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Propositions 

1. Current cotton-wheat intercropping systems have an "overcapacity" for biological 

control of Aphis gossypii. 

This thesis 

2. Two mechanisms, "disruptive crop" and "natural enemies", explain the reduced 

Aphis gossypii densities in intercropped cotton. 

Vandermeer, J., 1989. The ecology of intercropping. Cambridge University Press, 

Cambridge, UK, 237p. 

This thesis 

3. Coccinella septempunctata plays a key role in suppressing Aphis gossypii 

populations in monocultures of cotton but its numbers increase too late to prevent 

damage. 

This thesis 

4. Prédation on mixed Aphis gossypii stages by Coccinella septempunctata can be 

modeled as a competitive process. 

This thesis 

5. Dispersal of foraging Coccinella septempunctata from intercropped wheat into 

intercropped cotton can be modeled as a diffusion process, and the resulting 

distribution ratio over cotton and wheat rows is equal to the quotient of the 

residence times. 

This thesis 

6. Cotton-wheat intercropping at the "strip" scale is the optimal cotton growing 

strategy, in view of the conflicting objectives of pest and disease control, seed and 

lint quality, labor productivity and land productivity. 

This thesis 

7. Without a systems perspective, more efforts are made for the less important 

processes while less efforts are made for the more important processes. 

8. Intercropping of cotton with wheat in China has received more interest from 

growers than from researchers. 



9. Short-term chemical control strategies "rear" the cotton bollworm {Helicoverpa 
armigerd). 

10. Social and environmental aspects are decisive for acceptance of biological control. 

10. Biotechnology is a valuable instrument for improving components of agricultural 
systems, but an ecotechnological systems approach is indispensable to put the 
components in the proper place. 

12. In nowaday's research, interdisciplinary efforts are needed for picking the "top tree 
apples". 

Propositions associated with the Ph.D. thesis of XIA Jingyuan: 

Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter) 
cropping systems in China; a simulation study 

Wageningen, 2 June 1997 
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Abstract 

Cotton aphid (Aphis gossypii Glover) is the key pest of seedling cotton in China, particularly in the 

North China cotton region. Biological control with naturally-occurring seven-spot beetle (Coccinella 

septempunctata L.) is crucial for integrated control of aphids and other pests in cotton. The objective 

of this study is to obtain quantitative insight in the coccinellid-aphid system in cotton (inter) cropping 

and explore intercropping strategies for cotton aphid biological control applying a systems approach. 

Life table parameters of A. gossypii as influenced by temperature, and life history parameters of C. 

septempunctata as influenced by temperature and food quantity, were determined in the laboratory. 

Relationships of life cycle parameters with abiotic and biotic factors were described with 

mathematical equations and incorporated in a simulation model of the temporal dynamics of the 

coccinellid-aphid system in cotton. The functional responses of five foraging stages of C. 

septempunctata on three size-groups of A. gossypii as influenced by temperature were determined in 

the laboratory. All functional responses were of type II and were adequately described by Rogers' 

random predator equation. They were incorporated in the simulation model. 

The model was tested and evaluated at three levels of complexity: laboratory, field cage and open 

field. At each level of complexity, processes were added to the model, based on discrepancies 

between "original model" behaviors and observations, and additional experimentation. Simulations 

with the final validated model at the open field level show that C. septempunctata plays a key role in 

controlling A. gossypii in cotton monoculture, though its numbers increase too late to guarantee a 

sufficient biological control. Variations in abundance of the seven-spot beetle are the most important 

factor causing year to year differences in aphid population dynamics. 

A simulation model of the spatio-temporal dynamics of the coccinellid-aphid system in cotton-

wheat intercropping was developed by complementing the temporal model with calculations 

accounting for dispersal of the seven-spot beetle within the intercrop. Simulations show that the low 

abundance of A. gossypii in the current cotton-wheat intercropping systems is mainly due to greater 

and earlier mortality caused by prédation and parasitism, where prédation by C. septempunctata is the 

most important factor. Other beneficial effect is a 90% decrease in cotton aphid settlement. 

Simulations with the spatio-temporal biological control model shows that current cotton-wheat 

intercropping system has an "overcapacity" for cotton aphid biological control. This "overcapacity" 

provides opportunities for modifying intercropping systems in the direction of strip cropping, which 

is advantageous with respect to labor requirement, fiber and seed quality, and suppression of 

Helicoverpa armigera Hübner and Verticillium dahliae Kleb, by cultural practices. 

Key words: Aphis gossypii, Coccinella septempunctata, prey-predator system, biological control, 

dispersal, population dynamics, simulation model, cotton monoculture, cotton-wheat intercropping 
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Chapter 1 

General introduction 

1.1 Introduction 

Cotton plays a significant role in the economic and social development of China. It 

produces natural fibre, vegetable oil and animal feed. Since the mid 1980s, China has 

become the largest cotton producer in the world (Liu & Deng, 1984). About 5.5 

million ha (1/6 of the world's total) are grown with cotton annually, yielding a total lint 

production of 4.5 million metric tons (1/4 of the world's total) (Wang, 1996). Cotton is 

the basis of the nation's textile industry and a major source of foreign exchange. About 

1/3 of the nation's export earnings come from cotton textile fabrics (Wang, 1993). At 

present, around 100 million farmers are associated with cotton production and 80 

million people are involved in cotton textile industry (Wang, 1992). 

Cotton is widely cultivated in China, from 19 °N to 45 °N, from 124 °E to 75 °E, 

and from 150 m below sea level to over 2000 m above sea level (CCRI, 1983; Xia, 

1991). Three cotton producing regions are generally distinguished: the North China 

cotton region, the South China cotton region, and the Northwest inland (Xinjiang) 

cotton region. Of the three regions, the North China cotton region is the most important 

as it represents over 60% of the nation's cotton production and cotton areas (Liu & 

Deng, 1984; Xia, 1991). 

The North China cotton region is located in a warm temperate zone, with a frost-

free period of 180-230 d, an average annual temperature of 11 °C and an annual 

precipitation of 400-700 mm (CCRI, 1983). It comprises the major cotton producing 

provinces of Shandong, Henan, Hebei, Shanxi and Shaanxi as well as the North part of 

Huai River in the provinces of Anhui and Jiangsu (CCRI, 1983; Xia, 1991). The 

principal cotton cropping systems are cotton monoculture and cotton-wheat intercrop 

(Wang, 1990; Fang et al., 1992). All cultivated cottons belong to Gossypium hirsutum 

L. (upland cotton), with direct seeding (50%), plastic mulching (30%) and seedling 

transplanting (20%) (Wang, 1990; Xia, 1991). 

Cotton suffers from more arthropod pests than other field crops in the North China 

cotton region. Over 300 species of arthropod pests have been recorded to be injurious 

to cotton, with 30 species of major significance. The key pests are cotton aphid {Aphis 

gossypii Glover) and cotton bollworm {Helicoverpa armigera Hübner) (CCRI, 1983; 



Xia, 1991). Estimated annual losses caused by cotton aphid amount to 10-15% of the 

attainable yield (CCRI, 1983; Fang et al., 1992; Xia, 1993). 

1.2 Cotton cropping systems 

1.2.1 Cotton monoculture 

Before the 1980s, the principal cotton cropping system in the North China cotton 

region was cotton monoculture, constituting over 90% of the region's cotton land 

(CCRI, 1983). At present, single cotton cropping covers less than 40% of cotton 

acreage in this region due to the expansion of cotton-wheat intercropping (Xia, 

1994b). Cultivars with early-medium or medium maturation are used for cotton 

monoculture, with a growing period of 160-170 d or 180-200 d (CCRI, 1983). 

Two developmental stages are generally distinguished for pest management 

purpose: seedling and square-boll. At the seedling stage, the key pest is cotton aphid, 

and the secondary pests are cutworm [Agrotis ypsilon (Rott.)], cotton thrips (Thrips 

tabaci Lindeman) and red spider mite (Tetranychus urticae Koch). At the square-boll 

stage, cotton bollworm is the most destructive, and the pests of minor importance 

include plant bugs (Adelphocoris sp.), pink bollworm {Pectinophora gossypiella 

Saunders), spiny worm (Earias sp.) and small measuring worm (Anomis flava 

Fabricius) (CCRI, 1983; Xia, 1991; Fang et al., 1992). 

1.2.2 Cotton-wheat intercrop 

Since the early 1980s, there has been a rapid development of cotton-wheat 

intercropping in the North China cotton region because of the increased human 

populations who demand more food and fiber from the limited lands (Wang, 1990; 

Wang et al., 1993). The cotton-wheat intercropped acreage increased from 0.4 million 

ha in 1978 to 2.3 million ha in 1993, covering more than 60% of the region's cotton 

land (Xia, 1994b). 

Cotton-wheat intercropping (actually cotton-wheat relay cropping) refers to 

intercropping of an early-medium maturing cultivar of cotton with an early-medium 

maturing cultivar of winter wheat. The wheat is sown in the mid October upon harvest 

of cotton, with a designated row width left out for cotton. The cotton is sown in mid 

April, with the whole seedling stage overlapping with the maturation phase of wheat. 

Three patterns of cotton-wheat intercropping are commonly practised: three rows of 

wheat with one row of cotton (3-1 pattern), three rows of wheat with two rows of 

cotton (3-2 pattern), and four rows of wheat with two rows of cotton (4-2 pattern) 



(Wang, 1990). The 3-2 pattern is the most common as it brings about desirable yields 

of both crops (Mao & Gou, 1992). 

There are two advantages of cotton-wheat intercropping: substantially increased 

productivity per unit land and reduced damage by cotton aphids at the seedling stage 

(Wang, 1990; Xia, 1994b). For instance, one ha land with a 3-2 pattern of wheat-

cotton intercropping typically produces approximately 3000 kg of wheat grain and 850 

kg of cotton lint. To obtain such amounts of wheat grain and cotton lint in 

monocultures, one would need about 1.5 ha of land as, in general, one ha of single 

cropped wheat produces 5000 kg of wheat grain and one ha of single cropped cotton 

produces 1000 kg of cotton lint. 

Wheat is the major winter crop in the North China cotton region, where most cotton 

insect pests and their natural enemies overwinter and multiply in early spring. Thus, 

structures of insect communities and the dynamics of major insect pests in cotton-

wheat intercrop are quite different from those in cotton monoculture, particularly at the 

seedling stage (Xia et al., 1997). It is well known that cotton aphid population numbers 

at the seedling stage remain below economic damage levels in cotton-wheat intercrop 

if naturally-occurring natural enemies on wheat, especially the seven-spot ladybird 

beetle {Coccinella septempunctata L.), are preserved (Chen et al., 1991; Wang et al., 

1993; Xia, 1994b). 

1.3 Cotton-aphid-enemy system 

1.3.1 Cotton aphid 

Aphis gossypii is extremely polyphagous with over 10 species of primary hosts (e.g. 

Hibiscus syriacus L. and Zanthoxylum simulans Hance) and more than 60 species of 

secondary hosts (e.g. cotton, soybean, citrus, and many vegetable crops and ornamental 

plants) (CCRI, 1983; Slosser et al., 1989; Fang et al., 1992). 

The cotton aphid is holocyclic in the North China cotton region, where it 

overwinters as eggs on primary hosts (CCRI, 1983; Zhang et al., 1987). Egg hatch 

occurs in March when temperature rises above 6 °C. The aphid multiplies two to three 

generations on the overwintering hosts before alate adults are produced due to 

crowding and deteriorated nutrition. Alate adults immigrate into cotton fields upon 

emergence of seedlings from late April to mid May, where 15-17 generations are 

produced before the cotton harvest. In autumn, gynoparae and males appear in 

response to short daylength and low temperature. These morphs return to the primary 

hosts, where the gynoparae produce oviparae which oviposit eggs after mating with the 

males (CCRI, 1983; Fang et al., 1992). There are two aphid peaks in cotton fields. The 



first peak ("spring aphid") occurs at the seedling stage (from mid May to early June) 

and the second one ("summer aphid") appears at the square-boll stage (from late June 

to late July) (CCRI, 1983; Luo & Gao, 1986). Biological control is considered a 

promising option for the "spring aphid" (CCRI, 1983; Zhang, 1985). 

Damage to cotton at the seedling stage by the cotton aphid results from distortion of 

leaves and stunted growth of young plants, which severely retards the development and 

closure of the leaf canopy and decreases light interception and production. Replanting 

is required in severe cases of irreversible stunting and seedling mortality (CCRI, 1983; 

Fang et al., 1992). At the square-boll stage, premature defoliation and decreased 

photosynthesis directly reduce yield formation (Luo & Gao, 1986). At the boll opening 

stage, accumulation of honeydew and the development of sooty molds lower the 

quality and grading of the lint (Luo et al., 1990). In recent years, honeydew on the lint 

(sticky cotton) has caused serious problems in the milling process in many cotton 

producing nations, such as China (Luo et al., 1990), Egypt (Attia & El-Hamaky, 1987), 

Israel (Broza, 1986), Sudan (Abdelrahman & Munir, 1989) and USA (Slosser et al., 

1989; Hardee & O'Brien, 1990). 

The cotton aphid has five developmental stages: four nymphal instars and the adult 

(apterous and late). Its field population dynamics is influenced by (a) temperature, 

relative humidity, rainfall and wind (both speed and direction) (CCRI, 1983; Fang et 

al., 1992); (b) crowding (Xie & Sterling, 1987; Li & Xie, 1990b); (c) natural enemies 

(CCRI, 1983; Zhang et al., 1983; Zhang, 1985; Jiu et al., 1986; Fan et al., 1991); and 

(d) resistant cultivars, cotton developmental stages and its physiological conditions 

(Gao, 1987; Liu & Wang, 1990; Wu et al., 1990; Liu & Yang, 1993). Quantitative 

information on field population dynamics of the cotton aphid is generally lacking. 

1.3.2 Natural enemies 

More than 850 species of natural enemies have been described to attack insect and mite 

pests on cotton in China, though only a small proportion of these have a significant 

impact (Xia, 1991). About 60 beneficial species commonly attack A. gossypii, 

including predators, parasites and fungal pathogens, with the major ones presented in 

Table 1.1. The importance of natural enemies, particularly predators, in controlling the 

cotton aphid has been noted for a long time (CCRI, 1983; BU, 1984). 

Predators Of the major predators listed in Table 1.1, ladybird beetles, particularly 

Coccinella septempunctata, play the most important role in controlling A. gossypii on 

cotton. (CCRI, 1983; BU, 1984; Fang et al., 1992). 

Coccinella septempunctata passes through five generations annually in the North 

China cotton region (Zhu & Li, 1981). The adults overwinter at the surface soil in 



winter wheat, oil-seed rape and vegetables, and start egg-laying in March. The first two 

generations occur mainly on wheat and oil-seed rape from March to May. Some 

coccinellid adults of the overwintering generation and the first generation may 

colonize single cotton cropped fields, depending on the availability of the cotton aphid. 

Table 1.1. Major natural enemy species of A. gossypii on cotton in the North China cotton region. 

Group Order Family Species 

Predator 

Parasite 

Hemiptera 

Neuroptera 

Coleoptera 

Diptera 

Arachnida 

Hymenoptera 

Acari 

Anthocoridae 

Lygaeidae 

Nabidae 

Chrysopidae 

Coccinellidae 

Syrphidae 

Erigonidae 

Lycosidae 

Theridiidae 

Aphidiidae 

Trombidiidae 

Orius minutus L. 

Geocoris sp. 

Nabis sinoferus Hsiao 

N. stenoferus Hsiao 

Chrysopa formosa Brauer 

C. phyllochroma Wesmael 

C. septempunctata Wesmael 

Coccinella septempunctata L. 

Scymnus hoffmanni Weise 

Adonia variegata (Goeze) 

Leis axyridis (Pallas) 

Propylaeajaponica (Thungberg) 

Syrphus corollae Fabricius 

Melanostoma scalare Fabricius 

Epistrophe balteata De Geer 

Lasiopticus selenitica (Meigen) 

Erigonidium graminicolum (Sundevall) 

Lycosa T-insignita (Boes. et Str.) 

Theridion octomaculatus (Boes. et Str.) 

Aphidius gifuensis (Ashmead) 

Lysiphlebia japonica (Ashmead) 

Trioxys rietscheli Mackauer 

Allothrobium neapolitum Willmann 

A. pulvinum Ewing 

Pathogen Entomoph- Entomoph- Entomophthora fresenü Batk 

thorales thoraceae E. virulenta Hall, et Dunn 

Source: CCRI (1983); BU (1984); Jiu et al. (1986); Fang et al. (1992); Zhao (1995). 



The most important colonization wave of seven-spot beetle adults in cotton occurs 

during the second generation, when wheat and oil-seed rape are maturing and aphid 

populations on these crops decline. The large number of seven-spot beetles and other 

predators (Table 1.1) immigrating into cotton at this time can destroy any remaining 

aphids within a few days. After cotton aphid populations have been destroyed, the 

landscape offers insufficient resources for coccinellids, causing them to migrate long 

distance, presumably to cooler areas such as the mountains and the seashore (Tsai et 

al., 1980; Zhu & Li, 1981). The remaining coccinellids complete the third and fourth 

generation in cotton and vegetables during June and July. They aestivate on corn, 

sorghum and cotton during August and September. A fifth generation lives on 

vegetables during late September to late October. Adults of the fifth generation and the 

ones migrating back from the mountains and the seashore move into wheat, oil-seed 

rape and vegetables for overwintering (Zhu & Li, 1981; CCRI, 1983; BU, 1984; Fang 

et al., 1992). 

The seven-spot beetle is the key predator of the cotton aphid. It has seven 

developmental stages: eggs, four larval instars, pupae and adults (females and males). 

The foraging stages of the seven-spot beetle can attack all life stages of the cotton 

aphid. Several observations have been made for consumption rates of the different 

foraging stages of the seven-spot beetle when supplied with excess cotton aphids at 

fluctuating temperatures in the laboratory (BU, 1984). No detailed studies have been 

carried out on the functional response of foraging stages of the seven-spot beetle as 

influenced by predator stage, prey stage and temperature. 

Field population dynamics of the seven-spot beetle is largely determined by (a) 

temperature, relative humidity and rainfall (Zhu & Li, 1981), (b) overwintering 

numbers and cannibalism (CCRI, 1983; BU, 1984), (c) prey density (Dong & Wang, 

1989), and (d) natural enemies including predators, parasites and entomophagous 

pathogens (Zhu & Li, 1981; BU, 1984; Li, 1986). Few quantitative studies have been 

made on field population dynamics of the seven-spot beetle, particularly in cotton-

wheat intercropping. 

Parasites Two groups of parasites commonly attack the cotton aphid: external and 

internal. Mites from the genus Allothrombium (Table 1.1) externally parasitize alate 

adults on winter hosts (Chen et al., 1994). Parasitized alate adults can fly and colonize 

cotton, but longevity and fecundity are substantially reduced (Dong et al., 1992). The 

percentage of alate immigrants carrying Allothrombium ranges from 10% to 50%, 

depending on the weather conditions and the time of year (Dong et al., 1992). These 

parasitic mites have a major impact on cotton aphid population growth in the early 

season when other natural enemies of the cotton aphid are rare (Dong et al., 1992; 

Chen et al., 1994). 



Three hymenopterous parasitoids (Table 1.1) commonly parasitize the cotton aphid 

at the mid-late seedling stage (4-8 leaves). Lysiphlebia japonica is the most common 

(Xie & Sterling, 1987; Wang & Liu, 1989). Percentage of parasitization of the cotton 

aphid varies from season to season and from place to place, ranging from 5% to 30% 

(CCRI, 1983; Xie & Sterling, 1987). Cotton aphid populations decline rapidly when 

parasitization is more than 30% (CCRI, 1983; Fang et al., 1992). 

Fungal pathogens Fungal pathogens of the genus Entomophthora commonly attack 

the cotton aphid (Table 1.1), but only occasionally are fungal diseases important in 

suppressing "spring aphid" populations. Early impact may occur in years with high 

rainfall in early June (Zhang et al., 1983). Quite frequently fungal epidemics have a 

significant effect on "summer aphid" populations, particularly in years with high 

temperature and heavy rainfall in late June and July (CCRI, 1983). Introduction of 

Entomophthora for "spring aphid" control has not been successful (Zhang et al., 1983; 

Xia, 1992). 

1.3.3 Cotton plant 

Resistant cultivars Development of resistant cultivars is an effective method for 

cotton aphid control. Over 1000 accessions of cotton germplasm have been evaluated 

for resistance to the cotton aphid, with 300 exhibiting medium to high degrees of 

resistance (Xia, 1996). Resistance to the cotton aphid is associated with (a) 

morphological characters such as nectarines and hairiness, and (b) increased content of 

chemical defence such as gossypol or tannin (Guo et al., 1990; Liu & Yang, 1993). 

Although three aphid-resistant cultivars have been released into production, they are 

not frequently used as their yield is 10-15% lower than that of the susceptible ones 

(Guoetal., 1990; Xia, 1996). 

Development stage Cotton aphid population development is related to plant 

growth stage. Survival of the cotton aphid is highest when fed on 4-leaf seedlings, 

lowest on 8-leaf seedlings, and intermediate on 2-leaf seedlings (Wu et al., 1990). 

Biochemical analysis indicates that cotton seedlings before the 4-leaf stage are 

nutritionally more suitable for the aphid than thereafter (Gao, 1987; Wu et al., 1990). 

Physiological conditions Population growth of the cotton aphid is influenced by 

the physiological condition of the cotton plant, which depends on management 

practices, particularly the application of fertilizer. Liu & Wang (1990) found that the 

cotton aphid was most abundant in plots with a high rate of nitrogen fertilizer. The 

content of soluble nitrogen and protein in cotton plants is increased by applying 

nitrogen, which, in turn, increases survival and fecundity of the cotton aphid (Liu & 

Wang, 1990; Zuo et al., 1991; Fang et al., 1992). 



1.4 History of cotton aphid control 

Cotton has been cultivated in China for over 2000 years. Through the centuries, A. 

gossypii was suppressed by naturally-occurring natural enemies such as C. 

septempunctata (Liu & Deng, 1984). In the early 1950s, insecticides were introduced 

against the cotton aphid in the North China cotton region, when it occurs only at the 

seedling stage. In the 1960s, chemical control of the cotton aphid became predominant, 

which resulted in a rapid development of insecticide resistance (Xia, 1993). 

Subsequently, outbreaks of the cotton aphid occurred not only at the seedling stage but 

also at the square-boll stage because of resistance to insecticides and suppression of 

natural enemy populations (CCRI, 1983; Xia, 1993). 

The interest in biological control revived in the early 1970s, following the areawide 

failure to control the cotton aphid with insecticides (Zhang, 1985; Xia, 1993). During 

that period, some success was achieved with biological control by preserving ladybird 

beetles through seed or soil treatment with systemic pesticides (e.g. carbufuran and 

phorate), and by mass releasing the seven-spot beetle collected on wheat (BU, 1984; 

Liu, 1985). In the early 1980s, biological control of the cotton aphid was discontinued 

because newly introduced synthetic pyrethroids provided effective control (Fang et al., 

1992; Xia, 1993). But resistance developed soon and natural enemies were suppressed, 

resulting in resurgence of a range of pests apart from the cotton aphid (Zuo et al., 1986; 

Tan, 1988; Tang, 1988; Wu & Liu, 1992; Xia, 1993). The red spider mite and cotton 

thrips caused injuries at the seedling stage, while the cotton bollworm became more 

damaging at the early square-boll stage due to serious disruption of natural enemy 

communities by chemical control of the cotton aphid in early season (Wu & Liu, 

1992). Towards the late 1980s, the cotton aphid had developed resistance to nearly all 

kinds of conventional insecticides (Tan, 1988; Tang, 1988; Xia, 1993), and serious 

outbreaks of the cotton bollworm occurred (Xia & Wen, 1993; Xia, 1994a; Xia, 1997). 

The interest in biological control of the cotton aphid by naturally-occurring natural 

enemies increased again after the mid 1980s, following the crisis induced by aphid 

control with pyrethroids. Several strategies for biological control of the cotton aphid 

were tested, including augmentation, preservation and mass release of natural enemies 

(Fang et al., 1992; Xia, 1992). Much success was obtained with augmentation of 

naturally-occurring natural enemies by intercropping cotton with wheat or oil-seed 

rape (Wang et al., 1993; Xia, 1994b). Nowadays, biological control of the cotton aphid 

by naturally-occurring natural enemies, particularly by the seven-spot beetle, is 

considered the pivot of the integrated cotton pest management program both for cotton 

monoculture and cotton-wheat intercrop in the North China cotton region (Wang et al., 

1993; Xia et al., 1996). 



A historical analysis of cotton aphid control in the North China cotton region 

reveals that the sole reliance on insecticides has led to a rapid development of 

insecticide resistance, serious outbreaks of key pests, resurgence of secondary pests, 

and risk for man and environment. Induction of cotton aphid outbreaks by insecticides 

in cotton has become a major problem also in other cotton producing countries, such as 

Australia (Forrester, 1986), Egypt (Attia & El-Hamaky, 1987), Israel (Broza, 1986), 

Sudan (Abdelrahman & Munir, 1989) and USA (Kerns & Gaylor, 1993). 

Biological control of the cotton aphid is the first priority for integrated pest 

management in cotton to avoid early season application of insecticides and lay a 

foundation for effective biological control during the season. 

1.5 Objective of the study 

Experience has shown that biological control of A. gossypii on cotton with C. 

septempunctata is effective and feasible. There are basically three strategies for using 

the seven-spot beetle as a biological control agent: (1) augmentation of the seven-spot 

beetle by intercropping cotton with wheat, (2) preservation of the seven-spot beetle by 

using selective instead of broad spectrum insecticides and seed or soil treatment with 

systemic pesticides, and (3) mass release of the seven-spot beetle collected on wheat. 

Intercropping cotton with wheat is the most commonly used approach for cotton aphid 

control. However, there exist several disadvantages in current cotton-wheat 

intercropping, such as decreased fiber and seed quality due to the delayed maturation 

of cotton, increased outbreaks of cotton bollworm and verticillium wilt {Verticillium 

dahliae Kleb.) due to a high survival of overwintering pests, and difficulties with 

mechanization due to the narrow space between cotton and wheat rows (Wang, 1990; 

Wang, 1992, 1993; Xia & Wen, 1993; Xia, 1994a; Wang & Xiang, 1997). Nowadays, 

there is an increased demand for development of more sociologically, economically 

and ecologically sound cotton-wheat intercropping systems. Biological control of the 

cotton aphid should play an important role in such cropping systems. A better 

quantitative understanding of the dynamic behavior of the C. septempunctata-A. 

gossypii system both in cotton monoculture and cotton-wheat intercrop is helpful in 

applying intercropping strategies for biological control of the cotton aphid. 

Systems analysis and simulation are powerful tools to analyse biological control 

systems and prototype promising biological control strategies (Rabbinge et al., 1989). 

To date, little research has been done along this line in China. This thesis research aims 

at: (1) better understanding and characterizing the major processes in the C. 

septempunctata-A. gossypii system quantitatively, both in cotton monoculture and 

cotton-wheat intercrop; (2) developing a simulation model of the temporal dynamics 



of the coccinellid-aphid system in cotton monoculture, and a simulation model of the 

spatio-temporal dynamics of the coccinellid-aphid system in cotton-wheat intercrop, 

by integrating process-level knowledge; and (3) using the models to obtain insight in 

the dynamic behavior of the predator-prey system and explore intercropping strategies 

that are not only favorable for biological control of cotton aphid but also advantageous 

with respect to fiber and seed quality, labor requirement, and suppression of the cotton 

bollworm and verticillium wilt by cultural control measures. 

The insights gained in this study are useful in: (1) allowing more effective use of the 

seven-spot beetle as a biological control agent of the cotton aphid, (2) obtaining better 

biological control of the cotton aphid with the whole natural enemy complex rather 

than the seven-spot beetle alone, and (3) maximizing the natural control potential but 

minimizing the insecticide application when managing cotton insect pests throughout 

the season. 

1.6 Approach of the study 

A Holistic-Reductionistic-Holistic (HRH) approach (Bouma, 1997; Rabbinge, 

personal communication) is applied in this thesis research. The main idea for applying 

this approach is to answer questions at higher levels of system complexity by 

integrating detailed knowledge at lower levels. Based on the questions formulated in 

the previous section, detailed knowledge is gathered about the bionomics of A. gossypii 

and C. septempunctata in North China, the stage structured predator-prey interaction, 

and the migration and dispersal of A. gossypii and C. septempunctata in cotton 

monoculture and cotton-wheat intercrop. Because of the complex interrelationships 

involved in the coccinellid-aphid system, three levels of system complexity are 

distinguished in the systems analysis: laboratory, field cage and open field (Fig. 1.1). 

The major component processes are worked out at the respective levels, by 

experimentation and modelling. A comprehensive model is finally developed by 

integrating all process-level knowledge about the system, and the model is then used to 

study the dynamics behavior of the system, to develop management strategies and to 

set research priorities at the field level. 

The detailed experimental-simulation methodology is presented in Fig. 1.1. At each 

level of the system complexity, relevant processes were added to the model, based on 

additional experimentation, and the adapted model was validated with experimental 

data collected at the respective level. Only when the integrated model at a lower level 

explains the observed behavior of the system at that level, it can be subjected to tests at 

a higher level. Otherwise, more research and modelling work should be done at the 

lower level until a satisfactory explanation has been reached. 
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1.7 Outline of the thesis 

The thesis describes experiments at laboratory, field cage, and open field level, and 

uses simulation modelling as an integrative tool and bridge between integration levels. 

Laboratory experiments addressed the bionomics of A. gossypii and C. 

septempunctata, and the functional response (Chapters 2, 3 and 4). In Chapter 2, life 

table parameters of the cotton aphid as influenced by temperature are determined, and 

their relationships with temperature are described with mathematical equations. In 

Chapter 3, life history parameters of the seven-spot beetle as influenced by temperature 

and by food quantity are determined, and their relationships with these two factors are 

Level Experiment Modelling 

Q. 
3 
O) 
C 

"5 
u 
V) 

2 
G 
s 
C 
O 

ex 

2 
E 

© 

© 

.a 
• J 

* Obtain data for 
model validation 

( Ch5, Ch6 ) 
* Characterize 

processes 
( Ch5, Ch6 ) 

* Obtain data for 

model validation 

(Ch5) 
* Characterize 

processes 

(Ch5) 

* Obtain data for 

model validation 

(Ch5) 
* Study bionomics 

and functional 

repsonse 

( Ch2, Ch3, Ch4 ) 

* Simulate spatio-temporal / 

dynamics of the system 

in cotton-wheat ( Ch6 ) 

* Simulate temporal dynamics 

of predator-prey system 

in single cotton ( Ch5 ) 

* Simulate population 

developemt of prey 

and predator, and 

predator-prey 

interaction 

(Ch5) 

* Model processes of 

development, survival 
and reproduction of 

prey and predator, and 

functional response of 
predator to prey 

(Ch5) 

V 

3 

O 
(Q 

5 
3 

Fig. 1.1. Outline of the combined experimental-simulation methodology for a simulation study on 

biological control of A. gossypii in cotton (inter) cropping systems in China. 

11 



described with mathematical equations. Chapter 4 describes the functional responses of 

foraging stages of C. septempunctata to A. gossypii as influenced by predator stage, 

prey size and temperature. 

On the basis of data gathered in Chapters 2-4, a preliminary model of the C. 

septempunctata-A. gossypii system is developed and validated with experimental data 

collected in the laboratory. Field cage studies are used to refine the laboratory-

validated model by integrating additional process-level knowledge, and to validate the 

refined model. The refined and validated model at the field cage level is in its turn 

subjected to scrutiny, improvement and validation by comparison with field 

observations in cotton monoculture. A simulation model of the temporal dynamics of 

the coccinellid-aphid system in cotton monoculture is finally developed and used to 

study the dynamic behavior of the system (Chapter 5). 

The temporal model established in Chapter 5 is further expanded to include the 

dispersal of the seven-spot beetle between wheat and cotton, and some other processes 

related to cotton-wheat intercropping. A comprehensive model of the spatio-temporal 

dynamics of the coccinellid-aphid system is then established and validated with 

experimental data obtained in cotton-wheat intercropped fields. This model is used to 

study the dynamic behavior of the coccinellid-aphid system in the cotton-wheat 

intercrop and to explore possible adaptations of the intercropping strategies for 

biological control of the cotton aphid (Chapter 6). 

The thesis is concluded with a general discussion of the scientific approach, 

research findings, practical implications and the future research (Chapter 7). 
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Chapter 2 

Influence of temperature on population growth of 
Aphis gossypii on Gossypium hirsutum 

Abstract Life table parameters of Aphis gossypii Glover (Homoptera: Aphididae) on 

Gossypium hirsutum L. were determined at six temperatures (10, 15, 20, 25, 30, and 35 ± 

0.5 °C) in the laboratory. Relationships of life table parameters with temperature were 

described with mathematical equations. Development was fastest at 30 °C, with a pre-

larviposition period of 4.6 d. The greatest survival from birth to adult (81%) was 

obtained at 25 °C. The highest fecundity was attained at 25 °C, with a total fecundity of 

28.3 nymphs per female and a mean reproductive rate of 3.1 nymphs per female per day. 

Threshold temperatures for development in the first through fourth instar and the adult 

stage were 8.2, 8.0, 7.2, 6.2 and 7.9 °C, respectively; and the thermal constants were 

24.2, 23.7, 23.0, 25.5 and 168.8 degree-days (D°), respectively. A. gossypii obtained a 

maximum net reproductive number (24.4 nymphs per female) and the greatest intrinsic 

rate of increase (0.386 d~ ) at 25 °C. The high relative rate of population increase at 25 

°C resulted in a daily population increase of 47% and a doubling time of only 1.8 d, 

illustrating the tremendous growth capacity of A. gossypii under favorable conditions. 

Comparison to similar records from other crops indicates a relatively high heat tolerance 

of A. gossypii populations on cotton. The data obtained are used to construct a simulation 

model of A. gossypii population dynamics in cotton. 

2.1 Introduction 

Cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae) is the key insect pest at 

the seedling stage of cotton {Gossypium hirsutum L.) in China, particularly the North 

China cotton region (CCRI, 1983; Fang et al., 1992; Xia, 1991, 1992). The 

development of integrated pest management (IPM) systems for this aphid requires 

insight in the effect of environmental conditions, notably temperature, on the rate of its 

population growth. 

Effects of temperature on A. gossypii population growth have been studied on cotton 

in USA (Isely, 1946; Akey & Butler, 1989) and Egypt (Khalifa & El-Din, 1964; Attia 

& El-Hamaky, 1987), and on other host plants such as cucumber (Wyatt & White, 
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1977), cucurbit (Liu & Peng, 1987), squash (Aldyhim & Khalil, 1993) and citrus 

(Komazaki, 1982). However, such information has not been gathered on cotton in 

China. A. gossypii is worldwide distributed and extremely polyphagous. Populations 

from particular crops or particular geographic locations may differ in their life table 

parameters due to differences in genotypic adaptation to environmental conditions 

(Blackman & Eastop, 1985; Attia & El-Hamaky, 1987; Akey & Butler, 1989; Aldyhim 

& Khalil, 1993). Thus, data on A. gossypii population growth should be used with 

caution if applied to a new crop or location. 

The objective of this study is to determine the temperature-dependent life table 

parameters of A. gossypii on cotton. The study is undertaken to provide basic data for a 

quantitative analysis of biological control of A. gossypii with Coccinella 

septempunctata L. in cotton-wheat intercropping in the North China cotton region, 

using simulation modelling as an analytical and explorative tool. 

