% 

RH and a light regime 16L:8H. C. rubecula Marshall were reared in a climatic room under 

the same conditions. Both parasitoid species were offered first instar larvae of their preferred 

host species, P. brassicae L. for C. glomerata L. and P. rapae L. for C. rubecula Marshall, 

for parasitization. The parasitized larvae were placed in cages with ample amount of Brussels 

sprouts plants. Cocoons were collected in petri-dishes and emergence of the adults took place 

in a nylon gauze cage (35 x 40 x 30 cm), where mating occurred. The wasps were supplied 

with honey and water. 

Collection of headspace volatiles - Plants were put in a 56 1 stainless steel vessel with a 

perspex cap, in which a rotor, propelled by a magnetic stirrer outside the vessel, was mounted 

for perturbing the air. Technical air which was cleaned at the inlet of the vessel by passage 

through 275 g potassium hydroxide, 175 g molecular sieves 4A and 13X (Linde) and 180 g 

activated charcoal, was used for generating the air stream. After the plants were put in their 

position, the vessel was purged with purified air (200 1) during 1 h. The plants were 

constantly illuminated by a 400 Watt sodium vapour lamp hanging 75 cm above the cap, 

yielding 11 W/m2 at plant level. Under these conditions, volatiles by intact plants were 

accumulated overnight (17 h) in the vessel. The next morning, the headspace volatiles were 

trapped in a 160 x 4 mm glass tube containing 130 mg Tenax TA at the outlet of the vessel, 

with a flowrate of 300 ml/min. Forty five litres of air was passed through the trap during 2.5 

h, resulting in entrainment of 58 percent of the volatiles accumulated overnight (van 't Riet 

and Tramper, 1991). When a second trap was placed after the first one, no breakthrough 

occurred. In the set-up described above, only Teflon tubing was used. Samples from 

uninfested plants were collected throughout the year. Samples from caterpillar infested plants 

were collected during day-time in June 1993. After the plants with first instar larvae were put 

in their position, the vessel was also purged with purified air (200 1) during 1 h. The volatiles 

were trapped during the subsequent 2.5 h (flow: 300 ml/min), which resulted in entrainment 

of 32 percent of the volatiles produced (van 't Riet and Tramper, 1991). 
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Analysis of headspace volatiles - The collected volatiles were released from the Tenax by 

heating the trap in a Thermodesorption Cold Trap Unit (Chrompack) at 250°C for 10 min and 

flushing with a He-flow of 10 ml/min. The released compounds were cryofocused in a cold 

trap (0.52 mm i.d. deactivated fused silica) at an approximate temperature of -85°C. The cold 

trap was connected to a Supelcowax 10 fused silica capillary column (60 m x 0.25 mm i.d., 

0.25 urn film thickness), which was connected in a Pye 204 gas Chromatograph. The column 

was mounted to a VG MM7070 F mass spectrometer, working in the 70 eV El-mode. The 

compounds were transferred to the capillary column by ballistically heating the cold trap to 

220°C. Starting at a temperature of 40°C (4 min), the GC-oven was programmed at an initial 

rate of 2%nin during 30 min, followed by a rate of 6°/min to a final temperature of 270°C (4 

min). The GC was calibrated with a sample containing a known amount of the 7 main 

components to measure an average response factor, which was used to calculate the amount 

of all volatiles in the headspace samples. 

Windtunnel set-up - The windtunnel used (200 x 60 x 60 cm) was constructed according to 

Takken (1991), with some modifications. An air-humidifier was constructed between the 

glasswool filter and the activated charcoal filter. The light source used was a half-round 

frame, hanging over the flight-compartment, with the inner side covered with light-reflecting 

material (aluminium). Inside the frame 8 fluorescent tubes (Philips TLD 32W/84HF) and 4 

bulbs (Philips Softtone 200W) were mounted. Light intensity was 2 W/m2 at the release site 

of the wasps. The temperature in the windtunnel was 21°C and the relative humidity 

fluctuated between 40 and 60%. Wind speed at the release site was 0.2 m/s. 

Bioassays - For bioassays mated females, 3-5 days old, were used. As a pre-flight treatment 

the wasps were allowed to walk over a host-damaged leaf, containing fresh host damage 

(including host by-products, such as silk and faeces) but without caterpillars, 16 h before 

testing. After this experience, wasps were kept individually in vials (5.5 cm, 1.5 cm i.d.), 

supplied with honey, in a climate chamber at 15°C until needed. 

