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Bibliographic Abstract: This thesis describes different regeneration systems of cassava. In the 
first system the embryos were highly organized. The use of the auxins NAA and 2,4-D to induce 
this organized system of somatic embryogenesis were compared in several genotypes. 
Bombardment of organized tissues did not result in transformed plants and culture of protoplasts 
isolated from organized cultures did not result in plant regeneration. In the second system, so 
called friable embryogénie callus, the embryos are less organized. Protoplasts isolated from 
friable embryogénie callus regenerated into plants. Bombardment of this friable embryogénie 
callus with DNA of constructs containing the luciferase gene resulted in transformed tissue. 
Transgenic tissue was selected using luciferase activity. Transformed mature embryos were 
multiplied by the organized system of embryogenesis before they were allowed to develop into 
plants. The transformed nature of the plant was confirmed by PCR and Southern Blot Analysis. 
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Theorems (Stellingen) 

1. Friable embryogénie callus is more successful than somatic embryos as a source for 

protoplasts which regenerate into plants (This thesis). 

2. Development and selection of unorganized cells from organized tissue can probably reduce 

the genotype dependency for transformation. 

3. I admire protoplasts and their contents, particularly the nuclei, because they drag my mind 

to apprehend the beginning of life (This thesis; Lackie and Dow (1995), Dictionary of Cell 

Biology P:388). 

4. There are many opportunities to integrate conventional and biotechnological approaches to 

achieve the desired end product like resistance to cassava bacterial blight. (This thesis; Jacobsen 

(1991), Biotechnological Innovations in Crop Improvement, P:38). 

5. When a higher production of carbohydrates has to be achieved in marginal soils with 

minimum tillage by peasant fanners, cassava is the best crop. 

6. The lack of knowledge of the factors controlling somatic embryogenesis, the asynchrony of 

somatic embryo development, and low true-to-type embryonic efficiency are responsible for its 

reduced commercial application (This thesis; Pedroso and Pais (1995), Plant Cell Tissue and 

Organ Culture 43:147-154). 

7. Substitution of cassava flour by one third for the imported wheat flour can save to the extent 

of U$ 150 million per year in Indonesia (FAO, 1993). 

8. "It is forgotten that change could be for the better or the worse. Even more important than 

change is the direction of change and our sense of right and wrong, of truth and falsehood, of 

justice and injustice and a commitment to prefer right, truth and justice on their antithesis" 

(Azzam, 1992). 



9. "After life's fitful fever, he sleeps well" (William Shakespeare). 

10. Unlike students, businessmen and extension workers who go abroad, mingle with others and 

get a "cultural shock", diplomats do not experience this simply because they are insulated from 

the local community (Adapted from Weaver (1987), The Advising Quarterly, P:6). 

Stellingen behorende bij het proefschrift " Regeneration and transformation of cassava (Manihot 

esculenta Crantz.)" door Eri Sofiari, in het openbaar te verdedigen op dinsdag 28 mei 1996, te 

Wageningen. 



CONTENTS 

Page 

List of abbreviations 

Chapter 1. General introduction 1 

Chapter 2. Comparison of NAA and 2,4-D induced somatic 

embryogenesis in cassava 19 

Chapter 3. The investigation of somatic embryos and leaves 

as sources for protoplast culture in cassava 35 

Chapter 4. Plant regeneration from protoplasts isolated 

from friable embryogénie callus of cassava 55 

Chapter 5. Production of transgenic cassava plants by particle 

bombardment using luciferase activity as selection marker 70 

Chapter 6. Comparison of germination of NAA and 2,4-D induced 

somatic embryos of cassava 89 

Chapter 7. General discussion 107 

Summary 119 

Samenvatting 123 

Ringkasan (Indonesia) 127 

Summary in Arabic 131 

Curriculum vitae 135 

Acknowledgement 136 



LIST OF ABBREVIATIONS 

2,4-D = 2,4-dichlorophenoxyacetic acid 
ABA = abscisic acid 
AARD = Agency for Agricultural Research and Development 
A.turn = Agrobacterium tumefaciens 

bar = Basta-resistance gene 

BAP = 6,-benzylaminopurine 
BM = basal medium 
CIAT = Centro Internacional de Agricultura Tropical 
CSE = cyclic somatic embryogenesis 
Dicamba = 3,6-dicloro-2-methoxybenzoic acid 
DNA = Deoxyribose nucleic acid 
EDTA = ethylenediamine-tetra-acetic acid. 
GD = Gresshoff and Doy 
GUS = ß-glucuronidase 
FDA = Fluorescein diacetate 
FEC = Friable Embryogénie Callus 
IAA = [3-indoly]acetic acid 
IBA = 4-[3-indoly]butyric acid 
UTA = International Institute of Tropical Agriculture 
IL = initial leaf expiants 
LM = leaf mesophyll 
LUC = luciferase 
ME = mature embryo 
NAA = a-napthaleneacetic acid 
NPT11 = neomycin phosphotransferase II 
PCV = Pack Cell Volume 
PE = Plating Efficiency 
PEG = poly ethylene glycol 
Pic = Picloram = 4-amino-3,5,6,-trichloropicolinic acid 
PP = protoplast(s) 
PSE = primary somatic embryogenesis 
SH = Schenk and Hildebrandt 
TDZ (thidiazuron) = N-phenyl-Nl(l,2,3 thiadiazolyl)urea 
Zea= Zeatin = 6-[4-hydroxy-3-methylbut-2-enylamino]purine 



CHAPTER 1 

GENERAL INTRODUCTION 



Cassava in Indonesia 

Cassava (Manihot esculenta Crantz) is known as 'ubi kayu' or 'singkong' in Indonesia. It is 

grown particularly in rural areas, either as monocrop or intercrop. It is a low capital crop and 

easy to grow even in the marginal land areas with minimum culture practices. Farmers will 

choose cassava as a main crop if they do not have enough capital or if the physical environment 

is not suitable for cultivating their land with other crops. However, cassava is a crop of ever 

growing importance to Indonesia. It has an important role in the economy of rural areas in 

Indonesia. A large proportion of the cassava production is for the starch-based industry and for 

animal feed, the rest is for fresh human consumption (Damardjati et al., 1991). The use of 

cassava will increase in Indonesia in the future due to several reasons, such as high demand for 

animal feed and industrial purposes. 

A general problem of cassava in Indonesia is its low production. Susceptibility to major pests 

and diseases is a main reason. In wet regions like Western Java and Sumatra the problem of 

Cassava Bacterial Blight is often very serious, while in dry areas red mite infections are a large 

problem (Soenarjo et al., 1987). Two types of superior cassava cultivars are required. For 

industrial purposes a plant is needed with high starch and dry matter content. A non-branching 

growth habit is preferred for mechanized harvest. For fresh human consumption a low cyanide 

content is favourable. Other common agronomical traits such as early harvestability, good root 

shape and broad adaptation to various soils and climatic conditions have also become a major 

concern in several breeding programmes (Damardjati, 1991; Soenarjo et al., 1987). To solve 

the above mentioned problems breeding programmes, at the Central Research Institute for Food 

Crops-Agency for Agricultural Research and Development, in Bogor, Indonesia were initiated. 

Selection and crossing of advanced clones from a germplasm collection is the first possibility to 

achieve these goals. A trend of significant changes of cassava utilization in Asia, due to the 

international market development and domestic demand, will press the breeder to supply the best 

cultivar/clone in a short time. To fulfil this goal, breeding programmes should not only rely on 

conventional techniques, but they also need support from other techniques such as mass clonal 

propagation and genetic modification. In this thesis the main interest was to develop a genetic 



modification system. 

The availability of a genetic modification system in cassava will have tremendous implications 

for increasing the economic value of cassava products. To improve the quality of cassava, 

particularly for the starch industry, genetic transformation is a prerequisite. Modification of 

starch content and starch composition will also be beneficial for food industries, sweeteners in 

drinks and for non-food applications like chemical industry (e.g. production of ethanol and 

fructose), paper-board, textiles, cosmetics and pharmaceutical industry (Visser and Jacobsen, 

1993). In recent years, in Indonesia food factories such as bakeries which utilize wheat flour in 

large quantities have increased. If the ratio of amy lose to amylopectin of cassava starch can be 

manipulated then the wheat flour for bread-making can be partly substituted with cassava flour. 

This will lead to reduced wheat import and to increased income of the cassava farmer in 

Indonesia. 

Requirements for the development of genetic modification techniques 

Three key components are required for developing a reliable genetic modification system. These 

are: (1) the delivery of DNA into plant cells in such a way that cell damage is minimized to 

enhance stable transgene integration into the recipient genome and to permit cell proliferation 

leading to transformation events; (2) the availability of appropriate selectable markers, or 

reporter genes which have no detrimental effects on metabolism and which are suitable to 

multiply and isolate individual transformation events (for review see Wilmink and Dons, 1993); 

(3) the development of a culture system where (transformed) cells are efficiently converted to 

plants (DeBlock, 1993; McElroy and Brettell, 1994; Songstad et al., 1995). Over the past years 

several transfer techniques of DNA to plant cells have been developed such as silicon fibers 

(Kaeppler et al., 1990), intact tissue electroporation (DeKeyser et al., 1990), microinjection 

(DeLaat and Blaas, 1987) and electrophoresis (Griesbach and Hammond, 1993). The most 

commonly used and potentially-applicable ones are Agrobacterium-mediated gene delivery, 

microprojectile/particle bombardment and protoplast electroporation (see Table 1 for some 

examples). 



Table 1. Selected examples of successful transformation systems in some plant species. 

Species 

Carthamus tinctorius 
Carrica papaya 
Cucumis sativus 
Nicotiana tabacum 
Solanum tuberosum 
Vitis vinifera 

Oryza sativa 

Triticum aestivum 
Zea mays 

Expiants 

cotyledons 
somatic embryos 
protoplasts 
protoplasts 
stems 
somatic and 
zygotic embryos 
protoplasts 
immature embryos 
protoplasts 
suspensions 
suspensions 

Methods' 

A.mm 
Pb 
Peg + El 
Peg + El 
A. turn 
Pb 

El 
Pb 
Peg 
El 
Pb 

Outcome' 

st + r 
st + r 
tr + c 
st + r 
st + r 
st + r 

st + r 
st + r 
st + r 
st + r 
st + r 

Reporter gene Reference 

nptll + gus 
nptll + gus 
cat + gus 
npdl + gus 
nptll 
nptll 

gus 
gus 
gus + bar 
gus + bar 
nptll + bar 

Orlikowska et al., 1995 
Fitch et al., 1994 
Wieczorek & Sanfacon, 1995 
Spörlein and Koop, 1991 
Visser étal., 1989 
Scorzaet al., 1995 

Shimamoto et al., 1993 
Christou and Ford, 1995 
Cornejoet al., 1993 
He et al., 1994 
Register et al., 1994 

a: A.tum=A.tumefaciens, El=electroporation, Pb=particle bombardment, Peg=polyethylene 
glycol, b: c=callus, r=regenerated, st=stably transformed, tr=transient. 

Gene transfer techniques 

Agrobacterium-mediated transformation 

The Agrobacterium tumefaciens DNA delivery system is the most commonly used technique. It 

probably relates to the first invention of DNA delivery in plants by this method. Initially it was 

limited to Kalanchoe and Solanaceae, particularly tobacco. Nowadays, the use of Agrobacterium-

mediated transformation has changed dramatically, it is possible to transform a wide range of 

plants with a limitation in monocots (reviewed by Wordragen and Dons, 1992). Although 

cassava is a host for Agrobacterium it has proven to be not highly amenable to it (Table 2). 

Protoplast and electroporation-mediated transformation 

In principle protoplasts are the most ideal expiants for DNA delivery. They can be cultured as 

single cells that produce multicellular colonies from which plants develop. Plants derived from 

protoplasts are generally clonal in origin. This provides a useful tool for any transformation 

system, because it will eliminate chimerism in transgenic plants. The use of protoplasts is, 

however, hampered by the regeneration system which is highly species dependent. For 



transformation, protoplasts can be used in conjunction with PEG to alter the plasma membrane 

which causes reversible permeabilization that enables the DNA to enter the cytoplasm as was 

demonstrated, for example, in Lolium multiform (Potrykus et al., 1985) and Triticum 

monococcum (Lörz et al., 1985). Another technique to increase the permeability of plasma 

membranes and even cell walls to DNA is by electroporation (for review see Jones et al., 1987). 

In this method electrical pulses enable the DNA to enter the cells. Rice was the first crop in 

which fertile transgenic plants resulted from protoplast electroporation (Shimamoto et al., 1989). 

Electroporation, like particle bombardment has the advantage that also intact tissues can be used 

as target cells (Abdul-Baki et al., 1990; Dekeyser et al., 1990; McCabe et al., 1988). This 

reduces the problem associated with regeneration to a minimum and provides the technology 

applicable to a wider range of species. In cassava electroporation of tissue has so far not resulted 

in stably transformed plants (Luong et al., 1995) (Table 2). A real bottle neck is regeneration 

of protoplasts via callus into plants. 

Table 2. Cassava transformation and its results (1985-1995) 

Expiants 

Leaf-discs 
Stem-discs of greenhouse 
various tissues of in vitro 
plants and somatic embryos 
Somatic embryos 

Somatic embryos 
Somatic embryos 

Protoplasts 
Somatic embryos 
Somatic embryos 
Axillary nodal buds 
Somatic embryos 
Embryogénie suspensions 

Methods2 

Pb 

A.tum+Pb 
A. tum 

A.tum+Pb 
A. turn 

El 
A. turn 
A. turn 
Pb 
El 
Pb 

Outcomeb 

tr 

partial trf 
partial trf 

trf 
tr 

tr 
partial trf 
tr 
tr 
tr 
tr 

Reporter gene 

gus 

gus 
gus 

gus+nptll 
gus+nptll+bar 

gus 
gus+bar 
gus 
gus+nptll 
gus 
gus+nptll 

References 

Franche et al., 1991 

Fauquetet al., 1993 
Raemakers et al., 
1993 
Sarriaetal., 1995 
Chavarriaga et 
al.,1993 
Cabrai et al., 1993 
Sarriaetal., 1995 
Arias et al., 1995 
Kommet al., 1995 
Luong et al., 1995 
Schöpke et al., 
1995 

a: A.tum=A.tumefaciens, el=electroporation, pb=particle bombardment; b: trf=transformed no 
information of regeneration; tr=transient; partial trf= transgenic plants are not obtained. 



Microprojectile/particle bombardment-mediated transformation 

The use of particle bombardment or biolistics to deliver foreign DNA provides an alternative 

method in cassava transformation. Particle bombardment is the only procedure capable of 

delivering DNA into cells almost in any tissue. Until a certain level this method will eliminate 

genotype/species dependency and regeneration problems like they occur in protoplast-mediated 

transformation. The first transgenic plant obtained by using this method was in tobacco (Klein 

et al., 1989). Following this successful transformation method, particle bombardment is widely 

used in plants which are less amenable to Agrobacterium infection, particularly monocots. 

Improvement of several DNA delivery devices to accelerate the particle (microprojectile) has 

resulted in the most recent model the Biolistic ™ PDS-1000 (Bio-Rad Laboratories, Richmond, 

Ca). Those devices are available commercially, however the price is relatively high at present. 

Tungsten or gold particles, coated with DNA, are commonly used as microprojectiles to deliver 

DNA into the target tissue (recently reviewed by Songstad et al., 1995). 

Selection and reporter genes used in genetic modifications 

To be able to benefit transformed cells, the gene of interest is coupled to a selectable marker 

gene. This marker gene is necessary to allow selective growth of transformed cells. Transformed 

cells are benefited through selection procedures involving selectable-markers. Until recently they 

were restricted to the expression of genes encoding resistance to antibiotics. Nowadays also 

genes conferring resistance to herbicides are used (Thompson et al., 1987; Gordon-Kamm et al., 

1990). 

A number of antibiotics and herbicides has been used as selective agent in plant transformation. 

In cereals resistance to the herbicide phosphinothricin (PPT) was chosen for the selection of 

transgenic plants (Cao et al., 1990). In Carica papaya (Fitch et al., 1994), Vitis vinifera 

(Nakano et al., 1994; Scorza et al., 1995), maize (Rhodes et al., 1988) and rice (Chen et al., 

1987) the neomycin phosphotransferase (NPT11) gene, which confers resistance to kanamycin and 

related antibiotics (Fraley et al., 1986), was used as a selectable marker. 



Reporter genes are useful tools for the analysis of gene expression after a transformation event. 

The most commonly used reporter genes to analyze transient and stable transformation are the 

genes encoding ß-glucuronidase (GUS)(Janssen and Gardner, 1990), luciferase (Ow et al., 1986) 

and anthocyanin (Ludwig et al. 1990). Every type of reporter gene has its own characteristics. 

GUS is a reporter gene of which the expression is detected by destructing the tissue. The other 

two reporter genes can be visualized without destroying the tissue. 

Regeneration of cassava 

True seeds of cassava have hardly been used for plant propagation by farmers because of its high 

level of heterogeneity which is a result of genetic segregation. Conventional in vitro culture of 

cassava is almost always accomplished by vegetative propagation of stem and bud cuttings. This 

is categorized as non-adventitious shoot regeneration where existing meristems are allowed to 

regenerate into plants. 

For genetic modification techniques in cassava the availability of an adventitious regeneration 

system (somatic embryogenesis, organogenesis) would be of great use. The first successful 

attempts of organogenesis in cassava were reported by Tilquin (1979) and Shahin and Shepard 

(1980). However, they were not repeatable by others. Plant regeneration by somatic 

embryogenesis was first reported by Stamp and Henshaw (1982) and this has been repeated for 

many cultivars by others as well (Raemakers et al., 1993a; Mathews et al., 1993; Szabados et 

al., 1987; see also Table 2). Organogenesis is the process by which cells and tissues are forced 

to undergo changes which lead to the production of unipolar structures, namely shoots or roots, 

where the vascular system is often connected to the parental tissue (Thorpe, 1990). In contrast 

somatic embryogenesis leads to the production of bipolar structures containing a root and shoot 

axis and they develop completely separated from the maternal tissue (Emons, 1994). Somatic 

embryogenesis may start spontaneously from one somatic cell (Hacius, 1978; Sharp et al., 1980; 

Wann, 1988), although also a multicellular origin has been described (for review see Raemakers 

etal., 1995). 



Somatic embryogenesis 

Somatic embryogenesis is the development of embryos from somatic cells via a systematic series 

of characteristic morphological stages. The structure of somatic embryos resembles that of 

zygotic embryos, (see for reviews: Ammirato, 1983; Zimmerman, 1993 and Raemakers et al., 

1995). Somatic embryogenesis proceeds either through direct or indirect induction of 

regeneration (Carman, 1990; Sharp et al., 1980; Wann, 1988; William and Maheswaran, 1986). 

In direct somatic embryogenesis, the embryos form without an intervening phase of callus 

growth, while in indirect embryogenesis a callus phase precedes the formation of embryos 

(Ammirato, 1983). The somatic cells that give rise to embryogenesis are called embryogénie 

cells. In principle every living cell has totipotency though only a limited number of cells from 

expiants, regenerating protoplasts, or suspensions eventually give structures that exhibit 

embryogenesis. The frequency of cells that actually give rise to somatic embryos in carrot 

suspension cultures was not more than 2 % (De Jong et al., 1993). The expression of cells 

competent to regeneration, rely on the tissue culture environment, such as hormone balance, 

sugars, amino acids, salt concentrations and physical environment (William and Maheswaran 

1986; Nuti Ronchi, 1981; Vasil and Vasil, 1986; Franklin and Dixon, 1994). The methods to 

find the appropriate conditions for somatic embryogenesis are still the main concern in 

regeneration research. 

In the first report on successful regeneration of cassava plants by somatic embryogenesis a two-

step procedure was used (Stamp and Henshaw, 1982; Stamp and Henshaw, 1987). In the first 

step (induction medium of embryos) leaves or zygotic embryos were cultured on medium with 

a high concentration of 2,4D enabling direct embryogenesis. In step 2 a low concentration of 

2,4D was needed for further development of the embryo. Recent improvements of somatic 

embryogenesis included the use of different types of auxins like Dicamba and Picloram 

(Sudarmonowati and Henshaw, 1993), the development of cyclic somatic embryogenesis 

(Raemakers et al., 1993b) improved methods for germination of somatic embryos (Mathews et 

al., 1993) and suspension culture (Taylor et al., 1995). Especially the last mentioned system has 

provided possibilities for the development of a transformation protocol in cassava. 



Protoplast culture 

Regenerated plants from protoplasts have been reported in many important crops. In the 80's 

rice was an example of plant regeneration from protoplasts (Abdullah et al., 1986). Nowadays 

procedures have been developed for the regeneration of plants from isolated protoplasts of 

potato, wheat, tomato, soybean, cabbage, chicory, lettuce, butterbean, winged bean, cucumber, 

pea, orchids, citrus, kiwifruit, strawberry, cotton, and some tree species (for reviews see Bajaj, 

1989a; 1989b; 1993a; 1993b). 

The use of protoplasts in plant transformation requires at least three stages: protoplast isolation, 

the transfer of genes into the protoplasts and regeneration of transformed protoplasts into 

functional plants (Gallun et al., 1976). Theoretically protoplasts can be isolated almost from any 

part of the plant. However, the possibility to isolate protoplasts capable of sustained division and 

plant regeneration is still restricted to a limited number of plant species and expiant sources 

(Blackhall et al., 1994). Leaf mesophyll is frequently employed as source material for protoplast 

isolation. Other expiants used for protoplast isolation are hypocotyl, stem, petiole, cotyledon, 

florets, callus, suspensions and somatic embryos (Blackhall et al., 1994; Atree et al., 1989). 

However, sustained division leading to plant regeneration is not routine for most of the cell type 

sources from protoplasts of many monocotyledonous species. For that reason, embryogénie cell 

suspension cultures provide the most commonly used sources for protoplasts in cereals. 

Protocols for regeneration of transgenic plants from protoplasts of rice are available (Toriyami, 

et al., 1988; Shimamoto et al., 1989; Davey et al., 1991) and research in this direction for other 

crops is still on going. These studies mainly are focused on practical applications, involving 

protoplasts of a wide range of species. Especially for plants which are not amenable to 

Agrobacterium-medmted transformation, protoplast transformation has proven to be a valuable 

tool to obtain stable transformants (Simpson and Estrella, 1989; De Block, 1993). From these 

studies it has become clear that many variable factors play a role in the regeneration of stably 

transformed plants when using protoplasts in combination with direct gene transfer (Schweiger 

et al., 1993; Lurquin, 1989, De Block, 1993; Fowke and Cutler, 1994). 



Generally, three principal factors which govern the regeneration competence of protoplasts are 

the plant genotype, ontogenetic state of the expiant source and the cultural environment. The 

latter includes medium composition and growth conditions (Blackhall et al., 1994). 

Friable embryogénie callus 

The most recent regeneration system of cassava is by the use of friable embryogénie callus. By 

culturing somatic embryogénie tissue on Gresshoff and Doy (1972) basal medium instead of 

Murashige and Skoog basal medium (1962) friable embryogénie callus could be obtained (Taylor 

et al., 1995). For enhanced proliferation, the friable embryogénie callus was cultured in liquid 

Schenk and Hildebrandt (1972) medium as a kind of embryogénie suspension. Morphologically, 

friable embryogénie callus is composed of globular embryoids varying in size from 50-100 /tm 

in diameter. The origin of the globular embryoids has been confirmed from one or a few cells 

at the surface of the older units. Maturation of friable embryogénie callus into normal somatic 

embryos has been accomplished although the rate of maturation of embryos is very low (Taylor 

et al., 1995). High levels of transient expression of the GUS gene were established using friable 

embryogénie callus as the target tissue for particle bombardment (Schöpke et al. 1995). 

From the studies described so far, it is obvious that only appropriate regeneration systems will 

be amenable to transformation. Therefore, the choice of a regeneration system holds an 

important role in establishing the transformation of cassava. So far the existing regeneration 

systems have been combined with all the available methods of transformation (see Table 2), but 

without success. The establishment of a regeneration system which can be used for transforma

tion is a very important task to be able to improve specific traits in cassava. 