2.2 Materials and methods 

2.2.1 Experiments 

The study was carried out at the China Cotton Research Institute (CCRI), Anyang, 

Henan province (36.07 °N latitude and 114.22 °E longitude) in 1993. The experiments 

were conducted in a Multi-Unit-Chamber (Messrs. Brabender, KSE-S 6-125/RN) at 

six temperatures (10, 15, 20, 25, 30 and 35 ± 0.5°C). At all temperatures, the humidity 

was 70-90% r.h. and the photophase was 14 h. 

A laboratory colony was started with field-collected aphids from CCRI 12, a 

cultivar of Gossypium hirsutun L. which is commonly cultivated in the North China 

cotton region. The colony was maintained in field cages ( 3 m x 3 m x 2 m high). Three 

generations were completed before tests were initiated. Adults from the colony served 

as the parent stock for all rearing experiments. 

For each temperature, approximately 100 adults collected in field cages were kept in 

40 glass petridishes (15 cm diameter and 2.5 cm deep) for 12 h to produce offspring. 

Around 100 newly born aphids were individually reared on cotton leaflets in glass 

tubes (2 cm diameter and 10 cm long). The third and fourth true leaves of cotton 

seedlings were used as rearing substrate in all tests. All cotton leaves were grown in 

field cages and free of aphid damage. Moulting and mortality were monitored every 24 

h at 10, 15 and 20 °C, and every 12 h at 25, 30 and 35 °C. After each observation, the 

cotton leaf was replaced. During the adult stage, the aphids were individually reared in 

glass petridishes (10 cm diameter and 2 cm deep), where newly born aphids were 

counted and then removed. Observations were continued until death of all adults. 
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2.2.2 Analysis 

We estimated the following life history parameters: development time of the first to 

fourth nymphal instar, and total nymphal period; duration of the pre-reproductive 

period, reproductive period, reproductive plus post-reproductive period, and the entire 

adult longevity; duration from birth to first larviposition, and the life span from birth to 

death; total fecundity (number of nymphs produced per female in her lifetime); and the 

mean reproductive rate during the reproductive period (number of nymphs produced 

per female per day). Parameters were compared among temperature treatments using 

the General Linear Models (GLM) procedure of SAS 6.1 for PC (SAS Institute, 1993-

1995). Differences were considered significant at P < 0.05 in t-tests (LSD). 

From the data collected, the age-specific survival (lx) and age-specific fecundity 

(mx) were calculated. The intrinsic rate of increase (rm, d~ ) was determined using the 

method of Birch (1948): 

E l x m x e x p ( - r m x ) = 1 (2.1) 

where x is the age. the net reproductive number (number of nymphs produced per 

capita, RQ = I lx mx), generation time (t = In R„ / rm, d), finite rate of increase [A, = exp 

( rm), d_1] and population doubling time (x = In 2 / rm, d) were also calculated according 

to the method of Birch (1948). 

Developmental rate (Rj, d~ ) of each life stage was calculated as the reciprocal of 

the stage duration. Logan et al.'s (1976) model was used to describe the response of 

the developmental rate to temperature: 

Rd = a, { exp [ a2 ( T - T, ) ] - exp [ a2 ( Tu - T, ) - ( Tu - T ) / a3 ] } (2.2) 

where T is the temperature (°C), T, is the lower threshold temperature (°C), Tu is the 

upper lethal temperature (°C); and a,, a2 and a3 are coefficients. The upper lethal 

temperature was assumed to be the same for all life stages: 38 °C as estimated in 

growth chambers by Xie & Sterling (1987). The lower threshold temperature of each 

life stage was determined by linear regression, excluding the data for the higher 

temperature where the relationship becomes nonlinear (see Siddiqui et al., 1973): 

Rd = b , + b 2 T (2.3) 

where T is the temperature (°C); b) and b2 are coefficients representing the lower 

threshold temperature and thermal constant, respectively. 
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Mortality and fecundity in the adult stage are not only temperature- but also age-

dependent. Twenty age classes were discerned to describe the age dependency of 

fecundity and mortality according to the method of Rabbinge (1976, pp. 58-61). The 

duration of each age class was determined by dividing the maximum period of living 

by the total number of age classes. The maximum period of living was defined as the 

mean life span plus 3 SD (standard deviation). The relative mortality rate (R,,,, d~') of 

each life stage and each adult age class was computed using the method of Rabbinge 

(1976, p. 57): 

Rm = ( l nN t - l nN t + A t ) /A t (2.4) 

where Nt is the number of insects at time t, Nt+At is the number of insects at time t+At, 

and At is the time interval between observations (i.e. duration of a life stage or an age 

class). The relationship between relative mortality rate and temperature was described 

with a parabola: 

Rm = Cl + c2T + c3T2 (2.5) 

where c,, c2 and c3 are coefficients. 

Weibull's (1951) model was used to describe the relationship of temperature with 

total fecundity (A), mean reproductive rate during reproductive period (B) and mean 

reproductive rate of each adult age class (C): 

Y = d 2 / d 1 d 3 [ ( T - T , ) / d , ] ( d 2 ~ ' > e x p { - [ ( T - T I ) / d 1 ] d 2 } (2.6) 

where Y stands for A, B or C; T and T, have the same meaning as in Equation 2.2; and 

d,, d2 and d3 are coefficients. An equation modified from Bieri et al. (1983) was used 

to describe the relationship between mean reproductive rate of each age class (Rq) and 

the adult age: 

Rq = e, q / ( e2 )" (2.7) 

where q is the adult age class; and e, and e2 are coefficients. 

Models or equations were selected on basis of a biologically appropriate shape, 

Root Mean Square Error (RMSE) and coefficient of determination (r ). All parameters 

in nonlinear models or equations were estimated iteratively by minimization of the sum 

of squared residuals, using the Levenberg-Marquardt algorithm (Slide Write Plus for 

Windows, 1983-1993). 
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2.3 Results 

2.3.1 Development 

Development period of pre-reproductive stages of A. gossypii feeding on cotton 

decreased with temperature up to 25-30 °C and then increased (Table 2.1). The 

duration from birth to first larviposition was shortest (4.6 d) at 30 °C (5 times of 23.0 d 

at 10 °C). Duration of the reproductive, and reproductive plus post-reproductive adult 

stages decreased with temperature. The longest period of the reproductive plus post-

reproductive adult (26.0 d ) at 10 °C was 7 times of 3.8 d at 35 °C (Table 2.1). 

The response of the developmental rate (R<j) in all life stages to temperature was 

satisfactorily described by Logan et al.'s (1976) model (Fig. 2.1). RMSE ranged from 

0.040 to 0.046 d~' for the first through fourth instar, 0.17 d~ for the pre-reproductive 
— 1 2 

adult, and 0.0053 d for the reproductive plus post-reproductive adult; and r ranged 

from 0.94 to 0.99. Developmental rate of pre-reproductive stages increased 

exponentially from the lower threshold temperature to an optimum (around 30 °C) and 

then declined until the upper lethal temperature had been reached; while it increased up 

to 35 °C and then decreased in the reproductive plus post-reproductive adult (Fig. 2.1). 

2.3.2 Survival 

Survival in all pre-reproductive stages increased with temperature up to 25 °C and then 

decreased (Table 2.1). The greatest survival from birth to first larviposition was 

attained at 25 °C (81%), which was approximately 3 times of 26% at 10 °C and two 

times of 33% at 35 °C (Table 2.1). 

A parabola adequately described the relationship between temperature and the 

relative mortality rate (R™) of pre-reproductive stages (Fig. 2.2). RMSE ranged from 

0.0015 to 0.0073 d"1, and r2 from 0.95 to 0.99. The relative mortality rate was higher at 

10 °C and 35 °C, while it was lower at 20-25 °C (Fig. 2.2). The relationship between 

temperature and the relative mortality rate of each adult age class was also adequately 

described by a parabola (Table A- l in Appendix A). The relative mortality rate 

increased with adult age at all six temperatures, and it also increased with temperature 

in each adult age class (Fig. 2.3). 

2.3.3 Fecundity 

Total fecundity and the mean reproductive rate were highest at 25° C (Table 2.1). For 

instance, total fecundity (28.3 nymphs per female) at 25 °C was about 5 times of 6.1 
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Fig. 2.1. Relationship between temperature (T, °C) and the developmental (maturation or ageing) rate 

(Rj, d ) of A. gossypii on cotton. Curves are described by Equation 2.2., where the lower threshold 

temperature (T|) is presented in Table 2.2, and the upper lethal temperature (Tu) is 38 °C. Bars 

represent observations with 95% confidence limits. 

nymphs per female at 10 °C and 7 times of 4.0 nymphs per female at 35 °C. The mean 

reproductive rate (3.1 nymphs per female per day) at 25 °C was about 8 times of 0.4 

nymphs per female per day at 10 °C and 2 times of 1.7 nymphs per female per day at 

35 °C (Table 2.1). 
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Fig. 2.2. Relationship between temperature (T, °C) and the relative mortality rate (Rm, d~ ) of A. 

gossypii on cotton. Curves are described by Equation 2.5. Bars represent observations with 95% 

confidence limits. 

Weibull's (1951) model adequately described the relationships of temperature with 

total fecundity and the mean reproductive rate (Fig. 2.4). RMSE was 2.9 nymphs per 

female for the total fecundity (Fig. 2.4A) and 0.4 nymphs per female per day for the 

mean reproductive rate (Fig. 2.4B), and r exceeded 0.95. Total fecundity and the mean 

reproductive rate increased exponentially from the lower threshold temperature to an 

optimum (around 27 °C ), and then decreased dramatically with temperature (Fig. 2.4). 
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Fig. 2.4. Relationships between temperature (T, °C) and total fecundity (total nymphs per female, A), 

and the mean reproductive rate during the reproductive period (nymphs per female per day, B) of A. 

gossypii on cotton. Curves are described by Equation 2.6, where the lower threshold temperature (T,) 

is 7.9 °C. Bars represent observations with 95% confidence limits. 
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optimum (around 27 °C ) and then decreased dramatically with temperature (Fig. 2.4). 
The response of the mean reproductive rate of each adult age class to temperature was 
also satisfactorily described by Weibull's (1951) model (Table A-2 in Appendix A). 

The relationship between the mean reproductive rate of each age class (R )̂ and 
adult age at each temperature was adequately described by Equation 2.7 (Fig. 2.5). 
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Fig. 2.5. Relationship between adult age class (q) and the mean reproductive rate (nymphs per female 

per day, R,,) of A. gossypii on cotton at six temperatures. Curves are defined by Equation 2.7. Bars 

represent observations with 95% confidence limits. 
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RMSE was 0.02, 0.08, 0.21, 0.24, 0.09 and 0.08 nymphs per female per day for 10 °C 
through 35 °C, respectively; and r ranged from 0.94 to 0.98. The adult age-dependent 
mean reproductive rate was relatively low at 10 °C and 35 °C, with the reproduction 
terminated before age class 10; while it was relatively high at 20-30 °C, with the 
reproduction ending after age class 15 (Fig. 2.5). 

2.3.4 Threshold temperature 

Threshold temperature decreased in successive nymphal instars from 8.2 °C in the first 
instar to 6.2 °C in the fourth instar and then increased with adult age up to 7.9 °C in the 
reproductive plus post-reproductive adult (Table 2.2). The thermal constants needed to 
complete the development of nymphal instars ranged with narrow bounds, ranging 
from 23.0 to 25.5 degree-days (Dc). The thermal constant of the adult stage was 168.9 
D° (about 2 times of 99.4 D° for the entire nymphal period) (Table 2.2). 

2.3.5 Rate of population increase 

The net reproductive number (RJ had a maximum value of 24.4 nymphs per female at 
25 °C, compared to 18.5 nymphs per female at 20 °C and 10.2 nymphs per female at 
30 °C. At the extreme temperatures of 10 °C and 35°C, the net reproductive number 
was only 2.6 and 2.0 nymphs per female, respectively (Table 2.3). The trend of 

Table 2.2. Threshold temperature and thermal constant (means + SE) of A. gossypii on cotton. 

Stage / period 

First instar 

Second instar 

Third instar 

Fourth instar 

Total nymphal stage 

Pre-reproductive adult 

Pre-reprod. plus post-reprod. adult 

Entire adult stage 

Age at first larviposition 

Age at death from ageing 

Threshold 

temperature (°C) 

8.2 ±2.5 

8.0 ±1.2 

7.2 ±1.1 

6.2 ±1.1 

7.1 ±2.5 

6.3 + 1.7 

7.9 + 2.6 

7.9 ±2.4 

7.7 ±2.2 

7.4 ±1.5 

Thermal 

constant (Dc) 

24.2 ± 3.6 

23.7 ± 1.5 

23.0 ± 1.5 

25.5 ± 1.5 

99.4 ±14.2 

11.4± 2.0 

156.2 ±30 

168.8 ±24 

105.3 ±12 

275.4 ±23 

2 

r 

0.95 

0.99 

0.99 

0.99 

0.96 

0.91 

0.95 

0.96 

0.97 

0.98 
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Table 2.3. Effect of temperature on the rate of increase of A. gossypii populations on cotton. 

Parameters 

Net reproductive number (Ro) 

Intrinsic rate of increase (rm, d~ ) 

Finite rate of increase (X, d~ ) 

Population doubling time (x, d) 

Generation time (t, d) 

Temperature (°C) 

10 

2.6 

0.033 

1.03 

20.8 

28.9 

15 

13.8 

0.142 

1.15 

4.9 

18.5 

20 

18.5 

0.255 

1.29 

2.7 

11.4 

25 

24.4 

0.386 

1.47 

1.8 

8.3 

30 

10.2 

0.360 

1.43 

1.9 

6.4 

35 

2.0 

0.092 

1.10 

7.5 

7.6 

Number of aphids multiplied in one generation. 

intrinsic rate of population increase (rm) over temperature was quite similar: a 

maximum of 0.386 d"1 at 25 °C compared to 0.255 d"' and 0.360 d"' at 20 °C and 

30°C, respectively. At the extreme temperatures of 10 and 35 °C, the intrinsic rate of 

population increase was 0.033 d~ and 0.092 d~ , respectively (Table 2.3). The high 

relative rate of population increase at 25 °C resulted in a daily population increase of 

47% and a doubling time of only 1.8 d, illustrating the tremendous growth capacity of 

A. gossypii under favorable conditions (Table 2.3). 

2.4 Discussion 

The intrinsic rate of increase (rm) is a useful summary parameter to characterize the 

influence of abiotic factors, in particular temperature, on growth potential of insect 

populations (Birch, 1948; Messenger, 1964; DeLoach, 1974; Wyatt & White, 1977; 

Nowierski et al., 1983). It should be considered as a relative measure as the conditions 

under which it has an absolute value are nearly never met. As demonstrated in Fig. 

2.6A, the temperature response of the local population of A. gossypii near Anyang, 

Henan, in the middle of the North China cotton region, differed from results obtained 

with different local populations. At the lower temperatures, the rm of aphid populations 

fed on squash (Aldyhim & Khalil, 1993) and citrus (Komazaki, 1982) was greater than 

that fed on cotton (Fig. 2.6A). The maximum rm was attained at 27 °C on cotton, at 25 

°C on squash but at 22 °C on citrus (Fig. 2.6A). As shown in Fig 2.6B, the responses of 

the developmental rate to temperatures varied among the three local populations. They 

showed a similar trend of development with temperatures increasing from 10 °C to 25 

°C (Fig. 2.6B). With the temperature increasing from 25 °C to 30 °C, however, the 
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Temperature ( °C ) 

Fig. 2.6. Comparison of the temperature responses of the intrinsic rate of increase (rm, A) and the rate 

of development from birth to first larviposition (R ,̂ B) for A. gossypii reared on cotton ( • ) (this 

study), squash ( O ) (Aldyhim & Khalil, 1993) and citrus ( • ) (Komazaki, 1982). 

developmental rate of aphid populations fed on cotton was much higher than those fed 

on squash (Aldyhim & Khalil, 1993) and citrus (Komazaki, 1982) (Fig. 2.6B). These 

variations may be attributed to the differences in nutrition in crops (Auclair, 1963) 

and/or in adaptation to the surrounding environment (Blackman & Eastop, 1985; Akey 

& Butler, 1989). 

A. gossypii populations on cotton were more tolerant to high temperatures than 

those on the other host plants examined. We observed that the cotton aphid was able to 

complete its life cycle and to give birth even at 35 °C (Table 2.1), while it hardly 

survived to the adult stage on squash (Aldyhim & Khalil, 1993) and citrus (Komazaki, 

1982) at such high temperatures. This ability to live under high temperatures also 

exceeds results obtained on cotton in USA (Isely, 1946; Akey & Butler, 1989). High 

extreme and optimum temperatures for population growth and development (Fig. 2.6) 

may be an adaptation to the high temperatures in cotton fields in the North China 

cotton region and contribute to a propensity of the cotton aphid for outbreaks at the 

square-boll stage ("summer aphid") in the North China cotton region, where the daily 

temperature in the late summer fluctuates between 28-38 °C (Luo & Gao, 1986; Fang 

etal., 1992). 

A. gossypii obtained its highest rate of increase on cotton at 25-30 °C. This favors 

population growth on cotton seedlings during late May and early June in the North 

China cotton region, when ambient temperatures are 20-30°C. Cotton seedlings are 

vulnerable to aphid injury, and yield losses 10-15% may result or it may be necessary 

to replant in some areas (CCRI, 1983; Pan et al., 1986; Fang et al., 1992). 
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Threshold temperatures of A. gossypii were 8.2, 8.0, 7.2 and 6.2 °C for the first 

through fourth instar, respectively (Table 2.2), which was close to the values of 8.0, 

8.2, 6.7 and 6.7 °C found by Li & Xie (1990a). Thermal constants of each nymphal 

instar were almost identical in the four nymphal instars (Table 2.2). This result 

coincides with results of a study of Hughes (1963), who found similar thermal 

constants in nymphal instars of cabbage aphid, Brevicoryne brassicae (L.). 

Results of this study provide a basis for a further analysis of factors regulating 

population growth of A. gossypii on cotton in fields, using simulation modelling of the 

spatio-temporal population interaction between A. gossypii and natural enemies as an 

analytical and explorative tool. 
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Chapter 3 

Influence of temperature and prey density on population 
growth of Coccinella septempunctata feeding on Aphis 

gossypii on Gossypium hirsutum 

Abstract Life history parameters of Coccinella septempunctata L. (Coleoptera: 

Coccinellidae) feeding on Aphis gossypii Glover on Gossypium hirsutum L. were 

determined in two series of experiments. The first experimental set-up addressed the 

effect of temperature (15, 20, 25, 30 and 35 ± 0.5 °C) on C. septempunctata bionomics 

supplied with unlimited food. The second experiment addressed the effect of food 

quantity on the beetle's bionomics at 25 CC. Relationships of life cycle parameters with 

temperature and prey density were described by mathematical equations. C. 

septempunctata developed most rapidly at 35 °C, with a pre-imaginal period of 10.8 d. 

The highest survival from egg to adult (47%) was obtained at 25 °C. Oviposition was 

greatest at 25 °C, with a total oviposition of 287.4 eggs per female and a mean 

oviposition rate during the reproductive period of 22.4 eggs per female per day. 

Threshold temperature for development of the respective stages ranged from 10.9 to 13.9 

°C, with 12.6 °C for the entire life span. The thermal constant was 42.0 degree-days (D°) 

for eggs, 103.7 D° for larvae, 63.6 D° for pupae and 302.9 Dc for adults. Over the range 

of prey densities tested, a 3.5-fold increase in prey density resulted in a 2-fold reduction 

in larval development time and a 3-fold increase in larval survival. A 2-fold increase in 

prey density brought about a 2-fold increase in total oviposition and the mean oviposition 

rate. The data gathered are used to construct a simulation model of C. septempunctata 

population dynamics in cotton. 

3.1 Introduction 

Seven-spot ladybird beetle, Coccinella septempunctata L. (Coleoptera: Coccinellidae) 

is a key predator of cotton aphid {Aphis gossypii Glover) at the seedling stage of cotton 

(Gossypium hirsutum L.) in the North China cotton region. Biological control of the 

cotton aphid is a priority for integrated cotton pest management to avoid early season 

application of insecticides, thus laying a foundation for biological control throughout 

the season (Xia, 1992; Fang et al., 1992; Xia et al., 1996). Development of biological 
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control systems for the cotton aphid requires insight in population growth of C. 

septempunctata under different climatic conditions (notably the temperature) and 

different prey densities. 

Effects of temperature on C. septempunctata bionomics have been studied with 

several aphid species as food, such as cabbage aphid, Lipaphis erysimi Katt. (Sethi & 

Atwal, 1964; Singh & Malhotra, 1979; Rhamahalinghan, 1987; Zhu, 1987); pea aphid, 

Acrythosiphon pisum (Harris) (Butler, 1982; Frazer & McGregor, 1992); black bean 

aphid, Aphis fabae Scopoli (Hodek, 1958); and Russian wheat aphid, Diuraphis noxia 

(Mordvilko) (Michels & Flanders, 1992). Impact of prey density on C. septempunctata 

bionomics has been investigated with pea aphid (Pandey et al., 1984; Evans & Dixon, 

1986). Such information on C. septempunctata feeding on A. gossypii on cotton is 

generally lacking in China. 

C. septempunctata is worldwide distributed and extremely polyphagous. 

Populations coming from different geographic locations or feeding on different prey 

species may differ in their life cycle parameters due to genetic adaptation (Hodek, 

1973; Hämäläinen & Markkula, 1972; Chen et al., 1980). Thus, data on development, 

survival and oviposition of C. septempunctata should be used with caution if applied to 

a new location or prey species. 

The objective of this study is to determine the effect of temperature and prey density 

on life history parameters of C. septempunctata feeding on A. gossypii on cotton. The 

study is undertaken to provide basic data for a quantitative analysis of A. gossypii 

biological control with C. septempunctata in cotton-wheat intercropping in the North 

China cotton region, using simulation modelling as an analytical and explorative tool. 

3.2 Materials and methods 

3.2.1 Experiments 

This study was carried out at the China Cotton Research Institute (CCRI), Anyang, 

Henan province (36.07 °N latitude and 114.22 °E longitude) in 1993. Two experiments 

were conducted. The first experiment addressed the effect of temperature on the 

bionomics of C. septempunctata. Five temperatures were set: 15, 20, 25, 30 and 35 + 

0.5 °C. Coccinellids were fed on excess A. gossypii. The second experiment addressed 

the effect of food quantity on the beetle's bionomics, which was done at a constant 

temperature of 25 °C. Six levels of prey density were supplied for each predator stage 

(Table 3.1). All experiments were conducted in a Multi-Unit-Chamber (Messrs. 

Brabender, KSE-S 6-125/RN), where the humidity was 70-90% r.h. and the 

photophase was 14 h. 
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Table 3.1. Prey densities of A. gossypii on cotton offered for determining the effect of food quantity 

on the bionomics of C. septempunctata at a constant temperature of 25 °C. 

Predatory stage 

First instar 

Second instar 

Third instar 

Fourth instar 

Adult 

Level of 

I 

10 

15 

20 

40 

50 

prey density 

II 

15 

20 

30 

60 

80 

III 

20 

25 

40 

80 

110 

IV 

25 

30 

50 

100 

140 

V 

30 

35 

60 

120 

170 

VI 

35 

40 

80 

150 

200 

Young A. gossypii adults. 

A laboratory colony was started with C. septempunctata pupae. The pupae were 

collected in mid May on 85-Zhong-33, a cultivar of winter wheat [Triticum aestivum 

(L.)] which is commonly cultivated in North China. The collected pupae were 

maintained in glass petridishes (15 cm diameter and 2.5 cm deep) at 25 °C for 

emergence. Newly emerged adults were paired (female + male), held in plastic 

containers (10 cm diameter and 8 cm deep) at 25 °C, and fed with excess aphids 

obtained on field-grown cotton for oviposition. Eggs were used for rearing 

experiments. 

In the first experiment, 300 freshly laid eggs were kept in glass petridishes (15 cm 

diameter and 2.5 cm deep) for each temperature. They were observed for hatching 

every 24 h at 15 °C and 20 °C, and every 12 h at 25, 30 and 35°C. At each 

temperature, 100 newly hatched larvae were individually held in plastic containers (6 

cm diameter and 8 cm deep) and supplied with excess aphids of mixed instars. 

Moulting and mortality were monitored at time intervals of 24 h at the two lower 

temperatures and 12 h at the three higher temperatures. Each day, aphids were added 

and the cotton leaves were replaced. Newly emerged adults were transferred to larger 

glass containers (10 cm diameter and 15 cm high) after copulation had been observed. 

Eggs in each container were counted and then removed every 12 h at 15 °C and 20 °C, 

and every 6 h at 25, 30 and 35 °C. Observations ended after death of the females. 

In the second experiment, 30-35 newly hatched larvae were individually reared for 

each prey density and supplied daily with different amounts of young A. gossypii 

adults according to their developmental stage (Table 3.1). The procedure of 

observations was the same as in the first experiment. 
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3.2.2 Analysis 

In both experiments, we estimated the following life cycle parameters: development 

time of each larval instar, duration of all larval stages together, pupal stage duration, 

and the pre-imaginal period (the time from egg to emerged adult); duration of the pre-

oviposition period, oviposition period, and oviposition plus post-oviposition period as 

well as the total adult longevity; entire life span (from birth to death); total oviposition 

(number of eggs laid per female in her lifetime); and the mean oviposition rate during 

the reproductive period (number of eggs laid per female per day). All parameters were 

compared among treatments of temperature, and of prey density, using the General 

Linear Models (GLM) procedure of SAS 6.1 for PC (SAS Institute, 1993-1995). 

Differences were considered significant at P < 0.05 in t-test (LSD). 

Developmental rate (Rj, d~ ) of each life stage was computed as the reciprocal of the 

stage duration in both experiments. Logan et al.'s (1976) model was used to describe 

the relationship between the developmental rate and temperature: 

Rd = a, { exp [ a2 ( T - T, ) ] - exp [ a2 ( Tu - T, ) - ( Tu - T ) / a3 ] } (3.1) 

where T is the temperature (°C), T, is the lower threshold temperature (°C), Tu is the 

upper lethal temperature (°C); and ab a2 and a3 are coefficients. The upper lethal 

temperature was assumed to be the same for all life stages: 38 °C as estimated in 

growth chambers by Sethi & Atwal (1964). The lower threshold temperature of each 

life stage was determined by linear regression, excluding the data for the higher 

temperature where the relationship becomes nonlinear (see Kawauchi, 1982): 

Rd = b , + b 2 T (3.2) 

where T is the temperature (°C); b, and b2 are coefficients representing the lower 

threshold temperature and thermal constant, respectively. The relationship between the 

developmental rate and prey density was described with a negative exponential 

satiation curve: 

Rd = f, + f 2 [ l - e x p ( - f 3 D a / f 2 ) ] (3.3) 

where Da denotes the cotton aphid density; and fb f2 and f3 are coefficients. 

Mortality and fecundity in the adult stage are not only temperature- but also age-

dependent. Twenty age classes were distinguished to describe the age dependency of 

fecundity and mortality according to the method of Rabbinge (1976, pp. 58-61). The 
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duration of each age class was determined by dividing the maximum period of living 

by the total number of age classes. The maximum period of living was defined as the 

mean life span plus 3 SD (standard deviation). The relative mortality rate (Rm, d~') of 

each life stage and each adult age class was computed as: 

Rm = ( l nN t - l nN t + A t ) /A t (3.4) 

where Nt is the number of insects at time t, Nt+At is the number of insects at time t+At, 

and At is the time interval between observations (i.e. duration of a life stage or an age 

class). The relationship between temperature and the relative mortality rate was 

described with a parabola: 

Rm = c,+ c2T + c3T2 (3.5) 

where cu c2 and c3 are coefficients. A negative exponential decay equation was used to 

describe the response of the relative mortality rate to prey density: 

Rm = gi e x p ( - g 2 D a ) (3.6) 

where Da is the prey density; and g, and g2 are coefficients. 

Weibull's (1951) model was used to describe the relationship between temperature 

and total oviposition (A), mean oviposition rate during the reproductive period (B), and 

the mean oviposition rate of each adult age class (C): 

Y = d 2 / d 1 d 3 [ ( T - T , ) / d 1 ] ( d 2 " 1 ) e x p { - [ ( T - T 1 ) / d 1 ] d 2 } (3.7) 

where Y stands for A, B or C; T and T, have the same meaning as in Equation 3.1; and 

db d2 and d3 are coefficients. Equation 3.3 was used to describe the response of total 

oviposition and the mean oviposition rate to prey density. An equation modified from 

Bieri et al. (1983) was used to describe the relationship between the mean oviposition 

rate (Rq) and adult age class: 

Rq = e , q / ( e 2 ) q (3.8) 

where q is the adult age class; and e, and e2 are coefficients. 

Models or equations were selected on basis of a biologically appropriate shape, 

Root Mean Square Error (RMSE) and coefficient of determination (r ). All parameters 

in nonlinear models or equations were estimated iteratively by minimization of the sum 
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of squared residuals, using the Levenberg-Marquardt algorithm (Slide Write Plus for 

Windows, 1983-1993). 

3.3 Results 

3.3.1 Effect of temperature 

Development The time to complete development of the pre-adult stage of C. 

septempunctata decreased with temperature from 69 d at 15 °C to 11 d at 35 °C (Table 

3.2). Longevity of the adult decreased with temperature from 38 d at 20 °C to 14 d at 

35 °C (Table 3.2). 

Relationship between temperature and the developmental rate (Rj) of all life stages 

was adequately described by Logan et al.'s (1976) model (Fig. 3.1). RMSE ranged 

from 0.018 to 0.034 d~ for eggs through the third larval instar, and from 0.0013 to 

0.0094 d~ for the fourth larval instar through the oviposition plus post-oviposition 

adults. All r exceeded 0.97. Developmental rate of each larval instar and the pupa 

increased exponentially from the lower threshold temperature to an optimum (around 

33 °C, Fig. 3.1) and then declined dramatically until the upper lethal temperature had 

been reached. However, the developmental rate increased nearly linearly with 

temperature up to 35 °C and then decreased sharply in eggs, pre-oviposition adults, and 

the oviposition plus post-oviposition adult (Fig. 3.1). 

Survival Survival of all pre-adult stages (except for the second instar) increased 

with temperature up to 25 °C and then decreased (Table 3.2). The highest survival of 

the pre-adult period (47%) at 25 °C was about 3 times of 16% at 15 °C and 2 times of 

26% at 35°C (Table 3.2). No adult could survive to the oviposition phase at 15 °C. 

A parabola satisfactorily described the relationship between temperature and the 

relative mortality rate (Rm) of each pre-oviposition stage (Fig. 3.2). RMSE ranged from 

0.0016 to 0.0042 d"1 for eggs through the second larval instar, and from 0.00034 to 
— 1 2 

0.00095 d for the third larval instar through the pre-oviposition adult; and r ranged 

from 0.97 to 0.99. In most cases, relative mortality rate was fairly low at 20-25 °C but 

slightly higher at 15 °C and much higher at 35 °C (Fig. 3.2). The relationship between 

temperature and the relative mortality rate of each adult age class was also adequately 

described by a parabola (Table A-3 in Appendix A). As shown in Fig. 3.3, the relative 

mortality rate increased with adult age at all four temperatures, and it also increased 

with temperature in each adult age class. 

Oviposition Total oviposition and mean oviposition rate were highest at 25 °C but 

lowest at 15 °C and 35 °C (Table 3.2). Total oviposition increased with temperature 

from 191.6 eggs per female at 20 °C to 287.4 eggs per female at 25 °C and then 
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Fig. 3.1. Relationship between temperature (T, °C) and the rate of development (maturation or 

ageing) (Rj, d ) of C. septempunctata feeding on A. gossypii on cotton. The best fit is given by 

Equation 3.1, where the lower threshold temperature (T|) is presented in Table 3.3, and the upper 

lethal temperature (Tu) is 38 °C. Bars represent observations with 95% confidence limits. 
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Fig. 3.2. Relationship between temperature (T, °C) and the relative mortality rate (Rm, d~ ) of C. 

septempunctata feeding on A. gossypii on cotton. The best fit is given by Equation 3.5. Bars represent 

observations with 95% confidence limits. 
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Fig. 3.3. Age class-dependent relative mortality rate (d ) of C. septempunctata adults feeding on A. 

gossypii on cotton at four temperatures. 

decrease down to 54.1 eggs per female at 35 °C. The mean oviposition rate (20.5-22.4 

eggs per female per day) at 25-30 °C was 2 times as large as at 20 °C and 35 °C 

(Table 3.2). 

WeibulPs (1951) model adequately described the relationship of total oviposition 

and the mean oviposition rate with temperature (Fig. 3.4). RMSE was 46.2 eggs per 

female for the total oviposition (Fig. 3.4A) and 3.3 eggs per female per day for the 

mean oviposition rate (Fig. 3.4B); and r was 0.99 for both. Total oviposition and the 

mean reproductive rate increased exponentially from the lower threshold temperature 

to an optimum (around 26 °C) and then decreased exponentially with temperature (Fig. 

3.4). The relationship between temperature and the mean oviposition rate of each adult 

age class was also satisfactorily described by Weibull's (1951) model (Table A-4 in 

Appendix A). 

As shown in Fig. 3.5, the relationship between the mean oviposition rate of each age 

class (Rq) and adult age was well described by Equation 3.8 at all four temperatures. 

RMSE was 1.1, 3.1, 8.5 and 4.1 eggs per female per day for 20 °C through 35 °C, 

respectively; and r ranged from 0.96 to 0.99. 
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Fig. 3.4. Relationship between temperature (°C) and total oviposition (total eggs per female, A), and 
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cotton. The best fit is given by Equation 3.7, where the lower temperature (T;) is 11 °C, and the upper 

lethal temperature (Tu) is 38 °C. Bars represent observations with 95% confidence limits. 
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given by Equation 3.8. Bars represent observations with 95% confidence limits. 
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Threshold temperature Threshold temperatures ranged from 12.9 to 13.9 °C for 

the first larval instar through pupae and from 10.9 to 11.5 °C for eggs and the adult, 

with 12.6 °C for the entire life span (Table 3.3). The thermal constant for the adult 

stage was 302.9 degree-days (D°), which accounted for over 50% of 546.3 D° for the 

total life span (Table 3.3). 

3.3.2 Effect of prey density 

Development Development time of the total larval period of C. septempunctata 

decreased rapidly with prey density from level I to level IV and then decreased slightly 

(Table 3.4). Over the range of prey densities tested, an average 3.5-fold increase in 

prey density resulted in a 2-fold decrease in larval developmental time (Tables 3.1 and 

3.4). Duration of the pupal stage only slightly decreased with prey density (Table 3.4). 

Adult life span decreased sharply at prey density up to level III and then decreased 

slightly (Table 3.4). The response of the developmental rate (Rj) to prey density was 

well described by Equation 3.3 for the first through fourth instar (Fig. 3.6A). RMSE 

ranged from 0.0041 to 0.0183 d~ , and all r exceeded 0.97. The developmental rate of 

all larval stages negatively accelerated with prey density and approached to an 

asymptote at the higher prey densities (Fig. 3.6A). 

Table 3.3. Threshold temperature and thermal constant (means ± SE) of C. septempunctata feeding on 

A. gossypii on cotton. 

Stage / period 

Eggs 

First instar 

Second instar 

Third instar 

Fourth instar 

Total larval period 

Pupae 

Pre-oviposition adult 

Ovip. plus post-ovip. adult 

Total adult period 

Entire life span 

Threshold 

temperature (°C) 

11.51.1.4 

13.8 +.1.2 

13.6+1.7 

13.6+1.3 

13.9+ 1.3 

13.7 ± 1.2 

12.9 ±.1.6 

10.9 ±0.6 

11.1 ±1.0 

12.4 ±1.5 

12.6 ±0.5 

Thermal 

constant (D°) 

42.0 ± 4.2 

22.8 ± 2.4 

20.4 ± 2.5 

23.1 ± 4.3 

38.0 ± 6.2 

103.7 ± 11 

63.6 ± 8.6 

151.9 ± 7 

166.1 ±24 

302.9 ±28 

546.3 ±15 

2 

r 

0.98 

0.98 

0.96 

0.98 

0.98 

0.98 

0.97 

0.99 

0.99 

0.98 

0.99 
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Survival Survival of all pre-adult stages increased with prey density and was 

greatest at the highest prey density (Table 3.4). From instars to the adult stage, a 3.5-

fold increase in prey density brought about a 3-fold increase in survival (Tables 3.1 

and 3.4). Equation 3.6 satisfactorily described the relationship between prey density 

and the relative mortality rate (Rm) of each larval stage (Fig. 3.6B). RMSE ranged from 

0.00075 to 0.00291 d-1 and r2 from 0.92 to 0.95. 