In the windtunnel a dual-choice situation was offered to the wasps, consisting of two separate 

air-streams. Filtered air (as described in collection of headspace volatiles) was split into two 

air-streams and each of them was led through a metal vessel (described above) (flow 2 1/min), 

one containing an intact plant and the other a plant with 50 first instar larvae of the respective 

host species of the parasitoid. Subsequently, the volatile-containing air was led into the tunnel 

through vertical glass-tubes. T-shaped glass-tubes (21 cm, 4.5 cm i.d.) were placed over the 

vertical glass-tubes to offer the wasps a landing site. For visual orientation of the wasps an 

undamaged cabbage leaf, in a vial closed with Parafilm, was placed into each T-shape glass-

tube. The release site was a large glass tube (30 cm, 15 cm i.d.) on a socket (10 cm high), 

72 



with both ends open, placed at a distance of 1 m from the odour sources. The vial containing 

the individual wasp was placed on the bottom of the release tube. The test lastel until the 

parasitoid landed, with a maximum of 5 minutes after flight initiation. Wasps that did not 

choose for one of the alternative odour sources were counted under 'no oriented flight'. Both 

parasitoid species were tested on the same day, replicates being carried out on subsequent 

days. Preference of the responding parasitoids for one of the offered air-streams was tested 

by a Chi-square test for expected frequencies (P < 0.05) (Sokal and Rohlf, 1981). 

RESULTS 

Seasonal fluctuations in volatile production 

The total amount of volatiles released during the combined accumulation and collection period 

by intact uninfested cabbage plants shows a clear seasonal trend (Figure 1). During September 

1990 a steep decline in volatile release occurred. 
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Figure 1. Emission of total headspace volatiles (ng/g fw) over a collection period of 17 h by 4 intact 
8 week old potted B. oleracea L. plants and fresh weight of aerial parts of the 4 plants over time. 
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Release rates remained on average a factor 10 lower during winter till an increase occurred 

at the end of March 1991. Although exhibiting quite some variation in the amount emitted, 

thereafter release rates showed an upward trend again, but did not reach the level of 1990 

(range 9-22 ng/g fw/17 h in spring and summer 1990, versus 3-9 ng/g fw/17 h in spring and 

summer 1991). This trend in volatile production concurs with a similar trend in the fresh 

weight of aerial parts of 8 weeks old plants, which is clearly lower in the winter season 

(Figure 1). 

Headspace composition of uninfested and infested plants 

The average headspace compositions of intact plants and plants infested with larvae of either 

P. brassicae L. and P. rapae L. are given in Table 1. Volatile profiles of P. brassicae L. infe­

sted plants were made up of 22 compounds. Qualitative differences were found compared to 

the composition of intact plants, as they produced ci.s-3-hexenyl butyrate and c/s-3-hexenyl 

isovalerate, that were not detected in the headspace samples from intact plants. Both com­

pounds likewise cause a qualitative difference between P. brassicae L. and P. rapae L. 

infested plants (Table 1). On the other hand, ß-phellandrene was not detected in headspace 

collections from P. brassicae L. infested plants, while this compound was present in both 

intact and P. rapae L. infested plants. The five main headspace-components (m-3-hexenol, 

cw-3-hexenyl acetate, sabinene, limonene, 1,8-cineole) from intact plants and caterpillar infe­

sted plants were similar. Although quantitative differences in these main components were 

observed between intact plants and caterpillar infested plants, only for 1,8-cineole the 

contribution to the headspace of intact plants was significantly higher than that of plants 

infested by either one caterpillar species (Student's r-test on arcsine sqaure root transformed 

percentages, P < 0.05). The contribution of c/s-3-hexenol and m-3-hexenyl acetate was lower 

in intact headspace of the former, while this was the reverse for the other three components. 

The headspace odours emitted by P. rapae L. infested cabbage plants contained 21 

compounds which were also released by intact plants (Table 1). Absolute release rates of 

volatiles by both plant-host complexes did not differ significantly (Figure 2). 