Outline of the thesis 

In this thesis several strategies were studied to find a method for transformation of cassava. In 

Chapter 2, the effect of several auxins and expiant densities on cyclic somatic embryogenesis 

is described. Improvements of somatic embryogenesis were based on the comparison with 

existing methods. The relevant aspects of somatic embryogenesis for cassava transformation are 

10 



also discussed in Chapter 2. In Chapter 3 the use of cyclic embryos as a source of protoplasts 

is described. The possibilities and limitations of protoplast culture as an alternative tool for gene 

transformation are also discussed. The friable embryogénie callus (FEC) system is introduced 

in Chapter 4 and it is shown that protoplasts of this tissue regenerate into plants. By combining 

the protoplast regeneration system with transformation the possibility to obtain stably 

transformed cassava plants is discussed in this Chapter. In Chapter 5 the friable embryogénie 

callus was successfully used as target tissue for particle bombardment. The transformed nature 

of the plants was confirmed by Southern blot analysis. In Chapter 6 germination of embryos 

induced by the new protocol of somatic embryogenesis described in Chapter 2, is investigated 

using the desiccation method from Mathews et al.(1993). This improved germination protocol 

is of importance for the germination of transgenic embryos. In Chapter 7 a general discussion 

is given. 

11 
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CHAPTER 2 

COMPARISON OF NAA AND 2,4-D INDUCED SOMATIC EMBRYOGENESIS IN 
CASSAVA 

E. Sofiari, E. Kanju, C.J.J.M. Raemakers, E. Jacobsen, R.G.F. Visser. 

ABSTRACT 

The two auxins NAA and 2,4-D were compared in their ability to induce somatic embryogenesis 
in cassava. In 6 genotypes primary somatic embryos were induced from leaf expiants cultured 
on 2,4-D supplemented medium. NAA was not effective for this process. Both NAA and 2,4-D 
were capable of inducing secondary or cyclic somatic embryogenesis. In all 6 genotypes a higher 
number of somatic embryos was formed in NAA than in 2,4-D containing medium. Further
more, the time period to become mature was shorter in NAA than in 2,4-D. In NAA the highest 
number of embryos was formed if the embryos were subcultured every 15 days, in the procedure 
with 2,4-D this was 20 days. High density culture in NAA did not result into the formation of 
embryos, whereas in 2,4-D it leads to the formation of globular embryos. In 2,4-D the newly 
induced embryos were connected vertically to the expiant and in most cases they did not possess 
a closed root pole. In NAA the embryos were connected horizontally to the expiant and the 
embryos possessed a closed root pole. In some genotypes, repeated subculture of embryos in 
NAA, resulted in a gradual shift from somatic embryogenesis to adventitious root formation. 
This shift could be reversed by subculture of the material in 2,4-D. 
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INTRODUCTION 

Cassava (Manihot esculenta Crantz) is after rice, sugar cane and maize the fourth most important 

crop grown in the tropical areas as a dietary source of carbohydrates for human consumption, 

animal feed and starch industry. Cassava is cheaper in economic terms than many other crops 

(Cock, 1985). Cassava has further as advantage that it can be grown in marginal areas where 

there are major constraints for the production of other root crops and grains (Byrne, 1984; 

Lynam, 1993). Drawbacks for the further utilization of cassava are the low protein content of 

the roots, the presence of toxic levels of cyanogenic glucosides in the roots and rapid 

deterioration of roots after harvest. Because cassava is propagated by cuttings derived from 

stems of plants in the field, diseases and pests are easily transmitted. Large scale multiplication 

of healthy genotypes will reduce the yield losses caused by diseases and pests. Genetic modifica

tion could be used in those cases where there is no genetic variation available for a trait in the 

gene pool of cassava by introducing genes with the desired trait from other species. 

For these applications regeneration methods should be available. In cassava the only routine 

method of regeneration is somatic embryogenesis. In cassava, somatic embryogenesis starts with 

the induction of primary embryos from zygotic embryos (Stamp and Henshaw, 1982) or leaves 

(Stamp and Henshaw, 1987a, Szabados et al., 1987, Mathews at al., 1993, Raemakers et al., 

1993a). The primary somatic embryos can be used as source of expiants to initiate a new cycle 

of embryogenesis (Stamp and Henshaw, 1987b; Raemakers et al. 1993b,c, Mathews et al., 

1993). This phenomenon has been described as secondary somatic embryogenesis. It is 

associated with loss of integrated group control of organized cells. Some cells act independently, 

break away from group control and initiate a new cycle of somatic embryos (Williams and 

Maheswaran, 1986). Cyclic somatic embryogenesis is attractive for mass production of clonal 

plantlets since the multiplication rates generally exceeds those attainable with other tissue culture 

regeneration systems, like shoot micropropagation. In Junglans regia (McGranahan et al. 1988) 

and in Glycine max (McCabe et al., 1988) secondary somatic embryogenesis has been used 

successfully to obtain transformed plants. 2,4-D is the most commonly used auxin for induction 

of primary and secondary somatic embryogenesis in cassava. The characteristics of somatic 

embryogenesis initiated by 2,4-D have several disadvantages for use in either mass propagation 
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or genetic modification. For use in mass propagation it is important that the system of 

embryogenesis should be as simple as possible and the embryos should mature readily and 

develop into plants. Optimal for plant transformation would be a single epidermal cell origin. 

In cassava, the embryos originate from groups of cells. This group consists of either mesophyllic 

cells only or mesophyllic plus epidermal cells (Stamp, 1987; Raemakers et al., 1996). In Glycine 

max it was shown that the origin of embryos induced by NAA differed from embryos induced 

by 2,4-D (Hartweck et al., 1988). In Cucurbita pepo NAA induced embryos matured more 

easily than 2,4-D induced embryos (Jelaska et al., 1985). In this report the effect of the auxin 

NAA on somatic embryogenesis is compared with 2,4-D in several cassava genotypes. 

MATERIAL AND METHODS 

Plant Material 

The cultivars MCol.22 and MCol.1505 (CIAT, Cali, Columbia), TMS90853 (UTA, Nigeria), 

Gading, Adira 1 and Adira 4 (kindly provided by Dr. A. Dimyati, AARD-Indonesia) were used 

in this study. Nodal in vitro cuttings (2-3 cm long) were cultured on basal medium (BM) 

supplemented with 8 g/1 Daichin agar. BM consisted of Murashige and Skoog salts and vitamins 

(1962), and 20 g/1 sucrose. The pH was adjusted to 5.7 before autoclaving. 

The temperature in the growth chamber was 30° C, the photoperiod 12 hours and the irradiance 

40 jiimolV1. 

Influence of auxins on primary somatic embryogenesis 

After 20 days of growth young leaf lobes (0.5-1.0 mm) were isolated from the sprouted nodal 

expiants and cultured in light on solid BM supplemented with 1-8 mg/1 2,4-D or 0.1-40 mg/1 

NAA (step 1). After 20 days the expiants were transferred to BM supplemented with 0.1 mg/1 

BAP (step 2). Forty leaf expiants were cultured per treatment. Embryo induction and 

maturation was evaluated after respectively 15 and 40 days. 
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Influence of auxins on secondary somatic embryogenesis 

A new cycle of somatic embryogenesis was started by culturing 0.2 g. of chopped mature 

embryos (0.25-0.50 mm2) in 300 ml flasks with 75 ml of BM supplemented with 1-8 mg/12,4-D 

or 0.1-40 mg/1 NAA. After 20 days the 2,4-D cultured expiants were transferred to BM 

supplemented with 0.1 mg/1 BAP. A new cycle of embryogenesis was started after 20 (NAA) 

or 30 (2,4-D) days. The jars were cultured in light on an orbital shaker (LAB-Line Instruments 

Inc. Model 3519) at 120 rpm. The experiments were set up as a factorial, completely 

randomized design with four replications. The number of mature embryos was counted and the 

presence and morphology of roots was recorded. A mature embryo was defined as an embryo 

with fully developed, green cotyledons with a clear hypocotyl. 

Influence of subculture duration on secondary somatic embryogenesis 

The optimal concentration of NAA and 2,4-D respectively 10 mg/1 and 8 mg/1 (see 2.3) was 

chosen to determine the influence of the length of an embryo cycle on the number of embryos 

produced. Ten to 30 days after the start of a new cycle of embryogenesis, embryos of Adira 4 

were chopped again and 0.2 g was subcultured in the same medium. The experiment was set up 

as a factorial, completely randomized design with three replications. The number of mature 

embryos was counted. 

Influence of expiant density on secondary somatic embryogenesis 

Somatic embryos of Adira 4, subcultured every 15 days in liquid BM supplemented with 10 mg/1 

NAA or every 20 days in BM supplemented with 8 mg/1 2,4-D, were used to study the effect 

of expiant density. A new cycle of embryogenesis was started by culturing 0.1 to 1.5 g of chop

ped embryos of Adira 4 in 200 ml flasks with 60 ml of BM supplemented with 10 mg/1 NAA 

or 8 mg/1 2,4-D. The experiment was set up as a factorial, completely randomized design with 

four replications. The number of mature embryos per flask (ME) was counted. The number of 

ME per flask divided by the density (g/flask) gives the number of ME per gram (ME/g). The 

total biomass was recorded, divided into mature embryos, immature embryos, and non-

embryogenic callus. Immature embryos were defined as embryos from globular to the torpedo-

shaped stage. 
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Histology of secondary somatic embryogenesis 

Mature embryos were slightly fragmented and cultured on solid BM supplemented with 10 mg/1 

NAA. After 14 days of culture expiants were fixed in glutaraldehyde (5%) for at least 2 hours, 

before dehydrating in a series of alcohol solutions (50, 70, 90 and 100 %) for 30 minutes. After 

dehydration clearing of the expiants was done by keeping them in solutions with different 

concentrations of infiltration solution and absolute alcohol (3:1, 1:1, 1:3, 1:0, and 1:0) for 2 

hours. The expiants were then embedded in Technovit 7100 on blocks and after hardening secti

ons of 6 ßm in width were made using a Reichart-Jung 2050 Supercut microtome. Sections were 

mounted on glass slides and stained with Toluidine Blue. Photographs were taken with a Carl 

Zeiss bright field Axiophot photomicroscope (model number 7082). 

RESULTS 

Influence of auxin type on primary embryogenesis 

Leaf expiants cultured on NAA or 2,4-D formed callus which appeared after 4 days of culture. 

On NAA the callus was soft. Somatic embryos or embryo-like structures were not formed. 

Instead, all expiants formed abundantly adventitious roots. On 2,4-D two types of callus were 

observed: soft and compact. The soft callus never produced embryos or roots. Depending on the 

genotype the compact callus had a yellowish or white colour. Parts of this compact callus was 

organized in embryo-like structures or globular embryos. Genotypic differences were not 

apparent in the formation of compact callus. After transfer to step 2 medium mature embryos 

were formed in all genotypes (Table 1). 

Mature embryos appeared after 2-3 weeks, except in Adira 1 where it took 8 weeks. The highest 

number of mature embryos was found on a medium supplemented with 8 mg/12,4-D. Genotypic 

differences were present. Adira 1 gave the lowest numbers of mature embryos and MCol.22 the 

highest number (Table 1). On a medium supplemented with 8 mg/1 2,4-D this was respectively 

0.2 mature embryos per initial leaf explant (ME/IL) and 4.8 ME/IL. 
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Table 1. The effect of 2,4-D on the formation of mature somatic embryos per cultured leaf expiant (40 
leaf expiants were cultured per treatment). 

2,4-D 
(mg/1) 

1 
2 
4 
8 

TMS90853 

_ 
-
-
0.6 

Adira 1 

0.0 
0.1 
0.1 
0.2 

Adira 4 

0.1 a 
0.2 a 
0.5 ab 
1.5 b 

MCol.1505 

0.1 a 
0.2 a 
0.7 ab 
1.5 b 

MCol.22 

0.1 a 
0.2 a 
2.0 b 
4.8 c 

Gading 

0.4 a 
0.2 a 
0.4 a 
1.7 a 

Note: mean value followed by the same letter in a column denotes no significant difference by LSD 
(0.05) test. 

Influence of auxins on secondary somatic embryogenesis 

Time to become mature and number of mature embryos formed 

In all tested genotypes NAA and 2,4-D induces secondary somatic embryogenesis (Table 2). In 

10 mg/1 NAA torpedo shaped embryos were already visible after 6 days of culture, and after 14 

days most of the embryos were mature. The mean weight of a mature embryo varied between 

11 and 92 mg. In 2,4-D the first torpedo shaped embryos were visible after 20 days. For further 

maturation these embryos were cultured for another 10 days in liquid step 2 medium. After that 

maturation phase the mean fresh weight per embryo varied between 5 mg and 26 mg. Because 

of this difference in the development NAA and 2,4-D induced embryos were subcultured for a 

new cycle of embryogenesis, respectively, after 20 and 30 days. In this way embryos of all 

tested genotypes were maintained for three months on 10 mg/1 NAA. In Table 2 the results of 

a population of embryos subcultured for at least three months in NAA is given and compared 

with 2,4-D. Both auxins at a concentration of 0.1 mg/1 did not result in mature embryos (data 

not shown). At a concentration of 1 mg/1 2,4-D only a few were formed (data not shown), 

whereas with 1 mg/1 NAA there was a significant increase in the number of embryos produced. 

The highest number of embryos was formed with 8 mg/1 2,4-D and 10 mg/1 NAA. In all 

genotypes more embryos were formed in NAA than in 2,4-D. Higher concentrations of both 

auxins reduced significantly the number of embryos produced. 
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Root Formation 

NAA induced embryos formed roots after several subcultures in NAA. 2,4-D induced embryos 

never formed roots, even not after 2 years of continuous subculture. The formation of roots was 

dependent on the genotype and the NAA concentration. TMS90853 and Adira 1 had the highest 

percentage root formation. In MCol.1505 it was observed in maximum 18% of the mature 

embryos. In Adira 4 and MCol.22 root formation never occurred and in Gading it was observed 

occasionally. At 4 and 10 mg/1 NAA the highest percentages of embryos had formed roots. It 

declined with increasing concentrations of NAA. In first instance the roots formed were clearly 

tap roots and it was not correlated with a decrease in the number of mature embryos. After 

continued subculture of TMS90853 and Adira 1 embryos in NAA the nature of the roots shifted 

Table 2. Effect of NAA and 2,4D on the number of mature embryos and the percentage of embryos with 
roots (between brackets). 

Concen
trât- — 

Genotype 

ion (mg/l) TMS90853 Adira 1 Adira4 MCol.22 MCol.1505 Gading 

NAA: 
1 
4 
10 
20 
30 
40 
2,4-D: 
4 
8 
32 

59b(42d) 
213c(70e) 
360d(23c) 
64b(13b) 
17a(0a) 
9a(0a) 

100b(0a) 
162c(0a) 
14a(0a) 

53abc(13a) 
123d(47b) 
292e(35b) 
83bc(5a) 
26ab(0a) 
8a(0a) 

74a(0) 
123b(0) 
22a(0) 

45a(0) 
126c(0) 
323d(0) 
89b(0) 
60a(0) 
13a(0) 

38a(0) 
119b(0) 
85b(0) 

34a(0) 
108ab(0) 
268c(0) 
143b(0) 
44a(0) 
17a(0) 

99b(0) 
187c(0) 
28a(0) 

22a(6ab) 
74b(13b) 
376d(18bc) 
91b(2a) 
38ab(Oa) 
5a(0a) 

108b(0) 
148c(0) 
13a(0) 

327(5) 

151(0) 

Mean value followed by the same letter in a column (for auxins separately) denotes no significant 
difference by LSD (0.05) test; 4 replications, per replication 0.20 gam/flask. 

to adventitious roots. This phenomenon was not observed in the other genotypes. The 

adventitious roots grew long and slender, while the taproots were thick and short. The adventi

tious roots developed from callus and were associated with a decrease in the number of embryos 

formed. Root formation was not dependent on the developmental stage at which embryos were 

used to start a new cycle of embryogenesis. Rooted NAA cultures could be made embryogénie 
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again by subculture in 2,4-D. Already after one cycle in 2,4-D only embryos without roots were 

formed. If that one cycle in 2,4-D was followed by subculture in NAA than in the next 1 to 2 

cycles embryos without roots were formed followed by embryos with taproots which after 

continuous subculture shifted to adventitious roots. 

Influence of time of subculture 

The amount of embryos produced was dependent on the subculture regime. The main 

characteristics are in all genotypes the same and in Table 3 these are given with Adira 4 as 

example. 

Table 3: Influence of subculture duration on formation of the number of new embryos. 

Genotype 

Adira 4 

Auxin 

10 mg/1 NAA 
8 mg/1 2,4-D 

10 

830 b 
65 b 

duration 
15 

801 b 
30 a 

in days 
20 

788 b 
120 c 

30 

207 a 
79 b 

Mean value followed by the same letter in one line denotes no significant difference by LSD (0.05) test, 
4 replications, per replication 0.20 gam/flask. 

A shorter subculture duration resulted in starting material which consisted of less developed 

embryos. Embryos cultured in 2,4-D for 10 days were globular shaped and those cultured for 

30 days were mature. Embryos cultured for 10 days in NAA were almost mature with light 

green cotyledons and if cultured for 30 days the embryos were mature with darkgreen 

cotyledons. The previously used subculture regime of 20 days for NAA was not optimal. In 

NAA the highest number of embryos was produced if embryos were subcultured for 10 days. 

For 2,4-D the optimal subculture duration was 20 days. In 2,4-D a relatively large fraction of 

embryos were single embryos whereas in NAA almost all embryos were multiple embryo 

clusters. The above described characteristics of different subculture regimes in NAA and 2,4-D 

were also observed in the other genotypes. In Adira 4 all tested subculture durations gave a 

higher yield of mature embryos in NAA than in 2,4-D. In other genotypes NAA gave a higher 

yield from 10-20 days whereas with 30 days 2,4-D outyielded NAA (results not shown). In the 
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following experiments embryos in NAA were subcultured after 15 days and in 2,4-D after 20 

days. 

The effect of expiant density 

The amount of embryos used to start a new cycle of somatic embryogenesis had different effects 

in NAA and 2,4-D. These effects are shown using Adira 4 as example. In Figs. 1A and B the 

number of mature embryos (ME) formed is given. It is expressed as number of ME per flask 

(ME/flask). The number of ME/flask divided by the density (g/flask) gives the number of ME 

per gram (ME/g). With NAA the number of ME/flask increases up to a density of 0.8 g/flask 

with 2489 ME (Fig. 1 A). Than it decreases to 207 ME/flask at a density of 1.5 g/flask. For 2,4-

D the optimal density is 0.2 g/flask with 186 ME. At a density higher than 0.8 g/flask no mature 

embryos were formed. If converted to ME/g than in both NAA (Fig. 1A) and 2,4D (Fig. IB) 

containing medium the highest number of ME/g is formed at a density of 0.1 g/flask. In Figs. 

1C and D the total biomass produced per flask is given. With NAA containing medium a density 

of 0.1 g/flask produced 11.1 g and 89% of the biomass were mature embryos, 5% immature 

embryos and 6% callus (Fig. 1C). In NAA the amount of biomass production was relatively 

constant over a density of 0.1 to 1.5 g/flask. At a density of 1.5 g/flask only 14% of the 

embryos were mature embryos. At this density most of the biomass (58%) was callus. In 2,4-D 

there is a significant increase in biomass with increasing densities (Fig. ID). Furthermore, there 

is a shift from mature embryos at the lower densities to immature embryos at the higher 

densities. The percentage callus is relatively constant. The mass of immature embryos consisted 

almost completely of globular embryos. Small amounts of these masses were cultured on solid 

step 2 medium for maturation. It was found that at a density of 1.5 g NAA has the potential to 

produce 3000 mature embryos. 

Histology of NAA induced embryos. 

NAA induced embryos differed from 2,4-D induced embryos in the way they were attached to 

the expiant. In 2,4-D, the shoot pole points vertically upwards and the root pole was not visible 

since it was embedded in expiant tissue (Raemakers et al., 1996). In NAA the shoot-root pole 

axis of the embryo was almost horizontal to the expiant. The broader side of the embryo was 
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the shoot pole and the more narrow the root pole. In Fig. 3A longitudinal and in Figs 3B and 

3C transversal sections are shown. The transversal sections are from the same two embryos: Fig. 

3B is from near the shoot pole and Fig 3C from near the root pole. The embryos seem to lie on 

the epidermis. Near the shoot and root pole the embryo was connected to the expiant by a thin 

layer of cells. 
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Figure 1: Influence of explant density in 10 mg/1 NAA (A) and 8 mg/1 2,4-D (B) on the 
production of mature embryos and on the fresh weight production in 10 mg/1 NAA (C) and 8 
mg/1 2,4-D (D). 
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Figure 3. Longitudinal (A) and transverse sections (B, C) of NAA induced embryos (after 15 days of culture). 
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DISCUSSION 

Somatic embryogenesis offers promises for rapid multiplication and plant transformation. For 

both applications somatic embryogenesis starts with the induction of primary embryos. In 

cassava NAA does not initiate primary somatic embryogenesis. 2,4-D has that capability and all 

cassava genotypes tested responded with the formation of mature embryos. Also in Bambusa 

oldhamii 2,4-D has the capacity to induce primary embryogenesis and NAA not. Chang, 1991). 

However, in Pisum sativum (Ozcan et al., 1993), and Arachis hypogeae (Ozias-Akins, 1989) 

NAA is more efficient than 2,4-D in inducing primary somatic embryogenesis. All cassava 

genotypes formed secondary somatic embryos in a much higher frequency than primary 

embryos. The usefulness of secondary somatic embryogenesis for plant multiplication is depen

dent on several variables. One of them is the time period for embryos to become mature and the 

number of embryos produced. In NAA an embryogénie cycle leading to mature embryos is 

finished in 14 days compared to 30 days in 2,4-D. Also in Cucurbita pepo (Jelaska, 1980) it was 

found that NAA induced embryos maturated more easily than 2,4-D induced embryos. In all 

genotypes NAA was initially superior for a high production of mature embryos. However, after 

several cycles in NAA there is, in some genotypes, a shift from embryogenesis to adventitious 

rooting. This shift was also observed in some genotypes of Pisum sativum (Ozcan et al., 1993) 

and Glycine max (Mante et al., 1989). In other genotypes of Pisum sativum (Ozcan et al., 1993) 

and Glycine max (Lazzeri et al., 1987) and in Cucurbita pepo (Jelaska, 1980) NAA induced 

embryos have an higher capacity to germinate into normal plants than 2,4-D induced embryos. 

Also in cassava germination of 2,4-D induced embryos is poor and a slow process. In Chapter 

6 the germination ability of NAA induced embryos will be compared with 2,4-D induced 

embryos. 

For transformation it is beneficial to have regeneration of single epidermal cells. In 2,4-D the 

embryos are formed from groups of cells which originate from internal tissue (Stamp, 1986; 

Raemakers et al., 1995). Bombardment of 2,4-D induced embryos led to the recovery of 

chimeric embryos. The chimeric sector was restricted to the epidermis with as a result that these 
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transformed cells could not be transferred to a new cycle of embryos (results not shown), 

because the new embryos initiated from deeper cell layers. The NAA induced embryos differed 

in the way they were attached to the expiant. This suggests a different origin. Unfortunately, the 

histological data of NAA induced embryos gave no evidence for single epidermal cell origin. 