Oviposition Total oviposition and the mean oviposition rate increased 

monotonously with prey density (Table 3.4). A 2-fold increase in prey density led to a 

2-fold increase in total oviposition and the mean oviposition rate (Tables 3.1 and 3.4). 

Equation 3.3 adequately described the response of total oviposition and the mean 

oviposition rate to prey density (Fig. 3.7). RMSE was 39.0 eggs per female for the total 

oviposition (Fig. 3.7A) and 0.7 eggs per female per day for the mean oviposition rate 

(Fig. 3.7B), and r was 0.99 for both. Total oviposition and the mean oviposition rate 

negatively accelerated with prey density and reached a plateau at the higher prey 

densities (Fig. 3.7). 

0.6 

•a 

B 

a: 
25 45 5 25 45 10 50 

Prey density 

20 1 00 1 80 

Fig. 3.6. Relationship between prey density (Da) and the developmental rate (Rd, d~ , A), and the 

relative mortality rate (Rm, d~', B) of the first through fourth instar (LI to L4) of C. septempunctata 

feeding on A. gossypii on cotton. The development response is described by Equation 3.3 and the 

mortality response by Equation 3.6. Bars represent observations with 95% confidence limits. 
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Fig. 3.7. Relationship between prey density (Da) and total oviposition (total eggs per female, A), and 

the mean oviposition rate (eggs per female per day, B) of C. septempunctata feeding on A. gossypii on 

cotton. The best fit is given by Equation 3.3. Bars represent observations with 95% confidence limits. 

3.4 Discussion 

It is common that C. septempunctata attains its most rapid development at 35 °C 

(Hodek, 1958, 1973; Sethi & Atwal, 1964; Singh & Malhotra, 1979; Kawauchi, 1982, 

1985; Zhu, 1987). High temperature, however, exerts a deleterious effect through 

increased respiration cost (Mills, 1981), resulting in a reduction of survival and 

oviposition (Table 3.2). This may be the major cause for the seven-spot beetle to 

aestivate or enter in diapause in the North China cotton region (Zhu & Li, 1981; Qin, 

1978). As shown in Fig. 3.8, developmental rate (Rj) of the pre-adult stage of the 

seven-spot beetle differs little between acquisitions from different parts of the world: 

China (this study), Europe (Hodek, 1958), India (Sethi & Atwal, 1964) and Japan 

(Sakurai et al., 1991), though it shows some differences at high temperatures. These 

results confirm the comment made by Hodek (1973) that differences among distant 

populations of C. septempunctata are mostly related to its survival near the upper 

temperature limit. 

C. septempunctata obtained greater survival and oviposition at 20-30 °C than at 10 

°C and 35 °C. This may explain why C. septempunctata populations in the North 

China cotton region are relatively higher in May and in September when average field 

temperatures vary between 22 and 30 °C but much lower in July and August when 

field temperatures fluctuate between 30 and 39 °C. Therefore, C. septempunctata is 

considered an effective biological control agent of A. gossypii only at the seedling 

stage of cotton but not at the square-boll stage (CCRI, 1983; BU, 1984; Fang et al., 

1992; Xia et al., 1986). 
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Fig. 3.8. Comparison of developmental rates to the adult stage of C. septempunctata in China ( • ) 

(this study), Japan ( O ) (Sakurai et al., I99l), Europe ( • ) (Hodek, 1958), and India ( D ) (Sethi & 

Atwal, 1964). 

A linear relationship of the developmental rate, survival and oviposition with prey 

density is commonly observed in predatory arthropods (Beddington et al., 1976). The 

present study, however, indicated that the developmental rate, relative mortality rate, 

total oviposition and the mean oviposition rate of C. septempunctata were non-linear 

dependence of prey density (Figs. 3.6 and 3.7). Such non-linearity was also observed 

in other coccinellid species, such as Adalia bipunctata (Fabricius) feeding on A. pisum 

(Mills, 1981, 1982b), and Cheilomenes lunata (Fabricius) feeding on A. craccivora 

(Ofuya & Akingbohungbe, 1988). Development time of all life stages (except for the 

second larval instar) of C. septempunctata fed with aphids at the highest density at 25 

°C (Table 3.4) were slightly longer than those fed with excess aphids of mixed instars 

at the same temperature (Table 3.2). This difference may be attributed to the suitability 

of food. As observed by Chen et al. (1980) and Sinha et al. (1982), C. septempunctata 

most favoured the third nymphal instar of aphids. In this study, however, only young 

A. gossypii adults were used as food for all life stages of the seven-spot beetle. 

Temperature and food quantity are two major factors affecting C. septempunctata 

population dynamics in the North China cotton region. In some years, development 
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and reproduction of the seven-spot beetle in wheat are enhanced by favorable 

temperatures and abundant prey, especially [Sitobion avenae (Fabricius)]. This results 

in large beetle populations that immigrate for the greater part to (monoculture) cotton 

and provide for biological control of A. gossypii beneath damaging levels. In years in 

which temperatures in April and May fall substantially below the beetle's optimum, 

development is prolonged, mortality increased and reproduction reduced, such that -

even if prey is abundant - the beetle abundance is significantly lowered and its impact 

on the cotton aphid reduced. Effective control of the cotton aphid in cotton 

monoculture is, therefore, most likely if temperature and wheat aphid density favors 

the bionomics of seven-spot beetles in wheat during April and May. 

Results of this study provide a basis for a further analysis of factors regulating 

population growth of A. gossypii on cotton in fields, using simulation modelling of the 

spatio-temporal population interaction between A. gossypii and natural enemies as an 

analytical and explorative tool. 
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Chapter 4 

Functional response of Coccinella septempunctata to 
Aphis gossypii on Gossypium hirsutum: effects of 

predator stage, prey size and temperature 

Abstract The functional response of four larval instars and adults of Coccinella 

septempunctata L. on three size-groups of Aphis gossypii on Gossypium hirsutum L. was 

determined at five temperatures (15, 20, 25, 30 and 35 ± 0.5 °C) in the laboratory. All 

functional responses were of type II. They were adequately described by Rogers' random 

predator equation. The search rate, i.e. the initial slope of the functional response 

(proportion of prey captured per unit time), increased linearly with temperature. From 15 

°C to 35 °C, the search rate increased with a factor of 3-8. The handling rate (the plateau 

of the functional response) showed a curvilinear relation to temperature and was lowest 

at 15 °C. There was a considerable variation in the latter response curves in different 

predator-prey stage combinations. In some predator-prey interactions, handling rate 

increased consistently with temperature, while in other combinations, the relationship 

had a maximum at an intermediate temperature. Search rate increased with 50-100% 

from one larval predator instar to the next but search rates of the adult predator were 

somewhat lower than those of the fourth larval instar. There was only moderate 

difference in search rate between prey-size groups for the same predator stage (< 50% 

between extremes). Handling rate increased with 50-100% from one predator stage to 

the next. Handling rates of the fourth larval instars and adults were similar. Handling rate 

towards the early instar, late instar and adult prey varied with a ratio of approximately 

3:2:1. The functional responses are incorporated in a simulation model for C. 

septempunctata-A. gossypii population interaction and dynamics in cotton. 

4.1 Introduction 

Preservation and utilization of the seven-spot ladybird beetle {Coccinella 

septempunctata L.) [Coleoptera: Coccinellidae] is an important component of 

integrated management of cotton aphid {Aphis gossypii Glover) [Homoptera: 

Aphididae] on seedling cotton {Gossypium hirsutum L.) in the North China cotton 

region (BU, 1984; Xia, 1994b; Xia et al., 1996). A better understanding of C. 
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septempunctata-A. gossypii interactions is helpful in developing effective biological 

control strategies through manipulation of cropping systems and rational application of 

selective insecticides. 

The interaction between C. septempunctata and A. gossypii is complicated. Five life 

stages of the prey (four nymphal instars and the adult) and five foraging stages of the 

predator (four larval instars and the adult) are involved. Predators of all foraging stages 

can attack each life stage of the prey, though they are more likely to accept the younger 

prey, depending mainly on the hunger level of the predator and its size (Frazer & 

Gilbert, 1976; Ofuya, 1986; Dong & Wang, 1989). 

Two important components are involved in the prédation process, functional and 

numerical responses (Holling, 1959, 1966). The functional response, describing the 

changes in the number of prey consumed by predators per unit time in relation to the 

changes in prey density, provides a basis of the interaction between predators and their 

prey. A number of studies have examined in detail the functional response of several 

coccinellid predators preying on aphids, such as C. septempunctata preying on wheat 

aphid [Sitobion avenae (Fabricius)] (Cai & Yan, 1991; Li, 1991) and mustard aphid 

{Lipaphis erysimi Kalt) (Sinha et al., 1982); C. californiens Mannerheim, C. trifasciata 

L. and C. undecimpunctata L. preying on pea aphid [{Acyrthosiphon pisum (Harris)] 

(Frazer & Gilbert, 1976; Frazer et al., 1981); Coleomegilla maculata (De Geer) 

preying on green peach aphid [Myzus persicae (Sulzer)] (Mack & Smilowitz, 1982a); 

and Cheilomenes vicina (Muls.) preying on cowpea aphid {A. craccivora Koch) 

(Ofuya, 1986). Few studies have investigated the effect of prey stage of A. gossypii on 

the functional response of C. septempunctata adults (Dong & Wang, 1989). No 

observation has been made for the functional response of C. septempunctata to A. 

gossypii on cotton as influenced by predator stage, prey size and temperature. 

The objective of this study is to determine the functional responses of all five 

foraging stages of C. septempunctata to three size-groups of A. gossypii at five 

temperatures. The study is undertaken to provide basic data for a quantitative analysis 

of biological control of A. gossypii with C. septempunctata in cotton-wheat 

intercropping in the North China cotton region, using simulation modelling as an 

analytical and explorative tool. 

4.2 Materials and methods 

4.2.1 Experiments 

The study was conducted at the China Cotton Research Institute (CCRI), Anyang, 

Henan province (36.07 °N latitude and 114.22 °E longitude) in 1993. The functional 
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response of all foraging stages (four larval instars and the female adult) of C. 
septempunctata was determined with six densities of three size-groups of A gossypii. 
The first size-group included the mixed first and second nymphs (hereafter referred to 
as early instars), the second size-group included the mixed third and fourth nymphs 
instars (hereafter referred to as late instars), and the third size-group included adults. 
Density levels were adjusted to the predator-prey stage combination (Table 4.1). Each 
combination was tested at five temperatures (15, 20, 25, 30 and 35 ± 0.5 °C). At all 
temperatures, the humidity was 70-90% r.h. and the photophase was 14 h. All 
measurements were carried out in a Multi-Unit-Chamber (Messrs. Brabender, KSE-S 
6-125/RN). Size-groups were defined because they are easier to be distinguished in 

Table 4.1. Prey densities of different size-groups of A. gossypii offered for prédation by foraging 

stages of C. septempunctata on cotton. 

Prey size-

group' 

Early instar 

Late instar 

Adult 

Predator 

stage 

First instar 

Second instar 

Third instar 

Fourth instar 

Female adult 

First instar 

Second instar 

Third instar 

Fourth instar 

Female adult 

First instar 

Second instar 

Third instar 

Fourth instar 

Female adult 

Level of 

I 

20 

40 

60 

90 

100 

10 

20 

40 

50 

60 

10 

15 

20 

40 

50 

prey densities 

11 

30 

60 

90 

130 

150 

20 

30 

60 

80 

100 

15 

20 

30 

60 

80 

III 

40 

80 

120 

170 

200 

30 

40 

80 

110 

140 

20 

25 

40 

80 

110 

IV 

50 

100 

150 

210 

250 

40 

50 

100 

140 

180 

25 

30 

50 

100 

140 

V 

60 

120 

180 

250 

300 

50 

60 

120 

170 

220 

30 

35 

60 

120 

170 

VI 

80 

150 

220 

290 

350 

70 

80 

140 

210 

270 

35 

40 

80 

150 

200 

Early instar refers to mixed first and second nymphs, and late instar to mixed third and fourth 

nymphs. 
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the field. Of the adult predators, only females were tested. There is little difference in 

the prédation rate between the two sexes (CCRI, 1983; BU, 1984; Li, 1991; Dong et 

al., 1992; Fang et al., 1992). 

C. septempunctata pupae were collected on wheat in mid May and held in glass 

petridishes (15 cm diameter and 2.5 cm deep) at 25 °C until emergence. Newly 

emerged adults were transferred in pairs (female + male) to glass containers (10 cm 

diameter and 15 cm high) and reared with aphids from field-caged cotton. Their 

progeny was used for experiments. 

Plastic containers (6 cm diameter and 8 cm deep) were used as experimental arenas 

(each with a surface area of 200 cm ). A fresh cotton leaflet with a surface area of 30 ± 

5 cm (approximately equivalent to one fully expanded true leaf at the seedling stage) 

served as substrate. All cotton leaves used were grown in field cages and free of aphid 

injury. A piece of moistened filter paper was laid on the bottom of each arena, and the 

top was covered with a piece of nylon mesh. 

Predators were preconditioned before testing to standardize their level of hunger. 

The larvae were 6-h old after the last moult and starved for 12 h. Female adults were 

24-h old and starved for 24 h. Prédation was measured for six densities of each prey 

size-group (Table 4.1) for 24 h. Ten replicates were made for each combination. 

Controls identical to the respective prédation tests except for the absence of predators 

were used for correction of background mortality of aphids (Abbott, 1925). 

4.2.2 Analysis 

Predator feeding rate in the experimental arena can be described as: 

dN/dt = - a N / ( l + t f T hN) (4.1) 

where N is the number of prey, a is the search rate (arena d~ ) and Th is the handling 

time (d). The number of prey eaten in a day follows the integrated form of the above 

equation: 

Ne = N 0 { l - e x p [ « ( r h N e - T t ) ] } (4.2) 

where Ne is the number of prey eaten, N0 is initial prey density, and a and Th have the 

same meaning as in Equation 4.1. We used this equation (developed by Rogers, 1972) 

to estimate search rate (arena d~') and handling rate (the reciprocal of handling time, 

h"') from the experimental results. Equation 4.1 with estimated parameters will be used 

later in a simulation model for C. septempunctata-A. gossypii interactions in the field 
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cage and open field conditions (Chapters 5 and 6). Rogers' predator equation was used 

as it takes away the need to replace the consumed prey during the experiments. 

Parameters of Equation 4.2 were estimated by nonlinear regression (Juliano, 1993), 

using the NLIN procedure of SAS 6.1 for PC (SAS Institute, 1993-1995). 

A linear model was used to describe the relationship between search rate and 

temperature: 

a = h,+ h2 T (4.3) 

where a is the search rate (arena d ), T is temperature (°C), and h, and h2 are 

coefficients. An optimum type of equation, simplified from Eyring & Urry (1975) (see 

also Mack & Smilowitz, 1982b), was used to describe the relationship between 

handling rate and temperature: 

R h = j 1 T e x p ( - j 2 / T ) / [ l + j 3 e x p ( - j 4 / T ) ] (4.4) 

where Rh is the handling rate (If1); T is the temperature (°C); and j b j 2 , j 3 and j 4 are 

coefficients. Equations 4.3 and 4.4 were chosen based on a biologically meaningful 

shape, Root Mean Square Error (RMSE) and coefficient of determination (r ). 

Parameters of Equations 4.3 and 4.4 were estimated iteratively by minimization of the 

sum of squared residuals, using the Levenberg-Marquardt algorithm (Slide Write Plus 

for Windows, 1983-1993). 

4.3 Results 

All observed functional responses of C. septempunctata to A. gossypii on cotton were 

of type II (Holling, 1959, 1966; Mills, 1981, 1982b) and were adequately described by 

Rogers' random predator equation. RMSE ranged from 0.3 to 2.7 aphids per day in the 

first instar predator, 0.5-5.9 aphids per day in the second instar, 1.1-5.2 aphids per day 

in the third instar, 2.1-7.1 aphids per day in the fourth instar, and 0.8-11.1 aphids per 

day in the female adult, r2 ranged from 0.89 to 0.99. As an example, the 15 functional 

response curves observed at 25 °C are presented in Fig. 4.1. At the other four 

temperatures, the 60 responses followed a similar pattern (not shown). The functional 

response parameters estimated for 15 different predator-prey stage combinations, five 

temperatures and six prey densities examined for each functional response are 

summarized in Tables 4.2 and 4.3. Table 4.2 presents the estimated search rate for each 

predator-prey combination at five temperatures, and Table 4.3 lists the estimated 

handling rate. 
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Fig. 4. ]. Functional response of five foraging stages of C. septempunctata towards early instars (A), 

late instars (B), and the adults (C) of A. gossypii on cotton at 25 °C. Data were fitted with Equation 

4.2. Parameters are given in Tables 4.2 and 4.3. Each data point represents a mean of 10 replicates. 
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4.3.1 Effect of predator stage 

At all temperatures tested, search rate (a) generally increased by 43-112% from one 
predator instar to the next, though search rates of the female adult were slightly lower 
than those of the fourth instar predator (Table 4.2). The search rate defines how steeply 
the curve approaches the upper asymptote and estimates the proportion of arena area 
(30 cm ) searched per unit time (d). This parameter may be converted into units of area 

Table 4.2. Search rate (a, mean ± SE, d ) of five foraging stages of C. septempunctata preying on 

three size-groups of A. gossypii on cotton at five temperatures . 

Prey size-

group2 

Early 

instar 

Late 

instar 

Adult 

Predator 

3 

stage 

LI 

L2 

L3 

L4 

FA 

LI 

L2 

L3 

L4 

FA 

LI 

L2 

L3 

L4 

FA 

Temperature 

15 

0.36 + 0.039 

0.52 + 0.055 

0.80 ±0.104 

1.70 ±0.232 

0.84 ±0.196 

0.45 ±0.037 

0.63 + 0.040 

0.90 ± 0.063 

1.71 ±0.321 

0.94 ±0.155 

0.39 + 0.076 

0.45 ± 0.046 

0.65 ±0.067 

1.28 ±0.109 

0.67 ±0.130 

°C) 

20 

0.53 ±0.030 

0.94 ± 0.086 

1.42 ±0.173 

2.41 ±0.434 

1.47 ±0.204 

0.60 ±0.028 

0.95 + 0.122 

1.46 ±0.215 

2.51 ±0.571 

1.69 + 0.111 

0.66 ±0.056 

1.02 + 0.114 

1.59 ±0.294 

2.55 ±0.344 

1.73 ±0.263 

25 

0.63 ± 0.068 

1.20 ±0.050 

1.95 ±0.191 

3.07 ±0.532 

2.56 ±0.452 

0.71 ±0.106 

1.04 ±0.220 

2.03 ± 0.285 

3.40 ±0.489 

2.38 ±0.326 

0.73 ±0.137 

1.28 ±0.291 

2.13 ±0.371 

3.32 ±0.683 

2.29 ± 0.232 

30 

1.00 ± 0.096 

1.53 ±0.356 

2.27 ±0.341 

3.26 ±0.310 

2.59 ±0.342 

1.05 ±0.058 

2.26 + 0.167 

2.81 ±0.481 

5.80 ±1.043 

4.00 ±1.003 

1.08 ±0.132 

3.19 ±0.565 

3.26 + 0.593 

6.44+1.414 

3.43 ±0.412 

35 

1.35 ±0.241 

2.23 ±0.259 

3.00 ±0.379 

4.58 ±0.851 

3.40 ±0.737 

2.23 ±0.556 

3.04 ±0.677 

3.21 ±0.907 

5.80 ±1.043 

5.28 ±0.458 

1.73 ±0.277 

3.56 + 0.828 

3.66 ±0.416 

7.13 ±1.528 

5.12 ± 0.185 

The search rate was estimated from Equation 4.2. 

Early instar refers to mixed first and second nymphs, and late instar to mixed third and fourth 

nymphs. 
3 LI, L2, L3 L4 and FA denote the first through fourth larval instars and the female adults of C. 

septempunctata, respectively. 
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searched per unit time by multiplication with the leaf area within arena. For instance, 

the estimated search rate on the adult prey at 25 °C increased from 22 cm2 d ' in the 

first larval instar to 38 cm d~ in the second larval instar (73% increase), to 64 cm2 d~' 

in the third larval instar (68% increase), to 100 cm2 d~' in the fourth larval instar (56% 

increase), and to 70 cm2 d~' in the female adult (30% decrease) (Table 4.2). 

Handling rate increased with 47-112% from one predator stage to the next, though 

there was less difference in handling rate between the fourth larval instar and adult 

predator (Table 4.3). The handling rate is the upper asymptote of the functional 

response curve and represents the potential number of prey that can be killed per unit 

Table 4.3. Handling rate (Th, mean ± SE, h ) of five foraging stages of C. septempunctata preying on 

three size-groups of A. gossypii on cotton at five constant temperatures . 

Prey size-

group2 

Early 

instar 

Late 

instar 

Adult 

Predator 

stage 

First instar 

Second instar 

Third instar 

Fourth instar 

Female adult 

First instar 

Second instar 

Third instar 

Fourth instar 

Female adult 

First instar 

Second instar 

Third instar 

Fourth instar 

Female adult 

Temperature 

15 

2.2 

4.5 

9.4 

16.1 

22.2 

1.0 

2.2 

4.7 

10.5 

7.8 

1.0 

1.8 

3.3 

6.3 

7.8 

±0.62 

±1.00 

±2.31 

±2.52 

+ 4.28 

±0.10 

±0.22 

±0.47 

±2.66 

±1.50 

±0.25 

±0.42 

±0.83 

+ 0.75 

± 1.65 

(°C) 

20 

5.3 

8.7 

13.3 

21.0 

24.2 

2.2 

4.0 

7.1 

13.1 

13.1 

1.3 

2.0 

4.5 

7.4 

8.5 

±1.40 

±2.00 

±3.20 

+ 6.08 

±4.66 

±0.19 

+ 1.11 

±1.58 

±3.88 

± 1.01 

±0.22 

±0.42 

±1.41 

±0.99 

+ 1.51 

25 

7.1 

9.5 

12.6 

18.5 

21.0 

2.8 

5.5 

8.1 

11.8 

12.6 

1.8 

2.9 

5.0 

7.5 

8.6 

±2.11 

±0.91 

±1.76 

±3.77 

±5.16 

±0.91 

±1.64 

±1.56 

±1.52 

±1.60 

±0.46 

±0.84 

+ 1.25 

±1.23 

+ 0.74 

30 

6.2 

10.9 

13.8 

17.9 

22.4 

2.6 

4.3 

±1.02 

±2.84 

±2.82 

+ 2.31 

±3.95 

±0.21 

±0.37 

7.6 ±1.26 

10.3 

12.3 

1.6 

2.7 

4.2 

6.4 

9.1 

±0.96 

±1.79 

±0.36 

±0.54 

+ 0.67 

±0.65 

+ 0.76 

35 

7.1 

9.1 

12.7 

17.4 

19.9 

3.1 

4.2 

8.4 

10.3 

11.4 

1.9 

2.5 

4.0 

6.1 

8.8 

±1.96 

±1.49 

±1.60 

±2.77 

±4.00 

±0.71 

±0.88 

±2.43 

±0.96 

±0.39 

±0.22 

±0.60 

±0.35 

±0.60 

±0.15 

The handling rate was estimated from Equation 4.2. 
2 Early instar refers to mixed first and second nymphs, and late instar to mixed third and fourth 

nymphs. 
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time (maximum number of prey killed daily or hourly). For example, the estimated 

handling rate on the adult prey at 25 °C increased from 1.8 aphid per hour in the first 

larval instar predator to 2.9 aphids per hour in the second larval instar (60%), to 2.0 

aphids per hour in the third larval instar (70% increase), to 7.5 aphids per hour in the 

fourth larval instar (50% increase), and to 8.6 aphids per hour in the female adult (15% 

increase) (Table 4.3). 

4.3.2 Effect of prey size 

Differences in the search rate between prey size-groups for the same predator stage 

were present but not large (less than 50% between extremes), and the effect of prey 

sizes on the search rate varied with temperature (Table 4.2). At 15 °C, C. 

septempunctata obtained the greatest search rate on the late instar prey (Table 4.2). At 

the other four temperatures, the highest search rate was generally attained on the adult 

prey (Table 4.2). 

Handling rate was greatest on early instar prey at all five temperatures (Table 4.3). 

Compared to adult prey, the handling rate on early instars was a factor 3.1 larger and 

the handling rate on late instars was a factor 1.6 larger (Table 4.3). This result suggests 

that one adult unit of A. gossypii on cotton is nutritionally equivalent to 1.6 late instars 

or 3.1 early instars in terms of the maximum prédation by C. septempunctata. 

4.3.3 Effect of temperature 

Search rate increased linearly with temperature (Fig. 4.2). RMSE was 0.04-0.19 arena 

d_1 for the first larval instar predator, 0.13-0.61 arena d~ for the second larval instar, 

0.15-0.31 arena d_l for the third larval instar, 0.53-1.39 arena d~ for the fourth larval 

instar, and 0.41-0.59 arena d~' for the female adult; and r ranged from 0.87 to 0.99. 

All estimated parameters are given in Table A-5 (Appendix A). The search rates of 

each foraging stage on all prey size-groups at 35 °C were 3-8 times as large as those at 

15 °C (Table 4.2 and Fig. 4.2). For instance, the search rate on the adult prey in the 

first larval instar predator increased from 12 cm d at 15 °C to 52 cm d~ at 35 °C, 

from 14 to 107 cm d in the second larval instar, from 20 to 110 cm d in the third 

larval instar, from 38 to 214 cm d~ in the fourth larval instar, and from 20 to 154 cm 

d~ in the female adult (Table 4.2 and Fig. 4.2). 

Changes in handling rate of all foraging stages to each prey size-group with 

temperature were well described by Equation 4.4 (Fig. 4.3). RMSE was 0.3-4.4 aphids 

per hour in the first instar larval predator, 0.5-3.7 aphids per hour in the second larval 

instar, 0.8-3.8 aphids per hour in the third larval instar, 0.9-7.4 aphids per hour in the 
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Fig. 4.2. Relationship between temperature (°C) and the search rate (a, arena d~ ) of five foraging 

stages of C. septempunctata, feeding on early instars (A), late instars (B) and the adults (C) of A. 

gossypii on cotton. Good fit was obtained using Equation 4.3. The estimated parameters are given in 

Table A-5 (Appendix A). 
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Fig. 4.3. Relationship between temperature (°C) and the handling rate (Rh, hf ) of five foraging stages 

of C. septempunctata, feeding on early instars (A), late instars (B) and the adults (C) of A. gossypii on 

cotton. The best fit was determined using Equation 4.4. The estimated parameters are given in Table 

A-6 (Appendix A). 
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fourth larval instar, and 1.1-4.8 aphids per hour in the female adult, r2 ranged from 

0.86 to 0.97. All estimated parameters are shown in Table A-6 (Appendix A). In all 

predator-prey combinations, handling rate increased substantially from 15 to 20 °C, 

less so from 20 to 30 °C, and there was a tendency to decline from 30 to 35 °C (Table 

4.3 and Fig. 4.3). 

4.4 Discussion 

An increase in search and handling rate in successive developmental predator stages 

has been observed in several coccinellids (Hodek, 1973; Frazer et al., 1981; Ofuya, 

1986; Fan et al., 1989; Cai & Yan, 1991; Li, 1991; Dong et al., 1992). Our data (Tables 

4.2 and 4.3) fit in the general pattern described in the literature. The increase in search 

and handling rate with developmental stages of a predator are consequences of the 

increase in its size which affects behavior, e.g. capture efficiency (Hodek, 1973; 

Thompson, 1978b; Isenhour& Yeargan, 1981). 

With increase in A. gossypii size, the search rate of foraging stages of C. 

septempunctata increased but the handling rate decreased (Tables 4.2 and 4.3). Similar 

results were obtained with other coccinellids by Ofuya (1986). Aphids exhibit various 

defence responses against attacks by coccinellid predators, such as kicking, pulling 

free the seized appendage, running away and dropping on the ground (Dixon, 1958; 

Brown, 1974; Frazer & Gilbert, 1976). The effectiveness of these defences increases 

with aphid developmental stage (Brown, 1974; Frazer & Gilbert, 1976). 

Carter et al. (1982) estimated that an adult unit of S. avenae on wheat was 

equivalent to 1.5 fourth instar, 2.0 third instar, 3.5 second instar and 5.0 first instar 

nymphs, based on the size differences of the various instars. Xie & Sterling (1987) 

observed that an adult unit of A. gossypii on cotton was equivalent to 1.7 fourth instar, 

4.6 third instar, 11.1 second instar or 50.0 first instar nymphs, based on the body 

weight of various instars. Our observations indicated that an adult aphid unit was 

equivalent to 1.6 late instar nymphs and 3.1 early instar (Table 4.3), based on the 

relative increase of handling rate of C. septempunctata with the size-group of A. 

gossypii averaged over five temperatures. 

A linear increase in the search rate with temperature has been found in C. 

californiens (Frazer & Gilbert, 1976), Ischnura elegans (van der Linden) (Thompson, 

1978a), Phytoseiulus persimilis Athias-Henriot (Everson, 1980), and Orius insidiosus 

(Say) (McCaffrey & Horsburgh, 1986). A curvilinear increase in handling rate with 

temperature was also reported for C. septempunctata preying on S. avenae (Cai & Yan, 

1991), I. elegans (Thompson, 1978a), and P. persimilis (Everson, 1980). Search rate of 

foraging stages of C. septempunctata preying on A. gossypii adults at 15 °C was lower 
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than on the early and late instar prey (Table 4.2 and Fig 4.4). This anomaly may be 

explained by the different sensitivity of the seven-spot beetle and cotton aphid at low 

temperatures. The threshold temperature of A. gossypii (6-8 °C) (see Table 2.2) is 

lower than that of C. septempunctata (11-14 °C) (see Table 3.3). If we assume that the 

behavioral sensitivity to low temperature follows this same pattern, low temperature 

would reduce the activity of the predator more than that of the prey. Consequently, 

predator capture efficiency would diminish at low temperature. Handling rate of C. 

septempunctata increased rapidly from 15 to 20 °C, reached a maximum between 20 

°C and 30 °C, and decreased slightly from 30 to 35 °C (Fig. 4.3). This range of 

temperature for the maximum feeding is consistent with that for the optimum 

development and maximum oviposition of C. septempunctata (Chapter 3). 

Temperature affects most components of the feeding behavior of arthropod 

predators. High temperature accelerates rates of the ectotherm's chemical processes 

(Mack et al., 1981; Kharboutli & Mack, 1993), resulting in increased energy demand 

and hunger (Everson, 1980). Increased temperature may affect the search rate by 

enhancing the walking speed of the predator and it may also affect the handling rate by 

decreasing the time spent in pursuit of each prey (Sandness & McMurtry, 1972; Glen, 

1975; Nakamura, 1977; Everson, 1980). The tendency of a decline in handling rate gl 

with temperature rising from 30° to 35 °C (Fig 4.3) was probably the result of 

predators trying to escape, as we observed during the experiment. Such a response to 

high temperature may explain why, in the hot months of July and August, C. 

septempunctata are scare in cotton fields in North China, and unable to control 

"summer aphid" populations (Luo & Gao, 1986; Xia et al., 1996). 

The impact of predator stage, prey size and temperature on the functional response 

of C. septempunctata to A. gossypii on cotton was clearly demonstrated in this study. 

The data obtained support the idea to use this predator as a biological control agent of 

the cotton aphid at the seedling stage of cotton because quite substantial prédation is 

exerted at the temperature range common during the period of May and June in the 

North China cotton region. Based on these data, it is possible to model the field 

prédation rate on mixed prey stages of A. gossypii by mixed predator stages of C. 

septempunctata on whole plants under field conditions. This can be achieved by 

modelling the prédation on mixed prey stages as a competitive process (Rabbinge, 

1976; Rabbinge et al., 1989) while taking into account the effect of plant leaf surface 

on prédation by C. septempunctata (Chapters 5 and 6). 
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Chapter 5 

Temporal dynamics of the predator-prey system 
Coccinella septempunctata-Aphis gossypii 

in single cotton cropping: experiments 
and simulation 

Abstract A simulation model of the temporal dynamics of the predator-prey system 

Coccinella septempunctata L.-Aphis gossypii Glover in cotton monoculture was 

developed. Six submodels were distinguished, cotton aphid, seven-spot beetle, predator-

prey interaction, parasitism, cotton plant, and abiotic factors. The model was tested and 

evaluated at three levels of complexity: laboratory, field cage and open field. At each 

level, processes were added to the model, based on discrepancies between "original 

model" behaviors and observations, and additional experimentation. Processes included 

in the model at the laboratory level were temperature-dependent development, survival 

and reproduction of both insects; and prey density, prey size-group and temperature-

dependent prédation. Adaptations for the field cage level were density dependence of 

wing induction and reproduction of A gossypii, extrapolation of the functional response 

from single stage interaction in experimental arenas in the laboratory to multiple stage 

interactions on plants, and a higher mortality for C. septempunctata than observed in the 

laboratory. Adaptations for the open field level were immigration of both insects; prey 

density-dependent departure of seven-spot beetle adults; time-dependent parasitization of 

alate immigrants by Allothrombium mites, and apterous aphids and seven-spot beetle 

pupae by hymenopterous parasitoids; prey density and prey size-group dependent 

prédation by Propylaea japonica (Thungberg); and accumulated degree-days (D°)-driven 

cotton canopy growth. The simulated and observed data were in reasonable agreement at 

all levels, though discrepancies increased with the level of scale. Simulations at the open 

field level show that C. septempunctata plays a key role in controlling A. gossypii in 

cotton monoculture, but its numbers increase too late to guarantee a sufficient biological 

control. With C. septempunctata alone, aphid populations are kept below action 

thresholds at a predator-prey ratio of 1:50. Variations in temperature or alate 

immigration alone can not explain between-season differences in aphid population 

dynamics. Immigrating numbers of C. septempunctata adults is the key factor. 

Significance of the findings and further development of the model to explore biological 

control strategies for A. gossypii with C. septempunctata are discussed. 
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5.1 Introduction 

Cotton aphid (Aphis gossypii Glover) [Homoptera: Aphididae] is the key insect pest of 

cotton (Gossypium hirsutum L.) at the seedling stage in China, particularly in the North 

China cotton region. The resulting annual losses amount to 10-15% of the attainable 

yield (CCRI, 1983; Xia, 1991; Fang et al., 1992). Preservation and utilization of 

naturally-occurring natural enemies, notably the seven-spot ladybird beetle (Coccinella 

septempunctata L.) [Coleoptera: Coccinellidae], is an effective biological control 

method of the cotton aphid (CCRI, 1983; BU, 1984; Zhang, 1985; Wang et al., 1991). 

Thus, A. gossypii populations can be brought down below economic damage levels by 

augmenting the seven-spot beetle through cotton-wheat intercropping (Wang, 1990; 

Wang et al., 1993; Xia, 1994b), by preserving the seven-spot beetle through the 

selective application of pesticides to minimize their adverse impact (CCRI, 1983; Fang 

et al., 1992; Xia, 1992; Xia et al., 1996), and by mass releasing the seven-spot beetle 

collected on wheat (BU, 1984). 