Bioassays 

The percentages of females that showed completed flights are 80% for C. glomerata L. and 

69% for C. rubecula Marshall. In Figure 3 the distribution of choices for either one of the 

two odour sources (Plant Host Complex versus Clean Cabbage) is given for both parasitoid 

species. Females of both species do have a preference for the volatiles emitted by caterpillar 

infested plants. 
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Table 1. Composition of headspace volatile mixtures (as average percentages ± SEM (Standard Error 
of the Mean) of total amount of volatiles trapped (total area under GC peaks)) collected for 2.5 h 
(during day-time) from intact potted B. oleracea L. plants, and plants infested by first instar larvae of 
either P. brassicae L. or P. rapae L. 

Compound 

Alcohols 
l-penten-3-ol 
cJs-3-hexenol 
2-ethyl-l-hexanol 

Aldehydes 
hexanal 
octanal 

Esters 
hexyl acetate 
ri.s-3-hexenyl acetate 
cw-3-hexenyl butyrate 
cis-3-hexenyl 

isovalerate 

Ketones 
3-pentanone 

Sulphides 
dimethyldisulphide 
dimethyltrisulphide 

Terpenoids 
a-pinene 
a-thujene 
ß-pinene 
sabinene 
myrcene 
ß-phellandrene 
limonene 
1,8-cineole 
frans-sabinene hydrate 
linalool 
ß-elemene 

Total 

Intact 
plants 
n=2 

0.5 ± 0.3 
5.1 ± 0.1 
4.2 ± 0.4 

0.7 ± 0.5 
0.7 ± 0.5 

1.2 ±0.1 
17.6 ± 2.9 
-

-

2.1 ± 0.1 

1.6 ± 0.3 
0.9 ± 0.3 

1.4 ± 0.1 
4.9 ± 0.3 
1.9 ±0.2 

21.1 ± 0.5 
3.1 ± 2.2 
0.3 ± 0.2 
17.8 ± 0.1 
11.4 ± 1.1 
0.9 ± 0.3 
1.9 ± 0.2 
0.7 ± 0.2 

100.0 

Plants infested 
with P. brassicae 
n=4 

1.4 ± 0.6 
7.0 ± 1.6 
3.8 ± 0.4 

1.2 ± 0.8 
1.1 ±0.4 

3.1 ± 0.9 
33.3 ± 5.3 
0.3 ± 0.3 

0.2 ± 0.2 

2.6 ± 0.9 

0.1 ±0.1 
0.1 ±0.1 

0.4 ± 0.4 
4.4 ± 0.6 
0.8 ± 0.4 
12.9 ± 3.0 
5.0 ± 0.4 
-
12.7 ± 2.2 
6.3 ± 0.8 
0.7 ± 0.2 
2.5 ± 2.0 
0.1 ±0.1 

100.0 

Plants infested 
with P. rapae 
n=4 

0.8 ± 0.5 
5.4 ± 1.3 
2.8 ± 0.4 

0.6 ± 0.2 
0.2 ± 0.2 

3.0 ± 0.5 
31.9 ±4.1 
-

-

1.8 ± 1.1 

0.3 ± 0.1 
0.3 ± 0.2 

0.7 ± 0.4 
5.0 ± 0.5 
0.9 ± 0.5 
16.2 ± 2.3 
6.2 ± 0.6 
0.5 ± 0.2 
15.4 ± 1.5 
5.6 ± 0.9 
0.3 ± 0.3 
1.4 ± 0.9 
0.7 ± 0.4 

100.0 
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450 

Figure 2. Amount of seven major hcadspace volatiles released by B. oleracea L. plants infested with 
either P. brassicae L. (solid bars) or P. rapae L. (hatched bars) first instar larvae. Net amounts 
released per caterpillar (i.e. corrected for the amount released by an average intact plant) over the 2.5 
h collection period. 