Bombardment of NAA induced embryos resulted in transient GUS activity of the same level as 

2,4-D induced embryos and also with NAA medium the transformed sector of an embryo could 

not be increased (data not shown). Two other observations might be of importance with respect 

to transformation. One is the fact that in 2,4-D also globular embryos could be multiplied and 

the other is that high density culture in 2,4-D leads to the production of large numbers of 

globular embryos. Maybe a further reduction of the subculture period, combined with high 

density culture will result in more friable cultures. In such cultures it is more likely that either 

the embryos originate from single epidermal cells or that they originate from multiple cells but 

that the epidermis divides anticlinal to contribute to deeper cell layers. Bombardment of such 

cultures might lead to chimeric transformed embryos of which the transformed sector also 

encompasses deeper cell layers. 
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CHAPTER 3 

THE INVESTIGATION OF SOMATIC EMBRYOS AND LEAVES AS SOURCES FOR 

PROTOPLAST CULTURE IN CASSAVA 

E. Sofiari, J.E.M. Bergervoet, C.J.J.M. Raemakers, E.Jacobsen, R.G.F. Visser. 

ABSTRACT 

While regeneration of cassava from protoplasts is still very difficult, it remains an important 
possibility for transformation. Therefore more basic knowledge about protoplast culture in 
cassava is needed. A mixture of the cell wall degrading enzymes cellulase RS Onozuka, 
macerozyme and pectolyase gave the highest yield of protoplasts irrespective of the tissue 
source. Protoplasts isolated from somatic embryos and leaf mesophyll from genotypes Adira 1, 
Adira 4, Gading, TMS90853, Line 11, MCol.22 and MCol.1505 were cultured in different 
media. A density of 2 x 105 protoplasts/ml plated in agarose drops gave the highest plating 
efficiency. Cell divisions and green calli were easily obtained from protoplasts isolated of both 
tissue sources. Root formation occasionally occurred but shoots were not observed. 
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INTRODUCTION 

Cassava, Manihot esculenta Crantz, belongs to the family Euphorbiaceae. It is grown in a broad 

range of soils and climatic conditions in the tropics. Cassava is originally a crop of the tropical 

lowlands, but in the Andes of South America and the highlands of East Africa it is cultivated 

at 2000 meter or more above sea level, where the average temperature may be as low as 17°C 

(Jennings and Hershey, 1985). Because of its ability to survive under many types of stress such 

as soil acidity, drought, low soil phosphorus and low ambient temperature cassava has become 

an important crop in the tropical areas. Compared to other tuber crops and cereals, cassava is 

very efficient in producing carbohydrates (Cock, 1985). Since conventional breeding of cassava 

is hampered due to its heterozygosity, low fertility, poor seed set and low seed germination 

(Jennings and Hershey, 1985) biotechnological methods such as somatic hybridization and 

genetic transformation via protoplasts might play an additional role in its future improvement. 

Because protoplasts are single cells without cell walls, they are excellent recipients for 

macromolecules such as DNA (Shimamoto et al., 1989). Therefore, intensive studies to 

regenerate plants from protoplasts have been performed in many plant species. This resulted in 

plant regeneration from protoplasts in different species like Solanum tuberosum (Shepard et al., 

1977) and Mentha piperita (Sato et al., 1993). However, Manihot esculenta seems to be still 

recalcitrant for protoplast regeneration. In literature there is only one successful report on 

protoplast regeneration (Shahin and Shepard, 1980). Until now, no one has been able to repeat 

this observation despite a number of different unpublished and unsuccessful experiments. Young 

leaves of cassava were successfully used as starting material for inducing somatic embryos ( 

Stamp and Henshaw, 1987, Szabados et al., 1987; Mathews at al., 1993, Raemakers, 1993). 

Because of the stagnation of protoplast regeneration in cassava, alternative sources of protoplasts 

should be investigated other than young leaf material. Somatic embryogenesis in cassava is a 

reliable system, so that it is worthwhile to be tested as an alternative source of protoplasts. 

Somatic embryos apparently originate from embryogénie groups of cells within adaxial leaf 

expiants (Stamp, 1987). In these somatic embryos, the place of embryogénie cells was suggested 
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to be present at a distance of two to five cell layers from the epidermis (Raemakers et al., 1995). 

In sorghum (Wernicke and Brettell, 1980), pea (Mroginski and Kartha, 1981), and leek 

(Buiteveld et al., 1993) it was indicated that the competence of such cells declined as they 

differentiated into organized tissues. It is also assumed that in cassava the embryogénie cells in 

somatic embryos are relatively more frequently competent than in young leaf lobes. 

Genotype dependence for the ability to produce protoplasts has been reported in many crops 

including cassava, showing that some genotypes are more amenable, whereas others are more 

recalcitrant (Shepard et al., 1980; Radke and Grun, 1986). In other recalcitrant species such as 

Cqffea canephora (Schöpke et al., (1987), Citrus mitis (Sim et al., 1988), Picea glauca (Attree 

et al., 1989), and Oryza sativa (Shimamoto et al., 1989) it was shown that only protoplasts of 

embryogénie tissue have the capacity to develop into plants. In this study somatic embryos and 

leaf mesophyll of several genotypes were investigated as a protoplast source with the aim to 

develop a protoplast based regeneration system. 

MATERIALS AND METHODS 

Plant material and growth conditions 

The cultivars used were Adira 1, Adira 4 and Gading from Indonesia (kindly provided by Dr. 

A. Dimyati, Indonesia (AARD), MCol.22 and MCol. 1505 from Columbia (CIAT); the genotype 

TMS90853 from Nigeria (UTA) and Line 11 from Zimbabwe. First expanded leaves together 

with the apical bud from in vitro grown shoots and mature somatic embryos (green cotyledons 

and a distinct hypocotyl) were used for the isolation of protoplasts. Shoots were maintained by 

regular subculture of nodal cuttings on a medium supplemented with Murashige and Skoog 

(1962) salts and vitamins (MS), 7 g/1 Daichin agar and 20 g/1 sucrose. Somatic embryos were 

induced from leaf expiants and maintained by cyclic somatic embryogenesis as described by 

Raemakers et al. (1993). Shoots and somatic embryos were incubated in a growth chamber with 

a day/night temperature of 30/28 ° C, a daylength of 12 hours and a light intensity of 40 /imolm" 
2s ' . Protoplasts were cultured in the same environment unless stated otherwise. 
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Isolation of protoplasts 

Prior to tissue plasmolysis and cell wall digestion, the plant materials were stored for 6 hours 

in the dark, at 4° C. Then, 2 g of harvested leaves was sliced into small strips ( 1 - 2 mm) and 

placed in Petri dishes (0 9 cm) containing 10 ml of cell wall digestion solution. Cell wall 

digestion solution consisted of a mixture of enzymes (Cellulase RS Onozuka 10 g/1, Macerozyme 

200 mg/1, Pectolyase 10 mg/1); growth regulators (NAA 1 mg/1, 2,4-D 1 mg/1, Zeatin 1 mg/1); 

major salts ( 368 mg/1 CaCl2; 34 mg/1 KH2P04; 740 mg/KN03; 492 mg/1 MgSo4.7H20); minor 

salts (19.2 mg/1 Na-EDTA; 14 mg/1 FeS04.7H20) and osmoticum (91 g/1 D-mannitol) and 0.5 

g/1 MES. These incubation media are indicated by an "e" followed by a number; for example 

"e5". After 18 h of incubation, 10 ml of washing medium was added to the solution. Washing 

medium with an osmolarity 0.530 mOsm/kg consisted of major salts (see cell wall digestion 

solution), 45.5 g/1 mannitol and 7.3 g/1 NaCl. The digested tissue was filtered through a 73 pM 

pore size filter (PA 55/34 Nybolt - Switzerland) into a 250 ml beaker glass. The filtrate was 

divided equally over two 12 ml conical screw cap tubes, and centrifuged at 600 rpm for 3 min 

(Mistral 2000). The washing procedure was repeated once after removal of the supernatant. The 

protoplast solution was resuspended by floating on 9.5 ml solution containing major and minor 

salts (see cell wall digestion solution) and 105 g/1 sucrose. The pH was 5.8 and the osmolarity 

0.650 mOsm. The solution with protoplasts was allowed to equilibrate for 5 minutes before 0.5 

ml of washing medium was gently added on the top. After centrifugation at 700 rpm for 15 min 

(Mistral 2000), the protoplasts were concentrated in a band between the sucrose and washing 

medium. The protoplast layer was harvested with a pasteur pipette and the yield was counted 

in a standard haemocytometer chamber. 

Protoplast culture 

Four protoplast densities (1x105, 2x10 5, 4x105, 6x105 pp/ml) were tested. Protoplast viability 

was tested by using a Fluorescein diacetate (FDA) staining technique according to Widholm 

(1972). Plating efficiency was defined as the number of protoplasts that had undergone the 

second mitotic division according to Anthony et al. (1994). Observations on protoplast growth 

were done daily until day 10. On the basis of the plating efficiency 2 x 10 5 pp/ml was chosen 

for further experiments. Protoplasts were plated in Sea Plaque agarose 0.2 % w/v, disc type 

38 



culture (Dons and Bouwer, 1986) in pétri dishes (<j> 9 cm) containing 10 ml of medium A. The 

Petri dishes were sealed with parafilm. Medium A (medium for cell division and micro callus 

induction) consisted of MS salts and vitamins, 4.5 g/1 myo-inositol, 4.55 g/1 mannitol, 3.8 g/1 

xylitol, 4.55 g/1 sorbitol, 0.098 g/1 MES, 40 mg/1 adeninsulphate and 150 mg/1 casein-

hydro ly sate, 0.5 mg/1 d-calcium-panthotenate, 0.1 mg/1 choline-chloride, 0.5 mg/ ascorbic acid, 

2.5 mg/1 nicotinic acid, 1 mg/1 pyridoxine-HCl, 10 mg/1 thiamine-HCl, 0.5 mg/1 folic acid, 0.05 

mg/1 biotine, 0.5 mg/1 glycine, 0.1 mg/1 L-cysteine and 0.25 mg/1 riboflavine. Glucose (59.40 

g/1) or sucrose (36.03 g/1) were used as carbohydrate sources. The cultures were incubated in 

the dark for 6 days after which they were adapted gradually to the standard light conditions. 

Micro-callus culture 

After 10 days the agarose droplets with small micro-calli were fragmented and cultured in Petri 

dishes (4> 9 cm) containing solid medium for callus induction (medium B). Medium B consisted 

of MS (salts and vitamins) solidified with 7 g/1 agar (Daichin), 54 g/1 D-mannitol, 2.5 g/1 

glucose, 0.098 g/1 MES supplemented with 0.1 mg/12,4-D or 0.1 mg/1 NAA and 0.5 BAP mg/1. 

Micro-calli were kept under diffuse light (25 /xmolnrV1) for 5-7 days before they were grown 

in standard light intensity (40 /jmolm'V). Every 3 - 4 weeks pale-white or creamy calli were 

transferred to fresh medium B. After two weeks of culture micro-calli were transferred to 

medium C for callus development and regeneration. Medium C contained MS, salts and 

vitamins, 7 g/1 agar (Daichin) supplemented with (0.01-1 mg/1) IAA, or (0.01-1 mg/1) NAA, 

or 2 mg/1 2,4-D and 10 mg/1 Zeatin, or 0.1 mg/1 TDZ, or 0.1-10 mg/1 BAP, and 0.3 mg/1 GA 

and vitamins at B5. After 4 and 8 weeks of culture in medium C, calli were evaluated for their 

colour : white (translucent/pale white/creamy), green (light green, green) and brown; and for 

their morphological appearance: friable or compact. Green calli were transferred individually 

to media with different combinations of plant growth regulators to induce regeneration of shoots 

(medium D) or to fresh medium C for long term storage. Twenty-five individual calli were 

grown in a Petri dish (4> 9 cm) containing medium D. After 4 and 8 weeks calli were evaluated 

for their development. 
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RESULTS 

Protoplast yield 

In pilot experiments different enzyme mixtures were tested on leaves (LM) and somatic embryos 

(SE) of the genotype MCol. 1505 (Table 1). Protoplasts could be isolated easily from both 

sources. In both type of expiants the enzyme mixtures e4 and e6 (cellulase RS Onozuka, 

macerozyme and pectolyase) yielded the highest amount of protoplasts. The other enzyme 

mixtures gave a significantly lower yield. 

Table 1. The influence of different enzyme mixtures on the protoplast yield (10 5/gram) of leaves and 
somatic embryos of genotype MCol. 1505. 

No. Enzyme mixture (%) leaf somatic embryos 

el Cel.RS (1)/Mac (0.02) 
e2 Cel.R 10 (1)/Mac (0.02)/Pec. (0.001) 
e3 Cel.RS (1)/Mac (0.02)/ Dri(0.02) 
e4 Cel.RS (1)/Mac (0.02)/Pec (0.001) 
e5 Cel.RlO (10/Mac (0.02)/Dri (0.02) 
e6 Cel.RS On.(l) /Mac (0.02)/Pec (0.01) 
e7 Cel.RS On.(l)/Mac (0.01)/Pec (0.01) 
e8 Cel.RS (1)/Mac (0.01)/Dri (0.02) 

Note: The mean value followed by the same letter denotes no significant differences according to Duncan 
Multiple Range (0.05) test. Cel.RS=Cellulase RS; Cel.R10=Cellulase R 10; Cel.RS On=Cellulase RS 
Onozuka; Mac=Macerozyme; Dri=Driselase; Pec=Pectolyase. 

Protoplasts from LM were greener, larger and more vacuolated than those isolated from SE. 

Protoplasts from LM treated with enzyme mixtures el and e5 had a brownish-green colour. In 

the subsequent experiments the enzyme mixtures e4 and e6 were used. Results from the FDA 

test showed that viability differed from one experiment to another. The highest viability of 

protoplasts isolated from SE was 60 % and from LM 40 % (data not shown). Table 2 

summarizes the influence of enzyme mixtures e4 and e6 on the yield and the plating efficiency 

of protoplasts isolated from LM and SE of several genotypes. Protoplasts could easily be isolated 
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from all genotypes. In contrast to the pilot experiments shown in Table 1 the protoplast yield 

from LM was on average higher than from SE (Table 2). This yield varied from 2.34 to 31.4 

x 10 5 protoplasts/g for LM and 0.22 to 2.35 x 10 5 protoplasts/g for SE. However for the 

plating efficiency, protoplasts from LM were less effective than those originating from SE. 

Table 2 . Effect of genotype, tissue source and enzyme solution on protoplast yield and plating efficiency. 

Enzyme mixture 

e4= Cel.RS(l)/Mac(0.02) 
/Pec(OOOl) 

e6=Cel.RS On.(l)/Mac(0.02) 
/Pec(O.Ol) 

Genotype 

Adira 4 
Adira 1 
Gading 
TMS90853 
MCol. 22 
MCol. 1505 
Adira4 
L 11 
Adira 1 

Protopl 

LM 

2.95 
-
-

2.34 
6.01 
6.13 
3.30 
31.4 
-

ast yield" 
(105) 

SE 

1.41 
0.22 
1.9 
1.44 
-

2.35 
1.39 
-

0.53 

Plating efficiency 

(%) 

LM 

0.48 
-
-

0.06 
0.35 
0.19 
0.31 
0.39 
-

SE 

0.42 
0.18 
0.93 
0.18 
-

0.91 
0.62 
-

0.33 

Note: Cel.RS=CellulaseRS, Cel.RS On=CellulaseRS Onozuka, lm=leaf mesophyll, Mac=Macerozym-
e, Pec=Pectolyase, se=somatic embryo. ''Protoplast yield was calculated starting from 2 g of fresh 
leaves or somatic embryos. 

The plating efficiency ranged between 0.06 to 0.48 % for protoplasts originating from LM and 

between 0.18 to 0.93 % from SE (Table 2). Leaves of genotype Line 11 gave the highest 

protoplast yield, followed by MCol. 1505, MCol. 22 and Adira 4. There was no association 

between the yield of protoplasts and the plating efficiency. The effect of protoplast density on 

plating efficiency was tested with LM protoplasts of genotype MCol. 1505. In a density of 2 X 

105pp/ml and 4 X 105 pp/ml cell division occurred earlier and at a higher frequency than with 

densities of 1 X 105 and 6 X 105 pp/ml (data not shown). A plating density of 2 X 105 pp/ml 

was most optimal for a relatively high frequency of cell divisions. A density of 1 X 105 pp/ml 

produced less cell divisions, while at a density of 6 X 105 pp/ml the development of micro-calli 

was inhibited. 

41 



Table 3. Effect of the carbohydrate source in medium A on the occurrence of the first cell division of 
cultured protoplasts isolated from leaf mesophyll. 

Geno
type 

Gading 
TMS90853 
MCol. 22 
MCol.1505 

Carbohydrate source 

Glucose 

#Days ') #Tetrads2) 

at day 11 
(PE) 

5 - 8 
6 - 9 
5 - 7 
4 - 9 

587 (0.29)a 
365(0.18)a 
486 (0.24)a 
530 (0.26)a 

Sucrose 

#Days ') 

4 - 6 
5 - 7 
3 - 5 
4 - 6 

#Tetrads2) 

at day 11 
(PE) 

662(0.33)b 
500 (0.25)a 
696 (0.35)b 
852 (0.43)c 

Note: PE=plating efficiency, 1) = Number of days until the first cell division, 2) The mean value 
followed by the same letter of a row denotes no significant difference according to Duncan Multiple 
Range (0.05) test. 

Protoplast culture 

Generally, protoplasts of all genotypes underwent the first cell division after 3 - 9 days of 

culture in medium A. When sucrose was used as energy source, the first two-cell divisions of 

protoplasts of MCol.22 occurred 3 days after culture, whereas with glucose it occurred mostly 

one day later. In cultured protoplasts of MCol. 1505, Gading and TMS90853 the first cell 

divisions were observed after 5 days. The plating efficiency was in a medium with sucrose also 

significantly higher than in a medium with glucose (Table 3). Almost 25% of protoplasts of 

TMS90853 had changed their colour from green to brownish, their chloroplast and other 

organelles aggregated and concentrated at one pole. These were clear indications for a poor 

protoplast quality and low cell division competence. This phenomenon was also observed, albeit 

in a lower frequency, in cultured protoplasts of the other three genotypes. Culturing of protopla

sts in medium supplemented with 2-4 mg/1 2,4-D for 2 weeks (medium A) resulted in cell 

elongation (Fig. 1) and low cell division rate, whereas during a treatment of more than 24 hours 

cell division was stopped completely (data not shown) 
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Micro-callus induction 

After 3 weeks of culture in medium A, micro-calli were transferred to medium B for callus 

development. The presence of a low concentration of 2,4-D (0.1 mg/1) combined with BAP (0.5 

mg/1) resulted in the development of a white translucent callus (Table 4). A low concentration 

of NAA (1-5 mg/1) combined with 0.5 mg/1 BAP produced a compact creamy-yellowish callus. 

The diameter of the callus in NAA medium was larger than of callus grown in medium 

containing 2,4-D. Increase of the 2,4-D or NAA concentration inhibited callus proliferation. 

Without growth regulators the micro-calli did not develop well; after 10 days their growth ceased 

and their colour turned from creamy white to pink. 

Table 4. Influence of growth regulators on appearance and growth of microcalli from protoplasts of 
somatic embryos from genotype MCol. 1505 cultured on medium B. Data were taken 26 days after 
protoplast culture. 

hormone Induction Callus Callus 
supplement of callus growth colour 
(mg/1) (%) 

c 
w* 
w 
w 
c 
c 
c 

Note:c=creamy colour, g=green, w=white colour, *=translucent. 

After 14 days of culture in medium B, calli of ca </> 3 mm were transferred to medium C 

supplemented with different growth regulators for plant regeneration. At 4 and 8 weeks after 

culture in medium C growth of green callus was observed in all treatments (Table 5). A 

combination of 2 mg/1 2,4-D with 1 mg/1 IAA and 0.5 mg/1 BAP gave the highest growth rate 

and the highest percentage of green callus. This medium was able to maintain the callus in a 

green state for more than 3 months whereas callus on the other medium combinations turned 

brown. For that reason this medium was used for long term maintenance of green callus. The 
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hormone combinations of 0.2 mg/1 2,4-D and 0.5 mg/1 BAP followed by a medium with 1 mg/1 

NAA and 10 mg/1 Zeatin ranked second best on green callus formation. The percentage varied 

from 50 to 60%. The other growth regulator combinations gave lower percentages of green 

callus. Development of callus pieces in the same medium varied considerably, particularly with 

respect to morphology. For example, some of the compact calli were arranged in a spiral form 

with 3 to 4 turns and of more than 0.7 cm height. This type of callus was usually pale yellow 

or creamy in the border area and green at the top. Disk-shaped callus was developed laterally 

reaching a size of 3 to 4 cm in diameter. Morphologically it was a green-compact callus, some

times irregular in form. The disk-shaped calli never produced roots. Another type of callus had 

a hemispherical shape, was ca 0.5 cm high and, bright green in colour. This type consisted of 

globular callus, of circa 2 mm in diameter. 

In order to stimulate regeneration, green callus was cultured on medium D. Renewal of the 

medium, addition of vitamins (pyridoxine, nicotinic acid and/or ascorbic acid) and reduction of 

the sugar concentration did not stimulate these green calli to form shoots or embryos. After 

culturing of green calli for more than 2 months nodular structures were occasionally formed, 

they never developed into somatic embryos, shoots or leaf like structures but roots were initiated 

occasionally instead. The highest frequency of root formation was 2%. The roots were always 

initiated from the green callus part and about 20 % of the rooted calli had only one long slender 

root and the rest produced 2-5 roots per callus (Fig. 2). 

As elaborated earlier, protoplasts were cultured on media containing different growth regulators. 

Table 6 summarizes the protocols of medium sequences, in which the protoplasts of different 

genotypes were cultured. It shows that in all selected protocols green calli could be obtained; 

in 8 out of 17 protocols also roots were produced. In 6 out of 11 protocols, roots were formed 

from protoplasts isolated from somatic embryos of all tested genotypes. It was difficult to 

indicate a causal factor of root formation. The effect of growth regulators in regeneration media 

(medium D), on rooting were inconsistent. For example 0.1 mg/1 NAA in combination with 10 

mg/1 BAP produced roots in protocols 2 and 6 but not in 5 and 9. The same was found with 

BAP alone in medium D producing roots in protocols 4 and 13 but not in protocols 14 and 16. 
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Culturing of green callus in auxin-free media (protocol 10) resulted in root formation. However, 

root formation was frequently related to the presence of NAA in the first culture medium, except 

in protocol 11. 

DISCUSSION 

Many research groups have failed to regenerate cassava plants from protoplasts. In most cases 

only callus proliferation and sometimes roots were obtained (Anonymous, 1985; Nzoghe, 1989). 

Generally protoplasts are excellent for DNA uptake experiments. They have been used 

successfully for plant transformation in several crops like maize (Lyznik et al. 1989), 

orchadgrass ( Horn et al. 1988), rice (Kyozuka et al., 1988) and soybean (Dhir et al. 1992). 

Plant regeneration from protoplasts would enable the generation of transgenic cassava plants via 

protoplast transformation. In this report mature somatic embryos and leaf mesophyll cells were 

used as a source of protoplasts. It was shown (Table 1) that plating efficiency of protoplasts of 

somatic embryos tended to be higher, although the yield of protoplasts was lower than those 

obtained from LM. A disadvantage of using LM is the difficulty in obtaining leaves which are 

physiologically identical. A leaf of the first node differs from a leaf of the second node and from 

nodes of the further order. This might be one of the reasons for the considerable variation in 

protoplast production which was observed. Furthermore, leaf mesophyll is not a uniform source 

of protoplasts. It consists of different tissues (Sinnott and Wilson, 1963). Although there were 

differences in plating efficiency, protoplasts of both LM and SE developed easily into callus. 

Studies with tobacco callus showed that a high ratio of auxins to cytokinins in the medium 

favoured root formation and the reverse shoot formation. Although this approach is not demon

strated to be successful universally (Brown and Thorpe, 1980), this concept played an important 

role in the basic understanding of the regulation of growth and development. The role of auxins 

and cytokinins in plant regeneration from protoplasts has been believed to be as a determinative 

factor for many crops. The embryogénie callus derived from protoplasts of pea were induced 

in the presence of 0.9 mg/12,4-D, but for induction of somatic embryos hormone-free medium 
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Figure 1: Elongation of protoplasts cultured for few days in 2,4-D containing B medium. 

Figure 2: Adventitious root formation on callus derived from protoplasts. 
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was required and finally for maturation cytokinin was needed (Lehminger-Mertens and Jacobsen, 

1989). 