These biological control measures have been empirical. Extension consultants and 

cotton growers face difficult decisions and feel uncertain in applying biological 

control. The main reason for this is the lack of a quantitative understanding of the 

dynamic behavior of the C. septempunctata-A. gossypii system and insufficient 

predictability of biological control with the seven-spot beetle. 

Modelling complex predator-prey systems can help to gain understanding and 

develop workable biological control strategies (Rabbinge et al., 1989; van der Werfet 

al., 1989). Several biological control systems have been developed within the 

framework of a systems research approach, featuring modelling, e.g. biological control 

of Panonychus ulmi Koch with Amblyseius potentillae (Garman) on apple (Rabbinge, 

1976); biological control of Myzus persicae (Sulzer) with Coleomegilla maculata (De 

Geer) on potato (Mack & Smilowitz, 1982b); biological control of Acyrthosiphon 

pisium (Harris) with C. canifornicus Mannerhein, C. trifasciata L and C. 

undecipunctata L. on alfalfa (Frazer & Gilbert, 1976); and biological control of 

Liriomyza bryonae (Kaltenbach) with Dyglyphus isaea Walker on greenhouse tomato 

(Boot et al., 1992). No effort has been made to analyse, quantify and explain biological 

control of A. gossypii by C. septempunctata in cotton. 

The objective of this study is to develop a simulation model of the temporal 

dynamics of the predator-prey system C. septempunctata-A. gossypii in cotton 

monoculture, and to use the model to gain more insights in the dynamic behavior of the 

coccinellid-aphid system and the mechanisms of biological control of A. gossypii by 

C. septempunctata for exploring promising biological control strategies in cotton in 

North China. 
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5.2 Materials and methods 

5.2.1 Model development 

The model was constructed following the generally accepted principles in systems 

analysis and simulation (Rabbinge et al., 1989; Xia et al., 1991). It is a dynamic, 

deterministic and short-term model, designed to simulate temporal dynamics of the 

predator-prey system C. septempunctata-A. gossypii at cotton seedling stage (from 

sowing to first square, i.e. from mid April to mid June) in cotton monoculture. The 

model simulates changes in density (number per plant) for both insects on a whole 

field basis. Spatial heterogeneity was not considered here (but see Chapter 6). For both 

prey and predator, the fractional boxcar train was used to simulate dispersion in 

development of each pre-reproductive stage, while the escalator boxcar train was 

applied to mimic adult ageing because of the age-dependent reproduction (Rabbinge, 

1976; Rabbinge et al., 1989). Numbers of boxcar trains used were calculated from the 

data presented in Tables 2.1 and 3.2, using the method developed by (Goudriaan & van 

Roermund, 1993). The model was written in a PC version of the Continuous System 

Modelling Program (IBM, 1975). The rectilinear integration method was applied with 

a time step of 0.01 d, 1/10 of the smallest time coefficient in the model. Six submodels 

are distinguished: (1) cotton aphid, (2) seven-spot beetle, (3) predator-prey interaction, 

(4) parasitism, (5) cotton plant, and (6) abiotic factors. 

5.2.1.1 Cotton aphid 

Populations of A. gossypii are distinguished in five developmental stages: the first 

through third instar, fourth instar (apteriform and alatiform) and the adult (apterous and 

alate). Adults are further distinguished in the pre-reproductive and the reproductive 

plus post-reproductive phases. Apterous and alate adults were not distinguished except 

where mentioned explicitly. 

Immigration and emigration The model initializes aphid population dynamics 

with measured daily net immigrations of alates (the number of alates settling on cotton 

per plant per day). The net immigration was determined by field counts (see Section 

5.2.2.1 and Fig. 5.3 in Section 5.3.1.1) and input into the model as forcing functions. 

Immigrations until 20 May were considered as after that time few immigrants were 

found on winter hosts (e.g. Hibiscus syriacus L.) (see Section 5.2.2.1). 

Alate immigrants were supposed to be reproductively mature on arrival and to 

remain in the cotton field until death. Alate adults produced on cotton were assumed to 

disappear from the cotton field upon their emergence. 
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Development and survival Development of the cotton aphid is mainly determined 

by temperature (Chapter 2). The relationship between temperature and the 

developmental rate (Rj, d~ ) of pre-reproductive stages was described with Equation 

2.2. T, is given in Table 2.2; Tu is assumed to be 38 °C for all life stages (Xie & 

Sterling, 1987); and a b a2 and a3 are found in Fig. 2.1. The relationship between 

temperature and the ageing rate computed as the reciprocal of the mean duration plus 3 

SD (standard deviation) of the reproductive plus post-reproductive adult (Table 2.1) 

was linearly interpolated using the CSMP-AFGEN function (IBM, 1975). The ageing 

rate of alate immigrants was multiplied by 0.9 as they live 10% longer than apterous 

adults (Xie & Sterling, 1987). 

Survival of the cotton aphid at cotton seedling stage is greatly influenced by 

temperature (Chapter 2), prédation (Chapter 4), and parasitism (Dong et al., 1992; 

Fang et al., 1992). The relationship between temperature and the relative mortality rate 

(Rm, d~ ) was described with Equation 2.5. Values of c b c2 and c3 are presented in Fig. 

2.2 for the pre-reproductive stages, and in Table A - l (Appendix A) for the adult stage. 

Effects of prédation and parasitism are described in the respective submodels. 

Reproduction and morph determination Fecundity of the cotton aphid depends 

on temperature and adult age (Chapter 2), morph (alate or apterous) (Xie & Sterling, 

1987), and crowding (Li & Xie, 1990a). Mean reproductive rate (R,,, the number of 

nymphs produced per female per day) of each adult age class at different temperatures 

was calculated with Equation 2.6. T, is shown in Table 2.2; and db d2 and d3 are given 

in Table A-2 (Appendix A). The mean reproductive rate of alate immigrants was 

multiplied by 0.8 as their fecundity was about 80% that of the apterous adults (Xie & 

Sterling, 1987). The mean reproductive rate of apterous adults was multiplied by a 

factor (Fr), which was inversely related to density and calculated by an equation 

adapted from Li & Xie (1990a): 

Fr = exp [-0.0666 ( R a / T d ) D J (5.1) 

where Td is the temperature above the lower developmental threshold (Table 2.2), and 

Da is the total aphid density per plant. 

Wing formation is the result of combined effects of crowding (Xie & Sterling, 

1987), and physiological conditions and stages of the plant (Zuo et al., 1991). Only the 

effect of crowding was taken into account. The relationship between aphid density (Da) 

and the fraction of the fourth alate instars (Fa) was determined in single caged potted-

plants (see Section 5.2.2.1) and described by: 

Fa = k 1 + k 2 e x p ( - D a / k 3 ) (5.2) 
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where k,, k2 and k3 are coefficients (see Fig. 5.1 in Section 5.3.1.1). 

5.2.1.2 Seven-spot beetle 

Populations of C. septempunctata are distinguished in seven developmental stages: 

eggs, four larval instars, pupae, and the adults (females and males). Adults are further 

distinguished in the pre-oviposition and the oviposition plus post-oviposition phases. 

Females and males were assumed to be the same except for oviposition, with the sex 

ratio of 1:1. 

Immigration and emigration The model simulates seven-spot beetle population 

dynamics from the start of migration by estimating daily net immigrations of the beetle 

adults (the number of adults settling in cotton per plant per day). The net immigration 

was obtained through field counts (see Section 5.2.2.2) and input into the model as 

forcing functions (see Fig. 5.3 in Section 5.3.1.2). Immigrations until late May (the 

early season immigration) were considered as after that time a large number of seven-

spot beetle adults move into cotton from ripening wheat and oil-seed rape. These late 

season immigrants do not reproduce in cotton. 

Adult immigrants were supposed to be reproductively mature on arrival and not to 

emigrate unless temperature was above 35 °C and prey density was below 10 per plant 

(Xie & Sterling, 1987). 

Development and survival Development of the seven-spot beetle is mainly driven 

by temperature and prey density (Chapter 3). The relationship between temperature 

and the developmental rate (Rj, d' ) of pre-oviposition stages was described by 

Equation 3.1. Values for T, are given in Table 3.3; Tu is assumed to be 38 °C for all life 

stages (Sethi & Atwal, 1964); and a b a2 and a3 are presented in Fig. 3.1. The 

relationship between temperature and the ageing rate (the inverse of mean duration 

plus 3 SD) of the oviposition plus post-oviposition adult (Table 3.2) was linearly 

interpolated using the CSMP-AFGEN function. Food was assumed to be sufficient 

during the simulated period. 

Survival of the seven-spot beetle at the seedling stage of cotton is greatly influenced 

by temperature and prey density (Chapter 3), cannibalism (BU, 1984; Fang et al., 

1992), and parasitism (Li, 1986). The relationship between temperature and the relative 

mortality rate (Rm, d~') was described by Equation 3.5. Values of c b c2 and c3 are 

given in Fig. 3.2 for the pre-oviposition stages, and in Table A-3 (Appendix A) for the 

adult stage. As the relative mortality rate was measured in the laboratory by individual 

rearing (Chapter 3) it might not hold in the field situations. Thus, the stage-specific 

survival was verified in a field cage study (see Section 5.2.2.2) and estimated by 

Kiritani & Nakasuji's (1967) equation: 
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S,= l - F , / F (5.3) 

where S, is the fraction of survival of the rth stage, F, is the total time cumulated 

density of the rth stage, and F is the total time cumulated density of all stages from the 

rth stage inclusive. Equation 5.3 is applied based on the assumption that survival rate 

per unit time is the same in all life stages for the entire sampling period (Kiritani & 

Nakasuji, 1967). From the estimated stage-specific survival (see Table 5.2 in Section 

5.3.1.2), the stage-specific relative mortality rate was calculated as: 

R ^ - R ^ l n t S , ) (5.4) 

where Rm, is the relative mortality rate of the rth stage, and Rj, is the developmental 

rate of the rth stage. 

Oviposition Fecundity of the seven-spot beetle is largely dependent on 

temperature, adult age and prey density (Chapter 3). The relationship between 

temperature and the mean oviposition rate (Y, the number of eggs laid per female per 

day) of each adult age class was described by Equation 3.7. T, is shown in Table 3.3; 

and d b d2 and d3 are presented in Table A-4 (Appendix A). 

5.2.1.3 Predator-prey interaction 

In addition to the seven-spot beetle, also the turtle beetle, Propylaea japonica 

(Thungberg) [Coleoptera: Coccinellidae], plays a role in reducing aphid populations at 

the cotton seedling stage (Song et al., 1988). Both predators have five foraging stages: 

four larval instars and the adult (females and males). Individuals of each foraging stage 

can attack all life stages of the cotton aphid. It was assumed that the seven-spot and 

turtle beetles do not interfere directly with each other's prédation activity. 

Prédation by the seven-spot beetle The functional response of each foraging 

stage of the seven-spot beetle to early instars (mixed first and second nymphs), late 

instars (mixed third and fourth nymphs) and the adults of the cotton aphid was 

determined at five temperatures, 15, 20, 25, 30 and 35 °C (Chapter 4). Prédation on the 

mixed prey stages was modelled by representing the prey stage selection as a 

competitive process: 

P. = a D / ( 1 + a, Thi D, + aj ThJ D, + ak Tu Dk ) (5.5) 

where the subscripts /, j and k represent early instar, late instar, and the adult prey, 

respectively; P is the number of prey in a certain stage consumed per day by one 
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predator of a given stage; a is the search rate (arena d ); Th is the handling time (d); 

and D, is the density of prey size-group i. Values of a and Th at different temperatures 

(Tables 4.1 and 4.2), parameterized in an experimental arena of 30 cm under 

laboratory conditions, were linearly interpolated using the CSMP-AFGEN function. 

The relative mortality rates (R„) in a given prey size-group due to prédation by all 

predator stages present was calculated as : 

R„ = ( P„, B,+ P„2 B2 + P„3 B3+ P„4 B4+ P„5 B5 ) / D„ (5.6) 

where the subscript n denotes the prey size-group, and the subscripts 1 to 5 represent 

the first through fourth instar and adult predator, respectively; B is the number of 

predators in a given stage per plant; D is the density of the prey size-group expressed 

per plant; P is the prédation rate in a given prey size-group by one predator of a given 

stage, which is calculated from Equation 5.5. 

To account for the effect of plant leaf surface on the prédation rate under field 

conditions, we converted the search rate on a proportion of arena basis, measured in 

experimental arenas with 30 cm2 leaf area, into units of leaf area (cm ) per day by 

multiplying with 30 cm2. The densities of prey and predator were expressed per cm2 

leaf area by dividing them with total leaf area per plant (two-sided). The leaf area per 

plant was calculated as a function of accumulated degree-days (D°) (see Section 

5.2.2.3). The so-constructed model for mixed predator stages or mixed prey stages on 

whole plants under field conditions was tested in field cages. 

Prédation by the turtle beetle The functional responses of foraging stages of the 

turtle beetle to early instars, late instars and adults of the cotton aphid were worked out 

under laboratory conditions by Zu et al. (1986) and Song et al. (1988). In both studies, 

glass test tubes were used as the experimental arena, with a leaf area of about 20 cm . 

For their data to be used in the model, we re-estimated a and Th (see Table A-9 in 

Appendix A) with Equation 4.2, applying the NLIN procedure of SAS 6.1 for PC (SAS 

Institute, 1993-1995). 

Calculation of prédation rate and total relative prédation rate, and conversion of 

units from arena to whole plants were the same as described for the seven-spot beetle. 

The number of turtle beetles observed in the field (see Fig. B - l in Appendix B) was 

input into the model as a forcing function. 

5.2.1.4 Parasitism 

Parasitism in the cotton aphid Two kinds of parasites commonly attack the cotton 

aphid, external and internal. Mites from the genus Allothrombium (Table 1.1) 

65 



externally parasitize alate adults on their overwintering hosts (Chen et al., 1994). 

Although parasitized alate aphids are able to fly and colonize cotton, their longevity is 

reduced to less than 5 d and fecundity is reduced by over 50% (Dong et al., 1992). It 

was assumed that all deaths of parasitized alate immigrants occurred at their arrival 

and the fraction killed was time-dependent. The relationship between day of year (Dy) 

and the fraction parasitized (Pm) was estimated from field observations (see Section 

5.2.2.1) and described by: 

Pm = l 1 + 4 1 2 e x p [ ( - ( D y - l 3 ) / l 1 ] / 

{ l + e x p [ - ( D y - l 3 ) / l 4 ] } 2 (5.7) 

where l b 12,13 and 14 are the coefficients (see Fig. 5.2A in Section 5.3.1.1). 

Hymenopterous parasitoids internally parasitize the cotton aphid at the 4-8 leaf 

stage. Three parasitoid species attack the cotton aphid (Table 1.1). All deaths from 

parasitism by these parasitoids were supposed to occur at the adult moult, and the 

fraction killed was assumed to be time-dependent. The relationship between day of 

year and the fraction parasitized was estimated by field counts (see Section 5.2.2.1) 

and described by Equation 5.7 (see Fig. 5.2B in Section 5.3.1.1). Mortality caused by 

the parasitoids is usually underestimated by counting the number of mummies in the 

field, because mummies appear with a delay compared to the moment at which 

parasitization stops reproduction of the victimized aphids, and because mummies may 

get lost and be not observed. To compensate for this, the observed fraction parasitized 

was multiplied arbitrarily by 2 in the model (see also Carter et al., 1982). 

Parasitism in the seven-spot beetle Several stage-specific parasitoids commonly 

attack the seven-spot beetle, e.g. Homalotylus flaminus Dalman parasitizing larvae, 

Tetrastichus coccinellae Kurjumov parasitizing pupae, and Dinocampus coccinellae 

(Schrank) parasitizing adults (BU, 1984). T. coccinellae plays a role in suppressing C. 

septempunctata populations (Zhu & Li, 1981; Li, 1986). It was supposed that all deaths 

of parasitized pupae occurred at adult emergence and the fraction of parasitization was 

time-dependent. The relationship between day of year and the fraction of parasitization 

was estimated by rearing field-collected pupae (see Section 5.2.2.2) and described with 

Equation 5.7 (see Fig. 5.2C in Section 5.3.1.2). 

5.2.1.5 Cotton plant 

Detailed cotton growth and development processes are not strictly relevant in this 

study. It was assumed that cotton plant is an unlimited food resource, and that changes 

in its physiological conditions have no effect on survival, reproduction and wing 
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formation of the cotton aphid. Thus, a simple model to predict changes in the cotton 

leaf area though time was developed as input to prédation, by fitting an expolinear 

equation (Goudriaan & van Laar, 1994, pp. 7-28) to field-collected data (see Section 

5.2.2.3): 

La = ( m , / m 2 ) l n { 1 + exp [ m2 ( D d - m 3 ) ] } (5.8) 

where La is the leaf area (cm ); Dd is the accumulated degree-days (D°) above 12.5 °C 

(CCRI, 1983) starting from sowing; and m,, m2, and m3 are coefficients (see Fig. 5.4 in 

Section 5.3.1.3). 

5.2.1.6 Abiotic factors 

Dynamics of the coccinellid-aphid system in cotton can be influenced by temperature, 

relative humidity, rainfall, light and wind (CCRI, 1983; BU, 1984). Of them, 

temperature is the most important driving variable as it affects nearly all processes in 

the system (see Chapters 2-4). A diurnal temperature course was constructed based on 

daily maximum and minimum temperatures, following the method of Goudriaan & van 

Laar (1994, pp. 29-49), in which a sinusoidal progression during the daytime and a 

decreasing exponential curve at night were used. The transition between curves was 

made at sunrise (minimum temperature) and sunset. The phase and the form of such 

dynamics pattern depended on the day of year, solar time in hours, daylength, and 

degree of latitude. 

5.2.2 Experiments for process quantification 

During model development, experiments were carried out to characterize processes of 

the coccinellid-aphid system quantitatively. Equations chosen to describe the 

processes were based on a biologically appropriate shape, Root Mean Square Error 

(RMSE) and coefficient of determination (r ). Parameters of selected equations were 

estimated iteratively by minimization of the sum of squared residuals, using the 

Levenberg-Marquardt algorithm (Slide Write Plus for Windows, 1983-1993). 

All experiments were conducted at the China Cotton Research Institute (CCRI), 

Anyang, Henan province (36.07 °N latitude and 114.22 °E longitude) in 1992-1995. 

Cotton cultivar used is CCRI 12, commonly planted in cotton monoculture and cotton-

wheat intercrop in the North China cotton region. Experiments were done on potted 

and field grown plants in small or large cages and in the open field. Clay pots were 15 

cm (diameter) x 15 cm (high). Small cages (35 cm x 35 cm x 60 cm high) and field 
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cages ( 3 m x 3 m x 2 m high) were made of metal frames and white nylon mesh. The 

single cotton cropped field was 0.4-0.5 ha, where cotton was sown on 18-20 April (80 

cm between rows). No insecticides were used for seed treatment but fungicides were 

included for preventing damage from seedling diseases. Conventional crop 

management measures were practised except above-ground spray of insecticides at the 

seedling stage of cotton. Plant populations were 10-15 seedlings per m row before 

thinning and 3-5 thereafter. 

5.2.2.1 Experiments for the cotton aphid 

Density-driven wing formation Wing formation in growing aphid populations 

was studied at two occasions in May and June 1993. Each time, 10 single potted-plants 

(2-3 leaves) were infested with newly emerged apterous adults (one per plant) and 

covered individually with a small cage. All plants were observed daily for numbers of 

the first, second, third and fourth (apteriform and alatiform) instars, and the adult 

(apterous and alate) until aphid populations had collapsed. 

Time-dependent parasitization Parasitization of alate A. gossypii immigrants by 

Allothrombium was observed in 1992 and 1993. Each year, from first arrival of alate 

immigrants until early June, 30 field plots were randomly laid out, each with 20 plants. 

All plants per plot were inspected every 5 d for the number of healthy and parasitized 

alate aphids. Parasitization of apterous aphids by hymenopterous parasitoids was 

observed in 1993-1995. Each year, from first appearance of mummies to mid June, 

20-30 field plots (30 before thinning and 20 thereafter) were randomly laid out, each 

with 10-15 plants (15 before thinning and 10 thereafter). All plants in each plot were 

monitored every 5 d for numbers of apterous aphids alive and mummies. 

Immigration rate The net immigration of alate aphids from winter hosts into single 

cotton cropped fields was measured in 1992-1995. Each year, 20-30 field plots were 

randomly laid out, each with 10-15 plants which were marked with plastic labels. 

From their first appearance until 20 May, alate aphids were counted daily on all 

marked plants, which was then removed. In addition, each year, from first occurrence 

to disappearance of alate aphids on winter hosts, 50-100 randomly selected tree 

branches (each 15 cm long) were thoroughly inspected every 5 d for winged A. 

gossypii. 

5.2.2.2 Experiments for the seven-spot beetle 

Stage-specific survival Two experiments were done in June 1993. The first one 

looked at egg survival. Ten clay pots, each with two plants having 3-4 leaves and over 
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50 aphids per plant, were individually covered with a small cage. One pair of 

ovipositing seven-spot beetle adults released in each cage and allowed to lay eggs for 

24 h. Cages (each with more than 20 eggs) were monitored daily for the egg hatch until 

all eggs had disappeared. The second experiment was made to determine survival of 

the other immature stages. Three large cages were erected in the field, each with 50 

plants (5-6 leaves) and more than 100 aphids per plant. Newly hatched larvae were 

released in each cage (one per plant). All caged plants were thoroughly monitored 

every 2 d for the number of different larval instars, pupae and adults until all adults had 

emerged. 

Time-dependent parasitization Parasitization by hymenopterous parasitoids was 

observed in 1994 and 1995. Each year, from first pupal appearance in single cotton 

cropped fields to the end of June, 100-300 pupae were collected every 5-10 d and 

reared in an insectarium. Emergence of adults and parasitoids was observed daily. 

Immigration rate Early season immigration of seven-spot beetle adults into single 

cotton cropped fields was measured in 1992-1995. Each year, 30-50 field plots were 

randomly laid out, each with 20-25 plants. Until the end of May, all plants and the 

underground surface of each plot were inspected daily for the number of beetle adults 

which were then removed. 

5.2.2.3 Experiments for the cotton plant 

The experiment for determining the relationship between the leaf area of cotton 

seedlings and accumulated degree-days (D°) was carried out in 1994 in a single cotton 

cropped field (3 ha) under the conventional crop management. Fifty plants were 

randomly sampled every 5 d to measure the total leaf area, using a Portable Leaf Area 

Meter (LI-3000, LI-Cor). 

5.2.3 Experiments for model validation 

The model was validated at three levels of the system complexity: laboratory, field 

cage and open field. At each level (say n), a "naive" model was constructed on the 

basis of data gathered at lower levels of complexity (< or = n-1) and compared with 

experimental data collected at level n. Extra information gathered at level n was added 

to the model to correct for lack of correspondence between the naive model and 

experiments. The adapted model was further tested as a naive model for level n+1 

(Table 5.1). At all levels, validation was made by a subjective comparison of simulated 

and observed densities of the cotton aphid and the seven-spot beetle through time 

(Rabbinge et al., 1979; Carter et a l , 1982). 
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Table 5.1. Processes included at different levels of the system complexity for testing and improving 

models of the temporal dynamics of the C. septempunctata-A. gossypii system in cotton. 

Level Processes included (I), added (A) or substituted (S) 

A. gossypii C. septempunctata Predator-prey interaction 

Laboratory a) Temperature-

dependent 

development (I) 

b) Temperature-

dependent 

survival (1) 

c) Temperature and 

age-dependent 

reproduction (I) 

a) Temperature-

dependent 

development (I) 

b) Temperature-

dependent 

survival (I) 

c) Temperature and 

age-dependent 

oviposition (I) 

a) Prey density, prey 

size-group and 

temperature-

dependent 

prédation (I) 

Field cage d) Density-dependent 

wing formation (A) 

e) Density-dependent 

reproduction (A) 

d) Stage-specific 
2 

survival (S) 

b) Cotton leaf area-

dependent 

prédation (A) 

Open field f) Immigration (A) 

g) Time-dependent 

parasitization in 

alate immigrants 

and apterous 

aphids (A) 

e) Immigration in early 

and late seasons (A) 

f) temperature and prey 

density-dependent 

emigration (A) 

g) Time-dependent 

parasitization 

of pupae(A) 

c) Accumulated 

degree-days (D°)-

dependent cotton 

canopy growth (A) 

d) Prey density and 

prey size-group 

dependent prédation 

by P. japonica (A) 

Details on each process are given in Section 5.2.1. 

Process b of the beetle is replaced with d. 

5.2.3.1 In the laboratory 

The model's structure and its ability to simulate the basic processes of the predator-
prey system were evaluated (Table 5.1). All validation experiments were carried out in 
an insectarium, where fluctuating temperatures were recorded with a thermograph. 
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Experiments for validating the temperature-dependent development, survival and 

reproduction of the cotton aphid were conducted in June 1992 and May 1993. The 

basic experimental set-up was described in Chapter 2. In both years, two tests were 

made. In the first, 100 newly born aphids were reared individually in glass tubes, 

where moulting and mortality were monitored every 12 h until all survivors had 

become adults. In the second test, 50 freshly emerged adults were reared individually 

in glass petridishes, where newly born aphids were counted and then removed every 12 

h until all adults had died. 

Experiments for validating the temperature-dependent development, survival and 

oviposition of the seven-spot beetle were done in June 1992 and August 1993. Basic 

experimental procedures were described in Chapter 3. In both years, two trials were 

performed. In the first trial, 100 newly hatched larvae were reared individually in 

plastic containers, where moulting and mortality were inspected every 12 h until all 

adults had emerged. In the second trial, 20 pairs of freshly emerged adults were reared 

in plastic containers, where eggs were counted and removed every 4 h until all females 

had died. 

Experiments for validating the functional response of the seven-spot beetle at 

fluctuating temperatures in plastic containers were conducted in July 1992. The basic 

experimental design was described in Chapter 4. Prédation of five foraging stages was 

measured with five densities of three prey size-groups (see Table A-7 in Appendix A) 

for 24 h. Ten replicates were made for each combination. Controls were used for 

correction of background mortality of the prey (Abbott, 1925). 

5.2.3.2 In the field cages 

The model's ability to simulate the population development of the cotton aphid and the 

seven-spot beetle as well as their interactions in the absence of natural enemies was 

evaluated in field cages (Table 5.1). Ambient temperatures were measured with a 

thermograph, which was located in a white wooden box (50 cm x 50 cm x 50 cm) with 

two vertical sides open. The box was fixed at plant level. 

Experiments for validating the population development of the cotton aphid were 

conducted twice in May and June 1993. In May, three cages, each with 100 plants at 

the 2-3 leaf stage, were erected in the field. Each plant in the cage was infested with 

one newly emerged alate adult. The number of nymphs and apterous adults were 

monitored every 2 d and the alate adults produced in the cage were removed daily until 

aphid populations had started collapsing. The experiment in June was similar to that in 

May except that there were only 50 plants (3-4 leaves) in each cage, and each plant 

was infested with two newly emerged apterous adults. 
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Experiments for validating the seven-spot beetle population development were 

carried out in June 1993 and May 1994. In 1993, three cages were erected, each with 

40 plants at the 4-5 leaf stage and over 100 aphids per plant. In each cage five pairs of 

ovipositing adults were released and allowed to lay eggs for 15 days. Eggs, immatures, 

pupae and adults were counted every 2 d until all adults had emerged. The experiment 

in 1994 was the same as that in 1993 except that there were 60 plants (3-4 leaves) and 

over 50 aphids per plant in each cage. 

An experiment for validating the functional responses of foraging stages of the 

seven-spot beetle was done in June 1994. Twenty-five cages, each with 40 plants at the 

2-3 leaf stage, were assigned to five groups, A, B, C, D and E. One, two, three, four 

and five newly emerged apterous adult aphids were released per plant in cage groups A 

to E, respectively. The number of leaves and apterous aphids per plant was observed 

daily. When prey populations reached the designated density for prédation by a given 

stage in five cages (see Table A-8 in Appendix A), 40 predators of that stage were 

released in each cage and allowed to prey for 24 h. The released larvae of each instar 

were 6-12 h old and starved for 12 h, and the adult was 2-5 d old and starved for 24 h. 

An experiment for validating the beetle's ability to control the cotton aphid was 

made in July 1995. Four groups of three cages were erected, each with 40 plants at the 

4-5 leaf stage. Two, four, eight and ten freshly emerged apterous adult aphids were 

released per plant in cage groups labelled A to D. The number of leaves and apterous 

aphids per plant was counted in all cages every 2 d. On the 6th day after infestation, 

newly emerged adult beetles were released in each cage group at predator-prey ratios 

of 1:50, 1:100, 1:200 and 1:400 (3 cages for each ratio). Observations were ended on 

the 10th day after predators had been released. 

5.2.3.3 In the open field 

The model's ability to simulate the temporal dynamics of the predator-prey system in 

single cotton cropping was evaluated in open fields (Table 5.1). All validation 

experiments were carried out at CCRI in the years 1992, 1993, 1994 and 1995. In each 

year, a validation experiment was conducted in an open filed (1 ha ) with single cotton 

cropping, where the basic treatments were the same as described in Section 5.2.2. The 

daily maximum and minimum temperatures were obtained from a meteorological 

station at CCRI (see Fig. B-5 in Appendix B). 

Dynamics of cotton aphid populations Each year, from first appearance of alate 

immigrants to mid June, cotton aphid populations were monitored every 5 d. At each 

observation, 20-30 field plots were randomly laid out, each with 10-15 plants. All 

plants in each plot were inspected for the number of apterous and alate aphids. 
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Dynamics of major predator populations Each year, from first arrival of seven-

spot beetle adults to mid June, numbers of the major predators were sampled every 5 d. 

At each sampling date, 30-50 field plots were randomly laid out, each with 20-25 

plants. All plants and the underground of each plot were carefully inspected for the 

number of (a) eggs, first to fourth larval instars, pupae and adults of the seven-spot 

beetle; (b) larvae and adults of the turtle beetle; and (c) other predators in their 

foraging stages. 

5.2.4 Sensitivity analysis 

Sensitivity analyses were carried out by omitting processes from the model (coarse 

sensitivity analysis) and by altering parameter values with a biologically possible range 

(fine sensitivity analysis) to assess the overall effect in the system (Rabbinge et al., 

1979; Carter et al., 1982). Sensitivity analyses were done at the two higher levels: field 

cage and open field. At the field cage level, the role of density-dependent wing 

induction and reproduction of the cotton aphid, and cannibalism-inflicted mortality of 

the beetle, was evaluated by the coarse sensitivity analysis. The simulation was made 

for the field cage condition in June 1993. 

At the open field level, the role of parasites (external and internal), prédation by the 

seven-spot beetle, prédation by the turtle beetle, and total natural enemy-inflicted 

mortality, was evaluated by the coarse sensitivity analysis. The importance of 

temperature was assessed by increasing or decreasing daily maximum and minimum 

values by 2 °C. The effect of immigration of late immigrants and of beetle adults was 

determined by increasing or decreasing their daily values by 20%. In all cases, the 

simulation was made for the open field condition in 1992. 

5.3 Results 

5.3.1 Process quantification 

5.3.1.1 Process quantification for the cotton aphid 

Density-driven wing formation Proportion of winged fourth instars of A. 

gossypii feeding on cotton increased with aphid density, from 0 below 20 aphids per 

plant to 0.9 at 300 per plant (Fig. 5.1). The relationship, convex and increasing over the 

whole range, was adequately described by Equation 5.2 (RMSE = 0.043, r = 0.96) 

(Fig. 5.1). The maximum carrying capacity of cotton seedlings with 3-6 leaves was 

about 300 aphids per plant. 
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Fig. 5.1. Relationship of total density per 

plant (Da) with the fraction of the fourth 

winged instars (AAL4) induced (Fa) of A. 

gossypii at the seedling stage of cotton. 

The best fit is given by Equation 5.2. 

Time-dependent parasitization Parasitization of alate aphids by Allothrombium 
increased from early May up to a maximum of 13% in mid May and then decreased in 
both 1992 and 1993 (Fig. 5.2A). The pattern was adequately described by Equation 5.7 
(RMSE = 0.006, r2 = 0.97) (Fig. 5.2A). Parasitization of apterous aphids by 
hymenopterous parasitoids increased from mid May up to a maximum of 11 % in mid 
June and decreased thereafter in 1993, 1994 and 1995 (Fig. 5.2B). The trend was 
somewhat different among the three years, but a common curve was chosen to describe 
the data with Equation 5.7 (RMSE = 0.003, r2 = 0.95) (Fig. 5.2B). 
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Fig. 5.2. Observed time course of the 

fraction parasitized (Pm) of alate A. 

gossypii (A), apterous A. gossypii (B), and 

C. septempunctata pupae (C). The best fit 

is given by Equation 5.7. 
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Immigration rate In all four years, immigration of alate A. gossypii immigrants 

into cotton started early May, peaked mid May and then decreased (Fig. 5.3). The 

mean daily net immigration over the entire period was greatest in 1995 (0.56 alates per 

plant per day), lowest in 1994 (0.19 alates per plant per day) and intermediate in 1992 

and 1993 (Fig. 5.3). 

5.3.1.2 Process quantification for the seven-spot beetle 

Stage-specific survival Survival of larval instars and pupae of the seven-spot beetle 

was above 70 % and that of eggs below 40%, with a total survival of 9% in the pre-

adult period (Table 5.2). Cannibalism (both sibling and non-sibling) was the major 

cause for mortality in the pre-adult stages, particularly among eggs. 
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Fig. 5.3. Observed net immigration (number per plant per day ) of alate A. gossypii immigrants and C. 

septempunctata adults into cotton at the seedling stage in single cotton cropped fields in 1992 (A), 

1993 (B), 1994 (C), and 1995 (D). The a and b represent average daily net immigration over the entire 

period of A. gossypii and C. septempunctata, respectively. 
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Table 5.2. Stage-specific survival (%) of C. septempunctata in the field cage estimated with the 

method of Kiritani & Nakasuji (1967). 

Eggs 

36.8 

First 

instar 

76.0 

Second 

instar 

77.7 

Third 

instar 

75.2 

Fourth 

instar 

74.2 

Pupae 

74.6 

Total 

survival 

9.0 

Determined in caged single potted-plants. 

Time-dependent parasitization Parasitization of C. septempunctata pupae by 

hymenopterous parasitoids increased from late May up to a maximum around 88% in 

mid June and decreased thereafter in both 1994 and 1995 (Fig. 5.2C). The pattern of 

parasitization was satisfactorily described by Equation 5.7 (RMSE = 0.019, r = 0.99) 

(Fig. 5.2C). 

Immigration rate Immigration of seven-spot beetle adults into cotton started mid 

May and peaked late May in all four years (Fig. 5.3). The mean daily net immigration 

rate was highest in 1992 (0.0016 adults per plant per day over a period of 22 d), lowest 

in 1994 (0.0006 per plant per day over a period of 16), and intermediate in 1993 and 

1995 (Fig. 5.3). 

5.3.1.3 Process quantification for the cotton plant 

The relationship between the leaf area of cotton seedlings in cotton monoculture and 

accumulated degree-days (D°) was accurately described by Equation 5.8 (RMSE = 

34.4 cm2, r2 = 0.99) (Fig. 5.4). 
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Fig. 5.4. Relationship between cotton leaf 

area per plant (La, cm ) and the 

accumulated degree-days above 12.5 °C 

(Dd, D°) from sowing to the first square in 

the single cotton cropped field in 1994. 

The best fit is given by Equation 5.8. 
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5.3.2 Model validation 

In this section, the simulated results were compared with observations at three levels of 

the system complexity: laboratory, field cage and open field. The model was adapted at 

each level as summarized in Table 5.1. An interpretation of the results and the insights 

gained at the different levels are given in the Discussion (see Section 5.4). 