C. rubecula 

C. glomerate 

40 10 0 10 

number of choices 

20 

Figure 3. Distribution of choices for volatiles emitted by the plant-host complex (PHC) and the clean 
cabbage plant (CC) of Cotesia glomerata L. and C. rubecula Marshall Plant-host complexes consisted 
of cabbage, infested by the preferred host-species for the parasitoids, Pieris brassicae L. and P. rapae 
L. respectively. Significant preferences (P < 0.05) arc indicated by *. N tested is 51 for C. glomerata 
L. and 54 for C. rubecula Marshall. 
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DISCUSSION 

Production of volatiles per unit of fresh weight by intact cabbage plants followed a distinct 

seasonal trend, declining drastically in autumn, remaining very low in winter and increasing 

again in during spring. This phenomenon paralleled the severely reduced growth rates of the 

plants, indicating a role of the suboptimal physiological condition of the plants in causing the 

reduced emission of volatiles. Although few comparable studies are available, similar findings 

have been reported for other plant species (Sekiya et al., 1977; Hatanaka et al., 1987; 

Takabayashi et al, 1990). Our findings provided the criterion to select the summer period as 

most suitable for comparative studies of headspace volatiles collected from intact and herbivo­

re-damaged plants. 

Given the attention paid to B. o/eracea-herbivore-natural enemy interactions (Nealis, 1986, 

1990; Wiskerke and Vet 1991; Boland et al., 1992; Kaiser and Cardé, 1992; Steinberg et al, 

1992; 1993) remarkably few data are available on the chemistry of volatile blends released 

by intact and herbivore damaged plants. The extensive qualitative study of Tollsten and 

Bergström (1988) on headspace volatiles collected from five intact {i.e. the main stem cut at 

ground level and put in water over 24-96 h) and mechanically damaged crucifer species did 

not include B. oleracea L., while they found many qualitative and indications of quantitative 

differences between the Brassica species. 

Comparing headspace profiles of intact and infested plants reveals that two esters of cis-3-

hexenol were found only from the cabbage-P. brassicae L. plant-host complex. P. rapae L. 

infested plants yielded qualitatively the same headspace composition as intact plants. 

Quantitative differences in contribution of three of the five major components (cw-3-hexenyl 

acetate, sabinene and 1,8-cineole) to headspaces of intact and both caterpillar infested plants 

were evident. Such comparisons are very scarce in the literature to date. A recent study by 

Takabayashi et al. (1991) demonstrated quantitative differences for three compounds between 

blends emitted by detached apple leaves infested by two different spider mite species. Our 

results confirm their conclusion that the plant is more important in affecting the composition 

of the volatile blend than the herbivore. 

Behavioural evidence for the involvement of both plant and herbivore in producing a 

recognizable blend was found for C. marginiventris Cresson wasps orienting differently 

towards com plants infested by either Spodoptera frugiperda J.E. Smith or Trichoplusia ni 

Hübner caterpillars (Sabelis and van de Baan, 1983; Dicke et al., 1990; Turlings et al., 

1990b). 

77 



Cruciferous plants are phytochemically characterized by secondary plant substances called 

glucosinolates. These glucosinolates are the precursors of the volatile isothiocyanates. The 

Brussels sprouts plants we used contained at least two glucosinolates, glucobrassicin and 

sinigrin (van Loon et al., 1992). Unexpectedly, isothiocyanates were absent in all headspace 

samples analyzed. It is unlikely that this is due to the choice of the adsorption material, 

because Tenax-TA gives good recoveries for isothiocyanates (Cole, 1980b). Knowledge of the 

release of isothiocyanates by Brassica species is mostly based on mechanically damaged 

plants (Cole, 1980a; Finch, 1978). Our data imply that injury by P. brassicae L. and P. rapae 

L. feeding does not induce release of these compounds. 

C. glomerata L. is able to distinguish between intact plants and plants infested with larvae 

of P. brassicae L. or P. rapae L. (Wiskerke and Vet, 1991; Steinberg et al., 1992; 1993). C. 

glomerata L., either naive or experienced, does not distinguish between plants infested with 

P. brassicae L. or with P. rapae L. (Wiskerke and Vet, 1991). This is in agreement with the 

generalistic nature of this species, which accepts several Pieridae species as host (Laing and 

Levin, 1982; Geervliet et al., 1993). In a dual choice situation between intact and P. rapae 

L. infested plants, C. rubecula Marshall was shown to prefer plants infested with P. rapae 

L. (Kaiser and Cardé, 1992). Naive C. rubecula Marshall showed no discrimination between 

P. brassicae L. and P. rapae L. infested plants and both Cotesia species showed no 

discrimination between the two plant-host complexes after experience with either one of them 