In peppermint, plant regeneration from protoplasts was induced by the presence of 1 mg/l NAA 

and 0.4 mg/1 BAP followed by 0.1-0.5 mg/1 NAA and 1-5 mg/1 BAP for shoot maturation (Sato, 

1993). In cassava, Shahin and Shepard (1980) used 1 mg/1 NAA combined with 0.5 mg/1 BAP 

as the first (cell division induction) and second media (micro-calli induction). In the subsequent 

medium NAA was reduced or replaced by IAA, while BAP was replaced by Zeatin. In this 

report a wide range of auxin-cytokinin ratios has been tested. The presence of the auxin NAA 

or 2,4-D in combination with cytokinin promoted callus growth (Tables 4 and 5). Callus never 

developed into somatic embryos nor shoots although callus was transferred into media with 

different concentrations and combinations of cytokinin. The failure of protoplasts to undergo 

embryogenesis or to form adventitious shoots was either, the loss of genetic competence of 

protoplasts to regenerate for example because of polyploidisation or that genes involved in 

regeneration were not induced. This was possibly due to the improper supply of plant regulators, 

to the physical environment stress or to the fact that the protoplasts were not competent for 

regeneration (Obsorae, 1993). For the expression of regeneration the physiological state of the 

plant source material, the protoplast isolation conditions, the culture medium composition and 

the environment are critical factors (Constable et al., 1975 and Fowke et al., 1973). To study 

every single factor determining the ability to regenerate is not easy. Many workers have found 

that the plant material as a source of protoplasts is one of the most important basic factors. It 

has been reported that in many plant species belonging to the Gramineae, the use of embryogénie 

cell suspension cultures as the protoplast donor resulted in plant regeneration (Roest and 

Gilissen, 1993). In recalcitrant woody species as for example Citrus (Base et al., 1991) regener

ation was accomplished by using protoplasts of embryogénie tissues. It was assumed that cells 

of embryogénie tissue are more frequently competent for plant regeneration than those from 

mature somatic embryos or leaf mesophyll. 

The embryogénie competent cells in somatic embryos of cassava are regularly located two to five 

cell layers deep (Raemakers et al., 1995). Histologically it was shown that the number of 
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embryogénie cells increased after 14 days of culture. It could imply that the use of young stages 

of somatic embryos (immature embryos) or globular stage embryos possibly could increase the 

frequency of embryogénie competent cells enabling plant regeneration. In leek ( Allium 

ampeloprasum L.), Buiteveld and Creemers-Molenaar (1994) have demonstrated that 

regeneration of protoplasts can be obtained if suspension cultures were used as source of 

protoplasts. This suspension culture was initiated with friable embryogénie callus derived from 

immature embryos (Buiteveld et al., 1994). 

Recently, Taylor et al. (1995) established a new system for producing friable embryogénie callus 

of cassava. These calli possibly have more competent cells than somatic embryos, which means 

that relatively a high frequency of protoplasts isolated from these cells have the competence to 

regenerate. The successful application of this material for protoplast regeneration will be 

described in Chapter 4. 
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CHAPTER 4 

PLANT REGENERATION FROM PROTOPLASTS ISOLATED FROM FRIABLE 

EMBRYOGENIC CALLUS OF CASSAVA 

E. Sofiari, C.J.J.M. Raemakers, J.E.M. Bergervoet, E. Jacobsen, R.G.F. Visser. 

ABSTRACT 

Suspensions derived from friable embryogénie callus (FEC) of cassava genotype TMS60444 
were incubated in a solution consisting of enzymes (Cellulase RS Onozuka, Macerozym and 
Pectolyase), growth regulators (1 mg/1 2,4-D, 1 mg/1 NAA and 1 mg/1 Zeatin) and major and 
minor salts. Two-weeks old suspensions yielded the highest number of protoplasts (1.4 x 106 

protoplasts/g fresh weight). Protoplasts plated at a density of 1-10 x 105 in a TM2G medium 
supplemented with 0.5 mg/1 NAA and 1 mg/1 Zeatin resulted in a plating efficiency of as high 
as 2.5 %. After 2 months of culture 60% of the developed calli were highly friable and in 
appearance identical to the original FEC. The protoplasts derived FEC were maintained in a 
proliferative state by culture on Gresshoff and Doy medium plus 10 mg/1 Picloram. Transfer of 
FEC to liquid medium resulted in suspension cultures which had a proliferation rate slightly 
higher than that of the original material. Culture of FEC for maturation resulted in a maximum 
of 124 torpedo shaped and mature embryos per 104 of initially cultured protoplasts. Mature 
embryos were multiplied by secondary somatic embryogenesis at high efficiency on a Murashige 
and Skoog medium supplemented with 8 mg/1 2,4-D. Culture of mature embryos on MS2 plus 
1 mg/1 BAP resulted in shoots which were rooted easily on the same medium without BAP. 
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INTRODUCTION 

Cassava (Manihot esculenta Crantz) is a perennial shrub cultivated in the lowland tropics for its 

starch containing roots. Improvement of the crop by classical breeding is difficult due to low 

fertility and poor seed set. Somatic hybridization of protoplasts could be an alternative to create 

intra- or interspecific hybrids of sexual incompatible genotypes. For this, an efficient 

regeneration system of these protoplasts is a prerequisite. Such a system could also be used to 

transfer cloned genes to agronomicaly established genotypes by protoplast electroporation. 

Cassava is very recalcitrant for plant regeneration of protoplasts. There is only one report of 

shoot regeneration from protoplasts of cassava (Shahin and Shephard, 1980). They used well 

expanded leaves for the isolation of protoplasts. Despite considerable efforts, plant regeneration 

from protoplasts has never been repeated since then (Anonymous, 1985; Nzoghe, 1991; Anthony 

et al., 1995, Chapter 3). A logical approach was to use tissues which contain embryogenesis 

competent cells. Such cells are found in the apical meristems, young leaves and somatic embryos 

cultured on auxin supplemented media (Stamp and Henshaw, 1987; Raemakers et al., 1993). 

However, protoplasts isolated from these tissues gave in the best case green callus and 

adventitious roots (Chapter 3). 

Recently, a new type of somatic embryogenesis was developed. In this in vitro system the 

embryos do not develop beyond the pre-globular stage and the embryogénie callus is highly 

friable (Taylor et al., 1995). Transfer of this friable embryogénie callus to liquid medium 

resulted in a suspension-like culture. In leek (Buitenveld and Creemers, 1994), petunia (Power 

et al., 1979), rice (Kyozuka et al., 1988), sugarcane (Chen, et al., 1988), and wheat (Chang et 

al., 1991) such cultures were an excellent source for protoplast regeneration. Furthermore, 

electroporation of protoplasts derived from suspension cultures led to the transformation of maize 

(Rhodes et al., 1988), rice (Toriyama et al., 1988) and orchardgrass (Horn et al., 1988). 

In this report the use of friable embryogénie callus as source for protoplasts has been described. 

Starting with these protoplasts two routes of plant regeneration have been described. One leading 

to friable embryogénie callus and the other directly to mature embryos. The mature embryos 
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could be converted into plants. 

MATERIALS AND METHODS 

Plant material 

Friable embryogénie callus (FEC) of cassava genotype TMS60444 was kindly provided by Dr. 

Nigel Taylor of University of Bath, United Kingdom. Every three weeks FEC was subcultured 

on Gresshoff and Doy (1972) medium supplemented with vitamins and minerals, 20 g/1 sucrose 

and 10 mg/1 Picloram (GD2). Suspension cultures were initiated by transferring 0.5 g of FEC 

into a 300 ml flask with 50 ml of liquid medium supplemented with Schenk and Hildebrandt 

(1972) salts and vitamins, 60 g/1 sucrose and 10 mg/1 Picloram (SH6). 

The medium was refreshed every 2 days and after 14 days the content of a each flask was 

subdivided over 5 new flasks. Cultures were agitated on a L.E.D. Orbit Shaker (Lab-Line 

Instruments, Inc.) at 130 - 150 rpm. All cultures were kept in a growth chamber with a 

photoperiod of 12 hours, a temperature of 30 °C and an irradiance of 40 jtmol'V. 

Isolation of protoplasts 

In a preliminary experiment the yield of FEC cultured on GD2 and of suspensions cultured for 

1 to 4 weeks in liquid SH6 medium was determined. For protoplast isolation this tissue was 

sieved (mesh 1 mm2) and 2 grams of the sieved tissue was placed in a Petri-dish (<j) 9cm) 

containing 10 ml of a mixture of enzymes (10 g/1 Cellulase RS Onozuka, 200 mg/1 Macerozym, 

10 mg/1 Pectolyase), growth regulators (1 mg/1 NAA, 1 mg/1 2,4-D, 1 mg/1 Zeatin), major and 

minor salts (368 mg/1 CaCl2, 34 mg/1 KH2P04, 740 mg/KN03, 492 mg/1 MgS04.7H20, 19.2 

mg/1 Na-EDTA, 14 mg/1 FeS04.7H20). 

Cells were incubated for about 16 hours on a L.E.D. Orbit Shaker (Lab-Line Instruments, Inc.) 

at 30 rpm in darkness. Further steps of the protoplast isolation procedure were as described in 

Chapter 3. 
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Assessment of protoplast viability and the presence of cell walls 

The viability of freshly isolated protoplasts was observed using FDA (Widholm, 1972). FDA 

(0.5 mg/ml in acetone) was mixed with washing solution (Chapter 3) in a ratio of 1:50. An equal 

volume of the FDA solution was added to protoplasts. After five minutes the protoplasts were 

examined with a fluorescence Axiophot Photomicroscope using an aniline blue filter. Calcofluor 

White was used to check the remnant of cell walls. An equal volume of 0.4 M mannitol solution 

containing 0.1 % w/v calcofluor white (Hughes and Gunning, 1975) were mixed with 

protoplasts. After 10 minutes the protoplast suspensions were examined with a fluorescence 

Axiophot Photomicroscope using a blue filter. 

Protoplast culture 

Protoplasts were cultured and plated in media solidified with Sea Plaque agarose 0.2 % w/v as 

described in Chapter 3. In three experiments the influence of different parameters was studied. 

In the first experiment, protoplasts were cultured at a density of 105 protoplasts/ml (pp/ml) on 

TM2G medium (Wolters et al., 1991) supplemented with different growth regulators. In 

experiment two, protoplasts were cultured at densities of 2x10s, 5x10s or lxlO6 pp/ml on TM2G 

supplemented with 0.5 mg/1 NAA and 1 mg/1 Zeatin. In experiment three, protoplasts were 

cultured at densities of lxlO5 or lxlO6 pp/ml on TM2G medium or medium A (Murashige and 

Skoog (1962) salts and vitamins, 4.5 g/1 myo-inositol, 4.55 g/1 mannitol, 3.8 g/1 xylitol, 4.55 

g/1 sorbitol, 0.098 g/1 MES, 40 mg/1 adeninsulphate and 150 mg/1 caseinhydrolysate, 0.5 mg/1 

d-calcium-panthotenate, 0.1 mg/1 choline-chloride, 0.5 mg/ ascorbic acid, 2.5 mg/1 nicotinic 

acid, 1 mg/1 pyridoxine-HCl, 10 mg/1 thiamine-HCl, 0.5 mg/1 folic acid, 0.05 mg/1 biotine, 0.5 

mg/1 glycine, 0.1 mg/1 L-cysteine and 0.25 mg/1 riboflavine and 59.40 g/1 glucose, 0.5 mg/1 

NAA and 1 mg/1 Zeatin). The media were refreshed every 10 days, by replacing 9 ml with fresh 

medium. The plating efficiency was calculated after 20 days. 

After two months of culture of protoplasts and (micro)calli in the first medium, high quality 

FEC was selected and either cultured for further proliferation or for maturation. For 

proliferation FEC was transferred to Gresshoff and Doy (1974) medium supplemented with 40 

g/1 sucrose, 7 g/1 Daichin agar and 2 mg/1 Picloram (GD4). After 3 weeks the FEC was 
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transferred to a Gresshoff and Doy medium supplemented with 20 g/1 sucrose, 7 g/1 agar and 

10 mg/l Picloram (GD2). Suspension cultures were initiated by transferring 1.0 g of FEC to 

liquid SH6% medium supplemented with 10 mg/1 Picloram. Two weeks later the suspension was 

divided over new flasks with an initial packed cell volume of 1.0 ml. The increase in packed cell 

volume was observed for two weeks and compared with the original material. 

For maturation FEC was cultured on a medium consisting of Murashige and Skoog (1962) salts 

and vitamins, 0.1 g/1 myo-inositol, 20 g/1 sucrose, 18.2 g/1 mannitol, 0.48 g/1 MES, 0.1 g/1 

caseinhydrolysate, 0.08 g/1 adenine sulphate, 0.5 mg/1 d-calcium-panthotenate, 0.1 mg/1 choline 

chloride, 0.5 mg/1 ascorbic acid, 2. mg/1 nicotinic acid, 1 mg/1 pyridoxine-HCl, 10 mg/1 

thiamine HCl, 0.5 mg/1 folic acid, 0.05 mg/1 biotin, 0.5 mg/1 glycine, 0.1 mg/1 L-cysteine, 0.25 

mg/1 riboflavine and 1 mg/1 Picloram. This maturation medium was refreshed every 3 weeks. 

The torpedo shaped embryos were isolated and cultured on medium supplemented with 

Murashige and Skoog (1962) salts and vitamins, 20 g/1 sucrose, 7 g/1 agar (MS2) and 0.1 mg/1 

BAP. 

Subculture of mature embryos 

Mature embryos were either cultured directly on MS2 plus 1 mg/1 BAP for shoot development, 

or on solid or in liquid MS2 supplemented with 10 mg/1 NAA or 8 mg/1 2,4-D for secondary 

embryogenesis. 

RESULTS 

Protoplast isolation and culture 

The suspension cultures consisted predominantly of small clusters of dense cytoplasmic cells 

which have a light-brown colour under a light microscope. The protoplasts isolated from 

suspension cultures were heterogeneous both in their size and in the amount of cytoplasm. The 

age of the suspension culture was a critical factor. 

The protoplast yield of friable embryogénie callus harvested directly from solid GD2 medium 
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was much lower than of the suspension cultures. Two weeks old suspensions gave the highest 

and 4 weeks old suspension cultures the lowest yield of protoplasts (Table 1). 

Table 1. The effect of suspension culture duration on protoplast yield, viability and with the calcofluor 
white test on cell wall remnants (mean from 3 replicates). 

Duration 

(weeks) 

0 
1 
2 
3 
4 

Protoplast 
yield 

(105/gr) 

0.5 
7 
14.5 
8.16 
1.18 

Viability 
determined by FDA 

(% positive cells) 

32+2 
30±8 
33±5 
28+2 
26±1 

Presence of cell walls 
determined by calcofluor 
white 
( % positive cells) 

nd 
4.75 
3.77 
3.5 
nd 

nd=not determined 

Fig. 1A shows a sample of protoplasts isolated from suspensions. With FDA viable protoplasts 

showed a yellow-green fluorescence. These protoplasts were spherical and displayed cytoplasmic 

streaming. Independent of the suspension culture duration around 30% of the total amount of 

isolated protoplasts was viable (Table 1). Results from the calcofluor white staining showed that 

about 4 % of the protoplasts fluoresced brightly, indicating the presence of cell walls. However, 

most of these protoplasts did not have a spherical shape and showed no reaction with FDA. 

Plating efficiency and micro-callus development 

In the first experiment protoplasts were cultured in TM2G medium supplemented with different 

growth regulators (Table 2). Protoplasts, cultured in 0.5 mg/1 NAA and 1 mg/1 Zeatin, or in 

0.5-4 mg/1 Picloram and 1 mg/1 Zeatin divided after three to four days. In a medium without 

growth regulators or in a medium with only Zeatin this was observed after 8-12 days, and in 

medium with 10 mg/1 Picloram plus 0.5 mg/1 Zeatin there was almost no division of protoplasts. 
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Table 2. The effect of growth regulators on plating efficiency of protoplasts after culture for 30 days in 
medium TM2G and on the formation of torpedo shaped and mature embryos after 60 days on maturation 
medium. 

Growth regulators 

(mg/1) 

No hormone 
Zea (1) 
NAA(0.5) + Zea(l) 
Pic(0.5) + Zea(l) 
Pic(2) + Zea(l) 
Pic(4) + Zea(l) 
Pic(10) + Zea(l) 

PE 

(%) 

0.02 
0.06 
0.67 
0.45 
0.49 
0.08 
< 0.01 

Days to first 

cell division 

12 
8-9 
3-4 
3 
3 
3 
nd 

# torpedo shaped and 
mature mature embryos 
per 104 protoplasts 

nd 
4.75a 
184.2c 
6.75a 
47.40b 
3.4a 
nd 

Data were taken as an average from 3 to 4 replications (one drop of 100 jtl protoplasts solution), mean 
followed by the same letter denote no significant difference according to LSD (0.05) test; nd=not 
determined; PE=plating efficiency. 

The plating efficiency varied from 0.02 % in a medium without growth regulators to 0.67% in 

TM2G medium supplemented with 0.5 mg/1 NAA and 1 mg/1 Zeatin. The media supplemented 

with 0.5-4 mg/1 Picloram gave intermediate plating efficiencies. Plating efficiency was also 

influenced by the density of the cultured protoplasts. In Table 3 it can be seen that a density of 

5 x 105 gave the highest (0.23 %) and a density of 106 the lowest plating efficiency (0.02 %). 

Table 3. The effect of protoplast density on plating efficiency (after 21 days of culture) in TM2G 
supplemented with 0.5 mg/1 NAA and 1 mg/1 Zeatin and on the formation of torpedo shaped and mature 
embryos (after 2 months in the first medium followed by 2 months in maturation medium). 

Densities Plating efficiency # torpedo shaped and mature 
(105) (%) at 21 days embryos per 104 protoplasts 

2 
3 
5 
10 

Data were taken as an average from 3-4 replications (one drop of 100 /tl of protoplast suspension). 
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Plating efficiency varied considerably between experiments. In general, however, the same trend 

was observed. In Table 4 it can be seen that 106 gave a lower plating efficiency than 105. 

Furthermore, it can be seen that TM2G medium is superior over medium A. After 20 days of 

culture in TM2G medium supplemented with 0.5 mg/1 NAA and 1 mg/1 Zeatin the first micro-

calli, consisting of at least 2 types (Fig. IB), became visible. In the first type, cell division 

occurred inside the boundaries of the initial cell wall, so the daughter cells became smaller than 

the original protoplasts whereas the shape of the micro-calli was irregular. In the second type, 

most probably cell division occurred in a different way because the cells could not be observed 

as easily as in the first type. Some of the cells had a banana-like shape and were transparent. 

Table 4. The effect of basal medium and protoplast density on plating efficiency (after 21 days of culture) 
and production of micro-calli (after 2 months of culture). 

105 pp/ml 106 pp/ml 

Medium PE Micro-calli PE Micro-calli 
(growth regulators) (%) per 104 pp (%) per 10" pp 

TM2G (0.5 mg/1 NAA + 1 mg/1 Zeatin) 2.5 1058+158 0.91 64+17.25 
A (0.5 mg/1 NAA + 1 mg/1 Zeatin) 0.24 240+85 0.18 25+9 

Data were taken as an average from 5 to 10 agarose drops at 55 days of culture (one drop is equal to a 
100 /xl protoplasts suspension), PE=plating efficiency. 

After 2 months of culture, 104 protoplasts cultured in TM2G supplemented with 0.5 mg/1 NAA 

and 1 mg/1 Zeatin at a density of lOVml produced 1058 micro-calli, whereas 104 protoplasts 

cultured at a density of 106/ml only produced 64 micro-calli. Replacing TM2G medium with 

medium A reduced at both densities the number of micro-calli significantly (Table 4). At this 

stage at least three types of calli could be distinguished. One type consisted of globular shaped 

embryos (Fig. 1C) which were mostly observed in protoplasts cultured at a density of 106. Some 

of them developed cotyledon like structures, light green in colour. However, these embryos 

could not be germinated properly. Another type was fast growing and consisted of a large 

compact callus, they were observed in protoplast cultures of both densities. This callus never 
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developed embryos. The third type was highly friable callus and was observed at both densities 

(Fig. 1C). At a density of 2-5 x 105 (medium TM2G) about 60 % of the calli were friable and 

embryogénie. The FEC was either subcultured for further proliferation or for maturation. 

Proliferation of FEC 

Following selection of FEC, 0.1 g of it cultured for three weeks on GD 4 plus 2 mg/1 Picloram 

increased into 0.7 g of tissue. More than 95 % of the tissue consisted of high quality FEC. 

Subsequently, this tissue was maintained by subcultures of three weeks on GD2 medium 

supplemented with 10 mg/1 Picloram. To initiate suspension cultures FEC was transferred to 

liquid medium. A suspensions cultured for 6 weeks in liquid SH6 medium is shown in Fig. ID. 

The increase in packed cell volume (PCV) of this material was slightly higher than that of the 

original material (data not shown). 

Maturation of FEC 

In an attempt to induce maturation of embryos, FEC isolated after two months of culture in 

TM2G was cultured on maturation medium. On this medium there is a gradual shift from 

proliferation to maturation. As a result the packed cell volume had increased with a factor 4 after 

two weeks of culture in liquid maturation medium. Also after transfer to solid maturation 

medium there is proliferation. After two weeks on solid medium most of the embryos had 

reached a globular shape (Fig. IE) and only a few of these globular embryos developed further. 

The first torpedo shaped embryos became visible after one month of culture on solid maturation 

medium (Fig. IF). The number of mature and torpedo shaped embryos was not correlated with 

the plating efficiency but with the density of the initially cultured protoplasts (Table 3). No such 

embryos were obtained if protoplasts were cultured on TM2G without growth regulators (Table 

2). The highest number of mature and torpedo shaped embryos was formed from protoplasts 

cultured on TM2G supplemented with 0.5 mg/1 NAA and 1 mg/1 Zeatin. If NAA was replaced 

by Picloram than the number of torpedo shaped and mature embryos was significantly lower 

(Table 2). From the tested Picloram concentrations 2 mg/1 gave the best results. After 3 months 

of culture between 60 and 200 torpedo shaped and mature embryos were isolated per agarose 

drop. Torpedo shaped embryos became mature at high frequency if they were cultured on fresh 
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maturation medium or on MS2 plus 0.1 mg/1 BAP. 

Secondary somatic embryogenesis and shoot development 

Table 5. Response of mature embryos on the induction of secondary embryogenesis on several media. 

Treatment # expiants # embryos which form 
secondary embryos 

solid MS2 + 8 mg/1 2,4-D 30 28 (93) 
liquid MS2 + 8 mg/1 2,4-.D 30 25 (83) 
solid MS2 + 10 mg/1 NAA 30 10 (33) 
liquid MS2 + 10 mg/1 NAA 30 14 (45) 
7 days solid 2,4-D/ 20 days liquid NAA 30 24 (80) 

Between brackets percentage 

Only a few torpedo shaped embryos formed secondary embryos if cultured on liquid or solid 

MS2 medium supplemented with 10 mg/1 NAA or 8 mg/1 2,4-D (data not shown). Mature 

embryos were better expiants for secondary embryogenesis. In both liquid and solid medium 2,4-

D was superior for induction of secondary embryogenesis as compared to NAA. If mature 

embryos were first cultured in 2,4-D and than in liquid NAA the response was comparable with 

culture in 2,4-D alone. Also embryos which first had undergone a cycle of secondary somatic 

embryogenesis in medium with 2,4-D, produced highly efficient secondary embryos in NAA 

supplemented medium. About 30% of the mature embryos cultured on MS2 plus 1.0 mg/1 BAP 

developed into shoots. These shoots were easily rooted on MS2 (Fig. IG). 
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Fig. 1: Regeneration of plants from protoplasts: isolated protoplasts A), development of two types of micro-callus 
after 20 days of culture B), development of friable embryogénie callus (f) and globular shaped embryos (g) after 
2 months of culture C), suspensions made of friable embryogénie callus D), formation of globular embryos from 
friable embryogénie callus E), formation of torpedo shaped (t) and mature embryos (m) and rooted plantlet G). 
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DISCUSSION 

Nowadays in rice, leek (Buiteveld and Creemers-Molenaar, 1993) and maize regeneration from 

protoplasts is no longer a barrier for the genetic improvement of these crops (Abdullah et al., 

1986, Kyozuka et al., 1987 and Rhodes et al., 1988). With one exception (Shahin and Shepard, 

1980) in cassava regeneration of plants from protoplasts has been tried, without success, using 

many types of explants as source for protoplasts (Anonymous, 1985; Nzoghe, 1989; Chapter 3). 

The plant regeneration from protoplasts described here brings new possibilities for the 

improvement of this crop. The most important aspect of this procedure is the use of friable 

embryogénie callus or suspensions derived from it. Important for high frequency regeneration 

of protoplasts is the use of suspensions instead of FEC as source of protoplasts (Table 2), and 

is the culture of protoplasts on TM2G medium supplemented with NAA and Zeatin (Table 3, 

5) in a density of 1x10s protoplasts/ml (Table 3 and 4). 