5.3.2.1 Validation in the laboratory 

A basic model on the development, survival and reproduction of the cotton aphid and 

the seven-spot beetle as well as their interaction was constructed based on the data 

gathered in the laboratory (Chapters 2-4). Processes included are shown in (Table 5.1). 

The simulated results were compared with experimental data obtained in the 

laboratory. 

The model simulated the phenology of instars (Fig. 5.5A), the survivorship of 

nymphs and adults (Fig. 5.5B), and the accumulated larviposition (Fig. 5.5C) of the 

cotton aphid in the laboratory experiments in June 1992 and May 1993. Similarly, the 

model simulated the phenology of immature stages (Fig. 5.6A), the survivorship of 

immature and adult stages (Fig. 5.6B), and the accumulated oviposition (Fig. 5.6C) of 

the seven-spot beetle in the laboratory experiments in June 1992 and August 1993. The 

functional response curves of five foraging stages of the seven-spot beetle to three prey 

size-groups of the aphid in plastic containers were described by the model (Fig. 5.7). 

Above results show that the model can be subjected to more demanding tests at 

higher levels of the system complexity. 

5.3.2.2 Validation in the field cage 

A simulation model of the population development of the cotton aphid and the seven-

spot beetle as well as their interaction in the field cage was built up by integrating into 

the laboratory-validated model (a) density-dependent wing formation and reproduction 

of the cotton aphid, (b) stage-specific survival of the seven-spot beetle, and (c) leaf 

area-dependent prédation of the seven-spot beetle (Table 5.1). The adapted model was 

validated with population counts from the field cage experiments. 

As shown in Fig. 5.8, the model adequately predicted the dynamics of nymphs, 

apterous adults and total populations of the cotton aphid in field cages in May and June 

1993. Compared to the observed data in both cases, the predicted peak was delayed by 

2 d, the decreasing phase occurred slightly later, and the peak population size was 

somewhat larger (Fig. 5.8). In May, the aphid numbers were overestimated throughout 
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Fig. 5.5. Simulated ( ) and observed (symbols) phenology of the first (ALI), second (AL2), third 

(AL3) and fourth (AL4) instars; survivorship of nymphs (ANM) and adults (AAD); and accumulated 

larviposition (AAR) of A. gossypii at fluctuating temperatures in the laboratory in June 1992 (A), and 

May 1993 (B). 

(Fig. 5.8A). In June, initially they were slightly underestimated but overestimated later 

on (Fig. 5.8B). 

The pattern of population development of eggs, larvae, pupae, and adults of the 

seven-spot beetle in field cages was simulated both in June 1993 and May 1994 (Fig. 

5.9). Compared to observed data in both years, the simulated peak occurred 2 d earlier 
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(BAD); and accumulated oviposition (ABR) of C. septempunctata at fluctuating temperatures in the 

laboratory in June 1992 (A), and August 1993 (B). 

in immature stages but 4 d later in the adult stage. In both years, simulated numbers of 

all stages were greater than observed, particularly in the foraging stages (Fig. 5.9). 

The model described the functional response of all five foraging stages of the seven-

spot beetle in field cages (Fig. 5.10). In most cases, prédation rates were slightly 

overestimated, especially at the higher prey densities (Fig. 5.10). 
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Efficacy for the adult predator to control the cotton aphid was simulated at each of 

four predator-prey ratios, 1:50, 1: 100, 1:200 and 1:400 (Fig. 5.11). There was a 

tendency for the model to correctly predict cotton aphid densities before the predators 

were released and underestimated thereafter (Fig. 5.11). The effective period for the 

prey populations to be brought down below action thresholds (50 aphids per plant at 

the 5-7 leaf stage) was 10 d at a coccinellid-aphid ratio of 1:50 and 5 d at a ratio of 
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adults of C. septempunctata in field cages in June 1993 (A), and May (B) 1994. Bars represent 

observations with 95% confidence limits. 
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1:100 (Figs. 5.11A and B). At the two lower ratios, the predator was simply unable to 

suppress the prey populations below the defined action threshold (Figs. 5.11C and D). 

Above results indicate that the model can be subjected to further tests under the 

open field situations. 

5.3.2.3 Validation in the open field 

A comprehensive model of the temporal dynamics of the coccinellid-aphid system 

was developed by integrating into the cage refined model (a) field-measured 

immigration of both insects, (b) prey density-dependent emigration of the seven-spot 
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beetle, (c) time-dependent parasitization of both insects, (d) prédation by the turtle 

beetle, and (e) accumulated degree-days (D°)-dependent cotton canopy growth (Table 

5.1). The integrated model was validated with experimental data collected in single 

cotton cropped fields in 1992-1995. 

A. gossypii populations increased from early May up to late May and then decreased 

in 1992-1995 (Fig. 5.12). The patterns of aphid population dynamics were adequately 

simulated in all four years (Fig. 5.12). The aphid population sizes were somewhat 

overestimated, particularly later on. The timing of the aphid peak was simulated 

satisfactorily, the size of the peak was overestimated by 10-30 %, and the predicted 

population collapse occurred 4-5 d later than observed (Fig. 5.12). 

Each year, populations of C. septempunctata larvae increased from mid May up to 

early June and then decreased (Fig. 5.13). The trend of larval population development 
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Fig. 5.12. Simulated ( ) and observed ( • ) population dynamics of A. gossypii at the seedling 

stage in single cotton cropped fields in 1992 (A), 1993 (B), 1994 (C), and 1995 (D). Bars represent 

observations with 95% confidence limits. Crop development is indicated below the abscissa: E, 1,3, 

5, 7 and S are emergence of cotton seedlings; 1, 3, 5 and 7 true-leaf stage; and squaring, respectively. 

was described by the model (Fig. 5.13). Compared to observed data in all four years, 

the simulated peak was delayed by 2-5 d, and the peak density was overestimated by a 

factor of 1-2 (Fig. 5.13). 

In all four years, the initial build-up of adult populations of the seven-spot beetle 

was simulated (Fig. 5.13). Later on, the beetle adults immigrating from ripening wheat 

and oil-seed rape were included as a forcing function in addition to the adults produced 

from pupae in cotton. This late season immigration was the main cause of aphid 

population collapse in early June (Fig. 5.12). 

Above results imply that the model works satisfactorily in single cotton cropping 

and it can be used as a tool for studying the dynamic behavior of the coccinellid-aphid 

system in cotton monoculture to gain insights in the system. 
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5.3.4 Sensitivity analysis 

The role of different components and processes in the coccinellid-aphid system was 

evaluated with the model in this section. The insights gained are given in the 

Discussion (see Section 5.4). 

Obviously, in the absence of density-driven wing formation and reproduction, 

populations of A. gossypii in field cages increased exponentially (Fig. 5.14A). Without 

cannibalism-inflicted mortality, the larval population size of C. septempunctata in field 

cages increased by a factor 3 (Fig. 5.14B). 

Cotton aphid populations increased exponentially up to mid June in the absence of 

total natural enemy-inflicted mortality (line 1 in Fig. 5.15). Without prédation by the 

seven-spot beetle, the aphid populations increased quickly, with the occurrence of the 

peak delayed by 8 d and the height of the peak doubled (line 2 in Fig. 5.15). The 

absence of prédation by the turtle beetle did not affect the timing of the aphid peak but 

the peak number was increased by 5% (line 3 in Fig. 5.15). Without parasitism of alate 

immigrants by Allothrombium and apterous aphids by hymenopterous parasitoids, the 

aphid populations fluctuated at a slightly higher level throughout, though it exerted no 

effect on the timing of the aphid peak, with the peak density increased by 6% (line 4 in 

Fig. 5.15). 
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Fig. 5.14. Effects on simulated A gossypii population dynamics in the absence of natural enemies of 

omitting the density-driven wing formation and reproduction (A), and on simulated C. 

septempunctata larval population development in the absence of natural enemies of omitting the 

cannibalism-inflicted mortality (B). Simulations are made for the field cage condition in June 1993 

(dashed lines). The solid lines represent the simulation with the full model. 
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An increase in the daily maximum and minimum temperatures by 2 °C advanced the 
timing of the aphid peak by 1 d and increased the peak number by 20% (Fig. 5. 16A). 
An decrease with 2 °C delayed the timing of the aphid peak by 1 d and decreased the 
peak number by 30% (Fig. 5.16A). A 20% increase or decrease in the alate A. gossypii 
immigration rate exerted no effect on the date of the aphid peak but brought about a 
similar increase or decrease in the peak density (Fig. 5.16B). A 20% increase or 
decrease in the early season immigration rate of seven-spot beetle adults advanced or 
delayed the occurrence of the aphid peak by 1 d, and decreased the peak number by 
7% or increased it by 10% (Fig. 5. 16C). 

5.4 Discussion 

The present model was tested and validated at three levels of the system complexity, 
and relevant processes were included at each level, based on discrepancies between 
"original model" behaviors and observations, and additional experimentation (Table 
5.1). Simulated and observed data were in reasonable agreement at all three levels, 
though the discrepancies increased with the level of scale (Figs. 5.5-5.13). Factors 
underlying the discrepancies and insights gained are discussed with respect to each 
level of the system complexity. 
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5.4.1 In the laboratory 

The model simulated the temperature-dependent development, survival and 
reproduction of A. gossypii (Fig. 5.5) and C. septempunctata (Fig. 5.6) as well as the 
temperature-mediated functional responses of the seven-spot beetle to the cotton aphid 
(Fig. 5.7). A slight discrepancy between simulations and observations at this level can 
be ascribed to a higher rate of development, reproduction, and prédation at fluctuating 
than at the constant temperatures (Sethi & Atwal, 1964; Siddiqui et al., 1973). 

Evaluation of the model at the laboratory level suggest: (1) the basic structure of the 
model is reasonably good; (2) the number of boxcars trains chosen is sufficient to 
calculate the dynamically changing age-structure of both prey and predator 
populations, and to mimic the dispersion in time during the development and ageing; 
and (3) the time step calculated for integration is small enough for simulating the 
temporal dynamics of the coccinellid-aphid system in cotton. 
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5.4.2 In the field cage 

The model simulated the population growth of A. gossypii (Fig. 5.8) and C. 

septempunctata (Fig. 5.9) as well as their interaction in the absence of natural enemies 

(Figs. 5.10-5.11). An overestimation of the aphid population size at the late phase (6-

8 leaves) (Fig. 5.8) may be attributed to the fact that the maximum carrying capacity of 

cotton seedlings determined in single caged potted-plants (around 300 aphids per plant, 

see Fig. 5.1) is greater than that in the field (about 200 aphids per plant) (Xie & 

Sterling, 1987; Li & Xie, 1990b). As observed by Wu et al. (1990), survival of the 

aphid on cotton seedlings increases from 1 to 4 leaf stage, declines thereafter and is 

lowest at the 8 leaf stage. 

A delay of the simulated peak of all pre-adult stages of C. septempunctata (Fig. 5.9) 

was due to a delayed oviposition as it took time for released adults to adapt to the new 

surroundings before starting egg-laying. A great oversimulation of the population sizes 

of all foraging stages (Fig. 5.9) may be due to overlooking the hiding beetles and a 

high cannibalism in field cages. As shown in Fig. 5.9, the discrepancies between 

simulations and observations are much greater in active than in the static stages, 

indicating a larger bias in field-sampling for foraging stages of the seven-spot beetle 

(see also Frazer & Gilbert, 1976). Cannibalism in coexistence of multiple stages in 

field cages might have been greater than in a single cohort, particularly at such a high 

artificial density in our field cages (Agarwala & Dixon, 1992; Osawa, 1992). 

The slight overestimation of prédation rates by the seven-spot beetle in field cages 

(Fig. 5.10) may be due to a continuous process of prédation assumed in the model. In 

reality, predators do not start preying upon release but search around first and then 

settle down (Frazer & Gill, 1981). It seems that prédation rates of the seven-spot beetle 

in the field cage increases linearly rather than curvilinearly with prey density (Fig. 

5.10). These results agree with those of Frazer & Gilbert (1976). 

An underestimation of the aphid populations after release of the seven-spot beetle 

adults at all predator-prey ratios (Fig. 5.11) is attributed to a continuous prédation 

process assumed in the model and a failure to remove all alate adults in field cages. It 

is commonly recommended that the action threshold of the cotton aphid at the seedling 

stage be the predator-prey ratio of 1:100-150 (CCRI, 1983; BU, 1984). This threshold 

is practical in the presence of other abiotic and biotic mortality factors, but may not 

hold with the seven-spot beetle alone (Fig. 5.11). 

Evaluation of the model at the field cage level indicate: (1) density-driven wing 

formation and reproduction are the key factor regulating the aphid population 

dynamics in the absence of natural enemies; (2) cannibalism is the key factor 

regulating the population fluctuations of the seven-spot beetle in the absence of natural 
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enemies; (3) with the seven-spot beetle alone, aphid populations can be brought down 

below action thresholds at a coccinellid-aphid ratio of 1:50; and (4) conversion of the 

search rate and the densities of both prey and predator into proper units is a practical 

and feasible way to model the field prédation rate of the seven-spot beetle. 

5.4.3 In the open field 

The model simulated the population dynamics of A. gossypii and C. septempunctata 

larvae in 1992-1995 (Figs. 5.12-5.13). An overestimation of aphid numbers in all four 

years (Fig. 5.12) may be easily due to the incomplete accounting for abiotic and biotic 

mortality factors in the model. Some polyphagous predators (spiders and carabids) and 

rainfall can play a role in suppressing aphid populations at the early seedling stage ( 1 -

3 leaves) (CCRI, 1983; Chen et al., 1994). At the mid seedling stage (3-5 leaves), 

Chrysopa sp., Syrphus corollae (Fabricius) and Erigonidium graminicolum (Sundevell) 

are often found to attack cotton aphid (Zhang, 1985). At the late seedling stage (5-8 

leaves), a large number of seven-spot and turtle beetles as well as some other predators 

such as Adonia variegata (Goeze), Leis axyridis (Pallas), Scymnus hottmanni Weise 

and Orius minutus L. move into cotton from ripening wheat and oil-seed rape, which 

can destroy any remaining aphid populations within a few days (Zhang, 1985; Xia, 

1996). Entomophthora sp. can also contribute to the collapse of cotton aphid at the late 

seedling stage, particularly with high rainfall in early June (CCRI, 1983), though this 

was not the case in 1992-1995. Altogether, the reasonable correspondence between 

simulation results and field observations indicates that the major mortality factors, 

notably the seven-spot beetle, were included in the model. 

The gradual divergence of predicted densities of seven-spot beetle larvae from the 

observed (Fig. 5.13) may have been caused by model incompleteness regarding biotic 

mortality factors and sampling errors. Over 20 species of natural enemies commonly 

attack the seven-spot beetle (BU, 1984). Except for T. coccinellae, ants, mantids, 

ground carabids and some birds are often found to attack various life stages of the 

seven-spot beetle (Zhu & Li, 1981). As to sampling, all current methods of counting 

coccinellids in the field (including direct visual counts as practised in this study) 

usually underestimate the true densities (Frazer & Gilbert, 1976). This is particularly 

true when cotton seedlings get larger. In addition, at the late seedling stage, there may 

be substantial cannibalism, particularly among young larvae when huge numbers of 

seven-spot beetle adults migrate into cotton from ripening wheat and oil-seed rape, 

causing aphid shortage. Nevertheless, the general agreement between simulations and 

observations indicates that the major mortality factors, particularly cannibalism-

inflicted mortality, were included in the model. 
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The role of natural enemies in controlling cotton aphid populations is clearly shown 

in Fig. 5.15. Seven-spot beetle is the most important, though it comes too late to effect 

biological control (line 2 in Fig. 5.15). The pattern of aphid population dynamics in 

1992-1995 (Fig. 5.12) was mainly affected by the density variation in this influential 

predator (Fig. 5.13). Thus, although the mean immigration rate of alate A. gossypii was 

20% higher in 1992 than in 1994 (Fig. 5.3), the peak aphid density was 30% lower in 

1992 than in 1994 (Fig. 5.12). This contrary results can be explained by the difference 

in abundance of the seven-spot beetle between the two years (Figs. 5.13). Compared to 

1994, the early season immigration of C. septempunctata adults in 1992 was 60% 

higher, the peak density of larvae was 70% greater, and the adult number at the aphid 

peak was 40% larger (Figs. 5.3 and 5.13), resulting in a relative low aphid density 

despite relatively larger immigration (Fig. 5.12). The turtle beetle can help to reduce 

aphid populations at the mid-late phase (line 3 in Fig. 5.15). Combination of 

Allothrombium and hymenopterous parasitoids plays a role in killing aphid populations 

throughout the seedling stage (line 4 in Fig. 5.15). Compared to the seven-spot beetle, 

the turtle beetle, Allothrombium and hymenopterous parasitoids play a minor role. 

Temperature exerts a large and complex effect on the aphid population growth (Fig. 

5.16A). Increased temperature accelerates the development of the prey and the 

predator, consequently advancing the occurrence of their density peaks, and the effect 

of decreased temperature is opposite (Fig. 5.16A). Thus, due to comparatively high 

temperatures in 1992 and 1994 (Fig. B-5 in Appendix B), the simulated and observed 

aphid peaks occurred 1-3 d earlier in these two years than in the cooler years 1993 and 

1995 (Fig. 5.12). Variations in temperature alone (Fig. B-5 in Appendix B), however, 

can not explain between-season differences in aphid population abundance (Fig. 5.12). 

Thus, the aphid population size (Fig. 5.12) in the cooler year 1995 was larger than in 

the warmer year. 

The level of alate immigration had an approximately 1:1 effect on the aphid 

population size over the range of changes made (Fig. 5.16B). Variations in alate 

immigration alone can not explain between-season differences in aphid population 

fluctuations (Figs. 5.3C and 5.12C). For instance, compared to 1994, the mean 

immigration rate of alate immigrants in 1995 increased by 190% (Fig. 5.3), while the 

aphid peak number increased by only 90% (Figs. 5.12). 

A small changes in the early season immigration of the seven-spot beetle adults 

affects not only the timing of the aphid peak but also the abundance of the aphid 

throughout the mid-late seedling stage (Fig. 5.16C). Abundance of the seven-spot 

beetle in the different seasons (Fig. 5.13) was closely related to the immigrating 

numbers of its adults (Fig. 5.3).This component needs to be determined accurately as it 

is the key factor in the system. 
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The importance of C. septempunctata in controlling A. gossypii was clearly 

demonstrated in this study. In the North China cotton region, the seven-spot beetle 

overwinters as adults at the surface soils in winter wheat, oil-seed rape and vegetables 

(CCRI, 1983; BU, 1984). Its first two generations occur mainly on wheat and oil-seed 

rape in March-May. Intercropping cotton with wheat has turned out to be a successful 

approach for biological control of the cotton aphid by enhancing impact of the seven-

spot beetle (Wang et al., 1993; Xia, 1994b). Further development of this biological 

control approach can benefit from detailed simulation studies aimed at optimizing the 

spatial layout of intercropping patterns of cotton and wheat. The present model can be 

further developed for such a purpose. 

Evaluation of the model at the open field level implies: (1) C. septempunctata plays 

a key role in suppressing A. gossypii in cotton monoculture but its number increases 

too late to guarantee a sufficient biological control; (2) immigrating numbers of C. 

septempunctata adults are the key factor, which should be estimated sufficiently, 

especially early on; (3) the model can serve as a tool for investigating the processes 

governing the temporal dynamics of the coccinellid-aphid system under study, for 

identifying the major mortality factors in the system, and for predicting the field 

population dynamics of the prey and the predator; and (4) the model can be further 

developed to simulate the spatio-temporal dynamics of the coccinellid-aphid system in 

cotton-wheat intercropping to evaluate and exploring intercropping strategies for 

biological control of A. gossypii with C. septempunctata in cotton (Chapter 6). 
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Chapter 6 

Spatio-temporal dynamics of the predator-prey system 
Coccinella septempunctata-Aphis gossypii 

in cotton-wheat intercropping: 
experiments and simulation 

Abstract A simulation model of the spatio-temporal dynamics of the predator-prey 

system Coccinella septempunctata L.-Aphis gossypii Glover in cotton-wheat 

intercropping was developed. Six submodels were distinguished: temporal dynamics of 

cotton aphid populations on cotton, temporal dynamics of seven-spot beetle populations 

on wheat, seven-spot beetle dispersal, predator-prey interaction, cotton plant, and abiotic 

factors. Processes, experimentally characterized, included (a) immigration and 

emigration of both insects; (b) temperature-dependent development, survival and 

reproduction of the aphid, and temperature-dependent development and ovipostion of the 

coccinellid; (c) density-dependent wing formation and reproduction of the aphid, and 

stage-specific survival of the coccinellid; (d) prey density-dependent dispersal of 

foraging coccinellids from wheat into cotton; (e) prey density, prey size-group, and 

temperature-dependent prédation by C. septempunctata and Propylaea japonica 

(Thungberg); (f) time-dependent parasitization in alate and apterous aphids, and in 

seven-spot beetles pupae; and (g) accumulated degree-days (D°)-dependent cotton 

canopy growth. Dispersal of foraging stages of C. septempunctata from wheat into cotton 

was modelled as a diffusion process. There was a reasonable correspondence between 

simulated and observed population dynamics of both insects and dispersal of foraging C. 

septempunctata from wheat into cotton in both 1994 and 1995. Factors underlying 

differences between model results and experiments were identified and analysed. 

Simulations reveal that the low abundance of A. gossypii in the current cotton-wheat 

intercropping system is due to a combined effect of increased prédation and parasitism, 

and decreased aphid immigration. Prédation by C. septempunctata is of overwhelming 

importance. Year to year differences in immigration of C. septempunctata adults into 

wheat and dispersal of foraging predators into cotton have a profound effect on the 

system. Current cotton-wheat intercropping has an "overcapacity" for biological control 

of A. gossypii. Simulations suggest that it is possible to develop cotton-wheat strip 

cropping as a means for overcoming the disadvantages of current cotton-wheat 

intercropping system and maintaining the biological control of A. gossypii on cotton. 
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6.1 Introduction 

Since the early 1980s, there has been a rapid expansion of cotton-wheat intercropped 

areas in the North China cotton region (Wang, 1990). The intercropped acreage 

increased from 0.4 million ha in 1978 to 2.3 million ha in 1993, constituting more than 

60% of the region's cotton areas (Xia, 1994b). This profound change in cropping 

systems has brought about significant effects on the structures of arthropod 

communities and the dynamics of major insect pest populations in cotton (Xia, 1994b; 

Xia et al., 1997). Cotton aphid (Aphis gossypii Glover) [Homoptera: Aphididae] is the 

key pest at the seedling stage of cotton (Gossypium hirsutum L.) in single cotton 

cropping in the North China cotton region (CCRI, 1983; Fang et al., 1992). The aphid 

populations, however, remain below economic damage levels throughout the seedling 

stage of cotton in cotton-wheat intercropping if the seven-spot ladybird beetle 

(Coccinella septempunctata L.) [Coleoptera: Coccinellidae] on intercropped wheat is 

preserved (Wang et al., 1993; Xia, 1994b). Furthermore, spray of insecticides against 

cotton bollworm (Helicoverpa armigera Hübner), the key pest at the square-boll stage 

of cotton, is substantially delayed and decreased at the early square stage (mid June) of 

intercropped cotton as huge numbers of natural enemies directly move into cotton from 

intercropped wheat (Wang et al., 1993; Xia et al., 1996). 

Several mechanisms are responsible for the low abundance of the cotton aphid in 

cotton-wheat intercropping system: decreased colonization, increased emigration and 

increased mortality (Wang et al., 1993; Xia, 1994b). Understanding these mechanisms 

quantitatively is useful not only in optimizing biological control strategies of the cotton 

aphid by the seven-spot beetle in the current cotton-wheat intercropping system but 

also in designing new cropping systems for sustainable natural control of the cotton 

aphid. For reaching such end, it is essential to gain better insight in the spatio-temporal 

dynamics of the coccinellid-aphid system in the present cotton-wheat intercropping. 

A systems approach can be helpful in gaining insight in the spatio-temporal 

dynamics of complex predator-prey systems and prototyping feasible biological 

control strategies (Rabbinge et al., 1989; van der Werfet al., 1989). Several biological 

control systems have been established within the framework of a systems research 

approach, featuring modelling, e.g. biological control of Panonychus ulmi Koch by 

Amblyseius potentillae (Garman) on apple (Rabbinge, 1976), biological control of 

Myzus persicae (Sulzer) by Coleomegilla maculata (De Geer) on potato (Mack & 

Smilowitz, 1982b), and biological control of Liriomyza bryonae (Kaltenbach) by 

Dyglyphus isaea Walker on greenhouse tomato (Boot et al., 1992). No study has been 

carried out to analyse, quantify and explain the biological control of A. gossypii by C. 

septempunctata in cotton-wheat intercropping. 
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The objective of this study was to develop a simulation model of the spatio-

temporal dynamics of the predator-prey system C. septempunctata-A. gossypii in 

cotton-wheat intercropping and to use that model to gain more insights in mechanisms 

of biological control for exploring intercropping strategies for biological control of A. 

gossypii on cotton in the North China cotton region. 

6.2 Materials and methods 

6.2.1 Model development 

Three patterns of cotton-wheat intercropping are commonly practised: 3-2 (three rows 

of wheat with two rows of cotton), 3-1 (three rows of wheat with one row of cotton, 

and 4-2 (four rows of wheat with two rows of cotton) (Wang, 1990). The 3-2 pattern 

is taken into account in the present study as it is the most common and produces 

desired yields of both crops (Mao & Gou, 1992). 

The model was constructed following the general principles in systems analysis and 

simulation (Rabbinge et al., 1989; van der Werf, 1989; Xia et al., 1991). It is a 

dynamic, deterministic and short-term model, designed to simulate the spatio-temporal 

dynamics of the predator-prey system C. septempunctata-A. gossypii at the seedling 

stage of cotton (from sowing to first square, i.e. from mid April to mid June) in cotton-

wheat intercropping. Principal simulation techniques applied (i.e. types and numbers of 

boxcar trains, integration method and time step, and the simulation language) are the 

same as described in Chapter 5. Six submodels are distinguished: (1) temporal 

dynamics of cotton aphid populations, (2) temporal dynamics of seven-spot beetle 

populations, (3) seven-spot beetle dispersal from wheat into cotton, (4) predator-prey 

interaction, (5) cotton plant, and (6) abiotic factors. 

6.2.1.1 Temporal dynamics of cotton aphid populations 

The submodel of the temporal dynamics of A. gossypii populations on intercropped 

cotton was adapted from a field-validated model of the temporal dynamics of the 

coccinellid-aphid system in cotton monoculture developed in Chapter 5. It simulates 

changes in cotton aphid density (number per plant) on a whole field basis. 

Immigration and emigration The model initializes cotton aphid population 

dynamics from the start of migration by incorporating field estimates of the daily net 

immigration rate of alates (the number of alates colonizing cotton per plant per day). 

The net emigration rate was obtained from daily field counts (see Section 6.2.2.1 and 

Fig. 6.4 in Section 6.3.1.1) and was input into the model as a forcing function. The 
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period from their first appearance to May 20 was considered effective for alate aphids 

to immigrate into cotton from winter hosts (see Chapter 5). 

Alate immigrants were assumed to be reproductively mature on arrival in cotton and 

to stay until death. Alate adults produced on cotton were assumed to leave the field 

upon emergence. 

Development, survival, reproduction and wing formation Processes of the 

temperature-dependent development, survival and reproduction as well as the density-

driven wing formation and larviposition were included and assumed to be the same as 

in cotton monoculture (see Chapter 5). 

Parasitism Both external and internal parasites (see Chapter 5) are found to attack 

the cotton aphid in cotton-wheat intercrop (Wang, 1990). Parasitization in alate 

immigrants by externally parasitic Allothrombium was assumed to be identical to that 

in cotton monoculture (see Fig. 5.2A) as the parasitization is initiated on the winter 

host of the cotton aphid. 

Of the three hymenopterous parasitoid species parasitizing the cotton aphid (Table 

1.1), none of them is known to attack wheat aphids, Sitobion avenae (Fabricius), 

Schizaphis graminium (Rond), and Rhopalosiphum padi (L.) (Wang, 1990). It was 

supposed that all deaths from parasitism in apterous aphids occurred at the adult moult 

and that the fraction of aphids killed was time-dependent. The relationship between the 

fraction of parasitization and day of year was estimated from field observations (see 

Section 6.2.2.1) and described by Equation 5.7 (see Fig. 6.3A in Section 6.3.1.1). 

6.2.1.2 Temporal dynamics of seven-spot beetle populations 

Understanding C. septempunctata population dynamics on wheat is essential in 

simulating the spatio-temporal dynamics of the coccinellid-aphid system in cotton-

wheat intercropping as populations of this predator do not originate from cotton but 

disperse from wheat into cotton. The submodel of the temporal dynamics of the seven-

spot beetle on intercropped wheat was adapted for a field-validated model of the 

temporal dynamics of the coccinellid-aphid system in cotton monoculture developed 

in Chapter 5. It simulates changes in predator density (number per m row) on a whole 

field basis. 

Immigration and emigration The model initializes seven-spot beetle population 

dynamics with measured daily net immigrations of adults (the number of adults 

arriving in wheat per m row per day). The net immigration rate was determined 

through daily field observations (see Section 6.2.2.2 and Fig 6.4 in Section 6.3.1.2) and 

was input into the model as a forcing function. Immigrations until mid May were 

considered as a new generation of aphids appears from the end of May onward. In 
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general, after mid May the seven-spot beetle adults are hardly found on intercropped 

wheat before the second generation in late May (see Fig. 6.11 in Section 6.3.2.2). 

Adult immigrants were supposed to be reproductively mature on arrival in wheat 

and not to emigrate. Adults produced in wheat may remain or may emigrate, 

depending on the availability of cotton and wheat aphids, the development stage of 

wheat and cotton, and the prevailing weather conditions. In the present model, it was 

assumed that emigration of seven-spot beetle adults during wheat maturation (after 

May) was dependent only on S. avenae density. The relationship between the relative 

emigration rate (Rg, d~ ) of seven-spot beetle adults in the late season of wheat and 

wheat aphid density (Dw, the number of wheat aphids per tiller) was estimated by field 

trials (see Section 6.2.2.2) and described by: 

Re = n , (D w ) " 2 (6.1) 

where n, and n2 are coefficients (see Fig. 6.5 in Section 6.3.1.2). Data on the wheat 

aphid density were collected from field counts (see Section 6.2.3.2 and Fig. B-3 in 

Appendix B) and input into the model as a forcing function. 

Development, survival and oviposition Processes of the temperature-dependent 

development and oviposition as well as the stage-specific survival were included as 

described in Chapter 5. The assumption was made that the temperature-dependent 

development and oviposition of the seven-spot beetle feeding on wheat aphids was the 

same as when feeding on cotton aphids, and that their stage-specific survival on wheat 

was identical to that on cotton. 

Parasitism As in cotton monoculture, Tetrastichus coccinellae Kurjumov 

parasitizing pupae of C. septempunctata play a role in suppressing its populations on 

intercropped wheat (Li, 1986). It was supposed that all deaths of pupae from parasitism 

occurred upon adult emergence, and that the fraction of parasitization was time-

dependent. The relationship between the fraction killed and day of year was 

determined through rearing field-collected pupae (see Section 6.2.2.2) and described 

with Equation 5.7 (see Fig. 6.3B in Section 6.3.1.2). 

6.2.1.3 Seven-spot beetle dispersal from wheat into cotton 

Dispersal of C. septempunctata from wheat into cotton is the key process for 

simulating the spatio-temporal dynamics of the coccinellid-aphid system in cotton-

wheat intercrop. In the present study, dispersal of foraging stages of the seven-spot 

beetle from wheat into cotton was modelled as a diffusion process (de Wit & van 

Keulen, 1975; Kareiva, 1982; Leffelaar, 1993), with hypotheses made as follows: 
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(1) all foraging stages of the seven-spot beetle move to adjacent crop rows only by 

walking with negligence of the possibility for beetle adults to depart by flight; 

(2) each foraging stage of the predator on wheat, and on cotton has a specific 

residence time or relative dispersal rate (the reciprocal of the residence time); 

(3) residence time on bare soil is negligible as the wheat canopy among rows is 

highly overlapped and the distance from wheat to cotton is only 20 cm (nearest) 

to 80 cm (farthest) while the beetle's movement on soil is very fast according to 

our observations; 

(4) dispersal is one-dimensional across rows as both crops are planted in rows and 

dispersal within rows is not considered; and 

(5) residence time is the population level consequence of individual behavior of 

"area-restricted search" (Kareiva & Odell, 1987), i.e. residence time of the 

predator on the wheat and the cotton is mainly determined by the density of the 

wheat and cotton aphids with negligence of the effect of weather conditions. 

Diffusion process For an analytic purpose, it is convenient to represent the 3-2 

intercropping pattern by a single unit with the outer two rows connected to each other. 

Dispersal of foraging seven-spot beetles among wheat and cotton rows by walking can 

be illustrated by a simplified relational diagram (Fig. 6.1). Space is split up into five 

slices, each representing one row of wheat or cotton. It was assumed that the relative 

dispersal rate of a given foraging stage was the same on each wheat row or on each 

cotton row, and that the total relative dispersal rate from a slice was divided into two 

halves, each denoting the relative dispersal rate from one side of the slice (Fig. 6.1). 

Relative dispersal rate of each foraging stage on the wheat or on the cotton was 

dependent on the prey density on them. 

A simple diffusion model of the dispersal of foraging stages of the seven-spot beetle 

among wheat and cotton rows in the 3-2 intercropping pattern was developed based on 

the relational diagram of Fig. 6.1. The model was written in Continuous System 

Modelling Program (CSMP) (IBM, 1975; de Wit & Keulen, 1975; Leffelaar, 1993). 

The rectilinear integration method was applied with a time step of 0.01 d, 1/10 of the 

smallest time coefficient in the model. 

Runs of this simple diffusion model with field data (see Section 6.2.2.2) indicated 

that the distribution ratio (number per m row on intercopped cotton / number per m 

row on intercropped wheat) of each selected stage of the seven-spot beetle reached an 

equilibrium within 1-2 d which was equal to the quotient of its residence time on these 

two crop rows (see Fig. B-4 in Appendix B). Further simulation runs with the 

diffusion model brought about similar trends in the other commonly-practised 

intercropping patterns, 3-1 and 4-2. Thus, it was possible (at least for those above-

mentioned intercropping patterns) to assume that at any time, in the temporal model of 
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Fig. 6.1. Relational diagram for dispersal of C. septempunctata from wheat into cotton in cotton-

wheat intercropping with a 3-2 pattern (three rows of wheat with two rows of cotton). Boxes, valves, 

and parentheses represent state, rate, and driving variables, respectively; and solid and broken lines 

indicate flow of materials and information, respectively. WB and CB are the seven-spot beetles on the 

wheat and on the cotton, respectively; RI and RE are the relative rates of walking in and walking out, 

respectively; and WA and CA are the wheat and the cotton aphids, respectively. 

the seven-spot beetle, the dispersal model was in equilibrium, so that the number of 
predators of each foraging stage dispersing from wheat into cotton row could be 
calculated based on the ratio of their residence time on the two crop rows. Prédation of 
the cotton aphid was, then, calculated using the density of the seven-spot beetle 
temporarily dispersing from wheat into cotton (see Section 6.2.1.4). 
Prey density-dependent residence time All foraging stages of the seven-spot 
beetle can disperse from wheat into cotton or the other way around, depending mainly 
on the availability of wheat and cotton aphids. In this study, the prey density-
dependent residence time was determined for the fourth larval instars and the adults of 
the seven-spot beetle by field observations (see Section 6.2.2.2) and described by: 

t, = o, [ 1 - exp ( - o2 Dp ) ] (6.2) 
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where t,. is the residence time (d); Dp is the wheat (number per tiller) or cotton aphids 

(number per plant); and O! and o2 are coefficients (see Fig. 6.6 in Section 6.3.1.2). 