(Geervliet, unpubl. results). Our chemical data show chemical differences which would allow 

discrimination by the two Cotesia species between intact plants and plants infested by their 

preferred hosts. It cannot be excluded, however, that there are synomones in the headspace 

with a concentration below the identification limit of the GC-MS (± 5 ng), nor that 

thermolabile components play a role. This lack of discrimination displayed by both parasitoids 

may not be surprising in view of the minor chemical differences between headspaces of both 

plant-host complexes. The host specificity of both Cotesia species found in the field 

(Rothschild et al., 1977; Bradley, 1987; Geervliet unpubl. results) may be caused by contact 

cues rather than orientation cues. However, recently it has been shown that the species of 

plant studied may affect the ability of parasitoids to distinguish between two herbivore species 

feeding on the same plant (McCall et ai, 1993). Our current research is aimed to identify the 

minimal blend of components which is necessary for the searching behaviour of both Cotesia 

species. 
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GENERAL DISCUSSION AND CONCLUDING REMARKS 

In this thesis the isolation and identification of infochemicals which are involved in Cotesia-

Pieris-Brassica relationships and their eventual use in cabbage crop protection, are described. 

In chapter 2, a strong oviposition stimulant for the large cabbage white butterfly present in 

the wax-layer of Brussels sprouts {Brassica oleracea L. var. gemmifera cv. Titurel) is 

identified as glucobrassicin. To prevent cabbage colonisation by P. brassicae L., the use of 

cabbage cultivars with a low level of glucobrassicin could be an option. However, 

glucosinolates and their hydrolysis products have been shown to provide also a chemical 

defence for crucifers. They are known to be toxic to bacteria, fungi and a number of insects 

feeding on other plants (Blakeman, 1973; Feeny, 1977; Louda and Mole, 1992). Thus the 

selection of cabbage cultivars with a low total glucosinolate content will not be a solution 

since the injury by micro organisms and other insects than the large cabbage white butterfly 

may become more serious than the possible protection against egg-laying by the large cabbage 

white itself. 

In chapter 3, the identification of the supposed Host Marking Pheromone of the large cabbage 

white is described. Three oviposition deterrents (miriamide, miriamide 5-glucoside and 5-

dehydroxy miriamide) were isolated from the eggs of the butterfly. In chapter 5, it becomes 

clear that the isolated compounds, described in chapter 3, are themselves not directly 

responsible for the observed oviposition deterrency of leaves or plants carrying eggs. This 

conclusion is based on the fact that the egg-borne deterrents could not be detected in cabbage 

leaves from which egg batches had been removed, one or two days after they had been 

deposited, while the leaves still showed oviposition deterrency. Evidence was obtained that 

cabbage leaves themselves react to deposited eggs by producing and/or secreting other 

compounds to the leaf surface which are deterrent and which differ from the isolated 

miriamides. This probably is the first example of a plant response to an insect product without 

prior injury being inflicted to the plant. 

Although the isolated oviposition deterrents are not directly involved in the natural situation 

in which the oviposition behaviour of the butterfly is modified, they can be used in cabbage 

crop protection. When miriamide or 5-dehydroxy miriamide were used in dual choice 

bioassays, complete inhibition of oviposition on the treated leaves occurs in a large number 

of replicates at a dose of 2 ug/leaf and higher. Although no absolute protection may be 

obtained, cabbage crops could be protected when they are sprayed with these compounds. 
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They should preferably be used in combination with a push-pull, or stimulo-deterrent 

diversionary strategy (SDDS) (Pyke et al, 1989; Miller, 1989; Pickett et ai, 1991) in which 

trap crop plants, containing high levels of the oviposition stimulating glucosinolates, are 

treated with an insecticide or a pathogenic biological control agent. 

The structure-activity relationship of the three isolated miriamides and eight related 

synthesized compounds is described in chapter 4. Only minor loss of activity relative to the 

most active natural compound isolated (5-dehydroxy miriamide) was observed in six of the 

eight synthesized compounds. One of the synthesized structures was even more active than 

5-dehydroxy miriamide. 

In field experiments with pure synthesized miriamide, no oviposition deterrence or dispersal 

activity could be measured. Additional laboratory experiments showed that miriamide was 

unstable when exposed to direct daylight. So, more effort and research is necessary to 

investigate the photostability of the eight related synthesized compounds (and other 

compounds that have yet to be synthesized) in order to find structures which combine a high 

oviposition deterring activity with photostability. 