De Jong et al., (1993) showed that the percentage of suspension cells of carrot suspension 

cultures that regenerated into plants was not more than 2%. In the best case 2.5 % of the 

cassava protoplasts underwent cell division and formed micro-calli (Table 4). Although not all 

microcalli produced embryos. Anthony et al., (1995) improved plating efficiency by culturing 

protoplasts of cassava with short glass rods in ammonium-free MS medium. Buiteveld and 

Creemers-Molenaar (1994) improved plating efficiency by plating protoplasts of leek isolated 

from suspension cultures in Ca-alginate medium. These procedures might also increase plating 

efficiency of cassava protoplasts derived from FEC. 

Two months after isolation of protoplasts two different routes of regeneration could be chosen: 

maturation of embryos or further proliferation of the FEC. This is exactly the same as the 

response obtained with the original material. In some treatments the number of torpedo shaped 

and mature embryos exceeded the number expected from the plating efficiency. However, 

maturation occurred at a low frequency; less than 10% of the individual friable embryos 

developed into mature embryos. The fact that in some treatments the number of obtained 

organized embryos exceeded the plating efficiency can be explained by the fact that during the 
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first two months of culture micro-calli are in reality proliferating FEC and by the fact that there 

is a gradual shift from proliferation to maturation. Another bottle neck was the germination of 

mature embryos into plants. This problem could be solved by first multiplying single mature 

embryos through secondary embryogenesis. In this way the chance that plants were derived from 

individual mature embryos was maximized. However, the whole procedure always will be a time 

consuming process and it is expected to be genotype dependent as was shown by Raemakers 

(1993) for secondary somatic embryogenesis. 

With the availability of a system by which protoplasts can regenerate into plants a new road is 

open to genetic transformation of cassava. Electroporation or PEG mediated DNA transfer or 

cocultivation with Agrobacterium might be ways to obtain transformed friable callus. Initial 

transformation experiments by electroporation of protoplasts derived from secondary embryos 

has shown that this way is certainly an attractive possibility (data not shown). Furthermore, the 

protoplast regeneration system described here is repeatable and is an important first step, 

towards the application of interspecific protoplast fusion in cassava. 
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CHAPTER 5 

PRODUCTION OF TRANSGENIC CASSAVA PLANTS 

BY PARTICLE BOMBARDMENT USING LUCIFERASE ACTIVITY AS SELEC

TION MARKER. 

C.J.J.M. Raemakers, E. Sofiari, N. Taylor, E. Jacobsen and R.G.F. Visser. 

ABSTRACT 
Cassava embryos derived from friable embryogénie callus of the genotype TMS60444 were bom
barded with DNA of the constructs pJITlOO or PJIT64. Both constructs contain the firefly 
luciferase (LUC) gene driven by the 35S promoter. The influence of several particle gun 
machine parameters and pretreatment of plant material on transient LUC activity were studied. 
Two weeks after bombardment pieces of friable calli with one spot showing LUC activity were 
selected. In total 67 independent LUC spots, derived from 5 experiments, were further cultured 
either in liquid or on solid medium. One spot was cultured per plate or flask. In the subsequent 
selection rounds all spots of one individual plate or flask were cultured as one individual group. 
In this way different transformation events were separated and multiplied. Eight weeks after 
bombardment 34 cultures still contained LUC activity and the mean number of LUC spots per 
culture had increased from 1 to 4.6 in liquid medium and to 2.5 in solid medium. After two 
more months of subsequent culture and LUC selection the transformed nature of these cultures 
was confirmed on the molecular level using the polymerase chain reaction assay. Friable 
embryos derived from one transformation event were cultured for maturation. In total 24 of the 
467 tested mature embryos were LUC positive. After multiplication of the LUC positive mature 
embryos by cyclic somatic embryogenesis they were allowed to grow into shoots and to root on 
basic medium. The analyzed plantlets contained multiple copies of the inserted DNA. The 
presented method enables us to transform this particular cassava genotype, thus allowing the 
genetic improvement of the important tropical crop cassava by transgenesis. 
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INTRODUCTION 

Cassava (Manihot esculenta Crantz) is a short lived shrub of 1-5 m in height which is cultivated 

for its starch containing tuberous roots (Byrne, 1984; Cock, 1985). Since 1990 a number of 

laboratories have attempted to establish a transformation procedure for this crop (Schöpke et al. 

1993; Arias-Garzon and Sayre, 1993; Raemakers, 1993; Luong et al., 1995; Sarria et al., 1995). 

All these groups have utilized somatic embryogenesis as method of regeneration. It is initiated 

from zygotic embryos (Stamp and Henshaw, 1982) or from leaves (Stamp and Henshaw, 1987a; 

Szabados et al., 1987; Taylor et al., 1993; Mathews et al., 1993; Raemakers et al., 1993a). The 

primary embryos produced in this fashion can then be induced to enter continuous cycles of 

secondary somatic embryogenesis by repeated subculture of embryos on auxin supplemented 

medium. The embryos generated by this culture system are highly organized and develop readily 

into mature embryos (Raemakers et al., 1993b,c; Mathews et al., 1993). There is only one 

report of successful use of this secondary system of embryogenesis for cassava transformation. 

This was done using a wild type Agrobacterium tumefaciens strain (Sarria et al., 1995). 

However, because the plants contain the wild type Ti-plasmid of the Agrobacterium strain, 

including the oncogenes, they are probably of no agronomical value. Furthermore, the duration 

of the experiments and the efficiency in which only a few -presumed- transgenics were obtained 

makes this procedure not feasible. Attempts to use strains without oncogenes were all 

unsuccessful. Secondary somatic embryogenesis in conjunction with particle bombardment 

(Schöpke et al. 1993, Arias-Garzon and Sayre, 1993) or electroporation (Luong et al., 1995) has 

led to chimeric transformed embryos. However, subculture of these embryos for repeated cycles 

of secondary somatic embryogenesis did never result into stably, fully, transformed plants. 

In cassava a low percentage of the embryogénie tissue has a friable nature. This friable tissue 

can be isolated, purified and multiplied, resulting in almost complete friable embryogénie 

cultures. In this system with friable embryogénie callus the embryos are less organized. The 

embryos do not develop beyond the pre-globular stage, but instead proliferate new embryos from 

the surface of the units (Taylor et al., 1995). In cassava, this is the first report which describes 

the use of this friable embryogénie system in combination with particle bombardment. 
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Furthermore, it is the second report where in a crop recalcitrant for transformation, the 

luciferase reporter gene (isolated from Photinuspyralis), was used for selection of transformants. 

Previously this selection system was used successfully to obtain transformed plants in 

Dendrobium (Chia et al., 1994). The luciferase enzyme requires luciferin, ATP, Mg2+, and 02 

to produce light (560 ran). Plant cells expressing luciferase and supplied with luciferin emit 

photons (Ow et al., 1986) which can be detected with a luminometer. It is shown that this 

specific, friable, form of somatic embryogenesis, combined with the detection of transformed 

tissue using luciferase activity, leads to cultures with transgenic friable embryos which after 

culture for maturation and germination develop into luciferase positive plants. It was shown by 

Southern hybridization that the selected plants contain the introduced DNA stably integrated in 

their genome. 

MATERIAL AND METHODS 

Plant material 

The initiation of friable embryogénie callus cultures was as described before (Taylor et al., 

1995). Highly friable embryoids of genotype TMS60444 were maintained on a medium 

consisting of Gresshoff and Doy (1972) vitamins and salts, 7 g/1 Daichin agar, 20 g/1 sucrose 

and 10 mg/1 Picloram (solid GD2). Every three weeks the friable embryos were subcultured on 

the above mentioned medium. In order to initiate liquid suspension cultures 0.5 g of friable 

embryos was transferred in a flask of 200 ml with 50 ml of liquid medium supplemented with 

Schenk and Hildebrandt (1972) salts and vitamins, 60 g/1 sucrose and 10 mg/1 Picloram (liquid 

SH6). The medium was refreshed every 2 days and after 14 days the content of each flask was 

divided over 5 new flasks. The pH was adjusted to 5.7 before autoclaving. The temperature in 

the growth chamber was 30°C, the photoperiod 12 hours and the irradiance 40 /xmoltnV. 

Constructs and coating of DNA on the particles. 

In one experiment, DNA from the plasmid PJIT64 and in all other experiments DNA from 

pJITlOO (kindly provided by J.F. Guerineau, John Innes Institute, UK) were used. The plasmid 
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PJIT64 contains the firefly luciferase under control of two 35S promoters and the CaMV 

polyadenylation region and the plasmid pJITlOO contains the firefly luciferase and the 

phosphinothricin acetyl transferase gene both under control of the 35S promoter and the CaMV 

polyadenylation region (Guerineau and Mullineaux, 1993). Plasmid DNA was isolated using 

Wizard™ Maxipreps DNA purification system of Promega. 

A method adjusted from McCabe et al. (1988) was used to coat DNA on the particles. Eighty 

lig of DNA was mixed with 10 mg of gold particles (1.6 /mi, BioRad), 30 /d 5 M NaCl, 5 /tl 

2 M tris HCl pH 8.0, 115 /iL H20, 100 /tl 25% PEG 1550, 100 /tL 0.1 M spermidine and 50 

/tl 2.5 M CaCl2. After centrifugation the pellet was resuspended in 10 ml of absolute alcohol and 

briefly sonificated. One hundred sixty /xl of the gold suspension was pipetted through the 

appature of an inverted macrocarrier holder onto a standard macrocarrier (Bio Rad). After 5 

minutes the macrocarrier holder was removed. The macrocarrier covered with a thin layer of 

gold beads was dried in an oven (10 minutes, 40 °C) and used for bombardment. 

Bombardment of suspensions culture 

Suspension culture derived friable embryos, cultured in liquid SH6 medium for a period of as 

short as 5 min to as long as 7 weeks, were sieved (mesh 1 mm2) and collected on filters (81 

/xm). Per bombardment 0.05 g of friable embryos (approximately 2500 units) was spread in the 

centre of a plate with solid (7 g/1 Daichin agar) SH6 medium. Plates were bombarded using the 

PDS-1000He biolistic device (BioRad). The distance between the rupture disc and the macro-

carrier was 0.5 cm and between the macrocarrier and the stopper plate 0.5 cm. The effect of 

different helium pressures (450-1800 p.s.i.) combined with different vacuum levels (15 or 26 

inches Hg vacuum) and distances of the plate to the stopper plate (5 or 8 cm) were tested on the 

transient luciferase (LUC) activity one day after bombardment. After bombardment the friable 

embryos were cultured for one day on solid SH6 after which they were either transferred to 

liquid SH6 or solid (first 3 days on Gresshoff and Doy (1972) medium supplemented with 7 g/1 

Daichin agar, 40 g/1 sucrose and 10 mg/l Picloram (GD4) than on a Greshoff and Doy medium 

with 20 g/1 sucrose, instead of 40 g/1). 
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In another experiment the effect of different pretreatments on transient LUC activity was tested. 

For this solid GD2 cultured friable embryogénie callus was sieved and cultured in liquid SH2, 

SH4 or SH6 medium for three days. The cultures were bombarded at 450 p.s.i and the friable 

embryos were divided over solid SH2, SH4 and SH6. 

Selection and multiplication of luciferase (LUC) positive friable embryos 

The first selection of LUC positive expiants was done two weeks after bombardment. In the 

experiments used for optimization of transient activity this was the second and in the other 

experiments the first LUC assay. The friable embryos in a 1 cm radius around a LUC positive 

spot were cut out of the agar and subcultured in liquid (SH6) or solid (first 3 days GD4 than 

GD2) medium. One spot was cultured per flask or plate. In the next selection rounds (every 2 

weeks) the positive spots of individual cultures were isolated and cultured together. 

Maturation and germination of friable embryos 

Cultures containing at least 1 % LUC positive friable embryos were grown for maturation on a 

medium consisting of Murashige and Skoog (1962) salts and vitamins, 0.1 g/1 myo-inositol, 20 

g/1 sucrose, 40 g/1 mannitol, 0.48 g/1 MES, 0.1 g/1 caseinhydrolysate, 0.08 g/1 adenine sulphate, 

0.5 mg/1 d-calcium-pantothenate, 0.1 mg/1 choline chloride, 0.5 mg/1 ascorbic acid, 2. mg/1 

nicotinic acid, 1 mg/1 pyridoxine-HCl, 10 mg/1 thiamine HCl, 0.5 mg/1 folic acid, 0.05 mg/1 

biotin, 0.5 mg/1 glycine, 0.1 mg/1 L-cysteine, 0.25 mg/1 riboflavine. The pH was adjusted to 

5.7 before autoclaving. Every two weeks the LUC positive expiants were transferred to fresh 

medium until they became mature. LUC positive mature embryos were multiplied by cyclic 

somatic embryogenesis in liquid medium supplemented with Murashige and Skoog (1962) salts 

and vitamins, 20 g/1 sucrose (MS2) and 10 mg/1 NAA as described previously (Raemakers et 

al., 1995a). Multiplied mature embryos were cultured for shoot development on medium 

supplemented with Murashige and Skoog (1962) salts and vitamins, 20 g/1 sucrose, 8 g/1 Daichin 

agar (MS2) and 1 mg/1 BAP. Shoots were rooted on MS2. 

Luciferase (LUC) assays 

Tissues cultured in liquid medium were collected on filters (82 jtm) and spread on solid GD4 
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medium. The explants were sprayed with 0.25 mg/ml luciferin (Promega, E160) and assayed 

for luciferase (LUC) activity with a VIM intensified CD camera and Argus-50 photon counting 

image processor from Hamamatsu Phototonic Systems. Cultures of 1 day, 2 and 4 weeks after 

bombardment were measured for 1 minute. In the later assays this was less than 30 seconds. 

Molecular analysis. 

Genomic DNA was isolated for PCR from approximately 50 mg friable embryos and for 

Southern hybridization from 300 mg green leaf tissue of in vitro plantlets using a method 

described by Salehuzzeman et al. (1993). Primers LUC1 (ACG GTT TTG GAA TGT TTA CTA 

C) and LUC2 (CGG TTG TTA CTT GAC TGG CGA C) were synthesized (Eurogentec) and 

yielded a 792 bp fragment corresponding to an internal portion of the luciferase gene. A 50 ^1 

PCR reaction mix contained the primers (50 pM), Taq polymerase (0.2 U), dNTP (80 /*M of 

each), 1XPCR reaction buffer and 50 ng of the isolated DNA. The reaction mix was overlaid 

with 50 ßh mineral oil. PCR conditions were 92°C initial melting, for 10 min, 30 cycles of 

92°C/2 min and 47 °C/2 min and a 72°C/2 min final extension. Southern hybridization was 

performed as described (Salehuzzeman et al., 1993) using 8 pg of EcoRV or Bglll restricted 

DNA of cassava and the luciferase gene as a probe. 

RESULTS 

Optimization of transient activity. 

Nine different experiments were conducted in order to optimize bombardment treatments for 

transformation. The tested variables are presented in Table 1. In the first 5 experiments the 

influence of some variables concerning the particle gun and pretreatment on the transient LUC 

activity were studied. These transient studies were not performed in the last four experiments. 

Machine variables 

In the first experiment (Table 1) friable embryos were placed 5 cm below the stopperplate and 
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bombarded with different helium pressures at 26 inch Hg vacuum. A helium pressure of 450 

p.s.i. was found to result in the highest transient luciferase (LUC) activity with more than 

30.000 photons being detected in one minute. A Petri dish bombarded with pJITlOO and sprayed 

with water, instead of luciferin, produced 56 photons/min and a Petri dish bombarded with a 

control construct without the LUC gene and sprayed with luciferine produced 87 photons/min. 

An example of transient LUC activity of a culture bombarded with 450 p.s.i. is shown in Fig. 

1A. The scale in this figure represents different numbers of emitted photons. At this 

magnification it is difficult to count individual spots, but at a higher magnification at least 300 

distinct spots/cm2 could be identified. The luciferase activity decreased rapidly. Fifteen minutes 

after application of luciferin the LUC activity had decreased by 29% and after 2 hours only 8% 

of the original activity could be detected. As the BioRad gun cannot operate at helium pressures 

lower than 450 p.s.i. the distance to the stopper plate, combined with the partial vacuum 

pressure was varied to reduce the momentum of the particles (Table 1: experiment 2). The 

transient activity of cultures bombarded under the same conditions as in experiment 1 was 

10.623 photons/min which is a factor three lower than in this first experiment. The same level 

of transient activity was observed after the vacuum level was decreased to 15 inc. Hg or after 

the distance of the material to the stopperplate was increased to 8 cm. However, if both the 

lower vacuum level and the greater distance were combined, than the luciferase activity 

decreased to 300 photons/min. In the above described two sets of experiments the cultures were 

bombarded once. Two shots per plate resulted in a LUC activity which was almost twice as high 

as compared to one shot per plate (Table 1: experiment 3). 
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Plant material 

In experiment 4 (Table 1) the effect of different pre- and post-transformation culture media 

on transient LUC activity was studied. Pre-culture of friable embryos in SH2 medium gave 

the lowest and in liquid SH6 medium the highest transient LUC activity, independently of 

the post-treatment. There was an interaction between the post-culture media and the pre-

culture media on transient LUC activity. Post-culture in SH6 medium gave the highest 

transient LUC activity in friable embryos pre-cultured in SH6 and SH4. However, post-

culture in SH4 gave the highest transient activity in friable embryos pre-cultured in SH2. In 

experiments 1 to 4 the friable embryos were cultured for a period varying from 2 days to 6 

weeks in liquid SH6 before they were bombarded. Between the experiments there was not 

a clear relation between the pre-culture duration in SH6 and the transient LUC activity (Table 

1), probably this might be caused by experimental variations. In order to assess the effect of 

the time in liquid culture, friable embryos were transferred to liquid medium for 5 min, 2 

days or 7 weeks before they were bombarded (Table 1: experiment 5a). Friable embryos 

cultured for 5 minutes in liquid SH6 produced only 9.107 photons and this increased to 

36.515 photons/min after they were cultured for 2 hours in liquid SH6. The highest activity 

was found with friable embryos which had been subcultured for 7 weeks. 

Detection of LUC positive friable embryos 14 days after bombardment 

Fourteen days after bombardment the LUC activity was seen to be decreased to less than 2% 

of the level observed after 1 day (data not shown) and it was possible to distinguish distinct 

LUC spots (Fig. IB). In the different experiments, the number of LUC spots per bombarded 

plate (LUC/bp) is given in the last column of Table 1. 

The highest number of LUC spots per bombarded plate was observed in the experiments 5b, 

6, 7, 8 and 9 where the first LUC assay was performed 14 days after bombardment. In the 

experiments 1 to 5a where also transient activity was measured, a maximum of 1.6 LUC 

spots/bp was recorded (Table 1: experiment 5a). In the two experiments where different 

helium pressures were compared there was either no effect of the pressure on the number of 

LUC spots per bombarded plate (Table 1: experiment 1) or a slight increase (Table 1: 

experiment 8) with using higher pressures. In experiments 1 and 8, respectively, 1.0 and 0.5 

LUC spots/bp were detected. No spots were detected if the acceleration of particles was 
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further reduced by either a lower level of vacuum or a longer distance of the plant material 

to the stopper plate (Table 1: experiment 2). In experiment 5a (Table 1), where different 

preculture durations were tested, a preculture of 5 minutes did not result in LUC spots 

whereas 7 weeks gave clearly more spots than 2 hours. 

Subculture and multiplication of LUC positive friable embryos 

The friable embryos around a LUC spot were cut out of the agar and subcultured in either 

liquid SH6 or on solid GD2 medium. To separate the different transformation events one 

LUC spot was cultured per flask or plate. 

Table 2: The efficiency of luciferase selection for the recovery of cultures with transformed friable 
embryos. 

Exp 

1 
5 
7 

8 
9 

§ of cultures with LUC spots 

Treatment 

liquid 
solid 
solid 
liquid 
solid 
liquid 
Total 

Weeks after bombardment 
2 

6 
33 
4 
3 
18 
3 
67 

4 

4 
20 
4 
3 
12 
1 
44 

6 

3 
16 
4 
3 
10 
1 
37 

8 

3 
15 
4 
2 
9 
1 
34 

In the next selection rounds each flask or plate was treated as one individual culture and all 

the spots of one culture were subcultured as belonging to one group. A total of 67 LUC spots 

was subcultured: 12 in liquid and 55 on solid medium. Two weeks later 44 cultures still 

contained LUC spots: 8 in liquid and 36 on solid medium. This was not correlated with the 

strength of the spot isolated two weeks after bombardment. In some cases very bright spots 

had disappeared whereas low intensity spots became very bright after 4 weeks. In the next 

selection round the decrease in LUC positive cultures was lower. Four more disappeared 

during subculture from week 6 to 8 because of infection. Eight weeks after bombardment 34 

cultures were still LUC positive. The mean number of LUC spots was in liquid cultures 4.6 

and in solid cultures 2.5. From 8 weeks on in all 34 cultures the number of LUC positive 
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explants per culture doubled every 2-4 days. The highest efficiency of the transformation 

procedure, calculated as the number of cultures which still contain LUC spots 8 weeks after 

bombardment per bombarded dish was 2.0 in experiment 7. In this experiment 7 spots were 

detected 2 weeks after bombardment (Table 1) of which one spot was lost during culture 

(Table 2). 

Maturation of LUC positive friable embryos and development into shoots 

Because there was no experience with maturation of friable embryos, one culture, containing 

transformed friable embryos (Table 1 : experiment 9; friable embryos were transformed with 

pJIT64) was, taken to optimize this process. For this the fraction of transformed friable 

embryos was increased by continuous LUC selection. 
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Figure 1: Luciferase activity of suspension derived callus bombarded with pJIT64: A) 1 day after 
bombardment (x 4), B) 2 weeks after bombardment (x 1.2), C) 4 months after bombardment (x 1.2), 
D) mature embryo derived from friable embryogénie callus (x 15), E) mature embryo multiplied by 
secondary somatic embryogenesis (x 1.2), F) plants developed from secondary embryo cultures (x 
1.2). 8 1 



Friable embryos as shown in Fig. IC were used for maturation. After 4 weeks of culture on 

maturation medium the first mature embryos were isolated and assayed for LUC activity. In 

total 467 mature embryos derived from one transformation event were assayed of which 24 

were LUC positive (Fig. ID). LUC positive mature embryos were multiplied by culturing 

in liquid MS2 medium supplemented with 10 mg/1 NAA or in solid MS2 medium 

supplemented with 8 mg/1 2,4-D. In the first medium 5 out of 12 and in the second medium 

10 out of 12 of the mature embryos formed secondary embryos (Fig. IE). Of the initial 22 

LUC positive mature embryos 12 initiated LUC positive secondary cultures and two were 

LUC negative. In total about 300 mature embryos were cultured for shoot development on 

MS2 medium supplemented with 1 mg/1 BA. The first shoots appeared one month after 

culture and in total 21 shoots were obtained. Al these shoots were LUC positive (Fig. IF). 

Molecular analysis 

From 8 cultures friable embryos with LUC activity were analyzed by PCR. All cultures gave 

a band of the expected size for both the luciferase gene and the phosphinofhricin acetyl 

transferase gene (data not shown), indicating the stable integration of the construct in these 

cultures. DNA from two secondary cultures of mature embryos and of two regenerated plants 

derived from experiment 9 (Table 1) were restricted with EcoRV or Bglll. The banding 

patterns of the four different samples are identical (Fig. 2). Because EcoRV, and Bglll cuts 

the luciferase gene once it can be concluded that a minimum of four copies are stably 

integrated in the plant genome. 