According to field observations (see Section 6.2.3.2), the distribution ratio of the 

first, second and third larval instars of the seven-spot beetle dispersing from wheat into 

cotton was about 10%, 75% and 75% ofthat of the fourth larval instar, respectively. 

Thus, the distribution ratio of the first to third larval instar was found by multiplying 

the distribution ratio of the fourth instar with 0.1, 0.75 and 0.75, respectively. This 

implies that the young larvae of the seven-spot beetle spend less time on intercropped 

cotton than the older ones. The field-observed distribution ratio of foraging stages of 

the turtle beetle [Propylaea japonica (Thungberg)] [Coleoptera: Coccinellidae] 

dispersing from wheat into cotton and their population numbers on wheat per m row 

were obtained by field counts (see section 6.2.3.2) and was input into the model as a 

forcing function (see Fig. B-2 in Appendix B). 

6.2.1.4 Predator-prey interaction 

Cotton aphid in cotton-wheat intercrop suffers greater prédation than in cotton 

monoculture as most of its predators originate from wheat (Wang, 1990; Wang et al., 

1993). Seven-spot beetle is the predominant predator in cotton-wheat intercrop (Xia et 

al., 1994b). In addition to the seven-spot beetle, the turtle beetle plays a role in 

reducing the aphid populations at the seedling stage in cotton-wheat intercrop (Wang 

et al., 1993). Both species have five foraging stages involved in the prédation process: 

four larval instars and the adult (female and male). Individuals of each foraging stage 

can attack all life stages of both cotton and wheat aphids. While dispersing from wheat 

into cotton they prey on cotton aphid. Two assumptions are made: (1) temperature, 

prey density and prey size-group dependent prédation rate on the cotton aphid by 

seven-spot and turtle beetles in cotton-wheat intercrop are the same as in cotton 

monoculture, and (2) seven-spot and turtle beetles temporarily dispersing from 

intercropped wheat into intercropped cotton do not directly interfere with each other's 

prédation activity. Prédation on mixed prey stages in intercropped cotton was modelled 

by representing prey stage selection as a competitive process (see Chapter 5). 

The relative prédation rate in different size-groups of the cotton aphid by foraging 

stages of seven-spot and turtle beetles were calculated following the same method as 

described in Chapter 5. The number of cotton aphid, seven-spot beetle and the turtle 

beetle per plant was converted into the density per unit leaf area (cm ) by division with 

total leaf area per plant (double-sided). Dispersal of foraging stages of seven-spot and 

turtle beetles from wheat into cotton is described in Section 6.2.1.3, and accumulated 

degree-days (D°)-dependent cotton leaf area is explained in Section 6.2.1.5. 
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6.2.1.5 Cotton plant 

Compared to cotton monoculture, development of cotton seedlings in cotton-wheat 

intercrop is delayed by 5-7 d, depending on the intercropping patterns or the distance 

between wheat and cotton strips (Wang, 1990; Wang et al., 1993). A simple model to 

predict changes in cotton leaf area at the seedling stage in cotton-wheat intercrop was 

developed as input to prédation, using field-collected data (see Section 6.2.2.3) and 

Equation 5.8 (see Fig. 6.7 in Section 6.3.1.3). 

6.2.1.6 Abiotic factors 

Compared to those in cotton monoculture, solar radiation, temperature and wind speed 

in cotton-wheat intercrop are reduced by 5-10%, 0.5-1.5 °C and 10-40%, 

respectively, while relative humidity and soil moisture are increased by 5-30% and 

15-45%, respectively (Wang, 1990; Wang et al., 1991; Wang et al., 1993). 

Temperature is a major driving variable for the spatio-temporal dynamics of the prey-

predator system at cotton seedling stage in cotton-wheat intercrop. Because of the lack 

of data on the temperatures obtained from cotton-wheat intercropped fields, it was 

assumed that the fluctuating temperature in cotton-wheat intercrop was the same as in 

cotton monoculture. The diurnal course of actual temperature was simulated from the 

daily maximum and minimum temperatures, following the method of Goudriaan & van 

Laar (1994, pp. 29-49, see Chapter 5). 

6.2.2 Experiments for process quantification 

During model development, experiments were carried out to characterize processes 

governing the spatio-temporal dynamics of the coccinellid-aphid system 

quantitatively. Equations chosen to describe processes were based on a biologically 

appropriate shape, Root Mean Square Error (RMSE) and coefficient of determination 

(r2). Parameters of the selected equations were estimated iteratively by minimization of 

the sum of squared residuals, using the Levenberg-Marquardt algorithm (Slide Write 

Plus for Windows, 1983-1993). 

All experiments were conducted at the China Cotton Research Institute (CCRI), 

Anyang, Henan province (36.07 °N latitude and 114.22 °E longitude). The 

experimental field was 0.5-1.0 ha with a 3-2 intercropping pattern. Wheat cultivar 

was the early-medium maturing 85-Zhong-33, which was sown in mid October of the 

previous year upon cotton harvest and harvested at mid June. Wheat row distance was 

15 cm (150 tillers per m row). A space (80 cm between wheat strips) was left out for 
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planting cotton next season. Cotton cultivar was the early-medium maturing CCRI 12, 

which was sown in mid April. The entire seedling period until 6-8 leaf stage 

overlapped with wheat. Distance between the narrow rows (i.e. within a cotton strip) 

was 60 cm but 80 cm between the wide rows (i.e. between wheat strips). Plant 

populations were 10-15 seedlings per meter row before thinning and 4-6 thereafter. 

Conventional management was carried out except that no seed treatment or above-

ground spray was allowed against any insect pests on both crops before wheat harvest. 

6.2.2.1 Experiments for the cotton aphid 

Time-dependent parasitization Time-dependent parasitization of apterous cotton 

aphids by hymenopterous parasitoids was observed in 1994 and 1995. Each year, from 

first appearance of mummies to mid June, 30-50 field plots (50 before thinning and 30 

thereafter) were randomly laid out, and each plot consisted of two narrow cotton rows 

(1 m long each) with 10-30 cotton plants (30 before thinning and 10 thereafter). All 

plants in each plot were inspected every 5 d for numbers of apterous aphids alive and 

mummies. 

Immigration rate The daily net immigration rate of alate aphids landing on 

intercropped cotton was measured in 1994 and 1995. Each year, 20-30 field plots were 

randomly laid out, where each plot consisted of two narrow cotton rows (1 m long 

each) with 10-30 plants marked with plastic labels. From their first appearance until 

20 May, all marked plants in each plot were observed daily for the number of alate 

adults that had settled. These were then removed. 

6.2.2.2 Experiments for the seven-spot beetle 

Time-dependent parasitization Time-dependent parasitization of seven-spot 

beetle pupae by T. coccinellae on intercropped wheat was determined in an 

insectarium in 1994 and 1995. Each year, from first pupal appearance to the wheat 

harvest, 100-300 pupae were collected on intercropped wheat every 5-10 d and reared 

in glass petridishes (15 cm diameter and 2.5 cm deep). Emergence of adults and 

parasitoids was observed daily. 

Immigration rate The immigration rate of seven-spot beetle adults landing on 

intercropped wheat was observed in 1994-1995. Each year, 30-50 (50 before heading 

and 30 thereafter) field plots were randomly laid out. Each plot consisted of three 

wheat rows (1 m long each) and was isolated by weeding wheat tillers at both edges by 

0.5 m long. Starting from 10 April to 20 May, all tillers and the underground of each 

plot were inspected daily for numbers of adult beetles which were then removed. 
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Density-dependent relative emigration rate Experiments for measuring the prey 
density-dependent relative emigration rate of seven-spot beetle adults from wheat 
during the wheat maturation (from ripening to the harvest) were conducted twice in 
late May 1994. Each time, five experimental arenas were made based on wheat aphid 
density, and each arena (about 0.5 m ) consisted of three wheat rows (1 m long each). 
All arenas were individually isolated by a ditch, with plastic sheathing on the sides and 
filled with water. Upon release of target predators, numbers of wheat aphids per tiller 
was recorded in all arenas and non-target predators were removed. Twenty field-
collected adults (mostly 2-5 d old) marked with white correction fluid ("uni" 
correction pen, Mitsubishi Pencil Co. Ltd.) were released in each arena. The number of 
marked adults was monitored at the time intervals of 1 h, 2 h, 4 h , 6 h, 8 h, 1 d, 2 d, 
and 3 d after release. The relative emigration rate (RJ at a given prey density was 
estimated from: 

Nt = N 0exp(-R eAt) (6.3) 

where N0 is the initial number of marked seven-spot beetle adults released per m row, 
and Nt is the remaining beetles per m row after the time interval (At, d). 
Density-dependent residence time Experiments for determining the relationship 
of residence time of the fourth larval instars and adults of the seven-spot beetle with 
the density of wheat or cotton aphids in cotton-wheat intercrop were carried out in late 
May and early June 1995. Ten experimental arenas were created in the field. Each 
arena (about 1 m2) was comprised of three wheat rows and two cotton rows with 11 
locations recognized (Fig. 6.2). All arenas were individually isolated by a ditch, with 
plastic sheathing on the sides and filled with water, and they were randomly assigned 
to two groups, A and B. For group A, 20 target predators were released on the wheat 
row adjacent to cotton (location 6, see Fig. 6.2), while 10 on the wheat row (location 6) 
and 10 on the cotton row (location 8, see Fig. 6.2) were released for group B. Upon 
release of target predators (marked with correction fluid), numbers of wheat aphids per 
tiller and cotton aphids per plant were recorded in all arenas with the non-target 
predators removed. 

Prey density-dependent residence time of the fourth larval instar was measured 
twice. In the first measurement, 20 field-collected larvae, mostly fourth instars and also 
a few third instars, were released in each arena of groups A and B. Observations of 
locations of the larvae were made after 0.5, 1.5 and 2.5 d. In the second measurement, 
20 field-collected fourth instars were released in each arena of group B. The number of 
dispersed predators at the different locations was checked after 10 min, 40 min, 1 h, 2 
h, 1 d, 2 d, and 3 d. 
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Fig. 6.2. An experimental layout for determining the dispersal rate of C. septempunctata among wheat 

and cotton rows in cotton-wheat intercropping with a 3-2 pattern (three rows of wheat and two rows 

of cotton). W and C represent wheat and cotton, respectively; and numbers 1-11 are the locations 1 

through 11, respectively, with the even number denoting crop rows and the odd one denoting bare 

soils. Arrows indicate the location for release of target predators. 

Prey density-dependent residence time of seven-spot beetle adult was also measured 

twice. Each time, 20 field-collected adults (mostly 2-5 d old) marked with white 

correction fluid were released in each arena of groups A and B. The number of marked 

beetles at different locations was monitored at the time intervals of 10 min, 30 min, 1 

h, 2 h, 1 d, 2 d, and 3 d after release. The residence time (t,.) at a given prey density was 

estimated from: 

l n ( N t ) = l n ( N 0 ) - t / t r (6.4) 

where N0 is the initial number of the target predators per m row, and Nt is the 

remaining target predators per m row after the time interval (t, d). 
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6.2.2.3 Experiments for the cotton plant 

An experiment for determining the relationship of accumulated degree-days (D°) with 
cotton leaf area was done in 1994 in an intercropped field (3 ha) under conventional 
management. From the 1 to 8 leaf stage, 50 plants were randomly sampled every 5 d, 
and their leaf area was measured using a Portable Leaf Area Meter (LI-3000, LI-Cor). 

6.2.3 Experiments for model validation 

The model was developed by integrating all process-level knowledge in the 
coccinellid-aphid system (Table 6.1). Its ability to simulate the spatio-temporal 

Table 6.1. Processes included in the model of the spatio-temporal dynamics of the predator-prey 

system C. septempunctata-A. gossypii in cotton-wheat intercropping . 

Temporal dynamics 

of A. gossypii 

Temporal dynamics 

of C. septempunctata 

Dispersal of predators Predator-prey 

from wheat into cotton interaction 

a) Temperature-

dependent 

development 

b) Temperature-

dependent survival 

c) Temperature and 

age-dependent 

reproduction 

d) Density-dependent 

wing formation 

e) Density-dependent 

reproduction 

f) Immigration 

into cotton 

g) Time-dependent 

parasitization in 

alate immigrants 

and apterous aphids 

a) Temperature-

dependent 

development 

b) Temperature and 

age-dependent 

oviposition 

c) Stage-specific 

survival 

d) Immigration into 

wheat 

e) Prey density-

dependent 

emigration 

of adults from 

ripening wheat 

f) Time-dependent 

parasitization 

in pupae 

a) Prey density-

dependent 

relative dispersal 

rate on wheat 

b) Prey density-

dependent 

relative dispersal 

rate on cotton 

c) Time-dependent 

distribution ratio 

of P. japonica 

on cotton 

a) Prey density, prey 

size-group and 

temperature-

dependent prédation 

by seven-spot beetle 

b) Prey density and 

prey size-group 

dependent prédation 

by P. japonica 

c) Cotton leaf area-

dependent 

prédation 

d) Accumulated 

degree-days (D°)-

dependent cotton 

canopy growth 

Details on each process are given in Section 6.2. 
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dynamics of the predator-prey system in cotton-wheat intercropping was validated by 

a subjective comparison of simulated and observed data through time (Rabbinge et al., 

1979; Carter et al., 1982). All validation experiments were conducted at CCRI in 1994 

and 1995. Each year, the validation experiment was carried out in an open field (1 ha) 

with a 3-2 intercropping pattern, where the basic treatments were the same as 

described in Section 6.2.2. Daily maximum and minimum temperatures were obtained 

from a meteorological station at CCRI (see Fig. B-5 in Appendix B). 

6.2.3.1 Dynamics of cotton aphid and major predators on cotton 

Each year, from the first appearance of alate immigrants on intercropped cotton to mid 

June, populations of the cotton aphid and major predators were monitored every 5 d. 

At each observation, 30-50 field plots were randomly selected, each consisting of two 

narrow cotton rows (1 m long each) with 10-30 plants. All plants in each plot were 

thoroughly inspected for the number of apterous and alate aphids. All plants and the 

underground of each plot were carefully observed for the number of (a) eggs (if any), 

first to fourth instars, pupae (if any) and adults of the seven-spot beetle; (b) larvae and 

adults of the turtle beetle; and (c) other predators in their active stages. 

6.2.3.2 Dynamics of wheat aphid and major predators on wheat 

Each year, from early April to wheat harvest, numbers of wheat aphids and major 

predators were inspected every 5 d. At each sampling date, 30-50 field plots were 

randomly laid out. Each plot was composed of three wheat rows ( 1 m log each) with 

400-450 tillers. Twenty to fifty tillers in each plot were checked for wheat aphids. All 

tillers and the underground of each plot were thoroughly inspected for the number of 

(a) eggs, first to fourth instars, pupae and adults of the seven-spot beetle, (b) larval 

instars and adults of the turtle beetle, and (c) other predators in their active stages. 

6.2.4 Sensitivity analysis 

Sensitivity analysis was performed by omitting processes from the model (coarse 

sensitivity analysis), and by changing parameter values within a biologically possible 

range (fine sensitivity analysis) to evaluate the overall effect in the system (Rabbinge 

et al., 1979; Carter et al., 1982). The role of total natural enemy-inflicted mortality, 

prédation by the seven-spot beetle, prédation by the turtle beetle, and parasitism by 

parasites (external and internal), was assessed by coarse sensitivity analysis. The 

importance of temperature was evaluated by increasing or decreasing the daily 
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maximum and minimum values by 2 °C. The effect of immigration rate of alate aphids 

on intercropped cotton, immigration rate of seven-spot beetle adults on intercropped 

wheat, and relative dispersal rate of the seven-spot beetle between wheat and cotton, 

was determined by increasing or decreasing their values by 20%. In all cases, 

simulations were made for 1995 field conditions. 

6.2.5 Scenario studies 

The possibility to adapt cotton-wheat intercropping patterns and maintain biological 

control of A. gossypii were explored by carrying out scenario studies with the model. 

The first study was made to explore how aphid populations are influenced if the daily 

net immigration rate of alate adults is increased with increasing distance between 

wheat strips. This was done by increasing the immigration rate by 2, 4, 6, 8, and 10 

times, respectively, as it is often observed that immigration rate of alate aphid adults is 

8-10 times greater in cotton monoculture than in cotton-wheat intercrop. 

The second study was made to explore how aphid populations are influenced if the 

immigration rate of alate immigrants is increased with increasing width of cotton and 

wheat strips, but the distribution ratio of foraging predators and the parasitization of 

apterous aphids are decreased. This was done by testing four increase-decrease 

combinations: (1) a 2-fold increase in the immigration with a 20% decrease in the 

dispersal ratio and parasitization, (2) a 4-fold increase with a 40% decrease, (3) a 6-

fold increase with a 60% decrease, and (4) a 8-fold increase with a 80% decrease. In all 

cases, simulations were made for 1995 field conditions. 

6.3 Results 

6.3.1 Process quantification 

6.3.1.1 Process quantification for the cotton aphid 

Time-dependent parasitization Parasitization of apterous aphids by hymenopterous 

parasitoids on intercropped cotton increased from mid May up to late May, with a 

maximum fraction killed of 0.8 (Fig. 6.3A) and then decreased in both 1994 and 1995. 

The pattern was adequately described by Equation 5.7 (RMSE = 0.044, r = 0.97) (Fig. 

6.3A). The peak parasitization occurred 10 d earlier in cotton-wheat intercrop than in 

cotton monoculture, and the maximum fraction killed was 6 times greater (see Fig. 

5.2B). The measured parasitization in cotton-wheat intercrop may be somewhat 

inflated as some parasitized wheat aphids drop down on cotton and mummify there. 
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Fig. 6.3. Observed time course of the fraction of parasitization (Pm) in apterous A. gossypii by 

hymenopterous parasitoids on intercropped cotton (A), and C. septempunctata pupae by 

hymenopterous parasitoids on intercropped wheat (B). The best fit is given by Equation 5.7. 

Immigration rate In both 1994 and 1995, immigration of alate aphids started early 
May, peaked mid May and then decreased, with an average immigration rate over the 
entire period of 0.06 alates per plant per day (Fig. 6.4). Aphid immigration on 
intercropped cotton was delayed by 5-7 d compared to cotton monoculture (see Fig. 
5.3) and the mean immigration was decreased by 80-90%. 
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Fig. 6.4. Observed net immigration (number per plant per day ) of alate A. gossypii into intercropped 

cotton and C. septempunctata adults into intercropped wheat in 1994 (A), and 1995 (B). The a and b 

represent the mean daily net immigration rate over the entire period of A. gossypii and C. 

septempunctata, respectively. 
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6.3.1.2 Process quantification for the seven-spot beetle 

Time-dependent parasitization Parasitization of seven-spot beetle pupae by T. 
coccinellae on intercropped wheat increased from mid May up to late May with a 
maximum fraction killed of 0.11 (Fig. 6.3B) and then declined in both 1994 and 1995. 
The trend was satisfactorily described with Equation 5.7 (RMSE = 0.008, r2 = 0.96) 
(Fig. 6.3B). Apparently, the pupal parasitization on intercropped wheat was much 
lower than on cotton monoculture (see Fig. 5.2C). 

Immigration rate In both years, 1994 and 1995, immigration of seven-spot beetle 
adults on intercropped wheat started early April, increased from late April up to early 
May and then decreased, with a mean immigration rate over the entire period of 0.037 
adults per m row per day (Fig. 6.4). The immigration occurred 7 d later in 1994 than in 
1995, but the mean immigration rate was almost identical in the two years (Fig. 6.4). 
Prey density-dependent relative emigration rate Relative emigration rate of 
seven-spot beetle adults departing from ripening wheat by flight at each wheat aphid 
density was estimated by Equation 6.3. RMSE ranged from 0.0911 to 0.1758 d~ and r 
from 0.76 to 0.99. With increase in prey density, the relative emigration rate decreased 
rapidly, approaching to zero (Fig. 6.5). The pattern was adequately described by 
Equation 6.1 (RMSE = 0.0399 d~', r2 = 0.94) (Fig. 6.5). 

Prey density-dependent residence time Residence times of the fourth larval 
instars of the seven-spot beetle related to walking alone and the adults related to 
walking and flying together at each prey density of wheat aphids and of cotton aphids 
were adequately estimated by Equation 6.4. For the fourth larval instar and the adult on 
wheat, RMSE ranged from 0.062 to 0.279 d and r2 from 0.74 to 0.99. For both of them 
on cotton, RMSE ranged from 0.018 to 0.230 d and r2 from 0.87 to 0.99. In all cases, 
residence time increased quickly with prey density up to 10 aphids per tiller or per 
plant, and then reached an maximum (Fig. 6.6). The relationship between the residence 
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wheat (C) and on intercropped cotton (D). The best fit is given by Equation 6.2. 

time of both foraging stages and prey density on the two crops was described with 

Equation 6.2 (Fig. 6.6). The maximum residence time of the fourth larval instars on 

wheat (1.8 d) was about 10 times as long as on cotton (0.18 d) (Figs. 6.6A and B). The 

maximum residence time of the adults on wheat (0.99 d) was approximately 12 times 

as long as that on cotton (0.089 d) (Figs. 6.6C and D). The maximum residence times 

of the fourth larval instars on wheat and on cotton were about 2 times as long as those 

of the adults (Figs. 6.6). 

6.3.1.3 Process quantification for the cotton plant 

The relationship between the leaf area of cotton seedlings and accumulated degree-

days (D°) in cotton-wheat intercrop was adequately described by Equation 5.8 (RMSE 

0.99) (Fig. 6.7). = 58.6 cm2, r2 
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6.3.2 Model validation 

The model was developed by integrating all processes presented in Table 6.1. In this 
section, the simulated results are compared with experimental data collected in cotton-
wheat intercropped fields in 1994 and 1995. An interpretation of the results and the 
insights gained are given in the Discussion (see Section 6.4). 

6.3.2.1 Temporal dynamics of cotton aphid populations 

In both years, 1994 and 1995, A. gossypii populations increased from mid May up to 
late May with a maximum density of 6 aphids per plant and then collapsed (Fig. 6.8). 
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Fig. 6.8. Simulated ( ) and observed ( • ) population trends of A. gossypii on intercropped cotton 

at the seedling stage in 1994 (A), and 1995 (B). Bars represent observations with 95% confidence 

limits. Crop development is indicated below the abscissa: E, 1, 2, 4, 6 and 8 are emergence of cotton 

seedlings; and 1, 2, 4, 6 and 8 true-leaf stage, respectively. 
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This dynamic pattern was described by the model, though the population sizes were 
overestimated, particularly later on (Fig. 6.8). In both cases, the timing of the aphid 
peak simulated satisfactorily, the peak density was overestimated by 20-30%, and the 
predicted population collapse appeared 3-5 d later than observed (Fig. 6.8). 

6.3.2.2 Temporal dynamics of seven-spot beetle populations 

Larval populations of the seven-spot beetle on intercropped wheat increased from early 
April up to mid May and then declined in both 1994 and 1995. The pattern was 
simulated by the model, though their numbers were overestimated throughout (Fig. 
6.9). In both years, the date of the larval peak was simulated correctly, while the peak 
density was overestimated by 20% in 1994 (Fig. 6.9A) and 130% in 1995 (Fig. 6.9B). 
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Fig. 6.9. Simulated ( ) and observed ( • ) population trends of C. septempunctata larvae on 

intercropped wheat and on intercropped cotton at the seedling stage of cotton in 1994 (A), and 1995 

(B). Bars represent observations with 95% confidence limits. Crop development is indicated below 

the abscissa: E, 1, 2, 4, 6 and 8 are emergence of cotton seedlings; and 1, 2, 4, 6 and 8 true-leaf stage, 

respectively. 
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Pupal populations of the seven-spot beetle on intercropped wheat increased from 

mid May up to late May and then decreased in both 1994 and 1995 (Fig. 6.10). The 

trend was described by the model (Fig. 6.10). In both years, the predicted peak was 

delayed by 3-5 d, the peak number was underestimated by 10-20%, and the simulated 

population collapse occurred 5 d later than observed (Fig. 6.10). 

In both years, 1994 and 1995, there were two peaks of seven-spot beetle adults on 

intercropped wheat: in early May (the peak of adult immigrants) and in late May (the 

peak of field-produced adults) (Fig. 6.11). The simulated and observed trends were in 

reasonable agreement (Fig. 6.11). In both cases, the predicted first peak occurred 3-4 d 

later than observed, with the peak number overestimated by 50-60%, while the 

predicted second peak was delayed by 2-3 d, with the peak density overestimated by 

5-10% (Fig. 6.11). 

6.3.2.3 Dispersal of seven-spot beetles into cotton 

The predicted distribution ratio of the fourth larval instars of the seven-spot beetle 

temporarily dispersing from wheat into cotton in both 1994 and 1995 was slightly 

underestimated at very early seedling stage (1-2 leaves) but overestimated later on 

(Fig. 6.12). The timing of the larval peak on intercropped cotton was predicted 
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Fig. 6.10. Simulated ( ) and observed ( • ) population trends of C. septempunctata pupae on 

intercropped wheat at the seedling stage of intercropped cotton in 1994 (A), and 1995 (B). Bars 

represent observations with 95% confidence limits. Crop development is indicated below the 

abscissa: E, 1, 2, 4, 6 and 8 are emergence of cotton seedlings; and 1, 2, 4, 6 and 8 true-leaf stage, 

respectively. 
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Fig. 6.11. Simulated ( ) and observed ( • ) population trends of C. septempunctata adults on 

intercropped wheat and on intercropped cotton at the seedling stage of cotton in 1994 (A) and 1995 
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respectively. 

correctly, but the peak density was 2-3 times greater than observed (Fig. 6.9). In both 

years, seven-spot beetle larvae peaked 5-7 d later on intercropped cotton than on 

intercropped wheat (Fig. 6.9). 

The time course of the distribution ratio of seven-spot beetle adults temporarily 

dispersing from wheat into cotton in 1994 and 1995 was well simulated by the model 

(Fig. 6.12). Similar to the fourth larval instars, the simulated ratio was slightly 

underestimated at the very early seedling stage and slightly overestimated thereafter in 

both years (Fig. 6.12). The predicted peak of seven-spot beetle adults on intercropped 

cotton was delayed by 2-6 d and the peak number was 5-6 times higher than observed 

(Fig. 6.11). In both years, seven-spot beetle adults occurred 5-7 d later on intercropped 

cotton than on intercropped wheat (Fig. 6.11). 
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Fig. 6.12. Time course of simulated ( ) and observed ( • ) distribution ratios of C. septempunctata 

larvae and adults temporarily dispersing from intercropped wheat into intercropped cotton at the 

seedling stage of cotton in 1994 (A), and 1995 (B). Crop development is indicated below the abscissa: 

E, 1, 2, 4, 6 and 8 are emergence of cotton seedlings; and 1, 2, 4, 6 and 8 true-leaf stage, respectively. 

6.3.3 Sensitivity analysis 

The role of different components and processes in the coccinellid-aphid system in 

cotton-wheat intercropping are evaluated in this section. Interpretations are given in 

the Discussion. 

Without natural enemy-inflicted mortality, A. gossypii populations grew 

exponentially to damaging levels of more than 100 aphids per plant during the seedling 

stage (line 1 in Fig. 6.13). In the absence of prédation by the seven-spot beetle, the 

aphid populations increased to a maximum of 25 aphids per plant and then declined 

slightly. Compared to the full model, the occurrence of the aphid peak was delayed by 

7 d and the peak density increased by 260% (line 2 in Fig. 6.13). Absence of prédation 

by the turtle beetle delayed the timing of the aphid peak by 2 d and increased the 

number by 10% (line 3 in Fig. 6.13). With no parasitism in alate aphid immigrants by 
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Fig. 6.13. Simulated A. gossypii population dynamics on cotton at the seedling stage in the cotton-

wheat intercropped field in 1995 as influenced by omitting natural enemy-inflicted mortality (line 1), 

prédation by C. septempunctata (line 2), prédation by P. japonica (line 3), and parasitism of alate A. 

gossypii by Allothrombium and apterous aphids by hymenopterous parasitoids (line 4). Solid lines 

represent the simulation with the full model. Crop development is indicated below the abscissa: E, 1, 

2, 4, 6 and 8 are emergence of cotton seedlings; and 1, 2, 4, 6 and 8 true-leaf stage, respectively. 

Allothrombium and apterous aphids by hymenopterous parasitoids, the aphid peak was 
delayed by 2 d and the peak density increased by 30% (line 4 in Fig. 6.13). 

An increase or decrease in daily maximum and minimum temperatures by 2 °C had 
almost no effect on the timing of the aphid peak but the peak number was increased by 
25% or decreased by 20% (Fig. 6.14A). A 20% increase or decrease in the immigration 
rate of alate aphids on intercropped cotton resulted in no effect on the date of the aphid 
peak, but the peak number was increased by 15 % or decreased by 14% (Fig. 6.14B). A 
20% increase or decrease in the immigration rate of seven-spot beetle adults on 
intercropped wheat advanced or delayed the aphid peak by 1 d and decreased the peak 
density by 6% or increased it by 14% (Fig. 6.14C). A 20% increase or decrease in the 
relative dispersal rate of the seven-spot beetle on both crops had the same result as a 
20% changes in the immigration rate of seven-spot beetle adults into intercropped 
wheat (Fig. 6.14D). 

6.3.4 Scenario studies 

The results of scenario studies are analysed in this section. An interpretation of the 
results and practical implications for biological control of A. gossypii are presented in 
the Discussion (see Section 6.4). 
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Fig. 6.14. Simulated A. gossypii population dynamics on cotton at the seedling stage in the cotton-

wheat intercropped field in 1995 as influenced by small changes in temperatures (A), immigration 

rate of alate A. gossypii immigrants into cotton (B), immigration rate of C. septempunctata adults into 

wheat (C), and the relative dispersal rate of foraging C. septempunctata from wheat into cotton (D). 

Solid lines represent the simulation with the full model. Crop development is indicated below the 

abscissa: E, 1, 2, 4, 6 and 8 are emergence of cotton seedlings; and 1, 2, 4, 6 and 8 true-leaf stage, 

respectively. 

An increase in the daily net immigration rate of alate A. gossypii adults with a factor 

2, 4, 6, 8 and 10 exerted no effect on the timing of the aphid population peak, but the 

peak number was increased with a factor 1.7, 3.1, 4.5, 6.0 and 8.0, respectively (Fig. 

6.15). With the immigration increased by a factor of 6, the aphid populations were still 

below the generally recommended action thresholds of cotton aphid in cotton-wheat 

intercropping, i.e. 10-20 aphids per plant at the 1-2 leaf stage and 30-40 at the 3-5 

leaf stage (Fig. 6.15). 

As shown in Fig. 6.16, a 2-fold increase in the daily net immigration rate of alate 

aphids combined with a 20% decrease in the distribution ratio of foraging predators 

and the parasitization of apterous aphids, delayed the timing of the aphid peak by 2 d 
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and increased the peak number by a factor 2. A 4-fold increase in the immigration 
combined with a 40% decrease in the distribution ratio and parasitization, delayed the 
occurrence of the aphid peak by 4 d and increased the peak number by a factor 5. A 6-
fold increase in the immigration combined with a 60% decrease in the distribution ratio 
and parasitization, delayed the timing of the aphid peak by 5 d and increased the peak 
number by a factor 9. A 8-fold increase in the immigration combined with a 80% 
decrease in the distribution ratio and parasitization, delayed the timing of the aphid 
peak by 5 d and increased the peak number by a factor 15. The aphid population 
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numbers exceeded the action thresholds if the immigration rate was increased by more 

than 4 times, while the distribution ratio and parasitization were decreased by more 

than 40% at the same time (Fig 6.16). 

6.4 Discussion 

Validation of the model shows a reasonable correspondence between simulated and 

observed population dynamics of A. gossypii (Fig. 6.8) and C. septempunctata (Figs. 

6.9-6.11) as well as the dispersal of C. septempunctata from wheat into cotton (Fig. 

6.12). Discrepancies between simulations and observations were more apparent in C. 

septempunctata than in A. gossypii. In this section, further discussion is provided on 

the dynamics of the prey and predator populations, dispersal of predators from wheat 

into cotton, mechanisms for biological control in cotton-wheat intercropping, and the 

development of intercropping systems for biological control. 

6.4.1 Dynamics of cotton aphid and coccinellid populations 

An overestimation of the aphid population sizes throughout may be due to the 

incomplete accounting for biotic mortality factors. Abundance and diversity of natural 

enemies, in particular predators, in cotton-wheat intercrop are greater than in cotton 

monoculture (Xia, 1997). Some polyphagous predators (spiders and carabids) can play 

a role in suppressing the aphid populations at the early seedling stage (1-3 leaves) 

(Wang et al., 1993). At the mid-late seedling stage (4-8 leaves), in addition to the 

seven-spot and turtle beetles, predators preying on wheat aphids are found to attack the 

cotton aphid, such as Adonia variegata (Goeze), Leis axyridis (Pallas) and Scymnus 

hottmanni Weise; Chrysopa sinica Tieder and C. phyllochroma Wesmael; Syrphus 

corollae (Fabricius) and S. nites Ettertedt; Orius minutus L., and Nobis sinoferus 

Hsiao; and Erigonidium graminicolum (Sundevell) (Chen et al., 1991; Wang et al., 

1991; Dong et al., 1992; Wang et al., 1993; Chen et al., 1994; Xia et al., 1997). 

Frequency for these predators to disperse into cotton increases with wheat ripening, 

reaching a high level only upon wheat harvest, when they contribute to the destruction 

of remaining aphid populations within a few days (Zhang, 1985; Xia, 1996). Even 

though, the pattern of A. gossypii populations on intercropped cotton was satisfactorily 

simulated in both 1994 and 1995 (Fig. 6.8). This indicates that the major biotic 

mortality factors were included in the model, such as C. septempunctata, P. japonica 

and hymenopterous parasitoids. 

The temporal trend of population development of larvae, pupae, adults of the seven-

spot beetle on intercropped wheat was described by the model, but there were 
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discrepancies between simulated and observed densities (Figs. 6.9-6.11). These 

discrepancies may be due to a lower survival of C. septempunctata in the model than in 

the field, and also to sampling errors. Stage-specific survival of the seven-spot beetle 

was determined in caged cotton plants (see Chapter 5). Presumably, the mortality by 

cannibalism in the dense wheat canopy is lower than that in the more open cotton 

canopy as a larger area index (like wheat) may reduce the encounter rate and hence the 

chance of cannibalism (Mills, 1982a; Carter et al., 1984; Honek, 1993). Stage specific-

survival of C. septempunctata in wheat may be measured for further validation of the 

model. As to sampling, it is difficult to sample foraging seven-spot beetles with a great 

accuracy, especially in early season as some of them may hide at the surface soil 

nearby wheat plants (BU, 1984; Zhu & Li, 1981). 

Variations in temperature or alate immigration alone can not explain between-

season differences in aphid population dynamics on intercropped cotton. Thus, the 

temperature was about 2 °C higher in 1994 than in 1995 (Fig. B-5 in Appendix B) and 

the mean immigration rate of alate aphids was 20% higher in 1995 than in 1994 (Fig. 

6.4). These two factors are likely to result in higher aphid populations in 1994. 

Nevertheless, the peak aphid density was somewhat similar in both years (Fig. 6.8). 