In chapter 6, headspace composition, collected from intact cabbage plants and cabbage plants 

infested with either larvae of P. brassicae L. and P. rapae L. was determined. Major 

differences between intact and caterpillar damaged cabbage plants were revealed for hexyl 

acetate, ris-3-hexenyl acetate, myrcene, sabinene and 1,8-cineole. The minimal mixtures 

necessary for attracting two larval endoparasitoid species to the first instar larvae of both 

Pieris species have not yet been identified. 

Identification of the infochemicals used by parasitoids to locate the larvae of P. brassicae L. 

and P. rapae L. may be used to select cabbage cultivars with an increased production of these 

chemicals after injury by herbivores in order to increase foraging efficiency of the natural 

enernies. The use of parasitoids in cabbage crop protection may yield only limited control of 

Pieris caterpillars, because the caterpillars are not directly killed but develop to the final 

larval instar before they die. However, a high parasitization level will reduce the second 

butterfly generation in the same year. 

When doing bioassays with living materials like plants and insects it should be kept in mind 

that results obtained in the laboratory can be different from those obtained in the field. In 

order to prevent ourselves from wasting effort, time and money, it is desirable to repeat 

successful laboratory experiments outside in the field, when possible, at an early stage. 
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The problems we had in obtaining flight responses with the parasitoids in the windtunnel 

bioassays in the winter period are probably caused by the physiological state of the plants. 

The plant odour composition reflects the physiological state of the plant and changes with age 

and season. When the odour composition of the plant changes and the amount of volatiles 

decreases, it is wise to postpone this kind of research and to wait for the next summer period. 
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SUMMARY 

In this thesis the isolation and identification of infochemicals which are involved in Cotesia-

Pieris-Brassica relationships with the prospect of their eventual use in cabbage crop pro­

tection, are described. The study focuses on two topics: regulation of Pieris oviposition 

behaviour and host selection behaviour of parasitoids of Pieris larvae. 

A general introduction about relationships between plants/insects and insects/insects, and more 

specifically the relationship between Crucifers and their associated insect herbivores as well 

as phytochemical information about Cruciferae is given in chapter 1. 

In chapter 2 the isolation and identification of the oviposition stimulant for the large cabbage 

white butterfly, present in the leaf surface of Brussels sprout plants, is described. The 

oviposition stimulant could be identified as glucobrassicin (3-indolyl-methyl-glucosinolate), 

a secondary plant compound belonging to the glucosinolates which are characteristic for the 

genus Brassica. 

The identification of oviposition deterrents from the eggs of the large cabbage white is 

described in chapter 3. Three compounds, responsible for the oviposition deterring activity 

of an egg wash when sprayed onto a cabbage leaf, were isolated and identified as trans-2-[3-

(3,4,5-trihydroxy-phenylpropenoyl)-amino]-3,5-dihydroxy-benzoic acid (miriamide), trans-2-

[3-(3,4-dihydroxyphenylpropenoyl)amino]-3,5-dihydroxybenzoic acid and fra/is-2-[3-(3,4-dihy-

droxy-5-ß-glucopyranose-phenylpropenoyl)amino]-3,5-dihydroxybenzoic acid. The synthesis 

of the first two compounds is also described. The three previously unknown avenanthramide 

alkaloids (amides of derivatives of anthranilic and cinnamic acid) form a group of compounds 

that have not been reported from the animal kingdom before. 

The structure-activity relationship of the isolated avenanthramide alkaloids (described in 

chapter 3) and eight related synthesized compounds, as oviposition deterrents for P. brassicae 

L., is studied in chapter 4. For ten of the tested compounds, the effective dosis at which an 

oviposition deterring index of 50 % (ED50) occurred, has been calculated. At least three 

groups with different activity levels were found. Changes in the way both ring systems were 

connected had no influence on the deterrent activity, while modifications of groups linked to 

the anthranilic part of the molecule led to a reduction of activity compared to miriamide. 