« ««-« « a 
« « • b 

« ««• c 
• mm d 

f 
9 

Figure 2: Southern blot hybridization of DNA isolated from secondary embryogénie culture (a and 
b), regenerated trnsformed plant (c and d) and control non-transformed plant (f and g).DNA was 
restricted with Bgll (a,c,f), and EcoRV (b,d,g). Lane e is a marker lane. 
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DISCUSSION 

Previously, cassava embryos induced by secondary or cyclic somatic embryogenesis were used as 

target tissue for transformation (Schöpke et al. 1993, Arias-Garzon and Sayre, 1993, Luong et al., 

1995, Sarria et al., 1995, Chapter 2). In only one case, by using Agrobacterium tumefaciens, this 

resulted in transformed plants (Sarria et al., 1995). However, the plants contained the wild-type Ti 

plasmid and the procedure was not repeatable. This paper is the first report were cassava has been 

transformed reproducibly with only genes of interest. This was accomplished by combining a new 

system of somatic embryogenesis (Taylor et al., 1995) with a selection system based on the activity 

of the firefly luciferase gene (Ow et al., 1986). This friable embryogénie callus or suspension culture 

system differs in several aspects from cyclic somatic embryogenesis. In the friable system embryos 

do not develop beyond the pre-globular stage whereas in cyclic embryogenesis the embryos develop 

readily into mature embryos. In both types of somatic embryogenesis there is a phase were new 

embryos are initiated, followed by a phase of growth and development of the initiated embryo. The 

time period between two moments of initiation and growth or development is much shorter in friable 

than in cyclic somatic embryogenesis. As a consequence the cells in friable embryos are more often 

in a state of initiation whereas in cyclic somatic embryogenesis they are for a longer period in a state 

of growth and development. An initiation state is advantageous for plant transformation because a cell 

has than the chance to act independently from neighbouring cells and form a new embryogénie unit. 

Another difference is the fact that in friable embryogenesis the embryos originate from epidermal 

cells, possibly single cells (Taylor et al., 1995). In cyclic somatic embryogenesis the embryos 

originated from a group of cells and this group consisted of epidermal and mesophyllic cells (Stamp, 

1987; Raemakers et al., 1995b). 

LUC based selection has many advantages over selection with ß-glucuronidase (GUS). The most 

important one is the non-destructive nature of the LUC assay; positive expiants can be selected and 

subcultured. The GUS assay is destructive. The GUS protein is very stable; it has in mesophyll cells 

a half life time of more than 50 hours (Jefferson et al., 1987). The LUC protein has a half life time 

of about 3 hours in mammalian cells (Thompson et al., 1991). Although data on the half life time in 

plant cells are not available, the fact that two hours after supply of luciferin the LUC activity is 

reduced to 8% suggests that the enzyme is not long lived. A consequence of a longer half life time 

is that the transiently produced enzyme will be active for a longer time period thus overestimating the 

transformation efficiency. A short enzymatic half life time has as advantage that there is no build up 

of enzyme and that gene/enzyme activity can be tested repetitively (Luehrsen et al., 1992). 
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Furthermore, plant tissue does not contain endogenous LUC activity which might interfere with the 

assay as is observed for the GUS enzyme. 

LUC based selection has also advantages above chemical selection (reviewed by Wilmink and Dons, 

1993) by antibiotics as kanamycin or herbicides as phosphinothricin. On one extreme the chemical 

selection might be to rigorous leading to the loss of the regenerative capacity of the transformed 

tissue. This was observed in transformation of friable embryogénie callus of barley (Stiff et al., 

1995), Norway spruce (Robertson et al., 1992), white spruce (Bommineni et al., 1993) and banana 

(Sâgi et al., 1995) where no plants could be regenerated from chemically selected transformed callus. 

In such cases LUC based selection would ensure regeneration. On the other extreme chemical 

selection might not be strong enough resulting in a high percentage of recovered plants which are not 

transgenic. If this were the case LUC selection combined with chemical selection would reduce labour 

because only positive expiants are subcultured and the ones without LUC activity are discarded. The 

LUC gene is also an option in plants where chemical selection does not work as was reported for 

Dendrobium (Chia et al., 1994). 

In spite of the fact that pJITlOO contains the phosphinothricin acetyl transferase gene, ppt was not 

used for the selection of transgenic events. Since ppt, even at a concentration as high as 10 mg/1, was 

not able to completely inhibit the growth of non-transformed tissue, it was not used in the experiments 

described here. It is however, obvious that the presence of this marker gene in the transformed tissue 

(FEC, maturing FEC, mature embryos and plants) will be used to investigate the use of ppt resistance 

as a selection system in transformation of cassava. 

From the here presented data it seems that for the optimal result it is important to use friable embryos 

which have been subcultured for at least one week in liquid SH6 medium. The friable embryos should 

be bombarded with particles which have a momentum equal or higher than that is obtained with 450 

p.s.i., vacuum of 26 inc Hg and a distance of the plant material to the stopperplate of 5 cm. The 

efficiency of this procedure was as high as 2 (Table 1,2 experiment 7) successful transformation 

events per bombarded dish. At this moment all cultures which were used in maturation experiments 

yielded LUC positive mature embryos (results not shown). The obtained efficiencies are in agreement 

with other crops where embryogénie suspension cultures were used as target tissue for bombardment. 

For example in maize the number of transformation events yielding transformed plants varied between 

0.6 and 1 per bombarded dish (Fromm et al., 1990, Gordon-Kamm et al., 1990). In peanut 2 

transformation events leading to transformed plants were observed per bombardment (Ozias-Akins 
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étal., 1993). 

After bombardment this transformation system counts 4 phases. First friable embryos originating from 

one transformation event are allowed to proliferate. If enough transformed friable embryos are 

available than a part can be stored in liquid nitrogen and the other part is used for maturation (second 

phase). In the third phase mature embryos are multiplied by cyclic somatic embryogenesis before they 

are allowed to grow into plants (fourth phase). This 4 phases system will guarantee that the percentage 

of transformation events leading to transformed plants is maximized. If there is a future demand than 

friable embryos of a specific transformation event can be taken out of the liquid nitrogen and can be 

used for further molecular analysis or for the introduction of additional genes of interest. It is obvious 

that we have a method for cassava transformation available which needs to be extended to other 

genotypes and genes. However, the fact that a repeatable transformation system is within reach opens 

up the possibilities to improve this important crop cassava by genetic modification. 
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CHAPTER 6 

COMPARISON OF GERMINATION OF NAA AND 2,4-D INDUCED SOMATIC 
EMBRYOS OF CASSAVA (MANIHOT ESCULENTA CRANTZ). 

E. Sofiari, K. Danso, C.J.J.M. Raemakers, E. Jacobsen, R.G.F. Visser 

ABSTRACT 

In cassava the germination of cyclic somatic embryos, induced in liquid medium by the 
auxins 2,4-dichlorophenoxyacetic acid (2,4-D) or naphthalene acetic acid (NAA), was 
compared for four different genotypes. In all genotypes desiccation stimulated normal 
germination of NAA induced embryos. However, the desiccated embryos, required a medium 
supplemented with cytokinins such as benzylaminopurine (BAP) for high frequency 
germination. The morphology of the resulting seedling was dependent on the concentration 
of BAP. With 1 mg/1 BAP plants with thick and short taproots and branched shoots with 
short internodes were formed. With 0.1 mg/1 BAP the taproots were thin and slender and the 
shoot had only one or two apical meristems. If the embryos were desiccated sub-optimally, 
higher concentrations of BAP were needed than if the embryos were optimally desiccated to 
stimulate germination. Also desiccated embryos which were cultured in the dark required a 
lower concentration of BAP and, furthermore, these embryos germinated faster than embryos 
cultured in the light. Complete plants were obtained four weeks after the start of somatic 
embryo induction. 2,4-D induced embryos showed a different response. In only one genotype 
desiccation enhanced germination of 2,4-D induced embryos and in three other genotypes it 
did not. In all genotypes desiccation stimulated root formation. Embryos cultured in the dark 
formed predominantly adventitious roots, whereas embryos cultured in the light formed 
predominantly taproots. 
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INTRODUCTION 

Cassava (Manihot esculenta Crantz) is a perennial crop of the family Euphorbiaceae, grown 

mainly for its enlarged tuberous roots. The crop has many advantages: it is drought tolerant, 

can be grown in diverse edapho-climatic conditions, in depleted soils and is able to recover 

from damage caused by severe incidence of pests, diseases and bushfires (Cock, 1985). 

These advantages and the adaptability to indigenous farming systems explain the rapid 

spread of the crop on the African and Asian continents (Byrne, 1984). Cassava has a 

potential yield of 90 tonnes per hectare per year (Cock, 1985). However, the average yield 

in Indonesia is 10.3 tonnes per hectare (Soenarjo et al., 1987), and in Africa it is even lower 

(Anonymous, 1993). This low yield has been attributed to the poor fertility of the soils where 

cassava is grown, deterioration of roots and severe incidence of pests and diseases. The 

African Cassava Mosaic Virus, for example, can cause yield losses of up to 95% (Bocks and 

Woods, 1983). Beside the lack of resistant genotypes, the use of stakes infected with diseases 

and pests enhanced their persistence. There is lack of good healthy planting materials. Such 

planting material can be produced via meristem culture. In 1975 this technique was used to 

free cassava from Cassava Mosaic Virus (Kartha and Gamborg 1975). Healthy plants can be 

produced in large numbers by multiple shoot culture (Smith et al., 1986). However, this 

technique requires several tissue culture steps (mechanical isolation of cuttings, rooting of 

cuttings and hardening of plants) which makes the procedure labour intensive. In principle, 

labour could be reduced if planting materials are produced via somatic embryogenesis. 

Somatic embryos have the developmental program to grow into complete plants without 

mechanical isolation and separate shooting and rooting steps (Parrot et al., 1991). In cassava 

somatic embryogenesis was first reported by Stamp and Henshaw (1982) and since then by 

several groups as an efficient regeneration system (Szabados et al., 1987; Mathews et al., 

1993; Raemakers et al., 1993abc). Embryos are induced on leaves or zygotic embryos cultu

red on auxin supplemented medium. The primary embryos recultured on auxin supplemented 

medium produce secondary embryos and continuous subculture of embryos allows the 

development of cyclic embryogénie cultures (Stamp and Henshaw 1987; Mathews et al., 

1993; Raemakers et al., 1993bc). The auxin 2,4-D initiates both primary and cyclic embryo

genesis, NAA in contrast, only cyclic embryogenesis (Chapter 2). To use somatic 

embryogenesis for plant multiplication the embryos should germinate efficiently into seedling-
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like cassava plants. To achieve this goal, Raemakers et al., (1993b,c) cultured mature 2,4-D 

induced embryos on a medium supplemented with 1 mg/1 BAP. Depending on the genotype 

between 10% (MCol.1505) and 70% (MCol.22 and TMS90853) of the embryos developed 

into plants (Raemakers, 1993). The process of germination was slow, the plants were initially 

malformed and lacked taproots. Adventitious roots were formed after culture of plants on 

growth regulator-free medium. A germination process whereby genotype-independent com

plete normal plants with taproots are produced within a short period of time is desirable. 

Mathews et al., (1993) improved germination by desiccating embryos. With this method 85 % 

of MCol. 1505 embryos, induced on 2,4-D supplemented solid medium, germinated into com

plete plants compared to 5% for undesiccated embryos. 

High frequency germination of mature embryos is also of importance for the application of 

the protoplast and genetic modification technology for cassava improvement. It was shown 

that only a low percentage of the mature embryos derived from protoplasts (Chapter 4) and 

from transformed mature embryos (Chapter 5) developed into plants. 

In this report germination of embryos induced in liquid medium is described. It is shown that 

NAA induced embryos differ from those induced by 2,4-D. Furthermore, it is shown that 

besides desiccation the use of cytokinins and darkness during culture for germination are 

important factors in obtaining complete plants in a number of different cassava genotypes. 

MATERIALS AND METHODS 

Plant material and growth conditions 

The cassava (Manihot esculenta Crantz) genotypes TMS 90853, Line 11, Adira 4 and Gading 

were used in this study. Primary embryos were produced following the method described by 

Raemakers et al., (1993a). In brief: young leaf lobes (1-6 mm) were cultured on solid (8 g/1 

Daichin agar) basal medium (BM) supplemented with 20 g/1 sucrose (BM) plus 8 mg/12,4-D 

(step one). BM consisted of Murashige and Skoog (1962) salts and vitamins. After 20 days 

expiants were transferred to BM supplemented with 0.1 mg/1 BAP for maturation (step two). 

Mature embryos are defined as structures with a distinct hypocotyl and green cotyledons. 

Mature embryos were isolated from the leaf expiants, chopped into fine pieces and cultured 

in 300 ml flasks with 75 ml liquid BM supplemented with 8 mg/12,4-D or 10 mg/1 NAA for 
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the production of cyclic embryos. Cultures were placed on a gyrator (LAB-Line Instruments 

Inc., model 3519) at 120 rpm. After 15 (NAA) and 30 (2,4-D) days of culture mature 

embryos were chopped again and cultured in the same media for a new cycle of embryo-

genesis. In this way the embryos used in this study were maintained for 2 years (TMS 

90853), 1 year (Adira 4) and xh year (Gading and Line 11). All cultures were kept in a 

growth chamber with a photoperiod of 12 hours, a temperature of 30 °C and an irradiance 

of 40 /rniol'V1. 

Methods to achieve desiccation and subsequent germination of embryos. 

Mature NAA induced embryos of Adira 4 were subjected to various desiccation treatments 

for a period of 7 days. After the desiccation the embryos were cultured for germination on 

solid BM supplemented with 1.0 mg/1 BAP. 

Petri-dish desiccation 

Mature embryos (12 g of fresh weight) induced in liquid medium were transferred to sterile 

Whatmann 3 mm filter paper to absorb hanging water. After 1 hour the weight of the 

embryos had decreased to 35 percent. Four grammes of the dried embryos were transferred 

to empty Petri plates, weighed, sealed with parafilm and stored in the growth chamber. The 

Petri-dishes were changed every other day to remove condensed water. The percentage of 

desiccation was calculated from the ratio between the weight of the dried embryos after and 

before Petri-dish desiccation, multiplied by 100. 

Desiccation using glycerol 

After removal of hanging water, 4 gr of dried mature embryos were transferred to an empty 

Petri-dish and placed in a desiccator (2 1) containing 200 ml of a 87% glycerol solution to 

control the internal humidity. 

Desiccation by using sugar solutions 

Four grammes of mature embryos were transferred to solid BM supplemented with 0-160 

g/1 sucrose, or liquid BM supplemented with 0-60 g/1 sucrose, or H20 supplemented with 0-

60 g/1 sucrose, or liquid BM supplemented with mannitol (0-10 g/1). 
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The effect of different growth regulators on embryo germination. 

To study the effect of growth regulators on embryo germination, NAA induced Petri-dish 

desiccated embryos of Adira 4 were cultured on BM, BM supplemented with TDZ (0.1, 1, 

4 mg/1), BAP (0.5, 1, 4 mg/l), Kinetin (0.5, 1, 4 mg/1), IBA (1, 5, 10 mg/1) or NAA (1, 

5, 10 mg/1). 

Effect of degree of moisture loss on embryo germination. 

To study the relation between moisture loss and germination, Petri-dishes with mature NAA 

induced embryos were either placed in 500 ml jars filled with 50 ml of 0, 0.05, 0.2 mg/1 

NaCl (Gading) or were placed in 2 1 jars filled with 50 ml of a 0, 60, 87% glycerol solution 

(Adira 4). After 7 days the embryos were cultured for germination on BM supplemented with 

0-4 mg/1 BAP. 

Influence of light/dark regime on germination of desiccated embryos. 

Mature NAA or 2,4-D induced embryos of TMS 90853, Line 11, Adira 4 and Gading were 

desiccated using the Petri-dish method and cultured on BM supplemented with 0-4 mg/1 BAP, 

either in the dark or in the light. 

Histology 

Taproots of embryos were fixed in aqueous FAA solution (4 % formalin, 5 % acetic acid and 

50 % ethanol), dehydrated through an ethanol series of 70, 80, 90 and 100 %. Hereafter, the 

expiants were embedded in Technovit 7100. Sections of 4-6 /*m were made with a Reichert-

Jung 2050 Supercut microtome and stained with 1 % toluidine blue in an aqueous solution 

of 1 % Na-tetraborate. 

Evaluation 

Embryos cultured in the dark/light experiment were evaluated after 14 and 28 days of culture 

and in all other experiments after 28 days. The embryos were evaluated individually for 

presence or absence of roots, the morphology of the roots (thin or thick, taproots or 

adventitious) and presence or absence of shoots. A shoot was present when an internode had 

appeared with at least one primary leaf. An embryo was considered to be germinated if it had 

both a root and a shoot. 
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RESULTS 

The effect of different desiccation methods on embryo germination. 

Different desiccation methods were used to stimulate germination from mature somatic 

embryos of the cassava genotype Adira 4 (data not shown). Non-desiccated embryos did not 

germinate into complete plants with roots and shoots. Only a small number of the cultured 

embryos formed either roots or shoots (17 and 3% respectively). In the Petri-dish and 

glycerol desiccation methods the moisture loss could be determined. In the Petri-dish method 

the dried embryos lost a further 40% of their fresh weight and in the glycerol method 55 per

cent. In both methods 88% of the embryos germinated into complete plants with taproots and 

shoots. The remaining embryos formed only shoots or roots. To obtain an effective 

desiccation it was essential that the liquid cultured embryos were first dried on filter paper 

to remove hanging water. If this was not done only a few embryos germinated. Because 

water condensed on the lids of the Petri-dishes it was further essential that every other day 

the embryos were transferred to a new Petri-dish to remove the water. 

In the desiccation methods using sugar solutions the moisture loss could not be determined 

exactly. At lower concentrations of sugars the embryos continued to grow, indicated by an 

increase of fresh weight. When higher concentrations of sugars were used the growth ceased. 

In all treatments less than 10 % of the embryos germinated. Although the glycerol 

desiccation was comparably as good as the Petri-dish desiccation the latter was chosen 

because of its simplicity for further experimentation. 

The influence of growth regulators on embryo germination. 

The embryos used in this experiment lost 20% of their fresh weight. The dried embryos were 

cultured on different media (Table 1). None of the embryos cultured on growth regulator-free 

medium germinated or formed shoots and only 1 embryo formed roots (Table 1). The auxins 

IBA and NAA stimulated only root formation. For this NAA was more effective than IBA. 

With 4.0 mg/1 NAA 66% of the embryos formed roots (Table 1). The roots formed were 

abundant, thin and, in contrast to IBA where tap roots were formed, adventitious of origin. 

All the tested cytokinins stimulated germination and/or shoot formation. TDZ gave the lowest 
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percentage of germination; at all the concentrations tested not more than 12 percent 

germinated. Germination increased with higher concentrations of kinetin. On a medium 

supplemented with 4 mg/1 kinetin 36% of the embryos germinated and 18% formed only 

shoots (Table 1). The roots of these embryos were normal thin tap roots (Fig. 1A) and the 

shoots had more than one apical meristem. The highest percentage of shoot development 

(with and without roots) was observed when embryos were cultured on BAP supplemented 

medium. The optimal BAP concentration was found to be 1.0 mg/1. At this concentration 

about 67% of the embryos developed shoots and 14% germinated. The morphology of the 

roots and shoots of embryos was dependent on the BAP concentration. Embryos cultured on 

1 or 4 mg/1 BAP formed thick tap roots (Fig. IB). The formation of thick tap roots was 

correlated with shoot formation. The shoots had short internodes and were branched. 

Sometimes more than 10 apical meristems were formed from one embryo (Fig. IB). 

Histological studies showed that the thickness of the roots was caused by a loosely 

arrangement of cells around the stele (Fig. 1C). Embryos cultured on 0.1 mg/1 BAP formed 

thin and slender taproots (Fig. ID). Thin root formation was not always associated with 

shoot formation, however, the shoots formed had normal internodes and only one or two 

apical meristems (Fig. ID). 

The relation between moisture loss and embryo germination. 

In the earlier experiment on the effect of different desiccation methods 88% of the Petri-dish 

desiccated embryos cultured on 1 mg/1 BAP germinated. In the experiment presented in 

Table 1 the same treatment gave a germination of 14 percent. A reason for this difference 

in frequency of germination might be the amount of moisture loss, respectively 40 and 20 

percent. To test this hypothesis embryos of Adira 4 and Gading were subjected to treatments 

which gave different levels of moisture loss. The results are presented in Table 2. 

Embryos of both genotypes with a moisture loss of 20% did not germinate into complete 

plants after culture on a growth regulator free medium. Germination occurred if embryos 

were cultured on a medium with BAP. For Gading this frequency was still very low, but 

45 % of the Adira 4 embryos cultured on 1 mg/1 BAP germinated. In both genotypes embryos 

with a moisture loss of 40 % gave a higher percentage of germination. For Gading 0.1 mg/1 

BAP gave the best germination (72%) and for Adira 4 this was 1 mg/1 BAP (87%). With 

higher BAP concentrations there was a shift from germination to shoot formation without 

roots. 
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In both genotypes complete plant germination decreased when embryos had lost 75% 

moisture (Table 2). Also in this experiment thick roots and stems with multiple shoots were 

produced in the higher BAP concentration. In the next section a method is described which 

decreases the need for using high BAP concentrations. 

Influence of light/dark conditions on development of normal plants from somatic 

embryos. NAA and 2,4-D induced embryos of four genotypes were compared for their 

ability to germinate. Undesiccated embryos, both 2,4-D and NAA induced, cultured for 14 

days on a medium with 0-4 mg/1 BAP, did not germinate or formed only shoots or roots 

(results not shown). Also, after 28 days germination or root formation alone did not occur 

and only shoots were formed at a very low frequency (< 10%). The embryos lost between 

38 and 53% of their fresh weight. 

Desiccated, NAA induced, embryos of TMS90853 (Fig. 2A), Gading (Fig. 2B) and Line 11 

(Fig. 2C) germinated at much higher frequencies than 2,4-D induced embryos. This was 

observed independent of the light/dark conditions and the used BAP concentration in the 

germination medium. For Adira 4 (Fig. 2D) only the NAA embryos cultured on 0 and 0.1 

mg/1 BAP germinated at a higher frequency than 2,4-D embryos and on a medium with 1 and 

4 mg/1 BAP there were no differences. 

In all four genotypes NAA embryos cultured in the dark showed the highest percentage of 

germination in media supplemented with 0 or 0.1 mg/1 BAP and this was higher than in the 

comparable treatments in the light. Under dark conditions root development occurred within 

4 days followed by the elongation and curvature of the hypocotyl and finally the opening of 

the hypocotylar hook after 10 days. The stems of the shoots were slender with long 

internodes. Embryos cultured in the dark on 0 or 0.1 mg/1 BAP formed mostly single shoots 

(Fig. 3A) whereas those on 1 mg/1 BAP formed mostly two apical meristems (Fig. 3B). The 

shoots were etiolated which was corrected after one week transfer to the light. In all four 

genotypes NAA induced embryos cultured in the light showed the highest percentage of 

germination on a medium supplemented with 1 or 4 mg/1 BAP and this was higher than in 

the comparable treatments in the dark. Root formation occurred within 4 to 8 days after 

culture and shoots followed a few days later. Shoots of NAA embryos cultured in the light 
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on 0.1 mg/1 BAP had mostly one or two apical meristems (Fig. ID) whereas those cultured 

on 1 mg/1 BAP had more than 4 apical meristems and sometimes a higher number up to 10 

(Fig. IB.). Germination of 2,4-D embryos was very low in TMS 90853 (Fig. 2A), Gading 

(Fig. 2B) and Line 11 (Fig. 2C) both in the light and the dark. In Adira 4 (Fig. 2D) 40% 

to 50% of the embryos cultured in the light on medium with 1 or 4 mg/1 BAP germinated. 

This was higher than in the comparable treatments in the dark. Desiccation of 2,4-D embryos 

had a clear effect on root development in all genotypes. 

The roots appeared after 4 to 7 days of culture and the form was dependent on the light/dark 

conditions; predominantly adventitious in the light (Fig. 3C) and predominantly taproots in 

the dark (Fig. 3D). The results presented in Fig. 2 were taken 14 days after culture for 

germination. Two more weeks of culture gave only a significant increase of germination for 

NAA embryos cultured in light. There was no or only a small improvement of germination 

for NAA embryos cultured in the dark and for 2,4-D embryos cultured in the light or the 

dark. 

DISCUSSION. 