6.4.2 Dispersal of coccinellids from wheat into cotton 

Dispersal of C. septempunctata is the key process for simulating the dynamics of the 

coccinellid-aphid system in the cotton-wheat intercrop, as populations of this predator 

do not originate from cotton but disperse from wheat into cotton. In this study, 

dispersal of foraging C. septempunctata from wheat into cotton and the other way 

around was treated as a diffusion process, which was modelled by relating the relative 

dispersal rate to prey densities. Because the distribution ratio of foraging predators on 

wheat and cotton rows reached an equilibrium within 1-2 d and was equal to the 

quotient of its residence time on these two crop rows, the dispersal model was assumed 

to be in equilibrium at any time. The number of predators temporarily dispersing from 

wheat into cotton was, therefore, calculated based on the ratio of their residence times 

on the two crop rows. 

As shown in Fig. 6.12, changes in distribution ratios of C. septempunctata on 

intercropped cotton through time were quite satisfactorily simulated. Slight 

discrepancies may be due to the difference in temperatures between the dense and cool 

wheat row and the more open and warmer cotton row. In early season, the searching 

beetles may prefer a warmer environment (i.e. cotton). With the season progressing 

and air temperature increasing, the searching beetles may prefer staying in the dense 

wheat row as temperatures there are lower than in the open cotton row (Wang, 1990; 
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Wang et al., 1993; Honek, 1993). The overall agreement between simulation results 

and observations indicates that dispersal of C. septempunctata (presumably also other 

coccinellid predators) from wheat into cotton in the 3-2 pattern of cotton-wheat 

intercropping can be simulated using the ratio of prey density-dependent residence 

times on the two crops. This principle may be also used in other intercropping patterns. 

Complicated behaviors are involved in diffusion processes of foraging predators, 

e.g. spatially-varying mobility and density-dependent diffusion (Kareiva, 1982). The 

approach used in this study was rather simple and descriptive. The behavioral 

components were not considered explicitly but summarized in the prey density-

dependent diffusion. This simple (and for some conditions likely incomplete) approach 

made it feasible to determine the parameters and validate the model in the field. 

6.4.3 Mechanisms of biological control in intercrops 

Compared to single cropped cotton (see Fig. 5.3), the starting date of immigration of 

alate A. gossypii into intercropped cotton is delayed by 5-7 d and the net immigration 

rate is decreased by a factor of 8-10 (Fig. 6.4). Thus, cotton-wheat intercropping can 

substantially reduce the immigration of monophagous cotton aphids (see also Power, 

1987, 1988). In the absence of total natural enemy-inflicted mortality, however, the 

aphid population number (line 1 in Fig. 6.13) exceeds the generally recommended 

action thresholds throughout the seedling stage of intercropped cotton despite low 

immigration. The simulation results suggest that the low abundance of the cotton aphid 

in cotton-wheat intercropping is mainly due to prédation and parasitism (lines 2-4 in 

Fig. 6.13). Prédation by the seven-spot beetle is of overwhelming importance (line 2 in 

Fig. 6.13). Simulations further show that effective biological control can still be 

achieved even if the immigration of alate aphids in cotton-wheat intercropping is 

increased by a factor 6 (Fig. 6.15). The role of natural enemies, particularly the seven-

spot beetle, in controlling cotton aphid populations in cotton-wheat intercrop has been 

widely demonstrated (Yan, 1988; Wang et al., 1993). When natural enemies are killed 

by applying wide spectrum insecticides against wheat aphids on intercropped wheat, 

one or two sprays are usually required against the cotton aphid on intercropped cotton 

(Chen et al., 1991; Wang et al., 1993; Xia, 1993). Otherwise, no spray is needed for the 

cotton aphid control (Xia, 1994b; Xia et al., 1996). 

Population dynamics of A. gossypii in cotton-wheat intercropping is influenced 

directly by a reduction of its immigration, and indirectly by an increase in abundance 

of natural enemies, which, in turn, exerts a great impact on the aphid abundance. This 

agrees with observations made in other intercropping systems (Wetzler & Risch, 1984; 

Power, 1987; Trujillo-Arriaga & Altieri, 1990). Diversified agroecosystems, of which 
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intercrops are the prime example, often show reduces herbivore attack (Risch et al., 

1983). Three explanations for reduced pest attack in intercrops have been put forward 

(Vandermeer, 1989): the disruptive-crop mechanism, the trap-crop mechanism and the 

enemies mechanism. In cotton-wheat intercropping, two mechanisms lead to reduced 

aphid attack to cotton: decreased immigration and increased enemy inflicted-mortality, 

where the second one is most important. On one hand, wheat plants disrupt the ability 

for the monophagous cotton aphid to efficiently colonize cotton plants, directly 

reducing its attack to intercropped cotton (the disruptive mechanism). On the other 

hand, wheat plants support a large number of natural enemies because of the presence 

of wheat aphids and other prey species (the enemies mechanism). These natural 

enemies disperse from wheat into cotton and consequently reduce cotton aphid 

populations through prédation and parasitism. 

6.4.4 Development of cropping systems for biological control 

There are several disadvantages to the current cotton-wheat intercropping system, 

such as decreased fiber and seed quality due to delayed maturation of cotton, and 

increased outbreaks of the cotton bollworm and verticillium wilt (Verticillium dahliae 

Kleb.) due to a high survival of overwintering pests. Furthermore, mechanization is 

difficult due to the narrow space between cotton and wheat rows (Wang, 1990; Wang, 

1992; Xia & Wen, 1993; Xia, 1994a). 

Simulations shows that current cotton-wheat intercropping has an "overcapacity" 

for biological control of A. gossypii. Effective biological control can still be achieved 

when the immigration rate of alate aphids is increased by a factor 4, and the proportion 

of the seven-spot beetle foraging on cotton and the parasitization of apterous aphid are 

decreased by 40% (Fig. 5.16). These results suggest that it is possible to increase the 

distance between cotton and wheat from a few rows in the current intercropping 

system to the "strip" scale, and maintain effective biological control. Strip cropping 

would be favorable for cotton lint and seed quality, labor requirement, and allow more 

effective suppression of the cotton bollworm and verticillium wilt by cultural control 

measures. The model developed and insights gained in this study are a basis for further 

analysis of options of cotton-wheat strip cropping that enable biological control of A. 

gossypii on cotton and are more acceptable in other respects. 
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Chapter 7 

General Discussion 

7.1 Scientific approach 

This study provides basic biological insights that are necessary for understanding how 

cotton-wheat intercropping strategies provide for biological control of the cotton aphid 

(Aphis gossypii Glover) [Homoptera: Aphididae] with naturally-occurring natural 

enemies, particularly the seven-spot ladybird beetle (Coccinella septempunctata L.) 

[Coleoptera: Coccinellidae] in cotton. An integrated modelling approach was followed 

to investigate the relevance of insect bionomics and behaviorale processes at higher 

levels of integration and to provide an instrument for explorative studies. Because of 

complex interrelationships involved in the C. septempunctata-A. gossypii system 

under study, three levels of the system complexity and integration were distinguished: 

laboratory, field cage and open field. At each level, relevant processes affecting the 

dynamics of the coccinellid-aphid system' were first identified based on the 

discrepancies between "original model" behaviors and observations, and then 

characterized quantitatively using additional experimentation. The collected 

information was integrated into simulation models which were validated at the same 

level and subjected to tests at a higher level. Comprehensive models were finally 

developed by integrating all detailed process-level knowledge and validated with 

population counts from single cotton cropped and cotton-wheat intercropped fields. 

These models were then used to gain better insights of the dynamics behavior of the 

coccinellid-aphid system in both cotton cropping systems. The insights gained were 

used to evaluate the effect of different cotton-wheat intercropping strategies for 

biological control of A gossypii on cotton. Here, the techniques for modelling the field 

prédation rate of coccinellid predators and their dispersal are further discussed. 

7.1.1 Modelling field prédation rate of coccinellid predators 

Modelling field prédation rate of a predator is essential in quantitative understanding of 

the dynamic behavior of predator-prey systems. It can be modelled descriptively by 

relating measured prédation rate to predator density and other independent variables 

(e.g. prey density, search area and temperature) (Frazer & Gilbert, 1976), or 
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explanatorily by calculating prédation rates on the basis of underlying behavioral 

processes as walking, searching and digestion (Fransz, 1974; Rabbinge, 1976; 

Rabbinge et al., 1989; van der Werfet al., 1989; Mols, 1993). In several coccinellid-

aphid Systems studied, the data on functional response gathered from laboratory 

experiments are transferred to the field by taking into account the hunger and satiation 

(Barlow & Dixon, 1980; Mills, 1982b), and the effect of temperature (Frazer & 

Gilbert, 1976; Gutierrez et al., 1981; Mack & Smilowitz, 1982a, 1982b), or by 

converting the number of various prey instars into instar units based on the size 

differences (Carter et al., 1982). 

Prédation on mixed A. gossypii stages by the seven-spot beetle and the turtle beetle 

[(Propylaea japonica (Thungberg)] [Coleoptera: Coccinellidae] in this study was 

modelled by representing prey stage selection as a competitive process. The data on the 

functional responses gathered from laboratory experiments were transferred to the field 

by converting the search rate on a proportion of arena basis into units of leaf area (cm ) 

per day. The densities of prey and predator were expressed per m leaf area, with both 

sides of the leaf considered. The so-constructed model for mixed predator stages or 

mixed prey stages on whole plants under field conditions was first validated in field 

cages (Figs. 5.11 and 5.12) and then further used for simulating the open field 

situations (Chapters 5 and 6). This approach was in essence descriptive. Behavioral 

components were not considered explicitly but summarized in the search rate. Such 

population-based approach made it feasible to utilize the information available in 

literature, to estimate parameters, to use the resulting stage-structured functional 

response in a population model and to validate the models in the field. Presumably, this 

approach can be also applicable for coccinellid-aphid systems in other field crops with 

broad leaves, e.g. soybean, corn, potato, tomato and cucumber. 

7.1.2 Modelling dispersal of coccinellid predators in intercrops 

Spatial heterogeneity is one of the most important factors influencing population 

dynamics (Kareiva, 1982). Dispersal of spatially distributed populations is a key 

process for simulating the dynamics of spatially distributed predator-prey systems, 

particularly in intercrops (Kareiva & Odell, 1987; Vandermeer, 1989). Modelling 

dispersal of C. septempunctata is essential in understanding the dynamic behavior of 

the coccinellid-aphid system in cotton-wheat intercropping as populations of this 

predator do not originate from cotton but disperse from intercropped wheat into 

intercropped cotton and prey on the cotton aphid there. 

Three explanations for the low herbivore abundance in intercrops have been put 

forward (Vandermeer, 1989): the disruptive-crop mechanism, the trap-crop mechanism 
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and the enemies mechanism. The disruptive-crop mechanism implies that a second 

crop species disrupts the ability of a pest to efficiently find and exploit its proper host, 

and applies mainly to specialist herbivores. The trap-crop mechanism implies that a 

second crop species attracts a pest that would normally be detrimental to the principal 

crop species. This mechanism mainly applies to generalist herbivores. The enemies 

mechanism implies that the intercropping situation attracts, for whatever reason, more 

predators and parasites than the monocultures, thus reducing the pests through 

prédation or parasitism. These mechanisms may operate individually or jointly, 

depending on the types of intercropping. All three mechanisms ultimately involve 

movements of pests and/or their natural enemies. These movements may be regarded 

as a Markov process or as a problem of diffusion (Kareiva, 1982, 1983, 1990; Kareiva 

& Odell, 1987; Vandermeer, 1989). 

In the present study, dispersal of selected foraging stages of C. septempunctata from 

wheat into cotton and the other way around was treated as a diffusion process (de Wit 

& van Keulen, 1975; Kareiva, 1982; Kareiva & Odell, 1987; Leffelaar, 1993) and was 

modelled descriptively by relating the relative dispersal rate (the reciprocal of 

residence time) to the prey density. The simulation results show that the distribution 

ratio of each selected foraging predator stage on the wheat and cotton rows reaches an 

equilibrium within 1-2 d and is equal to the quotient of its residence time on these two 

crop rows. It was assumed that at any time, in the temporal model of the seven-spot 

beetle, the dispersal model was in equilibrium. Therefore, the number of foraging 

predators temporarily dispersing from wheat into cotton was calculated based on the 

ratio of its residence times on the two crop rows (Chapter 6). As shown in Fig. 6.12, 

the distribution ratio of foraging stages of the seven-spot beetle temporarily dispersing 

from wheat into cotton was quite satisfactorily simulated throughout the seedling stage 

of intercropped cotton. These results indicate that dispersal of the C. septempunctata 

(presumably also other coccinellid predators) from wheat into cotton in the 3-2 pattern 

of cotton-wheat intercropping can be simulated using the ratio of prey density-

dependent residence times on the two crops. This principle may be also used in other 

intercropping patterns. 

The mathematical theory of diffusion processes of foraging predators embraces a 

great diversity of complicated behaviors, e.g. spatially varying mobility and density-

dependent diffusion (Kareiva, 1982, 1990; Kareiva & Odell, 1987; Vandermeer, 1989). 

The approach used in this study was rather simple and descriptive. The behavioral 

components were not considered explicitly but summarized in the prey density-

dependent diffusion. This population-based approach made it easy and feasible to 

determine the parameters and validate the model in the field. It may be also applicable 

for predator-prey systems in other intercrops. 
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7.2 Research findings 

Given the knowledge of the separate component processes involved in the C. 

septempunctata-A. gossypii system in both cotton monoculture and cotton-wheat 

intercrop, simulation models of their combined action have yielded the following 

general insights in the dynamics of the system (Chapters 5 and 6). 

Firstly, temperature is an important driving variable in the coccinellid-aphid 

system. The rates of development, survival and reproduction of A. gossypii (Chapter 2) 

and C. septempunctata (Chapter 3), and the rates of prédation by foraging stages of C. 

septempunctata (Chapter 4) all increase with temperature. Nevertheless, variations in 

temperature can not explain between-season variations in aphid population dynamics. 

Secondly, density-dependent wing formation and reproduction are the major 

regulatory mechanisms for cotton aphid population development in the absence of 

natural enemies (Fig. 5.14A). Cannibalism (both sibling and non-sibling) is the major 

regulatory mechanism for the seven-spot population growth in the absence of natural 

enemies (Fig. 5.14B). 

Thirdly, with C. septempunctata alone, cotton aphid populations at the seedling 

stage of cotton can be effectively kept below commonly used action thresholds at a 

predator-prey ratio of 1:50 (Fig. 5. 12). 

Finally, variations in the immigration of alate A. gossypii is not the major cause for 

the between-season differences in A. gossypii population fluctuations. Immigrating 

numbers of C. septempunctata adults, however, have a large effect on the aphid 

population dynamics. 

7.2.1 Outbreaks of cotton aphids in cotton monoculture 

A. gossypii colonizes single cropped cotton at a high rate upon emergence of seedlings 

(Fig. 7.1). The aphid obtains its highest rate of increase on cotton between 25 °C and 

30 °C (Chapter 2). The field temperature throughout the seedling stage of cotton in the 

North China cotton region fluctuates between 20 °C and 30°C, which favors aphid 

population growth. Although C. septempunctata plays a key role in controlling the 

cotton aphid in cotton monoculture, its numbers increase too late to guarantee a 

sufficient biological control. Prédation by P. japonica and parasitism by 

Allothrombium and hymenopterous parasitoids play only a minor role (Chapter 5). The 

high relative rate of population increase and low natural enemy-inflicted mortality of 

the cotton aphid in single cotton cropping (Fig. 7.1) results in large populations and 

severe damage, with yield losses of 10-15% or even a need for replanting in some 

areas (CCRI, 1983; Pan et al., 1986; Fang et al., 1992). 
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Fig. 7.1. Time course of the observed immigration of alate A. gossypii (A), number of apterous A. 

gossypii (B), and number of foraging C. septempunctata (C) in cotton monoculture and cotton-wheat 

intercrop in 1994 and 1995. 

7.2.2 Low abundance of cotton aphids in cotton-wheat intercrop 

Two mechanisms lead to reduced aphid attack in intercropped cotton: decreased 

immigration and increased mortality due to natural enemies. The second mechanism is 

the most important (Chapter 6). Compared to cotton monoculture, the starting date of 

immigration of alate A. gossypii into intercropped cotton is delayed by 5-7 d and the 

net immigration rate is decreased by a factor of 8-10 (Fig. 7.1). Intercropped wheat 

129 



imposes a "curtain" barrier that disrupts the ability for the monophagous cotton aphid 

to efficiently colonize intercropped cotton plants (the disruptive-crop mechanism), 

which directly reduces its distribution on intercropped cotton. 

Seven-spot beetle, the key predator of the cotton aphid, is much more abundant in 

cotton-wheat intercrop than in cotton monoculture (Fig. 7.1). Wheat plants support a 

large number of natural enemies, particularly the seven-spot beetle and hymenopterous 

parasitoids, because of the presence of wheat aphids and some other prey species. 

These natural enemies disperse from wheat into cotton and consequently reduce aphid 

populations through prédation and parasitism (the enemies mechanism). Simulations 

show that in the absence of natural enemy-inflicted mortality, cotton aphid populations 

can still exceed the recommended action thresholds throughout the seedling stage of 

intercropped cotton (Gao et al., 1989; Wen et al., 1990) despite relative low 

immigration. Simulations further show that effective biological control can still be 

achieved if the immigration of alate aphids in the current cotton-wheat intercropping is 

increased by a factor 6 (Fig. 6.15). Apparently, low abundance of the cotton aphid in 

the current cotton-wheat intercropping system is mainly due to the earlier and greater 

prédation and parasitism (lines 2-4 in Fig. 6.12), where prédation by the seven-spot 

beetle is the most important (line 2 in Fig. 6.12 and Fig. 7.1). This is supported by the 

practical experience that one or two sprays are required to control cotton aphids on 

intercropped cotton at the seedling stage when natural enemies are killed by applying 

wide spectrum insecticides against wheat aphids on intercropped wheat (Yan, 1988; 

Wu & Wang, 1990; Wang et al., 1991; Wang et al., 1993; Xia, 1993). 

It is concluded that the low abundance of A. gossypii in the current cotton-wheat 

intercropping system is due to a combined effect of increased prédation and parasitism, 

and reduced aphid immigration. Similar findings have been reported in other 

intercropping systems. For instance, the attack of leaf hopper (Empoasca sp.) to beans 

was substantially reduced by intercropping with nonhost grasses (the disruptive 

mechanism) (Risch, 1981). Rhopalosiphum maidis (Fitch) experienced higher attack 

by several species of arthropod predators in corn tricultures with faba bean (the 

enemies mechanism) (Trujillo-Arriaga & Altieri, 1990). Working with the Mexican 

bean beetle {Epilachna varivestis Mulsant) in a tomato-bean intercrop, McGuinness 

(1987) showed convincingly that both the disruptive crop and the enemies mechanisms 

were simultaneously operative in reducing the beetle abundance. 

7.3 Practical implications 

In cotton monoculture, A. gossypii is numerous throughout the seedling phase due to 

the early colonization and high immigration of alate aphids, and the late occurrence 
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and low abundance of natural enemies (Fig. 7.1). Three to five sprays are generally 

required to prevent cotton aphids from damage. At the other hand, in cotton-wheat 

intercrops, A. gossypii populations are sparse throughout the seedling stage due to the 

delayed and reduced colonization of alate aphids, and the early and numerous 

occurrence of natural enemies (Fig. 7.1). No spray is needed against aphids on 

intercropped cotton, provided that naturally-occurring natural enemies, especially the 

seven-spot beetle, are preserved on intercropped wheat. However, there exist also 

several disadvantages in current cotton-wheat intercropping systems, e.g. decreased 

fiber and seed quality due to delayed maturation of cotton, increased outbreaks of the 

cotton bollworm (Helicoverpa armigera Hübner) and verticillium wilt {Verticillium 

dahliae Kleb.) due to a high survival of the overwintering pests, and a more difficult 

mechanization due to the narrow space between cotton and wheat rows (Table 7.1) 

(Wang, 1990; Wang, 1992; Xia & Wen, 1993; Xia, 1994a). 

In terms of biological control of A. gossypii, the rich resource of natural enemies is 

not fully utilized in the current cotton-wheat intercropping system, as the aphid 

populations are far below action thresholds over the entire seedling stage of 

intercropped cotton (Fig. 6.8). Simulations shows that the aphid populations can be 

kept below the generally recommended action thresholds even if the immigration rate 

of alate aphids is increased by a factor up to 6 in current cotton-wheat intercropping. 

Effective biological aphid control can be achieved even if the immigration rate of alate 

aphids is increased by a factor of 4, and the distribution ratio of foraging predators and 

the parasitization of apterous aphids is decreased by 40%. These results suggest that it 

is possible to increase distance between cotton and wheat from a few rows in the 

current intercropping system to the "strip" scale, and maintain effective biological 

Table 7.1. Comparison of advantages and disadvantages among three cotton cropping systems . 

Biological control of A. gossypii 

Suppression of H. armigera 

Suppression of V. dahliae 

Land use efficiency (yield) 

Fiber and seed quality 

Labor requirements 

Cotton--wheat 

intercropping 

++ 

-

-

++ 

+ 

-

Cotton--wheat 

strip cropping 

+ 

+ 

+ 

± 
+ 
+ 

Single cotton 

cropping 

-

+ 

+ 

-

+ 

+ 

++ means high advantage, + advantage, + in between, and - disadvantage. 
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control of the cotton aphid. Strip cropping would be also advantageous with respect to 

fiber and seed quality, labor requirement, and allow more effective suppression of the 

cotton bollworm and verticillium wilt by cultural practices (Table 7.1). 

The model developed and insights gained in this study are a basis for further 

analysis of options of cotton-wheat strip cropping that enable biological control of A. 

gossypii on cotton and are more acceptable in other respects. In terms of cotton aphid 

biological control, the pattern of cotton-wheat strip cropping can be worked out as 

proposed in Fig. 7.2. Both immigration of alate A. gossypii and dispersal of C. 

septempunctata are functions of distance from wheat to cotton strips. The optimum 

distance between the wheat and cotton strips are determined, where the aphid 

populations throughout the seedling stage of cotton can be fully controlled by 

naturally-occurring natural enemies, particularly the seven-spot beetle, without 

application of any chemical insecticides. 

7.4 Future research 

Systems analysis and simulation used in this study have been a powerful tool to reach 

the goal of evaluating and exploring cotton-wheat intercropping strategies for 

biological control of A. gossypii on cotton. To validate the proposed strategy of 

cotton-wheat strip cropping for cotton aphid biological control, field work is required. 

More research is needed to determining the effect of distance from wheat to cotton on 

the immigration of alate A. gossypii into cotton, dispersal of the major predators from 

wheat into cotton and back, and parasitization of apterous A. gossypii by 

hymenopterous parasitoids. Dispersal of the major predators by flight should be 

considered and characterized quantitatively. Ives (1981) observed that local dispersal 

of coccinellids was significantly influenced by temperature. High temperature 
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ŝ  Dispersal / 
\ f 
\ s \ / \ y 

\ s N S 
S.jf 

,^r x 
^^^ x _^r •» 

^^^ % ^ 0 ^ " ^ " " . . 

O 
<ö' 

•a 

in Bl 

^ o 
»̂ 

•a 
-i 

m a. 
0) 
r + 
O 

Distance from wheat to cotton 

Double —> Strip <— Single 

Fig. 7.2. Theoretical relationships between 

distance from wheat to cotton strips and the 

immigration of A. gossypii, and the dispersal 

of major predators, for explanation see text. 
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resulted in a high dispersal rate, which was modified only slightly by the availability of 

local prey. The effect of temperature on dispersal of the major predators between 

cotton and wheat should be determined as there exist variations in temperature between 

the dense wheat row and the loose cotton row (Wang, 1990). The importance of these 

parameters is indicated in Chapter 6, but they are seldom measured. With these 

parameters included in the model of Chapter 6, promising strategies of cotton-wheat 

strip cropping can be identified more precisely and tested on a large scale. 

Observations should be also made on the effectiveness and profitability of the 

proposed strategy for further improvement and development of cotton cropping 

systems in the North China. 

The model of Chapter 6 and the proposed strategy have to be subjected to validation 

and tests in agro-ecological zones in the North China cotton region. Ideally, the model 

should be further developed by coupling with a cotton growth model (Wu et al., 1988). 

The relationship between yield losses and aphid density at different developmental 

stages should also be incorporated (Gao et al., 1989; Wen et al., 1990). The combined 

model can be used for calculating the reduction in yield due to different aphid 

numbers, and for formulating the economic threshold of the cotton aphid based on the 

economic factors (e.g. price of lint, cost of pesticides, etc.). Such a combination model 

can serve as a useful tool to optimize cotton-wheat strip cropping patterns that enable 

effective biological control of A. gossypii and are more acceptable in other respects. 

Thus, cotton aphid on seedling cotton in the North China cotton region can be 

controlled by biological measures, hence laying a foundation for integrated insect pest 

management through the cotton growing season. 
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Summary 

Cotton aphid {Aphis gossypii Glover) is the key insect pest of seedling cotton 

(Gossypium hirsutum L.) in China, particularly in the North China cotton region. The 

resulting annual losses amount to 10-15% of the attainable yield. Sole reliance on 

insecticides against the cotton aphid in the past four decades has brought about a rapid 

development of insecticide resistance, serious outbreaks of key pests, resurgence of 

secondary pests, and risk for man and environment. Biological control of the cotton 

aphid by naturally-occurring seven-spot beetle (Coccinella septempunctata L.) is the 

first priority for integrated pest management in cotton to avoid early season application 

of insecticides and lay a foundation for biological control of aphids and other pests 

during the season. Augmentation of the seven-spot beetle by intercropping cotton with 

wheat is the most commonly used approach for cotton aphid biological control. 

Disadvantages of intercropping are decreased fiber and seed quality, increased 

outbreaks of cotton bollworm (Helicoverpa armigera Hübner) and verticillium wilt 

(Verticillium dahliae Kleb.), and difficulties with mechanization. There is, therefore, a 

demand for developing more sociologically, economically and ecologically sound 

cotton-wheat intercropping systems. Systems research provides an appropriate 

framework to analyse biological control systems and prototype promising biological 

control strategies. The objective of this study is (1) to better understand and quantify 

the major processes in C. septempunctata-A. gossypii system in cotton monoculture 

and cotton-wheat intercrop; (2) to develop simulation models of the dynamics of the 

coccinellid-aphid system in both cotton cropping systems by integrating process-level 

knowledge; and (3) to use the models to obtain insight in the dynamic behavior of the 

system and explore intercropping strategies that are not only favorable for biological 

control but also advantageous with respect to labor requirement, fiber and seed quality, 

and suppression of the cotton bollworm and verticillium wilt by cultural practices. 

A major factor affecting A. gossypii population growth is temperature. Life table 

parameters of the cotton aphid were determined at 10, 15, 20, 25, 30 and 35 ± 0.5 °C in 

the laboratory (Chapter 2). The relationship of temperature with the developmental rate 

of each life stage (the reciprocal of the stage duration) was described using Logan 

curves. The relationship of temperature with the relative mortality rate of each pre-

reproductive stage and each adult age class was described using parabolas. The 

relationship of temperature with the mean reproductive rate of each adult age class was 

described using the Weibull model. Development of A. gossypii was fastest at 30 °C, 

with a pre-reproductive period of 4.6 d. The greatest survival from birth to adult (81%) 
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was obtained at 25 °C. Fecundity was maximum at 25 °C, with a total fecundity of 

28.3 nymphs per female and a mean reproductive rate of 3.1 nymphs per female per 

day. Threshold temperatures for development of the first to fourth instar and the adult 

were 8.2, 8.0, 7.2, 6.2 and 7.9 °C, respectively; and the thermal constants were 24.2, 

23.7, 23.0, 25.5 and 168.8 degree-days (D°), respectively. A. gossypii obtained its 

greatest intrinsic rate of increase (0.386 d~') at 25 °C. High relative rate of population 

increase at 25 °C resulted in a daily population increase of 47% and a doubling time of 

1.8 d, illustrating the tremendous growth capacity of A. gossypii under favorable 

conditions. Comparison to similar records from other crops indicates a relatively high 

heat tolerance of A. gossypii on cotton in North China. The data gathered are used to 

construct a simulation model of A gossypii population dynamics in cotton. 

Temperature and food quantity are two major factors affecting C. septempunctata 

population growth. Life history parameters of the seven-spot beetle feeding on A. 

gossypii were determined in two experiments in the laboratory (Chapter 3). The first 

experiment addressed the effect of five temperatures (15, 20, 25, 30 and 35 ± 0.5 °C) 

on the beetle bionomics, while the second one addressed the effect of food quantity on 

the beetle bionomics at a temperature of 25 °C. The relationship between temperature 

and the developmental rate of each life stage was described with Logan curves. The 

relationship of temperature with the relative mortality rate of each pre-oviposition 

stage and each adult age class was described with parabolas. The relationship between 

temperature and the mean oviposition rate of each adult age class was described with 

the Weibull model. C. septempunctata developed most rapidly at 35 °C, with a pre-

imaginal period of 10.8 d. The highest survival from egg to adult (47%) was obtained 

at 25 °C. Oviposition was greatest at 25 °C, with a total oviposition of 287.4 eggs per 

female and a mean oviposition rate of 22.4 eggs per female per day. Threshold 

temperatures for development of eggs, larvae, pupae and adults ranged from 10.9 to 

13.9 °C, with 12.6 °C for the entire life span; and thermal constants were 42.0, 103.7, 

63.6 and 302.9 D°, respectively. Over the range of prey densities tested, a 3.5-fold 

increase in prey density resulted in a 2-fold reduction in larval development time and a 

3-fold increase in larval survival. A 2-fold increase in prey density led to a 2-fold 

increase in total oviposition and the mean oviposition rate. The data gathered are used 

to construct a simulation model of C. septempunctata population dynamics in cotton. 

Functional responses of five foraging stages of C. septempunctata on three size-

groups of A. gossypii (mixed first and second nymphs, mixed third and fourth nymphs, 

and adults) at five temperatures (15, 20, 25, 30 and 35 + 0.5 °C) were determined in 

the laboratory (Chapter 4). All functional responses were of type II and were 

adequately described by Rogers' random predator equation. The search rate increased 

linearly from 15 to 35 °C with a factor of 3-8. The handling rate showed a curvilinear 
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relation to temperature and was lowest at 15 °C. There was a considerable variation in 

the latter response curves in different predator-prey stage combinations. In some 

predator-prey interactions, handling rate increased consistently with temperature, 

while in other combinations, the relationship had a maximum at an intermediate 

temperature. Search rate increased with 50-100% from one larval predator instar to the 

next but decreased from the fourth instar to the adult predator. There was only 

moderate difference in search rate between prey size-groups for the same predator 

stage (< 50% between extremes). Handling rate increased with 50-100% from one 

predator stage to the next, but it was somewhat similar in the fourth instar and adult 

predators. Handling rate towards early instar, late instar and adult prey varied with a 

ratio of about 3:2:1. The functional responses are incorporated in the simulation model 

of C. septempunctata-A. gossypii population interaction and dynamics in cotton. 

In Chapter 5, a simulation model of the temporal dynamics of the coccinellid-aphid 

system in cotton monoculture was developed by integrating process-level knowledge. 

Six submodels were distinguished: cotton aphid, seven-spot beetle, predator-prey 

interaction, parasitism, cotton plant, and abiotic factors. The model was tested and 

evaluated at three levels of the system complexity: laboratory, field cage and open 

field. At each level of complexity, processes were added to the model, based on 

discrepancies between "original model" behaviors and observations, and additional 

experimentation. Processes included in the model at the laboratory level were 

temperature-dependent development, survival and reproduction of both insects; and 

prey density, prey size-group and temperature-dependent prédation. Adaptations for 

the field cage level were density dependence of wing induction and reproduction of A. 

gossypii, extrapolation of the functional response from single stage interaction in 

experimental arenas in the laboratory to multiple stage interactions on plants, and a 

higher mortality for C. septempunctata than observed in the laboratory. Adaptations 

for the open field level were immigration rates of both insects; time-dependent 

parasitization of alate immigrants by Allothrombium, apterous aphids by 

hymenopterous parasitoids and seven-spot beetle pupae by Tetrastichus coccinellae 

Kurjumov; prey density-dependent departure rate of seven-spot beetle adults; prey 

density and prey size-group dependent prédation by Propylaea japonica (Thungberg); 

and accumulated (D°)-driven cotton canopy growth. The simulated and observed data 

were in reasonable agreement at all levels, though discrepancies increased with the 

level of scale. Simulations at the open field level show that C. septempunctata plays a 

key role in controlling A. gossypii in cotton monoculture, but its numbers increase too 

late to guarantee a sufficient biological control. Prédation by P. japonica and 

parasitism by Allothrombium and hymenopterous parasitoids play only a minor role. 

Variations in temperature or immigration of alate A. gossypii alone can not explain 
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between-season differences in aphid population dynamics. Immigrating numbers of 

seven-spot beetle adults is the key factor. 

Based on the model of Chapter 5, a simulation model of the spatio-temporal 

dynamics of the coccinellid-aphid system in cotton-wheat intercropping was 

developed in Chapter 6. Six submodels were distinguished: temporal dynamics of A. 

gossypii populations, temporal dynamics of C. septempunctata populations on wheat, 

seven-spot beetle dispersal from wheat into cotton, predator-prey interaction on 

cotton, cotton plant, and abiotic factors. In addition to the processes common in cotton 

monoculture and cotton-wheat intercrop, processes related to the cotton-wheat 

intercrop were experimentally characterized and included: (a) immigration of alate 

aphids into intercropped cotton and seven-spot beetle adults into intercropped wheat; 

(b) prey density-dependent emigration of seven-spot beetle adults from ripening wheat 

by flight; (c) prey density-dependent dispersal of foraging predators from wheat into 

cotton by walking; (d) time-dependent parasitization in apterous aphids and seven-spot 

beetle pupae; and (e) accumulated (D°)-driven cotton canopy growth. Dispersal of 

foraging seven-spot beetles from wheat into cotton was modelled as a diffusion 

process. There was satisfactory correspondence between the simulated and observed 

data. Simulations show that the low abundance of the cotton aphid in the current 

cotton-wheat intercropping system is due to a combined effect of increased prédation 

and parasitism, and decreased aphid immigration, of which prédation by the seven-spot 

beetle is the most important. Current cotton-wheat intercropping has an 

"overcapacity" for biological control. Simulations indicate that effective biological 

control can still be achieved when the immigration rate of alate aphids is increased by 

a factor 4, and the proportion of the seven-spot beetle foraging on cotton and the 

parasitization of apterous aphid are decreased by 40%. These results suggest that it is 

possible to increase distance from wheat to cotton strips in the current intercropping 

system and maintain effective biological control of the cotton aphid. 

Based on models developed and insights gained in this study, a promising strategy 

of cotton-wheat strip cropping was proposed, which would be not only favorable for 

A. gossypii biological control but also advantageous with respect to labor requirement, 

fiber and seed quality, and suppression of the cotton bollworm and verticillium wilt by 

cultural practices. For its validation, field work is required. More research is needed to 

determine the effect of distance from wheat to cotton strips on immigration of alate 

aphids into cotton and dispersal of major predators from wheat into cotton. With these 

parameters included in the model of Chapter 6, the promising strategy of cotton-wheat 

strip cropping can be identified and tested on a large scale. Observations should be also 

made for effectiveness and profitability of the proposed strategy for further 

improvement and development of cotton cropping systems in North China. 
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Samenvatting 

De katoenluis {Aphis gossypü Glover) is in Noord China de belangrijkste plaag van 

katoen (Gossypium hirsutum L.) gedurende de zaailingfase. Opbrengstverliezen 

bedragen ongeveer 10 tot 15%. Eenzijdige en intensieve chemische bestrijding van 

katoenluis heeft de laatste vier decennia meermalen geresulteerd in een snelle 

ontwikkeling van resistentie, en leidt ook tot het optreden van secundaire 

(geïnduceerde) plagen en risico's voor mens en milieu. Biologische bestrijding van 

katoenluis door van nature voorkomende natuurlijke vijanden, zoals het zevenstip-

lieveheersbeestje Coccinella septempunctata L., is een belangrijke voorwaarde voor 

het welslagen van geïntegreerde plaagbestrijding in katoen. Daardoor kunnen namelijk 

vroege toepassingen van pesticiden worden vermeden en wordt de basis gelegd voor 

biologische bestrijding van bladluizen en andere plagen gedurende de rest van de teelt. 