Mono- and dihydroxy substituted cinnamic parts of the molecule increased its effectiveness. 

fra«s-(4-Hydroxyphenylpropenoyl)amino]-3,5-dihydroxybenzoic acid was found to be 

significantly more active than miriamide. 
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In chapter 5, the question whether ovipositing female butterflies, after landing on the upper 

surface of a cabbage leaf, can perceive the host marking pheromone (HMP) present on the 

eggs deposited on the lower side of the leaf is studied. The strongly oviposition deterring 

avenanthramide alkaloids could not be detected in leaf surface extracts from leaves from 

which egg batches had been removed. Thus the isolated avenanthramide alkaloids are not 

directly responsible for the HMP effect. Evidence is obtained that cabbage leaves themselves 

produce oviposition deterrents in response to oviposited egg batches, thus making the use of 

the term HMP disputable. Fractions containing potent oviposition deterrents were isolated 

from surface extract of leaves from which previously laid egg batches had been removed. 

In chapter 6 headspace analysis of intact cabbage plants and cabbage plants infested with 

larvae of the small cabbage white and the large cabbage white is described. The volatile 

production of intact cabbage plants shows a seasonal fluctuation with the highest production 

rate in the summer period. 

Major differences in the headspace profile of intact and caterpillar damaged plants were 

revealed for hexyl acetate, ris-3-hexenyl acetate, myrcene, sabinene and 1,8-cineole. No 

significant quantitative differences were found between the headspace of cabbage plants 

infested by one or the other caterpillar species. In a windtunnel bioassay (dual-choice), it was 

found that the solitary parasitoid of the small cabbage white and a gregarious parasitoid of 

the large cabbage white distinguish between intact cabbage plants and cabbage plants infested 

with their preferred hosts. 
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SAMENVATTING 

In dit proefschrift wordt de isolatie en identificatie van aantal signaalstoffen beschreven die 

een rol spelen in interacties tussen spruitkool en adulten van het grote koolwitje (Pieris 

brassicae L.) en tussen twee parasitaire wespen en de rupsen van het grote en kleine koolwitje 

(Pieris rapae L.). Het onderzoek is gericht op twee onderwerpen: het eileggedrag van het 

grote koolwitje en de gastheer selectie van twee parasitaire sluipwespen. 

In hoofdstuk 1 wordt een globaal overzicht gegeven van interacties tussen planten en insekten 

en tussen insekten onderling en een meer gericht overzicht van interacties tussen insekten en 

de familie van de Cruciferen. In het eerste overzicht wordt de waardplant selectie en de 

gastheer selectie voor de eileg van vlinders en sluipwespen beschreven. 

In hoofdstuk 2 wordt de isolatie beschreven van de stof die verantwoordelijk is voor de 

waardplant selectie van het grote koolwitje. Deze stof is geïdentificeerd als glucobrassicine, 

een secundaire plantestof behorende tot de groep van glucosinolaten die de familie van de 

Cruciferen karakteriseren. 

In hoofdstuk 3 wordt de isolatie en identificatie van het eilegremmend feromoon van het grote 

koolwitje beschreven. Drie stoffen, verantwoordelijk voor het eilegremmende effect van 

eispoelsel wanneer dit verneveld wordt op een koolblad, zijn geïsoleerd en geïdentificeerd als 

fra/tï-2-f3-(3,4,5-trihydroxyfenylpropenoyl)-amino]-3,5-dihydroxybenzoëzuur (miriamide), 

frani-2-[3-(3,4-dihydroxyfenylpropenoyl)amino]-3,5-dihydroxybenzoëzuurenfra/w-2-[3-(3,4-

dihydroxy-5-ß-glucopyranose-fenylpropenoyl)amino]-3,5-dihydroxybenzoezuur. Een synthese 

van de twee eerste verbindingen wordt ook in dit hoofdstuk beschreven. Deze drie, tot dusver 

onbekende verbindingen, behoren tot de groep van stoffen die avenanthramides (amides van 

anthranilzuur- en kaneelzuur-derivaten) genoemd worden, daar verwante verbindingen voor 

het eerst in het plantegeslacht Avena ontdekt zijn. 