Morphological and biochemical evidence has shown that somatic embryogenesis mimics 

zygotic embryogenesis in planta (Amirato, 1983). In planta zygotic embryos undergo 

desiccation during maturation. Desiccation terminates the developmental process of embryo 

formation and activates the switch from maturation to germination (Kermode, 1990). Similar, 

in somatic embryogenesis desiccation improves germination of somatic embryos. This was 

reported for the first time for cassava by Mathews et al., (1993). In their method 85% of the 

desiccated MCol.1505 embryos germinated into complete plants, compared to less than 5% 

in non-desiccated embryos. In their study, embryos were induced on solid medium 

supplemented with 2,4-D. In our study embryos induced in liquid medium were used and a 

comparison was made between embryos induced by NAA or 2,4-D. NAA induced embryos 

indeed required desiccation for normal germination, however, to be effective cytokinins were 

needed in the medium to germinate desiccated embryos. In auxin induced embryos cytokinins 

are known to organise the shoot apex during embryo maturation (Amirato, 1983) and to 

break dormancy in poorly germinating somatic embryos (Gray and Puhit, 1991). 
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Figure 2: Germination and shoot development of desiccated NAA and 2,4-D induced embryos of 

TMS90853 (A), Gading (B), Line 11 (C) and Adira 4 (D) cultured in the dark (D) and the light (L) 

on a medium supplemented with 0-4 mg/1 BAP (24-30 mature embryos per treatment). 
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Figure 3: Influence of light/dark regimes on germination of desiccated Gading embryos: NAA/dark 

cultured on 0.1 mg/1 BAP: one apical meristem per embryo (A); 2,4-D/light: adventitious roots (B); 

NAA/dark cultured on 1.0 mg/1 BAP: one or two apical meristems per embryo (C); 2,4-D/dark: tap 

roots (D). 
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Of the cytokinins tested in cassava, BAP improved germination or shoot development of 

embryos more than TDZ and kinetin. BAP stimulated both taproot formation and shoot 

formation. This is in contrast with multiplication of stem cuttings where 0.1 mg/1 BAP 

already inhibits adventitious root formation (Raemakers, 1993). 

The BAP concentration needed for high frequency germination seemed to be dependent on 

the level of moisture loss in the somatic embryo. If this is optimal, lower levels of BAP are 

needed than if it is suboptimal. High concentrations of BAP had distinct effects on the 

morphology of the resulting seedling. The BAP concentration required for embryo germi

nation in the dark is lower than in the light and as a consequence the shoots resembled more 

the morphology of seedlings of zygotic embryos. A disadvantage was the etiolated nature of 

the plants. More research is needed to determine the minimum period of darkness required 

to stimulate germination to stimulate germination. 

In this study desiccation of 2,4-D induced embryos did not stimulate germination in three of 

the four genotypes, but had only a positive effect on root formation. This response was not 

affected by the light/dark conditions during culture for germination. However, in the light 

predominantly adventitious roots and in the dark taproots were formed. The results described 

here with 2,4-D induced embryos are in contrast with those described by Mathews et al., 

(1993) and by Raemakers et al., (1993b,c) previously. It was shown that embryos formed 

in liquid medium supplemented with 8 mg/1 2,4-D do not possess a root meristem 

(Raemakers, 1993). Culture of these embryos on a medium with BAP, without desiccation 

stimulated shoot formation without roots (Raemakers et al., 1993b,c). It seemed that 

desiccation of 2,4-D induced embryos triggered the development and the subsequent 

outgrowth of a root meristem. This process might have been on the expense of shoot 

development. The way 2,4-D embryos were induced by Mathews et al., (1993) differed from 

this study. In their study the 2,4-D exposure time was shorter, the concentration was lower 

and the embryos were transferred to charcoal supplemented medium for maturation. This 

culture system might have resulted in mature embryos with an active root meristem which 

easily can be activated and as a consequence shoot formation was not inhibited. 

In the procedure described by Mathews et al., (1993) 4 steps were needed (induction, 
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maturation, desiccation of embryos and culture of embryos for germination). This has been 

reduced to three steps in the procedure described in this report. It is further an advantage that 

the embryos are induced in liquid medium. Compared to solid media, liquid media reduce 

labour and improves production. Seedlings are produced 4 weeks after start of a new cycle 

of embryogenesis compared to 10 weeks in the method of Mathews et al., (1993). The 

described procedure of germination makes somatic embryogenesis further competitive with 

the classical method of multiplication by stem cuttings. 
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Somatic embryogenesis and regeneration in cassava 

In figure 1 an overview of somatic embryogenesis in cassava is given. Until 1993 systems 

with only primary and secondary somatic embryogenesis were well developed. Somatic 

embryogenesis starts with the induction of embryos from primary expiants. Recently it was 

shown that besides zygotic embryos (Stamp and Henshaw, 1982) and young leaf expiants 

(Stamp and Henshaw, 1987; Szabados et al., 1987; Raemakers et al., 1993) also floral tissue 

has the capacity to undergo primary embryogenesis (Mukherjee, 1995). Primary embryos 

derived from both leaf expiants and zygotic embryos form secondary somatic embryos and 

continuous cultures are obtained by cyclic culture of embryos on auxin supplemented 

medium. In all these reports mostly Murashige and Skoog (1962) medium supplemented with 

2,4-D was used to initiate primary and secondary somatic embryogenesis. It was shown by 

Sudarmonowati and Henshaw (1992) that also Picloram and Dicamba have this capability. 

ma tue 
leaves > ms+2,4-d > embryos' 

desiccation 

culture in dark 

seedlings 

maturation 

immature 
embryos 

selection of 
friable embryos 

friable embryos 

Figure 1: Schematic representation of somatic embryogenesis in cassava, including primary, 
secondary somatic embryogenesis, selection of friable embryogénie callus, maturation and desiccation 
followed by germination. 

gd2= medium supplemented with Gresshoff and Doy salts (1974) and vitamins plus 20 g/1 sucrose. 
gd4= medium supplemented with Gresshoff and Doy salts (1974) and vitamins plus 40 g/1 sucrose. 
ms2= medium supplemented with Murashige and Skoog salts and vitamins plus 20 g/1 sucrose. 
pic= 10 mg/1 Picloram, NAA= 10 mg/1 naphthalene acetic acid, 2,4-D = 8 mg/1, 2,4-dichlorophenoxy 
acetic acid. sh6= medium supplemented with Schenk and Hildebrandt (1972) salts and vitamins plus 
60 g/1 sucrose. 
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As shown in this thesis, NAA can also induce secondary somatic embryogenesis, however 

in contrast to Picloram and Dicamba it failed to induce primary embryogenesis (Chapter 2). 

NAA induced embryos differed in many respects from 2,4-D induced ones. For example, 

histologically, the by 2,4-D newly induced secondary embryos were attached vertically to the 

expiants whereas those by NAA were horizontally. Another prominent difference of NAA 

compared to 2,4-D induced embryos was the faster maturation. In NAA containing medium 

mature embryos are obtained in 14 days, whereas in 2,4-D it required a minimum of 21 

days. Shortening the culture duration has a beneficial effect, particularly, when operating on 

a large scale. 

For many genotypes and in several laboratories there is still a problem in obtaining 

embryogénie cultures of cassava (Mroginski and Scocchi, 1992; Taylor et al., 1992; 

Narayanaswamy et al., 1995; Sudarmonowati and Bachtiar, 1995). The main problem is not 

that embryogénie tissue from primary expiants can be obtained, but the large scale 

multiplication of this tissue by secondary embryogenesis. For this purpose, either tissue 

consisting of immature embryos or mature embryos can be used. Multiplication of immature 

embryos is highly genotype dependent (Nigel Taylor, personal communication), while 

multiplication of mature embryos is largely genotype independent (Raemakers, 1993; Chapter 

3). Both primary and secondary somatic embryogenesis are characterized by the formation 

of propagules with a bipolar structure. Therefore, Taylor et al., (1995) proposed the term 

organized embryogenesis. Organized cells are defined as a group of actively dividing cells, 

having the tissues and organs formed into a characteristic unified whole (Walker, 1989). 

A less organized type of somatic embryogenesis was developed by Taylor et al. (1995). With 

continuous selection, organized embryogénie tissue cultured on a Gresshoff and Doy (1972) 

medium salts and vitamins supplemented with Picloram converted gradually into a less 

organized tissue. This tissue consisted of a callus-like mass of pro-embryos which was very 

friable. Therefore, this tissue was called friable embryogénie callus (FEC). The cells in FEC 

are continuously in a state where they break away from group control and because of that 

they are not organized into a unified structure. Suspension cultures were initiated by culturing 

FEC in Schenk and Hildebrandt (1972) medium supplemented with 6 % (w/v) sucrose and 

10 mg/1 Picloram. Every 2-3 days this medium was refreshed. Maturation of friable 
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embryos was accomplished by transferring FEC to maturation medium (Chapter 4, 5). 

Mature embryos could be induced into secondary somatic embryogenesis by culturing on 

Murashige and Skoog (MS) medium supplemented with auxins. 

Primary and secondary somatic embryogenesis are relatively easy to establish in a wide range 

of genotypes (Chapter 2), while FEC is for the time being restricted to a few genotypes. The 

prospect of FEC for a new system of somatic embryogenesis and genetic transformation is 

promising, although further research is needed to make this system applicable to more 

genotypes. Essential for this process is the availability of high quality organized tissue and 

the ability of this tissue to convert into FEC. Taylor et al. (1995) "used organized tissues" 

which were multiplied at the immature state to initiate FEC. In this case two steps (initiation 

of organized tissue and conversion into unorganized tissue) are determinative for the 

successful initiation of FEC. Both steps are genotype dependent. If organized tissue is 

multiplied in the mature state as described by Raemakers et al., (1993) then only the ability 

of this tissue to convert into FEC is a determinative step to initiate FEC. It remains to be 

investigated whether or not organized tissue can be used as starting material. If organized 

tissue cannot be used, then this tissue should be first multiplied in the immature state before 

it can be used to initiate FEC. In chapter 2 it is shown that this readily can be accomplished. 

Either by culturing expiants at a high density or by reducing the cyclic duration. 

Regeneration of protoplasts 

Protoplasts isolated from leaf mesophyll cells and somatic embryos of different genotypes 

developed readily into green callus. The callus occasionally formed roots, but not shoots or 

embryos (Chapter 3). In rice (Toriyama et al., 1985), maize (Rhodes et al., 1988; Lyznik 

et al., 1989), white spruce (Attree et al., 1989) and coffee (Acuna and Pena, 1991) 

regeneration of plants from protoplasts was achieved after using suspension cultures as 

starting material. Also in cassava protoplasts isolated from suspension cultures obtained from 

friable embryogénie callus were capable of regenerating into plants (Chapter 4). The yield 

of protoplasts isolated from FEC was four-fold higher as compared to that from somatic 

embryos and leaf mesophyll cells. It was shown that the callus derived from these protoplasts 

behaved as the original material: culture on maturation medium leaded to maturation of 

friable embryos, culturing of friable callus on GD2 or SH6 leaded to proliferation of FEC 
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and culturing of mature embryos on auxin supplemented medium to secondary somatic 

embryogenesis (Fig. 1). 

Transformation of cassava 

Transformation in higher plants can be defined as the process of introduction and expression 

of a foreign gene or genes in a genome other than by sexual crossing (Visser, 1989). Two 

types of gene transfer techniques are mainly employed in plant genetic engineering. One is 

mediated by Agrobacterium spp. (Potrykus et al., 1985). In this method a vector, A.tumefaci-

ens often is used. The success of transformation relies in large part on the ability of the 

bacterium to transfer DNA to the cells. The other method, known as direct gene transfer, is 

free of a vector. There are different direct gene transfer techniques available. The two most 

commonly used are particle bombardment or biolistic delivery (Sanford, 1988) and 

electroporation (Fromm et al., 1986). 

(J). Agrobacterium-mediated transfer of DNA 

In the past, five strains of A.tumefaciens have been tested on secondary somatic embryos of 

cassava. The strain AM 8706 formed readily blue spots resulting from the transient 

expression of GUS. Occasionally this resulted in chimeric transformed embryos. In one case 

an embryo was obtained with a transformed primary root (Raemakers-unpublished). Cabrai 

et al., (1995) have identified a strain of Agrobacterium spp. that is more virulent to cassava. 

Transformation of secondary somatic embryos with this wild type strain had resulted in some 

putative transformed plants. It remains to be investigated whether this wild type strain can 

be converted into a useful plant vector. 

(2). Particle bombardment 

Secondary somatic embryos induced by NAA or 2,4-D have been treated by particle 

bombardment. In both cases this resulted in chimeric transformed embryos (Chapter 2). 

However, it was not possible to enlarge the transformed sectors by a new cycle of 

embryogenesis. Essentially the same results were reported by Fauquet et al., (1992) and 

Cabrai et al., (1995). The nature of somatic embryogenesis in FEC is different from 

secondary somatic embryogenesis as described by Raemakers (1993). The main difference 

concerned, the basic origin of new embryos. In FEC it was claimed to be at the surface of 
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the embryogénie units (Taylor et al., 1995) so that they are more accessible for gene-

transformation. Particle bombardment of FEC resulted in stable transformation (Chapter 5). 

The transformed nature of FEC and of transformed plants was confirmed by PCR and 

Southern Blot analysis, respectively. Machine parameters which influence the momentum of 

the particles were not determinative. The physiological state of the material was more crucial 

for successful transformation. For this purpose, attention must be paid in culturing a good 

quality of suspensions. Two to three week-old suspension cultures were found to be the best 

for transformation. Under the conditions that these suspension cultures are competent for 

regeneration, transformation will be enhanced. Finally more attention must be paid to the 

post-transformation environment. 

(3). Electroporation 

Electroporation of chopped secondary embryos resulted in transient GUS activity. However, 

also this technique did not result with the used expiants in stably transformed somatic 

embryos (Luong et al., 1995). Electroporation of FEC might be an alternative option for 

successful plant transformation. 

Electroporation of protoplasts is one of the direct gene transfer techniques that produced 

transgenic plants in many important cultivated plant species (see Bajaj, 1989a; 1989b; 1993). 

This technique was applied by us in cassava using protoplasts isolated from young leaves. 

Although in a low frequency, it resulted in transformed callus (Chapter 3-results not shown; 

LUC positive). This transgenic callus was not capable of regenerating into plants. The 

presence of competent cells for regeneration was the key step in establishing a transformation 

system. Protoplasts isolated from FEC have the capability to regenerate into plantlets 

(Chapter 4). Combination of these two results can lead to a much better transformation 

procedure. 

Barrier to cassava transformation 

The described transformation procedure in Chapter 5 needs to be improved especially with 

respect to maturation and germination of mature embryos into plants. The same problems 

were observed with FEC derived from protoplasts. Maturation of friable embryos was not 

studied thoroughly. However, an improved procedure for germination of mature embryos is 

described in Chapter 6. It was shown that desiccation followed by culturing in darkness with 
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a low BAP concentration increased germination of NAA induced embryos in all tested 

genotypes. The same procedure was not successful for 2,4-D induced embryos. This positive 

effect of NAA on germination can not be used directly for mature embryos derived from 

FEC or protoplasts, because 2,4-D was more efficient than NAA in inducing secondary 

embryogenesis. However, after one cycle of secondary embryogenesis NAA was also highly 

efficient in inducing secondary embryogenesis (data not shown) and than these embryos 

should be used for germination. 

Genotype dependency has been reported for both the gene transfer technique and the ability 

to regenerate. Transformation competence of Lycopersicon peruvianum is higher than in 

cultivated tomato L. esculentum (Koornneef et al., 1986). This was also observed for 

different genotypes of potato (El Kharbotly, 1995). At this moment FEC is established for 

a few cassava genotypes, and it remains to be determined whether FEC also can be 

established in other genotypes. It might be the case that a genotype which is bearing useful 

traits is recalcitrant to transformation, while a genotype with less importance is more 

amenable. The possible strategy to overcome these problems is transformation followed by 

sexual crossing and conventional breeding. Embryo rescue can help to increase the low 

frequency of germination of cassava seeds. Multiplication of the transformed seedling by 

micropropagation will not be a serious problem because this work is a routine procedure for 

almost every laboratory. A more serious problem for developing countries is to establish 

alternative methods for selection of transformed tissues. In chapter 5 selection of transformed 

tissues was based on the activity of the luciferase gene. Unfortunately the equipment to detect 

LUC activity is relatively expensive. Selection based on antibiotics like kanamycin (reviewed 

by Nap et al., 1992), or herbicides like L-phosphinotricin (De Block et al., 1987) seem to 

be suitable alternatives. 

Prospect of gene transformation in cassava 

Application of plant gene technology encompasses a multitude of different techniques ranging 

from isolation of useful genes, their characterization and manipulation, to the reintroduction 

of modified constructs into the plants (Lonsdale, 1987). Plant gene technology will catalyze 

progress in plant breeding, as will be exemplified by a few examples of transgenic crops like 
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rice (Chen et al., 1987; Shimamoto et al., 1989), maize (Gordon-Kamm et al., 1990; Vain 

et al., 1993), wheat (Marks et al., 1989), and potato (De Block, 1988; Visser et al., 1989). 

Rapid progress in gene technology has allowed insight into the complex molecular mechanism 

of plant pathogen recognition and the natural defence strategies of host plants. This 

technology can also be used for controlled and efficient identification of desirable genotypes, 

far beyond the possibilities of classical breeding. 

Successful attempts have been made to improve resistance against pathogenic viruses like 

tobamovirus in tobacco (Powel Abel et al., 1986), potexvirus in potato (Hoekema et al., 

1989) and in papaya (Fitch et al., 1992). In the above examples the introduced trait was 

based on the expression of single genes that are coding for the coat protein. In cassava, 

African cassava mosaic virus (ACMV) and cassava common mosaic virus (CCMV) might 

be controlled by the coat protein-mediated resistance technique (Fauquet et al., 1992). The 

genes encoding key enzymes of cyanogenesis have been cloned (Hughes et al., 1994) which 

makes manipulation of cassava cyanogenesis possible by genetic transformation using the 

antisense approach. 
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SUMMARY 

Cassava (Manihot esculenta Crantz) is a tropical tuber crop with unique properties. It is 
predominantly grown because of its starchy roots. Also in Indonesia, where it is known as 
'ubi kayu' or 'singkong', it is an important crop. Until the middle of the 1960's, cassava was 
the major food security crop in rural areas of some provinces in Indonesia. Nowadays, 
cassava is an alternative crop for co-staple food and a substitutive crop when other crops fail. 
Even on marginal soils or cultivated with minimum tillage, cassava is one of the best 
carbohydrate producers. Large portions of cassava are used for animal feed and in starch 
based industries and are exported to the European Community and Japan. Local demand for 
fresh cassava for human consumption and for the agro-industry is increasing. Due to a large 
number of problems further use and expansion of cassava is restricted. One of these problems 
concerns the rather low yield of the crop. Although yield of over 90 tons/hectare have been 
reported the yield is rarely exceeding 12 tons/hectare. To some extent this can be attributed 
to the absence of fertilizer during growth. Another important factor is the susceptibility to 
all kind of pests and diseases, which is enhanced by the fact that farmers produce, by 
vegetative propagation, their own planting material. In wet regions like Western-Java or 
Sumatra Cassava Bacterial Blight is a serious disease, while in dry regions infections by red 
mites are a threat to the harvest. For human consumption it is necessary to have genotypes 
with a low cyanide content. Furthermore, the industry needs cassava cultivars especially 
suited for high starch production and adapted to mechanical harvest methods. At an 
international level, cassava breeding programmes have responded to ever changing situations. 
However, breeding programmes are time consuming and difficult because cassava is 
considered a 'poor man's crop' and thus little research efforts have been directed towards 
improvement of this important crop. The fact that cassava is a vegetatively propagated, cross 
breeding allotetraploid crop did not help either. As of 1980 a number of breeding 
programmes have been initiated amongst others by the Central Institute for Food Crops of 
the Agency for Agricultural Research and Development (Indonesia) to synthesize better 
performing genotypes. Because it takes 10 to 15 years to introduce a new variety on the 
market it is imperative that breeders make use of all available means to obtain these better 
genotypes. By implementing in vitro multiplication mass clonal propagation of improved 
varieties can be applied, while genetic modification (by which genes of interest can be 
transferred into cassava) opens possibilities to add or alter traits which cannot easily be 
achieved by traditional breeding alone. 

This thesis deals with an investigation of several aspects of regeneration and transformation 
of cassava. The aim was to develop a routine procedure for genetic modification of cassava. 
In Chapter 1 a general overview is given of those aspects which are determinative in 
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obtaining successful transformation. Furthermore the available methods of regeneration and 
their unsuitability to be combined with transformation is discussed. Cassava transformation 
requires an efficient and reliable regeneration system which can be combined with a gene 
transformation system. Previously, a regeneration system was developed in which somatic 
embryos produced new embryos in a cyclic fashion. Considerable efforts to combine this 
system with a transformation technique had failed. With this system only chimeric 
transformed embryos were formed. One of the reasons for this was the way in which the 
embryos developed. When using the auxin 2,4-D new embryos developed from deep within 
the used tissue. When using another auxin (NAA) it was not possible to obtain primary 
somatic embryos, but when secondary or cyclic somatic embryos were used this auxin gave 
rise to the formation of new embryos from the (sub)epidermis. However, this change did not 
lead to completely transformed embryos either (Chapter 2). The use of NAA had a distinct 
positive effect on the speed and frequency with which new embryos could be obtained. 

As mentioned in Chapter 1 somatic embryogenesis proved to be the only repeatable and 
efficient way of regeneration available in cassava. In Chapter 3 experiments are described 
in order to develop a protoplast regeneration system. Previously only leaves or stems were 
used as source for protoplasts. In Chapter 3 the results of using leaves, but more importantly 
using somatic embryos as protoplast source are described and compared. The rational behind 
it is the assumption that protoplasts isolated from somatic embryos might have a higher 
regeneration capacity as compared to protoplasts isolated from leaves. Different compositions 
of growth regulators were tested at subsequent stages of culture. None of the tested protocols 
resulted in regeneration. However, protoplasts isolated of both somatic embryos and leaf 
mesophyll expiants of several genotypes formed readily green callus. Root formation was 
observed in a few cases, but shoots were never formed. The failure to obtain plants from 
protoplasts was either due to incompetence of protoplasts to regenerate or to inappropriate 
media compositions or a combination of both factors. 

In Chapter 4 a, for cassava, new somatic embryo culture system based on so called friable 
embryogénie callus or suspension culture (FEC) is introduced. This was developed by Dr. 
N. Taylor of the University of Bath in the United Kingdom. This system differs in many 
respects from the previous system of somatic embryogenesis. Friable embryogénie callus 
(FEC) occurs almost always in the form of pre-globular embryogénie units with sizes of less 
than 1 mm. FEC has a high proliferation rate and originates from surface cells of these pro-
embryos and (in most cases) from one single cell. Efforts were made to set up a protoplast 
regeneration system by using FEC as the source for protoplasts. The procedures of protoplast 
isolation from somatic embryos (Chapter 3) were applied to suspension cultures derived from 
FEC. Changes were made with respect to the medium composition for the first step in 
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culturing protoplasts. The first culture period required at least three to four weeks for the 
induction of cell divisions and development of microcalli. After two months of culture up to 
60% of these calli were 'friable'. For maturation of friable embryos, FEC was transferred 
to maturation medium for two months. Finally, development of shoots was performed by 
culturing mature embryos on MS2 supplemented with 1 mg/1 BAP. Shoots developed after 
at least four weeks of incubation on this germination medium, but only 30% of the mature 
embryos germinated. 

Because in FEC the new pro-embryos are derived from single cells at the surface of the 
existing embryogénie units, they were used as starting material for direct gene transfer by 
particle bombardment (Chapter 5). The FEC of genotype TMS60444 was bombarded with 
DNA constructs harboring the firefly luciferase gene. This gene, normally not present in 
plant material, is capable of emitting light which can be detected by a luminometer (a camera 
highly sensitive for light emission). Machine parameters such as the distance between the 
target cells and DNA-macro-carrier and the strength of velocity were not determinative. The 
quality of starting material was crucial for successful transformation. FEC cultured for at 
least a week in liquid SH6 medium was found to be the best target tissue for transformation. 
Selection of transient and stably transformed FEC was based on the activity of the firefly 
luciferase gene. Friable embryos containing only one spot with luciferase activity were 
subcultured in either liquid or on solid medium. After 8 weeks transformed FEC cultured in 
liquid medium increased almost fivefold, and in solid medium almost threefold. Friable 
embryos of cultures containing at least 1% transformed material were cultured for 
maturation. Transformed mature somatic embryos were multiplied by cyclic somatic 
embryogenesis before they were allowed to develop into shoots. The transgenic nature of 
FEC cultures as well as that of regenerated plants was confirmed by PCR and Southern Blot 
Analysis, using the luciferase gene as a probe. 