Biologische bestrijding van katoenluis wordt bevorderd door mengteelt van katoen 

met wintertarwe. In deze mengteelt worden enkele rijen tarwe (vaak drie) afgewisseld 

met een of twee rijen katoen. De tarwe wordt gezaaid in het najaar en geoogst in juni. 

De katoen wordt gezaaid in het voorjaar in vrije banen tussen de tarwerijen, en geoogst 

in oktober. Het katoengewas neemt na de oogst van de tarwe alle ruimte in het perceel 

in beslag. Natuurlijke vijanden kunnen in de mengteelt een gemakkelijke overstap 

maken van de tarwe, waarop ze zich voeden met graanluizen, naar de katoen. Daardoor 

wordt de impact van natuurlijke vijanden op katoenluis bevorderd. 

In dit proefschrift is een systeemanalytische aanpak gehanteerd om de werking van 

dit biologische bestrijdingssysteem verder te onderzoeken en veelbelovende bestrij-

dingsstrategieën te prototyperen. Het doel van deze studie is (1) kwantitatief inzicht te 

verkrijgen in de voornaamste processen in het populatiesysteem C. septempunctata-A. 

gossypü in katoenmonocultuur en mengteelt; (2) simulatiemodellen te ontwikkelen 

voor de dynamica van coccinellide-bladluissystemen in beide teeltsystemen door het 

integreren van op procesniveau verkregen informatie; en (3) de ontwikkelde modellen 

te gebruiken om inzicht te verwerven in het dynamisch gedrag van genoemde systemen 

en opties te verkennen voor mengteeltsystemen die niet alleen voordelen bieden ten 

aanzien van biologische bestrijding, maar die tevens gunstig uitwerken in andere 

opzichten zoals arbeidsbehoefte, vezel- en zaadkwaliteit, en de uitvoerbaarheid van 

cultuurmaatregelen die gericht zijn op de voorkoming en bestrijding van verwelkings-

ziekte (veroorzaakt door de schimmel Verticillium dahliae Kleb.) en de rupsen van de 

gevreesde "cotton bollworm" {Helicoverpa armigera Hübner). 

Levenscyclusparameters en potentiële populatiegroei van A. gossypü, het plaag 
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insect, worden voornamelijk bepaald door de temperatuur. In klimaatkamers bij 10, 15, 

20, 25, 30 en 35 °C werden ontwikkeling, overleving en reproductie gemeten 

(Hoofdstuk 2). De ontwikkeling verliep het snelst bij 30 °C. Bij deze temperatuur werd 

het adulte stadium in 4.6 dagen bereikt. De hoogste overleving (81%) werd gevonden 

bij 25 °C, evenals de hoogste reproductie: 28.3 larven per bladluis over de gehele 

levensduur en een gemiddelde reproductiesnelheid gedurende de reproductieve periode 

van 3.1 larven per adult per dag. De laagste temperaturen waarbij nog ontwikkeling 

plaatsvond in de eerste vier larvestadia bedroegen respectievelijk 8.2, 8.0, 7.2 en 6.2 

°C. Ontwikkeling van deze stadia was compleet bij een temperatuursom (met inacht­

neming van de genoemde drempels) van 24.2, 23.7, 23.0 en 25.5 graaddagen (°Cd). De 

duur van het adulte stadium bedroeg 168.8 °Cd boven een drempel van 7.9 °C. De 

hoogste intrinsieke groeisnelheid (0.386 d" ) werd gevonden bij 25 °C. Bij deze 

temperatuur kan een populatie in theorie dagelijks toenemen met 47%, en is de 

verdubbelingstijd 1.8 dagen. De relaties tussen temperatuur en levenscyclusparameters 

werden beschreven met de best passende wiskundige vergelijkingen: Logan-curves 

voor de ontwikkelingssnelheid, (dal)parabolen voor de relatieve sterftesnelheid, en 

Weibull-curves voor de reproductiesnelheid. Deze kwantitatieve beschrijvingen 

werden geïntegreerd tot een temperatuurgestuurd populatiemodel voor katoenluis. 

Temperatuur en prooiaanbod zijn de voornaamste factoren die de levenscyclus­

parameters en potentiële populatiegroei van de predator C. septempunctata bepalen. 

Ontwikkeling, overleving en reproductie werden bepaald in twee series laborato­

riumexperimenten (Hoofdstuk 3). In de eerste serie experimenten werd de invloed van 

de temperatuur gekwantificeerd (15, 20, 25, 30 en 35 °C) bij overvloedig prooiaanbod, 

terwijl in de tweede serie experimenten de invloed van zes niveaus van prooiaanbod 

werd gekwantificeerd bij 25 °C. C. septempunctata ontwikkelde zich het snelst bij 35 

°C: het traject van ei tot adult werd bij die temperatuur in 10.8 dagen afgelegd. De 

hoogste overleving van ei tot adult (47%) werd gevonden bij 25 °C. Ook reproductie 

was het hoogst bij 25 °C: 287 eieren per vrouwtje, en een gemiddelde eilegsnelheid 

gedurende de reproductieve periode van 22.4 eieren per vrouwtje per dag. Tempera-

tuursommen benodigd voor het doorlopen van het ei-, larve (L1-L4)- en pop-stadium 

bedroegen 42, 104 en 64 °Cd, bij stadiumafhankelijke ontwikkelingsdrempels tussen 

de 10.9 en 13.9 °C. De totale levensduur bedroeg 303 °Cd bij een drempel van 12.6 °C. 

Verhoging van het prooiaanbod vanaf het laagste niveau met een factor 2 resulteerde in 

een verdubbeling van reproductie. Verhoging met een factor 3.5 resulteerde in een 

halvering van de ontwikkelingsduur en een verdrievoudiging van de larvale 

overleving. Invloeden van temperatuur en voedselaanbod op levenscyclusparameters 

werden uitgedrukt in wiskundige formules en verwerkt in een populatiemodel voor C. 

septempunctata. 
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In Hoofdstuk 4 wordt de kwantificering van de functionele respons beschreven. De 

functionele respons is de relatie tussen de dichtheid van de prooi (katoenluis) en de 

predatiesnelheid per individuele predator (zevenstip-lieveheersbeesfje). De functionele 

responsen van vijf foeragerende stadia van C. septempunctata (L1-L4 en adult) werden 

bepaald bij vijf temperaturen (15, 20, 25, 30 en 35 °C) en voor drie grootteklassen van 

de katoenluis: kleine larven (LI + L2), grote larven (L3 + L4), en adulten (Hoofdstuk 

4). Alle functionele responsen waren van het type II; dat wil zeggen dat er bij lage 

dichtheid van de prooi een nagenoeg lineaire relatie was tussen prooidichtheid en 

predatiesnelheid, terwijl deze relatie bij hogere dichtheid geleidelijk steeds verder 

afvlakte, totdat er een maximum predatiesnelheid werd bereikt bij hoge prooidichtheid. 

De gemeten responsen konden wiskundig goed worden gekarakteriseerd met Rogers' 

formule voor predatie door een lukraak foeragerende predator. Deze formule bevat -

naast de tijdsduur van het experiment - twee parameters: de zoeksnelheid, welke de 

initiële helling van de respons voorstelt, en de behandelingssnelheid, welke de 

maximaal bereikte predatiesnelheid voorstelt. De zoeksnelheid nam van 15 tot 35 °C 

toe met een factor 3 tot 8, afhankelijk van de combinatie van predatorstadium en blad-

luisgrootteklasse. De behandelingssnelheid vertoonde een kromlijnig verband met de 

temperatuur en was het laagst bij 15 °C. Er was aanzienlijke variatie in de vorm van 

deze respons tussen verschillende combinaties van predatorstadium en bladluisgroot-

teklasse. Bij sommige combinaties nam de behandelingssnelheid monotoon toe met 

temperatuur over het hele traject, terwijl bij andere combinaties er een maximum 

gevonden werd bij intermediaire temperaturen. De zoeksnelheid nam toe met 50 tot 

100% van het ene naar het volgende larvale predatorstadium, en was lager in het 

adulte- dan in het L4-stadium. Er waren niet al te grote verschillen in zoeksnelheid 

tussen de verschillende prooigrootteklassen (minder dan 50% verschil tussen 

extremen). De behandelingssnelheid nam van het ene naar het volgende predator­

stadium met 50 tot 100% toe, en de behandelingssnelheden waren ongeveer gelijk in 

het L4-stadium en de adult. De behandelingssnelheden van kleine larven, grote larven 

en adulten verhielden zich ongeveer als 3:2:1. De functionele responsen zijn geïnte­

greerd met de populatiemodellen van katoenluis en zevenstip-lieveheersbeestje tot een 

stadiumgestructureerd predator-prooimodel onder invloed van temperatuur. 

Het model werd getoetst en verder ontwikkeld door vergelijking met additionele 

gegevens op drie niveaus van complexiteit: laboratorium, veldkooi en open veld in 

katoenmonocultuur en mengteelt. In Hoofdstuk 5 wordt het opschalen van het model 

van laboratorium naar open veld monocultuur beschreven. Op elk van de drie niveaus 

wordt het model, zoals dat is gestructureerd en geparameteriseerd op eenvoudiger 

niveaus van complexiteit, vergeleken met nieuwe experimentele gegevens, en worden 

op indicatie van discrepanties tussen modelresultaten en waarnemingen model-
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aanpassingen aangebracht. Deze aanpassingen zijn gebaseerd op additionele waar­

nemingen, procesanalyses, procesbeschrijvingen en parameterisaties op dit hogere 

niveau van complexiteit. Op het niveau van de veldkooi werden dichtheidsafhankelijke 

inductie van gevleugelde bladluizen en dichtheidsafhankelijke reproductie als nieuwe 

elementen aan het model toegevoegd. Voor het zevenstip-lieveheersbeestje werd een in 

de veldkooi gemeten, hogere mortaliteit ingevoerd. De functionele respons werd opge­

schaald naar plantniveau en interacties tussen gemengde ontwikkelingsstadia van prooi 

en predator. Op het niveau van het open veld werden een aantal nieuw opgelegde, 

tijdsafhankelijke omgevingsvariabelen ingevoerd: immigratie van katoenluis, immi­

gratie van C. septempunctata, predatie door een andere coccinellide, Propylea 

japonica (Thunberg), en parasitering door mijten van het genus Allothrombium en door 

sluipwespen. Verder werd een aantal nieuwe processen beschreven: dichtheids­

afhankelijke emigratie van katoenluis, prooidichtheidsafhankelijke emigratie van C. 

septempunctata, en temperatuurafhankelijke bladoppervlaktegroei van de katoenplant. 

De bladoppervlakte per plant is nodig in de berekening van de functionele respons op 

plantniveau. Simulaties met het uiteindelijke model op veldniveau zijn in overeen­

stemming met veldwaarnemingen. Verschillen tussen simulaties en waarnemingen 

nemen toe met het niveau van complexiteit. Dit is enerzijds toe te schrijven aan de 

moeilijkheid om de complexe processen in het veld adequaat in modelstructuur en 

parameters te "vangen", anderzijds zijn naar alle waarschijnlijkheid onnauwkeurig­

heden in de bemonstering deels ook debet aan gevonden afwijkingen. De hoofdzaak is 

dat de modelbouw tot nieuwe inzichten leidt en dat het uiteindelijke model de werke­

lijkheid voldoende goed weergeeft om als experimenteeromgeving voor scenario­

studies te kunnen fungeren. Enkele gevoeligheidsanalyses tonen aan dat variaties van 

jaar tot jaar in het tijdstip van verschijning en aantallen van het zevenstip-lieveheers­

beestje in katoen monocultures de voornaamste verklaring zijn voor de fluctuaties van 

jaar tot jaar in de dichtheden die A. gossypii in de monocultuur bereikt. Het zevenstip-

lieveheersbeestje levert dus een belangrijke bijdrage aan biologische katoenluis-

bestrijding in monocultuur, hoewel deze bijdrage van jaar tot jaar fluctueert en in het 

algemeen niet toereikend is. 

In Hoofdstuk 6 wordt het uiteindelijke model van Hoofdstuk 5 uitgebreid met de 

dispersie (verspreiding) van lieveheersbeestjes tussen tarwe en katoen in een rijen-

mengteelt. Het dispersiemodel is gebaseerd op de gemiddelde verblijfstijden van 

zevenstip-lieveheersbeestjes op tarwe- en katoenrijen. Deze verblijfstijden zijn afhan­

kelijk van de bladluisdichtheden op deze gewassen en liggen voor tarwe ruwweg een 

factor 10 hoger dan voor katoen. Prooidichtheidsafhankelijke verblijfstijden zijn 

gemeten in het veld. De mate van dispersie is omgekeerd evenredig met de 

verblijfstijd. In het populatiemodel voor de interactie tussen katoenluis en zevenstip-
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lieveheersbeestje in mengteelt wordt ervan uitgegaan dat dit dispersieproces voort­

durend in evenwicht verkeert. De verdelingsratio van lieveheersbeestjes in katoen en 

tarwe is dan gelijk aan de ratio van de verblijfstijden. De bladluisdichtheid op tarwe is 

een opgelegde tijdsafhankelijke omgevingsvariabele, terwijl de dynamiek van katoen-

luis wordt gesimuleerd als beschreven in Hoofdstuk 5 voor de monocultuur. Er was 

overeenkomst tussen modelberekeningen en veldwaarnemingen. Gevoeligheids­

analyses met het model tonen aan dat predatie door Coccinella veruit de belangrijkste 

sterfteoorzaak voor katoenluis is in mengteelt, en dat de mengteelt over een aanzien­

lijke "overcapaciteit" beschikt in dit opzicht. Andere mechanismen van plaagonder-

drukking, zoals sterk gereduceerde immigratie van katoenluis vanaf winterwaarden en 

parasitering door mijten en sluipwespen, leveren een substantiële bijdrage aan het 

katoenluisonderdrukkende effect van mengteelt, maar zijn ondergeschikt aan het effect 

van predatie door C. septempunctata. 

In de discussie worden de implicaties van de resultaten van de studie in een breder 

verband bekeken. Er wordt naar voren gebracht dat mengteelt niet alleen voordelen 

maar ook nadelen heeft. Zo is het in het rijenmengteeltsysteem moeilijk om in het 

voorjaar grondbewerking toe te passen, waardoor het optreden van rupsenplagen van 

de "cotton bollworm" H. armigera in de hand wordt gewerkt. Verder leidt een rotatie 

met jaarlijkse teelt van katoen en tarwe op één perceel tot problemen met 

verwelkingsziekte, veroorzaakt door V. dahliae. Mechanisatie is lastig in het meng-

teeltsysteem met afwisselend drie rijen tarwe en twee rijen katoen, dat thans het meest 

gangbaar is. De arbeidsbehoefte is er hoog en door concurrentie in het zaailingstadium 

en de verkorting van het katoenseizoen is de zaad- en vezelopbrengst in dit mengteelt-

systeem lager en van minder goede kwaliteit dan in katoenmonocultuur. Gezien deze 

factoren zou overwogen kunnen worden om over te stappen naar een mengteeltsysteem 

dat uit bredere "gewasbanen" bestaat dan thans gebruikelijk is. De in simulaties 

vastgestelde overcapaciteit aan biologische bestrijding in de huidige rijenmengteelt 

suggereert dat mengteeltsystemen op grotere schaalniveaus vanuit het oogpunt van 

biologische bestrijding van katoenluis ook goed zouden kunnen voldoen, en wellicht 

een betere combinatie van doelstellingen kunnen bewerkstelligen. Veldwerk zal 

moeten uitwijzen of dit werkelijk zo is. Het verder ontwikkelen en gebruik van het in 

dit proefschrift beschreven model voor de biologische bestrijding van katoenluis in 

mengteelt en monocultuur kan een waardevolle bijdrage leveren aan de verbetering 

van biologische bestrijding in katoenteeltsystemen in China en daarbuiten. 
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* £ 

mm (Aphis gossypii Glover) £ * ! , #J3iJJiJb^rfflEfflffiBiÄUII±ll*A; «^P 

gguueîi«, &g*üi*££, ftmftmmrm. t&m&iPwmm&Cito-tM. 
m& (Coccinella septempunctata L.) B&tëffiJffêfflEgAfê'ê'tëa&H'tiÊfê]», 

:FiftJÜifêM&, ffi#A (Helicoverpa armigera Hübner) ftlllföjf^Js (VerticilHum 

dahliaeUeb.) n^L%mtm, RnW&ft±1feW8t.X. Htt, ÄSÄ^SEÄ&BIN 

4»Rfmfi*o9 r̂»Äg. *w^giE: (i) a-^^^rfPÄ*fF^##^BaÄS* 
fflBB-tMaÄ-ffl«^^W±H4ai^i5te; (2) MilX^^Ü&^S^aS^iRW 

&&&mmmw®>mi%&fàn%m?. S ^ W ^ T I O , 15, 20, 25, 30&35 + 

; t££/fl Logan ffltS«té-. fi£-5£aUffl#A£ÄÄ£#¥#fflffl*tJEu*;£££ 

ffl-&SM&M£ttl£-. fiA-^JtAS-^fflW^ff^^ffl Weibull « î l f i l^ . 30 

°Cfftffl»U9ÄWiIffiSft, Ä4SfrS8ß5Ä3iSlÄ4.6 d; 25°Cltf#fô$êA(81X), * 

3tiJffl¥±^ff*fcK: (>#J£28.3&&J»/Jft£ffi3.1*&#/JÄ£/^) . 1 - 4»^ 

«FÄJÄ«E9ÄWSjäaÄ^9JÄ8.2, 8.0, 7.2, 6.2W7.9°C, ^^CïRfi.^5Ü^7 

24.2, 23.7, 23.0, 25.5*0168.8 RA (D°). 250CHt*liffMl*lSit!fc*ftÄ (0.886 

d-i), #fflf0i&-fc*47X, WmMtëHmi.Z d. ÉJtbSHJ, RgIflS&#®]£, IS« 

aÄ*P^«lJi«iifl-tMilÄ#i¥lHea<lM>MSH^. Sl*I§r&715, 20, 25, 
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30*Q35 ± 0 . 5 °C | ^TÄ25°CBt*^^ j £* f fT , -fcMa&fô>NteÉ&3& ( ÜH 

M) . fiÄ-5#A&£WJE*£££;8 Logan ffltSfttë, a K J 5 # / t e M » 3 Ä $ £ # 

ffl Weibull mmm&. 35°W, -fcMÄÄtöÄWiiafStt, £jiï£fliî»Jfc;&10.8 d; 

2b°am^fSmmM (47%) , S?älA*fl¥^r*fP*S± (#SJÄ28.7*E£P/«fMfl22.4 

e i P / H / ^ ) . IP, «IÄ. M lÈAfô j ê î Ï JËAAA 10.9—13.9°C ( £ £ W $ Ä 

12.6°C), ^fRfeft3d*42.0, 103.7, 63.6^302.9 D°„ #J&lf«|£Û9»4&aF£fëH 

ft, &*l*£iÄJn3.5f&, #JJE£WÄJM@2{ff, #fö*ÜA3fë; »*|fif&*ftI2 

mm. 

SFWf£715, 20, 25, 30*1135 ± 0.5°C£#T, -t^m&^m&Ék&Wfèmm 

J ^ Ä I I S , J-ffl Rogers BtfllfflïfclïlliafTTJÈAStëÊ. £fH3il$, -fcMÄ&*tfc 

Äffl»»a**Bltafti«lHlSJ[^±?h, Ä15°CSy35°C, «jm3-8fê. « r f r« t aÄ±i 

iraSö^±?f, i5°WftfS, M*l f f f i£#H»*m£#l!B£&iimMM¥W£#8 

M. m^mmmt^mmmm^m^M (5o%-ioo%), fe&it&th&mmäimtäT 

ffl-i-*¥MÖ<JitfeMMS ( 50%—100%) , fi^aiÄ-^JÄÄWffi't^S*«^. - t a 

ÄÄffi*l-2»£«F. 3-4#£#ÄJfc#S3:2:lU9l£0!l$5&. ^SPÄÜfiS^rSffl1? 

SOtó-bSAAaa}*, fltfflWffiÄ^^Wffl^^WmaSIÄ {Propylaea japonica 
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(Thungberg)] mtm, \>À&àG%m&n&to#m$i&*. ^m^^mmu^mmm 

mm?. 

É#«8Uâfê£«j«cjS£-fc*. 4;Ma&#fàfc&&g/hïfoffi#â9î53&agffl«« 
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Appendix A 

Tables 

Table A-l . Relationship between temperature (T, °C) and the relative mortality rate (Rm, d~') of 

different age classes of A. gossypii adults on cotton, based on the parabola: Rm = C| + c2 T + c3 i , 

where c1; c2 and C3 are coefficients (see Sections 2.2.2 and 2.3.2). RMSE is the Root Mean Square 

Error. 

Age class 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Cl 

0.042 

0.059 

0.083 

0.117 

0.156 

0.165 

0.231 

0.310 

0.273 

0.396 

0.462 

0.590 

0.568 

0.705 

0.756 

0.678 

0.830 

0.934 

0.905 

1.007 

c2 

-0.0043 

-0.0065 

-0.0088 

-0.0126 

-0.0163 

-0.0167 

-0.0240 

-0.0331 

-0.0274 

-0.0403 

-0.0472 

-0.0616 

-0.0584 

-0.0733 

-0.0769 

-0.0672 

-0.0840 

-0.0930 

-0.0871 

-0.0989 

c3 

0.00014 

0.00021 

0.00028 

0.00040 

0.00052 

0.00054 

0.00076 

0.00104 

0.00092 

0.00127 

0.00148 

0.00188 

0.00185 

0.00227 

0.00239 

0.00218 

0.00266 

0.00292 

0.00281 

0.00318 

R M S E 

0.0010 

0.0012 

0.0018 

0.0036 

0.0053 

0.0068 

0.0091 

0.0115 

0.0108 

0.0183 

0.0255 

0.0303 

0.0354 

0.0410 

0.0523 

0.0421 

0.0617 

0.0810 

0.0793 

0.1026 

2 
r 

0.97 

0.98 

0.99 

0.98 

0.98 

0.98 

0.98 

0.99 

0.99 

0.99 

0.98 

0.98 

0.98 

0.97 

0.98 

0.99 

0.98 

0.98 

0.98 

0.97 
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Table A-2. Relationship between temperature (T, °C ) and the mean reproductive rate (Y, number of 

nymphs produced per female per day) of each age class of A. gossypii adults on cotton, based on 

Weibull's (1951) model: Y = d2 / d, d3 [ ( T - T, ) / d, f*1' ' ' exp { - [ ( T - T, ) / d, ]d2 }, where T, is 

the lower threshold temperature (7.9 °C); and d\, d2 and d3 are coefficients (see Sections 2.2.2 and 

2.3.3). RMSE is the Root Mean Square Error. 

Age class 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

d, 

20.3 

20.3 

20.1 

19.7 

19.4 

19.4 

19.2 

19.1 

19.1 

19.1 

19.9 

20.1 

20.4 

20.1 

20.0 

d2 

2.89 

2.96 

3.14 

3.06 

3.24 

3.43 

3.69 

3.92 

3.82 

4.24 

4.90 

5.30 

5.06 

8.97 

9.98 

d3 

52.7 

57.6 

59.0 

52.3 

47.5 

42.3 

33.3 

29.7 

25.7 

21.2 

15.0 

12.7 

9.3 

4.3 

3.0 

RMSE 

0.45 

0.51 

0.43 

0.33 

0.27 

0.13 

0.15 

0.11 

0.04 

0.03 

0.09 

0.07 

0.09 

0.01 

0.01 

2 

r 

0.94 

0.94 

0.97 

0.97 

0.98 

0.99 

0.99 

0.99 

0.99 

0.99 

0.98 

0.98 

0.94 

0.99 

0.99 

No nymphs were produced in age classes 16-20. 
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Table A-3. Relationship between temperature (T, °C) and the relative mortality rate (Rm, d~') of 

different age classes of C. septempunctata adults feeding on A. gossypii on cotton, based on the 

parabola: Rm = C) + c2 T + c3 T , where C|, c2 and c3 are coefficients (see Sections 3.2.2 and 3.3.1). 

RMSE is the Root Mean Square Error. 

Age class 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

C| 

0.034 

0.116 

0.094 

0.680 

0.670 

1.468 

1.504 

1.807 

2.256 

2.788 

3.836 

5.358 

C2 

-0.0028 

-0.0091 

-0.0070 

-0.0553 

-0.0533 

-0.1172 

-0.1213 

-0.0750 

-0.1791 

-0.2217 

-0.3095 

-0.4202 

C3 

0.00007 

0.00020 

0.00019 

0.00118 

0.00118 

0.00249 

0.00268 

0.00132 

0.00392 

0.00484 

0.00672 

0.00887 

R M S E 

0.0002 

0.0007 

0.0013 

0.0058 

0.0067 

0.0161 

0.0248 

0.0339 

0.0289 

0.0603 

0.0796 

0.0753 

2 
r 

0.98 

0.98 

0.98 

0.99 

0.99 

0.99 

0.99 

0.98 

0.99 

0.99 

0.99 

0.99 
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Table A-4. Relationship between temperature (T, °C) and the mean oviposition rate (Y, number of 

eggs laid per female per day) of each age classes of C. septempunctata adults feeding on A. gossypii 

on cotton, based on Weibull's (1951) model: Y = d2 / d, d3 [ ( T - T, ) / d, ]<d2 ~ ' ' exp { - [ ( T - T, ) / 
d2 

d] ] }, where T, is the lower threshold temperature (11.1 °C); and d], d2 and d3 are coefficients (see 

Sections 3.2.2 and 3.3.1). RMSE is the Root Mean Square Error. 

Age class 

1 

2 

3 

4 

5 

6 

7 

8 

9 

d. 

18.6 

19.4 

19.7 

19.7 

18.9 

18.4 

18.8 

19.1 

15.3 

d2 

2.81 

3.19 

2.94 

3.07 

3.68 

3.87 

4.33 

4.39 

3.88 

d3 

443.9 

558.7 

453.0 

310.2 

214.2 

136.0 

97.7 

62.7 

20.7 

RMSE 

11.1 

6.9 

6.5 

4.3 

2.8 

1.6 

2.3 

1.2 

0.1 

2 

r 

0.95 

0.99 

0.98 

0.98 

0.99 

0.99 

0.95 

0.94 

0.99 

No eggs were laid in age classes 10-12. 
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Table A—5. Relationship between temperature (T, °C) and the search rate (a, arena d~ ) of five 

foraging stages of C. septempunctata preying on three size-groups of A. gossypii on cotton, based on a 

linear model: a = h| + h2 T, where h, and h2 are coefficients (see Sections 4.2.2 and 4.3.3). RMSE is 

the Root Mean Square Error. 

Predator 

stage 

First instar 

Second instar 

Third instar 

Fourth instar 

Female adult 

Prey size-

group1 

Early instar 

Late instar 

Adult 

Early instar 

Late instar 

Adult 

Early instar 

Late instar 

Adult 

Early instar 

Late instar 

Adult 

Early instar 

Late instar 

Adult 

h, 

-0.56 

-1.49 

-0.84 

-0.86 

-1.82 

-2.49 

-0.74 

-0.88 

-1.45 

-0.42 

-1.85 

-3.83 

-0.76 

-3.09 

-3.19 

h2 

0.053 

0.100 

0.070 

0.086 

0.136 

0.177 

0.105 

0.119 

0.149 

0.137 

0.230 

0.320 

0.119 

0.237 

0.231 

RMSE 

0.09 

0.04 

0.19 

0.13 

0.38 

0.61 

0.15 

0.15 

0.31 

0.53 

1.31 

1.39 

0.41 

0.50 

0.59 

2 

r 

0.96 

0.87 

0.92 

0.98 

0.95 

0.94 

0.99 

0.99 

0.98 

0.95 

0.91 

0.95 

0.94 

0.98 

0.97 

Early instar refers to mixed first and second nymphs, and late instar to mixed third and fourth 

nymphs. 
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Table A-6. Relationship between temperature (T, °C) and the handling rate (Rh, h ) of five foraging 

stages of C. septempunctata preying on three size-groups of A. gossypii on cotton, based on the model 

ofEyring&Urry(1975): Rh = j , T exp ( - j 2 / T ) / [ 1 + j 3 exp ( - j 4 / T ) ], where j i , j 2 , j 3 and j 4 are 

coefficients (see Sections 4.2.2 and 4.3.3). RMSE is the Root Mean Square Error. 

Predator 

stage 

First instar 

Second instar 

Third instar 

Fourth instar 

Female adult 

Prey size-

group' 

Early instar 

Late instar 

Adult 

Early instar 

Late instar 

Adult 

Early instar 

Late instar 

Adult 

Early instar 

Late instar 

Adult 

Early instar 

Late instar 

Adult 

ji 

36.3 

58.9 

0.3 

3.7 

1.4 

0.1 

131.5 

18.7 

1.7 

703.3 

51.0 

0.6 

4.2 

92.7 

1.3 

J2 

82.4 

97.6 

20.4 

31.7 

35.2 

1.3 

71.4 

55.0 

30.0 

87.6 

57.4 

3.7 

12.1 

72.9 

8.2 

J3 

585.1 

1337.6 

14.3 

81.5 

236.4 

209.2 

921.8 

195.6 

93.3 

4016.7 

698.1 

30.1 

31.5 

992.3 

12.6 

J4 

127.6 

120.9 

68.1 

108.2 

146.7 

201.1 

105.9 

88.7 

98.6 

125.7 

106.4 

95.6 

72.0 

118.1 

51.7 

RMSE 

4.4 

0.5 

0.3 

3.7 

1.4 

0.5 

3.8 

1.5 

0.8 

7.4 

1.5 

0.9 

4.8 

1.3 

1.1 

2 

r 

0.93 

0.94 

0.86 

0.91 

0.91 

0.86 

0.88 

0.95 

0.90 

0.81 

0.97 

0.94 

0.90 

0.99 

0.87 

Early instar refers to mixed first and second nymphs, and late instar to mixed third and fourth 

nymphs. 
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Table A-7. Prey densities (number per arena) of A. gossypii on cotton offered for prédation by five 

foraging stages of C. septempunctata at fluctuating temperatures in plastic containers with 30 cm 

leaf in the laboratory experiment (see Section 5.2.3.1). 

Predator 

stage 

First instar 

Second instar 

Third instar 

Fourth instar and adult 

Number of prey per arena at different 

I 

10 

20 

40 

80 

II 

15 

30 

60 

120 

III 

20 

40 

80 

160 

density levels 

IV 

25 

50 

100 

200 

V 

30 

60 

120 

240 

The experiment was done for three prey size-groups: early instars (mixed first and second nymphs), 

late instars (mixed third and fourth nymphs) and adults. 

Table A-8. Prey densities (number cm leaf) of A. gossypii on cotton offered for prédation by five 

foraging stages of C. septempunctata at fluctuating temperatures in field cages (see Section 5.2.3.2). 

Predator 

stage 

First instar 

Second instar 

Third instar 

Fourth instar and adult 

Number of prey crrf 

I 

0.05 

0.10 

0.10 

0.20 

II 

0.10 

0.15 

0.20 

0.30 

at different density 

III 

0.15 

0.20 

0.30 

0.40 

levels 

IV 

0.20 

0.25 

0.40 

0.50 

V 

0.25 

0.30 

0.50 

0.60 

Mixed instars and adults. 
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Table A-9. Search rate (a, mean ± SE, arena d~ ) and handling time (Th, mean ± SE, d) of five 

foraging stages of P. japonica preying on three size-groups of A. gossypii on cotton in glass 

containers with 20 cm leaf in laboratory (see Section 5.2.1.3)1. 

Predator stage 

First instar 

Second instar 

Third instar 

Fourth instar 

Adult3 

2 

Prey group 

Early instar 

Late instar 

Adult 

Early instar 

Late instar 

Adult 

Early instar 

Late instar 

Adult 

Early instar 

Late instar 

Adult 

Early instar 

Late instar 

Adult 

a 

0.91 ±0.266 

1.08 + 0.421 

0.54 ± 0.094 

1.77 ±0.527 

0.97 ±0.219 

0.84 ±0.146 

3.03 ±0.649 

2.17 ±0.484 

1.91 ±0.451 

2.03 ± 0.220 

1.82 ±0.334 

1.24 ±0.215 

1.07 ±0.207 

0.80 + 0.179 

0.48 ± 0.080 

Th 

0.0134 + 0.0234 

0.0451 ±0.0424 

0.0999 ±0.0315 

0.0187 + 0.0060 

0.0143 ±0.0077 

0.0056 ±0.0118 

0.0237 ± 0.0026 

0.0318 ±0.0034 

0.0291 ±0.0078 

0.0264 ±0.0018 

0.0400 + 0.0059 

0.0406 ± 0.0077 

0.0058 ± 0.0032 

0.0059 ± 0.0046 

0.0117 ±0.0051 

RMSE 

1.27 

0.91 

0.30 

2.32 

1.60 

0.69 

1.56 

1.55 

1.05 

0.84 

0.77 

0.71 

2.88 

2.98 

1.70 

2 

r 

0.81 

0.68 

0.88 

0.94 

0.96 

0.98 

0.97 

0.95 

0.95 

0.99 

0.96 

0.95 

0.87 

0.81 

0.82 

The a and Th were estimated from Rogers' (1972) random predator equation, where RMSE is the 

Root Mean Square Error (aphids d ). 

Early instar refers to mixed first and second nymphs, and late instar to mixed third and fourth 

nymphs. 

Data were obtained by Song et al. (1988) at a constant temperature of 25 °C, with 70-90% r.h. 
4 Data were gathered by Zu et al. (1986) at fluctuating temperatures of 21-23 °C, with 82-92% r.h. 
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Appendix B 

Figures 
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Fig. B-l . Observed larvae and adults (number per plant ) of P. japonica on cotton at the seedling 

stage in single cotton cropped fields in 1992 (A), 1993 (B), 1994 (C), and 1995 (D). Bars represent 

observations with 95% confidence limits (see Section 5.2.1.3). 
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Fig. B-2. Observed larvae and adults of P. japonica (number per m row) on intercropped wheat from 

tillering to harvest, and their distribution ratios on intercropped cotton at the seedling stage in 1994 

(A), and 1995 (B). Bars represent observations with 95% confidence limits (see Section 6.2.1.3). 
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Fig. B-3. Observed wheat aphids on intercropped wheat (number per tiller) from tillering to harvest 

in 1994 (A), and 1995 (B). Bars represent observations with 95% confidence limits (see Section 

6.2.1.2). 
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Fig. B-4. Simulated (l) and observed (2 and 3) distribution ratios of the fourth larval instars and 

adults of C. septempunctata temporarily dispersing from wheat into cotton in experimental arenas (l 

m ) in the cotton-wheat intercropped field in 1995. The 2 and 3 represent verification and validation, 

respectively. Details are given in Section 6.2.1.3. 
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Fig. B-5. Daily maximum (thick line) and minimum (thin line) temperatures (°C) monitored at a 

meteorological station of the China Cotton Research Institute (CCRI), Anyang, Henan province, 

China, from April to June in 1992 (A), 1993 (B), 1994 (C), and 1995 (D). The a and b represent the 

mean daily maximum and minimum temperatures with SE (in parentheses) over the entire period, 

respectively (see Sections 5.2.3.3 and 6.2.3). 
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