De structuuractiviteits relatie van de in hoofdstuk 3 geïsoleerde eilegremmende verbindingen 

en acht nauw verwante gesynthetiseerde derivaten wordt beschreven in hoofdstuk 4. Voor tien 

van de elf geteste verbindingen is de effectieve concentratie waarbij de ovipositie index 50 

% bedraagt (ED50) berekend. Er konden ten minste drie groepen met een significant 

verschillende effectiviteit onderscheiden worden. De onderzochte veranderingen in het 

verbindingstuk tussen de twee ringsystemen hebben geen invloed op de eilegremmende 

activiteit vergeleken met de activiteit van miriamide. Veranderingen in het anthranilzuur-deel 

leiden tot verlies aan activiteit. 
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Een mono- en dihydroxy gesubstitueerd kaneelzuur-deel leidt tot een hogere remming 

vergeleken met die veroorzaakt door miriamide. De meest actieve verbinding is trans-2-{i-{A-

hydroxyfenylpropenoyl)amino]-3,5-dihydroxybenzoëzuur . 

In hoofdstuk 5 wordt teruggekomen op het eilegremmend feromoon van het grote koolwitje. 

De vraag hoe een koolwitje na landing op de bovenkant van een koolblad de eilegremmende 

stoffen op al eerder gelegde eieren aan de onderkant van hetzelfde koolblad kan waarnemen 

wordt gedeeltelijk beantwoord. Translocatie van de eilegremmende miriamides afkomstig van 

de eieren afgezet aan de onderkant naar de waslaag aan de bovenkant van het koolblad kon 

niet worden aangetoond. Sterke aanwijzingen zijn gevonden dat het koolblad reageert op al 

gelegde eieren, waardoor er inductie optreedt van synthese en/of afgifte van andere dan de 

geïsoleerde verbindingen naar de waslaag van het blad. Waslaag-fracties van belegde 

koolbladeren met eilegremmende werking zijn geïsoleerd maar verdere opwerking tot één of 

meerdere zuivere stoffen is niet gelukt, vermoedelijk door instabiliteit van de betreffende 

verbindingen. 

Resultaten van de headspace analyse van intacte koolplanten en koolplanten aangetast door 

rupsen van het grote en kleine koolwitje worden beschreven in hoofdstuk 6. De afgifte van 

vluchtige stoffen van intacte koolplanten, gemeten gedurende twee groeiseizoenen, is het 

hoogst in de zomer periode. 

Belangrijke verschillen in de bijdrage aan de headspace samenstelling van intacte koolplanten 

en koolplanten aangetast door de rupsen van één van de twee vlinder soorten is gevonden 

voor hexylacetaat, ris-3-hexenylacetaat, myrceen, limoneen en 1,8-cineol. Er worden geen 

kwantitatieve verschillen gevonden tussen de headspace samenstelling van koolplanten 

aangetast door de twee rupsen soorten. 

In een twee-keuze windtunnel experiment is gevonden dat een op de rupsen van het kleine 

koolwitje gespecialiseerde sluipwesp (Cotesia rubecula Marshall) op afstand duidelijk 

onderscheid maakt tussen de geur van een intacte koolplant en die van een koolplant aangetast 

door P. rapae L. rupsen. Een zelfde voorkeur voor de geur geproduceerd door koolplanten 

aangetast door rupsen van het grote koolwitje boven de geur van intacte planten, is ook 

gevonden voor een niet gespecialiseerde sluipwesp (C. glomerata L.). 
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CURRICULUM VITAE 

Op 11 oktober 1964 ben ik, Anton Blaakmeer, geboren te Slootdorp. Na het behalen van het 

atheneum-diploma in 1984 aan de Rijksscholengemeenschap Wiringherlant te Wieringerwerf, 

ben ik in september van hetzelfde jaar begonnen aan de studie Moleculaire Wetenschappen 

aan de Landbouwuniversiteit te Wageningen. Afstudeervakken heb ik verricht bij de vakgroep 

Organische Chemie (Dr. T.A. van Beek) en voor de vakgroep Plantenfysiologie op het 

I.T.A.L. (Dr. J.P.F.G. Helsper) te Wageningen. Het doctoraalexamen van de studierichting 

Moleculaire Wetenschappen, chemische oriëntatie, werd afgelegd in maart 1989. Van augustus 

1989 tot en met december 1993 was ik als assistent in opleiding verbonden aan de vakgroep 

Organische Chemie van de Landbouwuniversiteit. Het in dit proefschrift beschreven onder­

zoek is uitgevoerd op de vakgroepen Organische Chemie en Entomologie, onder leiding van 

Dr. J.J.A. van Loon, Dr. T.A. van Beek, prof. Dr. L.M. Schoonhoven en prof. Dr. Ae. de 

Groot. 
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