The developed transformation procedure is reproducible for the investigated genotype. Major 
efforts are directed to make the protocol applicable to other genotypes as well, to decrease 
the duration of time needed to obtain transformed shoots and to increase the efficiency. 
Important bottlenecks in achieving these goals are: maturation of embryos from the FEC 
cultures and shoot development of the mature embryos by optimising germination. 
Because transgenic somatic embryos are in principle clonal of nature, the propagules can be 
used for mass clonal multiplication. For this application an efficient germination system is 
a prerequisite. Therefore, the ability of NAA and 2,4-D to obtain shoot conversion is 
described in Chapter 6. After desiccation, NAA induced embryos germinated in a higher 
frequency than 2,4-D induced embryos. Cytokinin was required for a high frequency 
germination. Incubating desiccated embryos in the dark with a low cytokinin concentration 
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(0.1 mg/1 BAP) or in light with a higher concentration (1 mg/1 BAP) were comparable in 
promoting germination. However, they differed in the morphology of the produced shoots 
and in the germination period of the embryos. If the concentration of BAP was low ( < 0.1 
mg/1) an embryo developed into a single shoot, in contrast to a high (1.5 mg/1 or more) 
concentration where multiple shoots were formed from one embryo. 

This thesis is a major step in the establishment of a routine transformation protocol for 
cassava using particle bombardment. Furthermore it opens an alternative way for 
transformation by using the described protoplast regeneration system combined with 
electroporation or PEG mediated DNA transformation. With this method breeding of cassava 
by using transgenic plants has become possible. 
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SAMENVATTING 

Cassave (Manihot esculenta Crantz), ook wel manioc of tapioca genoemd, is een zeer 
belangrijk voedselgewas in de tropen. Het wordt met name geteeld voor de zetmeel 
bevattende wortelstokken. Ook in Indonesië waar het bekend is onder de namen 'ubi kayu' 
of 'singkong' wordt het gewas op grote schaal geteeld. Met name op het platteland wordt 
cassava als een hoofdgewas geteeld wanneer de boeren over onvoldoende geld beschikken 
om gewassen zoals mais te kunnen telen. Ook wanneer de kwaliteit van de grond slecht is 
zal de boer in veel gevallen voor cassave kiezen. Cassave is een goedkoop gewas zowel in 
aanschaf als onderhoud, terwijl het ook nog eens een redelijke oogstzekerheid geeft. 
Alhoewel cassave nog steeds als 'armeluis' gewas wordt beschouwd neemt de economische 
betekenis van het gewas, niet alleen in Indonesië, maar ook in andere landen in Zuid-Oost 
Azië toe. Een groot deel van de cassave productie wordt geëxporteerd als chips of pellets 
voor de veevoeder industrie naar onder andere Europa. Cassave productie voor lokaal ge
bruik, voor humane consumptie en als zetmeel bron, wordt steeds belangrijker. Met 
toenemende industrialisatie en het bereiken van een hogere levensstandaard wordt de 
betekenis van cassave als zetmeel bron steeds belangrijker. Er is echter een groot aantal pro
blemen die, naast een gebrekkige basale kennis van het gewas, verdere toename van gebruik 
en toepassingen van cassave in de weg staan. 

Een algemeen voorkomend probleem is de relatief lage opbrengst van het gewas. Ofschoon 
opbrengsten van 90 ton per hectare mogelijk zijn, wordt zelden meer dan 12 ton per hectare 
gerealiseerd. Voor een deel wordt dit verklaard door de relatief slechte gronden waarop 
cassave geteeld wordt en het niet gebruiken van kunstmest bij de teelt. Voor een ander deel 
wordt het verklaard door de vatbaarheid van cassave voor plagen en ziekten dat versterkt 
wordt doordat de boeren hun plantmateriaal zelf vermeerderen. In natte regio's zoals West-
Java en Sumatra is de door een bacterie veroorzaakte ziekte "Cassava Bacterial Blight" een 
groot probleem, terwijl in droge gebieden aantasting door rode mijten een bedreiging voor 
de oogst vormt. Voor menselijke consumptie is het noodzakelijk dat het cyanide gehalte laag 
is. Verder zou men om goed en snel te kunnen oogsten willen beschikken over machinaal 
oogstbare rassen. 

Afhankelijk van het doel dat men nastreeft wil men dus beschikken over superieure cassave 
genotypen. Traditionele veredeling van cassave is langdurig en moeilijk. Omdat cassave lange 
tijd beschouwd werd als een onbelangrijk gewas is er relatief weinig veredeld. Dit werd nog 
eens versterkt door het feit dat cassave, een allotetraploid (twee verschillende genomen die 
elk twee maal voorkomen) en een, slecht bloeiende, kruisbevruchter is die bij voorkeur 
vegetatief vermeerderd wordt via stekken. Sinds 1980 zijn er veredelingsprogramma's 

123 



opgestart onder andere bij het Central Institute for Food Crops van het Agency for Agri
cultural Research and Development (AARD) om goede genotypen te synthetiseren. Vanwege 
de tijd die het kost om een nieuw traditioneel veredeld ras op de markt te kunnen brengen 
(10 tot 15 jaar) is het noodzakelijk dat de veredelaars ook gebruik maken van nieuwe 
technieken om deze rassen te verkrijgen. Hierbij kan gedacht worden aan massale klonale 
vermeerdering via in vitro technieken en aan genetische modificatie. Genetische modificatie 
is een techniek waarbij men gericht een eigenschap in een plant kan wijzigen of toevoegen. 
Dit houdt in dat men, in theorie, het beste ras van dit moment resistent kan maken tegen die 
ziekte die op dat moment de meeste schade veroorzaakt. 

De centrale leidraad van dit proefschrift is het ontwikkelen van een genetisch modificatie 
systeem voor cassave. Genetische modificatie vereist zeer efficiënte en, bij voorkeur, ras 
onafhankelijke regeneratie-protocollen die gecombineerd kunnen worden met transformatie. 
Regeneratie bij planten kan via somatische embryogenese en adventief scheut Organogenese 
verlopen. In Hoofdstuk 1 wordt een kort overzicht gegeven van de aspecten welke bepalend 
zijn voor het welslagen van een succesvolle transformatie in het algemeen en dus ook bij 
cassave. Verder wordt een overzicht gegeven van de beschikbare regeneratie methoden bij 
cassave en hun (ongeschiktheid om ze te combineren met een transformatie protocol. De 
enige beschikbare regeneratiemethode -somatische embryogenese- had in eerder onderzoek 
bij de vakgroep Plantenveredeling (Proefschrift Raemakers, 1993) en ook bij andere onder
zoeksinstellingen niet tot volledig getransformeerde planten geleid. Slechts met grote moeite 
konden er embryos en een enkele scheut verkregen worden die, voor het transgen, chimeer 
bleken te zijn. Eén van de oorzaken daarvan zou de wijze kunnen zijn waarop de embryos 
uit dieper gelegen delen van de explantaten ontstaan wanneer ze op embryo inducerend, 
d.w.z 2,4-D (een auxine) bevattend, medium werden gelegd. Bij het gebruik van een ander 
auxine (NAA), dat niet in staat was om primaire somatische embryogenese te induceren maar 
wel secundaire of cyclische embryogenese, bleek de ontstaans wijze van de embryos anders 
te zijn. De nieuwe embryos werden meer aan de oppervlakte van de explantaten gevormd. 
Desondanks leidde dit niet tot de vorming van volledig getransformeerde embryos wanneer 
ze in transformatie experimenten gebruikt werden (Hoofdstuk 2). Wel bleek het gebruik van 
NAA positieve effecten te hebben op de snelheid en frequentie waarmee nieuwe embryos 
werden verkregen (Hoofdstuk 2). 

Zoals gemeld bleek somatische embryogenese de enige wijze te zijn waarop regeneratie kon 
plaats vinden. Hoofdstuk 3 beschrijft de resultaten van experimenten die erop gericht waren 
om uitgaande van protoplasten, die uit blad en somatische embryos verkregen werden, tot 
plant regeneratie te komen. De verwachting was dat protoplasten van somatische embryos 
wellicht een beter regeneratief vermogen zouden hebben dan protoplasten uit blad en derhalve 
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in staat zouden moeten zijn om tot planten te regenereren. Dit bleek niet het geval te zijn. 
Ontwikkeling van protoplasten uit beide uitgangsweefsels tot microcalli en zgn. groen callus 
bleek zeer eenvoudig. De verdere uitgroei tot planten kon niet gerealiseerd worden, heel 
incidenteel werden wortels verkregen (Hoofdstuk 3). 

In Hoofdstuk 4 wordt een, voor cassave, nieuwe vorm van embryogene callus- en suspensie-
cultuur geïntroduceerd. Deze 'friable' callus- en suspensies-cultures waren afkomstig van Dr. 
N. Taylor van de Universiteit van Bath in Engeland. Van dit systeem was bekend dat het 
nieuwe embryos vanuit de buitenste cellaag van de pro-embryos en vanuit één enkele cel 
vormde. Deze celsuspensie was in de praktijk een zeer goede bron voor protoplasten. Het 
bleek mogelijk de protoplasten afkomstig van deze suspensies tot micro-callus en callus te 
laten opgroeien, gebruikmakend van de ontwikkelde media en methoden beschreven in 
Hoofdstuk 3. Het callus was ten dele 'friable' en kon betrekkelijk eenvoudig tot de productie 
van volwassen embryos geinduceerd worden of kon prolifereren tot een nieuwe embryogene 
suspensie. Uitgaande van de volwassen embryos was het tenslotte mogelijk om scheuten te 
verkrijgen. Dertig procent van de volwassen embryos groeide uit tot planten. 

Het gebruik van deze embryogene suspensies in transformatie experimenten door middel van 
'partiele bombardment' (het beschieten van suspensies met kogeltjes die bedekt zijn met DNA 
dat - eenmaal in de plant aanwezig- aanleiding geeft tot de productie van licht) wordt in 
Hoofdstuk 5 beschreven. Het markergen dat zorgt voor de emissie van licht, het zgn. Lucife-
rase gen afkomstig uit het vuurvliegje, werd hier als selectiemarker gebruikt om transgene 
embryogene suspensies te verkrijgen. Herhaalde selectie van transgeen callus, gebaseerd op 
de emissie van licht, resulteerde in cultures waarvan een gedeelte op grond van de expressie 
van het luciferase gen transgeen was. Bij één experiment werd geprobeerd om de suspensies 
uit te laten groeien tot volwassen embryos. Dit lukte met een zeer lage efficiëntie. De 
getransformeerde embryos werden daarna eerst d.m.v. secundaire embryogenese vermeer
derd. Een klein aantal van de volwassen embryos groeide tenslotte uit tot scheuten. Deze 
scheuten bleken ook, op grond van hun Luciferase activiteit, transgeen te zijn. Dit werd door 
moleculaire analyses m.b.v. PCR en Southern hybridisatie van zowel embryogene cultures 
als scheuten bevestigd. De scheuten bleken ten minste vier inserten van het ingebrachte con
struct te bevatten. De methode lijkt bij het cassave genotype TMS 60444 reproduceerbaar, 
maar met een lage frequentie, te werken. Verder onderzoek zal erop gericht zijn de methode 
toepasbaar te maken voor meerdere genotypen, terwijl ook getracht zal worden de efficiëntie 
te verhogen. Belangrijke 'bottle-necks' zijn maturatie van embryos uit de embryogene 
suspensies en scheutvorming van de volwassen embryos. 

In Hoofdstuk 6 zijn resultaten beschreven van experimenten die erop gericht waren de scheut-
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conversie te verhogen. Het bleek dat het uitdrogen van NAA geïnduceerde embryos leidde 
tot een snellere en hogere frequentie van scheurvorming. Uitdrogen van 2,4-D geïnduceerde 
embryos gaf dit effect niet. Het was noodzakelijk om cytokinine (BAP) aan de kiemingsmedia 
toe te voegen. De morfologie van de verkregen scheuten was sterk afhankelijk van de 
gebruikte BAP concentratie. Wanneer de concentratie van BAP laag was (ca 0.1 mg/l) gaf 
dit aanleiding tot enkelvoudige scheuten per embryo. Was de concentratie hoog (ca 1.5 mg/l 
of meer) dan bleken er zich per embryo meerdere scheuten te ontwikkelen. Meer onderzoek 
is nodig om de scheutconversie bij de embryogene suspensie cultures te verbeteren. 

Dit proefschrift heeft een belangrijke bijdrage geleverd aan de ontwikkeling van een 
transformatieprotocol voor cassave. Deze transformatie methode is op het moment ontwikkeld 
voor één bepaald genotype. Het succesvol induceren van een embryogene suspensie cultuur 
bij andere cassave genotypen zal ook hier de weg tot transformatie openen. Echter het feit 
dat vanuit deze embryogene suspensies protoplasten te isoleren zijn die in staat zijn verder 
tot scheuten te ontwikkelen opent alternatieve wegen voor transformatie. Door protoplasten 
in combinatie met Agrobacterium cocultivatie, electroporatie of polyethyleen glycol (PEG) 
gemedieerde DNA overdracht toe te passen wordt enerzijds de efficiëntie aanmerkelijk 
verhoogd terwijl anderzijds de kans op chimerie, die bij partiele bombardment van de 
embryogene suspensies groot is, verwaarloosbaar klein. 
De hier beschreven transformatie methode brengt de veredeling van cassave met behulp van 
transgenen dichterbij. 
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RINGKASAN 

Ubi kayu (Manihot esculenta Crantz) adaiah tuberina yang tumbuh di daerah tropik serta 
mempunyai kegunaan yang unik. Ubi kayu adaiah tanaman penghasil karbohidrat utama pada 
lahan yang marginal atau pada lahan yang pemeliharaannya minimum. Sampai pertengahan 
tahun 1960 ubi kayu masih merupkan makanan cadangan bagi masyarakat pedesaan di 
beberapa propinsi terutama di Jawa. Sekarang ubi kayu terutama digunakan sebagai tanaman 
pengganti jika tanaman utama gagal dipanen. Budidaya ubi kayu terutama ditujukan untuk 
industri tepung tapioka dan pakan ternak. Selain untuk bahan baku industri, ubi kayu yang 
berkadar HCN rendah dikonsumsi sebagai makanan penganan. Teknologi pengolahan lanjut 
karbohidart dari ubi kayu seperti untuk sirup glukosa dan monosodium glutamat di luar 
negeri, antara lain di Muangthai telah dimulai sejak tahun 1950. Kegunaan ubi kayu di 
bidang industri akhir-akhir ini semakin meningkat, di Jepang terutama dipakai untuk industri 
sirup dekstrosa, industri makanan, industri kertas dan industri kimia. Di Nigeria penelitian 
mengenai ubi kayu diarahkan untuk menghasilkan tapioka yang bisa dijadikan bahan 
pencampur tepung terigu menjadi "tepung komposit" untuk membuat roti. Program tepung 
komposit di beberapa negara berkembang di Afrika seperti di Nigeria, Uganda dan Zaire 
telah dimulai sejak tahun 1964, dengan tujuan mengurangi import tepung terigu yang mahal 
sehingga mampu menghemat keuangan negara. Dalam dekade ini industri makanan yang 
menggunakan tepung terigu sebagai bahan bakunya meningkat pesat di Indonesia. Jika rasio 
amilose-amilopektin dalam tepung tapioka dapat dimodifikasi maka penggunaan tepung terigu 
dapat dikurangi. Substitusi parsial tepung terigu dengan tepung tapioka yang dimodifikasi 
akan mengurangi impor gandum. Rekayasa genetik untuk merubah ratio amilose-amilopektin 
pada ubi kayu peluangnya terbuka dan menjadi kajian beberapa industriawan di negara 
anggota Masyarakat Ekonomi Eropa dan Anerika Serikat. 

Agroindustri memerlukan kultivar yang cocok terutama untuk produksi tepung tapioka. 
Program pemuliaan ubi kayu pada tingkat internasional telah mengantisipasi tuntutan 
kebutuhan pasar yang situasional dengan teknologi DNA. Gen yang dikehendaki dapat di-
transfer ke dalam genom dengan transformasi genetik. Transformasi gen perlu sebuah sistem 
regenerasi yang efisien dan dapat dibakukan. Beberapa sistem regenerasi pada ubi kayu 
melalui somatik embriogenesis yang diinduksi dengan auxin telah dikembangkan. Dalam 
sistem tersebut embryogenesis bisa dilakukan secara berulang-ulang sehingga merupakan 
siklus (embriogenesis sekunder). 

Beberapa usaha untuk membuat sistem transformasi yang bisa dibakukan pada ubi kayu 
dengan menggunakan somatik embrio serta Agrobacterium tumefaciens sebagai mediatornya 
ternyata belum berhasil. Penggunaan bom partikel dengan target embrio matang juga tidak 
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berhasil mendapatkan transformasi gen yang stabil. Hasil maksimal dengan cara ini hanya 
embrio yang kimerik, berarti hanya sebagian kecil sel yang mengalami trasnformasi. Kimerik 
ini bisa dihindari jika regenerasi tanaman melalui protoplas berhasil. Oleh karena itu target 
pertama dari penelitian ini adalah mengembangkan sistem somatik embriogenesis dan 
regenerasi protoplas yang bisa dipakai target transformasi gen. 

Dalam Bab 2 dikemukan bahwa NAA mampu menginduksi somatik embriogenesis sekunder, 
tapi tidak untuk induksi primer. Induksi embriogenesis dengan NAA ternyata lebih responsif 
dan produktif serta waktu yang diperlukan lebih singkat dibanding dengan induksi dengan 
2,4-D. Tapi frekuensi siklus embriogenesis yang tinggi seperti di atas lima siklus, induksi 
NAA ini dapat menyebabkan embrio berakar (adventitious root), pada 2,4-D fenomenon ini 
tidak dijumpai. 

Induksi embriogenesis sekunder dengan NAA hampir bersifat genotipe independen, semua 
genotipe yang diuji bisa memproduksi embrio. Populasi eksplant yang tinggi atau 
memperpendek siklus kultur, cenderung menghasilkan embrio yang premature, baru 
berkembang menjadi embrio matang jika ditransfer ke medium MS ditambah 0.1 mg/l BAP. 
Pada prinsipnya somatik embrio adalah klon, sehingga dapat dipakai untuk perbanyakan bibit 
secara masal. 

Penelitian protoplas pada ubi kayu umumnya menggunakan daun muda atau batang sebagai 
donor protoplas. Dalam Bab 3 disajikan hasil penelitian dengan menggunakan mesofil daun 
dan somatik embrio sebagai donor protoplas. Beberapa komposisi pengatur tumbuh dicoba 
pada berbagai stadia perkembangan protoplas, ternyata tidak berhasil menginduksi regenerasi 
tanaman. Kalus yang berwarna hijau dan kadang-kadang berakar dapat diinduksi, baik dari 
mesofil daun maupun dari somatik embrio. Induksi akar berhubungan dengan adanya NAA 
pada medium A (induksi pembelahan sel). Kegagalan regenerasi diduga akibat inkompetensi 
protoplas atau komposisi media tidak tepat atau akibat kombinasi keduanya. 

Sistem somatik embriogenesis yang paling baru telah diketemukan yaitu kalus embriogenik 

remah (friable embryogénie callus=FEC). System ini berbeda dengan somatik embriogenesis 

yang menggunakan eksplant berasal dari jaringan yang telah berdeferensiasi dan mengalami 
organogenesis. FEC bentuknya selalu "pre-globular embryo" berdiameter maksimal 1 mm, 
tingkat proliferasinya tinggi serta berasal dari lapisan permukaan sel. 

Upaya untuk memperoleh system regenerasi tanaman dari protoplas diulang dengan 
mengunakan FEC sebagai donor protoplas. Metoda isolasi dan kultur protoplas dalam Bab 
3 diaplikasikan lagi pada FEC (Bab 4). Perubahan hanya pada media pertama yaitu 
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menggunakan medium TM2G. Kultur protoplas tahap pertama dalam medium TM2G perlu 
waktu 3 sampai 4 minggu untuk pembelahan sel dan induksi mikro kalus, seterusnya setelah 
dikulturkan selama dua bulan, protoplast berkembang menjadi FEC dengan kualitas yang 
tinggi. Setelah ditransfer ke media MS yang dimodifikasi (medium pematangan), FEC 
tumbuh menjadi embrio. 

Perbanyakan FEC dilakukan dengan pertama dikulturkan pada media Gresshoff dan Doy 4% 

(GD4) + 2 mg/l Picloram selama 21 hari, seterusnya transfer ke GD2 + 10 mg/l Picloram. 
Kualitas FEC yang baik bisa dipakai untuk inisiasi kultur suspensi sel. Induksi tunas 
dilakukan dengan cara mengkulturkan embrio pada medium MS2 + 1 mg/l BAP. Tunas akan 
tumbuh setelah dikulturkan minimal selama empat minggu. 

FEC adalah proembrio yang tumbuh dari sel tunggal di permukaan embrio yang telah ada, 
jadi dia merupakan "daughter cell" dari proembrio, oleh karena itu cocok untuk dijadikan 
target transfer gen dengan bom partikel. Genotipe TMS60444 dibom dengan plasmid 

konstruksi pJitlOO atau pJit64 yang mengandung gen Luciferase berasal dari serangga 
Kunang-kunang (Bab 5). Parameter-parameter seperti jarak sel target, momentum peluru 
pembawa DNA ternyata tidak determinatif. Kualitas bahan awal (FEC) lebih menentukan 
keberhasilan transformasi gen. Oleh karena itu perhatian harus diutamakan agar kultur FEC 
dengan kualitas yang prima dapat dicapai. Kultur FEC selama 6 minggu pada medium cair 
SH6 berpengaruh positif untuk transformasi transien, tapi untuk transformasi LUC yang stabil 
pengaruhnya tidak konsisten. 

Seleksi FEC yang telah mengalami transformasi ("transformant") baik yang transien maupun 
stabil dilakukan dengan mengukur aktifitas gen luciferase (LUC). Aktivasi gen LUC oleh 
luciferin pada sel mengakibatkan transmisi sejumlah photon yang dapat dimonitor dengan 
camera CD super sensitive VIM dan diproses dengan penghitung citra Argus-50 bikinan 
Hamamatsu Phototonic Systems. Embrio yang positif mengandung LUC dikulturkan dalam 
medium cair atau padat SH6 + 10 mg/l Picloram. Dalam waktu 8 minggu "transformant" 
FEC yang dikulturkan dalam medium cair meningkat hampir lima kali sedangkan dalam 
medium padat tiga kali. 

Sebelum induksi tunas, embrio "transformant" yang telah matang diperbanyak dengan cara 
somatik embriogenesis seperti diuraikan pada Bab 2. Embrio menjadi matang (hypocotil dan 
cotyledon nampak jelas) setelah dikulturkan dalam medium MS yang dimodifikasi. Analisa 
molekul untuk mengetahui status transgenik tanaman, yaitu dengan PCR menggunakan primer 
yang mengandung luciferase (LUC1 dan LUC2), serta Southern Blot Analysis menggunakan 
EcoRV atau BglII sebagai enzym pemotong DNA. 
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Pada Bab 6 daya kecambah embrio yang diinduksi dengan NAA dan 2,4-D dibandingkan. 
Dengan metoda desikasi ternyata embrio yang diinduksi NAA berkecambah lebih tinggi dari 
embrio yang diinduksi 2,4-D. Agar embrio berdaya kecambah tinggi diperlukan cytokinin. 
Konsentrasi cytokinin rendah (0.1 mg/1 BAP), dan diinkubasikan dalam ruang gelap hasilnya 
setara dengan konsentrasi tinggi (1 mg/1 BAP) dan dikulturkan di tempat terang. Tapi 
morfologi tunas dan waktu berkecambah dari kedua lingkungan di atas berbeda. 

Thesis ini merupakan sebuah terobosan utama dalam mebuat cara-cara transformassi gen yang 
bisa dibakukan melaui bom partikel pada ubi kayu. Seterusnya juga akan membuka alternatif 
untuk transformasi gen dengan menggunakan regenerasi protoplas melaui elektroporasi dan 
PEG. 
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